

Draft Data Summary Report

Simplot Grower Solutions J.R. Simplot Company

Sunnyside, Washington August 2019

Draft Data Summary Report

Simplot Grower Solutions South 300 1st Street Sunnyside, Washington 98944

August 2019

Prepared by: HDR Engineering, Inc. 412 East Parkcenter Blvd, Ste 100 Boise, Idaho 83706

Prepared by:

Mr. I. R. Ming

Michael R. Murray, Ph.D. Project Manager

Table of Contents

1	Introduc	tion	1-1	
2	Site Background2			
	2.1 Site	Setting	2-6	
	2.1.1	Simplot Grower Solutions Facility	2-6	
		N Setting		
	2.2.1	Soils	2-8	
	2.2.2	Geologic and Hydrogeologic Conditions	2-8	
	2.2.3	Subsurface Drains	2-17	
3	Site Inve	estigations	3-1	
	3.1 2009	GeoProbe Investigation	3-1	
	3.1.1	References		
	3.1.2	Data Objectives and Needs	3-1	
	3.1.3	Investigation Approach		
	3.1.4	Investigation Results		
	3.2 2011	Groundwater Monitoring Well Installation and Sampling	3-23	
	3.2.1	References	3-23	
	3.2.2	Data Objectives and Needs	3-23	
	3.2.3	Investigation Approach and Results	3-23	
	3.3 2012	2 and 2013 Source Removal, Drain Evaluation and Additional Monitoring Well		
	Constructio	n	3-29	
	3.3.1	References	3-29	
	3.3.2	Data Objectives and Needs	3-29	
	3.3.3	Investigation Approach and Results	3-30	
	3.4 2010) through 2018 Groundwater Monitoring	3-44	
	3.4.1	References	3-44	
	3.4.2	Data Objectives and Needs	3-44	
	3.4.3	Groundwater Monitoring Activities	3-44	
	3.4.4	Groundwater Elevations and Contour Maps	3-45	
4	Prelimin	ary Screening Assessment	4-1	
	4.1 Mod	el Toxics Control Act	4-1	
	4.1.1	Soil Cleanup Standards	4-1	
	4.1.2	Groundwater Cleanup Standards	4-1	
	4.1.3	Ecology's Cleanup Levels and Risk Calculation	4-2	
	4.2 Scre	ening of Soil Constituents	4-2	
	4.2.1	Volatile Organic Compounds (VOCs), EPA Method 8260B	4-2	
	4.2.2	RCRA Metals, EPA Method 6010B.	4-2	
	4.2.3	Soil Chlorinated Herbicide, EPA Method 8151	4-5	
	4.2.4	PAHs and TPH, EPA Methods 8260B and NWTPHGX and NWTPHDX	4-5	
	4.3 Grou	Indwater Data Screening	4-5	
	4.4 Preli	minary Conceptual Site Model	4-9	
	4.4.1	Type and Source of Contaminants	4-9	
	4.4.2	Transport and/or Migration Pathways	4-9	
	4.4.3	Terrestrial Ecological Evaluation	4-9	
	hdrinc.com	River Quarry at Parkcenter, 412 E. Parkcenter Blvd. Suite 100, Boise, ID 83706-6659		

5 References	5-1
--------------	-----

List of Figures

Figure 1. Vicinity Map	2-2
Figure 2. Site Map 2006	
Figure 3. Site Map 2018	
Figure 4. 2009 GeoProbe Investigation, Boring Locations	
Figure 5. 2009 GeoProbe Investigation, Soil Nitrogen Results	3-13
Figure 6. 2009 GeoProbe Investigation, Groundwater Nitrogen Results	3-22
Figure 7. 2011 Groundwater Monitoring Well Network	3-24
Figure 8. March 2011 Groundwater Isopleth Map	3-28
Figure 9. Monitoring Well and Soil Excavation Locations	
Figure 10. Area Wide Drain System	3-36
Figure 11. April 2013 Post Plot Nitrates, Ammonia, Phosphorus and Flow	
Figure 12. December 2012 Groundwater Isopleths	
Figure 13. September 2018 Groundwater Isopleths	3-46
Figure 14. Trend Plots for Nitrate-N in Groundwater Monitoring Wells	

List of Tables

Table 2-1. Site Timeline Early Notice Letter to Present	2-5
Table 2-2. Summary of Historic Aerial Photographs	2-6
Table 2-3. Summary of Climatological Characteristics for the City of Sunnyside	2-8
Table 2-4. Wells within a Quarter Mile of the Simplot Sunnyside Site	2-10
Table 2-5. Summary of Select Driller Logs in General Vicinity of Simplot Site	2-17
Table 3-1. 2009 GeoProbe Investigation Summary of Sampling Activities	3-1
Table 3-2. 2009 GeoProbe Investigation Laboratory Analysis	3-3
Table 3-3. Soil Sample Results - VOCs	
Table 3-4. Soil Sample Results - Metals	3-10
Table 3-5. Soil Sample Results - Herbicides	3-11
Table 3-6. Soil Sample Results - Nitrogen	3-12
Table 3-7. Groundwater Sample Results - VOCs	3-15
Table 3-8. Groundwater Sample Results - Metals	3-19
Table 3-9. Groundwater Sample Results - Herbicides	3-20
Table 3-10. Groundwater Sample Results - Inorganics	3-21
Table 3-11. Well Construction Details	3-26
Table 3-12. Analyses for Soil Boring Samples	3-26
Table 3-13. Soil Boring Sample Results for Detected Compounds	3-26
Table 3-14. Groundwater Elevation Measurements, March 17, 2011	3-27
Table 3-15. Analyses Conducted on Groundwater Samples	3-29
Table 3-16. Analyses for Excavation Soil Samples	3-30
Table 3-17. Excavation Pit Soil Sample Results - Nitrate-Nitrogen and Ammonium-Nitrogen	3-31
Table 3-18. Excavation Pit Soil Sample Results - VOCs	3-33
Table 3-19. Excavation Soil Sample Results - Pesticides	3-35
Table 3-20. Proposed Laboratory Analyses for Drain Assessment	3-38
Table 3-21. Summary of Data from Monitoring and Samples from Drain Manholes, April 2013	3-39
Table 3-22. Well Construction Details	3-41
Table 3-23. Groundwater Elevation Measurement, December 5, 2012	3-42
Table 3-24. Depth to Groundwater and Groundwater Elevations for April 25, 2018	3-45

Table 3-25. Summary of Compounds Detected in Groundwater	3-47
Table 3-26. Nitrate-N Concentrations Over Time and Trend Analysis	3-51
Table 4-1. Soil VOCs Sampling Results Compared to CLARC Screening Values	4-3
Table 4-2. Soil RCRA Metals Results Compared to CLARC Screening Values	4-4
Table 4-3. Soil Herbicide Results Compared to CLARC Screening Values	4-5
Table 4-4. Summary of COC exceeding the CLARC Screening Levels in Groundwater	4-7

List of Appendices

Appendix A: Historic Aerial Site Photographs

Appendix B: GeoProbe Boring Logs and Monitoring Well Logs

Appendix C: Laboratory Reports and Field Sampling Forms (CD only)

Appendix D: Groundwater Data Screening

FJS

Acronyms

AO	Agreed Order
BDL	below detection limit
bgs	below ground surface
City	City of Sunnyside
CLARC	Cleanup Levels and Risk Calculation
COC	chemical of concern
CRBG	Columbia River Basalt Group
Ecology	Washington Department of Ecology
EPA	U.S. Environmental Protection Agency
ft/ft	feet per foot
HDR	HDR Engineering, Inc.
mg/kg	milligrams per kilogram
mg/L	milligrams per liter
MTCA	Models Toxic Control Act
Simplot	J.R. Simplot Company
Simplot Soilbuilders	Former name of Simplot Grower Solutions
Stantec	Stantec Consulting Corporation
SVID	Sunnyside Valley Irrigation District
VOC	volatile organic compound
WAC	Washington Administrative Code

1 Introduction

The J.R. Simplot Company (Simplot) entered into an Agreed Order (AO) (No. DE 16446, effective date June 26, 2019) with the Washington Department of Ecology (Ecology) to complete a Remedial Investigation (RI)/Feasibility Study (FS), and to prepare a Draft Cleanup Action Plan (DCAP) for the Simplot Grower Solutions (formerly named Simplot Soilbuilders) Sunnyside site, located at 300 1st Avenue, Sunnyside, Washington.

As a first step, Simplot is to prepare this data summary report that describes facility information, history and conditions, and past investigation activities. The scope of work for the data summary report is outline in the AO.

The report is organized as follows:

Section 1 Introduction – provides the purpose of the report.

Section 2 Site Background - provides site setting, area setting, soils, groundwater information.

Section 3 Site Investigations - reviews past investigations conducted at the site.

Section 4 Screening Assessment - examines soil and groundwater cleanup standards.

2 Site Background

On October 1, 2008, Simplot received an Early Notice Letter from Ecology regarding the potential release of hazardous substances from Simplot's facility at 300 South 1st Street, Sunnyside, Washington (Figure 1 and Figure 2). Ecology's findings were based on information provided by Stantec Consulting Corporation (Stantec), a consulting firm contracted by Chevron Environmental Management Company (CEMC) and Atlantic Richfield Company (ARCO, now known as BP). Stantec had investigated the Bee-Jay Scales site, located at 116 North 1st Street, one block north of the Simplot facility (Figure 2). In spring 2007, Stantec investigated off-site groundwater to further assess the extent of groundwater impacts associated with the Bee-Jay Scales site. They drilled a boring adjacent to the east side of Simplot's property and collected groundwater samples; the samples were analyzed and several constituents exceeded groundwater quality standards. This finding triggered Ecology to request that Simplot investigate the Grower Solutions facility.

Simplot contracted HDR Engineering, Inc. (HDR) to initiate on-site investigation activities in 2009. **Table 2-1** presents the timeline of events starting in 2008 with the Early Notice Letter from Ecology to Simplot through July 2019.

Simplot's Sunnyside facility is an agricultural distribution facility that began at its current location in the early- to mid-1960s. It is a retail outlet for agri-chemicals (fertilizers, pesticides, soil amendments).

In 2011, Simplot removed the main warehouse, office building, fertilizer storage tank area, and associated containment systems, and replaced them with a new office and concrete basin containment structure. A maintenance shop also remains on site. **Figure 2** illustrates site conditions in 2006 prior to reconfiguring the buildings and **Figure 3** illustrates current site conditions.

Figure 1: Vicinity Map Simplot Grower Solutions, Sunnyside, WA

Imagery: 2009 NAIP 1 meter resolution Source: NRCS/USDA Digitial Gateway Map Date: Friday, May 18, 2012 Q:\Simplot\Sunnyside\map_docs\SiteMap.mxd

100 200 300 0 Feet

Imagery: 2006 1 Meter NAIP Source: University of Washington

Map Date: Thursday, April 30, 2009 Q:\Simplot\Sunnyside\map_docs\SiteMap.mxd

Simplot Grower Solutions, Sunnyside, WA

HR

Imagery: ESRI World Imagery Map Service, Image Date 10/18/2018 Source: Esri, DigitalGlobe, GeoEye, i-cubed, USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community

Map Date: Monday, August 5, 2019 Q:\Simplot\Sunnyside\map_docs\SiteMap.mxd

Year	Date	Event	
2008	October 1	Early Notice Letter from Ecology to Simplot.	
2008	February 9	Simplot letter to Ecology indicating HDR has been hired and requesting a meeting.	
2009	March 19	Simplot and Ecology meeting to discuss Volunteer Cleanup Program options.	
2009	Мау	Simplot enters Volunteer Cleanup Program with Ecology.	
2009	Мау	Preliminary Site Investigation Work Plan submitted to Ecology.	
2009	July 7	Ecology opinion on Work Plan in letter to Simplot.	
2009	September 23 and 24	Work plan field activities conducted including using a GeoProbe for sampling of soil and groundwater.	
2009	December 17	Preliminary Site Investigation Report submitted to Ecology.	
2010	June 4	Ecology response letter to the December 17, 2009 Preliminary Site Investigation Report.	
2010	July	Monitoring Well Construction and Sampling Work Plan submitted to Ecology. Work plan included installation of five monitoring wells and quarterly sampling for one year.	
2010	December	Ecology approval of work plan.	
2011	March 15 and 16	Five groundwater monitoring wells installed.	
2011	March 17	First quarter groundwater sampling.	
2011	April	Monitoring Well Construction and Sampling Report submitted to Ecology.	
2011	June 30	Second quarter groundwater sampling.	
2011	September 15	Third quarter groundwater sampling.	
2011	December 16	Fourth quarter groundwater sampling.	
2012	Мау	2011 Monitoring Well Sampling Report submitted to Ecology	
2012	May 24	Simplot and Ecology meeting in Yakima discuss monitoring results and next activities including need to assess off-site subsurface drains.	
2012	June	Simplot coordinated with Sunnyside, WA, and SVID on drain system layout.	
2012	July	Source Removal, Drain Evaluation, Monitoring Well Construction and Sampling Work Plan submitted to Ecology.	
2012	September 12	HDR met with SVID and Sunnyside, WA, representatives to investigate drain system and manhole access near the Simplot property. These manholes are part of the drain evaluation described in the July 2012 Work Plan.	
HDR letter to Ecology regarding "Modification to Source Removal a		HDR letter to Ecology regarding "Modification to Source Removal and Additional Investigation Work Plan, July 2012" – recommended installation of off-site monitoring wells prior to drain study.	
2012 November Two offsite and one onsite monitoring wells installed. N rinsate area excavation.		Two offsite and one onsite monitoring wells installed. MW-5 abandoned due to rinsate area excavation.	
2012	December 4 and 5	Rinsate area excavation and new round of well sampling including newly installed monitoring wells.	
2013	February	Source Removal, Drain Evaluation, Monitoring Well Construction, and Sampling Report submitted to Ecology.	
2013	April	Supplemental drain evaluation conducted and monitoring wells sampled.	
2013	July	Monitoring wells sampled.	
2013	September	Supplemental Drain Evaluation and Monitoring Well Sampling Report submitted to Ecology. Report recommended meeting with Ecology to discuss next steps in project.	
2013	October	Groundwater sampling, report submitted to Ecology.	
2014 October Groundwater sampling, repo			

Year	Date	Event	
2015	April	Groundwater sampling, report submitted to Ecology.	
2015 October		Groundwater sampling, report submitted to Ecology.	
2016 April Groundwater sampling, report submitted to Ecology.		Groundwater sampling, report submitted to Ecology.	
2016	October	Groundwater sampling, report submitted to Ecology.	
2017	Мау	Groundwater sampling, report submitted to Ecology.	
2017 December Groundwater sampling, report submitted to Ecology.		Groundwater sampling, report submitted to Ecology.	
2018 April/June Groundwater sampling, report submitted to I		Groundwater sampling, report submitted to Ecology.	
2018	September	Groundwater Sampling, report submitted to Ecology	
2018	December	Meeting with Ecology to discuss site, December 3	
2019	June	une Initiation of Agree Order	
2019 August Data Summary Report		Data Summary Report	

Table 2-1. Site Timeline Early Notice Letter to Present

SVID=Sunnyside Valley Irrigation District; HDR=HDR Engineering, Inc.

2.1 Site Setting

2.1.1 Simplot Grower Solutions Facility

Simplot Grower Solutions at Sunnyside, Washington, is an agricultural distribution facility that was started at the current location in the early- to mid-1960s. Simplot Grower Solutions is a retail outlet for agri-chemicals (fertilizers, pesticides, soil amendments) and offers customized fertilizer blending, application services, and consulting.

The site is in Yakima County, Washington, and is comprised of three parcels:

- Parcel Address: 300 S 1st St. Sunnyside, WA 98944
- Owner: J.R. Simplot Company
- Parcel Numbers: 22102523445 (0.93 acres), 2210252344 (1.07 acres), 22102523445 (0.66 acres)
- Total Acreage: 2.67
- Property Type: Commercial
- Zoning: M1 (light industrial)

A review of historic records for the Simplot Grower Solutions Sunnyside facility found information dating back to 1965. Based on a 1965 historic topographic map, the Simplot site had one building and the site was outside the corporate city limits of Sunnyside (City). Historic aerial photographs from 1973, 1982, 1990, 1996, and 2006 (Appendix A) are summarized in **Table 2-2**.

Aerial Photograph ¹	Description
1973 (1:6000)	Rail track spur on north border of Simplot site. Two buildings on-site, a larger building near the railroad (office and warehouse), and a smaller building (shop) toward the center of the site.
1982 (1:12000)	Aerial resolution is poor and difficult to discern site features.
1990 (1:12000)	Appears similar to 1973 photograph, one building (warehouse) on the north end of property and a smaller building toward the center of the site.

Table 2-2. Summary of Historic Aerial Photographs

Aerial Photograph ¹	Description
1996 (1:9000)	Consistent with 1973 photographs. A structure is present near the northeast corner of the site that corresponds to the current day above ground storage tanks. These tanks hold liquid fertilizer.
2006 (1:6420)	Consistent with previous aerials, warehouse and office building shop, and tank farm present and illustrated in Figure 2.
Figure 3	In 2011, Simplot removed the main warehouse, office building, fertilizer storage tank area, and associated containment systems, and replaced them with a new office and concrete basin containment structure. The shop remains.

Table 2-2. Summary of Historic Aerial Photographs

¹Historic aerial photographs presented in Appendix A and Figure 3 presented in main body of this report.

Historic city, cross-referenced, and telephone business directories indicate that Simplot Soilbuilders (former name for Grower Solutions) was present at the site at least as early as 1968. The 1963 directories, the earliest available to HDR, did not list the address.

Based on a site visit and interviews with on-site personnel, the only structures on site have ever been the office/warehouse building (northwest corner of property, the shop (west middle portion of property), and liquid fertilizer aboveground storage tanks and containment. There was an unlined equipment rinse area located on the eastern end of the site, just south of the storage tanks shown in **Figure 2**. This area was gravel and rinsate entered into the gravel without containment. This practice of rinsing equipment into the gravel ceased in the 1990s. The shop building is used for equipment repair and maintenance and has no floor drains. There are no known bulk fuel tanks on site. There are no known wells on site. Potable water is provided by the City. The presence of a septic drain field is unknown; though sewer services are provided by the City.

As described above, Simplot replaced the original office/warehouse building in 2011 with a smaller office on the north portion of property (**Figure 3**) and built a new tank area (middle of property). The original shop building remains.

2.2 Area Setting

Land use in the general area (**Figure 1** and **Figure 3**) has included agricultural warehouses, lumber yards, coal storage, and railroad transportation starting in the early 1900s. An agricultural distribution facility was operated at the current Bee-Jay Scales site from the early 1960s to 1986. The site's former owners are currently under an AO with Ecology for remedial action. The Simplot site and surrounding properties are zoned M1 – light industrial.

The Simplot site and the City are located in a relatively flat valley that rises in topography to Snipes Mountain to the southwest and hilly areas to the north. The elevation of the Simplot site is approximately 740 feet above sea level. The base of Snipes Mountain is located approximately 500 feet southwest of the site. The mountain rises approximately 250 feet above the elevation of the Simplot site to an elevation of about 990 feet. The Yakima River is located approximately 4 miles southwest of the Simplot site. The City receives an average of approximately 7.49 inches of precipitation per year (https://www.usclimatedata.com/climate/sunnyside/washington/united-states/uswa0439). The maximum average monthly precipitation occurs in December at 1.26 inches. The driest month is July with an average precipitation of 0.16 inches. Minimum average temperatures occur in January, while maximum average temperatures occur in July. **Table 2-3** summarizes City precipitation and temperature averages.

Month	Average Minimum Temperature (°F)	Average Maximum Temperature (°F)	Average Precipitation (in)
January	26	41	0.91
February	28	49	0.63
March	34	59	0.59
April	39	67	0.59
Мау	47	76	0.59
June	53	83	0.55
July	57	91	0.16
August	55	90	0.24
September	47	81	0.43
October	38	67	0.63
November	31	51	0.91
December	24	39	1.26

 Table 2-3. Summary of Climatological Characteristics for the City of Sunnyside

Source: https://www.usclimatedata.com/climate/sunnyside/washington/united-states/uswa0439

°F = degrees Fahrenheit; in = inches

2.2.1 Soils

According to the Natural Resources Conservation Service (NRCS), the Simplot site and adjoining properties are mainly comprised of Cleman very fine sandy loam and Outlook fine sandy loam, together making up approximately 80 percent of nearby soil composition. These soils possess moderately high to high hydraulic conductivity, moderate to high water capacity, and the depth to the water table for these soils is greater than 80 inches. The Cleman soils are well drained, while the Outlook soils are somewhat poorly drained. The remaining mapped soils in the area are Warden fine sandy loams of varying slopes.

Borings conducted by HDR at the site revealed that site lithology includes predominantly brown clayey silt. Boring lithology is summarized further in Section 3.1.

2.2.2 Geologic and Hydrogeologic Conditions

The Simplot site is located within the Yakima Fold Belt of the Columbia Basin Province in Washington (DNR 2019). The Yakima Fold Belt is a region of high folding and faulting and is one of the three subprovinces of the Columbia Plateau. Sunnyside is located within the Yakima River Basin and is located along the fold axis of the Wapato Syncline (Vaccaro et al. 2009). Surface geology of the area consists of mostly unconsolidated to weakly consolidated basin-fill deposits, generally of the Ellensburg Formation, which are made up of terrace, alluvial, glacial, flood, lacustrine, and loess deposits. Underlying the basin-fill deposits and exposed in the higher areas farther outside of the valleys is the Columbia River Basalt Group (CRBG).

According to Vaccaro et al (2009), groundwater in the area is found within the unconsolidated basinfill deposits and the CRBG (generally within the interbeds, flow surfaces, and fracture zones in the CRBG flows). Hydraulic characteristics of the aquifers in the area are diverse due to the high diversity of the basin fill and CRBG deposits. Groundwater in the area is found as either confined or unconfined and water levels in the area have some fluctuation on a seasonal basis due to human activities and variations in precipitation. Groundwater flow in the area tends to be toward the Yakima River, located south of Sunnyside.

The *Preliminary Site Investigation Report* (HDR 2009b) reported the following on-site soil and shallow groundwater conditions from GeoProbe sampling:

Eight of the borings included a layer of fill at the ground surface up to 2 feet deep. The subsurface soils were generally comprised of clayey silt for the majority of the boring depth, usually to approximately 12 feet below ground surface. The clayey silt was dark brown to brown, with a color change usually to gray at approximately 9 to 12 feet deep. The soil was generally dry to a depth of 2 to 3 feet, slightly moist from 2 to 5 feet, and saturated from approximately 5 feet to the bottom of the boring.

GeoProbe boring logs and monitoring well logs are presented in Appendix B.

2.2.2.1 Area Wells

HDR conducted a search of well logs within a quarter-mile of the Simplot site to gage groundwater conditions in the area, including depth to groundwater and soil lithology. **Table 2-4** summarizes the 45 wells found in the well log search. **Table 2-5** summarizes a select seven of those wells – three east of the site, one northwest of the site, and three southeast of the site – for static groundwater depth in the area, which ranged from 6 feet northwest of the site to 8 and 12 feet east and southeast of the site, respectively. This is consistent with shallow groundwater monitored at the Simplot site during investigative activities.

Table 2-4. Wells within a Quarter Mile	of the Simplot Sunnyside Site

Owner	Well Reference	Ecology Well Tag Number	Ecology Well Log ID	Legal Description	Well Type	Direction from Simplot Site	Distance from Simplot Site (ft)	Installation Date	Total Depth (ft)	Static Groundwater Depth (ft)	Descripti	on
DPRA	MW-1, MW-2,	NA	111901	NWNW, S25, T10N,	NA	NE	1132.89	4/9/1991	20	NA	Fill	0-5 ft
DITON	MW-3		111001	R22E			1102.00	1/0/1001	20		Gray Silt	5-20 ft
City of Sunnyside	#8	NA	113509	NENE, S26, T10N, R22E	Municipal	NW	1028.53	6/7/1994	375	44	clay, silt, sand, and gravel, with some occurrences of siltstone, shale, tuff, and basalt	0-440 ft
City of Sunnyside	NA	NA	296226	SWNW, S25, T10N, R22E	NA	E	316.07	1/30/1954	450	flowing	clay, silt, sand, and gravel, with some occurrences of sandstone and basalt	0-461 ft
City of Sunnyside	TW-3	ALM337	498369	SWNW, S25, T10N, R22E	Municipal Test Well	SE	889.63	9/20/2007	399.5	+23 (artesian)	clay, silt, sand, and gravel	0-397 ft
City of Sunnyside	MW-18	BHN764	885880	NWNW, S25, T10N, R22E	Resource Protection Well	NE	1132.89	8/20/2013	16	NA	silty sand	0-16 ft
City of Sunnyside	MW-20	BHN766	885884	NWNW, S25, T10N, R22E	Resource Protection Well	NE	1132.89	8/20/2013	16	NA	silty sand	0-16 ft
Cascade Natural Gas Corp/City of	MW #10	ABJ975	120507	SWNW, S25, T10N, R22E	Test Well	E	1207	7/15/1994	15	8	dark brown silty sand	0-15 ft
Sunnyside				KZZE							saturated at	7 ft
Cascade Natural Gas	MW #11	ABJ976	120508	SWNW, S25, T10N,	Test Well	E	1207	7/18/1994	15	8	dark brown silty sand	0-15 ft
Corp/City of Sunnyside	17177	70310	120000	R22E		E	1201	1110/1334	10	0	saturated at	7 ft

Table 2-4. Wells within a Quarter Mile of the Simplot Sunnyside Site

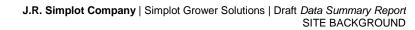
Owner	Well Reference	Ecology Well Tag Number	Ecology Well Log ID	Legal Description	Well Type	Direction from Simplot Site	Distance from Simplot Site (ft)	Installation Date	Total Depth (ft)	Static Groundwater Depth (ft)	Descript	on
Cascade Natural Gas	MW #9	ABJ974	120509	SWNW, S25, T10N,	Test Well	Е	1207	7/15/1994	17	8	dark brown silty sand	0-17 ft
Corp/City of Sunnyside				R22E							saturated at	7 ft
											concrete	0-0.5 ft
Cascade			044074	S25, T10N,	Monitoring	Е	4007	7/00/4000	45	9.5	light brown sand, moist	0.5-6 ft
Natural Gas	IVIVV-6	MW-6 NA	211874	R22E	Well	E	1207	7/20/1993	15		light brown silty sand, wet	6-13.5 ft
											sandy silt, moist	13.5-17 ft
		NA			Monitoring			7/20/1993	15	10.5	concrete and crushed aggregate	0-0.5 ft
Cascade	MW-7		211875	S25, T10N,		Е	1207				sand, moist	0.5-6 ft
Natural Gas			2110/0	R22E	Well	–	1201	1720/1000	10	10.0	silty sand, wet	6-13 ft
											sandy silt, moist	13-15 ft
											sand, wet	15-17
											concrete	0-0.5 ft
											sand, moist	0.5-6 ft
Casaada				005 T40N	Manitarinar						silt, moist	6-8 ft
Cascade Natural Gas	MW-5	NA	211876	S25, T10N, R22E	Monitoring Well	E	1207	7/19/1993	19	9.5	silty sand, wet	8-13 ft
											sandy silt, wet	13-14.5 ft
											silty sand, wet	14.5-18.5 ft
											sand, moist to wet	18.5-21 ft

Table 2-4.	Wells within a Quarte	r Mile of the Simplo	ot Sunnyside Site

Owner	Well Reference	Ecology Well Tag Number	Ecology Well Log ID	Legal Description	Well Type	Direction from Simplot Site	Distance from Simplot Site (ft)	Installation Date	Total Depth (ft)	Static Groundwater Depth (ft)	Description	
											concrete	0-0.5 ft
Cascade	MW-8	NA	211877	S25, T10N,	Monitoring	Е	1207	7/20/1993	15	9.5	sand, moist	0.5-5 ft
Natural Gas	1010.0	INA	2110//	R22E	Well		1207	7720/1993	15	9.5	silty sand, wet	5-15 ft
											sand, saturated	15-17 ft
											concrete	0-0.5 ft
											sand, moist to wet	0.5-6 ft
Cascade Natural Gas	MW-4	NA	211878	S25, T10N, R22E	Monitoring Well	E	1207	7/19/1993	15	9	silt, wet	6-9.5 ft
				NZZE	WCII						sand, saturated	9.5-13.5 ft
											silty sand, wet	13.5-15 ft
Mountain			440007	SENE, S26,	la duatrial	W	700.07	5/07/4000	0.05		Clay	0-50, 60-105, 116-195 ft
Valley Products	NA	NA	116967	T10N, R22E	Industrial	vv	702.97	5/27/1983	205	6	Gravel	50-60, 105-116, 195-208 ft
				NWSW,							gravel/backfill	0-12 ft
UPRR	MW #1	NA	119530	S25, T10N, R22E	Test Well	SE	1163.36	4/22/1993	17	NA	silty sand and gravel - dark brown	12-17 ft
UPRR	MW #2	NA	292114	NWSW, S25, T10N, R22E	Test Well	SE	1163.36	4/22/1993	15	NA	Silty sand, some gravel, dark brown	0-15 ft
UPRR	MW #3	NA	292115	NWSW, S25, T10N, R22E	Test Well	SE	1163.36	4/22/1993	15	NA	silty sand, some gravel, dark brown	0-15 ft

Table 2-4. Wells within a Quarter Mile of the Simplot Sunnyside Site

Owner	Well Reference	Ecology Well Tag Number	Ecology Well Log ID	Legal Description	Well Type	Direction from Simplot Site	Distance from Simplot Site (ft)	Installation Date	Total Depth (ft)	Static Groundwater Depth (ft)	Descript	ion
UPRR	MW-7	APC097	509318	SENW, S25, T10N, R22E	Resource Protection Well	E	1084.07	11/1/2007	18	8	silty sand	0-18 ft
UPRR	MW-6	APC098	509319	SENW, S25, T10N, R22E	Resource Protection Well	E	1084.07	11/1/2007	18	8	asphalt silty sand	0-0.5 ft 0-18 ft
Powel- Christanson- Johnnys Service St.	RW-4	NA	117687	NWNW, S25, T10N, R22E	Test Well	NE	1132.89	2/14/1989	20	12	asphalt red brick sandy clay sand	0-4 inches 4 in - 1.5 ft 1.5-10 ft 10-20 ft
Powel- Christanson- Johnnys Service St.	RW-1	NA	291795	NWNW, S25, T10N, R22E	Test Well	NE	1132.89	2/14/1989	20	12	asphalt gravel sandy soil sand silty sand	0-3 in 3-4 in 4 in - 7.5 ft 7.5-11 ft 11-20 ft
Powel- Christanson- Johnnys Service St.	MW-5	NA	291796	NWNW, S25, T10N, R22E	Test Well	NE	1132.89	2/15/1989	20	12	asphalt gravel sandy loam clay	0-4 in 4in - 1.5 ft 1.5-16.5 ft 16.5-20.5 ft
Powel- Christanson- Johnnys Service St.	MW-8	NA	291797	NWNW, S25, T10N, R22E	Test Well	NE	1132.89	2/21/1989	20	12	asphalt red brick cobbles sand, silt sand, silt, water bearing	0-3 in 3 in - 1 ft 1-2 ft 2-12.5ft 12.5-20 ft


Table 2-4. Wells within a Quarter Mile of the Simplot Sunnyside Site

Owner	Well Reference	Ecology Well Tag Number	Ecology Well Log ID	Legal Description	Well Type	Direction from Simplot Site	Distance from Simplot Site (ft)	Installation Date	Total Depth (ft)	Static Groundwater Depth (ft)	Description										
											asphalt	0-0.25 ft									
Davial								7/45/4000			sand and gravel	0.25-0.5 ft									
Powel- Christanson-	RW-2	NA	291798	NWNW, S25, T10N,	Test Well	NE	1132.89		20	12	sand	0.5-9 ft									
Johnnys	RVV-Z	NA	291798	825, 110N, R22E	rest weil	INE	1132.89	7/15/1989	20	12	silty sand, clay	9-15 ft									
Service St.											silty clay	15-20 ft									
											silty sand	20-21.5 ft									
David											asphalt	0-0.25 ft									
Powel- Christanson-	N#N/ 0		004000	NWNW,	T () / - II		4400.00	0/00/4000		10	cobbles (fill dirt)	0.25-1.5 ft									
Johnnys	MW-9	-9 NA	291800	S25, T10N, R22E	Test Well	NE	1132.89	2/23/1989	20	12	silty sand	1.5-15 ft									
Service St.											sandy clay	15-20.5 ft									
											asphalt	0-0.25 ft									
Powel-													NWNW,							cobbles	0.25-1 ft
Christanson- Johnnys	MW-6	NA	291801	S25, T10N,	Test Well	NE	1132.89	2/17/1989	20	12	sandy clay	1-6.5 ft									
Service St.				R22E							silty loam	6.5-9.5 ft									
											silt with fine sand	9.5-20 ft									
											top soil with cobble	0-3 ft									
Powel-				NWNW,							silty sand	3-5.5 ft									
Christanson- Johnnys	MW-7	NA	291802	S25, T10N,	Test Well	NE	1132.89	2/20/1989	20	12	sandy clay	5.5-9.5 ft									
Service St.				R22E							sandy clay	9.5-15 ft									
											sand w/ red gravel	15-25 ft									
											sand	25-37 ft									
Powel-				NWNW,							asphalt	0-2 in									
Christanson- Johnnys Service St.	RW-3	NA	291803	S25, T10N, R22E	Test Well	NE	1132.89	2/16/1989	20	12	silty sand	2 in - 20 ft									

Table 2-4. Wells within a Quarter Mile of the Simplot Sunnyside Site

Owner	Well Reference	Ecology Well Tag Number	Ecology Well Log ID	Legal Description	Well Type	Direction from Simplot Site	Distance from Simplot Site (ft)	Installation Date	Total Depth (ft)	Static Groundwater Depth (ft)	Description	
Bee-Jay	NA	AKA384	394431	NWNW, S25, T10N,	Resource Protection	N	605.96	10/21/2004	18	7	sand and gravel	0-5 ft
Scales				R22E	Well					-	silty sand	5-18 ft
Bee-Jay	NA	AKA383	394432	NWNW, S25, T10N,	Resource Protection	N	605.86	10/21/2004	18	7	sand and gravel	0-5 ft
Scales		7177303	394432	R22E	Well	IN IN	005.00	10/21/2004	10	'	silty sand	5-18 ft
Bee-Jay Scales	NA	AKA382	394433	NWNW, S25, T10N,	Resource Protection	N	605.86	10/20/2004	20	7	fill sand and gravel	0-5 ft
Scales				R22E	Well						silty sand	5-20 ft
Bee-Jay Scales	NA	APF471	485800	NENE, S26, T10N, R22E	Resource Protection Well	Ν	605.86	5/25/2007	20	NA	sand	0-20 ft
Bee-Jay Scales	NA	APF472	485802	NENE, S26, T10N, R22E	Resource Protection Well	Ν	605.86	5/25/2007	12	NA	sand	0-12 ft
Bee-Jay Scales	NA	APF473	485803	NENE, S26, T10N, R22E	Resource Protection Well	N	605.86	5/25/2007	12	NA	sand	0-12 ft
Bee-Jay Scales	NA	APF474	485805	NENE, S26, T10N, R22E	Resource Protection Well	Ν	605.86	5/25/2007	12	NA	sand	0-12 ft
Bee-Jay Scales	NA	APA986	485807	NENE, S26, T10N, R22E	Resource Protection Well	N	605.86	5/25/2007	12	NA	sand	0-12 ft
Bee-Jay			4040400	NWNW,	Resource	N	005.00	0/40/0045	475	7	sand	0-12 ft
Scales	MW12R	BBB141	1010198	S25, T10N, R22E	Protection Well	N	605.86	2/12/2015	17.5	7	gravels	12-17.5 ft

Owner	Well Reference	Ecology Well Tag Number	Ecology Well Log ID	Legal Description	Well Type	Direction from Simplot Site	Distance from Simplot Site (ft)	Installation Date	Total Depth (ft)	Static Groundwater Depth (ft)	Description	
Bee-Jay	MW4R	BBB139	1010228	NWNW,	Resource	N	605 96	2/12/2015	17	11	sand	0-12 ft
Scales	IVIVV4R	DDD139	1010228	S25, T10N, R22E	Protection Well	N	605.86	2/12/2015	17		gravel	12-17 ft
Bee-Jay	MW5R	BBB140	1010265	NWNW,	Resource	N	605.86	2/12/2015	16	7	sand	0-12 ft
Scales	IVIVOR	BBB140	1010265	S25, T10N, R22E	Protection Well	IN	605.86	2/12/2015	10	/	gravel	12-16 ft
Northwest America Land	MW-15	BHN767	885878	NWNW, S25, T10N, T22E	Resource Protection Well	NE	1135.58	8/21/2013	16	NA	silty sand	0-16 ft
Mary Ann Bleisner	MW19	BHN765	885882	NWNW, S25, T10N, R22E	Resource Protection Well	NE	1132.89	8/20/2013	16	NA	silty sand	0-16 ft
Valley Processing	MW-14	BHN768	885886	NWNW, S25, T10N, R22E	Resource Protection Well	NE	334.35	8/21/2013	16	NA	silty sand	0-16 ft
Valley Processing	MW-16	BHN770	885888	NWNW, S25, T10N, T22E	Resource Protection Well	NE	334.35	8/21/2013	16	NA	silty sand	0-16 ft
Valley Processing	MW-19	BHN769	885889	NWNW, S25, T10N, T22E	Resource Protection Well	NE	334.35	8/21/2013	16	NA	silty sand	0-16 ft
Cascade North Benson LP	NA	BIJ822	877710	SENW, S25, T10N, R22E	Resource Protection Well	E	1207	8/7/2013	20	NA	silty sand	0-20 ft

ft = feet;

Owner	Well Reference	Legal Description	Distance and Direction from Simplot Site	Static Groundwater Depth (feet)	Descriptior	Description		
Cascade Natural Gas Corp	MW#9	SWNW, S25, T10N, R22E	0.3 miles, E	8 ft	Silty sand, dark brown Saturated below	0-17 ft 7 ft		
Cascade Natural Gas Corp	MW#10	SWNW, S25, T10N, R22E	0.3 miles, E	8 ft	Silty sand, dark brown Saturated below	0-15 ft 7 ft		
Cascade Natural Gas Corp	MW#11	SWNW, S25, T10N, R22E	0.3 miles, E	8 ft	Silty sand, dark brown Saturated below	0-15 ft 7 ft		
City of Sunnyside	Geotech Soil Boring B-12	NENE, S26, T10N, R22E	0.2 miles, NW	6 ft	Silty sand	0-12.5 ft		
Powell Christianson	RW-4	NWNW, S25, T10N, R22E	0.2 miles, SE	12 ft	Asphalt Red Brick Sandy Clay Sand	0-4 in 4-18 in 1.5-10 ft 10-20 ft		
Powell Christianson	RW-1 NWNW, S T10N, R2		0.25 miles, SE	12 ft	Asphalt Gravel Sandy Soil Sand Silty Sand Silty Sand, Trace Gravel	0-3 in 3-4 in 4-7.5 in 7.5 in-11 ft 11-19 ft 19-20 ft		
Powell Christianson	MW-5	NWNW, S25, T10N, R22E	0.25 miles, SE	12 ft	Asphalt Gravel Sandy Soil Brown Sandy Loam Gray Clay	0-4 in 4-18 in 1.5-10 ft 10-16.5 ft 16.5-20.5 ft		

Groundwater conditions are further discussed and addressed in Section 3, Site Investigations.

2.2.3 Subsurface Drains

With the construction of the Sunnyside Canal in the late 1800s, irrigated agriculture was brought to the Sunnyside area. Flood irrigation of fields caused the water table to rise, resulting in the flooding of basements and low lying areas, including agricultural fields. In response, under-drains (subsurface drains) were installed throughout the area in the early 1900s. The purpose of these drains was to lower the groundwater table to prevent localized flooding.

Drains in the Simplot site area are further discussed in Section 3.

3 Site Investigations

This section describes investigation activities conducted at the Simplot site since receiving the 2008 Early Notice Letter:

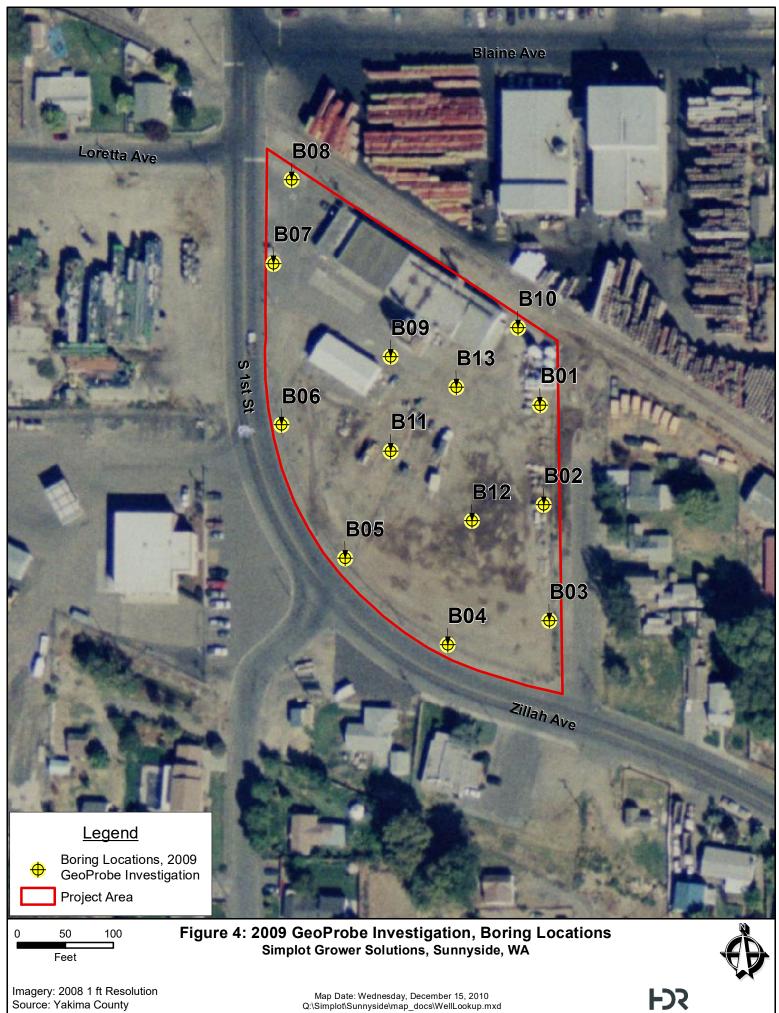
- 2009 GeoProbe Investigations (Section 3.1)
- 2011 Groundwater Monitoring Well Installation and Sampling (Section 3.2)
- 2012 and 2013 Source Removal, Drain Evaluation, and Additional Monitoring Well Construction (Section 3.3)
- 2011 through 2018 Groundwater Monitoring (Section 3.4)

3.1 2009 GeoProbe Investigation

3.1.1 References

- HDR. 2009a. Preliminary Site Investigation Work Plan, May 2009.
- HDR. 2009b. Preliminary Site Investigation Report, December 2009.

3.1.2 Data Objectives and Needs


The objective of preliminary investigation activities was to determine whether constituents of concern (COC) were present in soils and/or groundwater, and if so, to characterize the nature of the contaminants. Based on the results from Stantec's sampling of off-site groundwater, potential COC included nitrate-N, sulfate, chloride, iron, 1,2-dichloroethane, 1,2-dichloropropane, arsenic, benzene, Dinoseb, and ammonia-N.

3.1.3 Investigation Approach

Table 3-1 summarizes field sampling activities. **Table 3-2** shows laboratory analysis protocol for those samples.

Soil Sampling ¹								
Sampling Method	GeoProbe (soil and groundwater same boring)							
Number of borings	13 borings, see Figure 4							
Number of samples	2 soil samples per boring, 26 samples plus one duplicate							
Analysis of samples	See Table 3-2							
G	Groundwater Sampling							
Sampling Method	GeoProbe (soil and groundwater same boring)							
Number of borings	13 borings, see Figure 4							
Number of samples	13 plus one duplicate							
Analysis of samples	See Table 3-2							

¹ See report for data validation report summarizing quality assurance/quality control (QA/QC) field sample summary and results.

Imagery: 2008 1 ft Resolution Source: Yakima County

Map Date: Wednesday, December 15, 2010 Q:\Simplot\Sunnyside\map_docs\WellLookup.mxd

Analytical Parameter	Method	COC Included	Media/Laboratory		
Volatile Organic Compounds (VOCs) (full list)	EPA 8260B	1,2-dichloroethane 1,2-dichloropropane	Water and Soil/ESC		
Chlorinated Herbicides (full list)	EPA 8151	Dinoseb	Water and Soil/ESC		
RCRA Metals (arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver)	EPA 6010B	Arsenic	Water and Soil/ESC		
Inorganic Ions (CI, SO4)	EPA 9056	Chloride Sulfate	Water/ESC		
Nitrate-N	EPA 353.2	Nitrate-Nitrogen	Water/ESC		
Nitrate-N	1N KCI Extraction	Nitrate-Nitrogen	Soil/Kuo		
Ammonia-N	EPA 350.1	Ammonium-Nitrogen	Water/ESC		
Ammonium-N	1N KCI Extraction	Ammonium-Nitrogen	Soil/Kuo		

RCRA = Resource Conservation and Recovery Act

3.1.4 Investigation Results

The laboratory data was validated and met the requirements outline in the *Quality Assurance Project Plan* (QAPP) (HDR 2009c). The *Preliminary Site Investigation Report* (HDR 2009b) compared soil and groundwater results to Models Toxic Control Act (MTCA) cleanup levels. For this data summary report, the data is presented for sampling activities and compared to MTCA levels in Section 4.

3.1.4.1 Soil Sample Results

HDR's field team collected two soil samples at each boring location – one near the ground surface, and another near the groundwater interface – totaling 26 soil samples in all (plus one field duplicate). Soil sample results are summarized for volatile organic compounds (VOCs) (**Table 3-3**), metals (**Table 3-4**), herbicides (**Table 3-5**), and ammonia and nitrate (**Table 3-6**). Laboratory reports are presented in Appendix C (included as a CD).

Most soil samples were below detection limit (BDL) for VOCs. Compounds detected in one or more soil sample included benzene, 1,2-dichloropropane, naphthalene, 1,2,4-trimethylbenzene, 1,2,3-trimethylbenzene, 1,3,5-trimethylbenzene, and total xylenes.

Soil samples collected from each boring contained detectable levels of at least four of the eight metals analyzed. **Table 3-4** summarizes metals results for soil samples.

Soil samples were BDL for herbicides in all borings except B13. In boring B13, the soil sample collected near the groundwater interface contained detectable levels of 2,4-D and Dicamba.

Nitrate-nitrogen and ammonia-nitrogen were detected at varying levels in each soil sample collected from each boring (**Table 3-6**). **Figure 5** illustrates a post plot of nitrate-nitrogen and ammonianitrogen concentrations at each boring.

Table 3-3. Soil Sample Results - VOCs

	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11	B12	B13
Depth (ft)	3.0 - 5.0	0.3 - 2.0	0.0 - 2.0	0.0 - 2.0	0.0 - 2.0	0.0 - 1.5	0.0 - 1.5	0.0 - 1.5	0.3 - 2.0	1.5 - 3.5	0.3 - 2.0	1.0 - 2.0	1.0 - 2.0
Deptil (it)	5.0 - 7.0	2.0 - 4.0	3.0 - 5.0	3.5 - 5.5	3.0 - 5.0	3.0 - 5.0	3.5 - 4.5	2.8 - 4.0	3.5 - 5.0	4.0 - 6.0	3.0 - 4.5	3.5 - 5.5	2.5 - 4.5
Volatile Organic Compounds - EPA Method 8260B (mg/kg)													
Acetone	BDL												
Acetone	BDL												
Acrylonitrile	BDL												
	BDL												
Benzene	BDL	0.0095											
Delizene	BDL	0.0084	BDL	BDL	BDL	0.25							
Bromo-benzene	BDL												
Bromo-benzene	BDL												
Bromodichloromethane	BDL												
Bromodicinoromethane	BDL												
Bromoform	BDL												
Bromororm	BDL												
Bromo-methane	BDL												
Bromo-methane	BDL												
n-Butylbenzene	BDL												
	BDL												
sec-Butylbenzene	BDL												
Sec-Dutyibelizelle	BDL												
tert-Butylbenzene	BDL												
tert-Dutyibenzene	BDL												
Carbon tetrachloride	BDL												
	BDL												
Chloro-benzene	BDL												
Chloro-benzene	BDL												
Chlorodibromomethane	BDL												

Table 3-3. Soil Sample Results - VOCs

	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11	B12	B13
Depth (ft)	3.0 - 5.0	0.3 - 2.0	0.0 - 2.0	0.0 - 2.0	0.0 - 2.0	0.0 - 1.5	0.0 - 1.5	0.0 - 1.5	0.3 - 2.0	1.5 - 3.5	0.3 - 2.0	1.0 - 2.0	1.0 - 2.0
Depth (ft)	5.0 - 7.0	2.0 - 4.0	3.0 - 5.0	3.5 - 5.5	3.0 - 5.0	3.0 - 5.0	3.5 - 4.5	2.8 - 4.0	3.5 - 5.0	4.0 - 6.0	3.0 - 4.5	3.5 - 5.5	2.5 - 4.5
	BDL												
Chloroethane	BDL												
Childi dethalle	BDL												
2-Chloroethyl vinyl ether	BDL												
	BDL												
Chloroform	BDL												
	BDL												
Chloro-methane	BDL												
	BDL												
2-Chloro-toluene	BDL												
2-Chioro-toldene	BDL												
4-Chloro-toluene	BDL												
4-Chioro-toidene	BDL												
1,2-Dibromo-3-Chloro-	BDL												
propane	BDL												
1,2-Dibromo-ethane	BDL												
1,2-Dibiomo-ethane	BDL												
Dibromo-methane	BDL												
Dibiomo-methane	BDL												
1,2-Dichloro-benzene	BDL												
1,2-Dicitiono-Denizente	BDL												
1,3-Dichloro-benzene	BDL												
1,3-Dicition 0-Delizene	BDL												
1.4-Dichloro-benzene	BDL												
	BDL												

Table 3-3. Soil Sample Results - VOCs

	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11	B12	B13
Donth (ft)	3.0 - 5.0	0.3 - 2.0	0.0 - 2.0	0.0 - 2.0	0.0 - 2.0	0.0 - 1.5	0.0 - 1.5	0.0 - 1.5	0.3 - 2.0	1.5 - 3.5	0.3 - 2.0	1.0 - 2.0	1.0 - 2.0
Depth (ft)	5.0 - 7.0	2.0 - 4.0	3.0 - 5.0	3.5 - 5.5	3.0 - 5.0	3.0 - 5.0	3.5 - 4.5	2.8 - 4.0	3.5 - 5.0	4.0 - 6.0	3.0 - 4.5	3.5 - 5.5	2.5 - 4.5
Dichlorodifluoromethane	BDL												
Dictitorounitoromethane	BDL												
1,1-Di-chloroethane	BDL												
1,1-Di-chioroethane	BDL												
1,2-Di-hloroethane	BDL												
1,2-DI-11010ethane	BDL	0.032											
1,1-Di-chloroethene	BDL												
r, r-Di-chioroethene	BDL												
cis-1,2-di-chloroethene	BDL												
cis-1,2-di-cinor detilene	BDL												
trans-1,2-di-chloroethene	BDL												
	BDL												
1,2-dichloro-propane	BDL	0.26	BDL										
1,2-dichioro-propane	BDL	0.039	BDL										
1,1-dichloro-propene	BDL												
	BDL												
1,3-dichloro-propane	BDL												
1,3-dictiloro-propane	BDL												
cis-1,3-dichloropropene	BDL												
cis-1,5-dicilioropropene	BDL												
trans-1,3-	BDL												
dichloropropene	BDL												
2,2-dichloropropane	BDL												
2,2-010101001000	BDL												
Di-isopropyl ether	BDL												
	BDL												

Table 3-3. Soil Sample Results - VOCs

	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11	B12	B13
Domth (ft)	3.0 - 5.0	0.3 - 2.0	0.0 - 2.0	0.0 - 2.0	0.0 - 2.0	0.0 - 1.5	0.0 - 1.5	0.0 - 1.5	0.3 - 2.0	1.5 - 3.5	0.3 - 2.0	1.0 - 2.0	1.0 - 2.0
Depth (ft)	5.0 - 7.0	2.0 - 4.0	3.0 - 5.0	3.5 - 5.5	3.0 - 5.0	3.0 - 5.0	3.5 - 4.5	2.8 - 4.0	3.5 - 5.0	4.0 - 6.0	3.0 - 4.5	3.5 - 5.5	2.5 - 4.5
Ethylbenzene	BDL												
	BDL												
Hexachloro-1,3-	BDL												
butadiene	BDL												
lsopropyl-benzene	BDL												
isopiopyi-belizelle	BDL												
p-lsopropyl-toluene	BDL												
p-isopropyi-toideile	BDL												
2-Butanone (MEK)	BDL												
	BDL												
Methylene Chloride	BDL												
	BDL												
2-Methyl-2-pentanone	BDL												
(MIBK)	BDL												
Methyl tert-butyl ether	BDL												
	BDL												
Naphthalene	BDL												
Naphthalene	BDL	0.045											
N-Propyl-benzene	BDL												
N-FTOpyI-belizelle	BDL												
Styrene	BDL												
Styrene	BDL												
1,1,1,2-Tetra-	BDL												
chloroethane	BDL												
1,1,2,2-Tetra-	BDL												
chloroethane	BDL												

Table 3-3. Soil Sample Results - VOCs

	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11	B12	B13
Depth (ft)	3.0 - 5.0	0.3 - 2.0	0.0 - 2.0	0.0 - 2.0	0.0 - 2.0	0.0 - 1.5	0.0 - 1.5	0.0 - 1.5	0.3 - 2.0	1.5 - 3.5	0.3 - 2.0	1.0 - 2.0	1.0 - 2.0
Depth (ft)	5.0 - 7.0	2.0 - 4.0	3.0 - 5.0	3.5 - 5.5	3.0 - 5.0	3.0 - 5.0	3.5 - 4.5	2.8 - 4.0	3.5 - 5.0	4.0 - 6.0	3.0 - 4.5	3.5 - 5.5	2.5 - 4.5
1,1,2-Tri-chloro-1,2,2-	BDL												
trifluoro	BDL												
Tetrachloro-ethene	BDL												
renaciiioro-emene	BDL												
Toluene	BDL												
Toldelle	BDL												
1,2,3-Trichlorobenzene	BDL												
1,2,3-Inchiorobenzene	BDL												
1,2,4-Trichlorobenzene	BDL												
1,2,4-11101000012011	BDL												
1,1,1-Tri-chloroethane	BDL												
	BDL												
1,1,2-Tri-chloroethane	BDL												
	BDL												
Trichloro-ethene	BDL												
Themoro-emene	BDL												
Trichlorofluoromethane	BDL												
Themoronabromediane	BDL												
1,2,3-Trichloropropane	BDL												
	BDL												
1,2,4-Trimethylbenzene	BDL												
1,2,4-11iiieti1yibeii2eiie	BDL	0.065											
1,2,3-Trimethylbenzene	BDL	0.017											
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	BDL	0.052											
1,3,5-Trimethylbenzene	BDL	0.014											
1,0,0-1111161191061126116	BDL	0.040											

Table 3-3. Soil Sample Results - VOCs

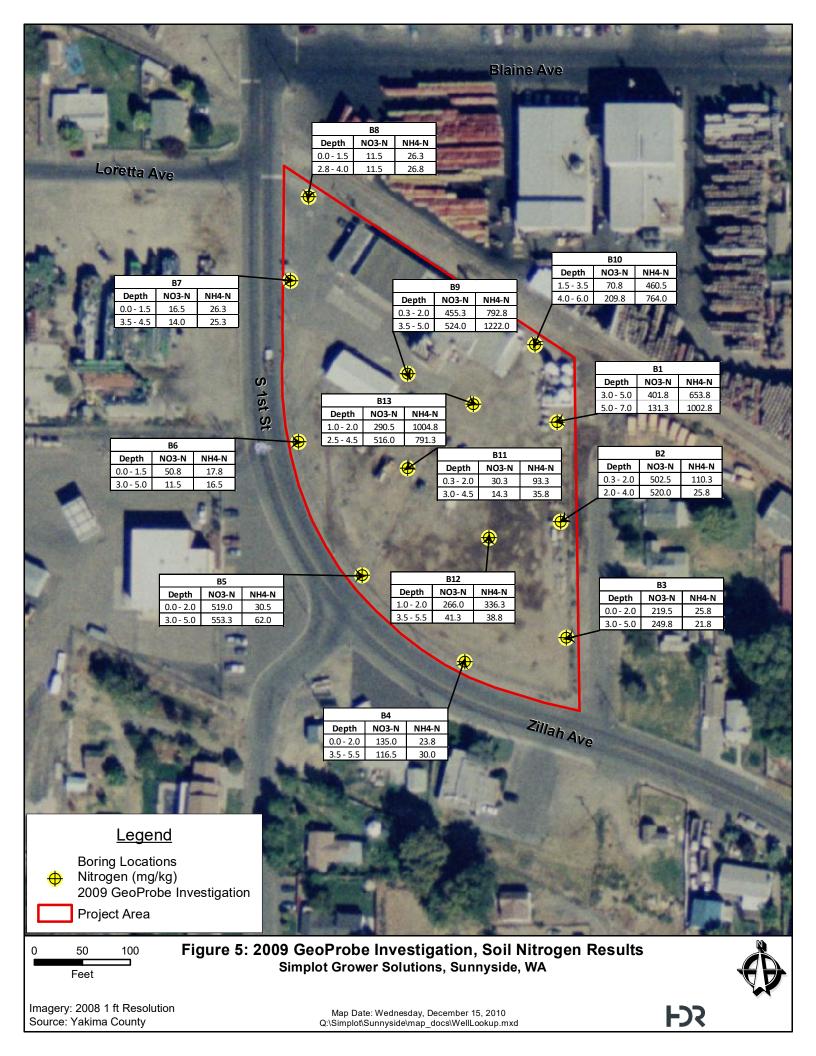
	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11	B12	B13
Depth (ft)	3.0 - 5.0	0.3 - 2.0	0.0 - 2.0	0.0 - 2.0	0.0 - 2.0	0.0 - 1.5	0.0 - 1.5	0.0 - 1.5	0.3 - 2.0	1.5 - 3.5	0.3 - 2.0	1.0 - 2.0	1.0 - 2.0
Depth (it)	5.0 - 7.0	2.0 - 4.0	3.0 - 5.0	3.5 - 5.5	3.0 - 5.0	3.0 - 5.0	3.5 - 4.5	2.8 - 4.0	3.5 - 5.0	4.0 - 6.0	3.0 - 4.5	3.5 - 5.5	2.5 - 4.5
Vinyl chloride	BDL												
villyi chionae	BDL												
Vylonge Total	BDL	0.033											
Xylenes, Total	BDL	0.18											

BDL = below detection limit. Laboratory reports are presented in Appendix C. See Laboratory reports for Method Detection Limits.

	B1	B2	B3	B4	B5	B 6	B7	B8	B9	B10	B11	B12	B13
Depth (ft)	3.0 - 5.0	0.3 - 2.0	0.0 - 2.0	0.0 - 2.0	0.0 - 2.0	0.0 - 1.5	0.0 - 1.5	0.0 - 1.5	0.3 - 2.0	1.5 - 3.5	0.3 - 2.0	1.0 - 2.0	1.0 - 2.0
Deptil (it)	5.0 - 7.0	2.0 - 4.0	3.0 - 5.0	3.5 - 5.5	3.0 - 5.0	3.0 - 5.0	3.5 - 4.5	2.8 - 4.0	3.5 - 5.0	4.0 - 6.0	3.0 - 4.5	3.5 - 5.5	2.5 - 4.5
				R	CRA 8 Met	als - EPA M	lethod 6010)B (mg/kg)					
Mercury	0.072	BDL	0.036	BDL	BDL	BDL	BDL	BDL	BDL	0.036	BDL	0.055	0.024
Wercury	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Arsenic	BDL	BDL	BDL	BDL	BDL	BDL	BDL	3.2	5.6	1.9	3.2	3.5	BDL
Arsenic	BDL	BDL	BDL	BDL	BDL	BDL	7.0	5.8	6.9	7.9	6.2	BDL	BDL
Barium	110	180	210	180	190	190	140	180	180	140	170	170	160
Banun	180	200	210	250	300	240	210	160	210	190	210	220	210
Cadmium	7.1	3.6	3.1	1.2	1.2	1.3	1.2	1.7	1.6	3.0	2.2	1.7	1.2
Cadiniun	5.2	3.3	1.4	1.6	1.4	1.6	1.4	1.1	1.6	1.8	1.3	0.44	0.40
Chromium	37	25	24	21	24	24	18	22	25	54	22	22	27
Chronnum	29	27	26	29	26	28	25	21	27	27	26	32	33
Lead	77	47	44	16	12	12	19	110	4.3	40	17	38	40
Leau	27	27	12	14	12	13	4.9	3.8	3.5	2.4	4.7	14	15
Selenium	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Selemum	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Silver	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0.84	0.98	BDL	0.66	0.65	BDL
Silver	BDL	BDL	BDL	BDL	BDL	BDL	0.98	0.81	1.1	1.0	BDL	BDL	BDL

Table 3-4. Soil Sample Results - Metals

_


Table 3-5. Soil Sample Results - Herbicides

	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11	B12	B13
Danth (ft)	3.0 - 5.0	0.3 - 2.0	0.0 - 2.0	0.0 - 2.0	0.0 - 2.0	0.0 - 1.5	0.0 - 1.5	0.0 - 1.5	0.3 - 2.0	1.5 - 3.5	0.3 - 2.0	1.0 - 2.0	1.0 - 2.0
Depth (ft)	5.0 - 7.0	2.0 - 4.0	3.0 - 5.0	3.5 - 5.5	3.0 - 5.0	3.0 - 5.0	3.5 - 4.5	2.8 - 4.0	3.5 - 5.0	4.0 - 6.0	3.0 - 4.5	3.5 - 5.5	2.5 - 4.5
		1		Не	rbicides -	EPA Metho	d 8151 (m	g/kg)			1		
240	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
2,4-D	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0.20
Delenen	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Dalapon	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
2,4-DB	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
2,4-DB	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Disembo	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Dicamba	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0.13
Diablananan	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Dichloroprop	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Dinaaak	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Dinoseb	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
MODA	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
MCPA	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
MODD	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
MCPP	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
2 4 E T	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
2,4,5-T	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
2,4,5-TP (Silvex)	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL

	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11	B12	B13
Depth (ft)	3.0 - 5.0	0.3 - 2.0	0.0 - 2.0	0.0 - 2.0	0.0 - 2.0	0.0 - 1.5	0.0 - 1.5	0.0 - 1.5	0.3 - 2.0	1.5 - 3.5	0.3 - 2.0	1.0 - 2.0	1.0 - 2.0
Depth (It)	5.0 - 7.0	2.0 - 4.0	3.0 - 5.0	3.5 - 5.5	3.0 - 5.0	3.0 - 5.0	3.5 - 4.5	2.8 - 4.0	3.5 - 5.0	4.0 - 6.0	3.0 - 4.5	3.5 - 5.5	2.5 - 4.5
Nitrate-Nitrogen and Ammonia-Nitrogen - 1N KCI Method (mg/kg)													
Nitrate-Nitrogen	402	503	220	135	519	50.8	16.5	11.5	455	70.8	30.3	266	291
Nitrate-Nitrogen	131	520	250	117	553	11.5	14.0	11.5	524	210	14.3	41.3	516.0
Ammonia-Nitrogen	654	110	25.8	23.8	30.5	17.8	26.3	26.3	793	461	93.3	336	1,005
Ammonia-Nitrogen	1003	25.8	21.8	30.0	62.0	16.5	25.3	26.8	1,222	764	35.8	38.8	791

Table 3-6. Soil Sample Results - Nitrogen

mg/Kg = milligrams per kilogram. Laboratory reports are presented in Appendix C. See Laboratory reports for Method Detection Limits.

3.1.4.2 Groundwater Sample Results

HDR's field team collected one groundwater sample at each boring location, collecting 13 groundwater samples in total (plus quality control samples). Water samples were analyzed for VOCs (**Table 3-7**), metals (**Table 3-8**), herbicides (**Table 3-9**), and inorganics (**Table 3-10**). Boring B10 did not produce sufficient groundwater sample for analysis of metals, herbicides, or inorganics; only VOCs were analyzed for the groundwater sample from B10. Laboratory reports are presented in Appendix C (CD).

VOC compounds were not detected in groundwater samples collected from B2, B4, B5, B6, B7, and B8. Borings B1, B3, B9, B10, B11, B12, and B13, had detections of multiple VOCs (**Table 3-7**).

For metals, cadmium, selenium, and silver were not detected in any groundwater samples. Arsenic was detected in five borings, while barium, chromium, and lead were detected in all samples.

The only herbicide analyte detected in the groundwater samples was 2,4-D, which was detected in B9 and B13.

Nitrate-nitrite was detected in all groundwater samples. Ammonia-nitrogen was detected in all borings except B3 or B4. Chloride and sulfate were detected at varying levels in each of the groundwater samples. **Figure 6** illustrates a post plot for nitrogen levels in groundwater samples.

	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11	B12	B13
Depth (ft)	9.9 - 12.0	8.2 - 11.2	9.0 - 12.0	9.0 - 12.0	9.0 - 12.0	9.0 - 12.0	7.0 - 10.0	8.0 - 12.0	10.0 - 13.0	9.0 - 12.0	9.0 - 12.0	8.5 - 11.5	9.0 - 12.0
				Volatile O	rganic Com	pounds - El	PA Method 8	8260B (mg/L	_)				
Acetone	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Acrolein	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Acrylonitrile	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Benzene	0.75	BDL	BDL	BDL	BDL	BDL	BDL	BDL	8.3	0.49	BDL	BDL	6.9
Bromobenzene	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Bromodichloro- methane	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0.0015	BDL
Bromoform	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Bromomethane	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
n-Butylbenzene	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0.0014	0.020	0.0010	BDL
sec-Butylbenzene	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0.011	BDL	BDL
tert-Butylbenzene	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Carbon tetrachloride	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Chlorobenzene	0.013	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Chlorodibromo- methane	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Chloroethane	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
2-Chloroethyl vinyl ether	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Chloroform	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Chloromethane	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
2-Chlorotoluene	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
4-Chlorotoluene	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
1,2-Dibromo-3- Chloropropane	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
1,2- Dibromoethane	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0.0014	BDL	BDL	BDL

	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11	B12	B13
Depth (ft)	9.9 - 12.0	8.2 - 11.2	9.0 - 12.0	9.0 - 12.0	9.0 - 12.0	9.0 - 12.0	7.0 - 10.0	8.0 - 12.0	10.0 - 13.0	9.0 - 12.0	9.0 - 12.0	8.5 - 11.5	9.0 - 12.0
				Volatile O	rganic Com	pounds - El	PA Method	8260B (mg/L	_)				
Dibromomethane	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
1,2- Dichlorobenzene	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
1,3- Dichlorobenzene	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
1,4- Dichlorobenzene	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Dichlorodifluorom ethane	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
1,1- Dichloroethane	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
1,2- Dichloroethane	0.090	BDL	0.020	BDL	BDL	BDL	BDL	BDL	BDL	0.0074	BDL	BDL	0.49
1,1- Dichloroethene	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
cis-1,2- dichloroethene	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
trans-1,2- dichloroethene	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
1,2- dichloropropane	0.037	BDL	0.014	BDL	BDL	BDL	BDL	BDL	BDL	0.0044	BDL	0.22	BDL
1,1- dichloropropene	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
1,3- dichloropropane	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
cis-1,3- dichloropropene	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
trans-1,3- dichloropropene	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
2,2- dichloropropane	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL

	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11	B12	B13
Depth (ft)	9.9 - 12.0	8.2 - 11.2	9.0 - 12.0	9.0 - 12.0	9.0 - 12.0	9.0 - 12.0	7.0 - 10.0	8.0 - 12.0	10.0 - 13.0	9.0 - 12.0	9.0 - 12.0	8.5 - 11.5	9.0 - 12.0
				Volatile O	rganic Com	pounds - El	PA Method 8	8260B (mg/L	-)				
Di-isopropyl ether	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Ethylbenzene	0.029	BDL	BDL	BDL	BDL	BDL	BDL	BDL	1.8	0.0013	0.0062	0.0018	0.55
Hexachloro-1,3- butadiene	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Isopropylbenzene	0.018	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0.0046	0.022	BDL	BDL
p- Isopropyltoluene	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0.0020	0.0052	BDL	BDL
2-Butanone (MEK)	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Methylene Chloride	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
2-Methyl-2- pentanone (MIBK)	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Methyl tert-butyl ether	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Naphthalene	0.20	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0.052	BDL	0.013	BDL
n-Propylbenzene	0.051	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0.30	0.0088	0.057	0.0030	BDL
Styrene	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
1,1,1,2- Tetrachloroethane	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
1,1,2,2- Tetrachloroethane	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
1,1,2-Trichloro- 1,2,2-trifluoro	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Tetrachloroethene	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Toluene	0.064	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
1,2,3- Trichlorobenzene	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
1,2,4- Trichlorobenzene	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL

	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11	B12	B13
Depth (ft)	9.9 - 12.0	8.2 - 11.2	9.0 - 12.0	9.0 - 12.0	9.0 - 12.0	9.0 - 12.0	7.0 - 10.0	8.0 - 12.0	10.0 - 13.0	9.0 - 12.0	9.0 - 12.0	8.5 - 11.5	9.0 - 12.0
				Volatile O	rganic Com	pounds - El	PA Method	8260B (mg/L	_)				
1,1,1- Trichloroethane	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
1,1,2- Trichloroethane	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Trichloroethene	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Trichlorofluoro- methane	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
1,2,3- Trichloropropane	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
1,2,4- Trimethylbenzene	0.55	BDL	BDL	BDL	BDL	BDL	BDL	BDL	2.1	0.21	0.65	0.041	2.6
1,2,3- Trimethylbenzene	0.16	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0.57	0.034	0.0022	0.0094	0.59
1,3,5- Trimethylbenzene	0.15	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0.50	0.030	0.20	0.010	0.62
Vinyl chloride	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Xylenes, Total	2.1	BDL	BDL	BDL	BDL	BDL	BDL	BDL	3.7	0.46	0.095	0.012	3.1

Table 3-8. Groundwater Sample Results - Metals

	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10*	B11	B12	B13
Depth (ft)	9.9 - 12.0	8.2 - 11.2	9.0 - 12.0	9.0 - 12.0	9.0 - 12.0	9.0 - 12.0	7.0 - 10.0	8.0 - 12.0	10.0 - 13.0	9.0 - 12.0	9.0 - 12.0	8.5 - 11.5	9.0 - 12.0
				l	RCRA 8 Met	als - EPA M	ethod 6010l	3 (mg/L)					
Mercury	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	N/A	BDL	0.00024	BDL
Arsenic	0.036	0.040	0.038	BDL	BDL	BDL	BDL	0.063	BDL	N/A	BDL	BDL	0.023
Barium	1.3	1.1	0.79	0.87	0.58	1.4	0.61	0.34	2.3	N/A	1.9	1.6	0.6
Cadmium	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	N/A	BDL	BDL	BDL
Chromium	0.052	0.036	0.038	0.042	0.036	0.035	0.037	0.013	0.064	N/A	0.030	0.023	0.033
Lead	0.053	0.10	0.038	0.043	0.054	0.056	0.038	0.027	0.048	N/A	0.041	0.028	0.054
Selenium	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	N/A	BDL	BDL	BDL
Silver	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	N/A	BDL	BDL	BDL

* Not enough B10 GW sample available to run metals analysis

	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10*	B11	B12	B13
Depth (ft)	9.9 - 12.0	8.2 - 11.2	9.0 - 12.0	9.0 - 12.0	9.0 - 12.0	9.0 - 12.0	7.0 - 10.0	8.0 - 12.0	10.0 - 13.0	9.0 - 12.0	9.0 - 12.0	8.5 - 11.5	9.0 - 12.0
					Herbicides	s - EPA Meth	nod 8151 (m	g/L)					
2,4-D	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0.071	N/A	BDL	BDL	0.49
Dalapon	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	N/A	BDL	BDL	BDL
2,4-DB	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	N/A	BDL	BDL	BDL
Dicamba	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	N/A	BDL	BDL	BDL
Dichloroprop	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	N/A	BDL	BDL	BDL
Dinoseb	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	N/A	BDL	BDL	BDL
МСРА	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	N/A	BDL	BDL	BDL
МСРР	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	N/A	BDL	BDL	BDL
2,4,5-T	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	N/A	BDL	BDL	BDL
2,4,5-TP (Silvex)	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	N/A	BDL	BDL	BDL

Table 3-9. Groundwater Sample Results - Herbicides

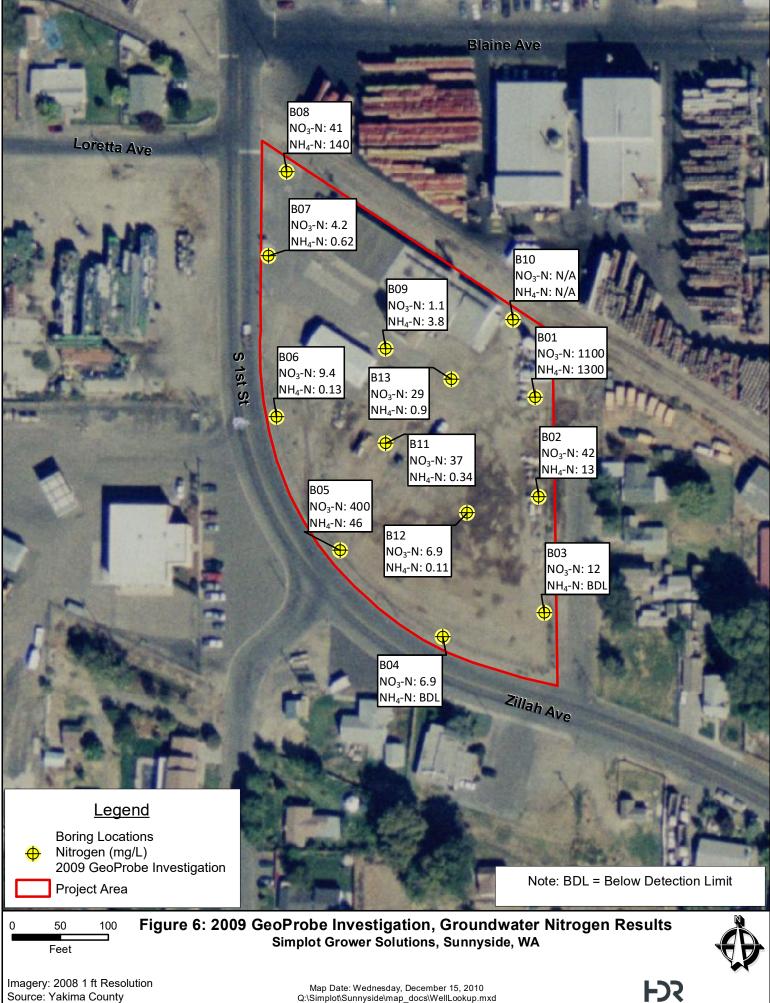

* Not enough B10 GW sample available to run herbicides analysis

Table 3-10. Groundwater Sample Results - Inorganics

	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10*	B11	B12	B13
Depth (ft)	9.9 - 12.0	8.2 - 11.2	9.0 - 12.0	9.0 - 12.0	9.0 - 12.0	9.0 - 12.0	7.0 - 10.0	8.0 - 12.0	10.0 - 13.0	9.0 - 12.0	9.0 - 12.0	8.5 - 11.5	9.0 - 12.0
Nitrate-Nitrite - EPA Method 353.2 (mg/L)													
Nitrate-Nitrite	1100	42	12	6.9	400	9.4	4.2	41	1.1	N/A	37	6.9	29
Ammonia Nitrogen - EPA Method 350.1 (mg/L)													
Ammonia- Nitrogen	1300	13	BDL	BDL	46	0.13	0.62	140	3.8	N/A	0.34	0.11	0.9
	Chloride and Sulfate - EPA Method 9056 (mg/L)												
Chloride	380	150	380	190	480	68	90	65	140	N/A	180	160	500
Sulfate	3600	350	270	700	1600	280	760	480	140	N/A	420	210	400

* Not enough B10 GW sample available to run inorganics analysis

Imagery: 2008 1 ft Resolution Source: Yakima County

Map Date: Wednesday, December 15, 2010 Q:\Simplot\Sunnyside\map_docs\WellLookup.mxd

3.2 2011 Groundwater Monitoring Well Installation and Sampling

3.2.1 References

- HDR. 2010. Monitoring Well Construction and Sampling Work Plan, July 2010 (revised December 2010).
- HDR. 2010. *Standard Operating Procedure for Groundwater Sampling* (included in Appendix A of the above listed work plan.
- HDR. 2011. Monitoring Well Construction and Sampling Report, April 2011.

3.2.2 Data Objectives and Needs

The objective was to construct five on-site groundwater monitoring wells and to sample these wells on a quarterly basis to further assess the nature and extent of contaminants. Groundwater samples were analyzed for COCs using appropriate U.S. Environmental Protection Agency (EPA) or state methodology by a qualified laboratory. Groundwater monitoring wells provide information on groundwater flow direction, seasonal variations on direction and gradient, and an indication of groundwater quality both up and downgradient of the facility.

3.2.3 Investigation Approach and Results

Simplot developed and submitted a *Monitoring Well Construction and Sampling Work Plan* to Ecology in July 2010 (HDR 2010), and following Ecology review and comments, updated the plan in December 2010. Ecology approved the work plan in December 2010.

Site investigation activities included installing five groundwater monitoring wells, well development, well surveying, and the first round of quarterly groundwater sampling. Wells were installed and soil samples collected on March 15 and 16, 2011. Groundwater sampling was conducted on March 17, 2011.

3.2.3.1 Groundwater Monitoring Well Construction

Based on the Bee-Jay Scales site investigation, groundwater flow was anticipated to be toward the east to southeast. One objective of installing the monitoring wells was to assess groundwater flow direction and seasonal changes over four quarters. Because of the uncertainty in groundwater flow direction (at that time), five monitoring wells were proposed. Monitoring well locations are presented in **Figure 7** (note that this is the monitoring well network in 2011 with modification in 2012).

Imagery: 2008 1 ft Resolution Source: Yakima County

Map Date: Wednesday, December 15, 2010 Q:\Simplot\Sunnyside\map_docs\WellLookup.mxd

Well logs are presented in Appendix B. General drilling activities involved the following (HDR 2011):

- The well boreholes were drilled using hollow stem augers in March 2011. The drilling crew was supervised by a professional geologist who was responsible for lithologic logging and documentation of construction activities of the monitoring wells. A Washington professional geologist supervised on-site personnel, well construction design, and reporting. Soil boring grab samples were collected every 5 feet from the cuttings as the boreholes were advanced, or at discernible changes in lithology; whichever was less.
- The hollow stem augers had an 8-inch outside-diameter and were drilled down to the total depth of each well boring. Water levels measured from the completed wells on March 17, 2011, ranged from 6.73 to 8.46 feet below ground surface (bgs). The wells were drilled to a depth of approximately 15 to 20 feet bgs, or approximately 9 to 12 feet beyond the depth to static water. Well construction details are summarized in **Table 3-11**.
- The monitoring wells were completed using 2-inch-diameter, flush-threaded, Schedule 40
 PVC casing and well screen. Ten or 15 feet of factory-slotted well screen (0.010-inch slot
 size) were installed in each well. End caps were threaded to the base of the well screens.
 CSSI silica sand (Grade 10-20) was used as a filter pack surrounding the well screens and
 set up to approximately 2 feet above the top of the well screens.
- The wellheads of each well were secured using a lockable, 5-foot-long, 6-inch by 6-inch, protective steel monument, which was placed over the well and centered in a concrete pad. The top 2 to 3 feet of the annular space surrounding the well were also filled with concrete. Steel guard posts were sunk into the ground around the well monument and filled with concrete to serve as a protective barrier against collision damage for each well.
- Following well installation, each well was surged and pumped to set the filter pack and remove fine sediment from the well. Each well was developed using a sequence of surging and pumping with a pump. Surging the well forces groundwater to flow in and out of the well, breaking any particle bridges and setting the sand filter pack up against the well screen. The well was then pumped to remove any fine sand that was pulled through the screen during surging. Development was considered complete when the well was relatively free of sediment; at a minimum, 10 well casing volumes were removed.
- The monitoring wells were surveyed to the top of the PVC well casing and to the ground surface at the base of the protective well casing. These measurements will be used to determine the groundwater elevations and flow direction. Permit Surveying, Inc., a Washington-licensed surveyor, surveyed well locations and top of casing elevations.

Monitoring Well	Top PVC Elevation (ft amsl)	Depth of Well (ft bgs)	Screen Depth (ft bgs)
MW-1	745.76	18.0	7.5-17.5
MW-2	745.34	15.5	5.0-15.0
MW-3	745.58	20.5	5.0-20.0
MW-4	744.95	20.5	5.0-20.0
MW-5	745.15	20.5	5.0-20.0

Table 3-11. Well Construction Details

ft amsl = feet above mean sea level; ft bgs = feet below ground surface

3.2.3.2 Soil Sampling from Well Borings

HDR's field team collected one soil sample from each well boring. The sample depth was determined in the field, and was generally immediately above the soil/groundwater interface. Soils were tested for the work plan approved parameters listed in **Table 3-12**. Analytical results are presented in **Table 3-13**.

Table 3-12. Analyses for Soil Boring Samples

Analytical Parameter	Method	Preservative	Holding Times
Volatile Organic Compounds (VOCs)	EPA 8260B	10 mL MeOH	21 days
Polynuclear Aromatic Hydrocarbons (low level)	EPA 8270sim	4°C	7 days
Total Petroleum Hydrocarbon (TPH)	NWTPHGX NWTPHDX	4°C	7 days
Nitrate-N	2M KCI Extraction	4°C	Not specified
Ammonia-N	1N KCI Extraction	4°C	Not specified

Date	Field Sample ID	Laboratory ID	Detected Compound	Result	Units							
	MW-1 ¹											
3/15/2011	MW-1-8.5	L507163-01	Ammonia-Nitrogen	50	mg/Kg							
3/15/2011	MW-1-8.5	L507163-01	Nitrate	33	mg/Kg							
		MW-2										
3/15/2011	MW-2-6.5	L507163-02	Nitrate	18	mg/Kg							
		MW-3										
3/15/2011	MW-3-7	L507163-03	Nitrate	8.1	mg/Kg							
		MW-4										
3/15/2011	MW-4-7	L507163-04	Nitrate	120	mg/Kg							
		MW-5										
3/16/2011	MW-5-7	L507163-05	Nitrate	550	mg/Kg							
3/16/2011	MW-5-7	L507163-05	Ammonia-Nitrogen	2,000	mg/Kg							
3/16/2011	MW-5-7	L507163-05	2-Chlorotoluene	0.010	mg/Kg							
3/16/2011	MW-5-7	L507163-05	Diesel Range Organics	11	mg/Kg							
3/16/2011	MW-5-7	L507163-05	Residual Range Organics ²	19	mg/Kg							

¹ See Figure 7 for sample locations. Only detected constituents are reported in this table.

² As reported under Method MWTPHDX. mg/Kg = milligrams per kilogram. Laboratory reports are presented in Appendix C. See Laboratory reports for Method Detection Limits.

3.2.3.3 Groundwater Survey and Elevation

FJS

HDR's field team collected first quarterly samples on March 17, 2011. Depth to groundwater was measured at each monitoring well and is presented in **Table 3-14**. Groundwater elevations from the March 2011 sampling event are presented in **Figure 8**. Groundwater flow direction is southeast, which is consistent with the Bee-Jay Scales site investigation results. The average gradient was approximately 0.006 feet per feet.

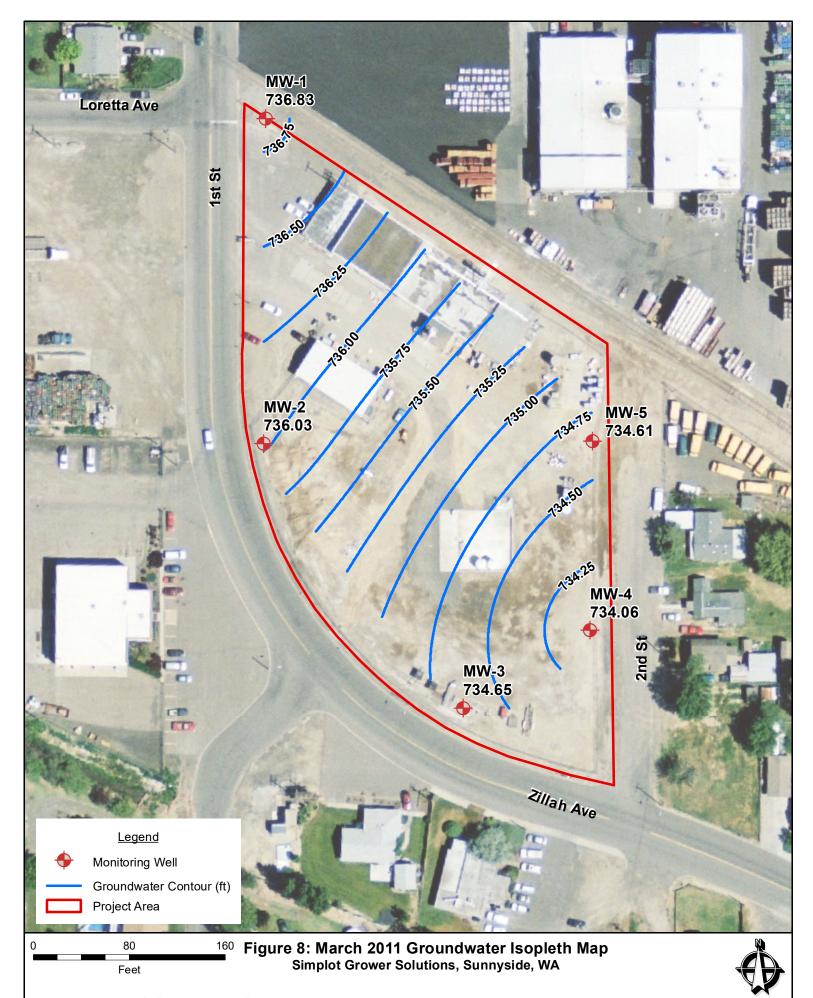

Well	Measured Depth to Water (feet)	Reference Elevation ¹ (feet)	Groundwater Elevation (feet)
MW-1	8.93	745.76	736.83
MW-2	9.31	745.34	736.03
MW-3	10.93	745.58	734.65
MW-4	10.89	744.95	734.06
MW-5	10.54	745.15	734.61

Table 3-14. Groundwater Elevation Measurements, March 17, 2011

¹ Top of casing elevation surveyed by Permit Surveying, Inc.

Based on the observed southeasterly groundwater flow in March 2011, the wells constructed on site are deemed up, down, or crossgradient as follows:

- MW-1 upgradient well
- MW-2 upgradient well
- MW-3 –side or downgradient well
- MW-4 downgradient well
- MW-5 downgradient well

FC

3.2.3.4 Monitoring Well Sampling

The goal of the 2010 work plan was to sample groundwater quarterly for one year. The first sampling occurred after well development (March 17, 2010), and the remaining three events occurred at 3-month intervals. Field sampling activities conducted for the first quarterly event following well development followed the *Standard Operating Procedure for Groundwater Sampling* that was included in Appendix A of the Work Plan (HDR 2010).

HDR's field team collected groundwater samples following static water measurements. Wells were purged with a disposable bailer. Field pH, conductivity, and temperature measurements were recorded during purging. Samples were taken once field parameters were stable (three consecutive measurements within 10 percent) or when at least three well bore volumes had been purged. Samples were analyzed for the work plan approved parameters listed in **Table 3-15**.

Analytical Parameter	Method	Preservative	Holding Times
Volatile Organic Compounds (VOCs)	EPA 8260B	4°C, pH < 2 with HCl	14 days
Polynuclear Aromatic Hydrocarbons (PAHs)	EPA 8270sim	4°C	7 days
Chlorinated Herbicides (full list)	EPA 8151A	4°C	7 days
Total Petroleum Hydrocarbon (TPH)	NWTPHGX NWTPHDX	4°C, pH < 2 with HCl	7 days
RCRA Metals ¹ (arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver)			6 months 28 days Hg
Nitrate+Nitrite-N	EPA 353.2 or EPA 300.0	4°C	28 days
Ammonia-N	SM20 4500 NH3 D or 350.1	4°C, pH < 2 H ₂ SO ₄	28 days

Table 3-15. Analyses Conducted on Groundwater Samples

¹ Resource Conservation and Recovery Act (RCRA) metals filtered in the field.

Groundwater samples were also collected in June, September, and December 2011. Analytical results are summarized in **Table 3-25** in Section 3.4.4.

3.3 2012 and 2013 Source Removal, Drain Evaluation and Additional Monitoring Well Construction

3.3.1 References

- HDR. 2012a. Source Removal, Drain Evaluation, Monitoring Well Construction Work Plan. July 2012
- HDR. 2013a. Source Removal, Drain Evaluation, Monitoring Well Construction, and Sampling Report. February 2013.
- HDR. 2013b. Supplemental Drain Evaluation and Monitoring Well Sampling Report. September 2013.

3.3.2 Data Objectives and Needs

This objectives of the 2012 activities were as follows:

• Source removal – remove soils associated with the rinse area on the Growers Solutions site. Soil in this area was elevated in nitrate and ammonium concentrations and represents a major source for groundwater impacts. Removing this source area should reduce leaching of nitrates to groundwater. Additional on-site source removal or other mitigation may be necessary and will be further evaluated following assessment of off-site conditions.

- Off-site drain investigation measure in-pipe flow rates to determine if groundwater is infiltrating the piping and collect water quality samples associated with the drainage system.
- Further groundwater characterization install two off-site monitoring wells to assess groundwater conditions downgradient of the Grower Solutions site. Locate off-site wells I based on the findings of the off-site drain investigation and groundwater flow direction. In addition, replace well MW-5 with MW-5R (which was removed during source removal of the rinse area).

3.3.3 Investigation Approach and Results

3.3.3.1 Rinsate Area Excavation – Source Removal

Soils beneath the rinsate area had high concentrations of nitrate and ammonium based on previous investigations (HDR 2009b and 2011). Furthermore, nitrate and ammonium concentrations in groundwater collected from the adjacent MW-5 have been elevated. Given the historic practices associated with the rinsate area, and based on soil and groundwater sampling results, the remedial objective was to remove soils beneath the rinsate area down to groundwater. Per the Ecology-approved work plan, this action was focused on the rinsate area only.

In December 2012, approximately 155 cubic yards of soils were excavated (20 X 22 feet by 9.5 feet deep) (**Figure 9**). The dimension of the rinsate area excavation was based on visual observation, review of historic aerial photographs, and information provided by Simplot personnel familiar with site operations. Depth to groundwater at the time of the excavation was about 9.5 feet bgs. Excavated soil was stockpiled on Visqueen along the central-eastern portion of the site, outside of actively used areas. Following excavation, the soil stockpile was covered with Visqueen. Soils were later removed from site and used for land application (permitted through Benton-Franklin Health District).

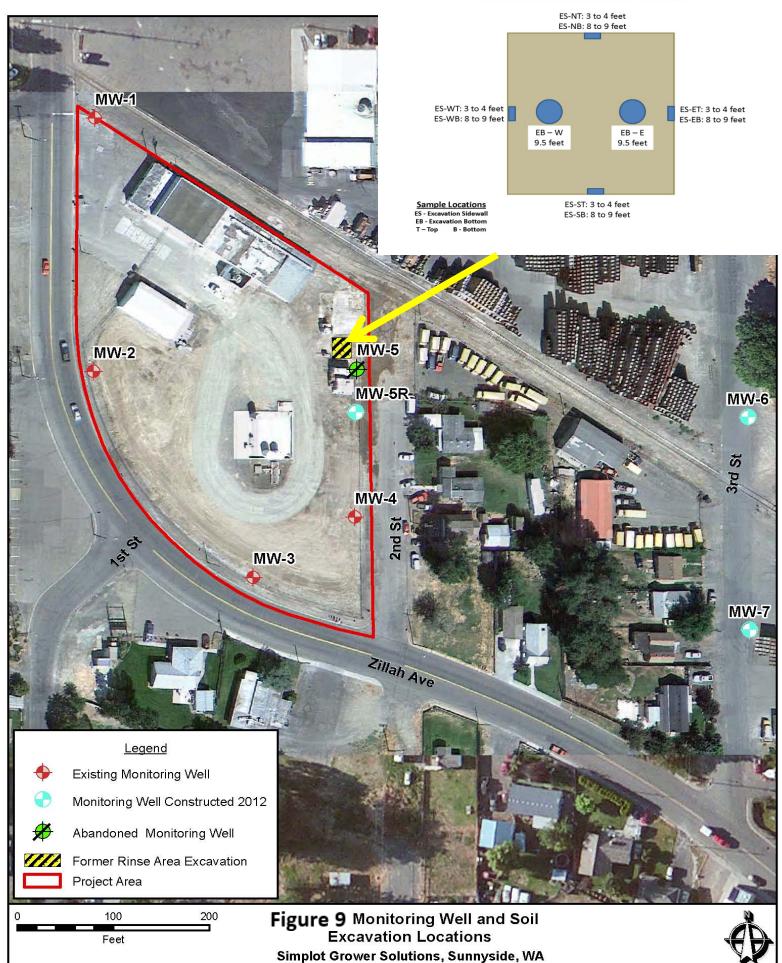
HDR's field team collected discrete soil samples from the excavation pit sides and bottom (**Figure 9**). Two soil samples were collected from each side of the pit at 3 to 4 feet bgs and 8 to 9 feet bgs, and two samples were collected from the pit bottom, approximately 9.5 feet bgs. Overall, 10 soil samples were collected and sent to the laboratory for analysis. **Table 3-16** lists the analyses performed on each soil sample. Laboratory results for soil are in Appendix C.

Analytical Parameter	Method	Preservative
Volatile Organic Compounds (VOCs) (full list)	EPA 8260B	Terra Core – Methanol
Chlorinated Herbicides (full list)	EPA 8151A	4°C
Nitrate-N	2M KCI Extraction	4°C
Ammonium-N	1N KCI Extraction	4°C

Table 3-16. Analyses for Excavation Soil Samples

°C = degrees Celsius

FJS


The following tables provide analysis results for soil samples collected from the pit after excavation (samples represent soil quality remaining in the pit bottom and walls). **Table 3-17** summarizes results for nitrate-nitrogen and ammonium-nitrogen. Nitrate-N ranged from 180 milligrams per kilogram *mg/Kg) to 620 mg/Kg. Ammonium-N ranges from 8.7 to 2,200 mg/Kg.

Excavation Sample Location	ES-EB	ES-ET	EB-E	ES-NB	ES-NT	EB-W	ES-SB	ES-ST	ES-WB	ES-WT
Parameter Depth (ft)	8 to 9	3 to 4	9 to 9.5	3 to 4	3 to 4	9 to 9.5	8 to 9	3 to 4	8 to 9	3 to 4
	٦	Nitrate-Nit	rogen and	Ammoniu	im-Nitrog	en - 1N KC	Method ((mg/kg)		
Nitrate- Nitrogen	240	240	340	280	280	180	540	620	250	370
Ammonium -Nitrogen	870	870	1600	1200	280	1900	1800	66	2200	8.7

Table 3-17. Excavation Pit Soil Sample Results - Nitrate-Nitrogen and Ammonium-Nitrogen

mg/Kg = milligrams per kilogram; ft = feet. Laboratory reports are presented in Appendix C. See Laboratory reports for Method Detection Limits.

Table 3-18 summarizes soil VOCs results based on EPA Method 8260. Most soil samples had VOC compounds BDL. Detected compounds included benzene, chlorobenzene, chlorodibromo-methane, 2-chlorotoluene, 1,2-dichloroethane, 1,2-dichloropropane, Isopropylbenzene, N-propyl-benzene, 1,2,4-trimethylbenzene, 1,2,3-trimethylbenzene, 1,3,5-trimethylbenzene, and total xylenes.

Imagery: Google Earth; Bing Online Imagery Service Source: (c) Google Earth; (c) 2010 Microsoft Corporation and its data suppliers Map Date: Friday, February 22, 2013 Q:\Simplot\Sunnyside\map_docs\SiteMap.mxd ONE COMPANY

Many Solutions**

HX

Table 3-18. Excavation Pit Soil Sample Results - VOCs

Excavation Sample Location	ES-EB	ES-ET	EB-E	ES-NB	ES-NT	EB-W	ES-SB	ES-ST	ES-WB	ES-WT			
Parameter Depth (ft)	8 to 9	3 to 4	9 to 9.5	8 to 9	3 to 4	9 to 9.5	8 to 9	3 to 4	8 to 9	3 to 4			
Volatile Organic Compounds - EPA Method 8260B (mg/kg)													
Acetone	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL			
Acrylonitrile	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL			
Benzene	BDL	BDL	0.002	BDL	BDL	0.06	0.019	BDL	0.01	BDL			
Bromobenzene	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL			
Bromodichloromethane	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL			
Bromoform	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL			
Bromomethane	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL			
n-Butylbenzene	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL			
sec-Butylbenzene	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL			
tertButylbenzene	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL			
Carbon tetrachloride	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL			
Chlorobenzene	BDL	BDL	BDL	BDL	BDL	0.002	0.002	BDL	0.002	BDL			
Chlorodibromomethane	BDL	BDL	BDL	BDL	BDL	BDL	0.004	BDL	BDL	BDL			
Chloroethane	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL			
2-Chloroethyl vinyl ether	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL			
Chloroform	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL			
Chloromethane	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL			
2-Chlorotoluene	BDL	BDL	0.005	BDL	BDL	0.01	BDL	BDL	0.004	BDL			
4-Chlorotoluene	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL			
1,2-Dibromo-3- Chloropropane	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL			
Dibromomethane	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL			
1,2-Dichlorobenzene	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL			
1,3-Dichlorobenzene	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL			
1,4-Dichlorobenzene	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL			
Dichlorodifluoromethane	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL			
1,1-Dichloroethane	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL			
1,2-Dibromoethane	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL			
1,1-Dichloroethene	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL			
1,2-Dichloroethane	BDL	BDL	BDL	BDL	BDL	0.01	BDL	BDL	BDL	BDL			
cis-1,2-di-chloroethene	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL			
trans-1,2-dichloroethene	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL			
1,2-dichloropropane	BDL	BDL	BDL	BDL	BDL	0.003	BDL	BDL	BDL	0.003			
1,1-dichloropropene	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL			
1,3-dichloropropane	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL			
cis-1,3-dichloropropene	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL			
trans-1,3-dichloropropene	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL			
2,2-dichloropropane	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL			
Di-isopropyl ether	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL			
Ethylbenzene	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL			

Table 3-18. Excavation Pit Soil Sample Results - VOCs

Excavation Sample Location	ES-EB	ES-ET	EB-E	ES-NB	ES-NT	EB-W	ES-SB	ES-ST	ES-WB	ES-WT
Parameter Depth (ft)	8 to 9	3 to 4	9 to 9.5	8 to 9	3 to 4	9 to 9.5	8 to 9	3 to 4	8 to 9	3 to 4
Hexachloro-1,3-butadiene	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Isopropylbenzene	BDL	BDL	BDL	BDL	BDL	0.002	BDL	BDL	BDL	BDL
p-Isopropyltoluene	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
2-Butanone (MEK)	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Methylene Chloride	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
4-Methyl-2-pentanone (MIBK)	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Methyl tertbutyl ether	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Naphthalene	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
N-Propyl-benzene	BDL	BDL	0.002	BDL	BDL	0.005	BDL	BDL	BDL	BDL
Styrene	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
1,1,1,2-Tetrachloroethane	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
1,1,2,2-Tetrachloroethane	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
1,1,2- Trichlorotrifluoroethane	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Tetrachloroethene	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Toluene	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
1,2,3-Trichlorobenzene	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
1,2,4-Trichlorobenzene	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
1,1,1-Trichloroethane	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
1,1,2-Trichloroethane	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Trichloroethene	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Trichlorofluoromethane	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
1,2,3-Trichloropropane	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
1,2,4-Trimethylbenzene	BDL	BDL	0.008	BDL	BDL	0.034	BDL	BDL	0.002	BDL
1,2,3-Trimethylbenzene	BDL	BDL	0.003	BDL	BDL	0.011	BDL	BDL	BDL	BDL
1,3,5-Trimethylbenzene	BDL	BDL	0.005	BDL	BDL	0.014	BDL	BDL	BDL	BDL
Vinyl chloride	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Xylenes, Total	BDL	BDL	0.017	BDL	BDL	0.15	0.018	BDL	0.012	BDL

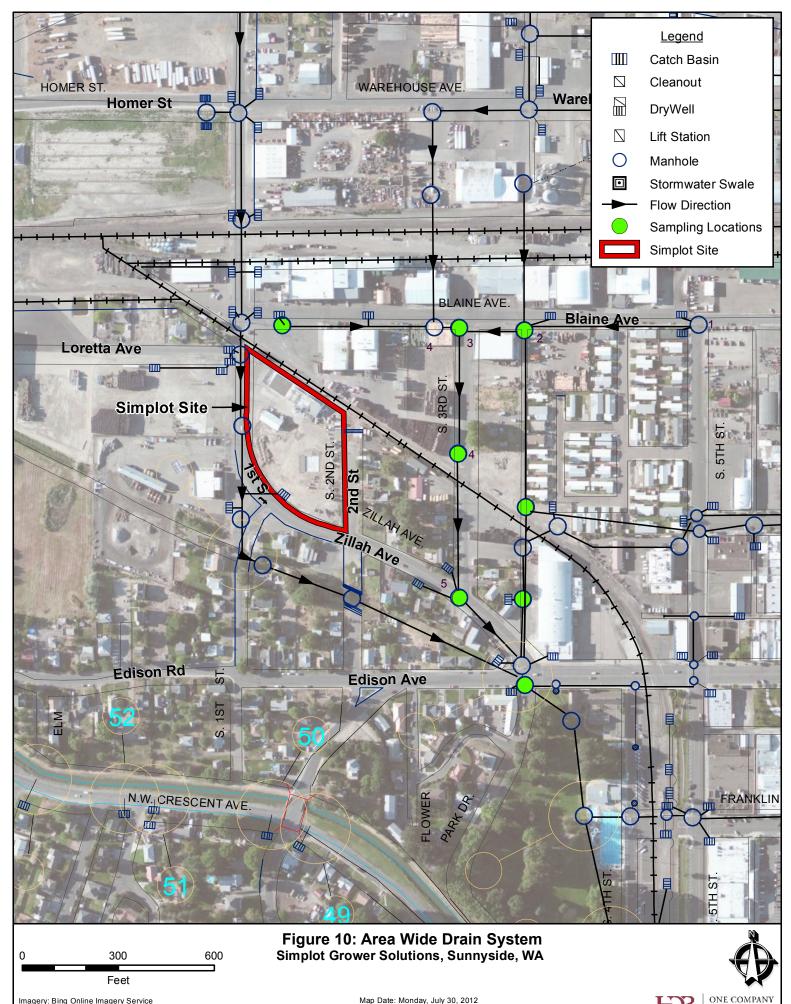
BDL = below detection limit; mg/Kg = milligrams per kilogram; ft = feet. Laboratory reports are presented in Appendix C. See Laboratory reports for Method Detection Limits.

Table 3-19 shows the results for pesticides. Soil samples were BDL for herbicides in all samples.

In addition to collecting discrete soil samples from the excavated pit, HDR's field team collected two composite samples from the stockpiled soils (EP-EC and EP-WC). The laboratory results for these samples are provided in Appendix C. VOCs and chlorinated herbicides were non-detected for both samples. Nitrate-N was 330 and 540 mg/Kg for EP-EC and EP-WC, respectively. Ammonium-N was 760 and 640 mg/Kg for EP-EC and EP-WC, respectively. Based on soil sampling results for VOCs, chlorinated pesticides, and nitrogen, and also based on previous soil sampling results and Simplot's knowledge of site activities, these stockpiled soils are not considered hazardous waste. Soils were later removed from site and used for land application (permitted through Benton-Franklin Health District).

Sample Location	ES-EB	ES-ET	EB-E	ES-NB	ES-NT	EB-W	ES-SB	ES-ST	ES-WB	ES-WT
Parameter/ Depth (ft)	8 to 9	3 to 4	9 to 9.5	3 to 4	3 to 4	9 to 9.5	8 to 9	3 to 4	8 to 9	3 to 4
			Herbicide	es - EPA N	lethod 81	51 (mg/kg)			
2,4-D	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Dalapon	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
2,4-DB	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Dicamba	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Dichloropropane	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Dinoseb	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
MCPA	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
MCPP	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
2,4,5-T	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
2,4,5-TP (Silvex)	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL

Table 3-19. Excavation Soil Sample Results - Pesticides


Laboratory reports are presented in Appendix C. See Laboratory reports for Method Detection Limits. RDI_{a} = below detection limit; ma/ka = milliarame par kiloaram; ft = fact

 BDL = below detection limit; mg/Kg = milligrams per kilogram; ft = feet.

3.3.3.2 Subsurface Drains

With the construction of the Sunnyside Canal in the late 1800s, irrigated agriculture was brought to the Sunnyside area. Using flood irrigation in fields caused the water table to rise, resulting in the flooding of basements and low lying areas. In response, underdrains were installed throughout the area. The purpose of these drains was to lower the groundwater table to prevent flooding. In addition to the underdrain system, the City installed a stormwater conveyance system consisting of catch basins, manholes, and piping.

In the project area, the Sunnyside Irrigation District (SVID) operates and maintains the DR3 system, which is a subsurface drain system that conveys mostly groundwater (drain water) to Sulphur Creek and then to Yakima River. Piping is typically concrete or clay with open joints. While the piping is solid, the joints are typically set half an inch apart to allow for groundwater infiltration. In many places, the system is interconnected with stormwater drainage, and the distinction between SVID drainage system and City stormwater system is not always clear. **Figure 10** illustrates the underdrainage and stormwater system in the project area.

Imagery: Bing Online Imagery Service Source: (c) 2010 Microsoft Corporation and its data suppliers Map Date: Monday, July 30, 2012 Q:\Simplot\Sunnyside\map_docs\SiteMap.mxd

ЫX

Many Solutions"

There are four drain systems within the site area (City workers, September 2012).

- <u>Old Under-Drain System</u> The oldest and deepest set of drains, referred to as "underdrains," was installed during City development in the early 1900s. Today, little is known about this drain system. There is no known access to these under-drains in the area and the effectiveness of the drains for controlling groundwater elevation in the project area is uncertain.
- <u>SVID Drain System</u> The second subsurface drain system in the project area was installed over 80 years ago and today is managed by the SVID. In the project area, this system conveys mostly groundwater in a southeasterly direction to Sulphur Creek and then to Yakima River. Piping is typically concrete or clay with open joints. While the piping is solid, the joints are typically set half an inch apart to allow for groundwater infiltration. The drain system continues to pick up groundwater through the Sunnyside area, which could include shallow groundwater within the site area.
- <u>City Storm Drain System -</u> The City also maintains a stormwater drain system in the area, which is the third series of subsurface drains. This system was installed in the 1960s. It consists of clay pipes and is predominantly a closed-pipe system. In many places, the SVID and City systems are interconnected, and the distinction between water conveyed within SVID drainage system and City of Sunnyside stormwater system is not always clear. The combination of all three subsurface drain systems makes it complex to assess subsurface drainage on shallow groundwater.
- <u>Industrial System</u> The fourth subsurface drain system in the area is related to industrial facilities that pipe industrial wastewater and on-site stormwater to the Port of Sunnyside's wastewater treatment plant. City municipal sewer pipes are also in the area. These pipes are not believed to act as groundwater drains; however, it is possible for incidental inflow and infiltration (I&I) of groundwater into these pipes.

In June 2012, Stantec sampled subsurface drain water on behalf of CEMC and ARCO – the responsible parties for the Bee-Jay Scales site. The assessment included water quality sampling and flow measurements in 21 manholes covering an approximate half-mile square area, which included Simplot's site. Water quality results indicated that nitrates and some other constituents were elevated in some samples, with concentrations of nitrate-N ranging between 9.2 and 13.6 milligrams per liter (mg/L) in the drains east of S. 1st Street and north of Zillah. Unfortunately, Stantec was unable to determine discharge and constituent loading (e.g., pounds [lbs] per day), which would allow for a determination of potential pollutant contribution to the drains via groundwater infiltration, if any.

After the Stantec sampling, Ecology requested that Simplot perform a similar subsurface drain study, including flows and water quality samples so that loads could be calculated. The area of study would be the drainage system downgradient of Simplot's facility, which is to the east. The goal would be to attempt to establish if impacted shallow groundwater from Simplot's site was entering a drain system.

On September 12, 2012, HDR, SVID, and the City conducted a visual assessment of the drain system downgradient of the Simplot site. At that time, the City's drains were dry as there had been no precipitation, and the only flows would be assumed to be groundwater and SVID irrigation water.

Manhole covers east of the Simplot site were pulled in order to observe manhole construction and if water was flowing at the time through the attached piping.

The north-south drain on the west side of S. 3rd Street, with corresponding manholes M-14 and M-15 (**Figure 10**), had water flowing through it at the time of the visit. Water flows to the M-14 location from the west and east in pipes along the south side of Blaine Street, and then is piped down S. 3rd Street. In June 2012, nitrate-N concentrations in M-14 and M-15 were 12.3 and 12.6 mg/L, respectively (Stantec 2012). According to the City, the piping along 3rd Street is solid piping with solid joints and is not intended to serve as a groundwater drain. The City indicated that it is unlikely groundwater would enter the piping in this area. However, water was flowing through the pipe in September, which would indicate either some connection with SVID drains or that these drains may not be closed pipes.

Manhole M-18, east of S. 3rd Street was dry during the site visit, and is part of the City's storm drain system (**Figure 10**).

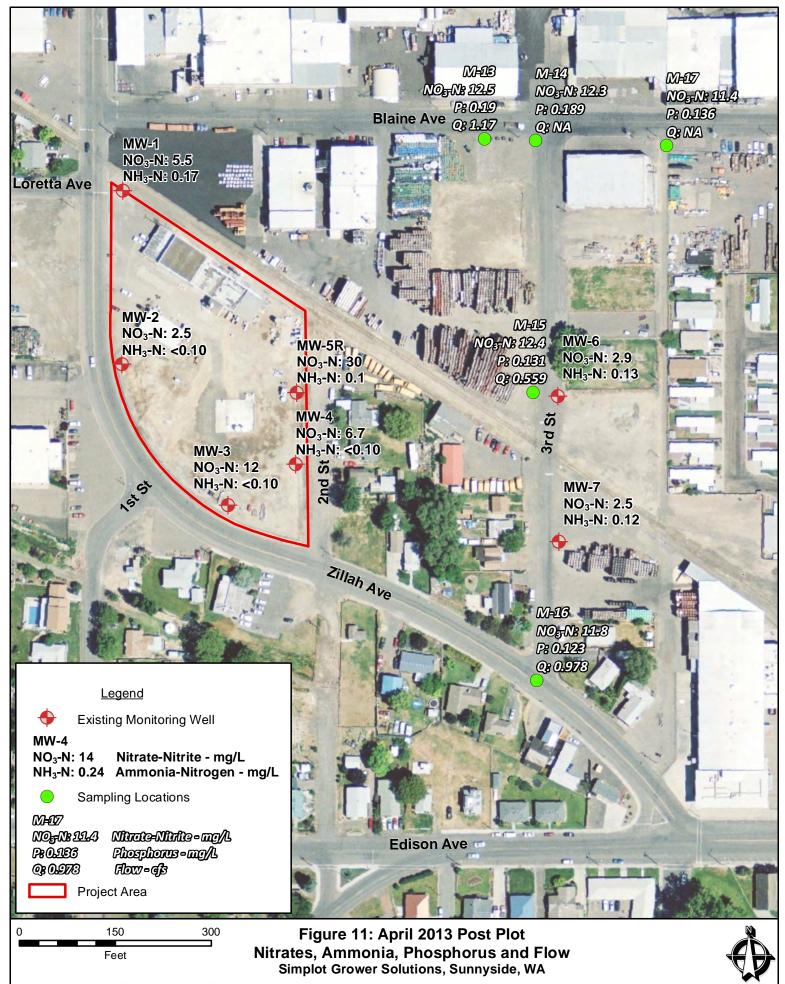
Following source removal and monitoring well activities conducted in fall 2012, Simplot submitted *Source Removal, Drain Evaluation, Monitoring Well Construction, and Sampling Report* (HDR 2013a) to Ecology in February 2013. In the document, HDR made the following recommendation regarding sampling of drains:

• Flow and concentrations in the drain pipe on the west side of 3rd Street should be further characterized to confirm the assumption that groundwater is not entering this system. It was recommended that samples and flow be determined at manholes M-14, M-15, and M-16.

HDR's field team used a Marsh-McBirney flow meter (flo-mate 2000) equipped with a wading rod to measure average velocity in the drains. Average open channel flow was calculated using the mean velocity and cross-section area following procedures outlined in the *Open Channel Profiling Handbook* (Marsh-McBirney 1994). From flow and constituent concentration, the constituent load (expressed in pounds per day [lbs/d]) passing through the manhole (through the pipe system) was estimated.

In addition to velocity measurements, HDR's field team collected water samples using a disposal bailer for in-field analysis for pH, conductivity, and temperature. The field team placed the samples into laboratory-supplied sample bottles for analysis for chloride, sulfate, total phosphorus, nitrate, and ammonium (**Table 3-20**). Sampling protocol followed the *Source Removal, Drain Evaluation, Monitoring Well Construction, and Sampling Work Plan* (HDR 2012a). Samples were analyzed by Kuo Testing Labs, Inc. of Othello, Washington. Laboratory reports are presented in Appendix C.

Analytical Parameter	Method	Preservative		
Chloride and sulfate	EPA 300.0	4°C		
Ortho- phosphorus	SM20 4500 PE	4°C		
Total phosphorus	SM20 4500 PE	Sulfuric Acid (H ₂ SO ₄)		
Nitrate-N	EPA 353.2 or EPA 300.0	Sulfuric Acid (H ₂ SO ₄)		
Ammonium-N	SM20 4500 NH3 D	Sulfuric Acid (H ₂ SO ₄)		


Table 3-20. Proposed Laboratory Analyses for Drain Assessment

FSS

Table 3-21 summarizes the findings of field measurements and analytical sample results from theApril 2013 activities. Figure 10 illustrates drain and manhole locations and Figure 11 illustratesselected data from sampled drains (note that drain M-18 was dry at the time of sampling).

Manhole ID	M - 13	M - 14	M - 15	M - 16	M - 17
Depth to Water (ft)	15.4	15.4	14.9	14.6	14.4
Pipe Diameter (in)	30	30	24	30	30
Depth of Water (ft)	0.50	0.30	0.25	0.40	NA
Avg. Flow Velocity (ft/s)	1.52	NA	1.25	1.06	NA
Discharge Flow (cfs)	1.17	NA	0.559	0.978	NA
Flow Direction	E to M-14	S to M-15	S to M-16	SE to M-21	W to M-14
рН	7.5	7.4	7.1	7.5	7.7
Temperature (°C)	14.2	14.5	14.4	15.0	14.4
Conductivity (mS/cm)	0.626	0.636	0.627	0.644	0.581
Chloride Concentration (mg/L)	28.0	28.5	26.0	31.0	22.0
Chloride Load (lbs/d)	176	NA	78.5	164	NA
Sulfate Concentration (mg/L)	49.0	50.0	51.0	52.0	61.0
Sulfate Load (Ibs/d)	308	NA	154	275	NA
Total Phosphorus (mg/L)	0.190	0.189	0.131	0.123	0.136
Phosphorus Load (Ibs/d)	1.20	NA	0.395	0.650	NA
Nitrate-N Concentration (mg/L)	12.5	12.3	12.4	11.8	11.4
Nitrate Load (Ibs/d)	78.6	NA	37.4	62.3	NA
Ammonia-N Concentration (mg/L)	0.510	0.560	0.810	0.690	2.98
Ammonia Load (Ibs/d)	3.21	NA	2.45	3.64	NA
Comments		non-laminar flow			8-inch pipe at about 3 feet flowing into manhole and mixing with large drain water

ft=feet; in=inches; ft/s=feet per second; cfs=cubic feet per second; mS/cm=microsiemens per centimeter; mg/L=milligrams per liter; lbs/d=pounds per day

Imagery: 2011 Yakima 0.5 ft, ESRI World Imagery Map Service Source: Esri, DigitalGlobe, GeoEye, i-cubed, USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community

Map Date: Friday, September 27, 2013 Q:\Simplot\Sunnyside\map_docs\SiteMap.mxd ONE COMPANY

Many Solutions*

БJ

The drain flow pattern is illustrated in **Figure 10**. Water flows from manholes M-13 and M-17 into M-14 and then toward M-15 and M-16. If groundwater were entering the system, flows would be expected to increase from M-14 to M-15 to M-16 (groundwater flow from the site would be expected to intercept the piping in the area of M-15). While M-16 has a slightly larger flow than M-15, the largest flow was M-13, which is upgradient. Furthermore, M-13 has a higher nitrate-N concentration and load compared to downgradient drains M-15 and M-16. Nitrate load calculations do increase in M-16 compared to M-15, suggesting that nitrate quantity is increasing, possibly suggesting inflow. However, the load is less than calculated for M-13.

In April 2013, HDR's field team measured flow velocity and collected water samples from five manholes associated with the underground drain system. Constituent loadings, concentrations, and flows remained relatively constant throughout the system, though there was a slight increase in flow and nitrate loading between M-15 and M-16 (thought the upgradient M-13 had higher flows and loadings). As described previously, there are multiple drain systems, including the "old under-drain system," which is the oldest and deepest set of drains (but no mapping of this system is available). Thus, while the drain system along 3rd Street has been identified and monitored, there may be other drains that have not been identified.

3.3.3.3 2013 Groundwater Monitoring Well Construction and Sampling In November 2012, two off-site monitoring wells were installed downgradient of the Simplot site (MW-6 and MW-7). Additionally, on-site monitoring well MW-5 was abandoned due to the soil excavation, and MW-5R was installed on site to replace MW-5 (Figure 11).

Well construction followed similar design and approach as the previous monitoring wells (HDR 2013b). Well construction details are summarized in **Table 3-22**.

Monitoring Well	Top PVC Elevation (ft amsl)	Depth of Well (ft bgs)	Screen Depth (ft bgs)
MW-5R	735.41	21.6	11-21
MW-6	736.84	21.6	6.0-21.0
MW-7	734.43	24.45	9.0-24.0

Table 3-22. Well Construction Details

ft amsl = feet above mean sea level; ft bgs = feet below ground surface

Following well construction, all seven groundwater monitoring wells were sampled on December 5, 2012. Field sampling activities conducted during the December event followed the *Standard Operating Procedure for Groundwater Sampling* that was included in Appendix A of the work plan (HDR 2010). Samples were analyzed for the same parameters listed in **Table 3-15**. Results are summarized in **Table 3-25** in Section 3.4.4.

Depth to groundwater at each monitoring well was measured on December 5, 2012, following construction and survey of the off-site wells and MW-5R (**Table 3-23**).

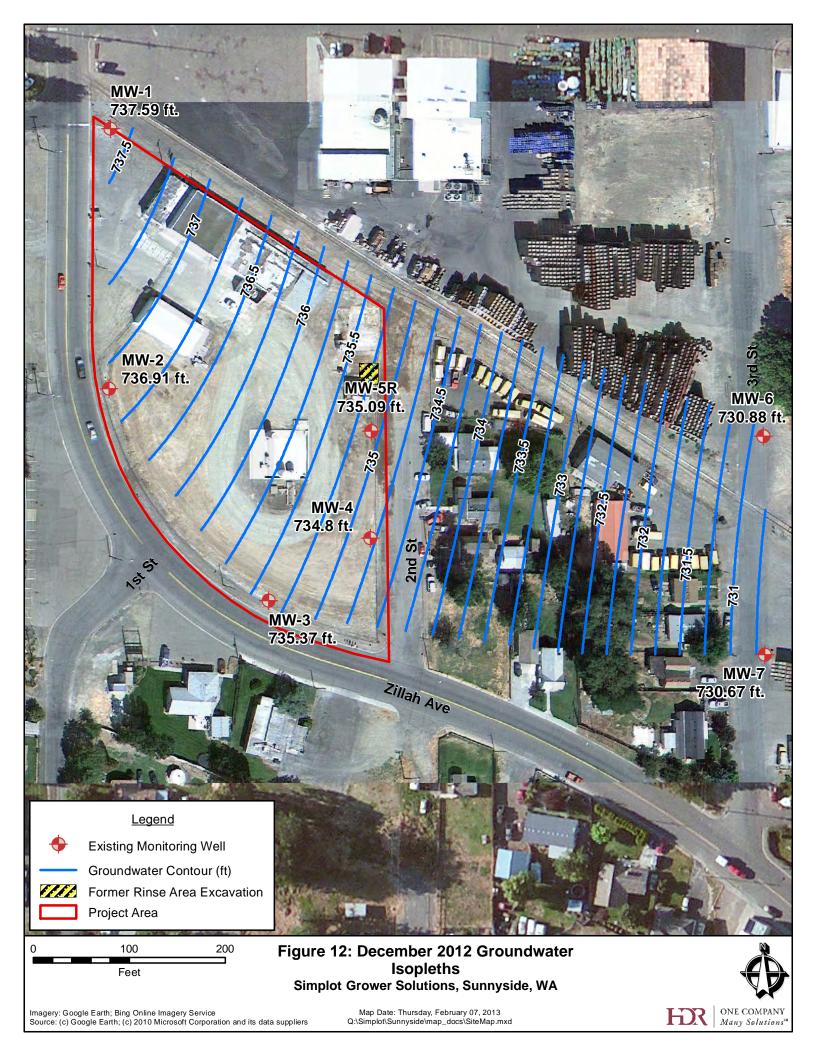

Well	Measured Depth to Water (ft)	Reference Elevation ¹ (ft)	Groundwater Elevation (ft)
MW-1	11.17	745.76	737.59
MW-2	9.3	745.34	736.91
MW-3	12.86	745.58	735.37
MW-4	12.56	744.95	734.8
MW-5R	10.32	745.15	735.09
MW-6	12.58	743.46	730.88
MW-7	12.39	743.06	730.67

 Table 3-23. Groundwater Elevation Measurement, December 5, 2012

¹ Top of casing elevation surveyed by Permit Surveying, Inc.; ft = feet

Figure 12 illustrates the December 2012 groundwater elevation contours. The calculated shallow groundwater flow direction is to the east (98.10 degrees from north) at a gradient of 0.009 feet per foot (ft/ft). Based on the observed groundwater flow, the following wells are deemed up, down, or crossgradient as follows:

- MW-1 upgradient well
- MW-2 upgradient well
- MW-3 –side or downgradient well
- MW-4 downgradient well
- MW-5R downgradient well
- MW-6 downgradient well
- MW-7 downgradient well

3.4 2010 through 2018 Groundwater Monitoring

3.4.1 References

- HDR. 2011. Monitoring Well Construction and Sampling Report. April 2011.
- HDR. 2012c. 2011 Monitoring Well Sampling Report. May 2012.
- HDR. 2013a. Source Removal, Drain Evaluation, Monitoring Well Construction, and Sampling Report. February 2013
- HDR. 2013b. Supplemental Drain Evaluation and Monitoring Well Sampling Report. September 2013.
- HDR. 2015a. *Monitoring Well Sampling Update.* Simplot Growers Solutions. February 4, 2015.
- HDR. 2015b. Monitoring Well Sampling Update. Simplot Grower Solutions. July 2015.
- HDR. 2015c. Monitoring Well Sampling Update. Simplot Grower Solutions. November 2015.
- HDR. 2016. Monitoring Well Sampling Update. Simplot Grower Solutions. June 2016.
- HDR. 2017a. Monitoring Well Sampling Update. Simplot Grower Solutions. January 2017
- HDR. 2017b. *Monitoring Well Sampling Update*. Simplot Grower Solutions. July 2017.
- HDR. 2018a. *Monitoring Well Sampling Update*. Simplot Grower Solutions. January 2018.
- HDR. 2018b. Monitoring Well Sampling Update. Simplot Grower Solutions. June 2018.

3.4.2 Data Objectives and Needs

Groundwater monitoring objectives were to collect groundwater quality samples to assess groundwater conditions and also to assess trends in groundwater COCs over time.

3.4.3 Groundwater Monitoring Activities

HDR sampled Simplot's groundwater monitoring wells on the following dates:

- March 17, 2011
- June 30, 2011
- September 15, 2011
- December 5, 2012
- April 4, 2013
- July 24,2013
- October 9, 2013
- October 28, 2014
- April 29, 2015
- October 14, 2015
- April 19, 2016
- October 31, 2016
- May 3, 2017
- December 28, 2017
- April 25,2018

Sampling protocol followed the *Standard Operating Procedure for Groundwater Sampling* that was included in Appendix A of the work plan (HDR 2012a). Simplot submitted groundwater sampling protocols, field sampling sheets, laboratory reports, data validation reports, and interpretation of results to Ecology (see listing of reference in Section 3.4.1). Quality assurance/quality control (QA/QC) included collecting a field duplicate, trip blank, and field blank. Analytical parameters are listed in **Table 3-15**, where analysis was later reduced to VOCs, Resource Conservation and Recovery Act (RCRA) metals, and nitrate and ammonia. This reduction was based on chlorinated pesticides being non-detected and polynuclear aromatic hydrocarbons (PAHs) either being non-detected or below MTCA cleanup levels (see Section 4.0 for further discussion of COCs and MTCA cleanup levels). A summary of groundwater sampling results is presented in **Table 3-25** (only constituents with at least detection is presented). Laboratory reports are presented in Appendix C.

3.4.4 Groundwater Elevations and Contour Maps

F)5

The reports referenced in Section 3.4.1 provide information on depth to groundwater and calculated groundwater elevations. Groundwater isopleth maps for all sampling events are presented in Appendix C. The groundwater flow direction has been consistently toward the east/southeast direction.

Depth to groundwater at each monitoring well in April 2018 and at MW-7 only in June 2018 is presented in **Table 3-24**.

Well	Reference Elevation ¹	Measured Depth to Water	Groundwater Elevation
weii		(feet)	
	1	April 25, 2018	
MW-1	745.76	9.03	736.73
MW-2	745.34	9.48	735.86
MW-3	745.58	11.11	734.47
MW-4	744.95	11.00	733.95
MW-5R	745.41	11.06	734.35
MW-6	743.46	12.76	730.70
MW-7	743.06	12.59	730.47
		June 20, 2018	
MW-7	743.06	12.71	730.35

Table 3-24. Depth to Groundwater and Groundwater Elevations for April 25, 2018

¹ Top of casing elevation surveyed by Permit Surveying, Inc.

Figure 13 illustrates groundwater elevation contours for September 2018. The calculated shallow groundwater flow direction is to the southeast (approximately 101.5 degrees from north) at a gradient of 0.026 ft/ft. Based on the observed groundwater flow, the following wells are deemed up, down, or cross-gradient as follows:

- MW-1 upgradient well
- MW-2 upgradient well
- MW-3 –side or downgradient well
- MW-4 downgradient well
- MW-5R downgradient well
- MW-6 downgradient well
- MW-7 downgradient well

Imagery: March 27 2015 0.5 m resolution; Copyright Terraserver 2013 Yakima 0.5 ft, ESRI World Imagery Map Service; Esri, DigitalGlobe, GeoEye, i-cubed, USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community

Feet

Groundwater Isopleths Simplot Grower Solutions, Sunnyside, WA

> Map Date: Wednesday, September 26, 2018 Q:\Simplot\Sunnyside\map_docs\SiteMap.mxd

Detected Compounds (mg/L)	3/17/2011	6/30/2011	9/15/2011	12/16/2011	12/5/2012	4/4/2013	7/24/2013	10/9/2013	10/28/2014	4/29/2015	10/14/2015	4/19/2016	10/31/2016	5/3/2017	12/28/2017	4/25/2018
(N-1								
Sulfate	NA	NA	NA	NA	NA	140	130	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ammonia-Nitrogen	0.52	0.77	0.49	0.66	0.16	0.17	0.18	0.14	<0.25	<0.25	0.0414	0.075	0.124	0.112	<0.100	<0.10
Nitrate-Nitrite	8.3	7.8	6.4	5.6	7.5	5.5	5.9	5.1	6.2	4.1	5.78	7.6	1.8	11.5	5.71	7.2
Arsenic (dissolved)	<0.020	0.049	0.038	0.036	0.034	0.037	<0.020	0.04	0.043	0.03	0.0478	0.0418	0.0423	0.0402	0.0473	0.0861
Barium (dissolved)	0.065	0.12	0.053	0.034	0.09	0.04	0.057	0.051	0.064	0.057	0.0554	0.0512	0.0681	0.0721	0.0524	1.49
Cadmium (dissolved)	<0.0050	0.0055	<0.0050	<0.0050	<0.0050	<0.0050	0.0058	<0.0050	<0.0050	0.0015	< 0.0050	<0.0050	<0.0050	<0.0020	<0.00200	0.0011
Lead (dissolved)	0.011	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.020	<0.020	<0.020	0.00455	<0.020	<0.020	<0.0050	<0.00500	0.0438
Selenium (dissolved)	<0.020	0.038	<0.020	<0.020	<0.020	<0.020	0.02	<0.020	<0.020	0.0088	0.00902	<0.020	<0.020	0.00924	0.00841	0.0116
Silver	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.00068
Trichloroethene	0.0033	<0.0010	<0.0010	<0.0010	<0.0010	<0.001	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.00100	<0.00040
Residual Range Organics	<0.32	<0.25	0.44	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	NA	NA	NA	NA	NA	NA
Diesel Range Organics	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.045	NA	NA	NA	NA	NA	NA
Benzo (a) anthracene	NA	NA	NA	NA	NA	NA	NA	NA	NA	7.90E-06	NA	NA	NA	NA	NA	NA
Naphthalene	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.000027	<0.0010	<0.00100	<0.00100	<0.00500	<0.00500	<0.004
1-Methylnaphthalene	NA	NA	NA	NA	NA	NA	NA	NA	NA	9.50E-06	NA	NA	NA	NA	NA	NA
2-Methylnaphthalene	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.000012	NA	NA	NA	NA	NA	NA
		<u>.</u>	<u>.</u>				M	N-2	L		<u> </u>		<u> </u>			
Sulfate	NA	NA	NA	NA	NA	290	340	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ammonia-Nitrogen	0.17	<0.10	0.22	0.18	<0.10	<0.10	0.1	0.077	<0.25	<0.25	<0.25	0.063	<0.25	0.12	<0.100	<0.10
Nitrate-Nitrite	7.1	5.8	6.2	5.1	3.4	2.5	2.6	2.8	2.2	2.2	2.6	2.81	2.98	3.4	3.28	3.5
Arsenic (dissolved)	0.058	0.081	0.11	0.083	0.06	0.067	0.029	0.064	0.06	0.047	0.053	0.0505	0.0551	0.0543	0.0618	0.0659
Barium (dissolved)	0.037	0.091	0.049	0.037	0.053	0.056	0.064	0.061	0.07	0.082	0.089	0.0606	0.06	0.0495	0.0378	0.181
Cadmium (dissolved)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0053	<0.0050	<0.0050	0.0012	<0.0050	<0.0050	<0.0050	0.002	<0.0020	0.00011
Chromium, (dissolved)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.0086
Lead (dissolved)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.0062
Selenium (dissolved)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.0033
Trichloroethene	0.0016	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
Diesel Range Organics (DRO)	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.049	NA	NA	NA	NA	NA	NA
Benzo(a)anthracene	NA	NA	NA	NA	NA	NA	NA	NA	NA	7.40E-06	NA	NA	NA	NA	NA	NA
Benzo(b)fluoranthene	NA	NA	NA	NA	NA	NA	NA	NA	NA	2.10E-06	NA	NA	NA	NA	NA	NA
							M	N-3								
Sulfate	NA	NA	NA	NA	NA	590	630	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ammonia-Nitrogen	0.15	<0.10	<0.10	<0.10	<0.10	<0.10	0.11	0.086	<0.25	<0.25	0.0853	0.058	<0.25	0.047	<0.100	<0.10
Nitrate-Nitrite	7	8.5	11	9.3	11	12	18	7.7	16	16	14.9	12.1	10.1	10.4	7.49	6.7
Arsenic (dissolved)	0.027	0.062	0.038	0.062	0.036	0.05	<0.020	0.039	0.046	0.026	0.0554	0.0521	0.052	0.0598	0.057	0.0916
Barium (dissolved)	0.072	0.053	0.046	0.038	0.046	0.043	0.046	0.044	0.045	0.044	0.242	0.0344	0.0382	0.0342	0.0324	1.03
Cadmium (dissolved)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.0004
Chromium, (dissolved)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.00694	<0.0100	0.00148	<0.0100	<0.0100	0.0592
Lead (dissolved)	0.027	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.016	<0.0050	<0.0050	<0.0050	<0.0050	0.0356
Selenium (dissolved)	0.036	0.095	<0.020	0.021	0.034	0.04	0.065	0.038	0.034	0.031	0.0358	0.0273	0.0259	0.0262	0.0201	0.0231
Trichloroethene	0.001	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.0004

NameNaNaNaNaNaNaNo<	Table 3-25. Summary of Compou							r		1	1					1	
Beach <th></th> <th></th>																	
NameNaNaNaNaNaNaNo<	Diesel Range Organics (DRO)	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.17	NA	NA	NA	NA	NA	NA
No. NA	Residual Range Organics (RRO)	NA	NA	NA	NA	NA	NA	NA	NA		0.11	NA	NA	NA	NA	NA	-
SinterNAN	Naphthalene	NA	NA	NA	NA	NA	NA			NA	0.000027	<0.0010	<0.0010	NA	<0.0050	<0.0050	0.004
 Ammense Mingeng 0.24 0.04 0.11 0.44 0.45 0.404 0.404 0.405 0.404 0.405 0.405								M	W-4	-	-					-	
Ninge-Ning149.84.47.87.96.75.14.38.69.29.8811.1129/6477.122.53.8Wareir dissolweid0.260.0070.0080.0070.0080.0070.00820.00840.00820.00840.00820.0084 <td< td=""><td>Sulfate</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>140</td><td>120</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></td<>	Sulfate	NA	NA	NA	NA	NA	140	120	NA	NA	NA	NA	NA	NA	NA	NA	NA
strained (solowed)0.0200.0240.0240.0240.0200.0770.03720.01770.0396 <t< td=""><td>Ammonia-Nitrogen</td><td>0.24</td><td><0.10</td><td>0.11</td><td>0.4</td><td><0.10</td><td><0.10</td><td>0.11</td><td>0.074</td><td><0.25</td><td><0.25</td><td><0.25</td><td>0.048</td><td><0.25</td><td>0.039</td><td><0.100</td><td>0.1</td></t<>	Ammonia-Nitrogen	0.24	<0.10	0.11	0.4	<0.10	<0.10	0.11	0.074	<0.25	<0.25	<0.25	0.048	<0.25	0.039	<0.100	0.1
Barun dissolvedi0.0640.0430.0140.0130.0380.0060.00560.0060	Nitrate-Nitrite	14	9.6	8.4	7.8	79	6.7	5.1	4.8	6.6	6.2	9.66	11.1	123 (48.4) ¹	74	28.5	38
Camime (inscription Camime (inscription Camime (inscription Camime (inscription 	Arsenic (dissolved)	<0.020	0.04	0.028	0.031	0.024	0.024	<0.020	0.027	0.032	0.017	0.0302	0.0251	0.0356	0.0315	0.0273	0.0477
 Damma (issolved) Alva Alva<td>Barium (dissolved)</td><td>0.054</td><td>0.043</td><td>0.11</td><td>0.041</td><td>0.13</td><td>0.038</td><td>0.039</td><td>0.04</td><td>0.049</td><td>0.055</td><td>0.043</td><td>0.0362</td><td>0.0974</td><td>0.0386</td><td>0.0436</td><td>0.586</td>	Barium (dissolved)	0.054	0.043	0.11	0.041	0.13	0.038	0.039	0.04	0.049	0.055	0.043	0.0362	0.0974	0.0386	0.0436	0.586
Land (discolved)0.0120.00290.00290.0050 <td>Cadmium (dissolved)</td> <td><0.0050</td> <td><0.0050</td> <td><0.0050</td> <td><0.0050</td> <td><0.0050</td> <td><0.0050</td> <td>0.0064</td> <td><0.0050</td> <td><0.0050</td> <td>0.00081</td> <td><0.0050</td> <td><0.0050</td> <td><0.0050</td> <td><0.0020</td> <td><0.0020</td> <td>0.00032</td>	Cadmium (dissolved)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0064	<0.0050	<0.0050	0.00081	<0.0050	<0.0050	<0.0050	<0.0020	<0.0020	0.00032
Summing disposived 40.020 0.032 -0.020 -0.040	Chromium (dissolved)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.0324
12.Diendogrogenen0.0140.0160.0040.0060.00430.00630.00630.00620.00730.00330.00630.00630.00630.00630.00630.00630.00630.00730.00130.00120.00130.00140.00130.0014 <t< td=""><td>Lead (dissolved)</td><td>0.012</td><td><0.0050</td><td>0.0062</td><td><0.0050</td><td><0.0050</td><td><0.005</td><td><0.0050</td><td><0.0050</td><td><0.0050</td><td><0.0050</td><td>0.00541</td><td><0.0050</td><td><0.0050</td><td><0.0050</td><td><0.0050</td><td>0.0234</td></t<>	Lead (dissolved)	0.012	<0.0050	0.0062	<0.0050	<0.0050	<0.005	<0.0050	<0.0050	<0.0050	<0.0050	0.00541	<0.0050	<0.0050	<0.0050	<0.0050	0.0234
BeacolgianthraceneNA	Selenium (dissolved)	<0.020	0.039	<0.020	<0.020	<0.020	<0.020	0.023	<0.020	<0.020	<0.020	<0.020	<0.020	0.0289	0.0128	0.0089	0.0074
Naphthelene NA	1,2-Dichloropropane	0.014	0.016	0.0056	0.004	0.065	0.0054	0.005	0.0046	0.0063	0.0063	0.00689	0.00752	0.0603	0.0492	0.0428	0.0686
Arminola-Nitrogen B80 480 B50 370 Arminolia-Nitrogen 550 220 310 280 Aramical-Nitro 659 220 310 280 Aramical-Nitro 659 220 310 280 Aramic (dissolved) 0.074 0.088 0.061 40.050 Gamium (dissolved) 0.0061 40.050 40.050 40.050 Gaedine Range Organics 1.5 1.5 61.8 1.8 Acrolein -0.055 0.0062 0.068 1.04 Dictoberazene 0.18 0.16 0.077 0.14 Chloroberazene 0.012 0.0091 0.0032 0.0081 1,2-Dichloropropane 0.18 0.11 0.082 0.0081 1,2-Dichloropropane -0.0090 -0.0090 0.0024 0.0072 1,2-Dichloropropane 0.024 0.021 0.021 0.021 1,2,2-Trimetyburszene 0.024 0.022 0.026 1,2,3-Trimetyburszene	Benzo(a)anthracene	NA	NA	NA	NA	NA	NA	NA	NA	NA	8.80E-06	NA	NA	NA	NA	NA	NA
Anmonia-Nitrogen 860 480 850 370 Wirate-Nitro 530 200 310 290 Strenic (dissolved) 0.074 0.18 0.16 0.23 Barlum (dissolved) 0.074 0.18 0.16 0.23 Barlum (dissolved) 0.074 0.080 0.081 0.051 Cadd (dissolved) 0.0074 <0.050	Naphthalene	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.000049	NA	NA	NA	<0.0050	<0.0050	<0.0040
Nitrate-Nitrie 530 200 310 290 Arsenic (dissolved) 0.074 0.18 0.16 0.33 Barlum (dissolved) 0.12 0.04 0.038 0.054 Camum (dissolved) 40.0050 0.0081 <0.0050								Μ	W-5								
Ansenic (dissolved) 0.074 0.18 0.16 0.23 Barium (dissolved) -0.050 -0.0500 -0.0500 -0.0500 Cadmium (dissolved) -0.0074 -0.0050 -0.0500 -0.0500 Lead (dissolved) -0.0074 -0.0050 -0.0050 -0.0050 Sasoline Rango Organics 1.5 0.6 1.8 Arcolein -0.25 -0.050 -0.0086 Benzane 0.18 0.16 0.077 0.14 Chioroblance -0.0056 -0.0052 -0.0031 -0.0041 1,2-Dichforoethane 0.18 0.11 0.082 0.0032 1,2-Dichforoethane -0.0050 -0.0052 0.0032 -0.0052 1,2-Dichforoethane -0.012 0.0051 0.0011 -0.0011 Isopropibenzene -0.026 -0.0050 0.0024 0.032 1,2-Dirichforberzene 0.024 0.021 0.024 1,3-5 ⁺ Timothybenzene 0.022 0.026 0.0024 1,3-5 ⁺ Timothybenzene <t< td=""><td>Ammonia-Nitrogen</td><td>860</td><td>480</td><td>850</td><td>370</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Ammonia-Nitrogen	860	480	850	370												
Barium (dissolved) 0.12 0.04 0.038 0.054 Cadmium (dissolved) 40.050 0.0061 <0.0050	Nitrate-Nitrite	530	200	310	290												
Cadmium (dissolved) 0.0061 Lead (dissolved) 0.0074 0.0050	Arsenic (dissolved)	0.074	0.18	0.16	0.23												
Laad (dissolved) 0.0074 4.0050 <0.0050 <0.0050 Gasoline Range Organics 1.5 1.5 0.86 1.8 Acrolein <0.25 <0.050 0.0068 1.8 Beazene 0.18 0.16 0.077 0.14 Chlorobenzene 0.0056 0.0055 0.0035 0.0042 2-Chlorobluene <0.0050	Barium (dissolved)	0.12	0.04	0.038	0.054												
Gasoline Range Organics 1.5 1.5 0.86 1.8 Acrolein 0.25 <0.050 0.0088 Benzene 0.18 0.16 0.077 0.14 Chiorobenzene 0.0050 <0.0050 0.0042 2-Chiorobluene <0.0050 <0.0050 <0.0042 0.018 1.2-Dichloroprigane 0.18 0.11 0.082 0.0081 Dipubnizane <0.0050 <0.0011 0.0031 1.2-Dichloroprigane <0.0050 <0.0011 0.0011 Sopropribenzene <0.0050 <0.0024 0.0032 n-Propylbenzene <0.0088 0.042 0.034 1.3-Si-Trimetriybenzene <0.024 0.021 0.012 0.024 Xiptens, Total <0.25 0.22 0.044 0.24 Kiptens, Total <0.25 0.22 0.26 Diese Range Organics <1.5 <1.4 0.61 2 Residual Range Organics <0.026 <0.00055 <0.000055 N	Cadmium (dissolved)	<0.0050	0.0061	<0.0050	<0.0050												
Acrolein <th< th=""> <th<< td=""><td>Lead (dissolved)</td><td>0.0074</td><td><0.0050</td><td><0.0050</td><td><0.0050</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<<></th<>	Lead (dissolved)	0.0074	<0.0050	<0.0050	<0.0050												
Benzene 0.18 0.16 0.077 0.14 Chlorobenzene 0.0056 0.0055 0.0035 0.0042 2-Chlorobluene <0.0050	Gasoline Range Organics	1.5	1.5	0.86	1.8												
Chloroberzene 0.0056 0.0055 0.0035 0.0042 2-Chlorotoluene <0.0050	Acrolein	<0.25	<0.25	<0.050	0.068												
2-Chlorotoluene < 0.0050 < 0.0010 0.003 1,2-Dichloropcpane 0.18 0.11 0.082 0.18 1,2-Dichloropcpane 0.012 0.0091 0.0052 0.0093 Ethylbenzene < 0.0050	Benzene	0.18	0.16	0.077	0.14												
1,2-Dichloroethane 0.18 0.11 0.082 0.18 1,2-Dichloropropane 0.012 0.0091 0.0052 0.0093 Ethylbenzene <0.0050	Chlorobenzene	0.0056	0.0055	0.0035	0.0042												
1.2-Dichloropropane 0.012 0.0091 0.0052 0.0093 Ltylbenzene 0.0011 0.0011 lsopropylbenzene 0.0024 0.0024 n-Propylbenzene 0.0058 0.0072 0.005 0.0071 1,2.4-Trimethylbenzene 0.022 0.005 0.0071 1,2.4-Trimethylbenzene 0.022 0.005 0.0071 1,3.5-Trimethylbenzene 0.024 0.012 0.021 1,3.5-Trimethylbenzene 0.024 0.012 0.021 Diesel Range Organics 0.14 0.61 2 Residual Range Organics 0.00050 0.00055 Naphthalene 0.017 0.028	2-Chlorotoluene	<0.0050	<0.0050	<0.0010	0.003												
Ethylbenzene<0.0050<0.00500.00110.0011Isopropylbenzene<0.0050	1,2-Dichloroethane	0.18	0.11	0.082	0.18												
sopropylbenzene<0.0050<0.00500.00240.0032n-Propylbenzene0.00680.00720.0050.00711,2,4-Trimethylbenzene0.0820.0680.0480.0841,2,3-Trimethylbenzene0.0240.020.0120.0211,3,5-Trimethylbenzene0.0240.0150.0241,3,5-Trimethylbenzene0.0250.20.140.2Naphensene0.250.20.140.2Diesel Range Organics1.51.40.612Fluorene<0.00050	1,2-Dichloropropane	0.012	0.0091	0.0052	0.0093					Well abar	ndoned (Novem	ber-2012) due	to excavation				
An Propulsenzene0.00680.00720.0050.00711,2,4-Trimethylbenzene0.0820.0680.0480.0841,2,3-Trimethylbenzene0.0240.020.0120.0211,3,5-Trimethylbenzene0.0240.0210.0150.024Xylenes, Total0.250.20.140.2Diesel Range Organics1.51.40.612Residual Range Organics<0.0005	Ethylbenzene	<0.0050	<0.0050	0.0011	0.0011												
1.2.40.0820.0880.0880.0840.0841.2.3-Trimethylbenzene0.0240.020.0120.0211.3.5-Trimethylbenzene0.0240.0210.0150.0241.3.5-Trimethylbenzene0.250.20.140.2Vylenes, Total0.250.20.140.2Diesel Range Organics1.51.40.612Residual Range Organics<0.00005	Isopropylbenzene	<0.0050	<0.0050	0.0024	0.0032												
1,2,3-Trimethylbenzene0.0240.020.0120.0211,3,5-Trimethylbenzene0.0240.0210.0150.024Xylenes, Total0.250.20.140.2Diesel Range Organics1.51.40.612Residual Range Organics<0.32	n-Propylbenzene	0.0068	0.0072	0.005	0.0071												
1,3,5-Trimethylbenzene0.0240.0210.0150.024Xylenes, Total0.250.20.140.2Diesel Range Organics1.51.40.612Residual Range Organics<0.32	1,2,4-Trimethylbenzene	0.082	0.068	0.048	0.084												
Xylenes, Total 0.25 0.2 0.14 0.2 Diesel Range Organics 1.5 1.4 0.61 2 Residual Range Organics <0.32	1,2,3-Trimethylbenzene	0.024	0.02	0.012	0.021												
Xylenes, Total 0.25 0.2 0.14 0.2 Diesel Range Organics 1.5 1.4 0.61 2 Residual Range Organics <0.32	1,3,5-Trimethylbenzene																
Diesel Range Organics1.51.40.612Residual Range Organics<0.32	Xylenes, Total	0.25	0.2	0.14	0.2												
Residual Range Organics <0.32 <0.25 <0.26 Fluorene <0.00050	Diesel Range Organics	-															
Fluorene <0.00050	Residual Range Organics	-															
Naphthalene 0.026 0.016 0.017 0.028	Fluorene																
	Naphthalene																
	Phenanthrene	<0.000050	<0.000050	<0.000050	0.00026												

Detected Compounds (mg/L)	3/17/2011	6/30/2011	9/15/2011	12/16/2011	12/5/2012	4/4/2013	7/24/2013	10/9/2013	10/28/2014	4/29/2015	10/14/2015	4/19/2016	10/31/2016	5/3/2017	12/28/2017	4/25/2018
Pyrene	< 0.000050	< 0.000050	<0.000050	0.000053												
1-Methylnaphthalene	0.0044	0.003	0.0026	0.0039	-											
2-Methylnaphthalene	0.0061	0.004	0.0034	0.0048	-											
2,4-D	<0.0020	<0.0020	0.03	0.036	-											
Dinoseb	0.0088	0.0094	0.0098	<0.010	-											
	•		.				MM	/-5R								
Sulfate					NA	350	340	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ammonia-Nitrogen					0.17	0.1	0.1	<0.10	<0.25	<0.25	<0.25	0.059	<0.25	0.058	<0.100	<0.10
Nitrate-Nitrite					35	30	51	51	33	22	21	18.4	22	24.8	21.1	16.8
Arsenic (dissolved)					0.05	0.066	0.027	0.064	0.081	0.068	0.0869	0.0781	0.0809	0.0759	0.0783	0.0956
Barium (dissolved)					0.054	0.035	0.04	0.035	0.036	0.031	0.107	0.0325	0.0396	0.0352	0.0361	0.493
Cadmium (dissolved)		Nell installed I	November 201	0	<0.0050	<0.0050	0.0067	<0.0050	<0.0050	0.0028	0.000867	0.00147	<0.0050	0.00148	0.00129	0.0011
Chromium, (dissolved)	V	ven installed i	November 201	2	NA	NA	NA	NA	NA	NA	0.00338	<0.0100	<0.0100	0.0015	<0.0100	0.0264
Lead (dissolved)					<0.0050	<0.0050	0.0053	<0.0050	<0.0050	<0.0050	0.0128	<0.0050	<0.0050	<0.0050	0.00773	0.0212
Selenium (dissolved)					<0.020	<0.020	0.028	0.022	<0.020	0.012	0.0098	<0.00140	<0.00140	<0.0100	<0.0100	0.0109
1,2-Dichloroethane					0.0051	0.0045	0.004	0.0056	0.0044	0.0031	0.0028	0.0028	0.003	0.00374	0.00248	0.0032
Diesel Range Organics (DRO)					NA	NA	NA	NA	NA	0.054	NA	NA	NA	NA	NA	NA
Naphthalene					NA	NA	NA	NA	NA	0.00003	<0.00100	<0.00100	<0.00100	<0.00500	<0.00500	<0.0040
							M	N-6							-	
Sulfate					NA	36	37	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ammonia-Nitrogen					<0.10	0.13	<0.10	0.12	<0.25	<0.25	0.0517	0.056	<0.25	0.057	<0.100	<0.10
Nitrate-Nitrite					2.7	2.9	2.9	2.5	2.8	2.3	3.4	3.42	3.07	3.7	3.19	3.2
Arsenic (dissolved)					<0.020	<0.020	<0.020	<0.020	0.023	0.0088	0.0208	0.0158	0.0197	0.017	0.0162	0.0295
Barium (dissolved)					0.11	0.062	0.07	0.064	0.065	0.066	0.115	0.0657	0.0695	0.0655	0.0661	0.502
Cadmium (dissolved)	V	Nell installed N	November 201	2	<0.0050	<0.0050	0.0083	<0.0050	<0.0050	0.00073	<0.0050	<0.0050	<0.0050	<0.0020	<0.0020	0.00044
Chromium,(dissolved)					NA	NA	NA	NA	NA	NA	0.00702	0.00378	0.00393	0.00419	0.00311	0.033
Lead (dissolved)					<0.0050	<0.0050	0.0064	<0.0050	<0.0050	0.0028	0.0117	<0.0050	<0.0050	<0.0050	<0.0050	0.0179
Selenium (dissolved)					NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.0035
Diesel Range Organics (DRO)					NA	NA	NA	NA	NA	0.039	NA	NA	NA	NA	NA	NA
Naphthalene					NA	NA	NA	NA	NA	0.000079	<0.00100	<0.00100	<0.00100	<0.0050	<0.0050	<0.0040
	_						M	N-7								_
Sulfate					NA	35	35	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ammonia-Nitrogen					<0.10	0.12	0.16	<0.10	<0.25	<0.25	<0.25	0.063	<0.25	0.054	<0.100	<0.10 (<0.10) ²
Nitrate-Nitrite					2.4	2.5	1.9	2.5	2.2	2.3	2.97	2.81	2.5	3.06	2.62	15.7 (2.4) ²
Arsenic (dissolved)		Nell installed I	November 201	2	NA	NA	NA	NA	NA	NA	0.0137	0.0136	0.0103	0.012	0.0141	0.0618 (0.0098) ²
Barium (dissolved)					0.12	0.068	0.098	0.074	0.066	0.074	0.0741	0.0726	0.0738	0.0719	0.0707	2.19 (0.069) ²
Cadmium (dissolved)					<0.0050	<0.0050	0.0077	<0.0050	<0.0050	0.00076	<0.0050	<0.0050	<0.0050	<0.0020	<0.0020	0.0017 (<0.0008) ²
Chromium (dissolved)					NA	NA	NA	NA	NA	0.0029	0.00316	0.00325	0.00362	0.00348	0.00273	0.131 (0.003) ²

Detected Compounds (mg/L)	3/17/2011	6/30/2011	9/15/2011	12/16/2011	12/5/2012	4/4/2013	7/24/2013	10/9/2013	10/28/2014	4/29/2015	10/14/2015	4/19/2016	10/31/2016	5/3/2017	12/28/2017	4/25/2018
Lead (dissolved)					NA	NA	NA	NA	NA	0.0074	0.0074	<0.0050	<0.0050	<0.0050	<0.0050	0.0531 (0.00015) ²
Selenium (dissolved)					NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.0151 (0.0017) ²
Naphthalene					NA	NA	NA	NA	NA	0.00057	<0.00100	<0.00100	<0.00100	<0.0050	<0.0050	<0.0040 (<0.0040) ²
Phenanthrene					NA	NA	NA	NA	NA	0.000012	NA	NA	NA	NA	NA	NA
1-Methylnaphthalene					NA	NA	NA	NA	NA	0.000018	NA	NA	NA	NA	NA	NA
2-Methylnaphthalene					NA	NA	NA	NA	NA	0.000028	NA	NA	NA	NA	NA	NA

Notes:

Table shows compounds that were above detection limit at some time during sampling events. Laboratory reports are presented in Appendix C. See Laboratory reports for Method Detection Limits.

mg/L = milligrams per liter; NA = Constituent not analyzed during this sampling event.

¹ MW-4 was resampled November 15, 2016.

² MW-7 was resampled June 20, 2018 due the unexpected high nitrate-N concentration in April sampling event.

3.4.4.1 Nitrate-N Trends in Individual Wells

Table 3-26 summarizes nitrate-N concentrations for each well over the sampling period. Using ProUCL software, HDR ran the Mann-Kendall Trend Test Analysis for nitrate concentrations in each well. Trend plots are presented in **Figure 14**. Results for the statistical trend analysis for nitrate-N are as follows (see bottom row in **Table 3-26**):

- Downgradient well MW-5R shows a decreasing trend
- Downgradient well MW-6 shows an increasing trend but remains below 4 mg/L nitrate-N.
- Upgradient wells MW-1, MW-2, and MW-3 (side to downgradient) and downgradient wells MW-4 and MW-7 show no statistically significant trend

Comulin a Doto	MW-1	MW-2	MW-3	MW-4	MW-5R	MW-6	MW-7
Sampling Date			milli	grams per li	ter (mg/L)		
3/17/2011	8.3	7.1	7.0	14			
6/30/2011	7.8	5.8	8.5	9.6			
9/15/2011	6.4	6.2	11	8.4			
12/16/2011	5.6	5.1	9.3	7.8			
12/5/2012	7.5	3.4	11	79	35	2.7	2.4
4/4/2013	5.5	2.5	12	6.7	30	2.9	2.5
7/24/2013	5.9	2.6	18	5.1	51	2.9	1.9
10/9/2013	5.1	2.8	7.7	4.8	51	2.5	2.5
10/28/2014	6.2	2.2	16	6.6	33	2.8	2.2
4/29/2015	4.1	2.2	16	6.2	22	2.3	2.3
10/14/2015	5.8	2.6	15	9.7	21	3.4	3.0
4/19/2016	7.6	2.8	12	11	18	3.4	2.8
10/31/2016	1.8	3.0	10	48	22	3.1	2.5
5/3/2017	12	3.4	10	74	25	3.7	3.1
12/28/2017	5.7	3.3	7.5	29	21	3.2	2.6
4/25/2018	7.2	3.5	6.7	38	17	3.2	2.4
Trend Analysis ¹	No trend	No trend	No trend	No trend	Decreasing	Increasing	No Trend

Table 3-26. Nitrate-N Concentrations Over Time and Trend Analysis

¹Mann-Kendall Trend Analysis, level of significance 0.05.

While the Mann-Kendall test reveals a decreasing trend in MW-5R and an increasing trend in MW-6, the trend plots provide additional information on overall trends in each well:

- MW-1 (upgradient well) shows a slightly decreasing nitrate-N concentration trend, though the nitrate-N concentrations have been highly variable the last five sampling events (7.6 mg/L in April 2016 to 1.8 mg/L in October 2016 to 11.5 mg/L in May 2017 to 5.71 mg/L in December 2017 to 7.2 mg/L in April 2018).
- MW-2 (upgradient well) shows a decreasing trend from 2001 through 2013 and then a slight increasing trend in recent years (though below 10 mg/L nitrate-N).
- MW-3 (side-gradient well) shows high variability in nitrate concentrations over time. The past eight sampling events show a decreasing trend in nitrate-N concentration

F)5

(concentrations have been above 10 mg/L since 2014, but dropped below 10 mg/L in December 2017).

- MW-4 (downgradient well) shows high nitrate-N concentration variability between sampling events. For example, in December 2012, the measured nitrate-N concentration was 79 mg/L, then dropped to a low of 4.8 mg/L in October 2013, increased to 74 mg/L in May 2017, and dropped to 28.5 mg/L in December 2017.
- MW-5R (downgradient well) was constructed following source area removal in 2012. Nitrate-N in this well has shown a decreasing trend since 2014, though nitrate-N concentrations remain above 10 mg/L.
- MW-6 and MW-7 (downgradient and off-site wells) show nearly identical nitrate-N concentrations and have been below 10 mg/L with an average nitrate-N concentration of 2.8 mg/L in December 2017. While nitrate concentrations in MW-7 during the April 2018 sampling event rose above 10 mg/L (15.7 mg/L), those concentrations were down to 2.4 mg/L when MW-7 was sampled again in June 2018. Therefore, the April MW-7 data is considered suspect and the June data is used in this report.

Figure 14. Trend Plots for Nitrate-N in Groundwater Monitoring Wells

4 Preliminary Screening Assessment

This section presents an initial screening of COC for soils and groundwater.

4.1 Model Toxics Control Act

The MTCA Cleanup Regulation, chapter 173-340 Washington Administrative Code (WAC), sets forth the requirements and procedures for developing soil and groundwater cleanup standards. Cleanup levels must be based on the reasonable maximum exposure expected to occur under both current and future site conditions.

4.1.1 Soil Cleanup Standards

The regulation allows for establishing soil cleanup levels based on two types of land use – unrestricted land use and industrial land use (Ecology 2005a):

- Industrial land use the soil cleanup level is based on the reasonable maximum exposure expected to occur under industrial land use conditions. Industrial soil cleanup levels are based on an adult worker exposure scenario. Restrictions on the future use of the land are required if industrial soil cleanup levels are established, even if the cleanup levels are met. The regulations provide for two options for soil cleanup levels for industrial land use, Method A and Method C.
- Unrestricted land use (residential) the soil cleanup level is based on the reasonable maximum exposure expected to occur under residential land use conditions. Unrestricted (residential) soil cleanup levels are based on a child exposure scenario. No restrictions on the future use of the land are needed if soil cleanup levels are met at the point of compliance. The regulations provide for two options for soil cleanup levels for unrestricted land use, Method A and Method B.

Under the MTCA regulation (WAC 173-340), when selecting a cleanup level for a chemical contaminant in soil, one criterion to consider is the potential for the contaminant to leach from soil into groundwater. Specifically, the concentrations of hazardous substances in soil should not cause contamination of groundwater that exceeds cleanup levels established under WAC 173-340-720. This pathway is considered in addition to the direct-contact criterion that is based on ingestion of soil (and dermal absorption for Modified Methods B and C evaluations).

4.1.2 Groundwater Cleanup Standards

Under the MTCA, a groundwater cleanup standard consists of a concentration (cleanup level) that must be met at a specified location within the ground water (point of compliance). It also includes any additional regulatory requirements that may be specified in applicable state or federal laws (Ecology 2005b).

For the Simplot facility and surrounding area, the shallow groundwater is considered potable (a current or future source of drinking water). The regulation requires groundwater cleanup levels to be based on the reasonable maximum exposure expected to occur under both current and future site conditions. The regulation provides three options for establishing cleanup levels for potable ground water – Method A, Method B, and Method C (Ecology 2005b). For purposes of screening of groundwater COCs, all three methods will be compared (see the document, *Focus on Developing*

F)5

Ground Water Cleanup Standards Under the Model Toxic Control Act [Ecology 2005b] for explanation of each method).

4.1.3 Ecology's Cleanup Levels and Risk Calculation

HDR used Ecology's Cleanup Levels and Risk Calculation (CLARC) resource page that contains data tables for Methods A, B, and C for both soils and groundwater. The tables were last updated in May 2019:

https://ecology.wa.gov/Regulations-Permits/Guidance-technical-assistance/Contamination-clean-up-tools/CLARC/Data-tables

4.2 Screening of Soil Constituents

As presented in Section 3, soil samples were collected from the following events:

- 2009 GeoProbe Investigation (Section 3.1) (Table 3-2, Table 3-3, Table 3-4, Table 3-5, and Table 3-6). Soils analyzed for VOCs, RCRA metals, chlorinated herbicides, nitrate, and ammonia
- 2011 Groundwater Monitoring Well Installation (Section 3.2) (**Table 3-12** and **Table 3-13**). Soils analyzed for VOCs, PAH, TPH, nitrate, and ammonia.
- 2012 and 2014 Source Removal, Drain Evaluation and Additional Monitoring Well Construction (Section 3.3) (Table 3-16, Table 3-17, Table 3-18, and Table 3-19). Soils analyzed for VOCs, chlorinated herbicides, nitrate-N, and ammonia.

4.2.1 Volatile Organic Compounds (VOCs), EPA Method 8260B

VOC samples were collected from all soil sampling events described above. Soil samples with detections of VOCs and comparison to CLARC values are presented in **Table 4-1**.

The following compounds exceed CRLAC soil screening levels:

- 1,1-dichloroethane in soil sample EB-W this sample is from the excavation pit (see **Figure 9** for sample location)
- 1,2 dichloropropane in boring B12 (both samples) from the GeoProbe study (see **Figure 4** for sample location)

For both compounds, the CRLAC exceeded was for groundwater protection.

4.2.2 RCRA Metals, EPA Method 6010B.

RCRA metals were analyzed for the GeoProbe samples only. As expected, most of the soil samples collected from the site had RCRA metals present (**Table 4-2**). The following metals exceeded the CLARC screening levels:

- Arsenic
- Cadmium

For both RCRA metals, the CLARC exceeded was for groundwater protection. The Washington state-wide arsenic concentrations is 7 mg/Kg and cadmium is 1 mg/Kg (Publication #94-115, *Natural Background Soils Metals Concentrations in Washington State*).

Table 4-1. Soil VOCs Sampling Results Compared to CLARC Screening Values

	B9	B12	B13	MW-5	EB-E	EB-W	ES-SB	ES-WB	ES-WT				Soil Protective of			
Donth (fi)	0.3 - 2.0	1.0 - 2.0	1.0 - 2.0		0.40.0.5	9 to 9.5	8 40 0	8 40 0	2 40 4	Soil Method A Unrestricted Land Use	Soil Method B Non cancer	Soil Method B Cancer	Groundwater Vadose @ 13 degrees C	Soil Method A Industrial	Soil Method C Non cancer	Soil Method C Cancer
Depth (ft)	3.5 - 5.0	3.5 - 5.5	2.5 - 4.5		9 to 9.5	9109.5	8 to 9	8 to 9	3 to 4	(mg/kg)	(mg/kg)	(mg/kg)	see guidance (mg/kg)	Properties (mg/kg)	(mg/kg)	(mg/kg)
Benzene	0.0084 BDL	BDL BDL	0.0095 0.25	BDL	0.002	0.06	0.019	0.01	BDL							
Chlorobenzene	BDL BDL	BDL BDL	BDL	BDL	BDL	0.002	0.002	0.002	BDL							
2-Chlorotoluene	BDL BLD	BDL BDL	BDL BDL	0.010	0.005	0.01	BDL	0.004	BDL		1.60E+03				7.00E+04	
1,1-Dichloroethane	BDL BLD	BDL BDL	BDL BDL	BDL	BDL	0.01	BDL	BDL	BDL		1.60E+04	1.80E+02	4.10E-02		7.00E+05	2.30E+04
1,2-dichloropropane	BDL BLD	0.26 0.039	BDL BDL	BDL	BDL	0.003	BDL	BDL	0.003		3.20E+03	2.70E+01	2.50E-02		1.40E+05	3.50E+03
Isopropylbenzene	BDL BLD	BDL BDL	BDL BDL	BDL	BDL	0.002	BDL	BDL	BDL							
Naphthalene	BDL BLD	BDL BDL	BDL 0.045	BDL	BDL	BDL	BDL	BDL	BDL	5.00E+00	1.60E+03		4.50E+00	5.00E+00	7.00E+04	
N-Propylbenzene	BDL BLD	BDL BDL	BDL BDL	BDL	0.002	0.005	BDL	BDL	BDL		8.00E+03				3.50E+05	
1,2,4-Trimethylbenzene	BDL BDL	BDL BDL	BDL 0.065	BDL	0.008	0.034	BDL	0.002	BDL		8.00E+02				3.50E+04	
1,2,3-Trimethylbenzene	BDL BDL	BDL BDL	0.017 0.052	BDL	0.003	0.011	BDL	BDL	BDL		8.00E+02				3.50E+04	
1,3,5-Trimethylbenzene	BDL BDL	BDL BDL	0.014 0.040	BDL	0.005	0.014	BDL	BDL	BDL		8.00E+02				3.50E+04	
Xylenes, Total	BDL BDL	BDL BDL	0.033 0.18	BDL	BDL	BDL	BDL	BDL	BDL	9.00E+00	1.60E+04		1.40E+01	9.00E+00	7.00E+05	

BDL = below detection limit; ft = feet; mg/kg = milligrams per kilogram; Shaded cell represents constituent exceeding the screening level.

	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11	B12	B13	Soil	Soil		Soil	Soil	Soil	
	3.0 - 5.0	0.3 - 2.0	0.0 - 2.0	0.0 - 2.0	0.0 - 2.0	0.0 - 1.5	0.0 - 1.5	0.0 - 1.5	0.3 - 2.0	1.5 - 3.5	0.3 - 2.0	1.0 - 2.0	1.0 - 2.0	Method A	Method B	Soil Method B	Protective of	Method A	Method C	Soil Method C
Depth (ft)	5.0 - 7.0	2.0 - 4.0	3.0 - 5.0	3.5 - 5.5	3.0 - 5.0		3.5 - 4.5	2.8 - 4.0	3.5 - 5.0		3.0 - 4.5		2.5 - 4.5	Unrestricted Land Use	Non cancer	Cancer	Groundwater Vadose	Industrial Properties	Non cancer	Cancer
							hod 6010B										(mg/Kg)			
Moroury	0.072	BDL	0.036	BDL	BDL	BDL	BDL	BDL	BDL	0.036	BDL	0.055	0.024	2.00E+00			2.105.00	2.005.00		
Mercury	BDL	2.00E+00			2.10E+00	2.00E+00														
Aroonio	BDL	3.2	5.6	1.9	3.2	3.5	BDL	0.005.04	0.405.04		0.005.00	2.005.04	4.405.00	0.005.04						
Arsenic	BDL	BDL	BDL	BDL	BDL	BDL	7.0	5.8	6.9	7.9	6.2	BDL	BDL	2.00E+01	2.40E+01	6.70E-01	2.90E+00	2.00E+01	1.10E+03	8.80E+01
Borium	110	180	210	180	190	190	140	180	180	140	170	170	160		1.60E+04		1.005.00		7.005.05	
Barium	180	200	210	250	300	240	210	160	210	190	210	220	210		1.60E+04		1.60E+03		7.00E+05	
Codmium	7.1	3.6	3.1	1.2	1.2	1.3	1.2	1.7	1.6	3.0	2.2	1.7	1.2	0.005.00	0.005.04			2.005.00	2 505 . 02	
Cadmium	5.2	3.3	1.4	1.6	1.4	1.6	1.4	1.1	1.6	1.8	1.3	0.44	0.40	2.00E+00	8.00E+01		6.90E-01	2.00E+00	3.50E+03	
Chromium	37	25	24	21	24	24	18	22	25	54	22	22	27	2.00E+03	1.20E+05		4.805.05	2.00E+03	5 20 E LOG	
Chronnum	29	27	26	29	26	28	25	21	27	27	26	32	33	2.00E+03	1.20E+05		4.80E+05	2.00E+03	5.30E+06	
Lood	77	47	44	16	12	12	19	110	4.3	40	17	38	40				2.005.02	1.005.02		
Lead	27	27	12	14	12	13	4.9	3.8	3.5	2.4	4.7	14	15	2.50E+02			3.00E+03	1.00E+03		
Salanium	BDL		4.005.00		F 20F . 00		4.005.04													
Selenium	BDL		4.00E+02		5.20E+00		1.80E+04													
Silver	BDL	0.84	0.98	BDL	0.66	0.65	BDL		4.005.00		1.405.04		4.005.04							
Silver	BDL	BDL	BDL	BDL	BDL	BDL	0.98	0.81	1.1	1.0	BDL	BDL	BDL		4.00E+02		1.40E+01		1.80E+04	

Table 4-2. Soil RCRA Metals Results Compared to CLARC Screening Values

Resource Conservation and Recovery Act (RCRA) metals ran for the GeoProbe Investigation (HDR 2009b).

BDL = below detection limit; ft = feet; mg/kg = milligrams per kilogram

4.2.3 Soil Chlorinated Herbicide, EPA Method 8151

Chlorinated herbicides were analyzed in the 2009 GeoProbe Investigation and for soils remaining after rinse pit excavation (source removal) (see **Table 3-5** and **Table 3-19** summary of results). The only detected herbicides was in the GeoProbe boring B13, where 2,4-D and Dicamba (**Table 4-3**). The CLARC for both herbicides is several orders of magnitude greater than the detected soil concentrations.

Herbicide EPA Method 8151	Sample ID B13 (2.5 to 4.5 ft)	Soil Method A Unrestricted Land Use	Soil Method B Non cancer	Soil Method B Cancer	Soil Protective of Groundwater Vadose	Soil Method A Industrial Properties	Soil Method C Non cancer	Soil Method C Cancer
				(mg/Kg)				
2,4-D	0.20		8.0E+02				3.5E+04	
Dicamba	0.13		2.4E+03				1.1E+05	

Table 4-3. Soil Herbicide Results Compared to CLARC Screening Values

See **Table 3-5** and **Table 3-19** for full listing of samples analyzed for herbicides. mg/kg = milligrams per kilogram; ft = feet

4.2.4 PAHs and TPH, EPA Methods 8260B and NWTPHGX and NWTPHDX

PAHs were run on soil samples collected from well borings MW-1 through MW-5. PAHs were nondetected for all soil samples. TPH was analyzed for samples collected the soil samples from well borings MW-1 through MW-5 (5 soil samples). Soils from MW-5 had detected concentrations of diesel range organic (NWTPHDX):

• Diesel range organics 11 mg/Kg the CLARC is 2,000 mg/Kg

4.3 Groundwater Data Screening

Section 3.4 summarizes groundwater monitoring events and results from the initial GeoProbe investigation activities through 2018 sampling. **Table 3-25** provides a summary of detected compounds.

Appendix D presents a series of spreadsheets used to screen out and identify COCs in groundwater. Spreadsheets are presented are the following screening steps:

- Step 1. List all compounds analyzed in groundwater including laboratory reported constituents for inorganics (chloride, sulfate, nitrate, and ammonia), RCRA metals, VOCs, chloride herbicides, TPH and PAHs. Next, identify those constituents that had a least one detection.
- Step 2. Screen (remove) compounds that no detections.
- Step 3. Screen out compounds that were non-detected in the last 8 sampling event for the compound. If less than 8 sampling events, use all the data.
- Step 4. Compare the remaining compounds to the CLARC values and identify those compounds that exceed the screening values.

The results of the screening show the following compounds as exceeding the CLARC screening levels in at least one sample in groundwater (see Step 4 in Appendix D for comparison of identified COC to the CLARC values):

- Nitrate-N
- Arsenic
- Lead
- 1,2 Dichloroethane
- 1,2-Dichloropropane

Table 4-4 summarizes detection of these compounds. The exception to this screening is Well MW-5, which was located adjacent to the rinsate area. This well was removed and the soils in the area were excavated as part of the remedial action for the rinsate area. Results for MW-5 are summarized in **Table 3-25**. Well MW-5 was replaced by MW-5R (see **Table 3-25** and **Table 4-4** for summary of water quality for this well).

Table 4-4. Summary of COC exceeding the CLARC Screening Levels in Groundwater

Detected Compounds (mg/L)	3/17/2011	6/30/2011	9/15/2011	12/16/2011	12/5/2012	4/4/2013	7/24/2013	10/9/2013	10/28/2014	4/29/2015	10/14/2015	4/19/2016	10/31/2016	5/3/2017	12/28/2017	4/25/2018	9/11/2018	CLARC ¹ (mg/L)
				•				MW	/-1			•				•	•	
Nitrate-Nitrite	8.3	7.8	6.4	5.6	7.5	5.5	5.9	5.1	6.2	4.1	5.78	7.6	1.8	11.5	5.71	7.2	6.2	10
Arsenic	<0.020	0.049	0.038	0.036	0.034	0.037	<0.020	0.040	0.043	0.03	0.0478	0.0418	0.0423	0.0402	0.0473	0.0861	0.0396	0.01
Lead	0.011	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.020	<0.020	<0.020	0.00455	<0.020	<0.020	<0.0050	<0.00500	0.0438	0.0033	0.015
1,2-Dichloroethane	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.005
1,2-Dichloropropane	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	0.005
								MW	1-2									
Nitrate-Nitrite	7.1	5.8	6.2	5.1	3.4	2.5	2.6	2.8	2.2	2.2	2.6	2.81	2.98	3.4	3.28	3.5	3.3	10
Arsenic	0.058	0.081	0.11	0.083	0.06	0.067	0.029	0.064	0.06	0.047	0.053	0.0505	0.0551	0.0543	0.0618	0.0659	0.0722	0.01
Lead	NA	NA	NA	NA	<0.0050	<0.0050	<0.0050	<0.020	<0.020	<0.020	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0062	0.0061	0.015
1,2-Dichloroethane	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.005
1,2-Dichloropropane	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	0.005
								MW	1-3									
Nitrate-Nitrite	7	8.5	11	9.3	11	12	18	7.7	16	16	14.9	12.1	10.1	10.4	7.49	6.7	6.6	10
Arsenic	0.027	0.062	0.038	0.062	0.036	0.05	<0.020	0.039	0.046	0.026	0.0554	0.0521	0.052	0.0598	0.057	0.0916	0.0505	0.01
Lead	0.027	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.016	<0.0050	<0.0050	<0.0050	<0.0050	0.0356	0.00073	0.015
1,2-Dichloroethane	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.005
1,2-Dichloropropane	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	0.005
								MW	/-4									
Nitrate-Nitrite	14	9.6	8.4	7.8	79	6.7	5.1	4.8	6.6	6.2	9.66	11.1	123 (48.4) ²	74	28.5	38	31.8	10
Arsenic	<0.020	0.04	0.028	0.031	0.024	0.024	<0.020	0.027	0.032	0.017	0.0302	0.0251	0.0356	0.0315	0.0273	0.0477	0.0324	0.01
Lead	0.012	<0.0050	0.0062	<0.0050	<0.0050	<0.005	<0.0050	<0.0050	<0.0050	<0.0050	0.00541	<0.0050	<0.0050	<0.0050	<0.0050	0.0234	0.0092	0.015
1,2-Dichloroethane	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.005
1,2-Dichloropropane	0.014	0.016	0.0056	0.004	0.065	0.0054	0.005	0.0046	0.0063	0.0063	0.00689	0.00752	0.0603	0.0492	0.0428	0.0686	0.0649	0.005
								MW	-5R									
Nitrate-Nitrite					35	30	51	51	33	22	21	18.4	22	24.8	21.1	16.8	15.3	10
Arsenic					0.05	0.066	0.027	0.064	0.081	0.068	0.0869	0.0781	0.0809	0.0759	0.0783	0.0956	0.0632	0.01
Lead	1				<0.0050	<0.0050	0.0053	<0.0050	<0.0050	<0.0050	0.0128	<0.0050	<0.0050	<0.0050	0.00773	0.0212	0.0118	0.015
1,2-Dichloroethane	1				0.0051	0.0045	0.004	0.0056	0.0044	0.0031	0.0028	0.0028	0.003	0.00374	0.00248	0.0032	0.0019	0.005
1,2-Dichloropropane					<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	0.005
								MW	/-6									
Nitrate-Nitrite					2.7	2.9	2.9	2.5	2.8	2.3	3.4	3.42	3.07	3.7	3.19	3.2	3	10
Arsenic					<0.020	<0.020	<0.020	<0.020	0.023	0.0088	0.0208	0.0158	0.0197	0.017	0.0162	0.0295	0.0154	0.01
Lead					<0.0050	<0.0050	0.0064	<0.0050	<0.0050	0.0028	0.0117	<0.0050	<0.0050	<0.0050	<0.0050	0.0179	0.053	0.015
1,2-Dichloroethane					<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.005
1,2-Dichloropropane					<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	0.005

Table 4-4. Summary of COC exceeding the CLARC Screening Levels in Groundwater

Detected Compounds (mg/L)	3/17/2011	6/30/2011	9/15/2011	12/16/2011	12/5/2012	4/4/2013	7/24/2013	10/9/2013	10/28/2014	4/29/2015	10/14/2015	4/19/2016	10/31/2016	5/3/2017	12/28/2017	4/25/2018	9/11/2018	CLARC ¹ (mg/L)
								MM	1-7									
Nitrate-Nitrite					2.4	2.5	1.9	2.5	2.2	2.3	2.97	2.81	2.5	3.06	2.62	15.7 (2.4) ²	2.3	10
Arsenic					<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	0.0137	0.0136	0.0103	0.012	0.0141	0.0618 (0.0098)	0.0201	0.01
Lead					<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0074	0.0074	<0.0050	<0.0050	<0.0050	<0.0050	0.0531 (0.00015)	0.0156	0.015
1,2-Dichloroethane					<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.005
1,2-Dichloropropane					<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	0.005

1 Based on Washington State Maximum Contaminant Level. Shaded cells represent samples exceeding the CLARC.

2 MW-7 was resampled in June 2018 in response to the high nitrate-N concentration detected in April 2018. The resample showed nitrate below the CLARC, also the lead and arsenic resamples were lower.

mg/L = milligrams per liter

4.4 Preliminary Conceptual Site Model

4.4.1 Type and Source of Contaminants

For soils, the prevalent COC are nitrate-N and ammonia-N. The compounds 1,1-dichloroethane and 1,2-dichloropropane were identified in two samples but are not widespread (**Table 4-1**). The compound 1,1-dichloroethane has not been detected in groundwater; however, 1,2-dichloropropane has been detected in well MW-4. Arsenic and cadmium are in the range of soil background concentrations for Washington.

For groundwater, the main COC is nitrate-N. Arsenic and lead appear to be at ambient levels in (occur on both up and downgradient wells). The VOC 1,2-dichloropropane is persistent in MW-4 but not in other wells and has not been detected in off-site downgradient wells. The VOC 1,2-dichloroethane has been in MW-5R but has been below method detection limits in the last eight sampling events.

4.4.2 Transport and/or Migration Pathways

Transport and/or migration pathways define those mechanisms by which humans are exposed to a chemical released from a site. A pathway is comprised of four elements:

- A source and mechanism for release of a chemical into the environment
- A transport medium (e.g., soil, air, and water)
- A point of potential human contact (exposure point)
- A human exposure route (ingestion, inhalation, dermal contact)

A conceptual site model for the Simplot facility will be developed as part of the RI/FS. As described in Section 3, a primary source of potential COCs was the rinsate area, where Simplot conducted a source removal in 2012. Other potential sources may remain and will be further investigated as part of the RI/FS.

As described in sections 2 and 3, the rinsate area was identified as potential primary source (release) area and soils have been excavated from this area. In addition, Simplot replaced its fertilizer tank storage area (aboveground storage tanks and secondary containment system) in 2011 (see **Figure 2** and **Figure 3** for aerial photograph of site layout before and after the 2011 installation of the new tank storage area).

To date, off-site groundwater sampling (MW-6 and MW-7) have not shown COCs above CLARC values (VOCs have been non-detect and nitrate levels below 10 mg/L).

4.4.3 Terrestrial Ecological Evaluation

Per WAC 173-340-7490, a terrestrial ecological evaluation (TEE) is used to determine "whether a release of hazardous substances to soil presents a threat to the terrestrial environment," to characterize "existing or potential threats to terrestrial plants or animals exposed to hazardous substances in soil," and aid in establishing "site-specific cleanup standards for the protection of terrestrial plants and animals." A TEE must be conducted at all sites where a release of a hazardous substance to soil has occurred. As COCs identified above has been released to the soil, this regulation applies to the site, and an exclusion, a simplified TEE, or a site-specific TEE is required. This evaluation will be completed as part of the RI/FS.

5 References

FJS

DNR [Washington State Department of Natural Resources]. 2019. Geologic Provinces: Columbia Basin. <u>https://www.dnr.wa.gov/programs-and-services/geology/explore-popular-geology/geologic-provinces-washington/columbia-basin#.3</u>. Accessed August 8, 2019.

Ecology [Washington State Department of Ecology].

- 2005a. Focus on Developing Soil Cleanup Standards Under the Model Toxics Control Act. 01-09-071. Revised April 2005.
- 2005b. Focus on Developing Ground Water Cleanup Standards Under the Model Toxic Control Act. 01-09-049, Revised April 2005
- 1994. Natural Background Soil Metals Concentrations in Washington State. Publication #94-115. October 1994.

Freeze, R. A. and J.A. Cherry. 1979. Groundwater. Prentice Hall. Inc.

HDR [HDR Engineering, Inc.]

- 2018a. Monitoring Well Sampling Update. Simplot Grower Solutions. January 2018.
- 2018b. Monitoring Well Sampling Update. Simplot Grower Solutions. June 2018.
- 2017a. Monitoring Well Sampling Update. Simplot Grower Solutions. January 2017
- 2017b. Monitoring Well Sampling Update. Simplot Grower Solutions. July 2017.
- 2016. Monitoring Well Sampling Update. Simplot Grower Solutions. June 2016.
- 2015a. Monitoring Well Sampling Update. Simplot Growers Solutions. February 4, 2015.
- 2015b. Monitoring Well Sampling Update. Simplot Grower Solutions. July 2015.
- 2015c. Monitoring Well Sampling Update. Simplot Grower Solutions. November 2015.
- 2013a. Source Removal, Drain Evaluation, Monitoring Well Construction, and Sampling Report. February 2013.
- 2013b. Supplemental Drain Evaluation and Monitoring Well Sampling Report. September 2013.
- 2012a. Source Removal, Drain Evaluation, Monitoring Well Construction, and Sampling Work Plan. July 2012.
- 2012b. Modification to Source Removal and Additional Investigation Work Plan, July 2012. Letter to Ecology November 20, 2012.
- 2012c. 2011 Monitoring Well Sampling Report. May 2012.
- 2011. Monitoring Well Construction and Sampling Report. April 2011.
- 2010. Monitoring Well Construction and Sampling Work Plan. July 2010. Revised December 2010.
- 2009a. Preliminary Site Investigation Work Plan. May 2009.
- 2009b. Preliminary Site Investigation Report. December 2009.
- 2009c. Quality Assurance Project Plan. December 2009.

Marsh-McBirney. 1994. Open Channel Profiling Handbook.

Secor

- 2007. Phase III Remedial Investigation for the Bee-Jay Scales Site.
- 2006. Phase III Remedial Investigation Work Plan for the Bee-Jay Scales Site. February 10, 2006.
- Stantec [Stantec Consulting Corporation]
 - 2012. Storm Drain Assessment Results for the Bee-Jay Scales Site. July 17, 2012.
 - 2011. Second Half 2011 Semi-Annual Groundwater Monitoring and Sampling Report. November 14, 2011.
 - 2009. Revised Feasibility Study Report. Bee-Jay Scales Site. October 16, 2009.
 - 2008. Third Quarter 2008 Groundwater Monitoring and Sampling Report. November 7 2008.
- Vaccarro, J.J., Jones, M.A., Ely, D.M., Keys, M.E., Olsen, T.D., Welch, W.B., and Cox, S.E., 2009. Hydrogeologic Framework of the Yakima River Basin Aquifer System, Washington. U.S. Geological Survey Scientific Investigation Report 2009-5152.

Historic Aerial Site Photographs

Simplot Grower Solutions

300 S. 1st St Sunnyside, WA 98944

Inquiry Number: 2455472.5 April 02, 2009

The EDR Aerial Photo Decade Package

440 Wheelers Farms Road Milford, CT 06461 800.352.0050 www.edrnet.com

EDR Aerial Photo Decade Package

Environmental Data Resources, Inc. (EDR) Aerial Photo Decade Package is a screening tool designed to assist environmental professionals in evaluating potential liability on a target property resulting from past activities. EDRs professional researchers provide digitally reproduced historical aerial photographs, and when available, provide one photo per decade.

When delivered electronically by EDR, the aerial photo images included with this report are for ONE TIME USE ONLY. Further reproduction of these aerial photo images is prohibited without permission from EDR. For more information contact your EDR Account Executive.

Thank you for your business. Please contact EDR at 1-800-352-0050 with any questions or comments.

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. **NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OF DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT.** Purchaser accepts this Report AS IS. Any analyses, estimates, ratings, environmental risk levels or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only a Phase I Environmental Site Assessment performed by an environmental professional can provide information regarding the environmental risk for any property. Additionally, the information provided in this Report is not to be construed as legal advice.

Copyright 2009 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.

Date EDR Searched Historical Sources:

Aerial Photography April 02, 2009

Target Property:

300 S. 1st St Sunnyside, WA 98944

<u>Year</u>	<u>Scale</u>	<u>Details</u>	<u>Source</u>
1973	Aerial Photograph. Scale: 1"=500'	Panel #: 2446120-C1/Flight Date: July 01, 1973	EDR
1982	Aerial Photograph. Scale: 1"=1000'	Panel #: 2446120-C1/Flight Date: August 17, 1982	EDR
1990	Aerial Photograph. Scale: 1"=1000'	Panel #: 2446120-C1/Flight Date: June 20, 1990	EDR
1996	Aerial Photograph. Scale: 1"=750'	Panel #: 2446120-C1/Flight Date: June 29, 1996	EDR
2006	Aerial Photograph. Scale: 1"=535'	Flight Year: 2006	EDR

GeoProbe Boring Logs and Monitoring Wells Logs

	SITE		BORING NUMBER	8						
HDR, Inc.	-	Simplot Grower Solutions		B1 SHEET 1 of 1						
SOIL BORING LOG										
PROJECT : Simplot Grower	Solutions, Sunny	side, WA LOCATION	N : 300 1st Str., Sun	nyside, WA						
G.S. ELEVATION :		DRILLING	CONTRACTOR : I	Environmental West, Inc. Spokane	WA					
DRILLING METHOD USED :	Geoprobe 5400	with 2-inch macrocore ba	rrel & liner	BOREHOLE DEPTH: 12 ft						
WATER LEVEL:	-	START: 9/24/09	END: 9/24/09	LOGGER : D. Reynolds (HDR)						
DEPTH BELOW SURFACE (FT)		CORE DESCRIPTION		COMMENTS						
INTERVAL (FT)										
RECOVERY (F		SOIL NAME, USCS SYM MOISTURE CONTENT, (TIME AND MISCELLANEOUS						
	6"-6"-6"-6"	OR DENSITY, SOIL STR		COMMENTS						
0.0-3.0	Run 1	0.0 to 3.0 GRAVEL - Dra		Start Time 1315						
_0.0 0.0	0.0 to 4.0	O.O IO O.O ORAVEL			-					
_	Rec. = 2.0/4.0			Soil samples:	_					
				B1-SU @ 1330 (3.0 to 5.0 ft)						
				B1-WT @1345 (5.0 to 7.0 ft)						
_B.0-12.0		3.0 TO 12.0 CLAYEY S	LT (ML)		_					
_		dk. brown, color change	to gray 11.5 to	Water sample:	_					
_	Run 2	12.0 ft.		B1-GW @ 1400 (Screen 9.9 to	_					
_	4.0 to 8.0	dry to 3.0 ft, sl. moist 3.0	0 to 4.0 ft, wet 4.0	12.0 ft)	-					
5	Rec. = 3.0/4.0			B14-GW @1630 Duplicate	—					
-		sl. moist & harder 11.5 t	o 12.0 ft.	Sample	-					
-				Groundwater reacts to acid in VOA vials	-					
-				Slight fertilizer odor, no staining.	-					
				onght fortilizer odor, no stanning.	-					
	Run 3									
	8.0 to 12.0									
_	Rec. = 3.0/4.0				_					
_					_					
10										
_					-					
-					-					
-					-					
-		TD 12.0 ft.		Hard to Geoprobe, near refusal.	-					
-					-					
-					_					
15					_					
_					_					
_					_					
					_					
					-					
					—					
					-					
					-					
					-					
					-					
²⁰		1								

HDR, Inc.		SITE BO		BORING NUMBER							
		Simplot Grower Solutions		B2 SHEET 1 of 1							
SOIL BORING LOG											
PROJECT : S	Simplot Grow	ver Sc	olutions, Sunnys		l : 300 1st Str., Sun	nyside, WA					
G.S. ELEVATI						nvironmental West, Inc. Spokane	WA				
DRILLING ME	THOD USE	D : G	eoprobe 5400 v	vith 2-inch macrocore ba		BOREHOLE DEPTH: 11.2 ft					
WATER LEVE			•	START: 9/24/09	END: 9/24/09	LOGGER : D. Reynolds (HDR)					
DEPTH BELOW SURFACE (FT)		(FT)	STANDARD	CORE DESCRIPTION		COMMENTS					
INTER\	/AL (FT)		PENETRATION								
	RECOVERY	′ (FT)	TEST	SOIL NAME, USCS SYMBOL, COLOR,							
	TY	′PE	RESULTS	MOISTURE CONTENT, C	ONSISTENCY	TIME AND MISCELLANEOUS					
			6"-6"-6"-6"	OR DENSITY, SOIL STR	JCTURE	COMMENTS					
_ 0.0-0.3	3		Run 1	0.0 to 0.3 FILL		Start Time 1215	_				
_0.5-11.2	2		0.0 to 4.0	0.3 TO 11.2 CLAYEY SI	<u>LT (ML)</u>		_				
_				brown to 9.0 ft, color cha	ange to It, grav 9.0	Soil samples:	_				
_				to 11.2ft.	ange te migray ere	B2-SU @ 1230 (0.3 to 2.0 ft)	_				
				dry 0.3 to 2.0 ft, sl. mois	t 2.0 to 4.0 ft. wet	B2-WT @1245 (2.0 to 4.0 ft)					
				4.0 to 9.5 ft, sl. moist 9.5			_				
_				,		Water sample:	_				
_			Run 1			B2-GW @ 1300 (Screen 8.2 to	_				
_			4.0 to 8.0			11.2 ft)	_				
5						Water cleared up					
_							_				
_						No odor and no staining.	_				
_						_	_				
							_				
			Run 1				_				
			8.0 to 12.0								
10											
				TD 11.2 ft.		Hard to Geoprobe, near refusal.					
_						Driller does not want to jam core	_				
_							_				
							_				
							_				
_							_				
_							_				
15											
							_				
_							_				
							_				
_							_				
							_				
20											

		SITE		BORING NUMBER		
HDR, Inc.		Simplot Gro	wer Solutions	B3	SHEET 1 of 1	
		SC	DIL BORING	LOG		
PROJECT : S	Simplot Grower	Solutions, Sunny	side, WA LOCATION	N : 300 1st Str., Sunr	nyside, WA	
G.S. ELEVAT					nvironmental West, Inc. Spokane	WA
		Geoprobe 5400	with 2-inch macrocore ba		BOREHOLE DEPTH: 12 ft	
WATER LEVE			START: 9/23/09	END: 9/23/09	LOGGER : D. Reynolds (HDR)	
	V SURFACE (FT)	STANDARD	CORE DESC	RIPTION	COMMENTS	
INTERV	VAL (FT)	PENETRATION				
	RECOVERY (FT) TEST RESULTS	SOIL NAME, USCS SYM			
	ITPE	6"-6"-6"-6"	MOISTURE CONTENT, O		TIME AND MISCELLANEOUS COMMENTS	
0.0-12.	0	8 -8 -8 -8 Run 1	OR DENSITY, SOIL STR 0.0 to 12.0 CLAYEY SIL		Start Time 1500	
_0.0-12.	I I	0.0 to 4.0			Start Time 1500	-
-		0.0 10 4.0	dk. brown to brown to 1 12.0 ft.	1.5 II, II. gray to		-
-					Soil samples:	-
-			dry to 2.0 ft, sl. moist to to 12.0 ft.	5.0 ft, wet from 5.0	B3-SU @ 1515 (0.0 to 2.0 ft) B3-WT @1530 (3.0 to 5.0 ft)	-
					D3-W1 @1330 (3.0 to 3.0 tr)	
-			some gravel from 0.0 to 0.0 to 2.0 ft.	0.1.0 ft, loose from	Water sample:	-
_		Run 2	0.0 10 2.0 11.		B3-GW @ 1545 (Screen 9 to 12	-
_		4.0 to 8.0			ft)	_
5					No odor, no staining	-
					Pumped dry 3 times	
_						_
_						_
_						_
_						_
		Run 3				
		8.0 to 12.0				
_						_
10						
_						_
_						_
_						_
_						_
			TD12.0 ft.			
						_
						_
_						_
						-
15						—
-						-
—						-
-						-
-						-
						—
						-
-						-
-						-
						-
20						

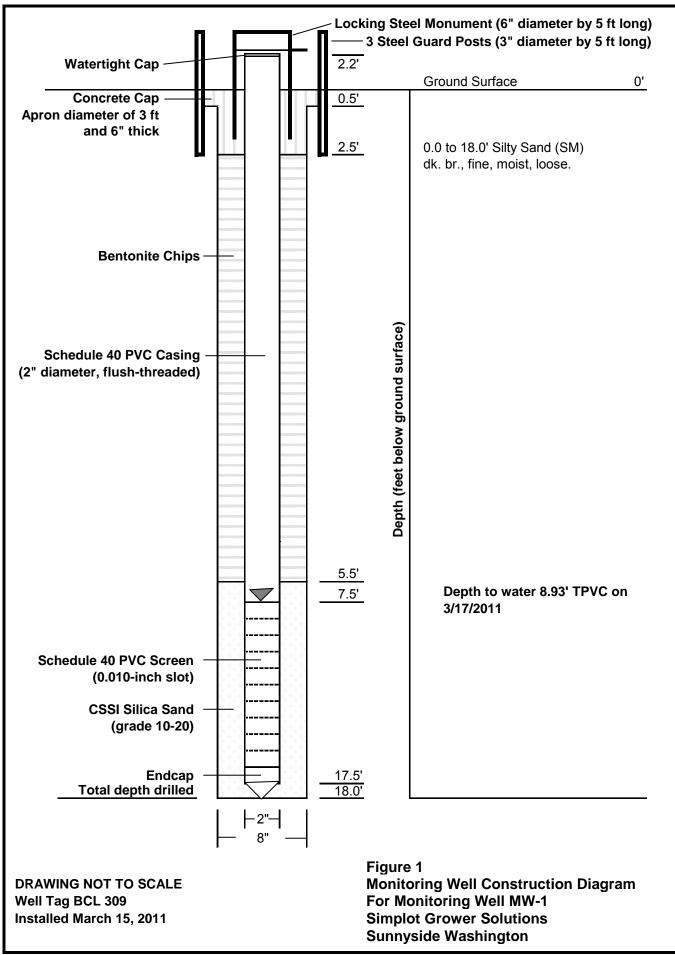
		SITE		BORING NUMBER	2				
HDR, Inc.			wer Solutions	B4	SHEET 1 of 1				
			SOIL BORING LOG						
PROJECT : Sir	PROJECT : Simplot Grower Solutions, Sunnyside, WA LOCATION : 300 1st Str., Sunnyside, WA								
G.S. ELEVATIC	G.S. ELEVATION : DRILLING CONTRACTOR : Environmental West, Inc. Spokane W								
DRILLING MET	HOD USED : G	eoprobe 5400 v	with 2-inch macrocore ba	rrel & liner	BOREHOLE DEPTH: 12 ft				
WATER LEVEL	.:		START: 9/23/09	END: 9/23/09	LOGGER : D. Reynolds (HDR)				
DEPTH BELOW	SURFACE (FT)	STANDARD	CORE DESC	RIPTION	COMMENTS				
INTERVA	AL (FT)	PENETRATION							
F	RECOVERY (FT)		SOIL NAME, USCS SYM	BOL, COLOR,					
	TYPE	RESULTS	MOISTURE CONTENT, C		TIME AND MISCELLANEOUS				
		6"-6"-6"-6"	OR DENSITY, SOIL STR		COMMENTS				
_0.0-12.0		Run 1	0.0 to 12.0 CLAYEY SIL		Start Time 1400	-			
-		0.0 to 4.0	dk. brown to brown, dry			_			
-			ft, wet from 5.0 to 12.0 f	t.	Soil samples:	-			
-					B4-SU @ 1415 (0.0 to 2.0 ft)	-			
					B4-WT @1430 (3.5 to 5.5 ft)				
-						-			
					Water sample:	-			
-		Run 2			B4-GW @ 1445 (Screen 9 to 12	-			
_		4.0 to 8.0			ft)	-			
5					No odor, no staining.				
-					Water dirty - did not clear up	-			
-						-			
-						-			
-						-			
		Dur 0				—			
-		Run 3				-			
-		8.0 to 12.0				-			
-						-			
 10						-			
10									
-						-			
-						-			
-						_			
			TD 12.0 ft.			_			
			.2.2.010						
						-			
						_			
						_			
15						_			
						_			
						_			
						_			
						_			
						_			
						_			
20									

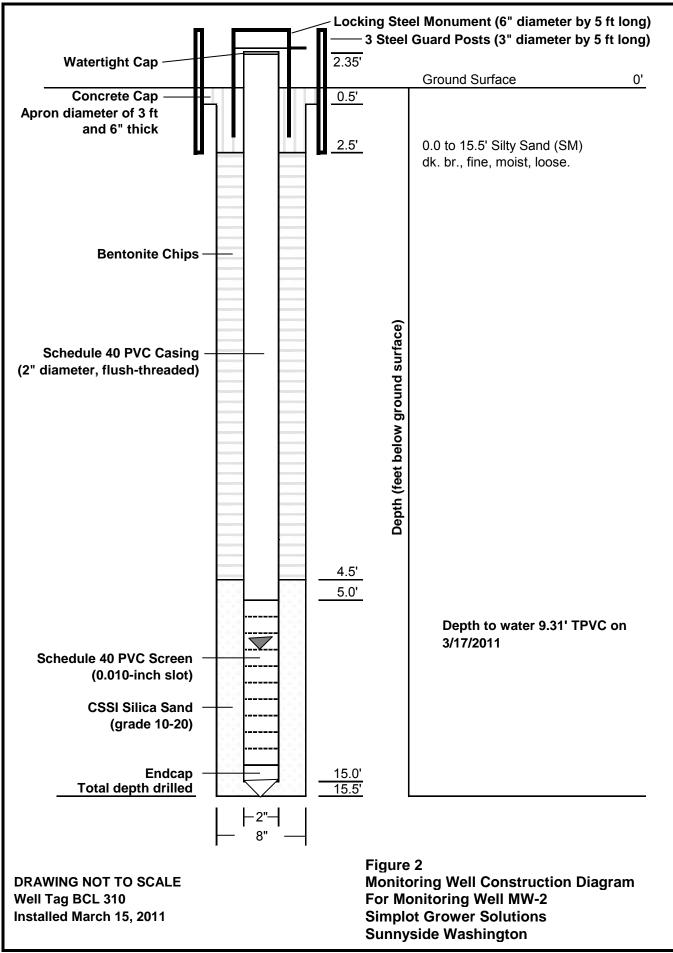
		SITE		BORING NUMBER					
HDR	HDR, Inc.		wer Solutions	B5	SHEET 1 of 1				
			SOIL BORING LOG						
PROJECT : S	PROJECT : Simplot Grower Solutions, Sunnyside, WA LOCATION : 300 1st Str., Sunnyside, WA								
G.S. ELEVATI	G.S. ELEVATION : DRILLING CONTRACTOR : Environmental West, Inc. Spokane W								
DRILLING ME	THOD USED	D : Geoprobe 5400	with 2-inch macrocore ba	arrel & liner	BOREHOLE DEPTH: 12 ft				
WATER LEVE			START: 9/23/09	END: 9/23/09	LOGGER : D. Reynolds (HDR)				
DEPTH BELOW			CORE DESC	CRIPTION	COMMENTS				
INTERV	/AL (FT)	PENETRATION							
	RECOVERY		SOIL NAME, USCS SYM						
	TY		MOISTURE CONTENT,		TIME AND MISCELLANEOUS				
0.0.0		6"-6"-6"	OR DENSITY, SOIL STR	UCTURE	COMMENTS				
_ 0.0.6		Run 1 0.0 to 4.0	0.0 to 0.6 Fill		Start Time 1245	-			
-		0.0 10 4.0		T (NAL)		-			
_ 0.6-12.	.0		0.6 to 12.0 CLAYEY SIL		Soil samples:	-			
-			dk. brown, sl. moist, we	t from 2.5 to 12.0 ft.	B5-SU @ 1310 (0.0 to 2.0 ft) B5-WT @1320 (3.0 to 5.0 ft)	-			
-					Water sample:	-			
_		Run 2			B5-GW @ 1330 (Screen 9 to 12	_			
_		4.0 to 8.0			ft)				
5_					No odor, no staining	_			
					Pumped dry, let set				
_					Water dirty - did not clear up	_			
_						_			
_						_			
_									
_		Run 3				_			
_		8.0 to 12.0				_			
-						-			
_						-			
10									
-						-			
-						-			
-			TD 12.0 ft.			-			
-			10 12.011.			-			
—									
-						-			
-						-			
_						_			
 15						_			
_						_			
						_			
_						_			
						_			
_						_			
						_			
20									

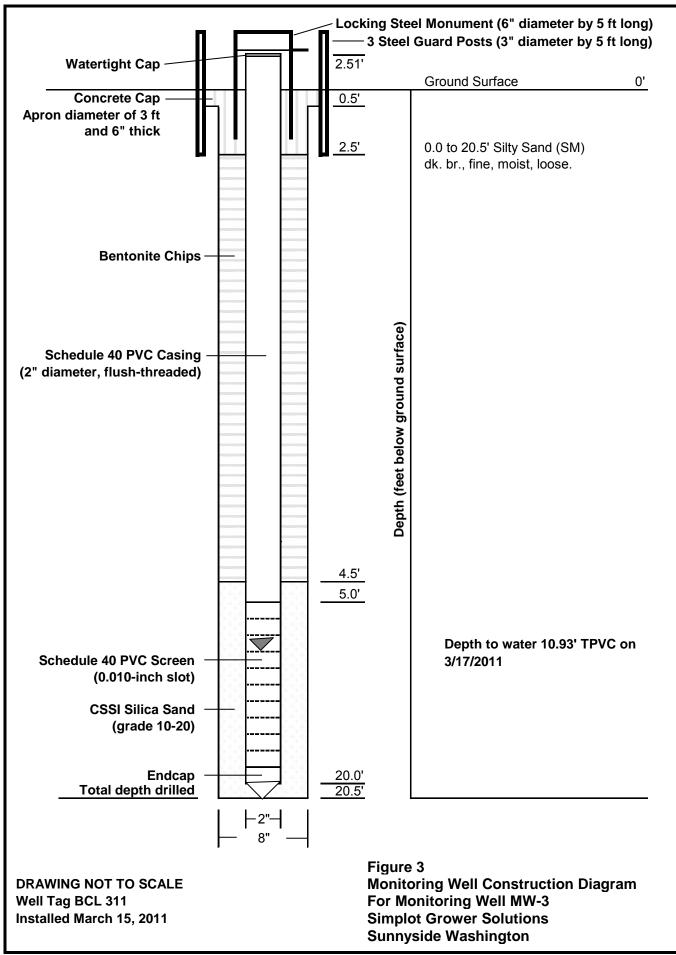
	SITE		BORING NUMBER						
HDR, Inc.	Simplot Gro	wer Solutions	B6	SHEET 1 of 1					
• -	SC	DIL BORING	LOG						
PROJECT : Simplot Grower So	PROJECT : Simplot Grower Solutions, Sunnyside, WA LOCATION : 300 1st Str., Sunnyside, WA								
G.S. ELEVATION :				nvironmental West, Inc. Spokane \	NA				
DRILLING METHOD USED : G	eoprobe 5400 v	with 2-inch macrocore ba	rrel & liner	BOREHOLE DEPTH: 12 ft					
WATER LEVEL:		START: 9/23/09	END: 9/23/09	LOGGER : D. Reynolds (HDR)					
DEPTH BELOW SURFACE (FT)	STANDARD	CORE DESC	RIPTION	COMMENTS					
INTERVAL (FT)	PENETRATION								
RECOVERY (FT)	TEST	SOIL NAME, USCS SYM	BOL, COLOR,						
TYPE	RESULTS	MOISTURE CONTENT, O	CONSISTENCY	TIME AND MISCELLANEOUS					
	6"-6"-6"-6"	OR DENSITY, SOIL STR	UCTURE	COMMENTS					
_ 0.0-3.5	Run 1	0.0 to 12.0 CLAYEY SIL	<u>T (ML)</u>	Start Time 1145	_				
_	0.0 to 4.0	brown to 10.5 ft, color cl	nange to gray		_				
_		to dk. gray to 12.0 ft.		Soil samples:	_				
_		sl. moist, compact, sor	ne sand, less	B6-SU @ 1200 (0.0 to 1.5 ft)	_				
		compact and wet 3.5 to		B6-WT @1215 (3.0 to 5.0 ft)					
_					_				
_ 3.5-10.5				Water sample:	_				
_	Run 2			B6-GW @ 1230 (Screen 9 to 12	_				
_	4.0 to 8.0			ft)	_				
5				No odor, no staining.					
_					_				
_					_				
_					_				
_					_				
_									
_	Run 3				_				
_	8.0 to 12.0				_				
_					_				
_					_				
10									
_ 10.5-12.0					_				
_					_				
_					_				
_					_				
		TD 12.0 ft.			-				
					_				
					_				
					_				
15					_				
					_				
					-				
					-				
					-				
					_				
					_				
					_				
					-				
					_				
20									

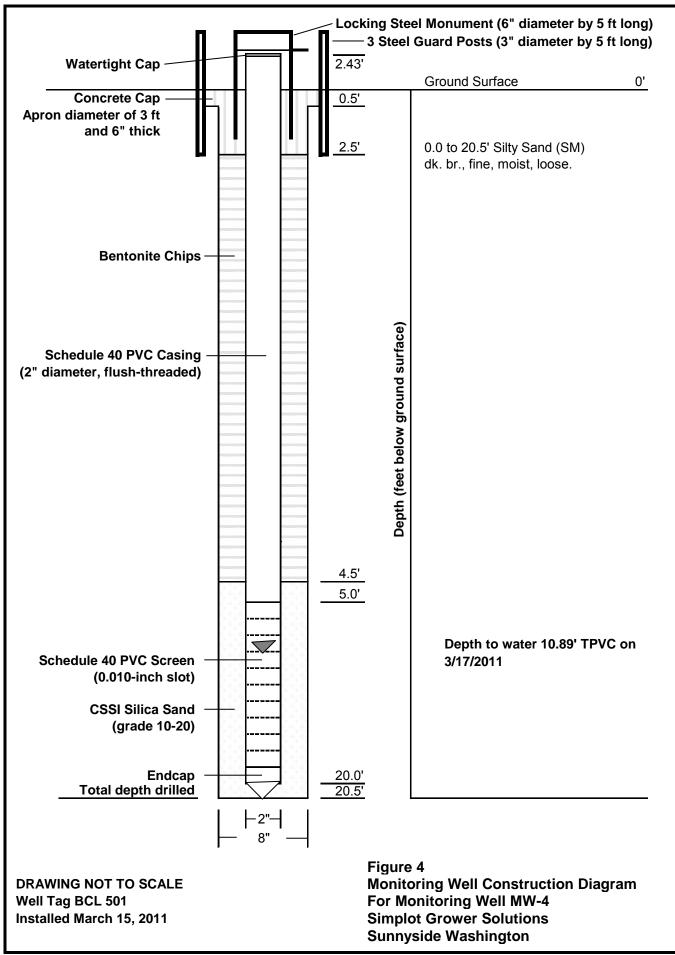
	SITE		BORING NUMBER					
HDR, Inc.		wer Solutions	B7	SHEET 1 of 1				
	SOIL BORING LOG							
	30		LUG					
PROJECT : Simplot Grower Solutions, Sunnyside, WA LOCATION : 300 1st Str., Sunnyside, WA								
G.S. ELEVATION :								
DRILLING METHOD USED : G	eoprobe 5400 v			BOREHOLE DEPTH : 10 ft				
WATER LEVEL:		START: 9/23/09	END: 9/23/09	LOGGER : D. Reynolds (HDR)				
DEPTH BELOW SURFACE (FT)	STANDARD	CORE DESC	RIPTION	COMMENTS				
INTERVAL (FT)	PENETRATION							
RECOVERY (FT)	TEST	SOIL NAME, USCS SYM						
TYPE	RESULTS	MOISTURE CONTENT, C		TIME AND MISCELLANEOUS				
	6"-6"-6"-6"	OR DENSITY, SOIL STR		COMMENTS				
0.0-1.5	Run 1	0.0 to 1.5 SAND & GRA		Start Time 1000 _				
	0.0 to 4.0	tan to lt. brown,fine to m	-	-				
_ 1.5-10.0		1.5 to 10.0 CLAYEY SIL		Soil samples: _				
		brown, color change to l	t. gray to gray 8.0	B7-SU @ 1015 (0.0 to 1.5 ft) _ B7-WT @1030 (3.5 to 4.5 ft)				
		to 10.0 ft.,						
		dry to 1.5 ft, sl. moist to	4.0 ft, wet to 8.0 ft.	Water sample:				
	Run 2	moist to 10.0 ft.		B7-GW @ 1100 (Screen 7 to 10 _				
-	4.0 to 8.0			ft)				
5	1.0 10 0.0			making little water, only filled 1-L				
				No odor, no staining				
_				Pumped dry 3 times				
_				Only filled one of the liter bottles.				
_								
_				_				
	Run 3							
	8.0 to 10.0							
				_				
10		TD 10.0 ft.						
				_				
_				_				
				_				
				_				
				_				
				_				
				_				
				_				
				_				
15				_				
				-				
				-				
				-				
				-				
				_				
				-				
				-				
				-				
				-				
20								

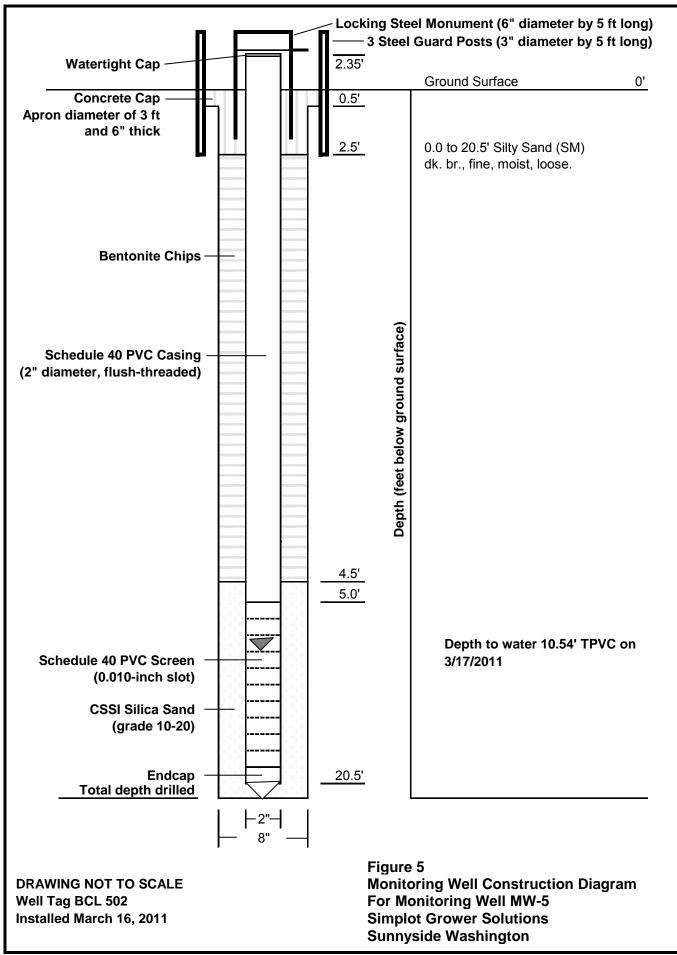
	SITE	BORING NUMI	BER						
HDR, Inc.	-	wer Solutions B8	SHEET 1 of 1						
		DIL BORING LOG							
PROJECT : Simplot Grower	PROJECT : Simplot Grower Solutions, Sunnyside, WA LOCATION : 300 1st Str., Sunnyside, WA								
G.S. ELEVATION :	G.S. ELEVATION : DRILLING CONTRACTOR : Environmental West, Inc. Spokane W								
DRILLING METHOD USED	Geoprobe 5400	with 2-inch macrocore barrel & liner	BOREHOLE DEPTH : 12 ft						
WATER LEVEL:		START: 9/23/09 END: 9/23/09	LOGGER : D. Reynolds (HDR)						
DEPTH BELOW SURFACE (FT	STANDARD	CORE DESCRIPTION	COMMENTS						
INTERVAL (FT)	PENETRATION								
RECOVERY (F	T) TEST	SOIL NAME, USCS SYMBOL, COLOR,							
TYPE	RESULTS	MOISTURE CONTENT, CONSISTENCY	TIME AND MISCELLANEOUS						
	6"-6"-6"-6"	OR DENSITY, SOIL STRUCTURE	COMMENTS						
_ 0.0-1.0	Run 1	0.0 to 1.0 SILTY SAND (SM)	Start Time 0800 _						
_	0.0 to 4.0	It. brown to tan, dry, loose.	-						
_ 1.0-5.0		1.0 to 5.0 CLAYEY SILT (ML)	Soil samples: _						
_		dk. brown, sl. moist, moist form 2.8 to 5.							
_			B8-WT @0845 (2.8 to 4.0 ft)						
_			-						
_			Water sample: _						
-	Run 2		B8-GW @ 0915 (Screen 8 to 11 _						
_	4.0 to 8.0		ft) _						
5_5.0-7.5		5.0 to 7.5 SILTY SAND (SM)	No odor, no staining.						
_		dk. brown, wet.	Pumped dry 3 times						
_			-						
_			-						
_			-						
7.5-12.0	_	7.5 to 12.0 CLAYEY SILT (ML)	—						
_	Run 3	dk. brown, wet, color change to gray from	m _						
_	8.0 to 12.0	10.0 to 11.5,	-						
-		colr back to dk. brown 11.5 to 12.0 ft.	-						
-			-						
10			—						
-			-						
-			-						
—			-						
—		TD 12.0 ft	-						
			—						
-			-						
			-						
15									
15			—						
			-						
			-						
			-						
			-						
			-						
20									
20									

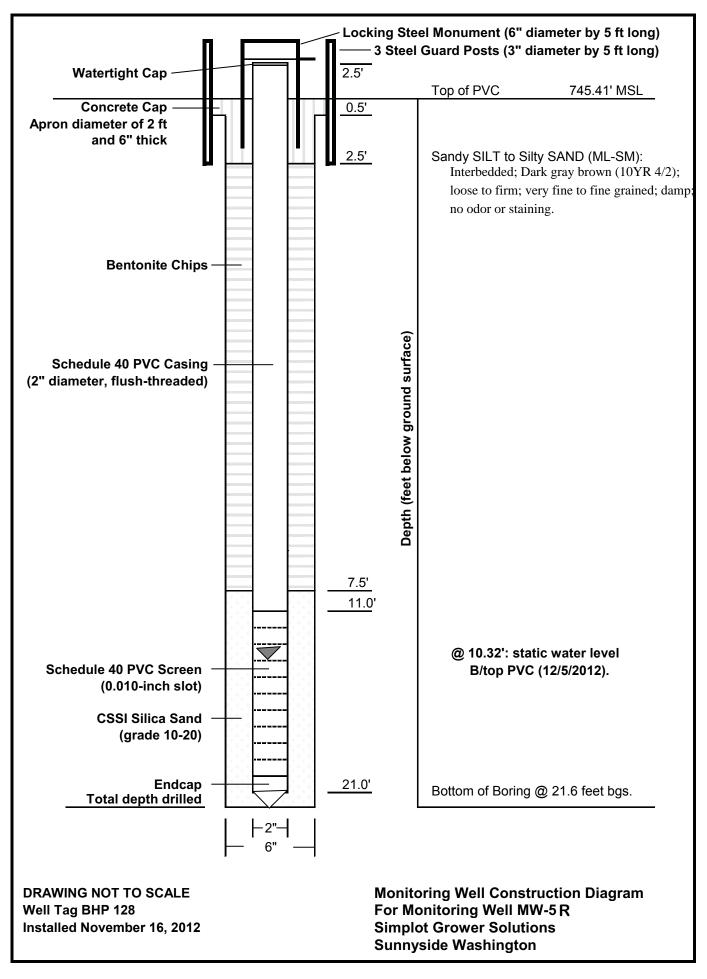

		SITE		BORING NUMBER		1			
HDF	HDR, Inc.		wer Solutions	B9	SHEET 1 of 1				
	.,		DIL BORING	LOG					
PROJECT : S	PROJECT : Simplot Grower Solutions, Sunnyside, WA LOCATION : 300 1st Str., Sunnyside, WA								
-	G.S. ELEVATION : DRILLING CONTRACTOR : Environmental West, Inc. Spokane W/								
DRILLING ME	THOD USED : (Geoprobe 5400 v	with 2-inch macrocore ba	rrel & liner	BOREHOLE DEPTH: 13 ft				
WATER LEVE			START: 9/24/09	END: 9/24/09	LOGGER : D. Reynolds (HDR)				
DEPTH BELOW	V SURFACE (FT)	STANDARD	CORE DESC	RIPTION	COMMENTS				
INTER	VAL (FT)	PENETRATION							
	RECOVERY (FT) TEST	SOIL NAME, USCS SYM	BOL, COLOR,					
	TYPE	RESULTS	MOISTURE CONTENT, O	CONSISTENCY	TIME AND MISCELLANEOUS				
		6"-6"-6"-6"	OR DENSITY, SOIL STR	UCTURE	COMMENTS				
_ 0.0-0.3	3	Run 1	0.0 to 0.3 FILL		Start Time 0800	_			
_0.3-13.	0	0.0 to 4.0	0.3 TO 13.0 CLAYEY S	LT (ML)		_			
_			dk. brown to brown, cold	or change to gray	Soil samples:	_			
-			9.0 to 13.0 ft.		B9-SU @ 0815 (0.3 to 2.0 ft)	_			
			sl. moist from 0.3 to 4.0	ft, wet from 4.0 to	B9-WT @0830 (3.5 to 5.0 ft)				
—			13.0 ft.		L	-			
_					Water sample:	-			
_		Run 2 4.0 to 8.0			B9-GW @ 0845 (Screen 10 to 13 ft)	_			
5					Groundwater dirty, does not clear up.				
_					Only fill one of the liter samples bottles.	_			
_					Core has fertilizer odor but no staining.	_			
		Due 2			stannig.	—			
-		Run 3 8.0 to 12.0				-			
-		8.0 10 12.0				-			
-						_			
10 -						_			
						_			
		Run 4			Hard to Geoprobe.	_			
		12.0 to 13.0			Driller reports refusal at 13.0,				
_			TD 13.0 ft.		does not want to jam liner.	_			
_						_			
_						_			
-						_			
15									
-						-			
—						-			
_						-			
_						-			
						—			
—						-			
—						-			
-						-			
20						-			
20									

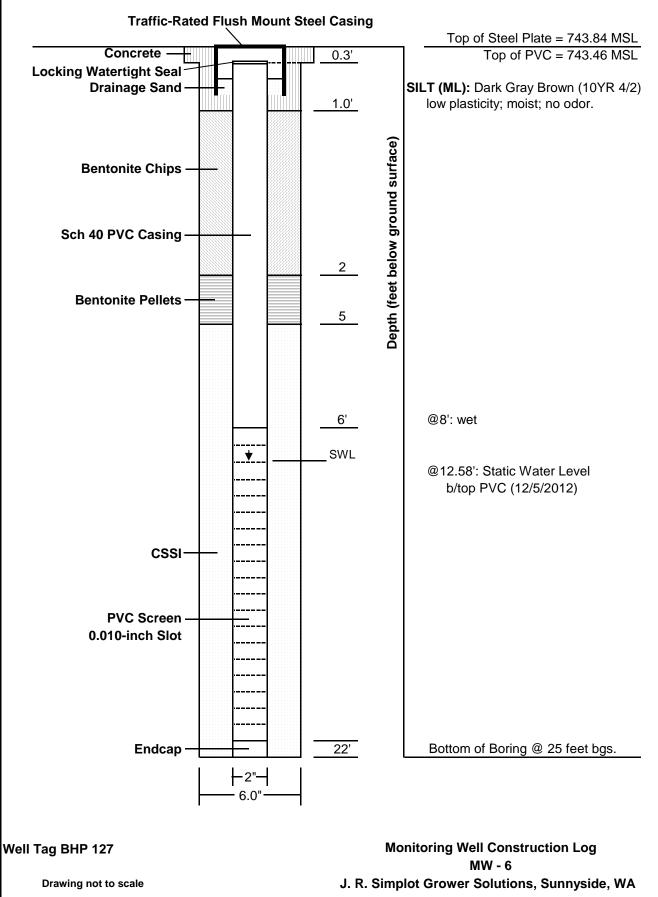

		SITE		BORING NUMBER	2				
HDR, Inc.			wer Solutions	B10	SHEET 1 of 1				
	10.	SOIL BORING LOG							
		30		LUG					
· · · · ·	PROJECT : Simplot Grower Solutions, Sunnyside, WA LOCATION : 300 1st Str., Sunnyside, WA								
G.S. ELEVATION :					Environmental West, Inc. Spokane	WA			
	D USED : G	eoprobe 5400 \	with 2-inch macrocore ba		BOREHOLE DEPTH: 12 ft				
WATER LEVEL:		1	START: 9/24/09	END: 9/24/09	LOGGER : D. Reynolds (HDR)				
DEPTH BELOW SUR	()	STANDARD	CORE DESC	RIPTION	COMMENTS				
INTERVAL (F		PENETRATION							
RECO	OVERY (FT)	TEST	SOIL NAME, USCS SYM						
	TYPE	RESULTS	MOISTURE CONTENT, O		TIME AND MISCELLANEOUS				
		6"-6"-6"-6"	OR DENSITY, SOIL STR		COMMENTS				
_ 0.0-2.0		Run 1	0.0 to 2.0 Fill - some ye	low product	Start Time 1500	-			
-		0.0 to 4.0				-			
-					Soil samples:	-			
_2.0-12.0			2.0 TO 12.0 CLAYEY S		B10-SU @ 1515 (1.5 to 3.5 ft)	-			
			brown to dk. brown, colo	or change to gray	B10-WT @1530 (4.0 to 6.0 ft)				
			9.5 to 12.0 ft.	100	Water sample:	-			
		Run 2	dry to 2.0 ft, moist 2.0 to 11.0 ft.	4.0 ft, wet 4.0 to	B10-GW @ 1545 (Screen 9.0 to	-			
		4.0 to 8.0	sl. moist 11.0 to 12.0 ft.		12.0 ft)	-			
5		4.0 10 0.0	No distinct odor, no stai	nina	Produces very little water.	-			
°				inig.	Only filled two VOA vials in 30				
-					minutes	-			
-					B14-WT @ 1615 Replicate soil	-			
-					sample at 4.0 to 6.0 ft.	_			
-						_			
		Run 3							
_		8.0 to 12.0				_			
-						_			
_						_			
10						_			
						_			
			TD 12.0 ft.			_			
						_			
						_			
						_			
						_			
15									
						_			
						_			
						_			
						_			
						_			
						_			
						_			
						_			
20									

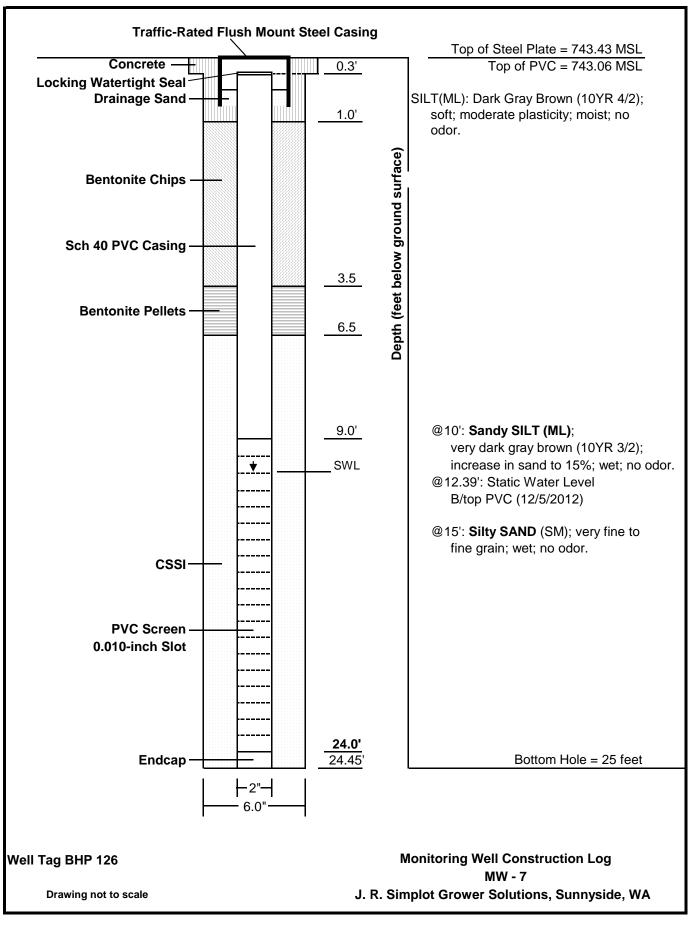

	SITE		BORING NUMBER						
HDR, Inc.		wer Solutions	B11	SHEET 1 of 1					
		SOIL BORING LOG							
PROJECT : Simplot Grower S	PROJECT : Simplot Grower Solutions, Sunnyside, WA LOCATION : 300 1st Str., Sunnyside, WA								
G.S. ELEVATION :	G.S. ELEVATION : DRILLING CONTRACTOR : Environmental West, Inc. Spokane V								
DRILLING METHOD USED :	Geoprobe 5400	with 2-inch macrocore bar	rel & liner	BOREHOLE DEPTH: 12 ft					
WATER LEVEL:		START: 9/23/09 E	END: 9/23/09	LOGGER : D. Reynolds (HDR)					
DEPTH BELOW SURFACE (FT)	STANDARD	CORE DESCR	RIPTION	COMMENTS					
INTERVAL (FT)	PENETRATION								
RECOVERY (FT) TEST	SOIL NAME, USCS SYMB							
TYPE	RESULTS	MOISTURE CONTENT, CO	ONSISTENCY	TIME AND MISCELLANEOUS					
	6"-6"-6"-6"	OR DENSITY, SOIL STRU	CTURE	COMMENTS					
_ 0.0-0.3	Run 1	0.0 to 0.3 FILL		Start Time 1600	_				
_0.3-12.0	0.0 to 4.0	0.3 TO 12.0 CLAYEY SIL	<u>_T (ML)</u>		-				
_		dk. brown to brown, color	change to gray	Soil samples:	-				
_		11.5 to 12.0 ft.		B11-SU @ 1615 (0.3 to 2.0 ft)	-				
_		sl. moist from 0.3 to 4.5 f	t, wet from 4.5 to	B11-WT @1630 (3.0 to 4.5 ft)					
		12.0 ft.			-				
-		white flakes in upper two	feet of core	Water sample:	-				
-	Run 2			B11-GW @ 1645 (Screen 9 to 12 ft)	-				
	4.0 to 8.0			,	-				
5_				Core has fertilizer odor but no staining.					
-				stannig.	-				
_					-				
_					-				
_					-				
	Run 3								
-	8.0 to 12.0				_				
	010 10 1210				_				
_					_				
10					_				
					_				
					_				
		TD 12.0 ft.			_				
					_				
					_				
					_				
					_				
15									
					-				
					_				
					-				
					-				
					—				
					-				
					-				
					-				
-					-				
20	1			l					


		SITE		BORING NUMBER					
HDR, Inc.			wer Solutions	B12	SHEET 1 of 1				
			DIL BORING						
	PROJECT : Simplot Grower Solutions, Sunnyside, WA LOCATION : 300 1st Str., Sunnyside, WA								
	G.S. ELEVATION : DRILLING CONTRACTOR : Environmental West, Inc. Spokane DRILLING METHOD USED : Geoprobe 5400 with 2-inch macrocore barrel & liner BOREHOLE DEPTH : 11.5 ft								
		eoprobe 5400 v			BOREHOLE DEPTH : 11.5 ft				
WATER LEVEL:				END: 9/24/09	LOGGER : D. Reynolds (HDR)				
DEPTH BELOW SU	. ,	STANDARD PENETRATION	CORE DESC	RIPTION	COMMENTS				
INTERVAL	<u>- (F1)</u> ECOVERY (FT)	TEST	SOIL NAME, USCS SYM						
	TYPE	RESULTS	MOISTURE CONTENT, C		TIME AND MISCELLANEOUS				
		6"-6"-6"-6"	OR DENSITY, SOIL STR		COMMENTS				
_ 0.0-0.5		Run 1	0.0 to 0.5 FILL	JOINE	Start Time 1115				
_0.5-11.5		0.0 to 4.0	0.3 TO 11.5 CLAYEY SI	IT (MI) some	Start Time TTIS	-			
		0.0 10 1.0	gravel to 1.0 ft.	<u>ET (ME), 30me</u>	Soil samples:	-			
-				a white flates	B12-SU @ 1130 (1.0 to 2.0 ft)	-			
-			dk. brown to brown, som upper two feet.	ie white hakes	B12-WT @1145 (3.5 to 5.5 ft)	-			
				ft wat from E E to					
			sl. moist from 0.5 to 5.5 11.5 ft.	n, wet nom 5.5 to	Water sample:	_			
		Run 2			B12-GW @ 1200 (Screen 8.5 to	_			
		4.0 to 8.0			11.5 ft)	_			
5_					Core has odor but no staining.	_			
					5				
						_			
_						_			
_		Run 3				_			
_		8.0 to 11.5				_			
_						_			
_						_			
10									
_						_			
_			TD 11.5 ft.		Hard to Geoprobe, near refusal.	_			
					Driller does not want to jam core	_			
					barrel.	_			
_						_			
_						_			
-						-			
						-			
15						—			
						-			
						-			
-						-			
-						-			
						—			
-						-			
-						-			
						-			
20						-			
20									


		SITE		BORING NUMBER	2				
HDR	HDR, Inc.		wer Solutions	B13	SHEET 1 of 1				
		SOIL BORING LOG							
PROJECT : Si	PROJECT : Simplot Grower Solutions, Sunnyside, WA LOCATION : 300 1st Str., Sunnyside, WA								
	G.S. ELEVATION : DRILLING CONTRACTOR : Environmental West, Inc. Spokane WA								
DRILLING ME	THOD USED : (Geoprobe 5400 v	with 2-inch macrocore ba	rrel & liner	BOREHOLE DEPTH: 12 ft				
WATER LEVE			START: 9/24/09	END: 9/24/09	LOGGER : D. Reynolds (HDR)				
DEPTH BELOW	SURFACE (FT)	STANDARD	CORE DESC	RIPTION	COMMENTS				
INTERV	AL (FT)	PENETRATION							
	RECOVERY (FT) TEST	SOIL NAME, USCS SYM	BOL, COLOR,					
	TYPE	RESULTS	MOISTURE CONTENT, O	CONSISTENCY	TIME AND MISCELLANEOUS				
		6"-6"-6"-6"	OR DENSITY, SOIL STR	UCTURE	COMMENTS				
_ 0.0-0.5		Run 1	0.0 to 0.5 FILL		Start Time 1000	_			
_0.5-12.0)	0.0 to 4.0	0.5 TO 12.0 CLAYEY S	<u>LT (ML)</u>		_			
_			dk. brown to brown, cold	or change gray to	Soil samples:	_			
_			dk. gray 11.5		B13-SU @ 1015 (1.0 to 2.0 ft)	_			
_			to 12.0 ft, sl. moist from	0.3 to 4.0 ft,	B13-WT @1030 (2.5 to 4.5 ft)				
			wet from 4.0 to 11.5 ft,	moist 11.5 to 12.0		-			
-			ft.		Water sample:	-			
-		Run 2			B13-GW @ 1045 (Screen 9 to	-			
		4.0 to 8.0			12 ft)	-			
5_					Core has fertilizer odor.				
-						-			
-						-			
-						-			
-						-			
—									
-		Run 3				-			
-		8.0 to 12.0				-			
-						-			
10 -						-			
10_									
-						-			
-						_			
-			TD 12.0 ft.			_			
			12 12.010			-			
						_			
 15						_			
						_			
						_			
						_			
						_			
						_			
						_			
						_			
20									







and/or the Information on this Well Report.	Please pri RESOURCE PROTECTION V (SUBMIT ONE WELL REPORT PER WE Construction/Decommission ("x" in box) Construction 468/93 Decommission 468/93 ORIGINAL INSTALLATION Notice of Intent I Consulting Firm <u>HDR</u> Eugineering Unique Ecology Well IDTag No. <u>BCL</u> WELL CONSTRUCTION CERTIFICATION accept responsibility for construction of this well, and its Verstrington well construction standards. Materials used reported above are true to my best knowledge and belief. Driller Construct Construction Standards. Materials used Consulting Firm Standards. Materials used Driller Engineer Traince Please print Last, First Name) <u>Sink</u> Row	MELL REPORT LL INSTAL DECOLO Received NOV 2 7 2012 Number: Twc://REGION FO2 MW-5 : 1 constructed and/or compliance with all and the information	to the Department of Ecology CURRENT Notice of Intent No. <u>AC19832</u> Type of Well ("x in box) [] Resource Protection [] Geotech Soil Boring Property Owner <u>Simplet</u> <u>Growers</u> <u>Solutions</u> Site Address <u>300</u> <u>Stripts</u> Site Address <u>300</u> <u>Stripts</u> Site Address <u>300</u> <u>Stripts</u> County <u>Yikima</u> Location <u>SW</u> 1/4-1/4 <u>NW</u> 1/4 Sec <u>25</u> Twn <u>10</u> R <u>22</u> EWM [] Cor WWM [] Lat/Long (s, t, r Lat Deg <u>Min</u> <u>Sec</u> still REQUIRED Long Deg <u>Min</u> <u>Sec</u> Tax Parcel No. <u>221025/23444</u>		
d/o	Driller/Engineer /Trainee Signature	li	Cased or Uncased D	viameter 2" B Static Level 11"	
	Driller or Trainee License No. 2661			n Start Date	
Data	If traince, licensed driller's Signature and I	license Number:	Work/Decommission	n Completed Date 11/16/12	
			4		
ţ	Construction Design	Well D		Formation Description	
The Department of Ecology does NOT Warranty the	- Bentenite - 20.	Abandon : Fill chips & Pu	With Bestonik Il Manunant		
				1	
		SCALE: 1"= NA P	AGEOF		

MW-5R

Laboratory Reports and Field Sampling Forms (CD only)

D

Groundwater Data Screening

Step 1. List detects and ND fo entire database

X = Detected; NA = not analyzed

$\mathbf{X} = \mathbf{Detected}; \mathbf{NA} = \mathbf{not} \text{ analyzed}$	ESC	ESC	Pace	Pace																		
	Method	RL	RL	Methods	9/24/09	3/17/11	6/30/11	9/15/11	12/16/11	12/5/12				10/30/2014		10/13/2015					4/25/2018	9/11/2
Inorganics		(mg/L)		(mg/L)	GeoProbe	ESC	ESC	ESC	ESC	ESC	ESC	ESC	ESC	ESC	ESC	ESC	ESC	ESC	ESC	ESC	Pace	Pace
Chloride	9056	1			Х	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sulfate	9056	5			Х	NA	NA	NA	NA	NA	Х	Х	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ammonia-N	350.1	0.1	0.	1	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	х	Х	Х	х	Х	ND	ND	ND
Nitrate-Nitrite	353.2	0.1		1	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
RCRA Metals																						
Mercury	7470a	0.0002	0.000	2 7470A	Х		ND	ND	ND	ND	ND	Х	ND	ND	ND	ND	ND	ND	ND	Х	ND	ND
Arsenic	6010b	0.020		5 6020B	х	х	Х	Х	Х	Х	Х	ND	х	х	х	х	х	х	Х	Х	х	х
Barium	6010b	0.005		3 6020B	X	X	X	X	X	X	Х	X	X	X	x	x	X	x	X	Х	x	X
Cadmium	6010b	0.005		1 6020B	ND		X	ND	ND	X	X	x	x	ND	x	X	x	ND	ND	ND	x	X
Chromium	6010b	0.010		5 6020B	X		ND	ND	ND	x	x	X	×	x	x	v	x	X	X	X	X	X
Lead	6010b	0.010		1 6020B	X	х	ND	X	ND	ND	ND	X	X	ND	X	X	ND	ND	ND	X	X	X
Selenium	6010b	0.000		5 6020B	ND	X X	X	ND	X	v	X	X X	X	Y	X	X	v	v	v	X	x	X
Silver	6010b	0.020		5 6020B	ND	Λ	ND	ND	ND	X	ND	X	ND	ND	^ ND	ND	ND	ND	ND	ND	X	ND
	00100	01010	01000	00200	110			110	110	~		~	110	110		110	110	110	110	110	~	110
VOCs		0.000	_																			
Acetone	8260B	0.050		2 8260B	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acrolein	8260B	0.050	0.00		ND		ND	ND	Х	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acrylonitrile	8260B	0.010	0.00		ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene	8260B	0.001	0.00		Х	Х	Х	Х	Х	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromobenzene	8260B	0.001	0.00	1 8260B	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NC
Bromodichloromethane	8260B	0.001	0.00	1 8260B	Х		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NC
Bromoform	8260B	0.001	0.004	4 8260B	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromomethane	8260B	0.005	0.004	4 8260B	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-Butylbenzene	8260B	0.001	0.00	1 8260B	Х		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
sec-Butylbenzene	8260B	0.001	0.00	1 8260B	Х		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	8260B	0.001	0.00	1 8260B	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon tetrachloride	8260B	0.001	0.00	1 8260B	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	8260B	0.001	0.00	1 8260B	Х	Х	Х	Х	Х	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorodibromomethane	8260B	0.001	0.00	1 8260B	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	8260B	0.005	0.00	1 8260B	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Chloroethyl vinyl ether	8260B	0.050	0.00		ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform	8260B	0.003	0.00		ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane	8260B	0.001	0.004		ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Chlorotoluene	8260B	0.001	0.00		ND	Х	ND	ND	X	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Chlorotoluene	8260B	0.001	0.00		ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromo-3-Chloropropane	8260B	0.001	0.00		ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromoethane	8260B	0.005	0.004		X		ND	X	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NC
Dibromomethane	8260B	0.001	0.00		ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NC
1,2-Dichlorobenzene	8260B	0.001	0.00						ND		ND								ND		ND	
I,3-Dichlorobenzene																ND		ND				
-	8260B	0.001	0.00		ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
1,4-Dichlorobenzene	8260B	0.001	0.00		ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NE
Dichlorodifluoromethane	8260B	0.005	0.00		ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NE
1,1-Dichloroethane	8260B	0.001	0.00		ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NE
1,2-Dichloroethane	8260B	0.001	0.00		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	ND	Х	Х	Х	Х	Х	Х
1,1-Dichloroethene	8260B	0.001	0.00		ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	8260B	0.001	0.00		ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	8260B	0.001	0.00	1 8260B	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

X = Detected; NA = not analyzed

X = Detected; NA = not analyzed	FSC	FSC	Daca	Daca																		
	ESC Method	ESC RL	Pace RL	Pace Methods	9/24/09	3/17/11	6/30/11	9/15/11	12/16/11	12/5/12	1/1/2013	7/23/2013	10/25/2013	10/30/2014	4/29/2015	10/13/2015	4/19/2016	10/31/2016	5/3/2017	12/27/2017	4/25/2018	0/11/2018
Inorganics	Methou	(mg/L)	ΝL	(mg/L)	GeoProbe	ESC	ESC	ESC	ESC	ESC	4/4/2013 ESC	ESC	ESC	ESC	4/29/2013 ESC	ESC	4/19/2010 ESC	ESC	ESC	ESC	4/23/2018 Pace	Pace
1,2-Dichloropropane	8260B	0.001	0.004		X	X	X	X	X	<u>x</u>	X	X	X	X	X	X	X	x	x	x	X	X
1,1-Dichloropropene	8260B	0.001	0.001		ND	Λ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichloropropane	8260B	0.001	0.001		ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,3-Dichloropropene	8260B	0.001	0.001		ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	8260B	0.001	0.004		ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,2-Dichloropropane	8260B	0.001	0.004		ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Di-isopropyl ether	8260B	0.001	0.004		ND		ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	8260B	0.001	0.004		X		ND	X	X	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachloro-1,3-butadiene	8260B	0.001	0.001		ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isopropylbenzene	8260B 8260B	0.001	0.001		X		ND	X	X	ND	ND			ND	ND	ND	ND	ND	ND		ND	ND
p-lsopropyltoluene	8260B	0.001	0.001		X																	
								ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
2-Butanone (MEK)	8260B	0.010	0.005		ND			ND	ND		ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND
Methylene Chloride	8260B	0.005	0.004		ND		ND	ND	ND	ND	ND	X	ND	ND	ND		ND	ND	ND	ND	ND	ND
4-Methyl-2-pentanone (MIBK)	8260B	0.010	0.005		ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl tert-butyl ether	8260B	0.005	0.001		ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	8260B	0.001	0.004		Х	.,	X	X	X	X	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-Propylbenzene	8260B	0.001	0.001		X	Х	X	X	X	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Styrene	8260B	0.001	0.001		ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1,2-Tetrachloroethane	8260B	0.001	0.001		ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	8260B	0.001	0.001		ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloro-1,2,2-trifluoro	8260B	0.001	0.001		ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	8260B	0.001	0.001		ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	8260B	0.005	0.001		Х		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichlorobenzene	8260B	0.001	0.001		ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	8260B	0.001	0.001		ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	8260B	0.001	0.001		ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	8260B	0.001	0.001		ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	8260B	0.001	0.0004		ND	X (Lab)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichlorofluoromethane	8260B	0.001	0.001		ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichloropropane	8260B	0.001	0.004		ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	8260B	0.001	0.001		Х	Х	Х	Х	Х	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trimethylbenzene	8260B	0.001	0.001	8260B	Х	Х	Х	Х	Х	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	8260B	0.001	0.001		Х	Х	Х	Х	Х	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl chloride	8260B	0.001	0.0002	8260B	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Xylenes, Total	8260B	0.002	0.003	8260B	Х	Х	Х	Х	Х	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Herbicides																						
2,4-D (2,4-Dichlorophenoxyacetic acid	8151	0.002			Х	ND	ND	Х	Х	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA
Dalapon	8151	0.200			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA
2,4-DB	8151	0.002			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA
Dicamba	8151	0.002			ND	ND	X	X	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA
Dichloroprop	8151	0.002			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA
Dinoseb	8151	0.002			X	X	X	X	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA
MCPA (2-methyl-4-chlorophenoxyacetic acid)		0.100			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA
MCPP (methylchlorophenoxypropionic acid)	8151	0.100			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA
2,4,5-T (2,4,5-Trichlorophenoxyacetic acid)	8151 8151	0.002			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA
2,4,5-TP (Silvex, 2,4,5-trichlorophenoxy)	8151 8151	0.002			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA
z,4,5-17 (Silvex, $z,4,5-$ triciliorophenoxy)	0101	0.002			שא	שא	ND	שא	ND		NU	NU	NU	ND		NA	N/A	NA	NA	NA	NA	NA

X = Detected; NA = not analyzed																						
	ESC	ESC	Pace	Pace																		
	Method	RL	RL	Methods	9/24/09	3/17/11	6/30/11	9/15/11	12/16/11	12/5/12	4/4/2013	7/23/2013	10/25/2013	10/30/2014	4/29/2015	10/13/2015	5 4/19/2016	10/31/2016	5/3/2017	12/27/2017	4/25/2018	9/11/2018
Inorganics		(mg/L)		(mg/L)	GeoProbe	ESC	ESC	ESC	ESC	ESC	ESC	ESC	ESC	ESC	ESC	ESC	ESC	ESC	ESC	ESC	Pace	Pace
ТРН																						
Gasoline	NWTPHG	0.1			NA	Х	Х	ND	Х	Х	Х	Х	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA
Diesel	NWTPHD.	0.1			NA	Х	Х	Х	Х	Х	Х	ND	ND	х	х	NA	NA	NA	NA	NA	NA	NA
Residual Organics	NWTPHD)	κ			NA	Х	ND	Х	Х	ND	ND			Х	Х	NA	NA	NA	NA	NA	NA	NA
PAHs																						
Anthracene	8270C	0.00005			NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA
Acenaphthene	8270C	0.00005			NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA
Acenaphthylene	8270C	0.00005			NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA
Benzo(a)anthracene	8270C	0.00005			NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	Х	NA	NA	NA	NA	NA	NA	NA
Benzo(a)pyrene	8270C	0.00005			NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA
Benzo(b)fluoranthene	8270C	0.00005			NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	Х	NA	NA	NA	NA	NA	NA	NA
Benzo(g,h,i)perylene	8270C	0.00005			NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA
Benzo(k)fluoranthene	8270C	0.00005			NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA
Chrysene	8270C	0.00005			NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA
Dibenz(a,h)anthracene	8270C	0.00005			NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA
Fluoranthene	8270C	0.00005			NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA
Fluorene	8270C	0.00005			NA	ND	ND	ND	Х	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA
Indeno(1,2,3-cd)pyrene	8270C	0.00005			NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA
Naphthalene	8270C	0.00025			NA	Х	Х	Х	Х	ND	Х	Х	Х	ND	х	NA	NA	NA	NA	NA	NA	NA
Phenanthrene	8270C	0.00005			NA	ND	ND	ND	Х	ND	ND	ND	ND	ND	Х	NA	NA	NA	NA	NA	NA	NA
Pyrene	8270C	0.00005			NA	ND	ND	ND	Х	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA
1-Methylnaphthalene	8270C	0.00025			NA	Х	Х	Х	Х	ND	ND	ND	ND	ND	Х	NA	NA	NA	NA	NA	NA	NA
2-Methylnaphthalene	8270C	0.00025			NA	Х	Х	Х	Х	ND	ND	ND	ND	ND	Х	NA	NA	NA	NA	NA	NA	NA
2-Chloronaphthalene	8270C	0.00025			NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA

Imparise	Screen Step 2. Remove compounds never	detected. Grou	Indwater N	/W																	
bit bit <th></th> <th></th> <th>(mg/L)</th> <th>(mg/L)</th> <th></th>			(mg/L)	(mg/L)																	
shifterbiole<	Inorganics	Method	RL	RL	3/17/11	6/30/11	9/15/11	12/16/11	12/5/12	4/4/2013	7/23/2013	10/25/2013	10/30/2014	4/29/2015	10/13/2015	4/19/2016	10/31/2016	5/3/2017	12/27/2017	4/25/2018	9/11/2018
Advance Advace Advace X X X X <			ESC	Pace		ESC	ESC	ESC	ESC	ESC	ESC	ESC	ESC	ESC	ESC	ESC	ESC	ESC	ESC	Pace	Pace
Niner, Miner, Stat O I K X <td>Sulfate</td> <td>9056</td> <td>5</td> <td></td> <td>NA</td> <td>NA</td> <td>NA</td> <td>NA</td> <td>NA</td> <td>Х</td> <td>Х</td> <td>NA</td>	Sulfate	9056	5		NA	NA	NA	NA	NA	Х	Х	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CANADAL Material No. No. No. No. <th< td=""><td>Ammonia-N</td><td>350.1</td><td>0.1</td><td>0.1</td><td>Х</td><td>Х</td><td>Х</td><td>х</td><td>Х</td><td>Х</td><td>Х</td><td>Х</td><td>Х</td><td>Х</td><td>Х</td><td>Х</td><td>Х</td><td>Х</td><td>ND</td><td>ND</td><td>ND</td></th<>	Ammonia-N	350.1	0.1	0.1	Х	Х	Х	х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	ND	ND	ND
Method Mode	Nitrate-Nitrite	353.2	0.1	1	Х	Х	Х	х	Х	Х	Х	Х	х	х	Х	Х	х	Х	х	Х	х
Method Mode				I																	
Aleading Galos Galos No X	RCRA Metals																				
Berline 6010 0.005 0.003 X X X X X </td <td>Mercury</td> <td>7470a</td> <td>0.0002</td> <td>0.0002</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>Х</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>х</td> <td>ND</td> <td>ND</td>	Mercury	7470a	0.0002	0.0002	ND	ND	ND	ND	ND	ND	Х	ND	ND	ND	ND	ND	ND	ND	х	ND	ND
Berline 6010 0.005 0.003 X X X X X </td <td>Arsenic</td> <td>6010b</td> <td>0.020</td> <td>0.0005</td> <td>Х</td> <td>Х</td> <td>Х</td> <td>х</td> <td>Х</td> <td>Х</td> <td>ND</td> <td>х</td>	Arsenic	6010b	0.020	0.0005	Х	Х	Х	х	Х	Х	ND	х	х	х	х	Х	х	Х	х	х	х
Chemium601060050.007NN </td <td></td> <td></td> <td></td> <td></td> <td>Х</td> <td>Х</td> <td></td> <td>х</td> <td>Х</td> <td>Х</td> <td></td> <td>х</td> <td>х</td> <td>х</td> <td>х</td> <td>Х</td> <td></td> <td>Х</td> <td>х</td> <td>Х</td> <td>х</td>					Х	Х		х	Х	Х		х	х	х	х	Х		Х	х	Х	х
Choording Guo Guo Guo Guo No	Cadmium	6010b			Х	Х	ND	ND	Х	Х	Х	х	ND	х	х	Х	ND	ND	ND	Х	х
Liead 6220 0.050 0.000 NO						ND			Х	Х	х	х	х	х	х	Х		Х		х	х
Selerin Obj Obj Obj Obj Obj No												х			х	ND		ND	х	Х	х
Sher. 6109 0.00 0.000 N0 N0<															X				х	Х	x
VC1 Set 2 S															ND						ND
Bencence 8260 0.001 0.000 X X X X X N ND																					
Bencence 8260 0.001 0.000 X X X X X N ND	VOCs																				
Chorobanesne 5260 0.001 0.001 N N N ND ND <t< td=""><td></td><td>8260B</td><td>0.001</td><td>0.001</td><td>х</td><td>х</td><td>х</td><td>x</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td></t<>		8260B	0.001	0.001	х	х	х	x	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2 Display ND								x													
12-Decisionmechane 8560 0.001 0.00 ND								x													
12-Definitory 12-Definitory NO																					
1.2.bic/intropropane 82608 0.01 0.00 N <	-							X													X
Etydeprone SZGB 0.001 ND ND </td <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>X</td> <td></td> <td>x</td>	-							X													x
isopropheneme \$\$260\$ 0.001 0.004 ND	• •							x													
Methylapic Chloride 82608 0.005 0.004 N2 ND								×													
Naphtpalene 8260 0.01 0.04 X X																					
n-Program 8260 0.01 0.01 X X X N ND						v		ND													
12.3-Trimethylberzene 82608 0.001 0.001 X X X X N ND	•				×	×		×													
1,2,3-Trimethylenzene 82608 0.001 X X X X X X ND ND <t< td=""><td></td><td></td><td></td><td></td><td>^ V</td><td>A V</td><td></td><td>×</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>					^ V	A V		×													
1,3,5-rimethybenzene 82668 0.001 0.001 X X X X X ND	•							×													
Viny chloride 82608 0.001 0.0002 ND	•																				
xylenes, Total 82608 0.002 0.003 X X X N ND	•																				
Herbicity 42-10 (2,4-0)chlorophenoxyacetic acid 8151 0.002 X X X ND	-																				
2.4-D (2,4-Dichlorophenoxyacetic acid Dicamba81510.002NDNDNDXXND	Xylenes, Total	8260B	0.002	0.003	X	X	X	X	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2.4-D (2,4-Dichlorophenoxyacetic acid Dicamba81510.002NDNDNDXXND	U a v b i a i a a a																				
Dicamba Dicamba Dinseb81510.002XXXXND <th< td=""><td></td><td>0151</td><td>0.000</td><td></td><td></td><td></td><td>V</td><td>X</td><td></td><td>ND</td><td></td><td>ND</td><td></td><td>ND</td><td>NIA</td><td>NLA</td><td>NIA</td><td>NLA</td><td>N1.0</td><td>NIA</td><td>N1.0</td></th<>		0151	0.000				V	X		ND		ND		ND	NIA	NLA	NIA	NLA	N1.0	NIA	N1.0
Dinoseb81510.002XXXNNDNDNDNDNDNDNA																					
TPH Gasoline NWTPHGD 0.1 X X ND X X ND																					
GasolineNWTPHG0.1XXXNDXXX <td>Dinoseb</td> <td>8151</td> <td>0.002</td> <td></td> <td>Х</td> <td>Х</td> <td>Х</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>NA</td> <td>NA</td> <td>NA</td> <td>NA</td> <td>NA</td> <td>NA</td> <td>NA</td>	Dinoseb	8151	0.002		Х	Х	Х	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA
GasolineNWTPHG0.1XXXNDXXX <td></td>																					
Diesel Residual OrganicsNWTPHD NUTPHDX0.1XXXXXXXNDNDNDNDXXXXNA																			•••		
Residual OrganicsNWTPHDXNDNDNDXXND <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																					
PAHsBenzo(a)anthracene8270C0.00005ND </td <td></td> <td>ND</td> <td>ND</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>											ND	ND									
Benzo(a)anthracene8270C0.00005NDNDNDNDNDNDNDNDNDNDNDNDNA </td <td>Residual Organics</td> <td>NWTPHDX</td> <td></td> <td></td> <td>ND</td> <td>ND</td> <td>Х</td> <td>х</td> <td>ND</td> <td>ND</td> <td></td> <td></td> <td>Х</td> <td>Х</td> <td>NA</td> <td>NA</td> <td>NA</td> <td>NA</td> <td>NA</td> <td>NA</td> <td>NA</td>	Residual Organics	NWTPHDX			ND	ND	Х	х	ND	ND			Х	Х	NA	NA	NA	NA	NA	NA	NA
Benzo(a)anthracene8270C0.00005NDNDNDNDNDNDNDNDNDNDNDNDNA </td <td></td>																					
Benzo(b)fluoranthene8270C0.00005ND																					
Fluorene8270C0.00005ND<																					
Naphthalene8270C0.00025XXXXNDXXXND																					
Phenanthrene8270C0.00005NDNDNDXND																					
Pyrene 8270C 0.0005 ND NA	•																				
1-Methylnaphthalene 8270C 0.00025 X X X X X ND ND ND ND ND X NA NA NA NA NA NA NA NA																					
						Х															
2-Methylnaphthalene 8270C 0.00025 X X X X X ND ND ND ND ND X NA NA NA NA NA NA NA NA	2-Methylnaphthalene	8270C	0.00025		Х	Х	Х	Х	ND	ND	ND	ND	ND	Х	NA	NA	NA	NA	NA	NA	NA

Screen Step 3. Compounds detected in last 8 sampling events

Screen Step 5. compounds detected in last		(mg/L)																
Inorganics	Method	MDL*	6/30/11	9/15/11	12/16/11	12/5/12		•		10/30/2014		10/13/2015					4/25/2018	8 9/11/2018
		ESC	ESC	ESC	ESC	ESC	ESC	ESC	ESC	ESC	ESC	ESC	ESC	ESC	ESC	ESC	Pace	Pace
Sulfate	9056	5	NA	NA	NA	NA	Х	Х	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ammonia-N	350.1	0.1	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	ND	ND	ND
Nitrate-Nitrite	353.2	0.1	Х	Х	Х	х	Х	Х	Х	Х	Х	Х	х	Х	х	Х	Х	Х
RCRA Metals																		
Mercury	7470a	0.0002	ND	ND	ND	ND	ND	Х	ND	ND	ND	ND	ND	ND	ND	х	ND	ND
Arsenic	6010b	0.020	Х	Х	Х	Х	Х	ND	Х	Х	Х	Х	Х	Х	Х	Х	Х	х
Barium	6010b	0.005	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	х	Х	Х
Cadmium	6010b	0.005	Х	ND	ND	Х	Х	Х	Х	ND	Х	Х	Х	ND	ND	ND	Х	Х
Chromium	6010b	0.010	ND	ND	ND	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	х
Lead	6010b	0.005	ND	Х	ND	ND	ND	Х	Х	ND	Х	Х	ND	ND	ND	х	Х	Х
Selenium	6010b	0.020	Х	ND	Х	Х	Х	Х	Х	Х	х	Х	Х	Х	Х	Х	Х	х
Silver	6010b	0.010	ND	ND	ND	х	ND	Х	ND	ND	ND	ND	ND	ND	ND	ND	Х	ND
VOCs																		
1,2-Dichloroethane	8260B	0.001	Х	Х	Х	Х	Х	х	х	Х	Х	ND	Х	Х	Х	Х	Х	Х
1,2-Dichloropropane	8260B	0.001	Х	Х	Х	х	х	х	Х	Х	Х	Х	х	Х	х	Х	Х	х
Methylene Chloride	8260B	0.005	ND	ND	ND	ND	ND	х	ND	ND	ND	Х	ND	ND	ND	ND	ND	ND
Herbicides																		
2,4-D (2,4-Dichlorophenoxyacetic acid	8151	0.002	ND	х	Х	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA
Dicamba	8151	0.002	Х	х	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA
Dinoseb	8151	0.002	х	х	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA
ТРН																		
Gasoline	NWTPHG:	0.1	Х	ND	Х	х	х	х	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA
Diesel	NWTPHD:	0.1	X	X	Х	X	X	ND	ND	X	X	NA	NA	NA	NA	NA	NA	NA
Residual Organics	NWTPHDX		ND	x	X	ND	ND	ND	ND	x	X	NA	NA	NA	NA	NA	NA	NA
PAHs																		
Benzo(a)anthracene	8270C	0.00005	ND	ND	ND	ND	ND	ND	ND	ND	х	NA	NA	NA	NA	NA	NA	NA
Benzo(b)fluoranthene	8270C	0.00005	ND	ND	ND	ND	ND	ND	ND	ND	X	NA	NA	NA	NA	NA	NA	NA
Fluorene	8270C	0.00005	ND	ND	X	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA
Naphthalene	8270C	0.00025	X	X	X	ND	X	X	X	ND	X	NA	NA	NA	NA	NA	NA	NA
Phenanthrene	8270C 8270C	0.00025	ND	ND	X	ND	ND	ND	ND	ND	X	NA	NA	NA	NA	NA	NA	NA
Pyrene	8270C 8270C	0.00005	ND	ND	X	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA
1-Methylnaphthalene	8270C 8270C	0.00025	X	X	X	ND	ND	ND	ND	ND	X	NA	NA	NA	NA	NA	NA	NA
2-Methylnaphthalene	8270C 8270C	0.00025	X	X	X	ND	ND	ND	ND	ND	X	NA	NA	NA	NA	NA	NA	NA
	02/00	0.00023	^	^	^	ND	NU	ND	ND	NU	^	NA	NA	INA	NA	NA	NA	INA

Screen Step 4. Compare to Thresholds Red = exceeds CLARC Inorganics	Max Value Max	Notes	Lab (mg/L) RL	Lab (mg/L) Method	(mg/L) Method B Non C	(mg/L) Method B Cancer	(mg/L) Method C Non C	(mg/L) C Method C Cancer	(mg/L) MCL Goal	(mg/L) EPA MCL	(mg/L) WA MCL
Sulfate	630		1								
Ammonia-N	0.124		0.1								
Nitrate-Nitrite	74		1		25.6	5	56	5	10	10	10
RCRA Metals											
Mercury	0.0000494	Filtered?	0.0002	7470A					0.002	0.002	0.002
Arsenic	0.0956	Filtered?	0.0005	6020B	0.0048	0.000058	0.0105	0.000583		0.01	0.01
Barium	1.49	Filtered?	0.0003	6020B	3.2		7		2	2	2
Cadmium	0.0028	Filtered?	0.0001	6020B	0.008		0.0175		0.005	0.005	0.005
Chromium	0.098	Filtered?	0.0005	6020B					0.1	0.1	0.1
Lead	0.044	Filtered?	0.0001	6020B						0.015	0.015
Selenium	0.0358	Filtered?	0.0005	6020B	0.08		0.175		0.05	0.05	0.05
Silver	0.00068	Filtered?	0.0005	6020B	0.08		0.175				
VOCs											
1,2-Dichloroethane	0.00374		0.001	8260B	0.048	0.000481	0.105	0.004808		0.005	0.005
1,2-Dichloropropane	0.0686		0.001		0.72	0.001215	1.575	0.012153		0.005	0.005
Methylene Chloride		Lab (all wells)	0.004		0.048	0.021875	0.105	0.21875		0.005	0.005
	0.00100		0.000	01000		0.011070	0.200	0.22070		0.000	0.000
Herbicides											
2,4-D (2,4-Dichlorophenoxyacetic acid	0.036				0.16		0.35		0.07	0.07	0.07
Dicamba	0.0091				0.48		1.05				
Dinoseb	0.0098	MW-5 closed			0.016		0.035		0.007	0.007	0.007
ТРН											
Gasoline	1.8										
Diesel	2										
Residual Organics	0.26										
PAHs											
Benzo(a)anthracene	0.0000079					0.00012		0.001199			
Benzo(b)fluoranthene	0.0000021					0.00012		0.001199			
Fluorene	0.000055				0.64	0.00012	1.4	0.001133			
Naphthalene	0.000				0.16		0.35				
Phenanthrene	0.0004				0.10		0.00				
Pyrene	0.0000053				0.48		1.05				
1-Methylnaphthalene	0.000018				0.48	0.001509	1.225	0.015086			
2-Methylnaphthalene	0.000018				0.032	0.001303	0.07	0.01000			
2-ivieuryinapinnalene	0.000028				0.032		0.07				