

Memorandum

10: WIT. KON TIMIN, Washington Department of Ecolog	To:	Mr. Ron Timm,	Washington	Department o	f Ecology
--	-----	---------------	------------	--------------	-----------

- CC: Carol Wiseman, Weyerhaeuser and Sandy Forman, Pacific Topsoil
- From: Lynn Grochala
- Date: December 6, 2017
- Project No: Weyer-Mill E, Task 1
 - Re: Former Mill E/Koppers Site 2017 Annual Performance and Compliance Monitoring Report

Floyd|Snider performed the annual performance and compliance monitoring for the Former Mill E/Koppers Facility in Everett, Washington (the Site) on September 25, 2017, in accordance with the *Performance and Compliance Monitoring Plan* (PCMP; EMCON 1998) and the *Performance and Compliance Monitoring Plan Addendum* (PCMP Addendum; Floyd|Snider 2017). The PCMP Addendum was approved by the Washington State Department of Ecology (Ecology) in a correspondence dated August 23, 2017. The geographic location of the Site is shown on Figure 1.

Monitoring activities included groundwater quality monitoring, groundwater level monitoring, and asphalt and soil cap inspection. This event was the first to incorporate modifications to the water level elevation monitoring outlined in the PCMP Addendum, which included the addition of Lower Sand Aquifer groundwater elevation measurements. This annual monitoring summary includes details from the installation of piezometer PZ-2D, which was required for water level monitoring of the Lower Sand Aquifer, and repairs to the existing piezometer PZ-1B. The following sections present the results of this monitoring event.

MODIFICATIONS TO THE PIEZOMETER NETWORK

Existing Lower Sand Aquifer monitoring wells LLMW-19D (located in close proximity to PZ-1A and PZ-1B) and LMW-20D (located in close proximity to PZ-3A and PZ-3B) were added to the water level monitoring network to better evaluate the performance of the hydraulic containment system (barrier wall and asphalt cap). Access to these monitoring wells was requested from Ecology and granted, as these wells are associated with the Everett Smelter Lowland Site. The locations of these wells are shown on Figure 2.

In accordance with the PCMP Addendum, a new piezometer (PZ-2D) was installed in the Lower Sand Aquifer outside the barrier wall and adjacent to piezometer PZ-2B to address Ecology's request for water level measurements from the Lower Sand Aquifer and consideration of vertical hydraulic gradients to assess the performance of the barrier wall. The location of the new piezometer is shown on Figure 2.

Floyd|Snider provided oversight to ESN Northwest, Inc. (ESN) on September 22, 2017, for the installation of piezometer PZ-2D, which is adjacent to Upper Sand Aquifer piezometer PZ-2B. PZ-2D was drilled to a maximum depth of 25 feet below ground surface (bgs) by ESN using a direct push/hollow stem auger combination drill rig. In accordance with the PCMP Addendum, PZ-2D was constructed with a 10-foot screened interval below the Upper Silt Aquitard, which was observed between 8.5 and 16.25 feet bgs. The soil boring/well completion log is included in Attachment 1.

The newly installed piezometer was developed by ESN using a submersible pump after installation to remove fine-grained material introduced during drilling. Investigation-derived wastes (soil and groundwater) were placed in 55-gallon drums and temporarily stored onsite pending characterization for off-site disposal. After installation, Floyd|Snider surveyed the top of casing (TOC) elevation for PZ-2D using the established elevations of PZ-2A and PZ-2B. The TOC elevation for PZ-2D is 9.08 feet above mean sea level (MSL).

During the February 2017 water level elevation monitoring event, the casing of piezometer PZ-1B, which is located within a vault, was identified as being much lower than the ground surface and was difficult to access safely during monitoring. Therefore, to address this concern, a new riser was installed on PZ-1B prior to the 2017 monitoring event. The new TOC elevation for PZ-1B was surveyed by Floyd|Snider on September 22, 2017, and is 9.82 feet above MSL.

GROUNDWATER LEVEL MONITORING

Depth to groundwater was measured at three piezometers inside the barrier wall (PZ-1A, PZ-2A, and PZ-3A), three piezometers outside the barrier wall screened in the Upper Sand Aquifer (PZ-1B, PZ-2B, and PZ-3B), and three wells/piezometers outside of the barrier wall screened in the Lower Sand Aquifer (LLWM-19D, PZ-2D, and LLMW-20D). Piezometer and well locations with measured groundwater elevations are shown on Figure 3.

Elevations for the top of well casings for piezometers in the Upper Sand Aquifer (inside and outside the barrier wall) were referenced from the *2003 Annual Groundwater Compliance Monitoring and Five-Year Data Review Report* (Shaw 2003). Top of well casing elevations for the two Lower Sand Aquifer wells were documented in the Everett Smelter Lowland Area *Final Supplemental Remedial Investigation Report* (GeoEngineers 2016). The top of well casing elevation for the new piezometer in the Lower Sand Aquifer, PZ-2D, and the repaired piezometer, PZ-1B, were surveyed by Floyd|Snider on September 22, 2017.

Depth to water measurements were taken on September 22 following a low tide of -1.08 feet MSL at 3:08 PM rising toward a high tide of 2.81 feet MSL at 8:36 PM. Tide cycle elevations are based on the National Oceanic and Atmospheric Administration tide predictions for Everett, Washington, converted to MSL. Measured groundwater elevations are presented in Table 1 and are compared to the 24-hour tidal cycle in Figure 3.

Piezometer ²	Date	Time	Reference Elevation (feet) Top of PVC	Depth to Water (feet)	Groundwater Elevation (feet)
PZ-1A	9/25/2017	15:32	9.90	6.50	3.40
PZ-1B	9/25/2017	15:33	9.82	5.65	4.17
LLMW-19D	9/25/2017	15:38	10.56	9.76	0.80
PZ-2A	9/25/2017	15:27	9.40	5.78	3.62
PZ-2B	9/25/2017	15:30	8.38	4.32	4.06
PZ-2D	9/25/2017	15:29	9.08	7.69	1.39
PZ-3A	9/25/2017	15:24	10.31	7.67	2.64
PZ-3B	9/25/2017	15:23	7.54	4.61	2.93
LLMW-20D	9/25/2017	15:25	11.26	10.45	0.81

Table 1
Groundwater Elevation Measurements¹

Notes:

1 Top of well casing and groundwater elevations referenced to MSL (Shaw 2003; GeoEngineers 2016).

2 "A" wells are located inside the barrier wall in the Upper Sand Aquifer; "B" wells are located outside the barrier

wall in the Upper Sand Aquifer; "D" wells are located outside the barrier wall in the Lower Sand Aquifer.

Abbreviation:

PVC Polyvinyl chloride

Comparison of the groundwater elevations for each set of piezometers in the Upper Sand Aquifer (inside and outside barrier wall) from 2007 to 2017 are presented in Figure 4. Groundwater elevations inside the barrier wall have consistently been lower than outside the barrier wall for all three pair locations during each monitoring event.

HYDRAULIC HEAD DIFFERENCE COMPARISON

The vertical and horizontal head differences between inside and outside the barrier wall are used as the primary indicator of the barrier wall's performance to control the hydraulic movement of contaminants. The hydraulic head differences were calculated using the approach outlined in the PCMP Addendum. The results for the horizontal hydraulic head differences are included in Table 2 and the results for the vertical hydraulic head differences are included in Table 3.

Table 2	
Horizontal Hydraulic Head Difference Compa	arisons ¹

Piezometer Pair ²	"B" Piezometer Upper Sand Aquifer Elevation	"A" Piezometer Upper Sand Aquifer Elevation	Horizontal Head Difference
PZ-1A/PZ-1B	4.17	3.40	0.77
PZ-2A/PZ-2B	4.06	3.62	0.44
PZ-3A/PZ-3B	2.93	2.64	0.29

Notes:

1 Groundwater elevations reference to MSL.

2 "A" wells are located inside the barrier wall in the Upper Sand Aquifer; "B" wells are located outside the barrier wall in the Upper Sand Aquifer.

Piezometer Pair ²	LocationUpper SandRelative toAquiferBarrier WallElevation		Lower Sand Aquifer Elevation ³	Vertical Head Difference		
PZ-1A/LLMW-19D	Inside	3.40	0.80	2.60		
PZ-1B/LLMW-19D	Outside	4.17	0.80	3.37		
PZ-2A/PZ-2D	Inside	3.62	1.39	2.23		
PZ-2B/PZ-2D	Outside	4.06	1.39	2.67		
PZ-3A/LLMW-20D	Inside	2.64	0.81	1.83		

Table 3Vertical Hydraulic Head Difference Comparisons1

Notes:

1 Groundwater elevations reference to MSL.

2 "A" wells are located inside the barrier wall in the Upper Sand Aquifer; "B" wells are located outside the barrier wall in the Upper Sand Aquifer; "D" wells are located outside the barrier wall in the Lower Sand Aquifer.

The Lower Sand Aquifer piezometer/well was considered representative of the Lower Sand Aquifer elevation inside 3 and outside the barrier wall and was used in both calculations. Rational for this decision is detailed in the PCMP Addendum.

The groundwater elevation of the Upper Sand Aquifer inside the barrier wall was consistently lower than outside the barrier wall for all three piezometer pair locations. This indicates a positive horizontal head difference with groundwater fluxing inward through the barrier wall. In addition, the vertical head difference inside the barrier wall was lower than the vertical head difference outside the barrier wall at all three piezometer pair locations. These results show that the hydraulic head inside the barrier wall was consistently lower than outside the barrier wall, indicating the barrier wall and asphalt cap are functioning as intended by limiting the downward flux of groundwater inside the barrier wall through the Upper Silt Aquitard.

GROUNDWATER QUALITY MONITORING

A groundwater sample was collected from piezometer PZ-3A inside the barrier wall using lowflow sampling methods. Field measurements and depth to groundwater measurements were recorded at consistent intervals during purging. The sample was analyzed for total arsenic by USEPA Method 200.8, pentachlorophenol (PCP) by USEPA Method 8270, and total petroleum hydrocarbons (TPHs) by NWTPH-Gx and NWTPH-Dx. Sample containers were transported in a cooler with ice to Fremont Analytical, Inc., under the standard chain-of-custody procedures.

Groundwater analytical results are presented in Table 4 and a copy of the analytical report is included in Attachment 2. The results are compared to the Model Toxics Control Act (MTCA) cleanup levels for the Site established in the 1998 Consent Decree. Concentrations of diesel-range TPH and PCP were less than their respective cleanup levels and decreased relative to the previous monitoring event. Gasoline- and motor oil-range TPH were not detected at concentrations greater than laboratory reporting limits. Arsenic was detected at a concentration of 433 micrograms per liter (μ g/L), which is greater than the cleanup level of 5 μ g/L, but decreased relative to previous sampling events. Changes in the concentrations of TPH, PCP, and arsenic over time (over the last 10 years) are presented in Figure 5.

Analyte	Unit	Criteria ¹	Sample Result	
Gasoline-Range TPH			50.0 U	
Diesel-Range TPH		10,000	588	
Motor Oil-Range TPH	μg/L		99.3 U	
РСР		7.29	0.292	
Arsenic		5	433	

Table 4Groundwater Analytical Results for PZ-3A, September 25, 2017

Note:

1 Criteria are from the cleanup levels established in the 1998 Consent Decree based on MTCA Method A and C.

Abbreviations:

µg/L Micrograms per liter

- MTCA Model Toxics Control Act
 - PCP Pentachlorophenol
- TPH Total Petroleum Hydrocarbons

Qualifier:

U Analyte was not detected above the given reporting limit

QUALITY ASSURANCE/QUALITY CONTROL AND DATA VALIDATION

Quality management for sample collection and reporting consisted of field and laboratory quality assurance (QA) objectives and quality control (QC) procedures with final in-house data validation. A trip blank was included in the cooler with the sample being analyzed to ensure the sample containers did not contribute to any detected analyte concentrations and to identify any artifacts of improper sample handling, storage, or shipping. Laboratory results were evaluated by Fremont Analytical, Inc., against analysis of the method blank, matrix spikes, matrix spike duplicates, laboratory duplicates, laboratory control samples, and calibrations as required by the specific analytical methods. QC results for the groundwater sample were within the QA objective limits and are included in the Analytical Report included in Attachment 2.

After the data were received from the laboratory, data validation QC procedures (Compliance Screening, Stages 1 & 2a) were followed to provide an accurate evaluation of the data quality and usability. The data were reviewed regarding chain-of-custody/documentation, sample preservation and holding times, instrument performance, method blanks, reporting limits, and QC sample recoveries. For all sample delivery groups, the analytical holding times were met and the method blanks had no detections. The matrix spike and laboratory control sample recoveries and sample/sample duplicate relative percent differences all met USEPA requirements. No qualifiers were added to the analytical results based on the data quality review. Data are determined to be of acceptable quality for use as reported by the laboratory. Final validated data were entered into the Floyd|Snider project database.

ASPHALT CAP AND SOIL COVER

An asphalt cap and soil cover inspection was performed under the supervision of a Professional Engineer from Floyd|Snider on September 25, 2017. Field observations of cap integrity were documented on a field inspection checklist and Site Plan. The field inspection checklist and Site Plan, along with photographs of all relevant field observations, are included as Attachment 3. All nonconformities noted in the inspection checklist were considered minor and not a current concern to the performance objectives. These observations included limited cracking and uneven settlement in the asphalt, vegetation in the asphalt cracks and drainage ditches, accumulated sediment in the asphalt drainage ditches, and minimal tire rutting in the soil cap. Overall, the asphalt cap and soil cover were observed to be in good condition and are adequately meeting the performance objectives to prevent direct contact with contaminated soil and minimize infiltration. To keep the asphalt cap in good working condition, visible weeds will be removed from the cracks (physically or torching), debris and accumulated sediment will be removed from the swale, and minor cracks will be sealed prior to Spring 2018.

PERFORMANCE AND COMPLIANCE MONITORING SCHEDULE

Water level monitoring will occur on a quarterly basis through June 2018 (i.e., December 2017, March 2018, and June 2018), before reverting back to annual monitoring in September 2018.

Water quality monitoring and cap inspections will continue on an annual basis in September of each year and results, along with water level measurements, will be reported as part of the annual PCMP summary report. Ecology will be notified if monitoring results indicate that performance criteria have not been met.

LIST OF REFERENCES

- EMCON. 1998. *Performance and Compliance Monitoring Plan, Former Mill E/Koppers Facility, Everett, Washington*. Prepared for Weyerhaeuser Company. 8 October.
- Floyd|Snider. 2017. Former Mill E/Koppers Facility, Performance and Compliance Monitoring Plan Addendum. Prepared for The Weyerhaeuser Company. August.
- GeoEngineers. 2016. Final Supplemental Remedial Investigation Report: Everett smelter Lowland Area, Everett Washington. Prepared for the Washington State Department of Ecology. 8 February
- Shaw Environmental, Inc. (Shaw). 2003. 2003 Annual Groundwater Compliance Monitoring and Five-Year Data Review Report, Weyerhaeuser Everett Former Mill E/Koppers Site, Everett, Washington. Prepared for the Weyerhaeuser Company. 10 November.

LIST OF ATTACHMENTS

Figure 1	Vicinity Map
Figure 2	Site Features and Monitoring Network
Figure 3	September 2017 Water Level Elevations
Figure 4	Water Level Monitoring Trends
Figure 5	Water Quality Trends in PZ-3A
Attachment 1	PZ-2D Soil Boring and Well Completion Log
Attachment 2	Laboratory Report
Attachment 3	Cap Inspection Documentation

Figures

L:GIS/Projects/WEYER_MILL_E/MXD/Annual Performance and Compliance Monitoring Summary/Figure 2 Site Features and Monitoring Network.mxd 11/27/2017

INGIS/Projects/WEYER_MILL_E\MXD\Annual Performance and Compliance Monitoring Summary\Figure 3 September 2017 Water Level Elevations.mxd 11/27/2017

F:\projects\Weyer- Mill E\00 Deliverables\2017 PCMP Annual Report\02 Figures\Native Files\Figure 4 Water Level\Figure 4 Water Level Monitoring Trends.docx 12/6/2017

F:\projects\Weyer- Mill E\00 Deliverables\2017 PCMP Annual Report\02 Figures\Native Files\Figure 5 Water Quality\Figure 5 Water Quality Monitoring Trends.docx 12/4/2017

Attachment 1 PZ-2D Soil Boring and Well Completion Log

ст	$O_{\rm V}$							WELL ID:	PZ-2D	
ΓL	U I	DISNIDER			COORDI	NATE	SYSTEM	ECOLOGY)	WELL ID.	
stra	tegy •	science • engineering	C Cieneree		WGS 84			BKX-552		
FSN			4E 2E ft has		48 01 400 40					
		PMENT	15-25 It bys						TION	
Geo	nrohe 7	7800			GROUND SURFACE ELEV TOG ELEVATION.					
						EDTH	(ft bas):		MATER (ft bas):	
Dire	ct Push	Hollow Stem Auger Combo	Ria		29 5 5 & 17			WATER (it bgs).		
SAMPI	ING MET	HOD [.]			BORING DIAMETER: DRILL DATE:			:.		
Continuous 5-foot liner					2" & 8	.25"		9/22/201	7	
		. .) (m				
Depth (feet)	USCS Symbol	Color, density/consistency, minor constitu modifer, debris, odor, staining	NTION ent, size MAJOR CONSTITUENT, //sheen, moisture, etc.)		Drive/ Recovery				uction	
0 —	TS	Grass Topsoil					222		Well Box Lid	
-	SP	Light brown, fine to medium SAND; no	o odor or sheen; dry to moist	t.					_	
2 —		Light brown, gravelly, fine to coarse S	AND with 5% silt and 15% a	ngular		0			Concrete	
	SW	gravel; no odor or sheen; moist.		J						
4	ΠMLC	Orange mottled SILT layer.								
4 —		Brown, fine to coarse SAND with trace	e gravel; no odor or sheen; n	noist.				N N		
—		Grav. fine to medium SAND with trace	e aravel: no odor or sheen: w	/et.		0		IN I		
6 —	SP		3 . . , . ,							
-					0		\mathcal{N}			
8 —					0		S S	ch. 40 PVC		
_		Olive gray, organic SILT with high plas	debris; no				N N B	entonite Chips		
10 —		./OL odor or sheen; moist. ; ; ;						IN.		
_	Decreasing plasticity and organic matter with depth.							IN.		
10		Olive gray, firm SILT with moderate pl odor or sheen: moist.	asticity and some woody del	bris; no		2.9		IN I		
12 -										
_	ML	No organic material; low to moderate	plasticity; no odor or sheen.			2.5				
14 —) N		
-		Olive gray, sandy SILT with low plastic	city.	-		22				
16 —		Croy ailty SAND with 40% ailt no add	ar ar abaan: wat							
▼-		Gray, medium to coarse SAND ; no od	or or sheen; wet.							
18 —		-				2.4			0/20 Silica Sand	
_										
20 —									-Slot Screen	
20									15-25 ft bas	
_										
22 —										
-	SP∷					2.1				
24 —										
			the well screen up to 25 ft bo	as durina						
26 —		installation.		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
_		-0								
20		Gray, fine to coarse SAND, no gravel;	no odor or sheen; saturated	1.		10				
20 -		<i>.</i>				1.9				
	·····	Bottom of boring = 29 ft bgs.		ſ			J			
ABBRE		IS:	Poil Clossification Custor	NOTES: L	Jsed direct	t push	to collect soil sa	mples, follow	ed by a hollow stem	
n bgs	= reet be = parts pe	er million v = denotes	groundwater table	concrete p	ad.	name		551 WILLING A 2-	1001 by 2-1001	

Attachment 2 Laboratory Report

3600 Fremont Ave. N. Seattle, WA 98103 T: (206) 352-3790 F: (206) 352-7178 info@fremontanalytical.com

Floyd | Snider Lynn Grochala 601 Union St., Suite 600 Seattle, WA 98101

RE: Weyer-Mill E Work Order Number: 1709298

October 02, 2017

Attention Lynn Grochala:

Fremont Analytical, Inc. received 2 sample(s) on 9/25/2017 for the analyses presented in the following report.

Diesel and Heavy Oil by NWTPH-Dx/Dx Ext. Gasoline by NWTPH-Gx Pentachlorophenol by EPA Method 8270 (SIM) Total Metals by EPA Method 200.8

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Mohl c. Redy

Mike Ridgeway Laboratory Director

DoD/ELAP Certification #L17-135, ISO/IEC 17025:2005 ORELAP Certification: WA 100009-007 (NELAP Recognized)

CLIENT: Project: Work Order:	Floyd Snider Weyer-Mill E 1709298	Work Order Sample Summa						
Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received					
1709298-001	PZ-3A-092517	09/25/2017 4:10 PM	09/25/2017 6:14 PM					
1709298-002	Trip Blank	09/20/2017 5:00 PM	09/25/2017 6:14 PM					

Case Narrative

WO#: **1709298** Date: **10/2/2017**

CLIENT:Floyd | SniderProject:Weyer-Mill E

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: **1709298** Date Reported: **10/2/2017**

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria
- (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery **CCB** - Continued Calibration Blank CCV - Continued Calibration Verification **DF** - Dilution Factor HEM - Hexane Extractable Material ICV - Initial Calibration Verification LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate MB or MBLANK - Method Blank MDL - Method Detection Limit MS/MSD - Matrix Spike / Matrix Spike Duplicate PDS - Post Digestion Spike Ref Val - Reference Value **RL - Reporting Limit RPD** - Relative Percent Difference SD - Serial Dilution SGT - Silica Gel Treatment SPK - Spike Surr - Surrogate

Analytical Report

 Work Order:
 1709298

 Date Reported:
 10/2/2017

Client: Floyd Snider	Collection Date: 9/25/2017 4:10:00 PM							
Project: Weyer-Mill E Lab ID: 1709298-001		Matrix: Groundwater						
Client Sample ID: PZ-3A-092517								
Analyses	Result PQL		Qual	Units	DF	Date Analyzed		
Diesel and Heavy Oil by NWTPH-D	0x/Dx Ext.			Batc	h ID:	18310	Analyst: SB	
Diesel (Fuel Oil)	588	49.7		µg/L	1	9/28	9/2017 9:10:47 AM	
Heavy Oil	ND	99.3		µg/L	1	9/28	3/2017 9:10:47 AM	
Surr: 2-Fluorobiphenyl	84.9	50 - 150		%Rec	1	9/28	3/2017 9:10:47 AM	
Surr: o-Terphenyl	87.9	50 - 150		%Rec	%Rec 1		9/28/2017 9:10:47 AM	
Pentachlorophenol by EPA Metho	<u>d 8270 (SIM</u>	D		Batc	h ID:	18327	Analyst: BT	
Pentachlorophenol	0.292	0.0997	Q	µg/L	1	9/29	/2017 3:20:41 PM	
Surr: 2,4,6-Tribromophenol	105	34.6 - 146		%Rec	1	9/29	/2017 3:20:41 PM	
NOTES: Q - Indicates an analyte with a continuing or minimum RRF).	calibration that	does not meet e	established a	acceptance	criteria	a (<20%RSD	9, <20% Drift	
Gasoline by NWTPH-Gx				Batc	h ID:	18314	Analyst: MW	
Gasoline	ND	50.0		µg/L	1	9/27	7/2017 3:13:34 AM	
Surr: Toluene-d8	92.8	65 - 135		%Rec 1		9/27	/2017 3:13:34 AM	
Surr: 4-Bromofluorobenzene	105	65 - 135		%Rec	1	9/27	7/2017 3:13:34 AM	
Total Metals by EPA Method 200.	<u>8</u>			Batc	h ID:	18322	Analyst: TN	
Arsenic	433	1.00		µg/L	1	9/27	7/2017 3:18:26 PM	

Work Order: 1709298								QC S	SUMMA	RY REF	ORT
CLIENT: Floyd Snide Project: Wever-Mill E	er =						Diesel	and Heavy	Oil by NW	/TPH-Dx/	Dx Ext.
Sample ID 1709298-001BMSD	SampType: MSD			Units: µg/L		Prep Dat	te: 9/26/20)17	RunNo: 388	386	
Client ID: PZ-3A-092517	Batch ID: 18310					Analysis Dat	te: 9/27/20	17	SeqNo: 747	7724	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	1,330	49.9	998.4	587.9	74.5	65	135	1,244	6.78	30	
Surr: 2-Fluorobiphenyl	68.5		79.87		85.7	50	150		0		
Surr: o-Terphenyl	66.8		79.87		83.6	50	150		0		
Sample ID MB-18310	SampType: MBLK			Units: µg/L		Prep Dat	te: 9/26/20	17	RunNo: 388	386	
Client ID: MBLKW	Batch ID: 18310					Analysis Dat	te: 9/28/20	17	SeqNo: 747	7733	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	ND	49.9									
Heavy Oil	ND	99.9									
Surr: 2-Fluorobiphenyl	69.1		79.88		86.6	50	150				
Surr: o-Terphenyl	72.7		79.88		91.0	50	150				
Sample ID LCS-18310	SampType: LCS			Units: µg/L		Prep Dat	te: 9/26/20	17	RunNo: 388	386	
Client ID: LCSW	Batch ID: 18310					Analysis Dat	te: 9/28/20	17	SeqNo: 747	7734	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	698	49.9	998.3	0	69.9	65	135				
Surr: 2-Fluorobiphenyl	67.5		79.87		84.5	50	150				
Surr: o-Terphenyl	67.8		79.87		84.9	50	150				
Sample ID 1709298-001BDUP	SampType: DUP			Units: µg/L		Prep Dat	te: 9/26/20	17	RunNo: 388	386	
Client ID: PZ-3A-092517	Batch ID: 18310					Analysis Dat	te: 9/28/20	17	SeqNo: 747	7736	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	624	49.9						587.9	6.00	30	
Heavy Oil	ND	99.7						0		30	
Surr: 2-Fluorobiphenyl	68.7		79.78		86.2	50	150		0		
Surr: o-Terphenyl	71.9		79.78		90.2	50	150		0		

Work Order: CLIENT: Project:	1709298 Floyd Snider Weyer-Mill E							Diesel	QC S and Heavy	SUMMAF Oil by NW	RY REF /TPH-Dx/	PORT Dx Ext.
Sample ID 17092	98-001BDUP	SampType: DUP			Units: µg/L		Prep Da	te: 9/26/20	17	RunNo: 388	386	
Client ID: PZ-3A	-092517	Batch ID: 18310					Analysis Da	te: 9/28/20	17	SeqNo: 747	736	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Sample ID 17092	98-001BMS	SampType: MS			Units: µg/L		Prep Da	te: 9/26/20	17	RunNo: 388	386	
Client ID: PZ-3A	-092517	Batch ID: 18310					Analysis Da	te: 9/28/20	17	SeqNo: 747	737	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)		1,240	49.9	997.6	587.9	65.8	65	135				
Surr: 2-Eluorobir	a la second	00 5		70.01		70.0	50	150				
Can 2 Hadrook	pnenyi	62.5		79.01		10.5	50	150				

Work Order:	1709298								00 5	SUMMA		PORT
CLIENT:	Floyd Snide	r										
Project:	Weyer-Mill E									Gasolin		IPH-GX
Sample ID MB-18	3314	SampType: MBLK			Units: µg/L		Prep Dat	e: 9/26/20	17	RunNo: 38	866	
Client ID: MBLK	W	Batch ID: 18314					Analysis Dat	e: 9/26/20	17	SeqNo: 74	7247	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline		ND	50.0									
Surr: Toluene-d	8	23.7		25.00		94.9	65	135				
Surr: 4-Bromoflu	uorobenzene	24.1		25.00		96.3	65	135				
Sample ID LCS-1	8314	SampType: LCS			Units: µg/L		Prep Dat	e: 9/26/20	17	RunNo: 38	866	
Client ID: LCSW	1	Batch ID: 18314					Analysis Dat	e: 9/26/20	17	SeqNo: 74	7246	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline		531	50.0	500.0	0	106	65	135				
Surr: Toluene-da	8	23.3		25.00		93.4	65	135				
Surr: 4-Bromoflu	uorobenzene	25.4		25.00		102	65	135				
Sample ID 17092	64-003ADUP	SampType: DUP			Units: µg/L		Prep Dat	e: 9/26/20	17	RunNo: 38	866	
Client ID: BATC	н	Batch ID: 18314					Analysis Dat	e: 9/26/20	17	SeqNo: 74	7236	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline		ND	50.0						0		30	
Surr: Toluene-da	8	23.5		25.00		94.2	65	135		0		
Surr: 4-Bromoflu	uorobenzene	23.7		25.00		94.7	65	135		0		
Sample ID 17093	06-010ADUP	SampType: DUP			Units: µg/L		Prep Dat	e: 9/26/20	17	RunNo: 38	866	
Client ID: BATC	н	Batch ID: 18314					Analysis Dat	e: 9/27/20	17	SeqNo: 74	7242	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline		ND	50.0						0		30	
Surr: Toluene-da	8	23.2		25.00		92.7	65	135		0		
Surr: 4-Bromoflu	uorobenzene	23.7		25.00		94.9	65	135		0		

Work Order:	1709298								2.00	SUMMAR		ORT
CLIENT:	Floyd Snide	r										
Project:	Weyer-Mill E									Gasolin		PH-GX
Sample ID 17092	98-001AMS	SampType: MS			Units: µg/L		Prep Da	te: 9/26/20)17	RunNo: 388	366	
Client ID: PZ-3A	-092517	Batch ID: 18314					Analysis Da	te: 9/27/20	017	SeqNo: 747	7238	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline		747	50.0	500.0	344.1	80.6	65	135				
Surr: Toluene-d8	8	23.0		25.00		91.9	65	135				
Surr: 4-Bromoflu	uorobenzene	27.3		25.00		109	65	135				
Sample ID 17092	98-001AMSD	SampType: MSD			Units: µg/L		Prep Da	te: 9/26/20	017	RunNo: 388	366	
Client ID: PZ-3A	-092517	Batch ID: 18314					Analysis Da	te: 9/27/20	017	SeqNo: 747	7239	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline		823	50.0	500.0	344.1	95.7	65	135	747.2	9.60	30	
Surr: Toluene-d8	8	22.8		25.00		91.1	65	135		0		
Surr: 4-Bromoflu	uorobenzene	26.5		25.00		106	65	135		0		

Work Order:	1709298									QC 3	SUMMAR	RY REF	PORT
CLIENT:	Floyd Snider							D		uenhenel h		4h a d 007	
Project:	Weyer-Mill E							P	entachio	proprienoi d	by EPA ine	thod 827	U (SINI)
Sample ID MB-18	8327	SampType	MBLK			Units: µg/L		Prep Dat	e: 9/27/20	17	RunNo: 389	969	
Client ID: MBLK	Ŵ	Batch ID:	18327					Analysis Dat	e: 9/28/20	17	SeqNo: 749	9131	
Analyte		F	lesult	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Pentachloropheno	I		ND	0.0995									Q
Surr: 2,4,6-Tribr	romophenol		2.56		3.981		64.2	34.6	146				
Q - Indicates an	analyte with a con	tinuing calibr	ation that c	loes not me	et established	acceptance criteria	(<20%RSI	D, <20% Drift	or minimun	n RRF).			
Sample ID LCS-1	8327	SampType	LCS			Units: µg/L		Prep Dat	e: 9/27/20	17	RunNo: 389	969	
Client ID: LCSW	I	Batch ID:	18327					Analysis Dat	e: 9/28/20	17	SeqNo: 749	9132	
Analyte		F	lesult	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Pentachloropheno	I		2.66	0.0993	3.971	0	67.0	5	127				
Surr: 2,4,6-Tribr	romophenol		3.93		3.971		99.1	34.6	146				
Sample ID 17092	98-001DDUP	SampType	DUP			Units: µg/L		Prep Dat	e: 9/27/20	17	RunNo: 389	969	
Client ID: PZ-3A	-092517	Batch ID:	18327					Analysis Dat	e: 9/29/20	17	SeqNo: 749	9138	
Analyte		F	lesult	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Pentachloropheno	I	(0.123	0.0997						0.2916	81.2	30	RQ
Surr: 2,4,6-Tribr	romophenol		4.09		3.989		103	34.6	146		0		
R - High RPD of	bserved												
Q - Indicates an	analyte with a con	tinuing calibr	ation that c	loes not me	et established	acceptance criteria	(<20%RSI	D, <20% Drift	or minimun	n RRF).			
Sample ID 17092	98-001DMS	SampType	MS			Units: µg/L		Prep Dat	e: 9/27/20	17	RunNo: 389	969	
Client ID: PZ-3A	-092517	Batch ID:	18327					Analysis Dat	e: 9/29/20	17	SeqNo: 749	9139	
Analyte		F	lesult	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Pentachloropheno	I		5.60	0.0994	3.976	0.2916	133	15	134				
Surr: 2,4,6-Tribr	romophenol		4.10		3.976		103	34.6	146				

Work Order:	1709298								00.5			ORT
CLIENT:	Floyd Snide	r					_					
Project:	Weyer-Mill E						P	entachic	prophenol b	у ЕРА Ме	thod 827	0 (SIM)
Sample ID 170929	98-001DMSD	SampType: MSD			Units: µg/L		Prep Da	te: 9/27/20)17	RunNo: 389	969	
Client ID: PZ-3A-	-092517	Batch ID: 18327					Analysis Da	te: 9/29/20)17	SeqNo: 749	}140	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Pentachlorophenol		6.34	0.104	4.146	0.2916	146	15	134	5.598	12.4	30	S
Surr: 2,4,6-Tribro	omophenol	4.69		4.146		113	34.6	146		0		

NOTES:

S - Outlying spike recovery(ies) observed. A duplicate analysis was performed and recovered within range.

Work Order:	1709298									QCS	SUMMAI	RY REF	ORT
CLIENT:	Floyd Snider	r								Total Me	tals by FF	A Motho	4 200 8
Project:	Weyer-Mill E											AWELIO	u 200.0
Sample ID MB-18	322	SampType:	MBLK			Units: µg/L		Prep Date	e: 9/27/20	17	RunNo: 38	370	
Client ID: MBLK	w	Batch ID:	18322					Analysis Date	e: 9/27/20	17	SeqNo: 74	7359	
Analyte		R	esult	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic			ND	1.00									
Sample ID LCS-1	8322	SampType:	LCS			Units: µg/L		Prep Date	e: 9/27/20	17	RunNo: 38	370	
Client ID: LCSW	,	Batch ID:	18322					Analysis Date	e: 9/27/20	17	SeqNo: 74	7360	
Analyte		R	esult	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic			108	1.00	100.0	0	108	85	115				
Sample ID 17092	94-001ADUP	SampType:	DUP			Units: µg/L		Prep Date	e: 9/27/20	17	RunNo: 38	370	
Client ID: BATCH	н	Batch ID:	18322					Analysis Date	e: 9/27/20	17	SeqNo: 74	7362	
Analyte		R	esult	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic			ND	1.00						0		30	
Sample ID 17092	94-001AMS	SampType:	MS			Units: µg/L		Prep Date	e: 9/27/20	17	RunNo: 38	370	
Client ID: BATCH	н	Batch ID:	18322					Analysis Date	e: 9/27/20	17	SeqNo: 74	7365	
Analyte		R	esult	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic			553	1.00	500.0	0.3985	110	70	130				
Sample ID 17092	94-001AMSD	SampType:	MSD			Units: µg/L		Prep Date	e: 9/27/20	17	RunNo: 38	370	
Client ID: BATCH	н	Batch ID:	18322					Analysis Date	e: 9/27/20	17	SeqNo: 74	7366	
Analyte		R	esult	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic			547	1.00	500.0	0.3985	109	70	130	552.7	0.954	30	

Sample Log-In Check List

CI	ient Name:	FS	Work Order Numb	per: 1709298	
Lo	gged by:	Brianna Barnes	Date Received:	9/25/2017	′ 6:14:00 PM
<u>Cha</u>	in of Cust	ody			
1.	Is Chain of C	ustody complete?	Yes 🖌	No 🗌	Not Present
2.	How was the	sample delivered?	<u>Client</u>		
Loa	In				
3.	Coolers are p	present?	Yes 🗹	No 🗌	
4.	Shipping con	tainer/cooler in good condition?	Yes 🗹	No 🗌	
5.	Custody Sea (Refer to con	Is present on shipping container/cooler? nments for Custody Seals not intact)	Yes	No 🗌	Not Required 🗹
6.	Was an atter	npt made to cool the samples?	Yes 🖌	No 🗌	
7.	Were all item	as received at a temperature of >0°C to 10.0°C*	Yes 🗹	No 🗌	
8.	Sample(s) in	proper container(s)?	Yes 🖌	No 🗌	
9.	Sufficient sar	nple volume for indicated test(s)?	Yes 🖌	No 🗌	
10.	Are samples	properly preserved?	Yes 🖌	No 🗌	
11.	Was preserva	ative added to bottles?	Yes 🖌	No 🗌	NA 🗌
				H	NO3 added to 001C
12.	Is there head	Ispace in the VOA vials?	Yes 🗌	No 🗹	NA 🗌
13.	Did all sampl	es containers arrive in good condition(unbroken)?	Yes 🗹	No 🗌	
14.	Does paperw	vork match bottle labels?	Yes 🗹	No 🗌	
15.	Are matrices	correctly identified on Chain of Custody?	Yes 🖌	No 🗌	
16.	Is it clear what	at analyses were requested?	Yes 🖌	No 🗌	
17.	Were all hold	ling times able to be met?	Yes 🗹	No 🗌	
<u>Spe</u>	cial Handl	ing (if applicable)			
18.	Was client no	otified of all discrepancies with this order?	Yes	No 🗌	NA 🔽
	Person	Notified: Date			
	By Who	om: Via:	🗌 eMail 🗌 Ph	one 🗌 Fax 🏾	In Person
	Regardi	ing:			
	Client Ir	nstructions:			
19.	By Who Regardi Client Ir Additional rer	m: Via: ing: Nature Via: Instructions: Marks:	L eMail L Ph	one 📋 Fax 🏾	In Person

Item Information

Item #	Temp ⁰C
Cooler	3.0
Sample	4.7
Temperature Blank	2.9

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

COC 1.1 - 4.5.16 - 1 of 2

www.fremontanalytical.com

^Please coordinate with the lab in advance	×
TAT → SameDay^ NextDay^ 2 Day 3 Day STD	Relinquished Date/Time Received Date/Time
to a construction of the second s	x AUMAN WAY 9/25/17 18:14 x 9/24/7 18:44
un neka eroa er tekvapeta olu vata erotatata datu vio jetu erotata erotata ero ero ero erotate erotate erotate erotatea erotatea oluez olu ela tavata erotatatata datu vio jetu erotata erotata erotate	I represent that I am authorized to enter into this Agreement with Fremont Analytical on behalf of the Client named above, that I have verified Client's agreement to each of the terms on the front and backside of this Agreement.
	Sample Disposal: Return to Client Samples of the retained after 30 days unless otherwise noted. A fee may be on the following business day. Sample Disposal: Return to Client Samples are retained after 30 days.)
es Special Remarks: gin	***Anions (Circle): Nitrate Nitrite Chloride Sulfate Bromide O-Phosphate Fluoride Nitrate+Nitrite Turn-around times for sample
Ni Pb Sb Se Sr Sn Ti Tl U V Zn	** Metals Analysis (Circle): MTCA-5 RCRA-8 Priority Pollutants TAL Individual: Ag A As B as Be Ca Cd Co Cr Cu Fe Hg K Mg Mn Mo Na N
and the second secon	
te an unerstation and and and a solar or recommendation of the solar solar solar solar solar solar solar solar	
au une comercia est suns constructione examinante por construction est construction de consequenciamente est activités e rese atherespicaries for construction de la construction de la construction d	
Pentasper only Arsenic	1 PZ- 3A- 092517 9/25 1610 GW XXX XIX
Comments	Sample Name Date Time (Matrix)* / 50/ 57/ 58/ 58/ 58/ 58/ 58/ 58/ 58/ 58/ 58/ 58
	Sample Sample Sample Stample Stample <thstample< th=""> <thstample< th=""> <thstam< td=""></thstam<></thstample<></thstample<>
8	
1/1/2	
- Storm Water, WW = Waste Water	*Matrix Codes: A = Air, AQ = Aqueous, B = Bulk, O = Other, P = Product, S = Soil, SD = Sediment, SL = Solid, W = Water, DW = Drinking Water, GW = Ground Water, SW =
OF YOR PRODUCES INVESTIGATION OF TAXABLE PRODUCES AND A TAXABLE PROD	Telephone: Fax: PM Email: Lynn Gruchala
	City, State, Zip: Seattle WA 78161 Report To (PM): LYNN
Collected by: <u>GC/LW</u>	client: Floyd Snider Project No:
	Seattle, WA 98103 Fax: 206-352-7178 Project Name: Weyer- MillE
Page:of:	3600 Fremont Ave N. Tel: 206-352-3790
Laboratory Project No (internal): 1709 290	
aboratory Services Agreement	Chain of Custody Record and L

Page 14 of 14

Attachment 3 Cap Inspection Documentation

Asphalt Cap and Soil Cover Inspection Form

Date/Time:09/25/17	Location: Mill E
Inspector: Layni Wachter	Owner: Pacific Topsoil
Weather: <u>Overcast, partial sun, 65°F</u>	Rain in past 24 hr: <u>Light rain</u>

As part of the Former Mill E/Koppers Facility Performance and Compliance Monitoring Plan (EMCON 1998) an inspection of the Asphalt Cap and Soil Cover is to be conducted annually. Any damage will be noted on the following checklist with locations referenced on the attached site plan.

VISUAL INSPECTION CHECKLIST

Asphalt Cap	Yes	No	If Yes, describe (locations identified on attached plan, photos of all described items will be included with the report):
Cracked or damaged asphalt	\boxtimes		Minor cracks present as noted on figure. No concern re: direct contact exposure.
Areas of uneven settlement or standing water	\boxtimes		Some minor areas of standing water. All areas < 10 ft. diameter and < 1 in. ponded depth.
Cracked or damaged drainage ditches			
Debris in drainage ditches	\boxtimes		Accumulated sediment in ditches. < 1 in. in depth.
Vegetation in drainage ditches			Small weeds in and alongside ditches. Most in accumulated sediment.
Sloughing or crumbling of edges of asphalt cap		\boxtimes	
Other signs of cap damage, failure, or disturbance		\boxtimes	

Soil Cover	Yes	No	If Yes, describe (photos of all described items will be included with the report):
Instability or erosion of the soils cap at levels of concern		\boxtimes	
Excessive standing water or pooling indicating uneven settling or erosion.			

Minimal tire rutting in soil cap area. Ruts are 2" to 4" deep.

ami Wachter

INSPECTOR SIGNATURE, Layni Wachter

MMMMMSMM

P.E. SIGNATURE, Kathryn Snider, P.E.

<u>9/25/2017</u> DATE

<u>9/25/2017</u> DATE

LIGISiProjects\WEYER_MILL_E\MXD\PCMPAddendum\Figure 1-2 Site Map.mxd 4/6/2017

Photograph 1. Crack in asphalt on northwest side of the cap (looking north).

Photograph 2. Crack in asphalt through the center of the cap (looking north).

2017 Annual Performance and Compliance Monitoring Report Former Mill E/Koppers Facility Everett, Washington

Asphalt Cap and Soil Cover Inspection Photo Log Photographs 1 and 2

Photograph 3. Standing water in the center of the cap (looking north).

Photograph 4. Settlement area with some standing water on east side of the cap (looking east).

2017 Annual Performance and Compliance Monitoring Report Former Mill E/Koppers Facility Everett, Washington

Asphalt Cap and Soil Cover Inspection Photo Log Photographs 3 and 4

F:\projects\Weyer- Mill E\00 Deliverables\2017 PCMP Annual Report\03 Attachments\Att 3 Cap Inspection\03 Photo Log.docx

Photograph 5. Crack in the asphalt with growing vegetation along the south edge of the cap (looking west).

Photograph 6. Accumulated sediment within the drainage ditch along the south edge of the cap (looking west).

FLOYD SNIDER
strategy - science - engineering

2017 Annual Performance and Compliance Monitoring Report Former Mill E/Koppers Facility Everett, Washington

Asphalt Cap and Soil Cover Inspection Photo Log Photographs 5 and 6

Photograph 7. Southeast side of soil cover (looking east).

Photograph 8. Northwest side of soil cover (looking west).

FLOYD | SNIDER strategy • science • engineering 2017 Annual Performance and Compliance Monitoring Report Former Mill E/Koppers Facility Everett, Washington

Asphalt Cap and Soil Cover Inspection Photo Log Photographs 7 and 8