

Memorandum

March 1, 2023

To: Kyle Parker, Washington State Department of Ecology

From: Halah Voges, PE, and Nik Bacher, LG, Anchor QEA, LLC

- cc: Jennifer Sanscrainte, Ogden, Murphy, and Wallace, PLLC; Andrea Wing, Shell Oil Company; and Haley Ziesemer, U-Haul
- Re: 2022 Groundwater Monitoring Report and Request for Closure Yakima Valley Spray/U-Haul Facility Consent Decree No. 04-2-00908-1 Washington State Department of Ecology Facility Site ID No. 445

Introduction

This report summarizes the results of four rounds of performance and confirmational groundwater monitoring and recommended next steps for the Yakima Valley Spray/U-Haul Site (Site; Figure 1) located at 1108 South 1st Street in Yakima, Washington, on behalf of the Yakima Valley Spray Site Remediation Group (YVSSRG). The YVSSRG is an unincorporated association made up of INW Corporation (formerly known as U-Haul Company of Inland Northwest), Shell Oil Company, and the Formulation Customer Group. A Consent Decree (No. 04-2-00908-1) for remedial action was entered into between the YVSSRG and the Washington State Department of Ecology (Ecology) on March 18, 2004.

The performance and confirmational groundwater monitoring events at the Site were conducted in accordance with the *Groundwater Compliance Monitoring Plan* (RETEC 2003a) as amended (AECOM 2013) and the sampling approach presented in the *2021 Groundwater Monitoring Report* (Anchor QEA 2022) and approved by Ecology via email on March 24, 2022 (Ecology 2022a). Subsequent modifications to the sampling program were approved by Ecology following its review of the previous months' groundwater monitoring results, as documented in emails received on June 3, August 23, and October 26, 2022 (Ecology 2022b, 2022c, 2022d). On August 18, 2019, Ecology confirmed site-specific cleanup goals had been attained for most of the Indicator Hazardous Substances (IHS) (Ecology 2019). In the 2019 letter, Ecology proposed a tiered approach to reach site closure, which included continuing performance monitoring for one IHS (diesel-range total petroleum hydrocarbons [TPH-Dx]) while proceeding to the confirmational monitoring phase for all other site IHSs for which site-specific cleanup levels have been achieved and maintained. This tiered approach, summarized in the next two paragraphs, was carried forward during the 2022 groundwater sampling.

In the 2019 letter, Ecology required that performance monitoring for TPH-Dx continue until cleanup levels are achieved and maintained, as defined by two consecutive sampling events achieving the cleanup levels. Once sampling indicates cleanup levels for TPH-Dx have been achieved and maintained, YVSSRG will be able to propose a confirmation monitoring approach for Ecology's written approval.

Ecology required confirmation monitoring for all other IHSs for at least four consecutive quarters, continuing until either the results from four consecutive quarters return non-detectable concentrations or results from eight consecutive quarters remain below established site-specific cleanup standards. When one or both conditions are met, written approval from Ecology will be required before ending confirmational monitoring for any IHS.

The first quarterly groundwater monitoring event performed in accordance with the tiered approach was completed in 2020. The last groundwater monitoring event prior to 2020 was conducted in March 2018 (AECOM 2019). A summary of the 2021 quarterly monitoring is described below. The quarterly monitoring conducted in 2022 is described in more detail in the following sections.

Based on the discussion of the 2022 groundwater monitoring results below and with the completion of the 2022 groundwater monitoring program, the YVSSRG requests approval of a conditional point of compliance (e.g., the property boundary) and administrative closure of the Site, including approval to discontinue groundwater monitoring and to abandon all monitoring wells.

2021 Groundwater Sampling Results Summary

Results for the 2021 performance monitoring and confirmational monitoring are described in the *2021 Groundwater Monitoring Report* (Anchor QEA 2022). Key findings are summarized as follows, based on 2021 analytical results:

- YVS-2 will remain in the performance monitoring program for TPH-Dx in 2022.
- All wells except YVS-1b, YVS-2, and YVS-3 have demonstrated compliance for TPH-Dx. Quarterly monitoring of YVS-1b, YVS-2, and YVS-3 will continue for 2022.
- All wells except YVS-1b and YVS-2 have demonstrated compliance for dissolved arsenic. Quarterly monitoring of YVS-1b and YVS-2 will continue for 2022.
- All wells except YVS-2 have demonstrated compliance for pesticides. Quarterly monitoring of YVS-2 will continue for 2022.
- All wells except YVS-2 have demonstrated compliance for benzene. Quarterly monitoring of YVS-2 will continue for 2022.
- All wells except YVS-1b and YVS-2 have demonstrated compliance for gasoline-range total petroleum hydrocarbons (TPH-Gx).
- All wells except YVS-1b and YVS-2 have demonstrated compliance for perchloroethylene (PCE). Quarterly monitoring of YVS-1b and YVS-2 will continue for 2022.

Groundwater Monitoring Network

The current groundwater monitoring network (Figure 2) at the Site consists of the following, which is a combination of 10 monitoring wells as outlined in the *Groundwater Compliance Monitoring Plan* (RETEC 2003a) as amended (AECOM 2013) and in Table 1:

- Three background wells: BG-60, BG-90, and MW-12
- Two sentry wells: YVS-1b and YVS-2
- Five compliance wells: YS-1, MW-6, YVS-3, YVS-3-60, and YVS-3-90

Background well MW-12 is located on the Nissan property to the north. The other wells are located within Operable Unit 1 on the INW Corporation property.

Three wells originally part of the groundwater monitoring network (background well YS-3 and sentry wells MW-10 and MW-11) located within Operable Unit 2 on BNSF Railway property are no longer part of the groundwater monitoring network (ENSR 2008).

In addition to the groundwater monitoring network wells, three other wells, YS-2, MW-8, and MW-9, are gauged during groundwater monitoring events to provide ongoing information on groundwater flow direction.

Groundwater Sampling Methods

Groundwater monitoring was conducted once in each quarter (March, June, August, and November) during 2022. Prior to each sampling event, all wells within the groundwater monitoring network were inspected to evaluate their physical condition. The 2022 well inspection findings are as follows:

- MW-6 was damaged during the June 2008 on-site construction and remains damaged. The well casing appears to be broken or bent at 8.1 feet below ground surface. However, the dedicated tubing remains intact. This well was removed from the program after 2021 sampling. and water levels could not be measured.
- It was determined during the Q1 2020 monitoring event that the dedicated QED Well Wizard sampling pumps at location YVS-1b and YVS-2 stopped functioning due to motors in these pumps failing. These wells were sampled using a peristaltic pump during the remainder of the 2020 monitoring, 2021 monitoring, and 2022 monitoring events.
- The YS-1 well housing was observed in Q4 2021 to have been damaged (the vault bolt brackets were cracked), but the well is operational.
- All other wells were fully functional and operational throughout the 2022 groundwater monitoring program.

The groundwater level in each well was measured prior to sampling; water level gauging data are presented in Table 1, and groundwater potentiometric surface maps for each quarter are shown in Figures 3 through 6. The potentiometric surface maps are based on data from the western portion of

the Site due to the damage to MW-6 and the discontinuation of gauging at YS-3, MW-10, and MW-11 within Operable Unit 2.

The groundwater samples were collected from the wells using low-flow sampling techniques (EPA 1996) and in accordance with the Ecology-approved *Focused Groundwater Sampling and Analysis Plan* (RETEC 2003b). Dedicated QED Well Wizard sampling pumps and sampling tubing were used to collect samples, except as noted previously where the QED Well Wizard sampling pumps had malfunctioned.

Each monitoring well was purged at a rate of less than 250 milliliters per minute. Water quality parameters (turbidity, pH, temperature, specific conductivity, and oxidation-reduction potential) in the groundwater were monitored during purging of each well until water quality parameters stabilized. Stabilization is determined by consecutive measurements at least 3 minutes apart that are within 10% of the previous measurement, except for specific conductivity, which should be within 3%. Field sampling forms are included in Appendix A.

The samples were collected directly (except arsenic, which was collected after first attaching a 0.45-micron in-line filter to the sampling port) into labeled, laboratory-provided bottles and were immediately placed in a cooler on ice. The cooler was kept under standard chain-of-custody procedures before being delivered to FedEx for overnight shipment to Pace Analytical Services, Inc., an Ecology-accredited laboratory in Minneapolis, Minnesota. The 2022 sampling program is shown in Exhibit A.

Select samples were analyzed for the following parameters as part of performance monitoring:

- Total petroleum hydrocarbons (TPH)
 - TPH-Dx via Northwest TPH Diesel Extended Method (with and without silica gel cleanup)

Select samples were analyzed for the following parameters as part of confirmational monitoring:

- Pesticides via U.S. Environmental Protection Agency (EPA) Method 8081
 - DDT
 - Aldrin
 - Dieldrin
 - Beta BHC
 - Lindane (Gamma BHC)
- Volatile organic compounds via EPA Method 8260
 - Benzene
 - PCE
- Dissolved arsenic (field filtered) via EPA Method 6020/200.8
- TPH

- TPH-Dx via Northwest TPH Diesel Extended Method (with and without silica gel cleanup)
- TPH-Gx via Northwest TPH Gasoline Extended Method

Exhibit A 2022 Groundwater Sampling Program

Location ID	Type of Well	Deep/Shallow Well	Quarterly Performance Monitoring Parameters	Quarterly Confirmational Monitoring Parameters
YVS-1b	Sentry	Shallow	None	Arsenic, PCE, TPH-Gx, TPH-Dx
YVS-2	Sentry	Shallow	TPH-Dx	Arsenic, PCE, pesticides, benzene, TPH-Gx
YVS-3	Compliance	Shallow	None	TPH-Dx

2022 Groundwater Sampling Results

Four quarters of performance and confirmational groundwater monitoring were conducted in 2022, as specified in the *2021 Groundwater Monitoring Report* (Anchor QEA 2022). Groundwater sampling analytical results are presented in Table 2; historical data collected by prior consultants (prior to 2022) are included in Appendix B. PCE background concentration calculations are presented in Table 3. Table 4 summarizes the performance and confirmational monitoring performed in 2020, 2021, and 2022 and how the program is progressing in demonstrating compliance with groundwater cleanup levels. Laboratory data reports are included in Appendix C, and the data validation reports are included in Appendix D. Key findings for performance monitoring and confirmational monitoring are described in the following sections.

2022 Performance Monitoring

Following are the performance monitoring results for well YVS-2:

 Groundwater samples collected during the March, June, August, and November sampling events detected diesel-range concentrations without silica gel treatment ranging from 500 to 1,800 micrograms per liter (μg/L), respectively. The site-specific cleanup level was exceeded in all quarters except for the June 2022 event.

2022 Confirmational Monitoring

Four quarters of confirmational monitoring were conducted in 2022 for select IHS compounds, as outlined in Ecology's 2019 letter (Ecology 2019) and as discussed in the *2021 Groundwater Monitoring Report* (Anchor QEA 2022). The results of confirmational monitoring are as follows:

- Dissolved arsenic was detected above the laboratory detection limit but below the site-specific cleanup level in March 2022 at monitoring well YVS-1b. Per Ecology's 2019 letter, wells with eight consecutive quarters below the cleanup screening level met confirmational monitoring criteria and no additional monitoring is required. Monitoring well YVS-2 analytical results were below the cleanup screening level in March 2022, meeting confirmational monitoring criteria with eight consecutive quarters below the cleanup level. No additional monitoring for dissolved arsenic is required.
- Sampling for benzene was suspended prematurely for YVS-2 in 2021 based on 2020 reporting. Confirmational monitoring of benzene was continued for YVS-2 in 2022. Benzene concentrations exceeded the site-specific cleanup level in Q1, were detected above the reporting limit but below the cleanup level in Q2, and were non-detect for the remaining two quarters of 2022.
- The site-specific cleanup level for PCE is based on the calculated background concentration using the designated background wells. Using the data for the background wells, including data collected through 2021 (presented in Table 3), the site-specific cleanup level for PCE is 22.67 µg/L. PCE was not detected in March 2022 at YVS-1b or YVS-2 and met confirmational monitoring criteria with eight consecutive quarters below cleanup screening level. No additional monitoring is required.
- TPH-Gx was detected at YVS-1b above the laboratory detection limit but below the site-specific cleanup level in March 2022, meeting confirmational monitoring criteria with eight consecutive quarters below the cleanup level. No additional monitoring for TPH-Gx is required at YVS-1b. At YVS-2, the first two quarters of 2022 exceeded the site-specific cleanup level of 0.8 µg/L. For the remaining quarters, YVS-2 had no detections.
- TPH-Dx was not detected for the first two quarters at YVS-1b and the first three quarters at monitoring well YVS-3. Per Ecology's 2019 letter, wells with four consecutive quarters with no detections meet confirmational monitoring criteria and no additional monitoring is required.

Recommendations

Based on the results of the 2020, 2021, and 2022 quarterly monitoring, it has been demonstrated that confirmational cleanup levels are maintained in the designated compliance wells, meeting the tiered approach to reach site closure proposed in the Ecology 2019 letter. As proposed in the 2019 letter, no additional monitoring will occur for analytes once results are below the cleanup screening level for eight consecutive quarters or there are four consecutive quarters of no detections per the confirmational criteria. Adequate monitoring of sentry wells (YVS-1b and YVS-2) demonstrates that concentrations measured in the interior of the site attenuate and do not reach the compliance wells

at the downgradient property boundary. Therefore, with the completion of the 2022 groundwater monitoring program, the YVSSRG requests approval of a conditional point of compliance (e.g., the property boundary) and administrative closure of the Site, including approval to discontinue groundwater monitoring and to abandon all monitoring wells.

References

- AECOM, 2013. Letter to: Halah Voges, Anchor QEA, LLC. Regarding: Yakima Valley Spray/U-Haul Site (Facility Site ID No. 445) – Compliance Monitoring Plan. February 28, 2013.
- AECOM, 2019. Semi-Annual Groundwater Monitoring Report for the Yakima Spray/U-Haul Facility for September 2017 and March 2018 Semi-Annual Sampling Events. April 17, 2019.
- Anchor QEA (Anchor QEA, LLC), 2022. 2021 Groundwater Monitoring Report. Yakima Valley Spray/U-Haul Facility. Consent Decree No. 04-00908-1, Washington State Department of Ecology Facility Site ID No. 445. Prepared for the Yakima Valley Spray Site Remediation Group. March 2022.
- Ecology (Washington State Department of Ecology), 2019. Letter to: Halah Voges, Anchor QEA, LLC. Regarding: Semi-Annual Groundwater Monitoring Report for the Yakima Valley Spray/U-Haul Facility September 2017 and March 2018 Semi-Annual Sampling Events. August 8, 2019.
- Ecology, 2022a. Regarding: YVS U-Haul Site 2021 Groundwater Monitoring Report Email 1 of 1. Email to: Nik Bacher, Anchor QEA, LLC. March 24, 2022.
- Ecology, 2022b. Regarding: YVS U-Haul Site 2022 Groundwater Monitoring Data and Proposed Changes to Q2 2022 Sampling Program – Email 1 of 1. Email to: Nik Bacher, Anchor QEA, LLC. June 3, 2022.
- Ecology, 2022c. Regarding: YVS U-Haul Site 2022 Groundwater Monitoring Data and Proposed Changes to Q3 2022 Sampling Program – Email 1 of 1. Email to: Nik Bacher, Anchor QEA, LLC. August 23, 2022.
- Ecology, 2022d. Regarding: YVS U-Haul Site 2022 Groundwater Monitoring Data and Proposed Changes to Q4 2022 Sampling Program – Email 1 of 1. Email to: Nik Bacher, Anchor QEA, LLC. October 26, 2022.
- ENSR (ENSR International), 2008. Letter to: Dick Bassett, Department of Ecology. Regarding: Yakima Valley Spray Site Confirming Compliance Monitoring Plan Changes. October 27, 2008.
- EPA (U.S. Environmental Protection Agency), 1996. Ground Water Issue, Low-Flow (Minimal Drawdown) Groundwater Sampling Procedures. April 1996.

- RETEC (The RETEC Group, Inc.), 2003a. *Groundwater Compliance Monitoring Plan, Yakima Valley Spray/U-Haul Site, Yakima, Washington*. Seattle, Washington. October 16, 2003.
- RETEC, 2003b. Focused Groundwater Sampling and Analysis Plan, Yakima Valley Spray (U-Haul) Site, Yakima, Washington. Seattle, Washington. October 2003.

Attachments

Tables

Table 1	Groundwater Gauging Data
Table 2	2022 Groundwater Analytical Data
Table 3	PCE Background Concentration Calculations
Table 4	Performance and Confirmational Monitoring Status

Figures

Figure 1	Site Location
Figure 2	Groundwater Monitoring Network
Figure 3	Potentiometric Surface Map Quarter 1: March 2022
Figure 4	Potentiometric Surface Map Quarter 2: June 2022
Figure 5	Potentiometric Surface Map Quarter 3: August 2022
Figure 6	Potentiometric Surface Map Quarter 4: November 2022

Appendices

Appendix A	Field Forms
Appendix B	Historical Groundwater Results
Appendix C	Laboratory Data Reports
Appendix D	Data Validation Reports

Tables

Table 1 Groundwater Gauging Data

			Measuring	Q1 – N	/larch 2022	Q2 –	June 2022	Q3 – A	ugust 2022	Q4 – No	vember 2022
		Deep/Shallow	Point Elevation	Depth to Water	Groundwater Elevation						
Type of Well	Location	Well	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)
	BG-60	Deep	1044.92	23.70	1021.22	21.43	1023.49	17.65	1027.27	18.99	1025.93
Background	BG-90	Deep	1044.74	24.61	1020.13	22.30	1022.44	19.13	1025.61	21.27	1023.47
Background	MW-12	Shallow	1043.13	19.42	1023.71	17.48	1025.65	13.97	1029.16	14.92	1028.21
	YS-3 ¹	Shallow	1048.74	NM		NM		NM		NM	
	YVS-1b	Shallow	1040.94	18.55	1022.39	17.05	1023.89	12.81	1028.13	14.15	1026.79
Sentry	YVS-2	Shallow	1040.78	18.26	1022.52	16.41	1024.37	12.68	1028.1	13.25	1027.53
	MW-10 ¹	Shallow	1044.09	NM		NM		NM		NM	
	YS-1	Shallow	1040.56	18.80	1021.76	17.40	1023.16	15.50	1025.06	15.54	1025.02
	MW-6 ²	Shallow	1040.82	NM		NM		NM		NM	
Compliance	YVS-3	Shallow	1041.01	16.86	1024.15	15.96	1025.05	13.97	1027.04	13.80	1027.21
	YVS-3-60	Deep	1041.26	21.71	1019.55	19.75	1021.51	16.24	1025.02	17.52	1023.74
	YVS-3-90	Deep	1041.26	25.35	1015.91	22.81	1018.45	20.20	1021.06	21.41	1019.85
	MW-5 ³	Shallow	1042.1	NM		NM		NM		NM	
	MW-8	Shallow	1041.35	16.26	1025.09	16.03	1025.32	13.16	1028.19	13.91	1027.44
Other	MW-9	Shallow	1040.07	17.94	1022.13	16.51	1023.56	15.11	1024.96	15.56	1024.51
	MW-11 ¹	Shallow	1045.88	NM		NM		NM		NM	
	YS-2	Shallow	1040.33	15.52	1024.81	15.03	1025.3	14.10	1026.23	15.32	1025.01

Notes:

Vertical Datum: NGVD 29

1. Wells on Operable Unit 2 were previously gauged by GeoEngineers. They are no longer subject to required gauging.

2. MW-6 has been damaged, and the water level meter cannot be extended deeper than 8.1 feet below ground surface.

3. MW-5 has been abandoned.

NM : not measured

Table 2 2022 Groundwater Analytical Data

	Location ID Sample Date Sample Type Matrix	YVS-1b 3/28/2022 N WG	YVS-1b 6/9/2022 N WG	YVS-2 3/28/2022 N WG	YVS-2 3/28/2022 FD WG	YVS-2 6/9/2022 N WG	YVS-2 6/9/2022 FD WG	YVS-2 8/30/2022 N WG	YVS-2 8/30/2022 FD WG
Chemical	Cleanup Level								
Metals, Dissolved (µg/L)				-	-		-	-	
Arsenic	5	0.74		2.8	2.8				
Pesticides (µg/L)									
4,4'-DDT (p,p'-DDT)	0.3			0.11 U	0.094 U				
Aldrin				0.053 U	0.047 U				
Dieldrin				0.11 U	0.094 U				
Hexachlorocyclohexane (BHC), beta-				0.053 U	0.047 U				
Hexachlorocyclohexane (BHC), gamma- (Lindane)				0.053 U	0.047 U				
Total Petroleum Hydrocarbons (µg/L)									
Diesel range hydrocarbons	500	400 U	400 UJ	670 J	730	500 J	760	1800 J	1600 J
Diesel range hydrocarbons – silica gel treated		400 UJ		400 UJ	400 UJ	400 UJ	400 U	420 UJ	400 UJ
Gas Range Organics (C6-C12)	800	100 U		1110	1180	2240 J	1940	100 U	100 U
Oil range organics		400 U	400 UJ	400 UJ	400 U	400 UJ	400 U	740 J	720 J
Oil range organics – silica gel treated		400 UJ		400 UJ	400 UJ	400 UJ	400 U	420 UJ	400 UJ
Volatile Organics (µg/L)	·		-	•	-	-	-	-	•
Benzene	5			8.9 J	7.8	4.6 J	4.5	1.0 U	1.0 U
Tetrachloroethene (PCE)	23.9	1.0 U		1.0 U	1.0 U				

Table 2 2022 Groundwater Analytical Data

	Location ID Sample Date Sample Type	YVS-2 11/7/2022 N	YVS-2 11/7/2022 FD	YVS-3 3/28/2022 N	YVS-3 6/9/2022 N	YVS-3 8/30/2022 N
	Matrix	WG	WG	WG	WG	WG
Chemical	Cleanup Level					
Metals, Dissolved (µg/L)						
Arsenic	5					
Pesticides (µg/L)						
4,4'-DDT (p,p'-DDT)	0.3					
Aldrin						
Dieldrin						
Hexachlorocyclohexane (BHC), beta-						
Hexachlorocyclohexane (BHC), gamma- (Lindane)						
Total Petroleum Hydrocarbons (µg/L)						
Diesel range hydrocarbons	500	1200	1200	400 U	400 UJ	400 U
Diesel range hydrocarbons – silica gel treated		560 J	470	400 U		400 U
Gas Range Organics (C6-C12)	800	100 U	100 U			
Oil range organics		520	550	400 U	400 UJ	400 U
Oil range organics – silica gel treated		400 U	400 U	400 U		400 U
Volatile Organics (µg/L)						
Benzene	5	1.0 U	1.0 U			
Tetrachloroethene (PCE)	23.9					

2 of 3 March 2023

Table 2

2022 Groundwater Analytical Data

Notes:

detected concentration is greater than YakimaValleySpray_Cleanup screening level

Bold: detected result

µg/L: microgram per liter

J: estimated value

PCE: perchloroethylene

U: compound analyzed for, but not detected above detection limit

UJ: compound analyzed for, but not detected above estimated detection limit

3 of 3 March 2023

Table 3PCE Background Concentration Calculations

			PCE				PCE
ation ID	Sample ID	Sample Date	Concentration (µg/L)	Location ID	Sample ID	Sample Date	Concentrat
G-60	BG-60-0904	9/1/2004	29.8	MW-12	MW-12-0904	9/1/2004	(μg/L) 23
-60	BG-60-1204	12/7/2004	26.1	MW-12	MW-12-1204	12/8/2004	13.7
G-60	BG-60-0305	3/24/2005	22.7	MW-12	MW-12-0305	3/24/2005	6.76
G-60	BG-60-0605	6/15/2005	24.4	MW-12	MW-12-0605	6/16/2005	17.8
G-60	BG-60-0905	9/27/2005	20.1	MW-12	MW-12-0905	9/27/2005	25.2
G-60	BG-60-1205	12/12/2005	12.5	MW-12	MW12-1205	12/13/2005	12.5
G-60	BG-60-0306	3/15/2006	20	MW-12	MW-12-0306	3/14/2006	6.22
3G-60	BG-60-0606	6/15/2006	20.7	MW-12	MW-12-0606	6/14/2006	11.9
3G-60	BG-60-0906	9/13/2006	21.3	MW-12	MW-12-0906	9/12/2006	15.2
8G-60	BG-60-1206	12/29/2006	21	MW-12	MW-12-1206	12/29/2006	9.06
G-60	BG-60-0507	5/11/2007	19.7	MW-12	MW-12-0507	5/10/2007	5.66
G-60	BG-60-0408	4/10/2008	18.8	MW-12	MW-12-0408	4/10/2008	10.5
G-60	BG-60-0608	6/9/2008	17.7	MW-12	MW-12-0608	6/9/2008	8.72
G-60	BG-60-0908	9/16/2008	23.3	MW-12	MW-12-0908	9/15/2008	26.4
G-60	BG-60-0109	1/7/2009	24.5	MW-12	MW-12-0109	1/6/2009	7.69
i-60	BG-60-0309	3/18/2009	20.3	MW-12	MW-12-0309	3/17/2009	7.25
i-60	BG-60-0609	6/16/2009	9.5	MW-12	MW-12-0609	6/16/2009	3.8
-60	BG-60-0909	9/9/2009	15	MW-12	MW-12-0909	9/9/2009	20
-60 -60	BG-60-1209	12/1/2009	22.6	MW-12	MW-12-1209	12/1/2009	7.5
	BG-60-0310	3/1/2010	13.1	MW-12	MW-12-0310	3/1/2010	5.7
i-60	BG-60-0610	6/1/2010	17.2	MW-12	MW-12-0610	6/1/2010	6.3
i-60	BG-60-0910	9/1/2010	17.9	MW-12	MW-12-0910	9/1/2010	23.2
-60	BG-60-0313	3/20/2013	19	MW-12	MW-12-0313	3/20/2013	6.9
-60 -60	BG-60-0913	9/10/2013	16.4	MW-12	MW-12-0913	9/10/2013	17.9
	BG-60-0314	3/26/2014	17.8	MW-12	MW-12-0314	3/26/2014	4
i-60 i-60	BG-60-0914	9/16/2014	21.4	MW-12	MW-12-0914	9/16/2014	36.9 3.1
i-60 i-60	BG-60-0315	3/24/2015	<u>19.5</u> 19	MW-12 MW-12	MW-12-0315	3/24/2015	
-60 -60	BG-60-1015	10/27/2015	19	MW-12	MW-12-1015	10/27/2015	19.4 4.3
60	BG-60-0316	3/22/2016 9/26/2017	16.7	MW-12 MW-12	MW-12-0316 MW-12-0917	3/22/2016 9/26/2017	4.3
-60 -60	BG-60-0917 BG-60-0318	3/27/2018	15.8	MW-12	MW-12-0318	3/27/2018	3.8
-60	BG-60-0120	1/8/2020	14.1	MW-12	MW-12-0120	1/8/2020	8.1
60	BG-60-0420	4/7/2020	14.1	MW-12	MW-12-0420	4/8/2020	3.2
60	BG-60-0420 BG-60-0720	7/28/2020	14.6	MW-12	MW-12-0420	7/28/2020	6.1
60	BG-60-1020	10/13/2020	13.9	MW-12	MW-12-1020	10/13/2020	19.1
G-60	BG-60-0321	3/16/2021	14	MW-12	MW-12-0321	3/16/2021	4.09
-60	BG-60-0621	6/15/2021	11.8	MW-12	MW-12-0621	6/15/2021	4.09
-60	BG-60-0821	9/28/2021	12.8	MW-12	MW-12-0821	9/28/2021	15
-60	BG-60-1021	11/22/2021	12.3	MW-12	MW-12-1021	11/22/2021	6
-90	BG-90-0904	9/1/2004	0.5	YS-3	YS-3-1103	11/19/2003	15.4
90	BG-90-1204	12/7/2004	2.5	YS-3	YS-3-0904	9/1/2004	26.8
G-90	BG-90-0305	3/24/2005	2.5	YS-3	YS-3-1204	12/8/2004	14.4
G-90	BG-90-0605	6/15/2005	2.5	YS-3	YS-3-0305	3/24/2005	6.65
G-90	BG-90-0905	9/27/2005	2.5	YS-3	YS-3-0605	6/16/2005	12.4
-90	BG-90-1205	12/12/2005	12.5	YS-3	YS-3-0905	9/28/2005	25.7
90	BG-90-0306	3/15/2006	0.5	YS-3	YS-3-1205	12/13/2005	12.7
-90	BG-90-0606	6/15/2006	0.83	YS-3	YS-3-0306	3/14/2006	7.38
-90	BG-90-0906	9/13/2006	0.81	YS-3	YS-3-0606	6/15/2006	8.44
90	BG-90-1206	12/29/2006	0.95	YS-3	YS-3-0906	9/13/2006	21.7
90	BG-90-0507	5/11/2007	2.5	YS-3	YS-3-1206	12/28/2006	14.0
90	BG-90-0408	4/10/2008	1.37	YS-3	YS-3-0507	5/10/2007	6.6
90	BG-90-0608	6/9/2008	1.17	YS-3	YS-3-0907	9/5/2007	12.7
90	BG-90-0908	9/16/2008	1.41	YS-3	YS-3-1207	12/17/2007	16
90	BG-90-0109	1/7/2009	1.46	YS-3	YS-3-0308	3/11/2008	6.7
90	BG-90-0309	3/18/2009	1.41	YS-3	YS-3-0608	6/9/2008	6.33
90	BG-90-0609	6/16/2009	0.5	YS-3	YS-3-0908	9/15/2008	27.3
90	BG-90-0909	9/9/2009	1.2	YS-3	YVS-3-0321	3/16/2021	1.14
90	BG-90-1209	12/1/2009	2	YS-3	YVS-3-0621	6/15/2021	1
i-90	BG-90-0310	3/1/2010	2.1	YS-3	YVS-3-0821	9/28/2021	1.35
5-90	BG-90-0610	6/1/2010	1.8	YS-3	YVS-3-1021	11/22/2021	1.6
-90	BG-90-0910	9/1/2010	1.8	Notes:		,, _ v _ 1	1.0
i-90	BG-90-0313	3/20/2013	3.5		d field duplicate res	ults from 7/28/2020 a	and 10/13/2020
-90	BG-90-0913	9/10/2013	2.8			ults from 4/7/2020 we	
G-90	BG-90-0314	3/26/2014	3.5	-		sults from 1/8/2020 v	
-90	BG-90-0914	9/16/2014	3.6			n-detects, and repres	
-90	BG-90-0315	3/24/2015	3.8			ions using one-half t	
0	BG-90-1015	10/27/2015	3.8				
-90	BG-90-0316	3/22/2016	3.6	<u>Shapiro-Wilks W Te</u>	st	W value	Probabili
-		_,,,,		STOPTO MIND WILL			

BG-90	BG-90-0316	3/22/2016	3.6
BG-90	BG-90-0917	9/26/2017	4.45
BG-90	BG-90-0318	3/27/2018	5.0
BG-90	BG-90-0120	1/8/2020	3.7
BG-90	BG-90-0420	4/7/2020	3.55
BG-90	BG-90-0720	7/28/2020	4.9
BG-90	BG-90-1020	10/13/2020	4.58
BG-90	BG-90-0321	3/16/2021	4.18
BG-90	BG-90-0621	6/15/2021	3.7
BG-90	BG-90-0821	9/28/2021	3.55
BG-90	BG-90-1021	11/22/2021	3.6

<u>Shapiro-</u>	Wilks	W	Test	
Normal				

Normal

Log-Normal Data Distribution

90th Percentile

PCE Background

Cleanup Level

µg/L: micrograms per liter

W value	Probability
0.916	0.00
0.917	0.00
Non-	parametric

22.7	µg/L			

22.67	µg/L
-------	------

2022 Groundwater Monitoring Report and Request for Closure Yakima Valley Spray/U-Haul Site Facility Page 1 of 1 March 2023 Table 4

Performance and Confirmational Monitoring Status

			202	20			2	021			20	022		
Location	Analyte	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Status of Monitoring
	PCE	С	С	С	С	С	С	С	С					Met confirmational monitoring criteria (8 consecutive quarters below Cleanup Screening lev
	Benzene	С	С	С	С									Met confirmational monitoring criteria (4 consecutive quarters non-detect)
	Arsenic	С	С	С	С	С	С	С	С					Met confirmational monitoring criteria (8 consecutive quarters below Cleanup Screening lev
	Pesticides	С	С	С	С									Met confirmational monitoring criteria (4 consecutive quarters non-detect)
	TPH-Gx	С	С	С	С									Met confirmational monitoring criteria (4 consecutive quarters non-detect)
BG-60	TPH-Dx	Ρ	Р	Ρ	Ρ	С	С	С	С					Met criteria for Performance monitoring in 2020 (2 consecutive sampling events below clear Met confirmational monitoring criteria (4 consecutive quarters non-detect)
	Fecal coliform	С	С	С	С			-	-					
	N-ammonia	С	С	С	С									
	Nitrate + Nitrate as Nitrogen	С	С	С	С									
	Total dissolved solids	С	С	С	С									
	PCE	С	С	С	С	С	С	С	С					Met confirmational monitoring criteria (8 consecutive quarters below Cleanup Screening lev
	Benzene	С	С	С	С									Met confirmational monitoring criteria (4 consecutive quarters non-detect)
	Arsenic	С	С	С	С	С	С	С	С					Met confirmational monitoring criteria (8 consecutive quarters below Cleanup Screening lev
	Pesticides	С	С	С	С									Met confirmational monitoring criteria (4 consecutive quarters non-detect)
	TPH-Gx	С	С	С	С									Met confirmational monitoring criteria (4 consecutive quarters non-detect)
BG-90	TPH-Dx	Р	Р	Р	Р	С	С	С	С					Met criteria for Performance monitoring in 2020 (2 consecutive sampling events below clear Met confirmational monitoring criteria (4 consecutive quarters non-detect)
	Fecal coliform	С	С	С	С									
	N-ammonia	С	С	С	С									
	Nitrate + Nitrate as Nitrogen	С	С	С	С									
	Total dissolved solids	С	С	С	С									
	PCE	С	С	С	С	С	С	С	С					Met confirmational monitoring criteria (8 consecutive quarters below Cleanup Screening lev
[Benzene	С	С	С	С									Met confirmational monitoring criteria (4 consecutive quarters non-detect)
-	Arsenic	С	С	С	С	С	С	С	С					Met confirmational monitoring criteria (8 consecutive quarters below Cleanup Screening lev
	Pesticides	С	С	С	С									Met confirmational monitoring criteria (4 consecutive quarters non-detect)
[TPH-Gx	С	С	С	С									Met confirmational monitoring criteria (4 consecutive quarters non-detect)
MW-12	TPH-Dx	Р	Р	Р	Р	С	С	С	С					Met criteria for Performance monitoring in 2020 (2 consecutive sampling events below clear Met confirmational monitoring criteria (4 consecutive quarters non-detect)
	Fecal coliform	С	С	С	С									
1	N-ammonia	С	С	С	С									
	Nitrate + Nitrate as Nitrogen	С	С	С	С									
	Total dissolved solids	С	С	С	С									

level)

level)

eanup screening level), moved to compliance monitoring for 2021.

level)

level)

eanup screening level), moved to compliance monitoring for 2021.

level)

level)

eanup screening level), moved to compliance monitoring for 2021.

Table 4 Performance and Confirmational Monitoring Status

			202	20		2021			2022	2	
Location	Analyte	Q1	Q2	Q3	Q4	Q1 Q2 Q3	Q4	Q1	Q2 (Q3 Q4	Status of Monitoring
	PCE	NA	С	С	С	C C C	С	С			Met confirmational monitoring criteria (8 consecutive quarters below Cleanup Screening level)
	Benzene	NA	С	С	С						Considered in compliance in 2020 report due to non-detects, removal from sampling approved by EPA
Γ	Arsenic	NA	С	С	С	с с с	С	С			Met confirmational monitoring criteria (8 consecutive quarters below Cleanup Screening level)
	Pesticides	NA	С	С	С						Considered in compliance in 2020 report due to non-detects, removal from sampling approved by EPA.
	TPH-Gx	NA	С	С	С	c c c	С	С			Met confirmational monitoring criteria (8 consecutive quarters below Cleanup Screening level)
YVS-1b	TPH-Dx	NA	Ρ	Р	Р	c c c	С	С	С		Met confirmational monitoring criteria (4 consecutive quarters non-detect)
	Fecal coliform	NA	С	С	С		-				
	N-ammonia	NA	С	С	С						
	Nitrate + Nitrate as Nitrogen	NA	С	С	С						
	Total dissolved solids	NA	С	С	С						
	PCE	NA	С	С	С	с с с	С	С			Additional consecutive sampling event below cleanup screening level required to reach confirmational monitoring criteria.
	Benzene	NA	С	С	С			С	С	с с	Sampling for Benzene in YVS-2 was suspended prematurely, confirmation monitoring for Benzene continued for YVS-2 in 2022.
	Arsenic	NA	С	С	С	ссс	С	С			Additional consecutive sampling event below cleanup screening level required to reach confirmational monitoring criteria.
	Pesticides	NA	С	С	С			С			Additional consecutive sampling event below cleanup screening level required to reach confirmational monitoring criteria.
YVS-2	TPH-Gx	NA	С	С	С	C C C	С	С	С	с с	TPH-Gx exceeded Cleanup screening level in Q1 and Q2 of 2022 monitoring.
113 2	TPH-Dx	NA	Р	Р	Р	NA P P	Р	Р	Р	P P	TPH-Dx exceeded Cleanup screening level in Q1, Q3, and Q4 of 2022.
	Fecal coliform	NA	С	C	С						
	N-ammonia	NA	С	С	С						
	Nitrate + Nitrate as Nitrogen	NA	С	С	С						
	Total dissolved solids	NA	С	С	С						
Ļ	PCE	С	NA	С	С						Considered in compliance in 2020 report due to non-detects, removal from sampling approved by EPA.
Ļ	Benzene	С	NA	С	С		_				Considered in compliance in 2020 report due to non-detects, removal from sampling approved by EPA.
Ļ	Arsenic	C	NA	С	С	ссс	С				Considered to meet confirmational monitoring criteria (8 quarters below Cleanup Screening level)
Ļ	Pesticides	C	NA	С	С						Considered in compliance in 2020 report due to non-detects, removal from sampling approved by EPA
Ļ	TPH-Gx	C	NA	С	С						Considered in compliance in 2020 report due to non-detects, removal from sampling approved by EPA
YS-1	TPH-Dx	Р	NA	Р	Р	с с с	С				Met criteria for Performance monitoring in 2020 (2 consecutive sampling events below screening level), moved to compliance monitoring for 2021. Met confirmational monitoring criteria (4 consecutive quarters non-detect)
	Fecal coliform	С	NA	С	С						
	N-ammonia	С	NA	С	С						
	Nitrate + Nitrate as Nitrogen	С	NA	С	С						
	Total dissolved solids	С	NA	С	С						

Table 4Performance and Confirmational Monitoring Status

			202	20			2	021			2	022		
Location	Analyte	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Status of Monitoring
	PCE	С	С	С	С	С	С	С	С					Met confirmational monitoring criteria (8 consecutive quarters below Cleanup Screening lev
	Benzene	С	С	С	С					1				Met confirmational monitoring criteria (4 consecutive quarters non-detect)
	Arsenic	С	С	С	С	С	С	С	С					Met confirmational monitoring criteria (8 consecutive quarters below Cleanup Screening lev
	Pesticides	С	С	С	С				•	1				Met confirmational monitoring criteria (4 consecutive quarters non-detect)
	TPH-Gx	С	С	С	С									Met confirmational monitoring criteria (4 consecutive quarters non-detect)
MW-6	TPH-Dx	Р	Р	Р	Р	С	С	С	С					Met criteria for Performance monitoring in 2020 (2 consecutive sampling events below scre- confirmational monitoring criteria (4 consecutive quarters non-detect)
	Fecal coliform	С	С	С	С		-	-	-					
	N-ammonia	С	С	С	С									
	Nitrate + Nitrate as Nitrogen	С	С	С	С									
	Total dissolved solids	С	С	С	С									
	PCE	С	С	С	С	С	С	С	С					Met confirmational monitoring criteria (8 consecutive quarters below Cleanup Screening lev
	Benzene	С	С	С	С	С	С	С	С					Met confirmational monitoring criteria (8 consecutive quarters non-detect)
	Arsenic	С	С	С	С		•		•	1				Met confirmational monitoring criteria (4 consecutive quarters non-detect)
	Pesticides	С	С	С	С									Met confirmational monitoring criteria (4 consecutive quarters non-detect)
	TPH-Gx	С	С	С	С									Met confirmational monitoring criteria (4 consecutive quarters non-detect)
YVS-3	TPH-Dx	Р	Р	Р	Р	с	С	с	с	С	С	С		Met confirmational monitoring criteria (4 consecutive quarters non-detect)
	Fecal coliform	С	С	С	С		•							
	N-ammonia	С	С	С	С									
	Nitrate + Nitrate as Nitrogen	С	С	С	С									
	Total dissolved solids	С	С	С	С									
	PCE	С	С	С	С	С	С	С	С					Met confirmational monitoring criteria (8 consecutive quarters below Cleanup Screening lev
	Benzene	С	С	С	С					1				Met confirmational monitoring criteria (4 consecutive quarters non-detect)
	Arsenic	С	С	С	С	С	C	С	С					Met confirmational monitoring criteria (8 consecutive quarters below Cleanup Screening lev
	Pesticides	С	С	С	С		•		•	1				Met confirmational monitoring criteria (4 consecutive quarters non-detect)
	TPH-Gx	С	С	С	С									Met confirmational monitoring criteria (4 consecutive quarters non-detect)
YVS-3-60	TPH-Dx	Р	Р	Р	Р	С	С	С	С					Met criteria for Performance monitoring in 2020 (2 consecutive sampling events below scree confirmational monitoring criteria (4 consecutive quarters non-detect)
	Fecal coliform	С	С	С	С									
	N-ammonia	С	С	С	С									
	Nitrate + Nitrate as Nitrogen	С	С	С	С									
	Total dissolved solids	С	С	С	С									

evel)
evel)
reening level), moved to compliance monitoring for 2021. Met
evel)
evel)
/
evel)
reening level), moved to compliance monitoring for 2021. Met

Table 4

Performance and Confirmational Monitoring Status

			202	20			2	021			20	22		
Location	Analyte	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q	4 Q1	Q2	Q3	Q 4	Status of Monitoring
	PCE	С	С	С	С	С	С	С	C					Met confirmational monitoring criteria (8 consecutive quarters below Cleanup Screening lev
	Benzene	С	С	С	С									Met confirmational monitoring criteria (4 consecutive quarters non-detect)
	Arsenic	С	С	С	С	С	С	С	C					Met confirmational monitoring criteria (8 consecutive quarters below Cleanup Screening lev
	Pesticides	С	С	С	С									Met confirmational monitoring criteria (4 consecutive quarters non-detect)
	TPH-Gx	С	С	С	С									Met confirmational monitoring criteria (4 consecutive quarters non-detect)
YVS-3-90	TPH-Dx	Р	Ρ	Ρ	Ρ	С	С	С	С					Met criteria for Performance monitoring in 2020 (2 consecutive sampling events below scre confirmational monitoring criteria (4 consecutive quarters non-detect)
	Fecal coliform	С	С	С	С		-	-	-					
	N-ammonia	С	С	С	С									
	Nitrate + Nitrate as Nitrogen	С	С	С	С									
	Total dissolved solids	С	С	С	С									

Notes:

C Completed Confirmational Monitoring Sampling Event

P Completed Performance Monitoring Sampling Event

Bold Analyte Detected Above Method Reporting Limit

Analyte Detected at a concentration exceeding cleanup screening level

Wastewater Parameters, removed from 2021 monitoring due to 2020 monitoring results

TPH-Dx Total Petroleum Hydrocarbons – Diesel Range Organics (without silica gel)

TPH-Gx Total Petroleum Hydrocarbons – Gasoline Range Organics

NA Not analyzed

Q1 of 2020: YVS-1b and YVS-2 not sampled due to pump malfunction

Q2 of 2020: YVS-1 not sampled due to well being dry

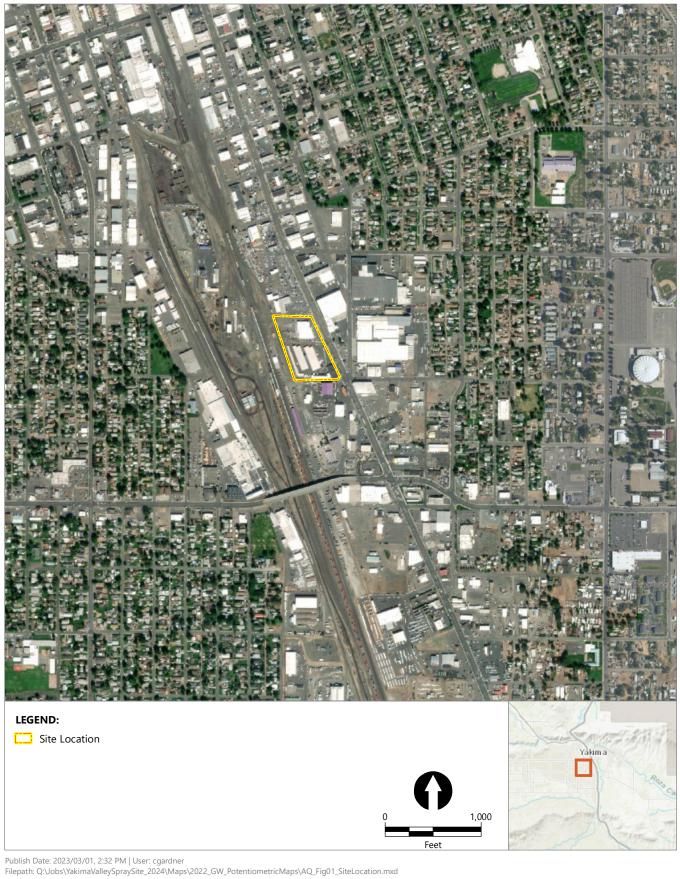
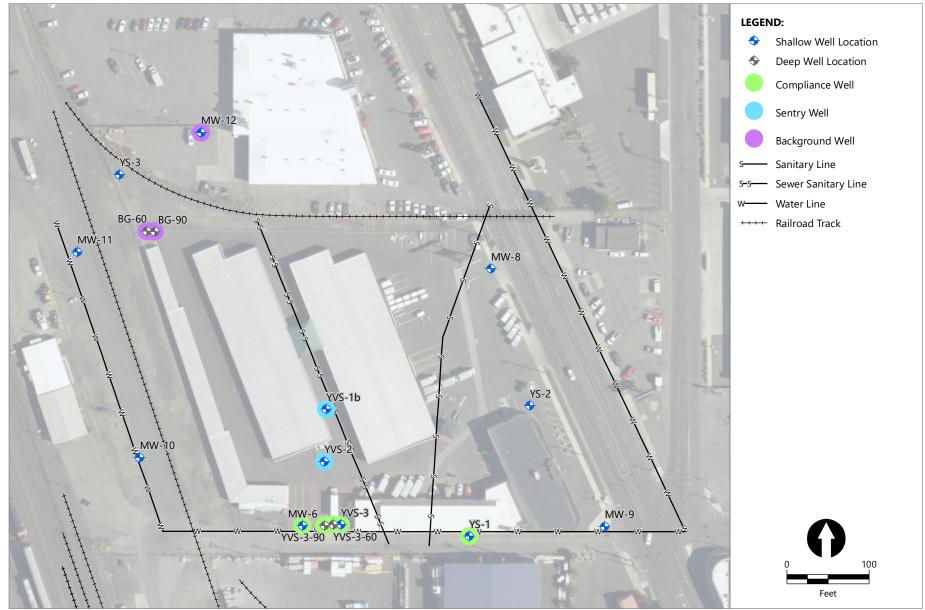
Q1 of 2021: YVS-2 not sampled due to chain of custody error

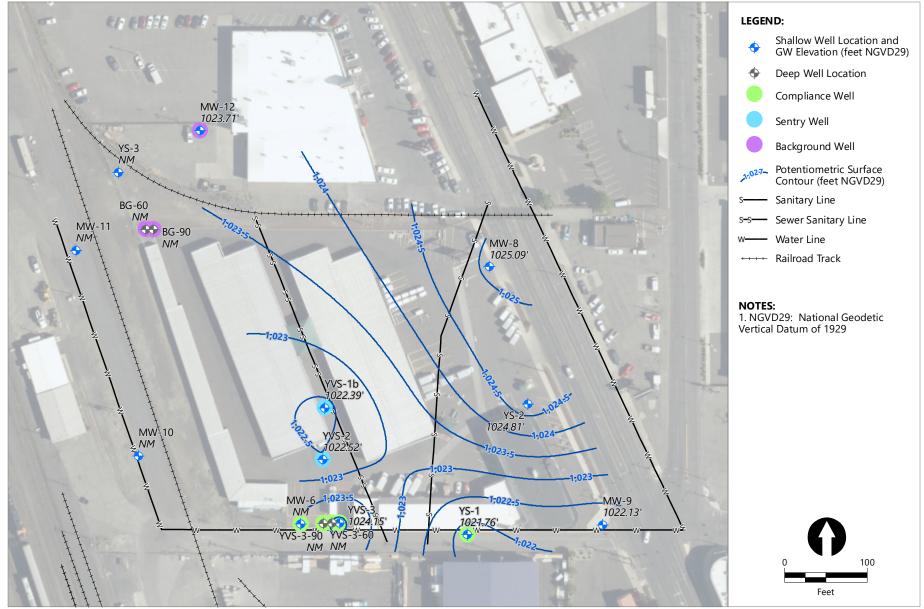
level)

level)

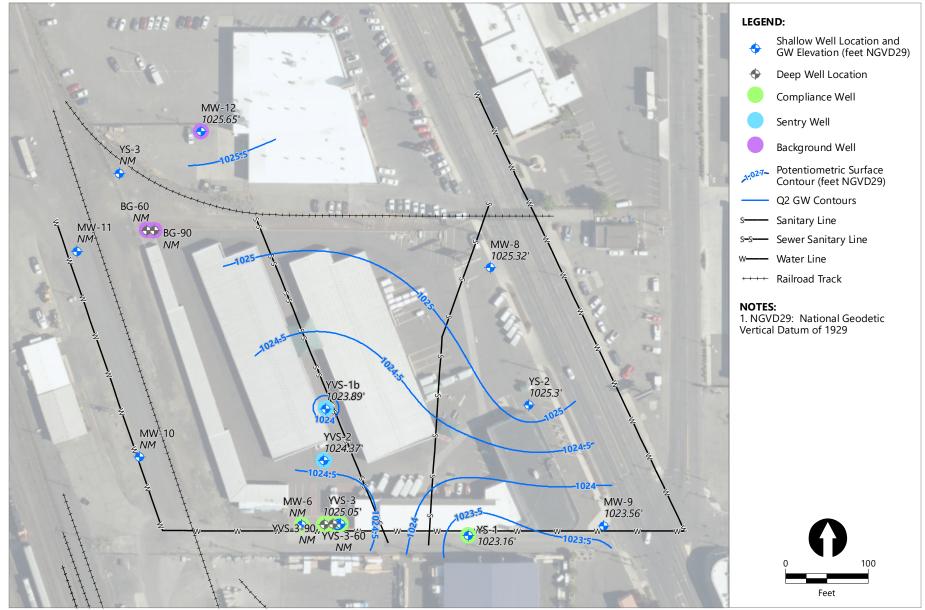
reening level), moved to compliance monitoring for 2021. Met

Figures

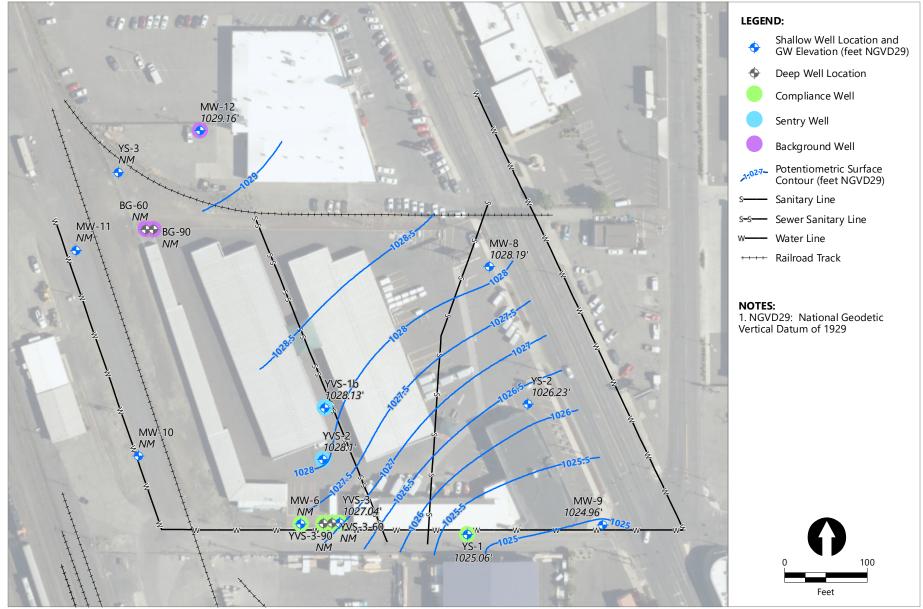




Figure 1 **Site Location** 2022 Groundwater Monitoring Report and Request for Closure Yakima Valley Spray/U-Haul Site Facility

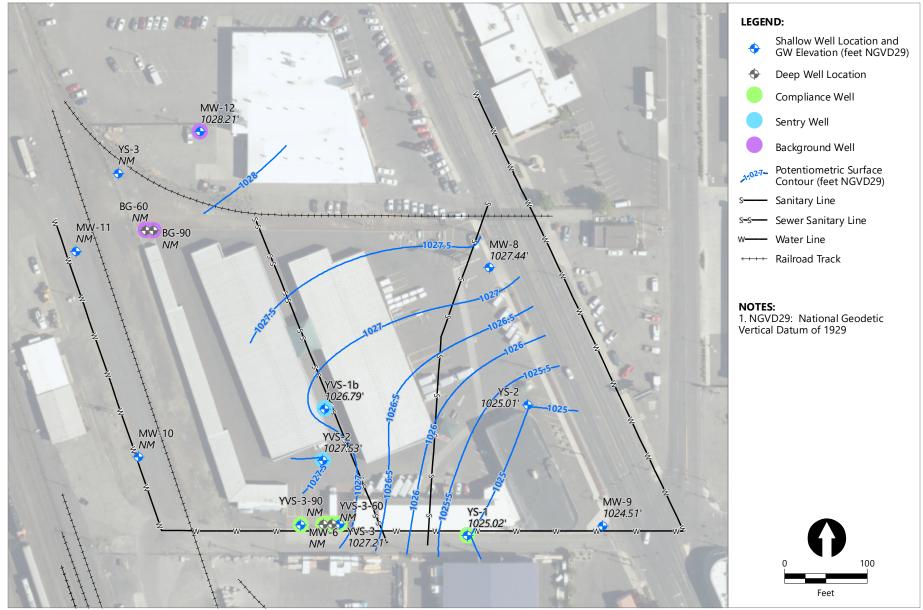
Publish Date: 2023/03/01, 2:35 PM | User: cgardner Filepath: \\orcas\gis\Jobs\YakimaValleySpraySite_2024\Maps\2022_GW_PotentiometricMaps\AQ_YVSS_Fig02_GW_Monitoring_Network.mxd


Figure 2 Groundwater Monitoring Network

Publish Date: 2023/03/01, 2:38 PM | User: cgardner Filepath: \\orcas\gis\Jobs\YakimaValleySpraySite_2024\Maps\2022_GW_PotentiometricMaps\AQ_YVSS_GWInterpolations_DDP.mxd


Figure 3 Potentiometric Surface Map Quarter 1: March 2022

Publish Date: 2023/03/01, 2:40 PM | User: cgardner Filepath: \\orcas\gis\Jobs\YakimaValleySpraySite_2024\Maps\2022_GW_PotentiometricMaps\AQ_YVSS_GWInterpolations_DDP.mxd


Figure 4 Potentiometric Surface Map Quarter 2: June 2022

Publish Date: 2023/03/01, 2:41 PM | User: cgardner Filepath: \\orcas\gis\Jobs\YakimaValleySpraySite_2024\Maps\2022_GW_PotentiometricMaps\AQ_YVSS_GWInterpolations_DDP.mxd

Figure 5 Potentiometric Surface Map Quarter 3: August 2022

Publish Date: 2023/03/01, 2:41 PM | User: cgardner Filepath: \\orcas\gis\Jobs\YakimaValleySpraySite_2024\Maps\2022_GW_PotentiometricMaps\AQ_YVSS_GWInterpolations_DDP.mxd

Figure 6 Potentiometric Surface Map Quarter 4: November 2022

Appendix A Field Forms

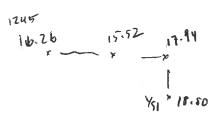
Quarter 1

PROJECT NAME: ANCHOR PROJECT NAME: ANCHAMA UP (JPAAy STE) DATE: b 3 - 28 - 32. PRESONNEL: S. 574 g + 4 WEATHER: WIND FROM: NINE COMMENTS C700 end Sere / 1/15 Return STRE COMMENTS C700 end Sere / 1/15 Return C100 SAMPUES Stre (U + 1/14) Control Sere / 1/15 G130 Left Sere / phones SAMPUES Ar for ext SBS 3-28-22		Daily Log
INTE ADDRESS: YAUSPANA, WA PERSONNEL: S. 578 erfz WEATHER: WIND FROM: N. NE E SE S SW W NW UGHT MEDIUM SURNY CLOUDY RAIN 2 TEMPERATURE: TIME COMMENTS 2 TEMPERATURE: C700 EN SFTE 1/1/15 Rectern 2 TEMPERATURE: SFTE (V-HAR) CECTURE TAIL W/ ANTINATSUM 073.0 OF 30 EN STRE (N-HAR) CECTURE TAIL W/ ANTINATSUM OF 30 EN STRE (N-HAR) CECTURE TAIL W/ ANTINATSUM OF 30 EN STRE (N-HAR) CECTURE TAIL W/ ANTINATSUM OF 30 ENTER STRE PAULON STRESS [Get ANTISS (J310 UFT STRE PAULON STRESS [Get ANTISS (J430 SAM purps Art Fore cit STRESS [Get ANTISS (J430 SAM purps Art Fore cit [Get ANTISSS [Get ANTISSS (J430 SAM purps Art Fore cit [Get ANTISSS [Get ANTISSSS (J430 SAM purps Art Fore cit [Get ANTISSSSS [Get ANTISSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS	V ANO QEA	CHOR A EEE
WEATHER: WIND FROM: N NE E SE S SW W NW LIGHT MEDIUM SUNNY CLOUDY RAIN ? TEMPERATURE! * C Contraposation COMMENTS C700 FN SFTE (4+5 RecterN SFTE (0-14AL) C FUL EN U/ antitation OF 70 BERAND GW SAMPLES (SEE FULLS) GW RAVATING (SEE FULLS) (310 UFF SFTE PACKED SAMPLES 1430 SAMPLES AT FUE CK SBS 7-28-72		
SUNNY CLOUDY RAIN ? TEMPERATURE: 'f TIME COMMENTS COMMENTS Clear propriet D700 tril SFTE //// $//$ Rever W/ and and the company D730 tril SFTE //// $//$ Rever W/ and and the company 0730 Get And Gue Samples (set France) (set And the company /330 WFT SFTE pheners Samples /330 SAMples Samples samples /331 Samples Samples samples /332 Samples Samples samples /333 Samples	TE ADDRESS:	YAKAMA, WA PERSONNEL: S. STREIT
0700 EN SFRE / HIS REVEN SFRE (V-HAL) CROTULEN W/ ANANAGEN 0730 BERAN GW SAMPLES (SEE FAIRS) GW RAVATAG (SEE FAIRS) 1310 LEFT STRE PACKED SAMPLES 1430 SAMPLES AT FOO EX SBS 3-28-22	/EATHER:	
SFR (vithu) CHET (Lith) W/ androthick 0730 BEADN GW SAMPLES (SEE FRANS) (310 LEFT STEE PROVIDES 1430 SAMPLES AT FOR CA SBS 3-28-22	TIME	
0730 AEGAN GU SAMPLES (SEE FULLS) GU GAVATAS (SEE FULLS) 1330 LEFT SETE PACKET SAMPLES 1430 SAMPLES AT FOR CA SBS 3-28-22	0700	
6us 6hrating (set from s) 1730 Utfr stre pheners 1430 Shmples ar for etc. SBS 3-28-22		
1330 UFT STE PREMES SAMPLES 1430 SAMPLES AT FOO CA SBS 3-28-22 	0730	
1430 Samples at For th SBS 3-28-22	100	
	1930	SAMPLES AT FOR ER
		CPS 3-78-71
		2011000
	. 4	
Signature:		
	Signature:	Trotta X2

Daily Safety Briefing Form

Other:

Date:	03-28-2022	
Project No:	192024-01.01	
Project Name:	U-Haul/Yakima Spray Valley Site	


Person Conducting Meeting: STEVE STREET	Health & Safety	Project
Meeting: Treve arrestra	Officer: Timothy Shaner	Manager: Halah Voges
TOPICS COVERED:		
Emergency Procedures and Evacuation Route	Lines of Authority	Lifting Techniques
Directions to Hospital	Communication	🔎 Slips, Trips, and Falls
HASP Review and Location	Site Security	Hazard Exposure Routes
Safety Equipment Location	Uessel Safety Protocols	Heat and Cold Stress
🗖 Proper Safety Equipment Use	🖉 Work Zones	Overhead and Underfoot Hazards
🖉 Employee Right-to-Know/	Vehicle Safety and Driving/	💋 Chemical Hazards
SDS Location	Road Conditions	
Fire Extinguisher Location	For Equipment Safety and Operation	🖉 Flammable Hazards
Eye Wash Station Location	Proper Use of PPE	🗹 Biological Hazards
Buddy System	Decontamination Procedures	C Eating/Drinking/Smoking
\Box /Self and Coworker Monitoring	Near Miss Reporting Procedures	Reviewed Prior Lessons Learned
É Field Team Medical Conditions fo	r Emergency Purposes (Confidential):	

Weather Conditions: Overlagt 607		tendees	End of Day Wellness Check
	Printed Name	Signature	Initials
	S. STREET	SBS	55
Daily Work Scope: GW MONT TONTH			_
			_
Site-specific Hazards: COE S / TD XFFFFC			_
	·		
			_
Safety Comments:			

Date: 03 - 1	28-20'	52	Project Number: 1920	24-01.01
	Personel O	n the Site		ather
Name		Affiliation	Conditions: Overcas	C
5. 5TRE	42	AQ	Temperature: 607 Precipitation: 07667 Other:	
Well Number	Time	Depth to Water (ft)	Total well Depth (ft)	Comments
BG-60	1242	23:70	~	NOT SAMPLED
BG-90	1240	24.61	-	k
MW-12	1250	19.42	~	Ч
YVS-1B	0845	18.55		SAMPUND
YVS-2	1000	18.26	-	SAMPLED
YS-1	0830	18.80	-	NOT SAMPLED
YS-2	0825	15.52		not sampled
MW-8	1245	16.26		not sampled
MW-6	NR	WELL BROKEN	-	N
YVS-3	0750	16.86	-	SAMPLED
YVS-3-60	0810	21,71	-	NOTSAMPLED
YVS-3-90	0810	25.35	-	u
MW-9	0825	17.94	-	not sampled

Ę.

2.05

- 20

l

	Yakima Groun	Yakima Groundwater Sampling and Analytical Plan	ig and Analy	tical Plan		
Project Number: 192024-01.01 T2	2024-01.01 T2					
Yakima Valley Spray Site	/ Site	Yakima, Washington	on			
Sampler:	SS					
Company:	AQ					
Well Number	Sample ID	Duplicate	MS/MSD	Time	Date	Comments
WS-1B	115-18 20120 328	Υ.Ψ.	14	0440	22-32-2	
YVS-2	115-2-20220328	YV5-201 @1115	Yes	1110	3-25-24	us long
YVS-3	745-3-202202-8-544	AN WY	**	0830	LL-32-E	2 ox
TB	78-20220328	γ ₁ γ	¥ 14	0540	22822	& Borres
		Sampling Information	lation			
Analysis	Method	Container	No. of Bottles Preservative	Preservative	Lab	Comments
PCE/Benzene	8260b	40 ml VOA Vial	e	3 HCL	Pace	
TPH Gas	NWTPH-Gx	40 ml VOA Vial	æ	3 HCL	Pace	
TPH Dx + SG/ wo	NWTPH-DX	250 mL AG	2	2 HCL	Pace	w/wo silica
SG						
Pesticides*	EPA 8081	1 L AG	2	2 Unpreserved	Pace	
Total Arsenic	200.8 ICPMS	250 mL HDPE	1	1 HNO3	Pace	Field Filtered
*Pesticide list: DDT	*Pesticide list: DDT, Aldrin, Dieldrin, Beta BHC, Lindane (Gamma BHC)	lane (Gamma BHC)				

Groundwater Collection Form: Wa						3-28-22						
Well ID: VS-IS					Date:	Date: Sampler: S. Strehl						
Project Name: Yakima Valley Spray Site Project Number: 192024-01.01												
Method:	Dedicated to	Vell Pump	with MP-	IS QED (Controller	via Low-Flov	A OF Per	ristalt	ic Pump via l	Low Flow		
Initial De	pth to Water	1	8.55		Total [Total Depth to Well						
Weather	Observation	is: Uz	ners r	1607-								
Time	Depth to Water (feet)	Rate (mL/m)	Cum. Vol (mL)	Temp (°C)	рН	Spec. Cond. (mS/cm)	OR (mV	/)	Turbidity (NTU)	Comments		
0915	18.65	150	-3 750		Con	NECT	35	Ĩ	-	CLEAR, NO COORS		
0970	18.65	150	4500	16.5	6.06	1.923	15.9		20.7	21 4		
6925	18.65	150	5250	16.5	6.09	1.949	109	8	20.1	11		
0930	18.65	150	6000	16.5	6.10	1.951	9.	4	19.9	H LE		
0435	18.65	150	6750	16.5	6.10	1952	9.7	2	19.8			
0940	Bypas	5 <i>ys</i>		Ang								
Total Vo Sample	The ID: χ	C -Fia ing:5c1, 1: 1B- 20	772 P	28	094	eurculy				NFECLE CNAWRE		
Ante	LYTES:	DISI	()	ARCENA	(1)	Tell-	D. C	(,	+04-1	- (3)		

Well ID: YVS-2- Project Name: Yakima Valley Spray Site					Date: 1	22.408	ehl			
					Project Number: 192024-01.01					
lethod:	Dedicated V	Vell Pump	with MP-	15 QED C	1.0		_	ristaltic Pump via	Low Flow	
Initial Depth to Water 18.26					Total D	epth to Wel				
Weather	Observation		non cas	+,60	Ē					
Time	Depth to Water (feet)	Rate (mL/m)	Cum. Vol (mL)	Temp (°C)	рН	Spec. Cond. (mS/cm)	OR (m`		Comments	
1035	18.30	150	3,000		Con	NECT	ys		CLEAR, NO WOMS	
1040	18.30	150	3730	16.7	6.29	0.936	-11.		ii Vi	
1045	18.30	150	4500	16.7	6.26	0.998	-7		u u	
1050	14.20	150	5250	16.7	6.25	1.060	<1.		- ч 	
1055	105.30	150	6000	16.7	6.25	1.065	-7.		44	
1100	18 30	150	6750	16.7	6.25	1.068	- 7	5 102		
1190	Pypas	451	STOM	pin						
Notes:	1045 BEE	Thi pute		50mi/	m J Fri	FUTATILY O		E - 128870	w/ Hyppocare Bow -	
Controlle <u>Total Vo</u> Sample Duplicate	e ID: $\gamma \nu s - s$	2-202 201 -	20328	3 @ 0328 ()	1110 21115	-			, Тр4-Gp(3), Ре(11, (Э), 11)	

1201 3rd Avenue, Suite 2600 Seattle, Washington 98101 Phone 206.287.9130 Fax 206.287.9131 www.anchorgea.com

Groundwater Collection Form: Wat Well ID: YUS-3 Project Name: YAKEMA VALLEY SPAAY					Date: 3	-28-2027	2 Sam	pler: S. Streh	ler: S. Strehl		
					Project Number: 192024-01.01 WI MP-15 RED CONTROLLEN VARA LUN FLOW						
											Method
nitial De	epth to Water	16.	86		Total D						
	r Observation			60F							
Weathe	rObservation	5. 00010				0	ORP	Turbidity	Comments		
Time	Depth to Water	Rate (mL/m)	Cum. Vol	Temp (°C)	рН	Spec. Cond. (mS/cm)	(mV)	(NTU)			
	(feet)		(mL)		10-0	well	4 SE -		CLEAR, NO COM		
0805	17.00	200	-3,000	37 1	5.68	0.282	214.9	3.3	4 4		
0810	17.00	200	¥ peo	15.1	5.74	0.281	226.7	3.2	u u		
0815	17.00	200	5,000	15.1	-	0.280	229.8	3.2	4 4		
0820	12.00	200	6,000	15.1	5.74	0.280	234.2	3.1	u l		
0825	17.00	200	7,000	15.1		V NOU					
0830	Rypt	5 45	4 /	CAMP	21.69						
	1'	/	*	/				-			
			_		+						
					+						
			_								
		-					•				
				-		-					
				_							
	-										
					+	-					
					-						
									, Clong where		

YSI ProDSS RENTAL CALIBRATION CERTIFICATE

SERVICE TECHNICIAN:
RENTAL CUSTOMER: Anchor OFF
INSTRUMENT INFORMATION
RENTAL I.D. NUMBER: YSIPRODSS.
SERIAL NUMBER: 16 F 102613

RENTALS

CALIBRATION INFORMATION

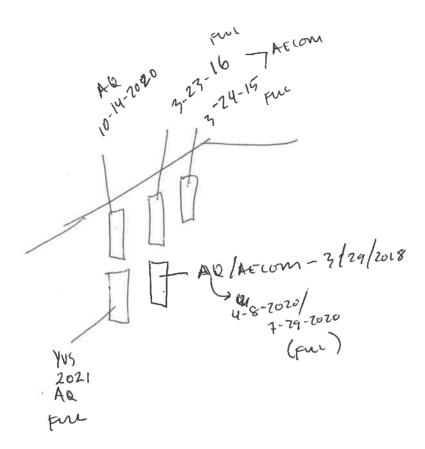
EQUIPCO

STANDARD:	PASS()	LOT #
1,000 µMhos	×-	057939
pH 7	X	065579
pH 4	\leq	062494
pH 10	¥	062496
Air Calibration Barometric pressure = 760mmHg	k	N/A
0.0 NTU's	×	N/A
20 NTU's	X	NA
231mV (YSI Zobell solution)	$\overline{\lambda}$	040621
	1,000 μMhos pH 7 pH 4 pH 10 Air Calibration Barometric pressure = 760mmHg 0.0 NTU's 20 NTU's	1,000 μ MhosXpH 7YpH 4XpH 10XAir Calibration Barometric pressure = 760mmHg $\frac{k}{k}$ 0.0 NTU'sX20 NTU'sX

DATE: 3/25/22

Quarter 2

Daily Safety Briefing Form


Date: 6-9-20 Project No: Association Project Name: Association	22 192024-01.01 HACHINGHING MICH UBSTANNO ANFMA SPRAY STIÉ		
Person Conducting Meeting: Strepton Strept TOPICS COVERED:	Health & Safety L'Officer: 7- 5//AMEYL	Project Manager://	BACILER
 Emergency Procedures and Evacuation Route Directions to Hospital HASP Review and Location Safety Equipment Location Proper Safety Equipment Use Employee Right-to-Know/ 	 Lines of Authority Communication Site Security Vessel Safety Protocols Work Zones Vehicle Safety and Driving/ 	Heat and C	, and Falls posure Routes Cold Stress and Underfoot Hazards
 SDS Location Fire Extinguisher Location Eye Wash Station Location Buddy System Self and Coworker Monitoring Other:	 Road Conditions Equipment Safety and Operation Proper Use of PPE Decontamination Procedures Near Miss Reporting Procedures 	-	
Weather Conditions: Ourse		Attende	
Daily Work Scope: <u>Gw</u>	Printed Steplen	Smertz	Signature SBS
Site-specific Hazards: CCCS	, TNUEFFE		
Safety Comments:			

.

Ster a call

Date: 6 /9	2022		Project Number: 1920	24-01.01	
1 1	Personel O	n the Site	We	ather	
Name		Affiliation	Conditions:		
STEPHEN STR	ent/	Awerton QEA	Temperature: 70° E Precipitation: North Other:		
Well Number	Time	Depth to Water (ft)	Total well Depth (ft)	Comments	
BG-60	0944	thankin 21.43	-	MA	
BG-90	0940	22.30	-	M	
MW-12	1158	7.48		Mt	
YVS-1B	8:25	17.05	pa	& SAM DUEY	
YVS-2	0920	16.41		SAMPLES	
YS-1	0950	17.40		NA	
YS-2	0997	1503		not sampled	MIN
MW-8	1148	16.03	groups.	not sampled	NE
MW-6					BROKEN
YVS-3	0730	15.96	~	SAMpus	
YVS-3-60	0800	19.75	-	KA	
YVS-3-90	0807	22-81		M.	
MW-9	0954	16.51		not sampled	45E

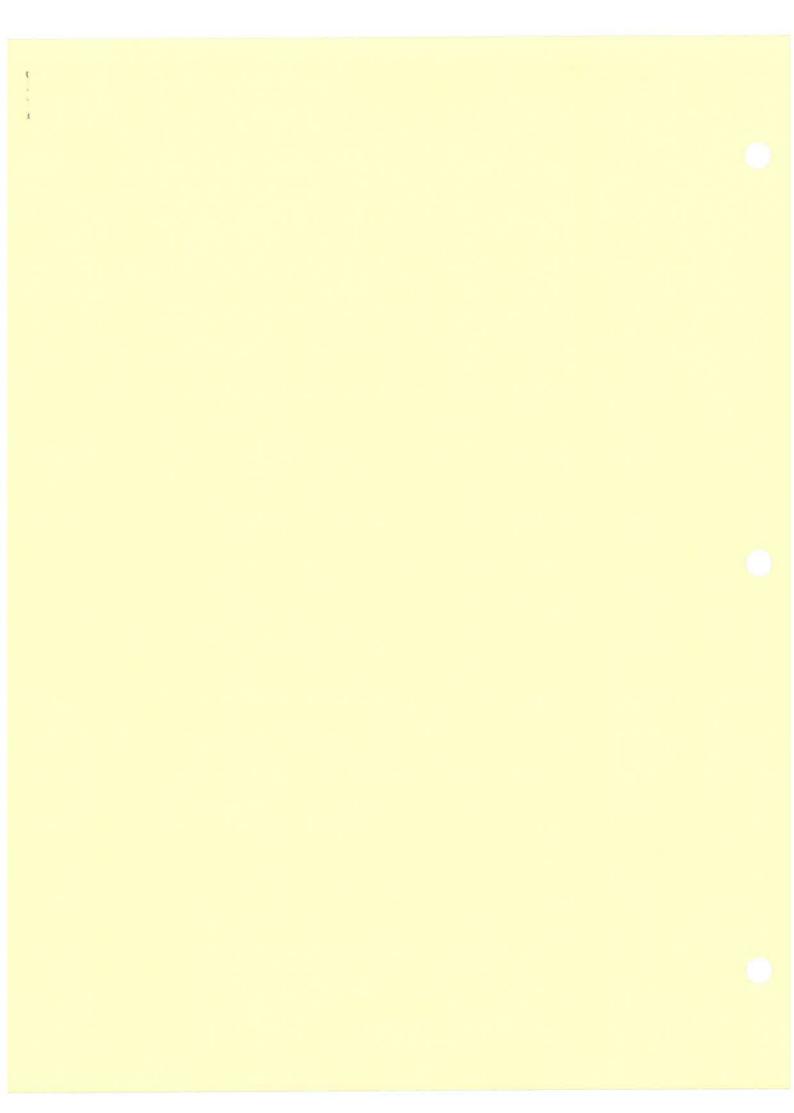
f

L

1201 3rd Avenue, Suite 2600 Seattle, Washington 98101 Phone 206.287.9130 Fax 206.287.9131 www.anchorgea.com

	YVS-	and the second sec			Date:	6-9-22	Sam	pler: S. Strehl	Find, WA
ell ID:	ame: YAK	A second second second second second	ILM S	ormy		t Number:			
				· · · ·	YSE				
ethod:	oth to Water	Actic				epth to Well	-		
			. 05						
/eather	Observation	s: ou	e carsi,	For					Comments
Time	Depth to Water	Rate (mL/m)	Cum. Vol	Temp (°C)	рН	Spec. Cond. (mS/cm)	ORP (mV)	Turbidity (NTU)	
	(feet)	1	(mL) 3,000	ertes	Ma BE	TITN YSI	COM	crow	cutte, no onors
850	17.05	150	3,750	16.6	6.02	1.956	22.9	20.2	
3855	17.05	150	4500	16.6	6.11	1.963	11.7	18.7	li d
0900	17.05	150	5250	16.7	6.12		11.6	18.5	u u
0905	17.05	150	6000	16.7	6.12	1.962	11.5	18.5	~~/
0915	P24 pt		15	ample	2				
0-(-)	()			1					
	V								
				_		-			
					-				
					-				
	_	+							up total CLERK

1201 3rd Avenue, Suite 2600 Seattle, Washington 98101 Phone 206.287.9130 Fax 206.287.9131 www.anchorqea.com


Groun	dwater (Collecti	on For	m: Wa	ter Qu	ality Mo	onitoring	- 41	tKFmit, lif
Vell ID:	VUS-	2			Date:	6-9-22	Z- San	npler: S. Stre	hl
	Name: YA		tilly s	pray	Project	Number:			
lethod:		TALFEC		2 (C	5 F				
nitial De	pth to Water				Total D	epth to Well			
Veather	Observation	is: Ovtr	report	, 70	° =				
Time	Depth to Water (feet)	Rate (mL/m)	Cum. Vol (mL)	Temp (°C)	рН	Spec. Cond. (mS/cm)	ORP (mV)	Turbidity (NTU)	Comments
000	17.00	150	4500	BEG	IN YS:	CONA	TUTION		CLEAR WE mun
005	17.00	150	7790	17.1	6.34	0.662	-7.2	11.0	K
010	17.00	150	6000	17.0	6.31	0.706	14 9	11.1	
015	17.00	150	6-790	17.0	6.31	0.712	-15.2	11.0	if l'
1020	17.00	170	7270	(7.0 mple	6.31	0.715	15 4	10.9	1
1025	bypts	s yet							
Total Vo <i>Se</i> Sample	Pin Hume Purger TITTA : ID: YVS.	d: 50%	a a 10 609	C 1	025	+ m			WS, AURGEN (Lenn
Other:		2016		-					
		•							

1201 3rd Avenue, Suite 2600 Seattle, Washington 98101 Phone 206.287.9130 Fax 206.287.9131 www.anchorgea.com

roject Name: $YVS(YAKAMA VALLIM SPAM))$ Project Number:Iethod: $BVADDEM PMP, QED 15 Controllent, DENSEATED PMMInitial Depth to Water15 \cdot 9bTotal Depth to WellVeather Observations:DEMENDER, 70° fVeather Observations:DEMENDER, 70° fVeather Observations:DEMENDER, 70° fTimeDepth toWater(feet)Rate(mL/m)Cum.Vol(mL)PH(°C)Spec.Cond.(mS/cm)ORP(mV)Turbidity(NTU)Comments075016.001502000Becan StStOI (915)StOI (912)Centre for StOI (912)Centre for StOI (912)075516.001502000Becan StStOI (912)Centre for StOI (912)Centre for StOI (912)075016.001502000Becan StStOI (912)Centre for StOI (912)Centre for StOI (912)075016.001502000Becan StStOI (912)StOI (912)Centre for StOI (912)075016.0015016.55.820.191239.93.2Ut ofOI (912)075016.0015015.75.780.187261.93.2Ut ofOI (912)075016.0015015.75.790.186262.13.2Ut ofOI (912)$	roject Name: $\mathcal{Y}VS(\mathcal{Y}AUWAA VAUM SPAAN)$ Project Number:Iethod: $\mathcal{B}UADDEA DEA DEA DEA DEA DEA DEA DEA DEA DE$	/ell ID:	YUS-3				Date: k	,-9-22	Sam	oler: S. Strehl	
lethod: $\mathcal{B} LANDEN PMP, QEN 15 Connormal, Tentertes PMPTinitial Depth to Water15-96Total Depth to WellVeather Observations:\mathcal{B} LANDEN, 70^{\circ} EVeather Observations:\mathcal{B} LANDEN, 70^{\circ} ETimeDepth toWater(feet)Rate(mL/m)Cum.Vol(mL)Temp(°C)PHSpec.Cond.(mS/cm)ORP(mV)Turbidity(NTU)Comments075016.001502000Becan StGenerationCeether workCeether work075016.001502000Becan StGenerationCeether work075016.00150150.75.820.191239.93.81075016.00150150.75.780.1872.61.93.21080516.0015015.75.790.1862.63.33.24081016.00150600015.75.800.1852.63.33.24$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	raiaat N	ame: VVS	(YAKEM	A WALLH	spray)	Project	Number:			
Initial Depth to Water $j5.96$ Initial Depth to Unit of the term Veather Observations: $UUUUUSEr$, $70°E$ Time Depth to Water (feet) Rate (mL/m) Cum. Vol (°C) (°C) pH Spec. Cond. (mV) ORP (NU) Comments 0750 16.00 150 2000 $Becan / St$ $Gond. (mV)$ (mV) (NTU) $Ccette / wo (NU)$ 0750 16.00 150 2000 $Becan / St$ $Gond. (mV)$ (NTU) $Ccette / wo (NU)$ 07550 16.00 150 2000 $Becan / St$ $Gond. (mV)$ (NTU) $Ccette / wo (NU)$ 07550 16.00 150 2000 $Becan / St$ $Gond. (mV)$ (NU) $Ccette / wo (NU)$ 07550 16.00 150 16.55 5.82 0.191 2391.91 3.8 $(1/4)$ 07500 16.00 15.7 5.780 0.187 261.91 3.2 u^{4} 08055 16.00 15.7 5.790 0.185 263.3 3.2 u^{4} u^{4} u^{4} <t< td=""><td>Initial Depth to Water 15.96 Iotal Depth to Water Iotal Depth to Water Veather Observations: $\mathcal{O}UMCAST, 7^{\circ}$ for Temp pH Spec. Cond. (mS/cm) ORP (mV) Turbidity (NTU) Comments 0.750 $0.0 \circ 0$ $15^{\circ} 0$ 2000 $B_{c} \subset A_{n}$ 55 0.191 239.7 3.8 $(t^{\circ} q)$ 0.750 $0.0 \circ 0$ $15^{\circ} 0$ 3200 $B_{c} \subset A_{n}$ 55 0.191 239.7 3.8 $(t^{\circ} q)$ 0.750 $0.0 \circ 0$ $15^{\circ} 0$ 3250 16.5 5.82 0.191 239.7 3.2 $u^{\circ} c^{\circ}$ 0.50° 10.0° $15^{\circ} 0$ 15.7 5.780 0.187 $2 10.9$ 3.2 $u^{\circ} c^{\circ}$ 0.80° 15.7 5.780 0.18° $2 63.3$ 3.2 $u^{\circ} c^{\circ}$ 0.81° 9.52° 5.780 0.18° $2 63.3$ 3.2 $u^{\circ} c^{\circ}$ 0.81° 9.52° 5.780 0.18°</td><td>lethod:</td><td>BLADDEN</td><td>. prmp</td><td>, Qen</td><td>15 con</td><td>morre</td><td>, HENLE</td><td>ATTES PUL</td><td>~~^~</td><td></td></t<>	Initial Depth to Water 15.96 Iotal Depth to Water Iotal Depth to Water Veather Observations: $\mathcal{O}UMCAST, 7^{\circ}$ for Temp pH Spec. Cond. (mS/cm) ORP (mV) Turbidity (NTU) Comments 0.750 $0.0 \circ 0$ $15^{\circ} 0$ 2000 $B_{c} \subset A_{n}$ 55 0.191 239.7 3.8 $(t^{\circ} q)$ 0.750 $0.0 \circ 0$ $15^{\circ} 0$ 3200 $B_{c} \subset A_{n}$ 55 0.191 239.7 3.8 $(t^{\circ} q)$ 0.750 $0.0 \circ 0$ $15^{\circ} 0$ 3250 16.5 5.82 0.191 239.7 3.2 $u^{\circ} c^{\circ}$ 0.50° 10.0° $15^{\circ} 0$ 15.7 5.780 0.187 $2 10.9$ 3.2 $u^{\circ} c^{\circ}$ 0.80° 15.7 5.780 0.18° $2 63.3$ 3.2 $u^{\circ} c^{\circ}$ 0.81° 9.52° 5.780 0.18° $2 63.3$ 3.2 $u^{\circ} c^{\circ}$ 0.81° 9.52° 5.780 0.18°	lethod:	BLADDEN	. prmp	, Qen	15 con	morre	, HENLE	ATTES PUL	~~^~	
Time Depth to Water (feet) Rate (mL/m) Cum. Vol (mL) Temp (°C) pH Spec. Cond. (mS/cm) ORP (mV) Turbidity (NTU) Comments 0750 16.00 150 2000 Becany St Gradient	Time Depth to Water Rate (mL/m) Cum. (mL) Temp (°C) pH Spec. Cond. (mS/cm) ORP (mV) Turbidity (NTU) Comments 0750 $16 \cdot \circ 0$ $15 \circ$ $20 \circ 0$ $B_{C} \subset m$ 51 $C \to \infty \in CC + T_{CV}$ $C \in Cente_{1} \to 0$ $C \in Cente_{1} $	nitial Dep	oth to Water	15	. 96		Total D	epth to Well			
Time Depth to Water (feet) Rate (mL/m) Cum. Vol (mL) Temp (°C) pH Spec. Cond. (mS/cm) OKP Harborry (NTU) 0750 16.00 150 2000 Becan 91 Spec. Cond. (mS/cm) (mV) (NTU) 0755 16.00 150 2000 Becan 91 239.9 3.8 (1) 0755 16.00 150 15.7 5.82 0.191 239.9 3.8 (1) 0500 1500 15.7 5.78 0.187 261.9 3.2 11 0505 16.00 15° 5.78 0.187 261.9 3.2 11 0505 16.00 15° 5250 15.7 5.78 0.186 262.1 3.2 4 0505 16.00 15° 5.80 0.15% 263.3 3.2 4 1	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Veather	Observations	s: 011	NCAST	70°F			000	Turbidity	Comments
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Time	Water		Vol		рН	Cond. (mS/cm)	(mV)	(NTU)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1750		150		Bee	in y	51 00			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $						0	0.191			/
0805 6.00 15° 5250 15.7 5.79 0.186 262.1 3.2 0810 16.00 150 6000 15.7 5.80 0.185 263.3 3.2 * (1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					-()	5.78	0.187			1
0810 16:00 150 6000 15.7 5.80 0,185 263.3 3.2	$\begin{array}{c c c c c c c c c c c c c c c c c c c $				-	15.7	5.79				1
	03 h5 RpASS y S F S Ampuns			150	6000	15.7	5.80	0,155	263.3	7.4	(
				YSI	SA	mpins	,				
Image: selection of the	Image: series of the series		1								
Image: selection of the	Image: series of the series										
Image:											
Image: Sector of the sector	Image: Section of the section of th										
Image: Constraint of the second se	Image: Sector										
	Image: Sector										
	Image:										
			_								
Total Volume Purged:		Cou	moller	- CMP	10/5	15-10	134				
COMMOLIER - CMP 10/5 13-10 13+	CONTROLIER - CMP 10/8 15-10 pst	Samp	ie iD: Yvs	- 3 - 20	22060	9 [1]	0015				
Total Volume Purged: <u>COMMOLIEN - CMP 10/5 15-70 155</u> Sample ID: YVS-3-20220609 @ 0815	CONTROLLER - CMP 10/8 19-10 PSF										

				1	gamma-BHC (Lindane)	*Pesticides by 8087:	ADDITIONAL COMMENTS	12	11	10,	9	8	7	o	5 YUS-201.20220609	4 VUS-2-20220609	09 07202 - 5 - 5 MK 8	6	- O POY	EA, LLC enue, Suite 2600 98101 Anu to y IE 2600 Day (Fax ~ 10 Day (Standard) ter per box. -9/,-) ust be unique	Section A Required Client Information:
					-	STI GHLN ST	RELINQUISH		Y	a C H	/			and a second	646	64 6	y Cm C	1 (7 L)	1 1411 - 1	Report To: COPY To: A CITENA Copy To: A CITENA Purchase Order No. Purchase Order No. Purchase Order No. Valkir Client Project ID: Valkir Container Order Number: Container Order Number: Container Order Number: Valkir Valkir DW robust St. Valkir St. Valkir VW robust St. Valkir VW robust St. Valkir VW robust St. Valkir St. Valkir VV Valkir St. Valkir St. Valkir VV Valkir VV Valkir VV Valkir St. Valkir VV Valkir VV <td>Section B Required Project Information</td>	Section B Required Project Information
	SIGNATURE	PRINT Nam	SAMPLER NAME			STRING / ANGUN	RELINQUISHED BY / AFFILIATION			1 11	- 4 A -	1			1.02012.1.3	+ 1025	130	5140	0-7-10 0700	kima Valley Sp coulecte	
	SIGNATURE of SAMPLER:	PRINT Name of SAMPLER:	SAMPLER NAME AND SIGNATURE			1.1 12 1300	DATE TIME			1	X	6						1 3	T T	SAMPLE TEMP AT COLLECTION	CHAIN-OF-CUSTODY / An The Chain-of-Custody is a LEGAL DOCU Section C
		ten Smith	のないのないのである				ACCEPTE						1			*	×	*			DDY / Analytic EGAL DOCUMENT.
1-9	DATE Signed:		市場が正いた意				CCEPTED BY / AFFILIATION								XXXX	XXXX	11	4	X	NWTPH-DX NWTPH-Dx + Silica Gel	IMENT. All relevant fields must be completed accurately
1112	÷		RANKEL MARKED				DATE T													Benzene by 8260	t be completed accu
		P in C ived c (/N)	-				TIME SAMPLE									N n				Residual Chlorine (Y/N)	irately.
	Coole	oles ir	_				SAMPLECONDITIONS									In Con				Ŷ	2

Quarter 3

QEA CHOR

Daily Safety Briefing Form

Date: Project No: 8-30-22 192024-01.01

Project Name: Yakima Valley Spray/U-haul Site

Person Conducting Meeting: S. STMUN	Health & Safety Officer: T. SILA MEN	Project Manager: /D G & S
TOPICS COVERED:		
☐ Emergency Procedures and Evacuation Route	ビ Lines of Authority	☐ / Lifting Techniques
Directions to Hospital	\square Communication	🖆 Slips, Trips, and Falls
HASP Review and Location	🖉 Site Security	Hazard Exposure Routes
D Safety Equipment Location	Vessel Safety Protocols	Heat and Cold Stress
D Proper Safety Equipment Use	Work Zones	Overhead and Underfoot Hazards
🗹 Employee Right-to-Know/	Diving/	🞾 Chemical Hazards
, SDS Location	Road Conditions	
🖄 Fire Extinguisher Location	D Equipment Safety and Operation	🟳 Flammable Hazards
I Eye Wash Station Location	Proper Use of PPE	🛱 Biological Hazards
☐ Buddy System	Decontamination Procedures	Discrete Eating/Drinking/Smoking
Self and Coworker Monitoring	I Near Miss Reporting Procedures	🗹 Reviewed Prior Lessons Learned
Other:		

Weather Conditions: <u>70F</u> , Sunny,	Atter	Idees
	Printed Name	Signature
	S. STREITZ	5175
Daily Work Scope: Struple 2 WEUS, GANGE QW		
Site-specific Hazards: <u>HEAR ADVBORY</u>		
Safety Comments: DRFnu WHEN		

Date: 8-30	22		Project Number: 1920	24-01.01
N	Personel C	n the Site		ather
Name		Affiliation	Conditions: 70 - SoF	Senary
5.50	on	ANCHOR REA		
		-	Temperature: 7 🕉	F
			Precipitation: NA	
			Other: HEAR ADVI	sony
Well Number	Time	Depth to Water (ft)	Total well Depth (ft)	Comments
BG-60	0902	17.65	an a	Not SAMPIES
BG-90	0903	19.13	Beautypeinen -	
MW-12	1042	13.97	Madagana e -	N N
YVS-1B	0852	12-81	New York	NOT SAMPLES
YVS-2	0871	12.68	_	Strupton
YS-1	1027	15.50		Not SAmpley
YS-2	640	14.10	- Heart	not sampled
MW-8	1045	13.16		not sampled
MW-6	NA	NA		NOT SAMPLEY
YVS-3	7:20	13.97		SAMPLOS
YVS-3-60	7:47	16.24	Auro (ego)	Not SAmples
YVS-3-90	7:49	20.20	-	NOT SAMPLER
MW-9	1079	15.11		not sampled

ŝ

8

Grour	ndwater (Collecti	on Fo	rm: Wa	ater Qu	uality Mo	nitorin	ig – Yakim	a, WA
Well ID:	VV5	3	,		Date: 8	8-30-2022	Sa	mpler: S. Stre	hl
Project I	Name: Yakir	na Valley S	pray Site		Projec	t Number : 1	92024-01	.01	
Method:	Dedicated V	Vell Pump	with MP-	15 QED C				altic Pump via	Low Flow
Initial De	pth to Water	1).			Total D	Depth to Wel			
Weather	Observation	is: 70F	, Sur	y					
Time	Depth to Water (feet)	Rate (mL/m)	Cum. Vol (mL)	Temp (°C)	pН	Spec. Cond. (mS/cm)	ORP (mV)	Turbidity (NTU)	Comments
6740	13.99	200	400C	- B	ELEN	YSF C	onne		CLEAR, NO COURS
0745	13.99	700	5000	18.1	5.08	0.256	325=4	2.90	11 4
0750	13.99	200	6000	18.1	5.18	0.254	335.7	2.83	u (i 1
0755	13.99	200	7000	18.1	5.22	0.254	350.8		4
0800	13.99	2.00	8000	18.2	5.22	0.254	352.1	2.79	"1
0805	13.99	200	9000	18.2	5.22	0.254	352.9	2.79	
0810	137823	5 795	/ 5.	Ampi					
Controlle	אד איז	ing: <i>Cpm</i>				v- 20 m	LFN	2	
	1D: YV5-7		830	@ 08:	נס				
MS/MSE): χ								

Initial Depth to Water 12.68 Total Depth to WellVeather Observations:Survey, 85FTimeDepth to Water (feet)Rate (mL/m)Cum. Vol (mL)Temp (°C)pH (°C)Spec. Cond. (mS/cm)ORP (mV)Turbidity (NTU)Comments85012.981502250 $$ $2eastridetore455cond.(mS/cm)(mV)(mV)(NTU)Comments85512.9815020.020.15.000.426349.137.304.290012.98150345020.05.370.738347.534.204.2$
Weather Observations: Surg, 85 F Time Depth to Rate (mL/m) Cum. Vol (°C) pH Spec. Cond. (mV) ORP (NTU) Comments 850 12.98 150 2250 7 </th
Initial Depth to Water 12.68 Total Depth to WellWeather Observations:Surg., 85FTimeDepth to Water (feet)Rate (mL/m)Cum. Vol (mL)PH (°C)Spec. Cond. (mS/cm)ORP (mV)Turbidity (NTU)Comments985012.981502250 $$ 7 63 347.6 347.6 342.0 4.2 985712.98150 3150 20.0 5.37 0.738 347.5 34.20 4.2
Weather Observations:Survey, 85 FTimeDepth to Water (feet)Rate (mL/m)Cum. Vol (mL)Temp (°C)pH Spec. Cond. (mS/cm)ORP (mV)Turbidity (NTU)Comments85012.981502250 $$ 960020.15.000.426349.137.304497012.98150345020.05.370.738347.534.2044
Time Depth to Rate (mL/m) Cum. Vol (mL) Temp (°C) pH Spec. Cond. (mV) ORP (mV) Turbidity (NTU) Comments 850 12.98 150 2250 $$ $gegstnd$ $y SF$ $connectifierrer$ $c(cond. (mS/cm)$ mV
1850 12.98 150 2250 - 7 EGAN 455 COMPETION - (LOAR, NO ON) 1855 12-98 150 3000 20.1 5.00 0.426 349.1 37.30 4 4 1990 12.98 150 3750 20.0 5.37 0.738 347.5 34.20 4 4
0980 12.98 150 3750 20.0 5.37 0.738 347.5 34.20 4 4
100 12.98 150 3750 20.0 5.37 0.738 347.5 34.20 4 m
905 12.48 150 4500 20.0 5.31 0.741 337.6 30.00 4 u
910 12.28 150 5250 20.0 5.30 0.742 334.7 29.56 4.4
MW 6415 12.98 170 6000 20.0 5.30 0.741 333.5 29.54 " "
0920 Byptes yest / SAMPLED

	Vakima Ground	ma Groundwater Sampling and Analytical Plan	Mand Analy	tical Dlan		
Draiact Number: 102024_01 01 T2						
Yakima Vallev Snrav Site	v Site	Yakima. Washington	uo			
Sampler:	SS	0				
Company:	AQ					
Well Number	Sample ID	Duplicate	MS/MSD	Time	Date	Comments
WS-1B	And a strength					
	0 2202 M	V15-201-2070530	Yes	2200/0260	8-70.72	Csw/sw+
WS-3	YV5-3- 20220870	×	×	0810	8-30-71	
TB	TB-20120830	x	z	0700	8-30.72	
		Sampling Information	ation			
Analysis	Method	Container	No. of Bottles	Preservative	Lab	Comments
PCE/Benzene	8260b	40 ml VOA Vial	Ŵ	HCL	Pace	
TPH Gas	NWTPH-Gx	40 ml VOA Vial	m	HCL	Pace	
TPH Dx + SG/ wo	NWTPH-Dx	250 mL AG	2	2 HCL	Pace	w/wo silica
SG						
Pesticides*	EPA 8081	1 L AG	2	Unpreserved	Pace	
Total Arsenic	200.8 ICPMS	250 mL HDPE	1	1 HNO3	Pace	Field Filtered
*Pesticide list: DD1	*Pesticide list: DDT. Aldrin. Dieldrin. Beta BHC. Lindane (Gamma BHC)	ane (Gamma BHC)				

YSI ProDSS RENTAL CALIBRATION CERTIFICATE

SERVICE TECHNICIAN:

RENTAL CUSTOMER:

INSTRUMENT INFORMATION

RENTAL I.D. NUMBER: VSIPRODSS. 05

SERIAL NUMBER: 16F102616

CALIBRATION INFORMATION

PARAM	ETER:	STANDARD:	PASS()	LOT #
1	. CONDUCTIVITY	1,000 µMhos		0(57939
2	pH ZERO	pH 7	X	065579
\cap	pH SLOPE	pH 4	Ze	062294
	pH SLOPE	pH 10	6	BEDNELS
3	. DISSOLVED OXYGEN	Air Calibration Barometric pressure = 760mmHg	6	N/A
4	. TURBIDITY ZERO	0.0 NTU's	4	N/A
	TURBIDITY SPAN	20 NTU's	p	
5	. REDOX (ORP)	231mV (YSI Zobell solution)	\geq	040621

DATE: 8/29/22

P.O. Box 5606

1-888-234-5678 www.equipcoservices.com

DELIVERY SLIP

Date Transaction no 29-Aug-22 01-55700-3

> Page: 1 of 2

Concord, CA		S Stephen Str	ohl		
Anchor QE		H	em		
V 1201 510 P					
O Suite 2600)	P			
I Seattle WA	98101	Р			
C Tel: 206-28	37-9130	E			
E		D			
ustomerno	2879130	Representative	Jason Miller		
ustomer P.O.	192024-01.01 T02	SHIP MA	Thunderdog S	Same Day	
uotation no	0-0	Shipping	29-Aug-22	08/30/2022	
leservation no		Close Contract	30-Aug-22		
contract no	0-0				
Qty Registration Code Ret. Qty		Desc	cription		

Qty Registration Code Ret. Qty MULTIP : MULTIPARAMETER INSTRUMENTS

IL : IV	VIUL TIPARAIVIETER INST	RUMENTS	
1	YSIPRODSS.05		Y SI ProDSS
1	PRODSSCBL4.05		Y SI ProDSS Cable
1	PRODSSCOND.05		YSI ProDSS Cond/Temp Probe
1	PRODSSODO.05		YSI ProDSS ODO Probe
1	PRODSSPH.05		Y SI ProDSS pH/ORP Probe
1			YSI ProDSS Probe Guard
1			YSI ProDSS Sonde Weight, 4.9 oz
1			Y SI ProDSS Cal Cup
1			YSI ProDSS Flow Cell
1			YSI ProDSS Flow Cell O-Ring Kit
1			YSI ProDSS Thumbdrive Manual/Softw are
1			Y SI ProDSS Manual
î			YSI6 foot USB Cable
1			YSI 6 Inch USB Cable
1			YSI ProDSS Charger
1			YSI ProDSS Case
2			YSI Flow Cell Fitting, 1/4" Hose Barb
2			YSI Flow Cell Fitting, 3/8" Hose Barb

FA	價價			
				88
LU				
times and the second	100	burner annue	1000	

P.O. Box 5606

1-888-234-5678

www.equipcoservices.com

DELIVERY SLIP

Date Transaction no 01-55700-3 29-Aug-22

> Page: 2 of 2

Conco	ord, CA 94	4524					Page:	2 of 2
N 120 V Sui O Sea	chor QEA 01 3rd Av ite 2600 attle WA 9 1: 206-287	e. 98101			S Stephen Sti H I P E D	rehl		
Custome	r no	2879130			Representative	Jason Miller		
Custome	r P.O.	192024-01	1.01 T02		SHIP VIA	Thunderdog S	ame Day	
Quotation	no		0-0		Shipping	29-Aug-22	08/30/2022	
Reservati	ion no				Close Contract	30-Aug-22		
Contract r	no		0-0					
Qty	Registra	tion Code	Ret. Qty		Des	cription		
	PRODSST	URB.05 PLING SYST	EMIS	YSI ProDSS Turbidity Probe				
	MP-15.05	121100101	2110	QED MP-15 Controller				
1				5LB CO2 Cylinder, Aluminum				
TDCOUR : ⁻ 1	Thunderdo	og Courier		Thunderdog Same Day OutBou	nd			
WLM : WA	TER LEVE	L METERS		0 2				
1	WLM100F	6.31		Solinst Water Level Meter, 100'	P6			
1				Solinst Tape Guide				

Shipping Notes Courier at 11

Quarter 4

QEA CET

Daily Safety Briefing Form

Date: Project No: 11 - 7 - 72 192024-01.01

Project Name: Yakima Valley Spray/U-haul Site

Person Conducting Meeting: S. SMETT	Health & Safety Officer: T-SHAVEY	Project Manager: N · BACHTYL
TOPICS COVERED:		
Emergency Procedures and Evacuation Route	🗹 Lines of Authority	□ Lifting Techniques
Directions to Hospital	Communication	🗹 Slips, Trips, and Falls
HASP Review and Location	伯 Site Security	🖄 Hazard Exposure Routes
Safety Equipment Location	Vessel Safety Protocols	Heat and Cold Stress
🗘 Proper Safety Equipment Use	🗹 Work Zones	Ø Overhead and Underfoot Hazards
🗹 Employee Right-to-Know/	D Vehicle Safety and Driving/	🖉 Chemical Hazards
 SDS Location 	Road Conditions	
Fire Extinguisher Location	Equipment Safety and Operation	Flammable Hazards
Vash Station Location	🖄 Proper Use of PPE	Biological Hazards
Buc	Decontamination Procedures	Eating/Drinking/Smoking
☑ Self a. Monitoring	🖆 Near Miss Reporting Procedures	Reviewed Prior Lessons Learned
🗹 Other:		

Weather Conditions:	Atte	ndees
	Printed Name	Signature
	S. STREITZ	855
Daily Work Scope: <u>Gw Montry MFng</u>	-	
Daily Work Scope: <u>AW MONFRONTAL</u> + GAVGFNG		
Site-specific Hazards: COC & TRAFFEC		
Safety Comments:		

Date: 11-7	-2022		Project Number: 192024-01.01		
	Personel C		We	ather	
Name 5 · ST	arth_	Affiliation A &	Conditions:		
			Temperature:		
			Precipitation:		
			Other:		
Well Number	Time	Depth to Water (ft)	Total well Depth (ft)	Comments	
BG-60	1040	18.11	-	NOT SAMPLOD	
BG-90	1031	21.27	-	1	
MW-12	1057	14.92		4	
YVS-1B	0914	14.15		NOT SAMPLES	
YVS-2	0130	13.25	-	SAMPLED	
YS-1	1044	15.54	-	NOT SAMPLES	
YS-2	1047	15.32	~	not sampled	
MW-8	1070	13.91		not sampled	
MW-6	~	WELL BROKEN	-	1	
YVS-3	0918	13.80	-		
YVS-3-60	0919	17.52	-		
YVS-3-90	0929	21.41	-	Y	
MW-9	1046	15.56		not sampled	
Additional Con	_		<i>2</i>		

x mbx-8 x yg-z yg-z yg-z

> 11 A

Method:	Name: Yakin				Date: //- 7 Z Sam Project Number: 192024-01.0			Sampler: S. Strehl			
		na Valley S	Spray Site					4-01.01			
	Dedicated V	Vell Pump	with MP-1	15 QED C	Controller	via Low Flow	w or Perista	Itic Pump via	Low Flow		
	pth to Water					Depth to Wel			ſ		
				A . / 17 . F	-	C Here in			de la companya de la comp		
Weather	Observation	s: 70 P	1 ACCEM	precipi	TATAON ;	LATCOY					
Time	Depth to Water (feet)	Rate (mL/m)	Cum. Vol (mL)	Temp (°C)	рН	Spec. Cond. (mS/cm)	ORP (mV)	Turbidity (NTU)	Comments		
0910	13.60	150	4500	B	ELEN	YSI (or	VWECTA	on	CLEAR, NO MONS		
0915	13.60	150		17.2	5.31	0.534	299.8	Y.12	11, 17		
0920	13.60	150		17.5	5.21	0.541	290.5	7.29	u u		
0925	13.60	150		17.8	5.18	0.550	281.1	5.60	u ^t Lt		
0930	13.60	150		18.0	5.12	0.555	274.1	5.66	11 11		
0935	13.61	150		18.0	5.07	0.559	266.3	5.50			
0940	13.61	150		18.0	5.06	0.559	265.5	5.48			
0945	13.61	150	,	18.0	5.05	0.559	265.2	5.47			
0950	AYPASS	452	SAN	pion							
\$ 1000	SAMP.	to VUPI	FLATE	·							
	/										
						ļ					
			ļ								
			ļ		ļ						
			ļ		ļ						
					ļ						
<u> </u>				L,					Garrie Ohio		
Notes: 8¿	LEN PULLER . KLY CLEAR.	AT 08:40	@ 150 m	way 1	SOME OR	ANAE2SU FU	hues / tua r	OUTY FNER	FALLY THEN		
7050		lander									
Controlle	er/Pump Sett	ing: まちり	*								
Total Vol	lume Purged										
Sample I	D: YVS-	2 - 20	22110	70	0950	(Rorri	es: 217				
	,										
Duplicate	• ID: 745~	201 - 2	ozz 110	07 C	1000	(Borrio	n: 8)				
MS/MSD	Ver										
MS/MSD											

		וווום הוהמותאמתו סמוווףווויף מוות צוומול הכמו דימו				
Project Number: 192024-01.01 T2	92024-01.01 T2					
Yakima Valley Spray Site	y Site	Yakima, Washington				
Sampler:	SS					
Company:	AQ					
Material Materia	C10	Dunlicato	AAS /AASD	Time/Dun Time	Date	Commente
well number	Sample ID	nuplicate	OCIAI /CIAI		Laic	
				1		
YVS-2	YVS-2-20221107	YVS-201-20221107	VES	0420 1000	11/7/2022	
TB	TB-20221107	NA	NA	0800	2202/2/11	
		Sampling Information	mation			
Analysis	Method	Container	No. of Bottles Preservative	Preservative	Lab	Comments
PCE/Benzene	8260b	40 ml VOA Vial	3	3 HCL	Pace	
TPH Gas	NWTPH-Gx	40 ml VOA Vial	£	3 HCL	Pace	
TPH Dx + SG/ wo	NWTPH-Dx	250 mL AG	2	2 HCL	Pace	w/wo silica
SG						

YSI ProDSS RENTAL CALIBRATION CERTIFICATE

$G\Lambda$
SERVICE TECHNICIAN:
RENTAL CUSTOMER: Avera QDA
INSTRUMENT INFORMATION
RENTAL I.D. NUMBER: YSIPRODSS.
SERIAL NUMBER: 67102616

RENTALS

CALIBRATION INFORMATION

EQUIPCO

STANDARD:	PASS()	LOT #
1,000 µMhos	x	057939
рН 7	x	065579
рН 4	à	0624944
pH 10	×	062495
Air Calibration Barometric pressure = 760mmHg	0	N/A
0.0 NTU's	¥	N/A
20 NTU's	\propto	NA
231mV (YSI Zobell solution)		040621
	1,000 μMhos pH 7 pH 4 pH 10 Air Calibration Barometric pressure = 760mmHg 0.0 NTU's 20 NTU's	1,000 μ Mhos \overleftarrow{k} pH 7 \overleftarrow{k} pH 7 \overleftarrow{k} pH 4 $\underbrace{50}$ pH 10 $\underbrace{5c}$ Air Calibration $\underbrace{5c}$ Barometric pressure = 760mmHg $\underbrace{50}$ 0.0 NTU's $\underbrace{5c}$ 20 NTU's $\underbrace{5c}$

DATE: 11/4/22

P.O. Box 5606

1-888-234-5678

www.equipcoservices.com

DELIVERY SLIP

Date Transaction no 28-Oct-22 01-56210-1

Page: 1 of 2

Co	oncord, CA	94524			Page:	1 of 2
I V O I C E	Anchor QE 1201 3rd A Suite 2600 Seattle WA Tel: 206-2	Ave.) A 98101	S Stephen Str H P P E D	ehl		
Cust	omerno	2879130	Representative	Jason Miller		
Cust	omer P.O.	192024-01.01	SHIP VIA	Thunderdog S	Same Day	
Quot	ation no	0-0	Shipping	04-Nov-22	11/07/2022	
Rese	ervation no		Close Contract	07-Nov-22		
Cont	ract no	0-0				

Description

Registration Code Ret. Qty Qty MULTIP . . .

IP : N	/IULTIPARAMETER INS	TRUMENTS	
1	YSIPRODSS.05		YSIProDSS
1	PRODSSCBL4.05		Y SI ProDSS Cable
1	PRODSSCOND.05		YSI ProDSS Cond/Temp Probe
1	PRODSSODO.05		YSI ProDSS ODO Probe
1	PRODSSPH.05		YSI ProDSS pH/ORP Probe
1			YSI ProDSS Probe Guard
1			YSI ProDSS Sonde Weight, 4.9 oz
1			Y SI ProDSS Cal Cup
1			YSI ProDSS Flow Cell
1			YSI ProDSS Flow Cell O-Ring Kit
1			YSI ProDSS Thumbdrive Manual/Software
1			YSI ProDSS Manual
1			YSI 6 foot USB Cable
1			YSI 6 Inch USB Cable
1			YSI ProDSS Charger
1			YSI ProDSS Case
2			YSI Flow Cell Fitting, 1/4" Hose Barb
2			YSI Flow Cell Fitting, 3/8" Hose Barb

1	No.	M		1-
Ų	No.	U	U	Ŵ

P.O. Box 5606

1-888-234-5678

www.equipcoservices.com

DELIVERY SLIP

Date	Transaction no
28-Oct-22	01-56210-1

Concord, C						Page: 2 of 2
I Anchor N 1201 3r V Suite 26 O Seattle V	QEA-Seattle d Ave.			S Stephen Str H P P E D	ehl	
Customerno	2879130			Representative	Jason Miller	
Customer P.O	. 192024-01	.01		SHIP VIA	Thunderdog S	Same Day
Quotation no		0-0		Shipping	04-Nov-22	11/07/2022
Reservation no	c			Close Contract	07-Nov-22	
Contract no		0-0				
	OSSTURB.05	Ret. Qty	YSI ProDSS Turbidity Probe	Des	cription	
1	lerdeg oburior		Thunderdog Same Day OutBo	und		
WLM: WATER L	EV EL METERS					
1 WLM	100P6.31		Solinst Water Level Meter, 100)' P6		
1			Solinst Tape Guide			

Shipping Notes courier at 9

			Chemical Name Unit Cleanup Level	Tetrachloro- ethylene μg/L 23.9	Arsenic μg/L 5	Benzene μg/L 5	4,4'-DDT μg/L 0.3	Aldrin µg/L	beta-BHC µg/L	Dieldrin µg/L	gamma-BHC (Lindane) μg/L	Gasoline Range Hydrocarbons µg/L 800	Diesel Range Hydrocarbons µg/L 500	Diesel Range Hydrocarbons w/SG µg/L 500	Motor Oil Range Hydrocarbons μg/L 500	Motor Oil Range Hydrocarbons w/SG µg/L 500	Fecal Coliform CFU/100 mL NA	N-Ammonia mg/L NA	Nitrogen, NO ₂ plus NO ₃ mg/L NA	Total Dissolved Solids mg/L NA
Location ID Background	Sample ID	Month Year	Sample Type																	
BG-60																				
BG-60	BG-60-0904	Sep 2004		29.8	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BG-60	BG-60-1204	Dec 2004		26.1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BG-60	BG-60-0305	Mar 2005		22.7 24.4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BG-60 BG-60	BG-60-0605 BG-60-0905	Jun 2005 Sep 2005		24.4	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
BG-60	BG-60-1205	Dec 2005		< 25	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BG-60	BG-60-0306	Mar 2006		20	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BG-60	BG-60-0606	Jun 2006		20.7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BG-60 BG-60	BG-60-0906 BG-60-1206	Sep 2006 Dec 2006		<u>21.3</u> 21	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
BG-60 BG-60	BG-60-0507	May 2007		19.7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BG-60	BG-60-0408	Apr 2008		18.8	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BG-60	BG-60-0608	Jun 2008		17.7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BG-60	BG-60-0908	Sep 2008		23.3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BG-60 BG-60	BG-60-0109 BG-60-0309	Jan 2009 Mar 2009		24.5 20.3	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
BG-60	BG-60-0609	Jun 2009		9.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BG-60	BG-60-0909	Sep 2009		15	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BG-60	BG-60-1209	Dec 2009		22.6	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BG-60 BG-60	BG-60-0310 BG-60-0610	Mar 2010 Jun 2010		<u>13.1</u> 17.2	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
BG-60	BG-60-0910	Sep 2010		17.2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BG-60	BG-60-0313	Mar 2013		19	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 1.0	< 0.100	3.7	NA
BG-60	BG-60-0913	Sep 2013		16.4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BG-60	BG-60-0314	Mar 2014		17.8	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BG-60 BG-60	BG-60-0914 BG-60-0315	Sep 2014 Mar 2015		21.4 19.5	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
BG-60	BG-60-1015	Oct 2015		19.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BG-60	BG-60-0316	Mar 2016		16.1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BG-60	BG-60-0917	Sep 2017		16.7	< 0.50	< 1.00	< 0.100	< 0.051	< 0.051	< 0.10	< 0.051	< 100	< 390	< 390	< 390	< 390	< 1.0	< 0.040	5.4	311
BG-60	BG-60-0318	Mar 2018	Newsel	15.8	< 0.50	< 1.00	< 0.100	< 0.050	< 0.050	< 0.10	< 0.050	< 100	< 410	< 410	< 410	< 410	< 1.0	< 0.040	5.6	270
BG-60 BG-60	BG-60-20200108 BG-60-20200407	Jan 2020 Apr 2020	Normal Normal	<u>14.1</u> 11.1	0.54	< 1.00 < 1.00	< 0.094 < 0.100	< 0.047 < 0.050	< 0.047 < 0.050	< 0.094 < 0.10	< 0.047 < 0.050	< 0.1 < 0.1	< 380 < 380	< 380 < 380	< 380 < 380	< 380 < 380	< 1.0 < 1.0	< 0.1 < 0.1	5.0 5.2	277 185
BG-60	BG-60-20200728	Jul 2020	Normal	14.6	< 0.50	< 1.00	< 0.096	< 0.048	< 0.048	< 0.096	< 0.048	< 0.1	< 400	< 400	< 400	< 400	< 1.0 < 1.0	< 0.1	5.0	259
BG-60	BG-601-20200728	Jul 2020	Duplicate	14.6	< 0.50	< 1.00	< 0.096	< 0.048	< 0.048	< 0.096	< 0.048	< 0.1	< 390	< 390	< 390	< 390	< 1.0	< 0.1	4.6	254
BG-60	BG-60-20201013	Oct 2020	Normal	14.3	< 0.50	< 1.00	< 0.095	< 0.048	< 0.048	< 0.095	< 0.048	< 0.1	< 390	< 390	< 390	< 390	< 1.0	< 0.1	4.2	257
BG-60 BG-90	BG-601-20201013	Oct 2020	Duplicate	13.5	< 0.50	< 1.00	< 0.100	< 0.050	< 0.050	< 0.10	< 0.050	< 0.1	< 390	< 390	< 390	< 390	< 1.0	< 0.1	4.6	249
BG-90	BG-90-0904	Sep 2004		< 1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BG-90	BG-90-1204	Dec 2004		< 5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BG-90	BG-90-0305	Mar 2005		< 5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BG-90	BG-90-0605	Jun 2005		< 5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BG-90 BG-90	BG-90-0905 BG-90-1205	Sep 2005 Dec 2005		< 5 < 25	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
BG-90	BG-90-0306	Mar 2006		< 1.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BG-90	BG-90-0606	Jun 2006		0.83	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BG-90	BG-90-0906	Sep 2006		0.81	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BG-90 BG-90	BG-90-1206 BG-90-0507	Dec 2006 May 2007		0.95	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
BG-90 BG-90	BG-90-0408	Apr 2007		<u> </u>	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BG-90	BG-90-0608	Jun 2008		1.17	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BG-90	BG-90-0908	Sep 2008		1.41	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BG-90 BG-90	BG-90-0109 BG-90-0309	Jan 2009 Mar 2009		<u>1.46</u> 1.41	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
BG-90 BG-90	BG-90-0309 BG-90-0609	Jun 2009		1.41 < 1.0	NA NA	NA NA	NA NA	NA	NA NA	NA	NA	NA NA	NA	NA	NA	NA NA	NA	NA	NA NA	NA NA
BG-90	BG-90-0909	Sep 2009		1.2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BG-90	BG-90-1209	Dec 2009		2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BG-90	BG-90-0310	Mar 2010		2.1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BG-90 BG-90	BG-90-0610 BG-90-0910	Jun 2010 Sep 2010		<u>1.8</u>	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
BG-90 BG-90	BG-90-0313	Mar 2013		3.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		< 0.100	2.9	NA
BG-90	BG-90-0913	Sep 2013		2.8	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Image is a state Image is a state<				Chemical Name Unit Cleanup Level	Tetrachloro- ethylene μg/L 23.9	Arsenic μg/L 5	Benzene µg/L 5	4,4'-DDT μg/L 0.3	Aldrin μg/L	beta-BHC µg/L	Dieldrin µg/L	gamma-BHC (Lindane) µg/L	Gasoline Range Hydrocarbons μg/L 800	-	Diesel Range Hydrocarbons w/SG µg/L 500		Motor Oil Range Hydrocarbons w/SG µg/L 500	Fecal Coliform CFU/100 mL NA	N-Ammonia mg/L NA	Nitrogen, NO ₂ plus NO ₃ mg/L NA	Total Dissolved Solids mg/L NA
Cont Cont <th< th=""><th>Location ID</th><th>Sample ID</th><th>Month Year</th><th>Sample Type</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>	Location ID	Sample ID	Month Year	Sample Type																	
E.C. al. al.plant Yang Torres Hart Yang Torres				bumple type	3.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
EX EX CU21 HB HD H						NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
EX. Solution Solu																					NA
Bit Cont Bit Cont Bit Cont Bit Cont Bit Cont C						1			1				1	1							NA NA
Link Link <thlink< th=""> Link Link <thl< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>226</td></thl<></thlink<>							-				-										226
bit bit <td></td> <td>225</td>																					225
Bit Scale Astron Astro Astro	BG-90		Jan 2020	Normal	3.7	1.1	< 1.0	< 0.094			< 0.094		< 0.1			< 380		< 1.0		3.9	265
Prof. 200700 Prof. 20070																					238
By B				I																	255
Number Prob Prob< Prob<<																				-	230 246
PDS 3 NV 1 PS 1 c C <					7.30	0.01	1.00		1 0.040			1. 0.040						- 1.0			
DDD-1 MNX-14/07 MA_2000 I I S S S S C D MA MA MA MA MDD-1 MXX-14/00 A D I S S S S C D S S D MA MA MA MA MDD-1 MXX-14/00 A D I S S S S S S D S D MA MA MA MDD-1 MXX-14/00 A S <th< td=""><td></td><td></td><td></td><td></td><td></td><td>< 1</td><td>< 1</td><td>< 0.08</td><td></td><td></td><td></td><td>< 0.04</td><td></td><td></td><td>NA</td><td>< 500</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></th<>						< 1	< 1	< 0.08				< 0.04			NA	< 500	NA	NA	NA	NA	NA
Image						< 5									1						NA
Description Proceeding S = 1 C = 10						`															NA
Phys. Dr. 2005 No. 2005 C. 201 C. 2010 C. 2010 C. 2010 C. 2010 C. 2010 MA C. 2011 MA MA <td></td> <td>NA NA</td>																					NA NA
No. No. Concerned Concerned Concerned Concerned Concerned Concerned Concerned Concerned Name Name<																					NA
Vice Vice <th< td=""><td></td><td>MW-12-0306</td><td></td><td></td><td>6.22</td><td>< 1</td><td>< 1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>NA</td></th<>		MW-12-0306			6.22	< 1	< 1														NA
IMM 22 More 12-128 More 201 56 6 0.001 6 0.001 0 0.001 0 0.001 0 0.001 0 0.001 0 0.001 0 0.001 0 0.001 0 0.001 0 0.001 0 0.001 0 0.001 0 0.001 0 0.001 0 0.001 0 0.001 0 0 0.001 0 0.001 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>NA</td>						•					1										NA
MP 7 MP 7 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>NA</td></th<>																					NA
IMM MA Au MA																					NA NA
MM-12 MM-12-000 Mm 200 Mm 20 Mm 2 Mm 4 C 023 Mm 4											1										NA
by <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>< 1</td> <td></td> <td>NA</td>							< 1														NA
Image: Description Image: Description TZS C C D C D C D C D C D C D C D C D C D C D C D C D C D	MW-12					< 1	< 1	< 0.283	< 0.0755	< 0.189	< 0.0755	< 0.189	< 50	< 236	NA	< 236	NA	NA	NA	NA	NA
MW 12 WM 12 0081 Mm 2091 T25 c 1 c 1 c 1 c 10 c 1000 c 1000 1000 1000 <th< td=""><td></td><td>MW-12-0109</td><td>Jan 2009</td><td></td><td>7.69</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></th<>		MW-12-0109	Jan 2009		7.69	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MV12 MV12 <th< td=""><td></td><td>MW 12 0200</td><td>Mar 2000</td><td></td><td>7.25</td><td>1</td><td>1 1</td><td>4 0.202</td><td>0.0755</td><td>1 0 1 9 0</td><td>0.0755</td><td>1 0 1 9 0</td><td>50</td><td>1 226</td><td>NIA</td><td>1 226</td><td>NIA</td><td>NIA</td><td>NIA</td><td>NIA</td><td></td></th<>		MW 12 0200	Mar 2000		7.25	1	1 1	4 0.202	0.0755	1 0 1 9 0	0.0755	1 0 1 9 0	50	1 226	NIA	1 226	NIA	NIA	NIA	NIA	
MW-12 MW-12-200 Sep 2001 C C C C C C C C C C D D D D C D C D C D C D C D						< I NA							- 50								NA NA
MM-12 MM-2010 MM-2010 A S7 0.02 1 0.01 0.01 0.01 0.01 0.01 0.01 0.01						< 2															NA
MW-12 MW-12 or 06/0 Symp Symp Sime NA NA<	MW-12						NA	NA			NA		NA		NA	NA	NA	NA	NA	NA	NA
Image Mark Seg 2010 Seg 2010 Seg 2010 Seg 2011 Se																					NA
MW12 MW12 (2) 013 MW2 (2) 013 Sep 2013 Image and the set of the																					NA
MW-12 WH-12 (3013) Sigp 2013 M 72 NA TA NA NA <																					NA NA
MW-12 MW-2014 Ms 2014 Ms 2014 Ms 2014 Ms 30 NA NA NA <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>NA</td></t<>																					NA
MM-12 MM-20315 Mar 2015 Mar 2016 Mar 2016 Mar 2016 Mar 2016 Mar 2016 Mar 2017 Seg 2017 Mar 2017 Mar 2017 Mar 2017 Mar 2017 Mar 2017 Mar 2018 Mar 2018 <t< td=""><td></td><td></td><td></td><td></td><td>4</td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>NA</td></t<>					4		-														NA
MM-12 MM-12-2015 Oct 2015 Oct 2015 MA NA NA NA NA N					36.9	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MM-12 MM-12-2016 Mar 2016 Mar 2016 Mar 2016 Mar 2016 Mar 2018 NA																					NA
MM MV:12 MV																					NA
Mm-12 Mm-21031 Mm 2018 Mm 2018 Mm 2018 Mm 2018 Mm 20108 Jan 2020 Normal 8.1 0.87 < 1.0 < 0.091 < 0.091 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 <																					NA 351
Mm-12 Mm-12-2020108 Jan 2020 Normal 8.1 0.87 < 1.0 < 0.047 < 0.14 4.20 < 4.20 < 4.20 < 4.20 < 4.20 < 4.20 < 4.20 < 4.20 < 4.20 < 4.20 < 4.20 < 4.20 < 4.20 < 4.20 < 4.20 < 4.20 < 4.20 < 4.20 < 4.20 < 4.20 < 4.20 < 4.20 < 4.20 < 4.20 < 4.20 < 4.20 < 4.20 < 4.20 < 4.20 < 4.20 < 4.20 < 4.20 < 4.20 < 4.20 < 4.20 < 4.20 < 4.20 < 4.20 < 4.20 < 4.20 < 4.20 < 4.20 < 4.20							1														213
MW-12 MW-12-20200728 Jul 2020 Normal 3.2 1.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01		MW-12-20200108	Jan 2020	Normal	8.1	0.87		< 0.094		< 0.047	< 0.094			< 420	< 420			< 1.0	< 0.10	3.4	264
MW-12 MW-12-20200728 Jul 2020 Normal 6.1 1.0 < 1.0 < 0.095 < 0.048 < 0.095 < 0.048 < 0.016 < 390 < 390 < 390 < 390 < 390 < 390 < 390 < 390 < 390 < 390 < 390 < 390 < 390 < 390 < 390 < 390 < 390 < 390 < 390 < 390 < 390 < 390 < 390 < 390 < 390 < 390 < 390 < 390 < 390 < 390 < 390 < 390 < 390 < 390 < 390 < 390 < 390 < 390 < 390 < 390 < 390 < 390 < 390 < 390 < 390 < 390 < 390 < 390 < 390 < 390 < 390 < 390 < 390 < 390 < 390 < 390 < 390 < 390 < 390 < 390 < 390 < 390 < 390 < 390 < 390 < 390 < 390 < 390 < 390 < 390 < 390 < 390 < 390 < 390 < 390 < 390 < 390 < 390 < 390 < 390 < 390 < 390 < 390 <																					250
MW-12 MW-12-20201013 Oct 2020 Normal 19.1 0.81 c< 0.095 c< 0.048 c< 0.018 c< 390 c< 300 c< 300																					200
Senty VS-1 Sep 2004 Sep 2004 14.4 2.8 < 1 < 0.08 < 0.043 < 5.0 < 5.0 < 5.0 NA < 5.00 NA																					197 228
YVS-1 YVS-1-0904 Sep 2004 India		INTE 20201013		NOTITICI	15.1	0.01	1.00	1 0.055	15 0.040	0.040		1 0.040		1 350	1 350	<u> </u>	- 550	<u> </u>			
WS-1 US-1-1204 Dec 2004 Index	YVS-1																				
VYS-1 VYS-1-0305 Mar 2005 Jun 2005 S.28 < 1 < 5 < 0.3 < 0.08 < 0.2 < 0.08 < 0.2 < 50 < 250 NA < 250 NA < 250 NA NA <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>< 1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>NA</td></t<>							< 1														NA
YVS-1 YVS-1-0605 Jun 2005 Jun 2005 Sep 2005 Image: Sep 2005 Image					14.8																NA
VVS-1VVS-1-0905Sep 2005Sep 20051.51.92< 5< 0.3< 0.08< 0.2< 0.08< 0.25NA< 250NA					< 5 5 29	< 5 < 1															NA NA
YVS-1 YVS-1-205 De 2005 < 25 1.57 < 5 < 0.288 < 0.0769 < 0.192 < 50 < 240 NA						1.92															NA
YVS-1 YVS-10606 Jun 2006 Jun 2006 6.5 1.31 < 0.5 < 0.0777 < 0.0388 < 0.0777 < 0.0388 < 0.0777 < 0.0388 < 0.0777 < 0.0388 < 0.0777 < 0.0388 < 0.0777 < 0.0388 < 0.0777 < 0.0388 < 0.0777 < 0.0388 < 0.0777 < 0.0388 < 0.0777 < 0.0388 < 0.0777 < 0.0388 < 0.0777 < 0.0388 < 0.0777 < 0.0388 < 0.0777 < 0.0388 < 0.0777 < 0.0388 < 0.0777 < 0.0388 < 0.0777 < 0.0388 < 0.0777 < 0.0388 < 0.0777 < 0.0388 < 0.0777 < 0.0388 < 0.0777 < 0.0388 < 0.0777 < 0.0388 < 0.0777 < 0.0388 < 0.0777 < 0.0388 < 0.0777 < 0.0388 < 0.0777 < 0.0388 < 0.0777 < 0.0388 < 0.0777 < 0.0388 < 0.0777 < 0.0388 < 0.0777 < 0.0388 < 0.0777 < 0.0388 < 0.0777 < 0.0388 < 0.0777 < 0.0388 < 0.0777 < 0.0388 < 0.0777 < 0.0388 < 0.0777 < 0.0388 < 0.0777 < 0.0388 < 0.0777 < 0.0388 < 0.0777 < 0.0388							< 5														NA
VS-1b VS-1b-0408 Apr 2008 1.86 2.58 < 0.283 < 0.0755 < 0.189 < 800 < 236 NA NA NA NA						< 1															NA
YVS-1b YVS-1b-0408 Apr 2008 1.86 2.58 < 5 < 0.283 < 0.0755 < 0.189 < 800 < 236 NA < Aa NA NA NA	YVS-1	YVS-1-0606	Jun 2006		6.5	1.31	< 0.5	< 0.0777	< 0.0777	< 0.0388	< 0.0777	< 0.0388	< 50	< 250	NA	< 250	NA	NA	NA	NA	NA
YVS-1b YVS-1b-0408 Apr 2008 1.86 2.58 < 5 < 0.283 < 0.0755 < 0.189 < 800 < 236 NA < Aa NA NA NA				docommissioned door	ina cita davelare		1	I	1		1		1	1	1	1			I		
				aecommissioned dui			< 5	< 0.283	< 0.0755	< 0.189	0.0847	< 0.189	< 800	< 236	NΔ	< 236	NΔ	NΔ	NΔ	NΔ	NA
ראר דער 100 ביוטער עניט אן גערט אן גערטער 100 או דער 100 ביוטער 1000 או געריד 100 און דער 1000 ביו 100 און דער 1	YVS-1b	YVS-16-0608	Jun 2008		1.91	2.58	-		< 0.0755	< 0.189	< 0.0755	< 0.189					NA	NA	NA	NA	NA

	I		Chemical Name Unit Cleanup Level	Tetrachloro- ethylene μg/L 23.9	Arsenic μg/L 5	Benzene µg/L 5	4,4'-DDT μg/L 0.3	Aldrin μg/L	beta-BHC μg/L	Dieldrin µg/L	gamma-BHC (Lindane) µg/L	Gasoline Range Hydrocarbons µg/L 800	-	Diesel Range Hydrocarbons w/SG µg/L 500	Motor Oil Range Hydrocarbons µg/L 500	Motor Oil Range Hydrocarbons w/SG µg/L 500	Fecal Coliform CFU/100 mL NA	N-Ammonia mg/L NA	Nitrogen, NO ₂ plus NO ₃ mg/L NA	Total Dissolved Solids mg/L NA
Location ID	Sample ID	Month Year	Sample Type																	
YVS-1b	YVS-1b-0908	Sep 2008	Sumple Type	27.2	< 1	< 1.0	< 0.283	< 0.0755	< 0.189	< 0.0755	< 0.189	< 50	< 236	NA	< 236	NA	NA	NA	NA	NA
YVS-1b	YVS-10b-0109	Jan 2009	Duplicate	3.56	1.41	< 1.0	< 0.283	< 0.0755	< 0.189	< 0.0755	< 0.189	2,400	< 236	NA	< 236	NA	NA	NA	NA	NA
YVS-1b	YVS-1b-0109	Jan 2009	Parent	3.2	1.41	< 1.0	< 0.283	< 0.0755	< 0.189	< 0.0755	< 0.189		< 236	NA	< 236	NA	NA	NA	NA	NA
YVS-1b	YVS-1b-0109	Jan 2009	Average	3.38 2.38	1.41	< 1.0	< 0.283	< 0.0755	< 0.189	< 0.0755	< 0.189	2,240 J		NA	< 236	NA	NA	NA	NA	NA
YVS-1b YVS-1b	YVS-18-0309 YVS-1b-0309	Mar 2009 Mar 2009	Duplicate Parent	2.38	1.35 1.33	< 1.0 < 1.0	< 0.283 < 0.283	< 0.0755 < 0.0755	< 0.189 < 0.189	< 0.0755 < 0.0755	< 0.189 < 0.189	1,990 1,920	< 236 < 236	NA NA	< 236 < 236	NA NA	NA NA	NA NA	NA NA	NA NA
YVS-1b	YVS-1b-0309	Mar 2009	Average	2.34	1.34	< 1.0	< 0.283	< 0.0755	< 0.189	< 0.0755	< 0.189	1,955	< 236	NA	< 236	NA	NA	NA	NA	NA
YVS-1b	YVS-10b-0609	Jun 2009	Duplicate	< 1.0	2.11	< 1.0	NA	NA	NA	NA	NA	1,060	< 236	NA	< 236	NA	NA	NA	NA	NA
YVS-1b	YVS-1b-0609	Jun 2009	Parent	< 1.0	2.24	< 1.0	< 0.28	< 0.076	< 0.19	< 0.076	< 0.19	1,210	< 236	NA	< 236	NA	NA	NA	NA	NA
YVS-1b	YVS-1b-0609	Jun 2009	Average	< 1.0	2.175	< 1.0	< 0.28	< 0.076	< 0.19	< 0.076	< 0.19	1,135	< 236	NA	< 236	NA	NA	NA	NA	NA
YVS-1b YVS-1b	YVS-1b-0909 YVS-1b-1209	Sep 2009 Dec 2009		<u>17</u> 3.2	< <u>2</u>	< 1.0 < 1.0	0.04	< 0.0094 < 0.05	< 0.019 J < 0.05	0.044	< 0.0094 < 0.05	< 50 1,190	< 120 780	NA NA	< 240 490	NA NA	NA NA	NA NA	NA NA	NA NA
YVS-1b	YVS-1A-0310	Mar 2010	Duplicate	1.9	0.88	< 1.0	< 0.1	< 0.05	J < 0.05	< 0.1 < 0.1	< 0.05	778	1,100	NA	620	NA	NA	NA	NA	NA
YVS-1b	YVS-1b-0310	Mar 2010	Parent	1.9	0.86	< 1.0	< 0.1	< 0.05	J < 0.05	< 0.1	< 0.05	757	1,000	NA	570	NA	NA	NA	NA	NA
YVS-1b	YVS-1A-0310	Mar 2010	Average	1.9	0.87	< 1.0	< 0.1	< 0.05	J < 0.05	< 0.1	< 0.05	767.5	1,050	NA	595	NA	NA	NA	NA	NA
YVS-1b	YVS-1b-0610	Jun 2010		1	1.8	1.4	< 0.1	< 0.05	J < 0.05	< 0.1	< 0.05	633	1,300	NA 1 76	480	NA 1 280	NA	NA	NA	NA
YVS-1b YVS-1b	YVS-1b-0910 YVS-1b-0313	Sep 2010 Mar 2013	Parent	<u>16.8</u> 1.1	< 0.5 < 0.5	< 1.0 2.4	0.0752 J NA	< 0.05 NA	< 0.05	< 0.1 NA	< 0.05	< 100 698	77 NA	< 76 NA	< 380 NA	< 380 NA	NA < 1.0	NA 1.650	NA < 0.1	NA 2010
YVS-1b	YVS-10b-0313	Mar 2013	Duplicate	1.1	< 0.5	2.4	NA	NA	NA	NA	NA	614	NA	NA	NA	NA	< 1.0 < 1.0	1.350	< 0.1 < 0.1	2010
YVS-1b	YVS-10b-0313	Mar 2013	Average	1.1	< 0.5	2.4	NA	NA	NA	NA	NA	656	NA	NA	NA	NA	< 1.0	1.500	< 0.1	2030
YVS-1b	YVS-1b-0913	Sep 2013	Parent	19.3	0.7	< 1.0	NA	NA	NA	NA	NA	< 100	NA	NA	NA	NA	NA	NA	NA	NA
YVS-1b	YVS-10b-0913	Sep 2013	Duplicate	19.5	0.7	< 1.0	NA	NA	NA	NA	NA	< 100	NA	NA	NA	NA	NA	NA	NA	NA
YVS-1b YVS-1b	YVS-1b-0913 YVS-1b-0314	Sep 2013 Mar 2014	Average	19.4	0.7	< 1.0	NA NA	NA NA	NA NA	NA NA	NA	< 100 1,040	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
YVS-1b	YVS-1b-0914	Sep 2014		30.3	0.78	< 1.0	NA	NA	NA	NA	NA	< 100	NA	NA	NA	NA	NA	NA	NA	NA
YVS-1b	YVS-1b-0315	Mar 2015		< 1.0	0.64	< 1.0	NA	NA	NA	NA	NA	585	NA	NA	NA	NA	NA	NA	NA	NA
YVS-1b	YVS-1b-1015	Oct 2015		14.8	0.73	< 2.0	NA	NA	NA	NA	NA	< 100	NA	NA	NA	NA	NA	NA	NA	NA
YVS-1b	YVS-1b-0316	Mar 2016		< 1.0	< 0.50	< 1.0	NA	NA	NA	NA	NA	641	NA	NA	NA	NA	NA	NA	NA	NA
YVS-1b YVS-1b	YVS-1b-0917 YVS-1b-0318	Sep 2017 Mar 2018		13.9	0.91	< 1.00 < 1.00	< 0.10 < 0.11	< 0.051 < 0.055	< 0.051 < 0.055	< 0.10 < 0.11	< 0.051 < 0.055	< 100 171	< 400 680	< 400 < 410	< 400 < 410	< 400 < 410	< 1.0 < 1.0	< 0.040 1.900	0.035	462 2160
YVS-1b	YVS-16-20200407	Apr 2020		< 1.0 < 1.0	1.90	< 1.00	< 0.095	< 0.033 < 0.048	< 0.048	< 0.095	< 0.048	0.188	640	< 410 < 420	< 410 < 420		< 1.0 < 1.0	1.900	< 0.10	1890
YVS-1b	YVS-1b-20200728	Jul 2020	Normal	< 1.0	< 0.50	< 1.00	< 0.095	< 0.048	< 0.048	< 0.095	< 0.048	0.114	< 390	< 390	< 390	< 390	< 1.0	1.6	0.11	1470
YVS-1b	YVS-1b-20201013	Oct 2020	Normal	10.6	1.00	< 1.00	< 0.095	< 0.048	< 0.048	< 0.095	< 0.048	< 0.1	< 390	< 390	< 390	< 390	< 1.0	< 0.10	5.9	358
YVS-2		<u> </u>			1 .	1				1				1						
YVS-2 YVS-2	YVS-2-0904 YVS-2-1204	Sep 2004 Dec 2004		15.2 8.92	< 1 13.1	< 1 6.58	< 0.08 < 0.3	< 0.08 < 0.08	< 0.04 < 0.2	< 0.08 < 0.08	0.0607	< 50 1,470	< 325 510	NA NA	< 649 < 500	NA NA	NA NA	NA NA	NA NA	NA NA
YVS-2	YVS-2-0305	Mar 2005		<u> </u>	13.1	< 5	< 0.3	< 0.08	< 0.2	< 0.08	< 0.2	766	< 250	NA	< 250	NA	NA	NA	NA	NA
YVS-2	YVS-12-0605	Jun 2005	Duplicate	8.33 J	1.68	6.05 J	< 0.3	< 0.08	< 0.2	< 0.08	0.382	5,450	913	NA	< 250	NA	NA	NA	NA	NA
YVS-2	YVS-2-0605	Jun 2005	Parent	8.37	1.71	6.1	< 0.3	< 0.08	< 0.2	< 0.08	0.368	5,530	1,230	NA	< 250	NA	NA	NA	NA	NA
YVS-2	YVS-2-0605	Jun 2005	Average	8.35	1.70	6.08	< 0.3	< 0.08	< 0.2	< 0.08	0.375	5,490	1,072	NA	< 250	NA	NA	NA	NA	NA
YVS-2	YVS-12-0905	Sep 2005	Duplicate	13.4	< 1	< 5	< 0.3	< 0.08	< 0.2 < 0.2	< 0.08	< 0.2 < 0.2	< 50 < 50	< 250 < 250	NA	< 250	NA	NA	NA	NA	NA
YVS-2 YVS-2	YVS-2-0905 YVS-2-0905	Sep 2005 Sep 2005	Parent Average	<u>15.2</u> 14.3	< 1 < 1	< 5	< 0.3 < 0.3	< 0.08 < 0.08	< 0.2	< 0.08 < 0.08	< 0.2	< 50 < 50	< 250 < 250	NA NA	< 250 < 250	NA NA	NA NA	NA NA	NA NA	NA NA
YVS-2	YVS-2-1205	Dec 2005		< 25	27.7	< <u>5</u>	< 0.291	< 0.0777	< 0.194	< 0.0777	0.379	2,060	1,240 J	NA	< 260	NA	NA	NA	NA	NA
YVS-2	YVS-20-0306	Mar 2006	Duplicate	7.23	< 1	1.52	< 0.286	< 0.0762	< 0.19	< 0.0762	0.418	2,820	< 243	NA	< 243	NA	NA	NA	NA	NA
YVS-2	YVS-2-0306	Mar 2006	Parent	7.38	< 1	1.66	< 0.291	< 0.0777	< 0.194	< 0.0777	0.384	2,860	< 240	NA	< 240	NA	NA	NA	NA	NA
YVS-2 YVS-2	YVS-2-0306 YVS-20-0606	Mar 2006 Jun 2006	Average Duplicate	7.31 7.52	< 1 2 1	1.59	< 0.2885 < 0.0777	< 0.07695 < 0.0777	< 0.192 < 0.0388	< 0.07695 < 0.0777	0.401	2,840 50.6	< 242 331 J	NA NA	< 241.5 < 250	NA NA	NA NA	NA NA	NA NA	NA NA
YVS-2 YVS-2	YVS-20-0606 YVS-2-0606	Jun 2006 Jun 2006	Parent	7.7	< 1	< 0.5	< 0.0775	< 0.0777 < 0.0755	< 0.0388	< 0.0755	0.0419	50.6	427 J	NA	< 250 < 253	NA	NA	NA	NA	NA
YVS-2	YVS-2-0606	Jun 2006	Average	7.61	< 1	< 0.5	< 0.0766	< 0.0766	< 0.03825	< 0.0766	0.0427	51.0	379 J	NA	< 251.5	NA	NA	NA	NA	NA
YVS-2	YVS-20-0906	Sep 2006		6.9	< 1	< 0.5	< 0.288	< 0.0721	< 0.192	< 0.0721	< 0.192	< 50	< 238	NA	< 476	NA	NA	NA	NA	NA
YVS-2	YVS-2-0906	Sep 2006		6.98	< 1	< 0.5	< 0.286	< 0.0714	< 0.19	< 0.0714	< 0.19	< 50	< 240	NA	< 481	NA	NA	NA	NA	NA
YVS-2 YVS-2	YVS-2-1206	Dec 2006		9.7	2.2	1.14	< 0.0762	< 0.0762	< 0.0381	0.125	0.475	1,580	334	NA	< 240	NA	NA	NA	NA	NA
YVS-2	YVS-2-0507	May 2007	I	11.4	< 1	< 5	< 0.283	< 0.0755	< 0.189	< 0.0755	< 0.189	352	< 236	NA	< 236	NA	NA	NA	NA	NA
YVS-2	YVS-2-0408	Apr 2008		1.54	7.17	8.54	< 0.283	< 0.0755	< 0.189	< 0.0755	< 0.189	2,210	< 236	NA	< 236	NA	NA	NA	NA	NA
YVS-2	YVS-12-0608	Jun 2008	Duplicate	11.1	18.6	5.2 J	< 0.283	< 0.0755	< 0.189	< 0.0755	< 0.189	491	< 236	NA	< 236	NA	NA	NA	NA	NA
YVS-2	YVS-2-0608	Jun 2008	Parent	11.3	19.2	3.71 J	< 0.283	< 0.0755	0.229	< 0.0755	< 0.189	473	< 236	NA	< 236	NA	NA	NA	NA	NA
YVS-2 YVS-2	YVS-2-0608 YVS-2-0908	Jun 2008 Sep 2008	Average	<u>11.2</u> 13.4	18.9 1.2	4.46	< 0.283 < 0.283	< 0.0755 < 0.0755	< 0.16 < 0.189	< 0.08 < 0.0755	< 0.19 < 0.189	482 351	< 236 < 236	NA NA	< 236 < 236	NA NA	NA NA	NA NA	NA NA	NA NA
YVS-2 YVS-2	YVS-2-0908 YVS-2-0109	Jan 2008		13.4	1.2	< 1.0 2.16	< 0.283 < 0.283	< 0.0755 < 0.0755	< 0.189	< 0.0755 < 0.0755	< 0.189 0.434	1.480	< 236	NA	< 236	NA NA	NA NA	NA NA	NA NA	NA
YVS-2	YVS-2-0309	Mar 2009		3.76	13.4	41.6	< 0.283	< 0.0755	< 0.189	< 0.0755	< 0.189	4,390	339 J	NA	< 236	NA	NA	NA	NA	NA
		Jun 2009		5.1	4.28	1	NA	NA	NA	NA	NA		< 236	NA	< 236	NA	NA	NA	NA	NA
YVS-2 YVS-2	YVS-2-0609 YVS-20-0909	Sep 2009	Duplicate	6.9		< 1.0		< 0.0094	< 0.019	0.026		< 50	1,200	101	1,300 J			NA		NA

			Chemical Name Unit Cleanup Level	Tetrachloro- ethylene μg/L 23.9	Arsenic μg/L 5	Benzene µg/L 5	4,4'-DDT μg/L 0.3	Aldrin µg/L	beta-BHC μg/L	Dieldrin µg/L	gamma-BHC (Lindane) µg/L	Gasoline Range Hydrocarbons µg/L 800	Diesel Range Hydrocarbons µg/L 500	Diesel Range Hydrocarbons w/SG µg/L 500	Motor Oil Range Hydrocarbons µg/L 500	Motor Oil Range Hydrocarbons w/SG µg/L 500	Fecal Coliform CFU/100 mL NA	N-Ammonia mg/L NA	Nitrogen, NO ₂ plus NO ₃ mg/L NA	Total Dissolved Solids mg/L NA
Location ID	Sample ID	Month Year	Sample Type																	
YVS-2	YVS-2-0909	Sep 2009	Parent	6.4	< 2	< 1.0	< 0.019	< 0.0095	< 0.019	0.024	0.011 J	< 50	1,300	NA	1,400 J	NA	NA	NA	NA	NA
YVS-2	YVS-20-0909	Sep 2009	Average	6.7	< 2	< 1.0	< 0.019	< 0.0095	< 0.019	0.025	0.015	< 50	1,250	NA	1,350 J	NA	NA	NA	NA	NA
YVS-2 YVS-2	YVS-20-1209 YVS-2-1209	Dec 2009 Dec 2009	Duplicate Parent	10.7 11.3	6.9 7	< 1.0 < 1.0	< 0.1 < 0.1	< 0.05 < 0.05	J < 0.05 J < 0.05	< 0.1 < 0.1	0.139	278 297	2,400 2,100	NA NA	1,300 1,200	NA NA	NA NA	NA NA	NA NA	NA NA
YVS-2	YVS-2-1209	Dec 2009	Average	11.5	7.0	< 1.0 < 1.0	< 0.1	< 0.05	J < 0.05	< 0.1	0.144	288	2,250	NA	1,250	NA	NA	NA	NA	NA
YVS-2	YVS-2-0310	Mar 2010		1.5	10.0	47.5	< 0.1	< 0.05	J < 0.05	< 0.1	< 0.050	2,520	1,500	NA	500	NA	NA	NA	NA	NA
YVS-2	YVS-20-0610	Jun 2010	Duplicate	1.4	8.0	50.8	< 0.1	< 0.05	J < 0.05	< 0.1	< 0.050	2,530	1,000	NA	< 380	NA	NA	NA	NA	NA
YVS-2 YVS-2	YVS-2-0610 YVS-2-0610	Jun 2010 Jun 2010	Parent Average	1.4 1.4	6.6 7.3	46.4 48.6	< 0.1 < 0.1	< 0.05 < 0.05	J < 0.05 J < 0.05	< 0.1 < 0.1	< 0.050 0.050	2,830 2,680	1,100 1,050	NA NA	390 5,850	NA NA	NA NA	NA NA	NA NA	NA NA
YVS-2	YVS-20-0910	Sep 2010	Duplicate	7.1	0.59	40.0	< 0.1	< 0.05	< 0.05	< 0.1	0.0369 J	< 100	1,600	< 76	1,400	< 380	NA	NA	NA	NA
YVS-2	YVS-2-0910	Sep 2010	Parent	6.6	0.56	< 1.0	< 0.1	< 0.05	< 0.05	< 0.1	0.0354 J	< 100	1,500	< 76	1,400	< 380	NA	NA	NA	NA
YVS-2	YVS-2-0910	Sep 2010	Average	6.9	0.575	< 1.0	< 0.1	< 0.05	< 0.05	< 0.1	0.0362	< 100	1,550	< 76	1,400	< 380	NA	NA	NA	NA
YVS-2	YVS-2-0313	Mar 2013		10.1	0.7	2.8	NA	NA	NA	NA	NA	261	NA	NA	NA	NA	< 1.0	< 0.100	1.5	276
YVS-2 YVS-2	YVS-2-0913 YVS-20-0314	Sep 2013 Mar 2014	Duplicate	8.5	< 0.5 3.2	< 1.0 3.2	NA NA	NA NA	NA NA	NA NA	NA	< 100 UJ 1,310 J	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
YVS-2	YVS-2-0314	Mar 2014	Parent	< 1.0	3.3	3.4	NA	NA	NA	NA	NA	1,120 J	NA	NA	NA	NA	NA	NA	NA	NA
YVS-2	YVS-2-0314	Mar 2014	Average	< 1.0	3.25	3.3	NA	NA	NA	NA	NA	1,215	NA	NA	NA	NA	NA	NA	NA	NA
YVS-2	YVS-20-0914	Sep 2014	Duplicate	13.1	< 0.5	< 1.0	NA	NA	NA	NA	NA	< 100	NA	NA	NA	NA	NA	NA	NA	NA
YVS-2 YVS-2	YVS-2-0914 YVS-2-0914	Sep 2014 Sep 2014	Parent Average	13.3 13.2	< 0.5 < 0.5	< 1.0 < 1.0	NA NA	NA NA	NA NA	NA NA	NA	< 100 < 100	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
YVS-2	YVS-2-0315	Mar 2015	Parent	< 1.0	2.2	2.4	NA	NA	NA	NA	NA	559	NA	NA	NA	NA	NA	NA	NA	NA
YVS-2	YVS-20-0315	Mar 2015	Duplicate	< 1.0	2.2	2.6	NA	NA	NA	NA	NA	576	NA	NA	NA	NA	NA	NA	NA	NA
YVS-2	YVS-2-0315	Mar 2015	Average	< 1.0	2.2	2.5	NA	NA	NA	NA	NA	568	NA	NA	NA	NA	NA	NA	NA	NA
YVS-2 YVS-2	YVS-2-1015 YVS-2-1015	Oct 2015 Oct 2015	Parent	8.9 9.1	0.95 1.1	1.7 1.6	NA NA	NA NA	NA NA	NA NA	NA	142 155	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
YVS-2	YVS-2-1015	Oct 2015	Duplicate Average	9.0	1.025	1.65	NA	NA	NA	NA	NA	149	NA	NA	NA	NA	NA	NA	NA	NA
YVS-2	YVS-2-0316	Mar 2016	Parent	2.9	0.56	5.0	NA	NA	NA	NA	NA	146	NA	NA	NA	NA	NA	NA	NA	NA
YVS-2	YVS-20-0316	Mar 2016	Duplicate	3.0	0.53	4.8	NA	NA	NA	NA	NA	127	NA	NA	NA	NA	NA	NA	NA	NA
YVS-2	YVS-2-0316	Mar 2016	Average	3.0	0.55	4.9	NA	NA	NA	NA	NA	136.5	NA	NA	NA	NA	NA	NA	NA	NA
YVS-2 YVS-2	YVS-2-0917 YVS-20-0917	Sep 2017 Sep 2017	Parent Duplicate	10.8 10.2	< 0.50 < 0.50	< 1.00 < 1.00	< 0.10 < 0.11	< 0.051 < 0.053	< 0.051 < 0.053	< 0.10 < 0.11	< 0.051 < 0.053	< 100 < 100	400 420	< 380 < 400	< 380 < 400	< 380 < 400	< 1.0 < 1.0	< 0.040 < 0.040	10.4 9.4	451 460
YVS-2	YVS-2-0917	Sep 2017	Average	10.5	< 0.50	< 1.00	< 0.10	< 0.055 < 0.051	< 0.055	< 0.10	< 0.055	< 100	410	< 400 < 400	< 400 < 400	< 400 < 400	< 1.0 < 1.0	< 0.040	9.9	455.5
YVS-2	YVS-2-0318	Mar 2018	Parent	< 1.0	2.4	1.0	< 0.11	< 0.053	< 0.053	< 0.11	< 0.053	399	470	< 380	< 380	< 380	< 1.0	1.300	0.045	1030
YVS-2	YVS-20-0318	Mar 2018	Average	< 1.0	2.45	1.0	< 0.10	< 0.052	< 0.052	< 0.10	< 0.052	394.5	460	< 394	< 394	< 394	< 1.0	1.300	0.049	1045
YVS-2 YVS-2	YVS-20-0318 YVS-2-20200407	Mar 2018	Duplicate	< 1.0	2.5 1.9	1.0	< 0.10 < 0.096	< 0.052 < 0.048	< 0.052 < 0.048	< 0.10 < 0.096	< 0.052 < 0.048	390 0.927	450 < 420	< 410	< 410	< 410	< 1.0	1.300 1.0	0.052	1060 996
YVS-2 YVS-2	YVS-2-20200407 YVS-2-20200728	Apr 2020 Jul 2020	Normal Normal	< 1.0 3.6	1.9	3.2 13.6	< 0.096 < 0.095	< 0.048	< 0.048	< 0.096 < 0.095	< 0.048	1.9	1700	< 420 < 390	< 420 500	< 420 < 390	< 1.0 < 1.0	0.51	< 0.10 4.9	505
YVS-2	YVS-2-20201013	Oct 2020	Normal	6.36	1.1	< 1.00	< 0.095	< 0.048	< 0.048	0.12	0.13	< 0.1	1800	< 390	590	< 390	< 1.0	0.10	1.7	531
Compliance	·						-	-				-	-	-					-	
YS-1	VC 1 0004	C 2004	I	4.04	4 - 6	. 10								N/A	500	NI A	N 1 A	N1.4	N 14	
YS-1 YS-1	YS-1-0904 YS-1-1204	Sep 2004 Dec 2004		1.81	1.76	< 1.0	< 0.08 < 0.3	< 0.08 < 0.08	< 0.04 < 0.2	< 0.08 < 0.08	< 0.04 < 0.2	< 50 < 50	< 250 < 500	NA NA	< 500 < 500	NA NA	NA NA	NA NA	NA NA	NA NA
YS-1	YS-1-0305	Mar 2005		< 5	< 5	< 5	< 0.3	< 0.08	< 0.2	< 0.08	< 0.2	< 50	< 250	NA	< 250	NA	NA	NA	NA	NA
YS-1	YS-1-0605	Jun 2005		< 5	1.41	< 5	< 0.3	< 0.08	< 0.2	< 0.08	< 0.2	< 50	< 250	NA	< 250	NA	NA	NA	NA	NA
YS-1	YS-1-0905	Sep 2005		< 5	< 1	< 5	< 0.3	< 0.08	< 0.2	< 0.08	< 0.2	< 50	< 250	NA	< 250	NA	NA	NA	NA	NA
YS-1 YS-1	YS-1-1205 YS-1-0306	Dec 2005 Mar 2006		< 25	2.13 1.68	< 5 < 1.0	< 0.291 < 0.283	< 0.0777 < 0.0755	< 0.194 < 0.189	< 0.0777 < 0.0755	< 0.194 < 0.189	126 66.4	< 240 < 240	NA NA	< 240 < 240	NA NA	NA NA	NA NA	NA NA	NA NA
YS-1	YS-1-0606	Jun 2006		0.71	< 1	< 0.5	< 0.205 < 0.0755	< 0.0755	< 0.0377	< 0.0755	< 0.0377	< 50	< 250	NA	< 250	NA	NA	NA	NA	NA
YS-1	YS-1-0906	Sep 2006		6.18	1.3	< 0.5	< 0.291	< 0.0728	< 0.194	< 0.0728	< 0.194	< 50	< 245	NA	< 490	NA	NA	NA	NA	NA
YS-1	YS-1-1206	Dec 2006		2.88	1.58	< 0.5	< 0.0762	< 0.0762	< 0.0381	< 0.0762	< 0.0381	81.5	< 236	NA	< 236	NA	NA	NA	NA	NA
YS-1 YS-1	YS-1-0507 YS-1-0408	May 2007 Apr 2008		< 5 1	< 1 2	< 5 < 5	< 0.283 < 0.283	< 0.0755 < 0.0755	< 0.189 < 0.189	< 0.0755 < 0.0755	< 0.189 < 0.189	< 50 < 800	< 236 < 236	NA NA	< 236 < 236	NA NA	NA NA	NA NA	NA NA	NA NA
YS-1 YS-1	YS-1-0408 YS-1-0608	Jun 2008		1.61	< 1	< 5 < 1.0	< 0.283 < 0.283	< 0.0755 < 0.0755	< 0.189	< 0.0755	< 0.189	< 50	< 236	NA	< 236	NA	NA	NA	NA	NA
YS-1	YS-1-0908	Sep 2008		< 1.0	< 1	< 1.0	< 0.283	< 0.0755	< 0.189	< 0.0755	< 0.189	< 50	< 236	NA	< 236	NA	NA	NA	NA	NA
YS-1	YS-1-0309	Mar 2009		< 1.0	1.61	< 1.0	< 0.283	< 0.0755	< 0.189	< 0.0755	< 0.189	< 50	< 236	NA	< 236	NA	NA	NA	NA	NA
YS-1	YS-1-0909	Sep 2009		< 1.0	< 2	< 1.0	< 0.019	< 0.0094	< 0.019	< 0.019	< 0.0094	< 50	< 120	NA	< 240	NA	NA	NA	NA	NA
YS-1 YS-1	YS-1-0310 YS-1-0910	Mar 2010 Sep 2010		1.3	1.8 0.61	< 1.0 < 1.0	< 0.1 < 0.1	< 0.05 < 0.05	J < 0.05 < 0.05	< 0.1 < 0.1	< 0.05 < 0.05	< 50 < 100	310 < 76	NA NA	< 380 < 380	NA NA	NA NA	NA NA	NA NA	NA NA
YS-1	YS-1-0313	Mar 2013		1.7	< 0.50	< 1.0 < 1.0	NA	× 0.05	NA	NA	NA	< 100 < 100	NA NA	NA	× 380	NA	< 1.0	< 0.100	2.2	197
YS-1	YS-1-0913	Sep 2013		1.2	0.50	< 1.0	NA	NA	NA	NA	NA	< 100	NA	NA	NA	NA	NA	NA	NA	NA
YS-1	YS-1-0314	Mar 2014		< 1.0	1.80	< 1.0	NA	NA	NA	NA	NA	< 100	NA	NA	NA	NA	NA	NA	NA	NA
YS-1	YS-1-0914	Sep 2014		< 1.0	0.58	< 1.0	NA	NA	NA	NA	NA	< 100	NA	NA	NA	NA	NA	NA	NA	NA
YS-1 YS-1	YS-1-0315 YS-1-1015	Mar 2015 Oct 2015		< 1.0 < 1.0		< 1.0 < 1.0	NA NA	NA NA	NA NA	NA NA		< 100 < 100	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
		0002015		1.0		1.0					1									

	ſ		Chemical Name Unit Cleanup Level	Tetrachloro- ethylene μg/L 23.9	Arsenic μg/L 5	Benzene µg/L 5	4,4'-DDT μg/L 0.3	Aldrin μg/L	beta-BHC µg/L	Dieldrin µg/L	gamma-BHC (Lindane) µg/L	Gasoline Range Hydrocarbons µg/L 800	Diesel Range Hydrocarbons µg/L 500	Diesel Range Hydrocarbons w/SG µg/L 500		Motor Oil Range Hydrocarbons w/SG µg/L 500	Fecal Coliform CFU/100 mL NA	N-Ammonia mg/L NA	Nitrogen, NO ₂ plus NO ₃ mg/L NA	Total Dissolved Solids mg/L NA
Location ID	Sample ID	Month Year	Sample Type																	
	S-1-0316	Mar 2016		< 1.0	1.80	< 1.0	NA	NA	NA	NA	NA	< 100	NA	NA	NA	NA	NA	NA	NA	NA
	S-1-0917	Sep 2017		1.26	0.56	< 1.00	< 0.10	< 0.051	< 0.051	< 0.10	< 0.051	< 100	< 400	< 400	< 400	< 400	< 1.0	< 0.040	6.9	271
	S-1-0318 S-1-20200108	Mar 2018 Jan 2020		< 1.0 < 1.0	NA 2.0	< 1.00 < 1.0	NA < 0.094	NA < 0.047	NA < 0.047	NA < 0.094	NA < 0.047	< 100 < 0.1	< 450	< 450 < 380	< 450 < 380	< 450	< 1.0 < 1.0	0.92	1.3 < 0.10	NA
	S-1-20200728	Jul 2020		< 1.0 < 1.0	0.50	< 1.0	< 0.094 < 0.095	< 0.047	< 0.047	< 0.094 < 0.095	< 0.047	< 0.1	< 380 < 380	< 380	< 380	< 380	< 1.0 < 1.0	< 0.1	4.3	834 278
	S-1-20201013	Oct 2020		< 1.00	0.64	< 1.00	< 0.10	< 0.051	< 0.051	< 0.10	< 0.051	< 0.1	< 390	< 390	< 390	< 390	< 1.0	< 0.1	1.9	185
MW-6	NH C 0004	c 2004	r	2.22			0.00	0.00	0.04				250		500					
	1W-6-0904 1W-6-1204	Sep 2004 Dec 2004		2.28	< 1	3.13	< 0.08 < 0.3	< 0.08 < 0.08	< 0.04 < 0.2	< 0.08 < 0.08	< 0.04 < 0.2	92.4 114	< 250 < 500	NA NA	< 500 < 500	NA NA	NA NA	NA NA	NA NA	NA NA
	1W-6-0305	Mar 2005		< 5	< 5		< 0.3	< 0.08	< 0.2	< 0.08	< 0.2	97.3	< 250	NA	< 250	NA	NA	NA	NA	NA
	1W-6-0605	Jun 2005		< 5	< 1	< 5	< 0.3	< 0.08	< 0.2	< 0.08	< 0.2	74	< 250	NA	< 250	NA	NA	NA	NA	NA
	1W-6-0905 1W6-1205	Sep 2005 Dec 2005		< 5 < 25	< 1	< 5 < 5	< 0.3 < 0.288	< 0.08 < 0.0769	< 0.2 < 0.192	< 0.08 < 0.0769	< 0.2 < 0.192	106 68.6	< 250 < 238	NA NA	< 250 < 238	NA NA	NA NA	NA NA	NA NA	NA NA
MW-6	100-1205	Dec 2003		< 25			< 0.200	C 0.0703	< 0.192	C 0.0703	C 0.192	08.0	< 230		< 230	NA	INA	NA	NA	
MW-6 MV	1W-6-0306	Mar 2006		1.95	< 1		< 0.291	< 0.0777	< 0.194	< 0.0777	< 0.194	< 50	< 240	NA	< 240	NA	NA	NA	NA	NA
	1W-6-0606	Jun 2006		2.61	< 1		< 0.0769	< 0.0769	< 0.0385	< 0.0769	< 0.0385	< 50	< 250	NA	< 250	NA	NA	NA	NA	NA
	1W-6-0906 1W-6-1206	Sep 2006 Dec 2006		10.2 7.23	< 1 < 1	< 0.5 < 0.5	< 0.288 < 0.0755	< 0.0721 < 0.0755	< 0.192 < 0.0377	< 0.0721 < 0.0755	< 0.192 < 0.0377	< 50 < 50	< 243 J < 243	NA NA	< 485 J < 243	NA	NA NA	NA NA	NA NA	NA NA
	1W-6-0507	May 2007		< 5	< <u>1</u>		< 0.283	< 0.0755	< 0.189	< 0.0755	< 0.189	< 50	< 263	NA	< 263	NA	NA	NA	NA	NA
	1W-6-0408	Apr 2008	•	< 1.0	< 1	< 5	< 0.283	< 0.0755	< 0.189	< 0.0755	< 0.189	< 800	< 236	NA	< 236	NA	NA	NA	NA	NA
	1W-6-0608 1W-6-0908	Jun 2008 Sep 2008		<u>2.76</u> 4.56	< 1		< 0.283 < 0.283	< 0.0755 < 0.0755	< 0.189 < 0.189	< 0.0755	< 0.189 < 0.189	< 50 < 50	< 236 < 236	NA NA	< 236 < 236	NA	NA NA	NA	NA	NA
	1W-6-0309	Mar 2008		4.50	< 1		< 0.283 < 0.283	< 0.0755	< 0.189 < 0.189	< 0.0755 < 0.0755	< 0.189	< 50 79.7	< 236	NA	< 236	NA	NA	NA NA	NA NA	NA NA
	1W-6-0909	Sep 2009		5	< 2	< 1.0	< 0.019	< 0.0094	< 0.019	< 0.019	< 0.0094	< 50	1,100	NA	1,200 J	NA	NA	NA	NA	NA
	1W-6-1209	Dec 2009		NA	NA	NA	NA	NA	NA	NA	NA	NA	220	NA	< 380	NA	NA	NA	NA	NA
	1W-6-0310 1W-6-0910	Mar 2010 Sep 2010		<u>1.1</u> 3.9	< 0.50 < 0.50	< 1.0 < 1.0	< 0.1 < 0.1	< 0.05 J < 0.05	< 0.05 < 0.05	< 0.1 < 0.1	< 0.05	90.1	320 1200	NA < 76	< 380 1200	NA < 380	NA NA	NA NA	NA	NA NA
	1W-6-0313	Mar 2013		1.0	< 0.50	< 1.0	NA NA	NA	NA	NA NA	NA	< 100	NA	NA NA	NA	NA	< 1.0	< 0.100	NA 2.2	200
	1W-6-0913	Sep 2013		6.2	< 0.50	< 1.0	NA	NA	NA	NA	NA	< 100	NA	NA	NA	NA	NA	NA	NA	NA
	1W-6-0314	Mar 2014		< 1.0	< 0.50	< 1.0	NA	NA	NA	NA	NA	155 J	NA	NA	NA	NA	NA	NA	NA	NA
	1W-6-0914 1W-6-0315	Sep 2014 Mar 2015		5.7	< 0.50 < 0.50	< 1.0 UJ	NA NA	NA NA	NA NA	NA	NA	< 100 < 100	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA
	1W-6-1015	Oct 2015		2.4 J	< 0.50	< 1.0	NA	NA	NA	NA	NA	< 100	NA	NA	NA	NA	NA	NA	NA	NA
	1W-6-0316	Mar 2016		1.2	< 0.50	< 1.0	NA	NA	NA	NA	NA	< 100	NA	NA	NA	NA	NA	NA	NA	NA
	1W-6-0917 1W-6-0318	Sep 2017 Mar 2018		<u>5.25</u> 1.0	< 0.50 < 0.50	< 1.00 < 1.00	< 0.100 < 0.110	< 0.051 < 0.054	< 0.051 < 0.054	< 0.100 < 0.110	< 0.051 < 0.054	< 100	670 < 400	< 390 < 400	460 < 400	< 390 < 400	< 1.0	< 0.040 0.650	6.6 0.23	538
	1W-6-20200109	Jan 2020	Normal 4	< 1.0 < 1.0	< 0.50	< 1.0	< 0.110	< 0.054 < 0.056	< 0.054 < 0.056	< 0.110	< 0.054	< 100 < 0.1	< 380	< 400 < 380	< 380	< 380	< 1.0 < 1.0	< 0.10	0.23	853 696
	1W-6-20200407	Apr 2020		< 1.0	0.94	< 1.0	< 0.100	< 0.050	< 0.050	< 0.10	< 0.050	< 0.1	< 420	< 420	< 420	< 420	< 1.0	0.60	0.15	1050
	1W-6-20200729	Jul 2020	Normal	1.0	< 0.50	< 1.0	< 0.094	< 0.047	< 0.047	< 0.094	< 0.047	< 0.1	< 400	< 400	< 400	< 400	< 1.0	< 0.10	2.4	586
MW-6 MV YVS-3	1W-6-20201014	Oct 2020	Normal	1.86	< 0.50	< 1.00	< 0.095	< 0.048	< 0.048	< 0.095	< 0.048	< 0.1	< 390	< 390	< 390	< 390	< 1.0	< 0.10	3.4	542
	VS-30-0904	Sep 2004	Duplicate	3.36	< 1	8.61	< 0.08	< 0.08	< 0.04	< 0.08	< 0.04	99.7	< 250	NA	< 500	NA	NA	NA	NA	NA
	VS-3-0904	Sep 2004	Parent	3.34	< 1		< 0.08	< 0.08	< 0.04	< 0.08	< 0.04	88.4	< 250	NA	< 500	NA	NA	NA	NA	NA
	VS-3-0904 VS-30-1204	Sep 2004 Dec 2004	Average Duplicate	3.35 6.56	< 1		< 0.08 < 0.3	< 0.08 < 0.08	< 0.04 < 0.2	< 0.08 < 0.08	< 0.04 < 0.2	94.1 124	< 250 < 500	NA NA	< 500 < 500	NA	NA NA	NA NA	NA NA	NA NA
	VS-30-1204 VS-3-1204	Dec 2004 Dec 2004	Parent	6.66	< 5	< 5 < 5	< 0.3 < 0.3	< 0.08	< 0.2 < 0.2	< 0.08	< 0.2 < 0.2	124	< 500 < 500	NA NA	< 500 < 500	NA	NA	NA	NA NA	NA
YVS-3 YV	VS-3-1204	Dec 2004	Average	6.61	< 5	-	< 0.3	< 0.08	< 0.2	< 0.08	< 0.2	122	< 500	NA	< 500	NA	NA	NA	NA	NA
	VS-13-0305	Mar 2005	Duplicate •	< 5	< 5	< 5	< 0.3	< 0.08	< 0.2	< 0.08	< 0.2	258	< 250	NA	< 250	NA	NA	NA	NA	NA
	VS-3-0305 VS-3-0305	Mar 2005 Mar 2005	Parent • Average •	< 5 < 5	< 5	< 5 < 5	< 0.3 < 0.3	< 0.08 < 0.08	< 0.2 < 0.2	< 0.08 < 0.08	< 0.2 < 0.2	262 260	< 250 250	NA NA	< 250 < 250	NA	NA NA	NA NA	NA NA	NA NA
	VS-3-0605	Jun 2005		< 5	< <u>1</u>		< 0.3	< 0.08	< 0.2	< 0.08	< 0.2	83.1	< 250	NA	< 250 < 250	NA	NA	NA	NA	NA
	VS-3-0905	Sep 2005		< 5	< 1		< 0.3	< 0.08	< 0.2	< 0.08	< 0.2	240	< 250	NA	< 250	NA	NA	NA	NA	NA
	VS-30-1205 VS-3-1205	Dec 2005 Dec 2005	Duplicate • Parent •	< 25 < 25	< 1	< 5 < 5	< 0.288 < 0.288	< 0.0769 < 0.0769	< 0.192 < 0.192	< 0.0769 < 0.0769	< 0.192 < 0.192	152 185	< 238 < 240	NA NA	< 238 < 240	NA NA	NA NA	NA NA	NA NA	NA NA
	VS-3-1205 VS-3-1205	Dec 2005	Average	< 25 < 25	< 1	< 5 < 5	< 0.288	< 0.0769	< 0.192 < 0.192	< 0.0769 < 0.0769	< 0.192 < 0.192	168.5	< 239	NA	< 239	NA	NA	NA	NA	NA
YVS-3 YV	VS-3-0306	Mar 2006		1.53	< 1		< 0.283	< 0.0755	< 0.189	< 0.0755	< 0.189	< 50	< 236	NA	< 236	NA	NA	NA	NA	NA
	VS-3-0606	Jun 2006		3.55	< 1	0.64	< 0.0769	< 0.0769	< 0.0385	< 0.0769	< 0.0385	< 50	< 250	NA	< 250	NA	NA	NA	NA	NA
	VS-3-0906 VS-3-1206	Sep 2006 Dec 2006		7.89 10.7	< 1 < 1	0.86	< 0.283 < 0.0755	< 0.0708 < 0.0755	< 0.189 < 0.0377	< 0.0708 < 0.0755	< 0.189 < 0.0377	87.3 93.2	< 240 < 238	NA NA	< 481 < 238	NA NA	NA NA	NA NA	NA NA	NA NA
	VS-3-0507	May 2007		< 5	< 1	< 5	< 0.283	< 0.0755	< 0.189	< 0.0755	< 0.189	< 50	< 236	NA	< 236	NA	NA	NA	NA	NA
YVS-3 YV	VS-13-0408	Apr 2008	Duplicate	2.75	< 1	< 5	< 0.283	< 0.0755	< 0.189	< 0.0755	< 0.189	< 800	< 236	NA	< 236	NA	NA	NA	NA	NA
	VS-3-0408	Apr 2008	Parent	2.79	< 1	< 5	< 0.283	< 0.0755	< 0.189	< 0.0755	< 0.189	< 800	< 236	NA	< 236	NA	NA	NA	NA	NA
	VS-3-0408 VS-3-0608	Apr 2008 Jun 2008	Average		< 1 < 1			< 0.0755 < 0.0755	< 0.189 < 0.189	< 0.0755 < 0.0755			< 236 < 236		> 236 < 236	NA NA	NA NA	NA NA	NA NA	NA NA

			Chemical Name Unit Cleanup Level	Tetrachloro- ethylene μg/L 23.9	Arsenic µg/L 5	Benzene µg/L 5	4,4'-DDT µg/L 0.3	Aldrin μg/L	beta-BHC µg/L	Dieldrin µg/L	gamma-BHC (Lindane) µg/L	Gasoline Range Hydrocarbons μg/L 800	-	Diesel Range Hydrocarbons w/SG µg/L 500	Motor Oil Range Hydrocarbons μg/L 500	Motor Oil Range Hydrocarbons w/SG µg/L 500	Fecal Coliform CFU/100 mL NA	N-Ammonia mg/L NA	Nitrogen, NO ₂ plus NO ₃ mg/L NA	Total Dissolved Solids mg/L NA
Location ID	Sample ID	Month Year	Sample Type																	
YVS-3	YVS-130-0908	Sep 2008	Duplicate	4.8	< 1	2.09	< 0.283	< 0.0755	< 0.189	< 0.0755	< 0.189	< 50	< 236	NA	< 236	NA	NA	NA	NA	NA
	YVS-3-0908 YVS-3-0908	Sep 2008 Sep 2008	Parent Average	4.35 4.58	< 1	1.74	< 0.283 < 0.283	< 0.0755 < 0.0755	< 0.189 < 0.189	< 0.0755 < 0.0755	< 0.189 < 0.189	< 50 < 50	< 236 < 236	NA NA	< 236 < 236	NA NA	NA NA	NA NA	NA NA	NA NA
	YVS-3-0109	Jan 2009	Average	NA	NA	< 1.0	NA	NA	NA	NA	NA	< 50	NA	NA	NA	NA	NA	NA	NA	NA
	YVS-3-0309	Mar 2009		< 1.0	< 1	< 1.0	< 0.283	< 0.0755	< 0.189	< 0.0755	< 0.189	< 50	< 236	NA	< 236	NA	NA	NA	NA	NA
	YVS-3-0609 YVS-3-0909	Jun 2009 Sep 2009		NA 1.6	NA < 2	< 1.0 < 1.0	NA < 0.019	NA < 0.0094	NA < 0.019	NA < 0.019	NA < 0.0094	< 50 < 50	NA 980 J	NA NA	NA 820 J	NA NA	NA NA	NA NA	NA NA	NA NA
	YVS-3-1209	Dec 2009		NA	NA	< 1.0 < 1.0	NA	NA	NA	NA	NA	< 50	92	NA	< 380	NA	NA	NA	NA	NA
	YVS-3-0310	Mar 2010		1.3	< 0.50	< 1.0	< 0.1	< 0.05	J < 0.05	< 0.1	< 0.05	< 50	< 75	NA	< 380	NA	NA	NA	NA	NA
	YVS-3-0610 YVS-3-0910	Jun 2010 Sep 2010		NA 1.8	NA < 0.50	< 1.0	NA < 0.1	NA < 0.05	< 0.05	< 0.1	< 0.05	< 50 < 50	NA 760	NA NA	NA 610	NA NA	NA NA	NA NA	NA NA	NA NA
	YVS-3-0313	Mar 2013		< 1.0	< 0.50	< 1.0	NA	× 0.05	× 0.05	NA	NA	< 100	NA	NA	NA	NA	< 1.0	< 0.100	1.6	130
YVS-3	YVS-3-0913	Sep 2013		1.5	< 0.50	< 1.0	NA	NA	NA	NA	NA	< 100	NA	NA	NA	NA	NA	NA	NA	NA
	YVS-3-0314 YVS-3-0914	Mar 2014 Sep 2014		< 1.0 1.4	< 0.50 < 0.50	< 1.0 < 1.0	NA NA	NA NA	NA NA	NA NA	NA NA	< 100 < 100 UJ	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	YVS-3-0914 YVS-3-0315	Sep 2014 Mar 2015		< 1.0	< 0.50 < 0.50	< 1.0 < 1.0	NA	NA	NA NA	NA	NA	< 100 0J	NA	NA	NA	NA	NA	NA	NA NA	NA
YVS-3	YVS-3-1015	Oct 2015		3.0	< 0.50	< 1.0	NA	NA	NA	NA	NA	< 100	NA	NA	NA	NA	NA	NA	NA	NA
	YVS-3-0316 YVS-3-0917	Mar 2016		1.8	< 0.50	< 1.0	NA	NA	NA 1 0.052	NA 1 0.10	NA	< 100	NA	NA 1 200	NA 1 200	NA 1 200	NA 1 10	NA 1 0.040	NA 61	NA
	YVS-3-0917 YVS-3-0318	Sep 2017 Mar 2018		<u>1.72</u> 1.5	< 0.50 < 0.50	< 1.00 < 1.00	< 0.10 < 0.10	< 0.052 < 0.050	< 0.052 < 0.050	< 0.10 < 0.10	< 0.052 < 0.050	< 100 < 100	500	< 390 < 400	< 390 < 410	< 390 < 400	< 1.0 < 1.0	< 0.040 < 0.040	6.1 0.86	378 306
	YVS-3-20200109	Jan 2020	Normal	1.1	< 0.50	< 1.0	< 0.094	< 0.047	< 0.047	< 0.094	< 0.047	< 0.1	< 400	< 400	< 400		< 1.0	< 0.10	2.8	270
	YVS-3-20200408	Apr 2020	Normal	< 1.0	< 0.50	< 1.0	< 0.10	< 0.050	< 0.050	< 0.10	< 0.050	< 0.1	< 420	< 420	< 420	< 420	< 1.0	< 0.10	2.5	225
	YVS-3-20200728 YVS-3-20201013	Jul 2020 Oct 2020	Normal Normal	< 1.0 1.69	< 0.50 < 0.50	< 1.0 < 1.00	< 0.095 < 0.095	< 0.048 < 0.048	< 0.048 < 0.048	< 0.095 < 0.095	< 0.048 < 0.048	< 0.1 < 0.1	< 390 560	< 390 < 390	< 390 < 390	< 390 < 390	< 1.0 < 1.0	< 0.10 < 0.10	4.7 4.1	142 411
YVS-3-60	145 5 20201015	0002020	Normal	1.05	Q 0.50	1.00	0.000	0.040	0.040	0.055	0.040	0.1	500	\$350	\$350	L 330	1 .0	0.10		
	YVS-3-60-0904	Sep 2004		20.3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	YVS-3-60-1204 YVS-3-60-0305	Dec 2004 Mar 2005		<u>20.4</u> 11.3	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	YVS-3-60-0605	Jun 2005		11.8	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	YVS-3-60-0905	Sep 2005		21.9	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	YVS-3-60-1205	Dec 2005		< 25	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	YVS-3-60-0306 YVS-3-60-0606	Mar 2006 Jun 2006		<u>11.1</u> 10.5	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	YVS-3-60-0906	Sep 2006		17.3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	YVS-3-60-1206	Dec 2006		18.1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	YVS-3-60-0507 YVS-3-60-0408	May 2007 Apr 2008		<u>8.34</u> 9.87	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	YVS-3-60-0608	Jun 2008		7.58	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	YVS-3-60-0908	Sep 2008		28	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	YVS-3-60-0309 YVS-3-60-0909	Mar 2009 Sep 2009		<u>10.6</u> 19	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA NA	NA NA	NA
	YVS-3-60-0909 YVS-3-60-0310	Mar 2010		7.7	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA	NA NA	NA	NA	NA NA
YVS-3-60	YVS-3-60-0910	Sep 2010		20.4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	YVS-3-60-0313	Mar 2013		10.1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 1.0	< 0.100	2.3	413
	YVS-3-60-0913 YVS-3-60-0314	Sep 2013 Mar 2014		<u>21.2</u> 10	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
YVS-3-60	YVS-3-60-0914	Sep 2014		32.2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	YVS-3-60-0315	Mar 2015		12.6	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	YVS-3-60-1015 YVS-3-60-0316	Oct 2015 Mar 2016		<u>16.5</u> 10.6	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	YVS-3-60-0917	Sep 2017		16	0.65	< 1.00	< 0.10	< 0.052	< 0.052	< 0.10	< 0.052	< 100	< 390	< 390	< 390	< 390	< 1.0	< 0.040	6.1	313
	YVS-3-60-0318	Mar 2018		10.1	0.63	< 1.00	< 0.10	< 0.051	< 0.051	< 0.10	< 0.051	< 100	< 380	< 380	< 410	< 380	< 1.0	< 0.040	4.7	303
	YVS-3-60-20200109 YVS-3-60-20200408	Jan 2020 Apr 2020	Normal Normal	<u>11.7</u> 8.6	0.66	< 1.0 < 1.0	< 0.095 < 0.100	< 0.048 < 0.051	< 0.048 < 0.051	< 0.095 < 0.10	< 0.048 < 0.051	< 0.10 < 0.10	< 380 < 380	< 380 < 380	< 380 < 380	< 380 < 380	< 1.0 < 1.0	< 0.10	4.5 4.4	299 188
	YVS-3-60-20200408 YVS-3-60-20200729	Jul 2020	Normal	9.5	0.87	< 1.0 < 1.0	< 0.100 < 0.094	< 0.051 < 0.047	< 0.047	< 0.094	< 0.047	< 0.10 < 0.10	< 420	< 420	< 380 < 420		< 1.0 < 1.0	< 0.10 < 0.10	4.4	218
YVS-3-60	YVS-3-60-20201013	Oct 2020	Normal	17.4	0.70	< 1.00	< 0.10	< 0.050	< 0.050	< 0.10	< 0.050	< 0.10	< 390	< 390	< 390	< 390	< 1.0	< 0.10	4.2	240
YVS-3-90	YVS-3-90-0904	Sep 2004	I	× 1	NA	NA	NA	NIA	NA	NIA	NA	NIA	NA	NIA	NIA	NIA	NI A	NA	N I A	NIA
	YVS-3-90-0904 YVS-3-90-1204	Sep 2004 Dec 2004		< 1 < 5	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	YVS-3-90-0305	Mar 2005		< 5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	YVS-3-90-0605	Jun 2005		< 5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	YVS-3-90-0905 YVS-3-90-1205	Sep 2005 Dec 2005		< 5 < 25	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	YVS-3-90-0306	Mar 2006		< 1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

			Chemical Name Unit Cleanup Level	Tetrachloro- ethylene µg/L 23.9	Arsenic µg/L 5	Benzene µg/L 5	4,4'-DDT μg/L 0.3	Aldrin μg/L	beta-BHC μg/L	Dieldrin µg/L	gamma-BHC (Lindane) µg/L	Gasoline Range Hydrocarbons µg/L 800		Diesel Range Hydrocarbons w/SG µg/L 500	Motor Oil Range Hydrocarbons µg/L 500	Motor Oil Range Hydrocarbons w/SG μg/L 500	Fecal Coliform CFU/100 mL NA	N-Ammonia mg/L NA	Nitrogen, NO ₂ plus NO ₃ mg/L NA	Total Dissolved Solids mg/L NA
Location ID	Sample ID	Month Year	Sample Type																	
YVS-3-90	YVS-3-90-0606	Jun 2006		0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
YVS-3-90	YVS-3-90-0906	Sep 2006		< 0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	YVS-3-90-1206	Dec 2006		< 0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	YVS-3-90-0507	May 2007		< 5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	YVS-13-0507	May 2007		< 5	< 1	< 5	< 0.283	< 0.0755	< 0.189	< 0.0755	< 0.189	< 50	< 236	NA	< 236	NA	NA	NA	NA	NA
	YVS-3-90-0507 YVS-3-90-0408	May 2007 Apr 2008	, trenage	< 5 < 1.0	I NA	< 5 NA	< 0.283 NA	< 0.0755 NA	< 0.189 NA	< 0.0755 NA	< 0.189 NA	< 50 NA	< 236 NA	NA NA	< 236 NA	NA NA	NA NA	NA NA	NA NA	NA NA
	YVS-3-90-0608	Jun 2008		< 1.0 < 1.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	YVS-3-90-0908	Sep 2008		< 1.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	YVS-3-90-0309	Mar 2009		< 1.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	YVS-3-90-0909	Sep 2009		< 1.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	YVS-3-90-0310	Mar 2010		1.2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	YVS-3-90-0910	Sep 2010		< 1.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	YVS-3-90-0313	Mar 2013		< 1.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 1.0	< 0.100	2.5	182
	YVS-3-90-0913	Sep 2013		< 1.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	YVS-3-90-0314 YVS-3-90-0914	Mar 2014 Sep 2014		< 1.0 < 1.0	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA
	YVS-3-90-0914 YVS-3-90-0315	Mar 2015		1.3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA
	YVS-3-90-1015	Oct 2015		1.3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	YVS-3-90-0316	Mar 2016		1.7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	YVS-3-90-0917	Sep 2017		1.85	1.0	< 1.00	< 0.52	< 0.26	< 0.260	< 0.52	< 0.260	< 100	< 390	< 390	< 390	< 390	< 1.0	< 0.040	2.9	199
YVS-3-90	YVS-3-90-0318	Mar 2018		1.8	0.96	< 1.00	< 0.10	< 0.051	< 0.051	< 0.10	< 0.051	< 100	< 380	< 380	< 410	< 380	< 1.0	< 0.040	2.8	187
	YVS-3-90-20200109	Jan 2020	Normal	1.4	1.1	< 1.0	< 0.096	< 0.048	< 0.048	< 0.096	< 0.048	< 0.10	< 380	< 380	< 380	< 380	< 1.0	< 0.10	3.2	193
	YVS-3-90-20200407	Apr 2020	Normal	1.2	0.57	< 1.0	< 0.095	< 0.048	< 0.048	< 0.095	< 0.048	< 0.10	< 420	< 420	< 420	< 420	< 1.0	< 0.10	3.4	198
	YVS-3-90-20200729	Jul 2020	Normal	1.6	0.91	< 1.0	< 0.094	< 0.047	< 0.047	< 0.094	< 0.047	< 0.10	< 380	< 380	< 380	< 380	< 1.0	< 0.10	3.5	206
YVS-3-90 Ther	YVS-3-90-20201014	Oct 2020	Normal	2.13	0.88	< 1.00	< 0.095	< 0.048	< 0.048	< 0.095	< 0.048	< 0.10	< 390	< 390	< 390	< 390	< 1.0	< 0.10	3.2	211
	MW-5-0904	Sep 2004		2.11	< 10	< 1.0	< 0.08	< 0.08	< 0.04	< 0.08	< 0.04	< 50	< 250	NA	< 500	NA	NA	NA	NA	NA
	MW-8-0904	Sep 2004		< 1.0	< 2.2		< 0.08	< 0.08	< 0.04	< 0.08	< 0.04	< 50	< 250	NA	< 500	NA	NA	NA	NA	NA
	MW-9-0904	Sep 2004		< 1.0	< 1		< 0.08	< 0.08	< 0.04	< 0.08	< 0.04	< 50	< 250	NA	< 500	NA	NA	NA	NA	NA
YS-2	YS-2-0904	Sep 2004		< 1.0	< 1	< 1.0	< 0.08	< 0.08	< 0.04	< 0.08	< 0.04	< 50	< 250	NA	< 500	NA	NA	NA	NA	NA
	TB-0309	Mar 2009		< 1.0	NA	< 1.0	NA	NA	NA	NA	NA	< 50	NA	NA	NA	NA	NA	NA	NA	NA
	TB-0609	Jun 2009		< 1.0	NA	< 1.0	NA	NA	NA	NA	NA	< 50	NA	NA	NA	NA	NA	NA	NA	NA
	TB-0909	Sep 2009		< 1.0	NA	< 1.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	TB-1209	Dec 2009		< 1.0	NA	< 1.0	NA	NA	NA	NA	NA	NA I I I I I I I I I I I I I I I I I I I	NA	NA	NA	NA	NA	NA	NA	NA
	TB-0310	Mar 2010	TB	< 1.0	NA	< 1.0 < 1.0	NA	NA	NA	NA	NA	< 50	NA	NA	NA	NA	NA	NA	NA	NA
	TB-0610 TB-0910	Jun 2010 Sep 2010		< 1.0 < 1.0	NA NA	< 1.0 < 1.0	NA NA	NA NA	NA NA	NA NA	NA NA	< 50 < 100	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	TB-0313	Mar 2013		< 1.0 < 1.0	NA	< 1.0 < 1.0	NA	NA	NA	NA	NA	< 100 < 100	NA	NA	NA	NA	NA	NA	NA	NA
	TB-0913	Sep 2013		< 1.0 < 1.0	NA	< 1.0 < 1.0	NA	NA	NA	NA	NA	< 100	NA	NA	NA	NA	NA	NA	NA	NA
	TB-0314	Mar 2014		< 1.0 < 1.0	NA	< 1.0	NA	NA	NA	NA	NA	< 100	NA	NA	NA	NA	NA	NA	NA	NA
	TB-0914	Sep 2014		< 1.0	NA	< 1.0	NA	NA	NA	NA	NA	< 100	NA	NA	NA	NA	NA	NA	NA	NA
	TB-0315	Mar 2015		< 1.0	NA	< 1.0	NA	NA	NA	NA	NA	< 99	NA	NA	NA	NA	NA	NA	NA	NA
FieldQC	TB-1015	Oct 2015		< 1.0	NA	< 1.0	NA	NA	NA	NA	NA	< 100	NA	NA	NA	NA	NA	NA	NA	NA
	TB-0316	Mar 2016		< 1.0	NA	< 1.0	NA	NA	NA	NA	NA	< 100	NA	NA	NA	NA	NA	NA	NA	NA
	TB-0917	Sep 2017		< 1.0	NA	< 1.0	NA	NA	NA	NA	NA	< 100	NA	NA	NA	NA	NA	NA	NA	NA
	TB-0316	Mar 2016		< 1.0	NA	< 1.0	NA	NA	NA	NA	NA	< 100	NA	NA	NA	NA	NA	NA	NA	NA
-	TB-0318	Mar 2018		< 1.0	NA	< 1.0	NA	NA	NA	NA	NA	< 100	NA	NA	NA	NA NA	NA	NA NA	NA	NA
	TB-20201013 TB-20200408	Jan 2020 Apr 2020		< 1.0 < 1.0	NA NA	< 1.0 < 1.0	NA NA	NA NA	NA NA	NA NA	NA NA	< 100 < 100	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	TB-20200408	Jul 2020		< 1.0 < 1.0	NA	< 1.0 < 1.0	NA	NA	NA	NA	NA	< 100	NA	NA	NA	NA	NA	NA	NA	NA
	TB-20201013	Oct 2020		< 1.0 < 1.0	NA	< 1.00	NA	NA	NA	NA	NA	< 100	NA	NA	NA	NA	NA	NA	NA	NA

NA - Not applicable

Estimated concentration

- Undetected, reporting limit is estimated

ΤВ - Trip blank Bold

J UJ

- Detection

Bold & Shaded - Cleanup level exceedance

Bold & Blue - Cleanup level exceedance by detection limit for non-detects

PCE Action Level based on background PCE concentration statistical calculation last updated September 2014. YVS-1b was installed as a replacement for YVS-1, which was decommissioned during site development in 2006.

Appendix C Laboratory Data Reports

Quarter 1

April 12, 2022

Nik Bacher Anchor QEA, LLC 720 Olive Way Suite 1900 Seattle, WA 98101

RE: Project: Yakima Valley Spray Pace Project No.: 10602384

Dear Nik Bacher:

Enclosed are the analytical results for sample(s) received by the laboratory on March 29, 2022. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network: • Pace Analytical Services - Minneapolis

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

ENNI GROSS

Jennifer Gross jennifer.gross@pacelabs.com (612)607-1700 Project Manager

Enclosures

cc: Cindy Fields, Anchor QEA, LLC Anchor QEA QA representative, Anchor QEA, LLC Halah Voges, Anchor QEA, LLC

CERTIFICATIONS

Project: Yakima Valley Spray Pace Project No.: 10602384

Pace Analytical Services, LLC - Minneapolis MN

1700 Elm Street SE, Minneapolis, MN 55414 A2LA Certification #: 2926.01* 1800 Elm Street SE, Minneapolis, MN 55414--Satellite Air Lab Alabama Certification #: 40770 Alaska Contaminated Sites Certification #: 17-009* Alaska DW Certification #: MN00064 Arizona Certification #: AZ0014* Arkansas DW Certification #: MN00064 Arkansas WW Certification #: 88-0680 California Certification #: 2929 Colorado Certification #: MN00064 Connecticut Certification #: PH-0256 EPA Region 8 Tribal Water Systems+Wyoming DW Certification #: via MN 027-053-137 Florida Certification #: E87605* Georgia Certification #: 959 Hawaii Certification #: MN00064 Idaho Certification #: MN00064 Illinois Certification #: 200011 Indiana Certification #: C-MN-01 Iowa Certification #: 368 Kansas Certification #: E-10167 Kentucky DW Certification #: 90062 Kentucky WW Certification #: 90062 Louisiana DEQ Certification #: AI-03086* Louisiana DW Certification #: MN00064 Maine Certification #: MN00064* Maryland Certification #: 322 Michigan Certification #: 9909 Minnesota Certification #: 027-053-137* Minnesota Dept of Ag Approval: via MN 027-053-137 Minnesota Petrofund Registration #: 1240* Mississippi Certification #: MN00064

Missouri Certification #: 10100 Montana Certification #: CERT0092 Nebraska Certification #: NE-OS-18-06 Nevada Certification #: MN00064 New Hampshire Certification #: 2081* New Jersey Certification #: MN002 New York Certification #: 11647* North Carolina DW Certification #: 27700 North Carolina WW Certification #: 530 North Dakota Certification #: R-036 Ohio DW Certification #: 41244 Ohio VAP Certification (1700) #: CL101 Ohio VAP Certification (1800) #: CL110* Oklahoma Certification #: 9507* Oregon Primary Certification #: MN300001 Oregon Secondary Certification #: MN200001* Pennsylvania Certification #: 68-00563* Puerto Rico Certification #: MN00064 South Carolina Certification #:74003001 Tennessee Certification #: TN02818 Texas Certification #: T104704192* Utah Certification #: MN00064* Vermont Certification #: VT-027053137 Virginia Certification #: 460163* Washington Certification #: C486* West Virginia DEP Certification #: 382 West Virginia DW Certification #: 9952 C Wisconsin Certification #: 999407970 Wyoming UST Certification #: via A2LA 2926.01 USDA Permit #: P330-19-00208 *Please Note: Applicable air certifications are denoted with an asterisk (*).

SAMPLE SUMMARY

Project: Yakima Valley Spray Pace Project No.: 10602384

Lab ID	Sample ID	Matrix	Date Collected	Date Received
10602384001	YVS-1B-20220328	Water	03/28/22 09:40	03/29/22 08:50
10602384002	YVS-2-20220328	Water	03/28/22 11:10	03/29/22 08:50
10602384003	YVS-3-20220328	Water	03/28/22 08:30	03/29/22 08:50
10602384004	TB-20220328	Water	03/28/22 07:00	03/29/22 08:50
10602384005	YVS-201-20220328	Water	03/28/22 11:15	03/29/22 08:50

SAMPLE ANALYTE COUNT

Project:Yakima Valley SprayPace Project No.:10602384

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
10602384001	YVS-1B-20220328	NWTPH-Dx		4	PASI-M
		NWTPH-Dx	EB3	4	PASI-M
		NWTPH-Gx	TM2	2	PASI-M
		EPA 200.8	NN2	1	PASI-M
		EPA 8260D	NMB	4	PASI-M
10602384002	YVS-2-20220328	EPA 8081B	AC2	7	PASI-M
		NWTPH-Dx	TT2	4	PASI-M
		NWTPH-Dx	EB3	4	PASI-M
		NWTPH-Gx	TM2	2	PASI-M
		EPA 200.8	NN2	1	PASI-M
		EPA 8260D	NMB	5	PASI-M
10602384003	YVS-3-20220328	NWTPH-Dx	TT2	4	PASI-M
		NWTPH-Dx	EB3	4	PASI-M
10602384004	TB-20220328	EPA 8260D	NMB	5	PASI-M
10602384005	YVS-201-20220328	EPA 8081B	AC2	7	PASI-M
		NWTPH-Dx	TT2	4	PASI-M
		NWTPH-Dx	EB3	4	PASI-M
		NWTPH-Gx	TM2	2	PASI-M
		EPA 200.8	NN2	1	PASI-M
		EPA 8260D	NMB	5	PASI-M

PASI-M = Pace Analytical Services - Minneapolis

Project: Yakima Valley Spray

Pace Project No.: 10602384

Method:	EPA 8081B
Description:	8081B GCS Pesticides
Client:	Anchor QEA, LLC
Date:	April 12, 2022

General Information:

2 samples were analyzed for EPA 8081B by Pace Analytical Services Minneapolis. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA Mod. 3510C with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Project: Yakima Valley Spray

Pace Project No.: 10602384

Method:	NWTPH-Dx

Description:NWTPH-Dx GCS LVClient:Anchor QEA, LLCDate:April 12, 2022

General Information:

4 samples were analyzed for NWTPH-Dx by Pace Analytical Services Minneapolis. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA Mod. 3510C with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 806179

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 10602384002

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 4279262)
 - Diesel Fuel Range
 - Motor Oil Range

Additional Comments:

Project: Yakima Valley Spray

Pace Project No.: 10602384

Method: NWTPH-Dx

Description:NWTPH-Dx GCS Silica Gel LVClient:Anchor QEA, LLCDate:April 12, 2022

General Information:

4 samples were analyzed for NWTPH-Dx by Pace Analytical Services Minneapolis. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA Mod. 3510C with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

QC Batch: 806178

- S0: Surrogate recovery outside laboratory control limits.
 - YVS-201-20220328 (Lab ID: 10602384005)
 - n-Triacontane (S)

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 806178

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 10602384002

- M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
 - MS (Lab ID: 4279258)
 - Diesel Fuel Range SG

Additional Comments:

Project: Yakima Valley Spray

Pace Project No.: 10602384

Method: NWTPH-Gx

Description:NWTPH-Gx GCVClient:Anchor QEA, LLCDate:April 12, 2022

General Information:

3 samples were analyzed for NWTPH-Gx by Pace Analytical Services Minneapolis. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project: Yakima Valley Spray

Pace Project No.: 10602384

Method: EPA 200.8

Description:200.8 MET ICPMS, DissolvedClient:Anchor QEA, LLCDate:April 12, 2022

General Information:

3 samples were analyzed for EPA 200.8 by Pace Analytical Services Minneapolis. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 200.8 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Project: Yakima Valley Spray

Pace Project No.: 10602384

Method: EPA 8260D

Description:8260D VOCClient:Anchor QEA, LLCDate:April 12, 2022

General Information:

4 samples were analyzed for EPA 8260D by Pace Analytical Services Minneapolis. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 806553

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 10602384002

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 4281254)
 - Benzene

Additional Comments:

Batch Comments:

The continuing calibration verification was below the method acceptance limit for bromomethane. The analyte was not detected in the associated samples and the sensitivity of the instrument was verified with a reporting limit check standard.

• QC Batch: 806553

The continuing calibration verification was above the method acceptance limit for diethyl ether, methyl-tert-butyl-ether, trans-1,3dichloropropene, dibromochloromethane, 1,2,4-trichlorobenzene, hexachloro-1,3-butadiene, naphthalene, and 1,2,3trichlorobenzene. Any detection for the analyte in the associated samples may have a high bias. • QC Batch: 806553

Project: Yakima Valley Spray

Pace Project No.: 10602384

 Method:
 EPA 8260D

 Description:
 8260D VOC

 Client:
 Anchor QEA, LLC

 Date:
 April 12, 2022

This data package has been reviewed for quality and completeness and is approved for release.

Project: Yakima Valley Spray

Pace Project No.: 10602384

Sample: YVS-1B-20220328	Lab ID: 106	02384001	Collected: 03/28/2	2 09:40	Received: 03	/29/22 08:50 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
NWTPH-Dx GCS LV	-		H-Dx Preparation Me	ethod: E	PA Mod. 3510C			
	Pace Analytica	I Services -	Minneapolis					
Diesel Fuel Range	ND	mg/L	0.40	1	03/29/22 15:18	03/30/22 12:16	68334-30-5	
Motor Oil Range	ND	mg/L	0.40	1	03/29/22 15:18	03/30/22 12:16		
Surrogates								
o-Terphenyl (S)	67	%.	50-150	1		03/30/22 12:16	84-15-1	
n-Triacontane (S)	53	%.	50-150	1	03/29/22 15:18	03/30/22 12:16		
NWTPH-Dx GCS Silica Gel LV	Analytical Meth	od: NWTP	H-Dx Preparation Me	ethod: E	PA Mod. 3510C			
	Pace Analytica							
	-			4	04/00/00 00:00	04/44/00 40:00	C0004 00 F	
Diesel Fuel Range SG	ND	mg/L	0.40	1		04/11/22 16:08		
Motor Oil Range SG Surrogates	ND	mg/L	0.40	1	04/06/22 00:00	04/11/22 16:08	04142-05-0	
o-Terphenyl (S)	63	%.	50-150	1	04/06/22 00:00	04/11/22 16:08	84-15-1	
n-Triacontane (S)	53	%.	50-150	1		04/11/22 16:08	0.101	
NWTPH-Gx GCV	Analytical Meth							
	Pace Analytica	I Services -	Minneapolis					
TPH as Gas	ND	ug/L	100	1		03/30/22 17:14		G-
Surrogates		-						
a,a,a-Trifluorotoluene (S)	90	%.	50-150	1		03/30/22 17:14	98-08-8	
200.8 MET ICPMS, Dissolved	Analytical Meth Pace Analytica		00.8 Preparation Met	hod: EP	A 200.8			
Arsenic, Dissolved	0.74	ug/L	0.50	1	03/31/22 05:53	04/01/22 16:07	7440-38-2	
8260D VOC	Analytical Meth	od EPA 82	2600					
	Pace Analytica							
			winneapoils					
Tetrachloroethene	ND	ug/L	1.0	1		03/31/22 11:56	127-18-4	
Surrogates	400	0/	75 405			00/04/00 44 50	0400 00 4	
1,2-Dichlorobenzene-d4 (S)	103	%.	75-125	1		03/31/22 11:56		
4-Bromofluorobenzene (S)	99	%.	75-125	1		03/31/22 11:56		
Toluene-d8 (S)	106	%.	75-125	1		03/31/22 11:56	2037-20-5	
Sample: YVS-2-20220328	Lab ID: 106	02384002	Collected: 03/28/2	2 11:10	Received: 03		latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8081B GCS Pesticides	•		081B Preparation Me	etnod: El	PA Mod. 3510C			
	Pace Analytica	Services -	Minneapolis					
Aldrin	ND	ug/L	0.053	1	03/30/22 16:23	04/01/22 19:30	309-00-2	
beta-BHC	ND	ug/L	0.053	1	03/30/22 16:23	04/01/22 19:30	319-85-7	
gamma-BHC (Lindane)	ND	ug/L	0.053	1	03/30/22 16:23	04/01/22 19:30	58-89-9	
4,4'-DDT	ND	ug/L	0.11	1		04/01/22 19:30		
Dieldrin	ND	ug/L	0.11	1	03/30/22 16:23	04/01/22 19:30	60-57-1	
Surrogates								
Tetrachloro-m-xylene (S)	81	%.	55-125	1		04/01/22 19:30		

REPORT OF LABORATORY ANALYSIS

Project: Yakima Valley Spray

Pace Project No.: 10602384

Sample: YVS-2-20220328	Lab ID: 106	02384002	Collected: 03/28/2	22 11:10	Received: 03	8/29/22 08:50 N	Aatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8081B GCS Pesticides	Analytical Meth Pace Analytica		081B Preparation Me Minneapolis	ethod: Ef	PA Mod. 3510C			
<i>Surrogates</i> Decachlorobiphenyl (S)	63	%.	30-137	1	03/30/22 16:23	04/01/22 19:30	2051-24-3	
NWTPH-Dx GCS LV	Analytical Meth Pace Analytica		H-Dx Preparation Me Minneapolis	ethod: E	PA Mod. 3510C			
Diesel Fuel Range Motor Oil Range <i>Surrogates</i>	0.67 ND	mg/L mg/L	0.40 0.40	1 1		03/30/22 12:27 03/30/22 12:27	68334-30-5	M1 M1
o-Terphenyl (S) n-Triacontane (S)	59 52	%. %.	50-150 50-150	1 1		03/30/22 12:27 03/30/22 12:27	84-15-1	
NWTPH-Dx GCS Silica Gel LV	Analytical Meth Pace Analytica		H-Dx Preparation Me Minneapolis	ethod: E	PA Mod. 3510C			
Diesel Fuel Range SG Motor Oil Range SG <i>Surrogates</i>	ND ND	mg/L mg/L	0.40 0.40	1 1		04/11/22 15:13 04/11/22 15:13		M1
o-Terphenyl (S) n-Triacontane (S)	55 50	%. %.	50-150 50-150	1 1		04/11/22 15:13 04/11/22 15:13	84-15-1	
NWTPH-Gx GCV	Analytical Meth Pace Analytica							
TPH as Gas Surrogates	1110	ug/L	100	1		03/30/22 17:30		GO
a,a,a-Trifluorotoluene (S) 200.8 MET ICPMS, Dissolved	93 Analytical Meth Pace Analytica		50-150 00.8 Preparation Met Minneanolis	1 hod: EP	A 200.8	03/30/22 17:30	98-08-8	
Arsenic, Dissolved	2.8	ug/L	0.50	1	03/31/22 05:53	04/01/22 16:14	7440-38-2	
8260D VOC	Analytical Meth Pace Analytica							
Benzene Tetrachloroethene Surrogates	8.9 ND	ug/L ug/L	1.0 1.0	1 1		03/31/22 12:10 03/31/22 12:10		M1
1,2-Dichlorobenzene-d4 (S) 4-Bromofluorobenzene (S) Toluene-d8 (S)	100 96 94	%. %. %.	75-125 75-125 75-125	1 1 1		03/31/22 12:10 03/31/22 12:10 03/31/22 12:10	460-00-4	
				-				
Sample: YVS-3-20220328	Lab ID: 106	02384003	Collected: 03/28/2	22 08:30	Received: 03	8/29/22 08:50 N	Aatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
NWTPH-Dx GCS LV	Analytical Meth Pace Analytica		H-Dx Preparation Me Minneapolis	ethod: E	PA Mod. 3510C			
Diesel Fuel Range	ND	mg/L	. 0.40	1	03/29/22 15:18	03/30/22 12:59	68334-30-5	

REPORT OF LABORATORY ANALYSIS

Project: Yakima Valley Spray

Pace Project No.: 10602384

Sample: YVS-3-20220328	Lab ID: 106	02384003	Collected: 03/28/2	22 08:30	Received: 03	/29/22 08:50 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
NWTPH-Dx GCS LV	Analytical Met	nod: NWTP	H-Dx Preparation Me	ethod: E	PA Mod. 3510C			
	Pace Analytica	l Services -	Minneapolis					
Motor Oil Range Surrogates	ND	mg/L	0.40	1	03/29/22 15:18	03/30/22 12:59		
o-Terphenyl (S)	63	%.	50-150	1	03/29/22 15:18	03/30/22 12:59	84-15-1	
n-Triacontane (S)	57	%.	50-150	1	03/29/22 15:18	03/30/22 12:59		
NWTPH-Dx GCS Silica Gel LV	Analytical Metl Pace Analytica		H-Dx Preparation Me Minneapolis	ethod: E	PA Mod. 3510C			
Diesel Fuel Range SG	ND	mg/L	0.40	1	03/29/22 15:18	04/11/22 15:46	68334-30-5	
Motor Oil Range SG	ND	mg/L	0.40	1		04/11/22 15:46		
Surrogates								
o-Terphenyl (S)	58	%.	50-150	1		04/11/22 15:46	84-15-1	
n-Triacontane (S)	57	%.	50-150	1	03/29/22 15:18	04/11/22 15:46		
Sample: TB-20220328	Lab ID: 106	02384004	Collected: 03/28/2	22 07:00	Received: 03	/29/22 08:50 N	Atrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260D VOC	Analytical Met	nod: EPA 82	260D			1		
	Pace Analytica	l Services -	Minneapolis					
Benzene	ND	ug/L	1.0	1		03/31/22 12:25	71-43-2	
Tetrachloroethene	ND	ug/L	1.0	1		03/31/22 12:25	127-18-4	
Surrogates		-						
1,2-Dichlorobenzene-d4 (S)	101	%.	75-125	1		03/31/22 12:25	2199-69-1	
4-Bromofluorobenzene (S)	99	%.	75-125	1		03/31/22 12:25	460-00-4	
Toluene-d8 (S)	106	%.	75-125	1		03/31/22 12:25	2037-26-5	
Sample: YVS-201-20220328	Lab ID: 106	02384005	Collected: 03/28/2	2 11:15	Received: 03	/29/22 08:50 N	fatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8081B GCS Pesticides	Analytical Met	nod: EPA 80	81B Preparation Me	ethod: El	PA Mod. 3510C			
	Pace Analytica	l Services -	Minneapolis					
Aldrin	ND	ug/L	0.047	1	03/30/22 16:23	04/01/22 21:23	309-00-2	
beta-BHC	ND	ug/L	0.047	1		04/01/22 21:23		
gamma-BHC (Lindane)	ND	ug/L	0.047	1	03/30/22 16:23			
4,4'-DDT	ND	ug/L	0.094	1		04/01/22 21:23		
Dieldrin Surrogates	ND	ug/L	0.094	1	03/30/22 16:23	04/01/22 21:23	60-57-1	
Tetrachloro-m-xylene (S)	78	%.	55-125	1	03/30/22 16:23	04/01/22 21:23	877-09-8	
Decachlorobiphenyl (S)	60	%.	30-125	1		04/01/22 21:23		
NWTPH-Dx GCS LV			H-Dx Preparation Me	ethod: E	PA Mod. 3510C			
	Pace Analytica	I Services -	Munneanolis					
	r doc / marytice		Minineapons					

REPORT OF LABORATORY ANALYSIS

Project: Yakima Valley Spray

Pace Project No.: 10602384

Sample: YVS-201-20220328	Lab ID: 106	02384005	Collected: 03/28/2	2 11:15	Received: 03	3/29/22 08:50 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
NWTPH-Dx GCS LV	Analytical Met	hod: NWTP	H-Dx Preparation Me	thod: E	PA Mod. 3510C			
	Pace Analytica	al Services -	Minneapolis					
Motor Oil Range Surrogates	ND	mg/L	0.40	1	03/29/22 15:18	03/30/22 13:10		
o-Terphenyl (S)	63	%.	50-150	1		03/30/22 13:10		
n-Triacontane (S)	50	%.	50-150	1	03/29/22 15:18	03/30/22 13:10		
NWTPH-Dx GCS Silica Gel LV	Analytical Met	hod: NWTP	H-Dx Preparation Me	thod: E	PA Mod. 3510C			
	Pace Analytica	al Services -	Minneapolis					
Diesel Fuel Range SG	ND	mg/L	0.40	1	03/29/22 15:18	04/11/22 15:57	68334-30-5	
Motor Oil Range SG Surrogates	ND	mg/L	0.40	1	03/29/22 15:18	04/11/22 15:57	64742-65-0	
o-Terphenyl (S)	60	%.	50-150	1	03/29/22 15:18	04/11/22 15:57	84-15-1	
n-Triacontane (S)	49	%.	50-150	1	03/29/22 15:18	04/11/22 15:57		S0
NWTPH-Gx GCV	Analytical Met	hod: NWTP	H-Gx					
	Pace Analytica	al Services -	Minneapolis					
TPH as Gas Surrogates	1180	ug/L	100	1		03/30/22 18:31		GO
a,a,a-Trifluorotoluene (S)	85	%.	50-150	1		03/30/22 18:31	98-08-8	
200.8 MET ICPMS, Dissolved			00.8 Preparation Met	hod: EF	PA 200.8			
	Pace Analytica							
Arsenic, Dissolved	2.8	ug/L	0.50	1	03/31/22 05:53	04/01/22 16:41	7440-38-2	
8260D VOC	Analytical Met	hod: EPA 82	260D					
	Pace Analytica	al Services -	Minneapolis					
Benzene	7.8	ug/L	1.0	1		03/31/22 12:40	71-43-2	
Tetrachloroethene <i>Surrogates</i>	ND	ug/L	1.0	1		03/31/22 12:40	127-18-4	
1,2-Dichlorobenzene-d4 (S)	99	%.	75-125	1		03/31/22 12:40		
4-Bromofluorobenzene (S)	117	%.	75-125	1		03/31/22 12:40		
Toluene-d8 (S)	83	%.	75-125	1		03/31/22 12:40	2037-26-5	

00 D / I 00000												
QC Batch: 80632			•	sis Method		WTPH-G						
QC Batch Method: NWTF	PH-GX			sis Descrip		WTPH-G		inn Minne				
Associated Lab Samples:	106023840	01, 1060238400		atory: 4005	Pa	ace Anar	ytical Serv	vices - Minne	apolis			
METHOD BLANK: 427995				Matrix: Wa	iter							
Associated Lab Samples:	106023840	01, 1060238400										
Parameter		Units	Blan Resu		Reporting Limit	Ana	lyzed	Qualifie	re			
TPH as Gas a,a,a-Trifluorotoluene (S)		ug/L %.		ND 107	100 50-150		22 12:10 22 12:10					
		70.		107	50 150	00/00/	22 12.10					
METHOD BLANK: 427995	3			Matrix: Wa	iter							
Associated Lab Samples:	106023840	01, 1060238400	2, 1060238	4005								
			Blan	k F	Reporting							
Parameter		Units	Resu	ult	Limit	Ana	lyzed	Qualifier	rs			
TPH as Gas		ug/L		ND	100	03/30/2	22 15:43					
a,a,a-Trifluorotoluene (S)		%.		93	50-150	03/30/2	22 15:43					
LABORATORY CONTROL S	SAMPLE & I	CSD: 427995	4		4279955							
LABORATORY CONTROL S	SAMPLE & I	-CSD: 427995		LCS	4279955 LCSD	LCS	LCSD	% Rec		Max		
LABORATORY CONTROL S Parameter	SAMPLE & I	CSD: 427995 Units	4 Spike Conc.				LCSD % Rec	% Rec Limits	RPD	Max RPD	Qua	alifiers
	SAMPLE & I		Spike	LCS Result	LCSD Result	% Rec			RPD 9		Qua	alifiers
Parameter TPH as Gas	SAMPLE & I	Units	Spike Conc.	LCS Result	LCSD Result	% Rec	% Rec	Limits		RPD	Qua	alifiers
Parameter TPH as Gas a,a,a-Trifluorotoluene (S)		Units ug/L %.	Spike Conc. 1000	LCS Result	LCSD Result 974	% Rec 106	% Rec 97	Limits		RPD	Qua	alifiers
Parameter TPH as Gas		Units ug/L %.	Spike Conc. 1000	LCS Result	LCSD Result	% Rec 106	% Rec 97	Limits		RPD	Qua	alifiers
Parameter TPH as Gas a,a,a-Trifluorotoluene (S)		Units ug/L %.	Spike Conc. 1000	LCS Result	LCSD Result 974	% Rec 106	% Rec 97	Limits		RPD	Qua	alifiers
Parameter TPH as Gas a,a,a-Trifluorotoluene (S)		Units ug/L %. LICATE: 4279	Spike Conc. 1000	LCS Result 1060	4279957	% Rec 106 126	% Rec 97 103	Limits 75-125 50-150 MSD	9	RPD		Qual
Parameter TPH as Gas a,a,a-Trifluorotoluene (S) MATRIX SPIKE & MATRIX S Parameter TPH as Gas	SPIKE DUPI	Units ug/L %. LICATE: 4279 10602384002	Spike Conc. 1000 956 MS Spike	MSD Spike	LCSD Result 974 4279957 MS	% Rec 106 126 MSD	% Rec 97 97 103 MS % Rec	Limits 75-125 50-150 MSD	9 % Rec Limits	RPD 20 RPD	Max	Qual
Parameter TPH as Gas a,a,a-Trifluorotoluene (S) MATRIX SPIKE & MATRIX S Parameter TPH as Gas	SPIKE DUPI	Units ug/L %. LICATE: 4279 10602384002 Result	Spike Conc. 1000 956 MS Spike Conc.	LCS Result 1060 MSD Spike Conc.	LCSD Result 974 4279957 MS Result	% Rec 106 126 MSD Result	% Rec 97 103	Limits 75-125 50-150 MSD % Rec	9 % Rec Limits 0 65-126	RPD 20 	Max RPD	Qual
Parameter TPH as Gas a,a,a-Trifluorotoluene (S) MATRIX SPIKE & MATRIX S Parameter TPH as Gas a,a,a-Trifluorotoluene (S)	SPIKE DUPI Units ug/L %.	Units ug/L %. LICATE: 4279 10602384002 Result	Spike Conc. 1000 956 MS Spike Conc.	LCS Result 1060 MSD Spike Conc.	LCSD Result 974 4279957 MS Result	% Rec 106 126 MSD Result	% Rec 97 103	Limits 75-125 50-150 MSD % Rec 31 90	9 % Rec Limits 0 65-126	RPD 20 	Max RPD	Qual
Parameter TPH as Gas a,a,a-Trifluorotoluene (S) MATRIX SPIKE & MATRIX S Parameter TPH as Gas a,a,a-Trifluorotoluene (S)	SPIKE DUPI Units ug/L %.	Units ug/L %. LICATE: 4279 10602384002 Result	Spike Conc. 1000 956 MS Spike Conc.	LCS Result 1060 MSD Spike Conc. 1000	LCSD Result 974 4279957 MS Result	% Rec 106 126 MSD Result	% Rec 97 103	Limits 75-125 50-150 MSD % Rec 81 90 91 92 Max	9 % Rec Limits 0 65-126	RPD 20 	Max RPD	Qual
Parameter TPH as Gas a,a,a-Trifluorotoluene (S) MATRIX SPIKE & MATRIX S Parameter TPH as Gas a,a,a-Trifluorotoluene (S)	SPIKE DUPI Units ug/L %.	Units ug/L %. LICATE: 4279 10602384002 Result	Spike Conc. 1000 956 MS Spike Conc. 1000	LCS Result 1060 MSD Spike Conc. 1000	LCSD Result 974 4279957 MS Result 1920	% Rec 106 126 MSD Result	% Rec 97 97 103 MS % Rec % Rec 8 % Rec 8	Limits 75-125 50-150 MSD % Rec 81 90 91 92	9 % Rec Limits 0 65-126	RPD 20	Max RPD	Qual
Parameter TPH as Gas a,a,a-Trifluorotoluene (S) MATRIX SPIKE & MATRIX S Parameter TPH as Gas a,a,a-Trifluorotoluene (S) SAMPLE DUPLICATE: 42	SPIKE DUPI Units ug/L %.	Units ug/L %. LICATE: 4279 10602384002 Result 1110	Spike Conc. 1000 956 MS Spike Conc. 1000 1060205 Resu	LCS Result 1060 MSD Spike Conc. 1000	LCSD Result 974 4279957 MS Result 1920	% Rec 106 126 MSD Result 2010	% Rec 97 97 103 MS % Rec % Rec 8 % Rec 8	Limits 75-125 50-150 MSD % Rec 31 90 91 92 Max RPD	9 % Rec Limits 0 65-126 2 50-150	RPD 20	Max RPD	Qual

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: Yakima Valley Spray Pace Project No.: 10602384

SAMPLE DUPLICATE: 4279985		10602742001	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
TPH as Gas	ug/L		327J		30	0 G-
a,a,a-Trifluorotoluene (S)	%.	97	95			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project:	Yakima Valley Spra	ay										
Pace Project No.:	10602384											
QC Batch:	806257		Anal	ysis Metho	d: I	EPA 200.8						
QC Batch Method:	EPA 200.8		Analy	ysis Descri	ption:	200.8 MET	Dissolved					
			Labo	oratory:		Pace Analy	ical Servic	es - Minnea	apolis			
Associated Lab Sam	ples: 10602384	001, 1060238400	2, 1060238	34005								
METHOD BLANK:	4279758			Matrix: W	ater							
Associated Lab Sam	ples: 10602384	001, 1060238400	2, 1060238	34005								
			Blai	nk	Reporting							
Param	eter	Units	Res	ult	Limit	Anal	/zed	Qualifiers	6			
Arsenic, Dissolved		ug/L		ND	0.5	0 04/01/2	2 16:00					
LABORATORY CON	TROL SAMPLE:	4279759										
			Spike	LC	-	LCS	% R					
Param	eter	Units	Conc.	Res	sult	% Rec	Limi	its (Qualifiers	_		
Arsenic, Dissolved		ug/L	10	00	105	10	5	85-115				
MATRIX SPIKE & M		LICATE: 4279	760		4279761							
			MS	MSD								
		10602384002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Arsenic, Dissolved	ug/L	2.8	100	100	109	106	106	103	70-130	3	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

-	akima Valley Spra	ау									
····	0602384				FRA A A A A A A A A A						
	806553		Analysis M		EPA 8260D						
QC Batch Method:	EPA 8260D		Analysis D	•	8260D MSV						
			Laboratory		Pace Analyt	ical Service	es - Minnea	apolis			
Associated Lab Sample	es: 106023840	001, 10602384002	2, 10602384004	10602384005							
METHOD BLANK: 42	281252		Matri	x: Water							
Associated Lab Sample	es: 106023840	001, 10602384002	2, 10602384004	10602384005							
			Blank	Reporting							
Paramet	er	Units	Result	Limit	Analy	/zed	Qualifiers	S			
Benzene		ug/L	N) 1	03/31/22						
Tetrachloroethene		ug/L	N) 1	.0 03/31/22						
1,2-Dichlorobenzene-d	()	%.	110								
4-Bromofluorobenzene) (S)	%.	10	-							
Toluene-d8 (S)		%.	10	9 75-1	25 03/31/22	2 09:31					
LABORATORY CONTI	ROL SAMPLE:	4281253									
			Spike	LCS	LCS	% Re	ec				
Paramet	er	Units	Conc.	Result	% Rec	Limit	ts (Qualifiers			
Benzene		ug/L	20	21.4	107	7 7	/3-125		_		
Tetrachloroethene		ug/L	20	19.9	99	97	2-125				
1,2-Dichlorobenzene-d	(2) 11										
	()	%.			99		75-125				
4-Bromofluorobenzene	()	%.			99	97	75-125				
4-Bromofluorobenzene Toluene-d8 (S)	()					97					
4-Bromofluorobenzene	e (S)	%. %.	254	428125	99 96	97	75-125				
4-Bromofluorobenzene Toluene-d8 (S)	e (S)	%. %.	254 MS MS		99 96	97	75-125				
4-Bromofluorobenzene Toluene-d8 (S)	e (S)	%. %.		C	99 96	97	75-125	% Rec		Мах	
4-Bromofluorobenzene Toluene-d8 (S)	e (S)	%. %. LICATE: 42812 10602384002	MS MS	D .e MS	99 96 55	9 7 6 7	75-125 75-125	% Rec Limits	RPD	Max RPD	Qua
4-Bromofluorobenzene Toluene-d8 (S) MATRIX SPIKE & MAT Parameter	(S)	%. %. LICATE: 42812 10602384002	MS MS Spike Spik	D .e MS	99 96 5 MSD Result	9 7 6 7	75-125 75-125 MSD		RPD 14	RPD	
4-Bromofluorobenzene Toluene-d8 (S) MATRIX SPIKE & MAT Parameter Benzene	(Š)́ TRIX SPIKE DUP Units	%. %. LICATE: 42812 10602384002 Result	MS MS Spike Spik Conc. Con	D ie MS c. Result	99 96 55 MSD Result 4 20.4	9 7 6 7 MS % Rec	/5-125 /5-125 MSD % Rec	Limits		RPD 30	
4-Bromofluorobenzene Toluene-d8 (S) MATRIX SPIKE & MAT	⊖ (Š) TRIX SPIKE DUP Units ug/L ug/L	%. %. LICATE: 42812 10602384002 	MS MS Spike Spik Conc. Con	D ee MS c. Result 10 23.4	99 96 55 MSD Result 4 20.4	9 7 6 7 MS % Rec 145	/5-125 /5-125 MSD % Rec 115	Limits 65-140	14	RPD 30	
4-Bromofluorobenzene Toluene-d8 (S) MATRIX SPIKE & MAT Parameter Benzene Tetrachloroethene	⊖ (S) TRIX SPIKE DUP Units ug/L ug/L 14 (S) %.	%. %. LICATE: 42812 10602384002 	MS MS Spike Spik Conc. Con	D ee MS c. Result 10 23.4	99 96 55 MSD Result 4 20.4	9 7 6 7 MS % Rec 145 139	75-125 75-125 MSD % Rec 115 109	Limits 65-140 66-141	14	RPD 30	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project:	Yakima Valley Spray

Pace Project No.:	10602384
-------------------	----------

QC Batch:	806318	Analysis Meth	nod: E	PA 8081B	
QC Batch Method:	EPA Mod. 3510C	Analysis Des	cription: 80	081B GCS Pesticide	es
		Laboratory:	P	ace Analytical Servi	ces - Minneapolis
Associated Lab San	nples: 10602384002, 10602384005	-		-	
METHOD BLANK:	4279930	Matrix:	Water		
Associated Lab San	nples: 10602384002, 10602384005				
		Blank	Reporting		
Paran	neter Units	Result	Limit	Analyzed	Qualifiers
4,4'-DDT	ug/L	ND	0.10	04/01/22 18:15	
Aldrin	ug/L	ND	0.050	04/01/22 18:15	
beta-BHC	ug/L	ND	0.050	04/01/22 18:15	
Dieldrin	ug/L	ND	0.10	04/01/22 18:15	
gamma-BHC (Linda	ne) ug/L	ND	0.050	04/01/22 18:15	
Decachlorobiphenyl (S) %.		84	30-137	04/01/22 18:15	

89

55-125 04/01/22 18:15

LABORATORY CONTROL SAMPLE: 4279931

Tetrachloro-m-xylene (S)

		Spike	LCS	LCS	% Rec	
Parameter	er Units		Result	% Rec	Limits	Qualifiers
4,4'-DDT	ug/L	1	1.0	103	61-137	
Aldrin	ug/L	0.5	0.48	97	34-126	
beta-BHC	ug/L	0.5	0.48	96	71-125	
Dieldrin	ug/L	1	1.0	101	73-125	
gamma-BHC (Lindane)	ug/L	0.5	0.49	98	70-125	
Decachlorobiphenyl (S)	%.			82	30-137	
Tetrachloro-m-xylene (S)	%.			90	55-125	

%.

MATRIX SPIKE & MATRIX S	PIKE DUPLIC	CATE: 4279	932		4279933							
			MS	MSD								
	1	0602384002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
4,4'-DDT	ug/L	ND	0.95	1	0.74	0.80	78	78	33-150	8	20	
Aldrin	ug/L	ND	0.48	0.51	0.33	0.36	70	70	30-132	7	20	
beta-BHC	ug/L	ND	0.48	0.51	0.36	0.42	76	82	55-128	15	20	
Dieldrin	ug/L	ND	0.95	1	0.68	0.74	72	72	51-125	8	20	
gamma-BHC (Lindane)	ug/L	ND	0.48	0.51	0.37	0.43	78	85	54-125	16	20	
Decachlorobiphenyl (S)	%.						57	60	30-137			
Tetrachloro-m-xylene (S)	%.						78	81	55-125			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

QC Batch:	806179		Analysis	Method:	N	NWTPH-Dx								
QC Batch Method:	EPA Mod. 35100	;	Analysis	Descriptior	: N	NWTPH-Dx GCS LV								
			Laborato	ry:	Pa	ace Analytica	l Services - Min	neapolis						
Associated Lab Sar	nples: 10602384	001, 1060238400	02, 1060238400	3, 1060238	84005									
METHOD BLANK:	4279260		Mat	rix: Water										
Associated Lab Sar	nples: 10602384	001, 1060238400	02, 1060238400	3, 1060238	34005									
			Blank	Rep	orting									
Parar	neter	Units	Result	Li	mit	Analyze	d Quali	fiers						
Diesel Fuel Range		mg/L	 1	1D	0.40	03/30/22 1	1:54							
Motor Oil Range		mg/L	1	1D	0.40	03/30/22 1 [°]	1:54							
n-Triacontane (S)		%.		65	50-150	03/30/22 1	1:54							
o-Terphenyl (S)		%.		62	50-150	03/30/22 1	1:54							
LABORATORY CO	NTROL SAMPLE:	4279261												
			Spike	LCS		LCS	% Rec							
Parar	neter	Units	Conc.	Result		% Rec	Limits	Qualifiers						
Diesel Fuel Range		mg/L	2		1.4	69	50-150							
Motor Oil Range		mg/L	2		1.4	72	50-150							
n-Triacontane (S)		%.				62	50-150							
o-Terphenyl (S)		%.				75	50-150							

Parameter	Units	10602384002 Result	Spike Conc.	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Diesel Fuel Range	mg/L	0.67	2	2	1.5	1.7	43	53	50-150	13	30	M1
Motor Oil Range	mg/L	ND	2	2	1.1	1.3	45	54	50-150	15	30	M1
n-Triacontane (S)	%.						57	57	50-150			
o-Terphenyl (S)	%.						60	59	50-150			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QC Batch:	806178		Analysis	s Method:		NWTPH-Dx							
QC Batch Method:	EPA Mod. 3510C		Analysis	s Descript	ion:	NWTPH-Dx GCS LV SG							
			Laborat	ory:	l	Pace Analytica	l Services - Min	neapolis					
Associated Lab Sam	oles: 10602384	001, 1060238400	2, 106023840	03, 10602	2384005								
METHOD BLANK:	4279256		М	atrix: Wat	ter								
Associated Lab Sam	oles: 10602384	001, 1060238400	2, 106023840	03, 10602	2384005								
			Blank	R	eporting								
Param	eter	Units	Result	Result Lir		Analyze	d Quali	fiers					
Diesel Fuel Range S	G	mg/L		ND	0.4	0 04/08/22 1	1:29						
Motor Oil Range SG		mg/L		ND	0.4	0 04/08/22 1	1:29						
n-Triacontane (S)		%.		58	50-15	0 04/08/22 1	1:29						
o-Terphenyl (S)		%.		53	50-15	0 04/08/22 1	1:29						
LABORATORY CON	TROL SAMPLE:	4279257											
			Spike	LCS	;	LCS	% Rec						
Param	eter	Units	Conc.	Resu	lt	% Rec	Limits	Qualifiers					
Diesel Fuel Range S	G	mg/L	2		1.2	59	50-150						
Motor Oil Range SG		mg/L	2		1.3	64	50-150						
n-Triacontane (S)		%.				55	50-150						
o-Terphenyl (S)		%.				66	50-150						

Parameter	Units	10602384002 Result	Spike Conc.	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD Qual
Diesel Fuel Range SG	mg/L		2	2	1.2	1.3	47	53	50-150	10	30 M1
Motor Oil Range SG	mg/L	ND	2	2	1.3	1.2	53	52	50-150	1	30
n-Triacontane (S)	%.						58	62	50-150		
o-Terphenyl (S)	%.						58	62	50-150		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: Yakima Valley Spray

Pace Project No.: 10602384

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

BATCH QUALIFIERS

Batch: 806553

- [1] The continuing calibration verification was below the method acceptance limit for bromomethane. The analyte was not detected in the associated samples and the sensitivity of the instrument was verified with a reporting limit check standard.
- [2] The continuing calibration verification was above the method acceptance limit for diethyl ether, methyl-tert-butyl-ether, trans-1,3-dichloropropene, dibromochloromethane, 1,2,4-trichlorobenzene, hexachloro-1,3-butadiene, naphthalene, and 1,2,3-trichlorobenzene. Any detection for the analyte in the associated samples may have a high bias.

ANALYTE QUALIFIERS

- G- Early peaks present outside the GRO window.
- GO Early and late peaks present outside the GRO window.
- M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
- S0 Surrogate recovery outside laboratory control limits.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:	Yakima Valley Spray
Pace Project No.:	10602384

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
10602384002	YVS-2-20220328	EPA Mod. 3510C	806318	EPA 8081B	806735
10602384005	YVS-201-20220328	EPA Mod. 3510C	806318	EPA 8081B	806735
10602384001	YVS-1B-20220328	EPA Mod. 3510C	806179	NWTPH-Dx	806540
10602384002	YVS-2-20220328	EPA Mod. 3510C	806179	NWTPH-Dx	806540
10602384003	YVS-3-20220328	EPA Mod. 3510C	806179	NWTPH-Dx	806540
10602384005	YVS-201-20220328	EPA Mod. 3510C	806179	NWTPH-Dx	806540
10602384001	YVS-1B-20220328	EPA Mod. 3510C	806178	NWTPH-Dx	808236
10602384002	YVS-2-20220328	EPA Mod. 3510C	806178	NWTPH-Dx	808236
10602384003	YVS-3-20220328	EPA Mod. 3510C	806178	NWTPH-Dx	808236
10602384005	YVS-201-20220328	EPA Mod. 3510C	806178	NWTPH-Dx	808236
10602384001	YVS-1B-20220328	NWTPH-Gx	806324		
10602384002	YVS-2-20220328	NWTPH-Gx	806324		
10602384005	YVS-201-20220328	NWTPH-Gx	806324		
10602384001	YVS-1B-20220328	EPA 200.8	806257	EPA 200.8	806733
10602384002	YVS-2-20220328	EPA 200.8	806257	EPA 200.8	806733
10602384005	YVS-201-20220328	EPA 200.8	806257	EPA 200.8	806733
10602384001	YVS-1B-20220328	EPA 8260D	806553		
10602384002	YVS-2-20220328	EPA 8260D	806553		
10602384004	TB-20220328	EPA 8260D	806553		
10602384005	YVS-201-20220328	EPA 8260D	806553		

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Digenet Homates Description (Annuality) Description (Annuality) <thdescription (annuality)<="" th=""> <thdescription (annuality)<<="" th=""><th></th><th></th><th>Section B</th><th></th><th></th><th colspan="4">Section B</th><th colspan="6">Section C</th><th></th><th colspan="4"></th><th></th><th>1</th><th></th><th>· · · · · ·</th><th>र</th></thdescription></thdescription>			Section B			Section B				Section C												1		· · · · · ·	र			
Same Spin To Avenue, Suite 200 Corport New Avenue, Suite 200 Status 101 and Avenue, Suite 200 Status 101 and Avenue, Suite 200 Sector View Avenue, Suite 200 Sector View Avenue, Suite 200 Status 101 and Avenue, Suite 200 Status 101 and Avenue, Suite 200 Sector View Avenue, Suite 200 Sector View Avenue, Suite 200 Status 101 and Avenue, Suite 200 Status 101 and Avenue, Suite 200 Sector View Avenue, Suite 200 Status 101 and Avenue, Suite 200 Status 101 and Avenue, Suite 200 Status 101 and Avenue, Suite 200 Sector View Avenue, Suite 200 Status 101 and Avenue, Suite 200 Status 101 and Avenue, Suite 200 Status 101 and Avenue, Suite 200 Sector View Avenue, Suite 200 Status 101 and Avenue, Suite 200 Status 101 and Avenue, Suite 200 Status 101 and Avenue, Suite 200 Sector View Avenue, Suite 200 Status 101 and Avenue, Suite 200 Status 101 and Avenue, Suite 200 Status 101 and Avenue, Suite 200 Sector View Avenue, Suite 200 Status 101 and Avenue, Suite 200 Status 101 and Avenue, Suite 200 Status 101 and Avenue, Suite 200 Sector View Avenue, Suite 200 Status 101 and Avenue, Suite 200 Status 101 and Avenue, Suite 200 Status 101 and Avenue, Suite 200 Sector View Avenue, Suite 200 Status 101 and Avenue, Suite 200 Status 101 and Avenue, Suite 200 Status 101 and Avenue, Suite 200 Sector View Avenue, Suite 200 Status 101 and Avenue	Res /														7				Pa	ge:	+	<u></u>		2				
Seattile V.M. 8101 Justice Jate 200 Jate 200 <thjate 200<="" th=""> Jate 200 <thjate 200<="" th=""></thjate></thjate>	Company				DSCA	NCHON	LGEN	com							4													
Bill II I	Address:		Copy To: NB	ACHE	e (O ko	Netto	2.0 EA	: LisM							50-01-0	a na sa	1700		D		in the second	an a	Warn an Children	a service a				
Bits Construction Value Source Date Product Number Head Product Number Head Product Number Number Number Number Number Number Number Number Number Number Number Number Number Numer Number Numer Number Number Numer Number Number Number Numer N			Burnhage Order	No 7	<u> </u>				_		to De		<u>11 3r</u>		nue, S	uite 2	000			218 N.	11-11-11-11-11-11-11-11-11-11-11-11-11-	ominitação	Regula	tory Ag	ency	<u></u>	SCHOOL STRUCTURE	TOARDONE
Big Dury (Standard) Container Order Number Pace Profile # 4073777 WAX Values SAMPLE ID One Character per box Supposed in news Cover Big With Stars Discover Stars Container Order Number Proce Profile # 4073777 WAX Values SAMPLE ID One Character per box Supposed in news Cover Supposed in news Cover Stars With Stars Container Order Number Proceeding Stars Y Y Y Supposed in news Cover Supposed in news Cover Stars With Stars Container Order Number Stars E Y		LAUDATA CANCHER GEA COM		st Breisst ID Vakima Vallay Samy				_				- 1	onnife	r Gree					Section 24	for the second		Ctofe	11 0000	ion	e Concella	(- 1 .	1	
Build COLLECTED Preservatives X <td></td> <td></td> <td></td> <td></td> <td></td> <td>a valley</td> <td>spray</td> <td></td> <td>_</td> <td></td> <td></td> <td>a layer:</td> <td></td> <td></td> <td></td> <td>55</td> <td></td> <td></td> <td>10000</td> <td>2948.90</td> <td>2.96560.244</td> <td>w1.21.</td> <td></td> <td></td> <td></td> <td>19-7-95 (S)</td> <td></td> <td>ACCESSION OF A CONTRACT OF</td>						a valley	spray		_			a layer:				55			10000	2948.90	2.96560.244	w1.21.				19-7-95 (S)		ACCESSION OF A CONTRACT OF
SAMPLE ID Our Character per box. Sample 18 near be unique and the transfer of the sample 18 near be unique transfer of the transfer of transfer of the transfer of the	Requeste	to Due Daterrat. To Day (Standard)	Somanier Order	, turnoel	•				1 40		π.	-	4				Ren	ueste	I d Ana	vŝis F	iltered	(Y/N)		N Lan			Carl Standard C.	1.7.1.00 T
Image: Sector 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10	M#	One Character per box. (A-Z, 0-9 /, -) Sample Ids must be unique Air Other Tissue	Vater DW WT P SL OL WP AR OT TS	(see valid (G=GRA				TEMP AT COLLECTION	CONTAINERS	reserved					Viccos Tase		Y	8260	e by 8260	bu 8081	1000			idual Chlorine (Y/N)				
i VyS-16-70220328 Sw G 9.7802/0940 7 X X X X V 001 2 VyS-2-70220328 Sw G 5.76521 III0 21 X X X X X MS/M X X MS/M X V 001 3 VyS-3-20220328 Gw G 5.76521 III0 21 X X X X X X X V 001 3 VyS-3-20220328 Gw G 5.76721 GB 3002 Z X X X X X X V 001 4 TB-20220528 WT G 5.7672160 S X X X X X 004 5 YVS-221-20220328 Sw G G 326221115 III X X X X X X 004 6 MO# : 10602384 III IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Ш. Ш.			MATF SAMF	DATE	TIME	DATE		ЧO #	L L D	H2S(위 문 모	NaO	Meth	Othe	۲ <u>Ş</u>	NZ Z	5 D	Ber	≷ ₽				Resi				
2 Vy 5 - 2 - 70220 328 Sw 6 37872 III0 21 × × ×	and a second second	Vus-18-7-770378	6	ins G				_/	_							X	XX	C X		X		l l					(101
3 Vy 5 - 3 - 20220325 Gu G 32822 0830 2 X X X X 003 4 TB - 20220325 WT G 328-22 0830 X X X X X 003 4 TB - 20220325 WT G 328-22 0830 X X X X X X 003 5 YU5 - 201 - 20220325 WG G 328-22 0115 111 x X X X X X X 003 6 WO# : 106002384 WO# : 106002384 WO# : 005 005 005 7 WO# : 10602384 WO# : 00602384 WO# : 005 005 8 Image: 10602384 Image: 10602384 Image: 10602384 Image: 10602384 Image: 10602384 Image: 10602384 12 ADDITIONAL COMMENTS RELINQUISHED BY / AFFILIATION DATE Time ACCEPTED BY / AFFILIATION DATE Time SAMPLE CONDITIONS 12 ADDITIONAL COMMENTS STEDITEN STACK / A A 178-22 1/00 MUM / PACE 3-3938 850 2% / V V V gamma-BHC (Lindane) Image: 10602384 Image: 10602384 Image: 106	2300000000000000				_		11			1					†1						c		- -	-1	M	15%		
3 VV 5 - 20220528 INV 1 2000 2 A 004 4 TB - 20220528 WT 6 73:200700 8 X X X X X 004 5 YV5 - 201 - 20220328 WT 6 73:200700 8 X X X X X 004 6 WO# : 106002384 WO# : 106002384 005 7 WO# : 106002384 005 8 005 005 9 006 006 300 006 007 12 000 007 ADDITIONAL COMMENTS RELINQUISHED BY AFFILIATION DATE 12 000 006 9 005 007 12 000 007 12 000 007 12 000 007 12 000 007 13 00602384 007 14 10602384 007 15 007 007 16 007 007 17 007 007 18 007 007 19 007 007 10602384 007 10 007 10 007 10 007	2				_			\checkmark					\vdash		+			ዋላ	40	<u>ch</u>	`	┝─┼╴		-	<u> </u>	5/10		
4 TB - Zo Zzo 328 wT 4 3.72 · 12 · 02 · 62 · 60 S x x x x x x 004 5 YWS - 201 - 202 203 28 Swi G 3.78 · 72 · 11 · 5 III x x x x x x 004 6 WO# : 106602384 WO# : 106602384	3	VUS-3-20220328	6	242 6	3-18-72	0830						X				X	X									<u> </u>		
5 YWS- 201 - 202 202 28 FW & BR & B	1912/2012/2012		1	76	3-23-22	0700			X	T		x						X	e X				.					004
6 ADDITIONAL COMMENTS RELINQUISHED BY / AFFILIATION DATE TIME ACCEPTED BY / AFFILIATION DATE TIME SAMPLE CONDITIONS 12 ADDITIONAL COMMENTS RELINQUISHED BY / AFFILIATION DATE TIME ACCEPTED BY / AFFILIATION DATE TIME SAMPLE CONDITIONS 12 ADDITIONAL COMMENTS RELINQUISHED BY / AFFILIATION DATE TIME ACCEPTED BY / AFFILIATION DATE TIME SAMPLE CONDITIONS Presticides by 8081: 4-DDT, Aldrin, Dieldrin, beta-BHC, STEPITEN STREATL / A Q 3-78-22 1 // UD KUMM/PACE 3-39-33 8-50 2-9/2 Y Y gamma-BHC (Lindane) Image: Comment of the second o	120000020			· · · · · · · · · · · · · · · · · · ·			1/					_	\square		1-1	-				1		$\uparrow \uparrow$		-1		1		206
7 WO#: 10602384 9 Image: Strate of the strate o	-5	YVS- 201-20220328		<u>14 G</u>	5-05-11	1117	P '	└──≻ <u> </u> -	- ''	┦┻╢		<u> </u>	\vdash		├ 	Ľ	1 2 1	<u>~ ^</u>		-		\vdash	-┼-┼		—	+		<u>vu u</u>
3 9 30,2 105,02384 12 105002384 12 105002384 12 1000000000000000000000000000000000000						ļ				II	L.	. . .	L. I.	i 1			L				_	\vdash			<u> </u>	<u> </u>		
3 9 30,2 105,02384 12 105002384 12 105002384 12 1000000000000000000000000000000000000	7									1.17	7+	↓ • •	1 ()C	n	22	0/	•										•
3 9 30,2 105,02384 12 105002384 12 105002384 12 1000000000000000000000000000000000000	14.00 (m. 17.00					1			- 1	M/	Jt	† • .	ΤV	0	V2	23	04	ŧ										
International comments Relinquished by / AFFILIATION Date Time Accepted by / AFFILIATION Date Time Sample conditions *Pesticides by 8081: 4,4-DDT, Aldrin, Dieldrin, beta-BHC. STEPITEN STREAT / A.Q. 3-78-22 1400 Nut/PACE 3-29-22 2-900 Y Y gamma-BHC (Lindane) Image: Conditional comments of the same of	8								-												+				\vdash	+		<u></u>
12 10502384 12 ADDITIONAL COMMENTS RELINQUISHED BY / AFFILIATION DATE TIME ACCEPTED BY / AFFILIATION DATE TIME Pesticides by 8081: 4.4-DDT, Aldrin, Dieldrin, beta-BHC, STEPITEN STREAT / AQ 3-78-22 1/2/0 NUM/PACE 3-29-22 2-200 Y Y gamma-BHC (Lindane) Image: Comparison of the state	- 9					1			.]	II II											+	\vdash	_			<u> -</u>		
International comments Relinquished by / AFFILIATION Date Time Accepted by / AFFILIATION Date Time Sample conditions *Pesticides by 8081: 4,4-DDT, Aldrin, Dieldrin, beta-BHC. STEPITEN STREAT / A.Q. 3-78-22 1400 Nut/PACE 3-29-22 2-900 Y Y gamma-BHC (Lindane) Image: Conditional comments of the same of	10-		· · · · · ·		÷																				L			:
Pesticides by 8081: 4,4-DDT, Aldrin, Dieldrin, beta-BHC, gamma-BHC (Lindane) STEPITEN STREAT / AQ 3-78-22 1400 RUTUPACE 3-29-22 8:50 2-96 Y Y Y	12					1			1	1060	023	84	-			-												
Pesticides by 8081: 4,4-DDT, Aldrin, Dieldrin, beta-BHC, gamma-BHC (Lindane) Pesticides by 8081: 4,4-DDT, Aldrin, Dieldrin, beta-BHC,	105				-	1	1			TI	г т	T	т — т	·····		т	т т				. †				Γ	1		
Pesticides by 8081: 4,4-DDT, Aldrin, Dieldrin, beta-BHC, gamma-BHC (Lindane) Pesticides by 8081: 4,4-DDT, Aldrin, Dieldrin, beta-BHC,	12		CARLES STAILORNING	- Recentlences	A CONTRACTOR OF THE OWNER	l Sevenesses	<u>I.</u>	Sector Success	210 0025		NO.CO.	ocasetiko/re		Primero nas	and the second	Statella		ا ماندە د					1 N=State	NUCCIONAL SE				
gamma-BHC (Lindane)	And the set	ADDITIONAL COMMENTS	RE	LINQUIS	SHED BY / /	AFFILIATI	ON	DATE		TIME	(new)	<u></u>	, AC	CEPTI	ED BY	AFFIL	IATION	1		D.	ATE	and the second s	IME		SAN	APLEC	UNDITION	3
gamma-BHC (Lindane)	*Pestic	ides by 8081: 4,4-DDT, Aldrin, Dieldrin, beta-BHC,	STER	Diten	j STRE	He/F	+G	3-78-2	21	407	0	kū	杠	In,	P	Ac	E	,		3-7	19-3;	28	:50	2-9%	2	X	Y	Y
						i T	•				1			U	-	-								ĺ .		1		l:
Page 250 Find SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER: STEPHEN STEPHEN STEPHEN SIGNATURE of SAMPLER: STEPHEN STEPHEN SIGNATURE of SAMPLER: STEPHEN STEPHEN		gamma-BHC (Lindane)				i			+													1			+	\dagger		
SAMPLER NAME AND SIGNATURE SAMPLER NAME AND SIGNATURE Subscription Subscrint Su		·						<u> </u>			-+		-	<u> </u>											+-			
SAMPLER NAME AND SIGNATURE 0		······································					4000		<u> </u>	100000000000	NO. INC.	xr702004044	and the second		energer State-		and the second	i a para	a and the second	-	SUBSISTER STR	100 m 200	Market Galage Party		+	+		
SIGNATURE of SAMPLER:	age 25					PR	INT Name	of SAMPLE	R:	entra de la	٦	iter		STM	即		NATION AND A	95.912-0198.	24.260949012					.⊆	on bould	eived on-	tody Seale ler (Y/N)	nples Intact 1)
	of 2					SIC	SNATURE	of SAMPLE	R:	4	3	25		 			DATE	Sign	ed: 1 9 - 7	2,	/	12	100	TEN		Kec Ice (Coo	Sarr (Y/N

	Pace Analytical		nt Name: Ipon Receipt (SCUR)	Document Revised: 06Jan2022 Page 1 of 1		
	Pace Alialylical	Docum	ent No.: 14-0150 Rev.04	Pace Analytical Services - Minneapolis		
Sample Co	ondition Client Name:	Proj	ect #:			
Upon Re	Anchor 6	Pa		÷10602384		
Courier:	Fed Ex UPS Pace SpeeDee	USPS Clie		G Due Date: 04/12/22 ANCHOR QEA		
	Number: 5405 18 18 320 8	See Exce ENV-FRN	Potions			
	Seal on Cooler/Box Present?		act? Yes No	Biological Tissue Frozen? Yes No. N/A		
Packing N	Aaterial: ABubble Wrap		Other:	Temp Blank? 🖉 Yes 🗌 No		
Thermom	eter: T1(0461) T2(1336) 3(0 T5(0489) 01339252/1710	459) [14(0254) [122639816 [140792808	Type Wet Bi	lue None Dry Melted		
Did Sample	es Originate in West Virginia? 🗌 Yes 🇯	No Were All Contain	er Temps Taken? 🗌 Yes 🛛			
·		p Read w/temp blank:	2.2/1.2	_⁰C Average Corrected □See Exceptions Temp (no temp blank ENV-FRM-MIN4-0142		
			2.0/1.0	OCOniy):OC1 Container		
Did samples LA. MS, NC,		United States: AL, AR, CA, Fl naps)? Yes No Regulated Soil Checklist E	, GA, ID, Did samples origin Hawaii and Puerto	on Examining Contents: <u>3 - チター みん</u> nate from a foreign source (internationally, including o Rico)? ロYes ロNo iclude with SCUR/COC paperwork.		
Location	n (check one):— 🗆 Duluth— 🕅 Min	neapolis 🗌 Virginia		COMMENTS:		
	stody Present and Filled Out?	Ves No	1.			
	stody Relinquished?		2.			
	me and/or Signature on COC?		3. 4. If Fecal: □<8 hr			
	Time Analysis (<72 hr)?	<u>I</u> ¥¥¥§s <u>INo</u> ∐Yes AyNo	5. Fecal Coliform HPC	's _>8hr, <24 hrs, _>24 hrs C _Total Coliform/E coli _BOD/cBOD _Hex Chrome Nitrite _Orthophos _Other		
Rush Turn A	Around Time Requested?	Yes XNo	6.			
Sufficient V	olume?		7.			
Correct Con	tainers Used?	No Inc	8.			
-Pace Co	ntainers Used?	Yes No				
Containers	Intact?	Yes No	9.			
Field Filtere	d Volume Received for Dissolved Tests?		10. Is sediment visible in	n the dissolved container? 🔲 Yes 🖄 No		
samples to	information available to reconcile the the COC? Vater □Soil □Oil □Other-	AN0 0 7-19-22	11. If no, write ID/ Date/Tim didn't recen containe/s for	ne on Container Below: JMG See Exception		
All containe been checke	rs needing acid/base preservation have ed?	Yes No N/A	12. Sample # 00			
compliance	rs needing preservation are found to be ir with EPA recommendation? D4, <2pH, NaOH >9 Sulfide, NaOH>10	Yes DNO DN/A	П №ОН	HNO₃ □H₂SO₄ □Zinc Acetate		
	VOA, coliform, TOC/DOC Oil and Grease, water) and Dioxin/PFAS	Yes □No □N/A	Positive for Res. Yes Chlorine? No Res. Chlorine 0-6 Rc			
Headspace i	n Methyl Mercury Container?		217			
	present on soil VOA or WIDRO containers	P Yes No 2N/A	13.	See Exception		
	n VOA Vials (greater than 6mm)?	Yes XNo N/A		ENV-FRM-MIN4-014		
Trip Blank P Trip Blank C	resent? ustody Seals Present?	No □N/A Nes □No □N/A	14. Pace Trip Blank Lot #	(if purchased): 357/2/02 43575		
	ENT NOTIFICATION/RESOLUTION			Field Data Required? Yes No		
Person Con	tacted: <u>Cindy, Stephen and</u>	Nik missing nitric bottl				
Dro	ر مر م مرمد Manager Review:	ni Cana	Date:	3/29/22		
		ni Gross				
	ver there is a discrepancy affecting North Car ect preservative, out of temp, incorrect conta		ppy of this form will be sent to	the North Carolina DEHNR Certification Office (i.e., out		

Labeled by: <u> PAF</u>

	Production	S;	amnle C		nt Name:	Document Revised: 06Jan2022		
Pace Analytical*		Sample Condition Upon Receipt (SCUF Document No.:						
l			ENV		N4-0150 Rev.04	Pace Analytical Services - Minneapolis		
Sample Co Upon Re				Proj	iect #:	4.4.000004		
	Anchor Qea, L	L			- WUi	<u>#:10602384</u>		
Courier:	Fed Ex UPS	USPS	ercial	Clie	nt PM: J			
Tracking N	lumber: 5905 1919 3209	3219	·····		eptions 1-MIN4-0142			
Custody Se	eal on Cooler/Box Present? Yes	No		Seals Int	act? Yes No	Biological Tissue Frozen? 🗌 Yes 🛄 No 🛃		
Packing M		e Bags		e 📋	Other:	Temp Blank? Yes No		
Thermome]12263981	.6 []140		of ice:	Blue None Dry Melted		
Did Sample	s Originate in West Virginia? 🗌 Yes 🛛 🛛		-		er Temps Taken? 🗌 Yes			
	be above freezing to 6°C Cooler Temp		-			C Average Corrected □See Exception Temp (no temp blank ENV-FRM-MIN4-0		
	Factor: -0.2, +0. Cooler Temp Corre		emp bla	nk: <u>/</u> (<u>10,20</u>	⁰ C1 Container		
Did samples	lated Soil: (NA, wate) sample/Other: originate in a quarantine zone within the U NM, NY, OK, OR, SC, TN, TX or VA (check m If Yes to either question, fill out a R	Jnited State aps)?	Yes	□No	., GA, ID, Did samples origi Hawaii and Puert	son Examining Contents: K 03/29/22 inate from a foreign source (internationally, including to Rico)? Yes No Include with SCUR/COC paperwork.		
Location	(check one): 🗆 Duluth 🗹 Minn	eapolis	🗋 Vi	rginia		COMMENTS:		
Chain of Cus	tody Present and Filled Out?	Yes	No		1.			
	tody Relinquished?	Ves	No		2.			
	ne and/or Signature on COC?	_ Ves	No	□n/A	3.			
Samples Arri	ved within Hold Time?	Yes			4. If Fecal: □<8 h	rs □>8hr, <24 hrs, □>24 hrs		
	ime Analysis (<72 hr)?	Yes	N o		5. Fecal Coliform HP	C		
	round Time Requested?	Yes			6.			
Sufficient Vo		V Yes	<u>No</u>		7			
	ainers Used?	Ves	No		8.			
Containers In	tainers Used?	Yes	<u> </u>		9.			
	Volume Received for Dissolved Tests?							
	nformation available to reconcile the	V Yes	No	N/A		n the dissolved container? Yes No		
samples to th		Yes	No		11. If no, write ID/ Date/Tir	ne on Container Below: See Exception		
been checked		Yes	□No	□n/a	12. Sample # 001, 002	CULE		
	s needing preservation are found to be in	/						
	vith EPA recommendation? 1, <2pH, NaOH >9 Sulfide, NaOH>10	Ves	∏No	□n/a	NaOH	$\frac{1}{1}$ HNO ₃ H_2SO_4 \Box Zinc Acetate		
	OA) Coliform, TOC/DOC Oil and Grease, rater) and Dioxin/PFAS	Yes	□No	□n/a	Positive for Res. Yes Chlorine? No	See Exception pH Paper Lot# ENV-FRM-MIN4-0142		
					Res. Chlorine 0-6 Ro			
	Methyl Mercury Container?	Yes	No	Z N/A	<u> </u>	7 		
	resent on soil VOA or WIDRO containers?	Yes			13.	See Exception		
	VOA Vials (greater than 6mm)?	Ves	N o			ENV-FRM-MIN4-0		
Trip Blank Pre Trip Blank Cus	esent? stody Seals Present?		□No □No		14. Pace Trip Blank Lot #	(if purchased): 2357662. 9875		
CLIEN	NT NOTIFICATION/RESOLUTION	CH 0719	29172	<u>۱</u>		Field Data Required?		
Person Conta		·			Date/Time: 3/	29/22		
Comments/R		received	d in tl	nird co				
Proie	ect Manager Review:	Traci			Data: 2	/20/22		
	ect Manager Review:	moss			Date:3	/29/22		
te: Wheneve hold, incorrec	r there is a discrepancy affecting North Caroli t preservative, out of temp, incorrect contain	na complia ers).	nce sam	ples, a cop	py of this form will be sent to	the North Carolina DEHNR Certification Office (i.e., ou		

Labeled by:	

KNC Page 27 of 28

Pace Analytical [®]	Document Name: Sample Condition Upon Receipt (SCUR) Exception Form	Document Revised: 04Jun2020 Page 1 of 1		
	Document No.: ENV-FRM-MIN4-0142 Rev.01	Pace Analytical Services - Minneapolis		

SCUR Exceptions: Workorder #: PM Notified? Yes Container # of **Out of Temp Sample IDs** Containers Type If yes, indicate who was contacted/date/time. If no, indicate reason why. Multiple Cooler Project? Yes No If you answered yes, fill out information to the left. **No Temp Blank Read Temp Corrected Temp** Average Temp

	lssu	Issue Type:		# of Containers	
Tracking Number/Temperature	Sample I		Туре		
		VS-2-20720328	RECEIVED	#18	
		B-20990328	RECEIVED	# 10	
	(<u> </u>	5-201-2022032	3 RECEIVED	#10	
· · · · · · · · · · · · · · · · · · ·	<u></u> _/11.	issing Nitric	for		
·	Y	VS 12-202203	28		
	¥V	15-201-2022033	28		
		and the second sec			
		- D			

pH Adjustment Log for Preserved Samples

Sample ID	Type of Preserv.	pH Upon Receipt	Date Adjusted	Time Adjusted	Amoun t Added (mL)	Lot # Added	pH After	In Compliance after addition?	Initials
								Yes No	
					-			Yes No	
		<u>. </u>		·····				Yes No	· · ·
								Yes No	

Comments:

Quarter 2

June 27, 2022

Nik Bacher Anchor QEA, LLC 720 Olive Way Suite 1900 Seattle, WA 98101

RE: Project: 192024-01.01 Yakima Vally Spra Pace Project No.: 10612290

Dear Nik Bacher:

Enclosed are the analytical results for sample(s) received by the laboratory on June 10, 2022. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace National - Mt. Juliet

Pace Analytical Services - Minneapolis

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

ENNI (JROSS

Jennifer Gross jennifer.gross@pacelabs.com (612)607-1700 Project Manager

Enclosures

cc: Cindy Fields, Anchor QEA, LLC Anchor QEA QA representative, Anchor QEA, LLC Halah Voges, Anchor QEA, LLC

CERTIFICATIONS

Project: 192024-01.01 Yakima Vally Spra Pace Project No.: 10612290

Pace Analytical Services, LLC - Minneapolis MN

1700 Elm Street SE, Minneapolis, MN 55414 A2LA Certification #: 2926.01* 1800 Elm Street SE, Minneapolis, MN 55414--Satellite Air Lab Alabama Certification #: 40770 Alaska Contaminated Sites Certification #: 17-009* Alaska DW Certification #: MN00064 Arizona Certification #: AZ0014* Arkansas DW Certification #: MN00064 Arkansas WW Certification #: 88-0680 California Certification #: 2929 Colorado Certification #: MN00064 Connecticut Certification #: PH-0256 EPA Region 8 Tribal Water Systems+Wyoming DW Certification #: via MN 027-053-137 Florida Certification #: E87605* Georgia Certification #: 959 Hawaii Certification #: MN00064 Idaho Certification #: MN00064 Illinois Certification #: 200011 Indiana Certification #: C-MN-01 Iowa Certification #: 368 Kansas Certification #: E-10167 Kentucky DW Certification #: 90062 Kentucky WW Certification #: 90062 Louisiana DEQ Certification #: AI-03086* Louisiana DW Certification #: MN00064 Maine Certification #: MN00064* Maryland Certification #: 322 Michigan Certification #: 9909 Minnesota Certification #: 027-053-137* Minnesota Dept of Ag Approval: via MN 027-053-137 Minnesota Petrofund Registration #: 1240* Mississippi Certification #: MN00064

Missouri Certification #: 10100 Montana Certification #: CERT0092 Nebraska Certification #: NE-OS-18-06 Nevada Certification #: MN00064 New Hampshire Certification #: 2081* New Jersey Certification #: MN002 New York Certification #: 11647* North Carolina DW Certification #: 27700 North Carolina WW Certification #: 530 North Dakota Certification (A2LA) #: R-036 North Dakota Certification (MN) #: R-036 Ohio DW Certification #: 41244 Ohio VAP Certification (1700) #: CL101 Ohio VAP Certification (1800) #: CL110* Oklahoma Certification #: 9507* Oregon Primary Certification #: MN300001 Oregon Secondary Certification #: MN200001* Pennsylvania Certification #: 68-00563* Puerto Rico Certification #: MN00064 South Carolina Certification #:74003001 Tennessee Certification #: TN02818 Texas Certification #: T104704192* Utah Certification #: MN00064* Vermont Certification #: VT-027053137 Virginia Certification #: 460163* Washington Certification #: C486* West Virginia DEP Certification #: 382 West Virginia DW Certification #: 9952 C Wisconsin Certification #: 999407970 Wyoming UST Certification #: via A2LA 2926.01 USDA Permit #: P330-19-00208 *Please Note: Applicable air certifications are denoted with an asterisk (*).

Pace Analytical Services National

12065 Lebanon Road, Mt. Juliet, TN 37122 Alabama Certification #: 40660 Alaska Certification 17-026 Arizona Certification #: AZ0612 Arkansas Certification #: 88-0469 California Certification #: 2932 Canada Certification #: 1461.01 Colorado Certification #: TN00003 Connecticut Certification #: PH-0197 DOD Certification: #1461.01 EPA# TN00003 Florida Certification #: E87487 Georgia DW Certification #: 923 Georgia Certification: NELAP Idaho Certification #: TN00003 Illinois Certification #: 200008

Indiana Certification #: C-TN-01 Iowa Certification #: 364 Kansas Certification #: E-10277 Kentucky UST Certification #: 16 Kentucky Certification #: 90010 Louisiana Certification #: AI30792 Louisiana DW Certification #: LA180010 Maine Certification #: TN0002 Maryland Certification #: 324 Massachusetts Certification #: M-TN003 Michigan Certification #: 9958 Minnesota Certification #: 047-999-395 Mississippi Certification #: TN00003 Missouri Certification #: 340 Montana Certification #: CERT0086 Nebraska Certification #: NE-OS-15-05

REPORT OF LABORATORY ANALYSIS

CERTIFICATIONS

Project: 192024-01.01 Yakima Vally Spra Pace Project No.: 10612290

Pace Analytical Services National

Nevada Certification #: TN-03-2002-34 New Hampshire Certification #: 2975 New Jersey Certification #: TN002 New Mexico DW Certification New York Certification #: 11742 North Carolina Aquatic Toxicity Certification #: 41 North Carolina Drinking Water Certification #: 21704 North Carolina Environmental Certificate #: 375 North Dakota Certification #: R-140 Ohio VAP Certification #: CL0069 Oklahoma Certification #: 9915 Oregon Certification #: TN200002 Pennsylvania Certification #: 68-02979 Rhode Island Certification #: LAO00356 South Carolina Certification #: 84004 South Dakota Certification

Tennessee DW/Chem/Micro Certification #: 2006 Texas Certification #: T 104704245-17-14 Texas Mold Certification #: LAB0152 USDA Soil Permit #: P330-15-00234 Utah Certification #: TN00003 Virginia Certification #: VT2006 Vermont Dept. of Health: ID# VT-2006 Virginia Certification #: 460132 Washington Certification #: C847 West Virginia Certification #: 233 Wisconsin Certification #: 998093910 Wyoming UST Certification #: via A2LA 2926.01 A2LA-ISO 17025 Certification #: 1461.01 A2LA-ISO 17025 Certification #: 1461.02 AIHA-LAP/LLC EMLAP Certification #:100789

SAMPLE SUMMARY

Project: 192024-01.01 Yakima Vally Spra

Pace Project No.: 10612290

Lab ID	Sample ID	Matrix	Date Collected	Date Received
10612290001	TB-20220609	Water	06/09/22 07:00	06/10/22 08:50
10612290002	YVS-1B-20220609	Water	06/09/22 09:15	06/10/22 08:50
10612290003	YVS-3-20220609	Water	06/09/22 08:15	06/10/22 08:50
10612290004	YVS-2-20220609	Water	06/09/22 10:25	06/10/22 08:50
10612290005	YVS-201-20220609	Water	06/09/22 10:30	06/10/22 08:50

SAMPLE ANALYTE COUNT

Project:192024-01.01 Yakima Vally SpraPace Project No.:10612290

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
10612290001	TB-20220609	NWTPH-Gx	DWR	2	PAN
		EPA 8260D	ZB	4	PASI-M
10612290002	YVS-1B-20220609	NWTPH-Dx	EB3	4	PASI-M
10612290003	YVS-3-20220609	NWTPH-Dx	EB3	4	PASI-M
10612290004	YVS-2-20220609	NWTPH-Dx	EB3	4	PASI-M
		NWTPH-Dx	EB3	4	PASI-M
		NWTPH-Gx	JAH	2	PAN
		EPA 8260D	JEM	4	PASI-M
10612290005	YVS-201-20220609	NWTPH-Dx	EB3	4	PASI-M
		NWTPH-Dx	EB3	4	PASI-M
		NWTPH-Gx	DWR	2	PAN
		EPA 8260D	JEM	4	PASI-M

PAN = Pace National - Mt. Juliet

PASI-M = Pace Analytical Services - Minneapolis

Project: 192024-01.01 Yakima Vally Spra

Pace Project No.: 10612290

Date: June 27, 2022

YVS-2-20220609 (Lab ID: 10612290004)

• Volatile Organic Compounds (GC) by Method NWTPHGX - Surrogate failure due to matrix interference.

Project: 192024-01.01 Yakima Vally Spra

Pace Project No.: 10612290

Method:	NWTPH-Dx
Description:	NWTPH-Dx GCS LV
Client:	Anchor QEA, LLC
Date:	June 27, 2022

General Information:

4 samples were analyzed for NWTPH-Dx by Pace Analytical Services Minneapolis. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA Mod. 3510C with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

QC Batch: 822092

S0: Surrogate recovery outside laboratory control limits.

- YVS-1B-20220609 (Lab ID: 10612290002)
 - n-Triacontane (S)
- YVS-3-20220609 (Lab ID: 10612290003)
 - n-Triacontane (S)

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 822092

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 10612290004

- M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
 - MSD (Lab ID: 4356497)
 - Diesel Fuel Range
 - Motor Oil Range
- R1: RPD value was outside control limits.
 - MSD (Lab ID: 4356497)

Project: 192024-01.01 Yakima Vally Spra

Pace Project No.: 10612290

Method:	NWTPH-Dx
Description:	NWTPH-Dx GCS LV
Client:	Anchor QEA, LLC
Date:	June 27, 2022

QC Batch: 822092

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 10612290004

R1: RPD value was outside control limits.

Diesel Fuel Range

Additional Comments:

Analyte Comments:

QC Batch: 822092

- C6: Result confirmed by reanalysis conducted outside of the method specified holding time.
 - YVS-1B-20220609 (Lab ID: 10612290002)
 - Diesel Fuel Range
 - YVS-3-20220609 (Lab ID: 10612290003)
 - Diesel Fuel Range

Project: 192024-01.01 Yakima Vally Spra

Pace Project No.: 10612290

Method: NWTPH-Dx

Description:NWTPH-Dx GCS Silica Gel LVClient:Anchor QEA, LLCDate:June 27, 2022

General Information:

2 samples were analyzed for NWTPH-Dx by Pace Analytical Services Minneapolis. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA Mod. 3510C with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

QC Batch: 822140

S0: Surrogate recovery outside laboratory control limits.

- MSD (Lab ID: 4356662)
 - n-Triacontane (S)
- YVS-2-20220609 (Lab ID: 10612290004)
 - n-Triacontane (S)

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 822140

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 10612290004

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 4356661)
 - Diesel Fuel Range SG
 - Motor Oil Range SG
- MSD (Lab ID: 4356662)
 - Diesel Fuel Range SG

Project: 192024-01.01 Yakima Vally Spra

Pace Project No.: 10612290

Method: NWTPH-Dx

Description:NWTPH-Dx GCS Silica Gel LVClient:Anchor QEA, LLCDate:June 27, 2022

QC Batch: 822140

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 10612290004

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery. • Motor Oil Range SG

Additional Comments:

Analyte Comments:

QC Batch: 822140

- P2: Re-extraction or re-analysis could not be performed due to insufficient sample amount.
 - YVS-2-20220609 (Lab ID: 10612290004)

• o-Terphenyl (S)

Project: 192024-01.01 Yakima Vally Spra

Pace Project No.: 10612290

Method:NWTPH-GxDescription:VOA (GC) NWTPHGXClient:Anchor QEA, LLCDate:June 27, 2022

General Information:

3 samples were analyzed for NWTPH-Gx by Pace National Mt. Juliet. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 1881747

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): L1504573-06

R1: RPD value was outside control limits.

• MSD (Lab ID: R3805211-4)

• TPH (C06-C12)

Additional Comments:

Project: 192024-01.01 Yakima Vally Spra

Pace Project No .: 10612290

EPA 8260D Method: Description: 8260D VOC Client: Anchor QEA. LLC Date: June 27, 2022

General Information:

3 samples were analyzed for EPA 8260D by Pace Analytical Services Minneapolis. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 823665

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 10612290004

- R1: RPD value was outside control limits.
 - MSD (Lab ID: 4363960)
 - Benzene

Additional Comments:

Batch Comments:

The continuing calibration verification was above the method acceptance limit for acetone, bromodichloromethane, dibromochloromethane, and bromoform. Any detection for the analyte in the associated samples may have a high bias. • QC Batch: 822769

The continuing calibration verification was below the method acceptance limit for chloroethane, chloromethane, dichlorodifluoromethane, trichlorofluoromethane, and vinyl chloride. The analyte was not detected in the associated samples and the sensitivity of the instrument was verified with a reporting limit check standard. • QC Batch: 823665

Project: 192024-01.01 Yakima Vally Spra

Pace Project No.: 10612290

 Method:
 EPA 8260D

 Description:
 8260D VOC

 Client:
 Anchor QEA, LLC

 Date:
 June 27, 2022

Batch Comments:

Dibromochloromethane and bromoform did not meet the secondary source verification criteria for the initial calibration. The reported result should be considered an estimated value.

• QC Batch: 822769

This data package has been reviewed for quality and completeness and is approved for release.

Project: 192024-01.01 Yakima Vally Spra

Pace Project No.: 10612290

Sample: TB-20220609	Lab ID:	10612290001	Collected: 06/09/2	22 07:00	Received: 06	6/10/22 08:50	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
VOA (GC) NWTPHGX	2	Method: NWTP nal - Mt. Juliet	H-Gx Preparation M	ethod: N	IWTPHGX			
TPH (C06-C12) <i>Surrogates</i>	ND	ug/L	100	1	06/19/22 07:03	06/19/22 07:03	3	
a,a,a-Trifluorotoluene (FID)	98.4	%	78.0-120	1	06/19/22 07:03	06/19/22 07:03	3 98-08-8FID	
8260D VOC		Vethod: EPA 82 vtical Services -						
Benzene	ND	ug/L	1.0	1		06/19/22 15:38	3 71-43-2	
Surrogates			75 405					
1,2-Dichlorobenzene-d4 (S)	104		75-125	1		06/19/22 15:38		
4-Bromofluorobenzene (S)	98		75-125	1		06/19/22 15:38		
Toluene-d8 (S)	100	%.	75-125	1		06/19/22 15:38	3 2037-26-5	
Sample: YVS-1B-20220609	Lab ID:	10612290002	Collected: 06/09/2	22 09:15	Received: 06	6/10/22 08:50	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
NWTPH-Dx GCS LV	-	Method: NWTP /tical Services -	H-Dx Preparation M Minneapolis	ethod: E	PA Mod. 3510C			
Diesel Fuel Range	ND	mg/L	0.40	1	06/16/22 10:01	06/23/22 08:33	68334-30-5	C6
Motor Oil Range	ND	mg/L	0.40	1	06/16/22 10:01	06/23/22 08:33	3	
Surrogates								
o-Terphenyl (S)	102		50-150	1		06/23/22 08:33		
n-Triacontane (S)	43	%.	50-150	1	06/16/22 10:01	06/23/22 08:33	3	S0
Sample: YVS-3-20220609	Lab ID:	10612290003	Collected: 06/09/2	22 08:15	Received: 06	6/10/22 08:50	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
NWTPH-Dx GCS LV	-	Method: NWTP /tical Services -	H-Dx Preparation M Minneapolis	ethod: E	PA Mod. 3510C			
Diesel Fuel Range	ND	mg/L	0.40	1	06/16/22 10:01	06/23/22 08:43	68334-30-5	C6
Motor Oil Range	ND	mg/L	0.40	1	06/16/22 10:01	06/23/22 08:43	3	
Surrogates								
o-Terphenyl (S)	92		50-150	1		06/23/22 08:43		
n-Triacontane (S)	11	%.	50-150	1	06/16/22 10:01	06/23/22 08:43	3	S0
Sample: YVS-2-20220609	Lab ID:	10612290004	Collected: 06/09/2	22 10:25	Received: 06	6/10/22 08:50	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
NWTPH-Dx GCS LV	,		H-Dx Preparation M					
INVIEN-DA GUJ LV	-	vitical Services		50100. E				
Diesel Fuel Range	0.50	mg/L	0.40	1	06/16/22 10:01	06/23/22 08:52	2 68334-30-5	M1,R1

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: 192024-01.01 Yakima Vally Spra

Pace Project No.:

10612290

Sample: YVS-2-20220609	Lab ID: 106	12290004	Collected: 06/09/2	2 10:25	Received: 06	6/10/22 08:50 N	Aatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
NWTPH-Dx GCS LV	Analytical Meth	nod: NWTPI	H-Dx Preparation Me	ethod: E	PA Mod. 3510C			
	Pace Analytica	I Services -	Minneapolis					
Motor Oil Range <i>Surrogates</i>	ND	mg/L	0.40	1	06/16/22 10:01	06/23/22 08:52		M1
o-Terphenyl (S) n-Triacontane (S)	90 55	%. %.	50-150 50-150	1 1		06/23/22 08:52 06/23/22 08:52		
NWTPH-Dx GCS Silica Gel LV			H-Dx Preparation Me			00,20,22 00:02		
	Pace Analytica	I Services -	Minneapolis					
Diesel Fuel Range SG	ND	mg/L	0.40	1	06/16/22 10:01	06/24/22 13:33	68334-30-5	M1
Motor Oil Range SG Surrogates	ND	mg/L	0.40	1		06/24/22 13:33		M1
o-Terphenyl (S)	80	%.	50-150	1	06/16/22 10:01	06/24/22 13:33	84-15-1	P2
n-Triacontane (S)	46	%.	50-150	1	06/16/22 10:01	06/24/22 13:33		S0
VOA (GC) NWTPHGX	Analytical Meth Pace National		H-Gx Preparation Me	ethod: N	IWTPHGX			
TPH (C06-C12) Surrogates	2240	ug/L	100	1	06/20/22 06:25	06/20/22 06:25		
a,a,a-Trifluorotoluene (FID)	75.4	%	78.0-120	1	06/20/22 06:25	06/20/22 06:25	98-08-8FID	SR
8260D VOC	Analytical Meth	nod: EPA 82	260D					
	Pace Analytica	I Services -	Minneapolis					
Benzene <i>Surrogates</i>	4.6	ug/L	1.0	1		06/22/22 19:12	71-43-2	R1
1,2-Dichlorobenzene-d4 (S)	100	%.	75-125	1		06/22/22 19:12	2199-69-1	
4-Bromofluorobenzene (S)	101	%.	75-125	1		06/22/22 19:12		
Toluene-d8 (S)	99	%.	75-125	1		06/22/22 19:12	2037-26-5	
Sample: YVS-201-20220609	Lab ID: 106	12290005	Collected: 06/09/2	2 10:30	Received: 06	6/10/22 08:50 N	Aatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
NWTPH-Dx GCS LV	Analytical Meth	nod: NWTPI	H-Dx Preparation Me	ethod: E	PA Mod. 3510C			
	Pace Analytica							
Diesel Fuel Range	0.76	mg/L	0.40	1	06/16/22 10:01	06/23/22 09:20	68334-30-5	
Motor Oil Range <i>Surrogates</i>	ND	mg/L	0.40	1		06/23/22 09:20		
o-Terphenyl (S)	94	%.	50-150	1		06/23/22 09:20		
n-Triacontane (S)	70	%.	50-150	1	06/16/22 10:01	06/23/22 09:20		
NWTPH-Dx GCS Silica Gel LV	Analytical Meth Pace Analytica		H-Dx Preparation Me Minneapolis	ethod: E	PA Mod. 3510C			
Diesel Fuel Range SG	ND	mg/L	0.40	1	06/16/22 10:01	06/24/22 14:08	68334-30-5	
Motor Oil Range SG Surrogates	ND	mg/L	0.40	1		06/24/22 14:08		
o-Terphenyl (S)	84	%.	50-150	1	06/16/22 10:01	06/24/22 14:08	84-15-1	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: 192024-01.01 Yakima Vally Spra

Pace Project No.: 10612290

Sample: YVS-201-20220609	Lab ID: 106	12290005	Collected: 06/09/2	22 10:30	Received: 06	6/10/22 08:50 N	Aatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
NWTPH-Dx GCS Silica Gel LV	Analytical Meth	od: NWTPH	-Dx Preparation Me	ethod: E	PA Mod. 3510C			
	Pace Analytica	I Services - N	linneapolis					
<i>Surrogates</i> n-Triacontane (S)	63	%.	50-150	1	06/16/22 10:01	06/24/22 14:08		
VOA (GC) NWTPHGX	Analytical Meth	od NWTPH	-Gx Preparation M	ethod: N	IWTPHGX			
	Pace National		CX Troparation M					
TPH (C06-C12) Surrogates	1940	ug/L	100	1	06/19/22 13:42	06/19/22 13:42		
a,a,a-Trifluorotoluene (FID)	86.6	%	78.0-120	1	06/19/22 13:42	06/19/22 13:42	98-08-8FID	
8260D VOC	Analytical Meth	od: EPA 826	0D					
	Pace Analytica	I Services - N	linneapolis					
Benzene	4.5	ug/L	1.0	1		06/22/22 19:42	71-43-2	
Surrogates	100	0/	75 405			00/00/00 40 40	0400.00.4	
1,2-Dichlorobenzene-d4 (S)	100	%.	75-125	1		06/22/22 19:42		
4-Bromofluorobenzene (S)	100	%.	75-125	1		06/22/22 19:42	460-00-4	
Toluene-d8 (S)	99	%.	75-125	1		06/22/22 19:42	2037-26-5	

,	92024-01.01 Yaki 0612290	ma Vally Spra										
QC Batch:	1881747		Analy	sis Method	d:	NWTPH-Gx						
QC Batch Method:	8021B/NWTPHG	х	Analy	sis Descrip	ption:	VOA (GC) N	WTPHGX					
			Laboi	ratory:		Pace Nation	al - Mt. Jul	iet				
Associated Lab Samp	les: 10612290	001, 1061229000	5									
METHOD BLANK: R	3805211-2			Matrix: Wa	ater							
Associated Lab Samp	les: 10612290	001, 1061229000	5									
			Blan	nk l	Reporting							
Paramet	ter	Units	Resu	ult	Limit	Analy	zed	Qualifier	s			
TPH (C06-C12)		ug/L		ND	10	0 06/19/22	2 05:39					
a,a,a-Trifluorotoluene	(FID)	%		97.5	78.0-12	0 06/19/22	2 05:39					
	()	,,,		0110								
LABORATORY CONT	ROL SAMPLE:	R3805211-1 Units	Spike Conc.	LC Res	S sult	LCS % Rec	% Re Limit	ts	Qualifiers			
LABORATORY CONT Paramet TPH (C06-C12)	ROL SAMPLE:	R3805211-1 Units ug/L	•	LC Res	S	LCS % Rec 95.3	% Re Limit 3 70	ts .0-124	Qualifiers			
LABORATORY CONT	ROL SAMPLE:	R3805211-1 Units	Conc.	LC Res	S sult	LCS % Rec	% Re Limit 3 70	ts	Qualifiers			
LABORATORY CONT Paramet TPH (C06-C12)	TROL SAMPLE: ter (FID)	R3805211-1 Units ug/L %	Conc.	LC Res	S sult	LCS % Rec 95.3 108	% Re Limit 3 70	ts .0-124	Qualifiers	_		
LABORATORY CONT Paramet TPH (C06-C12) a,a,a-Trifluorotoluene	TROL SAMPLE: ter (FID)	R3805211-1 Units ug/L %		LC Res	S Sult 5240 R38052	LCS % Rec 95.3 108	% Re Limit 3 70. 3 78.	ts .0-124 .0-120		_		
LABORATORY CONT Parame TPH (C06-C12) a,a,a-Trifluorotoluene MATRIX SPIKE & MA	ROL SAMPLE: ter (FID) TRIX SPIKE DUP	R3805211-1 Units ug/L % LICATE: R380 L1504573-06	Conc. 550 5211-3 MS Spike	LC Res 0 MSD Spike	Sult 5240 R38052 MS	LCS % Rec 95.3 108 11-4 MSD	% Re Limit 3 70. 3 78. MS	ts .0-124 .0-120 MSD	% Rec	_	Мах	
LABORATORY CONT Paramet TPH (C06-C12) a,a,a-Trifluorotoluene	TROL SAMPLE: ter (FID)	R3805211-1 Units ug/L % LICATE: R380	5211-3 MS	LC Res 0 MSD	S Sult 5240 R38052	LCS % Rec 95.3 108	% Re Limit 3 70. 3 78.	ts .0-124 .0-120		RPD	Max RPD	Qual

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

•	192024-01.01 Yak 10612290	tima Vally Spra										
QC Batch:	1881747		Analy	sis Metho	d:	NWTPH-Gx						
QC Batch Method:	NWTPHGX		Analy	sis Descri	ption:	VOA (GC) N	WTPHGX					
			Labo	ratory:		Pace Natior	nal - Mt. Jul	liet				
Associated Lab Samp	oles: 10612290	001, 1061229000)5									
METHOD BLANK: F	R3805211-2			Matrix: W	ater							
Associated Lab Samp	oles: 10612290	001, 1061229000)5									
			Blar	nk	Reporting							
Parame	eter	Units	Res	ult	Limit	Analy	yzed	Qualifier	S			
TPH (C06-C12)		ug/L		ND	10	0 06/19/22	2 05:39					
a,a,a-Trifluorotoluene	(FID)	%		97.5	78.0-12	20 06/19/22	2 05:39					
LABORATORY CON		R3805211-1										
LABORATORT CON	I KOL SAMPLE.	K3003211-1	Spike	LC	s	LCS	% R	ec				
Parame	eter	Units	Conc.	Res	-	% Rec	Limi		Qualifiers			
TPH (C06-C12)		ug/L	550	0	5240	95.3	3 70	.0-124		_		
a,a,a-Trifluorotoluene	(FID)	%				108	8 78	.0-120				
MATRIX SPIKE & MA		PLICATE: R380)5211-3		R38052	11-4						
			MS	MSD								
		L1504573-06	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	s Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
TPH (C06-C12)	ug/L	56.7	5500	5500	2200	3850	39.0	69.0	10.0-155	54.5	21	R1
a,a,a-Trifluorotoluene	(FID) %						103	105	78.0-120			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 192024-01.01 Ya Pace Project No.: 10612290	akima Vally Spra										
QC Batch: 1881981		Analy	sis Metho	d: N	WTPH-Gx						
QC Batch Method: 8015/NWTPH0	GX	Analy	/sis Descrij	ption: V	/OA (GC) N	WTPHGX					
		Labo	ratory:	F	ace Nation	al - Mt. Jul	iet				
Associated Lab Samples: 1061229	90004										
METHOD BLANK: R3805574-2			Matrix: W	/ater							
Associated Lab Samples: 1061229	90004										
		Blar	nk l	Reporting							
Parameter	Units	Resu	ult	Limit	Analy	zed	Qualifier	S			
TPH (C06-C12)	ug/L		ND	100	06/20/22	2 00:46					
a,a,a-Trifluorotoluene (FID)	%		99.1	78.0-120) 06/20/22	2 00:46					
a,a,a-Trifluorotoluene (FID)			99.1	78.0-120	06/20/22	2 00:46					
		Caliba									
a,a,a-Trifluorotoluene (FID)	R3805574-1	Spike	LC	S	LCS	% Re		Qualifiers			
a,a,a-Trifluorotoluene (FID) LABORATORY CONTROL SAMPLE: Parameter	R3805574-1 Units	Conc.	LC Res	CS sult	LCS % Rec	% Re Limit	ts	Qualifiers			
a,a,a-Trifluorotoluene (FID) LABORATORY CONTROL SAMPLE: Parameter TPH (C06-C12)	R3805574-1 	•	LC Res	S	LCS % Rec 102	% Re Limit 2 70	ts .0-124	Qualifiers			
a,a,a-Trifluorotoluene (FID) LABORATORY CONTROL SAMPLE: Parameter	R3805574-1 Units	Conc.	LC Res	CS sult	LCS % Rec	% Re Limit 2 70	ts	Qualifiers			
a,a,a-Trifluorotoluene (FID) LABORATORY CONTROL SAMPLE: Parameter TPH (C06-C12) a,a,a-Trifluorotoluene (FID)	R3805574-1 Units ug/L %	Conc550	LC Res	CS sult	LCS % Rec 102 98.4	% Re Limit 2 70	ts .0-124	Qualifiers			
a,a,a-Trifluorotoluene (FID) LABORATORY CONTROL SAMPLE: Parameter TPH (C06-C12)	R3805574-1 Units ug/L %	Conc.	LC Res	CS sult	LCS % Rec 102 98.4	% Re Limit 2 70	ts .0-124	Qualifiers	_		
a,a,a-Trifluorotoluene (FID) LABORATORY CONTROL SAMPLE: Parameter TPH (C06-C12) a,a,a-Trifluorotoluene (FID)	R3805574-1 Units ug/L %	Conc. 550	LC 	CS sult	LCS % Rec 102 98.4	% Re Limit 2 70	ts .0-124	Qualifiers % Rec		Мах	
a,a,a-Trifluorotoluene (FID) LABORATORY CONTROL SAMPLE: Parameter TPH (C06-C12) a,a,a-Trifluorotoluene (FID)	R3805574-1 Units ug/L % JPLICATE: R380 10612290004	Conc. 550 05574-3 MS	LC Res 0 MSD	2S sult	LCS % Rec 102 98.4 4-4	% Re Limit 70. 78.	ts .0-124 .0-120		RPD	Max RPD	Qual
a,a,a-Trifluorotoluene (FID) LABORATORY CONTROL SAMPLE: Parameter TPH (C06-C12) a,a,a-Trifluorotoluene (FID) MATRIX SPIKE & MATRIX SPIKE DU	R3805574-1 Units ug/L % JPLICATE: R380 10612290004 its Result	Conc. 550 05574-3 MS Spike	LC Res 0 MSD Spike	2S sult 5600 R380557 MS	LCS % Rec 102 98.4 4-4 MSD	% Re Limit 2 70. 78. MS	ts .0-124 .0-120 MSD % Rec	% Rec		RPD	Qual

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 19202 Pace Project No.: 10612		ma Vally Spra										
QC Batch: 1881	981		Analy	sis Metho	d: N	WTPH-Gx						
QC Batch Method: 8015	/8021/8021B	/NWTPHGX	Analy	sis Descri	ption: V	OA (GC) N	WTPHGX					
			Labo	ratory:	Р	ace Nation	al - Mt. Jul	iet				
Associated Lab Samples:	106122900	004										
METHOD BLANK: R3805	574-2			Matrix: W	ater							
Associated Lab Samples:	106122900	004										
			Blar	nk	Reporting							
Parameter		Units	Resu	ult	Limit	Analy	zed	Qualifier	S			
TPH (C06-C12)		ug/L		ND	100	06/20/22	00:46					
a,a,a-Trifluorotoluene (FID)		%		99.1	78.0-120	06/20/22	00:46					
-,-,- ()												
()												
LABORATORY CONTROL	SAMPLE:	R3805574-1										
	SAMPLE:		Spike	LC		LCS	% Re	ec				
	SAMPLE:		Spike Conc.		S				Qualifiers			
LABORATORY CONTROL	SAMPLE:	R3805574-1	•	LC Res	S	LCS	% Re Limit		Qualifiers			
LABORATORY CONTROL Parameter	SAMPLE:	R3805574-1 Units	Conc.	LC Res	S sult	LCS % Rec	% Re 	ts	Qualifiers	_		
LABORATORY CONTROL Parameter TPH (C06-C12)	SAMPLE:	R3805574-1 Units ug/L	Conc.	LC Res	S sult	LCS % Rec 102	% Re 	ts .0-124	Qualifiers			
LABORATORY CONTROL Parameter TPH (C06-C12) a,a,a-Trifluorotoluene (FID)		R3805574-1 Units ug/L %	Conc550	LC Res	S Sult 5600	LCS % Rec 102 98.4	% Re 	ts .0-124	Qualifiers	_		
LABORATORY CONTROL Parameter TPH (C06-C12)		R3805574-1 Units ug/L %	Conc.	LC Res	S sult	LCS % Rec 102 98.4	% Re 	ts .0-124	Qualifiers	_		
LABORATORY CONTROL Parameter TPH (C06-C12) a,a,a-Trifluorotoluene (FID)		R3805574-1 Units ug/L %	Conc. 550	LC 0	S Sult 5600	LCS % Rec 102 98.4	% Re 	ts .0-124	Qualifiers % Rec	_	Max	
LABORATORY CONTROL Parameter TPH (C06-C12) a,a,a-Trifluorotoluene (FID)		R3805574-1 Units ug/L %	Conc. 550 95574-3 MS	LC Res 0 MSD	S sult 5600 R3805574	LCS % Rec 102 98.4 4-4	% Re Limit 70. 78.	ts .0-124 .0-120		RPD	Max RPD	Qual
LABORATORY CONTROL Parameter TPH (C06-C12) a,a,a-Trifluorotoluene (FID) MATRIX SPIKE & MATRIX	SPIKE DUPI	R3805574-1 Units ug/L % LICATE: R380		LC Res 0 MSD Spike	S sult 5600 R3805574 MS	LCS % Rec 102 98.4 4-4 MSD	% Re Limit 70. 78. MS	ts .0-124 .0-120 MSD % Rec	% Rec			Qual

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	192024-01.01 Yakima Vally Spra

Pace Project No .:	10612290
--------------------	----------

QC Batch: 822769		Analysis Meth	nod: EF	PA 8260D	
QC Batch Method: EPA 8260D		Analysis Des	cription: 82	260D MSV 465 W	
		Laboratory:	Pa	ace Analytical Servi	ces - Minneapoli
Associated Lab Samples: 10612290001					
METHOD BLANK: 4360180		Matrix:	Water		
Associated Lab Samples: 10612290001					
		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Benzene	ug/L		1.0	06/19/22 15:22	

Benzene	ug/L	ND	1.0	06/19/22 15:22	
1,2-Dichlorobenzene-d4 (S)	%.	103	75-125	06/19/22 15:22	
4-Bromofluorobenzene (S)	%.	99	75-125	06/19/22 15:22	
Toluene-d8 (S)	%.	100	75-125	06/19/22 15:22	

LABORATORY CONTROL SAMPLE: 4360181

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Benzene	ug/L	20	20.6	103	73-125	
1,2-Dichlorobenzene-d4 (S)	%.			102	75-125	
4-Bromofluorobenzene (S)	%.			100	75-125	
Toluene-d8 (S)	%.			102	75-125	

MATRIX SPIKE & MATRIX SP	ATRIX SPIKE & MATRIX SPIKE DUPLICATE: 4360182						4360183							
			MS	MSD										
		10613715001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max			
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual		
Benzene	ug/L	ND	200	200	232	233	114	114	65-140	1	30			
1,2-Dichlorobenzene-d4 (S)	%.						101	101	75-125					
4-Bromofluorobenzene (S)	%.						96	96	75-125					
Toluene-d8 (S)	%.						102	102	75-125					

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

4-Bromofluorobenzene (S)

Toluene-d8 (S)

QUALITY CONTROL DATA

•	92024-01.01 Yak 0612290	ima Vally Spra								
·	823665		Analysis	Method:	E	PA 8260D				
QC Batch Method:	EPA 8260D		Analysis	Descript	ion: 8	260D MSV 46	5 W			
				ory:	Р	ace Analytical	Services	- Minn	eapolis	
Associated Lab Sample	es: 10612290	004, 10612290005							·	
METHOD BLANK: 43	363943		Ма	trix: Wa	er					
Associated Lab Sample	es: 10612290	004, 10612290005								
			Blank	R	eporting					
Paramet	er	Units	Result		Limit	Analyze	d (Qualifie	ers	
Benzene		ug/L		ND	1.0	06/22/22 17	7:42			
1,2-Dichlorobenzene-d	l4 (S)	%.		99	75-125	06/22/22 17	7:42			
4-Bromofluorobenzene	e (S)	%.		99	75-125	06/22/22 17	7:42			
Toluene-d8 (S)		%.		99	75-125	06/22/22 17	7:42			
LABORATORY CONT	ROL SAMPLE:	4363944								
			Spike	LCS	i	LCS	% Rec			
Paramet	er	Units	Conc.	Resu	lt	% Rec	Limits		Qualifiers	
Benzene		ug/L	20		19.0	95	73-	125		
1,2-Dichlorobenzene-d	l4 (S)	%.				99	75-	125		

%.

%.

MATRIX SPIKE & MATRIX SP	IKE DUPLI	CATE: 4363	959		4363960	1						
			MS	MSD								
		10612290004	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Benzene	ug/L	4.6	20	20	19.7	27.5	75	114	65-140	33	30	R1
1,2-Dichlorobenzene-d4 (S)	%.						99	98	75-125			
4-Bromofluorobenzene (S)	%.						99	99	75-125			
Toluene-d8 (S)	%.						99	100	75-125			

100

100

75-125

75-125

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Proiect:	102024-01 01	Yakima Vally Spra
	192024-01.01	

Pace Project No.:	10612
-------------------	-------

QC Batch Method:

QC Batch:	822092

10612290

EPA Mod. 3510C

Analysis Method:	NWTPH-Dx
Analysis Description:	NWTPH-Dx GCS LV
Laboratory:	Pace Analytical Services - Minneapolis

Associated Lab Samples: 10612290002, 10612290003, 10612290004, 10612290005

METHOD BLANK: 4356494		Matrix	Water		
Associated Lab Samples: 10612	2290002, 10612290003,	10612290004,	10612290005		
		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Diesel Fuel Range	mg/L	ND	0.40	06/23/22 08:15	
Motor Oil Range	mg/L	ND	0.40	06/23/22 08:15	
n-Triacontane (S)	%.	85	50-150	06/23/22 08:15	
o-Terphenyl (S)	%.	100	50-150	06/23/22 08:15	

LABORATORY CONTROL SAMPLE: 4356495

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Diesel Fuel Range	mg/L	2	1.6	79	50-150	
Motor Oil Range	mg/L	2	1.7	87	50-150	
n-Triacontane (S)	%.			91	50-150	
o-Terphenyl (S)	%.			105	50-150	

MATRIX SPIKE & MATRIX S	PIKE DUPL	4356497										
			MS	MSD								
		10612290004	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Diesel Fuel Range	mg/L	0.50	2	2	1.8	1.3	62	38	50-150	32	30	M1,R1
Motor Oil Range	mg/L	ND	2	2	1.3	1.0	59	46	50-150	22	30	M1
n-Triacontane (S)	%.						59	52	50-150			
o-Terphenyl (S)	%.						102	93	50-150			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Draiaat	102024 01 01 Valvima Vally Cara
Project:	192024-01.01 Yakima Vally Spra

Pace Project	No.:	106122
--------------	------	--------

o-Terphenyl (S)

612290

%.

QC Batch:	822140		Analysis	Method	:	NWTPH-D	x		
QC Batch Method:	EPA Mod. 3510	С	Analysis	Descrip	tion:	NWTPH-D	x GCS	LV SG	
			Laborato	ory:		Pace Anal	vtical S	ervices - Min	neapolis
Associated Lab San	nples: 1061229	0004, 10612290005		-					
METHOD BLANK:	4356659		Ма	trix: Wa	ter				
Associated Lab San	nples: 1061229	0004, 10612290005							
			Blank	R	eporting				
Paran	neter	Units	Result		Limit	Ana	lyzed	Quali	iers
Diesel Fuel Range	3G	mg/L		ND	0.4	0 06/24/	22 12:4	7	
Motor Oil Range SG		mg/L	I	ND	0.4	0 06/24/	22 12:4	7	
n-Triacontane (S)		%.		70	50-15	06/24/	22 12:4	7	
o-Terphenyl (S)		%.		85	50-15	06/24/	22 12:4	7	
LABORATORY CON	NTROL SAMPLE:	4356660							
			Spike	LCS	S	LCS		% Rec	
Paran	neter	Units	Conc.	Resu	ult	% Rec		Limits	Qualifiers
Diesel Fuel Range	3G	mg/L	2		1.4		69	50-150	
Motor Oil Range SG	6	mg/L	2		1.5		74	50-150	
n-Triacontane (S)		%.					75	50-150	

MATRIX SPIKE & MATRIX S	PIKE DUPLI	CATE: 4356	661		4356662							
Parameter	Units	10612290004 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Diesel Fuel Range SG	mg/L	ND	2	2	1.2	0.93	49	34	50-150	28	30	M1
Motor Oil Range SG	mg/L	ND	2	2	0.94	0.81	45	39	50-150	15	30	M1
n-Triacontane (S)	%.						50	46	50-150			S0
o-Terphenyl (S)	%.						86	83	50-150			

91

50-150

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: 192024-01.01 Yakima Vally Spra

Pace Project No.: 10612290

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

SAMPLE QUALIFIERS

Sample: 10612290004

[1] Volatile Organic Compounds (GC) by Method NWTPHGX - Surrogate failure due to matrix interference.

BATCH QUALIFIERS

Batch: 822769

The continuing calibration verification was above the method acceptance limit for acetone, bromodichloromethane, dibromochloromethane, and bromoform. Any detection for the analyte in the associated samples may have a high bias.
 Dibromochloromethane and bromoform did not meet the secondary source verification criteria for the initial calibration. The reported result should be considered an estimated value.

Batch: 823665

[1] The continuing calibration verification was below the method acceptance limit for chloroethane, chloromethane, dichlorodifluoromethane, trichlorofluoromethane, and vinyl chloride. The analyte was not detected in the associated samples and the sensitivity of the instrument was verified with a reporting limit check standard.

ANALYTE QUALIFIERS

- C6 Result confirmed by reanalysis conducted outside of the method specified holding time.
- M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
- P2 Re-extraction or re-analysis could not be performed due to insufficient sample amount.
- R1 RPD value was outside control limits.

QUALIFIERS

Project: 192024-01.01 Yakima Vally Spra Pace Project No.: 10612290

ANALYTE QUALIFIERS

- S0 Surrogate recovery outside laboratory control limits.
 - SR Surrogate recovery was below laboratory control limits. Results may be biased low.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:192024-01.01 Yakima Vally SpraPace Project No.:10612290

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
10612290002	YVS-1B-20220609	EPA Mod. 3510C	822092	NWTPH-Dx	823090
10612290003	YVS-3-20220609	EPA Mod. 3510C	822092	NWTPH-Dx	823090
10612290004	YVS-2-20220609	EPA Mod. 3510C	822092	NWTPH-Dx	823090
10612290005	YVS-201-20220609	EPA Mod. 3510C	822092	NWTPH-Dx	823090
10612290004	YVS-2-20220609	EPA Mod. 3510C	822140	NWTPH-Dx	824140
10612290005	YVS-201-20220609	EPA Mod. 3510C	822140	NWTPH-Dx	824140
10612290001	TB-20220609	NWTPHGX	1881747	NWTPH-Gx	1881747
10612290004	YVS-2-20220609	NWTPHGX	1881981	NWTPH-Gx	1881981
10612290005	YVS-201-20220609	NWTPHGX	1881747	NWTPH-Gx	1881747
10612290001	TB-20220609	EPA 8260D	822769		
10612290004 10612290005	YVS-2-20220609 YVS-201-20220609	EPA 8260D EPA 8260D	823665 823665		

										N	002	83	POO	005									7				s Intact	(N/. seidme	N) IS
ğ													120										~				Sealed V/V)	ooler () ratoqy	
-													'SW								Aupher		~) uo p	eviece N/Y) e	의 건
Page :		toryag	tate 1 Locato WA / Yakima					Chlorine (Y/V)	enbiseA	-	}				,					,, 			0.7		-, -,		21	ni 9ME	
Pa		IKegula						······································	·····									,	,			7 di 1							
				KINIX P	,	<u> </u>	····	· · · · · · · · · · · · · · · · · · ·	·· · ·										.			381	DC-R						
				Trittere				·····		┢					• • •				, -				77.01-9			i			1
				Requested Analysis Filtered (Y/N)		-		······································			 	,			, -			ļ	·····				ف						
				ested					чтwи	X			X	x	·					-		X.						DATE Signed:	
	ģ	3		SRed(_	,	ne by 8260 H-Dx + Silica Gel		8	×	×	X X	X X	-					+	AFFICATION C	記していた						ATES	، ه
	ta 26	oz al						XO-H	ATWN	┢─	X	X	X	×	••••	~			,	ŗ			N					å	
	Accounts Payable ANCHOR QEA, LLC 1201 3rd Avenue Suite 2500	" "	Jennifer Gross 40757 / 1		#N/X				1			····		, 	<u> </u>			-			- 30.0	0.201						_ا۲	
	Accounts Payable ANCHOR QEA, LL 1201 3rd Avenue	Aenut	Jennifer (40757 / 1			ļ			Other						+					\mathcal{A}		教育()、 ()、	Ŧ				Les Les	5	
	OR OR	A DIO	Jenn 407:		ves	ş	······		OZSZ6N			· · · ·		···	\mathbb{T}]				F Star		
	NCH		u,		ervati				HOPN	_	X	G	7	x	╢					,			ł						
lation:		ferenc	lanage		Preservatives	<u>s</u>		· · · · · · · · · · · · · · · · · · ·	HCI HNO3		Ê	Ý.	$\overline{}$	~	╢╢	$\left\{ -\right\}$			+				Ľ				Str 10 Heav		()
C Inform	y Nam	ote Re	oject M ofile #:				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		₽ ÔSZH						ľ	7			\Box		林		$-\tau$		-1	, , , , , , , , , , , , , , , , , , , ,	Top.		
Section C Invoice Information:	Attention: Company Name: Address:	Pace Quote Reference:	Pace Project Manager. Pace Profile #:			<u> </u>		······································	Auprese Unprese		7	7	24	8	+	J		-4			A L		1360				調や	Б	
ln Se			5 5 5	╎┝	·····			TEMP AT COLLECTION		, " ,			2	~	╢	d		+	-		離	5 5					GNATURE PLER: Q	Ë	
	A CONT					T		,,,,,,	TIME	$ \upharpoonright$				イ		-• ł	λ	\uparrow			DATE	Rectard I	22-1,-0				AMPL	AMPL	
	35						END.	·	· · · ·			\ge	4	_	\parallel		A	\mathcal{I}		_		28					IE of S	E of S	
	or gen . com	-01.01	lley Spray		CTED				DATE				7				71				ATION		7				PLER NAME AND SIGNATI PRINT Name of SAMPLER:	SIGNATURE of SAMPLER:	
	L L	4-1	Valley		COLLECTED				TIME	0700	0815	8815	1025	1030			78	\mathcal{T}			- THE	NA A	17.0				SAMPLE PRIN	SIG	
	REPORT TO: CFEEUD 5 () AN CHT	h202 1	akima				START	·····	DATE .	0-9-22	0	8	=	1 22-6-9				<u>]</u> [~ -			\neg				<u>KOX</u>	<u> </u>	Ļ
Section B Required Project Information:	2 S S S S S S S S S S S S S S S S S S S	r 1		,		<u> </u>	,			6 b-'	6	ى	· 1	r	+		-		Ð				210040				I		
t Info	SACI ACI ACI	Ö	qmuN	-				CODE (see valid codes to tett) TYPE (G=GRAB C=COMP)		daw 6	ς ω] 6	Gw 0	<u>ی</u> و ۳	<u>ઉ</u>	+	+			\mathcal{H}			-	<u>z</u>						
3 Proje		Order	order	┢					5	X.	6	ত	9	<u> </u>	+					\checkmark			Steplen						
Section B Required	aport To	Purchase Order No.	Client Project ID: Container Order Number					WI WP VP TS TS	3								ļ			f			5 	-	\rightarrow				
ΧŘ	άŭ	5	50				MATRIX Drinking Water	Andre Water Waster Product Soilvsolid Oil Alfr Alfr Cohher Tissue			٩	পু	k	7	V				Ĭ	V						•	0		
		S.					MATE Drink	Variation Narte Produc Soil/So Other Tissue			- 20220609	- 20220 609	5	20220604						N			Э.				:10612290		
	8	E.	ard					Gr		5	202	3	٩	2		N							beta-E	â	'		N	_	
	te 26	8	tand					. n		6090	201	2	2	2		V	Ν						4,4-But, Aldrin, Dieldrin, beta-BHC,	gamma-BHC (Lindage)					
	O Sui		ay (S		·		<u> </u>	One Character per box. (A.Z. 0-9 /) ample Ids must be uniq		0	2	3	ŝ	1		N	١	\setminus			COM		1 1 1 1 1 1 1	N N N N N			Ö		
	enue A 981		10 D				SAMPLE	cter po 0-9 /, nust b		022	18	. ^		201			Ν		\setminus		ONEA		Į.	amma			0		
ation:	e. VNC	Ĩ¥.	11				N N	Chara (A-Z, e Ids n		02-	5	1 (7)	1	3			ſ	\setminus	X		leida		1	, ^m					
nform	NCH 2013	10	ate 2		-		1S	One Character per box. (A-Z, 0-9.1, -) Sample Ids must be unique		9	\geq	5	Ś	Ż	╢	_		-	\square	\backslash	STNEIM COMMENTS	12	11	V]	#		33
Xient I	A 11 N	A	Due D					w			-	퀴	7		1				ſ	\backslash		1/	s by 8(ŀ			Ö		10612290
Section A Required C	Company: ANCHOR QEA, LLC Re Address: 1201 3rd Avenue, Suite 2600 Cc Seattle, WA 98101	ail To:	Prione: 4 6 6 7 8 49 50 Prax	ŀ					itew:			C.	Ţ	NS.	<u>6</u>	22	8	9	e.				*Pesticides by 8081:				3		
Sec Rec	<u>Š</u> Š	LE C	Ē	L						輣	新祝				陸勝 [991 				建設		刾	<u>r</u> [ļ	Page 2	28 of	30

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Pace Analytical

.....

Pace	DC#_Title: ENV-FRM- (SCUR)	MIN4-(0150 v	/05_Sa	ample Co	nditio	on Upon	Receipt	t	
interfaced springers	Effective Date: 04/12/202	22								
Sample Condition Upon Receipt Courier:			/	Projec	t #:	PM:		Due	Date:	06/24/22
Tracking Number:	\$150 1600 U733			See Excep ENV-FI 0142	otions RM-MIN4-	CLIE	NT: ANCI	IOR QEA		
Custody Seal o Packing Material:	on Cooler/Box Present? Yes		None	Seais In □0	ntact?	ים	No Biol	ogical Tissu	e Frozen? Temp Blank	☐Yes ☐No ☐Ŵ/A ? @Yes ☐No
Thermometer:	0461)	T5(0489) 10792808	🔲 т6(0235	5}	Type of Ice:	Wet	Blue	None	Dry	Melted
Did Samples Originate in V	Vest Virginia? 🛛 Yes 🗍 No 🦳 Were Al	l Container	Temps Ta	i ken? □Yes	□No □N/A					
Temp should be above fr	eezing to 6°C Cooler Temp I		-		2	<u>0</u> 0	⁰C	-	ge Correct (no temp 	
USDA Regulated Soil: (Did samples originate ir	N/A, water sample/Other: a quarantine zone within the Unite S, SC, TN, TX or VA (check maps)? If Yes to either question, fill out a	ed States:) AL, AR, C	A, FL, GA,	ID, LA. D H	id sample awaii and	Person Exami es originate fr I Puerto Rico)	om a foreig ?	n source (ir □Yes	nternationally, including
Location (che Chain of Custody Prese	eck one): Duluth Minneap	-	Virginia	-	1			COMME	NTS:	
Chain of Custody Press		Yes Yes	No No		1.		· · ·			
Sampler Name and/or Samples Arrived within		Yes Yes		N/A	3.					
Short Hold Time Analy		Yes					_<8 hrs _>8 n HPC To			DD/cBOD Hex Chrome
Rush Turn Around Tim					Turt		litrate 🗌 Nitri			
Sufficient Volume?		Ves			6. 7.		<u></u>		<u></u>	
Correct Containers Use	ed?	Z Yes	No		8.					
-Pace Containers Us Containers Intact?	ied?	Yes Yes	No No		9.					
	Received for Dissolved Tests?	Yes	No			diment v	isible in the d	dissolved co	ontainer?	Yes No
Is sufficient informatio samples to the COC? Matrix: ☑Water □So	n available to reconcile the	∏ Yes	No	2			ate/Time on C			See Exception
All containers needing been checked?	acid/base preservation have preservation are found to be in	Yes	∏No	Ǿn/a	12. Sample	#				
compliance with EPA r		□Yes	□No	Øn/a		NaOH		D ₃ []H₂SO₄	Zinc Acetate
Exceptions: VOA, Colife DRO/8015 (water) and	orm, TOC/DOC Oil and Grease, Dioxin/PFAS	Yes	□No		Positive for Chlorine?			oH Paper Lo	ot#	See Exception
					Res. Chlori	ne	0-6 Roll	0-6	Strip	0-14 Strip
Headspace in Methyl N	Aercury Container?	□Yes	No	⊠N/A				I		
	soil VOA or WIDRO containers?	Yes	No		13.					See Exception
Headspace in VOA Vial Trip Blank Present?		Ves			14.	.			osoz'	ENV-FRM-MIN4-0140 Cutofl 22-31
Trip Blank Custody Sea		∠ Yes	No	<u> </u>	Pace	Trip Blan	k Lot # (if pu		<u></u>	
Person Contacted:	TIFICATION/RESOLUTION				Date/Tir	ne:	F	ield Data R	equired?	Yes No
Comments/Resolution:										
	nager Review;	i Gri	955	· · · · · · · · · · · · · · · · · · ·		Date:	6/10	0/22		
	screpancy affecting North Carolina comp	liance samp	oles, a copy	y of this for	m will be sent to	o the North	o Carolina DEHN	VR Certificatio	on Office (i.e.	,, out of hold, incorrect
preservative, out of temp, inc	orrect containers).					L	abeled by	/:		
										RN (Rade 29 pr 30

Qualtrax ID: 5	52	742
----------------	----	-----

1

Preserved Containers	A A B A A A A A B A B A A A B A B A B A B A
раве/Ціше С.И.512 0002 С.И.512 0002 С.И.	
2 9 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1	2 9 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1
9 X X 3 X X 3 X X 3 X X 3 X X 3 X X 3 X X 3 X X 3 X X 3 X X 3 X X 3 X X 3 X X 3 X X 3 X X 3 X X 4 X X 5 X X 6 X X 6 X X	9 X X 3 X X 3 X 3 X 3 X 3 X 3 X 3 X 3 X 3 X 3 X 3 X 3 X 3 X 3 X 3 X 3 X 3 X 3 X 3 X 4 X 5 X 5 X 6 X 6 X 7 X 7 X 7 X 7 X 7 X 7 X 7 X 7 X 7 X 8 X 8 X 8 X 9 X 10 X 11 X 12 X 12 X 12 X 12 X 12 <
3 X X Date/Time	3 X X X X X X X X X X X X X X X X X X X
en contra c	91 5/100

K165

2

Z Z

COC Seal Present/Intact: <u>Y</u> N VOA Zero Headspace: COC Signed/Accurate: <u>Y</u> N VOA Zero Headspace: Bottles arrive intact: <u>Y</u> N Pres.Correct/Check: Sufficient volume sent: <u>N</u> N Pres.Correct/Check:

Temp DRA7 3.4 +0=3.4

Page 30 of 30

FMT-ALL-C-002rev.00 24March2009

Page 1 of 1

Quarter 3

September 14, 2022

Nik Bacher Anchor QEA, LLC 720 Olive Way Suite 1900 Seattle, WA 98101

RE: Project: Yakima Valley Spray Pace Project No.: 10623698

Dear Nik Bacher:

Enclosed are the analytical results for sample(s) received by the laboratory on August 31, 2022. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network: • Pace Analytical Services - Minneapolis

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

ENNI GROSS

Jennifer Gross jennifer.gross@pacelabs.com (612)607-1700 Project Manager

Enclosures

cc: Cindy Fields, Anchor QEA, LLC Anchor QEA QA representative, Anchor QEA, LLC Halah Voges, Anchor QEA, LLC

Pace Analytical Services, LLC 1700 Elm Street Minneapolis, MN 55414 (612)607-1700

CERTIFICATIONS

Project: Yakima Valley Spray Pace Project No.: 10623698

Pace Analytical Services, LLC - Minneapolis MN

1700 Elm Street SE, Minneapolis, MN 55414 A2LA Certification #: 2926.01* 1800 Elm Street SE, Minneapolis, MN 55414--Satellite Air Lab Alabama Certification #: 40770 Alaska Contaminated Sites Certification #: 17-009* Alaska DW Certification #: MN00064 Arizona Certification #: AZ0014* Arkansas DW Certification #: MN00064 Arkansas WW Certification #: 88-0680 California Certification #: 2929 Colorado Certification #: MN00064 Connecticut Certification #: PH-0256 EPA Region 8 Tribal Water Systems+Wyoming DW Certification #: via MN 027-053-137 Florida Certification #: E87605* Georgia Certification #: 959 Hawaii Certification #: MN00064 Idaho Certification #: MN00064 Illinois Certification #: 200011 Indiana Certification #: C-MN-01 Iowa Certification #: 368 Kansas Certification #: E-10167 Kentucky DW Certification #: 90062 Kentucky WW Certification #: 90062 Louisiana DEQ Certification #: AI-03086* Louisiana DW Certification #: MN00064 Maine Certification #: MN00064* Maryland Certification #: 322 Michigan Certification #: 9909 Minnesota Certification #: 027-053-137* Minnesota Dept of Ag Approval: via MN 027-053-137 Minnesota Petrofund Registration #: 1240* Mississippi Certification #: MN00064

Missouri Certification #: 10100 Montana Certification #: CERT0092 Nebraska Certification #: NE-OS-18-06 Nevada Certification #: MN00064 New Hampshire Certification #: 2081* New Jersey Certification #: MN002 New York Certification #: 11647* North Carolina DW Certification #: 27700 North Carolina WW Certification #: 530 North Dakota Certification (A2LA) #: R-036 North Dakota Certification (MN) #: R-036 Ohio DW Certification #: 41244 Ohio VAP Certification (1700) #: CL101 Ohio VAP Certification (1800) #: CL110* Oklahoma Certification #: 9507* Oregon Primary Certification #: MN300001 Oregon Secondary Certification #: MN200001* Pennsylvania Certification #: 68-00563* Puerto Rico Certification #: MN00064 South Carolina Certification #:74003001 Tennessee Certification #: TN02818 Texas Certification #: T104704192* Utah Certification #: MN00064* Vermont Certification #: VT-027053137 Virginia Certification #: 460163* Washington Certification #: C486* West Virginia DEP Certification #: 382 West Virginia DW Certification #: 9952 C Wisconsin Certification #: 999407970 Wyoming UST Certification #: via A2LA 2926.01 USDA Permit #: P330-19-00208 *Please Note: Applicable air certifications are denoted with an asterisk (*).

SAMPLE SUMMARY

Project: Yakima Valley Spray Pace Project No.: 10623698

Pace Project No.: Lab ID Sample ID Matrix **Date Collected Date Received** 10623698001 TB-20220830 08/30/22 07:00 08/31/22 08:50 Water 10623698002 YVS-3-20220830 Water 08/30/22 08:10 08/31/22 08:50 10623698003 YVS-2-20220830 Water 08/30/22 09:20 08/31/22 08:50 10623698004 YVS-201-20220830 Water 08/30/22 09:25 08/31/22 08:50

SAMPLE ANALYTE COUNT

Project:Yakima Valley SprayPace Project No.:10623698

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
10623698001	TB-20220830	NWTPH-Gx	TM2	2	PASI-M
		EPA 8260D	TKL	4	PASI-M
10623698002	YVS-3-20220830	NWTPH-Dx	EB3	4	PASI-M
		NWTPH-Dx	EB3	4	PASI-M
10623698003	YVS-2-20220830	NWTPH-Dx	EB3	4	PASI-M
		NWTPH-Dx	EB3	4	PASI-M
		NWTPH-Gx	TM2	2	PASI-M
		EPA 8260D	TKL	4	PASI-M
10623698004	YVS-201-20220830	NWTPH-Dx	EB3	4	PASI-M
		NWTPH-Dx	EB3	4	PASI-M
		NWTPH-Gx	TM2	2	PASI-M
		EPA 8260D	PAB	4	PASI-M

PASI-M = Pace Analytical Services - Minneapolis

Project: Yakima Valley Spray

Pace Project No.: 10623698

Method: NWTPH-Dx

Description:NWTPH-Dx GCS LVClient:Anchor QEA, LLCDate:September 14, 2022

General Information:

3 samples were analyzed for NWTPH-Dx by Pace Analytical Services Minneapolis. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3510C with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 838261

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 10623698003

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 4437646)
 - Diesel Fuel Range

Additional Comments:

Analyte Comments:

QC Batch: 838261

2M: Surrogate recovery outside laboratory control limits due to matrix interference.

- YVS-2-20220830 (Lab ID: 10623698003)
 - n-Triacontane (S)
- YVS-201-20220830 (Lab ID: 10623698004)
 - n-Triacontane (S)

Project: Yakima Valley Spray

Pace Project No.: 10623698

Method:NWTPH-DxDescription:NWTPH-Dx GCS LVClient:Anchor QEA, LLCDate:September 14, 2022

Analyte Comments:

QC Batch: 838261

2M: Surrogate recovery outside laboratory control limits due to matrix interference.

• YVS-201-20220830 (Lab ID: 10623698004)

• o-Terphenyl (S)

Project: Yakima Valley Spray

Pace Project No.: 10623698

Method: NWTPH-Dx

Description:NWTPH-Dx GCS Silica Gel LVClient:Anchor QEA, LLCDate:September 14, 2022

General Information:

3 samples were analyzed for NWTPH-Dx by Pace Analytical Services Minneapolis. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3510C with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 838259

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 10623698003

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 4437637)
 - Diesel Fuel Range SG
 - Motor Oil Range SG

Additional Comments:

Analyte Comments:

QC Batch: 838259

1M: Surrogate recovery outside laboratory control limits due to being concentraited again during silica clean up.

- MS (Lab ID: 4437637)
 - n-Triacontane (S)

Project: Yakima Valley Spray

Pace Project No.: 10623698

Method:NWTPH-DxDescription:NWTPH-Dx GCS Silica Gel LVClient:Anchor QEA, LLCDate:September 14, 2022

Analyte Comments:

QC Batch: 838259

1M: Surrogate recovery outside laboratory control limits due to being concentraited again during silica clean up.

- YVS-2-20220830 (Lab ID: 10623698003)
 - n-Triacontane (S)
 - o-Terphenyl (S)
- YVS-201-20220830 (Lab ID: 10623698004)
 - n-Triacontane (S)
 - o-Terphenyl (S)

Project: Yakima Valley Spray

Pace Project No.: 10623698

Method: NWTPH-Gx

Description:NWTPH-Gx GCVClient:Anchor QEA, LLCDate:September 14, 2022

General Information:

3 samples were analyzed for NWTPH-Gx by Pace Analytical Services Minneapolis. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project: Yakima Valley Spray

Pace Project No.: 10623698

Method:	EPA 8260D
Description:	8260D MSV UST
Client:	Anchor QEA, LLC
Date:	September 14, 2022

General Information:

3 samples were analyzed for EPA 8260D by Pace Analytical Services Minneapolis. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 838488

A matrix spike/matrix spike duplicate was not performed due to insufficient sample volume.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

Project: Yakima Valley Spray

Pace Project No.: 10623698

Sample: TB-20220830	Lab ID: 10	623698001	Collected: 08/30/2	22 07:00	Received: 08	8/31/22 08:50 N	Aatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
NWTPH-Gx GCV	Analytical Me	thod: NWTP	H-Gx					
	Pace Analytic	cal Services -	Minneapolis					
TPH as Gas Surrogates	ND	ug/L	100	1		09/02/22 18:37		
a,a,a-Trifluorotoluene (S)	99	%.	50-150	1		09/02/22 18:37	98-08-8	
B260D MSV UST	Analytical Me	ethod: EPA 82	260D					
	Pace Analytic	cal Services -	Minneapolis					
Benzene Surrogates	ND	ug/L	1.0	1		09/02/22 21:23	71-43-2	
1,2-Dichlorobenzene-d4 (S)	100	%.	75-125	1		09/02/22 21:23	2199-69-1	
4-Bromofluorobenzene (S)	103	%.	75-125	1		09/02/22 21:23	460-00-4	
Toluene-d8 (S)	101	%.	75-125	1		09/02/22 21:23	2037-26-5	
Sample: YVS-3-20220830	Lab ID: 10	623698002	Collected: 08/30/2	22 08:10	Received: 08	3/31/22 08:50 N	Aatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
NWTPH-Dx GCS LV	Analytical Me Pace Analytic		H-Dx Preparation M Minneapolis	ethod: El	PA 3510C			
Diesel Fuel Range	ND	mg/L	0.40	1	09/01/22 14:57	09/02/22 19:49	68334-30-5	
Motor Oil Range	ND	mg/L	0.40	1	09/01/22 14:57	09/02/22 19:49		
Surrogates	60	0/	50-150	1	00/01/00 11/57	00/02/22 40:40	04 45 4	
o-Terphenyl (S) n-Triacontane (S)	68 65	%. %.	50-150	1		09/02/22 19:49 09/02/22 19:49	04-10-1	
NWTPH-Dx GCS Silica Gel LV	Analytical Me	athod: NIWTP	H-Dx Preparation M	ethod: El	PA 3510C			
	Pace Analytic				100100			
Diesel Fuel Range SG	ND	mg/L	0.40	1	09/01/22 13:43	09/13/22 13:03	68334-30-5	
Motor Oil Range SG Surrogates	ND	mg/L	0.40	1	09/01/22 13:43	09/13/22 13:03	64742-65-0	
p-Terphenyl (S)	59	%.	50-150	1	09/01/22 13:43	09/13/22 13:03	84-15-1	
n-Triacontane (S)	62	%.	50-150	1	09/01/22 13:43	09/13/22 13:03		
Sample: YVS-2-20220830	Lab ID: 10	623698003	Collected: 08/30/2	22 09:20	Received: 08	B/31/22 08:50	Aatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
NWTPH-Dx GCS LV	Analytical Me Pace Analytic		H-Dx Preparation M Minneapolis	ethod: El	PA 3510C			_
Diesel Fuel Range	1.8	mg/L	0.42	1	09/01/22 14:57	09/02/22 19:11	68334-30-5	M1
Motor Oil Range Surrogates	0.74	mg/L	0.42	1	09/01/22 14:57	09/02/22 19:11		
p-Terphenyl (S)	54	%.	50-150	1	09/01/22 14:57	09/02/22 19:11	84-15-1	
n-Triacontane (S)	38	%.	50-150		09/01/22 14:57			2M

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

ANALYTICAL RESULTS

Project: Yakima Valley Spray

Pace Project No.: 10623698

Sample: YVS-2-20220830	Lab ID: 106	23698003	Collected: 08/30/2	22 09:20	Received: 08	8/31/22 08:50 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
WTPH-Dx GCS Silica Gel LV	Analytical Meth	nod: NWTP	H-Dx Preparation Me	ethod: E	PA 3510C			
	Pace Analytica	I Services -	Minneapolis					
Diesel Fuel Range SG	ND	mg/L	0.42	1	09/01/22 13:43	09/13/22 13:12	68334-30-5	M1
Motor Oil Range SG	ND	mg/L	0.42	1	09/01/22 13:43	09/13/22 13:12	64742-65-0	M1
Surrogates	46	%.	50-150	1	00/01/00 10:40	09/13/22 13:12	04 45 4	1M
p-Terphenyl (S) n-Triacontane (S)	40 36	%.	50-150 50-150	1		09/13/22 13:12	04-10-1	1M
				-				
NWTPH-Gx GCV	Analytical Meth							
	Pace Analytica							
TPH as Gas Surrogates	ND	ug/L	100	1		09/02/22 18:52		
a,a,a-Trifluorotoluene (S)	98	%.	50-150	1		09/02/22 18:52	98-08-8	
	Applytical Math							
8260D MSV UST	Analytical Meth Pace Analytica							
	•					00/00/00 00 57	74.40.0	
Benzene Surrogates	ND	ug/L	1.0	1		09/02/22 22:57	71-43-2	
1,2-Dichlorobenzene-d4 (S)	99	%.	75-125	1		09/02/22 22:57	2199-69-1	
4-Bromofluorobenzene (S)	103	%.	75-125	1		09/02/22 22:57	460-00-4	
Toluene-d8 (S)	100	%.	75-125	1		09/02/22 22:57	2037-26-5	
Sample: YVS-201-20220830	Lab ID: 106	23698004	Collected: 08/30/2	22 09:25	Received: 08	B/31/22 08:50 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
NWTPH-Dx GCS LV	Analytical Meth	nod: NWTP	H-Dx Preparation Me	ethod: E	PA 3510C			
	Pace Analytica							
Diesel Fuel Range	1.6	mg/L	0.40	1	09/01/22 14:57	09/02/22 19:39	68334-30-5	
Notor Oil Range	0.72	mg/L	0.40	1		09/02/22 19:39	00004 00 0	
Surrogates		0						
o-Terphenyl (S)	46	%.	50-150	1		09/02/22 19:39	84-15-1	2M
n-Triacontane (S)	40	%.	50-150	1	09/01/22 14:57	09/02/22 19:39		2M
NWTPH-Dx GCS Silica Gel LV	Analytical Meth	nod: NWTP	H-Dx Preparation Me	ethod: E	PA 3510C			
	Pace Analytica	I Services -	Minneapolis					
Diesel Fuel Range SG	ND	mg/L	0.40	1	09/01/22 13:43	09/13/22 13:40	68334-30-5	
Notor Oil Range SG	ND	mg/L	0.40	1	09/01/22 13:43	09/13/22 13:40	64742-65-0	
Surrogates	20	0/	F0 4F0	4	00/01/00 40-40	00/10/00 10:10	04 45 4	114
p-Terphenyl (S) n-Triacontane (S)	39 37	%. %.	50-150 50-150	1 1		09/13/22 13:40 09/13/22 13:40	04-15-1	1M 1M
	-			ſ	00/01/22 10.40	55/15/22 15.40		1 1 1 1
NWTPH-Gx GCV	Analytical Meth							
	Pace Analytica	I Services -	Minneapolis					
TPH as Gas	ND	ug/L	100	1		09/02/22 20:07		
<i>Surrogates</i> a,a,a-Trifluorotoluene (S)	98	%.	50-150	1		00/02/22 20.07	08 08 9	
a,a,a-minuunununueme (3)	90	70.	00-150	1		09/02/22 20:07	30-00-0	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

ANALYTICAL RESULTS

Project: Yakima Valley Spray

Pace Project No.: 10623698

Sample: YVS-201-20220830	Lab ID:	10623698004	Collected: 08/30/2	22 09:25	Received: 08	3/31/22 08:50 N	Aatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260D MSV UST		Method: EPA 82 ytical Services -						
Benzene Surrogates	N	D ug/L	1.0	1		09/02/22 18:00	71-43-2	
1,2-Dichlorobenzene-d4 (S)	10	2 %.	75-125	1		09/02/22 18:00	2199-69-1	
4-Bromofluorobenzene (S)	9	0 %.	75-125	1		09/02/22 18:00	460-00-4	
Toluene-d8 (S)	10	0 %.	75-125	1		09/02/22 18:00	2037-26-5	

QC Batch: 83848	34		Analy	sis Method	: N	WTPH-G	ix					
QC Batch Method: NWT	PH-Gx		Analy	sis Descrip	tion: N	WTPH-G	ix Water					
			Labor	atory:	Pa	ace Anal	ytical Serv	vices - Minne	apolis			
Associated Lab Samples:	106236980	001, 1062369800	3, 1062369	8004								
METHOD BLANK: 443883	6			Matrix: Wa	ter							
Associated Lab Samples:	106236980	01, 1062369800	3, 1062369	8004								
			Blan	k F	eporting							
Parameter		Units	Resu	ılt	Limit	Ana	lyzed	Qualifie	rs			
TPH as Gas		ug/L		ND	100	09/02/2	22 13:37					
a,a,a-Trifluorotoluene (S)		%.		104	50-150	09/02/2	22 13:37					
METHOD BLANK: 443883	37			Matrix: Wa	ter							
Associated Lab Samples:	106236980	01, 1062369800	3, 1062369	8004								
			Blan		eporting							
Parameter		Units	Resu	ılt	Limit	Ana	lyzed	Qualifie	rs			
TPH as Gas		ug/L		ND	100	09/02/2	22 16:52					
a,a,a-Trifluorotoluene (S)		%.		102	50-150	09/02/2	22 16:52					
LABORATORY CONTROL S	SAMPLE & I	_CSD: 443883	8		4438839							
LABORATORY CONTROL S	SAMPLE & I	_CSD: 443883	-	LCS	4438839 LCSD	LCS	LCSD	% Rec		Max		
LABORATORY CONTROL S	SAMPLE & I	_CSD: 443883 Units	8 Spike Conc.				LCSD % Rec	% Rec Limits	RPD	Max RPD	Qua	lifiers
	SAMPLE & I	Units	Spike	LCS Result	LCSD Result	% Rec			RPD 12		Qua	lifiers
Parameter	SAMPLE & I		Spike Conc.	LCS Result	LCSD Result	% Rec	% Rec	Limits		RPD	Qua	lifiers
Parameter TPH as Gas a,a,a-Trifluorotoluene (S)		Units ug/L %.	Spike Conc. 1000	LCS Result	LCSD Result	% Rec 93	% Rec 82	Limits 75-125		RPD	Qua	lifiers
Parameter TPH as Gas		Units ug/L %. LICATE: 4438	Spike Conc. 1000	LCS Result	LCSD Result 5 822	- <mark>% Rec</mark> 93 107	% Rec 82	Limits 75-125 50-150		RPD	Qua	lifiers
Parameter TPH as Gas a,a,a-Trifluorotoluene (S) MATRIX SPIKE & MATRIX S	SPIKE DUP	Units ug/L %. LICATE: 4438 10623698003	Spike Conc. 1000 842 MS Spike	MSD Spike	LCSD Result 822 4438843 MS	MSD	% Rec 82 100 MS	Limits 75-125 50-150 MSD	12 % Rec	RPD 20	Max	
Parameter TPH as Gas a,a,a-Trifluorotoluene (S)		Units ug/L %. LICATE: 4438	Spike Conc. 1000 842 MS	MSD	4438843	- <mark>% Rec</mark> 93 107	% Rec 82 100	Limits 75-125 50-150 MSD	12	RPD		lifiers
Parameter TPH as Gas a,a,a-Trifluorotoluene (S) MATRIX SPIKE & MATRIX S	SPIKE DUP	Units ug/L %. LICATE: 4438 10623698003	Spike Conc. 1000 842 MS Spike	MSD Spike	LCSD Result 822 4438843 MS	MSD	% Rec 82 100 MS % Rec	Limits 75-125 50-150 MSD % Rec 33 82	% Rec Limits 2 65-120	RPD 20	Max	
Parameter TPH as Gas a,a,a-Trifluorotoluene (S) MATRIX SPIKE & MATRIX S Parameter TPH as Gas a,a,a-Trifluorotoluene (S)	SPIKE DUP Units ug/L %.	Units ug/L %. LICATE: 4438 10623698003 Result	Spike Conc. 1000 842 MS Spike Conc.	LCS Result 926 MSD Spike Conc.	LCSD Result 822 4438843 MS Result	MSD Result	% Rec 82 100 82 % Rec 82 % Rec 82 % Rec 82	Limits 75-125 50-150 MSD % Rec 33 82	% Rec Limits 2 65-120	RPD 20	Max RPD	
Parameter TPH as Gas a,a,a-Trifluorotoluene (S) MATRIX SPIKE & MATRIX S Parameter TPH as Gas	SPIKE DUP Units ug/L %.	Units ug/L %. LICATE: 4438 10623698003 Result	Spike Conc. 1000 842 MS Spike Conc. 1000	LCS Result 926 MSD Spike Conc. 1000	4438843 MS Result 862	MSD Result	% Rec 82 100 82 % Rec 82 % Rec 82 % Rec 82	Limits 75-125 50-150 MSD % Rec 33 82 02 99	% Rec Limits 2 65-120	RPD 20	Max RPD	
Parameter TPH as Gas a,a,a-Trifluorotoluene (S) MATRIX SPIKE & MATRIX S Parameter TPH as Gas a,a,a-Trifluorotoluene (S)	SPIKE DUP Units ug/L %.	Units ug/L %. LICATE: 4438 10623698003 Result	Spike Conc. 1000 842 MS Spike Conc.	LCS Result 926 MSD Spike Conc. 1000	LCSD Result 822 4438843 MS Result	MSD Result	% Rec 82 100 85 % Rec 82 % Rec 100	Limits 75-125 50-150 MSD % Rec 33 82	12 % Rec Limits 2 65-120 9 50-150	RPD 20	Max RPD	
Parameter TPH as Gas a,a,a-Trifluorotoluene (S) MATRIX SPIKE & MATRIX S Parameter TPH as Gas a,a,a-Trifluorotoluene (S) SAMPLE DUPLICATE: 44	SPIKE DUP Units ug/L %.	Units ug/L %. LICATE: 4438 10623698003 Result ND	Spike Conc. 1000 842 MS Spike Conc. 1000	LCS Result 926 MSD Spike Conc. 1000	LCSD Result 822 4438843 MS Result 862 Dup	% Rec 93 107 MSD Result 852	% Rec 82 100 85 % Rec 82 100 100	Limits 75-125 50-150 MSD % Rec 33 82 02 99 Max RPD	12 % Rec Limits 2 65-120 9 50-150	RPD 20	Max RPD	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: Yakima Valley Spray Pace Project No.: 10623698

SAMPLE DUPLICATE: 4438841		10623698003	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
TPH as Gas	ug/L	ND	36.5J		30	2
a,a,a-Trifluorotoluene (S)	%.	98	99			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: Yakima Valley Pace Project No.: 10623698	Spray							
QC Batch: 838251		Analysis I	Method:	EP	PA 8260D			
QC Batch Method: EPA 8260D		Analysis [Description:	82	60D MSV US	T-WATER		
		Laborator	y:	Pa	ice Analytical	neapolis		
Associated Lab Samples: 10623	698001, 10623698003							
METHOD BLANK: 4437602		Mat	rix: Water					
Associated Lab Samples: 10623	698001, 10623698003							
		Blank	Reportir	ng				
Parameter	Units	Result	Limit		Analyzed	d Qualif	liers	
Benzene	ug/L	N	ID	1.0	09/02/22 20):52		
1,2-Dichlorobenzene-d4 (S)	%.	9	99 75	-125	09/02/22 20):52		
4-Bromofluorobenzene (S)	%.	10		-125	09/02/22 20	-		
Toluene-d8 (S)	%.	10	01 75	-125	09/02/22 20):52		
LABORATORY CONTROL SAMPLI	E: 4437603							
		Spike	LCS		LCS	% Rec		
Parameter	Units	Conc.	Result	9	% Rec	Limits	Qualifiers	
Benzene	ug/L	20	19.4		97	73-125		
1,2-Dichlorobenzene-d4 (S)	%.				101	75-125		
4-Bromofluorobenzene (S)	%.				102	75-125		

MATRIX SPIKE & MATRIX SP	IKE DUPL	ICATE: 4437	604		4437605							
		10623698003	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Benzene	ug/L	ND	20	20	19.5	19.8	97	99	65-140	1	30	
1,2-Dichlorobenzene-d4 (S)	%.						99	102	75-125			
4-Bromofluorobenzene (S)	%.						101	100	75-125			
Toluene-d8 (S)	%.						97	98	75-125			

%.

75-125

96

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Toluene-d8 (S)

Toluene-d8 (S)

1,2-Dichlorobenzene-d4 (S)

4-Bromofluorobenzene (S)

QUALITY CONTROL DATA

Project:	Yakima Valley Spray										
Pace Project No.:	10623698										
QC Batch:	838488		Analysi	is Metho	d: E	PA 8260I	D				
QC Batch Method:	EPA 8260D		Analysi	is Descri	ption: 82	260D MS	SV UST-W	VATER			
			Labora	tory:	Pa	ace Anal	ytical Ser	vices - Mini	neapolis		
Associated Lab Sar	nples: 10623698004										
METHOD BLANK:	4438868		Μ	latrix: W	ater						
Associated Lab Sar	nples: 10623698004										
			Blank		Reporting						
Parar	neter	Units	Result	t	Limit	Ana	alyzed	Qualif	iers		
Benzene		ug/L		ND	1.0	09/02/	22 13:27				
1,2-Dichlorobenzen	e-d4 (S)	%.		100	75-125	09/02/	22 13:27				
4-Bromofluorobenze	ene (S)	%.		93	75-125	09/02/	22 13:27				
Toluene-d8 (S)		%.		100	75-125	09/02/	22 13:27				
LABORATORY CO	NTROL SAMPLE & LCS	D: 4438869			4438870						
			Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parar	neter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
Benzene		ug/L	20	19	.1 17.7	95	88	73-125		8 20	

97

96

101

104

96

102

75-125

75-125

75-125

%.

%.

%.

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	Yakima Valley Spr	ау							
Pace Project No.:	10623698								
QC Batch:	838261		Analysis	Method:	N	IWTPH-Dx			
QC Batch Method:	EPA 3510C		Analysis	Descriptio	on: N	IWTPH-Dx GO	CS LV		
			Laborato	ry:	Р	ace Analytica	I Services	- Minne	apolis
Associated Lab San	nples: 10623698	002, 10623698003,	1062369800	4					
METHOD BLANK:	4437644		Mat	trix: Wate	er				
Associated Lab San	nples: 10623698	002, 10623698003,	1062369800	4					
			Blank	Re	porting				
Paran	neter	Units	Result	I	Limit	Analyze	d (Qualifier	S
Diesel Fuel Range		mg/L	1	ND	0.40	09/02/22 18	8:44		
Motor Oil Range		mg/L	1	ND	0.40	09/02/22 18	8:44		
n-Triacontane (S)		%.		76	50-150	09/02/22 18	8:44		
o-Terphenyl (S)		%.		68	50-150	09/02/22 18	8:44		
LABORATORY CON	ITROI SAMPI F	4437645							
			Spike	LCS		LCS	% Rec		
Paran	neter	Units	Conc.	Result		% Rec	Limits		Qualifiers
Diesel Fuel Range		mg/L	2		1.5	76	50-	150	
Motor Oil Range		mg/L	2		1.5	77	50-	150	
n-Triacontane (S)		%.				77	50-	150	
o-Terphenyl (S)		%.				73	50-	150	

MATRIX SPIKE & MATRIX	SPIKE DUPL	ICATE: 4437	646		4437647							
		10623698003	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Diesel Fuel Range	mg/L	1.8	2	1.9	2.7	3.4	46	83	50-150	22	30	M1
Motor Oil Range	mg/L	0.74	2	1.9	1.8	2.2	51	74	50-150	21	30	
n-Triacontane (S)	%.						50	64	50-150			
o-Terphenyl (S)	%.						61	67	50-150			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	Yakima Valley Spr	ay							
Pace Project No.:	10623698								
QC Batch:	838259		Analysis M	ethod:	N١	WTPH-Dx			
QC Batch Method:	EPA 3510C		Analysis D	escription:	N۱	NTPH-Dx GC	S LV SG	ì	
			Laboratory	:	Pa	ace Analytical	Services	s - Minneap	oolis
Associated Lab Sam	ples: 10623698	002, 10623698003,	10623698004						
METHOD BLANK:	4437635		Matri	x: Water					
Associated Lab Sam	ples: 10623698	002, 10623698003,	10623698004						
			Blank	Reporti	ng				
Param	eter	Units	Result	Limit		Analyzed	b	Qualifiers	
Diesel Fuel Range S	G	mg/L	N	 >	0.40	09/13/22 12	2:44		
Motor Oil Range SG		mg/L	N)	0.40	09/13/22 12	2:44		
n-Triacontane (S)		%.	74	4 50)-150	09/13/22 12	2:44		
o-Terphenyl (S)		%.	63	2 50)-150	09/13/22 12	2:44		
LABORATORY CON	TROL SAMPLE:	4437636							
			Spike	LCS		LCS	% Red	c	
Param	eter	Units	Conc.	Result	Ģ	% Rec	Limits	s Q	ualifiers
Diesel Fuel Range S	G	mg/L	2	1.5		74	50)-150	
Motor Oil Range SG		mg/L	2	1.6		79	50)-150	
n-Triacontane (S)		%.				71	50)-150	
		%.				63)-150	

MATRIX SPIKE & MATRIX S	SPIKE DUPLI	CATE: 4437	637		4437638							
Parameter	1 Units	0623698003 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Diesel Fuel Range SG	mg/L	 ND	2	1.9	1.2	1.5	41	63	50-150	28	30	M1
Motor Oil Range SG	mg/L	ND	2	1.9	1.1	1.4	46	62	50-150	22	30	M1
n-Triacontane (S)	%.						42	62	50-150			1M
o-Terphenyl (S)	%.						53	59	50-150			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: Yakima Valley Spray

Pace Project No.: 10623698

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

BATCH QUALIFIERS

Batch: 838488

[M5] A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

ANALYTE QUALIFIERS

1M	Surrogate recovery outside laboratory control limits due to being concentraited again during silica clean up.
2M	Surrogate recovery outside laboratory control limits due to matrix interference.

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:	Yakima Valley Spray
Pace Project No .:	10623698

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
10623698002	YVS-3-20220830	EPA 3510C	838261	NWTPH-Dx	838571
10623698003	YVS-2-20220830	EPA 3510C	838261	NWTPH-Dx	838571
10623698004	YVS-201-20220830	EPA 3510C	838261	NWTPH-Dx	838571
10623698002	YVS-3-20220830	EPA 3510C	838259	NWTPH-Dx	840191
10623698003	YVS-2-20220830	EPA 3510C	838259	NWTPH-Dx	840191
10623698004	YVS-201-20220830	EPA 3510C	838259	NWTPH-Dx	840191
10623698001	TB-20220830	NWTPH-Gx	838484		
10623698003	YVS-2-20220830	NWTPH-Gx	838484		
10623698004	YVS-201-20220830	NWTPH-Gx	838484		
10623698001	TB-20220830	EPA 8260D	838251		
10623698003	YVS-2-20220830	EPA 8260D	838251		
10623698004	YVS-201-20220830	EPA 8260D	838488		

WO# : 10623698				Regulatory Agency	State / I ocation	WA / Yakima				(N\Y) anix	Residual Chic		7~0	SCO OSW/SW	3							-	ц [-	× 1 × 1 × 1 ×) pəled	ag Sec N/Y) ne	9000)
	10623698		ANCHOR QEA, LLC	1201 3rd Avenue, Suite 2600	Jennifer Gross	40757/1	Requested Analysis Filtered (Y/N)	N/A		X x + Silica Gel X	MMTPH-G Benzene b MWTPH-D MMTPH-D Benzene b Analyseo Mazsso3	××	XX	XXXX	× × ×								EPTED BY AFFILIATION	W 1/ 100 8 /31/22			stratte	DATE Signed: $\delta^r 3 \mathcal{I}^*$
CHAIN-OF-CUSTODY / Analytical Reques The Chain-of-Custody is a LEGAL DOCUMENT. All relevant field	Section C Invoice Information	Actention:	Name:	Address:	ray Pace Project Manager.	Pace Profile #:		TED Preservatives	END		A H H A A A A A A A A A A A A A A A A A	X h	X 2 ×	SY 24 X	2								DATE	AL 8-32-72 17 30		SAMPLER NAME AND SIGN#TURE	PRINT Name of SAMPLER: STRAIT	SIGNATURE OF SAMPLER:
O F	Section B Required Project Information:	TTACHO	UND 10 LATELS SO ANTIAN QU	Purchase Order No. 197024-01.0	Yakima V	nber:		COLLECTED	an) ™ to co ™ to co	⁰ 의 의 중 준 은 등 에 이 zəbo bilo odes bilo MOD=D 원ARĐ=D) :	SAMPLE TYPE DATE TIME	WT & 8-20-20 0 700	WT G 0510	WT G	0 WT G 8-30-72 0975				C: 20 10	1				STEPICIA STUDIA /1		SAMPLER	PRINT	SIGN
Pace Analytical	A cd Client Information:	Company: ANCHOR QEA, LLC		Email To: LAS OATTA ATTAC MO AND IN LING ICA . CAPArchase Order No.	206-287.9170 Fax	Requested Due Date/TAT: 10 Day (Standard)				(A-Z, 0-9 /, -) Product Sample Ids must be unique OI Wipe Air Cher Tissue		76-20120530	02 302202 - 2- 5NX 🌋	YUS-2- 7022 0830	YV5-201-21720830								AUDITIONAL COMMENTS	*Pesticides by 8081: 4.4-DDT, Aldrin, Dieldrin, beta-BHC,	gamma-BHC (Lindane)			
and	Section A Required	Company	in the second	Email To	Phone:	Request					#MƏTI	L.	2	S	4	S	9	7	∞σ	10	Ð	12		*Pestic		∫ F	2age	22 of 23

٦

DC#_Title: ENV-FRM-MIN4-0150 v10_Sample Condition Upon Receipt (SCUR) Effective Date: 8/26/2022

Sample Condition		Project #	#:	WO#:10623698
Upon Receipt			940	WOH · IVOZJOJO PM: JMG Due Date: 09/15/22
Courier: FedEx UPS USPS Client				CLIENT: ANCHOR QEA
Tracking Number: $S40S18708747$		xceptions I-MIN4-014	2	
Custody Seal on Cooler/Box Present? 🖉 yes 🗌 No	 Seals Intact	? 🖊 Yes	🗌 No	Biological Tissue Frozen? 🗌 Yes 🗌 No 🖉 N/A
Packing Material: Bubble Wrap Bubble Bags	🗌 None		Othe	er Temp Blank? 🖉 Yes 🗌 No
Thermometer: T1 (0461) T2 (1336) T3 (045) T6 (0235) T7 (0042) T8 (077)	9) 🗌 T4 (0254)	T5 (0178	
Did Samples Originate in West Virginia? 🗌 Yes 💋 No			Were All	Container Temps Taken? 🗌 Yes 🗌 No 💋 N/A
Temp should be above freezing to 6 °C Cooler temp Read w/	Temp Blank	"_ }	_°C	Average Corrected Temp
Correction Factor: <u>+</u> , <u>Cooler Temp Corrected w/</u>	temp blank	: <u>}.6</u>	°C	(no temp blank only): °C
USDA Regulated Soil: 🖉 N/A, water sample/other:		_)		Date/Initials of Person Examining Contents: $8/3(17)$
Did samples originate in a quarantine zone within the United Stat GA, ID, LA, MS, NC, NM, NY, OK, OR, SC, TN, TX, or VA (check map)	Did samples originate from a foreign source (internationally, including Hawaii and Puerto Rico)?
If Yes to either question, fill out a Regulate	d Soil Checl		RM-MIN4	4-0154) and include with SCUR/COC paperwork.
Location (Check one): Duluth Dinnear	The rest of the rest of the local division in the local division i	Virginia		COMMENTS
Chain of Custody Present and Filled Out? * Chain of Custody Relinquished?	Yes			1. 2.
Sampler Name and/or Signature on COC?	Yes	No No	N/A	
Samples Arrived within Hold Time?	Yes			4. If fecal: < 8 hrs > 8 hr, < 24 No
Short Hold Time Analysis (<72 hr)?	Ves	No No		5. Fecal Coliform HPC Total Coliform/E.coli BOD/cBOD Hex Chrom Turbidity Nitrate Nitrite Orthophos Other
Rush Turn Around Time Requested?	Yes Yes	No		6.
Sufficient Sample Volume?	Yes	<u>No</u>		7.
Correct Containers Used? -Pace Containers Used?	Yes		🗌 N/A	8.
Containers Intact?	Yes Yes	No No		9.
Field Filtered Volume Received for Dissolved Tests?	Yes		N/A	
s sufficient information available to reconcile the samples to the	Yes	🗌 No		11. If no, write ID/Date/Time of container below:
Matrix: 💋 Water 🗌 Soil 🔹 Oil 🔅 Other All containers needing acid/base preservation have been			Z INIA	ENV-FRM-MIN4-014
hecked?	L Yes	🗌 No	⊠ N/A	12. Sample #
All containers needing preservation are found to be in compliance with EPA recommendation? (HNO3, H2SO4, <2pH, NaOH >9 Sulfide, NaOH>10 Cyanide)	e 🗌 Yes	🗌 No	₽N/A	NaOH HNO3
Exception : VOA, Coliform, TOC/DOC Oil and Grease DRO/B015	X Yes) No		Positive for Residual 🗌 Yes 🔲 See Exceptions
water) and Dioxins/PFAS	\sim	9/1/22		Chlorine? No ENV-FRM-MIN4-014
*If adding preservative to a container, it must be added to	JMG	9/1/22		pH Paper Lot #
ssociated field and equipment blanksverify with PM first.)				Residual Chlorine 0-6 Roll 0-6 Strip 0-14 Strip
leadspace in Methyl Mercury Container?	2 Yes	🗌 No		13.
ixtra labels present on soil VOA or WIDRO containers?	Ves			
leadspace in VOA Vials (greater than 6mm)?	Ves Yes		N/A	
Trip Blanks Present? rip Blank Custody Seals Present?	🖾 Yes	🗌 No 🗌 No	□ N/A □ N/A	
CLIENT NOTIFICATION/RESOLUTION				Field Data Required?
Person Contacted: Comments/Resolution:			-	Date/Time:
Project Manager Review:	1			Date: 9/1/22
1				
UIE: Whenever there is a discrepancy affecting Nor by arolina complia br e samples, a acorrect containers).	copy of this for	m will be sent t	o the North (Carolina DEHNR Certification Office (i.e., out of hold, incorrect preservative, out of temp, Labeled By: Line:
Qualtrax ID: 52742 Pa	ace [®] Ana	lytical So	ervices	, LLC N F / Page 37

Quarter 4

November 21, 2022

Nik Bacher Anchor QEA, LLC 720 Olive Way Suite 1900 Seattle, WA 98101

RE: Project: Yakima Valley Spray Pace Project No.: 10632881

Dear Nik Bacher:

Enclosed are the analytical results for sample(s) received by the laboratory on November 08, 2022. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network: • Pace Analytical Services - Minneapolis

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

ENNI GROSS

Jennifer Gross jennifer.gross@pacelabs.com (612)607-1700 Project Manager

Enclosures

cc: Anchor QEA QA representative, Anchor QEA, LLC Halah Voges, Anchor QEA, LLC

Pace Analytical Services, LLC 1700 Elm Street Minneapolis, MN 55414 (612)607-1700

CERTIFICATIONS

Project: Yakima Valley Spray Pace Project No.: 10632881

Pace Analytical Services, LLC - Minneapolis MN

1700 Elm Street SE, Minneapolis, MN 55414 1800 Elm Street SE, Minneapolis, MN 55414--Satellite Air Lab A2LA Certification #: 2926.01* Alabama Certification #: 40770 Alaska Contaminated Sites Certification #: 17-009* Alaska DW Certification #: MN00064 Arizona Certification #: AZ0014* Arkansas DW Certification #: MN00064 Arkansas WW Certification #: 88-0680 California Certification #: 2929 Colorado Certification #: MN00064 Connecticut Certification #: PH-0256 EPA Region 8 Tribal Water Systems+Wyoming DW Certification #: via MN 027-053-137 Florida Certification #: E87605* Georgia Certification #: 959 Hawaii Certification #: MN00064 Idaho Certification #: MN00064 Illinois Certification #: 200011 Indiana Certification #: C-MN-01 Iowa Certification #: 368 Kansas Certification #: E-10167 Kentucky DW Certification #: 90062 Kentucky WW Certification #: 90062 Louisiana DEQ Certification #: AI-03086* Louisiana DW Certification #: MN00064 Maine Certification #: MN00064* Maryland Certification #: 322 Michigan Certification #: 9909 Minnesota Certification #: 027-053-137* Minnesota Dept of Ag Approval: via MN 027-053-137 Minnesota Petrofund Registration #: 1240* Mississippi Certification #: MN00064

Missouri Certification #: 10100 Montana Certification #: CERT0092 Nebraska Certification #: NE-OS-18-06 Nevada Certification #: MN00064 New Hampshire Certification #: 2081* New Jersey Certification #: MN002 New York Certification #: 11647* North Carolina DW Certification #: 27700 North Carolina WW Certification #: 530 North Dakota Certification (A2LA) #: R-036 North Dakota Certification (MN) #: R-036 Ohio DW Certification #: 41244 Ohio VAP Certification (1700) #: CL101 Ohio VAP Certification (1800) #: CL110* Oklahoma Certification #: 9507* Oregon Primary Certification #: MN300001 Oregon Secondary Certification #: MN200001* Pennsylvania Certification #: 68-00563* Puerto Rico Certification #: MN00064 South Carolina Certification #:74003001 Tennessee Certification #: TN02818 Texas Certification #: T104704192* Utah Certification #: MN00064* Vermont Certification #: VT-027053137 Virginia Certification #: 460163* Washington Certification #: C486* West Virginia DEP Certification #: 382 West Virginia DW Certification #: 9952 C Wisconsin Certification #: 999407970 Wyoming UST Certification #: via A2LA 2926.01 USDA Permit #: P330-19-00208 *Please Note: Applicable air certifications are denoted with an asterisk (*).

SAMPLE SUMMARY

Project: Yakima Valley Spray

Pace Project No.: 10632881

Lab ID	Sample ID	Matrix	Date Collected	Date Received
10632881001	TB-20221107	Water	11/07/22 08:00	11/08/22 08:50
10632881002	YVS-2-20221107	Water	11/07/22 09:50	11/08/22 08:50
10632881003	YVS-201-20221107	Water	11/07/22 10:00	11/08/22 08:50

SAMPLE ANALYTE COUNT

Project:Yakima Valley SprayPace Project No.:10632881

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
10632881001	TB-20221107	NWTPH-Gx		2	PASI-M
		EPA 8260D	TKL	4	PASI-M
10632881002	YVS-2-20221107	NWTPH-Dx	EB3	4	PASI-M
		NWTPH-Dx	EB3	4	PASI-M
		NWTPH-Gx	TM2	2	PASI-M
		EPA 8260D	TKL	4	PASI-M
10632881003	YVS-201-20221107	NWTPH-Dx	EB3	4	PASI-M
		NWTPH-Dx	EB3	4	PASI-M
		NWTPH-Gx	TM2	2	PASI-M
		EPA 8260D	TKL	4	PASI-M

PASI-M = Pace Analytical Services - Minneapolis

Project: Yakima Valley Spray

Pace Project No.: 10632881

Method: NWTPH-Dx

Description:NWTPH-Dx GCS LVClient:Anchor QEA, LLCDate:November 21, 2022

General Information:

2 samples were analyzed for NWTPH-Dx by Pace Analytical Services Minneapolis. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3510C with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project: Yakima Valley Spray

Pace Project No.: 10632881

Method: NWTPH-Dx

Description:NWTPH-Dx GCS Silica Gel LVClient:Anchor QEA, LLCDate:November 21, 2022

General Information:

2 samples were analyzed for NWTPH-Dx by Pace Analytical Services Minneapolis. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3510C with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 852455

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 10632881002

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MSD (Lab ID: 4507085)
 - Diesel Fuel Range SG

Additional Comments:

Project: Yakima Valley Spray

Pace Project No.: 10632881

Method: NWTPH-Gx

Description:NWTPH-Gx GCVClient:Anchor QEA, LLCDate:November 21, 2022

General Information:

3 samples were analyzed for NWTPH-Gx by Pace Analytical Services Minneapolis. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project: Yakima Valley Spray

Pace Project No.: 10632881

Method:	EPA 8260D
Description:	8260D MSV UST
Client:	Anchor QEA, LLC
Date:	November 21, 2022

General Information:

3 samples were analyzed for EPA 8260D by Pace Analytical Services Minneapolis. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

ANALYTICAL RESULTS

Project: Yakima Valley Spray

Pace Project No.: 10632881

Sample: TB-20221107	Lab ID: 106	32881001	Collected: 11/07/2	22 08:00	Received: 11	/08/22 08:50 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
NWTPH-Gx GCV	Analytical Metl Pace Analytica							
TPH as Gas Surrogates	ND	ug/L	100	1		11/10/22 12:49		
a,a,a-Trifluorotoluene (S)	107	%.	50-150	1		11/10/22 12:49	98-08-8	
8260D MSV UST	Analytical Meth Pace Analytica							
Benzene Surrogates	ND	ug/L	1.0	1		11/10/22 07:31	71-43-2	
1,2-Dichlorobenzene-d4 (S)	100	%.	75-125	1		11/10/22 07:31	2199-69-1	
4-Bromofluorobenzene (S)	97	%.	75-125	1		11/10/22 07:31	460-00-4	
Toluene-d8 (S)	98	%.	75-125	1		11/10/22 07:31	2037-26-5	
Sample: YVS-2-20221107	Lab ID: 106	32881002	Collected: 11/07/2	22 09:50	Received: 11	/08/22 08:50 N	Aatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
NWTPH-Dx GCS LV	Analytical Metl Pace Analytica		H-Dx Preparation M Minneapolis	ethod: E	PA 3510C			
Diesel Fuel Range	1.2	mg/L	0.40	1	11/09/22 13:15	11/11/22 14:34	68334-30-5	
Motor Oil Range Surrogates	0.52	mg/L	0.40	1		11/11/22 14:34		
o-Terphenyl (S)	77	%.	50-150	1		11/11/22 14:34	84-15-1	
n-Triacontane (S)	76	%.	50-150	1	11/09/22 13:15	11/11/22 14:34		
NWTPH-Dx GCS Silica Gel LV	Analytical Metl Pace Analytica		H-Dx Preparation M Minneapolis	ethod: E	PA 3510C			
Diesel Fuel Range SG	0.56	mg/L	0.40	1	11/09/22 13:18	11/18/22 19:00	68334-30-5	M1
Motor Oil Range SG Surrogates	ND	mg/L	0.40	1	11/09/22 13:18	11/18/22 19:00	64742-65-0	
o-Terphenyl (S)	70	%.	50-150	1	11/09/22 13:18	11/18/22 19:00	84-15-1	
n-Triacontane (S)	68	%.	50-150	1	11/09/22 13:18	11/18/22 19:00		
NWTPH-Gx GCV	Analytical Metl Pace Analytica							
			•					
TPH as Gas Surrogates	ND	ug/L	100	1		11/10/22 13:04		
a,a,a-Trifluorotoluene (S)	105	%.	50-150	1		11/10/22 13:04	98-08-8	
8260D MSV UST	Analytical Metl Pace Analytica							
Benzene Surrogates	ND	ug/L	1.0	1		11/10/22 08:18	71-43-2	
1,2-Dichlorobenzene-d4 (S)	102	%.	75-125	1		11/10/22 08:18	2199-69-1	
4-Bromofluorobenzene (S)	96	%.	75-125	1		11/10/22 08:18	460-00-4	
Toluene-d8 (S)	97	%.	75-125	1		11/10/22 08:18	2037-26-5	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

ANALYTICAL RESULTS

Project: Yakima Valley Spray

Pace Project No.: 10632881

Sample: YVS-201-20221107	Lab ID: 106	32881003	Collected:	11/07/2	2 10:00	Received: 11	/08/22 08:50	Matrix: Water	
Parameters	Results	Units	Repor	t Limit	DF	Prepared	Analyzed	CAS No.	Qual
NWTPH-Dx GCS LV	Analytical Met	hod: NWTP	H-Dx Prepar	ation Me	ethod: El	PA 3510C			
	Pace Analytica	al Services -	Minneapolis						
Diesel Fuel Range	1.2	mg/L		0.40	1	11/09/22 13:15	11/11/22 15:08	8 68334-30-5	
Motor Oil Range Surrogates	0.55	mg/L		0.40	1	11/09/22 13:15	11/11/22 15:08	3	
o-Terphenyl (S)	81	%.	4	50-150	1	11/09/22 13:15	11/11/22 15:08	3 84-15-1	
n-Triacontane (S)	80	%.		50-150	1	11/09/22 13:15	11/11/22 15:08	3	
NWTPH-Dx GCS Silica Gel LV	Analytical Met	hod: NWTP	H-Dx Prepar	ation Me	ethod: El	PA 3510C			
	Pace Analytica	al Services -	Minneapolis						
Diesel Fuel Range SG	0.47	mg/L		0.40	1	11/09/22 13:18	11/18/22 19:3	5 68334-30-5	
Motor Oil Range SG <i>Surrogates</i>	ND	mg/L		0.40	1	11/09/22 13:18	11/18/22 19:3	5 64742-65-0	
o-Terphenyl (S)	85	%.	:	50-150	1	11/09/22 13:18	11/18/22 19:3	5 84-15-1	
n-Triacontane (S)	83	%.	:	50-150	1	11/09/22 13:18	11/18/22 19:3	5	
NWTPH-Gx GCV	Analytical Met	hod: NWTP	H-Gx						
	Pace Analytica	al Services -	Minneapolis						
TPH as Gas Surrogates	ND	ug/L		100	1		11/10/22 14:1	9	
a,a,a-Trifluorotoluene (S)	104	%.		50-150	1		11/10/22 14:1	9 98-08-8	
8260D MSV UST	Analytical Met	hod: EPA 82	260D						
	Pace Analytica	al Services -	Minneapolis						
Benzene Surrogates	ND	ug/L		1.0	1		11/10/22 08:34	4 71-43-2	
1,2-Dichlorobenzene-d4 (S)	100	%.		75-125	1		11/10/22 08:34	4 2199-69-1	
4-Bromofluorobenzene (S)	96	%.		75-125	1		11/10/22 08:34	4 460-00-4	
Toluene-d8 (S)	97	%.		75-125	1		11/10/22 08:34	4 2037-26-5	

•	Yakima Valley S 10632881	pray										
QC Batch:	852733		Analys	sis Method	1: N	IWTPH-G	ix					
QC Batch Method:	NWTPH-Gx			sis Descrip		IWTPH-G	ix Water					
			Labora			ace Anal	vtical Ser	vices - Minne	apolis			
Associated Lab Samp	oles: 106328	81001, 1063288100	2, 10632881	003								
METHOD BLANK:	4508768		ſ	Matrix: Wa	ater							
Associated Lab Samp	oles: 106328	81001, 1063288100	2, 10632881	003								
			Blanl		Reporting							
Parame	eter	Units	Resu	lt	Limit	Ana	lyzed	Qualifie	rs			
TPH as Gas		ug/L		ND	100	11/10/2	22 12:35					
a,a,a-Trifluorotoluene	(S)	%.		108	50-150) 11/10/2	22 12:35					
LABORATORY CON		& LCSD: 450877 Units	0 Spike Conc.	LCS Result	4508771 LCSD Result	LCS % Rec	LCSD % Rec	% Rec Limits	RPD	Max RPD	Qua	alifiers
TPH as Gas a,a,a-Trifluorotoluene	(S)	ug/L %.	1000	98	4 929	9 98 110		75-125 50-150	6	20		
MATRIX SPIKE & MA	TRIX SPIKE D		MS	MSD	4508774							
Parameter	Ur	10632881002 hits Result	Spike Conc.	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD c % Rec	% Rec Limits	RPD	Max RPD	Qual
TPH as Gas a,a,a-Trifluorotoluene	ug	ı/L ND	1000	1000	971	963		94 93 07 107	65-126	6 <u>1</u>		
SAMPLE DUPLICATE	E: 4508772		1062288	1002	Dun			Max				
Parame	eter	Units	1063288 Resu		Dup Result	RF	D	Max RPD	Qual	ifiers		
TPH as Gas a,a,a-Trifluorotoluene	(S)	ug/L %.		ND 105	33.1J 108			3	30			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QC Batch: 852527		Analysis	Method:	EPA 8260D					
QC Batch Method: EPA 8260D		-	Description:	8260D MSV UST-WATER					
		Laborato	·	Pace Analytical Services - Minneapolis					
Associated Lab Samples: 106328	81001, 1063288100					incupono			
METHOD BLANK: 4507454		Mat	rix: Water						
Associated Lab Samples: 106328	81001, 1063288100	02, 1063288100	3						
		Blank	Reporting	3					
Parameter	Units	Result	Limit	Analyze	ed Quali	fiers			
Benzene	ug/L	N	1D	1.0 11/10/22 0	7:00				
1,2-Dichlorobenzene-d4 (S)	%.	1	01 75-	125 11/10/22 0	7:00				
4-Bromofluorobenzene (S)	%.		97 75-	125 11/10/22 0	7:00				
Toluene-d8 (S)	%.		98 75-	125 11/10/22 0	7:00				
LABORATORY CONTROL SAMPLE	: 4507455								
		Spike	LCS	LCS	% Rec				
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers			
Benzene	ug/L	20	19.4	97	73-125				
1,2-Dichlorobenzene-d4 (S)	%.			99	75-125				
4-Bromofluorobenzene (S)	%.			100	75-125				
Toluene-d8 (S)	%.			98	75-125				

MATRIX SPIKE & MATRIX SP	IKE DUPLIC	CATE: 4507	456		4507457							
			MS	MSD								
	1	0632881002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Benzene	ug/L	ND	20	20	18.1	18.6	90	92	65-140	3	30	
1,2-Dichlorobenzene-d4 (S)	%.						99	100	75-125			
4-Bromofluorobenzene (S)	%.						99	100	75-125			
Toluene-d8 (S)	%.						98	99	75-125			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

-	Yakima 10632	a Valley Spra 881	ıy										
QC Batch:	8523	16		Anal	ysis Metho	od: N	WTPH-Dx						
QC Batch Method:	EPA	3510C		Anal	ysis Desci	ription: N	WTPH-Dx	GCS LV					
					oratory:		Pace Analyti	ical Servic	es - Minnea	apolis			
Associated Lab Sam	ples:	106328810	002, 1063288100		,		,,,,,,,, .						
METHOD BLANK:	45066	46			Matrix: V	Vater							
Associated Lab Sam	ples:	106328810	02, 1063288100	3									
				Bla	nk	Reporting							
Param	neter		Units	Res	ult	Limit	Analy	/zed	Qualifier	s			
Diesel Fuel Range			mg/L		ND	0.40) 11/11/22	2 13:48					
Motor Oil Range			mg/L		ND	0.40) 11/11/22	2 13:48					
n-Triacontane (S)			%.		91	50-150) 11/11/22	2 13:48					
o-Terphenyl (S)			%.		86	50-150) 11/11/22	2 13:48					
LABORATORY CON	ITROL	SAMPLE:	4506647										
				Spike	L	CS	LCS	% R	ec				
Param	neter		Units	Conc.	Re	esult	% Rec	Limi	its (Qualifiers			
Diesel Fuel Range			mg/L		2	1.6	79	9	50-150				
Motor Oil Range			mg/L		2	1.9	95	5 (50-150				
n-Triacontane (S)			%.				91	1 :	50-150				
o-Terphenyl (S)			%.				91	1 4	50-150				
MATRIX SPIKE & M	ATRIX	SPIKE DUPI	_ICATE: 45070			4507081							
				MS	MSD								
			10632881002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	<u> </u>
Parameter		Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Diesel Fuel Range		mg/L	1.2	2	2		2.3	55	53		1	30	
Motor Oil Range		mg/L	0.52	2	2	2 1.9	1.9	70			0	30	
n-Triacontane (S)		%.						75	67				
o-Terphenyl (S)		%.						77	71	50-150			
SAMPLE DUPLICAT	E: 45	06691											
				106325		Dup			Max				
Param	eter		Units	Res	ult	Result	RPD)	RPD	Qualif	iers		
Diesel Fuel Range			mg/L		0.12J	NE)		30	0			
Matar Oil Danga					0 22 1	20	1		20	0			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

0.32J

97

92

mg/L

%.

%.

REPORT OF LABORATORY ANALYSIS

.29J

90

84

30

Motor Oil Range

n-Triacontane (S)

o-Terphenyl (S)

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

QC Batch: 852455		Analysis	Method:	N	WTPH-Dx		
QC Batch Method: EPA 3510C		Analysis	Descriptio	n: N	WTPH-Dx GO	CS LV SG	
		Laborato	ry:	P	ace Analytica	Services - Min	neapolis
Associated Lab Samples: 106328	81002, 10632881003				·		
METHOD BLANK: 4507082		Mat	rix: Water				
Associated Lab Samples: 106328	81002, 10632881003						
		Blank	Rep	orting			
Parameter	Units	Result	L	imit	Analyze	d Quali	fiers
Diesel Fuel Range SG	mg/L	N	ND	0.40	11/18/22 18	3:37	
Motor Oil Range SG	mg/L	١	١D	0.40	11/18/22 18	3:37	
n-Triacontane (S)	%.		76	50-150	11/18/22 18	3:37	
o-Terphenyl (S)	%.		73	50-150	11/18/22 18	3:37	
LABORATORY CONTROL SAMPLE	: 4507083						
		Spike	LCS		LCS	% Rec	
Parameter	Units	Conc.	Result		% Rec	Limits	Qualifiers
Diesel Fuel Range SG	mg/L	2		1.6	80	50-150	
Motor Oil Range SG	mg/L	2		1.9	96	50-150	
n-Triacontane (S)	%.				82	50-150	
o-Terphenyl (S)	%.				83	50-150	

Parameter	Units	10632881002 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Diesel Fuel Range SG	mg/L	0.56	2	2	1.6	1.5	54	46	50-150	9	30	M1
Motor Oil Range SG	mg/L	ND	2	2	1.6	1.4	61	52	50-150	12	30	
n-Triacontane (S)	%.						69	62	50-150			
o-Terphenyl (S)	%.						71	65	50-150			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: Yakima Valley Spray

Pace Project No.: 10632881

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:	Yakima Valley Spray
Pace Project No.:	10632881

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
10632881002	YVS-2-20221107	EPA 3510C	852316	NWTPH-Dx	853255
10632881003	YVS-201-20221107	EPA 3510C	852316	NWTPH-Dx	853255
10632881002	YVS-2-20221107	EPA 3510C	852455	NWTPH-Dx	854630
10632881003	YVS-201-20221107	EPA 3510C	852455	NWTPH-Dx	854630
10632881001	TB-20221107	NWTPH-Gx	852733		
10632881002	YVS-2-20221107	NWTPH-Gx	852733		
10632881003	YVS-201-20221107	NWTPH-Gx	852733		
10632881001	TB-20221107	EPA 8260D	852527		
10632881002	YVS-2-20221107	EPA 8260D	852527		
10632881003	YVS-201-20221107	EPA 8260D	852527		

				1										<u> </u>	<u>থ্</u>	8		· · · · ·	Т					Т	100							7
	1																								S	×			i	Intact	/N) səldme	N) S
	õ					a state	$\sum_{i=1}^{n}$								20										SAMPLE CONDITIONS	Y				Sealed (/V)	ooler ()	
							063288								1500/										ECON							-
	/		ency				Ñ								RS M										AMPL	≻				uo p	eceived (N/Y) e	이 님
			Regulatory Agency		State / Location WA / Yakima		(7) (0)				(N/A) eninoln') I	leubiseЯ													2				 ^	ni 9M3	
<u>×</u>	Page		gulato		WA /		ğ)							<u> </u>				_			+	_	-		~						
ırate			Rec	And American Association	Ś	111111111	-	l									_			-+		╉	+	┢	TIME	05:						
acci						ININ'I	• •		2			· · · · ·	· .		-						-		┢	+	┨╴	 00					6	,
nt leted			1032-55				Ŧ	i I	10632881	_															μ	22						'
me							M											_	\dashv	-	-+	-			DATE	11/8/11					14	
t be o			(Suppose)			4													\neg		+	+		+		1					1	
DO						Requested			1	·			чтуи	×	×	×	N														DATE Signed: // -	
est elds			8			Requ		_				ne by 82		×	X X	×	4	\vdash	-	_		_	_	\vdash	NO						TE Si	
ent fi			e 26			12112		╉		l¢	aD soilid	н-D× + 2 УО-Н	ATWN ATWN		~ ×	X X	╢	+	+	-				+1	ILIAT	a L		' I			A	
elev:		Accounts Payable ANCHOR QEA, LLC	Suit		OSS		N/.	٨.	主義人間		18	yses Ter					╉	\uparrow							ACCEPTED BY / AFFILIATION	Z	,			7	2 -	1
Cal		Accounts Payable ANCHOR QEA, LL	enue,	6	Jenniter Gross 40757 / 1	П							Other					Ţ						Π	DBY					1		
Vti ENT.		s Pay	Ave	ľ	Jenniter 40757 /			٥Ļ					Methanc				_	_		_		_		$\left \right $	EPTE	$ \langle$						
unal CUMI		HOF	1 3rd	ľ	54		:	ative					N ^a 2S20	┢			┥┤		+	-+			+	++	ACC							
	ü	ACC	120	ance:	lie								нсі	 	×	×			\dagger					++		1					2	
GAL Q	matic	me:		Refer	Mana #		ſ	2					EONH						\square					T	ula. National	\Box					DIE PUREN	
	n C e Infoi	on: Iny Na	is.	luote	roject			╞					H2SO4 Unprese				_								TIME	Š					ř j	
US В	Section C Invoice Information:	Attention: Company Name:	Address:	Pace Quote Reference:	Pace Project Manager. Pace Profile #:							SABNIATY		-	11	8	-			\rightarrow				╢╴	F	1200				ZE.	J	2
C usto	• -		Ì			11				N	оггестіо	D TA 9M9T	3 19MA2							Ц				1-		2.				NATUI ER:	Ë	
CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.		E											TIME	\backslash						$\left \right $					DATE	1-7-11				SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER:	NATURE of SAMPLER:	
AIN Chain					≥				END						$ \mathbf{X} $		╢		_	$\frac{1}{\lambda}$	7				0.96. 2018	Ż				E ANI le of S	EofS	
E CH		at .com			Spr								DATE			\mathbf{N}				1					NO					NAM I Nam	ATUR	
• -		VO		2	alley								TIME	ê	0150	8	╢			Ī			1	\uparrow	ATIO		,			PLER	SIGN	
		2 HUN		-	na <			5	START				Ē	10300	10	90 2 2				_	14			L	RELINQUISHED BY / AFFILIATI	Sherth				SAN		
	ü	A CU		2	Такі				ST				DATE	12-‡-11	2-2-1	1-2-23					V				BYJ	જ						
	matic	8	Í	9	;	╽┟			· · · · ·	(19100	-0.000	-0) 7					╢		+	-	7				SHED							
	t Infoi	キバ		ġ	Numb	╽┟										<mark>ט</mark> ר	+		-					\parallel	NOUR	L.						
	rojec	× 8×		I der	Dider 1	╽┟				(fiel of 2	ahoo biley i	CODE (see	XIATAM	۳u الا	5	3	╢			-	+	₩.			REL	Stephen	-					
	Section B Required Project Information.	rt To: To:		hase (ainer				M CODE	۲ <u>۶</u> , 4	or a vo	ខ									(T	,			জ						
	Secti Requ	Repo Copy			Cont																	X			en de Stat							
				3					TRIX Nking W	ter ste Wat duct //Solid	Oil Air Other	ene																				
				E					MA	Soi D Va	5 \$ \$ 5	Ц.				1										Ъ Ц С						
		00		Z.	lard)										4	11							X		(0	beta :	le)	1				
		te 26		NC	tano					. an	}			- 1	11	22									IENT	eldrin,	indar					
		Sui	10	<u></u>	S S				≙	r box) e unia	ſ			10	70221107	- 2022 110							$ \rangle$		COMA	ij.	gamma-BHC (Lindane)	Shing 155				
		EA, L	, 981	3	20				Щ	ter pe -9 / , - ust be				11-	20.									\boldsymbol{N}	NAL	T, Aldı	mma-f	E	-			
	tion:	a A O	۷V	F	5				SAMPLE ID	One Character per box. (A-Z, 0-9 / , -) Samole Ids must be unique				112202	2 -	201								$ \rangle$	ADDITIONAL COMMENTS	4,4-DDT, Aldrin, Dieldrin, beta-BHC	ga					
i es'	form	01 01 01 01	sattle	A	ite/TA				SA	One C)						3										r 1		E				
TalMic	ient In	1 <u>2</u> 1	ň	3						- S	5			73-	<u> 7v5-</u>	YVS	'									y 808		4ma				
Pace Analytical	Section A Required Client Information:	Company: ANCHOR QEA, LLC Report To: N ≠ K 8k CH CAL Address: 1201 3rd Avenue, Suite 2600 Copy To: N B ACH € CA ANY Hor Q = A			sted [╞┝									-	34 <u>54</u>			(2 40.2	N.		*Pesticides by 8081:		GILDUND WATER				
	Section A Required	Comp		Email	Seque							1	ITEM#	$\boldsymbol{\mu}_{i}$	2	3	4	S	9	7	~	ອ ຊ	11	12		*Pesti		36		Page ?	17 of	18
	-, -	<u>~1×</u>	<u> </u>		<u> 1 114</u>																1 mil 3											

•

00 003 033

DC#_Title: ENV-FRM-MIN4-0150 v10_Sample Condition Upon Receipt (SCUR) Effective Date:

Sample Condition Client Name:		Project	#:	JO#:10632881
Upon Receipt ANC NOT QEA				
Courier: FedEx UPS USPS Client				PM: JMG Due Date: 11/22/22 CLIENT: ANCHOR QEA
Tracking Number: 540518245508	See E	Exception		
Custody Seal on Cooler/Box Present?				Biological Tissue Frozen? Yes No N/A
Packing Material: P Bubble Wrap Bubble Bags	None		Othe	
Thermometer: T1 (0461) T2 (1336) T3 (0459) T6 (0235) T7 (0042) T8 (0779)) Type of Ice: Wet Blue Dry None
Did Samples Originate in West Virginia? 🗌 Yes 🛛 No			Were All Co	ntainer Temps Taken? 🗌 Yes 🗌 No 🗹 N/A
Temp should be above freezing to 6 °C Cooler temp Read w/Te	mp Blank	:_3+1	°C	Average Corrected Temp
Correction Factor: <u>AUD 0.1</u> Cooler Temp Corrected w/te	mp blank:	3.2	°C	(no temp blank only): °C See Exceptions ENV-FRM-MIN4-0142
USDA Regulated Soil: (N/A, water ample/other:		_)		Date/Initials of Person Examining Contents: 11/8/22 AP (7
Did samples originate in a quarantine zone within the United State GA, ID, LA, MS, NC, NM, NY, OK, OR, SC, TN, TX, or VA (check maps			t	Did samples originate from a foreign source (internationally, including Hawaii and Puerto Rico)? Yes VNO
				0154) and include with SCUR/COC paperwork.
Location (Check one): Duluth Minneap Chain of Custody Present and Filled Out?		_ Virgini	a	COMMENTS
Chain of Custody Present and Pilled Out?	Yes Yes	No		2.
Sampler Name and/or Signature on COC?	Yes	No	N/A	
Samples Arrived within Hold Time?	Yes	No	January Ja	4. If fecal: <8 hrs >8 hr, <24 No
Short Hold Time Analysis (<72 hr)?	Yes	/ No		5. Fecal Coliform HPC Total Coliform/E.coli
		- 1		BOD/cBOD Hex Chrom Turbidity Nitrate
Rush Turn Around Time Requested?	Yes	No No		6.
Sufficient Sample Volume? Correct Containers Used?	Yes Yes	No No	N/A	7
-Pace Containers Used?	Yes			0.
Containers Intact?	V Yes	No		9.
Field Filtered Volume Received for Dissolved Tests?	Yes	No	N/A	10. Is sediment visible in the dissolved container? Yes No
Is sufficient information available to reconcile the samples to the COC?	Yes	No		11. If no, write ID/Date/Time of container below:
Matrix: Water Soil Oil Other	1 10			ENV-FRM-MIN4-0142
All containers needing acid/base preservation have been checked?	Ves	∐ No	∠ N/A	12. Sample # .
All containers needing preservation are found to be in compliance with EPA recommendation?	Yes	🗌 No	🗹 N/A	NaOH HNO3 H2SO4 Zinc Acetate
(HNO3, H2SO4, <2pH, NaOH >9 Sulfide, NaOH>10 Cyanide)	/			
Exceptions: (OA) Coliform, TOC/DOC Oil and Grease, DRO/8015 (water) and Dioxins/PFAS	Z Yes	No 🗌	N/A	Positive for Residual Yes See Exceptions Chlorine? No ENV-FRM-MIN4-0142
(*If adding preservative to a container, it must be added to associated field and equipment blanksverify with PM first.)				pH Paper Lot # Residual Chlorine 0-6 Roll 0-6 Strip 0-14 Strip
Headspace in Methyl Mercury Container?	Yes	No	∠ N/A	13.
Extra labels present on soil VOA or WIDRO containers?	Yes	No	N/A	14. See Exceptions
Headspace in VOA Vials (greater than 6mm)?	Yes 🗌	No	🗹 N/A	ENV-FRM-MIN4-0142
3 Trip Blanks Present?	∠ Yes	No	N/A	15. 7 AUDOG (LA
Trip Blank Custody Seals Present?	Yes	∐ No	N/A	Pace Trip Blank Lot # (if purchased): 391709 (4)
CLIENT NOTIFICATION/RESOLUTION				Field Data Required? Yes No
Person Contacted: Comments/Resolution:				Date/Time:
Project Manager Review:	MA			Date: 11/9/22
		arm will be a		
NOTE: Whenever there is a discrepancy affecting North Carolina compliance samples, a temp, incorrect containers).	copy or this fo	ann will de Se		

Pace[®] Analytical Services, LLC

Appendix D Data Validation Reports

Quarter 1

1201 3rd Avenue, Suite 2600 Seattle, Washington 98101 206.287.9130

Data Validation Report – EPA Stage 2A

May 2, 2022

Project:	Yakima Valley Spray/U-Haul Facility Groundwater Monitoring
Project Number:	192024-01.01
Validation ID:	AQ-2022-553580

This report summarizes the review of analytical results for three water samples, one field duplicate, and one trip blank sample collected on March 28, 2022. The samples were collected by Anchor QEA, LLC, and submitted to Pace Analytical Services, LLC. (Pace), in Minneapolis, Minnesota. The samples were analyzed for the following parameters:

- Organochlorine pesticides by U.S. Environmental Protection Agency (USEPA) Method 8081B
- Total petroleum hydrocarbons (TPH) gasoline range organics (GRO) by Northwest (NW) TPH method NWTPH-Gx
- TPH diesel range organics (DRO) and motor-oil range organics (MRO) by method NWTPH-Dx (with and without silica gel cleanup (SGC)
- Dissolved metals by USEPA Method 200.8
- Volatile organic compounds (VOCs) by USEPA Method 8260D

Pace sample data group (SDG) number 10602384 was reviewed in this report. Sample IDs, matrices, and analyses are presented in Table 1.

Table 1 Location IDs, Matrix, and Analyses

Location ID	COC Sample ID	Pace Sample ID	Matrix	Analyses
NA/C 1D	YVS-1B-20220328	10602384001	Water	TPH-DRO, TPH-MRO, TPH-GRO,
YVS-1B				metals, VOCs
	YVS-2-20220328	10602384002	Water	TPH-DRO, TPH-MRO, TPH-GRO,
YVS-2	103-2-20220320	10002304002	water	metals, VOCs, pesticides
YVS-3	YVS-3-20220328	10602384003	Water	TPH-DRO, TPH-MRO
Trip blank	TB-20220328	10602384004	Water	VOCs
	NUC 201 20220220	10000000000		TPH-DRO, TPH-MRO, TPH-GRO,
YVS-2 (FD)	YVS-201-20220328	10602384005	Water	metals, VOCs, pesticides

Notes:

FD: field duplicate

Data Validation and Qualifications

The following comments refer to the laboratory's performance in meeting the quality assurance/quality control guidelines outlined in the analytical procedures. Laboratory results were reviewed using the laboratory control limits and the following guidelines:

• Test Methods for Evaluating Solid Waste: Physical/Chemical Methods (USEPA 1986)

- National Functional Guidelines for Inorganic Superfund Data Review (USEPA 2020a)
- National Functional Guidelines for Organic Superfund Methods Data Review (USEPA 2020b)

Unless noted in this report, laboratory results for the samples listed in Table 1 were within quality control criteria.

Field Documentation

Field documentation was checked for completeness and accuracy. The chain-of-custody forms were signed by Pace at the time of sample receipt. Samples were received in good condition and within the recommended temperature range.

Holding Times and Sample Preservation

Samples were appropriately preserved and analyzed within holding times except for silica gel TPH-DRO and TPH-MRO analyzed on samples YVS-1B-20220382 and YVS-2-20220328 which were extracted two days outside the recommended hold time. Results for these samples have been qualified as "UJ" to indicate they are estimated.

Laboratory Method Blanks

Laboratory method blanks were analyzed at the required frequencies. All method blanks were free of target analytes.

Field Quality Control

Trip Blanks

One trip blank was collected in association with this sample set and analyzed for VOCs. No target analytes were detected in the trip blank.

Field Duplicates

One field duplicate was collected in association with this sample set. If either the parent or the field duplicate result was less than five times the RL, results were evaluated by the difference between them, using the control limit of \pm RL. All RPD or difference values were within control limits.

Detected results are summarized in Table 2.

Table 2 Field Duplicate Summary

Analyte	YVS-2- 20220328	YVS-201- 20220328	RPD	Difference	Difference CL
Dissolved arsenic	2.8 µg/L	2.8 ug/L	0.0%		

Analyte	YVS-2- 20220328	YVS-201- 20220328	RPD	Difference	Difference CL
TPH-DRO	0.67 mg/L	0.73 mg/L		0.06 mg/L	0.40 mg/L
TPH-GRO	1110 µg/L	1180 ug/L	6.1%		
Benzene	8.9 µg/L	7.8 ug/L	13.2%		

Notes: µg/L: microgram per liter mg/L: per liter CL: control limit

Surrogates

Surrogates were analyzed at the required frequencies, and all analyses resulted in recovery values within laboratory control limits except for n-triacontane in the silica gel TPH-DRO and TPH-MRO analysis of sample YVS-201-20220328, which recovered below the laboratory control limit. The results were qualified "UJ" to indicate a potentially low bias.

Laboratory Control Samples

Laboratory control samples (LCS) were analyzed at the required frequencies, and all analyses resulted in recovery values within laboratory-required control limits.

Matrix Spike and Matrix Spike Duplicate Samples

Matrix spike (MS) and matrix spike duplicate (MSD) samples were analyzed at the required frequency. All MS/MSD recoveries and MS/MSD RPDs were within laboratory control limits with the following exceptions:

- Volatiles: The benzene MS analyzed on sample YVS-2-20220328 recovered above the control limit. The associated sample result has been qualified "J" to indicate a potentially high bias.
- TPHD: The TPH-DRO and TPH-MRO MS analyzed on YVS-2-20220328 recovered below the control limits. The associated sample results have been qualified "J" and "UJ" to indicate a potentially low bias.
- TPHD (with silica gel clean-ups): The TPH-DRO MS analyzed on YVS-2-20220328 recovered below the control limit. The associated sample result has been qualified "UJ" to indicate a potentially low bias.

Qualified results are summarized in Table 3.

Laboratory Duplicates

Laboratory duplicates were analyzed at the required frequency or LCSD or MSD samples were analyzed in their place. Laboratory duplicates analyzed on non-project samples were not evaluated.

Method Reporting Limits

RLs were acceptable as reported. All values were reported using the laboratory RLs.

Overall Assessment

As was determined by this evaluation, the laboratory followed the specified analytical methods, and all requested sample analyses were completed. Accuracy was acceptable as demonstrated by the LCS and MS/MSD recovery values, with exceptions noted in prior sections. Precision was acceptable as demonstrated by the laboratory duplicate, field duplicate, and MS/MSD RPD values or difference values. All data were acceptable as reported or qualified.

See Table 3 for a summary of qualified data.

Data Qualifier Definitions

- J Indicates an estimated value.
- R Indicates the result is rejected and unusable.
- U Indicates the compound or analyte was analyzed for but not detected at or above the specified limit.
- UJ Indicates the compound or analyte of interest was analyzed for but not detected and the specified limit reported is estimated.

			Reported	Qualified	
Sample ID	Parameter	Analyte	Result	Result	Reason
YVS-1B-	ТРН	TPH-DRO (SG)	0.4U mg/L	0.4UJ mg/L	
20220328	IPH	TPH-MRO (SG)	0.4U mg/L	0.4UJ mg/L	Hold time exceedance
YVS-201-	TDU	TPH-DRO (SG)	0.4U mg/L	0.4UJ mg/L	Surrogate %R below control
20220328	TPH	TPH-MRO (SG)	0.4U mg/L	0.4UJ mg/L	limit
		TPH-DRO	0.67 mg/L	0.67J mg/L	MC 0/D holes and trail line it
		TPH-MRO	0.4U mg/L	0.4UJ mg/L	MS %R below control limit
YVS-2-	TPH				Hold time exceedance / MS
20220328		TPH-DRO (SG)	0.4U mg/L	0.4UJ mg/L	%R below control limit
		TPH-MRO (SG)	0.4U mg/L	0.4UJ mg/L	Hold time exceedance
	VOCs	Benzene	8.9 µg/L	8.9J µg/L	MS %R above control limit

Table 3 Data Qualification Summary

Notes:

µg/L: micrograms per liter mg/L: milligrams per liter %R: percent recovery SG: silica gel

- USEPA (U.S. Environmental Protection Agency), 1986. *Test Methods for Evaluating Solid Waste: Physical/Chemical Methods*. Third Edition. U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response. EPA-530/SW-846. September 1986.
- USEPA, 2020a. *National Functional Guidelines for Inorganic Superfund Methods Data Review*. Office of Superfund Remediation and Technology Innovation. EPA-540-R-20-006. November 2020.
- USEPA, 2020b. *National Functional Guidelines for Superfund Organic Methods Data Review*. Office of Superfund Remediation and Technology Innovation. EPA-540-R-20-005. November 2020.

Quarter 2

1201 3rd Avenue, Suite 2600 Seattle, Washington 98101 206.287.9130

Data Validation Report – EPA Stage 2A

July 15, 2022

Project:	Yakima Valley Spray/U-Haul Facility Groundwater Monitoring
Project Number:	192024-01.01
Validation ID:	AQ-2022-553602

This report summarizes the review of analytical results for three water samples, one field duplicate, and one trip blank sample collected on June 09, 2022. The samples were collected by Anchor QEA, LLC, and submitted to Pace Analytical Services, LLC. (Pace), in Minneapolis, Minnesota. The samples were analyzed for the following parameters:

- Total petroleum hydrocarbons (TPH) gasoline range organics (GRO) by Northwest (NW) TPH method NWTPH-Gx
- TPH diesel range organics (DRO) and motor-oil range organics (MRO) by method NWTPH-Dx (with and without silica gel cleanup (SGC)
- Volatile organic compounds (VOCs) by USEPA Method 8260D

Pace sample data group (SDG) number 10612290 was reviewed in this report. Sample IDs, matrices, and analyses are presented in Table 1.

Location ID **COC Sample ID** Pace Sample ID Matrix Analyses Trip blank TB-20220609 10612290001 Water TPH-GRO, VOCs YVS-1B YVS-1B-20220609 10612290002 Water TPH-DRO, TPH-MRO YVS-2 YVS-2-20220609 10612290004 Water TPH-DRO, TPH-MRO, TPH-GRO, VOCs YVS-201-20220609 YVS-2 (FD) 10612290005 Water TPH-DRO, TPH-MRO, TPH-GRO, VOCs, YVS-3 YVS-3-20220609 10612290003 Water TPH-DRO, TPH-MRO

Table 1 Location IDs, Matrix, and Analyses

Notes:

FD: field duplicate

Data Validation and Qualifications

The following comments refer to the laboratory's performance in meeting the quality assurance/quality control guidelines outlined in the analytical procedures. Laboratory results were reviewed using the laboratory control limits and the following guidelines:

- Test Methods for Evaluating Solid Waste: Physical/Chemical Methods (USEPA 1986)
- National Functional Guidelines for Inorganic Superfund Data Review (USEPA 2020a)
- National Functional Guidelines for Organic Superfund Methods Data Review (USEPA 2020b)

Unless noted in this report, laboratory results for the samples listed in Table 1 were within quality control criteria.

Field Documentation

Field documentation was checked for completeness and accuracy. The chain-of-custody forms were signed by Pace at the time of sample receipt. Samples were received in good condition and within the recommended temperature range.

Holding Times and Sample Preservation

Samples were appropriately preserved and analyzed within holding times.

Laboratory Method Blanks

Laboratory method blanks were analyzed at the required frequencies. All method blanks were free of target analytes.

Field Quality Control

Trip Blanks

One trip blank was collected in association with this sample set and analyzed for VOCs and TPH-G. No target analytes were detected in the trip blank.

Field Duplicates

One field duplicate was collected in association with this sample set. If either the parent or the field duplicate result was less than five times the RL, results were evaluated by the difference between them, using the control limit of \pm RL. All RPD or difference values were within control limits.

Detected results are summarized in Table 2.

Table 2Field Duplicate Summary

Analyte	YVS-2- 20220609	YVS-201- 20220609	RPD	Difference	Difference CL
Benzene	4.6 μg/L	4.5 μg/L		0.09 µg/L	1 µg/L
Diesel range hydrocarbons	0.50 mg/L	0.76 mg/L		0.26 mg/L	0.4 mg/L
Gas Range Organics (C6- C12)	2240 µg/L	1940 µg/L	14%		

Notes: µg/L: microgram per liter mg/L: per liter CL: control limit

Surrogates

Surrogates were analyzed at the required frequencies, and all analyses resulted in recovery values within laboratory control limits except for the DRO and MRO surrogate n-triacontane which was below the control limit in one SGC analysis (YVS-2-20220609) and two analyses without SGC (YVS-1B-20220609 and YVS-3-20220609). Additionally, trifluorotoluene in the TPH-GRO analysis of sample YVS-2-20220609, recovered below the laboratory control limit. Sample results were qualified "UJ" to indicate a potentially low bias.

Laboratory Control Samples

Laboratory control samples (LCS) were analyzed at the required frequencies, and all analyses resulted in recovery values within laboratory-required control limits.

Matrix Spike and Matrix Spike Duplicate Samples

Matrix spike (MS) and matrix spike duplicate (MSD) samples were analyzed at the required frequency. MS and MSD analyses conducted on non-project samples were not included in this evaluation. All MS/MSD recoveries and MS/MSD RPDs were within laboratory control limits with the following exceptions:

- Volatiles: The RPD for the benzene MS/MSD analyzed on sample YVS-2-20220609 was above the control limit. The associated sample result was qualified "J" to indicate it is estimated.
- TPHD: The MSD %R for TPH-DRO and TPH-MRO in the MS/MSD analyzed on YVS-2-20220609 were below the control limits and the RPD was above the CL for TPH-DRO. The associated sample result was qualified "U" to indicate it is estimated.
- TPHD (with silica gel clean-ups): The TPH-DRO and TPH-MRO in the MS and MSD analyzed on YVS-2-20220609 recovered below the control limits. The associated sample results were not detected, so results were not qualified.

Laboratory Duplicates

Laboratory duplicates were not analyzed as part of this sample set.

Method Reporting Limits

RLs were acceptable as reported. All values were reported using the laboratory RLs. Sample results were reported undiluted.

Sample Analysis

Results for the pre-silica gel treated TPH-DRO and TPH-MRO analyses of samples YVS-1B-20220609 and YVS-3-20220609 were non-detect so silica gel treated analyses were not performed.

Overall Assessment

As was determined by this evaluation, the laboratory followed the specified analytical methods, and all requested sample analyses were completed. Accuracy was acceptable as demonstrated by the LCS and MS/MSD recovery values, with exceptions noted in prior sections. Precision was acceptable as demonstrated by the field duplicate, and MS/MSD RPD values or difference values, with exceptions noted in prior sections. All data were acceptable as reported or qualified. Table 3 summarizes the qualifiers applied to the sample results reviewed in this report.

Data Qualifier Definitions

- J Indicates an estimated value.
- U Indicates the compound or analyte was analyzed for but not detected at or above the specified limit.
- UJ Indicates the compound or analyte of interest was analyzed for but not detected and the specified limit reported is estimated.

Table 3Data Qualification Summary

Sample ID	Parameter	Analyte	Reported Result	Qualified Result	Reason
		Diesel range hydrocarbons	0.4U mg/L	0.4UJ mg/L	
YVS-1B-20220609	Water	Oil range organics	0.4U mg/L	0.4UJ mg/L	Surrogate recovery below CL
		Diesel range hydrocarbons	0.4U mg/L	0.4UJ mg/L	
YVS-2-20220609-SG	Water	Oil range organics	0.4U mg/L	0.4UJ mg/L	Surrogate recovery below CL
		Diesel range hydrocarbons	0.5 mg/L	0.5J mg/L	MSD %R below CL and MS/MSD RPD above CL, Surrogate recovery below CL
		Oil range organics	0.4U mg/L	0.4UJ mg/L	Surrogate recovery below CL
		Benzene	4.6 µg/L	4.6J µg/L	MS/MSD RPD above CL
YVS-2-20220609	Water	Gas Range Organics (C6- C12)	2240 µg/L	2240J µg/L	Surrogate recovery below CL
		Diesel range hydrocarbons	0.4U mg/L	0.4UJ mg/L	
YVS-3-20220609	Water	Oil range organics	0.4U mg/L	0.4UJ mg/L	Surrogate recovery below CL

Notes:

µg/L: micrograms per liter mg/L: milligrams per liter CL: control limit

- USEPA (U.S. Environmental Protection Agency), 1986. *Test Methods for Evaluating Solid Waste: Physical/Chemical Methods*. Third Edition. U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response. EPA-530/SW-846. September 1986.
- USEPA, 2020a. *National Functional Guidelines for Inorganic Superfund Methods Data Review*. Office of Superfund Remediation and Technology Innovation. EPA-540-R-20-006. November 2020.
- USEPA, 2020b. *National Functional Guidelines for Superfund Organic Methods Data Review*. Office of Superfund Remediation and Technology Innovation. EPA-540-R-20-005. November 2020.

July 15, 2022 Page 6

Quarter 3

1201 3rd Avenue, Suite 2600 Seattle, Washington 98101 206.287.9130

Data Validation Report – EPA Stage 2A

October 11, 2022

Project:	Yakima Valley Spray/U-Haul Facility Groundwater Monitoring
Project Number:	192024-01.01
Validation ID:	AQ-2022-553672

This report summarizes the review of analytical results for two water samples, one field duplicate, and one trip blank sample collected on August 30, 2022. The samples were collected by Anchor QEA, LLC, and submitted to Pace Analytical Services, LLC. (Pace), in Minneapolis, Minnesota. The samples were analyzed for the following parameters:

- Total petroleum hydrocarbons (TPH) gasoline range organics (GRO) by Northwest (NW) TPH method NWTPH-Gx
- TPH diesel range organics (DRO) and motor-oil range organics (MRO) by method NWTPH-Dx (with and without silica gel cleanup (SGC))
- Volatile organic compounds (benzene) by USEPA Method 8260D

Pace sample data group (SDG) number 10623698 was reviewed in this report. Sample IDs, matrices, and analyses are presented in Table 1.

Table 1 Location IDs, Matrix, and Analyses

Location ID	COC Sample ID	Pace Sample ID	Matrix	Analyses
Trip blank	TB-20220830	10623698001	Water	TPH-GRO, VOCs
YVS-3	YVS-3-20220830	10623698002	Water	TPH-DRO, TPH-MRO
YVS-2	YVS-2-20220830	10623698003	Water	TPH-DRO, TPH-MRO, TPH-GRO, VOCs
YVS-2 (FD)	YVS-201-20220830	10623698004	Water	TPH-DRO, TPH-MRO, TPH-GRO, VOCs

Notes:

FD: field duplicate

Data Validation and Qualifications

The following comments refer to the laboratory's performance in meeting the quality assurance/quality control guidelines outlined in the analytical procedures. Laboratory results were reviewed using the laboratory control limits and the following guidelines:

- Test Methods for Evaluating Solid Waste: Physical/Chemical Methods (USEPA 1986)
- National Functional Guidelines for Inorganic Superfund Data Review (USEPA 2020a)
- National Functional Guidelines for Organic Superfund Methods Data Review (USEPA 2020b)

Unless noted in this report, laboratory results for the samples listed in Table 1 were within quality control criteria.

Field Documentation

Field documentation was checked for completeness and accuracy. The chain-of-custody form was signed by Pace at the time of sample receipt. Samples were received in good condition and within the recommended temperature range.

Holding Times and Sample Preservation

Samples were appropriately preserved and analyzed within holding times.

Laboratory Method Blanks

Laboratory method blanks were analyzed at the required frequencies. All method blanks were free of target analytes.

Field Quality Control

Trip Blanks

One trip blank was collected in association with this sample set and analyzed for VOCs and TPH-G. No target analytes were detected in the trip blank.

Field Duplicates

One field duplicate was collected in association with this sample set. When either the parent or the field duplicate result was less than five times the RL, results were evaluated by the difference between them, using the control limit of \pm RL. All difference values were within control limits.

Detected results are summarized in Table 2.

Table 2Field Duplicate Summary

Analyte	YVS-2- 20220830	YVS-201- 20220830	RPD	Difference	Difference CL
Diesel range hydrocarbons	1.8J mg/L	1.6J mg/L		0.2 mg/L	0.42 mg/L
Oil range organics	0.74J mg/L	0.72J mg/L		0.02 mg/L	0.42 mg/L

Notes: µg/L: microgram per liter mg/L: per liter CL: control limit

Surrogates

Surrogates were analyzed at the required frequencies, and all analyses resulted in recovery values within laboratory control limits except for the DRO and MRO surrogates n-triacontane and/or o-terphenyl which were below the control limit in the SGC and non-SGC analyses of two samples. Sample results were qualified "UJ" or "J" to indicate a potential bias.

Laboratory Control Samples

Laboratory control samples (LCS) were analyzed at the required frequencies, and all analyses resulted in recovery values within laboratory-required control limits.

Matrix Spike and Matrix Spike Duplicate Samples

Matrix spike (MS) and matrix spike duplicate (MSD) samples were analyzed at the required frequency. MS and MSD analyses conducted on non-project samples were not included in this evaluation. All MS/MSD recoveries and MS/MSD RPDs were within laboratory control limits with the following exceptions:

- TPH: The MS %R for TPH-DRO analyzed on YVS-2-20220830 was below the control limit. The associated parent sample result was qualified "J" to indicate it is estimated.
- TPH (with silica gel clean-ups): The TPH-DRO and TPH-MRO results in the MS analyzed on YVS-2-20220830 recovered below the control limit. The associated sample results were not detected, so were qualified "UJ" to indicate a possible low bias.

Laboratory Duplicates

One laboratory duplicate was analyzed for TPH-GRO. Results were less than five times the RL, so they were evaluated by the difference between them using the control limit of \pm RL. Laboratory duplicate difference values were within laboratory control limits

Method Reporting Limits

RLs were acceptable as reported. All values were reported using the laboratory RLs. Sample results were reported undiluted.

Overall Assessment

As was determined by this evaluation, the laboratory followed the specified analytical methods, and all requested sample analyses were completed. Accuracy was acceptable as demonstrated by the surrogate, LCS/LCSD and MS/MSD recovery values, with exceptions noted in prior sections. Precision was acceptable as demonstrated by the laboratory duplicate, field duplicate, and MS/MSD RPD

values or difference values. All data were acceptable as reported or qualified. Table 3 summarizes the qualifiers applied to the sample results reviewed in this report.

Data Qualifier Definitions

- J Indicates an estimated value.
- U Indicates the compound or analyte was analyzed for but not detected at or above the specified limit.
- UJ Indicates the compound or analyte of interest was analyzed for but not detected and the specified limit reported is estimated.

Table 3Data Qualification Summary

Sample ID	Parameter	Analyte	Reported Result	Qualified Result	Reason
YVS-2-20220830	Water	Oil range organics	0.74 mg/L	0.74J mg/L	Surrogate recovery below CL
		Diesel range hydrocarbons	1.8 mg/L	1.8J mg/L	MS %R below CL, Surrogate recovery below CL
YVS-2-20220830	Water	Oil range organics (SGC)	0.42U mg/L	0.42UJ mg/L	MS %R below CL, Surrogate recovery below CL
		Diesel range hydrocarbons (SGC)	0.42U mg/L	0.42UJ mg/L	MS %R below CL, Surrogate recovery below CL
YVS-201-20220830	Water	Diesel range hydrocarbons	1.6 mg/L	1.6J mg/L	Surrogate recovery below CL
		Oil range organics	0.72 mg/L	0.72J mg/L	Surrogate recovery below CL
YVS-201-20220830	Water	Diesel range hydrocarbons (SGC)	0.4U mg/L	0.4UJ mg/L	Surrogate recovery below CL
		Oil range organics (SGC)	0.4U mg/L	0.4UJ mg/L	Surrogate recovery below CL

Notes:

μg/L: micrograms per liter mg/L: milligrams per liter CL: control limit

- USEPA (U.S. Environmental Protection Agency), 1986. *Test Methods for Evaluating Solid Waste: Physical/Chemical Methods*. Third Edition. U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response. EPA-530/SW-846. September 1986.
- USEPA, 2020a. *National Functional Guidelines for Inorganic Superfund Methods Data Review*. Office of Superfund Remediation and Technology Innovation. EPA-540-R-20-006. November 2020.
- USEPA, 2020b. *National Functional Guidelines for Superfund Organic Methods Data Review*. Office of Superfund Remediation and Technology Innovation. EPA-540-R-20-005. November 2020.

Quarter 4

Data Validation Report – EPA Stage 2A

December 12, 2022

Project:	Yakima Valley Spray/U-Haul Facility Groundwater Monitoring
Project Number:	192024-01.01
Validation ID:	AQ-2022-553711

This report summarizes the review of analytical results for one water sample, one field duplicate, and one trip blank sample collected on November 7, 2022. The samples were collected by Anchor QEA, LLC, and submitted to Pace Analytical Services, LLC. (Pace), in Minneapolis, Minnesota. The samples were analyzed for the following parameters:

- Total petroleum hydrocarbons (TPH) gasoline range organics (GRO) by Northwest (NW) TPH method NWTPH-Gx
- TPH diesel range organics (DRO) and motor-oil range organics (MRO) by method NWTPH-Dx (with and without silica gel cleanup [SGC])
- Benzene by USEPA Method 8260D

Pace sample data group (SDG) number 10632881 was reviewed in this report. Sample IDs, matrices, and analyses are presented in Table 1.

Table 1 Location IDs, Matrix, and Analyses

Location ID	COC Sample ID	Pace Sample ID	Matrix	Analyses
Trip blank	TB-20221107	10632881001	Water	TPH-GRO, benzene
YVS-2	YVS-2-20221107	10632881002	Water	TPH-DRO, TPH-MRO, TPH-GRO, benzene
YVS-2 (FD)	YVS-201-20221107	10632881003	Water	TPH-DRO, TPH-MRO, TPH-GRO, benzene

Notes: FD: field duplicate

Data Validation and Qualifications

The following comments refer to the laboratory's performance in meeting the quality assurance/quality control guidelines outlined in the analytical procedures. Laboratory results were reviewed using the laboratory control limits and the following guidelines:

- Test Methods for Evaluating Solid Waste: Physical/Chemical Methods (USEPA 1986)
- National Functional Guidelines for Organic Superfund Methods Data Review (USEPA 2020)

Unless noted in this report, laboratory results for the samples listed in Table 1 were within quality control criteria.

Field Documentation

Field documentation was checked for completeness and accuracy. The chain-of-custody form was signed by Pace at the time of sample receipt. Samples were received in good condition and within the recommended temperature range.

Holding Times and Sample Preservation

Samples were appropriately preserved and analyzed within holding times.

Laboratory Method Blanks

Laboratory method blanks were analyzed at the required frequencies. All method blanks were free of target analytes.

Field Quality Control

Trip Blanks

One trip blank was collected in association with this sample set and analyzed for benzene and GRO. No target analytes were detected in the trip blank.

Field Duplicates

One field duplicate was collected in association with this sample set. When either the parent or the field duplicate result was less than five times the RL, results were evaluated by the difference between them, using the control limit of \pm RL. All difference values were within control limits.

Detected results are summarized in Table 2.

Table 2 Field Duplicate Summary

Analyte	YVS-2- 20221107	YVS-201- 20221107	RPD	Difference	Reporting Limit
Diesel range hydrocarbons	1.2 mg/L	1.2 mg/L		0 mg/L	1.2 mg/L
Oil range organics	0.52 mg/L	0.55 mg/L		0.03 mg/L	0.55 mg/L
Diesel range hydrocarbons (SGC)	0.56 mg/L	0.47 mg/L		0.090 mg/L	0.47 mg/L

Notes: mg/L: milligram per liter SGC: silica gel cleanup

Surrogates

Surrogates were analyzed at the required frequencies, and all analyses resulted in recovery values within laboratory control limits.

Laboratory Control Samples

Laboratory control samples (LCS) were analyzed at the required frequencies, and all analyses resulted in recovery values within laboratory-required control limits.

Matrix Spike and Matrix Spike Duplicate Samples

Matrix spike (MS) and matrix spike duplicate (MSD) samples were analyzed at the required frequency. All MS/MSD recoveries and RPDs were within laboratory control limits except for the DRO (with silica gel clean up) result in the MSD analyzed on YVS-2-20221107 which recovered below the control limit. The associated parent sample result was qualified "J" to indicate it is estimated.

Laboratory Duplicates

One laboratory duplicate was analyzed for GRO. Results were less than five times the RL, so they were evaluated by the difference between them using the control limit of \pm RL. Laboratory duplicate difference values were within laboratory control limits.

Method Reporting Limits

RLs were acceptable as reported. All values were reported using the laboratory RLs. Sample results were reported undiluted.

Overall Assessment

As was determined by this evaluation, the laboratory followed the specified analytical methods, and all requested sample analyses were completed. Accuracy was acceptable as demonstrated by the surrogate, LCS/LCSD and MS/MSD recovery values, with exceptions noted in prior sections. Precision was acceptable as demonstrated by the laboratory duplicate, field duplicate, and MS/MSD RPD values or difference values. All data were acceptable as reported or qualified. Table 3 summarizes the qualifiers applied to the sample results reviewed in this report.

Data Qualifier Definitions

J Indicates an estimated value.

Table 3 Data Qualification Summary

Sample ID	Parameter	Analyte	Reported Result	Qualified Result	Reason
YVS-2-20221107	TPH-DRO	Diesel range hydrocarbons	0.56 mg/L	0.56J mg/L	MSD %R below control limit

Notes: %R: percent recovery mg/L: milligrams per liter MSD: matrix spike duplicate

- USEPA (U.S. Environmental Protection Agency), 1986. *Test Methods for Evaluating Solid Waste: Physical/Chemical Methods*. Third Edition. U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response. EPA-530/SW-846. September 1986.
- USEPA, 2020. *National Functional Guidelines for Superfund Organic Methods Data Review*. Office of Superfund Remediation and Technology Innovation. EPA-540-R-20-005. November 2020.