APPENDIX C HWA'S GEOTECHNICAL FEASIBILITY ASSESSMENT REPORT

April 8, 2009 HWA Project No. 2009-017-21

SLR International Corp. 22122 20th Avenue SE Building H, Suite 150 Bothell, Washington 98021

To:

Mr. Mike Staton, R.G.

Subject:

FINAL GEOTECHNICAL FEASIBILITY ASSESSMENT

Closed City of Yakima Landfill

Yakima, Washington

As requested, HWA GeoSciences Inc. (HWA) completed a geotechnical assessment, of the subject project site in Yakima, Washington, for the purpose of evaluating potential geotechnical constructability issues related to the local subsurface conditions and there impact on the feasibility of future site development. Results of our assessment and geotechnical recommendations for general development of the site follow in this final report.

This work was authorized by subcontract agreement between HWA and SLR Corporation, Inc. (SLR), on February 20^{th} , 2009.

PROJECT DESCRIPTION

The closed City of Yakima Landfill is located at the south end of the former Boise Cascade sawmill and plywood facility situated on 240 acres of land. The property address is 805 North 7th Street, in Yakima, Washington (see Figure 1). The property was used for lumber mill operations from 1904 to 2006, and is currently used for log storage and log chipping. In the past, the site accommodated three log ponds, railroad siding, a boiler house and other buildings comprising the sawmill (SLR, 2009). Over time, log storage transitioned from ponds to log decks with sprinklers, and the southern pond was drained and utilized by the City of Yakima as a landfill. The landfill was operated from 1963 to 1970, and was reported closed by the Yakima County Health district in 1972 (SLR, 2009).

The area of the closed landfill reportedly encompasses approximately 28 acres. The actual extent of landfill is being determined as part of the main study by SLR. The landfill is unlined, but reportedly was covered with 2 to 3 feet of clay in addition to 10 feet of wood debris in log deck areas. The landfill reportedly averages about 12 feet deep and apparently deepens toward the southeast to as much as 30 feet (SLR, 2009). Currently, the City of Yakima would like to develop the property into a public recreational facility and/or water park

19730 - 64th Avenue W. including, swimming pool(s), roads, parking, and ancillary structures.

Suite 200

Lynnwood, WA 98036.5957

Tel: 425.774.0106 Fax: 425.774.2714 www.hwageo.com

SITE CONDITIONS

Currently, the property is used as a log yard and is roughly rectangular in shape as depicted on Figure 2. It is bounded on the north by railroad tracks, on the south by a fence along the property line; along the east the property adjoins the embankment of US Interstate I-82, and on the west by North 8th Street. The site is slightly inclined downwards towards the southeast and accessed via gated entry from North 8th Street, at the intersection of East E Street. The northwest portion of the site is occupied by the former plywood plant. A paved road circuits the interior perimeter of the site.

GEOLOGY

According to the *Geologic Map for the Yakima East 15-Minute Quadrangle*, by the Washington Division of Geology and Earth Resources (Bentley, et al 1993), the site is underlain by alluvium consisting of silt, sand and gravel deposited directly by the Yakima River. The gravels contained in these deposits typically consist of mixed lithologies.

EXPLORATION PROGRAM

An exploration program was planned and conducted by SLR to assess localized subsurface conditions within the project site, in general accordance with our approved scope of work. Under subcontract to SLR, an engineering geologist from HWA monitored exploration activities on two separate days to observe the subsurface conditions that were encountered during test pitting and soil borings.

Soil samples were collected using a 300-pound hammer to drive 3.25-inch O.D. split-spoons at periodic depth intervals in the borings. Soil samples collected for lithologic descriptions were placed in sealed plastic bags and transported to SLR offices in Bothell, Washington. After review of the draft exploration logs provided by SLR, HWA prepared a testing schedule that was reviewed and approved by Mike Staton of SLR. The exploration samples were then transferred to HWA for visual assessment and laboratory testing as described below.

LABORATORY TESTING

Physical testing of soil samples was performed at HWA's laboratory in Lynnwood, Washington. Laboratory testing of selected soil samples retrieved from the test explorations included Atterberg Limits, moisture contents, and particle size analyses. In addition, 29 waste samples were tested for moisture content. All testing was accomplished in general accordance with ASTM standards, as appropriate. The results of all the laboratory testing are summarized on Table 1 and Figures 3 through 14

SUBSURFACE CONDITIONS

Following is a generalized summary of the subsurface conditions observed by our geologist, who was on site for two days during exploration, and from review of logs of explorations provided by SLR, Inc. In general, the site is underlain by granular fill directly overlying native soils, or over wood waste or municipal solid waste (MSW). At depth, wood waste or municipal solid waste

directly overlies native alluvial soils. More detailed descriptions are provided for the various soil units as observed in order of occurrence from existing site grades.

Fill/Cover Soils: Fill/Cover soils consisting of loose to dense, silty sand with gravel to silty gravel with sand, and silt with sand to gravelly silt was encountered overlying native alluvial soils, wood waste, or MSW. Depending upon site location, the fill may also contain significant amounts of wood waste and/or construction debris. Where encountered, the fill/cover soil ranged from 1 to 5.5 feet in thickness. Around the perimeter of the MSW waste cell, the fill was situated over disturbed native soils or wood waste apparently to level and provide a stable traffic area. Typically, within the waste cell area, a layer of fill was placed directly over MSW as a cover prior to placement of wood waste.

Wood Waste: Wood waste consisting of sawdust to coarse bark strippings was encountered either directly overlying MSW or cover soils within the east and central portions of the site. Where encountered, the wood waste ranged from 1 to 10.5 feet in thickness. In general, the layer of wood waste appears to thicken towards the east. Results of field and laboratory testing indicate that the bulk density of the wood waste ranges from 38 to 84 pcf depending upon degree of compaction, moisture content, and the amount of soil that was incorporated into the wood waste. Moisture contents determined in the laboratory for samples obtained during exploration ranged from 40 to over 126% by dry weight. Table 1 provides a compilation of the wood waste characteristics noted in the field and from laboratory testing.

MSW: Municipal solid waste (MSW) was encountered within the interior of the site, except in the northwest corner currently occupied by the plywood mill and its immediate surroundings. Where encountered, the MSW layer ranged from 1 to 15 feet in thickness. In general, the MSW layer is thickest within the central and southeastern portions of the site. Depending upon location, MSW is covered by as little as 2 feet to as much as 13.5 feet of fill, wood waste and cover soil combined. Results of field and laboratory testing indicate that the bulk density of the MSW soil ranges from about 44 to 116 pcf depending upon degree of compaction, composition, moisture content, and amount of soil that was incorporated into the MSW. Moisture contents determined in the laboratory for samples obtained during exploration ranged from 25.9 to over 123% by dry weight. Review of the exploration logs and laboratory sample descriptions indicate that on average the MSW appears to be composed of roughly 21% OP (Organic-Putrescible materialcomposed of food, garden, and animal waste), 56% ON (Organic Non-Putresciblecomposed of paper, wood, textiles, leather, plastic, rubber, paints and sludge), and about 23% ID and IN (Inorganic-degradable materials like metal and non-degradable waste composed of glass, ceramics, soil, ash, concrete, etc) by volume. Table 1 provides a compilation of the MSW characteristics noted in the field and from laboratory testing.

<u>Alluvium</u>: In explorations where the fill, wood waste or MSW layers were fully penetrated, mineral soil was encountered and typically was comprised of medium dense

to dense, poorly to well graded, gravel with silt and sand to silty sand with gravel. Locally, layers of medium stiff, low plastic, sandy silt were encountered overlying the deeper coarse grained soil layer. These deposits are interpreted as native alluvium deposited by the Yakima River. These soils are typically water-bearing and coincident with the local water table. Granular alluvium is generally competent for support of structures, and excavates relatively easy with conventional excavating equipment. Side slopes of excavations will require shoring for long-term support when and where alluvial soils are saturated.

GEOTECHNICAL FEASIBILITY OF SITE DEVELOPMENT

We understand that currently, the City of Yakima is evaluating the potential development of the property into a public recreational facility and/or water park including, swimming pool(s), roads, parking, and ancillary structures. We further understand that, prior to any development, the surficial layer of wood waste (primarily located within the log deck area) will be removed. This will probably necessitate its' replacement with granular fill to re-level the site. Based upon the results of the current study, it appears that the main geotechnical limitation to site development is the potential for future structural damage due to load-induced settlement of the underlying MSW from future structures, and from differential settlement between structures due to variation of load, waste thickness or composition. Currently, standard ground improvement procedures exist which, if properly implemented, serve to mitigate the risk of structural damage due to settlement. Discussions with regard to settlement and foundation considerations follow below.

Settlement Considerations

The MSW layer is considered highly compressible, and will exhibit unique settlement response characteristics. MSW is considered to have three components of settlement: primary, secondary, and bio-degradation. Primary settlement occurs rapidly; typically, within about 40 days of application of load. Secondary and bio-degradation settlement occur over longer periods of time and are sometimes lumped together and termed "delayed compression." Secondary settlement is a function of the increase in loading conditions, and occurs over a period of months to years (more typical for MSW and organic materials). Biodegradation settlement occurs independently of loading conditions as a function of aerobic and anaerobic decomposition of organic matter within the refuse. The rate of biodegradation settlement is considered to slow with increasing age of the refuse and can be inferred from decreasing rates of landfill gas production. Preloading is also believed to slow the rate of biodegradation settlement, because the induced primary and secondary settlements tend to reduce the pore spaces around degradable materials and, thereby, slow the aerobic decomposition process.

Although the MSW underlying the subject site has undergone some consolidation due to placement of fill/cover and wood waste in addition to loading by log storage, variations in density, composition, moisture content and thickness make differential (non-uniform) settlement a more likely cause of damage for future structures constructed over MSW.

To mitigate potential adverse settlement effects on structures, it is common to construct a surcharge preload for any areas of the site that may be underlain by problematic compressible materials. Typically, preloads are comprised of both compacted structural fill, within the basal area that will provide for permanent foundation support of structures and pavement areas, and non-compacted fill which will act as a temporary surcharge load that is at least equal to or greater than any future loading that will be imposed on the site development area. The structural fill thickness is commonly proportioned to be equal to or greater than the anticipated induced preload settlement. In general, we anticipate that the preload treatment for this site will range from 10 to 15 feet thick over an area larger than the footprint of any planned structures or ancillary structures at a future date. Typically, settlement plates are installed prior to and monitored during the placement of pre-load fill and for some time thereafter to allow consolidation of the underlying deposits to occur. The average cumulative settlement is tabulated and the shape of the settlement versus log of time plots are reviewed to determine when primary and secondary settlement are nearing completion to the degree that portions of the preload may be removed to allow construction to proceed. Based on our experience with preloading at other landfill sites, this procedure may take between 90 and 180 days to be effective. Upon removal of the preload, the secondary compression portion of the settlement is anticipated to cease or become very gradual over the design life of the facilities. The bio-degradation component of the settlement, however, is likely to continue for many years, until such time as all of the organic matter is completely decomposed.

We recommend that site treatment by preloading should not be restricted to only those areas where grade-supported structures will be constructed, but should be extended into areas that will support utilities or ancillary structures adjacent to heavy structures planned to be pile-supported. This will serve to reduce the potential for differential settlement between heavy pile-supported structures and the surrounding hardscaped areas, parking areas, and at utility connections with the structures. There are methodologies that presently exist that can compensate for differential settlement effects between services and fixed structures, and between perimeter development and such structures. However, limits exist with current design procedures on the magnitude of differential settlements that can be tolerated between fixed, pile-supported, building structures and adjoining yard areas and the connections of services entering/leaving the structures. Utilizing both site preloading methods and existing other methodologies for mitigation of differential settlement effects, we believe that these constraints can be dealt with on a location specific basis for a given development concept.

Generalized Foundation Considerations for New Structures

Depending on the location, size, and type proposed, certain structures may be supported at grade within a suitably designed structural fill using spread footings or rafted mat foundations, in our view. The advantage of using grade-supported structures lies in avoidance of large future differential settlements between the buildings that are otherwise supported on non-yielding pile foundations and adjacent paved parking and/or yard areas that are undergoing long-term settlements.

For large (greater than about 30,000 square feet) and/or tall (greater than a couple of stories) buildings, or for settlement-intolerant structures such as a swimming pools and buildings with substantial amounts of glazing, foundation support utilizing deep foundations are recommended. In our opinion, auger-cast piles or low displacement driven steel piles are best suited to this site. For environmental considerations, auger-cast piles are probably the preferred deep foundation type, but constructability issues exist with regard to the potential for large grout takes within the MSW that cannot be predicted. Moreover, pile foundations will be influenced by potentially high downdrag loadings associated with future settlement of the compressible materials through which they penetrate. This negative skin-friction or downdrag loading must be addressed in the initial foundation design and reduces the normal capacity of a given pile type. Low displacement steel piles are influenced to a lesser degree than auger-cast piles. Another significant consideration that results from using a piling system will be that associated with the potential migration of water along the pile shaft from the waste cell to the underlying aquifer. This may not be permitted in certain areas of the site. The required depth of penetration into the dense gravel layer will depend on the size and type of pile. We can provide recommendations for appropriate foundation types and associated design capacities as the development moves into the preliminary design phase.

Seismic Design Considerations and Parameters

Table 2 presents recommended seismic coefficients for use with the General Procedure described in Section 1615 of IBC 2006 for design of structures, as applicable. The seismic ground motion procedure contained in IBC 2006 is based upon a Maximum Considered Earthquake (MCE) with a 2 percent probability of exceedance in 50 years (i.e. recurrence interval of approximately 2,500 years). Ground motions for the MCE in the IBC 2006 are linked to probabilistic earthquake hazard mapping efforts that have been conducted by the United States Geological Survey (Frankel, et al., 1996, 2002, 2004). The Site Class for the project site was estimated based upon the type and observed density of the soils encountered in our explorations, as well as our general knowledge of the site.

Table 2: Seismic Coefficients for IBC 2006 Code Based Evaluation

Site Class	PGA (g)	Spe Res _l	sign ectral conse neters	Control Periods				
		S_{DS}	S_{D1}	T_0	T_s			
D	0.19	0.48	0.26	0.11	0.54			

Soil liquefaction is a phenomenon wherein loose, saturated, granular deposits temporarily lose strength and behave as a liquid in response to earthquake shaking. Although regional ground water is relatively shallow, based on our observation of relatively dense native alluvial soils within the borings, we consider the potential for seismic liquefaction on the site to be low.

Concrete - Leachate Reaction Potential

The results of testing on five leachate samples undertaken by Aquatic Research (2009) on behalf of SLR were reviewed in order to provide an assessment of the potential for sulfate attack and/or the corrosion of steel foundation components by chloride of Portland cement concrete structures in contact with leachate on site. The reported results indicate pH values ranging from 6.24 to 6.78, sulfate and chloride concentrations ranging from <1.0 to 29.1 mg/l, and 10.5 to 128 mg/l, respectively. Comparison of the range of sulfate values obtained at the site (all<150 ppm) with those outlined in Table 2.3 of ACI-201(ACI, 2006a) indicate that no special requirements are needed in foundation concrete for sulfate resistance. According to Table 4.4.1 *Maximum Chloride Content for Corrosion Protection of Reinforcement*, in ACI-318-05 (ACI, 2006b), the maximum water soluble chloride ion (Cl⁻) in concrete, as a percent by weight of cement is limited to 0.15%. The highest chloride value determined was 128 mg/l which is roughly equivalent to 0.06 lbs of cement in a standard 5 sack mix. This amount is less than 9% of the limit specified in ACI-318-05 (e.g. 0.0015 x 470 lbs = 0.71 lbs). Therefore, it appears likely that special coatings or lower water/cement ratios are not required to mitigate the potential effects of chloride in the leachate represented by the test results.

CLOSURE

We have prepared this report for the SLR Inc. and the City of Yakima for use in preliminary design of this project. The conclusions and interpretations presented in this report should not be construed as our warranty of existing subsurface conditions. Experience has shown that soil and ground water conditions can vary significantly over small distances. Inconsistent conditions can occur between exploration locations and may not be detected by a geotechnical study of this nature. If, during future site operations, subsurface conditions are encountered which vary appreciably from those described herein, HWA should be notified for review of the recommendations of this report, and revision of such if necessary.

Sufficient geotechnical monitoring, testing, and consultation should be provided during construction to confirm that the actual conditions encountered are consistent with those indicated by the explorations, to provide recommendations for design changes should conditions revealed during construction differ from those anticipated, and to verify that geotechnical aspects of construction comply with the contract plans and specifications.

The scope of our work did not include environmental assessments or evaluations regarding the presence or absence of wetlands or hazardous substances in the soil, surface water, or ground water at this site.

We appreciate this opportunity to be of service.

Sincerely,

HWA GEOSCIENCES INC.

Steven E. Greene, L.G., L.E.G. Engineering Geologist/Vice-President

Lorne A. Balanko, P.E. Principal

Attachments

Table 1	Summary of Apparent and Measured	Waste Properties
---------	----------------------------------	------------------

Figure 1	Project Site and Vicinity Map
Figure 2	Aerial View of Project Site
Figures 3-13	Particle Size Analysis of Soils
Figure 14	Plasticity Index of Soils

REFERENCES

American Concrete Institute, 2006, Guide to Durable Concrete, AC!-201.2R-01, in ACI Manual of Concrete Practice, Part 1.

American Concrete Institute, 2006, Building Code Requirements for Structural Concrete, ACI-318-05, in ACI Manual of Concrete Practice, Part 3, Chapter 4-Durability Requirements.

Aquatic Research Inc., 2009, Laboratory Analysis of Selected Parameters on Water, Case File Number FBI003-74, prepared for Freidman & Bruya, Inc., 2-27-09.

Bentley, R.D., N.P. Campbell, and J.E. Powell, 1993, *Geologic Maps of part of the Yakima Fold Belt, Northeastern Yakima County, Washington*, WDNR Open File Report 93-3, Sheet 1: Yakima East 15-Minute Quadrangle.

SLR International Corp., 2009, Remedial Investigation Work Plan, Closed City of Yakima Landfill Site, Yakima, Washington.

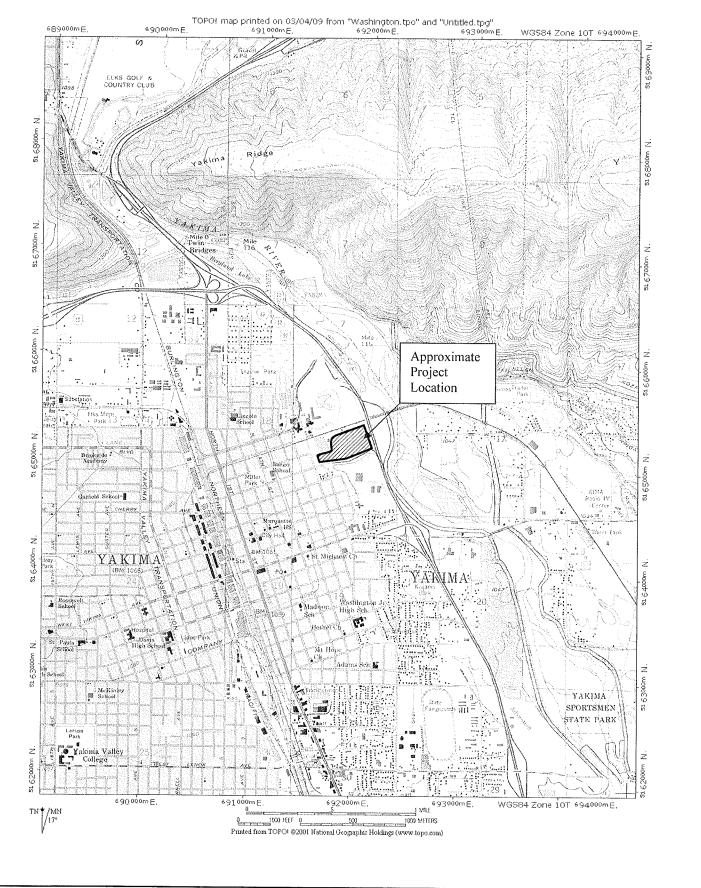

Closed Yakima Landfill

TABLE 1 Summary of Apparent and Measured Waste properties

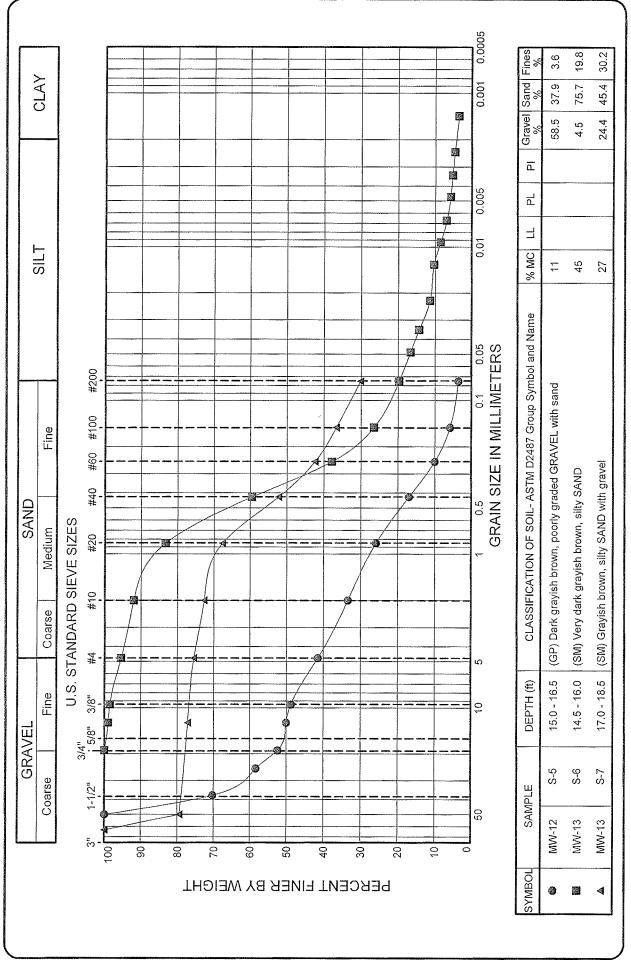
	T	T-	7	T	1	Т	T	1	7	Т	T	1	1	T		T	_	_			T		_		T	-	,		·	
(Visual)	N + Q	20%	30%	10%	20%	25%	20%	10%	10%	20%	%0	%0	40%	2%	10%	%0	25%	20%	%09	30%	10%	10%	%0	%0	20%	20%	25%	15%	40%	2%
Maior Constinients (visual)	S O	%08	%02	15%	80%	75%	20%	%02	40%	20%	100%	100%	%09	5%	30%	%06	75%	20%	40%	%09	%06	%06	100%	100%	%08	%0/	75%	85%	10%	82%
Major Co	OP	%0	%0	75%	%0	%0	30%	20%	20%	%0	%0	%0	%0	%06	%09	10%	%0	%0	%0	10%	%0	%0	%0	%0	%0	10%	%0	%0	20%	%0
Waste	Туре	MM	MM	MSW	MSM	MSM	MSM	MSM	MSM	MSW	MSM	MM	MSM	MSW	MSW	MSW	MSW	MSM	MSW	MSM	MSW	MM	WW	MM	MM.	MSW	MM	MM	MSM	MM
Drv	Unit		60.2	24.4	31.3	25.8	33.3	24.2	34.8	39.0	9.68	19.5	66.5	8.63	9'.29	23.4	54.8	2.09	54.8	36.7	25.3	28.4	20.5	30.2	39.9	53.2	45.1	37.0	27.7	46.5
Bulk	Unit Weight	67.4	84.3	44.3	51.7	37.2	54.1	44.6	52.9	49.0	115.9	47.8	90.2	77.0	90.5	52.3	74.0	86.7	82.6	73.5	37.8	56.9	46.4	0.09	0.69	73.8	72.9	9.69	46.8	64.7
	MC	41.9%	40.0%	81.6%	65.1%	44.4%	62.8%	84.5%	52.3%	25.9%	29.4%	144.9%	35.6%	28.8%	34.0%	123.3%	35.1%	42.9%	20.9%	100.4%	49.1%	100.4%	126.3%	98.9%	72.8%	38.7%	61.9%	71.9%	69.2%	39.0%
	Weight	1041.41	651.71	770.61	399.73	335.31	376.65	516.71	545.43	884.55	896.09	1108.03	1626.4	1190.17	1049.57	808.14	476.77	1563.32	638.68	1704.57	584.2	1319.87	658.1	1252.53	1332.96	1045.41	1503.54	1475.64	723.32	1066.84
	Volume	0.03408	0.01704	0.03834	0.01704	0.01988	0.015336	0.02556	0.02272	0.03976	0.01704	0.05112	0.03976	0.03408	0.02556	0.03408	0.0142	0.03976	0.01704	0.05112	0.03408	0.05112	0.03124	0.046008	0.0426	0.03124	0.04544	0.05112	0.03408	0.036352
	Length	12	9	13.5	9	7	5.4	6	8	14	9	18	14	12	6	12	5	14	9	18	12	18	1	16.2	15	77	16	18	12	12.8
	Depth	5	12.5	5	9	17.5	10	10	15	7.5	15	2	15	2.5	5	9	12.5	7.5	12.5	12.5	5.5	2.5	15	2.5	2.5	19	2.5	2.5	12.5	2.5
	Sample No.	S-2	S-3	S-2	S-1B	S-3	S-4	S-4	S-6	S-2	S-6	S-2	S-6	Ş	S-2	S-4	S-5	S-3	S-5	S-5	S-2	S-1	S-4	S-1	S-1	S-2	S-1	S-1	S-1	S-1
	Exploration	MW-11	MW-11	SB-13	SB-14	SB-14	SB-15	SB-18	SB-18	SB-19	SB-20	SB-21	SB-21	SB-22	SB-23	SB-24	SB-25	SB-26	SB-26	SB-27	SB-28	SB-29	SB-29	SB-30	SB-33	SB-34	SB-35	SB-37	SB-38	SB-40

OP- Organic Putrescible waste: food, garden, and animal waste capable of being decoposed by microorganisms ON- Organic Non-Putrescible waste: paper, wood textiles leather, plastic, rubber, paint, oil, grease, chemicals, sludge. ID- Inorganic Degradable waste: metals IN- Inorganic Non-degradable waste: glass, soil, ash, concrete, bricks, construction debris.

PROJECT SITE & VICINTY MAP

GEOTECHNICAL ASSESSMENT CLOSED CITY OF YAKIMA LANDFILL YAKIMA, WASHINGTON FIGURE NO.

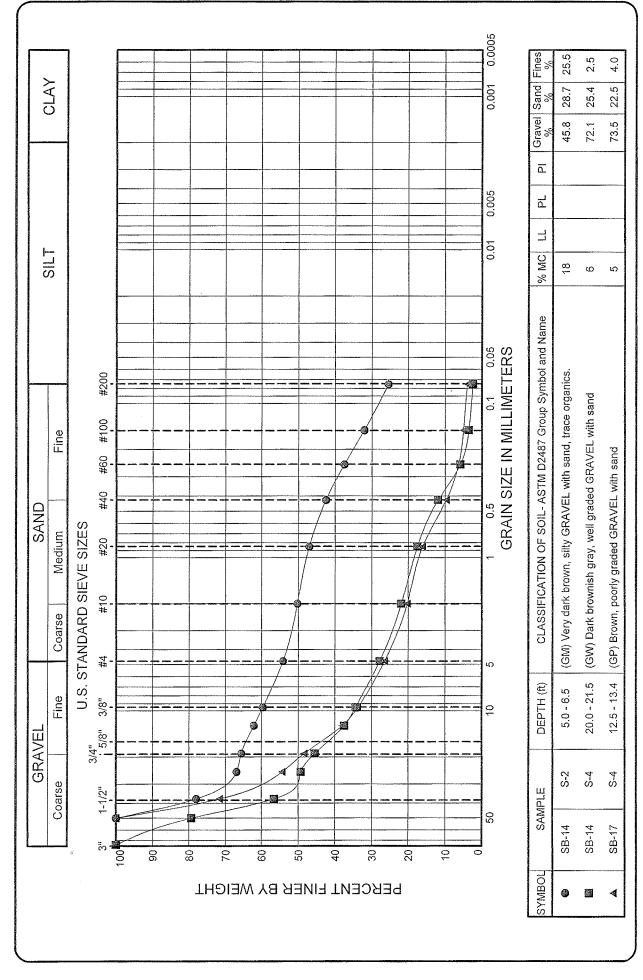
2009-017



AERIAL VIEW OF PROJECT SITE

GEOTECHNICAL ASSESSMENT CLOSED CITY OF YAKIMA LANDFILL YAKIMA, WASHINGTON FIGURE NO.

2009-017

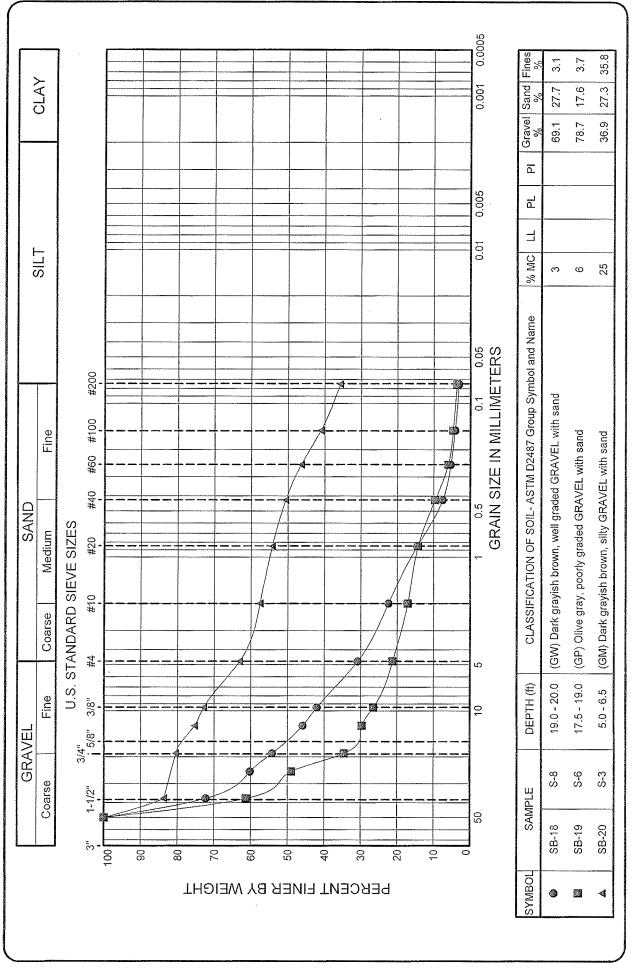

Closed City of Yakima Landfill

Geotechnical Assessment

PROJECT NO.: 2009-017-21

FIGURE

HWA GEOSCIENCES INC.



PROJECT NO.: 2009-017-21

Closed City of Yakima Landfill

Geotechnical Assessment

HWA GEOSCIENCES INC.

Ŋ

FIGURE

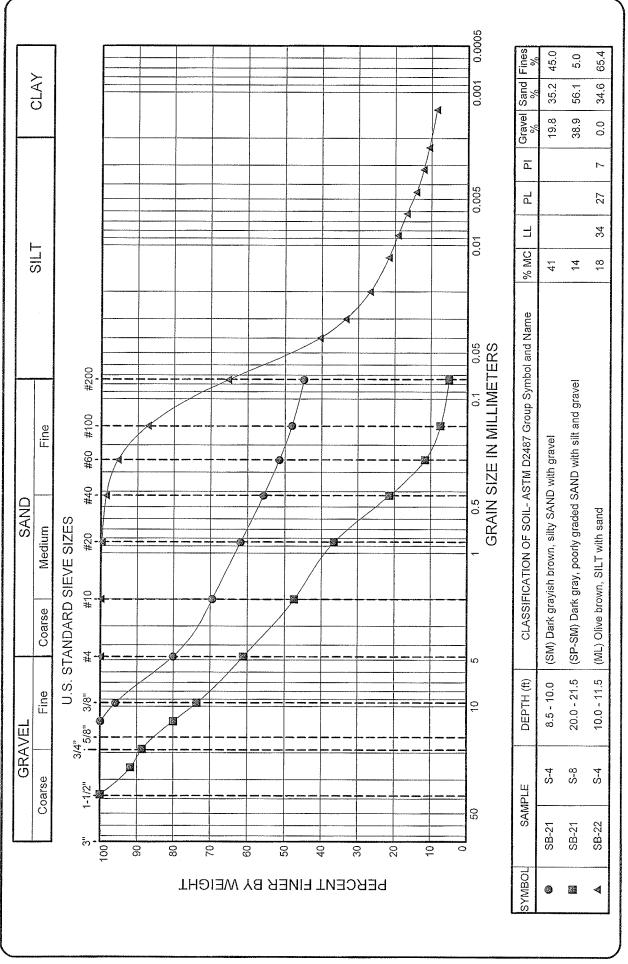
PROJECT NO.: 2009-017-21

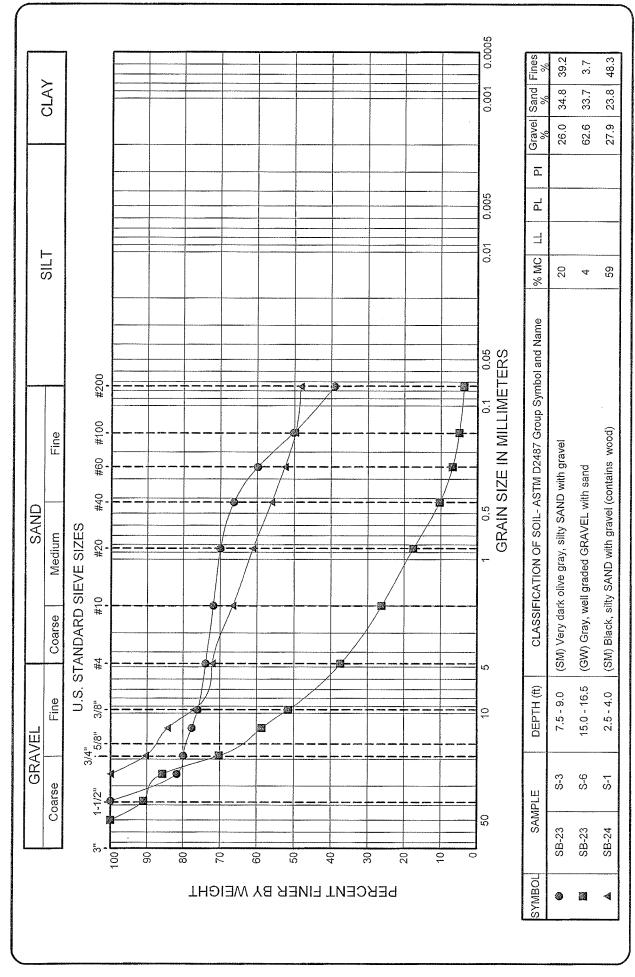
Closed City of Yakima Landfill

Geotechnical Assessment

HWAGRS7 2009-017 GP.1 4/8/09

HWA GEOSCIENCES INC.




FIGURE:

PROJECT NO.: 2009-017-21

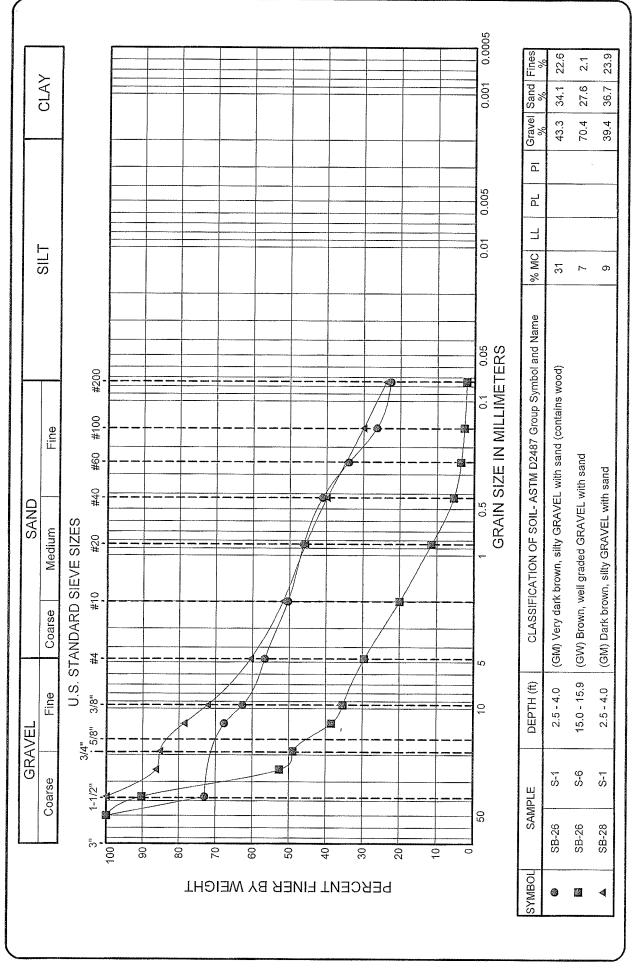
Geotechnical Assessment

Closed City of Yakima Landfill

HWA GEOSCIENCES INC.

PARTICLE-SIZE ANALYSIS OF SOILS

Closed City of Yakima Landfill Geotechnical Assessment

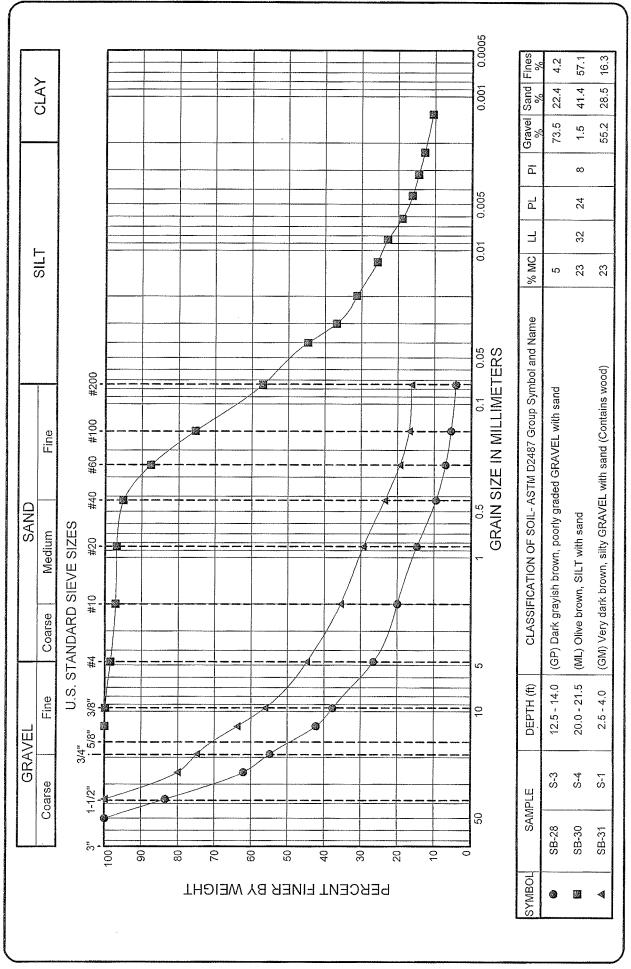

METHOD ASTM D422

PROJECT NO.: 2009-017-21

FIGURE:

HWAGRS7 2009-017 GP.J 4/8/09

HWA GEOSCIENCES INC.

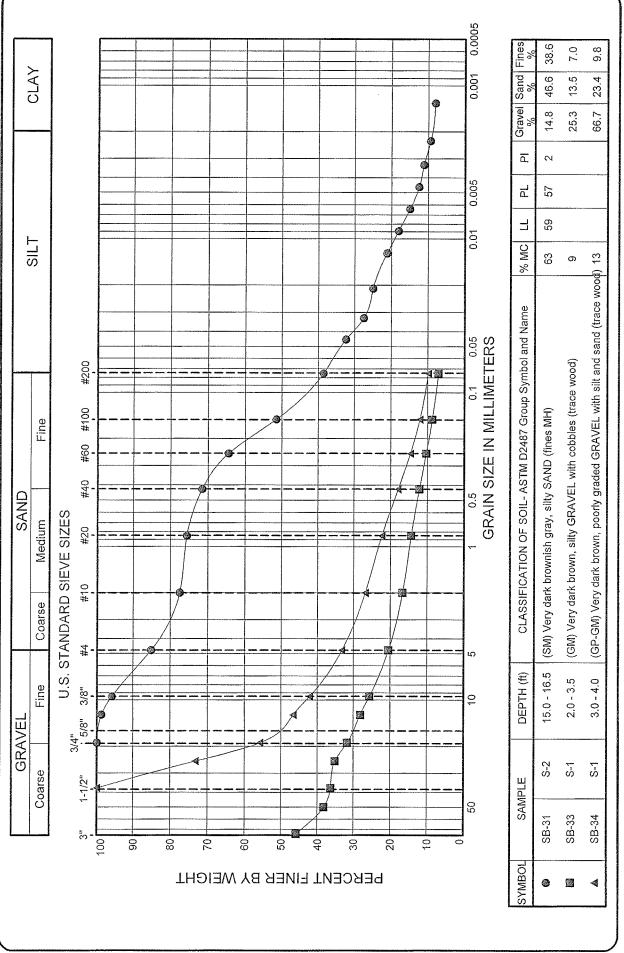

Closed City of Yakima Landfill Geotechnical Assessment

 ∞

FIGURE:

PROJECT NO.: 2009-017-21

HWA GEOSCIENCES INC.



Closed City of Yakima Landfill Geotechnical Assessment

HWAGEOSCIENCES INC.

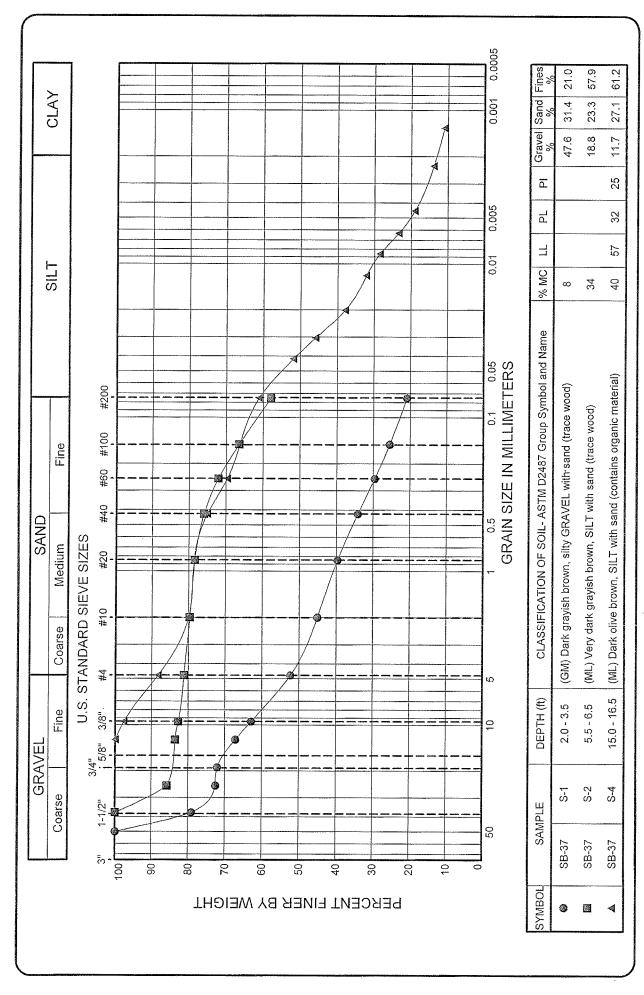

PROJECT NO.: 2009-017-21

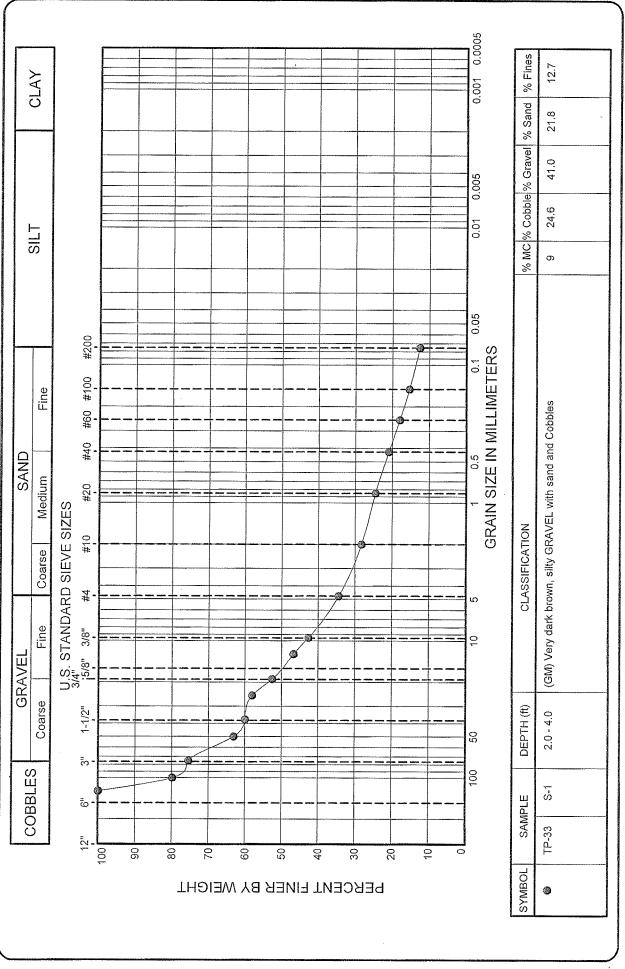
FIGURE:


Closed City of Yakima Landfill Geotechnical Assessment

HWAGRSZ 2009-017.GPJ 4/8/09

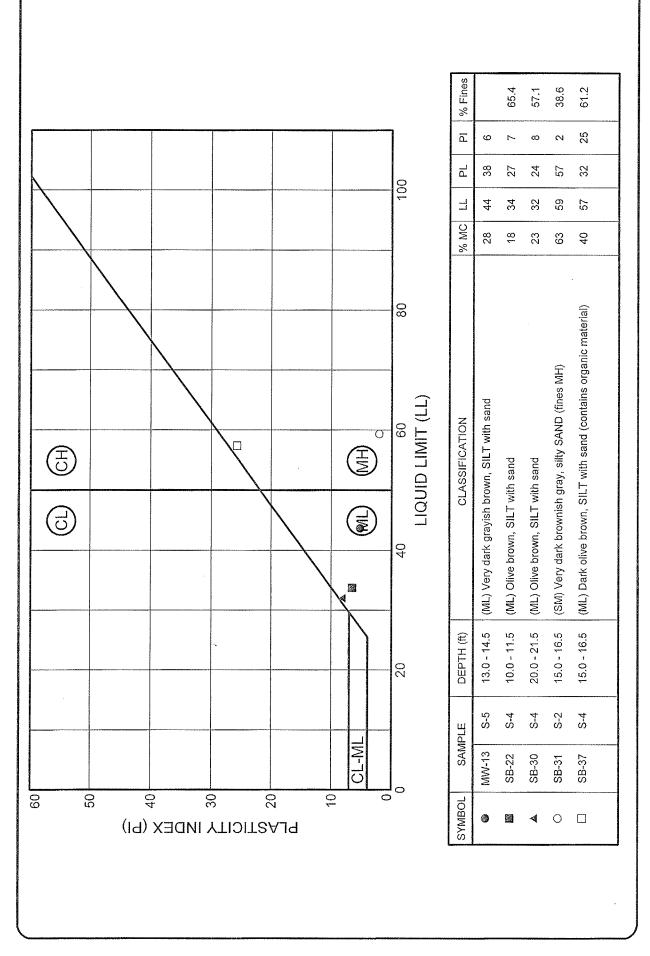
Closed City of Yakima Landfill Geotechnical Assessment

HWA GEOSCIENCES INC.


Closed City of Yakima Landfill

Geotechnical Assessment

HWA GEOSCIENCES INC.


HWAGRS7 2009-017 GPJ 4/8/09

PROJECT NO.: 2009-017-21

HWA GEOSCIENCES INC.

Closed City of Yakima Landfill Geotechnical Assessment PROJECT NO.: 2009-017-21

LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX OF SOILS METHOD ASTM D4318

PROJECT NO.: 2009-017-21

Closed City of Yakima Landfill Geotechnical Assessment

HWAATTB 2009-017.GPJ 4/8/09

HWAGEOSCIENCES INC.

APPENDIX D LABORATORY ANALYTICAL REPORTS

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Charlene Morrow, M.S. Yelena Aravkina, M.S. Bradley T. Benson, B.S. Kurt Johnson, B.S.

3012 16th Avenue West Seattle, WA 98119-2029 TEL: (206) 285-8282 FAX: (206) 283-5044 e-mail: fbi@isomedia.com

February 26, 2009

Mike Staton, Project Manager SLR International Corp. 22122 20th Ave. SE., H-150 Bothell, WA 98021

Dear Mr. Staton:

Included are the results from the testing of material submitted on February 3, 2009 from the Yakima LF PO 001.0221.00004, F&BI 902020 project. There are 9 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures SLR0226R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on February 3, 2009 by Friedman & Bruya, Inc. from the SLR International Corp. Yakima LF PO 001.0221.00004, F&BI 902020 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	SLR International Corp.
902020-01	TP-9
902020-02	TP-22
902020-03	TP-33

The samples were sent to Amtest for TCLP VOC analysis. Review of the enclosed report indicates that all quality assurance was acceptable.

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	TP-9 02/03/09 02/04/09 02/09/09 Soil mg/L (ppm)	Client: Project: Lab ID: Data File: Instrument: Operator:	SLR International Corp. Yakima LF PO 001.0221.00004, F&BI 902020 902020-01 902020-01.014 ICPMS1 hr
		Lower	Upper

		Lower	Upper
Internal Standard:	% Recovery:	Limit:	Limit:
Germanium	72	60	125
Indium	76	60	125
Holmium	82	60	125

Analyte:	Concentration mg/L (ppm)	TCLP Limit
Chromium	<1	5.0
Arsenic	<1	5.0
Selenium	<1	1.0
Silver	<1	5.0
Cadmium	<1	1.0
Barium	<1	100
Lead	<1	5.0

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	TP-22 02/03/09 02/04/09 02/09/09 Soil mg/L (ppm)	Client: Project: Lab ID: Data File: Instrument: Operator:	SLR International Corp. Yakima LF PO 001.0221.00004, F&BI 902020 902020-02 902020-02.015 ICPMS1 hr
T . 10. 1 1	A4 75	Lower	Upper

Internal Standard: Germanium	% Recovery: 70	Limit: 60	Limit:
Indium	74	60	125
Holmium	80	60	125
Analyte:	Concentration mg/L (ppm)	TCLP Limit	

mg/L (ppm)	TCLP Lim
<1	5.0
<1	5.0
<1	1.0
<1	5.0
<1	1.0
1.86	100
<1	5.0
	<1 <1 <1 <1 <1 <1 1.86

ENVIRONMENTAL CHEMISTS

Client ID:	TP-33		Client:	SLR International Corp.
Date Received:	02/03/09		Project:	Yakima LF PO 001.0221.00004, F&BI 902020
Date Extracted:	02/04/09		Lab ID:	902020-03
Date Analyzed:	02/09/09		Data File:	902020-03.016
Matrix:	Soil		Instrument:	ICPMS1
Units:	mg/L (ppm)		Operator:	hr
			Lower	Upper
Internal Standard:		% Recovery:	Limit:	Limit:
Germanium		70	60	125
Indium		73	60	125
Holmium		80	60	125
Analyte:		Concentration mg/L (ppm)	TCLP Lim	it

	Concentration	
Analyte:	mg/L (ppm)	TCLP Limit
Chromium	<1	5.0
Arsenic	<1	5.0
Selenium	<1	1.0
Silver	<1	5.0
Cadmium	. <1	1.0
Barium	1.41	100
Lead	<1	5.0

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank Not Applicable 02/04/09 02/09/09 Soil mg/L (ppm)	Client: Project: Lab ID: Data File: Instrument: Operator:	SLR International Corp. Yakima LF PO 001.0221.00004, F&BI 902020 I9-052 mb I9-052 mb.008 ICPMS1 hr
Internal Standard: Germanium Indium Holmium	% Recovery: 84 86 90	Lower Limit: 60 60 60	Upper Limit: 125 125 125
Analyte:	Concentration mg/L (ppm)	TCLP Lim	it

ENVIRONMENTAL CHEMISTS

Date of Report: 02/26/09 Date Received: 02/03/09

Project: Yakima LF PO 001.0221.00004, F&BI 902020

Date Extracted: 02/04/09 Date Analyzed: 02/06/09

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TCLP METALS IN ACCORDANCE WITH EPA METHOD 1631E AND 40 CFR PART 261

Results Reported as mg/L (ppm)

Sample ID Laboratory ID	Mercury
TP-9 902020-01	<0.02
TP-22 902020-02	< 0.02
TP-33 902020-03	<0.02
Method Blank	<0.02
TCLP Limits	0.2

ENVIRONMENTAL CHEMISTS

Date of Report: 02/26/09 Date Received: 02/03/09

Project: Yakima LF PO 001.0221.00004, F&BI 902020

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TCLP METALS USING EPA METHOD 200.8 AND 40 CFR PART 261

Laboratory Code: 902014-01 (Duplicate)

Analyte	Reporting Units	Sample Result	Duplicate Result	Relative Percent Difference	Acceptance Criteria
Chromium	mg/L (ppm)	<1	<1	nm	0-20
Arsenic	m mg/L~(ppm)	<1	<1	\mathbf{nm}	0-20
Selenium	m mg/L~(ppm)	<1	<1	nm	0-20
Silver	mg/L (ppm)	<1	<1	nm	0-20
Cadmium	mg/L (ppm)	<1	<1	nm	0-20
Barium	mg/L (ppm)	1.91	1.92	1	0-20
Lead	mg/L (ppm)	13.3	13.3	0	0-20

Laboratory Code: 902014-01 (Matrix Spike)

Analyte	Reporting Units	Spike Level	Sample Result	Percent Recovery MS	Acceptance Criteria
Chromium	mg/L (ppm)	2.0	<1	94	50-150
Arsenic	mg/L (ppm)	1.0	<1	99	50-150
Selenium	mg/L (ppm)	0.5	<1	99	50-150
Silver	mg/L (ppm)	0.5	<1	99	50-150
Cadmium	mg/L (ppm)	0.5	<1	97	50-150
Barium	mg/L (ppm)	5.0	1.91	102 b	50-150
Lead	mg/L (ppm)	1.0	13.3	85 b	50-150

Laboratory Code: Laboratory Control Sample

	Percent						
		\mathbf{Spike}	Recovery	Acceptance			
Analyte	Reporting Units	Level	LCS	Criteria			
Chromium	mg/L (ppm)	2.0	103	70-130			
Arsenic	mg/L (ppm)	1.0	99	70-130			
Selenium	m mg/L~(ppm)	0.5	99	70-130			
Silver	mg/L (ppm)	0.5	99	70-130			
Cadmium	mg/L (ppm)	0.5	100	70-130			
Barium	mg/L (ppm)	5.0	102	70-130			
Lead	mg/L (ppm)	1.0	94	70-130			

ENVIRONMENTAL CHEMISTS

Date of Report: 02/26/09 Date Received: 02/03/09

Project: Yakima LF PO 001.0221.00004, F&BI 902020

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF THE SOIL SAMPLES FOR TCLP METALS IN ACCORDANCE WITH EPA METHOD 1631E AND 40 CFR PART 261

Laboratory Code: 902014-01 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	$\operatorname{Control}$	RPD
Analyte	Units	Level	Result	MS	MSD	Limits	(Limit 20)
Mercury	mg/L (ppm)	0.005	< 0.02	102	103	50-150	1

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	\mathbf{Spike}	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Mercury	mg/L (ppm)	0.005	95	70-130

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- A1 More than one compound of similar molecule structure was identified with equal probability.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for this range fell outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte indicated may be due to carryover from previous sample injections.
- d The sample was diluted. Detection limits may be raised due to dilution.
- ds The sample was diluted. Detection limits are raised due to dilution and surrogate recoveries may not be meaningful.
- dv Insufficient sample was available to achieve normal reporting limits and limits are raised accordingly.
- fb The analyte indicated was found in the method blank. The result should be considered an estimate.
- fc The compound is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. The variability is attributed to sample inhomogeneity.
- ht The sample was extracted outside of holding time. Results should be considered estimates.
- ip Recovery fell outside of normal control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The result is below normal reporting limits. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The analyte result in the laboratory control sample is out of control limits. The reported concentration should be considered an estimate.
- jr The rpd result in laboratory control sample associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the compound indicated is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received in a container not approved by the method. The value reported should be considered an estimate.
- $\operatorname{pr}-$ The sample was received with incorrect preservation. The value reported should be considered an estimate.
- ve The value reported exceeded the calibration range established for the analyte. The reported concentration should be considered an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The pattern of peaks present is not indicative of diesel.
- y The pattern of peaks present is not indicative of motor oil.

DECEIVE MAR 0 4 2009

Professional Analytical Services

Am Test Inc. 13600 NE 126TH PL Suite C Kirkland, WA 98034 (425) 885-1664

Feb 26 2009 Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029 Attention: Michael Erdahl

Dear Michael Erdahl:

Enclosed please find the analytical data for your project.

The following is a cross correlation of client and laboratory identifications for your convenience.

CLIENT ID	MATRIX	AMTEST ID TEST	
TP-9	Soil	09-A002090 TCLP	
TP-22	Soil	09-A002091 TCLP	
TP-33	Soil	09-A002092 TCLP	

Your samples were received on Tuesday, February 3, 2009. At the time of receipt, the samples were logged in and properly maintained prior to the subsequent analysis.

The analytical procedures used at AmTest are well documented and are typically derived from the protocols of the EPA, USDA, FDA or the Army Corps of Engineers.

Following the analytical data you will find the Quality Control (QC) results.

Please note that the detection limits that are listed in the body of the report refer to the Method Detection Limits (MDL's), as opposed to Practical Quantitation Limits (PQL's).

If you should have any questions pertaining to the data package, please feel free to contact me.

Sincerely

Káthy Rug Prosident

President

Project #: 902020 PO Number: H-1736

BACT = Bacteriological CONV = Conventionals

TC=Total Coliforms

MET = Metals

ORG = Organics

NUT=Nutrients

DEM=Demand

MIN=Minerals

APC=Aerobic Plate Count

Professional Analytical Services

ANALYSIS REPORT

Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029 Attention: Michael Erdahl

Project #: 902020 PO Number: H-1736

All results reported on an as received basis.

Date Received: 02/03/09 Date Reported: 2/26/09

AMTEST Identification Number

Client Identification Sampling Date

09-A002090

TP-9 01/26/09

TCLP Volatiles

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANLST	DATE	M.A.C.	EXCDS MAC
Benzene	< 0.05	mg/l			TCLP 624	JR	02/25/09	0.50	NO
Carbon Tetrachloride	< 0.05	mg/l			TCLP 624	JR	02/25/09	0.50	NO
Chlorobenzene	< 1	mg/l			TCLP 624	JR	02/25/09	100	NO
Chloroform	< 0.06	mg/l			TCLP 624	JR	02/25/09	6.0	NO
1,2-Dichloroethane	< 0.05	mg/l			TCLP 624	JR	02/25/09	None	NO
1,2-Dichlorobenzene	< 0.05	mg/l			TCLP 624	JR	02/25/09	0.50	NO
1,1-Dichloroethylene	< 0.07	mg/l			TCLP 624	JR	02/25/09	0.70	NO
Methyl Ethyl Ketone	< 2	mg/l			TCLP 624	JR	02/25/09	200	NO
Tetrachloroethylene	< 0.07	mg/l			TCLP 624	JR	02/25/09	0.70	NO
Vinyl Chloride	< 0.05	mg/i			TCLP 624	JR	02/25/09	0.20	NO
Trichloroethylene	< 0.05	mg/l			TCLP 624	JR	02/25/09	0.50	NO

AMTEST Identification Number Client Identification Sampling Date

09-A002091 TP-22 01/27/09

09-A002092

TCLP Volatiles

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANLST	DATE	M.A.C.	EXCDS MAC
Benzene	< 0.05	mg/l			TCLP 624	JR	02/25/09	0.50	NO
Carbon Tetrachloride	< 0.05	mg/l			TCLP 624	JR	02/25/09	0.50	NO
Chlorobenzene	< 1	mg/l			TCLP 624	JR	02/25/09	100	NO
Chloroform	< 0.06	mg/l			TCLP 624	JR	02/25/09	6.0	NO
1,2-Dichloroethane	< 0.05	mg/l			TCLP 624	JR	02/25/09	None	NO
1,2-Dichlorobenzene	< 0.05	mg/l			TCLP 624	JR	02/25/09	0.50	NO
1,1-Dichloroethylene	< 0.07	mg/l			TCLP 624	JR	02/25/09	0.70	NO
Methyl Ethyl Ketone	< 2	mg/l			TCLP 624	JR	02/25/09	200	NO
Tetrachloroethylene	< 0.07	mg/l			TCLP 624	JR	02/25/09	0.70	NO
Vinyl Chloride	< 0.05	mg/l			TCLP 624	JR	02/25/09	0.20	NO
Trichloroethylene	< 0.05	mg/l			TCLP 624	JR	02/25/09	0.50	NO

AMTEST Identification Number Client Identification

TP-33 Sampling Date 01/28/09

TCLP Volatiles

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANLST	DATE	M.A.C.	EXCDS MAC
Benzene	< 0.05	mg/l			TCLP 624	JR	02/25/09	0.50	NO
Carbon Tetrachloride	< 0.05	mg/l			TCLP 624	JR	02/25/09	0.50	NO
Chlorobenzene	< 1	mg/l			TCLP 624	JR	02/25/09	100	NO
Chloroform	< 0.06	mg/l			TCLP 624	JR	02/25/09	6.0	NO
1,2-Dichloroethane	< 0.05	mg/l			TCLP 624	JR	02/25/09	None	NO
1,2-Dichlorobenzene	< 0.05	mg/l			TCLP 624	JR	02/25/09	0.50	NO
1,1-Dichloroethylene	< 0.07	mg/l			TCLP 624	JR	02/25/09	0.70	NO
Methyl Ethyl Ketone	< 2	mg/l			TCLP 624	JR	02/25/09	200	NO
Tetrachloroethylene	< 0.07	mg/l			TCLP 624	JR	02/25/09	0.70	NO
Vinyl Chloride	< 0.05	mg/l			TCLP 624	JR	02/25/09	0.20	NO
Trichloroethylene	< 0.05	mg/l			TCLP 624	ηR	02/25/09	0.50	NO

Kathy Fugiel President

SUBCONTRACT SAMPLE CHAIN OF CUSTODY

Page # of of	Veeks)	uthorized by:	SAMPLE DISPOSAL	ov days les instructions		Notes												E TIME	2	10		
Page#	\mathcal{A} Standard (2 Weeks) \square RUSH	Rush charges authorized by:	SAMPLE	 Dispose after 30 days Return samples Will call with instructions 														DATE		100	72/	•
					STED	5201 (12)												COMPANY	Friedman & Bruya	1821		
	PO#	14.138			REQUESTED	Alkalinity [Ct] V165	\ \ 	×	×									100	riedmar	AM		
	-			30m	ANALYSES	ətsiluZ				erkų.			,						I			
1				Please Email Results merdahl@friedmanandbruya.com	ANAI	Nitrate				/							_	田		1	-	
Amtest				Please Email Results <u>ahl@friedmanandbruy</u>		HdV							11.					PRINT NAME		17	7	
1	NNO.	902020		e Ema		EPH												RINT	lahl /	Z		
RACT	NAME	405		Pleas ahl@f		esser Gresse					5%	/			, , , , , , , , , , , , , , , , , , ,				Michael Erdahl	48		
SUBCONTRACTER	PROJECT NAME/NO		REMARKS	merd		# of jars	_	-	1					,	Œ,				Micha	\checkmark		
SUB	PRO		REN			Matrix	\$												11			C.
	ı, Inc.			Fax # (206) 283-5044		Time Sampled							,					SIGNATURE	Y. Ge		y:	
l Erdahl	· <u>Friedman and Bruya, Inc</u>	3012 16th Ave W	Seattle, WA 98119	Fax #(2		Date Sampled	1/26/09	1127/09	1/28/09										Relintadished by:	Received by:	Relinquished by:	Received by:
Michae	riedm	012 16	eattle,	-8282		Lab	2000	6	4									Inc.	'est	620	<u> </u>	!
Send Report To Michael Erdahl	Company	Address3	City, State, ZIP_S	Phone #(206) 285-8282		Sample ID	TP-9	76-22	TP-33									Friedman & Bruya, Inc.	3012 16th Avenue West	Seattle, WA 98119-2029	Ph. (206) 285-8282	Fax (206) 283-5044

BI, ☐ Return samples ☐ Will call with instructions Rush charges authorized by: TURNAROUND TIME SAMPLE DISPOSAL Notes M Dispose after 30 days A Standard (2 Weeks) Ç Simples received at ME 02/03/09 ANALYSES REQUESTED 001.0221.00df 201 45ST #OJ X Samples are munitipalsolid wither. IILZ **BAOCs PA 8270** SAMPLE CHAIN OF CUSTODY **AOC® PA 8500** 81208 vd X8TR onilogaed-H9T SAMPLERS (signature) losoid-H9T PROJECT NAME/NO containers Address 22122 2074/Ave SE BLITSTEISO Yakina Le # of REMARKS Sample Type WASK & 7-45KA S. ASTA 03 1/28/21 020s Sampled Time 0201 |69/2011 121S Phone # 435 403 8800 Fax # 9802 1/26/29 hate Saupled Sond Report To Mika Section City, State, ZIP Book Lut 02 Lab ID 0 Friedman & Bruya, Inc. Company 56 A 902020 Sample 1D 人でし 7-33

00:00 TIME 1400 2/3/09 DATE 1/2/29 COMPANY SLR PRINT NAME SIGNATURE Relinquished b Received by: Relinquished Received by: Seattle, WA 98119-2029 3012 16th Avenue West

Fax (206) 283-5044 Ph. (206) 285-8282

*ORMS\COC\COC\DOC

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Charlene Morrow, M.S. Yelena Aravkina, M.S. Bradley T. Benson, B.S. Kurt Johnson, B.S.

3012 16th Avenue West Seattle, WA 98119-2029 TEL: (206) 285-8282 FAX: (206) 283-5044 e-mail: fbi@isomedia.com

March 2, 2009

Mike Staton, Project Manager SLR International Corp. 22122 20th Ave. SE., H-150 Bothell, WA 98021

Dear Mr. Staton:

Included are the results from the testing of material submitted on February 13, 2009 from the Yakima LF PO 001.0221.00004, F&BI 902123 project. There are 20 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures SLR0302R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on February 13, 2009 by Friedman & Bruya, Inc. from the SLR International Corp. Yakima LF, F&BI 902123 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID 902123-01 902123-02 902123-03 902123-04 902123-05 902123-06 902123-07	SLR International Corp. TP-51-Waste TP-53-Waste SB-18-19-19.5 SB-19-5.5-6 SB-11-Leachate SB-13-Leachate SB-16-Leachate
902123-07	SB-16-Leachate
902123-08	SB-18-Leachate
902123-09	SB-19-Leachate

The samples were sent to Amtest for bromide analysis, Onsite for TCLP Volatiles analysis, and Aquatic Research for alkalinity, Ca, K, Fe, Mg, Na, fluoride, chloride, sulfate, phosphate, nitrate, and nitrite analyses. Review of the enclosed reports from Onsite and Aquatic Research indicates that all quality assurance was acceptable. The report generated by Amtest will be forwarded to your office upon receipt.

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 03/02/09 Date Received: 02/13/09

Project: Yakima LF, F&BI 902123

Date Analyzed: 02/13/09

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR pH USING EPA METHOD $9040\mathrm{C}$

Sample ID Laboratory ID	<u>Hq</u>
SB-11-Leachate 902123-05	6.28
SB-13-Leachate 902123-06	6.55
SB-16-Leachate 902123-07	6.47
SB-18-Leachate 902123-08	6.52
SB-19-Leachate 902123-09	6.42

ENVIRONMENTAL CHEMISTS

· ·		•	· -	
Client ID: Date Received:	SB-11-Leachate 02/13/09		Client: Project:	SLR International Corp. Yakima LF, F&BI 902123
Date Extracted:	02/16/09		Lab ID:	902123-05
Date Analyzed: Matrix:	02/17/09 Water		Data File:	902123-05.019
Units:	water ug/L (ppb)		Instrument:	ICPMS1
Omis.	agiri (hhp)	'	Operator:	hr

		Lower	Upper
Internal Standard:	% Recovery:	Limit:	Limit:
Germanium	99	60	125
Indium	90	60	125
Holmium	94	60	125

Analyte:	Concentration ug/L (ppb)
Chromium	<1
Cobalt	<1
Nickel	1.66
Copper	<1
Zinc	7.39
Arsenic	1.28
Selenium	<1
Cadmium	<1
Barium	50.4
Thallium	<1
Lead	<1
Manganese	1,150

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix:	SB-13-Leachate 02/13/09 02/16/09 02/17/09 Water	Client: Project: Lab ID: Data File: Instrument:	SLR International Corp. Yakima LF, F&BI 902123 902123-06 902123-06.020 ICPMS1
Units:	ug/L (ppb)	Operator:	hr

		Lower	Upper
Internal Standard:	% Recovery:	Limit:	Limit:
Germanium	100	60	125
Indium	85	60	125
Holmium	93	60	125

Analyte:	Concentration ug/L (ppb)
Chromium	1.20
Cobalt	2.20
Nickel	5.90
Copper	2.32
Zinc	9.29
Arsenic	6.39
Selenium	2.92
Cadmium	<1
Barium	121
Thallium	<1
Lead	<1
Manganese	2,390

ENVIRONMENTAL CHEMISTS

tient: SLR International Corp. roject: Yakima LF, F&BI 902123 ab ID: 902123-07 ata File: 902123-07.021 astrument: ICPMS1 perator: hr
[

		Lower	Upper
Internal Standard:	% Recovery:	Limit:	Limit:
Germanium	114	60	125
Indium	90	60	125
Holmium	98	60	125

Analyte:	Concentration ug/L (ppb)
Chromium	<1
Cobalt	1.34
Nickel	3.69
Copper	<1
Zinc	4.63
Arsenic	7.34
Selenium	<1
Cadmium	<1
Barium	131
Thallium	<1
Lead	<1
Manganese	1,330

ENVIRONMENTAL CHEMISTS

Date Received: 02/13/09 Date Extracted: 02/16/09 Date Analyzed: 02/17/09 Matrix: Water Units: ug/L (ppb)	
--	--

Client:	SLR International Corp.
Project:	
Lab ID:	Yakima LF, F&BI 902123
	902123-08
Data File:	902123-08.022
Instrument:	ICPMS1
Operator:	hr

		Lower	$_{ m Upper}$
Internal Standard:	% Recovery:	Limit:	Limit:
Germanium	109	60	125
Indium	90	60	125
Holmium	99	60	125

Analyte:	Concentration ug/L (ppb)
Chromium	<1
Cobalt	3.15
Nickel	5.48
Copper	1.46
Zinc	19.2
Arsenic	8.10
Selenium	2.46
Cadmium	<1
Barium	121
Thallium	<1
Lead	<1
Manganese	2,530
	•

ENVIRONMENTAL CHEMISTS

•			
Client ID: Date Received: Date Extracted:	SB-19-Leachate 02/13/09 02/16/09	Client: Project: Lab ID:	SLR International Corp. Yakima LF, F&BI 902123 902123-09
Date Analyzed:	02/17/09	Data File:	902123-09.023
Matrix:	Water	Instrument:	ICPMS1
Units:	ug/L (ppb)	Operator:	hr
		T	

	Lower	Upper
% Recovery:	Limit:	Limit:
109	60	125
88	60	125
95	60	125
	109 88	% Recovery: Limit: 109 60 88 60

Analyte:	Concentration ug/L (ppb)
Chromium	<1
Cobalt	1.30
Nickel	3.79
Copper	<1
Zinc	6.97
Arsenic	12.1
Selenium	<1
Cadmium	<1
Barium	91.0
Thallium	<1
Lead	<1
Manganese	1,940

ENVIRONMENTAL CHEMISTS

•			
Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank Not Applicable 02/16/09 02/17/09 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	SLR International Corp. Yakima LF, F&BI 902123 I9-070 mb I9-070 mb.008 ICPMS1 hr
		*	**

		Lower	$_{ m Upper}$
Internal Standard:	% Recovery:	Limit:	Limit:
Germanium	89	60	125
Indium	86	60	125
Holmium	90	60	125

Analyte:	Concentration ug/L (ppb)
Chromium	<1
Cobalt	<1
Nickel	<1
Copper	<1
Zinc	<2
Arsenic	<1
Selenium	<1
Cadmium	<1
Barium	<1
Thallium	<1
Lead	<1
Manganese	<1

ENVIRONMENTAL CHEMISTS

Analysis for TCLP Metals By EPA Method 200.8 and 40 CFR PART 261 $\,$

Client ID: Date Received:	TP-51-Waste 02/13/09	Client: Project:	SLR International Corp. Yakima LF, F&BI 902123
Date Extracted:	02/17/09	Lab ID:	902123-01
Date Analyzed:	02/18/09	Data File:	902123-01.012
Matrix:	Soil	Instrument:	ICPMS1
Units:	mg/L (ppm)	Operator:	hr

		Lower	Upper
Internal Standard:	% Recovery:	Limit:	Limit:
Germanium	95	60	125
Indium	95	60	125
Holmium	100	60	125

Analyte:	Concentration mg/L (ppm)	TCLP Limit
Chromium	<1	5.0
Arsenic	<1	5.0
Selenium	<1	1.0
Silver	<1	5.0
Cadmium	<1	1.0
Barium	2.04	100
Lead	1.24	5.0

ENVIRONMENTAL CHEMISTS

60

60

125

125

Analysis for TCLP Metals By EPA Method 200.8 and 40 CFR PART 261

92

97

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	TP-53-Waste	Client:	SLR International Corp.
	02/13/09	Project:	Yakima LF, F&BI 902123
	02/17/09	Lab ID:	902123-02
	02/18/09	Data File:	907123-02.015
	Soil	Instrument:	ICPMS1
	mg/L (ppm)	Operator:	hr
Internal Standard: Germanium	% Recovery: 91	Lower Limit: 60	Upper Limit: 125

Analyte:	Concentration mg/L (ppm)	TCLP Limit
Chromium	<1	5.0
Arsenic	<1	5.0
Selenium	<1	1.0
Silver	<1	5.0
Cadmium	<1	1.0
Barium	4.85	100
Lead	1.72	5.0

Indium

Holmium

ENVIRONMENTAL CHEMISTS

Analysis for TCLP Metals By EPA Method 200.8 and 40 CFR PART 261 $\,$

· ·	•			
Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	SB-18-19-19.5 02/13/09 02/17/09 02/18/09 Soil mg/L (ppm)	5	Client: Project: Lab ID: Data File: Instrument: Operator:	SLR International Corp. Yakima LF, F&BI 902123 902123-03 907123-03.016 ICPMS1 hr
			Lower	Upper
Internal Standard:	(% Recovery:	Limit:	Limit:
Germanium		93	60	125
Indium		95	60	125
Holmium		97	60	125
	C	oncentration		
Analyte:	:	mg/L (ppm)	TCLP Lim	it
Chromium		<1	5.0	
Arsenic		<1	5.0	
Selenium		<1	1.0	
Silver		<1	5.0	
Cadmium		<1	1.0	
Barium		<1	100	

<1

5.0

Lead

ENVIRONMENTAL CHEMISTS

Analysis for TCLP Metals By EPA Method 200.8 and 40 CFR PART 261 $\,$

Date Received: Date Extracted: Date Analyzed: Matrix:	SB-19-5.5-6 02/13/09 02/17/09 02/18/09 Soil mg/L (ppm)	Client: Project: Lab ID: Data File: Instrument: Operator:	SLR International Corp. Yakima LF, F&BI 902123 902123-04 907123-04.017 ICPMS1 hr
---	---	---	---

		Lower	Upper
Internal Standard:	% Recovery:	Limit:	Limit:
Germanium	93	60	125
Indium	91	60	125
Holmium	95	60	125

Analyte:	Concentration mg/L (ppm)	TCLP Limit
Chromium	<1	5.0
Arsenic	<1	5.0
Selenium	<1	1.0
Silver	<1	5.0
Cadmium	<1	1.0
Barium	<1	100
Lead	<1	5.0

ENVIRONMENTAL CHEMISTS

Analysis for TCLP Metals By EPA Method 200.8 and 40 CFR PART 261

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank Not Applicable 02/17/09 02/18/09 Soil mg/L (ppm)	Client: Project: Lab ID: Data File: Instrument: Operator:	SLR International Corp. Yakima LF, F&BI 902123 I9-071 mb I9-071 mb.008 ICPMS1 hr
		Lower	Upper
Internal Standard:	% Recovery:	Limit:	Limit:
Germanium	96	60	125
Indium	95	60	125
Holmium	99	60	125
Analyte:	Concentration mg/L (ppm)	ı TCLP Lim	it

ENVIRONMENTAL CHEMISTS

Date of Report: 03/02/09 Date Received: 02/13/09

Project: Yakima LF, F&BI 902123

Date Extracted: 02/17/09 Date Analyzed: 02/20/09

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TCLP METALS IN ACCORDANCE WITH EPA METHOD 1631E AND 40 CFR PART 261

Results Reported as mg/L (ppm)

Sample ID Laboratory ID	Mercury
TP-51-Waste 902123-01	<0.02
TP-53-Waste 902123-02	< 0.02
SB-18-19-19.5 902123-03	< 0.02
SB-19-5.5-6 902123-04	< 0.02
Method Blank	< 0.02
TCLP Limit	0.2

ENVIRONMENTAL CHEMISTS

Date of Report: 03/02/09 Date Received: 02/13/09

Project: Yakima LF, F&BI 902123

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR pH BY METHOD 9040C

Laboratory Code: 902123-09 (Duplicate)

•	Sample	Duplicate	Relative Percent	Acceptance
Analyte	Result	Result	Difference	Criteria
pН	6.42	6.40	0	0-20

ENVIRONMENTAL CHEMISTS

Date of Report: 03/02/09 Date Received: 02/13/09

Project: Yakima LF, F&BI 902123

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED METALS USING EPA METHOD 200.8

Laboratory Code: 902114-02 (Duplicate)

				Relative	
		\mathbf{Sample}	Duplicate	$\operatorname{Percent}$	Acceptance
Analyte	Reporting Units	Result	Result	Difference	Criteria
Chromium	ug/L (ppb)	<1	<1	nm	0-20
Cobalt	ug/L (ppb)	<1	<1	nm	0-20
Nickel	ug/L (ppb)	<1	<1	nm	0-20
Copper	ug/L (ppb)	57.5	47.9	18	0-20
Zinc	ug/L (ppb)	55. 3	46.9	16	0-20
Arsenic	ug/L (ppb)	<1	<1	nm	0-20
Selenium	ug/L (ppb)	<1	<1	nm	0-20
Cadmium	ug/L (ppb)	<1	<1	nm	0-20
Barium	ug/L (ppb)	7.02	6.42	9	0-20
Thallium	ug/L (ppb)	<1	<1	nm	0-20
Lead	ug/L (ppb)	<1	<1	nm	0-20
Manganese	ug/L (ppb)	4.98	4.29	15	0-20

Laboratory Code: 902114-02 (Matrix Spike)

•	•	T			
				Percent	
		\mathbf{Spike}	Sample	$\operatorname{Recovery}$	Acceptance
Analyte	Reporting Units	Level	Result	MS	Criteria
Chromium	ug/L (ppb)	20	<1	102	50-150
Cobalt	ug/L (ppb)	20	<1	104	50-150
Nickel	ug/L (ppb)	20	<1	106	50-150
Copper	ug/L (ppb)	20	57.5	30 b	50-150
Zinc	ug/L (ppb)	50	55.3	85 b	50-150
Arsenic	ug/L (ppb)	10	<1	110	50-150
Selenium	ug/L (ppb)	5	<1	113	50-150
Cadmium	ug/L (ppb)	5	<1	109	50-150
Barium	ug/L (ppb)	50	7.02	103	50-150
Thallium	ug/L (ppb)	5	<1	104	50-150
Lead	ug/L (ppb)	10	<1	101	50-150
Manganese	ug/L (ppb)	20	4.98	133 b	50-150

ENVIRONMENTAL CHEMISTS

Date of Report: 03/02/09 Date Received: 02/13/09

Project: Yakima LF, F&BI 902123

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED METALS USING EPA METHOD 200.8

Laboratory Code: Laboratory Control Sample

			Percent	
		\mathbf{Spike}	Recovery	Acceptance
Analyte	Reporting Units	Level	LCS	Criteria
Chromium	ug/L (ppb)	20	104	70-130
Cobalt	ug/L (ppb)	20	103	70-130
Nickel	ug/L (ppb)	20	105	70-130
Copper	ug/L (ppb)	20	105	70-130
Zinc	ug/L (ppb)	50	108	70-130
Arsenic	ug/L (ppb)	10	96	70-130
Selenium	ug/L (ppb)	5	106	70-130
Cadmium	ug/L (ppb)	5	109	70-130
Barium	ug/L (ppb)	50	104	70-130
Thallium	ug/L (ppb)	5	110	70-130
Lead	ug/L (ppb)	10	108	70-130
Manganese	ug/L (ppb)	20	105	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 03/02/09 Date Received: 02/13/09

Project: Yakima LF, F&BI 902123

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TCLP METALS USING EPA METHOD 200.8 AND 40 CFR PART 261

Laboratory Code: 902123-01 (Duplicate)

Analyte	Reporting Units	Sample Result	Duplicate Result	Relative Percent Difference	Acceptance Criteria
Chromium	mg/L (ppm)	<1	<1	nm	0-20
Arsenic	mg/L (ppm)	<1	<1	nm	0-20
Selenium	mg/L (ppm)	<1	<1	nm	0-20
Silver	mg/L (ppm)	<1	<1	nm	0-20
Cadmium	$\mathrm{mg/L}\ \mathrm{(ppm)}$	<1	<1	nm	0-20
Barium	mg/L (ppm)	2.04	2.02	1	0-20
Lead	mg/L (ppm)	1.24	1.29	4	0-20

Laboratory Code: 902123-01 (Matrix Spike)

	Spike	Sample	Recovery	Acceptance	
eporting Units	Level	Result	MS	Criteria	
mg/L (ppm)	2.0	<1	96	50-150	
mg/L (ppm)	1.0	<1	93	50-150	
mg/L (ppm)	0.5	<1	95	50-150	
mg/L (ppm)	0.5	<1	93	50-150	
mg/L (ppm)	0.5	<1	96	50-150	
mg/L (ppm)	5.0	2.04	100 b	50-150	
mg/L (ppm)	1.0	1.24	83 b	50-150	
	mg/L (ppm)	eporting Units Level mg/L (ppm) 2.0 mg/L (ppm) 1.0 mg/L (ppm) 0.5 mg/L (ppm) 0.5 mg/L (ppm) 0.5 mg/L (ppm) 5.0	eporting Units Level Result mg/L (ppm) 2.0 <1	eporting Units Level Result MS mg/L (ppm) 2.0 <1	

Laboratory Code: Laboratory Control Sample

			$\operatorname{Percent}$		
		\mathbf{Spike}	Recovery	Acceptance	
Analyte	Reporting Units	Level	LCS	Criteria	
Chromium	mg/L (ppm)	2.0	96	70-130	
Arsenic	mg/L (ppm)	1.0	94	70-130	
Selenium	mg/L~(ppm)	0.5	99	70-130	
Silver	mg/L (ppm)	0.5	97	70-130	
Cadmium	mg/L (ppm)	0.5	96	70-130	
Barium	mg/L (ppm)	5.0	99	70-130	
Lead	mg/L (ppm)	1.0	93	70-130	

ENVIRONMENTAL CHEMISTS

Date of Report: 03/02/09 Date Received: 02/13/09

Project: Yakima LF, F&BI 902123

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF THE SOIL SAMPLES FOR TCLP METALS IN ACCORDANCE WITH EPA METHOD 1631E AND 40 CFR PART 261

Laboratory Code: 902123-01 (Matrix Spike)

Analyte	Reporting Units	Spike Level	Sample Result	Percent Recovery MS	$\begin{array}{c} \text{Percent} \\ \text{Recovery} \\ \text{MSD} \end{array}$	Control Limits	RPD (Limit 20)
Mercury	mg/L (ppm)	0.005	< 0.02	107	117	50-150	9

Laboratory Code: Laboratory Control Sample

			$\operatorname{Percent}$		
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	
Mercury	mg/L (ppm)	0.005	114	70-130	

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- A1 More than one compound of similar molecule structure was identified with equal probability.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for this range fell outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte indicated may be due to carryover from previous sample injections.
- d The sample was diluted. Detection limits may be raised due to dilution.
- ds The sample was diluted. Detection limits are raised due to dilution and surrogate recoveries may not be meaningful.
- dv Insufficient sample was available to achieve normal reporting limits and limits are raised accordingly.
- fb The analyte indicated was found in the method blank. The result should be considered an estimate.
- fc The compound is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. The variability is attributed to sample inhomogeneity.
- ht The sample was extracted outside of holding time. Results should be considered estimates.
- ip Recovery fell outside of normal control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The result is below normal reporting limits. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The analyte result in the laboratory control sample is out of control limits. The reported concentration should be considered an estimate.
- jr The rpd result in laboratory control sample associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the compound indicated is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received in a container not approved by the method. The value reported should be considered an estimate.
- pr The sample was received with incorrect preservation. The value reported should be considered an estimate.
- ve The value reported exceeded the calibration range established for the analyte. The reported concentration should be considered an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The pattern of peaks present is not indicative of diesel.
- y The pattern of peaks present is not indicative of motor oil.

Am Test Inc. 13600 NE 126TH PL Suite C Kirkland, WA 98034 (425) 885-1664

Professional Analytical Services

Feb 26 2009 Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029 Attention: Michael Erdahl

Dear Michael Erdahl:

Enclosed please find the analytical data for your project.

The following is a cross correlation of client and laboratory identifications for your convenience.

CLIENT ID	MATRIX	AMTEST ID	TEST
SB-11 Leachate	Water	09-A002771	CONV
SB-13 Leachate	Water	09-A002772	CONV
SB-16 Leachate	Water	09-A002773	CONV
SB-18 Leachate	Water	09-A002774	CONV
SB-19 Leachate	Water	09-A002775	CONV

Your samples were received on Tuesday, February 17, 2009. At the time of receipt, the samples were logged in and properly maintained prior to the subsequent analysis.

The analytical procedures used at AmTest are well documented and are typically derived from the protocols of the EPA, USDA, FDA or the Army Corps of Engineers.

Following the analytical data you will find the Quality Control (QC) results.

Please note that the detection limits that are listed in the body of the report refer to the Method Detection Limits (MDL's), as opposed to Practical Quantitation Limits (PQL's).

If you should have any questions pertaining to the data package, please feel free to contact me.

Sincerely

Kathy Fugie President

Project #: 902123 PO Number: H-1784

BACT = Bacteriological CONV = Conventionals

s OR0

NUT=Nutrients

MIN=Minerals

TC=Total Coliforms

MET = Metals ORG = Organics

DEM=Demand

APC=Aerobic Plate Count

www.amtestlab.com

Professional Analytical Services

ANALYSIS REPORT

Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029 Attention: Michael Erdahl

Project #: 902123 PO Number: H-1784

All results reported on an as received basis.

Date Received: 02/17/09 Date Reported: 2/26/09

AMTEST Identification Number

Client Identification Sampling Date 09-A002771 SB-11 Leachate

02/11/09

Conventionals

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Bromide	< 0.3	mg/l		0.02	EPA 300.0	MO	02/18/09

AMTEST Identification Number

Client Identification Sampling Date 09-A002772 SB-13 Leachate

02/11/09

Conventionals

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Bromide	< 0.3	mg/l		0.02	EPA 300.0	МО	02/18/09

AMTEST Identification Number

Client Identification Sampling Date

09-A002773 SB-16 Leachate 02/11/09

Conventionals

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Bromide	< 0.3	mg/l		0.02	EPA 300.0	МО	02/18/09

AMTEST Identification Number Client Identification Sampling Date 09-A002774 SB-18 Leachate 02/11/09

Conventionals

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Bromide	< 0.3	mg/l		0.02	EPA 300.0	МО	02/18/09

AMTEST Identification Number Client Identification

09-A002775 SB-19 Leachate

Sampling Date

02/11/09

Conventionals

PARAMETER	RESULT	UNITS	D.L.	METHOD	ANALYST	DATE
Bromide	< 0.3	mg/l	0.02	EPA 300.0	МО	02/18/09

Kathy Fugiel President

SUBCONTRACT SAMPLE CHAIN OF CUSTODY

Sand Ranget To	fiohool	Michael Endohl		SUBC	ONTR.	SUBCONTRACTER								Page #	Page # of	
1	TECHIAC	mann													TIME THAT	-1
Company F	riedma	Friedman and Bruya, Inc	, Inc.	PROJ	ECTN	PROJECT NAME/NO	o.				P0#		Z Standa	Z Standard (2 Weeks)	eeks)	
	012 16	3012 16th Ave W		<u></u>	902123	2				<u>a</u>	王光工	7	Rush	charges au	Rush charges authorized by:	
	•	0		REM	REMARKS									SAMPLE	SAMPLE DISPOSAL	
City, State, ZIP_Se	eattle,	Seattle, WA 98119			,	i	;	;				-	□ Dis	Dispose after 30 days	0 days	
Phone # (206) 285-8282	-8282	Fax #(20	(206) 283-5044		merda	Please Email Results <u>merdahl@friedmanandbruya.com</u>	Smail I dmana	Result	s iya.con	d			Ret	urn sample call with	☐ Return samples ☐ Will call with instructions	0
								[A]	NALY	SESE	EQUE	ANALYSES REQUESTED				
Sample ID	Lab ID	Date Sampled	Time Sampled	Matrix	# of jars	essert) bas liO	ЕЪН	АРН	Nitrate	Sulfate	Alkalinity	-30,005 pd.			Notes	
SB-11 Leachate	1227	62/11/29	05 30	3)						×					
SB-13 Leachete	2		50 tl		1						×					
SB-16 Lezellage	EL	-	<u>ल</u> ंटरी	-	}		~				×				,	
	hL.	02/12/189	13.5		en e						\times					
1 1	52		1330		}				<i>p.</i>		×					
				•		 28	iya e	<u> </u>	Sec.							
							vii.									
				Mga,												
					14.5	1										
				S A CONTRACTOR												
								70.00								
Friodman & Bruna Inc	I,,,		SCHATIBE			PR	PRINT NAME	A M.E.				COMPANY	<u> </u>	DATE	-	TIME
3012 16th Avenue West	tse.	Relinquished by:	Y.		Micha	Michael Erdahl			20/6		riedm	Friedman & Bruya	uya	27/10		
Seattle, WA 98119-2029	620	Received by:),	100		12	17	7/2			Ant	toci	1	1	3	
Ph. (206) 285-8282	<u></u>	Relinduished by:	y:			. ,			+							
Fax (206) 283-5044	1	Received by:														

LABORATORY & CONSULTING SERVICES

3927 AURORA AVENUE NORTH, SEATTLE, WA 98103

PHONE: (206) 632-2715

FAX: (206) 632-2417

FBI003-74

REPORT DATE: DATE SAMPLED:

CASE FILE NUMBER:

02/27/09 02/11/09

DATE RECEIVED:

02/13/09

PAGE 1

FINAL REPORT, LABORATORY ANALYSIS OF SELECTED PARAMETERS ON WATER

SAMPLES FROM FRIEDMAN & BRUYA, INC. / PROJECT NO. 902123

CASE NARRATIVE

Five water samples were received by the laboratory in good condition and analyzed according to the chain of custody. No difficulties were encountered in the preparation or analysis of these samples. Sample data follows while QA/QC data is contained on the subsequent pages.

SAMPLE DATA

	CHLORIDE	FLUORIDE	SULFATE	NITRATE	NITRITE	SRP
SAMPLE ID	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)
SB-11 LEACHATE	10.5	0.37	2.11	0.032	< 0.002	0.004
SB-13 LEACHATE	128	0.37	29.1	0.117	0.003	0.004
SB-16 LEACHATE	21.6	0.30	< 1.00	0.192	0.004	0.009
SB-18 LEACHATE	37.9	0.67	10.8	0.139	0.005	0.007
SB-19 LEACHATE	13.5	0.50	1.40	0.127	0.006	0.005

	pН	ALKALINITY	HCO3	CO3
SAMPLE ID		(mgCaCO3/l)	(mgCaCO3/l)	(mgCaCO3/l)
SB-11 LEACHATE	6.78	234	170	< 1.00
SB-13 LEACHATE	6.52	326	195	< 1.00
SB-16 LEACHATE	6.39	438	229	< 1.00
SB-18 LEACHATE	6.36	441	223	< 1.00
SB-19 LEACHATE	6.24	301	131	< 1.00

LABORATORY & CONSULTING SERVICES

3927 AURORA AVENUE NORTH, SEATTLE, WA 98103

PHONE: (206) 632-2715 FAX: (206) 632-2417

CASE FILE NUMBER:

FBI003-74

PAGE 2

REPORT DATE:

02/27/09

DATE SAMPLED:

02/11/09

DATE RECEIVED:

02/13/09

FINAL REPORT, LABORATORY ANALYSIS OF SELECTED PARAMETERS ON WATER

SAMPLES FROM FRIEDMAN & BRUYA, INC. / PROJECT NO. 902123

SAMPLE DATA

AT WILL WITH WATER WATER					
		DIS	SOLVED MET	TALS	
	IRON	POTASSIUM	CALCIUM	MAGNESIUM	SODIUM
SAMPLE ID	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)
SB-11 LEACHATE	7.78	6.87	30.1	12.8	21.6
SB-13 LEACHATE	25.9	20.7	55.2	21.8	68.7
SB-16 LEACHATE	39.9	31.3	44.8	17.6	29.4
SB-18 LEACHATE	36.5	15.5	59.7	22.1	46.5
SB-19 LEACHATE	43.3	10.7	45.0	16.4	18.6

LABORATORY & CONSULTING SERVICES

3927 AURORA AVENUE NORTH, SEATTLE, WA 98103

PHONE: (206) 632-2715 FAX: (206) 632-2417

CASE FILE NUMBER:

FBI003-74

PAGE 3

REPORT DATE:

02/27/09

DATE SAMPLED:

02/11/09

DATE RECEIVED:

02/13/09

FINAL REPORT, LABORATORY ANALYSIS OF SELECTED PARAMETERS ON WATER

SAMPLES FROM FRIEDMAN & BRUYA, INC. / PROJECT NO. 902123

QA/QC DATA

QC PARAMETER	CHLORIDE	FLUORIDE	SULFATE	NITRATE	NITRITE	SRP
	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)
METHOD	SM204500CLC	EPA 340.2	SM184500SO4E	SM184500N03F	EPA354.1	EPA 365.1
DATE ANALYZED	02/17/09	02/18/09	02/17/09	02/13/09	02/13/09	02/13/09
DETECTION LIMIT	0.50	0.10	1.00	0.010	0.002	0.001
DUPLICATE						7-07
SAMPLE ID	SB-19 LEACHATE	SB-11 LEACHATE	ВАТСН	BATCH	SB-19 LEACHATE	ВАТСН
ORIGINAL	13.5	0.37	4.88	0.265	0.006	0.003
DUPLICATE	13.8	0.36	5.14	0.263	0.006	0.003
RPD	2.15%	3.58%	5.26%	0.68%	0.00%	2.74%
SPIKE SAMPLE						
SAMPLE ID	SB-19 LEACHATE	SB-11 LEACHATE	BATCH	BATCH	SB-19 LEACHATE	BATCH
ORIGINAL	13.5	0.37	4.88	0.265	0.006	0.003
SPIKED SAMPLE	23.6	1.41	15.2	0.479	0.046	0.023
SPIKE ADDED	10.0	1.00	10.0	0.200	0.040	0.020
% RECOVERY	100.69%	103.10%	103.43%	106.90%	100.00%	95.62%
QC CHECK						
FOUND	28.8	1.04	9.30	0.406	0.040	0.034
TRUE	30.0	1.00	10.0	0.408	0.040	0.033
% RECOVERY	96.12%	104.26%	92.98%	99.62%	100.00%	103.77%
BLANK	< 0.50	< 0.10	<1.00	< 0.010	< 0.002	< 0.001

RPD = RELATIVE PERCENT DIFFERENCE.

NA = NOT APPLICABLE OR NOT AVAILABLE.

NC = NOT CALCULABLE DUE TO ONE OR MORE VALUES BEING BELOW THE DETECTION LIMIT.

OR = RECOVERY NOT CALCULABLE DUE TO SPIKE SAMPLE OUT OF RANGE OR SPIKE TOO LOW RELATIVE TO SAMPLE CONCENTRATION.

LABORATORY & CONSULTING SERVICES

3927 AURORA AVENUE NORTH, SEATTLE, WA 98103 PHONE: (206) 632-2715 FAX: (206) 632-2417

CASE FILE NUMBER: FBI003-74 PAGE 4

REPORT DATE: 02/27/09

DATE SAMPLED: 02/11/09 DATE RECEIVED: 02/13/09

FINAL REPORT, LABORATORY ANALYSIS OF SELECTED PARAMETERS ON WATER

SAMPLES FROM FRIEDMAN & BRUYA, INC. / PROJECT NO. 902123

QA/QC DATA

QC PARAMETER	pН	ALKALINITY	HCO3	CO3
		(mgCaCO3/l)	(mgCaCO3/l)	(mgCaCO3/l)
METHOD	EPA 150.1	EPA 310.1	EPA 310.1	EPA 310.1
DATE ANALYZED	02/13/09	02/23/09	02/23/09	02/23/09
DETECTION LIMIT	0.10	1.00	1.00	1.00
DUPLICATE				
SAMPLE ID		ВАТСН		
ORIGINAL		45.7		
DUPLICATE		46.2		
RPD	NA	1.09%	NA	NA
SPIKE SAMPLE			,	
SAMPLE ID				
ORIGINAL				
SPIKED SAMPLE				
SPIKE ADDED				
% RECOVERY	NA	NA	NA	NA
QC CHECK				
(mg/l)		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
FOUND		98.7		
TRUE		100		
% RECOVERY	NA	98.70%	NA	NA
BLANK	NA	, NA	NA	NA

RPD = RELATIVE PERCENT DIFFERENCE.

NA = NOT APPLICABLE OR NOT AVAILABLE. NC = NOT CALCULABLE DUE TO ONE OR MORE VALUES BEING BELOW THE DETECTION LIMIT.

OR = RECOVERY NOT CALCULABLE DUE TO SPIKE SAMPLE OUT OF RANGE OR SPIKE TOO LOW RELATIVE TO SAMPLE CONCENTRATION.

LABORATORY & CONSULTING SERVICES

3927 AURORA AVENUE NORTH, SEATTLE, WA 98103 PHONE: (206) 632-2715 FAX: (206) 632-2417

CASE FILE NUMBER:

FBI003-74

PAGE 5

REPORT DATE:

02/27/09

DATE SAMPLED:

02/11/09

DATE RECEIVED:

02/13/09

FINAL REPORT, LABORATORY ANALYSIS OF SELECTED PARAMETERS ON WATER

SAMPLES FROM FRIEDMAN & BRUYA, INC. / PROJECT NO. 902123

QA/QC DATA

Arri & O STATIT					
		DIS	SOLVED MET	ALS	
QC PARAMETER	IRON	POTASSIUM	CALCIUM	MAGNESIUM	SODIUM
	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)
METHOD	EPA 6010	EPA 6010	EPA 6010	EPA 6010	EPA 6010
DATE ANALYZED	02/19/09	02/19/09	02/19/09	02/19/09	02/19/09
DETECTION LIMIT	0.010	0.500	0.100	0.100	0.100
DUPLICATE					
SAMPLE ID	ВАТСН	BATCH	ВАТСН	BATCH	ВАТСН
ORIGINAL	4.63	3.11	29.2	41.0	24.6
DUPLICATE	4.66	2.96	29.8	41.3	24.4
RPD	0.63%	4.87%	1.87%	0.70%	0.94%
SPIKE SAMPLE					
SAMPLE ID	BATCH	ВАТСН		ВАТСН	BATCH
ORIGINAL	4.63	3.11		41.0	24.6
SPIKED SAMPLE	14.0	13.1		50.2	36.1
SPIKE ADDED	10.0	10.0		10.0	10.0
% RECOVERY	93.76%	99.44%	NA	91.76%	114.60%
QC CHECK (mg/l)					
FOUND	9.48	10.1	10.0	9.65	9.25
TRUE	10.0	10.0	10.0	10.0	10.0
% RECOVERY	94.77%	101.05%	100.24%	96.54%	92.52%
		T			
BLANK	< 0.010	< 0.500	< 0.100	< 0.100	< 0.005

RPD = RELATIVE PERCENT DIFFERENCE.

NA = NOT APPLICABLE OR NOT AVAILABLE.

NC = NOT CALCULABLE DUE TO ONE OR MORE VALUES BEING BELOW THE DETECTION LIMIT.

OR = RECOVERY NOT CALCULABLE DUE TO SPIKE SAMPLE OUT OF RANGE OR SPIKE TOO LOW RELATIVE TO SAMPLE CONCENTRATION.

SUBMITTED BY:

Laboratory Director

SUBCONTRACT SAMPLE CHAIN OF CUSTODY

Send Report To Mic	Michael Erdahl	rdahl	ĺ	SUB	SUBCONTRACTER	RACTE	R					Γ	Page#	2245	of	
CompanyFrie	dman s	Friedman and Bruya, Inc.	Inc.	PRO,	PROJECT NAME/NO.	VAME/	NO.				P0#		Sta	NAROUT		11
Address 3012	3012 16th Ave W	Ave W		<u></u>	902198	0	• (Ω	RUSH	מי וו פפו	(81	í
City State 7TD Section VIII	41. 117.A			REM	REMARKS *		1	- 1			- /		rush charges authorized by:	es autho	rized by:	
ord), Dearc, DII Dear	ue, w.	4 98119		*	L. Carrie	לומני		WETHER !		HAVE BEECH	3. 1. 1.		SAM	SAMPLE DISPOSAL	POSAL	
Phone #(206) 285-8282		Fax # (20	(206) 283-5044		merd	Please ahl@fri	Email edman	Please Email Results merdahl@friedmanandbruya.com	s ya.com				 □ Dispose after 30 days □ Return samples □ Will call with instructions 	ufter 30 d amples with inst	lays	
						-		1	2 4 4			۱ ۱		100	Tactions	
						€		H	ANALYSES		REQUESTED	TED				1
Sample ID L	Lab ID S	Date Sampled	Time Sampled	Matrix	# of jars	esearO bus li	ЕРН	НФИ	- Nitrate	Sulfate Alkalinity	* SUOIL	LONOTE / BILME	oron ha		Notes	1
=	+					0		₹ <u>~</u>	13/16	_	4	av.	20			
Jenshak	8		26 60	3	4			117	7		()		VΙ	, -		- 1
SB-13 Lezchek	-2	62/4	Sot	-	4		T	4	100		2		a	*	Mions	į
38 - 16 Lachet	02/		325		6		+	9 -		10		1]-]	2017	
58-18 Lesdigh	02/	4/2	(3.5		7	1	1	9 ,	_ -		1	+		1	下しゅうひん	
5B-19 Leschole	0	02/12	1330		. 24	+	+	2	3/2					Ch le	Chlorida	
	-				-6	-	+	9	_	+	7	7		Pro	Promise	7
	_)		-	-						\ <u>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u>	Swi Gate	1
	_						+		_				SRIP	Phos	Phosph 24	1
	-					1								44.41	14	1
	-													1.7	1,1,1,1,1	
	+					1								7 (1	N 1 ' L 02 10	
	+												1	2	202	_
	\dashv								-			-				
						+-						-				
Friedman & Bruya, Inc. 3012 16th Avenue West		S Relinquis bed by	SIGNATURE			PRI	PRINT NAME	ME			COM	COMPANY		DATE	TIME	r
Seattle, WA 98119-2029	Recei	Received by:		7-1	Menael Erdan	roa A	No.	1		Frie	dman &	Friedman & Bruya	\$	2.	1915	-,
Ph. (206) 285-8282	Relin	Relinquished by:				N. 2	MASSON	3			Bush	a	1	7 7	1400	
	_			-						L			}	1	11111	

Received by:

Fax (206) 283-5044

February 24, 2009

Michael Erdahl Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029

Re:

Analytical Data for Project 902123 Laboratory Reference No. 0902-104

Dear Michael:

Enclosed are the analytical results and associated quality control data for samples submitted on February 13, 2009.

The standard policy of OnSite Environmental Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Project: 902123

Case Narrative

Samples were collected on February 11 and 12, 2009, and received by the laboratory on February 13, 2009. They were maintained at the laboratory at a temperature of 2°C to 6°C except as noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

TCLP Volatiles by EPA 1311/8260B Analysis

Per EPA Method 5035A, samples were received by the laboratory in pre-weighed 40 mL VOA vials within 48 hours of sample collection. They were stored in a freezer at between -7°C and -20°C until extraction or analysis.

The soil that was used for the TCLP extraction of samples SB-18-19-19.5 and SB-19-5.5-6 was located in Method 5035 VOA vials that contained headspace. Some loss of volatiles may have occurred.

Normally 25g of sample are tumbled for the TCLP extraction. Due to limited sample volumes, 15.5g were tumbled for sample SB-18-19-19.5 and 16.8g were tumbled for sample SB-19-5.5-6.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

Laboratory Reference: 0902-104

Project: 902123

TCLP VOLATILES EPA 1311/8260B

Date Extracted:

2-18-09

Date Analyzed:

2-19-09

Matrix:

TCLP Extract

Units:

ug/L (ppb)

Lab ID:

02-104-01

Client ID:

TP-51-WASTE

Compound	Results	Flags	PQL
Vinyl Chloride	ND		2.0
1,1-Dichloroethene	ND		2.0
2-Butanone	ND		50
Chloroform	ND		2.0
Carbon Tetrachloride	ND		2.0
Benzene	ND		2.0
1,2-Dichloroethane	ND		2.0
Trichloroethene	ND		2.0
Tetrachloroethene	ND		2.0
Chlorobenzene	ND		2.0
1,4-Dichlorobenzene	ND		2.0
Hexachlorobutadiene	ND		2.0

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	82	71-126
Toluene-d8	78	76-116
4-Bromofluorobenzene	83	70-123

Laboratory Reference: 0902-104

Project: 902123

TCLP VOLATILES EPA 1311/8260B

Date Extracted: 2-18-09 Date Analyzed: 2-19-09

Matrix: TCLP Extract ug/L (ppb)

Lab ID: 02-104-02
Client ID: TP-53-WASTE

Compound	Results	Flags	PQL
Vinyl Chloride	ND	•	2.0
1,1-Dichloroethene	ND		2.0
2-Butanone	ND		50
Chloroform	ND		2.0
Carbon Tetrachloride	ND		2.0
Benzene	ND		2.0
1,2-Dichloroethane	ND		2.0
Trichloroethene	ND		2.0
Tetrachloroethene	ND		2.0
Chiorobenzene	ND		2.0
1,4-Dichlorobenzene	ND		2.0
Hexachlorobutadiene	ND		2.0

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	81	71-126
Toluene-d8	84	76-116
4-Bromofluorobenzene	89	70-123

Laboratory Reference: 0902-104

Project: 902123

TCLP VOLATILES EPA 1311/8260B

Date Extracted:

2-18-09

Date Analyzed:

2-19-09

Matrix:

TCLP Extract

Units:

ug/L (ppb)

Lab ID:

02-104-03

Client ID:

SB-18-19-19.5

Compound	Results	Flags	PQL
Vinyl Chloride	ND		2.0
1,1-Dichloroethene	ND		2.0
2-Butanone	ND		50
Chloroform	ND		2.0
Carbon Tetrachloride	ND		2.0
Benzene	ND		2.0
1,2-Dichloroethane	ND		2.0
Trichloroethene	ND		2.0
Tetrachloroethene	ND		2.0
Chlorobenzene	ND		2.0
1,4-Dichlorobenzene	ND		2.0
Hexachlorobutadiene	ND		2.0

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	82	71-126
Toluene-d8	84	76-116
4-Bromofluorobenzene	89	70-123

Laboratory Reference: 0902-104

Project: 902123

TCLP VOLATILES EPA 1311/8260B

Date Extracted: 2-19-09 Date Analyzed: 2-20-09

Matrix: TCLP Extract Units: ug/L (ppb)

Lab ID: 02-104-04
Client ID: SB-19-5.5-6

Compound	Results	Flags	PQL
Vinyl Chloride	ND		2.0
1,1-Dichloroethene	ND		2.0
2-Butanone	ND		50
Chloroform	ND		2.0
Carbon Tetrachloride	ND		2.0
Benzene	ND		2.0
1,2-Dichloroethane	ND		2.0
Trichloroethene	ND		2.0
Tetrachloroethene	ND		2.0
Chlorobenzene	ND		2.0
1,4-Dichlorobenzene	ND		2.0
Hexachlorobutadiene	ND		2.0

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	86	71-126
Toluene-d8	83	76-116
4-Bromofluorobenzene	87	70-123

Project: 902123

TCLP VOLATILES EPA 1311/8260B METHOD BLANK QUALITY CONTROL

Date Extracted:

2-18-09

Date Analyzed:

2-19-09

Matrix:

TCLP Extract

Units:

ug/L (ppb)

Lab ID:

MB0218T2

Compound	Results	Flags	PQL
Vinyl Chloride	ND		2.0
1,1-Dichloroethene	ND		2.0
2-Butanone	ND		50
Chloroform	ND		2.0
Carbon Tetrachloride	ND		2.0
Benzene	ND		2.0
1,2-Dichloroethane	ND		2.0
Trichloroethene	ND		2.0
Tetrachloroethene	ND		2.0
Chlorobenzene	ND		2.0
1,4-Dichlorobenzene	ND		2.0
Hexachlorobutadiene	ND		2.0

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	83	71-126
Toluene-d8	83	76-116
4-Bromofluorobenzene	. 84	70-123

Project: 902123

TCLP VOLATILES EPA 1311/8260B METHOD BLANK QUALITY CONTROL

Date Extracted:

2-19-09

Date Analyzed:

2-20-09

Matrix:

TCLP Extract

Units:

ug/L (ppb)

Lab ID:

MB0219T2

Compound	Results	Flags	PQL
Vinyl Chloride	ND	J	2.0
1,1-Dichloroethene	ND		2.0
2-Butanone	ND		50
Chloroform	ND		2.0
Carbon Tetrachloride	ND		2.0
Benzene	ND		2.0
1,2-Dichloroethane	ND		2.0
Trichloroethene	ND		2.0
Tetrachloroethene	ND		2.0
Chlorobenzene	ND		2.0
1,4-Dichlorobenzene	ND		2.0
Hexachlorobutadiene	ND		2.0

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	78	71-126
Toluene-d8	79	76-116
4-Bromofluorobenzene	86	70-123

Project: 902123

TCLP VOLATILES EPA 1311/8260B SB/SBD QUALITY CONTROL

Date Extracted:

2-19-09

Date Analyzed:

2-19-09

Matrix:

TCLP Extract

Units:

ug/L (ppb)

Lab ID:

SB0219T1

Compound	Spike Amount	SB	Percent Recovery	SBD	Percent Recovery	Recovery Limits	Flags
1,1-Dichloroethene	10.0	7.26	73	7.56	76	70-130	
Benzene	10.0	7.92	79	8.38	84	70-130	
Trichloroethene	10.0	9.42	94	9.55	96	70-116	
Toluene	10.0	9.10	91	9.47	95	76-119	
Chlorobenzene	10.0	9.21	92	9.82	98	77-112	

	RPD		
	RPD	Limit	Flags
1,1-Dichloroethene	4	20	
Benzene	6	16	
Trichloroethene	1	16	
Toluene	4	15	
Chlorobenzene	6	15	

Project: 902123

TCLP VOLATILES EPA 1311/8260B SB/SBD QUALITY CONTROL

Date Extracted:

2-20-09

Date Analyzed:

2-20-09

Matrix:

TCLP Extract

Units:

ug/L (ppb)

Lab ID:

SB0220T1

Compound	Spike Amount	SB	Percent Recovery	SBD	Percent Recovery	Recovery Limits	Flags
1,1-Dichloroethene	10.0	7.24	72	7.63	76	70-130	
Benzene	10.0	7.77	78	8.34	83	70-130	
Trichloroethene	10.0	9.31	93	9.77	98	70-116	
Toluene	10.0	8.70	87	9.59	96	76-119	
Chlorobenzene	10.0	8.91	89	10.0	100	77-112	

	RPD	RPD Limit	Flags
1,1-Dichloroethene	5	20	
Benzene	7	16	
Trichloroethene	5	16	
Toluene	10	15	
Chlcrobenzene	12	15	

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical .
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- Y Sample extract treated with an acid/silica gel cleanup procedure.

Z -

- ND Not Detected at PQL
- PQL Practical Quantitation Limit
- RPD Relative Percent Difference

SUBCONTRACT SAMPLE CHAIN OF CUSTODY

Rush charges authorized by: (10.25 TIME 20.0 □ Will call with instructions TURNAROUND TIME SAMPLE DISPOSAL BI2/ USI Notes WRUSH TE LOUDES (So: MDispose after 30 days XStandard (2 Weeks) Samples received at 2/ 369 2/13/69 Ceturn samples DATE ME 2/13/09 COMPANY tano record 7 & B -1 **FO#** SAMPLE CHAIN OF CUSTODY PRINT NAME Phan SAMPLERS (signature) PROJECT NAME/NOX containers <u>N</u> # of 6 d 5 5 3 Vakima REMARKS Sample Type Later 705 Ř Soil 390 Soil Phone # (475) 403-8800 Fax # (435) 403-8489 8-4 16086 Sampled 08/30 1015 1705 178 Time 1310 330 135 SIGNATURE Relinquished by M. C. 11/08/ Sampled 2/2/0 3/11/08 Address 32193 20th Are SE City, State, ZIP Bothell WA Company SUR INTI CORP Send Report To Mike Station Relinquished b: Received by: Received by: Y 94 A-G eg O v rg V 97 40 74 # \$ <u>多</u>本 の 513-19-5-50 Ch. SB-11-beachate SB-13-leachate 318-16-leachate SB-19- Leachate SB-18- Ceachate Friedman & Bruya, Inc. Seattle, W.A. 98119-2029 3012 16th Avenue West SB-18-R-R5 TP-53-Waste TP-51-Waste Sample ID Fax (206) 283-5044 902123 Ph. (206) 285-8282

PORMS/COC/COC.DOC

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Charlene Morrow, M.S. Yelena Aravkina, M.S. Bradley T. Benson, B.S. Kurt Johnson, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 TEL: (206) 285-8282 FAX: (206) 283-5044 e-mail: fbi@isomedia.com

March 3, 2009

Mike Staton, Project Manager SLR International Corp. 22122 20th Ave. SE., H-150 Bothell, WA 98021

Dear Mr. Staton:

Included are the results from the testing of material submitted on February 18, 2009 from the Yakima LF 001.0221.00004, F&BI 902167 project. There are 7 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures SLR0303R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on February 18, 2009 by Friedman & Bruya, Inc. from the SLR International Corp. Yakima LF 001.0221.00004, F&BI 902167 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>

SLR International Corp.

902167-01

SB-27-15.5-16

The samples were sent to Onsite for TCLP VOC analysis. Review of the enclosed report indicates that all quality assurance was acceptable.

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis for TCLP Metals By EPA Method 200.8 and 40 CFR PART 261

Client ID:	SB-27-15.5-16	Client:	SLR International Corp.
Date Received:	02/18/09	Project:	Yakima LF 001.0221.00004, F&BI 902167
Date Extracted:	02/24/09	Lab ID:	902167-01
Date Analyzed:	02/25/09	Data File:	902167-01.011
Matrix:	Soil	Instrument:	ICPMS1
Units:	mg/L (ppm)	Operator:	hr

		Lower	Upper
Internal Standard:	% Recovery:	Limit:	Limit:
Germanium	92	60	125
Indium	109	60	125
Holmium	104	60	125

Analyte:	Concentration mg/L (ppm)	TCLP Limit
Chromium	<1	5.0
Arsenic	<1	5.0
Selenium	<1	1.0
Silver	<1	5.0
Cadmium	<1	1.0
Barium	<1	100
Lead	<1	5.0

ENVIRONMENTAL CHEMISTS

Operator:

Analysis for TCLP Metals By EPA Method 200.8 and 40 CFR PART 261

Client ID:	Method Blank
Date Received:	Not Applicable
Date Extracted:	02/24/09
Date Analyzed:	02/25/09
Matrix:	Soil
Units:	mg/L (ppm)

Client:	SLR International Corp.
Project:	Yakima LF 001.0221.00004, F&BI 902167
Lab ID:	I9-082 mb
Data File:	I9-082 mb.008
Instrument:	ICPMS1

hr

Internal Standard:	% Recovery:	Lower Limit:	Upper Limit:
Germanium	95	60	125
Indium	104	60	125
Holmium	101	60	125

Analyte:	Concentration mg/L (ppm)	TCLP Limit
Chromium	<1	5.0
Arsenic	<1	5.0
Selenium	<1	1.0
Silver	<1	5.0
Cadmium	<1	1.0
Barium	<1	100
Lead	<1	5.0

ENVIRONMENTAL CHEMISTS

Date of Report: 03/03/09 Date Received: 02/18/09

Project: Yakima LF 001.0221.00004, F&BI 902167

Date Extracted: 02/24/09 Date Analyzed: 02/27/09

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TCLP METALS IN ACCORDANCE WITH EPA METHOD 1631E AND 40 CFR PART 261

Results Reported as mg/L (ppm)

Sample ID Laboratory ID	<u>Mercury</u>
SB-27-15.5-16 902167-01	<0.02
Method Blank	< 0.02
TCLP Limit	0.2

ENVIRONMENTAL CHEMISTS

Date of Report: 03/03/09 Date Received: 02/18/09

Project: Yakima LF 001.0221.00004, F&BI 902167

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TCLP METALS USING EPA METHOD 200.8 AND 40 CFR PART 261

Laboratory Code: 902167-01 (Duplicate)

Laboratory Co.	ac. oozior oi (Dapi	Sample	Duplicate	Relative Percent	Acceptance
Analyte	Reporting Units	Result	Result	Difference	Criteria
Chromium	mg/L (ppm)	<1	<1	nm	0-20
Arsenic	mg/L (ppm)	<1	<1	nm	0-20
Selenium	mg/L (ppm)	<1	<1	nm	0-20
Silver	mg/L (ppm)	<1	<1	nm	0-20
Cadmium	mg/L (ppm)	<1	<1	nm	0-20
Barium	mg/L (ppm)	<1	<1	nm	0-20
Lead	mg/L (ppm)	<1	<1	nm	0-20

Laboratory Code: 902167-01 (Matrix Spike)

		Spike	Sample	Recovery	Acceptance
Analyte	Reporting Units	Level	Result	MS	Criteria
Chromium	mg/L (ppm)	2.0	<1	87	50-150
Arsenic	mg/L (ppm)	1.0	<1	90	50-150
Selenium	mg/L (ppm)	0.5	<1	92	50-150
Silver	mg/L (ppm)	0.5	<1	95	50-150
Cadmium	mg/L (ppm)	0.5	<1	100	50-150
Barium	mg/L (ppm)	5.0	<1	97	50-150
Lead	mg/L (ppm)	1.0	<1	94	50-150

Laboratory Code: Laboratory Control Sample

		Spike	Recovery	Acceptance
Analyte	Reporting Units	Level	LCS	Criteria
Chromium	mg/L (ppm)	2.0	91	70-130
Arsenic	mg/L (ppm)	1.0	95	70-130
Selenium	mg/L (ppm)	0.5	100	70-130
Silver	mg/L (ppm)	0.5	98	70-130
Cadmium	mg/L (ppm)	0.5	100	70-130
Barium	mg/L (ppm)	5.0	96	70-130
Lead	mg/L (ppm)	1.0	94	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 03/03/09 Date Received: 02/18/09

Project: Yakima LF 001.0221.00004, F&BI 902167

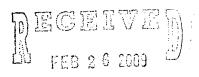
QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF THE SOIL SAMPLES FOR TCLP METALS IN ACCORDANCE WITH EPA METHOD 1631E AND 40 CFR PART 261

Laboratory Code: 902167-01 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Control	RPD
Analyte	Units	Level	Result	MS	MSD	Limits	(Limit 20)
Mercury	mg/L (ppm)	0.005	< 0.02	101	98	50-150	3

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recover	Acceptance
Analyte	Units	Level	y LCS	Criteria
Mercury	mg/L (ppm)	0.005	99	70-130


ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- A1 More than one compound of similar molecule structure was identified with equal probability.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for this range fell outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte indicated may be due to carryover from previous sample injections.
- d The sample was diluted. Detection limits may be raised due to dilution.
- $\mbox{d} s$ The sample was diluted. Detection limits are raised due to dilution and surrogate recoveries may not be meaningful.
- dv Insufficient sample was available to achieve normal reporting limits and limits are raised accordingly.
- fb The analyte indicated was found in the method blank. The result should be considered an estimate.
- fc The compound is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. The variability is attributed to sample inhomogeneity.
- ht The sample was extracted outside of holding time. Results should be considered estimates.
- ip Recovery fell outside of normal control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- i The result is below normal reporting limits. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The analyte result in the laboratory control sample is out of control limits. The reported concentration should be considered an estimate.
- jr The rpd result in laboratory control sample associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the compound indicated is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- $\,$ nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received in a container not approved by the method. The value reported should be considered an estimate.
- pr The sample was received with incorrect preservation. The value reported should be considered an estimate.
- $\mbox{\it ve}$ The value reported exceeded the calibration range established for the analyte. The reported concentration should be considered an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The pattern of peaks present is not indicative of diesel.
- y The pattern of peaks present is not indicative of motor oil.

Analytical Laboratory Testing Services

February 24, 2009

Michael Erdahl Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029

Re:

Analytical Data for Project 902167 Laboratory Reference No. 0902-126

Dear Michael:

Enclosed are the analytical results and associated quality control data for samples submitted on February 19, 2009.

The standard policy of OnSite Environmental Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

Project Manager

Enclosures

Project: 902167

Case Narrative

Samples were collected on February 17, 2009, and received by the laboratory on February 19, 2009. They were maintained at the laboratory at a temperature of 2°C to 6°C except as noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

TCLP Volatiles by EPA 1311/8260B Analysis

Per EPA Method 5035A, samples were received by the laboratory in pre-weighed 40 mL VOA vials within 48 hours of sample collection. They were stored in a freezer at between -7°C and -20°C until extraction or analysis.

The soil that was used for the TCLP extraction of sample SB-27-15.5-16 was located in Method 5035 VOA vials that contained headspace. Some loss of volatiles may have occurred.

Normally 25g of sample are tumbled for the TCLP extraction. Due to limited sample volume, 19.6g were tumbled for sample SB-27-15.5-16.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

Project: 902167

TCLP VOLATILES EPA 1311/8260B

Date Extracted:

2-19-09

Date Analyzed:

2-20-09

Matrix:

TCLP Extract

Units:

ug/L (ppb)

Lab ID:

02-126-01

Client ID:

SB-27-15.5-16

Compound	Results	Flags	PQL
Vinyl Chloride	ND		2.0
1,1-Dichloroethene	ND		2.0
2-Butanone	ND		50
Chloroform	ND		2.0
Carbon Tetrachloride	ND		2.0
Benzene	ND		2.0
1,2-Dichloroethane	ND		2.0
Trichloroethene	ND		2.0
Tetrachloroethene	ND		2.0
Chlorobenzene	ND		2.0
1,4-Dichlorobenzene	ND		2.0
Hexachlorobutadiene	ND		2.0

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	81	71-126
Toluene-d8	79	76-116
4-Bromofluorobenzene	84	70-123

Laboratory Reference: 0902-126

Project: 902167

TCLP VOLATILES EPA 1311/8260B METHOD BLANK QUALITY CONTROL

Date Extracted:

2-19-09

Date Analyzed:

2-20-09

Matrix:

TCLP Extract

Units:

ug/L (ppb)

Lab ID:

MB0219T2

Compound	Results	Flags	PQL
Vinyl Chloride	ND		2.0
1,1-Dichloroethene	ND		2.0
2-Butanone	ND		50
Chloroform	ND		2.0
Carbon Tetrachloride	ND		2.0
Benzene	ND		2.0
1,2-Dichloroethane	ND		2.0
Trichloroethene	ND		2.0
Tetrachloroethene	ND		2.0
Chlorobenzene	ND		2.0
1,4-Dichlorobenzene	ND		2.0
Hexachlorobutadiene	ND		2.0

	Percent	Control			
Surrogate	Recovery	Limits			
Dibromofluoromethane	78	71-126			
Toluene-d8	79	76-116			
4-Bromofluorobenzene	86	70-123			

Project: 902167

TCLP VOLATILES EPA 1311/8260B SB/SBD QUALITY CONTROL

Date Extracted:

2-20-09

Date Analyzed:

2-20-09

Matrix:

TCLP Extract

Units:

ug/L (ppb)

Lab ID:

SB0220T1

Compound	Spike Amount	SB	Percent Recovery	SBD	Percent Recovery	Recovery Limits Flags	Flags	
•								
1,1-Dichloroethene	10.0	7.24	72	7.63	76	70-130		
Benzene	10.0	7.77	78	8.34	83	70-130		
Trichloroethene	10.0	9.31	93	9.77	98	70-116		
Toluene	10.0	8.70	87	9.59	96	76-119		
Chlorobenzene	10.0	8.91	89	10.0	100	77-112		
		RPD						
	RPD	Limit	Flags					
1,1-Dichloroethene	5	20						
Benzene	7	16						
Trichloroethene	5	16						
Toluene	10	15						
Chlorobenzene	12	15						

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____.
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- Y Sample extract treated with an acid/silica gel cleanup procedure.

Z -

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

SUBCONTRACT SAMPLE CHAIN OF CUSTODY

02-126,	Page # of / TITRNAROITND TIME	Str			Return samples Will call with instructions	ESTED	Notes											Friedman & Bruya	Λã			
ODY		# 0d	19±1-H			ANALYSES REQUESTED	Alkalinity	2										Friedma	E	<u>}</u>		
COST					1.00m	ALYSE	Sulfate				.											
Ç					esults idbruya	AN	HqV Strate	-	 						_			ME.	3			
HAIN					mail R manar		ная	-			2				-	-	-	PRINT NAME	707			
LEC	CTER	ME/N(17		Please Email Results chlétriedmanandbruy	î v	easerið bus liO					,			+	_		PRI	C. C.	•		
SAMP	SUBCONTRACTER	PROJECT NAME/NO.	90216 7	ARKS	Please Email Results merdahl@friedmanandbruya.com		# of jars	7		,	•	2			+			Michael Erdahl				
SUBCONTRACT SAMPLE CHAIN OF CUSTODY	SUBC	PROJ	9	REM			Matrix	Sor 1					No.		7							
SUBCO		ı, İnc.			(206) 283-5044		Time Sampled	11 ای									4	SIGNATURE	Sel			
	Michael Erdahl	Friedman and Bruva, Inc.	3012 16th Ave W	Seattle, WA 98119	Fax # (2		Date Sampled	2/4/00			•							Relinguished by:	Received by.	Relinquished by:	Received by:	
	Michael	riedme	012 16	eattle.	-8282		Lab											Inc.	620	d	<u></u>	_1
	Send Report To		Address 3	City, State, ZIP_S	Phone #(206) 285-8282		Sample ID	58-27-15516									THE REAL PROPERTY AND ASSESSMENT OF THE PROPERTY OF THE PROPER	Friedman & Bruya, Inc. 3012 16th Avenue West	Seattle, WA 98119-2029	Ph. (206) 285-8282	Fax (206) 283-5044	

Rush charges authorized by: (1) Return samples (1) Will call with instructions TURNAROUND TIME SAMPLE DISPOSAL □ Dispose after 30 days X Standard (2 Weeks) SAMPLE CHAIN OF CUSTODY ME 02-18-09 ANIAI VOIGO DECITEDATE 40000-1640:100 PO# 48-hr hold on VOCS SAMPLERS (signature) PROJECT NAME/NO OOI OPPI. OOOO GARENARKS Yakma LF Phone # (495) 403 - 8600 Fax # (495) 409 - 8468 Address 29122 30th he SE, H-150 City, State, ZIP Bothell, WA 98021 Company SLR International Corp Sond Report To Mike Staton 902167

		 	<u> </u>	г	ı	Γ	γ	<u> </u>				_
	Notes									\mathcal{O}_{o}	·	DATE TIME
												F
										9.4		
Ü										Zod		ź
EST										SCO		COMPANY
ANALYSES REQUESTED	75LP-Metals	X		<u> </u>					 	Somiles received		000
SS 노	5201 - 922L	X								min.		
LYS	SHI									रीं.		\vdash
AN	SAOCs by 8270											
	AOCs ph 8500											
	81208 yd XATR											ME
	onilosso-H9T	·								-		N
	losoiU-H4TT											PRIN'T NAME
	# of containers	0										PI
	Sample Type	Soil										
	Time Sampled	1115										SIGNATURE
	late Sanpled	5111 W/Elle	*				C SO					SIGN
	Lab ID	0/ A-F										
	Sample ID	5B-27-15.5-16 A							•			Friedman & Bruya, Inc.
ا	**-	لسيسا		L	L		L		L			

Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029 Ph. (206) 285-8282 Fax (206) 283-5044

2-18-05 6081-8 P/18/09 CHANDION FEBI Chris Lee R. NELSON Received by: A Dule Relinquished b: Relinquished b:

8:1

0835

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Charlene Morrow, M.S. Yelena Aravkina, M.S. Bradley T. Benson, B.S. Kurt Johnson, B.S.

3012 16th Avenue West Seattle, WA 98119-2029 TEL: (206) 285-8282 FAX: (206) 283-5044 e-mail: fbi@isomedia.com

May 6, 2009

Mike Staton, Project Manager SLR International Corp. 22122 20th Ave. SE., H-150 Bothell, WA 98021

Dear Mr. Staton:

Included are the amended results from the testing of material submitted on February 27, 2009 from the Yakima LF 001.0221.00004, F&BI 902271 project. Per your request, the vinyl chloride level was lowered below the normal reporting limit.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures SLR0313R.DOC

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Charlene Morrow, M.S. Yelena Aravkina, M.S. Bradley T. Benson, B.S. Kurt Johnson, B.S.

3012 16th Avenue West Seattle, WA 98119-2029 TEL: (206) 285-8282 FAX: (206) 283-5044 e-mail: fbi@isomedia.com

March 13, 2009

Mike Staton, Project Manager SLR International Corp. 22122 20th Ave. SE., H-150 Bothell, WA 98021

Dear Mr. Staton:

Included are the results from the testing of material submitted on February 27, 2009 from the Yakima LF 001.0221.00004, F&BI 902271 project. There are 35 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures SLR0313R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on February 27, 2009 by Friedman & Bruya, Inc. from the SLR International Corp. Yakima LF 001.0221.00004, F&BI 902271 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	SLR International Corp.
902271-01	MW7-0209
902271-02	MW8-0209
902271-03	MW9A-0209
902271-04	MW11-0209
902271-05	MW12-0209
902271-06	MW13-0209

The samples were sent to Amtest for bromide analysis and Aquatic Research for alkalinity, Ca, K, Fe, Mg, Na, fluoride, chloride, sulfate, phosphate, nitrate, and nitrite analyses. Review of the enclosed reports from Amtest and Aquatic Research indicates that all quality assurance was acceptable.

The 8270C compound 2-nitrophenol failed the calibration acceptance criteria. The sample result was flagged accordingly. All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 03/13/09 Date Received: 02/27/09

Project: Yakima LF 001.0221.00004, F&BI 902271

Date Extracted: 03/02/09 Date Analyzed: 03/03/09

RESULTS FROM THE ANALYSIS OF THE WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	Gasoline Range	Surrogate (% Recovery) (Limit 50-150)
MW7-0209 902271-01	<100	95
MW8-0209 902271-02	<100	96
MW9A-0209 902271-03	<100	95
MW11-0209 902271-04	<100	96
MW12-0209 902271-05	<100	96
MW13-0209 902271-06	<100	96
Method Blank	<100	96

ENVIRONMENTAL CHEMISTS

Date of Report: 03/13/09 Date Received: 02/27/09

Project: Yakima LF 001.0221.00004, F&BI 902271

Date Extracted: 03/02/09 Date Analyzed: 03/06/09

RESULTS FROM THE ANALYSIS OF THE WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Sample Extracts Passed Through a Silica Gel Column Prior to Analysis

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	$\frac{\text{Diesel Range}}{(\text{C}_{10}\text{-C}_{25})}$	$rac{ ext{Motor Oil Range}}{ ext{(C}_{25} ext{-C}_{36})}$	Surrogate (% Recovery) (Limit 50-150)
MW7-0209 902271-01	<50	<250	67
MW8-0209 902271-02	<50	<250	74
MW9A-0209 902271-03	<50	<250	73
MW11-0209 902271-04	<50	<250	63
MW12-0209 902271-05	<50	<250	72
MW13-0209 902271-06	<50	<250	76
Method Blank	<50	<250	78

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8

Client:	SLR International Corp.
Project:	Yakima LF 001.0221.00004
Lab ID:	902271-01
Data File:	902271-01.031
Instrument:	ICPMS1
Operator:	hr

Internal Standard: Germanium Indium Holmium	% Recovery: 104 93 95	Lower Limit: 60 60 60	Upper Limit: 125 125 125
Homium	95	60	

Analyte:	Concentration ug/L (ppb)
Chromium	<1
Cobalt	<1
Nickel	2.40
Copper	<1
Zinc	1.66
Arsenic	3.83
Selenium	<1
Cadmium	<1
Barium	67.2
Thallium	<1
Lead	<1
Manganese	1,950

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8

91

•	·	
Client ID:	MW8-0209	Client:
Date Received:	02/27/09	Project:
Date Extracted:	03/02/09	Lab ID:
Date Analyzed:	03/03/09	Data File:
Matrix:	Water	Instrument
Units:	ug/L (ppb)	Operator:
		-

	Instrument: Operator:	ICPMS1 hr	
% Recovery:	Lower Limit:		Upper Limit:
•	Limit.		Limit:
91	60		125
90	60		125

60

SLR International Corp. Yakima LF 001.0221.00004

125

902271-02

902271-02.032

Analyte:	Concentration ug/L (ppb)
Chromium	<1
Cobalt	4.40
Nickel	9.24
Copper	<1
Zinc	2.91
Arsenic	<1
Selenium	1.54
Cadmium	<1
Barium	78.7
Thallium	<1
Lead	<1
Manganese	2,380

Internal Standard:

Germanium

Indium

Holmium

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW9A-0209	Client:	SLR International Corp.
	02/27/09	Project:	Yakima LF 001.0221.00004
	03/02/09	Lab ID:	902271-03
	03/03/09	Data File:	902271-03.033
	Water	Instrument:	ICPMS1
	ug/L (ppb)	Operator:	hr

		Lower	$_{ m Upper}$
Internal Standard:	% Recovery:	Limit:	Limit:
Germanium	95	60	125
Indium	93	60	125
Holmium	95	60	125

Analyte:	Concentration ug/L (ppb)
Chromium	<1
Cobalt	<1
Nickel	1.47
Copper	1.14
Zinc	1.25
Arsenic	<1
Selenium	<1
Cadmium	<1
Barium	11.3
Thallium	<1
Lead	<1
Manganese	<10

ENVIRONMENTAL CHEMISTS

Date Received: 02/27/09 Date Extracted: 03/02/09 Date Analyzed: 03/03/09 Matrix: Water Units: ug/L (ppb)	Date Extracted: Date Analyzed: Matrix:	03/02/09 03/03/09 Water
--	--	-------------------------------

Client:	SLR International Corp.
Project:	Yakima LF 001.0221.00004
Lab ID:	902271-04
Data File:	902271-04.034
Instrument:	ICPMS1
Operator:	hr

		Lower	Upper
Internal Standard:	% Recovery:	Limit:	Limit:
Germanium	116	60	125
Indium	97	60	125
Holmium	97	60	125

Analyte:	Concentration ug/L (ppb)
Chromium	<1
Cobalt	<1
Nickel	1.62
Copper	<1
Zinc	6.43
Arsenic	4.33
Selenium	<1
Cadmium	<1
Barium	51.4
Thallium	<1
Lead	<1
Manganese	1,410

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW12-0209 02/27/09 03/02/09 03/03/09 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	SLR International Corp. Yakima LF 001.0221.00004 902271-05 902271-05.035 ICPMS1 hr
---	--	---	---

		Lower	Upper
Internal Standard:	% Recovery:	Limit:	Limit:
Germanium	105	60	125
Indium	92	60	125
Holmium	95	60	125

Analyte:	Concentration ug/L (ppb)
Chromium	<1
Cobalt	<1
Nickel	<1
Copper	<1
Zinc	1.39
Arsenic	<1
Selenium	<1
Cadmium	<1
Barium	16.8
Thallium	<1
Lead	<1
Manganese	503

ENVIRONMENTAL CHEMISTS

Client:	SLR International Con	p.
Project:	Yakima LF 001.0221.0	00004
Lab ID:	902271-06	
Data File	902271-06.036	
Instrume	nt: ICPMS1	
Operator	hr	

		Lower	Upper
Internal Standard:	% Recovery:	Limit:	Limit:
Germanium	103	60	125
Indium	94	60	125
Holmium	100	60	125

Analyte:	Concentration ug/L (ppb)
Chromium	<1
Cobalt	<1
Nickel	1.37
Copper	<1
Zinc	1.13
Arsenic	<1
Selenium	<1
Cadmium	<1
Barium	24.5
Thallium	<1
Lead	<1
Manganese	649

ENVIRONMENTAL CHEMISTS

Client ID:	Method Blank	Client:	SLR International Corp.
Date Received:	NA	Project:	Yakima LF 001.0221.00004
Date Extracted:	03/02/09	Lab ID:	I9-089 mb
Date Analyzed:	03/03/09	Data File:	I9-089 mb.020
Matrix:	Water	Instrument:	ICPMS1
Units:	ug/L (ppb)	Operator:	hr
		-	

		Lower	Upper
Internal Standard:	% Recovery:	Limit:	Limit:
Germanium	86	60	125
Indium	95	60	125
Holmium	95	60	125

Analyte:	Concentration ug/L (ppb)
Chromium	<1
Cobalt	<1
Nickel	<1
Copper	<1
Zinc	<1
Arsenic	<1
Selenium	<1
Cadmium	<1
Barium	<1
Thallium	<1
Lead	<1
Manganese	<10

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW7-0209	Client:	SLR International Corp.
Date Received:	02/27/09	Project:	Yakima LF 001.0221.00004
Date Extracted:	03/03/09	Lab ID:	902271-01
Date Analyzed:	03/03/09	Data File:	030307.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	MB

	Lower	Upper
% Recovery:	Limit:	Limit:
103	58	118
106	59	117
124	45	141
	103 106	% Recovery: Limit: 103 58 106 59

Compounds:	Concentration ug/L (ppb)	Compounds:	Concentration ug/L (ppb)
•		•	
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<1	Tetrachloroethene	<1
Vinyl chloride	<0.03 j	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	<10	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Methylene chloride	<5	o-Xylene	<1
Methyl t-butyl ether (MTBE)	<1	Styrene	<1
trans-1,2-Dichloroethene	<1	Isopropylbenzene	<1
1,1-Dichloroethane	<1	Bromoform	<1
2,2-Dichloropropane	<1	n-Propylbenzene	<1
cis-1,2-Dichloroethene	<1	Bromobenzene	<1
Chloroform	<1	1,3,5-Trimethylbenzene	<1
2-Butanone (MEK)	<10	1,1,2,2-Tetrachloroethane	<1
1,2-Dichloroethane (EDC)	<1	1,2,3-Trichloropropane	<1
1,1,1-Trichloroethane	<1	2-Chlorotoluene	<1
1,1-Dichloropropene	<1	4-Chlorotoluene	<1
Carbon tetrachloride	<1	tert-Butylbenzene	<1
Benzene	<1	1,2,4-Trimethylbenzene	<1
Trichloroethene	<1	sec-Butylbenzene	<1
1,2-Dichloropropane	<1	p-Isopropyltoluene	<1
Bromodichloromethane	<1	1,3-Dichlorobenzene	<1
Dibromomethane	<1	1,4-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dichlorobenzene	<1
cis-1,3-Dichloropropene	<1	1,2-Dibromo-3-chloropropane	<1
Toluene	<1	1,2,4-Trichlorobenzene	<1
trans-1,3-Dichloropropene	<1	Hexachlorobutadiene	<1
1,1,2-Trichloroethane	<1	Naphthalene	<1
2-Hexanone	<10	1,2,3-Trichlorobenzene	<1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW8-0209	Client:	SLR International Corp.
Date Received:	02/27/09	Project:	Yakima LF 001.0221.00004
Date Extracted:	03/03/09	Lab ID:	902271-02
Date Analyzed:	03/03/09	Data File:	030308.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	MB

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	102	58	118
Toluene-d8	103	59	117
4-Bromofluorobenzene	122	45	141

Compounds:	Concentration ug/L (ppb)	Compounds:	Concentration ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<1	Tetrachloroethene	<1
Vinyl chloride	<0.03 j	Dibromochloromethane	<1
Bromomethane	<0.00 j <1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	<10	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Methylene chloride	<5	o-Xylene	<1
Methyl t-butyl ether (MTBE)	<1	Styrene	<1
trans-1,2-Dichloroethene	<1	Isopropylbenzene	<1
1,1-Dichloroethane	<1	Bromoform	<1
2,2-Dichloropropane	<1	n-Propylbenzene	<1
cis-1,2-Dichloroethene	<1	Bromobenzene	<1
Chloroform	<1	1,3,5-Trimethylbenzene	<1
2-Butanone (MEK)	<10	1,1,2,2-Tetrachloroethane	<1
1,2-Dichloroethane (EDC)	<1	1,2,3-Trichloropropane	<1
1,1,1-Trichloroethane	<1	2-Chlorotoluene	<1
1,1-Dichloropropene	<1	4-Chlorotoluene	<1
Carbon tetrachloride	<1	tert-Butylbenzene	<1
Benzene	<1	1,2,4-Trimethylbenzene	<1
Trichloroethene	<1	sec-Butylbenzene	<1
1,2-Dichloropropane	<1	p-Isopropyltoluene	<1
Bromodichloromethane	<1	1,3-Dichlorobenzene	<1
Dibromomethane	<1	1,4-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dichlorobenzene	<1
cis-1,3-Dichloropropene	<1	1,2-Dibromo-3-chloropropane	<1
Toluene	<1	1,2,4-Trichlorobenzene	<1
trans-1,3-Dichloropropene	<1	Hexachlorobutadiene	<1
1,1,2-Trichloroethane	<1	Naphthalene	<1
2-Hexanone	<10	1,2,3-Trichlorobenzene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: MW9A-0209 Client: SLR International Corp. Date Received: 02/27/09 Yakima LF 001.0221.00004 Project: Lab ID: Date Extracted: 03/03/09 902271-03 Date Analyzed: 03/03/09 Data File: 030309.D Matrix: Water Instrument: GCMS4 ug/L (ppb) Units: Operator: MB

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	107	58	118
Toluene-d8	108	59	117
4-Bromofluorobenzene	130	45	141

		111	
Compounds:	Concentration ug/L (ppb)	Compounds:	Concentration ug/L (ppb)
•		_	ag/L/(ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<1	Tetrachloroethene	<1
Vinyl chloride	<0.03 j	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	<10	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Methylene chloride	<5	o-Xylene	<1
Methyl t-butyl ether (MTBE)	<1	Styrene	<1
trans-1,2-Dichloroethene	<1	Isopropylbenzene	<1
1,1-Dichloroethane	<1	Bromoform	<1
2,2-Dichloropropane	<1	n-Propylbenzene	<1
cis-1,2-Dichloroethene	<1	Bromobenzene	<1
Chloroform	2.9	1,3,5-Trimethylbenzene	<1
2-Butanone (MEK)	<10	1,1,2,2-Tetrachloroethane	<1
1,2-Dichloroethane (EDC)	<1	1,2,3-Trichloropropane	<1
1,1,1-Trichloroethane	<1	2-Chlorotoluene	<1
1,1-Dichloropropene	<1	4-Chlorotoluene	<1
Carbon tetrachloride	<1	tert-Butylbenzene	<1
Benzene	<1	1,2,4-Trimethylbenzene	<1
Trichloroethene	<1	sec-Butylbenzene	<1
1,2-Dichloropropane	<1	p-Isopropyltoluene	<1
Bromodichloromethane	<1	1,3-Dichlorobenzene	<1
Dibromomethane	<1	1,4-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dichlorobenzene	<1
cis-1,3-Dichloropropene	<1	1,2-Dibromo-3-chloropropane	<1
Toluene	<1	1,2,4-Trichlorobenzene	<1
trans-1,3-Dichloropropene	<1	Hexachlorobutadiene	<1
1,1,2-Trichloroethane	<1	Naphthalene	<1
2-Hexanone	. <10	1,2,3-Trichlorobenzene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: MW11-0209 Client: SLR International Corp. Date Received: Project: 02/27/09 Yakima LF 001.0221.00004 Date Extracted: 03/03/09 Lab ID: 902271-04 Date Analyzed: 03/03/09 Data File: 030310.D Matrix: Water Instrument: GCMS4 Units: ug/L (ppb) Operator: MB

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	103	58	118
Toluene-d8	106	59	117
4-Bromofluorobenzene	124	45	141

_	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<1	Tetrachloroethene	<1
Vinyl chloride	<0.03 j	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	<10	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Methylene chloride	<5	• o-Xylene	<1
Methyl t-butyl ether (MTBE)	<1	Styrene	<1
trans-1,2-Dichloroethene	<1	Isopropylbenzene	<1
1,1-Dichloroethane	<1	Bromoform	<1
2,2-Dichloropropane	<1	n-Propylbenzene	<1
cis-1,2-Dichloroethene	<1	Bromobenzene	<1
Chloroform	<1	1,3,5-Trimethylbenzene	<1
2-Butanone (MEK)	<10	1,1,2,2-Tetrachloroethane	<1
1,2-Dichloroethane (EDC)	<1	1,2,3-Trichloropropane	<1
1,1,1-Trichloroethane	<1	2-Chlorotoluene	<1
1,1-Dichloropropene	<1	4-Chlorotoluene	<1
Carbon tetrachloride	<1	tert-Butylbenzene	<1
Benzene	<1	1,2,4-Trimethylbenzene	<1
Trichloroethene	<1	sec-Butylbenzene	<1
1,2-Dichloropropane	<1	p-Isopropyltoluene	<1
Bromodichloromethane	<1	1,3-Dichlorobenzene	<1
Dibromomethane	<1	1,4-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dichlorobenzene	<1
cis-1,3-Dichloropropene	<1	1,2-Dibromo-3-chloropropane	<1
Toluene	<1	1,2,4-Trichlorobenzene	<1
trans-1,3-Dichloropropene	<1	Hexachlorobutadiene	<1
1,1,2-Trichloroethane	<1	Naphthalene	<1
2-Hexanone	<10	1,2,3-Trichlorobenzene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: MW12-0209 Client: SLR International Corp. Date Received: Project: 02/27/09 Yakima LF 001.0221.00004 Lab ID: Date Extracted: 03/03/09 902271-05 Date Analyzed: 03/03/09 Data File: 030311.D Matrix: Water Instrument: GCMS4 ug/L (ppb) Units: Operator: MB

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	102	58	118
Toluene-d8	107	59	117
4-Bromofluorobenzene	123	45	141

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<1	Tetrachloroethene	<1
Vinyl chloride	<0.03 j	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	<10	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Methylene chloride	<5	o-Xylene	<1
Methyl t-butyl ether (MTBE)	<1	Styrene	<1
trans-1,2-Dichloroethene	<1	Isopropylbenzene	<1
1,1-Dichloroethane	<1	Bromoform	<1
2,2-Dichloropropane	<1	n-Propylbenzene	<1
cis-1,2-Dichloroethene	<1	Bromobenzene	<1
Chloroform	<1	1,3,5-Trimethylbenzene	<1
2-Butanone (MEK)	<10	1,1,2,2-Tetrachloroethane	<1
1,2-Dichloroethane (EDC)	<1	1,2,3-Trichloropropane	<1
1,1,1-Trichloroethane	<1	2-Chlorotoluene	<1
1,1-Dichloropropene	<1	4-Chlorotoluene	<1
Carbon tetrachloride	<1	tert-Butylbenzene	<1
Benzene	<1	1,2,4-Trimethylbenzene	<1
Trichloroethene	<1	sec-Butylbenzene	<1
1,2-Dichloropropane	<1	p-Isopropyltoluene	<1
Bromodichloromethane	<1	1,3-Dichlorobenzene	<1
Dibromomethane	<1	1,4-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dichlorobenzene	<1
cis-1,3-Dichloropropene	<1	1,2-Dibromo-3-chloropropane	<1
Toluene	<1	1,2,4-Trichlorobenzene	<1
trans-1,3-Dichloropropene	<1	Hexachlorobutadiene	<1
1,1,2-Trichloroethane	<1	Naphthalene	<1
2-Hexanone	<10	1,2,3-Trichlorobenzene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: MW13-0209 Client: SLR International Corp. Date Received: 02/27/09 Project: Yakima LF 001.0221.00004 03/03/09 Date Extracted: Lab ID: 902271-06 Date Analyzed: 03/03/09 Data File: 030312.D Matrix: Water Instrument: GCMS4 Units: ug/L (ppb) Operator: MB

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	58	118
Toluene-d8	108	59	117
4-Bromofluorobenzene	126	45	141

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<1	Tetrachloroethene	<1
Vinyl chloride	<0.03 j	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	<10	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Methylene chloride	<5	o-Xylene	<1
Methyl t-butyl ether (MTBE)	<1	Styrene	<1
trans-1,2-Dichloroethene	<1	Isopropylbenzene	<1
1,1-Dichloroethane	<1	Bromoform	<1
2,2-Dichloropropane	<1	n-Propylbenzene	<1
cis-1,2-Dichloroethene	<1	Bromobenzene	<1
Chloroform	<1	1,3,5-Trimethylbenzene	<1
2-Butanone (MEK)	<10	1,1,2,2-Tetrachloroethane	<1
1,2-Dichloroethane (EDC)	<1	1,2,3-Trichloropropane	<1
1,1,1-Trichloroethane	<1	2-Chlorotoluene	<1
1,1-Dichloropropene	<1	4-Chlorotoluene	<1
Carbon tetrachloride	<1	tert-Butylbenzene	<1
Benzene	<1	1,2,4-Trimethylbenzene	<1
Trichloroethene	<1	sec-Butylbenzene	<1
1,2-Dichloropropane	<1	p-Isopropyltoluene	<1
Bromodichloromethane	<1	1,3-Dichlorobenzene	<1
Dibromomethane	<1	1,4-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dichlorobenzene	<1
cis-1,3-Dichloropropene	<1	1,2-Dibromo-3-chloropropane	<1
Toluene	<1	1,2,4-Trichlorobenzene	<1
trans-1,3-Dichloropropene	<1	Hexachlorobutadiene	<1
1,1,2-Trichloroethane	<1	Naphthalene	<1
2-Hexanone	<10	1,2,3-Trichlorobenzene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Method Blank Client: SLR International Corp.

Date Received: NA Project: Yakima LF 001.0221.00004

Date Extracted: 03/03/09 Lab ID: 090271 mb

Date Analyzed: 03/03/09 Data File: 030306.D

Matrix: Water Instrument: GCMS4
Units: ug/L (ppb) Operator: MB

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	104	58	118
Toluene-d8	105	59	117
4-Bromofluorobenzene	125	45	141

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<1	Tetrachloroethene	<1
Vinyl chloride	<0.03 j	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	<10	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Methylene chloride	<5	o-Xylene	<1
Methyl t-butyl ether (MTBE)	<1	Styrene	<1
trans-1,2-Dichloroethene	<1	Isopropylbenzene	<1
1,1-Dichloroethane	<1	Bromoform	<1
2,2-Dichloropropane	<1	n-Propylbenzene	<1
cis-1,2-Dichloroethene	<1	Bromobenzene	<1
Chloroform	<1	1,3,5-Trimethylbenzene	<1
2-Butanone (MEK)	<10	1,1,2,2-Tetrachloroethane	<1
1,2-Dichloroethane (EDC)	<1	1,2,3-Trichloropropane	<1
1,1,1-Trichloroethane	<1	2-Chlorotoluene	<1
1,1-Dichloropropene	<1	4-Chlorotoluene	<1
Carbon tetrachloride	<1	tert-Butylbenzene	<1
Benzene	<1	1,2,4-Trimethylbenzene	<1
Trichloroethene	<1	sec-Butylbenzene	<1
1,2-Dichloropropane	<1	p-Isopropyltoluene	<1
Bromodichloromethane	<1	1,3-Dichlorobenzene	<1
Dibromomethane	<1	1,4-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dichlorobenzene	<1
cis-1,3-Dichloropropene	<1	1,2-Dibromo-3-chloropropane	<1
Toluene	<1	1,2,4-Trichlorobenzene	<1
trans-1,3-Dichloropropene	<1	Hexachlorobutadiene	<1
1,1,2-Trichloroethane	<1	Naphthalene	<1
2-Hexanone	<10	1,2,3-Trichlorobenzene	<1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW7-0209	Client:	SLR International Corp.
Date Received:	02/27/09	Project:	Yakima LF 001.0221.00004
Date Extracted:	03/02/09	Lab ID:	902271-01
Date Analyzed:	03/03/09	Data File:	030308.D
Matrix:	Water	Instrument:	GCMS3
Units:	ug/L (ppb)	Operator:	YA
		Lower	Upper

Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	57	27	76
Phenol-d6	31	13	58
Nitrobenzene-d5	103	55	115
2-Fluorobiphenyl	101	51	113
2,4,6-Tribromophenol	98	28	107
Terphenyl-d14	90	45	119

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Phenol	<10	3-Nitroaniline	<3
Bis(2-chloroethyl) ether	<1	Acenaphthene	<1
2-Chlorophenol	<10	2,4-Dinitrophenol	<30
1,3-Dichlorobenzene	<1	Dibenzofuran	<1
1,4-Dichlorobenzene	<1	2,4-Dinitrotoluene	<1
1,2-Dichlorobenzene	<1	4-Nitrophenol	<10
Benzyl alcohol	<1	Diethyl phthalate	<1
Bis(2-chloroisopropyl) ether	<1	Fluorene	<1
2-Methylphenol	<10	4-Chlorophenyl phenyl ether	<1
Hexachloroethane	<1	N-Nitrosodiphenylamine	1.0
N-Nitroso-di-n-propylamine	<1	4-Nitroaniline	<10
4-Methylphenol	<10	4,6-Dinitro-2-methylphenol	<30
Nitrobenzene	<1	4-Bromophenyl phenyl ether	<1
Isophorone	<1	Hexachlorobenzene	<1
2-Nitrophenol	<10 ca	Pentachlorophenol	<10
2,4-Dimethylphenol	<10	Phenanthrene	<1
Benzoic acid	<100	Anthracene	<1
Bis(2-chloroethoxy)methane	<1	Carbazole	<1
2,4-Dichlorophenol	<10	Di-n-butyl phthalate	<1
1,2,4-Trichlorobenzene	<1	Fluoranthene	<1
Naphthalene	<1	Pyrene	<1
Hexachlorobutadiene	<1	Benzyl butyl phthalate	<1
4-Chloroaniline	<3	Benz(a)anthracene	<1
4-Chloro-3-methylphenol	<10	Chrysene	<1
2-Methylnaphthalene	<1	Bis(2-ethylhexyl) phthalate	<10
Hexachlorocyclopentadiene	<3	Di-n-octyl phthalate	<1
2,4,6-Trichlorophenol	<10	Benzo(a)pyrene	<1
2,4,5-Trichlorophenol	<10	Benzo(b)fluoranthene	<1
2-Chloronaphthalene	<1	Benzo(k)fluoranthene	<1
2-Nitroaniline	<1	Indeno(1,2,3-cd)pyrene	<1
Dimethyl phthalate	<1	Dibenz(a,h)anthracene	<1
Acenaphthylene	<1	Benzo(g,h,i)perylene	<1
2,6-Dinitrotoluene	<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW8-0209	Client:	SLR International Corp.
Date Received:	02/27/09	Project:	Yakima LF 001.0221.00004
Date Extracted:	03/02/09	Lab ID:	902271-02
Date Analyzed:	03/03/09	Data File:	030309.D
Matrix:	Water	Instrument:	GCMS3
Units:	ug/L (ppb)	Operator:	YA

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	61	27	76
Phenol-d6	32	13	58
Nitrobenzene-d5	102	55	115
2-Fluorobiphenyl	100	51	113
2,4,6-Tribromophenol	94	28	107
Terphenyl-d14	90	45	119

Compounds:	Concentration ug/L (ppb)	Compounds:	Concentration
_	ug/L (ppu)	Compounds:	ug/L (ppb)
Phenol	<10	3-Nitroaniline	<3
Bis(2-chloroethyl) ether	<1	Acenaphthene	<1
2-Chlorophenol	<10	2,4-Dinitrophenol	<30
1,3-Dichlorobenzene	<1	Dibenzofuran	<1
1,4-Dichlorobenzene	<1	2,4-Dinitrotoluene	<1
1,2-Dichlorobenzene	<1	4-Nitrophenol	<10
Benzyl alcohol	<1	Diethyl phthalate	<1
Bis(2-chloroisopropyl) ether	<1	Fluorene	<1
2-Methylphenol	<10	4-Chlorophenyl phenyl ether	<1
Hexachloroethane	<1	N-Nitrosodiphenylamine	<1
N-Nitroso-di-n-propylamine	<1	4-Nitroaniline	<10
4-Methylphenol	<10	4,6-Dinitro-2-methylphenol	<30
Nitrobenzene	<1	4-Bromophenyl phenyl ether	<1
Isophorone	<1	Hexachlorobenzene	<1
2-Nitrophenol	<10 ca	Pentachlorophenol	<10
2,4-Dimethylphenol	<10	Phenanthrene	<1
Benzoic acıd	<100	Anthracene	<1
Bis(2-chloroethoxy)methane	<1	Carbazole	<1
2,4-Dichlorophenol	<10	Di-n-butyl phthalate	<1
1,2,4-Trichlorobenzene	<1	Fluoranthene	<1
Naphthalene	<1	Pyrene	<1
Hexachlorobutadiene	<1	Benzyl butyl phthalate	<1
4-Chloroaniline	<3	Benz(a)anthracene	<1
4-Chloro-3-methylphenol	<10	Chrysene	<1
2-Methylnaphthalene	<1	Bis(2-ethylhexyl) phthalate	<10
Hexachlorocyclopentadiene	<3	Di-n-octyl phthalate	<1
2,4,6-Trichlorophenol	<10	Benzo(a)pyrene	<1
2,4,5-Trichlorophenol	<10	Benzo(b)fluoranthene	<1
2-Chloronaphthalene	<1	Benzo(k)fluoranthene	<1
2-Nitroaniline	<1	Indeno(1,2,3-cd)pyrene	<1
Dimethyl phthalate	<1	Dibenz(a,h)anthracene	<1
Acenaphthylene	<1	Benzo(g,h,i)perylene	<1
2,6-Dinitrotoluene	<1	- - -	

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW9A-0209	Client:	SLR International Corp.
Date Received:	02/27/09	Project:	Yakima LF 001.0221.00004
Date Extracted:	03/02/09	Lab ID:	902271-03
Date Analyzed:	03/03/09	Data File:	030310.D
Matrix:	Water	Instrument:	GCMS3
Units:	ug/L (ppb)	Operator:	YA

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	60	27	76
Phenol-d6	34	13	58
Nitrobenzene-d5	101	55	115
2-Fluorobiphenyl	99	51	113
2,4,6-Tribromophenol	91	28	107
Terphenyl-d14	88	45	119

Compounds:	Concentration ug/L (ppb)	Compounds:	Concentration ug/L (ppb)
_		-	,
Phenol	<10	3-Nitroaniline	<3
Bis(2-chloroethyl) ether	<1	Acenaphthene	<1
2-Chlorophenol	<10	2,4-Dinitrophenol	<30
1,3-Dichlorobenzene	<1	Dibenzofuran	<1
1,4-Dichlorobenzene	<1	2,4-Dinitrotoluene	<1
1,2-Dichlorobenzene	<1	4-Nitrophenol	<10
Benzyl alcohol	<1	Diethyl phthalate	<1
Bis(2-chloroisopropyl) ether	<1	Fluorene	<1
$2 ext{-Methylphenol}$	<10	4-Chlorophenyl phenyl ether	<1
Hexachloroethane	<1	N-Nitrosodiphenylamine	<1
N-Nitroso-di-n-propylamine	<1	4-Nitroaniline	<10
4-Methylphenol	<10	4,6-Dinitro-2-methylphenol	<30
Nitrobenzene	<1	4-Bromophenyl phenyl ether	<1
Isophorone	<1	Hexachlorobenzene	<1
2-Nitrophenol	<10 ca	Pentachlorophenol	<10
2,4-Dimethylphenol	<10	Phenanthrene	<1
Benzoic acid	<100	Anthracene	<1
Bis(2-chloroethoxy)methane	<1	Carbazole	<1
2,4-Dichlorophenol	<10	Di-n-butyl phthalate	<1
1,2,4-Trichlorobenzene	<1	Fluoranthene	<1
Naphthalene	<1	Pyrene	<1
Hexachlorobutadiene	<1	Benzyl butyl phthalate	<1
4-Chloroaniline	<3	Benz(a)anthracene	<1
4-Chloro-3-methylphenol	<10	Chrysene	<1
2-Methylnaphthalene	<1	Bis(2-ethylhexyl) phthalate	<10
Hexachlorocyclopentadiene	<3	Di-n-octyl phthalate	<1
2,4,6-Trichlorophenol	<10	Benzo(a)pyrene	<1
2,4,5-Trichlorophenol	<10	Benzo(b)fluoranthene	<1
2-Chloronaphthalene	<1	Benzo(k)fluoranthene	<1
2-Nitroaniline	<1	Indeno(1,2,3-cd)pyrene	<1
Dimethyl phthalate	<1	Dibenz(a,h)anthracene	<1
Acenaphthylene	<1	Benzo(g,h,i)perylene	<1
2,6-Dinitrotoluene	<1	· · · · · · ·	

ENVIRONMENTAL CHEMISTS

Client Sample ID:		Client:	SLR International Corp.
Date Received:	02/27/09	Project:	Yakima LF 001.0221.00004
Date Extracted:	03/02/09	Lab ID:	902271-04
Date Analyzed:	03/03/09	Data File:	030311.D
Matrix:	Water	Instrument:	GCMS3
Units:	ug/L (ppb)	Operator:	YA

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	59	27	76
Phenol-d6	31	13	58
Nitrobenzene-d5	94	55	115
2-Fluorobiphenyl	99	51	113
2,4,6-Tribromophenol	96	28	107
Terphenyl-d14	87	45	119

Compounds:	Concentration ug/L (ppb)	Compounds:	Concentration ug/L (ppb)
Phenol	<10	3-Nitroaniline	<3
Bis(2-chloroethyl) ether	<1	Acenaphthene	<1
2-Chlorophenol	<10	2,4-Dinitrophenol	<30
1,3-Dichlorobenzene	<1	Dibenzofuran	<1
1,4-Dichlorobenzene	<1	2,4-Dinitrotoluene	<1
1,2-Dichlorobenzene	<1	4-Nitrophenol	<10
Benzyl alcohol	<1	Diethyl phthalate	<10 <1
Bis(2-chloroisopropyl) ether	<1	Fluorene	<1 <1
2-Methylphenol	<10	4-Chlorophenyl phenyl ether	<1
Hexachloroethane	<1	N-Nitrosodiphenylamine	<1
N-Nitroso-di-n-propylamine	<1	4-Nitroaniline	<10
4-Methylphenol	<10	4,6-Dinitro-2-methylphenol	<30
Nitrobenzene	<1	4-Bromophenyl phenyl ether	<1
Isophorone	<1	Hexachlorobenzene	<1
2-Nitrophenol	<10 ca	Pentachlorophenol	<10
2,4-Dimethylphenol	<10	Phenanthrene	<1
Benzoic acid	<100	Anthracene	<1
Bis(2-chloroethoxy)methane	<1	Carbazole	<1
2,4-Dichlorophenol	<10	Di-n-butyl phthalate	<1
1,2,4-Trichlorobenzene	<1	Fluoranthene	<1
Naphthalene	<1	Pyrene	<1
Hexachlorobutadiene	<1	Benzyl butyl phthalate	<1
4-Chloroaniline	<3	Benz(a)anthracene	<1
4-Chloro-3-methylphenol	<10	Chrysene	<1
2-Methylnaphthalene	<1	Bis(2-ethylhexyl) phthalate	<10
Hexachlorocyclopentadiene	<3	Di-n-octyl phthalate	<1
2,4,6-Trichlorophenol	<10	Benzo(a)pyrene	<1
2,4,5-Trichlorophenol	<10	Benzo(b)fluoranthene	<1
2-Chloronaphthalene	<1	Benzo(k)fluoranthene	<1
2-Nitroaniline	<1	Indeno(1,2,3-cd)pyrene	<1
Dimethyl phthalate	<1	Dibenz(a,h)anthracene	<1
Acenaphthylene	<1	Benzo(g,h,i)perylene	<1
2,6-Dinitrotoluene	<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW12-0209	Client:	SLR International Corp.
Date Received:	02/27/09	Project:	Yakima LF 001.0221.00004
Date Extracted:	03/02/09	Lab ID:	902271-05
Date Analyzed:	03/03/09	Data File:	030312.D
Matrix:	Water	Instrument:	GCMS3
Units:	ug/L (ppb)	Operator:	YA

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	5 6	27	76
Phenol-d6	30	13	58
Nitrobenzene-d5	95	55	115
2-Fluorobiphenyl	97	51	113
2,4,6-Tribromophenol	95	28	107
Terphenyl-d14	89	45	119
Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromophenol	30 95 97 95	13 55 51 28	58 11 11 10

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Phenol	<10	3-Nitroaniline	<3
Bis(2-chloroethyl) ether	<1	Acenaphthene	<1
2-Chlorophenol	<10	2,4-Dinitrophenol	<30
1,3-Dichlorobenzene	<1	Dibenzofuran	<1
1,4-Dichlorobenzene	<1	2,4-Dinitrotoluene	<1
1,2-Dichlorobenzene	<1	4-Nitrophenol	<10
Benzyl alcohol	<1	Diethyl phthalate	<1
Bis(2-chloroisopropyl) ether	<1	Fluorene	<1
2-Methylphenol	<10	4-Chlorophenyl phenyl ether	<1
Hexachloroethane	<1	N-Nitrosodiphenylamine	<1
N-Nitroso-di-n-propylamine	<1	4-Nitroaniline	<10
4-Methylphenol	<10	4,6-Dinitro-2-methylphenol	<30
Nitrobenzene	<1	4-Bromophenyl phenyl ether	<1
Isophorone	<1	Hexachlorobenzene	<1
2-Nitrophenol	<10 ca	Pentachlorophenol	<10
2,4-Dimethylphenol	<10	Phenanthrene	<1
Benzoic acid	<100	Anthracene	<1
Bis(2-chloroethoxy)methane	<1	Carbazole	<1
2,4-Dichlorophenol	<10	Di-n-butyl phthalate	<1
1,2,4-Trichlorobenzene	<1	Fluoranthene	<1
Naphthalene	<1	Pyrene	<1
Hexachlorobutadiene	<1	Benzyl butyl phthalate	<1
4-Chloroaniline	<3	Benz(a)anthracene	<1
4-Chloro-3-methylphenol	<10	Chrysene	<1
2-Methylnaphthalene	<1	Bis(2-ethylhexyl) phthalate	<10
Hexachlorocyclopentadiene	<3	Di-n-octyl phthalate	<1
2,4,6-Trichlorophenol	<10	Benzo(a)pyrene	<1
2,4,5-Trichlorophenol	<10	Benzo(b)fluoranthene	<1
2-Chloronaphthalene	<1	Benzo(k)fluoranthene	<1
2-Nitroaniline	<1	Indeno(1,2,3-cd)pyrene	<1
Dimethyl phthalate	<1	Dibenz(a,h)anthracene	<1
Acenaphthylene	<1	Benzo(g,h,i)perylene	<1
2,6-Dinitrotoluene	<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	02/27/09 03/02/09 03/03/09 Water	Client: Project: Lab ID: Data File: Instrument: Operator:	SLR International Corp. Yakima LF 001.0221.00004 902271-06 030313.D GCMS3
Units:	ug/L (ppb)	Operator:	YA

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	52	27	76
Phenol-d6	31	13	58
Nitrobenzene-d5	89	55	115
2-Fluorobiphenyl	99	51	113
2,4,6-Tribromophenol	99	28	107
Terphenyl-d14	86	45	119

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Phenol	<10	3-Nitroaniline	<3
Bis(2-chloroethyl) ether	<1	Acenaphthene	<1
2-Chlorophenol	<10	2,4-Dinitrophenol	<30
1,3-Dichlorobenzene	<1	Dibenzofuran	<1
1,4-Dichlorobenzene	<1	2,4-Dinitrotoluene	<1
1,2-Dichlorobenzene	<1	4-Nitrophenol	<10
Benzyl alcohol	<1	Diethyl phthalate	<1
Bis(2-chloroisopropyl) ether	<1	Fluorene	<1
2-Methylphenol	<10	4-Chlorophenyl phenyl ether	<1
Hexachloroethane	<1	N-Nitrosodiphenylamine	<1
N-Nitroso-di-n-propylamine	<1	4-Nitroaniline	<10
4-Methylphenol	<10	4,6-Dinitro-2-methylphenol	<30
Nitrobenzene	<1	4-Bromophenyl phenyl ether	<1
Isophorone	<1	Hexachlorobenzene	<1
2-Nitrophenol	<10 ca	Pentachlorophenol	<10
2,4-Dimethylphenol	<10	Phenanthrene	<1
Benzoic acid	<100	Anthracene	<1
Bis(2-chloroethoxy)methane	<1	Carbazole	<1
2,4-Dichlorophenol	<10	Di-n-butyl phthalate	<1
1,2,4-Trichlorobenzene	<1	Fluoranthene	<1
Naphthalene	<1	Pyrene	<1
Hexachlorobutadiene	<1	Benzyl butyl phthalate	<1
4-Chloroaniline	<3	Benz(a)anthracene	<1
4-Chloro-3-methylphenol	<10	Chrysene	<1
2-Methylnaphthalene	<1	Bis(2-ethylhexyl) phthalate	<10
Hexachlorocyclopentadiene	<3	Di-n-octyl phthalate	<1
2,4,6-Trichlorophenol	<10	Benzo(a)pyrene	<1
2,4,5-Trichlorophenol	<10	Benzo(b)fluoranthene	<1
2-Chloronaphthalene	<1	Benzo(k)fluoranthene	<1
2-Nitroaniline	<1	Indeno(1,2,3-cd)pyrene	<1
Dimethyl phthalate	<1	Dibenz(a,h)anthracene	<1
Acenaphthylene	<1	Benzo(g,h,i)perylene	<1
2,6-Dinitrotoluene	<1	-	

ENVIRONMENTAL CHEMISTS

Client Sample ID:	Method Blaz	nk	Client:	SLR International Corp.
Date Received:	NA		Project:	Yakima LF 001.0221.00004
Date Extracted:	03/02/09		Lab ID:	$09296 \mathrm{mb}$
Date Analyzed:	03/03/09		Data File:	030306.D
Matrix:	Water		Instrument:	GCMS3
Units:	ug/L (ppb)		Operator:	YA
			Lower	Upper
Surrogates:		% Recovery	I imit.	T imit.

			Cppci
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	60	27	76
Phenol-d6	30	13	58
Nitrobenzene-d5	99	55	115
2-Fluorobiphenyl	98	51	113
2,4,6-Tribromophenol	92	28	107
Terphenyl-d14	92	45	119

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Phenol	<10	3-Nitroaniline	<3
Bis(2-chloroethyl) ether	<1	Acenaphthene	<1
2-Chlorophenol	<10	2,4-Dinitrophenol	<30
1,3-Dichlorobenzene	<1	Dibenzofuran	<1
1,4-Dichlorobenzene	<1	2,4-Dinitrotoluene	<1
1,2-Dichlorobenzene	<1	4-Nitrophenol	<10
Benzyl alcohol	<1	Diethyl phthalate	<1
Bis(2-chloroisopropyl) ether	<1	Fluorene	<1
2-Methylphenol	<10	4-Chlorophenyl phenyl ether	<1
Hexachloroethane	<1	N-Nitrosodiphenylamine	<1
N-Nitroso-di-n-propylamine	<1	4-Nitroaniline	<10
4-Methylphenol	<10	4,6-Dinitro-2-methylphenol	<30
Nitrobenzene	<1	4-Bromophenyl phenyl ether	<1
Isophorone	<1	Hexachlorobenzene	<1
2-Nitrophenol	<10 ca	Pentachlorophenol	<10
2,4-Dimethylphenol	<10	Phenanthrene	<1
Benzoic acid	<100	Anthracene	<1
Bis(2-chloroethoxy)methane	<1	Carbazole	<1
2,4-Dichlorophenol	<10	Di-n-butyl phthalate	<1
1,2,4-Trichlorobenzene	<1	Fluoranthene	<1
Naphthalene	<1	Pyrene	<1
Hexachlorobutadiene	<1	Benzyl butyl phthalate	<1
4-Chloroaniline	<3	Benz(a)anthracene	<1
4-Chloro-3-methylphenol	<10	Chrysene	<1
2-Methylnaphthalene	<1	Bis(2-ethylhexyl) phthalate	<10
Hexachlorocyclopentadiene	<3	Di-n-octyl phthalate	<1
2,4,6-Trichlorophenol	<10	Benzo(a)pyrene	<1
2,4,5-Trichlorophenol	<10	Benzo(b)fluoranthene	<1
2-Chloronaphthalene	<1	Benzo(k)fluoranthene	<1
2-Nitroaniline	<1	Indeno(1,2,3-cd)pyrene	<1
Dimethyl phthalate	<1	Dibenz(a,h)anthracene	<1
Acenaphthylene	<1	Benzo(g,h,i)perylene	<1
2,6-Dinitrotoluene	<1		

ENVIRONMENTAL CHEMISTS

Date of Report: 03/13/09 Date Received: 02/27/09

Project: Yakima LF 001.0221.00004, F&BI 902271

Date Extracted: 03/02/09 Date Analyzed: 03/03/09

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR PCBs AS AROCLORS USING EPA METHOD 8082

Results Reported as ug/L (ppb)

	Aroclo	\mathbf{r}							Surrogate
Sample ID Laboratory ID	1221	<u>1232</u>	<u>1016</u>	<u>1242</u>	1248	<u>1254</u>	<u>1260</u>	<u>1262</u>	(% Rec.) (Limit 61-132)
MW7-0209 902271-01	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	95
MW8-0209 902271-02	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	93
MW9A-0209 902271-03	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	106
MW11-0209 902271-04	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	102
MW12-0209 902271-05	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	94
MW13-0209 902271-06	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	87
Method Blank	<0.1	<0.1	<0.1	<0.1	<0.1	-0 1	-0 1	-0.1	77.1
Michiga Dialik	~U.I	~U.I	~U.I	~ 0.1	~ U.1	< 0.1	< 0.1	< 0.1	71

ENVIRONMENTAL CHEMISTS

Date of Report: 03/13/09 Date Received: 02/27/09

Project: Yakima LF 001.0221.00004, F&BI 902271

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 902267-02 (Duplicate)

				Relative Percent
	Reporting	\mathbf{Sample}	Duplicate	Difference
Analyte	Units	Result	Result	(Limit 20)
Gasoline	ug/L (ppb)	<100	<100	nm

			$\operatorname{Percent}$		
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	
Gasoline	ug/L (ppb)	1,000	115	70-130	•

ENVIRONMENTAL CHEMISTS

Date of Report: 03/13/09 Date Received: 02/27/09

Project: Yakima LF 001.0221.00004, F&BI 902271

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL USING METHOD NWTPH-Dx

Laboratory Code: Laboratory Control Sample Silica Gel

Analyte	Reporting Units	Spike Level	Percent Recovery LCS	Percent Recovery LCSD	Acceptance Criteria	RPD (Limit 20)
Diesel	ug/L (ppb)	2,500	121	123	69-135	2

ENVIRONMENTAL CHEMISTS

Date of Report: 03/13/09 Date Received: 02/27/09

Project: Yakima LF 001.0221.00004, F&BI 902271

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED METALS USING EPA METHOD 200.8

Laboratory Code: 902270-01 (Duplicate)

Analyte	Reporting Units	Sample Result	Duplicate Result	Relative Percent Difference	Acceptance Criteria
Chromium	ug/L (ppb)	5.62	5.35	5	0-20
Cobalt	ug/L (ppb)	<1	<1	nm	0-20
Nickel	ug/L (ppb)	4.78	4.94	3	0-20
Copper	ug/L (ppb)	1.78	1.76	1	0-20
Zinc	ug/L (ppb)	6.39	5.42	16	0-20
Arsenic	ug/L (ppb)	<1	<1	nm	0-20
Selenium	ug/L (ppb)	<1	1.09	nm	0-20
Cadmium	ug/L (ppb)	<1	<1	nm	0-20
Barium	ug/L (ppb)	27.8	27.4	1	0-20
Thallium	ug/L (ppb)	<1	<1	nm	0-20
Lead	ug/L (ppb)	<1	<1	nm	0-20
Manganese	ug/L (ppb)	<10	<10	nm	0-20

Laboratory Code: 902270-01 (Matrix Spike)

			Percent					
		$_{ m Spike}$	Sample	Recovery	Acceptance			
Analyte	Reporting Units	Level	Result	MS	Criteria			
Chromium	ug/L (ppb)	20	5.62	88 b	50-150			
Cobalt	ug/L (ppb)	20	<1	97	50-150			
Nickel	ug/L (ppb)	20	4.78	95 b	50-150			
Copper	ug/L (ppb)	20	1.78	90	50-150			
Zinc	ug/L (ppb)	50	6.39	92	50-150			
Arsenic	ug/L (ppb)	10	<1	100	50-150			
Selenium	ug/L (ppb)	5	<1	97	50-150			
Cadmium	ug/L (ppb)	5	<1	100	50-150			
Barium	ug/L (ppb)	50	27.8	99 b	50-150			
Thallium	ug/L (ppb)	5	<1	106	50-150			
Lead	ug/L (ppb)	10	<1	104	50-150			
Manganese	ug/L (ppb)	20	<10	87	50-150			

ENVIRONMENTAL CHEMISTS

Date of Report: 03/13/09 Date Received: 02/27/09

Project: Yakima LF 001.0221.00004, F&BI 902271

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED METALS USING EPA METHOD 200.8

			Percent	
		\mathbf{Spike}	Recovery	Acceptance
Analyte	Reporting Units	Level	LCS	Criteria
Chromium	ug/L (ppb)	20	97	70-130
Cobalt	ug/L (ppb)	20	99	70-130
Nickel	ug/L (ppb)	20	99	70-130
Copper	ug/L (ppb)	20	101	70-130
Zinc	ug/L (ppb)	50	95	70-130
Arsenic	ug/L (ppb)	10	92	70-130
Selenium	ug/L (ppb)	5	96	70-130
Cadmium	ug/L (ppb)	5	106	70-130
Barium	ug/L (ppb)	50	102	70-130
Thallium	ug/L (ppb)	5	105	70-130
Lead	ug/L (ppb)	10	105	70-130
Manganese	ug/L (ppb)	20	98	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 03/13/09 Date Received: 02/27/09

Project: Yakima LF 001.0221.00004, F&BI 902271

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 902271-06 (Duplicate)

Analyte	Reporting Units	Sample Result	Duplicate Result	Relative Percent Difference (Limit 20)
Dichlorodifluoromethane	ug/L (ppb)	<1	<1	nm
Chloromethane	ug/L (ppb)	<1	<1	nm
Vinyl chloride	ug/L (ppb)	< 0.2	< 0.2	nm
Bromomethane	ug/L (ppb)	<1	<1	nm
Chloroethane	ug/L (ppb)	<1	<1	nm
Trichlorofluoromethane	ug/L (ppb)	<1	<1	nm
Acetone	ug/L (ppb)	<10	<10	nm
1,1-Dichloroethene	ug/L (ppb)	<1	<1	nm
Methylene chloride	ug/L (ppb)	<5	<5	nm
Methyl t-butyl ether (MTBE)	ug/L (ppb)	<1	<1	nm
trans-1,2-Dichloroethene	ug/L (ppb)	<1	<1	nm
1,1-Dichloroethane	ug/L (ppb)	<1	<1	nm
2,2-Dichloropropane	ug/L (ppb)	<1	<1	nm
cis-1,2-Dichloroethene	ug/L (ppb)	<1	<1	nm
Chloroform	ug/L (ppb)	<1	<1	nm
2-Butanone (MEK)	ug/L (ppb)	<10	<10	nm
1,2-Dichloroethane (EDC)	ug/L (ppb)	<1	<1	nm
1,1,1-Trichloroethane	ug/L (ppb)	<1	<1	nm
1,1-Dichloropropene	ug/L (ppb)	. <1	<1	nm
Carbon tetrachloride	ug/L (ppb)	<1	<1	nm
Benzene	ug/L (ppb)	<1	<1	nm
Trichloroethene	ug/L (ppb)	<1	<1	nm
1,2-Dichloropropane	ug/L (ppb)	<1	<1	nm
Bromodichloromethane	ug/L (ppb)	<1	<1	nm
Dibromomethane	ug/L (ppb)	<1	<1	nm
4-Methyl-2-pentanone	ug/L (ppb)	<10	<10	nm
cis-1,3-Dichloropropene	ug/L (ppb)	<1	<1	nm
Toluene	ug/L (ppb)	<1	<1	nm
trans-1,3-Dichloropropene	ug/L (ppb)	<1	<1	nm
1,1,2-Trichloroethane	ug/L (ppb)	<1	<1	nm
2-Hexanone	ug/L (ppb)	<10	<10	nm
1,3-Dichloropropane	ug/L (ppb)	<1	<1	nm
Tetrachloroethene	ug/L (ppb)	<1	<1	nm
Dibromochloromethane	ug/L (ppb)	<1	<1	nm
1,2-Dibromoethane (EDB)	ug/L (ppb)	<1	<1	nm
Chlorobenzene	ug/L (ppb)	<1	<1	nm
Ethylbenzene	ug/L (ppb)	<1	<1	nm
1,1,1,2-Tetrachloroethane	ug/L (ppb)	<1	<1	nm
m,p-Xylene	ug/L (ppb)	<2	<2	nm
o-Xylene	ug/L (ppb)	<1	<1	nm
Styrene	ug/L (ppb)	<1	<1	nm
Isopropylbenzene	ug/L (ppb)	<1	<1	nm
Bromoform	ug/L (ppb)	<1	<1	nm
n-Propylbenzene	ug/L (ppb)	<1	<1	nm
Bromobenzene	ug/L (ppb)	<1	<1	nm
1,3,5-Trimethylbenzene	ug/L (ppb)	<1	<1	nm
1,1,2,2-Tetrachloroethane	ug/L (ppb)	<1	<1	nm
1,2,3-Trichloropropane	ug/L (ppb)	<1	<1	nm
2-Chlorotoluene	ug/L (ppb)	<1	<1	nm
4-Chlorotoluene	ug/L (ppb)	<1	<1	nm
tert-Butylbenzene	ug/L (ppb)	<1	<1	nm
1,2,4-Trimethylbenzene	ug/L (ppb)	<1	<1	nm
sec-Butylbenzene	ug/L (ppb)	<1	<1	nm
p-Isopropyltoluene	ug/L (ppb)	<1	<1	nm
1,3-Dichlorobenzene	ug/L (ppb)	<1	<1	nm
1,4-Dichlorobenzene	ug/L (ppb)	<1	<1	nm
1,2-Dichlorobenzene	ug/L (ppb)	<1	<1	nm
1,2-Dibromo-3-chloropropane	ug/L (ppb)	<1	<1	nm
1,2,4-Trichlorobenzene	ug/L (ppb)	<1	<1	nm
Hexachlorobutadiene	ug/L (ppb)	<1	<1	nm
Naphthalene	ug/L (ppb)	<1	<1	nm
1,2,3-Trichlorobenzene	ug/L (ppb)	<1	<1	nm
	5 4		-	44414

ENVIRONMENTAL CHEMISTS

Date of Report: 03/13/09 Date Received: 02/27/09

Project: Yakima LF 001.0221.00004, F&BI 902271

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 902267-12 (Matrix Spike)

				Percent	
A 1.	Reporting	Spike	Sample	Recovery	Acceptance
Analyte District 110	Units	Level	Result	MS	Criteria
Dichlorodifluoromethane Chloromethane	ug/L (ppb)	50	<1	106	27-155
Vinyl chloride	ug/L (ppb)	50	<1	110	30-167
Bromomethane	ug/L (ppb)	50	< 0.2	122	36-166
Chloroethane	ug/L (ppb)	50	<1	133	47-169
Trichlorofluoromethane	ug/L (ppb)	50	<1	147	46-160
Acetone	ug/L (ppb)	50	<1	116	48-158
1,1-Dichloroethene	ug/L (ppb) ug/L (ppb)	50 50	<10	98	31-182
Methylene chloride	ug/L (ppb) ug/L (ppb)	50 50	<1 <5	107	69-118
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50 50	-	104	68-126
trans-1,2-Dichloroethene	ug/L (ppb)	50 50	<1 <1	95 97	80-119
1.1-Dichloroethane	ug/L (ppb)	50	<1	101	72-129
2,2-Dichloropropane	ug/L (ppb)	50	<1	112	70-128
cis-1,2-Dichloroethene	ug/L (ppb)	50	<1	96	60-136 71-127
Chloroform	ug/L (ppb)	50	<1	105	65-132
2-Butanone (MEK)	ug/L (ppb)	50	<10	75	64-129
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	<1	109	69-133
1,1,1-Trichloroethane	ug/L (ppb)	50	<1	112	62-133
1,1-Dichloropropene	ug/L (ppb)	50	<1	102	71-124
Carbon tetrachloride	ug/L (ppb)	50	<1	112	62-134
Benzene	ug/L (ppb)	50	<1	97	77-120
Trichloroethene	ug/L (ppb)	50	<1	98	79-118
1,2-Dichloropropane	ug/L (ppb)	50	<1	97	79-119
Bromodichloromethane	ug/L (ppb)	50	<1	106	60-136
Dibromomethane	ug/L (ppb)	50	<1	95	66-141
4-Methyl-2-pentanone	ug/L (ppb)	50	<10	96	58-134
cis-1,3-Dichloropropene	ug/L (ppb)	50	<1	97	75-127
Toluene	ug/L (ppb)	50	<1	101	77-120
trans-1,3-Dichloropropene	ug/L (ppb)	50	<1	109	75-128
1,1,2-Trichloroethane	ug/L (ppb)	50	<1	99	68-131
2-Hexanone	ug/L (ppb)	50	<10	94	54-142
1,3-Dichloropropane	ug/L (ppb)	50	<1	100	71-128
Tetrachloroethene	ug/L (ppb)	50	<1	93	77-121
Dibromochloromethane	ug/L (ppb)	50	<1	107	71-128
1,2-Dibromoethane (EDB)	ug/L (ppb)	50	<1	97	69-134
Chlorobenzene Ethylbenzene	ug/L (ppb)	50	<1	100	78-118
1,1,1,2-Tetrachloroethane	ug/L (ppb)	50	<1	108	78-120
m,p-Xylene	ug/L (ppb)	50	<1	110	78-124
o-Xylene	ug/L (ppb)	100	<2	108	76-121
Styrene	ug/L (ppb) ug/L (ppb)	50 50	<1 <1	109	71-125
Isopropylbenzene	ug/L (ppb)	50 50	<1 <1	113	74-125
Bromoform	ug/L (ppb)	50 50	<1	114 106	71-125
n-Propylbenzene	ug/L (ppb)	50	<1 <1	110	65-142
Bromobenzene	ug/L (ppb)	50	<1	99	68-127
1,3,5-Trimethylbenzene	ug/L (ppb)	50	<1	99 114	78-116
1,1,2,2-Tetrachloroethane	ug/L (ppb)	50	<1	93	74-121 51-154
1,2,3-Trichloropropane	ug/L (ppb)	50	<1	93	53-150
2-Chlorotoluene	ug/L (ppb)	50	<1	109	66-127
4-Chlorotoluene	ug/L (ppb)	50	<1	110	65-130
tert-Butylbenzene	ug/L (ppb)	50	<1	114	69-122
1,2,4-Trimethylbenzene	ug/L (ppb)	50	<1	114	68-126
sec-Butylbenzene	ug/L (ppb)	50	<1	113	68-129
p-Isopropyltoluene	ug/L (ppb)	50	<1	117	70-125
1,3-Dichlorobenzene	ug/L (ppb)	50	<1	103	72-123
1,4-Dichlorobenzene	ug/L (ppb)	50	<1	102	69-126
1,2-Dichlorobenzene	ug/L (ppb)	50	<1	104	69-128
1,2-Dibromo-3-chloropropane	ug/L (ppb)	50	<1	98	32-164
1,2,4-Trichlorobenzene	ug/L (ppb)	50	<1	106	76-132
Hexachlorobutadiene	ug/L (ppb)	50	<1	110	68-128
Naphthalene	ug/L (ppb)	50	<1	101	47-159
1,2,3-Trichlorobenzene	ug/L (ppb)	50	<1	101	70-143

ENVIRONMENTAL CHEMISTS

Date of Report: 03/13/09 Date Received: 02/27/09

Project: Yakima LF 001.0221.00004, F&BI 902271

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Reporting Spike Recovery Recovery Recovery Acceptance RPD				Percent	Percent		
Dichlorodifluoromethane							
Chloromethane ug/L (ppb) 50 102 100 22-155 2 Vinyl chloride ug/L (ppb) 50 105 102 33-158 3 Bromomethane ug/L (ppb) 50 109 107 26-174 2 Chloroethane ug/L (ppb) 50 114 116 35-157 2 Trichlorofluoromethane ug/L (ppb) 50 87 85 49-153 2 Acetone ug/L (ppb) 50 103 88 38-171 16 1,1-Dichloroethene ug/L (ppb) 50 92 90 55-139 2 Methylene chloride ug/L (ppb) 50 88 87 52-129 1 Methyl t-butyl ether (MTBE) ug/L (ppb) 50 88 87 52-129 1 Methyl t-butyl ether (MTBE) ug/L (ppb) 50 89 95 96 72-125 1 Trans-1,2-Dichloroethene ug/L (ppb) 50 93 92 75-118 1 2,2-Dichloropropane ug/L (ppb) 50 93 92 75-118 1 Chloroform ug/L (ppb) 50 92 91 78-119 1 Chloroform ug/L (ppb) 50 98 96 78-120 2 2-Butanone (MEK) ug/L (ppb) 50 99 98 74-129 1 1,1-Trichloroethane ug/L (ppb) 50 99 98 74-129 1 1,1-Trichloroethane ug/L (ppb) 50 99 98 74-129 1 1,1-Trichloroethane ug/L (ppb) 50 99 98 74-129 1 1,1,1-Trichloroethane ug/L (ppb) 50 102 100 68-130 2							
$\begin{array}{c} \mbox{Vinyl chloride} & \mbox{ug/L}(\mbox{ppb}) & 50 & 105 & 102 & 33-158 & 3 \\ \mbox{Bromonethane} & \mbox{ug/L}(\mbox{ppb}) & 50 & 109 & 107 & 26-174 & 2 \\ \mbox{Chloroethane} & \mbox{ug/L}(\mbox{ppb}) & 50 & 114 & 116 & 35-157 & 2 \\ \mbox{Trichlorofluoromethane} & \mbox{ug/L}(\mbox{ppb}) & 50 & 87 & 85 & 49-153 & 2 \\ \mbox{Acetone} & \mbox{ug/L}(\mbox{ppb}) & 50 & 103 & 88 & 38-171 & 16 \\ \mbox{1,1-Dichloroethene} & \mbox{ug/L}(\mbox{ppb}) & 50 & 92 & 90 & 55-139 & 2 \\ \mbox{Methylene chloride} & \mbox{ug/L}(\mbox{ppb}) & 50 & 88 & 87 & 52-129 & 1 \\ \mbox{Methyl t-butyl ether (MTBE)} & \mbox{ug/L}(\mbox{ppb}) & 50 & 89 & 89 & 73-120 & 0 \\ \mbox{1,1-Dichloroethene} & \mbox{ug/L}(\mbox{ppb}) & 50 & 89 & 89 & 73-120 & 0 \\ \mbox{1,1-Dichloroethane} & \mbox{ug/L}(\mbox{ppb}) & 50 & 93 & 92 & 75-118 & 1 \\ \mbox{2,2-Dichloroptopane} & \mbox{ug/L}(\mbox{ppb}) & 50 & 91 & 108 & 68-128 & 3 \\ \mbox{cis-1,2-Dichloroethene} & \mbox{ug/L}(\mbox{ppb}) & 50 & 92 & 91 & 78-119 & 1 \\ \mbox{Chloroform} & \mbox{ug/L}(\mbox{ppb}) & 50 & 98 & 96 & 78-120 & 2 \\ \mbox{2-Butanone}(\mbox{MEK}) & \mbox{ug/L}(\mbox{ppb}) & 50 & 99 & 84 & 61-139 & 7 \\ \mbox{1,2-Dichloroethane} & \mbox{ug/L}(\mbox{ppb}) & 50 & 99 & 98 & 74-129 & 1 \\ \mbox{1,1,1-Trichloroethane} & \mbox{ug/L}(\mbox{ppb}) & 50 & 99 & 98 & 74-129 & 1 \\ \mbox{1,1,1-Trichloroethane} & \mbox{ug/L}(\mbox{ppb}) & 50 & 102 & 100 & 68-130 & 2 \\ \$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{c} \text{Chloroethane} & \text{ug/L} \left(\text{ppb} \right) & 50 & 114 & 116 & 35\text{-}157 & 2 \\ \text{Trichlorofluoromethane} & \text{ug/L} \left(\text{ppb} \right) & 50 & 87 & 85 & 49\text{-}153 & 2 \\ \text{Acetone} & \text{ug/L} \left(\text{ppb} \right) & 50 & 103 & 88 & 38\text{-}171 & 16 \\ 1,1\text{-Dichloroethene} & \text{ug/L} \left(\text{ppb} \right) & 50 & 92 & 90 & 55\text{-}139 & 2 \\ \text{Methylene chloride} & \text{ug/L} \left(\text{ppb} \right) & 50 & 88 & 87 & 52\text{-}129 & 1 \\ \text{Methyl t-butyl ether} \left(\text{MTBE} \right) & \text{ug/L} \left(\text{ppb} \right) & 50 & 88 & 87 & 52\text{-}129 & 1 \\ \text{Methyl t-butyl ether} \left(\text{MTBE} \right) & \text{ug/L} \left(\text{ppb} \right) & 50 & 89 & 89 & 73\text{-}120 & 0 \\ 1,1\text{-Dichloroethene} & \text{ug/L} \left(\text{ppb} \right) & 50 & 89 & 89 & 73\text{-}120 & 0 \\ 1,1\text{-Dichloropthane} & \text{ug/L} \left(\text{ppb} \right) & 50 & 93 & 92 & 75\text{-}118 & 1 \\ 2,2\text{-Dichloropropane} & \text{ug/L} \left(\text{ppb} \right) & 50 & 111 & 108 & 68\text{-}128 & 3 \\ \text{cis-1,2-Dichloroethene} & \text{ug/L} \left(\text{ppb} \right) & 50 & 92 & 91 & 78\text{-}119 & 1 \\ \text{Chloroform} & \text{ug/L} \left(\text{ppb} \right) & 50 & 92 & 91 & 78\text{-}120 & 2 \\ 2\text{-Butanone} \left(\text{MEK} \right) & \text{ug/L} \left(\text{ppb} \right) & 50 & 90 & 84 & 61\text{-}139 & 7 \\ 1,2\text{-Dichloroethane} \left(\text{EDC} \right) & \text{ug/L} \left(\text{ppb} \right) & 50 & 99 & 98 & 74\text{-}129 & 1 \\ 1,1,1\text{-Trichloroethane} & \text{ug/L} \left(\text{ppb} \right) & 50 & 102 & 100 & 68\text{-}130 & 2 \\ \end{array}$							
Acetone ug/L (ppb) 50 103 88 38-171 16 1,1-Dichloroethene ug/L (ppb) 50 92 90 55-139 2 Methylene chloride ug/L (ppb) 50 88 87 52-129 1 Methyl t-butyl ether (MTBE) ug/L (ppb) 50 95 96 72-125 1 trans-1,2-Dichloroethene ug/L (ppb) 50 89 89 73-120 0 1,1-Dichloroethane ug/L (ppb) 50 93 92 75-118 1 2,2-Dichloropropane ug/L (ppb) 50 111 108 68-128 3 cis-1,2-Dichloroethene ug/L (ppb) 50 92 91 78-119 1 Chloroform ug/L (ppb) 50 98 96 78-120 2 2-Butanone (MEK) ug/L (ppb) 50 98 96 78-120 2 2-Dichloroethane ug/L (ppb) 50 99 88 96 78-120 2 1,2-Dichloroethane (EDC) ug/L (ppb) 50 99 98 74-129 1 1,1,1-Trichloroethane ug/L (ppb) 50 99 98 74-129 1 1,1,1-Trichloroethane ug/L (ppb) 50 102 100 68-130 2	Chloroethane						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							
Chloroform ug/L (ppb) 50 98 96 78-120 2 2-Butanone (MEK) ug/L (ppb) 50 90 84 61-139 7 1,2-Dichloroethane (EDC) ug/L (ppb) 50 99 98 74-129 1 1,1,1-Trichloroethane ug/L (ppb) 50 102 100 68-130 2	2,2-Dichloropropane	ug/L (ppb)				68-128	
2-Butanone (MEK) ug/L (ppb) 50 90 84 61-139 7 1,2-Dichloroethane (EDC) ug/L (ppb) 50 99 98 74-129 1 1,1,1-Trichloroethane ug/L (ppb) 50 102 100 68-130 2							
1,2-Dichloroethane (EDC) ug/L (ppb) 50 99 98 74-129 1 1,1,1-Trichloroethane ug/L (ppb) 50 102 100 68-130 2							
1,1,1-Trichloroethane ug/L (ppb) 50 102 100 68-130 2							
Carbon tetrachloride ug/L (ppb) 50 105 102 67-131 3							
Benzene $ug(L(ppb))$ 50 91 90 76-115 1							
Trichloroethene ug/L (\overline{ppb}) 50 92 91 76-118 1							
1,2-Dichloropropane ug/L (ppb) 50 90 89 74-119 1							
Bromodichloromethane ug/L (ppb) 50 100 98 78-122 2							
Dibromomethane ug/L (ppb) 50 92 91 80-119 1 4-Methyl-2-pentanone ug/L (ppb) 50 96 97 56-134 1							
4-Methyl-2-pentanone $ug/L (ppb)$ 50 96 97 56-134 1 $cis-1,3$ -Dichloropropene $ug/L (ppb)$ 50 95 95 77-122 0							
$\frac{\text{GIS-}(3.5)\text{Embropropene}}{\text{Toluene}}$ $\frac{\text{ug/L}(\text{ppb})}{\text{ug/L}(\text{ppb})}$ $\frac{50}{50}$ $\frac{50}{97}$ $\frac{50}{95}$ $\frac{77-115}{77-115}$ $\frac{2}{50}$							
trans-1.3-Dichloropropene ug/L (ppb) 50 106 106 78-128 0							
1,1,2-Trichloroethane ug/L (ppb) 50 96 96 82-116 0			50	96	96	82-116	0
2-Hexanone ug/L (ppb) 50 102 101 58-144 1						58-144	
1,3-Dichloropropane ug/L (ppb) 50 97 97 80-118 0							
Tetrachloroethene ug/L (ppb) 50 95 93 79-119 2							
Dibromochloromethane ug/L (pph) 50 107 106 86-122 1 1.2-Dibromoethane (EDB) ug/L (pph) 50 98 97 84-116 1							
1,2-Dibromoethane (EDB)							
Ethylbenzene ug/L (ppb) 50 100 99 80-113 1							
1.1.1.2-Tetrachloroethane ug/L (ppb) 50 104 103 81-119 1							
m,p-Xylene ug/L (ppb) 100 100 99 80-120 1			100	100	99	80-120	
o-Xylene ug/L (ppb) 50 101 101 79-115 0							
Styrene $ug/L \text{ (ppb)}$ 50 105 104 79-111 1							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							
Bromobenzene ug/L (ppb) 50 97 96 80-116 1							
1.3.5-Trimethylbenzene $ug(L(ppb))$ 50 106 105 75-115 1							
1,1,2,2-Tetrachloroethane ug/L (ppb) 50 94 93 78-118 1	1,1,2,2-Tetrachloroethane			94	93	78-118	1
1,2,3-Trichloropropane ug/L (ppb) 50 93 93 76-124 0							
2-Chlorotoluene ug/L (ppb) 50 102 100 77-115 2							
4-Chlorotoluene ug/L (ppb) 50 103 100 77-116 3							
tert-Butylbenzene ug/L (pph) 50 107 105 76-113 2 1,2,4-Trimethylbenzene ug/L (pph) 50 106 104 75-115 2							
1,2,3-1 Interruptenzene ug/L (pph) 50 105 104 74-116 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							
p-Isopropyltoluene ug/L (ppb) 50 109 106 75-117 3							
1,3-Dichlorobenzene ug/L (ppb) 50 98 96 81-111 2				98			
1,4-Dichlorobenzene ug/L (ppb) 50 96 95 81-110 1	1,4-Dichlorobenzene					81-110	1
1,2-Dichlorobenzene ug/L (ppb) 50 99 98 81-111 1							
1,2.Dibromo-3-chloropropane ug/L (ppb) 50 103 102 72-137 1							
1,2,4-Trichlorobenzene ug/L (pph) 50 104 101 74-131 3 Hexachlorobutadiene ug/L (pph) 50 106 102 64-138 4							
Hexachlorobutadiene ug/L (ppb) 50 106 102 64-138 4 Naphthalene ug/L (ppb) 50 102 101 74-131 1							
1,2,3-Trichlorobenzene $1,2,3$ -Trichlorobenzene							

ENVIRONMENTAL CHEMISTS

Date of Report: 03/13/09 Date Received: 02/27/09

Project: Yakima LF 001.0221.00004, F&BI 902271

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR SEMIVOLATILES BY EPA METHOD 8270D

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	m RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Phenol	ug/L (ppb)	75	34	28	18-54	19
Bis(2-chloroethyl) ether	ug/L (ppb)	50	86	85	29-124	1
2-Chlorophenol	ug/L (ppb)	75	81	79	43-101	$\overset{-}{2}$
1,3-Dichlorobenzene	ug/L (ppb)	50	79	84	50-109	6
1,4-Dichlorobenzene	ug/L (ppb)	50	91	96	45-103	5
1,2-Dichlorobenzene	ug/L (ppb)	50	86	94	50-112	9
Bis(2-chloroisopropyl) ether	ug/L (ppb)	50	122 vo	130 vo	46-110	6
Hexachloroethane	ug/L (ppb)	50	96	106	46-114	10
N-Nitroso-di-n-propylamine	ug/L (ppb)	50	101	109	45-114	8
4-Methylphenol	ug/L (ppb)	75	73	71	31-91	3
Nitrobenzene	ug/L (ppb)	50	93	98	50-111	5
Isophorone	ug/L (ppb)	50	107	111	52-120	4
2,4-Dimethylphenol	ug/L (ppb)	75	81	82	38-94	1
Bis(2-chloroethoxy)methane	ug/L (ppb)	50	91	95	48-110	4
1,2,4-Trichlorobenzene	ug/L (ppb)	50	91	94	45-110	3
Hexachlorobutadiene	ug/L (ppb)	50	92	99	35-120	7
4-Chloro-3-methylphenol	ug/L (ppb)	75	88	89	46-107	1
2-Methylnaphthalene	ug/L (ppb)	50	97	101	41-133	4
Hexachlorocyclopentadiene	ug/L (ppb)	100	96	99	26-99	3
2,4,6-Trichlorophenol	ug/L (ppb)	75	87	89	43-105	2
2-Chloronaphthalene	ug/L (ppb)	50	93	95	53-111	2
Dimethyl phthalate	ug/L (ppb)	50	93	95	53-114	2
2,6-Dinitrotoluene	ug/L (ppb)	50	85	85	48-117	0
Acenaphthene	ug/L (ppb)	50	88	90	41-114	2
2,4-Dinitrotoluene	ug/L (ppb)	50	91	92	46-119	1
4-Nitrophenol	ug/L (ppb)	75	46	42	15-66	9
Diethyl phthalate	ug/L (ppb)	50	98	99	55-115	1
4-Chlorophenyl phenyl ether	ug/L (ppb)	50	103	104	54 - 115	1
N-Nitrosodiphenylamine	ug/L (ppb)	50	76	78	22-133	3
4-Bromophenyl phenyl ether	ug/L (ppb)	50	93	96	54-113	3
Hexachlorobenzene	ug/L (ppb)	50	93	94	37-110	1
Pentachlorophenol	ug/L (ppb)	75	86	87	39-126	1
Carbazole	ug/L (ppb)	50	92	93	38-162	1
Di-n-butyl phthalate	ug/L (ppb)	50	104	108	53-113	4
Pyrene	ug/L (ppb)	50	89	90	35-115	1
Benzyl butyl phthalate	ug/L (ppb)	50	95	96	24 - 132	1 .
Chrysene	ug/L (ppb)	50	85	86	39-126	1
Bis(2-ethylhexyl) phthalate	ug/L (ppb)	50	102	103	37-134	1
Di-n-octyl phthalate	ug/L (ppb)	50	117	118	46-132	1

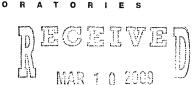
ENVIRONMENTAL CHEMISTS

Date of Report: 03/13/09 Date Received: 02/27/09

Project: Yakima LF 001.0221.00004, F&BI 902271

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR POLYCHLORINATED BIPHENYLS AS AROCLOR 1016/1260 BY EPA METHOD 8082

Analyte	Reporting Units	Spike Level	% Recovery LCS	% Recovery LCSD	Acceptance Criteria	RPD (Limit 20)
Aroclor 1016	ug/L (ppb)	2.5	102	108	52-135	6
Aroclor 1260	ug/L (ppb)	2.5	95	100	60-128	5


ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- A1 More than one compound of similar molecule structure was identified with equal probability.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for this range fell outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte indicated may be due to carryover from previous sample injections.
- d The sample was diluted. Detection limits may be raised due to dilution.
- ds The sample was diluted. Detection limits are raised due to dilution and surrogate recoveries may not be meaningful.
- dv Insufficient sample was available to achieve normal reporting limits and limits are raised accordingly.
- fb The analyte indicated was found in the method blank. The result should be considered an estimate.
- fc The compound is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. The variability is attributed to sample inhomogeneity.
- ht The sample was extracted outside of holding time. Results should be considered estimates.
- ip Recovery fell outside of normal control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The result is below normal reporting limits. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The analyte result in the laboratory control sample is out of control limits. The reported concentration should be considered an estimate.
- jr The rpd result in laboratory control sample associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the compound indicated is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received in a container not approved by the method. The value reported should be considered an estimate.
- pr The sample was received with incorrect preservation. The value reported should be considered an estimate.
- ve The value reported exceeded the calibration range established for the analyte. The reported concentration should be considered an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The pattern of peaks present is not indicative of diesel.
- y The pattern of peaks present is not indicative of motor oil.

Am Test Inc. 13600 NE 126TH PL Suite C Kirkland, WA 98034 (425) 885-1664

Professional Analytical Services

Mar 6 2009 Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029 Attention: Michael Erdahl

Dear Michael Erdahl:

Enclosed please find the analytical data for your project.

The following is a cross correlation of client and laboratory identifications for your convenience.

CLIENT ID	MATRIX	AMTEST ID	TEST
MW7-0209	Water	09-A003717	CONV
MW8-0209	Water	09-A003718	CONV
MW9a-0209	Water	09-A003719	CONV
MW11-0209	Water	09-A003720	CONV
MW12-0209	Water	09-A003721	CONV
MW13-0209	Water	09-A003722	CONV

Your samples were received on Tuesday, March 3, 2009. At the time of receipt, the samples were logged in and properly maintained prior to the subsequent analysis.

The analytical procedures used at AmTest are well documented and are typically derived from the protocols of the EPA, USDA, FDA or the Army Corps of Engineers.

Following the analytical data you will find the Quality Control (QC) results.

Please note that the detection limits that are listed in the body of the report refer to the Method Detection Limits (MDL's), as opposed to Practical Quantitation Limits (PQL's).

If you should have any questions pertaining to the data package, please feel free to contact me.

Sincerely

Kathy Fugiel President

Project #: 902271 PO Number: H-17777

BACT = Bacteriological CONV = Conventionals

ai Is MET = Metals ORG = Organics NUT=Nutrients

MIN=Minerals

TC=Total Coliforms

DEM=Demand

APC=Aerobic Plate Count

Am Test Inc. 13600 NE 126TH PL Suite C Kirkland, WA 98034 (425) 885-1664 www.amtestlab.com

Professional Analytical Services

ANALYSIS REPORT

Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029 Attention: Michael Erdahl

Project #: 902271 PO Number: H-17777

All results reported on an as received basis.

Date Received: 03/03/09 Date Reported: 3/6/09

AMTEST Identification Number

Client Identification Sampling Date

09-A003717 MW7-0209 02/26/09

Conventionals

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Bromide	< 0.02	mg/l		0.02	EPA 300.0	KF	03/04/09

AMTEST Identification Number

Client Identification Sampling Date

09-A003718 MW8-0209 02/26/09

Conventionals

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Bromide	0.33	mg/l		0.02	EPA 300.0	KF	03/04/09

AMTEST Identification Number

Client Identification Sampling Date 09-A003719 MW9a-0209 02/26/09

Conventionals

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Bromide	0.05	mg/l		0.02	EPA 300.0	KF	03/04/09

Friedman & Bruya, Inc. Project Name: AmTest ID: 09-A003720

AMTEST Identification Number

Client Identification Sampling Date 09-A003720 MW11-0209 02/26/09

Conventionals

PARAMETER	RESULT	CIVILIO	Q	D.L.	METHOD	ANALYST	DATE
Bromide	0.11	mg/l		0.02	EPA 300.0	KF	03/04/09

AMTEST Identification Number

Client Identification Sampling Date

09-A003721 MW12-0209 02/26/09

Conventionals

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Bromide	< 0.02	mg/l		0.02	EPA 300.0	KF	03/04/09

AMTEST Identification Number

Client Identification Sampling Date

09-A003722 MW13-0209 02/26/09

Conventionals

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Bromide	< 0.02	mg/l		0.02	EPA 300.0	KF	03/04/09

Kathy Fugiel President

QC Summary for sample numbers: 09-A003717 to 09-A003722

MA	TR	IX	SP	IKE	S

SAMPLE#	ANALYTE	UNITS	SAMPLE VALUE	SMPL+ SPK	SPK AMT	RECOVERY
09-A003508	Bromide	mg/l	< 0.02	1.0	1.0	100.00 %

STANDARD REFERENCE MATERIALS

ANALYTE	UNITS	TRUE VALUE	MEASURED VALUE	RECOVERY
Bromide	mg/l	1.0	1.2	120. %
Bromide	mg/l	0.05	0.05	100. %

BLANKS

ANALYTE	UNITS	RESULT
Bromide	mg/l	< 0.02
Bromide	mg/l	< 0.02

SUBCONTRACT SAMPLE CHAIN OF CUSTODY

Cond Donout The Mis	locko	Michael Badahl		SUBC	SUBCONTRACTER	ACTER							Fall	Page # of I	of I	
1	וכוומבו	LI UAIII									3		, .			
Company Fri	edmai	Friedman and Bruya, Inc.	Inc.	PROJ	PROJECT NAME/NO.	AME/N	o.			······································	P0#		□ Stande □ RUSH	□ Standard (2 Weeks) □ RUSH	s)	
	12 16t	3012 16th Ave W		1	401	402271				1FF1-H	111		Rush ch	Rush charges authorized by:	rized by:	
City State ZIP Ses	7 o[++¢	Seattle WA 98119		REM	REMARKS								S	SAMPLE DISPOSAL	POSAL	1
1 6	3282	Fax # (20	Fax # (206) 283-5044		F F F F F F F F F F F F F F F F F F F	Please Email Results ahl@friedmanandbruv	Email	Result andbru	Please Email Results merdahl@friedmanandbruva.com				Retur	☐ Laptore and so uays ☐ Return samples ☐ Will call with instructions	ays ructions	
					-				N A T A TA	10 DE	AMAI WORG BEOILEGER	'				1 Г
							ŀ	₹	NALI	150 G.1	Q (7				Т
Sample ID	Lab ID	Date Sampled	Time Sampled	Matrix	# of jars	Oil and Grease	НДЯ	МФИ	Strativ	Sulfate Alkalinity	Brandle			and the second s	Notes	
MW7-0209	2112	2/15/19	1215	3	-											
AV6-0209	f)	_	51/1		1											F
P020- APWM	(A		Sth/		~						/					
1020- 11MW	5		1325													
mw 12-0209	K		اديو						2.1		1/					
MW13-0209	2	_	02)]	-			N. C				1					
				(SEC.)			, w ² ,			·						
			8.8													
					š.					_		-				
Friedman & Brusa Inc		1	SIGNATITEE			PR	PRINT NAME	AME			CO	COMPANY		DATE	TIME	
3012 16th Avenue West	1-1	Relinquished by			Michael Erdahl	el Erda	H.			Fr	Friedman & Bruya	& Bruy	હ	sylon	1230	,
Seattle, WA 98119-2029	<u> </u>	Received by			1	7 4	12 17	3	7		Ant5	t 5 f		3/3/69		
Ph. (206) 285-8282	L	Relinquished by:						>								
Fax (206) 283-5044		Received by:														

LABORATORY & CONSULTING SERVICES

3927 AURORA AVENUE NORTH, SEATTLE, WA 98103

PHONE: (206) 632-2715

FAX: (206) 632-2417

CASE FILE NUMBER:

FBI003-88

PAGE 1

REPORT DATE: DATE SAMPLED: 03/11/09 02/26/09

DATE RECEIVED:

02/27/09

FINAL REPORT, LABORATORY ANALYSIS OF SELECTED PARAMETERS ON WATER

SAMPLES FROM FRIEDMAN & BRUYA, INC.

CASE NARRATIVE

Six water samples were received by the laboratory in good condition and analyzed according to the chain of custody. No difficulties were encountered in the preparation or analysis of these samples. Sample data follows while QA/QC data is contained on the subsequent pages.

SAMPLE DATA

	CHLORIDE	FLUORIDE	SULFATE	NITRATE	NITRITE	SRP
SAMPLE ID	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)
MW7-0209	20.7	0.75	< 1.00	1.61	0.015	0.004
MW8-0209	32.8	0.39	3.02	14.4	0.026	0.001
MW9A-0209	15.2	0.32	7.90	2.18	0.014	0.120
MW11-0209	11.9	0.31	< 1.00	0.033	0.011	0.022
MW12-0209	7.62	0.80	6.17	0.014	< 0.002	0.077
MW13-0209	6.06	0.71	4.63	0.018	0.003	0.210

	pН	ALKALINITY	HCO3	CO3
SAMPLE ID		(mgCaCO3/1)	(mgCaCO3/l)	(mgCaCO3/1)
MW7-0209	6.28	264	121	<1.00
MW8-0209	6.54	284	173	<1.00
MW9A-0209	6.69	118	80.6	<1.00
MW11-0209	6.28	216	99.1	<1.00
MW12-0209	6.01	67.5	21.2	<1.00
MW13-0209	6.49	136	79.0	<1.00

LABORATORY & CONSULTING SERVICES

3927 AURORA AVENUE NORTH, SEATTLE, WA 98103

PHONE: (206) 632-2715

FAX: (206) 632-2417

CASE FILE NUMBER:

FBI003-88

PAGE 2

REPORT DATE: DATE SAMPLED: 03/11/09

02/26/09

DATE RECEIVED:

02/27/09

FINAL REPORT, LABORATORY ANALYSIS OF SELECTED PARAMETERS ON WATER

SAMPLES FROM FRIEDMAN & BRUYA, INC.

SAMPLE DATA

DIRITE AND AVIABLE								
		DIS	SOLVED MET	TALS				
	IRON	POTASSIUM	CALCIUM	MAGNESIUM	SODIUM			
SAMPLE ID	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)			
MW7-0209	23.7	11.2	39.9	15.0	19.3			
MW8-0209	3.33	23.4	35.4	15.6	27.0			
MW9A-0209	< 0.010	3.68	26.6	8.57	10.9			
MW11-0209	24.1	5.81	30.0	10.7	15.3			
MW12-0209	7.60	1.95	9.14	3.53	10.3			
MW13-0209	3.65	2.94	31.7	3.55	10.7			

LABORATORY & CONSULTING SERVICES

3927 AURORA AVENUE NORTH, SEATTLE, WA 98103

PHONE: (206) 632-2715

FAX: (206) 632-2417

CASE FILE NUMBER:

FBI003-88

PAGE 3

REPORT DATE: DATE SAMPLED: 03/11/09

02/26/09

DATE RECEIVED:

FINAL REPORT, LABORATORY ANALYSIS OF SELECTED PARAMETERS ON WATER

SAMPLES FROM FRIEDMAN & BRUYA, INC.

QA/QC DATA

QC PARAMETER	CHLORIDE	FLUORIDE	SULFATE	NITRATE	NITRITE	SRP			
	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)			
METHOD	SM204500CLC	EPA 340.2	SM184500SO4E	SM184500N03F	EPA354.1	EPA 365.1			
DATE ANALYZED	02/27/09	03/04/09	03/03/09	02/27/09	02/27/09	02/27/09			
DETECTION LIMIT	0.50	0.10	1.00	0.010	0.002	0.001			
DUPLICATE									
SAMPLE ID	BATCH	MW7-0209	ВАТСН	MW13-0209	MW13-0209	MW11-0209			
ORIGINAL	146	0.75	9.30	0.018	0.003	0.022			
DUPLICATE	145	0.81	9.39	0.016	0.003	0.021			
RPD	0.94%	8.19%	1.01%	15.90%	0.00%	2.58%			
KFD	0.54 /0	0.94% 8.19% 1.01% 13.90% 0.00% 2.36%							
SPIKE SAMPLE									
SAMPLE ID	ватсн	MW7-0209	BATCH	MW13-0209	MW13-0209	MW11-0209			
ORIGINAL	146	0.75	9.30	0.018	0.003	0.022			
SPIKED SAMPLE	155	1.79	19.1	0.219	0.042	0.043			
SPIKE ADDED	10.0	1.00	10.0	0.200	0.040	0.020			
% RECOVERY	82.11%	104.40%	98.33%	100.41%	97.50%	105.96%			
QC CHECK									
	***	1.00	0.15	0.400	0.020	0.022			
FOUND	28.9	1.00	9.17	0.400	0.039	0.033			
TRUE	30.0	1.00	10.0	0.408	0.040	0.033			
% RECOVERY	96.45%	100.11%	91.66%	97.93%	97.50%	99.92%			
		10.10	1 00	1 .0000	- 0 000	10.001			
BLANK	< 0.50	< 0.10	<1.00	< 0.010	< 0.002	< 0.001			

RPD = RELATIVE PERCENT DIFFERENCE.

NA = NOT APPLICABLE OR NOT AVAILABLE.

NC = NOT CALCULABLE DUE TO ONE OR MORE VALUES BEING BELOW THE DETECTION LIMIT.

OR = RECOVERY NOT CALCULABLE DUE TO SPIKE SAMPLE OUT OF RANGE OR SPIKE TOO LOW RELATIVE TO SAMPLE CONCENTRATION.

LABORATORY & CONSULTING SERVICES 3927 AURORA AVENUE NORTH, SEATTLE, WA 98103 PHONE: (206) 632-2715 FAX: (206) 632-2417

CASE FILE NUMBER:

FB1003-88

PAGE 4

REPORT DATE:

03/11/09

DATE SAMPLED:

02/26/09

DATE RECEIVED:

02/27/09

FINAL REPORT, LABORATORY ANALYSIS OF SELECTED PARAMETERS ON WATER

SAMPLES FROM FRIEDMAN & BRUYA, INC.

QA/QC DATA

QC PARAMETER	pН	ALKALINITY	HCO3	CO3
		(mgCaCO3/1)	(mgCaCO3/l)	(mgCaCO3/l)
METHOD	EPA 150.1	EPA 310.1	EPA 310.1	EPA 310.1
DATE ANALYZED	02/27/09	03/06/09	03/06/09	03/06/09
DETECTION LIMIT	0.10	1.00	1.00	1.00
DUPLICATE				
		,		
SAMPLE ID		ВАТСН		
ORIGINAL		50.6		
DUPLICATE		50.7		
RPD	NA	0.20%	NA	NA NA
SPIKE SAMPLE				
SAMPLE ID			·	
ORIGINAL				
SPIKED SAMPLE				
SPIKE ADDED				
% RECOVERY	NA	NA	NA	NA
QC CHECK				
(mg/l)				
FOUND		98.5		
TRUE		100		
% RECOVERY	NA	98.50%	NA	NA
BLANK	NA	NA	NA	NA

RPD = RELATIVE PERCENT DIFFERENCE.

NA = NOT APPLICABLE OR NOT AVAILABLE.

NC = NOT CALCULABLE DUE TO ONE OR MORE VALUES BEING BELOW THE DETECTION LIMIT.

OR = RECOVERY NOT CALCULABLE DUE TO SPIKE SAMPLE OUT OF RANGE OR SPIKE TOO LOW RELATIVE TO SAMPLE CONCENTRATION.

LABORATORY & CONSULTING SERVICES
3927 AURORA AVENUE NORTH, SEATTLE, WA 98103
PHONE: (206) 632-2715 FAX: (206) 632-2417

CASE FILE NUMBER:

FBI003-88

PAGE 5

REPORT DATE: DATE SAMPLED: 03/11/09

02/26/09

DATE RECEIVED:

02/27/09

FINAL REPORT, LABORATORY ANALYSIS OF SELECTED PARAMETERS ON WATER

SAMPLES FROM FRIEDMAN & BRUYA, INC.

QA/QC DATA

	DIS		SOLVED MET		
QC PARAMETER	IRON	POTASSIUM	CALCIUM	MAGNESIUM	SODIUM
	(mg/l)	(mg/l)	(mg/1)	(mg/l)	(mg/l)
METHOD	EPA 6010	EPA 6010	EPA 6010	EPA 6010	EPA 6010
DATE ANALYZED	03/04/09	03/04/09	03/04/09	03/04/09	03/04/09
DETECTION LIMIT	0.010	0.500	0.100	0.100	0.100
DUPLICATE					
SAMPLE ID	ВАТСН	ВАТСН	BATCH	BATCH	ВАТСН
ORIGINAL	< 0.010	3.79	34.1	4.21	26.2
DUPLICATE	< 0.010	4.08	34.7	4.97	26.9
RPD	NC	7.24%	1.67%	16.44%	2.58%
SPIKE SAMPLE					
SAMPLE ID	BATCH	ВАТСН		BATCH	
ORIGINAL	< 0.010	3.79		4.21	
SPIKED SAMPLE	9.43	14.4		14.1	
SPIKE ADDED	10.0	10.0		10.0	
% RECOVERY	94.28%	106.30%	NA	98.50%	NA
QC CHECK (mg/l)					
FOUND	9.24	9.20	9.87	9.75	10.8
TRUE	10.0	10.0	10.0	10.0	10.0
% RECOVERY	92.38%	92.04%	98.68%	97.53%	108.27%
BLANK	< 0.010	< 0.500	< 0.100	< 0.100	< 0.005

RPD = RELATIVE PERCENT DIFFERENCE.

NA = NOT APPLICABLE OR NOT AVAILABLE.

NC = NOT CALCULABLE DUE TO ONE OR MORE VALUES BEING BELOW THE DETECTION LIMIT.

OR - RECOVERY NOT CALCULABLE DUE TO SPIKE SAMPLE OUT OF RANGE OR SPIKE TOO LOW RELATIVE TO SAMPLE CONCENTRATION.

SUBMITTED BY:

Laboratory Director

Steven Lazoff

Aquatic Research Incorporated

FB1003-88

3927 Aurora Ave. N / Seattle, WA 98103 / (206) 632-2715

CHAIN-OF-CUSTODY RECORD CLIENT: FRIEDMAN & BRNYA SAMPLING DATE: 52/26/09 SAMPLERS:									SHEET OF PROJECT ID: (J. 11 CO.11 w. th project 11) CASE FILE NO.: DATA RECORDED BY:						
SAMPLE INFORMATION					•										
				Ì	D Dad	AMETE	пе								
SAMPLE ID	DATE/TIME COLLECTED	CARB/B1CARS	Chloride Sulfate		CACUN *	K 13	4 1,	ì	دري ,	2/2:	7 /4	B O T T #	NOTES		
MW7-0209	2/26 12:15		XX	XXX	XX		X	P	17:4	6. 2	8	1	(Source Ok		
mu8-0209	1 1135		$\times \times$	\times \times \times	/ X X	XX	X		-	6.5	1 4	1-	METALS		
MW9A-0209	14:25	XX	XX	XXX	XX	< >	ベ		 	6.6	9	T.			
mw11-0209	13:25	XX	XX.	XXX	Kr	XK	X		-	6.2	8	9	(Metals are n		
MW 12-0209	. 15:25		$\times \times $	XXX	$ \langle \times \rangle$	XX			 	6.0	<u> i </u>	2	Gold Altered)		
MW13-0209	1 16 20	7X	<u> </u>	\leq	XX	XX	7		}	6.4	9	1			
					-	 	_								
	•				-	╁				_					
						╂					-				
					+										
	4-4-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1				+ -	 				_	-				
					++						\vdash				
			-			+					\vdash				
					 	+ + -	- -			_	╁┼	-			
			+							_	H				
		$\dashv \dagger$					1	_				-			
			11									_			
*										-		1			
	÷														
Printed Name Signature Affiliation	0UNG-	Date	/Time			Receive	Å 1	endo Er	ws ZZZ)		Date/Ti	17769 1884		
			Date/Time				Received By					Date/Time			
Signature Affiliation															
Miscellaneous Notes (Hazardous Ma	terials, Quick turn-ai	ound tim	e, etc.):												

BIH/Day/UZ Rush charges authorized by: ☐ Return samples ☐ Will call with instructions TURNAROUND TIME SAMPLE DISPOSAL X Dispose after 30 days Standard (2 Weeks) O RUSH 03/27/09 thator records FO# REMARKS DRO offer Shan Gool Clanys; N E 500ml poly W 11tos preservative field-Filtered SAMPLE CHAIN OF CUSTODY SAMPLERS (signature) PROJECT NAME/NO. 40000 TEE0 100 Sakma IT Address 32122 30 th Ac. SE #H-150 Phone # (45) 409 -800 Fax # (45) 409-8488 160% Company SUR International Corp. City, State, ZIP Bothell, WA Sond Report To Mike Staton 90227

	T		,							 	_
	Notes										
										<u>.</u>	
	0.008	X	X	X	X	X	X				
ANALYSES REQUESTED	Siconbonute & Continute	X	X	\times	X	X	X				
YSES R	PCSs 67 8087-	X	X	X	X	X	X				
ANAI	AOCs by 8270D	X	X	\times	X	X	X				-
	81208 yd X9T8	X	X	×	X	X	X	,			
	OH Losoid-HTT onilossD-HTT	X	\times	\times	X	\times	\times		ζ.		
	# of containers	b					->		- · .		
	Sample Type	Water			·		>		,		
	Time Sampled	1915	1115	1405	1305	1595	1630				
	late Saupled	P-7 3/26/09					***				
	Lab ID		402 H-H	₽.4 H	94 H-H	05 A-T	06 A-T		-		
	Sample ID	MW7-0309	MW8-0009	MW94 -0909	MW11-0209	MW13-0309	MW13-0009				

Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, W.A 98119-2029 Fax (206) 283-5044 Ph. (206) 285-8282

PORMS/COC/COC.DOC

TIME 000/ DATE Samples president COMPANY SCR PRINT NAME に配 CFR. SIGNATURE Relinquished b: Relinquished Received by: Received by:

3(