

April 2022 Whatcom Waterway Cleanup in Phase 1 Site Areas

Year 5 Compliance Monitoring Report

Prepared for Port of Bellingham

April 2022 Whatcom Waterway Cleanup in Phase 1 Site Areas

Year 5 Compliance Monitoring Report

Prepared for Port of Bellingham 1801 Roeder Avenue Bellingham, Washington 98225

Prepared by

Anchor QEA, LLC 1201 3rd Avenue, Suite 2600 Seattle, Washington 98101

TABLE OF CONTENTS

1	Intro	oductio	on	1				
2	Met	hods		3				
	2.1	Work	Performed	3				
	2.2	Deviat	tions from SQAPP	3				
3	Sur	/eys		4				
	3.1	Bathyr	metric Survey	4				
		3.1.1	Bellingham Shipping Terminal (Unit 1C)	4				
		3.1.2	Log Pond (Unit 4)	5				
		3.1.3	Inner Waterway (Unit 2A, 3B, and Portion of Unit 2C)	6				
	3.2	Visual	Survey (Intertidal Shoreline Inspection)	6				
		3.2.1	Engineered Caps	7				
		3.2.2	Containment Walls	7				
4	Sed	iment 1	Testing	8				
	4.1	Sedim	ent Distribution in Cap Areas	8				
	4.2	Surfac	e Sediment Testing	8				
		4.2.1	Mercury, Phenol, and PAH Concentrations	9				
		4.2.2	Surface Sediment Dioxin/Furan Concentrations	9				
		4.2.3	Confirmational Bioassay Testing					
5	Cral	o Tissu	e Monitoring	15				
6	Pore	ewater	Monitoring in Unit 4	17				
7	Sum	nmary a	and Recommendations	18				
8	Yea	r 10 Co	mpliance Monitoring	19				
9	References							

TABLES

Table 1	Surface Sediment Analytical Results
Table 2	Summary of Consent Decree Biological Effects Criteria
Table 3	Summary of Bioassay Testing Results
Table 4	Adult Crab Tissue Monitoring Data
Table 5	Mercury Concentration Trends in Adult Crab Tissue
Table 6	Mercury Concentration in Log Pond Porewater

FIGURES

Figure 1	Site Vicinity Map
Figure 2	Completed Cleanup in Phase 1 Site Areas
Figure 3	Site Locations for Year 5 Environmental Monitoring
Figure 4	Reference Area Sampling Locations for Year 5 Monitoring
Figure 5a	Engineered Sediment Cap – BST
Figure 5b	Isopach for BST: 2016 Post-Construction Survey vs. 2021 Year 5 Survey
Figure 5c	Isopach for BST: 2019 Year 3 Survey vs. 2021 Year 5 Survey
Figure 6a	Engineered Sediment Cap – Log Pond
Figure 6b	Isopach for Log Pond: 2016 Post-Construction vs. 2021 Year 5 Survey
Figure 6c	Isopach for Log Pond: 2019 Year 3 Survey vs. 2021 Year 5 Survey
Figure 7a	Engineered Sediment Cap – Inner Waterway
Figure 7b	Isopach for Inner Waterway: 2016 Post-Construction vs. 2021 Year 5 Survey
Figure 7c	Isopach for Inner Waterway: 2019 Year 3 Survey vs. 2021 Year 5 Survey
Figure 8a	Visual Survey Coverage – Inner Waterway
Figure 8b	Visual Survey Coverage – Log Pond
Figure 9	Surface Sediment Mercury Testing Results
Figure 10	Surface Sediment Dioxin/Furan Testing Results
Figure 11	Mercury Concentrations in Adult Dungeness Crab Tissue

APPENDICES

- Appendix A Bathymetric Survey Data Coverage
- Appendix B Visual Survey Photographs
- Appendix C Analytical Reports
- Appendix D Data Validation Reports
- Appendix E Bioassay Results and Validation
- Appendix F Photographs of Surface Sediment Samples
- Appendix G Statistical Analysis Output

ABBREVIATIONS

µg/L	microgram per liter
AFDW	ash-free dry weight
BST	Bellingham Shipping Terminal
cm	centimeter
CSL	cleanup screening level
D/F	dioxins/furans
DO	dissolved oxygen
Ecology	Washington State Department of Ecology
GP West	Georgia-Pacific West, Inc.
mg	milligram
mg/kg	milligram per kilogram
mg/L	milligram per liter
MNR	monitored natural recovery
MTCA	Model Toxics Control Act
ng/kg	nanogram per kilogram
РАН	polycyclic aromatic hydrocarbon
Port	Port of Bellingham
Project	Whatcom Waterway Cleanup in Phase 1 Site Areas
RAU	remedial action unit
Report	Whatcom Waterway Year 5 Compliance Monitoring Report
RPD	relative percent difference
SCO	sediment cleanup objective
Site	Whatcom Waterway Site
SQAPP	Sampling and Quality Assurance Project Plan
SWAC	surface-weighted average concentration
TEQ	toxic equivalency quotient

GLOSSARY

- Whatcom WaterwayThe overall Model Toxics Control Act (MTCA) cleanup site addressed by the
Whatcom Waterway Consent Decree. This area includes both Whatcom
Waterway and adjacent aquatic lands impacted by historical mercury
discharges from the former Georgia-Pacific chlor-alkali plant wastewater
discharges. The Site includes both Phase 1 and Phase 2 cleanup areas and
additional areas being addressed by monitored natural recovery.
- Whatcom Waterway The physical waterway extending from Roeder Avenue to deep water. Whatcom Waterway includes both the Inner Waterway and Outer Waterway areas.
- Inner Waterway The inner portion of Whatcom Waterway, extending from Roeder Avenue to the beginning of the Federal Navigation Channel at Waterway Station 29+00. The Inner Waterway includes Site Units 2 and 3 of the Whatcom Waterway Site.
- Outer Waterway The outer portion of Whatcom Waterway, extending from Station 29+00 into deep water. The Outer Waterway includes Site Units 1A, 1B, and 1C of the Whatcom Waterway Site. The Federal Navigation Channel that was updated in 2007 is located within the Outer Waterway.
- Federal NavigationThe Whatcom Waterway federal navigation project as currently authorized
in existing Water Resources Development Act legislation. The authorized
project includes a 30-foot-deep navigation channel (plus applicable
over-dredge allowances) extending from Station 29+00 of Whatcom
Waterway into deep water. The Federal Navigation Channel is maintained by
coordinated actions of the U.S. Army Corps of Engineers and the Port of
Bellingham as the local sponsor.
- Central WaterfrontThe MTCA site located on certain properties between Whatcom WaterwaySiteand I&J Waterway. Design of the cleanup action is in progress under a
MTCA agreed order.
- GP West Site The MTCA site located on upland property on the south side of Whatcom Waterway. The Georgia-Pacific West, Inc. (GP West) Site is divided into two remedial action units (RAUs), the Pulp and Tissue Mill RAU and the Chlor-Alkali RAU. The RAUs are in different stages of the cleanup process under MTCA.

Log Pond	Site Unit 4 of the Whatcom Waterway Site. The Log Pond is located between Whatcom Waterway and the GP West Site. The Log Pond was capped in 2001 as part of an Interim Action. Additional capping was completed as part of the Whatcom Waterway Phase 1 cleanup work.
Chlor-Alkali Remedial Action Unit	The Chlor-Alkali RAU comprises the western portion of the GP West Site adjacent to the Log Pond and Cornwall Avenue. Design of the cleanup action is in progress under a MTCA agreed order.
Pulp and Tissue Mill Remedial Action Unit	The Pulp and Tissue Mill RAU comprises the eastern portion of the GP West Site adjacent to Whatcom Waterway and Roeder Avenue. The final cleanup of this RAU was completed in 2016 under a MTCA consent decree.
Whatcom Waterway Cleanup in Phase 1 Site Areas (Project)	The construction and monitoring activities completed to implement the final cleanup of Phase 1 Areas of the Whatcom Waterway Site.
Phase 1 Site Areas	Whatcom Waterway Site Units 3B, 2A, and 4, and portions of Units 1C and 2C. Cleanup of these units has been completed.
Phase 2 Site Areas	Whatcom Waterway Site Units 1A, 1B, 2B, and 8, and portions of Units 1C, 2C, 5B, 6B, and 6C. These areas will be cleaned up as part of a future phase of construction, consistent with the requirements of the First Amendment to the Whatcom Waterway Consent Decree.
Monitored Natural Recovery Areas (MNR Areas)	Whatcom Waterway Site Units 3A, 5A, 5C, 6A, 7, and 9, and portions of Units 5B, 6B, and 6C. Clean sediment is naturally accumulating in these areas, and they are subject to long-term compliance monitoring requirements.
Central Waterfront Shoreline	The upland properties located between Whatcom Waterway and I&J Waterway and between Roeder Avenue and the aerated stabilization basin (wastewater treatment lagoon). The Central Waterfront Shoreline includes the properties within and outside of the Central Waterfront Site.
South Shoreline	The length of shoreline located along the GP West Site from the former GP West dock to the west end of the Central Avenue pier.

1 Introduction

This Whatcom Waterway Year 5 Compliance Monitoring Report (Report) summarizes Year 5 compliance monitoring activities performed by the Port of Bellingham (Port) as part of long-term monitoring for the Whatcom Waterway Cleanup in Phase 1 Site Areas (Project). Year 5 monitoring activities were performed between May and August 2021 in accordance with the Sampling and Quality Assurance Project Plan (SQAPP; Anchor QEA 2016) approved by the Washington State Department of Ecology (Ecology).

The Whatcom Waterway Site (Site) location and vicinity are shown in Figure 1. The Site includes sediments that have been impacted by mercury discharges from the former Georgia-Pacific West, Inc. (GP West) chlor-alkali plant. The Site boundary shown in Figure 1 was drawn based on the extent of potentially significant surface and subsurface mercury contamination in sediments as determined during the Remedial Investigation and Feasibility Study (Anchor Environmental and Hart Crowser 2000) process and during subsequent pre-remedial design investigations conducted in 2008 (Anchor QEA 2010).

Other Site-associated contaminants include wood waste and degradation products from historical log rafting activities, and phenolic compounds from pulp mill wastewater discharges.

The Project included cleanup construction in the Inner Waterway area, the Log Pond, and the Bellingham Shipping Terminal (BST) area (Phase 1 site areas; Figure 2). Major activities included remedial dredging, engineered capping, containment wall installation, structure removal, structure replacement, and ancillary nearshore habitat improvements.

Project construction was completed in 2016 in accordance with requirements of the Ecology-approved Whatcom Waterway Final Engineering Design Report (Anchor QEA 2015) and applicable permits and approvals. Details on completed construction activities and associated monitoring during the Project are documented in the As-built Report (Anchor QEA 2018). That report has been reviewed and approved by Ecology.

This cleanup action was performed in compliance with the requirements of the Model Toxics Control Act (MTCA) and Sediment Management Standards regulations. Compliance monitoring requirements subject to permit conditions include monitoring during and after the cleanup action in Phase 1 site areas. The SQAPP (Anchor QEA 2016) describes the sampling and analysis plan for compliance monitoring conducted during and immediately following cleanup construction actions (performance monitoring) as well as long-term (compliance) monitoring at the Site. Compliance monitoring is required in Years 1, 3, 5, 10, 20, and 30. Year 1 monitoring was completed in 2017, and Year 3 monitoring was completed in 2019.

Results of Year 5 monitoring activities are described in this Report. The Year 5 monitoring activities were conducted between May and August 2021 and include the following:

- Bathymetric surveys in cap areas
- Shoreline visual surveys in cap and containment wall areas
- Surface sediment monitoring within cap and natural recovery areas
- Monitoring of mercury in adult crab tissue
- Monitoring of porewater in Unit 4

2 Methods

Sample collection and processing for each program was conducted according to field, laboratory, and quality assurance and quality control methods detailed in the SQAPP (Anchor QEA 2016). Site environmental monitoring stations are shown in Figure 3, and reference monitoring stations are shown in Figure 4.

2.1 Work Performed

The environmental monitoring data described in this Report were collected between May and August 2021 in accordance with the SQAPP (Anchor QEA 2016) as approved by Ecology.

The sections of this Report present the data collected during the following monitoring activities:

- Bathymetric surveys to evaluate the in-water extents of the engineered cap in Units 2A, 3B, and 4, and the capped transition area between Units 1C and 2C, and to document conditions in the natural recovery area at the head of Whatcom Waterway (Unit 3A)
- Visual surveys to document physical condition of the above-water portions of engineered sediment caps, and exposed portions of the Central Waterfront containment walls and Maple Street Bulkhead
- Collection and analysis of surface sediment at 11 locations within Phase 1 remediation areas and 11 monitored natural recovery (MNR) locations to document effectiveness of remediation
- Testing of tissue mercury levels in adult Dungeness crabs (*Metacarcinus magister*) collected from the Site and from the Samish Bay clean reference area to evaluate changes over time
- Porewater monitoring in Unit 4 (Log Pond) to assess groundwater as a potential source of sediment recontamination.

2.2 Deviations from SQAPP

All activities and methods were performed as indicated in the SQAPP unless otherwise specified.

Selection of test organisms for confirmational bioassays was confirmed with Ecology prior to testing, as described in Section 4.2.3. One bioassay test was performed past holding times, but all performance criteria were met.

3 Surveys

This section describes the results of bathymetric and visual surveys conducted in Phase 1 capping and shoreline material placement areas.

Several different cap types were constructed during the Project using varying combinations and thicknesses of sand, filter, and stone, cobble, or riprap armoring materials. Engineered sediment caps were constructed both on dredged surfaces and on existing grade where no dredging occurred. Therefore, varying rates of consolidation of the engineered capping materials and settlement of underlying materials were anticipated at the time of design and construction. The Year 5 physical surveys were conducted to monitor these different processes and evaluate the amount of potential settlement that has occurred since the Year 0 post-construction and Year 1 and Year 3 monitoring conditions. Bathymetric and visual shoreline surveys were conducted in parallel to monitor in-water and intertidal capping and material placement areas, respectively.

3.1 Bathymetric Survey

A multibeam bathymetric survey was conducted to evaluate the in-water extent of the engineered caps in Units 2A, 3B, and 4, and the capped transition area between Units 1C and 2C. Collection of Year 5 survey data was performed on May 25, 2021, by Northwest Hydro Inc., during high tide conditions to maximize the bathymetric survey coverage area. Appendix A shows the survey coverage area.

Bathymetric survey activities were performed in accordance with the SQAPP (Anchor QEA 2016). After data collection, survey data were then compared with post-construction and Year 1 and Year 3 survey data to verify physical integrity of capped areas. The 2021 Year 5 monitoring bathymetric survey data are described in detail in the following sections for the BST, Log Pond, and Inner Waterway areas.

3.1.1 Bellingham Shipping Terminal (Unit 1C)

An engineered sediment cap consisting of stone armor was constructed in the BST at the transition between Unit 1C and Unit 2C, as shown in Figure 5a. The cap is built mainly on dredged surface but was tied into the undredged portion of the channel located toward the head of Whatcom Waterway from the BST. Upon comparison with post-construction data, the current mudline in the majority of the engineered cap placement is not significantly different (from 0.5 foot higher to 0.5 foot lower) from the post-construction surface, with localized areas up to 1.5 feet lower than post-construction conditions (Figure 5b).

Areas where the present-day mudline is between 0.5 foot and 1.5 foot lower than the post-construction mudline are indicative of consolidation of the underlying sediments due to the

load from the engineering cap materials following completion of material placement activities. This consolidation is seen mostly in the portion of the cap area that was not dredged or near the top of the dredged slope where less material was removed. Consolidation/settlement analyses were performed as part of the Whatcom Waterway Final Engineering Design Report (Anchor QEA 2015). The observed values are consistent with estimated cap consolidation in other areas of the waterway. Comparing bathymetric data from Year 3 to Year 5 monitoring events, the rate of consolidation of the engineered sediment cap materials appears to have decreased significantly since Year 3, as expected (Figure 5c).

No areas of cap scour or erosion were identified. The portion of the engineered cap immediately adjacent to the BST Dock shows greater than 1.0 foot of material accumulation from Year 0 to Year 5. During construction, dredging was conducted up to the face of the dock, but no underpier material removal occurred; therefore, this observation is likely due to existing underpier material sloughing into the dredged area over time. Underpier areas are to be addressed as part of future Phase 2 cleanup activities.

3.1.2 Log Pond (Unit 4)

Engineered sediment caps were constructed in the Log Pond area to meet remediation goals. This occurred in two separate actions, including an interim action completed in 2001, which encompassed the majority of Unit 4, as shown in Figure 6a. Then in 2015 and 2016 an engineered cap was constructed along the shoreline. The stone armored cap was placed on the existing surface (i.e., no dredging took place) at varying thicknesses, building up from the existing bathymetry.

The bathymetric data collected in the Log Pond area are primarily within the 2001 interim action area. The bathymetric data in this area show that, although there are some active dynamics causing small changes to the cap elevations, no major scour or other disturbances have taken place to the 2001 interim action area cap between Year 0 and Year 5 monitoring events (Figure 6b).

The 2016 cap area is in very shallow water and was assessed primarily using visual inspections. Where bathymetric data could be collected within the 2016 cap area, 1.5 feet of consolidation can be seen between Year 0 and Year 5, and very little change (less than 0.5 foot) between Year 3 and Year 5 (Figures 6b and 6c). Visual inspection findings are summarized in Section 3.2.

Some larger elevation differences observed near the limits of the survey are artifacts. These can be attributed to a lower density of data points leading to jumps in the survey surface. These areas, along with areas too shallow for completion of an in-water bathymetric survey, were addressed with the intertidal visual survey as described in Section 3.2.

3.1.3 Inner Waterway (Unit 2A, 3B, and Portion of Unit 2C)

The Inner Waterway was capped using two different cap types, as shown in Figure 7a. In general, the waterway and offshore areas were capped with cobble armor, while the shoreline areas (South Shoreline and Central Waterfront Shoreline) were capped with stone armor. Caps were constructed in areas where dredging occurred and areas where no dredging occurred. The dredging that occurred varied greatly, from very thin to very thick cuts, to meet remedial objectives. Because of these different factors, a wide range of consolidation and settlement was expected.

Differences in cap surface elevation between Year 0 and Year 5 monitoring events are shown in Figure 7b. Some of the general trends observed in the comparison of the post-construction survey with the Year 5 monitoring survey include the following:

- Moderate accretion of material is observed at the head of the waterway and is consistent with historical accumulation of material in this area due to loading from Whatcom Creek.
- Minimal settlement and consolidation have occurred in the flat portion of the Inner Waterway where dredge cuts were thickest (i.e., near the head of the waterway). The thick dredge cuts exposed materials less prone to consolidation.
- A greater amount of settlement and consolidation was observed in the flat portion of the waterway where only thin cuts or no dredging was performed (i.e., the portion nearer to Bellingham Bay), and cap materials were placed on existing softer sediments.
- A moderate amount of settlement and consolidation was observed along the shoreline slopes. The stone armored engineered cap was placed in these areas (South Shoreline and Central Waterfront Shoreline). Placement of this heavier material has resulted in more consolidation of the underlying capping materials and subgrade.

Between Year 3 and Year 5 monitoring events, similar trends occur in the same areas but at a much lower rate, consistent with expectations (Figure 7c). No areas of cap scour or erosion were identified.

3.2 Visual Survey (Intertidal Shoreline Inspection)

A visual survey was conducted within the intertidal shoreline areas of the Inner Waterway and the Log Pond, during periods of optimal low tide, to document the physical condition of the engineered sediment caps and the exposed portions of the Central Waterfront containment walls and Maple Street Bulkhead.

Intertidal engineered sediment caps were visually inspected during periods of low tide over a 2-day duration (June 24 to 25, 2021). Inspections took place both by boat and on foot depending on access to the cap area, as shown in Figures 8a and 8b. Photomaps and corresponding photographs showing the general conditions of the above-water engineered caps are included in Appendix B.

Continuous inspections were conducted in cap areas to look for indications of erosion and settlement, presence of potential contamination and debris, or other disturbances or signs of impact to the integrity and function of the cap. Inspections in containment wall areas were conducted to look for indications of corrosion, groundwater seepage, and other disturbances or signs of impact to the integrity and function of the remedial wall structure. Any disturbance found was documented (i.e., location, description, and apparent cause if known) and photographed.

3.2.1 Engineered Caps

In general, the engineered sediment caps along the Central Waterfront, South Shoreline, and Log Pond shoreline were found to be in good condition:

- There was no evidence of significant erosion, settlement, or debris accumulation.
- There were no signs of contamination or significant groundwater seepage observed during the survey. As noted during Year 1 and Year 3 monitoring, some growth of algae and colonization by marine organisms (e.g., barnacles) were observed.

3.2.2 Containment Walls

The Central Waterfront and Maple Street Bulkhead containment walls were inspected as part of the visual survey efforts. This included a survey of the Central Waterfront containment wall during low tide and a separate inspection of the Maple Street Bulkhead containment wall during the rising tide on June 24, 2021. The Central Waterfront containment wall was observed to be in good condition with no signs of corrosion or other disturbances.

Consistent with observations during Year 3 monitoring, water seepage was noted at several of the tieback locations along the Maple Street Bulkhead. Between November 2021 and February 2022, a repair program was implemented by the Port to seal these tieback locations. A close-out inspection conducted during February 2022 indicated that the repairs had been successful and the seepage eliminated. The Port will formally document the results of the seepage repair efforts and provide that documentation to Ecology under separate cover. The documentation, and the details of future compliance monitoring, will also be part of the Central Waterfront Engineering Design Report.

In addition to a visual survey and inspection of the walls, Norton Corrosion performed an inspection of the Maple Street Bulkhead cathodic protection system on August 30, 2021. The inspection by Norton Corrosion confirmed that the Maple Street Bulkhead containment wall is receiving adequate protection, consistent with their design recommendations. No corrective actions were recommended.

4 Sediment Testing

This section describes surface sediment collection and testing conducted during Year 5 compliance monitoring activities. Sample locations described in this section are shown in Figure 3. Chemistry results are presented in Table 1, bioassay criteria are listed in Table 2, and bioassay results are presented in Table 3. Laboratory analytical reports are included in Appendix C, data validation reports are included in Appendix D, and bioassay results are presented in Appendix E.

Surface sediment monitoring included the following sample locations:

- Six locations in Phase 1 capping areas (P1CM-06 thru 11)
- Three locations in Log Pond areas previously capped (P1CM-03, 04, 05)
- Two locations within Phase 1 dredging areas of the Outer Waterway (P1CM-01, 02)
- Eleven locations within MNR areas

4.1 Sediment Distribution in Cap Areas

Within the Phase 1 cap placement areas, sufficient sediment had deposited since construction to allow for chemical testing at eight of nine cap area locations. Sediment deposition of accepted grabs ranged between 12 and 30 centimeters (cm), averaging 18.1 cm. Samples were collected from 0 to 12 cm depth at each of the nine locations. At station P1CM-11, adjacent to the C Street outfall, an additional sample was collected from 0 to 2 cm depth to assist in trend analysis. Photographs of the material encountered at stations where sufficient material for full testing was collected are included in Appendix F.

Insufficient sediment had deposited to allow for chemical testing at location P1CM-08. Four attempts were made, but an insufficient sediment was recovered for testing. Based on the absence of accumulated sediment, no chemical or biological testing was performed at this location. Sediment testing will be performed at this location in the future if sufficient sediment has accumulated to support testing.

4.2 Surface Sediment Testing

Chemical testing was performed (in compliance with the SQAPP) on 22 samples collected from 21 stations at which sediment was available for testing. Samples were collected from 0 to 12 cm depth all stations, and an additional 0 to 2 cm depth interval was collected at one of the stations to assist in trend analysis. Three field duplicates were also collected. The samples were tested for metals, phenolic compounds (phenols), polycyclic aromatic hydrocarbons (PAHs), dioxins/furans (D/F), total organic carbon, and total solids, consistent with the SQAPP (Anchor QEA 2016).

Table 1 summarizes the chemical testing data.

4.2.1 Mercury, Phenol, and PAH Concentrations

Figure 9 illustrates the mercury concentrations detected in surface sediment. Results are as follows:

- Mercury concentrations were below the site cleanup level for protection of human health and ecological receptors (1.2 milligrams per kilogram [mg/kg]).
- Measured mercury concentrations exceeded 0.41 mg/kg in samples collected from four stations and confirmational bioassays were performed. These included the following samples:
 - One location in the Log Pond near the former GP West dock (P1CM-04)
 - Two locations in MNR areas located offshore of the Aerated Stabilization Basin (MNR-06 and MNR-07)
 - One location in the Outer Waterway (P1CM-01)
- The phenol concentration at location MNR-07 was also above the numeric screening criteria. That sample was evaluated using confirmational bioassays as described previously.
- No PAH results from any samples were above numeric screening criteria.
- Sediment from the four locations (P1CM-04, MNR-06, MNR-07, and P1CM-01) that exceeded numeric criteria were subjected to confirmational bioassay testing consistent with the SQAPP (Section 4.1.3). All samples passed biological testing.

Results demonstrate that detected mercury, phenol, and PAH concentrations comply with site cleanup levels established in the Consent Decree for protection of benthic organisms and protection of human health and ecological receptors (Ecology 2011).

The surface-weighted average concentration (SWAC) of mercury in Site surface sediments is currently estimated at 0.345 mg/kg. The SWAC estimate was higher than that measured during Year 1 monitoring (0.24 mg/kg) but less than that measured during Year 3 monitoring (0.39 mg/kg). Between the Year 3 and Year 5 monitoring events, decreases in mercury concentrations were noted at 16 of 21 sampling locations. The Year 5 SWAC estimate was lower than the Year 3 monitoring estimate, indicating that recovery is occurring, and concentrations are decreasing on a site-wide basis. The natural background concentration for mercury in Puget Sound sediments has been established by Ecology as 0.20 mg/kg (Ecology 2021). Concentrations at the deeper, outlying MNR stations (MNR-01 and MNR-02) averaged 0.17 mg/kg, consistent with natural background levels.

4.2.2 Surface Sediment Dioxin/Furan Concentrations

D/F are known to be present in surface and subsurface sediments throughout most of Bellingham Bay and other urban bays within Puget Sound. The full range of sources for these compounds in Bellingham Bay has not yet been determined but may include contributions from many sources throughout the bay, including former combustion sources, former GP West pulp and paper mill operations, former wood-treating facilities, historical and ongoing stormwater and wastewater discharges, and atmospheric deposition. Since execution of the First Amendment to the Consent Decree, Ecology conducted work to determine if regional background concentrations of certain bioaccumulative chemicals existed in Bellingham Bay (Ecology 2015). That work confirmed that, throughout most of Bellingham Bay, D/F concentrations exceed both the natural background level in non-urban portions of Puget Sound (4 nanograms per kilogram toxic equivalency quotient, or ng/kg TEQ) and the practical quantitation limit (5 ng/kg TEQ). Ecology identified the regional background D/F concentration to be 15 ng/kg TEQ.

As part of the Year 5 monitoring event, chemical testing for D/F was performed at 11 locations. Results are presented in Table 1 and in Figure 10. The locations included the following:

- One location within the Log Pond (Unit 4) capping area (WW-P1CM-04)
- One location within the Phase 1 dredging area of the Outer Waterway, adjacent to BST (WW-P1CM-02)
- Four locations within the Inner Waterway, including one MNR location located at the head of the Inner Waterway, adjacent to Roeder Avenue (MNR-11), two locations within the dredging and capping areas of the Inner Waterway (P1CM-06 and P1CM-10), and one location in the capping area adjacent to the C Street outfall (P1CM-11)
- Four MNR locations offshore of the Aerated Stabilization Basin and Outer Waterway areas (MNR-03, MNR-04, MNR-05, and MNR-07)
- One MNR location within a portion of the adjacent RG Haley Site (MNR-09)

One additional Inner Waterway location within the Phase 1 capping area had been designated in the SQAPP for D/F testing. However, insufficient sediment accumulation was present on top of the cap armor at location P1CM-08 to support sediment chemical testing (Section 4.1.1).

Figure 10 shows the reported D/F concentrations from Year 5 monitoring:

- D/F concentrations in the Log Pond capping area were 3.4 ng/kg, which is well below the regional background concentration (15 ng/kg TEQ). It is also below the natural background level (4.0 ng/kg TEQ) and the practical quantitation limit (5.0 ng/kg TEQ).
- D/F concentrations in the Unit 1C dredging area offshore of the BST averaged 9.5 ng/kg. Significant variability was observed in replicate sample analyses at this location (range 3.5 and 15.6 ng/kg, a relative percent difference [RPD] of over 64%). The high RPD value indicates heterogeneity in the sample matrix known as a "nugget effect" at this location. Measured RPD values at other locations with replicate samples were normal (less than 20%).
- Within the Inner Whatcom Waterway the D/F concentrations in most samples of recently deposited sediments were similar to those observed during the Year 3 monitoring. Sediment D/F concentrations measured at WW-MNR-11 have been gradually decreasing with each of the recent monitoring events, from 58.6 ng/kg TEQ in 2017, to 52.9 ng/kg TEQ during 2019 and 51.3 ng/kg TEQ during 2021. However, increases in D/F concentrations were noted at sampling WW-P1CM-11 located near the C Street stormwater outfall. In Year 3 the D/F

concentrations in bioactive zone samples collected at this location were 10.8 ng/kg. The concentration in the Year 5 sample was 50.9 ng/kg, significantly higher than the Year 3 event. A similar D/F concentration (48.6 ng/kg) was observed in the 0 to 2 cm sample used for analyzing time trends.

- Concentrations of D/F in the four offshore MNR samples were slightly higher than those measured in Year 3 (average of 12 ng/kg in Year 5 compared to 9.6 ng/kg in Year 3). Replicate analyses showed good reproducibility in these areas, with RPD values of 12% or less.
- Concentrations of D/F in the sample located within the RG Haley Site remediation area were 22.6 ng/kg. This is higher than was measured during Year 3 monitoring (13.6 ng/kg).

The results were pooled with other recent monitoring data available from Bellingham Bay to provide a best estimate of current SWACs of D/F compounds. Within the Whatcom Waterway Site area, after excluding the RG Haley, South State Street MGP, and I&J Waterway remediation areas, the D/F SWAC value is 9.6 ng/kg TEQ.

4.2.3 Confirmational Bioassay Testing

Confirmational bioassay testing was performed on four surface sediment samples that contained phenol or mercury concentrations in excess of site cleanup levels. This testing was performed by EcoAnalysts, Inc., in Port Gamble, Washington.

Testing included two acute toxicity tests (the 10-day amphipod survival test and the benthic larval development test) and one chronic toxicity test (20-day polychaete survival and growth test). The 10-day amphipod, 96-hour echinoderm, and 20-day juvenile polychaete tests were initiated on September 10, 2021, within the 56-day holding time. The 10-day amphipod test failed to meet acceptability criteria due to poor organism health upon receipt from the supplier. The test rerun was initiated using *Leptocheirus plumulosus* on October 8, 2021, 25 days past the 56-day holding time. The test developed fully acceptable data for use in management decisions.

Sediment samples from four locations (MNR-06, MNR-07, P1CM-01, and P1CM-04) were tested against clean reference samples collected from Carr Inlet by EcoAnalysts. Test methods followed guidance provided by the Puget Sound Estuary Program (PSEP 1995), the Sediment Cleanup User's Manual II (Ecology 2021), and the various updates presented during the Sediment Management Annual Review Meetings. The following describes the tests and species used, along with key observations from data review. Additional details regarding bioassay testing are in Appendix E.

10-Day Amphipod Mortality (Leptocheirus plumulosus)

The amphipod test was conducted using *Leptocheirus plumulosus*, an alternate amphipod species. *Leptocheirus* was used because reliable supplies of the amphipod *Ampelisca* were not available. The use of the alternate species was approved by Ecology.

Water quality conditions were maintained to ensure optimal health of the organisms and were within acceptable limits throughout the testing duration. Temperature, dissolved oxygen (DO), salinity, and pH from one replicate per treatment were monitored daily. Water quality parameters were within the acceptable limits throughout the duration of the test. Additionally, ammonia and sulfide concentrations were measured in both porewater and overlying water at the beginning and termination of testing. Concentrations were below trigger values, indicating mortality due to ammonia or sulfide was unlikely.

The test met the survival acceptability criteria specified in the test protocol with 1% mean mortality in the control and 1% to 6% mean mortality for reference samples, within the performance criteria. The reference toxicant test was conducted using total ammonia, resulting in a median lethal concentration of 126.2 milligrams per liter (mg/L), and was within the laboratory acceptability range of 56.3 to 275.9 mg/L.

All Project sediments pass the sediment cleanup objective (SCO) and cleanup screening level (CSL) criteria.

Larval Development (Dendraster excentricus)

The larval development test was conducted with the sand dollar, *Dendraster excentricus*, an alternate species to *Mytilus* as defined in the SQAPP, because spawning behavior with the mussels was poor. The use of the alternate species was approved by Ecology. Adult organisms were obtained from Taylor Shellfish in Shelton, Washington, and were held under flowing natural seawater at $14 \pm 2^{\circ}$ C prior to spawning induction. Testing was initiated on September 10, 2021, within the recommended holding time. Water quality conditions were maintained to ensure optimal health of the organisms and were within acceptable limits throughout the testing duration.

- Temperature, DO, salinity, and pH from one replicate per treatment were monitored daily.
- Water quality parameters were within protocol-specified ranges throughout the duration of the tests.
- Ammonia and sulfide concentrations were measured in overlying water at the beginning and termination of testing. Ammonia concentrations observed in the *D. excentricus* test were below the no observed effect concentration value derived from the concurrent ammonia reference toxicant test (1.61 mg/L total ammonia; Bioassay Testing Results, Table 3-13 [EcoAnalysts, Inc. 2021]). Initial unionized ammonia concentrations were above the trigger value of 0.014 mg/L for samples MNR-07 and P1CM-01, and above the trigger value for

sample MNR-07 at the final day of testing, indicating unionized ammonia concentrations may have adversely affected larvae exposed to these samples.

- Initial and final total sulfide and undissociated hydrogen sulfide concentrations were below trigger values for all samples (0.004 mg/L; Inouye 2015). Sulfide concentrations within the sediment samples should not have contributed to any adverse biological effects observed in the test treatments.
- The test met the survival acceptability criteria specified in the test protocol with 88% and 74% normal survivorship in the seawater and sediment controls, respectively.
- Reference sediment also met acceptability criteria, with mean normal survival between 104% and 107% of the sediment control response.
- The reference toxicant test was conducted using total and unionized ammonia. For total ammonia, the mean effective concentration of 3.44 was within the laboratory acceptability range of 1.48 to 8.00 mg/L. For unionized ammonia, the mean effective concentration of 0.056 was within the laboratory acceptability range of 0.018 to 0.170 mg/L.

No problems were found with the final test organisms or the testing procedure, and the test developed fully acceptable data for use in management decisions. All Project sediments pass the SCO and CSL criteria.

20-Day Juvenile Polychaete Survival and Growth (Neanthes arenaceodentata)

The test organisms were obtained from Aquatic Toxicology Support in Bremerton, Washington. Testing was initiated on September 10, 2021, within the appropriate holding time. Water quality conditions were maintained to ensure optimal health of the organisms and were mostly within acceptable limits throughout the testing duration.

- Temperature, DO, salinity, and pH from one replicate per treatment were monitored daily.
- DO in sample P1CM-01 dropped below the acceptable level on Day 12. An airline in the chamber was found to be above the waterline and was immediately adjusted. DO remained within the recommended range for the remainder of the test and no adverse effects were observed.
- Ammonia and sulfide concentrations were measured in both porewater and overlying water at the beginning and termination of testing. Concentrations were below trigger values, indicating mortality due to ammonia or sulfide was unlikely.
- The test met the acceptability criteria specified in the test protocol. No mortality was observed in the control treatment and mean individual growth rates as dry weight and ash-free dry weight (AFDW) were 0.800 and 0.565 milligram (mg) per individual per day, respectively. Mean mortality in reference treatments were 0% for all reference samples. Mean individual growth rates ranged from 0.712 to 0.875 mg per individual per day dry weight and 0.597 to 0.659 mg per individual per day AFDW.

• The reference toxicant test was conducted using total ammonia, resulting in a mean lethal concentration of 207.1 mg/L, and was within the laboratory acceptability range of 159.7 to 268.6 mg/L.

No problems were found with the test organisms or the testing procedure, and the test developed fully acceptable data for use in management decisions.

All Project sediments pass the SCO and CSL criteria when evaluated on a dry weight and AFDW basis.

5 Crab Tissue Monitoring

This section describes post-construction tissue monitoring performed in accordance with the SQAPP (Anchor QEA 2016). This monitoring was conducted during August 2021 and included testing of tissue mercury levels in adult Dungeness crabs collected from the Site and from the Samish Bay clean reference area.

Locations of samples described in this section are presented in Figure 3 (Site samples) and Figure 4 (reference area samples). Laboratory analytical reports are included in Appendix C, and data validation reports are included in Appendix D. Results were analyzed graphically, and statistics were calculated to compare Site and reference area findings (Appendix G).

Adult crabs were collected using crab traps deployed at three locations within the Site (Figure 3) and at two locations within the Samish Bay reference areas (Figure 4). One to three adult male Dungeness crabs with a carapace width of 13.4 cm or greater were collected at each station. Adequate numbers of crabs of sufficient size were not collected after 24 hours of collection attempts, so crabs less than the SQAPP-required 16.5-cm minimum size were collected and processed. One to three replicate samples for each Site station and three replicate samples for each reference station were created by homogenizing sternal plate, leg, and claw muscle tissue, resulting in a total of five composite samples from the Site and six composite samples from the Samish Bay reference area.

Adult Dungeness crabs utilize a large home range (estimated at approximately 10 square kilometers, which is larger than the Site). Therefore, the adult Dungeness crab collected at any one station within the Site are representative of the overall Site and not the individual sampling station. Similarly, the adult crabs collected at either of the Samish Bay reference areas are representative of the overall reference area and not the individual sampling station.

Table 4 and Figure 11 summarize the tissue monitoring data collected for adult crab for both the Site and the reference area stations. Mercury concentration trends in adult crab tissue are presented in Table 5 and summarized as follows:

- Tissue mercury levels detected in Site crab were well below those measured previously in 1991 and 1997 and were also lower than Year 0 and Year 1 compliance monitoring concentrations.
- Between 1991 and the Year 3 monitoring event, the average Site crab tissue mercury level had steadily decreased, consistent with an exponential (first-order) rate of decrease. This is consistent with natural recovery modeling expectations. By Year 3 the concentrations within the Site were not significantly different from those in the clean reference area. No significant changes were observed between Year 3 and Year 5, indicating that mercury concentrations have plateaued at naturally occurring concentrations.

- Year 5 tissue mercury concentrations were compared statistically between the Site and reference areas (Appendix G). The Site tissue mercury concentrations were not significantly different than those collected from the reference areas.
- The naturally occurring crab tissue mercury concentrations documented in the reference area samples (average 0.052 mg/kg wet weight as measured over eight sampling events) are well below the U.S. Environmental Protection Agency's consumption guideline for seafood tissue (0.3 mg/kg wet weight), and they are more than 70% lower than the tissue concentration identified as protective of tribal seafood consumption (0.18 mg/kg wet weight) (Anchor Environmental and Hart Crowser 2000).

Consistent with the SQAPP, monitoring objectives for adult crab tissue have been completed. The SQAPP specifies that adult crab monitoring will be discontinued when Site samples are not significantly different than reference samples for a second consecutive sampling event. Site concentrations were not significantly different from reference area concentrations in either the Year 3 or Year 5 monitoring events. Therefore, crab tissue monitoring will not be included in the next scheduled monitoring event (Year 10; 2026).

6 Porewater Monitoring in Unit 4

Porewater monitoring was conducted at two nearshore stations in the Log Pond to assess groundwater as a source of potential sediment recontamination.

Porewater samples were collected from each of two sampling stations (Figure 3). A set of nylon mesh diffusion samplers were deployed at each test location to measure porewater mercury concentrations and results are summarized as follows:

- The nylon mesh diffusion sampler deployment methodology was consistent with methods used by the U.S. Geological Survey and U.S. Environmental Protection Agency (Zimmerman et al. 2005).
- Samplers were constructed using 250-milliliter glass jars fitted with 22-micron mesh and screw-on lids.
- Samplers were buried 10 cm into the sediment and left in situ to equilibrate.
- Samplers were retrieved after 6 days of equilibration.
- Porewater samples were analyzed for total and dissolved mercury.

Results of Log Pond porewater testing are shown in Table 6:

- Dissolved mercury was not detected in any samples. These results, along with Year 1 data, support the theory that mercury concentrations in shoreline porewater are not bioavailable.
- Dissolved mercury concentrations were well below the Log Pond interpretive framework value of 0.0594 microgram per liter (µg/L) dissolved mercury. That value was established as part of remedial activities at the GP West Chlor-Alkali Remedial Action Unit and set to be protective of the Sediment Quality Standard (0.41 mg/kg). Results were all below the detection limit of 0.013 µg/L. The results were reported to the reporting limit of 0.1 µg/L (Table 6).

Results demonstrate that shoreline groundwater is not an ongoing source of sediment recontamination to Log Pond sediments.

7 Summary and Recommendations

The results of Year 5 compliance monitoring are summarized as follows:

- Phase 1 capping areas are performing within expectations, with no areas of erosion or cap damage noted during Year 5 bathymetric and visual surveys. Observed ranges of sediment consolidation have continued to decrease and are within expectations.
- Sediment containment walls are in good condition, with no observations of corrosion or other damage. Recent seep repairs to the Maple Street Bulkhead tieback anchors were effective, and previous groundwater seepage has been addressed. The Port will formally document the results of the seepage repair efforts and provide that documentation to Ecology under separate cover. The documentation, and the details of future compliance monitoring, will also be part of the Central Waterfront Engineering Design Report.
- Mercury levels in surface sediments comply with levels protective of benthic organisms and human health and ecological receptors. Results confirm the performance of the remedy within both the Phase 1 capping and Site MNR areas.
- D/F levels in excess of background concentrations were noted in sediments depositing on top of the engineered cap and MNR area at the head of the Inner Waterway.
- Phase 2 pre-remedial design investigation testing was conducted during 2020 and 2021 to evaluate potential sources of D/F in the Whatcom Creek and Inner Waterway areas. Findings of that testing will be incorporated into the Phase 2 Engineering Design Report.
- D/F levels were present at elevated concentrations in sediments adjacent to the City's C Street outfall in comparison to previous years. Given the recent increases in these D/F concentrations, further source control evaluation efforts for that outfall appear warranted.
- Mercury levels in adult crab tissue have recovered to naturally occurring concentrations and were measured in samples collected from the Samish Bay reference site. Mercury concentrations reached this naturally occurring concentration in Year 3 and have remained at that level in Year 5. As Site crab tissue mercury concentrations have decreased to reference area levels for two consecutive monitoring events, the objectives of crab tissue monitoring have been completed and no further crab tissue monitoring is required under the SQAPP.

The next scheduled monitoring event is Year 10 (2026). That work will be performed consistent with the SQAPP (Anchor QEA 2016). Planned testing includes bathymetric and visual surveys, surface sediment testing (chemistry and contingent bioassay testing), subsurface sediment chemistry testing, and Log Pond porewater testing.

8 Year 10 Compliance Monitoring

Year 10 monitoring will be performed in 2026. Consistent with the SQAPP (Anchor QEA 2016) and recommendations based on Year 5 results (Section 7), the scope of monitoring will include the following:

- Bathymetric surveys
- Visual surveys
- Surface sediment testing
- Subsurface sediment testing
- Porewater monitoring in Unit 4

Field work will be conducted from June through August 2026. Analytical results from chemical and biological testing and data validation are expected to be complete in November 2026. Completion of the Year 10 Compliance Monitoring Report is anticipated by February 2027. Data will be submitted to the Ecology Environmental Information Management database by March 1, 2027.

9 References

- Anchor Environmental and Hart Crowser, 2000. *Remedial Investigation and Feasibility Study for the Whatcom Waterway Site*. Prepared for GP West.
- Anchor QEA (Anchor QEA, LLC), 2010. *Pre-Remedial Design Investigation Data Report, Whatcom Waterway Site Cleanup*. Prepared for the Port of Bellingham. August 2010.
- Anchor QEA, 2015. *Final Engineering Design Report, Whatcom Waterway Cleanup in Phase 1 Site Areas*. Prepared for the Port of Bellingham. February 2015.
- Anchor QEA, 2016. Sampling and Quality Assurance Project Plan for Compliance Monitoring, Whatcom Waterway Cleanup in Phase 1 Site Areas. Prepared for the Port of Bellingham. March 2016.
- Anchor QEA, 2018. *Final As-built Report, Whatcom Waterway Cleanup in Phase 1 Site Areas*. Prepared for the Port of Bellingham. September 2018.
- EcoAnalysts (EcoAnalysts, Inc.), 2021. *Bioassay Testing Results, Whatcom Waterway Cleanup Monitoring*. Prepared for Anchor QEA on behalf of Port of Bellingham. November 4, 2021.
- Ecology (Washington State Department of Ecology), 2011. Consent Decree: Whatcom Waterway Site. First Amendment to Consent Decree. Regarding: Whatcom Waterway Site, Bellingham, Washington. August 19, 2011.
- Ecology, 2015. Bellingham Bay Regional Background Sediment Characterization Final Data Evaluation and Summary Report. Publication No. 15-09-044. February 2015.
- Ecology, 2021. Sediment Cleanup User's Manual II (SCUM II), Guidance for Implementing the Cleanup Provisions of the Sediment Management Standards, Chapter 173-204 WAC. Publication No. 12-09-057. December 2021.
- Ecology, 2020. *Final Cleanup Action Plan, Central Waterfront Site*. Issued by the Washington State Department of Ecology. January 2020.
- Inouye, L., 2015. DMMP Clarification Paper: Modifications to Ammonia and Sulfide Triggers for Purging and Reference Toxicant Testing for Marine Bioassays. Final Paper August 14, 2015. Prepared by Laura Inouye (Ecology), Erika Hoffman (U.S. Environmental Protection Agency), and David Fox (U.S. Army Corps of Engineers) for the DMMP Agencies.
- PSEP (Puget Sound Estuary Program), 1995. *Puget Sound Protocols and Guidelines*. Puget Sound Estuary Program. Puget Sound Water Quality Action Team, Olympia, Washington.

Zimmerman, M.J., D.A. Vroblesky, K.W. Campo, A.J. Massey, and W. Scheible, 2005. *Field Tests of Nylon-Screen Diffusion Samplers and Pushpoint Samplers for Detection of Metals in Sediment Pore Water, Ashland and Clinton, Massachusetts, 2003.* Scientific Investigations Report 2005-5155. 2005.

Tables

				Task	WWY5_Compliance	WWY5_Compliance	WWY5_Compliance	WWY5_Compliance
				Location ID	WW-MNR-01_21	WW-MNR-02_21	WW-MNR-03-SS_21	WW-MNR-03-SS_21
				Sample ID	WW-MNR-01-SS-210719	WW-MNR-02-SS-210720	WW-MNR-03-SS-210719	WW-MNR-03-SS-210719RE
				Sample Date	7/19/2021	7/20/2021	7/19/2021	7/19/2021
				Depth	0 - 12 cm			
				Sample Type	N	N	N	N
				Matrix	SE	SE	SE	SE
		SMS Marina SCO ar	SMS Marine CSL or	Х	1236591.4	1236335.2	1237323.9	1237323.9
				Y	641689.85	636672.13	643042.11	643042.11
Conventional Parameters (%)		SCU AET	CSL AET	Otner				
Total organic carbon	SW9060AM				1.42	1.7	1.51	
Total Solids	SM2540G				46.4	39.16	49.74	
Metals (mg/kg)			•			•	•	•
Copper	SW6020B	390	390		48.4	33.2	51.1	
Mercury	SW7471B	0.41	0.59	1.2 ^[1]	0.169	0.173	0.337	
Zinc	SW6020B	410	960		98.2	67.2	100	
Semivolatile Organics (µg/kg)							•	
2,4-Dimethylphenol	SW8270E	29	29		100 UJ	100 U	83.2 UJ	
2-Methylphenol (o-Cresol)	SW8270E	63	63		20 U	20 U	16.6 U	
4-Methylphenol (p-Cresol)	SW8270E	670	670		26.7	100	17.8	
Pentachlorophenol	SW8270E	360	690		100 UJ	100 U	83.2 UJ	
Phenol	SW8270E	420	1200		186	40.5	97.5	
Polycyclic Aromatic Hydrocarbons (mg/kg-OC)		-						
2-Methylnaphthalene	SW8270E	38	64		1.4085 U	0.3 J	1.0993 U	
Acenaphthene	SW8270E	16	57		1.4085 U	1.1765 U	1.0993 U	
Acenaphthylene	SW8270E	66	66		1.4085 U	1.1765 U	1.0993 U	
Anthracene	SW8270E	220	1200		1.4085 U	1.1765 U	1.0993 U	
Benzo(a)anthracene	SW8270E	110	270		1.4085 U	0.5294 J	0.3841 J	
Benzo(a)pyrene	SW8270E	99	210		1.4085 U	0.6706 J	0.298 J	
Benzo(g,h,i)perylene	SW8270E	31	/8		1.4085 U	1.1/65 U	1.0993 0	
Chrysene D'haves (s.b.) esthere en e	SW8270E	110	460		0.838 J	0.7941 J	0.5364 J	
Dibenzo(a,n)anthracene	SVV8270E	12	33		0,7192 L	1,1765 U	1.0993 0	
Eluorana	SW0270E	22	70		1 4085 111	1.5555	1.0728 J	
Indene(1.2.2. c.d)pyrope	SW0270E	23	79		1.4005 05	1.1765 U	1.0995 05	
Nanhthalene	SW/8270E	99	170		0.4366 I	0 8059 1	0 3377 1	
Phenanthrene	SW8270E	100	480		0.43003	1 0353 1	0.4834 1	
Pyrene	SW8270E	1000	1400		0.5915 J	1.3529	0.8808 J	
Total Benzofluoranthenes (b,i,k) (U = 0)	51102702	230	450		2.8169 U	1.4118 J	0.6093 J	
Total HPAH (SMS) (U = 0)		960	5300		2.1479 J	6.0941 J	3.7815 J	
Total LPAH (SMS) $(U = 0)$		370	780		1.0563 J	1.8412 J	0.8212 J	
Polycyclic Aromatic Hydrocarbons (µg/kg)		•	•			•		
1-Methylnaphthalene	SW8270E				20 U	20 U	16.6 U	
2-Methylnaphthalene	SW8270E	670	670		20 U	5.1 J	16.6 U	
Acenaphthene	SW8270E	500	500		20 U	20 U	16.6 U	
Acenaphthylene	SW8270E	1300	1300		20 U	20 U	16.6 U	
Anthracene	SW8270E	960	960		20 U	20 U	16.6 U	
Benzo(a)anthracene	SW8270E	1300	1600		20 U	9 J	5.8 J	
Benzo(a)pyrene	SW8270E	1600	1600		20 U	11.4 J	4.5 J	
Benzo(b,j,k)fluoranthenes	SW8270E				40 U	24 J	9.2 J	
Benzo(g,h,i)perylene	SW8270E	670	720		20 U	20 U	16.6 U	
Chrysene	SW8270E	1400	2800		11.9 J	13.5 J	8.1 J	
Dibenzo(a,h)anthracene	SW8270E	230	230		20 U	20 U	16.6 U	
Fluoranthene	SW8270E	1700	2500		10.2 J	22.7	16.2 J	
Huorene	SW8270E	540	540		20 UJ	20 U	16.6 UJ	
Indeno(1,2,3-c,d)pyrene	SW8270E	600	690		20 U	20 U	16.6 U	

				Task Location ID	WWY5_Compliance WW-MNR-01 21	WWY5_Compliance WW-MNR-02 21	WWY5_Compliance WW-MNR-03-SS 21	WWY5_Compliance WW-MNR-03-SS 21
				Sample ID	WW-MNR-01-SS-210719	WW-MNR-02-SS-210720	WW-MNR-03-SS-210719	WW-MNR-03-SS-210719RE
				Sample Date	7/19/2021	7/20/2021	7/19/2021	7/19/2021
				Depth	0 - 12 cm	0 - 12 cm	0 - 12 cm	0 - 12 cm
				Sample Type	N	N	N	N
				Matrix	SE	SE	SE	SE
				x	1236591.4	1236335.2	1237323.9	1237323.9
		SMS Marine SCO or	SMS Marine CSL or	Y	641689.85	636672.13	643042.11	643042.11
		SCO AET	CSL AET	Other				
Naphthalene	SW8270E	2100	2100		6.2 J	13.7 J	5.1 J	
Phenanthrene	SW8270E	1500	1500		8.8 J	17.6 J	7.3 J	
Pyrene	SW8270E	2600	3300		8.4 J	23	13.3 J	
itoring		3200	3600		40 U	24 J	9.2 J	
1 otal HPAH (SMS) (U = 0)		12000	1/000		30.5 J	103.6 J	57.1 J	
1 otal LPAH (SMS) (U = 0)		5200	5200		15 J	31.3 J	12.4 J	
Dioxin Furans (ng/kg)	F1612D		1			1	0 5 4 6 11	0.428.1
2,3,7,6-Tetrachiorodibenzo p. diavin (TCDD)	E1013D E1613D						0.546 0	0.428 J
1,2,3,7,0-Pentachiorodibenzo-p-dioxin (PecDD)	E1013D E1613D						2.02.1	2.22
1,2,3,4,7,0-Hexachiorodibenzo-p-dioxin (HxCDD)	E1013D E1613B						3.52 J 12 7	2.02
1,2,3,0,7,0-Hexachlorodibenzo-p-dioxin (HxCDD)	E1613B						7 17	5.03
1234678-Hentachlorodibenzo-p-dioxin (HxCDD)	E1613B						226	200
12346789-Octachlorodibenzo-p-dioxin (OCDD)	F1613B						1710	1380
Total Tetrachlorodibenzo-p-dioxin (TCDD)	F1613B						93.5	94.4
Total Pentachlorodibenzo-p-dioxin (PeCDD)	E1613B						78.3	89.1
Total Hexachlorodibenzo-p-dioxin (HxCDD)	E1613B						218	163
Total Heptachlorodibenzo-p-dioxin (HpCDD)	E1613B						458	401
2,3,7,8-Tetrachlorodibenzofuran (TCDF)	E1613B						4.06 J	2.87
1,2,3,7,8-Pentachlorodibenzofuran (PeCDF)	E1613B						1.2	0.89 J
2,3,4,7,8-Pentachlorodibenzofuran (PeCDF)	E1613B						0.742 U	0.803 J
1,2,3,4,7,8-Hexachlorodibenzofuran (HxCDF)	E1613B						3.55	2.88
1,2,3,6,7,8-Hexachlorodibenzofuran (HxCDF)	E1613B						1.37 J	1.25
1,2,3,7,8,9-Hexachlorodibenzofuran (HxCDF)	E1613B						1.29 U	1.1
2,3,4,6,7,8-Hexachlorodibenzofuran (HxCDF)	E1613B						1.61	1.85
1,2,3,4,6,7,8-Heptachlorodibenzofuran (HpCDF)	E1613B						42.4	36.8
1,2,3,4,7,8,9-Heptachlorodibenzofuran (HpCDF)	E1613B						2.68	2.26
1,2,3,4,6,7,8,9-Octachlorodibenzofuran (OCDF)	E1613B						124	100
Total Tetrachlorodibenzofuran (TCDF)	E1613B						8.65	10.6
Total Pentachiorodibenzofuran (PeCDF)	E1613B						12.6	13.1
	E1013B						50.1	53.4
	EIOISD						162	130
iotai Dioxin/Furan TEQ 2005 (Mammal) (U = U)		[1]		101			8.155 J	8.4002 J
Total Dioxin/Furan TEQ 2005 (Mammal) (U = $1/2$)		5.0 ^[2]		15 ^[3]			8.6038 J	8.4002 J
Iotal Dioxin/Furan TEQ 2005 (Mammal) (U = 1/2) (EMPC included)		5.0		15"			8.604 J	8.4 J
Iotal Dioxin/Furan TEQ 2005 (Mammal) (U = 0) (EMPC included)							8.155 J	8.4 J

				Task	WWY5_Compliance	WWY5_Compliance	WWY5_Compliance	WWY5_Compliance
				Location ID	WW-MNR-04-SS_21	WW-MNR-04-SS_21	WW-MNR-05_21	WW-MNR-05_21
				Sample ID	WW-MNR-04-SS-210719	WW-MNR-04-SS-210719RE	WW-MNR-05-SS-210719	WW-MNR-05-SS-210719RE
				Sample Date	7/19/2021	7/19/2021	7/19/2021	7/19/2021
				Depth	0 - 12 cm	0 - 12 cm	0 - 12 cm	0 - 12 cm
				Sample Type	N	N	N	N
				Matrix	SE	SE	SE	SE
		CMC Marina CCO ar	CMC Marine CCL or	x	1237151	1237151	1237852.4	1237852.4
		Sivis Warine SCO or		Y	639909.49	639909.49	638105.6	638105.6
Conventional Parameters (%)		SCO AET	CSL AET	Other				
Total organic carbon	SW9060AM				1.45		1.59	
Total Solids	SM2540G				45.37		43.58	
Metals (mg/kg)								•
Copper	SW6020B	390	390		49.9		51.6	
Mercury	SW7471B	0.41	0.59	1.2 ^[1]	0.304		0.296	
Zinc	SW6020B	410	960		99.2		102	
Semivolatile Organics (µg/kg)	5000205	110	500		5012			
2.4-Dimethylphenol	SW8270F	29	29		99.8 UI		100 UJ	
2-Methylphenol (o-Cresol)	SW8270E	63	63		20 U		20 U	
4-Methylphenol (p-Cresol)	SW8270E	670	670		32.5		51.7	
Pentachlorophenol	SW8270E	360	690		99.8 UJ		100 UJ	
Phenol	SW8270E	420	1200		98.6		20 J	
Polycyclic Aromatic Hydrocarbons (mg/kg-OC)								•
2-Methylnaphthalene	SW8270E	38	64		1.3793 U		1.2579 U	
Acenaphthene	SW8270E	16	57		1.3793 U		1.2579 U	
Acenaphthylene	SW8270E	66	66		1.3793 U		1.2579 U	
Anthracene	SW8270E	220	1200		1.3793 U		1.2579 U	
Benzo(a)anthracene	SW8270E	110	270		0.4483 J		1.2579 U	
Benzo(a)pyrene	SW8270E	99	210		0.3862 J		0.327 J	
Benzo(g,h,i)perylene	SW8270E	31	78		1.3793 U		1.2579 U	
Chrysene	SW8270E	110	460		0.7241 J		0.6101 J	
Dibenzo(a,h)anthracene	SW8270E	12	33		1.3793 U		1.2579 U	
Fluoranthene	SW8270E	160	1200		1.1793 J		1.0881 J	
Fluorene	SW8270E	23	79		1.3793 UJ		1.2579 UJ	
Indeno(1,2,3-c,d)pyrene	SW8270E	34	88		1.3793 U		1.2579 U	
Naphthalene	SW8270E	99	170		0.6207 J		0.4403 J	
Phenanthrene	SW8270E	100	480		1.1724 J		0.5849 J	
Pyrene	SW8270E	1000	1400		1.0621 J		0.9245 J	
Total Benzofluoranthenes (b,j,k) (U = 0)		230	450		0.7793 J		0.6352 J	
1 otal HPAH (SMS) (U = 0)		960	5300		4.5793 J		3.5849 J	
IOTAI LPAH (SMS) (U = 0)		370	780		1.7931 J		1.0252 J	
Polycyclic Aromatic Hydrocarbons (µg/kg)	C/1/0270E	Т	1		2011		2011	
	SW6270E	670	670		20.0		20 0	
	SW6270E	500	500		20.0		20.0	
Acenaphthylana	SW8270E	1300	1300		20.0		20.0	
Anthracene	SW8270E	960	960		20.0		20 0	
Benzo(a)anthracene	SW8270E	1300	1600		651		200	
Benzo(a)pyrene	SW8270F	1600	1600		5.6.1		5.2 J	
Benzo(b.ik)fluoranthenes	SW8270F	1000	1000		11.3 J		10.1 J	
Benzo(a,h.i)pervlene	SW8270F	670	720		2011		20 U	
Chrysene	SW8270F	1400	2800		10.5 J		9.7 J	
Dibenzo(a,h)anthracene	SW8270E	230	230		20 U		20 U	
Fluoranthene	SW8270E	1700	2500		17.1 J		17.3 J	
Fluorene	SW8270E	540	540		20 UJ		20 UJ	
Indeno(1,2,3-c,d)pyrene	SW8270E	600	690		20 U		20 U	

			Task Location ID	WWY5_Compliance WW-MNR-04-SS 21	WWY5_Compliance WW-MNR-04-SS 21	WWY5_Compliance WW-MNR-05 21	WWY5_Compliance WW-MNR-05 21
			Sample ID	WW-MNR-04-SS-210719	WW-MNR-04-SS-210719RE	WW-MNR-05-SS-210719	WW-MNR-05-SS-210719RE
			Sample Date	7/19/2021	7/19/2021	7/19/2021	7/19/2021
			Depth	0 - 12 cm	0 - 12 cm	0 - 12 cm	0 - 12 cm
			Sample Type	N	N	N	N
			Matrix	SE	SE	SE	SE
			х	1237151	1237151	1237852.4	1237852.4
	SMS Marine SCO or	SMS Marine CSL or	Y	639909.49	639909.49	638105.6	638105.6
	SCO AET	CSL AET	Other				
Naphthalene SW8270E	2100	2100		9 J		7J	
Phenanthrene SW8270E	1500	1500		17 J		9.3 J	
Pyrene SW8270E	2600	3300		15.4 J		14.7 J	
	3200	3600		11.3 J		10.1 J	
Total HPAH (SMS) (U = 0)	F200	E200		00.4 J		57 J	
$\mathbf{D}_{\text{invite}} = \mathbf{D}_{\text{invite}} \left(\mathbf{D}_{\text{invite}} \right)$	5200	5200		20 J		18.3 5	
2 3 7 8-Tetrachlorodihenzo-n-diovin (TCDD) E1613B				0 345 11	0.827.111	0.567.1	0 516 1
1 2 3 7 8-Pentachlorodibenzo-n-dioxin (PeCDD) E1613B				3 28	2 73 1	4 43	3 38
123478-Heyachlorodibenzo-p-dioxin (HxCDD) E1613B				7 34	5 11 1	10.4	9 53
1.2.3.6.7.8-Hexachlorodibenzo-p-dioxin (HxCDD) E1613B				14.3	10.5 J	18.2	15.3
1.2.3.7.8.9-Hexachlorodibenzo-p-dioxin (HxCDD) E1613B				10.1	7 J	17.6	11.5
1.2.3.4.6.7.8-Heptachlorodibenzo-p-dioxin (HpCDD) E1613B				229	189 J	267	248
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin (OCDD) E1613B				1460	1250	1590	1480
Total Tetrachlorodibenzo-p-dioxin (TCDD) E1613B				321	268	374 J	356
Total Pentachlorodibenzo-p-dioxin (PeCDD) E1613B				306	222	295	350
Total Hexachlorodibenzo-p-dioxin (HxCDD) E1613B				516	341	704	614
Total Heptachlorodibenzo-p-dioxin (HpCDD) E1613B				438	376	488	455
2,3,7,8-Tetrachlorodibenzofuran (TCDF) E1613B				7.8	5.17 J	8.54 J	9.43
1,2,3,7,8-Pentachlorodibenzofuran (PeCDF) E1613B				1.35	1.57 J	1.44 J	1.47
2,3,4,7,8-Pentachlorodibenzofuran (PeCDF) E1613B				1.24 J	0.499 UJ	0.97 J	1.33
1,2,3,4,7,8-Hexachlorodibenzofuran (HxCDF) E1613B				2.89	2.38 J	2.89	3.82
1,2,3,6,7,8-Hexachlorodibenzofuran (HxCDF) E1613B				1.49	1.65 J	1.65 J	1.56
1,2,3,7,8,9-Hexachlorodibenzoturan (HxCDF) E1613B				1.1	0.677 UJ	0.916 J	0.992 J
2,3,4,6,7,8-Hexachlorodibenzoturan (HxCDF) E1613B				1.47 J	0.506 UJ	1.09 J	1.59 0
1,2,3,4,6,7,8-Heptachlorodibenzoturan (HpCDF) E1613B				30	30.1 J	34.3	33.2
1,2,3,4,7,8,9-Heptachlorodibenzofuran (HPCDF) E1613B				2.45	2.11 3	2.37	2.01
Total Totrachloradibonzafuran (TCDE)				22.2	14	22.2.1	27.2
Total Pentachlorodibenzofuran (PeCDE) E1613B				16.3	6.78	9 /3	19.2
Total Hexachlorodibenzofuran (HyCDE) E1613B				49.6	38.5	45	46.7
Total Heptachlorodibenzofuran (HpCDE) E1613B		+ +		135	104	121	125
Total Dioxin/Euran TEO 2005 (Mammal) $(IJ = 0)$				11.4873 J	8.574 J	15.0044 I	12,859 J
Total Dioxin/Furan TEQ 2005 (Mammal) ($U = 1/2$)	5.0 ^[2]		15 ^[3]	11.6598 J	9.1215 J	15.0044 J	12.9385 J
Total Dioxin/Furan TEQ 2005 (Mammal) (U = 1/2) (EMPC included)	5.0 ^[2]		15 ^[3]	11.66 J	9.121 J	15.004 J	12.939 J
Total Dioxin/Furan TEQ 2005 (Mammal) (U = 0) (EMPC included)		1		11.487 J	8.574 J	15.004 J	12.859 J

			Task	WWY5_Compliance	WWY5_Compliance	WWY5_Compliance	WWY5_Compliance
			Location ID	WW-MNR-05_21	WW-MNR-06_21	WW-MNR-07-SS_21	WW-MNR-07-SS_21
			Sample ID	WW-MNR-105-SS-210719	WW-MNR-06-SS-210719	WW-MNR-07-SS-210719	WW-MNR-07-SS-210719RE
			Sample Date	7/19/2021	7/19/2021	7/19/2021	7/19/2021
			Depth	0 - 12 cm	0 - 12 cm	0 - 12 cm	0 - 12 cm
			Sample Type	FD	N	N	N
			Matrix	SE	SE	SE	SE
	SMS Marina SCO ar	SMS Marina CSL or	X	1237852.4	1239216.4	1238790.9	1238790.9
			Y Other	638105.6	642301.93	641461.66	641461.66
Conventional Parameters (%)	JCO ALI	CJEALI	Other				
Total organic carbon SW9060AM				1.51	7.55	1.84	
Total Solids SM2540G				43.45	44.7	45.65	
Metals (mg/kg)	•	•			•		•
Copper SW6020B	390	390		51	46.6	49.6	
Mercury SW7471B	0.41	0.59	1.2 ^[1]	0.296	0.755	0.672	
Zinc SW6020B	410	960		102	82.3	99.6	
Semivolatile Organics (µg/kg)							
2,4-Dimethylphenol SW8270E	29	29		127 UJ	99 UJ	111 UJ	
2-Methylphenol (o-Cresol) SW8270E	63	63		25.3 U	19.8 U	22.2 U	
4-Methylphenol (p-Cresol) SW8270E	670	670		80.8	57.7	60.6	
Pentachlorophenol SW8270E	360	690		127 UJ	99 UJ	111 UJ	
Phenol SW8270E	420	1200		19.1 J	21.7	448	1140
Polycyclic Aromatic Hydrocarbons (mg/kg-OC)							
2-Methylnaphthalene SW8270E	38	64		0.3974 J	0.1152 J	0.3533 J	
Acenaphthene SW8270E	16	57		1.6755 U	0.2623 U	1.2065 U	
Acenaphthylene SW8270E	66	66		1.6755 U	0.2623 U	1.2065 U	
Anthracene SW8270E	220	1200		1.6755 U	0.1417 J	0.538 J	
Benzo(a)anthracene SW8270E	110	270		0.6623 J	0.2887	1.5272	
Benzo(a)pyrene SW8270E	99	210		0.7086 J	0.2662	1.3859	
Benzo(g,h,i)perylene SW8270E	31	78		1.6755 U	0.2623 U	0.8967 J	
Chrysene SW8270E	110	460		1.1391 J	0.4993	2.8098	
Dibenzo(a,h)anthracene SW8270E	12	33		1.6755 U	0.2623 U	1.2065 U	
Fluoranthene SW8270E	160	1200		2.1126 J	0.5377 J	2.4946 J	
Fluorene SW8270E	23	79		1.6755 UJ	0.2623 UJ	1.2065 UJ	
Indeno(1,2,3-c,d)pyrene SW8270E	34	88		1.6755 U	0.2623 U	0.8967 J	
Naphthalene SW8270E	99	170		1.0795 J	0.2344 J	0.9511 J	
Phenanthrene SW8270E	100	480		1.2252 J	0.2861 J	1.3967 J	
Pyrene SW8270E	1000	1400		1.8079	0.5695	2.4348	
I otal Benzofluoranthenes (b, j, k) (U = 0)	230	450		1.5033 J	0.5735	3.3261	
Total HPAH (SMS) (U = 0)	960	5300		7.9338 J	2./351 J	15.//1/J	
10tal LPAH (SMS) (U = U)	370	/80		2.3046 J	0.6623 J	2.8859 J	
Polycyclic Aromatic Hydrocarbons (µg/kg)		1	1	25.2.11		22.2.11	
2 Mothylaaphthalono SW0270E	670	670		23.3 0	5.5 J 9 7 I	65 L	
2-Methyliaphthalene SW0270E	500	500		25.2.11	0.7 J	0.3 J	
Acenaphthilene SW0270E	1300	1300		25.5 0	19.6 0	22.2 0	
Anthracene SW8270E	960	960		25.5 0	10.7	991	
Benzo(a)anthracene SW8270E	1300	1600		10 I	21.8	28.1	
Benzo(a)pyrene SW8270F	1600	1600		10.7 J	20.1	25.5	
Benzo(bik)fluoranthenes SW8270E	1000	1000		22.7.1	43.3	61.2	
Benzo(a,h.i)pervlene SW8270F	670	720		253.U	19.8 U	16.5 J	
Chrysene SW8270F	1400	2800		17.2 J	37.7	51.7	
Dibenzo(a,h)anthracene SW8270F	230	230		25.3 U	19.8 U	22.2 U	
Fluoranthene SW8270F	1700	2500		31.9 J	40.6 J	45.9 J	
Fluorene SW8270E	540	540		25.3 UJ	19.8 UJ	22.2 UJ	
Indeno(1,2,3-c,d)pyrene SW8270E	600	690		25.3 U	19.8 U	16.5 J	

				Task	WWY5_Compliance	WWY5_Compliance	WWY5_Compliance	WWY5_Compliance
				Location ID	WW-MNR-05_21	WW-MNR-06_21	WW-MNR-07-SS_21	WW-MNR-07-SS_21
				Sample ID	WW-MNR-105-55-210/19	WW-MNR-06-SS-210/19	WW-MNR-07-SS-210719	WW-MNR-07-SS-210/19RE
				Sample Date	7/19/2021 0 12 cm	0 12 cm	//19/2021	//19/2021
				Deptn Commis Turns	0 - 12 cm	0 - 12 cm	0 - 12 cm	0 - 12 cm
				Sample Type	FD	N	N	N
				Matrix	SE	SE	SE	SE
		SMS Marine SCO or	SMS Marine CSL or	X	1237852.4	1239216.4	1238790.9	1238790.9
		SCO AET	CSL AET	Y Other	638105.6	642301.93	641461.66	641461.66
Naphthalene	SW8270E	2100	2100	0	16.3 J	17.7 J	17.5 J	
Phenanthrene	SW8270E	1500	1500		18.5 J	21.6 J	25.7 J	
Pyrene	SW8270E	2600	3300		27.3	43	44.8	
itoring		3200	3600		22.7 J	43.3	61.2	
Total HPAH (SMS) (U = 0)		12000	17000		119.8 J	206.5 J	290.2 J	
Total LPAH (SMS) (U = 0)		5200	5200		34.8 J	50 J	53.1 J	
Dioxin Furans (ng/kg)								
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)	E1613B						0.308 U	0.81 J
1,2,3,7,8-Pentachlorodibenzo-p-dioxin (PeCDD)	E1613B						4.08	3.57
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)	E1613B						8.41	6.65
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)	E1613B						22.3	16
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin (HxCDD)	E1613B						11.8	9.8
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin (HpCDD)	E1613B						477	359
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin (OCDD)	E1613B						3750	2330
Total Tetrachlorodibenzo-p-dioxin (TCDD)	E1613B						325	261
Total Pentachlorodibenzo-p-dioxin (PeCDD)	E1613B						255	235
Total Hexachlorodibenzo-p-dioxin (HxCDD)	E1613B						529	404
Total Heptachlorodibenzo-p-dioxin (HpCDD)	E1613B						936	731
2,3,7,8-Tetrachlorodibenzofuran (TCDF)	E1613B						8.61	6.12
1,2,3,7,8-Pentachlorodibenzofuran (PeCDF)	E1613B						2.1	1.67
2,3,4,7,8-Pentachlorodibenzofuran (PeCDF)	E1613B						1.93	1.43 J
1,2,3,4,7,8-Hexachlorodibenzofuran (HxCDF)	E1613B						8.36	4.78
1,2,3,6,7,8-Hexachlorodibenzofuran (HxCDF)	E1613B						2.86	1.99
1,2,3,7,8,9-Hexachlorodibenzofuran (HxCDF)	E1613B						3.16	1.29 J
2,3,4,6,7,8-Hexachlorodibenzofuran (HxCDF)	E1613B						1.69	2.67
1,2,3,4,6,7,8-Heptachlorodibenzofuran (HpCDF)	E1613B						76.7	53.7
1,2,3,4,7,8,9-Heptachlorodibenzofuran (HpCDF)	E1613B						5.41	3.25
1,2,3,4,6,7,8,9-Octachlorodibenzofuran (OCDF)	E1613B						206	138
Total Tetrachlorodibenzofuran (TCDF)	E1613B						35.9	26.3
Total Pentachlorodibenzofuran (PeCDF)	E1613B						29.7	23
Iotal Hexachlorodibenzoturan (HxCDF)	E1613B						124	84.8
Iotal Heptachlorodibenzofuran (HpCDF)	E1613B						286	195
Total Dioxin/Furan TEQ 2005 (Mammal) (U = 0)							18.2189	14.689 J
Total Dioxin/Furan TEQ 2005 (Mammal) (U = 1/2)		5.0 ^[2]		15 ^[3]			18.3729	14.689 J
Total Dioxin/Furan TEQ 2005 (Mammal) (U = 1/2) (EMPC included)		5.0 ^[2]		15 ^[3]			18.373	14.689 J
Total Dioxin/Furan TEQ 2005 (Mammal) (U = 0) (EMPC included)							18.219	14.689 J

				Task	WWY5_Compliance	WWY5_Compliance	WWY5_Compliance	WWY5_Compliance
				Location ID		WW-MINR-09_21		
				Sample ID	WW-IMINK-08-55-210719	WW-WINK-09-55-210/19	WW-WINR-09-55-210719RE	WW-WINK-10-55-210721
				Sample Date	// 19/2021	//19/2021	//19/2021 0.12 cm	//21/2021
				Sampla Typa	0 - 12 cm	0 - 12 cm	0 - 12 cm	0 - 12 cm
				Sample Type	N		N CF	N
				Matrix	5E	SE	SE	5E
		SMS Marine SCO or	SMS Marine CSL or	X	1239018.3	1240194.9	1240194.9	1241812.5
				Y	639147.28	640229.95	640229.95	643426.84
Conventional Parameters (%)		SCO ALI	CJEALI	Other				
Total organic carbon	SW9060AM				1.74	3.49		0.83
Total Solids	SM2540G				40.02	54.56		71.2
Metals (mg/kg)						•	-	
Copper	SW6020B	390	390		59.6	31.9		16.2 J
Mercury	SW7471B	0.41	0.59	1.2 ^[1]	0.264	0.276		0.0302
Zinc	SW6020B	410	960		117	71.3		59.4 J
Semivolatile Organics (µg/kg)								
2,4-Dimethylphenol	SW8270E	29	29		135 UJ	80 UJ		99.8 U
2-Methylphenol (o-Cresol)	SW8270E	63	63		27 U	16 U		20 U
4-Methylphenol (p-Cresol)	SW8270E	670	670		46.8	96.9		20 U
Pentachlorophenol	SW8270E	360	690		135 UJ	80 UJ		99.8 U
Phenol	SW8270E	420	1200		12 J	27.8		7.2 J
Polycyclic Aromatic Hydrocarbons (mg/kg-OC)								
2-Methylnaphthalene	SW8270E	38	64		1.5517 U	1.1232		2.4096 U
Acenaphthene	SW8270E	16	57		1.5517 U	0.4928		0.7711 J
Acenaphthylene	SW8270E	66	66		1.5517 U	0.6905		2.4096 U
Anthracene	SW8270E	220	1200		1.5517 U	0.8797		2.1446 J
Benzo(a)anthracene	SW8270E	110	270		1.3563 J	1.639		5.012
Benzo(a)pyrene	SW8270E	99	210		1.2874 J	1.1547		5.6265
Benzo(g,h,i)perylene	SW8270E	31	78		1.5517 U	0.7822		2.5783 J
Chrysene	SW8270E	110	460		2.0345	3.381		8.4578
Dibenzo(a,h)anthracene	SW8270E	12	33		1.5517 U	0.4585 U		2.4096 U
Fluoranthene	SW8270E	160	1200		2.908 J	5.817 J		9.4217
Fluorene	SW8270E	23	79		1.5517 UJ	0.7077 J		2.4096 U
Indeno(1,2,3-c,d)pyrene	SW8270E	34	88		1.5517 U	0.6762		2.759
Naphthalene	SW8270E	99	170		0.6092 J	6.046		0.759 J
Phenanthrene	SW8270E	100	480		1.1264 J	3.123 J		4.6024
Pyrene	SW8270E	1000	1400		2.7529	4.928		9.6024
Total Benzofluoranthenes (b,j,k) (U = 0)		230	450		2.3678 J	2.7822		13.253
Total HPAH (SMS) $(U = 0)$		960	5300		12.7069 J	21.1605 J		56.7108 J
Total LPAH (SMS) (U = 0)		370	780		1.7356 J	11.9398 J		8.2771 J
Polycyclic Aromatic Hydrocarbons (µg/kg)	000=0=	1	, i					
1-Methylnaphthalene	SW8270E				270	21		20 0
2-Methylnaphthalene	SW8270E	670	670		270	39.2		20 0
Acenaphthene	SW8270E	500	500		270	17.2		6.4 J
Acenaphthylene	SW8270E	1300	1300		270	24.1		20 0
Anthracene	SW8270E	960	960		270	30.7		17.8 J
Benzo(a)anthracene	SW8270E	1300	1600		23.6 J	57.2		41.6
Benzo(a)pyrene	SW8270E	1600	1600		22.4 J	40.3		46.7
Benzo(b,J,K)fluoranthenes	SW8270E	670	700		41.2 J	97.1		110
Benzo(g,h,i)perylene	SW8270E	6/0	/20		27.0	27.3		21.4 J
	SW8270E	1400	2800		35.4			/0.2
Dibenzo(a,n)anthracene	SW8270E	230	230		27.0	16 U		20 0
Fluoranthene	SW8270E	1/00	2500		50.6 J	203 J		/8.2
Fluorene	SW82/UE	540	540		27 UJ	24./ J		20 0
Indeno(1,2,3-c,d)pyrene	SW8270E	600	690		27 U	23.6		22.9
				Task Location ID	WWY5_Compliance	WWY5_Compliance	WWY5_Compliance WW-MNR-09-21	WWY5_Compliance WW-MNR-10_21
--	---------	--------------------	-------------------	---------------------	---------------------	---------------------	---------------------------------	---------------------------------
				Sample ID	WW-MNR-08-SS-210719	WW-MNR-09-SS-210719	WW-MNR-09-SS-210719RF	WW-MNR-10-SS-210721
				Sample Date	7/19/2021	7/19/2021	7/19/2021	7/21/2021
				Depth	0 - 12 cm	0 - 12 cm	0 - 12 cm	0 - 12 cm
				Sample Type	N	N	N	N
				Matrix	SE	SE	SE	SE
				x	1239018.3	1240194.9	1240194.9	1241812.5
		SMS Marine SCO or	SMS Marine CSL or	Y	639147.28	640229.95	640229.95	643426.84
		SCO AET	CSL AET	Other				
Naphthalene	SW8270E	2100	2100		10.6 J	211		6.3 J
Phenanthrene	SW8270E	1500	1500		19.6 J	109 J		38.2
Pyrene	SW8270E	2600	3300		47.9	172		79.7
itoring		3200	3600		41.2 J	97.1		110
Total HPAH (SMS) (U = 0)		12000	17000		221.1 J	738.5 J		470.7 J
Total LPAH (SMS) (U = 0)		5200	5200		30.2 J	416.7 J		68.7 J
Dioxin Furans (ng/kg)			1					
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)	E1613B					0.742 J	0.773 J	
1,2,3,7,8-Pentachlorodibenzo-p-dioxin (PeCDD)	E1613B					4.06	4.41	
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)	E1613B					5.66	5.19	
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)	E1613B					26.4	25.2	
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin (HxCDD)	E1613B					10.3	9.91	
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin (HpCDD)	E1613B					680	750	
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin (OCDD)	E1613B					5290 J	5330	
Total Tetrachlorodibenzo-p-dioxin (TCDD)	E1613B					81.2	96.6	
Total Pentachlorodibenzo-p-dioxin (PeCDD)	E1613B					82.9	94.5	
Total Hexachlorodibenzo-p-dioxin (HxCDD)	E1613B					260	270	
Total Heptachlorodibenzo-p-dioxin (HpCDD)	E1613B					1450	1640	
2,3,7,8-Tetrachlorodibenzofuran (TCDF)	E1613B					4.2	3.91 J	
1,2,3,7,8-Pentachlorodibenzofuran (PeCDF)	E1613B					2.36	2.11	
2,3,4,7,8-Pentachlorodibenzofuran (PeCDF)	E1613B					2.41	2.32	
1,2,3,4,7,8-Hexachlorodibenzofuran (HxCDF)	E1613B					10.7	10.3	
1,2,3,6,7,8-Hexachlorodibenzofuran (HxCDF)	E1613B					3.77	3.53	
1,2,3,7,8,9-Hexachlorodibenzofuran (HxCDF)	E1613B					4.01	4	
2,3,4,6,7,8-Hexachlorodibenzofuran (HxCDF)	E1613B					2.35 J	5.62	
1,2,3,4,6,7,8-Heptachlorodibenzofuran (HpCDF)	E1613B					112	114	
1,2,3,4,7,8,9-Heptachlorodibenzofuran (HpCDF)	E1613B					6.86	6.98	
1,2,3,4,6,7,8,9-Octachlorodibenzofuran (OCDF)	E1613B					299	286	
Total Tetrachlorodibenzofuran (TCDF)	E1613B					24.1	25	
Total Pentachlorodibenzofuran (PeCDF)	E1613B					41.3	38.3	
Total Hexachlorodibenzofuran (HxCDF)	E1613B					192	213	
Total Heptachlorodibenzofuran (HpCDF)	E1613B					421	427	
Total Dioxin/Furan TEQ 2005 (Mammal) (U = 0)						22.0001 J	23.1029 J	
Total Dioxin/Furan TEQ 2005 (Mammal) (U = 1/2)		5.0 ^[2]		15 ^[3]		22.0001 J	23.1029 J	
Total Dioxin/Furan TEQ 2005 (Mammal) (U = 1/2) (EMPC included)		5.0 ^[2]		15 ^[3]		22 J	23.103 J	
Total Dioxin/Furan TEQ 2005 (Mammal) (U = 0) (EMPC included)						22 J	23.103 J	

				Task	WWY5_Compliance	WWY5_Compliance	WWY5_Compliance	WWY5_Compliance
				Location ID	WW-MNR-10_21	WW-MNR-11_21	WW-P1CM-01_21	WW-P1CM-02_21
				Sample ID	WW-MNR-110-SS-210721	WW-MNR-11-SS-210721	WW-P1CM-01-SS-210720	WW-P1CM-02-SS-210720
				Sample Date	7/21/2021	7/21/2021	7/20/2021	7/20/2021
				Depth	0 - 12 cm	0 - 12 cm	0 - 12 cm	0 - 12 cm
				Sample Type	FD	N	N	N
				Matrix	SE	SE	SE	SE
				Х	1241812.5	1241961.8	1239687.3	1239885.1
		SMS Marine SCO or	SMS Marine CSL or	Y	643426.84	643289.24	641217.34	641364.24
Conventional Devenators (%)		SCO AET	CSL AET	Other				
Total organic carbon	SW/9060AM		[]		0.94	4 69	1.96	1 75
Total Solids	SM2540G				75 29	38.04	22.86	18 53
Metals (mg/kg)	511125 100					50.01		10000
Copper	SW6020B	390	390		17.6 J	67.4 J	45.5	47.4
Mercury	SW7471B	0.41	0.59	1.2 ^[1]	0.0246 J	0.376	0.552	0.31
Zinc	SW6020B	410	960		78.8 J	182 J	87.3	89.8
Semivolatile Organics (µg/kg)	000202					1		
2,4-Dimethylphenol	SW8270E	29	29		99.8 U	99.9 U	397 U	474 U
2-Methylphenol (o-Cresol)	SW8270E	63	63		20 U	20 U	79.5 U	94.8 U
4-Methylphenol (p-Cresol)	SW8270E	670	670		20	42.5	79.5 U	94.8 U
Pentachlorophenol	SW8270E	360	690		99.8 U	99.9 U	397 U	474 U
Phenol	SW8270E	420	1200		23.8	25.2	23.6 J	35.4 J
Polycyclic Aromatic Hydrocarbons (mg/kg-OC)								
2-Methylnaphthalene	SW8270E	38	64		0.6277 J	0.4968	1.2245 J	5.4171 U
Acenaphthene	SW8270E	16	57		0.6064 J	0.4691	1.1378 J	5.4171 U
Acenaphthylene	SW8270E	66	66		2.1277 U	0.6439	4.0561 U	5.4171 U
Anthracene	SW8270E	220	1200		1.5106 J	4.499	2.0561 J	3.64 J
Benzo(a)anthracene	SW8270E	110	270		3.4255	5.501	5.306	7.714
Benzo(a)pyrene	SW8270E	99	210		3.5319	5.352	4.4847	4.0629 J
Benzo(g,h,ı)perylene	SW8270E	31	/8		1.766 J	1.9424	4.0561 U	5.41/1 U
Chrysene	SW8270E	110	460		4.8298	10.597	10.255	11.429
Dibenzo(a,n)anthracene	SW8270E	12	33		2.1277 0	0.6951	4.05610	5.41710
Fluorancie	SW0270E	100	1200		2 1277 11	0.0010	9.233	E 4171
Indeno(1,2,3-c,d)pyropo	SW8270E	23	88		1 6596 1	2 122	4.05010	5.41710
Nanhthalene	SW8270E	99	170		0.7872 1	1 1578	1 3724 1	1 1714
Phenanthrene	SW8270E	100	480		3 2128	4 243	5 816	8 571
Pyrene	SW8270E	1000	1400		10.638	10.64	8.776	10.114
Total Benzofluoranthenes (b.i.k) (U = 0)	001.01	230	450		8.9574	13.284	10.816	9.143 J
Total HPAH (SMS) (U = 0)		960	5300		45.3617 J	58.8849	48.8724	53.5486 J
Total LPAH (SMS) $(U = 0)$		370	780		6.117 J	11.9147	10.3827 J	13.3829 J
Polycyclic Aromatic Hydrocarbons (µg/kg)								
1-Methylnaphthalene	SW8270E				20 U	12.7 J	79.5 U	94.8 U
2-Methylnaphthalene	SW8270E	670	670		5.9 J	23.3	24 J	94.8 U
Acenaphthene	SW8270E	500	500		5.7 J	22	22.3 J	94.8 U
Acenaphthylene	SW8270E	1300	1300		20 U	30.2	79.5 U	94.8 U
Anthracene	SW8270E	960	960		14.2 J	211	40.3 J	63.7 J
Benzo(a)anthracene	SW8270E	1300	1600		32.2	258	104	135
Benzo(a)pyrene	SW8270E	1600	1600		33.2	251	87.9	71.1 J
Benzo(b,j,k)fluoranthenes	SW8270E				84.2	623	212	160 J
Benzo(g,h,i)perylene	SW8270E	670	720		16.6 J	91.1	79.5 U	94.8 U
Chrysene	SW8270E	1400	2800		45.4	497	201	200
Dibenzo(a,h)anthracene	SW8270E	230	230		20 0	32.6	/9.5 U	94.8 U
Fluoranthene	SW82/UE	1/00	2500		99.2	410		194
Fluorene	SW82/UE	540	540			42.3	79.5 U	94.8 U
паено(1,2,3-с,а)ругене	3002/UE	000	090		I 0.C J	100	19.5 U	94.0 U

				Task	WWY5_Compliance	WWY5_Compliance	WWY5_Compliance	WWY5_Compliance
				Location ID	WW-MNR-10_21	WW-MNR-11_21	WW-P1CM-01_21	WW-P1CM-02_21
				Sample ID	WW-MNR-110-SS-210721	WW-MNR-11-SS-210721	WW-P1CM-01-SS-210720	WW-P1CM-02-SS-210720
				Sample Date	7/21/2021	7/21/2021	7/20/2021	7/20/2021
				Depth	0 - 12 cm	0 - 12 cm	0 - 12 cm	0 - 12 cm
				Sample Type	FD	N	N	N
				Matrix	SE	SE	SE	SE
				х	1241812.5	1241961.8	1239687.3	1239885.1
		SMS Marine SCO or	SMS Marine CSL or	Y	643426.84	643289.24	641217.34	641364.24
		SCO AET	CSL AET	Other				
Naphthalene	SW8270E	2100	2100		7.4 J	54.3	26.9 J	20.5 J
Phenanthrene	SW8270E	1500	1500		30.2	199	114	150
Pyrene	SW8270E	2600	3300		100	499	172	177
itoring		3200	3600		84.2	623	212	160 J
Total HPAH (SMS) (U = 0)		12000	17000		426.4 J	2761.7	957.9	937.1 J
Total LPAH (SMS) (U = 0)		5200	5200		57.5 J	558.8	203.5 J	234.2 J
Dioxin Furans (ng/kg)		-						
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)	E1613B					1.35 J		1.12 U
1,2,3,7,8-Pentachlorodibenzo-p-dioxin (PeCDD)	E1613B					11.7		2.77 J
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)	E1613B					16.6		6.06
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)	E1613B					62		18.6
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin (HxCDD)	E1613B					39.2		10
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin (HpCDD)	E1613B					1490		471
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin (OCDD)	E1613B					11800 J		3970
Total Tetrachlorodibenzo-p-dioxin (TCDD)	E1613B					220		172
Total Pentachlorodibenzo-p-dioxin (PeCDD)	E1613B					265		169
Total Hexachlorodibenzo-p-dioxin (HxCDD)	E1613B					747		346
Total Heptachlorodibenzo-p-dioxin (HpCDD)	E1613B					3280		1060
2,3,7,8-Tetrachlorodibenzofuran (TCDF)	E1613B					8.02		5.68
1,2,3,7,8-Pentachlorodibenzofuran (PeCDF)	E1613B					4.14		1.64
2,3,4,7,8-Pentachlorodibenzofuran (PeCDF)	E1613B					3.73		1.57
1,2,3,4,7,8-Hexachlorodibenzofuran (HxCDF)	E1613B					14.8		5.49
1,2,3,6,7,8-Hexachlorodibenzofuran (HxCDF)	E1613B					7.82		1.92
1,2,3,7,8,9-Hexachlorodibenzofuran (HxCDF)	E1613B					4.64		2.27
2,3,4,6,7,8-Hexachlorodibenzofuran (HxCDF)	E1613B					7.4 J		2.25
1,2,3,4,6,7,8-Heptachlorodibenzofuran (HpCDF)	E1613B					218		58.2
1,2,3,4,7,8,9-Heptachlorodibenzofuran (HpCDF)	E1613B					13.5 J		4.15 J
1,2,3,4,6,7,8,9-Octachlorodibenzofuran (OCDF)	E1613B					556		161
Total Tetrachlorodibenzofuran (TCDF)	E1613B					48		9.83
Total Pentachlorodibenzofuran (PeCDF)	E1613B					93.9		18.7
Total Hexachlorodibenzofuran (HxCDF)	E1613B					312		92.7
Total Heptachlorodibenzofuran (HpCDF)	E1613B					673		212
Total Dioxin/Furan TEQ 2005 (Mammal) (U = 0)						51.263 J		15.09 J
Total Dioxin/Furan TEQ 2005 (Mammal) (U = 1/2)		5.0 ^[2]		15 ^[3]		51.263 J		15.65 J
Total Dioxin/Furan TEQ 2005 (Mammal) (U = 1/2) (EMPC included)		5.0 ^[2]		15 ^[3]		51.26 J		15.65 J
Total Dioxin/Furan TEQ 2005 (Mammal) (U = 0) (EMPC included)						51.26 J		15.09 J

				Task	WWY5_Compliance	WWY5_Compliance	WWY5_Compliance	WWY5_Compliance
				Location ID	WW-P1CM-02_21	WW-P1CM-03_21	WW-P1CM-03_21	WW-P1CM-04_21
				Sample ID	WW-P1CM-02-SS-210720RE	WW-P1CM-03-SS-210726	WW-P1CM-103-SS-210726	WW-P1CM-04-SS-210726
				Sample Date	7/20/2021	7/26/2021	7/26/2021	7/26/2021
				Depth	0 - 12 cm	0 - 12 cm	0 - 12 cm	0 - 12 cm
				Sample Type	N	N	FD	N
				Matrix	SE	SE	SE	SE
				х	1239885.1	1240497.3	1240497.3	1240689.6
		SMS Marine SCO or	SMS Marine CSL or	Y	641364.24	641293.8	641293.8	641404.7
		SCO AET	CSL AET	Other				
Conventional Parameters (%)	CIMOOCOANA					4.52	1.24	0.05
Total organic carbon	SW9060AIVI					1.52 52.27	1.31	0.85
Metals (mg/kg)	310123400					52.57	55.54	00.09
Copper	SW/6020B	390	390			38.8	33.3	19.2
	3000200	550	550	1 2[1]		50.0	33.5	15.2
Mercury	SW7471B	0.41	0.59	1.2		0.29	0.195	1.0
	SW6020B	410	960			77.8	67.7	46.2
Semivolatile Organics (µg/kg)	01/02705	20	20	1			100.11	
2,4-Dimethylphenol	SW8270E	29	29			4./J	100 0	99.8 0
2-Methylphenol (o-Cresol)	SW8270E	63	63			20.0	20 0	200
4-Methylphenol (p-Cresol)	SVV8270E	670	670			100 111	20.8	91
Pentachiorophenoi	SVV0270E	300	1200			11 7 1	11.2 1	99.6 UJ
Polycyclic Aromatic Hydrocarbons (mg/kg-OC)	300270E	420	1200			11.75	11.25	11.85
2-Methylnanhthalene	SW/8270F	38	64			0.9539.1	0.8473 1	1 2353 1
Acenanhthene	SW8270E	16	57			0.6513 J	0.6336 J	0 7176 J
Acenaphthylene	SW8270E	66	66			0.6447 J	0.6412 J	2 3529 []
Anthracene	SW8270E	220	1200			1.7039	1.8092	1.5176 J
Benzo(a)anthracene	SW8270E	110	270			3.9276	4.1832	3.6235
Benzo(a)pyrene	SW8270E	99	210			3.1908	2.9618	2.6824
Benzo(g,h,i)perylene	SW8270E	31	78			2.5132	2.0687	1.6588 J
Chrysene	SW8270E	110	460			7.763	8.321	5.0941
Dibenzo(a,h)anthracene	SW8270E	12	33			1.3158 U	1.5267 U	2.3529 U
Fluoranthene	SW8270E	160	1200			9.145	9.924	9.9882
Fluorene	SW8270E	23	79			1.3092 J	1.3511 J	2.3529 U
Indeno(1,2,3-c,d)pyrene	SW8270E	34	88			2.3092	2.1374	2.3529 U
Naphthalene	SW8270E	99	170			1.4276	1.4275 J	1.1882 J
Phenanthrene	SW8270E	100	480			3.9408	4.0992	4.1765
Pyrene	SW8270E	1000	1400			7.632	8.015	9.5529
I otal Benzotluoranthenes (b,j,k) (U = 0)		230	450			9.079	8.55	7.7647
1 otal HPAH (SMS) (U = 0)		960	5300			45.5592	46.1603	40.3647 J
1 otal LPAH (SMS) (U = 0)		370	/80			9.6776 J	9.9618 J	7.6 J
1 Methylaphthelene	C\\/0270E					0.2.1		7.4.1
	SW0270E	670	670			9.5 J	95	7.4 J
	SW8270E	500	500			991	831	611
Acenaphthylene	SW/8270E	1300	1300			981	841	2011
Anthracene	SW8270E	960	960			25.9	23.7	12.9 J
Benzo(a)anthracene	SW8270F	1300	1600			59.7	54.8	30.8
Benzo(a)pyrene	SW8270E	1600	1600			48.5	38.8	22.8
Benzo(b,i,k)fluoranthenes	SW8270E					138	112	66
Benzo(g,h,i)perylene	SW8270E	670	720			38.2	27.1	14.1 J
Chrysene	SW8270E	1400	2800			118	109	43.3
Dibenzo(a,h)anthracene	SW8270E	230	230			20 U	20 U	20 U
Fluoranthene	SW8270E	1700	2500			139	130	84.9
Fluorene	SW8270E	540	540			19.9 J	17.7 J	20 U
Indeno(1,2,3-c,d)pyrene	SW8270E	600	690			35.1	28	20 U

				Task	WWY5_Compliance	WWY5_Compliance	WWY5_Compliance	WWY5_Compliance
				Location ID	WW-P1CM-02_21	WW-P1CM-03_21	WW-P1CM-03_21	WW-P1CM-04_21
				Sample ID	WW-P1CM-02-SS-210720RE	WW-P1CM-03-SS-210726	WW-P1CM-103-SS-210726	WW-P1CM-04-SS-210726
				Sample Date	7/20/2021	7/26/2021	//26/2021	//26/2021
				Depth	0 - 12 cm	0 - 12 cm	0 - 12 cm	0 - 12 cm
				Sample Type	N	N	FD	N
				Matrix	SE	SE	SE	SE
		CMC Marine CCO ar	CMC Maxima CCL ar	х	1239885.1	1240497.3	1240497.3	1240689.6
		Sivis Marine SCO or	Sivis Marine CSL or	Y	641364.24	641293.8	641293.8	641404.7
Naukthologo	CW0270F			Other		21.7	10.7.1	10.1.1
Phenaphthrape	SW8270E	2100	2100			59.9	18.7 J	10.1 J 35 5
Purena	SW8270E	2600	3300			116	105	81.2
itoring	3W0270L	3200	3600			138	112	66
Total HPAH (SMS) ($U = 0$)		12000	17000			692.5	604.7	343.1 J
Total LPAH (SMS) $(U = 0)$		5200	5200			147.1 J	130.5 J	64.6 J
Dioxin Eurans (ng/kg)								
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)	E1613B				0.12 J			0.113 U
1,2,3,7,8-Pentachlorodibenzo-p-dioxin (PeCDD)	E1613B				0.709			0.829 J
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)	E1613B				1.31			0.985 J
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)	E1613B				3.67			4
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin (HxCDD)	E1613B				2.14			2.06
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin (HpCDD)	E1613B				98			92.3
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin (OCDD)	E1613B				680			762
Total Tetrachlorodibenzo-p-dioxin (TCDD)	E1613B				47.6			9.76
Total Pentachlorodibenzo-p-dioxin (PeCDD)	E1613B				42.2			9.64
Total Hexachlorodibenzo-p-dioxin (HxCDD)	E1613B				83.4			42.6
Total Heptachlorodibenzo-p-dioxin (HpCDD)	E1613B				212			210
2,3,7,8-Tetrachlorodibenzofuran (TCDF)	E1613B				1.32			1.17
1,2,3,7,8-Pentachlorodibenzofuran (PeCDF)	E1613B				0.329			0.925 J
2,3,4,7,8-Pentachlorodibenzofuran (PeCDF)	E1613B				0.284			0.473 J
1,2,3,4,7,8-Hexachlorodibenzoturan (HxCDF)	E1613B				1.13			2.6
1,2,3,6,7,8-Hexachlorodibenzofuran (HxCDF)	E1613B				0.429			0.882 J
1,2,3,7,8,9-Hexachlorodibenzoturan (HxCDF)	E1613B				0.339			0.564 J
2,3,4,6,7,8-Hexachiorodibenzofuran (HxCDF)	E1013B				0.711			0.516 J
1,2,3,4,0,7,0-Heptachlorodibenzofuran (HpCDF)	E1013D		<u> </u>		0.762			1 12 J
1,2,3,4,7,0,9-Heptachlorodibenzofuran (HPCDF)	E1013D E1612B				29.4			1.15 J 25 6
	E1613B				5 47			3 01
	E1613B				5.47			7.07
	E1613B				21.8			23.2
Total Heptachlorodibenzofuran (HxCDF)	E1613B				43.4			41.6
Total Dioxin/Euran TEO 2005 (Mammal) $(U = 0)$	2.0100				3.35112 J			3,57993 J
Total Dioxin/Furan TEQ 2005 (Mammal) ($U = 1/2$)		5.0 ^[2]		15 ^[3]	3.35112 J			3.63643 J
Total Dioxin/Furan TEQ 2005 (Mammal) ($U = 1/2$) (EMPC included)		5.0 ^[2]		15 ^[3]	3.351 J			3.636 J
Total Dioxin/Furan TEQ 2005 (Mammal) ($U = 0$) (EMPC included)		1			3.351 J			3.58 J
							1	

				Task	WWY5_Compliance	WWY5_Compliance	WWY5_Compliance	WWY5_Compliance
				Location ID	WW-P1CM-05_21	WW-P1CM-06_21	WW-P1CM-07_21	WW-P1CM-09_21
				Sample ID	WW-P1CM-05-SS-210720	WW-P1CM-06-SS-210721	WW-P1CM-07-SS-210721	WW-P1CM-09-SS-210721
				Sample Date	7/20/2021	7/21/2021	7/21/2021	7/21/2021
				Depth	0 - 12 cm	0 - 12 cm	0 - 12 cm	0 - 12 cm
				Sample Type	N	N	N	N
				Matrix	SE	SE	SE	SE
				х	1240813.3	1241508.5	1241351.8	1241714.1
		SMS Marine SCO or	SIMS Marine CSL or	Y	641877.67	642842	642988.47	643039.13
Conventional Parameters (%)		SCO AET	CSL AET	Other				
Total organic carbon	SW9060AM				1.17	3.86	3.46	4.89
Total Solids	SM2540G				58.32	41.02	39.54	39.11
Metals (mg/kg)							1	
Copper	SW6020B	390	390		23.1	52.9 J	52.5 J	63.2 J
Mercury	SW7471B	0.41	0.59	1.2 ^[1]	0.278	0.404	0.266	0.368
Zinc	SW/6020B	410	960		58.1	135 1	119	154
Semivolatile Organics (µg/kg)	51100200	410	500		50.1	1555	1135	1549
2.4-Dimethylphenol	SW8270F	29	29		99.9 U	99.9 ()	100 U	100 U
2-Methylphenol (o-Cresol)	SW8270E	63	63		20 U	20 U	20 U	20 U
4-Methylphenol (p-Cresol)	SW8270E	670	670		11.5 J	119	123	99.9
Pentachlorophenol	SW8270E	360	690		99.9 U	99.9 U	100 U	100 U
Phenol	SW8270E	420	1200		6.4 J	21.5	88	72
Polycyclic Aromatic Hydrocarbons (mg/kg-OC)		•				•		
2-Methylnaphthalene	SW8270E	38	64		0.9915 J	0.7953	3.873	0.3436 J
Acenaphthene	SW8270E	16	57		0.8889 J	0.9301	0.3931 J	0.4029 J
Acenaphthylene	SW8270E	66	66		1.2821 J	1	0.3757 J	0.411
Anthracene	SW8270E	220	1200		3.359	3.575	1.1561	1.2638
Benzo(a)anthracene	SW8270E	110	270		9.915	10.855	2.89	3.681
Benzo(a)pyrene	SW8270E	99	210		8.1026	7.306	2.685	3.272
Benzo(g,h,i)perylene	SW8270E	31	78		4.5385	2.3834	1.3208	1.4908
Chrysene	SW8270E	110	460		19.658	16.244	5.405	6.524
Dibenzo(a,h)anthracene	SW8270E	12	33		1.9145	1.2047	0.578 U	0.5215
Fluoranthene	SW8270E	160	1200		19.145	27.979	6.561	7.669
Fluorene	SW8270E	23	79		1.3077 J	1.399	0.7803	0.6503
Indeno(1,2,3-c,d)pyrene	SW8270E	34	88		4.8205	2.72	1.3555	1.5072
Naphthalene	SW8270E	99	170		1.2137 J	1.9093	3.295	0.6074
Phenanthrene	SW8270E	100	480		6.5214	7.461	2.977	2.699
Pyrene	SW8270E	1000	1400		21.795	24.456	6.185	7.444
Total Benzofluoranthenes (b,j,k) (U = 0)		230	450		25.043	17.176	6.763	7.812
Total HPAH (SMS) (U = 0)		960	5300		114.9316	110.3238	33.1647	39.9202
Iotal LPAH (SMS) (U = 0)		370	/80		14.5726 J	16.2746	8.9769 J	6.0348 J
Polycyclic Aromatic Hydrocarbons (µg/kg)	01/00705					4641	(a 7	<u> </u>
I-Methylnaphthalene	SW8270E	670	670		6.6 J	16.1 J	63.7	9.4 J
2-Methylnaphthalene	SW8270E	670	670		11.6 J	30.7	134	16.8 J
Acenaphthelene	SW8270E	500	500		10.4 J	35.9	13.6 J	19.7 J
Acenaphthylene	SW8270E	1300	1300		15 J	38.0	13 J	20.1
Antinacene Ronzo(a)apthracopo	SW0270E	1200	900		55.5	130	40	180
Benzo(a)nyrene	SW02/UE C\N/Q770E	1600	1600			41 7 292	02 Q	160
Benzo(bik)fluoranthenes	SW0270E	1000	1000		202	663	32.5	282
Banzo(a, h.i)nondana	SVV02/UE SVV02/UE	670	720		273 52 1	005	<u> </u>	<u> </u>
Chrysene	SW0270E SW0270F	1/00	2800		220	627	187	310
Dibenzo(a h)anthracene	SW8270E	230	230		22.4	46 5	2011	25.5
Fluoranthene	SW0270E	1700	2500		22.4	1080	200	375
Fluorene	SW8270F	540	540		15.3 J	54	27	31.8
Indeno(1,2,3-c,d)pyrene	SW8270F	600	690		56.4	105	46.9	73.7
	002/02							

				Task	WWY5_Compliance	WWY5_Compliance	WWY5_Compliance	WWY5_Compliance
				Location ID	WW-P1CM-05_21	WW-P1CM-06_21	WW-P1CM-07_21	WW-P1CM-09_21
				Sample ID	WW-P1CM-05-SS-210720	WW-P1CM-06-SS-210721	WW-P1CM-07-SS-210721	WW-P1CM-09-SS-210721
				Sample Date	7/20/2021	7/21/2021	7/21/2021	7/21/2021
				Depth	0 - 12 cm			
				Sample Type	N	N	N	N
				Matrix	SE	SE	SE	SE
		CMC Marine CCO an	CMC Maxima CCL or	x	1240813.3	1241508.5	1241351.8	1241714.1
		Sivis Marine SCO or	Sivis Marine CSL or	Y	641877.67	642842	642988.47	643039.13
	01400705	SCO AEI		Other				
Naphthalene	SW8270E	2100	2100		14.2 J	/3./	114	29.7
Prienanuniene	SW0270E	1500	2200		/0.3	200	105	152
	300270E	2000	2600		233	662	214	304
Total HDAH (SMS) ($II = 0$)		12000	17000		1244 7	005 4259 5	234 1147 E	302
Total IPAH (SMS) $(U = 0)$		5200	5200		170.5 1	4250.5	310.6 1	205.1
$\mathbf{D}_{\text{invin}} = \mathbf{L}_{\text{invin}} \left(\mathbf{D}_{\text{inv}} \right)$		5200	5200		170.5 5	020.2	510.05	295.15
2 3 7 8-Tetrachlorodihenzo-n-dioxin (TCDD)	F1613B					0.414 U		
12378-Pentachlorodibenzo-p-dioxin (PeCDD)	E1613B					5.07 J		
123478-Hexachlorodibenzo-n-dioxin (HxCDD)	E1613B					7.98		
1.2.3.6.7.8-Hexachlorodibenzo-p-dioxin (HxCDD)	E1613B					30.4		
1.2.3.7.8.9-Hexachlorodibenzo-p-dioxin (HxCDD)	E1613B					16.5		
1.2.3.4.6.7.8-Heptachlorodibenzo-p-dioxin (HpCDD)	E1613B					854		
1.2.3.4.6.7.8.9-Octachlorodibenzo-p-dioxin (OCDD)	E1613B					7500 J		
Total Tetrachlorodibenzo-p-dioxin (TCDD)	E1613B					155		
Total Pentachlorodibenzo-p-dioxin (PeCDD)	E1613B					184		
Total Hexachlorodibenzo-p-dioxin (HxCDD)	E1613B					462		
Total Heptachlorodibenzo-p-dioxin (HpCDD)	E1613B					2090		
2,3,7,8-Tetrachlorodibenzofuran (TCDF)	E1613B					4.19 J		
1,2,3,7,8-Pentachlorodibenzofuran (PeCDF)	E1613B					1.97 J		
2,3,4,7,8-Pentachlorodibenzofuran (PeCDF)	E1613B					1.79		
1,2,3,4,7,8-Hexachlorodibenzofuran (HxCDF)	E1613B					7.01		
1,2,3,6,7,8-Hexachlorodibenzofuran (HxCDF)	E1613B					3.92		
1,2,3,7,8,9-Hexachlorodibenzofuran (HxCDF)	E1613B					2.86		
2,3,4,6,7,8-Hexachlorodibenzofuran (HxCDF)	E1613B					3.24		
1,2,3,4,6,7,8-Heptachlorodibenzofuran (HpCDF)	E1613B					109		
1,2,3,4,7,8,9-Heptachlorodibenzofuran (HpCDF)	E1613B					7.89 J		
1,2,3,4,6,7,8,9-Octachlorodibenzofuran (OCDF)	E1613B					342		
Total Tetrachlorodibenzofuran (TCDF)	E1613B					18.6		
Total Pentachlorodibenzofuran (PeCDF)	E1613B					43.1		
Total Hexachlorodibenzofuran (HxCDF)	E1613B					156		
Total Heptachlorodibenzofuran (HpCDF)	E1613B					374		
Total Dioxin/Furan TEQ 2005 (Mammal) (U = 0)						25.3376 J		
Total Dioxin/Furan TEQ 2005 (Mammal) (U = 1/2)		5.0 ^[2]		15 ^[3]		25.5446 J		
Total Dioxin/Furan TEQ 2005 (Mammal) (U = 1/2) (EMPC included)		5.0 ^[2]		15 ^[3]		25.545 J		
Total Dioxin/Furan TEQ 2005 (Mammal) (U = 0) (EMPC included)						25.338 J		

				Task	WWY5_Compliance	WWY5_Compliance	WWY5_Compliance
				Location ID	WW-P1CM-10_21	WW-P1CM-11_21	WW-P1CM-11_21
				Sample ID	WW-P1CM-10-SS-210721	WW-P1CM-11-SS-0-12-210720	WW-P1CM-11-SS-0-2-210720
				Sample Date	7/21/2021	7/20/2021	7/20/2021
				Depth	0 - 12 cm	0 - 12 cm	0 - 2 cm
				Sample Type	N	N	N
				Matrix	SE	SE	SE
				х	1241559.9	1240814.1	1240814.1
		SMS Marine SCO or	SMS Marine CSL or	Y	643183.57	642753.7	642753.7
		SCO AET	CSL AET	Other			
Conventional Parameters (%)							
Total organic carbon	SW9060AM				4.7	3.78	4.27
Total Solids	SM2540G				36.63	36.34	32.19
Metals (mg/kg)	0.00000	200	200				
Copper	SW6020B	390	390	[1]	57.6 J	83.4	74.9
Mercury	SW7471B	0.41	0.59	1.2	0.3	0.301	0.327
Zinc	SW6020B	410	960		158 J	163	148
Semivolatile Organics (µg/kg)							
2,4-Dimethylphenol	SW8270E	29	29		100 U	100 U	100 U
2-Methylphenol (o-Cresol)	SW8270E	63	63		20 U	20 U	20 U
4-Methylphenol (p-Cresol)	SW8270E	670	670		53.9	36.2	39.2
Pentachlorophenol	SW8270E	360	690		100 U	100 U	100 U
Phenol	SW8270E	420	1200		40.3	17.2 J	19 J
Polycyclic Aromatic Hydrocarbons (mg/kg-OC)							
2-Methylnaphthalene	SW8270E	38	64		0.2404 J	0.4048 J	0.4895
Acenaphthene	SW8270E	16	5/		0.3936 J	0.254 J	0.4052 J
Acenaphthylene	SW8270E	66	66		0.2681 J	0.3624 J	0.3396 J
Anthracene Devec (a) anthracene	SW8270E	220	1200		1.1064	1.2672	1.8267
Benzo(a)anthracene	SW8270E	110	270		3.596	5.423	4.778
Benzo(a)pyrene	SW8270E	99	210		2.915	5.470	4.778
Charcene	SW0270E	110	70		6 021	2.004	0 710
Dibanzo(a b)anthracana	SW0270E	12	400		0.021	1 2354	0.6698
Fluoranthene	SW0270E	160	1200		7 3/	0.55	8 712
Fluorene	SW/8270E	23	79		0.4617	0 5291 []	0.6581
Indeno(1.2.3-c.d)pyrene	SW/8270E	34	88		1 317	3 016	2 1077
Naphthalene	SW8270E	99	170		0.3809 J	0.6058	0.7658
Phenanthrene	SW8270F	100	480		2.447	2.857	4.145
Pyrene	SW8270E	1000	1400		6.957	10.026	9.836
Total Benzofluoranthenes (b,j,k) (U = 0)		230	450		7.064	11.429	9.602
Total HPAH (SMS) (U = 0)		960	5300		36.9489	57.1349	52.4918
Total LPAH (SMS) $(U = 0)$		370	780		5.0574 J	5.3466 J	8.1405 J
Polycyclic Aromatic Hydrocarbons (µg/kg)						•	•
1-Methylnaphthalene	SW8270E				8.1 J	10.5 J	14.4 J
2-Methylnaphthalene	SW8270E	670	670		11.3 J	15.3 J	20.9
Acenaphthene	SW8270E	500	500		18.5 J	9.6 J	17.3 J
Acenaphthylene	SW8270E	1300	1300		12.6 J	13.7 J	14.5 J
Anthracene	SW8270E	960	960		52	47.9	78
Benzo(a)anthracene	SW8270E	1300	1600		169	205	204
Benzo(a)pyrene	SW8270E	1600	1600		137	207	204
Benzo(b,j,k)fluoranthenes	SW8270E				332	432	410
Benzo(g,h,i)perylene	SW8270E	670	720		61.4	109	97.8
Chrysene	SW8270E	1400	2800		283	306	415
Dibenzo(a,h)anthracene	SW8270E	230	230		20.3	46.7	28.6
Fluoranthene	SW8270E	1700	2500		345	361	372
Huorene	SW8270E	540	540		21.7	20 U	28.1
Indeno(1,2,3-c,d)pyrene	SW8270E	600	690		61.9	114	90

				Task	WWY5_Compliance	WWY5_Compliance	WWY5_Compliance
				Location ID	WW-P1CM-10_21	WW-P1CM-11_21	WW-P1CM-11_21
				Sample ID	WW-P1CM-10-SS-210721	WW-P1CM-11-SS-0-12-210720	WW-P1CM-11-SS-0-2-210720
				Sample Date	7/21/2021	7/20/2021	7/20/2021
				Depth	0 - 12 cm	0 - 12 cm	0 - 2 cm
				Sample Type	N	N	N
				Matrix	SE	SE	SE
				х	1241559.9	1240814.1	1240814.1
		SMS Marine SCO or	SMS Marine CSL or	Y	643183.57	642753.7	642753.7
		SCO AET	CSL AET	Other			
Naphthalene	SW8270E	2100	2100		17.9 J	22.9	32.7
Phenanthrene	SW8270E	1500	1500		115	108	177
Pyrene	SW82/0E	2600	3300		327	379	420
$T_{otal} = 0$		3200	3000		332	432	410
Total IPAH (SMS) (U = 0)		5200	5200		227.7.1	2139.7	2241.4
Dioxin Europe (na/ka)		5200	5200		251.13	202.15	547.03
2 3 7 8-Tetrachlorodihenzo-n-diovin (TCDD)	F1613B				0 793 1	0.993.1	1 09
12378-Pentachlorodibenzo-p-dioxin (PeCDD)	E1613B				6.33 J	12	11.2
1.2.3.4.7.8-Hexachlorodibenzo-p-dioxin (HxCDD)	E1613B				9.34	17.9	17.4
1.2.3.6.7.8-Hexachlorodibenzo-p-dioxin (HxCDD)	E1613B				33.3	62.5	57.2
1.2.3.7.8.9-Hexachlorodibenzo-p-dioxin (HxCDD)	E1613B				21.2	42.4	39.9
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin (HpCDD)	E1613B				839	1460	1400
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin (OCDD)	E1613B				7490 J	10500 J	10800 J
Total Tetrachlorodibenzo-p-dioxin (TCDD)	E1613B				58.6	117	96.5
Total Pentachlorodibenzo-p-dioxin (PeCDD)	E1613B				58.5	112	116
Total Hexachlorodibenzo-p-dioxin (HxCDD)	E1613B				281	499	461
Total Heptachlorodibenzo-p-dioxin (HpCDD)	E1613B				1720	2690	2690
2,3,7,8-Tetrachlorodibenzofuran (TCDF)	E1613B				3.58	5.48 J	4.45
1,2,3,7,8-Pentachlorodibenzofuran (PeCDF)	E1613B				2.03 J	3.12 J	2.64 J
2,3,4,7,8-Pentachlorodibenzofuran (PeCDF)	E1613B				2.15	3.32	3.3
1,2,3,4,7,8-Hexachlorodibenzofuran (HxCDF)	E1613B				8.02	14.5	14.2
1,2,3,6,7,8-Hexachlorodibenzofuran (HxCDF)	E1613B				5.04	8.77	8.61
1,2,3,7,8,9-Hexachlorodibenzofuran (HxCDF)	E1613B				3.61	5./	4.91
2,3,4,6,7,8-Hexachlorodibenzofuran (HxCDF)	E1613B				4.88	7.72 J	7.99 J
1,2,3,4,6,7,8-Heptachlorodibenzofuran (HpCDF)	E1013B				0.21 1	227	224
1,2,3,4,7,6,9-Heptachlorodibenzofuran (HpCDF)	E1013D				9.31 J 206	13.8 J	E71
Total Tetrachlorodibenzofuran (TCDE)	E1013B				22.2	25.7	27.8
	E1613B				45.2	65.3	75
	E1613B				189	334	307
Total Heptachlorodibenzofuran (HpCDF)	E1613B		<u> </u>		427	688	662
Total Dioxin/Euran TEO 2005 (Mammal) $(U = 0)$	2.0100				28,9348 1	50.9062	48.6155 I
Total Dioxin/Furan TEQ 2005 (Mammal) $(U = 1/2)$		5 N ^[2]		15 ^[3]	28,9348 1	50,9062 1	48.6155
Total Dioxin/Furan TEQ 2005 (Mammal) ($U = 1/2$) (FMPC included)		5.0 ^[2]	<u> </u>	15 ^[3]	28.935 1	50,906 1	48.62 1
Total Dioxin/Furan TEQ 2005 (Mammal) $(U = 0)$ (EMPC included)		5.0	<u> </u>	15	28.935 1	50.906 1	48.62 1

Notes:

TOC in range (0.5% - 3.5%)

Detected concentration is greater than SMS_Marine_SCO_SCUMII screening level Detected concentration is greater than SMS_Marine_CSL_SCUMII screening level

TOC out of range

Detected concentration is greater than AET_Marine_SCO_SCUMII screening level Detected concentration is greater than AET_Marine_CSL_SCUMII screening level

Exceeds other/site-specific screening level, independent of TOC

Site-specific bioaccumulation screening level (1.2 mg mercury/kg dry weight) for mercury in the Whatcom Waterway Site.
 Ecology has determined that the SCO for D/F in Bellingham Bay sediment sites is 5.0 ng/kg TEQ based on the practical quantitation limit.
 Value is based on assessment of anti-degradation provisions based on final data report documenting regional background

Bold: Detected result

J: Estimated value U: Compound analyzed for, but not detected above detection limit UJ: Compound analyzed for, but not detected above estimated detection limit

concentration of dioxin/furans in Bellingham Bay (Ecology 2015).

µg/kg: microgram per kilogram AET: apparent effects threshold cm: centimeter CSL: cleanup screening level D/F: dioxin/furan EMPC: estimated maximum possible concentration HPAH: high-molecular weight polycyclic aromatic hydrocarbon ID: identification LPAH: low-molecular weight polycyclic aromatic hydrocarbon mg/kg: milligram per kilogram ng/kg: nanogram per kilogram OC: organic carbon SCO: sediment cleanup objective SCUM II: Sediment Cleanup User's Manual II SMS: Sediment Management Standards TEQ: toxic equivalency quotient TOC: total organic carbon

17 of 17 April 2022

Table 2Summary of Consent Decree Biological Effects Criteria

Biological Test	Performance	Standard	Sediment Quality	Minimum Cleanup
Endpoint	Control ¹	Reference ²	Standard ³	Level ³
Ampelisca abdita				
			$M_{T} - M_{C} > 25\%$ and	$M_T - M_C > 30\%$ and
10-day mortality	M _C <10%	M _R <25%	M _T vs. M _R SD	M _T vs. M _R SD
			(p = 0.05)	(p = 0.05)
Neanthes arenaceode	ntata			
20 day growth and	M < 10% and MIC > 0.72		$MIG_T/MIG_R < 0.85$ and	$MIG_T/MIG_R < 0.50$ and
20-uay growth and	$W_C < 10.6$ and $W_F > 0.72$	$MIG_R/MIG_C > 0.80$	$MIG_T/MIG_RSD (p =$	$MIG_T/MIG_R SD (p =$
montailty	mg/individual day		0.05)	0.05)
Mytilus galloprovenci	alis			
			$N_T / N_R < 0.85$ and	$N_T / N_R < 0.70$ and
Larval Development	N _C /I >0.70	N _R /N _C ≥0.65	N _T vs. N _R SD	N _T vs. N _R SD
			(p = 0.10)	(p = 0.10)

Notes:

Source: Ecology 2019

1. Laboratory control

2. Collected reference samples

3. Performance standards as articulated at the time of the Consent Decree. These values are consistent with the current sediment cleanup objective/sediment quality standards and cleanup screen level/minimum cleanup level values contained in SCUM II (Ecology 2017).

C: control

F: final

I: stocking density

M: mortality

MIG: mean individual growth at time final

mg: milligram

N: normal survivorship expresses as actual counts.

p: probability

R: reference

SD: significant difference

T: test

Table 3 Summary of Bioassay Testing Results

	Applicable	Leptochirus plumulosus		Neanthes are	naceodentata	Dendraster excentricus	
Sample ID	Reference	10-Day Mortality (%)		(mg/individual/day) ¹		Mean Normal Survival ^{2,3} (%)	
Seawater Control						156.6	Pass QA
Sediment Control		1	Pass QA	0.565	Pass QA	132.0	Pass QA
Eoh Control (Coarse Grained)		4	Pass QA				
Reference CARR34 (34% fines)		6	Pass QA	0.659	Pass QA	141.8	Pass SQS
Reference CARR86 (86% fines)		1	Pass QA	0.597	Pass QA	136.8	Pass SQS
WW-MNR-06-SS-210719	CARR34	1	Pass SQS	0.577	Pass SQS	137.8	Pass SQS
WW-MNR-07-SS-210719	CARR86	4	Pass SQS	0.447	Pass SQS	153.2	Pass SQS
WW-P1CM-01-SS-210720	CARR86	3	Pass SQS	0.681	Pass SQS	127.8	Pass SQS
WW-P1CM-04-SS-210726	CARR34	6	Pass SQS	0.666	Pass SQS	167.4	Pass SQS

Notes:

Bioassay results were screened using SQS and MCUL criteria as defined in the Consent Decree and Table 2.

A summary of bioassay results, including all supporting laboratory reports and a QA summary, is included in Appendix E.

1. Growth as measured by ash-free dry weight. See bioassay laboratory report in Appendix E for full details.

2. Compared to Sediment Control

3. All mean sample survivals are not significantly different than Sediment Control mean survivals (p = 0.10)

--: not applicable

Eoh: Coarse-grain control treatment sediment

MCUL: minimum cleanup level

mg: milligram

p: probability

QA: quality assurance

SQS: Sediment Quality Standards

Table 4 Adult Crab Tissue Monitoring Data

Station ID	Samala ID	Number of Individuals in	Mean Carapace	Mean Organism	Mercury
Station ID Whatcom Waterway Site Areas		Composite	Length (cm)	weight (g)	(mg/kg ww)
MNR-03	WW-MNR-03-CM-COMP1-210812	1	13.4	385	0.046
MNR-04	WW-MNR-04-CM-COMP1-210812	1	15.7	547	0.045
	WW-MNR-07-CM-COMP1-210812				0.048
MNR-07	WW-MNR-07-CM-COMP2-210812	3	14.2	500	0.049
	WW-MNR-07-CM-COMP3-210812				0.086
	Site Area Mean		14.4	477	0.055
Samish Bay Reference Areas					
	WW-REF-01-CM-COMP1-210812				0.038
REF-01	WW-REF-01-CM-COMP2-210812	3	15.5	664	0.070
	WW-REF-01-CM-COMP3-210812				0.035
	WW-REF-05-CM-COMP1-210812				0.047
REF-05	WW-REF-05-CM-COMP2-210812	3	15.5	643	0.038
	WW-REF-05-CM-COMP3-210812				0.123
	Reference Area Mean		15.5	653	0.058

Notes:

cm: centimeter

g: gram

kg: kilogram

mg: milligram

ww: wet weight

Table 5

Mercury Concentration Trends in Adult Crab Tissue

Location	Whatcom Waterway Site Areas					Samish Bay Reference					
Sampling Year	1991	1997	2016	2017	2019	2021	1997	2016	2017	2019	2021
Adult Crab Mercury Tissue Concentration	0.160	0.100	0.070	0.054	0.0687	0.046	0.081	0.045	0.040	0.0449	0.038
	0.15	0.119	0.077	0.0477	0.0752	0.045	0.027	0.05	0.0386	0.0478	0.070
		0.211	0.075	0.064	0.0532	0.048	0.031	0.047	0.038	0.0493	0.035
		0.204	0.073	0.0602	0.0515	0.049		0.068	0.0539	0.0466	0.047
		0.100	0.098	0.067	0.0419	0.086		0.060	0.056	0.0488	0.038
		0.108	0.111	0.0711	0.0401			0.072	0.0527	0.0483	0.123
Summary Statistics											
Average Total Mercury (mg/kg ww)	0.155	0.140	0.084	0.061	0.055	0.055	0.046	0.057	0.046	0.048	0.058
Standard Deviation (mg/kg ww)	0.007	0.053	0.017	0.009	0.014	0.017	0.030	0.011	0.008	0.002	0.034
Number per sampling event	2	6	6	6	6	5	3	6	6	6	6
Multi-year Average (reference; mg/kg ww)									0.052		

Notes:

--: not applicable

kg: kilogram

mg: milligram

ww: wet weight

Table 6

Mercury Concentration in Log Pond Porewater

	Task Location ID Sample ID Sample Date Depth Sample Type Matrix X Y	WWY5_Compliance WW-P1CM-03_21 WW-P1CM-03-PW-210726 7/26/2021 0 - 12 cm N WX 1240497.3 641293.8	WWY5_Compliance WW-P1CM-04_21 WW-P1CM-04-PW-210726 7/26/2021 0 - 12 cm N WX 1240689.6 641404.7				
Metals (porewater) (µg/L)							
Mercury	SW7470A	0.1 U	0.1 U				
Metals, Dissolved (porewater) (µg/L)							
Mercury	SW7470A	0.1 U	0.1 U				

Notes:

The report limit was 0.1 μ g/L. The method detection limit was 0.013 μ g/L.

U: Compound analyzed for, but not detected above detection limit

µg/L: microgram per liter

Figures

Publish Date: 2022/01/20, 11:13 AM | User: epipkin Filepath: Q:\Jobs\080007-01_Whatcom_Waterway\Maps\Year5Monitoring\AQ_F1_SiteVicinity.mxd

LEGEND:

- Outfall
- Subsurface Pipeline
- Remedial Action Unit Boundaries
- Sediment Site Unit
- Adjacent Cleanup Site Area
- Previously Capped Area
- (Log Pond Interim Remedial Action)

NOTES:

1. Site units are shown based on those in Figure 2-3 Cleanup Action Plan, Whatcom Waterway Site, September 2007. Unit 9 boundary updated based on PRDI findings.

based on PRDI findings.
Horizontal datum: Washington State Plane North, NAD 83 Feet.

3. Unit 2B was established in the Cleanup Action Plan based on the anticipated marina access channel location. This location will be adjusted during final design.

during final design. 4. Remedial Action Unit (RAU) boundaries were defined in the Final Cleanup Action Plan for the GP West Pulp and Tissue Remedial Action Unit (Aspect 2014).

5. Aerial imagery is Whatcom County 2019 and does not represent current conditions at the site.

Publish Date: 2022/01/20, 11:19 AM | User: epipkin

Filepath: Q:\Jobs\080007-01_Whatcom_Waterway\Maps\Year5Monitoring\AQ_Fig2_CleanupPhase1.mxd

Figure 2 Completed Cleanup in Phase 1 Site Areas Year 5 Compliance Monitoring Report Whatcom Waterway Cleanup in Phase 1 Site Areas

Publish Date: 2022/02/23, 1:45 PM | User: epipkin Filepath: Q:\Jobs\080007-01_Whatcom_Waterway\Maps\Year5Monitoring\AQ_Fig3_WW_Sampling_2021.mxd

LEGEND:

- Surface Sediment Location
- △ Surface Sediment and Porewater Location
- Surface Sediment and Crab Tissue Location
- O No Sediment Collected⁶
- Remedial Action Unit Boundaries
- Sediment Site Unit
- Previously Capped Area
- (Log Pond Interim Remedial Action)
- Phase 1 MNR Area
- Phase 1 Dredging or Capping

NOTES:

P. Color

⊙ www-mnr-10

_O.WW-MNR-11

1. Site units are shown based on those in Figure 2-3 Cleanup Action Plan, Whatcom Waterway Site, September 2007. Unit 9 boundary updated based on Pre-remedial Design Investigation findings.

2. Horizontal datum: Washington State Plane North, North American Datum 1983 (NAD83) Feet.

3. Vertical datum: Mean Lower Low Water (MLLW).

4. Unit 2B was established in the Cleanup Action Plan based on the anticipated marina access channel location. This location will be adjusted during final design.

5. Trawl stations represent actual start and end points of each individual trawl.

6. No recent sediment accumulations over cap

armoring at this location. 7. Remedial Action Unit (RAU) boundaries were defined in the Final Cleanup Action Plan for the GP West Pulp and Tissue Remedial Action Unit (Aspect 2014). 8. Aerial imagery is Whatcom County 2019 and

does not represent current conditions at the site.

Figure 3 Site Locations for Year 5 Environmental Monitoring Year 5 Compliance Monitoring Report Whatcom Waterway Cleanup Phase 1 Site Areas

Figure 4 **Reference Area Sampling Locations for Year 5 Monitoring** Year 5 Compliance Monitoring Report Whatcom Waterway Cleanup in Phase 1 Site Areas

Publish Date: 2021/08/19 2:38 PM | User: dholmer

Filepath: K:\Projects\0007-Port of Bellingham\Whatcom Waterway Phase 2 Cleanup\0007-RP-028-Y5 Isopach.dwg Figure 5a

Figure 5a Engineered Sediment Cap - BST

Publish Date: 2021/08/19 2:39 PM | User: dholmer

Filepath: K:\Projects\0007-Port of Bellingham\Whatcom Waterway Phase 2 Cleanup\0007-RP-028-Y5 Isopach.dwg Figure 5b

Figure 5b Isopach for BST: 2016 Post-Construction vs. 2021 Year 5 Survey

Publish Date: 2021/08/19 2:39 PM | User: dholmer

Filepath: K:\Projects\0007-Port of Bellingham\Whatcom Waterway Phase 2 Cleanup\0007-RP-028-Y5 Isopach.dwg Figure 5c

Figure 5c Isopach for BST: 2019 Year 3 Survey vs. 2021 Year 5 Survey

Figure 6a Engineered Sediment Cap - Log Pond

Figure 6b Isopach for Log Pond: 2016 Post-Construction vs. 2021 Year 5 Survey

Figure 6c Isopach for Log Pond: 2019 Year 3 Survey vs. 2021 Year 5 Survey

Figure 7a **Engineered Sediment Cap - Inner Waterway**

Figure 7b Isopach for Inner Waterway: 2016 Post-Construction vs. 2021 Year 5 Survey

Figure 7c Isopach for Inner Waterway: 2019 Year 3 Survey vs. 2021 Year 5 Survey

Publish Date: 2022/01/19 11:15 AM | User: chewett Filepath: K:\Projects\0007-Port of Bellingham\Whatcom Waterway Cleanup Inner Wtr\0007-RP-030-Survey Coverage_Y5.dwg Figure 8a

Figure 8a Visual Survey Coverage - Inner Waterway

Publish Date: 2022/01/19 11:15 AM | User: chewett Filepath: K:\Projects\0007-Port of Bellingham\Whatcom Waterway Cleanup Inner Wtr\0007-RP-030-Survey Coverage_Y5.dwg Figure 8b

Figure 8b Visual Survey Coverage - Log Pond

Publish Date: 2022/01/20, 1:33 PM | User: epipkin Filepath: Q:\Jobs\080007-01_Whatcom_Waterway\Maps\Year5Monitoring\AQ_Fig9_YR5_Hg.mxd

Figure 9 Surface Sediment Mercury Testing Results Year 5 Compliance Monitoring Report Whatcom Waterway Cleanup Phase 1 Site Areas

Publish Date: 2022/04/22, 8:46 AM | User: jsfox Filepath: \\orcas\GIS\Jobs\080007-01_Whatcom_Waterway\Maps\Year5Monitoring\AQ_Fig10_YR5_DF.mxd

Figure 10 Surface Sediment Dioxin/Furan Testing Results Year 5 Compliance Monitoring Report Whatcom Waterway Cleanup Phase 1 Site Areas

Filepath: \\fuji\ando\Projects\Port of Bellingham\190007-01.01 Whatcom Waterway Phase 2 Cleanup\10_Year 5 Monitoring and Reporting\Figures\AQ_Fig_Source file\AQ_Fig11.dox

Mercury Concentrations in Adult Dungeness Crab Tissue

Year 5 Compliance Monitoring Report Whatcom Waterway Cleanup Phase 1 Site Areas

Figure 11

Appendix A Bathymetric Survey Data Coverage Appendix B Visual Survey Photographs
Appendix C Analytical Reports Appendix D Data Validation Reports Appendix E Bioassay Results and Validation Appendix F Photographs of Surface Sediment Samples Appendix G Statistical Analysis Output