

SR 520 Bridge Replacement and HOV Program

MEMORANDUM

То:	Ron Paananen, HDR	Contract & Task Order:	DA Deliverable 4.1.15
From:	Joseph Sawdey, LG, LHG Meg Strong, LG, LHG Shannon & Wilson	File Code:	
Date:	January 9, 2023		
Copies To:	Robyn Boyd Dave Becher Margaret Kucharski		

Subject: Groundwater Monitoring Memorandum – Quarter No. 3, Voluntary Cleanup Program NW3242, Montlake Gas Station, Seattle, Washington

Background

In 2019, the Washington State Department of Transportation (WSDOT) entered the Former Montlake Gas Station property located in Seattle, Washington (site), into the Washington State Department of Ecology (Ecology) Voluntary Cleanup Program (VCP).

As part of the VCP application, Shannon & Wilson submitted a Remedial Investigation (RI) work plan and a subsequent RI report to Ecology, on behalf of WSDOT. The RI report included investigation data that was used to characterize the nature and extent of petroleum hydrocarbon contamination in soil and groundwater associated with historic fueling operations at the site (Shannon & Wilson, 2020).

In 2021, PBS Engineering and Environmental prepared and submitted to Ecology a Remedial Action Plan detailing the proposed remediation excavation activities (PBS, 2021a). In August and September 2021, PBS oversaw the closure and removal of the former gas station underground storage tanks and piping, as well as the excavation of the associated petroleum contaminated soil source zone (source zone), as documented in the Remedial Action Completion Report (PBS, 2021b). Soil compliance has been achieved at the site as documented by confirmation sampling performed by PBS during the remedial excavation.

Groundwater compliance is currently being evaluated. On April 19 and 20, 2022, Shannon & Wilson installed additional compliance groundwater monitoring (CGM) wells at the site following Ecology recommendations (Shannon & Wilson, 2022a). The CGM well network

DocuSign Tower 999 Third Ave., Suite 2200 Seattle, WA 98104 Phone: 206-770-3500 Fax: 206-770-3569 for the site consists of six monitoring wells: MW-2-19, MW-3-19, MW-6-22, MW-7-22, MW-8-22, and MW-9-22. The monitoring wells have been surveyed and locations are depicted in Exhibit 1. This memorandum presents the results of Quarter No. 3 CGM and documents the continued effect(s) of the source zone removal on site groundwater quality. Results of the Quarter Nos. 1 and 2 CGM have been presented previously under a separate cover (Shannon & Wilson, 2022b, and 2022c).

Quarter No. 3 Groundwater Monitoring Activities

Well Gauging

On November 15, 2022, Shannon & Wilson gauged each of the CGM wells to monitor for the presence of free product and to measure groundwater elevations. Measurable free product (0.02 foot thick) was encountered at MW-3-19. Measurable free product was not encountered at the other five CGM wells.

Groundwater Sampling

On November 15, 2022, Shannon & Wilson purged each of the CGM wells using a peristaltic pump with a flow-through cell and water quality meter to measure the following field parameters: temperature, oxidation-reduction potential, pH, conductivity, dissolved oxygen, turbidity, salinity, and total dissolved solids. Field parameters collected during purging of the CGM wells can be found in Attachment 1 – Groundwater Sampling Field Forms. As is common industry practice, groundwater from MW-3-19 was not purged or sampled because measurable free product was encountered in the well and groundwater contaminant concentrations can be assumed to be near or equal to the contaminant aqueous solubility limit.

Upon stabilization of the field parameters during well purging (indicating steady groundwater flow to the well), groundwater samples were collected from five CGM wells by discharging groundwater from the end of the peristaltic tubing into clean, laboratory-supplied containers. Collected groundwater samples were immediately put on ice and stored within an insulated cooler. Groundwater samples from each of the CGM wells, except for MW-3-19 as discussed above, were delivered to Onsite Environmental Inc., of Redmond, Washington, under standard chain-of-custody procedures and analyzed for:

- Gasoline-range petroleum hydrocarbons using Ecology's Northwest Total Petroleum Hydrocarbon (NWTPH)-Gasoline Extended Method;
- Benzene, toluene, ethylbenzene, and xylene (BTEX) by U.S. Environmental Protection Agency (EPA) 8260 Method;
- Diesel- and oil-range petroleum hydrocarbons using Ecology's NWTPH-Diesel Extended Method; and
- Total and dissolved arsenic by EPA Method 200.8.

For complete details on the groundwater sampling methodology, refer to the Sample Collection and Chemical Testing sections of the Work Plan (Shannon & Wilson, 2019).

Quarter No. 3 Results and Interpretation

Groundwater Elevation and Flow Directions

Measured groundwater elevations for Quarter No. 3 are reported in Exhibit 2 and displayed in Exhibit 1. Groundwater elevations in North American Vertical Datum (of 1988) during November 2022 ranged from as low as 41.5 feet (MW-3-19) to as high as 48.2 feet above mean sea level (MW-2-19). Using the measured groundwater elevations, a groundwater potentiometric surface was interpolated with associated groundwater flow directions inferred to occur perpendicular to the equipotentials comprising the potentiometric surface (see Exhibit 1). Note that, due to the presence of free product in MW-3-19, we excluded the groundwater elevation measurements from that well when creating the potentiometric surface. Further, the groundwater elevation measured at MW-3-19 was again significantly lower with less seasonal fluctuation compared to the other CGM wells (see Exhibit 2). The much lower and static nature of the groundwater flow regime encountered across the former Gas Station property.

The groundwater setting at the site observed during Quarter No. 3 is consistent with that observed during the RI and previous quarterly CGM events (Shannon & Wilson, 2020, 2022b, and 2022c). In general, groundwater elevations measured in Quarter No. 3 were lower by approximately 1 foot, compared to groundwater elevations measured during Quarter 2. Lower groundwater elevations observed likely reflect the local dry season that extended from summer into fall 2022. As the wet season progresses, it is expected that groundwater elevations will begin to rise.

The groundwater elevation observed at MW-3-19 only decreased 0.1 feet between Quarter Nos. 2 and 3 of the groundwater monitoring (August to November 2022). This relatively low fluctuation in groundwater elevation, as discussed above, suggests a groundwater flow regime in the vicinity of MW-3-19 that is hydraulically isolated from the other CGM wells.

The estimated groundwater flow direction for Quarter No. 3 is uniformly northeast to northnortheast, consistent with previous monitoring events (Shannon & Wilson, 2022b and 2022c). The northwesterly component documented in previous reports is not depicted due to exclusion of MW-3-19 as a potentiometric surface interpolation point.

Groundwater Sampling Results

The laboratory analytical results for collected groundwater samples are summarized in Exhibit 3. The laboratory report is included as Attachment 2. Exhibit 1 indicates which monitoring wells (if any) had groundwater sample contaminant concentrations that exceed applicable Cleanup Levels (CULs) during the November 2022 sampling event.

Groundwater Sampling Interpretation

Gasoline-range petroleum hydrocarbons and BTEX are the primary contaminants of concern for the site. During this quarter of groundwater sampling, none of the five wells sampled within the CGM well network had detections of gasoline or BTEX in the groundwater samples. Because groundwater contaminant concentrations collected during Quarter No. 3 from the five CGM

wells were non-detectable for the primary contaminants (gasoline and BTEX), these five wells document continued groundwater quality improvement following the remedial excavation. The concentration of gasoline-range petroleum hydrocarbons measured in the CGM wells have been summarized in trend plots, included as Exhibit 4.

Neither diesel- nor oil-range petroleum hydrocarbons were detected in the five wells sampled within the CGM network during Quarter No. 3. During Quarter No. 2, MW-9-22 recorded diesel-and oil-range petroleum hydrocarbons above applicable CULs; concentrations measured at MW-9-22 were non-detectable during Quarter No. 3, recording an improvement in groundwater quality in a very short time span. The concentration of diesel-range plus oil-range petroleum hydrocarbons measured in the CGM wells have been summarized in trend plots, included as Exhibit 5.

Free product was observed in one well, MW-3-19. The free product observed in MW-3-19 may be related to the observed degree of hydraulic isolation in the vicinity of MW-3-19, which would impact timing for the remedial action to manifest near the well.

We appreciate this opportunity to provide environmental services to you for this project. If you have questions regarding this letter, please contact the undersigned at (206) 632-8020.

Sincerely,

Shannon & Wilson

drogeologist 3202 ed Geo Joseph Russell Sawdev 9/2023

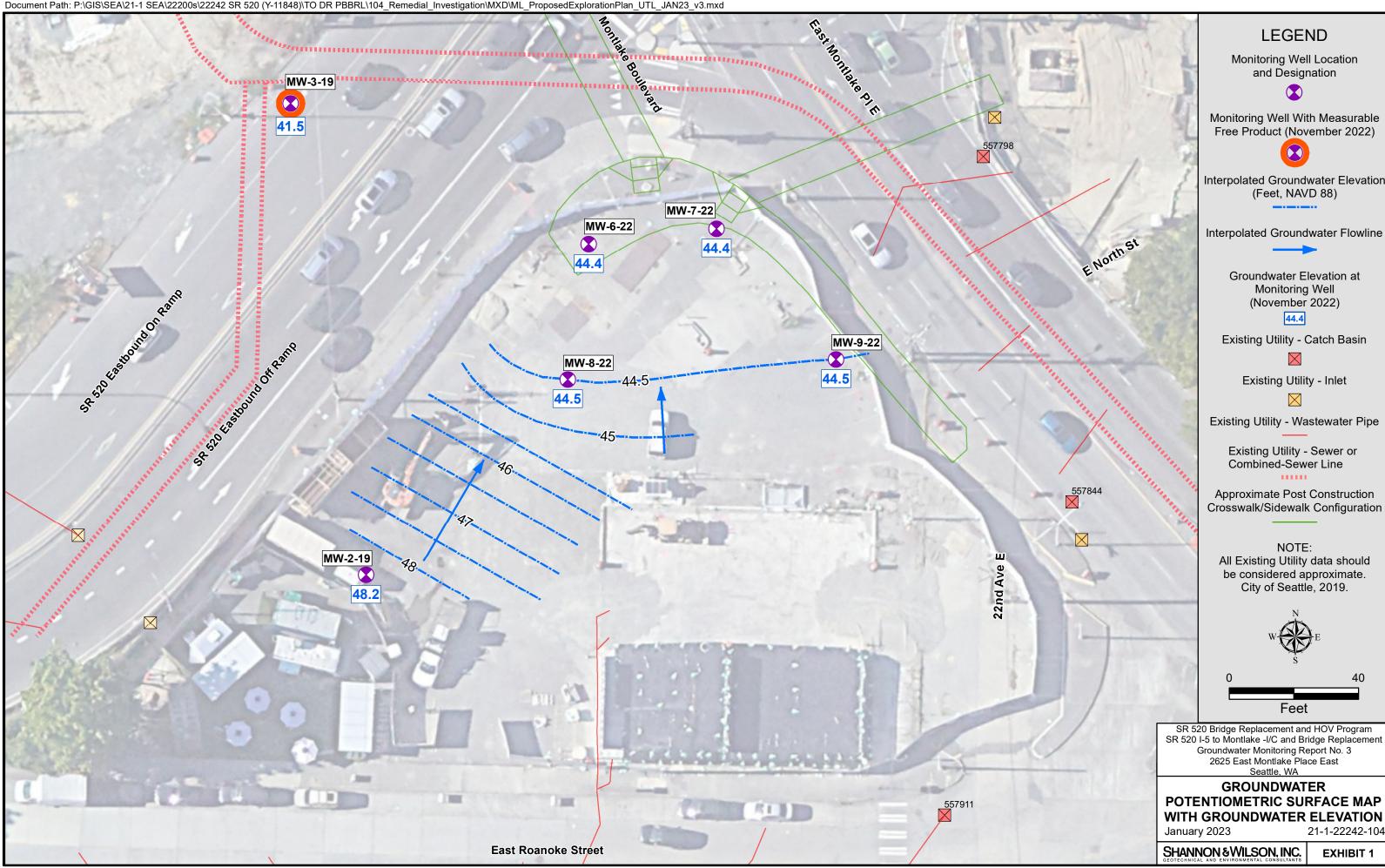
Joseph Sawdey, LG, LHG Senior Hydrogeologist

Meg Strong, LG, LHG Senior Consultant

JXS:CL:MJS/jxs:mrh

References

- PBS Engineering and Environmental, 2021a, Remedial action plan, Montlake Gas Station, State Route 520 Montlake to Lake Washington Interchange and Bridge Replacement Project, Seattle, Washington: Report prepared by PBS, Seattle, Wash., project no. 41221.003, for Graham Contracting Ltd, Bellevue, Wash., March Seattle, Wash., March 2021.
- PBS Engineering and Environmental, 2021b, Remedial action completion report, Montlake Gas Station, State Route 520 Montlake to Lake Washington Interchange and Bridge Replacement Project, Seattle, Washington: Report prepared by PBS, Seattle, Wash., 41221.003, for Graham Contracting Ltd., Bellevue, Wash., December.
- Shannon & Wilson, 2019, Data gaps investigation work plan/sampling and analysis plan for Montlake Gas Station, SR 520 Bridge Replacement and HOV Program, Seattle, Washington: Workplan prepared by Shannon & Wilson, Seattle, Wash., 21-1-22242-101, for Washington State Department of Transportation, July.
- Shannon & Wilson, 2020, Remedial investigation report for Montlake Gas Station, SR 520
 Bridge Replacement and HOV Program, Seattle, Washington: Report prepared by Shannon
 & Wilson, Seattle, Wash., 21-1-22242-104, for Washington State Department of
 Transportation, 1 v., March.
- Shannon & Wilson, 2022a, Compliance groundwater monitoring well installation exhibit for Montlake Gas Station, SR 520 Bridge Replacement and HOV Program, Seattle, Washington: Exhibit prepared by Shannon & Wilson, Seattle, Wash., 21-1-22242-104, for Washington State Department of Transportation, May 2022.
- Shannon & Wilson, 2022b, Groundwater monitoring memorandum quarter no. 1, voluntary cleanup program NW3242, Montlake Gas Station, SR 520 Bridge Replacement and HOV Program, Seattle, Washington: Memorandum from Joseph Sawdey and Meg Strong, Shannon & Wilson, Seattle, Wash., 21-1-22242-104, to Ron Paananen, HDR, June 27.
- Shannon & Wilson, 2022c, Groundwater monitoring memorandum quarter no. 2, voluntary cleanup program NW3242, Montlake Gas Station, SR 520 Bridge Replacement and HOV Program, Seattle, Washington: Memorandum from Joseph Sawdey and Meg Strong, Shannon & Wilson, Seattle, Wash., 21-1-22242-104, to Ron Paananen, HDR, October 6.


Exhibits

- Exhibit 1 Groundwater Potentiometric Surface Map with Groundwater Elevation
- Exhibit 2 Groundwater Level Measurements
- Exhibit 3 Summary of Groundwater Analytical Results
- Exhibit 4 Groundwater Concentration Trend Plots Gasoline
- Exhibit 5 Groundwater Concentration Trend Plots Diesel Plus Oil

Attachments

Attachment 1 – Groundwater Sampling Field Forms

Attachment 2 – Laboratory Report and Chain-of-Custody Form

Monitoring Well With Measurable Free Product (November 2022)

Interpolated Groundwater Elevation

Interpolated Groundwater Flowline

Existing Utility - Catch Basin

Existing Utility - Wastewater Pipe

Approximate Post Construction Crosswalk/Sidewalk Configuration

All Existing Utility data should be considered approximate.

POTENTIOMETRIC SURFACE MAP WITH GROUNDWATER ELEVATION 21-1-22242-104

EXHIBIT 1

Page Intentionally Left Blank

Montlake Gas Station Monitoring Well	Screened Interval (feet bgs)	Surveyed Monitoring Well Elevation ¹ (feet)	TOC Elevation (feet)	Date	Depth to Water (feet below TOC)	Groundwater Elevation (feet)
				10/17/2019	10.1	48.0
MW-2-19	10 to 20	50.07	58.12	5/2/2022	8.3	49.8
10100-2-19	10 10 20	58.87	50.12	8/16/2022	9.4	48.7
				11/15/2022	9.9	48.2
				10/17/2019	17.4	41.6
MW-3-19	10 10 05	59.29	59.01	5/2/2022	17.3	41.8
	10 to 25			8/16/2022	17.4	41.6
				11/15/2022	17.5	41.5
				5/2/2022	12.2	47.2
MW-6-22	11 to 26	59.71	59.36	8/16/2022	13.9	45.5
				11/15/2022	14.9	44.4
				5/2/2022	12.1	47.1
MW-7-22	10.5 to 25.5	59.68	59.18	8/17/2022	13.8	45.4
				11/15/2022	14.8	44.4
				5/2/2022	11.3	47.2
MW-8-22	10.5 to 25.5	58.90	58.55	8/16/2022	13.0	45.6
				11/15/2022	14.0	44.5
				5/2/2022	12.4	47.2
MW-9-22	10 to 25	59.93	59.58	8/17/2022	14.1	45.5
				11/15/2022	15.1	44.5

NOTES:

1 Monitoring well elevation was surveyed from the center of the well monument lid.

The reference vertical datum is the North American Vertical Datum (of 1988).

bgs = below ground surface; TOC = top of casing

Page Intentionally Left Blank

EXHIBIT 3 SUMMARY OF GROUNDWATER ANALYTICAL RESULTS

		Pe	troleum Hydrocarbons (μ	g/L)		Vola	atile Organic Compounds (μg/L) ³		Metal	s (µg/L) ⁴
Montlake Gas Station Monitoring Well:	Sample Date:	Gasoline Range Organics ¹	Diesel Range Organics ²	Lube Oil Range Organics ²	Benzene	Toluene	Ethylbenzene	m,p-Xylene	o-Xylene	Total Arsenic	Dissolved Arsenic
	10/17/2019	<100	<260	<420	<0.20	<1.0	<0.20	<0.40	<0.20	<3.3	<3.0
MW-2-19	5/2/2022	<100	<180	<240	<0.20	<1.0	<0.20	<0.40	<0.20	<3.3	<3.0
10100-2-19	8/16/2022	<100	<130	210	<0.20	<1.0	<0.20	<0.40	<0.20	<3.3	<3.0
	11/15/2022	<100	<210	<210	<0.20	<1.0	<0.20	<0.40	<0.20	<3.3	<3.0
MW-3-19	10/17/2019	1400	630	660	98	<4	24	9.3	1.1	17	7.4
10100-3-19	5/2/2022	5800	1300 M	500	170	<10	190	220	3.2	16	11
MW-6-22	5/2/2022	<100	210	330	<0.20	<1.0	<0.20	<0.40	<0.20	<3.3	<3.0
	8/16/2022	<100	<130	290	<0.20	<1.0	<0.20	<0.40	<0.20	6.3	4.5
	11/15/2022	<100	<200	<200	<0.20	<1.0	<0.20	<0.40	<0.20	7.3	4.6
	5/2/2022	<100	<170	<230	<0.20	<1.0	<0.20	<0.40	<0.20	<3.3	<3.0
MW-7-22	8/17/2022	<100	<130	250	<0.20	<1.0	<0.20	<0.40	<0.20	<3.3	<3.0
10100-7-22	11/15/2022	<100	<210	<210	<0.20	<1.0	<0.20	<0.40	<0.20	<3.3	<3.0
	11/15/2022	<100	<210	<210	<0.20	<1.0	<0.20	<0.40	<0.20	<3.3	<3.0
	5/2/2022	<100	<170	<220	<0.20	<1.0	<0.20	<0.40	<0.20	<3.3	<3.0
	5/2/2022	<100	<170	240	<0.20	<1.0	<0.20	<0.40	<0.20	<3.3	<3.0
MW-8-22	8/16/2022	<100	<130	360	<0.20	<1.0	<0.20	<0.40	<0.20	6.6	3.8
	8/16/2022	<100	<140	340	<0.20	<1.0	<0.20	<0.40	<0.20	6.5	4.3
	11/15/2022	<100	<200	<200	<0.20	<1.0	<0.20	<0.40	<0.20	6	5.7
	5/2/2022	<100	<160	<220	<0.20	<1.0	<0.20	<0.40	<0.20	<3.3	<3.0
MW-9-22	8/17/2022	<100	1900	<300	<0.20	<1.0	<0.20	<0.40	<0.20	<3.3	<3.0
	11/15/2022	<100	<210	<210	<0.20	<1.0	<0.20	<0.40	<0.20	<3.3	<3.0
	5/2/2022	<100			<0.20	<1.0	<0.20	<0.40	<0.20		
Trip Blank	8/18/2022	<100			<0.20	<1.0	<0.20	<0.40	<0.20		
	11/15/2022	<100			<0.20	<1.0	<0.20	<0.40	<0.20		
MTCA Method A CUL for U	nrestricted Land Use	1000/800*	500	500	5.00	1000	700	1000†	1000†	20§	20§

NOTES:

1 Gasoline-range petroleum hydrocarbons using Ecology's NWTPH-Gasoline Extended Method

2 Diesel- and oil-range petroleum hydrocarbons using Ecology's NWTPH-Diesel Extended Method

3 Volatile organic compounds by EPA Method 8260D

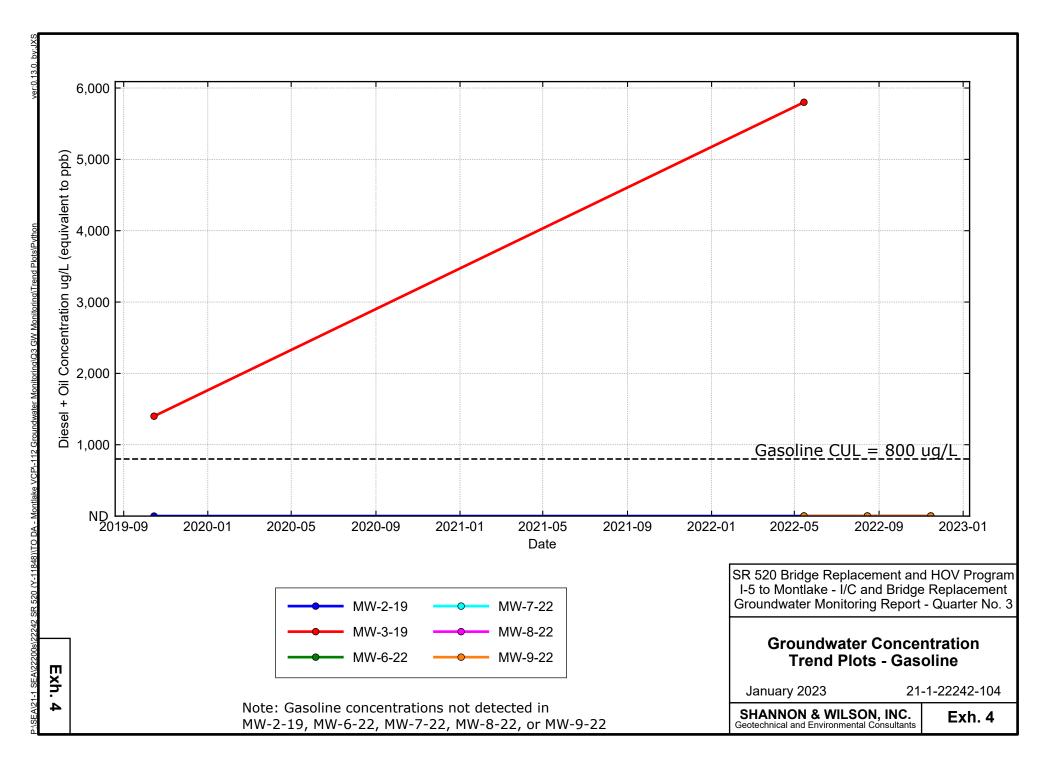
4 Total and dissolved arsenic by EPA Method 200.8

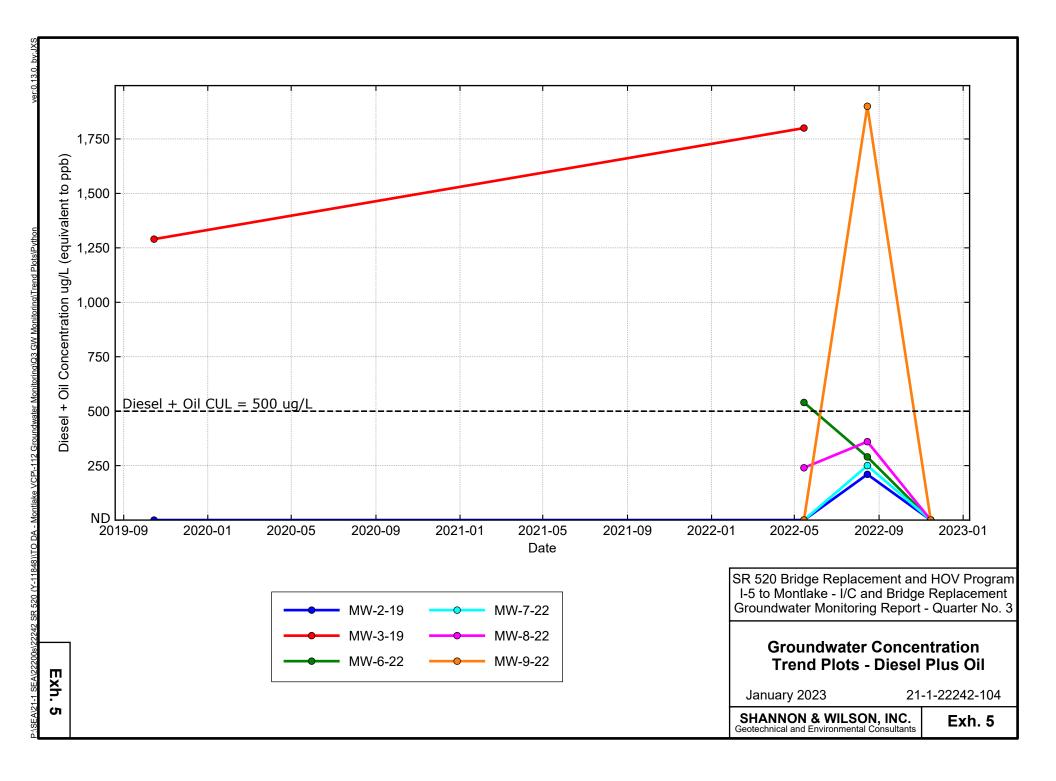
5 In August and November 2022, MW-3-19 had measurable free product and was not sampled.

Highlighted text indicates the analyte was detected above the MTCA Method A cleanup level.

Bold text indicates the analyte was detected above laboratory practical quantitation limit.

M flag indicates hydrocarbons in the gasoline range are impacting the diesel range result.


* Cleanup level (CUL) for gasoline-range organics is 1,000 micrograms (µg) without the presence of benzene and 800 µg with the presence of benzene.


† MTCA Method A CUL for total xylenes is used because a MTCA Method A CUL is not established for the isomers of m-, p-, or o-xylene.

§ Site specific CUL for arsenic (total and dissolved) based on statistical analysis of natural background levels of arsenic in groundwater.

-- = not analyzed; < = not detected above laboratory reporting limit; $\mu g/L$ = micrograms per liter; CUL = cleanup level; EPA = U.S. Environmental Protection Agency; MTCA = Model Toxics Control Act; NWTPH = Northwest Total Petroleum Hydrocarbon

SR 520 Bridge Replacement and HOV Program SR 520 I-5 to Montlake - I/C and Bridge Replacement Groundwater Monitoring Memorandum - Quarter No. 3 Page Intentionally Left Blank

Attachment 1

Contents:

Groundwater Sampling Field Forms (6 Sheets)

Page Intentionally Left Blank

GEOTECHNICAL AND ENVIRONMENTAL CONSULTANTS

Project:

Montalle Gas

(Former) Station

JOB NO .: 21 - 1 - 62242-112

MRH Conducted by:

Weather: Sunny, Low 405

WATER LEVEL MEASUREMENTS

					LNAPL		
Location ID	Date	Time	Measuring Point (MP)	MP (feet)	LNKWPL Digits	Reading	Comments (i.e. pressure change when opend, inaccesibility, etc.)
MN-3-19	1115 2022	0355	NTOU	17.53	17.51	-	BLT 987
MW-2-19		0915		9.92	· · · · ·	. em.	BLT 996
MW-7-22		1010		14.80	manip	400.F	BNV 408
MW-8-22		1013		14.04	KÖDRO.	~	BNV 406
MN-10-22		1016		14.93	~	-	BNV 407
MW-9-22	V	1019	V	15.06		******	BNV 409
						-	
		· · · · · · · · · · · · · · · · · · ·		÷			
						•	· · · · · · · · · · · · · · · · · · ·
E							
			· ·	· · · · · · · · · · · · · · · · · · ·			······································
				-			
							<u></u>
National States of the second states and s					·		

Comments:

Checked By:

Water_Level_Measurements.xlsx-Water Level Readings_Updated 2012

-	OWNER/LOCATION: MONTAKE 76 GAS STANON DATE: 115 WELL NO: MW-2-19 SAMPLE NO: MW-2-19:1115.2022 ECOLOGY TAG NO: BUT 996 DUPLICATE NO: WEATHER: SUMMY, VOW 405- MS/MSD? Yes E WELL SITE CONDITIONS/MP DEFINITION: North PVU Nom	<u> </u>
	SAMPLING DATA	.
	TIME STARTED: 0900	Sạmple [
• .•	PID HEAD SPACE:	Sample [
	MP DISTANCE ABOVE / BELOW GROUND SURFACE: 0 % ft. SAMPLE CONTAINERS	
•	TOTAL DEPTH OF WELL BELOW MP: 19,29 ft. Number Size Type	Pres.
	DTW BELOW.MP:9,92ft	
	WATER COLUMN IN WELL: 9,34	
· `	CASING DIAMETER: în	-
	GALLONS PER FOOT: 0.10	
· · ·	GALLONS IN WELL: 1.49 × 3-4.40	
sac.	TIME PURGING STARTED: 0945	·
Login		•
, <u></u>	FIELD PARAMETERS	
02-10-2011	GALLONS TEMP. Hr. pH COND. D.O. TURBIDITY SALINITY TDS COLOR	TIME ·
E. OS		0946
Liajed BM	D.Y 15.4 -371.3 5.59 501.9 0.60. 14.5 0.24 0.3263 clar (2957
- Fog.dwg		002
		005
ulldm	1.3. 16.6 -421.3 5.52 536.6 0.44 5.91 0.26 0.3490 New 1 1.75 16.6 -368.1 5.52 543.3 D:46 7.05 D.26 0.3536 Char 1	015
er Sa	1.75 16.6 -368.1 5.52 543.3 D:46 7.05 0.00 0.3536 clear 1 2.0 16.6 -393.5 5.52 549.5 0.43 6.80 0.27 0.3569 clear 1	020
LWat	2.2 6-403.2. 5.51 555.3. 0.43 5.49 0.27 0.3608 Clear	023
CAD :	2.4 10.6 -458.1 5.51 564.1 D.44 5.22 0.28 0.3679 Char 1	076
6-25	Alter Sampling 10 16,6 -437.7 5:51. 572.3 0.43. 5.09 0.23 0.3725 Clear 1	029
D LAB FORMSNAutoCADL Water Sampling	EVACUATION METHOD: Peri- PUMP	<u>.</u>
, <u>а</u> , А. Б.	PUMP INTAKE DEPTH (if applicable): MIA - SUREM	
	PURGE WATER DISPOSITION (e.g., drum #): WUM ON SIK	
	WATER OUAL ITY (e.g. sheep, odor); NO odor or sheen	
	WATER OLIALITY METER(S) USED: CALIBRATION DATE/TIME: YST PYO YWS	[`]
ortNib	SAMPLING METHOD: EPA LOW FLOW SAMPLE TIME: 1045	;
율		
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	SAMPLING PERSONNEL: ON ELOTTE INDE DOI ELOTTE INDE	· · ·
헐네 :		

.

	OWNER/LOCATION:       MONTAKE       76       Gas       Station       Date:       1115/2027         WELL NO:       MW-6-22       SAMPLENO:       MW-6-22: IN52020       EGOLOGY TAG NO:       BNV 407       DUPLICATE NO:         WEATHER::       SUMMY       Mugh       405       MS/MSD?       Yes II       N
	WELL SITE CONDITIONS / MP DEFINITION: N.v.m. TDV (MP is typically the north PVC rim)
	SAMPLING DATA
•	TIME STARTED; 1330 INAPL THICKNESS; ft. Samp
. •	PID HEAD SPACE ft. Samp
	MP DISTANCE ABOVE / BELOW GROUND SURFACE: 0.35 ft. SAMPLE CONTAINERS
	TOTAL DEPTH OF WELL BELOW MP: 25.98 ft. Number Size Type Pr
	DTW BELOW.MP:H
	WATER COLUMN IN WELL: 11.05. It.
	CASING DIAMETER: în
	GALLONS PER FOOT:
	GALLONS IN WELL: 1.77 X375.3
Sac	TIME PURGING STARTED: 13.39
	FIELD PARAMETERS
	GALLONS TEMP. TEMP. PH COND. D.O. TURBIDITY SALINITY IDS COLOR TIME REMOVED (C°) (mV) PH ((umhos/cm) (mg/L) (NTU) (%) PP (g/L) COLOR TIME
	Initial 12.5 -390.3 6.78 73, 4.14 6.40. 0.26 0.4745 CHAN 1340
	D.5 17.4322.0 (0.71 743 2.29 6.00 0.37 0.4875 clear 134
•	0.73 10.7 -31011 0111 - 26 10 5200 04012 51
	1.0 16.8 -324.2 6.71 794 0.56 4.97 0.39 0.500 Clear 1351
	15 120 214171 666 775 1.18 4.79 0.38 0.5005 Clear 1357
	1.75 17.0 -313.5 6.66. 782 1.13 .4.09 0.38 0.5070 den 1400
-	
L	After Sampling Pevi PUMP
E	WACDATION METHOD.
P	PUMP INTAKE DEPTH (if applicable):
P	PURGE WATER DISPOSITION (e.g., drum#):DYUMON
W	VATER QUALITY (e.g., sheen, odor): <u>NO ODOV OV Sheen</u>
W	ATER QUALITY METER(S) USED, CALIBRATION DATE: TIME
\$Æ	AMPLING METHOD: FYR COVO TIVA
p	AMPLING PERSONNEL: DUPLICATE "TIME":
E	EMARKS (e.g., recovery rate):
	TIME COMPLETED: 19 L 3

.

WELL NO: MW-7-20 WEATHER:	SAMPLENO: MW-7-22-1	11 405	BNV 403	DATE: $1115$ DUPLICATE NO: $M$ MS/MSD? Yes I	W-100:11
`		AMPLING DATA	· · · · · · · · · · · · · · · · · · ·		
TIME STARTED:	105.	LNA	PL THICKNESS:	Ħ.	Sạmple 🗌
PID HEAD SPACE:			PL THICKNESS:	,ft.	Sample 🗌
MP DISTANCE ABOVE / BELO	WGROUND SURFACE: 0.5	fŁ	. SAMPL	E CONTAINERS	
TOTAL DEPTH OF WELL BELO		ft. Nun		Туре	Pres.
DTW BELOW.MP:	14.30	ft		• • • • • • • • • • • • • • • • • • • •	·
WATER COLUMN IN WELL:	· 10,57.	ft			
Casing Diameter:		in			
GALLONS PER FOOT	0.16		•	· · ··································	
GALLONS IN WELL:	1:69. · X	3:5.07	······································		
TIME PURGING STARTED:	1110				
	·				
· .	FIEL	D PARAMETERS	•		
	EH pH COND. mV) pH (μmhos / cm)	D.O. TURBIDITY (mg/L) (NTU)	SALINITY TI (%) PPI (9)		TIME
ILLING VILLE I	25,6 6,23 709-	2.03 12.2.	0.35 0.4	615 Clear	1112
	17.0 633 778	0.58 2.31	0.36 0.4		1116
	063 6.36 719	0.57 3.31	0.36 0.4		1120
	57.6 6.39 727	0.48 3.21	0.36 0.41	30 Clear	1126
	39.7. 6.41 724	0.43 0.42	0.36 0.40		1129
· (1). [101]				•	
		·		·	
	·		· ·		
		<u> </u>	<u> </u>		
After Sampling	· VIDAC VIII	ml		·	·····
After Sampling	Peri Pur		•		4
VACUATION METHOD:	Init. C	ween	• •	· · ·	
	):M\ J.,drum#):DY.V	m on-s	ite .		
VACUATION METHOD:	):	m on-s		· · · ·	
WACUATION METHOD: UMP INTAKE DEPTH (if applicable URGE WATER DISPOSITION (e.g	);	n on s n or odor NSE	ite pro pli		
EVACUATION METHOD: UMP INTAKE DEPTH (if applicable URGE WATER DISPOSITION (e.g. NATER QUALITY (e.g., sheen, odor)	);	m on-s	Pro. Plu	MPLE TIME: 114	
EVACUATION METHOD: PUMP INTAKE DEPTH (if applicable URGE WATER DISPOSITION (e.g. MATER QUALITY (e.g., sheen, odor) MATER QUALITY METER(S) USED	):	n on s n or odor NSE	Pro. Pli sai	MPLE TIME: 114	5
EVACUATION METHOD: UMP INTAKE DEPTH (if applicable URGE WATER DISPOSITION (e.g. MATER QUALITY (e.g., sheen, odor) MATER QUALITY METER(S) USED AMPLING METHOD: MPLING PERSONNEL:	):	n on s n or odor NSE	Pro. Pli sai	MPLE TIME: 114	
EVACUATION METHOD: PUMP INTAKE DEPTH (if applicable URGE WATER DISPOSITION (e.g. MATER QUALITY (e.g., sheen, odor) MATER QUALITY METER(S) USED	):	n on s n or odor NSE	Pro. Pli sai	MPLE TIME: 114	

.

۰. -

~

.

·

.

· ·

WEATHER:	MN-8-1		<u>101</u> .		the Gay 111526020 405 Vorn	STAF D DGY TAG NO: PVC	BNV 4	06 DUF MS	E: LICATE NO: / MSD? Yes	**************************************
	•				BAMPLING	DATA		•		
TIME START	ED;	. 12	1.5			LNAP	L THICKNES	s:	 п.	Sample
	PACE:		Section of the sectio	•	ppm	DNAF	I THICKNES	IS:		Sample
MP DISTANC			ND SURFAC	E. 0,2	2ft.		-	SAMPLE CO	NTAINERS	
TOTAL DEPT	TH OF WELL	BELOWMP: _	26.1	55	ft.	· · Numl	ber	Size	Туре .	Pres.
DTWBELOW		14	1.04	•	fL	<u> </u>		·.	·	
WATER COL	UMN IN WEL	L:	12.01		ft.			······	······	<b>.</b>
CASING DIAI	METER:		2:		in.	•	· _			
GALLONS PE	ER FOOT		5.16	·						
GALLONS IN	WELL:	1.92		*3	:5.77	•				•
TIME PURGIN	NG STARTED:	· \	2 20					•		•
				FIE	LD PARAM	ETERS		•	-	•
GALLONS ·	TEMP.	OPP		COND.	D.O.	TURBIDITY	SALINITY	TDS	COLOR	TIME ·
REMOVED	· (C°)	• (mV)	pH	(µmhos/cm		(NTU)	(%) PP	(g/L) 10,4745	dear	1221
Initial	16.5	-940.3	6.61	737	0.74	2.53	0.36	6.4810	Clear	1225
0.5	16.9.	-996.6	6,56	736	0.61	7.57	0.36	0.4810	CLEAN	1228
1.25	16.8	-904.8	6.54	738	0.61	5.25	0.36	0.4810	dear.	1231
1.5.		-930.9	10.56	736	0.54	1.43	0.36	6.4810	<u>.Clear</u> Clear	1237
1.75	10.6	-76031	6.56	735	0.52	.1.84	0.36	0.4745		1240
2.0	16.5	-729.1	6.58	. 101				01111		
										i
After Sampling			• .		• •			•	· · ·	
VACUATION	AFTHOD:			Peri	PVW	<u>φ.</u>			•	
UMP INTAKE I		licable);	N	rid - SI	Ween_	·		· .	· .	
URGE WATER			):	Drun	<u>n. 01</u>	. Site	<u> </u>			
ATER QUALITY	•		No	odor	٥٢	Sheer				
ATER QUALIT			RATION DATI	E/TIME:	15	E I	pro.	plus	· .	
MPLING METH		EPA	+ Lo	N f	100			: SAMPLE	TIME: 12	50
MPLING PERS		•	MK	·H	· ·		-	DUPLICA	TE "TIME":	
MARKS (e.g., M		•••	·		•	· · ·				·
יייעעיזינט (גאָשָּין ווּ	·.		·			<u> </u>			·······	-
	· · ·				•		•		APLETED: 1	315

.

۰. -

:

-

.

.

•

.

-

- wi	ell no: T	CATION:	1 SAM	MONH PLENO:MW SVNNI	-9-22:11	76 G 5.02 Ecolo	GY TAG N	o: BNV	409 .DU	TE: PLICATE NO: ;/MSD? Yes	
1	eather: • <u>·</u> El·l Site C (M	CONDITION	S / MP DEFINIT / the north PVC	TION:	Nov		NU.	• •		-	
		······			Ę	SAMPLING I	DATA		•	· · ·	<b></b>
TI	ME START	ED;	1430	· · · · · ·		<u> </u>	•		ESS:	- Contraction	• •
Pli	d head sp	PACE:				ppm	10	VAPL THICKNI	ESS:	ft.	. Sample
MF	P DISTANC	EABOVE	BELOWĠROL	IND SURFAC	E:			•	SAMPLE C	ONTAINERS	
то	TAL DEPT	'H OF WELL	BELOWMP:	151	15	îtt.	· • N	umber	Size ,	Туре .	Pres
пт	MBELOW	MP:	15.0	)6		¹¹ .	<u></u>			······································	·······
WA	ATER COLU	JIMN IN WEL	10	.09	_=	ft.		`			
		/IETER:		· V ·		în.		·	·		
GĂ	LLONS PE	R FOOT:		).16		-49	, <del></del>	:			
GA	LLONSIN	WELL:	.1.6	<u>ol.</u>	X.3	4,9	•	•	·	·	
тім	E PURGIN	IG STARTED	p: \ (	135					<u> </u>		•
		•	•	<u>.</u>			TEDO		•		· · ·
		•	DPP	1		LD PARAME			* 700		
	ALLONS . MOVED	TEMP. (C°)		pН	COND.	D.O. ) (mg / L)	TURBIDI (NTU)	ITY SALINIT	(g/L)	COLOR	TIME
	Initial	16.3	-292.1	6.71	629-	1.91	9.90		0.409		1436
0	.5	16.5.	-3059	6.39	623	0.65.	7.4'		1		1439
$\left  \right $	0,75	16.7	-301.1	6.27	621	0.57	17.0				1446
$\vdash$	0 u	16.7	-292.3 -290.0	6.23	625	0.51	9.15				1450
	1.	16.8	-286.9	6.16	629	0:45	7.6		0,40%		1453
- 7	$\frac{\sqrt{1-\frac{3}{2}}}{\sqrt{1-\frac{3}{2}}}$	16.8	-292.8	6.14	.632	0.45	.7.20		0.4095	1.	1456
2	.4	16.7	-289.4	6.14	632	.0.44	7.07	- 0.31	0.4073	dear	1459
		·	·	·				+	<u> </u> .		· · ·
Aftert	Sampling	I	<u>_</u>	1001-1		)' 0		- <u> </u>			L
VAC	UATION M	IETHOD:		Peri		ump_			•	·····	
UMP	INTAKE E	DEPTH (ifap	plicable):		Md-s	ween	1.0	• • •	• 	• .	
URG	E WATER	DISPOSITIO	ON (e.g., drum:		Prui		· SIM	·	·		
VATER	R QUALITY	(e.g., sheer	n, odor):	No	odov		Shea		24.15		
/ATEF	R QUALITY	METER(S)	USED; CALIB			ESY		Pro .	2/11.5	. 19	1/7:
AMPL	ING METH	10D:	E	<u></u>		-low	:	· · ·	_ SAMPL	ETIME 13	15
AMPLI	ING PERS	ONNEL:	•	MRI	<u>k.</u>	<u> </u>	· . ·		DUPLIC	ATE "TIME";	
EMAR	:KS (e.g., re	ecovery rate)	;	<u></u>		•	•	·		•	
•			-	•							

.

۰.

′., r .

### Attachment 2

### Contents:

Laboratory Report and Chain-of-Custody Form (16 Sheets)

# **Page Intentionally Left Blank**



14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

November 23, 2022

Joseph Sawdey Shannon & Wilson, Inc. 400 N 34th Street, Suite 100 Seattle, WA 98103

Re: Analytical Data for Project 21-1-22242-112 Laboratory Reference No. 2211-232

Dear Joseph:

Enclosed are the analytical results and associated quality control data for samples submitted on November 16, 2022.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures



Date of Report: November 23, 2022 Samples Submitted: November 16, 2022 Laboratory Reference: 2211-232 Project: 21-1-22242-112

### **Case Narrative**

Samples were collected on November 15, 2022 and received by the laboratory on November 16, 2022. They were maintained at the laboratory at a temperature of  $2^{\circ}$ C to  $6^{\circ}$ C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.



OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

### GASOLINE RANGE ORGANICS NWTPH-Gx

Matrix: Water Units: ug/L (ppb)						
				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	Trip Blanks					
Laboratory ID:	11-232-01					
Gasoline	ND	100	NWTPH-Gx	11-18-22	11-18-22	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	99	65-122				
Client ID:	MW-2-19:11152022					
Laboratory ID:	11-232-02					
Gasoline	ND	100	NWTPH-Gx	11-18-22	11-18-22	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	94	65-122				
Client ID:	MW-7-22:11152022					
Laboratory ID:	11-232-03					
Gasoline	ND	100	NWTPH-Gx	11-18-22	11-18-22	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	94	65-122				
Client ID:	MW-8-22:11152022					
Laboratory ID:	11-232-04					
Gasoline	ND	100	NWTPH-Gx	11-18-22	11-18-22	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	92	65-122				
Client ID:	MW-6-22:11152022					
Laboratory ID:	11-232-05					
Gasoline	ND	100	NWTPH-Gx	11-18-22	11-18-22	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	96	65-122				
Client ID:	MW-9-22:11152022					
Laboratory ID:	11-232-06					
Gasoline	ND	100	NWTPH-Gx	11-18-22	11-18-22	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	91	65-122				
Client ID:	MW-100:11152022					
Laboratory ID:	11-232-07					
Gasoline	ND	100	NWTPH-Gx	11-18-22	11-18-22	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	90	65-122				



OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

### GASOLINE RANGE ORGANICS NWTPH-Gx QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

								Date	Date	)	
Analyte		Result	F	PQL	Me	thod		Prepared	Analyz	ed	Flags
METHOD BLANK											
Laboratory ID:		MB1118W1									
Gasoline		ND		100	NWT	PH-G	x	11-18-22	11-18-	22	
Surrogate:	Pe	rcent Recove	ery Conti	ol Lim	its						
Fluorobenzene		100	65	5-122							
					Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike L	evel	Result	Reco	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	11-20	08-04									
	ORIG	DUP									
Gasoline	ND	ND	NA	NA		N	IA	NA	NA	30	
Surrogate:											
Fluorobenzene						99	99	65-122			



### **VOLATILE ORGANICS EPA 8260D**

Matrix: Water Units: ug/L

-				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	Trip Blanks					
Laboratory ID:	11-232-01					
Benzene	ND	0.20	EPA 8260D	11-17-22	11-17-22	
Toluene	ND	1.0	EPA 8260D	11-17-22	11-17-22	
Ethylbenzene	ND	0.20	EPA 8260D	11-17-22	11-17-22	
m,p-Xylene	ND	0.40	EPA 8260D	11-17-22	11-17-22	
o-Xylene	ND	0.20	EPA 8260D	11-17-22	11-17-22	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	108	75-127				
Toluene-d8	102	80-127				
4-Bromofluorobenzene	99	78-125				

Client ID:	MW-2-19:11152022					
Laboratory ID:	11-232-02					
Benzene	ND	0.20	EPA 8260D	11-17-22	11-17-22	
Toluene	ND	1.0	EPA 8260D	11-17-22	11-17-22	
Ethylbenzene	ND	0.20	EPA 8260D	11-17-22	11-17-22	
m,p-Xylene	ND	0.40	EPA 8260D	11-17-22	11-17-22	
o-Xylene	ND	0.20	EPA 8260D	11-17-22	11-17-22	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	107	75-127				
Toluene-d8	103	80-127				
4-Bromofluorobenzene	98	78-125				

Client ID:	MW-7-22:11152022					
Laboratory ID:	11-232-03					
Benzene	ND	0.20	EPA 8260D	11-17-22	11-17-22	
Toluene	ND	1.0	EPA 8260D	11-17-22	11-17-22	
Ethylbenzene	ND	0.20	EPA 8260D	11-17-22	11-17-22	
m,p-Xylene	ND	0.40	EPA 8260D	11-17-22	11-17-22	
o-Xylene	ND	0.20	EPA 8260D	11-17-22	11-17-22	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	106	75-127				
Toluene-d8	102	80-127				
4-Bromofluorobenzene	97	78-125				



OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

### **VOLATILE ORGANICS EPA 8260D**

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-8-22:11152022					
Laboratory ID:	11-232-04					
Benzene	ND	0.20	EPA 8260D	11-17-22	11-17-22	
Toluene	ND	1.0	EPA 8260D	11-17-22	11-17-22	
Ethylbenzene	ND	0.20	EPA 8260D	11-17-22	11-17-22	
m,p-Xylene	ND	0.40	EPA 8260D	11-17-22	11-17-22	
o-Xylene	ND	0.20	EPA 8260D	11-17-22	11-17-22	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	104	75-127				
Toluene-d8	103	80-127				
4-Bromofluorobenzene	97	78-125				

Client ID:	MW-6-22:11152022					
Laboratory ID:	11-232-05					
Benzene	ND	0.20	EPA 8260D	11-17-22	11-17-22	
Toluene	ND	1.0	EPA 8260D	11-17-22	11-17-22	
Ethylbenzene	ND	0.20	EPA 8260D	11-17-22	11-17-22	
m,p-Xylene	ND	0.40	EPA 8260D	11-17-22	11-17-22	
o-Xylene	ND	0.20	EPA 8260D	11-17-22	11-17-22	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	105	75-127				
Toluene-d8	104	80-127				
4-Bromofluorobenzene	100	78-125				

Client ID:	MW-9-22:11152022					
Laboratory ID:	11-232-06					
Benzene	ND	0.20	EPA 8260D	11-17-22	11-17-22	
Toluene	ND	1.0	EPA 8260D	11-17-22	11-17-22	
Ethylbenzene	ND	0.20	EPA 8260D	11-17-22	11-17-22	
m,p-Xylene	ND	0.40	EPA 8260D	11-17-22	11-17-22	
o-Xylene	ND	0.20	EPA 8260D	11-17-22	11-17-22	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	107	75-127				
Toluene-d8	103	80-127				
4-Bromofluorobenzene	98	78-125				



OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

### **VOLATILE ORGANICS EPA 8260D**

Matrix: Water Units: ug/L

-				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-100:11152022					
Laboratory ID:	11-232-07					
Benzene	ND	0.20	EPA 8260D	11-17-22	11-17-22	
Toluene	ND	1.0	EPA 8260D	11-17-22	11-17-22	
Ethylbenzene	ND	0.20	EPA 8260D	11-17-22	11-17-22	
m,p-Xylene	ND	0.40	EPA 8260D	11-17-22	11-17-22	
o-Xylene	ND	0.20	EPA 8260D	11-17-22	11-17-22	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	106	75-127				
Toluene-d8	103	80-127				
4-Bromofluorobenzene	96	78-125				



### VOLATILE ORGANICS EPA 8260D QUALITY CONTROL

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1117W1					
Benzene	ND	0.20	EPA 8260D	11-17-22	11-17-22	
Toluene	ND	1.0	EPA 8260D	11-17-22	11-17-22	
Ethylbenzene	ND	0.20	EPA 8260D	11-17-22	11-17-22	
m,p-Xylene	ND	0.40	EPA 8260D	11-17-22	11-17-22	
o-Xylene	ND	0.20	EPA 8260D	11-17-22	11-17-22	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	107	75-127				
Toluene-d8	103	80-127				
4-Bromofluorobenzene	99	78-125				

					Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Rec	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB11	17W1								
	SB	SBD	SB	SBD	SB	SBD				
Benzene	10.7	10.5	10.0	10.0	107	105	80-121	2	16	
Toluene	10.4	10.1	10.0	10.0	104	101	80-120	3	18	
Ethylbenzene	11.1	11.0	10.0	10.0	111	110	80-125	1	18	
m,p-Xylene	21.8	21.6	20.0	20.0	109	108	80-127	1	18	
o-Xylene	11.0	10.9	10.0	10.0	110	109	80-126	1	18	
Surrogate:										
Dibromofluoromethane					105	105	75-127			
Toluene-d8					104	104	80-127			
4-Bromofluorobenzene					107	109	78-125			



OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

8

### DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Water Units: mg/L (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	MW-2-19:11152022			-	-	
Laboratory ID:	11-232-02					
Diesel Range Organics	ND	0.21	NWTPH-Dx	11-21-22	11-21-22	
Lube Oil Range Organics	ND	0.21	NWTPH-Dx	11-21-22	11-21-22	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	124	50-150				
Client ID:	MW-7-22:11152022					
Laboratory ID:	11-232-03					
Diesel Range Organics	ND	0.21	NWTPH-Dx	11-21-22	11-21-22	
Lube Oil Range Organics	0.22	0.21	NWTPH-Dx	11-21-22	11-21-22	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	121	50-150				
Client ID:	MW-8-22:11152022					
Laboratory ID:	11-232-04					
Diesel Range Organics	ND	0.20	NWTPH-Dx	11-21-22	11-21-22	
Lube Oil Range Organics	ND	0.20	NWTPH-Dx	11-21-22	11-21-22	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	100	50-150				
Client ID:	MW-6-22:11152022					
Laboratory ID:	11-232-05					
Diesel Range Organics	ND	0.20	NWTPH-Dx	11-21-22	11-21-22	
Lube Oil Range Organics	ND	0.20	NWTPH-Dx	11-21-22	11-21-22	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	109	50-150				
Client ID:	MW-9-22:11152022					
Laboratory ID:	11-232-06					
Diesel Range Organics	ND	0.21	NWTPH-Dx	11-21-22	11-21-22	
Lube Oil Range Organics	ND	0.21	NWTPH-Dx	11-21-22	11-21-22	
Surrogate:	Percent Recoverv	Control Limits				
o-Terphenyl	94	50-150				
Client ID:	MW 100-11152022					
	MW-100:11152022					
Laboratory ID:	11-232-07	0.24		11 01 00	11 01 00	
Laboratory ID: Diesel Range Organics	11-232-07 ND	0.21	NWTPH-Dx	11-21-22	11-21-22	
Laboratory ID: Diesel Range Organics Lube Oil Range Organics	11-232-07 ND ND	0.21	NWTPH-Dx NWTPH-Dx	11-21-22 11-21-22	11-21-22 11-21-22	
Client ID: Laboratory ID: Diesel Range Organics Lube Oil Range Organics Surrogate: o-Terphenyl	11-232-07 ND					



OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

9

#### DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Matrix: Water Units: mg/L (ppm)

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
MB1121W1					
ND	0.20	NWTPH-Dx	11-21-22	11-21-22	
ND	0.20	NWTPH-Dx	11-21-22	11-21-22	
Percent Recovery	Control Limits				
111	50-150				
	MB1121W1 ND ND Percent Recovery	MB1121W1 ND 0.20 ND 0.20 Percent Recovery Control Limits	MB1121W1ND0.20ND0.20ND0.20Percent RecoveryControl Limits	Result         PQL         Method         Prepared           MB1121W1	Result         PQL         Method         Prepared         Analyzed           MB1121W1

					Source	Perc	ent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Reco	very	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	11-23	32-02									
	ORIG	DUP									
Diesel Range	ND	ND	NA	NA		NA	4	NA	NA	NA	
Lube Oil Range	ND	ND	NA	NA		NA	4	NA	NA	NA	
Surrogate:											
o-Terphenyl						124	120	50-150			



### TOTAL ARSENIC EPA 200.8

Units: ug/L (ppb)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-2-19:11152022	IQL	Method	Trepared	Analyzeu	i lago
Laboratory ID:	11-232-02					
Arsenic	ND	3.3	EPA 200.8	11-18-22	11-18-22	
		0.0	2177200.0	11 10 22	11 10 22	
Client ID:	MW-7-22:11152022					
Laboratory ID:	11-232-03					
Arsenic	ND	3.3	EPA 200.8	11-18-22	11-18-22	
Client ID:	MW-8-22:11152022					
Laboratory ID:	11-232-04					
Arsenic	6.0	3.3	EPA 200.8	11-18-22	11-18-22	
Client ID:	MW-6-22:11152022					
Laboratory ID:	11-232-05					
Arsenic	7.3	3.3	EPA 200.8	11-18-22	11-18-22	
	MM/ 0.00.44450000					
Client ID:	MW-9-22:11152022					
Laboratory ID:	11-232-06	3.3		11 10 00	11 10 00	
Arsenic	ND	3.3	EPA 200.8	11-18-22	11-18-22	
Client ID:	MW-100:11152022					
Laboratory ID:	11-232-07					
Arsenic	ND	3.3	EPA 200.8	11-18-22	11-18-22	



OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

e Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883 This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed. 11

#### TOTAL ARSENIC EPA 200.8 QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

								Date	Date	е		
Analyte		Result		PQL	М	ethod		Prepared	Analy	Flags		
METHOD BLANK												
Laboratory ID:	Ν	/B1118WM	1									
Arsenic		ND		3.3	EP	A 200.	8	MB	2-7-2	22		
					Source	Per	cent	Recovery		RPD		
Analyte	Res	sult	Spike Level		Result	Recovery		Limits	RPD Limit		Flags	
DUPLICATE												
Laboratory ID:	11-20	03-02										
	ORIG	DUP										
Arsenic	ND	ND	NA	NA		Ν	١A	NA	NA	20		
MATRIX SPIKES												
Laboratory ID:	11-203-02											
	MS	MSD	MS	MSD		MS	MSD					
Arsenic	117	112	111	111	ND	105	101	75-125	4	20		



### DISSOLVED ARSENIC EPA 200.8

Matrix: Water Units: ug/L (ppb)						
				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-2-19:11152022					
Laboratory ID:	11-232-02					
Arsenic	ND	3.0	EPA 200.8	11-16-22	11-18-22	
Client ID:	MW-7-22:11152022					
Laboratory ID:	11-232-03					
Arsenic	ND	3.0	EPA 200.8	11-16-22	11-18-22	
Client ID:	MW-8-22:11152022					
Laboratory ID:	11-232-04					
Arsenic	5.7	3.0	EPA 200.8	11-16-22	11-18-22	
Client ID:	MW-6-22:11152022					
Laboratory ID:	11-232-05					
Arsenic	4.6	3.0	EPA 200.8	11-16-22	11-18-22	
Client ID:	MW-9-22:11152022					
Laboratory ID:	11-232-06					
Arsenic	ND	3.0	EPA 200.8	11-16-22	11-18-22	
Client ID:	MW-100:11152022					
Laboratory ID:	11-232-07					
Arsenic	ND	3.0	EPA 200.8	11-16-22	11-18-22	



OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

e Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883 This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed. 13

### DISSOLVED ARSENIC EPA 200.8 QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

							Date	Dat	е	
Analyte		Result		PQL	М	ethod	Prepared	Analy	Flags	
METHOD BLANK										
Laboratory ID:		MB1116F1								
Arsenic		ND		3.0	EP	A 200.8	11-16-22	11-18		
					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike Level		Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	11-23	32-07								
	ORIG	DUP								
Arsenic	ND	ND	NA	NA		NA	NA	NA	20	

### MATRIX SPIKES

Laboratory ID:	11-23	32-07									
	MS	MSD	MS	MSD		MS	MSD				
Arsenic	83.8	83.8	80.0	80.0	ND	105	105	75-125	0	20	



This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.



### **Data Qualifiers and Abbreviations**

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1 Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- X2 Sample extract treated with a silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.
- Y1 Negative effects of the matrix from this sample on the instrument caused values for this analyte in the bracketing continuing calibration verification standard (CCVs) to be outside of 20% acceptance criteria. Because of this, quantitation limits and sample concentrations should be considered estimates.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference



OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received AR Sale De	Relinquished M /////	Signature		8 Trip Blanks	7 MW-100:11157072	6 MM-9-12:11157072	S MN-6-22:11152022	4 MIN-9-22:11152022	3 MM-7-27:11152022	2 MN-2-19:11157022	1 TIGP BLAMKS	Lab ID Sample Identification	Sampled by: Mitchell Holpheld	Toslph Sonday		11-1-72742-112	Company: Shamon & Wilson		Analytical Laboratory Testing Services	OnSite
Reviewed/Date			CONE	ANDA -	- ALPHA	SNI	Company		mis - v p	U 1630 V a	1515 9	1415 9	1250 0	0 Shill	1 1045 1 9	11/15/22 08000 WMM 9	Date Time Sampled Sampled Matrix	(other)	]	Standard (7 Days)	2 Days 3 Days	Same Day 1 Day	(in working days) (Check One)	Turnaround Request	Chain of
155 1 - 1 - 1 - 1 1 - 1 - 1 - 1 1 - 1 - 1 -	Martin Contraction		1116/2 1413	41. Las 2.17	N/6/22 4:55	11/16/22 0700	Date Time		X No DB	×	XX	XX	XX	X X	×	*	NWTF NWTF NWTF Volatil Halog	PH-HCID PH-Gx/B	) TEX (8 Acid / S /olatile:	Laboratory Number:		Chain of Custody			
Chromatograms with final report 🗌 Electronic Data Deliverables (EDDs) 🗌	e: Standard  Level III  Level IV	Involve directly to insport Athan: Robyin	run w) · SG cleanup).	silica qui cleanup.	* Hold extra volvine for analysi	Lab to Alter	Comments/Special Instructions			×		×		×	×		(with I PAHs PCBs Organ Organ Chlori Total I Total I Total I	ophosp nated A RCRA M MTCA M MtCA M Metals	I PAHs M (low he Pest horus F cid Her letals letals grease)	) -level) icides 8 Pesticid bicides	8151	0/SIM	11-232		Page of
s (EDDs)	Boyd RLE NSU	yn Boyd		(IEMIMALLY	2	currate and a second		 )	w ₄₂	. 174						10	% Mo	isture		4		q			