

MEMORANDUM

То:	Andy Kallus and Pete Adolphson, Washington	Date:	April 2, 2015				
	State Department of Ecology						
From:	Clay Patmont and Nathan Soccorsy, Anchor QEA, LLC	Project:	150204-01.01				
Cc:	Steve Germiat, Aspect Consulting						
	Cindy Jernigan and Bryan Lust, Kimberly-Clark Corporation						
Re:	Supplemental Porewater Sulfide Sampling and Analysis, K-C Worldwide Upland						
	Area in Everett, Washington						

INTRODUCTION

This memorandum summarizes the results of supplemental sampling and analysis of sulfide in intertidal porewater along the downgradient edge of the K-C Worldwide Upland Area (Site) in Everett, Washington. As described in previous data transmittals and in the *Plan for Supplemental Sampling and Analysis of Sulfide in Intertidal Porewater* (Aspect 2015), total dissolved sulfide concentrations ranging between less than 0.05 and approximately 24 milligrams per liter (mg/L) were previously reported in intertidal porewater samples collected from stations PW-3, PW-4, PW-5, and PW-7 (Attachment A). Porewater sulfide concentrations were generally higher than levels measured in groundwater samples from adjacent upland shoreline monitoring wells, as described in the September 2014 Remedial Investigation (RI) Data Report for the Upland Area.¹

The supplemental porewater sampling and analysis described herein was conducted to further characterize bioavailable free sulfide ion concentrations in intertidal porewater, removing the influence of colloidal sulfide forms, to provide a more direct comparison with free sulfide-based toxicity benchmarks.

¹ The August 2014 porewater data were not available for the RI Data Report but have been uploaded to Ecology's Environmental Information Management system and are being incorporated into the draft Remedial Investigation/Feasibility Study Report.

SAMPLE COLLECTION

The supplemental porewater sampling was performed using passive in situ diffusive gradient thin (DGT) film gels to obtain tidally averaged concentrations of free sulfide. In this sampling approach, free sulfide in porewater diffuses through a polyacrylamide hydrogel and then reacts with silver iodide at the surface of a second gel to form solid-phase silver sulfide. The reaction fixes ionic sulfide into a stable form, thereby allowing it to be eluted under controlled conditions in the analytical laboratory. Colloidal forms of sulfide do not penetrate the thin film gel. This sampling and analysis procedure is described in Teasdale et al. (1999) and has successfully characterized porewater free sulfide concentrations at other sediment cleanup sites in Puget Sound (e.g., Port Gamble Bay).

Sampling probes were advanced on February 17, 2015 at the four intertidal porewater sampling locations where total dissolved sulfide concentrations have been previously detected (PW-3, PW-4, PW-5, and PW-7; Attachment A). The sampling probes were allowed to equilibrate in the field for more than 48 hours and were retrieved during low tide conditions. A description of surface sediments at each DGT probe station, along with deployment and retrieval times, is provided in Table 1.

The DGT probe pistons (approximately 2.5-centimeter [cm] diameter and 0.78-mm thickness) were advanced by hand into intertidal sediments targeting a sampling depth interval of approximately 1 to 10 cm below the mudline. Upon retrieval, each DGT piston was removed from the sediment and flushed with deionized water, sealed in a clean plastic bag, and stored in a cooler on ice. Samples were delivered to Analytical Resources, Inc., in Seattle, Washington, for analysis under chain-of-custody protocol.

POREWATER SULFIDE ANALYSIS

At the laboratory, the accumulated sulfide mass in the DGT gel was extracted using the purge-and-trap method followed by the acid volatile sulfide analysis (EPA Method 9030). The accumulated sulfide mass measured in the DGT was used to calculate porewater sulfide concentrations based on diffusive flux relationships. The flux into the DGT equals the mass (M) accumulated by the binding gel divided by the area of the sampling window (A) and the exposure time (t):

$F = M / (A^*t)$

Porewater sulfide concentrations were calculated using Fick's first law of diffusion (Table 2):

 $C_{\rm DGT} = (F^*\Delta g) / D = (M^*\Delta g) / (D^*A^*t)$

where:

Δg=thickness of the diffusion layerD=diffusion coefficient of sulfide in the gel

POREWATER SULFIDE CONCENTRATIONS

Measured sulfide mass and calculated sulfide concentrations are summarized in Table 2; the original laboratory reports are included as Appendix A. Free sulfide concentrations in all but one of the DGTs (i.e., PW-3, PW-3-duplicate, PW-4, and PW-5) were below the detection limit of 0.06 mg/L. At station PW-7, located along the northern shoreline of the Site, free sulfide was detected above the reporting limit, resulting in a calculated porewater free sulfide concentration of 0.47 mg/L.

Following analysis, the results underwent level 2B data validation. The data validation report is included in Appendix B. All data were determined to be suitable for use in site characterization.

WATER QUALITY BENCHMARKS

The Dredged Material Management Program (DMMP) agencies recently summarized the available literature to develop No Observable Effect Concentrations (NOECs) for free sulfide as a trigger for sediment bioassay purging (Inouye et al. 2013). Converting from hydrogen sulfide (H₂S) to free sulfide (S²⁻) concentration units, NOECs for the different bioassay tests are summarized in Table 3.

		Beddeo	Larval Tests			
Parameter (mg/L)	Neanthes	Ampelisca	Eohaustorius	Rhepoxynius	Bivalve	Echinoderm
Free Sulfide	3.2	0.0088	0.11	0.093	0.0024	0.0094

 Table 3

 Summary of Sulfide NOECs for DMMP Sediment Bioassays

Notes:

DMMP = Dredged Material Management Program mg/L = milligram per liter NOEC = No Observable Effect Concentrations Source: Inouye et al. 2013

Importantly, the NOECs summarized in Table 3 apply to measurements in the overlying water—not porewater (Inouye et al. 2013). The DMMP also notes that sulfide concentrations are often higher in porewater water as compared to overlying water and that porewater represents the most significant exposure medium for many benthic species (e.g., *Neanthes, Eohaustorius,* and *Rhepoxynius*).

Relatively little data are currently available to characterize background concentrations of porewater free sulfide concentrations in regional surface sediments (typically 0 to 10 cm below mudline). The available data include investigations of Saanich Inlet, British Columbia (Nissenbaum et al. 1972; Murray et al. 1978) and Puget Sound, Washington (Carr 2010). The data from these studies are summarized as follows:

- Saanich Inlet Surface sediments present at relatively deep depths in Saanich Inlet contain porewater free sulfide concentrations commonly ranging up to 25 mg/L, with peak concentrations exceeding 100 mg/L (Nissenbaum et al. 1972; Murray et al. 1978)
- Puget Sound Surface sediments present in relatively pristine areas in Puget Sound contain porewater free sulfide concentrations that range up to approximately 0.1 mg/L (Carr 2010)

The data summarized above reveal that naturally occurring concentrations of free sulfide in surface sediment porewater within the region are highly variable but can be present at levels that exceed the NOECs developed by the DMMP for overlying water.

CONCLUSIONS

The relatively low (below the 0.06 mg/L detection limit) porewater free sulfide concentrations measured in intertidal sediments throughout most of the Site (i.e., at stations PW-3, PW-4, and PW-5) are generally below the NOECs summarized in Table 3 and also appear to be within the natural background range reported for Puget Sound (Carr 2010). Thus, porewater sulfide concentrations in these areas do not pose an environmental risk, including from groundwater discharge pathways from the Upland Area.

While porewater free sulfide concentrations measured at Station PW-7 (0.47 mg/L) are below the NOEC for the benthic polychaete worm *Neanthes*, they exceed other NOECs developed by the DMMP for overlying water. The PW-7 concentration also appears to be slightly above the natural background range reported for Puget Sound, though within the concentration range reported for relatively deep water environments such as Saanich Inlet. Relative to the other DGT probe locations, station PW-7 contained more wood fragments and dimensional lumber on the sediment surface (Table 1), which could reasonably have contributed to the observed sulfide concentrations at this station (i.e., from wood debris degradation). This is supported by the fact that the previously detected porewater sulfide concentrations at PW-7 (up to 15 mg/L) were considerably higher than sulfide concentrations detected in adjacent upland shoreline monitoring wells NRP-MW-2, NRP-MW-3, and MW-5 (groundwater data included in RI Data Report for Upland Area).

Based on these findings, the need for and scope of sediment and/or wood debris cleanup in the PW-7 area can be most effectively addressed as part of the forthcoming remedial investigation/feasibility study of the Everett East Waterway and can be decoupled from the Upland Area.

REFERENCES

- Aspect (Aspect Consulting), 2015. Plan for Supplemental Sampling and Analysis of Sulfide in Intertidal Porewater Kimberly-Clark Worldwide Site, Everett, Washington. February 2015. Prepared with Anchor QEA.
- Carr, S.R., U.S. Geological Survey, 2010. Sediment Toxicity Test Results for the Puget Sound Assessment and Monitoring Program (PSAMP) and the Urban Waters Study 2009.
 Submitted to the Washington State Department of Ecology. March 12, 2010.
- Inouye L., E. Hoffman, and D. Fox, 2013. *Modifications to Ammonia and Sulfide Triggers for Purging and Reference Toxicant Testing.* DMMP Clarification Paper. April 2013.
- Murray, J.W., V. Grudmanis, and W.M. Smethie Jr., 1978. Interstitial Water Chemistry in the Sediments of Saanich Inlet. Gehochimica et Cosmochimica Acta. Volume 42: 1011 to 1026. Revised February 28, 1978.
- Nissenbaum, A., B.J. Presley, and I.R. Kaplan, 1972. Early Diagenesis in a Reducing Fjord, Saanich Inlet, British Columbia – I. Chemical and Isotopic Changes in Major Components of Interstitial Water. Gehochimica et Cosmochimica Acta. Volume 36: 1007 to 1027. Revised March 30, 1972.
- Teasdale, P.R., S. Hayward, and W. Davison, 1999. In situ, High-Resolution Measurement of Dissolved Sulfide Using Diffusive Gradients in Thin Films with Computer-Imaging Densitometry, Analytical Chemistry. Volume 71: 2186-2919.

TABLES

Table 1Intertidal Sediment Descriptions at DGT Probe Stations

Station ID	Sediment Description	DGT Deployment Date and Time	DGT Retrieval Date and Time
PW-3	The exposed sediment surface was armored with mostly buried angular riprap which was not removed prior to installation of the sediment probe. The surface riprap was surrounded by very soft brown silt and some shells. The underlying sediment layer was very soft silt with some medium angular rocks from the riprap layer. The subsurface was brown to black silt. A duplicate sample was collected at this station.	2/17/15; 21:32	2/19/15; 22:45
PW-4	The exposed sediment surface was armored with 4 to 5 cm of angular riprap which was removed prior to installing the sediment probe. The underlying sediment layer was primarily silt with some coarse shells and medium angular rocks from the riprap layer. The subsurface was brown to black silt and fine shell hash. Large woody debris was present at the surface, overlying the sediment.	2/17/15; 21:48	2/19/15; 22:37
PW-5	The exposed sediment surface was primarily medium to very coarse shell hash with some exposed boulders and large rocks. The subsurface was dominated by 1 to 2 cm of medium shell and then layers of fine sand and dark silt. Shell hash layers were throughout the subsurface. No woody debris or rocks were observed below the surface.	2/17/15; 21:05	2/19/15; 22:25
PW-7	The exposed sediment surface was primarily fine sand with scattered shell hash, a few small and medium rounded rocks, and abundant wood fragments and dimensional lumber on the sediment surface. The subsurface was dominated by fine sand with layers of fine to medium shell hash every few centimeters. Little woody debris was observed below the surface.	2/17/15; 20:42	2/19/15; 21:52

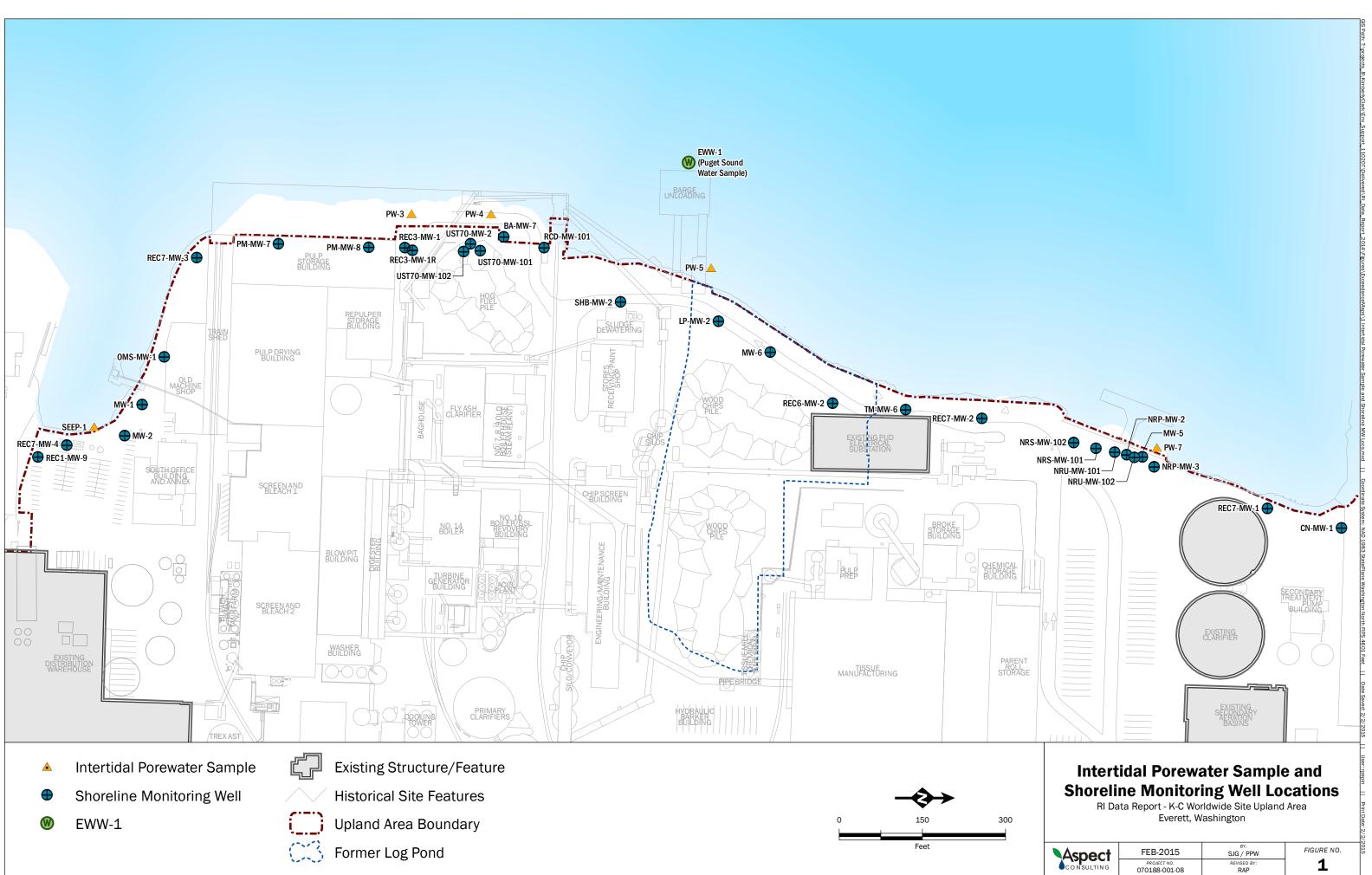
Notes:

cm = centimeter DGT = diffusive gradient thin

Table 2Measured and Calculated Porewater Sulfide Concentrations

Station ID	DGT Gel Thickness (mm)	Trap Sample Sulfide Mass (μmol)	Trap Sample Sulfide Concentration (mg/L)	Calculated Porewater Free Sulfide Concentration (mg/L)				
Hydrogen Sulfide								
PW-3	0.78	<0.16	<0.003	0.06 UJ				
PW-3D	0.78	<0.16	<0.003	0.06 UJ				
PW-4	0.78	<0.16	<0.003	0.06 UJ				
PW-5	0.78	<0.16	<0.003	0.06 UJ				
PW-7	0.78	1.23	0.020	0.47 J				

Notes:


μmol = micromole
DGT = diffusive gradient thin
J = estimated value
mg/L = milligram per liter
mm = millimeter
U = not detected above reporting limits
Bold = Detected result

1. Example Calculation:

mass of sulfide sorbed by DGT(1.23 μ mol) * 0.001 $\frac{\text{mmol}}{\mu\text{mol}}$ * 32 $\frac{\text{mg}}{\text{mmol}}$ * thickness of diffusion layer (0.78 mm) * 0.1 cm/mm

Diffusion coefficient of sulfide in gel $(1.48 * \frac{10^{-5} cm^2}{s})$ * surface area of the gel $(2.54 cm^2)$ * exposure time (48 hours = 172800 s) * $\frac{ml}{cm^3}$ * 0.001L/ml

ATTACHMENT A SAMPLING LOCATION FIGURE

APPENDIX A LABORATORY REPORTS

Table of Contents: ARI Job ZX20

Client: Anchor QEA	Project: Everett East Waterway				
	Page From:	Page To:			
Inventory Sheet					
Cover Letter	(
Chain of Custody Documentation	_ 2_	4			
Case Narrative, Data Qualifiers, Control Limits	5	8			
General Chemistry Analysis					
Report and Summary QC Forms		_12			
General Chemistry Raw Data					
Analyst Notes and Raw Data	13				

2C Signature

March-03-2015 Date

March 3, 2015

Nathan Soccorsy Anchor QEA 720 Olive Way, Suite 1900 Seattle, WA 98101

RE: Project: Everett East Waterway ARI Job No.: ZX20

Dear Mr. Soccorsy:

Please find enclosed the Chain of Custody record (COC), sample receipt documentation, and the final data package for samples from the project referenced above.

Sample receipt and details regarding requested analyses are discussed in the Case Narrative.

An electronic copy of this package will remain on file with ARI. Should you have any questions or problems, please feel free to contact me at your convenience.

Sincerely,

ANALYTICAL RESOURCES, INC.

Cheronne Oreiro Project Manager (206) 695-6214 <u>cheronneo@arilabs.com</u> <u>www.arilabs.com</u>

cc: eFile: ZX20

Enclosures

Page 1 of ______

Chain of Custody Documentation

ARI Job ID: ZX20

,

ZX20:00002

.

		ANCHOR		CUEA LI					Comments/Preservation																		Company: AP-1 2-1.5-1.5 / UVA Date/Time Company:
	Test Parameters																									since the time of colletion.	C Received By 2300 C Livis Atuel Signature/Printed Name Received By: Signature/Printed Name
-						sie	ou	listr	No. of Col Sulfide	-	×	1 ×	- ×	1 ×												ice	
Record & Laboratory Analysis Request		19 2015	Everett East Waterway						Collection 22 45 hs Date/Time 22 Matrix :	GT	2/19/2015 2237 had DGT	222	2/19/2015 2152 Ag DGT													have been on	Company: Anchor QEA, L Company: <u>3</u> /19/2015 Date/Time Company: Date/Time
Chain of Custo Record & L	Laboratory Number:	Date: February 19 2015	Project Name: Everett Ea		Project Manager Nathan Soccorsv	•		Shipment Method: Hand Delivery	Line Field Sample ID	EEW-P	2 EEW-PW-4-DGT-0-10		4 EEW-PW-7-DGT-0-10	5 EEW-PW-D-DGT-0-10	6	7	8	6	10	11	12	13	14	15	16	Notes: Samples	Relinquished By: Signature/Parted Barne Signature/Printed Name

Page____of___

Analytical Resources, Incorporated Analytical Chemists and Consultants Cooler Receipt For	m
ARI Client Anchor QEA Project Name Everett East Wa	kriving
COC No(s): NA Delivered by Fed-Ex UPS Courier Hand Delivered C	Other:
Assigned ARI Job No: ZO Tracking No:	NA)
Preliminary Examination Phase:	\bigcirc
Were intact, properly signed and dated custody seals attached to the outside of to cooler? YES	NO
Were custody papers included with the cooler?	NO
Were custody papers properly filled out (ink, signed, etc.)	NO
Temperature of Cooler(s) (°C) (recommended 2.0-6.0 °C for chemistry)	
If cooler temperature is out of compliance fill out form 00070F Temp Gun ID# <u>22</u>	37752
Cooler Accepted by:	
Complete custody forms and attach all shipping documents	
Log-In Phase:	
Was a temperature blank included in the cooler?	s (o)
What kind of packing material was used? Bubble Wrap Wet Ice Gel Packs Baggies Foam Block Paper Other:_	
Was sufficient ice used (if appropriate)? NA	NO NO
Were all bottles sealed in individual plastic bags?	s NO
Did all bottles arrive in good condition (unbroken)?	S NO
Were all bottle labels complete and legible?	S NO
Did the number of containers listed on COC match with the number of containers received?	S NO
Did all bottle labels and tags agree with custody papers?	S NO
Were all bottles used correct for the requested analyses?	S) NO
Do any of the analyses (bottles) require preservation? (attach preservation sheet, excluding VOCs)	S NO
Were all VOC vials free of air bubbles? YE	S NO
Was sufficient amount of sample sent in each bottle?	S NO
Date VOC Trip Blank was made at ARI	
Was Sample Split by ARI : (NA) YES Date/Time: Equipment: Split	by:
Samples Logged by:Date:Date:Time:	

Sample ID on Bottle	Sample ID on COC	Sample ID on Bottle	Sample ID on COC						
Additional Notes, Discrepancies, & Resolutions:									
			'						
By: Da	to								
Small Air Bubbles Peabubb		Small → "sm" (<2 mm)							
2mm 2-4 mm		Peabubbles → "pb" (2 to < 4 mm)							
• · • • •	,• • • •	Large \rightarrow "lg" (4 to < 6 mm)							
		Headspace → "hs" (>6 mm)							

.

Case Narrative, Data Qualifiers, Control Limits

.

ARI Job ID: ZX20

1

.

.

•

Case Narrative

Client: Anchor QEA Project: Everett East Waterway ARI Job No.: ZX20

Sample Receipt

Five diffusive gradient thin sheet (DGT) samples were received on February 20, 2015 under ARI job ZX20. The cooler temperature measured by IR thermometer following ARI SOP was 5.1°C. For further details regarding sample receipt, please refer to the Cooler Receipt Form.

Acid Volatile Sulfide by EPA Method 1991

The samples were prepared and analyzed within the method recommended holding times.

The method blank was undetected at the reporting limit.

The LCS percent recovery of AVS fell outside the control limits low. No corrective action was taken.

ARI Job No: ZX20 Client: Anchor QEA Project Event: N/A Project Name: Everett East Waterway

	Sample ID	ARI Lab ID	ARI LIMS ID	Matrix	Sample Date/Time	VTSR
1.	EEW-PW-3-DGT-0-10	ZX20A	15-3269	Solid	02/19/15 22:45	02/20/15 10:09
2.	EEW-PW-4-DGT-0-10	ZX20B	15-3270	Solid	02/19/15 22:37	02/20/15 10:09
3.	EEW-PW-5-DGT-0-10	ZX20C	15-3271	Solid	02/19/15 22:25	02/20/15 10:09
4.	EEW-PW-7-DGT-0-10	ZX20D	15-3272	Solid	02/19/15 21:52	02/20/15 10:09
5.	EEW-PW-D-DGT-0-10	ZX20D	15-3273	Solid	02/19/15 22:45	02/20/15 10:09

Printed 02/20/15 Page 1 of 1

Analytical Resources, Inc.

Analytical Method Information

		Reporting	Surrogate	Duplicate	Matri	x Spike	Blank Spike / LCS	
Analyte	MDL	Limit	%R	RPD	%R	RPD	%R	RPD
Sulfide, Acid Volatile Preservation:None	e (AVS) SM 4500-S2 D-() in Solid (SM	4500-S2 D-0)0)				
Container:Glass	WM, Clear, 2 oz	Amo	unt Required:	100 g	H	Hold Time:7 days		
Sulfide	0.100	1.00 mg/kg		20	75 - 125		75 - 125	20

,

Page 1 of 1

3/3/2015

ZX20:00008

General Chemistry Analysis Report and Summary QC Forms

ARI Job ID: ZX20

,

.

.

ZX20:00009

INORGANICS ANALYSIS DATA SHEET Acid Volatile Sulfide by Method EPA 1991

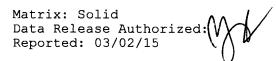
Data Release Authorized: Reported: 03/02/15 Date Received: 02/20/15 Page 1 of 1

QC Report No: ZX20-Anchor QEA Project: Everett East Waterway

Client/ ARI ID	Date Sampled	Matrix	Analysis Date	RL	Result
EEW-PW-3-DGT-0-10 ZX20A 15-3269	02/19/15	Solid	02/26/15	0.16	< 0.16 U
EEW-PW-4-DGT-0-10 ZX20B 15-3270	02/19/15	Solid	02/26/15	0.16	< 0.16 U
EEW-PW-5-DGT-0-10 ZX20C 15-3271	02/19/15	Solid	02/26/15	0.16	< 0.16 U
EEW-PW-7-DGT-0-10 ZX20D 15-3272	02/19/15	Solid	02/26/15	0.16	1.23
EEW-PW-D-DGT-0-10 ZX20E 15-3273	02/19/15	Solid	02/26/15	0.16	< 0.16 U

Reported in µmole

RL-Analytical reporting limit U-Undetected at reported detection limit



Matrix: Solid Data Release Authorized Reported: 03/02/15

Project: Everett East Waterway Event: NA Date Sampled: NA Date Received: NA

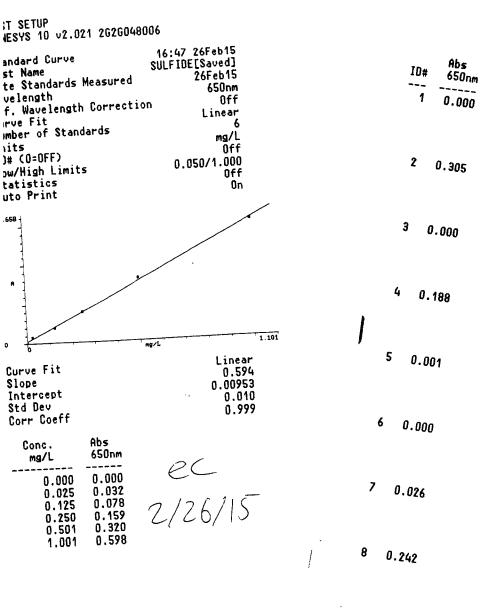
Analyte	Date	Units	LCS	Spike Added	Recovery
Acid Volatile Sulfide	02/26/15	mg/kg	0.95	2.04	46.5%

Project: Everett East Waterway Event: NA Date Sampled: NA Date Received: NA

Analyte	Date	Units	Blank
Acid Volatile Sulfide	02/26/15	mg/kg	< 0.05 U

General Chemistry Raw Data Analyst Notes and Raw Data

ARI Job ID: ZX20


.

•

U 7.7.15

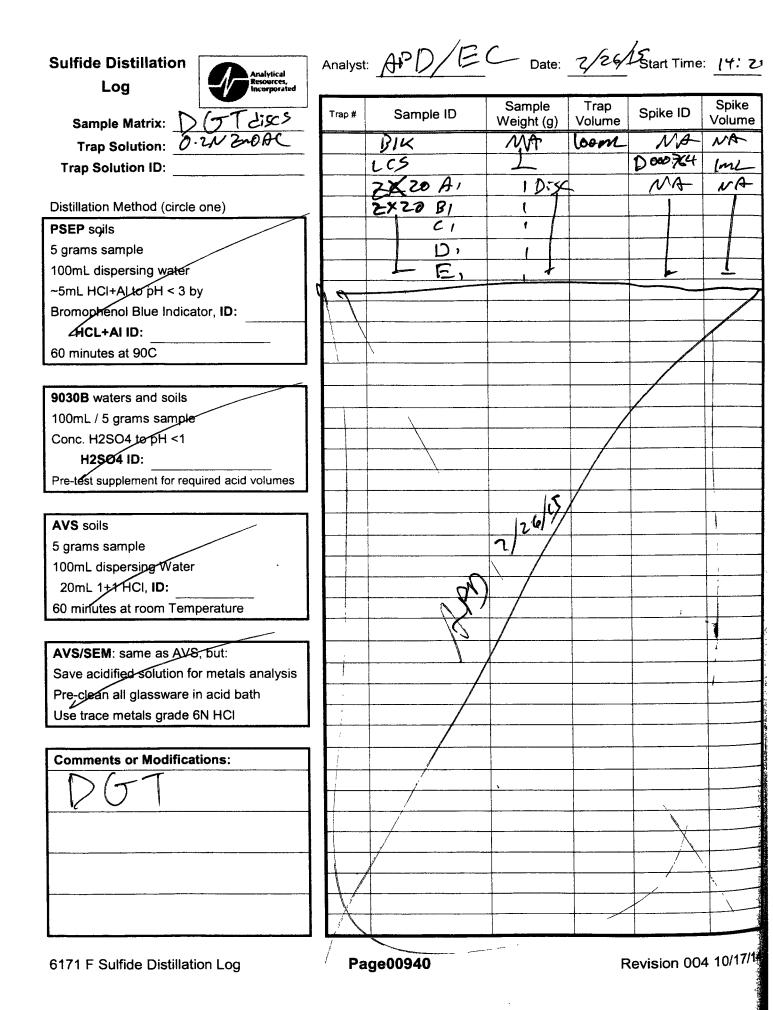
SULFIDE BENC	CHSHEET (Spectroph	otometric,	EPA 376.2)	Date	/ Time	A	nalyst
Aqueous Samples Distillation				2/26/15 14:20		APD/EC			
Finish					2/26/15 16:47		APD/EC		
If distilled, specify	procedure:	DGT Conc	. Acid Extr	action		zinc acetate:	D000538		
					Buret used f	or titrations:		S2	
Thiosulfate ID:	D000	687						• <u>•••••</u> ••••••••••••••••••••••••••••••	
Bi-iodate ID:	C002	2718				Titration o	f bi-iodate with	n thiosulfate	
Stock bi-iodate =	0.8128	grams to	1000	mL	mL bi-iodate =	3.00	3.00	3.00]
Normality =	0.025	-		m	nL thiosulfate =	3.07	3.06	3.07	nthio
	Norm	ality thiosulfate	= (mL bi-iodat	e*normbio) / m	nL thiosulfate =	0.024	0.025	0.024	0.024
2. Normality of k	odine					Titration	of lodine with	thiosulfate	_
Iodine ID:	C003	3428			mL iodine =	3.00	3.00	3.00]
-				m	nL thiosulfate =	3.07	3.06	3.08	ni
		Normality	iodine = (mL ti	hiosulfate*nthic	o) / mL iodine=	0.025	0.025	0.025	0.025
3. Standardizatio	on of Sodium	n Sulfide Sto	ock			Titration o	f standard witl	n thiosulfate	
Stock ID =	D000)764		n	nL Standard	1.00	1.00	1.00]
Approx conc in 60					mL iodine =	3.00	3.00	3.00	
g Na2S =	0.4623	mg /mL =	0.123	m	nL thiosulfate =	1.40	1.39	1.40	stkconc (mg/mL)
		mL) = {[(mL iod	ine*ni)-(mL thic	o *nthio)]*16} /	mL standard =	0.654	0.658	0.654	0.655
Intermediate Sta							required for fo	r 0.025 mg/mL	9.54
Add	9.55	mL stk to	250		ZnOAc =	0.025	mg/mL		
5.0 Calibration S	tandard Cur	ve		S	pectrophoto	meter used:	SPEC #1		
Volume	FINAL	CONC						Regression	Data
Intermediate	VOLUME		Absorbance	e @650 nm	AVG				
(ml)	(ml)	(mg S/L)	1	2	ABS	mg/L	intercept =	0.005	
0.00	50	0.000	0.000		0.000	-0.009	slope =	0.600	
0.10	50	0.050	0.032		0.032	E 0.0448	r =	0.9994	
0.25	50	0.125	0.078		0.078	0.121			
0.50	50	0.250	0.159		0.159		Comment:	Calibration O	K!
1.00	50	0.501	0.320		0.320				
2.00	50	1.001	0.598		0.598	0,988	maxabs =	0.598	l
	/erif Std =		ml int to		ml ZnOAc =	0.501	mg/L	mgS	µmole S
Distillation	Prep Std =	1.0	ml Stk to	100	=	6.551	mg/L	0.655	20.4
SAMPLE DATA	1				l final/mL san				
	DISTILL	DATA	SPE	·	TOMETRIC	DATA		SAMPLE D	ATA
	Sample	Distill	Dilution	ABS	BKG	Regressed	Fi Fi	inal	
SAMPLE ID	Volume	Volume	factor	@ 650 nm	ABS	Conc	1		
		(mL)				(mg S/L)	mg S	µmole S	
Cal Blk		n/a	1.00	0.000		-0.009	< 0.05		OK!
ICV		n/a	1.00	0.305		0.500	0.500	·····	99.85%
Prep Blk	100	100	1.00	0.000		-0.009	<0.005	<0.16	OK
Prep Std	100	100	10.00	0.188		0.305	0.305	9.506	46.529
ZX20 A1	1	100	1.00	0.001		-0.007	<0.005	<0.16	
ZX20 B1	1	100	1.00	0.000		-0.009	<0.005	<0.16	
ZX20 C1	1	100	1.00	0.026		0.035	<0.005	<0.16	
ZX20 D1	1	100	1.00	0.242		0,395	0.039	1.231	
ZX20 E1	1	100	1.00	0.002		-0.005	<0.005	<0.16	
Prep Std	100	100	10.00	0.185		0.300	0.300	9.350	45.769
Cal Blk		n/a	1.00	-0.001		-0.010	< 0.05		OK!
CCV		n/a	1.00	0.293		0.480	0.480		95.85%

SULFIDE BENCHSHEET (Spectrophotometric, EPA 376.2)						Date / Time		A	Analyst	
Aqueous Sam	ueous Samples Distillation					APD/EC				
			Finish			SCIAPO				
If distilled, specify	y procedure:	DGT Cond	c. Acid Ext	raction	-	zinc acetate:				
1. Standardizati	ion of sodium	n thiosulfate	e titrant		·	Buret used f			S2	
Thiosulfate ID:	D000	D687								
Bi-iodate ID:	C002	2718	-			Titration o	f bi-iodate with	thiosulfate		
Stock bi-iodate =	0.8128	grams to	1000	mL	mL bi-iodate =	3.00	3.00	3.00		
Normality =	0.025	1			nL thiosulfate =	3.07	3.00	3.07	nthio	
	Sector Se	ality thiosulfat	e = (mL bi-ioda		nL thiosulfate =		3.00			
2. Normality of						Titration	of lodine with	thiosulfate		
Iodine ID:		3428			mL iodine =	3.00	3.00	3.00		
			-		nL thiosulfate =	3.07	3.06	3.03	ni	
		Normalit	viodine = (ml		io) / mL iodine=	3.07	2700	3.03		
3. Standardizati	ion of Sodiur					Titration o	f standard with	thiosulfate		
Stock ID =	D000		oon		mL Standard	1.00	1.00			
Approx conc in 6			-	,				1.00		
g Na2S =			0.123	1 .	mL iodine =	3.00	3.00	3.00		
g //a20		-		2	nL thiosulfate =	,40	1.39	1.40	stkconc (mg/mL)	
Intermediate Sta		····L) - {((ML 100	e)-(mL (N	o minio)j*16}/	mL standard =	L				
Add		mi atteta	250		7-04-			r 0.025 mg/mL		
		mL stk to	250		ZnOAc =		mg/mL			
5.0 Calibration S					spectrophoto	meter used:	SPEC #1			
Volume	FINAL	CONC						Regression	Data	
Intermediate	VOLUME		Absorbanc	e @650 nm	AVG					
(ml)	(ml)	(mg S/L)	1	2	ABS	mg/L	intercept =			
0.00	50		0,000				slope =			
0.10	50		0.032				r=			
0.25	50		0.078							
0.50	50		0.159				Comment:			
1.00	50		0,320							
2.00	50		0,598				maxabs =			
Calib	Verif Std =	1.0	ml int to	50	m/7nOAc =	#VALUE!	mg/L	mgS	umala C	
Distillation		1.0	mi Stk to	100	=	#VALUE!		#VALUE!	µmole S #VALUE!	
SAMPLE DATA	Δ		ontor dilutio				ing/L	#VALUE!	#VALUE!	
SAMPLE DATA		DATA		n factor as m	l final/mL san	nple				
SAMPLE DATA	DISTILL		SPE	n factor as m CTROPHO	l final/mL san TOMETRIC	nple DATA		SAMPLE D		
	DISTILL Sample	Distill	SPE Dilution	n factor as m CTROPHO ABS	<i>l final/mL san</i> TOMETRIC BKG	nple DATA Regressed				
SAMPLE DATA	DISTILL	Distill Volume	SPE	n factor as m CTROPHO	l final/mL san TOMETRIC	nple DATA Regressed Conc	Fi	SAMPLE DA		
SAMPLE ID	DISTILL Sample	Distill Volume (mL)	SPE Dilution factor	n factor as m CTROPHO ABS @ 650 nm	<i>l final/mL san</i> TOMETRIC BKG	nple DATA Regressed		SAMPLE D	······································	
SAMPLE ID	DISTILL Sample	Distill Volume (mL) n/a	SPE Dilution factor 1.00	n factor as m CTROPHO ABS @ 650 nm	<i>l final/mL san</i> TOMETRIC BKG	nple DATA Regressed Conc	Fi	SAMPLE DA	······································	
SAMPLE ID Cal Bik ICV	DISTILL Sample Volume	Distill Volume (mL) n/a n/a	SPE Dilution factor 1.00 1.00	n factor as m CTROPHO ABS @ 650 nm O.Q()()	<i>l final/mL san</i> TOMETRIC BKG	nple DATA Regressed Conc	Fi	SAMPLE DA	······································	
SAMPLE ID Cal Bik ICV Prep Bik	DISTILL Sample Volume 100	Distill Volume (mL) n/a 100	SPE Dilution factor 1.00 1.00 1.00	n factor as m CTROPHO ABS @ 650 nm O.QOO O.305 O.205	<i>l final/mL san</i> TOMETRIC BKG	nple DATA Regressed Conc	Fi	SAMPLE DA	······································	
SAMPLE ID Cal Bik ICV Prep Bik Prep Std	DISTILL Sample Volume 100 100	Distill Volume (mL) n/a n/a 100 100	SPE Dilution factor 1.00 1.00 1.00 10.00	n factor as m CTROPHO ABS @ 650 nm O.QOQ O.305 O.QOQ O.12 8	<i>l final/mL san</i> TOMETRIC BKG	nple DATA Regressed Conc	Fi	SAMPLE DA	······································	
SAMPLE ID Cal Bik ICV Prep Bik Prep Std ZX20 A1	DISTILL Sample Volume 100 100 1	Distill Volume (mL) n/a n/a 100 100 100	SPE Dilution factor 1.00 1.00 1.00 10.00	n factor as m CTROPHO ABS @ 650 nm O.Q()() O.30() O	<i>l final/mL san</i> TOMETRIC BKG	nple DATA Regressed Conc	Fi	SAMPLE DA	······································	
SAMPLE ID Cal Bik ICV Prep Bik Prep Std ZX20 A1 ZX20 B1	DISTILL Sample Volume 100 100 1 1	Distill Volume (mL) n/a n/a 100 100 100 100	SPE Dilution factor 1.00 1.00 1.00 10.00 1.00	n factor as m CTROPHO ABS @ 650 nm 0.000 0.305 0.000 0.18 8 0.001 0.001	<i>l final/mL san</i> TOMETRIC BKG	nple DATA Regressed Conc	Fi	SAMPLE DA	······································	
SAMPLE ID Cal Bik ICV Prep Bik Prep Std ZX20 A1 ZX20 B1 ZX20 C1	DISTILL Sample Volume 100 100 1	Distill Volume (mL) n/a n/a 100 100 100	SPE Dilution factor 1.00 1.00 1.00 10.00 1.00	n factor as m CTROPHO ABS @ 650 nm 0.000 0.305 0.000 0.18 8 0.001 0.001	<i>l final/mL san</i> TOMETRIC BKG	nple DATA Regressed Conc	Fi	SAMPLE DA	······································	
SAMPLE ID Cal Bik ICV Prep Bik Prep Std ZX20 A1 ZX20 B1 ZX20 C1 ZX20 D1	DISTILL Sample Volume 100 100 1 1	Distill Volume (mL) n/a 100 100 100 100 100 100	SPE Dilution factor 1.00 1.00 10.00 1.00 1.00 1.00 1.00 1.	n factor as m CTROPHO ABS @ 650 nm 0.000 0.30(0.000 0.128 0.001 0.000 0.07.6 0.24(2)	<i>l final/mL san</i> TOMETRIC BKG	nple DATA Regressed Conc	Fi	SAMPLE DA	······································	
SAMPLE ID Cal Bik ICV Prep Bik Prep Std ZX20 A1 ZX20 B1 ZX20 C1	DISTILL Sample Volume 100 100 1 1 1 1 1 1 1 1	Distill Volume (mL) n/a n/a 100 100 100 100 100	SPE Dilution factor 1.00 1.00 10.00 1.00 1.00 1.00 1.00 1.	n factor as m CTROPHO ABS @ 650 nm 0.000 0.30(0.000 0.128 0.001 0.000 0.07.6 0.24(2)	<i>l final/mL san</i> TOMETRIC BKG	nple DATA Regressed Conc	Fi	SAMPLE DA	······································	
SAMPLE ID Cal Bik ICV Prep Bik Prep Std ZX20 A1 ZX20 B1 ZX20 C1 ZX20 D1 ZX20 E1 LCS rervo	DISTILL Sample Volume 100 100 100 1 1 1 1 1 1 1 1	Distill Volume (mL) n/a 100 100 100 100 100 100	SPE Dilution factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	n factor as m CTROPHO ABS @ 650 nm 0.000 0.300 0.000 0.128 0.000 0.026 0.242 0.002	<i>l final/mL san</i> TOMETRIC BKG	nple DATA Regressed Conc	Fi	SAMPLE DA	······································	
SAMPLE ID Cal Bik ICV Prep Bik Prep Std ZX20 A1 ZX20 B1 ZX20 C1 ZX20 C1 ZX20 D1 ZX20 E1 LCS r2000 CCB	DISTILL Sample Volume 100 100 1 1 1 1 1 1 1 1	Distill Volume (mL) n/a 100 100 100 100 100 100 100	SPE Dilution factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	n factor as m CTROPHO ABS @ 650 nm 0.000 0.300 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.026 0.242 0.002 0.185	<i>l final/mL san</i> TOMETRIC BKG	nple DATA Regressed Conc	Fi	SAMPLE DA	······································	
SAMPLE ID Cal Bik ICV Prep Bik Prep Std ZX20 A1 ZX20 B1 ZX20 C1 ZX20 C1 ZX20 D1 ZX20 E1 LCS r2000 CCB	DISTILL Sample Volume 100 100 1 1 1 1 1 1 1 1 2 2 4 5 5 7 5	Distill Volume (mL) n/a n/a 100 100 100 100 100 100 100 100	SPE Dilution factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	n factor as m CTROPHO ABS @ 650 nm 0.000 0.305 0.000 0.128 0.001 0.001 0.001 0.001 0.001 0.0126 0.242 0.002 0.242 0.002	<i>l final/mL san</i> TOMETRIC BKG	nple DATA Regressed Conc	Fi	SAMPLE DA	······································	
SAMPLE ID Cal Bik ICV Prep Bik Prep Std ZX20 A1 ZX20 B1 ZX20 C1 ZX20 D1 ZX20 D1 ZX20 E1 LCS rerun CCB	DISTILL Sample Volume 100 100 100 1 1 1 1 1 1 1 1	Distill Volume (mL) n/a n/a 100 100 100 100 100 100 100 100 100	SPE Dilution factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	n factor as m CTROPHO ABS @ 650 nm 0.000 0.300 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.026 0.242 0.002 0.185	<i>l final/mL san</i> TOMETRIC BKG	nple DATA Regressed Conc	Fi	SAMPLE DA	······································	
SAMPLE ID Cal Bik ICV Prep Bik Prep Std ZX20 A1 ZX20 B1 ZX20 C1 ZX20 C1 ZX20 D1 ZX20 E1 LCS r2000 CCB	DISTILL Sample Volume 100 100 1 1 1 1 1 1 1 1 2 2 4 5 5 7 5	Distill Volume (mL) n/a n/a 100 100 100 100 100 100 100 100 100 10	SPE Dilution factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	n factor as m CTROPHO ABS @ 650 nm 0.000 0.305 0.000 0.128 0.001 0.001 0.001 0.001 0.001 0.0126 0.242 0.002 0.242 0.002	<i>l final/mL san</i> TOMETRIC BKG	nple DATA Regressed Conc	Fi	SAMPLE DA	······································	
SAMPLE ID Cal Bik ICV Prep Bik Prep Std ZX20 A1 ZX20 B1 ZX20 C1 ZX20 C1 ZX20 D1 ZX20 E1 LCS r2000 CCB	DISTILL Sample Volume 100 100 1 1 1 1 1 1 1 2 2 2 3 1 3 1 2 1 1 1 1 1	Distill Volume (mL) n/a n/a 100 100 100 100 100 100 100 100 100 10	SPE Dilution factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	n factor as m CTROPHO ABS @ 650 nm 0.000 0.305 0.000 0.128 0.001 0.001 0.001 0.001 0.001 0.0126 0.242 0.002 0.242 0.002	<i>l final/mL san</i> TOMETRIC BKG	nple DATA Regressed Conc	Fi	SAMPLE DA	······································	
SAMPLE ID Cal Bik ICV Prep Bik Prep Std ZX20 A1 ZX20 B1 ZX20 C1 ZX20 C1 ZX20 D1 ZX20 E1 LCS r2000 CCB	DISTILL Sample Volume 100 100 1 1 1 1 1 1 1 2 2 2 3 / 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Distill Volume (mL) n/a 100 100 100 100 100 100 100 100 100 10	SPE Dilution factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	n factor as m CTROPHO ABS @ 650 nm 0.000 0.305 0.000 0.128 0.001 0.001 0.001 0.001 0.001 0.0126 0.242 0.002 0.242 0.002	<i>l final/mL san</i> TOMETRIC BKG	nple DATA Regressed Conc	Fi	SAMPLE DA	······································	
SAMPLE ID Cal Bik ICV Prep Bik Prep Std ZX20 A1 ZX20 B1 ZX20 C1 ZX20 C1 ZX20 D1 ZX20 E1 LCS r2000 CCB	DISTILL Sample Volume 100 100 1 1 1 1 1 1 1 2 2 	Distill Volume (mL) n/a 100 100 100 100 100 100 100 100 100 10	SPE Dilution factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	n factor as m CTROPHO ABS @ 650 nm 0.000 0.305 0.000 0.128 0.001 0.001 0.001 0.001 0.001 0.0126 0.242 0.002 0.242 0.002	<i>l final/mL san</i> TOMETRIC BKG	nple DATA Regressed Conc	Fi	SAMPLE DA	······································	
SAMPLE ID Cal Bik ICV Prep Bik Prep Std ZX20 A1 ZX20 B1 ZX20 C1 ZX20 C1 ZX20 D1 ZX20 E1 LCS rerun CCB	DISTILL Sample Volume 100 100 1 1 1 1 1 1 1 2 2 	Distill Volume (mL) n/a 100 100 100 100 100 100 100 100 100 10	SPE Dilution factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	n factor as m CTROPHO ABS @ 650 nm 0.000 0.305 0.000 0.128 0.001 0.001 0.001 0.001 0.001 0.0126 0.242 0.002 0.242 0.002	<i>l final/mL san</i> TOMETRIC BKG	nple DATA Regressed Conc	Fi	SAMPLE DA	······································	
SAMPLE ID Cal Bik ICV Prep Bik Prep Std ZX20 A1 ZX20 B1 ZX20 C1 ZX20 C1 ZX20 D1 ZX20 E1 LCS r2000 CCB	DISTILL Sample Volume 100 100 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Distill Volume (mL) n/a 100 100 100 100 100 100 100 100 100 10	SPE Dilution factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	n factor as m CTROPHO ABS @ 650 nm 0.000 0.305 0.000 0.128 0.001 0.001 0.001 0.001 0.001 0.0126 0.242 0.002 0.242 0.002	<i>l final/mL san</i> TOMETRIC BKG	nple DATA Regressed Conc	Fi	SAMPLE DA	······································	
SAMPLE ID Cal Bik ICV Prep Bik Prep Std ZX20 A1 ZX20 B1 ZX20 C1 ZX20 C1 ZX20 D1 ZX20 E1 LCS rerun CCB	DISTILL Sample Volume 100 100 1 1 1 1 1 1 1 2 2 7 5 2 7 5 2 7 5 2 7 5 2 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Distill Volume (mL) n/a 100 100 100 100 100 100 100 100 100 10	SPE Dilution factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	n factor as m CTROPHO ABS @ 650 nm 0.000 0.305 0.000 0.128 0.001 0.001 0.001 0.001 0.001 0.0126 0.242 0.002 0.242 0.002	<i>l final/mL san</i> TOMETRIC BKG	nple DATA Regressed Conc	Fi	SAMPLE DA	······································	
SAMPLE ID Cal Bik ICV Prep Bik Prep Std ZX20 A1 ZX20 B1 ZX20 C1 ZX20 C1 ZX20 D1 ZX20 E1 LCS r2000 CCB	DISTILL Sample Volume 100 100 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Distill Volume (mL) n/a 100 100 100 100 100 100 100 100 100 10	SPE Dilution factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	n factor as m CTROPHO ABS @ 650 nm 0.000 0.305 0.000 0.128 0.001 0.001 0.001 0.001 0.001 0.0126 0.242 0.002 0.242 0.002	<i>l final/mL san</i> TOMETRIC BKG	nple DATA Regressed Conc	Fi	SAMPLE DA	······································	
SAMPLE ID Cal Bik ICV Prep Bik Prep Std ZX20 A1 ZX20 B1 ZX20 C1 ZX20 C1 ZX20 D1 ZX20 E1 LCS r2000 CCB	DISTILL Sample Volume 100 100 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Distill Volume (mL) n/a 100 100 100 100 100 100 100 100 100 10	SPE Dilution factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	n factor as m CTROPHO ABS @ 650 nm 0.000 0.305 0.000 0.128 0.001 0.001 0.001 0.001 0.001 0.0126 0.242 0.002 0.242 0.002	<i>l final/mL san</i> TOMETRIC BKG	nple DATA Regressed Conc	Fi	SAMPLE DA		
SAMPLE ID Cal Bik ICV Prep Bik Prep Std ZX20 A1 ZX20 B1 ZX20 C1 ZX20 C1 ZX20 D1 ZX20 E1 LCS r2000 CCB	DISTILL Sample Volume 100 100 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Distill Volume (mL) n/a 100 100 100 100 100 100 100 100 100 10	SPE Dilution factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	n factor as m CTROPHO ABS @ 650 nm 0.000 0.305 0.000 0.128 0.001 0.001 0.001 0.001 0.001 0.0126 0.242 0.002 0.242 0.002	<i>l final/mL san</i> TOMETRIC BKG	nple DATA Regressed Conc	Fi	SAMPLE DA		
SAMPLE ID Cal Bik ICV Prep Bik Prep Std ZX20 A1 ZX20 B1 ZX20 C1 ZX20 C1 ZX20 D1 ZX20 E1 LCS r2000 CCB	DISTILL Sample Volume 100 100 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Distill Volume (mL) n/a 100 100 100 100 100 100 100 100 100 10	SPE Dilution factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	n factor as m CTROPHO ABS @ 650 nm 0.000 0.305 0.000 0.128 0.001 0.001 0.001 0.001 0.001 0.0126 0.242 0.002 0.242 0.002	<i>l final/mL san</i> TOMETRIC BKG	nple DATA Regressed Conc	Fi	SAMPLE DA		
SAMPLE ID Cal Bik ICV Prep Bik Prep Std ZX20 A1 ZX20 B1 ZX20 C1 ZX20 C1 ZX20 D1 ZX20 E1 LCS r2000 CCB	DISTILL Sample Volume 100 100 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Distill Volume (mL) n/a 100 100 100 100 100 100 100 100 100 10	SPE Dilution factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	n factor as m CTROPHO ABS @ 650 nm 0.000 0.305 0.000 0.128 0.001 0.001 0.001 0.001 0.001 0.0126 0.242 0.002 0.242 0.002	<i>l final/mL san</i> TOMETRIC BKG	nple DATA Regressed Conc	Fi	SAMPLE DA		
SAMPLE ID Cal Bik ICV Prep Bik Prep Std ZX20 A1 ZX20 B1 ZX20 C1 ZX20 C1 ZX20 D1 ZX20 E1 LCS r2000 CCB	DISTILL Sample Volume 100 100 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Distill Volume (mL) n/a 100 100 100 100 100 100 100 100 100 10	SPE Dilution factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	n factor as m CTROPHO ABS @ 650 nm 0.000 0.305 0.000 0.128 0.001 0.001 0.001 0.001 0.001 0.0126 0.242 0.002 0.242 0.002	<i>l final/mL san</i> TOMETRIC BKG	nple DATA Regressed Conc	Fi	SAMPLE DA		
SAMPLE ID Cal Bik ICV Prep Bik Prep Std ZX20 A1 ZX20 B1 ZX20 C1 ZX20 C1 ZX20 D1 ZX20 E1 LCS r2000 CCB	DISTILL Sample Volume 100 100 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Distill Volume (mL) n/a 100 100 100 100 100 100 100 100 100 10	SPE Dilution factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	n factor as m CTROPHO ABS @ 650 nm 0.000 0.305 0.000 0.128 0.001 0.001 0.001 0.001 0.001 0.0126 0.242 0.002 0.242 0.002	<i>l final/mL san</i> TOMETRIC BKG	nple DATA Regressed Conc	Fi	SAMPLE DA		
SAMPLE ID Cal Bik ICV Prep Bik Prep Std ZX20 A1 ZX20 B1 ZX20 C1 ZX20 C1 ZX20 D1 ZX20 E1 LCS r2000 CCB	DISTILL Sample Volume 100 100 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Distill Volume (mL) n/a 100 100 100 100 100 100 100 100 100 10	SPE Dilution factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	n factor as m CTROPHO ABS @ 650 nm 0.000 0.305 0.000 0.128 0.001 0.001 0.001 0.001 0.001 0.0126 0.242 0.002 0.242 0.002	<i>l final/mL san</i> TOMETRIC BKG	nple DATA Regressed Conc	Fi	SAMPLE DA		

TEST SETUP GENESYS 10 v2.021 2G2G048006

Advanced A-%T-C	16:48 26Feb15
Havanceu H-MI C	SULFIDE[Saved]
Test Name	Absorbance
Measurement Mode	650nm
Wavelength	_ 0ff
Ref. Wavelength Correctio	0:00
Delay Time (min:sec)	1
1n# (0=0FF)	0.000/0.800
Low/High Limits	Off
Statistics	0n
Auto Print	

9 0.002


10 0.185 LCS rerun

11 -0.001

12 0.293

ł

the states of the states

Analytical Re Analytical Ch	esources, Incorporated nemists and Consultants	Convention Analy	als Laboratory vst Notes
ARI Job No.:	Anchor 2468	Client ID:	AncholdEA
Parameter:	DGTSUIFide	Client Project:	Everett-Eastworeth

List problems, concerns, corrective actions and any other pertinent information
Method developed infernaliy to extract DOTS
Sumarized as follows! 20ml Conc. acid to
flask with I Disc, an so no dispearsing worker
DI Gas Washing Dottle to Catch HC Funes
becole sulfide trap. Extract commutes with
Quiccia and no heat under nitrogen stream.
Sulfide trap solution was modifie from previous
POJECTS. INitially 0.005 0.25 M NaOH to follow
At AVS Litterature starting point. However, D.Z.N
ZnOAC with Ascorbic acid NuOH pH control was
Substituted as it is known to give superiorty
Sample stability and better performanceon
colocimetry This enabled the whole Job to
be distilled one day and colored another,
resulting in less total time required.
(27/1S
Analyst Initials: API Date: 7/13/15

Г

Corrective Actions Inorganic Analyses

Criteria Flagged:		ARI Job No.:	ZXZO
Unacceptable Blank:		Date of Event:	
Unacceptable Duplicate:		Client ID:	
Unacceptable Spike:		Method/Element:	5-
Unacceptable Reference:		Prep Code:	
	LCS at 46		
Samples Affected:	Prep std		
Corrective Action Taken:	reran sunpo sample had >	e and got sm - ec 2/27/15	nere regults.
Analyst Initials:	έc	Supervisor:	ω
Date:	EC 2/27/15	Date:	7-7-15
049F			

Revision 0()7
6/11/*	10

ZX20:00019

APPENDIX B DATA VALIDATION REPORTS

DATA VALIDATION REVIEW REPORT - EPA STAGE 2B

Project:	Everett East Waterway
Project Number:	130105-02.01
Date:	March 16, 2015

This report summarizes the review of analytical results for three diffusive-gradient thin film (DGT) samples and one duplicate collected February 19, 2015. The samples were collected by Anchor QEA, LLC and submitted to Analytical Resources, Inc. (ARI) in Tukwila, Washington. The samples were analyzed for acid volatile sulfides by United States Environmental Protection Agency (USEPA) method 1991.

Sample data group (SDG) number ZX20 was reviewed in this report. Sample IDs are presented in Table 1.

Sample ID	Lab ID	Matrix
EEW-PW-3-DGT-0-10	ZX20A	DGT
EEW-PW-4-DGT-0-10	ZX20B	DGT
EEW-PW-5-DGT-0-10	ZX20C	DGT
EEW-PW-7-DGT-0-10	ZX20D	DGT
EEW-PW-d-DGT-0-10	ZX20E	DGT

Table 1 Samples Reviewed

Data Validation and Qualifications

The following comments refer to the laboratory's performance in meeting the quality assurance/quality control (QA/QC) guidelines outlined in the analytical procedures. Laboratory results were reviewed using *USEPA Contract Laboratory Program National Functional Guidelines for Inorganics Data Review* (USEPA 2004) as a guideline and also by using laboratory and method QC criteria as stated in USEPA (1986; SW 846, Third Edition), *Test Methods for Evaluating Solid Waste: Physical/Chemical Methods*, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998. Unless noted in this report, laboratory results for the samples listed above were within QC criteria.

Field Documentation

Field documentation was checked for completeness and accuracy. The chain-of-custody forms were signed by ARI at the time of sample receipt; the samples were received cold and in good condition.

Holding Times and Sample Preservation and Analytical Methods

Samples were appropriately preserved and analyzed within holding times.

Laboratory Method Blanks

The laboratory method blank was analyzed at the required frequency and was free from AVS.

Field Quality Control

Rinse Blanks

No rinse blanks were collected with these sample sets.

Field Duplicates

One field duplicate was collected in association with these sample sets and both results were below detection.

Initial Calibrations and Calibration Verifications

All initial calibrations and calibration verifications met method criteria.

Laboratory Control Sample

One laboratory control sample (LCS) was analyzed at the required. The recovery was below laboratory control limits and the associated sample results have been qualified "J" or "UJ" to indicate a potentially low bias. See Table 2 for qualified results.

Matrix Spike and Matrix Spike Duplicate

Matrix spike (MS) and matrix spike duplicate (MSD) samples were not analyzed in association with these samples due to limited sample mass.

Laboratory Duplicates

Laboratory duplicates were not analyzed in association with this sample set.

Method Reporting Limits

Reporting limits were acceptable as reported. All values were reported using the laboratory reporting limits.

Overall Assessment

As was determined by this evaluation, the laboratory followed the specified analytical method and all requested sample analyses were completed. Accuracy was not acceptable as demonstrated by the LCS recovery. Precision was not evaluated. All data are acceptable as qualified. Table 2 summarizes the qualifiers applied to sample results reviewed in this report.

Data Qualifier Definitions

- U Indicates the compound or analyte was analyzed for but not detected at or above the specified limit.
- J Indicates an estimated value.
- UJ Indicates the compound or analyte was analyzed for but not detected and the specified limit reported is estimated

Sample ID	Parameter	Analyte	Reported Result	Qualified Result	Reason
EEW-PW-3-DGT-0-10	Conventionals	AVS	0.16U µmol	0.16UJ μmol	LCS %R below control limit
EEW-PW-4-DGT-0-10	Conventionals	AVS	0.16U µmol	0.16UJ µmol	LCS %R below control limit
EEW-PW-5-DGT-0-10	Conventionals	AVS	0.16U µmol	0.16UJ µmol	LCS %R below control limit
EEW-PW-7-DGT-0-10	Conventionals	AVS	1.23 µmol	1.23J µmol	LCS %R below control limit
EEW-PW-D-DGT-0-10	Conventionals	AVS	0.16U µmol	0.16UJ μmol	LCS %R below control limit

Table 2 Data Qualification Summary

Notes:

%R = Percent recovery

REFERENCES

- USEPA. 1983. Methods for Chemical Analysis of Water and Wastes. U.S. Environmental Protection Agency, Environmental Monitoring and Support Laboratory, Cincinnati, Ohio. EPA 600/4 79-020.
- USEPA. 1986. Test methods for Evaluating Solid Waste: Physical/Chemical Methods. U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response. EPA 530/SW-846.
- USEPA. 2004. USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation (OSRTI). EPA 540-R-04-004. October.