Quarterly Groundwater Monitoring Report – November 2018

Coleman Oil Company Facility 3 East Chehalis Street Wenatchee, Washington

> Prepared for: Coleman Oil Company 335 Mill Road Lewiston, Idaho 83501

> > January 8, 2019

Prepared by:

HydroCon, LLC 314 W 15th Street, Suite 300, Vancouver, Washington 98660 Phone: (360) 703-6079 Fax: (360) 703-6086 www.hydroconllc.net

Quarterly Groundwater Monitoring Report – November 2018

Coleman Oil Company Facility 3 East Chehalis Street Wenatchee, Washington

Prepared for: Coleman Oil Company 335 Mill Road Lewiston, Idaho 83501

HydroCon Project No: 2017-074

Prepared by:

Craig Hultgren, LHG

Principal Geologist

Table of Contents

EXE	CUTIVE SUMMARY	IV
1.0	INTRODUCTION	.1
1.1	Document Organization	. 1
2.0	BACKGROUND INFORMATION	2
2.1	Site Description	. 2
2.2	Site History	. 2
2.3	Remedial Measures	
2.4	Geologic & Hydrogeologic Setting	
2.5	Hydraulic Testing	
2.6	Previous Groundwater Monitoring	
2.7	Monitoring Well Identification	
3.0	FIELD WORK	
3.1	Groundwater Sampling Procedures	
3.2	Laboratory Analysis	
4.0	QUARTERLY GROUNDWATER MONITORING RESULTS	
4.1	Groundwater Conditions	-
4.2	Groundwater Sampling Results	
4.3 5.0	Data Quality Review	
	DISCUSSION.	
5.1 5.2	Discussion of Laboratory Results Trends in Groundwater Chemistry	
5.2	Extent of Groundwater Contamination	
6.0	FUTURE MONITORING SCHEDULE	
6.1	Daily Columbia River Level and Water Level Measurements	
6.2	Weekly to Monthly Water Level and Product Thickness Measurements	
6.3	Future Quarterly Groundwater Sampling	
7.0	QUALIFICATIONS	
8.1	REFERENCES	_
V . I		

List of Figures

- Figure 1 Site Location Map
- Figure 2 Site Features Map
- Figure 3 Groundwater Elevation Contour Plot for November 26, 2018
- Figure 4 Groundwater Elevation Contour Plot for November 30, 2018
- Figures 5a, 5b, 5c, 5d Trend Plots
- Figure 6 DRPH in Groundwater for November 2018
- Figure 7 GRPH in Groundwater for November 2018

List of Tables

- Table 1 Well Construction Details
- Table 2 Depth to Water and Groundwater Elevation
- Table 3 Summary of Groundwater Analytical Results Fuels and VOCs
- Table 4 Summary of Groundwater Analytical Results PAHs
- Table 5 Vertical Groundwater Gradients
- Table 6 List of Wells to be Sampled and Associated Laboratory Analyses

Appendices

- Appendix A Groundwater Sample Collection Forms
- Appendix B Laboratory Report and Chain-of-Custody Documentation
- Appendix C Data Quality Review Reports
- Appendix D Water Level and Product Thickness Measurements Form

Acronyms

amsl	above mean sea level
bgs	below ground surface
BNSF	Burlington Northern – Santa Fe Railroad
COC	Chemical of Concern
Coleman Oil	Coleman Oil Company
DRPH	diesel range petroleum hydrocarbons
Ecology	Washington Department of Ecology
EDB	1,2-dibromoethane
EDC	1,2-dichloroethane
EEC	Environmental Engineering & Consulting, Inc.
EPA	Environmental Protection Agency
GRPH	gasoline range petroleum hydrocarbons
HydroCon	HydroCon Environmental LLC
µg/L	micrograms per liter
LCS/LCSD	Laboratory Control Sample/ Laboratory Control Sample Duplicates
LNAPL	light nonaqueous-phase liquid
MDL	method detection limit
MRL	method reporting limit
MTBE	Methyl tert-butyl ether
MTCA	Model Toxics Control Act
ORPH	oil range petroleum hydrocarbons
PAHs	polynuclear aromatic hydrocarbons
PID	photoionization detector

EXECUTIVE SUMMARY

This Quarterly Groundwater Monitoring Report provides the scope and findings of groundwater monitoring that was performed in November 2018. This monitoring event was performed to assess groundwater quality at the Site following the completion of the Supplemental Remedial Investigation (SRI) performed earlier in the year as well as to document the direction and gradient of groundwater flow.

Quarterly groundwater monitoring will continue for the foreseeable future until a reduced monitoring schedule is approved by the Washington State Department of Ecology (Ecology). Quarterly groundwater monitoring includes the following tasks and reporting:

- Collect depth to water and product thickness measurements at the Site monitoring wells while the pumping system is active.
- Turn off the pumps at monitoring wells MW09R, MW10R, BH-1, MW24, MW28, MW29, and MW30 where product recovery is being performed.
- Collect depth to water and product at each of the Site monitoring and recovery wells the day after the pumps have been turned off.
- Collect groundwater samples for chemical analysis at selected wells listed on Table 6.
- Review the laboratory results and perform a data validation review and summary.
- Place the depth to water, product level information, and analytical data into summary tables.
- Prepare a discussion on the laboratory results, groundwater flow direction and gradient, and recommendations for future work.
- Update the tentative schedule of future quarterly groundwater monitoring events.

1.0 INTRODUCTION

HydroCon Environmental, LLC (HydroCon), has prepared this Draft Quarterly Groundwater Monitoring Report on behalf of Coleman Oil Company (Coleman Oil) to assess groundwater quality following the release of renewable diesel (R99) fuel from leaking underground piping at the Coleman Oil fuel storage facility at 3 Chehalis Street in Wenatchee, Washington (herein referred to as the Property). This report has been prepared to meet the requirements of Exhibit B – Scope of Work and Schedule of Agreed Order No. DE 15389 entered into by Coleman Oil Company, LLC; Coleman, Services IV, LLC; and Ecology with an effective date of October 30, 2017 (Agreed Order).

The Site, as defined under the Washington State Model Toxics Control Act Cleanup Regulation (MTCA), Chapter 173-340 of the Washington Administrative Code (WAC §173-340-200), comprises the portion of the Property and adjacent properties where hazardous substances have come to be located in soil, groundwater, and surface water at concentrations suspected to exceed applicable cleanup levels as a result of releases at the Property (herein referred to as the Site).

1.1 Document Organization

The Quarterly Groundwater Monitoring Report is organized as follows:

Section 2, Background Information, provides a description of the Site, Property ownership, and geologic and hydrogeologic setting.

Section 3, Field Work

Section 4, Quarterly Groundwater Monitoring Results

Section 5, Discussion

Section 6, Future Monitoring Schedule

Section 7, Qualifications

Section 8, References

2.0 BACKGROUND INFORMATION

The following section provides a summary of the Site location and description, geologic setting, historical land use, environmental history, and contaminants and media of concern at the Site. Most of the information provided below is summarized from the Supplemental Remedial Investigation (SRI) Work Plan (HydroCon 2018a) and the Draft SRI Report (HydroCon 2018b).

2.1 Site Description

The Site is located at 3 Chehalis Street in Wenatchee, Washington. The Site is located nearly adjacent to the west side of the Columbia River. Land use near the Site is primarily industrial (Figure 1).

2.2 Site History

This section provides a brief Site history, focusing on the discovery of a release of R99 in March 2017. Additional Site history is documented in the SRI Report.

The Site currently operated by Coleman Oil has been in operation as a bulk fuel facility since 1921. Coleman Oil has operated the bulk fuel facility since Coleman Services IV, LLC purchased the Property in January 2007.

A petroleum sheen was discovered on the west side of the Columbia River approximately 300 feet north of the Site on March 17, 2017. Subsequent line tightness testing revealed that two lines could not hold pressure and a review of Coleman Oil inventory records indicated that the release was most likely from the R99 renewable diesel fuel line. Oil storage, loading and unloading of trucks for oil distribution was terminated in 2017 except for a small underground storage tank that supplies fuels to the adjacent cardlock fueling facility.

Subsequent testing included the installation of groundwater monitoring wells, soil borings, and test pits in phases between March and September 2017 by Farallon (2017) and March and April 2018 by HydroCon (2018b) (Figure 2). This testing indicated soil and groundwater had been impacted at concentrations above MTCA Method A cleanup levels, including impacts to soil and groundwater near the location of the sheen.

2.3 **Remedial Measures**

Several remedial measures have taken place at the Site since the discovery of the release.

• Pads and booms have been placed in the Columbia River in the observed sheen discharge area to recover product since discovery of the release. This practice has continued along with daily reporting regarding Columbia River conditions.

- A remedial excavation was performed on the Coleman Oil facility near the point of release. Approximately 741 tons of petroleum contaminated soil was removed for offsite disposal.
- Sumps were placed in the remedial excavation backfill. Pumps were placed in the sumps to recover product and maintain a cone of depression to minimize product migration. Effluent from the sumps was routed to an oil/water separator and settling tanks prior to treatment using granular activated carbon (GAC). The treated water was disposed under permit into the City of Wenatchee's sanitary sewer system.
- Farallon Consulting and Ecology's consultant (Environmental Partners, Inc. [EPI] installed fifteen wells at the Site (MW-1 through MW-11, BH-1 through BH-3, and RW-1). Product recovery via skimming using a peristaltic pump and tubing and/or passive recovery using hydrophobic socks has occurred in some of the wells.
- In April 2018, HydroCon performed a supplemental remedial investigation (SRI) that included the addition of fourteen new 4-inch diameter monitoring wells (MW12 through MW23, MW01S, MW03S). Three wells with persistent LNAPL measurements (MW-9, MW-10, and BH-1) were fitted with pumps and connected with underground piping for pressurized air to operate the pumps, and conduit for electrical control and effluent piping to collect the recovered groundwater and product. The recovered groundwater and product from these wells are routed through three oil/water separators, into storage tanks and then through filtration and GAC and into storage tanks. The treated water is analyzed prior to discharge in batches under an agreement between Coleman Oil and the City of Wenatchee into the City's sanitary sewer system. Pumping of the three wells began on May 5, 2018.
- In August 2018 nine new 4-inch diameter monitoring wells (MW24 through MW32) were installed at the Site. Two of the wells used to recover product and contaminated groundwater (MW-9 and MW-10) were deepened, completed as 4-inch diameter wells, and renamed MW09R and MW10R, respectively.
- A surface release of diesel and gasoline that was stored in a 55-gallon drum at the Site occurred near the northeastern corner of Tank Farm A in early September 2018. A total of 16.83 tons of petroleum contaminated soil was removed by remedial excavation. Confirmation soil sampling results indicated that the lateral extent of contamination had been removed. However, the concentration of gasoline range petroleum hydrocarbons (GRPH) and diesel range petroleum hydrocarbons (DRPH) in the floor sample collected near the groundwater interface exceeded their respective MTCA Method A cleanup levels. No further excavation was attempted due to the presence of the Tank Farm A containment and a massive boulder that was too large to remove using the excavation equipment. Further remedial action in this area will be considered in the feasibility study that will be prepared for the Site.
- The remediation system was expanded in November 2018 to include six more recovery points (MW17, MW24, MW28, MW29, MW30, and MW32). The modified remediation system now consists of three separate zones that pump LNAPL and contaminated groundwater into an associated OWS. These zones include the MW09R zone (MW09R, MW17, and MW32) with only MW09R currently active; the MW10R zone (W10R, MW24, and MW28) with all 3 wells

active; and the BH-1 zone (BH-1, MW29, and MW30) with all 3 wells active. The expanded remediation system began pumping on November 2, 2018.

As of early June 2018, a total of 404.30 gallons of R99 had been recovered (HydroCon 2018b).

2.4 Geologic & Hydrogeologic Setting

The Site is located in the Wenatchee Valley approximately 150 feet west south-west of the Columbia River at an elevation of approximately 660 feet above mean sea level (Figure 1). The topography of the Site slopes very gently to the north north-west parallel to the Columbia River.

The soils beneath the Site are consistent with ice-age alluvial deposits underlain by the Chumstick Formation bedrock. The alluvium consists primarily of silt and silty sand, with layers of clay, sand, gravel and cobbles. The thickness of the alluvial deposits ranges from 6 to 31.5 feet. Boring logs and drilling observations indicate that a more massive, well cemented sandstone layer is beneath thin layers of mudstone, shale and sandstone and the sandstone appears to be acting as an aquitard in this area. The groundwater level is within a few feet of the top of the Chumstick Formation and always above the sandstone layer. An exception is at MW22 where the groundwater is approximately 15 feet above the top of the Chumstick formation. The MW22 area has been disturbed by previous excavation and has been backfilled with construction and other debris.

Contaminant transport and groundwater flow appears to follow the surface of the Chumstick formation and field observations paired with analytical data suggest that the petroleum contamination penetrates a few feet into the formation and travels laterally within the shaley sandstone and shale/siltstone/mudstone of the Chumstick formation. The groundwater flow direction and the dip of the sandstone surface are both to the north/ northeast except in the region between the Site and the Columbia River where both are more to the east. Aquifer testing performed in February 2018 demonstrated that none of the wells tested are hydraulically connected. However, over 200 gallons of R99 (based on product recovery totals) has been recovered from the Columbia River with the apparent discharge points being west of monitoring wells BH-2 (south) to MW-10 (north).

2.5 Hydraulic Testing

Hydraulic testing of the aquifer beneath the Site has been conducted on two occasions and are briefly summarized here.

Six wells were subjected to step-drawdown testing in February 2018 (HydroCon 2018c). Three wells (RW-1, BH-2, and BH-3) could not sustain the initial step pumping rate of 0.25 gallons per minute (gpm) and dewatered after pumping approximately the amount of water stored in the well screen and surrounding sand pack. Wells BH-1, MW-9, and MW-10 sustained step flow rates of between 2.0 and 2.5 gpm before water levels reached target elevations. Drawdown was not observed in any nearby monitoring wells during the six step-drawdown tests. Analysis of the drawdown data indicated that at a pumping rate of 1.75 gpm the three wells would produce approximately 3.5 feet of drawdown in the

aquifer adjacent to the pumping well and the cone of influence would extend out to approximately 100 feet as defined by a drawdown of 0.1 feet.

Slug testing or falling head testing was performed on May 21, 2018 to observe relative flow rates of select wells on the Coleman oil property in an attempt to better understand contaminant flow across the Site. Slug testing included MW-7, MW-8, MW-9, MW-11, MW13, MW14, MW16, MW17, MW19, MW20, MW22, and MW23.

A falling-head test is conducted by rapidly raising the water level in the control well and subsequently measuring the falling water level. The results of the slug tests show that MW-6, MW-11, MW-17 and MW-22 had high flow rates; MW-8, MW14, MW16, MW20 and MW23 had medium flow rates; and MW-7, MW13, MW19, and MW21 had low flow rates. The relative flow rates are highly variable across the Site; however, there is a good correlation between wells with high flow rates and high product recovery.

Based on the testing described above, pumps were installed at monitoring wells MW-9, MW-10, and BH-1. With the exception of minor equipment problems, the wells have been in operation since May 5, 2018, however, they only operate when water is at the level of the pump. When the pumps are activated, they pump at a rate of approximately 2 gpm as determined by the hydraulic testing. As such, the pumps achieve the goal of maintaining water levels at target depths and thereby reducing migration to the river.

2.6 Previous Groundwater Monitoring

Farallon collected reconnaissance groundwater samples from push-probe borings FB-9 and FB-10 on April 7, 2017. Results of these samples indicated that GRPH, DRPH, and benzene exceeded their respective MTCA Method A cleanup level. The concentration of oil range petroleum hydrocarbons (ORPH) exceeded the MTCA Method A cleanup level in the sample collected from FB-9. The lab reported that the sample collected from FB-10 had no detection of ORPH but the laboratory method reporting limit (MRL) used in the analysis exceeded the MTCA Method A cleanup level.

Monitoring wells MW-1, MW-2, MW-4, and MW-5 were sampled on March 23, 2017 prior to the installation of new monitoring wells at the Site in April 2017. The samples were analyzed for DRPH and ORPH only. There was no detection of DRPH or ORPH in the samples collected from MW-2, MW-4, or MW-5. The sample collected from MW-1 had a concentration of DRPH slightly above the MTCA Method A cleanup level and ORPH slightly below the MTCA Method A cleanup level.

A Site-wide groundwater monitoring and sampling event occurred on April 20 and 21, 2017 after the installation of wells MW-6 through MW-11, BH-1 through BH-3, and RW-1. Groundwater samples were not collected from monitoring wells MW-8 and MW-9 due to the presence of LNAPL at these locations. Monitoring well MW-2 was not sampled due to historic results of no detection of any contaminant above the respective MRLs.

Another Site-wide groundwater monitoring and sampling occurred on September 28 and 29, 2017. Groundwater samples were not collected from monitoring wells BH-1 and BH-2 due to lack of water in

these wells. DRPH, ORPH, GRPH, and/or benzene were detected at concentrations exceeding their respective MTCA Method A cleanup levels in monitoring wells BH-1 through BH-3, MW-1, and MW-6 through MW-11 and in recovery well RW-1 during the April and/or September groundwater sampling events.

HydroCon performed a quarterly groundwater monitoring and sampling event in April 2018 after additional wells (MW12 through MW23 and MW01S and MW03S) were installed during the SRI. Groundwater samples were collected from monitoring wells MW01S, MW-2, MW03S, MW-4 through MW14, MW16, MW17, MW19 through MW23, BH-1, BH-2, BH-3, and RW-1. Groundwater samples were not collected from MW15 and MW18 due to a lack of water. Groundwater samples were not collected from MW-3 due to improper well construction.

In August 2018, HydroCon installed monitoring wells MW24 through MW32 to facilitate interim remedial actions and to fill data gaps for the SRI (HydroCon 2018d). This report includes the second sampling results for these wells.

The construction details for all wells, including well depth, screened intervals, screen diameters, are summarized on Table 1.

2.7 Monitoring Well Identification

HydroCon utilizes a well and boring identification convention that differentiates wells and boring installed by HydroCon verses installations by others. Well and borings installed by others include a hyphen in the identification (e.g., MW-11, BH-1) whereas those installed by HydroCon do not include a hyphen (e.g., MW12, HC01).

3.0 FIELD WORK

This section describes the sampling procedures, analytical methods, groundwater conditions, and laboratory results. A data quality review is included.

3.1 Groundwater Sampling Procedures

Depth to water and product thickness were measured in all the Site wells on two dates. The first measurements were collected on November 26, 2018 prior to the start of groundwater sampling with the pumping wells still active. The pumps on monitoring wells MW09R, MW10R, BH-1, MW24, MW28, MW29, and MW30) were turned off on November 27, 2018 prior to the start of groundwater sampling. The second round of water level and product thickness measurements were collected on November 30, 2018 after completion of groundwater sampling (Table 2). Prior to collection of depth to water measurements, the well cap on each well was removed and the water level was allowed to equilibrate. The depth to water in each well was measured using a clean electronic water level indicator. Water levels were measured at the scribed reference mark (north side of the top of the polyvinyl chloride casing) at each well.

HydroCon collected groundwater samples on November 27 through December 1, 2018 from 33 monitoring and recovery wells (Tables 2 and 3). The following wells shown on Table 2 were not sampled for the following reasons:

- FB-9 and FB-10 are reconnaissance groundwater samples. Monitoring wells were not installed in these direct-push boreholes.
- HydroCon did not collect groundwater samples from MW-2, MW-4, MW-5, and MW22. HydroCon petitioned Ecology to cease sampling in these wells due to improper well construction (MW-2 and MW-4), no detection of chemicals of concern (COCs) in the well (MW-5), and MW22 being located outside of the plume that originates at the Coleman Oil Site. This request was approved by Ecology¹.
- MW15 and MW18 were not sampled due to insufficient water in the wells.
- Groundwater samples were collected using the pneumatic pump installed in the well at monitoring wells MW28 and BH-1. This was done due to water levels being below the top of the pumps at each of these wells preventing access to groundwater via sample tubing.

Three field duplicate samples (MW107, MW108, and MW109) were collected from MW-6, MW17, and BH-1, respectively for quality assurance/quality control (QA/QC) purposes.

Prior to groundwater sampling, monitoring wells were purged with a low-flow peristaltic pump equipped with a new length of low-density polyethylene tubing attached to a new length of silicone tubing in

¹ Washington State Department of Ecology. *email dated November 21, 2018 and November 26, 2018*.

accordance with U.S. Environmental Protection Agency (EPA) guidance for low-flow sampling². The tubing intake was placed approximately 2 to 3 feet below the surface of the groundwater or mid-screen in each well. During purging, water quality was monitored using a Quanta multi-parameter water quality meter equipped with a flow-through cell. The water quality parameters monitored and recorded included temperature, pH, specific conductance, dissolved oxygen, turbidity, and oxidation-reduction potential. Each well was purged until all six water quality parameters stabilized or the minimum parameter subset of pH, specific conductance, temperature, and turbidity and/or dissolved oxygen stabilized. *Groundwater Sample Collection Forms* and *Daily Field Reports* are included as Appendix A.

Following purging, groundwater samples were collected from the pump outlet tubing located upstream of the flow-through cell and placed directly into clean, laboratory-prepared sample containers. Each container was labeled with a unique sample identification number, placed on ice in a cooler, and transported under chain-of-custody to APEX laboratory of Tigard, Oregon, for laboratory analysis.

Purge water generated during the monitoring event was placed in an appropriately labeled 55-gallon steel drum and temporarily stored on the Property pending receipt of analytical data for proper disposal.

3.2 Laboratory Analysis

The analytical protocols for the samples collected at the Property include the required testing for petroleum releases for gasoline (Table 830-1 in the MTCA Cleanup Regulations Chapter 173-340 WAC). The analytical methods include:

- GRPH using Northwest Method NWTPH-Gx.
- DRPH and ORPH using Northwest Method NWTPH-Dx.
- BTEX using EPA Method 8260C.

² Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedures (April 1996). EPA/540/S-95/504

4.0 QUARTERLY GROUNDWATER MONITORING RESULTS

4.1 Groundwater Conditions

Groundwater levels in the Site monitoring wells were measured twice during the groundwater sampling event. The depth to water in the wells was measured on November 26, 2018 while the groundwater extraction system was still active. HydroCon turned the extraction system off on November 27, 2018. Water levels were measured again on November 30, 2018. Depth to water measurements and calculated groundwater elevations for each set of measurements are summarized on Table 2. It should be noted that monitoring wells MW15, MW18, and MW19 were dry on November 26th and monitoring wells MW15 and MW18 were dry on November 30, 2018. The depth to water in BH-1 could not be measured on either date due to the water level being below the top of the pump that has been installed in the well.

On November 26, 2018 the depth to water at the Site ranged from 7.78 feet bgs (MW-3) to 38.34 feet bgs (MW-5) and groundwater elevations ranged from 616.79 (MW10R) to 650.48 (MW-3) feet above mean sea level (AMSL). A groundwater elevation contour plot was prepared from this data set (Figure 3). Groundwater flow across the Site was generally to the northeast with a more easterly flow in the southern portion of the Site. The groundwater gradient between MW13, near the middle of the property, and MW22 was 0.050 ft/ft. The gradient in the southern portion of the Site between MW-2 and MW-5 is much steeper at 0.44 ft/ft.

On November 30, 2018 the depth to water at the Site ranged from 7.89 feet bgs (MW-3) to 38.44 feet bgs (MW-5) and groundwater elevations ranged from 617.11 (MW22) to 650.37 (MW-3) feet above mean sea level (AMSL). A groundwater elevation contour plot was prepared from this data set (Figure 4). Groundwater flow across the Site was generally to the northeast with a more easterly flow in the southern portion of the Site. The groundwater gradient between MW13, near the middle of the property, and MW22 was 0.052 ft/ft. The gradient in the southern portion of the Site between MW-2 and MW-5 is much steeper at 0.44 ft/ft.

Vertical gradients were calculated for well pairs MW-1/MW01S and MW-3/MW03S located in the southern portion of the Site. These well pairs are located within 10 horizontal feet of each other. The vertical hydraulic gradient within an aquifer (or between two aquifers separated by an aquitard) is calculated by dividing the difference in hydraulic head (or water level elevation) by the vertical (elevation) distance between the well screen midpoints. Table 5 provides the parameters and calculations for the vertical gradients of the well pairs.

The groundwater elevations for each well pair are very similar with slightly higher elevations for the deeper wells (MW-1 and MW-3) indicating a very slight upward vertical gradient. The calculated vertical gradient for MW-1/MW01S was 0.094 and 0.086 ft/ft for the November 26 and 30 measurements. The vertical gradients for MW-3/MW03S were 0.019 and 0.017 ft/ft for the November

26 and 30 measurements, respectively. These very small vertical gradients indicate that vertical gradients do not play a significant role in contaminant distribution or transport, at least in the southern portion of the Site. The vertical gradients for MW-1/MW01S were nearly identical to the August 2018 measurements. The gradients for MW-3/MW03S were about 60 percent less than the gradients measured in August 2018.

4.2 Groundwater Sampling Results

Laboratory analytical results are reported as micrograms per liter (μ g/L) or parts per billion. The results are provided on Table 3 and laboratory reports are included as Appendix B. A summary of the results for each constituent sampled is provided below.

Gasoline Range Petroleum Hydrocarbons

GRPH was detected above the laboratory's method reporting limit (MRL) in 15 wells including MW-1, MW-6, MW-8, MW09R, MW10R, MW-11, MW13, MW14, MW17, MW20, MW21, MW24, MW28, BH-1, and BH-2. The concentration ranged up to 22,400 μ g/L with the highest at MW13. The MTCA Method A cleanup level of 800 μ g/L for GRPH was exceeded in the samples collected from MW-8, MW09R, MW10R, MW-11, MW13, MW14, MW17, and BH-1.

Diesel Range Petroleum Hydrocarbons

DRPH was detected above the MRL in 20 wells ranging up to 7,040 μ g/L with the highest concentration at BH-2. The only wells that did not have a detection of DRPH above the MRL were MW01S, MW03S, MW-5, MW19, MW14, MW26, MW27, MW31, and MW32. The MTCA Method A cleanup level for DRPH of 500 μ g/L was exceeded in the samples collected from MW-6, MW-8, MW09R, MW10R, MW-11, MW13, MW14, MW17, MW20, MW21, MW24, BH-1, BH-2, and BH-3.

Oil Range Petroleum Hydrocarbons

ORPH was detected above the MRL in MW29 at a concentration of 809 μ g/L. This concentration exceeds the MTCA Method A cleanup level of 500 μ g/L. It should be noted that the MRL in the MW10R sample had to be elevated due to matrix interference to a concentration of 755 μ g/L. This concentration is above the MTCA Method A cleanup level. HydroCon placed an "ec" qualifier on this result indicating that the MRL exceeds the MTCA cleanup level.

Benzene

Benzene was detected in four wells above the MRL including MW-8, MW13, MW14, and MW17 at concentrations ranging up to 1,380 μ g/L. The highest concentration was seen in MW13. The MTCA Method A cleanup level for benzene of 5 μ g/L was exceeded in MW13 and MW14.

Toluene

Toluene was detected above the MRL in MW13 at a concentration of 271 μ g/L. This concentration is below the MTCA Method A cleanup level.

Ethylbenzene

Ethylbenzene was detected in five wells above the MRL including MW-8, MW10R, MW13, MW14, and BH-1 at concentrations up to 458 μ g/L. The concentration in MW13 exceeds the MTCA Method A cleanup level of 700 μ g/L.

Total Xylenes

Total xylenes were detected above the MRL in 3 wells including MW-8, MW10R, and MW13 at a concentration up to 3,170 μ g/L. The concentration in MW13 exceeds the MTCA Method A cleanup level of 1,000 μ g/L.

Polynuclear Aromatic Hydrocarbons

Polynuclear Aromatic Hydrocarbons (PAHs) were not analyzed in any of the wells during this sampling event. Historical results are provided in Table 4.

4.3 Data Quality Review

Laboratory testing of groundwater are included in Appendix B as APEX Work Orders A8H0926. The *Data Quality Review Report* is included in Appendix C. The review of the analytical results included the following:

- Holding Times & Sample Receipt
- Surrogate Compounds
- Associated Matrix Spike/Matrix Spike Duplicate (MS/MSD)
- Associated Laboratory Duplicate
- Laboratory Control Sample/ Laboratory Control Sample Duplicates (LCS/LCSD)
- Method Blank
- Field Duplicates
- Target Analyte List
- Reporting Limits (MDL and MRL)
- Reported Results

Data were qualified by the laboratory due to matrix interference, compound identification issues, limited sample volume and/or LCS/CCV recoveries. These qualifiers resulted in validation qualifiers of estimated quantity (J) and estimated and not detected (UJ). No data were rejected and completeness was 100 percent.

APEX flagged the samples as having exceeded the 6 degree Celsius temperature threshold for samples submitted to the laboratory. HydroCon placed the samples in a dedicated refrigerator at work on Saturday evening after returning from the quarterly groundwater sampling event. On Monday morning the samples were placed into a cooler and immediately transported to the lab. HydroCon did not place ice into the sample cooler. The lab took temperature measurements and the results exceeded the lab's threshold. HydroCon placed ice into the coolers and the temperature was quickly reduced to acceptable levels prior to sample check in. Mr. Kent Patton (Director of Technical Services) wrote an analytical narrative in the laboratory report indicating that it was his opinion that the limited temperature exceedances of the samples combined with the proper use of acid preservation in the field will not affect the analytical results of the samples.

All results are usable for their intended purpose. Data qualifications are identified in detail in full *Data Validation Report* included in Appendix C.

5.0 DISCUSSION

This section provides a discussion of the August 2018 quarterly groundwater monitoring event.

5.1 Discussion of Laboratory Results

Results of the November 2018 quarterly groundwater monitoring event indicated that fifteen wells at the Site (MW-6, MW-8, MW09R, MW10R, MW-11, MW13, MW14, MW17, MW20, MW21, MW24, MW29, BH-1, BH-2, and BH-3) have one or more COCs above their respective MTCA Method A cleanup level. Monitoring wells MW15 and MW18 lacked sufficient water so no samples could be obtained to assess water quality in these wells.

5.2 Trends in Groundwater Chemistry

HydroCon has prepared trend plots of GRPH and DRPH at selected wells that have at least four sampling results including MW-1, MW-6, MW-7, MW-8, MW-9/MW09R, MW-10/MW01R, MW-11, BH-1, BH-2, BH-3, and RW-1 (Figures 5a, 5b, 5c, and 5d). Trend plots were not prepared for two wells that have at least four sampling results (MW-4 and MW-5) because there has been no detection of any of those constituents in the wells. A discussion of groundwater trends of each these wells are provided below.

BH-1 – The concentration of dissolved phase DRPH generally decreased since it was first sampled in April 2017. Pumping began in this well in May 2018. A significant increase in DRPH has been observed compared to the previous quarter results. The concentration of GRPH fluctuates in this well with an overall increasing trend observed.

BH-2 – The concentration of DRPH appears to be fluctuating with no apparent trend. A decreasing trend in GRPH is observed in this well.

BH-3 – A consistent decreasing trend in DRPH is observed in this well. The concentration of DRPH increased compared to last quarter's results. The concentration of GRPH decreased significantly from its high in April 2017. A generally flat trend has been observed since.

RW-1 - A decreasing trend in DRPH was observed from its high in April 2017. However, a slight increasing trend is observed compared to the April 2018 sample results.

MW-1 – A consistent decreasing trend of DRPH is observed from the highest concentration recorded in April 2017. The concentration of GRPH fluctuates between 200 to 450 μ g/L, well below the MTCA Method A cleanup level.

MW-6 - The concentration of DRPH and GRPH appear to be fluctuating but are both lower than their highs in April 2017.

MW-7 - The concentration of DRPH and GRPH decreased significantly from their respective highs in April 2017. The trend is now relatively flat.

MW-8 – A decreasing trend in DRPH is observed in this well. An overall decreasing trend in GRPH is also observed. However, a slight increasing trend in GRPH is seen in the last two samples.

MW-9/MW09R – The concentration of DRPH and GRPH fluctuates in this well with no apparent trend. Pumping began in this well in May 2018.

MW-10/MW10R – The concentration DRPH fluctuates in this well. The concentration has significantly decreased since its high in September 2017. The trend of GRPH is relatively flat with the concentration ranging from 1,080 to 2,290 μ g/L. Pumping began in this well in May 2018.

MW-11 – The trend for DRPH in the well has decreased from its high in September 2017. A slight increase in DRPH is noted compared to the previous quarter results. The concentration of GRPH fluctuates between 944 to 1,400 μ g/L. The trend is relatively flat.

5.3 Extent of Groundwater Contamination

The November 2018 groundwater results for GRPH and DRPH are plotted on Figures 6 and 7 and isoconcentration contours were prepared to illustrate the magnitude and extent of each contaminant at the Site. Red colored shading was used to graphically display the plume boundary. Areas of higher concentration of are shaded in darker red. The seep area (soil samples SL01 through SL04) are included on the figures since the seep water is in contact with impacted soil and shows the relationship of this area to areas of impacted groundwater.

The extent of DRPH contamination in groundwater is illustrated on Figure 6. A plume of DRPH impacted groundwater is present from the Coleman Oil facility near MW-13 and extends northwest towards monitoring well MW-21. There are four localized areas within the plume that have elevated DRPH concentrations:

- The area near monitoring wells MW-13 and MW-14. The highest concentration of DRPH (3,250 μ g/L) is seen in MW-13 which is located within the footprint of former Tank Farm B and next to the Control Valve Building.
- The area in between monitoring wells MW-17 and BH-2. The highest concentration of DRPH $(7,040 \ \mu g/L)$ is seen in BH-2. Pumping well MW09R is located between these wells.
- The area in between monitoring wells MW-20 and BH-1. The highest DRPH concentration (5,120 µg/L) is seen in BH-1, which is used as a groundwater and product extraction well.
- The area in between monitoring wells MW-21 and MW10R. The highest DRPH concentration (1,370 µg/L) is seen in MW-10R, which is used as a groundwater and product extraction well.

Areas with DRPH concentrations less than 500 μ g/L (Method A cleanup level) include the area of the Coleman property south of Tank Farm A, most of the east half of the Coleman Property and adjacent Worthen Street, the northwest portion of the Coleman Property, and the line of wells on Worthen Street including and between MW25 and MW28. This latter area is in closest proximity to the observed seep areas and reinforces the role of preferential pathways in the distribution of subsurface contaminants.

The extent of GRPH contamination in groundwater is illustrated on Figure 7. A plume of GRPH impacted groundwater is present from the Coleman Oil facility near MW-13 and extends northwest towards monitoring well MW-21. There are five localized areas within the plume that have elevated GRPH concentrations:

- The area near monitoring wells MW-13 and MW-14. The highest concentration of GRPH (22,400 µg/L) is seen in MW-13 which is located within the footprint of former Tank Farm B and next to the Control Valve Building. Further assessment of GRPH in this area of the Site will be performed in January 2019.
- The area in between monitoring wells MW-11 and MW-8 have GRPH ranging from 921 to 1,350 µg/L. This area is located within the remedial excavation area where sump #5 was located. Sump #5 had one of the highest amounts of recovered product at the Site.
- The area in between monitoring wells MW-17 and MW09R have GRPH concentrations ranging from 1,300 to 1,390 µg/L. Monitoring well MW09R is currently being used to extract product and contaminated groundwater from the Site.
- The area near BH-1 has elevated GRPH concentrations. This well is currently being used to extract product and contaminated groundwater from the Site.
- The area in between monitoring wells MW-21 and MW10R have GRPH concentrations ranging from 789 to 2,160 µg/L. Monitoring well MW-10R is currently being used to extract product and groundwater from the Site.

The overall distribution of GRPH in groundwater is similar to the DRPH distribution and areas with concentrations less than 800 μ g/L(Method A cleanup level) are very similar to areas below the DRPH cleanup level. An exception is the area bounded by MW25, MW20, MW19, and MW31, where, with the exception of BH-1, all wells had concentrations below the GRPH cleanup level.

6.0 FUTURE MONITORING SCHEDULE

6.1 Daily Columbia River Level and Water Level Measurements

EEC was hired by Coleman Oil to manage the booms within the Columbia River and product recovery at the Site. One of EEC's daily tasks includes monitoring the water level at a surveyed reference location along the along the Columbia River and water and product levels in the three product recovery wells at the Site (MW09R, MW10R, and BH-1) using a clean electronic oil/water interface probe. HydroCon has expanded product recovery at the Site by adding product recovery pumps in additional wells (MW24, MW28, MW29, and MW30) in November 2018. EEC will expand their daily water and product level monitoring to include these new wells. These measurements will be recorded on a field form and provided to Ecology, Coleman Oil, and HydroCon on a daily basis. HydroCon will include these measurements in the upcoming Annual Operations and Maintenance (O&M) Monitoring Report.

6.2 Weekly to Monthly Water Level and Product Thickness Measurements

EEC assists HydroCon with the collection of depth to water and product level measurements of all the Site wells on a weekly to monthly basis following the same protocol as the daily water and product level measurement task. EEC utilizes a *Water Level and Product Thickness Measurements Form* prepared by HydroCon to record the data (Appendix D). This form is provided to HydroCon so that the data can be entered into spreadsheets (i.e., Table 2) and to identify which wells require product recovery via pumping or placement of absorbent socks. This information also is used to assess seasonal groundwater flow direction patterns and if there is correlation between groundwater levels in the aquifer and the Columbia River stage.

6.3 Future Quarterly Groundwater Sampling

The next quarterly groundwater monitoring event is tentatively planned for February 2019. A list of wells that will be sampled and associated laboratory analysis is provided on Table 6.

As discussed above, Ecology agreed with HydroCon that collection of groundwater samples from monitoring wells MW-2, MW-3, MW-4, MW-5, and MW-22 were not necessary during the November 2018 sampling event. Ecology requested at least one more sampling event for MW-1 due to the historic detection of GRPH and DRPH³. This well was sampled during this monitoring event.

Ecology also requested vertical gradient data from MW-1/MW01S and MW-3/MW03S and asked that water levels be measured in these well clusters at least two times so that vertical gradient data can be verified. HydroCon has included the vertical gradient data from the last two quarterly groundwater monitoring events. This information is provided in Section 4.1 of this report.

Table 6 includes recommendations to discontinue monitoring and/or abandoning the following wells:

³ Washington State Department of Ecology. Ecology Comments on Supplemental Remedial Investigation Report. August 16, 2018.

MW-1 through MW- 4. Improper well construction at monitoring wells MW-1 through MW-4 resulted in well screens placed too deep blinding off shallower water bearing zones in each respective well. This prevents the accurate monitoring of groundwater in each of these wells. At Ecology's request, three additional monitoring wells (MW01S, MW03S, and MW23) were added to the SRI to assess groundwater conditions on the southern portion of the Coleman property. It should be noted that, with the exceptions of MW-1, these wells have never had detections of GRPH, DRPH, or ORPH.

MW-5. This well has never had detections of GRPH, DRPH, or ORPH and given the now established groundwater flow directions, it's highly unlikely to be impacted by Site contaminants. As a long-term cost savings measure to Coleman Oil, HydroCon requests that Ecology consider abandonment of this well.

MW-7. Monitoring wells MW-7 and MW23 have similar construction but are located approximately 15 feet apart. As a long-term cost savings measure for Coleman Oil, HydroCon requests that Ecology consider abandoning MW-7.

MW22. The soil samples at MW22 differed from the typical sequence observed in all other borings. The upper 35 feet of this boring consisted of loose silt, sand, gravel, and clay with miscellaneous fill debris consisting of brick, glass, and burnt material and free product resembling black oil at 31.5 feet bgs. It is likely that this area has been disturbed by previous excavation and has been backfilled with construction and other debris. A sample of the product collected from MW22 was assessed by APEX's forensic chemist (Mr. Kurt Johnson) and a write up is included in Appendix K of the SRI Report (HydroCon 2018b). Results of the evaluation indicate that the product is derived from coal tar and it does not contain R99 Renewable DieselR99 Renewable Diesel. Therefore, it appears that the plume emanating from the Coleman Oil Site terminates south of MW22 and the product observed in MW22 is not from Coleman Oil.

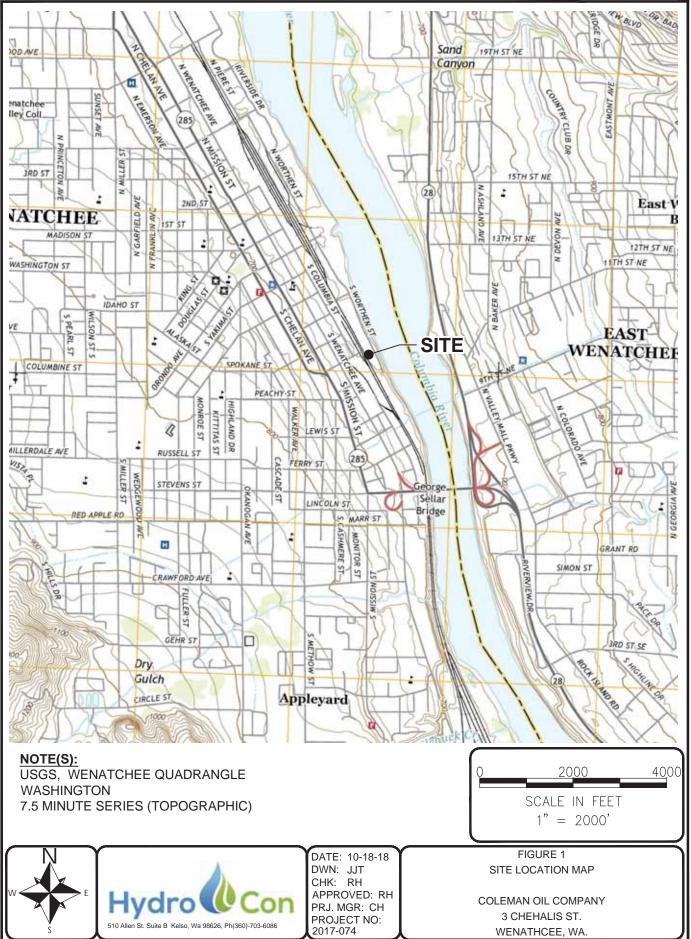
7.0 QUALIFICATIONS

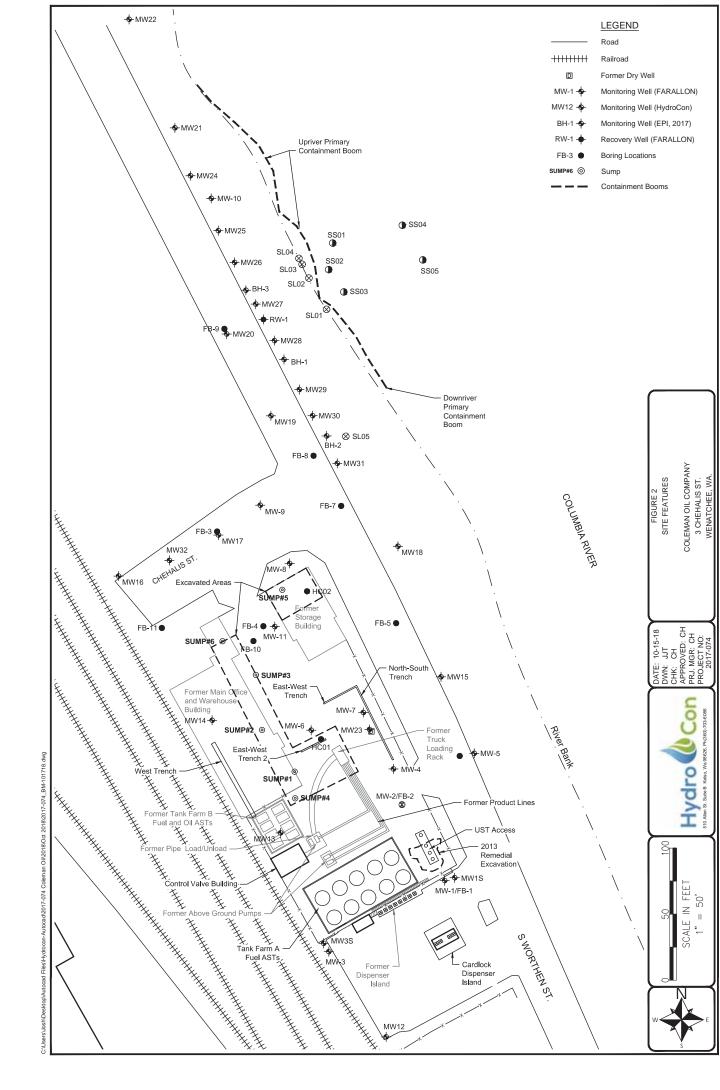
HydroCon's services were performed in a manner consistent with generally accepted practices of the profession undertaken in similar studies in the same geographical area during the same time period. HydroCon makes no warranties, either expressed or implied, regarding the findings, conclusions or recommendations. Please note that HydroCon does not warrant the work of laboratories, regulatory agencies, or other third parties supplying information used in the preparation of the report.

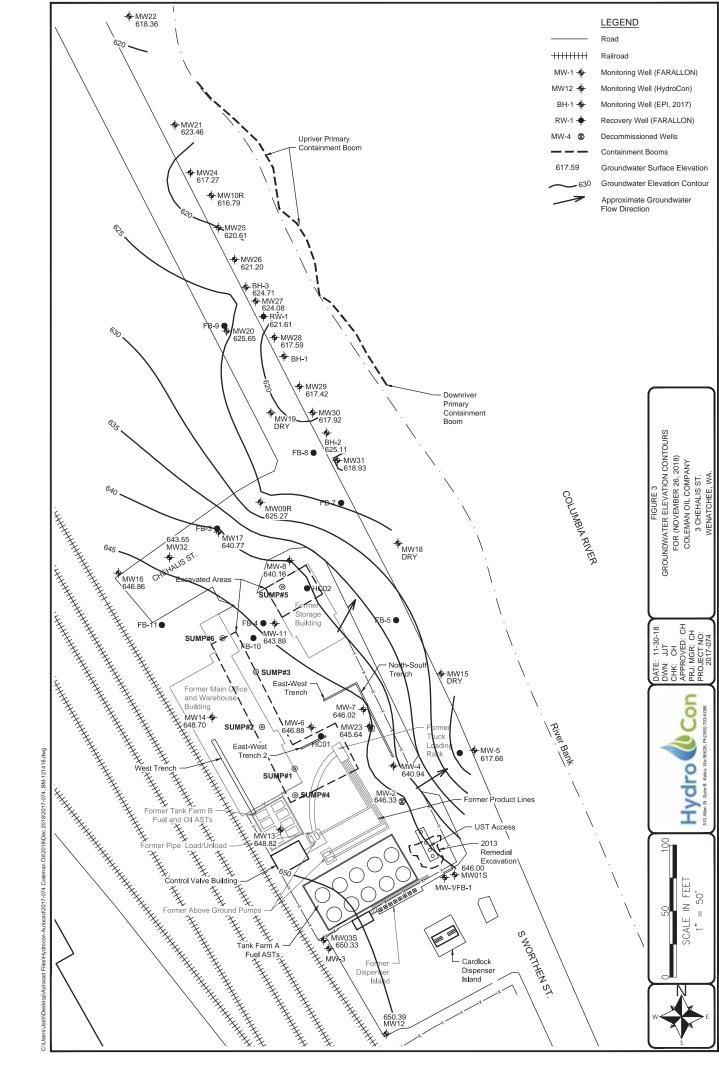
Findings and conclusions resulting from these services are based upon information derived from the on-site activities and other services performed under this scope of work; such information is subject to change over time. Certain indicators of the presence of hazardous substances, petroleum products, or other constituents may have been latent, inaccessible, unobservable, nondetectable or not present during these services, and we cannot represent that the Site contains no hazardous substances, toxic materials, petroleum products, or other latent conditions beyond those identified during this monitoring. Subsurface conditions may vary from those encountered at specific sampling locations or during other surveys, tests, assessments, investigations, or exploratory services; the data, interpretations and findings are based solely upon data obtained at the time and within the scope of these services.

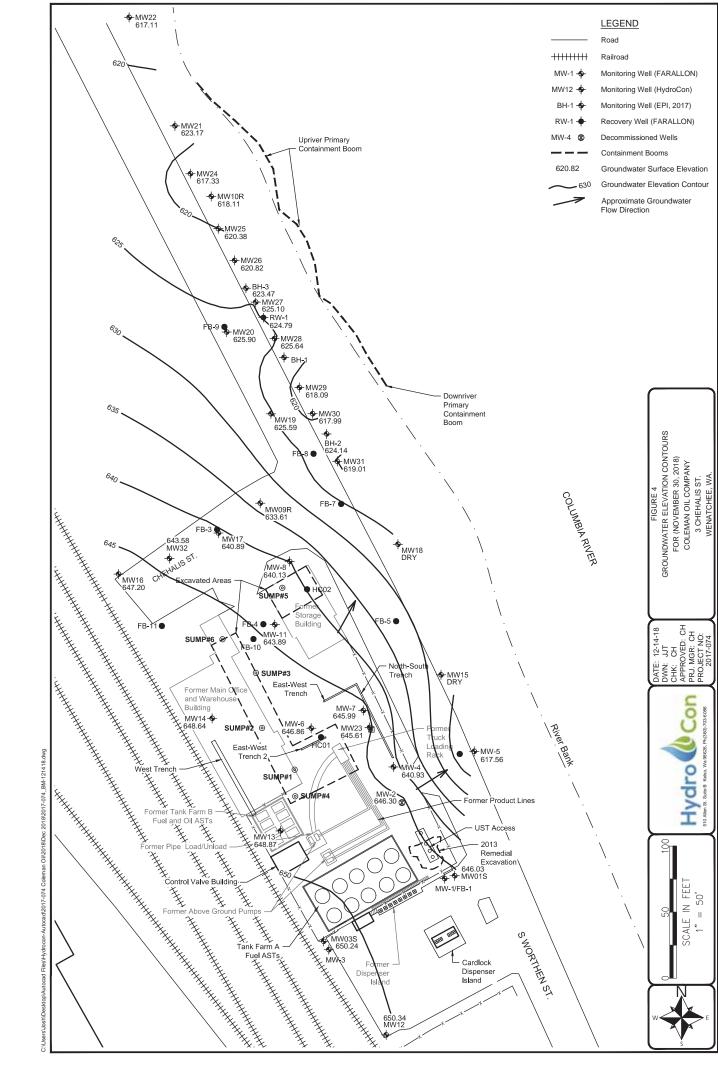
This report is intended for the sole use of **Coleman Oil Company** to meet the requirements of Exhibit B – Scope of Work and Schedule of the Agreed Order. This report may not be used or relied upon by any other party without the written consent of HydroCon. The scope of services performed in execution of this evaluation may not be appropriate to satisfy the needs of other users, and use or re-use of this document or the findings, conclusions, or recommendations is at the risk of said user.

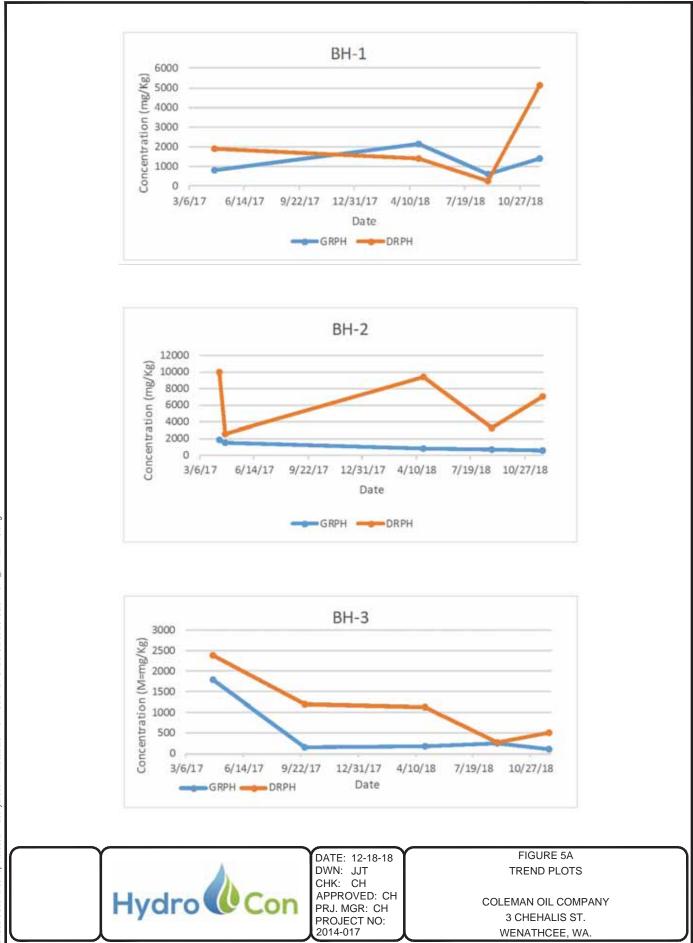
The conclusions presented in this report are, in part, based upon subsurface sampling performed at selected locations and depths. There may be conditions between borings or samples that differ significantly from those presented in this report and which cannot be predicted by this study.

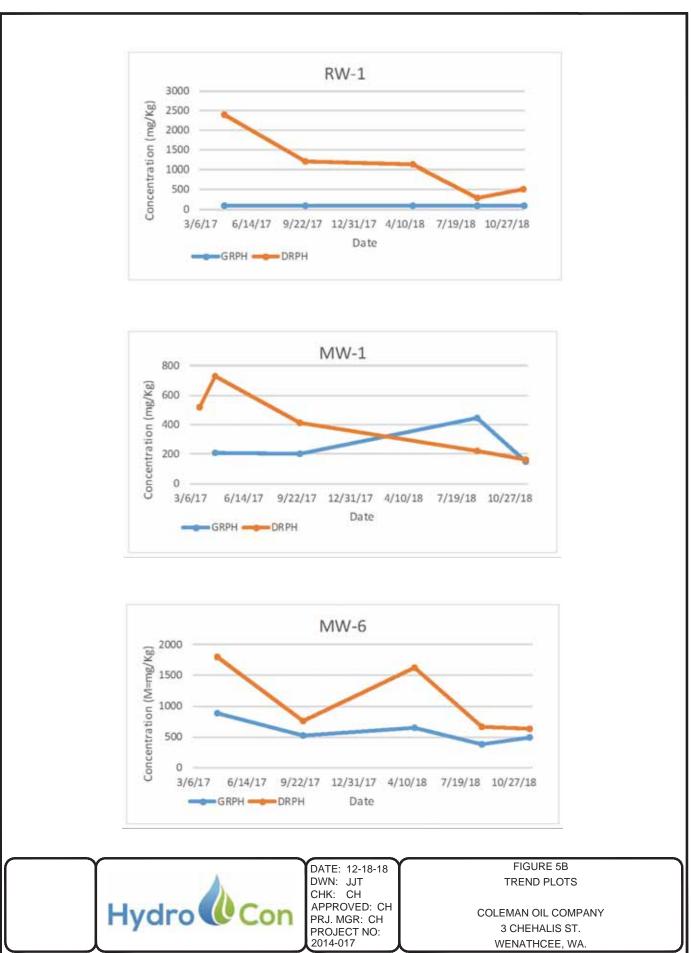

8.0 **REFERENCES**

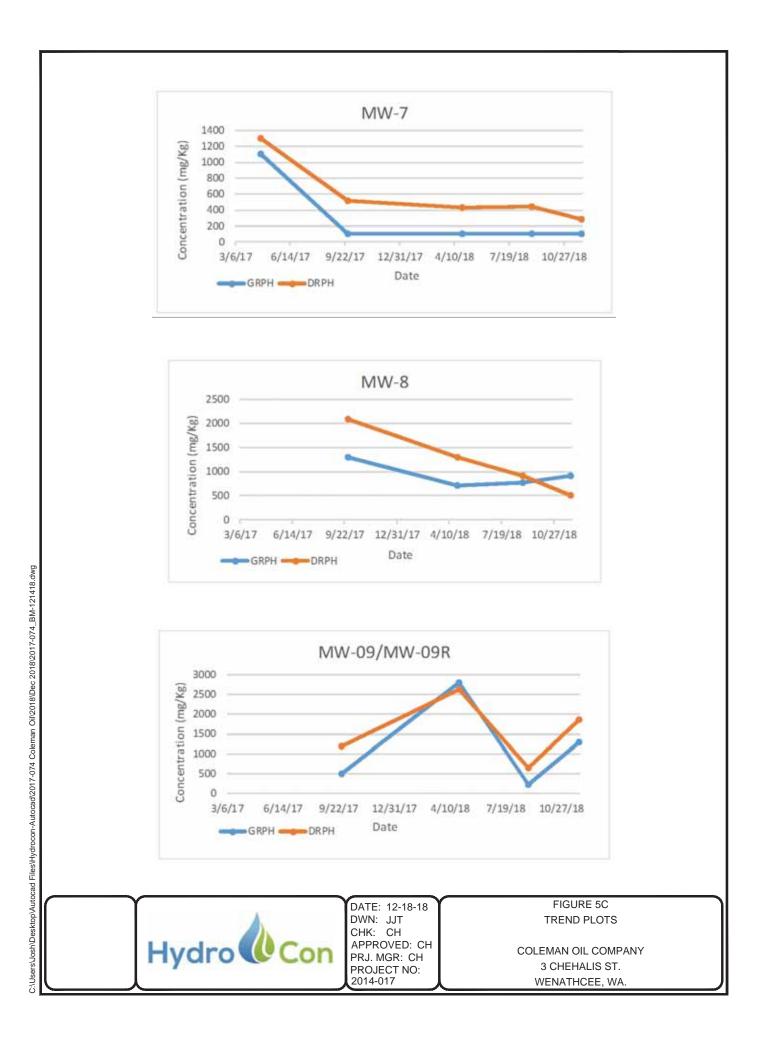

- Farallon, 2017. *Supplemental Data Summary Report*. Prepared for Coleman Oil Company. October 18.
- HydroCon, LLC. 2018a. Supplemental Remedial Investigation Work Plan. Coleman Oil R99 Renewable Diesel Spill, Wenatchee, Washington. Prepared for Coleman Oil Company, LLC. March 15.
- ———. 2018b. Supplemental Remedial Investigation Report. Coleman Oil R99 Renewable Diesel Spill, Wenatchee, Washington. Prepared for Coleman Oil Company, LLC. In Preparation.
- ——. 2018c. Aquifer Testing at Coleman Oil Facility, Wenatchee, Washington, March 16.

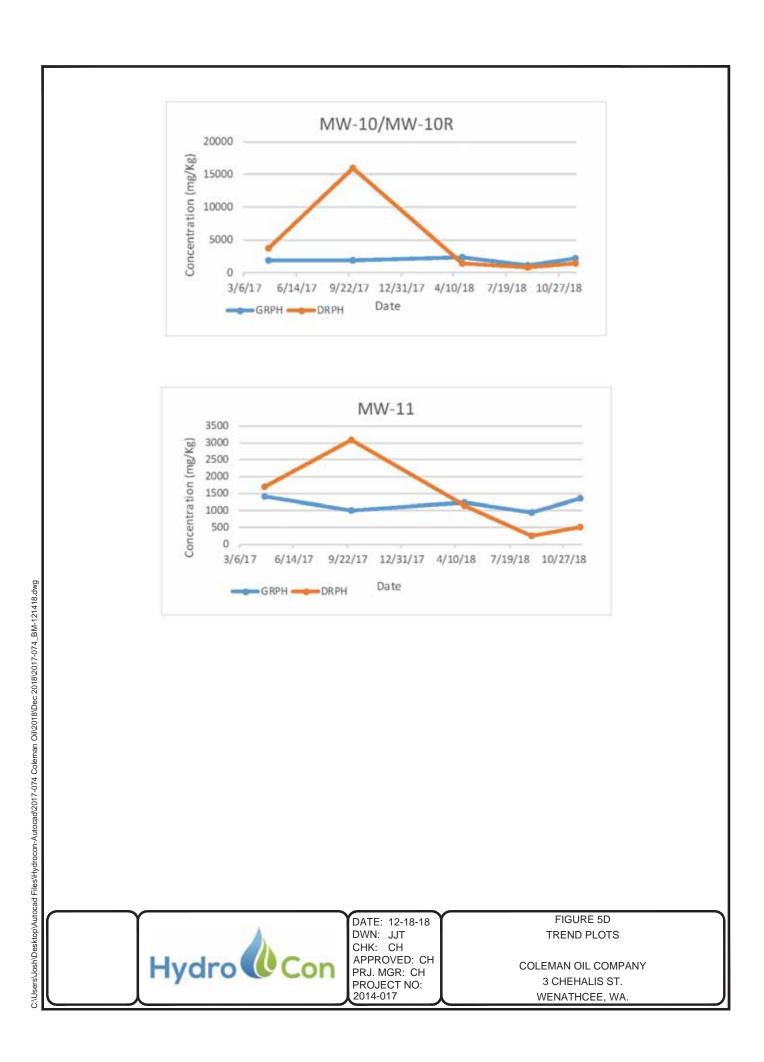

^{. 2018}d. Additional Interim Actions Addendum #2. In Preparation.

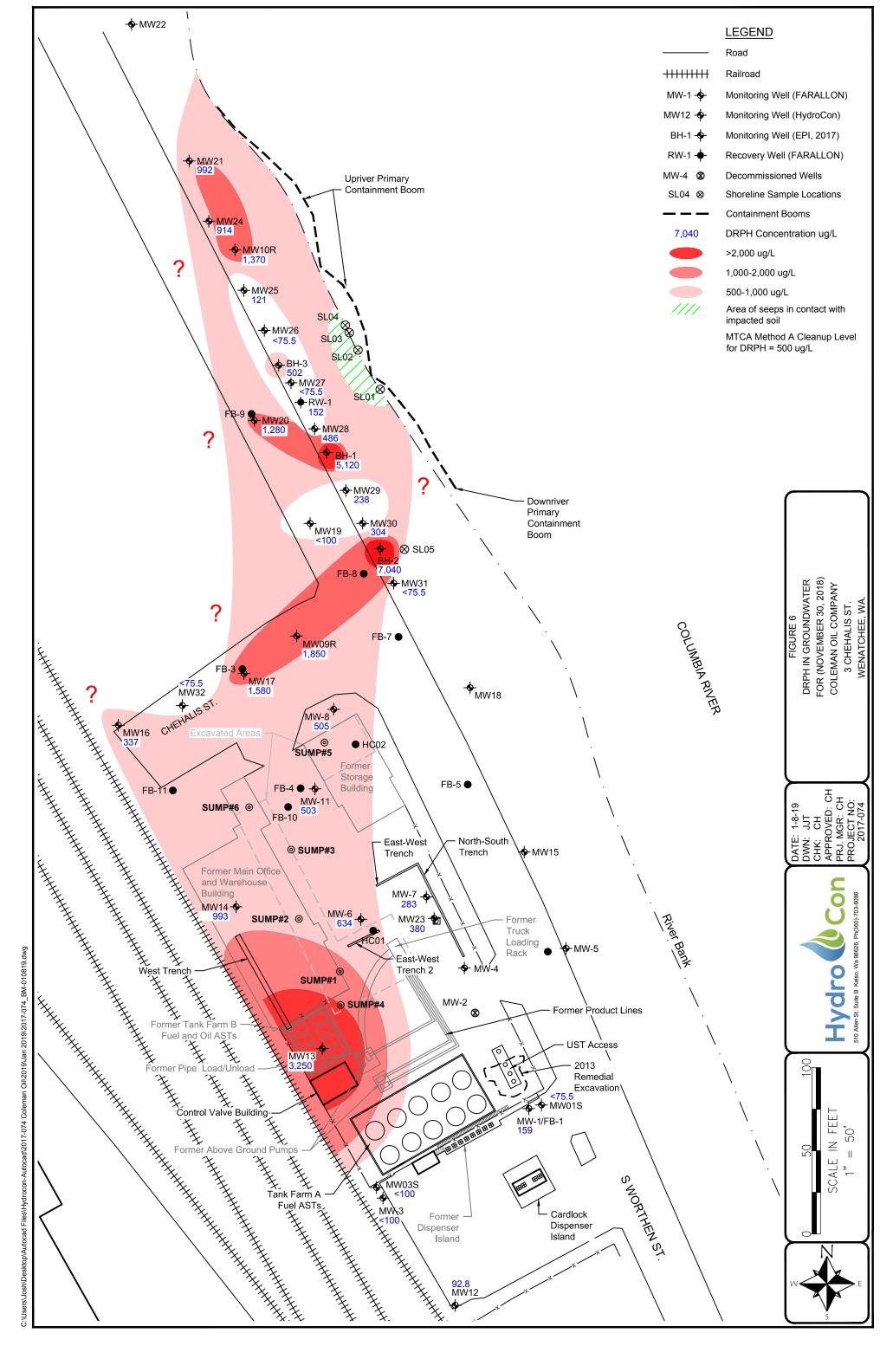


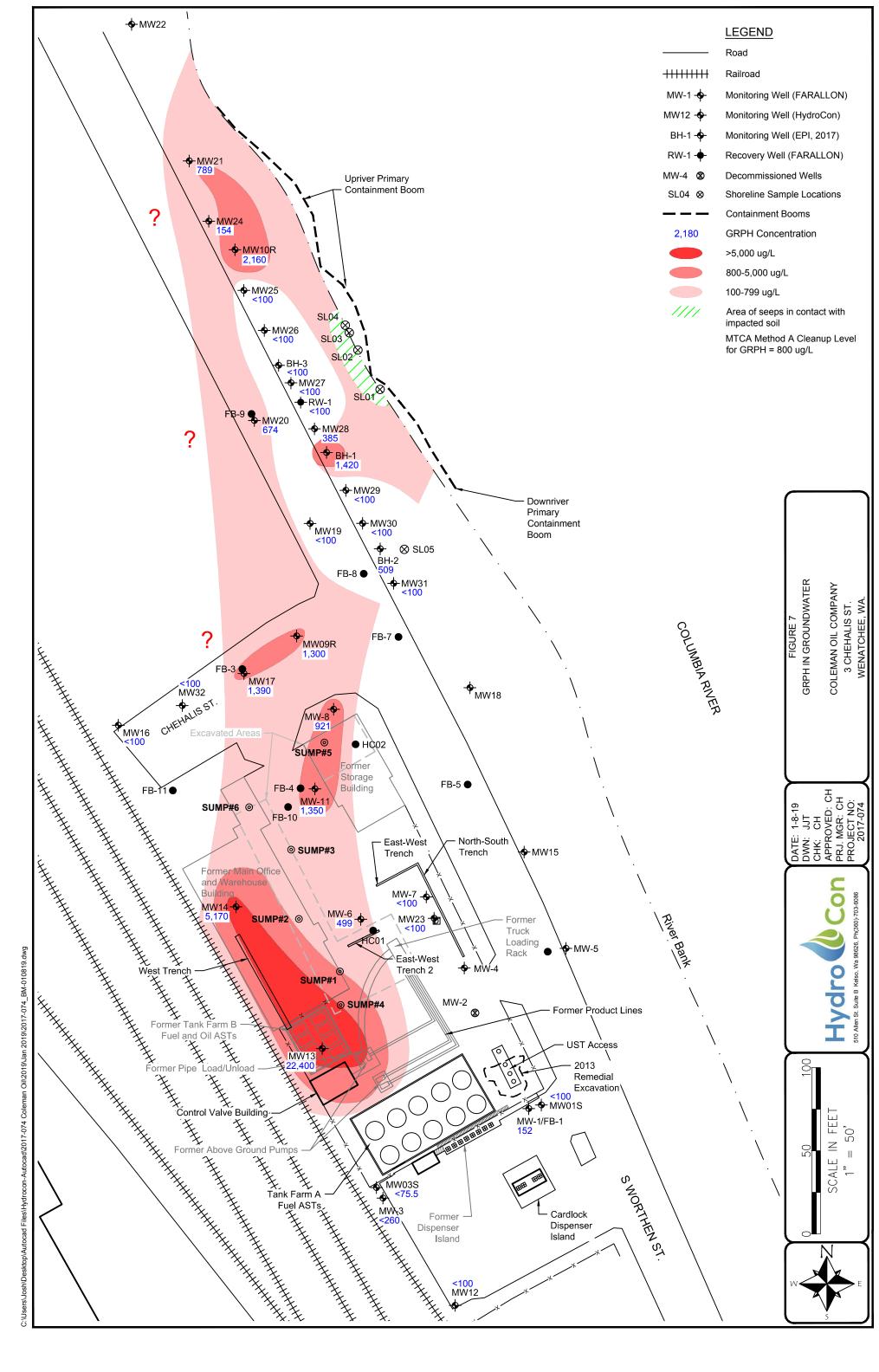

FIGURES








C:\Users\Josh\Desktop\Autocad Files\Hydrocon-Autocad\2017-074 Coleman Oil\2018\Dec 2018\2017-074_BM-121418.dwg


2014-

TABLES

Table 1Well Construction DetailsColeman OilWenatchee, Washington

Well ID	Date Installed	Installed By	Drilling Method	Total Boring Depth (feet bgs)	Total Well Depth (feet bgs)	Well Diameter (inch)	Well Construction Material	Screen Slot Size (inch)	Length of Screen (feet)	Length of Bottom Cap (feet)	Screened Interval (feet bgs)	Well Casing Elevation (feet ¹)
MW-1	7/7/2010	Farallon	Air Rotary	35.50	35.00	2	PVC	0.01	15	-	20-35	658.01
MW01S	3/4/2018	HydroCon	Sonic	20.00	19.99	4	PVC	0.01	15	0.23	5.37 - 20.37	657.54
MW-2	7/8/2010	Farallon	Air Rotary	40.00	40.00	2	PVC	0.01	15	-	25-40	657.76
MW-3	9/7/2010	Farallon	Air Rotary	35.30	35.00	2	PVC	0.01	10	_	25-35	658.26
MW03S	4/3/2018	HydroCon	Sonic	20.00	19.30	4	PVC	0.01	15	0.23	4.43 - 19.43	658.17
MW-4	9/8/2010	Farallon	Air Rotary	40.10	37.00	2	PVC	0.01	10	-	27-37	657.48
MW-5	9/9/2010	Farallon	Air Rotary	45.40	45.00	2	PVC	0.01	15	_	30-45	656.00
MW-6	4/12/2017	Farallon	Air Rotary	18.40	18.00	4	PVC	0.01	10	_	8-18	657.70
MW-7	4/11/2017	Farallon	Air Rotary	20.10	20.00	4	PVC	0.02	10	_	10-20	657.52
MW-8	4/11/2017	Farallon	Air Rotary	25.20	25.00	4	PVC	0.02	10		15-25	656.20
MW-9	4/12/2017	Farallon	Air Rotary	24.50	24.00	4	PVC	0.02	10	_	13-23	655.29
MW09R	8/15/2018	HydroCon	Sonic	35.00	32.60	4	PVC	0.02	25	0.45	8.59-33.59	653.55
MW-10	4/14/2017	Farallon	Air Rotary	30.20	30.00	2	PVC	0.01	16	-	14-30	645.80
MW10R	8/16/2018	HydroCon	Sonic	35.00	33.59	4	PVC	0.02	20	0.45	14.64-34.64	644.30
MW-11	4/14/2017	Farallon	Air Rotary	22.30	22.00	4	PVC	0.01	10	-	12-22	658.00
MW11 MW12	4/2/2018	HydroCon	Sonic	20.00	19.52	4	PVC	0.01	15	0.23	4.63 - 19.63	658.27
MW12	3/29/2018	HydroCon	Sonic	50.00	19.80	4	PVC	0.01	15	0.23	4.91 - 19.91	657.04
MW13 MW14	3/30/2018	HydroCon	Sonic	35.00	20.02	4	PVC	0.01	15	0.23	5.23 - 20.23	657.15
MW14	4/12/2018	HydroCon	Sonic	35.10	35.10	4	PVC	0.01	25	0.23	10.33 - 35.33	654.99
MW15	4/5/2018	HydroCon	Sonic	30.00	29.15	4	PVC	0.01	20	0.23	9.28 - 29.28	656.93
MW10	4/4/2018	HydroCon	Sonic	35.00	29.41	4	PVC	0.01	20	0.23	9.52 - 29.52	655.55
MW17 MW18	4/11/2018	HydroCon	Sonic	35.00	34.65	4	PVC	0.01	20	0.23	15.86 - 35.86	654.51
MW10 MW19	4/5/2018	HydroCon	Sonic	35.00	31.48	4	PVC	0.01	20	0.23	11.66 - 31.66	653.31
MW19 MW20	4/10/2018	HydroCon	Sonic	30.00	29.50	4	PVC	0.01	20	0.23	9.79 - 29.79	650.85
MW21	4/9/2018	HydroCon	Sonic	35.00	32.10	4	PVC	0.01	20	0.23	12.30 - 32.30	643.88
MW21	4/13/2018	HydroCon	Sonic	40.00	39.10	4	PVC	0.01	25	0.23	9.19 - 34.19	641.85
MW23	3/29/2018	HydroCon	Sonic	25.00	22.04	4	PVC	0.01	15	0.23	7.13 - 22.13	656.91
MW24	8/6/2018	HydroCon	Sonic	35.00	34.25	4	PVC	0.01	20	0.45	14.17-34.17	644.38
MW25	8/7/2018	HydroCon	Sonic	35.00	32.96	4	PVC	0.01	20	0.45	12.81-32.81	645.57
MW26	8/8/2018	HydroCon	Sonic	35.00	32.52	4	PVC	0.01	20	0.45	13.54-33.54	646.65
MW27	8/9/2018	HydroCon	Sonic	40.00	38.74	4	PVC	0.01	25	0.45	13.56-38.56	649.00
MW28	8/10/2018	HydroCon	Sonic	40.00	38.74	4	PVC	0.01	25	0.45	13.62-38.62	650.64
MW29	8/13/2018	HydroCon	Sonic	40.00	39.11	4	PVC	0.01	25	0.45	14.05-39.05	652.34
MW30	8/14/2018	HydroCon	Sonic	40.00	39.79	4	PVC	0.01	25	0.45	14.67-39.67	652.83
MW31	8/15/2018	HydroCon	Sonic	40.00	39.28	4	PVC	0.01	25	0.45	14.11-39.11	653.97
MW32	8/17/2018	HydroCon	Sonic	35.00	34.02	4	PVC	0.01	25	0.45	8.95-33.95	655.83
BH-1	3/25/2017	EPI	Air Rotary	30.00	30.00	2	PVC	0.01	10	-	20-30	652.17
BH-2	3/25/2017	EPI	Air Rotary	35.00	35.00	2	PVC	0.01	15	-	20-35	653.77
BH-3	3/26/2017	EPI	Air Rotary	30.00	30.00	2	PVC	0.01	15	-	15-30	648.76
RW-1	4/10/2017	Farallon	Air Rotary	30.00	30.00	3	PVC	0.02	15	-	15-30	650.42

NOTES:

feet¹ = Elevation is relative to NGVD88

bgs = below ground surface

PVC = polyvinyl chloride

Well Identification	Date	Monitoring Well Screened Interval (feet bgs)	Elevation Top of Casing ¹ (feet)	Depth to Water (feet below top of casing)	Depth to NAPL (feet below top of casing)	LNAPL Thickness (feet)	Groundwater Elevation (feet)
	4/17/2017			9.47			648.54
	4/20/2017			9.63			648.38
	4/27/2017	-		10.14			647.87
	5/1/2017			10.31			647.70
	6/8/2017			11.20			646.81
MW-1	7/3/2017	20-35	658.01	NM			
	9/28/2017			12.36			645.65
	8/27/2018			12.17			645.84
	8/31/2018			12.20			645.81
	11/26/2018	-		11.36			646.65
	11/30/2018			11.38			646.63
	4/25/2018			10.49			647.05
	4/27/2018			10.62			646.92
	8/27/2018	-		12.30			645.24
MW-1S	8/31/2018	5.37 - 20.37	657.54	12.33			645.21
	11/26/2018	-		11.54			646.00
	11/30/2018	-		11.51			646.03
	4/17/2017			9.58			648.18
	4/20/2017	-		9.61			648.15
	4/27/2017	-		10.19			647.57
	5/1/2017	-		10.15			647.40
	6/8/2017	-		11.33			646.43
	7/3/2017	-		11.96			645.80
MW-2	9/28/2017	25-40	657.76	12.65			645.11
	4/25/2017	23 40	057.70	12.05			647.26
	4/27/2018	-		10.54			647.22
	8/27/2018	-		12.20			645.56
	8/31/2018	-		12.20			645.54
	11/26/2018	-		12.22			646.33
		-		11.45			646.30
	11/30/2018						
	4/17/2017	-		7.12			651.14
	4/20/2017	-		7.15			651.11
	4/27/2017	-		11.44			646.82
	5/1/2017	-		7.90			650.36
	6/8/2017	25.25	650.26	7.33			650.93
MW-3	7/3/2017	25-35	658.26	7.46			650.80
	9/28/2017	-		7.74			650.52
	8/27/2018	4		7.75			650.51
	8/31/2018	4		7.8			650.46
	11/26/2018	-		7.78			650.48
	11/30/2018			7.89			650.37
	4/25/2018	4		7.25			650.92
	4/27/2018			7.24			650.93
MW-3S	8/27/2018	4.43 - 19.43	658.17	8.04			650.13
	8/31/2018			8.05			650.12
	11/26/2018			7.48			650.33
	11/30/2018			7.93			650.24

1

Well Identification	Date	Monitoring Well Screened Interval (feet bgs)	Elevation Top of Casing ¹ (feet)	Depth to Water (feet below top of casing)	Depth to NAPL (feet below top of casing)	LNAPL Thickness (feet)	Groundwater Elevation (feet)
	4/17/2017			15.29			642.19
	4/20/2017			15.40			642.08
	4/27/2017	-		15.74			641.74
	5/1/2017			15.71			641.77
	6/8/2017			16.23			641.25
	7/3/2017	-		16.93			640.55
MW-4	9/28/2017	27-37	657.48	18.18			639.30
	4/25/2018	-		16.22			641.26
	4/27/2018	-		17.59			639.89
	8/27/2018	-		17.25			640.23
	8/31/2018			17.28			640.20
	11/26/2018			16.54			640.94
	11/30/2018	-		16.55			640.93
	4/17/2017			33.98			622.02
	4/20/2017	1		35.67			620.33
	4/27/2017	1		34.98			621.02
	5/1/2017	-		35.92			620.08
	6/8/2017	_		32.06			623.94
	7/3/2017	_		36.75			619.25
MW-5	9/28/2017	30-45	656.00	38.67			617.33
	4/25/2018	50 45	050.00	NM			017.55
	4/27/2018	-		35.58			620.42
	8/27/2018			38.21			617.79
		-		38.3			617.70
	8/31/2018 11/26/2018	-		38.34			
		-					617.66
	11/30/2018			38.44			617.56
	4/17/2017	-		9.57			648.13
	4/20/2017	-		9.40			648.30
	4/27/2017			9.89			647.81
	5/1/2017	-		9.95			647.75
	6/8/2017	-		10.60	10.55	0.05	647.14
	7/3/2017	0.10		11.10			646.60
MW-6	9/28/2017	8-18	657.70	11.51			646.19
	4/25/2018			10.20			647.50
	4/27/2018			10.21			647.49
	8/27/2018			11.28			646.42
	8/31/2018			11.29			646.41
	11/26/2018	-		10.82		trace	646.88
	11/30/2018			10.84		trace	646.86
	4/17/2017			9.64			647.88
	4/20/2017	-		9.71			647.81
	4/27/2017			10.26			647.26
	5/1/2017			10.35			647.17
	6/8/2017	-		11.44			646.08
	7/3/2017			11.91			645.61
MW-7	9/28/2017	10-20	657.52	12.46			645.06
	4/25/2018	1		10.61			646.91
	4/27/2018			10.63			646.89
	8/27/2018			11.96			645.56
	8/31/2018			12.18			645.34
	11/26/2018			11.50			646.02
	11/30/2018			11.53			645.99

Well Identification	Date	Monitoring Well Screened Interval (feet bgs)	Elevation Top of Casing ¹ (feet)	Depth to Water (feet below top of casing)	Depth to NAPL (feet below top of casing)	LNAPL Thickness (feet)	Groundwater Elevation (feet)
	4/13/2017			16.71	14.50	2.21	641.21
	4/17/2017			13.47			642.73
	4/20/2017			13.96	13.95	0.01	642.25
	4/27/2017			17.25	14.91	2.34	640.78
	5/1/2017			17.47	14.94	2.53	640.70
	6/8/2017			18.02			638.18
	7/3/2017			17.97	17.91	0.07	638.28
MW-8	9/28/2017	15-25	656.20	18.10			638.10
	4/25/2018			15.14			641.06
	4/27/2018			15.12			641.08
	8/27/2018			16.71			639.49
	8/31/2018			16.77			639.43
	11/26/2018			16.04			640.16
				16.04			640.10
	11/30/2018						
	4/17/2017			13.56			641.73
	4/20/2017			14.31			640.98
	4/27/2017			17.45	16.75	0.70	638.39
	5/1/2017			18.60	17.33	1.27	637.68
MW-9	6/8/2017	14-24	655.29	22.14			633.15
	7/3/2017			22.16			633.13
	9/28/2017			22.69			632.60
	4/25/2018			17.22			638.07
	4/27/2018			17.22			638.07
	8/27/2018			19.90			635.39
MW09R	8/31/2018	8.59-33.59	653.55	19.91			635.38
10100031	11/26/2018	0.59-55.59	055.55	28.28			625.27
	11/30/2018			19.94			633.61
	4/17/2017			16.72			629.08
	4/20/2017			17.31			628.49
	4/27/2017			18.11			627.69
	5/1/2017			18.99			626.81
MW-10	6/8/2017	14-30	645.80	19.88			625.92
	7/3/2017			25.06	23.62	1.44	621.86
	9/28/2017			25.70			620.10
	4/25/2018			21.18			624.62
	4/27/2018			20.96			624.84
	8/27/2018			24.64			619.66
	8/31/2018			25.71			618.59
MW10R	11/26/2018	14.66-34.64	644.30	27.51			616.79
	11/26/2018	1		27.51	25.95	0.24	618.30
	4/17/2017	-		13.45			644.55
	4/20/2017	1		13.45			644.55
	4/27/2017			13.76			644.24
	5/1/2017			13.77			644.23
	6/8/2017			14.32	14.05	0.27	643.89
	7/3/2017			14.30			643.70
MW-11	9/28/2017	12-22	658.00	14.65			643.35
	4/25/2018			13.82			644.18
	4/27/2018			13.82			644.18
	8/27/2018			14.20			643.80
	8/31/2018			14.21			643.79
	11/26/2018			14.11			643.89
	11/30/2018	1		14.11			643.89

Well Identification	Date	Monitoring Well Screened Interval (feet bgs)	Elevation Top of Casing ¹ (feet)	Depth to Water (feet below top of casing)	Depth to NAPL (feet below top of casing)	LNAPL Thickness (feet)	Groundwater Elevation (feet)
	4/25/2018			7.37			650.90
	4/27/2018			7.31			650.96
	8/27/2018		659.27	8.01			650.26
MW-12	8/31/2018	4.63 - 19.63	658.27	8.04			650.23
	11/26/2018			7.88			650.39
	11/30/2018			7.93			650.34
	4/25/2018			7.39			649.65
	4/27/2018			7.36			649.68
	8/27/2018		657.04	8.05			648.99
MW-13	8/31/2018	4.91 - 19.91	657.04	8.15			648.89
	11/26/2018			8.22			648.82
	11/30/2018	1		8.17			648.87
	4/25/2018			7.81			649.34
	4/27/2018			7.75			649.40
	8/27/2018			8.35			648.80
MW-14	8/31/2018	5.23 - 20.23	657.15	8.40			648.75
	11/26/2018			8.45			648.70
	11/30/2018			8.51			648.64
	4/25/2018			NM			
	4/27/2018			34.80			620.19
	8/27/2018		654.00	34.76			620.23
MW-15	8/31/2018	10.33 - 35.33	654.99	34.82			620.17
	11/26/2018			dry			
	11/30/2018			dry			
	4/25/2018			9.72			647.21
	4/27/2018			9.70			647.23
	8/27/2018			10.05			646.88
MW-16	8/31/2018	9.28 - 29.28	656.93	10.18			646.75
	11/26/2018			10.07			646.86
	11/30/2018			9.73			647.20
	4/25/2018			14.25			641.30
	4/27/2018			14.22			641.33
	8/27/2018			15.07			640.48
MW-17	8/31/2018	9.52 - 29.52	655.55	15.14			640.41
	11/26/2018]		14.78			640.77
	11/30/2018]		14.66			640.89
	4/25/2018			NM			
	4/27/2018]		34.69			619.82
	8/27/2018			dry			
MW-18	8/31/2018	15.86 - 35.86	654.51	dry			
	11/26/2018]		dry			
	11/30/2018			dry			

4

Well Identification	Date	Monitoring Well Screened Interval (feet bgs)	Elevation Top of Casing ¹ (feet)	Depth to Water (feet below top of casing)	Depth to NAPL (feet below top of casing)	LNAPL Thickness (feet)	Groundwater Elevation (feet)
	4/25/2018			23.05			630.26
	4/27/2018			23.15			630.16
	8/27/2018		652.24	28.63			624.68
MW-19	8/31/2018	11.66 - 31.66	653.31	28.83			624.48
	11/26/2018			dry			
	11/30/2018			27.72			625.59
	4/25/2018			18.55			632.30
	4/27/2018	-		18.64			632.21
	8/27/2018			24.97			625.88
MW-20	8/31/2018	9.79 - 29.79	650.85	25.24			625.61
	11/26/2018			25.20			625.65
	11/30/2018			24.95			625.90
	4/25/2018			19.40			624.48
	4/27/2018			19.31			624.57
	8/27/2018	-		20.88			623.00
MW-21	8/31/2018	12.30 - 32.30	643.88	20.36			622.52
	11/26/2018	-		20.42			623.46
	11/30/2018			20.42			623.17
	4/25/2018			21.80			620.05
	4/27/2018			21.80			620.05
MW-22	8/27/2018	9.19 - 34.19	641.85	23.72			618.13
	8/31/2018			24.46			617.39
	11/26/2018			23.49			618.36
	11/30/2018			24.74			617.11
	4/25/2018	-		10.28			646.63
	4/27/2018	-		10.30			646.61
MW-23	8/27/2018	7.13 - 22.13	656.91	12.16			644.75
	8/31/2018	/110110	00001	11.99			644.92
	11/26/2018			11.27			645.64
	11/30/2018			11.3			645.61
	8/27/2018			26.03			618.35
MW-24	8/31/2018	14.17 - 34.17	644.38	26.77			617.61
10100-24	11/26/2018	14.17 - 34.17	044.58	27.11			617.27
	11/30/2018			27.05			617.33
	8/27/2018			26.01			619.56
MW-25	8/31/2018	1201 2201		26.49			619.08
10100-25	11/26/2018	12.81 - 32.81	645.57	24.96			620.61
	11/30/2018]		25.19			620.38
	8/27/2018			25.23			621.42
	8/31/2018			25.76			620.89
MW-26	11/26/2018	13.54 - 33.54	646.65	25.45			621.20
	11/30/2018	1		25.83			620.82
	8/27/2018			24.87			624.13
	8/31/2018			25.06			623.94
MW-27	11/26/2018	13.56 - 38.56	649.00	24.92			624.08
	11/30/2018	1		23.90			625.10
	8/27/2018			26.04			624.60
	8/31/2018			26.25			624.39
MW-28	11/26/2018	13.62 - 38.62	650.64	33.05			617.59
	11/20/2018	4		25.00			625.64

Well Identification	Date	Monitoring Well Screened Interval (feet bgs)	Elevation Top of Casing ¹ (feet)	Depth to Water (feet below top of casing)	Depth to NAPL (feet below top of casing)	LNAPL Thickness (feet)	Groundwate Elevation (feet)
	8/27/2018			34.43			617.91
	8/31/2018		652.34	34.84			617.50
MW-29	11/26/2018	14.05 - 39.05		34.92			617.42
	11/30/2018	-		34.25			618.09
	8/27/2018			34.73			618.10
N () N (20	8/31/2018		652.02	35.01			617.82
MW-30	11/26/2018	14.67 - 39.67	652.83	34.91			617.92
	11/30/2018	-		34.84			617.99
	8/27/2018			34.55			619.42
	8/31/2018			35.16			618.81
MW-31	11/26/2018	14.11 - 39.11	653.97	35.04			618.93
	11/30/2018	-		34.96			619.01
	8/27/2018			12.41			643.42
	8/31/2018			12.43			643.40
MW-32	11/26/2018	8.95 - 33.95	655.83	12.28			643.55
	11/30/2018	-		12.25			643.58
	4/17/2017			19.71			632.46
	4/20/2017	-		20.13			632.04
	4/27/2017	-		22.88			629.29
	5/1/2017	-		23.16			629.01
	6/8/2017	-		25.64			626.53
	7/3/2017	-		28.46	27.91	0.55	624.14
BH-1	9/28/2017	20-30	652.17	28.73			623.44
	4/25/2018	-		23.03			629.14
	4/27/2018	-		20.03			632.14
	8/27/2018	-		26.21			625.96
	8/31/2018	-		26.27			625.90
	11/26/2018	-		NM			
	11/30/2018	-		NM			
	4/17/2017			26.16			627.61
	4/20/2017	-		26.30			627.47
	4/27/2017			26.56	26.48	0.08	627.27
	5/1/2017	-		26.68	26.58	0.10	627.17
	6/8/2017	-		26.73			627.04
	7/3/2017			28.86			624.91
BH-2	9/28/2017	20-35	653.77	31.25			622.52
	4/25/2018	1		27.68			626.09
	4/28/2017	1		27.53			626.24
	8/27/2018	-		28.50			625.27
	8/31/2018			28.91			624.86
	11/26/2018	-		28.66		trace	625.11
	11/30/2018	1		28.63		trace	625.14

Well Identification	Date	Monitoring Well Screened Interval (feet bgs)	Elevation Top of Casing ¹ (feet)	Depth to Water (feet below top of casing)	Depth to NAPL (feet below top of casing)	LNAPL Thickness (feet)	Groundwater Elevation (feet)
	4/17/2017			17.47			631.29
	4/20/2017			17.88			630.88
	4/27/2017			18.70			630.06
	5/1/2017			19.06			629.70
	6/8/2017			21.19			627.57
	7/3/2017			21.70			627.06
BH-3	9/28/2017	15-30	648.76	23.04			625.72
	4/25/2018			20.06			628.70
	4/27/2018	•		22.36			626.40
	8/27/2018			22.20			626.56
	8/31/2018		-	23.68			625.08
	11/26/2018			24.05			624.71
	11/30/2018			25.29			623.47
	4/17/2017			16.15			634.27
	4/20/2017			16.34			634.08
	4/27/2017			17.35			633.07
	5/1/2017			18.55			631.87
	6/8/2017			22.67			627.75
	7/3/2017			24.19			626.23
RW-1	9/28/2017	15-30	650.42	26.74			623.68
	4/25/2018			21.19			629.23
_	4/27/2018			21.21			629.21
	8/27/2018			25.09			625.33
	8/31/2018			25.69			624.73
	11/26/2018			28.81			621.61
	11/30/2018			25.63			624.79

NOTES:

- - - denotes no LNAPL present

¹Elevation in feet above mean sea level. Elevations based on NAVD88 vertical datum. Well survey conducted by Munson Engineers, Inc. of Wenatchee, Washington in July 2010 and April 2017.

bgs = below ground surface

LNAPL = light nonaqueous-phase liquid NAPL = nonaqueous-phase liquid

Groundwater elevations in wells with LNAPL corrected for water-level elevation using typical specific gravity of R99 LNAPL of 0.78.

7

			Fuels					Volatiles					Metals
		Hdu Bull Hg/L	Haw Q µg/L	Haxo µg/L	Benzene Mg/L	euene μg/L	T/ ^{8π} T	₩Xylene, Total	Я <mark>й</mark> Л/Врhthalene	В Н Щ Д Д Д Д	Ω μg/L	DC ED Jug/L	Total Lead ٦/ ⁸
WA MTCA Method A	Cleanup for Groundwater	800/1000	500	500	5	1,000	700	1,000	160	20	0.01	5	15
Benzene (Non Detec	ct)	1,000											
Benzene (Detect)		800											
Field ID	Date									1			
FB-9	4/7/2017	1,200 F	2,900	1,200	2.4	< 1.0	3.7	1.7					
FB-10	4/7/2017	2,000 F	57,000	< 4,100	71	13	7.1	64					
	4/21/2017	820 F	1,900	970 N1	15	2.8	8.3	18.5					
BH-1	4/26/2018	2,140	1,390	<377	0.671	<1.00	5.55	12.5					
5.1.1	8/30/2018	591	243	<148	<0.200	<1.00	<0.500	<1.50					
	12/1/2018	1,420	5,120 F13	<151	<0.200	<1.00	0.608	<1.50					
	4/10/2017	1,900 F	100,000	10,000	< 4.0	< 4.0	13	39					
	4/21/2017	1,500 F	2,600	630 N1	4.2	3.3	12	39					
BH-2	4/24/2018	854	9,360	<377	<0.200	<1.00	<0.500	<1.50					
	8/28/2018	639	3,300	<148	<0.200	<1.00	<0.500	<1.50					
	11/30/2018	509	7,040	<151	<0.200	<1.00	<0.500	<1.50					
	4/21/2017	1,800 F	2,400	660	1.8	<1.0	5.4	8.2					
	9/29/2017	150 O	1,200	550 N1	<1.0	<1.0	<1.0	<2.0					
BH-3	4/26/2018	172	1,130	<377	<0.200	<1.00	<0.500	<1.50					
	8/30/2018	250	276	<148	<0.200	<1.00	<0.500	<1.50					
	11/29/2018	<100	502	<151	<0.200	<1.00	<0.500	<1.50					
	4/21/2017	<100	840	540 N1	<1.0	<1.0	<1.0	<2.0					
	9/29/2017	<100	360	440	<1.0	<1.0	<1.0	<2.0					
RW-1	4/26/2018	<100	<189	<377	<0.200	<1.00	<0.500	<1.50					
	8/30/2018	<100	327	<150	<0.200	<1.00	<0.500	<1.50					
	11/30/2018	<100	152	<151	<0.200	<1.00	<0.500	<1.50					

	ĺ		Fuels	1			1	Volatiles	5				Metals
WA MTCA Method A Benzene (Non Dete	Cleanup for Groundwater	Η Αχ Β μg/L 800/1000 1,000	Η Αχ μg/L 500	Η Α ΚΟ μg/L 500	eu seu Be μg/L 5	ο υ υ μg/L 1,000	Ethylbenzene β Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ	μg/L 1,000	e B الع الع الع الع الع الع الع الع الع الع	μg/L 20	μg/L 0.01	Ο Θ μg/L 5	Lead Lotal Lead Lg/L 15
Benzene (Detect)	,	800											
Field ID	Date			·	·	·	·	·	·			·	
	3/23/2017		520	480									
	4/21/2017	210 F	730	510	<1.0	<1.0	<1.0	<2.0					
MW-1	9/29/2017	200	410	<410	<1.0	<1.0	<1.0	<2.0					
	8/28/2018	449	219	<151	<0.200	<1.00	<0.500	<1.50					
	11/27/2018	152	159	<151	<0.200	<1.00	<0.500	<1.50					
	4/24/2018	188	<187	<374	0.42	<1.00	5.8	9.48					<0.200
MW01S	8/28/2018	268	294	<151	1.49	<1.00	1.26	<1.50					
	11/27/2018	<100	<75.5	<151	<0.200	<1.00	<0.500	<1.50					
	3/23/2017		<260	<410									
MW-2	4/20/2017	<100	<260	<410	<1.0	<1.0	<1.0	<2.0					
	4/25/2018	<100	<187	<374	<0.200	<1.00	<0.500	<1.50					
MW-3	4/20/2017	<100	<260	<410	<1.0	<1.0	<1.0	<2.0					
	9/28/2017	<100	<260	<410	<1.0	<1.0	<1.0	<2.0					
	4/25/2018	<100	<187	<374	<0.200	<1.00	<0.500	<1.50	<2.00	<1.00	<0.500	<0.400	
MW03S	8/29/2018	<100	139	<151	<0.200	<1.00	<0.500	<1.50					
	11/27/2018	<100	<75.5	<151	<0.200	<1.00	<0.500	<1.50					
	3/23/2017		<260	<410									
MW-4	4/20/2017	<100	<260	<410	<1.0	<1.0	<1.0	<2.0					
	9/28/2017	<100	<260	<410	<1.0	<1.0	<1.0	<2.0					
	4/25/2018	<100	<187	<374	<0.200	<1.00	<0.500	<1.50					

			Fuels	1		1		Volatiles					Metals
	Clean fax Crown dwater	Н Аж ур µg/L	H da µg/L	H dx 0 µg/L	Benzene MB	eu μg/L	Ethylbenzene رکار	T/گ کارهاد, Total	Maphthalene	μg/L	Ω μg/L	DC ED µg/L	Lotal Lead μg/T
Benzene (Non Dete	Cleanup for Groundwater	800/1000 1,000	500	500	5	1,000	700	1,000	160	20	0.01	5	15
Benzene (Detect)	,	800											
Field ID	Date		·	-		·					·	<u>.</u>	
	3/23/2017		<260	<410									
	4/20/2017	<100	<260	<410	<1.0	<1.0	<1.0	<2.0					
MW-5	9/28/2017	<100	<260	<410	<1.0	<1.0	<1.0	<2.0					
	4/25/2018	<100	<189	<377	<0.200	<1.00	<0.500	<1.50					
	8/28/2018	<100	<75.5	<151	<0.200	<1.00	<0.500	<1.50					
	4/20/2017	880 F	1,800	480 N1	5.0	<4.0	6.2	37					
	9/28/2017	530 O	760	430 N1	<1.0	<1.0	<1.0	4.3					
MW-6	4/25/2018	643	1,620	<374	0.56	<1.00	<0.500	2.19					0.375
	8/29/2018	376	668	<151	<0.200	<1.00	<0.500	<1.50					
	11/27/2018	499	634	<151	<0.200	<1.00	<0.500	<1.50					
	4/20/2017	1,100 F	1,300	420 N1	3.2	< 1.0	15	11.4					
	9/28/2017	<100	520	<470 U1	<1.0	<1.0	<1.0	<2.0					
MW-7	4/25/2018	<100	435	<374	<0.200	<1.00	<0.500	<1.50					
	8/29/2018	<100	448	<151	<0.200	<1.00	<0.500	<1.50					
	11/28/2018	<100	283	<151	<0.200	<1.00	<0.500	<1.50					
	9/29/2017	1,300 O	2,100	690 N1	<1.0	<1.0	4.1	27.2					
MW-8	4/26/2018	720	1,300	<374	0.641	<1.00	<0.500	4.67					
1110-0	8/29/2018	774	907	<151	<0.200	<1.00	<0.500	3.42					
	11/28/2018	921	505	<151	0.214	<1.00	1.06	6.23					

			Fuels			1		Volatiles		1			Metals
		Hdx9 µg/L	HdxO µg/L	Ha ax O µg/L	eus Benzene Benzen	euen Toluene μg/L	Lthylbenzene	क्र ∆ylene, Total	Raphthalene T/قل	ш В У У µg/L	Ω Ω μg/L	о Д µg/L	Total Lead ٦/٣
WA MTCA Method A C	Cleanup for Groundwater	800/1000	500	500	5	1,000	700	1,000	160	20	0.01	5	15
Benzene (Non Detec	t)	1,000											
Benzene (Detect)		800											
Field ID	Date										_		
MW-9	9/29/2017	500 O	1,200	670 N1	<1.0	<1.0	<1.0	1.5					
10100-5	4/26/2018	2,810	2,620	<374	2.73	<1.00	9.95	20.4					
MW-9R	8/29/2018	234	654	<151	<0.200	<1.00	<0.500	<1.50					
10100-51	11/28/2018	1,300	1,850	<151	<0.200	<1.00	<0.500	<1.50					
	4/21/2017	1,900 F	3,800	730	3.4	< 1.0	11	12.5					
MW-10	9/29/2017	1,900 O	16,000	1,300 N1	<1.0	<1.0	13	26.7					
	4/26/2018	2,290	1,500	<377	0.219	<1.00	3.52	5.95					
MW-10R	8/30/2018	1,080	838	< 150	< 0.200	< 1.00	1.22	2.42					
IVIV-10K	11/29/2018	2,160	1,370	<755 ec	<0.200	<1.00	3.90	5.98					
	4/21/2017	1,400 F	1,700	1,000 N1	28	4.1	8.2	26.1					
	9/29/2017	1,000 O	3,100	720 N1	<1.0	<1.0	1.9	12.5					
MW-11	4/26/2018	1,240	1,140	<374	<0.200	<1.00	0.56	2.27					
	8/29/2018	944	251	<150	<0.200	<1.00	<0.500	<1.50					
	11/27/2018	1,350	503	<151	<0.200	<1.00	<0.500	<1.50					
	4/25/2018	<100	<189	<377	<0.200	<1.00	<0.500	<1.50					
MW12	8/28/2018	<100	<74.8	<150	<0.200	<1.00	<0.500	<1.50					
	11/27/2018	<100	92.8	<151	<0.200	<1.00	<0.500	<1.50					
	4/25/2018	40,900	1,790	<377	1,500	4,710	627	3,780					0.446
MW13	8/29/2018	39,300	2,500	<150	1,780	3,010	796	4,850	167	<50.0 ec	< 25.0 ec	<25.0 ec	
	11/27/2018	22,400	3,250	<151	1,380	271	458	3,170					

			Fuels					Volatiles					Metals
		H da U J J g/L	H dæ Q µg/L	H dx O µg/L	eu eu gu μg/L	euene μg/L	T/84 Thylbenzene	T/ ^{8π} ر	T/ ⁸⁷ T	Β Η Μ μg/L	BA Ga µg/L	DC ED µg/L	Total Lead
WA MTCA Method A	Cleanup for Groundwater	800/1000	500	500	<u> </u>	1,000	700	1,000	160	20	0.01	μ <u></u> σ/ μ	<u>15</u>
Benzene (Non Dete		1,000											
Benzene (Detect)		800											
Field ID	Date												
	8/29/2018	4,040	487	<150	<0.200	<1.00	<0.500	<1.50					
MW14	4/25/2018	4,620	900	<374	13.1	<1.00	16.1	<1.50	3.21	<1.00	<0.500	<0.400	
	11/27/2018	5,170	933	<151	15.2	<1.00	1.70	<1.50					
	4/25/2018 iw												
MW15	8/29/20018 iw												
	11/27/2018 iw												
	4/26/2018	<100	330	<374	<0.200	<1.00	<0.500	<1.50					
MW16	8/29/2018	<100	298	<150	<0.200	<1.00	<0.500	<1.50					
	11/28/2018	<100	337	<151	<0.200	<1.00	<0.500	<1.50					
MW17	4/26/2018	2,800	1,630	<377	1.23	<1.00	1.62	7.66	4.72	<1.00	<0.500	<0.400	
	8/29/2018	1,270	986	<150	0.450	<1.00	<0.500	<1.50	5.61	<1.00	<0.500 ec	<0.500	
	11/28/2018	1,390	1,580	<151	0.305	<1.00	<0.500	<1.50					
	4/26/2018 iw												
MW18	8/2920018 iw												
	11/27/2018 iw												
	4/26/2018	280	979	<377	<0.200	<1.00	<0.500	<1.50					
MW19	8/27/2018	<100	406	<150	<0.200	<1.00	<0.500	<1.50					
	11/30/2018	<100	<75.5	<151	<0.200	<1.00	<0.500	<1.50					
	4/26/2018	1,270	1,320	<377	<0.200	<1.00	1.56	5.44					
MW20	8/30/2018	320	346	<150	<0.200	<1.00	<0.500	<1.50					
	11/29/2018	674	1,280	<151	<0.200	<1.00	<0.500	<1.50					

	Ī		Fuels			1		Volatiles	5		1	1	Metals
		HdXD µg/L	H dx Q µg/L	Ha ar O µg/L	eus Benzene μg/L	euen Lor μg/L	Lthylbenzene T/ ^{βπ}	کر Xylene, Total	Naphthalene ۲	Β Ε Σ μg/L	Ω Ω μg/L	Ο Θ μg/L	Total Lead
WA MTCA Method A	Cleanup for Groundwater	800/1000	500	500	5	1,000	700	1,000	160	20	0.01	5	15
Benzene (Non Dete	ect)	1,000											
Benzene (Detect)		800											
Field ID	Date										•	-	
	4/26/2018	9 91	965	<374	<0.200	<1.00	0.835	1.82					
MW21	8/30/2018	<100	234	<150	<0.200	<1.00	<0.500	<1.50					
	11/27/2018	789	992	<151	<0.200	<1.00	<0.500	<1.50					
MW22	4/26/2018	6,960	4,690	<377	118	28.8	102	196					<0.200
1010022	8/30/2018	2,040	1,150	<748 ec	30.4	5.34	30.5	55.9					
	4/25/2018	<100	419	<381	<0.200	<1.00	<0.500	<1.50					<0.200
MW23	8/29/2018	<100	266	<150	<0.200	<1.00	<0.500	<1.50					
	11/27/2018	<100	380	<151	<0.200	<1.00	<0.500	<1.50					
MW24	8/30/2018	<100	220	<150	<0.200	<1.00	<0.500	<1.50					
1010024	11/29/2018	154	914	<151	<0.200	<1.00	<0.500	<1.50					
NA)A/25	8/30/2018	<100	<74.8	<150	<0.200	<1.00	<0.500	<1.50					
MW25	11/27/2018	<100	121	<151	<0.200	<1.00	<0.500	<1.50					
NAN/26	8/30/2018	<100	128	<150	<0.200	<1.00	<0.500	<1.50					
MW26	11/29/2018	<100	<75.5	<151	<0.200	<1.00	<0.500	<1.50					
N 4) A / 2 7	8/30/2018	<100	118	<150	<0.200	<1.00	<0.500	<1.50					
MW27	11/29/2018	<100	<75.5	<151	<0.200	<1.00	<0.500	<1.50					
NA14/20	8/30/2018	<100	105	<150	<0.200	<1.00	<0.500	<1.50					
MW28	12/1/2018	385	486	<158	0.208	<1.00	<0.500	<1.50					
NA14/20	8/28/2018	<100	459	<150	<0.200	<1.00	<0.500	<1.50					
MW29	11/29/2018	<100	238	809	<0.200	<1.00	<0.500	<1.50					

		Fuels	1			1	Volatiles	5	1			Metals
	H d 20 µg/L	H dx Q µg/L	Ha az O µg/L	eue Benzen Benzenzenzen	euene μg/L	T/8π T/8π	Xylene, Total ۲	۲/ ^{Bh} T	Ш Н Ч Ш Ч Ц Ц	Ω Ω μg/L	Ο ED μg/L	Total Lead
WA MTCA Method A Cleanup for Groundwater	800/1000	500	500	5	1,000	700	1,000	160	20	0.01	5	15
Benzene (Non Detect)	1,000				· · · ·							
Benzene (Detect)	800											

Field ID	Date												
MW30	8/28/2018	<100	193	<150	<0.200	<1.00	<0.500	<1.50					
10100 50	11/29/2018	<100	304	<151	<0.200	<1.00	<0.500	<1.50					
MW31	8/28/2018	<100	<74.1	<148	<0.200	<1.00	<0.500	<1.50					
1010031	12/1/2018	<100	<75.5	<151	<0.200	<1.00	<0.500	<1.50					
MW32	8/29/2018	139	161	<148	<0.200	<1.00	<0.500	<1.50	<2.00	<1.00	<0.500 ec	<0.500	
1010032	11/28/2018	<100	<75.5	<151	<0.200	<1.00	<0.500	<1.50					

Notes:

Red denotes concentration in excess of MTCA Method Cleanup Level for Groundwater. MTCA Method A Cleanup Levels, WAC 173-340-720 through 173-340-760, revised Nov., 2007

GRPH (gasoline range petroleum hydrocarbons) analyzed by Method NWTPH-Gx. DRPH (diesel range petroleum hydrocarbons) and ORPH (oil range petroleum hydrocarbons) analyzed by Method NWTPH-Dx.

VOCs = volatile organic compounds

VOCs analyzed by EPA Method 8260C Total Lead by EPA Method 6020

< = less than method reporting limit shown

--- = not analyzed. MW15 and MW18 not sampled due to lack of water in the well.

ec = Method reporting limit exceeds Clean Up Level shown.

F and O = hydrocarbons indicative of heavier fuels are present in sample and impacting the gasoline result (Farallon 2017b)

N1 = hydrocarbons in the diesel-range are impacting the oil result (Farallon 2017b)

Table 4Groundwater Analytical Results - PAHsColeman Oil SiteWenatchee, Washington

	Acenaphthene	Acenaphthylene	Anthracene	Benz [a] anthracene	Benzo [a] pyrene	Benzo [b] fluoranthene	Benzo [k] fluoranthene	Benzo (g,h,i) perylene	Chrysene	Dibenz [a,h] anthracene
	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
WA MTCA Method A					0.1					
Cleanup Level for										
Groundwater										

Field ID Date

1		0 102									
MW21	4/26/2018	0.193	<0.0935	0.145	<0.0935	<0.0935	<0.0935	<0.0935	<0.0935	<0.0935	<0.0935
MW22	4/26/2018	113	<12.3	8.48	0.284	<0.0943	<0.0943	<0.0943	<0.0943	0.243	<0.0943
	8/30/2018	43.4	4.21	3.32	0.156	<0.0374	<0.0374	<0.0374	<0.0374	0.156	<0.0374
MW32	8/29/2018	<0.0370	<0.0370	<0.0370	<0.0370	<0.0370	<0.0370	<0.0370	<0.0370	<0.0370	<0.0370

		Dibenzofuran	Fluoranthene	Fluorene	Indeno [1,2,3-cd] pyrene	1- Methyl- naphthalene	2-Methyl- naphthalene	Naphthalene	Phenanthrene	Pyrene	TEQ
		μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
WA MTC	A Method A							160			0.1
-	D Level for										
Grou	ndwater										
Field ID	Date										
MW21	4/26/2018	0.103	<0.0935	0.144	<0.0935	1.48	0.494	1.16	<0.0935	<0.0935	0.0706
MW22	4/26/2018	8.55	3.2	36.7	<0.0943	298	210	692	36.6	4.30	0.0968
1010022	8/30/2018	3.34	1.49	14.0	<0.0374	94.2	92.2	189	13.7	2.43	0.0433
MW32	8/29/2018	<0.0370	<0.0370	0.0382	<0.0370	<0.0741	<0.0741	<0.0833	<0.0370	<0.0370	0.0279

Notes:

Red denotes concentration in excess of MTCA Method Cleanup Level for groundwater.

MTCA Method A Cleanup Levels, WAC 173-340-720 through 173-340-760, revised Nov., 2007

< = less than method reporting limit shown

ug/L = micrograms per liter (parts per billion)

PAHs by EPA Method 8270D SIM

TEQ = Toxic Equivalent Concentration per Ecology Focus Sheet. One-half the detection limit used for non-detected concentrations.

Location	Date	TOC	Total Depth	DTW	GWE	Mid-Point	Mid-Point Elevation	Mid-Point Elevation Difference	GWE Difference	Gradient (ft/ft)
MW-1	8/27/2018	658.01	35	12.17	645.84	23.59	634.43	-6.97	-0.60	0.086
MW-1	8/31/2018	658.01	35	12.20	645.81	23.60	634.41	-6.97	-0.60	0.086
MW-1	11/26/2018	658.01	35	11.36	646.65	23.18	634.83	-6.94	-0.65	0.094
MW-1	11/30/2018	658.01	35	11.38	646.63	23.19	634.82	-6.97	-0.60	0.086
MW01S	8/27/2018	657.54	19.99	12.30	645.24	16.15	641.40			
MW01S	8/31/2018	657.54	19.99	12.33	645.21	16.16	641.38			
MW01S	11/27/2018	657.54	19.99	11.54	646.00	15.77	641.78			
MW01S	11/30/2018	657.54	19.99	11.51	646.03	15.75	641.79			
Location	Date	TOC	Total Depth	DTW	GWE	Mid-Point	Mid-Point Elevation	Mid-Point Elevation Difference	GWE Difference	Gradient (ft/ft)
MW-3	8/27/2018	658.26	35	7.75	650.51	21.38	636.89	-7.62	-0.38	0.050
MW-3	8/31/2018	658.26	35	7.80	650.46	21.40	636.86	-7.63	-0.34	0.045
MW-3	11/26/2018	658.26	35	7.78	650.48	21.39	636.87	-7.73	-0.15	0.019
MW-3	11/30/2018	658.26	35	7.89	650.37	21.45	636.82	-7.74	-0.13	0.017
MW03S	8/27/2018	658.17	19.3	8.04	650.13	13.67	644.50			
MW03S	8/31/2018	658.17	19.3	8.05	650.12	13.68	644.50			
MW03S	11/26/2018	658.17	19.3	7.84	650.33	13.57	644.60			
MW03S	11/30/2018	658.17	19.3	7.93	650.24	13.62	644.56	I		

Notes:

All Units in feet

			1
		Total	
		Depth	
Well ID	Location of Well	(feet)	Required Laboratory Analyses
MW-1	Coleman Facility - South of USTs used for Cardlock	35.00	Discontinue Sampling per Ecology Approval ¹
MW01S	Coleman Facility - South of USTs used for Cardlock	19.99	NWTPH-Gx, NWTPH-Dx, 8260C (BTEX)
MW-2	Coleman Facility - North of USTs used for Cardlock	40.00	Discontinue Sampling per Ecology Approval ¹
MW-3	Coleman Facility - Southwestern corner of Tank Farm A	35.00	Discontinue Sampling per Ecology Approval ¹
MW03S	Coleman Facility - Southwestern corner of Tank Farm A	19.30	NWTPH-Gx, NWTPH-Dx, 8260C (BTEX)
MW-4	Coleman Facility ~ 30' North of MW-2	37.00	Discontinue Sampling per Ecology Approval ¹
MW-5	East of Worthen Street ~ 45' South and ~80' east of R99 release point	45.00	Discontinue Sampling per Ecology Approval ¹
MW-6	Coleman Facility ~ 20' North of R99 realese point	18.00	NWTPH-Gx, NWTPH-Dx, 8260C (BTEX)
MW-7	Coleman Facility ~ 13' North of former dry well	20.00	Discontinue Sampling per Ecology Approval ¹
MW-8	Coleman Facility - Northeast corner of former Storage Building	25.00	NWTPH-Gx, NWTPH-Dx, 8260C (BTEX)
MW09R	Chehalis Street ~ 15' east of railroad	32.60	NWTPH-Gx, NWTPH-Dx, 8260C (BTEX)
MW10R	East of Worthen Street ~ 410' north of R99 release point	33.59	NWTPH-Gx, NWTPH-Dx, 8260C (BTEX)
MW-11	Coleman Facility - North Central area	22.00	NWTPH-Gx, NWTPH-Dx, 8260C (BTEX)
MW12	Coleman Facility - Southwestern corner of Site	19.52	NWTPH-Gx, NWTPH-Dx, 8260C (BTEX)
MW13	Coleman Facility - in Footprint of Tank Farm B	19.80	NWTPH-Gx, NWTPH-Dx, 8260C (BTEX)
MW14	Coleman Facility ~ 80' north of former Tank Farm B	20.02	NWTPH-Gx, NWTPH-Dx, 8260C (BTEX)
MW15	East of Worthen Street ~ 20' north and 80' east of R99 release point	35.10	NWTPH-Gx, NWTPH-Dx, 8260C (BTEX)
MW16	Chehalis Street ~ 18' east of railroad	29.15	NWTPH-Gx, NWTPH-Dx, 8260C (BTEX)
MW17	Chehalis Street ~ 80' East of MW16	29.41	NWTPH-Gx, NWTPH-Dx, 8260C (BTEX)
MW18	East of Worthen Street ~ 120' north North & ~ 80' east of R99 release p	34.65	NWTPH-Gx, NWTPH-Dx, 8260C (BTEX)
MW19	In Worthen Street - ~40' North of Chehalis Street intersection	31.48	NWTPH-Gx, NWTPH-Dx, 8260C (BTEX)
MW20	In Worthen Street - ~75' North of MW19 & ~ 30' west of RW-1	29.50	NWTPH-Gx, NWTPH-Dx, 8260C (BTEX)
MW21	East of Worthen Street ~ 470' north of R99 release point	32.10	NWTPH-Gx, NWTPH-Dx, 8260C (BTEX)
MW22	East of Worthen Street ~ 560' north of R99 release point	39.10	Discontinue Sampling per Ecology Approval ¹
MW23	Former Dry Well Location	22.04	NWTPH-Gx, NWTPH-Dx, 8260C (BTEX)
MW24	East of Worthen Street ~ 435' north of R99 release point	34.25	NWTPH-Gx, NWTPH-Dx, 8260C (BTEX)
MW25	East of Worthen Street ~ 390' north of R99 release point	32.96	NWTPH-Gx, NWTPH-Dx, 8260C (BTEX)
MW26	East of Worthen Street ~ 360' north of R99 release point	32.52	NWTPH-Gx, NWTPH-Dx, 8260C (BTEX)
MW27	East of Worthen Street ~ 330' north of R99 release point	38.74	NWTPH-Gx, NWTPH-Dx, 8260C (BTEX)
MW28	East of Worthen Street ~ 300' north of R99 release point	38.74	NWTPH-Gx, NWTPH-Dx, 8260C (BTEX)
MW29	East of Worthen Street ~ 255' north of R99 release point	39.11	NWTPH-Gx, NWTPH-Dx, 8260C (BTEX)
MW30	East of Worthen Street ~ 235' north of R99 release point	39.79	NWTPH-Gx, NWTPH-Dx, 8260C (BTEX)
MW31	East of Worthen Street ~ 195' north of R99 release point	39.28	NWTPH-Gx, NWTPH-Dx, 8260C (BTEX)
MW32	Chehalis Street ~ 40' East of MW16	34.02	NWTPH-Gx, NWTPH-Dx, 8260C (BTEX)
BH-1	East of Worthen Street ~ 280' north of R99 release point	30.00	NWTPH-Gx, NWTPH-Dx, 8260C (BTEX)
BH-2	East of Worthen Street ~ 240' north of R99 release point	35.00	NWTPH-Gx, NWTPH-Dx, 8260C (BTEX)
BH-3	East of Worthen Street ~ 340' north of R99 release point	30.00	NWTPH-Gx, NWTPH-Dx, 8260C (BTEX)
RW-1	East of Worthen Street ~ 315' north of R99 release point	30.00	NWTPH-Gx, NWTPH-Dx, 8260C (BTEX)

Notes:

¹Washington State Department of Ecology. *Ecology Comments on Supplemental Remedial Investigation Report*. August 16, 2018.

APPENDIX A

Undrage			Waratchee				- W	I.D. Number: Time: 1230
Hyuroco Date	n Project # <u>:</u> ۱۱/۲۹		0.79		Field Duplica Personnel:		CD	Time: -
Date	11/01	-110			Personner:		42	
Monume Well cap Headspa Well diar	o condition: ace reading:	: 🔀 Good X Good X Not me X 2-inch	Replaced	l 🗌 Needs re ppm	eplacement Doc nch Dot	Surface V	Vater in Well	
Total we Depth to Depth to Casing vo	product water <u>(\ ,</u> olume2	35.00 ft ft 36 ft 3.64 ft (Intake Dept H ₂ O) X	h (BTOC) <u>i</u> IC_gal/ft	★ Not measur 6' Begi = 3 · 1 × 8 2"=0.16 gal/	n Purging Wel gal. X 3 =_	1: 1202	_ al.
Pump tyj Bailer tyj	pe:	taltic 🗌 Cer V	ntrifugal 🔲	Dedicated Blac	dder 🔲 Non- d 🔀 Remedia	tion System	Other	
FIELD I	PARAMETE	RS		1	1	Odor and/or	Sheen: Eit -	molerate petra
Time	Water Level (BTOC)	Purge Rat (L/min)	e Temp. (°C)	Sp. Cond. (mS/cm) (±3%)	Dissolved Oxygen (±10% or ≤1.00 ±0.2)	pH (SU) (±0.1)	ORP (mV)	Turbidity (NTU) (± 10% or ≤10
1205	11.45		15.8	. 191	5.50	7.68	138.4	33,1
8051	11.46		16.8	-155	5.91	7.56	89.4	32.5
1151	11.48	0.11	16.9	.155	5.86	7.28	25.4	33-1
1214	11.47		16.9	.318	4.72	6.96	67.8	23.3
1217	11.47		17.0	.382	3.66	6.94	59.3	23.3
1220	11.47		16.9	-409	3.10	6.94	54.3	24.0
	11.47		16.9	.418	2.82	6.94	50.0	23.5
1223	11.48		16.9	. 423	2.52	6.95	46.6	22.9
	11.10							
1223	11-1-12		-		10	10		
	() - T-D		Cinn -	0 0	0,12	30		
1226		<	Samp	sie	2,12	30		
tabilizatio	on achieved if th		measurements	for pH, Conductiv	ity and Turbidity	or Dissolved Ox	ygen are recorde	d within their
tabilizatio	on achieved if the stabilization c		measurements	sie		30 or Dissolved Ox	vgen are recorde	d within their
tabilizatio	on achieved if th		measurements	for pH, Conductiv		or Dissolved Ox	ygen are recorde	d within their
Stabilizatio perspective Purging Co	on achieved if the stabilization comments:	riteria. A minir	measurements	for pH, Conductiv		or Dissolved Ox	ygen are recorde	d within their
§ 2 2 6 Stabilizatio Derspective Purging Co SAMPLE	on achieved if the stabilization comments:	riteria. A minir TION	measurements num of six meas	for pH, Conductiv				d within their
§ 2 2 6 Stabilizatio Derspective Purging Co SAMPLE	on achieved if the stabilization comments:	riteria. A minir TION Bottle Prese	measurements num of six meas	for pH, Conductiv		or Dissolved Oxy		d within their
§ 2 2 6 Stabilizatio Derspective Purging Co SAMPLE Contain	on achieved if the stabilization comments: E INFORMA	riteria. A minir TION Bottle Count	measurements num of six meas ervative Field	for pH, Conductiv surements should d Filtered?	be recorded.	Analy		ed within their
stabilizatio berspective Purging Co SAMPLE Contain	on achieved if the stabilization comments: E INFORMA ner Type	riteria. A minir TION Bottle Count 3	measurements num of six meas ervative Field	d Filtered?		Analy		ed within their
tabilizatio perspective Purging Co SAMPLE Contain	on achieved if the stabilization comments:	riteria. A minir TION Bottle Count 3	measurements num of six meas ervative Field Ci NO Ci NO	for pH, Conductiv surements should d Filtered?	be recorded.	Analy		ed within their

No 0.45 0.10

Project Name:(Hydrocon Projec		011 Wenat		Sample I.D.	MWO15-	W	_Time: <u>1310</u> _Time: <u></u>
Datei				Personnel:	ate 1.D	CD	
Headspace reading	ion: 🔀 G on: 🔀 G g: 🗶 N 🗌 2	lot measured -inch	eds repair placed Needs r ppm] 4-inch 6-i	00	dor		
Depth to product_ Depth to water Casing volume	13.19 11.54 8.54 on Factors	ft Botton ft ft Intake ft (H ₂ O) X : 3/4"=0.02 g	m:	<u>כי</u> Begi = <u>5, 49</u>	in Purging Well gal. X 3 =_	1250 16.47 g	al.
Pump type 🔣 Pe	ristaltic	🗌 Centrifuga	l 🔲 Dedicated Bla sposal:: 🗌 Drumme				
FIELD PARAM	TERS				Odor and/or	Sheen: V Fin	t petro olor
Time Wat Lev (BTC	el (L		emp. (°C) Sp. Cond. (mS/cm) (±3%)	Dissolved Oxygen (±10% or ≤1.00 ±0.2)	pH (SU) (±0.1)	ORP (mV)	Turbidity (NTU) (± 10% or ≤10)
1252 11.1	3		.9 .692	4.09	6.92	127.4	2.67
1255 11.5			4.1 .711	3.30	6.99	86.5	2.71
1253 11.5			-5 ,717	3.08	7.02	83.2	2,00
1304 11-5	-		.5 +717	3.02	7.02	83.2	2.26
1307 11.5			1.4 ,717	3.00	7.02	81.7	2.11
	_						
	5	and	ste (w	1310)		
				1			
			ments for pH, Conducti ix measurements should		or Dissolved Oxy	gen are record	ed within their
Purging Comments							
SAMPLE INFOR	MATION						
Container Typ	e Bottle Count	Preservative	Field Filtered?		Analy	sis	
40-1 VO.A	3	Iter	No 0.45 0.10		GA, BTE	x	
16 omber	1	1401	No 0.45 0.10		DX	14	
			No 0.45 0.10				
			No 0.45 0.10				
			No 0.45 0.10				

GROUNDWATER SAMPLE COLLECTION FORM Well I.D. Number: MW03S

Hydroco	n Project #:	11:0 mon 0:11 0-7:05 18	74		Sample I.D Field Duplica Personnel:	MW03.5 - te I.D	-	Time: <u>1140</u> Time: <u>-</u>
Monume Well cap Headspa Well dia	condition: ce reading: meter:	: 🗙 Good [🔀 Good [Replaced sured X 4-inch	Needs re	eplacement Od ach Otł	Surface W	ater in Well	
Total we Depth to Depth to Casing ve	product water olume	<u>1.30</u> ft <u>-</u> ft <u>⊦.34</u> ft <u>.,46</u> ft (H	Intake Depth $_{2}$ O) X <u>0,6</u>	(BTOC) <u>(</u> gal/ft	X Not measure 2 Begir = Begir 2″=0.16 gal/f	Purging Well: gal. X 3 =	1118 22.35 ga	_ al.
Pump ty Bailer ty	pe 🔀 Perist pe:	Wa	rifugal 🗌 De		dder □ Non-E d 🔀 Remediat	ion System 🗌	Other	
FIELD I	PARAMETE	RS	1		Landa and L	Odor and/or S	Sheen:	Voine
Time	Water Level (BTOC)	Purge Rate (L/min)	Тетр. (°С)	Sp. Cond. (mS/cm) (±3%)	Dissolved Oxygen (±10% or ≤1.00 ±0.2)	pH (SU) (±0.1)	ORP (mV)	Turbidity (NTU) (± 10% or ≤10)
1121	7.95		15.3	.446	2.13	7.25	137.0	17.4
11:24	8.00	0.160	16.3	.449	0.82	7.35	52.9	19.1
1127	8.06	0.160	16.4	. 451	0.66	7.35	29.3	13.7
1133	8.20		16.7	.451	0.51	7.32	25.1	9.70
1136	8.25		16.7	,451	0.49	7.29	32.5	12.3
				0				
			1			-		
		5	Impl	e la	140			
		5.	mp	e le	21140			
Stabilizatio	e stabilization c	nree successive m rriteria. A minimu	im of six measur	ements should	ity and Turbidity of be recorded.	or Dissolved Oxyg	gen are recorde	d within their
Stabilizatio perspectiv Purging C	e stabilization c	riteria. A minimu	im of six measur	ements should	ity and Turbidity of be recorded.	or Dissolved Oxyg	gen are recorde	d within their
Stabilizatic perspective Purging C SAMPLI	e stabilization c omments: <u> </u>	riteria. A minimu	im of six measur うったい	ements should	ity and Turbidity of be recorded.	or Dissolved Oxyg Analys		d within their
Stabilizatio perspective Purging C SAMPLI Contain	e stabilization c omments: E INFORMA ner Type	TION Bottle Preserv	vative Field I	Filtered?	ity and Turbidity of be recorded.	Analys	sis	d within their
Stabilizatio perspective Purging C SAMPLI Contain	e stabilization c omments: <u>e</u> E INFORMA ner Type	TION Bottle Preserv	vative Field I	Filtered? 45 0.10 45 0.10	ity and Turbidity of be recorded.	Analys	sis	d within their
Stabilizatio perspective Purging C SAMPLI Contain	e stabilization c omments: E INFORMA ner Type	TION Bottle Count 3 HC	vative Field I i NO 0. i NO 0. NO 0.	Filtered?	ity and Turbidity of be recorded.	Analys	sis	d within their

Ori Weokkey Sample I.D. $M \& 0.6 - W$ Time: $I_{0.05}$ Project #: $20+1 - 0$ T4 Date						Well I.	D. Number: /
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Hydrocon Project #:	2017 - 074		Field Duplic	ate I.D. <u>M</u> w	1107 - W 7	
Total well depth $1 & 0 \\ 1 & 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	Monument condition: Well cap condition: Headspace reading: Well diameter:	Good N Good F Not measure 2-inch	ed ppm 🔀 4-inch 🗌 6-i		dor		
Purge Rate (L/min)Dedicated BladderNon-Dedicated BladderOtherGailer type:Water Disposal:Drummed X Remediation SystemOtherFIELD PARAMETERSOdor and/or Sheen:Ture Sp. Cond. (mS/cm)Odor and/or Sheen:Turbidity (NTU) (±10% or s10)Time Water Level (BTOC)Image Rate (L/min)Temp. (\mathbb{C} Dissolved Oxygen (mS/cm) (±3%)PH (su)ORP (mV)Turbidity (NTU) (±10% or s10)IS45IO. 53 IMA: 4Sisolved Oxygen (mS/cm) (±10% or (±10% or 	Total well depth 8 Depth to product 10 Depth to water 10 Casing volume 7 Volume Conversion Factors 10	$\begin{array}{c} \bullet \bullet$	ake Depth (BTOC)	<u>4'</u> Beg =4.67	in Purging Well gal. X 3 =_	। <u>।५.७</u> ga	i.
TimeWater Level (BTOC)Purge Rate (L/min)Temp. ($^{(0)}$ Dissolved Sp. Cond. ($^{(mS/cm)}$ DH 	Pump type 🛛 Perista Bailer type:	altic 🗌 Centrifu Water	gal 🔲 Dedicated Bla Disposal:: 🗌 Drumme	adder 🗌 Non ed 🔀 Remedia	ation System [Other	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Time Water Level	Purge Rate	(°C) (mS/cm)	Oxygen (±10% or	pH (SU)	ORP	Turbidity (NTU)
	1545 10.23 1548 10.22 1551 10.22 1554 10.22 1554 10.22 1557 10.22	0.155	14.4 .582. 15.5 .594 6.0 .595 6.2 .595 16.4 .597	0.53 0.35 0.28 0.24	6.95 6.95 6.93 6.93 6.91	-28.4 - <u>29.0</u> -32.9 -34.9	3.06 2.63 2.47 2.47 2.43 3.69
				1.0			
		TION					
Purging Comments:		the second se	^{ye} Field Filtered?		Analy	vsis	
SAMPLE INFORMATION	Container Type	COUNT	No 0.45 0.10	G- >	K, BTIEK		

Project Na Hydrocon Date	Project #:	201		Wenatchi 1	ve	Field Duplic	MW07 ate I.D	-W	I.D. Number: M Time: 0325 Time:
WELL IN Monumen Well cap Headspace Well diam Comments	t condition condition: e reading: eter:	n: 🔀 G 🔀 G 🗶 N 🗌 2	lot measu -inch	Needs repa Replaced red X 4-inch	air	eplacement D O nch D O	_ 🗌 Water in	Monument Vater in Well	
Depth to p Depth to w Casing vol	depth oduct ater ume	.50 .50	ft Bo ft ft In ft (H ₂ C	take Depth)) X <u>0 • G</u>	(BTOC) <u> </u>	Not measu 5' Beg = <u>5.525</u> 2"=0.16 gal/	in Purging Wel gal. X 3 =_	15.575 g	al.
Bailer type	e 🔀 Peris	taltic	Centrif	fugal 🔲 De er Disposal::	edicated Bla Drumme	dder 🗌 Non- d 🔀 Remedia	ation System [Other	
FIELD PA	ARAMETI	ERS					Odor and/or	Sheen: V to	int petro odor
Time	Water Level (BTOC)		ge Rate /min)	Тетр. (°С)	Sp. Cond. (mS/cm) (±3%)	Dissolved Oxygen (±10% or ≤1.00 ±0.2)	pH (SU) (±0.1)	ORP (mV)	Turbidity (NTU) (± 10% or ≤10)
0907 0910 0913	11.55			13.2	· 730 • 713	H.19 0.53	6.67	119.1	1.89 1.87 7.98
0916	11.56		150	16.4	.716	0.43 0.37 0.32	6.29 6.92 6.95	34.0 27.9 21.8	8.43
0922	11.58			16.6	,712	0:31	6.93	13.1	7,93
			5	0 MAA	24	∂c	975		
					1.0		100		
	tabilization				· pH, Conductiv ements should	vity and Turbidity l be recorded.	or Dissolved Oxy	/gen are recorde	d within their
SAMPLE	NFORMA	TION							
Contain	er Type	Bottle Count	Preservat	ive Field I	Filtered?		Analy	sis	
	Vo.4	3	1+4		45 0.10 45 0.10	G-	X, BTEX		
				No 0. No 0.	45 0.10 45 0.10				
				No 0.	45 0.10				

GROUNDWATER SAMPLE COLLECTION FORM Well I.D. Number: MW08

Hydrocon	n Project #:	2017-01 28/12	574	ee	Sample I.D Field Duplica Personnel:	MW(28-W 	Time: <u>1030</u> Time: <u> </u>
Monumer Well cap Headspac Well dian	condition: ce reading: neter:	: X Good [X Good [X Not meas 2-inch	Replaced sured 4-inch	□ Needs re ppm □ 6-in	eplacement Dod ach Dot المعال الماحة	Surface V lor her	Water in Well	
Total well Depth to p Depth to v Casing vo	oroduct vater <u>16</u> Jume& -	<u>- ft</u> - ft <u>- ft</u> - <u>6 ft</u> (H	Intake Depth (20) X _ 0.6	(BTOC) 2 gal/ft	= 5, 82	n Purging We gal. X 3 =	Interval(s): II: <u>いい</u> <u>、46g</u> a I/ft_6"= 1.47 g	- I.
Pump typ Bailer typ	oe 🔀 Perist oe:	Wa	rifugal 🗌 De	edicated Blac	dder 🔲 Non-J d 🔀 Remedia	tion System	adder Other_ Other r Sheen:	
FIELD P	ARAMETE	RS			Dissolved	Udor and/o	r Sneen: made	The permostal
Time	Water Level (BTOC)	Purge Rate (L/min)	Temp. (°C)	Sp. Cond. (mS/cm) (±3%)	Oxygen (±10% or ≤1.00 ±0.2)	pH (SU) (±0.1)	ORP (mV)	Turbidity (NTU) (± 10% or ≤10)
1014	16.10		14.4	,80%	1.35	6.28	-47.6	1.90
F101 0201	16.13		16.3	. 810	0.76	6.98	-54.0	
1073	16-15	0.155	16.4	. 810	0.46	6.96	- 53.2	2.05
1026	16.16		16.5	.810	0.42	6.96	- 58.7	
1005	16.17		16.5	. 210	0.43	6.95	-53.7	1.74
1029		1 M						
10 4 3			1					
10.63		0		1		270		
10 4-1		Se	mp	ste (al	030)	
		Se	mp	ste (230		
Stabilizatio						or Dissolved Ox	xygen are recorde	d within their
Stabilizatio	stabilization o	aree successive m riteria. A minim				or Dissolved Ox	kygen are recorde	d within their
Stabilizatio perspective Purging Co	stabilization comments:	riteria. A minim				or Dissolved Ox	kygen are recorde	d within their
Stabilizatio perspective Purging Co SAMPLE	stabilization of omments:	riteria. A minimu	um of six measur	ements should				d within their
Stabilizatio perspective Purging Co SAMPLE	stabilization comments:	TION Bottle Count	um of six measur	Filtered?		Anal		d within their
Stabilizatio perspective Purging Co SAMPLE Contair	stabilization comments:	TION Bottle Count 3	vative Field I	Filtered?				d within their
Stabilizatio perspective Purging Co SAMPLE Contair	e stabilization d comments: CINFORMA ner Type	TION Bottle Count	vative Field I No 0. No 0.	Filtered? 45 0.10 45 0.10		Anal		d within their
Stabilizatio perspective Purging Co SAMPLE Contair	stabilization comments:	TION Bottle Count 3	vative Field I No 0. No 0. No 0. No 0.	Filtered?		Anal		d within their

Project Name:. <u>(</u> Hydrocon Projec Date)	t#: 20		<u>Venat</u> thee		Field Duplic		198-W	I.D. Number: M _Time: <u>1416</u> _Time: _
WELL INFORM Monument condi Well cap condition Headspace readin Well diameter: Comments	tion: 🛛 G on: 🖾 G ng: 🔽 N	ood 🗌 Re	eplaced 🗌	Needs re	eplacement	Surface W	Vater in Well	
PURGING INFO Fotal well depth_ Depth to product_ Depth to water_ Casing volume Volume Conversi	32.60	ft Bottc ft ft Intak ft (H ₂ O) 2	om: 🗌 Hard e Depth (BT X	□ Soft [OC)_2_ _gal/ft 04 gal/ft	Not measur Begi = <u>8.14</u> 2"=0.16 gal/	red Screen I in Purging Well gal. X 3 =_ ft 4"=0.65 gal	nterval(s): <u>2</u> I: <u>1347</u> <u>24.51 g</u> /ft 6"= 1.47	3-33' jal. gal/ft
PURGING/DISF Pump type 🔯 Pe Bailer type: FIELD PARAMI	eristaltic [Centrifug	al 🗌 Dedic Disposal:: 🗌 I	ated Blac Drummee	dder 🔲 Non- d 🔀 Remedia	tion System	Other	the wisher
Time Wat Lev (BTC	er Purg el (L	ge Rate 7 /min)	(°C) (r	b. Cond. nS/cm) (±3%)	Dissolved Oxygen (±10% or ≤1.00 ±0.2)	pH (SU) (±0.1)	ORP (mV)	Turbidity (NTU) (± 10% or ≤10)
1351 20. 1354 20.1 1357 20. 1400 20.1 1403 20.1 1403 20.1 1406 20.1	17 18 20 21 0,	145 11 145 11	3.9 1.8 5.0 5.1 5.1	829 899 914 916 919 920	1.28 0.64 0.36 0.32 0.26 0.24	6.72 6.75 6.95 6.94 6.94 6.94	-4.0 -7.0 0.0 1.4 1.1 0.7	6.43 5.87 6.22 6.71 6.58 5.99
Stabilization achieved		500	mp)	
Stabilization achieved perspective stabilizat Purging Comments: SAMPLE INFOR	ion criteria. Well	A minimum of s	six measureme	nts should	be recorded.	-	Men are record	ed within their
Container Typ	e Bottle Count	Preservative	Field Filte	red?		Analy	sis	
10 ml Vor	4 3 1	1401 HCI	No 0.45 No 0.45 No 0.45 No 0.45 No 0.45	0.10 0.10	C	tx, BT	ex	

Hydrocor		2017 2017 7/18		re	Sample I.D Field Duplica Personnel:	te I.D	2-W	I.D. Number: M Time: <u>1955</u> Time:
Monumer Well cap Headspac Well dian	condition: ce reading: neter:	Good [Good [Not meas] 2-inch	Replaced ured 4-inch	□ Needs re ppm □ 6-ir	eplacement Od nch Ot	Surface V lor her	Vater in Well	
Total wel Depth to p Depth to v Casing vo Volume C	vater 2 lume 5	<u>577</u> ft <u>5.52</u> ft <u>5.61</u> ft <u>7.98</u> ft(H;	Intake Depth $(0, 0, 0)$	(BTOC) 5gal/ft	Not measur 28 Begin = <u>5.19</u> 2"=0.16 gal/f	n Purging Wel gal. X 3 =_	1124 15.57 g	_ al.
Pump typ Bailer typ	e 🛛 Perista	lltic 🗌 Centr Wa	ifugal 🔲 D ter Disposal::	edicated Blae	dder 🗌 Non-I d 🔀 Remediat	tion System [Other	odor; heavy sh
Time	Water Level (BTOC)	Purge Rate (L/min)	Тетр. (°С)	Sp. Cond. (mS/cm) (±3%)	Dissolved Oxygen (±10% or ≤1.00 ±0.2)	pH (SU) (±0.1)	ORP (mV)	Turbidity (NTU) (± 10% or ≤10)
1127 1130 1135 1136 1136 1137 1142	25.00 25.82 25.86 25.90 25.92 25.92	0.165	13.8 13.8 13.9 14.1 14.3 14.3	.942 .955 .962 .964 .965 .967	1.40 0.91 0.59 0.49 0.49 0.44	6.97 7.22 7.17 7.17 7.17 7.23	4.6 -3.6 -14.7 -19.0 -21.3 -23.3	2,54 2.20 2.64 2.56 2,51 2.62
		Sa	mple		145			
perspective	stabilization cri	ee successive me iteria. A minimu Product (m of six measu	rements should	ity and Turbidity of be recorded.	or Dissolved Oxy Sampling		ed within their
SAMPLE Contain		Bottle Preserv	ative Field	Filtered?		Analy	sis	
40,~	nber	3 HC	No 0.	.45 0.10 .45 0.10 .45 0.10 .45 0.10 .45 0.10	Gx	BTEX Dx		

Hydr	000	Cor	1		SAMP	PLE COLLE	CTION F		I.D. Number: M
Hydrocor	ame:. <u>Colc</u> Project # <u>:</u> \(27	201	7 - 070	1		Field Duplica	ate I.D	- W	Time:
Monumer Well cap Headspac Well dian	FORMAT at condition: condition: e reading: neter: ss	n:	ot measui inch	ed 4-inch	air D Needs ro ppm 6-in	eplacement Doc nch Dot	Water in Surface V lor her	Monument Vater in Well	
Total well Depth to p Depth to w Casing vo	roduct /ater lume	1.11 7.89	ft Bo ft ft Int ft (H ₂ O	ake Depth) X <u>D.</u>	(BTOC) <u></u> 65 gal/ft	Not measur F' Begi = 5.13 2''=0.16 gal/	n Purging Wel gal. X 3 =_	1: 1501 15.39 ga	_ al.
Pump typ		taltic [Centrif			dder 🗌 Non- d 🙀 Remedia			
FIELD P	ARAMETE	RS					Odor and/or	Sheen: Star	petro alor
Time	Water Level (BTOC)		ge Rate (min)	Тетр. (°С)	Sp. Cond. (mS/cm) (±3%)	Dissolved Oxygen (±10% or ≤1.00 ±0.2)	pH (SU) (±0.1)	ORP (mV)	Turbidity (NTU) (± 10% or ≤10)
1503	14.10			15.7	.711	0.94	6-75	-44.9	1.98
1506	14.10	0.1	15	16.6	.719	0.40	6.96	-49.4	1.45
1509	14.10			16.9	.726	0,32	7.00	-52.4	1035
1512	14.10	-		16.9	.728	0.24	6.97	-51.6	1.48
1518	1440			16.9	.728	0.22	6.97	-51,1	1.40
		C	>cmv	ple		15 ZO			
	stabilization o				r pH, Conductiv rements should	ity and Turbidity be recorded.	or Dissolved Ox	ygen are recorde	d within their
SAMPLE	INFORMA	TION							
Contain	er Type	Bottle Count	Preservati	ve Field	Filtered?		Analy	sis	
	OA	3	HU		.45 0.10	Gx	, BTEX		
1 Lam	ber	1	Hel	NO 0	.45 0.10		DX		

No0.450.10No0.450.10No0.450.10

Project Name:C Hydrocon Project # Date	1: 20	17 - 074	Venatchee			Mwlz- ate I.D	W	I.D. Number: Time: <u>10555</u> Time: <u></u>
WELL INFORMA Monument condition Well cap condition Headspace reading Well diameter: Comments	$\begin{array}{c} \text{on:} & \swarrow & G \\ \vdots & & \swarrow & G \\ \vdots & & \bigstar & N \\ & & & \square & 2 \end{array}$	iood 🗌 Re lot measured -inch 🛛 🗽	eplaced l 4-inch	Needs re	eplacement	_ [] Water in [] Surface W dor ther	/ater in Well	
PURGING INFOR Total well depth Depth to product Depth to water Casing volume Volume Conversior	19.52 7.88 11.64	ft Botto ft ft Intak ft (H ₂ O) X	e Depth (BT	OC) <u> </u> gal/ft	2' Beg = 7.57	in Purging Well gal. X 3 =	1034 22.71 ga	_ al.
PURGING/DISPO Pump type 🔀 Peri Bailer type:	staltic	Centrifug	al 🗌 Dedio isposal::	ated Blac Drummed	lder 🗌 Non- l 🏹 Remedia	tion System] Other	
FIELD PARAMET	ERS					Odor and/or	Sheen: N	oine.
Time Water Level (BTOC	(L	ge Rate 7 /min)		p. Cond. mS/cm) (±3%)	Dissolved Oxygen (±10% or ≤1.00 ±0.2)	pH (SU) (±0.1)	ORP (mV)	Turbidity (NTU) (± 10% or ≤10)
1057 7.96				406	4.22	6.88	156.8	1.64
1040 8.04				349	3.11 2.97	7.09	103.1	1.37
1046 8.27			6.6	. 335	2.91	7.18	99.6	1.46
1049 8.36	0.	170 1		333	2.84	7.19	95.5	1.33
1052 8.43	-	10	6.9	.332	2.86	7.19	93.0	1.64
	-	Sam	nole	\bigcirc	109	5		
		Schw.	· p.c	C				
Stabilization achieved if perspective stabilizatior Purging Comments:	three succ	cessive measure A minimum of s	ements for pH, ix measureme	Conductivi nts should	ity and Turbidity be recorded.	or Dissolved Oxy	gen are recorde	d within their
perspective stabilizatior Purging Comments:	criteria.	cessive measure A minimum of s	ements for pH, ix measureme	Conductivi ents should	ity and Turbidity be recorded.	or Dissolved Oxy	gen are recorde	d within their
perspective stabilizatior Purging Comments:	criteria.	cessive measure A minimum of s	ements for pH, vix measureme	Conductivi ents should	ity and Turbidity be recorded.	or Dissolved Oxy	gen are recorde	d within their
perspective stabilizatior Purging Comments:	ATION	cessive measure A minimum of s Preservative	ements for pH, ix measureme Field Filte	ents should	ity and Turbidity be recorded.	or Dissolved Oxy		d within their
perspective stabilizatior Purging Comments: SAMPLE INFORM Container Type 40 ml VoA	ATION Bottle Count 3	A minimum of s	Field Filte	erred?	ity and Turbidity be recorded. Gx	Analy		d within their
perspective stabilizatior Purging Comments: SAMPLE INFORM Container Type	ATION Bottle Count	A minimum of s	Field Filte	ered? 0.10 0.10	be recorded.	Analy		d within their
perspective stabilizatior Purging Comments: SAMPLE INFORM Container Type 40 ml VoA	ATION Bottle Count 3	A minimum of s Preservative	Field Filte	ered? 0.10 0.10 0.10	be recorded.	Analy:		d within their

GROUNDWATER SAMPLE COLLECTION FORM Well I.D. Number: MW13

Date		2017-07 7/18			Field Duplic	MW13- rate I.D.	~	Time: <u>1355</u> Time: <u></u>
Monumer Well cap Headspac Well dian	condition: ce reading: neter:	🔀 Good 🗌] Replaced ured X 4-inch	□ Needs re	placement	Surface V	Vater in Well	
Total wel Depth to p Depth to v Casing vo	oroduct vater& IumeI	9.30 ft E	ntake Depth 0) X <u>0-6</u>	(BTOC) <u>i</u> <u>s</u> gal/ft	<u>4</u> Beg = <u>7.53</u>	in Purging Wel gal. X 3 =_	1: 1335 22.59 ga	_ al.
Pump typ Bailer typ	e 🗶 Perista be:	AL METHOD altic Centr: Wat				ation System [Other	
FIELD P	ARAMETEI	KS			Dissolved	Odor and/or	Sheen: V Sheen	rong potro och
and a second sec	Water Level	Purge Rate (L/min)	Тетр. (°С)	Sp. Cond. (mS/cm) (±3%)	Oxygen (±10% or ≤1.00 ±0.2)	pH (SU) (±0.1)	ORP (mV)	Turbidity (NTU) (± 10% or ≤10)
Time	the second se		10. 3	. 777	3.40	7.03	-75.7	19.0
Time	(BTOC)		14.3					
1337 1340	(BTOC) 3.0万 名・1子		15.1	.776	6.56	7.16	-74.5	12.1
1337 1340 1343	(BTOC) 3.05 8.17 8.29		15.1	· 776 • 789	0,33	7.18	~74.1	13.1
1337 1340 1343 1346	(BTOC) 3.05 8.17 8.29 8.38	0.153-	15.1 15.3 15.2	· 7-76 • 789 • 793	0,33	7.18	-74.1	12.1 17.6 18.5
1337 1340 1343	(BTOC) 3.05 8.17 8.29	0.153-	15.1	· 776 • 789	0,33	7.18	~74.1	13.1
1337 1340 1343 1346 1349	(BTOC) 3.05 8.17 8.29 8.38 8.45	0.153-	15.1 15.3 15.2 15.3	· 776 • 789 • 793 • 793	0,33 6.30 0.26	7.18 7.15 7.20 7.20	-74.1 -76.4 -76.5	13.1 17.6 18.5 13.7
1337 1340 1343 1346 1349	(BTOC) 3.05 8.17 8.29 8.38 8.45	0.153- So	15.1 15.3 15.2 15.3	· 776 • 789 • 793 • 793	0,33 0,30 0,26 0,24	7.18 7.15 7.20 7.20	-74.1 -76.4 -76.5	13.1 17.6 18.5 13.7
1337 1340 1343 1346 1349 1352 Stabilization	(BTOC) 3.0% 8.17 8.29 9.30 8.45 8.45 8.52 1 achieved if thr stabilization cr	O.153-	15,1 15,3 15,2 15,3 15,3 15,3	. 7 + 6 . 7 89 . 7 93 . 7 94 . 7 93 . 7 94 . 7 93 . 7 94 . 7 9	0,33 0,30 0,26 0,26 0,24	7.18 7.15 7.20 7.20	-74.1 -76.4 -76.5 -76.6	12.1 17.6 18.5 12.7 17.9
1337 1340 1343 1346 1349 1352 Stabilization perspective Purging Co	(BTOC) 3.0% 8.17 8.29 8.45 8.57 achieved if thr stabilization cr mments:	ree successive me riteria. A minimur	15,1 15,3 15,2 15,3 15,3 15,3	. 7 + 6 . 7 89 . 7 93 . 7 94 . 7 93 . 7 94 . 7 93 . 7 94 . 7 9	0,33 0,30 0,26 0,26 0,24	7.18 7.15 7.20 7.20	-74.1 -76.4 -76.5 -76.6	12.1 17.6 18.5 12.7 17.9
1337 1340 1343 1346 1349 1352 Stabilization perspective Purging Co	(BTOC) 3.0% 8.17 8.29 9.30 8.45 8.45 8.52 1 achieved if thr stabilization cr	ree successive me riteria. A minimur	15,1 15,3 15,2 15,3 15,3 15,3	. 7 + 6 . 7 89 . 7 93 . 7 94 . 7 93 . 7 94 . 7 93 . 7 94 . 7 9	0,33 0,30 0,26 0,26 0,24	7.18 7.15 7.20 7.20	-74.1 -76.4 -76.5 -76.6	12.1 17.6 18.5 12.7 17.9

Container Type	Bottle Count	Preservative	Field Filtered?	Analysis
40ml WA	3	(te)	No 0.45 0.10	GX. BTEX
1 L amber	1	itci	No 0.45 0.10	Dx
			No 0.45 0.10	
			No 0.45 0.10	
	1.11		No 0.45 0.10	

lydr	0	Con			SAMP	LE COLLE	CTION FO		I.D. Number:
Hydrocor	ame:. <u>Com</u> Project # <u>:</u> 11 27	20	07 We	natichee y		Sample I.D Field Duplica Personnel:	te I.D	-W	Time: <u>(440</u> Time:
Monumer Well cap Headspac Well dian	e reading:	: 🗙 Go 🗙 Go 🗙 No 2-	ot measur inch	ed	ppm	eplacement Od nch Oth	or		
Total wel Depth to p Depth to v Casing vo	vater <u>%</u> lume]		ft Bo ft ft Int ft (H ₂ O)	ake Depth	(BTOC) s gal/ft	X Not measure 3′ Begir = <u>7,52</u> 2″=0.16 gal/f	Purging Well: gal. X 3 =	1417	al.
Pump typ Bailer typ	e:	taltic [Centrifu			dder 🗌 Non-I d 🔀 Remediat	ion System	Other	
FIELD P	ARAMETI	ERS				Dissolved	Odor and/or	Sheen: mode	rate petro calur
Time	Water Level (BTOC)		e Rate (min)	Temp. (°C)	Sp. Cond. (mS/cm) (±3%)	Oxygen (±10% or ≤1.00 ±0.2)	pH (SU) (±0.1)	ORP (mV)	Turbidity (NTU) (± 10% or ≤10)
1419	8,46			15.6	,351	1.46	7.11	-10.3	12.5
1422	8.49			16.2	- 860	0.68	7.13 7.12	-16,6	6.37
1428	8,51			16.4	. 872	0.24	7.10	-22.1	6.31
1431	8.63	0:		16.4	.971	0.24	707	-23.2	6.61
1434	8.65			6.5	. 870	0 - 22	7.07	-25,1	8.03
			0		0	11.14			
			Ja	mple	-62	1440			
	stabilization				l r pH, Conductiv rements should	ity and Turbidity of be recorded.	or Dissolved Oxy	gen are recorde	ed within their
SAMPLE	INFORMA	TION							
	er Type	Bottle Count	Preservati	-	Filtered?		Analy	Martin and	
Homi		3	HCI		.45 0.10	6	X, BTEX		
	mber	1	1+01		.45 0.10		15X		
					.45 0.10				
		1			.45 0.10				

			Sil Wenait					-W	I.D. Number:
			7-074			Personnel:	ate I.D	CD	_Time:
WELL INF Monument Well cap co Headspace Well diame Comments	condition ondition: reading: eter:	: 🗙 Go 🔀 Go 🗶 No 🗌 2-i	ot measured inch 🛛 🔀	eds repa placed 4-inch	air Deeds re ppm 6-ir	eplacement Oc nch Ot	UWater in Surface V lor her	Monument Vater in Well	
Depth to pro Depth to wa Casing volu	depth2 oduct ater1 ume15	- - - 1.12	ft Botton ft ft Intake ft (H ₂ O) X	e Depth	(BTOC) 19 gal/ft	X Not measur → Begi = <u>12.43</u> 2"=0.16 gal/	n Purging Wel gal. X 3 =_	1: 1100 37.29 g	jal.
	Perist	altic [] Centrifuga			dder 🗌 Non- d 🔀 Remedia	tion System [Other	
FIELD PA	RAMETE	-K5				Dissolved	Odor and/or	Sneen: V Ta	Unt petro de
Time	Water Level (BTOC)			emp. (°C)	Sp. Cond. (mS/cm) (±3%)	Oxygen (±10% or ≤1.00 ±0.2)	pH (SU) (±0.1)	ORP (mV)	Turbidity (NTU) (± 10% or ≤10)
1103	9,93			.4	.729	1.93	7.29	42.7	2,10
1106	9.98			.0	-727	1.06	7.35	46.2	1.12
1112	10.07	0,1	50 19	5.5	.726	0.23	7.33	53.5	1.83
1115	10.11			5.6	.726	0.20	7.33	53.3	1.49
1118	10:15	-	15	5.6	6728	0.79	7.32	54.2	1.51
			0	1	_	6 i da			
		-			\sim	117	\bigcirc		
		6	>qu	vvb.e	-10	114			
perspective st Purging Com	tabilization c 1ments:	riteria. A	essive measure minimum of s	ements for ix measur	r pH, Conductiv rements should	ity and Turbidity be recorded.	or Dissolved Ox	l ygen are record	l ed within their
SAMPLE I	NFORMA								
Containe	L DECENTRAL	Bottle Count	Preservative	-	Filtered?		Analy	/sis	
40ml 1		3	Hei		45 0.10	G	X, BTEX		
	mber	P	1401		45 0.10 45 0.10		Dx		
1 L au				110 0					
				No 0	45 0.10				

Hydrocon Project Date	ct # <u>: 2</u>		1	Field Duplie	MW1 ⁻ cate I.D. <u>MW</u>		
Headspace readi	ition: 🔀 G ion: 🕅 G ing: 📈 N	ot measured	A-inch	ds replacement pm)dor)ther	-	alleof yest
Depth to product_ Depth to water Casing volume _	29.41	ft Botto ft ft Intake ft (H ₂ O) X	e Depth (BTOC)_ (65ga	Soft 🔀 Not measu l/ft = <u>9.51</u> al/ft 2"=0.16 gal,	gin Purging Well gal. X 3 =	: 1224 28.53 ga	ī.
PURGING/DIS Pump type 🔀 P Bailer type: FIELD PARAM	eristaltic (Centrifuga	l 🗌 Dedicated isposal:: 🗌 Drur	l Bladder 🔲 Non nmed 🔀 Remedi	ation System [Other	
Time Wa	ter Pur vel (L		emp. (°C) Sp. Co (mS/c) (±3%	m) (±10% or	pH (SU)	Sheen: <u>light</u> ORP (mV)	Turbidity (NTU) (± 10% or ≤10
1229 14. 1232 14. 1235 14.	76 77 78 0. 75 78	17 145- 17 17		0 1.14 0.25 4 0.14 6 0.16 6 0.15	(±0.1) 6.80 6.95 6.93 6.92 6.92 6.92 6.92	-56.2 -56.2 -55.6 -55.3 -55.1 -55.5	1.69 1.35 1.50 1.44 1.53
	Sa	mple		124			
perspective stabiliza Purging Comments	tion criteria ::			luctivity and Turbidit hould be recorded.	y or Dissolved Oxy	gen are recordeo	l within their
SAMPLE INFOF	e Bottle	Preservative	Field Filtered	?	Analy	sis	
Container Typ	Count 3	Hel	No 0.45 0.10		Fx. BTEX		

Project Na	me:. Coler	mm	U Fro	Nomo	tohere		Sample I.D.	MWI	9-W	I.D. Number: Time: 13:20	
Hydrocon	$\frac{1}{2017 - 074}$					Field Duplicate I.D Time: Personnel: CD					
Monumen Well cap o Headspace Well diam	condition: e reading: eter		ood ot measu	Repl ured	laced	□ Needs re ppm □ 6-ir	eplacement Do ich Do sten on ; i	Surface V lor ber	Water in Well		
PURGIN(Γotal well Depth to pr Depth to w Casing vol	GINFORM depth roduct ater27 ume	ATION 32.15 - - - - - - - - - - - - - - - - - - -	N ft E ft I ft I ft (H ₂	Bottom ntake 0) X _	Depth	ard [] Soft [(BTOC) <u>3</u> (S_gal/ft	Not measur h' Begi $= 2 \cdot 38$ $2^{\circ}=0.16 \text{ gal}/$	red Screen I n Purging We gal. X 3 =	Interval(s): II: <u>1256</u>	<u>12 - 32 '</u> 	
Pump type Bailer type	e:	altic [Centri	ifugal ter Dis	De De posal::	edicated Blac	lder XNon- l X Remedia	tion System	Other		
FIELD PA	ARAMETE	RS						Odor and/or	Sheen: taint	petro alor	
Time	Water Level (BTOC)		ge Rate (min)		mp. ⁷ C)	Sp. Cond. (mS/cm) (±3%)	Dissolved Oxygen (±10% or ≤1.00 ±0.2)	pH (SU) (±0.1)	ORP (mV)	Turbidity (NTU) (± 10% or ≤10)	
1257	27.77			14.	2	1.009	6.08	7.24	96.8	9,42	
1300	27.85	0.	140	147	-	1.054	0.87	7.04	63.3	7.32	
1303	27.97			14.		1.052	0.53	7.23	52.0	5.51	
1306	28.02			15.		1.049	0.46	7.23	47.5	8.91	
1309	28.08			14.		1.039	0-37	7.08	46.3	10.7	
1315	28.17			15		1.022	0.35	7.08	51.0	11.1	
	Cost					1.066		1.00	21.0		
		5	-		1	1					
		<	Sa	m	Ne	(w)	1320				
				-				<u> </u>			
							ty and Turbidity	or Dissolved Ox	ygen are record	ed within their	
		riteria. A	A minimun	n of six	measur	ements should	be recorded.				
urging Cor	innents										
AMPLE	INFORMA	TION									
Container Type		Bottle Count	Preserva	tive Field F		iltered?		Analy	Analysis		
Yumi VOA		3	1401	S	No 0.	45 0.10		GX, BTEX			
16 an		1	HCI		No 0.	45 0.10		Da			
			1.1.1			45 0.10					
						45 0.10					
				112	NO O	45 0.10					

Sample I.D. MW 20 - W Time: colspan="2" Project H: Zaita - 034 Field Duplicate I.D. - Time: Personnel: Cite WELL INFORMATION Monument condition: Good Needs repair Water in Monument Well ameter: Q-2nch Weeds repair Water in Monument Well diameter: Q-2nch Well Anter in Monument Well diameter: Q-2nch Well Anter in Monument Well diameter: Q-2nch Water in Monument Well diameter: Q-2nch Mater in Monument Suffer Colspan="2" Purging Well: Purest	GROUNDWATER SAMPLE COLLECTION FORM Well I.D. Number:						Hydro				
Monument condition: \square Good \square Replaced \square Needs repair \square Water in MonumentWell cap condition: \square Good \square Replaced \square Needs replacement \square Surface Water in WellHeadspace reading: \square Not measured $_$ ppm \square OdorWell diameter: \square condition: \square 4-inch \square 6-inch \square thereComments \square Socktemored \square report \square definitionTotal well depth 24.50 ftBottom: \square Hard \square Soft \square Not measuredScreen Interval(s): $9-2.9^{-1}$ Depth to product $_$ ft \square thake Depth (BTOC) 25^{-1} Begin Purging Well: 0513 Casing volume $\square + 30^{-1}$ ft \square thake Depth (BTOC) 25^{-1} Begin Purging Well: 0513 Casing volume $\square + 30^{-1}$ ft \square on the same depth (BTOC) 25^{-1} Begin Purging Well: 0513 Casing volume $\square + 30^{-1}$ ft $\square 0.04$ gal/ft $2^{-1}0.16$ gal/ft $4^{-1}=0.65$ gal/ft $= 1.47$ gal/ftPURGING/DISPOSAL METHODPump type \square Peristaltic \square centrifugal \square Dedicated Bladder \square non-Dedicated Bladder OtherBailer type: \square WaterPurge RateTemp.Sp. Cond. \square System \square other(I/min) $(!'$	0840	Ti Ti	0-W	e I.D	Field Duplicat	e	74	2017-0	Project #:	Hydrocon	
Total well depth29.50ftBottom: \Box Hard \Box Soft \blacksquare Not measuredScreen Interval(s): $9-29^{-1}$ Depth to productftDepth to water25.20ft Intake Depth (BTOC)25'Begin Purging Well: $\bigcirc 813$ Casing volume 9.40^{-} gal.Volume Conversion Factors: $3/4"=0.02$ gal/ft $1"=0.04$ gal/ft $2"=0.16$ gal/ft $4"=0.65$ gal/ft $6"=1.47$ gal/ftPURGING/DISPOSAL METHODPurge Deristaltic \Box Centrifugal \Box Dedicated Bladder \Box Non-Dedicated Bladder OtherBailer type:Water Disposal:: \Box Drummed \boxtimes Remediation System \Box OtherFIELD PARAMETERSOdor and/or Sheen: $fision petroOdor and/or Sheen: fision petro(%C)(%C)0.51225.1312.9 ft .015'1.44 6.6049.900.5252.5.20OLICE INFORMATIONOdor and/or Sheen: fision petroTimeWater Disposal:: \Box Drummed \boxtimes Remediation System \Box OtherImage: DisolvedOxygen(BTOC)(BTOC)Object 12.9 ft0.4 (1/min)(°C)Sp. Cond.(mS/Cm)(BTOC)$		t ell	_	r er	h 🗌 Odo	ppm 6-in	ired 4-inch	Good Good Cood Cood Cood Cood Cood Cood	condition: ondition: reading: eter:	Monument Well cap c Headspace Well diame	
Pump typePeristalticCentrifugalDedicated BladderNon-Dedicated BladderOtherBailer type:Water Disposal::DrummedRemediation SystemOtherFIELD PARAMETERSTimeWater (L/min)Purge Rate (L/min)Temp. (°C)Sp. Cond. (mS/cm) ($\pm 3\%$)Dissolved ($\pm 10\% \text{ or}$ (± 0.1)DRP (± 0.1)Turt (N ($\pm 10\%$)OSa1925.1312.91.0151.446.6049.42.OSa2525.20O.105514.3.990O.9226.9523.42.OB25125.2414.4.992O.337.024.134.43.OB3125.3014.5.990O.357.02-7.43.OS3425.3014.4.992O.357.02-7.43.OS3425.3314.4.992O.357.02-7.43.OS3725.3314.4.992O.357.02-7.43.OS3725.3014.5.990O.357.02-7.43.OS3725.3314.4.992O.357.02-7.43.OS3725.3314.4.992O.357.02-7.43.OS3725.3014.5.9900.317.03-9.03.OS3725.3314.4.9920.317.03-9.03.OS370.50.50.50.50.50.50.5 <tr< th=""><th></th><th>_gal.</th><th>0813</th><th>ourging Well: gal. X 3 =</th><th>3 Begin</th><th>BTOC) 2</th><th>ntake Depth D) X <u>0 • 6</u></th><th><u>.50</u>ft B -<u>ft</u> .20_ft II 30_ft (H24</th><th>depth<u>29</u> oduct<u>-</u> ater<u>25</u> ume <u>4</u>,</th><th>Total well Depth to pro Depth to wa Casing volu</th></tr<>		_gal.	0813	ourging Well: gal. X 3 =	3 Begin	BTOC) 2	ntake Depth D) X <u>0 • 6</u>	<u>.50</u> ft B - <u>ft</u> .20_ft II 30_ft (H24	depth <u>29</u> oduct <u>-</u> ater <u>25</u> ume <u>4</u> ,	Total well Depth to pro Depth to wa Casing volu	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $] Other	on System 🗌				ltic 🗌 Centri Wat	Peristal	Pump type Bailer type	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	u rbidity (NTU) 0% or ≤10)			(SU)	Oxygen (±10% or	(mS/cm)			Level	Time	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.78		49.4	6.60	1.44	1.015	12,9			0819	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.72		23.4	6.95	0,92		14.1	the second			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.84							0.105			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3.78										
0837 25.33 14.4 , 991 0.31 7.03 ~9.0 3. Somple @ 0840	3,92										
Somple @ 0840	3,92					Conception of the local division of the loca					
	3.78		~ 4.0	1.03	0.31	, 991	14.4		25.33	0837	
								C			
				840		e a	m	DON			
Stabilization achieved if three successive measurements for pH, Conductivity and Turbidity or Dissolved Oxygen are recorded within t						~ \		~			
	in their	rded v	gen are recor	Dissolved Oxve	/ and Turbidity o	oH, Conductivi	surements for	e successive mea	chieved if thre	Stabilization a	
perspective stabilization criteria. A minimum of six measurements should be recorded. Purging Comments:			,						abilization crit	perspective st	

SAMPLE INFORMATION

Container Type	Bottle Count	Preservative	Field Filtered?	Analysis
YON VOA	3	iter	No 0.45 0.10	GX, BTIEX
1 hamper	1	Hei	No 0.45 0.10	Dx
			No 0.45 0.10	
	1	1	No 0.45 0.10	
	2		No 0.45 0.10	

Cotal well depth 32.10 ft Bottom: Hard Soft X Not measured Screen Interval(s): Depth to product ft Intake Depth (BTOC) $25'$ Begin Purging Well: 1515 Depth to water 20.42 ft Intake Depth (BTOC) $25'$ Begin Purging Well: 1515 Casing volume 11.62 ft<(H ₂ O) X 0.65 gal/ft $= 7.54$ gal. X 3 = 22.44 Volume Conversion Factors: $3/4"=0.02$ gal/ft $1"=0.04$ gal/ft $2"=0.16$ gal/ft $4"=0.65$ gal/ft $6"=1.42$ PURGING/DISPOSAL METHOD Pump type Peristaltic Centrifugal Dedicated Bladder Non-Dedicated Bladder Other Bailer type: Water Disposal:: Drummed Remediation System Other	<u>12 - 32</u> gal. 47 gal/ft
FIELD PARAMETERS Odor and/or Sheen:	_gal. 47 gal/ft er
Pump type Peristaltic Centrifugal Dedicated Bladder Non-Dedicated Bladder Oth Bailer type: Water Disposal: Drummed Remediation System Other Other FIELD PARAMETERS Odor and/or Sheen:	er
	A du la
Time Water Purge Rate Temp. Sp. Cond. Oxygen pH ORP Level (L/min) (°C) (mS/cm) (±10% or (±3%) (SU) (mV)	Turbidity (NTU)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.76 2.91 2.06 2.80
1533 20.65 14,9 .977 0.28 7.03 6.4	3.01
Stabilization achieved if three successive measurements for pH, Conductivity and Turbidity or Dissolved Oxygen are rec perspective stabilization criteria. A minimum of six measurements should be recorded.	orded within their
Purging Comments:	
Container Type Bottle Count Preservative Field Filtered? Analysis	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

oject Name.	man Oil	Alexatela		Sample I.D.	MW23	-w	I.D. Number:
drocon Project #:	2017 -0	74			te I.D	-	Time: -
nte 11 27 18						CD	
ELL INFORMATIO onument condition: 'ell cap condition: eadspace reading: ell diameter: mments	Good Good Cool Cool Cool Cool Cool Cool Cool C	Replaced ured V 4-inch	Needs re	placement Oc ch D Ot	Surface W	later in Well	
URGING INFORMA otal well depth 22 opth to product opth to water 11 sing volume 16 olume Conversion Fa	$\frac{2.04}{-} \text{ft} = \text{ft}$ $\frac{2.7}{-} \text{ft} = \text{ft}$	$OX O_{2}$) gal/ft	= +,00	dal. $\Lambda 3 =$	2,00 9	al.
JRGING/DISPOSA							
mp type 🖌 Perista	altic Centri	ifugal 🗌 Do	edicated Blac	lder 🗌 Non-	Dedicated Bla	dder Other_	
imp type 🔽 Perista	altic Centri	ifugal 🗌 Do ter Disposal::	edicated Blac	lder 🗌 Non- 1 🔀 Remedia	Dedicated Bla tion System [dder Other_] Other	
ump type 🖌 Perista ailer type:	altic 🗌 Centri Wat	ifugal 🔲 Do ter Disposal::	edicated Blac	lder 🔲 Non- 1 🔀 Remedia	tion System [dder Other_] Other Sheen:N	
ailer type 🖌 Perista ailer type: TIELD PARAMETE Time Water Level	altic 🗌 Centri Wat	ifugal Do ter Disposal:: Temp. (°c)	Drummee Sp. Cond. (mS/cm)	dder ☐ Non- d 🔀 Remedia Dissolved Oxygen (±10% or ≤1.00 ±0.2)	tion System [Odor and/or pH (SU)	Other	
Imp type Peristant ailer type:	Altic Centri Wat RS Purge Rate	Temp. (°C)	Drummee	d X Remedia Dissolved Oxygen (±10% or ≤1.00 ±0.2) O. דץ	tion System [Odor and/or pH (SU) (±0.1) 6 . 9 :	Other Sheen: ORP (mV) & . 0	2002 Turbidity (NTU) (± 10% or ≤10) 2,22
Imp type Peristant ailer type: Peristant IELD PARAMETE Time Water Level (BTOC) 637	Altic Centri Wat RS Purge Rate	ter Disposal:: (°C) ۱۹ ه ۹ ۱۶ ۹	Drummed Sp. Cond. (mS/cm) (±3%) ふらです	Dissolved Oxygen (±10% or ≤1.00 ±0.2) O. 74 O. 73	tion System [Odor and/or pH (SU) (±0.1) 692 692	Other Sheen: ORP (mV) Q_0 Z1. Q	272 Turbidity (NTU) (± 10% or ≤10) 2,27 (,37
ump type Peristant ailer type: Peristant TIELD PARAMETE Vater Time Water Level (BTOC) 16.37 11.33 6.43 11.35	Altic Centri Wat	ter Disposal:: (°C) ۱۹ ه ۹ ۱۶ ۹ ۱۶ ۹	Drummed Sp. Cond. (mS/cm) (±3%) , 627 , 696 , 702	Dissolved Oxygen (±10% or ≤1.00 ±0.2) O. 74 O. 43 O. 31	tion System [Odor and/or pH (SU) (±0.1) 6 .9 : 6 .9 : 6 .9 : 6 .9 :	Other	Turbidity (NTU) (± 10% or ≤10) 2,22 (.57 4,33 (.33)
ump type Peristant ailer type: Peristant TIELD PARAMETE Image: Constraint of the second s	Altic Centri Wat RS Purge Rate	ter Disposal:: Тетр. (°С) 14.9 15.9 16.4 16.5	Drummed Sp. Cond. (mS/cm) (±3%) ふとこす ふとこす ふとこす ふとこう ふこう ふうこう	Dissolved Oxygen (±10% or ≤1.00 ±0.2) O. 74 O. 74 O. 73 O. 74 O. 73 O. 74 O. 74 O. 75 O. 74 O. 75 O. 74 O. 75 O. 74 O. 75 O. 74 O. 75 O. 74 O. 75 O.	tion System [Odor and/or pH (SU) (±0.1) 6.92 6.92 6.91 6.91 6.91 6.91	Other	Turbidity (NTU) (± 10% or ≤10) 2,22 (.57 - - - - - - - - - - - - -
amp type Peristant ailer type: Peristant Time Water Level (BTOC) 1637 11.331 643 11.355 643 11.35 1646 11.36	Altic Centri Wat	ter Disposal:: (°C) ۱۹ ه ۹ ۱۶ ۹ ۱۶ ۹	Drummed Sp. Cond. (mS/cm) (±3%) , 627 , 696 , 702	Dissolved Oxygen (±10% or ≤1.00 ±0.2) O. 74 O. 43 O. 31	tion System [Odor and/or pH (SU) (±0.1) 6.90 6.92 6.91 6.91 6.91	Other	272 Turbidity (NTU) (± 10% or ≤10) 2,27 (,37
ump type Peristant ailer type: Peristant TIELD PARAMETE Image: State St	Altic Centri Wat	ter Disposal:: Тетр. (°С) 14.9 15.9 16.4 16.5 16.4	Drummed Sp. Cond. (mS/cm) (±3%) ふらご干 ふらで干 ふらです ふうつこ ふうつう ・干つこ	Dissolved Oxygen (±10% or ≤1.00 ±0.2) O. 74 O. 74 O. 73 O. 74 O. 73 O. 74 O. 74 O. 75 O. 74 O. 75 O. 74 O. 75 O. 74 O. 75 O. 74 O. 75 O. 74 O. 75 O.	tion System [Odor and/or pH (SU) (±0.1) 6.92 6.92 6.91 6.91 6.91 6.91	Other	Turbidity (NTU) (± 10% or ≤10) 2,22 (.57 - - - - - - - - - - - - -
amp type Peristantial ailer type: IELD PARAMETEI Time Water Level (BTOC) 637 637 633 643 643 643 643 644	Altic Centri Wat	ter Disposal:: Тетр. (°С) 14.9 15.9 16.4 16.5 16.4	Drummed Sp. Cond. (mS/cm) (±3%) ふらご干 ふらで干 ふらです ふうつこ ふうつう ・干つこ	Dissolved Oxygen (±10% or ≤1.00 ±0.2) O. 74 O. 74 O. 73 O. 74 O. 73 O. 74 O. 74 O. 75 O. 74 O. 75 O. 74 O. 75 O. 74 O. 75 O. 74 O. 75 O. 74 O. 75 O.	tion System [Odor and/or pH (SU) (±0.1) 6.92 6.92 6.91 6.91 6.91 6.91	Other	Turbidity (NTU) (± 10% or ≤10) 2,22 (.57 - - - - - - - - - - - - -
ump type	Altic Centri Wat	ter Disposal:: Тетр. (°С) 1439 1639 1639 1639 1639 1639	Drummed Sp. Cond. (mS/cm) (±3%) ふらご干 ふらで干 ふらです ふうつこ ふうつう ・干つこ	Dissolved Oxygen (±10% or ≤1.00 ±0.2) O. 74 O. 74 O. 73 O. 74 O. 73 O. 74 O. 74 O. 75 O. 74 O. 75 O.	tion System [Odor and/or pH (SU) (±0.1) 6.92 6.92 6.91 6.91 6.91 6.91	Other	Turbidity (NTU) (± 10% or ≤10) 2,22 (.57 - - - - - - - - - - - - -
ump type	Altic Centri Wat	ter Disposal:: Тетр. (°С) 14.9 15.9 16.4 16.5 16.4	Drummed Sp. Cond. (mS/cm) (±3%) ふらご干 ふらで干 ふらです ふうつこ ふうつう ・干つこ	Dissolved Oxygen (±10% or ≤1.00 ±0.2) O. 74 O. 74 O. 73 O. 74 O. 73 O. 74 O. 75 O. 74 O. 75 O. 74 O. 75 O. 74 O. 75 O. 74 O. 75 O. 74 O. 75 O.	tion System [Odor and/or pH (SU) (±0.1) 6.92 6.92 6.91 6.91 6.91 6.91	Other	Turbidity (NTU) (± 10% or ≤10) 2,22 (.57 - - - - - - - - - - - - -

SAMPLE INFORMATION

Container Type	Bottle Count	Preservative	Field Filtered?	Analysis
HOM VOA	3	1+01	No 0.45 0.10	GR. BTIEX
1 6 andres	1	Itci	No 0.45 0.10	1DX
1 12 010100			No 0.45 0.10	
	-		No 0.45 0.10	
			No 0.45 0.10	

Sampling Comments:_

Well I.D. Number: MW24

	ydrocon	Project #:	201	~ 011 7 - 074			Sample I.D Field Duplica Personnel:	te I.D	60	Time: <u>1310</u> Time:
M W	onumer Vell cap	condition:	: 🛛 Go	ood Ne ood Re ot measured inch Re Vault	eplaced	□ Needs re	eplacement Od och Ot	Surface W	later in Well	
To De De Ca	otal well epth to p epth to w asing vol	ume	4.25	ft Botto ft ft Intak ft (H ₂ O)	A Ort	<u>gai/it</u>	X Not measur 28.5 ¹ Begin = <u>4.97</u> 2"=0.16 gal/f	gai.	17.11 ga	al.
Pu Ba	amp typ ailer typ	e:	taltic [] Centrifug			dder 🔲 Non-I d 🔀 Remediat	tion System [Other	
F	IELD P.	ARAMETE	RS					Odor and/or	Sheen: N	one
	Time	Water Level (BTOC)		'min)	Г етр. (°С)	Sp. Cond. (mS/cm) (±3%)	Dissolved Oxygen (±10% or ≤1.00 ±0.2)	pH (SU) (±0.1)	ORP (mV)	Turbidity (NTU) (± 10% or ≤10)
12	248 51 254 257 300 303	26.61 26.61 26.62 26.62 26.62 26.62	0.1	25 N 12 12	1.0 5.9 1.0 3.9 4.0 4.0	898 009 009 009 009 009	7.29 7.40 7.62 7.55 7.32 7.63	7.61 7.63 7.62 7.53 7.47 7.47 7.46	48.2 97.5 95.2 96.5 93.5 97.6	25.4 25.2 27.6 24.6 23.4 23.8
								and the second sec		
					~		2 13			d within their
Sta per Pu	rspective rging Co	stabilization c mments:	criteria. A W	essive measur A minimum of	ements for six measur		ity and Turbidity be recorded.	or Dissolved Oxy		pump
Sta per Pu	rspective rging Co	stabilization o	TION	essive measur A minimum of ell ping	ements for six measur	r pH, Conductiv rements should	ity and Turbidity be recorded.	inserted	ot otai	pump
Sta per Pu SA	rspective irging Co AMPLE Contain	stabilization c mments: INFORMA er Type	criteria. A W	essive measur A minimum of	ements for six measur Field	Filtered?	ity and Turbidity be recorded.	in serted Analy	<u>isto to</u> sis	pump
Sta per Pu SA	rspective irging Co AMPLE Contain	stabilization c mments: INFORMA er Type I Vo A	TION Bottle	essive measur A minimum of ell ping	ements fo six measure Field No 0 No 0	Filtered?	ity and Turbidity be recorded.	inserted	<u>isto to</u> sis	pump

Hydrocon	me:. <u>Co</u> Project # <u>:</u> 11 [21	201	7 - 074	natchee		Sample I.D Field Duplic: Personnel:	MW2 ate I.D	E lal	I.D. Number: _Time: <u>1635</u> _Time:
Monumen Well cap o Headspace Well diam	condition:	Go Go M Go No 2-	ood 🗌 Re ot measured inch 🛛	eplaced l 4-inch	Needs re	eplacement	_ 🗌 Water in 1 _ Surface W dor ther	ater in Well	
Total well Depth to pr Depth to wa Casing vol	oduct ater2* ume8	2.96 1.000 34	ft Botto ft 2_ft Intak ft (H ₂ O)	e Depth	(BTOC) 2	7' Beg = 5.42	red Screen In in Purging Well gal. X 3 =_ 'ft 4"=0.65 gal	16.26 g	_ al.
Pump type Bailer type	9:	altic [Centrifug	al 🗌 D Disposal::	edicated Bla Drumme	dder 🗌 Non- d 🔀 Remedia	Dedicated Bla ation System	Other	
FIELD PA	ARAMETE	RS			<u>.</u>		Odor and/or	Sheen: No	ne
Time	Water Level (BTOC)		e Rate min)	Г етр. (°С)	Sp. Cond. (mS/cm) (±3%)	Dissolved Oxygen (±10% or ≤1.00 ±0.2)	pH (SU) (±0.1)	ORP (mV)	Turbidity (NTU) (± 10% or ≤10)
1617	24,75		1	2.1	.341	3.66	7.49	79.4	13.2
1620	24.81			2.4	,335	2.43	7.32	70.6	11.2
1626	24.87	0.1		2.6	.328	2.11	7.25	67.0	10.7
1629	25.01		1	2.7	:328	1.86	7.25	61.7	9.93
1632	25.07		(2.7	.328	1.51	7.28	56.0	10-19
		1	0				117		
			20		ndo		1657		
				000	Me	19			
							or Dissolved Oxy	gen are recorde	ed within their
							the owner	1 miles	
perspective s			(or half and	31000		in forters		1777015	
perspective s	innents	TION							
perspective s Purging Cor	INFORMA	TION					Analy	sis	
perspective s Purging Cor	INFORMA	Bottle	Preservative	Field	Filtered?		· · · · · · · · · · · · · · · · · · ·		
perspective s Purging Cor SAMPLE	INFORMA er Type		Preservative	0	.45 0.10				
Purging Cor SAMPLE	INFORMA er Type	Bottle Count		No 0 No 0	.45 0.10 .45 0.10		GX, BTEX		
Perspective s Purging Cor SAMPLE	INFORMA er Type ✓₀A	Bottle Count 3	1401	No 0 No 0 No 0	.45 0.10				

GROUNDWATER SAMPLE COLLECTION FORM Well I.D. Number: MW26

Hydrocon	Project #:	201	3:1 Wen 7-074			Field Duplic	MW26 ate I.D	-	Time: <u>1405</u> Time:
Monumen Well cap o Headspace Well diam	e reading: eter:	: 🔀 Go 🔀 Go 🗶 No 🗌 2-	ood 🗌 No ood 🗌 Ro ot measured inch 🚺	d 🗙 4-inch	nir Deeds re ppm 6-ir	placement O ch O	_ 🔀 Water in □ Surface W dor ther	Monument Jater in Well	
Total well Depth to pr Depth to wa Casing vol	roduct ater2 ume	2.52 - 5.36 +.16	ft Botto ft ft Intal ft (H ₂ O)	ke Depth	(BTOC) <u>2</u> <u>s</u> gal/ft	<u>.7.5'</u> Beg = 4.65	red Screen In in Purging Well gal. X 3 =_ 'ft 4"=0.65 gal	1343 13,95 ga	_ al.
Pump type Bailer type	G/DISPOS	taltic [Centrifug	al 🗌 De Disposal::	edicated Blac	lder 🗌 Non- 1 🔀 Remedia	Dedicated Bla ation System [dder Other_] Other Sheen:	
Time	Water Level (BTOC)	Purg	e Rate min)	Гетр. (°С)	Sp. Cond. (mS/cm) (±3%)	Dissolved Oxygen (±10% or ≤1.00 ±0.2)	pH (SU) (±0.1)	ORP (mV)	Turbidity (NTU) (± 10% or ≤10)
1346	25.45		1	3.8 4.4	708 713	2.72	7.33 7.31 7.14	105.8	9.75 6.60
1352 1355 1353 1353 1401	25.60 25.65 25.72 25.72 25.77			4.3 4.7 4.8 4.8	,720 ,716 ,718 ,720	2.82 1.78 1.48 1.28	7.17 7.17 7.24 7.26	62.6 58.0 53.6 50.5	7.33 6.73 6.73 6.03
		5	San	ple		140	5		
Stabilization perspectives Purging Cor	stabilization o	nree succ criteria. <i>I</i>	essive measu A minimum of	rements for six measur	r pH, Conductiv rements should	ity and Turbidity be recorded.	v or Dissolved Ox	l ygen are recorde	ed within their
	INFORMA	TION	Preservative	Field	Filtered?		Analy	veie	
Contain		Count		0	.45 0.10			EX.	
40:m		3	itei itei	No) 0	.45 0.10 .45 0.10 .45 0.10		Dx Dx		
		9			.45 0.10				

Sampling Comments:

lydro		on		JAM	PLE COLLE		Well	I.D. Number:
Hydrocon F	Project #:	2017 - 071 2017 - 071 2	4	e	Field Duplic	MW27 ate I.D	- W	Time: 1610
Headspace Well diame	condition: ondition: reading: ter:	Good [ured A-incl	pair Deeds re ppm n D6-ir	eplacement O nch O	_ □ Water in I □ Surface W dor ther	Monument Vater in Well	
Depth to pro Depth to wa Casing volu	lepth <u>32</u> oduct <u></u> ter <u>23</u> ume <u>14</u>	<mark>. २ म</mark> ि - ft . १५ ft . ८० ft (H	Intake Depth 20) X <u>0</u> .	(BTOC)	26' Beg = <u>9,62</u>	red Screen Ir in Purging Well gal. X 3 =_ /ft 4"=0.65 gal	1539 78.86 ga	_ al.
Pump type	Perist	Wa	rifugal 🗌 🗆			Dedicated Bla tion System [Odor and/or		
Time	Water Level	Purge Rate (L/min)	Temp. (°C)	Sp. Cond. (mS/cm)	Dissolved Oxygen (±10% or ≤1.00 ±0.2)	pH (SU)	ORP (mV)	Turbidity (NTU)
1549	(BTOC) 24.07		12.2	(±3%)	4.01	(±0.1) 7.65	-41.1	(± 10% or ≤10) 8,55
1552	24.05		13.4	.851	1.60	7.72	-30.2	7.76
1555	24-10	0,110	13.8	.853	1.37	7.68	-23.8	8.73
1558	24.16		14,1	.862	1,22	7.56	-15.9	7.84
1501	24,20		14,2	.201	1.18	7.61	-12.5	8-30
1604	60,24,	43	14.2	2852	1.15	7.57	1.9	7.57
		5	ch.m		\mathcal{O}	610		
			0000	FIC .	9			-
Stabilization a	chieved if th	ree successive m	easurements fr	r nH Conductiv	ity and Turbidity	or Dissolved Oxy	gen are recorde	d within their
	abilization c	iteria. A minimu					800 000 000 000 000	
SAMPLE II	NFORMA	ΓΙΟΝ						
Containe	r Type	Bottle Preserv Count	ative Field	Filtered?		Analy	sis	
	VOA	3 40		0.45 0.10		GX BT	X	
HOml		1 HC	No (0.45 0.10		Dx	Č	
40ml 1 L com	ber							
	aber			0.45 0.10		and should be		
	ber		No (0.45 0.10 0.45 0.10 0.45 0.10				

Hydrocon P Date	roject #:	2	en 07 2017 -074 1	(tchee	Sample I.D Field Duplica Personnel:	Mw28 ate I.D		.D. Number: Λ Γime: <u>1100</u> Γime: <u></u>
WELL INFO Monument o Well cap co Headspace r Well diamet Comments	condition ndition: reading: rer:	: 🔀 Go 🔀 Go 🔀 No 2-	ood 🗌 Re ot measured inch 🔽	placed	□ Needs re ppm □ 6-ir	eplacement Od nch Ot	Surface V lor her	Vater in Well	
Depth to wate Casing volur Volume Con	epth3 duct er2 me13 version F	5.00 74 74	ft Botto ft ft Intake ft (H ₂ O) X 3/4"=0.02 g	e Depth	(BTOC) <u>3</u> gal/ft	Not measur 3 ⁴ Begin = <u>2,93</u> 2 ["] =0.16 gal/f	n Purging Wel gal. X 3 =_	1050 26.29 ga	- I.
PURGING/ Pump type Bailer type:_ FIELD PAH	Perist	altic [Centrifuga	il 🗌 De isposal::	edicated Blac	dder 🗌 Non- d 🔀 Remedia	tion System [Other	nt petro =
Time	Water Level (BTOC)	Purg		emp. (°C)	Sp. Cond. (mS/cm) (±3%)	Dissolved Oxygen (±10% or ≤1.00 ±0.2)	pH (SU) (±0.1)	ORP (mV)	Turbidity (NTU) (± 10% or ≤10)
1055			* 10	5.4	86f,	5.26	6.89	-20.6	<u> </u>
Stabilization ac perspective sta	chieved if th	nree succ riteria. A	A minimum of s	ix measur	rements should	ity and Turbidity be recorded.		ygen are recorde	d within their
Purging Comr	ments:	20	inge al	goe i	n purger	water j.	.somple:) f	ever premai	ur zhrtur
Container	Type	Bottle	Preservative	Field	Filtered?		Analy	sis	
Container		Count 3	Iter		.45 0.10		GX IST	EX.	
HOMI	ober	1	Hei		.45 0.10 .45 0.10		Ďx		

Comments Jack Hall Justifier promp in Stalled PURGING INFORMATION Total well depth. 29.11 ft Bottom: Hard Soft Mot measured Screen Interval(s): 14 - 39' Depth to product ft Begin Purging Well: 1523 Casing volume 4.25 ft Intake Depth (BTOC) 38.5' Begin Purging Well: 1523 Casing volume 4.36 ft (H ₂ O) X 2.455 gal/ft 2"=0.16 gal/ft 4"=0.65 gal/ft 6"= 1.47 gal/ft PURGING/DISPOSAL METHOD Pump type Peristaltic Centrifugal Dedicated Bladder [Non-Dedicated Bladder Other	II.d. D. C.		Of We		1		MW	29-W	Time: 15 50
Well. INFORMATION Water in Monument Well can condition: \square Good Replaced Prediation Surface Water in Well Headspace reading: \square Not measured prom \square Odor Well diameter: \square 2-inch \square 4+inch \square 6-inch \square Other Comments \square Surface Water in Well \square Other \square Odor PURGING INFORMATION Total well depth \square 50 mm \square Begin Purging Well: \square 52 \square Depth to poduct \square 6 mm \square mater \square 6 mm \square mater \square 6 mm \square 6 mm PURGING INFORMATION Total well depth \square 6 mm \square 10 mm \square 6 mm \square 11 mm \square 6 mm \square 10 mm \square 10 mm \square 6 mm \square 10 mm				1					_Time:
Monument condition:		120110				Tersonner		020	
PURGING INFORMATION Total well depth 39.411 ft Bottom: \Box Hard \Box Soft \Box Not measured Screen Interval(s): $14 - 34^2$ Depth to varie 34.25 ft Intake Depth (BTOC) 39.5^2 Begin Purging Well: 1523 Casing volume 4.36 ft (H ₂ O) X $O.455$ gal/ft 2^{-2} =0.16 gal/ft 4^{+2} =0.65 gal/ft 6^{+2} 1.47 gal/ft PURGING/DISPOSAL METHOD Odor and/or Sheen: $\sqrt{-5.4}$ gal/ft 2^{-2} =0.16 gal/ft 4^{+2} =0.65 gal/ft 6^{+2} 1.47 gal/ft PURGING/DISPOSAL METHOD Purge Rate Temp. Value of Disposal: \Box Drummed \Box Remediation System \Box Other	Monument condi Well cap conditio Headspace readin Well diameter:	ition: 🛛 G on: 🖾 G ng: 🖾 N	iood 🗌 R lot measure -inch	eplaced d 4 4-inch	□ Needs re ppm □ 6-ir	eplacement	Surface V 🗌 Odor	Vater in Well	
Total well depth 231.11 ft Bottom: \Box Hard \Box Soft \boxtimes Not measured Screen Interval(s): $14-3q^2$ Depth to product $-$ ft Intake Depth (BTOC) $38.5'$ Begin Purging Well: 15223 Casing volume 4.25 ft Intake Depth (BTOC) $38.5'$ Begin Purging Well: 15223 Casing volume 4.25 ft Intake Depth (BTOC) $38.5'$ Begin Purging Well: 15223 Casing volume 4.256 ft (H ₂ O) X 0.255 gal/ft $2"=0.16$ gal/ft $4"=0.65$ gal/ft $6"=1.47$ gal/ft PURGING/DISPOSAL METHOD Dedicated Bladder $[Non-Dedicated Bladder Other$				1	-				
Pump type Peristaltic Centrifugal Dedicated Bladder Non-Dedicated Bladder Other Bailer type: Water Disposal: Drummed Remediation System Other	Total well depth_ Depth to product_ Depth to water Casing volume	39.11 	ft Bott ft ft Inta ft (H ₂ O)	ke Depth X	(BTOC) <u>38</u> s_gal/ft	=	gin Purging Wei gal. X 3 =	11: <u>1523</u> 9.48 (gal.
Dump type Peristaltic Centrifugal Dedicated Bladder Non-Dedicated Bladder Other 3ailer type: Water Disposal: Drummed Remediation System Other									<u> </u>
Water Disposal:::: Drummed Remediation System Other Odor and/or Sheen: $\sqrt{-2.5}$ + $\sqrt{-2.5}$ FIELD PARAMETERS Time Water Purge Rate Temp. Sp. Cond. Dissolved Oxygen pH ORP Turbidity (L/min) (°C) (1/9, Crm) (±3%) (±10% or 10 (±10% or 10) (±10%					odicated Pla	ddon 🔽 Nor	Dodicated Pla	ddor Othou	
FIELD PARAMETERS Odor and/or Sheen: U Field Filtered? Odor Analysis U Field Filtered? I Hold No 0.45 0.10 I K field Filtered? I K field Filtered?			centrifug	gai ∐ Di Disposal∵	Drumme	d 🔽 Remedi	ation System	Other	
TimeWater Level (1/min)Purge Rate (1/min)Temp. (°C)Sp. Cond. (mS/cm) (±3%)Dissolved Oxygen (±10% or ±1.00 ±0.2)DRP (mV)Turbidity (NTU) (±10% or \$10 $152?$ 35.00 13.0 623 5.74 7.74 7.43 -37.3 72.1 1532 35.01 14.2 623 5.74 7.74 7.43 -37.3 72.1 1532 35.01 14.4 $.646$ 6.27 7.27 -9.3 51.9 1532 35.16 13.6 $.666$ 4.44 2.12 -9.3 51.9 1532 35.16 14.4 $.666$ 2.74 2.27 -2.44 43.0 1532 35.16 14.4 $.666$ 2.74 2.276 -7.44 43.0 1534 14.4 $.666$ 2.74 2.26 -7.44 43.0 1534 14.4 $.664$ 6.13 2.266 -7.44 43.0 1544 35.16 14.6 $.673$ 6.03 8.24 -3.9 1544 35.16 14.6 $.673$ 6.03 8.24 -3.9 1544 35.16 14.6 $.673$ 6.03 8.24 -3.9 1544 35.16 14.6 $.673$ 6.03 8.24 -3.9 15550 14.6 $.67550$ 1550 16.23 1540 14.6 $.13$ $.276$ -7.4 43.0 1540 14.6 $.673$ 6.03 55	Saner type			Disposal		a A Remea			
Time Level (BTOC)Purge Rate (L/min)Temp. ($^{\circ}$ C)Sp. Cond. ($^{\circ}$ MS/cm)Oxygen ($^{\circ}$ MS/cm)pH ($^{\circ}$ MS/cm)ORP ($^{\circ}$ MS/cm)Turbidity (NTU) ($^{\circ}$ 1.00 ±0.2)15 2735 .0013 .06.371 $^{\circ}$ A.74 $^{\circ}$ A*3 $^{\circ}$ A7.3 $^{\circ}$ Z.115 3235 .0114.2.6371 $^{\circ}$ A.74 $^{\circ}$ A*3 $^{\circ}$ Z.1 $^{\circ}$ Z.115 3535 .0114.2.6474 $^{\circ}$ A.14 $^{\circ}$ A.12 $^{\circ}$ A.3 $^{\circ}$ Z.115 3535 .1513.6.6666.444 $^{\circ}$ A.12 $^{\circ}$ A.3 $^{\circ}$ S.1.915 3535 .1614.4.6666.274 $^{\circ}$ A.27 $^{\circ}$ C.4443.015 4135 .200.11014.5.6666.13 $^{\circ}$ Z.7 $^{\circ}$ A.415 4435 .1814.4.6736.088.24 $^{\circ}$ S.715 4435 .1814.4.6736.088.24 $^{\circ}$ S.715 4435 .1814.4.6736.088.24 $^{\circ}$ S.715 55 014.4.6736.088.24 $^{\circ}$ S.715 4435 .1814.4.6736.088.24 $^{\circ}$ S.716 4435 .1614.4.6736.088.24 $^{\circ}$ S.716 4514.4.673.6288.24 $^{\circ}$ S.717 45.609550101016 46.10.10.101017 46.10.10.10.1018	FIELD PARAM	ETERS					Odor and/or	Sheen: V	wint petro ale
15 27 35.00 13.0 657 3.4 2.43 -37.3 72.1 15 32 35.01 14.2 .674 3.00 3.11 -251 53.7 15 35 35.15 13.6 .666 6.444 8.12 -4.3 51.9 15 35 35.15 13.6 .666 6.27 9.27 -6.44 43.0 15 37 35.18 14.9 .666 6.27 9.27 -6.44 43.0 15 41 35.20 0.10 14.5 .669 6.13 8.24 -3.9 35.7 15 44 35.18 14.4 .673 6.03 8.24 -3.9 35.7 15 44 35.18 14.4 .673 6.03 8.24 -3.9 35.7 15 44 35.18 14.4 .673 6.03 8.24 -3.9 35.7 15 50 10 .673 6.03 8.24 -3.9 35.7 16 401 .673 6.03 8.24 -3.9 35.7 17 10 10 .673 .63 8.	Lev	rel (L			(mS/cm)	Oxygen (±10% or	(SU)		Turbidity (NTU) (+ 10% or <10)
1532 35.01 14.2 .674 5.00 5.11 -25.1 53.9 1535 35.15 13.8 .666 6.444 8.12 -9.3 51.9 1537 35.18 14.4 .666 6.27 8.27 -6.44 43.0 1541 35.20 0.10 14.5 .669 6.13 8.26 -7.4 43.0 1544 35.18 14.4 .673 6.03 8.24 -3.9 35.7 1544 35.18 14.6 .673 6.03 8.24 -3.9 35.7 1544 35.18 14.6 .673 6.03 8.24 -3.9 35.7 1540 14.6 .673 6.03 8.24 -3.9 35.7 1540 14.6 .673 6.03 8.24 -3.9 35.7 1540 .673 .603 8.24 -3.9 35.7 1540 .6750 .673 .603 8.24 .35.7 1540 .6750 .6750 .6750 .6750 .6750				3.0	the second second second			-37.3	
15 37. 35.18 14.4 .666 6.27 7.27 -6.4 43.0 15 41 35.20 0.10 14.5 .669 6.13 8.26 -7.4 44.1 15 44 35.18 14.4 .673 6.03 8.24 -5.9 35.3 15 44 35.18 14.4 .673 6.03 8.24 -5.9 35.3 15 40 14.4 .673 6.03 8.24 -5.9 35.3 15 40 14.4 .673 6.03 8.24 -5.9 35.3 16 41 95.18 14.4 .673 6.03 8.24 -5.9 35.3 16 41 .673 6.03 8.24 -5.9 35.3 35.3 16 41 .673 6.03 8.24 -5.9 35.3 35.3 17 50 .603 .673 .603 8.24 .59 35.3 18 60 .675 .603 .6550 .603 .603 .603 .603 .603 .603 .603 .603 .603 .603 .603 .60	1532 35.	01	1	14.2				-25.1	53.9
i541 3520 0.10 i4.5 i64 6.13 5.76 -7.4 44.1 i544 35.18 i4.6 i73 6.03 8.24 -3.9 35.7 istabilization achieved if three successive measurements for pH, Conductivity and Turbidity or Dissolved Oxygen are recorded within their perspective stabilization criteria. A minimum of six measurements should be recorded. 550									
1544 35.18 14.4 673 6.03 8.24 35.7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
Stabilization achieved if three successive measurements for pH, Conductivity and Turbidity or Dissolved Oxygen are recorded within their perspective stabilization criteria. A minimum of six measurements should be recorded. Purging Comments: SAMPLE INFORMATION Container Type Bottle Preservative Field Filtered? Analysis Sound VO A 3 HCI No 0.45 0.10 I L combur I HCI No 0.45 0.10 Dx								39	77.1
tabilization achieved if three successive measurements for pH, Conductivity and Turbidity or Dissolved Oxygen are recorded within their erspective stabilization criteria. A minimum of six measurements should be recorded. Purging Comments:									
Stabilization achieved if three successive measurements for pH, Conductivity and Turbidity or Dissolved Oxygen are recorded within their berspective stabilization criteria. A minimum of six measurements should be recorded. Purging Comments:									
Stabilization achieved if three successive measurements for pH, Conductivity and Turbidity or Dissolved Oxygen are recorded within their berspective stabilization criteria. A minimum of six measurements should be recorded. Purging Comments:			0	_					· · · · · · · · · · · · · · · · · · ·
Stabilization achieved if three successive measurements for pH, Conductivity and Turbidity or Dissolved Oxygen are recorded within their berspective stabilization criteria. A minimum of six measurements should be recorded. Purging Comments:			- 20	NAN	1000	\bigcirc	1550		
Bottle comments: A minimum of six measurements should be recorded. Container Type Bottle count Preservative Field Filtered? Analysis Moni Vo A 3 Hoi No 0.45 0.10 I L comber I Hoi No 0.45 0.10 No 0.45 0.10 Dx No 0.45 0.10 Dx				100	1.0	Co			
Bottle Count Preservative Field Filtered? Analysis Container Type Bottle Count Preservative Field Filtered? Analysis HOmi VOA 3 HOI No 0.45 0.10 L Comber I HOI No 0.45 0.10 No 0.45 0.10 Dx Dx No 0.45 0.10 Dx							y or Dissolved Ox	ygen are record	led within their
SAMPLE INFORMATION Container Type Bottle Count Field Filtered? Analysis Moment Vort 3 Hol No 0.45 0.10 Grx ISTEX 1 L Container I Hol No 0.45 0.10 1 L Mo 0.45 0.10 Dx Image: Colspan="2">Dx 1 L No 0.45 0.10 Dx Image: Colspan="2">Dx			A minimum of	six measu	rements should	be recorded.			
Container Type Bottle Count Preservative Field Filtered? Analysis HOmi VOA 3 HCI No 0.45 0.10 Gx, BTGX L combur I HCI No 0.45 0.10 Dx No 0.45 0.10 Dx Dx Dx									
40 m VOA 3 HCI No 0.45 0.10 Gx , $BTGx$ I L comber I HCI No 0.45 0.10 Dx No 0.45 0.10 Dx Dx No 0.45 0.10 Dx		MATION							
40 m VOA 3 HCI No 0.45 0.10 Gx, BTGX I L comber I HCI No 0.45 0.10 Dx No 0.45 0.10 Dx Dx No 0.45 0.10 Dx	Purging Comments		Preservativ	e Field	Filtered?		Analy	ysis	
I L cumber I Hol No 0.45 0.10 Dx No 0.45 0.10 No 0.45 0.10	Purging Comments	e Bottle	Treservativ				GX, RTG	~	
No 0.45 0.10	Purging Comments SAMPLE INFOR Container Typ	e Bottle Count	100000				1 1 21 6		
	SAMPLE INFOR Container Typ	e Bottle Count	Hel	No 0	.45 0.10		Dx	~	
No 0.45 0.10	SAMPLE INFOR Container Typ	e Bottle Count	Hel	No 0 No 0	.45 0.10 .45 0.10		Dx	~	

		an 0:71			Sample I.D.		2W	I.D. Number:
Date	11/3	0/18	019			ate 1.D		
Monumer Well cap Headspac Well diam	condition: e reading: neter:	Good [Good [Not meas] 2-inch	ured	ppm 1	eplacement Do nch Dt wop ; DTW	lor her		
Fotal well Depth to p Depth to w Casing vo	roduct vater <u>34</u> lume	<u>9, 79</u> ft <u>-</u> ft <u>. २५</u> ft <u>. 95</u> ft (H;	Intake Depth 20) X <u>O</u> s	(BTOC) <u>3</u> 65_gal/ft	Not measur $\frac{q'}{2^{\prime}=3*22}$ $2^{\prime}=0.16 \text{ gal/}$	n Purging Wel gal. X 3 =_	11: 1420 9.66 g	al.
Pump typ Bailer typ	e 🗌 Perist e:	Wa			lder 🛛 Non- l 🛛 Remedia	tion System	Other	
	ARAMETE	RS	1	1		Odor and/or	Sheen:	t petro odor
FIELD P	1			7	Discolud			
Time	Water Level (BTOC)	Purge Rate (L/min)	Тетр. ([°] С)	Sp. Cond. (mS/cm) (±3%)	Dissolved Oxygen (±10% or ≤1.00 ±0.2)	pH (SU) (±0.1)	ORP (mV)	Turbidity (NTU) (± 10% or ≤10)
				(mS/cm)	Oxygen (±10% or ≤1.00 ±0.2) Ҷ. Ҭ	(SU)	A REPORT OF A R	(NTU)
Time '낙고\ 낙고낙	Level (BTOC) 35.34 35.39	(L/min)	(°C) 15-0 14.7	(mS/cm) (±3%) ,¶64 ,¶38	Oxygen (±10% or ≤1.00 ±0.2) 	(SU) (±0.1) 6.99 7.27	(mV) +6:0.5 -72.7	(NTU) (± 10% or ≤10) + +
Time ¹⁴ 21 1424 1424	Level (BTOC) 35.34 35.38 35.44		(°C) 15-0 14.7 14.9	(mS/cm) (±3%) .964 .938 .928	Oxygen (±10% or ≤1.00 ±0.2) 4. 74 1. 15 0. 84	(SU) (±0.1) 6.41 7.27 7.27	(mV) -60.5 -12.7 -75.8	(NTU) (± 10% or ≤10) + + 5550
Time ¹⁴ 721 14724 14724 14724 14730	Level (BTOC) 35.34 35.38 35.44 35.51	(L/min)	(°C) 15-0 14.7 14.9 14.4	(mS/cm) (±3%) •938 •928 •928	Oxygen (±10% or ≤1.00 ±0.2) 4. 74 1. 15 O ∘ 54 O ∘ 55	(SU) (±0.1) (±0.1) (-, 19 (-, 19 (-, 19) (-, 10) (-, 1	(mV) -60.5 -72.7 -75.8 -74.4	(NTU) (± 10% or ≤10) + + 5:50 -
Time ¹⁴ 21 1424 1424 1427 1430 1433	Level (BTOC) 35.34 35.38 35.44 35.51 35.51	(L/min)	(°C) 15-0 14.7 14.9 14.9 14.4 15.1	(mS/cm) (±3%) ,964 ,938 ,928 ,927 ,927 ,927	Oxygen (±10% or ≤1.00 ±0.2) 4. 74 1. 15 0. 84 0. 55 0. 61	(SU) (±0.1) (±0.1) ((mV) +6:0.5 -72.7 -75.8 -74.4 -69.9	(NTU) (± 10% or ≤10) + + 550 493 285
Time 1421 1424 1424 1427 1430 1436	Level (BTOC) 35.34 35.38 35.44 35.54 35.54 35.54 35.63	(L/min)	(°C) 15-0 14.7 14.9 14.9 14.4 15.0	(mS/cm) (±3%) ,964 ,938 ,928 ,928 ,928 ,928 ,927 ,912	Oxygen (±10% or ≤1.00 ±0.2) 4. 74 1. 15 0. 84 0. 55 0. 61 0. 52	(SU) (±0.1) 6.49 7.27 7.27 7.35 7.35 7.35 7.12	(mV) -60.5 -72.7 -75.8 -74.4	(NTU) (± 10% or ≤10) + + 5550 493 285 512
Time ¹⁴ 21 1424 1424 1427 1430 1436 1439	Level (BTOC) 35.34 35.38 35.44 35.51 35.59 35.63 35.25	(L/min)	(°C) 15-0 14.7 14.9 14.9 14.4 15.1 15.0	(mS/cm) (±3%) •964 •938 •928 •928 •928 •927 •916 •912	Oxygen (±10% or ≤1.00 ±0.2) 4. 74 1. 15 0. 84 0. 55 0. 61 0. 52 0. 68	(SU) (±0.1) (2.49 7.27 7.35 7.35 7.35 7.12 7.13	(mV) -60.5 -75.8 -75.8 -74.4 -69.9 -62.9 -67.0	(NTU) (± 10% or ≤10) + + 550 493 285
Time ¹⁴ 21 1424 1424 1427 1430 1433 1436	Level (BTOC) 35.34 35.38 35.44 35.54 35.54 35.54 35.63	(L/min)	(°C) 15-0 14.7 14.9 14.9 14.4 15.0	(mS/cm) (±3%) ,964 ,938 ,928 ,928 ,927 ,912	Oxygen (±10% or ≤1.00 ±0.2) 4. 74 1. 15 0. 84 0. 55 0. 61 0. 52	(SU) (±0.1) 6.49 7.27 7.27 7.35 7.35 7.35 7.12	(mV) -60.5 -12.7 -75.8 -74.4 -69.9 -63.9	(NTU) (± 10% or ≤10) + + 5550 493 285 512
Time ¹⁴ 21 1424 1424 1427 1430 1436 1439	Level (BTOC) 35.34 35.38 35.44 35.51 35.59 35.63 35.25	(L/min)	(°C) 15-0 14.7 14.9 14.9 14.4 15.1 15.0	(mS/cm) (±3%) •964 •938 •928 •928 •928 •927 •916 •912	Oxygen (±10% or ≤1.00 ±0.2) 4. 74 1. 15 0. 84 0. 55 0. 61 0. 52 0. 68	(SU) (±0.1) (2.49 7.27 7.35 7.35 7.35 7.12 7.13	(mV) -60.5 -75.8 -75.8 -74.4 -69.9 -62.9 -67.0	(NTU) (± 10% or ≤10) + + 5550 493 285 512
Time 1424 1424 1424 1427 1430 1433 1436 1439	Level (BTOC) 35.34 35.38 35.44 35.51 35.59 35.63 35.25	(L/min)	(°C) 15-0 14.7 14.9 14.9 14.4 15.1 15.0 15.1 15.0	(mS/cm) (±3%) •964 •938 •928 •928 •928 •927 •916 •912 •912 •906	Oxygen $(\pm 10\% \text{ or} \le 1.00 \pm 0.2)$ 4.74 1.15 0.894 0.55 0.61 0.52 0.63 0.57	(SU) (±0.1) 6.99 7.27 7.27 7.35 7.35 7.35 7.12 7.12 7.13 7.12	(mV) -60.5 -75.8 -75.8 -74.4 -69.9 -62.9 -67.0	(NTU) (± 10% or ≤10) + + 5550 493 285 512
Time ¹⁴ 21 1424 1424 1427 1430 1436 1439	Level (BTOC) 35.34 35.38 35.44 35.51 35.59 35.63 35.25	(L/min)	(°C) 15-0 14.7 14.9 14.9 14.4 15.1 15.0 15.1 15.0	(mS/cm) (±3%) •964 •938 •928 •928 •928 •927 •916 •912	Oxygen $(\pm 10\% \text{ or} \le 1.00 \pm 0.2)$ 4.74 1.15 0.894 0.55 0.61 0.52 0.63 0.57	(SU) (±0.1) 6.49 7.27 7.35 7.35 7.35 7.12 7.13	(mV) -60.5 -75.8 -75.8 -74.4 -69.9 -62.9 -67.0	(NTU) (± 10% or ≤10) + + 5550 493 285 512
Time ¹⁴ 21 1424 1427 1430 1430 1436 1439 142 142 Stabilization	Level (BTOC) 35.34 35.34 35.44 35.54 35.59 35.63 35.75 35.20	(L/min)	(°C) 15-0 14.7 14.9 14.4 15.1 15.0 15.0 15.1 15.0 20	(mS/cm) (±3%) ,964 ,938 ,928 ,927 ,928 ,927 ,916 ,912 ,906 ,906 ,906	$Oxygen$ $(\pm 10\% \text{ or} \le 1.00 \pm 0.2)$ 4.74 1.15 0.534 0.55 0.61 0.52 0.62 0.57	(SU) (±0.1) 6.99 7.27 7.27 7.35 7.35 7.35 7.12 7.12 7.12 7.13 7.12	(mV) +60.5 -75.8 -75.8 -75.8 -75.8 -75.8 -75.8 -69.9 -69.9 -69.3	(NTU) (± 10% or ≤10) + + 550 493 285 512 Ì91
Time 1421 1424 1424 1427 1430 1433 1436 1439 1439 142 Stabilization perspective	Level (BTOC) 35.34 35.34 35.34 35.44 35.51 35.59 35.63 35.20	(L/min)	(°C) 15-0 14.7 14.9 15.1 15.0 15.1 15.0 15.0 15.0 15.1 15.0 15.0 15.0 15.0	(mS/cm) (±3%) ,964 ,938 ,928 ,928 ,928 ,927 ,927 ,912 ,906 ,906 ,906 ,906 ,906	$0xygen$ $(\pm 10\% \text{ or} \le 1.00 \pm 0.2)$ 4.74 1.15 0.53 0.61 0.55 0.61 0.57 0.62 0.57 0.57 0.68 0.57 0.67 0.68 0.57	(SU) (±0.1) 6.99 7.27 7.27 7.35 7.35 7.35 7.12 7.12 7.12 7.12 7.12 7.12 7.12	(mV) -60.5 -75.8 -75.8 -74.4 -69.9 -62.9 -67.0 -67.3 ygen are recorded	(NTU) (± 10% or ≤10) + + 550 493 285 512 Ì91
Time ¹⁴ 21 1424 1427 1427 1430 1433 1436 1439 1439 1432 Stabilization perspective	Level (BTOC) 35.34 35.34 35.34 35.44 35.51 35.59 35.63 35.20	(L/min)	(°C) 15-0 14.7 14.9 15.1 15.0 15.1 15.0 15.0 15.0 15.1 15.0 15.0 15.0 15.0	(mS/cm) (±3%) ,964 ,938 ,928 ,927 ,928 ,927 ,916 ,912 ,906 ,906 ,906	$Oxygen$ $(\pm 10\% \text{ or} \le 1.00 \pm 0.2)$ 4.74 1.15 0.534 0.55 0.61 0.52 0.62 0.57	(SU) (±0.1) 6.99 7.27 7.27 7.35 7.35 7.35 7.12 7.12 7.12 7.12 7.12 7.12 7.12	(mV) +60.5 -75.8 -75.8 -75.8 -75.8 -75.8 -75.8 -75.8 -67.9 -67.0 -67.3	(NTU) (± 10% or ≤10) + + 550 493 285 512 Ì91
Time ¹⁴ Z1 14Z4 14Z4 14Z7 1430 1430 1436 1439 1422 Stabilization perspective Purging Co	Level (BTOC) 35.34 35.34 35.34 35.44 35.51 35.59 35.63 35.20	(L/min)	(°C) 15-0 14.7 14.9 15.1 15.0 15.1 15.0 15.0 15.0 15.1 15.0 15.0 15.0 15.0	(mS/cm) (±3%) ,964 ,938 ,928 ,928 ,928 ,927 ,927 ,912 ,906 ,906 ,906 ,906 ,906	$0xygen$ $(\pm 10\% \text{ or} \le 1.00 \pm 0.2)$ 4.74 1.15 0.53 0.61 0.55 0.61 0.57 0.62 0.57 0.57 0.68 0.57 0.67 0.68 0.57	(SU) (±0.1) 6.99 7.27 7.27 7.35 7.35 7.35 7.12 7.12 7.12 7.12 7.12 7.12 7.12	(mV) -60.5 -75.8 -75.8 -74.4 -69.9 -62.9 -67.0 -67.3 ygen are recorded	(NTU) (± 10% or ≤10) + + 550 493 285 512 Ì91
Time ¹⁴ Z1 14Z4 14Z4 14Z7 1430 1430 1436 1439 142 Stabilization perspective Purging Co SAMPLE	Level (BTOC) 35.34 35.34 35.34 35.34 35.54 35.54 35.59 35.63 35.20 achieved if th stabilization comments: INFORMA	(L/min)	(°C) 15-0 14.7 14.9 15.1 15.0 15.1 15.0 15.1 15.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	(mS/cm) (±3%) ,964 ,938 ,928 ,927 ,927 ,927 ,927 ,927 ,906 ,907 ,906	$0xygen$ $(\pm 10\% \text{ or} \le 1.00 \pm 0.2)$ 4.74 1.15 0.53 0.61 0.55 0.61 0.57 0.62 0.57 0.57 0.68 0.57 0.67 0.68 0.57	$(SU) (\pm 0.1) (\pm 0.1)$	(mV) -42.7 -75.3 -75.3 -74.4 -69.9 -62.9 -67.0 -67.3 ygen are recorded	(NTU) (± 10% or ≤10) + + 550 493 285 512 Ì91
Time ¹⁴ Z1 14Z4 14Z4 14Z7 1430 1430 1438 1438 1438 1438 142 Stabilization perspective Purging Co SAMPLE Contain	Level (BTOC) 35.34 35.34 35.34 35.34 35.34 35.54 35.54 35.59 35.63 35.30 achieved if th stabilization comments: INFORMA	(L/min) O. 16 O. 16 I I I I I I I I I I I I I	(°C) 15-0 14.7 14.9 14.4 15.1 15.0 15.1 15.0 15.1 15.0 5.0	(mS/cm) (±3%) ,964 ,938 ,928 ,927 ,927 ,927 ,927 ,927 ,927 ,927 ,927	$0xygen$ $(\pm 10\% \text{ or} \le 1.00 \pm 0.2)$ 4.74 1.15 0.84 0.55 0.61 0.52 0.68 0.57 0.68 0.57 0.68 0.57 0.68 0.57 0.68 0.57	(SU) (±0.1) 6.49 7.27 7.27 7.35 7.35 7.35 7.12 7.13 7.12 7.13 7.12 00 Dissolved Ox moved 4	(mV) -60.5 -12.7 -75.8 -74.4 -69.9 -63.9 -67.0 -67.3 -67.3 ygen are recorded	(NTU) (± 10% or ≤10) + + 550 493 285 512 ↓91
Time ¹⁴ Z1 14Z4 14Z4 14Z4 14Z7 1430 1430 1430 1439 142 142 Stabilization perspective Purging Co SAMPLE Contain 40.04	Level (BTOC) 35.34 35.34 35.34 35.34 35.54 35.59 35.63 35.20 achieved if th stabilization comments: INFORMA [*] er Type Vo A	(L/min) O. 16 Image: Construction of the second se	(°C) 15-0 14.7 14.9 14.4 15.1 15.0 15.1 15.0 15.1 15.0 5.0 5.1 15.0 5.0	(mS/cm) (±3%) .44 .93% .92% .92% .92% .92% .92% .92% .92% .92	$0xygen$ $(\pm 10\% \text{ or} \le 1.00 \pm 0.2)$ 4.74 1.15 0.84 0.55 0.61 0.52 0.68 0.57 0.68 0.57 0.68 0.57 0.68 0.57 0.68 0.57	(SU) (±0.1) 6.49 7.27 7.27 7.35 7.35 7.35 7.12 7.13 7.12 7.13 7.12 00 Dissolved Ox moved 4 Moved 4	(mV) -60.5 -12.7 -75.8 -74.4 -69.9 -63.9 -67.0 -67.3 -67.3 ygen are recorded	(NTU) (± 10% or ≤10) + + 550 493 285 512 Ì91
Time ¹⁴ Z1 14Z4 14Z4 14Z7 1430 1430 1438 1438 1438 1438 142 Stabilization perspective Purging Co SAMPLE Contain	Level (BTOC) 35.34 35.34 35.34 35.34 35.54 35.59 35.63 35.20 achieved if th stabilization comments: INFORMA [*] er Type Vo A	(L/min) O. 16 O. 16 I I I I I I I I I I I I I	(°C) 15-0 14.7 14.9 14.4 15.1 15.0 15.1 15.0 15.1 15.0 200 500 500 500 500 500 500 50	(mS/cm) (±3%) ,964 ,938 ,928 ,927 ,927 ,927 ,927 ,927 ,926 ,926 ,926 ,928 ,928 ,928 ,928 ,928 ,928 ,928 ,928	$0xygen$ $(\pm 10\% \text{ or} \le 1.00 \pm 0.2)$ 4.74 1.15 0.84 0.55 0.61 0.52 0.68 0.57 0.68 0.57 0.68 0.57 0.68 0.57 0.68 0.57	(SU) (±0.1) 6.49 7.27 7.27 7.35 7.35 7.35 7.12 7.13 7.12 7.13 7.12 00 Dissolved Ox moved 4	(mV) -60.5 -12.7 -75.8 -74.4 -69.9 -63.9 -67.0 -67.3 -67.3 ygen are recorded	(NTU) (± 10% or ≤10) + + 550 493 285 512 ↓ 71
Time ¹⁴ Z1 14Z4 14Z4 14Z4 14Z7 1430 1430 1430 1439 142 142 Stabilization perspective Purging Co SAMPLE Contain 40.04	Level (BTOC) 35.34 35.34 35.34 35.34 35.54 35.59 35.63 35.20 achieved if th stabilization comments: INFORMA [*] er Type Vo A	(L/min) O. 16 Image: Construction of the second se	(°C) 15-0 14.7 14.9 14.4 15.1 15.0 15.1 15.0 15.1 15.0 15.1 15.0 15.1 15.0 15.1 15.0 15.1 15.0 15.1 15.0 15.1 15.0	(mS/cm) (±3%) .44 .93% .92% .92% .92% .92% .92% .92% .92% .92	$0xygen$ $(\pm 10\% \text{ or} \le 1.00 \pm 0.2)$ 4.74 1.15 0.84 0.55 0.61 0.52 0.68 0.57 0.68 0.57 0.68 0.57 0.68 0.57 0.68 0.57	(SU) (±0.1) 6.49 7.27 7.27 7.35 7.35 7.35 7.12 7.13 7.12 7.13 7.12 00 Dissolved Ox moved 4 Moved 4	(mV) -60.5 -12.7 -75.8 -74.4 -69.9 -63.9 -67.0 -67.3 -67.3 ygen are recorded	(NTU) (± 10% or ≤10) + + 550 493 285 512 Ì91

Level (BTOC) (L/min) (°C) (mS/cm) (±3%) (±10% or s1.00 ±0.2) (SU) (±0.1) (mV) (NT) (±10% or (±10% or (±10% or s1.00 ±0.2) OP12 35.13 13:5 1.13 £ 2.39 6.53 519 (?i OP12 35.13 13:5 1.13 £ 2.39 6.53 519 (?i OP12 35.35 13.7 1.12 4 1.0i (PH -3.0 7-2 OP14 35.35 13.7 1.12 1 0.64 7.004 -45.6 17.3 OP13 35.64 13.6 1.12 1 0.50 7.04 -45.6 17.3 OP33 35.64 13.6 1.12 1 0.39 7.06 .97.4 14 OP33 35.74 13.2 1.12 1 0.39 7.06 .97.4 14 OP33 35.74 13.2 1.12 1 0.39 7.06 .97.4 14 OP33 35.74 13.2 1.12 1 0.39 7.06 .97.4 13	Hydrocon	me:کوار Project # <u>:</u> ریار	2017-0 118	Wenate 74	het		MW 3 ate I.D C/2	1-W 1	D. Number:/ Time: Time:
table will depth 39.28 ft Bottom: Hard Soft W Not measured Screen Interval(s): 14 - 39 epth to product	Monumen Well cap o Headspace Well diam	t condition: condition: e reading: eter:	Good Good X Good X Good X Not measure 2-inch	ured	ppm		lor		
ump type Peristaltic Centrifugal Dedicated Bladder Non-Dedicated Bladder Other ailer type: Water Disposal: Drummed Remediation System Other	Total well Depth to pr Depth to wa Casing vol	depth <u>3</u> ° oduct <u>-</u> ater <u>36</u> ume <u>4</u>	<u>1.28</u> ft E ft <u></u> ft I <u></u> ft I <u></u> ft (H ₂	ntake Depth 0) X <u>0, 65</u>	(BTOC)3 gal/ft	e Begi	n Purging Well gal. X 3 =_	<u>8.31</u> ga	i.
Time Water Level (BTOC) Purge Rate (L/min) Temp. (°C) Sp. Cond. (mS/cm) (±3%) Dissolved Oxygen (±10% or \$1.00 ±0.2) PH (st) ORP (mV) Turbit (NT (±10% or \$1.00 ±0.2) Q912 35.13 13:5 1.132 2.39 6.53 519 (?1) Q913 35.13 13:5 1.132 2.39 6.53 519 (?1) Q914 35.35 13:4 1.122 0.64 2.05 -33.1 27.9 Q913 35.64 13.4 1.121 0.40 -42.6 17.9 Q913 35.64 13.6 1.121 0.41 7.05 -54.4 14 Q935 95.74 13.6 1.121 0.41 7.05 -54.4 14 Q935 95.74 13.2 1.121 0.39 7.06 -97.6 7.8 Q935 95.74 13.2 1.121 0.39 7.06 -97.6 7.8 atbilization achieved if three successive measurements for pH, Conductivity and Turbidity or Dissolved Oxygen are recorded within ther	Pump type	e 🗌 Perista	ltic 🗌 Centr	ifugal 🔲 De ter Disposal::	edicated Bla Drumme	dder 🕢 Non- d 🔀 Remedia	Dedicated Bla tion System [dder Other] Other	
Time Water Level (BTOC) Purge Rate (L/min) Temp. (°C) Sp. Cond. (mS/cm) (±10% or (±10% or (±	FIELD PA	RAMETER	RS				Odor and/or	Sheen: light	potro alor
0918 35.13 13.5 1.13.5 2.39 6.53 514 191 0918 35.13 13.4 1.124 1.01 6.94 -3.0 72 0914 35.35 13.4 1.122 0.64 7.00 -39.1 27.4 0914 35.54 0.170 13.4 1.121 0.50 7.04 -45.6 17.9 0913 35.54 0.170 13.4 1.121 0.50 7.04 -45.6 17.9 0913 35.64 13.6 1.121 0.41 7.05 -54.4 14 0933 35.744 13.8 1.121 0.39 7.06 -57.6 4.3 0933 35.744 13.8 1.121 0.39 7.06 -57.6 4.3 0933 35.744 13.8 1.121 0.39 7.06 -57.6 4.3 13.8 1.121 0.39 7.06 -57.6 4.3 14.00 13.6 1.121 0.39 1.06 -57.6 4.3 15.01 13.9	Time	Level			(mS/cm)	Oxygen (±10% or	pH (SU)	ORP	Turbidity (NTU) (± 10% or ≤10)
37.1 5.23 13.6 1.124 1.01 (94 -3.0 72 37.4 35.35 13.7 1.122 0.64 7.00 -37.1 27.0 37.1 35.54 0.170 13.7 1.121 0.50 7.04 -45.6 17.9 2730 35.64 13.6 1.121 0.41 7.05 -54.4 14 2733 35.74 13.8 1.121 0.41 7.05 -54.4 14 2733 35.74 13.8 1.121 0.41 7.05 -54.4 14 2733 35.74 13.8 1.121 0.41 7.05 -54.4 14 2733 35.74 13.8 1.121 0.439 7.06 -977.6 7.8 2744 13.8 1.121 0.4970	0418			13:5		2,39		519	191
2724 35.35 13.7 1.122 0.64 7.00 -37.1 27. 0717 35.54 0.170 13.4 1.121 0.50 7.04 -45.6 17.9 0710 35.64 13.6 1.121 0.41 7.05 -54.4 14 0730 35.64 13.6 1.121 0.41 7.05 -54.4 14 0733 35.74 13.8 1.121 0.41 7.05 -54.4 14 0733 35.74 13.8 1.121 0.37 7.06 *57.6 7.3 13.6 1.121 0.37 7.06 *57.6 7.3 14.0 3.8 1.121 0.37 7.06 *57.6 7.3 15.6 13.6 1.121 0.37 7.06 *57.6 7.3 15.7 13.6 0.944 0 14 14 14 14.0 13.6 0.944 0 14 15 15 15.7 14.0 14.0 14.0 14.0 14 14	0721			13.6	1.124	1.01	694		72.4
2130 35.64 13.6 1.121 0.41 7.05 -54.4 14 2933 35.74 13.2 1.121 0.39 7.06 -57.6 7.5 2033 35.74 13.2 1.121 0.39 7.06 -57.6 7.5 2033 35.74 13.2 1.121 0.39 7.06 -57.6 7.5 2043 35.74 13.2 1.121 0.39 7.06 -57.6 7.5 2040	0924	35.35			1.122				27.6
933 95.74 13.2 1.21 0.39 7.06 -57.6 7.3 1 13.2 13.2 1.21 0.39 7.06 -57.6 7.3 1 13.2 13.	CALT		0.170						17.9
Tabilization achieved if three successive measurements for pH, Conductivity and Turbidity or Dissolved Oxygen are recorded within the erspective stabilization criteria. A minimum of six measurements should be recorded. urging Comments:									14,9
Cabilization achieved if three successive measurements for pH, Conductivity and Turbidity or Dissolved Oxygen are recorded within the erspective stabilization criteria. A minimum of six measurements should be recorded. urging Comments: AMPLE INFORMATION	0135	<u> </u>	C	1		0.34)		
erspective stabilization criteria. A minimum of six measurements should be recorded. urging Comments:		_	2	ample	(0)	09-10	/		
	perspective :	stabilization cr	l ee successive me iteria. A minimu	easurements for m of six measur	r pH, Conductiv rements should	l vity and Turbidity l be recorded.	or Dissolved Oxy	gen are recorded	l l within their
	SAMPLE	INFORMAT	TION						
Container Tyme Bottle Preservative Field Filtered? Analysis	MADIA DE	IN ORMA							
Container Type Count Count Field Intered. Analysis	C	er Type	Bottle Preserv	ative Field	Filtered?	1	Analy	sis	

Container Type	Count	Preservative	Field Filtered?	Analysis
yom VOA	3	1401	No 0.45 0.10	GX RTEX
1 L combar	-1	HCI	No 0.45 0.10	Dx
		· · · · · · · · · · · · · · · · · · ·	No 0.45 0.10	
			No 0.45 0.10	
			No 0.45 0.10	

Sampling Comments:_

	0					LE COLLE		Well	I.D. Number:
Hydrocon	ame:. <u>Ce</u> a Project # <u>:</u> 11/2	2	017-0	Venitable	e	Sample I.D Field Duplica Personnel:	ate I.D	32 - W	Time: <u>1200</u> Time: <u>-</u>
Monumer Well cap Headspac Well diam	condition: e reading: neter:	n: 🔀 G 🕅 G 🕅 N 🗌 24	ood 🗌 ot measu -inch	Replaced red X 4-inch	□ Needs r ppm □ 6-i	eplacement Doc nch Dot	Surface V lor her	Vater in Well	
Fotal well Depth to p Depth to w Casing vol	/ater <u>1</u> 7 lume <u>2</u>	- 	ft Bo ft ft In ft (H ₂ C	take Depth) X <u>0.6</u>	(BTOC) 5gal/ft	Not measur = <u>: 4, , 3</u> = 2"=0.16 gal/	n Purging We gal. X 3 =	1: 11:39 4:2,39 ga	_ al.
Pump typ	G /DISPOS e 🛛 Peris e:	taltic [Centrif	ugal 🔲 Do r Disposal::	edicated Bla Drumme	dder 🗌 Non- d 🔀 Remedia	Dedicated Bla tion System	dder Other_ _] Other	
FIELD P.	ARAMETI	ERS					Odor and/oi	Sheen: No	ne
Time	Water Level (BTOC)		ge Rate /min)	Тетр. (°С)	Sp. Cond. (mS/cm) (±3%)	Dissolved Oxygen (±10% or ≤1.00 ±0.2)	pH (SU) (±0.1)	ORP (mV)	Turbidity (NTU) (± 10% or ≤10)
1141	12.35	Dation		15.1	. 533	1.35	6.74	174.8	1.40
1144	12.40		145	15.5	.532	0.42	6.85	115.8	1,00
1150	12.50			15.7	.535	0:27	6.89	91.5	1.09
1153	12.55			15.6	1538	0.25	6.89	84.9	
1156	12.57			15.7	,540	0,24	6 - 29	82.1	1,04
			San	mple	\bigcirc	1200			
perspective Purging Co	stabilization	criteria. <i>I</i>			r pH, Conductiv rements should	ity and Turbidity be recorded.	or Dissolved Ox	 vgen are recorde	 d within their
Contain	er Type	Bottle Count	Preservat	ive Field	Filtered?		Analy	sis	
yumi	VoA	3	HCI	No) 0.	45 0.10	G			
	bur	1	Itel		45 0.10	<u> </u>			
			TTVI		10 0.10		DX		

No 0.45 0.10 No 0.45 0.10

Sampling Comments:_

Hydroco	n Project #:	Man 071 2017-074	Wennitch	ec.	Sample I.D Field Duplic Personnel:_	ate I.D. M	\checkmark	I.D. Number: _Time: <u>1030</u> _Time: <u>1036</u>
Monume Well cap Headspac Well dian	ce reading: neter:	X Good X Good X Not measure X 2-inch	ured	ppm 6-ii	eplacement 00 nch 01 معالی	dor ther	-	
Total wel Depth to p Depth to v Casing vo	vater <u> </u>	<u>So.co</u> ft E VM ft	ntake Depth	(BTOC)	Begi	n Purging We	III: <u>1020</u>	
Pump typ Bailer typ	e 🗌 Perista	Wat	fugal	edicated Blac	dder 🗌 Non- d 🏹 Remedia	tion System	Other	pnematic
Time	Water Level (BTOC)	Purge Rate (L/min)	Temp. (°C)	Sp. Cond. (mS/cm) (±3%)	Dissolved Oxygen (±10% or ≤1.00 ±0.2)	pH (SU) (±0.1)	ORP (mV)	+ petro alor Turbidity (NTU) (± 10% or ≤10)
1025	NM	(m)	0000 12.7	.901	3.27	6.94	-34.0	26.1
perspective	stabilization cri	ee successive mea teria. A minimum Se Installe	of six measure	ements should	ty and Turbidity be recorded.		ygen are recorde	ed within their
SAMPLE	INFORMAT	ION						
		Bottle Preservat		iltered?	G	Analy	1999 C	
Containe 40ml V	10.A .			5 0 40		Du		
			No 0.4 No 0.4	15 0.10 15 0.10 15 0.10 15 0.10				

Hydrocon	ime:. <u>()</u> Project # <u>:</u> 11 [30]	2017	01 W	issuteh	er.	Sample I.D Field Duplica Personnel:	ate I.D	1- W	I.D. Number:13 Time: <u>1635</u> Time: <u>-</u>
Monumen Well cap Headspace Well diam	e reading:	n: 🛛 Go 🏹 Go 🏹 No 🗐 2-i	t measured	d	ppm	eplacement D Oc nch D Ot	lor		
Total well Depth to pr Depth to we Casing vol	roduct <u> </u>	5.00 tr .63 .37	ft Botto ft ft Intak ft (H ₂ O)	te Depth	(BTOC) <u>3</u> gal/ft	Not measur = 1.02 $= 2^{"}=0.16 \text{ gal}/$	n Purging We gal. X 3 =	II: 1616 3.06 ga	_ al.
Pump type Bailer type	e:	taltic [Centrifug	al 🗌 D)isposal::	edicated Bla	dder 🕅 Non- d 💢 Remedia	Dedicated Bla tion System	adder Other_ Other	
FIELD PA	ARAMETE	RS					Odor and/or	r Sheen: Stron	g dor , light s
Time	Water Level (BTOC)		e Rate 7 min)	「 emp. (⁰C)	Sp. Cond. (mS/cm) (±3%)	Dissolved Oxygen (±10% or ≤1.00 ±0.2)	pH (SU) (±0.1)	ORP (mV)	Turbidity (NTU) (± 10% or ≤10)
1617	28.89		11	.7	.685	7.49	7.76	-2.3	525
1620	29.05	1		4.0	.849	0.87	6.28	-38.9	178
1623	29.44			3.9	. 850	0,49	6.91	-42.0	107
1626	29.75			3.8	. 347	0.42	6.84	1-4501	81.5
1629	30.04			3.6	· 848	0.40	6.78	-47.7	45.1
			_	1					
			Servin	de	(e)	16 35			
Stabilization perspective s Purging Con	tabilization c	riteria. A	ssive measure minimum of s	ements for six measur	r pH, Conductiv rements should	ity and Turbidity be recorded.	or Dissolved Ox	ygen are recordeo	d within their
SAMPLE I	NFORMA	TION							
Containe	er Type	CITES AND A	Preservative	Field	Filtered?		Analy	vsis	
40.ml	UDA	Count	Heal	NO 0.	45 0.10	6-	V. 1271=	×	
1 Lan		1	HCI	No 0.	45 0.10		Dr	~	
				No 0	45 0.10				

No 0.45 0.10 No 0.45 0.10

Sampling Comments:

	ame: Cole					Sample I.D.	131+03-		I.D. Number:
Hydroco	n Project # <u>:</u>	20	17 - 047				ate I.D		Time:
Date	1/29/18	3				Personnel:	(212	
Monume Well cap Headspa Well diar	NFORMAT) nt condition: condition: ce reading: neter: ts		ot measure -inch	ed 4-inch	air Deeds r ppm D 6-in	eplacement Oo nch Ot	. 🗌 Water in 🗍 Surface V dor her	Monument Vater in Well	
Total well Depth to p Depth to y Casing vo	oroduct water <u>24</u> olume	- - - 5.96	ft Bott ft ft Inta ft (H ₂ O)	ke Depth (X0_16	(BTOC)	X Not measur 2^{7'} Begi = <u>15'4</u> 2 ["] =0.16 gal/	n Purging Wel qal. X 3 =	1: 1439 Z.86 ga	_ al.
Pump typ Bailer typ	be:	altic [Centrifug	gal 🗌 De Disposal::(edicated Bla Drumme	dder 🔲 Non- d 🔀 Remedia	tion System	Other	
FIELD P	PARAMETE	KS					Odor and/or	Sheen: V tain	t petro oder
Time	Water Level		ge Rate /min)	Temp. (°C)	Sp. Cond. (mS/cm) (±3%)	Dissolved Oxygen (±10% or ≤1.00 ±0.2)	pH (SU) (±0.1)	ORP (mV)	Turbidity (NTU) (± 10% or ≤10)
	I (BTOC)								
1448	(BTOC)			2.6				-43.6	
1451	24,35			2.6	1.116	1.86	7.41	-43.6	6.51
1451	24,35	0	-045	3.1	1.116 1.133 1.132	1.86 1.92 1.87	<u>२.५।</u> २.५। २.५।	-44.8	6.51 19.6 17.1
1451 1454 1457	24,35 24,35 24,42 24,50	0	- 045 i	3.1 3.2 3.3	1.116 1.133 1.132 1.133	1.86 1.22 1.87 1.30	7.41 7.41 7.41 7.25	-44.8 -45.7 -46.7	6.51 19.6 17.1 10.7
1451 1454 1457 1500	24,35 24,35 24,42 24,50 24,60	0	-045 i	3.1 3.2 3.3 3.4	1.116 1.133 1.132 1.133 1.139	1.86 1.92 1.87 1.30 0.58	7.41 7.41 7.41 7.25 7.34	-44,8 -45.7 -46.7 -47.6	6.51 19.6 17.1 10.7 6.93
1454 1457	24,35 24,35 24,42 24,50	0	-045 i	3.1 3.2 3.3	1.116 1.133 1.132 1.133	1.86 1.22 1.87 1.30	7.41 7.41 7.41 7.25	-44.8 -45.7 -46.7	6.51 19.6 17.1 10.7
1454 1454 1457 1500 1503	24,35 24,35 24,42 24,50 24,60 24,60 24,65	50	-045 i	3.1 3.2 3.3 3.4 3.6	i.116 1.133 1.132 1.132 1.133 1.139 1.139 1.139	1.86 1.92 1.87 1.87 1.30 0.28 0.28 0.74	7.41 7.41 7.25 7.25 7.34 7,26	-44,5 -45.7 -46.7 -47.6 -47.6 -48.5	6.51 19.6 17.1 10.7 6.93 5.56
¹⁴ 51 ¹⁴ 54 ¹⁵⁰⁰ ¹⁵⁰³ Stabilization perspective	24,35 24,35 24,42 24,50 24,60 24,60 24,65	ree succ		3.1 3.2 3.3 3.4 3.6	i.116 1.133 1.132 1.133 j.139 j.139 j.139 j.139	1.86 1.92 1.87 1.87 1.30 0.28 0.28 0.74	7.41 7.41 7.25 7.25 7.34 7,26	-44.8 -45.7 -46.7 -47.6 -47.6 -48.5	6.51 19.6 17.1 10.7 6.93 5.56
1451 1454 1500 1503 Stabilization perspective Purging Co	24,35 24,35 24,42 24,50 24,60 24,60 24,65	ree succ riteria.		3.1 3.2 3.3 3.4 3.6	i.116 1.133 1.132 1.133 j.139 j.139 j.139 j.139	1.86 1.92 1.87 1.87 1.30 0.28 0.28 0.74	7.41 7.41 7.25 7.25 7.34 7,26	-44.8 -45.7 -46.7 -47.6 -47.6 -48.5	6.51 19.6 17.1 10.7 6.93 5.56
1451 1454 1454 1550 1503 1503 Stabilization perspective Purging Co SAMPLE Contain	24,35 24,35 24,35 24,35 24,50 24,60 25,60	ree succ riteria.		3.1 3.2 3.3 3.4 13.6 Field F	i.116 1.132 1.132 1.132 1.133 1.139 1.139 1.139 1.139 1.143 Diff 3	1.86 1.92 1.87 1.87 1.30 0.58 0:34 0:34	7.41 7.41 7.25 7.34 7.26 or Dissolved Oxy	-	6.51 19.6 17.1 10.7 6.93 5.56
اط ج۲ اط ج۲ اط ج۲ اع ج۲ اختی اختی اختی اختی Stabilization perspective Purging Co SAMPLE Contain طنی	24,35 24,35 24,42 24,50 24,60 24,60 24,68 24,68 24,68 1 n achieved if th stabilization c omments:	ree succ riteria. A TION Bottle	essive measure A minimum of	3.1 3.2 3.3 3.4 13.6 Field F	i.116 i.133 i.132 i.132 i.133 i.139 j.143 pH, Conductiv ements should iltered? 45 0.10	1.86 1.92 1.87 1.87 1.30 0.58 0:34 0:34	7.41 7.41 7.25 7.34 7.26 or Dissolved Oxy	-	6.51 19.6 17.1 10.7 6.93 5.56
اط ج۲ اط ج۲ اط ج۲ اع ج۲ اختی اختی اختی اختی Stabilization perspective Purging Co SAMPLE Contain طنی	24,35 24,35 24,35 24,35 24,50 24,60 25,60	ree succ riteria. A TION Bottle Count	Preservative	3.1 3.2 3.3 3.4 13.6 Field F No 0.4	i.116 i.133 i.132 i.132 i.133 i.139 j.143 pH, Conductivements should Filtered? 45 0.10 45 0.10	1.86 1.92 1.87 1.87 1.30 0.58 0:34 0:34	7.41 7.41 7.41 7.25 7.34 7.26	-	6.51 19.6 17.1 10.7 6.93 5.56
الط جم الط جم الط جم الط جم الط جم الط جم الح الط جم الط جم الح الح الح الم الم الم الم الم الم الم الم الم الم	24,35 24,35 24,42 24,50 24,60 24,60 24,68 24,68 24,68 1 n achieved if th stabilization c omments:	ree succ riteria. A TION Bottle Count	Preservative	3.1 3.2 3.3 3.4 3.6 Field F No 0.4 No 0.4 No 0.4	i.116 i.133 i.132 i.132 i.133 i.139 j.143 pH, Conductiv ements should iltered? 45 0.10	1.86 1.92 1.87 1.87 1.30 0.58 0:34 0:34	7.41 7.41 7.25 7.34 7.26 or Dissolved Oxy	-	6.51 19.6 17.1 10.7 6.93 5.56

		2017 - c			Sample I.D. Field Dunli	Cate I.D.	- W	Time: 0940 Time: -
		б			Personnel:	cate I.D	CD	
Aonume Well cap Ieadspac Vell diar	condition:	Good [Good [Not meas] 2-inch	Replaced	Needs r	eplacement	_ 🗌 Water in 🗍 Surface V dor ther3''	Monument Vater in Well	
otal wel epth to p epth to v asing vo	vater 2: Jume 4	<u>う、つう</u> ft - ft <u>5・63</u> ft <u>、3キ</u> ft (H	Intake Depth 20) X	(BTOC) 2 gal/ft		red Screen I jin Purging Wel gal. X 3 = /ft 4"=0.65 ga	1: 09+0 4.26 ga	_ al.
ump typ ailer typ	e 🛛 Perist	Wa	rifugal	edicated Bla :[]] Drumme	dder 🗌 Non d 🔀 Remedi	ation System	Other	
IELD P	ARAMETE	RS				Odor and/or	Sheen:	vone
Time	Water Level (BT0C)	Purge Rate (L/min)	Тетр. ([°] С)	Sp. Cond. (mS/cm) (±3%)	Dissolved Oxygen (±10% or ≤1.00 ±0.2)	pH (SU) (±0.1)	ORP (mV)	Turbidity (NTU) (± 10% or ≤10)
3190	25.85		11.6	1.102	8.54	6.25	105.0	8.39
<u> 거21</u> 2924	25,93	-	13.2	,771	1.35	7.27	30.3	4.54
1727	26.01	0.140	13.9	.951	0.79	7.45	26.8	4.72
930	26,20	00	13,9	.945	0.48	7.47	30.4	4.19
933	26.28		13.2	.938	0.40	7.47	28.2	5.24
		0	1					
		2	com 21	$e \odot$	09	40		
rspective rging Co		iteria. A minimu				v or Dissolved Ox	 ygen are recorde	d within their
ontain	er Type	Bottle Preserv Count	ative Field	Filtered?		Analy	sis	
40 m	I VOA	3 1+c1		.45 0.10	G	X, BTEX		
La	mber	1 1401		.45 0.10		Dx		
				.45 0.10		A STATE OF THE STA		
			NO 0	.45 0.10				
			No 0	.45 0.10				

APPENDIX B

LABORATORY REPORT AND CHAIN-OF-CUSTODY DOCUMENTATION

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Wednesday, December 12, 2018 Craig Hultgren HydroCon LLC 314 W 15th Street Suite 300 Vancouver, WA 98660

RE: A8L0038 - Coleman Wenatchee - 2017-074

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A8L0038, which was received by the laboratory on 12/3/2018 at 11:37:00AM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: ldomenighini@apex-labs.com, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of final reporting, unless prior arrangements have been made.

	Cooler Receip	ot Information		
	(See Cooler Receip	ot Form for details)		
Cooler #1	1.0 degC	Cooler #2	0.8 degC	
Cooler #3	2.2 degC		-	

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.

Apex Laboratories

was A Somenichini

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

HydroCon LLC	Project: Colema	in Wenatchee
314 W 15th Street Suite 300	Project Number: 2017-07-	74 Report ID:
Vancouver, WA 98660	Project Manager: Craig H	Iultgren A8L0038 - 12 12 18 1137

ANALYTICAL REPORT FOR SAMPLES

	SAMPLE INFORM	ATION		
Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW01-W	A8L0038-01	Water	11/27/18 12:30	12/03/18 11:37
MW01S-W	A8L0038-02	Water	11/27/18 13:10	12/03/18 11:37
MW03S-W	A8L0038-03	Water	11/27/18 11:40	12/03/18 11:37
MW06-W	A8L0038-04	Water	11/27/18 16:05	12/03/18 11:37
MW07-W	A8L0038-05	Water	11/28/18 09:25	12/03/18 11:37
MW08-W	A8L0038-06	Water	11/28/18 10:30	12/03/18 11:37
MW09R-W	A8L0038-07	Water	11/28/18 14:10	12/03/18 11:37
MW10R-W	A8L0038-08	Water	11/29/18 11:45	12/03/18 11:37
MW11-W	A8L0038-09	Water	11/27/18 15:20	12/03/18 11:37
MW12-W	A8L0038-10	Water	11/27/18 10:55	12/03/18 11:37
MW13-W	A8L0038-11	Water	11/27/18 13:55	12/03/18 11:37
MW14-W	A8L0038-12	Water	11/27/18 14:40	12/03/18 11:37
MW16-W	A8L0038-13	Water	11/28/18 11:20	12/03/18 11:37
MW17-W	A8L0038-14	Water	11/28/18 12:45	12/03/18 11:37
MW19-W	A8L0038-15	Water	11/30/18 13:20	12/03/18 11:37
MW20-W	A8L0038-16	Water	11/29/18 08:40	12/03/18 11:37
MW21-W	A8L0038-17	Water	11/28/18 15:35	12/03/18 11:37
MW23-W	A8L0038-18	Water	11/27/18 16:55	12/03/18 11:37
MW24-W	A8L0038-19	Water	11/29/18 13:10	12/03/18 11:37
MW25-W	A8L0038-20	Water	11/28/18 16:35	12/03/18 11:37
MW26-W	A8L0038-21	Water	11/29/18 14:05	12/03/18 11:37
MW27-W	A8L0038-22	Water	11/29/18 16:10	12/03/18 11:37
MW28-W	A8L0038-23	Water	12/01/18 11:00	12/03/18 11:37
MW29-W	A8L0038-24	Water	11/30/18 15:50	12/03/18 11:37
MW30-W	A8L0038-25	Water	11/30/18 14:45	12/03/18 11:37
MW31-W	A8L0038-26	Water	12/01/18 09:40	12/03/18 11:37
MW32-W	A8L0038-27	Water	11/28/18 12:00	12/03/18 11:37
BH01-W	A8L0038-28	Water	12/01/18 10:30	12/03/18 11:37
BH02-W	A8L0038-29	Water	11/30/18 16:35	12/03/18 11:37
BH03-W	A8L0038-30	Water	11/29/18 15:05	12/03/18 11:37
RW01-W	A8L0038-31	Water	11/30/18 09:40	12/03/18 11:37
MW107-W	A8L0038-32	Water	11/27/18 16:10	12/03/18 11:37

Apex Laboratories

Assa A Jomenighini

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

HydroCon LLC	Project: Coleman Wenatchee	
314 W 15th Street Suite 300	Project Number: 2017-074	<u>Report ID:</u>
Vancouver, WA 98660	Project Manager: Craig Hultgren	A8L0038 - 12 12 18 1137

ANALYTICAL REPORT FOR SAMPLES

	SAMPLE INFORM	ATION		
Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW108-W	A8L0038-33	Water	11/28/18 12:50	12/03/18 11:37
MW109-W	A8L0038-34	Water	12/01/18 10:36	12/03/18 11:37
BLANK 181130	A8L0038-35	Water	11/30/18 11:45	12/03/18 11:37

Apex Laboratories

Assa A Jomenighini

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>HydroCon LLC</u>	Project: <u>Coleman Wenatchee</u>	
314 W 15th Street Suite 300	Project Number: 2017-074	Report ID:
Vancouver, WA 98660	Project Manager: Craig Hultgren	A8L0038 - 12 12 18 1137

ANALYTICAL CASE NARRATIVE

Work Order: A8L0038

Temperature Preservation:

Upon receipt of samples, a cooler was screened for temperature compliance and was determined to be 7 degrees Celsius (limit: not frozen, 0-6 degrees C). Ice was not present in the coolers used to transfer samples from the sampler's refrigerated storage to the laboratory. Ice was added to the coolers to reduce the temperature to within regulatory conditions until sample login was completed and samples were transferred to laboratory refrigeration. The limited temperature exceedance that occurred during transit is not anticipated to affect analytical sample results since samples were quickly brought back into temperature compliance and acid preservation was properly applied in the field to inhibit biodegradation of target analytes.

Kent Patton Director of Technical Services 12/06/2018

Apex Laboratories

Asa A Jomenichini

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Diesel and/c	or Oil Hydroca	Units Matrix: Wat ug/L Limits: 50-150 % Matrix: Wat ug/L Limits: 50-150 % Matrix: Wat ug/L Limits: 50-150 % Matrix: Wat	PH-Dx Dilution eer 1 1 4 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	12/05/18 12/05/18 12/05/18 12/05/18 12/05/18 12/05/18 12/05/18 12/05/18 12/05/18 12/05/18	Method Ref. tch: 8120396 NWTPH-Dx NWTPH-Dx tch: 8120396 NWTPH-Dx NWTPH-Dx NWTPH-Dx tch: 8120396 NWTPH-Dx NWTPH-Dx NWTPH-Dx NWTPH-Dx	Notes TEMP F-11 TEMP
le Detectio It Limit 	n Reporting Limit 75.5 151 Recovery: 88 % 75.5 151 Recovery: 92 % 75.5 151 Recovery: 90 %	Units Matrix: Wat ug/L ug/L Limits: 50-150 % Matrix: Wat ug/L Limits: 50-150 % Matrix: Wat ug/L ug/L Limits: 50-150 % Matrix: Wat	Dilution ter 1 1 1 % 1 ter 1 1 % 1 ter 1	Analyzed Bat 12/05/18 12/05/18 12/05/18 12/05/18 12/05/18 12/05/18 12/05/18 12/05/18 12/05/18	tch: 8120396 NWTPH-Dx NWTPH-Dx NWTPH-Dx tch: 8120396 NWTPH-Dx NWTPH-Dx NWTPH-Dx tch: 8120396 NWTPH-Dx	TEMP F-11 TEMP TEMP
It Limit	Limit 75.5 151 Recovery: 88 % 75.5 151 Recovery: 92 % 75.5 151 Recovery: 90 %	Units Matrix: Wat ug/L Limits: 50-150 % Matrix: Wat ug/L Limits: 50-150 % Matrix: Wat ug/L Limits: 50-150 % Matrix: Wat	1 1 % 1 % 1 % 1 % 1 % 1 % 1 % 1 % 1 % 1 %	Analyzed Bat 12/05/18 12/05/18 12/05/18 12/05/18 12/05/18 12/05/18 12/05/18 12/05/18 12/05/18	tch: 8120396 NWTPH-Dx NWTPH-Dx NWTPH-Dx tch: 8120396 NWTPH-Dx NWTPH-Dx NWTPH-Dx tch: 8120396 NWTPH-Dx	TEMP F-11 TEMP
 	151 Recovery: 88 % 75.5 151 Recovery: 92 % 75.5 151 Recovery: 90 %	ug/L ug/L Limits: 50-150 % Matrix: Wat ug/L Limits: 50-150 % Matrix: Wat ug/L Limits: 50-150 % Matrix: Wat	1 1 1 % 1 % 1 % 1 % 1 % 1	12/05/18 12/05/18 12/05/18 12/05/18 12/05/18 12/05/18 12/05/18 12/05/18 12/05/18 12/05/18	NWTPH-Dx NWTPH-Dx NWTPH-Dx tch: 8120396 NWTPH-Dx NWTPH-Dx tch: 8120396 NWTPH-Dx NWTPH-Dx NWTPH-Dx NWTPH-Dx NWTPH-Dx	F-11 TEMP TEMP
 	151 Recovery: 88 % 75.5 151 Recovery: 92 % 75.5 151 Recovery: 90 %	ug/L Limits: 50-150 % Matrix: Wat ug/L Limits: 50-150 % Matrix: Wat ug/L Limits: 50-150 % Matrix: Wat	1 % 1 % 1 % 1 % 1 % 1 % 1 % 1 % 1 % 1 %	12/05/18 12/05/18 12/05/18 12/05/18 12/05/18 12/05/18 12/05/18 12/05/18 12/05/18	NWTPH-Dx NWTPH-Dx tch: 8120396 NWTPH-Dx NWTPH-Dx tch: 8120396 NWTPH-Dx NWTPH-Dx NWTPH-Dx NWTPH-Dx	ТЕМР
 	75.5 151 Recovery: 92 % 75.5 151 Recovery: 90 %	Matrix: Wat ug/L Limits: 50-150 % Matrix: Wat ug/L Limits: 50-150 % Matrix: Wat	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Bat 12/05/18 12/05/18 12/05/18 12/05/18 12/05/18 12/05/18	tch: 8120396 NWTPH-Dx NWTPH-Dx NWTPH-Dx tch: 8120396 NWTPH-Dx NWTPH-Dx NWTPH-Dx NWTPH-Dx	TEMP
 	151 Recovery: 92 % 75.5 151 Recovery: 90 %	ug/L ug/L Limits: 50-150 % Matrix: Wat ug/L Limits: 50-150 % Matrix: Wat	1 1 % <i>I</i> **er 1 1 1 % <i>I</i>	12/05/18 12/05/18 12/05/18 12/05/18 12/05/18 12/05/18 12/05/18	NWTPH-Dx NWTPH-Dx NWTPH-Dx tch: 8120396 NWTPH-Dx NWTPH-Dx NWTPH-Dx	TEMP
 	151 Recovery: 92 % 75.5 151 Recovery: 90 %	ug/L Limits: 50-150 % Matrix: Wat ug/L Limits: 50-150 % Matrix: Wat	1 % 1 1 1 % 1	12/05/18 12/05/18 12/05/18 12/05/18 12/05/18 12/05/18	NWTPH-Dx NWTPH-Dx tch: 8120396 NWTPH-Dx NWTPH-Dx NWTPH-Dx	
	75.5 151 Recovery: 90 %	Matrix: Wat ug/L ug/L Limits: 50-150 % Matrix: Wat	1 1 1 % 1	Bat 12/05/18 12/05/18 12/05/18	tch: 8120396 NWTPH-Dx NWTPH-Dx <i>NWTPH-Dx</i>	
,	151 Recovery: 90 %	ug/L ug/L Limits: 50-150 % Matrix: Wat	1 1 % 1	12/05/18 12/05/18 12/05/18	NWTPH-Dx NWTPH-Dx <i>NWTPH-Dx</i>	
,	151 Recovery: 90 %	ug/L Limits: 50-150 % Matrix: Wat	1 % 1	12/05/18 12/05/18	NWTPH-Dx NWTPH-Dx	
	-	Matrix: Wat				
	75.5		er	Bat		
	75.5			Da	tch: 8120396	TEMP
	10.0	ug/L	1	12/05/18	NWTPH-Dx	F-13, F-20
	151	ug/L	1	12/05/18	NWTPH-Dx	
	Recovery: 90 %	Limits: 50-150 %	% 1	12/05/18	NWTPH-Dx	
		Matrix: Wat	er	Bat	tch: 8120396	TEMP
	75.5	ug/L	1	12/05/18	NWTPH-Dx	F-11
	151	ug/L	1	12/05/18	NWTPH-Dx	
	Recovery: 89 %	Limits: 50-150 %	% 1	12/05/18	NWTPH-Dx	
		Matrix: Wat	er	Bat	tch: 8120396	TEMP
	75.5	ug/L	1	12/05/18	NWTPH-Dx	F-13, F-20
	151	ug/L	1	12/05/18	NWTPH-Dx	
	Recovery: 94 %	Limits: 50-150 %	% 1	12/05/18	NWTPH-Dx	
		Matrix: Wat	er	Bat	tch: 8120396	TEMP
	75.5	ug/L	1	12/05/18	NWTPH-Dx	F-13, F-20
	151	ug/L	1	12/05/18	NWTPH-Dx	
	Recovery: 80 %	Limits: 50-150 %	% 1	12/05/18	NWTPH-Dx	
		Matrix: Wat	er	Bat	tch: 8120396	TEMP
					NULTEDIA D	F-13, F-20
(0 0	0 151 Recovery: 94 % 0 75.5	151 ug/L Recovery: 94 % Limits: 50-150 % Matrix: Wat Wat 0 75.5 ug/L 0 151 ug/L Recovery: 80 % Limits: 50-150 %	Image: constraint of the stress of	151 ug/L 1 12/05/18 Recovery: 94 % Limits: 50-150 % 1 12/05/18 Matrix: Water Ba 0 75.5 ug/L 1 12/05/18 0 151 ug/L 1 12/05/18 0 151 ug/L 1 12/05/18 0 151 ug/L 1 12/05/18 Recovery: 80 % Limits: 50-150 % 1 12/05/18 Matrix: Water Ba	Initial of L Initial of L<

Apex Laboratories

Assa A Jomenighini

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>HydroCon LLC</u> 314 W 15th Street Suite 300 Vancouver, WA 98660		Pro Project Project		<u>Report ID:</u> A8L0038 - 12 12 18 1137				
		ANALYTI	CAL SAMI	PLE RESULTS	5			
	Die	esel and/or O	il Hydrocar	bons by NWTP	PH-Dx			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW10R-W (A8L0038-08)				Matrix: Wat	er	Bat	tch: 8120396	TEMP
Oil	ND		755	ug/L	5	12/05/18	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 82 %	Limits: 50-150 9	6 5	12/05/18	NWTPH-Dx	
MW11-W (A8L0038-09)		Matrix: Water Batch:					tch: 8120396	TEMP
Diesel	503		75.5	ug/L	1	12/04/18	NWTPH-Dx	F-13, F-20
Oil	ND		151	ug/L	1	12/04/18	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 83 %	Limits: 50-150 9	% 1	12/04/18	NWTPH-Dx	
MW12-W (A8L0038-10)		Matrix: Water Batch:						TEMP
Diesel	92.8		75.5	ug/L	1	12/04/18	NWTPH-Dx	F-11
Oil	ND		151	ug/L	1	12/04/18	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 87 %	Limits: 50-150 9	% 1	12/04/18	NWTPH-Dx	
MW13-W (A8L0038-11)		Matrix: Water Batch					tch: 8120396	TEMP
Diesel	3250		75.5	ug/L	1	12/04/18	NWTPH-Dx	F-13, F-20
Oil	ND		151	ug/L	1	12/04/18	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 69 %	Limits: 50-150 %	6 1	12/04/18	NWTPH-Dx	
MW14-W (A8L0038-12)				Matrix: Wat	er	Bat	tch: 8120396	TEMP
Diesel	933		75.5	ug/L	1	12/05/18	NWTPH-Dx	F-11, F-20
Oil	ND		151	ug/L	1	12/05/18	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 83 %	Limits: 50-150 9	% 1	12/05/18	NWTPH-Dx	
MW16-W (A8L0038-13)				Matrix: Wat	er	Bat	tch: 8120396	TEMP
Diesel	337		75.5	ug/L	1	12/05/18	NWTPH-Dx	F-11
Oil	ND		151	ug/L	1	12/05/18	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 85 %	Limits: 50-150 9	% 1	12/05/18	NWTPH-Dx	
MW17-W (A8L0038-14)				Matrix: Wat	er	Bat	tch: 8120396	TEMP
Diesel	1580		75.5	ug/L	1	12/05/18	NWTPH-Dx	F-13, F-20
Oil	ND		151	ug/L	1	12/05/18	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 83 %	Limits: 50-150 %	% 1	12/05/18	NWTPH-Dx	
MW19-W (A8L0038-15)		Matrix: Water Bat						TEMP
Diesel	ND		75.5	ug/L	1	12/05/18	NWTPH-Dx	
Oil	ND		151	ug/L	1	12/05/18	NWTPH-Dx	

Apex Laboratories

Assa A Jomenighini

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

٦

<u>HydroCon LLC</u> 314 W 15th Street Suite 300 Vancouver, WA 98660	Project:Coleman WenatcheeProject Number:2017-074Project Manager:Craig HultgrenA8L0038 - 12 1								
		ANALYTI	CAL SAMI	PLE RESULT	S				
	Die	esel and/or O	il Hydrocar	bons by NWT	PH-Dx				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes	
MW19-W (A8L0038-15)				Matrix: Wa	ter	Ba	tch: 8120396	TEMP	
Surrogate: o-Terphenyl (Surr)		Reco	very: 88 %	Limits: 50-150	% 1	12/05/18	NWTPH-Dx		
MW20-W (A8L0038-16)				Matrix: Wa	ter	Ba	tch: 8120396	TEMP	
Diesel Oil	1280 ND		75.5 151	ug/L ug/L	1	12/05/18 12/05/18	NWTPH-Dx NWTPH-Dx	F-13, F-20	
Surrogate: o-Terphenyl (Surr)		Reco	very: 88 %	Limits: 50-150	% 1	12/05/18	NWTPH-Dx		
MW21-W (A8L0038-17)		Matrix: Water					tch: 8120396	TEMP	
Diesel Oil Surrogate: o-Terphenyl (Surr)	992 ND	 Racoo	75.5 151 very: 86%	ug/L ug/L Limits: 50-150	1 1 % 1	12/05/18 12/05/18 12/05/18	NWTPH-Dx NWTPH-Dx NWTPH-Dx	F-13, F-20	
		Keeo	very. 0070						
MW23-W (A8L0038-18)				Matrix: Wa	ter	Ba	tch: 8120396	TEMP	
Diesel Oil	380 ND		75.5 151	ug/L ug/L	1 1	12/05/18 12/05/18	NWTPH-Dx NWTPH-Dx	F-11	
Surrogate: o-Terphenyl (Surr)	n.D		very: 85 %	Limits: 50-150		12/05/18	NWTPH-Dx		
				Matrix: Wa	ter	Ba	tch: 8120396	TEMP	
Diesel Oil Surrogate: o-Terphenyl (Surr)	914 ND	 Recor	75.5 151 very: 91%	ug/L ug/L Limits: 50-150	1 1 % 1	12/05/18 12/05/18 <i>12/05/18</i>	NWTPH-Dx NWTPH-Dx <i>NWTPH-Dx</i>	F-13, F-20	
MW25-W (A8L0038-20RE1)				Matrix: Wa	ter	Ba	tch: 8120422	TEMP	
Diesel Oil Surrogate: o-Terphenyl (Surr)	121 ND	 Reco	75.5 151 very: 75 %	ug/L ug/L Limits: 50-150	1 1 % 1	12/06/18 12/06/18 <i>12/06/18</i>	NWTPH-Dx NWTPH-Dx <i>NWTPH-Dx</i>	F-13	
MW26-W (A8L0038-21)				Matrix: Wa	ter	Ba	tch: 8120422	TEMP	
Diesel Oil Surrogate: o-Terphenyl (Surr)	ND ND	 Recor	75.5 151 very: 86%	ug/L ug/L <i>Limits: 50-150</i>	1 1 % 1	12/06/18 12/06/18 <i>12/06/18</i>	NWTPH-Dx NWTPH-Dx <i>NWTPH-Dx</i>		
	Matrix: Water Batch: 8120422							TEMP	
Diesel Oil	ND ND		75.5 151	ug/L ug/L	1 1	12/06/18 12/06/18	NWTPH-Dx NWTPH-Dx		

Apex Laboratories

Assa A Zomenighini

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>HydroCon LLC</u> 314 W 15th Street Suite 300 Vancouver, WA 98660	Project:Coleman WenatcheeProject Number:2017-074Project Manager:Craig HultgrenA8L0038 - 12									
1				PLE RESULTS						
	Die	esel and/or O	il Hydrocar	bons by NWTP	H-Dx					
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes		
MW27-W (A8L0038-22)				Matrix: Wate	er	Ba	tch: 8120422	TEMP		
Surrogate: o-Terphenyl (Surr)		Recovery: 95 % Limits: 50-150 % 1 12/06/18					NWTPH-Dx			
MW28-W (A8L0038-23)		Matrix: Water Batch:								
Diesel Oil	486 ND		79.2 158	ug/L ug/L	1 1	12/06/18 12/06/18	NWTPH-Dx NWTPH-Dx	F-13		
Surrogate: o-Terphenyl (Surr)		Reco	very: 97 %	Limits: 50-150 %	ó 1	12/06/18	NWTPH-Dx			
MW29-W (A8L0038-24)		Matrix: Water Batch: 8								
Diesel Oil	238 809		75.5 151	ug/L ug/L	1	12/06/18 12/06/18	NWTPH-Dx NWTPH-Dx <i>NWTPH-Dx</i>	F-13		
Surrogate: o-Terphenyl (Surr)										
MW30-W (A8L0038-25)							tch: 8120422	TEMP		
Diesel Oil Surrogate: o-Terphenyl (Surr)	304 ND	 Reco	75.5 151 very: 97 %	ug/L ug/L Limits: 50-150 %	1 1 6 1	12/06/18 12/06/18 12/06/18	NWTPH-Dx NWTPH-Dx <i>NWTPH-Dx</i>	F-13		
MW31-W (A8L0038-26)		Reco	very. 7770	Matrix: Wate			tch: 8120422	TEMP		
Diesel	ND		75.5	ug/L	1	12/06/18	NWTPH-Dx	TEMP		
Oil	ND		151	ug/L ug/L	1	12/06/18	NWTPH-Dx			
Surrogate: o-Terphenyl (Surr)		Reco	very: 90 %	Limits: 50-150 %	6 I	12/06/18	NWTPH-Dx			
MW32-W (A8L0038-27)				Matrix: Wate	er	Ba	tch: 8120422	TEMP		
Diesel Oil Surrogate: o-Terphenyl (Surr)	ND ND	 Reco	75.5 151 very: 92 %	ug/L ug/L Limits: 50-150 %	1 1 6 <i>1</i>	12/06/18 12/06/18 12/06/18	NWTPH-Dx NWTPH-Dx <i>NWTPH-Dx</i>			
				Matrix: Wate	er	Ва	tch: 8120422	TEMP		
Diesel Oil	5120 ND		75.5 151	ug/L ug/L	1 1	12/06/18 12/06/18	NWTPH-Dx NWTPH-Dx	F-13		
Surrogate: o-Terphenyl (Surr)		Reco	very: 86 %	Limits: 50-150 %	<i>6</i> 1	12/06/18	NWTPH-Dx			
BH02-W (A8L0038-29)		Matrix: Water Ba				tch: 8120422	TEMP			
Diesel Oil	7040 ND		75.5 151	ug/L ug/L	1 1	12/06/18 12/06/18	NWTPH-Dx NWTPH-Dx	F-13		
Surrogate: o-Terphenyl (Surr)		Reco	very: 74 %	Limits: 50-150 %	ó 1	12/06/18	NWTPH-Dx			

Apex Laboratories

Assa A Jomenighini

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>HydroCon LLC</u> 314 W 15th Street Suite 300 Vancouver, WA 98660	Project:Coleman WenatcheeProject Number:2017-074Project Manager:Craig HultgrenA8L0038 - 12								
		ANALYTI	CAL SAMI	PLE RESULTS					
	Die	esel and/or O	il Hydrocar	bons by NWTPI	H-Dx				
Analyte	Sample Result							Notes	
BH03-W (A8L0038-30)		Matrix: Water					tch: 8120422	TEMP	
Diesel Oil Surrogate: o-Terphenyl (Surr)	502 ND	 Recor	75.5 151 very: 94%	ug/L ug/L Limits: 50-150 %	1 1 1	12/06/18 12/06/18 12/06/18	NWTPH-Dx NWTPH-Dx <i>NWTPH-Dx</i>	F-13	
RW01-W (A8L0038-31)				Bat	ch: 8120422	TEMP			
Diesel Oil Surrogate: o-Terphenyl (Surr)	152 ND	 Recor	75.5 151 very: 89%	ug/L ug/L Limits: 50-150 %	1 1 1	12/06/18 12/06/18 <i>12/06/18</i>	NWTPH-Dx NWTPH-Dx <i>NWTPH-Dx</i>	F-13	
MW107-W (A8L0038-32)		Matrix: Water E					tch: 8120422	ТЕМР	
Diesel Oil Surrogate: o-Terphenyl (Surr)	894 ND	 Recor	75.5 151 very: 91%	ug/L ug/L Limits: 50-150 %	1 1 1	12/06/18 12/06/18 <i>12/06/18</i>	NWTPH-Dx NWTPH-Dx <i>NWTPH-Dx</i>	F-13	
MW108-W (A8L0038-33)				Matrix: Wate	er	Bat	tch: 8120422	ТЕМР	
Diesel Oil Surrogate: o-Terphenyl (Surr)	969 ND	 Recor	75.5 151 very: 83 %	ug/L ug/L Limits: 50-150 %	1 1 1	12/06/18 12/06/18 <i>12/06/18</i>	NWTPH-Dx NWTPH-Dx <i>NWTPH-Dx</i>	F-13, F-20	
MW109-W (A8L0038-34RE1)				Matrix: Wate	er	Bat	ch: 8120422	TEMP	
Diesel Oil Surrogate: o-Terphenyl (Surr)	59600 ND	 Recove	755 1510 ery: 113%	ug/L ug/L Limits: 50-150 %	10 10 10	12/07/18 12/07/18 <i>12/07/18</i>	NWTPH-Dx NWTPH-Dx <i>NWTPH-Dx</i>	F-13 S-05	
BLANK 181130 (A8L0038-35)				Matrix: Wate	er	Bat	ch: 8120422	TEMP	
Diesel Oil Surrogate: o-Terphenyl (Surr)	105 ND	 Recor	75.5 151 very: 85%	ug/L ug/L Limits: 50-150 %	1 1	12/06/18 12/06/18 12/06/18	NWTPH-Dx NWTPH-Dx <i>NWTPH-Dx</i>	F-17	

Apex Laboratories

Assa A Jomenighini

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>HydroCon LLC</u> 314 W 15th Street Suite 300		Project: Project Nu		eman Wenatchee			Bonort I	р.		
Vancouver, WA 98660		5		aig Hultgren			<u>Report 1</u> A8L0038 - 12 12			
		ANALYTICA	L SAMI	PLE RESULTS						
Gasol	ine Range Hy	drocarbons (Be	enzene ti	nrough Naphtha	lene) by	NWTPH-G	x			
Analyte	Sample Result	Detection I Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes		
MW01-W (A8L0038-01)		Matrix: Water Batch: 8120353					atch: 8120353	TEMP		
Gasoline Range Organics	152		100	ug/L	1	12/04/18	NWTPH-Gx (MS)			
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery:	103 %	Limits: 50-150 %	1	12/04/18	NWTPH-Gx (MS)			
1,4-Difluorobenzene (Sur)			113 %	50-150 %	1	12/04/18	NWTPH-Gx (MS)			
MW01S-W (A8L0038-02)				Matrix: Wate	r	Ba	atch: 8120353	TEMP		
Gasoline Range Organics	ND		100	ug/L	1	12/04/18	NWTPH-Gx (MS)			
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery.	: 99 %	Limits: 50-150 %	1	12/04/18	NWTPH-Gx (MS)			
1,4-Difluorobenzene (Sur)			105 %	50-150 %	1	12/04/18	NWTPH-Gx (MS)			
MW03S-W (A8L0038-03)				Matrix: Wate	r	Batch: 8120353				
Gasoline Range Organics	ND		100	ug/L	1	12/04/18	NWTPH-Gx (MS)			
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery.	: 99 %	Limits: 50-150 %	1	12/04/18	NWTPH-Gx (MS)			
1,4-Difluorobenzene (Sur)			106 %	50-150 %	1	12/04/18	NWTPH-Gx (MS)			
MW06-W (A8L0038-04RE1)				Matrix: Wate	r	Ba	TEMP			
Gasoline Range Organics	499		100	ug/L	1	12/05/18	NWTPH-Gx (MS)			
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery:	101 %	Limits: 50-150 %	1	12/05/18	NWTPH-Gx (MS)			
1,4-Difluorobenzene (Sur)			102 %	50-150 %	1	12/05/18	NWTPH-Gx (MS)			
/W07-W (A8L0038-05)				Matrix: Wate	r	Ba	atch: 8120353	TEMP		
Gasoline Range Organics	ND		100	ug/L	1	12/04/18	NWTPH-Gx (MS)			
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery:	100 %	Limits: 50-150 %	1	12/04/18	NWTPH-Gx (MS)			
1,4-Difluorobenzene (Sur)			104 %	50-150 %	1	12/04/18	NWTPH-Gx (MS)			
MW08-W (A8L0038-06RE1)				Matrix: Wate	r	Ba	atch: 8120408	TEMP		
Gasoline Range Organics	921		100	ug/L	1	12/05/18	NWTPH-Gx (MS)			
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery.	95 %	Limits: 50-150 %	1	12/05/18	NWTPH-Gx (MS)			
1,4-Difluorobenzene (Sur)			99 %	50-150 %	1	12/05/18	NWTPH-Gx (MS)			
/IW09R-W (A8L0038-07)				Matrix: Wate	r	Ba	atch: 8120353	TEMP		
Gasoline Range Organics	1300		100	ug/L	1	12/04/18	NWTPH-Gx (MS)			
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery:	105 %	Limits: 50-150 %	1	12/04/18	NWTPH-Gx (MS)			
1,4-Difluorobenzene (Sur)			106 %	50-150 %	1	12/04/18	NWTPH-Gx (MS)			
MW10R-W (A8L0038-08)			Matrix: Water Batch: 8120353				TEMP			
Gasoline Range Organics	2160		100	ug/L	1	12/04/18	NWTPH-Gx (MS)			

Apex Laboratories

Assa A Jomenighini

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>HydroCon LLC</u> 314 W 15th Street Suite 300 Vancouver, WA 98660	Project:Coleman WenatcheeProject Number:2017-074Project Manager:Craig HultgrenA8L0038 - 12 12								
		ANALYTICA	AL SAMI	PLE RESULTS					
Gasol	ine Range Hy	drocarbons (Be	enzene tł	nrough Naphthal	ene) by	NWTPH-G	x		
Analyte	Sample Result	Detection Limit	Reporting Limit	Units I	Dilution	Date Analyzed	Method Ref.	Notes	
MW10R-W (A8L0038-08)		Matrix: Water Batch: 8120					tch: 8120353	TEMP	
Surrogate: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Recovery:	103 % 105 %	Limits: 50-150 % 50-150 %	1 1	12/04/18 12/04/18	NWTPH-Gx (MS) NWTPH-Gx (MS)		
MW11-W (A8L0038-09)		Matrix: Water Batch: 8120353					itch: 8120353	TEMP	
Gasoline Range Organics	1350		100	ug/L	1	12/04/18	NWTPH-Gx (MS)		
Surrogate: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Recovery:	104 % 104 %	Limits: 50-150 % 50-150 %	1 1	12/04/18 12/04/18	NWTPH-Gx (MS) NWTPH-Gx (MS)		
MW12-W (A8L0038-10)		Matrix: Water Batch: 8120353					TEMP		
Gasoline Range Organics	ND		100	ug/L	1	12/04/18	NWTPH-Gx (MS)		
Surrogate: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Recovery	: 96 % 101 %	Limits: 50-150 % 50-150 %	1 1	12/04/18 12/04/18	NWTPH-Gx (MS) NWTPH-Gx (MS)		
MW13-W (A8L0038-11)		Matrix: Water Batch: 8120353					TEMP		
Gasoline Range Organics	22400		5000	ug/L	50	12/04/18	NWTPH-Gx (MS)		
Surrogate: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Recovery	: 97 % 102 %	Limits: 50-150 % 50-150 %	1 1	12/04/18 12/04/18	NWTPH-Gx (MS) NWTPH-Gx (MS)		
MW14-W (A8L0038-12)				Matrix: Water		Ba	itch: 8120353	TEMP	
Gasoline Range Organics	5170		100	ug/L	1	12/04/18	NWTPH-Gx (MS)		
Surrogate: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Recovery:	103 % 100 %	Limits: 50-150 % 50-150 %	1 1	12/04/18 12/04/18	NWTPH-Gx (MS) NWTPH-Gx (MS)		
MW16-W (A8L0038-13)				Matrix: Water		Ba	itch: 8120353	TEMP	
Gasoline Range Organics	ND		100	ug/L	1	12/04/18	NWTPH-Gx (MS)		
Surrogate: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Recovery	: 97 % 103 %	Limits: 50-150 % 50-150 %	1 1	12/04/18 12/04/18	NWTPH-Gx (MS) NWTPH-Gx (MS)		
MW17-W (A8L0038-14)				Matrix: Water		Ba	itch: 8120353	TEMP	
Gasoline Range Organics	1390		100	ug/L	1	12/04/18	NWTPH-Gx (MS)		
Surrogate: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Recovery:	104 % 101 %	Limits: 50-150 % 50-150 %	1 1	12/04/18 12/04/18	NWTPH-Gx (MS) NWTPH-Gx (MS)		
MW19-W (A8L0038-15)				Matrix: Water		Ba	itch: 8120353	TEMP	
Gasoline Range Organics	ND		100	ug/L	1	12/04/18	NWTPH-Gx (MS)		

Apex Laboratories

Assa A Jomenighini

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>HydroCon LLC</u> 314 W 15th Street Suite 300 Vancouver, WA 98660	Project:Coleman WenatcheeProject Number:2017-074Project Manager:Craig HultgrenA8L0038 - 12 12								
		ANALYTIC	AL SAMI	PLE RESULTS					
Gasol	ine Range Hy	drocarbons (B	enzene th	nrough Naphtha	alene) by	NWTPH-G	x		
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes	
MW19-W (A8L0038-15)		Matrix: Water Batch: 8120353					atch: 8120353	TEMP	
Surrogate: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Recover	y: 96 % 104 %	Limits: 50-150 % 50-150 %		12/04/18 12/04/18	NWTPH-Gx (MS) NWTPH-Gx (MS)		
MW20-W (A8L0038-16)				Matrix: Wate	er	Ba	atch: 8120353	TEMP	
Gasoline Range Organics	674		100	ug/L	1	12/04/18	NWTPH-Gx (MS)		
Surrogate: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Recover	y: 99% 103%	Limits: 50-150 % 50-150 %		12/04/18 12/04/18	NWTPH-Gx (MS) NWTPH-Gx (MS)		
MW21-W (A8L0038-17)		Matrix: Water Batch: 81203					atch: 8120353	TEMP	
Gasoline Range Organics	789		100	ug/L	1	12/04/18	NWTPH-Gx (MS)		
Surrogate: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Recovery	: 101 % 112 %	Limits: 50-150 % 50-150 %		12/04/18 12/04/18	NWTPH-Gx (MS) NWTPH-Gx (MS)		
MW23-W (A8L0038-18)				Matrix: Wate	er	Ba	atch: 8120353	TEMP	
Gasoline Range Organics	ND		100	ug/L	1	12/04/18	NWTPH-Gx (MS)		
Surrogate: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Recover	y: 97 % 101 %	Limits: 50-150 % 50-150 %		12/04/18 12/04/18	NWTPH-Gx (MS) NWTPH-Gx (MS)		
MW24-W (A8L0038-19)				Matrix: Wate	er	Ba	atch: 8120320	TEMP	
Gasoline Range Organics	154		100	ug/L	1	12/04/18	NWTPH-Gx (MS)		
Surrogate: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Recovery	r: 111 % 105 %	Limits: 50-150 % 50-150 %		12/04/18 12/04/18	NWTPH-Gx (MS) NWTPH-Gx (MS)		
MW25-W (A8L0038-20)				Matrix: Wate	er	Ba	atch: 8120320	TEMP	
Gasoline Range Organics	ND		100	ug/L	1	12/04/18	NWTPH-Gx (MS)		
Surrogate: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Recovery.	: 108 % 106 %	Limits: 50-150 % 50-150 %		12/04/18 12/04/18	NWTPH-Gx (MS) NWTPH-Gx (MS)		
MW26-W (A8L0038-21)				Matrix: Wate	er	Ba	atch: 8120320	TEMP	
Gasoline Range Organics	ND		100	ug/L	1	12/04/18	NWTPH-Gx (MS)		
Surrogate: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Recovery.	: 107 % 105 %	Limits: 50-150 % 50-150 %		12/04/18 12/04/18	NWTPH-Gx (MS) NWTPH-Gx (MS)		
				Matrix: Wate	er	Ba	atch: 8120320	TEMP	
Gasoline Range Organics	ND		100	ug/L	1	12/04/18	NWTPH-Gx (MS)		
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery		Limits: 50-150 %		12/04/18	NWTPH-Gx (MS)		

Apex Laboratories

Assa A Jomenighini

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>HydroCon LLC</u> 314 W 15th Street Suite 300 Vancouver, WA 98660	Project: Coleman Wenatchee Project Number: 2017-074 Project Manager: Craig Hultgren A8L0038 - 12 12								
				PLE RESULTS					
Gasol	ine Range Hy	drocarbons (Be	enzene th	nrough Naphtha	alene) by	NWTPH-G	x		
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes	
/W27-W (A8L0038-22)				Matrix: Wate	r	Ва	atch: 8120320	TEMP	
Surrogate: 1,4-Difluorobenzene (Sur)		Recovery:	105 %	Limits: 50-150 %	1	12/04/18	NWTPH-Gx (MS)		
/W28-W (A8L0038-23)				Matrix: Wate	r	Ва	atch: 8120320	TEMP	
Gasoline Range Organics	385		100	ug/L	1	12/04/18	NWTPH-Gx (MS)		
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery:	112 %	Limits: 50-150 %	1	12/04/18	NWTPH-Gx (MS)		
1,4-Difluorobenzene (Sur)			106 %	50-150 %	1	12/04/18	NWTPH-Gx (MS)		
/W29-W (A8L0038-24)				Matrix: Wate	r	Ba	TEMP		
Gasoline Range Organics	ND		100	ug/L			NWTPH-Gx (MS)		
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery:	108 %	Limits: 50-150 %	1	12/04/18	NWTPH-Gx (MS)		
1,4-Difluorobenzene (Sur)			105 %	50-150 %	1	12/04/18	NWTPH-Gx (MS)		
IW30-W (A8L0038-25)				Matrix: Wate	r	Ва	atch: 8120320	TEMP	
Gasoline Range Organics	ND		100	ug/L	1	12/04/18	NWTPH-Gx (MS)		
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery:	111 %	Limits: 50-150 %	1	12/04/18	NWTPH-Gx (MS)		
1,4-Difluorobenzene (Sur)			106 %	50-150 %	1	12/04/18	NWTPH-Gx (MS)		
IW31-W (A8L0038-26)				Matrix: Wate	r	Ва	atch: 8120320	TEMP	
Gasoline Range Organics	ND		100	ug/L	1	12/04/18	NWTPH-Gx (MS)		
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery:	108 %	Limits: 50-150 %	1	12/04/18	NWTPH-Gx (MS)		
1,4-Difluorobenzene (Sur)			107 %	50-150 %	1	12/04/18	NWTPH-Gx (MS)		
1W32-W (A8L0038-27)				Matrix: Wate	r	Ba	atch: 8120320	TEMP	
Gasoline Range Organics	ND		100	ug/L	1	12/04/18	NWTPH-Gx (MS)		
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery:	108 %	Limits: 50-150 %	1	12/04/18	NWTPH-Gx (MS)		
1,4-Difluorobenzene (Sur)			105 %	50-150 %	1	12/04/18	NWTPH-Gx (MS)		
H01-W (A8L0038-28)				Matrix: Wate	r	Ва	atch: 8120320	TEMP	
Gasoline Range Organics	1420		100	ug/L	1	12/04/18	NWTPH-Gx (MS)		
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery:	109 %	Limits: 50-150 %	1	12/04/18	NWTPH-Gx (MS)		
1,4-Difluorobenzene (Sur)			105 %	50-150 %	1	12/04/18	NWTPH-Gx (MS)		
3H02-W (A8L0038-29)				Matrix: Wate	r	Batch: 8120360		TEMP	
Gasoline Range Organics	509		100	ug/L	1	12/04/18	NWTPH-Gx (MS)		
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery:	115 %	Limits: 50-150 %	1	12/04/18	NWTPH-Gx (MS)		
1,4-Difluorobenzene (Sur)			109 %	50-150 %	1	12/04/18	NWTPH-Gx (MS)		

Apex Laboratories

Jusa A Zomenighini

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

HydroCon LLC		Project	· Col	eman Wenatchee					
314 W 15th Street Suite 300									
Vancouver, WA 98660		5		aig Hultgren			<u>Report 1</u> A8L0038 - 12 12		
Vancouver, WA 20000		110jeet 1018	inager. Cra	ang Huntgi th			A8L0038 - 12 12	10 1137	
		ANALYTICA	AL SAMI	PLE RESULTS					
Gasol	ine Range Hy	drocarbons (B	enzene tł	nrough Naphtha	alene) by	NWTPH-G	х		
	Sample		Reporting			Date			
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes	
BH03-W (A8L0038-30RE1)			Matrix: Water Batch: 8120417						
Gasoline Range Organics	ND		100	ug/L	1	12/05/18	NWTPH-Gx (MS)		
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery:	110 %	Limits: 50-150 %	1	12/05/18	NWTPH-Gx (MS)		
1,4-Difluorobenzene (Sur)			106 %	50-150 %	1	12/05/18	NWTPH-Gx (MS)		
RW01-W (A8L0038-31)			Matrix: Water Batch: 8120408						
Gasoline Range Organics	ND		100	ug/L	1	12/05/18	NWTPH-Gx (MS)		
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	: 94 %	Limits: 50-150 %	1	12/05/18	NWTPH-Gx (MS)		
1,4-Difluorobenzene (Sur)			99 %	50-150 %	1	12/05/18	NWTPH-Gx (MS)		
MW107-W (A8L0038-32)			Matrix: Water Batch: 8120408					TEMP	
Gasoline Range Organics	503		100	ug/L	1	12/05/18	NWTPH-Gx (MS)		
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery:	103 %	Limits: 50-150 %	1	12/05/18	NWTPH-Gx (MS)		
1,4-Difluorobenzene (Sur)			100 %	50-150 %	1	12/05/18	NWTPH-Gx (MS)		
MW108-W (A8L0038-33)				Matrix: Wate	r	Ва	atch: 8120408	TEMP	
Gasoline Range Organics	1390		100	ug/L	1	12/05/18	NWTPH-Gx (MS)		
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery:	102 %	Limits: 50-150 %	1	12/05/18	NWTPH-Gx (MS)		
1,4-Difluorobenzene (Sur)			96 %	50-150 %	1	12/05/18	NWTPH-Gx (MS)		
MW109-W (A8L0038-34RE1)				Matrix: Wate	er	Ва	atch: 8120411	TEMP	
Gasoline Range Organics	1460		100	ug/L	1	12/05/18	NWTPH-Gx (MS)		
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery:	110 %	Limits: 50-150 %	1	12/05/18	NWTPH-Gx (MS)		
1,4-Difluorobenzene (Sur)			105 %	50-150 %	1	12/05/18	NWTPH-Gx (MS)		
BLANK 181130 (A8L0038-35)		Matrix: Water Batch: 8120320		atch: 8120320	TEMP				
Gasoline Range Organics	ND		100	ug/L	1	12/04/18	NWTPH-Gx (MS)		
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery:	111 %	Limits: 50-150 %	1	12/04/18	NWTPH-Gx (MS)		
1,4-Difluorobenzene (Sur)			105 %	50-150 %	1	12/04/18	NWTPH-Gx (MS)		

Apex Laboratories

Assa A Jomenighini

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>HydroCon LLC</u> 314 W 15th Street Suite 300 Vancouver, WA 98660	Project:Coleman WenatcheeProject Number:2017-074Project Manager:Craig HultgrenA8L0038 - 12								
		ANALYTICA	AL SAMI	PLE RESULTS					
		BTEX Com	oounds b	oy EPA 8260C					
	Sample								
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes	
/W01-W (A8L0038-01)		Matrix: Water Bate				tch: 8120353	TEMP		
Benzene	ND		0.200	ug/L	1	12/04/18	EPA 8260C		
Toluene	ND		1.00	ug/L	1	12/04/18	EPA 8260C		
Ethylbenzene	ND		0.500	ug/L	1	12/04/18	EPA 8260C		
Xylenes, total	ND		1.50	ug/L	1	12/04/18	EPA 8260C		
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery:	107 %	Limits: 80-120 %	1	12/04/18	EPA 8260C		
Toluene-d8 (Surr)			105 %	80-120 %		12/04/18	EPA 8260C		
4-Bromofluorobenzene (Surr)			101 %	80-120 %		12/04/18	EPA 8260C		
				Matrix: Wate	r	Ba	tch: 8120353	TEMP	
						-		IENIP	
Benzene	ND		0.200	ug/L	1	12/04/18	EPA 8260C		
Toluene	ND		1.00	ug/L	1	12/04/18	EPA 8260C		
Ethylbenzene	ND		0.500	ug/L	1	12/04/18	EPA 8260C		
Xylenes, total	ND		1.50	ug/L	1	12/04/18	EPA 8260C		
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery:		Limits: 80-120 %		12/04/18	EPA 8260C		
Toluene-d8 (Surr)			106 %	80-120 %		12/04/18	EPA 8260C		
4-Bromofluorobenzene (Surr)			99 %	80-120 %	1	12/04/18	EPA 8260C		
/IW03S-W (A8L0038-03)				Matrix: Wate	r	Batch: 8120353		TEMP	
Benzene	ND		0.200	ug/L	1	12/04/18	EPA 8260C		
Toluene	ND		1.00	ug/L	1	12/04/18	EPA 8260C		
Ethylbenzene	ND		0.500	ug/L	1	12/04/18	EPA 8260C		
Xylenes, total	ND		1.50	ug/L	1	12/04/18	EPA 8260C		
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery:	108 %	Limits: 80-120 %	1	12/04/18	EPA 8260C		
Toluene-d8 (Surr)			107 %	80-120 %	1	12/04/18	EPA 8260C		
4-Bromofluorobenzene (Surr)			98 %	80-120 %	1	12/04/18	EPA 8260C		
/W06-W (A8L0038-04RE1)				Matrix: Wate	r	Ba	tch: 8120408	TEMP	
Benzene	ND		0.200	ug/L	1	12/05/18	EPA 8260C		
Toluene	ND		1.00	ug/L	1	12/05/18	EPA 8260C		
Ethylbenzene	ND		0.500	ug/L	1	12/05/18	EPA 8260C		
Xylenes, total	ND		1.50	ug/L	1	12/05/18	EPA 8260C		
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery:	105 %	Limits: 80-120 %	1	12/05/18	EPA 8260C		
Toluene-d8 (Surr)			105 %	80-120 %		12/05/18	EPA 8260C		
4-Bromofluorobenzene (Surr)			100 %	80-120 %		12/05/18	EPA 8260C		
/W07-W (A8L0038-05)				Matrix: Wate	r	Ba	tch: 8120353	TEMP	
Benzene	ND		0.200	ug/L	1	12/04/18	EPA 8260C		

Apex Laboratories

Assa A Someringhini

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>HydroCon LLC</u> 314 W 15th Street Suite 300 Vancouver, WA 98660		Project Project N Project Ma		<u>Report ID:</u> A8L0038 - 12 12 18 1137				
		ANALYTICA	AL SAMI	PLE RESULTS				
		BTEX Com	pounds b	oy EPA 8260C				
Analyte	Sample Detection Reporting Date Result Limit Limit Units Dilution Analyzed						Method Ref.	N. (
MW07-W (A8L0038-05)	Kesun						tch: 8120353	Notes TEMP
Toluene	ND		1.00	ug/L	1	12/04/18	EPA 8260C	1 2 1011
Ethylbenzene	ND		0.500	ug/L	1	12/04/18	EPA 8260C	
Xylenes, total	ND		1.50	ug/L	1	12/04/18	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)	112	Recovery:		Limits: 80-120 %		12/04/18	EPA 8260C	
Toluene-d8 (Surr)		Recovery.	106 %	80-120 %		12/04/18	EPA 8260C	
4-Bromofluorobenzene (Surr)			99 %	80-120 %		12/04/18	EPA 8260C	
						ch: 8120408	TEMP	
Benzene	0.214		0.200	ug/L	1	12/05/18	EPA 8260C	
Toluene	ND		1.00	ug/L	1	12/05/18	EPA 8260C	
Ethylbenzene	1.06		0.500	ug/L	1	12/05/18	EPA 8260C	
Xylenes, total	6.23		1.50	ug/L	1	12/05/18	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery:	103 %	Limits: 80-120 %	1	12/05/18	EPA 8260C	
Toluene-d8 (Surr)		necovery.	105 %	80-120 %		12/05/18	EPA 8260C	
4-Bromofluorobenzene (Surr)			98 %	80-120 %		12/05/18	EPA 8260C	
				Matrix: Water Bate		tch: 8120353	TEMP	
Benzene	ND		0.200	ug/L	1	12/04/18	EPA 8260C	
Toluene	ND		1.00	ug/L	1	12/04/18	EPA 8260C	
Ethylbenzene	ND		0.500	ug/L	1	12/04/18	EPA 8260C	
Xylenes, total	ND		1.50	ug/L	1	12/04/18	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery:	108 %	Limits: 80-120 %	1	12/04/18	EPA 8260C	
Toluene-d8 (Surr)			105 %	80-120 %	1	12/04/18	EPA 8260C	
4-Bromofluorobenzene (Surr)			96 %	80-120 %	1	12/04/18	EPA 8260C	
/W10R-W (A8L0038-08)				Matrix: Wate	ər	Bat	tch: 8120353	TEMP
Benzene	ND		0.200	ug/L	1	12/04/18	EPA 8260C	
Toluene	ND		1.00	ug/L	1	12/04/18	EPA 8260C	
Ethylbenzene	3.90		0.500	ug/L	1	12/04/18	EPA 8260C	
Xylenes, total	5.98		1.50	ug/L	1	12/04/18	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery:	106 %	Limits: 80-120 %	1	12/04/18	EPA 8260C	
Toluene-d8 (Surr)			105 %	80-120 %	1	12/04/18	EPA 8260C	
4-Bromofluorobenzene (Surr)			97 %	80-120 %	1	12/04/18	EPA 8260C	
MW11-W (A8L0038-09)				Matrix: Wate	er	Bat	tch: 8120353	TEMP
Benzene	ND		0.200	ug/L	1	12/04/18	EPA 8260C	
Toluene	ND		1.00	ug/L	1	12/04/18	EPA 8260C	

Apex Laboratories

Assa A Someringhini

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>HydroCon LLC</u> 314 W 15th Street Suite 300	Project: <u>Coleman Wenatchee</u> Project Number: 2017-074 Ref								
Vancouver, WA 98660			Manager: Cra				<u>Report</u> A8L0038 - 12 1		
			-	PLE RESULTS			1010030 - 12 1	2 10 1157	
				y EPA 8260C					
	Sample	Detection	Reporting			Date			
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes	
MW11-W (A8L0038-09)		Matrix: Water				Bat	tch: 8120353	TEMP	
Ethylbenzene	ND		0.500	ug/L	1	12/04/18	EPA 8260C		
Xylenes, total	ND		1.50	ug/L	1	12/04/18	EPA 8260C		
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ry: 105 %	Limits: 80-120 %	1	12/04/18	EPA 8260C		
Toluene-d8 (Surr)			105 %	80-120 %	1	12/04/18	EPA 8260C		
4-Bromofluorobenzene (Surr)			99 %	80-120 %	1	12/04/18	EPA 8260C		
				Matrix: Wate	r	Bat	ch: 8120353	TEMP	
Benzene	ND		0.200	ug/L	1	12/04/18	EPA 8260C		
Toluene	ND		1.00	ug/L	1	12/04/18	EPA 8260C		
Ethylbenzene	ND		0.500	ug/L	1	12/04/18	EPA 8260C		
Xylenes, total	ND		1.50	ug/L	1	12/04/18	EPA 8260C		
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ry: 105 %	Limits: 80-120 %	1	12/04/18	EPA 8260C		
Toluene-d8 (Surr)			106 %	80-120 %	1	12/04/18	EPA 8260C		
4-Bromofluorobenzene (Surr)			100 %	80-120 %	1	12/04/18	EPA 8260C		
MW13-W (A8L0038-11)		Matrix: Water Batc		ch: 8120353	TEMP				
Benzene	1380		10.0	ug/L	50	12/04/18	EPA 8260C		
Toluene	271		50.0	ug/L	50	12/04/18	EPA 8260C		
Ethylbenzene	458		25.0	ug/L	50	12/04/18	EPA 8260C		
Xylenes, total	3170		75.0	ug/L	50	12/04/18	EPA 8260C		
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ry: 105 %	Limits: 80-120 %	1	12/04/18	EPA 8260C		
Toluene-d8 (Surr)			107 %	80-120 %	1	12/04/18	EPA 8260C		
4-Bromofluorobenzene (Surr)			98 %	80-120 %	1	12/04/18	EPA 8260C		
				Matrix: Wate	r	Bat	ch: 8120353	TEMP	
Benzene	15.2		0.200	ug/L	1	12/04/18	EPA 8260C		
Toluene	ND		1.00	ug/L	1	12/04/18	EPA 8260C		
Ethylbenzene	1.70		0.500	ug/L	1	12/04/18	EPA 8260C		
Xylenes, total	ND		1.50	ug/L	1	12/04/18	EPA 8260C		
Surrogate: 1,4-Difluorobenzene (Surr)		Recover	ry: 102 %	Limits: 80-120 %	1	12/04/18	EPA 8260C		
Toluene-d8 (Surr)			120 %	80-120 %	1	12/04/18	EPA 8260C		
4-Bromofluorobenzene (Surr)			102 %	80-120 %	1	12/04/18	EPA 8260C		
MW16-W (A8L0038-13)				Matrix: Wate	r	Bat	tch: 8120353	TEMP	
Benzene	ND		0.200	ug/L	1	12/04/18	EPA 8260C		
Toluene	ND		1.00	ug/L	1	12/04/18	EPA 8260C		
Ethylbenzene	ND		0.500	ug/L	1	12/04/18	EPA 8260C		

Apex Laboratories

Assa & Someringhini

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>HydroCon LLC</u> 314 W 15th Street Suite 300 Vancouver, WA 98660	Project:Coleman WenatcheeProject Number:2017-074Project Manager:Craig Hultgren						<u>Report ID:</u> A8L0038 - 12 12 18 1137	
		ANALYTICA	AL SAMI	PLE RESULTS				
		BTEX Com	oounds b	y EPA 8260C				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW16-W (A8L0038-13)				Matrix: Wate	er	Batch: 8120353		TEMP
Xylenes, total	ND		1.50	ug/L	1	12/04/18	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery:	107 %	Limits: 80-120 %	1	12/04/18	EPA 8260C	
Toluene-d8 (Surr)			107 %	80-120 %	1	12/04/18	EPA 8260C	
4-Bromofluorobenzene (Surr)			98 %	80-120 %	1	12/04/18	EPA 8260C	
MW17-W (A8L0038-14)				Matrix: Wate	er	Batch: 8120353		TEMP
Benzene	0.305		0.200	ug/L	1	12/04/18	EPA 8260C	
Toluene	ND		1.00	ug/L	1	12/04/18	EPA 8260C	
Ethylbenzene	ND		0.500	ug/L	1	12/04/18	EPA 8260C	
Xylenes, total	ND		1.50	ug/L	1	12/04/18	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery:	105 %	Limits: 80-120 %	1	12/04/18	EPA 8260C	
Toluene-d8 (Surr)			106 %	80-120 %	1	12/04/18	EPA 8260C	
4-Bromofluorobenzene (Surr)			99 %	80-120 %	1	12/04/18	EPA 8260C	
MW19-W (A8L0038-15)				Matrix: Water B			tch: 8120353	TEMP
Benzene	ND		0.200	ug/L	1	12/04/18	EPA 8260C	
Toluene	ND		1.00	ug/L	1	12/04/18	EPA 8260C	
Ethylbenzene	ND		0.500	ug/L	1	12/04/18	EPA 8260C	
Xylenes, total	ND		1.50	ug/L	1	12/04/18	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery:	107 %	Limits: 80-120 %	1	12/04/18	EPA 8260C	
Toluene-d8 (Surr)			106 %	80-120 %	1	12/04/18	EPA 8260C	
4-Bromofluorobenzene (Surr)			100 %	80-120 %	1	12/04/18	EPA 8260C	
MW20-W (A8L0038-16)				Matrix: Water		Batch: 8120353		TEMP
Benzene	ND		0.200	ug/L	1	12/04/18	EPA 8260C	
Toluene	ND		1.00	ug/L	1	12/04/18	EPA 8260C	
Ethylbenzene	ND		0.500	ug/L	1	12/04/18	EPA 8260C	
Xylenes, total	ND		1.50	ug/L	1	12/04/18	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery:	107 %	Limits: 80-120 %	1	12/04/18	EPA 8260C	
Toluene-d8 (Surr)			104 %	80-120 %	1	12/04/18	EPA 8260C	
4-Bromofluorobenzene (Surr)			97 %	80-120 %	1	12/04/18	EPA 8260C	
MW21-W (A8L0038-17)				Matrix: Water		Batch: 8120353		TEMP
Benzene	ND		0.200	ug/L	1	12/04/18	EPA 8260C	
Toluene	ND		1.00	ug/L	1	12/04/18	EPA 8260C	
Ethylbenzene	ND		0.500	ug/L	1	12/04/18	EPA 8260C	
Xylenes, total	ND		1.50	ug/L	1	12/04/18	EPA 8260C	

Apex Laboratories

Assa A Jomenighini

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>HydroCon LLC</u> 314 W 15th Street Suite 300		Report ID:								
Vancouver, WA 98660							A8L0038 - 12 12 18 1137			
· · · · · · · · · · · · · · · · · · ·			-	PLE RESULTS						
BTEX Compounds by EPA 8260C										
Analyta	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.			
Analyte WW21-W (A8L0038-17)	Kesun	Liint	Liiiit	Matrix: Wate		5	tch: 8120353	Notes		
		D	104.0/					TEMP		
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery:		Limits: 80-120 %	1	12/04/18	EPA 8260C			
Toluene-d8 (Surr)			105 % 99 %	80-120 %	1	12/04/18	EPA 8260C			
4-Bromofluorobenzene (Surr)			99%	80-120 %	1	12/04/18	EPA 8260C			
MW23-W (A8L0038-18)				Matrix: Water		Batch: 8120353		TEMP		
Benzene	ND		0.200	ug/L	1	12/04/18	EPA 8260C			
Toluene	ND		1.00	ug/L	1	12/04/18	EPA 8260C			
Ethylbenzene	ND		0.500	ug/L	1	12/04/18	EPA 8260C			
Xylenes, total	ND		1.50	ug/L	1	12/04/18	EPA 8260C			
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery:	105 %	Limits: 80-120 %	1	12/04/18	EPA 8260C			
Toluene-d8 (Surr)			106 %	80-120 %	1	12/04/18	EPA 8260C			
4-Bromofluorobenzene (Surr)			100 %	80-120 %	1	12/04/18	EPA 8260C			
MW24-W (A8L0038-19)			Matrix: Water			Bat	TEMP			
Benzene	ND		0.200	ug/L	1	12/04/18	EPA 8260C			
Toluene	ND		1.00	ug/L	1	12/04/18	EPA 8260C			
Ethylbenzene	ND		0.500	ug/L	1	12/04/18	EPA 8260C			
Xylenes, total	ND		1.50	ug/L	1	12/04/18	EPA 8260C			
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery:	105 %	Limits: 80-120 %	1	12/04/18	EPA 8260C			
Toluene-d8 (Surr)			97 %	80-120 %	1	12/04/18	EPA 8260C			
4-Bromofluorobenzene (Surr)			94 %	80-120 %	1	12/04/18	EPA 8260C			
MW25-W (A8L0038-20)				Matrix: Wate	r	Batch: 8120320		TEMP		
Benzene	ND		0.200	ug/L	1	12/04/18	EPA 8260C			
Toluene	ND		1.00	ug/L	1	12/04/18	EPA 8260C			
Ethylbenzene	ND		0.500	ug/L	1	12/04/18	EPA 8260C			
Xylenes, total	ND		1.50	ug/L	1	12/04/18	EPA 8260C			
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery:	106 %	Limits: 80-120 %	1	12/04/18	EPA 8260C			
Toluene-d8 (Surr)			97 %	80-120 %		12/04/18	EPA 8260C			
4-Bromofluorobenzene (Surr)			95 %	80-120 %		12/04/18	EPA 8260C			
				Matrix: Water		Batch: 8120320		TEMP		
Benzene	ND		0.200	ug/L	1	12/04/18	EPA 8260C			
Toluene	ND		1.00	ug/L	1	12/04/18	EPA 8260C			
Ethylbenzene	ND		0.500	ug/L	1	12/04/18	EPA 8260C			
Xylenes, total	ND		1.50	ug/L	1	12/04/18	EPA 8260C			
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery:		Limits: 80-120 %	1	12/04/18	EPA 8260C			

Apex Laboratories

Assa A Jomenighini

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>HydroCon LLC</u> 314 W 15th Street Suite 300 Vancouver, WA 98660	Project:Coleman WenatcheeProject Number:2017-074Project Manager:Craig Hultgren						<u>Report ID:</u> A8L0038 - 12 12 18 1137	
		ANALYTICA	AL SAMI	PLE RESULTS				
		BTEX Com	pounds b	y EPA 8260C				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
/W26-W (A8L0038-21)				Matrix: Water		Batch: 8120320		TEMP
Surrogate: Toluene-d8 (Surr) 4-Bromofluorobenzene (Surr)		Recovery): 98 % 94 %	Limits: 80-120 % 80-120 %		12/04/18 12/04/18	EPA 8260C EPA 8260C	
//////////////////////////////////////				Matrix: Water		Batch: 8120320		ТЕМР
Benzene	ND		0.200	ug/L	1	12/04/18	EPA 8260C	
Toluene	ND		1.00	ug/L	1	12/04/18	EPA 8260C	
Ethylbenzene	ND		0.500	ug/L	1	12/04/18	EPA 8260C	
Xylenes, total	ND		1.50	ug/L	1	12/04/18	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery:		Limits: 80-120 %		12/04/18	EPA 8260C	
Toluene-d8 (Surr)		Recovery.	98%	80-120 %		12/04/18	EPA 8260C	
4-Bromofluorobenzene (Surr)			96 %	80-120 %		12/04/18	EPA 8260C	
				Matrix: Water		Batch: 8120320		TEMP
Benzene	0.208		0.200	ug/L	1	12/04/18	EPA 8260C	
Toluene	0.208 ND		1.00	•	1	12/04/18	EPA 8260C	
	ND		0.500	ug/L	1	12/04/18	EPA 8260C	
Ethylbenzene Xylenes, total	ND		1.50	ug/L ug/L	1	12/04/18	EPA 8260C	
· · · · · · · · · · · · · · · · · · ·	ND			-				
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery:		Limits: 80-120 %		12/04/18	EPA 8260C	
Toluene-d8 (Surr)			98 % 04 %	80-120 %		12/04/18	EPA 8260C	
4-Bromofluorobenzene (Surr)			94 %	80-120 %	1	12/04/18	EPA 8260C	
/W29-W (A8L0038-24)				Matrix: Water		Batch: 8120320		TEMP
Benzene	ND		0.200	ug/L	1	12/04/18	EPA 8260C	
Toluene	ND		1.00	ug/L	1	12/04/18	EPA 8260C	
Ethylbenzene	ND		0.500	ug/L	1	12/04/18	EPA 8260C	
Xylenes, total	ND		1.50	ug/L	1	12/04/18	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery:	106 %	Limits: 80-120 %	1	12/04/18	EPA 8260C	
Toluene-d8 (Surr)			98 %	80-120 %	1	12/04/18	EPA 8260C	
4-Bromofluorobenzene (Surr)			95 %	80-120 %	1	12/04/18	EPA 8260C	
/W30-W (A8L0038-25)				Matrix: Water		Batch: 8120320		TEMP
Benzene	ND		0.200	ug/L	1	12/04/18	EPA 8260C	
Toluene	ND		1.00	ug/L	1	12/04/18	EPA 8260C	
Ethylbenzene	ND		0.500	ug/L	1	12/04/18	EPA 8260C	
Xylenes, total	ND		1.50	ug/L	1	12/04/18	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery:		Limits: 80-120 %		12/04/18	EPA 8260C	
Toluene-d8 (Surr)		Recovery:	97 %	80-120 %		12/04/18	EPA 8260C	

Apex Laboratories

Assa A Jomenighini

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>HydroCon LLC</u> 314 W 15th Street Suite 300 Vancouver, WA 98660	314 W 15th Street Suite 300Project Number: 2017-074											
		ANALYTICA	L SAMI	PLE RESULTS								
		BTEX Com	oounds b	y EPA 8260C								
	Sample		Reporting			Date						
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes				
MW30-W (A8L0038-25)				Matrix: Wate	er	Ва	tch: 8120320	TEMP				
Surrogate: 4-Bromofluorobenzene (Surr)		Recovery	: 96%	Limits: 80-120 %	1	12/04/18	EPA 8260C					
MW31-W (A8L0038-26)				Matrix: Wate	ər	Ва	tch: 8120320	ТЕМР				
Benzene	ND		0.200	ug/L	1	12/04/18	EPA 8260C					
Toluene	ND		1.00	ug/L	1	12/04/18	EPA 8260C					
Ethylbenzene	ND		0.500	ug/L	1	12/04/18	EPA 8260C					
Xylenes, total	ND		1.50	ug/L	1	12/04/18	EPA 8260C					
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery:	108 %	Limits: 80-120 %	1	12/04/18	EPA 8260C					
Toluene-d8 (Surr)			98 %	80-120 %	1	12/04/18	EPA 8260C					
4-Bromofluorobenzene (Surr)			93 %	80-120 %	1	12/04/18	EPA 8260C					
MW32-W (A8L0038-27)				Matrix: Wate	ər	Ва	tch: 8120320	TEMP				
Benzene	ND		0.200	ug/L	1	12/04/18	EPA 8260C					
Toluene	ND		1.00	ug/L	1	12/04/18	EPA 8260C					
Ethylbenzene	ND		0.500	ug/L	1	12/04/18	EPA 8260C					
Xylenes, total	ND		1.50	ug/L	1	12/04/18	EPA 8260C					
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery:	106 %	Limits: 80-120 %	1	12/04/18	EPA 8260C					
Toluene-d8 (Surr)			98 %	80-120 %	1	12/04/18	EPA 8260C					
4-Bromofluorobenzene (Surr)			94 %	80-120 %	1	12/04/18	EPA 8260C					
3H01-W (A8L0038-28)				Matrix: Wate	ər	Ва	tch: 8120320	TEMP				
Benzene	ND		0.200	ug/L	1	12/04/18	EPA 8260C					
Toluene	ND		1.00	ug/L	1	12/04/18	EPA 8260C					
Ethylbenzene	0.608		0.500	ug/L	1	12/04/18	EPA 8260C					
Xylenes, total	ND		1.50	ug/L	1	12/04/18	EPA 8260C					
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery:	106 %	Limits: 80-120 %	1	12/04/18	EPA 8260C					
Toluene-d8 (Surr)			96 %	80-120 %	1	12/04/18	EPA 8260C					
4-Bromofluorobenzene (Surr)			92 %	80-120 %	1	12/04/18	EPA 8260C					
3H02-W (A8L0038-29)				Matrix: Wate	er	Ва	tch: 8120360	TEMP				
Benzene	ND		0.200	ug/L	1	12/04/18	EPA 8260C					
Toluene	ND		1.00	ug/L	1	12/04/18	EPA 8260C					
Ethylbenzene	ND		0.500	ug/L	1	12/04/18	EPA 8260C					
Xylenes, total	ND		1.50	ug/L	1	12/04/18	EPA 8260C					
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery:	109 %	Limits: 80-120 %	1	12/04/18	EPA 8260C					
Toluene-d8 (Surr)			94 %	80-120 %		12/04/18	EPA 8260C					
4-Bromofluorobenzene (Surr)			98 %	80-120 %	1	12/04/18	EPA 8260C					

Apex Laboratories

Assa & Someringhini

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>HydroCon LLC</u> 314 W 15th Street Suite 300 Vancouver, WA 98660	<u>Report ID:</u> A8L0038 - 12 12 18 1137							
		ANALYTICA	AL SAMI	PLE RESULTS				
		BTEX Com	oounds b	y EPA 8260C				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
			Matrix: Water				tch: 8120417	TEMP
Benzene	ND		0.200	ug/L	1	12/05/18	EPA 8260C	
Toluene	ND		1.00	ug/L	1	12/05/18	EPA 8260C	
Ethylbenzene	ND		0.500	ug/L	1	12/05/18	EPA 8260C	
Xylenes, total	ND		1.50	ug/L	1	12/05/18	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery:	106 %	Limits: 80-120 %	1	12/05/18	EPA 8260C	
Toluene-d8 (Surr)			96 %	80-120 %	1	12/05/18	EPA 8260C	
4-Bromofluorobenzene (Surr)			100 %	80-120 %	1	12/05/18	EPA 8260C	
	(A8L0038-31) Matrix: Water Bat							
Benzene	ND		0.200	ug/L	1	12/05/18	EPA 8260C	
Toluene	ND		1.00	ug/L	1	12/05/18	EPA 8260C	
Ethylbenzene	ND		0.500	ug/L	1	12/05/18	EPA 8260C	
Xylenes, total	ND		1.50	ug/L	1	12/05/18	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery:	105 %	Limits: 80-120 %	1	12/05/18	EPA 8260C	
Toluene-d8 (Surr)			106 %	80-120 %		12/05/18	EPA 8260C	
4-Bromofluorobenzene (Surr)			99 %	80-120 %		12/05/18	EPA 8260C	
				Matrix: Wate	r	Bat	tch: 8120408	TEMP
Benzene	ND		0.200	ug/L	1	12/05/18	EPA 8260C	
Toluene	ND		1.00	ug/L	1	12/05/18	EPA 8260C	
Ethylbenzene	ND		0.500	ug/L	1	12/05/18	EPA 8260C	
Xylenes, total	ND		1.50	ug/L	1	12/05/18	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery:	104 %	Limits: 80-120 %	1	12/05/18	EPA 8260C	
Toluene-d8 (Surr)			104 %	80-120 %		12/05/18	EPA 8260C	
4-Bromofluorobenzene (Surr)			100 %	80-120 %	1	12/05/18	EPA 8260C	
				Matrix: Wate	r	Bat	tch: 8120408	TEMP
Benzene	0.257		0.200	ug/L	1	12/05/18	EPA 8260C	
Toluene	ND		1.00	ug/L	1	12/05/18	EPA 8260C	
Ethylbenzene	ND		0.500	ug/L	1	12/05/18	EPA 8260C	
Xylenes, total	ND		1.50	ug/L	1	12/05/18	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery:	104 %	Limits: 80-120 %	1	12/05/18	EPA 8260C	
Toluene-d8 (Surr)			106 %	80-120 %		12/05/18	EPA 8260C	
4-Bromofluorobenzene (Surr)			99%	80-120 %		12/05/18	EPA 8260C	
						-		
MW109-W (A8L0038-34RE1)				Matrix: Wate	r	Bat	tch: 8120411	TEMP

Apex Laboratories

Assa A Jomenighini

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>HydroCon LLC</u> 314 W 15th Street Suite 300 Vancouver, WA 98660	<u>Report</u> A8L0038 - 12 1							
		BTEX Com	ipounds b	y EPA 8260C				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
/W109-W (A8L0038-34RE1)				Matrix: Wate	r	Ba	tch: 8120411	TEMP
Benzene	ND		0.200	ug/L	1	12/05/18	EPA 8260C	
Toluene	ND		1.00	ug/L	1	12/05/18	EPA 8260C	
Ethylbenzene	0.649		0.500	ug/L	1	12/05/18	EPA 8260C	
Xylenes, total	ND		1.50	ug/L	1	12/05/18	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	: 107 %	Limits: 80-120 %	1	12/05/18	EPA 8260C	
Toluene-d8 (Surr)			96 %	80-120 %	1	12/05/18	EPA 8260C	
4-Bromofluorobenzene (Surr)			94 %	80-120 %	1	12/05/18	EPA 8260C	
BLANK 181130 (A8L0038-35)				Matrix: Wate	r	Bat	tch: 8120320	TEMP
Benzene	ND		0.200	ug/L	1	12/04/18	EPA 8260C	
Toluene	ND		1.00	ug/L	1	12/04/18	EPA 8260C	
Ethylbenzene	ND		0.500	ug/L	1	12/04/18	EPA 8260C	
Xylenes, total	ND		1.50	ug/L	1	12/04/18	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	: 106 %	Limits: 80-120 %	1	12/04/18	EPA 8260C	
Toluene-d8 (Surr)			98 %	80-120 %	1	12/04/18	EPA 8260C	
4-Bromofluorobenzene (Surr)			100 %	80-120 %	1	12/04/18	EPA 8260C	

Apex Laboratories

Assa A Jomenighini

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 EPA ID: OR01039

HydroCon LLC	Project:	Coleman Wenatchee	
314 W 15th Street Suite 300	Project Number:	2017-074	<u>Report ID:</u>
Vancouver, WA 98660	Project Manager:	Craig Hultgren	A8L0038 - 12 12 18 1137

QUALITY CONTROL (QC) SAMPLE RESULTS

		D	iesel and/o	or Oil Hyd	rocarbon	s by NW	TPH-Dx					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 8120396 - EPA 3510C	(Fuels/Acid	Ext.)					Wat	er				
Blank (8120396-BLK1)		Prepared	: 12/04/18 17:	30 Analyz	ed: 12/04/1	8 23:11						
NWTPH-Dx												
Diesel	ND		72.7	ug/L	1							
Oil	ND		145	ug/L	1							
Surr: o-Terphenyl (Surr)		Reco	overy: 92 %	Limits: 50	-150 %	Dili	ution: 1x					
LCS (8120396-BS1)		Prepared	: 12/04/18 17:	30 Analyz	ed: 12/04/1	8 23:33						
NWTPH-Dx												
Diesel	405		80.0	ug/L	1	500		81	52-120%			
Surr: o-Terphenyl (Surr)		Rece	overy: 94 %	Limits: 50	-150 %	Dili	ution: 1x					
LCS Dup (8120396-BSD1)		Prepared	: 12/04/18 17:	30 Analyz	ed: 12/04/1	8 23:54						Q-1
NWTPH-Dx												
Diesel	411		80.0	ug/L	1	500		82	52-120%	1	20%	
Surr: o-Terphenyl (Surr)		Reco	overy: 91 %	Limits: 50	-150 %	Dila	ution: 1x					
Batch 8120422 - EPA 3510C	(Fuels/Acid	Ext.)					Wat	er				
Blank (8120422-BLK1)		Prepared	: 12/05/18 12:	03 Analyz	ed: 12/06/1	8 03:24						
NWTPH-Dx												
Diesel	ND		72.7	ug/L	1							
Oil	ND		145	ug/L	1							
Surr: o-Terphenyl (Surr)		Reco	very: 100 %	Limits: 50	-150 %	Dili	ution: 1x					
LCS (8120422-BS1)		Prepared	: 12/05/18 12:	03 Analyz	ed: 12/06/1	8 03:46						
NWTPH-Dx												
	496		80.0	ug/L	1	500		99	52-120%			
Diesel	490											
Diesel Surr: o-Terphenyl (Surr)	490	Reco	very: 106 %	Limits: 50	-150 %	Dili	ution: 1x					
	490		very: 106 % : 12/05/18 12:				ution: 1x					 Q-1
Surr: o-Terphenyl (Surr)	470						ution: 1x					Q-1
Surr: o-Terphenyl (Surr)	552						ution: 1x	110	52-120%	11	20%	Q-1

Apex Laboratories

Assa A Zomenighini

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

ſ	HydroCon LLC	Project:	Coleman Wenatchee	
l	314 W 15th Street Suite 300	Project Number:	2017-074	<u>Report ID:</u>
	Vancouver, WA 98660	Project Manager:	Craig Hultgren	A8L0038 - 12 12 18 1137

QUALITY CONTROL (QC) SAMPLE RESULTS

		Gasolir	ne Range H	lydrocarbo	ons (Benz	zene thro	ugh Naph	thalene)	by NWTP	H-Gx			
Ana	ılyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch	n 8120320 - EPA 5030B							Wat	er				
Blank	a (8120320-BLK1)		Prepared	: 12/04/18 07	:00 Analyz	zed: 12/04/1	8 09:14						
NWTP	PH-Gx (MS)												
Gaso	oline Range Organics	ND		100	ug/L	1							
	4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Reco	very: 108 % 106 %	Limits: 50 50	0-150 % 0-150 %	Dili	ution: 1x "					
`	8120320-BS2)		Prepared	: 12/04/18 07	:00 Analyz	zed: 12/04/1	8 08:47						
NWTP	PH-Gx (MS)												
Gase	oline Range Organics	489		100	ug/L	1	500		98	80-120%			
Surr:	4-Bromofluorobenzene (Sur)		Reco	very: 110 %	Limits: 5	0-150 %	Dil	ution: 1x					
_	1,4-Difluorobenzene (Sur)			103 %	50	0-150 %		"					
Duplic	cate (8120320-DUP1)		Prepared	: 12/04/18 08	23 Analyz	zed: 12/04/1	8 18:21						TEM
QC S	Source Sample: BH01-W (A8	L0038-28)											
NWTP	PH-Gx (MS)												
Gase	oline Range Organics	1400		100	ug/L	1		1420			1	30%	
Surr:	4-Bromofluorobenzene (Sur)		Reco	very: 112 %	Limits: 5	0-150 %	Dil	ution: 1x					
	1,4-Difluorobenzene (Sur)			105 %	50	0-150 %		"					
Duplic	cate (8120320-DUP2)		Prepared	: 12/04/18 08	23 Analyz	zed: 12/04/1	8 19:17						TEM
	Source Sample: MW109-W (A PH-Gx (MS)	<u> 48L0038-34</u>	<u>)</u>										
Gaso	oline Range Organics	ND		1000	ug/L	10		1040			***	30%	
Surr:	4-Bromofluorobenzene (Sur)		Reco	very: 107 %	Limits: 5	0-150 %	Dil	ution: 1x					
	1,4-Difluorobenzene (Sur)			104 %	50	0-150 %		"					

Apex Laboratories

Assa A Zomenighini

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Γ	HydroCon LLC	Project:	Coleman Wenatchee	
l	314 W 15th Street Suite 300	Project Number:	2017-074	<u>Report ID:</u>
	Vancouver, WA 98660	Project Manager:	Craig Hultgren	A8L0038 - 12 12 18 1137

QUALITY CONTROL (QC) SAMPLE RESULTS

		Gasolir	ne Range I	lydrocarbo	ons (Benz	zene throu	ugh Naph	thalene)	by NWTF	PH-Gx			
Anal	yte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch	8120353 - EPA 5030B							Wat	er				
Blank ((8120353-BLK1)		Prepared	: 12/04/18 07	:45 Analyz	zed: 12/04/1	8 09:11						
NWTPH	I-Gx (MS)												
Gasol	ine Range Organics	ND		100	ug/L	1							
Surr: 4	-Bromofluorobenzene (Sur)		Rece	overy: 98 %	Limits: 5	0-150 %	Dil	ution: 1x					
1,	4-Difluorobenzene (Sur)			104 %	50)-150 %		"					
LCS (8	120353-BS2)		Prepared	: 12/04/18 07	:45 Analyz	ed: 12/04/1	8 08:43						
NWTPH	I-Gx (MS)												
Gasol	ine Range Organics	500		100	ug/L	1	500		100	80-120%			
Surr: 4	-Bromofluorobenzene (Sur)		Rece	overy: 98 %	Limits: 5	0-150 %	Dil	ution: 1x					
1,	4-Difluorobenzene (Sur)			104 %	50	0-150 %		"					
Duplica	ate (8120353-DUP1)		Prepared	: 12/04/18 07	:45 Analyz	zed: 12/04/1	8 10:36						TEM
QC So	ource Sample: MW01S-W (A	A8L0038-02	<u>)</u>										
<u>NWTPH</u>	I-Gx (<u>MS)</u>												
Gasol	ine Range Organics	ND		100	ug/L	1		ND				30%	
Surr: 4	-Bromofluorobenzene (Sur)		Reco	very: 100 %	Limits: 5	0-150 %	Dil	ution: 1x					
1,	4-Difluorobenzene (Sur)			105 %	50	0-150 %		"					
Duplic	ate (8120353-DUP2)		Prepared	: 12/04/18 07	:45 Analyz	zed: 12/04/1	8 15:21						TEM
	ource Sample: MW13-W (A I-Gx (MS)	<u>8L0038-11)</u>											
Gasol	ine Range Organics	21900		5000	ug/L	50		22400			2	30%	
Surr: 4	-Bromofluorobenzene (Sur)		Rece	overy: 95 %	Limits: 5	0-150 %	Dil	ution: 1x					
1	4-Difluorobenzene (Sur)			101 %	50)-150 %		"					

Apex Laboratories

Assa A Zomenighini

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 EPA ID: OR01039

<u>HydroCon LLC</u>	Project: <u>(</u>	Coleman Wenatchee	
314 W 15th Street Suite 300	Project Number: 2	2017-074	<u>Report ID:</u>
Vancouver, WA 98660	Project Manager: C	Craig Hultgren	A8L0038 - 12 12 18 1137

QUALITY CONTROL (QC) SAMPLE RESULTS

	Gasoline Range Hydrocarbons (Benzene through Naphthalene) by NWTPH-Gx											
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 8120360 - EPA 5030B							Wat	er				
Blank (8120360-BLK1)		Prepared:	12/04/18 08:	00 Analyz	ed: 12/04/1	8 10:31						
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		100	ug/L	1							
Surr: 4-Bromofluorobenzene (Sur)		Recove	ery: 107 %	Limits: 50)-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			109 %	50)-150 %		"					
LCS (8120360-BS2)		Prepared:	12/04/18 08:	00 Analyz	ed: 12/04/1	8 10:05						
NWTPH-Gx (MS)												
Gasoline Range Organics	487		100	ug/L	1	500		97	80-120%			
Surr: 4-Bromofluorobenzene (Sur)		Recove	ery: 104 %	Limits: 50)-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			105 %	50	-150 %		"					

Apex Laboratories

Awa A Zomenighini

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 EPA ID: OR01039

<u>HydroCon LLC</u>	Project: <u>(</u>	Coleman Wenatchee	
314 W 15th Street Suite 300	Project Number: 2	2017-074	<u>Report ID:</u>
Vancouver, WA 98660	Project Manager: C	Craig Hultgren	A8L0038 - 12 12 18 1137

QUALITY CONTROL (QC) SAMPLE RESULTS

	Gasoline Range Hydrocarbons (Benzene through Naphthalene) by NWTPH-Gx											
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits		RPD Limit	Notes
Batch 8120408 - EPA 5030B							Wat	er				
Blank (8120408-BLK1)		Prepared:	12/05/18 09:	:30 Analy:	zed: 12/05/1	8 11:45						
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		100	ug/L	1							
Surr: 4-Bromofluorobenzene (Sur)		Recov	very: 94 %	Limits: 5	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			100 %	50	0-150 %		"					
LCS (8120408-BS2)		Prepared:	12/05/18 09:	:30 Analy:	zed: 12/05/1	8 11:17						
NWTPH-Gx (MS)												
Gasoline Range Organics	489		100	ug/L	1	500		98	80-120%			
Surr: 4-Bromofluorobenzene (Sur)		Recov	very: 92 %	Limits: 5	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			100 %	5	0-150 %		"					

Apex Laboratories

Awa A Zomenighini

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 EPA ID: OR01039

ſ	HydroCon LLC	Project:	Coleman Wenatchee	
l	314 W 15th Street Suite 300	Project Number:	2017-074	<u>Report ID:</u>
	Vancouver, WA 98660	Project Manager:	Craig Hultgren	A8L0038 - 12 12 18 1137

QUALITY CONTROL (QC) SAMPLE RESULTS

	Gasoline Range Hydrocarbons (Benzene through Naphthalene) by NWTPH-Gx											
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 8120411 - EPA 5030B							Wate	er				
Blank (8120411-BLK1)		Prepared:	12/05/18 10:	33 Analyz	zed: 12/05/1	8 11:55						
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		100	ug/L	1							
Surr: 4-Bromofluorobenzene (Sur)		Recove	ery: 109 %	Limits: 50	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			107 %	50	0-150 %		"					
LCS (8120411-BS2)		Prepared:	12/05/18 10:	33 Analyz	zed: 12/05/1	8 11:28						
NWTPH-Gx (MS)												
Gasoline Range Organics	474		100	ug/L	1	500		95	80-120%			
Surr: 4-Bromofluorobenzene (Sur)		Recove	ery: 110 %	Limits: 50	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			104 %	50	0-150 %		"					

Apex Laboratories

Awa A Zomenighini

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 EPA ID: OR01039

<u>HydroCon LLC</u>	Project: <u>(</u>	Coleman Wenatchee	
314 W 15th Street Suite 300	Project Number: 2	2017-074	<u>Report ID:</u>
Vancouver, WA 98660	Project Manager: C	Craig Hultgren	A8L0038 - 12 12 18 1137

QUALITY CONTROL (QC) SAMPLE RESULTS

	Gasoline Range Hydrocarbons (Benzene through Naphthalene) by NWTPH-Gx											
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits		RPD Limit	Notes
Batch 8120417 - EPA 5030B							Wat	er				
Blank (8120417-BLK1)		Prepared:	12/05/18 10:	56 Analyz	zed: 12/05/1	8 12:17						
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		100	ug/L	1							
Surr: 4-Bromofluorobenzene (Sur)		Recove	ery: 108 %	Limits: 5	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			105 %	50	0-150 %		"					
LCS (8120417-BS2)		Prepared:	12/05/18 10:	56 Analyz	zed: 12/05/1	8 11:50						
NWTPH-Gx (MS)												
Gasoline Range Organics	507		100	ug/L	1	500		101	80-120%			
Surr: 4-Bromofluorobenzene (Sur)		Recove	ery: 108 %	Limits: 5	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			104 %	50	0-150 %		"					

Apex Laboratories

Awa A Zomenighini

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 EPA ID: OR01039

ſ	HydroCon LLC	Project:	Coleman Wenatchee	
	314 W 15th Street Suite 300	Project Number:	2017-074	<u>Report ID:</u>
	Vancouver, WA 98660	Project Manager:	Craig Hultgren	A8L0038 - 12 12 18 1137

QUALITY CONTROL (QC) SAMPLE RESULTS

			BTEX	Compou	inds by E	PA 82600	;					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 8120320 - EPA 5030B							Wat	er				
Blank (8120320-BLK1)		Prepared	12/04/18 07:	00 Analyz	ed: 12/04/1	3 09:14						
EPA 8260C												
Benzene	ND		0.200	ug/L	1							
Toluene	ND		1.00	ug/L	1							
Ethylbenzene	ND		0.500	ug/L	1							
Xylenes, total	ND		1.50	ug/L	1							
Surr: 1,4-Difluorobenzene (Surr)		Recov	very: 106 %	Limits: 80)-120 %	Dil	ution: 1x					
Toluene-d8 (Surr)			98 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			95 %	80	-120 %		"					
LCS (8120320-BS1)		Prepared	12/04/18 07:	00 Analyz	ed: 12/04/1	3 08:20						
EPA 8260C		.1										
Benzene	20.3		0.200	ug/L	1	20.0		101	80-120%			
Toluene	19.0		1.00	ug/L	1	20.0		95	80-120%			
Ethylbenzene	18.4		0.500	ug/L	1	20.0		92	80-120%			
Xylenes, total	55.3		1.50	ug/L	1	60.0		92	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Recov	very: 104 %	Limits: 80)-120 %	Dil	ution: 1x					
Toluene-d8 (Surr)			97 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			95 %	80	-120 %		"					
Duplicate (8120320-DUP1)		Prepared	12/04/18 08:	23 Analyz	ed: 12/04/1	8 18:21						TEM
QC Source Sample: BH01-W (A8L	0038-28)											
EPA 8260C	<u> </u>											
Benzene	ND		0.200	ug/L	1		ND				30%	
Toluene	ND		1.00	ug/L	1		ND				30%	
Ethylbenzene	0.688		0.500	ug/L	1		0.608			12	30%	
Xylenes, total	1.54		1.50	ug/L	1		1.44			7	30%	
Surr: 1,4-Difluorobenzene (Surr)		Recov	very: 105 %	Limits: 80)-120 %	Dil	ution: 1x					
Toluene-d8 (Surr)			96 %		-120 %		"					
4-Bromofluorobenzene (Surr)			96 %	80	-120 %		"					
Duplicate (8120320-DUP2)		Prenared	12/04/18 08:	23 Analyz	red: 12/04/1	2 10.17						TEM

EPA 8260C

Apex Laboratories

Assa A Zomenighini

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 EPA ID: OR01039

HydroCon LLC	Project:	Coleman Wenatchee	
314 W 15th Street Suite 300	Project Number:	2017-074	<u>Report ID:</u>
Vancouver, WA 98660	Project Manager:	Craig Hultgren	A8L0038 - 12 12 18 1137

QUALITY CONTROL (QC) SAMPLE RESULTS

			BTEX	Compou	unds by E	PA 8260C	;					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 8120320 - EPA 5030B							Wat	er				
Duplicate (8120320-DUP2)		Prepared	: 12/04/18 08:	23 Analyz	zed: 12/04/1	8 19:17						TEM
QC Source Sample: MW109-W (A	A8L0038-34)										
Benzene	ND		2.00	ug/L	10		ND				30%	
Toluene	ND		10.0	ug/L	10		ND				30%	
Ethylbenzene	ND		5.00	ug/L	10		ND				30%	
Xylenes, total	ND		15.0	ug/L	10		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 104 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			98 %	80)-120 %		"					
4-Bromofluorobenzene (Surr)			94 %	80	0-120 %		"					
Matrix Spike (8120320-MS1)		Prepared	: 12/04/18 08:	23 Analyz	zed: 12/04/1	8 10:37						TEM
QC Source Sample: MW24-W (As	8L0038-19 <u>)</u>											
EPA 8260C												
Benzene	21.6		0.200	ug/L	1	20.0	ND	108	79-120%			
Toluene	20.1		1.00	ug/L	1	20.0	ND	100	80-121%			
Ethylbenzene	19.8		0.500	ug/L	1	20.0	ND	99	79-121%			
Xylenes, total	59.0		1.50	ug/L	1	60.0	ND	98	79-121%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 104 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			98 %	80)-120 %		"					
4-Bromofluorobenzene (Surr)			95 %	80)-120 %		"					

Apex Laboratories

Assa A Jomenighini

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Lisa Domenighini, Client Services Manager

Page 32 of 53

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

ſ	HydroCon LLC	Project:	Coleman Wenatchee	
	314 W 15th Street Suite 300	Project Number:	2017-074	<u>Report ID:</u>
	Vancouver, WA 98660	Project Manager:	Craig Hultgren	A8L0038 - 12 12 18 1137

QUALITY CONTROL (QC) SAMPLE RESULTS

L			BTEX	Compou	inds by E	PA 8260C	;					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 8120353 - EPA 5030B							Wat	er				
Blank (8120353-BLK1)		Prepared:	12/04/18 07:	45 Analyz	ed: 12/04/18	8 09:11						
EPA 8260C												
Benzene	ND		0.200	ug/L	1							
Toluene	ND		1.00	ug/L	1							
Ethylbenzene	ND		0.500	ug/L	1							
Xylenes, total	ND		1.50	ug/L	1							
Surr: 1,4-Difluorobenzene (Surr)		Recove	ery: 107 %	Limits: 80)-120 %	Dili	ution: 1x					
Toluene-d8 (Surr)			106 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			101 %	80	-120 %		"					
LCS (8120353-BS1)		Prepared:	12/04/18 07:	45 Analyz	ed: 12/04/18	8 08:14						
EPA 8260C		1										
Benzene	20.7		0.200	ug/L	1	20.0		104	80-120%			
Toluene	19.9		1.00	ug/L	1	20.0		100	80-120%			
Ethylbenzene	19.8		0.500	ug/L	1	20.0		99	80-120%			
Xylenes, total	58.6		1.50	ug/L	1	60.0		98	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Recove	ry: 103 %	Limits: 80)-120 %	Dilt	ution: 1x					
Toluene-d8 (Surr)			105 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			97 %	80	-120 %		"					
Duplicate (8120353-DUP1)		Prepared:	12/04/18 07:	45 Analyz	ed: 12/04/18	3 10:36						TEM
QC Source Sample: MW01S-W (A	8L0038-02)										
EPA 8260C												
Benzene	ND		0.200	ug/L	1		ND				30%	
Toluene	ND		1.00	ug/L	1		ND				30%	
Ethylbenzene	ND		0.500	ug/L	1		ND				30%	
Xylenes, total	ND		1.50	ug/L	1		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Recove	ery: 108 %	Limits: 80)-120 %	Dili	ution: 1x					
Toluene-d8 (Surr)			107 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			99 %	80	-120 %		"					
Duplicate (8120353-DUP2)		Prepared:			1 10 10 1 11							TEM

Apex Laboratories

Assa A Zomenighini

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 EPA ID: OR01039

HydroCon LLC	Project:	Coleman Wenatchee	
314 W 15th Street Suite 300	Project Number:	2017-074	<u>Report ID:</u>
Vancouver, WA 98660	Project Manager:	Craig Hultgren	A8L0038 - 12 12 18 1137

QUALITY CONTROL (QC) SAMPLE RESULTS

			BTEX	Compou	inds by E	PA 8260C	;					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 8120353 - EPA 5030B							Wat	er				
Duplicate (8120353-DUP2)		Prepared	: 12/04/18 07:	45 Analyz	ed: 12/04/1	8 15:21						TEM
QC Source Sample: MW13-W (As	8L0038-11)											
Benzene	1370		10.0	ug/L	50		1380			0.7	30%	
Toluene	273		50.0	ug/L	50		271			0.6	30%	
Ethylbenzene	452		25.0	ug/L	50		458			1	30%	
Xylenes, total	3100		75.0	ug/L	50		3170			2	30%	
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 105 %	Limits: 80)-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			107 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			100 %	80	-120 %		"					
Matrix Spike (8120353-MS1)		Prepared	: 12/04/18 07:	45 Analyz	ed: 12/04/1	8 19:37						TEMI
<u>QC Source Sample: MW23-W (As EPA 8260C</u>	8L0038-18)											
Benzene	21.8		0.200	ug/L	1	20.0	ND	109	79-120%			
Toluene	20.7		1.00	ug/L	1	20.0	ND	104	80-121%			
Ethylbenzene	21.0		0.500	ug/L	1	20.0	ND	105	79-121%			
Xylenes, total	62.6		1.50	ug/L	1	60.0	ND	104	79-121%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 103 %	Limits: 80)-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			103 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			97 %	80	-120 %		"					

Apex Laboratories

Assa A Jomenighini

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 EPA ID: OR01039

HydroCon LLC	Project:	Coleman Wenatchee	
314 W 15th Street Suite 300	Project Number:	2017-074	<u>Report ID:</u>
Vancouver, WA 98660	Project Manager:	Craig Hultgren	A8L0038 - 12 12 18 1137

QUALITY CONTROL (QC) SAMPLE RESULTS

			BTEX	Compou	inds by E	PA 8260C						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 8120360 - EPA 5030B							Wate	er				
Blank (8120360-BLK1)		Prepared	: 12/04/18 08:	00 Analyz	ed: 12/04/1	8 10:31						
EPA 8260C												
Benzene	ND		0.200	ug/L	1							
Toluene	ND		1.00	ug/L	1							
Ethylbenzene	ND		0.500	ug/L	1							
Xylenes, total	ND		1.50	ug/L	1							
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 109 %	Limits: 80)-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			98 %	80)-120 %		"					
4-Bromofluorobenzene (Surr)			97 %	80	-120 %		"					
LCS (8120360-BS1)		Prepared	: 12/04/18 08:	00 Analyz	ed: 12/04/1	8 09:38						
EPA 8260C												
Benzene	18.8		0.200	ug/L	1	20.0		94	80-120%			
Toluene	17.8		1.00	ug/L	1	20.0		89	80-120%			
Ethylbenzene	18.4		0.500	ug/L	1	20.0		92	80-120%			
Xylenes, total	53.4		1.50	ug/L	1	60.0		89	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 103 %	Limits: 80)-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			96 %	80)-120 %		"					
4-Bromofluorobenzene (Surr)			97 %	80)-120 %		"					

Apex Laboratories

Assa A Zomenighini

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 EPA ID: OR01039

ſ	HydroCon LLC	Project: Cole	leman Wenatchee	
l	314 W 15th Street Suite 300	Project Number: 2017	17-074	<u>Report ID:</u>
	Vancouver, WA 98660	Project Manager: Cra	aig Hultgren	A8L0038 - 12 12 18 1137

QUALITY CONTROL (QC) SAMPLE RESULTS

BTEX Compounds by EPA 8260C												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 8120408 - EPA 5030B							Wat	er				
Blank (8120408-BLK1)		Prepared	: 12/05/18 09:	30 Analyz	ed: 12/05/1	8 11:45						
EPA 8260C												
Benzene	ND		0.200	ug/L	1							
Toluene	ND		1.00	ug/L	1							
Ethylbenzene	ND		0.500	ug/L	1							
Xylenes, total	ND		1.50	ug/L	1							
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 106 %	Limits: 80)-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			106 %	80)-120 %		"					
4-Bromofluorobenzene (Surr)			101 %	80	-120 %		"					
LCS (8120408-BS1)		Prepared	: 12/05/18 09:	30 Analyz	ed: 12/05/1	8 10:48						
EPA 8260C												
Benzene	20.3		0.200	ug/L	1	20.0		102	80-120%			
Toluene	20.2		1.00	ug/L	1	20.0		101	80-120%			
Ethylbenzene	20.1		0.500	ug/L	1	20.0		100	80-120%			
Xylenes, total	59.0		1.50	ug/L	1	60.0		98	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 102 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			105 %	80)-120 %		"					
4-Bromofluorobenzene (Surr)			98 %	80)-120 %		"					

Apex Laboratories

Assa A Zomenighini

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 EPA ID: OR01039

ſ	HydroCon LLC	Project:	Coleman Wenatchee	
l	314 W 15th Street Suite 300	Project Number:	2017-074	<u>Report ID:</u>
l	Vancouver, WA 98660	Project Manager:	Craig Hultgren	A8L0038 - 12 12 18 1137

QUALITY CONTROL (QC) SAMPLE RESULTS

			BTEX	Compou	inds by E	PA 8260C						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 8120411 - EPA 5030B							Wat	er				
Blank (8120411-BLK1)		Prepared	: 12/05/18 10:	33 Analyz	ed: 12/05/1	8 11:55						
EPA 8260C												
Benzene	ND		0.200	ug/L	1							
Toluene	ND		1.00	ug/L	1							
Ethylbenzene	ND		0.500	ug/L	1							
Xylenes, total	ND		1.50	ug/L	1							
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 108 %	Limits: 80)-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			97 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			96 %	80	-120 %		"					
LCS (8120411-BS1)		Prepared	: 12/05/18 10:	33 Analyz	ed: 12/05/1	8 11:01						
EPA 8260C												
Benzene	20.5		0.200	ug/L	1	20.0		102	80-120%			
Toluene	19.0		1.00	ug/L	1	20.0		95	80-120%			
Ethylbenzene	18.9		0.500	ug/L	1	20.0		95	80-120%			
Xylenes, total	55.3		1.50	ug/L	1	60.0		92	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 105 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			98 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			94 %	80)-120 %		"					

Apex Laboratories

Assa A Zomenighini

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 EPA ID: OR01039

ſ	HydroCon LLC	Project: Cole	leman Wenatchee	
l	314 W 15th Street Suite 300	Project Number: 2017	17-074	<u>Report ID:</u>
	Vancouver, WA 98660	Project Manager: Cra	aig Hultgren	A8L0038 - 12 12 18 1137

QUALITY CONTROL (QC) SAMPLE RESULTS

			BTEX	Compou	inds by E	PA 8260C	;					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 8120417 - EPA 5030B							Wat	er				
Blank (8120417-BLK1)		Prepared	: 12/05/18 10:	56 Analyz	ed: 12/05/1	8 12:17						
EPA 8260C												
Benzene	ND		0.200	ug/L	1							
Toluene	ND		1.00	ug/L	1							
Ethylbenzene	ND		0.500	ug/L	1							
Xylenes, total	ND		1.50	ug/L	1							
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 105 %	Limits: 80)-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			96 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			100 %	80	-120 %		"					
LCS (8120417-BS1)		Prepared	: 12/05/18 10:	56 Analyz	ed: 12/05/1	8 11:23						
EPA 8260C												
Benzene	17.8		0.200	ug/L	1	20.0		89	80-120%			
Toluene	16.9		1.00	ug/L	1	20.0		85	80-120%			
Ethylbenzene	17.7		0.500	ug/L	1	20.0		89	80-120%			
Xylenes, total	51.8		1.50	ug/L	1	60.0		86	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 102 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			95 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			98 %	80)-120 %		"					

Apex Laboratories

Assa A Zomenighini

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>HydroCon LLC</u>	Project:	Coleman Wenatchee	
314 W 15th Street Suite 300	Project Number:	2017-074	<u>Report ID:</u>
Vancouver, WA 98660	Project Manager:	Craig Hultgren	A8L0038 - 12 12 18 1137

SAMPLE PREPARATION INFORMATION

		Diesel an	d/or Oil Hydrocarbor	s by NWTPH-Dx			
Prep: EPA 3510C (Fuels/Acid Ext.)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 8120396			X	X			
A8L0038-01	Water	NWTPH-Dx	11/27/18 12:30	12/04/18 17:30	1060mL/2mL	1000mL/2mL	0.94
A8L0038-02	Water	NWTPH-Dx	11/27/18 13:10	12/04/18 17:30	1060mL/2mL	1000mL/2mL	0.94
A8L0038-03	Water	NWTPH-Dx	11/27/18 11:40	12/04/18 17:30	1060mL/2mL	1000mL/2mL	0.94
A8L0038-04	Water	NWTPH-Dx	11/27/18 16:05	12/04/18 17:30	1060mL/2mL	1000mL/2mL	0.94
A8L0038-05	Water	NWTPH-Dx	11/28/18 09:25	12/04/18 17:30	1060mL/2mL	1000mL/2mL	0.94
A8L0038-06	Water	NWTPH-Dx	11/28/18 10:30	12/04/18 17:30	1060mL/2mL	1000mL/2mL	0.94
A8L0038-07	Water	NWTPH-Dx	11/28/18 14:10	12/04/18 17:30	1060mL/2mL	1000mL/2mL	0.94
A8L0038-08	Water	NWTPH-Dx	11/29/18 11:45	12/04/18 17:30	1060mL/2mL	1000mL/2mL	0.94
A8L0038-09	Water	NWTPH-Dx	11/27/18 15:20	12/04/18 17:30	1060mL/2mL	1000mL/2mL	0.94
A8L0038-10	Water	NWTPH-Dx	11/27/18 10:55	12/04/18 17:30	1060mL/2mL	1000mL/2mL	0.94
A8L0038-11	Water	NWTPH-Dx	11/27/18 13:55	12/04/18 17:30	1060mL/2mL	1000mL/2mL	0.94
A8L0038-12	Water	NWTPH-Dx	11/27/18 14:40	12/04/18 17:30	1060mL/2mL	1000mL/2mL	0.94
A8L0038-13	Water	NWTPH-Dx	11/28/18 11:20	12/04/18 17:30	1060mL/2mL	1000mL/2mL	0.94
A8L0038-14	Water	NWTPH-Dx	11/28/18 12:45	12/04/18 17:30	1060mL/2mL	1000mL/2mL	0.94
A8L0038-15	Water	NWTPH-Dx	11/30/18 13:20	12/04/18 17:30	1060mL/2mL	1000mL/2mL	0.94
A8L0038-16	Water	NWTPH-Dx	11/29/18 08:40	12/04/18 17:30	1060mL/2mL	1000mL/2mL	0.94
A8L0038-17	Water	NWTPH-Dx	11/28/18 15:35	12/04/18 17:30	1060mL/2mL	1000mL/2mL	0.94
A8L0038-18	Water	NWTPH-Dx	11/27/18 16:55	12/04/18 17:30	1060mL/2mL	1000mL/2mL	0.94
A8L0038-19	Water	NWTPH-Dx	11/29/18 13:10	12/04/18 17:30	1060mL/2mL	1000mL/2mL	0.94
Batch: 8120422							
A8L0038-20RE1	Water	NWTPH-Dx	11/28/18 16:35	12/05/18 12:03	1060mL/2mL	1000mL/2mL	0.94
A8L0038-21	Water	NWTPH-Dx	11/29/18 14:05	12/05/18 12:03	1060mL/2mL	1000mL/2mL	0.94
A8L0038-22	Water	NWTPH-Dx	11/29/18 16:10	12/05/18 12:03	1060mL/2mL	1000mL/2mL	0.94
A8L0038-23	Water	NWTPH-Dx	12/01/18 11:00	12/05/18 12:03	1010mL/2mL	1000mL/2mL	0.99
A8L0038-24	Water	NWTPH-Dx	11/30/18 15:50	12/05/18 12:03	1060mL/2mL	1000mL/2mL	0.94
A8L0038-25	Water	NWTPH-Dx	11/30/18 14:45	12/05/18 14:28	1060mL/2mL	1000mL/2mL	0.94
A8L0038-26	Water	NWTPH-Dx	12/01/18 09:40	12/05/18 14:28	1060mL/2mL	1000mL/2mL	0.94
A8L0038-27	Water	NWTPH-Dx	11/28/18 12:00	12/05/18 14:28	1060mL/2mL	1000mL/2mL	0.94
A8L0038-28	Water	NWTPH-Dx	12/01/18 10:30	12/05/18 14:28	1060mL/2mL	1000mL/2mL	0.94
A8L0038-29	Water	NWTPH-Dx	11/30/18 16:35	12/05/18 14:28	1060mL/2mL	1000mL/2mL	0.94
A8L0038-30	Water	NWTPH-Dx	11/29/18 15:05	12/05/18 14:28	1060mL/2mL	1000mL/2mL	0.94
A8L0038-31	Water	NWTPH-Dx	11/30/18 09:40	12/05/18 14:28	1060mL/2mL	1000mL/2mL	0.94
A8L0038-32	Water	NWTPH-Dx	11/27/18 16:10	12/05/18 14:28	1060mL/2mL	1000mL/2mL	0.94
A8L0038-33	Water	NWTPH-Dx	11/28/18 12:50	12/05/18 14:28	1060mL/2mL	1000mL/2mL	0.94
A8L0038-34RE1	Water	NWTPH-Dx	12/01/18 10:36	12/05/18 14:28	1060mL/2mL	1000mL/2mL	0.94
A8L0038-35	Water	NWTPH-Dx	11/30/18 11:45	12/05/18 14:28	1060mL/2mL	1000mL/2mL	0.94

Apex Laboratories

Assa A Jomenighini

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>HydroCon LLC</u> 314 W 15th Street Suit Vancouver, WA 98660			roject Number: 2017-0'							
SAMPLE PREPARATION INFORMATION Desci of colspan="2">Operation of the second seco										
		Diesel and	l/or Oil Hydrocarbor	ns by NWTPH-Dx						
Prep: EPA 3510C (F	uels/Acid Ext.	<u>)</u>			Sample	Default	RL Prep			
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor			
	Gas	soline Range Hydrocart	oons (Benzene thro	ugh Naphthalene) b	y NWTPH-Gx					
Prep: EPA 5030B					Sample	Default	RL Prep			
	Matrix	Method	Sampled	Prenared		Initial/Final	Factor			
	1VILLI IA	memou	Sumpicu	riepareu						
	Water	NWTPH-Gx (MS)	11/29/18 13:10	12/04/18 08:23	5mL/5mL	5mL/5mL	1.00			
		· · · ·								
		· · · ·								
		· · · ·								
		()								
		· · · ·								
		· · · ·								
		· · · ·								
	() diffi		11,00,10 11.10	12/01/10/00:25	01112,01112	enne, enne	1.00			
						/	1.00			
		· · · ·								
		· · · ·								
A8L0038-09	Water	NWTPH-Gx (MS)	11/27/18 15:20	12/04/18 07:45	5mL/5mL	5mL/5mL	1.00			
A8L0038-10	Water	NWTPH-Gx (MS)	11/27/18 10:55	12/04/18 07:45	5mL/5mL	5mL/5mL	1.00			
A8L0038-11	Water	NWTPH-Gx (MS)	11/27/18 13:55	12/04/18 07:45	5mL/5mL	5mL/5mL	1.00			
A8L0038-12	Water	NWTPH-Gx (MS)	11/27/18 14:40	12/04/18 07:45	5mL/5mL	5mL/5mL	1.00			
A8L0038-13	Water	NWTPH-Gx (MS)	11/28/18 11:20	12/04/18 07:45	5mL/5mL	5mL/5mL	1.00			
A8L0038-14	Water	NWTPH-Gx (MS)	11/28/18 12:45	12/04/18 07:45	5mL/5mL	5mL/5mL	1.00			
A8L0038-15	Water	NWTPH-Gx (MS)	11/30/18 13:20	12/04/18 07:45	5mL/5mL	5mL/5mL	1.00			
A8L0038-16	Water	NWTPH-Gx (MS)	11/29/18 08:40	12/04/18 07:45	5mL/5mL	5mL/5mL	1.00			
A8L0038-17	Water	NWTPH-Gx (MS)	11/28/18 15:35	12/04/18 07:45	5mL/5mL	5mL/5mL	1.00			
A8L0038-18	Water	NWTPH-Gx (MS)	11/27/18 16:55	12/04/18 07:45	5mL/5mL	5mL/5mL	1.00			
<u>Batch: 8120360</u> A8L0038-29	Water	NWTPH-Gx (MS)	11/30/18 16:35	12/04/18 10:27	5mL/5mL	5mL/5mL	1.00			

Apex Laboratories

Assa A Jomenighini

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 EPA ID: OR01039

<u>HydroCon LLC</u>	Project: <u>(</u>	Coleman Wenatchee	
314 W 15th Street Suite 300	Project Number: 2	2017-074	<u>Report ID:</u>
Vancouver, WA 98660	Project Manager: C	Craig Hultgren	A8L0038 - 12 12 18 1137

SAMPLE PREPARATION INFORMATION

	Gasoline Range Hydrocarbons (Benzene through Naphthalene) by NWTPH-Gx						
Prep: EPA 5030B					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 8120408							
A8L0038-04RE1	Water	NWTPH-Gx (MS)	11/27/18 16:05	12/05/18 10:26	5mL/5mL	5mL/5mL	1.00
A8L0038-06RE1	Water	NWTPH-Gx (MS)	11/28/18 10:30	12/05/18 10:26	5mL/5mL	5mL/5mL	1.00
A8L0038-31	Water	NWTPH-Gx (MS)	11/30/18 09:40	12/05/18 10:26	5mL/5mL	5mL/5mL	1.00
A8L0038-32	Water	NWTPH-Gx (MS)	11/27/18 16:10	12/05/18 10:26	5mL/5mL	5mL/5mL	1.00
A8L0038-33	Water	NWTPH-Gx (MS)	11/28/18 12:50	12/05/18 10:26	5mL/5mL	5mL/5mL	1.00
Batch: 8120411							
A8L0038-34RE1	Water	NWTPH-Gx (MS)	12/01/18 10:36	12/05/18 11:36	5mL/5mL	5mL/5mL	1.00
Batch: 8120417							
A8L0038-30RE1	Water	NWTPH-Gx (MS)	11/29/18 15:05	12/05/18 11:35	5mL/5mL	5mL/5mL	1.00
				,			

	BTEX Compounds by EPA 8260C						
Prep: EPA 5030B					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 8120320							
A8L0038-19	Water	EPA 8260C	11/29/18 13:10	12/04/18 08:23	5mL/5mL	5mL/5mL	1.00
A8L0038-20	Water	EPA 8260C	11/28/18 16:35	12/04/18 08:23	5mL/5mL	5mL/5mL	1.00
A8L0038-21	Water	EPA 8260C	11/29/18 14:05	12/04/18 08:23	5mL/5mL	5mL/5mL	1.00
A8L0038-22	Water	EPA 8260C	11/29/18 16:10	12/04/18 08:23	5mL/5mL	5mL/5mL	1.00
A8L0038-23	Water	EPA 8260C	12/01/18 11:00	12/04/18 08:23	5mL/5mL	5mL/5mL	1.00
A8L0038-24	Water	EPA 8260C	11/30/18 15:50	12/04/18 08:23	5mL/5mL	5mL/5mL	1.00
A8L0038-25	Water	EPA 8260C	11/30/18 14:45	12/04/18 08:23	5mL/5mL	5mL/5mL	1.00
A8L0038-26	Water	EPA 8260C	12/01/18 09:40	12/04/18 08:23	5mL/5mL	5mL/5mL	1.00
A8L0038-27	Water	EPA 8260C	11/28/18 12:00	12/04/18 08:23	5mL/5mL	5mL/5mL	1.00
A8L0038-28	Water	EPA 8260C	12/01/18 10:30	12/04/18 08:23	5mL/5mL	5mL/5mL	1.00
A8L0038-35	Water	EPA 8260C	11/30/18 11:45	12/04/18 08:23	5mL/5mL	5mL/5mL	1.00
Batch: 8120353							
A8L0038-01	Water	EPA 8260C	11/27/18 12:30	12/04/18 07:45	5mL/5mL	5mL/5mL	1.00
A8L0038-02	Water	EPA 8260C	11/27/18 13:10	12/04/18 07:45	5mL/5mL	5mL/5mL	1.00
A8L0038-03	Water	EPA 8260C	11/27/18 11:40	12/04/18 07:45	5mL/5mL	5mL/5mL	1.00
A8L0038-05	Water	EPA 8260C	11/28/18 09:25	12/04/18 07:45	5mL/5mL	5mL/5mL	1.00
A8L0038-07	Water	EPA 8260C	11/28/18 14:10	12/04/18 07:45	5mL/5mL	5mL/5mL	1.00
A8L0038-08	Water	EPA 8260C	11/29/18 11:45	12/04/18 07:45	5mL/5mL	5mL/5mL	1.00
A8L0038-09	Water	EPA 8260C	11/27/18 15:20	12/04/18 07:45	5mL/5mL	5mL/5mL	1.00
A8L0038-10	Water	EPA 8260C	11/27/18 10:55	12/04/18 07:45	5mL/5mL	5mL/5mL	1.00

Apex Laboratories

Assa A Zomenighini

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

ſ	HydroCon LLC	Project:	Coleman Wenatchee	
l	314 W 15th Street Suite 300	Project Number:	2017-074	Report ID:
	Vancouver, WA 98660	Project Manager:	Craig Hultgren	A8L0038 - 12 12 18 1137

SAMPLE PREPARATION INFORMATION

	BTEX Compounds by EPA 8260C						
Prep: EPA 5030B					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
A8L0038-11	Water	EPA 8260C	11/27/18 13:55	12/04/18 07:45	5mL/5mL	5mL/5mL	1.00
A8L0038-12	Water	EPA 8260C	11/27/18 14:40	12/04/18 07:45	5mL/5mL	5mL/5mL	1.00
A8L0038-13	Water	EPA 8260C	11/28/18 11:20	12/04/18 07:45	5mL/5mL	5mL/5mL	1.00
A8L0038-14	Water	EPA 8260C	11/28/18 12:45	12/04/18 07:45	5mL/5mL	5mL/5mL	1.00
A8L0038-15	Water	EPA 8260C	11/30/18 13:20	12/04/18 07:45	5mL/5mL	5mL/5mL	1.00
A8L0038-16	Water	EPA 8260C	11/29/18 08:40	12/04/18 07:45	5mL/5mL	5mL/5mL	1.00
A8L0038-17	Water	EPA 8260C	11/28/18 15:35	12/04/18 07:45	5mL/5mL	5mL/5mL	1.00
A8L0038-18	Water	EPA 8260C	11/27/18 16:55	12/04/18 07:45	5mL/5mL	5mL/5mL	1.00
Batch: 8120360							
A8L0038-29	Water	EPA 8260C	11/30/18 16:35	12/04/18 10:27	5mL/5mL	5mL/5mL	1.00
Batch: 8120408							
A8L0038-04RE1	Water	EPA 8260C	11/27/18 16:05	12/05/18 10:26	5mL/5mL	5mL/5mL	1.00
A8L0038-06RE1	Water	EPA 8260C	11/28/18 10:30	12/05/18 10:26	5mL/5mL	5mL/5mL	1.00
A8L0038-31	Water	EPA 8260C	11/30/18 09:40	12/05/18 10:26	5mL/5mL	5mL/5mL	1.00
A8L0038-32	Water	EPA 8260C	11/27/18 16:10	12/05/18 10:26	5mL/5mL	5mL/5mL	1.00
A8L0038-33	Water	EPA 8260C	11/28/18 12:50	12/05/18 10:26	5mL/5mL	5mL/5mL	1.00
Batch: 8120411							
A8L0038-34RE1	Water	EPA 8260C	12/01/18 10:36	12/05/18 11:36	5mL/5mL	5mL/5mL	1.00
Batch: 8120417							
A8L0038-30RE1	Water	EPA 8260C	11/29/18 15:05	12/05/18 11:35	5mL/5mL	5mL/5mL	1.00

Apex Laboratories

Assa & Someringhini

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Lisa Domenighini, Client Services Manager

Page 42 of 53

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 EPA ID: OR01039

HydroCon LLC	Project: <u>Coleman Wenatchee</u>	
314 W 15th Street Suite 300	Project Number: 2017-074	<u>Report ID:</u>
Vancouver, WA 98660	Project Manager: Craig Hultgren	A8L0038 - 12 12 18 1137

QUALIFIER DEFINITIONS

Client Sample and Quality Control (QC) Sample Qualifier Definitions:

Apex Laboratories

F-11	The hydrocarbon pattern indicates possible weathered diesel, or a contribution from a related component.
F-13	The chromatographic pattern does not resemble the fuel standard used for quantitation
F-17	No fuel pattern detected. The Diesel result represents carbon range C12 to C24, and the Oil result represents >C24 to C40.
F-20	Result for Diesel is Estimated due to overlap from Gasoline Range Organics or other VOCs.
Q-19	Blank Spike Duplicate (BSD) sample analyzed in place of Matrix Spike/Duplicate samples due to limited sample amount available for analysis.

- S-05 Surrogate recovery is estimated due to sample dilution required for high analyte concentration and/or matrix interference.
- **TEMP** Sample(s) received outside of recommended temperature. See Case Narrative.

Apex Laboratories

Jusa A Zomenighini

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Lisa Domenighini, Client Services Manager

Page 43 of 53

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 EPA ID: OR01039

H	ydroCon LLC	Project:	Coleman Wenatchee	
31	4 W 15th Street Suite 300	Project Number:	2017-074	<u>Report ID:</u>
V	ancouver, WA 98660	Project Manager:	Craig Hultgren	A8L0038 - 12 12 18 1137

REPORTING NOTES AND CONVENTIONS:

Abbreviations:

DET	Analyte DETECTED at or above the detection or reporting limit.
ND	Analyte NOT DETECTED at or above the detection or reporting limit.
NR	Result Not Reported
RPD	Relative Percent Difference

Detection Limits: Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ). If no value is listed ('-----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as " dry", " wet", or " " (blank) designation.

"<u>dry</u>" Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry") See Percent Solids section for details of dry weight analysis.

"wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

"___ Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

QC Source:

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) are not included in this report. Please request a Full QC report if this data is required.

Miscellaneous Notes:

"--- " QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

"*** " Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to ½ the Reporting Limit (RL). -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier. -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy. For further details, please request a copy of this document.

Apex Laboratories

wast Jomenychini

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Lisa Domenighini, Client Services Manager

Page 44 of 53

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 EPA ID: OR01039

HydroCon LLC	Project:	Coleman Wenatchee	
314 W 15th Street Suite 300	Project Number:	2017-074	Report ID:
Vancouver, WA 98660	Project Manager:	Craig Hultgren	A8L0038 - 12 12 18 1137

REPORTING NOTES AND CONVENTIONS (Cont.):

Blanks (Cont.):

Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the blank results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.

'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

Apex Laboratories

wa A Zomenichini

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 EPA ID: OR01039

HydroCon LLC	Project: Coleman Wenatchee	
314 W 15th Street Suite 300	Project Number: 2017-074	Report ID:
Vancouver, WA 98660	Project Manager: Craig Hultgren	A8L0038 - 12 12 18 1137

LABORATORY ACCREDITATION INFORMATION

TNI Certification ID: OR100062 (Primary Accreditation) - EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

Apex Lab	<u>oratories</u>							
Matrix	Analysis	TNI_ID	Analyte	TNI_ID	Accreditation			
	All reported analytes are included in Apex Laboratories' current ORELAP scope.							

Secondary Accreditations

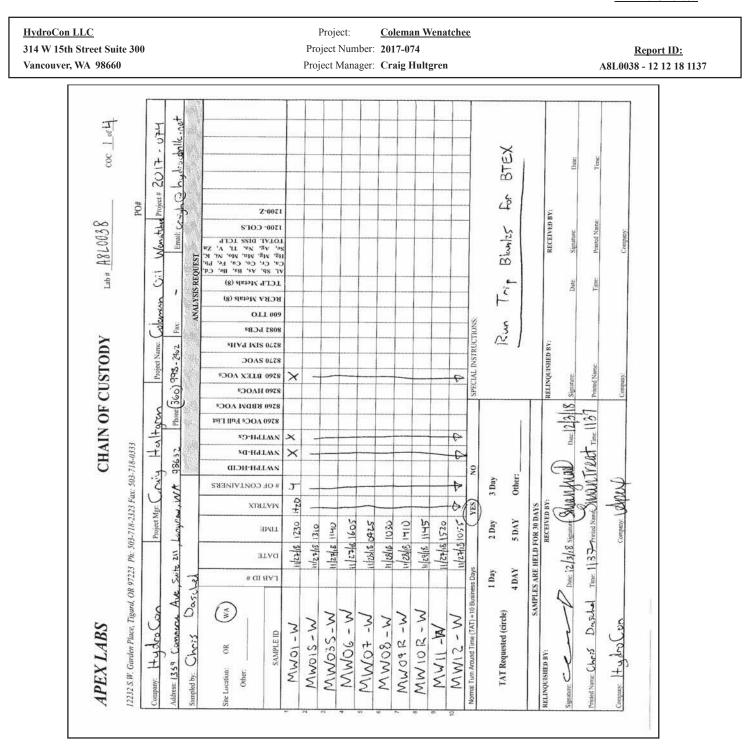
Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation. Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

Field Testing Parameters

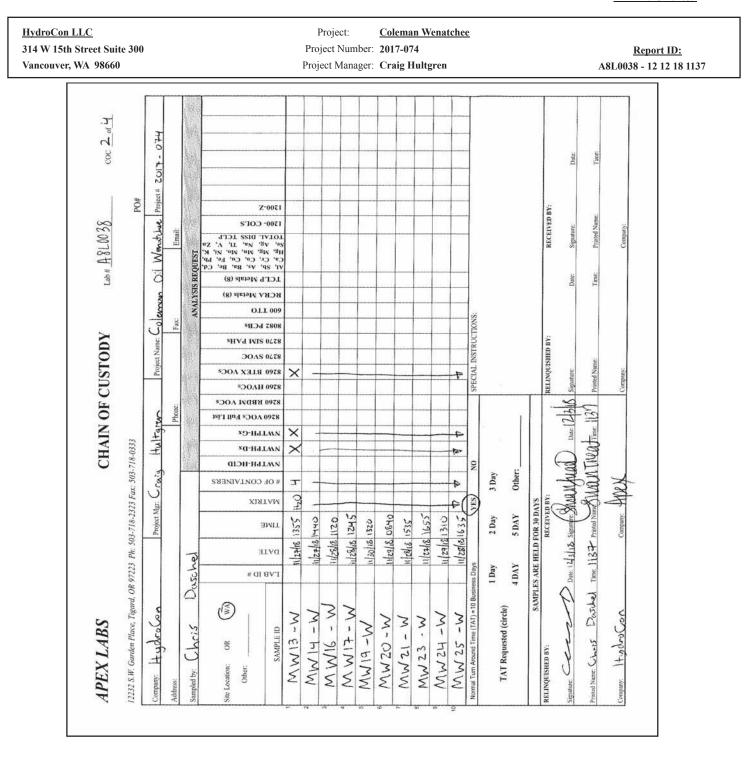
Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.


Apex Laboratories

Assa A Jomenichini

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

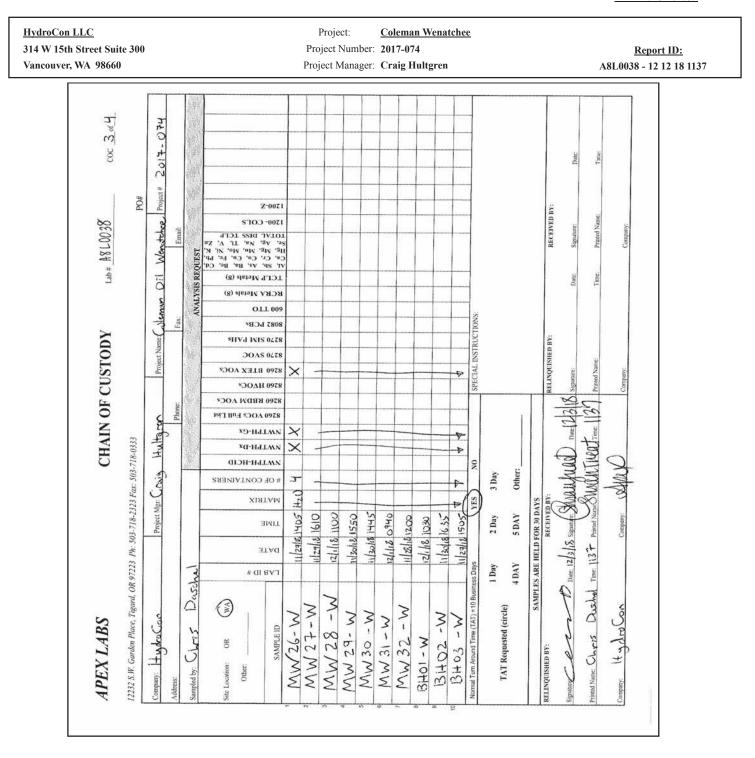
12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 EPA ID: OR01039


Apex Laboratories

Assa A Zomenighini

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

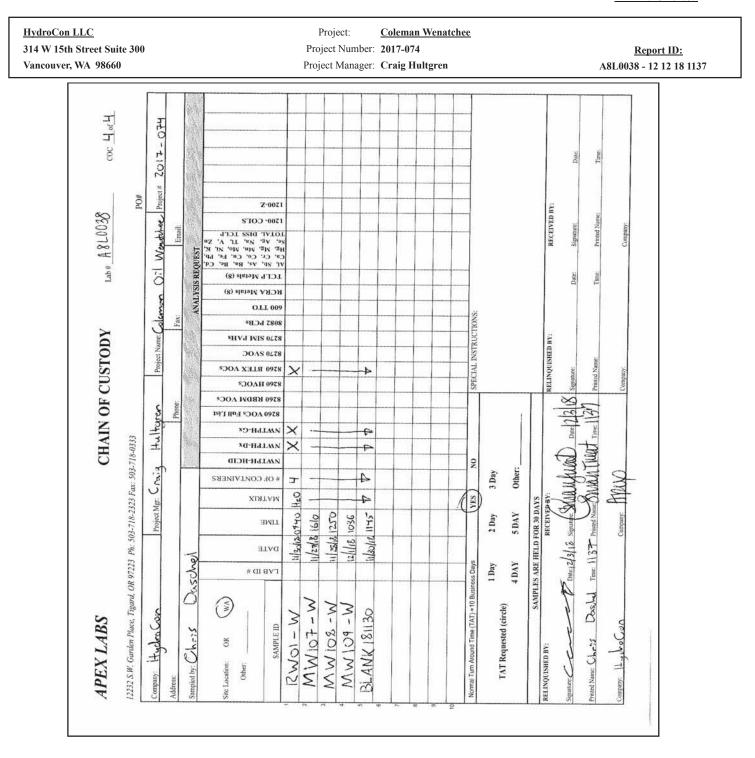
12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 EPA ID: OR01039


Apex Laboratories

Assa A Zomenighini

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 EPA ID: OR01039


Apex Laboratories

Assa A Zomenighini

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Apex Laboratories

Assa A Zomenighini

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 EPA ID: OR01039

<u>HydroCon LLC</u> 314 W 15th Stre Vancouver, WA	eet Suite 300	Project: Project Number Project Manager	<u>Coleman Wenatchee</u> 2017-074 Craig Hultgren	<u>Report ID:</u> A8L0038 - 12 12 18 1137
	98660 Client: $Hydrocon$ Project/Project #: $Chlent$ Delivery Info: Date/time received: $12/3$ Delivered by: ApexC <u>Cooler Inspection</u> Date Chain of Custody included Signed/dated by Apex? Temperature (°C) Received on ice? (Y/N) Temp. blanks? (Y/N) Ice type: (Gel/Real/Other) Condition: $O[a/5]$ (% Cooler out of temp? If some coolers are in temp Out of temperature samples <u>Samples Inspection</u> : Date All samples intact? Yes D Bottle labels/COCs agree? <u>MW Horw</u> (CL) Coolcrontainer discrepance Containers/volumes receive Do VOA vials have visible Comments Sed 3	APEX LABS COOLEI	RECEIPT FORM Element WO#: A8 Element WO#: A8 SwiftSenvoySDS @13 ^By:SD @13 ^By:SD @13 ^By:SO Custody seals? YesN er #3 Cooler #4 Cooler #5 Cooler Second Provided The second Provided Provide	A8L0038 - 12 12 18 1137
	but nieve bagged		ected by: See Project C	<u>I With [ub did</u> , Contact Form: Y

Apex Laboratories

Assa A Someringhini

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 EPA ID: OR01039

HydroCon LLC	Project: <u>Coleman Wenatchee</u>	
314 W 15th Street Suite 300	Project Number: 2017-074	Report ID:
Vancouver, WA 98660	Project Manager: Craig Hultgren	A8L0038 - 12 12 18 1137
Client: <u>Hydncon</u> Project/Project #: <u>Coleman</u>	APEX LABS COOLER RECEIPT FORM Element WO#: A8 100	2/2 2/3 © 146/a 38
Cooler Inspection Date/time in Chain of Custody included? Yes Signed/dated by client? Yes Signed/dated by Apex? Yes Signed/dated by Apex? Yes Cooler Temperature (°C) 1.0 Received on ice? (Y/N) N Temp. blanks? (Y/N) N Ice type: (Gel/Real/Other) 1.0 Cooler out of temp? VN) Possible If some coolers are in temp and som Out of temperature samples form in	ESSFedExUPSSwift_Senvoy_SDS nspected: 12/3/18@930_By:S No_X Custody seals? YesNo No_X Custody seals? YesNo No_X Custody seals? YesNo No_X Custody seals? YesNo No_X Cooler #3 No_X Cooler #4 Cooler #2 Cooler #3	#6 <u>Cooler #7</u>
Samples Inspection: Date/time in All samples intact? Yes No	aspected:	
Bottle labels/COCs agree? Yes COC/container discrepancies form in	No Comments: nitiated? Yes No NA priate for analysis? Yes No Comments:	
Do VOA vials have visible headspac Comments Water samples: pH checked: Yes	xe? Yes <u>No NA</u>	
Comments:		
Additional information:		
Labeled by: Witness:	Cooler Inspected by: See Project Conta	ict Form: Y

Apex Laboratories

Assa A Zomenighini

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 EPA ID: OR01039

<u>HydroCon LLC</u>	Project:	Coleman Wenatchee		
314 W 15th Street Suite 300		Project Number: 2017-074		eport ID:
Vancouver, WA 98660	Project Manager:	Craig Hultgren	A8L0038 -	- 12 12 18 1137
			A8L0038	
			A8L0038 3/3	
			10	
Hydroco	n – Coleman Oil Wenatchee			
WO A8L	0038			
12/03/13	8 9:30 AM			
was four was surp trip from	Cooler one of three was screened for temperat d to be without ice and temperature of cooler rised at temperature since bottles had been p office to lab. Staff reminded client that ice is r uring transport. Client then added ice to cooler	r was determined to be 7 degrees ulled from refrigeration just prior required to ensure samples are co	s Celsius. Client r to cross town ontinuously	
12/3/18. include n during tr	ers were processed for laboratory receipt and At that time all samples were within complian parrative that the temperature limit of 6 degree ansit to the laboratory due to insufficient ice in a is evidence of refrigeration no adverse effect	ce temperature limits. Analytical es may have been exceeded for w n coolers. Since waters were pres	report will vater samples	
		X		
		٩		
				1
				E.
				- C/

Apex Laboratories

Assa & Someringhini

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

APPENDIX C

DATA QUALITY REVIEW REPORT

то:	Craig Hultgren, HydroCon		
FROM:	Manon Tanner-Dave		
DATE:	December 19, 2018		
SUBJECT:	Laboratory Validation Report]
HydroCon TOC Site No.	2017-074		
Sampling Event Type:	Water Sampling	Number of Samples:	35
Laboratory Work		Final Report	December 12, 2018
Order:	A8L0038	Date & Time:	

Analysis & Method

- Gasoline Range Hydrocarbon (NWTPH-Gx)
- oxtimes Diesel Range Hydrocarbon without Silica Gel (NWTPH-Dx) \Box
- □ Diesel Range Organics with Silica Gel (NWTPH-DxSG)
- □ Volatile Organic Compounds (EPA 8260C)
- ⊠ BETX (8021B)
- □ Total Lead (200.8)
- □ Sulfate (300.0)
- \Box Other

Data Package Completeness:

Data package was complete.

EDD to Hardcopy Verification:

An EDD was not provided.

Technical Data Validation:

- ⊠ Holding Times & Sample Receipt
- Surrogate Compounds
- Associated Matrix Spike/Matrix Spike Duplicate (MS/MSD)
- ⊠ Associated Laboratory Duplicate
- ☑ Laboratory Control Sample/ Laboratory Control Sample Duplicates (LCS/LCSD)
- Method Blank
- Field Duplicates
- ☑ Target Analyte List
- ⊠ Reporting Limits (MDL and MRL)
- ⊠ Reported Results

Holding Times & Sample Receipt:

All holding times and sample receipt were acceptable, with the exceptions noted below:

The laboratory noted upon arrival that the date collected on bottles for samples MW26-W and MW10R-W were different than the dates recorded on the chain of custody forms. No qualifiers were applied to the results.

Upon receipt of samples, a cooler was screened for temperature compliance and was determined to be 7°C (Control limit = not frozen, 0-6°C). Ice was not present in the cooler used to transfer samples from the sampler's refrigerated storage to the laboratory. Ice was added to the cooler to reduce the temperature to within regulatory conditions until sample login was completed and samples were transferred to laboratory refrigeration. The limited temperature exceedance that occurred during transit is not anticipated to affect analytical sample results since samples were quickly brought back into temperature compliance and acid preservation was properly applied in the field to inhibit biodegradation of target analytes. Therefore, no qualifiers were applied to the results.

Headspace was detected in all VOA vials for sample MW29-W; results for GRO and BTEX were qualified J/UJ-HT.

Surrogate Compounds:

All surrogate percent recoveries (%R) were within laboratory limits, with the exceptions noted below:

Associated Matrix Spike/Matrix Spike Duplicate (MS/MSD):

Matrix spikes were analyzed at the appropriate frequency and all %R were within the acceptance criteria.

Associated Laboratory Duplicate:

Laboratory duplicates were analyzed at the appropriate frequency and all relative percent difference (RPD) were within the acceptance criteria.

Laboratory Control Sample/Laboratory Control Sample Duplicates:

LCS were analyzed at the appropriate frequency and all %R were within the acceptance criteria.

Method Blank:

Method blanks were analyzed at the appropriate frequency and were non-detect (ND) for all target analytes, with the exceptions noted below:

Blank ID	Analyte	Units	Result	MRL	Associated Samples	Qualifier/Comments
Blank 181130	Diesel	ug/L	105	75.5	MW19-W (A8L0038-15)	Samples collected on
(A8L0038-35)		-			MW29-W (A8L0038-24)	11/30/18 qualified if <
					MW30-W (A8L0038-25)	5x field blank
					BH02-W (A8L0038-29)	concentration (U-FB).
					RW01-W (A8L0038-31)	

Note:

Samples and analytes to which qualifiers are assigned are in **bold**.

Field Duplicate(s):

Relative percent differences (RPDs) between parent and field duplicate samples were acceptable, with the exceptions noted below:

	Parent Sample	Duplicate Sample		
Analyte	MW06-W	MW107-W	RPD (CL = 35%)	Comments/Qualifiers
Diesel	634	894	34.0	
Oil	ND	ND	Not calculated	
GRO	499	503	0.8	
Benzene	ND	ND	Not calculated	
Toluene	ND	ND	Not calculated	
Ethylbenzene	ND	ND	Not calculated	
Xylenes, total	ND	ND	Not calculated	

	Parent Sample	Duplicate Sample		
Analyte	MW17-W	MW108-W	RPD	Comments/Qualifiers
Diesel	1580	969	47.9	J-REP qualify results.
Oil	ND	ND	Not calculated	
GRO	1390	1390	0.0	
Benzene	0.305	0.257	17.1	
Toluene	ND	ND	Not calculated	
Ethylbenzene	ND	ND	Not calculated	
Xvlenes, total	ND	ND	Not calculated	

	Parent Sample	Duplicate Sample		
Analyte	BH01-W	MW109-W	RPD	Comments/Qualifiers
Diesel	5120	59600	168.4	J-REP qualify results.
Oil	ND	ND	Not calculated	
GRO	1420	1460	2.8	
Benzene	ND	ND	Not calculated	
Toluene	ND	ND	Not calculated	
Ethylbenzene	0.608	0.649	6.5	
Xylenes, total	ND	ND	Not calculated	

Target Analyte List:

All requested analytes were present.

Reporting Limits (MDL and MRL):

Reporting limits were within the acceptance criteria, with the following exceptions noted below:

Select samples had elevated MRLs due to sample dilution as a result of high analyte concentrations or matrix interference issues. Results were reported from the dilution analyses, as applicable.

Reported Results:

•

All reported results are acceptable.

Laboratory qualifiers for NWTPH-Dx:

- (F-11) The hydrocarbon pattern indicates possible weathered diesel, or a contribution from a related component.
 - o J/UJ-Other qualify affected results.
- (F-13) The chromatographic pattern does not resemble the fuel standard used for quantitation.
 J/UJ-Chrom qualify affected results.
- (F-17) No fuel pattern detected. The Diesel result represents carbon range C12 to C24, and the Oil result represents >C24 to C40.
 - o J/UJ-Other qualify affected results.
 - (F-20) Result for Diesel is estimated due to overlap from Gasoline Range Organics or other VOCs. o J/UJ-Mi qualify affected results.

Lab Validation Assessment

Analytical results are usable to meet the project objectives.

Data Quality Review Statement for Report

Aside from the data quality issues discussed above, the data quality review identified no concerns with respect to the quality or usability of the data presented herein.

The data meet the criteria outlined above, with the noted exceptions. No data were rejected and completeness was 100 percent. All results are usable for their intended purpose.

Appendix A. Data Validation Qualifiers and Definitions

The following lists the data validation qualifier codes and their definitions that were assigned to analytical results in this data validation review process.

Data Validation	(R) The sample result is reject due to serious deficiencies in the ability to
Qualifiers and	analyze the sample and meet quality control criteria. The presence or absence
Definitions:	of the analyte cannot be verified.
	(DNR) Do not report. A more appropriate result is reported from another analysis or dilution.

Appendix B. Data Validation Qualified Summary Table

Laboratory qualifiers:

- (F-11) The hydrocarbon pattern indicates possible weathered diesel, or a contribution from a related component.
- (F-13) The chromatographic pattern does not resemble the fuel standard used for quantitation.
- (F-17) No fuel pattern detected. The Diesel result represents carbon range C12 to C24, and the Oil result represents >C24 to C40.
- (F-20) Result for Diesel is estimated due to overlap from Gasoline Range Organics or other VOCs.

Validation qualifiers:

- (J) The result is an estimated quantity.
- (UJ) Estimated and not detected. The analyte is considered not detected at the reported value, and the
 associated numerical value is an estimated value.

Reason codes:

- Chrom = Chromatographic pattern doesn't match the pattern of the calibration standard.
- FB = Field, equipment, rinsate blank contamination.
- HT = Holding time/sample preservation.
- Mi = Matrix interference.
- Other = Other, described in data validation report.
- REP = Replication (MS/MSD or laboratory duplicate RPD; laboratory triplicate RSD), field replicate. Precision (all replicates).

Sample ID	Laboratory ID	Method	Parameter Name	Result	Result Units	Laboratory Qualifier	Validator Qualifier	Reason Code
MW01-W	A8L0038-01	NWTPH-Dx	Diesel	159	µg/L	F-11	J	Other
MW06-W	A8L0038-04	NWTPH-Dx	Diesel	634	µg/L	F-13, F-20	J	Chrom, Mi
MW07-W	A8L0038-05	NWTPH-Dx	Diesel	283	µg/L	F-11	J	Other
MW08-W	A8L0038-06	NWTPH-Dx	Diesel	505	µg/L	F-13, F-20	J	Chrom, Mi
MW09R-W	A8L0038-07	NWTPH-Dx	Diesel	1850	µg/L	F-13, F-20	J	Chrom, Mi
MW10R-W	A8L0038-08	NWTPH-Dx	Diesel	1370	µg/L	F-13, F-20	J	Chrom, Mi
MW11-W	A8L0038-09	NWTPH-Dx	Diesel	503	µg/L	F-13, F-20	J	Chrom, Mi
MW12-W	A8L0038-10	NWTPH-Dx	Diesel	92.8	µg/L	F-11	J	Other
MW13-W	A8L0038-11	NWTPH-Dx	Diesel	3250	µg/L	F-13, F-20	J	Chrom, Mi
MW14-W	A8L0038-12	NWTPH-Dx	Diesel	933	µg/L	F-11, F-20	J	Other, Mi
MW16-W	A8L0038-13	NWTPH-Dx	Diesel	337	µg/L	F-11	J	Other
MW17-W	A8L0038-14	NWTPH-Dx	Diesel	1580	µg/L	F-13, F-20	J	Chrom, Mi, REP
MW20-W	A8L0038-16	NWTPH-Dx	Diesel	1280	µg/L	F-13, F-20	J	Chrom, Mi
MW21-W	A8L0038-17	NWTPH-Dx	Diesel	992	µg/L	F-13, F-20	J	Chrom, Mi
MW23-W	A8L0038-18	NWTPH-Dx	Diesel	380	µg/L	F-11	J	Other
MW24-W	A8L0038-19	NWTPH-Dx	Diesel	914	µg/L	F-13, F-20	J	Chrom, Mi
MW25-W	A8L0038-20RE1	NWTPH-Dx	Diesel	121	µg/L	F-13	J	Chrom
MW28-W	A8L0038-23	NWTPH-Dx	Diesel	486	µg/L	F-13	J	Chrom
MW29-W	A8L0038-24	NWTPH-Dx	Diesel	238	µg/L	F-13	UJ	Chrom, FB
MW30-W	A8L0038-25	NWTPH-Dx	Diesel	304	µg/L	F-13	UJ	Chrom, FB

Appendix B. Validator Qualified Data Summary Table

BH01-W	A8L0038-28	NWTPH-Dx	Diesel	5120	µg/L	F-13	J	Chrom, REP
BH02-W	A8L0038-29	NWTPH-Dx	Diesel	7040	µg/L	F-13	J	Chrom
BH03-W	A8L0038-30	NWTPH-Dx	Diesel	502	µg/L	F-13	J	Chrom
RW01-W	A8L0038-31	NWTPH-Dx	Diesel	152	µg/L	F-13	UJ	Chrom, FB
MW107-W	A8L0038-32	NWTPH-Dx	Diesel	894	µg/L	F-13	J	Chrom
MW108-W	A8L0038-33	NWTPH-Dx	Diesel	969	μg/L	F-13, F-20	J	Chrom, Mi, REP
MW109-W	A8L0038-34RE1	NWTPH-Dx	Diesel	59600	μg/L	F-13	J	Chrom, REP
Blank 181130	A8L0038-35	NWTPH-Dx	Diesel	105	μg/L	F-17	J	Other
MW29-W	A8L0038-24	NWTPH-Gx	GRO	< 100	μg/L		UJ	HT
MW29-W	A8L0038-24	Benzene	BTEX	< 0.200	μg/L		UJ	HT
MW29-W	A8L0038-24	Toluene	BTEX	< 1.00	μg/L		UJ	HT
MW29-W	A8L0038-24	Ethylbenzene	BTEX	< 0.500	μg/L		UJ	HT
MW29-W	A8L0038-24	Xylenes, total	BTEX	< 1.50	μg/L		UJ	HT

APPENDIX D

WATER LEVEL AND PRODUCT THICKNESS MEASUREMENTS FORM

Depth to Water/Depth to Product Measurements Coleman Oil Wenatchee, Washington

Date:							
	Total Well Depth	Well Diameter	Screened Interval	Well Casing Elevation	Depth to Water	Depth to Product	Sheen Detected
Well ID	(feet bgs)	(inch)	(feet bgs)	(feet ¹)	(feet BTOC)	(feet BTOC)	(Y/N)
MW-1	35.00	2	20-35	658.01			
MW01S	19.99	4	5.37 - 20.37	657.54			
MW-2	40.00	2	25-40	657.76			
MW-3	35.00	2	25-35	658.26			
MW03S	19.30	4	4.43 - 19.43	658.17			
MW-4	37.00	2	27-37	657.48			
MW-5	45.00	2	30-45	656.00			
MW-6	18.00	4	8-18	657.70			
MW-7	20.00	4	10-20	657.52			
MW-8	25.00	4	15-25	656.20			
MW-9R	24.00	4	14-24	655.29			
MW-10R	30.00	2	14-30	645.80			
MW-11	22.00	4	12-22	658.00			
MW12	19.52	4	4.63 - 19.63	658.27			
MW13	19.80	4	4.91 - 19.91	657.04			
MW14	20.02	4	5.23 - 20.23	657.15			
MW15	35.10	4	10.33 - 35.33	654.99			
MW16	29.15	4	9.28 - 29.28	656.93			
MW17	29.41	4	9.52 - 29.52	655.55			
MW18	34.65	4	15.86 - 35.86	654.51			
MW19	31.48	4	11.66 - 31.66	653.31			
MW20	29.50	4	9.79 - 29.79	650.85			
MW21	32.10	4	12.30 - 32.30	643.88			
MW22	39.10	4	9.19 - 34.19	641.85			
MW23	22.04	4	7.13 - 22.13	656.91			
MW24	30.00	4	14.17-34.17	644.38			
MW25	35.00	4	12.81-32.81	645.57			
MW26	30.00	4	13.54-33.54	646.65			
MW27	30.00	4	13.56-38.56	649.00			
MW28	38.74	4	13.62-38.62	650.64			
MW29	39.11	4	14.05-39.05	652.34			
MW30	39.79	4	14.67-39.67	652.83			
MW31	39.28	4	14.11-39.11	653.97			
MW32	34.02	4	8.95-33.95	655.83			
BH-1	30.00	2	20-30	652.17			
BH-2	35.00	2	20-35	653.77			
BH-3	30.00	2	15-30	648.76			
RW-1	30.00	3	15-30	650.42			

Notes:

bgs = below ground surface

BTOC = below top of casing

Sheen = audible sound at the surface of the water table that is less than 0.01' thick