FEBRUARY 1, 2022 SUBSURFACE INVESTIGATION REPORT

FOR

HAHN MOTOR COMPANY 1201 SOUTH 1ST STREET YAKIMA, WASHINGTON 98901

Facility Site ID No. 502 Cleanup Site ID No. 4927 VCP Project No. CE0529

March 4, 2022

Prepared for:

Ms. Debra Manjarrez Manjarrez & De Leon Inc, PS 2010 West Nob Hill Blvd, Suite 1 Yakima, Washington 98902

And

Mr. Kyle Parker Department of Ecology Toxic Cleanup Program, Central Regional Office 1250 West Alder Street Union Gap, Washington 98903-0009

Prepared by: Brent Bergeron, LHG, LG Licensed Hydrogeologist and Geologist

Blue Mountain Environmental and Consulting Company, Inc. PO Box 545/125 Main St. Waitsburg, WA 99361 509-520-6519

PROJECT SUMMARY

Client:	Ms. Debra Manjarrez Manjarrez & De Leon Inc, PS 2010 West Nob Hill Blvd, Suite 1 Yakima, Washington 98902
Point of Contact:	Ms. Debra Manjarrez
Property:	Hahn Motor Company 1201 South 1 st Street Yakima, Washington 98901
Major Commercial Activity:	Automotive Sales and Automobile Repair
VCP Project ID Number:	CE0529
Licensed Hydrogeologist/Geologist:	Brent N. Bergeron, LHG, LG
License Number/Expiration:	LHG #2267, expires 1/3/2022 LG #2267, expires 1/3/2022
Project Number:	E2021/0910
Report Date:	March 4, 2022

Legal description: Tax Parcel 191330-13032 in the southwest quarter of the northeast quarter of Section 30, Township 13 North, Range 19 E.W.M; Latitude 46° 35' 17.37" North, Longitude 120° 29'52.41" West.

PROJECT SUMMARY	2
CONTENTS	3
1.0 INTRODUCTION	5
1.1 Location 1.2 General Site Information	5
2.0 GEOLOGY AND HYDROGEOLOGY	.5 . .6
3.0 PREVIOUS ENVIRONMENTAL FIELD ACTIVITIES	7
4.0 FEBRUARY 1, 2022 SUBSURFACE INVESTIGATION ACTIVITIES	7
5.0 SOIL AND GROUNDWATER SAMPLE RESULTS	9
6.0 CONCLUSIONS	11
7.0 RECOMMENDATIONS	13
8.0 STATEMENT OF ENVIRONMENTAL PROFESSIONALS	14
9.0 REFERENCES	15

CONTENTS

TABLE OF CONTENTS

FIGURES

Figure No

Figure Title

1	SITE VICINITY MAP
2	SITE LOCATION MAP
3	SOIL BORINGS – FEBRUARY 1, 2022

TABLES

Table No Table Title Soil Sample Results - Total Petroleum Hydrocarbons (mg/Kg) 1 Soil Sample Results - Volatile Organic Compounds (mg/Kg) 2 3 Soil Sample Results - Total Metals (mg/Kg) 4 Soil Sample Results - Polynuclear Aromatic Hydrocarbons (mg/Kg) 5 Soil Sample - Polychlorinated Biphenyls Results via EPA Method 8082A (mg/Kg) 6 Groundwater Sample Results - Total Petroleum Hydrocarbons (µg/L) Groundwater Sample Results - Volatile Organic Compounds (µg/L) 7 8 Groundwater Sample Results - Total Metals (µg/L) 9 Groundwater Sample Results - Polynuclear Aromatic Hydrocarbons (µg/L) Groundwater Sample - Polychlorinated Biphenyls Results via EPA Method 10 8082A (µg/L)

APPENDICES

Appendix No	<u>Appendix Title</u>
Ā	DEPARTMENT OF ECOLOGY LETTER REGARDING NEED FOR
	FURTHER ACTION – DATED FEBRUARY 23, 2016
В	BORING LOGS
С	PHOTOGRAPHS
D	LABORATORY ANALYTICAL DOCUMENTATION
E	COURT ORDER FOR ESTATE REPRESENTATIVE

1.0 INTRODUCTION

On February 1, 2022, Blue Mountain Environmental and Consulting Company, Inc. (BMEC) mobilized to Hahn Motors Company at 1201 South 1st Street in Yakima, Washington 98901 (Site) and supervised Environmental West Explorations (EWE) during the advancement of six soil borings. BMEC and the Washington Department of Ecology (Ecology) also refer to the site as the Douglas F Bettarel Estate site. The Site is located at 1201 South 1st Street in Yakima, Washington 98901. A Site Vicinity Map of the property is included as **Figure 1**.

1.1 Location

The 1.5-acre (approximate) Site is located in the City of Yakima, Yakima County, Washington, at the southeast corner of the intersection of South 1st Street and East Arlington Street (**Figures 2** and 3). The Site consists of one tax parcel (191330-13032), in the southwest quarter of the northeast quarter of Section 30, Township 13 North, Range 19 E.W.M. The elevation is approximately 1,041 feet above mean sea level and the Site is relatively flat with primarily asphalt ground cover. The nearest major body of water is the Yakima River approximately 1.5 miles east of the Site. The Site is surrounded by commercial then residential property to the east, commercial property then light industry to the north, commercial property to the south. There are no flood zones or wetlands associated with the Site.

1.2 General Site Information

As of February 23, 2016, the property was owned by Mr. Richard Hahn. The current owner of the property is the Estate of Douglas F Bettarel, represented by Ms. Debra Manjarrez of Manjarrez and De Leon Inc, PS. BMEC is currently working for Ms. Debra Manjarrez, as the Executor of the said estate.

One building is located on the Site (**Figures 2 and 3**). The rectangular building located on the northwest corner of the property consists of an automobile showroom with offices on the western half, bathrooms and break room near the center of the building, and an automobile repair and automobile engine washing garage in the eastern half of the building. During the visit to the Site on February 1, 2022, a minimum of one sump was noticed on the interior of the eastern half of the building. The sump appeared to drain to the south toward the drywells which BMEC investigated via soil and groundwater sampling.

1.3 Site History

The existing facility was built in 1946 by Hahn Motors Company. A oil-fired boiler had been installed at the north side of the buildings basement, initially with a 2,000 gallon heating oil UST in the sidewalk of East Arlington Street to provide heat for the facility. A second 2,000-gallon UST was installed next to it in the mid-1970's and the original boiler was converted to burn used motor oil (waste oil), which was readily available in the automobile service shop.

Both tanks were removed in November 2007 at which time a minor site assessment was conducted involving petroleum-contaminated soil (PCS) removal related to over-filling of the tank(s). The

approximate locations of the two former tanks are illustrated on **Figure 3**. Three soil samples were collected from the west, north, and east side of the eastern UST, yielding one heavy oil detection of 396 milligrams per kilogram (mg/Kg) in the west sample. Similarly, three soil samples were collected from the west, north, and east side of the eastern UST, yielding heavy oil detections ranging between 155 - 492 mg/Kg.

In 2017, Ecology conducted semi-annual groundwater sampling of the Yakima Railroad Area (YRRA) groundwater monitoring network which is a six-square mile area located along the railroad corridor in the cities of Yakima and Union Gap, Washington. The YRRA was defined in 1991. Our subject site is located near the center of the YRRA, within its impact radius with chlorinated solvents, primarily tetrachloroethylene (PCE). Fifteen of the 39 groundwater samples collected from wells within the YRRA yielded concentrations ranging from 5 to 9,110 micrograms per liter (μ g/L). The Washington State Department of Ecology Model Toxics Control Act (MTCA) Method A Cleanup Level for PCE in groundwater is 5 μ g/L.

2.0 GEOLOGY AND HYDROGEOLOGY

Based on the subsurface investigation field activities conducted at the Site on February 1, 2022, the following geologic soil conditions were encountered in soil borings SB1 through SB4 and SB6:

- 0 0.25': Asphalt; and
- 0.25 25': Brown to dark brown, sandy, well-rounded, coarse GRAVEL & COBBLES, with little silt, loose (GW).

Similar lithology was encountered in soil boring SB5 to a depth of 9 feet bgs where a foot of pea gravel was encountered (9 – 10 feet bgs). From 1- to 22 feet bgs, brown, sandy SILT with some well-rounded gravel and cobbles, loose (ML), was encountered. From 22 to 25 feet bgs, brown sandy, coarse, well-rounded GRAVEL, loose (GW), was again encountered. Copies of the boring logs for the six soil borings advanced on February 1, 2022, are included in **Appendix B**.

During the February 1, 2022 field activities, groundwater was encountered in soil borings SB1 at 11 feet bgs, SB3 at 16.3 feet bgs, SB4 at 18 feet bgs, and SB5 at 14.5 feet bgs. The groundwater flow direction is inferred to be to the east toward the Yakima River which is approximately 1.5 miles east of the Site. Based on data collected during the 2017 YRRA groundwater sampling event(s), depth to shallow groundwater between 3 to 30 feet bgs and flowed to the southeast with an approximate horizontal gradient of 0.005 feet per foot. The estimated flow direction in the deeper aquifer beneath the Site is also to the southeast with an approximate hydraulic gradient of 0.004 feet per foot.

3.0 PREVIOUS ENVIRONMENTAL FIELD ACTIVITIES

It was determined by Ecology on July 9, 2007, and documented via certified mail dated July 26, 2007, that Hahn Motor Company was in *Non-Compliance with the Underground Storage Tank Regulations Chapter 173-360* for not properly upgrading their 2,000-gallon USTs prior to storage in both of them with waste oil. Via directive from Ecology as defined in the July 26, 2007 certified mail, both USTs were decommissioned via removal and backfill in November 2007. Approximately 50 cubic yards of PCS and asphalt were hauled off-site and disposed at the Anderson Disposal Facility in Yakima, Washington.

During the November 9, 2007 UST decommissioning activities, three soil samples were collected from the west, north, and east side of the eastern UST, yielding one heavy oil detection of 396 mg/Kg in the west sample. Similarly, three soil samples were collected from the west, north, and east side of the eastern UST, yielding heavy oil detections ranging between 155 – 492 mg/Kg. The MTCA Method A Cleanup Level for heavy oil is 2,000 mg/Kg. No gasoline range hydrocarbons were identified by laboratory analysis in any soil samples collected. Significant lead concentrations were detected in residual sampled and analyzed from the tank bottom(s).

In 2017, Ecology conducted semi-annual groundwater sampling of the YRRA groundwater monitoring network which is a six-square mile area located along the railroad corridor in the cities of Yakima and Union Gap, Washington. The YRRA was defined in 1991. The Site is located near the center of the YRRA. within the is impacted by chlorinated solvents, primarily PCE. Fifteen of the 39 groundwater samples collected from wells within the YRRA yielded concentrations ranging from 5 to 9,110 μ g/L. The MTCA Cleanup Level for TCE in groundwater is 5 μ g/L.

4.0 FEBRUARY 1, 2022 SUBSURFACE INVESTIGATION ACTIVITIES

On February 1, 2022, BMEC hydrogeologist, Brent Bergeron, LHG, and BMEC environmental professional Yancy Meyer, supervised the advancement of six soil borings (SB1 through SB6) to depths varying between 15 feet and 25 feet bgs. The six soil borings were advanced via sonic drilling methodology by EWE personnel. Continuous soil samples were brought to the surface via core barrel and sample bag methodology. Photographs of the field activities conducted at the Site on February 1, 2022, are included in **Appendix C**.

The Scope of Work (SOW) conducted during the February 1, 2022 subsurface investigation activities were based on communication with Ecology via their "Further Action at the Site" letter dated February 23, 2016. The two primary areas of concern according to the February 2016 Ecology letter were as follows:

• Waste oil and associated chemicals released from the underground storage tanks (USTS) into soil and groundwater; and

• Petroleum hydrocarbons and other chemicals released from sumps to soil and groundwater. Based on the findings of the February 23, 2016 letter, Ecology has concluded the following:

- Further soil and groundwater characterization of the Site is necessary in the vicinity of the USTs and dry wells to the south of the automotive washing bays;
- Cleanup levels and points of compliance need to be established;
- Characterization must be sufficient enough to select a cleanup action; and
- Cleanup action performed at the Site as of February 23, 2016 is not sufficient to close the Site.

A copy of the February 23, 2016 letter written by Ecology is included in Appendix A.

The rationale for choosing the locations of soil borings SB1 through SB6 was to follow the DOE recommendation and to assess the potential for contaminants of concern (COCs) in soil and groundwater within the vicinity of the two dry wells located to the south of the automobile bays, and to assess the potential for COCs in the soil and groundwater within the vicinity of the two former 2,000-gallon waste oil USTs.

Soil collected from all six borings was field screened via visual observation, olfactory evidence, and photo-ionization detector (PID). The PID measurements are listed on each of the six boring logs in **Appendix B**. The soil lithology for each boring was assessed by the field hydrogeologist and record on the boring logs, as well. Photographs of soil lithology encountered in certain soil borings are included in **Appendix C**.

A total of 21 soil samples and three groundwater samples were collected from the six soil borings and relinquished to OnSite Environmental in Redmond, Washington for a combination of the following analyses:

- Hydrocarbon Identification via Northwest Method NWTPH-HCID;
- Total petroleum hydrocarbons diesel range (TPH-D) and TPH heavy oil range (TPH-O) via Northwest Method NWTPH-Dx;
- TPH gasoline range (TPH-G) via Northwest Method NWTPH-Gx;
- Resource Conservation and Recovery Act (RCRA) metals (arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver) via Environmental Protection Agency (EPA) Method 6010D/7470A Series for soil and EPA Method 200.8 for groundwater;
- Volatile organic compounds (VOCs) via EPA Method 8260D;
- Polynuclear aromatic hydrocarbons (PAHs) via EPA Method 8270E SIM; and
- Polychlorinated biphenyls (PCBs) via EPA Method 8082A.

The 21 soil samples were collected from all six borings. Each sample was obtained in one 4-ounce soil container with Teflon-lined lid and four 40-milliliter (mL) glass vials preserved with methanol or sodium bisulfide. The locations of the six soil borings (SB1 through SB6) are illustrated on **Figure 3**.

Prior to purging approximately 1 to 2 gallons of groundwater per sample (SB1, SB3, and SB5), depth-to-water measurements were obtained from all six soil borings with a Solinst interface meter Model 155. The three groundwater samples were collected from soil borings SB1, SB3, and SB5 via peristaltic pump and dedicated tubing. Each of the six groundwater samples consisted of four 40-mL glass vials preserved with hydrochloric acid (HCl); two unpreserved, 1-L amber glass jars;

two 500-mL, amber glass jars preserved with HCl; and one 500-mL polyethylene container preserved with nitric acid. The locations of the three soil borings from which groundwater samples were collected are illustrated on **Figure 3**.

Each soil and groundwater sample jar was labeled and properly sealed, prior to being secured in a cooler with ice. A fresh pair of nitrile gloves was donned prior to collection of each successive sample.

All soil cuttings and purged groundwater (approximately four gallons) were containerized in one of three 55-gallon drums which were properly labeled, sealed, and staged onsite near the eastern gate access. Used nitrile gloves and paper towels were placed in a trash bag and hauled offsite.

5.0 SOIL AND GROUNDWATER SAMPLE RESULTS

This section discusses the analytical results of the 21 soil samples and three groundwater samples collected from the Site during the February 1, 2022 subsurface investigation activities. Each of the soil and groundwater samples was analyzed for a combination of HCID, TPH-D, TPH-O, TPH-G, VOCs, RCRA metals, PAHs, and PCBs.

5.1 Soil Sample Results

As indicated on **Table 1**, TPH-Dx was performed on three soil samples. TPH-D was only quantified in one of the 21 soil samples at a concentration of 670 mg/Kg in sample SB1-2-1-22-10'. TPH-O was quantified in three of the 21 soil samples at concentrations of 1400 mg/Kg in sample SB1-2-1-22-10'; 6900 mg/Kg in sample SB5-2-1-22-10'; and 1100 mg/Kg in sample SB5-2-1-22-10'. The MTCA Method A Cleanup Level for TPH-D + TPH-O is 2000 mg/Kg which was exceeded in samples SB1-2-1-22-10' and SB5-2-1-22-10'. TPH-G was performed on one soil sample. TPH-G was quantified in sample SB1-2-1-22-10' at 220 mg/Kg which exceeds the MTCA Method A Cleanup Level of 30 mg/Kg.

As indicated on **Table 2**, VOCs were analyzed for in three soil samples (SB1-2-1-22-10', SB3-2-1-22-25', and SB5-2-1-22-20') and detected in sample SB1-2-1-22-10' at concentrations that due not exceed any MTCA Method A Cleanup Levels. No VOCs were detected in soil samples SB3-2-1-22-25' and SB5-2-1-22-20'.

As indicated on **Table 3**, RCRA metals analyses was performed on all 21 soil samples. Arsenic, mercury, selenium, and silver were not detected above the laboratory practical quantitation limits (PQLs) in any of the samples. Barium was detected in all 21 samples at concentrations ranging from 24 mg/Kg in sample SB5-2-1-22-10' to 79 mg/Kg in sample SB5-2-1-22-20'. No MTCA Method A Cleanup Levels currently exist for barium in soil. Cadmium was detected in one sample (SB1-2-1-22-10') at 2.5 mg/Kg which exceeds the MTCA Method A Cleanup Level of 2 mg/Kg. Chromium was detected in all 21 samples at concentrations ranging from 2.9 mg/Kg in sample SB5-2-1-22-20' to 34 mg/Kg in sample SB2-2-1-22-5' which was the only soil sample to exceed the MTCA Method A Cleanup Level of 19 mg/Kg. Lead was detected in four of the 21 soil samples at concentrations ranging from 9.4 mg/Kg in sample SB5-2-1-22-5' to 45 mg/Kg in sample SB1-

2-1-22-10'. None of the four lead detections exceed the MTCA Method A Cleanup Level of 250 mg/Kg.

As indicated on **Table 4**, PAHs were analyzed for in three soil samples and detected in sample SB1-2-1-22-10' at concentrations that due not exceed any MTCA Method A Cleanup Levels. No PAHs were detected in soil samples SB3-2-1-22-25' and SB5-2-1-22-20'.

As indicated on **Table 5**, PCBs were analyzed for in three soil samples (SB1-2-1-22-10'; SB5-2-1-22-10'; and SB5-2-1-22-15'). PCBs were not detected above the laboratory PQLs in any of the three soil samples.

A complete copy of the soil sample laboratory analytical results and accompanying chain-ofcustody documentation for the February 1, 2022 subsurface investigation are included in **Appendix D**.

5.2 Groundwater Sample Results

As indicated on **Table 6**, TPH-D and/or TPH-O were detected above the laboratory MRLs in all three groundwater samples collected (SB1-2-1-22-GW, SB-32-1-2-GW, and SB-5-2-1-22-GW). Furthermore, TPH-D + TPH-O were detected in samples SB1-2-1-22-GW and SB5-2-1-22-GW at concentrations of 9800 μ g/L and 770 μ g/L, respectively, which exceeded the MTCA Method A Cleanup Level of 500 μ g/L. Groundwater sample SB1-2-1-22-GW was collected from immediately down-gradient of the dry well outside the automobile engine washing bay and groundwater sample SB5-2-1-22-GW was collected from the north side of the building (**Figure 3**).

As indicated on **Table 7**, VOCs were analyzed for in all three groundwater samples (SB1-2-1-22-GW, SB3-2-1-22-GW, and SB5-2-1-22-GW). A combination of VOCs including PCE, benzene, ethylbenzene, and naphthalene were detected in all three groundwater samples but not at concentrations exceeding established MTCA Method A Cleanup Levels.

As indicated on **Table 8**, RCRA (total) metals were analyzed for in all three groundwater samples (SB1-2-1-22-GW, SB3-2-1-22-GW, and SB5-2-1-22-GW). Aside from silver, a combination of RCRA (total) metals were detected in all three groundwater samples. Mercury was detected at concentrations ranging from 0.59 μ g/L (SB3-2-1-22-GW) to 1.1 μ g/L (SB1-2-1-22-GW). The MTCA Method A Cleanup Level for mercury in groundwater is 2.0 μ g/L. Barium was detected at concentrations ranging from 1800 μ g/L (SB3-2-1-22-GW) to 5800 μ g/L (SB5-2-1-22-GW). A MTCA Method A Cleanup Level for barium does not currently exist. Selenium was detected in samples SB1-2-1-22-GW at 6.3 μ g/L and 11 μ g/L, respectively. A MTCA Method A Cleanup Level for selenium does not currently exist. Arsenic was detected in all three groundwater samples at concentrations ranged from 51 μ g/L in SB3-2-1-22-GW to 130 μ g/L in SB5-2-1-22-GW. Chromium was detected in all three groundwater samples at concentrations exceeding the MTCA Method A Cleanup Level of 50 μ g/L. Chromium concentrations ranged from 420 μ g/L in SB3-2-1-22-GW. to 1100 μ g/L in SB5-2-1-22-GW. Lead was detected in all three groundwater samples at concentrations exceeding the MTCA Method A Cleanup Level of 15 μ g/L. Lead concentrations exceeding the MTCA Method A Cleanup Level of 50 μ g/L. Chromium concentrations ranged from 420 μ g/L in SB3-2-1-22-GW.

ranged from 150 μ g/L in SB3-2-1-22-GW to 1200 μ g/L in SB1-2-1-22-GW. Cadmium was detected in groundwater samples SB1-2-1-22-GW and SB5-2-1-22-GW at 110 μ g/L and 6.4 μ g/L, respectively. The MTCA Method A Cleanup Level for cadmium in groundwater is 5 μ g/L. Groundwater sample SB1-2-1-22-GW was collected from immediately down-gradient of the dry well outside the automobile engine washing bay and groundwater sample SB5-2-1-22-GW was collected from the north side of the building (**Figure 3**).

As indicated on **Table 9**, PAHs were analyzed for in all three groundwater samples (SB1-2-1-22-GW, SB3-2-1-22-GW, and SB5-2-1-22-GW). A combination of PAHs including 1-methylnaphthalene, 2-methylnaphthalene, and naphthalene were detected in all three groundwater samples; however, not at concentrations exceeding established MTCA Method A Cleanup Levels.

As indicated on **Table 10**, PCBs were analyzed for in groundwater samples (SB1-2-1-22-GW, SB3-2-1-22-GW, and SB5-2-1-22-GW). PCBs were not detected above the laboratory PQLs in any of the three samples.

A complete copy of the groundwater sample laboratory analytical results and accompanying chainof-custody documentation for the February 1, 2022 subsurface investigation are included in **Appendix D**.

6.0 CONCLUSIONS

The soil encountered during the February 1, 2022 field activities were a brown to dark brown, sandy, well-rounded, coarse GRAVEL & COBBLES, with little silt, loose (GW). Depth-to-water ranged from 11 feet btoc in soil boring SB1 to18 feet btoc in soil boring SB4. The groundwater flow direction beneath the Site is inferred to be the east toward the Yakima River but has yet to be confirmed.

The MTCA Method A Cleanup Level for TPH-D + TPH-O is 2000 mg/Kg which was exceeded in samples SB1-2-1-22-10' (2070 mg/Kg) and SB5-2-1-22-10' (6900 mg/Kg).

TPH-G was quantified in sample SB1-2-1-22-10' at 220 mg/Kg which exceeds the MTCA Method A Cleanup Level of 30 mg/Kg.

VOCs were analyzed for in three soil samples (SB1-2-1-22-10', SB3-2-1-22-25', and SB5-2-1-22-20') and detected in sample SB1-2-1-22-10' at concentrations that do not exceed any MTCA Method A Cleanup Levels. No VOCs were detected in soil samples SB3-2-1-22-25' and SB5-2-1-22-20'.

Arsenic, mercury, selenium, and silver were not detected above the laboratory PQLs in any of the 21 soil samples. Barium was detected in all 21 samples at concentrations ranging from 24 mg/Kg in sample SB5-2-1-22-10' to 79 mg/Kg in sample SB5-2-1-22-20'. No MTCA Method A Cleanup Levels currently exist for barium in soil. Cadmium was detected in one sample (SB1-2-1-22-10') at 2.5 mg/Kg which exceeds the MTCA Method A Cleanup Level of 2 mg/Kg. Chromium was detected in all 21 samples at concentrations ranging from 2.9 mg/Kg in sample SB5-2-1-22-20' to

34 mg/Kg in sample SB2-2-1-22-5' which was the only soil sample to exceed the MTCA Method A Cleanup Level of 19 mg/Kg. Lead was detected in four of the 21 soil samples at concentrations ranging from 9.4 mg/Kg in sample SB5-2-1-22-5' to 45 mg/Kg in sample SB1-2-1-22-10'. None of the four lead detections exceed the MTCA Method A Cleanup Level of 250 mg/Kg.

PAHs were detected in sample SB1-2-1-22-10' at concentrations that due not exceed any MTCA Method A Cleanup Levels. No PAHs were detected in soil samples SB3-2-1-22-25' and SB5-2-1-22-20'.

PCBs were not detected above the laboratory PQLs in any of the three soil samples analyzed (SB1-2-1-22-10', SB5-2-1-22-10', and SB5-2-1-22-15').

TPH-D + TPH-O were detected in samples SB1-2-1-22-GW and SB5-2-1-22-GW at concentrations of 9800 μ g/L and 770 μ g/L, respectively, which exceeded the MTCA Method A Cleanup Level of 500 μ g/L. Groundwater sample SB1-2-1-22-GW was collected from immediately down-gradient of the dry well outside the automobile engine washing bay and groundwater sample SB5-2-1-22-GW was collected from between the two USTs removed from the north side of the building.

VOCs were analyzed for in all three groundwater samples (SB1-2-1-22-GW, SB3-2-1-22-GW, and SB5-2-1-22-GW). A combination of VOCs including PCE, benzene, ethylbenzene, and naphthalene were detected in all three groundwater samples but not at concentrations exceeding established MTCA Method A Cleanup Levels.

Aside from silver, a combination of RCRA (total) metals were detected in all three groundwater samples. Mercury was detected at concentrations ranging from 0.59 µg/L (SB3-2-1-22-GW) to 1.1 µg/L (SB1-2-1-22-GW). The MTCA Method A Cleanup Level for mercury in groundwater is 2.0 μg/L. Barium was detected at concentrations ranging from 1800 μg/L (SB3-2-1-22-GW) to 5800 µg/L (SB5-2-1-22-GW). A MTCA Method A Cleanup Level for barium does not currently exist. Selenium was detected in samples SB1-2-1-22-GW at 6.3 µg/L and 11 µg/L, respectively. A MTCA Method A Cleanup Level for selenium does not currently exist. Arsenic was detected in all three groundwater samples at concentrations exceeding the MTCA Method A Cleanup Level of 5 µg/L. Arsenic concentrations ranged from 51 µg/L in SB3-2-1-22-GW to 130 µg/L in SB5-2-1-22-GW. Chromium was detected in all three groundwater samples at concentrations exceeding the MTCA Method A Cleanup Level of 50 µg/L. Chromium concentrations ranged from 420 µg/L in SB3-2-1-22-GW to 1100 µg/L in SB5-2-1-22-GW. Lead was detected in all three groundwater samples at concentrations exceeding the MTCA Method A Cleanup Level of 15 µg/L. Lead concentrations ranged from 150 µg/L in SB3-2-1-22-GW to 1200 µg/L in SB1-2-1-22-GW. Cadmium was detected in groundwater samples SB1-2-1-22-GW and SB5-2-1-22-GW at 110 µg/L and 6.4 µg/L, respectively. The MTCA Method A Cleanup Level for cadmium in groundwater is 5 µg/L. Groundwater sample SB1-2-1-22-GW was collected from immediately down-gradient of the dry well outside the automobile engine washing bay and groundwater sample SB5-2-1-22-GW was collected from between the two USTs removed from the north side of the building.

PAHs were analyzed for in all three groundwater samples (SB1-2-1-22-GW, SB3-2-1-22-GW, and SB5-2-1-22-GW). A combination of PAHs including 1-methylnaphthalene, 2-methylnaphthalene, and naphthalene were detected in all three groundwater samples; however, not at concentrations exceeding established MTCA Method A Cleanup Levels.

PCBs were analyzed for in groundwater samples (SB1-2-1-22-GW, SB3-2-1-22-GW, and SB5-2-1-22-GW). PCBs were not detected above the laboratory PQLs in any of the three samples.

The automobile engine washing activities as witnessed on February 1, 2022 by BMEC personnel, appear to have heavily impacted the soil and groundwater in the vicinity of the exterior dry wells, immediately outside (down-slope) the engine washing bay, with RCRA metals, TPH-Dx and TPH-Gx contaminants. PCE is present in the groundwater beneath the Site, but not at concentrations exceeding MTCA Method A Cleanup Levels.

7.0 RECOMMENDATIONS

Based on the documentation that was made available to BMEC prior to February 2022, along with the field data collected from the Site by BMEC during the February 2, 2022 subsurface investigation, we make the following recommendations:

- Install a network of monitoring wells (five to six) at the Site to better assess contaminants of concern in the groundwater, as well as confirm the groundwater flow direction beneath the Site. At a minimum, one well should be place up-gradient to assess on-site migration of contaminants; one well should be placed in the immediate vicinity of the two former 2000-gallon USTs; one well should be place in the vicinity of the two dry wells; one well should be placed inside the auto repair bay near an inside sump drain; and one to two wells should be placed down-gradient near the property boundary.
- 2) Immediately cease all engine washing operations inside the automobile shop interior (southeast corner of building). These activities appear to have heavily impacted the soil and groundwater in the vicinity of the exterior dry wells, immediately outside the engine washing bay, with RCRA metals, TPH-Dx and TPH-Gx contaminants.
- 3) Decommission of both dry wells via removal and excavation of contaminated soils.
- 4) Conduct a minimum of four quarterly groundwater sampling events (GWSEs) and submit the groundwater samples to the laboratory for RCRA metals analysis, TPH-Dx and TPH-Gx analysis, as well as VOC including PCE analysis.
- 5) Assess whether background metals concentrations in the shallow aquifer may be naturally elevated above MTCA Method A Cleanup Levels. If so, this phenomenon shall be factored into the assessment of metals in groundwater and the pursuit of NFA status.
- 6) Complete reports documenting all future field activities. BMEC plans to compare all future soil and groundwater sampling results to MTCA Method A Cleanup Levels.

8.0 STATEMENT OF ENVIRONMENTAL PROFESSIONALS

BMEC personnel performed these subsurface investigation field activities on February 1, 2022, in accordance with generally accepted environmental practices and procedures. We employed the degree of care and skill ordinarily exercised under similar circumstances by reputable environmental professionals practicing in the discipline of environmental sciences. The soil and groundwater sampling activities completed were conducted in accordance with standard engineering and geologic standards. However, BMEC was limited by data gaps that were encountered due to previous field work inadequacies and improper documentation. This report is based on the limited data that was provided to BMEC and if additional field data or documentation exists that was not made available to BMEC, we cannot be held accountable for such data gaps or inconsistencies recognizable in this report.

Respectfully Submitted,

Blue Mountain Environmental and Consulting Company, Inc.

Yancy Meyer, Environmental Professional

9.0 REFERENCES

Google Maps, 2022.

.

PETCO INCORPORATED, Underground Storage Tank Decommissioning & Site Assessment Report For UST Site #200130, 1201 South 1st St., Yakima, Washington, February 2008.

Washington State Department of Ecology, Yakima Railroad Area PCE Contamination – Groundwater Quality Performance Monitoring Data Summary 2017, July 2018.

Washington State Department of Ecology, Model Toxics Control Act Statute and Regulation, Revised November 2007.

Washington State Department of Ecology, Letter – Re: Acceptance Letter -Voluntary Cleanup Program, 1201 South 1st Street, Yakima, Washington, November 12, 2021.

Washington State Department of Ecology, Letter – Re: Further Action at the Site, 1201 South 1st Street, Yakima, Washington, February 23, 2016.

BMEC P.O. Box 545/125 Main Street Waitsburg, Washington 99361

FIGURE 1 – SITE VICINITY MAP

Hahn Motors Company 1201 South 1st Street Yakima, Washington 98901

BMEC P.O. Box 545/125 Main Street Waitsburg, Washington 99361

FIGURE 2 – SITE LOCATION MAP

Hahn Motors Company 1201 South 1st Street Yakima, Washington 98901

BMEC P.O. Box 545/125 Main Street Waitsburg, Washington 99361

FIGURE 3 – SOIL BORINGS FEBRUARY 1, 2022 Hahn Motors Company 1201 South 1st Street Yakima, Washington 98901

		Soil Sample Results Ya	TABLE 1- Total Petroleum Hydroc1201 South First Streetkima, Washington 98901	arbons (mg/Kg) ¹								
			TPH-Diesel and Heavy Oil by I									
Sample I.D.	Depth (ft bsg)	Date Collected	TPH-D	трн-о	TPH-Gasoline by Northwest Method NWTPH-Gx							
	SUBSURFACE INVESTIGATION (BMEC) - FEBRUARY 2022											
<u>SB1-2-1-22-10'</u>	10'	2/1/22	670	1400	220							
<u>SB5-2-1-22-10'</u>	10'	2/1/22	< 660	6900	NA							
<u>SB5-2-1-22-15'</u>	15'	2/1/22	< 140	1100	NA							
	<u></u>	Ecology MTCA Method A	A Soil Cleanup Levels for Unrestricted	I Land Use (mg/Kg)								
U	Inrestricted Land U	lse	2,000	2,000	30/100 ¹							
Notes: ¹ MTCA Method A Cleanup Level for MTCA = Model Toxics Control Act NA= Not Analyzed	[.] Unrestricted Land U	se for TPH-G is 30 ppm if benzene is a	detected in subsurface soils or groundwater.	If benzene is not detected, Cleanup Level is	100 ppm.							
π bsg = teet below surface grade	parte par million (ppn	n)										
BOID = sample vielded detectable (concentration of analy											
BOLD	sample yielded det	ectable concentration of analyzed com	pound at levels exceeding MTCA Method A (Cleanup levels for Unrestricted Land Use								

TABLE 2															
	Soil Sample Results - Volatile Organic Compounds (mg/Kg)' 1201 South First Street Yakima, Washington 98901														
	Depth		Volatile Organic Compounds (VOCs) by EPA Method 8260D (mg/Kg)												
Sample I.D.	(ft bsg)		Benzene	Toluene	Ethylbenzene	Total Xylenes	EDB	EDC	Isopropyl- benzene	n-Propyl- benzene	p- Isopropyl- toluene	MTBE	Naphthalene	124-TMB	135-TMB
SUBSURFACE INVESTIGATION (BMEC) - FEBRUARY 2022															
<u>SB1-2-1-22-10'</u>	10'	2/1/22	< 0.054	< 0.27	0.22	1.74	< 0.054	< 0.054	< 0.054	0.17	0.11	< 0.054	0.44	1.3	0.49
<u>SB3-2-1-22-25'</u>	25'	2/1/22	< 0.00075	< 0.0038	< 0.00075	< 0.00225	< 0.00075	< 0.00075	< 0.00075	< 0.00075	< 0.00075	< 0.00075	< 0.0038	< 0.00075	< 0.00075
<u>SB5-2-1-22-20'</u>	20'	2/1/22	< 0.0012	< 0.0061	< 0.0012	< 0.0036	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0061	< 0.0012	< 0.0012
			1	Eco	ogy MTCA Meth	nod A Soil C	Cleanup Lev	els for Unr	estricted La	and Use (mg	g/Kg)		1	1	
Unrestrict	ed Land l	Jse	0.03	7	6	9	0.005	DNE	DNE	DNE	DNE	0.1	5	DNE	DNE
Notes:															
MICA = Model Toxic	cs Control	Act													
EDB = 1.2-Dibromoe	thane														
EDC = 1.2-Dichloroe	thane														
MTBE = Mehtyl tertie	ery-butyl e	ther													
124-TMB = 1,2,4-trin	nethylbenz	ene													
135-TMB = 1,3,5-trin	nethylbenz	ene													
DNE = Does Not Exi	st														
ft bsg = feet below surface grade															
mg/Kg = milligrams per Kilogram or parts per million (ppm)															
BOLD = sample yielded detectable concentration of analyzed compound															
BOLD	sample yi	elded detecta	able concentra	ation of analy	zed compound at l	evels exceed	ing MTCA Me	ethod A Clear	nup levels for	Unrestricted	_and Use				

			Ha	Soil Sample R hn Motors Co Yakim	TABLE 3 esults - Total M mpany - 1201 na, Washingtor	/letals (mg/Kg South First St 98901) ¹ creet			
ġ	(ɓsc	cted			Tota	l Metals via EPA	Methods 6010D	/7471B		
Sample	Depth (ft	Date Colle	Arsenic	Barium	Cadmium	Chromium ³	Mercury ⁴	Lead	Selenium	Silver
	1			BMEC SUBSURF	ACE INVESTIGATION	- FEBRUARY 2022	1	1	1	1
SB1-2-1-22-5'	5'	2/1/22	< 10	30	< 0.52	7.9	< 0.26	< 5.2	< 10	< 1.0
SB1-2-1-22-10'	10'	2/1/22	< 11	61	2.5	12	< 0.27	45	< 11	< 1.1
SB1-2-1-22-15'	15'	2/1/22	< 11	45	< 0.54	5.4	< 0.27	< 5.4	< 11	< 1.1
SB2-2-1-22-5'	5'	2/1/22	< 10	72	< 0.52	34	< 0.26	< 5.2	< 10	< 1.0
SB2-2-1-22-10	10'	2/1/22	< 11	27	< 0.53	5.5	< 0.26	< 5.3	< 11	< 1.1
SB2-2-1-22-15	15'	2/1/22	< 10	32	< 0.52	6.4	< 0.26	31	< 10	< 1.0
SB3-2-1-22-5'	5'	2/1/22	< 10	28	< 0.52	5.8	< 0.26	< 5.2	< 10	< 1.0
<u>SB3-2-1-22-10'</u>	10'	2/1/22	< 11	27	< 0.53	4.5	< 0.26	< 5.3	< 11	< 1.1
SB3-2-1-22-25	25'	2/1/22	< 11	73	< 0.56	5.8	< 0.28	< 5.6	< 11	< 1.1
SB4-2-1-22-5'	5'	2/1/22	< 10	47	< 0.51	7.8	< 0.25	< 5.1	< 10	< 1.0
SB4-2-1-22-10'	10'	2/1/22	< 10	41	< 0.52	7.9	< 0.26	< 5.2	< 10	< 1.0
SB4-2-1-22-15	15'	2/1/22	< 11	31	< 0.53	6.4	< 0.27	< 5.3	< 11	< 1.0
<u>SB4-2-1-22-20'</u>	20'	2/1/22	< 11	36	< 0.54	6.1	< 0.27	< 5.4	< 11	< 1.1
<u>SB5-2-1-22-5'</u>	5'	2/1/22	< 10	39	< 0.51	7.4	< 0.26	< 5.1	< 10	< 1.0
<u>SB5-2-1-22-10'</u>	10'	2/1/22	< 11	24	< 0.53	5.2	< 0.26	9.4	< 11	< 1.1
<u>SB5-2-1-22-15'</u>	15'	2/1/22	< 12	66	< 0.58	4.3	< 0.29	< 5.8	< 12	< 1.2
<u>SB5-2-1-22-20'</u>	20'	2/1/22	< 12	79	< 0.58	2.9	< 0.29	< 5.8	< 12	< 1.2
<u>SB6-2-1-22-5'</u>	5'	2/1/22	< 11	53	< 0.53	11	< 0.27	21	< 11	< 1.1
SB6-2-1-22-10	10'	2/1/22	< 10	48	< 0.52	8.4	< 0.26	< 5.2	< 10	< 1.0
<u>SB6-2-1-22-15</u>	15'	2/1/22	< 10	44	< 0.52	6.9	< 0.26	< 5.2	< 10	< 1.0
<u>SB6-2-1-22-20'</u>	20'	2/1/22	< 11	52	< 0.53	10	< 0.26	< 5.3	< 11	< 1.1
	Unrestricted Land Use	2	20 20	MTCA Method A So	2 Cleanup Levels for	10	se (mg/Kg)	250	DNE	DNE
Notes:	Childen Carlo US	- -	20	DINE		10		200	DINE	
¹ Table 2 contains total ² Sample analysis perfo	metal analysis results fo	or all soil samples collect	ed by Waste Watch. Th	ne 2009 metals results f	or soil samples collected	by Ecology and Enviror	nment are included in tal	oles located in Appendix	D.	
MICA Method A Clea	anup Level for Unrestrict	ed Land Use for Chromit	um VI. Cleanup Level fo	or Chromium III is 2,000	mg/Kg.					
Mercury analyzed via	EPA Method 7471A.									
Soil sample SB24-7.5	was also analyzed for h	nexavalent chromium via	EPA Method 7196A an	nd yielded a non-detect	(< 1.2 mg/Kg).					
NA = Not Apply and	Control Act									
DNE - Doon Not Evict										
ft heg = feet below out	ace grade									
ma/Ka = milliarame por	Kilogram or parts por m	illion (nnm)								
BOID = cample violdor	d detectable concentrati	on of analyzed compour	d							
POLD - Sample yielded	comple vielded detecte	ble concentration of anal	uzed compound at love	als exceeding MTCA Me	thad A Cleanus levels fo	r Uprostricted Land Llev	_			

					Soil	Sample	e Resul	ts - Po 12(Yakir	TA lynucle 01 Sout na, Wa	BLE 4 ar Aron h First shingto	4 matic H Street on 9890	lydroca)1	arbons	(mg/Kg	1)					
	Polynuclear Aromatic Hydrocarbons by EPA Method 8270D SIM (mg/Kg)																			
Sample I.D.	Depth (ft bsg	Date Collecte	Acenaphthene	Acenaphthene Acenaphthylene Benz(a)anthracene Benzo(a)pyrene Benzo(j,k)fluoranthene Benzo(j,k)fluoranthene Chrysene Benzo(g,h,i)perylene Fluoranthene Fluoranthene Fluoranthene Fluorene Phenanthrene Phenanthrene									Pyrene							
							S	UBSURF	ACE INVES	STIGATIO	N (BMEC)	2 1 22								
SB1-2-1-22-10'	10'	2/1/22	< 0.0073	< 0.0073	< 0.0073	0.0097	0.0096	0.022	0.0078	0.022	0.019	< 0.0073	0.032	< 0.0077	0.013	0.27	0.48	0.26	0.030	0.081
<u>SB3-2-1-22-25'</u>	25'	2/1/22	< 0.0075	< 0.0075	< 0.0075	< 0.0075	< 0.0075	< 0.0075	< 0.0075	< 0.0075	< 0.0075	< 0.0075	< 0.0075	< 0.0075	< 0.0075	< 0.0075	< 0.0075	< 0.0075	< 0.0075	< 0.0075
<u>SB5-2-1-22-20'</u>	20'	2/1/22	< 0.0077	< 0.0077	< 0.0077	< 0.0077	< 0.0077	< 0.0077	< 0.0077	< 0.0077	< 0.0077	< 0.0077	< 0.0077	< 0.0077	< 0.0077	< 0.0077	< 0.0077	< 0.0077	< 0.0077	< 0.0077
	Ecology MTCA Method A Soil Cleanup Levels for Unrestricted Land Use (mg/Kg)																			
Unrestric	ted Land	Use	DNE	DNE	DNE	see below	0.1 1	see below	see below	DNE	see below	see below	DNE	DNE	see below	DNE	DNE	5 ²	DNE	DNE
Notes:	Cleanup	l evel for l In	estricted La	nd Lise for F	Benzo(a)pyr	ene is 0.1 m	a/Ka How	ever this va	lue is a cur	nulativo va	ue which er				following c	arcinogenic	PAHs at the	noted mult	inlier in pars	ntheses:

MTCA Method A Cleanup Level for Unrestricted Land Use for Benzo(a)pyrene is 0.1 mg/Kg. However, this value is a **cumulative value** which encompasses **A SUM OF ALL** of the following carcinogenic PAHs at the noted multiplier in parantheses: benzo(a)pyrene (x 1) + benzo(a)anthracene (x 0.1) + benzo(b)fluoranthene (x 0.1) + benzo(k)fluoranthene (x 0.1) + chrysene (x 0.01) + dibenz(a,h)anthracene (x 0.1) + indeno(1,2,3-cd)pyrene (x 0.1).

² MTCA Method A Cleanup Level for Unrestricted Land Use for Naphthalene 5,000 µg/Kg. However, this value is a cumulative value which encompasses A SUM OF ALL of the naphthalenes: naphthalene + 1-methylnaphthalene + 2-methylnaphthalene.

MTCA = Model Toxics Control Act

NA = Not Analyzed

DNE = Does Not Exist

ft bsg = feet below surface grade

mg/Kg = milligrams per Kilogram or parts per million (ppm)

BOLD = sample yielded detectable concentration of analyzed compound

BOLD sample yielded detectable concentration of analyzed compound at levels exceeding MTCA Method A Cleanup levels for Unrestricted Land Use

		Soil Sam	iple - Polychlo	TA prinated Biphen Hahn Mo 1201 Sou Yakima, Wa	ABLE 5 yls Results via tors Company th First Street ashington 9890	EPA Method 80	82A (mg/Kg)		
Sample I.D.	Depth	Date Collected			Po	olyChlorinated Biphen by EPA Method 8082/ (mg/Kg)	yls A		
	(ft bsg)		Aroclor 1016	Aroclor 1221	Aroclor 1232	Aroclor 1242	Aroclor 1248	Aroclor 1254	Aroclor 1260
SB1-2-1-22-10'	10'	2/1/22	< 0.052	< 0.052	< 0.052	< 0.052	< 0.052	< 0.052	< 0.052
SB5-2-1-22-10'	10'	2/1/22	< 0.053	< 0.053	< 0.053	< 0.053	< 0.053	< 0.053	< 0.053
SB5-2-1-22-15'	15'	2/1/22	< 0.058	< 0.058	< 0.058	< 0.058	< 0.058	< 0.058	< 0.058
			MTCA M	ethod A Cleanup Leve	Is For Unrestricted La	and Use (mg/Kg)			
Cle	anup Level ¹		1	1	1	1	1	1	1
Notes:									
¹ Soil Cleanup Level for polyc	chlornated biphenyl	s (PCBs) = 1 mg/Kg ar	nd includes a cumulative	value for all seven Arocic	ors.				
DNE = Cleanup Level Does I	Not Exist for this an	alyte.							
mg/Kg = milligrams per Kilog	ram or parts per mi	illion (ppm).							

	TABLE 6 Groundwater Sample Results - Total Petroleum Hydrocarbons (μg/L) 1201 South First Street Yakima, Washington 98901											
		TPH-Diesel and Heavy Oil by N										
Sample I.D.	Date Collected	TPH-D	трн-о	TPH-Gasoline by Northwest Method NWTPH-Gx								
		SUBSURFACE INVESTIGATION (BMEC) -	2 1 22									
SB1-2-1-22-GW	2/1/22	5000	4800	< 500								
SB3-2-1-22-GW	2/1/22	260	< 190	< 500								
SB5-2-1-22-GW	2/1/22	330	440	< 500								
	Ec	ology MTCA Method A Groundwater Cleanu	p Levels (μg/L)									
Clean	up Level	500	500	800/1,000 ¹								
Notes:												
¹ MTCA Method A Cleanup Level for TPH-0	G is 800 ppb if benzene is detected in subsurf	ace soils or groundwater. If benzene is not detected,	Cleanup Level is 1,000 ppb.									
MTCA = Model Toxics Control Act												
μ g/L = micrograms per Liter or parts per bill	ion (ppb)											
BOLD = sample yielded detectable concent	ration of analyzed compound.											
BOLD	Concentration exceeds the MTCA Method	A Cleanup Level.										

							Groundw	ater San Hahn I	nple Res Motors (Yakin	TAE sults - Vo Compan ma, Was	BLE 7 olatile O y - 1201 shingtor	rganic C South 1 98901	compour st Street	nds (µg/ t	L)							
			Volatile Organic Compounds (VOCs) by EPA Method 8260D (µg/L)																			
Sample I.D.	Date Collected	Benzene	Toluene	Ethylbenzene	Total Xylenes	EDB	EDC	lsopropyl- benzene	n-Propyl-benzene	MTBE	Naphthalene	124-TMB	135-TMB	Methyl Isobutyl Ketone	sec-Butyl- benzene	p- Isopropyltoluene	n-Butylbenzene	Acetone	Cabon Disulfide	2-Butanone	Chloroform	PCE
									SUBSUR	FACE INVES	TIGATION (B	MEC) - 2 1 22										
SB1-2-1-22-GW	2/1/22	< 0.40	19	7.1	48	< 0.40	< 0.40	0.43	1.8	< 0.40	3.4	15	5.5	5.4	0.69	4.6	2.9	120	1.9	< 10	< 0.40	< 0.40
SB3-2-1-22-GW	2/1/22	2.2	1.5	0.46	0.83	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 1.0	0.33	< 0.20	< 2.0	< 0.20	< 0.20	< 0.20	23	< 0.20	6.5	0.35	0.52
SB5-2-1-22-GW	2/1/22	0.82	< 1.0	< 0.20	< 0.60	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 1.0	< 0.20	< 0.20	< 2.0	< 0.20	< 0.20	< 0.20	32	< 0.20	7.7	5.2	1.3
		1						Ecolog	gy MTCA M	ethod A Gro	oundwater C	leanup Lev	els (µg/L)			1	1					
Cleanup Lev	vel	5	1,000	700	1,000	0.010	5	DNE	DNE	20	160	DNE	DNE	DNE	DNE	DNE	DNE	DNE	DNE	DNE	DNE	5
Notes: MTCA = Model Toxics C EDB = 1,2-Dibromoetha EDC = 1,2-Dibromoetha MTBE = Methyl tertiery-1 124-TMB = 1,2,4-trimeth 135-TMB = 1,3,5-trimeth PCE = Tetrachloroethylu DNE = Does Not Exist	Control Act ine butyl ether hylbenzene ene																					

μg/L = micrograms per Liter or parts per billion (ppb)

BOLD = sample yielded detectable concentration of analyzed compound.

			Ground	T/ water Sample 1201 Sc Yakima, V	ABLE 8 Results - To buth First Str Vashington 9	otal Metals (µg eet 08901	/L)				
	Total Mercury										
Sample I.D.	Date Collected	by EPA Method 200.8 (μg/L)	Arsenic	Barium Cadmium Chromium ¹		Lead	Selenium	Silver			
Grab Groundwater Samples Via Temporary Borings											
SB1-2-1-22-GW	2/1/22	1.1	120	2500	110	530	1200	6.3	< 11		
SB3-2-1-22-GW	2/1/22	0.59	51	1800	< 4.4	420	150	< 5.6	< 11		
SB5-2-1-22-GW	2/1/22	0.87	130	5800	6.4	1100	330	11	< 11		
			Ecolog	gy MTCA Method A	Groundwater Cle	anup Levels (μg/L)					
Cleanup L	evels	2	5	DNE	5	50	15	DNE	DNE		
¹ MTCA Method A MTCA = Model To EDB = 1.2-Dibrom	Notes: ¹ MTCA Method A Cleanup Level for total chromium (chromium VI + chromium III) is 50 μg/L MTCA = Model Toxics Control Act EDR = 4.2 Discussed to act										
EDC = 1,2-Dichlor	oethane										
MTBE = Mehtyl ter	tiery-butyl eth	ner									
124-TMB = 1,2,4-t	rimethylbenze	ene									
135-TMB = 1,3,5-t	rimethylbenze	ene									
DNE = Does Not E	Exist										
μg/L = micrograms	s per Liter or	parts per billion (ppb)									
BOLD = sample yi	elded detecta	able concentration of a	nalyzed compound								
BOLD	Concentratio	on exceeds the MTCA	Method A Cleanup Lev	vel							

				Groun	dwater	Sampl	le Resu 1 Yak	T/ Ilts - Po 201 So tima, W	ABLE olynucle uth Firs /ashing	ear Aro st Stree ton 98	omatic H et 901	lydroc	arbons	; (μg/L)					
		Polynuclear Aromatic Hydrocarbons by EPA Method 8270D SIM (µg/L)																	
Sample I.D.	Date Collected	Acenaphthene	Acenaphthylene	Anthracene	Benz(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Benzo(g,h,i)perylene	Chrysene	Dibenz(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-cd)pyrene	1-Methylnaphthalene	2-Methylnaphthalnee	Naphthalenes	Phenanthrene	Pyrene
							SUBSU	RFAE INVE	STIGATIC	N (BMEC)) - 2 1 22							· · · · · · · · · · · · · · · · · · ·	
SB1-2-1-22-GW	2/1/22	< 0.10	< 0.10	< 0.10	< 0.050	< 0.10	< 0.10	< 0.10	< 0.10	< 0.050	< 0.10	< 0.10	< 0.16	< 0.10	1.6	1.7	2.8	< 0.10	< 0.10
SB3-2-1-22-GW	2/1/22	< 0.096	< 0.096	< 0.096	< 0.0096	< 0.0096	< 0.0096	< 0.0096	< 0.0096	< 0.0096	< 0.0096	< 0.096	< 0.096	< 0.0096	1.1	1.7	0.46	< 0.096	< 0.096
SB5-2-1-22-GW	2/1/22	< 0.12	< 0.12	< 0.12	< 0.012	< 0.012	< 0.012	< 0.012	< 0.025	< 0.012	< 0.012	< 0.12	< 0.12	< 0.012	0.33	0.42	0.28	< 0.12	< 0.12
Ecology MTCA Method A Groundwater Cleanup Levels (µg/L)																			
Cleanup Le	vels	DNE	DNE	DNE	see below	0.1 ¹	see below	see below	see below	see below	see below	DNE	DNE	see below		160 ²		DNE	DNE
Notes: 1 MTCA Method A Cleanup Level for Benzo(a)pyrene is 0.1 µg/L. However, this value is a cumulative value which encompasses A SUM OF ALL of the following carcinogenic PAHs at the noted multiplier in parantheses: benzo(a)pyrene (x 1) + benzo(a)anthracene (x 0.1) + benzo(b)fluoranthene (x 0.1) + benzo(k)fluoranthene (x 0.1) + chrysene (x 0.01) + dibenz(a,h)anthracene (x 0.1) + indeno(1,2,3-cd)pyrene (x 0.1). 2 MTCA Method A Cleanup Level for Naphthalene is 160 µg/L. However, this value is a cumulative value which encompasses A SUM OF ALL of the naphthalenes: naphthalene + 1-methylnaphthalene + 2-methylnaphthalene. MTCA = Model Toxics Control Act NA = Not Analyzed DNE = Does Not Exist th sg = feet below surface grade µg/L = micrograms per Liter or parts per billion (ppb) the sg = feet below surface grade																			

BOLD = sample yielded detectable concentration of analyzed compound

				TABLE 10								
Groundwater Sample - Polychlorinated Biphenyls Results via EPA Method 8082A (ug/L)												
Former Hahn Motors												
1201 South First Street												
Vakima Washington 98001												
			Takin	a, washington c	0001							
PolyChlorinated Biphenyls												
	Date Collected	by EPA Method 8082A										
Sample I.D.		(µg/L)										
		Aroclor 1016	Aroclor 1221	Aroclor 1232	Aroclor 1242	Aroclor 1248	Aroclor 1254	Aroclor 1260				
Grab Groundwater Samples Via Temporary Borings												
SB1-2-1-22-GW	2/1/22	< 0.052	< 0.052	< 0.052	< 0.052	< 0.052	< 0.052	< 0.052				
SB3-2-1-22-GW	2/1/22	< 0.022	< 0.022	< 0.022	< 0.022	< 0.022	< 0.022	< 0.022				
SB5-2-1-22-GW	2/1/22	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050				
	MTCA Method A Cleanup Levels (µg/L)											
Cleanup Leve	1		1	1	1	1	1	1				
Notes:												
¹ Groundwater Cleanup Level fo	or polychlornated biph	nenyls (PCBs) = 1 μg/L an	id includes a cumulative v	alue for all seven Aroclors								
DNE = Cleanup Level Does Not	t Exist for this analyte											
μg/L = milcrograms per Liter or	parts per billion (ppb)											

APPENDIX A

MAPS OF PREVIOUS SAMPLE LOCATIONS (2007 – 2021)

STATE OF WASHINGTON DEPARTMENT OF ECOLOGY 1250 W Alder St * Union Gap, WA 98903-0009 * (509) 575-2490

ILE COPY

February 23, 2016

Richard Hahn 1219 N 22nd Avenue Yakima, WA 98902

Re: Further Action at the following Site:

Site Name:Hahn Motor CompanySite Address:1201 S 1st Street, YakimaFacility Site ID No.:502Cleanup Site ID No.:4927VCP Project No.:CE0434

Dear Mr. Hahn:

The Washington State Department of Ecology (Ecology) received your request for an opinion on your independent cleanup of the Hahn Motor Company facility (Site). This letter provides our opinion. We are providing this opinion under the authority of the Model Toxics Control Act (MTCA), Chapter 70.105D RCW.

Issue Presented and Opinion

Is further remedial action necessary to clean up contamination at the Site?

YES. Ecology has determined that further remedial action is necessary to clean up contamination at the Site.

This opinion is based on an analysis of whether the remedial action meets the substantive requirements of MTCA, Chapter 70.105D RCW, and its implementing regulations, Chapter 173-340 WAC (collectively "substantive requirements of MTCA"). The analysis is provided below.

Description of the Site

This opinion applies only to the Site described below. The Site is defined by the nature and extent of contamination associated with the following releases:

 Waste Oil and associated chemicals released from Underground Storage Tanks (USTs) into soil and groundwater. Rıchard Hahn Hahn Motor Company February 23 2016 Page 2

• Petroleum products and other chemicals released from interior sumps to soil and groundwater

Currently the Site is part of the Yakima Railroad Area's (FSID# 500) tetrachloroethylene (PCE) plume

Please note a parcel of real property can be affected by multiple sites At this time we have no information that the parcel(s) associated with this Site are affected by other sites

Basis for the Opinion

t

This opinion is based on the information contained in the following documents

- Earth Consultants Inc 1989 Preliminary Integrity Assessment of Two USTs and Three Industrial Waste Water Sumps 1201 S 1st St and 307 E Arlington St Yakima WA October 1989
- PETCO Inc 2008 UST Decommissioning & Site Assessment Report for UST Site #200130 1201 S 1st St Yakima WA February 2008
- Department of Ecology Correspondence File 1989 2015

Those documents are kept at the Central Regional Office (CRO) of Ecology for review by appointment only You can make an appointment by calling the CRO resource contact Jackie Cameron at 509 454 7658

This opinion is void if any of the information contained in those documents is materially false or misleading

Analysis of the Cleinup

Ecology has concluded that **further remedial action** is necessary to clean up contamination at the Site That conclusion is based on the following analysis

1 Characterization of the Site

Ecology has determined your characterization of the Site is not sufficient to establish cleanup standards and select a cleanup action

Richard Hahn Hahn Motor Company February 23 2016 Page 3

> Groundwater in the vicinity of the waste oil USTs has concentrations of petroleum exceeding cleanup levels and concentrations of petroleum in soil at the base of the UST excavation appear to increase with depth The testing performed did not meet Ecology s requirements for waste oil releases and other contaminants are suspected

١

Soil samples collected adjacent to the two interior sumps had concentrations or detections of petroleum products and Volatile Organic Compounds (VOCs) including PCE Additional contaminants and higher concentrations are suspected with further characterization of soil and groundwater

The automotive washing bay sump is believed to drain to a nearby drywell The drywell should be decommissioned and soil and groundwater in the vicinity should be characterized

WAC 173 340 350 requires sufficient investigations to characterize the distribution of hazardous substances present at the site and threat to human health and the environment Further investigation of both soil and groundwater near the USTs both sumps and drywell connected to the automotive washing bay sump are required to adequately characterize the Site

The investigation should consist of sufficient sampling and analyses to demonstrate a Contaminant of Potential Concern (COPC) is not affecting the Site **and** to define the location quantity extent and concentration of all Contaminants of Concern (COCs) known to be affecting the Site

The investigation should meet the analytical requirements and recommendations for waste oil releases as discussed in the following Ecology documents

- Guidance for Site Checks and Site Assessments for Underground Storage Tanks (Pub #90 52)
- Guidance for Remediation of Petroleum Contaminated Sites (Pub #10 09 057)
- Model Toxics Control Act Regulation and Statute (Pub #94 06)

2 Establishment of cleanup standards

Ecology has determined the cleanup levels and points of compliance you established for the Site **do not** meet the substantive requirements of MTCA

The characterization of the Site is not sufficient to establish cleanup standards and points of compliance

(

Rıchard Hahn Hahn Motor Company February 23 2016 Page 4

3 Selection of cleanup action

Ecology has determined the cleanup action you selected for the Site **does not** meet the substantive requirements of MTCA

The characterization of the site is not sufficient to select a cleanup action

4 Cleanup

Ecology has determined the cleanup you performed does not meet any cleanup standards at the Site

The interim action performed at the Site consisted of decommissioning USTs and limited removal of impacted soil surrounding the USTs

٨

Additional characterization is necessary to select a cleanup action

Limitations of the Opinion

1 Opinion does not settle liability with the state

Liable persons are strictly liable jointly and severally for all remedial action costs and for all natural resource damages resulting from the release or releases of hazardous substances at the Site This opinion **does not**

- Resolve or alter a person s hability to the state
- Protect liable persons from contribution claims by third parties

To settle liability with the state and obtain protection from contribution claims a person must enter into a consent decree with Ecology under RCW 70 105D 040(4)

2 Opimion does not constitute a determination of substantial equivalence

To recover remedial action costs from other hable persons under MTCA one must demonstrate that the action is the substantial equivalent of an Ecology conducted or Ecology supervised action This opinion does not determine whether the action you performed is substantially equivalent Courts make that determination *See* RCW 70 105D 080 and WAC 173 340 545

Richard Hahn Hahn Motor Company February 23 2016 Page 5

3 State is immune from liability

The state Ecology and its officers and employees are immune from all liability and no cause of action of any nature may arise from any act or omission in providing this opinion See RCW 70 105D 030(1)(1)

Contact Information

Thank you for choosing to clean up the Site under the Voluntary Cleanup Program (VCP) After you have addressed our concerns you may request another review of your cleanup Please do not hesitate to request additional services as your cleanup progresses We look forward to working with you

For more information about the VCP and the cleanup process please visit our web site www ecy wa gov/programs/tcp/vcp/vcpmain htm If you have any questions about this opinion please contact me by phone at (509) 454 7839 or e mail at Jennifer Lind@ecy wa gov

Sincerely

im, for Lind

Jennifer Lind CRO Toxics Cleanup Program

cc Doug and Connie Bettarel Dolores Mitchell VCP Financial Manager

MEMORANDUM

February 18, 2016

то:	Valerie Bound
PEER REVIEW:	
FROM:	Jennifer Lind 22
SUBJECT:	Hahn Motor Company – VCP request for NFA Opinion on Site Characterization and Remedial Action

VCP OPINION: Further Action Required

EXECUTIVE SUMMARY:

Further investigation of both soil and groundwater near the USTs, both sumps, and drywell connected to Sump #2 are required to adequately characterize the Site. Testing should follow Ecology's requirements for waste oil releases.

Ecology correspondence circa 1990 indicates Ecology was very clear that additional characterization of soil and groundwater is necessary.

Both the sumps and USTs are potential sources of PCE contributing to the YRRA PCE plume.

USTs: Groundwater has concentrations of petroleum exceeding CULs. Soil has concentrations of petroleum below CULs, but appears to be increasing with depth. No other analyses were performed for either media.

Sumps: Soil adjacent to the sumps has concentrations of petroleum below CULs, but appears to be increasing with depth. T, E, X, DCE, TCE, PCE, 1,1,1 Trichloroethane were detected below CULs, but higher concentrations are likely with proper sampling.

Drywell: Water from Sump #2 runs through an oil/water separator, then out to drywell. This drywell is prohibited and needs to be decommissioned.

Tank Sludge: Contained metals and chlorinated compounds.

SITE INFORMATION:

Site Name:	Hahn Motor Company
Address:	1201 S 1st St., Yakima
Tax Parcel No.:	191330-13002
Brief Legal Description:	BEG 30 FT S & 30 FT E OF NW COR SW1/4NE1/4,TH S 28.35 FT,TH SE'LY AL E LN S1ST ST.271.65 FT,TH E 140 FT,TH NW'LYPAR TO S 1ST ST.100 FT,TH E 50 FT,THNW'LY PAR TO S 1ST ST.202.89 FT TO SLN E WASH.STTH W TO POB.
CSID:	4927
FSID:	502

SITE HISTORY

1940s

In the mid 1940s Hahn Motors built the existing structure with a 2 000 gallon heating oil UST in the basement The use of the facility as an auto dealership and service garage appears to have remained consistent since construction

1970s

In the mid 1970s an additional 2 000 gallon UST was installed and the boiler was retrofitted to burn used motor oil

1989

An assessment of 2 USTs and 2 interior sumps was performed (a drywell at the N adjoining 5th Wheel Site was also assessed) The investigation consisted of 2 borings near the USTs (15 ft bgs) and 2 hand augers near the interior sumps (6 ft bgs) Groundwater samples were collected from the borings at about 14 ft bgs

Sump #? (Western) Located in an automotive servicing bay and described in the report as a battery storage area

<u>2/2016 Site Visit</u> No batteries currently stored Unknown if secondary containment was used The sump is reportedly self contained and pumped as necessary but no documentation available No hydraulic lift

Sump #? (Eastern) Located in an auto washing/detailing area of the service department

<u>2/2016 Site Visit</u> A pressure washer was used for engine cleaning Mr Hahn stated the sump water runs through an oil/water separator then out to a drywell. At the time of the site visit the sump was completely full of oily water

*Note Sump locations on figure and sample location descriptions are not consistent Unclear which is correct *

See attached tables of results

All soil samples were analyzed for TPH (EPA Method 418 1) The interior sump samples were also analyzed for VOCs (EPA Method 8240)

Groundwater samples were only analyzed for TPH (EPA Method 418 1)

Low levels of TPH were detected in soil samples ranging from 17 to 236 mg/kg However the analytical method used is not appropriate for lighter end fuels like gasoline TPH concentrations in samples collected at B 2 increased with depth to a max of 15 ft bgs (162 mg/kg)

The groundwater sample collected from B 2 had 5 000 ug/L TPH This concentration exceeds the CUL for any petroleum product

The USTs were used to store waste oil from at least 1975 It is unknown if other automotive fluids or cleaning solvents were also disposed of/stored in the USTs or what chemicals drained into the sumps. It is assumed the washing area sump is still in use as it is full of water (2/2016)

Ecology letter with comments 2/12/1990 Highlights

- Given the information in your preliminary assessment report additional site investigation and characterization is needed to define the extent of horizontal and vertical contamination at this site
- Further investigation should include both downgradient and upgradient (background contamination around the two tanks and three sumps
1992

PLSA submitted sampling results from the on site land farmed stockpile – Update This soil was from the interior catch basin at the 5th Wheel Site and was stockpiled at a 3rd location at the SW corner of South 6th Street and Arlington (property also owned by Hahn)

1993

Ecology internal file memo dated October 22 1993 describes soil sampling activities performed by PLSA – Update This sampling took place near the former interior catch basin at the 5th Wheel Site

2007

The USTs were decommissioned and removed in November 2007 No holes were observed in the tanks The USTs stored waste oil for heating purposes during winter months and were pumped out by a recycling company during the summer months

Name	Date Installed	Date Removed	Tank Type & Status	Size (gallons)	Contents	Signs of Release?
West Tank	~1946	Nov 2007	UST <u>assumed</u> steel and single walled Corrosion but no holes	2 000	Used Oil from auto servicing	overfilling only
East Tank	~1975	Nov 2007	UST <u>assumed</u> steel and single walled Corrosion but no holes	2 000	Used Oil from auto servicing	overfilling only

UST excavation sampling and analysis

Documentation of the decommissioning and site assessment are inadequate The activities that were documented **do not** meet the requirements of MTCA

A discussion or figure illustrating the depth of the USTs or the dimensions of the excavations was not provided. It is not known if the sample locations and depths selected are appropriate. Ecology requires a sample be collected from the beneath the tank. It appears from the limited information that all samples were collected from the sidewalls at various depths.

The excavation sidewall samples were only analyzed for diesel and heavy oil Ecology requires additional testing for waste oil releases

No samples had concentrations of heavy oil greater than the CUL however the deepest sample collected had the highest concentration (west tank S 6 12 ft bgs 492 mg/kg) Considering the high groundwater elevation is about 14 ft bgs both soil and groundwater should be analyzed for petroleum products VOCs/HVOCs fuel additives and blending compounds cPAHs PCBs and other analytes as required or necessary

<u>Tank Sludge</u>

The sludge and oil removed during decommissioning was properly disposed of as dangerous waste by Safety Kleen Documentation was provided

The sludge was analyzed for metals (As Cd Cr and Pb) and PCBs (non detect) A Chlor d tect test was performed by Ecology Hazardous Waste staff A max of >4 000 ppm chlorine compounds were detected (possible source of PCE in GW)

<u>Stockpiles</u>

4 stockpiles were segregated by their anticipated levels of contamination and moved to a vacant lot owned by Mr Hahn at the SW corner of S 6th St and E Arlington

Stockpile #1 the most contaminated (heavy oil = 4 980 mg/kg) was disposed of at the Anderson PCS facility in Yakima Documentation was provided

Stockpiles #2 #3 and #4 were classified as solid waste by the Yakima Health District The report states the stockpiles were disposed of at the New Waste Landfill No documentation was provided but Ecology did not see any indications of stockpiled material during the site visit (2/2016)

2014

The Site was sold to Doug and Connie Bettarel for use as a used car sales lot According to Mr Hahn no servicing has been performed since the ownership change (unconfirmed)

2016

Ecology Site Visit Mr Hahn and Wayne Griffith (retired general manager) escorted Jennifer Lind and Kyle Parker through the facility and answered questions regarding general operating practices

See the discussion above regarding the sumps

Three previously unknown drywells were identified by Mr Hahn and Mr Griffith Two of the drywells appear to be stormdrains and one of the drywells is likely connected to the easternmost sump Ecology contacted the City of Yakima stormwater engineer who thought it unlikely that the drywells were hooked up to the stormwater system None of the drywells are registered as required and the drywell connected to the sump is considered a prohibited UIC well under WAC 173 218 040(5)(b)(ii) and (v) Mary Shaleen Hansen (ECY UIC permitting) was contacted and will do a follow up compliance/outreach with the Site representative

The drywell should be decommissioned and appropriate sampling performed

<u>SOILS</u>

Subsurface Unconsolidated sand and gravel

Data Gaps Additional sampling and analyses (ALL required in Table 830 1) in near former USTs sumps and drywell connected to Sump #2

GROUNDWATER

Depth below ground surface (ft)	14 – 19 ft bgs at N adjoining 5 th Wheel Site
Confined/Unconfined	Shallow aquifer unconfined (source YRRA report)
Flow Direction & Gradient	YRRA is primarily to the E with an approximate gradient of 0 005 5th Wheel Site ranges from E to SE
Contaminant Plume Defined?	No
Data Gaps	Yes Groundwater collected near the USTs has petroleum concentrations exceeding CULs and soil contamination is present in contact with groundwater The nature of the contamination has not been characterized

REPORTS AND CORRESPONDENCE

- 1 Earth Consultants Inc 1989 Preliminary Integrity Assessment of Two USTs and Three Industrial Waste Water Sumps 1201 S 1st St and 307 E Arlington St Yakima WA October 1989
- 2 PETCO Inc 2008 UST Decommissioning & Site Assessment Report for UST Site #200130 1201 S 1st St Yakima WA February 2008
- 3 Department of Ecology Correspondence File 1989 2015

VCP OPINION OUTLINE

*

Characterization	Insufficient and unsubstantiated
	WAC 173 340 350 requires sufficient investigations to characterize the distribution of hazardous substances present at the site and threat to human health and the environment Further investigation of both soil and groundwater near the USTs both sumps and drywell connected to Sump #2 are required to adequately characterize the Site
	The investigation should consist of sufficient sampling and analyses to demonstrate a COPC is not affecting the Site and to define the location quantity extent and concentration of all COCs known to be affecting the Site
	The investigation should follow the analytical requirements and recommendations for waste oil releases as discussed in the following Ecology documents
	 Guidance for Site Checks and Site Assessments for Underground Storage Tanks (Pub #90 52)
	 Guidance for Remediation of Petroleum Contaminated Sites (Pub #10 09 057)
	Model Toxics Control Act Regulation and Statute (Pub #94 06)
Cleanup Levels	Do not meet the substantive requirements of MTCA Reasoning
	 The characterization of the Site is insufficient to establish cleanup standards
Point of Compliance	Does not meet the substantive requirements of MTCA
	Reasoning
	The following explanation or actions are necessary to establish or substantiate the cleanup standards
	 Whether the points of compliance are standard or conditional
	 The basis for the points of compliance (e.g. for soil the points may be based on protection of ground water quality)

Selection of Cleanup	Does not meet the substantive requirements of MTCA
Action	Reasoning

• The characterization of the Site is not sufficient to select a cleanup action

1989 - UST and Sump Assessment Groundwater Samples

	_		_		
Heavy Oil (ug/L) NWTPH-Dx	1	1	2,000		
Diesel (ug/L) NWTPH-Dx	1	ı	2,000		
Gasoline (ug/L) NWTPH-Gx	1	1	30/100		
TPH (ug/L) 418.1	<5,000	5,000			
Date Analyzed	8/1989	8/1989	Method A CUL	than the CUL	
Date Sampled	٤	2	MTCA	PQL is greater	
Depth (ft bgs)	14	14			
Sample Location	NE corner of West UST	NE corner of East UST		<3.2	
Sample Name	B-1	B-2		Notes 1	

es 1 <3.2 PUL IS greater than the CUL 2 510 concentration is greater than the CUL 3 510 detected below the CUL

4 Method 418.1 is not appropriate for gasoline

1989 - UST and Sump Assessment Soil Samples

Sample Name	Sample Location	Depth (ft bgs)	Date Sampled	Date Analyzed	TPH (mg/kg) 418.1	Volat	lle Organic C (mg EPA	ompounds (V /kg) 8240	(SCS)		Hall	ogenated VO (mg/kg) EPA 8240	S	
						80	F	ш	×	Ń	DCE	TCE	PCE	1,1,1 Trichloroeth ane
Sump #1	Adjacent to Eastern sump	6 foot composite	e	8/1989	236	<0.001	-0.005	<0.0008	<0.0018	<0.002	<0.0008	<0.0006	0.0007	0.0052
Sump #2	Adjacent to Western sump	6 foot composite	2	8/1989	36.2	<0.0011	0.025	0.0022	0.0088	<0.0022	0.0017	0.0029	0.0073	0.0011
B-1	NE corner of West UST	8	ć	8/1989	16.9	1	1	1	1	1	1	1	1	1
8-1	NE corner of West UST	15	6	8/1989	17.2	Ŧ	1	r	ł	1	1	r	1	ı
B-2	NE corner of East UST	10	6	8/1989	16.7	1	1	a.	ï	1	1	1	1	1
B-2	NE corner of East UST	15	ć	8/1989	162	1	1.	1	1	1	1	1	1	t
B-2 dup.	NE corner of East UST	15	2	8/1989	133	1	1	1	1	1	1	1	1	ı
			MTCA	Method A CUL		0.03	7	9	6			0.03	0.05	2
Notes	1 <3.2		PQL is greate	r than the CUL		0.005	0.005	0.005	0.005	0.01	0.005	0.005	0.005	0.005
	2 510		conc. is great	er than the CU	ll l	These are	the EPA Me	thod Estim	ated Quatit	ation Limit	s. The EQLS	s are based	on wet we	eight, and
	3 510		detected belo	ow the CUL		will be high	her with a l	ower % dry	weight. No	ot sure how	accurate t	he reported	d concentra	ations are.
	1 Method 418.1 is no	ot annronria	te for escline			Detection	l imits are r	wol vilea						

A metriod 416.1 is not appropriate for gasonine
 5 Sump locations on figure and sample location descriptions are not consistent. Unclear which is correct.

.

APPENDIX B

BORING LOGS

Project Number 7:100 BittingWall Number 5:0-1 Lenstein 12:01 Scher Project Name Design Name Scher Project Name Semen Type Name Name Semen Type Name Scher Project Name Semen Type Name <th></th> <th></th> <th>NSTRUCTION LOG</th> <th>B</th> <th></th> <th>y l Cay</th> <th>31dg</th> <th>DWY</th> <th>1 -</th> <th>.1</th>			NSTRUCTION LOG	B		y l Cay	31dg	DWY	1 -	.1
Project Verme Deter Died Z/1/22* Dertifien Method Sonic Serven Dieväkik DVIC @ 10-15*/0.010* Diffien Method Sonic Serven Dieväkik DVIC @ 10-15*/0.010* Bernolin Michael Dearnel Sample Daa Growt Type Dievakik DVIC @ 10-15*/0.010* Growt Type Dievakin VA Orowt Type Dievakin DVIC @ 10-15*/0.010* Growt Type Dievakin VA Orowt Type Dievakin DVIC @ 10-15*/0.010* Growt Type Dievakin VA Orowt Type Dievakin VA Linbadge by K. Dergeron Big growthered Diele VIC @ 100-15*/0.010* Remeter GWA Orowt Type Dievakin VA Count Genetic S Di 1-2-1-22-GW Drilling GA. Environmental Weel Cyphorthons (CWE Big growthered State Sample Diele VIC @ 100-0.25*:: Asphalt O WA O.25-15*: Dark brown, Silty, Sandy, coarse GRAVEL*Coeffic O WA O.25-15*: Dark brown, Silty, Sandy, coarse GRAVEL*Coeffic O Solt -2*+22-5 S So			AMell Number S.R. I	910	- 00	221.	E20	umber	ject N	Рго
Define Method Social Control (Californ, WA Control of Californ, Water Bavetania, Water Sevenation, WA Control of Californ, Water Sevenation, Water Sevenation, Water Sevenation, Water Sevenation, Water Sevenation, Water Sevenation, Californ, Ca			Drilled 2/1/22	Company Streat - V-K-	or (Hot The F	Hann	20	ject N ation	Loc
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		0.010	Type/Slot PVC @ 10-15'/	The tanin	1	Dic I	Son	ethod Meth	ling M	Dril
Too of Casing Elevation NA Depth to Waterballing 2/1/22 Logged by Decretion VA Supple = Stol - 2-1-22-GW Dilling Co. Environmental West typications (CWC Remarks CW Supple = Stol - 2-1-22-GW Dilling Co. Environmental West typications (CWC G $\frac{1}{8}$ \frac			Pack Type NA	rel/ Sample Bo	Darr	ore r	on NA	levatio	und E	Grc
Permetrie (M. Sarryle = 561-2-1-22-GW Brown Water Bevetland Data MA Image: Starryle = 561-2-1-22-GW Dilling CS. Covincemental West Explorations (EWE Image: Starryle = 561-2-1-22-GW Dilling CS. Covincemental West Explorations (EWE Image: Starryle = 561-2-1-22-GW Dilling CS. Covincemental West Explorations (EWE Image: Starryle = 561-2-1-22-GW Dilling CS. Covincemental West Explorations (EWE Image: Starryle = 561-2-1-22-GW Dilling CS. Covincemental West Explorations (EWE Image: Starryle = 561-20-25: A sphalt 0-0-25: A sphalt Image: Starryle = 561-20-25: A sphalt 0-0-25: The Dark brown, Silty, Sandy, Coarse GRAVEL scooper Image: Starryle = 561-20-27: 12:5X 5.0 Image: Starryle = 561-20-27: 12:5X 5.0 Image: Starryle = 561-20-27: 12:5X 5.0 Image: Starryle = 560-27: 12:5X 5.0 Image: Starryle = 560-27: 12:5X 5.0 Image: Starryle = 560-27: 12:0X 10-13: DK gray, Sandy, well-rounded GRAVEL, coarse, little sill, losse, spo, wet. Image: Starryle = 560-27: 12:0X 10-13: DK gray, Sandy, well-rounded GRAVEL - Coarse, little sill sille sill, losse, damp. Image: Starryle = 20: 12: 12: 12: 15: 15: 15: 15: 15: 12: 12: 12: 12: 12: 12: 12: 12: 12: 12			to Water/Date 11'. 2/1/22		-	n NA	Berg	v b	of Ca	Loc
$\begin{array}{ c c c c c c } \hline \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	1	tracto	d Water Elevation/Date NA	1-2-1-22-GW	SBI	le =	Samp	GW	narks	Rer
$\frac{1}{2} \underbrace{O}_{S} \underbrace{O} \underbrace{O}_{S} \underbrace{O}_{S} \underbrace{O}_{S} \underbrace{O}_{S} \underbrace{O}_{$	<u>.</u>	and the	the the test of the	Boy .	0	= 7	Bull	Viery	ounts	(mq
0 NA 0. 10 0.25-7: Dark brown, Silfy, Sandy, coarse GRAVEL & COBBE Well-rounded, damp-moist, loose. 50 50 50 50 50 50 50 50 50 50	II Diagram	Contact	lastipiion	Graphic	U.S.C	Dept (A. BC	Samp Meth Sami	Recov	Blow C	d) OId
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		8008BLE	1, Sandy, coarse GRAVE	0-0.25:: Asp 0.25-3: Day We	M.	·			AV	0.0
0 501-21-225 x 5 50 14 14 14 15 58-2.1.22.10 x 10 10-13: DK gray, Well-rounded, COarse GRAVEL& COBBLE 50me Sand, Wel, Strong petro odor (weathored mator oil ?), 1005e, <u>e COBBLE</u> 10.0 1220 ▼ 10-13: DK gray, Sandy, Well-rounded GRAVEL, COARSE, 13-15: DK brown, Sandy, Well-rounded GRAVEL + COBBLE, 13-15: DK brown, Sandy, Well-rounded GRAVEL + COBBLE, 1005e, damp. 20.0 20.0 20.0 21.22-15 × 15 15.0 20.0 20.0 20.0 25.0 2			P TOIST TOOSET	0	9	-				0
5.0 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1	1.1				11	5	22.5	.2.1	CRI	0
116 117 117 118 118 118 118 118 118	1.	5.0			TT		- n	4	500	0.1
14 -10: DK gray, well-rounded, COarse GRAVEL, Course Some Sand, wet, Strong petro odor (weathered motor ail ?), loose, <u>ecober</u> 10.0 1220 V 10-13: DK gray, Sandy, well-rounded GRAVEL, coarse, 10.13: DK brown, Sandy, well-rounded GRAVEL & COBBLE, 13-15: DK brown, Sandy, well-rounded GRAVEL & COBBLE, 1005e, damp. 15.0 20.0 20.0 20.0 25.0 25.0 25.0 25.0 25.0							1.20	5.1.5	c 1.	1.6
Some Sand, wet, strong petro odor (weathered mator ail ?), loose, <u>e cobple</u> 10.0 10.13: DK gray, Sandy, well-rounded GRAVEL, coarse, 11.14 e silt, loose, spo, wet. 13-15: DK brown, Sandy, well-rounded GRAVEL · COBBLE, 13-15: DK brown, Sandy, well-rounded GRAVEL · COBBLE, 1005e, damp. 20.0 20.0 20.0 25.0 25.0 25.0 25.0		COUBLE	unded, Coarse GRAVEL,	7-10: DK 9	S:		-	- 1	201	1.7
11.5 58-2.1.22.102 10 material?), loose. <u>RCOBBLE</u> 10.0 1220 V 10-13: DK gray, Sandy, well-rounded GRAVEL, coarse, 11.11He silt, loose, spo, wet. 13-15': DK brown, Sandy, well-rounded GRAVEL · COBBLE, 1005e, damp. 15.0 20 20 20 20 20 25 25.0		ired	strong petro odor (weath	Some						1.6
$\frac{1220}{10} = \frac{1220}{10} = \frac{10}{10} = $		40.0	. COBRIE	mote		10	2.10X	2.1.2	SB-	1.5
6.1 1:HHZ silt, loose', spo, wet. 6.0 0.13-15': DK brown, Sandy, well-rounded GRAWEL · COBBLE, loose, damp. 0.15 15 7.5 1005e, damp. 150 150 20 20.0 21 22.0 22 20.0 25 25.0		10,0	-rounded GRAVEL, coarse	10-13: DK gr	V	1230			00	5.5
1.5 6.0 0.5 5B-2-1-22-15 × 15 13-15'; DK brown, Sandy, well-rounded GRAVEL + COBBLE, 1005e, damp. 15.0 20.0 20.0 25.0 25.0	-0		wet.	litte				1		6.1
0.5 ₅ B-2-1-22-15 × 15 1005e, damp. 15.0 15.0 15.0 20.0 20.0 25.0			unil - 1-1 CRAVEL COM	DAT' DK h	0	-				1.0
0.3 _{5B-2-1-12-13} × 15 TD=15' 20 20 25 25 25,0 2		£,	Nell-Founded GRAVEL COUR	13-15, UK DI	-11					0,0
		15.0		TOUC	++	15	2-15 X	2-1-2	5B-	0,0
				10=15	-	-				a canada Maria
20.0					-	-				
						-			-	
20.0						90			Ι.	
25.0		20.0			++	20				-
25.0			÷		11					-
25.0			a		11	-				
25.0				· · ·		-				
25.0					11	25				Constraints
		25.0	The second s		T					all presents
						-				
						-				
										- Internation
			1992 A.A.					•		ALCOND.
				1.	11	00				

~ ÷

.

	1 V	Bldg J 1-1 Bay B	D . Well 2	Boringwell C	ONSTRUCTION LOG		
Proje	ct Number (-	-2021-09	B Dry Well C		0.00		·
Proje	ion 1201	ann Motor (5. First St	- Yahima WA	- Det	Drilled 2/1/22		
Drillir Samı	g Method Ning Method	Core Barr	el Samole Bag	Scr Scr	en Type/Slot NA		· · · ·
Grou	nd Elevation f Casing Ele	NA Vation NA		Gro	ut Type Bentonite		
Rema	nks	ergeron		Gro	und Water Elevation/Date	NA I	
(udd) Qk	Recovery (%) Sampling	Method Sample Depth (t. BGL)	aphic Log	Liihologi	Descripțion	DIGROTIONS .	Well Diag
01	IA		0-0.25'; Asp	halt		80	
0		EW-	0,25-15': C	RAVEL & CO.	by, well-round BBLE, little silt, lo	ed, coarse bose, damp.	
0.89	B9-2-1-7	5 SX 5					. · .
0	1			BANKAR CHINA	1	5.0	
0		H-B			-		
0		0			1.42		
05	32-2-1-22	10 10					
0						10,0	
0		3					•
0					1		
6	32-2-1-22-	15 X 15	TD=15'		*	15.0	
			1010	d 2			÷.
				;			
						20.0	
					-		
				e. ~3		•	
danta ficto		25		a .	,		
					and a subsection of the second se	25.0	
					3		
	.	30	1				

1	V	1 Bayl	1 Bay 1		BORINGAVELL	CONSTRUCTION LOG	1	
	DW1	. @ 1	.⊕ SWC	SB3				· · ·
Pro	ject Numb Ject Name	Hahr)21.0 Motor	910	E	Coring/Well Number 583		•
Drill	ation 120 ling Metho	15.	Pirst 5	+ - 1	akima, WA	asing Type/Diameter 4" -	→,6"	
Gro	npling Me und Eleva	inod C	ore Ba	rel	Sample Bag	Green Type/Slot 0.010" Gravel Pack Type NA	Slotted PVC CI	5-25
Top	of Casing	Elevati	on NA			Pepin to Water/Date 16.3	2/1/22	
Ren	narks PT	Dez	S' I'Ke	y di	le to excessive heat!	Bround Water Elevation/Date	xolorations	
mdd) (/ Coun	mpling ethod	and	hio Log	GW Jampie = 583-2-1-22- C	W ·/	Į Į Į	
IId	Blow Re	S S		Grap		וטייטאי אואייאפאר אואי	Cent	Well Diag
00	NA		-		0.0.25': Asphalt			
0				A .	0.25-20 Brown, 50	dy, Well-rounde	d, coarse	
0			F	9	GRAVEL & C	LODDLE, little silt,	10050,	
0.7	582-2:	1-22-5	5					· · ·
0			\square			Contraction and Contraction of the Contraction	5.0	
0				MC				
0			H			44		
0	583-2-1-	22-10	10					
0			\square			and the particular second s	10.0	
0		1		3				
0				٩				
0			15	1			15.0	
0.2		12/1/22						
0.1								
0				1	COBBLE-ZONE @ 18	5-19.5		
0.2	•		20	+			20.0	
0			H		20-25: Brown, silty	, well-rounded;	coarse	
0				2	GRAVEL, ITH	le sand, V. moist	to wet,	
0,8				1	IUUSE INO O	sor ;	·	
2.0	583-2-1	-22-25	25	+			25.0	
- sector -			H		.1D=25		:	
			\square					
Activity of								
			H			÷.		
-			30	1	14 ·			

-	TEU	(UST)					tion of the second s
158	T	Alda			BORING/WELL CONSTRUCTION LOG		
Ľ		Jieg	1				
Pro	ject Ni Ject Na	imber E	2021-	190	D Boring/Well Number SB4	the strength of the	
Loc	ailon	201 5	First	- 1 2	akima, WA Casing Type/Diameter 4"		
Sar	ning wi	Method (Lore B	arrel	/ Sample Bag	*	
Gro	ound E	evation sing Elev	AV A notice		Grout Type Bentonite		
Log	ged by	B.B	ergero	n	Depin to Water/Date 18'. 1605 Ground Water Elevation/Date NA		
(F)	12	> 0	TT		Drilling Co. f. Dv West Explorat	ions .	
udd)	G	(%)		80.5		1 de	
DId	Blow	Sar	S O S	Silapi	Lindiogic Lascopyon	Dept	Well Diag
0	AN	1	11.	T	0-0.25 Asphalt		
0			-	2	0.25-5: Dark brown, sandy, well-rounded, coars	e	
0		1		S.	GRAVEL, little silt, loose, damp,		
0							
0	SB4	2-1-22-	XIS				
0					5-11: Gray, rounded, COarse GRAVEL & COBBLE	5, 0.0	
0					loose, dry,		
0			1-	0			
0			1/10				•
0	564	2-1-22-1	01-10	30	11-18' Gray brance Goody Wall	10.0	
0		1			GRAVEL, damp, little sill land	2	
0				3	, in the state,		4.0
0		1		0			
0	504	2-1-72-1	5 × 15			150	
000		1					
0		1		3			
0				O	18-20: Brown sandy well-rounded comme		
0	CRU	0-1-20-2	in an		GRAVEL, loose, V. moist - wet.		
	DUT		1		TD = 20'	20.0	
		1			p-,	1. 1	
ander			1				
STATE STATE			25			25.0	
A.W.							
Ĩ							
		1					
		·					
					1.		
-	Lil	1	1 30			30.0	

		B	SBS	5		N BORINGAWELL CONSTRUCTION LOG		
Pro	ject N	umber	J EZC	221-	0910) RotingAlial Number C.B.C.		· · · · · ·
Lac	ject N alion	120	lahn S.	Mo	br (St	Vakima, WA Casing Type/Diameter H		
Sar	npling Nunci E	Meth		pre l'	larr	el/Sample Bag Gravel Pack Type, NA.	C 15-	25
Top	o of Ci iged b	using E	Ber	n NA	n	Depth to Water/Date 14,5' 2/1/22		
Rer	marks	GW	504	aple	= 51	35-2-1-22-GW Drilling Co. EWE		
ndq) diq	Blow Coul	Recover (%)	Sampling Method	Depth (A. BGL)	U.S.C.S Granhlo I.c	Lithologic Descripțion	Contact Depth	Well Diagr
0	NÀ				Π	0-0.25 : Asphalt	\vdash	
0				-	M	Well-rounded day		
0	ŀ				0	I man rowiged, dry,		
0	585	2-1-7	Z-5	5	\square	6-91: Gray beau 5-1	5.0	
0					·	Coarse GRAVEL little silt lonse dama		
0				-	B	, , au, , , , , , , , ,		
0	585	-2-1	-22-10	10		9-10: Brown PEA GRAVEL ?		
0		·	ľ		Π	10-20: Dark, brown, Sandy SILT, Some well-	10.0	
0		1		-	1	rounded cobbles & growel, loose, moist.		
0		170	p	14.5	Σ			
0	5B5-	2-1-2	2.15	15			15.0	
00				-		•		
0					M			
00	.			20				
0	585	2-1-	12-29		IT	20-22: Brown mottled red SILT, little well-rounder	20.0	
00		100	13	-	1	gravel, moist, very firm/tight.		
0					Z	GRAVEL loose . Wet.		
0				25			25.0	
Landa La				-				
				-				
				-				

-	Jiag		Boringave	LL CONSTRUCTION LOC	3	
Project	Number E 2	021-09	0	Borting/Mail Number G. B	·· ·	·
Location	Name Form	outh 1st e	otors. t - Yakima, WA 98901	Date Drilled 2/1/22 Casing Type/Diameter 4"	6	
Samplin	g Method (are Barrel	/ Sample Bag	Screen Type/Slot NA Gravel Pack Type, NA		-
Top of C Logged	Dasing Elevai	ion NA		Grout Type Bentonite Depiti to Water/Date NA.		
Remark	s I la la	TITE		Ground Water Elevation/Date Drilling Co. Environmen	tal West Explora	tions
PID (ppm Blow Coun	Recovery (%) Sempling Method	Sample Depth (R. BGL) U.S.C.S		nologic Description	Gontact	Well Diagn
0			0-0.25 : Asphalt			
0		<u> </u>	0:20-12: Brown,	sandy, well-row	nded	
0			Silt	DOSE damp.	LE, little	
1,45B6	2-1-22-5	5				
00			7			
0			•			
0	0.1-70-10					1.1
00			10-20'1		10.0	
00	11	-3	12-20' B.	and second		
0		<u> </u> 0	Silt los	Sandy GRAVEL	-, some	
OSBE	2-1-22-15	x 15		, aumpi	150	
0	11		12-20		10.0	
00		CK				
0			· . · . · . · . · · · · · · · · · · · ·			
SBC	0-2-1-22-20	X 20	TD=20	¥	20.0	
			10-20			
-			P			
DIST NOT THE REAL PROPERTY OF		25				
	.					

APPENDIX C

PHOTOGRAPHS

Photograph 1 – View from center of Site on Tuesday, February 1, 2022, facing northeast. Field sampling table and coolers noted next to BMEC employee.

Photograph 2 – View from center of Site on Tuesday, February 1, 2022, facing northwest toward automotive garage building.

Photograph 3 – View from center of Site on Tuesday, February 1, 2022, facing west.

Photograph 4 – View from center of Site on Tuesday, February 1, 2022, facing southwest.

Photograph 5 – View from center of Site on Tuesday, February 1, 2022, facing south.

Photograph 6 – View from center of Site on Tuesday, February 1, 2022, facing southeast.

Photograph 7 – View of sonic drill rig prepared to begin drilling at soil boring SB1 on Tuesday, February 1, 2022 (facing north).

Photograph 8 – Soil lithology from 0 – 10 feet bgs in soil boring SB1. Note black, oil-stained soil from 7 – 10 feet bgs.

Photograph 9 – Soil lithology from 10 - 15 feet bgs in soil boring SB1. Note black, oil-stained soil from 10 - 14 feet bgs and relatively clean, brown soil from 14 - 15 feet bgs.

Photograph 10 – Groundwater sampling gear being utilized during the purging and collection of groundwater sample SB1-2-1-22-GW.

Photograph 11 – Drillers advancing sonic drilling rods at soil boring SB3 (facing northeast)

Photograph 12 – Driller's helper pouring bentonite pellets into soil boring SB2, subsequent to soil sample collection.

Photograph 13 – Driller's helper replacing the asphalt patch at soil boring SB1.

Photograph 14 – Soil lithology in soil boring SB4 from 0 – 10 feet bgs.

APPENDIX D

LABORATORY ANALYTICAL DOCUMENTATION

February 15, 2022

Yancy Meyer Blue Mountain Environmental, Inc. 90 Baldwin Road Walla Walla, WA 99362

Re: Analytical Data for Project E2021-0910; 1201 S. 1st St. Yakima Laboratory Reference No. 2202-042

Dear Yancy:

Enclosed are the analytical results and associated quality control data for samples submitted on February 3, 2022.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: February 15, 2022 Samples Submitted: February 3, 2022 Laboratory Reference: 2202-042 Project: E2021-0910; 1201 S. 1st St. Yakima

Case Narrative

Samples were collected on February 1, 2022 and received by the laboratory on February 3, 2022. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Volatiles EPA 8260D Analysis

Sodium Bisulfate preservation has been proven to increase the frequency of detection and the concentration of Acetone and 2-Butanone due in part to chemical reactions in the sample. If Acetone is a potential site contaminant, Sodium Bisulfate should not be used.

Some MTCA Method A cleanup levels are not achievable for sample SB1-2-1-22-10' due to the necessary dilution of the sample.

PCBs EPA 8082A Analysis

Limited volume required the sample SB5-2-1-22-GW to be extracted from 500 mL amber bottles preserved with HCI.

Sample matrix effects caused the percent recovery for the surrogate DCB in the sample SB1-2-1-22-GW (32%) to be below the quality control limits of 42-140%. All other QC associated with this sample batch was within limits. No further action was undertaken.

Please note that any other QA/QC issues associated with these extractions and analyses will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB1-2-1-22-5'					
Laboratory ID:	02-042-01					
Gasoline Range Organics	ND	21	NWTPH-HCID	2-4-22	2-4-22	
Diesel Range Organics	ND	52	NWTPH-HCID	2-4-22	2-4-22	
Lube Oil Range Organics	ND	110	NWTPH-HCID	2-4-22	2-4-22	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	113	50-150				
Olivert ID:						
	SB1-2-1-22-10					
Laboratory ID:	02-042-02	00		0.4.00	0.0.00	
Gasoline Range Organics	Detected	22		2-4-22	2-9-22	
Diesei Range Organics	Detected	54		2-4-22	2-9-22	
Lube OII Range Organics	Detected	110	NWIPH-HCID	2-4-22	2-9-22	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyi	118	50-150				
Client ID:	SB1-2-1-22-15'					
Laboratory ID:	02-042-03					
Gasoline Range Organics	ND	22	NWTPH-HCID	2-4-22	2-4-22	
Diesel Range Organics	ND	55	NWTPH-HCID	2-4-22	2-4-22	
Lube Oil Range Organics	ND	110	NWTPH-HCID	2-4-22	2-4-22	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	112	50-150				
Client ID:	SB2-2-1-22-5					
Laboratory ID:	02-042-05	04		0.4.00	0.4.00	
Gasoline Range Organics	ND	21		2-4-22	2-4-22	
Diesei Range Organics	ND	52		2-4-22	2-4-22	
Lube Oil Range Organics			NWIPH-HCID	2-4-22	2-4-22	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyi	113	50-150				
Client ID:	SB2-2-1-22-10'					
Laboratory ID:	02-042-06					
Gasoline Range Organics	ND	21	NWTPH-HCID	2-4-22	2-4-22	
Diesel Range Organics	ND	53	NWTPH-HCID	2-4-22	2-4-22	
Lube Oil Range Organics	ND	110	NWTPH-HCID	2-4-22	2-4-22	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenvl	110	50-150				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB2-2-1-22-15'					
Laboratory ID:	02-042-07					
Gasoline Range Organics	ND	21	NWTPH-HCID	2-4-22	2-4-22	
Diesel Range Organics	ND	52	NWTPH-HCID	2-4-22	2-4-22	
Lube Oil Range Organics	ND	110	NWTPH-HCID	2-4-22	2-4-22	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	110	50-150				
Client ID:	SB3-2-1-22-5'					
Laboratory ID:	02-042-08					
Gasoline Range Organics	ND	21	NWTPH-HCID	2-4-22	2-4-22	
Diesel Range Organics	ND	52	NWTPH-HCID	2-4-22	2-4-22	
Lube Oil Range Organics	ND	100	NWTPH-HCID	2-4-22	2-4-22	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	112	50-150				
Client ID:	SB3-2-1-22-10'					
Laboratory ID:	02-042-09					
Gasoline Range Organics	ND	21	NWTPH-HCID	2-4-22	2-4-22	
Diesel Range Organics	ND	53	NWTPH-HCID	2-4-22	2-4-22	
Lube Oil Range Organics	ND	110	NWTPH-HCID	2-4-22	2-4-22	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	110	50-150				
	3B3-2-1-22-25					
Capalina Danza Organica	02-042-10	00		0.4.00	0.4.00	
Gasoline Range Organics	ND	23		2-4-22	2-4-22	
Diesel Range Organics	ND	00		2-4-22	2-4-22	
			NWIPH-HCID	2-4-22	2-4-22	
Surrogate:	Percent Recovery	Control Limits				
o-Terpnenyi	112	50-150				
Client ID:	SB4-2-1-22-5'					
Laboratory ID:	02-042-12					
Gasoline Range Organics	ND	20	NWTPH-HCID	2-4-22	2-4-22	
Diesel Range Organics	ND	51	NWTPH-HCID	2-4-22	2-4-22	
Lube Oil Range Organics	ND	100	NWTPH-HCID	2-4-22	2-4-22	
Surrogate:	Percent Recoverv	Control Limits				
o-Terphenvl	112	50-150				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB4-2-1-22-10'					
Laboratory ID:	02-042-13					
Gasoline Range Organics	ND	21	NWTPH-HCID	2-4-22	2-4-22	
Diesel Range Organics	ND	52	NWTPH-HCID	2-4-22	2-4-22	
Lube Oil Range Organics	ND	110	NWTPH-HCID	2-4-22	2-4-22	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	111	50-150				
Client ID:	SB4-2-1-22-15'					
Laboratory ID:	02-042-14					
Gasoline Range Organics	ND	21	NWTPH-HCID	2-4-22	2-4-22	
Diesel Range Organics	ND	53	NWTPH-HCID	2-4-22	2-4-22	
Lube Oil Range Organics	ND	110	NWTPH-HCID	2-4-22	2-4-22	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	110	50-150				
Client ID:	SB4-2-1-22-20'					
Laboratory ID:	02-042-15					
Gasoline Range Organics	ND	22	NWTPH-HCID	2-4-22	2-4-22	
Diesel Range Organics	ND	54	NWTPH-HCID	2-4-22	2-4-22	
Lube Oil Range Organics	ND	110	NWTPH-HCID	2-4-22	2-4-22	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	110	50-150				
	SB5-2-1-22-5					
Laboratory ID:	02-042-16	04		0.4.00	0.4.00	
Gasoline Range Organics	ND	21	NWTPH-HCID	2-4-22	2-4-22	
	ND	51	NWTPH-HCID	2-4-22	2-4-22	
Lube OII Range Organics		100	NWTPH-HCID	2-4-22	2-4-22	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	109	50-150				
Client ID:	SB5-2-1-22-10'					
Laboratory ID.	02-042-17					
Gasoline Range Organics		210		2-4-22	2-9-22	
Diesel Range Organics	ND	530		2-4-22	2-9-22	
Lube Oil	Detected	1100		2-4-22	2-9-22	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl		50-150				S
		00,000				0

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB5-2-1-22-15'					
Laboratory ID:	02-042-18					
Gasoline Range Organics	ND	23	NWTPH-HCID	2-4-22	2-4-22	
Diesel Range Organics	ND	68	NWTPH-HCID	2-4-22	2-4-22	U1
Lube Oil	Detected	120	NWTPH-HCID	2-4-22	2-4-22	
Surrogate:	Percent Recoverv	Control Limits				
o-Terphenvl	108	50-150				
Client ID:	SB5-2-1-22-20'					
Laboratory ID:	02-042-19					
Gasoline Range Organics	ND	23	NWTPH-HCID	2-4-22	2-4-22	
Diesel Range Organics	ND	58	NWTPH-HCID	2-4-22	2-4-22	
Lube Oil Range Organics	ND	120	NWTPH-HCID	2-4-22	2-4-22	
Surrogate:	Percent Recoverv	Control Limits				
o-Terphenvl	105	50-150				
Client ID:	SB6-2-1-22-5'					
Laboratory ID:	02-042-21					
Gasoline Range Organics	ND	21	NWTPH-HCID	2-4-22	2-4-22	
Diesel Range Organics	ND	53	NWTPH-HCID	2-4-22	2-4-22	
Lube Oil	Detected	110	NWTPH-HCID	2-4-22	2-4-22	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	108	50-150				
Client ID:	SB6-2-1-22-10'					
Laboratory ID:	02-042-22					
Gasoline Range Organics	ND	21	NWTPH-HCID	2-4-22	2-4-22	
Diesel Range Organics	ND	52	NWTPH-HCID	2-4-22	2-4-22	
Lube Oil Range Organics	ND	100	NWTPH-HCID	2-4-22	2-4-22	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	109	50-150				
Client ID:	SD6 2 4 22 45'					
	02 042 22					
	UZ-U4Z-Z3	04		0.4.00	0.4.00	
		∠1 50		2-4-22	2-4-22	
		5Z		2-4-22	2-4-22	
				2-4-22	2-4-22	
Surrogate:	Percent Recovery	Control Limits				
o- ı erpnenyi	102	50-150				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

Matrix: Soil Units: mg/Kg (ppm)

5 5 (1)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB6-2-1-22-20'					
Laboratory ID:	02-042-24					
Gasoline Range Organics	ND	21	NWTPH-HCID	2-4-22	2-4-22	
Diesel Range Organics	ND	53	NWTPH-HCID	2-4-22	2-4-22	
Lube Oil Range Organics	ND	110	NWTPH-HCID	2-4-22	2-4-22	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	101	50-150				

HYDROCARBON IDENTIFICATION NWTPH-HCID QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0204S1					
Gasoline Range Organics	ND	20	NWTPH-HCID	2-4-22	2-4-22	
Diesel Range Organics	ND	50	NWTPH-HCID	2-4-22	2-4-22	
Lube Oil Range Organics	ND	100	NWTPH-HCID	2-4-22	2-4-22	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	112	50-150				

8

HYDROCARBON IDENTIFICATION NWTPH-HCID

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB1-2-1-22-GW					
Laboratory ID:	02-042-04					
Gasoline Range Organics	Detected	0.12	NWTPH-HCID	2-4-22	2-9-22	
Diesel Range Organics	Detected	0.19	NWTPH-HCID	2-4-22	2-9-22	
Lube Oil Range Organics	Detected	0.25	NWTPH-HCID	2-4-22	2-9-22	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	105	50-150				
Client ID:	SB3-2-1-22-GW					
Laboratory ID:	02-042-11					
Gasoline Range Organics	Detected	0.11		2-1-22	2_0_22	
Diesel Range Organics	Detected	0.17		2-4-22	2-9-22	
	ND	0.17		2-4-22	2-9-22	
Surrogate:	Percent Recovery	Control Limits	NWIT THIOD		2-5-22	
o-Terphenyl	112	50-150				
Client ID:	SB5-2-1-22-GW					
Laboratory ID:	02-042-20					
Gasoline Range Organics	Detected	0.14	NWTPH-HCID	2-4-22	2-9-22	
Diesel Range Organics	Detected	0.21	NWTPH-HCID	2-4-22	2-9-22	
Lube Oil Range Organics	Detected	0.28	NWTPH-HCID	2-4-22	2-9-22	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	101	50-150				

HYDROCARBON IDENTIFICATION NWTPH-HCID QUALITY CONTROL

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0204W1					
Gasoline Range Organics	ND	0.10	NWTPH-HCID	2-4-22	2-9-22	
Diesel Range Organics	ND	0.15	NWTPH-HCID	2-4-22	2-9-22	
Lube Oil Range Organics	ND	0.20	NWTPH-HCID	2-4-22	2-9-22	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	114	50-150				

VOLATILE ORGANICS EPA 8260D page 1 of 2

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB1-2-1-22-10'					
Laboratory ID:	02-042-02					
Dichlorodifluoromethane	ND	0.054	EPA 8260D	2-3-22	2-3-22	
Chloromethane	ND	0.27	EPA 8260D	2-3-22	2-3-22	
Vinyl Chloride	ND	0.054	EPA 8260D	2-3-22	2-3-22	
Bromomethane	ND	0.27	EPA 8260D	2-3-22	2-3-22	
Chloroethane	ND	0.27	EPA 8260D	2-3-22	2-3-22	
Trichlorofluoromethane	ND	0.054	EPA 8260D	2-3-22	2-3-22	
1,1-Dichloroethene	ND	0.054	EPA 8260D	2-3-22	2-3-22	
Acetone	ND	0.54	EPA 8260D	2-3-22	2-3-22	
lodomethane	ND	0.41	EPA 8260D	2-3-22	2-3-22	
Carbon Disulfide	ND	0.054	EPA 8260D	2-3-22	2-3-22	
Methylene Chloride	ND	0.27	EPA 8260D	2-3-22	2-3-22	
(trans) 1,2-Dichloroethene	ND	0.054	EPA 8260D	2-3-22	2-3-22	
Methyl t-Butyl Ether	ND	0.054	EPA 8260D	2-3-22	2-3-22	
1,1-Dichloroethane	ND	0.054	EPA 8260D	2-3-22	2-3-22	
Vinyl Acetate	ND	0.27	EPA 8260D	2-3-22	2-3-22	
2,2-Dichloropropane	ND	0.054	EPA 8260D	2-3-22	2-3-22	
(cis) 1,2-Dichloroethene	ND	0.054	EPA 8260D	2-3-22	2-3-22	
2-Butanone	ND	0.27	EPA 8260D	2-3-22	2-3-22	
Bromochloromethane	ND	0.054	EPA 8260D	2-3-22	2-3-22	
Chloroform	ND	0.054	EPA 8260D	2-3-22	2-3-22	
1,1,1-Trichloroethane	ND	0.054	EPA 8260D	2-3-22	2-3-22	
Carbon Tetrachloride	ND	0.054	EPA 8260D	2-3-22	2-3-22	
1,1-Dichloropropene	ND	0.054	EPA 8260D	2-3-22	2-3-22	
Benzene	ND	0.054	EPA 8260D	2-3-22	2-3-22	
1,2-Dichloroethane	ND	0.054	EPA 8260D	2-3-22	2-3-22	
Trichloroethene	ND	0.054	EPA 8260D	2-3-22	2-3-22	
1,2-Dichloropropane	ND	0.054	EPA 8260D	2-3-22	2-3-22	
Dibromomethane	ND	0.054	EPA 8260D	2-3-22	2-3-22	
Bromodichloromethane	ND	0.054	EPA 8260D	2-3-22	2-3-22	
2-Chloroethyl Vinyl Ether	ND	0.27	EPA 8260D	2-3-22	2-3-22	
(cis) 1,3-Dichloropropene	ND	0.054	EPA 8260D	2-3-22	2-3-22	
Methyl Isobutyl Ketone	ND	0.27	EPA 8260D	2-3-22	2-3-22	
Toluene	ND	0.27	EPA 8260D	2-3-22	2-3-22	
(trans) 1,3-Dichloropropene	ND	0.054	EPA 8260D	2-3-22	2-3-22	

VOLATILE ORGANICS EPA 8260D page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB1-2-1-22-10'					
Laboratory ID:	02-042-02					
1,1,2-Trichloroethane	ND	0.054	EPA 8260D	2-3-22	2-3-22	
Tetrachloroethene	ND	0.054	EPA 8260D	2-3-22	2-3-22	
1,3-Dichloropropane	ND	0.054	EPA 8260D	2-3-22	2-3-22	
2-Hexanone	ND	0.27	EPA 8260D	2-3-22	2-3-22	
Dibromochloromethane	ND	0.054	EPA 8260D	2-3-22	2-3-22	
1,2-Dibromoethane	ND	0.054	EPA 8260D	2-3-22	2-3-22	
Chlorobenzene	ND	0.054	EPA 8260D	2-3-22	2-3-22	
1,1,1,2-Tetrachloroethane	ND	0.054	EPA 8260D	2-3-22	2-3-22	
Ethylbenzene	0.22	0.054	EPA 8260D	2-3-22	2-3-22	
m,p-Xylene	1.2	0.11	EPA 8260D	2-3-22	2-3-22	
o-Xylene	0.54	0.054	EPA 8260D	2-3-22	2-3-22	
Styrene	ND	0.054	EPA 8260D	2-3-22	2-3-22	
Bromoform	ND	0.27	EPA 8260D	2-3-22	2-3-22	
Isopropylbenzene	ND	0.054	EPA 8260D	2-3-22	2-3-22	
Bromobenzene	ND	0.054	EPA 8260D	2-3-22	2-3-22	
1,1,2,2-Tetrachloroethane	ND	0.054	EPA 8260D	2-3-22	2-3-22	
1,2,3-Trichloropropane	ND	0.054	EPA 8260D	2-3-22	2-3-22	
n-Propylbenzene	0.17	0.054	EPA 8260D	2-3-22	2-3-22	
2-Chlorotoluene	ND	0.054	EPA 8260D	2-3-22	2-3-22	
4-Chlorotoluene	ND	0.054	EPA 8260D	2-3-22	2-3-22	
1,3,5-Trimethylbenzene	0.49	0.054	EPA 8260D	2-3-22	2-3-22	
tert-Butylbenzene	ND	0.054	EPA 8260D	2-3-22	2-3-22	
1,2,4-Trimethylbenzene	1.3	0.054	EPA 8260D	2-3-22	2-3-22	
sec-Butylbenzene	ND	0.054	EPA 8260D	2-3-22	2-3-22	
1,3-Dichlorobenzene	ND	0.054	EPA 8260D	2-3-22	2-3-22	
p-Isopropyltoluene	0.11	0.054	EPA 8260D	2-3-22	2-3-22	
1,4-Dichlorobenzene	ND	0.054	EPA 8260D	2-3-22	2-3-22	
1,2-Dichlorobenzene	ND	0.054	EPA 8260D	2-3-22	2-3-22	
n-Butylbenzene	ND	0.054	EPA 8260D	2-3-22	2-3-22	
1,2-Dibromo-3-chloropropane	ND	0.27	EPA 8260D	2-3-22	2-3-22	
1,2,4-Trichlorobenzene	ND	0.054	EPA 8260D	2-3-22	2-3-22	
Hexachlorobutadiene	ND	0.27	EPA 8260D	2-3-22	2-3-22	
Naphthalene	0.44	0.27	EPA 8260D	2-3-22	2-3-22	
1,2,3-Trichlorobenzene	ND	0.054	EPA 8260D	2-3-22	2-3-22	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	87	74-131				
Toluene-d8	97	78-128				
4-Bromofluorobenzene	97	71-130				

VOLATILE ORGANICS EPA 8260D page 1 of 2

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB3-2-1-22-25'					
Laboratory ID:	02-042-10					
Dichlorodifluoromethane	ND	0.00075	EPA 8260D	2-3-22	2-3-22	
Chloromethane	ND	0.0038	EPA 8260D	2-3-22	2-3-22	
Vinyl Chloride	ND	0.00075	EPA 8260D	2-3-22	2-3-22	
Bromomethane	ND	0.0038	EPA 8260D	2-3-22	2-3-22	
Chloroethane	ND	0.0038	EPA 8260D	2-3-22	2-3-22	
Trichlorofluoromethane	ND	0.00075	EPA 8260D	2-3-22	2-3-22	
1,1-Dichloroethene	ND	0.00075	EPA 8260D	2-3-22	2-3-22	
Acetone	ND	0.038	EPA 8260D	2-3-22	2-3-22	
lodomethane	ND	0.0057	EPA 8260D	2-3-22	2-3-22	
Carbon Disulfide	ND	0.00075	EPA 8260D	2-3-22	2-3-22	
Methylene Chloride	ND	0.0038	EPA 8260D	2-3-22	2-3-22	
(trans) 1,2-Dichloroethene	ND	0.00075	EPA 8260D	2-3-22	2-3-22	
Methyl t-Butyl Ether	ND	0.00075	EPA 8260D	2-3-22	2-3-22	
1,1-Dichloroethane	ND	0.00075	EPA 8260D	2-3-22	2-3-22	
Vinyl Acetate	ND	0.0038	EPA 8260D	2-3-22	2-3-22	
2,2-Dichloropropane	ND	0.00075	EPA 8260D	2-3-22	2-3-22	
(cis) 1,2-Dichloroethene	ND	0.00075	EPA 8260D	2-3-22	2-3-22	
2-Butanone	ND	0.0075	EPA 8260D	2-3-22	2-3-22	
Bromochloromethane	ND	0.00075	EPA 8260D	2-3-22	2-3-22	
Chloroform	ND	0.00075	EPA 8260D	2-3-22	2-3-22	
1,1,1-Trichloroethane	ND	0.00075	EPA 8260D	2-3-22	2-3-22	
Carbon Tetrachloride	ND	0.00075	EPA 8260D	2-3-22	2-3-22	
1,1-Dichloropropene	ND	0.00075	EPA 8260D	2-3-22	2-3-22	
Benzene	ND	0.00075	EPA 8260D	2-3-22	2-3-22	
1,2-Dichloroethane	ND	0.00075	EPA 8260D	2-3-22	2-3-22	
Trichloroethene	ND	0.00075	EPA 8260D	2-3-22	2-3-22	
1,2-Dichloropropane	ND	0.00075	EPA 8260D	2-3-22	2-3-22	
Dibromomethane	ND	0.00075	EPA 8260D	2-3-22	2-3-22	
Bromodichloromethane	ND	0.00075	EPA 8260D	2-3-22	2-3-22	
2-Chloroethyl Vinyl Ether	ND	0.0038	EPA 8260D	2-3-22	2-3-22	
(cis) 1,3-Dichloropropene	ND	0.00075	EPA 8260D	2-3-22	2-3-22	
Methyl Isobutyl Ketone	ND	0.0038	EPA 8260D	2-3-22	2-3-22	
Toluene	ND	0.0038	EPA 8260D	2-3-22	2-3-22	
(trans) 1,3-Dichloropropene	ND	0.00075	EPA 8260D	2-3-22	2-3-22	

VOLATILE ORGANICS EPA 8260D page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB3-2-1-22-25'					
Laboratory ID:	02-042-10					
1,1,2-Trichloroethane	ND	0.00075	EPA 8260D	2-3-22	2-3-22	
Tetrachloroethene	ND	0.00075	EPA 8260D	2-3-22	2-3-22	
1,3-Dichloropropane	ND	0.00075	EPA 8260D	2-3-22	2-3-22	
2-Hexanone	ND	0.0038	EPA 8260D	2-3-22	2-3-22	
Dibromochloromethane	ND	0.00075	EPA 8260D	2-3-22	2-3-22	
1,2-Dibromoethane	ND	0.00075	EPA 8260D	2-3-22	2-3-22	
Chlorobenzene	ND	0.00075	EPA 8260D	2-3-22	2-3-22	
1,1,1,2-Tetrachloroethane	ND	0.00075	EPA 8260D	2-3-22	2-3-22	
Ethylbenzene	ND	0.00075	EPA 8260D	2-3-22	2-3-22	
m,p-Xylene	ND	0.0015	EPA 8260D	2-3-22	2-3-22	
o-Xylene	ND	0.00075	EPA 8260D	2-3-22	2-3-22	
Styrene	ND	0.00075	EPA 8260D	2-3-22	2-3-22	
Bromoform	ND	0.0038	EPA 8260D	2-3-22	2-3-22	
Isopropylbenzene	ND	0.00075	EPA 8260D	2-3-22	2-3-22	
Bromobenzene	ND	0.00075	EPA 8260D	2-3-22	2-3-22	
1,1,2,2-Tetrachloroethane	ND	0.00075	EPA 8260D	2-3-22	2-3-22	
1,2,3-Trichloropropane	ND	0.00075	EPA 8260D	2-3-22	2-3-22	
n-Propylbenzene	ND	0.00075	EPA 8260D	2-3-22	2-3-22	
2-Chlorotoluene	ND	0.00075	EPA 8260D	2-3-22	2-3-22	
4-Chlorotoluene	ND	0.00075	EPA 8260D	2-3-22	2-3-22	
1,3,5-Trimethylbenzene	ND	0.00075	EPA 8260D	2-3-22	2-3-22	
tert-Butylbenzene	ND	0.00075	EPA 8260D	2-3-22	2-3-22	
1,2,4-Trimethylbenzene	ND	0.00075	EPA 8260D	2-3-22	2-3-22	
sec-Butylbenzene	ND	0.00075	EPA 8260D	2-3-22	2-3-22	
1,3-Dichlorobenzene	ND	0.00075	EPA 8260D	2-3-22	2-3-22	
p-Isopropyltoluene	ND	0.00075	EPA 8260D	2-3-22	2-3-22	
1,4-Dichlorobenzene	ND	0.00075	EPA 8260D	2-3-22	2-3-22	
1,2-Dichlorobenzene	ND	0.00075	EPA 8260D	2-3-22	2-3-22	
n-Butylbenzene	ND	0.00075	EPA 8260D	2-3-22	2-3-22	
1,2-Dibromo-3-chloropropane	ND	0.0038	EPA 8260D	2-3-22	2-3-22	
1,2,4-Trichlorobenzene	ND	0.00075	EPA 8260D	2-3-22	2-3-22	
Hexachlorobutadiene	ND	0.0038	EPA 8260D	2-3-22	2-3-22	
Naphthalene	ND	0.0038	EPA 8260D	2-3-22	2-3-22	
1,2,3-Trichlorobenzene	ND	0.00075	EPA 8260D	2-3-22	2-3-22	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	95	74-131				
Toluene-d8	99	78-128				
4-Bromofluorobenzene	98	71-130				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILE ORGANICS EPA 8260D page 1 of 2

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB5-2-1-22-20'					
Laboratory ID:	02-042-19					
Dichlorodifluoromethane	ND	0.0012	EPA 8260D	2-3-22	2-3-22	
Chloromethane	ND	0.0061	EPA 8260D	2-3-22	2-3-22	
Vinyl Chloride	ND	0.0012	EPA 8260D	2-3-22	2-3-22	
Bromomethane	ND	0.0061	EPA 8260D	2-3-22	2-3-22	
Chloroethane	ND	0.0061	EPA 8260D	2-3-22	2-3-22	
Trichlorofluoromethane	ND	0.0012	EPA 8260D	2-3-22	2-3-22	
1,1-Dichloroethene	ND	0.0012	EPA 8260D	2-3-22	2-3-22	
Acetone	ND	0.093	EPA 8260D	2-3-22	2-3-22	
lodomethane	ND	0.0093	EPA 8260D	2-3-22	2-3-22	
Carbon Disulfide	ND	0.0012	EPA 8260D	2-3-22	2-3-22	
Methylene Chloride	ND	0.0061	EPA 8260D	2-3-22	2-3-22	
(trans) 1,2-Dichloroethene	ND	0.0012	EPA 8260D	2-3-22	2-3-22	
Methyl t-Butyl Ether	ND	0.0012	EPA 8260D	2-3-22	2-3-22	
1,1-Dichloroethane	ND	0.0012	EPA 8260D	2-3-22	2-3-22	
Vinyl Acetate	ND	0.0061	EPA 8260D	2-3-22	2-3-22	
2,2-Dichloropropane	ND	0.0012	EPA 8260D	2-3-22	2-3-22	
(cis) 1,2-Dichloroethene	ND	0.0012	EPA 8260D	2-3-22	2-3-22	
2-Butanone	ND	0.012	EPA 8260D	2-3-22	2-3-22	
Bromochloromethane	ND	0.0012	EPA 8260D	2-3-22	2-3-22	
Chloroform	ND	0.0012	EPA 8260D	2-3-22	2-3-22	
1,1,1-Trichloroethane	ND	0.0012	EPA 8260D	2-3-22	2-3-22	
Carbon Tetrachloride	ND	0.0012	EPA 8260D	2-3-22	2-3-22	
1,1-Dichloropropene	ND	0.0012	EPA 8260D	2-3-22	2-3-22	
Benzene	ND	0.0012	EPA 8260D	2-3-22	2-3-22	
1,2-Dichloroethane	ND	0.0012	EPA 8260D	2-3-22	2-3-22	
Trichloroethene	ND	0.0012	EPA 8260D	2-3-22	2-3-22	
1,2-Dichloropropane	ND	0.0012	EPA 8260D	2-3-22	2-3-22	
Dibromomethane	ND	0.0012	EPA 8260D	2-3-22	2-3-22	
Bromodichloromethane	ND	0.0012	EPA 8260D	2-3-22	2-3-22	
2-Chloroethyl Vinyl Ether	ND	0.0061	EPA 8260D	2-3-22	2-3-22	
(cis) 1,3-Dichloropropene	ND	0.0012	EPA 8260D	2-3-22	2-3-22	
Methyl Isobutyl Ketone	ND	0.0061	EPA 8260D	2-3-22	2-3-22	
Toluene	ND	0.0061	EPA 8260D	2-3-22	2-3-22	
(trans) 1,3-Dichloropropene	ND	0.0012	EPA 8260D	2-3-22	2-3-22	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

15

VOLATILE ORGANICS EPA 8260D page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB5-2-1-22-20'					
Laboratory ID:	02-042-19					
1,1,2-Trichloroethane	ND	0.0012	EPA 8260D	2-3-22	2-3-22	
Tetrachloroethene	ND	0.0012	EPA 8260D	2-3-22	2-3-22	
1,3-Dichloropropane	ND	0.0012	EPA 8260D	2-3-22	2-3-22	
2-Hexanone	ND	0.0061	EPA 8260D	2-3-22	2-3-22	
Dibromochloromethane	ND	0.0012	EPA 8260D	2-3-22	2-3-22	
1,2-Dibromoethane	ND	0.0012	EPA 8260D	2-3-22	2-3-22	
Chlorobenzene	ND	0.0012	EPA 8260D	2-3-22	2-3-22	
1,1,1,2-Tetrachloroethane	ND	0.0012	EPA 8260D	2-3-22	2-3-22	
Ethylbenzene	ND	0.0012	EPA 8260D	2-3-22	2-3-22	
m,p-Xylene	ND	0.0024	EPA 8260D	2-3-22	2-3-22	
o-Xylene	ND	0.0012	EPA 8260D	2-3-22	2-3-22	
Styrene	ND	0.0012	EPA 8260D	2-3-22	2-3-22	
Bromoform	ND	0.0061	EPA 8260D	2-3-22	2-3-22	
Isopropylbenzene	ND	0.0012	EPA 8260D	2-3-22	2-3-22	
Bromobenzene	ND	0.0012	EPA 8260D	2-3-22	2-3-22	
1,1,2,2-Tetrachloroethane	ND	0.0012	EPA 8260D	2-3-22	2-3-22	
1,2,3-Trichloropropane	ND	0.0012	EPA 8260D	2-3-22	2-3-22	
n-Propylbenzene	ND	0.0012	EPA 8260D	2-3-22	2-3-22	
2-Chlorotoluene	ND	0.0012	EPA 8260D	2-3-22	2-3-22	
4-Chlorotoluene	ND	0.0012	EPA 8260D	2-3-22	2-3-22	
1,3,5-Trimethylbenzene	ND	0.0012	EPA 8260D	2-3-22	2-3-22	
tert-Butylbenzene	ND	0.0012	EPA 8260D	2-3-22	2-3-22	
1,2,4-Trimethylbenzene	ND	0.0012	EPA 8260D	2-3-22	2-3-22	
sec-Butylbenzene	ND	0.0012	EPA 8260D	2-3-22	2-3-22	
1,3-Dichlorobenzene	ND	0.0012	EPA 8260D	2-3-22	2-3-22	
p-Isopropyltoluene	ND	0.0012	EPA 8260D	2-3-22	2-3-22	
1,4-Dichlorobenzene	ND	0.0012	EPA 8260D	2-3-22	2-3-22	
1,2-Dichlorobenzene	ND	0.0012	EPA 8260D	2-3-22	2-3-22	
n-Butylbenzene	ND	0.0012	EPA 8260D	2-3-22	2-3-22	
1,2-Dibromo-3-chloropropane	ND	0.0061	EPA 8260D	2-3-22	2-3-22	
1,2,4-Trichlorobenzene	ND	0.0012	EPA 8260D	2-3-22	2-3-22	
Hexachlorobutadiene	ND	0.0061	EPA 8260D	2-3-22	2-3-22	
Naphthalene	ND	0.0061	EPA 8260D	2-3-22	2-3-22	
1,2,3-Trichlorobenzene	ND	0.0012	EPA 8260D	2-3-22	2-3-22	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	97	74-131				
Toluene-d8	98	78-128				
4-Bromofluorobenzene	99	71-130				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL page 1 of 2

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0203S2					
Dichlorodifluoromethane	ND	0.0010	EPA 8260D	2-3-22	2-3-22	
Chloromethane	ND	0.0050	EPA 8260D	2-3-22	2-3-22	
Vinyl Chloride	ND	0.0010	EPA 8260D	2-3-22	2-3-22	
Bromomethane	ND	0.0050	EPA 8260D	2-3-22	2-3-22	
Chloroethane	ND	0.0050	EPA 8260D	2-3-22	2-3-22	
Trichlorofluoromethane	ND	0.0010	EPA 8260D	2-3-22	2-3-22	
1,1-Dichloroethene	ND	0.0010	EPA 8260D	2-3-22	2-3-22	
Acetone	ND	0.010	EPA 8260D	2-3-22	2-3-22	
lodomethane	ND	0.0076	EPA 8260D	2-3-22	2-3-22	
Carbon Disulfide	ND	0.0010	EPA 8260D	2-3-22	2-3-22	
Methylene Chloride	ND	0.0050	EPA 8260D	2-3-22	2-3-22	
(trans) 1,2-Dichloroethene	ND	0.0010	EPA 8260D	2-3-22	2-3-22	
Methyl t-Butyl Ether	ND	0.0010	EPA 8260D	2-3-22	2-3-22	
1,1-Dichloroethane	ND	0.0010	EPA 8260D	2-3-22	2-3-22	
Vinyl Acetate	ND	0.0050	EPA 8260D	2-3-22	2-3-22	
2,2-Dichloropropane	ND	0.0010	EPA 8260D	2-3-22	2-3-22	
(cis) 1,2-Dichloroethene	ND	0.0010	EPA 8260D	2-3-22	2-3-22	
2-Butanone	ND	0.0050	EPA 8260D	2-3-22	2-3-22	
Bromochloromethane	ND	0.0010	EPA 8260D	2-3-22	2-3-22	
Chloroform	ND	0.0010	EPA 8260D	2-3-22	2-3-22	
1,1,1-Trichloroethane	ND	0.0010	EPA 8260D	2-3-22	2-3-22	
Carbon Tetrachloride	ND	0.0010	EPA 8260D	2-3-22	2-3-22	
1,1-Dichloropropene	ND	0.0010	EPA 8260D	2-3-22	2-3-22	
Benzene	ND	0.0010	EPA 8260D	2-3-22	2-3-22	
1,2-Dichloroethane	ND	0.0010	EPA 8260D	2-3-22	2-3-22	
Trichloroethene	ND	0.0010	EPA 8260D	2-3-22	2-3-22	
1,2-Dichloropropane	ND	0.0010	EPA 8260D	2-3-22	2-3-22	
Dibromomethane	ND	0.0010	EPA 8260D	2-3-22	2-3-22	
Bromodichloromethane	ND	0.0010	EPA 8260D	2-3-22	2-3-22	
2-Chloroethyl Vinyl Ether	ND	0.0050	EPA 8260D	2-3-22	2-3-22	
(cis) 1,3-Dichloropropene	ND	0.0010	EPA 8260D	2-3-22	2-3-22	
Methyl Isobutyl Ketone	ND	0.0050	EPA 8260D	2-3-22	2-3-22	
Toluene	ND	0.0050	EPA 8260D	2-3-22	2-3-22	
(trans) 1,3-Dichloropropene	ND	0.0010	EPA 8260D	2-3-22	2-3-22	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

17

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0203S2					
1,1,2-Trichloroethane	ND	0.0010	EPA 8260D	2-3-22	2-3-22	
Tetrachloroethene	ND	0.0010	EPA 8260D	2-3-22	2-3-22	
1,3-Dichloropropane	ND	0.0010	EPA 8260D	2-3-22	2-3-22	
2-Hexanone	ND	0.0050	EPA 8260D	2-3-22	2-3-22	
Dibromochloromethane	ND	0.0010	EPA 8260D	2-3-22	2-3-22	
1,2-Dibromoethane	ND	0.0010	EPA 8260D	2-3-22	2-3-22	
Chlorobenzene	ND	0.0010	EPA 8260D	2-3-22	2-3-22	
1,1,1,2-Tetrachloroethane	ND	0.0010	EPA 8260D	2-3-22	2-3-22	
Ethylbenzene	ND	0.0010	EPA 8260D	2-3-22	2-3-22	
m,p-Xylene	ND	0.0020	EPA 8260D	2-3-22	2-3-22	
o-Xylene	ND	0.0010	EPA 8260D	2-3-22	2-3-22	
Styrene	ND	0.0010	EPA 8260D	2-3-22	2-3-22	
Bromoform	ND	0.0050	EPA 8260D	2-3-22	2-3-22	
Isopropylbenzene	ND	0.0010	EPA 8260D	2-3-22	2-3-22	
Bromobenzene	ND	0.0010	EPA 8260D	2-3-22	2-3-22	
1,1,2,2-Tetrachloroethane	ND	0.0010	EPA 8260D	2-3-22	2-3-22	
1,2,3-Trichloropropane	ND	0.0010	EPA 8260D	2-3-22	2-3-22	
n-Propylbenzene	ND	0.0010	EPA 8260D	2-3-22	2-3-22	
2-Chlorotoluene	ND	0.0010	EPA 8260D	2-3-22	2-3-22	
4-Chlorotoluene	ND	0.0010	EPA 8260D	2-3-22	2-3-22	
1,3,5-Trimethylbenzene	ND	0.0010	EPA 8260D	2-3-22	2-3-22	
tert-Butylbenzene	ND	0.0010	EPA 8260D	2-3-22	2-3-22	
1,2,4-Trimethylbenzene	ND	0.0010	EPA 8260D	2-3-22	2-3-22	
sec-Butylbenzene	ND	0.0010	EPA 8260D	2-3-22	2-3-22	
1,3-Dichlorobenzene	ND	0.0010	EPA 8260D	2-3-22	2-3-22	
p-Isopropyltoluene	ND	0.0010	EPA 8260D	2-3-22	2-3-22	
1,4-Dichlorobenzene	ND	0.0010	EPA 8260D	2-3-22	2-3-22	
1,2-Dichlorobenzene	ND	0.0010	EPA 8260D	2-3-22	2-3-22	
n-Butylbenzene	ND	0.0010	EPA 8260D	2-3-22	2-3-22	
1,2-Dibromo-3-chloropropane	ND	0.0050	EPA 8260D	2-3-22	2-3-22	
1,2,4-Trichlorobenzene	ND	0.0010	EPA 8260D	2-3-22	2-3-22	
Hexachlorobutadiene	ND	0.0050	EPA 8260D	2-3-22	2-3-22	
Naphthalene	ND	0.0050	EPA 8260D	2-3-22	2-3-22	
1,2,3-Trichlorobenzene	ND	0.0010	EPA 8260D	2-3-22	2-3-22	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	93	74-131				
Toluene-d8	98	78-128				
4-Bromofluorobenzene	98	71-130				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL

Matrix: Soil Units: mg/kg

					Per	Percent Recover Recovery Limits		/ RPD		
Analyte	Res	sult	Spike	Level	Rec			RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB02	03S2								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	0.0516	0.0479	0.0500	0.0500	103	96	71-131	7	19	
Benzene	0.0498	0.0470	0.0500	0.0500	100	94	73-124	6	18	
Trichloroethene	0.0546	0.0517	0.0500	0.0500	109	103	79-130	5	18	
Toluene	0.0526	0.0493	0.0500	0.0500	105	99	76-123	6	18	
Chlorobenzene	0.0544	0.0520	0.0500	0.0500	109	104	78-122	5	18	
Surrogate:										
Dibromofluoromethane					96	92	74-131			
Toluene-d8					99	98	78-128			
4-Bromofluorobenzene					101	98	71-130			

VOLATILE ORGANICS EPA 8260D page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB1-2-1-22-GW					
Laboratory ID:	02-042-04					
Dichlorodifluoromethane	ND	0.40	EPA 8260D	2-3-22	2-3-22	
Chloromethane	ND	2.0	EPA 8260D	2-3-22	2-3-22	
Vinyl Chloride	ND	0.20	EPA 8260D	2-3-22	2-3-22	
Bromomethane	ND	2.0	EPA 8260D	2-3-22	2-3-22	
Chloroethane	ND	2.0	EPA 8260D	2-3-22	2-3-22	
Trichlorofluoromethane	ND	0.40	EPA 8260D	2-3-22	2-3-22	
1,1-Dichloroethene	ND	0.40	EPA 8260D	2-3-22	2-3-22	
Acetone	120	10	EPA 8260D	2-3-22	2-3-22	
lodomethane	ND	24	EPA 8260D	2-3-22	2-3-22	
Carbon Disulfide	1.9	0.40	EPA 8260D	2-3-22	2-3-22	
Methylene Chloride	ND	2.0	EPA 8260D	2-3-22	2-3-22	
(trans) 1,2-Dichloroethene	ND	0.40	EPA 8260D	2-3-22	2-3-22	
Methyl t-Butyl Ether	ND	0.40	EPA 8260D	2-3-22	2-3-22	
1,1-Dichloroethane	ND	0.40	EPA 8260D	2-3-22	2-3-22	
Vinyl Acetate	ND	2.0	EPA 8260D	2-3-22	2-3-22	
2,2-Dichloropropane	ND	0.40	EPA 8260D	2-3-22	2-3-22	
(cis) 1,2-Dichloroethene	ND	0.40	EPA 8260D	2-3-22	2-3-22	
2-Butanone	ND	10	EPA 8260D	2-3-22	2-3-22	
Bromochloromethane	ND	0.40	EPA 8260D	2-3-22	2-3-22	
Chloroform	ND	0.40	EPA 8260D	2-3-22	2-3-22	
1,1,1-Trichloroethane	ND	0.40	EPA 8260D	2-3-22	2-3-22	
Carbon Tetrachloride	ND	0.40	EPA 8260D	2-3-22	2-3-22	
1,1-Dichloropropene	ND	0.40	EPA 8260D	2-3-22	2-3-22	
Benzene	ND	0.40	EPA 8260D	2-3-22	2-3-22	
1,2-Dichloroethane	ND	0.40	EPA 8260D	2-3-22	2-3-22	
Trichloroethene	ND	0.40	EPA 8260D	2-3-22	2-3-22	
1,2-Dichloropropane	ND	0.40	EPA 8260D	2-3-22	2-3-22	
Dibromomethane	ND	0.40	EPA 8260D	2-3-22	2-3-22	
Bromodichloromethane	ND	0.40	EPA 8260D	2-3-22	2-3-22	
(cis) 1,3-Dichloropropene	ND	0.40	EPA 8260D	2-3-22	2-3-22	
Methyl Isobutyl Ketone	5.4	4.0	EPA 8260D	2-3-22	2-3-22	
Toluene	19	2.0	EPA 8260D	2-3-22	2-3-22	
(trans) 1,3-Dichloropropene	ND	0.40	EPA 8260D	2-3-22	2-3-22	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILE ORGANICS EPA 8260D page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB1-2-1-22-GW					
Laboratory ID:	02-042-04					
1,1,2-Trichloroethane	ND	0.40	EPA 8260D	2-3-22	2-3-22	
Tetrachloroethene	ND	0.40	EPA 8260D	2-3-22	2-3-22	
1,3-Dichloropropane	ND	0.40	EPA 8260D	2-3-22	2-3-22	
2-Hexanone	ND	4.0	EPA 8260D	2-3-22	2-3-22	
Dibromochloromethane	ND	0.40	EPA 8260D	2-3-22	2-3-22	
1,2-Dibromoethane	ND	0.40	EPA 8260D	2-3-22	2-3-22	
Chlorobenzene	ND	0.40	EPA 8260D	2-3-22	2-3-22	
1,1,1,2-Tetrachloroethane	ND	0.40	EPA 8260D	2-3-22	2-3-22	
Ethylbenzene	7.1	0.40	EPA 8260D	2-3-22	2-3-22	
m,p-Xylene	32	0.80	EPA 8260D	2-3-22	2-3-22	
o-Xylene	16	0.40	EPA 8260D	2-3-22	2-3-22	
Styrene	ND	0.40	EPA 8260D	2-3-22	2-3-22	
Bromoform	ND	2.0	EPA 8260D	2-3-22	2-3-22	
Isopropylbenzene	0.43	0.40	EPA 8260D	2-3-22	2-3-22	
Bromobenzene	ND	0.40	EPA 8260D	2-3-22	2-3-22	
1,1,2,2-Tetrachloroethane	ND	0.40	EPA 8260D	2-3-22	2-3-22	
1,2,3-Trichloropropane	ND	0.58	EPA 8260D	2-3-22	2-3-22	
n-Propylbenzene	1.8	0.40	EPA 8260D	2-3-22	2-3-22	
2-Chlorotoluene	ND	0.40	EPA 8260D	2-3-22	2-3-22	
4-Chlorotoluene	ND	0.40	EPA 8260D	2-3-22	2-3-22	
1,3,5-Trimethylbenzene	5.5	0.40	EPA 8260D	2-3-22	2-3-22	
tert-Butylbenzene	ND	0.40	EPA 8260D	2-3-22	2-3-22	
1,2,4-Trimethylbenzene	15	0.40	EPA 8260D	2-3-22	2-3-22	
sec-Butylbenzene	0.69	0.40	EPA 8260D	2-3-22	2-3-22	
1,3-Dichlorobenzene	ND	0.40	EPA 8260D	2-3-22	2-3-22	
p-Isopropyltoluene	4.6	0.40	EPA 8260D	2-3-22	2-3-22	
1,4-Dichlorobenzene	ND	0.40	EPA 8260D	2-3-22	2-3-22	
1,2-Dichlorobenzene	ND	0.40	EPA 8260D	2-3-22	2-3-22	
n-Butylbenzene	2.9	0.40	EPA 8260D	2-3-22	2-3-22	
1,2-Dibromo-3-chloropropane	ND	2.0	EPA 8260D	2-3-22	2-3-22	
1,2,4-Trichlorobenzene	ND	0.40	EPA 8260D	2-3-22	2-3-22	
Hexachlorobutadiene	ND	2.0	EPA 8260D	2-3-22	2-3-22	
Naphthalene	3.4	2.0	EPA 8260D	2-3-22	2-3-22	
1,2,3-Trichlorobenzene	ND	0.40	EPA 8260D	2-3-22	2-3-22	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	93	75-127				
Toluene-d8	99	80-127				
4-Bromofluorobenzene	97	78-125				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILE ORGANICS EPA 8260D page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB3-2-1-22-GW					
Laboratory ID:	02-042-11					
Dichlorodifluoromethane	ND	0.20	EPA 8260D	2-3-22	2-3-22	
Chloromethane	ND	1.0	EPA 8260D	2-3-22	2-3-22	
Vinyl Chloride	ND	0.10	EPA 8260D	2-3-22	2-3-22	
Bromomethane	ND	1.0	EPA 8260D	2-3-22	2-3-22	
Chloroethane	ND	1.0	EPA 8260D	2-3-22	2-3-22	
Trichlorofluoromethane	ND	0.20	EPA 8260D	2-3-22	2-3-22	
1,1-Dichloroethene	ND	0.20	EPA 8260D	2-3-22	2-3-22	
Acetone	23	5.0	EPA 8260D	2-3-22	2-3-22	
lodomethane	ND	12	EPA 8260D	2-3-22	2-3-22	
Carbon Disulfide	ND	0.20	EPA 8260D	2-3-22	2-3-22	
Methylene Chloride	ND	1.0	EPA 8260D	2-3-22	2-3-22	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	2-3-22	2-3-22	
Methyl t-Butyl Ether	ND	0.20	EPA 8260D	2-3-22	2-3-22	
1,1-Dichloroethane	ND	0.20	EPA 8260D	2-3-22	2-3-22	
Vinyl Acetate	ND	1.0	EPA 8260D	2-3-22	2-3-22	
2,2-Dichloropropane	ND	0.20	EPA 8260D	2-3-22	2-3-22	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	2-3-22	2-3-22	
2-Butanone	6.5	5.0	EPA 8260D	2-3-22	2-3-22	
Bromochloromethane	ND	0.20	EPA 8260D	2-3-22	2-3-22	
Chloroform	0.35	0.20	EPA 8260D	2-3-22	2-3-22	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	2-3-22	2-3-22	
Carbon Tetrachloride	ND	0.20	EPA 8260D	2-3-22	2-3-22	
1,1-Dichloropropene	ND	0.20	EPA 8260D	2-3-22	2-3-22	
Benzene	2.2	0.20	EPA 8260D	2-3-22	2-3-22	
1,2-Dichloroethane	ND	0.20	EPA 8260D	2-3-22	2-3-22	
Trichloroethene	ND	0.20	EPA 8260D	2-3-22	2-3-22	
1,2-Dichloropropane	ND	0.20	EPA 8260D	2-3-22	2-3-22	
Dibromomethane	ND	0.20	EPA 8260D	2-3-22	2-3-22	
Bromodichloromethane	ND	0.20	EPA 8260D	2-3-22	2-3-22	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	2-3-22	2-3-22	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	2-3-22	2-3-22	
Toluene	1.5	1.0	EPA 8260D	2-3-22	2-3-22	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	2-3-22	2-3-22	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILE ORGANICS EPA 8260D page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB3-2-1-22-GW					
Laboratory ID:	02-042-11					
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	2-3-22	2-3-22	
Tetrachloroethene	0.52	0.20	EPA 8260D	2-3-22	2-3-22	
1,3-Dichloropropane	ND	0.20	EPA 8260D	2-3-22	2-3-22	
2-Hexanone	ND	2.0	EPA 8260D	2-3-22	2-3-22	
Dibromochloromethane	ND	0.20	EPA 8260D	2-3-22	2-3-22	
1,2-Dibromoethane	ND	0.20	EPA 8260D	2-3-22	2-3-22	
Chlorobenzene	ND	0.20	EPA 8260D	2-3-22	2-3-22	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	2-3-22	2-3-22	
Ethylbenzene	0.46	0.20	EPA 8260D	2-3-22	2-3-22	
m,p-Xylene	0.47	0.40	EPA 8260D	2-3-22	2-3-22	
o-Xylene	0.36	0.20	EPA 8260D	2-3-22	2-3-22	
Styrene	ND	0.20	EPA 8260D	2-3-22	2-3-22	
Bromoform	ND	1.0	EPA 8260D	2-3-22	2-3-22	
Isopropylbenzene	ND	0.20	EPA 8260D	2-3-22	2-3-22	
Bromobenzene	ND	0.20	EPA 8260D	2-3-22	2-3-22	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	2-3-22	2-3-22	
1,2,3-Trichloropropane	ND	0.29	EPA 8260D	2-3-22	2-3-22	
n-Propylbenzene	ND	0.20	EPA 8260D	2-3-22	2-3-22	
2-Chlorotoluene	ND	0.20	EPA 8260D	2-3-22	2-3-22	
4-Chlorotoluene	ND	0.20	EPA 8260D	2-3-22	2-3-22	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260D	2-3-22	2-3-22	
tert-Butylbenzene	ND	0.20	EPA 8260D	2-3-22	2-3-22	
1,2,4-Trimethylbenzene	0.33	0.20	EPA 8260D	2-3-22	2-3-22	
sec-Butylbenzene	ND	0.20	EPA 8260D	2-3-22	2-3-22	
1,3-Dichlorobenzene	ND	0.20	EPA 8260D	2-3-22	2-3-22	
p-Isopropyltoluene	ND	0.20	EPA 8260D	2-3-22	2-3-22	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	2-3-22	2-3-22	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	2-3-22	2-3-22	
n-Butylbenzene	ND	0.20	EPA 8260D	2-3-22	2-3-22	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	2-3-22	2-3-22	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260D	2-3-22	2-3-22	
Hexachlorobutadiene	ND	1.0	EPA 8260D	2-3-22	2-3-22	
Naphthalene	ND	1.0	EPA 8260D	2-3-22	2-3-22	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260D	2-3-22	2-3-22	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	93	75-127				
Toluene-d8	97	80-127				
4-Bromofluorobenzene	95	78-125				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILE ORGANICS EPA 8260D page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB5-2-1-22-GW					
Laboratory ID:	02-042-20					
Dichlorodifluoromethane	ND	0.20	EPA 8260D	2-3-22	2-3-22	
Chloromethane	ND	1.0	EPA 8260D	2-3-22	2-3-22	
Vinyl Chloride	ND	0.10	EPA 8260D	2-3-22	2-3-22	
Bromomethane	ND	1.0	EPA 8260D	2-3-22	2-3-22	
Chloroethane	ND	1.0	EPA 8260D	2-3-22	2-3-22	
Trichlorofluoromethane	ND	0.20	EPA 8260D	2-3-22	2-3-22	
1,1-Dichloroethene	ND	0.20	EPA 8260D	2-3-22	2-3-22	
Acetone	32	5.0	EPA 8260D	2-3-22	2-3-22	
lodomethane	ND	12	EPA 8260D	2-3-22	2-3-22	
Carbon Disulfide	ND	0.20	EPA 8260D	2-3-22	2-3-22	
Methylene Chloride	ND	1.0	EPA 8260D	2-3-22	2-3-22	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	2-3-22	2-3-22	
Methyl t-Butyl Ether	ND	0.20	EPA 8260D	2-3-22	2-3-22	
1,1-Dichloroethane	ND	0.20	EPA 8260D	2-3-22	2-3-22	
Vinyl Acetate	ND	1.0	EPA 8260D	2-3-22	2-3-22	
2,2-Dichloropropane	ND	0.20	EPA 8260D	2-3-22	2-3-22	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	2-3-22	2-3-22	
2-Butanone	7.7	5.0	EPA 8260D	2-3-22	2-3-22	
Bromochloromethane	ND	0.20	EPA 8260D	2-3-22	2-3-22	
Chloroform	5.2	0.20	EPA 8260D	2-3-22	2-3-22	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	2-3-22	2-3-22	
Carbon Tetrachloride	ND	0.20	EPA 8260D	2-3-22	2-3-22	
1,1-Dichloropropene	ND	0.20	EPA 8260D	2-3-22	2-3-22	
Benzene	0.82	0.20	EPA 8260D	2-3-22	2-3-22	
1,2-Dichloroethane	ND	0.20	EPA 8260D	2-3-22	2-3-22	
Trichloroethene	ND	0.20	EPA 8260D	2-3-22	2-3-22	
1,2-Dichloropropane	ND	0.20	EPA 8260D	2-3-22	2-3-22	
Dibromomethane	ND	0.20	EPA 8260D	2-3-22	2-3-22	
Bromodichloromethane	ND	0.20	EPA 8260D	2-3-22	2-3-22	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	2-3-22	2-3-22	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	2-3-22	2-3-22	
Toluene	ND	1.0	EPA 8260D	2-3-22	2-3-22	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	2-3-22	2-3-22	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

24

VOLATILE ORGANICS EPA 8260D page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB5-2-1-22-GW					
Laboratory ID:	02-042-20					
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	2-3-22	2-3-22	
Tetrachloroethene	1.3	0.20	EPA 8260D	2-3-22	2-3-22	
1,3-Dichloropropane	ND	0.20	EPA 8260D	2-3-22	2-3-22	
2-Hexanone	ND	2.0	EPA 8260D	2-3-22	2-3-22	
Dibromochloromethane	ND	0.20	EPA 8260D	2-3-22	2-3-22	
1,2-Dibromoethane	ND	0.20	EPA 8260D	2-3-22	2-3-22	
Chlorobenzene	ND	0.20	EPA 8260D	2-3-22	2-3-22	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	2-3-22	2-3-22	
Ethylbenzene	ND	0.20	EPA 8260D	2-3-22	2-3-22	
m,p-Xylene	ND	0.40	EPA 8260D	2-3-22	2-3-22	
o-Xylene	ND	0.20	EPA 8260D	2-3-22	2-3-22	
Styrene	ND	0.20	EPA 8260D	2-3-22	2-3-22	
Bromoform	ND	1.0	EPA 8260D	2-3-22	2-3-22	
Isopropylbenzene	ND	0.20	EPA 8260D	2-3-22	2-3-22	
Bromobenzene	ND	0.20	EPA 8260D	2-3-22	2-3-22	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	2-3-22	2-3-22	
1,2,3-Trichloropropane	ND	0.29	EPA 8260D	2-3-22	2-3-22	
n-Propylbenzene	ND	0.20	EPA 8260D	2-3-22	2-3-22	
2-Chlorotoluene	ND	0.20	EPA 8260D	2-3-22	2-3-22	
4-Chlorotoluene	ND	0.20	EPA 8260D	2-3-22	2-3-22	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260D	2-3-22	2-3-22	
tert-Butylbenzene	ND	0.20	EPA 8260D	2-3-22	2-3-22	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260D	2-3-22	2-3-22	
sec-Butylbenzene	ND	0.20	EPA 8260D	2-3-22	2-3-22	
1,3-Dichlorobenzene	ND	0.20	EPA 8260D	2-3-22	2-3-22	
p-Isopropyltoluene	ND	0.20	EPA 8260D	2-3-22	2-3-22	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	2-3-22	2-3-22	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	2-3-22	2-3-22	
n-Butylbenzene	ND	0.20	EPA 8260D	2-3-22	2-3-22	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	2-3-22	2-3-22	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260D	2-3-22	2-3-22	
Hexachlorobutadiene	ND	1.0	EPA 8260D	2-3-22	2-3-22	
Naphthalene	ND	1.0	EPA 8260D	2-3-22	2-3-22	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260D	2-3-22	2-3-22	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	94	75-127				
Toluene-d8	99	80-127				
4-Bromofluorobenzene	95	78-125				

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0203W1					
Dichlorodifluoromethane	ND	0.20	EPA 8260D	2-3-22	2-3-22	
Chloromethane	ND	1.0	EPA 8260D	2-3-22	2-3-22	
Vinyl Chloride	ND	0.10	EPA 8260D	2-3-22	2-3-22	
Bromomethane	ND	1.0	EPA 8260D	2-3-22	2-3-22	
Chloroethane	ND	1.0	EPA 8260D	2-3-22	2-3-22	
Trichlorofluoromethane	ND	0.20	EPA 8260D	2-3-22	2-3-22	
1,1-Dichloroethene	ND	0.20	EPA 8260D	2-3-22	2-3-22	
Acetone	ND	5.0	EPA 8260D	2-3-22	2-3-22	
lodomethane	ND	12	EPA 8260D	2-3-22	2-3-22	
Carbon Disulfide	ND	0.20	EPA 8260D	2-3-22	2-3-22	
Methylene Chloride	ND	1.0	EPA 8260D	2-3-22	2-3-22	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	2-3-22	2-3-22	
Methyl t-Butyl Ether	ND	0.20	EPA 8260D	2-3-22	2-3-22	
1,1-Dichloroethane	ND	0.20	EPA 8260D	2-3-22	2-3-22	
Vinyl Acetate	ND	1.0	EPA 8260D	2-3-22	2-3-22	
2,2-Dichloropropane	ND	0.20	EPA 8260D	2-3-22	2-3-22	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	2-3-22	2-3-22	
2-Butanone	ND	5.0	EPA 8260D	2-3-22	2-3-22	
Bromochloromethane	ND	0.20	EPA 8260D	2-3-22	2-3-22	
Chloroform	ND	0.20	EPA 8260D	2-3-22	2-3-22	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	2-3-22	2-3-22	
Carbon Tetrachloride	ND	0.20	EPA 8260D	2-3-22	2-3-22	
1,1-Dichloropropene	ND	0.20	EPA 8260D	2-3-22	2-3-22	
Benzene	ND	0.20	EPA 8260D	2-3-22	2-3-22	
1,2-Dichloroethane	ND	0.20	EPA 8260D	2-3-22	2-3-22	
Trichloroethene	ND	0.20	EPA 8260D	2-3-22	2-3-22	
1,2-Dichloropropane	ND	0.20	EPA 8260D	2-3-22	2-3-22	
Dibromomethane	ND	0.20	EPA 8260D	2-3-22	2-3-22	
Bromodichloromethane	ND	0.20	EPA 8260D	2-3-22	2-3-22	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	2-3-22	2-3-22	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	2-3-22	2-3-22	
Toluene	ND	1.0	EPA 8260D	2-3-22	2-3-22	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	2-3-22	2-3-22	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

26

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0203W1					
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	2-3-22	2-3-22	
Tetrachloroethene	ND	0.20	EPA 8260D	2-3-22	2-3-22	
1,3-Dichloropropane	ND	0.20	EPA 8260D	2-3-22	2-3-22	
2-Hexanone	ND	2.0	EPA 8260D	2-3-22	2-3-22	
Dibromochloromethane	ND	0.20	EPA 8260D	2-3-22	2-3-22	
1,2-Dibromoethane	ND	0.20	EPA 8260D	2-3-22	2-3-22	
Chlorobenzene	ND	0.20	EPA 8260D	2-3-22	2-3-22	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	2-3-22	2-3-22	
Ethylbenzene	ND	0.20	EPA 8260D	2-3-22	2-3-22	
m,p-Xylene	ND	0.40	EPA 8260D	2-3-22	2-3-22	
o-Xylene	ND	0.20	EPA 8260D	2-3-22	2-3-22	
Styrene	ND	0.20	EPA 8260D	2-3-22	2-3-22	
Bromoform	ND	1.0	EPA 8260D	2-3-22	2-3-22	
Isopropylbenzene	ND	0.20	EPA 8260D	2-3-22	2-3-22	
Bromobenzene	ND	0.20	EPA 8260D	2-3-22	2-3-22	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	2-3-22	2-3-22	
1,2,3-Trichloropropane	ND	0.29	EPA 8260D	2-3-22	2-3-22	
n-Propylbenzene	ND	0.20	EPA 8260D	2-3-22	2-3-22	
2-Chlorotoluene	ND	0.20	EPA 8260D	2-3-22	2-3-22	
4-Chlorotoluene	ND	0.20	EPA 8260D	2-3-22	2-3-22	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260D	2-3-22	2-3-22	
tert-Butylbenzene	ND	0.20	EPA 8260D	2-3-22	2-3-22	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260D	2-3-22	2-3-22	
sec-Butylbenzene	ND	0.20	EPA 8260D	2-3-22	2-3-22	
1,3-Dichlorobenzene	ND	0.20	EPA 8260D	2-3-22	2-3-22	
p-Isopropyltoluene	ND	0.20	EPA 8260D	2-3-22	2-3-22	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	2-3-22	2-3-22	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	2-3-22	2-3-22	
n-Butylbenzene	ND	0.20	EPA 8260D	2-3-22	2-3-22	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	2-3-22	2-3-22	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260D	2-3-22	2-3-22	
Hexachlorobutadiene	ND	1.0	EPA 8260D	2-3-22	2-3-22	
Naphthalene	ND	1.0	EPA 8260D	2-3-22	2-3-22	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260D	2-3-22	2-3-22	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	93	75-127				
Toluene-d8	99	80-127				
4-Bromofluorobenzene	93	78-125				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL

Matrix: Water Units: ug/L

					Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Reco	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB02	02W1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	10.3	10.4	10.0	10.0	103	104	78-125	1	19	
Benzene	10.6	11.0	10.0	10.0	106	110	80-119	4	16	
Trichloroethene	11.1	11.7	10.0	10.0	111	117	80-121	5	18	
Toluene	10.8	11.4	10.0	10.0	108	114	80-117	5	18	
Chlorobenzene	10.7	11.2	10.0	10.0	107	112	80-117	5	17	
Surrogate:										
Dibromofluoromethane					94	94	75-127			
Toluene-d8					99	100	80-127			
4-Bromofluorobenzene					96	96	78-125			

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB1-2-1-22-10'					
Laboratory ID:	02-042-02					
Naphthalene	0.26	0.0073	EPA 8270E/SIM	2-7-22	2-7-22	
2-Methylnaphthalene	0.48	0.0073	EPA 8270E/SIM	2-7-22	2-7-22	
1-Methylnaphthalene	0.27	0.0073	EPA 8270E/SIM	2-7-22	2-7-22	
Acenaphthylene	ND	0.0073	EPA 8270E/SIM	2-7-22	2-7-22	
Acenaphthene	ND	0.0073	EPA 8270E/SIM	2-7-22	2-7-22	
Fluorene	ND	0.0077	EPA 8270E/SIM	2-7-22	2-7-22	U1
Phenanthrene	0.030	0.0073	EPA 8270E/SIM	2-7-22	2-7-22	
Anthracene	ND	0.0073	EPA 8270E/SIM	2-7-22	2-7-22	
Fluoranthene	0.032	0.0073	EPA 8270E/SIM	2-7-22	2-7-22	
Pyrene	0.081	0.0073	EPA 8270E/SIM	2-7-22	2-7-22	
Benzo[a]anthracene	0.0097	0.0073	EPA 8270E/SIM	2-7-22	2-7-22	
Chrysene	0.019	0.0073	EPA 8270E/SIM	2-7-22	2-7-22	
Benzo[b]fluoranthene	0.022	0.0073	EPA 8270E/SIM	2-7-22	2-7-22	
Benzo(j,k)fluoranthene	0.0078	0.0073	EPA 8270E/SIM	2-7-22	2-7-22	
Benzo[a]pyrene	0.0096	0.0073	EPA 8270E/SIM	2-7-22	2-7-22	
Indeno(1,2,3-c,d)pyrene	0.013	0.0073	EPA 8270E/SIM	2-7-22	2-7-22	
Dibenz[a,h]anthracene	ND	0.0073	EPA 8270E/SIM	2-7-22	2-7-22	
Benzo[g,h,i]perylene	0.022	0.0073	EPA 8270E/SIM	2-7-22	2-7-22	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	77	41 - 114				
Pyrene-d10	69	39 - 115				
Terphenyl-d14	91	44 - 125				

29

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB3-2-1-22-25'					
Laboratory ID:	02-042-10					
Naphthalene	ND	0.0075	EPA 8270E/SIM	2-7-22	2-7-22	
2-Methylnaphthalene	ND	0.0075	EPA 8270E/SIM	2-7-22	2-7-22	
1-Methylnaphthalene	ND	0.0075	EPA 8270E/SIM	2-7-22	2-7-22	
Acenaphthylene	ND	0.0075	EPA 8270E/SIM	2-7-22	2-7-22	
Acenaphthene	ND	0.0075	EPA 8270E/SIM	2-7-22	2-7-22	
Fluorene	ND	0.0075	EPA 8270E/SIM	2-7-22	2-7-22	
Phenanthrene	ND	0.0075	EPA 8270E/SIM	2-7-22	2-7-22	
Anthracene	ND	0.0075	EPA 8270E/SIM	2-7-22	2-7-22	
Fluoranthene	ND	0.0075	EPA 8270E/SIM	2-7-22	2-7-22	
Pyrene	ND	0.0075	EPA 8270E/SIM	2-7-22	2-7-22	
Benzo[a]anthracene	ND	0.0075	EPA 8270E/SIM	2-7-22	2-7-22	
Chrysene	ND	0.0075	EPA 8270E/SIM	2-7-22	2-7-22	
Benzo[b]fluoranthene	ND	0.0075	EPA 8270E/SIM	2-7-22	2-7-22	
Benzo(j,k)fluoranthene	ND	0.0075	EPA 8270E/SIM	2-7-22	2-7-22	
Benzo[a]pyrene	ND	0.0075	EPA 8270E/SIM	2-7-22	2-7-22	
Indeno(1,2,3-c,d)pyrene	ND	0.0075	EPA 8270E/SIM	2-7-22	2-7-22	
Dibenz[a,h]anthracene	ND	0.0075	EPA 8270E/SIM	2-7-22	2-7-22	
Benzo[g,h,i]perylene	ND	0.0075	EPA 8270E/SIM	2-7-22	2-7-22	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	85	41 - 114				
Pyrene-d10	83	39 - 115				
Terphenyl-d14	100	44 - 125				

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB5-2-1-22-20'					
Laboratory ID:	02-042-19					
Naphthalene	ND	0.0077	EPA 8270E/SIM	2-7-22	2-7-22	
2-Methylnaphthalene	ND	0.0077	EPA 8270E/SIM	2-7-22	2-7-22	
1-Methylnaphthalene	ND	0.0077	EPA 8270E/SIM	2-7-22	2-7-22	
Acenaphthylene	ND	0.0077	EPA 8270E/SIM	2-7-22	2-7-22	
Acenaphthene	ND	0.0077	EPA 8270E/SIM	2-7-22	2-7-22	
Fluorene	ND	0.0077	EPA 8270E/SIM	2-7-22	2-7-22	
Phenanthrene	ND	0.0077	EPA 8270E/SIM	2-7-22	2-7-22	
Anthracene	ND	0.0077	EPA 8270E/SIM	2-7-22	2-7-22	
Fluoranthene	ND	0.0077	EPA 8270E/SIM	2-7-22	2-7-22	
Pyrene	ND	0.0077	EPA 8270E/SIM	2-7-22	2-7-22	
Benzo[a]anthracene	ND	0.0077	EPA 8270E/SIM	2-7-22	2-7-22	
Chrysene	ND	0.0077	EPA 8270E/SIM	2-7-22	2-7-22	
Benzo[b]fluoranthene	ND	0.0077	EPA 8270E/SIM	2-7-22	2-7-22	
Benzo(j,k)fluoranthene	ND	0.0077	EPA 8270E/SIM	2-7-22	2-7-22	
Benzo[a]pyrene	ND	0.0077	EPA 8270E/SIM	2-7-22	2-7-22	
Indeno(1,2,3-c,d)pyrene	ND	0.0077	EPA 8270E/SIM	2-7-22	2-7-22	
Dibenz[a,h]anthracene	ND	0.0077	EPA 8270E/SIM	2-7-22	2-7-22	
Benzo[g,h,i]perylene	ND	0.0077	EPA 8270E/SIM	2-7-22	2-7-22	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	81	41 - 114				
Pyrene-d10	77	39 - 115				
Terphenyl-d14	92	44 - 125				

31

PAHs EPA 8270E/SIM QUALITY CONTROL

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0207S1					
Naphthalene	ND	0.0067	EPA 8270E/SIM	2-7-22	2-7-22	
2-Methylnaphthalene	ND	0.0067	EPA 8270E/SIM	2-7-22	2-7-22	
1-Methylnaphthalene	ND	0.0067	EPA 8270E/SIM	2-7-22	2-7-22	
Acenaphthylene	ND	0.0067	EPA 8270E/SIM	2-7-22	2-7-22	
Acenaphthene	ND	0.0067	EPA 8270E/SIM	2-7-22	2-7-22	
Fluorene	ND	0.0067	EPA 8270E/SIM	2-7-22	2-7-22	
Phenanthrene	ND	0.0067	EPA 8270E/SIM	2-7-22	2-7-22	
Anthracene	ND	0.0067	EPA 8270E/SIM	2-7-22	2-7-22	
Fluoranthene	ND	0.0067	EPA 8270E/SIM	2-7-22	2-7-22	
Pyrene	ND	0.0067	EPA 8270E/SIM	2-7-22	2-7-22	
Benzo[a]anthracene	ND	0.0067	EPA 8270E/SIM	2-7-22	2-7-22	
Chrysene	ND	0.0067	EPA 8270E/SIM	2-7-22	2-7-22	
Benzo[b]fluoranthene	ND	0.0067	EPA 8270E/SIM	2-7-22	2-7-22	
Benzo(j,k)fluoranthene	ND	0.0067	EPA 8270E/SIM	2-7-22	2-7-22	
Benzo[a]pyrene	ND	0.0067	EPA 8270E/SIM	2-7-22	2-7-22	
Indeno(1,2,3-c,d)pyrene	ND	0.0067	EPA 8270E/SIM	2-7-22	2-7-22	
Dibenz[a,h]anthracene	ND	0.0067	EPA 8270E/SIM	2-7-22	2-7-22	
Benzo[g,h,i]perylene	ND	0.0067	EPA 8270E/SIM	2-7-22	2-7-22	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	87	41 - 114				
Pyrene-d10	83	39 - 115				
Terphenyl-d14	109	44 - 125				

32

. . .

PAHs EPA 8270E/SIM QUALITY CONTROL

Matrix: Soil Units: mg/Kg

					Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Reco	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	01-20)5-07									
	MS	MSD	MS	MSD		MS	MSD				
Naphthalene	0.0820	0.0813	0.0833	0.0833	ND	98	98	41 - 123	1	23	
Acenaphthylene	0.0856	0.0860	0.0833	0.0833	ND	103	103	45 - 124	0	20	
Acenaphthene	0.0832	0.0834	0.0833	0.0833	ND	100	100	46 - 122	0	23	
Fluorene	0.0750	0.0768	0.0833	0.0833	ND	90	92	45 - 128	2	27	
Phenanthrene	0.0730	0.0737	0.0833	0.0833	ND	88	88	38 - 133	1	33	
Anthracene	0.0761	0.0752	0.0833	0.0833	ND	91	90	49 - 127	1	21	
Fluoranthene	0.0769	0.0722	0.0833	0.0833	ND	92	87	45 - 130	6	29	
Pyrene	0.0759	0.0767	0.0833	0.0833	ND	91	92	43 - 132	1	32	
Benzo[a]anthracene	0.0849	0.0833	0.0833	0.0833	ND	102	100	49 - 139	2	27	
Chrysene	0.0758	0.0772	0.0833	0.0833	ND	91	93	47 - 127	2	28	
Benzo[b]fluoranthene	0.0782	0.0763	0.0833	0.0833	ND	94	92	46 - 129	2	31	
Benzo(j,k)fluoranthene	0.0769	0.0800	0.0833	0.0833	ND	92	96	46 - 128	4	25	
Benzo[a]pyrene	0.0792	0.0790	0.0833	0.0833	ND	95	95	47 - 134	0	27	
Indeno(1,2,3-c,d)pyrene	0.0732	0.0734	0.0833	0.0833	ND	88	88	42 - 133	0	25	
Dibenz[a,h]anthracene	0.0746	0.0755	0.0833	0.0833	ND	90	91	46 - 129	1	24	
Benzo[g,h,i]perylene	0.0712	0.0725	0.0833	0.0833	ND	85	87	44 - 129	2	27	
Surrogate:											
2-Fluorobiphenyl						88	88	41 - 114			
Pyrene-d10						81	84	39 - 115			
Terphenyl-d14						101	105	44 - 125			

33

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB1-2-1-22-GW					
Laboratory ID:	02-042-04					
Naphthalene	2.8	0.10	EPA 8270E/SIM	2-7-22	2-7-22	
2-Methylnaphthalene	2.7	0.10	EPA 8270E/SIM	2-7-22	2-7-22	
1-Methylnaphthalene	1.6	0.10	EPA 8270E/SIM	2-7-22	2-7-22	
Acenaphthylene	ND	0.10	EPA 8270E/SIM	2-7-22	2-7-22	
Acenaphthene	ND	0.10	EPA 8270E/SIM	2-7-22	2-7-22	
Fluorene	ND	0.16	EPA 8270E/SIM	2-7-22	2-7-22	U1
Phenanthrene	ND	0.10	EPA 8270E/SIM	2-7-22	2-7-22	
Anthracene	ND	0.10	EPA 8270E/SIM	2-7-22	2-7-22	
Fluoranthene	ND	0.10	EPA 8270E/SIM	2-7-22	2-7-22	
Pyrene	ND	0.10	EPA 8270E/SIM	2-7-22	2-7-22	
Benzo[a]anthracene	ND	0.050	EPA 8270E/SIM	2-7-22	2-8-22	
Chrysene	ND	0.050	EPA 8270E/SIM	2-7-22	2-8-22	
Benzo[b]fluoranthene	ND	0.10	EPA 8270E/SIM	2-7-22	2-7-22	
Benzo(j,k)fluoranthene	ND	0.10	EPA 8270E/SIM	2-7-22	2-7-22	
Benzo[a]pyrene	ND	0.10	EPA 8270E/SIM	2-7-22	2-7-22	
Indeno(1,2,3-c,d)pyrene	ND	0.10	EPA 8270E/SIM	2-7-22	2-7-22	
Dibenz[a,h]anthracene	ND	0.10	EPA 8270E/SIM	2-7-22	2-7-22	
Benzo[g,h,i]perylene	ND	0.10	EPA 8270E/SIM	2-7-22	2-7-22	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	65	25 - 106				
Pyrene-d10	74	28 - 104				
Terphenyl-d14	96	40 - 139				

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB3-2-1-22-GW					
Laboratory ID:	02-042-11					
Naphthalene	0.46	0.096	EPA 8270E/SIM	2-7-22	2-7-22	
2-Methylnaphthalene	1.7	0.096	EPA 8270E/SIM	2-7-22	2-7-22	
1-Methylnaphthalene	1.1	0.096	EPA 8270E/SIM	2-7-22	2-7-22	
Acenaphthylene	ND	0.096	EPA 8270E/SIM	2-7-22	2-7-22	
Acenaphthene	ND	0.096	EPA 8270E/SIM	2-7-22	2-7-22	
Fluorene	ND	0.096	EPA 8270E/SIM	2-7-22	2-7-22	
Phenanthrene	ND	0.096	EPA 8270E/SIM	2-7-22	2-7-22	
Anthracene	ND	0.096	EPA 8270E/SIM	2-7-22	2-7-22	
Fluoranthene	ND	0.096	EPA 8270E/SIM	2-7-22	2-7-22	
Pyrene	ND	0.096	EPA 8270E/SIM	2-7-22	2-7-22	
Benzo[a]anthracene	ND	0.0096	EPA 8270E/SIM	2-7-22	2-7-22	
Chrysene	ND	0.0096	EPA 8270E/SIM	2-7-22	2-7-22	
Benzo[b]fluoranthene	ND	0.0096	EPA 8270E/SIM	2-7-22	2-7-22	
Benzo(j,k)fluoranthene	ND	0.0096	EPA 8270E/SIM	2-7-22	2-7-22	
Benzo[a]pyrene	ND	0.0096	EPA 8270E/SIM	2-7-22	2-7-22	
Indeno(1,2,3-c,d)pyrene	ND	0.0096	EPA 8270E/SIM	2-7-22	2-7-22	
Dibenz[a,h]anthracene	ND	0.0096	EPA 8270E/SIM	2-7-22	2-7-22	
Benzo[g,h,i]perylene	ND	0.0096	EPA 8270E/SIM	2-7-22	2-7-22	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	81	25 - 106				
Pyrene-d10	85	28 - 104				
Terphenyl-d14	103	40 - 139				

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB5-2-1-22-GW					
Laboratory ID:	02-042-20					
Naphthalene	0.28	0.12	EPA 8270E/SIM	2-7-22	2-8-22	
2-Methylnaphthalene	0.42	0.12	EPA 8270E/SIM	2-7-22	2-8-22	
1-Methylnaphthalene	0.33	0.12	EPA 8270E/SIM	2-7-22	2-8-22	
Acenaphthylene	ND	0.12	EPA 8270E/SIM	2-7-22	2-8-22	
Acenaphthene	ND	0.12	EPA 8270E/SIM	2-7-22	2-8-22	
Fluorene	ND	0.12	EPA 8270E/SIM	2-7-22	2-8-22	
Phenanthrene	ND	0.12	EPA 8270E/SIM	2-7-22	2-8-22	
Anthracene	ND	0.12	EPA 8270E/SIM	2-7-22	2-8-22	
Fluoranthene	ND	0.12	EPA 8270E/SIM	2-7-22	2-8-22	
Pyrene	ND	0.12	EPA 8270E/SIM	2-7-22	2-8-22	
Benzo[a]anthracene	ND	0.012	EPA 8270E/SIM	2-7-22	2-8-22	
Chrysene	ND	0.012	EPA 8270E/SIM	2-7-22	2-8-22	
Benzo[b]fluoranthene	ND	0.012	EPA 8270E/SIM	2-7-22	2-8-22	
Benzo(j,k)fluoranthene	ND	0.012	EPA 8270E/SIM	2-7-22	2-8-22	
Benzo[a]pyrene	ND	0.012	EPA 8270E/SIM	2-7-22	2-8-22	
Indeno(1,2,3-c,d)pyrene	ND	0.012	EPA 8270E/SIM	2-7-22	2-8-22	
Dibenz[a,h]anthracene	ND	0.012	EPA 8270E/SIM	2-7-22	2-8-22	
Benzo[g,h,i]perylene	ND	0.025	EPA 8270E/SIM	2-7-22	2-8-22	U1
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	75	25 - 106				
Pyrene-d10	74	28 - 104				
Terphenyl-d14	98	40 - 139				

PAHs EPA 8270E/SIM QUALITY CONTROL

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0207W1					
Naphthalene	ND	0.10	EPA 8270E/SIM	2-7-22	2-7-22	
2-Methylnaphthalene	ND	0.10	EPA 8270E/SIM	2-7-22	2-7-22	
1-Methylnaphthalene	ND	0.10	EPA 8270E/SIM	2-7-22	2-7-22	
Acenaphthylene	ND	0.10	EPA 8270E/SIM	2-7-22	2-7-22	
Acenaphthene	ND	0.10	EPA 8270E/SIM	2-7-22	2-7-22	
Fluorene	ND	0.10	EPA 8270E/SIM	2-7-22	2-7-22	
Phenanthrene	ND	0.10	EPA 8270E/SIM	2-7-22	2-7-22	
Anthracene	ND	0.10	EPA 8270E/SIM	2-7-22	2-7-22	
Fluoranthene	ND	0.10	EPA 8270E/SIM	2-7-22	2-7-22	
Pyrene	ND	0.10	EPA 8270E/SIM	2-7-22	2-7-22	
Benzo[a]anthracene	ND	0.010	EPA 8270E/SIM	2-7-22	2-7-22	
Chrysene	ND	0.010	EPA 8270E/SIM	2-7-22	2-7-22	
Benzo[b]fluoranthene	ND	0.010	EPA 8270E/SIM	2-7-22	2-7-22	
Benzo(j,k)fluoranthene	ND	0.010	EPA 8270E/SIM	2-7-22	2-7-22	
Benzo[a]pyrene	ND	0.010	EPA 8270E/SIM	2-7-22	2-7-22	
Indeno(1,2,3-c,d)pyrene	ND	0.010	EPA 8270E/SIM	2-7-22	2-7-22	
Dibenz[a,h]anthracene	ND	0.010	EPA 8270E/SIM	2-7-22	2-7-22	
Benzo[g,h,i]perylene	ND	0.010	EPA 8270E/SIM	2-7-22	2-7-22	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	66	25 - 106				
Pyrene-d10	84	28 - 104				
Terphenyl-d14	108	40 - 139				

37

. .

PAHs EPA 8270E/SIM QUALITY CONTROL

Matrix: Water Units: ug/L

						Perc	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	F	Reco	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS											
Laboratory ID:	SB02	07W1									
	SB	SBD	SB	SBD	S	SB	SBD				
Naphthalene	0.263	0.294	0.500	0.500	5	53	59	29 - 96	11	38	
Acenaphthylene	0.383	0.417	0.500	0.500	7	77	83	42 - 101	9	28	
Acenaphthene	0.350	0.378	0.500	0.500	7	70	76	37 - 104	8	31	
Fluorene	0.353	0.385	0.500	0.500	7	71	77	48 - 101	9	21	
Phenanthrene	0.385	0.410	0.500	0.500	7	77	82	52 - 104	6	20	
Anthracene	0.374	0.401	0.500	0.500	7	75	80	50 - 106	7	20	
Fluoranthene	0.440	0.454	0.500	0.500	8	38	91	56 - 113	3	20	
Pyrene	0.449	0.461	0.500	0.500	ç	90	92	55 - 123	3	27	
Benzo[a]anthracene	0.482	0.514	0.500	0.500	ç	96	103	60 - 131	6	20	
Chrysene	0.457	0.486	0.500	0.500	ç	91	97	62 - 120	6	20	
Benzo[b]fluoranthene	0.471	0.500	0.500	0.500	ç	94	100	63 - 123	6	20	
Benzo(j,k)fluoranthene	0.451	0.446	0.500	0.500	ç	90	89	60 - 127	1	20	
Benzo[a]pyrene	0.444	0.463	0.500	0.500	8	39	93	61 - 123	4	20	
Indeno(1,2,3-c,d)pyrene	0.453	0.485	0.500	0.500	ç	91	97	60 - 125	7	20	
Dibenz[a,h]anthracene	0.447	0.470	0.500	0.500	8	39	94	61 - 124	5	20	
Benzo[g,h,i]perylene	0.449	0.468	0.500	0.500	ç	90	94	59 - 122	4	20	
Surrogate:											
2-Fluorobiphenyl					5	54	54	25 - 106			
Pyrene-d10					7	74	74	28 - 104			
Terphenyl-d14					g	99	90	40 - 139			

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB1-2-1-22-5'					
Laboratory ID:	02-042-01					
Arsenic	ND	10	EPA 6010D	2-8-22	2-8-22	
Barium	30	2.6	EPA 6010D	2-8-22	2-8-22	
Cadmium	ND	0.52	EPA 6010D	2-8-22	2-8-22	
Chromium	7.9	0.52	EPA 6010D	2-8-22	2-8-22	
Lead	ND	5.2	EPA 6010D	2-8-22	2-8-22	
Mercury	ND	0.26	EPA 7471B	2-7-22	2-7-22	
Selenium	ND	10	EPA 6010D	2-8-22	2-8-22	
Silver	ND	1.0	EPA 6010D	2-8-22	2-8-22	

Client ID:	SB1-2-1-22-10'					
Laboratory ID:	02-042-02					
Arsenic	ND	11	EPA 6010D	2-8-22	2-8-22	
Barium	61	2.7	EPA 6010D	2-8-22	2-8-22	
Cadmium	2.5	0.54	EPA 6010D	2-8-22	2-8-22	
Chromium	12	0.54	EPA 6010D	2-8-22	2-8-22	
Lead	45	5.4	EPA 6010D	2-8-22	2-8-22	
Mercury	ND	0.27	EPA 7471B	2-7-22	2-7-22	
Selenium	ND	11	EPA 6010D	2-8-22	2-8-22	
Silver	ND	1.1	EPA 6010D	2-8-22	2-8-22	

Client ID:	SB1-2-1-22-15'					
Laboratory ID:	02-042-03					
Arsenic	ND	11	EPA 6010D	2-8-22	2-8-22	
Barium	45	2.7	EPA 6010D	2-8-22	2-8-22	
Cadmium	ND	0.54	EPA 6010D	2-8-22	2-8-22	
Chromium	5.4	0.54	EPA 6010D	2-8-22	2-8-22	
Lead	ND	5.4	EPA 6010D	2-8-22	2-8-22	
Mercury	ND	0.27	EPA 7471B	2-7-22	2-7-22	
Selenium	ND	11	EPA 6010D	2-8-22	2-8-22	
Silver	ND	1.1	EPA 6010D	2-8-22	2-8-22	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

39

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB2-2-1-22-5'					
Laboratory ID:	02-042-05					
Arsenic	ND	10	EPA 6010D	2-8-22	2-8-22	
Barium	72	2.6	EPA 6010D	2-8-22	2-8-22	
Cadmium	ND	0.52	EPA 6010D	2-8-22	2-8-22	
Chromium	34	0.52	EPA 6010D	2-8-22	2-8-22	
Lead	ND	5.2	EPA 6010D	2-8-22	2-8-22	
Mercury	ND	0.26	EPA 7471B	2-7-22	2-7-22	
Selenium	ND	10	EPA 6010D	2-8-22	2-8-22	
Silver	ND	1.0	EPA 6010D	2-8-22	2-8-22	

Client ID:	SB2-2-1-22-10'					
Laboratory ID:	02-042-06					
Arsenic	ND	11	EPA 6010D	2-8-22	2-8-22	
Barium	27	2.6	EPA 6010D	2-8-22	2-8-22	
Cadmium	ND	0.53	EPA 6010D	2-8-22	2-8-22	
Chromium	5.5	0.53	EPA 6010D	2-8-22	2-8-22	
Lead	ND	5.3	EPA 6010D	2-8-22	2-8-22	
Mercury	ND	0.26	EPA 7471B	2-7-22	2-7-22	
Selenium	ND	11	EPA 6010D	2-8-22	2-8-22	
Silver	ND	1.1	EPA 6010D	2-8-22	2-8-22	

Client ID:	SB2-2-1-22-15'					
Laboratory ID:	02-042-07					
Arsenic	ND	10	EPA 6010D	2-8-22	2-8-22	
Barium	32	2.6	EPA 6010D	2-8-22	2-8-22	
Cadmium	ND	0.52	EPA 6010D	2-8-22	2-8-22	
Chromium	6.4	0.52	EPA 6010D	2-8-22	2-8-22	
Lead	31	5.2	EPA 6010D	2-8-22	2-8-22	
Mercury	ND	0.26	EPA 7471B	2-7-22	2-7-22	
Selenium	ND	10	EPA 6010D	2-8-22	2-8-22	
Silver	ND	1.0	EPA 6010D	2-8-22	2-8-22	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB3-2-1-22-5'					
Laboratory ID:	02-042-08					
Arsenic	ND	10	EPA 6010D	2-8-22	2-8-22	
Barium	28	2.6	EPA 6010D	2-8-22	2-8-22	
Cadmium	ND	0.52	EPA 6010D	2-8-22	2-8-22	
Chromium	5.8	0.52	EPA 6010D	2-8-22	2-8-22	
Lead	ND	5.2	EPA 6010D	2-8-22	2-8-22	
Mercury	ND	0.26	EPA 7471B	2-7-22	2-7-22	
Selenium	ND	10	EPA 6010D	2-8-22	2-8-22	
Silver	ND	1.0	EPA 6010D	2-8-22	2-8-22	

Client ID:	SB3-2-1-22-10'					
Laboratory ID:	02-042-09					
Arsenic	ND	11	EPA 6010D	2-8-22	2-8-22	
Barium	27	2.6	EPA 6010D	2-8-22	2-8-22	
Cadmium	ND	0.53	EPA 6010D	2-8-22	2-8-22	
Chromium	4.5	0.53	EPA 6010D	2-8-22	2-8-22	
Lead	ND	5.3	EPA 6010D	2-8-22	2-8-22	
Mercury	ND	0.26	EPA 7471B	2-7-22	2-7-22	
Selenium	ND	11	EPA 6010D	2-8-22	2-8-22	
Silver	ND	1.1	EPA 6010D	2-8-22	2-8-22	

Client ID:	SB3-2-1-22-25'					
Laboratory ID:	02-042-10					
Arsenic	ND	11	EPA 6010D	2-8-22	2-8-22	
Barium	73	2.8	EPA 6010D	2-8-22	2-8-22	
Cadmium	ND	0.56	EPA 6010D	2-8-22	2-8-22	
Chromium	5.8	0.56	EPA 6010D	2-8-22	2-8-22	
Lead	ND	5.6	EPA 6010D	2-8-22	2-8-22	
Mercury	ND	0.28	EPA 7471B	2-7-22	2-7-22	
Selenium	ND	11	EPA 6010D	2-8-22	2-8-22	
Silver	ND	1.1	EPA 6010D	2-8-22	2-8-22	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

41

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB4-2-1-22-5'					
Laboratory ID:	02-042-12					
Arsenic	ND	10	EPA 6010D	2-8-22	2-8-22	
Barium	47	2.5	EPA 6010D	2-8-22	2-8-22	
Cadmium	ND	0.51	EPA 6010D	2-8-22	2-8-22	
Chromium	7.8	0.51	EPA 6010D	2-8-22	2-8-22	
Lead	ND	5.1	EPA 6010D	2-8-22	2-8-22	
Mercury	ND	0.25	EPA 7471B	2-7-22	2-7-22	
Selenium	ND	10	EPA 6010D	2-8-22	2-8-22	
Silver	ND	1.0	EPA 6010D	2-8-22	2-8-22	

Client ID:	SB4-2-1-22-10'					
Laboratory ID:	02-042-13					
Arsenic	ND	10	EPA 6010D	2-8-22	2-8-22	
Barium	41	2.6	EPA 6010D	2-8-22	2-8-22	
Cadmium	ND	0.52	EPA 6010D	2-8-22	2-8-22	
Chromium	7.9	0.52	EPA 6010D	2-8-22	2-8-22	
Lead	ND	5.2	EPA 6010D	2-8-22	2-8-22	
Mercury	ND	0.26	EPA 7471B	2-7-22	2-7-22	
Selenium	ND	10	EPA 6010D	2-8-22	2-8-22	
Silver	ND	1.0	EPA 6010D	2-8-22	2-8-22	

Client ID:	SB4-2-1-22-15'					
Laboratory ID:	02-042-14					
Arsenic	ND	11	EPA 6010D	2-8-22	2-8-22	
Barium	31	2.7	EPA 6010D	2-8-22	2-8-22	
Cadmium	ND	0.53	EPA 6010D	2-8-22	2-8-22	
Chromium	6.4	0.53	EPA 6010D	2-8-22	2-8-22	
Lead	ND	5.3	EPA 6010D	2-8-22	2-8-22	
Mercury	ND	0.27	EPA 7471B	2-7-22	2-7-22	
Selenium	ND	11	EPA 6010D	2-8-22	2-8-22	
Silver	ND	1.1	EPA 6010D	2-8-22	2-8-22	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB4-2-1-22-20'					
Laboratory ID:	02-042-15					
Arsenic	ND	11	EPA 6010D	2-8-22	2-8-22	
Barium	36	2.7	EPA 6010D	2-8-22	2-8-22	
Cadmium	ND	0.54	EPA 6010D	2-8-22	2-8-22	
Chromium	6.1	0.54	EPA 6010D	2-8-22	2-8-22	
Lead	ND	5.4	EPA 6010D	2-8-22	2-8-22	
Mercury	ND	0.27	EPA 7471B	2-7-22	2-7-22	
Selenium	ND	11	EPA 6010D	2-8-22	2-8-22	
Silver	ND	1.1	EPA 6010D	2-8-22	2-8-22	

. .

Client ID:	SB5-2-1-22-5'					
Laboratory ID:	02-042-16					
Arsenic	ND	10	EPA 6010D	2-8-22	2-8-22	
Barium	39	2.6	EPA 6010D	2-8-22	2-8-22	
Cadmium	ND	0.51	EPA 6010D	2-8-22	2-8-22	
Chromium	7.4	0.51	EPA 6010D	2-8-22	2-8-22	
Lead	ND	5.1	EPA 6010D	2-8-22	2-8-22	
Mercury	ND	0.26	EPA 7471B	2-7-22	2-7-22	
Selenium	ND	10	EPA 6010D	2-8-22	2-8-22	
Silver	ND	1.0	EPA 6010D	2-8-22	2-8-22	

Client ID:	SB5-2-1-22-10'					
Laboratory ID:	02-042-17					
Arsenic	ND	11	EPA 6010D	2-8-22	2-8-22	
Barium	24	2.6	EPA 6010D	2-8-22	2-8-22	
Cadmium	ND	0.53	EPA 6010D	2-8-22	2-8-22	
Chromium	5.2	0.53	EPA 6010D	2-8-22	2-8-22	
Lead	9.4	5.3	EPA 6010D	2-8-22	2-8-22	
Mercury	ND	0.26	EPA 7471B	2-7-22	2-7-22	
Selenium	ND	11	EPA 6010D	2-8-22	2-8-22	
Silver	ND	1.1	EPA 6010D	2-8-22	2-8-22	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881
TOTAL METALS EPA 6010D/7471B

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB5-2-1-22-15'					
Laboratory ID:	02-042-18					
Arsenic	ND	12	EPA 6010D	2-8-22	2-8-22	
Barium	66	2.9	EPA 6010D	2-8-22	2-8-22	
Cadmium	ND	0.58	EPA 6010D	2-8-22	2-8-22	
Chromium	4.3	0.58	EPA 6010D	2-8-22	2-8-22	
Lead	ND	5.8	EPA 6010D	2-8-22	2-8-22	
Mercury	ND	0.29	EPA 7471B	2-7-22	2-7-22	
Selenium	ND	12	EPA 6010D	2-8-22	2-8-22	
Silver	ND	1.2	EPA 6010D	2-8-22	2-8-22	

Client ID:	SB5-2-1-22-20'					
Laboratory ID:	02-042-19					
Arsenic	ND	12	EPA 6010D	2-8-22	2-8-22	
Barium	79	2.9	EPA 6010D	2-8-22	2-8-22	
Cadmium	ND	0.58	EPA 6010D	2-8-22	2-8-22	
Chromium	2.9	0.58	EPA 6010D	2-8-22	2-8-22	
Lead	ND	5.8	EPA 6010D	2-8-22	2-8-22	
Mercury	ND	0.29	EPA 7471B	2-7-22	2-7-22	
Selenium	ND	12	EPA 6010D	2-8-22	2-8-22	
Silver	ND	1.2	EPA 6010D	2-8-22	2-8-22	

Client ID:	SB6-2-1-22-5'					
Laboratory ID:	02-042-21					
Arsenic	ND	11	EPA 6010D	2-8-22	2-8-22	
Barium	53	2.7	EPA 6010D	2-8-22	2-8-22	
Cadmium	ND	0.53	EPA 6010D	2-8-22	2-8-22	
Chromium	11	0.53	EPA 6010D	2-8-22	2-8-22	
Lead	21	5.3	EPA 6010D	2-8-22	2-8-22	
Mercury	ND	0.27	EPA 7471B	2-7-22	2-7-22	
Selenium	ND	11	EPA 6010D	2-8-22	2-8-22	
Silver	ND	1.1	EPA 6010D	2-8-22	2-8-22	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

44

. .

TOTAL METALS EPA 6010D/7471B

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB6-2-1-22-10'					
Laboratory ID:	02-042-22					
Arsenic	ND	10	EPA 6010D	2-4-22	2-4-22	
Barium	48	2.6	EPA 6010D	2-4-22	2-4-22	
Cadmium	ND	0.52	EPA 6010D	2-4-22	2-4-22	
Chromium	8.4	0.52	EPA 6010D	2-7-22	2-7-22	
Lead	ND	5.2	EPA 6010D	2-4-22	2-4-22	
Mercury	ND	0.26	EPA 7471B	2-7-22	2-7-22	
Selenium	ND	10	EPA 6010D	2-4-22	2-4-22	
Silver	ND	1.0	EPA 6010D	2-4-22	2-4-22	

Client ID:	SB6-2-1-22-15'					
Laboratory ID:	02-042-23					
Arsenic	ND	10	EPA 6010D	2-4-22	2-4-22	
Barium	44	2.6	EPA 6010D	2-4-22	2-4-22	
Cadmium	ND	0.52	EPA 6010D	2-4-22	2-4-22	
Chromium	6.9	0.52	EPA 6010D	2-7-22	2-7-22	
Lead	ND	5.2	EPA 6010D	2-4-22	2-4-22	
Mercury	ND	0.26	EPA 7471B	2-7-22	2-7-22	
Selenium	ND	10	EPA 6010D	2-4-22	2-4-22	
Silver	ND	1.0	EPA 6010D	2-4-22	2-4-22	

Client ID:	SB6-2-1-22-20'					
Laboratory ID:	02-042-24					
Arsenic	ND	11	EPA 6010D	2-4-22	2-4-22	
Barium	52	2.6	EPA 6010D	2-4-22	2-4-22	
Cadmium	ND	0.53	EPA 6010D	2-4-22	2-4-22	
Chromium	10	0.53	EPA 6010D	2-7-22	2-7-22	
Lead	ND	5.3	EPA 6010D	2-4-22	2-4-22	
Mercury	ND	0.26	EPA 7471B	2-7-22	2-7-22	
Selenium	ND	11	EPA 6010D	2-4-22	2-4-22	
Silver	ND	1.1	EPA 6010D	2-4-22	2-4-22	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

45

. .

TOTAL METALS EPA 6010D/7471B QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

0 0 (11)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0208SM1					
Arsenic	ND	10	EPA 6010D	2-8-22	2-8-22	
Barium	ND	2.5	EPA 6010D	2-8-22	2-8-22	
Cadmium	ND	0.50	EPA 6010D	2-8-22	2-8-22	
Chromium	ND	0.50	EPA 6010D	2-8-22	2-8-22	
Lead	ND	5.0	EPA 6010D	2-8-22	2-8-22	
Selenium	ND	10	EPA 6010D	2-8-22	2-8-22	
Silver	ND	1.0	EPA 6010D	2-8-22	2-8-22	
Laboratory ID:	MB0207S2					
Mercury	ND	0.25	EPA 7471B	2-7-22	2-7-22	
Laboratory ID:	MB0207SM1					
Chromium	ND	0.50	EPA 6010D	2-7-22	2-7-22	
Laboratory ID:	MB0204SM2					
Arsenic	ND	10	EPA 6010D	2-4-22	2-4-22	
Barium	ND	2.5	EPA 6010D	2-4-22	2-4-22	
Cadmium	ND	0.50	EPA 6010D	2-4-22	2-4-22	
Lead	ND	5.0	EPA 6010D	2-4-22	2-4-22	
Selenium	ND	10	EPA 6010D	2-4-22	2-4-22	
Silver	ND	1.0	EPA 6010D	2-4-22	2-4-22	
Laboratory ID:	MB0207S1					
Mercury	ND	0.25	EPA 7471B	2-7-22	2-7-22	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL METALS EPA 6010D/7471B QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	02-04	42-24								
	ORIG	DUP								
Arsenic	ND	ND	NA	NA		NA	NA	NA	20	
Barium	49.2	46.4	NA	NA		NA	NA	6	20	
Cadmium	ND	ND	NA	NA		NA	NA	NA	20	
Lead	ND	ND	NA	NA		NA	NA	NA	20	
Selenium	ND	ND	NA	NA		NA	NA	NA	20	
Silver	ND	ND	NA	NA		NA	NA	NA	20	
Laboratory ID:	02-04	42-24								
Mercury	ND	ND	NA	NA		NA	NA	NA	20	
Laboratory ID:	02-04	42-24								
	ORIG	DUP								
Chromium	9.70	8.25	NA	NA		NA	NA	16	20	
Laboratory ID:	02-04	42-01								
	ORIG	DUP								
Arsenic	ND	ND	NA	NA		NA	NA	NA	20	
Barium	28.6	28.0	NA	NA		NA	NA	2	20	
Cadmium	ND	ND	NA	NA		NA	NA	NA	20	
Chromium	7.55	6.25	NA	NA		NA	NA	19	20	
Selenium	ND	ND	NA	NA		NA	NA	NA	20	
Silver	ND	ND	NA	NA		NA	NA	NA	20	
Laboratory ID [.]	02-04	42-01								
Mercury	ND	ND	NA	NA		NA	NA	NA	20	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL METALS EPA 6010D/7471B QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

					Source	Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	02-04	42-24									
	MS	MSD	MS	MSD		MS	MSD				
Arsenic	96.5	97.4	100	100	ND	97	97	75-125	1	20	
Barium	140	138	100	100	49.2	91	89	75-125	2	20	
Cadmium	43.8	44.2	50.0	50.0	ND	88	88	75-125	1	20	
Lead	232	235	250	250	ND	93	94	75-125	1	20	
Selenium	92.0	91.1	100	100	ND	92	91	75-125	1	20	
Silver	24.0	23.9	25.0	25.0	ND	96	96	75-125	0	20	
Laboratory ID:	02-04	42-24									
Mercury	0.521	0.545	0.500	0.500	0.0572	93	98	80-120	5	20	
Laboratory ID:	02-04	42-24									
	MS	MSD	MS	MSD		MS	MSD				
Chromium	92.0	89.2	100	100	9.70	82	80	75-125	3	20	
Laboratory ID:	02-04	42-01									
	MS	MSD	MS	MSD		MS	MSD				
Arsenic	93.9	93.2	100	100	ND	94	93	75-125	1	20	
Barium	127	121	100	100	28.6	98	92	75-125	5	20	
Cadmium	40.0	39.9	50.0	50.0	ND	80	80	75-125	0	20	
Chromium	102	99.5	100	100	7.55	95	92	75-125	3	20	
Lead	225	226	250	250	ND	90	90	75-125	0	20	
Selenium	87.6	88.3	100	100	ND	88	88	75-125	1	20	
Silver	24.7	25.2	25.0	25.0	ND	99	101	75-125	2	20	
Laboratory ID:	02-04	42-01									
Mercury	0.524	0.514	0.500	0.500	0.0203	101	99	80-120	2	20	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

48

TOTAL METALS EPA 200.8/7470A

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB1-2-1-22-GW					
Laboratory ID:	02-042-04					
Arsenic	120	3.3	EPA 200.8	2-4-22	2-4-22	
Barium	2500	280	EPA 200.8	2-4-22	2-4-22	
Cadmium	110	4.4	EPA 200.8	2-4-22	2-4-22	
Chromium	530	110	EPA 200.8	2-4-22	2-4-22	
Lead	1200	11	EPA 200.8	2-4-22	2-4-22	
Mercury	1.1	0.50	EPA 7470A	2-4-22	2-4-22	
Selenium	6.3	5.6	EPA 200.8	2-4-22	2-4-22	
Silver	ND	11	EPA 200.8	2-4-22	2-4-22	

. .

Client ID:	SB3-2-1-22-GW					
Laboratory ID:	02-042-11					
Arsenic	51	3.3	EPA 200.8	2-4-22	2-4-22	
Barium	1800	280	EPA 200.8	2-4-22	2-4-22	
Cadmium	ND	4.4	EPA 200.8	2-4-22	2-4-22	
Chromium	420	110	EPA 200.8	2-4-22	2-4-22	
Lead	150	11	EPA 200.8	2-4-22	2-4-22	
Mercury	0.59	0.50	EPA 7470A	2-4-22	2-4-22	
Selenium	ND	5.6	EPA 200.8	2-4-22	2-4-22	
Silver	ND	11	EPA 200.8	2-4-22	2-4-22	

Client ID:	SB5-2-1-22-GW					
Laboratory ID:	02-042-20					
Arsenic	130	3.3	EPA 200.8	2-4-22	2-4-22	
Barium	5800	560	EPA 200.8	2-4-22	2-4-22	
Cadmium	6.4	4.4	EPA 200.8	2-4-22	2-4-22	
Chromium	1100	220	EPA 200.8	2-4-22	2-4-22	
Lead	330	22	EPA 200.8	2-4-22	2-4-22	
Mercury	0.87	0.50	EPA 7470A	2-4-22	2-4-22	
Selenium	11	5.6	EPA 200.8	2-4-22	2-4-22	
Silver	ND	11	EPA 200.8	2-4-22	2-4-22	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL METALS EPA 200.8/7470A QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0204WM1					
Arsenic	ND	3.3	EPA 200.8	2-4-22	2-4-22	
Barium	ND	28	EPA 200.8	2-4-22	2-4-22	
Cadmium	ND	4.4	EPA 200.8	2-4-22	2-4-22	
Chromium	ND	11	EPA 200.8	2-4-22	2-4-22	
Lead	ND	1.1	EPA 200.8	2-4-22	2-4-22	
Selenium	ND	5.6	EPA 200.8	2-4-22	2-4-22	
Silver	ND	11	EPA 200.8	2-4-22	2-4-22	
Laboratory ID:	MB0204W1					
Mercury	ND	0.50	EPA 7470A	2-4-22	2-4-22	

					Source	Pe	rcent	Recovery		RPD	
Analyte	Re	sult	Spike	e Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	02-0	07-01									
	ORIG	DUP									
Arsenic	6.58	6.64	NA	NA		1	NA	NA	1	20	
Barium	28.9	28.0	NA	NA		1	NA	NA	3	20	
Cadmium	ND	ND	NA	NA		1	NA	NA	NA	20	
Chromium	ND	ND	NA	NA		1	NA	NA	NA	20	
Lead	ND	ND	NA	NA		1	NA	NA	NA	20	
Selenium	ND	ND	NA	NA		1	NA	NA	NA	20	
Silver	ND	ND	NA	NA		1	NA	NA	NA	20	
Laboratory ID:	02-04	42-04									
Mercury	1.11	0.990	NA	NA		1	NA	NA	11	20	
l aboratory ID:	02-0	07-01									
	MS	MSD	MS	MSD		MS	MSD				
Arsenic	124	124	111	111	6.58	106	105	75-125	0	20	
Barium	143	142	111	111	28.9	103	102	75-125	0	20	
Cadmium	116	115	111	111	ND	104	104	75-125	0	20	
Chromium	121	120	111	111	ND	109	108	75-125	1	20	
Lead	111	112	111	111	ND	100	101	75-125	1	20	
Selenium	115	115	111	111	ND	104	104	75-125	0	20	
Silver	111	110	111	111	ND	100	99	75-125	1	20	
Laboratory ID:	02-0	42-04									
Mercury	13.0	12.5	12.5	12.5	1.11	95	91	75-125	4	20	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

GASOLINE RANGE ORGANICS NWTPH-Gx

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB1-2-1-22-10'					
Laboratory ID:	02-042-02					
Gasoline	220	46	NWTPH-Gx	2-11-22	2-11-22	0
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	104	66-129				

GASOLINE RANGE ORGANICS NWTPH-Gx QUALITY CONTROL

Matrix: Soil Units: mg/kg (ppm)

······							Date	Date)	
Analyte		Result		PQL	Method		Prepared	Analyz	ed	Flags
METHOD BLANK										
Laboratory ID:		MB0211S1								
Gasoline		ND		5.0	NW	ГРН-Gx	2-11-22	2-11-2	22	
Surrogate:	Pe	rcent Recove	ery Co	ontrol Lim	its					
Fluorobenzene		94		66-129						
					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spik	e Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	02-04	42-02								
	ORIG	DUP								
Gasoline	199	148	NA	NA		NA	NA	29	30	
Surrogate:										
Fluorobenzene						104 102	2 66-129			

GASOLINE RANGE ORGANICS NWTPH-Gx

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB1-2-1-22-GW					
Laboratory ID:	02-042-04					
Gasoline	ND	500	NWTPH-Gx	2-11-22	2-11-22	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	100	66-117				
Client ID:	SB3-2-1-22-GW					
Laboratory ID:	02-042-11					
Gasoline	ND	500	NWTPH-Gx	2-11-22	2-11-22	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	102	66-117				
Client ID:	SB5-2-1-22-GW					
Laboratory ID:	02-042-20					
Gasoline	ND	500	NWTPH-Gx	2-11-22	2-11-22	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	101	66-117				

GASOLINE RANGE ORGANICS NWTPH-Gx QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

								Date	Date)	
Analyte		Result		PQL		Method		Prepared	Analyz	ed	Flags
METHOD BLANK											
Laboratory ID:		MB0211W1									
Gasoline		ND		100	NW	「PH-Gx		2-11-22	2-11-2	22	
Surrogate:	Per	rcent Recov	ery Co	ontrol Lim	its						
Fluorobenzene		96		66-117							
					Source	Percer	nt	Recovery		RPD	
Analyte	Res	sult	Spik	e Level	Result	Recove	ery	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	02-13	35-08									
	ORIG	DUP									
Gasoline	ND	ND	NA	NA		NA		NA	NA	30	
Surrogate:											
Fluorobenzene						95	95	66-117			

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB1-2-1-22-10'					
Laboratory ID:	02-042-02					
Diesel Range Organics	670	140	NWTPH-Dx	2-14-22	2-15-22	
Lube Oil Range Organics	1400	270	NWTPH-Dx	2-14-22	2-15-22	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	83	50-150				
Client ID:	SB5-2-1-22-10'					
Laboratory ID:	02-042-17					
Diesel Range Organics	ND	660	NWTPH-Dx	2-14-22	2-15-22	
Lube Oil	6900	1300	NWTPH-Dx	2-14-22	2-15-22	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl		50-150				S
Client ID:	SB5-2-1-22-15'					
Laboratory ID:	02-042-18					
Diesel Range Organics	ND	140	NWTPH-Dx	2-14-22	2-15-22	
Lube Oil	1100	290	NWTPH-Dx	2-14-22	2-15-22	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	90	50-150				

Date of Report: February 15, 2022 Samples Submitted: February 3, 2022 Laboratory Reference: 2202-042 Project: E2021-0910; 1201 S. 1st St. Yakima

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0214S1					
Diesel Range Organics	ND	25	NWTPH-Dx	2-14-22	2-14-22	
Lube Oil Range Organics	ND	50	NWTPH-Dx	2-14-22	2-14-22	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	93	50-150				

Analyte	Res	sult	Spike	Level	Source Result	Perc Reco	ent very	Recovery Limits	RPD	RPD Limit	Flags
DUPLICATE											
Laboratory ID:	SB02	14S1									
	ORIG	DUP									
Diesel Fuel #2	96.7	97.5	NA	NA		N/	A	NA	1	NA	
Surrogate: o-Terphenyl						93	89	50-150			

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Water Units: mg/L (ppm)

• ,				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB1-2-1-22-GW					
Laboratory ID:	02-042-04					
Diesel Range Organics	5.0	0.25	NWTPH-Dx	2-4-22	2-9-22	М
Lube Oil Range Organics	4.8	0.25	NWTPH-Dx	2-4-22	2-9-22	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	105	50-150				
Client ID:	SB3-2-1-22-GW					
Laboratory ID:	02-042-11					
Diesel Range Organics	0.26	0.19	NWTPH-Dx	2-4-22	2-15-22	М
Lube Oil Range Organics	ND	0.19	NWTPH-Dx	2-4-22	2-15-22	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	94	50-150				
Client ID:	SB5-2-1-22-GW					
Laboratory ID:	02-042-20					
Diesel Range Organics	0.33	0.28	NWTPH-Dx	2-4-22	2-9-22	
Lube Oil Range Organics	0.44	0.28	NWTPH-Dx	2-4-22	2-9-22	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	101	50-150				

Date of Report: February 15, 2022 Samples Submitted: February 3, 2022 Laboratory Reference: 2202-042 Project: E2021-0910; 1201 S. 1st St. Yakima

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0204W1					
Diesel Range Organics	ND	0.16	NWTPH-Dx	2-4-22	2-9-22	
Lube Oil Range Organics	ND	0.16	NWTPH-Dx	2-4-22	2-9-22	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	91	50-150				

					Source	Perce	ent	Recovery		RPD	
Analyte	Result Spike Level Result		Result	Recovery		Limits	RPD	Limit	Flags		
DUPLICATE											
Laboratory ID:	SB02	04W1									
	ORIG	DUP									
Diesel Fuel #2	0.444	0.436	NA	NA		NA	١	NA	2	NA	
Surrogate:											
o-Terphenyl						111	109	50-150			

PCBs EPA 8082A

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB1-2-1-22-10'					
Laboratory ID:	02-042-02					
Aroclor 1016	ND	0.052	EPA 8082A	2-14-22	2-14-22	
Aroclor 1221	ND	0.052	EPA 8082A	2-14-22	2-14-22	
Aroclor 1232	ND	0.052	EPA 8082A	2-14-22	2-14-22	
Aroclor 1242	ND	0.052	EPA 8082A	2-14-22	2-14-22	
Aroclor 1248	ND	0.052	EPA 8082A	2-14-22	2-14-22	
Aroclor 1254	ND	0.052	EPA 8082A	2-14-22	2-14-22	
Aroclor 1260	ND	0.052	EPA 8082A	2-14-22	2-14-22	
Surrogate:	Percent Recovery	Control Limits				
DCB	82	54-135				
Client ID:	SB5-2-1-22-10'					
Laboratory ID:	02-042-17					
Aroclor 1016	ND	0.053	EPA 8082A	2-14-22	2-14-22	
Aroclor 1221	ND	0.053	EPA 8082A	2-14-22	2-14-22	
Aroclor 1232	ND	0.053	EPA 8082A	2-14-22	2-14-22	
Aroclor 1242	ND	0.053	EPA 8082A	2-14-22	2-14-22	
Aroclor 1248	ND	0.053	EPA 8082A	2-14-22	2-14-22	
Aroclor 1254	ND	0.053	EPA 8082A	2-14-22	2-14-22	
Aroclor 1260	ND	0.053	EPA 8082A	2-14-22	2-14-22	
Surrogate:	Percent Recovery	Control Limits				
DCB	65	54-135				
Client ID:	SB5-2-1-22-15'					
Laboratory ID:	02-042-18					
Aroclor 1016	ND	0.058	EPA 8082A	2-14-22	2-14-22	
Aroclor 1221	ND	0.058	EPA 8082A	2-14-22	2-14-22	
Aroclor 1232	ND	0.058	EPA 8082A	2-14-22	2-14-22	
Aroclor 1242	ND	0.058	EPA 8082A	2-14-22	2-14-22	
Aroclor 1248	ND	0.058	EPA 8082A	2-14-22	2-14-22	
Aroclor 1254	ND	0.058	EPA 8082A	2-14-22	2-14-22	
Aroclor 1260	ND	0.058	EPA 8082A	2-14-22	2-14-22	
Surrogate:	Percent Recovery	Control Limits				
DCB	73	54-135				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

PCBs EPA 8082A QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0214S1					
Aroclor 1016	ND	0.050	EPA 8082A	2-14-22	2-14-22	
Aroclor 1221	ND	0.050	EPA 8082A	2-14-22	2-14-22	
Aroclor 1232	ND	0.050	EPA 8082A	2-14-22	2-14-22	
Aroclor 1242	ND	0.050	EPA 8082A	2-14-22	2-14-22	
Aroclor 1248	ND	0.050	EPA 8082A	2-14-22	2-14-22	
Aroclor 1254	ND	0.050	EPA 8082A	2-14-22	2-14-22	
Aroclor 1260	ND	0.050	EPA 8082A	2-14-22	2-14-22	
Surrogate:	Percent Recovery	Control Limits				
DCB	101	54-135				

Analyte	Re	sult	Spike	Level	Source Result	Pe Rec	rcent covery	Recovery Limits	RPD	RPD Limit	Flags
SPIKE BLANKS											
Laboratory ID:	SB02	214S1									
	SB	SBD	SB	SBD		SB	SBD				
Aroclor 1260	0.468	0.494	0.500	0.500	N/A	94	99	65-134	5	18	
Surrogate:											
DCB						90	96	54-135			

PCBs EPA 8082A

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB1-2-1-22-GW					
Laboratory ID:	02-042-04					
Aroclor 1016	ND	0.052	EPA 8082A	2-15-22	2-15-22	U1
Aroclor 1221	ND	0.052	EPA 8082A	2-15-22	2-15-22	U1
Aroclor 1232	ND	0.052	EPA 8082A	2-15-22	2-15-22	U1
Aroclor 1242	ND	0.052	EPA 8082A	2-15-22	2-15-22	U1
Aroclor 1248	ND	0.052	EPA 8082A	2-15-22	2-15-22	U1
Aroclor 1254	ND	0.052	EPA 8082A	2-15-22	2-15-22	U1
Aroclor 1260	ND	0.052	EPA 8082A	2-15-22	2-15-22	U1
Surrogate:	Percent Recovery	Control Limits				
DCB	32	42-140				Q
Client ID:	SB3-2-1-22-GW					
Laboratory ID:	02-042-11					
Aroclor 1016	ND	0.022	EPA 8082A	2-15-22	2-15-22	
Aroclor 1221	ND	0.022	EPA 8082A	2-15-22	2-15-22	
Aroclor 1232	ND	0.022	EPA 8082A	2-15-22	2-15-22	
Aroclor 1242	ND	0.022	EPA 8082A	2-15-22	2-15-22	
Aroclor 1248	ND	0.022	EPA 8082A	2-15-22	2-15-22	
Aroclor 1254	ND	0.022	EPA 8082A	2-15-22	2-15-22	
Aroclor 1260	ND	0.022	EPA 8082A	2-15-22	2-15-22	
Surrogate:	Percent Recovery	Control Limits				
DCB	80	42-140				
Client ID:	SB5-2-1-22-GW					
Laboratory ID:	02-042-20					
Aroclor 1016	ND	0.050	EPA 8082A	2-15-22	2-15-22	
Aroclor 1221	ND	0.050	EPA 8082A	2-15-22	2-15-22	
Aroclor 1232	ND	0.050	EPA 8082A	2-15-22	2-15-22	
Aroclor 1242	ND	0.050	EPA 8082A	2-15-22	2-15-22	
Aroclor 1248	ND	0.050	EPA 8082A	2-15-22	2-15-22	
Aroclor 1254	ND	0.050	EPA 8082A	2-15-22	2-15-22	
Aroclor 1260	ND	0.050	EPA 8082A	2-15-22	2-15-22	
Surrogate:	Percent Recovery	Control Limits				
DCB	82	42-140				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

61

PCBs EPA 8082A QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0215W1					
Aroclor 1016	ND	0.020	EPA 8082A	2-15-22	2-15-22	
Aroclor 1221	ND	0.020	EPA 8082A	2-15-22	2-15-22	
Aroclor 1232	ND	0.020	EPA 8082A	2-15-22	2-15-22	
Aroclor 1242	ND	0.020	EPA 8082A	2-15-22	2-15-22	
Aroclor 1248	ND	0.020	EPA 8082A	2-15-22	2-15-22	
Aroclor 1254	ND	0.020	EPA 8082A	2-15-22	2-15-22	
Aroclor 1260	ND	0.020	EPA 8082A	2-15-22	2-15-22	
Surrogate:	Percent Recovery	Control Limits				
DCB	65	42-140				

					Source	Pe	rcent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS											
Laboratory ID:	SB02	15W1									
	SB	SBD	SB	SBD		SB	SBD				
Aroclor 1260	0.445	0.446	0.500	0.500	N/A	89	89	73-131	0	12	
Surrogate:											
DCB						64	63	42-140			

62

% MOISTURE

Client ID	Lab ID	% Moisture	Date Analyzed
SB1-2-1-22-5'	02-042-01	5	2-3-22
SB1-2-1-22-10'	02-042-02	8	2-3-22
SB1-2-1-22-15'	02-042-03	8	2-4-22
SB2-2-1-22-5'	02-042-05	4	2-3-22
SB2-2-1-22-10'	02-042-06	5	2-3-22
SB2-2-1-22-15'	02-042-07	4	2-3-22
SB3-2-1-22-5'	02-042-08	4	2-3-22
SB3-2-1-22-10'	02-042-09	5	2-3-22
SB3-2-1-22-25'	02-042-10	11	2-3-22
SB4-2-1-22-15'	02-042-14	6	2-3-22
SB4-2-1-22-20'	02-042-15	7	2-3-22
SB5-2-1-22-5'	02-042-16	2	2-3-22
SB5-2-1-22-10'	02-042-17	5	2-3-22
SB5-2-1-22-15'	02-042-18	13	2-3-22
SB5-2-1-22-20'	02-042-19	14	2-3-22
SB6-2-1-22-10'	02-042-22	4	2-3-22

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.
- Y1 Negative effects of the matrix from this sample on the instrument caused values for this analyte in the bracketing continuing calibration verification standard (CCVs) to be outside of 20% acceptance criteria. Because of this, quantitation limits and sample concentrations should be considered estimates.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Received	Relinquished	Received	Relinquished	Received NHONLOG PU	Relinquished	Signature	10 533-2-1-22-25	9 583-2-2-22-10'	8 583-2-1-22-5	7 582-2-1-22-15	6 532-2-1-22-10'	5 582-2-1-22-5'	4 5B1-2-1-22 - GW	3 SB1-2-1-22-15	2 581-2-1-22-10	1 531-2-1-22-5	ab ID Sample Identification	Sampled by: XMEYER	K MEYER / P. TRABUSINE	1201 S. IST Sr. YAKIMA	62021-0910 Project Name:	Project Number:	Phone: (425) 883-3881 • www.onsite-env.com	Analytical Laboratory Testing Services 14648 NE 95th Street - Redmond, WA 98052	Environmental Inc.
5				MU OSE	Brec	Company	V 1510 V	1335	1330	1325	1320	1314 Soil	1272 CW	1230 Seve	1200 Soil	2.1.22 1210 Soil	Date Time Sampled Sampled Matrix	(other)		Standard (7 Days)	2 Days X 3 Days	Same Day 1 Day	(Check One)	Turnaround Request (in working days)	Chain
				213/22 1130	22.22 1200	Date Time	XTRAT					<u>S</u>		5	5 1 1 • • X	5 X * *	NUMP NWTP NWTP NWTP Volatile Haloge EDB E	er of C H-HCID H-Gx/B H-Gx H-Dx ([enated \ PA 801	TEX	ers / SG C s 82600	lean-up	.)		Laboratory Number	I Custody
Data Package: Standard Level III Level IV	@ Ad Led 2/10/22. DB(3 day TAT)	* Foron Pesitive Dr with PCB's	AS APPEOPRIATE (3 DAY TURN)	HCID WITH CX/BTEX AND DE DA	* FOLLOW ANY POSITIVE	Comments/Special Instructions	×↓ ↓									**	Semive (with lo PAHs & PCBs I Organo Organo Chlorir Total R Total M TCLP I HEM (c	atted Ad attes over the second over the second attes over the second attes over the second attes over the second attes over the second attes over the seco	e Pest cid Her etals	/SIM) w-level) icides 8 Pesticid rbicides	081B es 8270 8151A	DE/SIM		n n n n n n n n n n n n n n n n n n n	Page of 3

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received ALCALLER ALLA	Relinquished	Signature	20 535-2-1-22-GW	19 535-2-1-22-20'	18 535-2-1-22-15	17 585-2-1-22-10'	16 585-2-1-22-5'	15 584-2-1-22-20	14 524-2-1-22-15"	13 534-2-1-22-10'	12 534-2-1:22-5	11 SB3-2-1-22-GW	Lab ID Sample Identification	V. WEYER	& MEVER / R. TRABUSINER	1201 S. IST Sr. YAKINA	E2021 -0910	Project Number:	Phone: (425) 883-3881 • www.onsite-env.com	Analytical Laboratory Testing Services 14648 NE 95th Street - Redmond, WA 98052	Environmental Inc.
Reviewed/Date					S OSE	BMEC	Company	V 1800 H20 1	1705 V	1700	1655	1650	1635	1630	1625	1 1620 SOIL	2.1-22 1600 H20	Date Time Sampled Sampled Matrix	(other)		Standard (7 Days)	2 Days X 3 Days	Same Day 1 Day	(Check One)	Turnaround Request (in working days)	Chain o
					23/22 1130	2222 1200	Date Time	O & & O & X X	- XX							5		NUMP NWTP NWTP NWTP Volatil Haloge	er of I H-HC H-Gx/ H-Gx H-Dx (enated PA 80	Contair D BTEX (Acid OD Volatile	ers 1 / SG C es 8260 ers Onl	llean-up D)		Laboratory Number	f Custody
Chromatograms with final report	Data Package: Standard Level III Level IV		* Found Posirive Dx Light PCD'S	AS APPEOPLIATE (3 DAY TURN)	WITH CX/BTEX AND OR DX	* Facous ANY POSITIVE HCID	Comments/Special Instructions									×		Semiv (with II PAHs PCBs Organ Organ Chlorin Total F Total F HEM (olatile: ow-lev 3270E 8082A ochlor ophosp ated / CCRA I ated / Metals oil and	s 8270E el PAHs /SIM (lo /SIM (lo / / / / / / / / / / / / / / / / / / /	/SIM) ticides t Pesticides) 1664A) 3081B les 827(\$ 8151A	DE/SIM		r: 02-042	Page 2 of 3

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received North R.M.	Relinquished	Signature	BMEC Project Number: E2021 - 6910 Project Name: 1201 S. 1^{T} Sr. $YALMA$ Project Manager: Y. HEYER Sample dentification 21 SB6 - 2 - 1 - 22 - 5' 22 SB6 - 2 - 1 - 22 - 10' 23 SB6 - 2 - 1 - 22 - 15' 24 SB6 - 2 - 1 - 22 - 26' 24 SB6 - 2 - 1 - 22 - 26' 24 SB6 - 2 - 1 - 22 - 26'	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com	OnSite Environmental Inc.
Reviewed/Date					D/D	BMEZ	Company	$\begin{tabular}{ c $	(in working days) (Check One)	Chain of
				0	2/5/22 1130	2.2.22 1200	Date Time	Image: Second	Laboratory Numb	Custody
Chromatograms with final report 📄 Electronic Data Deliverables (EDDs) 🗌	Data Package: Standard 🗌 Level III 🗍 Level IV 🗍	(3 DAY TUR	** FOLLOW POSITIVE TOX WITH REBS	AS APPROPRIATE (3 DAY TURN)	WITH CX/BTEX AND OR DX	* FOLLOW ANY POSITIVE HCID	Comments/Special Instructions	EDB EPA 8011 (Waters Only) Semivolatiles 8270E/SIM (with low-level PAHs) PAHs 8270E/SIM (low-level) PCBs 8082A Organochlorine Pesticides 8081B Organophosphorus Pesticides 8270E/SIM Chlorinated Acid Herbicides 8151A Total RCRA Metals Total MTCA Metals TCLP Metals HEM (oil and grease) 1664A Image: Semicology of the semicology o	per: $02 - 04^2$	Page 3 of 3

APPENDIX E

COURT ORDER ESTABLISHING ESTATE EXECUTOR

	ISSUED IRACEY M SLAGLE, CLERK
1	
2	21 SEP 24 P1:50
3	CUDCOLOT COUDT
4	YAKIMA CO. WA
5	
6 7	IN THE SUPERIOR COURT OF THE STATE OF WASHINGTON IN AND FOR THE COUNTY OF YAKIMA
8	In the Matter of the Estate of
9) No.
10) LETTERS TESTAMENTARY
11	Deceased.
14 15 16 17 18 19	recorded in our said Superior Court, and it appears in and by said Will that DEBRA K. MANJARREZ was appointed as personal representative of the Estate, and as she has duly qualified, NOW, THEREFORE, DEBRA K. MANJARREZ, is hereby authorized to execute said Will according to law. WITNESS my hand and the seal of this court this <u>24</u> day of <u>Sept</u> 2021.
20 21	STATE OF WASHINGTON, County of rakima ssor the SUSUPERIOR COURT CLERK
22	still in full force & effect.
23	IN WITNESS WHEREOF, I hereunto set my hand and the
24	Tracey M. Slagle, Clerk
25	Deputy
20	LETTERS TESTAMENTARY 1 of 1 2010 W. Nob Hill Blvd-Suite 3 Yakima WA 98902 (500) 834-6611