

LETTER OF TRANSMITTAL

To:	Julia Mizuhata	Contract & Task Order:	Y-11848 DA
From:	Ron Paananen	File Code:	Y-11848 DA 4.1.21
Date:	October 31, 2023		
Copies To:	WSDOT Document Control Project Files	LOT #:	LOT-2799
These are: Per Your Requirement For Your Info For Your Account For Your Files For Your Review	rmation Greptance Exs SE-iew and Comment Comment	Via: S. Mail cound Service spress Overnight mail ourier and Deliver / Pick up via inter-office	ce WSDOT courier
	nitting the following materials:		
Y-11848 DA 4.	.1.21 FINAL Q6 Groundwater I	Monitoring Report	
Comments:			
Groundwater M Gas Station -	ne above document(s) enclosed Monitoring Report for Quarter of Hazardous Material Cleanup Page Order DA, Deliverables 4.1.21.	6 of the Montlake Phase: Mon	ntlake
Mollaf A. Program Engine	Palengine—— eering Manager		

SR 520 Bridge Replacement and HOV Program

MEMORANDUM

To: Ron Paananen, HDR Contract & Task Order: DA Deliverable

4.1.21

File Code:

From: Joseph Sawdey, LG, LHG

Meg Strong, LG, LHG

Shannon & Wilson

Date: October 30, 2023

Copies To: Robyn Boyd

Dave Becher

Margaret Kucharski

Subject: Groundwater Monitoring Memorandum – Quarter No. 6, Voluntary Cleanup

Program NW3242, Montlake Gas Station, Seattle, Washington

Background

In 2019, the Washington State Department of Transportation (WSDOT) entered the Former Montlake Gas Station property located in Seattle, Washington (site), into the Washington State Department of Ecology (Ecology) Voluntary Cleanup Program (VCP).

As part of the VCP application, Shannon & Wilson submitted a Remedial Investigation (RI) work plan and a subsequent RI report to Ecology, on behalf of WSDOT. The RI report included investigation data that was used to characterize the nature and extent of petroleum hydrocarbon contamination in soil and groundwater associated with historic fueling operations at the site (Shannon & Wilson, 2020).

In 2021, PBS Engineering and Environmental prepared and submitted to Ecology a Remedial Action Plan detailing the proposed remediation excavation activities (PBS, 2021a). In August and September 2021, PBS oversaw the closure and removal of the site's underground storage tanks and piping, as well as the excavation of the associated petroleum-contaminated soil source zone (source zone), as documented in the Remedial Action Completion Report (PBS, 2021b). Soil compliance has been achieved at the site, as documented by confirmation sampling performed by PBS during the remedial excavation.

Groundwater compliance is currently being evaluated. On April 19 and 20, 2022, Shannon & Wilson installed additional compliance groundwater monitoring (CGM) wells at the site following Ecology recommendations (Shannon & Wilson, 2022a). The CGM well network

for the site previously consisted of six monitoring wells: MW-2-19, MW-3-19, MW-6-22, MW-7-22, MW-8-22, and MW-9-22. On July 10, 2023, MW-7-22 was decommissioned due to ongoing project construction needs, and the CGM well network now consists of the remaining five wells listed above. (Note: groundwater monitoring was performed on July 6, 2023, at MW-7-22 immediately prior to the well being decommissioned. The results from sampling MW-7-22 are presented herein.) The monitoring wells have been surveyed and locations are depicted in Exhibit 1. This memorandum presents the results of Quarter No. 6 CGM and documents the continued effect(s) of the source zone removal on site groundwater quality. Results of the Quarter Nos. 1 through 5 CGM have been presented previously under a separate cover (Shannon & Wilson, 2022b, 2022c, 2023a, 2023b, and 2023c).

Quarter No. 6 Groundwater Monitoring Activities

Well Gauging

Due to MW-7-22 being decommissioned, this well was gauged for free product and groundwater elevation on July 6, 2023. Due to clean fill being temporarily emplaced on MW-3-19, this well was gauged for free product and groundwater elevation on August 25, 2023.

On August 9, 2023, Shannon & Wilson gauged each of the remaining four CGM wells to monitor for the presence of free product and to measure groundwater elevations. Measurable free product was not encountered within MW-7-22 on July 6, 2023, or within the five CGM wells during Quarter No. 6 gauging; however, a petroleum odor was observed at MW-3-19 on August 25, 2023.

Groundwater Sampling

During the Quarter No. 6 CGM event (occurring over multiple dates, as described above), Shannon & Wilson purged each of the CGM wells using a peristaltic pump with a flow-through cell and a water quality meter to measure the following field parameters: temperature, oxidationreduction potential, pH, conductivity, dissolved oxygen, turbidity, salinity, and total dissolved solids. Field parameters collected during purging of the CGM wells can be found in Attachment 1 – Groundwater Sampling Field Forms. Prior to purging MW-3-19, Shannon & Wilson removed the three Regenesis oxygen-releasing compound (ORC®) socks from the well on August 17, 2023, eight days prior to collecting groundwater samples from the well on August 25, 2023. Due to laboratory-related issues, MW-6-22 was also resampled on August 25, 2023 (for details see the discussion in Groundwater Sampling Results below). Upon stabilization of the field parameters during well purging (indicating steady groundwater flow to the well), groundwater samples were collected from each of the six CGM wells by discharging groundwater from the end of the peristaltic tubing into clean, laboratory-supplied containers. Collected groundwater samples were immediately put on ice and stored within an insulated cooler. Groundwater samples from each of the CGM wells were delivered to OnSite Environmental Inc. of Redmond, Washington (OnSite), under standard chain-of-custody procedures and analyzed for:

• Gasoline-range petroleum hydrocarbons using Ecology's Northwest Total Petroleum Hydrocarbon (NWTPH)-Gasoline Extended Method;

- Benzene, toluene, ethylbenzene, and xylene (BTEX) by U.S. Environmental Protection Agency (EPA) 8260 Method;
- Diesel- and oil-range petroleum hydrocarbons using Ecology's NWTPH-Diesel Extended Method (NWTPH-Dx); and
- Total and dissolved arsenic by EPA Method 200.8.

For complete details on the groundwater sampling methodology, refer to the Sample Collection and Chemical Testing sections of the Work Plan (Shannon & Wilson, 2019).

ORC Sock Deployment

Following the completion of the Quarter No. 6 well gauging and groundwater sampling activities, Shannon & Wilson reinstalled the three Regenesis ORC® socks below the water table and within the screened portion of MW-3-19 due to continued contaminant detections at the well. The ORC® socks are designed by Regenesis to expedite and aid in the natural aerobic degradation process of petroleum hydrocarbon contaminants.

Quarter No. 6 Results and Interpretation

Groundwater Elevation and Flow Directions

Measured groundwater elevations for Quarter No. 6 are displayed in Exhibit 1 and reported in Exhibit 2. Groundwater elevations in North American Vertical Datum (of 1988) during August 2023 ranged from as low as 41.6 feet (MW-3-19) to as high as 48.3 feet above mean sea level (MW-2-19). Using the measured groundwater elevations, a groundwater potentiometric surface was interpolated with associated groundwater flow directions inferred to occur perpendicular to the equipotential lines comprising the potentiometric surface. (See Exhibit 1: Note that because the groundwater elevation reported for MW-7-22 was collected one month prior to the other CGM wells, it was excluded for groundwater interpolations presented on Exhibit 1). The groundwater elevation measured at MW-3-19 was again significantly lower with less seasonal fluctuation compared to the other CGM wells (see Exhibit 2). The much lower and static nature of the groundwater elevations monitored at MW-3-19 is suggestive of hydraulic isolation from the more uniform groundwater flow regime encountered across the site.

The groundwater setting at the site observed during Quarter No. 6 is consistent with that observed during the RI and previous quarterly CGM events (Shannon & Wilson, 2020, 2022b, 2022c, 2023a, 2023b, and 2023c). In general, groundwater elevations measured in Quarter No. 6 were lower by approximately 1.3 to 1.7 feet, compared to groundwater elevations measured during Quarter No. 5. The lower groundwater elevations observed likely reflect the shallow groundwater response to the continued local dry season.

The groundwater elevation observed at MW-3-19 was unchanged between the groundwater monitoring events for Quarter Nos. 5 and 6 (May to August 2023). This lack of fluctuation in groundwater elevation is different in nature compared to the other CGM wells, as discussed above.

The estimated groundwater flow direction for Quarter No. 6 is uniformly north to northwest, consistent with previous monitoring events, when MW-3-19 was included as part of the potentiometric surface (Shannon & Wilson, 2022b 2023b, 2023c).

Groundwater Sampling Results

The laboratory analytical results for collected groundwater samples are summarized in Exhibit 3. The laboratory report is included as Attachment 2. Exhibit 1 indicates which monitoring wells had groundwater sample contaminant concentrations that exceed applicable cleanup levels (CULs) during the August 2023 sampling event.

The groundwater sample initially collected from MW-6-22 on August 9, 2023, was compromised during diesel- and lube oil-range petroleum hydrocarbons laboratory analysis (refer to the NWTPH-Dx Analysis Case Narrative of the Laboratory Report No. 2308-127 included in Attachment 2). OnSite identified that the sample collected from MW-6-22 on August 9, 2023, had been compromised due to cross-contamination caused by a contaminated piece of glassware during the NWTPH-Dx laboratory testing procedures. At the request of Shannon & Wilson, the sample was re-extracted and analyzed for diesel- and lube oil-range petroleum hydrocarbons; the result for the re-extracted sample was non-detect. To verify, Shannon & Wilson resampled groundwater at MW-6-22 on August 25 2023, for diesel- and lube oil-range petroleum hydrocarbons analysis. The second sample result for MW-6-22 was also non detect for diesel- and lube oil-range petroleum hydrocarbons.

Groundwater Sampling Interpretation

Groundwater samples collected from the CGM wells located within the property boundary (MW-2-19, MW-6-22, MW-7-22, MW-8-22, and MW-9-22) had either non-detectable concentrations or concentrations below applicable CULs for petroleum hydrocarbons (gasoline, diesel-, and oil-range petroleum hydrocarbons) and BTEX. MW-6-22 and MW-9-22 had detectable concentrations of total arsenic; however, the concentrations were below applicable CULs and dissolved arsenic concentrations were less than the total concentrations.

Groundwater samples from one CGM well, MW-3-19, contained contaminant concentrations that exceeded applicable CULs (Exhibits 1 and 3). During Quarter Nos. 2 and 3, groundwater samples from MW-3-19 were not collected because measurable free product was detected in the well. During Quarter Nos. 4, 5, and 6, a petroleum odor and/or sheen was observed, but with no measurable product, and thus, groundwater samples were collected and analyzed. Concentrations of gasoline- and diesel-range petroleum hydrocarbons, as well as the dissolved arsenic exceedances, increased at MW-3-19 compared to Quarter No. 5 (May 2023). However, benzene exceedances detected at MW-3-19 during Quarter No. 6 continued to decrease. The diesel-range petroleum hydrocarbon concentration continues to be flagged as being influenced by the gasoline-range petroleum hydrocarbons (Exhibit 3). MW-3-19 is the most downgradient CGM well at the site, the furthest from the remedial excavation area, and is located outside the property boundary. The contaminant concentrations observed at MW-3-19 may be related to the observed degree of hydraulic isolation in the vicinity of MW-3-19, which would impact timing for the remedial action to manifest near the this well.

The concentration of gasoline-range petroleum hydrocarbons measured in the CGM wells over time have been summarized in trend plots, included as Exhibit 4.

The concentration of diesel-range plus oil-range petroleum hydrocarbons measured in the CGM wells over time have been summarized in trend plots, included as Exhibit 5.

The concentration of benzene measured in the CGM wells over time has been summarized in trend plots, included as Exhibit 6.

The concentration of total and dissolved arsenic in the CGM wells over time has been summarized in trend plots, included as Exhibit 7.

We appreciate this opportunity to provide environmental services to you for this project. If you have questions regarding this letter, please contact the undersigned at (206) 632-8020.

Sincerely,

Shannon & Wilson

Joseph Russell Sawdev

Joseph Sawdey, LG, LHG Senior Hydrogeologist

Meg Strong, LG, LHG Senior Consultant

JXS:MJS:JNB/jxs

References

- PBS Engineering and Environmental, 2021a, Remedial action plan, Montlake Gas Station, State Route 520 Montlake to Lake Washington Interchange and Bridge Replacement Project, Seattle, Washington: Report prepared by PBS, Seattle, Wash., project no. 41221.003, for Graham Contracting Ltd, Bellevue, Wash., March Seattle, Wash., March 2021.
- PBS Engineering and Environmental, 2021b, Remedial action completion report, Montlake Gas Station, State Route 520 Montlake to Lake Washington Interchange and Bridge Replacement Project, Seattle, Washington: Report prepared by PBS, Seattle, Wash., 41221.003, for Graham Contracting Ltd., Bellevue, Wash., December.
- Shannon & Wilson, 2019, Data gaps investigation work plan/sampling and analysis plan for Montlake Gas Station, SR 520 Bridge Replacement and HOV Program, Seattle, Washington: Workplan prepared by Shannon & Wilson, Seattle, Wash., 21-1-22242-101, for Washington State Department of Transportation, July.
- Shannon & Wilson, 2020, Remedial investigation report for Montlake Gas Station, SR 520 Bridge Replacement and HOV Program, Seattle, Washington: Report prepared by Shannon & Wilson, Seattle, Wash., 21-1-22242-104, for Washington State Department of Transportation, 1 v., March.
- Shannon & Wilson, 2022a, Compliance groundwater monitoring well installation exhibit for Montlake Gas Station, SR 520 Bridge Replacement and HOV Program, Seattle, Washington: Exhibit prepared by Shannon & Wilson, Seattle, Wash., 21-1-22242-104, for Washington State Department of Transportation, May 2022.
- Shannon & Wilson, 2022b, Groundwater monitoring memorandum quarter no. 1, voluntary cleanup program NW3242, Montlake Gas Station, SR 520 Bridge Replacement and HOV Program, Seattle, Washington: Memorandum from Joseph Sawdey and Meg Strong, Shannon & Wilson, Seattle, Wash., 21-1-22242-104, to Ron Paananen, HDR, June 27.
- Shannon & Wilson, 2022c, Groundwater monitoring memorandum quarter no. 2, voluntary cleanup program NW3242, Montlake Gas Station, SR 520 Bridge Replacement and HOV Program, Seattle, Washington: Memorandum from Joseph Sawdey and Meg Strong, Shannon & Wilson, Seattle, Wash., 21-1-22242-104, to Ron Paananen, HDR, October 6.
- Shannon & Wilson, 2023a, Groundwater monitoring memorandum quarter no. 3, voluntary cleanup program NW3242, Montlake Gas Station, SR 520 Bridge Replacement and HOV Program, Seattle, Washington: Memorandum from Joseph Sawdey and Meg Strong, Shannon & Wilson, Seattle, Wash., 21-1-22242-104, to Ron Paananen, HDR, January 5.

Shannon & Wilson, 2023b, Groundwater monitoring memorandum – quarter no. 4, voluntary cleanup program NW3242, Montlake Gas Station, SR 520 Bridge Replacement and HOV Program, Seattle, Washington: Memorandum from Joseph Sawdey and Meg Strong, Shannon & Wilson, Seattle, Wash., 21-1-22242-104, to Ron Paananen, HDR, March 30.

Shannon & Wilson, 2023c, Groundwater monitoring memorandum – quarter no. 5, voluntary cleanup program NW3442, Montlake Gas Station, SR 520 Bridge Replacement and HOV Program, Seattle, Washington: Memorandum from Joseph Sawdey and Meg Strong, Shannon & Wilson, Seattle, Wash., 21-1-22242-104, to Ron Paananen, HDR, June 23.

Exhibits

Exhibit 1 – Groundwater Potentiometric Surface Map with Groundwater Elevation

Exhibit 2 – Groundwater Level Measurements

Exhibit 3 – Summary of Groundwater Analytical Results

Exhibit 4 – Groundwater Concentration Trend Plots – Gasoline

Exhibit 5 – Groundwater Concentration Trend Plots – Diesel Plus Oil

Exhibit 6 – Groundwater Concentration Trend Plots – Benzene

Exhibit 7 – Groundwater Concentration Trend Plots – Arsenic

Attachments

Attachment 1 – Groundwater Sampling Field Forms

Attachment 2 – Laboratory Report and Chain-of-Custody Form

Montlake Gas Station Monitoring Well	Screened Interval (feet bgs)	Surveyed Monitoring Well Elevation ¹ (feet)	TOC Elevation (feet)	Date	Depth to Water (feet below TOC)	Groundwater Elevation (feet)
				10/17/2019	10.1	48.0
				5/2/2022	8.3	49.8
				8/16/2022	9.4	48.7
MW-2-19	10 to 20	58.87	58.12	11/15/2022	9.9	48.2
				2/14/2023	8.4	49.8
				5/17/2023	8.6	49.6
				8/9/2023	9.8	48.3
				10/17/2019	17.4	41.6
		59.29	59.01 59.36	5/2/2022	17.3	41.8
MW-3-19				8/16/2022	17.4	41.6
	10 to 25			11/15/2022	17.5	41.5
				2/14/2023	17.5	41.6
				5/17/2023	17.4	41.6
				8/25/2023	17.5	41.6
				5/2/2022	12.2	47.2
				8/16/2022	13.9	45.5
MW-6-22	11 to 26	59.71		11/15/2022	14.9	44.4
10100-0-22	111020	39.71		2/14/2023	12.5	46.8
				5/17/2023	13.0	46.4
				8/9/2023	14.7	44.7
				5/2/2022	12.1	47.1
				8/17/2022	13.8	45.4
MW-7-22	10.5 to 25.5	59.68	59.18	11/15/2022	14.8	44.4
IVI V V - 1 - Z Z	10.5 to 25.5	39.00	39.10	2/14/2023	12.4	46.8
				5/17/2023	12.8	46.3
				7/5/2023 ²	13.9	45.2

Montlake Gas Station Monitoring Well	Screened Interval (feet bgs)	Surveyed Monitoring Well Elevation ¹ (feet)	TOC Elevation (feet)	Date	Depth to Water (feet below TOC)	Groundwater Elevation (feet)
			58.55	5/2/2022	11.3	47.2
				8/16/2022	13.0	45.6
MW-8-22	10.5 to 25.5	58.90		11/15/2022	14.0	44.5
IVIVV-0-22	10.5 to 25.5	56.90		2/14/2023	11.6	46.9
				5/17/2023	12.1	46.5
				8/9/2023	13.8	44.8
				5/2/2022	12.4	47.2
				8/17/2022	14.1	45.5
M/M/ O 22	10 to 25	59.93	59.58	11/15/2022	15.1	44.5
MW-9-22	10 10 25	59.93	39.30	2/14/2023	12.7	46.9
				5/17/2023	13.1	46.4
				8/9/2023	14.9	44.7

NOTES:

The reference vertical datum is the North American Vertical Datum (of 1988).

bgs = below ground surface; TOC = top of casing

¹ Monitoring well elevation was surveyed from the center of the well monument lid.

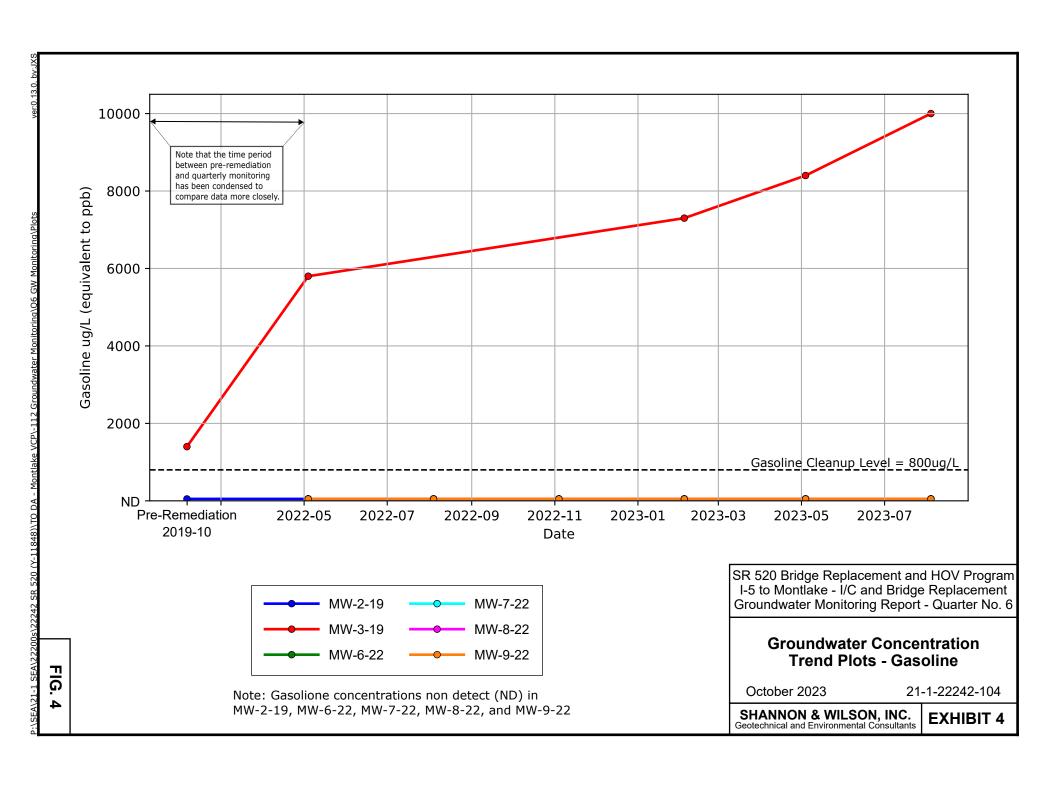
² MW-7-22 was gauged and sampled prior to it being decomissioned on 7/10/2022 by Graham.

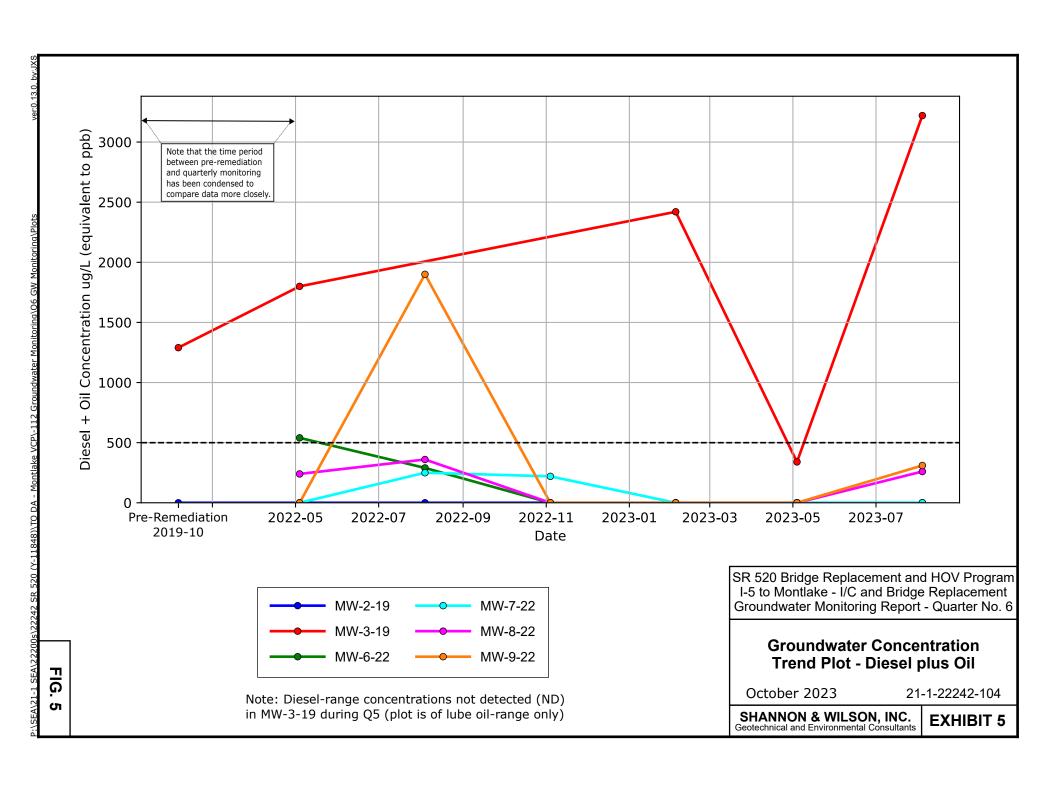
		Pet	roleum Hydrocarbons (μ	g/L)	Volatile Organic Compounds (μg/L) ³			Metals (μg/L) ⁴			
Montlake Gas Station Monitoring Well	Sample Date	Gasoline Range Organics ¹	Diesel Range Organics ²	Lube Oil Range Organics ²	Benzene	Toluene	Ethylbenzene	m,p-Xylene	o-Xylene	Total Arsenic	Dissolved Arsenic
	10/17/2019	<100	<260	<420	<0.20	<1.0	<0.20	<0.40	<0.20	<3.3	<3.0
	5/2/2022	<100	<180	<240	<0.20	<1.0	<0.20	<0.40	<0.20	<3.3	<3.0
	8/16/2022	<100	<130	<210	<0.20	<1.0	<0.20	<0.40	<0.20	<3.3	<3.0
MW-2-19	11/15/2022	<100	<210	<210	<0.20	<1.0	<0.20	<0.40	<0.20	<3.3	<3.0
	2/14/2023	<100	<200	<200	<0.20	<1.0	<0.20	<0.40	<0.20	<3.3	<3.0
	5/17/2023	<100	<210	<210	<0.20	<1.0	<0.20	<0.40	<0.20	<3.3	<3.0
	8/9/2023	<100	<110	<220	<0.20	<1.0	<0.20	<0.40	<0.20	<3.3	<3.0
	10/17/2019	1400	630	660	98	<4	24	9.3	1.1	17	7.4
	5/2/2022	5800	1300 M	500	170	<10	190	220	3.2	16	11
MW-3-19 ⁵	2/14/2023	7300	2100 M	320	140	<5.0	72	94	2.3	22	13
	5/17/2023	8400	<1700 M	340	100	<20	79	120	<4.0	25	14
	8/25/2023	10000	2900 M	320	82	<20	37	90	<4.0	24	21
	5/2/2022	<100	210	330	<0.20	<1.0	<0.20	<0.40	<0.20	<3.3	<3.0
	8/16/2022	<100	<130	290	<0.20	<1.0	<0.20	<0.40	<0.20	6.3	4.5
	11/15/2022	<100	<200	<200	<0.20	<1.0	<0.20	<0.40	<0.20	7.3	4.6
MW-6-22	2/14/2023	<100	<210	<210	<0.20	<1.0	<0.20	<0.40	<0.20	<3.3	<3.0
	5/17/2023	<100	<210	<210	<0.20	<1.0	<0.20	<0.40	<0.20	<3.3	<3.0
	8/9/2023	<100	<100	<210	<0.20	<1.0	<0.20	<0.40	<0.20	4.6	<3.0
	8/25/2023		<160	<160							
	5/2/2022	<100	<170	<230	<0.20	<1.0	<0.20	<0.40	<0.20	<3.3	<3.0
	8/17/2022	<100	<130	250	<0.20	<1.0	<0.20	<0.40	<0.20	<3.3	<3.0
	11/15/2022	<100	<210	<210	<0.20	<1.0	<0.20	<0.40	<0.20	<3.3	<3.0
MW-7-22	11/15/2022	<100	<210	220	<0.20	<1.0	<0.20	<0.40	<0.20	<3.3	<3.0
	2/14/2023	<100	<200	<200	<0.20	<1.0	<0.20	<0.40	<0.20	<3.3	<3.0
	5/17/2023	<100	<210	<210	<0.20	<1.0	<0.20	<0.40	<0.20	<3.3	<3.0
	7/6/2023	<100	<210	<210	<0.20	<1.0	<0.20	<0.40	<0.20	<3.3	<3.0
	5/2/2022	<100	<170	<220	<0.20	<1.0	<0.20	<0.40	<0.20	<3.3	<3.0
	5/2/2022	<100	<170	240	<0.20	<1.0	<0.20	<0.40	<0.20	<3.3	<3.0
	8/16/2022	<100	<130	360	<0.20	<1.0	<0.20	<0.40	<0.20	6.6	3.8
	8/16/2022	<100	<140	340	<0.20	<1.0	<0.20	<0.40	<0.20	6.5	4.3
	11/15/2022	<100	<200	<200	<0.20	<1.0	<0.20	<0.40	<0.20	6	5.7
MW-8-22	2/14/2023	<100	<210	<210	<0.20	<1.0	<0.20	<0.40	<0.20	4.2	<3.0
	2/14/2023	<100	<200	<200	<0.20	<1.0	<0.20	<0.40	<0.20	4.4	<3.0
	5/17/2023	<100	<210	<210	<0.20	<1.0	<0.20	<0.40	<0.20	4	<3.0
	5/17/2023	<100	<220	<220	<0.20	<1.0	<0.20	<0.40	<0.20	4.1	<3.0
	8/9/2023	<100	<110	260	<0.20	<1.0	<0.20	<0.40	<0.20	<3.3	<3.0
	8/9/2023	<100	<110	<230	<0.20	<1.0	<0.20	<0.40	<0.20	<3.3	<3.0
	5/2/2022	<100	<160	<220	<0.20	<1.0	<0.20	<0.40	<0.20	<3.3	<3.0
	8/17/2022	<100	1900	<300	<0.20	<1.0	<0.20	<0.40	<0.20	<3.3	<3.0
	11/15/2022	<100	<210	<210	<0.20	<1.0	<0.20	<0.40	<0.20	<3.3	<3.0
MW-9-22	2/14/2023	<100	<210	<210	<0.20	<1.0	<0.20	<0.40	<0.20	<3.3	3.0
	5/17/2023	<100	<220	<220	<0.20	<1.0	<0.20	<0.40	<0.20	3.9	<3.0
	8/9/2023	<100	<110	310	<0.20	<1.0	<0.20	<0.40	<0.20	<3.3	<3.0

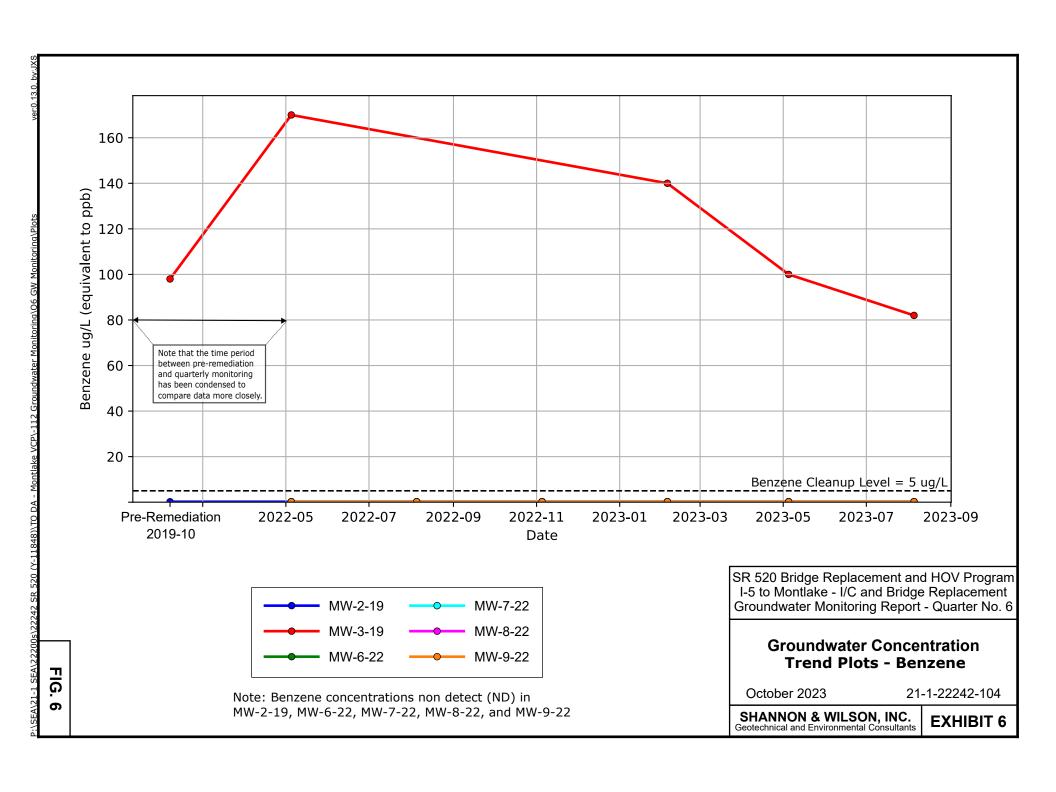
	Petroleum Hydrocarbons (μg/L)				Volatile Organic Compounds (μg/L) ³				Metals (μg/L)⁴		
Montlake Gas Station Monitoring Well	Sample Date	Gasoline Range Organics ¹	Diesel Range Organics ²	Lube Oil Range Organics ²	Benzene	Toluene	Ethylbenzene	m,p-Xylene	o-Xylene	Total Arsenic	Dissolved Arsenic
	5/2/2022	<100			<0.20	<1.0	<0.20	<0.40	<0.20		
	8/18/2022	<100			<0.20	<1.0	<0.20	<0.40	<0.20		
Trip Blank	11/15/2022	<100			<0.20	<1.0	<0.20	<0.40	<0.20		
ттр ыапк	2/14/2023	<100			<0.20	<1.0	<0.20	<0.40	<0.20		
	7/6/2021	<100			<0.20	<1.0	<0.20	<0.40	<0.20		
	8/9/2023	<100			<0.20	<1.0	<0.20	<0.40	<0.20		
MTCA Method	d A CUL	1000/800*	500	500	5.00	1000	700	1000†	1000†	20§	20§

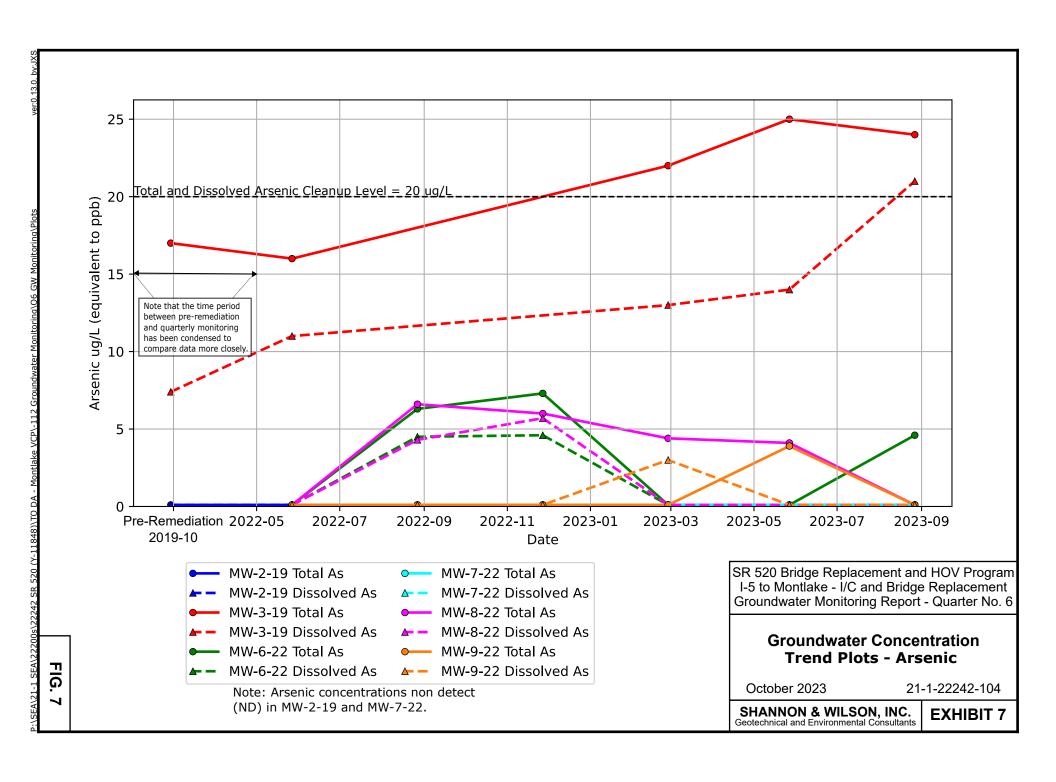
NOTES:

- 1 Gasoline-range petroleum hydrocarbons using Washington State Department of Ecology's (Ecology's) NWTPH-Gasoline Extended Method
- 2 Diesel- and oil-range petroleum hydrocarbons using Ecology's NWTPH-Diesel Extended Method
- 3 Volatile organic compounds by EPA Method 8260D
- 4 Total and dissolved arsenic by EPA Method 200.8
- 5 In August and November 2022, MW-3-19 had measurable free product and was not sampled.


Highlighted text indicates the analyte was detected above the MTCA Method A CUL.


Highlighted text indicates the analyte was not detected, however the practical quantitation limit is above the MTCA Method A CUL.


Bold text indicates the analyte was detected above laboratory practical quantitation limit.


M flag indicates hydrocarbons in the gasoline range are impacting the diesel range result.

- * Cleanup level (CUL) for gasoline-range organics is 1,000 µg/L without the presence of benzene and 800 µg/L with the presence of benzene.
- † MTCA Method A CUL for total xylenes is used because a MTCA Method A CUL is not established for the isomers of m-, p-, or o-xylene.
- § Site specific CUL for arsenic (total and dissolved) based on statistical analysis of natural background levels of arsenic in groundwater.
- -- = not analyzed; < = not detected above laboratory reporting limit; µg/L = micrograms per liter; CUL = cleanup level; EPA = U.S. Environmental Protection Agency; MTCA = Model Toxics Control Act; NWTPH = Northwest Total Petroleum Hydrocarbon

Attachment 1

Contents:

Groundwater Sampling Field Forms (8 Sheets)

WATER SAMPLING LOG

JOB NO.	21/1	- 2	2242	1-112
PAGE _		. (OF _	

	OWNER/LO	CATION:	US DOT 1	MGS				-	DATI	= 7/5/	2-3
	WELL NO:	W-7-22	SAM	PLE NO:	070573	ECOLO	GY TAG NO: _	BNU 408	DUP	LICATE NO: M	W-100: 0705
	WEATHER:								MS /	MSD? Yes	□ No ☑
	WELL SITE	CONDITION	S / MP DEFIND the north PVC	TION:	500				principal		
			· · · · · · · · · · · · · · · · · · ·		12.00						aniani di la cara di l
		(2),			SA	AMPLING D	DATA				
	TIME START	ED:\()	30				LNAPL	THICKNESS:	0.06	ft.	Sample
	PID HEAD SI	PACE:	Pilitabenouse			ppm				ft.	
	MP DISTANC	E ABOVE /	BELOW GROU	IND SURFAC	E:	ft.		6	AMBLE COL	ITAINIEDO	
							Numbe		AMPLE CON Bize	Type	Pres.
											\$1000 AND TO SEE SEE SEE SEE SEE SEE SEE SEE SEE SE
sac.											
Login: s.	TIME PURGI	NG STARTED):	5	n - Colub robbits		General Property of the State o				
-			ORP		FIEL	D PARAMI	TERS	41/	- WA		101 1VA 101 000 1100 1
02-10-2011	GALLONS	TEMP.	-En	T	COND.	D.O.	TURBIDITY	SALINITY			
: 02-1	REMOVED	(C°)	(mV)	pH	(µmhos / cm)	(mg / L)	(NTU)	(%)	TDS (g/L)	COLOR	TIME
Date:	Initial 7.25	15.8	181.6	6.94	721	4 9.5	30.3			< Qens	11.00
gwb	0.5	15.8	154.3	6.97	200	1.57	22.3	- January		11	11:08
ater Sampling Log.dwg	0.75	15.6	132	6.98	699	1.52	19.5		Construction of the second	2	21:11
mpling	1.0	15.7	114.1	6.98	628	1.34	17.5		A CONTRACTOR OF THE PARTY OF TH	emet de son	11:16
ter Sa	1.25	15.7	104.2	6.98	690	85.1	15.4			Mada out Property treats	11:50
Wa.	1.75	15.7	29.7	6.92	681	1.08	15.7			400	11-28
toCAD		1	****								
/S/Au	After Sampling √ 2		<u> </u>								
FOR	EVACUATION	1 / "	the Peri	Pump							
CLAB	PUMP INTAK	E DEPTH (if	applicable):	w.18 7	octecn						
D ANI	PURGE WAT	ER DISPOSI	TION (e.g., dr.	ım#):	00.2 - 63	10/0	or Street				
Filename: J.:Support\tibrary\FIELD AND LAB FORMS\AutoCAD_W	WATER QUAL					CMY	(8227				WA Aleks And Articles
Vibran	WATER QUA	LITY METER	(S) USED; CA	LIBRATION I	DATE / TIME:	45I Q	offen				
pport	SAMPLING M	ETHOD:	Perfun	1 2	or Fron				SAMP	LE TIME:	30
J:\Su	SAMPLING PI	ERSONNEL:	XE	4					DUPLI	CATE "TIME":	040
name:	REMARKS (e.	g., recovery i	rate):								
E E	-										

TIME COMPLETED: 12 00

Former Montlake Gas Station Project:

111-2725-1-15 :.ON BOL

Conducted by: MRIT
Weather: Cloudy, High (a)

WATER LEVEL MEASUREMENTS

Location ID	Date	Time	Measuring Point (MP)	MP (feet)	VWP F Digits	Reading C	Comments (i.e. pressure change when opend, inaccesibility, etc.)
MN-9-22 MN-10-22 MN-9-22 MN-2-19	8913	0925	NION	13,76	(BNV 406
RAINI LO-ZZ	1			14.67			BNV 407
11111-9-22		0927		14.85			BNV UD9
1111-7-19	V	1000	1	91.80	 		BNV 409 BLT 996
10/10 0 1 1	V		<u> </u>	1.00	- (001 110
						`	, , , , , , , , , , , , , , , , , , , ,
		<u> </u>					:
	·						
:							
						***************************************	<u> </u>

Comments:	
Checked By:	Date:

BHANNON SWILSON, MC.	va i er Jaw	LTHAR FOR		OF
	Monttake Gas	: Stahon	DATE: 8/9/	
WELL NO: WW - Q-ZZ SAMPLENO: 1	MN-8-21:0809 2023	gy tag no: <u>BNV-</u> L	DUPLICATE NO: 1	m-101:08
WEATHER: Cloudy	(005		MS/MSD? Yes	□ No
WELL SITE GONDITIONS / MP DEFINITION: - (MP is typically the north PVG rim)	NTOU	, , ,	•	·
	SAWPLING	DATA		
TIME STARTED: 0939		LNAPL THICKNES	S;ft.	. Sạmple
PID HEAD SPACE:	ppm	DNAPL THICKNES	S:	Sample
MP DISTANCE ABOVE ! BELOW GROUND SURF!	ACE: 0.3 ft.		SAMPLE CONTAINERS	
TOTAL DEPTH OF WELL BELOWMP: 26	.05 t	· · Number	Size Type	Pres
DTWBELOWMP: 13.70	īt.			
WATER COLUMN IN WELL: 12.29				
CASING DIAMETER:	n.			*
GALLONS PER FOOT: 0.10				
GALLONS IN WELL: 1.96.	(x3 = 5.9 gel)) -		•
TIME PURGING STARTED: . 0945				• -
	Min to such a service of the service of	THOS		,
500	FIELD PARAMI			1
GALLONS TEMP. HIN PH REMOVED (C") (mV) PH Initial (U) 245,9 (U) 70	COND. D.O. (mg/L)	TURBIDITY SALINITY (%)	TDS COLOR	TIME
Initial 10.1 245.9 6.70		2.02	(clear	0948
1 0.5 15.7 . 250.5 6144	737 0.16.	3.33	clear	0953
1.0 15.7 254.4 696		1.90	/ clear	1001
1.0 15.7 254.4 6.90 1.25 15.8 252.3 6.97 1.5. 15.7 248.6 7.00	739 0.14	3.59	Clear	1006
				<u> </u>
	<u> </u>	')		
After Sampling .			• 1	
· · · · · · · · · · · · · · · · · · · ·	ri - Dump	•		
EVACUATION WEITHOD:	d. sureth	•		
PUMP INTAKE DEPTH (if applicable):	WYUM OH	. Site .		
PURGE WATER DISPOSITION (e.g., drum#):	No odov		4~	
WATER QUALITY (e.g., sheen, odor):	. gran gran	DVO Qual	A 1 1	@ 0500
WATER QUALITY METER(S) USED; CALIBRATION DA	LEW FOW		SAMPLETIME 10	15 /
SAMPLING METHOD:	· / / / / / / / / / / / / / / / / / / /	•		000
SAMPLING PERSONNEL: DIJV.	ate sample	MN-101:050		• .
REMARKS (e.g., recovery rate): VIII Y. III	Total Control of the			

JOB NO. 21-1-22242-1/2

. WELL CASING VOLUMES

TIME COMPLETED:

Filename: JASupportVibraryFIELD AND LAB FORMSYAUFOCADL Water Sampling Log.dwg

Gal/ft 1-1/4"=0.077 2"=0.16 3"=0.37 4"=0.65 1-1/2"=0.10 2-1/2"=0.24 3-1/2"=0.50 6"=1.46

WELL NO: WW-2-19 SAMPLE NO: MW-2-19:000970075 WELL SITE CONDITIONS / MP DEFINITION: NTO C WELL SITE CONDITIONS / MP DEFINITION: NTO C WELL SITE CONDITIONS / MP DEFINITION: NTO C SAMPLING DAT TIME STARTED: N/A ppm MP DISTANCE ABOVE / BELOW GROUND SURFACE: 0.9 ft. TOTAL DEPTH OF WELL BELOW MP: 10.00 ft. DTW BELOW MP: 9.80 ft. WATER COLUMN IN WELL: 9.46 ft. CASING DIAMETER: 0.10 (x 2 3 4 5) GALLONS PER FOOT: 0.10 (x 2 3 4 5) TIME PURGING STARTED: 110 (x 2 3 4 5)		396 DUPLICATE NO MS / MSD? MS / MSD?	O: Yes □ft. Samft. Sam
WEATHER: Some (20th, 60) WELL SITE CONDITIONS / MP DEFINITION: NTO C (MP is typically the north PVC im) SAMPLING DAT TIME STARTED: N/A ppm MP DISTANCE ABOVE / BELOW GROUND SURFACE: 0.9 ft. TOTAL DEPTH OF WELL BELOW MP: 9.90 ft. DTW BELOW MP: 9.90 ft. WATER COLUMN IN WELL: 9.90 ft. CASING DIAMETER: 0.10 ft. GALLONS PER FOOT: 0.10 GALLONS IN WELL: 1.51 (x 2.54.5) TIME PURGING STARTED: 100	TA LNAPL THICKNES DNAPL THICKNES	S:SS:SAMPLE; CONTAINERS	ft. Sam ft. Sam
WELL SITE CONDITIONS / MP DEFINITION: (MP is typically the north PVC rim) SAMPLING DAT TIME STARTED: PID HEAD SPACE: NP DISTANCE ABOVE / BELOW GROUND SURFACE: OB ft. TOTAL DEPTH OF WELL BELOW MP: DTW BELOW MP: Q Q ft. WATER COLUMN IN WELL: CASING DIAMETER: GALLONS PER FOOT: GALLONS IN VVELL: TIME PURGING STARTED:	LNAPL THICKNES	SAMPLE CONTAINERS	ft. Sam
WEEL SITE CONDITIONS WITH PURGING SAMPLING DAT (MP is typically the north PVC rim) SAMPLING DAT TIME STARTED: 1100 PID HEAD SPACE: 1100 FIL TOTAL DEPTH OF WELL BELOWMP: 1100 FIL WATER COLUMN IN WELL: 1100 GALLONS PER FOOT: 1100 GALLONS IN VIELL: 1100 TIME PURGING STARTED: 1100 SAMPLING DAT PPM PPM PPM PPM PPM PPM PPM P	LNAPL THICKNES	SAMPLE CONTAINERS	ft. Sam
TIME STARTED:	LNAPL THICKNES	SAMPLE CONTAINERS	ft. Sam
PID HEAD SPACE: MP DISTANCE ABOVE / BELOW GROUND SURFACE: TOTAL DEPTH OF WELL BELOW MP: DTW BELOW MP: 9,80 it. WATER COLUMN IN WELL: CASING DIAMETER: GALLONS PER FOOT: GALLONS IN WELL: TIME PURGING STARTED: NAME OF THE PURGING STARTED:	DNAPL THICKNES	SAMPLE CONTAINERS	ft. Sam
MP DISTANCE ABOVE / BELOW GROUND SURFACE: 0.9 ft. TOTAL DEPTH OF WELL BELOW MP: 4.20 ft. DTW BELOW MP: 9,80 ft. WATER COLUMN IN WELL: 9,46 ft. CASING DIAMETER: 2 in. GALLONS PER FOOT: 0.10 GALLONS IN WELL: 1,51 (x2,34,5) TIME PURGING STARTED: 1,00		SAMPLE CONTAINERS	5
TOTAL DEPTH OF WELL BELOWMP:	Number		
TOTAL DEPTH OF WELL BELOWMP:	Number		
DTW BELOW MP: 9.80 #L WATER COLUMN IN WELL: 9.46 #L CASING DIAMETER: 2 in. GALLONS PER FOOT: 0.60 GALLONS IN WELL: 1.51 (x 2 5 4 5) TIME PURGING STARTED: 100			
CASING DIAMETER: 2 in. GALLONS PER FOOT: 0.40 GALLONS IN WELL: 1.51 (x 2, 54, 5) TIME PURGING STARTED: 1/0 (x			
CASING DIAMETER:			
GALLONS PER FOOT: GALLONS IN WELL: TIME PURGING STARTED: \(\)			
GALLONS IN WELL: 1.51 (x 2.54.5). TIME PURGING STARTED: 1/0 6			
TIME PURGING STARTED:	Minima de de la companya de la compa		
THAT I CANONICAL TO A CONTROL OF THE			
FIELD PARAMETE	:RS	•	,
ILLIACIUNO ILLIANIA ILLIA ILLI	URBIDITY SALINITY (%)	TDS COLO	OR TIM
INCINOVED (-)	(0.85 /	1 Cles	av 110
	6.27 /.	cleo	av 111
0.5 164 1913 0.29 752 0.19 1	1,50	1) de	. 23
	B.49)	/ cles	1111
	1.21 3.40 ·	: Cle	
1.25 10.5 191.1. 6.20 -754 0.23 3	7.40)	
	-)		
After Sampling		<u> </u>	
EVACUATION METHOD: POLIT - PUMP	•		•
PUMP INTAKE DEPTH (if applicable): MI & SWECK	<u> </u>		
PURGE WATER DISPOSITION (e.g.,drum#):	. SIL	•	
· 1 ·	5/19e1	IA	
WATER QUALITY (e.g., sneen, odor):	Ora Qu	0170; 8/9/	13 (2)0
WATER QUALITY METER(S) USED; CAUSTATION DATE THE THE TOTAL T		SAMPLETIME:	1140.
SAMPLING MICHTOD.	•	DUPLICATE TIME	_H
SAMPLING PERSONNEL:	•	_ BOLLIOATE HIVE	•

JOB NO. 21-1-22242-11.2

TIME COMPLETED: 1200

. WELL CASING VOLUMES

Gal/ft 1-1/4"=0.077 2"=0.16 3"=0.37 4"=0.65 1-1/2"=0.10 2-1/2"=0.24 3-1/2"=0.50 6"=1.46

OWNER.	LOCATION:		· WUX	Monta	60 G1	as Stall	101~		E .0 9	1000
. Merr vo	: <u>WW 76</u>	- <u>22</u> sam			SIN Ecord	ON ĐẠT YĐI	RNN H	OF DUE	PLICATE NO: _	
WEATHE	R:- <u>-</u>	Pain	<u>; [o</u>	w to	<u> </u>	-	• • • • • • • • • • • • • • • • • • • •	MS	/MSD? Yes	
WELLS	TE CONDITION (IMP is typical	IS / MP DEFINI Iy the north PVC	ПОЙ: : піт)		1700	-	•		,	
		•		Ş	ampling !	DATA		*		
TIMESTA	KTED;	12	02		······································	LNAP	L THICKNESS	ß		Samp
PID HEA	SPACE:		ALC	•	_ppm	DNAP	LTHICKNESS	3:		Samp
4		BELOWGROU	IND SURFAC	<u> 0.35</u>	, <u>}</u> , f£,		•	SAMPLE CO	INTAINERS	
TOTAL D	EPTH OF WEL	LBELOWMP:	25	2.98	tt.	· Numi		Size ,	Type .	Pı
DTWBEL	OW.MP:	\ r	1107		#L	<u> </u>				
WATER C	OLUMN IN WE	u:	11.3	<u>\</u>	fl. ·		 . •		<u></u>	-
CASING I	HAMETER:		2		_in.	-				-
GALLONS	PERFOOTI_		<u>:0:16</u>				_ ;-	·		
GALLONS	in well:	1.8		(x3=5	<u>~43</u>) .	-				
TIMEPUR	GING STARTE	D:	205:		, 		_ =		<u> </u>	•
<u> </u>				* ************************************	P PARTARIN	STEDE				
	<u> </u>	020		-4	D PARAM			1 7.0		1
GALLONS REMOVE	TEMP.	(mV)	рH	(µmhos / cm)	D.O. (mg / L)	TURBIDITY (NTU)	SALINITÝ (%)	TDS (g/L)	COLOR	TIME
Initial	11.5	155,5	7.06	711	1.70	746	· (·	\rightarrow	Clear	(508
0.25	1/2	1443	7.06	719	1.42	2,54		- 	clear	1717
0.50	16.9	121.7	7.07	1260	1,70	0.18	4)		clear.	12/5
1.0	17.0	45.0	7.11	739	0,64	2.34		<u> </u>	Clear	1221
1,25	1617	000.	7.13	435	0:43	126		. (clear	122
210	16.7	-34,3	7.13	765	0,20	.2:07		/	clear	1242
2.2	16.6	41.7	7113	767	0.10	3,30	-		CLEAN	1245
After Sampling	16.6	-43,3	7.13	767	UIL [3170		• ()	N. N. 182 ATM BUT	
			Par	1/21	Mil	• •				
				113	SWELL	•		•		
EVACUATION		pilcable):							•	
EVACUATION			1.	Drun			illa.			
EVACUATION PUMP INTAK PURGE WATE	R DISPOSITION	ON (e.g.,drum#	<i>J</i>) \		D 1 1387	LELECTION OF THE SECTION OF THE SECT		· · · · · · · · · · · · · · · · · · ·	
EVACUATION PUMP INTAK PURGE WATE VATER QUAL	R DISPOSITION	n, odor):					Buch	$a \cdot a$	19/20 1	DOGA
EVACUATION PUMP INTAK PURGE WATE VATER QUAL	R DISPOSITION		ATION DATI	E/TIME:	1/51	Pyo	Qualy	J.	. 176	
EVACUATION PUMP INTAK PURGE WATE VATER QUAL	ER DISPOSITION TY (e.g., sheer TY METER(S)	n, odor):	ATION DATI	=/TIME: W (-16).	1/51		Qualy	SAMPLE	. 176	<u> </u>

	PANAGUST VAN ENAI	RINKLINGHOS AKTHERHOH		SH KHHAH	riiao F <i>i</i>		IGE	OF
	OWNER/LOCATION: _	. FOYNG	* Montle	Na Czas	Stahon	DA	TE: <u>· 8/9</u>	123
	WELL NO: MW-9	-11 sampleno	: MW-9-22: 0	Solfoc S	tag no: <u>RN</u>	1409 .DL	PLICATE NO: _	Managari (
	WEATHER:	clou	dy, 705	-		M8	/MSD? Yes	
	WELL SITE CONDITION (MP is lypical	NS / MP DEFINITION: Ny the north PVG n'm)	VTO) Card	•	•	-	
.			,SA	IMPLING DAT	'A	-		
	TIME STARTED:	1315.	•		LNAPL THICK	VES6:		Semp
. •	PID HEAD SPACE:	NIA		ppm	DNAPL THICK	NESS:	<u></u>	Samp
	MP DISTANCE ABOVE	, BELOW GROUND SUI	RFACE:	ft.	-			
.	TOTAL DEPTH OF WEL	LBELOWMP: 2	5115		· Number	SAMPLE C	ONTAINERS Type .	P
	DTWBELOW.MP:	14.8		t.	*			-
1	WATER COLUMN IN WE	LL: 10.	B	_批				<u> </u>
i	CASING DIAMETER:	0.		in.				
	GALLONS PER FOOT)	• • • 4		-···· .				
•	GALLONS IN WELL:	1.65.	14324,	9)		,		
2	TIME PURGING STARTE	1211) '				,
	IIME PURGING SIARIEI	· ·		 .	***************************************	2		
			FIELD	PARAMETER	RS .			•
Date: 02-10-2011	GALLONS TEMP.	TORY.	COND.	D.O. TU	RBIDITY SALINI	TÝ TOŚ	1	
ğ	REMOVED (C°)	(mV) pri	(frmhos (cm)	(mg/L)	(%) (UTN)	(g/L)	COLOR	TIME
	Initial (p. 2		5 551		7,82		Clear	13/
<u>"</u> . -	0.2 15.6.	99.0 7.0			151 .	}. 	clear	132
Ban for s	0.4 15.5	99.3 6.8			50 -/	1	year.	1328
	0.6.15.7	97.7 6.8			.89 /		clear	1331
	1.0. 15.7	97:11 618			32 /	1. 7:	cliar	33
11						5	•	
		,	, .)	1/_	<u> </u>	
				-				•
Afte	er Sampling		<u> </u>	, \	<u></u>			
EVA	ACUATION METHOD:	: P	eri pump	•	•			•
PUN	NP INTAKE DEPTH (ifapp	olicable):	Mid SC	ve en		•	• •	-
PUR	GE WATER DISPOSITIO	N (e.g., drum#):	Drow	$\theta \setminus A$	SHE.		···	
WAT	ER QUALITY (e.g., sheen		No	odor. o	r street	Arem's		
MATI	ER QUALITY METER(S)	•	DATE/TIME	YSI	Pro Qu	veryo i	8/9/23	2 070
CANA	PLING METHOD:	· (A)		0W:		SAMPLE	100011	5
	•	. 1	NVH .				TE"TIME":	
OMINIP	LING PÉRSONNEL:		1 1 1		•		TE HINTE	•
, 	RKS (e.g., recovery rate):	•		•				

JOB NO. 21-1-2224/2-112

· WELL CASING VOLUMES

TIME COMPLETED:

Gal/ft 1-1/4"=0.077 2"=0.16 3"=0.37 4"=0.65 1-1/2"=0.10 2-1/2"=0.24 3-1/2"=0.50 6"=1.46

DTW BELOW MP: TT-TT IT. TT. TT. TT. TT. TT. TT. TT. TT. T	ft.	•
TIME STARTED: 10 16 LNAPL THICKNESS: PID HEAD SPACE: ppm DNAPL THICKNESS: DNAPL THICKNESS: MP DISTANCE ABOVE / BELOW GROUND SURFACE: 0.2 ft. SAMPLE CONT. TOTAL DEPTH OF WELL BELOW MP: 25.0 ft. Number Size DTW BELOW MP: 17.46 ft. 2 0.55 L	TAINERS Type VOA	HUDZ
PID HEAD SPACE:	TAINERS Type VOA	Pres.
MP DISTANCE ABOVE / BELOW GROUND SURFACE:	TAINERS Type VOA ANALI	Pres. 1461 1461 1402
TOTAL DEPTH OF WELL BELOW MP: 25.0 ft. Number Size DTW BELOW MP: 17.46 ft. 5 40.55 L WATER COLUMN IN WELL: 7.54 ft. 1. 0.35 L CASING DIAMETER: 2 in. 6 GALLONS PER FOOT: 5 .0 C TIME PURGING STARTED: FIELD PARAMETERS FIELD PARAMETERS FIELD PARAMETERS GALLONS TEMP. EN OND. (mg/L) TURBIDITY SALINITY TDS (g/L) (mt/v) (%) (g/L)	Type VOA Annyl HOFF	HV03
TOTAL DEPTH OF WELL BELOW MP:	Type VOA Annyl HOFF	14CT
DTW BELOW MP:	MARI 1404E	1707 1407
WATER COLUMN IN WELL: CASING DIAMETER: CASING DIAMETER: In. GALLONS PER FOOT: GALLONS IN WELL: TIME PURGING STARTED: FIELD PARAMETERS FIELD PARAMETERS GALLONS TEMP. (C°) (my/0) PH (my/0) (mg/L) TDS (mg/L) (%) (g/L)	14,06E	Mov62
CASING DIAMETER:		
GALLONS IN WELL: TIME PURGING STARTED: FIELD PARAMETERS GALLONS TEMP. (C°) (my/old ph (mg/L) TURBIDITY (NTU) (%) (g/L)		
GALLONS IN WELL: TIME PURGING STARTED: FIELD PARAMETERS GALLONS TEMP. (C°) FH COND. (µmhos/cm) (mg/L) TDS (g/L)		
FIELD PARAMETERS GALLONS TEMP. (C°) PH (mylor) D.O. (mg/L) TURBIDITY (NTU) (%) (g/L)		
FIELD PARAMETERS GALLONS TEMP. (C°) (mV)000 pH (mmhos/cm) D.O. (mg/L) TURBIDITY (NTU) (%) (g/L)		
GALLONS TEMP. Eb/OR pH COND. (mg/L) TURBIDITY SALINITY TDS (g/L) (mg/L) (%) (g/L)		
GALLONS TEMP. (μmhos/cm) (mg/L) (NTU) (%) (g/L)		
	COLOR	TIME
Initial 17.0 -107.4 7.48 66 0.78 6.1	Clear	1030
0.8 17.2 -136.8 7.45 885 0.30 12.0	11.	1033
1.1 17.2 -159.0 7.35 893 0.19 11.8 -	10	1036
1.4 17 -1687 4.20 879 0.00 18.00	1	1037
17 171 -166.4 7.19 877 0.23 16.45	11	10 42
7.0 17.0 -169.9 7.18 845 0.22 16.02	1 1	1048
After Sampling EVACUATION METHOD: PUMP INTAKE DEPTH (if applicable): PURGE WATER DISPOSITION (e.g., drum#): WATER QUALITY (e.g., sheen, odor): Obout See Jana Ko	1	10.18
After Sampling	-	
EVACUATION METHOD: Paristaltic		
PUMP INTAKE DEPTH (if applicable):		

TIME COMPLETED: W50

1200

8124

SAMPLE TIME: 1050

DUPLICATE "TIME": _

WATER QUALITY METER(S) USED; CALIBRATION DATE / TIME:

REMARKS (e.g., recovery rate): 14 10 CNI WAN

SAMPLING METHOD:

SAMPLING PERSONNEL:

Professional

SHANNON & WILSON, INC.
THE PROPERTY OF THE PROPERTY O

WATER SAMPLING LOG

JOB NO. 21-1- 22242
PAGE _____ OF ____

OWNER / LOC	ATION:	Nontlake	Gus :	Station					8/25/18	gapha
WELL NO: MW									CATE NO:	
WEATHER:	000	inst						_ MS/N	1SD? Yes ☐	No 💆
WELL SITE CO	NDITIONS /	MP DEFINITION	N:	Sev'				-		
(IVIF	is typically ti	te norari vomi	·/							
	3 3 3			SAN	IPLING DA					
TIME STARTE							HICKNESS: _			Sample
PID HEAD SPA						DNAPL	THICKNESS: _		ft.	Sample 🗌
MP DISTANCE							SA	MPLE CON	TAINERS	
TOTAL DEPTH	H OF WELL E	BELOW MP:	24.5		_ ft.	Number	Si	ize	Туре	Pres.
DTW BELOW I		. ,					- <u>0</u> ·2	Manney.	Ambed	HCX
WATER COLU	MN IN WELL	9.36			_ ft.	I.u.				
WATER COLU										
).16								
GALLONS IN	WELL: \\	5								
TIME PURGIN	IG STARTED	0925								
				FIELI) PARAME	TERS				
GALLONS REMOVED	TEMP. (C°)	EK ORT	рН	COND. (µmhos / cm)	D.O. (mg / L)	TURBIDITY (NTU)	SALINITY (%)	TDS (g/L)	COLOR	TIME
Initial	16.3	-99.7	6.76	550	0.43	16.34*		~~~	Cleo.i	0930
0.5	16.3	4.501-	6.74	548	17.33	30.5 +	-	*poli**	\(\(\)	3933
8.0	16.3	-106.6	6.73	546	0.25	39,0	Nov	Kina-	1/	0936
\	16.3	-105.4	6.72	544	0.23	36.1		Sage	1 11	0345
1,4	16.4	-98.5	6.72	543	0.27	32.5		_	"	0945
0,5	16.3	-98.9	6.71	5-43	0.27	32.1	_)	U	2848
	(0:-	1 0.1								
After Sampling					<u> </u>					
EVACUATION	N METHOD:	Price	9000							
PUMP INTAK		· ·	· '							
		ITION (e.g., dru	m #): \(\int \sqrt{1} \) 1	May						
		neen, odor):	V)= "	50, 0'	Sharn					
		R(S) USED; CA	LIBRATION F	DATE / TIME:	81	455	Pau Seri	es	4518	700
SAMPLING N		^	· Low	er without filtilizer					IPLE TIME:	950
SAMPLING F		: TXL							PLICATE "TIME":	
<i>.</i>		rate): Turk	~ d	Gertech	Pritak	le Moto	r f			
E NEIWARNO (E	.g., recovery	1410)	1	*	YKT		12 07 0	ratio_		

WELL CASING VOLUMES

Gal / ft 1-1/4" = 0.077 2" = 0.16 3" = 0.37 4" = 0.65 1-1/2" = 0.10 2-1/2" = 0.24 3-1/2" = 0.50 6" = 1.46

TIME COMPLETED:

Attachment 2

Contents:

Laboratory Report and Chain-of-Custody Form (51 Sheets)

July 14, 2023

Joseph Sawdey Shannon & Wilson, Inc. 400 N 34th Street, Suite 100 Seattle, WA 98103

Re: Analytical Data for Project 21-1-22242-112 Laboratory Reference No. 2307-021

Dear Joseph:

Enclosed are the analytical results and associated quality control data for samples submitted on July 6, 2023.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: July 14, 2023 Samples Submitted: July 6, 2023 Laboratory Reference: 2307-021

Project: 21-1-22242-112

Case Narrative

Samples were collected on July 5, 2023 and received by the laboratory on July 6, 2023. They were maintained at the laboratory at a temperature of 2°C to 6°C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

GASOLINE RANGE ORGANICS NWTPH-Gx

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	Trip Blanks					
Laboratory ID:	07-021-01					
Gasoline	ND	100	NWTPH-Gx	7-10-23	7-10-23	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	95	65-122				
Client ID:	MW-7-22:07052023					
Laboratory ID:	07-021-02					
Gasoline	ND	100	NWTPH-Gx	7-10-23	7-10-23	
Surrogate:	Percent Recovery	Control Limits				·
Fluorobenzene	88	65-122				

GASOLINE RANGE ORGANICS NWTPH-Gx QUALITY CONTROL

Matrix: Water
Units: ug/L (ppb)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
METHOD BLANK				•	•	
Laboratory ID:	MB0710W2					
Gasoline	ND	100	NWTPH-Gx	7-10-23	7-10-23	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	86	65-122				

Analyte	Res	sult	Spike	Level	Source Result	Percent Recovery	Recovery Limits	RPD	RPD Limit	Flags
DUPLICATE										
Laboratory ID:	07-02	21-02								
	ORIG	DUP								
Gasoline	ND	ND	NA	NA		NA	NA	NA	30	
Surrogate:										

Fluorobenzene 88 88 65-122

VOLATILE ORGANICS EPA 8260D

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	Trip Blanks					
Laboratory ID:	07-021-01					
Benzene	ND	0.20	EPA 8260D	7-7-23	7-7-23	
Toluene	ND	1.0	EPA 8260D	7-7-23	7-7-23	
Ethylbenzene	ND	0.20	EPA 8260D	7-7-23	7-7-23	
m,p-Xylene	ND	0.40	EPA 8260D	7-7-23	7-7-23	
o-Xylene	ND	0.20	EPA 8260D	7-7-23	7-7-23	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	102	75-127				
Toluene-d8	98	80-127				
4-Bromofluorobenzene	103	78-125				
Client ID:	MW-7-22:07052023					
Laboratory ID:	07-021-02					
Benzene	ND	0.20	EPA 8260D	7-7-23	7-7-23	
Toluene	ND	1.0	EPA 8260D	7-7-23	7-7-23	
Ethylbenzene	ND	0.20	EPA 8260D	7-7-23	7-7-23	
m,p-Xylene	ND	0.40	EPA 8260D	7-7-23	7-7-23	
o-Xylene	ND	0.20	EPA 8260D	7-7-23	7-7-23	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	102	75-127				
Toluene-d8	97	80-127				
4-Bromofluorobenzene	102	78-125				

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL

Matrix: Water Units: ug/L

· ·				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						_
Laboratory ID:	MB0707W1					
Benzene	ND	0.20	EPA 8260D	7-7-23	7-7-23	
Toluene	ND	1.0	EPA 8260D	7-7-23	7-7-23	
Ethylbenzene	ND	0.20	EPA 8260D	7-7-23	7-7-23	
m,p-Xylene	ND	0.40	EPA 8260D	7-7-23	7-7-23	
o-Xylene	ND	0.20	EPA 8260D	7-7-23	7-7-23	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	100	75-127				
Toluene-d8	98	80-127				
4-Bromofluorobenzene	103	78-125				

					Pe	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Red	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB070	07W1								
	SB	SBD	SB	SBD	SB	SBD				
Benzene	9.32	9.40	10.0	10.0	93	94	81-124	1	16	
Toluene	9.06	9.16	10.0	10.0	91	92	83-118	1	18	
Ethylbenzene	10.1	10.2	10.0	10.0	101	102	80-124	1	15	
m,p-Xylene	19.8	19.9	20.0	20.0	99	100	80-124	1	15	
o-Xylene	10.1	10.0	10.0	10.0	101	100	80-124	1	15	
Surrogate:										
Dibromofluoromethane					101	102	75-127			
Toluene-d8					100	99	80-127			
4-Bromofluorobenzene					107	105	78-125			

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Water Units: mg/L (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	MW-7-22:07052023	. 42	Motriou	Tioparoa	Analyzou	ı iugo
Laboratory ID:	07-021-02					
Diesel Range Organics	ND	0.21	NWTPH-Dx	7-10-23	7-10-23	
Lube Oil Range Organics	ND	0.21	NWTPH-Dx	7-10-23	7-10-23	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	86	50-150				

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0710W1					
Diesel Range Organics	ND	0.16	NWTPH-Dx	7-10-23	7-10-23	
Lube Oil Range Organics	ND	0.16	NWTPH-Dx	7-10-23	7-10-23	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	91	50-150				

					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recover	y Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	SB07	10W1								
	ORIG	DUP								
Diesel Fuel #2	0.397	0.367	NA	NA		NA	NA	8	40	
Surrogate:										
o-Terphenyl						93 83	3 50-150			

TOTAL ARSENIC EPA 200.8

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-7-22:07052023					
Laboratory ID:	07-021-02					
Arsenic	ND	3.3	EPA 200.8	7-6-23	7-6-23	

Date of Report: July 14, 2023 Samples Submitted: July 6, 2023 Laboratory Reference: 2307-021 Project: 21-1-22242-112

TOTAL ARSENIC EPA 200.8 QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0706WM1					
Arsenic	ND	3.3	EPA 200.8	7-6-23	7-6-23	

					Source	Pei	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	06-19	91-05									
	ORIG	DUP									
Arsenic	ND	ND	NA	NA		1	NA	NA	NA	20	
MATRIX SPIKES											
Laboratory ID:	06-19	91-05									
	MS	MSD	MS	MSD		MS	MSD				
Arsenic	121	119	111	111	ND	109	107	75-125	2	20	

Date of Report: July 14, 2023 Samples Submitted: July 6, 2023 Laboratory Reference: 2307-021 Project: 21-1-22242-112

DISSOLVED ARSENIC EPA 200.8

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-7-22:07052023					
Laboratory ID:	07-021-02					
Arsenic	ND	3.0	EPA 200.8	7-6-23	7-6-23	

Date of Report: July 14, 2023 Samples Submitted: July 6, 2023 Laboratory Reference: 2307-021 Project: 21-1-22242-112

DISSOLVED ARSENIC EPA 200.8 QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0706F1					
Arsenic	ND	3.0	EPA 200.8	7-6-23	7-6-23	

					Source	Pe	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	06-34	48-01									
	ORIG	DUP									
Arsenic	ND	ND	NA	NA		ı	NA	NA	NA	20	
MATRIX SPIKES											
Laboratory ID:	06-34	48-01									
	MS	MSD	MS	MSD		MS	MSD				
Arsenic	81.0	76.8	80.0	80.0	ND	101	96	75-125	5	20	

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1 Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- X2 Sample extract treated with a silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.
- Y1 Negative effects of the matrix from this sample on the instrument caused values for this analyte in the bracketing continuing calibration verification standard (CCVs) to be outside of 20% acceptance criteria. Because of this, quantitation limits and sample concentrations should be considered estimates.

Z -

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

Reviewed/Date	Received	Relinquished	Received	Relinquished A. Dada A.	Received	Relinquished	Signature /) _ A				222250to:001-MM C		1 Trip blanks	Lab ID Sample Identification		Toject Malager:	Former Mortlake Gas Station	21-1-21242-112	Project Number:	Company: / Company: /	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	Environmental Inc.
Reviewed/Date		Į Į	- OR	n they	2 ANDRA	V241	Company				1 + 9	1 1130 1 9	7/5 0800 Water 3	Date Time E Sampled Sampled Matrix	-3-17/07		X Standard (7 Days)	2 Days 3 Days	Same Day 1 Day	(Check One)	Turnaround Request (in working days)	Chain of Custody
			76/23 CH	11/2/23/21/	7/6/8 1/39	7/5, 14:05	Date Time				×	×	×	NWTP NWTP NWTP Volatile	H-Gx/E H-Gx H-Dx (sees 8260 enated	SG Cle Volatile	an-up as 8260	*	Q		Laboratory Number:	ustody
Chromatograms with final report Electronic Data Deliverables (EDDs)	Data Package: Standard Level III Level IV	** Did to tilter bisselver As Sarah	A Change tritish analyses		Roma PL Q Ly Jot. Wa. for	Invoice WSDOT ATTNO Robyn Boyd:	Comments/Special Instructions				× ×	×		Organo	ow-leves 3270/S 8082 ochlorii ophosp mated A GCRA N MTCA N Metals obil and	PAHs IM (low ne Pest chorus Acid He Metals	relevel) Pesticides 8 Pesticides rbicides	es 827 8151			07-021	Pageof

Chain of Custody

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

August 21, 2023

Joseph Sawdey Shannon & Wilson, Inc. 400 N 34th Street, Suite 100 Seattle, WA 98103

Re: Analytical Data for Project 21-1-22242-112

Laboratory Reference No. 2308-127

Dear Joseph:

Enclosed are the analytical results and associated quality control data for samples submitted on August 10, 2023.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Project: 21-1-22242-112

Case Narrative

Samples were collected on August 9, 2023 and received by the laboratory on August 10, 2023. They were maintained at the laboratory at a temperature of 2°C to 6°C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH-Dx Analysis

Please note that the data for sample MW-6-22:08092023 was initially erroneously reported with a detection of Diesel range Hydrocarbons at a concentration of 1.5 ppm and Lube Oil Range Hydrocarbons at 0.84 ppm. We were requested to re-extract the sample to confirm the result as it was unexpected. OnSIte re-extracted the complete set of samples and we were not able to reproduce the result in that sample. After further investigation, it was determined that the initial detection was due to a contaminated piece of glassware used in the concentration step in the analytical process.

Please note that any other QA/QC issues associated with these extractions and analyses will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

Date of Report: August 21, 2023 Samples Submitted: August 10, 2023 Laboratory Reference: 2308-127 Project: 21-1-22242-112

GASOLINE RANGE ORGANICS NWTPH-Gx

3 (11)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	Trip Blanks					
Laboratory ID:	08-127-01					
Gasoline	ND	100	NWTPH-Gx	8-10-23	8-10-23	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	104	65-122				
Client ID:	MW-8-22:08092023					
Laboratory ID:	08-127-02					
Gasoline	ND	100	NWTPH-Gx	8-10-23	8-10-23	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	101	65-122				
Client ID:	MW-2-19:08092023					
Laboratory ID:	08-127-03					
Gasoline	ND	100	NWTPH-Gx	8-10-23	8-10-23	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	104	65-122				
Client ID:	MW-6-22:08092023					
Laboratory ID:	08-127-04					
Gasoline	ND	400	NWTPH-Gx	8-10-23	8-10-23	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	105	65-122				
Client ID:	MW-9-22:08092023					
Laboratory ID:	08-127-05					
Gasoline	ND	100	NWTPH-Gx	8-10-23	8-10-23	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	104	65-122				
Client ID:	MW-101:08092023					
Laboratory ID:	08-127-06					
Gasoline	ND	100	NWTPH-Gx	8-10-23	8-10-23	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	107	65-122				

Project: 21-1-22242-112

GASOLINE RANGE ORGANICS NWTPH-Gx QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

Analyte	Result	PQL	Method	Date Prepared	Date Analvzed	Flags
METHOD BLANK						
Laboratory ID:	MB0810W2					
Gasoline	ND	100	NWTPH-Gx	8-10-23	8-10-23	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	103	65-122				

Source Percent Recovery

				Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike Leve	l Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE									
Laboratory ID:	08-12	27-06							
	ORIG	DUP							
Gasoline	ND	ND	NA NA	١	NA	NA	NA	30	
Surrogate:									

Surrogate:

103 65-122 Fluorobenzene 107

Project: 21-1-22242-112

VOLATILE ORGANICS EPA 8260D

Matrix: Water Units: ug/L

-				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	Trip Blanks					
Laboratory ID:	08-127-01					
Benzene	ND	0.20	EPA 8260D	8-11-23	8-11-23	
Toluene	ND	1.0	EPA 8260D	8-11-23	8-11-23	
Ethylbenzene	ND	0.20	EPA 8260D	8-11-23	8-11-23	
m,p-Xylene	ND	0.40	EPA 8260D	8-11-23	8-11-23	
o-Xylene	ND	0.20	EPA 8260D	8-11-23	8-11-23	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	96	75-127				
Toluene-d8	100	80-127				
4-Bromofluorobenzene	93	78-125				
Client ID:	MW-8-22:08092023					
Laboratory ID:	08-127-02					
Benzene	ND	0.20	EPA 8260D	8-11-23	8-11-23	
Toluene	ND	1.0	EPA 8260D	8-11-23	8-11-23	
Ethylbenzene	ND	0.20	EPA 8260D	8-11-23	8-11-23	
m,p-Xylene	ND	0.40	EPA 8260D	8-11-23	8-11-23	
o-Xylene	ND	0.20	EPA 8260D	8-11-23	8-11-23	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	96	75-127				
Toluene-d8	100	80-127				
4-Bromofluorobenzene	95	78-125				
Client ID:	MW-2-19:08092023					
Laboratory ID:	08-127-03					
Benzene	ND	0.20	EPA 8260D	8-11-23	8-11-23	
Toluene	ND	1.0	EPA 8260D	8-11-23	8-11-23	
Ethylbenzene	ND	0.20	EPA 8260D	8-11-23	8-11-23	
m,p-Xylene	ND	0.40	EPA 8260D	8-11-23	8-11-23	
o-Xylene	ND	0.20	EPA 8260D	8-11-23	8-11-23	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	98	75-127				
Toluene-d8	101	80-127				
4-Bromofluorobenzene	93	78-125				

Date of Report: August 21, 2023 Samples Submitted: August 10, 2023 Laboratory Reference: 2308-127 Project: 21-1-22242-112

VOLATILE ORGANICS EPA 8260D

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-6-22:08092023					
Laboratory ID:	08-127-04					
Benzene	ND	0.20	EPA 8260D	8-11-23	8-11-23	
Toluene	ND	1.0	EPA 8260D	8-11-23	8-11-23	
Ethylbenzene	ND	0.20	EPA 8260D	8-11-23	8-11-23	
m,p-Xylene	ND	0.40	EPA 8260D	8-11-23	8-11-23	
o-Xylene	ND	0.20	EPA 8260D	8-11-23	8-11-23	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	96	75-127				
Toluene-d8	101	80-127				
4-Bromofluorobenzene	93	78-125				
Client ID:	MW-9-22:08092023					
Laboratory ID:	08-127-05					
Benzene	ND	0.20	EPA 8260D	8-11-23	8-11-23	
Toluene	ND	1.0	EPA 8260D	8-11-23	8-11-23	
Ethylbenzene	ND	0.20	EPA 8260D	8-11-23	8-11-23	
m,p-Xylene	ND	0.40	EPA 8260D	8-11-23	8-11-23	
o-Xylene	ND	0.20	EPA 8260D	8-11-23	8-11-23	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	96	75-127				
Toluene-d8	103	80-127				
4-Bromofluorobenzene	93	78-125				
Client ID:	MW-101:08092023					
Laboratory ID:	08-127-06					
Benzene	ND	0.20	EPA 8260D	8-11-23	8-11-23	
Toluene	ND	1.0	EPA 8260D	8-11-23	8-11-23	
Ethylbenzene	ND	0.20	EPA 8260D	8-11-23	8-11-23	
m,p-Xylene	ND	0.40	EPA 8260D	8-11-23	8-11-23	
o-Xylene	ND	0.20	EPA 8260D	8-11-23	8-11-23	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	98	75-127				
Toluene-d8	100	80-127				
4.5		70 405				

4-Bromofluorobenzene

78-125

93

Project: 21-1-22242-112

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0811W1					
Benzene	ND	0.20	EPA 8260D	8-11-23	8-11-23	
Toluene	ND	1.0	EPA 8260D	8-11-23	8-11-23	
Ethylbenzene	ND	0.20	EPA 8260D	8-11-23	8-11-23	
m,p-Xylene	ND	0.40	EPA 8260D	8-11-23	8-11-23	
o-Xylene	ND	0.20	EPA 8260D	8-11-23	8-11-23	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	96	75-127				
Toluene-d8	99	80-127				
4-Bromofluorobenzene	94	78-125				

					Per	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Rec	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB08	11W1								
	SB	SBD	SB	SBD	SB	SBD				
Benzene	10.7	10.3	10.0	10.0	107	103	80-121	4	16	
Toluene	11.1	10.6	10.0	10.0	111	106	80-120	5	18	
Ethylbenzene	10.4	9.87	10.0	10.0	104	99	80-125	5	18	
m,p-Xylene	20.7	20.1	20.0	20.0	104	101	80-127	3	18	
o-Xylene	10.2	9.76	10.0	10.0	102	98	80-126	4	18	
Surrogate:										
Dibromofluoromethane					99	98	75-127			
Toluene-d8					100	100	80-127			
4-Bromofluorobenzene					99	99	78-125			

Project: 21-1-22242-112

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-8-22:08092023					_
Laboratory ID:	08-127-02					
Diesel Range Organics	ND	0.11	NWTPH-Dx	8-18-23	8-18-23	_
Lube Oil Range Organics	0.26	0.22	NWTPH-Dx	8-18-23	8-18-23	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	83	50-150				
Oli e i ID	MM 0 40 0000000					
Client ID:	MW-2-19:08092023					
Laboratory ID:	08-127-03	2.11	AUA/TOLL D	0.40.00	0.40.00	
Diesel Range Organics	ND	0.11	NWTPH-Dx	8-18-23	8-18-23	
Lube Oil Range Organics	ND	0.22	NWTPH-Dx	8-18-23	8-18-23	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	92	50-150				
Client ID:	MW-6-22:08092023					
Laboratory ID:	08-127-04					
Diesel Range Organics	ND	0.10	NWTPH-Dx	8-18-23	8-18-23	
Lube Oil Range Organics	ND	0.10	NWTPH-Dx	8-18-23	8-18-23	
Surrogate:	Percent Recovery	Control Limits	NWITTEDA	0-10-20	0-10-20	
o-Terphenyl	96	50-150				
o respicitys	30	00 100				
Client ID:	MW-9-22:08092023					
Laboratory ID:	08-127-05					
Diesel Range Organics	ND	0.11	NWTPH-Dx	8-18-23	8-18-23	
Lube Oil Range Organics	0.31	0.21	NWTPH-Dx	8-18-23	8-18-23	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	92	50-150				
O!! ID	IIII 101 00000					
Client ID:	MW-101:08092023					
Laboratory ID:	08-127-06					
Diesel Range Organics	ND	0.11	NWTPH-Dx	8-18-23	8-18-23	
Lube Oil Range Organics	ND -	0.23	NWTPH-Dx	8-18-23	8-18-23	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	101	50-150				

Project: 21-1-22242-112

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						_
Laboratory ID:	MB0818W1					
Diesel Range Organics	ND	0.080	NWTPH-Dx	8-18-23	8-18-23	
Lube Oil Range Organics	ND	0.16	NWTPH-Dx	8-18-23	8-18-23	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	93	50-150				

					Source	Percent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	SB08	18W1								
	ORIG	DUP								
Diesel Fuel #2	0.484	0.438	NA	NA		NA	NA	10	40	
Surrogate:										
o-Ternhenyl						91 94	50-150			

o- I erphenyl

Date of Report: August 21, 2023 Samples Submitted: August 10, 2023 Laboratory Reference: 2308-127 Project: 21-1-22242-112

> TOTAL ARSENIC EPA 200.8

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-8-22:08092023					
Laboratory ID:	08-127-02					
Arsenic	ND	3.3	EPA 200.8	8-10-23	8-15-23	
Client ID:	MW-2-19:08092023					
Laboratory ID:	08-127-03					
Arsenic	ND	3.3	EPA 200.8	8-10-23	8-15-23	
Client ID:	MW-6-22:08092023					
Laboratory ID:	08-127-04					
Arsenic	4.6	3.3	EPA 200.8	8-10-23	8-15-23	
Client ID:	MW-9-22:08092023					
Laboratory ID:	08-127-05					
Arsenic	ND	3.3	EPA 200.8	8-10-23	8-15-23	
Client ID:	MW-101:08092023					
Laboratory ID:	08-127-06					
Arsenic	ND	3.3	EPA 200.8	8-10-23	8-15-23	

Project: 21-1-22242-112

TOTAL ARSENIC EPA 200.8 QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0815WM1					
Arsenic	ND	3.3	EPA 200.8	8-15-23	8-15-23	

					Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	07-22	24-04									
	ORIG	DUP									
Arsenic	ND	ND	NA	NA		1	NΑ	NA	NA	20	
MATRIX SPIKES											
Laboratory ID:	07-22	24-04									
	MS	MSD	MS	MSD		MS	MSD				
Arsenic	116	121	111	111	ND	105	109	75-125	4	20	

Date of Report: August 21, 2023 Samples Submitted: August 10, 2023 Laboratory Reference: 2308-127 Project: 21-1-22242-112

DISSOLVED ARSENIC EPA 200.8

3 (11)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-8-22:08092023					
Laboratory ID:	08-127-02					
Arsenic	ND	3.0	EPA 200.8	8-10-23	8-15-23	
Client ID:	MIN 2 40.00002022					
Client ID:	MW-2-19:08092023					
Laboratory ID:	08-127-03	2.0	EDA 000 0	0.40.00	0.45.00	
Arsenic	ND	3.0	EPA 200.8	8-10-23	8-15-23	
Client ID:	MW-6-22:08092023					
Laboratory ID:	08-127-04					
Arsenic	ND	3.0	EPA 200.8	8-10-23	8-15-23	
Client ID:	MW-9-22:08092023					
Laboratory ID:	08-127-05					
Arsenic	ND	3.0	EPA 200.8	8-10-23	8-15-23	
Client ID:	MW-101:08092023					
Laboratory ID:	08-127-06					
Arsenic	ND	3.0	EPA 200.8	8-10-23	8-15-23	
			_:::==::•			

Project: 21-1-22242-112

DISSOLVED ARSENIC EPA 200.8 QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0810F1					
Arsenic	ND	3.0	EPA 200.8	8-10-23	8-15-23	

					Source	Pei	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	08-12	27-02									
	ORIG	DUP									
Arsenic	ND	ND	NA	NA		1	NA	NA	NA	20	
MATRIX SPIKES											
Laboratory ID:	08-12	27-02									
	MS	MSD	MS	MSD		MS	MSD				
Arsenic	92.4	91.0	80.0	80.0	ND	116	114	75-125	2	20	

Project: 21-1-22242-112

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-8-22:08092023					
Laboratory ID:	08-127-02					
Diesel Range Organics	ND	0.22	NWTPH-Dx	8-18-23	8-18-23	X2
Lube Oil Range Organics	ND	0.22	NWTPH-Dx	8-18-23	8-18-23	X2
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	60	50-150				
Client ID:	MW-9-22:08092023					
Laboratory ID:	08-127-05					
Diesel Range Organics	ND	0.21	NWTPH-Dx	8-18-23	8-18-23	X2
Lube Oil Range Organics	ND	0.21	NWTPH-Dx	8-18-23	8-18-23	X2
Surrogate:	Percent Recovery	Control Limits			•	
o-Terphenyl	54	50-150				

Project: 21-1-22242-112

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
METHOD BLANK					-	
Laboratory ID:	MB0818W1					
Diesel Range Organics	ND	0.16	NWTPH-Dx	8-18-23	8-18-23	X2
Lube Oil Range Organics	ND	0.16	NWTPH-Dx	8-18-23	8-18-23	X2
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	58	50-150				

					Source	Perc	ent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recov	ery	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	SB08	18W1									
	ORIG	DUP									
Diesel Fuel #2	0.474	0.400	NA	NA		NΑ	١	NA	17	40	X2
Surrogate:											_
o-Terphenyl						89	85	50-150			

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical .
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1 Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- X2 Sample extract treated with a silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.
- Y1 Negative effects of the matrix from this sample on the instrument caused values for this analyte in the bracketing continuing calibration verification standard (CCVs) to be outside of 20% acceptance criteria. Because of this, quantitation limits and sample concentrations should be considered estimates.

Z -

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

OnSite Environmental Inc.

Chain of Custody

1		
Page	of	

	Analytical Labo	oratory Testing Services oth Street • Redmond, WA 98052		naround Req working da			La	abo	rato	ry N	lumk	er:	08	3 -	12	27										
Compar	nv.	883-3881 • www.onsite-env.com		(Check One)								T														
	Shannon	4 Wilson	☐ Same	Day [1 Day											Organophosphorus Pesticides 8270/SIM						2				
Project	Number: 2224	2-112	2 Day	/s	1 Day Days			7092							081	es 827	8151					Arsenic	100.B			
Project	Name:	Hake Gas Station	Stand	dard (7 Days)				1 8	l	dn-	3260	(Vino		(land	des 8	sticide	cides				664	£	3			
Project	Manager:	THE CAS STATE		1		ainers		x (802		Clean	atiles 8	Vaters	AHS)	low-le	Pestici	us Pe	Herbi	SIS	als		ase) 1	du 85.				
Sample	Joseph dbv:	Sawdey	Z Bu	8/16 (other)	23	Cont	용	/BTE	Ų	(89	NoV be	011 (V	es 82	N C IM	orine F	oudso	d Acid	A Meta	A Met	sls	nd gre	4				ø)
	MKH			(other)		Number of Containers	NWTPH-HCID	NWTPH-Gx/BTEX (8021□ 8260万)	NWTPH-Gx	NWTPH-Dx (SG Clean-up [])	Halogenated Volatiles 8260	EDB EPA 8011 (Waters Only)	ivolatil	PAHS 8270/ PCBs 8082	Organochlorine Pesticides 8081	nophc	Chlorinated Acid Herbicides	Total RCRA Metals	Total MTCA Metals	TCLP Metals	HEM (oil and grease) 1664					% Moisture
Lab ID	Sai	mple Identification	Date Sampled	Time Sampled	Matrix	-	TWN	TWN	TWN	TWN feloy	Halo	EDB	Semivolatiles 8270/SIM (with low-level PAHs)	PCB	Orga	Orga	Chlo	Tota	Tota	TCL	HEN	TOTAL				≅ % —
1	Trip	Blanks	8/9/23	0900	Water	3		X																		
2	MW-8-22:	03092023	1	1015		9		X		X												Х				
3	MW-2-19.	.08092013		1140		9		X		Χ												×				
4	MW-6-2	2:08092013		1300		9		X		X												X				
5	MW-9-27	2:08092023		1345		9		X		X												X				
6	MW-101-	9092023	V	1600	V	9		X		X												X				
	\							6.	£" .						_	_										
																										/
										-														4		
V/(V/0.27)		Signature	C	ompany	751433			Date	T.	1	ime		Com	ments	/Specia	_							4 10			
Relino	quished	m ////		Sw	it			81	10/2	3	0801	C	- Lork			ilter										
Recei	ved	Spendy Ald	na	#17	,			8/1	0/2	3	10:	25	o Ho	10	extr	9 1	10 W	ne	AU	rx	20 tel	1ha	1 5	5610	- X)×
Relin	quished	speeky Alph	~	#	17			2//	18/2	3	12	:21		C	mal	451!	5									
Rece	ived	Nichelli Billi)	OSE				8	8/2	3	22	.\														
Relin	quished							8	10/2	3			-													
Rece	ived												-		age: S										CO. 200	
Revie	ewed/Date			Reviewed/D	ate								Chro	matog	rams v	vith fi	nal re	port	Ele	ectron	nic Dat	ta Deli	verabl	es (ED	Ds) [

August 31, 2023

Meg Strong Shannon & Wilson, Inc. 400 N 34th Street, Suite 100 Seattle, WA 98103

Re: Analytical Data for Project 21-1-22242-112 Laboratory Reference No. 2308-300

Dear Meg:

Enclosed are the analytical results and associated quality control data for samples submitted on August 25, 2023.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Project: 21-1-22242-112

Case Narrative

Samples were collected on August 25, 2023 and received by the laboratory on August 25, 2023. They were maintained at the laboratory at a temperature of 2°C to 6°C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Project: 21-1-22242-112

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

,				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-6-22:082523					
Laboratory ID:	08-300-01					
Diesel Range Organics	ND	0.21	NWTPH-Dx	8-30-23	8-31-23	
Lube Oil Range Organics	ND	0.21	NWTPH-Dx	8-30-23	8-31-23	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	100	50-150				

Project: 21-1-22242-112

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
METHOD BLANK				•	-	
Laboratory ID:	MB0830W1					
Diesel Range Organics	ND	0.16	NWTPH-Dx	8-30-23	8-31-23	
Lube Oil Range Organics	ND	0.16	NWTPH-Dx	8-30-23	8-31-23	
Surrogate:	Percent Recovery	Control Limits				_
o-Terphenyl	96	50-150				

					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recover	y Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	SB08	30W1								
	ORIG	DUP								
Diesel Fuel #2	0.396	0.376	NA	NA		NA	NA	5	40	
Surrogate:										
o-Terphenyl						97 98	8 50-150			

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1 Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- X2 Sample extract treated with a silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.
- Y1 Negative effects of the matrix from this sample on the instrument caused values for this analyte in the bracketing continuing calibration verification standard (CCVs) to be outside of 20% acceptance criteria. Because of this, quantitation limits and sample concentrations should be considered estimates.

Z -

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

Chain of Custody

Page ____ of ___

Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	Turnaround Request (in working days)		Lal	borat	ory	Numl	ber:	80	} -	3 (00										
Project Name: Mantlake Gas Station Project Manager: Sampled by: OR Sanken	(Check One) Same Day 1 Day 2 Days 3 Days Standard (7 Days) A Land (7 Days) Date Time Sampled Matrix	Number of Containers	NWTPH-HCID	NWTPH-GX	NWTPH-Dx (SG Clean-up □)	Volatiles 8260 Halogenated Volatiles 8260	EDB EPA 8011 (Waters Only)	Sernivolatiles 8270/SIM (with low-level PAHs) PAHs 8270/SIM (low-level)	PCBs 8082	Organochlorine Pesticides 8081	Organophosphorus Pesticides 8270/SIM	Chlorinated Acid Herbicides 8151	Total RCRA Metals	Total MTCA Metals	TCLP Metals	HEM (oil and grease) 1664					% Moisture
	5/25 0950 HzO	2			X																51
Signature	Company		D	ate		Time		Commen	nts/Sp	ecial I	Instru	action	S								
Relinquished	- SWI.			8/25		1251	0												HOME THO		
Received	about		1	Prs	_	1321															
Relinquished	Colona			X 2	5	151															
Received		X.		120	12:	31	510														
Relinquished				-0																	
Received								Data Pac	ckage	Star	ndar	d 🗆	Lev	el III		Level	IV []			
Reviewed/Date	Reviewed/Date							Chromato	ogram	s with	h fina	l repo	ort 🗌	Elec	ctronic	Data	Deliv	erable	s (EDI	Os)	

September 5, 2023

Meg Strong Shannon & Wilson, Inc. 400 N 34th Street, Suite 100 Seattle, WA 98103

Re: Analytical Data for Project 21-1-22242-112 Laboratory Reference No. 2308-301

Dear Meg:

Enclosed are the analytical results and associated quality control data for samples submitted on August 25, 2023.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Project: 21-1-22242-112

Case Narrative

Samples were collected on August 25, 2023 and received by the laboratory on August 25, 2023. They were maintained at the laboratory at a temperature of 2°C to 6°C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Project: 21-1-22242-112

GASOLINE RANGE ORGANICS NWTPH-Gx

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-3-19:082523					
Laboratory ID:	08-301-01					
Gasoline	10000	500	NWTPH-Gx	8-28-23	8-28-23	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	95	65-122				

Project: 21-1-22242-112

GASOLINE RANGE ORGANICS NWTPH-Gx QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						,
Laboratory ID:	MB0828W2					
Gasoline	ND	100	NWTPH-Gx	8-28-23	8-28-23	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	85	65-122				

Analyte	Res	sult	Spike	Level	Source Result	Percent Recovery	Recovery Limits	RPD	RPD Limit	Flags
DUPLICATE										
Laboratory ID:	08-26	67-02								
	ORIG	DUP								
Gasoline	ND	ND	NA	NA		NA	NA	NA	30	
Surrogate: Fluorobenzene						92 86	65-122			

VOLATILE ORGANICS EPA 8260D

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-3-19:082523					
Laboratory ID:	08-301-01					
Benzene	82	4.0	EPA 8260D	8-28-23	8-28-23	
Toluene	ND	20	EPA 8260D	8-28-23	8-28-23	
Ethylbenzene	37	4.0	EPA 8260D	8-28-23	8-28-23	
m,p-Xylene	90	8.0	EPA 8260D	8-28-23	8-28-23	
o-Xylene	ND	4.0	EPA 8260D	8-28-23	8-28-23	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	103	75-127				
Toluene-d8	98	80-127				
4-Bromofluorobenzene	107	78-125				

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0828W1					
Benzene	ND	0.20	EPA 8260D	8-28-23	8-28-23	
Toluene	ND	1.0	EPA 8260D	8-28-23	8-28-23	
Ethylbenzene	ND	0.20	EPA 8260D	8-28-23	8-28-23	
m,p-Xylene	ND	0.40	EPA 8260D	8-28-23	8-28-23	
o-Xylene	ND	0.20	EPA 8260D	8-28-23	8-28-23	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	101	75-127				
Toluene-d8	97	80-127				
4-Bromofluorobenzene	103	78-125				

					Percent		Recovery		RPD	
Analyte	Res	sult	Spike	Spike Level		overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB082	28W1								
	SB	SBD	SB	SBD	SB	SBD				
Benzene	10.3	9.58	10.0	10.0	103	96	80-121	7	16	
Toluene	10.8	9.91	10.0	10.0	108	99	80-120	9	18	
Ethylbenzene	11.0	10.5	10.0	10.0	110	105	80-125	5	18	
m,p-Xylene	21.8	21.0	20.0	20.0	109	105	80-127	4	18	
o-Xylene	11.3	11.0	10.0	10.0	113	110	80-126	3	18	
Surrogate:										
Dibromofluoromethane					95	94	75-127			
Toluene-d8					98	92	80-127			
4-Bromofluorobenzene					108	105	78-125			

Project: 21-1-22242-112

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

5 ,				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-3-19:082523					
Laboratory ID:	08-301-01					
Diesel Range Organics	2.9	0.20	NWTPH-Dx	8-30-23	8-31-23	М
Lube Oil Range Organics	0.32	0.20	NWTPH-Dx	8-30-23	8-31-23	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	96	50-150				

Project: 21-1-22242-112

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Analyte	Result	PQL	Method	Date Prepared	Date Analvzed	Flags
METHOD BLANK						1 10.90
Laboratory ID:	MB0830W1					
Diesel Range Organics	ND	0.16	NWTPH-Dx	8-30-23	8-31-23	
Lube Oil Range Organics	ND	0.16	NWTPH-Dx	8-30-23	8-31-23	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	96	50-150				

Analyte	Po	sult	Sniko	Level	Source Result	Perd		Recovery Limits	RPD	RPD Limit	Flags
	Ne:	Suit	Эріке	Level	Resuit	Necc	very	Lilling	KFD	Lillin	riays
DUPLICATE											
Laboratory ID:	SB08	30W1									
	ORIG	DUP									
Diesel Fuel #2	0.396	0.376	NA	NA		NA		NA	5	40	
Surrogate:											
o-Terphenyl						97	98	50-150			

Project: 21-1-22242-112

TOTAL ARSENIC EPA 200.8

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-3-19:082523					
Laboratory ID:	08-301-01					
Arsenic	24	3.3	EPA 200.8	9-1-23	9-1-23	

> TOTAL ARSENIC EPA 200.8 QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0901WM1					
Arsenic	ND	3.3	EPA 200.8	9-1-23	9-1-23	

					Source	Pe	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	08-03	38-10									
	ORIG	DUP									
Arsenic	ND	ND	NA	NA			NA	NA	NA	20	
MATRIX SPIKES											
Laboratory ID:	08-27	76-10									
	MS	MSD	MS	MSD		MS	MSD				•
Arsenic	108	108	111	111	ND	98	97	75-125	1	20	

DISSOLVED ARSENIC EPA 200.8

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-3-19:082523					
Laboratory ID:	08-301-01					
Arsenic	21	3.0	EPA 200.8	8-25-23	9-1-23	_

DISSOLVED ARSENIC EPA 200.8 QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0825F1					
Arsenic	ND	3.0	EPA 200.8	8-25-23	9-1-23	

					Source	Pe	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	08-27	76-10									
	ORIG	DUP									
Arsenic	ND	ND	NA	NA		1	NA	NA	NA	20	
MATRIX SPIKES											
Laboratory ID:	08-27	76-10									
	MS	MSD	MS	MSD		MS	MSD				
Arsenic	86.8	93.2	80.0	80.0	ND	109	117	75-125	7	20	

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical .
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1 Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- X2 Sample extract treated with a silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.
- Y1 Negative effects of the matrix from this sample on the instrument caused values for this analyte in the bracketing continuing calibration verification standard (CCVs) to be outside of 20% acceptance criteria. Because of this, quantitation limits and sample concentrations should be considered estimates.

Z -

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

OnSite Environmental Inc.

Chain of Custody

Page ____ of ___

Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	Turnaround Red (in working da	quest ays)		La	abo	rato	ry N	lumb	er:	08	3 - 3	30	1								
Phone: (425) 883-3881 · www.onsite-env.com Company: Shannon & Wilson Project Number: 21-1-22242 - 1/2 Project Name: Project Manager: Sampled by: Sample Identification	2 Days Standard (7 Days) (other) Date Sampled Time Sampled	1 Day 3 Days	Number of Containers	NWTPH-HCID	NWTPH-Gx/BTEX (8021 ☐ 8260 €)	NWTPH-Gx	Volatiles 8260	Halogenated Volatiles 8260	EDB EPA 8011 (Waters Only)	Semivolatiles 8270/SIM (with low-level PAHs) PAHs 8270/SIM (low-level)	PCBs 8082	Organochlorine Pesticides 8081	Organophosphorus Pesticides 8270/SIM	Chlorinated Acid Herbicides 8151	Total RCRA Metals	Total MTCA Metals	TCLP Metals	Total + Discolut Argoni			HoXA % Moisture
1 MW-3-19:082523 2 Trip Blank	8/25 1050	H20	9		X	/	X	+	-		+				+	-		X		>	X
Relinquished Signature	Company				Date	25	20	me 300)	-	ents/S					1	100	: 100	0		2.000
Received Bu	alol	u >			8/3	15		13:1		- 4	NW	TP	4 -	PX	W	56	Char	ON THE	lys	15.	
Relinquished	- III	uphe	1		8	25		5		- 1	1M-3	-19	:0'	825	23	2 0	nan	MM	of ,	high	h
Received Relinquished					X/2	S/	13	15	20	4		nL.	5	70	let	Lue	eum	I W	1 gro	all	iono.
Received				-			-			₩ d	mile, II -	+0	rik	ter	dig	Sol	ver	A5	San	pho	
Reviewed/Date	Reviewed/Da	Reviewed/Date								Data Package: Standard ☐ Level III ☐ Level IV ☐ Chromatograms with final report ☐ Electronic Data Deliverables (EDI				(EDD	s) [