JUNE 2023 GROUNDWATER SAMPLING EVENT REPORT

FOR

HAHN MOTOR COMPANY 1201 SOUTH 1ST STREET YAKIMA, WASHINGTON 98901

Facility Site ID No. 502 Cleanup Site ID No. 4927 VCP Project No. CE0529

July 10, 2023

Prepared for:

Ms. Debra Manjarrez Manjarrez & De Leon Inc, PS 2010 West Nob Hill Blvd, Suite 1 Yakima, Washington 98902

And

Mr. Kyle Parker Department of Ecology Toxic Cleanup Program, Central Regional Office 1250 West Alder Street Union Gap, Washington 98903-0009

Prepared by: Brent Bergeron, LHG, LG Licensed Hydrogeologist and Geologist

Blue Mountain Environmental and Consulting Company, Inc. PO Box 545/125 Main St. Waitsburg, WA 99361 509-520-6519

PROJECT SUMMARY

Client:	Ms. Debra Manjarrez Manjarrez & De Leon Inc, PS 2010 West Nob Hill Blvd, Suite 1 Yakima, Washington 98902
Point of Contact:	Ms. Debra Manjarrez
Property:	Hahn Motor Company 1201 South 1 st Street Yakima, Washington 98901
Major Commercial Activity:	Automotive Sales and Automobile Repair
VCP Project ID Number:	CE0529
Licensed Hydrogeologist/Geologist:	Brent N. Bergeron, LHG, LG
License Number/Expiration:	LHG #2267, expires 1/3/2024 LG #2267, expires 1/3/2024
Project Number:	E2023/0407 and E2023/0607
Report Date:	July 10, 2023

Legal description: Tax Parcel 191330-13032 in the southwest quarter of the northeast quarter of Section 30, Township 13 North, Range 19 E.W.M; Latitude 46° 35' 17.37" North, Longitude 120° 29'52.41" West.

PROJECT SUMMARY	2
CONTENTS	3
1.0 INTRODUCTION	5
1.1 Location 1.2 General Site Information	
2.0 GEOLOGY AND HYDROGEOLOGY	6
3.0 PREVIOUS ENVIRONMENTAL FIELD ACTIVITIES	7
 3.1 FEBRUARY 2022 - SUBSURFACE INVESTIGATION	9 9 10 11
4.0 MAY 2023 MONITORING WELL INSTALLATION AND	13
JUNE 2023 GROUNDWATER SAMPLING EVENT FIELD METHODOLOGY	13
 4.1 May 19, 2023 Monitoring Well Installation Field Methodology 4.2 June 13, 2023 Groundwater Sampling Event Field Methodology 	
5.0 MAY 2023 SOIL SAMPLE	15
AND JUNE 2023 GROUNDWATER SAMPLE RESULTS	15
5.1 May 19, 2023 Soil Sample Results 5.2 June 13, 2023 Groundwater Sample Results	
6.0 CONCLUSIONS	16
7.0 RECOMMENDATIONS	18
8.0 STATEMENT OF ENVIRONMENTAL PROFESSIONALS	19
9.0 REFERENCES	20

CONTENTS

TABLE OF CONTENTS

FIGURES

Figure No

<u>Figure Title</u>

1	SITE VICINITY MAP
2	SITE LOCATION MAP
3	GROUNDWATER FLOW DIRECTION – JUNE 13, 2023
4	TOTAL METALS IN GROUNDWATER – JUNE 13, 2023

TABLES

<u>Table No</u>	Table Title
1	Monitoring Well Installation and Groundwater Surface Elevation Data
2	Soil Sample Results - Total Petroleum Hydrocarbons (mg/Kg)
3	Soil Sample Results - Volatile Organic Compounds (mg/Kg)
4	Soil Sample Results - Total Metals (mg/Kg)
5	Groundwater Sample Results – Total Petroleum Hydrocarbons (µg/L)
6	Groundwater Sample Results - Volatile Organic Compounds (µg/L)
7	Groundwater Sample Results – Total Metals (µg/L)

APPENDICES

<u>Appendix No</u>	<u>Appendix Title</u>
А	MARCH 14, 2023 DEPARTMENT OF ECOLOGY OPINION LETTER
В	BORING LOGS
С	PHOTOGRAPHS
D	GROUNDWATER SAMPLE FIELD DATA SHEETS
E	LABORATORY ANALYTICAL DOCUMENTATION

1.0 INTRODUCTION

On May 19, 2023, Blue Mountain Environmental and Consulting Company, Inc. (BMEC) mobilized to 1201 South 1st Street in Yakima, Washington 98901 (Site) and performed supervision of monitoring well installation activities at the Site. On June 13, 2023, BMEC personnel returned to the Site and developed the four newly installed monitoring wells, as well as conducted a groundwater sampling event (GWSE) involving all nine monitoring wells. A Site Vicinity Map is included as **Figure 1**. A Site Location Map is included as **Figure 2**.

The scope of work (SOW) for the May 2023 monitoring well installation event was as follows per the State of Washington Department of Ecology (Ecology) Opinion Letter dated March 14, 2023:

- Supervise Anderson Environmental Contracting (AEC) from Puyallup, Washington during the installation of four monitoring wells (MW3A, MW7, MW8, and MW9) via terra sonic drilling methodology;
- Collect soil samples from each of the four borings and relinquish them to a Washington-accredited laboratory for the following analyses: total petroleum hydrocarbons – diesel range (TPH-D) and TPH – heavy oil range (TPH-O) via Northwest Method NWTPH-Dx, chlorinated volatile organic compounds (VOCs) via Environmental Protection Agency (EPA) Method 8260, as well as dissolved and total metals via EPA Method 200.8/7470A; and
- Document the findings in a detailed report.

Rationale for the installation of monitoring wells MW3A, MW7, MW8, and MW9 is included below in Section 4.0.

The SOW for the June 2023 GWSE was as follows per the Ecology Opinion Letter dated March 14, 2023:

- Collect depth-to-water measurements from all nine wells (MW1 through MW9);
- Develop newly installed monitoring wells MW3A, MW7, MW8, and MW9;
- Collect groundwater samples from each of the nine monitoring wells and relinquish them to a Washington-accredited laboratory for the following analyses: TPH-D and TPH–O via Northwest Method NWTPH-Dx, chlorinated VOCs via EPA Method 8260, as well as dissolved and total metals via EPA Method 200.8/7470A; and
- Document the findings in a detailed report including soil and groundwater laboratory analytical results, as well as the groundwater flow direction of the shallow aquifer.

A copy of the March 14, 2023 Ecology Opinion Letter is included as Appendix A.

1.1 Location

The 1.5-acre (approximate) Site is located in the City of Yakima, Yakima County, Washington, at the southeast corner of the intersection of South 1st Street and East Arlington Street (**Figures 2 - 4**). The Site consists of one tax parcel (191330-13032) and is located in the southwest quarter of the northeast quarter of Section 30, Township 13 North, Range 19 E.W.M. The elevation is approximately 1,040 feet above mean sea level and the Site is relatively flat with primarily asphalt ground cover. The nearest major body of water is the Yakima River approximately 1.5 miles east of the Site. The Site is surrounded by commercial then residential property to the east, commercial property then light industry to the north, commercial property to the northwest, commercial

property then railroad property to the west, and commercial property to the south. There are no flood zones or wetlands associated with the Site.

1.2 General Site Information

As of February 23, 2016, the property was owned by Mr. Richard Hahn. The current owner of the property is the Estate of Douglas F Bettarel, represented by Ms. Debra Manjarrez of Manjarrez and De Leon Inc, PS. BMEC is currently working for Manjarrez and De Leon Inc, PS.

One building is located on the Site (Figures 2 - 4). The rectangular building located on the northwest corner of the property consists of an automobile showroom with offices on the western half, bathrooms and break room near the center of the building, and an automobile repair and automobile wash bay in the eastern half of the building. During the visit to the Site on February 1, 2022, a minimum of one sump was noticed on the interior of the eastern half of the building. The sump appeared to drain to the south toward the drywells which BMEC investigated via soil and groundwater sampling on February 1, 2022. The drywells and all associated petroleum and metals impacted soils were removed on July 12 and 13, 2022, and replaced on July 14, 2022 with a single dry well to collect stormwater runoff from the paved yard area.

2.0 GEOLOGY AND HYDROGEOLOGY

Based on the subsurface investigation field activities conducted at the Site on September 27 and 28, 2022, the following geologic soil conditions were encountered in soil borings MW1 and MW3 through MW6:

- 0 0.25': Asphalt.
- 0.25 2': Brown SILT (ML);
- 2 20': Brown to dark brown, sandy, well-rounded, coarse GRAVEL & COBBLES, with little silt, loose (GW); and
- 20 -25': Brown gray, SAND & GRAVEL, well-rounded, coarse, loose, wet very wet (SP/GP).

During the May 19, 2023 monitoring well installation activities, soil lithology in wells MW3A and MW7 through MW9 was similar to the afore-mentioned soil with predominantly brown to graybrown sandy, rounded, coarse GRAVELS (GW) from 2.5 to 30 feet below ground surface (bgs) and groundwater saturation noted from 18 - 22 feet bgs. Boring logs for monitoring wells MW3A and MW7 through MW9 are included in **Appendix B**. During the June 13, 2023 GWSE, depth to groundwater was measured around 18 - 20 feet below top of casing (btoc) in all nine wells. Groundwater flow direction was to the southeast at 0.004 feet per foot on June 13, 2023.

During the February 1, 2022, field activities, groundwater was encountered in soil borings SB1 at 11 feet bgs, SB3 at 16.3 feet bgs, SB4 at 18 feet bgs, and SB5 at 14.5 feet bgs. During the October 3, 2022, GWSE conducted at the Site, depths-to-groundwater ranged from 15.48 feet btoc in well MW1, to 16.66 feet btoc in well MW2. The groundwater flow direction was determined to be to

the southeast toward the Yakima River which is approximately 1.5 miles east of the Site with a hydraulic gradient of 0.005 feet per foot. The estimated flow direction in the deeper aquifer beneath the Site is also to the southeast with an approximate hydraulic gradient of 0.004 feet per foot.

3.0 PREVIOUS ENVIRONMENTAL FIELD ACTIVITIES

The existing facility was built in 1946 by Hahn Motors Company. A 2,000-gallon heating oil underground storage tank (UST) for the oil-fired boiler was installed in the northwest side of the building's basement to provide heat for the facility. A second 2,000-gallon UST was installed at the facility in the mid-1970's and both USTs were used to store used oil after the boiler was converted to burn used motor oil, which was plentiful, available from the on-site conducted car services.

It was determined by Ecology on July 9, 2007, and documented via certified mail dated July 26, 2007, that Hahn Motor Company was in *Non-Compliance with the Underground Storage Tank Regulations Chapter 173-360* for not properly registering and upgrading their 2,000-gallon USTs prior to storage of waste oil. Via directive from Ecology as defined in the July 26, 2007 certified mail, both USTs were decommissioned by removal and backfill in November 2007. Approximately 50 cubic yards of petroleum-contaminated soil (PCS) and asphalt were hauled offsite and disposed at the Anderson Disposal Facility in Yakima, Washington.

During the November 9, 2007, UST decommissioning activities, three soil samples were collected from the west, north, and east side of the eastern UST, yielding one heavy oil detection of 396 milligrams per Kilogram (mg/Kg) in the west sample. Similarly, three soil samples were collected from the west, north, and east side of the eastern UST, yielding heavy oil detections ranging between 155 - 492 mg/Kg. The MTCA Method A Cleanup Level for heavy oil is 2,000 mg/Kg. No gasoline range hydrocarbons were identified by laboratory analysis in any soil samples collected. Significant lead concentrations were detected in residual soil sampled and analyzed from the tank bottom(s).

In 2017, Ecology conducted semi-annual groundwater sampling of the Yakima RailRoad Area (YRRA) groundwater monitoring network which is a six-square mile area located along the railroad corridor in the cities of Yakima and Union Gap, Washington. The YRRA was defined in 1991. The Site is located near the center of the YRRA which is impacted by chlorinated solvents, primarily tetrachloroethene (PCE). Circa 2017, 15 of the 39 groundwater samples collected from wells within the YRRA yielded concentrations ranging from 5 to 9,110 micrograms per liter (μ g/L). The MTCA Cleanup Level for PCE in groundwater is 5 μ g/L.

3.1 February 2022 - Subsurface Investigation

On February 1, 2022, BMEC hydrogeologist, Brent Bergeron, LHG, and BMEC environmental professional Yancy Meyer, supervised the advancement of six soil borings (SB1 through SB6) to depths varying between 15 feet and 25 feet bgs. The six soil borings were advanced via sonic drilling methodology by Environmental West Explorations (EWE) personnel.

TPH-D was only quantified in one of the 21 soil samples at a concentration of 670 mg/Kg in sample SB1-2-1-22-10'. TPH-O was quantified in three of the 21 soil samples at concentrations of 1400 mg/Kg in sample SB1-2-1-22-10'; 6900 mg/Kg in sample SB5-2-1-22-10'; and 1100 mg/Kg in sample SB5-2-1-22-15'. The MTCA Method A Cleanup Level for TPH-D + TPH-O is 2000 mg/Kg which was only exceeded in samples SB1-2-1-22-10' and SB5-2-1-22-10'. TPH-G was performed on one soil sample. TPH-G was quantified in sample SB1-2-1-22-10' at 220 mg/Kg which exceeds the MTCA Method A Cleanup Level of 30 mg/Kg.

VOCs were analyzed in three soil samples (SB1-2-1-22-10', SB3-2-1-22-25', and SB5-2-1-22-20') and detected in sample SB1-2-1-22-10' at concentrations that due not exceed any MTCA Method A Cleanup Levels. No VOCs were detected in soil samples SB3-2-1-22-25' and SB5-2-1-22-20'.

Cadmium was detected in one sample (SB1-2-1-22-10') at 2.5 mg/Kg which exceeds the MTCA Method A Cleanup Level of 2 mg/Kg. Chromium was detected in all 21 samples at concentrations ranging from 2.9 mg/Kg in sample SB5-2-1-22-20' to 34 mg/Kg in sample SB2-2-1-22-5' which was the only soil sample to exceed the MTCA Method A Cleanup Level of 19 mg/Kg. Lead was detected in four of the 21 soil samples at concentrations ranging from 9.4 mg/Kg in sample SB5-2-1-22-5' to 45 mg/Kg in sample SB1-2-1-22-10'. None of the four lead detections exceed the MTCA Method A Cleanup Level of 250 mg/Kg.

Polynuclear aromatic hydrocarbons (PAHs) were analyzed in three soil samples and detected in sample SB1-2-1-22-10' at concentrations that due not exceed any MTCA Method A Cleanup Levels. No PAHs were detected in soil samples SB3-2-1-22-25' and SB5-2-1-22-20'.

TPH-D and/or TPH-O were detected above the laboratory MRLs in all three groundwater samples collected (SB1-2-1-22-GW, SB3-2-1-2-GW, and SB5-2-1-22-GW). Furthermore, TPH-D + TPH-O were detected in samples SB1-2-1-22-GW and SB5-2-1-22-GW at concentrations of 9800 μ g/L and 770 μ g/L, respectively, which exceeded the MTCA Method A Cleanup Level of 500 μ g/L. Groundwater sample SB1-2-1-22-GW was collected from immediately down-gradient of the dry well outside the automobile engine washing bay on the south side of the building and groundwater sample SB5-2-1-22-GW was collected from between the two USTs removed from the north side of the building.

VOCs were analyzed in all three groundwater samples (SB1-2-1-22-GW, SB3-2-1-22-GW, and SB5-2-1-22-GW). A combination of VOCs including PCE, benzene, ethylbenzene, and naphthalene were detected in all three groundwater samples but not at concentrations exceeding established MTCA Method A Cleanup Levels.

Arsenic (total) was detected in all three groundwater samples at concentrations exceeding the MTCA Method A Cleanup Level of 5 μ g/L. Arsenic (total) concentrations ranged from 51 μ g/L in SB3-2-1-22-GW to 130 μ g/L in SB5-2-1-22-GW. Chromium (total) was detected in all three groundwater samples at concentrations exceeding the MTCA Method A Cleanup Level of 50 μ g/L. Chromium (total) concentrations ranged from 420 μ g/L in SB3-2-1-22-GW to 1100 μ g/L in SB5-2-1-22-GW. Lead (total) was detected in all three groundwater samples at concentrations ranged from 420 μ g/L in SB3-2-1-22-GW to 1100 μ g/L in SB5-2-1-22-GW. Lead (total) was detected in all three groundwater samples at concentrations exceeding the MTCA Method A Cleanup Level of 15 μ g/L. Lead (total) concentrations ranged

from 150 μ g/L in SB3-2-1-22-GW to 1200 μ g/L in SB1-2-1-22-GW. Cadmium (total) was detected in groundwater samples SB1-2-1-22-GW and SB5-2-1-22-GW at 110 μ g/L and 6.4 μ g/L, respectively. The MTCA Method A Cleanup Level for cadmium (total) in groundwater is 5 μ g/L.

PAHs were analyzed in all three grab groundwater samples (SB1-2-1-22-GW, SB3-2-1-22-GW, and SB5-2-1-22-GW). A combination of PAHs including 1-methylnaphthalene, 2-methylnaphthalene, and naphthalene were detected in all three groundwater samples; however, not at concentrations exceeding established MTCA Method A Cleanup Levels.

Polychlorinated biphenyls (PCBs) were analyzed in groundwater samples (SB1-2-1-22-GW, SB3-2-1-22-GW, and SB5-2-1-22-GW). PCBs were not detected above the laboratory practical quantitation limits (PQLs) in any of the three samples.

3.2 July 2022 - Dry Well Removal

From July 12 – 14, 2022, BMEC personnel supervised Clarke Construction personnel during the removal of both dry wells south of the main onsite building and collected 13 confirmation soil samples in the process. Confirmation samples indicated no contaminants (i.e., benzene, toluene, ethylbenzene, and xylenes [BTEX]; TPH-D; TPH-O; TPH-G; arsenic; cadmium; chromium; and lead) above Ecology MTCA Method A Cleanup Levels. On July 14, 2022, after receiving soil sample results, a new drywell was placed in the location of Former Drywell 2 to allow for stormwater drainage from the parking lot, and the excavation was backfilled, compacted to grade, and paved with asphalt.

3.3 September 2022 - Additional Subsurface Investigation

On September 27 and 28, 2022, BMEC hydrogeologist, Brent Bergeron, LHG, and BMEC environmental professional Yancy Meyer, supervised AEC personnel during the advancement of six soil borings (MW1 through MW6) to depths of 25 feet bgs via sonic drilling. Each boring was completed as a 2-inch diameter flush-mounted monitoring well and subsequently developed.

TPH-Dx was performed on 12 soil samples. TPH-D was only quantified in one of the 12 soil samples at a concentration of 76 mg/Kg in sample MW3-9-27-22-15'. TPH-O was quantified in three of the 12 soil samples at concentrations of 300 mg/Kg in sample MW3-9-27-22-15' to 1000 mg/Kg in sample MW6-9-27-22-21'. The MTCA Method A Cleanup Level for TPH-D + TPH-O is 2000 mg/Kg which was not exceeded in any of the 12 soil samples. TPH-G was performed on all 12 soil samples. TPH-G was not detected in any of the 12 soil samples. VOCs were analyzed in all 12 soil samples. Index parameters such as BTEX plus naphthalene were not detected in any of the 12 soil samples. NOCs were analyzed in all 12 soil samples. Resource Conservation and Recovery Act (RCRA) metals analyses were performed on all 12 soil samples. Arsenic, cadmium, mercury, selenium, and silver were not detected above the laboratory PQLs in any of the samples. Barium was detected in all 12 samples at concentrations ranging up to 65 mg/Kg in sample MW6-9-27-22-21'. A MTCA Method A Cleanup Level does not currently exist for barium. Chromium (hexavalent + trivalent) was detected in all 12 samples at concentrations ranging up to 16 mg/Kg in soil sample MW1-9-28-22-19'. None of the 12 chromium detections exceed the MTCA Method A Cleanup Level for chromium of 19 mg/Kg. Lead was detected in three of the 12 soil samples at concentrations ranging

up to 11 mg/Kg in sample MW6-9-27-22-21'. None of the three lead detections exceed the MTCA Method A Cleanup Level of 250 mg/Kg.

TPH-D and/or TPH-O were not detected above the laboratory PQLs in all six groundwater samples collected from monitoring wells MW1 through MW6. Furthermore, TPH-G was not detected above the laboratory PQLs in the six groundwater samples. VOCs were analyzed in all six groundwater samples collected from monitoring wells MW1 through MW6. A combination of VOCs including PCE and BTEX were detected in all six groundwater samples but not at concentrations exceeding established MTCA Method A Cleanup Levels.

RCRA (total) metals were analyzed in all six groundwater samples collected from monitoring wells MW1 through MW6. Mercury was detected in three of the groundwater samples at concentrations ranging from 0.61 μ g/L in well MW6 to 1.5 μ g/L in well MW4. The MTCA Method A Cleanup Level for mercury is 2 μ g/L. Selenium was detected in three of the groundwater samples at concentrations ranging from 5.9 μ g/L in well MW6 to 9.9 μ g/L in well MW4. No MTCA Method A Cleanup Level currently is established for selenium. Barium was detected in all six of the groundwater samples at concentrations ranging from 340 μ g/L in well MW1 to 2700 μ g/L in well MW4. No MTCA Method A Cleanup Level currently is established for selenium. Barium was detected in all six of the groundwater samples at concentrations ranging from 340 μ g/L in well MW1 to 2700 μ g/L in well MW4. No MTCA Method A Cleanup Level currently is established for succentry is established for barium. Cadmium and silver were not detected above the laboratory PQLs in any of the six groundwater samples.

Arsenic (total) was detected in all six groundwater samples at concentrations exceeding the MTCA Method A Cleanup Level of 5 μ g/L. Arsenic (total) concentrations ranged from 12 μ g/L in the groundwater sample collected from well MW1 to 67 μ g/L in MW4. Total chromium (hexavalent + trivalent) was detected in all six groundwater samples at concentrations exceeding the MTCA Method A Cleanup Level of 50 μ g/L. Chromium (total) concentrations ranged from 81 μ g/L in well MW6 to 430 μ g/L in MW2. Lead (total) was detected in all six groundwater samples at concentrations exceeding the MTCA Method A Cleanup Level of 15 μ g/L. Lead (total) was detected in all six groundwater samples at concentrations exceeding the MTCA Method A Cleanup Level of 15 μ g/L. Lead (total) concentrations ranged from 16 μ g/L in the groundwater collected from well MW1 to 160 μ g/L in well MW2. The highest detections of total chromium (hexavalent + trivalent) and total lead were in the groundwater sample collected from well MW2 which is located near the northwest property corner between the two former USTs. The second highest total chromium and total lead detections in groundwater were detected in the sample collected from well MW4 located in the northeast corner of the Site. The two highest total arsenic concentrations were detected in wells MW4 and MW2, respectively.

3.4 October 2022 – Groundwater Sampling Event

On October 3, 2022, BMEC personnel returned to the Site to conduct a GWSE involving all six monitoring wells (MW1 through MW6). TPH-D and/or TPH-O were not detected above the laboratory PQLs in all of the six groundwater samples collected from monitoring wells MW1 through MW6.

Various VOCs including PCE were detected in groundwater samples collected from all six monitoring wells (MW through MW6). None of the VOC detections exceeded established MTCA Method A Cleanup Levels. PCE concentrations were detected in all six groundwater samples and

ranged from 1.1 μ g/L in well MW4 to 2.6 μ g/L in well MW1. The Cleanup Level for PCE in groundwater is 5 μ g/L.

Total RCRA metals were detected in groundwater samples collected from all six monitoring wells (MW1 through MW6). Barium was detected in all six groundwater samples at concentrations ranging from 340 μ g/L in well MW1 to 2700 μ g/L in well MW4. No MTCA Method A Cleanup Level in groundwater currently exists for barium. Selenium was detected in groundwater samples collected from wells MW2, MW4, and MW6 at concentrations of 7.6 μ g/L, 9.9 μ g/L, and 5.9 μ g/L, respectively. No MTCA Method A Cleanup Level in groundwater currently exists for selenium. Mercury was detected in groundwater samples collected from wells MW2, MW4, and MW6 at concentrations of 1.2 μ g/L, 1.5 μ g/L, and 0.65 μ g/L, respectively. The MTCA Method A Cleanup Level for mercury in groundwater is 2 μ g/L.

3.5 December 2022 – Groundwater Sampling Event

On December 15, 2022, BMEC personnel returned to the Site to conduct a GWSE involving all six monitoring wells (MW1 through MW6). TPH-D and/or TPH-O were not detected above the laboratory PQLs in five of the six groundwater samples collected from monitoring wells MW1 and MW3 through MW6. Lube oil (i.e., TPH-O) was detected in the groundwater sample collected from monitoring well MW2 at a concentration of 240 mg/L which does not exceed the MTCA Method A Cleanup Level of 500 mg/L. TPH-G was not detected above the laboratory PQLs in the six groundwater samples.

VOCs were analyzed in all six groundwater samples. A combination of VOCs including PCE, BTEX, and miscellaneous VOCs (i.e., chloroform, carbon disulfide, n-propylbenzene, p-isopropytoluene, and n-butylbenzene) were detected in all six groundwater samples but at concentrations that do not exceed established MTCA Method A Cleanup Levels. PCE was detected in groundwater samples obtained from all six monitoring wells at concentrations ranging from 1.1 μ g/L in well MW6 to 1.7 μ g/L in the groundwater samples collected from wells MW1 and MW2. Benzene was detected in groundwater samples collected from monitoring wells MW2 and MW4 at 0.22 μ g/L and 0.23 μ g/L, respectively. The MTCA Method A Cleanup Levels for PCE and benzene are each 5 μ g/L.

RCRA (total) metals were analyzed in all six groundwater samples collected from monitoring wells MW1 through MW6. Selenium was detected in two of the groundwater samples at concentrations ranging from 6.7 μ g/L in well MW3 to 11 μ g/L in well MW6. No MTCA Method A Cleanup Level currently is established for selenium. Barium was detected in all six of the groundwater samples at concentrations ranging from 580 μ g/L in well MW1 to 1900 μ g/L in wells MW4 and MW6. No MTCA Method A Cleanup Level currently is established for selenium. Barium and silver were not detected above the laboratory PQLs in any of the six groundwater samples.

Arsenic (total) was detected in all six groundwater samples at concentrations exceeding the MTCA Method A Cleanup Level of 5 μ g/L. Arsenic (total) concentrations ranged from 28 μ g/L in the groundwater samples collected from wells MW1 and MW5 to 150 μ g/L in MW6. Chromium (hexavalent + trivalent) was detected in all six groundwater samples at concentrations exceeding

the MTCA Method A Cleanup Level of 50 μ g/L. Chromium concentrations ranged from 150 μ g/L in well MW1 to 340 μ g/L in MW3. Lead was detected in all six groundwater samples at concentrations exceeding the MTCA Method A Cleanup Level of 15 μ g/L. Lead concentrations ranged from 26 μ g/L in the groundwater collected from well MW1 to 140 μ g/L in well MW6. Mercury was detected in three of the groundwater samples at concentrations ranging from 0.58 μ g/L in well MW2 to 2.1 μ g/L in well MW6. The MTCA Method A Cleanup Level for mercury is 2 μ g/L.

3.6 March 2023 Groundwater Sampling Event

On March 28, 2023, BMEC personnel returned to the Site to conduct a GWSE involving six monitoring wells (MW1 through MW6). TPH-D and/or TPH-O were not detected above the laboratory PQLs in five of the six groundwater samples collected from monitoring wells MW1 and MW3 through MW6. Lube oil (i.e., TPH-O) was detected in the groundwater sample collected from monitoring well MW2 at a concentration of 150 μ g/L which does not exceed the MTCA Method A Cleanup Level of 500 μ g/L.

The chlorinated VOCs (cis) 1,2-DCE, TCE, VC, and PCE were analyzed in all six groundwater samples. PCE was detected in all six groundwater samples at concentrations ranging from 0.70 μ g/L in well MW3 to 2.4 μ g/L in well MW2. None of the six groundwater concentrations exceed established MTCA Method A Cleanup Levels (5 μ g/L). PCE was the only VOC detected in the six groundwater samples.

RCRA (total and dissolved) metals were analyzed in all six groundwater samples collected from monitoring wells MW1 through MW6. RCRA metals (totals) were not detected above the laboratory PQLs in groundwater samples collected from wells MW2, MW4, MW5, and MW6. Total chromium and total lead were detected at 15 μ g/L and 2.5 μ g/L, respectively, in the groundwater samples collected from well MW1 with neither value exceeding the MTCA Method A Cleanup Levels of 50 μ g/L and 15 μ g/L, respectively. Total RCRA metals were detected in the groundwater sample collected from well MW3 at the following concentrations:

 \Box Arsenic at 88 µg/L (MTCA Method A Cleanup Level = 5 µg/L)

 \Box Cadmium at 6.5 µg/L (MTCA Method A Cleanup Level = 5 µg/L)

 \Box Chromium (hexavalent + trivalent) at 1100 µg/L (MTCA Method A Cleanup Level = 50 µg/L)

 \Box Lead at 220 µg/L (MTCA Method A Cleanup Level = 15 µg/L

 \Box Mercury at 1.5 µg/L (MTCA Method A Cleanup Level = 2 µg/L)

As noted above, the total arsenic, total cadmium, total chromium, and total lead concentrations all exceed their respective Cleanup Levels. However, BMEC suspects the extremely high turbidity/high suspended solids content and slow recharge of the well may have impacted the high metals concentrations.

The laboratory analytical results for dissolved RCRA metals concentrations were all non-detect (arsenic, cadmium, chromium [hexavalent + trivalent], lead and mercury). Each of the six groundwater samples submitted to Onsite for dissolved RCRA metals were not field filtered. Instead, each of the six samples were filtered in the lab, prior to analysis.

4.0 MAY 2023 MONITORING WELL INSTALLATION AND

JUNE 2023 GROUNDWATER SAMPLING EVENT FIELD METHODOLOGY

BMEC personnel mobilized to the Site on May 19, 2023, to supervise the advancement of four borings, collect eight soil samples from the four borings for laboratory analyses, and complete the four borings as monitoring wells. BMEC personnel mobilized to the Site on June 3, 2023 to develop four newly installed monitoring wells (MW3A, MW7, MW8, and MW9), obtain depth-to-water (DTW) measurements from all nine wells, and collect groundwater samples from all nine monitoring wells (MW1 through MW9) for laboratory analyses. The following text describes the May 2023 and June 2023 field activities in detail.

4.1 May 19, 2023 Monitoring Well Installation Field Methodology

Rationale for the installation of the four monitoring wells (MW3A and MW7 through MW9) is as follows:

- MW3A Per discussion with Ecology prior to mobilization to the field, well MW3A was proposed as a replacement well for MW3 which was not developing properly, exhibiting high turbidity/high suspended solids, extremely slow recharge, and yielding excessive total metals concentrations. Hence, MW3A was advanced down-gradient of well MW3 and outside of the former drywell excavation to obtain un-compromised data from the undisturbed native soils.
- MW7 Per the SOW approved by Ecology, this well was installed at an up-gradient location along the western property boundary, in an attempt to assess potential contaminants of concern (CPOCs) migrating onto the Site from off-site sources.
- MW8 Per the SOW approved by Ecology, this well was installed at an up-gradient location along the western property boundary, in an attempt to assess CPOCs migrating onto the Site from off-site sources.
- MW9 Per the SOW approved by Ecology, this well was installed at an up-gradient location along the western property boundary, in an attempt to assess CPOCs migrating onto the Site from off-site sources.

All four monitoring wells were advanced via terra sonic methodology. Borings for monitoring wells MW7 through MW9 were advanced to 25 feet bgs and screened from 10 - 25 feet bgs with Schedule 40 polyvinyl chloride (PVC), completed with flush-mounted locking caps. The boring for well MW3A was advanced to 30 feet and screened from 10 - 30 feet bgs with Schedule 40 PVC, completed with a flush-mounted locking cap.

Boring logs for all four newly installed monitoring wells are included in **Appendix B**. Photographs of the field activities are included in **Appendix C**.

Soil collected from all four borings (MW3A and MW7 through MW9) was continuously collected via core barrel/sample bag methodology and field screened via visual observation, olfactorily evidence, and photo-ionization detector (PID). The PID measurements are listed on each of the four boring logs in **Appendix B**. The soil lithology for each boring was assessed by the field hydrogeologist and recorded on the boring logs, as well.

A total of eight soil samples were collected from the four borings and relinquished to OnSite Environmental in Redmond, Washington for a combination of the following analyses:

- TPH-D and TPH-O via Northwest Method NWTPH-Dx;
- RCRA metals (arsenic, cadmium, chromium, lead, and mercury) via EPA Method 6010D/7470A Series for soil and EPA Method 200.8 for groundwater; and
- Select chlorinated VOCs (PCE, trichloroethene [TCE], (cis) 1,2-dichloroethene, and vinyl chloride [VC]) via EPA Method 8260D.

Each soil sample was obtained in one 4-ounce soil container with Teflon-lined lid and two 40milliliter (mL) glass vials preserved with methanol. The locations of the four borings completed as 2-inch diameter monitoring wells (MW3A and MW7 through MW9) are illustrated on **Figures 3 and 4**.

A fresh pair of nitrile gloves was donned prior to collection of each successive soil sample. All soil cuttings were containerized in a series of 55-gallon drums which were properly labeled, sealed, and staged onsite near the eastern gate access. Used nitrile gloves and paper towels were placed in a trash bag and hauled offsite.

4.2 June 13, 2023 Groundwater Sampling Event Field Methodology

Upon arrival at the Site on June 13, 2023, each monitoring well was opened and DTW measurements were obtained from the PVC top of casing per well. Groundwater parameters of the nine monitoring well samples were measured in the field via a Horiba U-52 for pH, temperature, conductivity, turbidity, and dissolved oxygen. Approximately 3.5 to five gallons were purged from the five existing wells (i.e., MW1, MW2, MW4, MW5, and MW6), prior to stabilization of the groundwater parameters listed above, followed by sample collection. Approximately 10 to 18 gallons were purged from the four newly installed wells (i.e., MW3A, MW7, MW8, and MW9), prior to stabilization of the groundwater parameters listed above, followed by sample collection. Monitoring well MW3 was replaced by well MW3A and is no longer in groundwater sample rotation.

DTW measurements were collected via a Solinst interface probe from monitoring wells MW1 through MW9. DTW values ranged from 17.95 feet below top of casing (btoc) in well MW6 to 19.32 feet btoc in wells MW2 and MW9 (**Table 1**). Groundwater flow direction was to the southeast as illustrated on **Figure 3**. The hydraulic gradient was approximately 0.004 feet per foot.

The suite of analyses performed on each groundwater sample submitted to the laboratory is as follows: TPH-D and TPH-O analysis via Northwest Method NWTPH-Dx; chlorinated VOCs (VC, (cis)1,2-dichloroethene [(cis) 1,2-DCE], TCE, and PCE) via EPA Method 8260D; and total RCRA metals (arsenic, cadmium, chromium, lead, and mercury) via EPA Method 200.8/7470A.

Groundwater was purged from each of the nine wells via peristatic pump and dedicated tubing, prior to samples being collected in the appropriate containers, properly sealed and labeled, and placed on ice in a secured cooler. Each groundwater sample was obtained via four 40-mL glass vials preserved with HCl, two 500-mL amber glass jars preserved with HCl, and one 250-mL plastic container preserved with nitric acid. Upon collection, each groundwater sample was

immediately labeled, sealed, and placed on ice in a secure cooler. The nine groundwater samples were relinquished to OnSite the following day for overnight delivery. Groundwater sample field data sheets for the June 13, 2023 GWSE are included in **Appendix D**.

A fresh pair of nitril gloves was donned, prior to each successive groundwater sample collection. All trash derived from the GWSE activities (i.e., nitrile gloves, paper towels, and tubing) was placed in a plastic bag and placed in an onsite trash receptacle. All purge water was stored in 55gallon drums temporarily staged onsite.

5.0 MAY 2023 SOIL SAMPLE

AND JUNE 2023 GROUNDWATER SAMPLE RESULTS

BMEC collected eight soil samples for laboratory analyses during the May 19, 2023 field activities and nine groundwater samples for laboratory analyses from the nine monitoring wells (MW1 through MW9) during the June 13, 2023 field activities. The following text describes the soil and groundwater results from the May 2023 and June 2023 field activities.

5.1 May 19, 2023 Soil Sample Results

On May 19, 2023, BMEC personnel collected a total of eight soil samples (two samples per boring from MW3A, MW7, MW8, and MW9). TPH-D and/or TPH-O were not detected above the laboratory PQLs in all eight soil samples. TPH results in soil are summarized in **Table 2**.

PCE was detected in three of the eight soil samples at concentrations ranging from 0.0018 mg/Kg in soil sample MW7-5-19-23-25' to 0.0026 mg/Kg in soil sample MW9-5-19-23-27'. None of the three soil sample detections exceed the MTCA Method A Cleanup Level of 0.05 mg/Kg. VC, (cis) 1,2-DCE, and TCE were not detected above the laboratory PQLs in any of the eight soil samples. Chlorinated VOC results in soil are summarized in **Table 3**.

Barium was detected in all eight soil samples at concentrations ranging from 26 mg/Kg in soil sample MW7-5-19-23-18' to 67 mg/Kg in soil sample MW9-5-19-23-27'. A MTCA Method A Cleanup Level does not currently exist for barium. Total chromium (hexavalent + trivalent) was detected in all eight soil samples at concentrations ranging from 5.4 mg/Kg in soil sample MW3a-5-19-23-20' to 12 mg/Kg in soil sample MW9-5-19-23-27'. None of the eight total chromium detections exceed the MTCA Method A Cleanup Level for Cr+6 of 19 mg/Kg. Mercury was detected in soil sample MW9-5-19-23-27' at 0.38 mg/Kg which does not exceed the MTCA Method A Cleanup Level of 2 mg/Kg. Arsenic, cadmium, silver, and selenium were not detected above the laboratory PQLs in any of the eight soil samples. RCRA metal results in soil are summarized in **Table 4**.

A copy of the laboratory analytical report and accompanying chain-of-custody documentation is included as **Appendix E**.

5.2 June 13, 2023 Groundwater Sample Results

On June 13, 2023, BMEC personnel returned to the Site to conduct a GWSE involving all nine monitoring wells (MW1 through MW9). TPH-D and/or TPH-O were not detected above the laboratory PQLs in all nine groundwater samples. TPH results in groundwater are summarized in **Table 5**.

The chlorinated VOCs (cis) 1,2-DCE, TCE, PCE, and VC were analyzed in all nine groundwater samples. VC, (cis) 1,2-DCE, and TCE were not detected above the laboratory PQLs in any of the nine groundwater samples. PCE was detected in all nine groundwater samples at concentrations ranging from 0.97 μ g/L in the groundwater sample collected from well MW4 to 2.3 μ g/L in the sample collected from well MW2. None of the nine groundwater sample results for PCE exceed the MTCA Method A Cleanup Level of 5 μ g/L. Chlorinated VOC results in groundwater are summarized in **Table 6**.

RCRA metals (total) were analyzed in all nine groundwater samples collected from monitoring wells MW1 through MW9. RCRA metals (totals) were not detected above the laboratory PQLs in groundwater samples collected from seven of the nine wells including MW2, MW3A, MW4, MW5, MW6, MW7, and MW9. Lead was detected in the groundwater sample collected from well MW8 at 1.1 μ g/L which does not exceed the MTCA Method A Cleanup Level of 15 μ g/L. Arsenic, total chromium, and lead were detected in the groundwater sample collected from well MW1 at 9.3 μ g/L, 73 μ g/L, and 11 μ g/L, respectively. The MTCA Method A Cleanup Levels for arsenic (5 μ g/L) and total chromium (19 μ g/L) in groundwater obtained from MW1 were exceeded. The MTCA Method A Cleanup Level for lead (15 μ g/L) was not exceeded. RCRA metal (total) results in groundwater are summarized in **Table 7**.

A copy of the laboratory analytical report and accompanying chain-of-custody documentation is included as **Appendix E**.

6.0 CONCLUSIONS

During the May 19, 2023 monitoring well installation activities, soil lithology in wells MW3A and MW7 through MW9 was predominantly brown to gray-brown sandy, rounded, coarse GRAVELS (GW) from 2.5 to 30 feet bgs and groundwater saturation noted from 18 - 22 feet bgs. During the June 13, 2023 GWSE, depth to groundwater was measured around 18 - 20 feet btoc in all nine wells. Groundwater flow direction was to the southeast at 0.004 feet per foot on June 13, 2023.

On May 19, 2023, BMEC personnel collected a total of eight soil samples (two samples per boring from MW3A, MW7, MW8, and MW9). TPH-D and/or TPH-O were not detected above the laboratory PQLs in all eight soil samples.

PCE was detected in three of the eight soil samples at concentrations ranging from 0.0018 mg/Kg in soil sample MW7-5-19-23-25' to 0.0026 mg/Kg in soil sample MW9-5-19-23-27'. None of the three soil sample detections exceed the MTCA Method A Cleanup Level of 0.05 mg/Kg. VC, (cis) 1,2-DCE, and TCE were not detected above the laboratory PQLs in any of the eight soil samples.

Barium was detected in all eight soil samples at concentrations ranging from 26 mg/Kg in soil sample MW7-5-19-23-18' to 67 mg/Kg in soil sample MW9-5-19-23-27'. A MTCA Method A Cleanup Level does not currently exist for barium. Total chromium (hexavalent + trivalent) was detected in all eight soil samples at concentrations ranging from 5.4 mg/Kg in soil sample MW3a-5-19-23-20' to 12 mg/Kg in soil sample MW9-5-19-23-27'. None of the eight total chromium detections exceed the MTCA Method A Cleanup Level for Cr+6 of 19 mg/Kg. Mercury was detected in soil sample MW9-5-19-23-27' at 0.38 mg/Kg which does not exceed the MTCA Method A Cleanup Level of 2 mg/Kg. Arsenic, cadmium, silver, and selenium were not detected above the laboratory PQLs in any of the eight soil samples.

On June 13, 2023, BMEC personnel returned to the Site to conduct a GWSE involving all nine monitoring wells (MW1 through MW9). TPH-D and/or TPH-O were not detected above the laboratory PQLs in all nine groundwater samples.

Chlorinated VOCs VC, (cis) 1,2-DCE, and TCE were not detected above the laboratory PQLs in any of the nine groundwater samples. PCE was detected in all nine groundwater samples at concentrations ranging from 0.97 μ g/L in the groundwater sample collected from well MW4 to 2.3 μ g/L in the sample collected from well MW2. None of the nine groundwater sample results for PCE exceed the MTCA Method A Cleanup Level of 5 μ g/L.

RCRA metals (totals) were not detected above the laboratory PQLs in groundwater samples collected from seven of the nine wells including MW2, MW3A, MW4, MW5, MW6, MW7, and MW9. Lead was detected in the groundwater sample collected from well MW8 at 1.1 μ g/L which does not exceed the MTCA Method A Cleanup Level of 15 μ g/L. Arsenic, total chromium, and lead were detected in the groundwater sample collected from well MW1 at 9.3 μ g/L, 73 μ g/L, and 11 μ g/L, respectively. The MTCA Method A Cleanup Levels for arsenic (5 μ g/L) and total chromium (19 μ g/L) in groundwater obtained from MW1 were exceeded. The MTCA Method A Cleanup Level for lead (15 μ g/L) was not exceeded.

Based on the groundwater results for total RCRA metals during this GWSE (June 13, 2023), none of the nine groundwater samples were analyzed for dissolved metals. Arsenic and total chromium (hexavalent + trivalent) concentrations in groundwater collected from monitoring well MW1 are likely due to up-gradient sources. Furthermore, the total chromium concentration is likely due to trivalent chromium (Cr+3) which is less toxic than hexavalent chromium (Cr+6).

The total metals concentrations in groundwater collected from well MW3A on June 13 versus the total metals concentrations in groundwater collected from well MW3 on March 28, 2023, are likely a result of far less turbidity/suspended solid content and greater groundwater recharge.

7.0 RECOMMENDATIONS

BMEC recommends the following actions:

- 1) Based on groundwater sampling results over the past four quarterly sampling events, the laboratory results suggest that PCE does not exceed the MTCA Method A Cleanup Level of 5 μ g/L in groundwater collected from any monitoring well located onsite. Although very low levels of PCE are detectable in the shallow aquifer beneath the Site, BMEC has clearly demonstrated via recent soil sampling and one year of GWSEs that source material does not exist in Site soils and/or groundwater. Hence, further analysis for chlorinated solvents in the Site soils and shallow aquifer beneath the Site is no longer warranted.
- 2) Based on groundwater sampling results over the past four quarterly sampling events, the laboratory results suggest TPH-D and TPH-O (along with TPH-G) are not a concern in Site soils and groundwater. Hence, further analysis for petroleum hydrocarbons in the shallow aquifer and Site soils beneath the Site is no longer warranted.
- Based on the lack of petroleum hydrocarbons or chlorinated solvents, in particular PCE, in Site soils or shallow groundwater, vapor intrusion (VI) is an unlikely concern and further VI assessment for the building interior is not necessary.
- 4) Metals in soil do not appear to be an issue worth pursuing at the Site. Although cadmium exceeded MTCA Method A Cleanup Levels in soil sample SB1-2-1-22-10', the concentration of 2.5 mg/Kg barely eclipsed the Cleanup Level of 2 mg/Kg and this has been the only detection of cadmium in 41 soil samples. The lone detection of cadmium in groundwater collected from monitoring well MW3 on March 28, 2023 is likely attributed to the extremely high suspended solids content for that sample. Although total chromium exceeded MTCA Method A Cleanup Levels in soil sample SB2-2-1-22-5', the concentration is likely attributed to a high concentration of trivalent chromium versus hexavalent chromium. No other metals have been detected in the 41 soil samples at concentrations above the MTCA Method A Cleanup Levels. Hence, further analysis of RCRA metals (As, Ba,Cd, Cr, Pb, Hg, Se, and Ag) in Site soils beneath the Site is no longer warranted.
- 5) During the June 13, 2023 GWSE, RCRA metals were not detected in seven of the nine groundwater samples. Lead was detected at a concentration of 1.1 μg/L in groundwater obtained from well MW8 which does not exceed the MTCA Method A Cleanup Level of 15 μg/L. Arsenic, total chromium (trivalent + hexavalent), and lead were detected in groundwater obtained from well MW1. The arsenic and total chromium concentrations exceeded the MTCA Method A Cleanup Levels. Monitoring well MW1 is the furthest up-gradient well onsite and likely is heavily influenced by offsite migration of PCOCs (RCRA metals, PCE, and petroleum hydrocarbons). BMEC recommends one more round of groundwater sampling in September 2023 involving all nine monitoring wells for both total and dissolved RCRA metals (As, Cd, Cr, Pb, and Hg). If laboratory analytical results for all nine groundwater samples are below MTCA Method A Cleanup Levels, a No Further Action (NFA) notice is warranted.

8.0 STATEMENT OF ENVIRONMENTAL PROFESSIONALS

BMEC personnel performed these field activities on May 19 and June 13, 2023, in accordance with generally accepted environmental practices and procedures. We employed the degree of care and skill ordinarily exercised under similar circumstances by reputable environmental professionals practicing in the discipline of environmental sciences. The monitoring well installation, soil sampling, and groundwater sampling activities completed were conducted in accordance with standard engineering and geologic standards. However, BMEC was limited by data gaps that were encountered due to previous fieldwork inadequacies and improper documentation. This report is based on the limited data that was provided to BMEC and if additional field data or documentation exists that was not made available to BMEC, we cannot be held accountable for such data gaps or inconsistencies recognizable in this report.

Respectfully Submitted,

Blue Mountain Environmental and Consulting Company, Inc.

Brent N. Bergeron, LHG, LG

P Trabusiner

Peter Trabusiner, Engineer

9.0 REFERENCES

Blue Mountain Environmental and Consulting Company, Inc., MARCH 2023 GROUNDWATER SAMPLING EVENT REPORT FOR HAHN MOTOR COMPANY 1201 SOUTH 1ST STREET, YAKIMA, WASHINGTON 98901, Facility Site ID No. 502, Cleanup Site ID No. 4927, VCP Project No. CE0529, April 24, 2023.

Blue Mountain Environmental and Consulting Company, Inc., DECEMBER 2022 GROUNDWATER SAMPLING EVENT REPORT FOR HAHN MOTOR COMPANY 1201 SOUTH 1ST STREET, YAKIMA, WASHINGTON 98901, Facility Site ID No. 502, Cleanup Site ID No. 4927, VCP Project No. CE0529, January 27, 2023.

Blue Mountain Environmental and Consulting Company, Inc., SEPTEMBER 2022 ADDITIONAL SUBSURFACE INVESTIGATION REPORT FOR HAHN MOTOR COMPANY, 1201 SOUTH 1ST STREET, YAKIMA, WASHINGTON 98901, Facility Site ID No. 502, Cleanup Site ID No. 4927, VCP Project No. CE0529, October 17, 2022.

Blue Mountain Environmental and Consulting Company, Inc., DRYWELL DECOMMISSIONING AND CONTAMINATED SOIL REMOVAL REPORT FOR HAHN MOTOR COMPANY, 1201 SOUTH 1ST STREET, YAKIMA, WASHINGTON 98901, Facility Site ID No. 502, Cleanup Site ID No. 4927, VCP Project No. CE0529, August 1, 2022.

Blue Mountain Environmental and Consulting Company, Inc., FEBRUARY 1, 2022 SUBSURFACE INVESTIGATION REPORT FOR HAHN MOTOR COMPANY, 1201 SOUTH 1ST STREET, YAKIMA, WASHINGTON 98901, Facility Site ID No. 502, Cleanup Site ID No. 4927, VCP Project No. CE0529, March 4, 2022.

Google Maps, 2022.

PETCO INCORPORATED, Underground Storage Tank Decommissioning & Site Assessment Report For UST Site #200130, 1201 South 1st St., Yakima, Washington, February 2008.

Washington State Department of Ecology, Yakima Railroad Area PCE Contamination – Groundwater Quality Performance Monitoring Data Summary 2017, July 2018.

Washington State Department of Ecology, Model Toxics Control Act Statute and Regulation, Revised November 2007.

Washington State Department of Ecology, Letter – Re: Acceptance Letter -Voluntary Cleanup Program, 1201 South 1st Street, Yakima, Washington, November 12, 2021.

Washington State Department of Ecology, Letter – Re: Further Action at the Site, 1201 South 1st Street, Yakima, Washington, February 23, 2016.

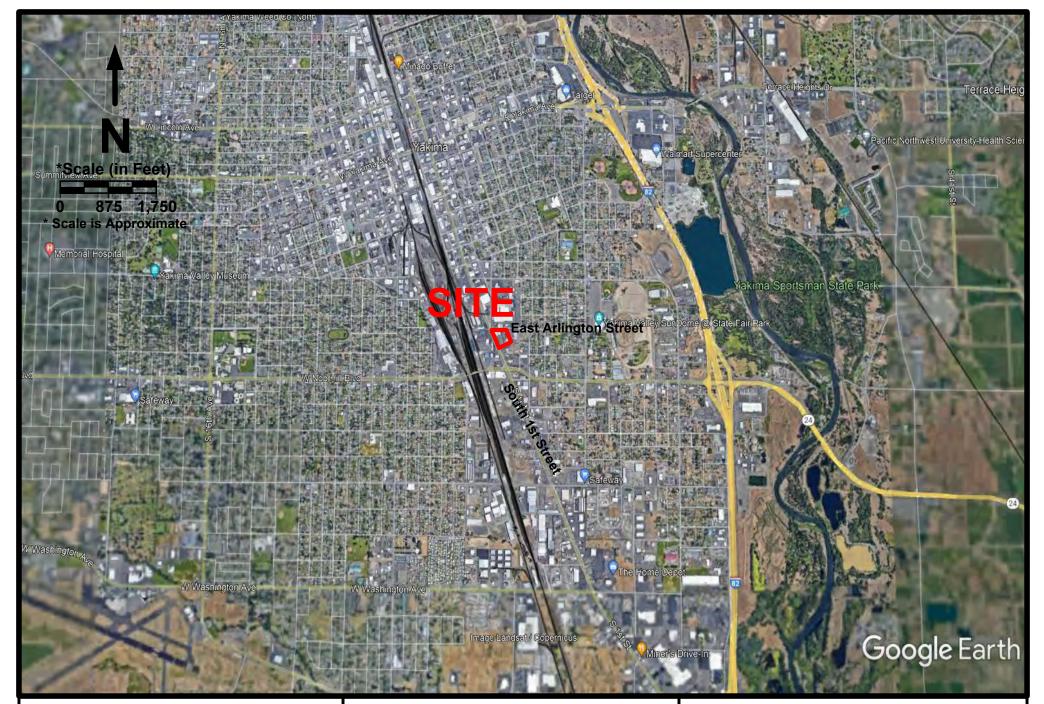


FIGURE 1 – SITE VICINITY MAP

Hahn Motors Company 1201 South 1st Street Yakima, Washington 98901

FIGURE 2 – SITE LOCATION MAP

Hahn Motors Company 1201 South 1st Street Yakima, Washington 98901

FIGURE 3 – GROUNDWATER FLOW DIRECTION JUNE 13, 2023 Hahn Motors Company 1201 South 1st Street Yakima, Washington 98901 VCP Project # CE 0529

FIGURE 4 – TOTAL METALS IN GROUNDWATER ($\mu g/L$) JUNE 13, 2023

Hahn Motors Company 1201 South 1st Street Yakima, Washington 98901 VCP Project # CE 0529

Monitoring Well Number	Date Measured	Top of Casing Elevation (feet NAVD88)	Water Below Top of Casing	Groundwater Elevation (feet NAVD88)	LNAPL Thickness (feet)	Volume of Groundwater Purged (gallons)	Screened Interval (feet bgs)	Sandpack Interval (feet bgs)	Bentonite Interval (fe bgs)
		,	(foot	Monitori	ng Wells	6			
	10/3/22		15.48	1027.21	0.00	15			
1	12/15/22	1010.00	18.35	1024.34	0.00	5	40.051	0.051	0.01
MW1	3/28/23	1042.69	19.66	1023.03	0.00	5	10 - 25'	8 - 25'	2 - 8'
	6/13/23		18.28	1024.41	0.00	4			
	10/3/22		16.66	1026.23	0.00	15			
MW2	12/15/22	1042.89	19.87	1023.02	0.00	5	40.051	0.051	0.01
IVIW2	3/28/23		21.36	1021.53	0.00	2.5	10 - 25'	8 - 25'	2 - 8'
	6/13/23	1	19.32	1023.57	0.00	3.5			
	10/3/22		16.36	1025.52	0.00	15			
MW3	12/15/22	1041.88	19.06	1022.82	0.00	5	10 - 25'	8 - 25'	2 - 8'
	3/28/23	1	21.04	1020.84	0.00	1.5			
MW3A	6/13/23	1042.00	19.00	1023.00	0.00	18.0	10 - 30'	8 - 30'	2 - 8'
	10/3/22		16.14	1024.99	0.00	15	10 - 25'		
MW4	12/15/22	1041.13	19.37	1021.76	0.00	5		9 25	2 0'
101004	3/28/23	1041.13	21.33	1019.80	0.00	4		8 - 25'	2 - 8'
	6/13/23		18.43	1022.70	0.00	3.5			
	10/3/22		15.94	1024.79	0.00	15			
MW5	12/15/22	1040.73	19.08	1021.65	0.00	5	40.051	0.051	0.01
CANIN	3/28/23	1040.73	21.15	1019.58	0.00	4	10 - 25'	8 - 25'	2 - 8'
	6/13/23		18.16	1022.57	0.00	3.5			
	10/3/22		15.57	1024.49	0.00	15			
MW6	12/15/22	1040.06	18.88	1021.18	0.00	5	10 - 25'	8 - 25'	2 - 8'
IVIVO	3/28/23	1040.00	21.18	1018.88	0.00	3	10 - 25	0-23	2-8
	6/13/23		17.95	1022.11	0.00	3.5	<u> </u>		
MW7	6/13/23	1043.69	19.17	1024.52	0.00	10	10 - 25'	8 - 25'	2 - 8'
MW8	6/13/23	1042.69	19.58	1023.11	0.00	10	10 - 25'	8 - 25'	2 - 8'
MW9	6/13/23	1041.82	19.32	1022.50	0.00	10	10 - 25'	8 - 25'	2 - 8'

			TABLE 2a - Total Petroleum Hydroca1201 South First Streetakima, Washington 98901	arbons (mg/Kg) ¹	
			TPH-Diesel and Heavy Oil by	Northwest Method NWTPH-Dx	
Sample I.D.	Depth (ft bsg)	Date Collected	TPH-D	трн-о	TPH-Gasoline by Northwest Method NWTPH-Gx
		SUBSURFA	I CE INVESTIGATION (BMEC) - SEPTEMBEI	R 2022	
<u>MW1-9-28-22-10'</u>	10'	9/28/22	< 26	< 52	< 5.2
<u>MW1-9-28-22-19'</u>	19'	9/28/22	< 27	< 54	< 5.7
<u>MW2-9-28-22-13'</u>	13'	9/28/22	< 58	660	< 5.0
<u>MW2-9-28-22-18'</u>	18'	9/28/22	< 28	< 55	< 5.8
<u>MW3-9-27-22-15'</u>	15'	9/27/22	76	300	< 5.5
MW3-9-27-22-23'	23'	9/27/22	< 27	< 54	< 6.0
<u>MW4-9-27-22-16'</u>	16'	9/27/22	< 26	< 52	< 5.1
MW4-9-27-22-20'	20'	9/27/22	< 26	< 53	< 5.0
MW5-9-27-22-15'	15'	9/27/22	< 26	< 51	< 4.7
<u>MW5-9-27-22-20'</u>	20'	9/27/22	< 27	< 54	< 4.5
<u>MW6-9-27-22-15'</u>	15'	9/27/22	< 26	< 52	< 5.1
MW6-9-27-22-21'	21'	9/27/22	< 37	1000	< 5.5
		MONITOR	RING WELL INSTALLATION (BMEC) - MAY	2023	
<u>MW3a-5-19-23-20'</u>	20'	5/19/23	< 27	< 53	NA
<u>MW3a-5-19-23-30'</u>	30'	5/19/23	< 27	< 54	NA
<u>MW7-5-19-23-18'</u>	18'	5/19/23	< 27	< 54	NA
<u>MW7-5-19-23-25'</u>	25'	5/19/23	< 27	< 55	NA
<u>MW8-5-19-23-18'</u>	18'	5/19/23	< 26	< 52	NA
<u>MW8-5-19-23-25'</u>	25'	5/19/23	< 29	< 58	NA
<u>MW9-5-19-23-18'</u>	18'	5/19/23	< 26	< 53	NA
<u>MW9-5-19-23-27'</u>	27'	5/19/23	< 28	< 55	NA
			A Soil Cleanup Levels for Unrestricted		1
Notes:	Unrestricted Land U	5E	2,000	2,000	30/100 ¹

¹ MTCA Method A Cleanup Level for Unrestricted Land Use for TPH-G is 30 ppm if benzene is detected in subsurface soils or groundwater. If benzene is not detected, Cleanup Level is 100 ppm. MTCA = Model Toxics Control Act

NA= Not Analyzed

ft bsg = feet below surface grade

mg/Kg = milligrams per Kilogram or parts per million (ppm) BOLD = sample yielded detectable concentration of analyzed compound

				TABLE 3Volatile Organic Composition01 South First Streetna, Washington 98901		
Sample I.D.	Depth			by EPA Me	Compounds (VOCs) ethod 8260D g/Kg)	
	(ft bsg)	Date Collected	Tetrachloroethene (PCE)	Trichloroethene (TCE)	(cis) 1,2-Dichloroethene [(cis) 1,2-DCE]	Vinyl Chloride (VC)
			MONITORING	WELL INSTATLATION (BMEC) - MA	Y 2023	
<u>MW3a-5-19-23-20'</u>	20'	5/19/23	< 0.0013	< 0.0013	< 0.0013	< 0.0013
<u>MW3a-5-19-23-30'</u>	<u>23-30'</u> 30' 5/19/23		< 0.00095	< 0.00095	< 0.00095	< 0.00095
<u>MW7-5-19-23-18'</u>	18'	5/19/23	< 0.0011	< 0.0011	< 0.0011	< 0.0011
<u>MW7-5-19-23-25'</u>	25'	5/19/23	0.0018	< 0.00096	< 0.00096	< 0.00096
<u>MW8-5-19-23-18'</u>	18'	5/19/23	< 0.0012	< 0.0012	< 0.0012	< 0.0012
MW8-5-19-23-25'	25'	5/19/23	< 0.00095	< 0.00095	< 0.00095	< 0.00095
<u>MW9-5-19-23-18'</u>	18'	5/19/23	0.00099	< 0.00078	< 0.00078	< 0.00078
<u>MW9-5-19-23-27'</u>	27'	5/19/23	0.0026	< 0.0012	< 0.0012	< 0.0012
			Ecology MTCA Method A So	il Cleanup Levels for Unrestrict	ed Land Use (mg/Kg)	
Unrestricted	Land Us	е	0.05	0.03	DNE	DNE
Notes: MTCA = Model Toxics C NA = Not Analyzed DNE = Does Not Exist ft bsg = feet below surfar mg/Kg = milligrams per H BOLD = sample yielded	ce grade Kilogram ol					

			s	Soil Sample Re	TABLE 4 esults - Total M	letals (mg/Kg) ¹			
			Hah		npany - 1201 a, Washington		reet			
Sample I.D. Depth (ft bsg)	(ɓs	cted			Total	Metals via EPA	Methods 6010D	/7471B		
	Depth (ft b	Date Collected	Arsenic	Barlum	Cadmium	Chromium ³	Mercury ⁴	Lead	Selenium	Silver
				BMEC SUBSURFA	CE INVESTIGATION	- FEBRUARY 2022	1	1		
SB1-2-1-22-5'	5'	2/1/22	< 10	30	< 0.52	7.9	< 0.26	< 5.2	< 10	< 1.0
<u>SB1-2-1-22-10'</u>	10'	2/1/22	< 11	61	2.5	12	< 0.27	45	< 11	< 1.1
<u>SB1-2-1-22-15'</u>	15'	2/1/22	< 11	45	< 0.54	5.4	< 0.27	< 5.4	< 11	< 1.1
<u>SB2-2-1-22-5'</u>	5'	2/1/22	< 10	72	< 0.52	34	< 0.26	< 5.2	< 10	< 1.0
<u>SB2-2-1-22-10'</u> SB2-2-1-22-15'	10'	2/1/22 2/1/22	< 11	27 32	< 0.53 < 0.52	5.5 6.4	< 0.26	< 5.3 31	< 11 < 10	< 1.1 < 1.0
	5'	2/1/22	< 10	28	< 0.52	6.4 5.8	< 0.26	31 < 5.2	< 10	< 1.0
<u>SB3-2-1-22-5'</u> <u>SB3-2-1-22-10'</u>	10'	2/1/22	< 10	28	< 0.52	5.8	< 0.26	< 5.2	< 10	< 1.0
<u>SB3-2-1-22-10</u> SB3-2-1-22-25'	25'	2/1/22	< 11	73	< 0.55	4.5	< 0.28	< 5.6	<11	< 1.1
SB4-2-1-22-5'	5'	2/1/22	< 10	47	< 0.51	7.8	< 0.25	< 5.1	< 10	< 1.0
SB4-2-1-22-10'	10'	2/1/22	< 10	41	< 0.52	7.9	< 0.26	< 5.2	< 10	< 1.0
SB4-2-1-22-15'	15'	2/1/22	< 11	31	< 0.53	6.4	< 0.27	< 5.3	< 11	< 1.0
SB4-2-1-22-20'	20'	2/1/22	< 11	36	< 0.54	6.1	< 0.27	< 5.4	< 11	< 1.1
SB5-2-1-22-5'	5'	2/1/22	< 10	39	< 0.51	7.4	< 0.26	< 5.1	< 10	< 1.0
<u>SB5-2-1-22-10'</u>	10'	2/1/22	< 11	24	< 0.53	5.2	< 0.26	9.4	< 11	< 1.1
SB5-2-1-22-15'	15'	2/1/22	< 12	66	< 0.58	4.3	< 0.29	< 5.8	< 12	< 1.2
<u>SB5-2-1-22-20'</u>	20'	2/1/22	< 12	79	< 0.58	2.9	< 0.29	< 5.8	< 12	< 1.2
<u>SB6-2-1-22-5'</u>	5'	2/1/22	< 11	53	< 0.53	11	< 0.27	21	< 11	< 1.1
SB6-2-1-22-10'	10'	2/1/22	< 10	48	< 0.52	8.4	< 0.26	< 5.2	< 10	< 1.0
<u>SB6-2-1-22-15'</u> SB6-2-1-22-20'	15' 20'	2/1/22 2/1/22	< 10	44 52	< 0.52	6.9 10	< 0.26	< 5.2	< 10	< 1.0
<u>SB6-2-1-22-20</u>	20	2/1/22	< 11 BMEC		< 0.53 SURFACE INVESTIGA			< 5.3	< 11	< 1.1
MW1-9-28-22-10'	10'	9/28/22	< 10	48	< 0.51	8.6	< 0.26	< 5.1	< 10	< 1.0
MW1-9-28-22-19'	19'	9/28/22	< 11	56	< 0.54	16	< 0.27	< 5.4	< 11	< 1.1
MW2-9-28-22-13'	13'	9/28/22	< 10	46	< 0.52	11	< 0.26	9.2	< 10	< 1.0
MW2-9-28-22-18'	18'	9/28/22	< 11	45	< 0.55	15	< 0.27	< 5.5	< 11	< 1.1
MW3-9-27-22-15'	15'	9/27/22	< 11	44	< 0.53	6.9	< 0.26	< 5.3	< 11	< 1.1
<u>MW3-9-27-22-23'</u>	23'	9/27/22	< 11	41	< 0.54	7.1	< 0.27	< 5.4	< 11	< 1.1
MW4-9-27-22-16'	16'	9/27/22	< 10	46	< 0.52	8.1	< 0.26	5.9	< 10	< 1.0
<u>MW4-9-27-22-20'</u>	20'	9/27/22	< 11	30	< 0.53	5.8	< 0.26	< 5.3	< 11	< 1.1
<u>MW5-9-27-22-15'</u>	15'	9/27/22	< 10	45	< 0.51	9.2	< 0.26	< 5.1	< 10	< 1.0
<u>MW5-9-27-22-20'</u>	20'	9/27/22	< 11	53	< 0.54	13	< 0.27	< 5.4	< 11	< 1.1
<u>MW6-9-27-22-15'</u>	15'	9/27/22	< 10	34 65	< 0.51	9.1 9.5	< 0.26	< 5.1	< 10	< 1.0
<u>MW6-9-27-22-21'</u>	21'	9/27/22	< 10		< 0.51 ELL INSTALLATION (B		< 0.26	11	< 10	< 1.0
MW3a-5-19-23-20'	20'	5/19/23	< 11	53	< 0.53	5.4	< 0.26	< 5.3	< 11	< 1.1
MW3a-5-19-23-30'	30'	5/19/23	< 11	55	< 0.55	6.0	< 0.28	< 5.5	< 11	< 1.1
MW7-5-19-23-18'	18'	5/19/23	< 11	26	< 0.53	6.2	< 0.27	< 5.3	< 11	< 1.1
MW7-5-19-23-25'	25'	5/19/23	< 11	32	< 0.54	6.9	< 0.27	< 5.4	< 11	< 1.1
MW8-5-19-23-18'	18'	5/19/23	< 11	47	< 0.54	8.8	< 0.27	< 5.4	< 11	< 1.1
MW8-5-19-23-25'	25'	5/19/23	< 11	28	< 0.55	8.8	0.38	< 5.5	< 11	< 1.1
MW9-5-19-23-18'	18'	5/19/23	< 10	56	< 0.52	6.1	< 0.26	< 5.2	< 10	< 1.0
<u>MW9-5-19-23-27'</u>	27'	5/19/23	< 12	67	< 0.58	12	< 0.29	< 5.8	< 12	< 1.2
l In	nrestricted Land U	se	20 Ecology N	ITCA Method A Soil DNE	Cleanup Levels for L	Inrestricted Land U 19	se (mg/Kg) 2	250	DNE	DNE
Notes:			20	DINE	2	19	2	200	DINE	DINE

¹ Table 2 contains total metal analysis results for all soil samples collected by Waste Watch. The 2009 metals results for soil samples collected by Ecology and Environment are included in tables located in Appendix D.

² Sample analysis performed past method-specified holding time per client's approval.
 ³ MTCA Method A Cleanup Level for Unrestricted Land Use for Chromium VI. Cleanup Level for Chromium III is 2,000 mg/Kg.

⁴ Mercury analyzed via EPA Method 7471A.
 ⁵ Soil sample SB24-7.5 was also analyzed for hexavalent chromium via EPA Method 7196A and yielded a non-detect (< 1.2 mg/Kg).
 MTCA = Model Toxics Control Act

MTCA = Model Toxics Control Act NA = Not Analyzed DNE = Does Not Exist ft bsg = feet below surface grade mg/Kg = milligrams per Kilogram or parts per million (ppm) BOLD = sample yielded detectable concentration of analyzed compound BOLD sample yielded detectable concentration of analyzed compound at levels exceeding MTCA Method A Cleanup levels for Unrestricted Land Use

	Groundwater Sa	TABLE 5mple Results - Total Petroleur1201 South First StreeYakima, Washington 989	t	
		TPH-Diesel and Heavy Oil by	Northwest Method NWTPH-Dx	
Sample I.D.	Date Collected	TPH-D	трн-о	TPH-Gasoline by Northwe NWTPH-Gx
		MONITORING WELLS		
	10/3/22	< 200	< 200	< 100
	12/15/22	< 210	< 210	< 500
MW1	3/28/23	< 150	< 150	NA
	6/13/23	< 210	< 210	NA
	10/3/22	< 210	< 210	< 100
	12/15/22	< 220	240	< 500
MW2	3/28/23	< 150	150	NA
	6/13/23	< 210	< 210	NA
	10/3/22	< 200	< 200	< 100
MW3	12/15/22	< 230	< 230	< 500
	3/28/23	< 220	< 220	NA
MW3A	6/13/23	< 210	< 210	NA
	10/3/22	< 210	< 210	< 100
MW4	12/15/22	< 230	< 230	< 500
111224	3/28/23	< 150	< 150	NA
	6/13/23	< 210	< 210	NA
	103/22	< 210	< 210	< 100
MAG	12/15/22	< 220	< 220	< 500
MW5	3/28/23	< 150	< 150	NA
	6/13/23	< 210	< 210	NA
	10/3/22	< 210	< 210	< 100
MING	12/15/22	< 220	< 220	< 500
MW6	3/28/23	< 150	< 150	NA
	6/13/23	< 210	< 210	NA
MW7	6/13/23	< 210	< 210	NA
MW8	6/13/23	< 220	< 220	NA
MW9	6/13/23	< 210	< 210	NA
		logy MTCA Method A Groundwater Cleanu		
Clear	nup Level	500	500	800/1,000 ¹

Notes:

¹ MTCA Method A Cleanup Level for TPH-G is 800 ppb if benzene is detected in subsurface soils or groundwater. If benzene is not detected, Cleanup Level is 1,000 ppb.

MTCA = Model Toxics Control Act

 μ g/L = micrograms per Liter or parts per billion (ppb)

BOLD = sample yielded detectable concentration of analyzed compound.

BOLD Concentration exceeds the MTCA Method A Cleanup Level.

west Method
x
1
1
1
1
1
1
1

									tors C	ompar	ny - 120	01 Sou on 989	th 1st		ds (µg	_,							
Sample I.D.												Organic C y EPA Me (με											-
	Date Collected	Benzene	Toluene	Ethylbenzene	Total Xylenes	EDB	EDC	2-Hexanone	n-Propyl-benzene	MTBE	Naphthalene	124-TMB	135-TMB	p- Isopropyltoluene	n-Butylbenzene	Acetone	Cabon Disulfide	2-Butanone	Chloroform	Vinyl Chloride	(cis) 1,2- Dichloroethene	Trichloroethene (TCE)	
	10/0/00									1	RING WE												
MW1	10/3/22	< 0.20	< 1.0	< 0.20	< 0.60	< 0.010	< 0.20	< 2.0	< 0.20	< 0.20	< 1.3	< 0.20	< 0.20	< 0.20	< 0.20	< 5.0	< 0.20	< 5.0	6.1	< 0.20	< 0.20	< 0.20	
	12/15/22	< 0.20	< 1.0	< 0.20	< 0.60	< 0.010	< 0.20	< 2.0	< 0.20	< 0.20	< 1.0	< 0.20	< 0.20	< 0.20	< 0.20	< 5.0	< 0.26	< 5.0	< 1.0	< 0.20	< 0.20	< 0.20	
	3/28/23	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.20	< 0.20	< 0.20	
	6/13/23	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.20	< 0.20	< 0.20	
	10/3/22	0.62	< 1.0	0.44	0.45	< 0.010	< 0.20	< 2.0	0.30	< 0.20	< 1.3	< 0.20	< 0.20	< 0.20	< 0.20	< 5.0	< 0.20	< 5.0	5.0	< 0.20	< 0.20	< 0.20	
MW2	12/15/22	0.22	< 1.0	< 0.20	< 0.60	< 0.010	< 0.20	< 2.0	< 0.20	< 0.20	< 1.0	< 0.20	< 0.20	0.31	0.21	< 5.0	0.33	< 5.0	< 1.0	< 0.20	< 0.20	< 0.20	
	3/28/23	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.20	< 0.20	< 0.20	
	6/13/23	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.20	< 0.20	< 0.20	
	10/3/22	< 0.20	< 1.0	< 0.20	< 0.60	< 0.010	< 0.20	< 2.0	< 0.20	< 0.20	< 1.3	< 0.20	< 0.20	< 0.20	< 0.20	< 5.0	< 0.20	< 5.0	4.8	< 0.20	< 0.20	< 0.20	
MW3	12/15/22	< 0.20	< 1.0	< 0.20	< 0.60	< 0.010	< 0.20	< 2.0	< 0.20	< 0.20	< 1.0	< 0.20	< 0.20	< 0.20	< 0.20	< 5.0	< 0.26	< 5.0	2.7	< 0.20	< 0.20	< 0.20	
	3/28/23	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.20	< 0.20	< 0.20	
MW3A	6/13/23	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.20	< 0.20	< 0.20	
-	10/3/22	0.67	< 1.0	0.22	0.26	< 0.010	< 0.20	< 2.0	< 0.20	< 0.20	< 1.3	< 0.20	< 0.20	< 0.20	< 0.20	5.2	0.23	< 5.0	3.6	< 0.20	< 0.20	< 0.20	
	12/15/22	0.23	< 1.0	< 0.20	< 0.60	< 0.010	< 0.20	< 2.0	< 0.20	< 0.20	< 1.0	< 0.20	< 0.20	< 0.20	< 0.20	< 5.0	0.36	< 5.0	2.5	< 0.20	< 0.20	< 0.20	
	3/28/23	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.20	< 0.20	< 0.20	
	6/13/23	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.20	< 0.20	< 0.20	(
	10/3/22	1.7	2.2	0.68	1.45	< 0.010	< 0.20	2.3	0.34	< 0.20	< 1.3	0.25	< 0.20	0.30	0.25	11	< 0.20	< 5.0	5.6	< 0.20	< 0.20	< 0.20	
104/5	12/15/22	< 0.20	< 1.0	< 0.20	< 0.60	< 0.010	< 0.20	< 2.0	< 0.20	< 0.20	< 1.0	< 0.20	< 0.20	< 0.20	< 0.20	< 5.0	0.34	< 5.0	2.6	< 0.20	< 0.20	< 0.20	
MW5	3/28/23	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.20	< 0.20	< 0.20	
	6/13/23	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.20	< 0.20	< 0.20	
	10/3/22	0.65	1.0	0.26	0.24	< 0.010	< 0.20	< 2.0	< 0.20	< 0.20	< 1.3	< 0.20	< 0.20	< 0.20	< 0.20	< 5.0	< 0.20	< 5.0	4.5	< 0.20	< 0.20	< 0.20	
	12/15/22	< 0.20	< 1.0	< 0.20	< 1.0	< 0.010	< 0.20	< 2.0	< 0.20	< 0.20	< 1.0	< 0.20	< 0.20	< 0.20	< 0.20	< 5.0	< 0.26	< 5.0	2.9	< 0.20	< 0.20	< 0.20	
MW6	3/28/23	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.20	< 0.20	< 0.20	
	6/13/23	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.20	< 0.20	< 0.20	
MW7	6/13/23	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.20	< 0.20	< 0.20	
	6/13/23	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.20	< 0.20	< 0.20	
MW8	6/13/23	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.20	< 0.20	< 0.20	
MW8 MW9								Ecology I	MTCA Me	thod A Gr	oundwat	er Cleanu	p Levels	(μg/L)									_
						0.010	5	DNE	DNE	20	160	DNE	DNE	DNE	DNE	DNE	DNE	DNE	DNE	0.2	DNE	5	

Sample I.D.	Date Collected	Total Mercury by EPA Method 200.8 (μg/L)	Total Metals via EPA Method 200.8							
			Arsenic	Barium	Cadmium	Chromium ¹	Lead	Selenium	Silver	
		I <u> </u>		Мог	itoring Wells	1 1		1 1		
M\A/4	10/3/22	< 0.50	12	340	< 4.4	110	16	< 5.6	< 11	
MW1	12/15/22	< 0.50	28	580	< 4.4	150	26	< 5.6	< 11	
	3/28/23	< 0.50	< 3.3	NA	< 4.4	15	2.5	NA	NA	
	6/13/23	< 0.50	9.3	NA	< 4.4	73	11	NA	NA	
	10/3/22	1.2	58	2400	< 4.4	430	160	7.6	< 11	
MW2	12/15/22	0.58	34	1300	< 4.4	210	75	< 5.6	< 11	
	3/28/23	< 0.50	< 3.3	NA	< 4.4	< 11	< 1.1	NA	NA	
	6/13/23	< 0.50	< 3.3	NA	< 4.4	< 11	< 1.1	NA	NA	
	10/3/22	< 0.50	16	550	< 4.4	120	27	< 5.6	< 11	
MW3	12/15/22	< 0.50	43	1100	< 4.4	340	73	6.7	< 11	
	3/28/23	1.5	88	NA	6.5	1100	220	NA	NA	
MW3A	6/13/23	< 0.50	< 3.3	NA	< 4.4	< 11	< 1.1	NA	NA	
	10/3/22	1.5	67	2700	< 4.4	400	110	9.9	< 11	
MW4	12/15/22	1.3	66	1900	< 4.4	320	77	7.1	< 11	
	3/28/23	< 0.50	< 3.3	NA	< 4.4	< 11	< 1.1	NA	NA	
	6/13/23	< 0.50	< 3.3	NA	< 4.4	< 11	< 1.1	NA	NA	
	10/3/22	< 0.50	18	790	< 4.4	210	36	< 5.6	< 11	
MW5	12/15/22	< 0.50	28	690	< 4.4	180	38	< 5.6	< 11	
	3/28/23	< 0.50	< 3.3	NA	< 4.4	< 11	< 1.1	NA	NA	
	6/13/23	< 0.50	< 3.3	NA	< 4.4	< 11	< 1.1	NA	NA	
	10/3/22	0.61	39	600	< 4.4	81	39	5.9	< 11	
MW6	12/15/22 3/28/23	2.1 < 0.50	150 < 3.3	1900 NA	< 4.4	330 < 11	140 < 1.1	11 NA	< 11 NA	
MW/7									NA NA	
									NA	
	_								NA	
11113	0/10/20	10.00					\$ 1.1		114	
Cleanup L	evels	2	5	DNE	5	50	15	DNE	DNE	
otes:	leanup Level fc ss Control Act thane ery-butyl ether nethylbenzene nethylbenzene st	< 0.50 < 0.50 < 0.50 < 0.50 2 or total chromium (chro	5	DNE	< 4.4 < 4.4 < 4.4 < 4.4 Groundwater Clear 5		< 1.1 < 1.1 1.1 < 1.1 15	NA NA NA DNE		

APPENDIX A

MARCH 14, 2023 DEPARTMENT OF ECOLOGY OPINION LETTER

STATE OF WASHINGTON DEPARTMENT OF ECOLOGY

Central Region Office 1250 West Alder St., Union Gap, WA 98903-0009 • 509-575-2490

March 14, 2023

Debra Manjarrez Manjarrez & De Leon Inc, PS 2010 W. Nob Hill Blvd., Suite 1 Yakima, WA 98902

Re: Opinion on Proposed Cleanup of the Following Site:

	Site Name:	Hahn Motor Company
•	Site Address:	1201 S. 1 st Street, Yakima
٠	Facility/Site ID:	502
	Cleanup Site ID:	4927

• VCP Project No.: CE0529

Dear Debra Manjarrez:

The Washington State Department of Ecology (Ecology) received your request for an opinion on your proposed independent cleanup of the Hahn Motor Company facility (Site). This letter provides our opinion. We are providing this opinion under the authority of the Model Toxics Control Act (MTCA), Chapter 70A.305 RCW.¹

Issue Presented and Opinion

Upon completion of the proposed cleanup, will further remedial action likely be necessary to clean up contamination at the Site?

YES. Ecology has determined that, upon completion of your proposed cleanup, further remedial action will likely be necessary to clean up contamination at the Site.

This opinion is based on an analysis of whether the remedial action meets the substantive requirements of MTCA, Chapter 70A.305 RCW, and its implementing regulations, Chapter 173-340 WAC² (collectively "substantive requirements of MTCA"). The analysis is provided below.

¹ https://app.leg.wa.gov/rcw/default.aspx?cite=70A.305

² https://apps.leg.wa.gov/wac/default.aspx?cite=173-340

Debra Manjarrez Manjarrez & De Leon Inc, PS March 14, 2023 Page 2

Description of the Site

This opinion applies only to the Site described below. The Site is defined by the nature and extent of contamination associated with the following releases:

- Tetrachloroethylene (PCE) into the soil and groundwater.
- Diesel and Heavy Oil into the soil and groundwater.
- Metals into the soil and groundwater.

Please note the Site is a known sub-facility of the Yakima Railroad facility (# 500). The Yakima Railroad's comingled plume comprises of a number of sub-facilities along the Yakima Railroad Corridor. Each sub-facility must demonstrate that site soils meet appropriate MTCA cleanup levels or removed to the greatest extent practicable and are no longer contributing to the areawide PCE contamination. Vapor Intrusion is a concern that must also be considered as part of any long-term remediation of sites within the Yakima Railroad plume. The remainder of this opinion does not apply to Yakima Railroad facility, or the other Sub-facilities associated with the Yakima Railroad facility.

Basis for the Opinion

This opinion is based on the information contained in the following documents:

- 1. Blue Mountain Environmental and Consulting Company, Inc., December 2022 Groundwater Sampling Event Report, January 27, 2023.³
- 2. Blue Mountain Environmental and Consulting Company, Inc., September 2022 Additional Subsurface Investigation Report, October 17, 2022.⁴
- 3. Blue Mountain Environmental and Consulting Company, Inc., Drywell Decommissioning and Contaminated Soil Removal Report, July 28, 2022.⁵
- 4. Blue Mountain environmental and Consulting Company, Inc., February 1, 2022 Subsurface Investigation Report, March 4, 2022.⁶
- 5. State of Washington Department of Ecology, Further Action Letter, February 23, 2016.⁷

³ https://apps.ecology.wa.gov/cleanupsearch/document/122389

⁴ https://apps.ecology.wa.gov/cleanupsearch/document/118102

⁵ https://apps.ecology.wa.gov/cleanupsearch/document/114972

⁶ https://apps.ecology.wa.gov/cleanupsearch/document/111174

⁷ https://apps.ecology.wa.gov/cleanupsearch/document/53701

Debra Manjarrez Manjarrez & De Leon Inc, PS March 14, 2023 Page 3

- 6. PETCO Incorporated, Underground Storage Tank Decommissioning & Site Assessment Report For UST Site #200130 Yakima, Washington, February 2008.⁸
- 7. PLSA Engineering & Surveying, Letter regarding land farming sampling, June 29, 1992.⁹
- 8. Hahn Motor Company Site Hazard Assessment, March 12, 1991.¹⁰
- 9. Earth Consultants, Inc., Preliminary Integrity Assessment of Two Underground Storage Tanks (UST)s and Three Industrial Waste Water Sumps, October 25, 1989.¹¹

A number of these documents are accessible in electronic form from the Site webpage.¹² The complete records are stored at the Central Regional Office of Ecology (CRO) for review by appointment only. Visit our Public Records Request page¹³ to submit a public records request or get more information about the process. If you require assistance with this process, you may contact the Public Records Officer at publicrecordsofficer@ecy.wa.gov or 509-575-2490.

This opinion is void if any of the information contained in those documents is materially false or misleading.

Analysis of the Cleanup

Ecology has concluded that, upon completion of your proposed cleanup, **further remedial action** will likely be necessary to clean up contamination at the Site. That conclusion is based on the following analysis:

1. Characterization of the Site.

Ecology has determined your characterization of the Site is not sufficient to establish cleanup standards and select a cleanup action.

Cleanup standards cannot be established until the nature of contamination is characterized. It is possible the metals found within the groundwater are not representative of Site contamination. Site samples indicate elevated concentrations of metals across the site.

Elevated metal concentrations maybe explained by water turbidity. It would be prudent to collect turbidity readings going forward along with both unfiltered and filtered samples.

⁸ https://apps.ecology.wa.gov/cleanupsearch/document/4485

⁹ https://apps.ecology.wa.gov/cleanupsearch/document/4481

¹⁰ https://apps.ecology.wa.gov/cleanupsearch/document/4484

¹¹ https://apps.ecology.wa.gov/cleanupsearch/document/4482

¹² https://apps.ecology.wa.gov/cleanupsearch/site/4927

¹³ https://ecology.wa.gov/publicrecords

Debra Manjarrez Manjarrez & De Leon Inc, PS March 14, 2023 Page 4

Sometimes filtered samples have lower concentrations as the metal particulates get removed leaving only the metals that have solubilized.

It is also possible further assessment is necessary to determine groundwater Cleanup standards for metals. MTCA allows for the establishment of background Cleanup Levels as long as sufficient evidence is provided to determine their use. If further characterization is necessary additional wells and researching the metals concentrations of other sites within the area could prove necessary.

As the Site is a sub-facility of the Yakima Railroad facility (#500), it is important to demonstrate that site soils meet MTCA PCE cleanup standards. PCE and its degradation products must be below cleanup levels or removed to the greatest extent practicable. The Site must also demonstrate that it no longer is contributing to the areawide PCE plume. Contribution to the areawide PCE groundwater plume is defined by the concentration of PCE and its degradation products entering and leaving the Site. PCE degradation products are trichloroethylene (TCE), cis-1,2-dichloroethylene (Cis-DCE), and vinyl chloride (VC).

2. Establishment of cleanup standards.

Ecology has determined the cleanup levels and points of compliance currently documented in the December 2022 Groundwater Sampling Event Report and the September 2022 Additional Subsurface Investigation Report meet the substantive requirements of MTCA. However, they don't sufficiently capture all contaminants of concern. The degradation products of PCE must also be considered.

The MTCA Method A Cleanup Levels for unrestricted land uses (soil) and beneficial water uses (groundwater) are:

Contaminant	Soil Cleanup Levels (mg/Kg)	Groundwater Cleanup Levels (μg/L)	
Diesel	2,000	500	
Heavy Oil	2,000	500	
PCE	0.05	5	
Arsenic	20	5	
Cadmium	2	5	
Chromium	19	50	
Lead	250	15	
Mercury	2	2	

*Metal Cleanup Levels maybe subject to further evaluation depending on additional investigation.

Debra Manjarrez Manjarrez & De Leon Inc, PS March 14, 2023 Page 5

The MTCA Method A Cleanup Levels for PCE's degradation products in groundwater are:

Contaminant	Groundwater Cleanup Levels (µg/L)			
TCE	5			
Cis-DCE	70			
VC	0.2			

A standard point of compliance (POC) was selected for both soil and groundwater on the Site. Standard POC for soil, based on direct contact for unrestricted land use, is defined as throughout the Site from the ground surface to 15 feet below the ground surface. The standard POC for Groundwater, based on drinking water beneficial use, is defined as throughout the Site from the uppermost level of the saturated zone extending vertically to the lowest most depth that could potentially be affected by the Site.

3. Selection of cleanup action.

Further investigation is required to determine if or what additional cleanup action is necessary. Investigation into the elevated metal concentrations and the nature of what is causing the elevated groundwater concentrations of metals is essential to determine what or if further remedial action is needed. It must also be demonstrated that the Site is no longer contributing to the greater Yakima Railroad facility PCE groundwater plume. These data gaps must be known prior to selecting a cleanup action for the Site.

Limitations of the Opinion

1. Opinion does not settle liability with the state.

Liable persons are strictly liable, jointly, and severally, for all remedial action costs and for all natural resource damages resulting from the release or releases of hazardous substances at the Site. This opinion **does not**:

- Resolve or alter a person's liability to the state.
- Protect liable persons from contribution claims by third parties.

To settle liability with the state and obtain protection from contribution claims, a person must enter into a consent decree with Ecology under RCW 70A.305.040(4).¹⁴

2. Opinion does not constitute a determination of substantial equivalence.

To recover remedial action costs from other liable persons under MTCA, one must demonstrate that the action is the substantial equivalent of an Ecology-conducted or Ecology-

¹⁴ https://app.leg.wa.gov/rcw/default.aspx?cite=70A.305.040

Debra Manjarrez Manjarrez & De Leon Inc, PS March 14, 2023 Page 6

supervised action. This opinion does not determine whether the action you proposed will be substantially equivalent. Courts make that determination. *See* RCW 70A.305.080¹⁵ and WAC 173-340-545.¹⁶

3. Opinion is limited to proposed cleanup.

This letter does not provide an opinion on whether further remedial action will actually be necessary at the Site upon completion of your proposed cleanup. To obtain such an opinion, you must submit a report to Ecology upon completion of your cleanup and request an opinion under the VCP.

4. State is immune from liability.

The state, Ecology, and its officers and employees are immune from all liability, and no cause of action of any nature may arise from any act or omission in providing this opinion. *See* RCW 70A.305.170.¹⁷

Contact Information

Thank you for choosing to clean up your site under the Voluntary Cleanup Program (VCP). After you have addressed our concerns, you may resubmit your proposal for our review. Please do not hesitate to request additional services as your cleanup progresses. We look forward to working with you.

For more information about the VCP and the cleanup process, please visit our VCP webpage.¹⁸ If you have any questions about this opinion, please contact me by phone at 509-406-6959 or by email at Kyle.Parker@ecy.wa.gov.

Sincerely,

Kyle Parker Toxics Cleanup Program Central Regional Office

Enclosures: A – Description and Diagram of the Site

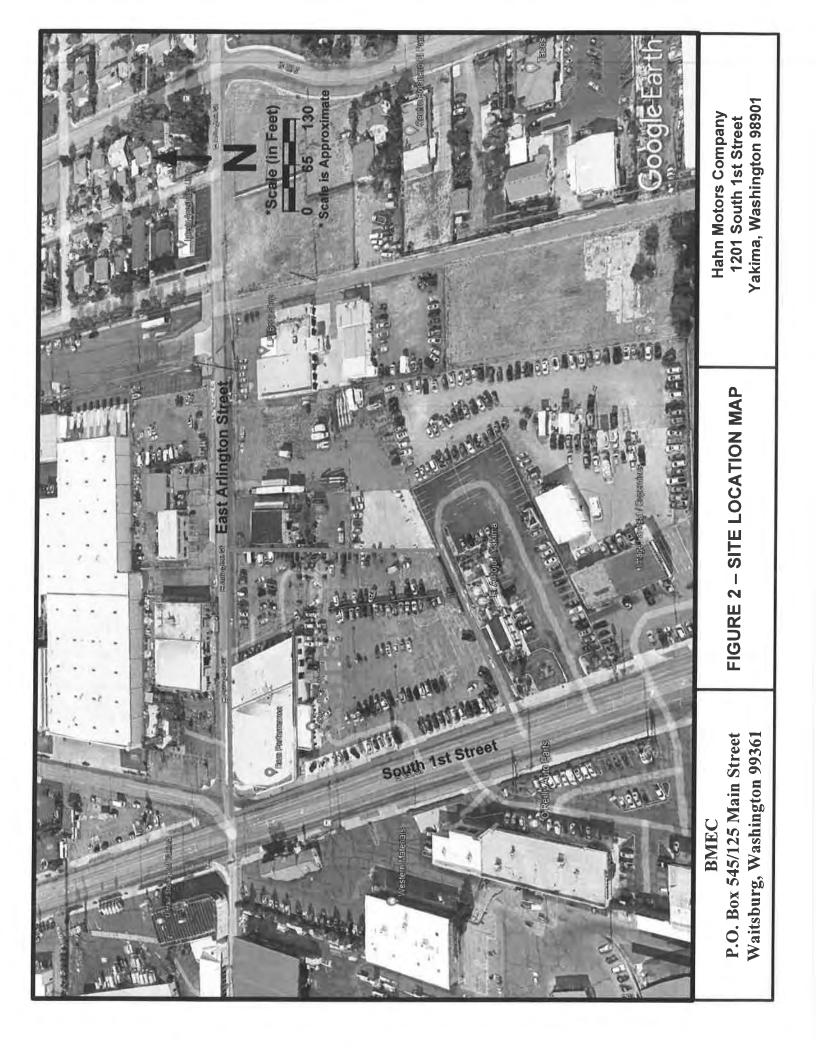
cc: Peter Trabusiner, BMEC Company

¹⁵ https://app.leg.wa.gov/rcw/default.aspx?cite=70A.305.080

¹⁶ https://app.leg.wa.gov/wac/default.aspx?cite=173-340-545

¹⁷ https://app.leg.wa.gov/rcw/default.aspx?cite=70A.305

¹⁸ www.ecy.wa.gov/vcp


Enclosure A

Description and Diagram of the Site

Site Diagram

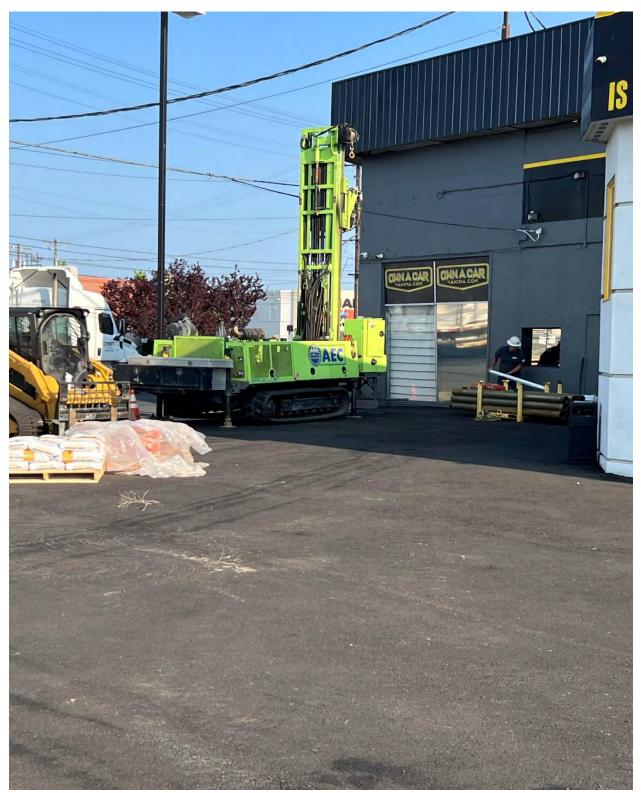
Site Description

Hahn Motor Company facility (Site) is located on the southeast corner of South 1st Street and East Arlington Street in the city of Yakima, Washington. The Site historically had a heating oil tank which was converted to a waste oil tank after it was no longer used for its intended original use. A second waste oil tank was also installed at the site. The diesel, heavy oil, and tetrachloroethylene (PCE) contamination at the site is believed to be released from those tanks and potentially form the maintenance shop for the auto dealer. The nature and extent of metals found within the groundwater is still under investigation. Diesel, heavy oil, and PCE were released to soil and migrated to groundwater. PCE and its degradation products poses a potential vapor intrusion threat at the Site and therefore is a potential pathway to exposure for workers within the structure. As most of the site is covered with cement or asphalt contact to soils is unlikely unless soil disturbance occurs. Contaminated sites are defined by their release(s) and where contamination associated with the release(s) has come to be located. The Site as currently known to Ecology is located within the property of the original release, as shown in the Site Diagram.

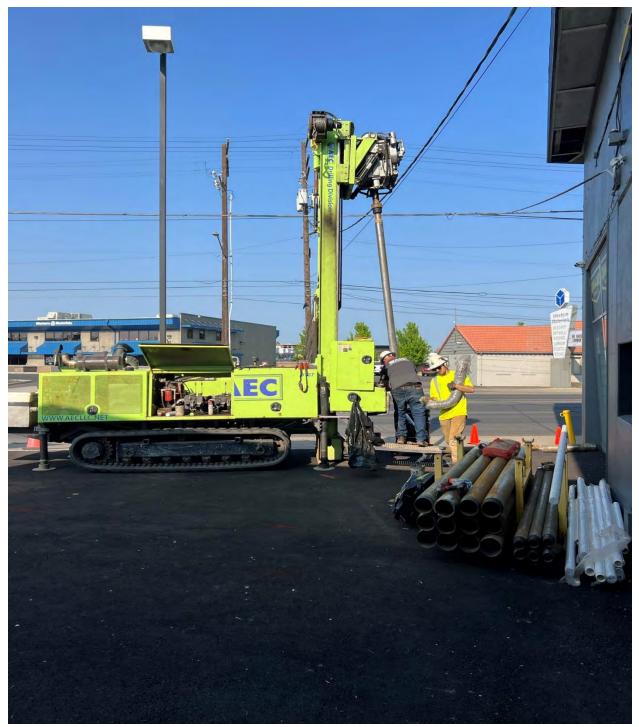
APPENDIX B

BORING LOGS

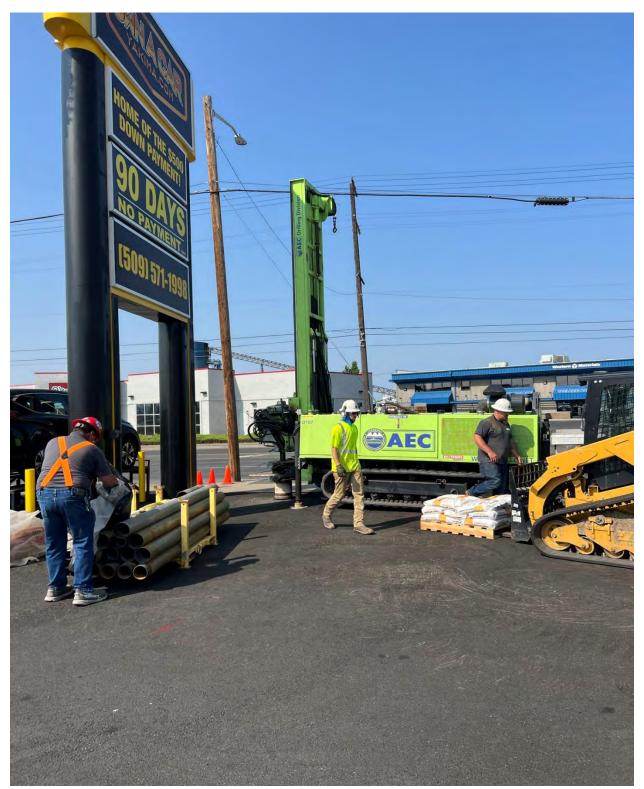
	Bldg	N	B	ORING/WELL CONSTRU	ICTION LOG		
roject N		SUNP & MW3A					17 j e
roject N ocation	ame Ad	2023/040 ditional ST	+ May,202 et. Jahima		mber <u>MW.3A</u> 5/(8/23) Diameter (-" ()))		
rilling N ampling	lethod Method Elevation	ore Barrel /	Sample Bag	Continuous) Gravel Pack T	vps, Silica San	PVC/0.01	O"PVC 2"
	asing Elev		LHG	Depth to Wate	Pentonite In/Date 19.00 h	DC 6/13/23	5
emarks		1	<u>.</u>	Drilling Co. A	nderson Envir	conmental Con	ntracting (AEC)
Blow Counts	Recovery (%) Sampling	Netrod Sample Depth (ft. BGL) U.S.C.S Graphic Log		Lithologic Descripți	on	Contact Depth	Well Diagram
- NA	20			NO RECOVE	RV		H-H-I'
-			4				A A.2'
-		5			,		
_			an a			5.0	
-				conce V			00 00-8
),5),4		10	8-10: Bron	win, grovelly SAN	D, some sil		0 0 0
.5			10-20: P		AND & GRA	NEL, 10.0	0 - 66 - 10
).3).3	1		C	oarse, well-re	ounded, loos	se, dry	0 - 0
14							° - 00 9 - 0
0.7		15			and the second	15.0	0 - 00
2.2							00 - 00 R - 0
0.2			·	•	1		00 - 00
0.3 . 0,2		20	20-30; 1	Brown SAND Little	Corres wall	20.0	00 - 00
1			C	Brown SAND, little growel, little silt V. Wet, loose	little clay	Wet to	00 - 00
5.1 5.1			· ·	V. Wet, loose			0 00
D.1		25		· · · · · · · · · · · · · · · · · · ·	And an an other states and the second se	25.0	00 - 00
0							8 - 00
0.1							0-0
0							
0		30	· ·	7		30.0	00 - 00 .


あた	Bldg			BORING/WELL CONSTRUCTION LOG		
	+ Office					star is
Project N	lumber E 2			Bornightoon rounider / Wy		
Project N	12015		Stre	1 t Mart 202 du Date Drilled 5/19723		
Drilling M Sampling	g Method Co	rra Sor	Dic	15 Screen Type/Slot Schedule 40 PVC	10.01	O" PVC 2"
Sround E	Elevation asing Elevation		10,	Grout Type Denton te 111	11	
ogged b	by Drent	r Derc	qen		/13/23	5
Cemarks		TI	18	Drilling Co. Andergon Environmen	tal Co	intracting (AEC)
PID (ppm) Blow Counts	Recovery (%) Sampling Method	Depth (ft. BGL)	HOL.	Lithologic Description	of peter	ر
and the second se			101		Contact Depth	Well Diagram
AN PA	100		17	0-2": Asphalt		
>.1		IW	E	0-2": Asphalt 2": 2.5 : Brown SILT, trace gravel, trace V. fine sand, moist. 2.5-10; Gray, Sandy, coarse GRAVEL & COBBL	firm,	XX
.1		Ht		2.5-10; Gray, Sandy, coarse GRAVEL & COBBL Well-rounded, little silt, dry, loose	ES.	
0			5	well-rounded, little silt, dry, loose		
0		5	+		5.0	
3.1						
0		28	7			
0	1 1 1	I	11			00008
D.4 D.4	100	10	+	4	10.0	00-00-10
2.3			GP	10-12': SAA		0-0
0	111	1	SPI	12-20' BLOWN GAND & COAVEL COOL		0 0 0
0		The	D/a	Woll-rounded little coulde loor	P.	0 0 - 0 0
0		15	2	12-20': Brown, SAND & GRAVEL, coars Well-rounded, little cobbles, loos Wet @ 18'	15.0	0 - 0
0		IL			15.0	0 - a
0		6-6	/GP			00 - 00
O MW	7-5/1/23	X-P	125			00 - 00
0		20			6/3/23	· · · ·
0	100		5P/GP	20-21,5: 1 SAA	1 1	
0			ic.	21.5-25' Gran brown Sandy conce GRAV	1	00 - 00
0			2	21.5-25': Gray-brown, Sandy, coarse GRAVI little cobbles, saturated, loose,	th,	0
0]	1-r	פ	· · · · · · · · · · · · · · · · · · ·		0 - 00
0 MW7	5/19/23-	X 25	+	Th-act	25.0	25
	1123-1	PH-	1	TD=.25	1.1	
	./					
	1 1					
	1 1 1	30	1	, · · · · · · · · · · · · · · · · · · ·	30.0	

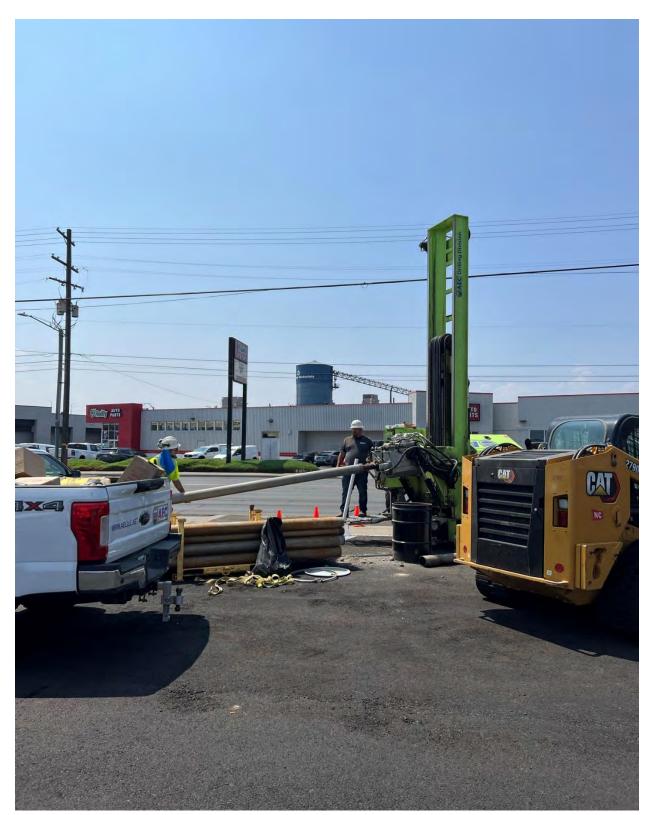
Project Na location Drilling Me Sampling I Sround Ek Top of Cas	mber 6 2 me Addi 2015 tihod Ter Method evation sing Elevation	ro Sor re Bar	Str	eet, Takin	02.30	oring/Well Number / MW	8	•••		
ocation Drilling Me Sampling I Scound Ek op of Cas ogged by Remarks (Edd) On op of Cas	2015 thod Ter Method evaluent sing Elevation Sing Elevation	15t or Sor	Str	eet, Takin	02.30	ate Drilled 5/19773		Contraction of the local division of the loc		
Sampling I Sround Ele op of Cas ogged by Remarks (Edd) CI A	Method evation sing Elevation	re Bar	rel	1 -		asing Type/Diameter	OD .	1		
PID (ppm) Blow Counts	Drent	Der		/Sample D	as (Continuous) G	Green Type/Slot Sched	Sand	10.01	a pvc	_2
PID (ppm) Blow Counts	2 22		gen	on, LHG	D	Pepin to Water/Date <u>19.5</u> Bround Water Elevation/Date	9	3/23		12
CIL MOLE	2 2 2 2 2		Graphic Log	· ·		Drilling Co. Anderson	Environmen		tracting	
DENA	1 1	Depth (fl. BGL)	Graph			ogic Descripțion		Contact Depth	Well Diag	gram
.3	80		ILI	0-3": AE	phalt SIT	ose, damp, trac Loarse GRAVEL y, Sandy, coar es, well-round	1		H-F	ł',
2.4		C	1.	1-2.5 B	rown Silty,	Loarse GRAVEL	well-round	ed.		7.2
2.4			9	2.5-10-11	little comble	y, Sandy, Coar es well-round	ed trace	L-,		
.8		5	+		Silt, loose	damp		5.0		
0.3				-		1				
0,3		-	5						00 01	- 8'
).2	100.	10	_			4		10.0	0 0	1
).[).[10-13:1	Nell-rounde	y, silty, coare	se GRAVEI	-1	σ <mark>-</mark> •	
0.6			5	1	loose, damp			F P	0 - 0	
0,3		15		15-20 ;	Drown - gr	ay, Sardy, C ded, little cobb	parse G	RAVE	5 00 - 00	
0.2					Silt, damp	loose,	Dies, Mille	15.0	0 - 0	
0.2			ħ	-					00-00	1
D.2MW8	1-5/19/23-1							6/10/	230 - 0	•
0.2 .	100	20	-	20-22	Brown Si	the course (2 COR	B20.0	¥ • •	
0.9			0	22.05	rounded, Tit	lefine sard, I	oose, mo	ist.	00-0	0
0.2			90	24-25:	Well-row	Hy, coarse (lefine sard, l ravelly SAND nded, trace co et, loose,	bles. t	0.0	00-0	•
0,1		× 25	01		silt, V. W	et, loose,		25.0	90-0	a
WW8	5/19/23-21				TD=25	ā				- 25
				1.						
				1						
				•			3	1 1		


	MW8-				BORING/WELL CONSTRUCTION LOG		
	3016	5 MW	1	1			izan a
Projeci	Numb	Addi	02.3		Boring/Well Number MW9 T + May 2023n Date Drilled	PC Constitue	
Drilling	Metho		151	Onic	I Screen Type/Slot Schedule 40 PVC	10.0	IO" PVC 2"
Ground	d Eleva	niion I Elevațio		urel	Grout Type Dentonite		
Logge	dby	Drent		rger	Cround Water Elevation/Date	13/2	1 1 1
PID (ppm)	other Division in which the Real Property lies in which the Real Property lies in which the Real Property lies in the Real	Sampling Method	Dapth (fil. BGL)	U.S.C.S Graphic Log	Drilling Co. Anderson Environmen Lithologic Description	Contact Depth	Well Diagram
TN			-			-	
1 1					NO RECOVERY		XXz'
-			-				
-			5	11		5.0	
1 4				-			
-							
-							8 -8
1 1	5		10			10.0	0 - 0-10
-				11			6 - 0
-			-		•		0 - 0
			15				0 - 0
0.3		,		IT	15-18: Gray - brown, Sandy, Coarse GRAVEL Well-rounded, loose, damp to moiet.	15.0	0 - 0
0.5					Well-'rounded', loose', damp to moiet.		0 - 0 0 0 - 0
0.2 M	W9-5	19/23-18	X	- and	18-20: Brown SAND & GRAVEL, coarse, well-round loose, wete 18	ed,	0 - 0
0.2	. 10	0	20	1			
0,1		~	-	-	20-26: Gray, pulverized, Silly, coarse GRA	VEL,	8 - 6
0.1					dry, loose		0 - 0
0.1						6/13/2	23 00 - 0
0.1			25	++		6/13/2	S 25
0					26-27: Brown, medium SAND, little cobble,	Viat	0 0
MW	7-5/19	123-27	7-17	++		1	1 2 2
				-	TD = 27		
	1		1-	11	115 1		

APPENDIX C

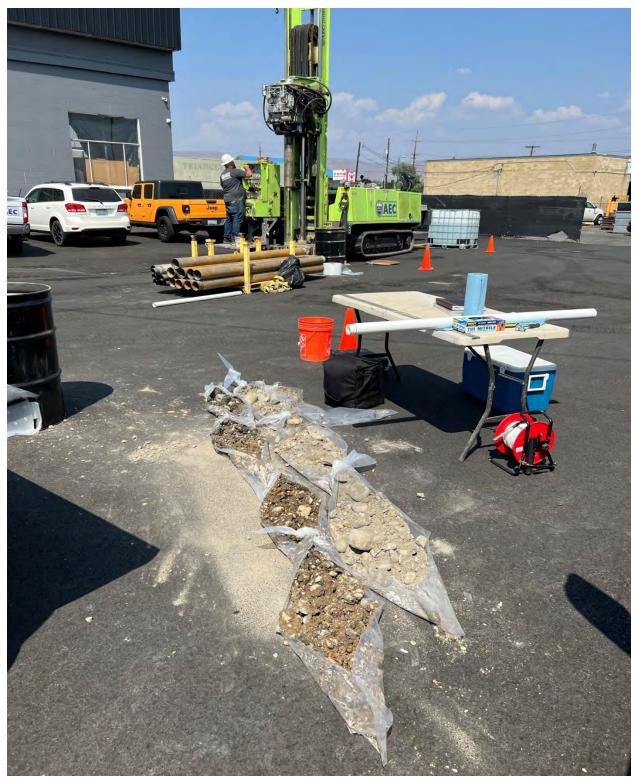

PHOTOGRAPHS

Photograph 1 – Terra sonic drilling rig set-up to advance boring MW7 on May 19, 2023 (facing NW).


Photograph 2 – Anderson Environmental Contracting (AEC) employee carrying a soil sample bag from the drill rig to the geologist's field table on May 19, 2023 (facing west).

Photograph 3 – Terra sonic drilling rig set-up to advance boring MW8 on May 19, 2023 (facing west).

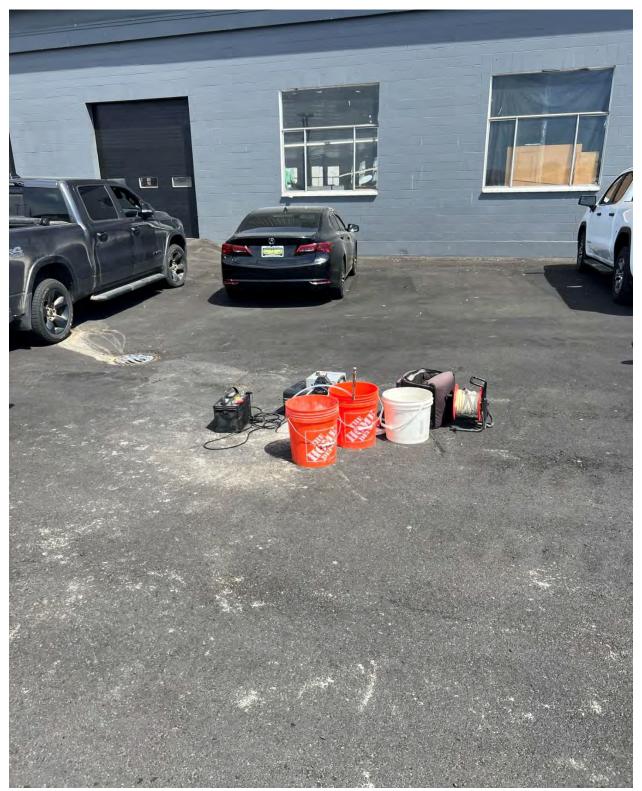
Photograph 4 – Soil cuttings from boring MW8 on May 19, 2023.


Photograph 5 – Terra sonic drilling rig set-up to advance boring MW9 on May 19, 2023 (facing west).

Photograph 6 – Terra sonic drilling rig set-up to advance boring MW3A on May 19, 2023 (facing north).

Photograph 7 – View of former monitoring well MW3 (left) and dry well (center) installed in June 2022. Replacement well boring MW3A is located immediately beneath the core barrel (facing north).

Photograph 8 – Soil lithology from 1 - 20 feet bgs in boring MW3A on May 19, 2023 (facing NE). Ten feet of soil cuttings still in the ground.


Photograph 9 – BMEC employee collecting a soil sample from boring MW3A on May 19, 2023 (facing north).

Photograph 10 – Purging groundwater from well MW4, prior to sample collection on June 13, 2023 (facing north).

Photograph 11 – View of the Horiba U-52 used to assess groundwater parameters in the field on June 13, 2023.

Photograph 12 – Purging groundwater from replacement well MW3A, prior to sample collection on June 13, 2023 (facing north).

APPENDIX D

GROUNDWATER SAMPLING FIELD DATA SHEETS

	Bldg	N	B	ORING/WELL CONSTRU	ICTION LOG		
roject N		SUNP & MW3A					17 j e
roject N ocation	ame Ad	2023/040 ditional ST	+ May,202 et. Jahima		mber <u>MW.3A</u> 5/(8/23) Diameter (-" ()))		
rilling N ampling	lethod Method Elevation	ore Barrel /	Sample Bag	Continuous) Gravel Pack T	vps, Silica San	PVC/0.01	O"PVC 2"
	asing Elev		LHG	Depth to Wate	Pentonite In/Date 19.00 h	DC 6/13/23	5
emarks		1	<u>.</u>	Drilling Co. A	nderson Envir	conmental Con	ntracting (AEC)
Blow Counts	Recovery (%) Sampling	Netrod Sample Depth (ft. BGL) U.S.C.S Graphic Log		Lithologic Descripți	on	Contact Depth	Well Diagram
- NA	20			NO RECOVE	RV		H-H-I'
-			4				A A.2'
-		5			,		
_			an a			5.0	
-				conce V			00 00-8
),5),4		10	8-10: Bron	win, grovelly SAN	D, some sil		0 0 0
.5			10-20: P		AND & GRA	NEL, 10.0	0 - 66 - 10
).3).3	1		C	oarse, well-re	ounded, loos	se, dry	0 - 0
14							° - 00 9 - 0
0.7		15			and the second	15.0	0 - 00
2.2							00 - 00 R - 0
0.2			·	•	1		00 - 00
0.3 . 0,2		20	20-30; 1	Brown SAND Little	Corres wall	20.0	00 - 00
1			C	Brown SAND, little growel, little silt V. Wet, loose	little clay	Wet to	00 - 00
5.1 5.1			· ·	V. Wet, loose			0 00
D.1		25		· · · · · · · · · · · · · · · · · · ·	And an an other states and the second se	25.0	00 - 00
0							8 - 00
0.1							0-0
0							
0		30	. · ·	7		30.0	00 - 00 .

あた	Bldg			BORING/WELL CONSTRUCTION LOG		
	+ Office					star is
Project N	lumber E 2			Bonnightoon radinider / Wy		
Project N	12015		Stre	1 t Mart 202 du Date Drilled 5/19723		
Drilling M Sampling	g Method Co	rra Sor	Dic	15 Screen Type/Slot Schedule 40 PVC	10.01	O" PVC 2"
Sround E	Elevation asing Elevation		10,	Grout Type Denton te 111	11	
ogged b	by Drent	r Derc	qen		/13/23	5
Cemarks		TI	18	Drilling Co. Andergon Environmen	tal Co	intracting (AEC)
PID (ppm) Blow Counts	Recovery (%) Sampling Method	Depth (ft. BGL)	HOL.	Lithologic Description	of peter	ر
and the second se			101		Contact Depth	
AN PA	100		17	0-2": Asphalt		
>.1		IW	E	0-2": Asphalt 2": 2.5 : Brown SILT, trace gravel, trace V. fine sand, moist. 2.5-10; Gray, Sandy, coarse GRAVEL & COBBL	firm,	XX
.1		Ht		2.5-10; Gray, Sandy, coarse GRAVEL & COBBL Well-rounded, little silt, dry, loose	ES.	
0			5	well-rounded, little silt, dry, loose		
0		5	+		5.0	
3.1						
0		28	7			
0	1 1 1	I	11			00008
D.4 D.4	100	10	+	4	10.0	00-00-10
2.3			GP	10-12': SAA		0-0
0	111	1	SPI	12-20' BLOWN GAND & COAVEL COOL		0 0 0
0		The	D/a	Woll-rounded little could loor	P.	0 0 - 0 0
0		15	2	12-20': Brown, SAND & GRAVEL, coars Well-rounded, little cobbles, loos Wet @ 18'	15.0	0 - 0
0		IL			15.0	0 - a
0		6-6	/GP			00 - 00
O MW	7-5/1/23	X-P	125			00 - 00
0		20			6/3/23	· · · ·
0	100		5P/GP	20-21,5: 1 SAA	1 1	
0			ŝ	21.5-25' Gran brown Sandy conce GRAV	1	00 - 00
0			2	21.5-25': Gray-brown, Sandy, coarse GRAVI little cobbles, saturated, loose,	th,	0
0]	1-r	פ	· · · · · · · · · · · · · · · · · · ·		0 - 00
0 MW7	5/19/23-	X 25	+	Th-act	25.0	25
	1123-1	PH-	1	TD=.25	1 1	
	./					
	1 1					
	1 1 1	30	1	, · · · · · · · · · · · · · · · · · · ·	30.0	

Project Na location Drilling Me Sampling I Sround Ek Top of Cas	mber 6 2 me Addi 2015 tihod Ter Method evation sing Elevation	ro Sor re Bar	Str	eet, Takin	02.30	oring/Well Number / MW	8			
ocation Drilling Me Sampling I Scound Ek op of Cas ogged by Remarks (Edd) On op of Cas	2015 thod Ter Method evaluent sing Elevation Sing Elevation	15t or Sor	Str	eet, Takin	02.30	ate Drilled 5/19773		Contraction of the local division of the loc		
Sampling I Sround Ele op of Cas ogged by Remarks (Edd) CI A	Method evation sing Elevation	re Bar	rel	1 -		asing Type/Diameter	OD .	1		
PID (ppm) Blow Counts	Drent	Der		/Sample D	as (Continuous) G	Green Type/Slot Sched	Sand	10.01	a pvc	_2
PID (ppm) Blow Counts	2 22		gen	on, LHG	D	Pepin to Water/Date <u>19.5</u> Bround Water Elevation/Date	9	3/23		12
CIL MOLE	2 2 2 2 2		Graphic Log	· ·		Drilling Co. Anderson	Environmen		tracting	
DENA	1 1	Depth (fl. BGL)	Graph			ogic Descripțion		Contact Depth	Well Diag	gram
.3	80		ILI	0-3": AE	phalt SIT	ose, damp, trac Loarse GRAVEL y, Sandy, coar es, well-round	1		H-F	ł',
2.4		C	1.	1-2.5 B	rown Silty,	Loarse GRAVEL	well-round	ed.		7.2
2.4			9	2.5-10-11	little comble	y, Sandy, Coar es well-round	ed trace	L-,		
.8		5	+		Silt, loose	damp		5.0		
0.3				-		1				
0,3		-	5						00 01	- 8'
).2	100.	10	_			4		10.0	0 0	-10
).[).[10-13:1	Nell-rounde	y, silty, coare	se GRAVEI	-1	σ <mark>-</mark> •	
0.6			5	1	loose, damp			F P	0 - 0	
0,3		15		12-20 ;	Drown - gr	ay, Sardy, C ded, little cobb	parse G	RAVE	5 00 - 00	
0.2					Silt, damp	loose,	Dies, Mille	15.0	0 - 0	
0.2			ħ	-					00-00	1
D.2MW8	1-5/19/23-1							6/10/	230 - 0	•
0.2 .	100	20	-	20-22	Brown Si	the course (2 COR	B20.0	¥ • •	
0.9			0	22.05	rounded, Tit	lefine sard, I	oose, mo	ist.	00-0	0
0.2			90	24-25:	Well-row	Hy, coarse (lefine sard, l ravelly SAND nded, trace co et, loose,	bles. t	0.0	00-0	•
0,1		× 25	01		silt, V. W	et, loose,		25.0	90-0	a
WW8	5/19/23-21				TD=25	ā				- 25
				1.						
				1						
				•			3	1 1		

	MW8-				BORING/WELL CONSTRUCTION LOG		
	3016	5 MW	1	1			izan a
Projeci	Numb	Addi	02.3		Boring/Well Number MW9 T + May 2023n Date Drilled	PC Constitue	
Drilling	Metho		151	Onic	I Screen Type/Slot Schedule 40 PVC	10.0	IO" PVC 2"
Ground	d Eleva	ntion I Elevatio		urel	Grout Type Dentonite		
Logge	dby	Drent		rger	Cround Water Elevation/Date	13/2	1 1 1
PID (ppm)	other Division in which the Real Property lies in which the Real Property lies in which the Real Property lies in the Real	Sampling Method	Dapth (fil. BGL)	U.S.C.S Graphic Log	Drilling Co. Anderson Environmen Lithologic Description	Contact Depth	Well Diagram
TN			-			-	
1 1					NO RECOVERY		XXz'
-			-				
-			5	11		5.0	
1 4				-			
-							
-							8 -8
1 1	5		10	++		10.0	0 - 0-10
-				11			6 - 0
-			-		•		0 - 0
			15				0 - 0
0.3		,		IT	15-18: Gray - brown, Sandy, Coarse GRAVEL Well-rounded, loose, damp to moiet.	15.0	0 - 0
0.5					Well-'rounded', loose', damp to moiet.		0 - 0 0 0 - 0
0.2 M	W9-5	19/23-18	X	- and	18-20: Brown SAND & GRAVEL, coarse, well-round loose, wete 18	ed,	0 - 0
0.2	. 10	0	20	1			
0,1		~	-	-	20-26: Gray, pulverized, Silly, coarse GRA	VEL,	8 - 6
0.1					dry, loose		0 - 0
0.1						6/13/2	23 00 - 0
0.1			25	++		6/13/2	S 25
0					26-27: Brown, medium SAND, little cobble,	Viat	0 0
MW	7-5/19	123-27	7-17	++		1	1 2 2
				-	TD = 27		
	1		1-	11	115 1		

WELL ID:		W1 No.: 120	15.1	* Stree	+ Yokin	WA/F	2023-1	Date: 6	/13/23	
	er/Compan				a, came			0001		~
							Water (DTW) l			8
leight of G	Groundwate	r Column (H) = TD - I	DTW (Feet)	:6,	72'	Well Radius	[r] (Inches):	1"	
	2-Inch	Diamet	er Well:		olume (V) of Gal/Foot] X [H		er Per Water	Column in (Gal = [0.163	1
	4-Inch	Diamet	er Well:		olume (V) of ial/Foot] X [F		er Per Water	Column in C	Gal = [0.653	
alculated	Volume of (Groundwat	er Needec	to be Ren	noved (Gal):_	31=	3.270	al		
(aluma)				GROUN	DWATER PA	RAMETERS				
Volume Purged (Gal)	рН	Temp (deg C)	Cond	Turb (ntw) >1000	Comments	[i.e., Odor(s	s), Water Colo	r/Silt Conter	nt, Sheen]	
1	6.65	17.91	0.348	> 1000	Mad SIN	y; greet	-gray;	<u>Carhalot</u>	05 OT (10,65
2	6.54	18.18	0.359	>1000			1			10.99
3	6.56	17.98	0.370	> 1000						11.05
4	6,64	8.03	0,368	> 1000			4			10.94
						-				
tual Volui	me Purged ((Gal)	4 gal		DTW After	Purging and	Before Samp	ling:	8.33	
			GRC		ER SAMPLE C	and the second se				-
Samp	e 10, 13/23	Time 1640		Analyses		# of Contain	ners/Size		Preserva	ative
N 1- 6/	242	1070	Dr	RA Met	10	calue.	2		HC	1
_				the statement of the st	d Solvents		4		HC	03
DTES: PU	rged v	ia peri	stattio	c pump	p x tub	ing (de	edicated	.)		
eather:	Juny	T~8	I°F W	16171	IPH	0				

VELL ID:	MW	12	_				Date:	6/13/23	5
acility Na	me/Project	No.: 120	15.15	+ Stree	t, Yakim	a, WA/E2.02			
	er/Company								
/ell Deptł	n (TD) below	Top of Ca	sing (TOC):	2	5'	Depth to Water (D	TW) below T	oc: 19.3	2'
eight of G	Groundwate	r Column (i	H) = TD - [OTW (Feet)	. 5.	8 Well R	adius [r] (Inch	es): ^{''}	
	2-Inch	Diamet	er Well:			f Groundwater Per V H (Feet)] =O		in Gal = [0.16	3
	4-Inch	Diamete	er Well:			Groundwater Per V I (Feet)] =	Vater Column	in Gal = [0.65:	3
lculated	Volume of 0	Groundwat	er Needed	to be Ren	noved (Gal):	3V=2.8	gol		
				GROUN	DWATER P	RAMETERS	-		-
Volume Purged (Gal)	рН	Temp (deg C)	Cond	Turb (ntw)	Comments				DO
0.25	6.90	21.19	1,00	678		[i.e., Odor(s), Wate		ntent, Sheen]	(mg/h)
1	7.24	18.93	0.739	259	Clear	Hy; green-gr	ay		10.14
2	6.90	18.61	0.625	217	Clear				10.90
3	7.02	18.70	0.589	146	+				10.52
3.5	6.89	18.28	0.545	136					10.79
		1		Land and					
tual Volu	me Purged ((Gal)	3.5 gal		DTW After	Purging and Before	Sampling:	19.43	_
			J						
Samp		Time	GRC		and the second se	COLLECTION DATA			
W2-1	/13/23	1615		Analyses		# of Containers/Siz	e	Preserv	ative
160	LIVICS	1010	RC	PAMA	19	ñ		HI HI	1
			ch	lorina	d Solvents	4		HC	13
								110	~
DTES: PU	urged v	ia Der	statio	- Dum	atut	ina (dedica	(bob		
		11		1	1	1			
eather:	Dvercas	A. 1~	83°F	WC	16 MPI	10			

MONITORING WELL DEVELOPMENT FIELD DATA SHEET

eight of Groundwater Column (H) = TD - DTW (Feet): 11.00 Well Radius [r] (Inches): 1" 2-Inch Diameter Well: Volume (V) of Groundwater Per Water Column in Gal = [0.163 Gal/Foot] X [H (Feet)] = 1.19 gad Volume (V) of Groundwater Per Water Column in Gal = [0.163 Gal/Foot] X [H (Feet)] = 1.19 gad Volume (V) of Groundwater Per Water Column in Gal = [0.653 Gal/Foot] X [H (Feet)] = NA Iculated Volume of Groundwater Needed to be Removed (Gal): 10 V = 11.9 gad	
4-Inch Diameter Well: Gal/Foot] X [H (Feet)] = 1, 19 god Volume (V) of Groundwater Per Water Column in Gal = [0.653 Gal/Foot] X [H (Feet)] =	
4-Inch Diameter Well: Volume (V) of Groundwater Per Water Column in Gal = [0.653 Gal/Foot] X [H (Feet)] = NA Iculated Volume of Groundwater Needed to be Removed (Gal): $O V = 17.9$ ad	
Iculated Volume of Groundwater Needed to be Removed (Gal): 10 V = 17,9 col	
GROUNDWATER PARAMETERS	
Purged Temp Cond Turb (Gal) pH (deg C) (htu) Comments [i.e., Odor(s), Water Color/Silt Content, Sheen] (0.25 6.69 19.44 0.360 5.33 51.511	DO mg/L)
1 6.53 19.48 0.356 93.5 Clear	13.57
6.58 18.560.359 73.7	1.63
1011 01321 64.3	11.14
8 6,43 19.25 0.354 60.7	0.44
10 6.49 18.66 0.358 60.9	0.73
	0.74
6.57 18.55 0.359 (01	15.31
18 6.48 18.47 0.359 415	11.87
	11.58

WELL ID:_	MW4	-	_					Date:	13/23	
Facility Nar	me/Project	No.: 120	15.15	+ Stree	t. Yakim	a, WA/	E2023	-0607		
	er/Company									
Well Depth	(TD) below	/ Top of Ca	sing (TOC):	2	5'	Depth to	Water (DTV	V) below TOC:	18.4	3
leight of G	iroundwate	r Column (I	H) = TD - [DTW (Feet)	:6.5	57'	Well Rad	ius [r] (Inches)	:1"	
	2-Inch	Diamet	er Well:	V G	olume (V) o al/Foot] X [I	f Groundw H (Feet)] =	ater Per Wa	ter Column in)7 god	Gal = [0.163	
	4-Inch	Diamete	er Well:				ater Per Wa	ter Column in	Gal = [0.653	
alculated	Volume of (Groundwat	er Needed	to be Rem	noved (Gal):	31=	3.219	al		
				GROUN	IDWATER P	RAMETER	S			
Volume Purged (Gal) 0.25 1 2 3	рн 6.58 6.58 6.52 6.47	Temp (deg C) 18,48 17,91 17,80 17,79	Cond 245 0.364 0.369 0.359 0.359	Turb (ntw) > 1000 320 251 185	Comments Very S Clear		r(s), Water C	olor/Silt Conte	ent, Sheen](18:05 12:52 11:86
3.5	6.49	17.72	0.359	165						11.59
ctual Volum	me Purged	(61)	0.5 00						18.43	
	ine i uigeu	(Gai)	J				nd Before Sa	mpling:	Cr.01	
Sampl	le ID	Time	GKC	Analyses	ER SAMPLE		N DATA ainers/Size		Preserva	tivo
1W4 - 6/13/23 1000 RC		Dx			2		HCI			
			als d Solvents		l L		H NO3 HCI			
OTES: Pu	urged v	ia per	staltio	- pump	> + tub	ing (c	ledicost	ed)		
/eather:	Junn	1, 7-	83°F	NW.	e 7 mg	DHO				

			· Ch/J						
ell Depth/	n (TD) below	Top of Ca	sing (TOC):	2	5	Depth to Water (D	TW) below TOC: 18.	16	
eight of G	iroundwate	r Column (H) = TD - [DTW (Feet):6,	84 Well Ra	dius [r] (Inches):	1"	
	2-Inch	Diamet	er Well:	1	/olume (V) o Gal/Foot] X [f Groundwater Per W H (Feet)] = \ .	ater Column in Gal = [0.163	
		Diamet		G	ial/Foot] X [H (Feet)] =N		0.653	
lculated	Volume of (Groundwat	er Needed	to be Rer	noved (Gal):	31= 3.33	gal		
/olume		-		GROUI	NDWATER P	ARAMETERS			
Purged (Gal)	рН	Temp (deg C)	Cond MS/cm	Turb (ntu)	Comments	[i.e., Odor(s), Water	Color/Silt Content, She	een] (mg/h	
0.25	6,91	18.38	0.398	348	SI. sil	ty	colory site content, site	14.48	
1	6.90	17.97	0.391	ESP	Mod Si			12.30	
2	6,90	17.68	0.387	505	+			12.01	
3.5	6.80	17.70	0.386	278	Clear			11.66	
	GIDI	1110	0.386	236	¥			11.68	
ual Volu	me Purged	(Gal)	3.5 go	7	DTW After	Purging and Before S	Sampling: 18,	59	
			GRO	UNDWAT	ER SAMPLE	COLLECTION DATA			
		Time		Analyse	S	# of Containers/Size	Pre	Preservative	
10-0	115125	0925	Dr	DA A		2		101	
			A	KATIE	ed Solvents	L L	HN	and the second se	
			4	Unnuch	sa Joinens	4		HCI	

4

WELL ID:		16	-				Date: 6	/13/23	
acility Na	me/Project	No.: 120	15.1	* Stree	et, Yakim	a, WA/E2023-	0607		
GW Sampl	er/Compan	y: BNB	· Ch/5	BMEC					
Well Depth	n (TD) belov	v Top of Ca	sing (TOC)	2	5'	Depth to Water (DTW) below TOC:	17.95	
						05' Well Radiu			
	2-Inch	n Diamet	er Well:	N C	/olume (V) of Gal/Foot] X [H	Groundwater Per Wate I (Feet)] =, 5 g	er Column in G	ial = [0.163	
	4-Inch	n Diamet	er Well:	N G	/olume (V) of Gal/Foot] X [H	Groundwater Per Wate (Feet)] = NA	er Column in G	al = [0.653	
alculated	Volume of	Groundwat	er Needed	to be Rer	noved (Gal):_	3 V= 3.45 gal	4		
Volume				GROUI	NDWATER PA	RAMETERS			
Purged (Gal)	pH	Temp (deg C)	Cond S/Cm (HS)	Turb (ntu)		[i.e., Odor(s), Water Co		t, Sheen] (mg/h	
0,25	6.67	18.37	0.360	497		w/some fine SA	ND	11.39	
2	6.48	17.21	0.360	105	Clear			11.72	
3	6.41	17,10	0.360	73.3				11.64	
3.5	6.40	17.01	0.361	69.4	4			11.58	
ctual Volu	me Purged	(Gal)	3.5 g	L	DTW After	Purging and Before Sam	pling:	7.96	
	1	-	GRC			OLLECTION DATA			
Sample ID Time W6-6/13/23 OB16				Analyse	S	# of Containers/Size		Preservative	
0/1	2140	0016	RC	RAM	1019	2		HNA	
			Ch		ed Solventa	Ļ.		Heis	
OTES: PU	rged 1	ia per	istaltic	- pum	prtub	ing (dedicate	d)		
eather:	Dunny,	T-77	FN	Wes	MPH	0			
	1		1						

MONITORING WELL DEVELOPMENT FIELD DATA SHEET

Well Dept	th (TD) below	w Top of Ca	asing (TOC):2	.5'		Depth	to Water	r (DTW)	below TC	oc:9	.17
leight of	Groundwate	er Column	(H) = TD -	DTW (Fee	t):	5.	83'	_ Wel	ll Radius	[r] (Inche	es):1	1
	2-Incl	n Diamet	er Well:	2.3	Volume Gal/Foo	(V) of t] X [H	Ground (Feet)] :	water Pe	er Water 0,9	Column	in Gal = [0.:	163
		n Diamet		(Gal/Foot	t] X [H	(Feet)] =		NA		in Gal = [0.6	553
alculated	Volume of	Groundwat	ter Needeo	to be Rei	moved (Gal):	10 V	= 9.	5 gal			
VL			-	GROU	NDWAT	ER PA	RAMETE	RS	-			
Volume Purged (Gal)	рН	Temp (deg C)	Cond	Turb (ntu)	Comm	ents	ie Odo	or(c) Ma	tor Colo	r/Silt Car	itent, Sheer	DO
0.25	6.99	19.78	0.323	>1000	Ext	reme	ly sil	1, via	rowo	r/Silt Con	itent, Sheen	1] (mg/L) 12.16
2	6.62	19.21	0.335	340	VISI	ionth	1 Siltu	4)	- Starr			11.15
4	6.61	18.51	0.344	150	Cle	ar	1					11.23
6	6.51	18.63	0.334	82.1								11.05
8	6.47	18.38	0,330	72.6								10.67
10	6.81	18.13	0.331	72.6	*							11.84
								-		_		
121	-			1								
								-				
						-						
							4		-			
					1				_			
						-				-		
		1										
ual Volur	me Purged (Gal)	D gal		DTW					8.7.5	10.11	e e
		A CONTRACTOR			DIWV	vnen \	Vell Dev	elopmer	nt Has Er	nded:	19.17	
TES: Ju	urged vi	a baile	r/rope	dedica	uted):	DU	raed	Viar	Deris	talli	Dumo	atubin
ather:	Toudy	Yoor	OFI	1-0		1	J	1		- tog the	pany	+10011

MONITORING WELL DEVELOPMENT FIELD DATA SHEET

ell Dept	eloper/Com h (TD) belov	w Top of Ca	asing (TOC)	:2	5'	Depth to Wat	er (DTW) bel	ow TOC: 19	.58
eight of	Groundwate	er Column	(H) = TD -	DTW (Feet):5.	42 w	ell Radius [r]	(Inches):1	
	2-Inch	n Diamet	er Well:	1	/olume (V) of Gal/Foot] X [H	Groundwater F (Feet)] =	Per Water Co	lumn in Gal = [0.1	163
	4-Inch	Diamet	er Well:	V	olume (V) of al/Foot] X [H	Groundwater P (Feet)] =	er Water Col NA	lumn in Gal = [0.6	i53
lculated	Volume of	Groundwat	ter Needec	l to be Ren	noved (Gal):	8.8	gal		
(aluma)				GROUM	DWATER PAR	RAMETERS			
Volume Purged (Gal) 0.25	рН 7,95	Temp (deg C)	Cond (#S) (#S)	Turb (ntu)	Comments [i.e., Odor(s), W	ater Color/S	ilt Content, Sheen	DO mg/L)
1	7.94	19,71	0.376	> 1000	CXTrem	ely silty;	dh grau		16.36
2	7.46	18.46	0,233	>1000			J	1	11.69
4	7.46	18.19	0,197	> 1000	Madara	tal silly			11.83
6	7.09	18.78	.0.191	893	Tabera	sally STITY			11.30
8	7.13	18.22	0.190	589	Slightly	siltu			12,80
9	6.99	17.92	0,190	449	V. stightli	silly			11.33
al Volur	ne Purged (Gal)(Lop C	_	DTW When V	Vell Developm	ent Has Ende	d: 20,13	
ES: <u>Su</u>	rged vi	a baile	r/ropel	dedica		rged via			atubir
ather:	Toudu				3 MPH	J	1		

509-520-6519

MONITORING WELL DEVELOPMENT FIELD DATA SHEET

	th (TD) belo				.5'		ter (DTW) below To	oc: <u> </u> 9	.32'
eight of	Groundwat	er Column	(H) = TD -				/ell Radius [r] (Inch		
	2-Incl	h Diame	ter Well	:	Volum Gal/Fo	e (V) of Groundwater ot] X [H (Feet)] =	Per Water Column	in Gal = [0.16	53
_		n Diamet			sal/Fo	e (V) of G <mark>roundwater</mark> ot] X [H (Feet)] =	NA	in Gal = [0.65	i3
alculated	Volume of	Groundwa	ter Neede	d to be Rer	noved	(Gal): <u>101=9,26</u>	gal		
Volume		1	1	GROU	NDWA	TER PARAMETERS			
Purged		Temp	Cond	Turb					DO
(Gal)	рН	(deg C)	Cond S Cr	(ntu)	Com	ments [i.e., Odor(s), \	Vator Color/Silt Co		6 1
0.25	7.03	20.05	0.160	> 1000	Ver	y silty; brown	vater color/silt col	ntent, Sheen]	(Img/h)
2	7.61	20.18	0.156	309	Ver	u slightly silty			11.76
4	7.58	20,16	0.157	200	Cle	dr J / 1			10.26
6	7.41	20.42	0.156	118					10.09
8	7.20	20.66	0.156	98.9 77.2	-				9.90
10	7.12	20.62		80.9	-				11.92
			Snov						10.01
					(
			-						
		-			-				
					-				-
		-							
-									
		-							
ual Volur	ne Purged (Gal) IC) onl		DTW			19.41	
				() 1.	1 1	When Well Developm			1.1
IES: JU	rged VI	a baile	r/rope	Idedica	ted)	; purged via	peristaltion	Dumo	a tubior
~)vercast	TAR	500	Wa li	1			port	- I - UTIL
sthew	ALLEY & / Allen		1.1 100	VVI (a)	1 14				

APPENDIX E

LABORATORY ANALYTICAL DOCUMENTATION

May 26, 2023

Peter Trabusiner Blue Mountain Environmental, Inc. 1500 Adair Drive Richland, WA 99352

Re: Analytical Data for Project E2023-0407; 1201 S 1st ST YAKIMA Laboratory Reference No. 2305-243

Dear Peter:

Enclosed are the analytical results and associated quality control data for samples submitted on May 23, 2023.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: May 26, 2023 Samples Submitted: May 23, 2023 Laboratory Reference: 2305-243 Project: E2023-0407; 1201 S 1st ST YAKIMA

Case Narrative

Samples were collected on May 19, 2023 and received by the laboratory on May 23, 2023. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH-Dx Analysis

The duplicate RPD is outside of the control limits due to sample inhomogeniety.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Soil Units: mg/Kg (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	MW7-5-19-23-18'				,	
_aboratory ID:	05-243-01					
Diesel Range Organics	ND	27	NWTPH-Dx	5-25-23	5-25-23	
ube Oil Range Organics	ND	53	NWTPH-Dx	5-25-23	5-25-23	
Surrogate:	Percent Recovery	Control Limits	Internet BX	0 20 20	0 20 20	
p-Terphenyl	82	50-150				
Client ID:	MW7-5-19-23-25'					
_aboratory ID:	05-243-02					
Diesel Range Organics	ND	27	NWTPH-Dx	5-25-23	5-25-23	
ube Oil Range Organics	ND	54	NWTPH-Dx	5-25-23	5-25-23	
Surrogate:	Percent Recovery	Control Limits				
p-Terphenyl	73	50-150				
Client ID:	MW8-5-19-23-18'					
_aboratory ID:	05-243-03					
Diesel Range Organics	ND	27	NWTPH-Dx	5-25-23	5-25-23	
ube Oil Range Organics	ND	54	NWTPH-Dx	5-25-23	5-25-23	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	80	50-150				
Client ID:	MW8-5-19-23-25'					
aboratory ID:	05-243-04	07		E 0E 00	F 0F 00	
Diesel Range Organics	ND	27	NWTPH-Dx	5-25-23	5-25-23	
ube Oil Range Organics	ND	55	NWTPH-Dx	5-25-23	5-25-23	
Surrogate:	Percent Recovery	Control Limits				
p-Terphenyl	87	50-150				
Client ID:	MW9-5-19-23-18'					
_aboratory ID:	05-243-05					
Diesel Range Organics	ND	26	NWTPH-Dx	5-25-23	5-25-23	
ube Oil Range Organics	ND	20 52	NWTPH-Dx	5-25-23	5-25-23	
Surrogate:	Percent Recovery	Control Limits		0-20-20	J-2J-2J	
o-Terphenyl	86	50-150				
	00	00-700				
Client ID:	MW9-5-19-23-27'					
_aboratory ID:	05-243-06					
Diesel Range Organics	ND	29	NWTPH-Dx	5-25-23	5-25-23	
ube Oil Range Organics	ND	58	NWTPH-Dx	5-25-23	5-25-23	
Surrogate:	Percent Recovery	Control Limits			/ =v	
p-Terphenyl	74	50-150				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

o NE 90 Street, Reamona, WA 98052 (425) 883

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Soil Units: mg/Kg (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	MW3a-5-19-23-20'			-		
Laboratory ID:	05-243-07					
Diesel Range Organics	ND	26	NWTPH-Dx	5-25-23	5-25-23	
Lube Oil Range Organics	ND	53	NWTPH-Dx	5-25-23	5-25-23	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	54	50-150				
Client ID:	MW3a-5-19-23-30'					
Laboratory ID [.]	05-243-08					

Laboratory ID:	05-243-08					
Diesel Range Organics	ND	28	NWTPH-Dx	5-25-23	5-25-23	
Lube Oil Range Organics	ND	55	NWTPH-Dx	5-25-23	5-25-23	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	86	50-150				

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
MB0525S1					
ND	25	NWTPH-Dx	5-25-23	5-25-23	
ND	50	NWTPH-Dx	5-25-23	5-25-23	
Percent Recovery	Control Limits				
73	50-150				
	MB0525S1 ND ND Percent Recovery	MB0525S1ND25ND50Percent RecoveryControl Limits	MB0525S1ND25ND50NWTPH-DxPercent RecoveryControl Limits	Result PQL Method Prepared MB0525S1 ND 25 NWTPH-Dx 5-25-23 ND 50 . . Percent Recovery Control Limits . .	Result PQL Method Prepared Analyzed MB0525S1

					Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Reco	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	05-27	79-01									
	ORIG	DUP									
Diesel Fuel #2	171	128	NA	NA		N	A	NA	29	40	
Lube Oil	192	123	NA	NA		N	А	NA	44	40	L
Surrogate:											
o-Terphenyl						93	81	50-150			

TOTAL METALS EPA 6010D/7471B

Matrix: Soil Units: mg/Kg (ppm)

	/			Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW7-5-19-23-18'					
Laboratory ID:	05-243-01					
Arsenic	ND	11	EPA 6010D	5-25-23	5-25-23	
Barium	26	2.7	EPA 6010D	5-25-23	5-25-23	
Cadmium	ND	0.53	EPA 6010D	5-25-23	5-25-23	
Chromium	6.2	0.53	EPA 6010D	5-25-23	5-25-23	
Lead	ND	5.3	EPA 6010D	5-25-23	5-25-23	
Mercury	ND	0.27	EPA 7471B	5-26-23	5-26-25	
Selenium	ND	11	EPA 6010D	5-25-23	5-25-23	
Silver	ND	1.1	EPA 6010D	5-25-23	5-25-23	

Client ID:	MW7-5-19-23-25'					
Laboratory ID:	05-243-02					
Arsenic	ND	11	EPA 6010D	5-25-23	5-25-23	
Barium	32	2.7	EPA 6010D	5-25-23	5-25-23	
Cadmium	ND	0.54	EPA 6010D	5-25-23	5-25-23	
Chromium	6.9	0.54	EPA 6010D	5-25-23	5-25-23	
Lead	ND	5.4	EPA 6010D	5-25-23	5-25-23	
Mercury	ND	0.27	EPA 7471B	5-26-23	5-26-25	
Selenium	ND	11	EPA 6010D	5-25-23	5-25-23	
Silver	ND	1.1	EPA 6010D	5-25-23	5-25-23	

Client ID:	MW8-5-19-23-18'					
Laboratory ID:	05-243-03					
Arsenic	ND	11	EPA 6010D	5-25-23	5-25-23	
Barium	47	2.7	EPA 6010D	5-25-23	5-25-23	
Cadmium	ND	0.54	EPA 6010D	5-25-23	5-25-23	
Chromium	8.8	0.54	EPA 6010D	5-25-23	5-25-23	
Lead	ND	5.4	EPA 6010D	5-25-23	5-25-23	
Mercury	ND	0.27	EPA 7471B	5-26-23	5-26-25	
Selenium	ND	11	EPA 6010D	5-25-23	5-25-23	
Silver	ND	1.1	EPA 6010D	5-25-23	5-25-23	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL METALS EPA 6010D/7471B

Matrix: Soil Units: mg/Kg (ppm)

	,			Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW8-5-19-23-25'					
Laboratory ID:	05-243-04					
Arsenic	ND	11	EPA 6010D	5-25-23	5-25-23	
Barium	28	2.7	EPA 6010D	5-25-23	5-25-23	
Cadmium	ND	0.55	EPA 6010D	5-25-23	5-25-23	
Chromium	8.8	0.55	EPA 6010D	5-25-23	5-25-23	
Lead	ND	5.5	EPA 6010D	5-25-23	5-25-23	
Mercury	0.38	0.27	EPA 7471B	5-26-23	5-26-25	
Selenium	ND	11	EPA 6010D	5-25-23	5-25-23	
Silver	ND	1.1	EPA 6010D	5-25-23	5-25-23	

Client ID:	MW9-5-19-23-18'					
Laboratory ID:	05-243-05					
Arsenic	ND	10	EPA 6010D	5-25-23	5-25-23	
Barium	56	2.6	EPA 6010D	5-25-23	5-25-23	
Cadmium	ND	0.52	EPA 6010D	5-25-23	5-25-23	
Chromium	6.1	0.52	EPA 6010D	5-25-23	5-25-23	
Lead	ND	5.2	EPA 6010D	5-25-23	5-25-23	
Mercury	ND	0.26	EPA 7471B	5-26-23	5-26-25	
Selenium	ND	10	EPA 6010D	5-25-23	5-25-23	
Silver	ND	1.0	EPA 6010D	5-25-23	5-25-23	

Client ID:	MW9-5-19-23-27'					
Laboratory ID:	05-243-06					
Arsenic	ND	12	EPA 6010D	5-25-23	5-25-23	
Barium	67	2.9	EPA 6010D	5-25-23	5-25-23	
Cadmium	ND	0.58	EPA 6010D	5-25-23	5-25-23	
Chromium	12	0.58	EPA 6010D	5-25-23	5-25-23	
Lead	ND	5.8	EPA 6010D	5-25-23	5-25-23	
Mercury	ND	0.29	EPA 7471B	5-26-23	5-26-25	
Selenium	ND	12	EPA 6010D	5-25-23	5-25-23	
Silver	ND	1.2	EPA 6010D	5-25-23	5-25-23	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL METALS EPA 6010D/7471B

Matrix: Soil Units: mg/Kg (ppm)

onno: mg/rig (pp				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW3a-5-19-23-20'					
Laboratory ID:	05-243-07					
Arsenic	ND	11	EPA 6010D	5-25-23	5-25-23	
Barium	53	2.6	EPA 6010D	5-25-23	5-25-23	
Cadmium	ND	0.53	EPA 6010D	5-25-23	5-25-23	
Chromium	5.4	0.53	EPA 6010D	5-25-23	5-25-23	
Lead	ND	5.3	EPA 6010D	5-25-23	5-25-23	
Mercury	ND	0.26	EPA 7471B	5-26-23	5-26-25	
Selenium	ND	11	EPA 6010D	5-25-23	5-25-23	
Silver	ND	1.1	EPA 6010D	5-25-23	5-25-23	

Client ID:	MW3a-5-19-23-30'					
Laboratory ID:	05-243-08					
Arsenic	ND	11	EPA 6010D	5-25-23	5-25-23	
Barium	59	2.8	EPA 6010D	5-25-23	5-25-23	
Cadmium	ND	0.55	EPA 6010D	5-25-23	5-25-23	
Chromium	6.0	0.55	EPA 6010D	5-25-23	5-25-23	
Lead	ND	5.5	EPA 6010D	5-25-23	5-25-23	
Mercury	ND	0.28	EPA 7471B	5-26-23	5-26-25	
Selenium	ND	11	EPA 6010D	5-25-23	5-25-23	
Silver	ND	1.1	EPA 6010D	5-25-23	5-25-23	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

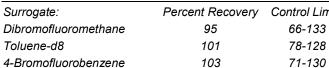
This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

TOTAL METALS EPA 6010D/7471B QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0525SM1					
Arsenic	ND	10	EPA 6010D	5-25-23	5-25-25	
Barium	ND	2.5	EPA 6010D	5-25-23	5-25-25	
Cadmium	ND	0.50	EPA 6010D	5-25-23	5-25-25	
Chromium	ND	0.50	EPA 6010D	5-25-23	5-25-25	
Lead	ND	5.0	EPA 6010D	5-25-23	5-25-25	
Selenium	ND	10	EPA 6010D	5-25-23	5-25-25	
Silver	ND	1.0	EPA 6010D	5-25-23	5-25-25	
Laboratory ID:	MB0526S1					
Mercury	ND	0.25	EPA 7471B	5-26-23	5-26-25	

Analyte	Ro	sult	Sniko	Level	Source Result	-	rcent overy	Recovery Limits	RPD	RPD Limit	Flags
DUPLICATE	1.0.	Juit	opine	LUVUI	Result	T(CC	overy	Linits		Liiiit	Tiugo
Laboratory ID:	05-24	13-02									
	ORIG	DUP									
Arsenic	ND	ND	NA	NA		1	NA	NA	NA	20	
Barium	29.8	31.4	NA	NA		1	NA	NA	5	20	
Cadmium	ND	ND	NA	NA		1	NA	NA	NA	20	
Chromium	6.40	5.35	NA	NA		1	NA	NA	18	20	
Lead	ND	ND	NA	NA		1	NA	NA	NA	20	
Selenium	ND	ND	NA	NA		1	NA	NA	NA	20	
Silver	ND	ND	NA	NA		1	NA	NA	NA	20	
Laboratory ID:	05-24	13-02									
Mercury	ND	ND	NA	NA		1	٨N	NA	NA	20	
MATRIX SPIKES											
Laboratory ID:		43-02									
	MS	MSD	MS	MSD		MS	MSD				
Arsenic	90.5	93.3	100	100	ND	91	93	75-125	3	20	
Barium	120	125	100	100	29.8	90	96	75-125	4	20	
Cadmium	45.0	46.9	50.0	50.0	ND	90	94	75-125	4	20	
Chromium	96.0	99.8	100	100	6.40	90	93	75-125	4	20	
Lead	227	236	250	250	ND	91	94	75-125	4	20	
Selenium	92.3	94.1	100	100	ND	92	94	75-125	2	20	
Silver	22.9	23.8	25.0	25.0	ND	91	95	75-125	4	20	
Laboratory ID:	05-24	13-02									
Mercury	0.529	0.507	0.500	0.500	0.0121	103	99	80-120	4	20	



OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Matrix: Soil Units: mg/kg

0.0				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW7-5-19-23-18'					
Laboratory ID:	05-243-01					
Vinyl Chloride	ND	0.0011	EPA 8260D	5-24-23	5-24-23	
(cis) 1,2-Dichloroethene	ND	0.0011	EPA 8260D	5-24-23	5-24-23	
Trichloroethene	ND	0.0011	EPA 8260D	5-24-23	5-24-23	
Tetrachloroethene	ND	0.0011	EPA 8260D	5-24-23	5-24-23	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	95	66-133				
Toluene-d8	81	78-128				
4-Bromofluorobenzene	98	71-130				
Client ID:	MW7-5-19-23-25'					
Laboratory ID:	05-243-02					
Vinyl Chloride	ND	0.00096	EPA 8260D	5-24-23	5-24-23	
(cis) 1,2-Dichloroethene	ND	0.00096	EPA 8260D	5-24-23	5-24-23	
Trichloroethene	ND	0.00096	EPA 8260D	5-24-23	5-24-23	
Tetrachloroethene	0.0018	0.00096	EPA 8260D	5-24-23	5-24-23	
Surrogate:	Percent Recovery	Control Limits				

Dibromofluoromethane	99	66-133				
Toluene-d8	89	78-128				
4-Bromofluorobenzene	108	71-130				
Client ID:	MW8-5-19-23-18'					
Laboratory ID:	05-243-03					
Vinyl Chloride	ND	0.0012	EPA 8260D	5-24-23	5-24-23	
(cis) 1,2-Dichloroethene	ND	0.0012	EPA 8260D	5-24-23	5-24-23	
Trichloroethene	ND	0.0012	EPA 8260D	5-24-23	5-24-23	
Tetrachloroethene	ND	0.0012	EPA 8260D	5-24-23	5-24-23	
Surrogate:	Percent Recovery	Control Limits				
	05	66 400				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

10

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW8-5-19-23-25'					
Laboratory ID:	05-243-04					
Vinyl Chloride	ND	0.00095	EPA 8260D	5-24-23	5-24-23	
(cis) 1,2-Dichloroethene	ND	0.00095	EPA 8260D	5-24-23	5-24-23	
Trichloroethene	ND	0.00095	EPA 8260D	5-24-23	5-24-23	
Tetrachloroethene	ND	0.00095	EPA 8260D	5-24-23	5-24-23	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	93	66-133				
Toluene-d8	82	78-128				
4-Bromofluorobenzene	110	71-130				

Client ID:	MW9-5-19-23-18'					
Laboratory ID:	05-243-05					
Vinyl Chloride	ND	0.00078	EPA 8260D	5-26-23	5-26-23	
(cis) 1,2-Dichloroethene	ND	0.00078	EPA 8260D	5-26-23	5-26-23	
Trichloroethene	ND	0.00078	EPA 8260D	5-26-23	5-26-23	
Tetrachloroethene	0.00099	0.00078	EPA 8260D	5-26-23	5-26-23	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	88	66-133				
Toluene-d8	91	78-128				
4-Bromofluorobenzene	95	71-130				

Client ID:	MW9-5-19-23-27'					
Laboratory ID:	05-243-06					
Vinyl Chloride	ND	0.0012	EPA 8260D	5-24-23	5-25-23	
(cis) 1,2-Dichloroethene	ND	0.0012	EPA 8260D	5-24-23	5-25-23	
Trichloroethene	ND	0.0012	EPA 8260D	5-24-23	5-25-23	
Tetrachloroethene	0.0026	0.0012	EPA 8260D	5-24-23	5-25-23	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	79	66-133				
Toluene-d8	89	78-128				
4-Bromofluorobenzene	121	71-130				

Matrix: Soil Units: mg/kg

Analista	Decult	DOI	Mathad	Date Dremored	Date	Flores
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW3a-5-19-23-20'					
Laboratory ID:	05-243-07					
Vinyl Chloride	ND	0.0013	EPA 8260D	5-24-23	5-25-23	
(cis) 1,2-Dichloroethene	ND	0.0013	EPA 8260D	5-24-23	5-25-23	
Trichloroethene	ND	0.0013	EPA 8260D	5-24-23	5-25-23	
Tetrachloroethene	ND	0.0013	EPA 8260D	5-24-23	5-25-23	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	91	66-133				
Toluene-d8	88	78-128				
4-Bromofluorobenzene	103	71-130				

Client ID:	MW3a-5-19-23-30'					
Laboratory ID:	05-243-08					
Vinyl Chloride	ND	0.00095	EPA 8260D	5-24-23	5-25-23	
(cis) 1,2-Dichloroethene	ND	0.00095	EPA 8260D	5-24-23	5-25-23	
Trichloroethene	ND	0.00095	EPA 8260D	5-24-23	5-25-23	
Tetrachloroethene	ND	0.00095	EPA 8260D	5-24-23	5-25-23	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	82	66-133				
Toluene-d8	86	78-128				
4-Bromofluorobenzene	105	71-130				

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL

Matrix: Soil Units: mg/kg

0.0				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0524S1					
Vinyl Chloride	ND	0.0010	EPA 8260D	5-24-23	5-24-23	
(cis) 1,2-Dichloroethene	ND	0.0010	EPA 8260D	5-24-23	5-24-23	
Trichloroethene	ND	0.0010	EPA 8260D	5-24-23	5-24-23	
Tetrachloroethene	ND	0.0010	EPA 8260D	5-24-23	5-24-23	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	94	66-133				
Toluene-d8	85	78-128				
4-Bromofluorobenzene	114	71-130				
Laboratory ID:	MB0526S1					
Vinyl Chloride	ND	0.0010	EPA 8260D	5-26-23	5-26-23	
(cis) 1,2-Dichloroethene	ND	0.0010	EPA 8260D	5-26-23	5-26-23	
Trichloroethene	ND	0.0010	EPA 8260D	5-26-23	5-26-23	
Tetrachloroethene	ND	0.0010	EPA 8260D	5-26-23	5-26-23	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	87	66-133				
Toluene-d8	94	78-128				
4-Bromofluorobenzene	97	71-130				

					Pei	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Rec	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB05	24S1								
	SB	SBD	SB	SBD	SB	SBD				
Vinyl Chloride	0.0459	0.0449	0.0500	0.0500	92	90	66-134	2	17	
(cis) 1,2-Dichloroethene	0.0534	0.0565	0.0500	0.0500	107	113	76-135	6	15	
Trichloroethene	0.0531	0.0471	0.0500	0.0500	106	94	81-132	12	15	
Tetrachloroethene	0.0480	0.0483	0.0500	0.0500	96	97	80-136	1	15	
Surrogate:										
Dibromofluoromethane					95	97	66-133			
Toluene-d8					94	79	78-128			
4-Bromofluorobenzene					119	104	71-130			
Laboratory ID:	SB05	26S1								
	SB	SBD	SB	SBD	SB	SBD				
Vinyl Chloride	0.0497	0.0469	0.0500	0.0500	99	94	66-134	6	17	
(cis) 1,2-Dichloroethene	0.0501	0.0495	0.0500	0.0500	100	99	76-135	1	15	
Trichloroethene	0.0537	0.0526	0.0500	0.0500	107	105	81-132	2	15	
Tetrachloroethene	0.0535	0.0546	0.0500	0.0500	107	109	80-136	2	15	
Surrogate:										
Dibromofluoromethane					90	88	66-133			
Toluene-d8					95	95	78-128			
4-Bromofluorobenzene					104	103	71-130			

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

% MOISTURE

Client ID	Lab ID	% Moisture	Date Analyzed
MW7-5-19-23-18'	05-243-01	6	5-25-23
MW7-5-19-23-25'	05-243-02	7	5-25-23
MW8-5-19-23-18'	05-243-03	7	5-25-23
MW8-5-19-23-25'	05-243-04	9	5-25-23
MW9-5-19-23-18'	05-243-05	4	5-25-23
MW9-5-19-23-27'	05-243-06	13	5-25-23
MW3a-5-19-23-20'	05-243-07	5	5-25-23
MW3a-5-19-23-30'	05-243-08	10	5-25-23

14

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1 Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- X2 Sample extract treated with a silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.
- Y1 Negative effects of the matrix from this sample on the instrument caused values for this analyte in the bracketing continuing calibration verification standard (CCVs) to be outside of 20% acceptance criteria. Because of this, quantitation limits and sample concentrations should be considered estimates.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Reviewed/Date	Received	Relinquished	Received	Helinquished	Received	Relinquished		8 144	J MWE	6 MUS	S MUG	4 HUR	3 MNS	EMM Z	- FMM - 1	Lab ID		P. TEASU SINER	1201 St 12	E2023 -	Company: Brec		Analytical L	Enviro
					WHAT	ANIVA	Signature	8-5-19-23-30	1-5-R-23-20'	1-5-19-23-27	~ 5-19-23-18	-5-19-23-25	18-5-19-23-181	7-5-19.23-25	MU7-5-19-23-18"	Sample Identification	V. NEVER	INER/ B. BERLERON	FT ST YAKIMA	-0467	ſ	Phone: (425) 883-3881 • www.onsite-env.com	Analytical Laboratory Testing Services	nSite nvironmental Inc.
Reviewed/Date					330	BMEC	Company	1450	1445	1320	1315	Oull	1115	6965	5.923 0900	Date Time Sampled Sampled	(other)		Standard (7 Days)	2 Days	Same Day	(Check One)	Turnaround Request (in working days)	Cha
					5		Date								Ser 4	NWTF	H-HC	_	ners 8021	3 Days	1 Day			Chain of Custody
					23/23 13 40	5-22-23 0 300	Time	*							×	Volatil Halog	PH-Dx es 82 enate	(SG CI 60 d Volati	ean-up [es 8260 ters Onl				Laboratory Number:	ody
Chromatograms with final report	Data Package: Standard						Comments/Special Instructions									(with I PAHs PCBs Organ	ow-le 8270/ 8082 aochlo	rine Pe sphorus	s) w-level) sticides i Pesticid	des 827	0/SIM		05-243	
	d 🗌 Level III 🗍 Level IV						ictions	+								Total I Total I TCLP	RCRA MTCA Meta (oil an	Metals Metals Is d greas	e) 1664					Page
Electronic Data Deliverables (EDDs)								4	X	×	X	X	X	X	X				4C	CIS	i-Dc,	E		of

June 20, 2023

Peter Trabusiner Blue Mountain Environmental, Inc. 1500 Adair Drive Richland, WA 99352

Re: Analytical Data for Project E2023/0607; 1201 S 1st St Yakima Laboratory Reference No. 2306-191

Dear Peter:

Enclosed are the analytical results and associated quality control data for samples submitted on June 15, 2023.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: June 20, 2023 Samples Submitted: June 15, 2023 Laboratory Reference: 2306-191 Project: E2023/0607; 1201 S 1st St Yakima

Case Narrative

Samples were collected on June 13, 2023 and received by the laboratory on June 15, 2023. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Water Units: mg/L (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	MW6-6-13-23	-				J-
Laboratory ID:	06-191-01					
Diesel Range Organics	ND	0.21	NWTPH-Dx	6-19-23	6-19-23	
Lube Oil Range Organics	ND	0.21	NWTPH-Dx	6-19-23	6-19-23	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	120	50-150				
Client ID:	MW5-6-13-23					
Laboratory ID:	06-191-02					
Diesel Range Organics	ND	0.21	NWTPH-Dx	6-19-23	6-19-23	
Lube Oil Range Organics	ND	0.21	NWTPH-Dx	6-19-23	6-19-23	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	101	50-150				
Client ID:	MW4-6-13-23					
Laboratory ID:	06-191-03					
Diesel Range Organics	ND	0.21	NWTPH-Dx	6-19-23	6-19-23	
Lube Oil Range Organics	ND	0.21	NWTPH-Dx	6-19-23	6-19-23	
Surrogate:	Percent Recovery	Control Limits	HIT I BX	0 10 20	0 10 20	
o-Terphenyl	108	50-150				
Client ID:	MW3A-6-13-23					
Laboratory ID:	06-191-04					
Diesel Range Organics	ND	0.21	NWTPH-Dx	6-19-23	6-19-23	
Lube Oil Range Organics	ND	0.21	NWTPH-Dx	6-19-23	6-19-23	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	94	50-150				
Client ID:	MW7-6-13-23					
Laboratory ID:	06-191-05					
Diesel Range Organics	ND	0.21	NWTPH-Dx	6-19-23	6-19-23	
Lube Oil Range Organics	ND	0.21	NWTPH-Dx NWTPH-Dx	6-19-23 6-19-23	6-19-23 6-19-23	
Surrogate:	Percent Recovery	Control Limits		0-19-23	0-19-23	
o-Terphenyl	115	50-150				
e i cipitonyi	110	00 100				
Client ID:	MW8-6-13-23					
Laboratory ID:	06-191-06					
Laboratory ID: Diesel Range Organics	06-191-06 ND	0.22	NWTPH-Dx	6-19-23	6-19-23	
Laboratory ID: Diesel Range Organics Lube Oil Range Organics	06-191-06 ND ND	0.22	NWTPH-Dx NWTPH-Dx	6-19-23 6-19-23	6-19-23 6-19-23	
Laboratory ID: Diesel Range Organics Lube Oil Range Organics Surrogate: o-Terphenyl	06-191-06 ND					

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

3

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW9-6-13-23					
Laboratory ID:	06-191-07					
Diesel Range Organics	ND	0.21	NWTPH-Dx	6-19-23	6-19-23	
Lube Oil Range Organics	ND	0.21	NWTPH-Dx	6-19-23	6-19-23	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	117	50-150				
Client ID:	MW2-6-13-23					
Laboratory ID:	06-191-08					
Diesel Range Organics	ND	0.21	NWTPH-Dx	6-19-23	6-19-23	
Lube Oil Range Organics	ND	0.21	NWTPH-Dx	6-19-23	6-19-23	

Lube Oil Range Organics	ND	0.21	NWT
Surrogate:	Percent Recovery	Control Limits	
o-Terphenyl	110	50-150	

4

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0619W1					
Diesel Range Organics	ND	0.16	NWTPH-Dx	6-19-23	6-19-23	
Lube Oil Range Organics	ND	0.16	NWTPH-Dx	6-19-23	6-19-23	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	101	50-150				

				Source	Perce	ent	Recovery		RPD	
Res	sult	Spike	Level	Result	Recov	very	Limits	RPD	Limit	Flags
SB06	19W1									
ORIG	DUP									
0.449	0.428	NA	NA		NA	٩	NA	5	40	
					100	98	50-150			
	SB06 ORIG		SB0619W1 ORIG DUP	SB0619W1 ORIG DUP	Result Spike Level Result SB0619W1 ORIG DUP	ResultSpike LevelResultRecordSB0619W1ORIGDUP0.4490.428NANA	ResultSpike LevelResultRecoverySB0619W1ORIGDUP0.4490.428NANA	ResultSpike LevelResultRecoveryLimitsSB0619W1ORIGDUP0.4490.428NANANA	ResultSpike LevelResultRecoveryLimitsRPDSB0619W1ORIGDUP0.4490.428NANANA5	ResultSpike LevelResultRecoveryLimitsRPDLimitSB0619W1ORIGDUP0.4490.428NANANANA540

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW6-6-13-23					
Laboratory ID:	06-191-01					
Vinyl Chloride	ND	0.20	EPA 8260D	6-19-23	6-19-23	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	6-19-23	6-19-23	
Trichloroethene	ND	0.20	EPA 8260D	6-19-23	6-19-23	
Tetrachloroethene	1.1	0.20	EPA 8260D	6-19-23	6-19-23	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	108	75-127				
Toluene-d8	103	80-127				
4-Bromofluorobenzene	99	78-125				
Client ID:	MW5-6-13-23					
Laboratory ID:	06-191-02					
Vinyl Chloride	ND	0.20	EPA 8260D	6-19-23	6-19-23	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	6-19-23	6-19-23	

(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	6-19-23	6-19-23
Trichloroethene	ND	0.20	EPA 8260D	6-19-23	6-19-23
Tetrachloroethene	1.3	0.20	EPA 8260D	6-19-23	6-19-23
Surrogate:	Percent Recovery	Control Limits			
Dibromofluoromethane	108	75-127			
Toluene-d8	101	80-127			
4-Bromofluorobenzene	97	78-125			

Client ID:	MW4-6-13-23					
Laboratory ID:	06-191-03					
Vinyl Chloride	ND	0.20	EPA 8260D	6-19-23	6-19-23	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	6-19-23	6-19-23	
Trichloroethene	ND	0.20	EPA 8260D	6-19-23	6-19-23	
Tetrachloroethene	0.97	0.20	EPA 8260D	6-19-23	6-19-23	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	108	75-127				
Toluene-d8	102	80-127				
4-Bromofluorobenzene	100	78-125				

Matrix: Water Units: ug/L

Ū				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW3A-6-13-23					
Laboratory ID:	06-191-04					
Vinyl Chloride	ND	0.20	EPA 8260D	6-19-23	6-19-23	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	6-19-23	6-19-23	
Trichloroethene	ND	0.20	EPA 8260D	6-19-23	6-19-23	
Tetrachloroethene	1.3	0.20	EPA 8260D	6-19-23	6-19-23	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	110	75-127				
Toluene-d8	103	80-127				
4-Bromofluorobenzene	97	78-125				
Client ID:	MW7-6-13-23					
Laboratory ID:	06-191-05					
Vinyl Chloride	ND	0.20	EPA 8260D	6-19-23	6-19-23	

J =						
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	6-19-23	6-19-23	
Trichloroethene	ND	0.20	EPA 8260D	6-19-23	6-19-23	
Tetrachloroethene	1.2	0.20	EPA 8260D	6-19-23	6-19-23	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	111	75-127				
Toluene-d8	103	80-127				
4-Bromofluorobenzene	99	78-125				

Client ID:	MW8-6-13-23					
Laboratory ID:	06-191-06					
Vinyl Chloride	ND	0.20	EPA 8260D	6-19-23	6-19-23	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	6-19-23	6-19-23	
Trichloroethene	ND	0.20	EPA 8260D	6-19-23	6-19-23	
Tetrachloroethene	1.1	0.20	EPA 8260D	6-19-23	6-19-23	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	110	75-127				
Toluene-d8	102	80-127				
4-Bromofluorobenzene	97	78-125				

Matrix: Water Units: ug/L

U				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW9-6-13-23					
Laboratory ID:	06-191-07					
Vinyl Chloride	ND	0.20	EPA 8260D	6-19-23	6-19-23	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	6-19-23	6-19-23	
Trichloroethene	ND	0.20	EPA 8260D	6-19-23	6-19-23	
Tetrachloroethene	ND	0.20	EPA 8260D	6-19-23	6-19-23	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	109	75-127				
Toluene-d8	103	80-127				
4-Bromofluorobenzene	97	78-125				
Client ID:	MW2-6-13-23					

Client ID:	MW2-6-13-23					
Laboratory ID:	06-191-08					
Vinyl Chloride	ND	0.20	EPA 8260D	6-19-23	6-19-23	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	6-19-23	6-19-23	
Trichloroethene	ND	0.20	EPA 8260D	6-19-23	6-19-23	
—				0.40.00	0.40.00	
Tetrachloroethene	2.3	0.20	EPA 8260D	6-19-23	6-19-23	
I etrachloroethene Surrogate:	2.3 Percent Recovery	0.20 Control Limits	EPA 8260D	6-19-23	6-19-23	
			EPA 8260D	6-19-23	6-19-23	
Surrogate:	Percent Recovery	Control Limits	EPA 8260D	6-19-23	6-19-23	

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0619W1					
Vinyl Chloride	ND	0.20	EPA 8260D	6-19-23	6-19-23	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	6-19-23	6-19-23	
Trichloroethene	ND	0.20	EPA 8260D	6-19-23	6-19-23	
Tetrachloroethene	ND	0.20	EPA 8260D	6-19-23	6-19-23	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	102	75-127				
Toluene-d8	101	80-127				
4-Bromofluorobenzene	97	78-125				

					Per	rcent	Recovery		RPD	
Analyte	Result		Spike Level		Rec	ecovery Limits		RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB06 ²	19W1								
	SB	SBD	SB	SBD	SB	SBD				
Vinyl Chloride	10.4	9.69	10.0	10.0	104	97	66-133	7	15	
(cis) 1,2-Dichloroethene	9.98	9.58	10.0	10.0	100	96	84-130	4	15	
Trichloroethene	9.88	9.60	10.0	10.0	99	96	80-122	3	18	
Tetrachloroethene	10.9	10.5	10.0	10.0	109	105	80-125	4	15	
Surrogate:										
Dibromofluoromethane					101	100	75-127			
Toluene-d8					102	103	80-127			
4-Bromofluorobenzene					101	100	78-125			

9

TOTAL METALS EPA 200.8/7470A

Matrix: Water Units: ug/L (ppb)

Mercury

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW6-6-13-23					
Laboratory ID:	06-191-01					
Arsenic	ND	3.3	EPA 200.8	6-19-23	6-19-23	
Cadmium	ND	4.4	EPA 200.8	6-19-23	6-19-23	
Chromium	ND	11	EPA 200.8	6-19-23	6-19-23	
Lead	ND	1.1	EPA 200.8	6-19-23	6-19-23	
Mercury	ND	0.50	EPA 7470A	6-20-23	6-20-23	
Client ID:	MW5-6-13-23					
Laboratory ID:	06-191-02					
Arsenic	ND	3.3	EPA 200.8	6-19-23	6-19-23	
Cadmium	ND	4.4	EPA 200.8	6-19-23	6-19-23	
Chromium	ND	11	EPA 200.8	6-19-23	6-19-23	
Lead	ND	1.1	EPA 200.8	6-19-23	6-19-23	

Client ID:	MW4-6-13-23					
Laboratory ID:	06-191-03					
Arsenic	ND	3.3	EPA 200.8	6-19-23	6-19-23	
Cadmium	ND	4.4	EPA 200.8	6-19-23	6-19-23	
Chromium	ND	11	EPA 200.8	6-19-23	6-19-23	
Lead	ND	1.1	EPA 200.8	6-19-23	6-19-23	
Mercury	ND	0.50	EPA 7470A	6-20-23	6-20-23	

EPA 7470A

6-20-23

0.50

ND

Client ID:	MW3A-6-13-23					
Laboratory ID:	06-191-04					
Arsenic	ND	3.3	EPA 200.8	6-19-23	6-19-23	
Cadmium	ND	4.4	EPA 200.8	6-19-23	6-19-23	
Chromium	ND	11	EPA 200.8	6-19-23	6-19-23	
Lead	ND	1.1	EPA 200.8	6-19-23	6-19-23	
Mercury	ND	0.50	EPA 7470A	6-20-23	6-20-23	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

6-20-23

TOTAL METALS EPA 200.8/7470A

Matrix: Water Units: ug/L (ppb)

Mercury

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
MW7-6-13-23					
06-191-05					
ND	3.3	EPA 200.8	6-19-23	6-19-23	
ND	4.4	EPA 200.8	6-19-23	6-19-23	
ND	11	EPA 200.8	6-19-23	6-19-23	
ND	1.1	EPA 200.8	6-19-23	6-19-23	
ND	0.50	EPA 7470A	6-20-23	6-20-23	
MW8-6-13-23					
06-191-06					
ND	3.3	EPA 200.8	6-19-23	6-19-23	
ND	4.4	EPA 200.8	6-19-23	6-19-23	
ND	11	EPA 200.8	6-19-23	6-19-23	
1.1	1.1	EPA 200.8	6-19-23	6-19-23	
	MW7-6-13-23 06-191-05 ND ND ND ND ND MW8-6-13-23 06-191-06 ND ND ND ND	MW7-6-13-23 3.3 06-191-05 3.3 ND 3.3 ND 4.4 ND 11 ND 1.1 ND 0.50 MW8-6-13-23 06-191-06 ND 3.3 ND 4.4 ND 11	MW7-6-13-23 06-191-05 ND 3.3 EPA 200.8 ND 4.4 EPA 200.8 ND 11 EPA 200.8 ND 1.1 EPA 200.8 ND 0.50 EPA 7470A MW8-6-13-23 O6-191-06 ND 3.3 EPA 200.8 ND 3.3 EPA 200.8 ND 4.4 EPA 200.8 ND 4.4 EPA 200.8 ND 11 EPA 200.8 ND 11 EPA 200.8 ND 11 EPA 200.8 11	ResultPQLMethodPreparedMW7-6-13-2306-191-05ND3.3EPA 200.86-19-23ND4.4EPA 200.86-19-23ND11EPA 200.86-19-23ND1.1EPA 200.86-19-23ND0.50EPA 7470A6-20-23MW8-6-13-2306-191-06ND3.3EPA 200.86-19-23ND11EPA 200.86-19-23ND11EPA 200.86-19-23	ResultPQLMethodPreparedAnalyzedMW7-6-13-23

Client ID:	MW9-6-13-23					
Laboratory ID:	06-191-07					
Arsenic	ND	3.3	EPA 200.8	6-19-23	6-19-23	
Cadmium	ND	4.4	EPA 200.8	6-19-23	6-19-23	
Chromium	ND	11	EPA 200.8	6-19-23	6-19-23	
Lead	ND	1.1	EPA 200.8	6-19-23	6-19-23	
Mercury	ND	0.50	EPA 7470A	6-20-23	6-20-23	

EPA 7470A

6-20-23

6-20-23

0.50

ND

Client ID:	MW2-6-13-23					
Laboratory ID:	06-191-08					
Arsenic	ND	3.3	EPA 200.8	6-19-23	6-19-23	
Cadmium	ND	4.4	EPA 200.8	6-19-23	6-19-23	
Chromium	ND	11	EPA 200.8	6-19-23	6-19-23	
Lead	ND	1.1	EPA 200.8	6-19-23	6-19-23	
Mercury	ND	0.50	EPA 7470A	6-20-23	6-20-23	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL METALS EPA 200.8/7470A QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
MB0619WM1					
ND	3.3	EPA 200.8	6-19-23	6-19-23	
ND	4.4	EPA 200.8	6-19-23	6-19-23	
ND	11	EPA 200.8	6-19-23	6-19-23	
ND	1.1	EPA 200.8	6-19-23	6-19-23	
MB0620W1					
ND	0.50	EPA 7470A	6-20-23	6-20-23	
	MB0619WM1 ND ND ND ND MB0620W1	MB0619WM1 ND 3.3 ND 4.4 ND 11 ND 1.1	MB0619WM1 ND 3.3 EPA 200.8 ND 4.4 EPA 200.8 ND 11 EPA 200.8 ND 1.1 EPA 200.8 MB0620W1 MB0620W1 MB0620W1	Result PQL Method Prepared MB0619WM1 3.3 EPA 200.8 6-19-23 ND 3.4 EPA 200.8 6-19-23 ND 11 EPA 200.8 6-19-23 ND 11 EPA 200.8 6-19-23 ND 11 EPA 200.8 6-19-23 MD 1.1 EPA 200.8 6-19-23	Result PQL Method Prepared Analyzed MB0619WM1

					Source	Pe	rcent	Recovery		RPD	
Analyte	Result		Spike Level		Result	Recovery		Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	06-19	91-01									
	ORIG	DUP									
Arsenic	ND	ND	NA	NA		1	NA	NA	NA	20	
Cadmium	ND ND		NA	NA		1	NA	NA	NA	20	
Chromium	ND	ND	NA	NA		1	NA	NA	NA	20	
Lead	ND	ND	NA	NA		1	NA	NA	NA	20	
Laboratory ID:	06-19	91-01									
Mercury	ND	ND	NA	NA		1	NA	NA	NA	20	
MATRIX SPIKES											
Laboratory ID:	06-19	91-01									
	MS	MSD	MS	MSD		MS	MSD				
Arsenic	116	112	111	111	ND	105	101	75-125	4	20	
Cadmium	116	114	111	111	ND	104	103	75-125	2	20	
Chromium	112	108	111	111	ND	101	98	75-125	4	20	
Lead	104	103	111	111	ND	94	93	75-125	1	20	
Laboratory ID:	06-19	91-01									
Mercury	5.68	5.85	6.25	6.25	ND	91	94	75-125	3	20	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

12

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1 Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- X2 Sample extract treated with a silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.
- Y1 Negative effects of the matrix from this sample on the instrument caused values for this analyte in the bracketing continuing calibration verification standard (CCVs) to be outside of 20% acceptance criteria. Because of this, quantitation limits and sample concentrations should be considered estimates.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Turnervard Regress Concervory Number: 06 - 19 1 Note: 0000 Standard (7 Days) Standard (7 Days) Concervory Number: 06 Ontainers Number: 06 Ontainers NUMPER: 06021 NUMPER: 06021 NUMPER: 06021 NUMPER: 06021 NUMPER: 06021 NUMPER: 0602 NUMPER: 0602 NUMPER: 0602 NUMPER: 0602 NUMPER: 0602 Constants NUMPER: 0602 Constants NUMPER: 0602 Constants NUMPER: 0602 Constants Constants Constants Constants Constants Constants Constants Constants	Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished Casedyneh	Signature		9 MW1-6-13-23	8 MW2-6-13-23	7 MW19-6-13-23	6 MW 8-6-13-23	5 MW7-6-13-23	4 MW3A-6-1323	3 MM4-6-13-23	2 MW5-6-13-23	1 MWG-6-13-23	Lab ID Sample Identification	C.Lynch	P. Trabusiner / B. Bergeron	1201 5 1st St Valima	Froject Name:	Company: BMEL	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com	Environmental Inc.
Image: Standard Comments/Special Instructions Chromatograms with final report Comments/Special Instructions	Reviewed/Date	Ť				OSE	BME	Company		H20 1	H20	40	HO /	_				oble tho	Time Sampled Matrix	ber of C					(Check Ope)	
Chromatograms with final records and						15/2311	23		6 d	X								7	NWTI NWTI NWTI Volati	PH-Gx/E PH-Gx PH-Dx (les 8260	SG Cle	an-up[_)			JUSIOUY
	Chromatograms with final report Electronic Data Deliverables (EDDs)	Package: Standard Level III Level IV		509386-2031	- 1			Comments/Special Instructions		X	×	X		4		×	×		Semii (with PAHs PCBs Orgar Orgar Orgar Chlor Total Total	volatiles low-leve 8270/S 8082 hochlori hophosp inated A RORAN MTCA N	8270/S el PAHs IM (low ne Pest bhorus I Acid He Acid He Acid He	SIM) -level) ticides (Pesticides rbicides	8081 des 827 s 8151		06-1	-

June 28, 2023

Peter Trabusiner Blue Mountain Environmental, Inc. 1500 Adair Drive Richland, WA 99352

Re: Analytical Data for Project E2023/0607; 1201 S 1st St Yakima Laboratory Reference No. 2306-191

Dear Peter:

Enclosed are the analytical results and associated quality control data for samples submitted on June 15, 2023.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: June 28, 2023 Samples Submitted: June 15, 2023 Laboratory Reference: 2306-191 Project: E2023/0607; 1201 S 1st St Yakima

Case Narrative

Samples were collected on June 13, 2023 and received by the laboratory on June 15, 2023. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Water Units: mg/L (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	MW6-6-13-23	. <=	mourou	Topulou	741419204	1 14.90
Laboratory ID:	06-191-01					
Diesel Range Organics	ND	0.21	NWTPH-Dx	6-19-23	6-19-23	
Lube Oil Range Organics	ND	0.21	NWTPH-Dx	6-19-23	6-19-23	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	120	50-150				
Client ID:	MW5-6-13-23					
Laboratory ID:	06-191-02					
Diesel Range Organics	ND	0.21	NWTPH-Dx	6-19-23	6-19-23	
_ube Oil Range Organics	ND	0.21	NWTPH-Dx	6-19-23	6-19-23	
Surrogate:	Percent Recovery	Control Limits	NWITTEDX	0-10-20	0-10-20	
o-Terphenyl	101	50-150				
o-reipnenyi	101	50-150				
Client ID:	MW4-6-13-23					
Laboratory ID:	06-191-03					
Diesel Range Organics	ND	0.21	NWTPH-Dx	6-19-23	6-19-23	
_ube Oil Range Organics	ND	0.21	NWTPH-Dx	6-19-23	6-19-23	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	108	50-150				
Client ID:	MW3A-6-13-23					
Laboratory ID:	06-191-04					
Diesel Range Organics	<u>ND</u>	0.21	NWTPH-Dx	6-19-23	6-19-23	
Lube Oil Range Organics	ND	0.21	NWTPH-Dx	6-19-23	6-19-23	
<u> </u>		Control Limits	INVITI-DX	0-19-23	0-19-23	
Surrogate:	Percent Recovery					
o-Terphenyl	94	50-150				
Client ID:	MW7-6-13-23					
Laboratory ID:	06-191-05					
Diesel Range Organics	ND	0.21	NWTPH-Dx	6-19-23	6-19-23	
_ube Oil Range Organics	ND	0.21	NWTPH-Dx	6-19-23	6-19-23	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	115	50-150				
Client ID:	M\N/Q 6 42 22					
Client ID:	MW8-6-13-23					
_aboratory ID:	06-191-06	0.00		6 40 00	6 40 00	
Diesel Range Organics	ND	0.22	NWTPH-Dx	6-19-23	6-19-23	
Lube Oil Range Organics	ND	0.22	NWTPH-Dx	6-19-23	6-19-23	
	Demonst Devenue	Control Limit				
Surrogate: o-Terphenyl	Percent Recovery 123	Control Limits 50-150				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

3

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW9-6-13-23					
Laboratory ID:	06-191-07					
Diesel Range Organics	ND	0.21	NWTPH-Dx	6-19-23	6-19-23	
Lube Oil Range Organics	ND	0.21	NWTPH-Dx	6-19-23	6-19-23	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	117	50-150				
Client ID:	MW2-6-13-23					
Laboratory ID:	06-191-08					
Diesel Range Organics	ND	0.21	NWTPH-Dx	6-19-23	6-19-23	
Lube Oil Range Organics	ND	0.21	NWTPH-Dx	6-19-23	6-19-23	

Lube On Mange Organios	ND	0.21
Surrogate:	Percent Recovery	Control Limits
o-Terphenyl	110	50-150

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0619W1					
Diesel Range Organics	ND	0.16	NWTPH-Dx	6-19-23	6-19-23	
Lube Oil Range Organics	ND	0.16	NWTPH-Dx	6-19-23	6-19-23	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	101	50-150				

					Source	Percent	t Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recover	y Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	SB06	19W1								
	ORIG	DUP								
Diesel Fuel #2	0.449	0.428	NA	NA		NA	NA	5	40	
Surrogate:										
o-Terphenyl						100 9	98 50-150			

VOLATILE ORGANICS EPA 8260D

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW6-6-13-23					
Laboratory ID:	06-191-01					
Vinyl Chloride	ND	0.20	EPA 8260D	6-19-23	6-19-23	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	6-19-23	6-19-23	
Trichloroethene	ND	0.20	EPA 8260D	6-19-23	6-19-23	
Tetrachloroethene	1.1	0.20	EPA 8260D	6-19-23	6-19-23	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	108	75-127				
Toluene-d8	103	80-127				
4-Bromofluorobenzene	99	78-125				
Client ID:	MW5-6-13-23					
Laboratory ID:	06-191-02					
Vinyl Chloride	ND	0.20	EPA 8260D	6-19-23	6-19-23	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	6-19-23	6-19-23	

	ND	0.20	EFA 0200D	0-19-23	0-19-23	
Trichloroethene	ND	0.20	EPA 8260D	6-19-23	6-19-23	
Tetrachloroethene	1.3	0.20	EPA 8260D	6-19-23	6-19-23	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	108	75-127				
Toluene-d8	101	80-127				
4-Bromofluorobenzene	97	78-125				

Client ID:	MW4-6-13-23					
Laboratory ID:	06-191-03					
Vinyl Chloride	ND	0.20	EPA 8260D	6-19-23	6-19-23	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	6-19-23	6-19-23	
Trichloroethene	ND	0.20	EPA 8260D	6-19-23	6-19-23	
Tetrachloroethene	0.97	0.20	EPA 8260D	6-19-23	6-19-23	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	108	75-127				
Toluene-d8	102	80-127				
4-Bromofluorobenzene	100	78-125				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILE ORGANICS EPA 8260D

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW3A-6-13-23					
Laboratory ID:	06-191-04					
Vinyl Chloride	ND	0.20	EPA 8260D	6-19-23	6-19-23	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	6-19-23	6-19-23	
Trichloroethene	ND	0.20	EPA 8260D	6-19-23	6-19-23	
Tetrachloroethene	1.3	0.20	EPA 8260D	6-19-23	6-19-23	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	110	75-127				
Toluene-d8	103	80-127				
4-Bromofluorobenzene	97	78-125				
Client ID:	MW7-6-13-23					
Laboratory ID:	06-191-05					
Vinyl Chloride	ND	0.20	EPA 8260D	6-19-23	6-19-23	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	6-19-23	6-19-23	

	ND	0.20	EFA 0200D	0-19-23	0-19-23	
Trichloroethene	ND	0.20	EPA 8260D	6-19-23	6-19-23	
Tetrachloroethene	1.2	0.20	EPA 8260D	6-19-23	6-19-23	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	111	75-127				
Toluene-d8	103	80-127				
4-Bromofluorobenzene	99	78-125				

Client ID:	MW8-6-13-23					
Laboratory ID:	06-191-06					
Vinyl Chloride	ND	0.20	EPA 8260D	6-19-23	6-19-23	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	6-19-23	6-19-23	
Trichloroethene	ND	0.20	EPA 8260D	6-19-23	6-19-23	
Tetrachloroethene	1.1	0.20	EPA 8260D	6-19-23	6-19-23	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	110	75-127				
Toluene-d8	102	80-127				
4-Bromofluorobenzene	97	78-125				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILE ORGANICS EPA 8260D

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW9-6-13-23					
Laboratory ID:	06-191-07					
Vinyl Chloride	ND	0.20	EPA 8260D	6-19-23	6-19-23	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	6-19-23	6-19-23	
Trichloroethene	ND	0.20	EPA 8260D	6-19-23	6-19-23	
Tetrachloroethene	ND	0.20	EPA 8260D	6-19-23	6-19-23	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	109	75-127				
Toluene-d8	103	80-127				
4-Bromofluorobenzene	97	78-125				
Client ID:	MW2-6-13-23					
Laboratory ID:	06-191-08					
Vinyl Chloride	ND	0.20	EPA 8260D	6-19-23	6-19-23	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	6-19-23	6-19-23	
Trichloroethene	ND	0.20	EPA 8260D	6-19-23	6-19-23	
Tetrachloroethene	2.3	0.20	EPA 8260D	6-19-23	6-19-23	
Surrogate:	Porcont Pocovory	Control Limite				

Surrogate:	Percent Recovery	Control Limits
Dibromofluoromethane	108	75-127
Toluene-d8	102	80-127
4-Bromofluorobenzene	98	78-125

Client ID:	MW1-6-13-23					
Laboratory ID:	06-191-09					
Vinyl Chloride	ND	0.20	EPA 8260D	6-27-23	6-27-23	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	6-27-23	6-27-23	
Trichloroethene	ND	0.20	EPA 8260D	6-27-23	6-27-23	
Tetrachloroethene	1.4	0.20	EPA 8260D	6-27-23	6-27-23	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	112	75-127				
Toluene-d8	105	80-127				
4-Bromofluorobenzene	100	78-125				

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL

Matrix: Water Units: ug/L

0				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0619W1					
Vinyl Chloride	ND	0.20	EPA 8260D	6-19-23	6-19-23	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	6-19-23	6-19-23	
Trichloroethene	ND	0.20	EPA 8260D	6-19-23	6-19-23	
Tetrachloroethene	ND	0.20	EPA 8260D	6-19-23	6-19-23	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	102	75-127				
Toluene-d8	101	80-127				
4-Bromofluorobenzene	97	78-125				
Laboratory ID:	MB0627W1					
Vinyl Chloride	ND	0.20	EPA 8260D	6-27-23	6-27-23	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	6-27-23	6-27-23	
Trichloroethene	ND	0.20	EPA 8260D	6-27-23	6-27-23	
Tetrachloroethene	ND	0.20	EPA 8260D	6-27-23	6-27-23	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	116	75-127				
Toluene-d8	105	80-127				
4-Bromofluorobenzene	101	78-125				

					Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Rec	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB06	19W1								
	SB	SBD	SB	SBD	SB	SBD				
Vinyl Chloride	10.4	9.69	10.0	10.0	104	97	66-133	7	15	
(cis) 1,2-Dichloroethene	9.98	9.58	10.0	10.0	100	96	84-130	4	15	
Trichloroethene	9.88	9.60	10.0	10.0	99	96	80-122	3	18	
Tetrachloroethene	10.9	10.5	10.0	10.0	109	105	80-125	4	15	
Surrogate:										
Dibromofluoromethane					101	100	75-127			
Toluene-d8					102	103	80-127			
4-Bromofluorobenzene					101	100	78-125			
Laboratory ID:	SB06	27W1								
,	SB	SBD	SB	SBD	SB	SBD				
Vinyl Chloride	8.85	8.77	10.0	10.0	89	88	66-133	1	15	
(cis) 1,2-Dichloroethene	10.4	10.5	10.0	10.0	104	105	84-130	1	15	
Trichloroethene	9.54	9.75	10.0	10.0	95	98	80-122	2	18	
Tetrachloroethene	9.68	10.0	10.0	10.0	97	100	80-125	3	15	
Surrogate:										
Dibromofluoromethane					114	113	75-127			
Toluene-d8					107	106	80-127			
4-Bromofluorobenzene					104	104	78-125			

Mr

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

9

TOTAL METALS EPA 200.8/7470A

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW6-6-13-23					
Laboratory ID:	06-191-01					
Arsenic	ND	3.3	EPA 200.8	6-19-23	6-19-23	
Cadmium	ND	4.4	EPA 200.8	6-19-23	6-19-23	
Chromium	ND	11	EPA 200.8	6-19-23	6-19-23	
Lead	ND	1.1	EPA 200.8	6-19-23	6-19-23	
Mercury	ND	0.50	EPA 7470A	6-20-23	6-20-23	
Client ID:	MW5-6-13-23					
Laboratory ID:	06-191-02	2.2		6 10 22	6 10 02	
Arsenic	ND	3.3	EPA 200.8	6-19-23	6-19-23	
Cadmium	ND	4.4	EPA 200.8	6-19-23	6-19-23	
Chromium	ND	11	EPA 200.8	6-19-23	6-19-23	
Lead	ND	1.1	EPA 200.8	6-19-23	6-19-23	
Mercury	ND	0.50	EPA 7470A	6-20-23	6-20-23	

Client ID:	MW4-6-13-23					
Laboratory ID:	06-191-03					
Arsenic	ND	3.3	EPA 200.8	6-19-23	6-19-23	
Cadmium	ND	4.4	EPA 200.8	6-19-23	6-19-23	
Chromium	ND	11	EPA 200.8	6-19-23	6-19-23	
Lead	ND	1.1	EPA 200.8	6-19-23	6-19-23	
Mercury	ND	0.50	EPA 7470A	6-20-23	6-20-23	

Client ID:	MW3A-6-13-23					
Laboratory ID:	06-191-04					
Arsenic	ND	3.3	EPA 200.8	6-19-23	6-19-23	
Cadmium	ND	4.4	EPA 200.8	6-19-23	6-19-23	
Chromium	ND	11	EPA 200.8	6-19-23	6-19-23	
Lead	ND	1.1	EPA 200.8	6-19-23	6-19-23	
Mercury	ND	0.50	EPA 7470A	6-20-23	6-20-23	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL METALS EPA 200.8/7470A

Matrix: Water Units: ug/L (ppb)

Analyte Client ID: Laboratory ID:	Result MW7-6-13-23	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	00 101 05					
	06-191-05					
Arsenic	ND	3.3	EPA 200.8	6-19-23	6-19-23	
Cadmium	ND	4.4	EPA 200.8	6-19-23	6-19-23	
Chromium	ND	11	EPA 200.8	6-19-23	6-19-23	
Lead	ND	1.1	EPA 200.8	6-19-23	6-19-23	
Mercury	ND	0.50	EPA 7470A	6-20-23	6-20-23	
Client ID:	MW8-6-13-23					
Laboratory ID:	06-191-06					
Arsenic	ND	3.3	EPA 200.8	6-19-23	6-19-23	
Cadmium	ND	4.4	EPA 200.8	6-19-23	6-19-23	
Chromium	ND	11	EPA 200.8	6-19-23	6-19-23	
Lead	1.1	1.1	EPA 200.8	6-19-23	6-19-23	
	ND	0.50	EPA 7470A	6-20-23	6-20-23	

Laboratory ID:	06-191-07					
Arsenic	ND	3.3	EPA 200.8	6-19-23	6-19-23	
Cadmium	ND	4.4	EPA 200.8	6-19-23	6-19-23	
Chromium	ND	11	EPA 200.8	6-19-23	6-19-23	
Lead	ND	1.1	EPA 200.8	6-19-23	6-19-23	
Mercury	ND	0.50	EPA 7470A	6-20-23	6-20-23	

Client ID:	MW2-6-13-23					
Laboratory ID:	06-191-08					
Arsenic	ND	3.3	EPA 200.8	6-19-23	6-19-23	
Cadmium	ND	4.4	EPA 200.8	6-19-23	6-19-23	
Chromium	ND	11	EPA 200.8	6-19-23	6-19-23	
Lead	ND	1.1	EPA 200.8	6-19-23	6-19-23	
Mercury	ND	0.50	EPA 7470A	6-20-23	6-20-23	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL METALS EPA 200.8/7470A QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0619WM1					
Arsenic	ND	3.3	EPA 200.8	6-19-23	6-19-23	
Cadmium	ND	4.4	EPA 200.8	6-19-23	6-19-23	
Chromium	ND	11	EPA 200.8	6-19-23	6-19-23	
Lead	ND	1.1	EPA 200.8	6-19-23	6-19-23	
Laboratory ID:	MB0620W1					
Mercury	ND	0.50	EPA 7470A	6-20-23	6-20-23	

					Source	Pe	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	06-19	91-01									
	ORIG	DUP									
Arsenic	ND	ND	NA	NA		I	NA	NA	NA	20	
Cadmium	ND	ND	NA	NA		I	NA	NA	NA	20	
Chromium	ND	ND	NA	NA		I	NA	NA	NA	20	
Lead	ND	ND	NA	NA		I	NA	NA	NA	20	
Laboratory ID:	06-19	91-01									
Mercury	ND	ND	NA	NA		I	NA	NA	NA	20	
MATRIX SPIKES											
Laboratory ID:	06-19	91-01									
	MS	MSD	MS	MSD		MS	MSD				
Arsenic	116	112	111	111	ND	105	101	75-125	4	20	
Cadmium	116	114	111	111	ND	104	103	75-125	2	20	
Chromium	112	108	111	111	ND	101	98	75-125	4	20	
Lead	104	103	111	111	ND	94	93	75-125	1	20	
Laboratory ID:	06-10	91-01									
Mercury	5.68	5.85	6.25	6.25	ND	91	94	75-125	3	20	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

12

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1 Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- X2 Sample extract treated with a silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.
- Y1 Negative effects of the matrix from this sample on the instrument caused values for this analyte in the bracketing continuing calibration verification standard (CCVs) to be outside of 20% acceptance criteria. Because of this, quantitation limits and sample concentrations should be considered estimates.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Turnervard Regress Concervory Number: 06 - 19 1 Note: 0000 Standard (7 Days) Standard (7 Days) Concervory Number: 06 Ontainers Number: 06 Ontainers NUMPER: 06021 NUMPER: 06021 NUMPER: 06021 NUMPER: 06021 NUMPER: 06021 NUMPER: 0602 NUMPER: 0602 NUMPER: 0602 NUMPER: 0602 NUMPER: 0602 Constants NUMPER: 0602 Constants NUMPER: 0602 Constants NUMPER: 0602 Constants Constants Constants Constants Constants Constants Constants Constants	Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished	Signature		9 MW1-6-13-23	8 MW2-6-13-23	7 MW19-6-13-23	6 MW 8-6-13-23	5 MW7-6-13-23	4 MW3A-10-1323	3 MM4-le-13-23	2 MW5-6-13-23	1 MWG-6-13-23	Lab ID Sample Identification	C.Lynch	P. Trabusiner / B. Bergeron	1201 5 1st St Valima	ELOLS 0607	Company: BMEC	Analytical Laboratory lesting Services 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com	Environmental Inc.
Image: Standard Comments/Special Instructions Chromatograms with final report Comments/Special Instructions	Reviewed/Date	Ť				OSE	BME	Company		H20 1	H20	40	HO /	_				0816 420	Time Sampled Matrix E	ber of C					(Check One)	
Chromatograms with final records and						15/2311	123		6 d	X								X	NWT NWT NWT Volati	PH-Gx/E PH-Gx PH-Dx (\$ les 8260	STEX (8 SG Clea	an-up[])			JUSIONA
	Chromatograms with final report Electronic Data Deliverables (EDDs)	Package: Standard Level III Level IV		509386-2031	- 1			Comments/Special Instructions		X	×	X		4		×	×		Semii (with PAHs PCBs Orgar Orgar Chlor Total Total	volatiles low-leve 8270/SI 8082 hochlorin hophosp inated A RCRA-W MTCA M	8270/S I PAHs IM (low ne Pest horus I cid Her letals	icides 8 Pesticio Posticides	3081 des 827(s 8151		1-90	-

June 23, 2023

Peter Trabusiner Blue Mountain Environmental, Inc. 1500 Adair Drive Richland, WA 99352

Re: Analytical Data for Project E2023/0607; 1201 S 1st St Yakima Laboratory Reference No. 2306-250

Dear Peter:

Enclosed are the analytical results and associated quality control data for samples submitted on June 20, 2023.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

C

David Baumeister Project Manager

Enclosures

Date of Report: June 23, 2023 Samples Submitted: June 20, 2023 Laboratory Reference: 2306-250 Project: E2023/0607; 1201 S 1st St Yakima

Case Narrative

Samples were collected on June 13, 2023 and received by the laboratory on June 20, 2023. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Water Units: mg/L (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	MW1-6-13-23					
Laboratory ID:	06-250-01					
Diesel Range Organics	ND	0.21	NWTPH-Dx	6-21-23	6-21-23	
Lube Oil Range Organics	ND	0.21	NWTPH-Dx	6-21-23	6-21-23	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	96	50-150				

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0621W1					
Diesel Range Organics	ND	0.16	NWTPH-Dx	6-21-23	6-21-23	
Lube Oil Range Organics	ND	0.16	NWTPH-Dx	6-21-23	6-21-23	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	88	50-150				

					Source	Percent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	06-24	46-01								
	ORIG	DUP								
Diesel Range	ND	ND	NA	NA		NA	NA	NA	40	
Lube Oil Range Organics	0.209	0.172	NA	NA		NA	NA	19	40	
Surrogate:										
o-Terphenyl						108 104	50-150			

TOTAL METALS EPA 200.8/7470A

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW1-6-13-23					
Laboratory ID:	06-250-01					
Arsenic	9.3	3.3	EPA 200.8	6-21-23	6-21-23	
Cadmium	ND	4.4	EPA 200.8	6-21-23	6-21-23	
Chromium	73	11	EPA 200.8	6-21-23	6-21-23	
Lead	11	1.1	EPA 200.8	6-21-23	6-21-23	
Mercury	ND	0.50	EPA 7470A	6-22-23	6-22-23	

TOTAL METALS EPA 200.8/7470A QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
MB0621WM1					
ND	3.3	EPA 200.8	6-21-23	6-21-23	
ND	4.4	EPA 200.8	6-21-23	6-21-23	
ND	11	EPA 200.8	6-21-23	6-21-23	
ND	1.1	EPA 200.8	6-21-23	6-21-23	
MB0622WM1					
ND	0.50	EPA 7470A	6-22-23	6-22-23	
	MB0621WM1 ND ND ND ND MB0622WM1	MB0621WM1 ND 3.3 ND 4.4 ND 11 ND 1.1	MB0621WM1 ND 3.3 EPA 200.8 ND 4.4 EPA 200.8 ND 11 EPA 200.8 ND 1.1 EPA 200.8 MB0622WM1 MB0622WM1 MB0622WM1	Result PQL Method Prepared MB0621WM1 3.3 EPA 200.8 6-21-23 ND 4.4 EPA 200.8 6-21-23 ND 11 EPA 200.8 6-21-23 ND 11 EPA 200.8 6-21-23 ND 11 EPA 200.8 6-21-23 MD 11 EPA 200.8 6-21-23 MD 1.1 EPA 200.8 6-21-23	Result PQL Method Prepared Analyzed MB0621WM1

					Source	Pe	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	06-19	91-02									
	ORIG	DUP									
Arsenic	ND	ND	NA	NA		1	NA	NA	NA	20	
Cadmium	ND	ND	NA	NA		1	NA	NA	NA	20	
Chromium	ND	ND	NA	NA		1	NA	NA	NA	20	
Lead	ND	ND	NA	NA		1	NA	NA	NA	20	
Laboratory ID:	06-19	91-04									
Mercury	ND	ND	NA	NA		1	NA	NA	NA	20	
MATRIX SPIKES											
Laboratory ID:	06-19	91-02									
	MS	MSD	MS	MSD		MS	MSD				
Arsenic	118	118	111	111	ND	106	106	75-125	0	20	
Cadmium	111	110	111	111	ND	100	99	75-125	1	20	
Chromium	112	111	111	111	ND	101	100	75-125	1	20	
Lead	101	99.6	111	111	ND	91	90	75-125	2	20	
Laboratory ID:	06-19	91-04									
Mercury	11.4	11.7	12.5	12.5	0.473	87	90	75-125	3	20	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1 Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- X2 Sample extract treated with a silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.
- Y1 Negative effects of the matrix from this sample on the instrument caused values for this analyte in the bracketing continuing calibration verification standard (CCVs) to be outside of 20% acceptance criteria. Because of this, quantitation limits and sample concentrations should be considered estimates.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Received Received Received Received Received Received Received	Analytical Laboratory Testing Services Analytical Laboratory Testing Services 14648 NE 95th Street - Redmond, WA 98052 Phone: (425) 883-3881 - WWW.onsite-env.com Company: FID Street Astrice Project Name: Project Name: PTTALS JOG J SIST ST ST JAK' MA Project Manager: PTTALS JOG SIST ST JAK' MA PTTALS JAK' M
Company	Turmaround Request (in working days) (Check One) Same Day 2 Days 3 Days K Standard (7 Days) Date Time Sampled Sampled Number of Containers
Date Time 6/9/23 1143 6/29/23 1315	NWTPH-HCID Image: Constraints and a constraints and constraints and a constraints and a constraints and cons
Comments/Special Instructions	Semivolatiles 8270/SIM (with low-level PAHs) PAHs 8270/SIM (low-level) PCBs 8082 Organochlorine Pesticides 8081 Organophosohorus Pesticides 8270/SIM Chlorinated Acid Herbicides 8151 Total RCRA Metals MILA Full-Cred milab
	Total MTCA Metals TCLP Metals