DECEMBER 2022 GROUNDWATER SAMPLING EVENT REPORT

FOR

HAHN MOTOR COMPANY 1201 SOUTH 1ST STREET YAKIMA, WASHINGTON 98901

Facility Site ID No. 502 Cleanup Site ID No. 4927 VCP Project No. CE0529

January 27, 2023

Prepared for:

Ms. Debra Manjarrez Manjarrez & De Leon Inc, PS 2010 West Nob Hill Blvd, Suite 1 Yakima, Washington 98902

And

Mr. Kyle Parker Department of Ecology Toxic Cleanup Program, Central Regional Office 1250 West Alder Street Union Gap, Washington 98903-0009

Prepared by: Brent Bergeron, LHG, LG Licensed Hydrogeologist and Geologist

Blue Mountain Environmental and Consulting Company, Inc. PO Box 545/125 Main St. Waitsburg, WA 99361 509-520-6519

PROJECT SUMMARY

Client:	Ms. Debra Manjarrez Manjarrez & De Leon Inc, PS 2010 West Nob Hill Blvd, Suite 1 Yakima, Washington 98902
Point of Contact:	Ms. Debra Manjarrez
Property:	Hahn Motor Company 1201 South 1 st Street Yakima, Washington 98901
Major Commercial Activity:	Automotive Sales and Automobile Repair
VCP Project ID Number:	CE0529
Licensed Hydrogeologist/Geologist:	Brent N. Bergeron, LHG, LG
License Number/Expiration:	LHG #2267, expires 1/3/2024 LG #2267, expires 1/3/2024
Project Number:	E2022/1204
Report Date:	January 27, 2023

Legal description: Tax Parcel 191330-13032 in the southwest quarter of the northeast quarter of Section 30, Township 13 North, Range 19 E.W.M; Latitude 46° 35' 17.37" North, Longitude 120° 29'52.41" West.

PROJECT SUMMARY2
CONTENTS
1.0 INTRODUCTION
1.1 LOCATION
2.0 GEOLOGY AND HYDROGEOLOGY
3.0 PREVIOUS ENVIRONMENTAL FIELD ACTIVITIES
3.1 February 2022 - Subsurface Investigation 7 3.2 July 2022 - Dry Well Removal 8 3.3 September 2022 - Additional Subsurface Investigation 8
4.0 DECEMBER 15, 2022 GROUNDWATER SAMPLING EVENT FIELD METHODOLOGY10
5.0 DECEMBER 15, 2022 GROUNDWATER SAMPLING EVENT RESULTS
6.0 CONCLUSIONS
7.0 RECOMMENDATIONS
8.0 STATEMENT OF ENVIRONMENTAL PROFESSIONALS
9.0 REFERENCES14

CONTENTS

TABLE OF CONTENTS

FIGURES

Figure No

Figure Title

1	SITE VICINITY MAP
2	SITE LOCATION MAP
3	GROUNDWATER FLOW DIRECTION - DECEMBER 15, 2022
4	METALS IN GROUNDWATER – 12/15/22

TABLES

Table NoTable Title1Monitoring Well Installation and Groundwater Surface Elevation Data2Groundwater Sample Results - Total Petroleum Hydrocarbons (µg/L)3Groundwater Sample Results - Volatile Organic Compounds (µg/L)4Groundwater Sample Results - Total Metals (µg/L)

APPENDICES

<u>Appendix No</u>	<u>Appendix Title</u>
А	GROUNDWATER SAMPLE FIELD LOGS
В	LABORATORY ANALYTICAL DOCUMENTATION

1.0 INTRODUCTION

On December 15, 2022, Blue Mountain Environmental and Consulting Company, Inc. (BMEC) mobilized to 1201 South 1st Street in Yakima, Washington 98901 (Site) and performed a groundwater sampling event involving all six monitoring wells (MW1 through MW6). Depth-to-water measurements were collected from all six wells and each of the six groundwater samples collected were analyzed for total petroleum hydrocarbons – gasoline range (TPH-G), TPH – diesel range (TPH-D), total petroleum hydrocarbons – heavy oil range (TPH-O), volatile organic compounds (VOCs), and total metals. A Site Vicinity Map is included as **Figure 1**.

1.1 Location

The 1.5-acre (approximate) Site is located in the City of Yakima, Yakima County, Washington, at the southeast corner of the intersection of South 1st Street and East Arlington Street (**Figures 2** - **4**). The Site consists of one tax parcel (191330-13032) and is located in the southwest quarter of the northeast quarter of Section 30, Township 13 North, Range 19 E.W.M. The elevation is approximately 1,041 feet above mean sea level and the Site is relatively flat with primarily asphalt ground cover. The nearest major body of water is the Yakima River approximately 1.5 miles east of the Site. The Site is surrounded by commercial then residential property to the east, commercial property then light industry to the north, commercial property to the south. There are no flood zones or wetlands associated with the Site.

1.2 General Site Information

As of February 23, 2016, the property was owned by Mr. Richard Hahn. The current owner of the property is the Estate of Douglas F Bettarel, represented by Ms. Debra Manjarrez of Manjarrez and De Leon Inc, PS. BMEC is currently working for Manjarrez and De Leon Inc, PS.

One building is located on the Site (**Figures 2 – 4**). The rectangular building located on the northwest corner of the property consists of an automobile showroom with offices on the western half, bathrooms and break room near the center of the building, and an automobile repair and automobile wash bay in the eastern half of the building. During the visit to the Site on February 1, 2022, a minimum of one sump was noticed on the interior of the eastern half of the building. The sump appeared to drain to the south toward the drywells which BMEC investigated via soil and groundwater sampling on February 1, 2022. The drywells and all associated petroleum and metals impacted soils were removed on July 12 and 13, 2022, and replaced by a single dry well on July 14, 2022.

2.0 GEOLOGY AND HYDROGEOLOGY

Based on the subsurface investigation field activities conducted at the Site on September 27 and 28, 2022, the following geologic soil conditions were encountered in soil borings MW1 and MW3 through MW6:

• 0 - 0.25': Asphalt.

- 0.25 2': Brown SILT (ML);
- 2 20': Brown to dark brown, sandy, well-rounded, coarse GRAVEL & COBBLES, with little silt, loose (GW); and
- 20 -25': Brown gray, SAND & GRAVEL, well-rounded, coarse, loose, wet very wet (SP/GP).

During the February 1, 2022, field activities, groundwater was encountered in soil borings SB1 at 11 feet bgs, SB3 at 16.3 feet bgs, SB4 at 18 feet bgs, and SB5 at 14.5 feet bgs. During the October 3, 2022, GWSE conducted at the Site, depths-to-groundwater ranged from 15.48 feet below top of casing (btoc) in well MW1, to 16.66 feet btoc in well MW2. The groundwater flow direction was determined to be to the southeast toward the Yakima River which is approximately 1.5 miles east of the Site with a hydraulic gradient of 0.005 feet per foot. The estimated flow direction in the deeper aquifer beneath the Site is also to the southeast with an approximate hydraulic gradient of 0.004 feet per foot.

3.0 PREVIOUS ENVIRONMENTAL FIELD ACTIVITIES

The existing facility was built in 1946 by Hahn Motors Company. A 2,000-gallon heating oil underground storage tank (UST) for the oil-fired boiler was installed in the northwest side of the building's basement to provide heat for the facility. A second 2,000-gallon UST was installed at the facility in the mid-1970's and both USTs were used to store used oil after the boiler was converted to burn used motor oil, which was plentiful available from the on-site conducted car services.

It was determined by Ecology on July 9, 2007, and documented via certified mail dated July 26, 2007, that Hahn Motor Company was in *Non-Compliance with the Underground Storage Tank Regulations Chapter 173-360* for not properly registering and upgrading their 2,000-gallon USTs prior to storage of waste oil. Via directive from Ecology as defined in the July 26, 2007 certified mail, both USTs were decommissioned by removal and backfill in November 2007. Approximately 50 cubic yards of PCS and asphalt were hauled off-site and disposed at the Anderson Disposal Facility in Yakima, Washington.

During the November 9, 2007, UST decommissioning activities, three soil samples were collected from the west, north, and east side of the eastern UST, yielding one heavy oil detection of 396 mg/Kg in the west sample. Similarly, three soil samples were collected from the west, north, and east side of the eastern UST, yielding heavy oil detections ranging between 155 – 492 mg/Kg. The MTCA Method A Cleanup Level for heavy oil is 2,000 mg/Kg. No gasoline range hydrocarbons were identified by laboratory analysis in any soil samples collected. Significant lead concentrations were detected in residual soil sampled and analyzed from the tank bottom(s).

In 2017, Ecology conducted semi-annual groundwater sampling of the YRRA groundwater monitoring network which is a six-square mile area located along the railroad corridor in the cities of Yakima and Union Gap, Washington. The YRRA was defined in 1991. The Site is located near the center of the YRRA which is impacted by chlorinated solvents, primarily PCE. Fifteen of the

39 groundwater samples collected from wells within the YRRA yielded concentrations ranging from 5 to 9,110 μ g/L. The MTCA Cleanup Level for TCE in groundwater is 5 μ g/L.

3.1 February 2022 - Subsurface Investigation

On February 1, 2022, BMEC hydrogeologist, Brent Bergeron, LHG, and BMEC environmental professional Yancy Meyer, supervised the advancement of six soil borings (SB1 through SB6) to depths varying between 15 feet and 25 feet bgs. The six soil borings were advanced via sonic drilling methodology by Environmental West Explorations (EWE) personnel. Continuous soil samples were brought to the surface via core barrel and sample bag methodology.

TPH-D was only quantified in one of the 21 soil samples at a concentration of 670 mg/Kg in sample SB1-2-1-22-10'. TPH-O was quantified in three of the 21 soil samples at concentrations of 1400 mg/Kg in sample SB1-2-1-22-10'; 6900 mg/Kg in sample SB5-2-1-22-10'; and 1100 mg/Kg in sample SB5-2-1-22-15'. The MTCA Method A Cleanup Level for TPH-D + TPH-O is 2000 mg/Kg which was only exceeded in samples SB1-2-1-22-10' and SB5-2-1-22-10'. TPH-G was performed on one soil sample. TPH-G was quantified in sample SB1-2-1-22-10' at 220 mg/Kg which exceeds the MTCA Method A Cleanup Level of 30 mg/Kg.

VOCs were analyzed for in three soil samples (SB1-2-1-22-10', SB3-2-1-22-25', and SB5-2-1-22-20') and detected in sample SB1-2-1-22-10' at concentrations that due not exceed any MTCA Method A Cleanup Levels. No VOCs were detected in soil samples SB3-2-1-22-25' and SB5-2-1-22-20'.

Cadmium was detected in one sample (SB1-2-1-22-10') at 2.5 mg/Kg which exceeds the MTCA Method A Cleanup Level of 2 mg/Kg. Chromium was detected in all 21 samples at concentrations ranging from 2.9 mg/Kg in sample SB5-2-1-22-20' to 34 mg/Kg in sample SB2-2-1-22-5' which was the only soil sample to exceed the MTCA Method A Cleanup Level of 19 mg/Kg. Lead was detected in four of the 21 soil samples at concentrations ranging from 9.4 mg/Kg in sample SB5-2-1-22-5' to 45 mg/Kg in sample SB1-2-1-22-10'. None of the four lead detections exceed the MTCA Method A Cleanup Level of 250 mg/Kg.

PAHs were analyzed for in three soil samples and detected in sample SB1-2-1-22-10' at concentrations that due not exceed any MTCA Method A Cleanup Levels. No PAHs were detected in soil samples SB3-2-1-22-25' and SB5-2-1-22-20'.

TPH-D and/or TPH-O were detected above the laboratory MRLs in all three groundwater samples collected (SB1-2-1-22-GW, SB3-2-1-2-GW, and SB5-2-1-22-GW). Furthermore, TPH-D + TPH-O were detected in samples SB1-2-1-22-GW and SB5-2-1-22-GW at concentrations of 9800 μ g/L and 770 μ g/L, respectively, which exceeded the MTCA Method A Cleanup Level of 500 μ g/L. Groundwater sample SB1-2-1-22-GW was collected from immediately down-gradient of the dry well outside the automobile engine washing bay and groundwater sample SB5-2-1-22-GW was collected from the north side of the building.

VOCs were analyzed for in all three groundwater samples (SB1-2-1-22-GW, SB3-2-1-22-GW, and SB5-2-1-22-GW). A combination of VOCs including PCE, benzene, ethylbenzene, and

naphthalene were detected in all three groundwater samples but not at concentrations exceeding established MTCA Method A Cleanup Levels.

Arsenic was detected in all three groundwater samples at concentrations exceeding the MTCA Method A Cleanup Level of 5 μ g/L. Arsenic concentrations ranged from 51 μ g/L in SB3-2-1-22-GW to 130 μ g/L in SB5-2-1-22-GW. Chromium was detected in all three groundwater samples at concentrations exceeding the MTCA Method A Cleanup Level of 50 μ g/L. Chromium concentrations ranged from 420 μ g/L in SB3-2-1-22-GW to 1100 μ g/L in SB5-2-1-22-GW. Lead was detected in all three groundwater samples at concentrations exceeding the MTCA Method A Cleanup Level of 15 μ g/L. Lead concentrations ranged from 150 μ g/L in SB3-2-1-22-GW to 1200 μ g/L in SB1-2-1-22-GW. Cadmium was detected in groundwater samples SB1-2-1-22-GW to 1200 μ g/L in SB1-2-1-22-GW. Cadmium was detected in groundwater samples SB1-2-1-22-GW and SB5-2-1-22-GW at 110 μ g/L and 6.4 μ g/L, respectively. The MTCA Method A Cleanup Level for cadmium in groundwater is 5 μ g/L.

PAHs were analyzed for in all three groundwater samples (SB1-2-1-22-GW, SB3-2-1-22-GW, and SB5-2-1-22-GW). A combination of PAHs including 1-methylnaphthalene, 2-methylnaphthalene, and naphthalene were detected in all three groundwater samples; however, not at concentrations exceeding established MTCA Method A Cleanup Levels.

PCBs were analyzed for in groundwater samples (SB1-2-1-22-GW, SB3-2-1-22-GW, and SB5-2-1-22-GW). PCBs were not detected above the laboratory practical quantitation limits (PQLs) in any of the three samples.

3.2 July 2022 - Dry Well Removal

From July 12 - 14, 2022, BMEC personnel supervised Clarke Construction personnel during the removal of both dry wells south of the main onsite building and collected 13 confirmation soil samples in the process. Confirmation samples indicated no contaminants above Ecology MTCA Method A Cleanup Levels. On July 14, 2022, after receiving soil sample results, a new drywell was placed in the location of Former Drywell 2 to allow for stormwater drainage from the parking lot, and the excavation was backfilled, compacted to grade, and paved with asphalt.

3.3 September 2022 - Additional Subsurface Investigation

On September 27 and 28, 2022, BMEC hydrogeologist, Brent Bergeron, LHG, and BMEC environmental professional Yancy Meyer, supervised Anderson Environmental Contracting (AEC) personnel during the advancement of six soil borings (MW1 through MW6) to depths of 25 feet bgs via sonic drilling.

TPH-Dx was performed on 12 soil samples. TPH-D was only quantified in one of the 12 soil samples at a concentration of 76 mg/Kg in sample MW3-9-27-22-15'. TPH-O was quantified in three of the 12 soil samples at concentrations of 300 mg/Kg in sample MW3-9-27-22-15' to 1000 mg/Kg in sample MW6-9-27-22-21'. The MTCA Method A Cleanup Level for TPH-D + TPH-O is 2000 mg/Kg which was not exceeded in any of the 12 soil samples. TPH-G was performed on all 12 soil samples. TPH-G was not detected in any of the 12 soil samples. VOCs were analyzed for in all 12 soil samples. Index parameters such as benzene, toluene, ethylbenzene, and total xylenes (BTEX) plus naphthalene were not detected in any of the 12 soil samples. RCRA metals

analyses was performed on all 12 soil samples. Arsenic, cadmium, mercury, selenium, and silver were not detected above the laboratory PQLs in any of the samples. Barium was detected in all 12 samples at concentrations ranging up to 65 mg/Kg in sample MW6-9-27-22-21'. A MTCA Method A Cleanup Level does not currently exist for barium. Chromium (hexavalent + trivalent) was detected in all 12 samples at concentrations ranging up to 16 mg/Kg in soil sample MW1-9-28-22-19'. None of the 12 chromium detections exceed the MTCA Method A Cleanup Level for chromium of 19 mg/Kg. Lead was detected in three of the 12 soil samples at concentrations ranging up to 11 mg/Kg in sample MW6-9-27-22-21'. None of the MTCA Method A Cleanup Level of 250 mg/Kg.

TPH-D and/or TPH-O were not detected above the laboratory PQLs in all six groundwater samples collected from monitoring wells MW1 through MW6. Furthermore, TPH-G was not detected above the laboratory PQLs in the six groundwater samples. VOCs were analyzed for in all six groundwater samples collected from monitoring wells MW1 through MW6. A combination of VOCs including PCE and BTEX were detected in all six groundwater samples but not at concentrations exceeding established MTCA Method A Cleanup Levels.

RCRA (total) metals were analyzed for in all six groundwater samples collected from monitoring wells MW1 through MW6. Mercury was detected in three of the groundwater samples at concentrations ranging from 0.61 μ g/L in well MW6 to 1.5 μ g/L in well MW4. The MTCA Method A Cleanup Level for mercury is 2 μ g/L. Selenium was detected in three of the groundwater samples at concentrations ranging from 5.9 μ g/L in well MW6 to 9.9 μ g/L in well MW4. No MTCA Method A Cleanup Level currently is established for selenium. Barium was detected in all six of the groundwater samples at concentrations ranging from 340 μ g/L in well MW1 to 2700 μ g/L in well MW4. No MTCA Method A Cleanup Level currently is established for selenium. Barium was detected in all six of the groundwater samples at concentrations ranging from 340 μ g/L in well MW1 to 2700 μ g/L in well MW4. No MTCA Method A Cleanup Level currently is established for selenium. Barium was detected in all six of the groundwater samples at concentrations ranging from 340 μ g/L in well MW1 to 2700 μ g/L in well MW4. No MTCA Method A Cleanup Level currently is established for barium. Cadmium and silver were not detected above the laboratory PQLs in any of the six groundwater samples.

Arsenic was detected in all six groundwater samples at concentrations exceeding the MTCA Method A Cleanup Level of 5 μ g/L. Arsenic concentrations ranged from 12 μ g/L in the groundwater sample collected from well MW1 to 67 μ g/L in MW4. Chromium (hexavalent + trivalent) was detected in all six groundwater samples at concentrations exceeding the MTCA Method A Cleanup Level of 50 μ g/L. Chromium concentrations ranged from 81 μ g/L in well MW6 to 430 μ g/L in MW2. Lead was detected in all six groundwater samples at concentrations ranged from 16 μ g/L in the groundwater collected from well MW1 to 160 μ g/L. Lead concentrations ranged from 16 μ g/L in the groundwater collected from well MW1 to 160 μ g/L in well MW2. The highest detections of chromium (hexavalent + trivalent) and lead were in the groundwater sample collected from well MW2 which is located near the northwest property corner between the two former USTs. The second highest chromium and lead detections in groundwater were detected in the sample collected from well MW4 located in the northeast corner of the Site. The two highest arsenic concentrations were detected in wells MW4 and MW2, respectively.

4.0 DECEMBER 15, 2022 GROUNDWATER SAMPLING EVENT FIELD METHODOLOGY

BMEC personnel mobilized to the Site on December 15, 2022, to obtain depth-to-water (DTW) measurements and collect groundwater samples from existing monitoring wells MW1 through MW6. Groundwater parameters of the six monitoring well samples were measured in the field for pH, temperature, conductivity, and turbidity. Approximately five gallons were purged from each of the six monitoring wells, prior to sample collection. All six groundwater samples were collected in the appropriate containers, properly sealed and labeled, and placed on ice in a secured cooler, prior to being relinquished to OnSite for overnight delivery. Groundwater sample field logs for the December 15, 2022 GWSE are included in **Appendix A**.

DTW measurements were collected via a Solinst interface probe from monitoring wells MW1 through MW6. DTW values ranged from 18.35 feet below top of casing (btoc) in well MW2 to 19.87 feet btoc in well MW2 (**Table 1**). Groundwater flow direction was to the southeast as illustrated on **Figure 3**. The hydraulic gradient was 0.006 feet per foot.

The suite of analyses performed on each groundwater sample submitted to the laboratory is as follows: TPH-D and TPH-O analysis via Northwest Method NWTPH-Dx; TPH-G via Northwest Method NWTPH-Gx; VOCs via Environmental Protection Agency (EPA) Method 8260D; and total Resource Conservation and Recovery Act (RCRA) metals via EPA Method 200.8/7470A.

A peristaltic pump and dedicated tubing were used to obtain groundwater samples from the six monitoring wells (MW1 through MW6). Each groundwater sample was obtained via five 40-mL glass vials preserved with HCl, two 500-mL amber glass jars preserved with HCl, two 1-L amber glass jar unpreserved, and one 250-mL plastic container preserved with nitric acid. Upon collection, each groundwater sample was immediately labeled, sealed, and placed on ice in a secure cooler.

All trash derived from the GWSE activities (i.e., nitrile gloves, paper towels, and tubing) was placed in a plastic bag and placed in an onsite trash receptacle. All purge water was stored in 55-gallon drums temporarily staged onsite.

5.0 DECEMBER 15, 2022 GROUNDWATER SAMPLING EVENT RESULTS

On December 15, 2022, BMEC personnel returned to the Site to conduct a GWSE involving all six monitoring wells (MW1 through MW6). TPH-D and/or TPH-O were not detected above the laboratory PQLs in five of the six groundwater samples collected from monitoring wells MW1 and MW3 through MW6. Lube oil (i.e., TPH-O) was detected in the groundwater sample collected from monitoring well at a concentration of 240 mg/L which does not exceed the MTCA Method A Cleanup Level of 500 mg/L. TPH-G was not detected above the laboratory PQLs in the six groundwater samples. TPH results are summarized in **Table 2**.

VOCs were analyzed for in all six groundwater samples. A combination of VOCs including PCE, BTEX, and miscellaneous VOCs (i.e., chloroform, carbon disulfide, n-propylbenzene, p-isopropytoluene, and n-butylbenzene) were detected in all six groundwater samples but at concentrations that do not exceed established MTCA Method A Cleanup Levels. PCE was detected in groundwater samples obtained from all six monitoring wells at concentrations ranging from 1.1 μ g/L in well MW6 to 1.7 μ g/L in the groundwater samples collected from wells MW1 and MW2. Benzene was detected in groundwater samples collected from monitoring wells MW2 and MW4 at 0.22 μ g/L and 0.23 μ g/L, respectively. The MTCA Method A Cleanup Levels for PCE and benzene are each 5 μ g/L. VOC results are summarized in **Table 3**.

RCRA (total) metals were analyzed for in all six groundwater samples collected from monitoring wells MW1 through MW6. Selenium was detected in two of the groundwater samples at concentrations ranging from 6.7 μ g/L in well MW3 to 11 μ g/L in well MW6. No MTCA Method A Cleanup Level currently is established for selenium. Barium was detected in all six of the groundwater samples at concentrations ranging from 580 μ g/L in well MW1 to 1900 μ g/L in wells MW4 and MW6. No MTCA Method A Cleanup Level currently is established for Selenium. Barium was detected in all six of the groundwater samples at concentrations ranging from 580 μ g/L in well MW1 to 1900 μ g/L in wells MW4 and MW6. No MTCA Method A Cleanup Level currently is established for barium. Cadmium and silver were not detected above the laboratory PQLs in any of the six groundwater samples. RCRA metal results are summarized in **Table 4**.

Arsenic was detected in all six groundwater samples at concentrations exceeding the MTCA Method A Cleanup Level of 5 μ g/L. Arsenic concentrations ranged from 28 μ g/L in the groundwater samples collected from wells MW1 and MW5 to 150 μ g/L in MW6. Chromium (hexavalent + trivalent) was detected in all six groundwater samples at concentrations exceeding the MTCA Method A Cleanup Level of 50 μ g/L. Chromium concentrations ranged from 150 μ g/L in well MW1 to 340 μ g/L in MW3. Lead was detected in all six groundwater samples at concentrations exceeding the MTCA Method A Cleanup Level of 15 μ g/L. Lead concentrations ranged from 26 μ g/L in the groundwater collected from well MW1 to 140 μ g/L in well MW6. Mercury was detected in three of the groundwater samples at concentrations ranging from 0.58 μ g/L in well MW2 to 2.1 μ g/L in well MW6. The MTCA Method A Cleanup Level for mercury is 2 μ g/L. **Figure 4** illustrates the laboratory analytical results the five RCRA metals monitored by Ecology.

Each of the six groundwater samples submitted to Onsite for RCRA metals were not field filtered. Instead, each of the six samples were filtered in the lab, prior to analysis.

6.0 CONCLUSIONS

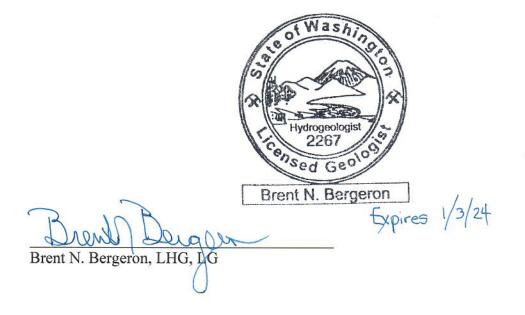
On December 15, 2022, DTW measurements ranged from 18.35 feet bloc in well MW2 to 19.87 feet bloc in well MW2. Groundwater flow direction was to the southeast. The hydraulic gradient was 0.006 feet per foot.

TPH-D and/or TPH-O were not detected above the laboratory PQLs in five of the six groundwater samples collected from monitoring wells MW1 and MW3 through MW6. TPH-O was detected in the groundwater sample collected from monitoring well at a concentration of 240 mg/L which does not exceed the MTCA Method A Cleanup Level of 500 mg/L. TPH-G was not detected above the laboratory PQLs in the six groundwater samples. No VOCs were detected at concentrations that exceed MTCA Method A Cleanup Levels, including PCE and benzene. PCE was detected in all six groundwater samples but at concentrations not exceeding MTCA Method A Cleanup Levels.

Arsenic was detected in all six groundwater samples at concentrations exceeding the MTCA Method A Cleanup Level of 5 μ g/L. Arsenic concentrations ranged from 28 μ g/L in the groundwater samples collected from wells MW1 and MW5 to 150 μ g/L in MW6. Chromium (hexavalent + trivalent) was detected in all six groundwater samples at concentrations exceeding the MTCA Method A Cleanup Level of 50 μ g/L. Chromium concentrations ranged from 150 μ g/L in well MW1 to 340 μ g/L in MW3. Lead was detected in all six groundwater samples at concentrations ranged from 26 μ g/L in the groundwater collected from well MW1 to 140 μ g/L in well MW6. Mercury was detected in three of the groundwater samples at concentrations ranging from 0.58 μ g/L in well MW2 to 2.1 μ g/L in well MW6. The MTCA Method A Cleanup Level for mercury is 2 μ g/L.

7.0 RECOMMENDATIONS

BMEC recommends the following actions:


- 1) Conduct a minimum of four additional quarterly GWSEs and submit the groundwater samples to the laboratory for RCRA metals analysis, TPH-Dx and TPH-Gx analysis, as well as VOCs including PCE analysis.
- 2) Assess whether background metals concentrations in the shallow aquifer may be naturally elevated above MTCA Method A Cleanup Levels. If so, this phenomenon shall be factored into the assessment of metals in groundwater and the pursuit of NFA status.
- 3) Complete reports documenting all future field activities. BMEC plans to compare all future soil and groundwater sampling results to MTCA Method A Cleanup Levels.

8.0 STATEMENT OF ENVIRONMENTAL PROFESSIONALS

BMEC personnel performed these GWSE field activities on December 15, 2022, in accordance with generally accepted environmental practices and procedures. We employed the degree of care and skill ordinarily exercised under similar circumstances by reputable environmental professionals practicing in the discipline of environmental sciences. The groundwater sampling activities completed were conducted in accordance with standard engineering and geologic standards. However, BMEC was limited by data gaps that were encountered due to previous field work inadequacies and improper documentation. This report is based on the limited data that was provided to BMEC and if additional field data or documentation exists that was not made available to BMEC, we cannot be held accountable for such data gaps or inconsistencies recognizable in this report.

Respectfully Submitted,

Blue Mountain Environmental and Consulting Company, Inc.

PTrabusiner

Peter Trabusiner, Engineer

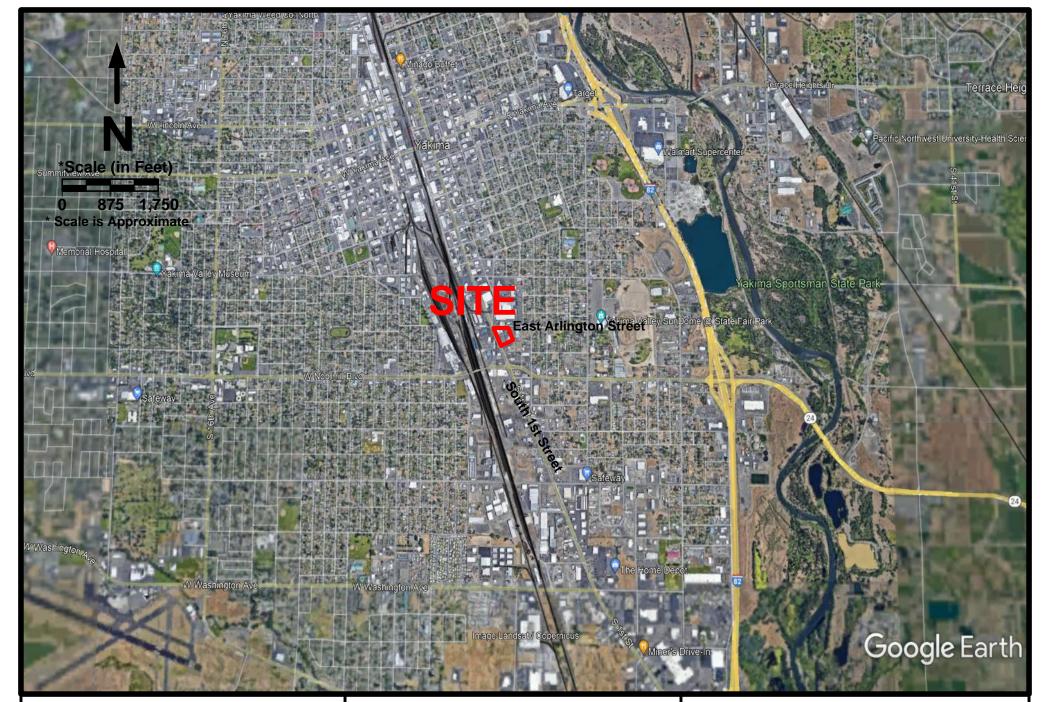
9.0 REFERENCES

Blue Mountain Environmental and Consulting Company, Inc., SEPTEMBER 2022 ADDITIONAL SUBSURFACE INVESTIGATION REPORT FOR HAHN MOTOR COMPANY, 1201 SOUTH 1ST STREET, YAKIMA, WASHINGTON 98901, Facility Site ID No. 502, Cleanup Site ID No. 4927, VCP Project No. CE0529, October 17, 2022.

Blue Mountain Environmental and Consulting Company, Inc., DRYWELL DECOMMISSIONING AND CONTAMINATED SOIL REMOVAL REPORT FOR HAHN MOTOR COMPANY, 1201 SOUTH 1ST STREET, YAKIMA, WASHINGTON 98901, Facility Site ID No. 502, Cleanup Site ID No. 4927, VCP Project No. CE0529, August 1, 2022.

Blue Mountain Environmental and Consulting Company, Inc., FEBRUARY 1, 2022 SUBSURFACE INVESTIGATION REPORT FOR HAHN MOTOR COMPANY, 1201 SOUTH 1ST STREET, YAKIMA, WASHINGTON 98901, Facility Site ID No. 502, Cleanup Site ID No. 4927, VCP Project No. CE0529, March 4, 2022.

Google Maps, 2022.


PETCO INCORPORATED, Underground Storage Tank Decommissioning & Site Assessment Report For UST Site #200130, 1201 South 1st St., Yakima, Washington, February 2008.

Washington State Department of Ecology, Yakima Railroad Area PCE Contamination – Groundwater Quality Performance Monitoring Data Summary 2017, July 2018.

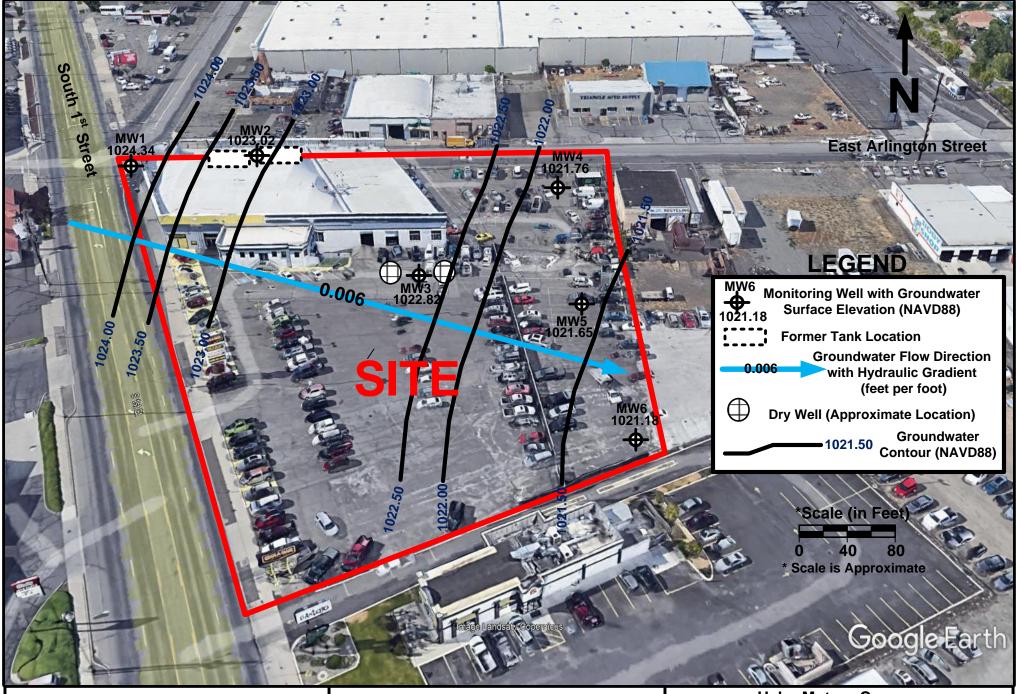
Washington State Department of Ecology, Model Toxics Control Act Statute and Regulation, Revised November 2007.

Washington State Department of Ecology, Letter – Re: Acceptance Letter -Voluntary Cleanup Program, 1201 South 1st Street, Yakima, Washington, November 12, 2021.

Washington State Department of Ecology, Letter – Re: Further Action at the Site, 1201 South 1st Street, Yakima, Washington, February 23, 2016.

BMEC P.O. Box 545/125 Main Street Waitsburg, Washington 99361

FIGURE 1 – SITE VICINITY MAP


Hahn Motors Company 1201 South 1st Street Yakima, Washington 98901

BMEC P.O. Box 545/125 Main Street Waitsburg, Washington 99361

FIGURE 2 – SITE LOCATION MAP

Hahn Motors Company 1201 South 1st Street Yakima, Washington 98901

BMEC P.O. Box 545/125 Main Street Waitsburg, Washington 99361 FIGURE 3 – GROUNDWATER FLOW DIRECTION DECEMBER 15, 2022 Hahn Motors Company 1201 South 1st Street Yakima, Washington 98901 VCP Project # CE 0529

P.O. Box 545/125 Main Street Waitsburg, Washington 99361 FIGURE 4 – METALS IN GROUNDWATER 12/15/22 (µg/L) Hahn Motors Company 1201 South 1st Street Yakima, Washington 98901 VCP Project # CE 0529

TABLE 1Monitoring Well Installation and Groundwater Surface Elevation Data
Former Hahn Motors 1201 S. 1st Street in Yakima, WA 98901

Monitoring Well Number	Date Measured	Top of Casing Elevation (feet NAVD88)	Depth-To- Water Below Top of Casing (feet btoc)*	Groundwater Elevation (feet NAVD88)	LNAPL Thickness (feet)	Volume of Groundwater Purged (gallons)	Screened Interval (feet bgs)	Sandpack Interval (feet bgs)	Bentonite Interval (feet bgs)
				Monitor	ing Wells				
MW1	10/3/22	1042.69	15.48	1027.21	0.00	15	10 - 25'	8 - 25'	2 - 8'
	12/15/22	1042.09	18.35	1024.34	0.00	5	10-25	0-25	2-0
MW2	10/3/22	1042.89	16.66	1026.23	0.00	15	10 - 25'	8 - 25'	2 - 8'
	12/15/22	1042.09	19.87	1023.02	0.00	5	10-25		2-0
MW3	10/3/22	1041.88	16.36	1025.52	0.00	15	10 - 25'	8 - 25'	2 - 8'
141 44 2	12/15/22	1041.00	19.06	1022.82	0.00	5	10-25		2-0
MW4	10/3/22	1041.13	16.14	1024.99	0.00	15	10 - 25'	0.051	2 - 8'
111144	12/15/22	1041.13	19.37	1021.76	0.00	5	10 - 25	8 - 25'	2-0
MW5	10/3/22	1040.73	15.94	1024.79	0.00	15	10 - 25'	8 - 25'	2 - 8'
C 49 191	12/15/22	1040.73	19.08	1021.65	0.00	5	10 - 25	0 - 25	2-0
MMG	10/3/22	1010.06	15.57	1024.49	0.00	15	10 - 25'	8 - 25'	2 8'
MW6	12/15/22	- 1040.06	18.88	1021.18	0.00	5	10 - 25	0 - 25	2 - 8'

NAVD88 = North American Vertical Datum 1988

btoc = below top of casing

LNAPL = light, non-aqueous phase liquid

NA = not available

	Groundwater Sam	TABLE 2ple Results - Total Petroleur1201 South First StreeYakima, Washington 989	t	
		TPH-Diesel and Heavy Oil by	Northwest Method NWTPH-Dx	
Sample I.D.	Date Collected	TPH-D	трн-о	TPH-Gasoline by Northwest Method NWTPH-Gx
	1	MONITORING WELLS		
MW1	10/3/22	< 200	< 200	< 100
	12/15/22	< 210	< 210	< 500
MW2	10/3/22	< 210	< 210	< 100
	12/15/22	< 220	240	< 500
MW3	10/3/22	< 200	< 200	< 100
101005	12/15/22	< 230	< 230	< 500
MW4	10/3/22	< 210	< 210	< 100
101004	12/15/22	< 230	< 230	< 500
MW5	103/22	< 210	< 210	< 100
101003	12/15/22	< 220	< 220	< 500
MW6	10/3/22	< 210	< 210	< 100
101000	12/15/22	< 220	< 220	< 500
		gy MTCA Method A Groundwater Cleanu	p Levels (μg/L)	
Clean	ıp Level	500	500	800/1,000 ¹
Notes: ¹ MTCA Method A Cleanup Level for TPH-O MTCA = Model Toxics Control Act μg/L = micrograms per Liter or parts per billi BOLD = sample yielded detectable concent BOLD	on (ppb)	e soils or groundwater. If benzene is not detected	l, Cleanup Level is 1,000 ppb.	

Sample I D				Volatile Organic Compounds (VOCs) by EPA Method 8260D (µg/L)															
Sample I.D. Date Collected	Benzene	Toluene	Ethylbenzene	Total Xylenes	EDB	EDC	2-Hexanone	n-Propyl-benzene	MTBE	Naphthalene	124-TMB	135-TMB	p- Isopropyltoluene	n-Butylbenzene	Acetone	Cabon Disulfide	2-Butanone	Chloroform	PCE
		1							ING WELLS	;			•						
10/3/2 MW1	22 < 0.20	< 1.0	< 0.20	< 0.60	< 0.010	< 0.20	< 2.0	< 0.20	< 0.20	< 1.3	< 0.20	< 0.20	< 0.20	< 0.20	< 5.0	< 0.20	< 5.0	6.1	2.4
12/15/2	22 < 0.20	< 1.0	< 0.20	< 0.60	< 0.010	< 0.20	< 2.0	< 0.20	< 0.20	< 1.0	< 0.20	< 0.20	< 0.20	< 0.20	< 5.0	< 0.26	< 5.0	< 1.0	1.7
10/3/2	22 0.62	< 1.0	0.44	0.45	< 0.010	< 0.20	< 2.0	0.30	< 0.20	< 1.3	< 0.20	< 0.20	< 0.20	< 0.20	< 5.0	< 0.20	< 5.0	5.0	2.6
12/15/2	22 0.22	< 1.0	< 0.20	< 0.60	< 0.010	< 0.20	< 2.0	< 0.20	< 0.20	< 1.0	< 0.20	< 0.20	0.31	0.21	< 5.0	0.33	< 5.0	< 1.0	1.7
10/3/2	22 < 0.20	< 1.0	< 0.20	< 0.60	< 0.010	< 0.20	< 2.0	< 0.20	< 0.20	< 1.3	< 0.20	< 0.20	< 0.20	< 0.20	< 5.0	< 0.20	< 5.0	4.8	2.2
MW3	22 < 0.20	< 1.0	< 0.20	< 0.60	< 0.010	< 0.20	< 2.0	< 0.20	< 0.20	< 1.0	< 0.20	< 0.20	< 0.20	< 0.20	< 5.0	< 0.26	< 5.0	2.7	1.4
10/3/2	22 0.67	< 1.0	0.22	0.26	< 0.010	< 0.20	< 2.0	< 0.20	< 0.20	< 1.3	< 0.20	< 0.20	< 0.20	< 0.20	5.2	0.23	< 5.0	3.6	1.1
MW4 12/15/2	22 0.23	< 1.0	< 0.20	< 0.60	< 0.010	< 0.20	< 2.0	< 0.20	< 0.20	< 1.0	< 0.20	< 0.20	< 0.20	< 0.20	< 5.0	0.36	< 5.0	2.5	1.1
10/3/2	22 1.7	2.2	0.68	1.45	< 0.010	< 0.20	2.3	0.34	< 0.20	< 1.3	0.25	< 0.20	0.30	0.25	11	< 0.20	< 5.0	5.6	1.6
MW5 12/15/2	22 < 0.20	< 1.0	< 0.20	< 0.60	< 0.010	< 0.20	< 2.0	< 0.20	< 0.20	< 1.0	< 0.20	< 0.20	< 0.20	< 0.20	< 5.0	0.34	< 5.0	2.6	1.6
10/3/2	22 0.65	1.0	0.26	0.24	< 0.010	< 0.20	< 2.0	< 0.20	< 0.20	< 1.3	< 0.20	< 0.20	< 0.20	< 0.20	< 5.0	< 0.20	< 5.0	4.5	1.5
MW6 12/15/2	22 < 0.20	< 1.0	< 0.20	< 1.0	< 0.010	< 0.20	< 2.0	< 0.20	< 0.20	< 1.0	< 0.20	< 0.20	< 0.20	< 0.20	< 5.0	< 0.26	< 5.0	2.9	1.3
		1				Ecolog	у МТСА Ме	thod A Gro	undwater C	leanup Levo	els (μg/L)							1	·

24-TMB = 1,2,4-trimethylbenzene

135-TMB = 1,3,5-trimethylbenzene

PCE = Tetrachloroethylene DNE = Does Not Exist

 μ g/L = micrograms per Liter or parts per billion (ppb)

BOLD = sample yielded detectable concentration of analyzed compound.

	1	1	Groundw	ater Sample 1201 So	ABLE 4 Results - Tot uth First Stre Vashington 98		_)				
			Total Metals via EPA Method 200.8								
Sample I.D.	mple I.D. Date EPA Metho	Total Mercury by EPA Method 200.8 (μg/L)	Arsenic	Barium	Cadmium	Chromium ¹	Lead	Selenium	Silver		
				Mor	l nitoring Wells						
	10/3/22	< 0.50	12	340	< 4.4	110	16	< 5.6	< 11		
MW1	12/15/22	< 0.50	28	580	< 4.4	150	26	< 5.6	< 11		
	10/3/22	1.2	58	2400	< 4.4	430	160	7.6	< 11		
MW2	12/15/22	0.58	34	1300	< 4.4	210	75	< 5.6	< 11		
1040	10/3/22	< 0.50	16	550	< 4.4	120	27	< 5.6	< 11		
MW3	12/15/22	< 0.50	43	1100	< 4.4	340	73	6.7	< 11		
N 0 4 / 4	10/3/22	1.5	67	2700	< 4.4	400	110	9.9	< 11		
MW4	12/15/22	1.3	66	1900	< 4.4	320	77	7.1	< 11		
N04/5	10/3/22	< 0.50	18	790	< 4.4	210	36	< 5.6	< 11		
MW5	12/15/22	< 0.50	28	690	< 4.4	180	38	< 5.6	< 11		
14140	10/3/22	0.61	39	600	< 4.4	81	39	5.9	< 11		
MW6	12/15/22	2.1	150	1900	< 4.4	330	140	11	< 11		
			Ecology	MTCA Method A	Groundwater Clear	up Levels (μg/L)					
Cleanup L	evels	2	5	DNE	5	50	15	DNE	DNE		
otes: MTCA Method A C TCA = Model Toxi DB = 1,2-Dibromo DC = 1,2-Dichloroo TBE = Mehtyl terti 24-TMB = 1,2,4-trii 35-TMB = 1,3,5-trii NE = Does Not Ex	cs Control Act ethane ethane ery-butyl ether nethylbenzene methylbenzene	or total chromium (chro	mium VI + chromiu	n III) is 50 μg/L							
.g/L = micrograms		s per billion (ppb)									
		concentration of analy	zed compound								
BOLD – Sample yle		on exceeds the MTCA N	•								

APPENDIX A

GROUNDWATER SAMPLE FIELD LOGS

.

DAY/DATE: 12.15-22			SHEET 1	of,				
PROJECT NAME:		PROJECT	NO .: E1071	1204				
PROJECT LOCATION: 1201 5151 VA	KINA							
Weather: Fair Overcast Fog Rain Snow	w Win		Light Moder	ate DStrong				
Temp.: □<0 120-32 □33-54 □55-79 □>8	0 Win							
Humidity %: 🗆 <25 🕱 26-49 🗆 50-74 🗆 >75	Precip.: None IMist ILight IModerate IHeavy							
WELL NO. (or Boring, Location): MILO		E NUMBER: r	JULI-12/15	5/22-0.11				
Well depth: Screen length:	Laborate		· · · · ·					
Well install date:	COC an	d/or RFA Num	ber:					
Pre-purge SWL: 18.35	Casing	diameter:						
Time Sample Collected: 0830	SWL at	sample time:	18.38					
Sample Turbidity: 235.8	Sample	Conductance:						
Sample Color: Tay	Sample		19					
Sample Temperature: 15.8	Sample							
Field Data		04011		All letter and a second second second				
Time (24 HR) Temp Cond	pН	Pump Rate or Bail No.	Turbidity	Other				
14.5 411.0	7.87	lazi	302.9					
15.3 407.7	7.27	2	276.7					
16.7. 405.1	1.50	3	124.0					
15.8 402.4	7.41	5	235.8					
		/						
The monitor well was purged: of stagnant water in the casing and filter by slowly setting interval or slightly above the middle until the until the tempera of stagnant water in the casing and filter by slowly setting the casing until the temperature, conductivity and pH stabilized by hand bailing until temperature, conductivity and pH stabilized by setting a pump, or tubing attached to a pump, within conductivity and pH stabilized. by setting a pump, or tubing attached to a pump, at approx conductivity and pH stabilized. with disposable bailers until the temperature, conductivity and Sample Shipment: Water samples were placed in appropriate containers suitable lab. The containers were filled to prevent air-entrapment, seale for transport to the laboratory.	ture, conductiv a pump or inta I. OR, illized. the approxim- timately nd pH stabilize for analyses re	ity and pH stabilized ke tubing at approxi- ate middle of the so feet above the botto d. quested. As necessar	d. OR, mately feet about the containers were one of the casing untility, the containers were	the temperature, the temperature, the temperature,				
Analysis Requested: (per laboratory protocols)							
□ NWTPH-HCID; □ NWTPH-Gx; □ NWTPH-D		H-Gx/BTEX:	VOC; HVOC:					
□ SemiVOC; □ PAH; □ PCB; □ Pesticides; (□8,								
□ OTHER:								
SIGNATURE:								
PRINT NAME: VANCY MEYEL Notes: 2-inch, Schedule 40 PVC costing = 0. 163 gallons per foor; 6" Ho		-						

DAY/DATE:	12-15-12	-				SHEET 1	of
PROJECT NA		3.155 SR	Va	Cinta	PROTECT	NO.: ELOIL	
PROJECT LC	CATION:		1.00	1191	1100201	HO. ELOLL	11201
	r 🖾 Overcast 🛛	JFog 🗆 Rain 🗖	Snow	Wind	i: 🗖 Calm [Light DModer	ate DStrong
Temp.: □<0	₩0-32 □33-	54 🗆 55-79 🛛]>80	Wind	l from:□N □NE	DE DE DE SEST	W DW DNW
Humidity %:	□<25 □26-49	₫50-74 □>7	5	Preci	p.: ⊠None ⊡Mis	st 🗆 Light 🗆 Moder	ate 🗆 Heavy
							2
	r Boring, Locatio			SAMPLI	E NUMBER:	112-12/19	5/22-614
Well depth:		een length:		Laborato	ry:	/	
Well install da				COC and	l/or RFA Num	ber:	
Pre-purge SW	L: 19.87			Casing d	iameter:		
Time Sample	Collected: r	915		SWL at s	sample time:	19.91	
Sample Turbi					Conductance:		
Sample Color				Sample p		972.0	
Sample Temp		1.53		Sample (1.12		
Field Data	10, 0					and the second strength and	
Time (24 HR)	Temp	Cond		pН	Pump Rate or	Turbidity	Other
	15.5 \$ 5101 16.0 53812				Bail No.		Other
			1	-19	1 GoL	\$2.09	
	16.0	ala.n	7	57	2.	10:00	
	16.2	172.0	1	48	-2	21000	
			1			- Car	
interval or slightly of stagnant water the casing until the by hand bailing Samples were coll by setting a pur conductivity and pi by setting a pur conductivity and pi with disposable Sample Shipment Water samples were	er in the casing and above the middle un er in the casing and temperature, condu until temperature, co ected: mp, or tubing attach H stabilized. np, or tubing attach H stabilized. bailers until the tem : re placed in appropr	ntil the until the tem filter by slowly sett ctivity and pH stabi onductivity and pH stabi wheed to a pump, wi ed to a pump, at ap perature, conductivi iate containers suita	peratur ing a p lized. (stabiliz thin th proxim ity and ble for	re, conductivi pump or intak OR, zed. ne approxima nately pH stabilized r analyses req	ty and pH stabilized to tubing at approxi- te middle of the so feet above the bott- l. uested. As necessa	he approximate midd d. OR, mately feet ab creened interval unti om of the casing unti ry, the containers wer nest at approximately	the bottom of the temperature, the temperature,
Analysis Requ	uested: (per lat	poratory protoc	ols)				
				NWTPH	I-Gx/BTEX:	VOC; □ HVOC	
□ SemiVOC; □	□ PAH; □ PCB;	D Pesticides; (I		□10, □13)	Metals; TCL	$P; \Box MTBE;$	2
□ OTHER:	A						
SIGNATURE:	Kap	7					
PRINT NAME:	YANE	Y MEYER		1.100	-		
Notes: 2-inch, Schedi	1c 40 PVC casing = 0.4	100 gallons per toor f	Hole	= 1.469 gallon	s per foot		

1200

÷.

-

1

DAY/DATE:		2					of
PROJECT NA	AME: 1201	5 15 St.	VAKIM	A	PROJECT	NO .: E2022	1204
PROJECT LC		•	/ •				7
Weather: DFai	r 🖾 Overcast [∃Fog ⊡Rain ⊡S	Snow	Wind		Light Moder	ate DStrong
Temp.: □<0 Humidity %:	▲0-32 □33- □<25 □26-49	54 □55-79 □ ⊠50-74 □>7:		Wind	from: DN DNE	DE DSE DS BSV	V DW DNW
ridinidity 70.		aju-14 U/1.	ر ر	Precij	D.: Sinone LIVIIS	t □Light □Modera	ate UHeavy
WELL NO (r Boring, Locatio	m). ×1112	SA	MPIF	NUMBER: N	1.10 Intic	122 (11)
Well depth:		een length:		borator		145-1410	122 - Cit
Well install d		oon longui.			or RFA Num	her:	
Pre-purge SW		1			ameter:		
	Collected: 6		and the second of the second o	and the local division of the	ample time:	19.06	
	dity: 323-2				Conductance: 4		
Sample Color				nple p		1.3.2	
	erature: 16.0			nple C	the second se		
Field Data						Service and the service of	
Time (24 HR)	Temp	Cond	pН		Pump Rate or Bail No.	Turbidity	Other
	15.4	902.1	6.7	1	lage	150.8	
	16.5	413.7	6.7	<u>j</u>	2'	21000	
	16.8	410.3	7.01		3	2000	
	16.0	415.5	7.18		_5	3:23.2	
The monitor well of stagnant wat interval or slightly of stagnant wat the casing until the by hand bailing Samples were coll by setting a pur conductivity and p by setting a pur conductivity and p with disposable Sample Shipment Water samples we	ter in the casing and above the middle u er in the casing and temperature, condu- until temperature, co- lected: imp, or tubing attach H stabilized. mp, or tubing attach H stabilized. bailers until the terr ter placed in appropri- s were filled to prevent	I filter by slowly set ntil the until the temp filter by slowly setti ectivity and pH stabil onductivity and pH s ched to a pump, with ed to a pump, at app operature, conductivity riate containers suital	perature, con- ing a pump ized. OR, stabilized. thin the app proximately ty and pH stabilized for anal-	nductivit or intake proximat f tabilized yses requ	y and pH stabilized tubing at approxim e middle of the so cet above the botto uested. As necessar	the approximate midd I. OR, mately feet ab preened interval until pro of the casing until ty, the containers were est at approximately	ove the bottom of the temperature, the temperature, the temperature,
		boratory protoco	ols)				
				WTPH	I-Gx/BTEX;	VOC; □ HVOC	;
		; 🗆 Pesticides; ([·
□ OTHER:							
<u>SIGNATURE:</u> PRINT NAME:	ARIA	MEVEL		_			
	ule 40 PVC casing = 0	163 gallons per foot: 6	"Hole = 1.46	59 gallons	per foot]

	Contraction of the second s	UTIL WALL	AN OFINE			G				
DAY/DATE:	12-15-22					SHEET 1	of			
PROJECT N.	AME: 1201	5.1555	YAKIM	A PRO	OJECT	NO .: E2022	1204			
PROJECT LO	DCATION:		1							
Weather: 🗆 Fa	ir 🗹 Overcast [∃Fog □Rain □	Snow	Wind: ØCa	alm 🗆	Light DMode	rate Strong			
Temp.: □<0		-54 □55-79 []>80	Wind from: IN INE IE ISE IS SW IW INW						
Humidity %:	□<25 □26-49	\$50-74 □>7	75	Precip.: Non	ne 🗆 Mist	Light Moder	ate 🗆 Heavy			
							1			
	or Boring, Locatio		SA	MPLE NUMB	BER: K	114-12/10	5/22-Cilit			
Well depth:	Scr	een length:	La	ooratory:						
Well install d	ate:		CC	C and/or RFA	A Numb	er:				
Pre-purge SW	L: 19.37	7.	Ca	sing diameter:	:	9				
Time Sample	e Collected: 1	030	SW	L at sample t	ime:	19.39				
Sample Turbi				nple Conduct	the second s	388.2				
Sample Color				Sample pH: 6,95						
Sample Temp				nple Odor: -						
Field Data			Jai	inpre Odor						
Time (24 HR)	Temp	Cond	pH	Pump H	Rate or 1	Turbidity	Other			
	16.0 379.6			Bail			Other			
			6.46		AL	157.0				
	16.9	388.3	6.80			71000				
	17.1	357.5	bile	3		>1000				
	15.1	383.2	6.98	5		71000				
interval or slightly of stagnant wat the casing until the by hand bailing Samples were col solution of the conductivity and p onductivity and p onductivity and p with disposable Sample Shipmen Water samples were	ter in the casing and above the middle user in the casing and e temperature, condu- until temperature, condu- until temperature, condu- until temperature, condu- lected: ump, or tubing attach bH stabilized. The stabilized. The bailers until the tem transformer placed in appropri- s were filled to prevent	ntil the until the tem filter by slowly set activity and pH stabi- conductivity and pH ched to a pump, w ned to a pump, at ap aperature, conductiv riate containers suit	perature, con- ting a pump ilized. OR, stabilized. ithin the app oproximately ity and pH s able for anal	nductivity and pH or intake tubing at proximate middle feet above abilized. yses requested. As	stabilized. t approxim of the scr the botto	OR, nately feet al recened interval unt m of the casing unt y, the containers we	bove the bottom of il the temperature, il the temperature, ere prepared by the			
	uested: (per la	boratory protoc	cols)							
	CID; INWTPH			WTPH-Gx/BT		VOC: THVOC	:			
	\Box PAH; \Box PCB						3			
□ OTHER:						,	- Second Street St			
		/								

DAY/DATE:		2				SHEET 1	of				
PROJECT N	AME: 120	1 5.1555	YAY	12/4	PROJECT	NO .: E2011					
PROJECT LO	DCATION:		1			- Laz	/				
	ir 🖄Overcast [Light Moder					
Temp.: □<0]>80	Wind	from: IN INE	DE DSE DSØSV	V 🗆 W 🗆 N W				
Humidity %:	Humidity %: C25 C6-49 Solution Solut										
WELLNO	or Boring, Locatio	-1. 111-5	•	CARADIT	NUMBER:	Airint	clas at				
Well depth:	and the second	een length:		Laborato		145-12/1	5/22-Cile				
Well install d		cen lengui.			l/or RFA Num	h					
Pre-purge SW				Casing d		Der.					
States and the state of the sta	e Collected:			100000000000000000000000000000000000000		1211					
Sample Turbi		120			sample time:	19.16					
Sample Color					Conductance:	425.0					
				Sample p							
Field Data	erature: 17,1			Sample (Jdor: —						
Time (24 HR)	Temp	Cond	1	pН	Pump Rate or	Turbidity	04				
					Bail No.		Other				
	17.0	434.0		7.25	lgar	21000					
	17.1	419.5		7.28	2 3						
	12.1	425.0	~	3:25	5						
	1-1-1	1645		7:00	9						
	ection Method:										
The monitor well	was purged:	l filton hu glaudu az			a	ne approximate middl					
interval or slightly	above the middle u	ntil the until the tem	peratu	re, conductivi	ty and pH stabilized	l. OR.	le of the screened				
🗆 of stagnant wat	er in the casing and	filter by slowly sett	ing a p	oump or intak	e tubing at approxi	mately feet ab	ove the bottom of				
	e temperature, condu until temperature, c						1				
Samples were col	lected:										
Z by setting a pu	imp, or tubing attac	ched to a pump, wi	thin th	ne approxima	te middle of the se	creened interval until	the temperature,				
conductivity and p	H stabilized.	ed to a nump at an	nroxin	nately	feet above the bott	om of the casing until	the temperature				
conductivity and p	H stabilized.					Shi of the casing and	ruie temperature,				
with disposable Sample Shipment	bailers until the terr	perature, conductivi	ity and	pH stabilized	1.						
		iate containers suita	ble for	r analyses req	uested. As necessar	y, the containers wer	e prepared by the				
lab. The container	s were filled to prev	ent air-entrapment,	sealed	, labeled, and	placed in an ice ch	est at approximately	4°C (e.g. blu-ice)				
for transport to the			1 \	No.	and the concerning of the set of the set						
	uested: (per la					100 T					
	\Box PAH; \Box PCB;	$-GX; \square NW IPF$	1-DX;		1-GX/BIEX; L	VOC; ☐ HVOC;					
□ OTHER:		$, \Box$ resticides, (i	10, 1	110, 115)		P; LIMIBE;					
<u> </u>	10/11	/					1				
SIGNATURE:	KI.X/VL	\bigtriangledown									
	Mil	inter a									
PRINT NAME:	ule 40 PVC cosing = 0			- 1 460 11	f						
rouss. 2-men, sched	une 40 F VC casing a D.	too gamons per 1000 t	, noie	- 1.409 gallon	s per rooi.						

7

No.

0811GeoPro

DAY/DATE:		0							
DD OTT CO		-	1			1 of			
PROJECT NA		13,1535)	AKIM	A PROJEC	TNO .: ELOZ	2/1204			
PROJECT LC				-		/ .			
Weather: DFai	r Dovercast I	□Fog □Rain □Sn							
Temp.: □<0 Humidity %:		-54 □55-79 □> \$\$50-74 □>75	>80			WOWDNW			
Truthildity 70.		230-74 1273		Precip.: ENone IM	ist Llight LMode	rate UHeavy			
WELL NO (0	r Boring, Locati	on): Mil-1-	SAR	MPLE NUMBER:	Will whe	stan 11			
Well depth:		een length:		poratory:	MUB-ICH.	212C-Like			
Well install da		oon rongun.		C and/or RFA Nur	mher				
Pre-purge SW				ing diameter:	11001.				
Time Sample		12:15			19 99				
Sample Turbi	the second s	16.10		L at sample time:	18:88				
	: BLAHN			nple Conductance:		4			
Sample Color Sample Temp		2		ple pH: 7.0	7				
Field Data	Grature: 161	Γ	Jan	nple Odor: –					
Time (24 HR)	Temp	Cond	-LI	Pump Rate or	Turkidie	0.			
	-		pH	Bail No.	Turbidity	Other			
	16.3				471.4				
	16.8	337.6	7.06		>1000				
	17.0	317.1	6.87						
	IDIT SDIC		103	2		· · ·			
					V				
	ction Method	e e			V	<u></u>			
The monitor well of stagnant wat interval or slightly of stagnant wat the casing until the by hand bailing Samples were coll by setting a put conductivity and p by setting a put conductivity and p with disposable Sample Shipment Water samples weil lab. The containers for transport to the	was purged: ter in the casing and above the middle user in the casing and temperature, condu- until temperature, condu- until temperature, condu- lected: ump, or tubing attach H stabilized. mp, or tubing attach H stabilized. bailers until the ten treplaced in approp s were filled to pre- ilaboratory.	d filter by slowly settin intil the until the temper l filter by slowly setting uctivity and pH stabiliz conductivity and pH stabiliz ched to a pump, within ned to a pump, at appro- nperature, conductivity riate containers suitable vent air-entrapment, set	rature, con g a pump of red. OR, abilized. in the appro- oximately and pH states and pH states for analy aled, labele	or intake tubing within ductivity and pH stabiliz or intake tubing at appro roximate middle of the feet above the bo abilized. rses requested. As necess ed, and placed in an ice	ed. OR, ximately feet a screened interval uni ttom of the casing un sary, the containers we	bove the bottom of il the temperature til the temperature ere prepared by the			
The monitor well of stagnant wat interval or slightly of stagnant wat the casing until the by hand bailing Samples were coll by setting a put conductivity and p by setting a put conductivity and p by setting a put conductivity and p with disposable Sample Shipment Water samples were lab. The containers for transport to the Analysis Req	was purged: ter in the casing and above the middle u er in the casing and temperature, condu- until temperature, condu- lected: imp, or tubing attach H stabilized. mp, or tubing attach H stabilized. bailers until the ten t: re placed in approp s were filled to pre- claboratory. uested: (per la	d filter by slowly settin intil the until the temper l filter by slowly setting uctivity and pH stabiliz conductivity and pH stabiliz inductivity and pH stabilized inductivity and pH stabilized	rature, con g a pump of red. OR, abilized. in the appro- oximately and pH states e for analy aled, labeled ls)	ductivity and pH stabiliz or intake tubing at appro roximate middle of the feet above the bo abilized. rses requested. As necess ed, and placed in an ice	ed. OR, ximately feet a screened interval unt ttom of the casing un sary, the containers we chest at approximately	bove the bottom of il the temperature til the temperature ere prepared by the y 4°C (e.g. blu-ice)			
The monitor well of stagnant wat interval or slightly of stagnant wat the casing until the by hand bailing Samples were coll by setting a put conductivity and p by setting a put conductivity and p with disposable Sample Shipment Water samples we lab. The containers for transport to the Analysis Req NWTPH-HC	was purged: ter in the casing and above the middle u er in the casing and termperature, condu- until temperature, condu- until temperature, condu- lected: ump, or tubing attach H stabilized. mp, or tubing attach H stabilized. bailers until the ten tre placed in approp s ware filled to pre- elaboratory. uested: (per la CID; □ NWTPH	d filter by slowly settin intil the until the temper I filter by slowly setting uctivity and pH stabiliz conductivity and pH stabiliz conductivity and pH stabiliz ched to a pump, at appro- need to a pump, at appro- mperature, conductivity riate containers suitable vent air-entrapment, set boratory protocol H-Gx; \Box NWTPH-I	rature, con g a pump of red. OR, abilized. in the appro- oximately and pH state a for analy aled, labeled ls) Dx; \Box N	ductivity and pH stabiliz or intake tubing at appro roximate middle of the feet above the bo abilized. sess requested. As necess ed, and placed in an ice WTPH-Gx/BTEX; 1	ed. OR, ximately feet a screened interval uni ttom of the casing un sary, the containers we chest at approximately VOC; I HVOC	bove the bottom o il the temperature til the temperature ere prepared by the y 4°C (e.g. blu-ice)			
The monitor well of stagnant wat interval or slightly of stagnant wat the casing until the by hand bailing Samples were coll by setting a put conductivity and p by setting a put conductivity and p with disposable Sample Shipment Water samples were lab. The containers for transport to the Analysis Req NWTPH-HC SemiVOC; [was purged: ter in the casing and above the middle u er in the casing and termperature, condu- until temperature, condu- until temperature, condu- lected: ump, or tubing attach H stabilized. mp, or tubing attach H stabilized. bailers until the ten tre placed in approp s ware filled to pre- elaboratory. uested: (per la CID; □ NWTPH	d filter by slowly settin intil the until the temper I filter by slowly setting uctivity and pH stabiliz conductivity and pH stabiliz conductivity and pH stabiliz ched to a pump, at appro- need to a pump, at appro- mperature, conductivity riate containers suitable vent air-entrapment, set boratory protocol H-Gx; \Box NWTPH-I	rature, con g a pump of red. OR, abilized. in the appro- oximately and pH state a for analy aled, labeled ls) Dx; \Box N	ductivity and pH stabiliz or intake tubing at appro roximate middle of the feet above the bo abilized. rses requested. As necess ed, and placed in an ice	ed. OR, ximately feet a screened interval uni ttom of the casing un sary, the containers we chest at approximately VOC; I HVOC	bove the bottom o il the temperature til the temperature ere prepared by the y 4°C (e.g. blu-ice)			
The monitor well of stagnant wat interval or slightly of stagnant wat the casing until the by hand bailing Samples were coll by setting a put conductivity and p by setting a put conductivity and p with disposable Sample Shipment Water samples were lab. The containers for transport to the Analysis Req NWTPH-HC SemiVOC; [was purged: ter in the casing and above the middle u er in the casing and termperature, condu- until temperature, condu- until temperature, condu- lected: ump, or tubing attach H stabilized. mp, or tubing attach H stabilized. bailers until the ten tre placed in approp s ware filled to pre- elaboratory. uested: (per la CID; □ NWTPH	d filter by slowly settin intil the until the temper I filter by slowly setting uctivity and pH stabiliz conductivity and pH stabiliz conductivity and pH stabiliz ched to a pump, at appro- need to a pump, at appro- mperature, conductivity riate containers suitable vent air-entrapment, set boratory protocol H-Gx; \Box NWTPH-I	rature, con g a pump of red. OR, abilized. in the appro- oximately and pH state a for analy aled, labeled ls) Dx; \Box N	ductivity and pH stabiliz or intake tubing at appro roximate middle of the feet above the bo abilized. sess requested. As necess ed, and placed in an ice WTPH-Gx/BTEX; 1	ed. OR, ximately feet a screened interval uni ttom of the casing un sary, the containers we chest at approximately VOC; I HVOC	bove the bottom of il the temperature til the temperature ere prepared by the y 4°C (e.g. blu-ice)			
The monitor well of stagnant wat interval or slightly of stagnant wat the casing until the by hand bailing Samples were coll by setting a pur conductivity and p by setting a pur conductivity and p with disposable Sample Shipment Water samples were lab. The containers for transport to the Analysis Req NWTPH-HC	was purged: ter in the casing and above the middle u er in the casing and termperature, condu- until temperature, condu- until temperature, condu- lected: ump, or tubing attach H stabilized. mp, or tubing attach H stabilized. bailers until the ten tre placed in approp s ware filled to pre- elaboratory. uested: (per la CID; □ NWTPH	d filter by slowly settin until the until the temper I filter by slowly setting uctivity and pH stabiliz conductivity and pH stabiliz ached to a pump, at appro- nperature, conductivity riate containers suitable vent air-entrapment, set boratory protocol I-Gx; NWTPH-I ; Pesticides; (rature, con g a pump of red. OR, abilized. in the appro- oximately and pH state a for analy aled, labeled ls) Dx; \Box N	ductivity and pH stabiliz or intake tubing at appro roximate middle of the feet above the bo abilized. sess requested. As necess ed, and placed in an ice WTPH-Gx/BTEX; 1	ed. OR, ximately feet a screened interval uni ttom of the casing un sary, the containers we chest at approximately VOC; I HVOC	bove the bottom o il the temperature til the temperature ere prepared by the y 4°C (e.g. blu-ice)			
The monitor well of stagnant wat interval or slightly of stagnant wat the casing until the by hand bailing Samples were coll by setting a put conductivity and p by setting a put conductivity and p with disposable Sample Shipment Water samples were lab. The containers for transport to the Analysis Req NWTPH-HC SemiVOC; I OTHER: SIGNATURE: PRINT NAME:	was purged: ter in the casing and above the middle u er in the casing and a temperature, condu- until temperature, condu- lected: imp, or tubing attach H stabilized. mp, or tubing attach H stabilized. bailers until the tem tre placed in approp s were filled to prev- laboratory. uested: (per la CID; D NWTPH D PAH; D PCB	d filter by slowly settin intil the until the temper I filter by slowly setting uctivity and pH stabiliz conductivity and pH stabiliz conductivity and pH stabiliz ched to a pump, at appro- need to a pump, at appro- mperature, conductivity riate containers suitable vent air-entrapment, set boratory protocol H-Gx; \Box NWTPH-I	rature, con g a pump of red. OR, abilized. in the appro- oximately and pH state e for analy aled, labeled ls) Dx; \Box N 8, \Box 10, l	ductivity and pH stabiliz or intake tubing at appro roximate middle of the feet above the bo abilized. sets requested. As necess ed, and placed in an ice 	ed. OR, ximately feet a screened interval uni ttom of the casing un sary, the containers we chest at approximately VOC; I HVOC	bove the bottom o il the temperature til the temperature ere prepared by the y 4°C (e.g. blu-ice			

APPENDIX B

LABORATORY ANALYTICAL DOCUMENTATION

December 27, 2022

Peter Trabusiner Blue Mountain Environmental, Inc. 1500 Adair Drive Richland, WA 99352

Re: Analytical Data for Project E2022-1204; 1201 S. 1st St Yakima Laboratory Reference No. 2212-215

Dear Peter:

Enclosed are the analytical results and associated quality control data for samples submitted on December 21, 2022.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: December 27, 2022 Samples Submitted: December 21, 2022 Laboratory Reference: 2212-215 Project: E2022-1204; 1201 S. 1st St Yakima

Case Narrative

Samples were collected on December 15, 2022 and received by the laboratory on December 21, 2022. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

GASOLINE RANGE ORGANICS NWTPH-Gx

Units: ug/L (ppb)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW1-12/15/22-GW					
Laboratory ID:	12-215-01					
Gasoline	ND	500	NWTPH-Gx	12-21-22	12-21-22	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	93	65-122				
Client ID:	MW2-12/15/22-GW					
Laboratory ID:	12-215-02					
Gasoline	ND	500	NWTPH-Gx	12-21-22	12-21-22	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	92	65-122				
Client ID:	MW3-12/15/22-GW					
Laboratory ID:	12-215-03					
Gasoline	ND	500	NWTPH-Gx	12-21-22	12-21-22	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	93	65-122				
Client ID:	MW4-12/15/22-GW					
Laboratory ID:	12-215-04					
Gasoline	ND	500	NWTPH-Gx	12-21-22	12-21-22	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	94	65-122				
Client ID:	MW5-12/15/22-GW					
Laboratory ID:	12-215-05					
Gasoline	ND	500	NWTPH-Gx	12-21-22	12-21-22	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	90	65-122				
Client ID:	MW6-12/15/22-GW					
Laboratory ID:	12-215-06					
Gasoline	ND	500	NWTPH-Gx	12-21-22	12-21-22	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	93	65-122				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

GASOLINE RANGE ORGANICS NWTPH-Gx QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

onits. ug/L (ppb)						Date	Date)	
Analyte		Result	PQL	Me	thod	Prepared	Analyz	ed	Flags
METHOD BLANK									
Laboratory ID:		MB1221W2							
Gasoline		ND	100	NWT	PH-Gx	12-21-22	12-21-	22	
Surrogate:	Pei	rcent Recover	y Control Lim	ts					
Fluorobenzene		97	65-122						
				Source	Percen	t Recovery		RPD	
Analyte	Res	sult	Spike Level	Result	Recove	y Limits	RPD	Limit	Flags
DUPLICATE									
Laboratory ID:	12-13	35-01							
	ORIG	DUP							
Gasoline	ND	ND	NA NA		NA	NA	NA	30	
Surrogate:									
Fluorobenzene					91 9	65-122			

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

4

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Water Units: mg/L (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	MW1-12/15/22-GW					
Laboratory ID:	12-215-01					
Diesel Range Organics	ND	0.21	NWTPH-Dx	12-27-22	12-27-22	
Lube Oil Range Organics	ND	0.21	NWTPH-Dx	12-27-22	12-27-22	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	88	50-150				
Client ID:	MW2-12/15/22-GW					
Laboratory ID:	12-215-02					
Diesel Range Organics	ND	0.22	NWTPH-Dx	12-27-22	12-27-22	
Lube Oil Range Organics	0.24	0.22	NWTPH-Dx	12-27-22	12-27-22	
Surrogate:	Percent Recovery	Control Limits	NWITTEDX	12-21-22	12-21-22	
o-Terphenyl	88	50-150				
o-reipnenyi	00	50-750				
Client ID:	MW3-12/15/22-GW					
Laboratory ID:	12-215-03					
Diesel Range Organics	ND	0.23	NWTPH-Dx	12-27-22	12-27-22	
Lube Oil Range Organics	ND	0.23	NWTPH-Dx	12-27-22	12-27-22	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	92	50-150				
Client ID:	MW4-12/15/22-GW					
Laboratory ID:	12-215-04					
Diesel Range Organics	ND	0.23	NWTPH-Dx	12-27-22	12-27-22	
Lube Oil Range Organics	ND	0.23	NWTPH-Dx	12-27-22	12-27-22	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	61	50-150				
	MWE 40/45/00 OW					
Client ID:	MW5-12/15/22-GW					
Laboratory ID:	12-215-05	0.00		40.07.00	40.07.00	
Diesel Range Organics	ND	0.22	NWTPH-Dx	12-27-22	12-27-22	
Lube Oil Range Organics	ND	0.22	NWTPH-Dx	12-27-22	12-27-22	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	85	50-150				
Client ID:	MW6-12/15/22-GW					
Laboratory ID:	12-215-06					
Diesel Range Organics	ND	0.22	NWTPH-Dx	12-27-22	12-27-22	
Lube Oil Range Organics	ND	0.22	NWTPH-Dx	12-27-22	12-27-22	
Surrogate:	Percent Recovery	Control Limits		,	,	
	i crocine necovery	Joint of Linits				
o-Terphenyl	84	50-150				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

5

Date of Report: December 27, 2022 Samples Submitted: December 21, 2022 Laboratory Reference: 2212-215 Project: E2022-1204; 1201 S. 1st St Yakima

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1227W1					
Diesel Range Organics	ND	0.16	NWTPH-Dx	12-27-22	12-27-22	
Lube Oil Range Organics	ND	0.16	NWTPH-Dx	12-27-22	12-27-22	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	71	50-150				

					Source	Perc	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Reco	very	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	SB12	27W1									
	ORIG	DUP									
Diesel Fuel #2	0.302	0.273	NA	NA		N	A	NA	10	NA	
Surrogate:											
o-Terphenyl						64	60	50-150			

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

6

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW1-12/15/22-GW					
Laboratory ID:	12-215-01					
Dichlorodifluoromethane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Chloromethane	ND	1.0	EPA 8260D	12-26-22	12-26-22	
Vinyl Chloride	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Bromomethane	ND	1.8	EPA 8260D	12-26-22	12-26-22	
Chloroethane	ND	1.0	EPA 8260D	12-26-22	12-26-22	
Trichlorofluoromethane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,1-Dichloroethene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Acetone	ND	5.0	EPA 8260D	12-26-22	12-26-22	
lodomethane	ND	6.4	EPA 8260D	12-26-22	12-26-22	
Carbon Disulfide	ND	0.26	EPA 8260D	12-26-22	12-26-22	
Methylene Chloride	ND	1.0	EPA 8260D	12-26-22	12-26-22	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Methyl t-Butyl Ether	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,1-Dichloroethane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Vinyl Acetate	ND	1.0	EPA 8260D	12-26-22	12-26-22	
2,2-Dichloropropane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
2-Butanone	ND	5.0	EPA 8260D	12-26-22	12-26-22	
Bromochloromethane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Chloroform	3.5	0.20	EPA 8260D	12-26-22	12-26-22	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Carbon Tetrachloride	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,1-Dichloropropene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Benzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,2-Dichloroethane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Trichloroethene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,2-Dichloropropane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Dibromomethane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Bromodichloromethane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	12-26-22	12-26-22	
Toluene	ND	1.0	EPA 8260D	12-26-22	12-26-22	
(trans) 1,3-Dichloropropene		0.20	EPA 8260D	12-26-22	12-26-22	

7

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW1-12/15/22-GW					
Laboratory ID:	12-215-01					
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Tetrachloroethene	1.7	0.20	EPA 8260D	12-26-22	12-26-22	
1,3-Dichloropropane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
2-Hexanone	ND	2.0	EPA 8260D	12-26-22	12-26-22	
Dibromochloromethane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,2-Dibromoethane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Chlorobenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Ethylbenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
m,p-Xylene	ND	0.40	EPA 8260D	12-26-22	12-26-22	
o-Xylene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Styrene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Bromoform	ND	1.0	EPA 8260D	12-26-22	12-26-22	
Isopropylbenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Bromobenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
n-Propylbenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
2-Chlorotoluene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
4-Chlorotoluene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
tert-Butylbenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
sec-Butylbenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,3-Dichlorobenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
p-Isopropyltoluene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
n-Butylbenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,2-Dibromo-3-chloropropan	e ND	1.0	EPA 8260D	12-26-22	12-26-22	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Hexachlorobutadiene	ND	1.0	EPA 8260D	12-26-22	12-26-22	
Naphthalene	ND	1.0	EPA 8260D	12-26-22	12-26-22	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	111	75-127				
Toluene-d8	105	80-127				
4-Bromofluorobenzene	92	78-125				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW2-12/15/22-GW					
Laboratory ID:	12-215-02					
Dichlorodifluoromethane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Chloromethane	ND	1.0	EPA 8260D	12-26-22	12-26-22	
Vinyl Chloride	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Bromomethane	ND	1.8	EPA 8260D	12-26-22	12-26-22	
Chloroethane	ND	1.0	EPA 8260D	12-26-22	12-26-22	
Trichlorofluoromethane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,1-Dichloroethene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Acetone	ND	5.0	EPA 8260D	12-26-22	12-26-22	
lodomethane	ND	6.4	EPA 8260D	12-26-22	12-26-22	
Carbon Disulfide	0.33	0.26	EPA 8260D	12-26-22	12-26-22	Y
Methylene Chloride	ND	1.0	EPA 8260D	12-26-22	12-26-22	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Methyl t-Butyl Ether	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,1-Dichloroethane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Vinyl Acetate	ND	1.0	EPA 8260D	12-26-22	12-26-22	
2,2-Dichloropropane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
2-Butanone	ND	5.0	EPA 8260D	12-26-22	12-26-22	
Bromochloromethane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Chloroform	2.9	0.20	EPA 8260D	12-26-22	12-26-22	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Carbon Tetrachloride	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,1-Dichloropropene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Benzene	0.22	0.20	EPA 8260D	12-26-22	12-26-22	
1,2-Dichloroethane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Trichloroethene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,2-Dichloropropane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Dibromomethane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Bromodichloromethane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	12-26-22	12-26-22	
Toluene	ND	1.0	EPA 8260D	12-26-22	12-26-22	
(trans) 1,3-Dichloropropene		0.20	EPA 8260D	12-26-22	12-26-22	

9

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW2-12/15/22-GW					
Laboratory ID:	12-215-02					
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Tetrachloroethene	1.7	0.20	EPA 8260D	12-26-22	12-26-22	
1,3-Dichloropropane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
2-Hexanone	ND	2.0	EPA 8260D	12-26-22	12-26-22	
Dibromochloromethane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,2-Dibromoethane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Chlorobenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Ethylbenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
m,p-Xylene	ND	0.40	EPA 8260D	12-26-22	12-26-22	
o-Xylene	0.20	0.20	EPA 8260D	12-26-22	12-26-22	
Styrene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Bromoform	ND	1.0	EPA 8260D	12-26-22	12-26-22	
Isopropylbenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Bromobenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
n-Propylbenzene	0.23	0.20	EPA 8260D	12-26-22	12-26-22	
2-Chlorotoluene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
4-Chlorotoluene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
tert-Butylbenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
sec-Butylbenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,3-Dichlorobenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
p-Isopropyltoluene	0.31	0.20	EPA 8260D	12-26-22	12-26-22	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
n-Butylbenzene	0.21	0.20	EPA 8260D	12-26-22	12-26-22	
1,2-Dibromo-3-chloropropane	e ND	1.0	EPA 8260D	12-26-22	12-26-22	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Hexachlorobutadiene	ND	1.0	EPA 8260D	12-26-22	12-26-22	
Naphthalene	ND	1.0	EPA 8260D	12-26-22	12-26-22	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	111	75-127				
Toluene-d8	104	80-127				
4-Bromofluorobenzene	93	78-125				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW3-12/15/22-GW					
Laboratory ID:	12-215-03					
Dichlorodifluoromethane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Chloromethane	ND	1.0	EPA 8260D	12-26-22	12-26-22	
Vinyl Chloride	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Bromomethane	ND	1.8	EPA 8260D	12-26-22	12-26-22	
Chloroethane	ND	1.0	EPA 8260D	12-26-22	12-26-22	
Trichlorofluoromethane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,1-Dichloroethene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Acetone	ND	5.0	EPA 8260D	12-26-22	12-26-22	
lodomethane	ND	6.4	EPA 8260D	12-26-22	12-26-22	
Carbon Disulfide	ND	0.26	EPA 8260D	12-26-22	12-26-22	
Methylene Chloride	ND	1.0	EPA 8260D	12-26-22	12-26-22	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Methyl t-Butyl Ether	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,1-Dichloroethane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Vinyl Acetate	ND	1.0	EPA 8260D	12-26-22	12-26-22	
2,2-Dichloropropane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
2-Butanone	ND	5.0	EPA 8260D	12-26-22	12-26-22	
Bromochloromethane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Chloroform	2.7	0.20	EPA 8260D	12-26-22	12-26-22	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Carbon Tetrachloride	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,1-Dichloropropene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Benzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,2-Dichloroethane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Trichloroethene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,2-Dichloropropane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Dibromomethane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Bromodichloromethane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	12-26-22	12-26-22	
Toluene	ND	1.0	EPA 8260D	12-26-22	12-26-22	
(trans) 1,3-Dichloropropene		0.20	EPA 8260D	12-26-22	12-26-22	

11

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
	MW3-12/15/22-GW					
Laboratory ID:	12-215-03					
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Tetrachloroethene	1.4	0.20	EPA 8260D	12-26-22	12-26-22	
1,3-Dichloropropane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
2-Hexanone	ND	2.0	EPA 8260D	12-26-22	12-26-22	
Dibromochloromethane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,2-Dibromoethane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Chlorobenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Ethylbenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
m,p-Xylene	ND	0.40	EPA 8260D	12-26-22	12-26-22	
o-Xylene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Styrene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Bromoform	ND	1.0	EPA 8260D	12-26-22	12-26-22	
Isopropylbenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Bromobenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
n-Propylbenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
2-Chlorotoluene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
4-Chlorotoluene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
tert-Butylbenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
sec-Butylbenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,3-Dichlorobenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
p-Isopropyltoluene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
n-Butylbenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,2-Dibromo-3-chloropropan		1.0	EPA 8260D	12-26-22	12-26-22	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Hexachlorobutadiene	ND	1.0	EPA 8260D	12-26-22	12-26-22	
Naphthalene	ND	1.0	EPA 8260D	12-26-22	12-26-22	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	113	75-127				
Toluene-d8	104	80-127				
4-Bromofluorobenzene	92	78-125				
	32	10-120				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW4-12/15/22-GW					
Laboratory ID:	12-215-04					
Dichlorodifluoromethane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Chloromethane	ND	1.0	EPA 8260D	12-26-22	12-26-22	
Vinyl Chloride	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Bromomethane	ND	1.8	EPA 8260D	12-26-22	12-26-22	
Chloroethane	ND	1.0	EPA 8260D	12-26-22	12-26-22	
Trichlorofluoromethane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,1-Dichloroethene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Acetone	ND	5.0	EPA 8260D	12-26-22	12-26-22	
lodomethane	ND	6.4	EPA 8260D	12-26-22	12-26-22	
Carbon Disulfide	0.36	0.26	EPA 8260D	12-26-22	12-26-22	Y
Methylene Chloride	ND	1.0	EPA 8260D	12-26-22	12-26-22	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Methyl t-Butyl Ether	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,1-Dichloroethane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Vinyl Acetate	ND	1.0	EPA 8260D	12-26-22	12-26-22	
2,2-Dichloropropane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
2-Butanone	ND	5.0	EPA 8260D	12-26-22	12-26-22	
Bromochloromethane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Chloroform	2.5	0.20	EPA 8260D	12-26-22	12-26-22	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Carbon Tetrachloride	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,1-Dichloropropene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Benzene	0.23	0.20	EPA 8260D	12-26-22	12-26-22	
1,2-Dichloroethane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Trichloroethene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,2-Dichloropropane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Dibromomethane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Bromodichloromethane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	12-26-22	12-26-22	
Toluene	ND	1.0	EPA 8260D	12-26-22	12-26-22	
(trans) 1,3-Dichloropropene	e ND	0.20	EPA 8260D	12-26-22	12-26-22	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

13

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW4-12/15/22-GW					
Laboratory ID:	12-215-04					
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Tetrachloroethene	1.1	0.20	EPA 8260D	12-26-22	12-26-22	
1,3-Dichloropropane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
2-Hexanone	ND	2.0	EPA 8260D	12-26-22	12-26-22	
Dibromochloromethane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,2-Dibromoethane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Chlorobenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Ethylbenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
m,p-Xylene	ND	0.40	EPA 8260D	12-26-22	12-26-22	
o-Xylene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Styrene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Bromoform	ND	1.0	EPA 8260D	12-26-22	12-26-22	
Isopropylbenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Bromobenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
n-Propylbenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
2-Chlorotoluene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
4-Chlorotoluene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
tert-Butylbenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
sec-Butylbenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,3-Dichlorobenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
p-Isopropyltoluene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
n-Butylbenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,2-Dibromo-3-chloropropan	e ND	1.0	EPA 8260D	12-26-22	12-26-22	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Hexachlorobutadiene	ND	1.0	EPA 8260D	12-26-22	12-26-22	
Naphthalene	ND	1.0	EPA 8260D	12-26-22	12-26-22	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	112	75-127				
Toluene-d8	103	80-127				
4-Bromofluorobenzene	91	78-125				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW5-12/15/22-GW					
Laboratory ID:	12-215-05					
Dichlorodifluoromethane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Chloromethane	ND	1.0	EPA 8260D	12-26-22	12-26-22	
Vinyl Chloride	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Bromomethane	ND	1.8	EPA 8260D	12-26-22	12-26-22	
Chloroethane	ND	1.0	EPA 8260D	12-26-22	12-26-22	
Trichlorofluoromethane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,1-Dichloroethene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Acetone	ND	5.0	EPA 8260D	12-26-22	12-26-22	
lodomethane	ND	6.4	EPA 8260D	12-26-22	12-26-22	
Carbon Disulfide	0.34	0.26	EPA 8260D	12-26-22	12-26-22	Y
Methylene Chloride	ND	1.0	EPA 8260D	12-26-22	12-26-22	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Methyl t-Butyl Ether	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,1-Dichloroethane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Vinyl Acetate	ND	1.0	EPA 8260D	12-26-22	12-26-22	
2,2-Dichloropropane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
2-Butanone	ND	5.0	EPA 8260D	12-26-22	12-26-22	
Bromochloromethane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Chloroform	2.6	0.20	EPA 8260D	12-26-22	12-26-22	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Carbon Tetrachloride	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,1-Dichloropropene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Benzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,2-Dichloroethane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Trichloroethene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,2-Dichloropropane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Dibromomethane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Bromodichloromethane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	12-26-22	12-26-22	
Toluene	ND	1.0	EPA 8260D	12-26-22	12-26-22	
(trans) 1,3-Dichloropropene	e ND	0.20	EPA 8260D	12-26-22	12-26-22	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

15

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW5-12/15/22-GW					
Laboratory ID:	12-215-05					
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Tetrachloroethene	1.6	0.20	EPA 8260D	12-26-22	12-26-22	
1,3-Dichloropropane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
2-Hexanone	ND	2.0	EPA 8260D	12-26-22	12-26-22	
Dibromochloromethane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,2-Dibromoethane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Chlorobenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Ethylbenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
m,p-Xylene	ND	0.40	EPA 8260D	12-26-22	12-26-22	
o-Xylene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Styrene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Bromoform	ND	1.0	EPA 8260D	12-26-22	12-26-22	
Isopropylbenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Bromobenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
n-Propylbenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
2-Chlorotoluene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
4-Chlorotoluene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
tert-Butylbenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
sec-Butylbenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,3-Dichlorobenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
p-Isopropyltoluene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
n-Butylbenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,2-Dibromo-3-chloropropane		1.0	EPA 8260D	12-26-22	12-26-22	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Hexachlorobutadiene	ND	1.0	EPA 8260D	12-26-22	12-26-22	
Naphthalene	ND	1.0	EPA 8260D	12-26-22	12-26-22	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Surrogate:	Percent Recovery	Control Limits		-	-	
Dibromofluoromethane	113	75-127				
Toluene-d8	102	80-127				
4-Bromofluorobenzene	92	78-125				
	02	10 120				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW6-12/15/22-GW					
Laboratory ID:	12-215-06					
Dichlorodifluoromethane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Chloromethane	ND	1.0	EPA 8260D	12-26-22	12-26-22	
Vinyl Chloride	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Bromomethane	ND	1.8	EPA 8260D	12-26-22	12-26-22	
Chloroethane	ND	1.0	EPA 8260D	12-26-22	12-26-22	
Trichlorofluoromethane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,1-Dichloroethene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Acetone	ND	5.0	EPA 8260D	12-26-22	12-26-22	
lodomethane	ND	6.4	EPA 8260D	12-26-22	12-26-22	
Carbon Disulfide	ND	0.26	EPA 8260D	12-26-22	12-26-22	
Methylene Chloride	ND	1.0	EPA 8260D	12-26-22	12-26-22	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Methyl t-Butyl Ether	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,1-Dichloroethane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Vinyl Acetate	ND	1.0	EPA 8260D	12-26-22	12-26-22	
2,2-Dichloropropane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
2-Butanone	ND	5.0	EPA 8260D	12-26-22	12-26-22	
Bromochloromethane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Chloroform	2.9	0.20	EPA 8260D	12-26-22	12-26-22	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Carbon Tetrachloride	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,1-Dichloropropene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Benzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,2-Dichloroethane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Trichloroethene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,2-Dichloropropane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Dibromomethane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Bromodichloromethane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	12-26-22	12-26-22	
Toluene	ND	1.0	EPA 8260D	12-26-22	12-26-22	
(trans) 1,3-Dichloropropene		0.20	EPA 8260D	12-26-22	12-26-22	

17

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW6-12/15/22-GW					
Laboratory ID:	12-215-06					
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Tetrachloroethene	1.3	0.20	EPA 8260D	12-26-22	12-26-22	
1,3-Dichloropropane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
2-Hexanone	ND	2.0	EPA 8260D	12-26-22	12-26-22	
Dibromochloromethane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,2-Dibromoethane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Chlorobenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Ethylbenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
m,p-Xylene	ND	0.40	EPA 8260D	12-26-22	12-26-22	
o-Xylene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Styrene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Bromoform	ND	1.0	EPA 8260D	12-26-22	12-26-22	
Isopropylbenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Bromobenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
n-Propylbenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
2-Chlorotoluene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
4-Chlorotoluene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
tert-Butylbenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
sec-Butylbenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,3-Dichlorobenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
p-Isopropyltoluene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
n-Butylbenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,2-Dibromo-3-chloropropane	e ND	1.0	EPA 8260D	12-26-22	12-26-22	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Hexachlorobutadiene	ND	1.0	EPA 8260D	12-26-22	12-26-22	
Naphthalene	ND	1.0	EPA 8260D	12-26-22	12-26-22	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	114	75-127				
Toluene-d8	104	80-127				
4-Bromofluorobenzene	92	78-125				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

18

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1226W1					
Dichlorodifluoromethane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Chloromethane	ND	1.0	EPA 8260D	12-26-22	12-26-22	
Vinyl Chloride	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Bromomethane	ND	1.8	EPA 8260D	12-26-22	12-26-22	
Chloroethane	ND	1.0	EPA 8260D	12-26-22	12-26-22	
Trichlorofluoromethane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,1-Dichloroethene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Acetone	ND	5.0	EPA 8260D	12-26-22	12-26-22	
lodomethane	ND	6.4	EPA 8260D	12-26-22	12-26-22	
Carbon Disulfide	ND	0.26	EPA 8260D	12-26-22	12-26-22	
Methylene Chloride	ND	1.0	EPA 8260D	12-26-22	12-26-22	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Methyl t-Butyl Ether	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,1-Dichloroethane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Vinyl Acetate	ND	1.0	EPA 8260D	12-26-22	12-26-22	
2,2-Dichloropropane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
2-Butanone	ND	5.0	EPA 8260D	12-26-22	12-26-22	
Bromochloromethane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Chloroform	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Carbon Tetrachloride	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,1-Dichloropropene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Benzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,2-Dichloroethane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Trichloroethene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,2-Dichloropropane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Dibromomethane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Bromodichloromethane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	12-26-22	12-26-22	
Toluene	ND	1.0	EPA 8260D	12-26-22	12-26-22	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	12-26-22	12-26-22	

Date of Report: December 27, 2022 Samples Submitted: December 21, 2022 Laboratory Reference: 2212-215 Project: E2022-1204; 1201 S. 1st St Yakima

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1226W1					
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Tetrachloroethene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,3-Dichloropropane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
2-Hexanone	ND	2.0	EPA 8260D	12-26-22	12-26-22	
Dibromochloromethane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,2-Dibromoethane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Chlorobenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Ethylbenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
m,p-Xylene	ND	0.40	EPA 8260D	12-26-22	12-26-22	
o-Xylene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Styrene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Bromoform	ND	1.0	EPA 8260D	12-26-22	12-26-22	
Isopropylbenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Bromobenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	12-26-22	12-26-22	
n-Propylbenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
2-Chlorotoluene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
4-Chlorotoluene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
tert-Butylbenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
sec-Butylbenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,3-Dichlorobenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
p-lsopropyltoluene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
n-Butylbenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	12-26-22	12-26-22	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Hexachlorobutadiene	ND	1.0	EPA 8260D	12-26-22	12-26-22	
Naphthalene	ND	1.0	EPA 8260D	12-26-22	12-26-22	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260D	12-26-22	12-26-22	
Surrogate:	Percent Recovery	Control Limits			12 20 22	
Dibromofluoromethane	106	75-127				
Toluene-d8	104	80-127				
4-Bromofluorobenzene	90	78-125				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL page 1 of 2

Matrix: Water Units: ug/L

omia. ug/L					Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Rec	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB12	26W1								
	SB	SBD	SB	SBD	SB	SBD				
Dichlorodifluoromethane	8.62	7.97	10.0	10.0	86	80	34-166	8	21	
Chloromethane	8.68	8.45	10.0	10.0	87	85	63-138	3	18	
Vinyl Chloride	8.77	8.62	10.0	10.0	88	86	71-135	2	20	
Bromomethane	5.56	6.16	10.0	10.0	56	62	20-151	10	36	
Chloroethane	8.61	8.48	10.0	10.0	86	85	76-125	2	20	
Trichlorofluoromethane	8.68	8.70	10.0	10.0	87	87	75-131	0	19	
1,1-Dichloroethene	9.14	9.30	10.0	10.0	91	93	78-125	2	19	
Acetone	8.64	8.53	10.0	10.0	86	85	76-125	1	18	
lodomethane	7.75	8.57	10.0	10.0	78	86	10-155	10	40	
Carbon Disulfide	7.80	7.78	10.0	10.0	78	78	58-129	0	17	
Methylene Chloride	8.40	8.40	10.0	10.0	84	84	80-120	0	15	
(trans) 1,2-Dichloroethene	9.03	9.16	10.0	10.0	90	92	80-125	1	17	
Methyl t-Butyl Ether	9.23	9.53	10.0	10.0	92	95	80-122	3	15	
1,1-Dichloroethane	8.99	9.23	10.0	10.0	90	92	80-125	3	17	
Vinyl Acetate	9.20	9.45	10.0	10.0	92	95	80-131	3	15	
2,2-Dichloropropane	9.61	10.1	10.0	10.0	96	101	80-146	5	21	
(cis) 1,2-Dichloroethene	9.20	9.41	10.0	10.0	92	94	80-129	2	17	
2-Butanone	9.19	9.18	10.0	10.0	92	92	80-129	0	16	
Bromochloromethane	9.46	9.93	10.0	10.0	95	99	80-125	5	18	
Chloroform	8.95	9.26	10.0	10.0	90	93	80-123	3	16	
1,1,1-Trichloroethane	8.90	9.14	10.0	10.0	89	91	80-123	3	18	
Carbon Tetrachloride	8.95	9.09	10.0	10.0	90	91	80-126	2	17	
1,1-Dichloropropene	8.95	9.23	10.0	10.0	90	92	80-126	3	18	
Benzene	8.74	9.02	10.0	10.0	87	90	80-121	3	16	
1,2-Dichloroethane	9.06	9.22	10.0	10.0	91	92	80-124	2	15	
Trichloroethene	9.15	9.36	10.0	10.0	92	94	80-122	2	18	
1,2-Dichloropropane	9.31	9.51	10.0	10.0	93	95	80-123	2	15	
Dibromomethane	9.16	9.31	10.0	10.0	92	93	80-123	2	15	
Bromodichloromethane	9.57	9.94	10.0	10.0	96	99	80-125	4	15	
(cis) 1,3-Dichloropropene	9.64	10.0	10.0	10.0	96	100	80-129	4	15	
Methyl Isobutyl Ketone	9.37	9.58	10.0	10.0	94	96	80-124	2	15	
Toluene	8.78	9.02	10.0	10.0	88	90	80-120	3	18	
(trans) 1,3-Dichloropropene	10.5	11.0	10.0	10.0	105	110	80-134	5	17	

Date of Report: December 27, 2022 Samples Submitted: December 21, 2022 Laboratory Reference: 2212-215 Project: E2022-1204; 1201 S. 1st St Yakima

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL page 2 of 2

						Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level		Rec	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS											
Laboratory ID:	SB122	26W1									
	SB	SBD	SB	SBD		SB	SBD				
1,1,2-Trichloroethane	10.2	10.7	10.0	10.0		102	107	77-126	5	20	
Tetrachloroethene	9.82	10.0	10.0	10.0		98	100	80-124	2	18	
1,3-Dichloropropane	10.1	10.5	10.0	10.0		101	105	80-120	4	15	
2-Hexanone	10.2	10.6	10.0	10.0		102	106	80-130	4	16	
Dibromochloromethane	10.2	10.4	10.0	10.0	·	102	104	80-128	2	15	
1,2-Dibromoethane	9.95	10.3	10.0	10.0	·	100	103	80-127	3	15	
Chlorobenzene	9.79	10.0	10.0	10.0		98	100	80-120	2	17	
1,1,1,2-Tetrachloroethane	10.0	10.4	10.0	10.0	·	100	104	80-125	4	17	
Ethylbenzene	10.0	10.4	10.0	10.0		100	104	80-125	4	18	
m,p-Xylene	20.2	20.6	20.0	20.0		101	103	80-127	2	18	
o-Xylene	10.0	10.4	10.0	10.0		100	104	80-126	4	18	
Styrene	10.4	10.9	10.0	10.0		104	109	80-130	5	17	
Bromoform	10.5	11.2	10.0	10.0		105	112	80-130	6	15	
Isopropylbenzene	10.2	10.6	10.0	10.0		102	106	80-129	4	18	
Bromobenzene	10.2	10.6	10.0	10.0		102	106	76-128	4	16	
1,1,2,2-Tetrachloroethane	10.3	10.8	10.0	10.0		103	108	74-130	5	15	
1,2,3-Trichloropropane	9.85	10.4	10.0	10.0		99	104	71-129	5	25	
n-Propylbenzene	10.4	10.8	10.0	10.0		104	108	80-129	4	19	
2-Chlorotoluene	10.3	10.7	10.0	10.0		103	107	80-128	4	18	
4-Chlorotoluene	10.5	10.8	10.0	10.0		105	108	80-130	3	19	
1,3,5-Trimethylbenzene	10.4	10.8	10.0	10.0		104	108	80-131	4	18	
tert-Butylbenzene	10.3	10.7	10.0	10.0		103	107	80-130	4	18	
1,2,4-Trimethylbenzene	10.5	10.8	10.0	10.0		105	108	80-130	3	18	
sec-Butylbenzene	10.5	10.8	10.0	10.0		105	108	80-130	3	18	
1,3-Dichlorobenzene	10.3	10.8	10.0	10.0		103	108	80-126	5	17	
p-Isopropyltoluene	10.6	10.9	10.0	10.0		106	109	80-132	3	18	
1,4-Dichlorobenzene	10.3	10.7	10.0	10.0		103	107	80-121	4	17	
1,2-Dichlorobenzene	10.1	10.6	10.0	10.0		101	106	79-125	5	15	
n-Butylbenzene	10.5	11.0	10.0	10.0		105	110	80-138	5	19	
1,2-Dibromo-3-chloropropane	10.3	11.0	10.0	10.0		103	110	73-133	7	15	
1,2,4-Trichlorobenzene	10.7	11.7	10.0	10.0		107	117	80-139	9	18	
Hexachlorobutadiene	9.84	11.0	10.0	10.0		98	110	80-151	11	18	
Naphthalene	10.3	11.6	10.0	10.0		103	116	68-144	12	25	
1,2,3-Trichlorobenzene	10.1	11.8	10.0	10.0		101	118	75-146	16	28	
Surrogate:											
Dibromofluoromethane						105	106	75-127			
Toluene-d8						101	102	80-127			
4-Bromofluorobenzene						93	94	78-125			

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

TOTAL METALS EPA 200.8/7470A

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW1-12/15/22-GW					
Laboratory ID:	12-215-01					
Arsenic	28	17	EPA 200.8	12-21-22	12-21-22	
Barium	580	140	EPA 200.8	12-21-22	12-21-22	
Cadmium	ND	4.4	EPA 200.8	12-21-22	12-21-22	
Chromium	150	56	EPA 200.8	12-21-22	12-21-22	
Lead	26	5.6	EPA 200.8	12-21-22	12-21-22	
Mercury	ND	0.50	EPA 7470A	12-23-22	12-23-22	
Selenium	ND	5.6	EPA 200.8	12-21-22	12-21-22	
Silver	ND	11	EPA 200.8	12-21-22	12-21-22	

Client ID:	MW2-12/15/22-GW					
Laboratory ID:	12-215-02					
Arsenic	34	17	EPA 200.8	12-21-22	12-21-22	
Barium	1300	350	EPA 200.8	12-21-22	12-23-22	
Cadmium	ND	4.4	EPA 200.8	12-21-22	12-21-22	
Chromium	210	56	EPA 200.8	12-21-22	12-21-22	
Lead	75	5.6	EPA 200.8	12-21-22	12-21-22	
Mercury	0.58	0.50	EPA 7470A	12-23-22	12-23-22	
Selenium	ND	5.6	EPA 200.8	12-21-22	12-21-22	
Silver	ND	11	EPA 200.8	12-21-22	12-21-22	

Client ID:	MW3-12/15/22-GW					
Laboratory ID:	12-215-03					
Arsenic	43	17	EPA 200.8	12-21-22	12-21-22	
Barium	1100	350	EPA 200.8	12-21-22	12-23-22	
Cadmium	ND	4.4	EPA 200.8	12-21-22	12-21-22	
Chromium	340	56	EPA 200.8	12-21-22	12-21-22	
Lead	73	5.6	EPA 200.8	12-21-22	12-21-22	
Mercury	ND	0.50	EPA 7470A	12-23-22	12-23-22	
Selenium	6.7	5.6	EPA 200.8	12-21-22	12-21-22	
Silver	ND	11	EPA 200.8	12-21-22	12-21-22	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL METALS EPA 200.8/7470A

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW4-12/15/22-GW					
Laboratory ID:	12-215-04					
Arsenic	66	17	EPA 200.8	12-21-22	12-21-22	
Barium	1900	350	EPA 200.8	12-21-22	12-23-22	
Cadmium	ND	4.4	EPA 200.8	12-21-22	12-21-22	
Chromium	320	56	EPA 200.8	12-21-22	12-21-22	
Lead	77	5.6	EPA 200.8	12-21-22	12-21-22	
Mercury	1.3	0.50	EPA 7470A	12-23-22	12-23-22	
Selenium	7.1	5.6	EPA 200.8	12-21-22	12-21-22	
Silver	ND	11	EPA 200.8	12-21-22	12-21-22	

Client ID:	MW5-12/15/22-GW					
Laboratory ID:	12-215-05					
Arsenic	28	17	EPA 200.8	12-21-22	12-21-22	
Barium	690	140	EPA 200.8	12-21-22	12-21-22	
Cadmium	ND	4.4	EPA 200.8	12-21-22	12-21-22	
Chromium	180	56	EPA 200.8	12-21-22	12-21-22	
Lead	38	5.6	EPA 200.8	12-21-22	12-21-22	
Mercury	ND	0.50	EPA 7470A	12-23-22	12-23-22	
Selenium	ND	5.6	EPA 200.8	12-21-22	12-21-22	
Silver	ND	11	EPA 200.8	12-21-22	12-21-22	

Client ID:	MW6-12/15/22-GW				
Laboratory ID:	12-215-06				
Arsenic	150	17	EPA 200.8	12-21-22	12-21-22
Barium	1900	350	EPA 200.8	12-21-22	12-23-22
Cadmium	ND	4.4	EPA 200.8	12-21-22	12-21-22
Chromium	330	56	EPA 200.8	12-21-22	12-21-22
Lead	140	5.6	EPA 200.8	12-21-22	12-21-22
Mercury	2.1	0.50	EPA 7470A	12-23-22	12-23-22
Selenium	11	5.6	EPA 200.8	12-21-22	12-21-22
Silver	ND	11	EPA 200.8	12-21-22	12-21-22

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL METALS EPA 200.8/7470A QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
MB1221WM1					
ND	3.3	EPA 200.8	12-21-22	12-21-22	
ND	28	EPA 200.8	12-21-22	12-21-22	
ND	4.4	EPA 200.8	12-21-22	12-21-22	
ND	11	EPA 200.8	12-21-22	12-21-22	
ND	1.1	EPA 200.8	12-21-22	12-21-22	
ND	5.6	EPA 200.8	12-21-22	12-21-22	
ND	11	EPA 200.8	12-21-22	12-21-22	
MB1223W1					
ND	0.50	EPA 7470A	12-23-22	12-23-22	
	MB1221WM1 ND ND ND ND ND ND ND MB1223W1	MB1221WM1 ND 3.3 ND 28 ND 4.4 ND 11 ND 1.1 ND 5.6 ND 11 MB1223W1	MB1221WM1 ND 3.3 EPA 200.8 ND 28 EPA 200.8 ND 4.4 EPA 200.8 ND 11 EPA 200.8 ND 11 EPA 200.8 ND 11 EPA 200.8 ND 11 EPA 200.8 ND 1.1 EPA 200.8 ND 5.6 EPA 200.8 ND 11 EPA 200.8 MB1223W1 MB1223W1 MB1223W1	ResultPQLMethodPreparedMB1221WM1ND3.3EPA 200.812-21-22ND28EPA 200.812-21-22ND4.4EPA 200.812-21-22ND11EPA 200.812-21-22ND11EPA 200.812-21-22ND11EPA 200.812-21-22ND1.1EPA 200.812-21-22ND11EPA 200.812-21-22ND11EPA 200.812-21-22MB1223W1III	ResultPQLMethodPreparedAnalyzedMB1221WM1ND3.3EPA 200.812-21-2212-21-22ND28EPA 200.812-21-2212-21-22ND4.4EPA 200.812-21-2212-21-22ND11EPA 200.812-21-2212-21-22ND11EPA 200.812-21-2212-21-22ND1.1EPA 200.812-21-2212-21-22ND1.1EPA 200.812-21-2212-21-22ND11EPA 200.812-21-2212-21-22ND11EPA 200.812-21-2212-21-22MB1223W1Image: Constraint of the second secon

• • • •	-		0.11		Source		rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE	40.0										
Laboratory ID:		01-01									
<u> </u>	ORIG	DUP									
Arsenic	ND	ND	NA	NA			NA	NA	NA	20	
Barium	ND	ND	NA	NA			NA	NA	NA	20	
Cadmium	ND	ND	NA	NA			NA	NA	NA	20	
Chromium	ND	ND	NA	NA		1	NA	NA	NA	20	
Lead	ND	ND	NA	NA		1	NA	NA	NA	20	
Selenium	ND	ND	NA	NA		1	NA	NA	NA	20	
Silver	ND	ND	NA	NA		1	NA	NA	NA	20	
Laboratory ID:	11-3	51-08									
Mercury	ND	ND	NA	NA		1	NA	NA	NA	20	
MATRIX SPIKES											
Laboratory ID:	12-00	01-01									
*	MS	MSD	MS	MSD		MS	MSD				
Arsenic	112	114	111	111	ND	101	103	75-125	2	20	
Barium	121	127	111	111	12.8	98	103	75-125	5	20	
Cadmium	109	114	111	111	ND	99	103	75-125	4	20	
Chromium	108	111	111	111	ND	97	100	75-125	3	20	
Lead	108	113	111	111	ND	98	102	75-125	4	20	
Selenium	108	114	111	111	ND	98	103	75-125	5	20	
Silver	107	110	111	111	ND	97	99	75-125	2	20	
						••			-		
Laboratory ID:	11-3	51-08									
Mercury	5.85	5.85	6.25	6.25	ND	94	94	75-125	0	20	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

1,2-DIBROMOETHANE (EDB) EPA 8011

Matrix: Water Units: ug/L (ppb)						
offito: dg/2 (ppb)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW1-12/15/22-GW					
Laboratory ID:	12-215-01					
EDB	ND	0.010	EPA 8011	12-27-22	12-27-22	
Surrogate:	Percent Recovery	Control Limits				
TCMX	97	50-163				
Client ID:	MW2-12/15/22-GW					
Laboratory ID:	12-215-02					
EDB	ND	0.010	EPA 8011	12-27-22	12-27-22	
Surrogate:	Percent Recovery	Control Limits				
TCMX	99	50-163				
Client ID:	MW3-12/15/22-GW					
Laboratory ID:	12-215-03					
EDB	ND	0.010	EPA 8011	12-27-22	12-27-22	
Surrogate:	Percent Recovery	Control Limits				
TCMX	86	50-163				
Client ID:	MW4-12/15/22-GW					
Laboratory ID:	12-215-04					
EDB	ND	0.010	EPA 8011	12-27-22	12-27-22	
Surrogate:	Percent Recovery	Control Limits				
TCMX	79	50-163				
Client ID:	MW5-12/15/22-GW					
Laboratory ID:	12-215-05					
EDB	ND	0.010	EPA 8011	12-27-22	12-27-22	
Surrogate:	Percent Recovery	Control Limits				
TCMX	100	50-163				
Client ID:	MW6-12/15/22-GW					
Laboratory ID:	12-215-06					
EDB	ND	0.010	EPA 8011	12-27-22	12-27-22	
Surrogate:	Percent Recovery	Control Limits				
TCMX	82	50-163				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

1,2-DIBROMOETHANE (EDB) EPA 8011 QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1227W1					
EDB	ND	0.010	EPA 8011	12-27-22	12-27-22	
Surrogate:	Percent Recovery	Control Limits				
TCMX	91	50-163				
TOWX	31	30-703				

					Source	Per	cent	Recovery		RPD		
Analyte	Result		Spike Level		Result	Recovery		Limits	RPD	Limit	Flags	
SPIKE BLANKS												
Laboratory ID:	SB1227W1											
	SB	SBD	SB	SBD		SB	SBD					
EDB	0.0964	0.0922	0.100	0.100	N/A	96	92	71-125	4	15		
DBCP	0.0866	0.0865	0.100	0.100	N/A	87	87	61-126	0	15		
Surrogate:												
TCMX						112	113	50-163				

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1 Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- X2 Sample extract treated with a silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.
- Y1 Negative effects of the matrix from this sample on the instrument caused values for this analyte in the bracketing continuing calibration verification standard (CCVs) to be outside of 20% acceptance criteria. Because of this, quantitation limits and sample concentrations should be considered estimates.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished	Signature	Company: BMEC Project Number: E2022 - 1204 Project Namager: 12015.175r. YAKIMA Project Manager: Page Studee / Bige Lee DN Sampled by: $Y. NEYELI MULI - 12/15/22 - GN 2 MUL2 - 12/15/22 - GN 3 MUL3 - 12/15/22 - GN 4 MUL4 - 12/15/22 - GN 5 MUL5 - 12/15/22 - GN6 MUL5 - 12/15/22 - GN$	Analytical Laboratory Testing Services 14648 NE S5th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com	OnSite Environmental Inc.
Reviewed/Date				(3200	AMEC	Company	(uneck One) □ Same Day □ 1 Day □ 2 Days X 3 Days Standard (7 Days) □ 1 Date Standard (7 Days) □ 1 Day □	Turnaround Request (in working days)	Chain of Custody
					12/21/20 12	12-19-22 1000	Date Time	NWTPH-HCID NWTPH-Gx/BTEX (8021 8260) NWTPH-Gx/BTEX (8021 8260) NWTPH-Gx NWTPH-Dx (Acid / SG Clean-up) Volatiles 8260 Halogenated Volatiles 8260	Laboratory Nun	Custody
Chromatograms with final report Electronic	Data Package: Standard 🛛 Level III 🗌 L				200	8	Comments/Special Instructions	Image: Solution of the second system Image: Solution of the second system Image: Solution of the second system Image: Solution of the second system Image: Solution of the second system Image: Solution of the second system Image: Solution of the second system Image: Solution of the second system Image: Solution of the second system Image: Solution of the second system Image: Solution of the second system Image: Solution of the second system Image: Solution of the second system Image: Solution of the second system Image: Solution of the second system Image: Solution of the second system Image: Solution of the second system Image: Solution of the second system Image: Solution of the second system Image: Solution of the second system Image: Solution of the second system Image: Solution of the second system Image: Solution of the second system Image: Solution of the second system Image: Solution of the second system Image: Solution of the second system Image: Solution of the second system Image: Solution of the second system Image: Solution of the second system Image: Solution of the second system Image: Solution of the second system Image: Solution of the second system Image: Solution of the second system Image: Solution of the second system Image: Solution of the second system </td <td>Number: 12-215</td> <td>Page</td>	Number: 12-215	Page
Electronic Data Deliverables (EDDs)	Level IV							HEM (oil and grease) 1664		of