Groundwater Monitoring Report September 2020

Coleman Oil Company Facility 3 East Chehalis Street Wenatchee, Washington

Prepared for:

Coleman Oil Company 335 Mill Road Lewiston, Idaho 83501

September 23, 2020

Prepared by:

HydroCon, LLC 314 W 15th Street, Suite 300, Vancouver, Washington 98660 Phone: (360) 703-6079 Fax: (360) 703-6086 www.hydroconllc.net

Groundwater Monitoring Report – September 2020

Coleman Oil Company Facility 3 East Chehalis Street Wenatchee, Washington

Prepared for: Coleman Oil Company 335 Mill Road Lewiston, Idaho 83501

HydroCon Project No: 2017-074

Prepared by:

Craig Hultgren, LHG Principal Geologist Hydrogeologist 1809

CRAIG HULTGREN

Table of Contents

1.0	INTRODUCTION		1
	1.1	Document Organization	1
2.0	BAC	GROUND INFORMATION	2
	2.1	Site Description	2
	2.2	Remedial Measures	2
	2.3	Geologic & Hydrogeologic Setting	3
	2.6	Monitoring Well Identification	4
3.0	FIELD WORK		
	3.1	Groundwater Sampling Procedures	5
	3.2	Laboratory Analysis	6
4.0	GROUNDWATER MONITORING RESULTS		
	4.1	Groundwater Conditions	7
	4.2	Groundwater Sampling Results	7
	4.3	Field Parameters	8
	4.4	Data Quality Review	9
5.0	DISCUSSION		
	5.1	Discussion of Laboratory Results	10
	5.2	Trends in GRPH and DRPH Concentrations in Groundwater	10
	5.3	Extent of Groundwater Contamination	
	5.3.1 Diesel Range Petroleum Hydrocarbons		
		2 Gasoline Range Petroleum Hydrocarbons	
6.0	FUTURE MONITORING SCHEDULE		
	6.1	Daily Columbia River Level and Water Level Measurements	
	6.2	Weekly to Monthly Water Level and Product Thickness Measurements	
	6.3	Next Planned Groundwater Monitoring Event	
7.0	QUALIFICATIONS12		
8.0	REFERENCES		

List of Figures

Figure 1 – Site Location Map

Figure 2 – Site Features Map

Figure 3 - Groundwater Elevation Contour Plot for August 30, 2020

Figures 4a, 4b, 4c, 4d, 4e, 4f, 4g, 4h, 4i – Trend Plots

Figure 5 – DRPH in Groundwater - September 2020

Figure 6 – GRPH in Groundwater - September 2020

List of Tables

Table 1 – Well Construction Details

Table 2 – Depth to Water and Groundwater Elevation

Table 3 – Summary of Groundwater Analytical Results - Fuels and VOCs

Table 4 – Historical Groundwater Analytical Results - PAHs

Table 5 – Vertical Groundwater Gradients

Table 6 – List of Wells to be Sampled and Associated Laboratory Analyses

Appendices

Appendix A – Groundwater Sample Collection Forms

Appendix B – Laboratory Report and Chain-of-Custody Documentation

Appendix C – Data Quality Review Reports

Appendix D – Water Level and Product Thickness Measurements Form

Acronyms

amsl above mean sea level bgs below ground surface

BNSF Burlington Northern – Santa Fe Railroad

COC Chemical of Concern
Coleman Oil Coleman Oil Company

DRPH diesel range petroleum hydrocarbons Ecology Washington Department of Ecology

EDB 1,2-dibromoethane EDC 1,2-dichloroethane

EEC Environmental Engineering & Consulting, Inc.

EPA Environmental Protection Agency

GRPH gasoline range petroleum hydrocarbons

HydroCon Environmental LLC

μg/L micrograms per liter

LCS/LCSD Laboratory Control Sample/ Laboratory Control

Sample Duplicates

LNAPL light nonaqueous-phase liquid

MDL method detection limit

MRL method reporting limit

MTBE Methyl tert-butyl ether

MTCA Model Toxics Control Act

MNA monitored natural attenuation

ORPH oil range petroleum hydrocarbons

PAHs polynuclear aromatic hydrocarbons

PID photoionization detector

Groundwater Monitoring Report – September 2020 Coleman Oil - Wenatchee, Washington September 23, 2020

EXECUTIVE SUMMARY

This Groundwater Monitoring Report provides the scope and findings of groundwater monitoring that was performed in September 2020. This monitoring event was performed to assess groundwater quality at the Site following the completion of the Supplemental Remedial Investigation (SRI) in 2019 and to document the direction and gradient of groundwater flow and groundwater contaminant levels.

Planned upgrades to the Site's groundwater treatment system have been completed. The new system recirculates treated water into sumps located in the uplands area of the Site instead of discharging it into the City of Wenatchee's sanitary sewer system. Petroleum contaminated water is collected from 9 pumping wells (MW09R, MW10R, BH01R, MW17, MW24, MW28, MW29, MW30, and MW32) and treated using granular activated carbon (GAC), the same as the previous system. The treated water is temporarily placed into the storage tanks located in Tank Farm A. The treated water is enriched with oxygen using hydrogen peroxide (H202) and then discharged into one or more of the sumps that were placed in the uplands area during remedial excavations in 2017 and 2019. This creates a closed loop system designed to enhance the biologic degradation of residual hydrocarbons at the Site. The new treatment system has been automated and requires less manpower to operate and maintain. Therefore, Coleman Oil has decided to take over the O&M and Columbia River level monitoring and boom management at the site.

Based on the capabilities of the new remediation system as well as the improved Site conditions due to remedial interim actions taken at the Site, HydroCon petitioned Ecology to modify groundwater monitoring¹. These modifications were approved by Ecology with the following stipulations:

- Quarterly groundwater monitoring will continue through 2020 with sampling events planned for September and December 2020.
- Beginning in 2021, groundwater monitoring will be performed on a semi-annual basis (spring
 and fall in 2021 followed by winter and summer the next year, etc.) at selected monitoring wells
 (agreed upon by Ecology) until all contaminants of concern are reduced below their respective
 MTCA Method A cleanup levels (CUL). Once that occurs, the groundwater monitoring
 schedule will revert back to a quarterly basis until the concentration of all contaminants of
 concern remain below their CULs at all wells being monitored for 4 consecutive quarters.
- At Ecology's request, at least one monitoring event during the final quarterly sampling process will include sampling of all site monitoring wells to verify that the "clean wells" have remained below the cleanup level.

Groundwater monitoring in September 2020 included the following tasks and reporting:

 Turn off the pumps on August 28, 2020 at monitoring wells MW09R, MW10R, BH-1, MW17, MW24, MW28, MW29, MW30 and MW32 where groundwater and product recovery are being performed to allow groundwater levels to equilibrate to static conditions.

¹ HydroCon, Addendum to the 2019 O&M Monitoring Report – Modifications to Site Monitoring, August 10, 2020

- Collect depth to water and product at each of the Site monitoring and recovery wells on August 30, 2020, two days after the pumps had been turned off.
- Collect groundwater samples for chemical analysis at selected wells listed on Table 6.
- Review the laboratory results and perform a data validation review and summary.
- Compile the depth to water, product level information, and analytical data into summary tables and figures.
- Update trend plots of GRPH and DRPH in groundwater in the site monitoring wells (Figures 4a through 4i).
- Prepare figures showing the extent and concentration of GRPH and DRPH in groundwater at the site based on September 2020 results (Figures 5 and 6).
- Prepare a discussion on the laboratory results, groundwater flow direction and gradient, trends in groundwater chemistry, and the extent of gasoline range petroleum hydrocarbons (GRPH) and diesel range petroleum hydrocarbons (DRPH) contamination in groundwater at the site.
- Update the tentative schedule of future groundwater monitoring events.

1.0 INTRODUCTION

HydroCon Environmental, LLC (HydroCon), has prepared this Groundwater Monitoring Report on behalf of Coleman Oil Company (Coleman Oil) to assess groundwater quality following the completion of the 2019 SRI and to document the direction and gradient of groundwater flow and groundwater contaminant levels at the Coleman Oil fuel storage facility at 3 Chehalis Street in Wenatchee, Washington (herein referred to as the Property). This report has been prepared to meet the requirements of Exhibit B – Scope of Work and Schedule of Agreed Order No. DE 15389 entered into by Coleman Oil Company, LLC; Coleman, Services IV, LLC; and Ecology with an effective date of October 30, 2017 (Agreed Order).

The Site, as defined under the Washington State Model Toxics Control Act Cleanup Regulation (MTCA), Chapter 173-340 of the Washington Administrative Code (WAC §173-340-200), comprises the portion of the Property and adjacent properties where hazardous substances have come to be located in soil, groundwater, and surface water at concentrations suspected to exceed applicable cleanup levels as a result of releases at the Property (herein referred to as the Site).

1.1 **Document Organization**

The Groundwater Monitoring Report is organized as follows:

Section 2, Background Information, which provides a description of the Site, Property ownership, and geologic and hydrogeologic setting.

Section 3, Field Work

Section 4, Groundwater Monitoring Results

Section 5, Discussion

Section 6, Future Monitoring Schedule

Section 7, Qualifications

Section 8, References

2.0 BACKGROUND INFORMATION

Site background information and remediation history has been discussed in detail the Supplemental Remedial Investigation (SRI) Work Plan (HydroCon 2018a) and the Draft SRI Report (HydroCon 2018b) as well as previous groundwater monitoring reports.

2.1 Site Description

The Site is located at 3 Chehalis Street in Wenatchee, Washington, nearly adjacent to the west side of the Columbia River. Land use near the Site is primarily industrial (Figure 1).

2.2 Remedial Measures

Several remedial measures have been performed at the Site since the discovery of the release.

- Pads and booms have been placed in the Columbia River in the observed sheen discharge area to recover product since discovery of the release. This practice has continued along with daily reporting regarding Columbia River conditions, now reduced to daily observations but weekly reporting.
- A remedial excavation was performed at the Coleman Oil facility near the point of release.
 Approximately 741 tons of petroleum contaminated soil was removed for offsite disposal.
- Sumps were placed in the remedial excavation backfill. Pumps were placed in the sumps to
 recover product and maintain a cone of depression to minimize product migration. Effluent from
 the sumps was routed to an oil/water separator and settling tanks prior to treatment using
 granular activated carbon (GAC). The treated water was disposed under permit into the City of
 Wenatchee's sanitary sewer system.
- Farallon Consulting and Ecology's consultant (Environmental Partners, Inc. [EPI]) installed fifteen wells at the Site (MW-1 through MW-11, BH-1 through BH-3, and RW-1). Product recovery via skimming using a peristaltic pump and tubing and/or passive recovery using hydrophobic socks occurred in some of the wells.
- In April 2018, HydroCon performed a supplemental remedial investigation (SRI) that included the addition of fourteen new 4-inch diameter monitoring wells (MW12 through MW23, MW01S, MW03S). Three wells with persistent light nonaqueous-phase liquid (LNAPL) measurements (MW-9, MW-10, and BH-1) were fitted with pumps and connected with underground piping for pressurized air to operate the pumps, and conduit for electrical power for heat tape at each pumping well and effluent piping to collect the recovered groundwater and product. The recovered groundwater and product from these wells were routed through three oil/water separators, into storage tanks and then through filtration and GAC and into storage tanks. The treated water was analyzed prior to discharge in batches under an agreement between Coleman Oil and the City of Wenatchee into the City's sanitary sewer system. Pumping of the three wells began on May 5, 2018.
- In August 2018 nine new 4-inch diameter monitoring wells (MW24 through MW32) were installed at the Site. Two of the wells used to recover product and contaminated groundwater (MW-9 and MW-10) were deepened, completed as 4-inch diameter wells, and renamed MW09R

and MW10R, respectively.

- A release of diesel and gasoline from a 55-gallon drum onto the ground surface occurred at the Site near the northeastern corner of Tank Farm A in early September 2018. In response, a total of 16.83 tons of petroleum contaminated soil was removed by remedial excavation. Confirmation soil sampling results indicated that the lateral extent of contamination had been removed. However, the concentration of GRPH and DRPH in the excavation floor sample collected near the groundwater interface exceeded their respective MTCA Method A cleanup levels. No further excavation was attempted due to the proximity of the Tank Farm A containment and a massive boulder that was too large to remove using the excavation equipment. Further remedial action in this area was considered in the feasibility study that was prepared later for the Site.
- The remediation system for recovering product and treating groundwater was expanded in November 2018 to include six more recovery points (MW17, MW24, MW28, MW29, MW30, and MW32). The modified remediation system now consists of three separate zones that pump LNAPL and contaminated groundwater into three OWSs. These zones include the MW09R zone (MW09R, MW17, and MW32); the MW10R zone (MW10R, MW24, and MW28); and the BH-1 zone (BH01R, MW29, and MW30) with all 9 wells active. The expanded remediation system began pumping on November 2, 2018.

The construction details for all wells, including well depth, screened intervals, and screen diameters, are summarized on Table 1.

As of December 31, 2019, a total of 454.47 gallons of product had been recovered (HydroCon 2020b). The majority of the product is believed to be R99 from the 2017 release. Other fuel products have been identified by forensic analysis to be present in the subsurface, including gasoline, non-R99 diesel fuel, and lubricating oil, so it is likely that some of the recovered product includes petroleum products other than R99.

2.3 Geologic & Hydrogeologic Setting

The Site is located in the Wenatchee Valley approximately 150 feet west south-west of the Columbia River at an elevation of approximately 660 feet above mean sea level (Figure 1). The topography of the Site slopes very gently to the north north-east parallel to the Columbia River.

The soils beneath the Site are consistent with ice-age alluvial deposits underlain by the Chumstick Formation bedrock. The alluvium consists primarily of silt and silty sand, with layers of clay, sand, gravel, cobbles and boulders. The thickness of the alluvial deposits ranges from 6 to 31.5 feet. Boring logs and drilling observations indicate that a more massive, well cemented sandstone layer is beneath thin layers of mudstone, shale and sandstone and the sandstone appears to be acting as an aquitard in this area. The groundwater level is within a few feet of the top of the Chumstick Formation and always above the sandstone layer. An exception is at MW22 where the groundwater is approximately 15 feet above the top of the Chumstick formation. The MW22 area has been disturbed by previous excavation and has been backfilled with construction and other debris.

Groundwater Monitoring Report – September 2020 Coleman Oil - Wenatchee, Washington September 23, 2020

Contaminant transport and groundwater flow appears to follow the surface of the Chumstick formation and field observations paired with analytical data suggest that the petroleum contamination penetrates a few feet into the formation and travels laterally within the shaley sandstone and shale, siltstone, mudstone of the Chumstick formation. The groundwater flow direction and the dip of the sandstone surface are both to the north/northeast, except in the region between the Site and the Columbia River (near the riverbank), where both are more to the east. Aquifer testing performed in February 2018 demonstrated that none of the wells tested are hydraulically connected. However, over 200 gallons of R99 (based on product recovery totals) has been recovered from the Columbia River with the apparent discharge points being west of monitoring wells BH-2 (south) to MW-10 (north).

2.6 Monitoring Well Identification

HydroCon utilizes a well and boring identification convention that differentiates wells and boring installed by HydroCon verses installations by others. Wells and borings installed by others include a hyphen in the identification (e.g., MW-11, BH-2) whereas those installed or modified by HydroCon do not include a hyphen (e.g., MW12, HC01).

Groundwater Monitoring Report – September 2020 Coleman Oil - Wenatchee, Washington September 23, 2020

3.0 FIELD WORK

This section describes the sampling procedures, analytical methods, groundwater conditions, and laboratory results for wells sampled or monitored in September 2020. A data quality review is included.

3.1 Groundwater Sampling Procedures

As discussed in the Executive Summary, the remediation system was turned off on August 28, 2020 to allow groundwater levels to equilibrate to static conditions. This practice has been followed for every groundwater monitoring event except for December 2019 when the remediation system remained active due to concerns for freezing pipes.

On August 30, 2020 (2 days after the remediation system had been turned off), the water level in each well was measured using a clean electronic water level indicator. Water levels were measured at the scribed reference mark (north side of the top of the polyvinyl chloride casing) at each well. The water level was documented on the Groundwater Sample Collection Forms (Attachment A).

HydroCon collected groundwater samples on August 31 through September 2, 2020 from 28 site monitoring and recovery wells (Tables 2 and 3). The following wells shown on Table 2 were not sampled for the following reasons:

- HydroCon did not collect groundwater samples from MW-1, MW-2, MW-3, MW-4, MW-5, MW-7
 and MW22. HydroCon petitioned Ecology to cease sampling in these wells due to improper well
 construction, no detection of chemicals of concern (COCs) in the well, monitoring well MW-7
 being so close to MW23, and MW22 being located outside of the plume that originates at the
 Coleman Oil Site. This request was approved by Ecology².
- MW15 and MW18 were not sampled due to insufficient water in the wells.
- MW29 was not sampled due to the presence of free product (0.02 feet) in the well.

Three field duplicate samples (MW100-W, MW101-W, and MW102-W) were collected from MW-6, MW10R, and MW17, respectively, for quality assurance/quality control (QA/QC) purposes.

Prior to groundwater sampling, monitoring wells were purged with a low-flow peristaltic pump or bladder pump equipped with a new length of low-density polyethylene tubing attached to a new length of silicone tubing in accordance with U.S. Environmental Protection Agency (EPA) guidance for low-flow sampling³. The tubing intake was placed approximately 2 to 3 feet below the surface of the groundwater or mid-screen in each well. During purging, water quality was monitored using a Quanta Multi-parameter water quality meter equipped with a flow-through cell. The water quality parameters monitored and recorded included temperature, pH, specific conductance, dissolved oxygen, turbidity, and

² Washington State Department of Ecology. Comments on Supplemental Remedial Investigation Report. August 16, 2018.

³ Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedures (April 1996). EPA/540/S-95/504

oxidation-reduction potential. Each well was purged until all six water quality parameters stabilized or the minimum parameter subset of pH, specific conductance, temperature, and turbidity and/or dissolved oxygen stabilized. *Groundwater Sample Collection Forms* and *Daily Field Reports* are included as Appendix A.

Following purging, groundwater samples were collected from the pump outlet tubing located upstream of the flow-through cell and placed directly into clean, laboratory-prepared sample containers. Each container was labeled with a unique sample identification number, placed on ice in a cooler, and transported under chain-of-custody to APEX laboratory of Tigard, Oregon, for laboratory analysis.

Purge water generated during the monitoring event was collected in 5-gallon buckets and transferred to the oil water separators in the onsite treatment system for treatment and discharge to the City sanitary system.

3.2 Laboratory Analysis

The analytical protocols for the samples collected at the Property include the required testing for petroleum releases for gasoline (Table 830-1 in the MTCA Cleanup Regulations Chapter 173-340 WAC). The analytical methods include:

- GRPH using Northwest Method NWTPH-Gx
- DRPH and ORPH using Northwest Method NWTPH-Dx
- BTEX using EPA Method 8260C

4.0 GROUNDWATER MONITORING RESULTS

4.1 Groundwater Conditions

HydroCon measured water levels at 38 wells on August 30, 2020, two days after the nine pumping wells (MW09R, MW10R, BH01R, MW17, MW24, MW28, MW29, MW30 and MW32) were shut off to allow water levels to equilibrate to static conditions. The depth to water measurements for August 30, 2020 and calculated groundwater elevations at each well are summarized in Table 2. It should be noted that monitoring wells MW15 and MW18 were dry so no groundwater elevations for those wells could be calculated.

On August 30, 2020 the depth to water at the Site ranged from 7.48 feet bgs (MW-13R) to 38.63 feet bgs (MW-5) and groundwater elevations ranged from 616.67 (MW22) to 650.43 (MW-3) feet amsl. A groundwater elevation contour plot was prepared from this data set (Figure 3). Groundwater flow across the Site was generally to the northeast with a more easterly flow in the southern portion of the Site. The groundwater gradient between MW13R, near the middle of the property, and MW31 was 0.106 ft/ft. The gradient in the southern portion of the Site between MW-2 and MW-5 is much steeper at 0.43 ft/ft.

Vertical gradients were calculated for well pairs MW-1/MW01S and MW-3/MW03S located in the southern portion of the Site. These well pairs are located within 10 horizontal feet of each other. The vertical hydraulic gradient within an aquifer (or between two aquifers separated by an aquitard) is calculated by dividing the difference in hydraulic head (or water level elevation) by the vertical (elevation) distance between the well screen midpoints. Table 5 provides the parameters and calculations for the vertical gradients of the well pairs.

The groundwater elevations for each well pair are very similar, with slightly higher elevations for the deeper wells (MW-1 and MW-3) indicating a very slight upward vertical gradient. The calculated vertical gradient for MW-1/MW01S was 0.086 ft/ft and the vertical gradient for MW-3/MW03S was 0.017 ft/ft for the August 30, 2020 measurement.

These very small vertical gradients indicate that vertical gradients do not play a significant role in contaminant distribution or transport, at least in the southern portion of the Site. The vertical gradients for MW-1/MW01S and MW-3/MW03S were nearly identical to the five previous groundwater monitoring measurements.

4.2 Groundwater Sampling Results

Laboratory analytical results are reported as micrograms per liter (μ g/L) or parts per billion. The results are provided in Table 3 and laboratory reports are included as Appendix B. A summary of the results for each constituent sampled is provided below.

Groundwater Monitoring Report – September 2020 Coleman Oil - Wenatchee, Washington September 23, 2020

Gasoline Range Petroleum Hydrocarbons

GRPH was detected above the laboratory's method reporting limit (MRL) in 12 wells including MW-6, MW-8, MW09R, MW10R, MW-11, MW14, MW17, MW20, MW21, MW28, BH01R and BH-2. The GRPH concentration ranged up to 3,830 μ g/L at MW14. The CUL for GRPH is 800 μ g/L and was exceeded in the samples collected from MW-11, and MW14.

Diesel Range Petroleum Hydrocarbons

DRPH was detected above the MRL in in 24 wells with concentrations ranging up to 6,200 μ g/L at MW-30. It should be noted that MW29 had 0.02 feet of free product and no sample was collected from the well. The CUL for DRPH is 500 μ g/L and was exceeded in samples collected from BH01R, BH-2, BH-3, MW-6, MW-8, MW09R, MW10R, MW-11, MW13R, MW14, MW17, MW19, MW20, MW21, MW23, MW27, MW28, and MW30.

Oil Range Petroleum Hydrocarbons

ORPH was detected above the MRL in one sample (MW30-W) at a concentration of 1,120 μ g/L. The concentration exceeds the CUL of 500 μ g/L.

Benzene

Benzene was detected above the MRL in wells MW13R and MW14 at concentrations ranging up to 7.82 μ g/L. The highest concentration was seen in MW14. The CUL for benzene (5 μ g/L) was exceeded in the sample collected from MW14.

Toluene

Toluene was not detected above the MRL in any of the samples.

Ethylbenzene

Ethylbenzene was detected above the MRL in the sample collected from well MW14. The concentration in the sample (4.00 μ g/L) does not exceed the CUL of 700 μ g/L.

Total Xylenes

Total xylenes were not detected above the MRL in any of the samples.

Polynuclear Aromatic Hydrocarbons

Polynuclear aromatic hydrocarbons (PAHs) were not analyzed in any of the wells during this sampling event. Historic results are provided in Table 4.

4.3 Field Parameters

Dissolved Oxygen – The dissolved oxygen content in the samples collected from the site ranged from 0.07 to 9.61 mg/L. Only three wells had dissolved oxygen greater than 1.0 mg/L including MW13R, MW16, and MW24. These low values indicate that groundwater at the site has a low oxygen content⁴.

Redox Potential – Redox potential is a measure with which a molecule will accept electrons. It is measured in millivolts (mV). The more positive the redox potential, the more readily a molecule can be

⁴ User's Manual: Natural Attenuation Analysis Tool Package for Petroleum Contaminated Groundwater, Toxics Cleanup Program Publication No. 05-09-091A. July Ecology, July 2005.

reduced. The redox potential in the samples collected from the site ranged from -183.7 mV to 170.8 mV.

pH – pH is a measure of the acidity or alkalinity of a solution. The pH scale ranges from 0 to 14. A pH less than 7 is considered to be acidic. A pH greater than 7 is considered to be basic or alkaline. The pH in the samples collected at the site ranged from 5.71 to 7.14.

4.4 Data Quality Review

Laboratory testing of groundwater are included in Appendix B as APEX Work Order A0I0140. The *Data Quality Review Report* is included in Appendix C. The review of the analytical results included the following:

- Holding Times & Sample Receipt
- Surrogate Compounds
- Associated Matrix Spike/Matrix Spike Duplicate (MS/MSD)
- Associated Laboratory Duplicate
- Laboratory Control Sample/ Laboratory Control Sample Duplicates (LCS/LCSD)
- Method Blank
- Field Duplicates
- Target Analyte List
- Reporting Limits (MDL and MRL)
- Reported Results

Data were qualified by the laboratory due to matrix interference, visible sediment in sample vials, or RPD fell outside QC limit. These qualifiers resulted in validation qualifiers of estimated quantity (J). No data were rejected, and completeness was 100 percent.

All results are usable for their intended purpose. Data qualifications are identified in detail in full *Data Validation Report* included in Appendix C.

5.0 DISCUSSION

This section provides a breakdown of results of the September 2020 groundwater monitoring event compared to prior monitoring events.

5.1 Discussion of Laboratory Results

Results of the September 2020 groundwater monitoring event indicated that 18 of the 28 wells sampled at the Site (BH01R, BH-2, BH-3, MW-6, MW-8, MW09R, MW10R, MW-11, MW13R, MW14, MW17, MW19, MW20, MW21, MW23, MW27, MW28, and MW30) have one or more COC above their respective CUL. This is a decrease of 2 wells compared to the results of the March 2020 groundwater monitoring results. A decrease in the number of wells having GRPH concentrations (2 compared to 3) and benzene concentrations (1 compared to 2) in excess of their respective CUL was observed compared to the previous quarter results.

5.2 Trends in GRPH and DRPH Concentrations in Groundwater

HydroCon has prepared trend plots of GRPH and DRPH in the 28 wells sampled in September 2020 (Figures 4a, 4b, 4c, 4d, 4e, 4f, 4g, 4h and 4i). A noticeable increasing trend in DRPH concentrations was observed in five wells including MW-11, MW23, MW27, MW28, and MW30. A decreasing trend in DRPH concentrations was observed in eight wells including MW16, MW17, MW20, MW24, MW25, MW26, and MW30.

A continued improving trend in GRPH and benzene concentrations in groundwater was observed during this sampling event. The remedial excavation performed near the former Control Valve Building and Tank Farm B has proven to be successful at removing the majority of the source of these 2 constituents at the site. In addition, the application of treated groundwater in the uplands area by the new groundwater recirculation system has likely contributed to improved groundwater conditions.

5.3 Extent of Groundwater Contamination

The September 2020 groundwater results for GRPH and DRPH are plotted on Figures 5 and 6 and iso-concentration contours were prepared to illustrate the magnitude and extent of each contaminant at the Site. Red and gray colored shading was used to graphically display the plume boundary. Further details of the shading are provided in the legend of both figures.

The DRPH plot was modified this report in an attempt to utilize site knowledge of groundwater flow, known preferential pathways (e.g., remedial excavation cavities), and to fill in the blanks where no groundwater data has been obtained (mostly in the area in between the point of the release and Chehalis Street). These plots are conceptual based on limited data points.

The seep area (soil samples SL01 through SL04) are included on the figures since the seep water is in contact with impacted soil and shows the location of this area relative to areas of impacted groundwater.

5.3.1 Diesel Range Petroleum Hydrocarbons

The extent of DRPH contamination in groundwater is illustrated on Figure 5. A plume of DRPH impacted groundwater with DRPH levels greater than the 500 µg/L CUL is present at the site from

south of MW13R and extends northeast slightly beyond monitoring well MW20 with localized elevated DRPH concentrations at MW10R and MW21.

As discussed above, HydroCon modified the plume configuration in this report to reflect known preferential pathways and presumed groundwater quality where no data has been obtained in between the point of the release and Chehalis Street. The extent of DRPH greater than 1,000 µg/L has been expanded based on the known direction of groundwater flow and the two areas of elevated DRPH concentrations within the plume including:

- The area encompassing monitoring wells MW17 and MW09R. The concentration of DRPH ranges from 2,330 to 2,890 μg/L. Both of these wells are currently being used to extract product and groundwater from the Site.
- The area in between BH01R and BH-2 including wells MW29 and MW30. The concentration of DRPH ranges from 2,740 to 6,200 µg/L. Monitoring well MW29 had 0.02 feet of free product.
 Monitoring wells BH01R, MW29 and MW30 are being used to extract product and groundwater from the Site.

Areas with DRPH concentrations less than 500 μ g/L (Method A cleanup level) include areas of the Property south of Tank Farm A, much of the eastern and southern tip of the Property and adjacent Worthen Street, the northwest portion of Chehalis Street, and the line of wells east of Worthen Street including and between MW25 and MW26 and near MW24 and RW-1.

5.3.2 Gasoline Range Petroleum Hydrocarbons

The extent of GRPH contamination in groundwater is illustrated on Figure 6. There is currently one localized area within the plume that has elevated GRPH concentrations above the CUL of 800 µg/L:

• The area around MW14 to MW-11. The highest concentration of GRPH (3,820 μg/L) is present in MW14 which is located immediately downgradient of the footprint of former Tank Farm B and former Control Valve Building. A decreasing concentration of GRPH is seen further downgradient of this well at MW-11 (804 μg/L) and MW-8 (683 μg/L).

6.0 FUTURE MONITORING SCHEDULE

6.1 Daily Columbia River Level and Water Level Measurements

Coleman Oil manages the containment booms on the Columbia River, measures water levels in the Columbia River, and operates and maintains the treated groundwater recirculation system at the Site. Coleman Oil's daily tasks includes monitoring the water level at a surveyed reference location along the Columbia River and water and product levels in the nine recovery wells at the Site (MW09R, MW10R, BH01R, MW17, MW24, MW28, MW29, MW30, and MW32) using a clean electronic oil/water interface probe.

These measurements are recorded in spreadsheet files and a field form prepared by HydroCon that includes elevations of the four Seeps along with the depth of the pump setting on each pumping well. This form provides a comparison of the elevation of the Columbia River to the four Seeps. The presence of a sheen on the river was often associated with the River level being above one or more of

Groundwater Monitoring Report – September 2020 Coleman Oil - Wenatchee, Washington September 23, 2020

the Seeps. In addition, the form also provides the depth of the pump setting in each pumping well so that the depth to ground water level can be compared to the pump setting to assess if the pumps are operating properly. This form is prepared on a daily basis and is provided to Ecology in the Monthly Reports. HydroCon has expanded the Monthly Reports to include all O&M monitoring and repair work. These reports will replace the annual O&M reports that have been prepared in the past.

The highest water levels measured in the Columbia River are typically seen during the spring melt which generally occurs in late April through July. The River level commonly rises to an elevation that is above one or more of the Seeps where petroleum sheen has been observed to emanate from. The occurrence of a sheen has diminished significantly since interim remedial actions have been implemented. On May 17, 2020 a sheen was observed from the first time in 278 days. A sheen was also recorded on May 19, 20 and 22. The occurrence of a sheen coincided with the pump being down in BH01R due to biofouling. HydroCon removed the pumps from all the pumping wells and gave them a thorough cleaning. No further sheens have been observed in the River since the pump maintenance was performed. This includes several days in the Spring where the elevation of the River was higher than one or more of the Seeps.

6.2 Weekly to Monthly Water Level and Product Thickness Measurements

Coleman Oil assists HydroCon with the collection of depth to water and product level measurements of all the Site wells on a monthly basis following the same protocol as the daily water and product level measurement task. Coleman Oil utilizes a Well Product Monitoring & Recovery spreadsheet to record these data (Appendix D). This form is provided to HydroCon so that the data can be entered into spreadsheets (i.e., Table 2). This information also is used to assess seasonal groundwater flow direction patterns and if there is correlation between groundwater levels in the aquifer and the Columbia River stage.

Free product (up to 0.03 feet) was measured in monitoring well MW29 on August 31 through September 2, 2020. This is when the remediation system was turned off prior to starting the September 2020 sampling event. This is the same well where product was measured 71 days in 2019.

The last time free product was measured at any other well was September 28, 2019 (BH01R), December 22, 2018 (MW09R), and December 14, 2018 (MW10R).

6.3 Next Planned Groundwater Monitoring Event

The next quarterly groundwater sampling event is tentatively scheduled for December 2020.

7.0 QUALIFICATIONS

HydroCon's services were performed in a manner consistent with generally accepted practices of the profession undertaken in similar studies in the same geographical area during the same time period. HydroCon makes no warranties, either expressed or implied, regarding the findings, conclusions or recommendations. Please note that HydroCon does not warrant the work of laboratories, regulatory agencies, or other third parties supplying information used in the preparation of the report.

Findings and conclusions resulting from these services are based upon information derived from the on-site activities and other services performed under this scope of work; such information is subject to change over time. Certain indicators of the presence of hazardous substances, petroleum products, or other constituents may have been latent, inaccessible, unobservable, nondetectable or not present during these services, and we cannot represent that the Site contains no hazardous substances, toxic materials, petroleum products, or other latent conditions beyond those identified during this monitoring. Subsurface conditions may vary from those encountered at specific sampling locations or during other surveys, tests, assessments, investigations, or exploratory services; the data, interpretations and findings are based solely upon data obtained at the time and within the scope of these services.

This report is intended for the sole use of **Coleman Oil Company** to meet the requirements of Exhibit B – Scope of Work and Schedule of the Agreed Order. This report may not be used or relied upon by any other party without the written consent of HydroCon. The scope of services performed in execution of this evaluation may not be appropriate to satisfy the needs of other users and use or re-use of this document or the findings, conclusions, or recommendations is at the risk of said user.

The conclusions presented in this report are, in part, based upon subsurface sampling performed at selected locations and depths. There may be conditions between borings or samples that differ significantly from those presented in this report and which cannot be predicted by this study.

8.0 REFERENCES

Farallon, 2017. Supplemental Data Summary Report. Prepared for Coleman Oil Company. October 18.
HydroCon, LLC. 2018a. Supplemental Remedial Investigation Work Plan. Coleman Oil R99 Renewable Diesel Spill, Wenatchee, Washington. Prepared for Coleman Oil Company, LLC. March 15.
——. 2018b. Supplemental Remedial Investigation Report. Coleman Oil R99 Renewable Diesel Spill, Wenatchee, Washington. Prepared for Coleman Oil Company, LLC.
——. 2018d. Quarterly Groundwater Monitoring Report – August 2018, November 12.
——. 2019a. Quarterly Groundwater Monitoring Report – November 2018, January 8.
——. 2019b. Additional Interim Actions Addendum #2 Report – January 10.
——. 2019c. SRI Addendum – Uplands Soil Characterization Report – March 6.
——. 2019d. SRI Addendum – Sediment Characterization Report – May 22.
——. 2019e. Quarterly Groundwater Monitoring Report – March 2019, May 28.
——. 2019f. Additional Interim Actions Addendum #3 – Remedial Excavation Report – July 25.
——. 2019g. Quarterly Groundwater Monitoring Report – August 2019, October 21.
——. 2020a. Quarterly Groundwater Monitoring Report – December 2019, March 12.

—. 2020b. Annual Operations and Maintenance Report – 2019 - March 31.

FIGURE 4 TREND PLOTS

COLEMAN OIL COMPANY 3 CHEHALIS ST. WENATCHEE, WA.

FIGURE 4A TREND PLOTS

COLEMAN OIL COMPANY 3 CHEHALIS ST. WENATCHEE, WA.

FIGURE 4B TREND PLOTS

FIGURE 4C TREND PLOTS

FIGURE 4D TREND PLOTS

COLEMAN OIL COMPANY 3 CHEHALIS ST. WENATCHEE, WA.

FIGURE 4E TREND PLOTS

FIGURE 4F TREND PLOTS

FIGURE 4G TREND PLOTS

FIGURE 4H TREND PLOTS

FIGURE 4I TREND PLOTS

COLEMAN OIL COMPANY 3 CHEHALIS ST. WENATCHEE, WA.

Table 1Well Construction Details Coleman Oil Wenatchee, Washington

W-III D		landa lland Dan	Drilling	Total Boring Depth	Total Well Depth	Diameter	Well Construction	Slot Size	Length of Screen	Сар	Screened Interval	Well Casing Elevation
Well ID MW-1	Date Installed 7/7/2010	Installed By Farallon	Method Air Rotary	(feet bgs) 35.50	(feet bgs) 35.00	(inch)	Material PVC	(inch) 0.01	(feet) 15	(feet)	(feet bgs) 20-35	(feet¹) 658.01
MW01S	3/4/2018		Sonic	20.00	19.99	4	PVC	0.01	15	0.23	5.37 - 20.37	657.54
MW-2	7/8/2010	HydroCon Farallon	Air Rotary	40.00	40.00	2	PVC	0.01	15	0.25	25-40	657.76
MW-3	9/7/2010	Farallon	Air Rotary	35.30	35.00	2	PVC	0.01	10	-	25-35	658.26
MW03S	4/3/2018	HydroCon	Sonic	20.00	19.30	4	PVC	0.01	15	0.23	4.43 - 19.43	658.17
MW-4	9/8/2010	Farallon	Air Rotary	40.10	37.00	2	PVC	0.01	10	0.23	27-37	657.48
MW-5	9/9/2010	Farallon	Air Rotary	45.40	45.00	2	PVC	0.01	15	-	30-45	656.00
MW-6	4/12/2017	Farallon	Air Rotary	18.40	18.00	4	PVC	0.01	10		8-18	657.70
MW-7	t	Farallon		20.10	20.00	4	PVC	0.02	10	-	10-20	
	4/11/2017		Air Rotary							-		657.52
MW-8	4/11/2017	Farallon	Air Rotary	25.20	25.00	4	PVC	0.02	10	-	15-25	656.20
MW-9	4/12/2017	Farallon	Air Rotary	24.50	24.00	4	PVC	0.02	10	- 0.45	14-24	655.29
MW09R	8/15/2018	HydroCon	Sonic	35.00	32.60	4	PVC	0.01	25	0.45	8.59-33.59	653.55
MW-10	4/14/2017	Farallon	Air Rotary	30.20	30.00	2	PVC	0.02	16		14-30	645.80
MW10R	8/16/2018	HydroCon	Sonic	35.00	33.59	4	PVC	0.01	20	0.45	14.64-34.64	644.30
MW-11	4/14/2017	Farallon	Air Rotary	22.30	22.00	4	PVC	0.02	10	- 0.22	12-22	658.00
MW12	4/2/2018	HydroCon	Sonic	20.00	19.52	4	PVC	0.01	15	0.23	4.63 - 19.63	658.27
MW13R	7/2/2019	HydroCon	Sonic	19.00	18.46	4	PVC	0.01	14	0.23	4.23 - 18.23	656.67
MW14	3/30/2018	HydroCon	Sonic	35.00	20.02	4	PVC	0.01	15	0.23	5.23 - 20.23	657.15
MW15	4/12/2018	HydroCon	Sonic	35.10	35.10	4	PVC	0.01	25	0.23	10.33 - 35.33	654.99
MW16	4/5/2018	HydroCon	Sonic	30.00	29.15	4	PVC	0.01	20	0.23	9.28 - 29.28	656.93
MW17	4/4/2018	HydroCon	Sonic	35.00	29.41	4	PVC	0.01	20	0.23	9.52 - 29.52	655.55
MW18	4/11/2018	HydroCon	Sonic	35.00	34.65	4	PVC	0.01	20	0.23	15.86 - 35.86	654.51
MW19	4/5/2018	HydroCon	Sonic	35.00	31.48	4	PVC	0.01	20	0.23	11.66 - 31.66	653.31
MW20	4/10/2018	HydroCon	Sonic	30.00	29.50	4	PVC	0.01	20	0.23	9.79 - 29.79	650.85
MW21	4/9/2018	HydroCon	Sonic	35.00	32.10	4	PVC	0.01	20	0.23	12.30 - 32.30	643.88
MW22	4/13/2018	HydroCon	Sonic	40.00	39.10	4	PVC	0.01	25	0.23	9.19 - 34.19	641.85
MW23	3/29/2018	HydroCon	Sonic	25.00	22.04	4	PVC	0.01	15	0.23	7.13 - 22.13	656.91
MW24	8/6/2018	HydroCon	Sonic	35.00	34.25	4	PVC	0.01	20	0.45	14.17-34.17	644.38
MW25	8/7/2018	HydroCon	Sonic	35.00	32.96	4	PVC	0.01	20	0.45	12.81-32.81	645.57
MW26	8/8/2018	HydroCon	Sonic	35.00	32.52	4	PVC	0.01	20	0.45	13.54-33.54	646.65
MW27	8/9/2018	HydroCon	Sonic	40.00	38.74	4	PVC	0.01	25	0.45	13.56-38.56	649.00
MW28	8/10/2018	HydroCon	Sonic	40.00	38.74	4	PVC	0.01	25	0.45	13.62-38.62	650.64
MW29	8/13/2018	HydroCon	Sonic	40.00	39.11	4	PVC	0.01	25	0.45	14.05-39.05	652.34
MW30	8/14/2018	HydroCon	Sonic	40.00	39.79	4	PVC	0.01	25	0.45	14.67-39.67	652.83
MW31	8/15/2018	HydroCon	Sonic	40.00	39.28	4	PVC	0.01	25	0.45	14.11-39.11	653.97
MW32	8/17/2018	HydroCon	Sonic	35.00	34.02	4	PVC	0.01	25	0.45	8.95-33.95	655.83
BH01R	3/25/2017	HydroCon	Sonic	40.00	39.97	4	PVC	0.01	25	0.45	14.52-39.52	651.03
BH-2	3/25/2017	EPI	Air Rotary	35.00	35.00	2	PVC	0.01	15	-	20-35	653.77
BH-3	3/26/2017	EPI	Air Rotary	30.00	30.00	2	PVC	0.01	15	-	15-30	648.76
RW-1	4/10/2017	Farallon	Air Rotary	30.00	30.00	3	PVC	0.02	15	-	15-30	650.42

NOTES:

feet¹ = Elevation is relative to NGVD88

bgs = below ground surface

PVC = polyvinyl chloride

Well Identification	Date	Monitoring Well Screened Interval (feet bgs)	Elevation Top of Casing ¹ (feet)	Depth to Water (feet below top of casing)	Depth to NAPL (feet below top of casing)	LNAPL Thickness (feet)	Groundwater Elevation (feet)
	4/17/2017			9.47			648.54
	4/20/2017			9.63			648.38
	4/27/2017			10.14			647.87
	5/1/2017			10.31			647.70
	6/8/2017			11.20			646.81
	7/3/2017			NM			
	9/28/2017			12.36			645.65
MW-1	8/27/2018	20-35	658.01	12.17			645.84
IVIVV-T	8/31/2018	20-33	038.01	12.20			645.81
	11/26/2018			11.36			646.65
	11/30/2018			11.38			646.63
	3/29/2019			9.68			648.33
	8/29/2019			11.69			646.32
	12/19/2019			11.84			646.17
	3/22/2020			11.12			646.89
	8/30/2020			11.93			646.08
	4/25/2018			10.49			647.05
	4/27/2018			10.62			646.92
	8/27/2018			12.30			645.24
	8/31/2018			12.33			645.21
	11/26/2018			11.54			646.00
MW01S	11/30/2018	5.37 - 20.37	657.54	11.51			646.03
	3/29/2019			9.88			647.66
	8/29/2019			11.81			645.73
	12/19/2019			11.97			645.57
	3/22/2020			11.25			646.29
	8/30/2020			12.07			645.47
	4/17/2017			9.58			648.18
	4/20/2017			9.61			648.15
	4/27/2017			10.19			647.57
	5/1/2017			10.36			647.40
	6/8/2017			11.33			646.43
	7/3/2017			11.96			645.80
	9/28/2017			12.65			645.11
	4/25/2018			10.50			647.26
MW-2	4/27/2018	25-40	657.76	10.54			647.22
14144 2	8/27/2018	25 70	337.70	12.20			645.56
	8/31/2018			12.22			645.54
	11/26/2018			11.43			646.33
	11/30/2018			11.46			646.30
	3/29/2019			9.61			648.15
	8/29/2019			11.65			646.11
	12/19/2019			11.96			645.80
	3/22/2020			11.15			646.61
	8/30/2020			11.76			646.00

Well Identification	Date	Monitoring Well Screened Interval (feet bgs)	Elevation Top of Casing ¹ (feet)	Depth to Water (feet below top of casing)	Depth to NAPL (feet below top of casing)	LNAPL Thickness (feet)	Groundwater Elevation (feet)
	4/17/2017			7.12			651.14
	4/20/2017			7.15			651.11
	4/27/2017			11.44			646.82
	5/1/2017			7.90			650.36
	6/8/2017			7.33			650.93
	7/3/2017			7.46			650.80
	9/28/2017			7.74			650.52
N 41A / 2	8/27/2018	25-35	650.26	7.75			650.51
MW-3	8/31/2018	25-35	658.26	7.80			650.46
	11/26/2018			7.78			650.48
	11/30/2018			7.89			650.37
	3/29/2019			6.42			651.84
	8/29/2019			7.53			650.73
	12/19/2019			7.95			650.31
	3/22/2020			7.70			650.56
	8/30/2020			7.83			650.43
	4/25/2018		658.17	7.25			650.92
	4/27/2018			7.24			650.93
	8/27/2018			8.04			650.13
	8/31/2018			8.05			650.12
	11/26/2018			7.48			650.33
MW03S	11/30/2018	4.43 - 19.43		7.93			650.33
	3/29/2019			7.22			650.24
	8/29/2019			7.72			650.45
	12/19/2019			7.97			650.20
	3/22/2020			7.75			650.42
	8/30/2020			8.15			650.02
	4/17/2017			15.29			642.19
	4/20/2017			15.40			642.08
	4/27/2017			15.74			641.74
	5/1/2017			15.71			641.77
	6/8/2017			16.23			641.25
	7/3/2017			16.93			640.55
	9/28/2017			18.18			639.30
	4/25/2018			16.22			641.26
	4/27/2018	27.2-		17.59			639.89
MW-4	8/27/2018	27-37	657.48	17.25			640.23
	8/31/2018			17.28			640.20
	11/26/2018			16.54			640.94
	11/30/2018			16.55			640.93
	3/29/2019			14.66			642.82
	8/29/2019			16.14			641.34
	12/19/2019			15.80			641.68
	3/22/2020			15.88			641.60
	8/30/2020			16.03			641.45

Well Identification	Date	Monitoring Well Screened Interval (feet bgs)	Elevation Top of Casing ¹ (feet)	Depth to Water (feet below top of casing)	Depth to NAPL (feet below top of casing)	LNAPL Thickness (feet)	Groundwater Elevation (feet)
	4/17/2017			33.98			622.02
	4/20/2017			35.67			620.33
	4/27/2017			34.98			621.02
	5/1/2017			35.92			620.08
	6/8/2017			32.06			623.94
	7/3/2017			36.75			619.25
	9/28/2017			38.67			617.33
	4/25/2018			NM			
D 4) A / F	4/27/2018	20.45	656.00	35.58			620.42
MW-5	8/27/2018	30-45	656.00	38.21			617.79
	8/31/2018			38.30			617.70
	11/26/2018			38.34			617.66
	11/30/2018			38.44			617.56
	3/29/2019			37.58			618.42
	8/29/2019			38.00			618.00
	12/19/2019		-	38.55			617.45
	3/22/2020			38.49			617.51
	8/30/2020			38.63			617.37
	4/17/2017			9.57			648.13
	4/20/2017			9.40			648.30
	4/27/2017			9.89			647.81
	5/1/2017			9.95			647.75
	6/8/2017			10.60	10.55	0.05	647.14
	7/3/2017			11.10			646.60
	9/28/2017			11.51			646.19
	4/25/2018			10.20			647.50
MW-6	4/27/2018	8-18	657.70	10.21			647.49
10100-0	8/27/2018	0-10		11.28			646.42
	8/31/2018			11.29			646.41
	11/26/2018			10.82		trace	646.88
	11/30/2018			10.84			646.86
	3/29/2019			9.50		trace	648.20
	8/29/2019			10.89			646.81
	12/19/2019			11.08			646.62
	3/22/2020			10.66			647.04
	8/30/2020			10.97			646.73
	4/17/2017			9.64			647.88
	4/20/2017			9.71			647.81
	4/27/2017			10.26			647.26
	5/1/2017			10.35			647.17
	6/8/2017			11.44			646.08
	7/3/2017			11.91			645.61
	9/28/2017			12.46			645.06
	4/25/2018			10.61			646.91
MW-7	4/27/2018	10-20	657.52	10.63			646.89
	8/27/2018		337.32	11.96			645.56
	8/31/2018			12.18			645.34
	11/26/2018			11.50			646.02
	11/30/2018			11.53			645.99
	3/29/2019			9.72			647.80
	8/29/2019			11.67			645.85
	12/19/2019			11.95			645.57
	3/22/2020			11.25			646.27
	8/30/2020			11.79			645.73

Well Identification	Date	Monitoring Well Screened Interval (feet bgs)	Elevation Top of Casing ¹ (feet)	Depth to Water (feet below top of casing)	Depth to NAPL (feet below top of casing)	LNAPL Thickness (feet)	Groundwater Elevation (feet)
	4/12/2017				<u> </u>	2.21	
	4/13/2017	=		16.71	14.50		641.21
	4/17/2017	_		13.47	12.05	0.01	642.73
	4/20/2017	_		13.96	13.95	0.01	642.25
	4/27/2017			17.25	14.91	2.34	640.78
	5/1/2017	-		17.47	14.94	2.53	640.70
	6/8/2017	-		18.02			638.18
	7/3/2017	-		17.97	17.91	0.07	638.28
	9/28/2017	_		18.10			638.10
	4/25/2018	=		15.14			641.06
MW-8	4/27/2018	15-25	656.20	15.12			641.08
	8/27/2018	-		16.71			639.49
	8/31/2018			16.77			639.43
	11/26/2018			16.04			640.16
	11/30/2018			16.07			640.13
	3/29/2019			13.37			642.83
	8/29/2019			15.96			640.24
	12/19/2019	-		16.55			639.65
	3/22/2020	=		15.75			640.45
	8/30/2020			15.60			640.60
	4/17/2017			13.56			641.73
	4/20/2017	-		14.31			640.98
	4/27/2017	-	655.29	17.45	16.75	0.70	638.39
	5/1/2017			18.60	17.33	1.27	637.68
MW-9	6/8/2017	14-24		22.14			633.15
10100 5	7/3/2017	1121		22.16			633.13
	9/28/2017	_		22.69			632.60
	4/25/2018	_		17.22			638.07
	4/27/2018	_		17.22			638.07
	8/27/2018			19.90			635.39
			653.55	19.91			635.38
	8/31/2018	_					
	11/26/2018	_		28.28			625.27
1 414 (OOD	11/30/2018	0.50.22.50		19.94			633.61
MW09R	3/29/2019	8.59-33.59		12.82			640.73
	8/29/2019	_		19.81			633.74
	12/19/2019	-		28.20			625.35
	3/22/2020			17.93			635.62
	8/30/2020			16.93			636.62
	4/17/2017	-		16.72			629.08
	4/20/2017	=		17.31			628.49
	4/27/2017			18.11			627.69
	5/1/2017			18.99			626.81
MW-10	6/8/2017	14-30	645.80	19.88			625.92
	7/3/2017			25.06	23.62	1.44	621.86
	9/28/2017	_		25.70			620.10
	4/25/2018			21.18			624.62
	4/27/2018			20.96			624.84
	8/27/2018			24.64			619.66
	8/31/2018			25.71			618.59
	11/26/2018	1		27.51			616.79
	11/30/2018	1		26.19	25.95	0.24	618.30
MW10R	3/29/2019	14.66-34.64	644.30	18.54			625.76
	8/29/2019	1		NM			
	12/19/2019	1		27.72			616.58
	3/22/2020	1		26.05			618.25
	8/30/2020			23.86			620.44
	0/ 30/ 2020	<u> </u>	<u> </u>	23.00	-		020.77

Well Identification	Date	Monitoring Well Screened Interval (feet bgs)	Elevation Top of Casing ¹ (feet)	Depth to Water (feet below top of casing)	Depth to NAPL (feet below top of casing)	LNAPL Thickness (feet)	Groundwater Elevation (feet)
	4/17/2017			13.45			644.55
	4/20/2017			13.45			644.55
	4/27/2017			13.76			644.24
	5/1/2017			13.77			644.23
	6/8/2017			14.32	14.05	0.27	643.89
	7/3/2017			14.30		-	643.70
	9/28/2017			14.65			643.35
	4/25/2018			13.82			644.18
MW-11	4/27/2018	12.22	658.00	13.82			644.18
IVIVV-TT	8/27/2018	12-22	658.00	14.20			643.80
	8/31/2018			14.21			643.79
	11/26/2018			14.11			643.89
	11/30/2018			14.11			643.89
	3/29/2019			13.41			644.59
	8/29/2019			14.09			643.91
	12/19/2019			14.29			643.71
	3/22/2020		-	14.03			643.97
	8/30/2020			14.02			643.98
	4/25/2018		658.27	7.37			650.90
	4/27/2018			7.31			650.96
	8/27/2018			8.01			650.26
	8/31/2018			8.04			650.23
	11/26/2018			7.88			650.39
MW12	11/30/2018	4.63 - 19.63		7.93			650.34
	3/29/2019	1105 15105	033.27	7.13			651.14
	8/29/2019			7.70			650.57
	12/19/2019			8.00			650.27
	3/22/2020			7.72			650.55
	8/30/2020			8.13			650.14
	4/25/2018			7.39			649.65
	4/23/2018			7.36			649.68
	8/27/2018			8.05			648.99
							648.89
MW13	8/31/2018	4.91 - 19.91	657.04	8.15			
	11/26/2018			8.22			648.82
	11/30/2018			8.17			648.87
	3/29/2019			7.21			649.83
	8/29/2019			7.61			649.43
N 414/4 2 D	12/19/2019	4 22 40 22	CEC C7	8.02			648.65
MW13R	3/22/2020	4.23 - 18.23	656.67	7.22			649.45
	8/30/2020			7.48			649.19
	4/25/2018			7.81			649.34
	4/27/2018			7.75			649.40
	8/27/2018	-		8.35			648.80
	8/31/2018			8.40			648.75
	11/26/2018			8.45			648.70
MW14	11/30/2018	5.23 - 20.23	657.15	8.51			648.64
	3/29/2019			7.70			649.45
	8/29/2019			8.03			649.12
	12/19/2019			8.58			648.57
	3/22/2020			8.10			649.05
	8/30/2020			8.10			649.05

Well Identification	Date	Monitoring Well Screened Interval (feet bgs)	Elevation Top of Casing ¹ (feet)	Depth to Water (feet below top of casing)	Depth to NAPL (feet below top of casing)	LNAPL Thickness (feet)	Groundwater Elevation (feet)
	4/25/2018			NM			
	4/27/2018			34.80			620.19
	8/27/2018	-		34.76			620.23
	8/31/2018	-		34.82			620.17
	11/26/2018	-	654.99	dry			
MW15	11/30/2018	10.33 - 35.33		dry			
	3/29/2019	-		dry			
	8/29/2019	-		dry			
	12/19/2019			34.94			620.05
	3/22/2020	-		dry			
	8/30/2020			34.79			620.20
	4/25/2018			9.72			647.21
	4/27/2018			9.70			647.23
	8/27/2018			10.05			646.88
	8/31/2018	1		10.18			646.75
	11/26/2018	1		10.07			646.86
MW16	11/30/2018	9.28 - 29.28	656.93	9.73			647.20
	3/29/2019			9.44			647.49
	8/29/2019			9.89			647.04
	12/19/2019			9.92			647.01
	3/22/2020			9.91			647.02
	8/30/2020			9.41			647.52
	4/25/2018			14.25			641.30
	4/27/2018			14.22			641.33
	8/27/2018			15.07			640.48
	8/31/2018			15.14			640.41
	11/26/2018			14.78			640.77
MW17	11/30/2018	9.52 - 29.52	655.55	14.66			640.89
	3/29/2019			13.38			642.17
	8/29/2019			14.23			641.32
	12/19/2019			28.34			627.21
	3/22/2020			14.35			641.20
	8/30/2020			13.93			641.62
	4/25/2018			NM			
	4/27/2018			34.69			619.82
	8/27/2018			dry			
	8/31/2018			dry			
	11/26/2018			dry			
MW18	11/30/2018	15.86 - 35.86	654.51	dry			
	3/29/2019			dry			
	8/29/2019			dry			
	12/19/2019			dry			
	3/22/2020			dry			
	8/30/2020			dry			
	4/25/2018			23.05			630.26
	4/27/2018			23.15			630.16
	8/27/2018	-		28.63			624.68
	8/31/2018	-		28.83			624.48
	11/26/2018	-		dry			
MW19	11/30/2018	11.66 - 31.66	653.31	27.72			625.59
	3/29/2019			21.30			632.01
	8/29/2019	-		30.45			622.86
	12/19/2019	-		30.09			623.22
	3/22/2020			27.48			625.83
	8/30/2020			27.90			625.41

		Monitoring Well		Depth to Water	Depth to NAPL	LNAPL	Groundwater
Well Identification	Date	Screened Interval (feet bgs)	Elevation Top of Casing ¹ (feet)	(feet below top of casing)	(feet below top of casing)	Thickness (feet)	Elevation (feet)
	4/25/2018			18.55			632.30
-	4/27/2018			18.64			632.21
	8/27/2018			24.97			625.88
	8/31/2018			25.24			625.61
	11/26/2018			25.20			625.65
MW20	11/30/2019	9.79 - 29.79	650.85	24.95			625.90
	3/29/2019			13.32			637.53
	8/29/2019			25.02			625.83
	12/19/2019			25.98			624.87
	3/22/2020			24.16			626.69
	8/30/2020			22.60			628.25
	4/25/2018			19.40			624.48
	4/27/2018			19.31			624.57
	8/27/2018			20.88			623.00
	8/31/2018			21.36			622.52
	11/26/2018	12.30 - 32.30		20.42			623.46
MW21	11/30/2018		643.88	20.71			623.17
	3/29/2019			19.67			624.21
	8/29/2019			20.59			623.29
	12/19/2019		_	21.79			622.09
	3/22/2020			25.36			618.52
	8/30/2020			20.12			623.76
	4/25/2018			21.80			620.05
	4/27/2018			21.80			620.05
	8/27/2018			23.72			618.13
	8/31/2018			24.46			617.39
N 414/22	11/26/2018	9.19 - 34.19	641.85	23.49			618.36
MW22	11/30/2018			24.74			617.11
_	3/29/2019	-		24.90			616.95
_	8/29/2019	-		NM			617.36
-	12/19/2019			24.49			616.10
	3/22/2020 8/30/2020			25.75 25.18			616.67
	4/25/2018			10.28			646.63
-	4/23/2018	-		10.28			646.61
-	8/27/2018			12.16			644.75
-	8/31/2018			11.99			644.92
-	11/26/2018			11.27			645.64
MW23	11/30/2019	7.13 - 22.13	656.91	11.30			645.61
1414423	3/29/2019	,.15 22.15	030.31	9.36			647.55
	8/29/2019	-		11.42			645.49
	12/19/2019	1		11.66			645.25
	3/22/2020	1		10.95			645.96
	8/30/2020			11.48			645.43
	8/27/2018			26.03			618.35
	8/31/2018	1		26.77			617.61
	11/26/2018	1		27.11			617.27
	11/30/2018	1		27.05			617.33
MW24	3/29/2019	14.17 - 34.17	644.38	24.75			619.63
	8/29/2019	1		26.51			617.87
	12/19/2019	1		27.90			616.48
	3/22/2020	1		27.50			616.88
	8/30/2020			26.82			617.56

Well Identification	Date	Monitoring Well Screened Interval (feet bgs)	Elevation Top of Casing ¹ (feet)	Depth to Water (feet below top of casing)	Depth to NAPL (feet below top of casing)	LNAPL Thickness (feet)	Groundwater Elevation (feet)
	8/27/2018			26.01			619.56
	8/31/2018			26.49			619.08
	11/26/2018			24.96			620.61
	11/30/2018	-		25.19			620.38
MW25	3/29/2019	12.81 - 32.81	645.57	13.45			632.12
	8/29/2019	-	013.37	26.02			619.55
	12/19/2019	-		25.50			620.07
	3/22/2020	-		23.75			621.82
	8/30/2020			24.81			620.76
	8/27/2018			25.23			621.42
	8/31/2018	-		25.76			620.89
	11/26/2018	_	-	25.45			621.20
	11/30/2018	-		25.83			620.82
NANA/26		12 54 22 54	646.65				
MW26	3/29/2019	13.54 - 33.54	646.65	16.35			630.30
	8/29/2019	-		26.33			620.32
	12/19/2019	-		26.16			620.49
	3/22/2020			24.52			622.13
	8/30/2020			25.50			621.15
	8/27/2018	-		24.87			624.13
	8/31/2018			25.06			623.94
	11/26/2018	-		24.92			624.08
	11/30/2018		649.00	23.90			625.10
MW27	3/29/2019	13.56 - 38.56		20.04			628.96
	8/29/2019			23.89			625.11
	12/19/2019			27.06			621.94
	3/22/2020			23.58			625.42
	8/30/2020			23.26			625.74
	8/27/2018	_		26.04			624.60
	8/31/2018			26.25			624.39
	11/26/2018	-		33.05			617.59
	11/30/2018			25.00			625.64
MW28	3/29/2019	13.62 - 38.62	650.64	20.50			630.14
	8/29/2019	-		24.96			625.68
	12/19/2019	-		28.33			622.31
	3/22/2020	-		24.89			625.75
	8/30/2020			24.29			626.35
	8/27/2018			34.43			617.91
	8/31/2018	-		34.84			617.50
	11/26/2018	-		34.92			617.42
	11/30/2018	-		34.25			618.09
MW29	3/29/2019	14.05 - 39.05	652.34	20.80			631.54
1010023	8/29/2019	14.05 55.05	052.54	30.67	30.67	<0.01	621.67
	12/19/2019	-		34.99	30.07		617.35
	3/22/2020			30.11			622.23
	•						627.26
	8/30/2020			25.08			
	8/27/2018	-		34.73			618.10
	8/31/2018	-		35.01			617.82
	11/26/2018			34.91			617.92
	11/30/2018			34.84			617.99
MW30	3/29/2019	14.67 - 39.67	652.83	35.28			617.55
	8/29/2019	_		35.05			617.78
	12/19/2019			35.19			617.64
	3/22/2020			35.43			617.40
	8/30/2020			34.90			617.93

Well Identification	Date	Monitoring Well Screened Interval (feet bgs)	Elevation Top of Casing ¹ (feet)	Depth to Water (feet below top of casing)	Depth to NAPL (feet below top of casing)	LNAPL Thickness (feet)	Groundwater Elevation (feet)
	8/27/2018			34.55			619.42
	8/31/2018			35.16			618.81
	11/26/2018			35.04			618.93
	11/30/2019			34.96			619.01
MW31	3/29/2019	14.11 - 39.11	653.97	32.45			621.52
	8/29/2019			34.02			619.95
	12/19/2019			36.08			617.89
	3/22/2020			30.05			623.92
	8/30/2020			34.19			619.78
	8/27/2018			12.41			643.42
	8/31/2018			12.43			643.40
	11/26/2018			12.28			643.55
	11/30/2019			12.25			643.58
MW32	3/29/2019	8.95 - 33.95	655.83	11.13			644.70
	8/29/2019			12.01			643.82
	12/19/2019			12.20			643.63
	3/22/2020			12.20			643.63
	8/30/2020			11.51			644.32
	4/17/2017			19.71			632.46
	4/20/2017			20.13			632.04
	4/20/2017		652.17	22.88			629.29
	5/1/2017			23.16			629.01
				25.64			626.53
	6/8/2017				 27.01	0.55	
BH-1	7/3/2017	20-30		28.46	27.91	0.55	624.14
	9/28/2017	20-30		28.73			623.44
	4/25/2018			23.03			629.14
	4/27/2018			20.03			632.14
	8/27/2018			26.21			625.96
	8/31/2018			26.27			625.90
	11/26/2018			NM			
	11/30/2018			NM			
	3/29/2019			20.30			630.73
	8/29/2019			24.64			626.39
BH01R	12/19/2019	14.52-39.52	651.03	34.33			616.70
	3/22/2020			24.30			626.73
	8/30/2020			23.96			627.07
	4/17/2017			26.16			627.61
	4/20/2017			26.30			627.47
	4/27/2017			26.56	26.48	0.08	627.27
	5/1/2017			26.68	26.58	0.10	627.17
	6/8/2017			26.73			627.04
	7/3/2017			28.86			624.91
	9/28/2017			31.25			622.52
	4/25/2018			27.68			626.09
BH-2	4/28/2017	20-35	653.77	27.53			626.24
D11 Z	8/27/2018	20 33	055.77	28.50			625.27
	8/31/2018			28.91			624.86
	11/26/2018			28.66		trace	625.11
	11/30/2018			28.63		trace	625.14
	3/29/2019			27.75			626.02
	8/29/2019			28.51			625.26
	12/19/2019			28.60			625.17
	3/22/2020			28.31			625.46
	8/30/2020			28.39			625.38

Well Identification	Date	Monitoring Well Screened Interval (feet bgs)	Elevation Top of Casing ¹ (feet)	Depth to Water (feet below top of casing)	Depth to NAPL (feet below top of casing)	LNAPL Thickness (feet)	Groundwater Elevation (feet)
	4/17/2017			17.47			631.29
	4/20/2017			17.88			630.88
	4/27/2017			18.70			630.06
	5/1/2017			19.06			629.70
	6/8/2017			21.19			627.57
	7/3/2017			21.70			627.06
	9/28/2017			23.04			625.72
	4/25/2018			20.06			628.70
DII 3	4/27/2018	15.20	C 4 0 7 C	22.36			626.40
BH-3	8/27/2018	15-30	648.76	22.20			626.56
	8/31/2018			23.68			625.08
	11/26/2018			24.05			624.71
	11/30/2018			25.29			623.47
	3/29/2019			18.05			630.71
	8/29/2019			25.43			623.33
_	12/19/2019			24.31			624.45
	3/22/2020			24.86			623.90
	8/30/2020			25.47			623.29
	4/17/2017			16.15			634.27
	4/20/2017			16.34			634.08
	4/27/2017			17.35			633.07
	5/1/2017			18.55			631.87
	6/8/2017			22.67			627.75
	7/3/2017			24.19			626.23
	9/28/2017			26.74			623.68
	4/25/2018			21.19			629.23
RW-1	4/27/2018	15 20	650.42	21.21	-		629.21
KAA-T	8/27/2018	15-30	050.42	25.09			625.33
	8/31/2018			25.69			624.73
	11/26/2018			28.81			621.61
	11/30/2018			25.63			624.79
	3/29/2019			21.12			629.30
	8/29/2019			26.80			623.62
	12/19/2019			27.42			623.00
	3/22/2020			25.51			624.91
	8/30/2020			27.20			623.22

NOTES:

¹Elevation in feet above mean sea level. Elevations based on NAVD88 vertical datum. Well survey conducted by Munson Engineers, Inc. of Wenatchee, Washington in July 2010 and April 2017.

bgs = below ground surface LNAPL = light nonaqueous-phase liquid NAPL = nonaqueous-phase liquid

Groundwater elevations in wells with LNAPL corrected for water-level elevation using typical specific gravity of R99 LNAPL of 0.78.

^{- - -} denotes no LNAPL present

			Fuels	_				Volatiles				
		GRPH	DRPH	ORPH	Benzene	Toluene	Ethylbenzene	Xylene, Total	Naphthalene	MTBE	EDB	EDC
		μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
WA MTCA Method A C	leanup for Groundwater	800/1000	500	500	5	1,000	700	1,000	160	20	0.01	5
Benzene (Non Detect)	1,000										
Benzene (Detect)		800										
Field ID	Date							<u>, </u>				_
FB-9	4/7/2017	1,200 F	2,900	1,200	2.4	< 1.0	3.7	1.7				
FB-10	4/7/2017	2,000 F	57,000	< 4,100 ec	71	13	7.1	64				
	4/21/2017	820 F	1,900	970 N1	15	2.8	8.3	18.5				
BH-1	4/26/2018	2,140	1,390	<377	0.671	<1.00	5.55	12.5				
DII-T	8/30/2018	591	243	<148	<0.200	<1.00	<0.500	<1.50				
	12/1/2018	1,420	5,120 F13	<151	<0.200	<1.00	0.608	<1.50				
	3/27/2019	1,130	13,600 F-13	<151	4.33	<1.00	1.15	1.78				
	8/27/2019	518	1,910 F-13	<150	0.240	<1.00	<0.500	<1.50				
BH01R	12/16/2019	918	42,800 F-13	<3,200 ec	<0.200	<1.00	<0.500	<1.50				
	3/24/2020	132	2,080	<1,510 ec	<0.200	<1.00	<0.500	<1.50				
	9/1/2020	133	2,740 F-13	<151	<0.200	<1.00	<0.500	<1.50				
	4/10/2017	1,900 F	100,000	10,000	< 4.0	< 4.0	13	39				
	4/21/2017	1,500 F	2,600	630 N1	4.2	3.3	12	39				
	4/24/2018	854	9,360	<377	<0.200	<1.00	<0.500	<1.50				
	8/28/2018	639	3,300	<148	<0.200	<1.00	<0.500	<1.50				
DII 2	11/30/2018	509	7,040	<151	<0.200	<1.00	<0.500	<1.50				
BH-2	3/27/2019	354	5,310 F-13, F-15	475 F-03, F-16	<0.200	<1.00	<0.500	<1.50				
	8/27/2019	295	6,150 F-13	<150	<0.200	<1.00	<0.500	<1.50				
	12/17/2019	202	2,230 F-13	<151	<0.200	<1.00	<0.500	<1.50				
	3/25/2020	128	1,030	< 748 ec	<0.200	<1.00	<0.500	<1.50				
	8/31/2020	102	3,820 F-13	<151	<0.200	<1.00	<0.500	<1.50				

Coleman Oil Site Wenatchee, Washington

			Fuels					Volatiles	3			
		GRPH	DRPH	ORPH	Benzene	Toluene	Ethylbenzene	Xylene, Total	Naphthalene	MTBE	EDB	EDC
		μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
WA MTCA Method A	Cleanup for Groundwater	800/1000	500	500	5	1,000	700	1,000	160	20	0.01	5
Benzene (Non Detec	ct)	1,000										
Benzene (Detect)		800										
Field ID	Date											_
	4/21/2017	1,800 F	2,400	660	1.8	<1.0	5.4	8.2				
	9/29/2017	150 O	1,200	550 N1	<1.0	<1.0	<1.0	<2.0				
	4/26/2018	172	1,130	<377	<0.200	<1.00	<0.500	<1.50				
	8/30/2018	250	276	<148	<0.200	<1.00	<0.500	<1.50				
BH-3	11/29/2018	<100	502	<151	<0.200	<1.00	<0.500	<1.50				
рп-э	3/28/2019	319	1,850 F-13	<151	<0.200	<1.00	<0.500	<1.50				
	8/28/2019	121	816 F-13	<150	<0.200	<1.00	<0.500	<1.50				
	12/18/2019	126	488 F-13	<150	<0.200	<1.00	<0.500	<1.50				
	3/24/2020	<100	552	<151	<0.200	<1.00	<0.500	<1.50				
	9/1/2020	<100	546 F-13	<151	<0.200	<1.00	<0.500	<1.50				
	4/21/2017	<100	840	540 N1	<1.0	<1.0	<1.0	<2.0				
	9/29/2017	<100	360	440	<1.0	<1.0	<1.0	<2.0				
	4/26/2018	<100	<189	<377	<0.200	<1.00	<0.500	<1.50				
	8/30/2018	<100	327	<150	<0.200	<1.00	<0.500	<1.50				
D\A/ 1	11/30/2018	<100	152	<151	<0.200	<1.00	<0.500	<1.50				
RW-1	3/28/2019	<100	<74.8 F-13	<151	<0.200	<1.00	<0.500	<1.50				
	8/28/2019	<100	116 F-11	<150	<0.200	<1.00	<0.500	<1.50				
	12/18/2019	<100	78.7 F-11	<150	<0.200	<1.00	<0.500	<1.50				
	3/24/2020	<100	132	<151	<0.200	<1.00	<0.500	<1.50				
	9/1/2020	<100	145 F-11	<151	<0.200	<1.00	<0.500	<1.50				

4/25/2018

<100

<187

Table 3 Groundwater Analytical Results - Fuels and VOCs

Coleman Oil Site Wenatchee, Washington

			Fuels					Volatiles				
		GRPH	DRPH	ORPH	Benzene	Toluene	Ethylbenzene	Xylene, Total	Naphthalene	МТВЕ	EDB	EDC
		μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
A MTCA Method A Cl	eanup for Groundwater	800/1000	500	500	5	1,000	700	1,000	160	20	0.01	5
Benzene (Non Detect)		1,000										
Benzene (Detect)		800										
eld ID	Date											
	3/23/2017		520	480								
	4/21/2017	210 F	730	510	<1.0	<1.0	<1.0	<2.0				
MW-1	9/29/2017	200	410	<410	<1.0	<1.0	<1.0	<2.0				
10100-1	8/28/2018	449	219	<151	<0.200	<1.00	<0.500	<1.50				
	11/27/2018	152	159	<151	<0.200	<1.00	<0.500	<1.50				
	3/25/2019	172	126 F-11,F-20	<151	<0.200	<1.00	<0.500	<1.50				
	4/24/2018	188	<187	<374	0.42	<1.00	5.8	9.48				
	8/28/2018	268	294	<151	1.49	<1.00	1.26	<1.50				
	11/27/2018	<100	<75.5	<151	<0.200	<1.00	<0.500	<1.50				
MW01S	3/25/2019	133	116 F-11, F-20	<151	<0.200	<1.00	4.18	8.97				
IMMOT2	8/26/2019	<100	269 F-11, F-20	<150	<0.200	<1.00	<0.500	<1.50				
	12/17/2019	<100	97.2 F-11	<154	<0.200	<1.00	<0.500	<1.50				
	3/23/2020	<100	<75.5	<151	<0.200	<1.00	<0.500	<1.50				
	8/31/2020	<100	108 F-11	<151	<0.200	<1.00	<0.500	<1.50				
	3/23/2017		<260	<410								
MW-2	4/20/2017	<100	<260	<410	<1.0	<1.0	<1.0	<2.0				

<0.200

<1.00

<0.500

<1.50

<374

Coleman Oil Site Wenatchee, Washington

			Fuels	_		_		Volatiles	5		_	
		GRPH	DRPH	ORPH	Benzene	Toluene	Ethylbenzene	Xylene, Total	Naphthalene	MTBE	EDB	EDC
		μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
WA MTCA Method A C	leanup for Groundwater	800/1000	500	500	5	1,000	700	1,000	160	20	0.01	5
Benzene (Non Detect)	1,000										
Benzene (Detect)		800										
Field ID	Date					,	_ _		,		_	
MW-3	4/20/2017	<100	<260	<410	<1.0	<1.0	<1.0	<2.0				
	9/28/2017	<100	<260	<410	<1.0	<1.0	<1.0	<2.0				
	4/25/2018	<100	<187	<374	<0.200	<1.00	<0.500	<1.50	<2.00	<1.00	<0.500 ec	<0.400
	8/29/2018	<100	139	<151	<0.200	<1.00	<0.500	<1.50				
	11/27/2018	<100	<75.5	<151	<0.200	<1.00	<0.500	<1.50				
MW03S	3/25/2019	<100	<76.2	<152	<0.200	<1.00	<0.500	<1.50				
10100033	8/26/2019	<100	114 F-11	<150	<0.200	<1.00	<0.500	<1.50				
	12/17/2019	<100	77.7 F-11	<155	<0.200	<1.00	<0.500	<1.50				
	3/23/2020	<100	76.7	<151	<0.200	<1.00	<0.500	<1.50				
	8/31/2020	<100	86 F-11	<151	<0.200	<1.00	<0.500	<1.50				
	3/23/2017		<260	<410								
D 40 4 / 4	4/20/2017	<100	<260	<410	<1.0	<1.0	<1.0	<2.0				
MW-4	9/28/2017	<100	<260	<410	<1.0	<1.0	<1.0	<2.0				
	4/25/2018	<100	<187	<374	<0.200	<1.00	<0.500	<1.50				
	3/23/2017		<260	<410								
	4/20/2017	<100	<260	<410	<1.0	<1.0	<1.0	<2.0				
MW-5	9/28/2017	<100	<260	<410	<1.0	<1.0	<1.0	<2.0				
	4/25/2018	<100	<189	<377	<0.200	<1.00	<0.500	<1.50				
	8/28/2018	<100	<75.5	<151	<0.200	<1.00	<0.500	<1.50				

			Fuels					Volatiles	•		T	T
		GRPH	DRPH	ORPH	Benzene	Toluene	Ethylbenzene	Xylene, Total	Naphthalene	MTBE	EDB	EDC
		μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
VA MTCA Method A C	leanup for Groundwater	800/1000	500	500	5	1,000	700	1,000	160	20	0.01	5
Benzene (Non Detect	t)	1,000										
Benzene (Detect)		800			<u></u>							
ield ID	Date											
	4/20/2017	880 F	1,800	480 N1	5.0	<4.0	6.2	37				
	9/28/2017	530 O	760	430 N1	<1.0	<1.0	<1.0	4.3				
	4/25/2018	643	1,620	<374	0.56	<1.00	<0.500	2.19				
	8/29/2018	376	668	<151	<0.200	<1.00	<0.500	<1.50				
MW-6	11/27/2018	499	634	<151	<0.200	<1.00	<0.500	<1.50				
10100-0	3/25/2019	398	1,010 F-13,F-20	<152	<0.200	<1.00	<0.500	<1.50				
	8/26/2019	356	1,200 F-13	<150	<0.200	<1.00	<0.500	<1.50				
	12/18/2019	221	742 F-13	<154	<0.200	<1.00	<0.500	<1.50				
	3/23/2020	196	1,240	<151	<0.200	<1.00	<0.500	<1.50				
	8/31/2020	168	1,180 F-11	<151	<0.200	<1.00	<0.500	<1.50				
	4/20/2017	1,100 F	1,300	420 N1	3.2	< 1.0	15	11.4				
	9/28/2017	<100	520	<470 U1	<1.0	<1.0	<1.0	<2.0				
MW-7	4/25/2018	<100	435	<374	<0.200	<1.00	<0.500	<1.50				
	8/29/2018	<100	448	<151	<0.200	<1.00	<0.500	<1.50				
	11/28/2018	<100	283	<151	<0.200	<1.00	<0.500	<1.50				
	9/29/2017	1,300 O	2,100	690 N1	<1.0	<1.0	4.1	27.2				
	4/26/2018	720	1,300	<374	0.641	<1.00	<0.500	4.67				
	8/29/2018	774	907	<151	<0.200	<1.00	<0.500	3.42				
	11/28/2018	921	505	<151	0.214	<1.00	1.06	6.23				
MW-8	3/26/2019	768	2,220 F-13,F-20	<152	22.2	<1.00	<0.500	2.70				
	8/26/2019	899	1,320 F-13,F-20	<151	0.853	<1.00	0.504	2.17				
	12/18/2019	891	1,110 F-13	<155	<0.200	<1.00	<0.500	<1.50				
	3/24/2020	975	2,230	<150	<0.200	<1.00	<0.500	<1.50				
	9/1/2020	683	1,960	<151	<0.200	<1.00	<0.500	<1.50				

Coleman Oil Site Wenatchee, Washington

			Fuels					Volatiles	3			
		GRPH	DRPH	ORPH	Benzene	Toluene	Ethylbenzene	Xylene, Total	Naphthalene	MTBE	EDB	EDC
		μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
WA MTCA Method A	Cleanup for Groundwater	800/1000	500	500	5	1,000	700	1,000	160	20	0.01	5
Benzene (Non Detec	t)	1,000										
Benzene (Detect)		800			<u> </u>							
Field ID	Date					_	_ _					
MW-9	9/29/2017	500 O	1,200	670 N1	<1.0	<1.0	<1.0	1.5				
10100 3	4/26/2018	2,810	2,620	<374	2.73	<1.00	9.95	20.4				
	8/29/2018	234	654	<151	<0.200	<1.00	<0.500	<1.50				
	11/28/2018	1,300	1,850	<151	<0.200	<1.00	<0.500	<1.50				
	3/26/2019	1,000	5,690 F-13,F-20	<151	5.64	<1.00	0.545	<1.50				
MW09R	8/27/2019	1,080	5,880 F-13	<150	<0.200	<1.00	<0.500	<1.50				
	12/16/2019	1,420	1,120,000 F-13	<30,200 ec	<0.200	<1.00	<0.500	<1.50				
	3/24/2020	688	3,130	<150	<0.200	<1.00	<0.500	<1.50				
	9/1/2020	379	2,330 F-13	<151	<0.200	<1.00	<0.500	<1.50				
	4/21/2017	1,900 F	3,800	730	3.4	< 1.0	11	12.5				
MW-10	9/29/2017	1,900 O	16,000	1,300 N1	<1.0	<1.0	13	26.7				
	4/26/2018	2,290	1,500	<377	0.219	<1.00	3.52	5.95				
	8/30/2018	1,080	838	< 150	< 0.200	< 1.00	1.22	2.42				
	11/29/2018	2,160	1,370	< 755 ec	<0.200	<1.00	3.90	5.98				
	3/28/2019	1,020	2,960 F-13	<151	0.401	<1.00	0.837	<1.50				
MW10R	8/27/2019	1,270	3,620 F-13	< 1,510 ec	<0.200	<1.00	1.44	3.06				
	12/19/2019 iw											
	3/24/2020	557	2,250	<150	<0.200	<1.00	<0.500	<1.50				
	3/24/2020	635	2,130 F-13	<150	<0.200	<1.00	<0.500	<1.50				

			Fuels		1			Volatiles				
		GRPH	DRPH	ORPH	Benzene	Toluene	Ethylbenzene	Xylene, Total	Naphthalene	MTBE	EDB	EDC
		μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
	eanup for Groundwater	800/1000	500	500	5	1,000	700	1,000	160	20	0.01	5
Benzene (Non Detect		1,000										
Benzene (Detect)		800			_I							
ield ID	Date						•				1	•
	4/21/2017	1,400 F	1,700	1,000 N1	28	4.1	8.2	26.1				
	9/29/2017	1,000 O	3,100	720 N1	<1.0	<1.0	1.9	12.5				
	4/26/2018	1,240	1,140	<374	<0.200	<1.00	0.56	2.27				
	8/29/2018	944	251	<150	<0.200	<1.00	<0.500	<1.50				
MW-11	11/27/2018	1,350	503	<151	<0.200	<1.00	<0.500	<1.50				
INIAA-TT	3/26/2019	1,540	1,230 F-13,F-20	<150	11.6	<1.00	<0.500	2.34				
	8/26/2019	1,230	1,060 F-13, F-20	<151	<0.200	<1.00	<0.500	<1.50				
	12/18/2019	1,020	1,060 F-13	<152	<0.200	<1.00	<0.500	<1.50				
	3/23/2020	1,010	1,500	<151	<0.200	<1.00	<0.500	<1.50				
	8/31/2020	804	1,870 F-13	<151	<0.200	<1.00	<0.500	<1.50				
	4/25/2018	<100	<189	<377	<0.200	<1.00	<0.500	<1.50				
	8/28/2018	<100	<74.8	<150	<0.200	<1.00	<0.500	<1.50				
	11/27/2018	<100	92.8	<151	<0.200	<1.00	<0.500	<1.50				
	3/25/2019	<100	<76.2	<152	<0.200	<1.00	<0.500	<1.50				
MW12	8/26/2019	<100	<74.8	<150	<0.200	<1.00	<0.500	<1.50				
	12/17/2019	<100	91.0 F-11	<152	<0.200	<1.00	<0.500	<1.50				
	3/23/2020	<100	170	<151	<0.200	<1.00	<0.500	<1.50				
	8/31/2020	<100	<75.5	<151	<0.200	<1.00	<0.500	<1.50				
	4/25/2018	40,900	1,790	<377	1,500	4,710	627	3,780				
	8/29/2018	39,300	2,500	<150	1,780	3,010	796	4,850	167	< 50.0 ec	<25.0 ec	< 25.0 ec
MW13	11/27/2018	22,400	3,250	<151	1,380	271	458	3,170				
	3/25/2019	28,500	4,650 F-11,F-20	<151	701	761	804	4,980				

			Fuels					Volatiles	5		_	
		GRPH	DRPH	ORPH	Benzene	Toluene	Ethylbenzene	Xylene, Total	Naphthalene	МТВЕ	EDB	EDC
		μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
VA MTCA Method A (Cleanup for Groundwater	800/1000	500	500	5	1,000	700	1,000	160	20	0.01	5
Benzene (Non Detec	t)	1,000										
Benzene (Detect)		800			<u></u>							<u> </u>
ield ID	Date											_
	8/26/2019	966	2,180 F-11,F-20	<151	96.4	<1.00	8.52	28.5				
MW13R	12/17/2019	292	979 F-11	<154	47.3	<1.00	2.16	5.00				
WWISK	3/23/2020	<100	1,350	<151	<0.200	<1.00	<0.500	<1.50				
	8/31/2020	<100	666 F-11	<151	0.523	<1.00	<0.500	<1.50				
	8/29/2018	4,040	487	<150	<0.200	<1.00	<0.500	<1.50				
	4/25/2018	4,620	900	<374	13.1	<1.00	16.1	<1.50	3.21	<1.00	<0.500 ec	<0.400
	11/27/2018	5,170	933	<151	15.2	<1.00	1.70	<1.50				
MW14	3/25/2019	2,650	1,070 F-11,F-20	<151	17.8	<1.00	2.04	<1.50				
1010014	8/26/2019	3,510	1,280 F-11,F-20	<151	44.2	<10.0	5.95	<15				
	12/17/2019	3,450	671 F-11,F-20	<154	24.7	<1.00	3.00	2.69				
	3/23/2020	2,320	1,280	<150	13.3	<1.00	4.40	2.00				
	8/31/2020	3,830	825 F-11,F-20	<151	7.82	<100	4.00	<1.50				
	4/25/2018 iw											
	8/29/20018 iw											
	11/27/2018 iw											
D 4) 4 / 4 F	3/26/2019 iw											
MW15	8/26/2019 iw											
	12/19/19 iw											
	3/23/20 iw											
	8/30/20 iw											

			Fuels					Volatiles			•	1
		GRPH	DRPH	ORPH	Benzene	Toluene	Ethylbenzene	Xylene, Total	Naphthalene	МТВЕ	EDB	EDC
		μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
	eanup for Groundwater	800/1000	500	500	5	1,000	700	1,000	160	20	0.01	5
Benzene (Non Detect		1,000										
Benzene (Detect)		800										
eld ID	Date											
	4/26/2018	<100	330	<374	<0.200	<1.00	<0.500	<1.50				
	8/29/2018	<100	298	<150	<0.200	<1.00	<0.500	<1.50				
	11/28/2018	<100	337	<151	<0.200	<1.00	<0.500	<1.50				
MW16	3/26/2019	<100	183 F-11	<150	<0.200	<1.00	<0.500	<1.50				
IVIVVIO	8/26/2019	<100	349 F-11	<150	<0.200	<1.00	<0.500	<1.50				
	12/17/2019	<100	259 F-11	<154	<0.200	<1.00	<0.500	<1.50				
	3/24/2020	<100	242	<151	0.229	<1.00	<0.500	<1.50				
	9/1/2020	<100	197	<151	<0.200	<1.00	<0.500	<1.50				
	4/26/2018	2,800	1,630	<377	1.23	<1.00	1.62	7.66	4.72	<1.00	<0.500 ec	<0.400
	8/29/2018	1,270	986	<150	0.450	<1.00	<0.500	<1.50	5.61	<1.00	<0.500 ec	<0.500
	11/28/2018	1,390	1,580	<151	0.305	<1.00	<0.500	<1.50				
MW17	3/26/2019	1,180	2,520 F-13,F-20	<151	2.91	<1.00	0.692	1.50				
IVIVV17	8/26/2019	655	6,730 F-13	<150	2.72	<1.00	<0.500	<1.50				
	12/16/2019	1,470	21,800 F-13	<3,050 ec	1.38	<1.00	3.10	<1.50				
	3/24/2020	645	10,700	<1,500 ec	<0.200	<1.00	<0.500	<1.50				
	9/1/2020	267	2,890 F13	<151	<0.200	<1.00	<0.500	<1.50				
	4/26/2018 iw											
	8/2920018 iw											
	11/27/2018 iw											
A 4144 C	3/26/2019 iw											
MW18	8/26/2019 iw											
	12/19/2012 iw											
	3/23/20 iw											
	8/30/2020 iw											

					<u> </u>							
			Fuels			I	1	Volatiles	; 		1	T
		GRPH	DRPH	ORPH	Benzene	Toluene	Ethylbenzene	Xylene, Total	Naphthalene	MTBE	EDB	EDC
		μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
	eanup for Groundwater	800/1000	500	500	5	1,000	700	1,000	160	20	0.01	5
Benzene (Non Detect)		1,000			_							
Benzene (Detect)		800			_!				<u> </u>		<u> </u>	
Field ID	Date										T	
	4/26/2018	280	979	<377	<0.200	<1.00	<0.500	<1.50				
	8/27/2018	<100	406	<150	<0.200	<1.00	<0.500	<1.50				
	11/30/2018	<100	<75.5	<151	<0.200	<1.00	<0.500	<1.50				
MW19	3/28/2019	447	4,300 F-13	<151	0.673	<1.00	<0.500	<1.50				
1010013	8/26/2019 iw											
	12/17/2019	<100	674 F-13	<151	<0.200	<1.00	<0.500	<1.50				
	3/25/2020	<100	985	<150	<0.200	<1.00	<0.500	<1.50				
	9/2/2020	<100	527 F-13	<151	<0.200	<1.00	<0.500	<1.50				
	4/26/2018	1,270	1,320	<377	<0.200	<1.00	1.56	5.44				
	8/30/2018	320	346	<150	<0.200	<1.00	<0.500	<1.50				
	11/29/2018	674	1,280	<151	<0.200	<1.00	<0.500	<1.50				
NAVA/20	3/28/2019	1,220	2,190 F-13	<150	<0.200	<1.00	<0.500	<1.50				
MW20	8/28/2019	588	870 F-11,F-20	<150	<0.200	<1.00	<0.500	<1.50				
	12/17/2019	553	967 F-13	<150	<0.200	<1.00	<0.500	<1.50				
	3/25/2020	478	1,470	<151	<0.200	<1.00	<0.500	<1.50				
	9/2/2020	349	987 F-13	<151	<0.200	<1.00	<0.500	<1.50				
	4/26/2018	991	965	<374	<0.200	<1.00	0.835	1.82				
	8/30/2018	<100	234	<150	<0.200	<1.00	<0.500	<1.50				
	11/27/2018	789	992	<151	<0.200	<1.00	<0.500	<1.50				
	3/28/2019	799	1,400 F-13	<151	<0.200	<1.00	<0.500	<1.50				
MW21	8/27/2019	453	605 F-11,F-20	<150	<0.200	<1.00	<0.500	<1.50				
	12/17/2019	<100	160 F-11	<150	<0.200	<1.00	<0.500	<1.50				
	3/24/2020	786	1,120	<150	<0.200	<1.00	<0.500	<1.50				
	8/31/2020	760	1,010 F-13	<151	<0.200	<1.00	<0.500	<1.50				

8/31/2020

<100

443 F-11

<150

Table 3 Groundwater Analytical Results - Fuels and VOCs

Coleman Oil Site Wenatchee, Washington

			Fuels					Volatiles	5		<u>, </u>	
		GRPH	DRPH	ORPH	Benzene	Toluene	Ethylbenzene	Xylene, Total	Naphthalene	MTBE	EDB	EDC
		μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
/A MTCA Method A Cl	eanup for Groundwater	800/1000	500	500	5	1,000	700	1,000	160	20	0.01	5
Benzene (Non Detect)		1,000										
Benzene (Detect)		800										<u></u>
eld ID	Date											_
MW22	4/26/2018	6,960	4,690	<377	118	28.8	102	196				
1010022	8/30/2018	2,040	1,150	< 748 ec	30.4	5.34	30.5	55.9				
	4/25/2018	<100	419	<381	<0.200	<1.00	<0.500	<1.50				
	8/29/2018	<100	266	<150	<0.200	<1.00	<0.500	<1.50				
	11/27/2018	<100	380	<151	<0.200	<1.00	<0.500	<1.50				
MW23	3/25/2019	<100	339 F-11	<152	<0.200	<1.00	<0.500	<1.50				
1010023	8/26/2019	<100	580 F-11	<150	<0.200	<1.00	<0.500	<1.50				
	12/17/2019	<100	305 F-11	<152	<0.200	<1.00	<0.500	<1.50				
	3/23/2020	<100	793	<150	<0.200	<1.00	<0.500	<1.50				
	8/31/2020	<100	960 F-11	<150	<0.200	<1.00	<0.500	<1.50				
	8/30/2018	<100	220	<150	<0.200	<1.00	<0.500	<1.50				
	11/29/2018	154	914	<151	<0.200	<1.00	<0.500	<1.50				
	3/28/2019	<100	696 F-13	<150	<0.200	<1.00	<0.500	<1.50				
MW24	8/27/2019	<100	560 F-11, F-20	<150	<0.200	<1.00	<0.500	<1.50				
	12/19/2019 iw											
•	3/24/2020											1

<0.200

<1.00

<0.500

<1.50

			Fuels					Volatiles				
		GRPH	DRPH	ORPH	Benzene	Toluene	Ethylbenzene	Xylene, Total	Naphthalene	МТВЕ	EDB	EDC
		μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
/A MTCA Method A C	leanup for Groundwater	800/1000	500	500	5	1,000	700	1,000	160	20	0.01	5
Benzene (Non Detect)	1,000										
Benzene (Detect)		800										<u> </u>
ield ID	Date											
	8/30/2018	<100	<74.8	<150	<0.200	<1.00	<0.500	<1.50				
	11/27/2018	<100	121	<151	<0.200	<1.00	<0.500	<1.50				
	3/28/2019	<100	302 F-11	<151	<0.200	<1.00	<0.500	<1.50				
MW25	8/27/2019	<100	262 F-13	<150	<0.200	<1.00	<0.500	<1.50				
	12/17/2019	<100	98.1 F-11	<150	<0.200	<1.00	<0.500	<1.50				
	3/24/2020	<100	419	<151	<0.200	<1.00	<0.500	<1.50				
	9/1/2020	<100	154 F-11	<150	<0.200	<1.00	<0.500	<1.50				
	8/30/2018	<100	128	<150	<0.200	<1.00	<0.500	<1.50				
	11/29/2018	<100	<75.5	<151	<0.200	<1.00	<0.500	<1.50				
	3/28/2019	<100	591 F-13	<150	<0.200	<1.00	<0.500	<1.50				
MW26	8/27/2019	<100	266 F-13	<150	<0.200	<1.00	<0.500	<1.50				
	12/16/2019	<100	187 F-11	<150	<0.200	<1.00	<0.500	<1.50				
	3/24/2020	<100	328	<150	<0.200	<1.00	<0.500	<1.50				
	9/1/2020	<100	235 F-11	<150	<0.200	<1.00	<0.500	<1.50				
	8/30/2018	<100	118	<150	<0.200	<1.00	<0.500	<1.50				
	11/29/2018	<100	<75.5	<151	<0.200	<1.00	<0.500	<1.50				
	3/28/2019	<100	185 F-13	<150	<0.200	<1.00	<0.500	<1.50				
MW27	8/28/2019	<100	467 F-11	<150	<0.200	<1.00	<0.500	<1.50				
	12/18/2019	<100	264 F-11	<150	<0.200	<1.00	<0.500	<1.50				
	3/24/2020	<100	554	<150	<0.200	<1.00	<0.500	<1.50				
	9/1/2020	<100	838 F-11	<150	<0.200	<1.00	<0.500	<1.50				

			Fuels					Volatiles				
		GRPH	DRPH	ORPH	Benzene	Toluene	Ethylbenzene	Xylene, Total	Naphthalene	MTBE	EDB	EDC
		μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
WA MTCA Method A Cle	eanup for Groundwater	800/1000	500	500	5	1,000	700	1,000	160	20	0.01	5
Benzene (Non Detect)		1,000										
Benzene (Detect)		800			<u> </u>							<u> </u>
Field ID	Date											
	8/30/2018	<100	105	<150	<0.200	<1.00	<0.500	<1.50				
	12/1/2018	385	486	<158	0.208	<1.00	<0.500	<1.50				
	3/27/2019	303	1,370 F-13	<151	1.30	<1.00	<0.500	<1.50				
MW28	8/27/2019	302	1,010 F-13	<150	<0.200	<1.00	<0.500	<1.50				
	12/17/2019	<100	671 F-13	<151	<0.200	<1.00	<0.500	<1.50				
	3/24/2020	<100	1,100	< 1,500 ec	<0.200	<1.00	<0.500	<1.50				
	9/1/2020	218	1,490 F-11	<151	<0.200	<1.00	<0.500	<1.50				
	8/28/2018	<100	459	<150	<0.200	<1.00	<0.500	<1.50				
	11/29/2018	<100	238	809	<0.200	<1.00	<0.500	<1.50				
	3/27/2019	237	2,930 F-13,F-15	928 F-16	1.64	<1.00	<0.500	<1.50				
MW29	8/26/2019											
	12/16/2019	3,960	129,000 F-13	<15,700 ec	<0.200	<1.00	<0.500	<1.50				
	3/25/2020	535	3,870	< 1,500 ec	<0.200	<1.00	<0.500	<1.50				
	8/30/2020											
	8/28/2018	<100	193	<150	<0.200	<1.00	<0.500	<1.50				
	11/29/2018	<100	304	<151	<0.200	<1.00	<0.500	<1.50				
	3/27/2019	<100	612 F-13	<150	<0.200	<1.00	<0.500	<1.50				
MW30	8/27/2019	<100	557 F-13	<150	<0.200	<1.00	<0.500	<1.50				
	12/16/2019	238	5,410 F-13	<154	<0.200	<1.00	<0.500	<1.50				
	3/25/2020	<100	1,330	< 748 ec	<0.200	<1.00	<0.500	<1.50				
	8/31/2020	<100	6,200 F-13	1,120	<0.200	<1.00	<0.500	<1.50				

Coleman Oil Site
Wenatchee, Washington

			Fuels					Volatiles			_	
		GRPH	DRPH	ORPH	Benzene	Toluene	Ethylbenzene	Xylene, Total	Naphthalene	МТВЕ	EDB	EDC
		μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
WA MTCA Method A	Cleanup for Groundwater	800/1000	500	500	5	1,000	700	1,000	160	20	0.01	5
Benzene (Non Detec	ct)	1,000										
Benzene (Detect)		800										
Field ID	Date											
	8/28/2018	<100	<74.1	<148	<0.200	<1.00	<0.500	<1.50				
	12/1/2018	<100	<75.5	<151	<0.200	<1.00	<0.500	<1.50				
	3/27/2019	<100	<74.8	<150	<0.200	<1.00	<0.500	<1.50				
MW31	8/27/2019	<100	<74.8	<150	<0.200	<1.00	<0.500	<1.50				
	12/16/2019	<100	255 F-13	<151	<0.200	<1.00	<0.500	<1.50				
	3/25/2020	<100	108	<150	<0.200	<1.00	<0.500	<1.50				
	8/31/2020	<100	<75.5	<151	<0.200	<1.00	<0.500	<1.50				
	8/29/2018	139	161	<148	<0.200	<1.00	<0.500	<1.50	<2.00	<1.00	<0.500 ec	<0.500
	11/28/2018	<100	<75.5	<151	<0.200	<1.00	<0.500	<1.50				
	3/26/2019	<100	296 F-11	<150	<0.200	<1.00	<0.500	<1.50				
MW32	8/26/2019	<100	302 F-11	<150	<0.200	<1.00	<0.500	<1.50				
	12/16/2019	<100	433 F-11	<155	<0.200	<1.00	<0.500	<1.50				
	3/24/2020	<100	403	<150	<0.200	<1.00	<0.500	<1.50				
	9/1/2020	<100	<75.5	<151	<0.200	<1.00	<0.500	<1.50				

Notes:

Red denotes concentration in excess of MTCA Method Cleanup Level for Groundwater.

Blue denotes concentration in excess of laboratory method reporting limit (MRL) but below the MTCA Method Cleanup Level for Groundwater.

MTCA Method A Cleanup Levels, WAC 173-340-720 through 173-340-760, revised Nov., 2007

GRPH (gasoline range petroleum hydrocarbons) analyzed by Method NWTPH-Gx.

DRPH (diesel range petroleum hydrocarbons) and ORPH (oil range petroleum hydrocarbons) analyzed by Method NWTPH-Dx.

Volatile organic compounds (VOCs) analyzed by EPA Method 8260C

Total Lead by EPA Method 6020

iw = insufficient volume of water to sample

< = less than method reporting limit shown

--- = not analyzed. MW15 and MW18 not sampled due to lack of water in the well.MW29 not sampled due to product in the well.

ec = Method reporting limit exceeds Clean Up Level shown.

F and O = hydrocarbons indicative of heavier fuels are present in sample and impacting the gasoline result (Farallon 2017b)

N1 = hydrocarbons in the diesel-range are impacting the oil result (Farallon 2017b)

U1 = the practical quantitation limit is elevated due to interferences present in the sample (Farallon 2017b)

F-03 = The result for this hydrocarbon range is elevated due to the presence of individual analyte peaks in the quantitation range that are not representative of the fuel pattern reported.

F-11 = The hydrocarbon pattern indicates possible weathered diesel, or a contribution from a related component.

Table 3

Groundwater Analytical Results - Fuels and VOCs

Coleman Oil Site Wenatchee, Washington

		Fuels	Volatiles								
	GRPH	DRPH	ORPH	Benzene	Toluene	Ethylbenzene	Xylene, Total	Naphthalene	МТВЕ	EDB	EDC
	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
WA MTCA Method A Cleanup for Groundwater	800/1000	500	500	5	1,000	700	1,000	160	20	0.01	5
Benzene (Non Detect)	1,000										
Benzene (Detect)	800										

Field ID Date

- F-13 = The chromatographic pattern does not resemble the fuel standard used for quantitation.
- F-15 = Results for diesel are estimated due to overlap from the reported oil result.
- F-16 = Results for oil are estimated due to overlap from the reported diesel result.
- F-20 = Result for Diesel is estimated due to overlap from Gasoline Range Organics or other VOCs.
- S-02 = Surrogate recovery cannot be accurately quantified due to interference from coeluting organic compounds present in the sample extract.
- S-06 = Surrogate recovery is outside of established control limits.

APPENDIX A

GROUNDWATER SAMPLE COLLECTION FORMS

GROUNDWATER SAMPLE COLLECTION FORM

Well I.D. Number: MWOI S Project Name: Cokmy or Sample I.D. MWOLS-W Time: 1130 Hydrocon Project #: 2017-014 Field Duplicate I.D._____Time:____ Date 8-31-20 Personnel: 1447 WELL INFORMATION Not measured _____ppm Headspace reading: Odor 2-inch Well diameter: 4-inch 6-inch Other Comments **PURGING INFORMATION** Total well depth 19.99 ft Bottom: Hard Soft Not measured Screen Interval(s):_____ Depth to product _____ft
Depth to water _____ft Intake Depth (BTOC) ______ Begin Purging Well: ______ Casing volume _____ft (H₂O) X O \sim gal/ft = \sim gal, X 3 = \sim gal. Volume Conversion Factors: 3/4"=0.02 gal/ft 1"=0.04 gal/ft 2"=0.16 gal/ft 4"=0.65 gal/ft 6"= 1.47 gal/ft PURGING/DISPOSAL METHOD Pump type Peristaltic Centrifugal Dedicated Bladder Other_____ Bailer type: _____ Water Disposal:: ☐ Drummed ☑ Remediation System ☐ Other ____ FIELD PARAMETERS Odor and/or Sheen: Dissolved Time Water **Purge Rate** Temp. Sp. Cond. Oxygen Turbidity pH ORP Level (L/min) (°C) (±10% or (MS/cm) (SU) (NTU) (mV) (BTOC) $\leq 1.00 \pm 0.2$ (±3%) (± 0.1) (± 10% or ≤10) 1110 12.12 20.1 20.6 930 0.82 -3/ 158-8 6.55 1.87 1113 932 16 11 20.9 0.44 6.56 153.8 1.78 1116 U 20.8 11 932 0.32 170.8 6-56 1.76 1119 11 20.8 931 0.28 11 1.73 656 148.7 1122 13 93 0.27 11 20-8 147.6 6-57 1.77 1125 in 20,7 0.22 931 148.2 6-57 1-77 Stabilization achieved if three successive measurements for pH, Conductivity and Turbidity or Dissolved Oxygen are recorded within their perspective stabilization criteria. A minimum of six measurements should be recorded. **Purging Comments:** SAMPLE INFORMATION

Container Type	Count	Preservative	Field Filtered?	Analysis
16 Auber	1	HCL	No 0.45 0.10	PWTPH-S IX
40 ml Us/L	3	HLL	(No) 0.45 0.10	NUTPH-GX 3 BTEX Su 8260
			No 0.45 0.10	3,500

No 0.45 0.10 No 0.45 0.10

Sampling Comments:

Well I D Number Music

	ame:. <u>Colu</u> n Project # <u>:</u> -S1 - 20		1 074			Sample I.D. <u> </u>	ate I.D		Time:
Monumer Well cap Headspac Well diam	condition: ce reading: neter:	n: 🖺 G 🔲 G 🔲 N 🔲 2	Good Ne Good Re Not measured 2-inch	eplaced d 4-inch	Needs re	eplacement	☐ Surface V	Vater in Well	
Total well Depth to pose Depth to we Casing vol Volume Co	vater Sonversion F	Factors	ft Botto ft ft Intak ft (H ₂ O) X s: 3/4"=0.02 p	ke Depth (X gal/ft 1"	(BTOC)gal/ft gal/ft "=0.04 gal/ft	Not measure Begin 2"=0.16 gal/f	n Purging Wel _gal. X 3 =_ (4 4) ≥0.65 gal	: <u>tozo</u> ga /ft 6"= 1.47	
Bailer type	e:ARAMETE	nun -	Water D	isposal::[Drummed	d Remediat	tion System [Other	
Time	Water Level (BTOC)	Purg	ge Rate T /min)	Г етр. (°С)	Sp. Cond. (x68/cm) (±3%)	Dissolved	pH (SU) (±0.1)	ORP (mV)	Turbidity (NTU) (± 10% or ≤10)
1038	8.20		11 2 11 2 11 2	21.9	762-9 960-9 759.8 459.5 459.7	0.19	6.94	132-0 101-3 81.5 72-1 63,0	4.67 12-24 10.52 8.50 7-72
1050	-1	1	2	0-8	459.2	0-18	6-95	60.3	7-92
perspective s Purging Con	stabilization comments: INFORMA er Type	criteria. <i>A</i>	Preservative	Field F	rements should	ity and Turbidity obe recorded.	or Dissolved Oxy Analy		d within their
40 m		3	HCL	No 0.4	45 0.10 JA 45 0.10 45 0.10	MJLH-QX B	BLEX FA	8160	

Well I.D. Number: Muo6

	4	1: 2017	7-074			Sample I.D. <u> </u>	ate I.D. MWI	30-W	Time: 1215 Time: 1215
Monumer Well cap Headspac Well diam	condition: ce reading: neter:	on: 🖸 G : 🖸 G : 🗘 N	Good R	Replaced [ed 4-inch	Needs re	replacement	Surface V	n Monument Water in Well	
Total well Depth to pr Depth to w Casing vol Volume Co PURGING Pump type	Conversion G/DISPOS De Peris	Factors SAL ME	ft Botto ft ft Intak ft (H ₂ O) : s: 3/4"=0.02 ETHOD	x O US gal/ft 1"=	gal/ft =0.04 gal/ft dicated Blac	Not measure Begin 2"=0.16 gal/f	n Purging Wel gal. X 3 = ft (4"=0.65 ga Dedicated Bla	ell: 119 1 gal/ft 6"= 1.47 gal/ft 6"= 1.47 gal/ft 6"= 1.47 gal/ft	al. gal/ft
Baller type	e:PARAMETI		VVater L)isposal::∟	_ Drumme	ed Remediat Odor and/or	tion System [Other	
Time	Water Level (BTOC)	Pur _{	rge Rate 7	Temp.	Sp. Cond. (205/cm) (±3%)	Dissolved Oxygen (±10% or ≤1.00 ±0.2)	pH (SU) (±0.1)	ORP (mV)	Turbidity (NTU) (± 10% or ≤10)
1158	1103	20	11 20	0.2	709	0.43%	6.54	-160.8 -161-9 -174.0	5.00 4.75 3.68
1200	7		1 20). 4). 4	709	0-14	6-53	-177-9	3.56
Purging Con	stabilization omments:	criteria. A	cessive measure A minimum of s	ements for p six measurer	H, Conductivi nents should	rity and Turbidity o	or Dissolved Oxy	/gen are recorded	d within their
SAMPLE I Containe		Bottle	Preservative	Field Fil	ltered?		Analy	reis	- 10
16/20	wh	Count 2	HUL	No 0.45 No 0.45 No 0.45	5 0.10 N 5 0.10 5 0.10	DWTPH-DX		1000	
				No 0.45	5 0.10				

	n Project # <u>:</u>	2017-	- 074			Field Duplica	ate I.D		_Time:
Monumer Well cap Headspac Well dian	condition: ce reading: neter:	n:	ood Re	eplaced d 4-inch	Needs	replacement 1	Surface \	Water in Well	
Total wel Depth to p Depth to w Casing vo Volume C	productwaterS olumeConversion I	S.00 -60 Factors:	ft Botto ft Intak ft (H ₂ O) X :: 3/4"=0.02 g	ke Depth	(BTOC)	Not measure Begin t = ft 2"=0.16 gal/f	n Puraina We	1030	
Pump typ Bailer typ	G/DISPOS De	staltic [Centrifuga	al Do	edicated Bla	ladder Non-I led Remediat Odor and/or	tion System	adder Other_ Other	
Time	Water Level (BTOC)	Purg	Purge Rate (L/min) (°C		Sp. Cond. (±3%)	Dissolved Oxygen (±10% or	pH (SU) (±0.1)	ORP (mV)	Turbidity (NTU) (± 10% or ≤10)
1035	15,66	20	201 15	8.4	830	0.29 myl	6.54	- 85.7	261.13
W36	11	(10	9.9	828	0.19	6-53	-88.8	244.99
1039	" (2.0	825	0.13	6.53	-90.3	199.59
1042	1.7			2.0	823	0.13	6.53	-90.5	271.63
1048	-1		C	9.9	872	0.10	6-53	791.5	237.96
Ctabilization	a shipped if t				TI Conduct		2: 1::10		
perspective Purging Co	stabilization c	criteria. A	essive measure A minimum of s	ix measur	ements shoul	ivity and Turbidity o	or Dissoived Ox	ygen are recorde	d within their
0	er Type	Bottle Count	Preservative		Filtered?		Analy	ysis	
		-	1611	(NO) 0.	.45 0.10	MINTEN - OX	1 (1)	7.1	
1 LA	mber	1	HUL				/1	/ 2 \	
		3	HLL	(No) 0.	.45 0.10	NWTPH-GY 1 13	Tex by 826	30	
1 LA				No 0.		UMTH-CH I I	Tex by 821	50	

GROUNDWATER SAMPLE COLLECTION FORM

Well I.D. Number: MWGB-W Project Name: Colema o. 1 Sample I.D. MUOGR-W Time: 1010 Hydrocon Project #: 2017-074 Field Duplicate I.D. _Time:____ Date R 9-1-20 Personnel: MAG WELL INFORMATION Monument condition: Good Needs repair Water in Monument Well cap condition: Replaced Needs replacement Surface Water in Well Not measured / _____ppm Headspace reading: Odor Well diameter: 2-inch 4-inch 6-inch Other Comments **PURGING INFORMATION** Total well depth 32.60 ft Bottom: Hard Soft Not measured Screen Interval(s):_____ Depth to product _____ft Depth to water 16.93 ___ft Intake Depth (BTOC) _____ Begin Purging Well: 0943 Casing volume _____ft (H_2O) X _____gal/ft = _____G5 __gal. X 3 = _____ Volume Conversion Factors: 3/4"=0.02 gal/ft 1"=0.04 gal/ft 2"=0.16 gal/ft 4"=0.65 gal/ft 6"= 1.47 gal/ft PURGING/DISPOSAL METHOD Pump type Peristaltic Centrifugal Dedicated Bladder Non-Dedicated Bladder Other_____ Water Disposal:: ☐ Drummed ☑ Remediation System ☐ Other ____ Bailer type: FIELD PARAMETERS Odor and/or Sheen: Dissolved Time Water **Purge Rate** Temp. Sp. Cond. Oxygen pH Turbidity ORP Level (L/min) (°C) (±10% or (MS/cm) (SU) (NTU) (mV) ≤1.00 ±0.2) (BTOC) (±3%) (± 0.1) (± 10% or ≤10) 00146 184 0.565/ -47.7 16.99 201 6.87 921 6.25 -48.5 0949 18.4 6,56 9.51 11 5 928 15.0 11.97 -52.3 0952 18-3 925 0.16 11 11 0955 18-3 6-56 922 0-14 13.51 11 -54.2 11 0958 .. 18.2 918 6.56 - 59.4 0.11 1) 14.21 920 5 1001 18.3 - 57.7 0.10 6.56 1 14.02 Stabilization achieved if three successive measurements for pH, Conductivity and Turbidity or Dissolved Oxygen are recorded within their perspective stabilization criteria. A minimum of six measurements should be recorded. **Purging Comments:** SAMPLE INFORMATION Bottle Preservative **Container Type** Field Filtered? Analysis Count 1 L Min NWTPLE DY No 0.45 0.10 HLL HOME VOA No 0.45 0.10 N-TPH-OX & BTEX & 8260 HILL No 0.45 0.10 No 0.45 0.10 No 0.45 0.10 Sampling Comments:

GROUNDWATER

SAMPLE COLLECTION FORM Well I.D. Number: MW10 12 Project Name: Coleman U.1 Wendtone Sample I.D. MW1012 - W Time: 1635 Hydrocon Project #: 2017 -074 Field Duplicate I.D. MWIOI - W Time: 1645 8/31/20 Date___ Personnel: CID WELL INFORMATION Not measured Headspace reading: _____ ppm Odor Well diameter: 2-inch 4-inch 6-inch Other Comments PURGING INFORMATION Total well depth 33.59 ft Bottom: ☐ Hard ☐ Soft 🔀 Not measured Screen Interval(s): 13 - 23 Depth to product _____ft Depth to water _____24,17 ___ft Intake Depth (BTOC) _____25 ___ Begin Purging Well: ______1612____ Casing volume _____ft (H_2O) X _ O.65 _ gal/ft = _____ gal. X 3 = ____ gal. Volume Conversion Factors: 3/4"=0.02 gal/ft 1"=0.04 gal/ft 2"=0.16 gal/ft 4"=0.65 gal/ft 6"= 1.47 gal/ft PURGING/DISPOSAL METHOD Pump type → Peristaltic ☐ Centrifugal ☐ Dedicated Bladder ☐ Non-Dedicated Bladder Other_____ Water Disposal:: ☐ Drummed 🗷 Remediation System ☐ Other _ Bailer type: FIELD PARAMETERS Odor and/or Sheen: Faint sets odor, and Sheen Dissolved Time Water **Purge Rate** Temp. Sp. Cond. Oxygen Turbidity pH ORP Level (L/min) (°C) (±10% or (mS/cm) (SU) (NTU) (mV) $\leq 1.00 \pm 0.2$) (BTOC) (±3%) (± 10% or ≤10) (± 0.1) .894 -15.4 1615 -5.81 1.58 6.56 0.190 1618 -883 121 1.02 6.31 -17.6 1621 17.1 28.0 -21.8 .873 6.19 1624 17.5 .876 0.81 6.15 -23,2 -627 0.84 17.2 .874 6,15 -24-3 1630 17-1 0.86 373 6,13 -27, 9 Stabilization achieved if three successive measurements for pH, Conductivity and Turbidity or Dissolved Oxygen are recorded within their perspective stabilization criteria. A minimum of six measurements should be recorded. **Purging Comments:** SAMPLE INFORMATION

Container Type	Bottle Count	Preservative	Field Filtered?	Analysis
40ml VOA	6	HCI	No 0.45 0.10	GX, BTEX
1 h amply	2	140	No 0.45 0.10	17X
			No 0.45 0.10	
			No 0.45 0.10	
			No 0.45 0.10	

Sampling Comments:_____

Well I.D. Number: MWII

	ame:. <u>Colc</u> n Project # <u>:</u> -31-20		01) -074			Sample I.D Field Duplica Personnel:_	cate I.D		Time: 1440 Time:
Monumer Well cap Headspac Well diam	condition: ce reading: neter:	n:	Good	eplaced 🗌 d 4-inch	Needs re	replacement	Surface	Water in Well	
PURGING Total well Depth to p Depth to w Casing vo Volume C	GINFORM Il depth_2 product_ vater_1 4 plume Conversion 1	IATION 2.00 .oz Factors	Nft Bottoft ft Intakft (H ₂ O) 2 :: 3/4"=0.02	m: Hard e Depth (BTo X 045 gal/ft 1"=0.	Soft [OC)gal/ft 04 gal/ft	Not measur Begi = 2"=0.16 gal/	red Screen in Purging Wegal. X 3 = /ft 4"=0.65 ga	Interval(s): ell: <u>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u>	_ al. gal/ft
Pump type Bailer type	G/DISPOS pe	staltic [Centrifuga	al Dedic	ated Blad Drumme	d 🗹 Remedia	ation System	ladder Other_ Other	
FIELDIA	AKANILII	4K5				Odor and/or	Sheen:		-
Time	Water Level (BTOC)	(L/	/min)	(°C) (A	o. Cond. (S/cm) (±3%)	Dissolved Oxygen (±10% or ≤1.00 ±0.2) majl	pH (SU) (±0.1)	ORP (mV)	Turbidity (NTU) (± 10% or ≤10)
1421	17.15		0.1 18	1,9	777	≤1.00±0.2) may U-3G	6.28	-108.4	3.34
1427	N		11 18		775	0.22	6.28	-112.2	2.12
1430	n		n 18	8 -	771	0.19	6.58	-100-6	2.50
1333	17	_	11 18	9 7	171	0.10	6.58	-103.0	2-15
1436	~				771	0.10	B:58	-105.3	2.35
			111						
Stahilization	cachieved if t	hroo succ		monte for pH.	Canductiv	' and Turbidity	Discolved Ox	xygen are recorded	· · · · · · · · · · · · · · · · · · ·
perspective s	stabilization c	criteria. /	A minimum of si	ix measuremen	nts should	be recorded.	Or Dissurved on	ygen are recorded	Withill then
Purging Cor	nments:								
SAMPLE	INFORMA	ATION							
Contain	T	Bottle	Preservative	Field Filter	10		4	-201	
Containe		Count					Analy	/sis	
1 L Aubr		12	HUL	No 0.45		XU-H9KWY	- A7+A7	X	
your	JUA	3	1766	No 0.45 (0.10 K	UWTPH-GX	\$ 157Ex	by 8260	
				No 0.45 (7	
		· ·							-
		4.5		No 0.45 (0 10				

Well I.D. Number: MW17

Date <u> 웅</u>	n Project # <u>:</u> -3)- 2し	2017				Sample I.D Field Duplica Personnel:_	ate I.D.		Time: 1015 Time:
Monumer Well cap Headspac Well diam	NFORMATION to condition: the reading: the neter:	n: ☐ God ☐ God ☐ No ☐ 2-ii	od 🗌 Re t measured nch 🗔	placed	□ Needs re	replacement	Surface V	Water in Well	
Total well Depth to p Depth to w Casing vol Volume Co	G INFORM I depth \(\triangle \) roduct vater \(\frac{1}{2} \) lume \(\triangle \) onversion F	Factors: 3	_ft Botto _ft _ft Intak _ft (H ₂ O) X 3/4"=0.02 g	m: Hi e Depth (ard	Not measure Begin 2"=0.16 gal/f	ed Screen I n Purging Wel gal. X 3 = t 4"=0.65 gal	nterval(s): l:gs ge l/ft 6"= 1.47 g	al. gal/ft
Pump type Bailer type	e 🔽 Perist	taltic 🗌] Centrifuga	ıl De isposal::	edicated Blad	ndder ∕ □ Non-I ed ☑ Remediat Odor and/or	tion System [dder Other_ Other	
Time	Water Level (BTOC)	Purge (L/n		emp. (°C)	Sp. Cond. (xgS/cm) (±3%)	Dissolved Oxygen (±10% or ≤1.00 ±0.2)	pH (SU) (±0.1)	ORP (mV)	Turbidity (NTU) (± 10% or ≤10)
0954	8.22	20.1		1.1	483.3	1.24 myl	6.85	193.8	(±10% 6F ≤10)
0957	. 1	11		2.6	485.8	0.77	6.85	188.3	1.70
10'00	11	()	2	3.7	486-2	0.69	6-89	181.3	1.55
1006	11	(1		1-0	475-1	032	6.90	169.9	1.85
1009	-1	-(0-6	470.5	0.27	6.99	162.8	1-99
		_							
Stabilization perspective s Purging Con	stabilization craments:	TION Bottle I	ssive measure minimum of si	ix measur	PH, Conductivi ements should Filtered?	rity and Turbidity o	or Dissolved Oxy		d within their
Stabilization perspective s Purging Con	istabilization comments: INFORMA er Type	riteria. A n	ninimum of si	Field F	rements should	l be recorded.			d within their
Stabilization perspective s Purging Con	istabilization comments: INFORMA er Type	TION Bottle I	Preservative	Field F	Filtered?	Nwipu-D _≫	Analy	sis	d within their
Stabilization perspective s Purging Con	istabilization comments: INFORMA er Type	TION Bottle I	ninimum of si	Field F	Filtered? 45 0.10 14 14 14 14 14 14 14 14 14 14 14 14 14	Nwipu-D _≫			d within their
Stabilization perspective s Purging Con	istabilization comments: INFORMA er Type	TION Bottle I	Preservative	Field F (No) 0.4 (No) 0.4 No 0.4	Filtered?	Nwipu-D _≫	Analy	sis	d within their

Well I.D. Number: MWI3R

Hydrocon	Project #:	2017	7-074			Sample I.D. MV1312-W Time: 134 Field Duplicate I.D. Time: Personnel: MM				
Monumen Well cap o Headspace Well diam	condition: e reading: leter:	n: 🖸 G G N C	iood 🔲 Re	eplaced L l 4-inch	_ Needs r	replacement Oc nch Ot	Surface V	Vater in Well		
Total well Depth to pr Depth to wa Casing volu Volume Co	roduct ater ume onversion F	48 Factors	ft Botton ft Intake ft (H ₂ O) X s: 3/4"=0.02 g	e Depth (B	TOC)gal/ft	Not measur Begii = t 2"=0.16 gal/i	n Purging Well gal. X 3 =_	1: <u>1312</u> ga	_ al.	
Bailer type	e Perist e:	taltic [Centrifuga	al Dedi isposal::	cated Bla Drumme	adder / Non-led Remedia	tion System [dder Other_ Other		
FIELD PA	ARAMETE	IRS				Odor and/or	Sheen:			
Time	Water Level (BTOC)				Sp. Cond. (mS/cm) (±3%)	Dissolved Oxygen (±10% or ≤1.00 ±0.2)	pH (SU) (±0.1)	ORP (mV)	Turbidity (NTU) (± 10% or ≤10)	
1315	7.53	主			827	9,71	7.13	131:2	5.46	
1318	11		11 22	2.3	835	9.92	7.13	136.9	4,22	
1321	-1	_			837	9.94	7.13	140.7	3.20	
1327	• 1			1.5	\$36	9.67	7.19	199-7	3.70	
1330	-1		n 21		836	9-61	7.14	145.2	4.27	
perspective so Purging Com SAMPLE I	tabilization comments:	criteria. <i>I</i>	cessive measure A minimum of si	ements for pH ix measurem	ents should	vity and Turbidity of the recorded.			l within their	
Containe	rType	Count		A Charles A Control			Analy	sis		
	14		HUL	(No) 0.45		NrTPH-1)X	1			
ILA	- N-	7		17 8 1	0.10 1 2	10m1271-6X	\$ RIEX 5	8260		
1 LA	VOA	3	ML	No 0.45		- /-		1		
L An	VOA	3	INLL	No 0.45 No 0.45	0.10	, A		3		

Well I.D. Number: Male

	lame:. <u>Colo</u> n Project # <u>:</u> -31-20		7-074			(a) $(\pm 10\% \text{ or } \pm 1.00 \pm 0.2)$ (SU) (± 0.1) (MY) $(\pm 10\% \text{ or } \pm 1.00 \pm 0.2)$ (± 0.1) $(\pm 10\% \text{ or } \pm 1.00 \pm 0.2)$ ($\pm 1.0\% \text{ or } \pm 1.0\% o$			
Monumer Well cap Headspac Well diam	condition: ce reading: neter:	n: 🔽 G	rood Re	eplaced d 4-inch	Needs re	replacement	Surface V	Water in Well	
Total well Depth to pose Depth to we Casing vol Volume Co	17-17-16-1	Factors:	ft Botto ft ft Intak ft (H ₂ O) \(\chi_2\) s: 3/4"=0.02 \(\xi_2\)	m: Ha te Depth (X <u>0.65</u> gal/ft 1"	rd Soft Soft State	Not measur Beg = t 2"=0.16 gal/	red Screen I in Purging Wegal. X 3 = 'ft 4"=0.65 ga	Interval(s): II:ge ul/ft_6"= 1.47 {	- ıl. gal/ft
Pump type Bailer type	G/DISPOS. De Perist De: PARAMETE	staltic [☐ Centrifuga	al De Disposal::[dicated Bla Drumme	ed 🗹 Remedia	ation System [adder Other_ Other	
Time	Water Level (BTOC)	Purg (L/	./min)	Г етр. (°С)	Sp. Cond. (100\$/cm) (±3%)	Dissolved Oxygen (±10% or ≤1.00 ±0.2)	pH (SU)	(mV)	Turbidity (NTU) (± 10% or ≤10)
1348 1351 1354 1357 1400	8.16		(1) 1 e	9.2 9.1 9.0 19.0	850 839 838 838 838	0.75	6-87 6-86 6-86	-152.9 -172.9 -177.9	2.15 2-77 3-50 4-28 5-16
1403	(\			18-9	838	01.0	6-10	- 185 - 1	5 -(0
perspective s Purging Cor SAMPLE I	stabilization comments:	ATION	cessive measure A minimum of s	six measure	ements should	vity and Turbidity d be recorded.			l within their
Containe	nv .	Bottle Count	Preservative Nul HU	No 0.4 No 0.4 No 0.4 No 0.4	45 0.10 N 45 0.10 45 0.10	NWTPH-DX UWMH-GX &	Analy	vsis 8ZGD	
					45 0.10				

GROUNDWATER SAMPLE COLLECTION FORM

Well I.D. Number: MW16

	n Project # <u>:</u>	2017-	0.1 . 4			Field Duplica	cate I.D	Sample I.D. <u>Mいらい</u> Time: <u>O&</u> Field Duplicate I.D Time: Personnel: <u>L4</u>				
Monumer Well cap Headspac Well diam	NFORMAT nt condition: condition: ce reading: neter: ts	n:	ot measured -inch	eds repair_ placed	Needs rep _ppm □ 6-in	olacement 2 0 ch 0	_	n Monument Water in Well 				
Total well Depth to p Depth to w Casing vol	oroduct vater9.4 olume	9.15	ft Bottor ft ft Intake ft (H ₂ O) X	e Depth (BTO	OC) _gal/ft =	Begi =	in Purging Wel	Interval(s): ell:ga al/ft 6"= 1.47 g	 al.			
Pump type Bailer typ	oe:	taltic [☐ Centrifuga	ıl 🗌 Dedica isposal::[] D	ited Blade rummed	Remedia	ation System	adder Other_ Other				
Time	Water Level (BTOC)	Purg		(°C) (x4	. Cond. ነቆ/cm) ±3%)ረፊ3	Odor and/or Dissolved Oxygen (±10% or ≤1.00 ±0.2)	pH (SU) (±0.1)	ORP (mV)	Turbidity (NTU) (± 10% or ≤10)			
0748 0751 0754 0757 0800	9.44	70	18	8.0 2 8.2 6 1.2 6	-70 548 543 534 232	2.70 2.55 2-55 2-57 2-61	6.69 6.66 6.48 6.70	178.5 174.5 173.7 171.7	2.21 1.99 1.90 1.94			
50%	9.44		18	. 1 6	332	7.12	6-71	170-8	1.84			
Purging Con	stabilization comments:	criteria. A	essive measure A minimum of si		its should b			xygen are recorde	d within their			
	LANA HL		HLL HLL	No 0.45 (No	0.10 M 0.10 M 0.10	NWTPH-DX NWTPH-GX B BTEX by 8260						

Well I.D. Number: 19w17

Project Na Hydrocon Date <u></u> 9-	Project #	: 2017				Field Duplica	ite I.D. 17w	102-W	Time: 0925
Well cap of Headspace Well diam	t conditio condition: e reading: eter:	n: ☑ G ☑ G ☑ N ☐ 2	ood Re	placed /4-inch	Needs	replacement	Surface	Water in Well	
PURGINO Total well Depth to pr Depth to wa Casing vol Volume Co	depth oduct ater13 ume	29.41 3.43	ft Botto ft ft Intak ft (H ₂ O) 2	m: Hare Hare Hare Hare Hare Hare Hare Har	ard	Not measur Begii = t 2"=0.16 gal/i	ed Screen n Purging Wo gal. X 3 = ft 4"=0.65 g	Interval(s): ell:_ <i>C&SS</i> =ga al/ft 6"= 1.47;	_ al. gal/ft
PURGING Pump type Bailer type FIELD PA	Peris	staltic [Centrifuga	al De	edicated Bla	adder / Non-led Remedia	tion System	ladder Other_ Other	
Time	Water Level (BTOC)	Pur	ge Rate T	emp. (°C)	Sp. Cond. (£3%)	Odor and/or Dissolved Oxygen (±10% or ≤1.00 ±0.2)	pH (SU) (±0.1)	ORP (mV)	Turbidity (NTU) (± 10% or ≤10
0900	13.98	20	2.1 18	8.3	1119	0.29756	6.96	-145-4	11.31
0905	11	1		-8	1120	0.16	6.96	-147.5	11.54
0906		1 1 14		1-8	1120	0-12	6-96	-148.7	11-65
0909	١١			(,7	1117	80.0	6.96	-157.8	10.52
0912				1.7	1117	0.08	6.97	-147.9	10.31
0915	~) (8-7	1115	0.07	6-47	-148-0	10.17
tabilization erspective s Purging Con	tabilization	three succ	essive measure	ements for ix measur	pH, Conducti ements shoul	vity and Turbidity of be recorded.	or Dissolved O	xygen are recorde	d within their
SAMPLE I	NFORMA	ATION	Preservative	Field I	Filtered?		Anal	veie	
		Count	1001			15-2011 0	Aliai	9010	
1 1 1	nois	2 #	HLL		45 0.10 45 0.10	Nu PH - Dx	757.	1 (22/1)	
			146	IUNO) ()	45 0.10 1	UWTPH-Gx B	BTEX a	+ 8260	
1 LA	UDA	63	14-0						
	UDA	6 8	1450	No 0.	45 0.10				
	UOH	C 8	14.50	No 0.	45 0.10 45 0.10				

Well I.D. Number: Mw19

			- 074			Sample I.D. 1 Field Duplicat Personnel:	te I.D	Field Duplicate I.D Time: O				
Monumen Well cap of Headspace Well diam	condition: e reading: neter:	n:	ood Re	eplaced l d-inch	Needs r	replacement	Surface \	Water in Well	18			
Total well Depth to po Depth to w Casing vol Volume Co	1	1.48 7.40 Factors:	ft Botto ft ft Intak ft (H ₂ O) X : 3/4"=0.02 g	m: ☐ Ha e Depth (< <u>O - 65</u> gal/ft 1":	rd	Not measure Begin = t 2"=0.16 gal/ft	ed Screen Purging We gal. X 3 = (4"\delta 0.65 ga	Interval(s): :	- al. gal/ft			
Pump type Bailer type		taltic [Centrifuga			adder Non-Ded Remediati	ion System					
Time	Water Level (BTOC)	Purg (L/	/min)	Cemp.	Sp. Cond. (195/cm) (±3%)	Dissolved Oxygen (±10% or ≤1.00 ±0.2)	pH (SU) (±0.1)	ORP (mV)	Turbidity (NTU) (± 10% or ≤10)			
0812 0815 0818 0821	27,48	,	11 10	9.4 9.3 7.3 1-2	1093	U-37 m/ U-33 U-33 U-26 U-73	6-37 6-38 6-53 6-53	-138-8 -143-4 -142-5	8.84 5.72 8.99			
0829 0827	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			j. l 4. o	1027	0.27	6.44	-173.5	\$1.79 \$1.83			
	stabilization c nments:	criteria. A	essive measure A minimum of s			vity and Turbidity o d be recorded.	r Dissolved Ox	ygen are recorded	l within their			
Containe	er Type	Bottle Count	Preservative		iltered?		Analy	ysis	W U			
1 L And		3	HUL	No 0.4 No 0.4 No 0.4	5 0.10 N	UWTPH-Gx & I	Sley by	१२६०				

GROUNDWATER SAMPLE COLLECTION FORM

Well I.D. Number: M \ \ 20 Project Name: Coleman 0-1 Weantchee Sample I.D. MW Zo - W Time: 0830 Hydrocon Project,#: 2017 - 074 Field Duplicate I.D._____ Time:__ Date 9/2/20 Personnel: CD WELL INFORMATION Monument condition: ☐ Good ☐ Needs repair ☐ Water in Monument ☐ Surface Water in Well X Not measured Headspace reading: _____ ppm ☐ Odor_____ 2-inch Well diameter: ✓ 4-inch 6-inch Other Comments PURGING INFORMATION Total well depth 29.50 ft Bottom: Hard Soft Not measured Screen Interval(s): 9-29' Depth to product_____ Casing volume $\frac{1}{30}$ ft (H₂O) X $\frac{0.65}{9}$ gal/ft = $\frac{4.75}{9}$ gal. X 3 = $\frac{14.25}{9}$ gal. Volume Conversion Factors: 3/4"=0.02 gal/ft 1"=0.04 gal/ft 2"=0.16 gal/ft 4"=0.65 gal/ft 6"= 1.47 gal/ft PURGING/DISPOSAL METHOD Pump type 🗶 Peristaltic 🗌 Centrifugal 🔲 Dedicated Bladder 🔲 Non-Dedicated Bladder Other_____ Bailer type: Water Disposal:: ☐ Drummed ☒ Remediation System ☐ Other Odor and/or Sheen: Musty, no sheen FIELD PARAMETERS Dissolved Time Water **Purge Rate** Temp. Sp. Cond. Oxygen Turbidity pH ORP (L/min) (°C) (±10% or Level (mS/cm) (NTU) (SU) (mV) ≤1.00 ±0.2) (±3%) (± 10% or ≤10) (BTOC) (± 0.1) .761 OBIL 22,33 18,9 0.97 5.90 13.0 0314 22:37 0.100 18,3 ,763 0.71 5.84 -3.5 22.44 17.9 1 351.0 0817 .762 0.60 5,76 -6,9 -7.7 82.48 17.8 5.73 0320 760 0.57 22.53 17.8 5.71 -8,9 0323 .758 0.54 0826 22.57 17,7 759 0.53 5.71 -10.1 Stabilization achieved if three successive measurements for pH, Conductivity and Turbidity or Dissolved Oxygen are recorded within their perspective stabilization criteria. A minimum of six measurements should be recorded. **Purging Comments:** SAMPLE INFORMATION Bottle Preservative Field Filtered? **Container Type Analysis** Count 40 ml VOA No 0.45 0.10 1401 No 0.45 0.10 1 L ambox Hel No 0.45 0.10 No 0.45 0.10 No 0.45 0.10 Sampling Comments:

Sampling Comments:_____

GROUNDWATER SAMPLE COLLECTION FORM

Well I.D. Number: Mulzi Project Name: Coleman Oil Wenatchee Sample I.D. MWZI - W Time: 1805 Hydrocon Project #: 2017-074 Field Duplicate I.D.____ Time: 👇 Date 8/31/20 Personnel: WELL INFORMATION Water in Monument Monument condition: ☑ Good ☐ Needs repair_____ Well cap condition: ☐ Good ☐ Replaced ☐ Needs replacement ☐ Surface Water in Well Headspace reading: Not measured _ ppm Odor Well diameter: 2-inch 4-inch 6-inch Other _____ Comments PURGING INFORMATION Total well depth 32.10 ft Bottom: ☐ Hard ☐ Soft 🔀 Not measured Screen Interval(s): 12-32 Depth to product _ _ _ ft Depth to water _ ZO.24 _ ft Intake Depth (BTOC) _ Z5' Begin Purging Well: _ 1942 Casing volume _ 11.86 _ ft (H₂O) X _ O.65 _ gal/ft = _ 7.71 _ gal. X 3 = _ Z3.13 _ gal. Volume Conversion Factors: 3/4"=0.02 gal/ft 1"=0.04 gal/ft 2"=0.16 gal/ft 4"=0.65 gal/ft 6"= 1.47 gal/ft PURGING/DISPOSAL METHOD Pump type

✓ Peristaltic ☐ Centrifugal ☐ Dedicated Bladder ☐ Non-Dedicated Bladder Other_____ Water Disposal:: Drummed Remediation System Other Bailer type: FIELD PARAMETERS Odor and/or Sheen: faint organic alr, no Sheen Dissolved Time Water **Purge Rate** Temp. Sp. Cond. Oxygen pH Turbidity ORP (±10% or Level (L/min) (°C) (mS/cm) (NTU) (SU) (mV) $\leq 1.00 \pm 0.2$ (BTOC) (±3%) (± 0.1) (± 10% or ≤10) 1445 20.34 18.6 ,915 1.08 10.68 -38.4 1448 20.38 17.0 .894 0.71 7.06 -37.7 20.43 0.160 . 894 1451 16.7 6.41 -37.9 (2.61 .290 1454 20,48 16.7 0.56 6.28 -38.4 1457 20.53 16.7 .889 0.53 6.23 -39,1 20.56 1500 16.5 .890 0.51 6.21 -39 8 Stabilization achieved if three successive measurements for pH, Conductivity and Turbidity or Dissolved Oxygen are recorded within their perspective stabilization criteria. A minimum of six measurements should be recorded. **Purging Comments:** SAMPLE INFORMATION Bottle Preservative **Container Type** Field Filtered? Analysis Count 40ml VOA No 0.45 0.10 Gx, BTEX 3 HOI No 0.45 0.10 1 L amber Hel No 0.45 0.10 No 0.45 0.10

No 0.45 0.10

GROUNDWATER SAMPLE COLLECTION FORM

Well I.D. Number: Mw23

Stabilization perspective s Purging Cor SAMPLE I Containe	itabilization on ments: INFORMA er Type	criteria. A	ssive meas minimum Preservati	of six measur	ements should	ty and Turbidity of the recorded.	Analy		d within their
perspective s Purging Cor	tabilization on the ments:	TION	minimum	of six measur	ements should	ty and Turbidity of the recorded.	or Dissolved Ox	l ygen are recorde	d within their
perspective s Purging Cor	tabilization on the stabilization of the stabilizat	criteria. A	ssive meas minimum	urements for of six measur	pH, Conductivi ements should	ty and Turbidity o	or Dissolved Ox	l ygen are recorde	d within their
36					10)		0.)(-15.2	3.03
1255	١١ د ا		i i	19.9	721	0-12	6-51	-15.2	2.95
1249	1			20.0	720	0-19	6-51	-8-8	3-33
1243	11.54	20		20.1	719	0.26 73/1	6-25	1.9	3.72
Time	Water Level (BTOC)	(L/1	e Rate min)	Temp.	Sp. Cond. (#S/cm) (±3%)	Oxygen (±10% or ≤1.00 ±0.2)	pH (SU) (±0.1)	ORP (mV)	Turbidity (NTU) (± 10% or ≤10
FIELD PA	ARAMETI	ERS			18	Odor and/or Dissolved	Sheen:		
PURGINO Pump type Bailer type	e 🗹 Peris	taltic [Centrif	ugal	edicated Blac	dder ∕ □ Non-l d ☑ Remedia	Dedicated Bla ion System	adder Other_ Other	
Volume Co	onversion	Factors:	3/4"=0.0)2 gal/ft 1'	'=0.04 gal/ft	2"=0.16 gal/i	t 4"=0.65 ga	l/ft 6"= 1.47	gal/ft
Depth to w Casing vol	rater <u>()</u> lume	.48	ft In ft (H ₂ O	take Depth) X	(BTOC) gal/ft	Begii	Purging We	II: 1240	 al.
Total well Depth to p	depth roduct	2.09	ft Bo ft	ottom: 🗌 H	ard 🗌 Soft [Not measur	ed Screen	Interval(s):	
PURGIN	G INFORM	IATION	Ī			/			
Well cap Headspac Well diam Comment	e reading: neter:	□ 2-	ot measu inch	Replaced red	□ Needs re □ ppm □ 6-ir	eplacement	Surface Volume	Water in Well	
	FORMAT	ION /	od \square	Nooda ron	oin		□ 147-4	M	
WELL IN	~								
Date 8	Project #: 3 -20					Personnel:_	Phy		_Time:

Sampling Comments:			

No 0.45 0.10 No 0.45 0.10 No 0.45 0.10

Sampling Comments:

GROUNDWATER SAMPLE COLLECTION FORM

Well I.D. Number: M: 124 Project Name: Coleman Oil Wenstchee Sample I.D. Mwzy - w Time: 1550 Hydrocon Project #: zo17 - o74 Time:____ Field Duplicate I.D.____ Date 2/31/20 07 Personnel: WELL INFORMATION Headspace reading: Well diameter: 2-inch 4-inch 6-inch Other Well diameter: 2-inch 4-inch 59stem well PURGING INFORMATION Total well depth 34.25 ft Bottom: Hard Soft Not measured Screen Interval(s): 14-34 Depth to product_____ Depth to water 27.30 ft Intake Depth (BTOC) 30' Begin Purging Well: 1527 Casing volume _ 6.95 _ ft (H₂O) X _ O.65 _ gal/ft = _ $\frac{4.52}{}$ _ gal. X 3 = _ 13.56 _ gal. Volume Conversion Factors: 3/4"=0.02 gal/ft 1"=0.04 gal/ft 2"=0.16 gal/ft 4"=0.65 gal/ft 6"= 1.47 gal/ft PURGING/DISPOSAL METHOD Pump type Peristaltic Centrifugal Dedicated Bladder Non-Dedicated Bladder Other_____ Water Disposal:: ☐ Drummed ☒ Remediation System ☐ Other Bailer type: faint petro solur FIELD PARAMETERS Odor and/or Sheen: Dissolved Time **Purge Rate** Oxygen Water Temp. Sp. Cond. Turbidity pH ORP (°C) (±10% or Level (L/min) (mS/cm) (NTU) (SU) (mV) ≤1.00 ±0.2) (±3%) (± 10% or ≤10) (BTOC) (±0.1) 18.9 1530 .952 4.38 7,24 30,5 ~ 6.62 1533 16.7 937 3.71 24.3 0.155 6.46 1536 1931 3.39 7.2 17.0 1539 16.8 .927 3.09 6.42 -8.2 6.39 1542 16.6 .923 3.0% 0.51-1545 16.9 923 2,99 6.38 -14.0 27.40 Stabilization achieved if three successive measurements for pH, Conductivity and Turbidity or Dissolved Oxygen are recorded within their perspective stabilization criteria. A minimum of six measurements should be recorded. **Purging Comments:** SAMPLE INFORMATION Bottle Preservative Field Filtered? **Container Type Analysis** Count No 0.45 0.10 3 GX, ISTEX 40ml VOA 144 No 0.45 0.10 1 Lamber 1401 No 0.45 0.10 No 0.45 0.10 No 0.45 0.10

Well I.D. Number: Mw25

Hydrocon Date	Project #:	2	07-074	Jenu Tol		Field Duplic	Mw25 ate I.D	~	Time: 6800 Time: -
Headsnace	t condition condition:	n: K G	ot measured	1	nnm	eplacement Onch Mell,	dor		
PURGING	depth	32 .76 4 .41 8 .24 Factors	ft Botto ft Intak ft (H ₂ O) X : 3/4"=0.02 g	gal/ft 1	"=0.04 gal/ft	Not measur Beg = <u>\$.356</u> 2"=0.16 gal/	ft 4"=0.65 ga	l/ft 6"= 1.47	gal/ft
Pump type Bailer type FIELD PA	2:		Centrifuga Water D	al [] D visposal:	edicated Blac	dder	tion System	adder Other_ Other	
Time	Water Level (BTOC)		/min)	'emp. (°C)	Sp. Cond. (mS/cm) (±3%)	Dissolved Oxygen (±10% or ≤1.00 ±0.2)	pH (SU) (±0.1)	ORP (mV)	Turbidity (NTU) (± 10% or ≤10)
0748 0751 0754 0757	24.88 24,99 25.07 25.16 25.24		150 16	7, Z 6, 6 5, 4 ,, Z	. 830 . 823 . 821 . 820 . 819	0.61 0.57 0.56 0.54	6.51 6.58 6.60 6.62 6.64	-20.1 -58.8 -64.7 -64.1	+ + +
Stabilization perspective s Purging Con	tabilization o	hree succ	essive measure	ements fo		ity and Turbidity be recorded.	or Dissolved Ox	ygen are recorde	d within their
SAMPLE I	NFORMA	TION	Preservative	Field	Eiltonad?				
Containe You		Count 3	1+c1	No 0 No 0	.45 0.10 .45 0.10 .45 0.10	.10 Gx, BTEX			

Sampling Comments:_____

GROUNDWATER SAMPLE COLLECTION FORM

Well I.D. Number: MW26 Project Name: Coleman Oil Wentthe Sample I.D. MW26 - W Time: 0840 Hydrocon Project #: 2017 - 074 Field Duplicate I.D. _____Time: _ ___ Date_____9/1/20 Personnel: CD WELL INFORMATION Monument condition: ☑ Good ☐ Needs repair_____ ☐ Water in Monument Well cap condition: Good Replaced Needs replacement Surface Water in Well Headspace reading: Not measured ____ ppm Odor Well diameter: 2-inch 6-inch X 4-inch Other Comments PURGING INFORMATION Total well depth 35.52 ft Bottom: ☐ Hard ☐ Soft Not measured Screen Interval(s): 13-33 Depth to product_____ft Depth to water 25.39 ft Intake Depth (BTOC) 38 Begin Purging Well: 08(7-Casing volume $\frac{3.13}{10.05}$ ft (H₂O) X $\frac{0.65}{10.05}$ gal/ft = $\frac{5.285}{10.05}$ gal. X 3 = $\frac{15.855}{10.05}$ gal. Volume Conversion Factors: 3/4"=0.02 gal/ft 1"=0.04 gal/ft 2"=0.16 gal/ft 4"=0.65 gal/ft 6"= 1.47 gal/ft PURGING/DISPOSAL METHOD Pump type 🔀 Peristaltic 🗌 Centrifugal 🔲 Dedicated Bladder 🔲 Non-Dedicated Bladder Other_____ Bailer type:__ Water Disposal:: ☐ Drummed 🔀 Remediation System ☐ Other FIELD PARAMETERS Odor and/or Sheen: . Dissolved Time Water **Purge Rate** Temp. Sp. Cond. Oxygen Turbidity pH ORP Level (L/min) (°C) (±10% or (mS/cm) (NTU) (SU) (mV) $\leq 1.00 \pm 0.2$ (BTOC) $(\pm 3\%)$ (±0.1) (± 10% or ≤10) 18.2 1580 25.56 1.086 1.07 6.45 -58.4 4580 25,64 17.3 1.071 0.63 6.37 -70.3 5280 25-73 0.125 1.067 17,2 0.56 6.34 -71.9 0330 25.81 17.1 1.064 0.53 -73.1 6-32 0833 25-87 17.2 1.062 0.51 6.31 -- 74.1 0836 Stabilization achieved if three successive measurements for pH, Conductivity and Turbidity or Dissolved Oxygen are recorded within their perspective stabilization criteria. A minimum of six measurements should be recorded. **Purging Comments:** SAMPLE INFORMATION Bottle Preservative **Container Type** Field Filtered? Analysis Count No 0.45 0.10 GX, BTEX 40 ml VOA 3 1401 No 0.45 0.10 1 L unber He DX No 0.45 0.10 No 0.45 0.10 No 0.45 0.10

GROUNDWATER

SAMPLE COLLECTION FORM Well I.D. Number: MW27 Project Name: Coleman Oil Wenitches Sample I.D. MW27 - W Time: 6955 Hydrocon Project #: 2017-074 Field Duplicate I.D._____Time:____ Date 9/1/20 Personnel: CD WELL INFORMATION Monument condition: ☐ Good ☐ Needs repair ☐ ☐ Water in Monument

Well cap condition: ☐ Good ☐ Replaced ☐ Needs replacement ☐ Surface Water in Well Monument condition: X Good Headspace reading: Not measured Odor ppm 6-inch ☐ Other _____ Well diameter: 2-inch 4-inch Comments **PURGING INFORMATION** Total well depth 38.74 __ft Bottom: ☐ Hard ☐ Soft ☑ Not measured Screen Interval(s): 13~38′ Depth to product_____ ft Intake Depth (BTOC) 27 Begin Purging Well: 9934 Depth to water 23.03 ft Casing volume 15-71 ft (H₂O) X 0.65 gal/ft = 10.21 gal. X 3 = $\frac{20.63}{9}$ gal. Volume Conversion Factors: 3/4"=0.02 gal/ft 1"=0.04 gal/ft 2"=0.16 gal/ft 4"=0.65 gal/ft 6"= 1.47 gal/ft PURGING/DISPOSAL METHOD Pump type 🔀 Peristaltic 🗌 Centrifugal 🔲 Dedicated Bladder 🔲 Non-Dedicated Bladder Other_____ Bailer type: Water Disposal∷ Drummed ★ Remediation System Other FIELD PARAMETERS Odor and/or Sheen: Dissolved Time Water **Purge Rate** Temp. Sp. Cond. Oxygen Turbidity pH ORP (±10% or Level (L/min) (°C) (mS/cm) (NTU) (SU) (mV) $\leq 1.00 \pm 0.2$ (± 10% or ≤10) (BTOC) (±3%) (± 0.1) 18.8 .926 6,49 -38.0 73.17 0,93 0939 1917 6.35 23.22 18.5 0.76 -48-7 5442 0.67 6.30 23.27 .916 -53.1 0945 0.100 18.5 0948 18.3 ,917 0.66 6.29 -55-7 23.33 0951 .414 0.60 23.38 18,2 6.28 -57-4 0954 Stabilization achieved if three successive measurements for pH, Conductivity and Turbidity or Dissolved Oxygen are recorded within their perspective stabilization criteria. A minimum of six measurements should be recorded. Purging Comments:

SAMPLE INFORMATION

Container Type	Bottle Count	Preservative	Field Filtered?	Analysis
40ml VOA	3	HCI	0.45 0.10	GX, BTEX
1 L amber	1	Hel	No 0.45 0.10	DX
			No 0.45 0.10	
			No 0.45 0.10	
			No 0.45 0.10	

Sampling Comments:			
-			

Well I.D. Number: Mw28

Hydrocon	ame:. <u>Cole</u> n Project #: 9/i	2015	7-074			Sample I.D Field Duplic Personnel:_	ate I.D		Time: 130 Time: -
Monumer Well cap	IFORMATION to condition: the reading: the neter:	Good Good	od Ne od Re t measured nch S hulled	eds repeplaced l 3 4-inch	air Needs re ppm 6-in	eplacement	☐ Water☐ Surfacdorther	r in Monument ce Water in Well	
Total well Depth to p Depth to w Casing vol	roduct /ater2 <u>4</u> lume1 <u>4</u>	8,74	ft Botto ft ft Intak ft (H₂O) ∑	ke Depth	(BTOC) 2	8 Begi	in Purging V gal. X 3	en Interval(s): Vell:1\0; =2\8.74	gal.
Pump type Bailer typ	é:	altic [Centrifuga	al □ D∉ ∂isposal::	edicated Blac	d <page-header> Remedia</page-header>	ation Syster	Bladder Other_ m	
FIELD P	ARAMETEI	RS				Odor and/or	Sheen: _		
Time	Water Level (BTOC)	Purge (L/n		Г етр. (°С)	Sp. Cond. (mS/cm) (±3%)	Dissolved Oxygen (±10% or ≤1.00 ±0.2)	pH (SU) (±0.1)	ORP (mV)	Turbidity (NTU) (± 10% or ≤10)
1106	-			22,8	. 871	7.67	6.68	-47.5	
1112			25	0.7	,864	0.86	6.35	-59.3 -63.0	-
1115	-	0.11		0.3	.864	0.62	6.24	-65-1	_
1118	-		2	0.7	.865	0.56	6.23	-66.6	_
1121	-			20.4	.864	0.54	6,23	-67.7	-
			- On	nple	2 (0)	1130			
	stabilization cr				r pH, Conductiv rements should		or Dissolved	Oxygen are recorde	ed within their
perspectives Purging Con									
Purging Co	INFORMAT	ΓΙΟΝ							
SAMPLE Contain	INFORMAT	Bottle Count	Preservative		Filtered?			alysis	
SAMPLE Containe	INFORMAT er Type	Bottle	1401	No 0.	.45 0.10		Ana		
SAMPLE Containe	INFORMAT	Bottle Count		No 0.	.45 0.10 .45 0.10				
SAMPLE Containe	INFORMAT er Type	Bottle Count	1401	No 0.	.45 0.10 .45 0.10 .45 0.10				\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\

GROUNDWATER SAMPLE COLLECTION FORM

Well I.D. Number: ₩35

Hydroco	Name:. <u>Co</u> on Project # <u>:</u> 2/3	201	7-074			Field Duplic	ate I.D	CD CD	Time:			
Monume Well cap Headspa Well dia	p condition:	n: 🔀 G 🔀 G 🗷 N	ood []] ot measur -inch	Replaced ed 4-incl	☐ Needs re ppm	eplacement	Surface Valor doraher	Water in Well —— ——				
Total we Depth to Depth to Casing v	product water <u>35</u> olume	7.23	ft Bot ft ft Inta ft (H ₂ O)	ake Depth	(BTOC) 3	9 ¹ Begi	n Purging We	Interval(s):' : <u>} 2 </u>	<u>.</u>			
Pump ty Bailer ty	NG/DISPOS pe Peris pe: PARAMETI	taltic [☐ Centrifu	gal 🔲 D Disposal:	edicated Blac :[] Drummed	d 🔀 Remedia	tion System	adder Other_ Other				
LIELDI	TAKAMETI	CNS				Odor and/or	Sheen:					
Time	Water Level (BTOC)		ge Rate 'min)	Temp.	Sp. Cond. (mS/cm) (±3%)	Dissolved Oxygen (±10% or ≤1.00 ±0.2)	pH (SU) (±0.1)	ORP (mV)	Turbidity (NTU) (± 10% or ≤10)			
1313	35.38			27.3	,952	3.81	6.77	-80.9	+			
1316	35.44			22.6	.952	3.59	6.80	- 79.2	+			
1319	35,47	.0		7.75	.950	3,36	6.80	-78.7	+			
1322	35.48	161	•	27-8	.950	3.00	6.78	- 78.0	+			
1328	35.67	,17	01	25.4	.962	0.90	7.00	-81,5	44			
1331								-88.6	444			
1334	35.75			8.4	,956	0.52	6.61	-91.4	tty			
1337	35.93		,	7.8	.953	0.59	6.53	~91,9	+++			
1340	36.01			7.7	.747	0.59	6,47	-91.0 -90.T	444			
	70 - 01			+1+	1		0,17	-40,1	1 6			
		Miles		an	role (a) 13.	4.5					
Stabilizatio	n achieved if th	ree succ	essive measu	rements fo	r pH, Conductivi	ty and Turbidity	or Dissolved Ox	ygen are recorded	d within their			
Purging Co	omments:	ineria. F	i minimum o	i six measu	rements should	be recorded.						
0												
SAMPLE	E INFORMA	TION										
Contair	ner Type	Bottle Count	Preservativ		Filtered?		Analy	/sis				
Contain		3	Itcl		.45 0.10	C	X, BTEX					
Homl	WA	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				0 0 1 0 10			DX			
Homl		1	He				DX					
40ml				No 0	.45 0.10		Dx					
Homl				No 0			Dx					

GROUNDWATER SAMPLE COLLECTION FORM

Well I.D. Number: Ma/31 Project Name: Coleman Oil Wentchee Sample I.D. Mw31 - w Time: 1010 Hydrocon Project #: 2017-074 Field Duplicate I.D. Time: Date 3/31/20 Personnel: CID WELL INFORMATION

 Monument condition:

 ☐ Good
 ☐ Needs repair
 ☐ Water in Monument
 ☐ Surface Water in Well

 Headspace reading: Not measured _____ ppm Odor Well diameter: 2-inch ¥4-inch 6-inch Other Comments **PURGING INFORMATION** Total well depth ______ft Bottom: ☐ Hard ☐ Soft ☒ Not measured Screen Interval(s):______15~~40′ Depth to product _____ft
Depth to water _____ft Intake Depth (BTOC) 39' Begin Purging Well: 한다. Casing volume _____ft (H_2O) X ______gal/ft = ______gal. X 3 = _____gal. Volume Conversion Factors: 3/4"=0.02 gal/ft 1"=0.04 gal/ft 2"=0.16 gal/ft 4"=0.65 gal/ft 6"= 1.47 gal/ft PURGING/DISPOSAL METHOD Pump type Peristaltic Centrifugal Dedicated Bladder Non-Dedicated Bladder Other Bailer type:_____ Water Disposal:: Drummed 🔀 Remediation System 🗌 Other _____ FIELD PARAMETERS Odor and/or Sheen: Dissolved Time Water **Purge Rate** Temp. Sp. Cond. Oxygen Turbidity pH ORP Level (L/min) (°C) (±10% or (mS/cm) (NTU) (SU) (mV) ≤1.00 ±0.2) (BTOC) (±3%) (± 0.1) (± 10% or ≤10) 0746 34.18 17.9 1.456 3.64 6.58 -25.4 + 0949 34.20 12.7 1.379 6.43 1.30 -55.2 + 34.26 5290 18.4 1.364 1.08 6.41 -63.5 0955 34,28 18.1 6.43 0.10 1.372 1.06 -66.2 0958 34.31 18.1 6,42 1.356 0.95 + -69.3 34 . 33 1001 18.2 1.360 0,92 6.42 - 70.1 4 6.90 34.35 1813 1004 6.43 1.361 -70.1 1010 Stabilization achieved if three successive measurements for pH, Conductivity and Turbidity or Dissolved Oxygen are recorded within their perspective stabilization criteria. A minimum of six measurements should be recorded. **Purging Comments:** SAMPLE INFORMATION Field Filtered? Bottle Preservative **Container Type** Analysis Count Gx, BTEX 40ml VOA 3 No. 0.45 0.10 Hel 1 Lamber No 0.45 0.10 HCI No 0.45 0.10 No 0.45 0.10 No 0.45 0.10 Sampling Comments:

Well I.D. Number: MW32

Hydrocon	Project Name: Colema or 1 Hydrocon Project #: 2017 - 074 Date 9-1-20						MW32-W icate I.D PhH		_Time: <u>O&SO</u> _Time:
Monumen Well cap o Headspace Well diam	condition: e reading: ieter:	n:	1000 R	Replaced ed 4-inch	Needs r	replacement 🔲 C inch 🔲 C	Surface	Water in Well	
Total well Depth to pr Depth to we Casing vol Volume Co	onversion r	.5\ Factors:	ft Botto ft ft Intal ft (H ₂ O) s: 3/4"=0.02	om: H ke Depth X gal/ft 1	ard Soft (BTOC) gal/ft "=0.04 gal/f	Not measu Bey = 0.65 t 2"=0.16 gal	ired Screen gin Purging Wgal. X 3 = I/ft 4"=0.65 g	n Interval(s): /ell: <u>0872</u> =g gal/ft 6"= 1.47	jal. gal/ft
Pump type Bailer type	G/DISPOS. Periste: ARAMETE	staltic [Centrifug	gal □ D Disposal:	edicated Bla :[] Drumme	ed 🔽 Remedi	iation System	Bladder Other_ Other	
Time	Water Level (BTOC)	Purg (L/	/min)	Temp.	Sp. Cond. (mS/cm) (±3%)	Odor and/o Dissolved Oxygen (±10% or ≤1.00 ±0.2)	pH (SU) (±0.1)	ORP (mV)	Turbidity (NTU) (± 10% or ≤10)
0875 0878 0831 0834	11.55	0	1 10	9.7 9.7 9.7 19.7	278.7 274.4 283.3 291.0	0.69	6.50 6.50 6.50	174.0 170.7 156.9	430 4.40 5.06 5.70
0837	γ ')	v v		19.7	301.0	0-33	6.50	131.9	7.55
Stabilization :	achieved if the	aree succ	cessive measur	rements fo	r pH, Conductiv	vity and Turbidit	y or Dissolved O	Oxygen are recorde	ed within their
Purging Con SAMPLE I	nments:	TION			rements should	be recorded.			
Containe		Bottle Count	Preservative	Ticiu i	Filtered?		Anal	ysis	
1 6/hah 40 me 1		3	HLL	No 0. No 0.		NWTPH - 1)X NWTPH - GX	& Betx by	8560	

GROUNDWATER SAMPLE COLLECTION FORM

Well I.D. Number: 1440

Project Name Hydrocon Pr Date	oject#: 2					ate I.D.		_Time:_ ԱԿՆ _Time:
WELL INFO Monument of Well cap con Headspace re Well diamete Comments	ondition: Cadition: Cadition: Cading: Cari	Good C Good C Not meas 2-inch	ured	airNeeds r ppm 6-i	replacement	☐ Water in ☐ Surface dorher	n Monument Water in Well	
Volume Conv	pth91_9 uctr23_1 ne version Fact	ft E ft ft ft (H ₂ ft (3/4"=0	Bottom: H ntake Depth O) X	ard	Not measur Begi = t 2"=0.16 gal/	red Screen n Purging Wogal. X 3 = ft 4"=0.65 g	Interval(s): ell:g =g al/ft_6"= 1.47	al. gal/ft
Bailer type:_	Y Peristalti	ic Centr Wat	ifugal ☐ D :er Disposal::	edicated Bla	ndder/ □ Non- ed ☑ Remedia	tion System	ladder Other_ Other	
FIELD PAR	AMETERS		7		Odor and/or Dissolved	Sneen:		
	Level (BTOC)	Purge Rate (L/min)	Temp. (°C) 70.8 20.7 20.7 20.6 20.9	Sp. Cond. (48/cm) (±3%) 947 947 945 940 940	Oxygen (±10% or ≤1.00 ±0.2) ○ 31 " \ \ ○ 30 ○ 27 ○ - 17 ○ - 10 ○ - 10	pH (SU) (±0.1) (5.64 6.64 6.64 6.63 6.63	ORP (mV) -71.0 -70.7 -67.5 -65.6 -65.9	Turbidity (NTU) (± 10% or ≤10) > 6,55 79.46 176.59 67.58 67.58
perspective stab	ilization criter	ria. A minimur			vity and Turbidity d be recorded.	or Dissolved O	xygen are record	ed within their
	المراجع القراح والمراجع المحارضين	IN					N. 50 P. 10 P.	
SAMPLE INI			ntive Field	Filtorod?		Amal		
SAMPLE INI	Type Bot	ttle Preserva	- 6 -	Filtered?	h / 200 · 10	Anal	ysis	Y
SAMPLE INI	Type Bot	ttle Preserva	No 0 No 0 No 0	### April 1: 15	MATPH DX NW PH- GX	Anal		

Sampling Comments:

	0 40						Well I.D. Nur	mber: BH 07
Hydrocon	ame: n Project #: 2(3)	2017-0	honatel 374	hee	Field Duplic	131+0 cate I.D	12-W	Time: 1150
Monumen Well cap of Headspace Well diam	condition: ce reading:	n: 🔀 Good 🔀 Good 🔀 Not me 🔀 2-inch	☐ Needs rep☐ Replacedeasured☐ 4-incl	l 🗌 Needs re	eplacement	_	Water in Well	
Total well Depth to pr Depth to w	roduct vater	35.00 ft - ft 29.40 ft	Intake Depth	h (BTOC) 3	4.5 Begi	ured Screen Ingin Purging Well gal. X 3 = ft 4"=0.65 gal	1118	
Pump type Bailer type	e Perist e:		ntrifugal 🔲 D	Dedicated Blad ∷□ Drumme	d 🔀 Remedia	-Dedicated Bla ation System [Other	
FIELD PA	ARAMETE	RS				or Sheen: 🗸	light petro	, odor
Time	Water Level (BTOC)	Purge Rate (L/min)	e Temp.	Sp. Cond. (mS/cm) (±3%)	Oxygen (±10% or ≤1.00 ±0.2)	pH (SU) (±0.1)	ORP (mV)	Turbidity (NTU) (± 10% or ≤10)
1123	28.41		19.8	.880	3.78	6.63	-52.0	(110/001310)
1176	28.51		19.1	-868	1.23	6.37	-58.9	-
1129	28.54		j4.3	1366	1.06	6.31	-61.1	-
1132	28.49	0.09	19.4	.869	1,01	6.32	-63.0	~
1138	28.96	U.Du.	17.8	-855	0,90	6.30	-63.6	+
1141	29,15	Bart Britan of the Union La	18.2	•848	0.75	6,24	-64.2	~
1144	24.28		18.0	.850	0,74	6.24	-64.3	
		1						
		+(->	schmis	50	.) 11	500		
Stabilization	achieved if th	ree successive	measurements fo num of six measu	or pH, Conductivi	ity and Turbidity	y or Dissolved Oxy	ygen are recorder	d within their
Purging Con		fileria. A imm	ium oi six incasa	rements snound	be recorded.			
	-	II. July						
SAMPLE	INFORMA	TION						
Containe	er Type	Bottle Prese		Filtered?		Analy	/sis	
Mom	VOA			0.45 0.10	(GX, BTE	×	
1 4	amber		tc 100 0	0.45 0.10		1)X		
			No 0	0.45 0.10 0.45 0.10				
				0.45 0.10				
			1.7	.10 0				and the second s

Well I.D. Number: 3403

Hydrocor	n Project # <u>:</u>	20	017 - 074			Field Duplic	BH03 - cate I.D	-	Time: <u>c\fi</u> Time: ~
Monumer Well cap Headspac Well dian	condition: ce reading: neter:	n: 🔀 Go 🔀 Go 🗷 No 🔀 2-	ood Re	eplaced d 4-inch	□ Needs re	eplacement 00 nch 00	Surface V	Water in Well	
Total well Depth to p Depth to w Casing vo Volume C	lume 4	30,00 - 5,48 .52 Factors:	ft Botto ft ft Intak ft (H ₂ O) 2 : 3/4"=0.02	ke Depth X 0.16	(BTOC) 2 gal/ft	Begi = . 7-28	in Purging We gal. X 3 =	Interval(s): <u>!</u> ell: <u>0852 2.169 ga</u> al/ft 6"= 1.47 g	_ al
Pump typ Bailer typ	G/DISPOSA e Perista e: ARAMETE	taltic [Centrifug	al De Disposal::	edicated Blac	d 🗶 Remedia	ation System	adder Other_ Other	
Time	Water Level (BTOC)	Purg	/min)	Гетр. (°С)	Sp. Cond. (mS/cm) (±3%)	Odor and/or Dissolved Oxygen (±10% or ≤1.00 ±0.2)	pH (SU) (±0.1)	ORP (mV)	Turbidity (NTU) (± 10% or ≤10)
0858 0901 0904 0907 0910 0913	25.75 25.87 26.01 26.11 26.78	0.0)85 18 18	8,8 8,2 3,0 1,9 1,5	1.077 1.064 1.063 1.061 1.058	0.75 0.63 0.57 0.95 0.53	6.36 6.23 6.17 6.16 6.19	-27, Z -32, 8 -36. 8 -38. 4 -39,4	1 1 1
		5	odny	je (<u>ی</u> و	715			
Purging Cor	stabilization cr mments:	riteria. A	essive measure minimum of s	ements for six measur	r pH, Conductivi rements should	ty and Turbidity be recorded.	or Dissolved Oxy	 ygen are recorded	l within their
Containe		Bottle Count	Preservative	Field I	Filtered?		Analy	vsis	
Yomi W	/OA	3	1+c1 1+c1	No 0.4 No 0.4 No 0.4			GX, BTEX		

Well ID Number: Plato

Hydroco: Date	Name:. <u>Colem</u> on Project # <u>:</u> 9/1/2	nan Oil W 2017-07 20	I constitute		Field Duplic		-	_Time:_
Monume Well cap	condition: ce reading: meter:	n: 🛛 Good	Replaced	epair d	replacement	Surface V	Water in Well	
Total wel Depth to p Depth to w Casing vo Volume C	water 2: olume 3 Conversion F	ft f	Intake Dept H ₂ O) X <u>0.33</u> =0.02 gal/ft	Hard ☐ Soft [th (BTOC) <u>2°</u> <u>33</u> gal/ft 1"=0.04 gal/ft	9/ Begi	gin Purging Wel	ell: 1008	
Pump typ Bailer typ	pe 🛛 Perist pe:	taltic	trifugal 🗍 I	Dedicated Blac l∷∐ Drummed	d 🔀 Remedia	ation System [adder Other_ Other	
FIELD F	PARAMETE	RS			Odor and/or	r Sheen:	****	
Time	Water Level (BTOC)	Purge Rate (L/min)	(°C)	Sp. Cond. (mS/cm) (±3%)	Dissolved Oxygen (±10% or ≤1.00 ±0.2)	pH (SU) (±0.1)	ORP (mV)	Turbidity (NTU) (± 10% or ≤10)
1012	76.00		13.0	1.076	1.87	6.72	-60.5	-
1015	26.08	0,120	17.4	1.052	1,00	6.62	-54.4	-
1018	26.31		17.3	1.040	0.89	6.53	-41.5	-
1024	26.31		13.0	1.016	0.76	6.49	-29.5	~
1027	26,51		17.9	.984	0.63	6.50	-22.9	-
10 30	26.60		18.0	.982	0.62			
1033	26.69		17.9	.976	0.67	6.49	-12.0	_
	(0.00		1+11	17+6	0.6+	6.48	-13.0	
					LNI			
		20	imple	(0)	1041)		
a Lillection	1:6th		7000					
Stabilization perspective:	achieved II un	cee successive m	reasurements to	or pH, Conductiviturements should b	ty and Turbidity	or Dissolved Oxy	/gen are recorded	d within their
Purging Cor	mments:	Iteria. A imm	JM 01 SIX IIICUDE	irements snound i	pe recorded.			
SAMPLE	INFORMAT	ΓΙΟΝ						
		D-sagar	I was in	201				
		Bottle Preserv	vative Field	Filtered?		Analys	sis	
Containe			(N) 0	0.45 0.10	G	EX, BTEX	2012	
Homi	VOA	3 1401						
Homi	VOA Jumber	1 1401	(100 0	0.45 0.10		DX		
Homi			No 0	0.45 0.10		IJX		
Homi			No 0	0.45 0.10 0.45 0.10		12X		

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Friday, September 18, 2020 Craig Hultgren HydroCon LLC 314 W 15th Street Suite 300 Vancouver, WA 98660

RE: A0I0140 - Coleman Wenatchee - 2017-074

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A0I0140, which was received by the laboratory on 9/3/2020 at 3:55:00PM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: Idomenighini@apex-labs.com, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of sample reciept, unless prior arrangements have been made.

	Cooler Receip	t Information		
	(See Cooler Receip	ot Form for details)		
Cooler #1	5.2 degC	Cooler #2	5.8 degC	
Cooler #3	2.6 degC	Cooler #4	5.6 degC	

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa A Zmenyhini

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>HydroCon LLC</u> Project: <u>Coleman Wenatchee</u>

 314 W 15th Street Suite 300
 Project Number: 2017-074
 Report ID:

 Vancouver, WA 98660
 Project Manager: Craig Hultgren
 A010140 - 09 18 20 0809

ANALYTICAL REPORT FOR SAMPLES

	SAMPLE INFORM	ATION		
Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW01S-W	A0I0140-01	Water	08/31/20 11:30	09/03/20 15:55
MW03S-W	A0I0140-02	Water	08/31/20 11:00	09/03/20 15:55
MW06-W	A0I0140-03	Water	08/31/20 12:15	09/03/20 15:55
MW08-W	A0I0140-04	Water	09/01/20 10:55	09/03/20 15:55
MW09R-W	A0I0140-05	Water	09/01/20 10:10	09/03/20 15:55
MW10R-W	A0I0140-06	Water	08/31/20 16:35	09/03/20 15:55
MW11-W	A0I0140-07	Water	08/31/20 14:40	09/03/20 15:55
MW12-W	A0I0140-08	Water	08/31/20 10:15	09/03/20 15:55
MW13R-W	A0I0140-09	Water	08/31/20 13:40	09/03/20 15:55
MW14-W	A0I0140-10	Water	08/31/20 14:10	09/03/20 15:55
MW16-W	A0I0140-11	Water	09/01/20 08:10	09/03/20 15:55
MW17-W	A0I0140-12	Water	09/01/20 09:25	09/03/20 15:55
MW19-W	A0I0140-13	Water	09/02/20 08:35	09/03/20 15:55
MW20-W	A0I0140-14	Water	09/02/20 08:30	09/03/20 15:55
MW21-W	A0I0140-15	Water	08/31/20 15:05	09/03/20 15:55
MW23-W	A0I0140-16	Water	08/31/20 13:05	09/03/20 15:55
MW24-W	A0I0140-17	Water	08/31/20 15:50	09/03/20 15:55
MW25-W	A0I0140-18	Water	09/01/20 08:00	09/03/20 15:55
MW26-W	A0I0140-19	Water	09/01/20 08:40	09/03/20 15:55
MW27-W	A0I0140-20	Water	09/01/20 09:55	09/03/20 15:55
MW28-W	A0I0140-21	Water	09/01/20 11:30	09/03/20 15:55
MW30-W	A0I0140-22	Water	08/31/20 13:45	09/03/20 15:55
MW31-W	A0I0140-23	Water	08/31/20 10:10	09/03/20 15:55
MW32-W	A0I0140-24	Water	09/01/20 08:50	09/03/20 15:55
BH01R-W	A0I0140-25	Water	09/01/20 11:40	09/03/20 15:55
BH02-W	A0I0140-26	Water	08/31/20 11:50	09/03/20 15:55
BH03-W	A0I0140-27	Water	09/01/20 09:15	09/03/20 15:55
RW01-W	A0I0140-28	Water	09/01/20 10:40	09/03/20 15:55
MW100-W	A0I0140-29	Water	08/31/20 12:15	09/03/20 15:55
MW101-W	A0I0140-30	Water	08/31/20 16:45	09/03/20 15:55
MW102-W	A0I0140-31	Water	09/01/20 09:25	09/03/20 15:55
Blank-310820	A0I0140-32	Water	08/31/20 12:25	09/03/20 15:55

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smeinghini

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>HydroCon LLC</u> Project: <u>Coleman Wenatchee</u>

 314 W 15th Street Suite 300
 Project Number: 2017-074
 Report ID:

 Vancouver, WA 98660
 Project Manager: Craig Hultgren
 A010140 - 09 18 20 0809

AMENDED REPORT

ANALYTICAL REPORT FOR SAMPLES

	SAMPLE INFORMA	ATION		
Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Trip Blank	A0I0140-33	Water	08/31/20 00:00	09/03/20 15:55

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smerighini

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

AMENDED REPORT

HydroCon LLC
314 W 15th Street Suite 300
Vancouver, WA 98660

Project: <u>Coleman Wenatchee</u>

Project Number: **2017-074**Project Manager: **Craig Hultgren**

Report ID: A0I0140 - 09 18 20 0809

ANALYTICAL CASE NARRATIVE

Work Order: A0I0140

Amended Final Report Revision 1:

NWTPH-Dx Data Correction

This report supersedes all previous reports.

Sample MW-16 (A0I0140-11): Originally reported Oil with a positive result and non-detect for Diesel. After further review of the GC chromatogram the product was determined to be more consistent with diesel range organics. The Diesel result is 197 ug/L and is qualified with F-11 " The hydrocarbon pattern indicates possible weathered diesel, or a contribution from a related product."

Sample MW-102W (A0I0140-31): Originally reported Oil with a positive result. After further review of the GC chromatogram the product was determined to be more consistent with a single diesel range product. The product was integrated to include all diesel range organics. The Diesel result changed from 1230 ug/L to 1430 ug/L. Oil is reported as non-detect.

Mark Zehr Organics Manager 9/18/2020

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Somerighini

HydroCon LLC

AMENDED REPORT

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Project: Coleman Wenatchee

 314 W 15th Street Suite 300
 Project Number: 2017-074
 Report ID:

 Vancouver, WA 98660
 Project Manager: Craig Hultgren
 A010140 - 09 18 20 0809

ANALYTICAL SAMPLE RESULTS

	Die	sel and/or O	il Hydrocar	bons by NWTP	H-Dx			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
MW01S-W (A0I0140-01)				Matrix: Wat	er	Batch	: 0090289	
Diesel	108		77.7	ug/L	1	09/11/20 04:08	NWTPH-Dx LL	F-11
Oil	ND		155	ug/L	1	09/11/20 04:08	NWTPH-Dx LL	
Surrogate: o-Terphenyl (Surr)		Recove	ery: 100 %	Limits: 50-150 %	6 1	09/11/20 04:08	NWTPH-Dx LL	
MW03S-W (A0I0140-02)		Matrix: Water		Batch	: 0090289			
Diesel	86.0		75.5	ug/L	1	09/11/20 04:29	NWTPH-Dx LL	F-11
Oil	ND		151	ug/L	1	09/11/20 04:29	NWTPH-Dx LL	
Surrogate: o-Terphenyl (Surr)		Recove	ery: 107%	Limits: 50-150 %	6 1	09/11/20 04:29	NWTPH-Dx LL	
MW06-W (A0I0140-03)				Matrix: Wat	er	Batch	: 0090289	
Diesel	1180		75.5	ug/L	1	09/11/20 04:50	NWTPH-Dx LL	F-11
Oil	ND		151	ug/L	1	09/11/20 04:50	NWTPH-Dx LL	
Surrogate: o-Terphenyl (Surr)		Reco	very: 89 %	Limits: 50-150 %	6 1	09/11/20 04:50	NWTPH-Dx LL	
MW08-W (A0I0140-04)		Matrix: Water Batch: 0090289		: 0090289				
Diesel	1960		75.5	ug/L	1	09/11/20 05:10	NWTPH-Dx LL	
Oil	ND		151	ug/L	1	09/11/20 05:10	NWTPH-Dx LL	
Surrogate: o-Terphenyl (Surr)		Reco	very: 93 %	Limits: 50-150 %	6 1	09/11/20 05:10	NWTPH-Dx LL	
MW09R-W (A0I0140-05)				Matrix: Wat	er	Batch	: 0090324	
Diesel	2330		75.5	ug/L	1	09/11/20 22:22	NWTPH-Dx LL	F-13
Oil	ND		151	ug/L	1	09/11/20 22:22	NWTPH-Dx LL	
Surrogate: o-Terphenyl (Surr)		Reco	very: 72 %	Limits: 50-150 %	6 1	09/11/20 22:22	NWTPH-Dx LL	
MW10R-W (A0I0140-06)				Matrix: Wat	er	Batch	: 0090324	
Diesel	2130		74.8	ug/L	1	09/11/20 22:45	NWTPH-Dx LL	F-13
Oil	ND		150	ug/L	1	09/11/20 22:45	NWTPH-Dx LL	
Surrogate: o-Terphenyl (Surr)		Reco	very: 81 %	Limits: 50-150 %	6 1	09/11/20 22:45	NWTPH-Dx LL	
MW11-W (A0I0140-07)				Matrix: Wat	er	Batch	: 0090324	
Diesel	1870		75.5	ug/L	1	09/11/20 23:07	NWTPH-Dx LL	F-13
Oil	ND		151	ug/L	1	09/11/20 23:07	NWTPH-Dx LL	
Surrogate: o-Terphenyl (Surr)		Reco	very: 88 %	Limits: 50-150 %	6 I	09/11/20 23:07	NWTPH-Dx LL	
MW12-W (A0I0140-08)				Matrix: Wat	er	Batch	: 0090324	
Diesel	ND		75.5	ug/L	1	09/11/20 23:30	NWTPH-Dx LL	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

HydroCon LLC

AMENDED REPORT

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Project: <u>Coleman Wenatchee</u>

 314 W 15th Street Suite 300
 Project Number: 2017-074
 Report ID:

 Vancouver, WA 98660
 Project Manager: Craig Hultgren
 A010140 - 09 18 20 0809

ANALYTICAL SAMPLE RESULTS

	Die	esel and/or O	il Hydrocar	bons by NWTP	H-Dx			
	Sample	Detection Limit	Reporting Limit	XX 14	Dil di	Date	M.d. ID.C	NI.
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
MW12-W (A0I0140-08)				Matrix: Wat	er	Batch	: 0090324	
Oil	ND		151	ug/L	1	09/11/20 23:30	NWTPH-Dx LL	
Surrogate: o-Terphenyl (Surr)		Reco	very: 76 %	Limits: 50-150 %	6 1	09/11/20 23:30	NWTPH-Dx LL	
MW13R-W (A0I0140-09)			Matrix:		er	Batch	: 0090324	
Diesel	666		75.5	ug/L	1	09/11/20 23:53	NWTPH-Dx LL	F-11
Oil	ND		151	ug/L	1	09/11/20 23:53	NWTPH-Dx LL	
Surrogate: o-Terphenyl (Surr)		Reco	very: 88 %	Limits: 50-150 %	6 1	09/11/20 23:53	NWTPH-Dx LL	
MW14-W (A0I0140-10)				Matrix: Wate	er	Batch	: 0090324	
Diesel	825		75.5	ug/L	1	09/12/20 00:16	NWTPH-Dx LL	F-11, F-20
Oil	ND		151	ug/L	1	09/12/20 00:16	NWTPH-Dx LL	
Surrogate: o-Terphenyl (Surr)		Reco	very: 83 %	Limits: 50-150 %	6 1	09/12/20 00:16	NWTPH-Dx LL	
MW16-W (A0I0140-11)					er	Batch	: 0090324	
Diesel	197		75.5	ug/L	1	09/12/20 00:38	NWTPH-Dx LL	AMEND, F-1
Oil	ND		151	ug/L	1	09/12/20 00:38	NWTPH-Dx LL	AMEND
Surrogate: o-Terphenyl (Surr)		Reco	very: 77 %	Limits: 50-150 %	6 1	09/12/20 00:38	NWTPH-Dx LL	
MW17-W (A0I0140-12)				Matrix: Water		Batch: 0090324		
Diesel	2890		75.5	ug/L	1	09/12/20 01:01	NWTPH-Dx LL	F-13
Oil	ND		151	ug/L	1	09/12/20 01:01	NWTPH-Dx LL	
Surrogate: o-Terphenyl (Surr)		Reco	very: 60 %	Limits: 50-150 %	6 1	09/12/20 01:01	NWTPH-Dx LL	
MW19-W (A0I0140-13)				Matrix: Wate	er	Batch	: 0090324	
Diesel	527		75.5	ug/L	1	09/12/20 01:24	NWTPH-Dx LL	F-13
Oil	ND		151	ug/L	1	09/12/20 01:24	NWTPH-Dx LL	
Surrogate: o-Terphenyl (Surr)		Reco	very: 83 %	Limits: 50-150 %	6 1	09/12/20 01:24	NWTPH-Dx LL	
MW20-W (A0I0140-14)				Matrix: Wate	er	Batch	: 0090324	
Diesel	987		75.5	ug/L	1	09/11/20 21:14	NWTPH-Dx LL	F-13
Oil	ND		151	ug/L	1	09/11/20 21:14	NWTPH-Dx LL	
Surrogate: o-Terphenyl (Surr)		Reco	very: 79 %	Limits: 50-150 %	6 1	09/11/20 21:14	NWTPH-Dx LL	
MW21-W (A0I0140-15)				Matrix: Wate	er	Batch	: 0090324	
Diesel	1010		75.5	ug/L	1	09/11/20 21:37	NWTPH-Dx LL	F-13
Oil	ND		151	ug/L	1	09/11/20 21:37	NWTPH-Dx LL	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smerighini

HydroCon LLC

AMENDED REPORT

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Project: <u>Coleman Wenatchee</u>

 314 W 15th Street Suite 300
 Project Number: 2017-074
 Report ID:

 Vancouver, WA 98660
 Project Manager: Craig Hultgren
 A010140 - 09 18 20 0809

ANALYTICAL SAMPLE RESULTS

	Die	esel and/or Oil	Hydrocar	bons by NWTP	H-Dx			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
MW21-W (A0I0140-15)				Matrix: Wat	ter	Batch	: 0090324	
Surrogate: o-Terphenyl (Surr)		Recover	ry: 74 %	Limits: 50-150 %	% 1	09/11/20 21:37	NWTPH-Dx LL	
MW23-W (A0I0140-16)				Matrix: Wat	er	Batch	: 0090324	
Diesel	960		75.5	ug/L	1	09/11/20 21:59	NWTPH-Dx LL	F-11
Oil	ND		151	ug/L	1	09/11/20 21:59	NWTPH-Dx LL	
Surrogate: o-Terphenyl (Surr)		Recover	ry: 83 %	Limits: 50-150 %	% 1	09/11/20 21:59	NWTPH-Dx LL	
MW24-W (A0I0140-17)				Matrix: Wat	ter	Batch	: 0090324	
Diesel	443		74.8	ug/L	1	09/11/20 22:22	NWTPH-Dx LL	F-11
Oil	ND		150	ug/L	1	09/11/20 22:22	NWTPH-Dx LL	
Surrogate: o-Terphenyl (Surr)		Recover	ry: 79 %	Limits: 50-150 %	% 1	09/11/20 22:22	NWTPH-Dx LL	
MW25-W (A0I0140-18)				Matrix: Wat	er	Batch	: 0090324	
Diesel	154		74.8	ug/L	1	09/11/20 22:45	NWTPH-Dx LL	F-11
Oil	ND		150	ug/L	1	09/11/20 22:45	NWTPH-Dx LL	
Surrogate: o-Terphenyl (Surr)		Recover	ry: 76 %	Limits: 50-150 %	% 1	09/11/20 22:45	NWTPH-Dx LL	
MW26-W (A0I0140-19)				Matrix: Wat	er	Batch	: 0090324	
Diesel	235		74.8	ug/L	1	09/11/20 23:07	NWTPH-Dx LL	F-11
Oil	ND		150	ug/L	1	09/11/20 23:07	NWTPH-Dx LL	
Surrogate: o-Terphenyl (Surr)		Recover	ry: 72 %	Limits: 50-150 %	% 1	09/11/20 23:07	NWTPH-Dx LL	
MW27-W (A0I0140-20)				Matrix: Wat	ter	Batch	: 0090324	
Diesel	838		74.8	ug/L	1	09/11/20 23:30	NWTPH-Dx LL	F-11
Oil	ND		150	ug/L	1	09/11/20 23:30	NWTPH-Dx LL	
Surrogate: o-Terphenyl (Surr)		Recover	ry: 82 %	Limits: 50-150 %	% 1	09/11/20 23:30	NWTPH-Dx LL	
MW28-W (A0I0140-21)				Matrix: Wat	ter	Batch	: 0090324	
Diesel	1490		75.5	ug/L	1	09/11/20 23:53	NWTPH-Dx LL	F-11
Oil	ND		151	ug/L	1	09/11/20 23:53	NWTPH-Dx LL	
Surrogate: o-Terphenyl (Surr)		Recover	ry: 88 %	Limits: 50-150 %	% 1	09/11/20 23:53	NWTPH-Dx LL	
MW30-W (A0I0140-22)				Matrix: Wat	ter	Batch	: 0090324	PRES
Diesel	6200		75.5	ug/L	1	09/12/20 00:16	NWTPH-Dx LL	F-13
Oil	1120		151	ug/L	1	09/12/20 00:16	NWTPH-Dx LL	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Doas Smerighini

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>HydroCon LLC</u> Project: <u>Coleman Wenatchee</u>

 314 W 15th Street Suite 300
 Project Number: 2017-074
 Report ID:

 Vancouver, WA 98660
 Project Manager: Craig Hultgren
 A0I0140 - 09 18 20 0809

ANALYTICAL SAMPLE RESULTS

	Die	esel and/or O	il Hydrocar	bons by NWTP	H-Dx			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Note
MW30-W (A0I0140-22)				Matrix: Water		Batch: 0090324		PRES
Surrogate: o-Terphenyl (Surr)		Reco	very: 91 %	Limits: 50-150 %	6 I	09/12/20 00:16	NWTPH-Dx LL	
MW31-W (A0I0140-23)			M		er	Batch	: 0090324	PRES
Diesel	ND		75.5	ug/L	1	09/12/20 00:38	NWTPH-Dx LL	
Oil	ND		151	ug/L	1	09/12/20 00:38	NWTPH-Dx LL	
Surrogate: o-Terphenyl (Surr)		Reco	very: 92 %	Limits: 50-150 %	6 1	09/12/20 00:38	NWTPH-Dx LL	
MW32-W (A0I0140-24)				Matrix: Wate	er	Batch	: 0090324	
Diesel	ND		75.5	ug/L	1	09/12/20 01:01	NWTPH-Dx LL	
Oil	ND		151	ug/L	1	09/12/20 01:01	NWTPH-Dx LL	
Surrogate: o-Terphenyl (Surr)		Reco	very: 94 %	Limits: 50-150 %	ó 1	09/12/20 01:01	NWTPH-Dx LL	
BH01R-W (A0I0140-25)		Matri		Matrix: Wate	er	Batch: 0090334		
Diesel	2740		75.5	ug/L	1	09/11/20 22:12	NWTPH-Dx LL	F-13
Oil	ND		151	ug/L	1	09/11/20 22:12	NWTPH-Dx LL	
Surrogate: o-Terphenyl (Surr)		Reco	very: 69 %	Limits: 50-150 %	6 I	09/11/20 22:12	NWTPH-Dx LL	
BH02-W (A0I0140-26)				Matrix: Water		Batch: 0090334		
Diesel	3820		75.5	ug/L	1	09/11/20 22:33	NWTPH-Dx LL	F-13
Oil	ND		151	ug/L	1	09/11/20 22:33	NWTPH-Dx LL	
Surrogate: o-Terphenyl (Surr)		Reco	very: 99 %	Limits: 50-150 %	6 I	09/11/20 22:33	NWTPH-Dx LL	
BH03-W (A0I0140-27)				Matrix: Water		Batch: 0090334		PRES
Diesel	546		75.5	ug/L	1	09/11/20 22:53	NWTPH-Dx LL	F-13
Oil	ND		151	ug/L	1	09/11/20 22:53	NWTPH-Dx LL	
Surrogate: o-Terphenyl (Surr)		Recov	ery: 100 %	Limits: 50-150 %	6 I	09/11/20 22:53	NWTPH-Dx LL	
RW01-W (A0I0140-28)				Matrix: Water		Batch: 0090334		PRES
Diesel	145		75.5	ug/L	1	09/11/20 23:14	NWTPH-Dx LL	F-11
Oil	ND		151	ug/L	1	09/11/20 23:14	NWTPH-Dx LL	
Surrogate: o-Terphenyl (Surr)		Recov	ery: 100 %	Limits: 50-150 %	6 1	09/11/20 23:14	NWTPH-Dx LL	
MW100-W (A0I0140-29)				Matrix: Water		Batch: 0090334		
Diesel	1640		75.5	ug/L	1	09/11/20 23:35	NWTPH-Dx LL	F-11
Oil	ND		151	ug/L	1	09/11/20 23:35	NWTPH-Dx LL	
Surrogate: o-Terphenyl (Surr)		Recov	ery: 103 %	Limits: 50-150 %	6 I	09/11/20 23:35	NWTPH-Dx LL	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gwa & Smeinghini

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>HydroCon LLC</u> Project: <u>Coleman Wenatchee</u>

 314 W 15th Street Suite 300
 Project Number: 2017-074
 Report ID:

 Vancouver, WA 98660
 Project Manager: Craig Hultgren
 A010140 - 09 18 20 0809

ANALYTICAL SAMPLE RESULTS

	Die	esel and/or O	il Hydrocar	bons by NWTP	H-Dx			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW101-W (A0I0140-30)			Matrix: Water Batch: 0090334					
Diesel	1680		75.5	ug/L	1	09/11/20 23:55	NWTPH-Dx LL	F-13
Oil	ND		151	ug/L	1	09/11/20 23:55	NWTPH-Dx LL	
Surrogate: o-Terphenyl (Surr)		Recov	ery: 102 %	Limits: 50-150 %	6 1	09/11/20 23:55	NWTPH-Dx LL	
MW102-W (A0I0140-31)				Matrix: Water		Batch: 0090289		
Diesel	1430		74.8	ug/L	1	09/11/20 02:05	NWTPH-Dx LL	AMEND, F-13
Oil	ND		150	ug/L	1	09/11/20 02:05	NWTPH-Dx LL	AMEND
Surrogate: o-Terphenyl (Surr)		Reco	very: 71 %	Limits: 50-150 %	6 1	09/11/20 02:05	NWTPH-Dx LL	
Blank-310820 (A0I0140-32)				Matrix: Wate	er	Batch	: 0090289	
Diesel	ND		74.8	ug/L	1	09/11/20 02:25	NWTPH-Dx LL	
Oil	ND		150	ug/L	1	09/11/20 02:25	NWTPH-Dx LL	
Surrogate: o-Terphenyl (Surr)		Reco	very: 95 %	Limits: 50-150 %	6 I	09/11/20 02:25	NWTPH-Dx LL	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Doas Smerighini

6700 S.W. Sandb

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

Apex Laboratories, LLC

ORELAP ID: OR100062

AMENDED REPORT

<u>HydroCon LLC</u> 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: <u>Coleman Wenatchee</u>

Project Number: 2017-074
Project Manager: Craig Hultgren

Report ID: A0I0140 - 09 18 20 0809

ANALYTICAL SAMPLE RESULTS

Gaso	line Range Hy	ydrocarbons (E	Benzene tl	hrough Naphth	alene) by	NWTPH-Gx		
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
MW01S-W (A0I0140-01)				Matrix: Wat	ter	Batch	: 0090145	
Gasoline Range Organics	ND		100	ug/L	1	09/04/20 19:26	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	v: 101 %	Limits: 50-150 9		09/04/20 19:26	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			102 %	50-150 9	% 1	09/04/20 19:26	NWTPH-Gx (MS)	
MW03S-W (A0I0140-02)			Ma		ter	Batch	: 0090145	
Gasoline Range Organics	ND		100	ug/L	1	09/04/20 19:57	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	v: 100 %	Limits: 50-150 9	% 1	09/04/20 19:57	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			102 %	50-150 9	% 1	09/04/20 19:57	NWTPH-Gx (MS)	
MW06-W (A0I0140-03)				Matrix: Wat	ter	Batch	: 0090145	
Gasoline Range Organics	168		100	ug/L	1	09/04/20 20:26	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	v: 104 %	Limits: 50-150 9	% 1	09/04/20 20:26	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			99 %	50-150 9	% 1	09/04/20 20:26	NWTPH-Gx (MS)	
MW08-W (A0I0140-04)		Matrix: Water		Batch: 0090145				
Gasoline Range Organics	683		100	ug/L	1	09/04/20 20:55	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	v: 101 %	Limits: 50-150 9	% 1	09/04/20 20:55	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			97 %	50-150 9	% 1	09/04/20 20:55	NWTPH-Gx (MS)	
MW09R-W (A0I0140-05)				Matrix: Wat	ter	Batch	: 0090145	
Gasoline Range Organics	379		100	ug/L	1	09/04/20 21:24	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	v: 104 %	Limits: 50-150 9	% 1	09/04/20 21:24	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			98 %	50-150 9	% 1	09/04/20 21:24	NWTPH-Gx (MS)	
MW10R-W (A0I0140-06)				Matrix: Wat	ter	Batch	: 0090145	
Gasoline Range Organics	635		100	ug/L	1	09/04/20 21:52	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	v: 106 %	Limits: 50-150 9	% 1	09/04/20 21:52	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			97 %	50-150 9	% 1	09/04/20 21:52	NWTPH-Gx (MS)	
MW11-W (A0I0140-07RE1)				Matrix: Wat	ter	Batch	: 0090197	
Gasoline Range Organics	804		100	ug/L	1	09/08/20 14:45	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	v: 106 %	Limits: 50-150 9	% 1	09/08/20 14:45	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			100 %	50-150 9	% 1	09/08/20 14:45	NWTPH-Gx (MS)	
MW12-W (A0I0140-08)				Matrix: Wat	ter	Batch	: 0090178	
Gasoline Range Organics	ND		100	ug/L	1	09/04/20 17:15	NWTPH-Gx (MS)	
				-				

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>HydroCon LLC</u> Project: <u>Coleman Wenatchee</u>

 314 W 15th Street Suite 300
 Project Number: 2017-074
 Report ID:

 Vancouver, WA 98660
 Project Manager: Craig Hultgren
 A010140 - 09 18 20 0809

ANALYTICAL SAMPLE RESULTS

Gasol	ine Range Hy	/drocarbons (B	enzene tl	nrough Naphth	alene) by	NWTPH-Gx		
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW12-W (A0I0140-08)				Matrix: Wat	er	Batch	: 0090178	
Surrogate: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Recover	y: 84 % 94 %	Limits: 50-150 9		09/04/20 17:15 09/04/20 17:15	NWTPH-Gx (MS) NWTPH-Gx (MS)	
MW13R-W (A0I0140-09)				Matrix: Wat	er	Batch	: 0090178	
Gasoline Range Organics	ND		100	ug/L	1	09/04/20 18:10	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Recover	y: 84 % 94 %	Limits: 50-150 9 50-150 9		09/04/20 18:10 09/04/20 18:10	NWTPH-Gx (MS) NWTPH-Gx (MS)	
MW14-W (A0I0140-10)				Matrix: Wat	er	Batch	: 0090178	
Gasoline Range Organics	3830		100	ug/L	1	09/04/20 18:37	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Recover	y: 91 % 93 %	Limits: 50-150 9 50-150 9		09/04/20 18:37 09/04/20 18:37	NWTPH-Gx (MS) NWTPH-Gx (MS)	
MW16-W (A0I0140-11)		Matrix: Water		er	Batch			
Gasoline Range Organics	ND		100	ug/L	1	09/04/20 19:05	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Recover	y: 80 % 93 %	Limits: 50-150 9 50-150 9		09/04/20 19:05 09/04/20 19:05	NWTPH-Gx (MS) NWTPH-Gx (MS)	
MW17-W (A0I0140-12)				Matrix: Wat	er	Batch	: 0090178	
Gasoline Range Organics	267		100	ug/L	1	09/04/20 19:32	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Recover	y: 86 % 94 %	Limits: 50-150 9 50-150 9		09/04/20 19:32 09/04/20 19:32	NWTPH-Gx (MS) NWTPH-Gx (MS)	
MW19-W (A0I0140-13)				Matrix: Wat	er	Batch	: 0090178	
Gasoline Range Organics	ND		100	ug/L	1	09/04/20 20:00	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Recover	y: 85 % 95 %	Limits: 50-150 9		09/04/20 20:00 09/04/20 20:00	NWTPH-Gx (MS) NWTPH-Gx (MS)	
MW20-W (A0I0140-14)				Matrix: Water Batch		: 0090178		
Gasoline Range Organics	349		100	ug/L	1	09/04/20 20:27	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Recover	y: 91 % 95 %	Limits: 50-150 9 50-150 9		09/04/20 20:27 09/04/20 20:27	NWTPH-Gx (MS) NWTPH-Gx (MS)	
MW21-W (A0I0140-15)				Matrix: Wat	er	Batch	: 0090178	
Gasoline Range Organics	760		100	ug/L	1	09/04/20 20:54	NWTPH-Gx (MS)	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smeinghini

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>HydroCon LLC</u> Project: <u>Coleman Wenatchee</u>

 314 W 15th Street Suite 300
 Project Number: 2017-074
 Report ID:

 Vancouver, WA 98660
 Project Manager: Craig Hultgren
 A0I0140 - 09 18 20 0809

ANALYTICAL SAMPLE RESULTS

Gasol	ine Range Hy	drocarbons	(Benzene tl	rough Naphth	alene) by	NWTPH-Gx			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes	
MW21-W (A0I0140-15)				Matrix: Wat	Matrix: Water		Batch: 0090178		
Surrogate: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Reco	very: 90 % 95 %	Limits: 50-150 9 50-150 9		09/04/20 20:54 09/04/20 20:54	NWTPH-Gx (MS) NWTPH-Gx (MS)		
MW23-W (A0I0140-16)			N		ter	Batch	: 0090178		
Gasoline Range Organics	ND		100	ug/L	1	09/04/20 21:22	NWTPH-Gx (MS)		
Surrogate: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Reco	very: 84 % 93 %	Limits: 50-150 9		09/04/20 21:22 09/04/20 21:22	NWTPH-Gx (MS) NWTPH-Gx (MS)		
MW24-W (A0I0140-17)			Matrix: Water		Batch	: 0090178			
Gasoline Range Organics	ND		100	ug/L	1	09/04/20 21:49	NWTPH-Gx (MS)		
Surrogate: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Reco	very: 85 % 94 %	Limits: 50-150 9		09/04/20 21:49 09/04/20 21:49	NWTPH-Gx (MS) NWTPH-Gx (MS)		
MW25-W (A0I0140-18)				Matrix: Water		Batch: 0090178			
Gasoline Range Organics	ND		100	ug/L	1	09/04/20 22:16	NWTPH-Gx (MS)		
Surrogate: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Reco	very: 86 % 96 %	Limits: 50-150 9		09/04/20 22:16 09/04/20 22:16	NWTPH-Gx (MS) NWTPH-Gx (MS)		
MW26-W (A0I0140-19)			Matrix: Water		Batch: 0090178				
Gasoline Range Organics	ND		100	ug/L	1	09/04/20 23:10	NWTPH-Gx (MS)		
Surrogate: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Reco	very: 83 % 96 %	Limits: 50-150 9 50-150 9		09/04/20 23:10 09/04/20 23:10	NWTPH-Gx (MS) NWTPH-Gx (MS)		
MW27-W (A0I0140-20)				Matrix: Wat	ter	Batch	: 0090178		
Gasoline Range Organics	ND		100	ug/L	1	09/04/20 23:37	NWTPH-Gx (MS)		
Surrogate: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Reco	very: 87 % 96 %	Limits: 50-150 9		09/04/20 23:37 09/04/20 23:37	NWTPH-Gx (MS) NWTPH-Gx (MS)		
MW28-W (A0I0140-21)				Matrix: Wat	ter	Batch	: 0090178		
Gasoline Range Organics	218		100	ug/L	1	09/05/20 00:04	NWTPH-Gx (MS)		
Surrogate: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Reco	very: 89 % 96 %	Limits: 50-150 9 50-150 9		09/05/20 00:04 09/05/20 00:04	NWTPH-Gx (MS) NWTPH-Gx (MS)		
MW30-W (A0I0140-22)				Matrix: Wat	ter	Batch	: 0090178		
Gasoline Range Organics	ND		100	ug/L	1	09/05/20 00:31	NWTPH-Gx (MS)		
Surrogate: 4-Bromofluorobenzene (Sur)		Reco	very: 87 %	Limits: 50-150 9	% 1	09/05/20 00:31	NWTPH-Gx (MS)		

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Somerighini

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Project: Coleman Wenatchee

AMENDED REPORT

Project Number: 2017-074
Project Manager: Craig Hultgren

Report ID: A0I0140 - 09 18 20 0809

ANALYTICAL SAMPLE RESULTS

Gasol	ine Range Hy	/drocarbons (Benzene tl	rough Naphtha	alene) by	NWTPH-Gx		
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW30-W (A0I0140-22)				Matrix: Wate	er		: 0090178	
Surrogate: 1,4-Difluorobenzene (Sur)		Recov	ery: 93 %	Limits: 50-150 %		09/05/20 00:31	NWTPH-Gx (MS)	
		necov	Cry. 75 70				. ,	
MW31-W (A0I0140-23)				Matrix: Wate	er	Batch	: 0090178	
Gasoline Range Organics	ND		100	ug/L	1	09/05/20 00:59	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recov	ery: 86 %	Limits: 50-150 %		09/05/20 00:59	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			98 %	50-150 %	5 1	09/05/20 00:59	NWTPH-Gx (MS)	
MW32-W (A0I0140-24)		Matrix: Water		Batch	: 0090178			
Gasoline Range Organics	ND		100	ug/L	1	09/05/20 01:26	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recov	ery: 86 %	Limits: 50-150 %	1	09/05/20 01:26	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			93 %	50-150 %	<i>I</i>	09/05/20 01:26	NWTPH-Gx (MS)	
BH01R-W (A0I0140-25)				Matrix: Wate	er	Batch	: 0090178	
Gasoline Range Organics	133		100	ug/L	1	09/05/20 01:53	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recov	ery: 88 %	Limits: 50-150 %	1	09/05/20 01:53	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			95 %	50-150 %	<i>I</i>	09/05/20 01:53	NWTPH-Gx (MS)	
BH02-W (A0I0140-26)				Matrix: Wate	er	Batch: 0090178		
Gasoline Range Organics	102		100	ug/L	1	09/05/20 02:47	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recov	ery: 87 %	Limits: 50-150 %	5 1	09/05/20 02:47	NWTPH-Gx (MS)	
I,4-Difluorobenzene (Sur)			95 %	50-150 %	1	09/05/20 02:47	NWTPH-Gx (MS)	
BH03-W (A0I0140-27)				Matrix: Wate	er	Batch: 0090178		
Gasoline Range Organics	ND		100	ug/L	1	09/05/20 02:20	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recov	ery: 86 %	Limits: 50-150 %	1	09/05/20 02:20	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			96 %	50-150 %	5 1	09/05/20 02:20	NWTPH-Gx (MS)	
RW01-W (A0I0140-28)				Matrix: Wate	er	Batch	: 0090197	
Gasoline Range Organics	ND		100	ug/L	1	09/08/20 15:14	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recov	ery: 98 %	Limits: 50-150 %	<i>i</i> 1	09/08/20 15:14	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			98 %	50-150 %	5 1	09/08/20 15:14	NWTPH-Gx (MS)	
MW100-W (A0I0140-29)				Matrix: Wate	er	Batch	: 0090197	
Gasoline Range Organics	154		100	ug/L	1	09/08/20 16:12	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recove	ry: 103 %	Limits: 50-150 %	<i>i</i> 1	09/08/20 16:12	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			96 %	50-150 %	1	09/08/20 16:12	NWTPH-Gx (MS)	

Apex Laboratories

HydroCon LLC

314 W 15th Street Suite 300

Vancouver, WA 98660

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smerighini

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>HydroCon LLC</u> Project: <u>Coleman Wenatchee</u>

 314 W 15th Street Suite 300
 Project Number: 2017-074
 Report ID:

 Vancouver, WA 98660
 Project Manager: Craig Hultgren
 A010140 - 09 18 20 0809

ANALYTICAL SAMPLE RESULTS

Gasol	Gasoline Range Hydrocarbons (Benzene through Naphthalene) by NWTPH-Gx										
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Note			
MW101-W (A0I0140-30)				Matrix: Water Batch: 0090197							
Gasoline Range Organics	635		100	ug/L	1	09/08/20 16:42	NWTPH-Gx (MS)				
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	: 105 %	Limits: 50-150 %	1	09/08/20 16:42	NWTPH-Gx (MS)				
1,4-Difluorobenzene (Sur)			97 %	50-150 %	1	09/08/20 16:42	NWTPH-Gx (MS)				
MW102-W (A0I0140-31)				Matrix: Water Batch: 0090197			: 0090197				
Gasoline Range Organics	239		100	ug/L	1	09/08/20 17:12	NWTPH-Gx (MS)				
Surrogate: 4-Bromofluorobenzene (Sur)		Recover	y: 96 %	Limits: 50-150 %	1	09/08/20 17:12	NWTPH-Gx (MS)				
1,4-Difluorobenzene (Sur)			94 %	50-150 %	1	09/08/20 17:12	NWTPH-Gx (MS)				
Blank-310820 (A0I0140-32)				Matrix: Wate	er	Batch	: 0090197				
Gasoline Range Organics	ND		100	ug/L	1	09/08/20 13:20	NWTPH-Gx (MS)				
Surrogate: 4-Bromofluorobenzene (Sur)		Recover	y: 98 %	Limits: 50-150 %	1	09/08/20 13:20	NWTPH-Gx (MS)				
1,4-Difluorobenzene (Sur)			98 %	50-150 %	1	09/08/20 13:20	NWTPH-Gx (MS)				

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smerighini

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>HydroCon LLC</u> Project: <u>Coleman Wenatchee</u>

 314 W 15th Street Suite 300
 Project Number: 2017-074
 Report ID:

 Vancouver, WA 98660
 Project Manager: Craig Hultgren
 A0I0140 - 09 18 20 0809

ANALYTICAL SAMPLE RESULTS

		BTEX Co	mpounds b	y EPA 8260D				
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
MW01S-W (A010140-01)				Matrix: Wate	er	Batch:	0090145	
Benzene	ND		0.200	ug/L	1	09/04/20 19:26	EPA 8260D	
Toluene	ND		1.00	ug/L	1	09/04/20 19:26	EPA 8260D	
Ethylbenzene	ND		0.500	ug/L	1	09/04/20 19:26	EPA 8260D	
Xylenes, total	ND		1.50	ug/L	1	09/04/20 19:26	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recov	ery: 110 %	Limits: 80-120 %	1	09/04/20 19:26	EPA 8260D	
Toluene-d8 (Surr)			98 %	80-120 %	1	09/04/20 19:26	EPA 8260D	
4-Bromofluorobenzene (Surr)			103 %	80-120 %	I	09/04/20 19:26	EPA 8260D	
MW03S-W (A010140-02)				Matrix: Wate	er	Batch:	0090145	
Benzene	ND		0.200	ug/L	1	09/04/20 19:57	EPA 8260D	
Toluene	ND		1.00	ug/L	1	09/04/20 19:57	EPA 8260D	
Ethylbenzene	ND		0.500	ug/L	1	09/04/20 19:57	EPA 8260D	
Xylenes, total	ND		1.50	ug/L	1	09/04/20 19:57	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recov	ery: 110 %	Limits: 80-120 %	1	09/04/20 19:57	EPA 8260D	
Toluene-d8 (Surr)			98 %	80-120 %	1	09/04/20 19:57	EPA 8260D	
4-Bromofluorobenzene (Surr)			103 %	80-120 %	1	09/04/20 19:57	EPA 8260D	
MW06-W (A0I0140-03)				Matrix: Wate	er	Batch:	0090145	
Benzene	ND		0.200	ug/L	1	09/04/20 20:26	EPA 8260D	
Toluene	ND		1.00	ug/L	1	09/04/20 20:26	EPA 8260D	
Ethylbenzene	ND		0.500	ug/L	1	09/04/20 20:26	EPA 8260D	
Xylenes, total	ND		1.50	ug/L	1	09/04/20 20:26	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 108 %	Limits: 80-120 %	1	09/04/20 20:26	EPA 8260D	
Toluene-d8 (Surr)			96 %	80-120 %	1	09/04/20 20:26	EPA 8260D	
4-Bromofluorobenzene (Surr)			103 %	80-120 %	1	09/04/20 20:26	EPA 8260D	
MW08-W (A0I0140-04)				Matrix: Wate	er	Batch:	0090145	
Benzene	ND		0.200	ug/L	1	09/04/20 20:55	EPA 8260D	
Toluene	ND		1.00	ug/L	1	09/04/20 20:55	EPA 8260D	
Ethylbenzene	ND		0.500	ug/L	1	09/04/20 20:55	EPA 8260D	
Xylenes, total	ND		1.50	ug/L	1	09/04/20 20:55	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 105 %	Limits: 80-120 %	1	09/04/20 20:55	EPA 8260D	
Toluene-d8 (Surr)			96 %	80-120 %	1	09/04/20 20:55	EPA 8260D	
4-Bromofluorobenzene (Surr)			98 %	80-120 %	1	09/04/20 20:55	EPA 8260D	
MW09R-W (A0I0140-05)				Matrix: Wate	er	Batch:	0090145	
Benzene	ND		0.200	ug/L	1	09/04/20 21:24	EPA 8260D	
				-				

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

HydroCon LLC Project: Coleman Wenatchee

 314 W 15th Street Suite 300
 Project Number: 2017-074
 Report ID:

 Vancouver, WA 98660
 Project Manager: Craig Hultgren
 A010140 - 09 18 20 0809

AMENDED REPORT

ANALYTICAL SAMPLE RESULTS

		BTEX Com	npounds b	y EPA 8260D				
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
MW09R-W (A0I0140-05)				Matrix: Wate	er	Batch:	0090145	
Toluene	ND		1.00	ug/L	1	09/04/20 21:24	EPA 8260D	
Ethylbenzene	ND		0.500	ug/L	1	09/04/20 21:24	EPA 8260D	
Xylenes, total	ND		1.50	ug/L	1	09/04/20 21:24	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	v: 107 %	Limits: 80-120 %		09/04/20 21:24	EPA 8260D	
Toluene-d8 (Surr)			96 %	80-120 %		09/04/20 21:24	EPA 8260D	
4-Bromofluorobenzene (Surr)			100 %	80-120 %	1	09/04/20 21:24	EPA 8260D	
MW10R-W (A010140-06)				Matrix: Wate	er	Batch:	0090145	
Benzene	ND		0.200	ug/L	1	09/04/20 21:52	EPA 8260D	
Toluene	ND		1.00	ug/L	1	09/04/20 21:52	EPA 8260D	
Ethylbenzene	ND		0.500	ug/L	1	09/04/20 21:52	EPA 8260D	
Xylenes, total	ND		1.50	ug/L	1	09/04/20 21:52	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	v: 107 %	Limits: 80-120 %	1	09/04/20 21:52	EPA 8260D	
Toluene-d8 (Surr)			94 %	80-120 %	1	09/04/20 21:52	EPA 8260D	
4-Bromofluorobenzene (Surr)			102 %	80-120 %	1	09/04/20 21:52	EPA 8260D	
MW11-W (A0I0140-07RE1)				Matrix: Wate	er	Batch:	Batch: 0090197	
Benzene	ND		0.200	ug/L	1	09/08/20 14:45	EPA 8260D	
Toluene	ND		1.00	ug/L	1	09/08/20 14:45	EPA 8260D	
Ethylbenzene	ND		0.500	ug/L	1	09/08/20 14:45	EPA 8260D	
Xylenes, total	ND		1.50	ug/L	1	09/08/20 14:45	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	v: 108 %	Limits: 80-120 %	1	09/08/20 14:45	EPA 8260D	
Toluene-d8 (Surr)			95 %	80-120 %	1	09/08/20 14:45	EPA 8260D	
4-Bromofluorobenzene (Surr)			102 %	80-120 %	1	09/08/20 14:45	EPA 8260D	
MW12-W (A0I0140-08)				Matrix: Wate	er	Batch:	0090178	
Benzene	ND		0.200	ug/L	1	09/04/20 17:15	EPA 8260D	
Toluene	ND		1.00	ug/L	1	09/04/20 17:15	EPA 8260D	
Ethylbenzene	ND		0.500	ug/L	1	09/04/20 17:15	EPA 8260D	
Xylenes, total	ND		1.50	ug/L	1	09/04/20 17:15	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ry: 91 %	Limits: 80-120 %	1	09/04/20 17:15	EPA 8260D	
Toluene-d8 (Surr)			103 %	80-120 %	1	09/04/20 17:15	EPA 8260D	
4-Bromofluorobenzene (Surr)			106 %	80-120 %	1	09/04/20 17:15	EPA 8260D	
MW13R-W (A0I0140-09)				Matrix: Wate	er	Batch:		
Benzene	0.523		0.200	ug/L	1	09/04/20 18:10	EPA 8260D	
Toluene	ND		1.00	ug/L	1	09/04/20 18:10	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>HydroCon LLC</u> Project: <u>Coleman Wenatchee</u>

 314 W 15th Street Suite 300
 Project Number: 2017-074
 Report ID:

 Vancouver, WA 98660
 Project Manager: Craig Hultgren
 A0I0140 - 09 18 20 0809

ANALYTICAL SAMPLE RESULTS

		BTEX Co	mpounds b	y EPA 8260D				
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
MW13R-W (A0I0140-09)				Matrix: Wate	r	Batch:	0090178	
Ethylbenzene	ND		0.500	ug/L	1	09/04/20 18:10	EPA 8260D	
Xylenes, total	ND		1.50	ug/L	1	09/04/20 18:10	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Reco	very: 92 %	Limits: 80-120 %	1	09/04/20 18:10	EPA 8260D	
Toluene-d8 (Surr)			108 %	80-120 %	1	09/04/20 18:10	EPA 8260D	
4-Bromofluorobenzene (Surr)			109 %	80-120 %	1	09/04/20 18:10	EPA 8260D	
MW14-W (A0I0140-10)				Matrix: Wate	r	Batch:	0090178	
Benzene	7.82		0.200	ug/L	1	09/04/20 18:37	EPA 8260D	
Toluene	ND		1.00	ug/L	1	09/04/20 18:37	EPA 8260D	
Ethylbenzene	4.00		0.500	ug/L	1	09/04/20 18:37	EPA 8260D	
Xylenes, total	ND		1.50	ug/L	1	09/04/20 18:37	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Reco	very: 91 %	Limits: 80-120 %	1	09/04/20 18:37	EPA 8260D	
Toluene-d8 (Surr)			109 %	80-120 %	1	09/04/20 18:37	EPA 8260D	
4-Bromofluorobenzene (Surr)			107 %	80-120 %	1	09/04/20 18:37	EPA 8260D	
MW16-W (A0I0140-11)				Matrix: Wate	r	Batch:	0090178	
Benzene	ND		0.200	ug/L	1	09/04/20 19:05	EPA 8260D	
Toluene	ND		1.00	ug/L	1	09/04/20 19:05	EPA 8260D	
Ethylbenzene	ND		0.500	ug/L	1	09/04/20 19:05	EPA 8260D	
Xylenes, total	ND		1.50	ug/L	1	09/04/20 19:05	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Reco	very: 92 %	Limits: 80-120 %	1	09/04/20 19:05	EPA 8260D	
Toluene-d8 (Surr)			104 %	80-120 %	1	09/04/20 19:05	EPA 8260D	
4-Bromofluorobenzene (Surr)			106 %	80-120 %	1	09/04/20 19:05	EPA 8260D	
MW17-W (A0I0140-12)				Matrix: Wate	r	Batch:	0090178	
Benzene	ND		0.200	ug/L	1	09/04/20 19:32	EPA 8260D	
Toluene	ND		1.00	ug/L	1	09/04/20 19:32	EPA 8260D	
Ethylbenzene	ND		0.500	ug/L	1	09/04/20 19:32	EPA 8260D	
Xylenes, total	ND		1.50	ug/L	1	09/04/20 19:32	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Reco	very: 92 %	Limits: 80-120 %	1	09/04/20 19:32	EPA 8260D	
Toluene-d8 (Surr)			101 %	80-120 %	1	09/04/20 19:32	EPA 8260D	
4-Bromofluorobenzene (Surr)			101 %	80-120 %	1	09/04/20 19:32	EPA 8260D	
MW19-W (A0I0140-13)				Matrix: Wate	r	Batch:	0090178	
Benzene	ND		0.200	ug/L	1	09/04/20 20:00	EPA 8260D	
Toluene	ND		1.00	ug/L	1	09/04/20 20:00	EPA 8260D	
Ethylbenzene	ND		0.500	ug/L	1	09/04/20 20:00	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>HydroCon LLC</u> Project: <u>Coleman Wenatchee</u>

 314 W 15th Street Suite 300
 Project Number: 2017-074
 Report ID:

 Vancouver, WA 98660
 Project Manager: Craig Hultgren
 A010140 - 09 18 20 0809

ANALYTICAL SAMPLE RESULTS

		BTEX Co	mpounds b	y EPA 8260D				
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
MW19-W (A0I0140-13)				Matrix: Wate	ər	Batch:	0090178	
Xylenes, total	ND		1.50	ug/L	1	09/04/20 20:00	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Reco	very: 94 %	Limits: 80-120 %	6 I	09/04/20 20:00	EPA 8260D	
Toluene-d8 (Surr)			104 %	80-120 %	<i>i</i> 1	09/04/20 20:00	EPA 8260D	
4-Bromofluorobenzene (Surr)			105 %	80-120 %	6 I	09/04/20 20:00	EPA 8260D	
MW20-W (A0I0140-14)				Matrix: Wate	er	Batch:	0090178	
Benzene	ND		0.200	ug/L	1	09/04/20 20:27	EPA 8260D	
Toluene	ND		1.00	ug/L	1	09/04/20 20:27	EPA 8260D	
Ethylbenzene	ND		0.500	ug/L	1	09/04/20 20:27	EPA 8260D	
Xylenes, total	ND		1.50	ug/L	1	09/04/20 20:27	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Reco	very: 92 %	Limits: 80-120 %	6 1	09/04/20 20:27	EPA 8260D	
Toluene-d8 (Surr)			101 %	80-120 %	<i>i</i> 1	09/04/20 20:27	EPA 8260D	
4-Bromofluorobenzene (Surr)			101 %	80-120 %	6 I	09/04/20 20:27	EPA 8260D	
MW21-W (A0I0140-15)				Matrix: Wate	ər	Batch:	0090178	
Benzene	ND		0.200	ug/L	1	09/04/20 20:54	EPA 8260D	
Toluene	ND		1.00	ug/L	1	09/04/20 20:54	EPA 8260D	
Ethylbenzene	ND		0.500	ug/L	1	09/04/20 20:54	EPA 8260D	
Xylenes, total	ND		1.50	ug/L	1	09/04/20 20:54	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Reco	very: 92 %	Limits: 80-120 %	<i>5</i> 1	09/04/20 20:54	EPA 8260D	
Toluene-d8 (Surr)			101 %	80-120 %	6 1	09/04/20 20:54	EPA 8260D	
4-Bromofluorobenzene (Surr)			102 %	80-120 %	6 I	09/04/20 20:54	EPA 8260D	
MW23-W (A0I0140-16)				Matrix: Wate	ər	Batch:	0090178	
Benzene	ND		0.200	ug/L	1	09/04/20 21:22	EPA 8260D	
Toluene	ND		1.00	ug/L	1	09/04/20 21:22	EPA 8260D	
Ethylbenzene	ND		0.500	ug/L	1	09/04/20 21:22	EPA 8260D	
Xylenes, total	ND		1.50	ug/L	1	09/04/20 21:22	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Reco	very: 92 %	Limits: 80-120 %	6 1	09/04/20 21:22	EPA 8260D	
Toluene-d8 (Surr)			105 %	80-120 %	6 1	09/04/20 21:22	EPA 8260D	
4-Bromofluorobenzene (Surr)			107 %	80-120 %	6 I	09/04/20 21:22	EPA 8260D	
MW24-W (A0I0140-17)				Matrix: Wate	er	Batch:	0090178	
Benzene	ND		0.200	ug/L	1	09/04/20 21:49	EPA 8260D	
Toluene	ND		1.00	ug/L	1	09/04/20 21:49	EPA 8260D	
Ethylbenzene	ND		0.500	ug/L	1	09/04/20 21:49	EPA 8260D	
Xylenes, total	ND		1.50	ug/L	1	09/04/20 21:49	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>HydroCon LLC</u> Project: <u>Coleman Wenatchee</u>

 314 W 15th Street Suite 300
 Project Number: 2017-074
 Report ID:

 Vancouver, WA 98660
 Project Manager: Craig Hultgren
 A0I0140 - 09 18 20 0809

ANALYTICAL SAMPLE RESULTS

		BTEX Co	mpounds b	y EPA 8260D				
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
MW24-W (A0I0140-17)				Matrix: Wate	er	Batch:	0090178	
Surrogate: 1,4-Difluorobenzene (Surr)		Reco	very: 94 %	Limits: 80-120 %	1	09/04/20 21:49	EPA 8260D	
Toluene-d8 (Surr)			101 %	80-120 %	1	09/04/20 21:49	EPA 8260D	
4-Bromofluorobenzene (Surr)			104 %	80-120 %	1	09/04/20 21:49	EPA 8260D	
MW25-W (A0I0140-18)				Matrix: Wate	er	Batch:	0090178	
Benzene	ND		0.200	ug/L	1	09/04/20 22:16	EPA 8260D	
Toluene	ND		1.00	ug/L	1	09/04/20 22:16	EPA 8260D	
Ethylbenzene	ND		0.500	ug/L	1	09/04/20 22:16	EPA 8260D	
Xylenes, total	ND		1.50	ug/L	1	09/04/20 22:16	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Reco	very: 93 %	Limits: 80-120 %	1	09/04/20 22:16	EPA 8260D	
Toluene-d8 (Surr)			104 %	80-120 %	1	09/04/20 22:16	EPA 8260D	
4-Bromofluorobenzene (Surr)			109 %	80-120 %	1	09/04/20 22:16	EPA 8260D	
MW26-W (A0I0140-19)				Matrix: Wate	er	Batch:	0090178	
Benzene	ND		0.200	ug/L	1	09/04/20 23:10	EPA 8260D	
Toluene	ND		1.00	ug/L	1	09/04/20 23:10	EPA 8260D	
Ethylbenzene	ND		0.500	ug/L	1	09/04/20 23:10	EPA 8260D	
Xylenes, total	ND		1.50	ug/L	1	09/04/20 23:10	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Reco	very: 92 %	Limits: 80-120 %	5 1	09/04/20 23:10	EPA 8260D	
Toluene-d8 (Surr)			103 %	80-120 %	1	09/04/20 23:10	EPA 8260D	
4-Bromofluorobenzene (Surr)			104 %	80-120 %	<i>I</i>	09/04/20 23:10	EPA 8260D	
MW27-W (A0I0140-20)				Matrix: Wate	er	Batch:	0090178	
Benzene	ND		0.200	ug/L	1	09/04/20 23:37	EPA 8260D	
Toluene	ND		1.00	ug/L	1	09/04/20 23:37	EPA 8260D	
Ethylbenzene	ND		0.500	ug/L	1	09/04/20 23:37	EPA 8260D	
Xylenes, total	ND		1.50	ug/L	1	09/04/20 23:37	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Reco	very: 93 %	Limits: 80-120 %	<i>1</i>	09/04/20 23:37	EPA 8260D	
Toluene-d8 (Surr)			104 %	80-120 %	1	09/04/20 23:37	EPA 8260D	
4-Bromofluorobenzene (Surr)			103 %	80-120 %	1	09/04/20 23:37	EPA 8260D	
MW28-W (A0I0140-21)				Matrix: Wate	er	Batch:	0090178	
Benzene	ND		0.200	ug/L	1	09/05/20 00:04	EPA 8260D	
Toluene	ND		1.00	ug/L	1	09/05/20 00:04	EPA 8260D	
Ethylbenzene	ND		0.500	ug/L	1	09/05/20 00:04	EPA 8260D	
Xylenes, total	ND		1.50	ug/L	1	09/05/20 00:04	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Reco	very: 92 %	Limits: 80-120 %	<i>I</i>	09/05/20 00:04	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>HydroCon LLC</u> Project: <u>Coleman Wenatchee</u>

 314 W 15th Street Suite 300
 Project Number: 2017-074
 Report ID:

 Vancouver, WA 98660
 Project Manager: Craig Hultgren
 A0I0140 - 09 18 20 0809

ANALYTICAL SAMPLE RESULTS

		BTEX Co	mpounds b	y EPA 8260D				
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
MW28-W (A0I0140-21)				Matrix: Wate	er	Batch:	0090178	
Surrogate: Toluene-d8 (Surr)		Recov	ery: 101 %	Limits: 80-120 %	1	09/05/20 00:04	EPA 8260D	
4-Bromofluorobenzene (Surr)			103 %	80-120 %	1	09/05/20 00:04	EPA 8260D	
MW30-W (A0I0140-22)				Matrix: Wate	er	Batch:	0090178	
Benzene	ND		0.200	ug/L	1	09/05/20 00:31	EPA 8260D	
Toluene	ND		1.00	ug/L	1	09/05/20 00:31	EPA 8260D	
Ethylbenzene	ND		0.500	ug/L	1	09/05/20 00:31	EPA 8260D	
Xylenes, total	ND		1.50	ug/L	1	09/05/20 00:31	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Reco	very: 90 %	Limits: 80-120 %	1	09/05/20 00:31	EPA 8260D	
Toluene-d8 (Surr)			103 %	80-120 %	1	09/05/20 00:31	EPA 8260D	
4-Bromofluorobenzene (Surr)			106 %	80-120 %	1	09/05/20 00:31	EPA 8260D	
MW31-W (A0I0140-23)				Matrix: Wate	er	Batch:	0090178	
Benzene	ND		0.200	ug/L	1	09/05/20 00:59	EPA 8260D	
Toluene	ND		1.00	ug/L	1	09/05/20 00:59	EPA 8260D	
Ethylbenzene	ND		0.500	ug/L	1	09/05/20 00:59	EPA 8260D	
Xylenes, total	ND		1.50	ug/L	1	09/05/20 00:59	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Reco	very: 95 %	Limits: 80-120 %	1	09/05/20 00:59	EPA 8260D	
Toluene-d8 (Surr)			102 %	80-120 %	1	09/05/20 00:59	EPA 8260D	
4-Bromofluorobenzene (Surr)			107 %	80-120 %	1	09/05/20 00:59	EPA 8260D	
MW32-W (A0I0140-24)				Matrix: Wate	er	Batch:	0090178	
Benzene	ND		0.200	ug/L	1	09/05/20 01:26	EPA 8260D	
Toluene	ND		1.00	ug/L	1	09/05/20 01:26	EPA 8260D	
Ethylbenzene	ND		0.500	ug/L	1	09/05/20 01:26	EPA 8260D	
Xylenes, total	ND		1.50	ug/L	1	09/05/20 01:26	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Reco	very: 94 %	Limits: 80-120 %	1	09/05/20 01:26	EPA 8260D	
Toluene-d8 (Surr)			101 %	80-120 %	1	09/05/20 01:26	EPA 8260D	
4-Bromofluorobenzene (Surr)			108 %	80-120 %	1	09/05/20 01:26	EPA 8260D	
BH01R-W (A0I0140-25)				Matrix: Wate	er	Batch:	0090178	
Benzene	ND		0.200	ug/L	1	09/05/20 01:53	EPA 8260D	
Toluene	ND		1.00	ug/L	1	09/05/20 01:53	EPA 8260D	
Ethylbenzene	ND		0.500	ug/L	1	09/05/20 01:53	EPA 8260D	
Xylenes, total	ND		1.50	ug/L	1	09/05/20 01:53	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Reco	very: 93 %	Limits: 80-120 %	1	09/05/20 01:53	EPA 8260D	
Toluene-d8 (Surr)			103 %	80-120 %	1	09/05/20 01:53	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

AMENDED REPORT

HydroCon LLCProject:Coleman Wenatchee314 W 15th Street Suite 300Project Number:2017-074

Vancouver, WA 98660 Project Manager: Craig Hultgren

Report ID: A0I0140 - 09 18 20 0809

ANALYTICAL SAMPLE RESULTS

		BTEX Com	pounds b	y EPA 8260D				
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
BH01R-W (A0I0140-25)				Matrix: Wate	er	Batch:	0090178	
Surrogate: 4-Bromofluorobenzene (Surr)		Recovery	: 102 %	Limits: 80-120 %	5 1	09/05/20 01:53	EPA 8260D	
BH02-W (A0I0140-26)				Matrix: Water		Batch:	0090178	
Benzene	ND		0.200	ug/L	1	09/05/20 02:47	EPA 8260D	
Toluene	ND		1.00	ug/L	1	09/05/20 02:47	EPA 8260D	
Ethylbenzene	ND		0.500	ug/L	1	09/05/20 02:47	EPA 8260D	
Xylenes, total	ND		1.50	ug/L	1	09/05/20 02:47	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recover	y: 92 %	Limits: 80-120 %	1	09/05/20 02:47	EPA 8260D	
Toluene-d8 (Surr)			102 %	80-120 %	1	09/05/20 02:47	EPA 8260D	
4-Bromofluorobenzene (Surr)			103 %	80-120 %	1	09/05/20 02:47	EPA 8260D	
BH03-W (A0I0140-27)				Matrix: Wate	er	Batch:	0090178	
Benzene	ND		0.200	ug/L	1	09/05/20 02:20	EPA 8260D	
Toluene	ND		1.00	ug/L	1	09/05/20 02:20	EPA 8260D	
Ethylbenzene	ND		0.500	ug/L	1	09/05/20 02:20	EPA 8260D	
Xylenes, total	ND		1.50	ug/L	1	09/05/20 02:20	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recover	y: 94 %	Limits: 80-120 %	1	09/05/20 02:20	EPA 8260D	
Toluene-d8 (Surr)			100 %	80-120 %	1	09/05/20 02:20	EPA 8260D	
4-Bromofluorobenzene (Surr)			106 %	80-120 %	<i>I</i>	09/05/20 02:20	EPA 8260D	
RW01-W (A0I0140-28)				Matrix: Wate	er	Batch:	0090197	
Benzene	ND		0.200	ug/L	1	09/08/20 15:14	EPA 8260D	
Toluene	ND		1.00	ug/L	1	09/08/20 15:14	EPA 8260D	
Ethylbenzene	ND		0.500	ug/L	1	09/08/20 15:14	EPA 8260D	
Xylenes, total	ND		1.50	ug/L	1	09/08/20 15:14	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	: 110 %	Limits: 80-120 %	1	09/08/20 15:14	EPA 8260D	
Toluene-d8 (Surr)			97 %	80-120 %	1	09/08/20 15:14	EPA 8260D	
4-Bromofluorobenzene (Surr)			106 %	80-120 %	<i>i 1</i>	09/08/20 15:14	EPA 8260D	
MW100-W (A0I0140-29)				Matrix: Wate	er	Batch:	0090197	
Benzene	ND		0.200	ug/L	1	09/08/20 16:12	EPA 8260D	
Toluene	ND		1.00	ug/L	1	09/08/20 16:12	EPA 8260D	
Ethylbenzene	ND		0.500	ug/L	1	09/08/20 16:12	EPA 8260D	
Xylenes, total	ND		1.50	ug/L	1	09/08/20 16:12	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery.	: 108 %	Limits: 80-120 %	<i>i</i> 1	09/08/20 16:12	EPA 8260D	
Toluene-d8 (Surr)		-	95 %	80-120 %	1	09/08/20 16:12	EPA 8260D	
4-Bromofluorobenzene (Surr)			104 %	80-120 %	1	09/08/20 16:12	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>HydroCon LLC</u> Project: <u>Coleman Wenatchee</u>

 314 W 15th Street Suite 300
 Project Number:
 2017-074
 Report ID:

 Vancouver, WA 98660
 Project Manager:
 Craig Hultgren
 A0I0140 - 09 18 20 0809

ANALYTICAL SAMPLE RESULTS

		BTEX Co	mpounds b	y EPA 8260D				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW101-W (A0I0140-30)				Matrix: Wate	er	Batch:	0090197	
Benzene	ND		0.200	ug/L	1	09/08/20 16:42	EPA 8260D	
Toluene	ND		1.00	ug/L	1	09/08/20 16:42	EPA 8260D	
Ethylbenzene	ND		0.500	ug/L	1	09/08/20 16:42	EPA 8260D	
Xylenes, total	ND		1.50	ug/L	1	09/08/20 16:42	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ry: 107 %	Limits: 80-120 %	1	09/08/20 16:42	EPA 8260D	
Toluene-d8 (Surr)			94 %	80-120 %	1	09/08/20 16:42	EPA 8260D	
4-Bromofluorobenzene (Surr)			101 %	80-120 %	1	09/08/20 16:42	EPA 8260D	
MW102-W (A0I0140-31)				Matrix: Wate	er	Batch:	0090197	
Benzene	ND		0.200	ug/L	1	09/08/20 17:12	EPA 8260D	
Toluene	ND		1.00	ug/L	1	09/08/20 17:12	EPA 8260D	
Ethylbenzene	ND		0.500	ug/L	1	09/08/20 17:12	EPA 8260D	
Xylenes, total	ND		1.50	ug/L	1	09/08/20 17:12	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ry: 106 %	Limits: 80-120 %	1	09/08/20 17:12	EPA 8260D	
Toluene-d8 (Surr)			96 %	80-120 %	1	09/08/20 17:12	EPA 8260D	
4-Bromofluorobenzene (Surr)			106 %	80-120 %	1	09/08/20 17:12	EPA 8260D	
Blank-310820 (A0I0140-32)				Matrix: Wate	er	Batch:	0090197	
Benzene	ND		0.200	ug/L	1	09/08/20 13:20	EPA 8260D	
Toluene	ND		1.00	ug/L	1	09/08/20 13:20	EPA 8260D	
Ethylbenzene	ND		0.500	ug/L	1	09/08/20 13:20	EPA 8260D	
Xylenes, total	ND		1.50	ug/L	1	09/08/20 13:20	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ry: 108 %	Limits: 80-120 %	1	09/08/20 13:20	EPA 8260D	
Toluene-d8 (Surr)			98 %	80-120 %	1	09/08/20 13:20	EPA 8260D	
4-Bromofluorobenzene (Surr)			107 %	80-120 %	1	09/08/20 13:20	EPA 8260D	
Trip Blank (A0I0140-33)				Matrix: Wate	er	Batch:	0090197	
Benzene	ND		0.200	ug/L	1	09/08/20 11:24	EPA 8260D	<u> </u>
Toluene	ND		1.00	ug/L	1	09/08/20 11:24	EPA 8260D	
Ethylbenzene	ND		0.500	ug/L	1	09/08/20 11:24	EPA 8260D	
Xylenes, total	ND		1.50	ug/L	1	09/08/20 11:24	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ry: 108 %	Limits: 80-120 %	1	09/08/20 11:24	EPA 8260D	
Toluene-d8 (Surr)			98 %	80-120 %	1	09/08/20 11:24	EPA 8260D	
4-Bromofluorobenzene (Surr)			107 %	80-120 %	1	09/08/20 11:24	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Doa A Zmeinghini

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>HydroCon LLC</u> Project: <u>Coleman Wenatchee</u>

 314 W 15th Street Suite 300
 Project Number: 2017-074
 Report ID:

 Vancouver, WA 98660
 Project Manager: Craig Hultgren
 A010140 - 09 18 20 0809

QUALITY CONTROL (QC) SAMPLE RESULTS

		D	iesel and/o	r Oil Hyd	Irocarbor	s by NW1	ΓPH-Dx					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0090289 - EPA 3510C	(Fuels/Acid	Ext.)					Wat	er				
Blank (0090289-BLK1)		Prepared	: 09/10/20 10:	11 Analyz	ed: 09/10/2	0 22:37						
NWTPH-Dx LL												
Diesel	ND		72.7	ug/L	1							
Oil	ND		145	ug/L	1							
Surr: o-Terphenyl (Surr)		Rec	overy: 93 %	Limits: 50	0-150 %	Dilı	ution: 1x					
LCS (0090289-BS1)		Prepared	: 09/10/20 10:	11 Analyz	ed: 09/10/2	0 22:58						
NWTPH-Dx LL												
Diesel	453		80.0	ug/L	1	500		91	59 - 115%			
Surr: o-Terphenyl (Surr)		Rec	overy: 99 %	Limits: 50	0-150 %	Dilt	ution: 1x					
LCS Dup (0090289-BSD1)		Prepared	: 09/10/20 10:	11 Analyz	ed: 09/10/2	0 23:19						Q-1
NWTPH-Dx LL												
Diesel	425		80.0	ug/L	1	500		85	59 - 115%	6	30%	
Surr: o-Terphenyl (Surr)		Rec	overy: 98 %	Limits: 50	0-150 %	Dilı	ution: 1x					
Batch 0090324 - EPA 3510C	(Fuels/Acid	Ext.)					Wat	er				
Blank (0090324-BLK1)		Prepared	: 09/11/20 08:	21 Analyz	ed: 09/11/20	0 21:14						
NWTPH-Dx LL												
Diesel	ND		72.7	ug/L	1							
Oil	ND		145	ug/L	1							
Surr: o-Terphenyl (Surr)		Rec	overy: 91 %	Limits: 50	0-150 %	Dilı	ution: 1x					
LCS (0090324-BS1)		Prepared	: 09/11/20 08:	21 Analyz	ed: 09/11/20	0 21:37						
NWTPH-Dx LL												
Diesel	365		80.0	ug/L	1	500		73	59 - 115%			
Surr: o-Terphenyl (Surr)		Rec	overy: 94 %	Limits: 50	0-150 %	Dilı	ution: 1x					
LCS Dup (0090324-BSD1)		Prepared	: 09/11/20 08:	21 Analyz	ed: 09/11/20	0 21:59						Q-1
NWTPH-Dx LL												
D' 1	357		80.0	ug/L	1	500		71	59 - 115%	2	30%	
Diesel	331		00.0	ug/L	1	300		/1	0) 110/0	_	5070	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

AMENDED REPORT

<u>HydroCon LLC</u> 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: Coleman Wenatchee

Project Number: 2017-074
Project Manager: Craig Hultgren

Report ID: A0I0140 - 09 18 20 0809

QUALITY CONTROL (QC) SAMPLE RESULTS

		D	iesel and/o	r Oil Hyd	lrocarbor	s by NW	TPH-Dx					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0090334 - EPA 3510C	(Fuels/Acid	Ext.)					Wat	er				
Blank (0090334-BLK1)		Prepared	: 09/11/20 12:	51 Analyz	ed: 09/11/2	0 21:10						
NWTPH-Dx LL												
Diesel	ND		72.7	ug/L	1							
Oil	ND		145	ug/L	1							
Surr: o-Terphenyl (Surr)		Rec	overy: 99 %	Limits: 50	0-150 %	Dili	ution: 1x					
LCS (0090334-BS1)		Prepared	: 09/11/20 12:	51 Analyz	ed: 09/11/2	0 21:31						
NWTPH-Dx LL												
Diesel	448		80.0	ug/L	1	500		90	59 - 115%			
Surr: o-Terphenyl (Surr)		Reco	very: 102 %	Limits: 50	0-150 %	Dilı	ution: 1x					
LCS Dup (0090334-BSD1)		Prepared	: 09/11/20 12:	51 Analyz	red: 09/11/2	0 21:52						Q-19
NWTPH-Dx LL												
Diesel	405		80.0	ug/L	1	500		81	59 - 115%	10	30%	
Surr: o-Terphenyl (Surr)		Rec	overy: 99 %	Limits: 50	0-150 %	Dili	ution: 1x					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

AMENDED REPORT

<u>HydroCon LLC</u> 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: <u>Coleman Wenatchee</u>

Project Number: **2017-074**Project Manager: **Craig Hultgren**

Report ID: A0I0140 - 09 18 20 0809

QUALITY CONTROL (QC) SAMPLE RESULTS

	Gasolir	ne Range H	lydrocarbo	ns (Ben	zene thro	ugh Naph	thalene)	by NWTF	PH-Gx			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0090145 - EPA 5030B							Wat	er				
Blank (0090145-BLK1)		Prepared	: 09/04/20 08:	00 Analy	zed: 09/04/2	0 11:09						
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		100	ug/L	1							
Surr: 4-Bromofluorobenzene (Sur)		Reco	overy: 97 %	Limits: 5	0-150 %	Dili	ution: 1x					
1,4-Difluorobenzene (Sur)			99 %	5	0-150 %		"					
LCS (0090145-BS2)		Prepared	: 09/04/20 08:	00 Analy	zed: 09/04/2	0 10:42						
NWTPH-Gx (MS)												
Gasoline Range Organics	436		100	ug/L	1	500		87	80 - 120%			
Surr: 4-Bromofluorobenzene (Sur)		Reco	overy: 96 %	Limits: 5	0-150 %	Dila	ution: 1x					
1,4-Difluorobenzene (Sur)			94 %	5	0-150 %		"					
Duplicate (0090145-DUP2)		Prepared	: 09/04/20 10:	38 Analy	zed: 09/04/2	0 22:46						T-02
QC Source Sample: MW11-W (A	0I0140-07)											
NWTPH-Gx (MS)												
Gasoline Range Organics	755		100	ug/L	1		785			4	30%	
Surr: 4-Bromofluorobenzene (Sur)		Recon	very: 104 %	Limits: 5	0-150 %	Dilt	ution: 1x					
1,4-Difluorobenzene (Sur)			96 %	5	0-150 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

AMENDED REPORT

HydroCon LLC
314 W 15th Street Suite 300

Vancouver, WA 98660

Project: <u>Coleman Wenatchee</u>

Project Number: **2017-074**Project Manager: **Craig Hultgren**

Report ID: A0I0140 - 09 18 20 0809

QUALITY CONTROL (QC) SAMPLE RESULTS

	Gasolii	ne Range I	lydrocarbo	ns (Benz	ene throu	igh Naphi	thalene) l	by NWTP	H-Gx			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0090178 - EPA 5030B							Wat	er				
Blank (0090178-BLK1)		Prepared	: 09/04/20 14:	00 Analyz	ed: 09/04/20	0 16:48						
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		100	ug/L	1							
Surr: 4-Bromofluorobenzene (Sur)		Reco	overy: 84 %	Limits: 50	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			94 %	50	0-150 %		"					
LCS (0090178-BS2)		Prepared	: 09/04/20 14:	00 Analyz	zed: 09/04/20	0 16:20						
NWTPH-Gx (MS)												
Gasoline Range Organics	480		100	ug/L	1	500		96	30 - 120%			
Surr: 4-Bromofluorobenzene (Sur)		Rec	overy: 90 %	Limits: 50	0-150 %	Dilu	ıtion: 1x					
1,4-Difluorobenzene (Sur)			91 %	50	0-150 %		"					
Duplicate (0090178-DUP1)		Prepared	: 09/04/20 16:	10 Analyz	red: 09/04/20	0 17:43						
QC Source Sample: MW12-W (A	010140-08)											
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		100	ug/L	1		ND				30%	
Surr: 4-Bromofluorobenzene (Sur)		Reco	overy: 86 %	Limits: 50	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			94 %	50)-150 %		"					
Duplicate (0090178-DUP2)		Prepared	: 09/04/20 16:	10 Analyz	zed: 09/04/20	22:43						
QC Source Sample: MW25-W (A	<u>010140-18)</u>											
NWTPH-Gx (MS)			100	_								
Gasoline Range Organics	ND		100	ug/L	1		ND				30%	
Surr: 4-Bromofluorobenzene (Sur)		Rec	overy: 81 %	Limits: 50		Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			96 %	50	0-150 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Jamenghini

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

AMENDED REPORT

Project:

HydroCon LLC
314 W 15th Street Suite 300

314 W 15th Street Suite 300 Project Number: 2017-074
Vancouver, WA 98660 Project Manager: Craig Hu

Project Number: 2017-074 Report ID:
Project Manager: Craig Hultgren A0I0140 - 09 18 20 0809

QUALITY CONTROL (QC) SAMPLE RESULTS

Coleman Wenatchee

	Gasolir	ne Range H	lydrocarbo	ns (Ben	zene thro	ugh Naph	thalene) l	by NWTP	H-Gx			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0090197 - EPA 5030B							Wat	er				
Blank (0090197-BLK1)		Prepared	: 09/08/20 08:	00 Analy	zed: 09/08/2	0 10:57						
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		100	ug/L	1							
Surr: 4-Bromofluorobenzene (Sur)		Reco	overy: 98 %	Limits: 5	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			99 %	5	0-150 %		"					
LCS (0090197-BS1)		Prepared	: 09/08/20 08:	00 Analy	zed: 09/08/2	0 09:36						
NWTPH-Gx (MS)												
Gasoline Range Organics	437		100	ug/L	1	500		87 8	0 - 120%			
Surr: 4-Bromofluorobenzene (Sur)		Reco	overy: 96 %	Limits: 5	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			91 %	5	0-150 %		"					
Duplicate (0090197-DUP1)		Prepared	: 09/08/20 10:	23 Analy	zed: 09/08/2	0 15:43						
QC Source Sample: RW01-W (AC	<u>)10140-28)</u>											
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		100	ug/L	1		ND				30%	
Surr: 4-Bromofluorobenzene (Sur)	·	Reco	very: 101 %	Limits: 5	0-150 %	Dilı	ıtion: 1x	·	·			
1,4-Difluorobenzene (Sur)			100 %	5	0-150 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

AMENDED REPORT

HydroCon LLC Project:

 314 W 15th Street Suite 300
 Project Number: 2017-074
 Report ID:

 Vancouver, WA 98660
 Project Manager: Craig Hultgren
 A010140 - 09 18 20 0809

QUALITY CONTROL (QC) SAMPLE RESULTS

Coleman Wenatchee

			BTEX	Compou	ınds by E	PA 8260D	<u> </u>					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0090145 - EPA 5030B							Wat	er				
Blank (0090145-BLK1)		Prepared	: 09/04/20 08:	00 Analyz	zed: 09/04/20	0 11:09						
EPA 8260D												
Benzene	ND		0.200	ug/L	1							
Toluene	ND		1.00	ug/L	1							
Ethylbenzene	ND		0.500	ug/L	1							
Xylenes, total	ND		1.50	ug/L	1							
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 109 %	Limits: 80	0-120 %	Dil	ution: 1x					
Toluene-d8 (Surr)			98 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			106 %	80	0-120 %		"					
LCS (0090145-BS1)		Prepared	: 09/04/20 08:	00 Analyz	red: 09/04/2	0 10:15						
EPA 8260D												
Benzene	20.3		0.200	ug/L	1	20.0		101	80 - 120%			
Toluene	19.6		1.00	ug/L	1	20.0		98	80 - 120%			
Ethylbenzene	20.3		0.500	ug/L	1	20.0		101	80 - 120%			
Xylenes, total	65.0		1.50	ug/L	1	60.0		108	80 - 120%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 101 %	Limits: 80	0-120 %	Dil	ution: 1x					
Toluene-d8 (Surr)			96 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			99 %	80	0-120 %		"					
Duplicate (0090145-DUP2)		Prepared	: 09/04/20 10:	38 Analyz	zed: 09/04/2	0 22:46						T-(
QC Source Sample: MW11-W (Ad EPA 8260D	<u>)10140-07)</u>											
Benzene	ND		0.200	ug/L	1		ND				30%	
Toluene	ND		1.00	ug/L	1		ND				30%	
Ethylbenzene	ND		0.500	ug/L	1		ND				30%	
Xylenes, total	ND		1.50	ug/L	1		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 107 %	Limits: 80	0-120 %	Dili	ution: 1x					
Toluene-d8 (Surr)			95 %		0-120 %		"					
4-Bromofluorobenzene (Surr)			104 %		0-120 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>HydroCon LLC</u> Project: <u>Coleman Wenatchee</u>

 314 W 15th Street Suite 300
 Project Number: 2017-074
 Report ID:

 Vancouver, WA 98660
 Project Manager: Craig Hultgren
 A010140 - 09 18 20 0809

QUALITY CONTROL (QC) SAMPLE RESULTS

				Compou	ınds by E							
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0090178 - EPA 5030B							Wat	er				
Blank (0090178-BLK1)		Prepared	: 09/04/20 14:	00 Analyz	ed: 09/04/2	16:48						
EPA 8260D												
Benzene	ND		0.200	ug/L	1							
Toluene	ND		1.00	ug/L	1							
Ethylbenzene	ND		0.500	ug/L	1							
Xylenes, total	ND		1.50	ug/L	1							
Surr: 1,4-Difluorobenzene (Surr)		Rece	overy: 93 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			104 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			109 %	80	-120 %		"					
LCS (0090178-BS1)		Prepared	: 09/04/20 14:	00 Analyz	ed: 09/04/2	15:53						
EPA 8260D												
Benzene	18.0		0.200	ug/L	1	20.0		90	80 - 120%			
Toluene	18.8		1.00	ug/L	1	20.0		94	80 - 120%			
Ethylbenzene	20.5		0.500	ug/L	1	20.0		103	80 - 120%			
Xylenes, total	60.8		1.50	ug/L	1	60.0		101	80 - 120%			
Surr: 1,4-Difluorobenzene (Surr)		Rece	overy: 90 %	Limits: 80)-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			97 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			97 %	80	-120 %		"					
Duplicate (0090178-DUP1)		Prepared	: 09/04/20 16:	10 Analyz	ed: 09/04/2	17:43						
QC Source Sample: MW12-W (A0	10140-08)											
EPA 8260D				_								
Benzene	ND		0.200	ug/L	1		ND				30%	
Toluene	ND		1.00	ug/L	1		ND				30%	
Ethylbenzene	ND		0.500	ug/L	1		ND				30%	
Xylenes, total	ND		1.50	ug/L	1		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Reco	overy: 92 %	Limits: 80		Dilt	ution: 1x					
Toluene-d8 (Surr)			104 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			107 %	80	-120 %		"					
Duplicate (0090178-DUP2)		Prenared	: 09/04/20 16:	10 Analyz	ed: 09/04/2	22:43						

QC Source Sample: MW25-W (A0I0140-18)

EPA 8260D

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Doa A Smerighini

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

AMENDED REPORT

HydroCon LLC
314 W 15th Street Suite 300

Vancouver, WA 98660

Project: <u>Coleman Wenatchee</u>

Project Number: **2017-074**Project Manager: **Craig Hultgren**

Report ID: A0I0140 - 09 18 20 0809

QUALITY CONTROL (QC) SAMPLE RESULTS

			BTEX	Compou	ınds by E	PA 8260D) 					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0090178 - EPA 5030B							Wat	er				
Duplicate (0090178-DUP2)		Prepared	: 09/04/20 16:	10 Analyz	ed: 09/04/2	0 22:43						
QC Source Sample: MW25-W (At	<u>)10140-18)</u>											
Benzene	ND		0.200	ug/L	1		ND				30%	
Toluene	ND		1.00	ug/L	1		ND				30%	
Ethylbenzene	ND		0.500	ug/L	1		ND				30%	
Xylenes, total	ND		1.50	ug/L	1		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Rece	overy: 94 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			104 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			102 %	80	-120 %		"					
Matrix Spike (0090178-MS1)		Prepared	: 09/04/20 16:	10 Analyz	ed: 09/05/20	0 03:14						
OC Source Sample: BH02-W (A01 EPA 8260D	(0140-26)											
Benzene	18.9		0.200	ug/L	1	20.0	ND	94	79 - 120%			
Toluene	19.6		1.00	ug/L	1	20.0	ND	98	80 - 121%			
Ethylbenzene	21.0		0.500	ug/L	1	20.0	ND	105	79 - 121%			
Xylenes, total	64.0		1.50	ug/L	1	60.0	ND	107	79 - 121%			
Surr: 1,4-Difluorobenzene (Surr)		Rece	overy: 90 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			95 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			99 %	80	-120 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

HydroCon LLC Project: Coleman Wenatchee

314 W 15th Street Suite 300 Project Number: 2017-074 Report ID: Vancouver, WA 98660 Project Manager: Craig Hultgren A0I0140 - 09 18 20 0809

QUALITY CONTROL (QC) SAMPLE RESULTS

			BTEX	Compou	ınds by E	PA 8260D)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0090197 - EPA 5030B							Wat	er				
Blank (0090197-BLK1)		Prepared:	09/08/20 08:	00 Analyz	ed: 09/08/2	0 10:57						
EPA 8260D												
Benzene	ND		0.200	ug/L	1							
Toluene	ND		1.00	ug/L	1							
Ethylbenzene	ND		0.500	ug/L	1							
Xylenes, total	ND		1.50	ug/L	1							
Surr: 1,4-Difluorobenzene (Surr)		Recove	ery: 107 %	Limits: 80	-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			97 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			106 %	80	-120 %		"					
LCS (0090197-BS2)		Prepared:	09/08/20 08:	00 Analyz	ed: 09/08/2	0 10:03						
EPA 8260D												
Benzene	19.9		0.200	ug/L	1	20.0		99	80 - 120%			
Toluene	19.2		1.00	ug/L	1	20.0		96	80 - 120%			
Ethylbenzene	19.6		0.500	ug/L	1	20.0		98	80 - 120%			
Xylenes, total	63.8		1.50	ug/L	1	60.0		106	80 - 120%			
Surr: 1,4-Difluorobenzene (Surr)		Recove	ery: 102 %	Limits: 80	-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			94 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			101 %	80	-120 %		"					
Duplicate (0090197-DUP1)		Prepared:	09/08/20 10:	23 Analyz	ed: 09/08/2	0 15:43						
QC Source Sample: RW01-W (A0	<u>10140-28)</u>											
EPA 8260D	NID		0.200	/T	1		ND				200/	
Benzene	ND		0.200	ug/L	1						30%	
Toluene	ND		1.00	ug/L	1		ND				30%	
Ethylbenzene Yvlenes, total	ND ND		0.500	ug/L	1		ND ND				30% 30%	
Xylenes, total	ND		1.50	ug/L	1						30%	
Surr: 1,4-Difluorobenzene (Surr)		Recove	•	Limits: 80		Dilı	ution: 1x					
Toluene-d8 (Surr)			97 %		-120 %		"					
4-Bromofluorobenzene (Surr)			106 %	80	-120 %							
Matrix Spike (0090197-MS1)		Prepared:	09/08/20 10:	23 Analyz	ed: 09/08/2	0 17:42						

QC Source Sample: MW102-W (A0I0140-31)

EPA 8260D

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Doa & Smerighini

HydroCon LLC

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Coleman Wenatchee

AMENDED REPORT

 314 W 15th Street Suite 300
 Project Number: 2017-074
 Report ID:

 Vancouver, WA 98660
 Project Manager: Craig Hultgren
 A010140 - 09 18 20 0809

Project:

QUALITY CONTROL (QC) SAMPLE RESULTS

			BTEX	Compou	ınds by E	PA 8260D	1					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0090197 - EPA 5030B							Wat	er				
Matrix Spike (0090197-MS1)		Prepared:	09/08/20 10:2	23 Analyz	zed: 09/08/2	0 17:42						
QC Source Sample: MW102-W (A	<u> </u>											
Benzene	20.4		0.200	ug/L	1	20.0	ND	102	79 - 120%			
Toluene	19.4		1.00	ug/L	1	20.0	ND	97	80 - 121%			
Ethylbenzene	19.9		0.500	ug/L	1	20.0	ND	100	79 - 121%			
Xylenes, total	63.9		1.50	ug/L	1	60.0	ND	107	79 - 121%			
Surr: 1,4-Difluorobenzene (Surr)		Recov	very: 104 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			95 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			102 %	80	0-120 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>HydroCon LLC</u> Project: <u>Coleman Wenatchee</u>

 314 W 15th Street Suite 300
 Project Number: 2017-074
 Report ID:

 Vancouver, WA 98660
 Project Manager: Craig Hultgren
 A010140 - 09 18 20 0809

SAMPLE PREPARATION INFORMATION

		Diesel and	d/or Oil Hydrocarbor	s by NWTPH-Dx			
Prep: EPA 3510C (Fuels/Acid Ext.)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 0090289							
A0I0140-01	Water	NWTPH-Dx LL	08/31/20 11:30	09/10/20 15:14	1030mL/2mL	1000mL/2mL	0.97
A0I0140-02	Water	NWTPH-Dx LL	08/31/20 11:00	09/10/20 15:14	1060mL/2mL	1000mL/2mL	0.94
A0I0140-03	Water	NWTPH-Dx LL	08/31/20 12:15	09/10/20 15:14	1060mL/2mL	1000mL/2mL	0.94
A0I0140-04	Water	NWTPH-Dx LL	09/01/20 10:55	09/10/20 15:14	1060mL/2mL	1000mL/2mL	0.94
A0I0140-31	Water	NWTPH-Dx LL	09/01/20 09:25	09/10/20 10:49	1070 mL/2 mL	1000mL/2mL	0.94
A0I0140-32	Water	NWTPH-Dx LL	08/31/20 12:25	09/10/20 10:49	1070 mL/2 mL	1000 mL/2 mL	0.94
Batch: 0090324							
A0I0140-05	Water	NWTPH-Dx LL	09/01/20 10:10	09/11/20 08:21	1060mL/2mL	1000mL/2mL	0.94
A0I0140-06	Water	NWTPH-Dx LL	08/31/20 16:35	09/11/20 08:21	1070 mL/2 mL	1000mL/2mL	0.94
A0I0140-07	Water	NWTPH-Dx LL	08/31/20 14:40	09/11/20 08:21	1060mL/2mL	1000mL/2mL	0.94
A0I0140-08	Water	NWTPH-Dx LL	08/31/20 10:15	09/11/20 08:21	1060 mL/2 mL	1000 mL/2 mL	0.94
A0I0140-09	Water	NWTPH-Dx LL	08/31/20 13:40	09/11/20 08:21	1060mL/2mL	1000mL/2mL	0.94
A0I0140-10	Water	NWTPH-Dx LL	08/31/20 14:10	09/11/20 08:21	1060mL/2mL	1000mL/2mL	0.94
A0I0140-11	Water	NWTPH-Dx LL	09/01/20 08:10	09/11/20 08:21	1060mL/2mL	1000mL/2mL	0.94
A0I0140-12	Water	NWTPH-Dx LL	09/01/20 09:25	09/11/20 08:21	1060mL/2mL	1000mL/2mL	0.94
A0I0140-13	Water	NWTPH-Dx LL	09/02/20 08:35	09/11/20 08:21	1060mL/2mL	1000mL/2mL	0.94
A0I0140-14	Water	NWTPH-Dx LL	09/02/20 08:30	09/11/20 10:48	1060mL/2mL	1000mL/2mL	0.94
A0I0140-15	Water	NWTPH-Dx LL	08/31/20 15:05	09/11/20 10:48	1060 mL/2 mL	1000mL/2mL	0.94
A0I0140-16	Water	NWTPH-Dx LL	08/31/20 13:05	09/11/20 10:48	1060mL/2mL	1000mL/2mL	0.94
A0I0140-17	Water	NWTPH-Dx LL	08/31/20 15:50	09/11/20 10:48	1070 mL/2 mL	1000mL/2mL	0.94
A0I0140-18	Water	NWTPH-Dx LL	09/01/20 08:00	09/11/20 10:48	1070 mL/2 mL	1000mL/2mL	0.94
A0I0140-19	Water	NWTPH-Dx LL	09/01/20 08:40	09/11/20 10:48	1070 mL/2 mL	1000 mL/2 mL	0.94
A0I0140-20	Water	NWTPH-Dx LL	09/01/20 09:55	09/11/20 10:48	1070 mL/2 mL	1000 mL/2 mL	0.94
A0I0140-21	Water	NWTPH-Dx LL	09/01/20 11:30	09/11/20 12:50	1060 mL/2 mL	1000 mL/2 mL	0.94
A0I0140-22	Water	NWTPH-Dx LL	08/31/20 13:45	09/11/20 12:50	1060 mL/2 mL	1000 mL/2 mL	0.94
A0I0140-23	Water	NWTPH-Dx LL	08/31/20 10:10	09/11/20 12:50	1060 mL/2 mL	1000 mL/2 mL	0.94
A0I0140-24	Water	NWTPH-Dx LL	09/01/20 08:50	09/11/20 12:50	1060 mL/2 mL	1000 mL/2 mL	0.94
Batch: 0090334							
A0I0140-25	Water	NWTPH-Dx LL	09/01/20 11:40	09/11/20 12:51	1060 mL/2 mL	1000mL/2mL	0.94
A0I0140-26	Water	NWTPH-Dx LL	08/31/20 11:50	09/11/20 12:51	1060 mL/2 mL	1000 mL/2 mL	0.94
A0I0140-27	Water	NWTPH-Dx LL	09/01/20 09:15	09/11/20 12:51	1060 mL/2 mL	1000mL/2mL	0.94
A0I0140-28	Water	NWTPH-Dx LL	09/01/20 10:40	09/11/20 12:51	1060 mL/2 mL	1000mL/2mL	0.94
A0I0140-29	Water	NWTPH-Dx LL	08/31/20 12:15	09/11/20 12:51	1060 mL/2 mL	1000mL/2mL	0.94
A0I0140-30	Water	NWTPH-Dx LL	08/31/20 16:45	09/11/20 12:54	1060mL/2mL	1000mL/2mL	0.94

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>HydroCon LLC</u> Project: <u>Coleman Wenatchee</u>

 314 W 15th Street Suite 300
 Project Number: 2017-074
 Report ID:

 Vancouver, WA 98660
 Project Manager: Craig Hultgren
 A010140 - 09 18 20 0809

SAMPLE PREPARATION INFORMATION

	Gas	oline Range Hydrocart	oons (Benzene thro	ugh Naphthalene) b	y NWTPH-Gx		
Prep: EPA 5030B					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 0090145							
A0I0140-01	Water	NWTPH-Gx (MS)	08/31/20 11:30	09/04/20 10:38	5mL/5mL	5mL/5mL	1.00
A0I0140-02	Water	NWTPH-Gx (MS)	08/31/20 11:00	09/04/20 10:38	5mL/5mL	5mL/5mL	1.00
A0I0140-03	Water	NWTPH-Gx (MS)	08/31/20 12:15	09/04/20 10:38	5mL/5mL	5mL/5mL	1.00
A0I0140-04	Water	NWTPH-Gx (MS)	09/01/20 10:55	09/04/20 10:38	5mL/5mL	5mL/5mL	1.00
A0I0140-05	Water	NWTPH-Gx (MS)	09/01/20 10:10	09/04/20 10:38	5mL/5mL	5mL/5mL	1.00
A0I0140-06	Water	NWTPH-Gx (MS)	08/31/20 16:35	09/04/20 10:38	5mL/5mL	5mL/5mL	1.00
Batch: 0090178							
A0I0140-08	Water	NWTPH-Gx (MS)	08/31/20 10:15	09/04/20 16:10	5mL/5mL	5mL/5mL	1.00
A0I0140-09	Water	NWTPH-Gx (MS)	08/31/20 13:40	09/04/20 16:10	5mL/5mL	5mL/5mL	1.00
A0I0140-10	Water	NWTPH-Gx (MS)	08/31/20 14:10	09/04/20 16:10	5mL/5mL	5mL/5mL	1.00
A0I0140-11	Water	NWTPH-Gx (MS)	09/01/20 08:10	09/04/20 16:10	5mL/5mL	5mL/5mL	1.00
A0I0140-12	Water	NWTPH-Gx (MS)	09/01/20 09:25	09/04/20 16:10	5mL/5mL	5mL/5mL	1.00
A0I0140-13	Water	NWTPH-Gx (MS)	09/02/20 08:35	09/04/20 16:10	5mL/5mL	5mL/5mL	1.00
A0I0140-14	Water	NWTPH-Gx (MS)	09/02/20 08:30	09/04/20 16:10	5mL/5mL	5mL/5mL	1.00
A0I0140-15	Water	NWTPH-Gx (MS)	08/31/20 15:05	09/04/20 16:10	5mL/5mL	5mL/5mL	1.00
A0I0140-16	Water	NWTPH-Gx (MS)	08/31/20 13:05	09/04/20 16:10	5mL/5mL	5mL/5mL	1.00
A0I0140-17	Water	NWTPH-Gx (MS)	08/31/20 15:50	09/04/20 16:10	5mL/5mL	5mL/5mL	1.00
A0I0140-18	Water	NWTPH-Gx (MS)	09/01/20 08:00	09/04/20 16:10	5mL/5mL	5mL/5mL	1.00
A0I0140-19	Water	NWTPH-Gx (MS)	09/01/20 08:40	09/04/20 16:10	5mL/5mL	5mL/5mL	1.00
A0I0140-20	Water	NWTPH-Gx (MS)	09/01/20 09:55	09/04/20 16:10	5mL/5mL	5mL/5mL	1.00
A0I0140-21	Water	NWTPH-Gx (MS)	09/01/20 11:30	09/04/20 16:10	5mL/5mL	5mL/5mL	1.00
A0I0140-22	Water	NWTPH-Gx (MS)	08/31/20 13:45	09/04/20 16:10	5mL/5mL	5mL/5mL	1.00
A0I0140-23	Water	NWTPH-Gx (MS)	08/31/20 10:10	09/04/20 16:10	5mL/5mL	5mL/5mL	1.00
A0I0140-24	Water	NWTPH-Gx (MS)	09/01/20 08:50	09/04/20 16:10	5mL/5mL	5mL/5mL	1.00
A0I0140-25	Water	NWTPH-Gx (MS)	09/01/20 11:40	09/04/20 16:10	5mL/5mL	5mL/5mL	1.00
A0I0140-26	Water	NWTPH-Gx (MS)	08/31/20 11:50	09/04/20 16:10	5mL/5mL	5mL/5mL	1.00
A0I0140-27	Water	NWTPH-Gx (MS)	09/01/20 09:15	09/04/20 16:10	5mL/5mL	5mL/5mL	1.00
Batch: 0090197							
A0I0140-07RE1	Water	NWTPH-Gx (MS)	08/31/20 14:40	09/08/20 10:38	5mL/5mL	5mL/5mL	1.00
A0I0140-28	Water	NWTPH-Gx (MS)	09/01/20 10:40	09/08/20 10:23	5mL/5mL	5mL/5mL	1.00
A0I0140-29	Water	NWTPH-Gx (MS)	08/31/20 12:15	09/08/20 10:23	5mL/5mL	5mL/5mL	1.00
A0I0140-30	Water	NWTPH-Gx (MS)	08/31/20 16:45	09/08/20 10:23	5mL/5mL	5mL/5mL	1.00
A0I0140-31	Water	NWTPH-Gx (MS)	09/01/20 09:25	09/08/20 10:23	5mL/5mL	5mL/5mL	1.00
A0I0140-32	Water	NWTPH-Gx (MS)	08/31/20 12:25	09/08/20 10:23	5mL/5mL	5mL/5mL	1.00

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awas Smeinghine

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>HydroCon LLC</u> Project: <u>Coleman Wenatchee</u>

 314 W 15th Street Suite 300
 Project Number: 2017-074
 Report ID:

 Vancouver, WA 98660
 Project Manager: Craig Hultgren
 A010140 - 09 18 20 0809

SAMPLE PREPARATION INFORMATION

		ВТ	EX Compounds by E	PA 8260D			
Prep: EPA 5030B					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 0090145							
A0I0140-01	Water	EPA 8260D	08/31/20 11:30	09/04/20 10:38	5mL/5mL	5mL/5mL	1.00
A0I0140-02	Water	EPA 8260D	08/31/20 11:00	09/04/20 10:38	5mL/5mL	5mL/5mL	1.00
A0I0140-03	Water	EPA 8260D	08/31/20 12:15	09/04/20 10:38	5mL/5mL	5mL/5mL	1.00
A0I0140-04	Water	EPA 8260D	09/01/20 10:55	09/04/20 10:38	5mL/5mL	5mL/5mL	1.00
A0I0140-05	Water	EPA 8260D	09/01/20 10:10	09/04/20 10:38	5mL/5mL	5mL/5mL	1.00
A0I0140-06	Water	EPA 8260D	08/31/20 16:35	09/04/20 10:38	5mL/5mL	5mL/5mL	1.00
Batch: 0090178							
A0I0140-08	Water	EPA 8260D	08/31/20 10:15	09/04/20 16:10	5mL/5mL	5mL/5mL	1.00
A0I0140-09	Water	EPA 8260D	08/31/20 13:40	09/04/20 16:10	5mL/5mL	5mL/5mL	1.00
A0I0140-10	Water	EPA 8260D	08/31/20 14:10	09/04/20 16:10	5mL/5mL	5mL/5mL	1.00
A0I0140-11	Water	EPA 8260D	09/01/20 08:10	09/04/20 16:10	5mL/5mL	5mL/5mL	1.00
A0I0140-12	Water	EPA 8260D	09/01/20 09:25	09/04/20 16:10	5mL/5mL	5mL/5mL	1.00
A0I0140-13	Water	EPA 8260D	09/02/20 08:35	09/04/20 16:10	5mL/5mL	5mL/5mL	1.00
A0I0140-14	Water	EPA 8260D	09/02/20 08:30	09/04/20 16:10	5mL/5mL	5mL/5mL	1.00
A0I0140-15	Water	EPA 8260D	08/31/20 15:05	09/04/20 16:10	5mL/5mL	5mL/5mL	1.00
A0I0140-16	Water	EPA 8260D	08/31/20 13:05	09/04/20 16:10	5mL/5mL	5mL/5mL	1.00
A0I0140-17	Water	EPA 8260D	08/31/20 15:50	09/04/20 16:10	5mL/5mL	5mL/5mL	1.00
A0I0140-18	Water	EPA 8260D	09/01/20 08:00	09/04/20 16:10	5mL/5mL	5mL/5mL	1.00
A0I0140-19	Water	EPA 8260D	09/01/20 08:40	09/04/20 16:10	5mL/5mL	5mL/5mL	1.00
A0I0140-20	Water	EPA 8260D	09/01/20 09:55	09/04/20 16:10	5mL/5mL	5mL/5mL	1.00
A0I0140-21	Water	EPA 8260D	09/01/20 11:30	09/04/20 16:10	5mL/5mL	5mL/5mL	1.00
A0I0140-22	Water	EPA 8260D	08/31/20 13:45	09/04/20 16:10	5mL/5mL	5mL/5mL	1.00
A0I0140-23	Water	EPA 8260D	08/31/20 10:10	09/04/20 16:10	5mL/5mL	5mL/5mL	1.00
A0I0140-24	Water	EPA 8260D	09/01/20 08:50	09/04/20 16:10	5mL/5mL	5mL/5mL	1.00
A0I0140-25	Water	EPA 8260D	09/01/20 11:40	09/04/20 16:10	5mL/5mL	5mL/5mL	1.00
A0I0140-26	Water	EPA 8260D	08/31/20 11:50	09/04/20 16:10	5mL/5mL	5mL/5mL	1.00
A0I0140-27	Water	EPA 8260D	09/01/20 09:15	09/04/20 16:10	5mL/5mL	5mL/5mL	1.00
Batch: 0090197							
A0I0140-07RE1	Water	EPA 8260D	08/31/20 14:40	09/08/20 10:38	5mL/5mL	5mL/5mL	1.00
A0I0140-28	Water	EPA 8260D	09/01/20 10:40	09/08/20 10:23	5mL/5mL	5mL/5mL	1.00
A0I0140-29	Water	EPA 8260D	08/31/20 12:15	09/08/20 10:23	5mL/5mL	5mL/5mL	1.00
A0I0140-30	Water	EPA 8260D	08/31/20 16:45	09/08/20 10:23	5mL/5mL	5mL/5mL	1.00
A0I0140-31	Water	EPA 8260D	09/01/20 09:25	09/08/20 10:23	5mL/5mL	5mL/5mL	1.00
A0I0140-32	Water	EPA 8260D	08/31/20 12:25	09/08/20 10:23	5mL/5mL	5mL/5mL	1.00
A0I0140-33	Water	EPA 8260D	08/31/20 00:00	09/08/20 10:23	5mL/5mL	5mL/5mL	1.00

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

AMENDED REPORT

<u>HydroCon LLC</u> Project: <u>Coleman Wenatchee</u>

 314 W 15th Street Suite 300
 Project Number: 2017-074
 Report ID:

 Vancouver, WA 98660
 Project Manager: Craig Hultgren
 A010140 - 09 18 20 0809

QUALIFIER DEFINITIONS

Client Sample and Quality Control (QC) Sample Qualifier Definitions:

Apex Laboratories

T-02

AMEND	Result for this sample or analyte has been amended from the original report. See Case Narrative for details.
F-11	The hydrocarbon pattern indicates possible weathered diesel, mineral oil, or a contribution from a related component.
F-13	The chromatographic pattern does not resemble the fuel standard used for quantitation
F-20	Result for Diesel is Estimated due to overlap from Gasoline Range Organics or other VOCs.
PRES	Incomplete field preservation. Additional preservative was added to adjust the pH within the appropriate range for this analysis.
Q-19	Blank Spike Duplicate (BSD) sample analyzed in place of Matrix Spike/Duplicate samples due to limited sample amount available for analysis.

This Batch QC sample was analyzed outside of the method specified 12 hour analysis window. Results are estimated.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

AMENDED REPORT

<u>HydroCon LLC</u> Project: <u>Coleman Wenatchee</u>

 314 W 15th Street Suite 300
 Project Number:
 2017-074
 Report ID:

 Vancouver, WA 98660
 Project Manager:
 Craig Hultgren
 A0I0140 - 09 18 20 0809

REPORTING NOTES AND CONVENTIONS:

Abbreviations:

DET Analyte DETECTED at or above the detection or reporting limit.

ND Analyte NOT DETECTED at or above the detection or reporting limit.

NR Result Not Reported.

RPD Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

Detection Limits: Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ).

If no value is listed ('----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as "dry", "wet", or " " (blank) designation.

"dry" Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry")

See Percent Solids section for details of dry weight analysis.

"wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

"___" Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

QC Source:

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) are not included in this report. Please request a Full QC report if this data is required.

Miscellaneous Notes:

"---" QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to ½ the Reporting Limit (RL).

- -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier.
- -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy.

For further details, please request a copy of this document.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gesa A Zmenighini

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Report ID:

AMENDED REPORT

HydroCon LLCProject:Coleman Wenatchee314 W 15th Street Suite 300Project Number:2017-074

Vancouver, WA 98660 Project Manager: Craig Hultgren

A0I0140 - 09 18 20 0809

REPORTING NOTES AND CONVENTIONS (Cont.):

Blanks (Cont.):

Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.

'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gwast Jamenighini

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

AMENDED REPORT

HydroCon LLC Project: Coleman Wenatchee

 314 W 15th Street Suite 300
 Project Number:
 2017-074
 Report ID:

 Vancouver, WA 98660
 Project Manager:
 Craig Hultgren
 A010140 - 09 18 20 0809

LABORATORY ACCREDITATION INFORMATION

ORELAP Certification ID: OR100062 (Primary Accreditation) EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

Apex Laboratories

Matrix Analysis TNI_ID Analyte TNI_ID Accreditation

All reported analytes are included in Apex Laboratories' current ORELAP scope.

Secondary Accreditations

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation.

Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

Field Testing Parameters

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Jamenighini

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>HydroCon LLC</u> Project: <u>Coleman Wenatchee</u>

 314 W 15th Street Suite 300
 Project Number: 2017-074
 Report ID:

 Vancouver, WA 98660
 Project Manager: Craig Hultgren
 A010140 - 09 18 20 0809

	140				геріле	V											- #¥ -,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
	1 14-																		Date:	Time:	
	201																125	\	BY:	65	
the string	Project #:	PO#			(CLP Metals (8)												- A	BT尼文	RECEIVED BY: Signature:	Printed Name:	Company:
in Prosti	1	advocan/leind	Į,	"BW "IT"	., Co, Cu, Fe, Pb, Hg, I n, Mo, Mi, K, Se, Ag, Na Zn	N N T											Run trip blamks	120	Date:	Time:	
6		las	SREOU	Ť	Priority Metals (13)												3	for for			
		Judre	ANALYSIS REQUEST		3081 Pest 3CRA Metals (8)	_								30-503	1:	TIONS:	迈)			
" Johnson		OHE	P		8085 bCB ² 2240 Semi-Aols Enil Fr											SPECIAL INSTRUCTIONS			SHED BY:	25	
(Email: Cooking			ST40 SIM BYHS	+						***************************************				PECIAL			RELINQUISHED BY: Signature:	Printed Name	Company:
	Project Name:	E			8760 Halo VOCs 8260 RBDM VOCs											S		1 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	≅ iš		ď
					STOO BLEX	+	-								-			197	2/2	(51.55	
	ς.				WYPH-Gx	X	_	_	_						À			Standard	Date:		
	100	ت			xa-hatw	X	-								Ð						
	12/12/12	Phone:		<u> </u>	имльн-нсір											Days	~	Other			3
					OF CONTAINERS	# 3									D	siness	3 Day	ō	2	1	2
2323	رهآم	1			XIATAA	130 H.O	-								4	= 10 Bu		7	RECEIVED BY:	Name of the second	E 1
503-718	Project Mgr:				JIME	133	Salzo Licz	8131/2 1215	9/1120 1055	9/1/2010	8/31/201635	8/31/20/1440	3/3/20 1015	8/5/1/20 1340	8/31/20 1710	ne (TAT)	2 Day	5 DAY	Signature	Printed	Company
23 Ph:	Proje		hel		VB ID #	15	2/3/2	23	4/1/2	0	8331/2	8/11/2	8/3/2	SISILO	8/3/12	Normal Turn Around Time (TAT) = 10 Business Days	1 Day	4 DAY 5 DAY	Date:	Time: 15.55	
JR 97.			Jasc.													Tum/	Ξ	4 L		Ħ	
6700 SW Sandburg St., Tigard, OR 97223 Ph: 503-718-2323	6		(_)			3	3	>	7	M-21 FOMW)	>	3	3	MW1312-W	3,	Norma	(olonia	(all cle)		Jas Jas	
urg St.,	June (کاک		WA CA	51.5	MWO35-W	M-90M/N	MWOS -U	51 80	NW1012 - Y	3-11MM	MW12-W	13.12	1		TAT Domostod (nimela)	nascen		<u> </u>	ج ا
Sandbı	1		Ŭ š	ation:	OR (WA) CA AK ID	MINOIS	3	3	7	3	3	3	3	Y	MWH		T Dog		SHED B	ted Name:	7
700 SW	Company: 4 un Con	Address:	Sampled by: Chail	Site Location:	ō ∀	2	S	_	<.		2	ڪ		<	2.		1	8	RELINQUISHED BY.	Printed Name	Company:

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>HydroCon LLC</u> Project: <u>Coleman Wenatchee</u>

 314 W 15th Street Suite 300
 Project Number: 2017-074
 Report ID:

 Vancouver, WA 98660
 Project Manager: Craig Hultgren
 A010140 - 09 18 20 0809

Company: HudroCon	Project Mgr: Craviq	Hultonen		Project Name: Coleman	SACCIAN	5	Wendthee		Project #: 2	2017 - 074	1
Address:		Phone:		Email:				<u> </u>	PO#		
Sampled by: Charis Day	Schred				•	NALYS	ANALYSIS REQUEST				
Site Location: OR (WA) CA AK ID SAMPLE ID	LAB ID # TIME TIME	NMLBH-HCID # OF CONTAINERS	8700 KBDW AOC ² 8700 BLEX MWLbH-C ²	8740 SIM BVH ² 8760 AOC ² E ^U II List 8760 H ² IO AOC ²	8270 Semi-Vols Full List	8081 Pest RCRA Metals (8)	Priority Metals (13) Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Hg, Mg,	Min, Mo, Ni, K, Se, Ag, Un, Tì, V, Zn TOTAL DISS. TCLP	TCLP Metals (8)		Archive
MW16-W	9/1/20 OBIO 1/20	×	×					- 10			
MW17-W	9/1/20 CP25 1		-								
MMIA - M	9/2/2010635										
MW20-W	9/2/20 0830							23 13			
MW21 -W	8/31/20 1505										
MW23 - W	8/31/20 1305								-		
MW24-W	8/3/20 1750										
MJ25-W	9/1/20 080c										
NW26 - W	9/1 20 0810										
MW27-W	9/1/2010957 D	0	4 4								
Normal Tur	Normal Turn Around Time (TAT) = 10 Business Days	ness Days		SPECIAL INSTRUCTIONS	INSTRUC	TIONS:					
TAT Requested (circle)	1 Day 2 Day 3 4 DAY 5 DAY	3 Day Shandury	Standard mon-rush								
SAMPI RELINQUISHED BY: Signature:	SAMPLES ARE HELD FOR 30 DAYS RECEIVED BY: Date: Signatur 4 3 25.		Date: 9/3/20	RELINQUISHED BY: Signature:	SHED BY:			Date: S	RECEIVED BY: Signature:	Date:	
Printed Name:	Time: Printed Name:		Time: 15:55%	Printed Name	ài			Time: P	Printed Name:	Time:	and the same of th
	Company:	1/	,	Company:				9	Company:		

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Jamenghini

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>HydroCon LLC</u> Project: <u>Coleman Wenatchee</u>

 314 W 15th Street Suite 300
 Project Number: 2017-074
 Report ID:

 Vancouver, WA 98660
 Project Manager: Craig Hultgren
 A010140 - 09 18 20 0809

				ı												1			
Company: Hes dro Con	Project Mgr: (ACA)	Ha Hores	2		Proje	Project Name:		Semen	3		5	Wenthelve	tche		Project #:	2017	-+1	0 स्प	
Address:		Phone:				Email:	tail:				.			PO#					
Sampled by: Christ	DOT LAP								•	NAL	KSIS	ANALYSIS REQUEST	L.						
Site Location:						,		isiJ				1	, Ca, g, Mg, Na, Tl,	ď					
OR (WA) CA							-	Boll			(8)		.8v .	IOI.					
AK ID				-		19000		sloV-	5		tals (к' 2°	'00					
	XI			-				iməč	6CB	1səd	W.		'IN'	ıa				0.0	
SAMPLEID	TAB I	LAN † OE C	LMN LMN	0978	0978	0978	0478	0478	7808	1808	всв	Priori 1, Sb,	oM, mi n.X.	TCLF TCLF				J- 11	rchiv
MW28-W	1130 14.0	5	Ŕ	\geq		+	\perp					v	A .	,		+			1
MW30 - W			-				ļ.,			1	+			-		-	+		1
	21/21/21/20			_	İ		<u> </u>		T	T	+			-		+	-		1
1	000000000000000000000000000000000000000			-			-			t	+			-					
W 1 70 M/V	000000		$oxed{T}$	+		+	-			\dagger	-	+		\perp			-		
BH0112 -W	911201140					\dashv	_		7		7			-					
BI402 - W	8/31/2011/50																		
BH03 - W	91120,0915		0.5																
RW01-W	911/20 1040																		
MW100-W	8/31/201215		5500 3010	Obs. order															
M-101MW	13/120/645 A	C	-	P P															<u></u>
Normal Tur	Normal Turn Around Time (TAT) = 10 Business Days	ess Days				SS	SPECIAL INSTRUCTIONS	NSI	RUC	TION	iòi								
	1 Day 2 Day 31	3 Day		1-	/														
TAT Requested (circle)			Standough	Succe	/														
7	4 DAY 5 DAY	Omer	₫ 4 /	לאיז - ספס	3	- 1													
	SAMPLES ARE HELD FOR 30 DAYS	(١l		+													
RELINQUISHED BY: Signature:	Date: Signature:	N.	2 <i>D</i>	2/2	Ċ.	Sign	RELINQUISHED BY: Signature:	ISHEI	BY:				Date:	Signa	RECEIVED BY: Signature:	ä		Date:	
	Time: Printed Neine:		[P	i 1)	Prin	Printed Name:	me:					Time:	Print	Printed Name:			Time:	
Umris Casonel	1555 MM		1	ž		(_					
Company	Company:					Š	Company:							Company.	oany:				

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Jamenghini

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>HydroCon LLC</u> Project: <u>Coleman Wenatchee</u>

 314 W 15th Street Suite 300
 Project Number: 2017-074
 Report ID:

 Vancouver, WA 98660
 Project Manager: Craig Hultgren
 A0I0140 - 09 18 20 0809

Address: Address: Sampled by: (Axr5	X × 8 8760 BLEX X X MALЬH-Cx X X MALLH-HCID	Cr. Co., Cu. Fe. Pb., Hg., Mg. Co. Co., Cu. Fe. Pb., Hg., Mg. Co. Cu. Co., Cu., Fe. Pb., Hg., Mg. Co. Cu., Co., Cu., Cu., Cu., Cu., Cu., Cu., Cu., Cu	DISS. TCLP DISS. TCLP "Wetals (8) "B. 26. 25. 25. 25. 25. 25. 25. 25. 25. 25. 25	7017 - 074
DECONTS DOSCOLLAN REWA)CA NK ID AND AND AND AND AND AND AND A		8085 bCB8 8710 Semi-Aois Enii List	DISS. TCLP	
# di 801 00 00 00 00 00 00 00 00 00 00 00 00 0	8760 KBDW AOC* X	8087 DCB8 8740 Semi-Aois Enil I'ist 8740 SIM BYH8 8760 AOCs Enil I'ist	DISS. TCLP	C. C. S. C.
A)CA MPLE ID LAB ID # 102 - V 9 20 225 20 - 3 052 0 8 20 225 20 - 3 052 0 - 3 0 0 - 4 0 0 - 5 0 - 5 0 -	8760 KBDW AOC* X X RATE X MALLH-C* X MALLH-D* MALLH-HCID	8710 Semi-Aois Full List 8270 Semi-Aois Full List 8260 VOCs Full List	DISS: LCLP	
# CI B T D A T B T D A T B T D A T B T D A	8760 KBDW AO	8081 Pest 8070 Semi-Vols 1 8270 Semi-Vols 1 8270 SIM PAHs	.cciu	
THE	H 40928 X X H 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8081 be 8082 bc 8085 bc 8730 26 8730 21	-	7934000
०या <u>३</u> २२० ०२॥४	X X X X		TVIOI	Этсріче
8/3//225/02/12/8	X			
and to the second secon		0110		
Normal Turn Around Time (TAT) = 10 Business Days	s Days	SPECIAL INSTRUCTIONS:		
1 Day 2 Day 3 Day 1 Day	Standard			
4 DAY 5 DAY	Other: Man - rush	ı		
SAMPLES ARE HELD FOR 30 DAYS RELINOUISHED BY: RECEIVED BY:		RELINOTISHED BY:	RECEIVED RV.	
Date:	Date:	Signature:	Date: Signature:	Date:
Printed Name: Trine: Printed Name (A. C. A. S. P. L. S. 1955)	Time:	Printed Name:	Time: Printed Name:	Time:
, C3 ()	61.11	Company:	Company:	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

HydroCon LLC

Project:

Coleman Wenatchee

314 W 15th Street Suite 300

Vancouver, WA 98660

Project Number: 2017-074

Project Manager: Craig Hultgren

Report ID:

A0I0140 - 09 18 20 0809

Project/Project #:		/	Elen		
Delivery Info: Date/time received: 9/3/20 @ 15/55 By: Delivered by: Apex Client X ESS FedEx UPS Swift Senvoy SDS Other Cooler Inspection Date/time inspected: 9/3/20 @ 15/55 By: Chain of Custody included? Yes No Custody seals? Yes No Signed/dated by client? Yes No Custody seals? Yes No Signed/dated by Apex? Signed/dated by Apex? Yes No Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler #6 Cooler #1 Cooler #1 Cooler #2 Cooler #4 Cooler #5 Cooler #6 Cool	Project/Project #: Well	man Oil Wx	natchee &	12017-074	
Delivered by: Apex Client ESS FedEx UPS Swift Senvoy SDS Other Cooler Inspection Date/time inspected: 9/3/20 @ /5:55 By: MA Chain of Custody included? Yes No Custody seals? Yes No Signed/dated by client? Yes No Custody seals? Yes No Signed/dated by Apex? Yes No Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler #6 Temperature (°C) 5-2 5-8 2-6 5-6 Received on ice? (Y/N) Y Y Temp. blanks? (Y/N) Y Y It some coolers are in temp and some out, were green dots applied to out of temperature samples? Yes/No Out of temperature samples form initiated? Yes/No NA MH(N) Samples Inspection: Date/time inspected: 4/2/155 @ 1/4 All samples intact? Yes No Comments: GWF 914/100 Bottle labels/COCs agree? Yes No Comments: COC/container discrepancies form initiated? Yes No No No No No No No N	Delivery Info:	a	bc914120		
Cooler Inspection Date/time inspected: 9/3/20 @ /5:55 By:	Date/time received: 9/3/2	20 @ 15:55 B	y: ///	2	
Chain of Custody included? Yes No Custody seals? Yes No X Signed/dated by client? Yes No Signed/dated by Apex? Yes No Signed/dated by Apex? Yes No Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler Temperature (°C) 5.2 5.8 2.6 5.6 Received on ice? (Y/N) 4 4 5.6 Received on ice? (Y/N) 4 4 5.6 Received on ice? (Y/N) 6.6 Received	Delivered by: ApexClier		•		SDS Other
Chain of Custody included? Yes No Custody seals? Yes No X Signed/dated by client? Yes No Signed/dated by Apex? Yes No Signed/dated by Apex? Yes No Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler Temperature (°C) 5.2 5.8 2.6 5.6 Received on ice? (Y/N) 4 4 5.6 Received on ice? (Y/N) 4 4 5.6 Received on ice? (Y/N) 6.6 Received	Cooler Inspection Date/ti	me inspected: 9/3/2	0 @ 15:55	By:	Ms
Signed/dated by Apex? Yes No					1/
Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler Temperature (°C)	Signed/dated by client?	Yes <u>No</u> No			
Temperature (°C) 5.2 5.8 V.6 5.6 Received on ice? (Y/N) 4 4 5 5.6 Temp. blanks? (Y/N) 4 4 5 5 5 6 5 6 5 6 5 6 6 6 6 6 6 6 6 6	Signed/dated by Apex?	Yes No			
Received on ice? (Y/N) Temp. blanks? (Y/N) Hee type: (Gel/Real/Other) Condition: Cooler out of temp? (YN) Possible reason why: If some coolers are in temp and some out, were green dots applied to out of temperature samples? Yes/No Out of temperature samples form initiated? Yes/No NA NH(W) Samples Inspection: Date/time inspected: 412120	<u>C</u>	cooler #1 Cooler #2 Co	ooler #3 Cooler #4	Cooler #5	Cooler #6 Cooler #
Received on ice? (Y/N) Temp. blanks? (Y/N) Hee type: (Gel/Real/Other) Condition: Cooler out of temp? (YN) Possible reason why: If some coolers are in temp and some out, were green dots applied to out of temperature samples? Yes/No Out of temperature samples form initiated? Yes/No NA NH(W) Samples Inspection: Date/time inspected: 412120	Temperature (°C)	5.2 5.8	2-6 5-6	Police Control	
Getype: (Get/Real/Other) Www Dewl	Received on ice? (Y/N)	<u>y</u> <u>y</u> <u>-</u>			3.000
Condition: Cooler out of temp? (YN) Possible reason why: If some coolers are in temp and some out, were green dots applied to out of temperature samples? Yes/No Out of temperature samples form initiated? Yes/No NA ANTW By: Samples Inspection: Date/time inspected: 4/2/170 @ 1219 By: All samples intact? Yes No Comments: Bottle labels/COCs agree? Yes No Comments: COC/container discrepancies form initiated? Yes No X Containers/volumes received appropriate for analysis? Yes X No Comments: Do VOA vials have visible headspace? Yes X No NA NA Comments MW-035-W 13+15 MW-13-W 3/3 Sed. MW-20-W 13+15 MW-25-W + WW-30 Water samples: pH checked: Yes X No NA pH appropriate? Yes X No NA Comments:	Temp. blanks? (Y/N)	4 4 -			
Cooler out of temp? (YN) Possible reason why: If some coolers are in temp and some out, were green dots applied to out of temperature samples? Yes/No Out of temperature samples form initiated? Yes/No NA AND BY: Samples Inspection: Date/time inspected: 412170 By: MW All samples intact? Yes No Comments: Bottle labels/COCs agree? Yes No Comments: COC/container discrepancies form initiated? Yes No Comments: Containers/volumes received appropriate for analysis? Yes No Comments: Do VOA vials have visible headspace? Yes No NA Comments MW035-W 13+15, MW13-W 313 5rd. MW20-W 13+15, WW25-W+WW30 Water samples: pH checked: Yes No NA pH appropriate? Yes No NA Comments:	Icc-type: (Gel/Real/Other)	wat Pral :			
If some coolers are in temp and some out, were green dots applied to out of temperature samples? Yes/No Out of temperature samples form initiated? Yes/No NA JULY By: WK Samples Inspection: Date/time inspected: 4/3/170 @ By: WK All samples intact? Yes No Comments: WW 4/4/hw Bottle labels/COCs agree? Yes No Comments: COC/container discrepancies form initiated? Yes No Comments: Containers/volumes received appropriate for analysis? Yes No Comments: Do VOA vials have visible headspace? Yes No NA Comments MW 0/3/5-W 1/3 HS, MW/3-W 3/3/5 Ed. MW 20-W 1/3 HS, WW 25-W + WW 30 Water samples: pH checked: Yes No NA pH appropriate? Yes No NA Comments:	Condition:	Good -			
COC/container discrepancies form initiated? Yes No _X Containers/volumes received appropriate for analysis? Yes _X_ No Comments: Do VOA vials have visible headspace? Yes _X_ No NA Comments _MWOBS-W 13+15 _ MWH-W 31/3 Sed MWW-W 1/3+15 _ WW-25-W+ WW-30 Water samples: pH checked: Yes _X_No NA pH appropriate? Yes _X_No NA Comments:	Out of towns and the control of the	rm initiated? Vec/No/N			
Containers/volumes received appropriate for analysis? Yes \(\) No \(\) Comments: Do VOA vials have visible headspace? Yes \(\) No \(\) NA \(\) NA \(\) Comments \(\) MW13-W 3/3 Sed. \(\) MW20-W 1/3 HS, WW25-W + WW30 \(\) Water samples: pH checked: Yes \(\) No \(\) NA \(\) pH appropriate? Yes \(\) No \(\) NA \(\) NA \(\) Comments:			(A) a 14/20 1219 acc 914/20	Ву:���	<u> </u>
Containers/volumes received appropriate for analysis? Yes \(\) No \(\) Comments: Do VOA vials have visible headspace? Yes \(\) No \(\) NA \(\) NA \(\) Comments \(\) MW13-W 3/3 Sed. \(\) MW20-W 1/3 HS, WW25-W + WW30 \(\) Water samples: pH checked: Yes \(\) No \(\) NA \(\) pH appropriate? Yes \(\) No \(\) NA \(\) NA \(\) Comments:	All samples intact? Yes X	No Comments:	acc 914ho		
Comments MWO35-W 13HS, MW17-W 313 Sed., MW20-W 113HS, WW25-W+WW30 Water samples: pH checked: Yes XNo_NA_ pH appropriate? Yes XNo_NA_ Comments:	All samples intact? Yes X 1 Bottle labels/COCs agree? Yes	No Comments: Comments Comments	ats:		
Comments MWO35-W 13HS, MW17-W 313 Sed., MW20-W 113HS, WW25-W+WW30 Water samples: pH checked: Yes XNo_NA_ pH appropriate? Yes XNo_NA_ Comments:	All samples intact? Yes X N Bottle labels/COCs agree? Yes COC/container discrepancies for	No Comments:	nts:		AAM
Water samples: pH checked: Yes No_NA_ pH appropriate? Yes No_NA_ Comments:	All samples intact? Yes 1 Bottle labels/COCs agree? Yes COC/container discrepancies for Containers/volumes received as	No Comments:	No X Yes X No (AAM
Comments:	All samples intact? Yes 1 Bottle labels/COCs agree? Yes COC/container discrepancies for Containers/volumes received as Do VOA vials have visible hea	No Comments: s No Comments orm initiated? Yes ppropriate for analysis? dspace? Yes X No	NA	Comments:	
	All samples intact? Yes 1 Bottle labels/COCs agree? Yes COC/container discrepancies for Containers/volumes received as Do VOA vials have visible hea Comments MW035-W 13	No Comments: s No Comments orm initiated? Yes ppropriate for analysis? dspace? Yes No HS	NO X Yes X NO (Comments:	NW-25-W+WNW30-
Additional information: 3 3 Sed.	All samples intact? Yes X N Bottle labels/COCs agree? Yes COC/container discrepancies for Containers/volumes received ag Do VOA vials have visible hea Comments MW035-W 113 Water samples: pH checked: Yes	No Comments: s No Comments orm initiated? Yes ppropriate for analysis? dspace? Yes No HS	NO X Yes X NO (Comments:	NW-25-W+WNW30-
	All samples intact? Yes X N Bottle labels/COCs agree? Yes COC/container discrepancies for Containers/volumes received ag Do VOA vials have visible hea Comments MW035-W 113 Water samples: pH checked: Yes	No Comments: s No Comments orm initiated? Yes ppropriate for analysis? dspace? Yes No HS	NO X Yes X NO (Comments:	NW-25-W+WNW30-
	All samples intact? Yes X N Bottle labels/COCs agree? Yes COC/container discrepancies for Containers/volumes received ag Do VOA vials have visible hea Comments MW035-W 113 Water samples: pH checked: Yes Comments:	No Comments:	NO X Yes X NO (Comments:	NW-25-W+WNW30-
	All samples intact? Yes X N Bottle labels/COCs agree? Yes COC/container discrepancies for Containers/volumes received ag Do VOA vials have visible hea Comments MW035-W 1/3 Water samples: pH checked: Yes Comments:	No Comments:	No X Yes X No (Comments:	NW-25-W+WNW30-

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Doas Smerighini

File :C:\msdchem\1\data\2020-09\0I10048\7R091022.D

Operator : BLL

Acquired : 11 Sep 2020 4:08 am using AcqMethod FID7ACQ.M

Instrument : HP G1530A
Sample Name: A0I0140-01

Misc Info :
Vial Number: 65

File :C:\msdchem\1\data\2020-09\0I10048\7R091023.D

Operator : BLL

Acquired : 11 Sep 2020 4:29 am using AcqMethod FID7ACQ.M

Instrument : HP G1530A
Sample Name: A0I0140-02

Misc Info :
Vial Number: 66

File :C:\msdchem\1\data\2020-09\0I10048\7R091024.D

Operator : BLL

Acquired : 11 Sep 2020 4:50 am using AcqMethod FID7ACQ.M

Instrument : HP G1530A
Sample Name: A0I0140-03

Misc Info : Vial Number: 67

File :C:\msdchem\1\data\2020-09\0I10048\7R091025.D

Operator : BLL

Acquired : 11 Sep 2020 5:10 am using AcqMethod FID7ACQ.M

Instrument : HP G1530A
Sample Name: A0I0140-04

Misc Info : Vial Number: 68

File :C:\msdchem\1\data\2020-09\0I11019\1F091109.D

Operator : BLL

Acquired : 11 Sep 2020 10:22 pm using AcqMethod A1F40422.M

Instrument: HP G1530A Sample Name: A0I0140-05

Misc Info : Vial Number: 6

File :C:\msdchem\1\data\2020-09\0I11019\1F091110.D

Operator : BLL

Acquired : 11 Sep 2020 10:45 pm using AcqMethod A1F40422.M

Instrument : HP G1530A
Sample Name: A0I0140-06

Misc Info :
Vial Number: 7

File :C:\msdchem\1\data\2020-09\0I11019\1F091111.D

Operator : BLL

Acquired: 11 Sep 2020 11:07 pm using AcqMethod A1F40422.M

Instrument: HP G1530A Sample Name: A0I0140-07

File :C:\msdchem\1\data\2020-09\0I11019\1F091112.D

Operator : BLL

Acquired : 11 Sep 2020 11:30 pm using AcqMethod A1F40422.M

Instrument: HP G1530A Sample Name: A0I0140-08

File :C:\msdchem\1\data\2020-09\0I11019\1F091113.D

Operator : BLL

Acquired : 11 Sep 2020 11:53 pm using AcqMethod A1F40422.M

Instrument : HP G1530A
Sample Name: A0I0140-09

File :C:\msdchem\1\data\2020-09\0I11019\1F091114.D

Operator : BLL

Acquired : 12 Sep 2020 12:16 am using AcqMethod A1F40422.M

Instrument : HP G1530A
Sample Name: A0I0140-10

File :C:\msdchem\1\data\2020-09\0I11019\1F091115.D

Operator : BLL

Acquired : 12 Sep 2020 12:38 am using AcqMethod A1F40422.M

Instrument : HP G1530A
Sample Name: A0I0140-11

File :C:\msdchem\1\data\2020-09\0I11019\1F091116.D

Operator : BLL

Acquired: 12 Sep 2020 1:01 am using AcqMethod A1F40422.M

Instrument : HP G1530A
Sample Name: A0I0140-12

File :C:\msdchem\1\data\2020-09\0I11019\1F091117.D

Operator : BLL

Acquired: 12 Sep 2020 1:24 am using AcqMethod A1F40422.M

Instrument : HP G1530A
Sample Name: A0I0140-13

File :C:\msdchem\1\data\2020-09\0I11020\1R091106.D

Operator : BLL

Acquired : 11 Sep 2020 9:14 pm using AcqMethod A1F40422.M

Instrument : HP G1530A
Sample Name: A0I0140-14

File :C:\msdchem\1\data\2020-09\0I11020\1R091107.D

Operator : BLL

Acquired : 11 Sep 2020 9:37 pm using AcqMethod A1F40422.M

Instrument : HP G1530A
Sample Name: A0I0140-15

File :C:\msdchem\1\data\2020-09\0I11020\1R091108.D

Operator : BLL

Acquired : 11 Sep 2020 9:59 pm using AcqMethod A1F40422.M

Instrument : HP G1530A
Sample Name: A0I0140-16

File :C:\msdchem\1\data\2020-09\0I11020\1R091109.D

Operator : BLL

Acquired : 11 Sep 2020 10:22 pm using AcqMethod A1F40422.M

Instrument : HP G1530A
Sample Name: A0I0140-17

File :C:\msdchem\1\data\2020-09\0I11020\1R091110.D

Operator : BLL

Acquired : 11 Sep 2020 10:45 pm using AcqMethod A1F40422.M

Instrument : HP G1530A
Sample Name: A0I0140-18

File :C:\msdchem\1\data\2020-09\0I11020\1R091111.D

Operator : BLL

Acquired: 11 Sep 2020 11:07 pm using AcqMethod A1F40422.M

Instrument : HP G1530A
Sample Name: A0I0140-19

File :C:\msdchem\1\data\2020-09\0I11020\1R091112.D

Operator : BLL

Acquired : 11 Sep 2020 11:30 pm using AcqMethod A1F40422.M

Instrument : HP G1530A
Sample Name: A0I0140-20

File :C:\msdchem\1\data\2020-09\0I11020\1R091113.D

Operator : BLL

Acquired : 11 Sep 2020 11:53 pm using AcqMethod A1F40422.M

Instrument : HP G1530A
Sample Name: A0I0140-21

File :C:\msdchem\1\data\2020-09\0I11020\1R091114.D

Operator : BLL

Acquired: 12 Sep 2020 12:16 am using AcqMethod A1F40422.M

Instrument: HP G1530A Sample Name: A0I0140-22

File :C:\msdchem\1\data\2020-09\0I11020\1R091115.D

Operator : BLL

Acquired : 12 Sep 2020 12:38 am using AcqMethod A1F40422.M

Instrument : HP G1530A
Sample Name: A0I0140-23

File :C:\msdchem\1\data\2020-09\0I11020\1R091116.D

Operator : BLL

Acquired : 12 Sep 2020 1:01 am using AcqMethod A1F40422.M

Instrument : HP G1530A
Sample Name: A0I0140-24

File :C:\msdchem\1\data\2020-09\0I11026\7R091109.D

Operator : BLL

Acquired : 11 Sep 2020 10:12 pm using AcqMethod FID7ACQ.M

Instrument : HP G1530A
Sample Name: A0I0140-25

File :C:\msdchem\1\data\2020-09\0I11026\7R091110.D

Operator : BLL

Acquired : 11 Sep 2020 10:33 pm using AcqMethod FID7ACQ.M

Instrument : HP G1530A
Sample Name: A0I0140-26

File :C:\msdchem\1\data\2020-09\0I11026\7R091111.D

Operator : BLL

Acquired : 11 Sep 2020 10:53 pm using AcqMethod FID7ACQ.M

Instrument: HP G1530A Sample Name: A0I0140-27

File :C:\msdchem\1\data\2020-09\0I11026\7R091112.D

Operator : BLL

Acquired : 11 Sep 2020 11:14 pm using AcqMethod FID7ACQ.M

Instrument: HP G1530A Sample Name: A0I0140-28

File :C:\msdchem\1\data\2020-09\0I11026\7R091113.D

Operator : BLL

Acquired : 11 Sep 2020 11:35 pm using AcqMethod FID7ACQ.M

Instrument: HP G1530A Sample Name: A0I0140-29

File :C:\msdchem\1\data\2020-09\0I11026\7R091114.D

Operator : BLL

Acquired : 11 Sep 2020 11:55 pm using AcqMethod FID7ACQ.M

Instrument: HP G1530A Sample Name: A0I0140-30

File :C:\msdchem\1\data\2020-09\0I10048\7R091016.D

Operator : BLL

Acquired: 11 Sep 2020 2:05 am using AcqMethod FID7ACQ.M

Instrument : HP G1530A
Sample Name: A0I0140-31

File :C:\msdchem\1\data\2020-09\0I10048\7R091017.D

Operator : BLL

Acquired : 11 Sep 2020 2:25 am using AcqMethod FID7ACQ.M

Instrument : HP G1530A
Sample Name: A0I0140-32

File :C:\msdchem\1\data\2020-09\0I10048\7R091006.D

Operator : BLL

Acquired : 10 Sep 2020 10:37 pm using AcqMethod FID7ACQ.M

Instrument : HP G1530A
Sample Name: 0090289-BLK1

File :C:\msdchem\1\data\2020-09\0I10048\7R091002.D

Operator : BLL

Acquired: 10 Sep 2020 5:16 pm using AcqMethod FID7ACQ.M

Instrument : HP G1530A
Sample Name: 0I10048-RES1

File :C:\msdchem\1\data\2020-09\0I10048\7R091003.D

Operator : BLL

Acquired : 10 Sep 2020 5:37 pm using AcqMethod FID7ACQ.M

Instrument : HP G1530A
Sample Name: 0I10048-CCV1

File :C:\msdchem\1\data\2020-09\0I10048\7R091004.D

Operator : BLL

Acquired : 10 Sep 2020 5:58 pm using AcqMethod FID7ACQ.M

Instrument : HP G1530A
Sample Name: 0I10048-CCV2

File :C:\msdchem\1\data\2020-09\0I11019\1F091106.D

Operator : BLL

Acquired : 11 Sep 2020 9:14 pm using AcqMethod A1F40422.M

Instrument : HP G1530A
Sample Name: 0090324-BLK1

File :C:\msdchem\1\data\2020-09\0I11019\1F091102.D

Operator : BLL

Acquired : 11 Sep 2020 5:03 pm using AcqMethod A1F40422.M

Instrument : HP G1530A
Sample Name: 0I11019-RES1

File :C:\msdchem\1\data\2020-09\0I11019\1F091103.D

Operator : BLL

Acquired : 11 Sep 2020 5:26 pm using AcqMethod A1F40422.M

Instrument : HP G1530A
Sample Name: 0I11019-CCV1

File :C:\msdchem\1\data\2020-09\0I11019\1F091104.D

Operator : BLL

Acquired : 11 Sep 2020 5:49 pm using AcqMethod A1F40422.M

Instrument : HP G1530A
Sample Name: 0I11019-CCV2

File :C:\msdchem\1\data\2020-09\0I11020\1R091102.D

Operator : BLL

Acquired : 11 Sep 2020 5:03 pm using AcqMethod A1F40422.M

Instrument : HP G1530A
Sample Name: 0I11020-RES1

File :C:\msdchem\1\data\2020-09\0I11020\1R091103.D

Operator : BLL

Acquired : 11 Sep 2020 5:26 pm using AcqMethod A1F40422.M

Instrument : HP G1530A
Sample Name: 0I11020-CCV1

File :C:\msdchem\1\data\2020-09\0I11020\1R091104.D

Operator : BLL

Acquired : 11 Sep 2020 5:49 pm using AcqMethod A1F40422.M

Instrument : HP G1530A
Sample Name: 0I11020-CCV2

Misc Info :
Vial Number: 1

File :C:\msdchem\1\data\2020-09\0I11026\7R091106.D

Operator : BLL

Acquired : 11 Sep 2020 9:10 pm using AcqMethod FID7ACQ.M

Instrument : HP G1530A
Sample Name: 0090334-BLK1

Misc Info :
Vial Number: 51

File :C:\msdchem\1\data\2020-09\0I11026\7R091102.D

Operator : BLL

Acquired : 11 Sep 2020 5:00 pm using AcqMethod FID7ACQ.M

Instrument : HP G1530A
Sample Name: 0I11026-RES1

Misc Info : Vial Number: 95

File :C:\msdchem\1\data\2020-09\0I11026\7R091103.D

Operator : BLL

Acquired : 11 Sep 2020 5:20 pm using AcqMethod FID7ACQ.M

Instrument : HP G1530A
Sample Name: 0I11026-CCV1

Misc Info : Vial Number: 2

File :C:\msdchem\1\data\2020-09\0I11026\7R091104.D

Operator : BLL

Acquired : 11 Sep 2020 5:41 pm using AcqMethod FID7ACQ.M

Instrument : HP G1530A
Sample Name: 0I11026-CCV2

Misc Info :
Vial Number: 1

APPENDIX C DATA VALIDATION REPORT

TO:	Craig Hultgren (HydroCon)]
FROM:	Manon Tanner-Dave]
DATE:	September 20, 2020]
SUBJECT:	Laboratory Validation Report		
HydroCon TOC Site No.	Coleman Wenatchee – 2017-074		
Sampling Event Type:	Water Sampling	Number of Samples:	33
Laboratory Work Order:	A0I0140	Final Report Date & Time:	September 18, 2020
Analysis & Method			
☑ Diesel Range Hy☐ Diesel Range Or☐ Volatile Organic ©☑ BTEX (EPA 8260	Hydrocarbon (NWTPH-Gx) drocarbon without Silica Gel (NWTPH- ganics with Silica Gel (NWTPH-DxSG) Compounds (EPA 8260C) DC) 6020A), Organic Lead and Manganese	,	
Data Package Complet	eness:		
Data package was comp	plete.		
EDD to Hardcopy Verif			
All EDD was not provide	ъч.		

Technical Data Validation:

- □ Laboratory Control Sample Laboratory Control Sample Duplicates (LCS/LCSD)

- □ Reporting Limits (MDL and MRL)
- ⊠ Reported Results

Holding Times & Sample Receipt:

All holding times and sample receipt were acceptable, with the exceptions noted below:

- Lab report noted that samples MW30-W, MW31-W, BH03-W, and RW01-W were received with incomplete field preservation; lab adjusted pH accordingly upon receipt. No qualifiers were applied to the results.
- Lab noted that the following samples contained headspace in their sample vials; enough sample without headspace was available for analysis, no qualifiers were applied to the results:
 - o MW03S-W: 1 out of 3 vials had headspace
 - o MW20-W: 1 out of 3 vials had headspace
- Lab noted that the following samples had visible sediment in their samples vials; detected results for NWTPH-Gx and BTEX were qualified as J-Other:
 - o MW17-W: 3 out of 3 vials contained sediment
 - o MW25-W: 3 out of 3 vials contained sediment
 - MW30-W: 3 out of 3 vials contained sediment

Surrogate Compounds:

All surrogate percent recoveries (%R) were within laboratory limits.

Associated Matrix Spike/Matrix Spike Duplicate (MS/MSD):

Matrix spikes were analyzed at the appropriate frequency and all %R were within the acceptance criteria, with the following exceptions.

NWTPH-Dx: Laboratory control sample duplicate (LCSD) analyzed in place of matrix spike/duplicate samples due to limited sample amount available for analysis.

Associated Laboratory Duplicate:

Laboratory duplicates were analyzed at the appropriate frequency and all %D were within the acceptance criteria, with the following exceptions noted below:

Analyte	Sample (MW11-W)	Duplicate (0090145-DUP2)	RPD	QC Limit	Qualifier/Comments
GRO	785	755	4%		The lab duplicate was analyzed outside of the
Benzene	ND	ND			method specified 12 hour analysis window.
Toluene	ND	ND		30%	Since the RPD was within control limits, no
Ethylbenzene	ND	ND]	qualifiers were applied to the parent sample
Xylenes, total	ND	ND]	MW11-W.

Laboratory Control Sample/Laboratory Control Sample Duplicates:

LCS/LCSD were analyzed at the appropriate frequency and all %R were within the acceptance criteria.

Method Blank:

Method blanks were analyzed at the appropriate frequency and were non-detect (ND) for all target analytes.

Blank-310820 was collected and analyzed; all results were ND for the target analytes.

BTEX: One trip blank (Trip Blank) was collected and analyzed; all results were ND for the target analytes.

Field Duplicate(s):

Three sets of parent/field duplicate samples were collected and analyzed (MW06-W/MW100-W, MW10R-W/MW101-W, and MW17-W/MW102-W); all RPDs were within control limits, with the following exceptions noted below:

	Sample	Duplicate			
Analyte	(MW17-W)	(MW102-W)	RPD	QC Limit	Qualifier/Comments
Diesel	2890	1430	67.6%	35%	J-REP qualify results.

Target Analyte List:

All requested analytes were present.

Reporting Limits (MDL and MRL):

Reporting limits were within the acceptance criteria.

Reported Results:

All reported results are acceptable.

Laboratory qualifiers for NWTPH-Dx:

- (F-11) The hydrocarbon pattern indicates possible weathered diesel, or a contribution from a related component.
 - o J/UJ-Other qualify affected results.
- (F-13) The chromatographic pattern does not resemble the fuel standard used for quantitation.
 - o J/UJ-Chrom qualify affected results.
- (F-20) Result for Diesel is estimated due to overlap from Gasoline Range Organics or other VOCs.
 - o J/UJ-Mi qualify affected results.

Lab Validation Assessment

Analytical results are usable to meet the project objectives.

Data Quality Review Statement for Report

Aside from the data quality issues discussed above, the data quality review identified no concerns with respect to the quality or usability of the data presented herein.

Appendix A. Data Validation Qualifiers and Definitions

The following lists the this data validation rev	data validation qualifier codes and their definitions that were assigned to analytical results in iew process.
Data Validation Qualifiers and Definitions:	☐ (R) The sample result is reject due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence

☐ (DNR) Do not report. A more appropriate result is reported from another

Appendix B. Data Validation Qualified Summary Table

analysis or dilution.

of the analyte cannot be verified.

Laboratory qualifiers:

- (F-11) The hydrocarbon pattern indicates possible weathered diesel, or a contribution from a related component.
- (F-13) The chromatographic pattern does not resemble the fuel standard used for quantitation.
- (F-20) Result for Diesel is estimated due to overlap from Gasoline Range Organics or other VOCs.

Validation qualifiers:

(J) The result is an estimated quantity.

Reason codes:

- Chrom = Chromatographic pattern doesn't match the pattern of the calibration standard.
- Mi = Matrix interference.
- Other = Other, described in data validation report.
- REP = Precision (all replicates).

Appendix B. Validator Qualified Data Summary Table

Sample	Laboratory ID	Method	Parameter Name	Result	Result Units	Laboratory Qualifier	Validator Qualifier	Reason Code
MW01S-W	A0I0140-01	NWTPH-Dx	Diesel	108	μg/L	F-11	J	Other
MW03S-W	A0I0140-02	NWTPH-Dx	Diesel	86.0	μg/L	F-11	J	Other
MW06-W	A0I0140-03	NWTPH-Dx	Diesel	1180	μg/L	F-11	J	Other
MW09R-W	A0I0140-05	NWTPH-Dx	Diesel	2330	μg/L	F-13	J	Chrom
MW10R-W	A0I0140-06	NWTPH-Dx	Diesel	2130	μg/L	F-13	J	Chrom
MW11-W	A0I0140-07	NWTPH-Dx	Diesel	1870	μg/L	F-13	J	Chrom
MW13R-W	A0I0140-09	NWTPH-Dx	Diesel	666	μg/L	F-11	J	Other
MW14-W	A0I0140-10	NWTPH-Dx	Diesel	825	μg/L	F-11, F-20	J	Other, Mi
MW16-W	A0I0140-11	NWTPH-Dx	Diesel	197	μg/L	F-11	J	Other
MW17-W	A0I0140-12	NWTPH-Dx	Diesel	2890	μg/L	F-13	J	Chrom, REP
MW19-W	A0I0140-13	NWTPH-Dx	Diesel	527	μg/L	F-13	J	Chrom
MW20-W	A0I0140-14	NWTPH-Dx	Diesel	987	μg/L	F-13	J	Chrom
MW21-W	A0I0140-15	NWTPH-Dx	Diesel	1010	μg/L	F-13	J	Chrom
MW23-W	A0I0140-16	NWTPH-Dx	Diesel	960	μg/L	F-11	J	Other
MW24-W	A0I0140-17	NWTPH-Dx	Diesel	443	μg/L	F-11	J	Other
MW25-W	A0I0140-18	NWTPH-Dx	Diesel	154	μg/L	F-11	J	Other
MW26-W	A0I0140-19	NWTPH-Dx	Diesel	235	μg/L	F-11	J	Other
MW27-W	A0I0140-20	NWTPH-Dx	Diesel	838	μg/L	F-11	J	Other
MW28-W	A0I0140-21	NWTPH-Dx	Diesel	1490	μg/L	F-11	J	Other

Sample	Laboratory ID	Method	Parameter Name	Result	Result Units	Laboratory Qualifier	Validator Qualifier	Reason Code
MW30-W	A0I0140-22	NWTPH-Dx	Diesel	6200	μg/L	F-13	J	Chrom
BH01R-W	A0I0140-25	NWTPH-Dx	Diesel	2740	μg/L	F-13	J	Chrom
BH02-W	A0I0140-26	NWTPH-Dx	Diesel	3820	μg/L	F-13	J	Chrom
BH03-W	A0I0140-26	NWTPH-Dx	Diesel	546	μg/L	F-13	J	Chrom
RW01-W	A0I0140-28	NWTPH-Dx	Diesel	145	μg/L	F-11	J	Other
MW100-W	A0I0140-29	NWTPH-Dx	Diesel	1640	μg/L	F-11	J	Other
MW101-W	A0I0140-30	NWTPH-Dx	Diesel	1680	μg/L	F-13	J	Chrom
MW102-W	A0I0140-31	NWTPH-Dx	Diesel	1430	μg/L	F-13	J	Chrom, REP
MW17-W	A0I0140-12	NWTPH-Gx	Gasoline Range Organics	267	μg/L		J	Other

APPENDIX D WATER LEVEL AND PRODUCT THICKNESS MEASUREMENTS

Depth to Water/Depth to Product Measurments

Coleman Oil Wenatchee, Washington

Date: 8/30/2020

	Total	Well	Screened	Well Casing	Depth to	Depth to	Sheen
	Well Depth	Diameter	Interval	Elevation	Water	Product	Detected
Well ID	(feet bgs)	(inch)	(feet bgs)	(feet ¹)	(feet BTOC)	(feet BTOC)	(Yes/No)
MW01	35.00	2	20-35	658.01	11.93		
MW01S	19.99	4	5.37 - 20.37	657.54	12.07		
MW02	40.00	2	25-40	657.76	11.76		
MW03	35.00	2	25-35	658.26	7.83		
MW03S	19.30	4	4.43 - 19.43	658.17	8.15		
MW04	37.00	2	27-37	657.48	16.03		
MW05	45.00	2	30-45	656.00	38.63		
MW06	18.00	4	8-18	657.70	10.97		
MW07	20.00	4	10-20	657.52	11.79		
MW08	25.00	4	15-25	656.20	15.6		
MW09R	32.60	4	8.59-33.59	653.55	16.93		
MW10R	33.59	4	14.64-34.64	644.30	23.86		
MW11	22.00	4	12-22	658.00	14.02		
MW12	19.52	4	4.63 - 19.63	658.27	8.13		
MW13R	18.46	4	4.23 - 18.23	656.67	7.48		
MW14	20.02	4	5.23 - 20.23	657.15	8.10		
MW15	35.10	4	10.33 - 35.33	654.99	34.79		
MW16	29.15	4	9.28 - 29.28	656.93	9.41		
MW17	29.41	4	9.52 - 29.52	655.55	13.93		
MW18	34.65	4	15.86 - 35.86	654.51	Dry		
MW19	31.48	4	11.66 - 31.66	653.31	27.90		
MW20	29.50	4	9.79 - 29.79	650.85	22.60		
MW21	32.10	4	12.30 - 32.30	643.88	20.12		
MW22	39.10	4	9.19 - 34.19	641.85	25.18		
MW23	22.04	4	7.13 - 22.13	656.91	11.48		
MW24	34.25	4	14.17-34.17	644.38	26.82		
MW25	32.96	4	12.81-32.81	645.57	24.81		
MW26	32.52	4	13.54-33.54	646.65	25.50		
MW27	38.74	4	13.56-38.56	649.00	23.26		
MW28	38.74	4	13.62-38.62	650.64	24.29		
MW29	39.11	4	14.05-39.05	652.34	25.17	25.15	
MW30	39.79	4	14.67-39.67	652.83	34.9		
MW31	39.28	4	14.11-39.11	653.97	34.19		
MW32	34.02	4	8.95-33.95	655.83	11.51		
BH01R	39.97	4	14.52-39.52	651.03	23.96		
BH02	35.00	2	20-35	653.77	28.39		
BH03	30.00	2	15-30	648.76	25.47		
RW01	30.00	3	15-30	650.42	27.2		

NOTES:

feet¹ = Elevation is relative to NGVD88

bgs = below ground surface

PVC = polyvinyl chloride

BTOC = below top of casing