Quarterly Groundwater Monitoring Report – March 2019

Coleman Oil Company Facility 3 East Chehalis Street Wenatchee, Washington

> Prepared for: Coleman Oil Company 335 Mill Road Lewiston, Idaho 83501

> > May 28, 2019

Prepared by:

HydroCon, LLC 314 W 15th Street, Suite 300, Vancouver, Washington 98660 Phone: (360) 703-6079 Fax: (360) 703-6086 www.hydroconllc.net

Quarterly Groundwater Monitoring Report – March 2019

Coleman Oil Company Facility 3 East Chehalis Street Wenatchee, Washington

Prepared for: Coleman Oil Company 335 Mill Road Lewiston, Idaho 83501

HydroCon Project No: 2017-074

Prepared by:

Craig Hultgren, LHG Principal Geologist

Table of Contents

1.0	INTRODUCTION		1
	1.1	Document Organization	1
2.0	BACKGROUND INFORMATION		2
	2.1	Site Description	2
	2.2	Site History	2
	2.3	Remedial Measures	2
	2.4	Geologic & Hydrogeologic Setting	4
	2.5	Hydraulic Testing	4
	2.6	Previous Groundwater Monitoring	5
	2.7	Monitoring Well Identification	6
3.0	FIELD WORK		
	3.1	Groundwater Sampling Procedures	7
	3.2	Laboratory Analysis	8
4.0	QUARTERLY GROUNDWATER MONITORING RESULTS		
	4.1	Groundwater Conditions	
	4.2	Groundwater Sampling Results	9
	4.3	Data Quality Review	11
5.0	DISCUSSION		
	5.1	Discussion of Laboratory Results	
	5.2	Trends in Groundwater Chemistry	12
	5.3	Extent of Groundwater Contamination	14
6.0	FUTURE MONITORING SCHEDULE		
	6.1	Daily Columbia River Level and Water Level Measurements	16
	6.2	Weekly to Monthly Water Level and Product Thickness Measurements	
	6.3	Future Quarterly Groundwater Sampling	16
7.0	QUALIFICATIONS		
8.0	REFERENCES19		

Table of Contents (continued)

List of Figures

Figure 1 – Site Location Map

Figure 2 – Site Features Map

Figure 3 - Groundwater Elevation Contour Plot for March 29, 2019

Figures 4a, 4b, 4c, 4d, 4e, 4f, 4g, 4h - Trend Plots

Figure 5 – DRPH in Groundwater for March 2019

Figure 6 – GRPH in Groundwater for March 2019

List of Tables

- Table 1 Well Construction Details
- Table 2 Depth to Water and Groundwater Elevation
- Table 3 Summary of Groundwater Analytical Results Fuels and VOCs
- Table 4 Summary of Groundwater Analytical Results PAHs
- Table 5 Vertical Groundwater Gradients
- Table 6 List of Wells to be Sampled and Associated Laboratory Analyses

Appendices

Appendix A – Groundwater Sample Collection Forms

- Appendix B Laboratory Report and Chain-of-Custody Documentation
- Appendix C Data Quality Review Reports

Appendix D – Water Level and Product Thickness Measurements Form

Acronyms

amsl	above mean sea level
bgs	below ground surface
BNSF	Burlington Northern – Santa Fe Railroad
COC	Chemical of Concern
Coleman Oil	Coleman Oil Company
DRPH	diesel range petroleum hydrocarbons
Ecology	Washington Department of Ecology
EDB	1,2-dibromoethane
EDC	1,2-dichloroethane
EEC	Environmental Engineering & Consulting, Inc.
EPA	Environmental Protection Agency
GRPH	gasoline range petroleum hydrocarbons
HydroCon	HydroCon Environmental LLC
µg/L	micrograms per liter
LCS/LCSD	Laboratory Control Sample/ Laboratory Control Sample Duplicates
LNAPL	light nonaqueous-phase liquid
MDL	method detection limit
MRL	method reporting limit
MTBE	Methyl tert-butyl ether
MTCA	Model Toxics Control Act
ORPH	oil range petroleum hydrocarbons
PAHs	polynuclear aromatic hydrocarbons
PID	photoionization detector

EXECUTIVE SUMMARY

This Quarterly Groundwater Monitoring Report provides the scope and findings of groundwater monitoring that was performed in March 2019. This monitoring event was performed to assess groundwater quality at the Site following the completion of the Supplemental Remedial Investigation (SRI) performed last year as well as to document the direction and gradient of groundwater flow and groundwater contaminant levels.

Quarterly groundwater monitoring will continue for the foreseeable future until a reduced monitoring schedule is approved by the Washington State Department of Ecology (Ecology). Quarterly groundwater monitoring includes the following tasks and reporting:

- Collect depth to water and product thickness measurements at the Site monitoring wells while the pumping system is active.
- Turn off the pumps at monitoring wells MW09R, MW10R, BH-1, MW17, MW24, MW28, MW29, MW30 and MW32 where groundwater and product recovery are being performed.
- Collect depth to water and product at each of the Site monitoring and recovery wells the day after the pumps have been turned off.
- Collect groundwater samples for chemical analysis at selected wells listed on Table 5.
- Review the laboratory results and perform a data validation review and summary.
- Compile the depth to water, product level information, and analytical data into summary tables and figures.
- Prepare a discussion on the laboratory results, groundwater flow direction and gradient, and recommendations for future work.
- Update the tentative schedule of future quarterly groundwater monitoring events.

1.0 INTRODUCTION

HydroCon Environmental, LLC (HydroCon), has prepared this Draft Quarterly Groundwater Monitoring Report on behalf of Coleman Oil Company (Coleman Oil) to assess groundwater quality following the release of renewable diesel (R99) fuel from leaking underground piping at the Coleman Oil fuel storage facility at 3 Chehalis Street in Wenatchee, Washington (herein referred to as the Property). This report has been prepared to meet the requirements of Exhibit B – Scope of Work and Schedule of Agreed Order No. DE 15389 entered into by Coleman Oil Company, LLC; Coleman, Services IV, LLC; and Ecology with an effective date of October 30, 2017 (Agreed Order).

The Site, as defined under the Washington State Model Toxics Control Act Cleanup Regulation (MTCA), Chapter 173-340 of the Washington Administrative Code (WAC §173-340-200), comprises the portion of the Property and adjacent properties where hazardous substances have come to be located in soil, groundwater, and surface water at concentrations suspected to exceed applicable cleanup levels as a result of releases at the Property (herein referred to as the Site).

1.1 Document Organization

The Quarterly Groundwater Monitoring Report is organized as follows:

Section 2, Background Information, provides a description of the Site, Property ownership, and geologic and hydrogeologic setting.

Section 3, Field Work

Section 4, Quarterly Groundwater Monitoring Results

Section 5, Discussion

Section 6, Future Monitoring Schedule

Section 7, Qualifications

Section 8, References

2.0 BACKGROUND INFORMATION

The following section provides a summary of the Site location and description, geologic setting, historical land use, environmental history, and contaminants and media of concern at the Site. Most of the information provided below is summarized from the Supplemental Remedial Investigation (SRI) Work Plan (HydroCon 2018a) and the Draft SRI Report (HydroCon 2018b).

2.1 Site Description

The Site is located at 3 Chehalis Street in Wenatchee, Washington. The Site is located nearly adjacent to the west side of the Columbia River. Land use near the Site is primarily industrial (Figure 1).

2.2 Site History

This section provides a brief Site history, focusing on the discovery of a release of R99 in March 2017. Additional Site history is documented in the SRI Report.

The Site currently operated by Coleman Oil has been in operation as a bulk fuel facility since 1921. Coleman Oil has operated the bulk fuel facility since Coleman Services IV, LLC purchased the Property in January 2007.

A petroleum sheen was discovered on the west side of the Columbia River approximately 300 feet north of the Site on March 17, 2017. Subsequent line tightness testing revealed that two lines could not hold pressure and a review of Coleman Oil inventory records indicated that the release was most likely from the R99 renewable diesel fuel line. Oil storage, loading and unloading of trucks for oil distribution was terminated in 2017 except for a small underground storage tank that supplies fuels to the adjacent cardlock fueling facility.

Subsequent testing included the installation of groundwater monitoring wells, soil borings, and test pits in phases between March and September 2017 by Farallon (2017) and March and April 2018 by HydroCon (2018b) (Figure 2). This testing indicated soil and groundwater had been impacted at concentrations above MTCA Method A cleanup levels, including impacts to soil and groundwater near the location of the sheen.

2.3 Remedial Measures

Several remedial measures have taken place at the Site since the discovery of the release.

• Pads and booms have been placed in the Columbia River in the observed sheen discharge area to recover product since discovery of the release. This practice has continued along with daily reporting regarding Columbia River conditions.

- A remedial excavation was performed on the Coleman Oil facility near the point of release. Approximately 741 tons of petroleum contaminated soil was removed for offsite disposal.
- Sumps were placed in the remedial excavation backfill. Pumps were placed in the sumps to recover product and maintain a cone of depression to minimize product migration. Effluent from the sumps was routed to an oil/water separator and settling tanks prior to treatment using granular activated carbon (GAC). The treated water was disposed under permit into the City of Wenatchee's sanitary sewer system.
- Farallon Consulting and Ecology's consultant (Environmental Partners, Inc. [EPI] installed fifteen wells at the Site (MW-1 through MW-11, BH-1 through BH-3, and RW-1). Product recovery via skimming using a peristaltic pump and tubing and/or passive recovery using hydrophobic socks has occurred in some of the wells.
- In April 2018, HydroCon performed a supplemental remedial investigation (SRI) that included the addition of fourteen new 4-inch diameter monitoring wells (MW12 through MW23, MW01S, MW03S). Three wells with persistent LNAPL measurements (MW-9, MW-10, and BH-1) were fitted with pumps and connected with underground piping for pressurized air to operate the pumps, and conduit for electrical control and effluent piping to collect the recovered groundwater and product. The recovered groundwater and product from these wells are routed through three oil/water separators, into storage tanks and then through filtration and GAC and into storage tanks. The treated water is analyzed prior to discharge in batches under an agreement between Coleman Oil and the City of Wenatchee into the City's sanitary sewer system. Pumping of the three wells began on May 5, 2018.
- In August 2018 nine new 4-inch diameter monitoring wells (MW24 through MW32) were installed at the Site. Two of the wells used to recover product and contaminated groundwater (MW-9 and MW-10) were deepened, completed as 4-inch diameter wells, and renamed MW09R and MW10R, respectively.
- A surface release of diesel and gasoline that was stored in a 55-gallon drum at the Site occurred near the northeastern corner of Tank Farm A in early September 2018. A total of 16.83 tons of petroleum contaminated soil was removed by remedial excavation. Confirmation soil sampling results indicated that the lateral extent of contamination had been removed. However, the concentration of gasoline range petroleum hydrocarbons (GRPH) and diesel range petroleum hydrocarbons (DRPH) in the floor sample collected near the groundwater interface exceeded their respective MTCA Method A cleanup levels. No further excavation was attempted due to the presence of the Tank Farm A containment and a massive boulder that was too large to remove using the excavation equipment. Further remedial action in this area will be considered in the feasibility study that will be prepared for the Site.
- The remediation system was expanded in November 2018 to include six more recovery points (MW17, MW24, MW28, MW29, MW30, and MW32). The modified remediation system now consists of three separate zones that pump LNAPL and contaminated groundwater into an associated OWS. These zones include the MW09R zone (MW09R, MW17, and MW32) with only MW09R currently active; the MW10R zone (W10R, MW24,

and MW28) with all 3 wells active; and the BH-1 zone (BH-1, MW29, and MW30) with all 3 wells active. The expanded remediation system began pumping on November 2, 2018.

As of early December 31, 2018, a total of 449.34 gallons of R99 had been recovered (HydroCon 2018b).

2.4 Geologic & Hydrogeologic Setting

The Site is located in the Wenatchee Valley approximately 150 feet west south-west of the Columbia River at an elevation of approximately 660 feet above mean sea level (Figure 1). The topography of the Site slopes very gently to the north north-west parallel to the Columbia River.

The soils beneath the Site are consistent with ice-age alluvial deposits underlain by the Chumstick Formation bedrock. The alluvium consists primarily of silt and silty sand, with layers of clay, sand, gravel and cobbles. The thickness of the alluvial deposits ranges from 6 to 31.5 feet. Boring logs and drilling observations indicate that a more massive, well cemented sandstone layer is beneath thin layers of mudstone, shale and sandstone and the sandstone appears to be acting as an aquitard in this area. The groundwater level is within a few feet of the top of the Chumstick Formation and always above the sandstone layer. An exception is at MW22 where the groundwater is approximately 15 feet above the top of the Chumstick formation. The MW22 area has been disturbed by previous excavation and has been backfilled with construction and other debris.

Contaminant transport and groundwater flow appears to follow the surface of the Chumstick formation and field observations paired with analytical data suggest that the petroleum contamination penetrates a few feet into the formation and travels laterally within the shaley sandstone and shale/siltstone/mudstone of the Chumstick formation. The groundwater flow direction and the dip of the sandstone surface are both to the north/ northeast except in the region between the Site and the Columbia River where both are more to the east. Aquifer testing performed in February 2018 demonstrated that none of the wells tested are hydraulically connected. However, over 200 gallons of R99 (based on product recovery totals) has been recovered from the Columbia River with the apparent discharge points being west of monitoring wells BH-2 (south) to MW-10 (north).

2.5 Hydraulic Testing

Hydraulic testing of the aquifer beneath the Site has been conducted on two occasions and are briefly summarized here.

Six wells were subjected to step-drawdown testing in February 2018 (HydroCon 2018c). Three wells (RW-1, BH-2, and BH-3) could not sustain the initial step pumping rate of 0.25 gallons per minute (gpm) and dewatered after pumping approximately the amount of water stored in the well screen and surrounding sand pack. Wells BH-1, MW-9, and MW-10 sustained step flow rates of between 2.0 and 2.5 gpm before water levels reached target elevations. Drawdown was not observed in any nearby monitoring wells during the six step-drawdown tests. Analysis of the drawdown data indicated that at a pumping rate of 1.75 gpm the three wells would produce approximately 3.5 feet of drawdown in the

aquifer adjacent to the pumping well and the cone of influence would extend out to approximately 100 feet as defined by a drawdown of 0.1 feet.

Slug testing or falling head testing was performed on May 21, 2018 to observe relative flow rates of select wells on the Coleman oil property to better understand contaminant flow across the Site. Slug testing included MW-7, MW-8, MW-9, MW-11, MW13, MW14, MW16, MW17, MW19, MW20, MW22, and MW23.

A falling-head test is conducted by rapidly raising the water level in the control well and subsequently measuring the falling water level. The results of the slug tests show that MW-6, MW-11, MW17 and MW22 had high flow rates; MW-8, MW14, MW16, MW20 and MW23 had medium flow rates; and MW-7, MW13, MW19, and MW21 had low flow rates. The relative flow rates are highly variable across the Site; however, there is a good correlation between wells with high flow rates and high product recovery.

Based on the testing described above, pumps were installed at monitoring wells MW-9, MW-10, and BH-1. With the exception of minor equipment problems, the wells have been in operation since May 5, 2018, however, they only operate when water is at the level of the pump. When the pumps are activated, they pump at a rate of approximately 2 gpm as determined by the hydraulic testing. The intake for the pumps in the wells are set at approximately 618 feet above mean sea level (amsl), which corresponds to the elevation of the lowest seep on the bank of the Columbia River (Figure 2). As such, the pumps achieve the goal of maintaining water levels at target depths and thereby reducing migration to the river.

2.6 Previous Groundwater Monitoring

Farallon collected reconnaissance groundwater samples from push-probe borings FB-9 and FB-10 on April 7, 2017. Results of these samples indicated that GRPH, DRPH, and benzene exceeded their respective MTCA Method A cleanup level. The concentration of oil range petroleum hydrocarbons (ORPH) exceeded the MTCA Method A cleanup level in the sample collected from FB-9. The lab reported that the sample collected from FB-10 had no detection of ORPH but the laboratory method reporting limit (MRL) used in the analysis exceeded the MTCA Method A cleanup level.

Monitoring wells MW-1, MW-2, MW-4, and MW-5 were sampled on March 23, 2017 prior to the installation of new monitoring wells at the Site in April 2017. The samples were analyzed for DRPH and ORPH only. There was no detection of DRPH or ORPH in the samples collected from MW-2, MW-4, or MW-5. The sample collected from MW-1 had a concentration of DRPH slightly above the MTCA Method A cleanup level and ORPH slightly below the MTCA Method A cleanup level.

A Site-wide groundwater monitoring and sampling event occurred on April 20 and 21, 2017 after the installation of wells MW-6 through MW-11, BH-1 through BH-3, and RW-1. Groundwater samples were not collected from monitoring wells MW-8 and MW-9 due to the presence of LNAPL at these locations. Monitoring well MW-2 was not sampled due to historic results of no detection of any contaminant above the respective MRLs.

Another Site-wide groundwater monitoring and sampling occurred on September 28 and 29, 2017.

Groundwater samples were not collected from monitoring wells BH-1 and BH-2 due to lack of water in these wells. DRPH, ORPH, GRPH, and/or benzene were detected at concentrations exceeding their respective MTCA Method A cleanup levels in monitoring wells BH-1 through BH-3, MW-1, and MW-6 through MW-11 and in recovery well RW-1 during the April and/or September groundwater sampling events.

HydroCon performed a quarterly groundwater monitoring and sampling event in April 2018 after additional wells (MW12 through MW23 and MW01S and MW03S) were installed during the SRI. Groundwater samples were collected from monitoring wells MW01S, MW-2, MW03S, MW-4 through MW14, MW16, MW17, MW19 through MW23, BH-1, BH-2, BH-3, and RW-1. Groundwater samples were not collected from MW15 and MW18 due to a lack of water. Groundwater samples were not collected from MW-3 due to improper well construction.

In August 2018, HydroCon installed monitoring wells MW24 through MW32 to facilitate interim remedial actions and to fill data gaps for the SRI (HydroCon 2018d). This report includes the third sampling results for these wells.

The construction details for all wells, including well depth, screened intervals, screen diameters, are summarized on Table 1.

2.7 Monitoring Well Identification

HydroCon utilizes a well and boring identification convention that differentiates wells and boring installed by HydroCon verses installations by others. Well and borings installed by others include a hyphen in the identification (e.g., MW-11, BH-1) whereas those installed by HydroCon do not include a hyphen (e.g., MW12, HC01).

3.0 FIELD WORK

This section describes the sampling procedures, analytical methods, groundwater conditions, and laboratory results. A data quality review is included.

3.1 Groundwater Sampling Procedures

Depth to water and product thickness were measured in all the Site wells on two dates. The first measurements were collected on March 24, 2018 immediately after the pumps in the pumping wells were turned off. The second round of water level and product thickness measurements were collected on March 29, 2019 after completion of groundwater sampling (Table 2). HydroCon used this second data set to calculate groundwater elevations and prepare the groundwater elevation contour plot (Figure 3).

Prior to collection of depth to water measurements, the well cap on each well was removed and the water level was allowed to equilibrate. The depth to water in each well was measured using a clean electronic water level indicator. Water levels were measured at the scribed reference mark (north side of the top of the polyvinyl chloride casing) at each well.

HydroCon collected groundwater samples on March 24 through March 29 from 30 monitoring and recovery wells (Tables 2 and 3). The following wells shown on Table 2 were not sampled for the following reasons:

- FB-9 and FB-10 are reconnaissance groundwater samples. Monitoring wells were not installed in these direct-push boreholes.
- HydroCon did not collect groundwater samples from MW-2, MW-3, MW-4, MW-5, and MW22. HydroCon petitioned Ecology to cease sampling in these wells due to improper well construction (MW-2 and MW-4), no detection of chemicals of concern (COCs) in the well (MW-3 and MW-5), and MW22 being located outside of the plume that originates at the Coleman Oil Site. This request was approved by Ecology¹.
- MW15 and MW18 were not sampled due to insufficient water in the wells.

Three field duplicate samples (MW100, MW101, and MW102) were collected from MW-6, MW17, and BH01R, respectively for quality assurance/quality control (QA/QC) purposes.

Prior to groundwater sampling, monitoring wells were purged with a low-flow peristaltic pump equipped with a new length of low-density polyethylene tubing attached to a new length of silicone tubing in

¹ Washington State Department of Ecology. *Comments on Supplemental Remedial Investigation Report*. August 16, 2018.

accordance with U.S. Environmental Protection Agency (EPA) guidance for low-flow sampling². The tubing intake was placed approximately 2 to 3 feet below the surface of the groundwater or mid-screen in each well. During purging, water quality was monitored using a Quanta multi-parameter water quality meter equipped with a flow-through cell. The water quality parameters monitored and recorded included temperature, pH, specific conductance, dissolved oxygen, turbidity, and oxidation-reduction potential. Each well was purged until all six water quality parameters stabilized or the minimum parameter subset of pH, specific conductance, temperature, and turbidity and/or dissolved oxygen stabilized. *Groundwater Sample Collection Forms* and *Daily Field Reports* are included as Appendix A.

Following purging, groundwater samples were collected from the pump outlet tubing located upstream of the flow-through cell and placed directly into clean, laboratory-prepared sample containers. Each container was labeled with a unique sample identification number, placed on ice in a cooler, and transported under chain-of-custody to APEX laboratory of Tigard, Oregon, for laboratory analysis.

Purge water generated during the monitoring event was collected in 55-gallon barrels and transported to the onsite treatment system for treatment and discharge to the City sanitary system.

3.2 Laboratory Analysis

The analytical protocols for the samples collected at the Property include the required testing for petroleum releases for gasoline (Table 830-1 in the MTCA Cleanup Regulations Chapter 173-340 WAC). The analytical methods include:

- GRPH using Northwest Method NWTPH-Gx.
- DRPH and ORPH using Northwest Method NWTPH-Dx.
- BTEX using EPA Method 8260C.

² Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedures (April 1996). EPA/540/S-95/504

4.0 QUARTERLY GROUNDWATER MONITORING RESULTS

4.1 Groundwater Conditions

Groundwater levels in the Site monitoring wells were measured twice during the groundwater sampling event. HydroCon measured water levels in the monitoring wells immediately after turning off the extraction system on March 24, 2019. A second round of water level measurements was conducted on March 29, 2019 five days after the system had been turned off. It is HydroCon's opinion that this second set of measurements is most representative of static groundwater conditions at the site. Depth to water measurements and calculated groundwater elevations for the second set of measurements at each well are summarized on Table 2. It should be noted that monitoring wells MW15 and MW18 were dry on both dates.

On March 29, 2019 the depth to water at the Site ranged from 6.42 feet bgs (MW-3) to 37.58 feet bgs (MW-5) and groundwater elevations ranged from 616.95 (MW22) to 651.84 (MW-3) feet amsl. A groundwater elevation contour plot was prepared from this data set (Figure 3). Groundwater flow across the Site was generally to the northeast with a more easterly flow in the southern portion of the Site. The groundwater gradient between MW13, near the middle of the property, and MW22 was 0.053 ft/ft. The gradient in the southern portion of the Site between MW-2 and MW-5 is much steeper at 0.45 ft/ft.

Vertical gradients were calculated for well pairs MW-1/MW01S and MW-3/MW03S located in the southern portion of the Site. These well pairs are located within 10 horizontal feet of each other. The vertical hydraulic gradient within an aquifer (or between two aquifers separated by an aquitard) is calculated by dividing the difference in hydraulic head (or water level elevation) by the vertical (elevation) distance between the well screen midpoints. Table 5 provides the parameters and calculations for the vertical gradients of the well pairs.

The groundwater elevations for each well pair are very similar with slightly higher elevations for the deeper wells (MW-1 and MW-3) indicating a very slight upward vertical gradient. The calculated vertical gradient for MW-1/MW01S was 0.087 ft/ft and the vertical gradient for MW-3/MW03S was 0.018 ft/ft for the March 29, 2019 measurement.

These very small vertical gradients indicate that vertical gradients do not play a significant role in contaminant distribution or transport, at least in the southern portion of the Site. The vertical gradients for MW-1/MW01S were nearly identical to the August and November 2018 measurements.

4.2 Groundwater Sampling Results

Laboratory analytical results are reported as micrograms per liter (μ g/L) or parts per billion. The results are provided on Table 3 and laboratory reports are included as Appendix B. A summary of the results for each constituent sampled is provided below.

Gasoline Range Petroleum Hydrocarbons

GRPH was detected above the laboratory's method reporting limit (MRL) in 18 wells including MW-1, MW01S, MW-6, MW-8, MW09R, MW10R, MW-11, MW13, MW14, MW17, MW19, MW20, MW21, MW28, MW29, BH01R, BH-2, and BH-3. The GRPH concentration ranged up to 28,500 µg/L with the highest concentration at MW13. The MTCA Method A cleanup level for GRPH is 800 µg/L and was exceeded in the samples collected from MW09R, MW10R, MW-11, MW13, MW14, MW17, MW20, and BH01R.

Diesel Range Petroleum Hydrocarbons

DRPH was detected above the MRL in 26 wells with concentrations ranging up to 13,600 μ g/L. The highest DRPH concentration was detected at BH01R. The only wells that did not have a detection of DRPH above the MRL were RW-1, MW03S, MW-5, and MW12. The MTCA Method A cleanup level for DRPH of 500 μ g/L was exceeded in the samples collected from MW-6, MW-8, MW09R, MW10R, MW-11, MW13, MW14, MW17, MW20, MW21, MW24, BH01R, BH-2, and BH-3.

Oil Range Petroleum Hydrocarbons

ORPH was detected above the MRL in 2 wells including MW29 and BH-2. The highest concentration was detected in MW29 at a concentration of 928 μ g/L. This concentration exceeds the MTCA Method A cleanup level of 500 μ g/L.

Benzene

Benzene was detected above the MRL in 11 wells including MW-8, MW09R, MW10R, MW11, MW13, MW14, MW17, MW19, MW28, MW29, and BH01R at concentrations ranging up to 701 μ g/L. The highest concentration was seen in MW13. The MTCA Method A cleanup level for benzene (5 μ g/L) was exceeded in MW09R, MW-11, MW13, and MW14.

Toluene

Toluene was detected above the MRL in MW13 at a concentration of 761 μ g/L. This concentration is below the MTCA Method A cleanup level of 1,000 μ g/L.

Ethylbenzene

Ethylbenzene was detected in 6 wells above the MRL including MW01S, MW09R, MW10R, MW13, MW14, and BH01R at concentrations up to 804 μ g/L. The concentration in MW13 exceeds the MTCA Method A cleanup level of 700 μ g/L.

Total Xylenes

Total xylenes were detected above the MRL in 7 wells including MW01S, MW-8, MW09R, MW10R, MW-11, MW13, and BH01R at a concentration up to 4,980 μ g/L. The concentration in MW13 exceeds the MTCA Method A cleanup level of 1,000 μ g/L.

Polynuclear Aromatic Hydrocarbons

Polynuclear Aromatic Hydrocarbons (PAHs) were not analyzed in any of the wells during this sampling event. Historical results are provided in Table 4.

4.3 Data Quality Review

Laboratory testing of groundwater are included in Appendix B as APEX Work Orders A9C1035. The *Data Quality Review Report* is included in Appendix C. The review of the analytical results included the following:

- Holding Times & Sample Receipt
- Surrogate Compounds
- Associated Matrix Spike/Matrix Spike Duplicate (MS/MSD)
- Associated Laboratory Duplicate
- Laboratory Control Sample/ Laboratory Control Sample Duplicates (LCS/LCSD)
- Method Blank
- Field Duplicates
- Target Analyte List
- Reporting Limits (MDL and MRL)
- Reported Results

Data were qualified by the laboratory due to matrix interference, compound identification issues, limited sample volume and/or LCS/CCV recoveries. These qualifiers resulted in validation qualifiers of estimated quantity (J) and estimated and not detected (UJ). No data were rejected and completeness was 100 percent.

All results are usable for their intended purpose. Data qualifications are identified in detail in full *Data Validation Report* included in Appendix C.

5.0 DISCUSSION

This section provides a discussion of the March 2019 quarterly groundwater monitoring event.

5.1 Discussion of Laboratory Results

Results of the March 2019 quarterly groundwater monitoring event indicated that 19 wells at the Site (MW-6, MW-8, MW09R, MW10R, MW-11, MW13, MW14, MW17, MW19, MW20, MW21, MW24, MW26, MW28, MW29, MW30, BH01R, BH-2, and BH-3) have one or more COCs above their respective MTCA Method A cleanup level. Monitoring wells MW15 and MW18 were dry so no samples could be obtained to assess water quality in these wells. This is an increase of 4 wells compared to the results of the November 2018 quarterly groundwater monitoring results.

5.2 Trends in Groundwater Chemistry

HydroCon has prepared trend plots of GRPH and DRPH at selected wells that have at least four sampling results including MW-1, MW01S, MW03S, MW-6, MW-7, MW-8, MW-9/MW09R, MW-10/MW01R, MW-11, MW12, MW13, MW14, MW16, MW17, MW19, MW20, MW21, MW23, BH-1/BH01R, BH-2, BH-3, and RW-1 (Figures 4a, 4b, 4c, 4d, 4e, 4f, 4g, and 4h). Trend plots were not prepared for two wells that have at least four sampling results (MW-4 and MW-5) because there has been no detection of any of those constituents in the wells. A discussion of groundwater trends of each these wells are provided below.

BH-1/BH01R – A significant increase in DRPH has been observed beginning in November 2018. The concentration of GRPH fluctuates in this well with no apparent trend observed. Pumping began in this well in May 2018.

BH-2 – The concentration of DRPH appears to be fluctuating with no apparent trend. A general decreasing trend in GRPH is observed in this well.

BH-3 – A consistent decreasing trend in DRPH was observed in this well through August 2018. An increasing trend has been observed since. The concentration of GRPH decreased significantly from its high in April 2017. A generally flat trend has been observed since. The concentration of GRPH in this well is higher this quarter than the previous quarter.

RW-1 - A decreasing trend in DRPH is observed from its high in April 2017 with an exception of increasing trend in August 2018. GRPH has not been detected above the MRL observed since sampling began

MW-1 – A consistent decreasing trend of DRPH is observed from the highest concentration recorded in April 2017. The concentration of GRPH fluctuates between 200 to 450 μ g/L, well below the MTCA Method A cleanup level.

MW01S – The concentration of DRPH has fluctuated between non detect to low concentrations below the MTCA Method A cleanup level since sampling began. The concentration of GRPH fluctuates between non detect to 268 μ g/L, well below the MTCA Method A cleanup level.

MW03S - The concentration of DRPH has fluctuated between non detect to low concentrations below

the MTCA Method A cleanup level since sampling began. The trend for GRPH is flat with no detection above the MRL recorded since sampling began.

MW-6 - The concentration of DRPH and GRPH appear to be fluctuating but are both lower than their highs in April 2017. An increase in DRPH and a decrease in GRPH were observed this quarter compared to the previous quarter results.

MW-7 - The concentration of DRPH and GRPH decreased significantly from their respective highs in April 2017. The trend in GRPH is flat with no detection above the MRL from September 2017 to present. The trend in DRPH is relatively flat over the same period of time. A slight decrease in DRPH concentration is observed during this quarter.

MW-8 – A decreasing trend in DRPH was observed in this well from its high in September 2017. An increasing trend has been observed since November 2018. GRPH has been relatively flat with concentrations fluctuating from 720 to 921 μ g/L over the last year.

MW-9/MW09R – The concentration of DRPH has fluctuated in this well with an increasing trend since September 2018. The concentration of GRPH continues to fluctuate with no apparent trend. Pumping began in this well in May 2018.

MW-10/MW10R – The concentration DRPH fluctuated in this well until pumping began in May 2018. A relatively flat trend has been observed since. The trend of GRPH is relatively flat with the concentration ranging from 1,020 to 2,290 µg/L. Pumping began in this well in May 2018.

MW-11 – A decreasing trend in DRPH was observed in this well from its high in September 2017. A slow increasing trend has been observed since September 2018. The concentration of GRPH fluctuates between 944 to 1,540 μ g/L. The trend is relatively flat.

MW12 – The concentration of DRPH dropped from its high in April 2018. A relatively flat trend in DRPH concentrations has been seen in this well since. A flat trend in GRPH has been observed with no detection above the MRL since sampling began.

MW13 – A slightly increasing trend in DRPH concentrations has been seen in this well. The concentration of GRPH has been high in this well since sampling began with a fluctuating trend.

MW14 – A slightly increasing trend in DRPH concentrations has been seen in this well. The concentration of GRPH has been high in this well since sampling began. A decrease in concentration of GRPH was observed this quarter.

MW16 – A general decreasing trend in DRPH concentrations has been seen in this well. A flat trend in GRPH has been observed with no detection above the MRL observed since sampling began.

MW17 – An increasing trend in DRPH concentrations has been seen since August 2018. A consistent decreasing trend of GRPH is observed from the highest concentration recorded in July 2018.

MW19 – A decrease in DRPH concentrations was observed in the well after the April 2018 sampling event. A significant increase in DRPH was observed in the well during the March 2019 sampling event. A relatively flat trend in GRPH concentrations has been observed in this well with a slight increase during the March 2019 sampling event.

MW20 – A decrease in DRPH concentrations was observed in the well after the April 2018 sampling event followed by an increasing trend since November 2018. A similar trend in GRPH is seen in the well with an increasing trend since November 2018.

MW21 – A decrease in DRPH concentrations was observed in the well after the April 2018 sampling event followed by an increasing trend since July 2018. A similar trend in GRPH concentrations has been observed in the well with a general flat trend during the past two quarters.

MW23 – The DRPH concentrations have fluctuated between 266 and 419 μ g/L. A flat trend in GRPH has been observed with no detection above the MRL observed since sampling began.

5.3 Extent of Groundwater Contamination

The March 2019 groundwater results for GRPH and DRPH are plotted on Figures 5 and 6 and isoconcentration contours were prepared to illustrate the magnitude and extent of each contaminant at the Site. Red colored shading was used to graphically display the plume boundary. Areas of higher concentration of are shaded in darker red. The seep area (soil samples SL01 through SL04) are included on the figures since the seep water is in contact with impacted soil and shows the relationship of this area to areas of impacted groundwater.

The extent of DRPH contamination in groundwater is illustrated on Figure 6. A plume of DRPH impacted groundwater is present from the Coleman Oil facility near MW13 and extends northwest towards monitoring well MW21. There are four localized areas within the plume that have elevated DRPH concentrations:

- The area near monitoring wells MW13 and MW14. The highest concentration of DRPH (4,650 μg/L) is seen in MW13 which is located within the footprint of former Tank Farm B and next to the former Control Valve Building.
- The area in between monitoring wells MW17 and BH-2. The highest concentration of DRPH (5,690 μg/L) is seen in BH-2. Pumping well MW09R is located between these wells.
- The area of monitoring wells MW20, BH01R, MW29 and MW30. The highest DRPH concentration (13,600 μ g/L) is seen in BH01R, which is used as a groundwater and product extraction well.
- The area in between monitoring wells MW21 and MW10R. The highest DRPH concentration (2,960 µg/L) is seen in MW10R, which is used as a groundwater and product extraction well.

Areas with DRPH concentrations less than 500 µg/L (Method A cleanup level) include the area of the Coleman property south of Tank Farm A, most of the east half of the Coleman Property and adjacent Worthen Street, the northwest portion of Chehalis Street, and the line of wells east of Worthen Street including and between MW25 and MW28, except BH-3. This latter area is in close proximity to the observed seep areas and reinforces the role of preferential pathways in the distribution of subsurface contaminants.

The extent of GRPH contamination in groundwater is illustrated on Figure 6. A plume of GRPH impacted groundwater is present from the Coleman Oil facility near MW13 and extends northwest towards monitoring well MW21. There are five localized areas within the plume that have elevated GRPH concentrations:

- The area near monitoring wells MW13 and MW14. The highest concentration of GRPH (28,500 μ g/L) is seen in MW13 which is located within the footprint of former Tank Farm B and next to the former Control Valve Building.
- The area in between monitoring wells MW-11 and MW-8 have GRPH ranging from 768 to 1,540 µg/L. This area is located within the remedial excavation area where sump #5 was located. Sump #5 had one of the highest amounts of recovered product at the Site.
- The area in between monitoring wells MW17 and MW09R have GRPH concentrations ranging from 1,000 to 1,180 μg/L. Monitoring well MW09R is currently being used to extract product and contaminated groundwater from the Site.
- The area near BH-1 has elevated GRPH concentrations (1,130 ug/L). This well is currently being used to extract product and contaminated groundwater from the Site.
- The area in between monitoring wells MW21 and MW10R have GRPH concentrations ranging from 799 to 1,020 μ g/L. Monitoring well MW10R is currently being used to extract product and groundwater from the Site.

The overall distribution of GRPH in groundwater is similar to the DRPH distribution and areas with concentrations less than 800 μ g/L(Method A cleanup level) are very similar to areas below the DRPH cleanup level. An exception is the area bounded by MW25, MW20, MW19, and MW31, where, with the exception of BH-1, all wells had concentrations below the GRPH cleanup level.

6.0 FUTURE MONITORING SCHEDULE

6.1 Daily Columbia River Level and Water Level Measurements

EEC was hired by Coleman Oil to manage the booms within the Columbia River and product recovery at the Site. One of EEC's daily tasks includes monitoring the water level at a surveyed reference location along the along the Columbia River and water and product levels in the three product recovery wells at the Site (MW09R, MW10R, and BH01R) using a clean electronic oil/water interface probe. HydroCon has expanded product recovery at the Site by adding product recovery pumps in additional wells (MW17, MW24, MW28, MW29, MW30, and MW32). EEC has expanded their daily water and product level monitoring to include these new wells. These measurements are recorded in a spreadsheet file and provided to Ecology, Coleman Oil, and HydroCon daily. HydroCon will include these measurements in the Annual Operations and Maintenance (O&M) Monitoring Reports.

6.2 Weekly to Monthly Water Level and Product Thickness Measurements

EEC assists HydroCon with the collection of depth to water and product level measurements of all the Site wells on a weekly to monthly basis following the same protocol as the daily water and product level measurement task. EEC utilizes a Well Product Monitoring & Recovery spreadsheet to record these data (Appendix D). This form is provided to HydroCon so that the data can be entered into spreadsheets (i.e., Table 2) and to identify which wells require product recovery via pumping. This information also is used to assess seasonal groundwater flow direction patterns and if there is correlation between groundwater levels in the aquifer and the Columbia River stage.

6.3 Future Quarterly Groundwater Sampling

The next quarterly groundwater monitoring event is tentatively planned for August 2019. A list of wells that will be sampled and associated laboratory analysis is provided on Table 6.

As discussed above, Ecology agreed with HydroCon that collection of groundwater samples from monitoring wells MW-2, MW-3, MW-4, MW-5, MW-7, and MW22 was not necessary during the March 2019 sampling event. Ecology requested at least one more sampling event for MW-1 due to the historic detection of GRPH and DRPH³. This well was sampled during this monitoring event.

Ecology also requested vertical gradient data from MW-1/MW01S and MW-3/MW03S and asked that water levels be measured in these well clusters at least two times so that vertical gradient data can be verified. HydroCon has included the vertical gradient data from the last two quarterly groundwater monitoring events. This information is provided in Section 4.1 of this report.

Table 6 includes recommendations to discontinue monitoring and/or abandoning the following wells:

³ Washington State Department of Ecology. Ecology Comments on Supplemental Remedial Investigation Report. August 16, 2018.

MW-1 through MW- 4. Improper well construction at monitoring wells MW-1 through MW-4 resulted in well screens placed too deep blinding off shallower water bearing zones in each respective well. This prevents the accurate monitoring of groundwater in each of these wells. At Ecology's request, three additional monitoring wells (MW01S, MW03S, and MW23) were added to the SRI to assess groundwater conditions on the southern portion of the Coleman property. It should be noted that, with the exceptions of MW-1, these wells have never had detections of GRPH, DRPH, or ORPH.

MW-5. This well has never had detections of GRPH, DRPH, or ORPH and given the now established groundwater flow directions, it's highly unlikely to be impacted by Site contaminants. As a long-term cost savings measure to Coleman Oil, HydroCon requests that Ecology consider abandonment of this well.

MW-7. Monitoring wells MW-7 and MW23 have similar construction but are located approximately 15 feet apart. As a long-term cost savings measure for Coleman Oil, HydroCon requests that Ecology consider abandoning MW-7.

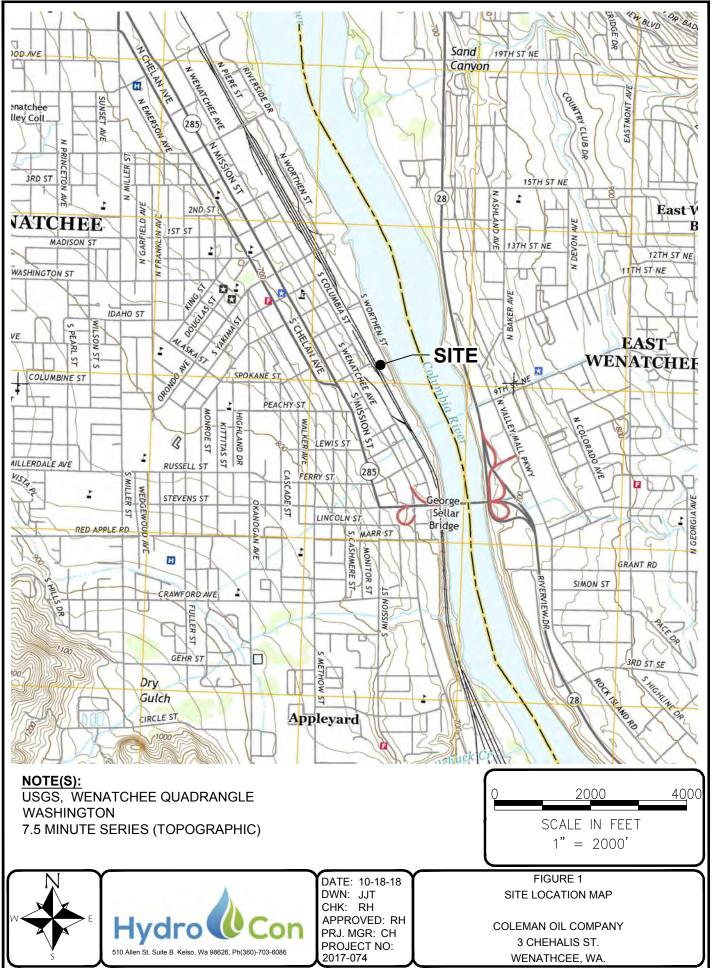
MW22. The soil samples at MW22 differed from the typical sequence observed in all other borings. The upper 35 feet of this boring consisted of loose silt, sand, gravel, and clay with miscellaneous fill debris consisting of brick, glass, and burnt material and free product resembling black oil at 31.5 feet bgs. It is likely that this area has been disturbed by previous excavation and has been backfilled with construction and other debris. A sample of the product collected from MW22 was assessed by APEX's forensic chemist (Mr. Kurt Johnson) and a write up is included in Appendix K of the SRI Report (HydroCon 2018b). Results of the evaluation indicate that the product is derived from coal tar and it does not contain R99 Renewable DieseIR99 Renewable Diesel. Therefore, it appears that the plume emanating from the Coleman Oil Site terminates south of MW22 and the product observed in MW22 is not from Coleman Oil.

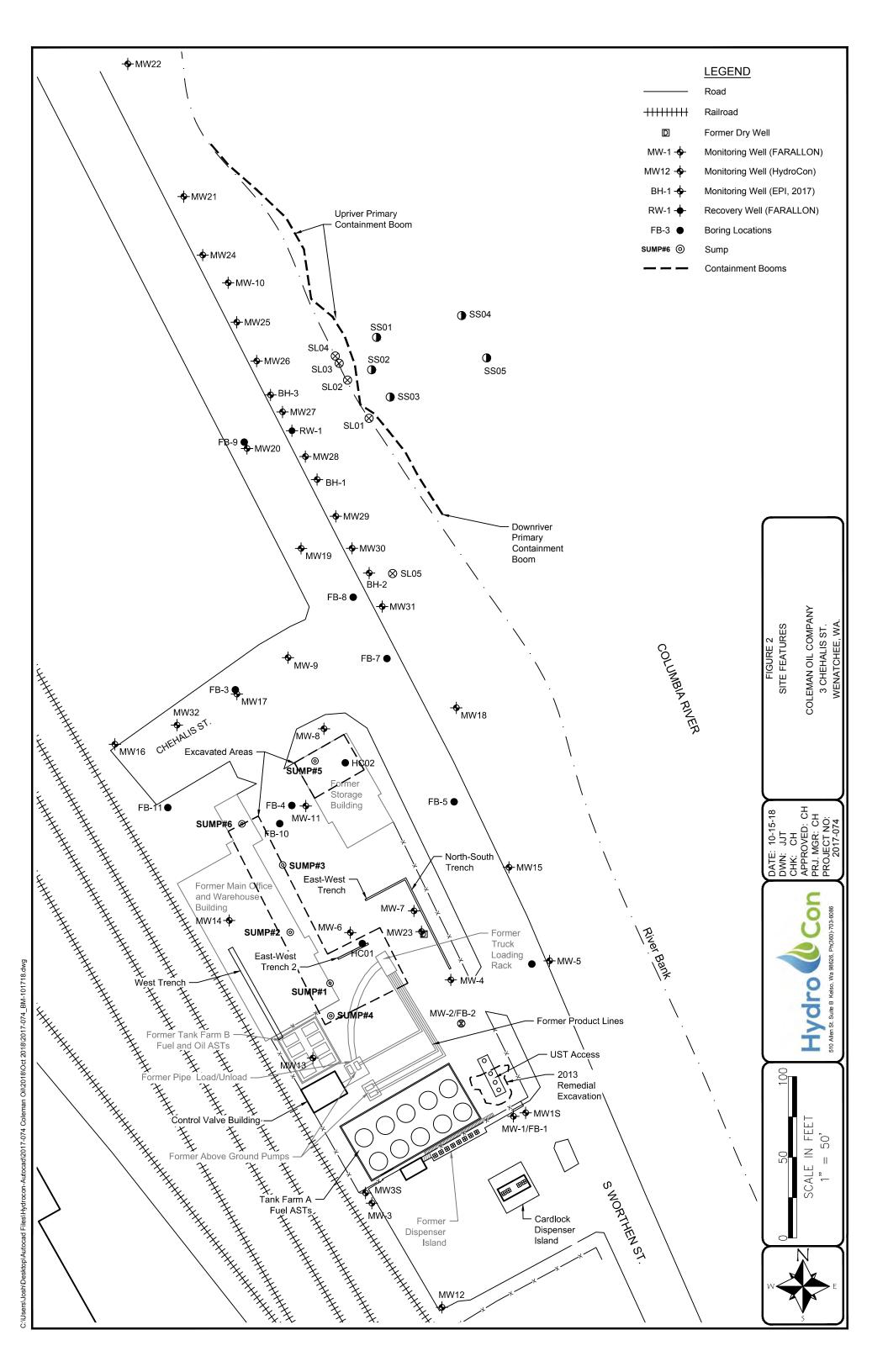
7.0 QUALIFICATIONS

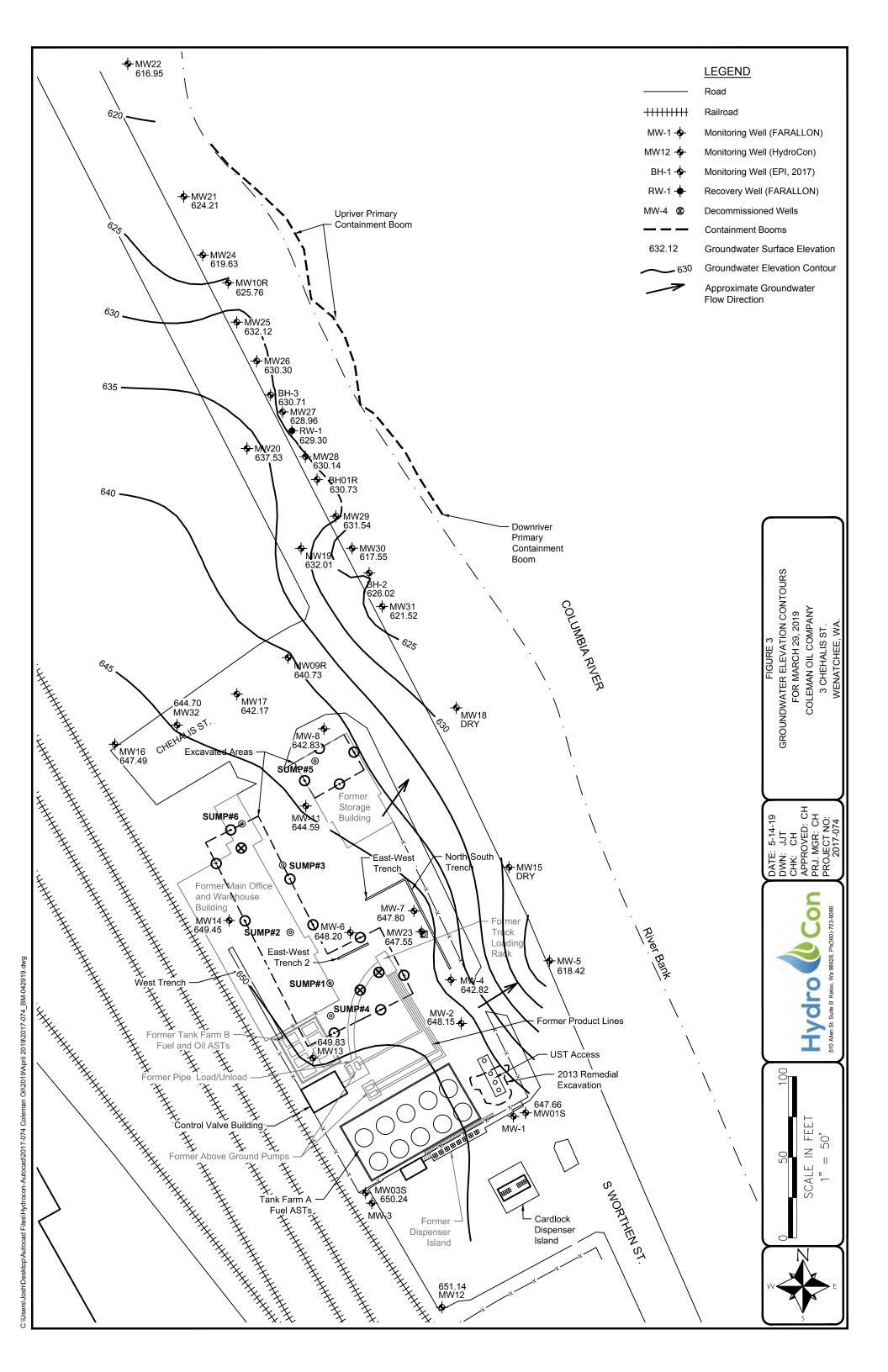
HydroCon's services were performed in a manner consistent with generally accepted practices of the profession undertaken in similar studies in the same geographical area during the same time period. HydroCon makes no warranties, either expressed or implied, regarding the findings, conclusions or recommendations. Please note that HydroCon does not warrant the work of laboratories, regulatory agencies, or other third parties supplying information used in the preparation of the report.

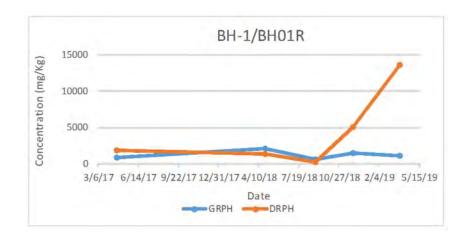
Findings and conclusions resulting from these services are based upon information derived from the on-site activities and other services performed under this scope of work; such information is subject to change over time. Certain indicators of the presence of hazardous substances, petroleum products, or other constituents may have been latent, inaccessible, unobservable, nondetectable or not present during these services, and we cannot represent that the Site contains no hazardous substances, toxic materials, petroleum products, or other latent conditions beyond those identified during this monitoring. Subsurface conditions may vary from those encountered at specific sampling locations or during other surveys, tests, assessments, investigations, or exploratory services; the data, interpretations and findings are based solely upon data obtained at the time and within the scope of these services.

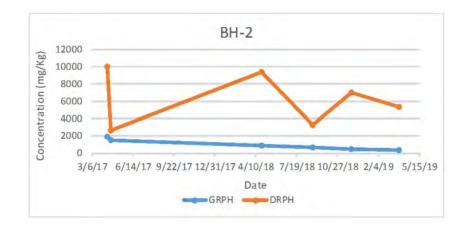
This report is intended for the sole use of **Coleman Oil Company** to meet the requirements of Exhibit B – Scope of Work and Schedule of the Agreed Order. This report may not be used or relied upon by any other party without the written consent of HydroCon. The scope of services performed in execution of this evaluation may not be appropriate to satisfy the needs of other users, and use or re-use of this document or the findings, conclusions, or recommendations is at the risk of said user.

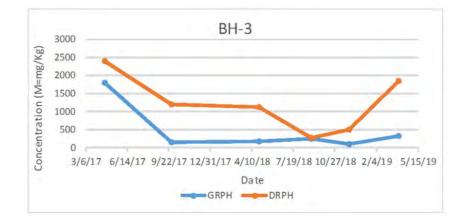

The conclusions presented in this report are, in part, based upon subsurface sampling performed at selected locations and depths. There may be conditions between borings or samples that differ significantly from those presented in this report and which cannot be predicted by this study.

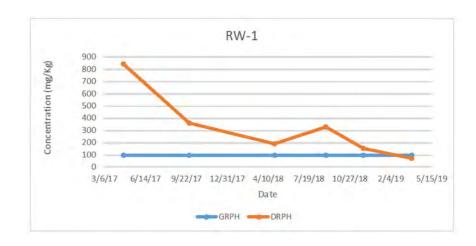



8.0 REFERENCES


- Farallon, 2017. Supplemental Data Summary Report. Prepared for Coleman Oil Company. October 18.
- HydroCon, LLC. 2018a. Supplemental Remedial Investigation Work Plan. Coleman Oil R99 Renewable Diesel Spill, Wenatchee, Washington. Prepared for Coleman Oil Company, LLC. March 15.
- ------. 2018b. Supplemental Remedial Investigation Report. Coleman Oil R99 Renewable Diesel Spill, Wenatchee, Washington. Prepared for Coleman Oil Company, LLC. In Preparation.
- ——. 2018c. Aquifer Testing at Coleman Oil Facility, Wenatchee, Washington, March 16.
- ——. 2018d. Additional Interim Actions Addendum #2.
- ——. 2018E. Quarterly Groundwater Monitoring Report August 2018, November 12.
- ——. 2019a. Quarterly Groundwater Monitoring Report November 2018, January 8.


FIGURES





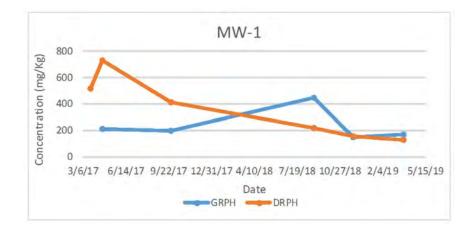

TREND PLOTS COLEMAN OIL COMPANY 3 CHEHALIS ST.

FIGURE 4A

WENATCHEE, WA

C:/Users/Josh/Desktop/Autocad Files/Hydrocon-Autocad/2017-074 Coleman Oil/2019/April 2019/2017-074_Trend Plots-043019.dvg

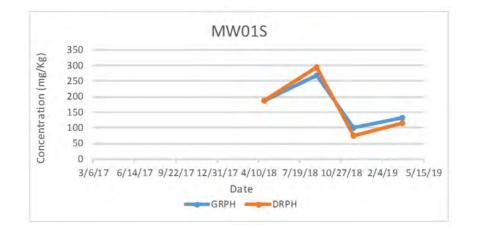
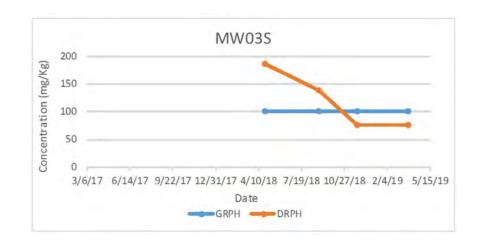



FIGURE 4B TREND PLOTS

COLEMAN OIL COMPANY 3 CHEHALIS ST. WENATCHEE, WA.

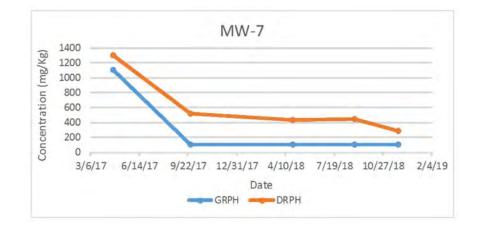
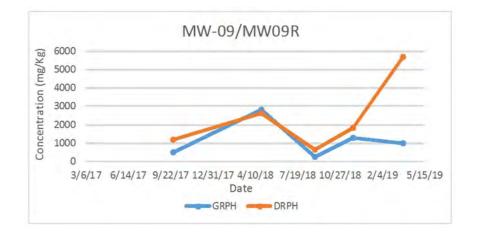



FIGURE 4C TREND PLOTS

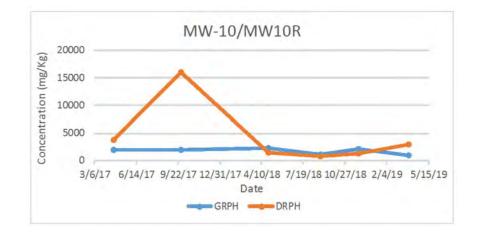
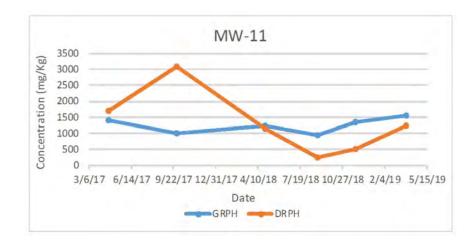



FIGURE 4D TREND PLOTS

COLEMAN OIL COMPANY 3 CHEHALIS ST. WENATCHEE, WA.

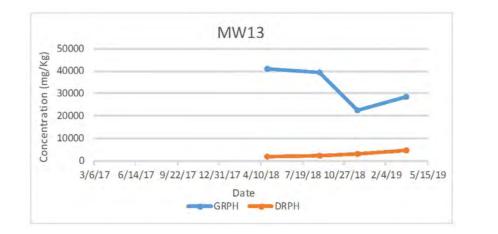
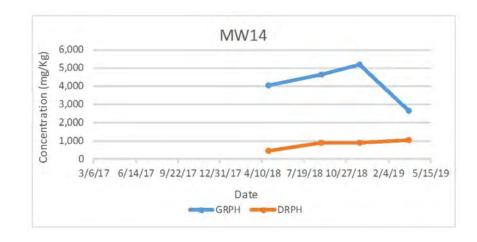



FIGURE 4E TREND PLOTS

COLEMAN OIL COMPANY 3 CHEHALIS ST. WENATCHEE, WA.

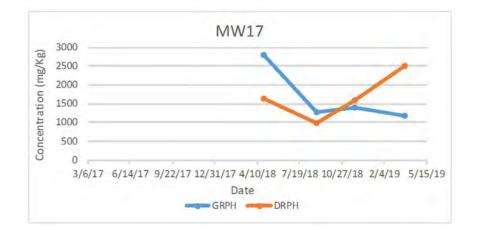
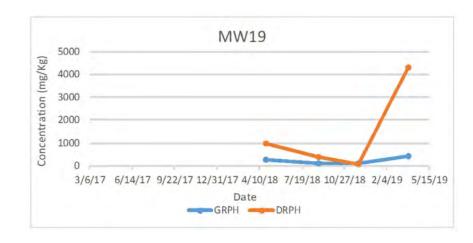
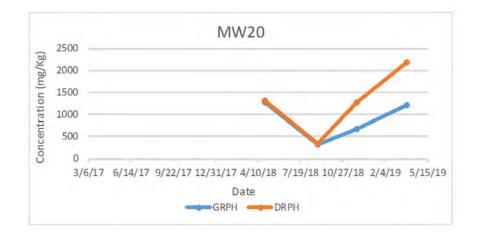




FIGURE 4F TREND PLOTS

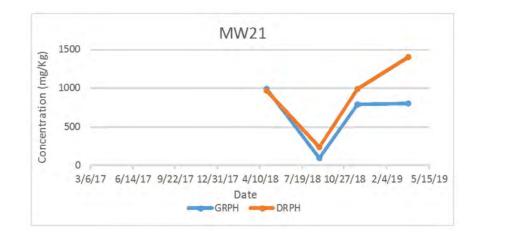
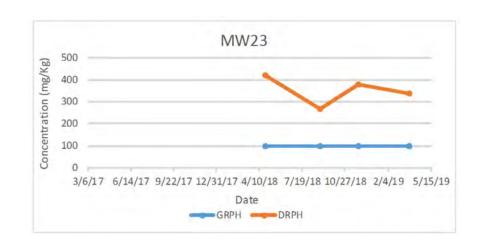
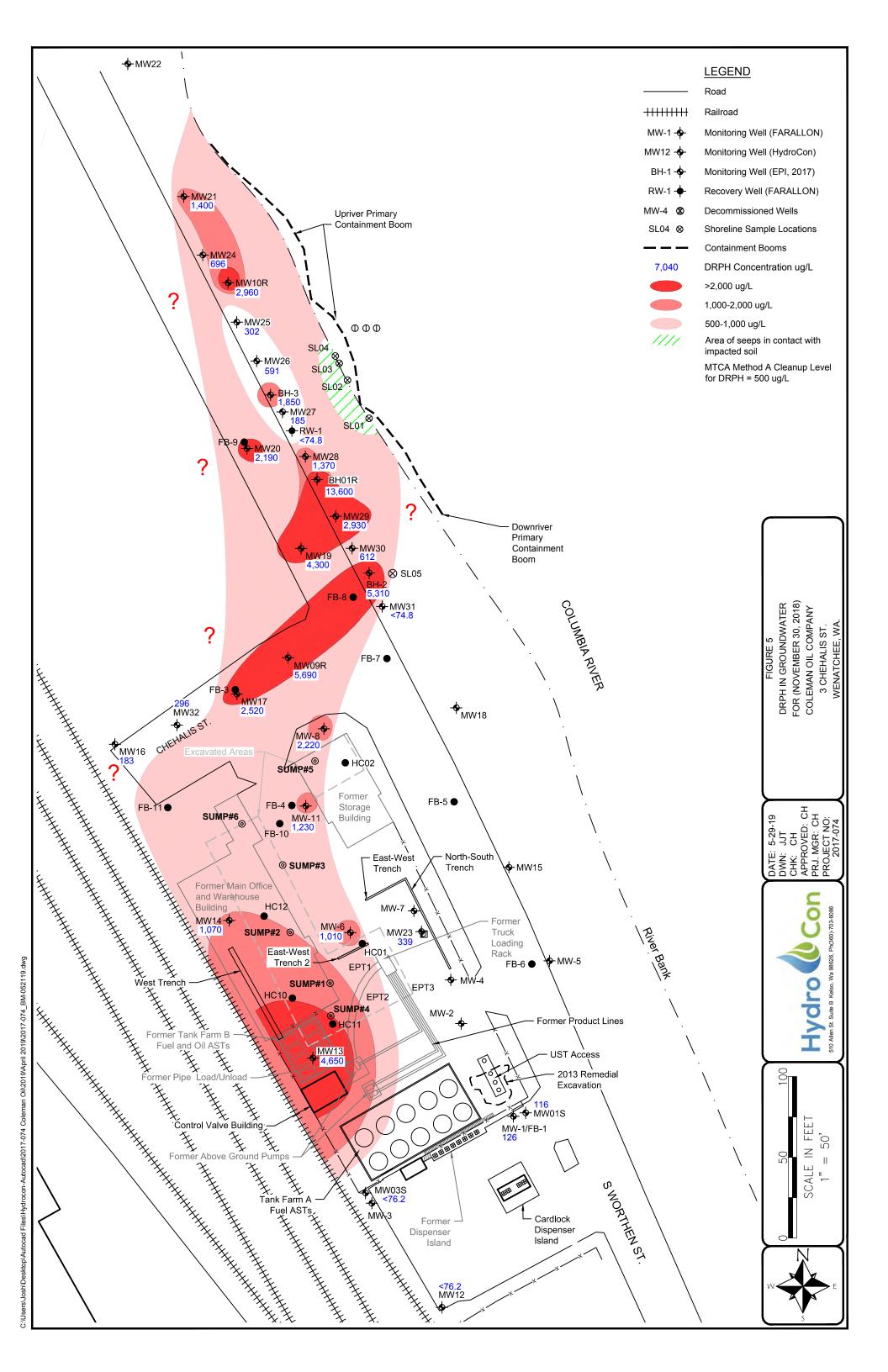



FIGURE 4G TREND PLOTS


COLEMAN OIL COMPANY 3 CHEHALIS ST. WENATCHEE, WA.

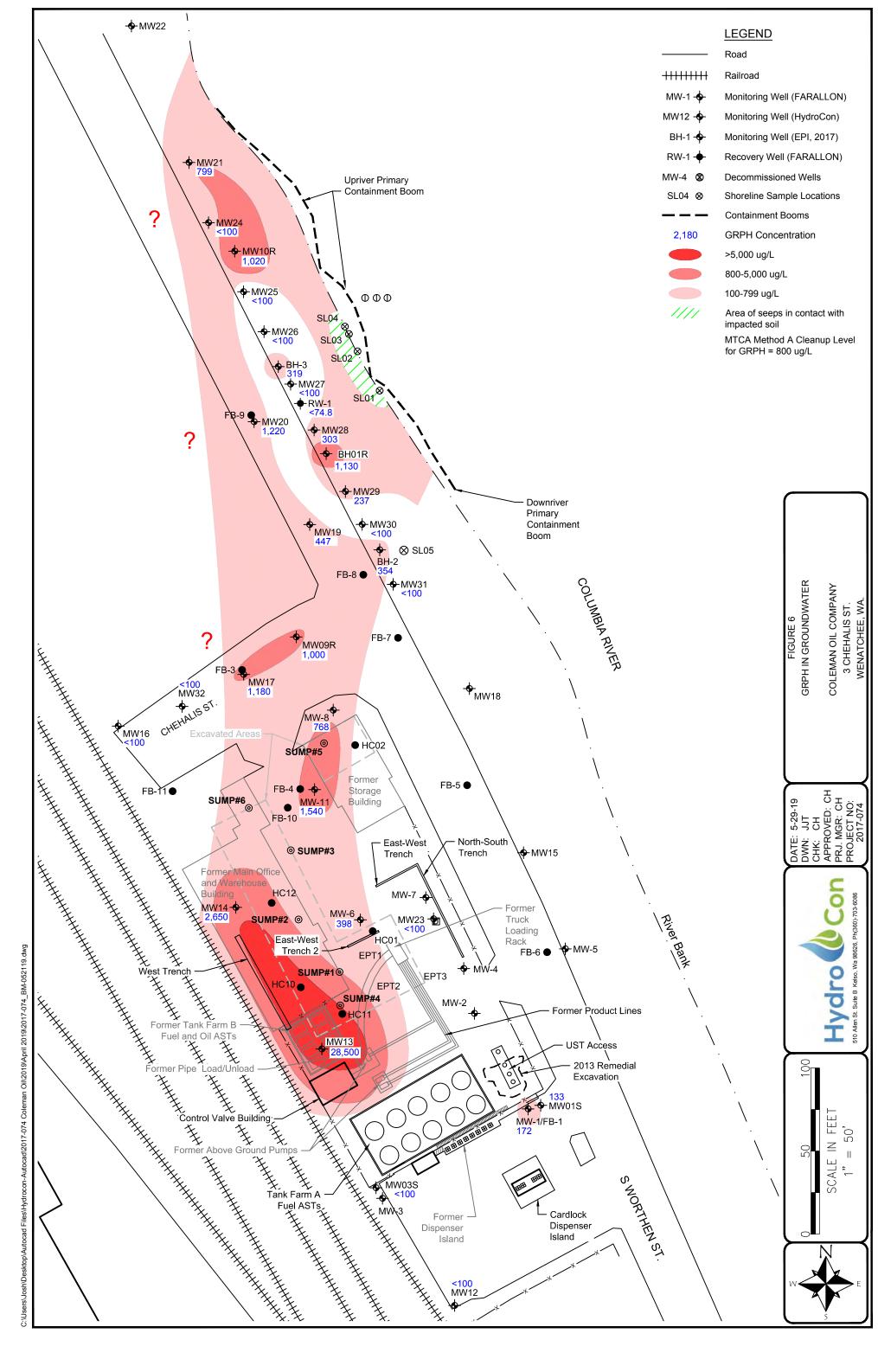


FIGURE 4H
TREND PLOTS

COLEMAN OIL COMPANY 3 CHEHALIS ST. WENATCHEE, WA.

TABLES

Table 1Well Construction DetailsColeman OilWenatchee, Washington

Well ID	Date Installed	Installed By	Drilling Method	Total Boring Depth (feet bgs)	Total Well Depth (feet bgs)	Well Diameter (inch)	Well Construction Material	Screen Slot Size (inch)	Length of Screen (feet)	Length of Bottom Cap (feet)	Screened Interval (feet bgs)	Well Casing Elevation (feet ¹)
MW-1	7/7/2010	Farallon	Air Rotary	35.50	35.00	2	PVC	0.01	15	(ieet)	20-35	658.01
MW01S	3/4/2018	HydroCon	Sonic	20.00	19.99	4	PVC	0.01	15	0.23	5.37 - 20.37	657.54
MW-2	7/8/2010	Farallon	Air Rotary	40.00	40.00	2	PVC	0.01	15	0.25	25-40	657.76
MW-3	9/7/2010	Farallon	Air Rotary	35.30	35.00	2	PVC	0.01	10	-	25-40	658.26
MW03S	4/3/2018	HydroCon	Sonic	20.00	19.30	4	PVC	0.01	10	0.23	4.43 - 19.43	658.17
MW-4	9/8/2010	Farallon	Air Rotary	40.10	37.00	2	PVC	0.01	10	0.25	4.45 - 19.45 27-37	657.48
		Farallon		40.10	45.00		PVC	0.01	10	-	30-45	656.00
MW-5	9/9/2010		Air Rotary			2				-		
MW-6	4/12/2017	Farallon	Air Rotary	18.40	18.00	4	PVC	0.02	10	-	8-18	657.70
MW-7	4/11/2017	Farallon	Air Rotary	20.10	20.00	4	PVC	0.02	10	-	10-20	657.52
MW-8	4/11/2017	Farallon	Air Rotary	25.20	25.00	4	PVC	0.02	10	-	15-25	656.20
MW-9	4/12/2017	Farallon	Air Rotary	24.50	24.00	4	PVC	0.02	10	-	14-24	655.29
MW09R	8/15/2018	HydroCon	Sonic	35.00	32.60	4	PVC	0.01	25	0.45	8.59-33.59	653.55
MW-10	4/14/2017	Farallon	Air Rotary	30.20	30.00	2	PVC	0.02	16	-	14-30	645.80
MW10R	8/16/2018	HydroCon	Sonic	35.00	33.59	4	PVC	0.01	20	0.45	14.64-34.64	644.30
MW-11	4/14/2017	Farallon	Air Rotary	22.30	22.00	4	PVC	0.02	10	-	12-22	658.00
MW12	4/2/2018	HydroCon	Sonic	20.00	19.52	4	PVC	0.01	15	0.23	4.63 - 19.63	658.27
MW13	3/29/2018	HydroCon	Sonic	50.00	19.80	4	PVC	0.01	15	0.23	4.91 - 19.91	657.04
MW14	3/30/2018	HydroCon	Sonic	35.00	20.02	4	PVC	0.01	15	0.23	5.23 - 20.23	657.15
MW15	4/12/2018	HydroCon	Sonic	35.10	35.10	4	PVC	0.01	25	0.23	10.33 - 35.33	654.99
MW16	4/5/2018	HydroCon	Sonic	30.00	29.15	4	PVC	0.01	20	0.23	9.28 - 29.28	656.93
MW17	4/4/2018	HydroCon	Sonic	35.00	29.41	4	PVC	0.01	20	0.23	9.52 - 29.52	655.55
MW18	4/11/2018	HydroCon	Sonic	35.00	34.65	4	PVC	0.01	20	0.23	15.86 - 35.86	654.51
MW19	4/5/2018	HydroCon	Sonic	35.00	31.48	4	PVC	0.01	20	0.23	11.66 - 31.66	653.31
MW20	4/10/2018	HydroCon	Sonic	30.00	29.50	4	PVC	0.01	20	0.23	9.79 - 29.79	650.85
MW21	4/9/2018	HydroCon	Sonic	35.00	32.10	4	PVC	0.01	20	0.23	12.30 - 32.30	643.88
MW22	4/13/2018	HydroCon	Sonic	40.00	39.10	4	PVC	0.01	25	0.23	9.19 - 34.19	641.85
MW23	3/29/2018	HydroCon	Sonic	25.00	22.04	4	PVC	0.01	15	0.23	7.13 - 22.13	656.91
MW24	8/6/2018	HydroCon	Sonic	35.00	34.25	4	PVC	0.01	20	0.45	14.17-34.17	644.38
MW25	8/7/2018	HydroCon	Sonic	35.00	32.96	4	PVC	0.01	20	0.45	12.81-32.81	645.57
MW26	8/8/2018	HydroCon	Sonic	35.00	32.52	4	PVC	0.01	20	0.45	13.54-33.54	646.65
MW27	8/9/2018	HydroCon	Sonic	40.00	38.74	4	PVC	0.01	25	0.45	13.56-38.56	649.00
MW28	8/10/2018	HydroCon	Sonic	40.00	38.74	4	PVC	0.01	25	0.45	13.62-38.62	650.64
MW29	8/13/2018	HydroCon	Sonic	40.00	39.11	4	PVC	0.01	25	0.45	14.05-39.05	652.34
MW30	8/14/2018	HydroCon	Sonic	40.00	39.79	4	PVC	0.01	25	0.45	14.67-39.67	652.83
MW31	8/15/2018	HydroCon	Sonic	40.00	39.28	4	PVC	0.01	25	0.45	14.11-39.11	653.97
MW32	8/17/2018	HydroCon	Sonic	35.00	34.02	4	PVC	0.01	25	0.45	8.95-33.95	655.83
BH01R	3/25/2017	HydroCon	Sonic	40.00	39.97	4	PVC	0.01	25	0.45	14.52-39.52	651.03
BH-2	3/25/2017	EPI	Air Rotary	35.00	35.00	2	PVC	0.01	15	-	20-35	653.77
BH-3	3/26/2017	EPI	Air Rotary	30.00	30.00	2	PVC	0.01	15	-	15-30	648.76
RW-1	4/10/2017	Farallon	Air Rotary	30.00	30.00	3	PVC	0.02	15	-	15-30	650.42

NOTES:

feet¹ = Elevation is relative to NGVD88

bgs = below ground surface

PVC = polyvinyl chloride

Well Identification	Date	Monitoring Well Screened Interval (feet bgs)	Elevation Top of Casing ¹ (feet)	Depth to Water (feet below top of casing)	Depth to NAPL (feet below top of casing)	LNAPL Thickness (feet)	Groundwater Elevation (feet)
	4/17/2017			9.47			648.54
	4/20/2017			9.63			648.38
	4/27/2017			10.14			647.87
	5/1/2017			10.31			647.70
	6/8/2017			11.20			646.81
N // A/ 1	7/3/2017	20.25	659.01	NM			
1/1//	9/28/2017	20-35	658.01	12.36			645.65
	8/27/2018			12.17			645.84
	8/31/2018			12.20			645.81
	11/26/2018			11.36			646.65
	11/30/2018			11.38			646.63
	3/29/2019			9.68			648.33
	4/25/2018			10.49			647.05
	4/27/2018			10.62			646.92
	8/27/2018			12.30			645.24
MW01S	8/31/2018	5.37 - 20.37	657.54	12.33			645.21
	11/26/2018			11.54			646.00
	11/30/2018			11.51			646.03
	3/29/2019			9.88			647.66
	4/17/2017			9.58			648.18
·	4/20/2017			9.61			648.15
	4/20/2017			10.19			647.57
	5/1/2017			10.19			647.40
-	6/8/2017			11.33			646.43
	7/3/2017			11.96			645.80
MW-2	9/28/2017	- 25-40	657.76	12.65			645.11
	4/25/2018			10.5			647.26
	4/27/2018			10.54			647.22
	8/27/2018			12.20			645.56
	8/31/2018			12.22			645.54
	11/26/2018			11.43			646.33
	11/30/2018			11.46			646.30
	3/29/2019			9.61			648.15
	4/17/2017			7.12			651.14
	4/20/2017			7.15			651.11
	4/27/2017			11.44			646.82
	5/1/2017			7.90			650.36
	6/8/2017			7.33			650.93
	7/3/2017	25-35	658.26	7.46			650.80
10100-5	9/28/2017	25-55	058.20	7.74			650.52
	8/27/2018			7.75			650.51
	8/31/2018]		7.8			650.46
	11/26/2018			7.78			650.48
	11/30/2018	1		7.89			650.37
	3/29/2019	1		6.42			651.84
	4/25/2018			7.25			650.92
	4/27/2018			7.24			650.93
	8/27/2018	1		8.04			650.13
MW03S	8/31/2018	4.43 - 19.43	658.17	8.05			650.12
	11/26/2018			7.48			650.33
	11/30/2018	1		7.48			650.33
	3/29/2018	1		7.93			650.24

1

Well Identification	Date	Monitoring Well Screened Interval (feet bgs)	Elevation Top of Casing ¹ (feet)	Depth to Water (feet below top of casing)	Depth to NAPL (feet below top of casing)	LNAPL Thickness (feet)	Groundwate Elevation (feet)
	4/17/2017			15.29			642.19
	4/20/2017			15.40			642.08
	4/27/2017			15.74			641.74
	5/1/2017			15.71	top (feet below top of casing) (feet) 	641.77	
	6/8/2017			16.23		641.25	
	7/3/2017			16.93		et below top of casing) Thickness (feet) I -	640.55
	9/28/2017	27.27	657.40	18.18	free below top of casing) Thickness (feet) <	639.30	
IVI VV-4	4/25/2018	27-37	657.48	16.22		below top f casing) Thickness (feet) Eleve (feet) 642 642 642 642 642 642 642 642 642 642 642 642 642 642 642 642 642 642 642 620 620 620 620	641.26
	4/27/2018			17.59			639.89
	8/27/2018			17.25			640.23
	8/31/2018			17.28	w top (g)(feet below top of casing)Thickness (feet)Eleva (fe (fe e964206421641164136413641364136413642464256426642664266427642864296429642964296429642964296421064211642126421364214642156421664217642186421964210<	640.20	
	11/26/2018			16.54			640.94
	11/30/2018	-		16.55			640.93
	3/29/2019	-					642.82
	4/17/2017						622.02
	4/20/2017	-					620.33
	4/27/2017	-					621.02
Identification	5/1/2017						620.08
	6/8/2017						623.94
	7/3/2017						619.25
	9/28/2017	-		Of casing) Of casing) Of casing) Of casing) 15.29 1 15.74 1 15.71 1 16.23 1 16.93 1 16.23 1 16.23 1 16.24 1 17.25 1 16.54 1 16.55 1 16.56 1 16.57 1 16.58 1 33.98 1 35.67 1 34.98 1 35.92 1 36.75 1 38.67 1 38.3 1 38.34 1 38.34 1 <		617.33	
MW-5	4/25/2018	30-45	656.00		of casing) (feet) <td< td=""><td></td></td<>		
	4/27/2018	-				of casing) (feet) <td< td=""><td>620.42</td></td<>	620.42
	8/27/2018	-					617.79
	8/31/2018	-				Thickness (feet) Election (feet) 6	617.70
	11/26/2018	-			of casing) (feet) <td< td=""><td>617.66</td></td<>	617.66	
MW-5	11/30/2018	-					617.56
	3/29/2019	-					618.42
	4/17/2017						648.13
	4/20/2017	-					648.30
	4/27/2017	-					647.81
	5/1/2017	-				$$ 6 $$ $$ 6 $$	647.75
		-					647.14
	6/8/2017	-	45 656.00				
	7/3/2017	-					
MW-6	9/28/2017	8-18	657.70				646.19 647.50
	4/25/2018	-				- () - () <t< td=""><td>647.50</td></t<>	647.50
MW-6	4/27/2018	-					647.49
	8/27/2018	4					646.42
	8/31/2018	4				• • • •	646.41
	11/26/2018						646.88
	11/30/2018	4					646.86
	3/29/2019			9.50		trace	648.20

2

Well Identification	Date	Monitoring Well Screened Interval (feet bgs)	Elevation Top of Casing ¹ (feet)	Depth to Water (feet below top of casing)	Depth to NAPL (feet below top of casing)	LNAPL Thickness (feet)	Groundwater Elevation (feet)
	4/17/2017			9.64			647.88
	4/20/2017	-		9.71			647.81
	4/27/2017	-		10.26			647.26
	5/1/2017	-		10.35			647.17
	6/8/2017	-		11.44			646.08
	7/3/2017	-		11.91			645.61
	9/28/2017	-		12.46			645.06
MW-7	4/25/2018	10-20	657.52	10.61			646.91
	4/27/2018	-		10.63			646.89
	8/27/2018	-		11.96			645.56
		-					
	8/31/2018	-		12.18			645.34
	11/26/2018	-	-	11.50			646.02
	11/30/2018	-		11.53			645.99
	3/29/2019			9.72			647.80
	4/13/2017	-		16.71	14.50	2.21	641.21
	4/17/2017	-		13.47			642.73
	4/20/2017	-		13.96	13.95	0.01	642.25
	4/27/2017	-		17.25	14.91	2.34	640.78
	5/1/2017	-		17.47	14.94	2.53	640.70
	6/8/2017	_		18.02			638.18
	7/3/2017			17.97	17.91	0.07	638.28
MW-8	9/28/2017	15-25	656.20	18.10			638.10
	4/25/2018			15.14			641.06
-	4/27/2018	-		15.12			641.08
	8/27/2018			16.71			639.49
	8/31/2018			16.77			639.43
	11/26/2018	-		16.04			640.16
	11/30/2018	-	-	16.07			640.13
	3/29/2019	-		13.37			642.83
	4/17/2017			13.56			641.73
	4/20/2017	-		14.31			640.98
	4/27/2017	-		17.45	16.75	0.70	638.39
	5/1/2017	-		18.60	17.33	1.27	637.68
N/I/N/_Q	6/8/2017	14-24	655.29	22.14		1.27	633.15
10100-3	7/3/2017	14-24	055.25	22.14			633.13
		-		22.69			
	9/28/2017	-					632.60
	4/25/2018	-		17.22			638.07
	4/27/2018			17.22			638.07
	8/27/2018	4		19.90			635.39
	8/31/2018			19.91			635.38
MW09R	11/26/2018	8.59-33.59	653.55	28.28			625.27
	11/30/2018			19.94			633.61
	3/29/2019			12.82			640.73
	4/17/2017	4		16.72			629.08
	4/20/2017	1		17.31			628.49
	4/27/2017			18.11			627.69
	5/1/2017			18.99			626.81
MW-10	6/8/2017	14-30	645.80	19.88			625.92
	7/3/2017			25.06	23.62	1.44	621.86
	9/28/2017]		25.70			620.10
	4/25/2018	1		21.18			624.62
	4/27/2018	1		20.96			624.84

Well Identification	Date	Monitoring Well Screened Interval (feet bgs)	Elevation Top of Casing ¹ (feet)	Depth to Water (feet below top of casing)	Depth to NAPL (feet below top of casing)	LNAPL Thickness (feet)	Groundwater Elevation (feet)
	8/27/2018			24.64			619.66
	8/31/2018	-		25.71			618.59
MW10R	11/26/2018	14.66-34.64	644.30	27.51			616.79
	11/30/2018	-		26.19	25.95	0.24	618.30
	3/29/2019	-		18.54			625.76
	4/17/2017			13.45			644.55
	4/20/2017	-		13.45			644.55
	4/27/2017	-		13.76			644.24
	5/1/2017			13.77			644.23
	6/8/2017			14.32	14.05	0.27	643.89
	7/3/2017			14.30			643.70
	9/28/2017	42.22	650.00	14.65			643.35
MW-11	4/25/2018	12-22	658.00	13.82			644.18
	4/27/2018			13.82			644.18
	8/27/2018			14.20			643.80
	8/31/2018			14.21		643.79	
	11/26/2018	1		14.11			643.89
	11/30/2018			14.11			643.89
	3/29/2019	-		13.41			644.59
	4/25/2018			7.37			650.90
	4/27/2018	-		7.31			650.96
	8/27/2018	-		8.01			650.26
MW12	8/31/2018	4.63 - 19.63	658.27	8.04			650.23
	11/26/2018			7.88			650.39
	11/30/2018	-		7.93			650.34
	3/29/2019	-		7.13			651.14
	4/25/2018			7.39			649.65
-	4/27/2018	-		7.36			649.68
	8/27/2018	-		8.05			648.99
MW13	8/31/2018	4.91 - 19.91	657.04	8.15			648.89
	11/26/2018			8.22			648.82
	11/30/2018	-		8.17			648.87
	3/29/2019	-		7.21			649.83
	4/25/2018			7.81			649.34
	4/27/2018			7.75			649.40
	8/27/2018	-		8.35			648.80
MW14	8/31/2018	5.23 - 20.23	657.15	8.40			648.75
	11/26/2018		007.10	8.45			648.70
	11/30/2018	1		8.51			648.64
	3/29/2019	1		7.70			649.45
	4/25/2019			NM			
	4/27/2018	1		34.80			620.19
	8/27/2018	1		34.76			620.23
MW15	8/31/2018	10.33 - 35.33	654.99	34.82			620.23
	11/26/2018			dry			
	11/30/2018	-		dry			
	3/29/2019	-		dry			
	4/25/2019			9.72			647.21
	4/27/2018	-		9.70			647.21
	8/27/2018	-		10.05			646.88
MW16	8/31/2018	9.28 - 29.28	656.93	10.03			646.75
	11/26/2018	J.20 2J.20	030.33	10.18			646.86
	11/26/2018	1					
		-		9.73			647.20
	3/29/2019			9.44			647.49

Well Identification	Date	Monitoring Well Screened Interval (feet bgs)	Elevation Top of Casing ¹ (feet)	Depth to Water (feet below top of casing)	Depth to NAPL (feet below top of casing)	LNAPL Thickness (feet)	Groundwater Elevation (feet)
	4/25/2018			14.25			641.30
	4/27/2018			14.22			641.33
	8/27/2018		ened interval feet bgs) Elevation Top of Casing ¹ (feet) Deprint (feet bel of case (feet bel of case (feet bel of case (feet bel of case (feet bel of case (feet bel (feet bel (f	15.07			640.48
MW17	8/31/2018	9.52 - 29.52	655.55	15.14			640.41
	11/26/2018			14.78			640.77
	11/30/2018			14.66			640.89
	3/29/2019			13.38			642.17
	4/25/2018			NM			
	4/27/2018			34.69			619.82
	8/27/2018			dry			
MW18	8/31/2018	15.86 - 35.86	654.51	dry			
	11/26/2018		001101	dry			
	11/30/2018			dry			
	3/29/2019			dry			
	4/25/2018			23.05			630.26
	4/27/2018			23.15			630.16
	8/27/2018			28.63			624.68
N/1N/10	8/27/2018	11 66 - 31 66	652 21				624.08
		11.00-51.00	055.51				024.40
	11/26/2018			-			
	11/30/2018						625.59
	3/29/2019			21.3			632.01
	4/25/2018			18.55			632.30
	4/27/2018			18.64			632.21
MW19 MW20	8/27/2018	0 70 20 70	650.05	24.97			625.88
	8/31/2018	9.79-29.79	650.85	25.24			625.61
	11/26/2018			25.20			625.65
	11/30/2019			24.95			625.90
	3/29/2019			13.32			637.53
	4/25/2018			19.40			624.48
	4/27/2018			19.31			624.57
	8/27/2018			20.88			623.00
MW21	8/31/2018	12.30 - 32.30	643.88	21.36			622.52
	11/26/2018			20.42			623.46
	11/30/2018			20.71			623.17
	3/29/2019			19.67			624.21
	4/25/2018			21.80			620.05
	4/27/2018			21.80			620.05
	8/27/2018			23.72			618.13
MW22	8/31/2018	9.19 - 34.19	641.85	24.46			617.39
	11/26/2018			23.49			618.36
	11/30/2018			24.74			617.11
	3/29/2019			24.9			616.95
	4/25/2018			10.28			646.63
	4/27/2018			10.30			646.61
	8/27/2018			12.16			644.75
MW23	8/31/2018	7.13 - 22.13	656.91	11.99			644.92
	11/26/2018			11.27			645.64
	11/30/2019			11.3			645.61
	3/29/2019	1		9.36			647.55
	8/27/2018			26.03			618.35
	8/31/2018			26.77			617.61
MW24	11/26/2018	14.17 - 34.17	644.38	27.11			617.27
	11/30/2018			27.05			617.33
	3/29/2019	1		24.75			619.63

Well Identification	Date	Monitoring Well Screened Interval (feet bgs)	Elevation Top of Casing 1 (feet)	Depth to Water (feet below top of casing)	Depth to NAPL (feet below top of casing)	LNAPL Thickness (feet)	Groundwater Elevation (feet)
	8/27/2018			26.01			619.56
	8/31/2018			26.49			619.08
MW25	11/26/2018	12.81 - 32.81	645.57	24.96			620.61
	11/30/2018	-		25.19			620.38
	3/29/2019			13.45			632.12
	8/27/2018			25.23			621.42
	8/31/2018	-		25.76			620.89
MW26	11/26/2018	13.54 - 33.54	646.65	25.45			621.20
1010020	11/30/2018	13.34 33.34	040.05	25.83			620.82
	3/29/2018	-		16.35			630.30
	8/27/2018			24.87			624.13
	8/31/2018		640.00	25.06			623.94
MW27	11/26/2018	13.56 - 38.56	649.00	24.92			624.08
	11/30/2018			23.90			625.10
	3/29/2019			20.04			628.96
	8/27/2018			26.04			624.60
	8/31/2018			26.25			624.39
MW28	11/26/2018	13.62 - 38.62	650.64	33.05			617.59
	11/30/2018	-		25.00			625.64
	3/29/2019			20.50			630.14
	8/27/2018			34.43			617.91
	8/31/2018			34.84			617.50
MW29	11/26/2018	14.05 - 39.05	652.34	34.92			617.42
	11/30/2018			34.25			618.09
	3/29/2019			20.80			631.54
	8/27/2018			34.73			618.10
	8/31/2018			35.01			617.82
MW30	11/26/2018	14.67 - 39.67	652.83	34.91			617.92
	11/30/2018			34.84			617.99
	3/29/2019			35.28			617.55
	8/27/2018			34.55			619.42
	8/31/2018			35.16			618.81
MW31	11/26/2018	14.11 - 39.11	653.97	35.04			618.93
_	11/30/2019			34.96			619.01
	3/29/2019			32.45			621.52
	8/27/2018			12.41			643.42
	8/31/2018			12.43			643.40
MW32	11/26/2018	8.95 - 33.95	655.83	12.28			643.55
111132	11/30/2019	0.55 55.55	000.00	12.25			643.58
	3/29/2019	-		11.13			644.70
	4/17/2017			19.71			632.46
		-		20.13			632.04
	4/20/2017 4/27/2017	1		20.13			629.29
		1					629.29
	5/1/2017	-		23.16			
	6/8/2017	1		25.64			626.53
	7/3/2017	20.00	652.47	28.46	27.91	0.55	624.14
BH-1	9/28/2017	20-30	652.17	28.73			623.44
	4/25/2018			23.03			629.14
	4/27/2018			20.03			632.14
	8/27/2018			26.21			625.96
	8/31/2018			26.27			625.90
	11/26/2018			NM			
	11/30/2018			NM			
BH01R	3/29/2019	14.52-39.52	651.03	20.3			630.73

Well Identification	Date	Monitoring Well Screened Interval (feet bgs)	Elevation Top of Casing ¹ (feet)	Depth to Water (feet below top of casing)	Depth to NAPL (feet below top of casing)	LNAPL Thickness (feet)	Groundwate Elevation (feet)	
	4/17/2017			26.16			627.61	
	4/20/2017			26.30			627.47	
	4/27/2017			26.56	26.48	0.08	627.27	
Well Identification Date Screened Interval (feet bgs) Elevatio Casing 4/17/2017 4/20/2017 4/20/2017 4/20/2017 4/20/2017 4/20/2017 4/20/2017 4/20/2017 4/20/2017 4/25/2018 4/25/2018 4/25/2018 4/25/2018 4/25/2018 4/25/2018 4/25/2018 4/25/2018 4/20/2017 4/25/2018 11/26/2018 11/26/2018 11/26/2018 11/26/2017 4/20/2017 4/27/2017 5/1/2017 6/8/2017 7/3/2017 9/28/2017 15-30 64:4/27/2018 64:4/27/2018 64:4/27/2018 4/27/2018 64:4/27/2018 4/27/2018 64:4/27/2018 <td>5/1/2017</td> <td>-</td> <td></td> <td>26.68</td> <td>26.58</td> <td>0.10</td> <td>627.17</td>	5/1/2017	-		26.68	26.58	0.10	627.17	
		26.73			627.04			
		28.86			624.91			
	9/28/2017	20.25	CE0 77	31.25			622.52	
BH-2	4/25/2018	20-35	653.77	27.68			626.09	
BH-2 9 4 4 8 8 11 11 3 4 4 4 4 5 6 7 8 9 8 4 9 8 7 8 9 8 11 11 11 11 11 11 11 11 11	4/28/2017			27.53			626.24	
				28.50			625.27	
	8/31/2018			28.91			624.86	
				28.66		trace	625.11	
				28.63	trace	625.14		
				27.75			626.02	
				17.47			631.29	
		_		17.88		 		
		-		18.70			630.88 630.06	
8/3 8/3 11/ 11/ 11/ 3/3 4/3 4/3 4/3 5/ 6/ 7/ 9/3 4/3 8/3 11/ 11/ 3/3 4/3 8/3 11/ 11/ 3/3 4/3 8/3 11/ 11/ 3/3 4/3 8/3 11/ 11/ 3/3 4/3 8/3 11/ 11/ 11/ 3/3 11/ 11/ 11/ 1		-		19.06			629.70	
		-		21.19			627.57	
		_		21.70			627.06	
		- 15-30		23.04			625.72	
			648.76	20.06			628.70	
		-		22.36				
		5/2018 8/2017 7/2018 1/2018 26/2018 30/2018 9/2019 7/2017 0/2017 7/2017 1/2017 3/2017 3/2017 3/2017 5/2018 7/2018 7/2018 7/2018 7/2018 7/2018 7/2018 1/2018 26/2018 30/2018 9/2019 7/2017 0/2017 7/2017 0/2017 7/2017 3/2017 3/2017 3/2017 3/2017 3/2017 3/2017 3/2017 3/2017 3/2017 3/2017 3/2017 3/2017 3/2017		22.20			626.40 626.56	
		-		23.68		625.08		
		-		24.05		624.71		
		-		25.29			623.47	
		-		18.05			630.71	
				16.15			634.27	
				16.34			634.08	
		-		17.35			633.07	
		-		18.55			631.87	
		-		22.67			627.75	
		-		24.19			626.23	
		-		26.74			623.68	
RW-1		15-30	650.42	21.19			629.23	
RW-1		1		21.21			629.21	
		3		25.09			625.33	
	8/31/2018			25.69			624.73	
	11/26/2018			28.81			621.61	
	11/30/2018			25.63			624.79	
	3/29/2019			21.12			629.30	

NOTES:

- - - denotes no LNAPL present

¹Elevation in feet above mean sea level. Elevations based on NAVD88 vertical datum. Well survey conducted by Munson Engineers, Inc. of Wenatchee, Washington in July 2010 and April 2017.

bgs = below ground surface LNAPL = light nonaqueous-phase liquid NAPL = nonaqueous-phase liquid

7

Groundwater elevations in wells with LNAPL corrected for water-level elevation using typical specific gravity of R99 LNAPL of 0.78.

	ĵ		Fuels					Volatiles					Metals
		Hd 229 µg/L	H a 2 D µg/L	н ах О µg/L	enzene Benzene πg/Γ	eue Loluene μg/L	전 제 기	ᄧ Xylene, Total	知 内thalene	B E Mg/L	Β Ω μg/L	о Д µg/L	전체 기/제 기/
	Cleanup for Groundwater	800/1000	500	500	5	1,000	700	1,000	160	20	0.01	5	15
Benzene (Non Dete	ict)	1,000 800											
Benzene (Detect)		000			L								
Field ID FB-9	Date 4/7/2017	1,200 F	2,900	1,200	2.4	< 1.0	3.7	1.7					
							7.1						
FB-10	4/7/2017	2,000 F	57,000	< 4,100	71 15	13		64					
	4/21/2017	820 F	1,900	970 N1		2.8	8.3	18.5					
BH-1	4/26/2018 8/30/2018	2,140	1,390	<377	0.671	<1.00	5.55	12.5					
		591	243	<148	<0.200	<1.00	<0.500	<1.50					
BH01R	12/1/2018	1,420	5,120 F13	<151	<0.200	<1.00	0.608	<1.50					
BHUIK	3/27/2019	1,130	13,600 F-13	<151	4.33	<1.00	1.15	1.78					
	4/10/2017	1,900 F	100,000	10,000	< 4.0	< 4.0	13	39					
	4/21/2017	1,500 F	2,600	630 N1	4.2	3.3	12	39					
BH-2	4/24/2018	854	9,360	<377	<0.200	<1.00	<0.500	<1.50					
	8/28/2018	639	3,300	<148	<0.200	<1.00	<0.500	<1.50					
	11/30/2018	509	7,040	<151	<0.200	<1.00	<0.500	<1.50					
	3/27/2019	354	5310 F-13, F-15	475 F-03, F-16	<0.200	<1.00	<0.500	<1.50					
	4/21/2017	1,800 F	2,400	660	1.8	<1.0	5.4	8.2					
	9/29/2017	150 O	1,200	550 N1	<1.0	<1.0	<1.0	<2.0					
BH-3	4/26/2018	172	1,130	<377	<0.200	<1.00	<0.500	<1.50					
	8/30/2018	250	276	<148	<0.200	<1.00	<0.500	<1.50					
	11/29/2018	<100	502	<151	<0.200	<1.00	<0.500	<1.50					
	3/28/2019	319	1,850 F-13	<151	<0.200	<1.00	<0.500	<1.50					

	[Fuels					Volatiles					Metals
WA MTCA Method A C Benzene (Non Detect	Cleanup for Groundwater t)	Η 425 μg/L 800/1000 1,000	Η Αλ μg/L 500	Η Δυ μg/L 500	eu eu Be Be µg/L 5	υ με μg/L 1,000	μg/L 007	Total 1/000	Maphthalene 100	Β Ε μg/L 20	Β Ω μg/L 0.01	Ο Ξ μg/L 5	للمعام عرفي المعام 15
Benzene (Detect)		800											
Field ID	Date												
	4/21/2017	<100	840	540 N1	<1.0	<1.0	<1.0	<2.0					
	9/29/2017	<100	360	440	<1.0	<1.0	<1.0	<2.0					
RW-1	4/26/2018	<100	<189	<377	<0.200	<1.00	<0.500	<1.50					
	8/30/2018	<100	327	<150	<0.200	<1.00	<0.500	<1.50					
	11/30/2018	<100	152	<151	<0.200	<1.00	<0.500	<1.50					
	3/28/2019	<100	<74.8 F-13	<151	<0.200	<1.00	<0.500	<1.50					
	3/23/2017		520	480									
	4/21/2017	210 F	730	510	<1.0	<1.0	<1.0	<2.0					
MW-1	9/29/2017	200	410	<410	<1.0	<1.0	<1.0	<2.0					
	8/28/2018	449	219	<151	<0.200	<1.00	<0.500	<1.50					
	11/27/2018	152	159	<151	<0.200	<1.00	<0.500	<1.50					
	3/25/2019	172	126 F-11,F-20	<151	<0.200	<1.00	<0.500	<1.50					
	4/24/2018	188	<187	<374	0.42	<1.00	5.8	9.48					<0.200
MW01S	8/28/2018	268	294	<151	1.49	<1.00	1.26	<1.50					
	11/27/2018	<100	<75.5	<151	<0.200	<1.00	<0.500	<1.50					
	3/25/2019	133	116F-11, F-20	<151	<0.200	<1.00	4.18	8.97					
	3/23/2017		<260	<410									
MW-2	4/20/2017	<100	<260	<410	<1.0	<1.0	<1.0	<2.0					
	4/25/2018	<100	<187	<374	<0.200	<1.00	<0.500	<1.50					

]		Fuels					Volatiles	6				Metals
		На Изарија Најуј	Hau Mg/L	HdxO µg/L	Benzene MB/T	euene μg/L	T/여 고	त्र्य 7 त	ත් Maphthalene	Э МТВЕ тв	Β Δ μg/L	DC µg/L	여제 기가 기가
WA MTCA Method A	Cleanup for Groundwater	800/1000	500	500	5	1,000	700	1,000	160	20	0.01	5	15
Benzene (Non Dete	ct)	1,000											
Benzene (Detect)		800											
Field ID	Date	1			0	[I	Γ	Γ		1]
MW-3	4/20/2017	<100	<260	<410	<1.0	<1.0	<1.0	<2.0					
	9/28/2017	<100	<260	<410	<1.0	<1.0	<1.0	<2.0					
	4/25/2018	<100	<187	<374	<0.200	<1.00	<0.500	<1.50	<2.00	<1.00	<0.500	<0.400	
MW03S	8/29/2018	<100	139	<151	<0.200	<1.00	<0.500	<1.50					
	11/27/2018	<100	<75.5	<151	<0.200	<1.00	<0.500	<1.50					
	3/25/2019	<100	<76.2	<152	<0.200	<1.00	<0.500	<1.50					
	3/23/2017		<260	<410									
MW-4	4/20/2017	<100	<260	<410	<1.0	<1.0	<1.0	<2.0					
	9/28/2017	<100	<260	<410	<1.0	<1.0	<1.0	<2.0					
	4/25/2018	<100	<187	<374	<0.200	<1.00	<0.500	<1.50					
	3/23/2017		<260	<410									
	4/20/2017	<100	<260	<410	<1.0	<1.0	<1.0	<2.0					
MW-5	9/28/2017	<100	<260	<410	<1.0	<1.0	<1.0	<2.0					
	4/25/2018	<100	<189	<377	<0.200	<1.00	<0.500	<1.50					
	8/28/2018	<100	<75.5	<151	<0.200	<1.00	<0.500	<1.50					
	4/20/2017	880 F	1,800	480 N1	5.0	<4.0	6.2	37					
	9/28/2017	530 O	760	430 N1	<1.0	<1.0	<1.0	4.3					
MW-6	4/25/2018	643	1,620	<374	0.56	<1.00	<0.500	2.19					0.375
10100-0	8/29/2018	376	668	<151	<0.200	<1.00	<0.500	<1.50					
	11/27/2018	499	634	<151	<0.200	<1.00	<0.500	<1.50					
	3/25/2019	398	1,010 F-13,F-20	<152	<0.200	<1.00	<0.500	<1.50					

	ĺ		Fuels					Volatiles	6				Metals
		на Ив/Г	Hayo µg/L	Hd WO µg/L	Benzene MB/T	euene μg/L	T/여 고	त्र्य 7 त	Maphthalene	Э Ш шg/L	Β Ο μg/L	о Д µg/L	Total Lead ٦/۵
WA MTCA Method A	Cleanup for Groundwater	800/1000	<u>500</u>	500	<u> </u>	1,000	700	1,000	<u>160</u>	<u>20</u>	0.01	<u>μ6/ Ε</u>	<u>15</u>
Benzene (Non Detec	-	1,000											
Benzene (Detect)		800											
Field ID	Date												
	4/20/2017	1,100 F	1,300	420 N1	3.2	< 1.0	15	11.4					
	9/28/2017	<100	520	<470 U1	<1.0	<1.0	<1.0	<2.0					
MW-7	4/25/2018	<100	435	<374	<0.200	<1.00	<0.500	<1.50					
	8/29/2018	<100	448	<151	<0.200	<1.00	<0.500	<1.50					
	11/28/2018	<100	283	<151	<0.200	<1.00	<0.500	<1.50					
	9/29/2017	1,300 O	2,100	690 N1	<1.0	<1.0	4.1	27.2					
	4/26/2018	720	1,300	<374	0.641	<1.00	<0.500	4.67					
MW-8	8/29/2018	774	907	<151	<0.200	<1.00	<0.500	3.42					
	11/28/2018	921	505	<151	0.214	<1.00	1.06	6.23					
	3/26/2019	768	2,220 F-13,F-20	<152	22.2	<1.00	<0.500	2.70					
MW-9	9/29/2017	500 O	1,200	670 N1	<1.0	<1.0	<1.0	1.5					
10100-9	4/26/2018	2,810	2,620	<374	2.73	<1.00	9.95	20.4					
	8/29/2018	234	654	<151	<0.200	<1.00	<0.500	<1.50					
MW-9R	11/28/2018	1,300	1,850	<151	<0.200	<1.00	<0.500	<1.50					
	3/26/2019	1,000	5,690 F-13,F-20	<151	5.64	<1.00	0.545	<1.50					
	4/21/2017	1,900 F	3,800	730	3.4	< 1.0	11	12.5					
MW-10	9/29/2017	1,900 O	16,000	1,300 N1	<1.0	<1.0	13	26.7					
	4/26/2018	2,290	1,500	<377	0.219	<1.00	3.52	5.95					
	8/30/2018	1,080	838	< 150	< 0.200	< 1.00	1.22	2.42					
MW-10R	11/29/2018	2,160	1,370	<755 ec	<0.200	<1.00	3.90	5.98					
	3/28/2019	1,020	2,960 F-13	<151	0.401	<1.00	0.837	<1.50					

	ſ		Fuels					Volatiles	<u> </u>				Metals
		Ha B B J J J J J J J J J J J J J J J J J	н с щ д ц д г ц г г с г с г с г с г с г с с г с с г с	H A W O µg/L	euseng Benzeng Mg/L	euene μg/L	Sthylbenzene 了	ත් Xylene, Total	معاطبه المعاملة المحالية المح محالية المحالية المحال	H H μg/L	B ED µg/L	о Д µg/L	Total Lead ٦/قط
	Cleanup for Groundwater	800/1000	500	500	5	1,000	700	1,000	160	20	0.01	5	15
Benzene (Non Detect)	ct)	1,000 800	t'	<u> </u> "	 '	 '	·'	 '	 '	 		───┦	
Benzene (Detect)	I			<u> </u>	<u>//</u> /	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	
Field ID	Date				π	1	, 	, 				 p	n
	4/21/2017	1,400 F	1,700	1,000 N1	28	4.1	8.2	26.1					
	9/29/2017	1,000 O	3,100	720 N1	<1.0	<1.0	1.9	12.5					
MW-11	4/26/2018	1,240	1,140	<374	<0.200	<1.00	0.56	2.27					
	8/29/2018	944	251	<150	<0.200	<1.00	<0.500	<1.50					
	11/27/2018	1,350	503	<151	<0.200	<1.00	<0.500	<1.50					
	3/26/2019	1,540	1,230 F-13,F-20	<150	11.6	<1.00	<0.500	2.34					
ļ	4/25/2018	<100	<189	<377	<0.200	<1.00	<0.500	<1.50					
MW12	8/28/2018	<100	<74.8	<150	<0.200	<1.00	<0.500	<1.50					
1010012	11/27/2018	<100	92.8	<151	<0.200	<1.00	<0.500	<1.50					
	3/25/2019	<100	<76.2	<152	<0.200	<1.00	<0.500	<1.50					
	4/25/2018	40,900	1,790	<377	1,500	4,710	627	3,780					0.446
MW13	8/29/2018	39,300	2,500	<150	1,780	3,010	796	4,850	167	<50.0 ec	<25.0 ec	<25.0 ec	
1010012	11/27/2018	22,400	3,250	<151	1,380	271	458	3,170					
	3/25/2019	28,500	4,650 F-11,F-20	<151	701	761	804	4,980					
	8/29/2018	4,040	487	<150	<0.200	<1.00	<0.500	<1.50					
MW14	4/25/2018	4,620	900	<374	13.1	<1.00	16.1	<1.50	3.21	<1.00	<0.500	<0.400	
101 00 14	11/27/2018	5,170	933	<151	15.2	<1.00	1.70	<1.50					
	3/25/2019	2,650	1,070 F-11,F-20	<151	17.8	<1.00	2.04	<1.50					

			Fuels					Volatiles	5				Metals
		На Изиранија Најуји	Hau µg/L	нахо µg/L	Вепzene Жа	Toluene πg/L	所 加 了/简	त्र्य 7 त	aphthalene	Э Ш шg/L	Β Ο μg/L	DC ED µg/L	여제 기 지
	Cleanup for Groundwater	800/1000	500	500	5	1,000	700	1,000	160	20	0.01	5	15
Benzene (Non Dete	ct)	1,000											
Benzene (Detect)		800											
Field ID	Date												
	4/25/2018 iw												
MW15	8/29/20018 iw												
	11/27/2018 iw												
	3/26/2019 iw												
	4/26/2018	<100	330	<374	<0.200	<1.00	<0.500	<1.50					
MW16	8/29/2018	<100	298	<150	<0.200	<1.00	<0.500	<1.50					
1010010	11/28/2018	<100	337	<151	<0.200	<1.00	<0.500	<1.50					
	3/26/2019	<100	183 F-11	<150	<0.200	<1.00	<0.500	<1.50					
	4/26/2018	2,800	1,630	<377	1.23	<1.00	1.62	7.66	4.72	<1.00	<0.500	<0.400	
MW17	8/29/2018	1,270	986	<150	0.450	<1.00	<0.500	<1.50	5.61	<1.00	<0.500 ec	<0.500	
1010017	11/28/2018	1,390	1,580	<151	0.305	<1.00	<0.500	<1.50					
	3/26/2019	1,180	2,520 F-13,F-20	<151	2.91	<1.00	0.692	1.50					
	4/26/2018 iw												
MW18	8/2920018 iw												
1010010	11/27/2018 iw												
	3/26/2019 iw												
	4/26/2018	280	979	<377	<0.200	<1.00	<0.500	<1.50					
MW19	8/27/2018	<100	406	<150	<0.200	<1.00	<0.500	<1.50					
1010013	11/30/2018	<100	<75.5	<151	<0.200	<1.00	<0.500	<1.50					
	3/28/2019	447	4,300 F-13	<151	0.673	<1.00	<0.500	<1.50					

			Fuels					Volatiles	6				Metals
		Hd B Hg/L	H A Z D µg/L	H d WO µg/L	ensene Benzene T/B	enene μg/Γ	Rthylbenzene الألام	Strait 为Xylene, Total	所 Naphthalene	BE ME/L	Ω Ξ μg/L	С С щg/L	M 제 기/해
	Cleanup for Groundwater	800/1000	500	500	5	1,000	700	1,000	160	20	0.01	5	15
Benzene (Non Detect	t)	1,000 800											
Benzene (Detect)		800			I								
Field ID	Date			1	0		1	1				<u> </u>	 1
	4/26/2018	1,270	1,320	<377	<0.200	<1.00	1.56	5.44					
MW20	8/30/2018	320	346	<150	<0.200	<1.00	<0.500	<1.50					
	11/29/2018	674	1,280	<151	<0.200	<1.00	<0.500	<1.50					
	3/28/2019	1,220	2,190 F-13	<150	<0.200	<1.00	<0.500	<1.50					
	4/26/2018	991	965	<374	<0.200	<1.00	0.835	1.82					
MW21	8/30/2018	<100	234	<150	<0.200	<1.00	<0.500	<1.50					
	11/27/2018	789	992	<151	<0.200	<1.00	<0.500	<1.50					
	3/28/2019	799	1,400 F-13	<151	<0.200	<1.00	<0.500	<1.50					
MW22	4/26/2018	6,960	4,690	<377	118	28.8	102	196					<0.200
1010022	8/30/2018	2,040	1,150	<748 ec	30.4	5.34	30.5	55.9					
	4/25/2018	<100	419	<381	<0.200	<1.00	<0.500	<1.50					<0.200
1414/22	8/29/2018	<100	266	<150	<0.200	<1.00	<0.500	<1.50					
MW23	11/27/2018	<100	380	<151	<0.200	<1.00	<0.500	<1.50					
	3/25/2019	<100	339 F-11	<152	<0.200	<1.00	<0.500	<1.50					
	8/30/2018	<100	220	<150	<0.200	<1.00	<0.500	<1.50					
MW24	11/29/2018	154	914	<151	<0.200	<1.00	<0.500	<1.50					
	3/28/2019	<100	696 F-13	<150	<0.200	<1.00	<0.500	<1.50					
	8/30/2018	<100	<74.8	<150	<0.200	<1.00	<0.500	<1.50					
MW25	11/27/2018	<100	121	<151	<0.200	<1.00	<0.500	<1.50					
	3/28/2019	<100	302 F-11	<151	<0.200	<1.00	<0.500	<1.50					

			Fuels			-	-	Volatiles			_		Metals
		на ив/Г	Η Δυ μg/L	H dx O µg/L	eusene Beuzene μg/L	euen Lor μg/L	지 ^없 T	Xylene, Total	Maphthalene	В И У µg/L	8 Ω μg/L	С Д щg/L	Total Lead ٦/۵
WA MTCA Method A (Cleanup for Groundwater	800/1000	<u> </u>	500	<u> </u>	1,000	700	1,000	<u>160</u>	<u>20</u>	0.01	μ <u>β</u> / L	<u>15</u>
Benzene (Non Detec		1,000		500		1,000	,	2,000	100		0.01		
Benzene (Detect)	·	800											
Field ID	Date												
	8/30/2018	<100	128	<150	<0.200	<1.00	<0.500	<1.50					
MW26	11/29/2018	<100	<75.5	<151	<0.200	<1.00	<0.500	<1.50					
	3/28/2019	<100	591 F-13	<150	<0.200	<1.00	<0.500	<1.50					
	8/30/2018	<100	118	<150	<0.200	<1.00	<0.500	<1.50					
MW27	11/29/2018	<100	<75.5	<151	<0.200	<1.00	<0.500	<1.50					
	3/28/2019	<100	185 F-13	<150	<0.200	<1.00	<0.500	<1.50					
	8/30/2018	<100	105	<150	<0.200	<1.00	<0.500	<1.50					
MW28	12/1/2018	385	486	<158	0.208	<1.00	<0.500	<1.50					
	3/27/2019	303	1,370 F-13	<151	1.30	<1.00	<0.500	<1.50					
	8/28/2018	<100	459	<150	<0.200	<1.00	<0.500	<1.50					
MW29	11/29/2018	<100	238	809	<0.200	<1.00	<0.500	<1.50					
	3/27/2019	237	2,930 F-13,F-15	928 F-16	1.64	<1.00	<0.500	<1.50					

	ĺ		Fuels		1			Volatiles	5				Metals
		Н екрн шg/L	H B B Mg/L	eu Benzen Benzen Benzen	ene Toluene μg/L	A Ethylbenzene	ත් Xylene, Total	Abhthalene الالله	Β Ε Σ μg/L	а Сд µg/L	о Д µg/L	Total Lead ٦/ ^{8π}	
WA MTCA Method A Benzene (Non Dete	Cleanup for Groundwater	800/1000 1,000	500	500	5	1,000	700	1,000	160	20	0.01	5	15
Benzene (Detect)		800											1
Field ID	Date				-								
	8/28/2018	<100	193	<150	<0.200	<1.00	<0.500	<1.50					
MW30	11/29/2018	<100	304	<151	<0.200	<1.00	<0.500	<1.50					
	3/27/2019	<100	612 F-13	<150	<0.200	<1.00	<0.500	<1.50					
	8/28/2018	<100	<74.1	<148	<0.200	<1.00	<0.500	<1.50					
MW31	12/1/2018	<100	<75.5	<151	<0.200	<1.00	<0.500	<1.50					
	3/27/2019	<100	<74.8	<150	<0.200	<1.00	<0.500	<1.50					
	8/29/2018	139	161	<148	<0.200	<1.00	<0.500	<1.50	<2.00	<1.00	<0.500 ec	<0.500	
MW32	11/28/2018	<100	<75.5	<151	<0.200	<1.00	<0.500	<1.50					
	3/26/2019	<100	296 F-11	<150	<0.200	<1.00	<0.500	<1.50					

Notes:

Red denotes concentration in excess of MTCA Method Cleanup Level for Groundwater.

MTCA Method A Cleanup Levels, WAC 173-340-720 through 173-340-760, revised Nov., 2007

GRPH (gasoline range petroleum hydrocarbons) analyzed by Method NWTPH-Gx. DRPH (diesel range petroleum hydrocarbons) and ORPH (oil range petroleum hydrocarbons) analyzed by Method NWTPH-Dx.

VOCs = volatile organic compounds

VOCs analyzed by EPA Method 8260C

Total Lead by EPA Method 6020

< = less than method reporting limit shown

--- = not analyzed. MW15 and MW18 not sampled due to lack of water in the well.

ec = Method reporting limit exceeds Clean Up Level shown.

F and O = hydrocarbons indicative of heavier fuels are present in sample and impacting the gasoline result (Farallon 2017b)

N1 = hydrocarbons in the diesel-range are impacting the oil result (Farallon 2017b)

U1 = the practical quantitation limit is elevated due to interferences present in the sample (Farallon 2017b)

F-03 = The result for this hydrocarbon range is elevated due to the presence of individual analyte peaks in the quantitation range that are not representative of the fuel pattern reported.

F-11 = The hydrocarbon pattern indicates possible weathered diesel, or a contribution from a related component.

F-13 = The chromatographic pattern does not resemble the fuel standard used for quantitation.

F-15 = Results for diesel are estimated due to overlap from the reported oil result.

F-16 = Results for oil are estimated due to overlap from the reported diesel result.

F-20 = Result for Diesel is estimated due to overlap from Gasoline Range Organics or other VOCs.

S-02 = Surrogate recovery cannot be accurately quantified due to interference from coeluting organic compounds present in the sample extract.

S-06 = Surrogate recovery is outside of established control limits.

	Acenaphthene	Acenaphthylene	Anthracene	Benz [a] anthracene	Benzo [a] pyrene	Benzo [b] fluoranthene	Benzo [k] fluoranthene	Benzo (g,h,i) perylene	Chrysene	Dibenz [a,h] anthracene
	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
WA MTCA Method A					0.1					
Cleanup Level for										
Groundwater										

Field ID Date

MW21	4/26/2018	0.193	<0.0935	0.145	<0.0935	<0.0935	<0.0935	<0.0935	<0.0935	<0.0935	<0.0935
MW22	4/26/2018	113	<12.3	8.48	0.284	<0.0943	<0.0943	<0.0943	<0.0943	0.243	<0.0943
1010022	8/30/2018	43.4	4.21	3.32	0.156	<0.0374	<0.0374	<0.0374	<0.0374	0.156	<0.0374
MW32	8/29/2018	<0.0370	<0.0370	<0.0370	<0.0370	<0.0370	<0.0370	<0.0370	<0.0370	<0.0370	<0.0370

		Dibenzofuran	Fluoranthene	Fluorene	Indeno [1,2,3-cd] pyrene	1- Methyl- naphthalene	2-Methyl- naphthalene	Naphthalene	Phenanthrene	Pyrene	TEQ
		μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
WA MTC	CA Method A							160			0.1
Cleanu	p Level for										
Grou	Indwater										
Field ID	Date			-							
MW21	4/26/2018	0.103	<0.0935	0.144	<0.0935	1.48	0.494	1.16	<0.0935	<0.0935	0.0706
MW22	4/26/2018	8.55	3.2	36.7	<0.0943	298	210	692	36.6	4.30	0.0968
IVIVVZZ	8/30/2018	3.34	1.49	14.0	<0.0374	94.2	92.2	189	13.7	2.43	0.0433
MW32	8/29/2018	<0.0370	<0.0370	0.0382	<0.0370	< 0.0741	<0.0741	<0.0833	<0.0370	<0.0370	0.0279

Notes:

Red denotes concentration in excess of MTCA Method Cleanup Level for groundwater.

MTCA Method A Cleanup Levels, WAC 173-340-720 through 173-340-760, revised Nov., 2007

< = less than method reporting limit shown

ug/L = micrograms per liter (parts per billion)

PAHs by EPA Method 8270D SIM

TEQ = Toxic Equivalent Concentration per Ecology Focus Sheet. One-half the detection limit used for non-detected concentrations.

Location	Date	TOC	Total Depth	DTW	GWE	Mid-Point	Mid-Point Elevation	Mid-Point Elevation Difference	GWE Difference	Gradient (ft/ft)
MW-1	8/27/2018	658.01	35	12.17	645.84	23.59	634.43	-6.97	-0.60	0.086
MW-1	8/31/2018	658.01	35	12.20	645.81	23.60	634.41	-6.97	-0.60	0.086
MW-1	11/26/2018	658.01	35	11.36	646.65	23.18	634.83	-6.94	-0.65	0.094
MW-1	11/30/2018	658.01	35	11.38	646.63	23.19	634.82	-6.97	-0.60	0.086
MW-1	3/29/2019	658.01	35	9.68	646.63	22.34	635.67	-6.94	-0.60	0.087
MW01S	8/27/2018	657.54	19.99	12.30	645.24	16.15	641.40			
MW01S	8/31/2018	657.54	19.99	12.33	645.21	16.16	641.38			
MW01S	11/27/2018	657.54	19.99	11.54	646.00	15.77	641.78			
MW01S	11/30/2018	657.54	19.99	11.51	646.03	15.75	641.79			
MW01S	3/29/2019	657.54	19.99	9.88	646.03	14.94	642.61			

Location	Date	TOC	Total Depth	DTW	GWE	Mid-Point	Mid-Point Elevation	Mid-Point Elevation Difference	GWE Difference	Gradient (ft/ft)
MW-3	8/27/2018	658.26	35	7.75	650.51	21.38	636.89	-7.62	-0.38	0.050
MW-3	8/31/2018	658.26	35	7.80	650.46	21.40	636.86	-7.63	-0.34	0.045
MW-3	11/26/2018	658.26	35	7.78	650.48	21.39	636.87	-7.73	-0.15	0.019
MW-3	11/30/2018	658.26	35	7.89	650.37	21.45	636.82	-7.74	-0.13	0.017
MW-3	3/29/2019	658.26	35	6.42	650.37	20.71	637.55	-7.36	-0.13	0.018
MW03S	8/27/2018	658.17	19.3	8.04	650.13	13.67	644.50			
MW03S	8/31/2018	658.17	19.3	8.05	650.12	13.68	644.50			
MW03S	11/26/2018	658.17	19.3	7.84	650.33	13.57	644.60			
MW03S	11/30/2018	658.17	19.3	7.93	650.24	13.62	644.56			
MW03S	3/29/2019	658.17	19.3	7.22	650.24	13.26	644.91			

Notes:

All Units in feet

[1		1
		Total	
		Depth	
Well ID	Location of Well	(feet)	Required Laboratory Analyses
MW-1	Coleman Facility - South of USTs used for Cardlock	35.00	Discontinue Sampling per Ecology Approval ¹
MW01S	Coleman Facility - South of USTs used for Cardlock	19.99	NWTPH-Gx, NWTPH-Dx, 8260C (BTEX)
MW-2	Coleman Facility - North of USTs used for Cardlock	40.00	Discontinue Sampling per Ecology Approval ¹
MW-3	Coleman Facility - Southwestern corner of Tank Farm A	35.00	Discontinue Sampling per Ecology Approval ¹
MW03S	Coleman Facility - Southwestern corner of Tank Farm A	19.30	NWTPH-Gx, NWTPH-Dx, 8260C (BTEX)
MW-4	Coleman Facility ~ 30' North of MW-2	37.00	Discontinue Sampling per Ecology Approval ¹
MW-5	East of Worthen Street ~ 45' South and ~80' east of R99 release point	45.00	Discontinue Sampling per Ecology Approval ¹
MW-6	Coleman Facility ~ 20' North of R99 realese point	18.00	NWTPH-Gx, NWTPH-Dx, 8260C (BTEX)
MW-7	Coleman Facility ~ 13' North of former dry well	20.00	Discontinue Sampling per Ecology Approval ¹
MW-8	Coleman Facility - Northeast corner of former Storage Building	25.00	NWTPH-Gx, NWTPH-Dx, 8260C (BTEX)
MW09R	Chehalis Street ~ 15' east of railroad	32.60	NWTPH-Gx, NWTPH-Dx, 8260C (BTEX)
MW10R	East of Worthen Street ~ 410' north of R99 release point	33.59	NWTPH-Gx, NWTPH-Dx, 8260C (BTEX)
MW-11	Coleman Facility - North Central area	22.00	NWTPH-Gx, NWTPH-Dx, 8260C (BTEX)
MW12	Coleman Facility - Southwestern corner of Site	19.52	NWTPH-Gx, NWTPH-Dx, 8260C (BTEX)
MW13	Coleman Facility - in Footprint of Tank Farm B	19.80	NWTPH-Gx, NWTPH-Dx, 8260C (BTEX)
MW14	Coleman Facility ~ 80' north of former Tank Farm B	20.02	NWTPH-Gx, NWTPH-Dx, 8260C (BTEX)
MW15	East of Worthen Street ~ 20' north and 80' east of R99 release point	35.10	NWTPH-Gx, NWTPH-Dx, 8260C (BTEX)
MW16	Chehalis Street ~ 18' east of railroad	29.15	NWTPH-Gx, NWTPH-Dx, 8260C (BTEX)
MW17	Chehalis Street ~ 80' East of MW16	29.41	NWTPH-Gx, NWTPH-Dx, 8260C (BTEX)
MW18	East of Worthen Street ~ 120' north North & ~ 80' east of R99 release p	34.65	NWTPH-Gx, NWTPH-Dx, 8260C (BTEX)
MW19	In Worthen Street - ~40' North of Chehalis Street intersection	31.48	NWTPH-Gx, NWTPH-Dx, 8260C (BTEX)
MW20	In Worthen Street - ~75' North of MW19 & ~ 30' west of RW-1	29.50	NWTPH-Gx, NWTPH-Dx, 8260C (BTEX)
MW21	East of Worthen Street ~ 470' north of R99 release point	32.10	NWTPH-Gx, NWTPH-Dx, 8260C (BTEX)
MW22	East of Worthen Street ~ 560' north of R99 release point	39.10	Discontinue Sampling per Ecology Approval ¹
MW23	Former Dry Well Location	22.04	NWTPH-Gx, NWTPH-Dx, 8260C (BTEX)
MW24	East of Worthen Street ~ 435' north of R99 release point	34.25	NWTPH-Gx, NWTPH-Dx, 8260C (BTEX)
MW25	East of Worthen Street ~ 390' north of R99 release point	32.96	NWTPH-Gx, NWTPH-Dx, 8260C (BTEX)
MW26	East of Worthen Street ~ 360' north of R99 release point	32.52	NWTPH-Gx, NWTPH-Dx, 8260C (BTEX)
MW27	East of Worthen Street ~ 330' north of R99 release point	38.74	NWTPH-Gx, NWTPH-Dx, 8260C (BTEX)
MW28	East of Worthen Street ~ 300' north of R99 release point	38.74	NWTPH-Gx, NWTPH-Dx, 8260C (BTEX)
MW29	East of Worthen Street ~ 255' north of R99 release point	39.11	NWTPH-Gx, NWTPH-Dx, 8260C (BTEX)
MW30	East of Worthen Street ~ 235' north of R99 release point	39.79	NWTPH-Gx, NWTPH-Dx, 8260C (BTEX)
MW31	East of Worthen Street ~ 195' north of R99 release point	39.28	NWTPH-Gx, NWTPH-Dx, 8260C (BTEX)
MW32	Chehalis Street ~ 40' East of MW16	34.02	NWTPH-Gx, NWTPH-Dx, 8260C (BTEX)
BH01R	East of Worthen Street ~ 280' north of R99 release point	40.00	NWTPH-Gx, NWTPH-Dx, 8260C (BTEX)
BH-2	East of Worthen Street ~ 240' north of R99 release point	35.00	NWTPH-Gx, NWTPH-Dx, 8260C (BTEX)
BH-3	East of Worthen Street ~ 340' north of R99 release point	30.00	NWTPH-Gx, NWTPH-Dx, 8260C (BTEX)
RW-1	East of Worthen Street ~ 315' north of R99 release point	30.00	NWTPH-Gx, NWTPH-Dx, 8260C (BTEX)
Notes:			

Notes:

¹Washington State Department of Ecology. *Ecology Comments on Supplemental Remedial Investigation Report*. August 16, 2018.

APPENDIX A

GROUNDWATER SAMPLE COLLECTION FORMS

Well I.D. Number: Mu-1

Droinet	Name /M	1 11					Weil I.D. Num	ber:
Hydroc Date: 3	on Project Ni -25-19	er): <u>Column</u> umber: <u>2017</u>				hw-1-w cate I.D.: RLH	-	_Time:_{050 Time:
Monum Well ca Headspa Well dia	INFORMAT ent condition: p condition: ace reading: meter: nts	n: Good [Good [Not measure 2-inch	Needs re Replace ed PID Rea	epair: ed Need ding 4-inch	ds Replaceme _ ppm c	nt Si Odor 5-inch [urface Water W : Other:	er in Monumen Vell Infiltration
Total we Depth to Depth to Casing vo Volume to PURGIN Pump ty	G/DISPOS	$\frac{5.00}{1} \text{ ft} = \frac{1}{1} \text{ ft}$ $\frac{-49}{1} \text{ ft} (H_2)$ $\frac{-49}{1} \text{ ft} (H_2)$ $\frac{-49}{1} \text{ ft} (H_2)$ $\frac{-49}{1} \text{ ft} (H_2)$	ifugal 🗆 D	odiante i Di		11 4 -0.03 §	n Interval(s): Purging Well: = <u>12.23</u> gal/ft 6"- 1.47 Bladder Other Other	gal/ft
	ARAMETEI						or Sheen:	
Time	Water Level (BTOC)	Purge Rate (L/min)	Temp. (°C)	Sp. Cond. (mS/cm) (+3%)	Dissolved Oxygen (±10% or ≤1.00 ±0.2)	pII (SU) (+0.1)	ORP (mV)	Turhidity (NTU) (+ 10% or <10)
016	09.54	0.01	13.95	0.594	1-47	6-99	-296	163
1019	0.454	11	13.37	0.593	0.85	6.98	-299	143
022	454	N N	13.40	0,595	0.56	6.98	-299	127
1025	OG SL	6	13.38	0.593	0.39	6.59	- 299	122
1028	05.52	17	13.38	0.593	0-39	6-99	- 300	120
							- 300	120

Stabilization achieved if three successive measurements for pH, Conductivity and Turbidity and/or Dissolved Oxygen are recorded within their respective stabilization criteria. A minimum of six measurements should be recorded.

SAMPLE INFORMATION

Container Type	Bottle Count	Preservative	Field Filtered?	Analysis
Ubit home	3	HLL	No 0.45 0.10	
16 Amber	1	1-1LL	No 0.45 0.10	Dx www.ou Dx
			No 0.45 0.10	
			No 0.45 0.10	
ampling Comments:			No 0.45 0.10	

Well I.D. Number: Mwols-

nyuroco	n Project	Numbe	r. Loi1-07	4		Sample I.D.: Field Duplic Personnel:_	hwois-w ate I.D.: ILAM	-	_Time:_11c(
Monume Well cap Headspa Well diar	ce reading	ion: 12 n: 12 g: 12 No	Good	Replaced PID Read	oair: l Nee ling 14-inch	eds Replacemen ppm 6	nt Su Odor: -inch [Wate rface Water W] Other:	er in Monument Vell Infiltration
Total well Depth to p Depth to y Casing vo Volume C PURGING Pump typ	G/DISPO	IA.AA 	ft Bot ft ft (H ₂ O s: 3/4"-0.0 ETHOD		diasted Pla	Not measu 15' = 6.773 t 2"-0.16 gal/ adder \Box Non- d \boxtimes Remedia	n 4 –0.05 g	al/ft 6"-1.47	gal/ft
FIELD PA							-	or Sheen: www.	
Time	Water Level (BTOC)	(1	ge Rate ./min)	Temp. (°C)	Sp. Cond. (mS/cm) (+3%)	Dissolved 0xygen (±10% or ≤1.00 ±0.2)	pH (SU) (+0.1)	ORP (mV)	Turhidity (NTU) (+ 10% or <10)
1058	9,57 9,60 9,60 9,60 9,60	0.		1.33 2.35 2.35 12-35 12-35	0.685 0.688 0.687 0.687 0.688 0.688	4,56 4,56 3,98 3,95 3,95	7.32 7.31 7.31 7.31 7.31 7.31	-245 -242 -242 -241 -240 -240	103 99.8 98.1 97.3 96.2
						3-0	1-21	- 240	96.0
abilization a eir respecti urging Con		tion criter	cessive measuria. A minimu	rements for 1 m of six meas	pH, Conductivi surements sho	ity and Turbidity a buld be recorded.	and/or Dissolve	ed Oxygen are rec	orded within
AMPLE I		ATION	Preservative	- F2-14	1. 10				
1 LANS		Count		Field FI			Analy	sis	
nu MLU		3	MLL	No 0.4		GX, BTEX			

No 0.45 0.10 No 0.45 0.10

Sampling Comments:

Well I.D. Number: Mwo35

	n Project Nu	r): <u>Coleman</u> mber: <u>2017-0</u>	74		Sample I.D.: <u>hwsssw</u> Time: <u>hss</u> Field Duplicate I.D.:Time: Personnel: <u>fkk</u>				
Monumer Well cap Headspac Well dian	condition:	Good Not measure	Replace	d 🗌 Need	s Replacemen _ppm _6-	it Sur Odor:_ -inch [Water face Water We Other:	r in Monument ell Infiltration	
Total wel Depth to p Depth to v Casing vo	vater: 7. lume: 12	ATION - ft B - ft 12 ft -18 ft (H ₂ actors: 3/4"-0	Intake De 20) X 0-0	epth (BTOC):_	11'	Begin P gal X 3 =	Purging Well:	1112	
oump typ	e 🖾 Perista	AL METHOD	ifugal 🗌 🛙	Dedicated Blac	lder 🗌 Non-	Dedicated Bl	adder Other_		
Saller typ	e:	Wat	ter Disposal		Kemediai				
Saller typ	ARAMETEF Water Level	Wat	Temp. (°C)	Sp. Cond. (mS/cm)	Dissolved Oxygen (±10% or ≤1.00 ±0.2)	Odor and/o pll (su)	or Sheen: <u>V</u>	Turbidity (NTU)	
Time	ARAMETEF Water Level (BTOC)	S Purge Rate	Temp.	Sp. Cond.	Dissolved Oxygen (±10% or ≤1.00 ±0.2)	Odor and/o p!! (SU) (+0.1)	or Sheen: <u>V-</u> ORP (mV)	Turbidity (NTU) (+ 10% or <10)	
IELD PA Time	ARAMETEF Water Level	RS Purge Rate (L/min)	Temp. (°C)	Sp. Cond. (mS/cm) (+3%)	Dissolved Oxygen (±10% or	Odor and/o pII (SU) (+0.1) 7,CZ	or Sheen: <u>V</u> ORP (mV) - 238	Turbidity (NTU) (+ 10% or <10) 3 5 4	
Time	Water Level (BTOC)	RS Purge Rate (L/min)	Temp. (°C)	Sp. Cond. (mS/cm) (+3%) 0-350	Dissolved Ωxygen (±10% or ≤1.00 ±0.2) 3-10	Odor and/o pll (SU) (+0.1) 7.62 7.54	or Sheen: <u>V-</u> ORP (mV)	Turbidity (NTU) (+ 10% or <10)	
Time	ARAMETER Water Level (BTOC) 7.12 7.14 7.14 7.14 7.14	Wat RS Purge Rate (L/min) 0.0\ 0.0\ 0.0\	Temp. (°C) 11.50 11.55 11.55 11.55	Sp. Cond. (mS/cm) (+3%) 0-350 0-357	Dissolved Oxygen (±10% or ≤1.00 ±0.2) 3 - 10 O - %8	Odor and/o pII (SU) (+0.1) 7,CZ	or Sheen: <u>V</u> ORP (mV) - 238 - 243	Turbidity (NTU) (+ 10% or <10) 3 5 4	
Time	ARAMETER Water Level (BTOC) 7.12 7.14 7.14 7.14 7.14 7.15	Wat RS Purge Rate (L/min) 0.01 0.01 0.01 0.01 0.01 0.01	Temp. (°C) 11.50 11.50 11.55 11.55 11.55 11.55	Sp. Cond. (mS/cm) (+3%) 0-350 0-357 0-355 0-355 0-355 0-355 0-355	Dissolved Oxygen (±10% or ≤1.00 ±0.2) 3.10 0.88 0.62	Odor and/o pll (su) (+0.1) 7.62 7.54 7.50	or Sheen: ORP (mV) - 238 - 243 - 243	Turbidity (NTU) (+ 10% or <10) 154 137 137	
FIELD PA	ARAMETER Water Level (BTOC) 7.12 7.14 7.14 7.14 7.14	Wat RS Purge Rate (L/min) 0.01 0.01 0.01 0.01 0.01	Temp. (°C) 11.50 11.55 11.55 11.55	Sp. Cond. (mS/cm) (+3%) 0-350 0-357 0-355 0-355	Dissolved Oxygen (±10% or ≤1.00 ±0.2) 3 - 10 0 - %8 0 - € 2 0 - € 2 0 - € 0	Odor and/o p!! (SU) (+0.1) 7.62 7.54 7.50 7.50	or Sheen: <u>V</u> ORP (mV) -238 -243 -243 -245 -245	Turbidity (NTU) (+ 10% or <10) 154 137 129 121	

Container Type	Bottle Count	Preservative	Field Filtered?	Analysis
1611mber	1	HILL	No 0.45 0.10	Ûx
YUNL VOA	3	HLL	No 0.45 0.10	GX, BTEX
			No 0.45 0.10	
			No 0.45 0.10	
			No 0.45 0.10	
Sampling Comments:				

*

Well I.D. Number: hw-6

Hydrocon Date: 3-	Project Nur	r): Coleman mber: 2017-	- 074		Sample I.D.: Field Duplicat Personnel:	te I.D.: hwi		Time: 1330 Time: 1330
Monumen Well cap Headspac Well diam	condition: e reading:	Good Good Not measured 2-inch	Replaced d PID Read	Need:	s Replacement	Odor:		in Monument Il Infiltration
Total well Depth to p Depth to w Casing vol	roduct:	ATION $\xrightarrow{\sim}$ ft B $\xrightarrow{-}$ ft 3 ft 77 ft (H ₂ actors: 3/4"-0.	Intake De	pth (BTOC): gal/ft	=	Begin Pu gal. X 3 =_	rging Well:	1305 al.
PURGING	G/DISPOSA	AL METHOD	ifugal 🗌 D	edicated Blac	lder/ 🗌 Non-I	Dedicated Blac	dder Other_	
Bailer type	e:	Wat	ter Disposal:	Drummed			Sheen:	
Bailer type	e:	Wat	ter Dīsposal: Temp. (°C)	Sp. Cond. (mS/cm) (+3%)	Dissolved Oxygen (±10% or ≤1.00 ±0.2)			
TIELD PA	e: RAMETER Water Level	Nat	ter Disposal: Temp.	Sp. Cond. (mS/cm)	Dissolved <u>Axygen</u> (±10% or ≤1.00 ±0.2) 1.10	Odor and/or pll (SU)	Sheen:	د Turhidity (NTU) (+ 10% or <10)
Time	e: ARAMETER Water Level (BTOC)	RS Purge Rate (L/min)	ter Dīsposal: Temp. (°C)	Sp. Cond. (mS/cm) (+3%) 0 · 28 7 0 · 28 9	Dissolved <u>Axygen</u> (±10% or ≤1.00 ±0.2)	Odor and/or pH (SU) (+0.1) 6 - 7 8 6 - 7 8	Sheen: v~~ ORP (mV)	C Turhidity (NTU)
Time	e: Water Level (BTOC) 9,23	Purge Rate (L/min)	Temp. (°C) <u>11.40</u> <u>11.45</u> 11.57	Sp. Cond. (mS/cm) (+3%) ८ - १४ न ० - १४ न	Dissolved Oxygen (±10% or ≤1.00 ±0.2) ↓.10 ♀18	Odor and/or pll (SU) (+0.1) 6 -98 6 -98 6 -89 6 -89	Sheen: 1000 ORP (mV) - 207 - 207 - 207 - 208	C Turhidity (NTU) (+ 10% or <10) 177
Sailer type FIELD PA Time 1308 1314 1314 1317	e: Water Level (BTOC) 9.23 9.26 9.26 9.26	Wat S Purge Rate (L/min) 0-0\ 0-0\ 0-0\ 0-0\ 0-0\ 0-0\ 0-0\ 0-0\ 0-0\	ter Disposal: Тетр. (°с) 11.40 11.45 11.45 11.45 11.45	Sp. Cand. (mS/cm) (+3%) 0 · 287 0 · 287 0 - 285 0 · 290	Dissolved Oxygen (±10% or ≤1.00 ±0.2) 1.10 9.18 1.10 0.57	Odor and/or p!! (SU) (+0.1) 698 689 689 689 689	Sheen: 1000 ORP (mV) - 207 - 207 - 208 - 208 - 208	C Turhidity (NTU) (+ 10% or <10) (77 172 165 (58
Time 1308 1314 1314 1317 1320	e: Water Level (BTOC) 9.23 9.25 9.26 9.26 9.26 9.26 9.26	Wat RS Purge Rate (L/min) 0-0\ 0-0\ 0-0\ 0-0\ 0-0\ 0-0\ 0-0\ 0-0\ 0-0\ 0-0\ 0-0\	Temp. (°C) 11.40 11.45 11.45 11.45 11.45 11.47	Sp. Cand. (mS/cm) (+3%) 0 · 287 0 · 289 0 · 290 0 · 290	Dissolved Oxygen (±10% or ≤1.00 ±0.2) 1.10 9.48 1.10 0.57 0.58	Odor and/or p!! (SU) (+0.1) 6.989 6.89 6.89 6.89 6.89 6.89 6.89	Sheen: 1000 ORP (mV) -207 -207 -208 -208 -208 -208	C Turhidity (NTU) (+ 10% or <10) 177 172 165 158 152
Time 1308 1314 1314 1317 1320	e: Water Level (BTOC) 9.23 9.26 9.26 9.26	Wat S Purge Rate (L/min) 0-0\ 0-0\ 0-0\ 0-0\ 0-0\ 0-0\ 0-0\ 0-0\ 0-0\	ter Disposal: Тетр. (°с) 11.40 11.45 11.45 11.45 11.45	Sp. Cand. (mS/cm) (+3%) 0 · 287 0 · 287 0 - 285 0 · 290	Dissolved Oxygen (±10% or ≤1.00 ±0.2) 1.10 9.18 1.10 0.57	Odor and/or p!! (SU) (+0.1) 698 689 689 689 689	Sheen: 1000 ORP (mV) - 207 - 207 - 208 - 208 - 208	C Turhidity (NTU) (+ 10% or <10) 177 172 165 158
Time 1308 1314 1314 1317 1320	e: Water Level (BTOC) 9.23 9.25 9.26 9.26 9.26 9.26 9.26	Wat RS Purge Rate (L/min) 0-0\ 0-0\ 0-0\ 0-0\ 0-0\ 0-0\ 0-0\ 0-0\ 0-0\ 0-0\ 0-0\	Temp. (°C) 11.40 11.45 11.45 11.45 11.45 11.47	Sp. Cand. (mS/cm) (+3%) 0 · 287 0 · 289 0 · 290 0 · 290	Dissolved Oxygen (±10% or ≤1.00 ±0.2) 1.10 9.48 1.10 0.57 0.58	Odor and/or p!! (SU) (+0.1) 6.989 6.89 6.89 6.89 6.89 6.89 6.89	Sheen: 1000 ORP (mV) -207 -207 -208 -208 -208 -208	C Turhidity (NTU) (+ 10% or <10) 177 172 165 158 152
Time 1308 1314 1314 1317 1320	e: Water Level (BTOC) 9.23 9.25 9.26 9.26 9.26 9.26 9.26	Wat RS Purge Rate (L/min) 0-0\ 0-0\ 0-0\ 0-0\ 0-0\ 0-0\ 0-0\ 0-0\ 0-0\ 0-0\ 0-0\	Temp. (°C) 11.40 11.45 11.45 11.45 11.45 11.47	Sp. Cand. (mS/cm) (+3%) 0 · 287 0 · 289 0 · 290 0 · 290	Dissolved Oxygen (±10% or ≤1.00 ±0.2) 1.10 9.48 1.10 0.57 0.58	Odor and/or p!! (SU) (+0.1) 6.989 6.89 6.89 6.89 6.89 6.89 6.89	Sheen: 1000 ORP (mV) -207 -207 -208 -208 -208 -208	C Turhidity (NTU) (+ 10% or <10) 177 172 165 158 152
Time 1308 1314 1314 1317 1320	e: Water Level (BTOC) 9.23 9.25 9.26 9.26 9.26 9.26 9.26	Wat RS Purge Rate (L/min) 0-0\ 0-0\ 0-0\ 0-0\ 0-0\ 0-0\ 0-0\ 0-0\ 0-0\ 0-0\ 0-0\	Temp. (°C) 11.40 11.45 11.45 11.45 11.45 11.47	Sp. Cand. (mS/cm) (+3%) 0 · 287 0 · 289 0 · 290 0 · 290	Dissolved Oxygen (±10% or ≤1.00 ±0.2) 1.10 9.48 1.10 0.57 0.58	Odor and/or p!! (SU) (+0.1) 6.989 6.89 6.89 6.89 6.89 6.89 6.89	Sheen: 1000 ORP (mV) -207 -207 -208 -208 -208 -208	C Turhidity (NTU) (+ 10% or <10) 177 172 165 158 152
Sailer type FIELD PA Time 1308 1314	e: Water Level (BTOC) 9.23 9.25 9.26 9.26 9.26 9.26 9.26	Wat RS Purge Rate (L/min) 0-0\ 0-0\ 0-0\ 0-0\ 0-0\ 0-0\ 0-0\ 0-0\ 0-0\ 0-0\ 0-0\	Temp. (°C) 11.40 11.45 11.45 11.45 11.45 11.47	Sp. Cand. (mS/cm) (+3%) 0 · 287 0 · 289 0 · 290 0 · 290	Dissolved Oxygen (±10% or ≤1.00 ±0.2) 1.10 9.48 1.10 0.57 0.58	Odor and/or p!! (SU) (+0.1) 6.989 6.89 6.89 6.89 6.89 6.89 6.89	Sheen: 1000 ORP (mV) -207 -207 -208 -208 -208 -208	C Turhidity (NTU) (+ 10% or <10) 177 172 165 158 152
FIELD PA Time 1308 1311 1314 1317 1320 1323 Stabilization	e: Water Level (BTOC) 9.25 9.26 9.26 9.26 9.26 9.26 9.26 9.26 9.26	Wat RS Purge Rate (L/min) 0-0\ 0-0\ 0-0\ 0-0\ 0-0\ 0-0\ 0-0\ 0-0\ 0-0\ 0-0\ 0-0\	Temp. C°C) 11.40 11.40 11.40 11.45 11.47 11.47 11.47 11.47 11.47 11.47 11.47 11.47 11.47 11.47 11.47 11.47 11.47 11.47 11.47 11.47 11.47 11.47 11.47 11.47 11.47 11.47 11.47 11.47	Sp. Cond. (mS/cm) (±3%) 0 - 28 7 0 - 28 7	Dissolved Oxygen (±10% or ≤1.00 ±0.2) 1.10 9.18 1.10 0.57 0.58 ↓.00 1.10 0.57 0.58 ↓.00 1.10	Odor and/or p!! (SU) (+0.1) 6.989 6.89 6.89 6.89 6.89 6.89	Sheen: 100 ORP (mV) -207 -207 -208 -208 -208 -208 -208 -208	C Turbidity (NTU) (+ 10% or <10) 177 172 165 158 152 159

Container Type	Bottle Count	Preservative	Field Filtered?	Analysis
i LAm_	2	HUL	No 0.45 0.10	Dx
hondial	6	HLL	No 0.45 0.10	Gr. BIFX
			No 0.45 0.10	
			No 0.45 0.10	
			No 0.45 0.10	
Sampling Comments:				

Well I.D. Number: MW-8

Well cap condit Headspace read: Well diameter: Comments Comments PURGING INF(Total well depth Depth to product: Depth to product: Depth to water: Colume Convers PURGING/DIS Pump type Pailer type: Time Wa Leve (BT)	ition: ☐ Good ion: ☐ Good ing: ☐ Not measur ☐ 2-inch ORMATION : 25-∞ ft ☐ 12-36 ft 11-64 ft (H ion Factors: 3/4"-4 POSAL METHOD eristaltic ☐ Cent Wa	Replaced ed PID Read Bottom: H Intake De I20) X <u>0.4</u> 0.02 gal/ft 1 rifugal D ater Disposal:	d Need ding 4-inch lard Soft [opth (BTOC):_ 5 gal/ft "=0.04 gal/ft		Odor:	Other: Interval(s): urging Well: 22.69 I/ft 6" = 1.47	レナ-25 0817 gal. gal/ft
Depth to product: Depth to water:	ETERS	Intake De I ₂ O) X <u>04</u> 0.02 gal/ft 1 rifugal D ater Disposal	epth (BTOC):gal/ft "=0.04 gal/ft Dedicated Blac	2 (= 2"-0.16 gal/ dder/ □ Non- t ☑ Remedia	Begin P gal. X 3 = ft 4"–0.65 ga Dedicated Bla tion System [urging Well: 22_69 l/ft_6"-1.47 adder_Other] Other	८४।७ gal. gal/ft
PURGING/DIS Pump type P P Bailer type: FIELD PARAM Time Wa Lev (BT)	POSAL METHOD eristaltic Cent Wa) rifugal 🔲 D ater Disposal:	Dedicated Blac	dder/ 🗌 Non- 1 🗹 Remedía	Dedicated Bla tion System [adder Other_] Other	
Time Wa Lev (BT)					Outri allu/o	i Sheen	
	rel (L/min)	Temp. (°C)	Sp. Cond. (mS/cm) (±3%)	Dissolved 0xygen (±10% or ≤1.00 ±0.2)	pH (SU) (±0.1)	ORP (mV)	Turhidity (NTU) (± 10% or <10
13.	36 0-01	11.18	0.692	1.71	7.55	-151	
	.37 11	11-15	0.695	1.21	7.02	-154	54.7
1826 13	-58 11	11-12	0-692	1-13	7-00	-15	53-0
	.28 .1	11 .20	0.691	1.26	7-00	-155	52.6
	-58	11,19	0-641	1-17	7-01	-145	52-4
0835 13	139 .1	11-18	0-6-1	1-49	7.00	-145	51.9
					4		
					0.3		
		1	-				
tabilization achieve	l if three successive me	easurements fo	pr pH. Conductivi	ity and Turbidity	and /or Dissolve	d Oxygen are rea	corded within
heir respective stabi	lization criteria. A min	nimum of six me	easurements sho	ould be recorded.	and of Dissolve	a oxygen are rec	
urging Comments							-

Container Type	Bottle Count	Preservative	Field Filtered?	Analysis
1 LANSV	t	HEL	No 0.45 0.10	Dx
GONL VOA	3	HICL	No 0.45 0.10	GX BIEX
			No 0.45 0.10	
			No 0.45 0.10	
1		8	No 0.45 0.10	
Sampling Comments:	-			

Hydro Con GROUNDWATER PURGE AND SAMPLE COLLECTION

Well I.D. Number: Murdan

Hydrocon	Project Nur S-76-19	r): <u>Coleman</u> mber: <u>2017</u> -	171		Field Duplica	Mwonl2- nte I.D.: RALI	-	Time: <u>1305</u> Time: <u>-</u>
Monumen Well cap o Headspace Well diam	condition: e reading: eter:	Good Cood Not measured	Replaced d PID Readi	air:Needs ing 4-inch	s Replacemen	Odor:	[] Water ace Water Wel Other:	
Total well Depth to pr Depth to we Casing volt	vater: 15.1	ATION $\frac{20}{\text{ft}}$ ft Be $\frac{42}{\text{ft}}$ ft $\frac{18}{\text{ft}}$ ft (H ₂ e actors: $3/4^{2}$ -0.	Intake Dep 0) X ບໍ່ບໍ	oth (BTOC):	= 11-16	Begin Pu	urging Well:	1295
PURGING	G/DISPOSA				/			
Baller type	e 🖸 Perista	lltic 🗌 Centri Wate	ifugal 🗌 De er Disposai:[edicated Blad	lder 🗌 Non- 🖾 Remediat	tion System	Other	
FIELD PA	e 🛛 Perista e:	lltic 🗌 Centri Wate	ifugal De er Disposai: Temp. (°C)	edicated Blad Drummed Sp. Cond. (mS/cm) (±3%)	der Non- Remediat Dissolved Oxygen (±10% or ≤1.00 ±0.2)	tion System	Other Sheen: Slight ORP (mV)	
FIELD PA Time	Water Level (BTOC) (5	S Purge Rate (L/min) 0.01	Temp. (°C)	Drummed Sp. Cond. (mS/cm) (±3%) 0.761	M Remediat Dissolved Oxygen (±10% or ≤1.00 ±0.2) 2.6 ℃	Odor and/or pH (SU)	Other Sheen: Show	<u>۲urhidity</u> (NTU) (± 10% or ≤10)
FIELD PA Time	Water Level (BTOC) 15-52 15-53	Altic Centri Wate S Purge Rate (L/min)	Temp. (°C) (5.19 (5.51)	Drummed Sp. Cond. (mS/cm) (±3%) 0.761 6.763	✓ Remediat Dissolved Oxygen (±10% or ≤1.00 ±0.2) 2.69 0.51	Odor and/or Odor and/or PH (SU) (±0.1) 7-16 7-97	Other Sheen: Slight ORP (mV)	Turhidity (NTU)
FIELD PA Time	Water Level (BTOC) (5-62 (5-63 (5-65)	Purge Rate (L/min)	Temp. (°C) 15.19 14.51 (5.09	Drummed Sp. Cond. (mS/cm) (±3%) 0.761 0.761 0.75	✓ Remediat Dissolved Oxygen (±10% or ≤1.00 ±0.2) 2.69 0-51 0-39	tion System [Odor and/or pH (su) (±0.1) 7-16 7-07 7-07	Other Sheen: Slight ORP (mV) the -101 -101	- <u>Shin</u> <u>bob</u> Turhidity (NTU) (± 10% or ≤10) <u></u> <u></u> (<u></u> (<u></u>) (<u></u>)
FIELD PA Time 1258 1254 1254 1257	Water Level (BTOC) 15-52 15-55	Purge Rate (L/min)	Temp. (°C) (5.19) (5.19) (5.09) (5.09) (5.09) (5.09)	Drummed Sp. Cond. (mS/cm) (±3%) 0.761 0.765 0.755	✓ Remediat Dissolved Oxygen (±10% or ≤1.00 ±0.2) 2.69 0.51 0.51 0.51 0.39 0.751 0.751	tion System [Odor and/or (su) (±0.1) 7-16 7-07 7-07	ORP (mV)	- <u>Shin</u> <u>bob</u> Turhidity (NTU) (± 10% or ≤10) <u></u> <u></u> (<u></u> (<u></u>) (<u></u>)
FIELD PA Time	Water Level (BTOC) (5-62 (5-63 (5-65)	Purge Rate (L/min)	Temp. (°C) 15.19 14.51 (5.09	Drummed Sp. Cond. (mS/cm) (±3%) 0.761 0.765 0.755	✓ Remediat Dissolved Oxygen (±10% or ≤1.00 ±0.2) 2.69 0-51 0-39	tion System [Odor and/or pH (su) (±0.1) 7-16 7-07 7-07	Other Sheen: Slight ORP (mV) the -101 -101	- 5 him \$020 Turhidity (NTU) (± 10% or ≤10) 4 () (~ 1

Container Type	Bottle Count	Preservative	Field Filtered?	Analysis
1 L Aubr	1	HILL	No 0.45 0.10	1)
nome upp	3	HILL	No 0.45 0.10	GR, NIEX
			No 0.45 0.10	
			No 0.45 0.10	
			No 0.45 0.10	
Sampling Comments:				

Well I.D. Number: hw-tok

Date:	me (Numbe Project Nur 3-28-19	mber: 2017-	674		Sample I.D.: Field Duplicat Personnel:	te I.D.:	-	_Time:
Monumen Well cap o Headspace Well diam	condition: e reading: eter:	ON/Good	Replaced PID Read	Need	s Replacement .ppm 6-i	Surfa Odor: unch	_	r in Monument ell Infiltration
Total well Depth to pr Depth to wa Casing volu	ater: 16 ume: 13	ATION 56 ft B ft 64 ft 65 ft (H ₂ actors: $3/4''=0$.	Intake De 0) X _0-6	pth (BTOC):	28	Begin Pu gal. X 3 =	rging Well:	al
		AL METHOD	fugal 🗌 D	edicated Blad	lder/ 🗌 Non-I	Dedicated Bla	dder Other_	
Bailer type	RAMETER	Wat	er Disposai:	_] Drummed	⊠ Remediat			
Bailer type	RAMETER Water Level	Wat	er Disposal: Temp. (°C)	Sp. Cond. (mS/cm)	✓ Remediat Dissolved Oxygen (±10% or ≤1.00 ±0.2)	Odor and/or pH (SU)	Other Sheen: ORP (mV)	Turhidity (NTU)
Bailer type	RAMETER Water Level (BTOC)	S Purge Rate	er Disposal: Temp. (°C)	Sp. Cond. (mŠ/cm) (±3%)	Dissolved Oxygen (±10% or ≤1.00 ±0.2)	Odor and/or pH (SU) (±0.1)	Sheen: Mrn ORP (mV)	Turhidity (NTU) (± 10% or ≤10)
Time	RAMETER Water Level	RS Purge Rate (L/min)	Temp. (°C)	Drummed Sp. Cond. (mS/cm) (±3%) 0.786	Dissolved Oxygen (±10% or ≤1.00 ±0.2) 7.35	Odor and/or pH (SU) (±0.1) 7-56	Sheen: <u>www</u> ORP (mV) - GZ	Turhidity (NTU) (± 10% or ≤10) - 916- ζ
FIELD PA Time	RAMETER Water Level (BTOC)	Purge Rate (L/min)	er Disposal: Temp. (°C) 13-05 13-76	Drummed Sp. Cond. (mS/cm) (±3%) 0-786 0,785	Dissolved Oxygen (±10% or ≤1.00 ±0.2) 7.55 2.13	Odor and/or pII (SU) (±0.1) 7-56 7-33	Sheen: <u>Wn</u> ORP (mV) - 93 - 94	Turhidity (NTU) (± 10% or ≤10) 96.3 88.4
FIELD PA Time	Water Level (BTOC)	Vat	Temp. (°C) (3-05 (3-25 (3-25)	Drummed Sp. Cond. (mS/cm) (±3%) 0.786	Dissolved Oxygen (±10% or ≤1.00 ±0.2) 7.55 2.13 2.09	Odor and/or pH (SU) (±0.1) 7-56 7-33 7-36	Sheen: //// ORP (mV) - 93 - 94 - 95	ح Turhidity (NTU) (± 10% or ≤10) 96.3 88.4 88.4 84.3
FIELD PA Time	RAMETER Water Level (BTOC) 19-6 2 19-62	Wate RS Purge Rate (L/min) D.D (1) 1)	Temp. (°C) 13-05 13-58 13-58	Drummed Sp. Cond. (mŠ/cm) (±3%) 0.786 0.785 0.785	Dissolved Oxygen (±10% or \$1.00 ±0.2) 7.55 2.13 2.09 2.03 7.11	Odor and/or pH (SU) (±0.1) 7-56 7-33 7-30 7-30	Sheen: <u>Wn</u> ORP (mV) - 93 - 94	Turhidity (NTU) (± 10% or ≤10) 96.3 88.4
FIELD PA Time OAIS OGI8 OG21 UG24	RAMETER Water Level (BTOC) 19-6 Z	Wate RS Purge Rate (L/min) 0.01 1) 1) (1)	Temp. (°C) (3-05 (3-25 (3-25)	Drummed Sp. Cond. (mS/cm) (±3%) 0-786 0-785 0-785 0-785	Dissolved Oxygen (±10% or ≤1.00 ±0.2) 7.55 2.13 2.09	Odor and/or pH (SU) (±0.1) 7-56 7-33 7-36	Sheen: <u>Wrn</u> ORP (mV) - 93 - 94 - 95 - 97	× Turhidity (NTU) (± 10% or ≤10 96.3 88.4 88.4 84.9 84.9 84.9 84.9

Container Type	Bottle Count	Preservative	Field Filtered?	Analysis
1 LANSV	1	Leck	No 0.45 0.10	DX
Mome via	5	1-CL	No 0.45 0.10	(x BTEX
A STATE OF S			No 0.45 0.10	
and the second			No 0.45 0.10	
			No 0.45 0.10	
Sampling Comments:				

Well I.D. Number: MW-11

	Project Nu	mber:	2017-070	1		Field Duplicate I.D.:Time:				
Monument Well cap c Headspace Well diame	condition:	: Go Go Not m 2-i	od 🗌 R leasured Pl inch	eplaced	air: Need ing 4-inch	s Replacement	t 🗌 Surf	ace Water We	in Monument Il Infiltration	
Total well Depth to pr Depth to we Casing volu	ater: 13		ft Bottor ft ft In ft (H₂O) Σ	take De	pth (BTOC):_ gal/ft	Not measur 19 = <u>5,66</u> 2"-0.16 gal/f	Begin P gal. X 3 =	urging Well:g	ッフィン al.	
Pump type Bailer type	G/DISPOS e Perist e: ARAMETE	altic [Centrifuga	al 🗌 D isposai:	edicated Bla Drummed	dder / 🗌 Non- i 🗹 Remediat	tion System [adder Other_] Other r Sheen:		
Time	Water Level (BTOC)			'emp. (°C)	Sp. Cond. (mS/cm) (±3%)	Dissolved 0xygen (±10% or ≤1.00 ±0.2)	pH (SU) (±0.1)	ORP (mV)	Turhidity (NTU) (± 10% or ≤10)	
0745	13.29	0-0	1 10	90	9657	1.72	7.08	-155	59.1	
178	13.29	11		- 64	0-651	11.0	7-02	-148	57.9	
1751	13-30	11	11	- 04	0.652	0.80	7-02	-159	57-3	
0754	13,20			. 05	0-651	0.16	7-02	-149	56.4	
7250	13-50		1 11	-05	0.651	0.71	7.02	-149	56.8	
0800	12.30) (. 11	-05	0-651	0-78	7-02	- 149	55.2	
heir respect	achieved if th tive stabilizati mments:	nree succ	essive measure ia. A minimum	ements fo n of six m	or pH, Conductive easurements sh	rity and Turbidity ould be recorded	and/or Dissolv	ed Oxygen are re	corded within	
SAMPLE Containe	INFORMA er Type	TION Bottle Count	Preservative	Field	Filtered?		Anal	ysis		
1 L Amb	e-	I	HLL	No (0.45 0.10	Dx				
Yo nh		3	HLL		0.45 0.10	6x-	BTEX			
					0.45 0.10			-		
				No (0.45 0.10					

No 0.45 0.10

Sampling Comments:

0

Well I.D. Number: Muni 2

WELL INFORMATION Monument condition: Good Needs repair: Well cap condition: Good Replaced Needs Replacement Headspace reading: Not measured PID Reading ppm Well diameter: 2-inch M4-inch Intervention Comments	Odor: -inch red Screen I Begin Pu gal. X 3 =_ ft 4"-0.65 gal	Other: nterval(s): urging Well: 24-35g /ft 6"- 1.47	5-20 1192 Jal. gal/ft
Total well depth:IPUSION:HardSoftNot measuresDepth to product:ftIntake Depth (BTOC):Casing volume:I2.56ftIntake Depth (BTOC):Casing volume:I2.56Mater Dot Colspan="2">OutputSp. CondOffer SoftVolume Conversion Factors:3/4"-0.02 gal/ft 1"-0.04 gal/ft 2"-0.16 galPURGING/DISPOSAL METHODPump type PeristalticCentrifugal Dedicated BladderDissolvedMater Disposai:DissolvedMater Disposai:DissolvedOxygen(±10% orSp. Cond.Oxygen(±10% orSp. Cond.Oxygen(±10% orSp. Cond.Oxygen(±10% orSp. Cond.Oxygen<	Begin Pu gal. X 3 =_ ft 4″–0.65 gal	/ft 6"-1.47	1(92 Jal. gal/ft
Pump type Peristaltic Centrifugal Dedicated Bladder, Nor Bailer type: Water Disposal: Drummed Remedi FIELD PARAMETERS Purge Rate Temp. Sp. Cond. Dissolved Image: Control (L/min) (U/min) (U/min) Sp. Cond. Oxygen (BTOC) (L/min) (U/min) (U/min) Sp. Cond. Oxygen 1145 7-05 0-01 1159 0-7492 4-21 1151 7-05 11 11-58 0-7492 5-54 1151 7-05 1 11-55 0-7492 5-54 1154 7-05 1 11-55 0-7492 5-54 1154 7-05 1 11-55 0-7492 5-54	Dedicated Bla tion System	dder Other_] Other	
TimeWater Level (BTOC)Purge Rate (L/min)Temp. ($^{(0C)}$ Sp. Cond. (mS/cm) ($^{(13%)}$ Dissolved Oxygen ($^{(110\% or)}$ $^{(13%)}$ 11957-050.0111590.7429.0111987-051111.950.7429.0111517-051111.950.7425.5411547-051111.950.7215.5411577-051111.950.7215.5411577-051111.950.7215.5611577-051111.950.7215.56	Odor and/or	Sheen: Wur	-C
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	pII (SU) (+0.1)	ORP (mV)	Turhidity (NTU) (+ 10% or <10)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7-60	-215	140
1154 7.04 11 11-45 0.291 3.56 1157 7.04 11 11.46 0.291 3.64	7-46	-215	123
157 7.04 11 11.46 0.291 3,64	7-40	-214	117
	7.60	-214	113
200 7-04 11 11-46 0.291 3-58	7-50	- 214	110
		- 214	110
tabilization achieved if three successive measurements for pH, Conductivity and Turbidi heir respective stabilization criteria. A minimum of six measurements should be recorde Purging Comments:		d Oxygen are rec	corded within

container Type	Count	There There are	Allalysis
1 L Amber		No 0.45 0.10	
YO NL VOA		No 0.45 0.10	3
		No 0.45 0.10	
		No 0.45 0.10	
and the second second		No 0.45 0.10	
Sampling Comments'			

Samphug comm

Well I.D. Number: MWIS

Hydrocon	ame (Numb n Project N -23 - 19	umber: 2017-				ate I.D.:		_Time: Time:	
Monumer Well cap Headspac Well dian	condition: ce reading:[neter:	rion Good Good Not measure 2-inch	Replace	d Need	ls Replacemer _ ppm _ 6	nt Sur Odor:_ -inch [UWate face Water W Other:	1000	
Total well Depth to p Depth to w Casing vo Volume C PURGING Pump typ	vater: lume: onversion] G/DISPOS e [] Peris	ATION <u>4.&0</u> ft E <u>ft</u> <u>7.02</u> ft <u>2.78</u> ft (H. Factors: 3/4"-0 CAL METHOD taltic Centr Wa	Intake De 20) X <u>6-0</u> 1.02 gal/ft 1	epth (BTOC):_ gal/ft "-0.04 gal/ft Dedicated Bla	$\frac{14}{2''-0.16 \text{ gal}}$	Begin F gal. X 3 = 'ft 4"–0.65 ga	Purging Well: <u>24.92 g</u> Il/ft 6"-1.47	al. gal/ft	
	ARAMETE						or Sheen:		
Time	Water Level (BTOC)	Purge Rate (L/min)	Temp. (⁰ C)	Sp. Cond. (mS/cm) (+3%)	Dissolved Oxygen (±10% or ≤1.00 ±0.2)	PH (SU) (±0.1)	ORP (mV)	Turbidity (NTU) (± 10% or <10)	
350	202	10.01	11.08	0.541	1.69	6.93	- 146	135	
353	7-03	11	10.96	0.528	1-52	6.92	- 204	132	
156	7-03	• 1	10.88	0-525	1-07	6-92	-207	129	
359	7.03	• 1	10-85	0.525	1.41	6.92	-207	125	
401	7-03		10.87	0-525	1-03	6-92	- 207	124	
704	7-03	.1	10.82	0.525	1-02	6.92	-207	124	
abilization eir respect urging Cor	ive stabilizati	on criteria. A mini	asurements fo mum of six me	r pH, Conductiv easurements sho	ity and Turbidity ould be recorded.	and/or Dissolve	ed Oxygen are red	corded within	
AMPLE	INFORMA	TION							
Containe	er Type	Bottle Preserva	tive Field	Filtered?		Analy	vsis		
1LAn		Count	No. O	45 0 10	Analysis				

	Count			· · · · · · · · · · · · · · · · · · ·
1 LAND	1	LILL	No 0.45 0.10	1)*
40 M2 VUA	3	HEL	No 0.45 0.10	GX-BTFX
			No 0.45 0.10	VC 0.0.
			No 0.45 0.10	
			No 0.45 0.10	
Commission Commenter				

Sampling Comments:

Well I.D. Number: MWIY

ate: 3-1	Project Num): <u>Lolence</u> nber: <u>2017-0</u>	74		Sample I.D.: MWI4-W Time: Field Duplicate I.D.:				
Monumen Well cap o Jeadspace Well diam	condition:	Good Cood Not measured	Replaced	Needs	Replacemen	t Surf Odor: inch	ace Water We	in Monument Il Infiltration	
otal well opth to po opth to w asing vol	roduct:	ATION - ft B - ft - ft - ft - ft - ft - ft (H ₂ - ft (H ₂ - ft (H ₂)	Intake Der 0) X _ 0-0	oth (BTOC):	<u>(3'</u> = 8-09	Begin P gal. X 3 =	urging Well:g	1520 al.	
ump type	e Perista	AL METHOD altic Centr Wat	ifugal 🔲 De ter Disposal:[edicated Blac	lder 🗌 Non- 🗹 Remedia	Dedicated Bl tion System [adder Other_ Other	- 14	
	and the state								
FIELD PA	RAMETER	RS				Odor and/o	or Sheen:		
TIELD PA	Water Level	RS Purge Rate (L/min)	Temp. (°C)	Sp. Cond. (mS/cm) (+3%)	Dissolved Oxygen (±10% or ≤1.00 ±0.2)	pH (su)	or Sheen: ORP (mV)	Turhidity (NTU)	
Time	Water Level (BTOC)	Purge Rate (L/min)	(°C)	(mS/cm) (±3%)	Oxygen (±10% or ≤1.00 ±0.2)	pH (SU) (±0.1)	ORP (mV)	Turbidity (NTU)	
Time	Water Level (BTOC) 7-57	Purge Rate (L/min)	(°C) 11-57	(mS/cm) (±3%) 0.6%	Oxygen (±10% or	pH (su)	ORP (mV)	Turhidity (NTU) (± 10% or ≤10)	
Time	Water Level (BTOC) 7-57	Purge Rate (L/min) 0-01 0-01	(°C) 11-57 11-54	(mS/cm) (±3%) 0.686 0.685	Oxygen (±10% or ≤1.00 ±0.2)	pH (SU) (±0.1) 7-71 7-71	ORP (mV) - 111 -174 -176	Turhidity (NTU) (± 10% or ≤10) (18	
Time	Water Level (BTOC)	Purge Rate (L/min)	(°C) 11-57	(mS/cm) (±3%) 0.6%	0xygen (±10% or ≤1.00 ±0.2)	pH (sv) (±0.1) 7-7 (ORP (mV) - 171 - 174 - 176 - 177	Turbidity (NTU) (± 10% or <10) (18 128	
Time 1923 1926 9 29 1932 1935	Water Level (BTOC) 7-57 7-58 7-58 7-59 7-59 7-59	Purge Rate (L/min) 0-01 0-01 0-01 0-01 0-01 0-01	(°C) 11-57 11-57 11-54 11-54 11-54	(mS/cm) (±3%) 0.686 0.685 0.685 0.685 0.685	$\begin{array}{c} \textbf{0xygen} \\ (\pm 10\% \text{ or} \\ \le 1.00 \pm 0.2) \\ \hline 1.00 \pm 0.2) \\ \hline 1.00 \mp 0.2 \\ \hline 0.98 \\ \hline 0.95 \end{array}$	pH (sU) (±0.1) 7-71 7-70 7-70 7-70 1-70 7-70 7-70	ORP (mV) - 171 - 174 - 176 - 177 - 176	Turbidity (NTU) (± 10% or ≤10) (1 8 128 128 124 115	
	Water Level (RTOC) 7-57 7-58 7-58 7-58	Purge Rate (L/min) 0-01 0-01 0-01 0-01	(°C) 11-57 11-54 11-54 11-54	(mS/cm) (±3%) 0.686 0.685 0.685 0.685	0xygen (±10% or ≤1.00 ±0.2) 1.04 1.29 1.07 0.98	рН (sv) (±0.1) 7-71 7-70 7-70 7-70 1-70	ORP (mV) - 171 - 174 - 176 - 177	Turbidity (NTU) (± 10% or ≤10) (1 8 12 8 12 4 12 7	
Time 1423 1423 1426 1429 1432 1435 1435 1438	Water Level (BTOC) 7-57 7-58 7-58 7-59 7-59 7-59	Purge Rate (L/min) 0-01 0-01 0-01 0-01 0-01 0-01	(°C) 11-57 11-57 11-57 11-57 11-57 11-57 11-57 11-57 11-57	(mS/cm) (±3%) 0.6%6 0.6%5 0.6%5 0.6%5 0.6%5	Oxygen (±10% or ≤1.00 ±0.2) 1.00 ¥ 1.00 ¥ 1.00 ¥ 1.00 ¥ 0.98 0.95 4.00	рН (SU) (±0.1) 7-71 7-70 7-70 7-70 7-70 7-70 7-70	ORP (mV) - 171 -174 -176 -177 -176 -176 -176	Turbidity (NTU) (± 10% or ≤10) (18) 128 128 124 115 115 115	

Container Type	Bottle Count	Preservative	Field Filtered?	Analysis
1 L Amber	1	HALL	No 0.45 0.10	Dx
3mL VUA	3	HILL	No 0.45 0.10	Gr- BTEX
			No 0.45 0.10	
			No 0.45 0.10	
			No 0.45 0.10	
Sampling Comments				

Well I.D. Number: MWIG

Hydrocon		r): <u>Colera</u> mber: <u>Loic-c</u>			Sample I.D.: Field Duplica Personnel:	te I.D.:		_Time: <u>0920</u>
Monumer Well cap Headspac Well diam	condition: ce reading:	Good Good Not measure 2-inch	Replaced d PID Read	l 🗌 Need	s Replacement _ ppm _ 6-	Odor:_	face Water W	r in Monument ell Infiltration
Total well Depth to p Depth to w Casing vol	vater: 9. lume: 19.	ATION <u>1-15</u> ft B <u>-</u> ft <u>26</u> ft <u>.9(</u> ft (H ₂ actors: 3/4"-0	Intake De 0_0) X _0_0	pth (BTOC):	15= 12.94	Begin F gal. X 3 =	Purging Well:	0902 nal.
Pump typ	e 🗹 Perista	AL METHOD	ifugal 🗌 D	edicated Blac	ider 🗌 Non-I	Dedicated Bl	adder Other_	
	ARAMETER		er Disposai.		Remediat		Other	
			Temp. (°C)	Sp. Cond. (mS/cm) (±3%)	Dissolved Oxygen (±10% or ≤1.00 ±0.2)	Odor and/o pH (SU)		C Turbidity (NTU)
FIELD PA	ARAMETER Water Level	S Purge Rate	Temp. (°C)	Sp. Cond. (mS/cm) (±3%)	Dissolved Oxygen (±10% or ≤1.00 ±0.2)	Odor and/o p!! (SU) (±0.1)	or Sheen: Mar ORP (mV)	C Turhidity (NTU) (± 10% or <10)
FIELD PA	Water Level (BTOC)	RS Purge Rate (L/min)	Temp.	Sp. Cond. (mS/cm) (±3%) 0.7G3	Dissolved Oxygen (±10% or ≤1.00 ±0.2) 2,10	Odor and/o pH (SU) (±0.1) 7 -25	ORP (mV)	۲urhidity (NTU) (± 10% or ≤10) ر2۹
FIELD PA Time	Water Level (BTOC)	RS Purge Rate (L/min) 0,01 11	Temp. (°C) 11-58 (L-01 12-03	Sp. Cond. (mS/cm) (±3%)	Dissolved Oxygen (±10% or ≤1.00 ±0.2)	Odor and/o pH (SU) (±0.1) 7 -65 7 -67	ORP (mV) - 125 - 123	C Turhidity (NTU) (± 10% or <10)
FIELD PA	Water Level (BTOC)	RS Purge Rate (L/min) 0,01 11 11	Temp. (°C) 11-58 (L-0) (L-0) 12-03	Sp. Cond. (mS/cm) (±3%) 0.763 0.753 0.753 0.754	Dissolved Oxygen (±10% or ≤1.00 ±0.2) 2.18	Odor and/o pH (SU) (±0.1) 7-67 7-67 7-67	ORP (mV)	C Turbidity (NTU) (± 10% or <10) (29 ر25
FIELD PA Time 0905 0903 0911 0914 0914	Water Level (BTOC) 9-25 9-25 6-25	RS Purge Rate (L/min) 0,01 11 11	Temp. (°C) 11-58 (1-01 12-03 12-03 12-05	Sp. Cond. (mS/cm) (±3%) 0.763 0.753 0.753 0.754 0.754 0.754	Dissolved Oxygen (±10% or ≤1.00 ±0.2) 2.10 2.18 2.07 1.64 1.64	Odor and/o pH (SU) (±0.1) 7 -65 7 -67	ORP (mV) - 125 - 123 - 123	C Turbidity (NTU) (± 10% or ≤10) (29 (29 (25 (25 (25) (22) (2)) (2
FIELD PA Time 0905 0903 0911 0914	Water Level (BTOC) 9-25 9-25	RS Purge Rate (L/min) 0,01 11 11	Temp. (°C) 11-58 (L-0) (L-0) 12-03	Sp. Cond. (mS/cm) (±3%) 0.763 0.753 0.753 0.754	Dissolved Oxygen (±10% or ≤1.00 ±0.2) 2.10 2.18 2.07 1.64	Odor and/o pH (SU) (±0.1) 7-67 7-67 7-67 7-67 7-67 7-67	ORP (mV) - 125 - 123 - 123 - 123	۲urhidity (NTU) (± 10% or ≤10) (29 (25 (25 122 123
FIELD PA Time 0905 0903 0911 0914 0914	Water Level (BTOC) 9-25 9-25 6-25	RS Purge Rate (L/min) 0,01 11 11	Temp. (°C) 11-58 (1-01 12-03 12-03 12-05	Sp. Cond. (mS/cm) (±3%) 0.763 0.753 0.753 0.754 0.754 0.754	Dissolved Oxygen (±10% or ≤1.00 ±0.2) 2.10 2.18 2.07 1.64 1.64	Odor and/o pH (SU) (±0.1) 7-67 7-67 7-67 7-67 7-67 7-67 7-67	ORP (mV) - 125 - 123 - 123 - 123 - 123 - 123	C Turbidity (NTU) (± 10% or ≤10) (29 (29 (25 (25 (25) (22) (2)) (2
FIELD PA Time 0905 0903 0911 0914 0914	Water Level (BTOC) 9-25 9-25 6-25	RS Purge Rate (L/min) 0,01 11 11	Temp. (°C) 11-58 (1-01 12-03 12-03 12-05	Sp. Cond. (mS/cm) (±3%) 0.763 0.753 0.753 0.754 0.754 0.754	Dissolved Oxygen (±10% or ≤1.00 ±0.2) 2.10 2.18 2.07 1.64 1.64	Odor and/o pH (SU) (±0.1) 7-67 7-67 7-67 7-67 7-67 7-67 7-67	ORP (mV) - 125 - 123 - 123 - 123 - 123 - 123	C Turbidity (NTU) (± 10% or ≤10) (29 (29 (25 (25 (25) (22) (2)) (2
FIELD PA Time 0905 0903 0911 0914 0914	Water Level (BTOC) 9-25 9-25 6-25	RS Purge Rate (L/min) 0,01 11 11	Temp. (°C) 11-58 (1-01 12-03 12-03 12-05	Sp. Cond. (mS/cm) (±3%) 0.763 0.753 0.753 0.754 0.754 0.754	Dissolved Oxygen (±10% or ≤1.00 ±0.2) 2.10 2.18 2.07 1.64 1.64	Odor and/o pH (SU) (±0.1) 7-67 7-67 7-67 7-67 7-67 7-67 7-67	ORP (mV) - 125 - 123 - 123 - 123 - 123 - 123	C Turbidity (NTU) (± 10% or ≤10) (29 (29 (25 (25 (25) (22) (2)) (2
FIELD PA Time 0905 0903 0911 0914 0914	Water Level (BTOC) 9-25 9-25 6-25	RS Purge Rate (L/min) 0,01 11 11	Temp. (°C) 11-58 (1-01 12-03 12-03 12-05	Sp. Cond. (mS/cm) (±3%) 0.763 0.753 0.753 0.754 0.754 0.754	Dissolved Oxygen (±10% or ≤1.00 ±0.2) 2.10 2.18 2.07 1.64 1.64	Odor and/o pH (SU) (±0.1) 7-67 7-67 7-67 7-67 7-67 7-67 7-67	ORP (mV) - 125 - 123 - 123 - 123 - 123 - 123	C Turbidity (NTU) (± 10% or ≤10) (29 (29 (25 (25 (25) (22) (2)) (2

Container Type	Bottle Count	Preservative	Field Filtered?	Analysis
1 L Andr	1	HCL	No 0.45 0.10	Dx
YOML UULT	3	HLL	No 0.45 0.10	GX-ISTEX
			No 0.45 0.10	
			No 0.45 0.10	
			No 0.45 0.10	
Sampling Comments:				

MW17

Hydrocon	ame (Numb n Project N - 26-19	umber:	2017-	- 012		Sample I.D.: Field Duplica Personnel:	hw 17 - vo	101-W	Time: (us)
Monumer Well cap Headspac Well dian	condition		food L measure f-inch	D 1	pair: l Need ing 4-inch	ls Replacemen _ ppm _ [] 6-	t Sur Odor:_ inch D		r in Monument ell Infiltration
Total well Depth to p Depth to w Casing vol Volume Co PURGING Pump type	G/DISPOS	A-41 3-66 5-75 Factors Factors Factors	ft B ft ft (H ₂ : 3/4"-0. CETHOD	ifugal 🗌 D	edicated Bla	Not measur $\frac{19}{= 10^{-2}3}$ 2"-0.16 gal/f	Dedicated Pl	1/π 6° - 1.47	gal/ft
baner typ	e:	-	Wat	er Disposal:[] Drummec	i 🗹 Remediat	ion System [_] Other	unc.
Time	Water Level (BTOC)		ge Rate /min)	Temp. (°C)	Sp. Cond. (mS/cm) (±3%)	Dissolved ∩xygen (±10% or ≤1.00 ±0.2)	pH (SU) (±0.1)	ORP (mV)	Turbidity (NTU) (± 10% or <10)
035	13-66	0	.01	15.34	0.721	1-12	7.26	-128	253
REU	13-66	1	1	15.30	0-721	0-79	7.02	-127	220
150	13-66			15.35	0.720	0-54	7-00	-128	210
274	13-66	-	- 1	15.48	0-770	0-61	7.01	-129	202
047	13-66		. 1	15.47	0-720	0.52	7.01	-129	2.2.
5201	13.66		11	15.50	0-720	0.52	7-60	- 129	204
		-							
leir respect	ive stabilizati	aree succ	essive mea	asurements for mum of six mea	pH, Conductivi asurements sho	ty and Turbidity a vuld be recorded.	and/or Dissolve	d Oxygen are rec	corded within
AMPLE I	NFORMA	TION		mum of six mea	asurements sho	ty and Turbidity a uld be recorded.	and/or Dissolve	d Oxygen are rec	corded within
arging Cor	NFORMA	TION Bottle	essive mea ia. A minin	mum of six mea	pH, Conductivi asurements sho	ty and Turbidity a puld be recorded.	and/or Dissolve		corded within
AMPLE I	INFORMA	TION		tive Field F	asurements sho	ty and Turbidity a uld be recorded.			corded within

No0.450.10No0.450.10

Sampling Comments:

GROUNDWATER SAMPLE COLLECTION FORM

		8/19				G		Time:
Vell cap leadspac Vell diam	condition: e reading: eter:	Good Good Not measu	Replaced red 4-inch	Needs re	placement	Water in N	ater in Well	2.4
otal well epth to p epth to w asing vol	roduct rater 21.	<u>.48</u> ft B ft <u>30</u> ft II 18 ft (H ₂)	ntake Depth 0) X _ O·6	(BTOC) 23	<u>7'</u> Begi = <u>6</u> .62	red Screen In n Purging Well: gal. X 3 =_ ft 4"=0.65 gal,	1107- 19.86 gi	_ al.
ump typ ailer typ	e 🛛 Perista	Wat	fugal 🗌 D er Disposal::	edicated Blac [] Drummed	lder 🗌 Non- 1 🔀 Remedia	Dedicated Blac tion System [Odor and/or	Other	nt petro ollor
Time	Water Level (BTOC)	Purge Rate (L/min)	Тетр. (°С)	Sp. Cond. (mS/cm) (±3%)	Dissolved Oxygen (±10% or ≤1.00 ±0.2)	pH (SU) (±0.1)	ORP (mV)	Turbidity (NTU) (± 10% or ≤10)
(09	21.42		14.7	,964	1.01	6.94	55.3	33-Z
511	21.48		15.2	.974	0.50	6.99	52.4	7.86
1115	21.54	0.125	15.3	.979	0.37	7-01	50.8	5.78
1118	21.61		15.2	»9 7 8	0.28	7.02	53.0	9.63
1121	21 .66		15.3	0978	0.23	7,02	55.4	5.40
1124	21.72		15.3	,978	0.22	7.02	05:0	0- 21
			- 000	TPIC	9			
abilization	a achieved if th	ree successive me	asurements fr	or pH. Conductiv	ity and Turbidity	or Dissolved Oxy	gen are record	ed within their

Container Type	Bottle Count	Preservative	Field Filtered?	Analysis
40ml VOA	3	Ital	NO 0.45 0.10	GX, BTEX
(Lamber	1	Hei	No 0.45 0.10	DX
			No 0.45 0.10	
			No 0.45 0.10	
			No 0.45 0.10	

GROUNDWATER SAMPLE COLLECTION FORM

Time Water Purge Rate Temp. Sp. Cond. Dissolved Value (1/min) (%) (min) (10%) or pH 0)	
Total well depth 29.50 ftBottom: \Box Hard \Box Soft \bigotimes Not measured Screen Interval Depth to productftDepth to water 13.32 ftIntake Depth (BTOC) 20'Begin Purging Well: 102Casing volume 16.18 ft (H20) X \bigcirc .65 gal/ft = 10.52 gal. X 3 = 31.57Volume Conversion Factors: $3/4"=0.02$ gal/ft $1"=0.04$ gal/ft $2"=0.16$ gal/ft $4"=0.65$ gal/ft $6"=$ PURGING/DISPOSAL METHODPump type \bigotimes Peristaltic \Box Centrifugal \Box Dedicated Bladder \Box Non-Dedicated Bladder \Box Odor and/or Sheen::PURGING/DISPOSAL METHODPump type \bigotimes Peristaltic \Box Centrifugal \Box Dedicated Bladder \Box Non-Dedicated Bladder \Box Bailer type:	ent Well
Pump typePeristalticCentrifugalDedicated BladderNon-Dedicated Bladder (Non-Dedicated Bladder () Bailer type:Water Disposal::DrummedNon-Dedicated Bladder () Remediation SystemOther 	l gal.
TimeWater Level (BTOC)Purge Rate (L/min)Temp. 	0ther r
TimeWater Level (BTOC)Purge Rate (L/min)Temp. 	1 faint petro selor
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} \mathbf{RP} \\ \mathbf{NV} \end{array} \qquad \begin{array}{c} \mathbf{Turbidity} \\ (NTU) \\ (\pm 10\% \text{ or } \le 10) \end{array}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6 OR Gvern
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.5 OZ
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
1038 13.60 12,1 1390 0.74 7.34 -46 1041 13.62 12.2 .891 0.80 7.33 -46	
1041 13.62 12.2 .891 0.80 7.33 -4	
C 1045	
Sample a 1045	12,1
Sample (a) 1045	
Sample a 1013	
Stabilization achieved if three successive measurements for pH, Conductivity and Turbidity or Dissolved Oxygen are perspective stabilization criteria. A minimum of six measurements should be recorded. Purging Comments: or algue in owge H2O	recorded within their
ranging comments. Or one of the proje	
SAMPLE INFORMATION	
Container Type Bottle Preservative Field Filtered? Analysis	

Container Type	Bottle Count	Preservative	Field Filtered?	Analysis
40ml VOA	3	HCI	No 0.45 0.10	GK, BTEX
I L amber	1	HEI	No 0.45 0.10	Dx
~			No 0.45 0.10	
			No 0.45 0.10	
			No 0.45 0.10	

Sampling Comments:

Well I.D. Number: MW21

Date:		r): <u>Colema</u> mber: <u>2017</u> -			Sample I.D.:_ Field Duplica Personnel:			_Time: _Time:
Monume Well cap Headspac Well diar	condition:	Good Not measure	Replaced	1 Need	ppm	Odor:	Uwater face Water Wo Other:	
Fotal well Depth to p Depth to y Casing vo	vater: 19-6	ATION 2_10 ft B ft 3 ft 42 ft 42 ft (H ₂ actors: 3/4"-0	Intake De	pth (BTOC):_	25	Begin P	urging Well:	6754
PURGIN Pump typ Bailer typ	G/DISPOSA	AL METHOD altic Centr Wat	ifugal 🗌 D	edicated Blac	dder/ 🗌 Non-	Dedicated Blation System [adder Other_ Other	
		L)				Odor and/o	r Sheen: Nur	v
TELDP						ouor ana/o	i oncen	L
Time	Water Level	Purge Rate (L/min)	Temp. (°C)	Sp. Cond. (mS/cm) (±3%)	Dissolved 0xygen (±10% or ≤1.00 ±0.2)	pH (SU)	ORP (mV)	Turbidity (NTU)
Time	Water	-	(°C)	(mS/cm) (±3%)	Oxygen (±10% or ≤1.00 ±0.2)	pH (SU) (±0.1)	ORP (mV)	Turbidity (NTU) (± 10% or ≤10)
Time	Water Level (BTOC)	(L/min)		(mS/cm) (±3%) 0-766	Oxygen (±10% or	pH (sU) (±0.1) 7.32	ORP (mV) -46	Turbidity (NTU) (± 10% or ≤10) %1.3
Time 0751 2 ซู บบ มซู บว	Water Level (BTOC)	(L/min) 3-33 (1)	(°e) 11,56 12,18 11,78	(mS/cm) (±3%) 0-766 0.766 0.766	$\begin{array}{c} 0xygen \\ (\pm 10\% \text{ or} \\ \le 1.00 \pm 0.2) \\ \hline 1. 52 \\ \hline 1. 53 \\ \hline 0.91 \end{array}$	pH (SU) (±0.1) 7.32 7.09	ORP (mV)	Turbidity (NTU) (± 10% or ≤10) &I.3 7₽.5~
Time	Water Level (BTOC) 19.69	(L/min) 3-33 () () () ()	(°e) 11.56 12.18 11.78 11.75	(mS/cm) (±3%) 0-766 0.766 0.766 0.766	$\begin{array}{c} 0xygen \\ (\pm 10\% \text{ or} \\ \le 1.00 \pm 0.2) \\ \hline 1.82 \\ 1.58 \\ 0.91 \\ 0.99 \\ 0.99 \end{array}$	pH (su) (±0.1) 7.32 7.09 7.05 7.05	ORP (mV) -96 -98 -98 -99	Turbidity (NTU) (± 10% or ≤10) \$1.3 7.5.5 75.5
Time	Water Level (BTOC)	(L/min) 3-33 (1) (1) (1) (1) (1) (1) (1) (1)	(°e) 11-56 12-18 11-78 11-75 11-75	(mS/cm) (±3%) 0-766 0.766 0.766 0.766	$\begin{array}{c} 0xygen \\ (\pm 10\% \text{ or} \\ \le 1.00 \pm 0.2) \end{array}$ $\begin{array}{c} 1.82 \\ 1.58 \\ 0.91 \\ 0.99 \\ 0.99 \\ 0.92 \end{array}$	pH (SU) (±0.1) 7.32 7.09 7.05 7.05 7.05	ORP (mV) -46 -98 -98	Turbidity (NTU) $(\pm 10\% \text{ or } \le 10)$ 31.3 78.5^{-} 75.5^{-} $73-3$ $72-3$
Time	Water Level (BTOC) 19.69	(L/min) 3-33 () () () ()	(°e) 11.56 12.18 11.78 11.75	(mS/cm) (±3%) 0-766 0.766 0.766 0.766	$\begin{array}{c} 0xygen \\ (\pm 10\% \text{ or} \\ \le 1.00 \pm 0.2) \\ \hline 1.82 \\ 1.58 \\ 0.91 \\ 0.99 \\ 0.99 \end{array}$	pH (su) (±0.1) 7.32 7.09 7.05 7.05	ORP (mV) -96 -98 -98 -99	Turbidity (NTU) (± 10% or ≤10) \$1.3 7.5.5 75.5
Time	Water Level (BTOC) 19.69	(L/min) 3-33 (1) (1) (1) (1) (1) (1) (1) (1)	(°e) 11-56 12-18 11-78 11-75 11-75	(mS/cm) (±3%) 0-766 0.766 0.766 0.766	$\begin{array}{c} 0xygen \\ (\pm 10\% \text{ or} \\ \le 1.00 \pm 0.2) \end{array}$ $\begin{array}{c} 1.82 \\ 1.58 \\ 0.91 \\ 0.99 \\ 0.99 \\ 0.92 \end{array}$	pH (SU) (±0.1) 7.32 7.09 7.05 7.05 7.05	0RP (mV) - 46 - 98 - 98 - 99 - 99 - 99	Turbidity (NTU) $(\pm 10\% \text{ or } \le 10)$ 31.3 78.5^{-} 75.5^{-} $73-3$ $72-3$
Time	Water Level (BTOC) 19.69	(L/min) 3-33 (1) (1) (1) (1) (1) (1) (1) (1)	(°e) 11-56 12-18 11-78 11-75 11-75	(mS/cm) (±3%) 0-766 0.766 0.766 0.766	$\begin{array}{c} 0xygen \\ (\pm 10\% \text{ or} \\ \le 1.00 \pm 0.2) \end{array}$ $\begin{array}{c} 1.82 \\ 1.58 \\ 0.91 \\ 0.99 \\ 0.99 \\ 0.92 \end{array}$	pH (SU) (±0.1) 7.32 7.09 7.05 7.05 7.05	0RP (mV) - 46 - 98 - 98 - 99 - 99 - 99	Turbidity (NTU) $(\pm 10\% \text{ or } \le 10)$ 31.3 78.5^{-} 75.5^{-} $73-3$ $72-3$
	Water Level (BTOC) 19.69	(L/min) 3-33 (1) (1) (1) (1) (1) (1) (1) (1)	(°e) 11-56 12-18 11-78 11-75 11-75	(mS/cm) (±3%) 0-766 0.766 0.766 0.766	$\begin{array}{c} 0xygen \\ (\pm 10\% \text{ or} \\ \le 1.00 \pm 0.2) \end{array}$ $\begin{array}{c} 1.82 \\ 1.58 \\ 0.91 \\ 0.99 \\ 0.99 \\ 0.92 \end{array}$	pH (SU) (±0.1) 7.32 7.09 7.05 7.05 7.05	0RP (mV) - 46 - 98 - 98 - 99 - 99 - 99	Turbidity (NTU) $(\pm 10\% \text{ or } \le 10)$ 31.3 78.5^{-} 75.5^{-} $73-3$ $72-3$
Time	Water Level (BTOC) 19.69	(L/min) 3-33 (1) (1) (1) (1) (1) (1) (1) (1)	(°e) 11-56 12-18 11-78 11-75 11-75	(mS/cm) (±3%) 0-766 0.766 0.766 0.766	$\begin{array}{c} 0xygen \\ (\pm 10\% \text{ or} \\ \le 1.00 \pm 0.2) \end{array}$ $\begin{array}{c} 1.82 \\ 1.58 \\ 0.91 \\ 0.99 \\ 0.99 \\ 0.92 \end{array}$	pH (SU) (±0.1) 7.32 7.09 7.05 7.05 7.05	0RP (mV) - 46 - 98 - 98 - 99 - 99 - 99	Turbidity (NTU) $(\pm 10\% \text{ or } \le 10)$ 31.3 78.5^{-} 75.5^{-} $73-3$ $72-3$
Time 0757 2800 0803 0802 0802 0802	Water Level (BTOC) 19.69 19.69	(L/min) 3-31 11 11 11	(°e) 11.56 12.18 11.78 11.75 11.75 11.75	(mS/cm) (±3%) 0-766 0.766 0.766 0.766 0.766 0.766	$\begin{array}{c} 0xygen \\ (\pm 10\% \text{ or} \\ \pm 1.00 \pm 0.2) \\ \hline 1.82 \\ 1.58 \\ 0.91 \\ 0.96 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \end{array}$	pH (SU) (±0.1) 7.32 7.09 7.05 7.05 7.05 7.05	0RP (mV) -46 -98 -98 -98 -98 -99 -99 -99 -99 -99	Turbidity (NTU) $(\pm 10\% \text{ or } \le 10)$ $\$1.3$ $7F.5$ 75.5 75.3 72.3 71.6
Time 0751 2800 0803 0805 0805 0805 0812 tabilization	Water Level (BTOC) 19.69 19.69 19.69 19.69	(L/min)	(°e) <u>11-56</u> <u>12-18</u> <u>11-78</u> <u>11-75</u> <u>11-75</u> <u>11-75</u> <u>11-75</u>	(mS/cm) (±3%) 0-766 0.766 0.766 0.766 0.766 0.766	0xygen (±10% or ≤1.00±0.2) 1. §2 1. 58 0.91 0.92 0.92 0.92 0.92	pH (SU) (±0.1) 7.32 7.09 7.05 7.05 7.05 7.05 7.05	0RP (mV) -46 -98 -98 -98 -98 -99 -99 -99 -99 -99	Turbidity (NTU) $(\pm 10\% \text{ or } \le 10)$ $\$1.3$ $7F.5$ 75.5 75.3 72.3 71.6
Time 0751 2 ましし 0 まして 0 ま 0 まして 0 ま 0 ま 0 ま 0 ま 0 ま 0 ま 0 ま 0 ま	Water Level (BTOC) 19.69 19.69 19.69 19.69 19.69 19.69	(L/min) 3-31 11 11 11	(°e) <u>11-56</u> <u>12-18</u> <u>11-78</u> <u>11-75</u> <u>11-75</u> <u>11-75</u> <u>11-75</u>	(mS/cm) (±3%) 0-766 0.766 0.766 0.766 0.766 0.766	0xygen (±10% or ≤1.00±0.2) 1. §2 1. 5 8 0.91 0.92 0.92 0.92 0.92	pH (SU) (±0.1) 7.32 7.09 7.05 7.05 7.05 7.05 7.05	0RP (mV) -46 -98 -98 -98 -98 -99 -99 -99 -99 -99	Turbidity (NTU) $(\pm 10\% \text{ or } \le 10)$ $\$1.3$ $7F.5$ 75.5 75.3 72.3 71.6
Time	Water Level (BTOC) 19.69 19.69 19.69 19.69 19.69 19.69	(L/min)	(°e) <u>11-56</u> <u>12-18</u> <u>11-78</u> <u>11-75</u> <u>11-75</u> <u>11-75</u> <u>11-75</u>	(mS/cm) (±3%) 0-766 0.766 0.766 0.766 0.766 0.766	0xygen (±10% or ≤1.00±0.2) 1. §2 1. 5 8 0.91 0.92 0.92 0.92 0.92	pH (SU) (±0.1) 7.32 7.09 7.05 7.05 7.05 7.05 7.05	0RP (mV) -46 -98 -98 -98 -98 -99 -99 -99 -99 -99	Turbidity (NTU) $(\pm 10\% \text{ or } \le 10)$ $\$1.3$ $7F.5$ 75.5 75.3 72.3 71.6

HLL	No 0.45 0.10	xCI
FILL	No 0.45 0.10	Gx- NTEX
	No 0.45 0.10	
	No 0.45 0.10	
	No 0.45 0.10	
		No 0.45 0.10 No 0.45 0.10 No 0.45 0.10

Hydro Con GROUNDWATER PURGE **AND SAMPLE COLLECTION**

Well ID Numbe

Date:	n Project Nu	er): mber: <u>2017</u> -	074		Sample I.D.:_ Field Duplic Personnel:_	ate I.D.:	-	Time: 1255 Time:
Monume Well cap Headspa Well diar		: Good Good Not measure 2-inch			_ppm	nt 🗌 Su 🗌 Odor: -inch 🗌	Wate rface Water W Other:	er in Monumen Vell Infiltration
Fotal wel Depth to p Depth to y Casing vo	G INFORM	2-04 ft E ft p2 ft p2 ft p2 ft	Bottom: ☐ I Intake D 20) X).02 gal/ft :	lard ☐ Soft epth (BTOC):_ <u>65</u> gal/ft 1″–0.04 gal/ft	Not measure $\frac{14'}{= 8.96}$ 2''-0.16 gal/	red Screen Begin I gal. X 3 ft 4"_0 65 g	Interval(s):_ Purging Well:_ =25.38	7-22 1230 gal.
URGIN ump typ aller typ	G/DISPOSA	AL METHOD altic Centr Wa	ifugal 🗔 I	Dedicated Pla	1.1 / 🗆 M	Dedicated B tion System	ladder Other Other	
					Dissolved	Odor and/o	or Sheen:	
Time	Water Level	Purge Rate (L/min)	Temp. (°C)	Sp. Cond. (mS/cm) (+3%)	0xygen (±10% or ≤1.00 ±0.2)	pll (SU) (+0.1)	ORP (mV)	Turbidity (NTU)
	(BTOC)							
	(BTOC) Q:02	0.41	12.00	0.631	2.77	7.29	-195-	(+ 10% or <10)
236	(BTOC) 0:02 9:03	- 13	11.91	0.632	2.72	7.29	-195	147
236	(BTOC) Q:02 9.03	11 11	11.91	0.632	2-15	7-18	-197	127
236	(BTOC) Q:02 9:03 9:03 9:03	14 14	11.91	0.632 0.631 0.632	2-15 2.04 1.90	7-18 7-15 7-13	-197 -196 -196	147
236	(BTOC) Q:02 9:03 9:03 9:03	11 11	11.91 11.91 11.94 11.94	0.632 0.631 0.632 0.632	2-15 2-04 1-90 2-07	7-18 7-15 7-15 7-13	-197 -196 -195 -195	157 138 127 121 117
235	(BTOC) Q:02 9:03 9:03 9:03		11.91	0.632 0.631 0.632	2-15 2.04 1.90	7-18 7-15 7-13	-197 -196 -196	157 138 127 121
236 246	(BTOC) Q:02 9:03 9:03 9:03		11.91 11.91 11.94 11.94	0.632 0.631 0.632 0.632	2-15 2-04 1-90 2-07	7-18 7-15 7-15 7-13	-197 -196 -195 -195	157 138 127 121 117
236 240 245 246 249	(BTOC) Q:02 9.03 9.03 9.03 9.03		11.91 11.91 11.94 11.94 11.94	0.632 0.631 0.632 0.632 0.632	2-15 2-04 1-90 2-07 2-05	7-18 7-15 7-15 7-13 7-13	-197 -196 -195 -195 -195 -195	177 138 127 121 117 12(
236 250 255 246 1249 bilization	(BTOC) Q:02 9:03 9:03 9:03 9:03 9:03		11.91 11.91 11.94 11.94 11.94	0.632 0.631 0.632 0.632 0.632	2-15 2-04 1-90 2-07 2-05	7-18 7-15 7-15 7-13 7-13	-197 -196 -195 -195 -195 -195	177 138 127 121 117 12(
236 250 255 246 1246 1249 ibilization eir respecti	(BTOC) Q:02 9:03 9:03 9:03 9:03 9:03		11.91 11.91 11.94 11.94 11.94	0.632 0.631 0.632 0.632 0.632	2-15 2-04 1-90 2-07 2-05	7-18 7-15 7-15 7-13 7-13	-197 -196 -195 -195 -195 -195	177 138 127 121 117 12(
236 250 255 246 249 bilization	(BTOC) Q:02 9:03 9:03 9:03 9:03 9:03		11.91 11.91 11.94 11.94 11.94	0.632 0.631 0.632 0.632 0.632	2-15 2-04 1-90 2-07 2-05	7-18 7-15 7-15 7-13 7-13	-197 -196 -195 -195 -195 -195	177 (38 127 121 (17) 12(

Container Type	Bottle	Preservative	Field Filtered?	Analysis
1 L Awhen	1	HILL	No 0.45 0.10	,
crome UVIL	3	HUL	No 0.45 0.10	
-5			No 0.45 0.10	¥.
		(No 0.45 0.10	
			No 0.45 0.10	
Sampling Comments:				

Well I.D. Number: ML24

	Project Nur -28-19	r): <u>Coleman</u> mber: <u>2012</u> -	-074		Sample I.D.:_ Field Duplica Personnel:	te I.D.:	-	_Time: _Time:
Monumen Well cap Headspac Well diam	condition: e reading:⊠ neter:	ON Good Of Good Not measured 2-inch	Replaced d PID Readi	Need:	ppm	t Sur Odor:_ inch D	face Water W	A CONTRACTOR
Fotal well Depth to p Depth to w Casing vol	roduct:	ATION <u>1,25</u> ft B <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u>	Intake Dep 0) X O-6	oth (BTOC):	28.5'	Begin P	urging Well:	0832
PURGING	G/DISPOSA	AL METHOD	ifugal 🗌 De	edicated Blad	der 🗌 Non-	Dedicated BL	adder Other	
Saller type	RAMETER				V Remeula		r Sheen:	
aller type	e:		Temp. (°C)	Sp. Cond. (mS/cm)	Dissolved Oxygen (±10% or ≤1.00 ±0.2)	Odor and/o pH (su)	-	Turbidity (NTU)
aller type IELD PA Time	Water Level (BTOC)	S Purge Rate	Temp.	Sp. Cond.	Dissolved Oxygen (±10% or	Odor and/o pH (SU) (±0.1)	or Sheen: ORP	Turbidity (NTU) (± 10% or ≤10)
IELD PA Time	RAMETER Water Level	RS Purge Rate (L/min) $\partial - \partial $	Temp. (°C)	Sp. Cond. (mŠ/cm) (±3%)	Dissolved Oxygen (±10% or ≤1.00 ±0.2)	Odor and/o pH (su)	or Sheen: Mr ORP (mV)	Turbidity (NTU) (± 10% or ≤10) (2 8
Time	Water Level (BTOC) 27-38	RS Purge Rate (L/min) 0-0	Temp. (°C) 12.93 11.90 13, 68	Sp. Cond. (mS/cm) (±3%) 0.323 0.317 0.317	Dissolved Oxygen (±10% or ≤1.00 ±0.2) 2 - 5 ¬	Odor and/o pH (SU) (±0.1) 7-72 7-20 7-14	or Sheen: <u>Nor</u> ORP (mV) -92 -93 -93	Turbidity (NTU) (± 10% or ≤10) (2 % 12 4
Time 835 835 835 835 835 835 835 835 835 835	Water Level (BTOC) 24.38 U	RS Purge Rate (L/min) 0-0 (1 1) 11 11	Temp. (°C) 12.93 11.90 13.08 13.18	Sp. Cond. (mS/cm) (±3%) (). & 23 (). & 23 (). & 23 (). & 3 ().	Dissolved Oxygen (±10% or ≤1.00 ±0.2) 2-57 2.55 2.58 2.57	Odor and/o pH (su) (±0.1) 7.72 7.72 7.14 7.11	or Sheen: <u>Nor</u> ORP (mV) -92 -93 -93 -93 -93 -92	Turbidity (NTU) (± 10% or ≤10) 12% 124 127 117
IELD PA Time 835 835 835 2835 2835 2835	Water Level (BTOC) 27-38 24-38	RS Purge Rate (L/min) 0-0\ 11 11 11 11 11 11 11 11 11 11 11 11 11	Temp. (°C) 12.93 11.90 13.08 13.18 13.20	Sp. Cond. (mS/cm) (±3%) 0.52 0.52 0.52 0.52 0.52 0.798 0.798 0.795	Dissolved Oxygen (±10% or ≤1.00 ±0.2) 2.57 2.58 2.58 2.58 2.58	Odor and/o pH (SU) (±0.1) 7.72 7.12 7.14 7.11 7.11	or Sheen: Nor ORP (mV) -92 -93 -93 -93 -92 -92	Turhidity (NTU) (± 10% or ≤10) (28 124 122 (17 122 112
aller type IELD PA Time 835 9835 9835 9835 9835 9835 9835 9835	e: Water Level (BTOC) 27.38 25.38 " " " "	RS Purge Rate (L/min) 0-0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Temp. (°C) 12.93 11.60 13.08 13.18 13.20 13.20 13.70	Sp. Cond. (mS/cm) (±3%) 0.823 0.823 0.817 0.813 0.798 0.795 0.795	Dissolved Oxygen (±10% or ≤1.00 ±0.2) 2-57 2.58 2.58 2.58 2.58 2.52	Odor and/o pH (SU) (±0.1) 7-72 7-14 7-14 7-11 7-11 7-11	or Sheen: <u>Nor</u> ORP (mV) -92 -93 -93 -93 -92 -92 -92 -92 -92	Turhidity (NTU) (± 10% or ≤10) 12% 124 127 117
TIELD PA	Water Level (BTOC) 27-38 24-38	RS Purge Rate (L/min) 0-0\ 11 11 11 11 11 11 11 11 11 11 11 11 11	Temp. (°C) 12.93 11.90 13.08 13.18 13.20	Sp. Cond. (mS/cm) (±3%) 0.52 0.52 0.52 0.52 0.52 0.798 0.798 0.795	Dissolved Oxygen (±10% or ≤1.00 ±0.2) 2.57 2.58 2.58 2.58 2.58	Odor and/o pH (SU) (±0.1) 7.72 7.12 7.14 7.11 7.11	or Sheen: Nor ORP (mV) -92 -93 -93 -93 -92 -92	Turhidity (NTU) (± 10% or ≤10) (28 124 122 (17 122 112

Container Type	Bottle Count	Preservative	Field Filtered?	Analysis
1 L'Amber	1	FILL	No 0.45 0.10	1)4
hume vot	3	HLL	No 0.45 0.10	Gr - BIEX
			No 0.45 0.10	the strict
		1	No 0.45 0.10	
			No 0.45 0.10	

Well I.D. Number: hw25

Well cap of	FORMATI				Personnel:	te I.D.:		_Time:
Well diam	t condition: condition: e reading:	Good Not measured 2-inch	Replaced PID Readi	Need	ppm	Odor:	ice Water We	r in Monument ell Infiltration
Fotal well Depth to pr Depth to w Casing vol	vater: 13- ume: 19-	ATION 2.96 ft B ft 52 ft 52	Intake Der 0) X _ D.0	oth (BTOC):	= 12-63	Begin Pu gal. X 3 =	rging Well: 37.90 o	0552 al
Pump type Bailer type	e 🗹 Perista e:		ifugal 🔲 De er Disposal:[edicated Blac	lder∕ □ Non-I ☑ Remediat	ion System] Other	
FIELD PA	RAMETER	(S				Odor and/or	Sheen:	
Time	Water Level (BTOC)	Purge Rate (L/min)	Temp. (°C)	Sp. Cond. (mS/cm) (±3%)	Dissolved <u>Oxygen</u> (±10% or ≤1.00 ±0.2)	pH (SU) (±0.1)	ORP (mV)	Turhidity (NTU) (± 10% or ≤10)
27955	1352	0-01	13.48	0,806	2.97	7-52	-89	654
1958	11	0-01	13.85	0,755	8.50	7-53	-88	640
100	11	11	13.64	0.752	3.59	7.53	- 88	\$ 389
004	11	11	13.72	0.754	3.59	7-54	- 87	219 1
010	11	11	13.70	0.754	3.51	7-54	- 86	194
		ree successive means of the su				and/or Dissolved	l Oxygen are ree	corded within
urging Cor								
	NIFORMUS	TON:						
AMPLE	INFORMAT	TION						
Containe	er Type	Bottle Preserva	tive Field	Filtered?		Analy	cic	1

Count	rieservauve	Field Filtered?	Analysis
1	HUL	No 0.45 0.10	D>
3	LLL	No 0.45 0.10	6x-BTEX
-		No 0.45 0.10	
		No 0.45 0.10	
1		No 0.45 0.10	
	Count 1 3	1 Hick	Count No 0.45 0.10 1 Hcl No 0.45 0.10 5 Hcl No 0.45 0.10 No 0.45 0.10 No 0.45 0.10

Sampling Comments

Well I.D. Number: Mw26

Monument condition: \bigcirc Good Needs repair: \bigcirc Water in Monument Well cap condition: \bigcirc Good Replaced Needs Replacement \bigcirc Surface Water Well Infiltration Headspace reading: Not measured PID Reading ppm \bigcirc Odor: Well diameter: \bigcirc 2-inch \bigcirc 4-inch \bigcirc 6-inch \bigcirc Other: Comments \bigcirc 2-inch \bigcirc 4-inch \bigcirc 6-inch \bigcirc Other: PURGING INFORMATION Total well depth: \bigcirc 2- \bigcirc 7- \bigcirc ft Bottom: \bigcirc Hard \bigcirc Soft Not measured Screen Interval(s): \bigcirc -	Well cap condition: \bigcirc Good Replaced Needs Replacement \bigcirc Surface Water Weil Headspace reading: Not measured PID Reading ppm \bigcirc Odor: Well diameter: \bigcirc 2-inch \bigcirc 4-inch \bigcirc 6-inch \bigcirc Other: Comments	Cime:	
Total well depth: 32.52 ft Bottom: Hard Soft Not measured Screen Interval(s): $11-32$ Depth to product: ft Intake Depth (BTOC): 27.57 Begin Purging Well: 10.24 Casing volume: 17.22 ft (H20) X 0.657 gal/ft 11.16 gal. X 3 = 35.57 gal. Volume Conversion Factors: $3/4"-0.02$ gal/ft $1''-0.04$ gal/ft $2''-0.16$ gal/ft $4''-0.65$ gal/ft $6''-1.47$ gal/ft PURGING/DISPOSAL METHOD Pump type Peristaltic Centrifugal Dedicated Bladder/ Non-Dedicated Bladder Other Bailer type: Water Disposal. Drummed Remediation System Other FIELD PARAMETERS Odor and/or Sheen: $600''$ If 1.027 (5.3) 0.01 $(4.4.6)$ 0.802 5.56 7.472 -85 136 If 1.027 (5.3) 0.01 $(14.4.6)$ 0.802 5.57 1.471 $(NT0)$ (BTOC) Invibidity Invibidity (In/00) Invic	Total well depth: 32.52 ft Bottom: \Box Hard \Box Soft \Box Not measured Screen Interval(s): \Box Depth to product:ftDepth (BTOC): 27.5 Begin Purging Well:Casing volume: $\Box 2.22$ ft (H ₂ O) X 2.65 gal/ft = $\Box 1.16$ gal. X 3 = 33.57 galVolume Conversion Factors: $3/4"-0.02$ gal/ft $1"-0.04$ gal/ft $2"-0.16$ gal/ft $4"-0.65$ gal/ft $6"-1.47$ galPURGING/DISPOSAL METHODPump type \Box Peristaltic \Box Centrifugal \Box Dedicated Bladder/ \Box Non-Dedicated Bladder Other_Bailer type: Water Disposal: \Box Drummed \Box Remediation System \Box OtherFIELD PARAMETERSOdor and/or Sheen: \Box Image: Sp. Cond. (BTOC)Oxygen (BTOC)H. ORP (L/min)(III 0.20) III 0.20 I	l Infiltration	
Pump type Peristaltic Centrifugal Dedicated Bladder/ Non-Dedicated Bladder Other Bailer type: Water Disposal: Drummed Remediation System Other	Pump type Peristaltic Centrifugal Dedicated Bladder Non-Dedicated Bladder Other_ Bailer type:Water Disposal: Drummed Remediation System Other_Odor and/or Sheen:Image: Centrifugal Dedicated Bladder Remediation System Other_ Bailer type:Water Disposal: Drummed Remediation System Other_Odor and/or Sheen:Image: Centrifugal Dedicated Bladder Remediation System Other_ Bailer type:Odor and/or Sheen:Image: Centrifugal Dedicated Bladder Remediation System Other_ Remediation System Other_Odor and/or Sheen:Image: Centrifugal Dedicated Bladder Remediation System Other_ Bailer type:Odor and/or Sheen:Image: Centrifugal Dedicated Bladder Remediation System Other_ Bailer type:Odor and/or Sheen:Image: Centrifugal Dedicated Bladder Other_ Remediation System Other_ Odor and/or Sheen:Odor and/or Sheen:Image: Centrifugal Centrifugal Dedicated Bladder Other_ Remediation System Other_ Odor and/or Sheen:Odor and/or Sheen:Image: Centrifugal Centrifugal Dedicated Bladder Other_ Odor and/or Sheen:Odor and/or Sheen:Image: Centrifugal Centrifugal Dedicated Bladder Other_ Odor and/or Sheen:Odor and/or Sheen:Image: Centrifugal Centrifugal Centrifugal Dedicated Bladder Other_ Other_ (E/O)Image: Centrifugal Centrifugal Dedicated Bladder Other_ Other_ (E/O) <th co<="" th=""><th>1024 1024 Il. gal/ft</th></th>	<th>1024 1024 Il. gal/ft</th>	1024 1024 Il. gal/ft
TimeWater Level (L/min)Purge Rate (L/min)Temp. ($^{(0)}$)Sp. Cond. (mS/cm) ($\pm 10\%$ or ($\pm 10\%$ or ($\pm 10\%$ or ($\pm 10\%$ or 	Time Water Purge Rate (L/min) Temp. (°C) Sp. Cond. (mS/cm) ($\pm 3\%$) Dissolved Oxygen ($\pm 10\% \text{ or}$ $\pm 1.00 \pm 0.2$) PH (SU) ($\pm 1.00 \pm 0.2$) ORP (mV) 13. [027] 15.30 0.01 14.26 0.862 5.56 7.472 85 1050 F1 0.01 14.26 0.862 5.56 7.472 85 1050 F1 0.01 14.26 0.802 5.56 7.472 85 1050 F1 0.01 14.26 0.802 5.49 7.42 85 1033 11 0.61 14.30 0.905 3.49 7.42 82 1036 15.32 0.01 14.36 0.803 5.52 7.41 81 10991 11 0.01 14.36 0.803 5.52 7.51 81	_	
TimeWater Level (RTOC)Purge Rate (L/min)Temp. ($^{\circ}$ C)Sp. Cond. (mS/cm) ($\pm 10\%$ or ($\pm 10\%$)PH (su) ($\pm 10\%$)ORP (mV)Turbidity (NTU) ($\pm 10\%$ or s1 $t 3. [027]$ 15.30 0.01 14.26 0.862 5.56 7.472 -85 139 1050 11 0.01 14.26 0.802 5.56 7.472 -85 139 1050 11 0.01 14.20 0.803 3.499 7.42 -85 139 1033 11 0.01 14.30 0.803 3.52 7.52 7.41 -81 132 1036 15.32 0.01 14.30 0.803 3.55 7.51 -81 132 1099 11 0.01 14.30 0.803 3.55 7.51 -81 132 1099 11 0.01 14.37 0.803 3.55 7.51 -81 120 1092 11 0.01 14.37 0.803 3.55 7.51 -81 120 1092 11 0.01 14.37 0.803 3.55 7.51 -81 120 1092 11 0.01 14.37 0.803 3.55 7.51 -81 129 1092 11 0.01 14.37 0.803 3.55 7.51 -91 129 1092 11 0.01 $14.$	TimeWater Level (BTOC)Purge Rate (L/min)Temp. (0 C)Sp. Cond. (mS/cm) ($^{13\%}$)Oxygen ($^{110\% or}$ ($^{110\% or}$)pH (SU) ($^{110\% or}$)ORP ($^{110\% or}$ ($^{100\%}$) 13. [0 C)(1 C)(1 M)(1 M) 1 CORP (11 M)(1 M)(1 M) 13. [1 C)0.0114.260.8625.567.42851050f10.0114.260.8025.497.42851033[10.0114.300.9053.497.4282103615.320.0114.360.8035.527.41811099110.0114.560.8035.527.5181		
H3.1027 15.30 0.01 14.26 0.802 5.56 7.42 -85 139 1030 11 0.01 14.26 0.802 5.56 7.42 -85 139 1030 11 0.01 14.26 0.802 5.56 7.42 -85 139 1031 11 0.01 14.26 0.803 3.49 7.42 -82 135 1032 11 0.01 14.30 0.803 5.52 7.41 -81 132 1039 11 0.01 14.36 0.803 5.55 7.51 -81 132 1039 11 0.01 14.37 0.803 5.55 7.51 -81 130 1042 11 0.01 14.37 0.803 3.55 7.51 -81 129 Stabilization achieved if three successive measurements for pH, Conductivity and Turbidity and/or Dissolved Oxygen are recorded within their respective stabilization criteria. A minimum of six measurements should be recorded.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turhidity (NTU) (± 10% or ≤10)	
1050 11 0.01 14.20 0.802 2.50 7.42 -63 121 1033 11 0.61 14.30 0.805 3.49 7.42 -82 135 1036 15.32 0.01 14.30 0.805 3.49 7.41 -81 132 1036 15.32 0.01 14.30 0.805 3.52 7.41 -81 132 1039 11 0.01 14.30 0.803 3.55 7.41 -81 132 1039 11 0.01 14.30 0.803 3.55 7.41 -81 132 1032 11 0.01 14.31 0.803 3.55 7.41 -81 132 1042 11 0.01 14.33 0.803 3.55 7.41 -81 129 Stabilization achieved if three successive measurements for pH, Conductivity and Turbidity and/or Dissolved Oxygen are recorded within heir respective stabilization criteria. A minimum of six measurements should be recorded. 0.400 14.300	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	139	
1033 11 061 14.30 0.905 3.49 7.42 -82 135 1036 15.32 0.01 14.30 0.803 5.52 7.41 -81 132 1039 11 0.01 14.50 0.803 5.55 7.41 -81 132 1039 11 0.01 14.50 0.803 3.55 7.41 -81 132 1039 11 0.01 14.30 0.803 3.55 7.41 -81 132 1042 11 0.01 14.37 0.803 3.55 7.41 -81 129 1042 11 0.01 14.37 0.803 3.55 7.41 -81 129 1042 11 0.01 14.37 0.803 3.55 7.41 -81 129 Stabilization achieved if three successive measurements for pH, Conductivity and Turbidity and/or Dissolved Oxygen are recorded within heir respective stabilization criteria. A minimum of six measurements should be recorded. 5.55 5.55 5.55 5.55 5.55	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	127	
10991 11 0-01 14.56 0-803 3-55 7-91 -81 150 1092 11 0.01 14-31 0-803 3-55 7-91 -81 129 1092 11 0.01 14-31 0-803 3-55 7-91 -81 129 1092 11 0.01 14-31 0-803 3-55 7-91 -81 129 1092 11 0.01 14-31 0-803 3-55 7-91 -81 129 1092 11 0.01 14-31 0-803 3-55 7-91 -81 129 1092 11 0.01 14-31 0-803 3-55 7-91 -81 129 1092 11 0.01 14-31 0-803 3-55 7-91 -81 129 1092 11 0.01 14-31 0-803 3-55 1-91 -81 129 1092 11 14-31 0-803 14-31 14-31 14-31 14-31 14-31 14-31 11 <t< td=""><td>1099 11 0-01 14.56 0-803 3.55 7-41 -81</td><td>133</td></t<>	1099 11 0-01 14.56 0-803 3.55 7-41 -81	133	
1092 1 0.0 14.37 0.803 3.55 7-41 -81 129 Interview Interview			
itabilization achieved if three successive measurements for pH, Conductivity and Turbidity and/or Dissolved Oxygen are recorded within heir respective stabilization criteria. A minimum of six measurements should be recorded.			
heir respective stabilization criteria. A minimum of six measurements should be recorded.			
their respective stabilization criteria. A minimum of six measurements should be recorded.			
heir respective stabilization criteria. A minimum of six measurements should be recorded.			
	heir respective stabilization criteria. A minimum of six measurements should be recorded.	orded within	

Container Type	Bottle Count	Preservative	Field Filtered?	Analysis
1 L Ande	1	Lici	No 0.45 0.10	Dx
WORL WUIT	3	FILL	No 0.45 0.10	GX-BIEX
			No 0.45 0.10	
			No 0.45 0.10	
			No 0.45 0.10	
Sampling Comments:				

GROUNDWATER SAMPLE COLLECTION FORM

Hydrocor		6/19		e	Sample I.D Field Duplica Personnel:	te I.D	-	Time: <u>0920</u> Time: ~
Monumer Well cap Headspac Well dian	condition: e reading: neter:	Good	Replaced ared 4-inch	□ Needs re ppm n □ 6-in	placement Od ch Otl	Surface V or	Vater in Well	
Total wel Depth to p Depth to v Casing vo	vater 19.9 lume 18	<u>+14</u> ft E ft <u>15</u> ft I <u>15</u> ft I <u>15</u> ft (H ₂	ntake Depth 0) X <u>0.65</u>	(BTOC) <u>26</u> gal/ft	Begin	Purging We	11: 0856 36.63 g	al.
	onversion re	1013.5/1-0	0 /					
Pump typ Bailer typ	G/DISPOS A be ⊠ Perista be:	AL METHOD altic Centr Wat	ifugal 🗌 D			tion System	Other	
Pump typ Bailer typ	G/DISPOSA be Perista be: PARAMETE Water Level	AL METHOD altic Centr Wat	ifugal 🗌 D			tion System	Other	t petro alor Turbidity (NTU) (± 10% or ≤10)
Pump typ Bailer typ FIELD P Time	G/DISPOSA be Perista ee: PARAMETE Water Level (BTOC)	AL METHOD altic Centr Wat RS Purge Rate	ifugal 🗌 D er Disposal: Temp.	: Drummed Sp. Cond. (mS/cm) (±3%)	Dissolved Oxygen (±10% or	tion System Odor and/or pH (SU) (±0.1)	Other or Sheen:	t petro alor Turbidity (NTU) (± 10% or ≤10)
Pump typ Bailer typ FIELD F Time	G/DISPOSA be Perista be: PARAMETE Water Level	AL METHOD altic Centr Wat RS Purge Rate	ifugal D ber Disposal: Temp. (°C)	Sp. Cond. (mS/cm)	Dissolved Oxygen (±10% or ≤1.00 ±0.2)	tion System Odor and/or pH (SU)	Other r Sheen: V for ORP	t petro alor Turbidity (NTU)
Pump typ Bailer typ FIELD F Time	G/DISPOSA Perista ARAMETE Water Level (BTOC) 25.06 25.13 25.21	AL METHOD altic Centr Wat RS Purge Rate (L/min)	ifugal D ber Disposal: Temp. (°C) 12.1 13.2 13.5	: Drummed Sp. Cond. (mS/cm) (±3%) 1.008	Dissolved Oxygen (±10% or ≤1.00 ±0.2)	0dor and/or pH (SU) (±0.1) 7.01 7.16 7.17	□ Other r Sheen: <u>V</u> for ORP (mV) 82.2 65.6 59.5	t petro <u>lor</u> Turbidity (NTU) (± 10% or ≤10) i9.4 15.2 12.9
Pump typ Bailer typ FIELD P Time 03558 6401 0304 0304	G/DISPOSA De Perista Perista PARAMETE Water Level (BTOC) 25.06 20.13 20.21 20.21 20.21	AL METHOD altic Centr Wat RS Purge Rate	ifugal □ D ter Disposal: (°C) 12.1 13.2 13.5 13.6	Sp. Cond. (mS/cm) (±3%) 1.008 1.020 1.038 1.040	Image: Remedia Dissolved Oxygen (±10% or ≤1.00 ±0.2) 1.03 0.45 0.30 0.24	0dor and/or 0dor and/or pH (SU) (±0.1) 7.01 7.16 7.16 7.18	□ Other r Sheen: <u>√ for</u> (mV) 87.7 65.6 59.5 56.3	t petro <u>olor</u> Turbidity (NTU) (± 10% or ≤10) i4.4 15.2 12.4 12.8
Pump typ Bailer typ FIELD P Time 0%5% 6401 0%94 0%04 0%04 0%04	G/DISPOSA De Perista Perista PARAMETE Water Level (BTOC) 20.06 20.13 20.27 20.27 20.33	AL METHOD altic Centr Wat RS Purge Rate (L/min)	ifugal \Box D ter Disposal: $\frac{\text{Temp.}}{(^{\circ}\text{C})}$ $\frac{12 \cdot 1}{13 \cdot 5}$ $\frac{13 \cdot 5}{13 \cdot 6}$ $(3 \cdot 6)$	Sp. Cond. (mS/cm) (±3%) 1.008 1.020 1.038 1.040 1.040	Image: Remedia Dissolved Oxygen (±10% or ≤1.00 ±0.2) 1.03 0.45 0.24 0.24	Ddor and/or PH (SU) (±0.1) 7.16 7.16 7.18 7.18 7.19	□ Other r Sheen: √ € ORP (mV) 87.7 65.6 59.5 56.3 53.7	t petro olor Turbidity (NTU) (± 10% or ≤10) 14.4 15.2 12.4 12.9 12.9
Pump typ Bailer typ FIELD P Time 03558 6401 0304 0304	G/DISPOSA De Perista Perista PARAMETE Water Level (BTOC) 25.06 20.13 20.21 20.21 20.21	AL METHOD altic Centr Wat RS Purge Rate (L/min)	ifugal □ D ter Disposal: (°C) 12.1 13.2 13.5 13.6	Sp. Cond. (mS/cm) (±3%) 1.028 1.028 1.028 1.028 1.038 1.038 1.040	Image: Remedia Dissolved Oxygen (±10% or ≤1.00 ±0.2) 1.03 0.45 0.30 0.24	tion System Odor and/or pH (SU) (±0.1) 7.01 7.16 7.16 7.18	□ Other r Sheen: <u>V</u> for ORP (mV) 87.2 65.6 59.5 56.3	t petro <u>olor</u> Turbidity (NTU) (± 10% or ≤10) i9.4 15.2 12.4 12.8
Pump typ Bailer typ FIELD P Time 0%5% 6401 0%04 0%04 0%04 0%04	G/DISPOSA De Perista Perista PARAMETE Water Level (BTOC) 20.06 20.13 20.27 20.27 20.33	AL METHOD altic Centr Wat RS Purge Rate (L/min)	ifugal \Box D ter Disposal: Temp. ($^{\circ}$ C) 12.1 13.5 13.6 13.6 13.8	Sp. Cond. (mS/cm) (±3%) 1.028 1.028 1.028 1.028 1.038 1.038 1.040	Image: Remedia Dissolved Oxygen (±10% or ≤1.00 ±0.2) 1.03 0.45 0.24 0.24	Ddor and/or PH (SU) (±0.1) 7.16 7.16 7.18 7.18 7.19	□ Other r Sheen: √ € ORP (mV) 87.7 65.6 59.5 56.3 53.7	t petro olor Turbidity (NTU) (± 10% or ≤10) 14.4 15.2 12.4 12.9 12.9

Purging Comments:

SAMPLE INFORMATION

Container Type	Bottle Preservative Count		Field Filtered?	Analysis	
40ml VOA	3	Hel	No 0.45 0.10	GX, ISTEX	
1-L amber	1	Hel	No 0.45 0.10	DX	
			No 0.45 0.10		
			No 0.45 0.10		
			No 0.45 0.10		

Sampling Comments:

VA/all I

Water in Monument ent \Box Surface Water Well Infiltration \Box Odor: 6-inch \Box Other: ured Screen Interval(s): <u>12-38</u> Begin Purging Well: <u>1224</u> <u></u> gal. X 3 = <u>28.77</u> gal. /ft 4"-0.65 gal/ft 6"- 1.47 gal/ft				
Begin Purging Well: 1224				
Odor and/or Sheen:				
pII ORP Turbidity (SU) (mV) (NTU) (±0.1) (mV) (±10% or <10)				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
7.39 -113 394				
7.40 -115 292				
7-41 -115 223				
7-41 -116 219				
7.51 -115 211				
v and/or Dissolved Oxygen are recorded within				
and/or Dissolved Oxygen are recorded within l.				
Analysis				
Analysis				
Analysis				

No 0.45 0.10 No 0.45 0.10 No 0.45 0.10

Sampling Comments:

Well I.D. Number: Mw29

Date: 3	n Project Nur	r): <u>(olena</u> mber: <u>2017</u> -	14	Sample I.D.: Field Duplicat Personnel:f	e I.D.:		_Time: _Time:	
Monumer Well cap Headspac Well dian	condition: ce reading: neter:	Good Good Not measured	Replaced d PID Read	I Need	s Replacement _ ppm _ 6-i	Odor:	ace Water We	r in Monument ell Infiltration
Total wel Depth to p Depth to v Casing vo	water: $2(-1)$	ATION h = 1(ft Bo ft 28 ft -83 ft (H_2) actors: $3/4'' = 0$.	Intake Dep 0) X	oth (BTOC):	36	Begin Pi gal. X 3 =	urging Well: ふっっし g	1007 Ial.
Pump typ	e Perista	AL METHOD altic Centri Wate	ifugal 🗌 De er Disposal:	edicated Blac	dder / 🗌 Non-I	Dedicated Bla	dder Other_ Other	
	ARAMETER	ts					Sheen: D	
	Water Level	RS Purge Rate (L/min)	Тетр . (°С)	Sp. Cond. (mS/cm) (±3%)	Dissolved 0xygen (±10% or ≤1.00 ±0.2)	Odor and/or pH (SU)	-	Turhidity (NTU)
FIELD P	Water Level (BTOC)	Purge Rate	(°C)	Sp. Cond. (mS/cm) (±3%)	Dissolved Oxygen (±10% or	Odor and/or pH (SU) (±0.1)	Sheen: D. ORP (mV)	~-د Turhidity (NTU) (± 10% or ≤10)
Time	Water Level (BTOC)	Purge Rate (L/min)	(୯୦) <u> </u> ୳.େ ମ	Sp. Cond. (mS/cm) (±3%) O-883	Dissolved Oxygen (±10% or ≤1.00 ±0.2)	Odor and/or pH (SU) (±0.1) 7-56	Sheen: 0. ORP (mV) ~158	Turbidity (NTU) (± 10% or ≤10) 1\8
Time	Water Level (BTOC)	Purge Rate (L/min)	(°C) 14.69 14.38	Sp. Cond. (mS/cm) (±3%) 0.883 0.900	Dissolved Oxygen (±10% or ≤1.00 ±0.2) 2.49	Odor and/or pH (SU) (±0.1) 7-56 7-51	Sheen: 0. ORP (mV) -158 -164	Turbidity (NTU) (± 10% or ≤10) 1\8 47.8
Time	Water Level (BTOC) Cl-28	Purge Rate (L/min)	(୯୦) <u> </u> ୳.େ ମ	Sp. Cond. (mS/cm) (±3%) O-883	Dissolved Oxygen (±10% or ≤1.00 ±0.2) 2.4℃	Odor and/or pH (SU) (±0.1) 7-56	Sheen: 0. ORP (mV) ~158	
FIELD PA Time 0 10 0 10 0 13 10 16 10 16	Water Level (BTOC) 3454 21-28 21-30	Purge Rate (L/min) 0-01 0-01	(°C) 14.09 14.38 14.38 14.55	Sp. Cond. (mS/cm) (±3%) ひ-883 の900 ひ-870	Dissolved Oxygen (±10% or <1.00 ±0.2) 2.49 18.30	Odor and/or pH (SU) (±0.1) 7-56 7-51 7,28	Sheen: [J. ORP (mV) -158 -164 - 168	Turbidity (NTU) (± 10% or ±10) 118 47.8 87.4 95-8
FIELD PA Time 0 10 0 13 10 16 10 16 10 22	Water Level (BTOC) 21-28 21-30 21-30	Purge Rate (L/min) 0-01 0-01 0-01	(°C) 14.09 14.38 14.38 14.55 14.69	Sp. Cond. (mS/cm) (±3%) ひ.883 ひ.900 ひ.870 ひ.870	Dissolved Oxygen (±10% or \$1.00 ±0.2) 2.49 1.38 1.38	Odor and/or pH (SU) (±0.1) 7-56 7-51 7.28 7.76	Sheen: []. ORP (mV) -158 -164 - 168 - 167	Turbidity (NTU) (± 10% or <10) 118 47.8 87.4
FIELD PA Time 0 10 0 13 10 16 10 16 10 22	Water Level (BTOC) 30004 21-28 21-30 21-30 21-31	Purge Rate (L/min) 0-01 0-01 0-01 0-01	(°C) 14.09 14.38 14.38 14.55 14.81	Sp. Cond. (mS/cm) (±3%) 0.883 0.900 0.870 0.870 0.870 0.861	Dissolved Oxygen (±10% or \$1.00 ±0.2) 2.49 18.30 1.38 1.08 1.02	Odor and/or p!! (SU) (±0.1) 7-56 7-51 7.28 7-76 7-25	Sheen: (0. ORP (mV) -158 -164 -168 -167 -166	Turbidity (NTU) (± 10% or <10) 118 47.8 87.4 87.4 85.8 85.0
FIELD PA Time 0 10 0 13 10 16 10 16 10 22	Water Level (BTOC) 30004 21-28 21-30 21-30 21-31	Purge Rate (L/min) 0-01 0-01 0-01 0-01	(°C) 14.09 14.38 14.38 14.55 14.81	Sp. Cond. (mS/cm) (±3%) 0.883 0.900 0.870 0.870 0.870 0.861	Dissolved Oxygen (±10% or \$1.00 ±0.2) 2.49 18.30 1.38 1.08 1.02	Odor and/or p!! (SU) (±0.1) 7-56 7-51 7.28 7-76 7-25	Sheen: (0. ORP (mV) -158 -164 -168 -167 -166	Turbidity (NTU) (± 10% or <10) 118 47.8 87.4 87.4 85.8 85.0
FIELD PA Time 0 10 10 13 10 16 10 19 10 22	Water Level (BTOC) 30004 21-28 21-30 21-30 21-31	Purge Rate (L/min) 0-01 0-01 0-01 0-01	(°C) 14.09 14.38 14.38 14.55 14.81	Sp. Cond. (mS/cm) (±3%) 0.883 0.900 0.870 0.870 0.870 0.861	Dissolved Oxygen (±10% or \$1.00 ±0.2) 2.49 18.30 1.38 1.08 1.02	Odor and/or p!! (SU) (±0.1) 7-56 7-51 7.28 7-76 7-25	Sheen: (0. ORP (mV) -158 -164 -168 -167 -166	Turbidity (NTU) (± 10% or <10) 118 47.8 87.4 87.4 85.8 85.0
FIELD PA Time 10 10 10 13 10 16 10 16	Water Level (BTOC) 30004 21-28 21-30 21-30 21-31	Purge Rate (L/min) 0-01 0-01 0-01 0-01	(°C) 14.09 14.38 14.38 14.55 14.81	Sp. Cond. (mS/cm) (±3%) 0.883 0.900 0.870 0.870 0.870 0.861	Dissolved Oxygen (±10% or \$1.00 ±0.2) 2.49 18.30 1.38 1.08 1.02	Odor and/or p!! (SU) (±0.1) 7-56 7-51 7.28 7-76 7-25	Sheen: (0. ORP (mV) -158 -164 -168 -167 -166	Turbidity (NTU) (± 10% or <10) 118 47.8 87.4 87.4 85.8 85.0
FIELD PA Time (0 10 10 13 10 16 10 13 10 16 10 22 10 25	Water Level (BTOC) 34-24 21-28 21-30 21-30 21-30 21-31 21-31	Purge Rate (L/min) 0-01 0-01 0-01 0-01	(°C) 14.09 14.38 14.55 14.55 14.81 14.85	Sp. Cond. (mS/cm) (±3%) 0.883 0.900 0.883 0.900 0.8570 0.851 0.861 0.861	Dissolved Oxygen (±10% or \$1.00 ±0.2) 2.49 1.38 1.38 1.08 1.02 0.97	Odor and/or pH (SU) (±0.1) 7-56 7-51 7.28 7-76 7-25 7-25	Sheen: 00 0RP (mV) -158 -158 -158 -158 -158 -158 -158 -158 -158 -158 -158 -158 -158 -158	Turbidity (NTU) (± 10% or \$10) 118 47.8 87.4 95-8 85-0 85-6

Container Type	Bottle Count	Preservative	Field Filtered?	Analysis
1 LAmbr	1	Hel	No 0.45 0.10	Dx
yound volt	3	FIL	No 0.45 0.10	GX-BTEX
			No 0.45 0.10	
			No 0.45 0.10	
			No 0.45 0.10	
Sampling Comments:				

Well I.D. Number: MW20

Hydrocon Date:	Project Nu	r): <u>Colema</u> mber: <u>2017</u>	-074	Sample I.D.:_ Field Duplica Personnel:	Mu20-W ate I.D.: 12/24	-	_Time:_ <u>0940</u> _Time:	
Monumen Well cap Headspac Well diam	condition: e reading: eter:	ITA I I	Replaced d PID Read	Need	e Renlacomon	nt Sur Odor:_ -inch []		r in Monument ell Infiltration
Total well Depth to p Depth to w Casing vol	ater: 35 ume: 5	ATION 	Intake De	pth (BTOC):	37	Begin P	Purging Well:	0417
and survey and	Contraction of the second							
Pump type Bailer type	e 🗌 Perista	AL METHOD	ifugal 🔲 Do ter Disposal.[edicated Blac	lder 🗌 Non- Remediat	tion System	Other	_
Pump type Bailer type	e 🗌 Perista	altic 🗹 Centr Wa	tifugal 🔲 Do ter Dísposal:[edicated Blac	dder 🗌 Non- Remediat	tion System	adder Other Other or Sheen:	_
Pump type Bailer type FIELD PA Time	e 🗌 Perista	altic 🗹 Centr Wa	ter Disposal.[Temp. (°C)	edicated Blac Drummed Sp. Cond. (mS/cm) (+3%)	dder ☐ Non- Remediat Dissolved Oxygen (±10% or ≤1.00 ±0.2)	tion System [Odor and/o pH (su)	Other	Turbidity (NTU)
ump type lailer type TELD PA Time	RAMETER Water Level	Altic Centr Wa S Purge Rate	ter Dísposal.[Temp.	Sp. Cond. (mS/cm)	Dissolved Oxygen (±10% or	tion System [Odor and/o pH (SU) (±0.1)	Other or Sheen: <u></u> ORP (mV)	~_ Turhidity (NTU) (± 10% or ≤10)
Time	RAMETER Water Level (BTOC)	Purge Rate (L/min)	ter Dísposal:[Temp. (ºC)	Sp. Cond. (mS/cm) (±3%)	Dissolved Oxygen (±10% or ≤1.00 ±0.2)	tion System [Odor and/o pH (SU) (±0.1) 7 - 1 C	Other	مر Turhidity (NTU) (± 10% or ≤10) \$4.5
Time	RAMETER Water Level (BTOC) 35.7(35.75 35.73	Centr Wa S Purge Rate (L/min) 0-01 0-01 0-01	ter Dísposal:[Temp. (°C) 」ハーンン 」ハーンン	Sp. Cond. (mS/cm) (+3%) 0-904 0-972 0-972	Remediat Remediat Dissolved Oxygen (±10% or ≤1.00 ±0.2) 2-17	tion System [Odor and/o pH (SU) (±0.1) 7-16 7-16 7-14 7-15	Other or Sheen: <u></u> ORP (mV)	مر Turbidity (NTU) (± 10% or ≤10) § 4. 3 § 4. 4
Time	Water Level (BTOC) 35.7 (35.7 (35.7 (35.7 (35.7 (35.7 (Itic Centr Wa S Purge Rate (L/min) 0-01 0-01 0-01 0-01 0-01 0-01 0-01 0-01	ter Dísposal:[Temp. (°C) リー・フッ リー・フッ リー・フッ リー・フッ レー・フィー	Sp. Cond. (mS/cm) (+3%) 0-9104 0-9172 0-916	✓ Remediat Dissolved Oxygen (±10% or ≤1.00 ±0.2) 2-17 1-03 1-36 1-57	tion System [Odor and/o pH (su) (±0.1) 7-16 7-16 7-15 7-15 7-15	Other	مر Turhidity (NTU) (± 10% or ≤10) \$4.5
Pump type Bailer type TIELD PA Time	Water Level (BTOC) 35.7(35.7(35.75 35.75 35.75	Purge Rate (L/min) 0-01 0.01 0.01 0.01 0.01	ter Dísposal:[Temp. (°C) 1〜. てひ 1〜. てひ 1〜. 7て 1〜. 37 1〜. 37	Sp. Cond. (mS/cm) (+3%) 0-9164 0-972 0-976 0-976	Dissolved Oxygen (±10% or ≤1.00 ±0.2) 2-17 1-03 1-36 1-47 1-26	tion System [Odor and/o pH (su) (±0.1) 7-16 7-16 7-15 7-15 7-15	Other or Sheen: 10^{-10} (mV) -177 -183 -185 -185 -185 -185 -185	Turhidity (NTU) (± 10% or <10) (± 10% or <10) (± 4.5 (54.4) (54.4) (54.4) (54.2) (54.2)
Pump type Bailer type FIELD PA	Water Level (BTOC) 35.7 (35.7 (35.7 (35.7 (35.7 (35.7 (Itic Centr Wa S Purge Rate (L/min) 0-01 0-01 0-01 0-01 0-01 0-01 0-01 0-01	ter Dísposal:[Temp. (°C) リー・フッ リー・フッ リー・フッ リー・フッ レー・フィー	Sp. Cond. (mS/cm) (+3%) 0-9104 0-9172 0-916	✓ Remediat Dissolved Oxygen (±10% or ≤1.00 ±0.2) 2-17 1-03 1-36 1-57	tion System [Odor and/o pH (su) (±0.1) 7-16 7-16 7-15 7-15 7-15	Other or Sheen: 100 ORP (mV) -177 -183 -185 -185	Turbidity (NTU) (± 10% or <10) 84.5 84.4 83.4 84.2

Container Type	Count	Preservative	Field Filtered?	Analysis
1 L Amber	1	HILL	No 0.45 0.10	Di
ho al wat	3	HLL	No 0.45 0.10	GX- BTEX
			No 0.45 0.10	JUL JUL
		1.2	No 0.45 0.10	
			No 0.45 0.10	
ampling Comments:				

Well I.D. Number: MW31

Hydrocon Date: 3-	Project Nun): <u>Coloma</u> nber: <u>2017</u> -	074		Field Duplicate I.D.:				
Monumer Well cap Headspac Well diam	condition: e reading: 🗹 neter:	DN Good Not measured 2-inch	Replaced PID Readi	ing	ppm	Odor:	face Water We	r in Monument ell Infiltration	
Total well Depth to p Depth to w Casing vol	vater: 33 lume: 5-	ATION h_2 ft Bo ft ft 5.50 ft 7 ft (H ₂ actors: 3/4"-0.	Intake Dep 0) X _ 0 - 0 - 5	oth (BTOC):	37	Begin P gal. X 3 =	urging Well:	080Z	
Pump typ		AL METHOD altic Centri							
	ARAMETER		er Disposal.[L' Remealat		or Sheen:		
			Temp. (°C)	Sp. Cond. (mS/cm) (±3%)	Dissolved Oxygen (±10% or ≤1.00 ±0.2)				
FIELD PA	Water Level (BTOC)	RS Purge Rate	Temp.	Sp. Cond. (mS/cm)	Dissolved Oxygen (±10% or	Odor and/o pH (su)	or Sheen: <u>v</u>	-C Turhidity (NTU) (± 10% or ≤10)	
FIELD PA	Water Level (BTOC) 33.50	RS Purge Rate (L/min)	Temp. (°C)	Sp. Cond. (mS/cm) (±3%)	Dissolved Oxygen (±10% or ≤1.00 ±0.2)	Odor and/o pH (SU) (±0.1) 7-56	or Sheen: <u>vvv</u> ORP (mV)	~c Turbidity (NTU)	
FIELD PA	Water Level (BTOC) 33.50 33.52	Purge Rate (L/min)	Temp. (°C) 12.19 13.03	Sp. Cond. (mS/cm) (±3%)	Dissolved Oxygen (±10% or ≤1.00 ±0.2) 3.17 2.10	Odor and/o pH (SU) (±0.1)	or Sheen: 1070 ORP (mV)		
FIELD PA	Water Level (BTOC) 33.50	Purge Rate (L/min)	Temp. (°C) 12.19 13.03 13.23 13.35	Sp. Cond. (mS/cm) (±3%) 1.011 0.755 0.755 0.755	Dissolved Oxygen (±10% or ≤1.00 ±0.2) 3.17 2.10 1.95 1.58	Odor and/o pH (SU) (±0.1) 7-56 7-56 7-52	or Sheen: VV ORP (mV) -2v7 -213 -217 -217	~c Turbidity (NTU) (± 10% or ≤10) 129 122 110 143	
FIELD PA	Water Level (BTOC) 33.50 33.50 33.52 33.52 33.52 33.53 33.55 33.55	Purge Rate (L/min)	Temp. (°C) 12.19 13.3 13.3 13.3 13.3 13.3 13.3 13.3	Sp. Cond. (mS/cm) (±3%) 1.011 0.355 0.355 0.355 0.755 0.755 0.755	Dissolved Oxygen (±10% or ≤1.00 ±0.2) 3.17 2-16 1.95 1.58 1.58 1.51	Odor and/o pH (SU) (±0.1) 7-56 1-52 7-51 7-51	or Sheen: PP (mV) -207 -217 -217 -217 -217 -217 -217	$ \frac{\text{Turbidity}}{(\text{NTU})} \\ \frac{(10\% \text{ or } \le 10)}{12.2} \\ \frac{11.0}{10.2} \\ \frac{10.2}{10.2} \\ \frac$	
FIELD PA Time	Water Level (RTOC) 33.50 33.50 33.52 33.52 33.53 33.53 33.53	Purge Rate (L/min) 0.01 11 11	Temp. (°C) 12.19 13.03 13.23 13.35	Sp. Cond. (mS/cm) (±3%) 1.011 0.755 0.755 0.755	Dissolved Oxygen (±10% or ≤1.00 ±0.2) 3.17 2.10 1.95 1.58	Odor and/o pH (SU) (±0.1) 7-56 <u>1-52</u> <u>7-51</u> 7-51	or Sheen: VV ORP (mV) -2v7 -213 -217 -217	~c Turbidity (NTU) (± 10% or ≤10) 129 122 110 143	
FIELD PA	Water Level (BTOC) 33.50 33.50 33.52 33.52 33.52 33.53 33.55 33.55	Purge Rate (L/min)	Temp. (°C) 12.19 13.3 13.3 13.3 13.3 13.3 13.3 13.3	Sp. Cond. (mS/cm) (±3%) 1.011 0.355 0.355 0.355 0.755 0.755 0.755	Dissolved Oxygen (±10% or ≤1.00 ±0.2) 3.17 2-16 1.95 1.58 1.58 1.51	Odor and/o pH (SU) (±0.1) 7-56 1-52 7-51 7-51	or Sheen: PP (mV) -207 -217 -217 -217 -217 -217 -217	$ \frac{\text{Turbidity}}{(\text{NTU})} \\ \frac{(10\% \text{ or } \le 10)}{12.2} \\ \frac{11.0}{10.2} \\ \frac{10.2}{10.2} \\ \frac$	

Container Type	Bottle Count	Preservative	Field Filtered?	Analysis
1 LAnd	tur	1 JULL	No 0.45 0.10	D_{\times}
your volt	1200	3 HUL	No 0.45 0.10	GX- LITEX
		1	No 0.45 0.10	
			No 0.45 0.10	
			No 0.45 0.10	
Sampling Comments:				

Well I.D. Number: hus 2

Date: 3	ame (Numbe n Project Nur 26-19	r): mber: <u>_2</u> 017- c	014		Sample I.D.: <u>Nw32-w</u> Time: <u>(015</u> Field Duplicate I.D.: Time: Personnel:			
Monumer Well cap Headspac Well dian	condition: ce reading:⊠ neter:	Good [Good] Not measure	Replaced ed PID Read	l 🗌 Need	ppm	t Sur Odor:_ inch [r in Monument ell Infiltration
Total wel Depth to p Depth to v Casing vo	vater: 17. lume: 16	1.02 ft E	Intake De 20) X _ 0.0	pth (BTOC): こ gal/ft	30	Begin F gal. X 3 =	Purging Well:	0952
5.59		AL METHOD						
Pump typ Bailer typ	e 🗹 Perista	altic 🗌 Centr Wa	rifugal 🛄 D iter Dísposal:	Drummed	Remediat	tion System	Other	
Pump typ Bailer typ	ARAMETER	altic 🗌 Centr Wa	rifugal Diter Disposal:	Sp. Cond. (mS/cm) (+3%)	Dissolved Oxygen (±10% or ≤1.00 ±0.2)	Odor and/o PH (SU)	or Sheen: 100 ORP (mV)	Turbidity (NTU)
Pump typ Galler typ TIELD PA Time	e Perista e: ARAMETEF Water	Altic Centr Wa RS Purge Rate (L/min)	ter Disposal: Temp. (°C)	Sp. Cond. (mS/cm) (±3%)	Dissolved Oxygen (±10% or ≤1.00 ±0.2)	Odor and/o PH (SU) (±0.1)	Other	~(Turbidity (NTU) (± 10% or ≤10)
Pump typ Bailer typ TIELD PA Time	ARAMETER	Altic Centr Wa RS Purge Rate (L/min) 0-61	Temp. (°C)	Sp. Cond. (mS/cm)	Dissolved Oxygen (±10% or ≤1.00 ±0.2) 2 ⋅ S	Odor and/o PH (SU) (±0.1) 7 - 56	Other	~(Turbidity (NTU) (± 10% or ≤10) \3\$
Time	ARAMETER Water Level (BTOC)	Altic Centr Wa RS Purge Rate (L/min)	ter Disposal: Temp. (°C)	Drummed Sp. Cond. (mS/cm) (±3%) U-G96	Dissolved Oxygen (±10% or ≤1.00 ±0.2) 2.81 72,77	Odor and/o PH (SU) (±0.1)	Other	~(Turbidity (NTU) (± 10% or ≤10) 135 121
Pump typ Gailer typ TIELD PA Time Piss 958 0 01	ARAMETER Water Level (BTOC) [7.27	RS Purge Rate (L/min)	Temp. (°C) 13.6 G	Drummed Sp. Cond. (mS/cm) (±3%) ບ.໒ຯ໒ ບ.໒ຯ໒	✓ Remediat Dissolved Oxygen (±10% or ≤1.00 ±0.2) 2.81 2.77 2.35	0dor and/c 0dor and/c pH (SU) (±0.1) 7.56 7.27 7.17	Other	~(Turbidity (NTU) (± 10% or ≤10) 135 121 127
Pump typ Bailer typ FIELD PA Time PISS UBI UBI UBI	ARAMETER Water Level (BTOC) [7.27 L((7.27	Altic Centr Wa CS Purge Rate (L/min) O-61 O-61 O-61 O-61 O-61 O-61	Temp. (°C) 1366 13-71 13-78	Drummed Sp. Cond. (mS/cm) (±3%) O - 696 O - 695 G - 693	Dissolved Oxygen (±10% or ≤1.00 ±0.2) 2.81 72,77	0dor and/0 pH (SU) (±0.1) 7-56 7-27	Other	~(Turbidity (NTU) (± 10% or ≤10) 135 121
Pump typ Bailer typ FIELD PA Time PISS 958 001 004 007	Water Level (BTOC) [7.27] 17.27	Altic Centr Wa RS Purge Rate (L/min) 0.61 0.61 0.61 0.61	Temp. (°C) 13.66 13.73 13.78 13.81	Drummed Sp. Cond. (mS/cm) (±3%) O.696 O.695 O.693 O.693 O.693	Dissolved Oxygen (±10% or \$1.00 ± 0.2) 2.81 2.77 2.35 2.16	tion System Odor and/c PH (SU) (±0.1) フ-56 フ-27 フ-17 フ-17	Other	×(Turbidity (NTU) (± 10% or ≤10) 135 121 127 126
Pump typ Bailer typ FIELD PA Time PASS 0958 001 094 1007	e Perist: ARAMETER Water Level (BTOC) [7.27 1. (7.27 17.27 17.27 17.27	Altic Centr Wa RS Purge Rate (L/min) 0.61 0.61 0.61 0.61 0.61	Temp. (°C) 13.66 13.71 13.78 13.84	Drummed Sp. Cond. (mS/cm) (±3%) U.696 U.696 U.695 0.693 0.663	Dissolved Oxygen (±10% or ≤1.00 ±0.2) 2.81 2.77 2.35 2.14 2.08	Odor and/c pH (SU) (±0.1) 7 - 56 7 - 17 7 - 17 7 - 17 7 - 17	Other	×C Turbidity (NTU) (± 10% or ≤10) 135 121 127 126 126
Pump typ Bailer typ FIELD PA Time PASS 0958 001 094 1007	e Perist: ARAMETER Water Level (BTOC) [7.27 1. (7.27 17.27 17.27 17.27	Altic Centr Wa RS Purge Rate (L/min) 0.61 0.61 0.61 0.61 0.61	Temp. (°C) 13.66 13.71 13.78 13.84	Drummed Sp. Cond. (mS/cm) (±3%) U.696 U.696 U.695 0.693 0.663	Dissolved Oxygen (±10% or ≤1.00 ±0.2) 2.81 2.77 2.35 2.14 2.08	Odor and/c pH (SU) (±0.1) 7 - 56 7 - 17 7 - 17 7 - 17 7 - 17	Other	×C Turbidity (NTU) (± 10% or ≤10) 135 121 127 126 126
Pump typ Bailer typ FIELD PA Time PASS 001 004 1007	e Perist: ARAMETER Water Level (BTOC) [7.27 1. (7.27 17.27 17.27 17.27	Altic Centr Wa RS Purge Rate (L/min) 0.61 0.61 0.61 0.61 0.61	Temp. (°C) 13.66 13.71 13.78 13.84	Drummed Sp. Cond. (mS/cm) (±3%) U.696 U.696 U.695 0.693 0.663	Dissolved Oxygen (±10% or ≤1.00 ±0.2) 2.81 2.77 2.35 2.14 2.08	Odor and/c pH (SU) (±0.1) 7 - 56 7 - 17 7 - 17 7 - 17 7 - 17	Other	×C Turbidity (NTU) (± 10% or ≤10) 135 121 127 126 126
Pump typ Bailer typ FIELD PA Time DASS DASS DASS DASS DASS DASS DASS DAS	e Perist: ARAMETER Water Level (BTOC) [7.27 1. (7.27 17.27 17.27 17.27	Altic Centr Wa RS Purge Rate (L/min) 0.61 0.61 0.61 0.61 0.61	Temp. (°C) 13.66 13.71 13.78 13.84	Drummed Sp. Cond. (mS/cm) (±3%) U.696 U.696 U.695 0.693 0.663	Dissolved Oxygen (±10% or ≤1.00 ±0.2) 2.81 2.77 2.35 2.14 2.08	Odor and/c pH (SU) (±0.1) 7 - 56 7 - 17 7 - 17 7 - 17 7 - 17	Other	×C Turbidity (NTU) (± 10% or ≤10) 135 121 127 126 126
Pump typ Bailer typ FIELD PA Time OASS DASS DASS DASS DASS DASS DASS DASS	e Perista ARAMETER Water Level (BTOC) [7.27 17.27 17.27 17.27 17.27	Altic Centr Wa RS Purge Rate (L/min) 0.61 0.61 0.61 0.61 0.61	Temp. (°C) 13.66 13.77 13.78 13.86 13.86	Drummed Sp. Cond. (mS/cm) (±3%) 0.696 0.665 0.663 0.663 0.663	Dissolved Oxygen (±10% or ≤1.00 ±0.2) 2.%1 2.77 2.35 2.16 2.08 2.08	tion System Odor and/c pH (SU) (±0.1) 7-56 7-67 7-67 7-67 7-17 7-17	Other	~(Turbidity (NTU) (± 10% or ≤10) 135 121 127 126 126 126

Container Type	Bottle Count	Preservative	Field Filtered?	Analysis
1 L Ambr	1	FILL	No 0.45 0.10	Dr
YUAL VOIL	3	1-LL	No 0.45 0.10	6x-12712x
			No 0.45 0.10	UT -31UT
			No 0.45 0.10	
and the second second			No 0.45 0.10	
Sampling Comments:				

Well I.D. Number: B4-18

Hydrocon	ame (Numb n Project N 27-1 5	umber.	Coleran 2016-0	011		Field Duplica	te I.D.:	hwicz-v					
Monumer Well cap Headspac Well dian	condition.		ood 🛄 neasured -inch	Replaced PID Read	air: Deeds ing 4-inch	s Replacemen .ppm [] 6-	t 🗌 Sur 🗌 Odor:_ inch 🗌		r in Monument ell Infiltration				
Total well Depth to p Depth to w Casing vo Volume C	vater: 20 lume: 1 onversion	50 8.5 Factors	ft Bot ft ft (H ₂ O : 3/4"-0.0	Intake Der	oth (BTOC):	36	Begin P	Interval(s): Purging Well: <u>360</u> g l/ft 6"- 1.47					
Pump typ Bailer typ	G/DISPOS e Peris e: ARAMETE	taltic [Centrif	ugal 🗌 De r Disposal:[edicated Blad	der, 🗌 Non-I 🗹 Remediat	ion System	adder Other Other or Sheen: SVQ I = 6	alor & Shin				
Time	Water Level (BTOC)		ge Rate /min)	Temp. (°C)	Sp. Cond. (mS/cm) (±3%)	Dissolved Oxygen (±10% or ≤1.00 ±0.2)	pH (SU) (±0.1)	ORP (mV)	Turhidity (NTU) (± 10% or <10)				
1048 1051 1054 1057 1100	20.50 20.52 20.52 20.52 70.52		1 x	15.08 15.08 15.04 15.04	0.825 0.828 0.828 0.824 0.823	9.1.95 1-61 0.60 0-68 0.64	7.20 7.19 7.18 7.18 7.18	-146 -146 -146 -146 -147	2000 2000 2000 2000 2000				
11 03	20.57			15.07	0,823	0.69	7-18	-148	1647				
their respect	mments: A	Slug cl	² Ism	um of six mea	surements shou	ild he recorded		ed Oxygen are rec					
	INFORMA	TION Bottle	Preservativ		iltered?								
ALL A home	mler	Count 2 6	HILL	No 0.4	45 0.10 45 0.10 45 0.10	Analysis Dx Gx - BTE>							

No 0.45 0.10 No 0.45 0.10

Sampling Comments:

Well I.D. Number: BH-2

Hydrocon	Project Num 77-15): <u>Colenn</u> nber: <u>2017-</u>	01L		Sample I.D.: Field Duplicat Personnel:	te I.D.:	-	Time:
Monumer Well cap Headspac Well diam	e reading: <u>//</u> neter:	Good Good	I PID Readi	na	s Replacement ppm 6-i	Odor:		in Monument ll Infiltration
Total well Depth to p Depth to w Casing vol	vater: 27 lume: 7-	ATION 5.00 ft B ft .7C ft .74 ft (H ₂ actors: 3/4"-0.	Intake Der 0) X	oth (BTOC):gal/ft	34	Begin Pu gal. X 3 =	Ison g	2837 al.
Pump typ	e 🗌 Perista	AL METHOD altic Centri Wat						
FIELD PA	ARAMETER	s				Odor and/or	Sheen: Nu	c
FIELD PA	Water Level	Purge Rate (L/min)	Temp. (°C)	Sp. Cond. (mS/cm) (+3%)	Dissolved Ωxygen (±10% or ≤1.00 ±0.2)	pII (SU)	Sheen: <u>///</u> ORP (mV)	Turbidity (NTU)
Time	Water Level (BTOC)	Purge Rate (L/min)	(°C)	(mS/cm) (+3%)	Oxygen (±10% or ≤1.00 ±0.2)	pII (SU) (+0.1)	ORP (mV)	Turhidity (NTU) (+.10% or <10)
Time	Water Level (BTOC) 27.26	Purge Rate	(°C)	(mS/cm) (+3%)	0xygen (±10% or ≤1.00 ±0.2) 2.50	pII (SU) (+0.1) 6-17	ORP (mV) १४४	Turbidity (NTU) (+10% or <10) ?~5
Time	Water Level (BTOC) 27.26 27.25	Purge Rate (L/min)	(°C) 13-36 13-41	(mS/cm) (+3%) しっするし ひ・らって	0xygen (±10% or ≤1.00 ±0.2) 2.50 1.64	p!! (SU) (+0.1) 6-77 6-75	ORP (mV) -188 -189	Turbidity (NTU) (+.10% or <10) てっら 家()
Time	Water Level (BTOC) 27.26 27.25 27.25	Purge Rate (L/min)	(°C) 13.30 13.41 13.97	(mS/cm) (+3%) 0-697 0-697	0xygen (±10% or ≤1.00 ±0.2) 2.50 1-64 1-66	p!! (su) (+0.1) 6-77 6-77 6-75	ORP (mV) -188 -189 -187	Turbidity (NTU) (+.10% or <10) 75 8.(3 6.33
Time	Water Level (BTOC) 27.26 27.25 27.25 27.25 27.25	Purge Rate (L/min) 0-01 1, 11	(°C) 13.30 13.41 13.41 13.57 13.55	(mS/cm) (+3%) 0-04 0-07 0-07 0-07	0xygen (±10% or ≤1.00 ±0.2) 2.50 1.64 1.64 1.63	pii (SU) (+0.1) 0-77 0-75 0-75 0-71 0-9	ORP (mV) -188 -189 -187 -187	Turbidity (NTU) (+10% or <10)
Time	Water Level (BTOC) 27.26 27.25 27.25	Purge Rate (L/min) 0-01 1, 1	(°C) 13.30 13.41 13.97	(mS/cm) (+3%) 0-697 0-697	0xygen (±10% or ≤1.00 ±0.2) 2.50 1-64 1-66	p!! (su) (+0.1) 6-77 6-77 6-75	ORP (mV) -188 -189 -189 -187 -187 -187 -180	Turbidity (NTU) (+10% or <10) 7 - 5 8 (3 6 - 3 5 5 - 3 5 - 5 5 - 5
Time	Water Level (BTOC) 27.26 27.25 27.25 27.25 27.26 77.26 77.30	Purge Rate (L/min) 0-01 1, 11	(°C) 13.30 13.41 13.41 13.45 13.45 13.55	(mS/cm) (+3%) 5-701 0-697 0-697 0-697 0-697 0-697	0xygen (±10% or ≤1.00 ±0.2) 2.50 1.64 1.63 1.67	pii (SU) (+0.1) 0-77 0-75 0-75 0-71 0-91 0-91	ORP (mV) -188 -189 -187 -187	Turbidity (NTU) (+10% or <10)
Time	Water Level (BTOC) 27.26 27.25 27.25 27.25 27.26 77.26 77.30	Purge Rate (L/min) 0-01 1, 11	(°C) 13.30 13.41 13.41 13.45 13.45 13.55	(mS/cm) (+3%) 5-701 0-697 0-697 0-697 0-697 0-697	0xygen (±10% or ≤1.00 ±0.2) 2.50 1.64 1.63 1.67	pii (SU) (+0.1) 0-77 0-75 0-75 0-71 0-91 0-91	ORP (mV) -188 -189 -189 -187 -187 -187 -180	Turbidity (NTU) (+10% or <10) 7 - 5 8 (3 6 - 3 5 5 - 3 5 - 5 5 - 5
Time	Water Level (BTOC) 27.26 27.25 27.25 27.25 27.26 77.26 77.30	Purge Rate (L/min) 0-01 1, 11	(°C) 13.30 13.41 13.41 13.45 13.45 13.55	(mS/cm) (+3%) 5-701 0-697 0-697 0-697 0-697 0-697	0xygen (±10% or ≤1.00 ±0.2) 2.50 1.64 1.63 1.67	pii (SU) (+0.1) 0-77 0-75 0-75 0-71 0-91 0-91	ORP (mV) -188 -189 -189 -187 -187 -187 -180	Turbidity (NTU) (+10% or <10) 7 - 5 8 (3 6 - 3 5 5 - 3 5 - 5 5 - 5
Time	Water Level (BTOC) 27.26 27.25 27.25 27.25 27.26 77.26 77.30	Purge Rate (L/min) 0-01 1, 11	(°C) 13.30 13.41 13.41 13.45 13.45 13.55	(mS/cm) (+3%) 5-701 0-697 0-697 0-697 0-697 0-697	0xygen (±10% or ≤1.00 ±0.2) 2.50 1.64 1.63 1.67	pii (SU) (+0.1) 0-77 0-75 0-75 0-71 0-91 0-91	ORP (mV) -188 -189 -189 -187 -187 -187 -180	Turbidity (NTU) (+10% or <10) 7 - 5 8 (3 6 - 3 5 5 - 3 5 - 5 5 - 5
Time 0840 0843 0846 0849 0852	Water Level (BTOC) 27.26 27.25 27.25 27.25 27.26 77.26 77.30	Purge Rate (L/min) 0-01 1, 11	(°C) 13.30 13.41 13.41 13.45 13.45 13.55	(mS/cm) (+3%) 5-701 0-697 0-697 0-697 0-697 0-697	0xygen (±10% or ≤1.00 ±0.2) 2.50 1.64 1.63 1.67	pii (SU) (+0.1) 0-77 0-75 0-75 0-71 0-91 0-91	ORP (mV) -188 -189 -189 -187 -187 -187 -180	Turbidity (NTU) (+10% or <10) 7 - 5 8 (3 6 - 3 5 5 - 5
Time 0873 0873 0876 0875 0855 0855	Water Level (BTOC) 27.26 27.28 27.29 27.29 27.29 27.29 27.30 27.30	Purge Rate (L/min) 0-01 1, 11 11 11	(°C) 13.30 13.41 13.57 13.55 13.51 13.39 asurements for	(mS/cm) (+3%) ひ・ほっつ ひ・こらつ ひ・こらつ ひ・こらつ ひ・こらつ ひ・こらう	Oxygen (±10% or ≤1.00 ±0.2) 2.50 1.64 1.67 1.67 1.67	p!! (su) (+0.1) 6-77 6-77 6-77 6-77 6-91 6-91 6-90	ORP (mV) -188 -189 -187 -187 -187 -186	Turbidity (NTU) (+10% or <10) 705 8(3 6.33 568 524 361
Time at nu USN3 USS3 USN3 USS3 USN3 USS3 USN3 USS3	Water Level (BTOC) 27.26 27.28 27.29 27.29 27.29 27.29 27.30 27.30 achieved if thread the stabilization	Purge Rate (L/min) 0-01 1, 11	(°C) 13.30 13.41 13.57 13.55 13.51 13.39 asurements for	(mS/cm) (+3%) ひ・ほっつ ひ・こらつ ひ・こらつ ひ・こらつ ひ・こらつ ひ・こらう	Oxygen (±10% or ≤1.00 ±0.2) 2.50 1.64 1.67 1.67 1.67	p!! (su) (+0.1) 6-77 6-77 6-77 6-77 6-91 6-91 6-90	ORP (mV) -188 -189 -187 -187 -187 -186	Turbidity (NTU) (+10% or <10) 705 8(3 6.33 568 524 361
Time 2373 0373 0373 0374 0352 0355 0355	Water Level (BTOC) 27.26 27.28 27.29 27.29 27.29 27.29 27.30 27.30 achieved if thread the stabilization	Purge Rate (L/min) 0-01 1, 11 11 11	(°C) 13.30 13.41 13.57 13.55 13.51 13.39 asurements for	(mS/cm) (+3%) ひ・ほっつ ひ・こらつ ひ・こらつ ひ・こらつ ひ・こらつ ひ・こらう	Oxygen (±10% or ≤1.00 ±0.2) 2.50 1.64 1.67 1.67 1.67	p!! (su) (+0.1) 6-77 6-77 6-77 6-77 6-91 6-91 6-90	ORP (mV) -188 -189 -187 -187 -187 -186	Turbidity (NTU) (+10% or <10) 705 8(3 6.33 568 524 361
Time 5%70 0%73 0%74 0%74 0%52 0%55 0%55 tabilization heir respect	Water Level (BTOC) 27.26 27.28 27.29 27.29 27.29 27.29 27.30 27.30 achieved if thread the stabilization	Purge Rate (L/min) 0-01 1, 11 11 11	(°C) 13.30 13.41 13.57 13.55 13.51 13.39 asurements for	(mS/cm) (+3%) ひ・ほっつ ひ・こらつ ひ・こらつ ひ・こらつ ひ・こらつ ひ・こらう	Oxygen (±10% or ≤1.00 ±0.2) 2.50 1.64 1.67 1.67 1.67	p!! (su) (+0.1) 6-77 6-77 6-77 6-77 6-91 6-91 6-90	ORP (mV) -188 -189 -187 -187 -187 -186	Turhidity (NTU) (+10% or <10 705 813 6.33 568 524 524 524

Container Type	Bottle Count	Preservative	Field Filtered?	Analysis
1 LAmbu	1	Hel	No 0.45 0.10	U _k
Long VIA	3	HLL	No 0.45 0.10	GX- BTIEX
			No 0.45 0.10	
			No 0.45 0.10	
			No 0.45 0.10	
Sampling Comments:				

GROUNDWATER SAMPLE COLLECTION FORM

Project Nar	me: <u>Coler</u>	non Oil W	instatue		Sample I.D. Field Duplicat		-W 1	
Date	Project # <u>:</u>	28/19			Personnel:			1 mic
Monument Well cap o Headspace Well diam	condition: e reading: eter:	Good Good	Replaced ared 4-inch	Needs rep	placement Od ch Oth	Surface W	/ater in Well	
Fotal well Depth to pr Depth to wa	oduct -	<u>.00</u> ft B ft .01 ft I	ntake Depth	(BTOC) 29		n Purging Wel	: 0934	_
Volume Co	onversion Fa	actors: 3/4"=0	.02 gal/ft 1	"=0.04 gal/ft	2"=0.16 gal/f	t 4"=0.65 gal	l/ft 6"= 1.47 g	gal/ft
Volume Co PURGINO Pump type Bailer type	onversion Fa G/DISPOSA e ⊠ Perista e:	AL METHOD altic Centr Wat	.02 gal/ft 1	"=0.04 gal/ft Dedicated Blac	2"=0.16 gal/f	t 4"=0.65 gal Dedicated Bla tion System [l/ft 6"= 1.47 g adder Other_ Other	gal/ft
Volume Co PURGINO Pump type Bailer type	ARAMETE Water Level	AL METHOD altic Centr Wat	.02 gal/ft 1	"=0.04 gal/ft Dedicated Black : Drummed Sp. Cond. (mS/cm)	2"=0.16 gal/f	t 4"=0.65 gal Dedicated Bla tion System [l/ft 6"= 1.47 g adder Other_ Other	gal/ft
Volume Co PURGINO Pump type Bailer type FIELD PA Time	ARAMETE Water Level (BTOC)	AL METHOD altic Centr Wat RS Purge Rate	.02 gal/ft 1 ifugal D ter Disposal: Temp. (°C)	"=0.04 gal/ft Dedicated Black : Drummed Sp. Cond.	2"=0.16 gal/f der Non-l Non-l Remedia Dissolved Oxygen (±10% or	t 4"=0.65 gal Dedicated Bla tion System (Odor and/or pH (SU)	adder Other_ Other Other ORP	organic alor Turbidity (NTU)
Volume Co PURGING Pump type Bailer type FIELD PA Time	ARAMETE Water Level (BTOC)	AL METHOD altic Centr Wat RS Purge Rate	.02 gal/ft 1 ifugal D ter Disposal: Temp.	"=0.04 gal/ft Dedicated Black :□ Drummed Sp. Cond. (mS/cm) (±3%)	2"=0.16 gal/f dder \square Non-D d \swarrow Remedia Dissolved Oxygen (±10% or $\leq 1.00 \pm 0.2$)	Dedicated Bla tion System (Odor and/or pH (SU) (±0.1) 7.22 1.31	adder Other_ Other Other r Sheen: fright ORP (mV)	gal/ft Turbidity (NTU) (± 10% or ≤10) 10-0 9.02
Volume Co PURGING Pump type Bailer type FIELD PA Time	ARAMETE Water Level (BTOC)	AL METHOD altic Centr Wat RS Purge Rate (L/min)	.02 gal/ft 1 ifugal D ter Disposal: Temp. (°C)	"=0.04 gal/ft Dedicated Black :□ Drummed Sp. Cond. (mS/cm) (±3%) 1.254	2"=0.16 gal/f der □ Non-l M Remedia Dissolved Oxygen (±10% or ≤1.00 ±0.2) 0.972 0.23	Dedicated Bla tion System [Odor and/or pH (SU) (±0.1) 7.22 1.31 7.27	adder Other_ Other Other r Sheen: $frictORP(mV)-16 \cdot Z-67 \cdot 5-89 \cdot Z$	gal/ft Turbidity (NTU) (± 10% or ≤10) 10-0 9.02 4.53
Volume Co PURGINO Pump type Bailer type FIELD PA Time	ARAMETE Water Level (BTOC) 13.04 (3.06	AL METHOD altic Centr Wat RS Purge Rate	.02 gal/ft 1 ifugal D ter Disposal: (°C) 12.7- 13.8 13.9 14.0	"=0.04 gal/ft Dedicated Black :□ Drummed Sp. Cond. (mS/cm) (±3%) 1.204 1.223 1.223	2"=0.16 gal/f der □ Non-l M Remediat Dissolved Oxygen (±10% or ≤1.00 ±0.2) S.972 S.23 O.23 O.20	Dedicated Bla tion System (Odor and/or pH (SU) (±0.1) 7.22 1.31 7.23 7.38	$\frac{1}{\text{ft } 6'' = 1.47 \text{g}}{0 \text{ ther}}$	gal/ft Turbidity (NTU) (± 10% or ≤10) 10-0 9.02 9.02 9.53 9.26
Volume Co PURGINO Pump type Bailer type FIELD PA Time	ARAMETE Water Level (BTOC) 18.04 18.07 18.09 18.09	AL METHOD altic Centr Wat RS Purge Rate (L/min)	.02 gal/ft 1 ifugal D ter Disposal: (°C) 12.7- 13.8 13.9 14.0 13.9	"=0.04 gal/ft Dedicated Black :□ Drummed Sp. Cond. (mS/cm) (±3%) 1.204 1.223 1.223 1.223	2"=0.16 gal/f der \square Non-J a \swarrow Remedia Dissolved Oxygen ($\pm 10\%$ or $\leq 1.00 \pm 0.2$) $\bigcirc .72$ $\bigcirc .23$ $\bigcirc .23$ $\bigcirc .20$ $\bigcirc .18$	Dedicated Bla tion System [Odor and/or pH (SU) (±0.1) 7.22 1.31 7.23 7.38 7.44	$\frac{1}{\text{ft } 6'' = 1.47 \text{g}}{0 \text{ ther}}$	gal/ft Turbidity (NTU) (± 10% or ≤10) 10-0 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.05
Volume Co PURGINO Pump type Bailer type FIELD PA Time	ARAMETE Water Level (BTOC) 18.04 18.07	AL METHOD altic Centr Wat RS Purge Rate (L/min)	.02 gal/ft 1 ifugal D ter Disposal: (°C) 12.7- 13.8 13.9 14.0	"=0.04 gal/ft Dedicated Black :□ Drummed Sp. Cond. (mS/cm) (±3%) 1.204 1.223 1.223	2"=0.16 gal/f der □ Non-l M Remediat Dissolved Oxygen (±10% or ≤1.00 ±0.2) S.972 S.23 O.23 O.20	Dedicated Bla tion System (Odor and/or pH (SU) (±0.1) 7.22 7.31 7.23 7.31 7.23 7.38 7.44 7.50	$\frac{1}{\text{ft } 6'' = 1.47 \text{g}}{0 \text{ ther}}$	gal/ft Turbidity (NTU) (± 10% or ≤10) 10-0 9.02 9.05
Volume Co PURGING Pump type Bailer type FIELD PA Time OP 36 OP 39 OP 42 OP 48	ARAMETE Water Level (BTOC) 18.04 18.07 18.09 18.09	AL METHOD altic Centr Wat RS Purge Rate (L/min)	.02 gal/ft 1 ifugal D ter Disposal: (°C) 12.7- 13.8 13.9 14.0 13.9	"=0.04 gal/ft Dedicated Black :□ Drummed Sp. Cond. (mS/cm) (±3%) 1.204 1.223 1.223 1.223	2"=0.16 gal/f der \square Non-J a \swarrow Remedia Dissolved Oxygen ($\pm 10\%$ or $\leq 1.00 \pm 0.2$) $\bigcirc .72$ $\bigcirc .23$ $\bigcirc .23$ $\bigcirc .20$ $\bigcirc .18$	Dedicated Bla tion System [Odor and/or pH (SU) (±0.1) 7.22 1.31 7.23 7.38 7.44	$\frac{1}{\text{ft } 6'' = 1.47 \text{g}}{0 \text{ ther}}$	gal/ft Turbidity (NTU) (± 10% or ≤10) 10-0 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.05
Volume Co PURGINO Pump type Bailer type FIELD PA Time 0936 0939 0945 0945 0945 0945	ARAMETE Water Level (BTOC) 18.04 18.04 18.04 18.04 18.04 18.04	AL METHOD altic Centr Wat RS Purge Rate (L/min)	.02 gal/ft 1 ifugal D ter Disposal: (°C) 12.1- 13.8 13.9 14.0 13.9 14.0	"=0.04 gal/ft Dedicated Black Drummed Sp. Cond. (mS/cm) (±3%) 1.204 1.223 1.223 1.223 1.222	2"=0.16 gal/f der □ Non-l d Remedia Dissolved Oxygen (±10% or ≤1.00 ±0.2) 0.23 0.23 0.23 0.23 0.13 0.13	Dedicated Bla tion System (Odor and/or pH (SU) (±0.1) 7.22 7.31 7.23 7.31 7.23 7.38 7.44 7.50	$\frac{1}{\text{ft } 6'' = 1.47 \text{g}}{0 \text{ ther}}$ $\frac{0 \text{ other}}{0 \text{ ther}}$ $\frac{0 \text{ other}}{0 \text{ ther}}$ $\frac{0 \text{ r}}{0 \text{ the}}$	gal/ft Turbidity (NTU) (± 10% or ≤10) 10-0 9.02 9.05
Volume Co PURGINO Pump type Bailer type FIELD PA Time 0936 0939 0945 0945 0948 0948	ARAMETE Water Level (BTOC) 18.04 18.04 18.04 18.04 18.04 18.04	AL METHOD altic Centr Wat RS Purge Rate (L/min)	.02 gal/ft 1 ifugal D ter Disposal: (°C) 12.1- 13.8 13.9 14.0 13.9 14.0	"=0.04 gal/ft Dedicated Black Drummed Sp. Cond. (mS/cm) (±3%) 1.204 1.223 1.223 1.223 1.222	2"=0.16 gal/f der □ Non-l Remedia Dissolved Oxygen (±10% or ≤1.00 ±0.2) 0.23 0.23 0.23 0.13 0.13 0.13	Dedicated Bla tion System (Odor and/or pH (SU) (±0.1) 7.22 7.31 7.23 7.31 7.23 7.38 7.44 7.50	$\frac{1}{\text{ft } 6'' = 1.47 \text{g}}{0 \text{ ther}}$ $\frac{0 \text{ other}}{0 \text{ ther}}$ $\frac{0 \text{ other}}{0 \text{ ther}}$ $\frac{0 \text{ r}}{0 \text{ the}}$	gal/ft Turbidity (NTU) (± 10% or ≤10) 10-0 9.02 9.05 9.36

Container Type	Bottle Count	Preservative	Field Filtered?	Analysis
40ml VOA	3	Hel	No 0.45 0.10	GK, BTEX
1 L suppor	1	Hei	No 0.45 0.10	Dx
C OTTING			No 0.45 0.10	
	1		No 0.45 0.10	
			No 0.45 0.10	

GROUNDWATER SAMPLE COLLECTION FORM

Project inal	10 C 1	071	I law delay		Sample I.D.	Ruloi -V	Well	Time: 0835
Hydrocon	Project #:	2017-07		c	Field Duplicat		-	Time:
Date	3	28/19			Personnel:		CD	
Monument Well cap c Headspace Well diame	ondition: reading: eter:	DN Good Not measu 2-inch	Replaced red 4-inch	Needs re	placement	Surface W	Aonument ater in Well	
Total well Depth to pr Depth to wa Casing volu Volume Co	oduct ater ume onversion Fa	$-\infty$ ft B - ft - ft	ntake Depth 0) X _O.3	(BTOC) 20 3 gal/ft	<u>6</u> Begir = 2,98	Purging Well: gal. X 3 =_	0812 8.94 9	al.
PURGING	DISPUSA	L METHOD			and the second			
Bailer type	e:	Wat	ifugal 🛄 D er Disposal:	edicated Blac : Drummed	lder 🗌 Non-I I 📐 Remediat		Other	
Bailer type		Wat	ifugal D er Disposal:	edicated Blac	l 💽 Remediat	tion System [dder Other_] Other Sheen:	
Bailer type	ARAMETE Water Level	Wat	ifugal D ter Disposal: Temp. (°C)	Sp. Cond. (mS/cm) (±3%)	Ider ☐ Non-I A Remediat Dissolved Oxygen (±10% or ≤1.00 ±0.2)	tion System [Other	
Bailer type FIELD PA Time	ARAMETE Water	Wat	Temp. (°C)	: Drummed Sp. Cond. (mS/cm) (±3%) 0.940	Dissolved Oxygen (±10% or ≤1.00 ±0.2) 2.30	tion System Odor and/or pH (SU) (±0.1) C.99	Other Sheen: No ORP (mV) 58.9	Turbidity (NTU) (± 10% or ≤10) 36.7-
FIELD PA Time	Water Level (BTOC) 21.11 21.25	RS Purge Rate (L/min)	Temp. (°C)	Sp. Cond. (mS/cm) (±3%) 0.940 •981	Dissolved Oxygen (±10% or ≤1.00 ±0.2) 2.30	odor and/or pH (SU) (±0.1) C.99 7,33	Other Sheen: No ORP (mV) 58.9 47.9	Turbidity (NTU) (± 10% or ≤10) 36.7- 4.78
FIELD PA Time	Water Level (BTOC) 21.11 21.25 21.35	Wat	Temp. (°C) 11.3 13.0 13.3	: Drummec Sp. Cond. (mS/cm) (±3%) 0.940 پ981 پ981	Dissolved Oxygen (±10% or ≤1.00 ±0.2) 2.30 1.53 0.68	Ddor and/or PH (SU) (±0.1) C.99 T.33 T.37	Other Sheen: No ORP (mV) 58.9 47.9 47.9	Turbidity (NTU) (± 10% or ≤10) 36.7 4.78 2.36
FIELD PA Time	Water Level (BTOC) 21.11 21.25 21.35 21.45	RS Purge Rate (L/min)	Temp. (°C) 13.0 13.4	Sp. Cond. (mS/cm) (±3%) 0.940 _981 _934 _934	Dissolved Oxygen (±10% or ≤1.00 ±0.2) 2.30	tion System Odor and/or pH (SU) (±0.1) 6 .99 7 .33 7 .37 7 .38 7 .38 7 .36	ORP (mV) 58.9 47.9 413.0 39.6 57.2	Turbidity (NTU) (± 10% or ≤10) 36.7 4.78 2.36 2.36 2.66 2.01
FIELD PA Time	Water Level (BTOC) 21.11 21.25 21.35	RS Purge Rate (L/min)	Temp. (°C) 11.3 13.0 13.3	: Drummec Sp. Cond. (mS/cm) (±3%) 0.940 پ981 پ981	Dissolved Oxygen (±10% or ≤1.00 ±0.2) 2.30 1.5% 0.6%	tion System Odor and/or pH (SU) (±0.1) 6 .99 7 .33 7 .37 7 .38	Other Sheen: No ORP (mV) 58.9 47.9 413.0 39.6	Turbidity (NTU) (± 10% or ≤10) 36.7 4.78 2.36 2.36
FIELD PA Time	Water Level (BTOC) 21.25 21.35 21.35 21.58	RS Purge Rate (L/min)	Temp. (°C) 11.3 13.0 13.3 13.4 13.4	Sp. Cond. (mS/cm) (±3%) 0.940 _981 _934 _934	Dissolved Oxygen (±10% or ≤1.00 ±0.2) 2.30 1.5% 0.68 0.38 0.31	tion System Odor and/or pH (SU) (±0.1) 6 .99 7 .33 7 .37 7 .38 7 .38 7 .36	ORP (mV) 58.9 47.9 413.0 39.6 57.2	Turbidity (NTU) (± 10% or ≤10) 36.7 4.78 2.36 2.36 2.66 2.01
FIELD PA Time OSIS OS 21 OS 24 OS 24 OS 24	Water Level (BTOC) 21.25 21.35 21.35 21.58	RS Purge Rate (L/min)	Temp. (°C) 11.3 13.0 13.3 13.4 13.4	Sp. Cond. (mS/cm) (±3%) 0.940 _981 _981 _954 _9777	Dissolved Oxygen (±10% or ≤1.00 ±0.2) 2.30 1.5% 0.68 0.38 0.31	tion System Odor and/or pH (SU) (±0.1) 6 .99 7 .33 7 .37 7 .38 7 .38 7 .36	ORP (mV) 58.9 47.9 413.0 39.6 57.2	Turbidity (NTU) (± 10% or ≤10) 36.7 4.78 2.36 2.36 2.66 2.01
Bailer type FIELD PA Time 0815 0815 0815 0821 0824 0824	Water Level (BTOC) 21.25 21.35 21.35 21.58	RS Purge Rate (L/min)	Temp. (°C) 11.3 13.0 13.3 13.4 13.4	Sp. Cond. (mS/cm) (±3%) 0.940 _981 _981 _954 _9777	Dissolved Oxygen (±10% or ≤1.00 ±0.2) 2.30 1.5% 0.68 0.38 0.31	tion System Odor and/or pH (SU) (±0.1) 6 .99 7 .33 7 .37 7 .38 7 .38 7 .36	ORP (mV) 58.9 47.9 413.0 39.6 57.2	Turbidity (NTU) (± 10% or ≤10) 36.7 4.78 2.36 2.36 2.66 2.01

SAMPLE INFORMATION

Container Type	Bottle Count	Preservative	Field Filtered?	Analysis
40ml VOA	3	Itcl	No 0.45 0.10	GX, BTEX
1 Lamber	1	1+01	No 0.45 0.10	DX
			No 0.45 0.10	
			No 0.45 0.10	
		1	No 0.45 0.10	

Sampling Comments:

Well I.D. Number: Black Project Name (Number): Colona oil Sample I.D.: Black-20190328 Time: 11(0) Hydrocon Project Number: 2017-074 Field Duplicate I.D.: ______ Time: _____ Date: 3-28-19 Personnel: AAh WELL INFORMATION Monument condition: Good Needs repair:

 Monument condition:
 Good
 Needs repair:
 Water in Monument

 Well cap condition:
 Good
 Replaced
 Needs Replacement
 Surface Water Well Infiltration

 Water in Monument Headspace reading: Not measured PID Reading _____ ppm Odor: Well diameter: 2-inch 4-inch 6-inch Other: Comments PURGING INFORMATION Total well depth:______ft Bottom: Hard Soft Not measured Screen Interval(s):_____ Depth to product:_____ft

 Depth to vater:
 ft
 Intake Depth (BTOC):
 Begin Purging Well:

 Casing volume:
 ft (H20) X
 gal/ft =
 gal. X 3 =
 gal.

 Volume Conversion Factors: 3/4"-0.02 gal/ft 1"-0.04 gal/ft 2"-0.16 gal/ft 4"-0.65 gal/ft 6"- 1.47 gal/ft **PURGING/DISPOSAL METHOD** Pump type Peristaltic Centrifugal Dedicated Bladder Non-Dedicated Bladder Other_____ Bailer type:_____ Water Disposal: Drummed Remediation System Other **FIELD PARAMETERS** Odor and/or Sheen: Dissolved Time Water **Purge Rate** Temp. Sp. Cond. Oxygen Turbidity pH ORP Level (L/min) (°C) (mS/cm) (±10% or (SU) (NTU) (mV)_ ≤1.00 ±0.2) (BTOC) (±3%) (±0.1) (± 10% or ≤10) Stabilization achieved if three successive measurements for pH, Conductivity and Turbidity and/or Dissolved Oxygen are recorded within their respective stabilization criteria. A minimum of six measurements should be recorded.

Purging Comments:

Container Type	Bottle Count	Preservative	Field Filtered?	Analysis
your VOA.	3	HCL	No 0.45 0.10	BTEX 8260
			No 0.45 0.10	
0.00			No 0.45 0.10	
			No 0.45 0.10	
and the second second			No 0.45 0.10	
Sampling Comments:				
	Egup	ant finish	a Black.	

APPENDIX B

LABORATORY REPORT AND CHAIN-OF-CUSTODY DOCUMENTATION

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 EPA ID: OR01039

Thursday, April 4, 2019 Craig Hultgren HydroCon LLC 314 W 15th Street Suite 300 Vancouver, WA 98660

RE: A9C1035 - Coleman Wenatchee - 2017-074

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A9C1035, which was received by the laboratory on 3/29/2019 at 2:22:00PM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: <u>ldomenighini@apex-labs.com</u>, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of final reporting, unless prior arrangements have been made.

	Cooler Receip	ot Information		
	(See Cooler Receip	ot Form for details)		
Cooler #1	4.9 degC	Cooler #2	1.3 degC	
Cooler #3	2.6 degC	Cooler #4	2.3 degC	
Cooler #5	1.8 degC		·	

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.

Apex Laboratories

Jusa A Tomenichini

Lisa Domenighini, Client Services Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

HydroCon LLC	Project:	Coleman Wenatchee	
314 W 15th Street Suite 300	Project Number:	2017-074	<u>Report ID:</u>
Vancouver, WA 98660	Project Manager:	Craig Hultgren	A9C1035 - 04 04 19 1058

ANALYTICAL REPORT FOR SAMPLES

	SAMPLE INFORM	ATION		
Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-1-W	A9C1035-01	Water	03/25/19 10:30	03/29/19 14:22
MW01S-W	A9C1035-02	Water	03/25/19 11:00	03/29/19 14:22
MW03S-W	A9C1035-03	Water	03/25/19 11:35	03/29/19 14:22
MW12-W	A9C1035-04	Water	03/25/19 12:05	03/29/19 14:22
MW23-W	A9C1035-05	Water	03/25/19 12:55	03/29/19 14:22
MW-6-W	A9C1035-06	Water	03/25/19 13:30	03/29/19 14:22
MW100-W	A9C1035-07	Water	03/25/19 13:30	03/29/19 14:22
MW13-W	A9C1035-08	Water	03/25/19 14:10	03/29/19 14:22
MW14-W	A9C1035-09	Water	03/25/19 14:45	03/29/19 14:22
MW-11-W	A9C1035-10	Water	03/26/19 08:05	03/29/19 14:22
MW16-W	A9C1035-11	Water	03/26/19 09:20	03/29/19 14:22
MW32-W	A9C1035-12	Water	03/26/19 10:15	03/29/19 14:22
MW17-W	A9C1035-13	Water	03/26/19 10:55	03/29/19 14:22
MW101-W	A9C1035-14	Water	03/26/19 10:55	03/29/19 14:22
MW-8-W	A9C1035-15	Water	03/26/19 08:40	03/29/19 14:22
MW09R-W	A9C1035-16	Water	03/26/19 13:05	03/29/19 14:22
MW31-W	A9C1035-17	Water	03/27/19 08:25	03/29/19 14:22
BH-2-W	A9C1035-18	Water	03/27/19 09:00	03/29/19 14:22
MW30-W	A9C1035-19	Water	03/27/19 09:40	03/29/19 14:22
MW29-W	A9C1035-20	Water	03/27/19 10:30	03/29/19 14:22
BH-1R-W	A9C1035-21	Water	03/27/19 11:10	03/29/19 14:22
MW102-W	A9C1035-22	Water	03/27/19 11:10	03/29/19 14:22
MW28-W	A9C1035-23	Water	03/27/19 12:55	03/29/19 14:22
MW21-W	A9C1035-24	Water	03/28/19 08:15	03/29/19 14:22
MW24-W	A9C1035-25	Water	03/28/19 08:55	03/29/19 14:22
MW10R-W	A9C1035-26	Water	03/28/19 08:35	03/29/19 14:22
MW25-W	A9C1035-27	Water	03/28/19 10:15	03/29/19 14:22
MW26-W	A9C1035-28	Water	03/28/19 10:45	03/29/19 14:22
MW19-W	A9C1035-29	Water	03/28/19 11:30	03/29/19 14:22
MW20-W	A9C1035-30	Water	03/28/19 10:45	03/29/19 14:22
BH03-W	A9C1035-31	Water	03/28/19 10:00	03/29/19 14:22
MW27-W	A9C1035-32	Water	03/28/19 09:20	03/29/19 14:22

Apex Laboratories

Ausa A Zomenighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>HydroCon LLC</u>	Project: <u>Coleman Wenatchee</u>	
314 W 15th Street Suite 300	Project Number: 2017-074	<u>Report ID:</u>
Vancouver, WA 98660	Project Manager: Craig Hultgren	A9C1035 - 04 04 19 1058

ANALYTICAL REPORT FOR SAMPLES

	SAMPLE INFORMA	ATION		
Client Sample ID	Laboratory ID	Matrix	Date Sampled Date Received	
RW01-W	A9C1035-33	Water	03/28/19 08:35 03/29/19 14:22	2
Blank-20190328	A9C1035-34	Water	03/28/19 11:10 03/29/19 14:22	2

Apex Laboratories

Assa A Zomenighini

Lisa Domenighini, Client Services Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

HydroCon LLC 314 W 15th Street Suite 300											
Vancouver, WA 98660		Project	Manager: Cra	aig Hultgren			A9C1035 - 04 0	4 19 1058			
		ANALYTI	CAL SAMI	PLE RESULTS							
	Die	esel and/or O	il Hydrocar	bons by NWTP	H-Dx						
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes			
 MW-1-W (A9C1035-01)						Ba	tch: 9040389	10003			
Diesel	126		75.5	ug/L	1	04/02/19	NWTPH-Dx	F-11, F-20			
Oil	ND		151	ug/L	1	04/02/19	NWTPH-Dx				
Surrogate: o-Terphenyl (Surr)		Reco	very: 91 %	Limits: 50-150 %	6 1	04/02/19	NWTPH-Dx				
MW01S-W (A9C1035-02)				Matrix: Wate	er	Ba	tch: 9040389				
Diesel	116		76.2	ug/L	1	04/02/19	NWTPH-Dx	F-11, F-20			
Oil	ND		152	ug/L	1	04/02/19	NWTPH-Dx				
Surrogate: o-Terphenyl (Surr)		Reco	very: 93 %	Limits: 50-150 %	6 1	04/02/19	NWTPH-Dx				
MW03S-W (A9C1035-03)			Matrix: Water			Ba	tch: 9040389				
Diesel	ND		76.2	ug/L	1	04/02/19	NWTPH-Dx				
Oil	ND		152	ug/L	1	04/02/19	NWTPH-Dx				
Surrogate: o-Terphenyl (Surr)		Reco	very: 84 %	Limits: 50-150 %	ó 1	04/02/19	NWTPH-Dx				
MW12-W (A9C1035-04)			Matrix: Water		Ba	tch: 9040389					
Diesel	ND		76.2	ug/L	1	04/02/19	NWTPH-Dx				
Oil	ND		152	ug/L	1	04/02/19	NWTPH-Dx				
Surrogate: o-Terphenyl (Surr)		Reco	very: 92 %	Limits: 50-150 %	ó 1	04/02/19	NWTPH-Dx				
MW23-W (A9C1035-05)				Matrix: Wate	er	Ba	tch: 9040389				
Diesel	339		76.2	ug/L	1	04/02/19	NWTPH-Dx	F-11			
Oil	ND		152	ug/L	1	04/02/19	NWTPH-Dx				
Surrogate: o-Terphenyl (Surr)		Reco	very: 86 %	Limits: 50-150 %	6 I	04/02/19	NWTPH-Dx				
MW-6-W (A9C1035-06)				Matrix: Wate	er	Ba	tch: 9040389				
Diesel	1010		76.2	ug/L	1	04/02/19	NWTPH-Dx	F-13, F-20			
Oil	ND		152	ug/L	1	04/02/19	NWTPH-Dx				
Surrogate: o-Terphenyl (Surr)		Reco	very: 92 %	Limits: 50-150 %	ó 1	04/02/19	NWTPH-Dx				
MW100-W (A9C1035-07)				Matrix: Wate	er	Ba	tch: 9040389				
Diesel	1130		76.2	ug/L	1	04/02/19	NWTPH-Dx	F-13, F-20			
Oil	ND		152	ug/L	1	04/02/19	NWTPH-Dx				
Surrogate: o-Terphenyl (Surr)		Reco	very: 94 %	Limits: 50-150 %	6 I	04/02/19	NWTPH-Dx				
MW13-W (A9C1035-08)				Matrix: Wate	er	Ва	tch: 9040389				
Diesel	4650		75.5	ug/L	1	04/02/19	NWTPH-Dx	F-11, F-20			

Apex Laboratories

Ausa A Zomenighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

HydroCon LLC 314 W 15th Street Suite 300		Proj Project	ect: <u>Col</u> Number: 201	<u>eman Wenatchee</u> 7-074			<u>Report</u>	ID:
Vancouver, WA 98660		Project	Manager: Cra	nig Hultgren			A9C1035 - 04 0	4 19 1058
		ANALYTI	CAL SAMI	PLE RESULTS				
	Die	sel and/or Oi	l Hydrocar	bons by NWTP	H-Dx			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW13-W (A9C1035-08)				Matrix: Wate	ər	Ва	tch: 9040389	
Oil	ND		151	ug/L	1	04/02/19	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Recov	very: 56 %	Limits: 50-150 %	5 1	04/02/19	NWTPH-Dx	
MW14-W (A9C1035-09)				Matrix: Wate	ər	Ва	tch: 9040389	
Diesel	1070		75.5	ug/L	1	04/02/19	NWTPH-Dx	F-11, F-20
Oil	ND		151	ug/L	1	04/02/19	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Recov	very: 94 %	Limits: 50-150 %	5 1	04/02/19	NWTPH-Dx	
MW-11-W (A9C1035-10)		Matrix: Water Bato			tch: 9040389			
Diesel	1230		75.5	ug/L	1	04/01/19	NWTPH-Dx	F-13, F-20
Oil	ND		151	ug/L	1	04/01/19	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Recov	very: 55 %	Limits: 50-150 %	5 1	04/01/19	NWTPH-Dx	
MW16-W (A9C1035-11)				Matrix: Water Ba		tch: 9040389		
Diesel	183		74.8	ug/L	1	04/01/19	NWTPH-Dx	F-11
Oil	ND		150	ug/L	1	04/01/19	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Recov	very: 93 %	Limits: 50-150 %	5 1	04/01/19	NWTPH-Dx	
MW32-W (A9C1035-12)				Matrix: Wate	ər	Ва	tch: 9040389	
Diesel	296		74.8	ug/L	1	04/01/19	NWTPH-Dx	F-11
Oil	ND		150	ug/L	1	04/01/19	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Recov	very: 80 %	Limits: 50-150 %	5 1	04/01/19	NWTPH-Dx	
MW17-W (A9C1035-13)				Matrix: Wate	ər	Ва	tch: 9040389	
Diesel	2520		75.5	ug/L	1	04/02/19	NWTPH-Dx	F-13, F-20
Oil	ND		151	ug/L	1	04/02/19	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Recov	very: 65 %	Limits: 50-150 %	5 1	04/02/19	NWTPH-Dx	
MW101-W (A9C1035-14)				Matrix: Wate	ər	Ва	tch: 9040389	
Diesel	3220		76.2	ug/L	1	04/02/19	NWTPH-Dx	F-13, F-20
Oil	ND		152	ug/L	1	04/02/19	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Recov	very: 72 %	Limits: 50-150 %	5 1	04/02/19	NWTPH-Dx	
MW-8-W (A9C1035-15)				Matrix: Wate	ər	Ва	tch: 9040389	
Diesel	2220		74.8	ug/L	1	04/02/19	NWTPH-Dx	F-13, F-20
Oil	ND		150	ug/L	1	04/02/19	NWTPH-Dx	

Apex Laboratories

Assa A Zomenighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>HydroCon LLC</u> 314 W 15th Street Suite 300 Vancouver, WA 98660	Project:Coleman WenatcheeProject Number:2017-074Project Manager:Craig HultgrenA9C1035 - 04 04								
		ANALYTI	CAL SAMI	PLE RESULTS					
	Die	esel and/or O	il Hydrocar	bons by NWTPI	H-Dx				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes	
MW-8-W (A9C1035-15)				Matrix: Wate	ər	Ва	tch: 9040389		
Surrogate: o-Terphenyl (Surr)		Reco	very: 46 %	Limits: 50-150 %	1	04/02/19	NWTPH-Dx	S-06	
MW09R-W (A9C1035-16)				Matrix: Wate	er	Ва	tch: 9040389		
Diesel Oil	5690 ND		75.5 151	ug/L ug/L	1 1	04/02/19 04/02/19	NWTPH-Dx NWTPH-Dx	F-13, F-20	
Surrogate: o-Terphenyl (Surr)		Reco	very: 79 %	Limits: 50-150 %	1	04/02/19	NWTPH-Dx		
MW31-W (A9C1035-17)		Matrix: Water			Ва	tch: 9040389			
Diesel Oil Surrogate: o-Terphenvl (Surr)	ND ND	 Reco	74.8 150 very: 93 %	ug/L ug/L Limits: 50-150 %	1	04/02/19 04/02/19 04/02/19	NWTPH-Dx NWTPH-Dx NWTPH-Dx		
		Reco	very. 7570						
BH-2-W (A9C1035-18)	5210		74.8	Matrix: Wate			tch: 9040389	F-13, F-15	
Diesel Oil	5310 475		150	ug/L ug/L	1 1	04/02/19 04/02/19	NWTPH-Dx	F-03, F-16	
Surrogate: o-Terphenyl (Surr)		Reco	very: 65 %	Limits: 50-150 %	1	04/02/19	NWTPH-Dx		
MW30-W (A9C1035-19)				Matrix: Wate	ər	Ва	tch: 9040389		
Diesel Oil Surrogate: o-Terphenyl (Surr)	612 ND	 Reco	74.8 150 very: 82 %	ug/L ug/L Limits: 50-150 %	1 1 1	04/02/19 04/02/19 <i>04/02/19</i>	NWTPH-Dx NWTPH-Dx <i>NWTPH-Dx</i>	F-13	
MW29-W (A9C1035-20)				Matrix: Wate	er	Ва	tch: 9040389		
Diesel Oil Surrogate: o-Terphenyl (Surr)	2930 928	 Reco	75.5 151 very: 64 %	ug/L ug/L Limits: 50-150 %	1 1 1	04/02/19 04/02/19 04/02/19	NWTPH-Dx NWTPH-Dx <i>NWTPH-Dx</i>	F-13, F-15 F-16	
BH-1R-W (A9C1035-21RE1)				Matrix: Wate			tch: 9040412		
Diesel Oil Surrogate: o-Terphenyl (Surr)	13600 ND	 Reco	755 1510 very: 74 %	ug/L ug/L Limits: 50-150 %	10 10	04/04/19 04/04/19 04/04/19	NWTPH-Dx NWTPH-Dx NWTPH-Dx	F-13	
MW102-W (A9C1035-22RE1)			· · · · · ·	Matrix: Wate			tch: 9040412		
Diesel Oil	15500 ND		748 1500	ug/L ug/L	10 10	04/04/19 04/04/19	NWTPH-Dx NWTPH-Dx	F-13	

Apex Laboratories

Assa A Zomenighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

HydroCon LLC		Proj	ect: <u>Col</u>	leman Wenatche	<u>e</u>				
314 W 15th Street Suite 300	Project Number: 2017-074 Report ID:								
Vancouver, WA 98660		Project	Manager: Cra	aig Hultgren			A9C1035 - 04 0	04 19 1058	
		ANALYTI	CAL SAMI	PLE RESULT	S				
	Die	esel and/or Oi	il Hydrocar	bons by NWT	PH-Dx				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes	
MW102-W (A9C1035-22RE1)				Matrix: Wa			tch: 9040412	Notes	
Surrogate: o-Terphenyl (Surr)		Recov	very: 73 %	Limits: 50-150		04/04/19	NWTPH-Dx	S-05	
				Matrix: Wa	ater	Ва	tch: 9040412		
Diesel	1370		75.5	ug/L	1	04/03/19	NWTPH-Dx	F-13	
Oil	ND		151	ug/L	1	04/03/19	NWTPH-Dx		
Surrogate: o-Terphenyl (Surr)		Recov	very: 75 %	Limits: 50-150	% 1	04/03/19	NWTPH-Dx		
MW21-W (A9C1035-24)		Matrix: Water			Ва	tch: 9040412			
Diesel	1400		75.5	ug/L	1	04/03/19	NWTPH-Dx	F-13	
Oil	ND		151	ug/L	1	04/03/19	NWTPH-Dx		
Surrogate: o-Terphenyl (Surr)		Recov	very: 74 %	Limits: 50-150	% 1	04/03/19	NWTPH-Dx		
MW24-W (A9C1035-25)		Matrix: Water		Ва	tch: 9040412				
Diesel	695		74.8	ug/L	1	04/03/19	NWTPH-Dx	F-13	
Oil	ND		150	ug/L	1	04/03/19	NWTPH-Dx		
Surrogate: o-Terphenyl (Surr)		Recov	very: 88 %	Limits: 50-150	% 1	04/03/19	NWTPH-Dx		
MW10R-W (A9C1035-26)				Matrix: Wa	ater	Ва	tch: 9040412		
Diesel	2960		75.5	ug/L	1	04/03/19	NWTPH-Dx	F-13	
Oil	ND		151	ug/L	1	04/03/19	NWTPH-Dx		
Surrogate: o-Terphenyl (Surr)		Recov	very: 77 %	Limits: 50-150	% 1	04/03/19	NWTPH-Dx		
MW25-W (A9C1035-27)				Matrix: Wa	ater	Ва	tch: 9040412		
Diesel	302		74.8	ug/L	1	04/03/19	NWTPH-Dx	F-11	
Oil	ND		150	ug/L	1	04/03/19	NWTPH-Dx		
Surrogate: o-Terphenyl (Surr)		Recov	very: 93 %	Limits: 50-150	% 1	04/03/19	NWTPH-Dx		
MW26-W (A9C1035-28)				Matrix: Wa	ater	Ва	tch: 9040412		
Diesel	591		74.8	ug/L	1	04/03/19	NWTPH-Dx	F-13	
Oil	ND		150	ug/L	1	04/03/19	NWTPH-Dx		
Surrogate: o-Terphenyl (Surr)		Recov	very: 87%	Limits: 50-150	% 1	04/03/19	NWTPH-Dx		
MW19-W (A9C1035-29)				Matrix: Wa	iter	Ва	tch: 9040412		
Diesel	4300		74.8	ug/L	1	04/03/19	NWTPH-Dx	F-13	
Oil	ND		150	ug/L	1	04/03/19	NWTPH-Dx		
Surrogate: o-Terphenyl (Surr)		Recov	very: 77 %	Limits: 50-150	% 1	04/03/19	NWTPH-Dx		

Apex Laboratories

Ausa A Zomenighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>HydroCon LLC</u> 314 W 15th Street Suite 300 Vancouver, WA 98660		<u>Report ID:</u> A9C1035 - 04 04 19 1058						
		ANALYTI	CAL SAMI	PLE RESULTS	8			
	Die	esel and/or O	il Hydrocar	bons by NWTP	PH-Dx			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW20-W (A9C1035-30)			Matrix: Water Batch:				tch: 9040412	
Diesel Oil	2190 ND		74.8 150	ug/L ug/L	1	04/03/19 04/03/19	NWTPH-Dx NWTPH-Dx	F-13
Surrogate: o-Terphenyl (Surr)		Reco	very: 75 %	Limits: 50-150 9	% 1	04/03/19	NWTPH-Dx	
BH03-W (A9C1035-31)			Matrix: Water			Ва	tch: 9040412	
Diesel Oil	1850 ND		74.8 150	ug/L ug/L	1 1	04/03/19 04/03/19	NWTPH-Dx NWTPH-Dx	F-13
Surrogate: o-Terphenyl (Surr)		Reco	very: 74 %	Limits: 50-150 9	% 1	04/03/19	NWTPH-Dx	
MW27-W (A9C1035-32)				Matrix: Wat	er	Ва	tch: 9040412	
Diesel Oil	185 ND		74.8 150	ug/L ug/L	1 1	04/03/19 04/03/19	NWTPH-Dx NWTPH-Dx	F-13
Surrogate: o-Terphenyl (Surr)		Reco	very: 88 %	Limits: 50-150 9	% 1	04/03/19	NWTPH-Dx	
RW01-W (A9C1035-33)				Matrix: Wat	er	Ва	tch: 9040412	
Diesel Oil	ND ND		74.8 150	ug/L ug/L	1	04/03/19 04/03/19	NWTPH-Dx NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 88 %	Limits: 50-150 9	% 1	04/03/19	NWTPH-Dx	

Apex Laboratories

Assa A Zomenighini

Lisa Domenighini, Client Services Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>HydroCon LLC</u> 314 W 15th Street Suite 300		Project Project N	: <u>Col</u> umber: 201	eman Wenatchee			n (1	D.
Vancouver, WA 98660		5		/-0/4 aig Hultgren			Report 1	
vancouver, wA 98000		Ploject Ma	inager. Cra	ing mungren			A9C1035 - 04 04	19 1058
		ANALYTICA	AL SAMF	PLE RESULTS				
Gasol	ine Range Hy	drocarbons (B	enzene th	nrough Naphtha	lene) by	NWTPH-G	x	
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW-1-W (A9C1035-01)				Matrix: Wate	r	Ba	itch: 9031322	
Gasoline Range Organics	172		100	ug/L	1	03/29/19	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery:	112 %	Limits: 50-150 %	1	03/29/19	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			113 %	50-150 %	1	03/29/19	NWTPH-Gx (MS)	
MW01S-W (A9C1035-02)				Matrix: Wate	r	Ва	itch: 9031322	
Gasoline Range Organics	133		100	ug/L	1	03/29/19	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery:	115 %	Limits: 50-150 %	1	03/29/19	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			113 %	50-150 %	1	03/29/19	NWTPH-Gx (MS)	
MW03S-W (A9C1035-03)				Matrix: Water		Ba	ntch: 9031322	
Gasoline Range Organics	ND		100	ug/L	1	03/29/19	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery:	115 %	Limits: 50-150 %	1	03/29/19	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			117 %	50-150 %	1	03/29/19	NWTPH-Gx (MS)	
MW12-W (A9C1035-04)				Matrix: Water		Ba	Batch: 9031322	
Gasoline Range Organics	ND		100	ug/L	1	03/29/19	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery:	113 %	Limits: 50-150 %	1	03/29/19	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			118 %	50-150 %	1	03/29/19	NWTPH-Gx (MS)	
MW23-W (A9C1035-05)				Matrix: Wate	r	Ва	itch: 9031322	
Gasoline Range Organics	ND		100	ug/L	1	03/30/19	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery:	115 %	Limits: 50-150 %	1	03/30/19	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			116 %	50-150 %	1	03/30/19	NWTPH-Gx (MS)	
MW-6-W (A9C1035-06)				Matrix: Wate	r	Ba	ntch: 9031322	
Gasoline Range Organics	398		100	ug/L	1	03/30/19	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery:	118 %	Limits: 50-150 %	1	03/30/19	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			112 %	50-150 %	1	03/30/19	NWTPH-Gx (MS)	
MW100-W (A9C1035-07)				Matrix: Wate	r	Ba	itch: 9031322	
Gasoline Range Organics	390		100	ug/L	1	03/30/19	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery:	116 %	Limits: 50-150 %	1	03/30/19	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			111 %	50-150 %	1	03/30/19	NWTPH-Gx (MS)	
MW13-W (A9C1035-08)				Matrix: Wate	r	Ba	itch: 9040385	

2000

Gasoline Range Organics

Apex Laboratories

Ausa A Zomenighini

28500

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

20

ug/L

04/01/19

NWTPH-Gx (MS)

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>HydroCon LLC</u> 314 W 15th Street Suite 300		Projec Project N	ct: <u>Col</u> Number: 201	<u>eman Wenatchee</u> 7-074			<u>Report</u>	<u>D:</u>
Vancouver, WA 98660	Project Manager: Craig Hultgren						A9C1035 - 04 04	19 1058
		ANALYTIC	CAL SAMP	PLE RESULTS				
Gasol	ine Range Hy	vdrocarbons (E	Benzene th	nrough Naphthal	ene) by	NWTPH-G	x	
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW13-W (A9C1035-08)				Matrix: Water		Ва	ntch: 9040385	
Surrogate: 4-Bromofluorobenzene (Sur)		Recover	ry: 98 %	Limits: 50-150 %	1	04/01/19	NWTPH-Gx (MS)	~ ~ ~
1,4-Difluorobenzene (Sur)			152 %	50-150 %	1	04/01/19	NWTPH-Gx (MS)	S-02
MW14-W (A9C1035-09)				Matrix: Water		Ва	itch: 9031329	
Gasoline Range Organics	2650		100	ug/L	1	03/29/19	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	y: 101 %	Limits: 50-150 %	1	03/29/19	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			2080 %	50-150 %	1	03/29/19	NWTPH-Gx (MS)	S-02
MW-11-W (A9C1035-10)				Matrix: Water Bat			itch: 9031329	
Gasoline Range Organics	1540		100	ug/L	1	03/29/19	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recover	ry: 97%	Limits: 50-150 %	1	03/29/19	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			93 %	50-150 %	1	03/29/19	NWTPH-Gx (MS)	
MW16-W (A9C1035-11)		Matrix: Water			Batch: 9031329			
Gasoline Range Organics	ND		100	ug/L	1	03/29/19	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recover	ry: 93 %	Limits: 50-150 %	1	03/29/19	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			86 %	50-150 %	1	03/29/19	NWTPH-Gx (MS)	
MW32-W (A9C1035-12)				Matrix: Water		Ba	itch: 9031329	
Gasoline Range Organics	ND		100	ug/L	1	03/29/19	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recover	ry: 94 %	Limits: 50-150 %	1	03/29/19	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			86 %	50-150 %	1	03/29/19	NWTPH-Gx (MS)	
MW17-W (A9C1035-13)				Matrix: Water		Ва	itch: 9031329	
Gasoline Range Organics	1180		100	ug/L	1	03/30/19	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recover	ry: 99%	Limits: 50-150 %	1	03/30/19	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			377 %	50-150 %	1	03/30/19	NWTPH-Gx (MS)	S-02
MW101-W (A9C1035-14)				Matrix: Water		Ва	itch: 9031329	
Gasoline Range Organics	1120		100	ug/L	1	03/30/19	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recover	ry: 97%	Limits: 50-150 %	1	03/30/19	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			373 %	50-150 %	1	03/30/19	NWTPH-Gx (MS)	S-02
MW-8-W (A9C1035-15)				Matrix: Water		Ba	itch: 9031329	
Gasoline Range Organics	768		100	ug/L	1	03/30/19	NWTPH-Gx (MS)	

Apex Laboratories

Assa A Zomenighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>HydroCon LLC</u> 314 W 15th Street Suite 300	Project:Coleman WenatcheeProject Number:2017-074Project Manager:Craig Hultgren						<u>Report ID:</u>		
Vancouver, WA 98660							A9C1035 - 04 04 19 1058		
		ANALYTI	CAL SAMF	PLE RESULTS					
Gasol	ine Range Hy	drocarbons	(Benzene th	nrough Naphtha	alene) by	NWTPH-G	x		
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes	
MW-8-W (A9C1035-15)	Matrix: Water Batch: 9031329								
Surrogate: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Recov	very: 96 % 88 %	Limits: 50-150 % 50-150 %		03/30/19 03/30/19	NWTPH-Gx (MS) NWTPH-Gx (MS)		
				Matrix: Wate	ər	Ba	atch: 9031329		
Gasoline Range Organics	1000		100	ug/L	1	03/30/19	NWTPH-Gx (MS)		
Surrogate: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Recov	very: 98 % 87 %	Limits: 50-150 %		03/30/19 03/30/19	NWTPH-Gx (MS) NWTPH-Gx (MS)		
MW31-W (A9C1035-17)		Matrix: Water			Batch: 9031329				
Gasoline Range Organics	ND		100	ug/L	1	03/29/19	NWTPH-Gx (MS)		
Surrogate: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Recov	very: 96 % 86 %	Limits: 50-150 %		03/29/19 03/29/19	NWTPH-Gx (MS) NWTPH-Gx (MS)		
BH-2-W (A9C1035-18)		Matrix: Water			Batch: 9031329				
Gasoline Range Organics	354		100	ug/L	1	03/30/19	NWTPH-Gx (MS)		
Surrogate: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Recov	very: 99% 87%	Limits: 50-150 %		03/30/19 03/30/19	NWTPH-Gx (MS) NWTPH-Gx (MS)		
MW30-W (A9C1035-19)				Matrix: Water		Batch: 9031329			
Gasoline Range Organics	ND		100	ug/L	1	03/29/19	NWTPH-Gx (MS)		
Surrogate: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Recov	very: 97 % 87 %	Limits: 50-150 % 50-150 %		03/29/19 03/29/19	NWTPH-Gx (MS) NWTPH-Gx (MS)		
				Matrix: Wate	ər	Ba	atch: 9031329		
Gasoline Range Organics	237		100	ug/L	1	03/29/19	NWTPH-Gx (MS)		
Surrogate: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Recov	very: 98 % 87 %	Limits: 50-150 %		03/29/19 03/29/19	NWTPH-Gx (MS) NWTPH-Gx (MS)		
 BH-1R-W (A9C1035-21)				Matrix: Water		Batch: 9031329			
Gasoline Range Organics	1130		100	ug/L	1	03/30/19	NWTPH-Gx (MS)		
Surrogate: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Recov	very: 96 % 90 %	Limits: 50-150 % 50-150 %		03/30/19 03/30/19	NWTPH-Gx (MS) NWTPH-Gx (MS)		
				Matrix: Wate	ər	Ba	atch: 9031329		
Gasoline Range Organics	2600		100	ug/L	1	03/30/19	NWTPH-Gx (MS)		
Surrogate: 4-Bromofluorobenzene (Sur)		Recove	ery: 116%	Limits: 50-150 %	5 1	03/30/19	NWTPH-Gx (MS)		

Apex Laboratories

Ausa A Zomenighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Project: Coleman Wenatchee								
Project Number: 2017-074 Project Manager: Craig Hultgren								
	A9C1035 - 04 04	19 1058						
by NWTPH-G	Gx							
Date on Analyzed	Method Ref.	Notes						
Matrix: Water Batch: 9031329								
03/30/19	NWTPH-Gx (MS)							
B	Batch: 9040385							
04/01/19	NWTPH-Gx (MS)							
04/01/19 04/01/19	NWTPH-Gx (MS) NWTPH-Gx (MS)							
B	Batch: 9040385							
04/01/19	NWTPH-Gx (MS)							
04/01/19 04/01/19	NWTPH-Gx (MS) NWTPH-Gx (MS)							
B	Batch: 9040385							
04/01/19	NWTPH-Gx (MS)							
04/01/19 04/01/19	NWTPH-Gx (MS) NWTPH-Gx (MS)							
B	Batch: 9040385							
04/01/19	NWTPH-Gx (MS)							
04/01/19 04/01/19	NWTPH-Gx (MS) NWTPH-Gx (MS)							
B	Batch: 9040385							
04/01/19	NWTPH-Gx (MS)							
04/01/19 04/01/19	NWTPH-Gx (MS) NWTPH-Gx (MS)							
B	Batch: 9040385							
04/01/19	NWTPH-Gx (MS)							
04/01/19 04/01/19	NWTPH-Gx (MS) NWTPH-Gx (MS)							
B	Batch: 9040385							
04/01/19	NWTPH-Gx (MS)							
04/01/19	NWTPH-Gx (MS)							
		04/01/19 NWTPH-Gx (MS)						

Apex Laboratories

Ausa A Zomenichini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>HydroCon LLC</u> 314 W 15th Street Suite 300 Vancouver, WA 98660	Project:Coleman WenatcheeProject Number:2017-074Project Manager:Craig Hultgren							<u>Report ID:</u> A9C1035 - 04 04 19 1058	
		ANALYTICA	L SAMI	PLE RESULTS					
Gasol	ine Range Hy	drocarbons (Be	nzene tł	nrough Naphtha	lene) by	NWTPH-G	x		
Analyte	Sample Result	Detection F Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes	
			Matrix: Water Batch: 9040385						
Gasoline Range Organics	1220		100	ug/L	1	04/01/19	NWTPH-Gx (MS)		
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery:	96 %	Limits: 50-150 %	1	04/01/19	NWTPH-Gx (MS)		
1,4-Difluorobenzene (Sur)			86 %	50-150 %	1	04/01/19	NWTPH-Gx (MS)		
BH03-W (A9C1035-31)		Matrix: Water			Batch: 9040385				
Gasoline Range Organics	319		100	ug/L	1	04/01/19	NWTPH-Gx (MS)		
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery:	95 %	Limits: 50-150 %	1	04/01/19	NWTPH-Gx (MS)		
1,4-Difluorobenzene (Sur)			85 %	50-150 %	1	04/01/19	NWTPH-Gx (MS)		
MW27-W (A9C1035-32)		Matrix: Water Batch: 904038				atch: 9040385			
Gasoline Range Organics	ND		100	ug/L	1	04/01/19	NWTPH-Gx (MS)		
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery:	94 %	Limits: 50-150 %	1	04/01/19	NWTPH-Gx (MS)		
1,4-Difluorobenzene (Sur)			84 %	50-150 %	1	04/01/19	NWTPH-Gx (MS)		
RW01-W (A9C1035-33)				Matrix: Water Bate		atch: 9040385			
Gasoline Range Organics	ND		100	ug/L	1	04/01/19	NWTPH-Gx (MS)		
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery:	96 %	Limits: 50-150 %	1	04/01/19	NWTPH-Gx (MS)		
1,4-Difluorobenzene (Sur)			85 %	50-150 %	1	04/01/19	NWTPH-Gx (MS)		
Blank-20190328 (A9C1035-34)				Matrix: Water		Batch: 9031329			
Gasoline Range Organics	ND		100	ug/L	1	03/29/19	NWTPH-Gx (MS)		
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery:	95 %	Limits: 50-150 %	1	03/29/19	NWTPH-Gx (MS)		
1,4-Difluorobenzene (Sur)			86 %	50-150 %	1	03/29/19	NWTPH-Gx (MS)		

Apex Laboratories

Assa A Zomenighini

Lisa Domenighini, Client Services Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>HydroCon LLC</u> 314 W 15th Street Suite 300	Project: <u>Coleman Wenatchee</u> Project Number: 2017-074						Report	ID:		
Vancouver, WA 98660	ug Hultgren		0C1035 - 04 04 19 1058							
,		-	-	PLE RESULTS				. 19 1000		
				y EPA 8260C						
	Sample		Reporting	<u> </u>		Date				
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes		
MW-1-W (A9C1035-01)				Matrix: Wate	r	Ba	Batch: 9031322			
Benzene	ND		0.200	ug/L	1	03/29/19	EPA 8260C			
Toluene	ND		1.00	ug/L	1	03/29/19	EPA 8260C			
Ethylbenzene	ND		0.500	ug/L	1	03/29/19	EPA 8260C			
Xylenes, total	ND		1.50	ug/L	1	03/29/19	EPA 8260C			
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery:	109 %	Limits: 80-120 %	1	03/29/19	EPA 8260C			
Toluene-d8 (Surr)			97 %	80-120 %	1	03/29/19	EPA 8260C			
4-Bromofluorobenzene (Surr)			103 %	80-120 %	1	03/29/19	EPA 8260C			
MW01S-W (A9C1035-02)				Matrix: Water Bat			tch: 9031322			
Benzene	ND		0.200	ug/L	1	03/29/19	EPA 8260C			
Toluene	ND		1.00	ug/L	1	03/29/19	EPA 8260C			
Ethylbenzene	4.18		0.500	ug/L	1	03/29/19	EPA 8260C			
Xylenes, total	8.97		1.50	ug/L	1	03/29/19	EPA 8260C			
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery:	109 %	Limits: 80-120 %	1	03/29/19	EPA 8260C			
Toluene-d8 (Surr)			100 %	80-120 %	1	03/29/19	EPA 8260C			
4-Bromofluorobenzene (Surr)			97 %	80-120 %	1	03/29/19	EPA 8260C			
MW03S-W (A9C1035-03)				Matrix: Wate	r	Batch: 9031				
Benzene	ND		0.200	ug/L	1	03/29/19	EPA 8260C			
Toluene	ND		1.00	ug/L	1	03/29/19	EPA 8260C			
Ethylbenzene	ND		0.500	ug/L	1	03/29/19	EPA 8260C			
Xylenes, total	ND		1.50	ug/L	1	03/29/19	EPA 8260C			
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery:	113 %	Limits: 80-120 %	1	03/29/19	EPA 8260C			
Toluene-d8 (Surr)		2	100 %	80-120 %	1	03/29/19	EPA 8260C			
4-Bromofluorobenzene (Surr)			101 %	80-120 %	1	03/29/19	EPA 8260C			
/W12-W (A9C1035-04)				Matrix: Wate	r	Ba	tch: 9031322			
Benzene	ND		0.200	ug/L	1	03/29/19	EPA 8260C			
Toluene	ND		1.00	ug/L	1	03/29/19	EPA 8260C			
Ethylbenzene	ND		0.500	ug/L	1	03/29/19	EPA 8260C			
Xylenes, total	ND		1.50	ug/L	1	03/29/19	EPA 8260C			
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery:	114 %	Limits: 80-120 %	1	03/29/19	EPA 8260C			
Toluene-d8 (Surr)		-	101 %	80-120 %	1	03/29/19	EPA 8260C			
4-Bromofluorobenzene (Surr)			100 %	80-120 %	1	03/29/19	EPA 8260C			
MW23-W (A9C1035-05)				Matrix: Wate	r	Batch: 9031322				
Benzene	ND		0.200	ug/L	1	03/30/19	EPA 8260C			

Apex Laboratories

Jusa A Zomenichini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>HydroCon LLC</u> 314 W 15th Street Suite 300		Report	ID:							
Vancouver, WA 98660	Project Number: 2017-074 Project Manager: Craig Hultgren							<u>Report 1D:</u> A9C1035 - 04 04 19 1058		
		ANALYTICA	AL SAMI	PLE RESULTS						
		BTEX Com	pounds b	y EPA 8260C						
	Sample	Detection	Reporting			Date				
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes		
/W23-W (A9C1035-05)				Matrix: Water	r	Ba	tch: 9031322			
Toluene	ND		1.00	ug/L	1	03/30/19	EPA 8260C			
Ethylbenzene	ND		0.500	ug/L	1	03/30/19	EPA 8260C			
Xylenes, total	ND		1.50	ug/L	1	03/30/19	EPA 8260C			
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	: 112 %	Limits: 80-120 %	1	03/30/19	EPA 8260C			
Toluene-d8 (Surr)			100 %	80-120 %	1	03/30/19	EPA 8260C			
4-Bromofluorobenzene (Surr)			101 %	80-120 %	1	03/30/19	EPA 8260C			
/W-6-W (A9C1035-06)				Matrix: Water	tch: 9031322					
Benzene	ND		0.200	ug/L	1	03/30/19	EPA 8260C			
Toluene	ND		1.00	ug/L	1	03/30/19	EPA 8260C			
Ethylbenzene	ND		0.500	ug/L	1	03/30/19	EPA 8260C			
Xylenes, total	ND		1.50	ug/L	1	03/30/19	EPA 8260C			
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery.	109 %	Limits: 80-120 %	1	03/30/19	EPA 8260C			
Toluene-d8 (Surr)			97 %	80-120 %	1	03/30/19	EPA 8260C			
4-Bromofluorobenzene (Surr)			101 %	80-120 %	1	03/30/19	EPA 8260C			
/W100-W (A9C1035-07)				Matrix: Water	r	Ba	tch: 9031322			
Benzene	ND		0.200	ug/L	1	03/30/19	EPA 8260C			
Toluene	ND		1.00	ug/L	1	03/30/19	EPA 8260C			
Ethylbenzene	ND		0.500	ug/L	1	03/30/19	EPA 8260C			
Xylenes, total	ND		1.50	ug/L	1	03/30/19	EPA 8260C			
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery.	108 %	Limits: 80-120 %	1	03/30/19	EPA 8260C			
Toluene-d8 (Surr)			97 %	80-120 %	1	03/30/19	EPA 8260C			
4-Bromofluorobenzene (Surr)			101 %	80-120 %	1	03/30/19	EPA 8260C			
/W13-W (A9C1035-08)				Matrix: Water	r	Batch: 9040385				
Benzene	701		4.00	ug/L	20	04/01/19	EPA 8260C			
Toluene	761		20.0	ug/L	20	04/01/19	EPA 8260C			
Ethylbenzene	804		10.0	ug/L	20	04/01/19	EPA 8260C			
Xylenes, total	4980		30.0	ug/L	20	04/01/19	EPA 8260C			
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery.	106 %	Limits: 80-120 %	1	04/01/19	EPA 8260C			
Toluene-d8 (Surr)			102 %	80-120 %	1	04/01/19	EPA 8260C			
4-Bromofluorobenzene (Surr)			101 %	80-120 %	1	04/01/19	EPA 8260C			
/W14-W (A9C1035-09)				Matrix: Water E		Ba	tch: 9031329			
Benzene	17.8		0.200	ug/L	1	03/29/19	EPA 8260C			
Toluene	ND		1.00	ug/L	1	03/29/19	EPA 8260C			

Assa A Zomenighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>HydroCon LLC</u> 314 W 15th Street Suite 300		Project Project Nu	: <u>Col</u> umber: 201	<u>eman Wenatchee</u> 7-074			Report	ID.
Vancouver, WA 98660		5		ig Hultgren			A9C1035 - 04 0	
		ANALYTICA	L SAMF	PLE RESULTS				
		BTEX Com	oounds b	y EPA 8260C				
	Sample		Reporting	** *	D 1 .:	Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
IW14-W (A9C1035-09)				Matrix: Wate	r	Ba	tch: 9031329	
Ethylbenzene	2.04		0.500	ug/L	1	03/29/19	EPA 8260C	
Xylenes, total	ND		1.50	ug/L	1	03/29/19	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	v: 96 %	Limits: 80-120 %	1	03/29/19	EPA 8260C	
Toluene-d8 (Surr)			113 %	80-120 %	1	03/29/19	EPA 8260C	
4-Bromofluorobenzene (Surr)			99 %	80-120 %	1	03/29/19	EPA 8260C	
/IW-11-W (A9C1035-10)		Matrix: Water Bat					tch: 9031329	
Benzene	11.6		0.200	ug/L	1	03/29/19	EPA 8260C	
Toluene	ND		1.00	ug/L	1	03/29/19	EPA 8260C	
Ethylbenzene	ND		0.500	ug/L	1	03/29/19	EPA 8260C	
Xylenes, total	2.34		1.50	ug/L	1	03/29/19	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery:	106 %	Limits: 80-120 %	1	03/29/19	EPA 8260C	
Toluene-d8 (Surr)			102 %	80-120 %	1	03/29/19	EPA 8260C	
4-Bromofluorobenzene (Surr)			100 %	80-120 %	1	03/29/19	EPA 8260C	
		Matrix: Water Batch			tch: 9031329			
Benzene	ND		0.200	ug/L	1	03/29/19	EPA 8260C	
Toluene	ND		1.00	ug/L	1	03/29/19	EPA 8260C	
Ethylbenzene	ND		0.500	ug/L	1	03/29/19	EPA 8260C	
Xylenes, total	ND		1.50	ug/L	1	03/29/19	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery:	106 %	Limits: 80-120 %	1	03/29/19	EPA 8260C	
Toluene-d8 (Surr)		-	103 %	80-120 %	1	03/29/19	EPA 8260C	
4-Bromofluorobenzene (Surr)			101 %	80-120 %	1	03/29/19	EPA 8260C	
//W32-W (A9C1035-12)				Matrix: Wate	r	Ba	tch: 9031329	
Benzene	ND		0.200	ug/L	1	03/29/19	EPA 8260C	
Toluene	ND		1.00	ug/L	1	03/29/19	EPA 8260C	
Ethylbenzene	ND		0.500	ug/L	1	03/29/19	EPA 8260C	
Xylenes, total	ND		1.50	ug/L	1	03/29/19	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery:	107 %	Limits: 80-120 %	1	03/29/19	EPA 8260C	
Toluene-d8 (Surr)		-	103 %	80-120 %	1	03/29/19	EPA 8260C	
4-Bromofluorobenzene (Surr)			99 %	80-120 %	1	03/29/19	EPA 8260C	
MW17-W (A9C1035-13)				Matrix: Wate	r	Ba	tch: 9031329	
Benzene	2.91		0.200	ug/L	1	03/30/19	EPA 8260C	
Toluene	ND		1.00	ug/L	1	03/30/19	EPA 8260C	
Ethylbenzene	0.692		0.500	ug/L	1	03/30/19	EPA 8260C	

Apex Laboratories

Assa A Zomenighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>HydroCon LLC</u>		Projec		leman Wenatchee				
314 W 15th Street Suite 300		5	umber: 201				<u>Report</u>	ID:
Vancouver, WA 98660		Project M	anager: Cra	aig Hultgren			A9C1035 - 04 0	4 19 1058
		ANALYTIC	AL SAMI	PLE RESULTS				
		BTEX Com	pounds b	oy EPA 8260C				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW17-W (A9C1035-13)				Matrix: Wate	er	Ba	tch: 9031329	
Xylenes, total	1.50		1.50	ug/L	1	03/30/19	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	: 106 %	Limits: 80-120 %	1	03/30/19	EPA 8260C	
Toluene-d8 (Surr)			104 %	80-120 %		03/30/19	EPA 8260C	
4-Bromofluorobenzene (Surr)			99%	80-120 %		03/30/19	EPA 8260C	
				Matrix: Wate	er	Ba	tch: 9031329	
Benzene	2.88		0.200	ug/L	1	03/30/19	EPA 8260C	
Toluene	ND		1.00	ug/L	1	03/30/19	EPA 8260C	
Ethylbenzene	0.684		0.500	ug/L	1	03/30/19	EPA 8260C	
Xylenes, total	ND		1.50	ug/L	1	03/30/19	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	: 106 %	Limits: 80-120 %	1	03/30/19	EPA 8260C	
Toluene-d8 (Surr)			104 %	80-120 %	1	03/30/19	EPA 8260C	
4-Bromofluorobenzene (Surr)			101 %	80-120 %	1	03/30/19	EPA 8260C	
MW-8-W (A9C1035-15)				Matrix: Wate	er	Ba	tch: 9031329	
Benzene	22.2		0.200	ug/L	1	03/30/19	EPA 8260C	
Toluene	ND		1.00	ug/L	1	03/30/19	EPA 8260C	
Ethylbenzene	ND		0.500	ug/L	1	03/30/19	EPA 8260C	
Xylenes, total	2.70		1.50	ug/L	1	03/30/19	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	: 106 %	Limits: 80-120 %	1	03/30/19	EPA 8260C	
Toluene-d8 (Surr)			102 %	80-120 %	1	03/30/19	EPA 8260C	
4-Bromofluorobenzene (Surr)			100 %	80-120 %	1	03/30/19	EPA 8260C	
				Matrix: Wate	er	Ba	tch: 9031329	
Benzene	5.64		0.200	ug/L	1	03/30/19	EPA 8260C	
Toluene	ND		1.00	ug/L	1	03/30/19	EPA 8260C	
Ethylbenzene	0.545		0.500	ug/L	1	03/30/19	EPA 8260C	
Xylenes, total	ND		1.50	ug/L	1	03/30/19	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	: 107 %	Limits: 80-120 %	1	03/30/19	EPA 8260C	
Toluene-d8 (Surr)			102 %	80-120 %	1	03/30/19	EPA 8260C	
4-Bromofluorobenzene (Surr)			97 %	80-120 %	1	03/30/19	EPA 8260C	
MW31-W (A9C1035-17)				Matrix: Wate	er	Bat	tch: 9031329	
Benzene	ND		0.200	ug/L	1	03/29/19	EPA 8260C	
Toluene	ND		1.00	ug/L	1	03/29/19	EPA 8260C	
Ethylbenzene	ND		0.500	ug/L	1	03/29/19	EPA 8260C	
Xylenes, total	ND		1.50	ug/L	1	03/29/19	EPA 8260C	

Apex Laboratories

Ausa A Zomenighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>HydroCon LLC</u> 314 W 15th Street Suite 300 Vancouver, WA 98660	314 W 15th Street Suite 300Project Number: 2017-074										
		ANALYTICA	AL SAMI	PLE RESULTS							
		BTEX Comp	ounds b	9 EPA 8260C							
	Sample		Reporting								
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes			
IW31-W (A9C1035-17)				Matrix: Water		Ba	tch: 9031329				
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery:		Limits: 80-120 %	1	03/29/19	EPA 8260C				
Toluene-d8 (Surr)			103 %	80-120 %	1	03/29/19	EPA 8260C				
4-Bromofluorobenzene (Surr)			99 %	80-120 %	1	03/29/19	EPA 8260C				
3H-2-W (A9C1035-18)				Matrix: Wate	r	Ba	tch: 9031329				
Benzene	ND		0.200	ug/L	1	03/30/19	EPA 8260C				
Toluene	ND		1.00	ug/L	1	03/30/19	EPA 8260C				
Ethylbenzene	ND		0.500	ug/L	1	03/30/19	EPA 8260C				
Xylenes, total	ND		1.50	ug/L	1	03/30/19	EPA 8260C				
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery:	106 %	Limits: 80-120 %	1	03/30/19	EPA 8260C				
Toluene-d8 (Surr)			102 %	80-120 %	1	03/30/19	EPA 8260C				
4-Bromofluorobenzene (Surr)			99 %	80-120 %	1	03/30/19	EPA 8260C				
/W30-W (A9C1035-19)				Matrix: Wate	r	Ba	tch: 9031329				
Benzene	ND		0.200	ug/L	1	03/29/19	EPA 8260C				
Toluene	ND		1.00	ug/L	1	03/29/19	EPA 8260C				
Ethylbenzene	ND		0.500	ug/L	1	03/29/19	EPA 8260C				
Xylenes, total	ND		1.50	ug/L	1	03/29/19	EPA 8260C				
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery:	107 %	Limits: 80-120 %	1	03/29/19	EPA 8260C				
Toluene-d8 (Surr)			103 %	80-120 %	1	03/29/19	EPA 8260C				
4-Bromofluorobenzene (Surr)			98 %	80-120 %	1	03/29/19	EPA 8260C				
/W29-W (A9C1035-20)				Matrix: Wate	r	Ba	tch: 9031329				
Benzene	1.64		0.200	ug/L	1	03/29/19	EPA 8260C				
Toluene	ND		1.00	ug/L	1	03/29/19	EPA 8260C				
Ethylbenzene	ND		0.500	ug/L	1	03/29/19	EPA 8260C				
Xylenes, total	ND		1.50	ug/L	1	03/29/19	EPA 8260C				
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery:	107 %	Limits: 80-120 %	1	03/29/19	EPA 8260C				
Toluene-d8 (Surr)			103 %	80-120 %	1	03/29/19	EPA 8260C				
4-Bromofluorobenzene (Surr)			99 %	80-120 %	1	03/29/19	EPA 8260C				
3H-1R-W (A9C1035-21)				Matrix: Wate	r	Ba	tch: 9031329				
Benzene	4.33		0.200	ug/L	1	03/30/19	EPA 8260C				
Toluene	ND		1.00	ug/L	1	03/30/19	EPA 8260C				
Ethylbenzene	1.15		0.500	ug/L	1	03/30/19	EPA 8260C				
Xylenes, total	1.78		1.50	ug/L	1	03/30/19	EPA 8260C				
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery:	107 %	Limits: 80-120 %	1	03/30/19	EPA 8260C				

Apex Laboratories

Assa A Zomenighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>HydroCon LLC</u> 314 W 15th Street Suite 300 Vancouver, WA 98660	Street Suite 300 Project Number: 2017-074											
		ANALYTICA	L SAMI	PLE RESULTS								
		BTEX Comp	ounds b	y EPA 8260C								
Analyte	Sample Result	Detection I Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes				
3H-1R-W (A9C1035-21)				Matrix: Wate	Matrix: Water Ba							
Surrogate: Toluene-d8 (Surr) 4-Bromofluorobenzene (Surr)		Recovery:	102 % 102 %	Limits: 80-120 % 80-120 %		03/30/19 03/30/19	EPA 8260C EPA 8260C					
WW102-W (A9C1035-22)			tch: 9031329									
Benzene	4.56		0.200	ug/L	1	03/30/19	EPA 8260C					
Toluene	ND		1.00	ug/L	1	03/30/19	EPA 8260C					
Ethylbenzene	1.29		0.500	ug/L	1	03/30/19	EPA 8260C					
Xylenes, total	2.15		1.50	ug/L	1	03/30/19	EPA 8260C					
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery:	105 %	Limits: 80-120 %	1	03/30/19	EPA 8260C					
Toluene-d8 (Surr)			101 %	80-120 %	1	03/30/19	EPA 8260C					
4-Bromofluorobenzene (Surr)			98 %	80-120 %		03/30/19	EPA 8260C					
//W28-W (A9C1035-23RE1)		Matrix: Water Batc					tch: 9040385					
Benzene	1.30		0.200	ug/L	1	04/01/19	EPA 8260C					
Toluene	ND		1.00	ug/L	1	04/01/19	EPA 8260C					
Ethylbenzene	ND		0.500	ug/L	1	04/01/19	EPA 8260C					
Xylenes, total	ND		1.50	ug/L	1	04/01/19	EPA 8260C					
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery:	105 %	Limits: 80-120 %	1	04/01/19	EPA 8260C					
Toluene-d8 (Surr)			101 %	80-120 %	1	04/01/19	EPA 8260C					
4-Bromofluorobenzene (Surr)			101 %	80-120 %	1	04/01/19	EPA 8260C					
/IW21-W (A9C1035-24)				Matrix: Wate	r	Ba	tch: 9040385					
Benzene	ND		0.200	ug/L	1	04/01/19	EPA 8260C					
Toluene	ND		1.00	ug/L	1	04/01/19	EPA 8260C					
Ethylbenzene	ND		0.500	ug/L	1	04/01/19	EPA 8260C					
Xylenes, total	ND		1.50	ug/L	1	04/01/19	EPA 8260C					
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery:	105 %	Limits: 80-120 %	1	04/01/19	EPA 8260C					
Toluene-d8 (Surr)			102 %	80-120 %	1	04/01/19	EPA 8260C					
4-Bromofluorobenzene (Surr)			101 %	80-120 %	1	04/01/19	EPA 8260C					
/IW24-W (A9C1035-25)		Matrix: Wate	r	Ba	tch: 9040385							
Benzene	ND		0.200	ug/L	1	04/01/19	EPA 8260C					
Toluene	ND		1.00	ug/L	1	04/01/19	EPA 8260C					
Ethylbenzene	ND		0.500	ug/L	1	04/01/19	EPA 8260C					
Xylenes, total	ND		1.50	ug/L	1	04/01/19	EPA 8260C					
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery:	105 %	Limits: 80-120 %	1	04/01/19	EPA 8260C					
Toluene-d8 (Surr)			101 %	80-120 %		04/01/19	EPA 8260C					

Apex Laboratories

Assa A Zomenighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>HydroCon LLC</u> 314 W 15th Street Suite 300 Vancouver, WA 98660		°	umber: 201	<u>leman Wenatchee</u> 7-074 aig Hultgren			<u>Report</u> A9C1035 - 04 0	
		ANALYTICA	AL SAMI	PLE RESULTS				
		BTEX Comp	oounds b	oy EPA 8260C				
	Sample		Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
/W24-W (A9C1035-25)				Matrix: Wate	r	Ba	tch: 9040385	
Surrogate: 4-Bromofluorobenzene (Surr)		Recovery: 98 %		Limits: 80-120 % 1		04/01/19	EPA 8260C	
//W10R-W (A9C1035-26)				Matrix: Wate	r	Ba	tch: 9040385	
Benzene	0.401		0.200	ug/L	1	04/01/19	EPA 8260C	
Toluene	ND		1.00	ug/L	1	04/01/19	EPA 8260C	
Ethylbenzene	0.837		0.500	ug/L	1	04/01/19	EPA 8260C	
Xylenes, total	ND		1.50	ug/L	1	04/01/19	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery:	105 %	Limits: 80-120 %	1	04/01/19	EPA 8260C	
Toluene-d8 (Surr)			101 %	80-120 %		04/01/19	EPA 8260C	
4-Bromofluorobenzene (Surr)			100 %	80-120 %		04/01/19	EPA 8260C	
//W25-W (A9C1035-27)			tch: 9040385					
Benzene	ND		0.200	ug/L	1	04/01/19	EPA 8260C	
Toluene	ND		1.00	ug/L	1	04/01/19	EPA 8260C	
Ethylbenzene	ND		0.500	ug/L	1	04/01/19	EPA 8260C	
Xylenes, total	ND		1.50	ug/L	1	04/01/19	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery:	105 %	Limits: 80-120 %	1	04/01/19	EPA 8260C	
Toluene-d8 (Surr)			102 %	80-120 %	1	04/01/19	EPA 8260C	
4-Bromofluorobenzene (Surr)			101 %	80-120 %	1	04/01/19	EPA 8260C	
MW26-W (A9C1035-28)				Matrix: Wate	r	Ba	tch: 9040385	
Benzene	ND		0.200	ug/L	1	04/01/19	EPA 8260C	
Toluene	ND		1.00	ug/L	1	04/01/19	EPA 8260C	
Ethylbenzene	ND		0.500	ug/L	1	04/01/19	EPA 8260C	
Xylenes, total	ND		1.50	ug/L	1	04/01/19	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery:	106 %	Limits: 80-120 %	1	04/01/19	EPA 8260C	
Toluene-d8 (Surr)			102 %	80-120 %	1	04/01/19	EPA 8260C	
4-Bromofluorobenzene (Surr)			99 %	80-120 %	1	04/01/19	EPA 8260C	
MW19-W (A9C1035-29)				Matrix: Wate	r	Ba	tch: 9040385	
Benzene	0.673		0.200	ug/L	1	04/01/19	EPA 8260C	
Toluene	ND		1.00	ug/L	1	04/01/19	EPA 8260C	
Ethylbenzene	ND		0.500	ug/L	1	04/01/19	EPA 8260C	
Xylenes, total	ND		1.50	ug/L	1	04/01/19	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery:	106 %	Limits: 80-120 %	1	04/01/19	EPA 8260C	
Toluene-d8 (Surr)			101 %	80-120 %	1	04/01/19	EPA 8260C	
4-Bromofluorobenzene (Surr)			98 %	80-120 %	1	04/01/19	EPA 8260C	

Apex Laboratories

Ausa A Zomenighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

MW20-W (AsC1035-30) Matrix: Water Batch: 9040385 Benzene ND 0.200 ug/L 1 0.4/01/19 EPA 8260C Toluene ND 0.500 ug/L 1 0.4/01/19 EPA 8260C Ethylbenzene ND 0.500 ug/L 1 0.4/01/19 EPA 8260C Xylenes, total ND 1.50 ug/L 1 0.4/01/19 EPA 8260C Surrogate: 1.4.Difluorobenzene (Surr) Recovery: 106 % Limits: 80-120 % 1 0.4/01/19 EPA 8260C Bd03-W (ASC1035-31) Recovery: 100 % 80-120 % 1 0.4/01/19 EPA 8260C Ethylbenzene ND 0.200 ug/L 1 0.4/01/19 EPA 8260C Surgate: 1.4-Difluorobenzene (Surr) 1.00 ug/L 1 0.4/01/19 EPA 8260C Surgate: ND 0.200 ug/L 1 0.4/01/19 EPA 8	<u>HydroCon LLC</u> 314 W 15th Street Suite 300 Vancouver, WA 98660		Project Project Nu Project Ma		<u>Report</u> A9C1035 - 04 0					
Analyte Sample Result Detection Limit Reporting Limit Date Units Date Dilution Analyzed Method Ref. Note MW20-W (A9C1035-30) Matrix: Water Batch: 9040385 Second Seco			ANALYTICA	L SAMI	PLE RESULTS					
Analyte Result Limit Limit Units Dilution Analyzed Method Ref. Note MW20-W (A9C1035-30) Matrix: Water Batch: 9040385 Benczne Batch: 9040385 Benzene ND 0.00 ug/L 1 04/01/19 EPA 8260C Ethylbenzene ND 0.500 ug/L 1 04/01/19 EPA 8260C Surrogate: 1/-Diffuorbenzene (Surr) ND 1.50 ug/L 1 04/01/19 EPA 8260C Surrogate: 1/-Diffuorbenzene (Surr) Recovery: 106 % Limits: 80-120 % 1 04/01/19 EPA 8260C B403-W (ASC1035-31) Recovery: 100 % Katrix: Water Batch: 9040385 Benzene ND 0.200 ug/L 1 04/01/19 EPA 8260C Ethylbenzene (Surr) IO0 % Katrix: Water Batch: 9040385 Earch: 9040385 Benzene ND 0.200 ug/L 1 04/01/19 EPA 8260C Ethylbenzene (Surr)			BTEX Comp	ounds b	OY EPA 8260C					
MW20-W Matrix: Water Batch: 9040385 Benzene ND 0.200 ug/L 1 0.4/01/19 EPA 8260C Ethylbenzene ND 0.500 ug/L 1 0.4/01/19 EPA 8260C Ethylbenzene ND 0.500 ug/L 1 0.4/01/19 EPA 8260C Surrogate: 1.4.Difluorobenzene (Surr) Recovery: 106 % Linits: 80-120 % 1 0.4/01/19 EPA 8260C Surrogate: 1.4.Difluorobenzene (Surr) Recovery: 100 % 80-120 % 1 0.4/01/19 EPA 8260C BH03-W (A8C1035-31) Matrix: Water Batch: 9040385 Eencrene ND 0.200 ug/L 1 0.4/01/19 EPA 8260C Ethylbenzene ND 0.200 ug/L 1 0.4/01/19 EPA 8260C Ethylbenzene ND 0.500 ug/L 1 0.4/01/19 EPA 8260C Surrogate: 1.4-Difluorobenzene (Surr) </th <th></th> <th>-</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>		-								
Benzene ND 0.200 ug/L 1 0.4/01/19 EPA 8260C Ethylbenzene ND 0.500 ug/L 1 0.4/01/19 EPA 8260C Zylenes, total ND 0.500 ug/L 1 0.4/01/19 EPA 8260C Surrogate: 1.4-Difhorobenzene (Surr) Recovery: 160 % 1 0.4/01/19 EPA 8260C Surrogate: 1.4-Difhorobenzene (Surr) Recovery: 100 % 80-120 % 1 0.4/01/19 EPA 8260C BH03-W (A9C1035-31) Recovery: 100 % 80-120 % 1 0.4/01/19 EPA 8260C BH03-W (A9C1035-31) Matrix: Water Batch: 9040385 Benzene ND 0.200 ug/L 1 0.4/01/19 EPA 8260C Surrogate: 1.4-Difhorobenzene (Surr) ND 0.500 ug/L 1 0.4/01/19 EPA 8260C Surrogate: 1.4-Difhorobenzene (Surr) Recovery: 106 % Lin: us 0.4/01/19 EPA 8260C <	Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes	
Toluene ND 1.00 ug/L 1 0.40/1/19 EPA 8260C Ethylbenzene ND 0.500 ug/L 1 0.40/1/19 EPA 8260C Sylenes, total ND 1.50 ug/L 1 0.40/1/19 EPA 8260C Surrogate: 1.4-Difbuorobenzene (Surr) Recovery: 106 % Limits: 80-120 % 1 0.40/1/19 EPA 8260C BetO3-W (A9C1035-31) Recovery: 100 % 80-120 % 1 0.40/1/19 EPA 8260C BetO3-W (A9C1035-31) Recovery: 1.00 ug/L 1 0.40/1/19 EPA 8260C BetD3-W (A9C1035-31) Recovery: 1.00 ug/L 1 0.40/1/19 EPA 8260C Ethylbenzene ND 0.200 ug/L 1 0.40/1/19 EPA 8260C Surrogate: 1.4-Difbuorobenzene (Surr) Recovery: 10.6 % Limits: 80-120 % 1 0.40/1/19 EPA 8260C Surrogate: 1.4-Difbuorobenzene (Surr) <td></td> <td></td> <td></td> <td></td> <td>Matrix: Wate</td> <td>ər</td> <td>Ва</td> <td colspan="3">Batch: 9040385</td>					Matrix: Wate	ər	Ва	Batch: 9040385		
Ethylbenzene ND 0.500 ug/L 1 04/01/19 EPA 8260C Xylenes, total ND 1.50 ug/L 1 04/01/19 EPA 8260C Surrogate: 1.4-Diffuorobenzene (Surr) IIII % 80-120 % I 04/01/19 EPA 8260C 4.Bromoffuorobenzene (Surr) IIII % 80-120 % I 04/01/19 EPA 8260C Benzene ND 0.200 ug/L 1 04/01/19 EPA 8260C Ethylbenzene ND 0.200 ug/L 1 04/01/19 EPA 8260C Ethylbenzene ND 0.200 ug/L 1 04/01/19 EPA 8260C Zylenes, total ND 0.00 ug/L 1 04/01/19 EPA 8260C Zylenes, total ND 10.0 ug/L 1 04/01/19 EPA 8260C Zylenes, total ND 10.0 ug/L 1 04/01/19 EPA 8260C <tr< td=""><td>Benzene</td><td>ND</td><td></td><td>0.200</td><td>ug/L</td><td>1</td><td>04/01/19</td><td>EPA 8260C</td><td></td></tr<>	Benzene	ND		0.200	ug/L	1	04/01/19	EPA 8260C		
Ethylbenzene ND 0.500 ug/L 1 04/01/19 EPA 8260C Xylenes, total ND 1.50 ug/L 1 04/01/19 EPA 8260C Surragate: 1.4-D(fluorobenzene (Surr) 101 % 80-120 % 1 04/01/19 EPA 8260C 4-Bromofluorobenzene (Surr) 100 % 80-120 % 1 04/01/19 EPA 8260C Benzene ND 0.200 ug/L 1 04/01/19 EPA 8260C Ethylbenzene ND 0.200 ug/L 1 04/01/19 EPA 8260C Ethylbenzene ND 0.200 ug/L 1 04/01/19 EPA 8260C Zylenes, total ND 0.00 ug/L 1 04/01/19 EPA 8260C Surragate: 1.4-D(fluorobenzene (Surr) 1.50 ug/L 1 04/01/19 EPA 8260C Yelnes, total ND 1.50 ug/L 1 04/01/19 EPA 8260C <tr< td=""><td>Toluene</td><td>ND</td><td></td><td>1.00</td><td></td><td>1</td><td>04/01/19</td><td>EPA 8260C</td><td></td></tr<>	Toluene	ND		1.00		1	04/01/19	EPA 8260C		
Surrogate: 1.4-Difluorobenzene (Surr) Tolanen-d8 (Surr) Recovery: 100 % Limits: 80-120 % 1 04/01/19 EPA 8250C BHO3-W (A9C1035-31) Matrix: Water Batch: 904/01/19 EPA 8250C BHO3-W (A9C1035-31) Matrix: Water Batch: 904/0835 Benzene ND 0.200 ug/L 1 04/01/19 EPA 8250C Ethylbenzene ND 1.00 ug/L 1 04/01/19 EPA 8250C Zylenes, total ND 0.500 ug/L 1 04/01/19 EPA 8250C Zylenes, total ND 1.50 ug/L 1 04/01/19 EPA 8250C Zylenes, total ND 0.500 ug/L 1 04/01/19 EPA 8250C Zylenes, total ND 0.500 ug/L 1 04/01/19 EPA 8250C Envirofluorobenzene (Surr) 100 % 80-120 % 1 04/01/19 EPA 8250C	Ethylbenzene	ND		0.500		1	04/01/19	EPA 8260C		
Surrogate: 1.4-Difluorohemzene (Surr) Tolanen-d8 (Surr) Recovery: 106 % 101 % Limits: 80-120 % 80-120 % 1 04/01/19 EPA 8250C BHO3-W (A9C1035-31) Matrix: Water Batch: 904/08/19 EPA 8250C BHO3-W (A9C1035-31) Matrix: Water Batch: 904/08/19 EPA 8250C Benzene ND 0.200 ug/L 1 04/01/19 EPA 8250C Ethylbenzene ND 1.00 ug/L 1 04/01/19 EPA 8250C Zylenes, total ND 1.50 ug/L 1 04/01/19 EPA 8250C Zylenes, total ND 1.50 ug/L 1 04/01/19 EPA 8250C Tolanen-d8 (Surr) 101 % 80-120 % 1 04/01/19 EPA 8250C Tolanen-d8 (Surr) 100 % 80-120 % 1 04/01/19 EPA 8250C Matrix: Water Batch: 904/01/19 EPA 8260C EPA 8260C Toluene-d8 (Surr	Xylenes, total	ND		1.50		1	04/01/19	EPA 8260C		
Induce-d8 (Surr) +Bromofluorobenzene (Surr) Ind % 100 % 80-120 % 80-120 % I 04/01/19 EPA 8260C BH03-W (A9C1035-31) Matrix: Water Batch: 9040385 Benzene ND 0.200 ug/L 1 04/01/19 EPA 8260C Ethylbenzene ND 0.200 ug/L 1 04/01/19 EPA 8260C Surrogate: 1.4-Difluorobenzene (Surr) Recovery: 10.0 ug/L 1 04/01/19 EPA 8260C Surrogate: 1.4-Difluorobenzene (Surr) Recovery: 10.6% Limits: 80-120 % I 04/01/19 EPA 8260C MW27-W (A9C1035-32) Recovery: 106 % Limits: 80-120 % I 04/01/19 EPA 8260C Surrogate: 1.4-Difluorobenzene (Surr) Recovery: 100 % 80-120 % I 04/01/19 EPA 8260C MW27-W (A9C1035-32) Matrix: Water Batch: 904085 Benzene ND 0.200 ug/L 1 04/01/19 EPA 8260C <td>Surrogate: 1,4-Difluorobenzene (Surr)</td> <td></td> <td>Recovery:</td> <td>106 %</td> <td>Limits: 80-120 %</td> <td>1</td> <td>04/01/19</td> <td>EPA 8260C</td> <td></td>	Surrogate: 1,4-Difluorobenzene (Surr)		Recovery:	106 %	Limits: 80-120 %	1	04/01/19	EPA 8260C		
BH03-W (A9C1035-31) Matrix: Water Batch: 9040385 Benzene ND 0.200 ug/L 1 04/01/19 EPA 8260C Tolluene ND 1.00 ug/L 1 04/01/19 EPA 8260C Ethylbenzene ND 0.500 ug/L 1 04/01/19 EPA 8260C Xylenes, total ND 1.50 ug/L 1 04/01/19 EPA 8260C Surrogate: 1.4-Difluorobenzene (Surr) Recovery: 106 % Limits: 80-120 % 1 04/01/19 EPA 8260C Arromofluorobenzene (Surr) 100 % 80-120 % 1 04/01/19 EPA 8260C MW27-W (A9C1035-32) Matrix: Water Batch: 9040385 Benzene ND 0.200 ug/L 1 04/01/19 EPA 8260C Toluene ND 0.200 ug/L 1 04/01/19 EPA 8260C Kylenes, total ND 1.00 ug/L <			-		80-120 %	1	04/01/19	EPA 8260C		
Benzene ND 0.200 ug/L 1 $04/01/19$ EPA 8260C Toluene ND 1.00 ug/L 1 $04/01/19$ EPA 8260C Ethylbenzene ND 0.500 ug/L 1 $04/01/19$ EPA 8260C Xylenes, total ND 1.50 ug/L 1 $04/01/19$ EPA 8260C Surrogate: $1.4-Diffuorobenzene (Surr)$ Recovery: 106% $80-120\%$ I $04/01/19$ EPA 8260C MW27-W (A9C1035-32) Recovery: 100% $80-120\%$ I $04/01/19$ EPA 8260C Toluene ND 0.200 ug/L I $04/01/19$ EPA 8260C Toluene ND 0.200 ug/L I $04/01/19$ EPA 8260C Toluene ND 0.200 ug/L I $04/01/19$ EPA 8260C Surrogate: $I + Diffuorobenzene (Surr)$ ND	4-Bromofluorobenzene (Surr)			100 %	80-120 %	1	04/01/19	EPA 8260C		
Dilution ND 1.00 ug/L 1 0.4/01/19 EPA 8260C Ethylbenzene ND 0.500 ug/L 1 0.4/01/19 EPA 8260C Xylenes, total ND 1.50 ug/L 1 0.4/01/19 EPA 8260C Surrogate: 1.4-Difluorobenzene (Surr) Recovery: 106% Limits: 80-120% 1 0.4/01/19 EPA 8260C MW27-W (A9C1035-32) Recovery: 100% 80-120% 1 0.4/01/19 EPA 8260C MW27-W (A9C1035-32) Matrix: Water Batch: 904001/19 EPA 8260C MW27-W (A9C1035-32) ND 0.200 ug/L 1 0.4/01/19 EPA 8260C Eenzene ND 0.200 ug/L 1 0.4/01/19 EPA 8260C Xylenes, total ND 0.500 ug/L 1 0.4/01/19 EPA 8260C Surrogate: 1.4-Difluorobenzene (Surr) Recovery: 105% Limits: 80-120% 1 0.4/01/19 EPA 8260C Surrogate: <td> BH03-W (A9C1035-31)</td> <td></td> <td></td> <td>tch: 9040385</td> <td></td>	 BH03-W (A9C1035-31)			tch: 9040385						
Ethylbenzene ND 0.500 ug/L 1 04/01/19 EPA 8260C Xylenes, total ND 1.50 ug/L 1 04/01/19 EPA 8260C Surrogate: 1,4-Difluorobenzene (Surr) Recovery: 106 % Limits: 80-120 % 1 04/01/19 EPA 8260C A-Bromofluorobenzene (Surr) 100 % 80-120 % 1 04/01/19 EPA 8260C MW27-W (A9C1035-32) Recovery: 100 % 80-120 % 1 04/01/19 EPA 8260C MW27-W (A9C1035-32) Matrix: Water Batch: 9040385 Benzene ND 0.200 ug/L 1 04/01/19 EPA 8260C Toluene ND 0.200 ug/L 1 04/01/19 EPA 8260C Xylenes, total ND 0.500 ug/L 1 04/01/19 EPA 8260C Surrogate: 1,4-Difluorobenzene (Surr) Recovery: 105 % Limits: 80-120 % 1 04/01/19 EPA 8260C Surogate:	Benzene	ND		0.200	ug/L	1	04/01/19	EPA 8260C		
Ethylbenzene ND 0.500 ug/L 1 04/01/19 EPA 8260C Xylenes, total ND 1.50 ug/L 1 04/01/19 EPA 8260C Surrogate: 1,4-Difluorobenzene (Surr) Toluene-d8 (Surr) Recovery: 106 % Limits: 80-120 % 1 04/01/19 EPA 8260C 4-Bromofluorobenzene (Surr) 100 % 80-120 % 1 04/01/19 EPA 8260C WW27-W (A9C1035-32) Matrix: Water Batch: 9040385 Benzene ND 0.200 ug/L 1 04/01/19 EPA 8260C Toluene ND 0.200 ug/L 1 04/01/19 EPA 8260C Xylenes, total ND 0.200 ug/L 1 04/01/19 EPA 8260C Xylenes, total ND 1.50 ug/L 1 04/01/19 EPA 8260C Surrogate: 1,4-Difluorobenzene (Surr) Recovery: 105 % Limits: 80-120 % 1 04/01/19 EPA 8260C	Toluene	ND		1.00		1	04/01/19	EPA 8260C		
Surrogate: 1.4-Difluorobenzene (Surr) Toluene-d8 (Surr) 4-Bromofluorobenzene (Surr) Recovery: 106 % 101 % 80-120 % Limits: 80-120 % 1 04/01/19 EPA 8260C MW27-W (A9C1035-32) Matrix: Water Batch: 9040385 Benzene ND 0.200 ug/L 1 04/01/19 EPA 8260C Toluene-d8 (Surr) 4-Bromofluorobenzene (Surr) ND 0.200 ug/L 1 04/01/19 EPA 8260C MW27-W (A9C1035-32) Matrix: Water Batch: 9040385 Batch: 9040385 Benzene ND 0.200 ug/L 1 04/01/19 EPA 8260C Ethylbenzene ND 0.500 ug/L 1 04/01/19 EPA 8260C Xylenes, total ND 1.50 ug/L 1 04/01/19 EPA 8260C Surrogate: 1.4-Difluorobenzene (Surr) Toluene-d8 (Surr) 4-Bromofluorobenzene (Surr) Recovery: 105 % Limits: 80-120 % 1 04/01/19 EPA 8260C RW01-W (A9C1035-33) Matrix: Water Batch: 9040385 Batch: 9040385 Benzene ND	Ethylbenzene	ND		0.500		1	04/01/19	EPA 8260C		
Toluene-d8 (Surr) 101 % 80-120 % 1 04/01/19 EPA 8260C MW27-W (A9C1035-32) Matrix: Water Batch: 9040385 Benzene ND 0.200 ug/L 1 04/01/19 EPA 8260C Toluene ND 0.200 ug/L 1 04/01/19 EPA 8260C Ethylbenzene ND 1.00 ug/L 1 04/01/19 EPA 8260C Xylenes, total ND 1.50 ug/L 1 04/01/19 EPA 8260C Surrogate: 1.4-Difluorobenzene (Surr) Recovery: 105 % Limits: 80-120 % 1 04/01/19 EPA 8260C Surrogate: 1.4-Difluorobenzene (Surr) Recovery: 105 % Limits: 80-120 % 1 04/01/19 EPA 8260C Surrogate: 1.4-Difluorobenzene (Surr) Recovery: 105 % Limits: 80-120 % 1 04/01/19 EPA 8260C Surrogate: ND 0.500 ug/L 1 04/01/19 EPA 8260C Surogate: ND	Xylenes, total	ND		1.50	ug/L	1	04/01/19	EPA 8260C		
Toluene-d8 (Surr) 101 % 80-120 % 1 04/01/19 EPA 8260C MW27-W (A9C1035-32) Matrix: Water Batch: 9040385 Benzene ND 0.200 ug/L 1 04/01/19 EPA 8260C Toluene ND 0.200 ug/L 1 04/01/19 EPA 8260C Ethylbenzene ND 1.00 ug/L 1 04/01/19 EPA 8260C Xylenes, total ND 1.50 ug/L 1 04/01/19 EPA 8260C Surrogate: 1,4-Difluorobenzene (Surr) Recovery: 105 % Limits: 80-120 % 1 04/01/19 EPA 8260C Surrogate: 1,4-Difluorobenzene (Surr) Recovery: 105 % Limits: 80-120 % 1 04/01/19 EPA 8260C Surrogate: 1,4-Difluorobenzene (Surr) Recovery: 105 % Limits: 80-120 % 1 04/01/19 EPA 8260C Surrogate: ND 0.500 ug/L 1 04/01/19 EPA 8260C Surogate: ND	Surrogate: 1,4-Difluorobenzene (Surr)		Recovery:	106 %	Limits: 80-120 %	1	04/01/19	EPA 8260C		
MW27-W (A9C1035-32) Matrix: Water Batch: 9040385 Benzene ND 0.200 ug/L 1 04/01/19 EPA 8260C Toluene ND 1.00 ug/L 1 04/01/19 EPA 8260C Ethylbenzene ND 0.500 ug/L 1 04/01/19 EPA 8260C Xylenes, total ND 1.50 ug/L 1 04/01/19 EPA 8260C Surrogate: 1,4-Difluorobenzene (Surr) Recovery: 105 % Limits: 80-120 % 1 04/01/19 EPA 8260C Surrogate: 1,4-Difluorobenzene (Surr) Recovery: 102 % 80-120 % 1 04/01/19 EPA 8260C 4-Bromofluorobenzene (Surr) 101 % 80-120 % 1 04/01/19 EPA 8260C RW01-W (A9C1035-33) Matrix: Water Batch: 9040385 E Benzene ND 0.200 ug/L 1 04/01/19 EPA 8260C Toluene ND 0.200 ug/	Toluene-d8 (Surr)		-		80-120 %	1	04/01/19	EPA 8260C		
Benzene ND 0.200 ug/L 1 04/01/19 EPA 8260C Toluene ND 1.00 ug/L 1 04/01/19 EPA 8260C Ethylbenzene ND 0.500 ug/L 1 04/01/19 EPA 8260C Xylenes, total ND 0.500 ug/L 1 04/01/19 EPA 8260C Surrogate: 1,4-Difluorobenzene (Surr) Recovery: 105 % Limits: 80-120 % 1 04/01/19 EPA 8260C ABromofluorobenzene (Surr) IO2 % 80-120 % 1 04/01/19 EPA 8260C REW01-W (A9C1035-33) Recovery: 101 % 80-120 % 1 04/01/19 EPA 8260C Benzene ND 0.200 ug/L 1 04/01/19 EPA 8260C Toluene ND 0.200 ug/L 1 04/01/19 EPA 8260C Ethylbenzene ND 1.00 ug/L 1 04/01/19 EPA	4-Bromofluorobenzene (Surr)			100 %	80-120 %	I	04/01/19	EPA 8260C		
Initial Initia Initial Initial					Matrix: Wate	ər	Ва	tch: 9040385		
Ethylbenzene ND 0.500 ug/L 1 04/01/19 EPA 8260C Xylenes, total ND 1.50 ug/L 1 04/01/19 EPA 8260C Surrogate: 1,4-Difluorobenzene (Surr) Recovery: 105 % Limits: 80-120 % 1 04/01/19 EPA 8260C Julene-d8 (Surr) Industrian Benzene (Surr) Industrian Batch: 9040385 Benzene ND 0.200 ug/L 1 04/01/19 EPA 8260C Toluene-d8 (Surr) ND 0.200 ug/L 1 04/01/19 EPA 8260C Recovery: I/01 % 80-120 % 1 04/01/19 EPA 8260C Recovery: I/01 % 80-120 % 1 04/01/19 EPA 8260C Recovery: 0.200 ug/L 1 04/01/19 EPA 8260C Recovery: 0.200 ug/L 1 04/01/19 EPA 8260C Recovery: 1.00 ug/L 1 04/01/19 EPA 8260C Surrogate: 1,4-Difluorobenzene (Surr) Recovery:	Benzene	ND		0.200	ug/L	1	04/01/19	EPA 8260C		
Ethylbenzene ND 0.500 ug/L 1 $04/01/19$ EPA 8260C Xylenes, total ND 1.50 ug/L 1 $04/01/19$ EPA 8260C Surrogate: $1,4-Difluorobenzene (Surr)$ Recovery: 105% Limits: $80-120\%$ 1 $04/01/19$ EPA 8260C Toluene-d8 (Surr) 102% $80-120\%$ 1 $04/01/19$ EPA 8260C 4-Bromofluorobenzene (Surr) 102% $80-120\%$ 1 $04/01/19$ EPA 8260C RWO1-W (A9C1035-33) MD 0.200 ug/L 1 $04/01/19$ EPA 8260C Benzene ND 0.200 ug/L 1 $04/01/19$ EPA 8260C Toluene ND 0.200 ug/L 1 $04/01/19$ EPA 8260C Ethylbenzene ND 0.200 ug/L 1 $04/01/19$ EPA 8260C Kylenes, total ND 1.00 ug/L 1 $04/01/19$ EPA 8260C Surrogate: $1,4-Difluorobenzene (Surr)$ <th< td=""><td>Toluene</td><td>ND</td><td></td><td>1.00</td><td>ug/L</td><td>1</td><td>04/01/19</td><td>EPA 8260C</td><td></td></th<>	Toluene	ND		1.00	ug/L	1	04/01/19	EPA 8260C		
Surrogate: 1,4-Difluorobenzene (Surr) Toluene-d8 (Surr) 4-Bromofluorobenzene (Surr) Recovery: 105 % 102 % Limits: 80-120 % 80-120 % 1 04/01/19 EPA 8260C RW01-W (A9C1035-33) Matrix: Water Batch: 9040385 Benzene ND 0.200 ug/L 1 04/01/19 EPA 8260C Toluene ND 0.200 ug/L 1 04/01/19 EPA 8260C Ethylbenzene ND 0.200 ug/L 1 04/01/19 EPA 8260C Xylenes, total ND 0.200 ug/L 1 04/01/19 EPA 8260C Surrogate: 1,4-Difluorobenzene (Surr) ND 0.500 ug/L 1 04/01/19 EPA 8260C Xylenes, total ND 1.50 ug/L 1 04/01/19 EPA 8260C Surrogate: 1,4-Difluorobenzene (Surr) Recovery: 106 % Limits: 80-120 % 1 04/01/19 EPA 8260C 100 % 80-120 % 1 04/01/19 EPA 8260C 1 04/01/19 EPA 8260C	Ethylbenzene	ND		0.500		1	04/01/19	EPA 8260C		
Toluene-d8 (Surr) 102 % 80-120 % 1 04/01/19 EPA 8260C 4-Bromofluorobenzene (Surr) 101 % 80-120 % 1 04/01/19 EPA 8260C RW01-W (A9C1035-33) Matrix: Water Batch: 9040385 Benzene ND 0.200 ug/L 1 04/01/19 EPA 8260C Toluene ND 0.200 ug/L 1 04/01/19 EPA 8260C Ethylbenzene ND 0.500 ug/L 1 04/01/19 EPA 8260C Xylenes, total ND 1.50 ug/L 1 04/01/19 EPA 8260C Surrogate: 1,4-Difluorobenzene (Surr) Recovery: 106 % Limits: 80-120 % 1 04/01/19 EPA 8260C Mode 1.50 ug/L 1 04/01/19 EPA 8260C Matrix: ND 1.50 ug/L 1 04/01/19 EPA 8260C Mode 1.00 % Limits: 80-120 % 1 04/01/19 EPA 8260C Mode <th< td=""><td>Xylenes, total</td><td>ND</td><td></td><td>1.50</td><td>ug/L</td><td>1</td><td>04/01/19</td><td>EPA 8260C</td><td></td></th<>	Xylenes, total	ND		1.50	ug/L	1	04/01/19	EPA 8260C		
Toluene-d8 (Surr) 102 % 80-120 % 1 04/01/19 EPA 8260C 4-Bromofluorobenzene (Surr) 101 % 80-120 % 1 04/01/19 EPA 8260C Matrix: Water Batch: 9040385 RW01-W (A9C1035-33) Benzene ND 0.200 ug/L 1 04/01/19 EPA 8260C Toluene ND 0.200 ug/L 1 04/01/19 EPA 8260C Ethylbenzene ND 0.500 ug/L 1 04/01/19 EPA 8260C Xylenes, total ND 1.50 ug/L 1 04/01/19 EPA 8260C Surrogate: 1,4-Difluorobenzene (Surr) Recovery: 106 % Limits: 80-120 % 1 04/01/19 EPA 8260C Surrogate: 4,4-Difluorobenzene (Surr) Recovery: 106 % Limits: 80-120 % 1 04/01/19 EPA 8260C Mode 1.50 ug/L 1 04/01/19 EPA 8260C Mode 1.60 % Limits: 80-120 % 1 04/01	Surrogate: 1,4-Difluorobenzene (Surr)		Recovery:	105 %	Limits: 80-120 %	1	04/01/19	EPA 8260C		
4-Bromofluorobenzene (Surr) 101 % 80-120 % 1 04/01/19 EPA 8260C RW01-W (A9C1035-33) Matrix: Water Batch: 9040385 Benzene ND 0.200 ug/L 1 04/01/19 EPA 8260C Toluene ND 1.00 ug/L 1 04/01/19 EPA 8260C Ethylbenzene ND 0.500 ug/L 1 04/01/19 EPA 8260C Xylenes, total ND 1.50 ug/L 1 04/01/19 EPA 8260C Surrogate: 1,4-Difluorobenzene (Surr) Recovery: 106 % Limits: 80-120 % 1 04/01/19 EPA 8260C 100 % 80-120 % 1 04/01/19 EPA 8260C EPA 8260C			2		80-120 %	1	04/01/19	EPA 8260C		
Benzene ND 0.200 ug/L 1 04/01/19 EPA 8260C Toluene ND 1.00 ug/L 1 04/01/19 EPA 8260C Ethylbenzene ND 0.500 ug/L 1 04/01/19 EPA 8260C Xylenes, total ND 0.500 ug/L 1 04/01/19 EPA 8260C Surrogate: 1,4-Difluorobenzene (Surr) Recovery: 106 % Limits: 80-120 % 1 04/01/19 EPA 8260C Iou % 80-120 % 1 04/01/19 EPA 8260C				101 %	80-120 %	1	04/01/19	EPA 8260C		
Toluene ND 1.00 ug/L 1 04/01/19 EPA 8260C Ethylbenzene ND 0.500 ug/L 1 04/01/19 EPA 8260C Xylenes, total ND 1.50 ug/L 1 04/01/19 EPA 8260C Surrogate: 1,4-Difluorobenzene (Surr) Recovery: 106% Limits: 80-120% 1 04/01/19 EPA 8260C Iourogate: 1,4-Difluorobenzene (Surr) 100% 80-120% 1 04/01/19 EPA 8260C	RW01-W (A9C1035-33)				Matrix: Wate	er	Ва	tch: 9040385		
Toluene ND 1.00 ug/L 1 04/01/19 EPA 8260C Ethylbenzene ND 0.500 ug/L 1 04/01/19 EPA 8260C Xylenes, total ND 1.50 ug/L 1 04/01/19 EPA 8260C Surrogate: 1,4-Difluorobenzene (Surr) Recovery: 106% Limits: 80-120% 1 04/01/19 EPA 8260C Iou % 80-120% 1 04/01/19 EPA 8260C EPA 8260C	Benzene	ND		0.200	ug/L	1	04/01/19	EPA 8260C		
Ethylbenzene ND 0.500 ug/L 1 04/01/19 EPA 8260C Xylenes, total ND 1.50 ug/L 1 04/01/19 EPA 8260C Surrogate: 1,4-Difluorobenzene (Surr) Recovery: 106 % Limits: 80-120 % 1 04/01/19 EPA 8260C 100 % 80-120 % 1 04/01/19 EPA 8260C					•			EPA 8260C		
Xylenes, total ND 1.50 ug/L 1 04/01/19 EPA 8260C Surrogate: 1,4-Difluorobenzene (Surr) Toluene-d8 (Surr) Recovery: 106 % Limits: 80-120 % 1 04/01/19 EPA 8260C 100 % 80-120 % 1 04/01/19 EPA 8260C					-	1		EPA 8260C		
Toluene-d8 (Surr) 100 % 80-120 % 1 04/01/19 EPA 8260C	-	ND		1.50		1	04/01/19	EPA 8260C		
Toluene-d8 (Surr) 100 % 80-120 % 1 04/01/19 EPA 8260C	Surrogate: 1,4-Difluorobenzene (Surr)		Recoverv:	106 %		1	04/01/19	EPA 8260C		
Blank-20190328 (A9C1035-34) Matrix: Water Batch: 9031329					Matrix: Wate	ər	Ва	tch: 9031329		

Apex Laboratories

Assa A Zomenighinie

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>HydroCon LLC</u> 314 W 15th Street Suite 300 Vancouver, WA 98660		Project	ject: <u>Colen</u> t Number: 2017-1 Manager: Craig		<u>ee</u>		<u>Report</u> A9C1035 - 04 0	
		ANALYTI	CAL SAMPL	E RESULI	ГS			
		BTEX Co	ompounds by	EPA 8260C	;			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes

7 maryte	resurt	Emit	Emm	Clifts	Dilution	7 mary 20a	Wiethou Rei.	Notes
Blank-20190328 (A9C1035-34)				Matrix: Wate	r	Ba	tch: 9031329	
Benzene	ND		0.200	ug/L	1	03/29/19	EPA 8260C	
Toluene	ND		1.00	ug/L	1	03/29/19	EPA 8260C	
Ethylbenzene	ND		0.500	ug/L	1	03/29/19	EPA 8260C	
Xylenes, total	ND		1.50	ug/L	1	03/29/19	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	v: 106 %	Limits: 80-120 %	1	03/29/19	EPA 8260C	
Toluene-d8 (Surr)			103 %	80-120 %	1	03/29/19	EPA 8260C	
4-Bromofluorobenzene (Surr)			101 %	80-120 %	1	03/29/19	EPA 8260C	

Apex Laboratories

Assa A Zomenighini

Lisa Domenighini, Client Services Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

HydroCon LLC	Project: Coleman Wenatchee	
314 W 15th Street Suite 300	Project Number: 2017-074	<u>Report ID:</u>
Vancouver, WA 98660	Project Manager: Craig Hultgren	A9C1035 - 04 04 19 1058

QUALITY CONTROL (QC) SAMPLE RESULTS

		D	iesel and/o	or Oil Hyd	rocarbor	is by NW	TPH-Dx					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9040389 - EPA 3510C	(Fuels/Acid	Ext.)					Wat	er				
Blank (9040389-BLK1)		Prepared	: 04/01/19 11:	23 Analyz	ed: 04/01/1	9 23:02						
NWTPH-Dx												
Diesel	ND		72.7	ug/L	1							
Oil	ND		145	ug/L	1							
Surr: o-Terphenyl (Surr)		Rec	overy: 93 %	Limits: 50	-150 %	Dili	ution: 1x					
LCS (9040389-BS1)		Prepared	: 04/01/19 11:	23 Analyz	ed: 04/01/1	9 23:22						
NWTPH-Dx												
Diesel	375		80.0	ug/L	1	500		75	58-115%			
Surr: o-Terphenyl (Surr)		Rec	overy: 96 %	Limits: 50	-150 %	Dil	ution: 1x					
LCS Dup (9040389-BSD1)		Prepared	: 04/01/19 11:	23 Analyz	ed: 04/01/1	9 23:43						Q-1
<u>NWTPH-Dx</u>												
Diesel	388		80.0	ug/L	1	500		78	58-115%	3	20%	
Surr: o-Terphenyl (Surr)		Rec	overy: 94 %	Limits: 50	-150 %	Dil	ution: 1x					
Batch 9040412 - EPA 3510C	(Fuels/Acid	Ext.)					Wat	er				
Blank (9040412-BLK1)		Prepared	: 04/02/19 07:	00 Analyz	ed: 04/03/1	9 01:09						
<u>NWTPH-Dx</u>												
Diesel	ND		72.7	ug/L	1							
Oil	ND		145	ug/L	1							
Surr: o-Terphenyl (Surr)		Rec	overy: 94 %	Limits: 50	-150 %	Dil	ution: 1x					
LCS (9040412-BS1)		Prepared	: 04/02/19 07:	00 Analyz	ed: 04/03/1	9 01:30						
<u>NWTPH-Dx</u>												
Diesel	409		80.0	ug/L	1	500		82	58-115%			
Surr: o-Terphenyl (Surr)		Rec	overy: 95 %	Limits: 50	-150 %	Dil	ution: 1x					
LCS Dup (9040412-BSD1)		Prepared	: 04/02/19 07:	00 Analyz	ed: 04/03/1	9 01:50						Q-1
NWTPH-Dx												
Diesel	431		80.0	ug/L	1	500		86	58-115%	5	20%	
			overy: 96 %	Limits: 50								

Apex Laboratories

Assa A Zomenighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>HydroCon LLC</u>	Project: <u>Coleman Wenatchee</u>	
314 W 15th Street Suite 300	Project Number: 2017-074	<u>Report ID:</u>
Vancouver, WA 98660	Project Manager: Craig Hultgren	A9C1035 - 04 04 19 1058

QUALITY CONTROL (QC) SAMPLE RESULTS

	Gasoline Range Hydrocarbons (Benzene through Naphthalene) by NWTPH-Gx											
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9031322 - EPA 5030B							Wate	er				
Blank (9031322-BLK1)		Prepared	03/29/19 14:	19 Analyz	zed: 03/29/1	9 15:40						
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		100	ug/L	1							
Surr: 4-Bromofluorobenzene (Sur)		Recon	very: 112 %	Limits: 5	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			115 %	50	0-150 %		"					
LCS (9031322-BS2)		Prepared	03/29/19 14:	19 Analyz	zed: 03/29/1	9 15:13						
NWTPH-Gx (MS)												
Gasoline Range Organics	519		100	ug/L	1	500		104	80-120%			
Surr: 4-Bromofluorobenzene (Sur)		Reco	overy: 98 %	Limits: 5	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			102 %	50	0-150 %		"					

Apex Laboratories

Ausa A Zomenighini

Lisa Domenighini, Client Services Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

HydroCon LLC	Project: <u>Coleman Wenatchee</u>	
314 W 15th Street Suite 300	Project Number: 2017-074	<u>Report ID:</u>
Vancouver, WA 98660	Project Manager: Craig Hultgren	A9C1035 - 04 04 19 1058

QUALITY CONTROL (QC) SAMPLE RESULTS

Gasoline Range Hydrocarbons (Benzene through Naphthalene) by NWTPH-Gx												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9031329 - EPA 5030B							Wat	er				
Blank (9031329-BLK1)		Prepared	: 03/29/19 16:	02 Analyz	ed: 03/29/1	9 17:27						
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		100	ug/L	1							
Surr: 4-Bromofluorobenzene (Sur)		Rec	overy: 97 %	Limits: 50)-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			86 %	50)-150 %		"					
LCS (9031329-BS2)		Prepared	: 03/29/19 16:	02 Analyz	ed: 03/29/1	9 16:58						
NWTPH-Gx (MS)												
Gasoline Range Organics	537		100	ug/L	1	500		107	80-120%			
Surr: 4-Bromofluorobenzene (Sur)		Rec	overy: 99 %	Limits: 50	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			110 %	50)-150 %		"					
Duplicate (9031329-DUP1)		Prepared	: 03/29/19 17:	54 Analyz	ed: 03/29/1	9 19:59						
QC Source Sample: MW14-W (A	9C1035-09)											
NWTPH-Gx (MS)												
Gasoline Range Organics	2510		100	ug/L	1		2650			5	30%	
Surr: 4-Bromofluorobenzene (Sur)		Rec	overy: 98 %	Limits: 50	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			2020 %	50)-150 %		"					S-02
Duplicate (9031329-DUP2)		Prepared	: 03/29/19 17:	54 Analyz	ed: 03/29/1	9 20:56						
OC Source Sample: MW-11-W (A NWTPH-Gx (MS)	<u>9C1035-10)</u>											
Gasoline Range Organics	1570		100	ug/L	1		1540			2	30%	
Surr: 4-Bromofluorobenzene (Sur)		Rec	overy: 97 %	Limits: 50)-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			90 %	50)-150 %		"					

Apex Laboratories

Ausa A Zomenighini

Lisa Domenighini, Client Services Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>HydroCon LLC</u>	Project: <u>Coleman Wenatchee</u>	
314 W 15th Street Suite 300	Project Number: 2017-074	<u>Report ID:</u>
Vancouver, WA 98660	Project Manager: Craig Hultgren	A9C1035 - 04 04 19 1058

QUALITY CONTROL (QC) SAMPLE RESULTS

	Gasoli	ne Range H	lydrocarbo	ons (Ben	zene thro	ugh Naph	thalene) l	by NWTP	H-Gx			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9040385 - EPA 5030B							Wat	er				
Blank (9040385-BLK1)		Prepared	04/01/19 14:	44 Analy	zed: 04/01/1	9 16:09						
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		100	ug/L	1							
Surr: 4-Bromofluorobenzene (Sur)		Reco	overy: 94 %	Limits: 5	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			83 %	5	0-150 %		"					
LCS (9040385-BS2)		Prepared	04/01/19 14:	44 Analy	zed: 04/01/1	9 15:41						
<u>NWTPH-Gx (MS)</u>												
Gasoline Range Organics	457		100	ug/L	1	500		91	80-120%			
Surr: 4-Bromofluorobenzene (Sur)		Reco	overy: 93 %	Limits: 5	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			102 %	5	0-150 %		"					
Duplicate (9040385-DUP1)		Prepared	04/01/19 15:	58 Analy	zed: 04/01/1	9 22:49						
QC Source Sample: MW13-W (A	9C1035-08)											
NWTPH-Gx (MS)												
Gasoline Range Organics	28900		2000	ug/L	20		28500			2	30%	
Surr: 4-Bromofluorobenzene (Sur)		Reco	overy: 97 %	Limits: 5	0-150 %	Dili	ution: 1x					
1,4-Difluorobenzene (Sur)			153 %	5	0-150 %		"					S-02

Apex Laboratories

Ausa A Zomenighini

Lisa Domenighini, Client Services Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>HydroCon LLC</u>	Project: <u>Coleman Wenatchee</u>	
314 W 15th Street Suite 300	Project Number: 2017-074	<u>Report ID:</u>
Vancouver, WA 98660	Project Manager: Craig Hultgren	A9C1035 - 04 04 19 1058

QUALITY CONTROL (QC) SAMPLE RESULTS

			BTEX	Compou	inds by E	PA 8260C						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9031322 - EPA 5030B							Wat	er				
Blank (9031322-BLK1)		Prepared	: 03/29/19 14:	19 Analyz	ed: 03/29/19	9 15:40						
EPA 8260C												
Benzene	ND		0.200	ug/L	1							
Toluene	ND		1.00	ug/L	1							
Ethylbenzene	ND		0.500	ug/L	1							
Xylenes, total	ND		1.50	ug/L	1							
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 111 %	Limits: 80	-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			100 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			102 %	80	-120 %		"					
LCS (9031322-BS1)		Prepared	: 03/29/19 14:	19 Analyz	ed: 03/29/19	9 14:46						
EPA 8260C												
Benzene	18.2		0.200	ug/L	1	20.0		91	80-120%			
Toluene	18.4		1.00	ug/L	1	20.0		92	80-120%			
Ethylbenzene	17.9		0.500	ug/L	1	20.0		89	80-120%			
Xylenes, total	57.5		1.50	ug/L	1	60.0		96	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	overy: 98 %	Limits: 80)-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			99 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			97 %	80	-120 %		"					

Apex Laboratories

Assa A Zomenighini

Lisa Domenighini, Client Services Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

HydroCon LLC	Project: <u>Coleman Wenatchee</u>	
314 W 15th Street Suite 300	Project Number: 2017-074	<u>Report ID:</u>
Vancouver, WA 98660	Project Manager: Craig Hultgren	A9C1035 - 04 04 19 1058

QUALITY CONTROL (QC) SAMPLE RESULTS

			BTEX	Compou	inds by E	PA 8260C	;					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9031329 - EPA 5030B							Wat	er				
Blank (9031329-BLK1)		Prepared	: 03/29/19 16:	02 Analyz	ed: 03/29/19	9 17:27						
EPA 8260C		1										
Benzene	ND		0.200	ug/L	1							
Toluene	ND		1.00	ug/L	1							
Ethylbenzene	ND		0.500	ug/L	1							
Xylenes, total	ND		1.50	ug/L	1							
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 106 %	Limits: 80	0-120 %	Dili	ution: 1x					
Toluene-d8 (Surr)			102 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			99 %	80	-120 %		"					
LCS (9031329-BS1)		Prepared	: 03/29/19 16:	02 Analyz	ed: 03/29/19	9 16:30						
EPA 8260C		1										
Benzene	21.3		0.200	ug/L	1	20.0		106	80-120%			
Toluene	20.1		1.00	ug/L	1	20.0		100	80-120%			
Ethylbenzene	20.0		0.500	ug/L	1	20.0		100	80-120%			
Xylenes, total	60.2		1.50	ug/L	1	60.0		100	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 106 %	Limits: 80)-120 %	Dili	ution: 1x					
Toluene-d8 (Surr)			102 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			98 %	80	-120 %		"					
Duplicate (9031329-DUP1)		Prepared	: 03/29/19 17:	54 Analyz	ed: 03/29/19	9 19:59						
QC Source Sample: MW14-W (AS	9C1035-09)											
EPA 8260C												
Benzene	17.8		0.200	ug/L	1		17.8			0.3	30%	
Toluene	ND		1.00	ug/L	1		ND				30%	
Ethylbenzene	2.05		0.500	ug/L	1		2.04			0.4	30%	
Xylenes, total	ND		1.50	ug/L	1		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Reco	overy: 96 %	Limits: 80)-120 %	Dili	ution: 1x					
Toluene-d8 (Surr)			114 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			101 %	80	-120 %		"					
Duplicate (9031329-DUP2)		Prenared	: 03/29/19 17:	54 Analyz	red: 03/29/10	9 20.56						
QC Source Sample: MW-11-W (A	9(21035 10)	1	. 03/27/17 17.		.vu. 0 <i>5/29</i> /1	20.30						

EPA 8260C

Apex Laboratories

Ausa A Zomenighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>HydroCon LLC</u>	Project: <u>Coleman Wenatchee</u>	
314 W 15th Street Suite 300	Project Number: 2017-074	<u>Report ID:</u>
Vancouver, WA 98660	Project Manager: Craig Hultgren	A9C1035 - 04 04 19 1058

QUALITY CONTROL (QC) SAMPLE RESULTS

			BTEX	Compou	unds by E	PA 8260C	;					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Note
Batch 9031329 - EPA 5030B							Wat	er				
Duplicate (9031329-DUP2)		Prepared	: 03/29/19 17:	54 Analyz	ed: 03/29/1	9 20:56						
QC Source Sample: MW-11-W (A	9C1035-10)											
Benzene	11.5		0.200	ug/L	1		11.6			0.9	30%	
Toluene	ND		1.00	ug/L	1		ND				30%	
Ethylbenzene	ND		0.500	ug/L	1		0.474			***	30%	
Xylenes, total	2.43		1.50	ug/L	1		2.34			4	30%	
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 106 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			102 %	80)-120 %		"					
4-Bromofluorobenzene (Surr)			100 %	80)-120 %		"					
Matrix Spike (9031329-MS1)		Prepared	: 03/29/19 17:	54 Analyz	ed: 03/30/1	9 04:00						
<u>QC Source Sample: MW102-W (A</u> EPA 8260C	9C1035-22	<u>)</u>										
Benzene	26.0		0.200	ug/L	1	20.0	4.56	107	79-120%			
Toluene	20.5		1.00	ug/L	1	20.0	ND	102	80-121%			
Ethylbenzene	21.3		0.500	ug/L	1	20.0	1.29	100	79-121%			
Xylenes, total	61.8		1.50	ug/L	1	60.0	2.15	99	79-121%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 106 %	Limits: 80)-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			100 %	80)-120 %		"					
4-Bromofluorobenzene (Surr)			100 %	80)-120 %		"					

Apex Laboratories

Ausa A Zomenighini

Lisa Domenighini, Client Services Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

HydroCon LLC	Project: <u>Coleman Wenatchee</u>	
314 W 15th Street Suite 300	Project Number: 2017-074	<u>Report ID:</u>
Vancouver, WA 98660	Project Manager: Craig Hultgren	A9C1035 - 04 04 19 1058

QUALITY CONTROL (QC) SAMPLE RESULTS

			BTEX	Compou	inds by E	PA 8260C	;					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Note
Batch 9040385 - EPA 5030B	3						Wat	er				
Blank (9040385-BLK1)		Prepared	: 04/01/19 14:	:44 Analyz	ed: 04/01/1	9 16:09						
EPA 8260C												
Benzene	ND		0.200	ug/L	1							
Toluene	ND		1.00	ug/L	1							
Ethylbenzene	ND		0.500	ug/L	1							
Xylenes, total	ND		1.50	ug/L	1							
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 105 %	Limits: 80)-120 %	Dili	ution: 1x					
Toluene-d8 (Surr)			102 %	80	-120 %		"					
4-Bromofluorobenzene (Surr	•)		100 %	80	-120 %		"					
LCS (9040385-BS1)		Prepared	: 04/01/19 14:	:44 Analyz	ed: 04/01/1	9 15:12						
EPA 8260C												
Benzene	20.2		0.200	ug/L	1	20.0		101	80-120%			
Toluene	20.1		1.00	ug/L	1	20.0		101	80-120%			
Ethylbenzene	19.6		0.500	ug/L	1	20.0		98	80-120%			
Xylenes, total	58.4		1.50	ug/L	1	60.0		97	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 104 %	Limits: 80)-120 %	Dilution: 1x						
Toluene-d8 (Surr)			101 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)		100 %	80	-120 %		"					
Duplicate (9040385-DUP1)		Prepared	: 04/01/19 15:	58 Analyz	ed: 04/01/1	9 22:49						
QC Source Sample: MW13-W	(A9C1035-08)											
EPA 8260C												
Benzene	722		4.00	ug/L	20		701			3	30%	
Toluene	782		20.0	ug/L	20		761			3	30%	
Ethylbenzene	829		10.0	ug/L	20		804			3	30%	
Xylenes, total	5120		30.0	ug/L	20		4980			3	30%	
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 106 %	Limits: 80)-120 %	Dili	ution: 1x					
Toluene-d8 (Surr)			102 %	80	-120 %		"					
4-Bromofluorobenzene (Surr	.)		100 %		-120 %		"					

Apex Laboratories

Ausa A Zomenighini

Lisa Domenighini, Client Services Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

HydroCon LLC	Project: Coleman Wenatchee	
314 W 15th Street Suite 300	Project Number: 2017-074	Report ID:
Vancouver, WA 98660	Project Manager: Craig Hultgren	A9C1035 - 04 04 19 1058

SAMPLE PREPARATION INFORMATION

		Diesel an	d/or Oil Hydrocarbor	is by NWTPH-Dx			
Prep: EPA 3510C	(Fuels/Acid Ext.)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 9040389				-			
A9C1035-01	Water	NWTPH-Dx	03/25/19 10:30	04/01/19 11:23	1060mL/2mL	1000mL/2mL	0.94
A9C1035-02	Water	NWTPH-Dx	03/25/19 11:00	04/01/19 11:23	1050mL/2mL	1000mL/2mL	0.95
A9C1035-03	Water	NWTPH-Dx	03/25/19 11:35	04/01/19 11:23	1050mL/2mL	1000mL/2mL	0.95
A9C1035-04	Water	NWTPH-Dx	03/25/19 12:05	04/01/19 11:23	1050mL/2mL	1000mL/2mL	0.95
A9C1035-05	Water	NWTPH-Dx	03/25/19 12:55	04/01/19 11:23	1050mL/2mL	1000mL/2mL	0.95
A9C1035-06	Water	NWTPH-Dx	03/25/19 13:30	04/01/19 11:23	1050mL/2mL	1000mL/2mL	0.95
A9C1035-07	Water	NWTPH-Dx	03/25/19 13:30	04/01/19 11:23	1050mL/2mL	1000mL/2mL	0.95
A9C1035-08	Water	NWTPH-Dx	03/25/19 14:10	04/01/19 11:23	1060mL/2mL	1000mL/2mL	0.94
A9C1035-09	Water	NWTPH-Dx	03/25/19 14:45	04/01/19 11:23	1060mL/2mL	1000mL/2mL	0.94
A9C1035-10	Water	NWTPH-Dx	03/26/19 08:05	04/01/19 13:10	1060mL/2mL	1000mL/2mL	0.94
A9C1035-11	Water	NWTPH-Dx	03/26/19 09:20	04/01/19 13:10	1070mL/2mL	1000mL/2mL	0.94
A9C1035-12	Water	NWTPH-Dx	03/26/19 10:15	04/01/19 13:10	1070mL/2mL	1000mL/2mL	0.94
A9C1035-13	Water	NWTPH-Dx	03/26/19 10:55	04/01/19 13:10	1060mL/2mL	1000mL/2mL	0.94
A9C1035-14	Water	NWTPH-Dx	03/26/19 10:55	04/01/19 13:10	1050mL/2mL	1000mL/2mL	0.95
A9C1035-15	Water	NWTPH-Dx	03/26/19 08:40	04/01/19 13:10	1070mL/2mL	1000mL/2mL	0.94
A9C1035-16	Water	NWTPH-Dx	03/26/19 13:05	04/01/19 13:10	1060mL/2mL	1000mL/2mL	0.94
A9C1035-17	Water	NWTPH-Dx	03/27/19 08:25	04/01/19 13:10	1070mL/2mL	1000mL/2mL	0.94
A9C1035-18	Water	NWTPH-Dx	03/27/19 09:00	04/01/19 13:10	1070mL/2mL	1000mL/2mL	0.94
A9C1035-19	Water	NWTPH-Dx	03/27/19 09:40	04/01/19 13:10	1070mL/2mL	1000mL/2mL	0.94
A9C1035-20	Water	NWTPH-Dx	03/27/19 10:30	04/01/19 13:10	1060mL/2mL	1000mL/2mL	0.94
Batch: 9040412							
A9C1035-21RE1	Water	NWTPH-Dx	03/27/19 11:10	04/02/19 07:00	1060mL/2mL	1000mL/2mL	0.94
A9C1035-22RE1	Water	NWTPH-Dx	03/27/19 11:10	04/02/19 07:00	1070mL/2mL	1000mL/2mL	0.94
A9C1035-23	Water	NWTPH-Dx	03/27/19 12:55	04/02/19 07:00	1060mL/2mL	1000mL/2mL	0.94
A9C1035-24	Water	NWTPH-Dx	03/28/19 08:15	04/02/19 07:00	1060mL/2mL	1000mL/2mL	0.94
A9C1035-25	Water	NWTPH-Dx	03/28/19 08:55	04/02/19 07:00	1070mL/2mL	1000mL/2mL	0.94
A9C1035-26	Water	NWTPH-Dx	03/28/19 08:35	04/02/19 07:00	1060mL/2mL	1000mL/2mL	0.94
A9C1035-27	Water	NWTPH-Dx	03/28/19 10:15	04/02/19 07:00	1070mL/2mL	1000mL/2mL	0.94
A9C1035-28	Water	NWTPH-Dx	03/28/19 10:45	04/02/19 07:00	1070mL/2mL	1000mL/2mL	0.94
A9C1035-29	Water	NWTPH-Dx	03/28/19 11:30	04/02/19 07:00	1070mL/2mL	1000mL/2mL	0.94
A9C1035-30	Water	NWTPH-Dx	03/28/19 10:45	04/02/19 09:54	1070mL/2mL	1000mL/2mL	0.94
A9C1035-31	Water	NWTPH-Dx	03/28/19 10:00	04/02/19 09:54	1070mL/2mL	1000mL/2mL	0.94
A9C1035-32	Water	NWTPH-Dx	03/28/19 09:20	04/02/19 09:54	1070mL/2mL	1000mL/2mL	0.94
A9C1035-33	Water	NWTPH-Dx	03/28/19 08:35	04/02/19 09:54	1070mL/2mL	1000mL/2mL	0.94

Apex Laboratories

Assa A Zomenighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

HydroCon LLC	Project: <u>Co</u>	oleman Wenatchee	
314 W 15th Street Suite 300	Project Number: 20)17-074	<u>Report ID:</u>
Vancouver, WA 98660	Project Manager: Cr	raig Hultgren	A9C1035 - 04 04 19 1058

SAMPLE PREPARATION INFORMATION

	Gas	soline Range Hydrocart	oons (Benzene thro	ugh Naphthalene) b	y NWTPH-Gx		
Prep: EPA 5030B					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 9031322			*	*			
A9C1035-01	Water	NWTPH-Gx (MS)	03/25/19 10:30	03/29/19 15:18	5mL/5mL	5mL/5mL	1.00
A9C1035-02	Water	NWTPH-Gx (MS)	03/25/19 11:00	03/29/19 15:18	5mL/5mL	5mL/5mL	1.00
A9C1035-03	Water	NWTPH-Gx (MS)	03/25/19 11:35	03/29/19 15:18	5mL/5mL	5mL/5mL	1.00
A9C1035-04	Water	NWTPH-Gx (MS)	03/25/19 12:05	03/29/19 15:18	5mL/5mL	5mL/5mL	1.00
A9C1035-05	Water	NWTPH-Gx (MS)	03/25/19 12:55	03/29/19 15:18	5mL/5mL	5mL/5mL	1.00
A9C1035-06	Water	NWTPH-Gx (MS)	03/25/19 13:30	03/29/19 15:18	5mL/5mL	5mL/5mL	1.00
A9C1035-07	Water	NWTPH-Gx (MS)	03/25/19 13:30	03/29/19 15:18	5mL/5mL	5mL/5mL	1.00
Batch: 9031329							
A9C1035-09	Water	NWTPH-Gx (MS)	03/25/19 14:45	03/29/19 17:54	5mL/5mL	5mL/5mL	1.00
A9C1035-10	Water	NWTPH-Gx (MS)	03/26/19 08:05	03/29/19 17:54	5mL/5mL	5mL/5mL	1.00
A9C1035-11	Water	NWTPH-Gx (MS)	03/26/19 09:20	03/29/19 17:54	5mL/5mL	5mL/5mL	1.00
A9C1035-12	Water	NWTPH-Gx (MS)	03/26/19 10:15	03/29/19 17:54	5mL/5mL	5mL/5mL	1.00
A9C1035-13	Water	NWTPH-Gx (MS)	03/26/19 10:55	03/29/19 17:54	5mL/5mL	5mL/5mL	1.00
A9C1035-14	Water	NWTPH-Gx (MS)	03/26/19 10:55	03/29/19 17:54	5mL/5mL	5mL/5mL	1.00
A9C1035-15	Water	NWTPH-Gx (MS)	03/26/19 08:40	03/29/19 17:54	5mL/5mL	5mL/5mL	1.00
A9C1035-16	Water	NWTPH-Gx (MS)	03/26/19 13:05	03/29/19 17:54	5mL/5mL	5mL/5mL	1.00
A9C1035-17	Water	NWTPH-Gx (MS)	03/27/19 08:25	03/29/19 17:54	5mL/5mL	5mL/5mL	1.00
A9C1035-18	Water	NWTPH-Gx (MS)	03/27/19 09:00	03/29/19 17:54	5mL/5mL	5mL/5mL	1.00
A9C1035-19	Water	NWTPH-Gx (MS)	03/27/19 09:40	03/29/19 17:54	5mL/5mL	5mL/5mL	1.00
A9C1035-20	Water	NWTPH-Gx (MS)	03/27/19 10:30	03/29/19 17:54	5mL/5mL	5mL/5mL	1.00
A9C1035-21	Water	NWTPH-Gx (MS)	03/27/19 11:10	03/29/19 17:54	5mL/5mL	5mL/5mL	1.00
A9C1035-22	Water	NWTPH-Gx (MS)	03/27/19 11:10	03/29/19 17:54	5mL/5mL	5mL/5mL	1.00
A9C1035-34	Water	NWTPH-Gx (MS)	03/28/19 11:10	03/29/19 17:54	5mL/5mL	5mL/5mL	1.00
Batch: 9040385							
A9C1035-08	Water	NWTPH-Gx (MS)	03/25/19 14:10	04/01/19 15:58	5mL/5mL	5mL/5mL	1.00
A9C1035-23RE1	Water	NWTPH-Gx (MS)	03/27/19 12:55	04/01/19 15:58	5mL/5mL	5mL/5mL	1.00
A9C1035-24	Water	NWTPH-Gx (MS)	03/28/19 08:15	04/01/19 15:58	5mL/5mL	5mL/5mL	1.00
A9C1035-25	Water	NWTPH-Gx (MS)	03/28/19 08:55	04/01/19 15:58	5mL/5mL	5mL/5mL	1.00
A9C1035-26	Water	NWTPH-Gx (MS)	03/28/19 08:35	04/01/19 15:58	5mL/5mL	5mL/5mL	1.00
A9C1035-27	Water	NWTPH-Gx (MS)	03/28/19 10:15	04/01/19 15:58	5mL/5mL	5mL/5mL	1.00
A9C1035-28	Water	NWTPH-Gx (MS)	03/28/19 10:45	04/01/19 15:58	5mL/5mL	5mL/5mL	1.00
A9C1035-29	Water	NWTPH-Gx (MS)	03/28/19 11:30	04/01/19 15:58	5mL/5mL	5mL/5mL	1.00
A9C1035-30	Water	NWTPH-Gx (MS)	03/28/19 10:45	04/01/19 15:58	5mL/5mL	5mL/5mL	1.00
A9C1035-31	Water	NWTPH-Gx (MS)	03/28/19 10:00	04/01/19 15:58	5mL/5mL	5mL/5mL	1.00
A9C1035-32	Water	NWTPH-Gx (MS)	03/28/19 09:20	04/01/19 15:58	5mL/5mL	5mL/5mL	1.00

Apex Laboratories

Ausa A Zomenighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

	HydroCon LLCProject:Coleman Wenatchee314 W 15th Street Suite 300Project Number:2017-074Vancouver, WA 98660Project Manager:Craig Hultgren				<u>Report ID</u> A9C1035 - 04 04 19	-	
SAMPLE PREPARATION INFORMATION							
	Gas	soline Range Hydrocart	oons (Benzene thro	ugh Naphthalene) b	y NWTPH-Gx		
Prep: EPA 5030B					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
A9C1035-33	Water	NWTPH-Gx (MS)	03/28/19 08:35	04/01/19 15:58	5mL/5mL	5mL/5mL	1.00
		BTE	EX Compounds by E	EPA 8260C			
Prep: EPA 5030B					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 9031322	Triati IX	inculou	Sumpieu	Tiepureu			
A9C1035-01	Water	EPA 8260C	03/25/19 10:30	03/29/19 15:18	5mL/5mL	5mL/5mL	1.00
A9C1035-02	Water	EPA 8260C	03/25/19 11:00	03/29/19 15:18	5mL/5mL	5mL/5mL	1.00
A9C1035-03	Water	EPA 8260C	03/25/19 11:35	03/29/19 15:18	5mL/5mL	5mL/5mL	1.00
A9C1035-04	Water	EPA 8260C	03/25/19 12:05	03/29/19 15:18	5mL/5mL	5mL/5mL	1.00
A9C1035-05	Water	EPA 8260C	03/25/19 12:55	03/29/19 15:18	5mL/5mL	5mL/5mL	1.00
A9C1035-06	Water	EPA 8260C	03/25/19 13:30	03/29/19 15:18	5mL/5mL	5mL/5mL	1.00
A9C1035-07	Water	EPA 8260C	03/25/19 13:30	03/29/19 15:18	5mL/5mL	5mL/5mL	1.00
Batch: 9031329							
A9C1035-09	Water	EPA 8260C	03/25/19 14:45	03/29/19 17:54	5mL/5mL	5mL/5mL	1.00
A9C1035-10	Water	EPA 8260C	03/26/19 08:05	03/29/19 17:54	5mL/5mL	5mL/5mL	1.00
A9C1035-11	Water	EPA 8260C	03/26/19 09:20	03/29/19 17:54	5mL/5mL	5mL/5mL	1.00
A9C1035-12	Water	EPA 8260C	03/26/19 10:15	03/29/19 17:54	5mL/5mL	5mL/5mL	1.00
A9C1035-13	Water	EPA 8260C	03/26/19 10:55	03/29/19 17:54	5mL/5mL	5mL/5mL	1.00
A9C1035-14	Water	EPA 8260C	03/26/19 10:55	03/29/19 17:54	5mL/5mL	5mL/5mL	1.00
A9C1035-15	Water	EPA 8260C	03/26/19 08:40	03/29/19 17:54	5mL/5mL	5mL/5mL	1.00
A9C1035-16	Water	EPA 8260C	03/26/19 13:05	03/29/19 17:54	5mL/5mL	5mL/5mL	1.00
A9C1035-17	Water	EPA 8260C	03/27/19 08:25	03/29/19 17:54	5mL/5mL	5mL/5mL	1.00
A9C1035-18	Water	EPA 8260C	03/27/19 09:00	03/29/19 17:54	5mL/5mL	5mL/5mL	1.00
A9C1035-19	Water	EPA 8260C	03/27/19 09:40	03/29/19 17:54	5mL/5mL	5mL/5mL	1.00
A9C1035-20	Water	EPA 8260C	03/27/19 10:30	03/29/19 17:54	5mL/5mL	5mL/5mL	1.00
A9C1035-21	Water	EPA 8260C	03/27/19 11:10	03/29/19 17:54	5mL/5mL	5mL/5mL	1.00
A9C1035-22	Water	EPA 8260C	03/27/19 11:10	03/29/19 17:54	5mL/5mL	5mL/5mL	1.00
A9C1035-34	Water	EPA 8260C	03/28/19 11:10	03/29/19 17:54	5mL/5mL	5mL/5mL	1.00
Batch: 9040385							
A9C1035-08	Water	EPA 8260C	03/25/19 14:10	04/01/19 15:58	5mL/5mL	5mL/5mL	1.00
A9C1035-23RE1	Water	EPA 8260C	03/27/19 12:55	04/01/19 15:58	5mL/5mL	5mL/5mL	1.00
A9C1035-24	Water	EPA 8260C	03/28/19 08:15	04/01/19 15:58	5mL/5mL	5mL/5mL	1.00
A9C1035-25	Water	EPA 8260C	03/28/19 08:55	04/01/19 15:58	5mL/5mL	5mL/5mL	1.00
A9C1035-26	Water	EPA 8260C	03/28/19 08:35	04/01/19 15:58	5mL/5mL	5mL/5mL	1.00

Apex Laboratories

Assa A Zomenighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

HydroCon LLC	Project: <u>Co</u>	oleman Wenatchee	
314 W 15th Street Suite 300	Project Number: 20	017-074	<u>Report ID:</u>
Vancouver, WA 98660	Project Manager: Cu	raig Hultgren	A9C1035 - 04 04 19 1058

SAMPLE PREPARATION INFORMATION

BTEX Compounds by EPA 8260C							
Prep: EPA 5030B	<u></u>				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
A9C1035-27	Water	EPA 8260C	03/28/19 10:15	04/01/19 15:58	5mL/5mL	5mL/5mL	1.00
A9C1035-28	Water	EPA 8260C	03/28/19 10:45	04/01/19 15:58	5mL/5mL	5mL/5mL	1.00
A9C1035-29	Water	EPA 8260C	03/28/19 11:30	04/01/19 15:58	5mL/5mL	5mL/5mL	1.00
A9C1035-30	Water	EPA 8260C	03/28/19 10:45	04/01/19 15:58	5mL/5mL	5mL/5mL	1.00
A9C1035-31	Water	EPA 8260C	03/28/19 10:00	04/01/19 15:58	5mL/5mL	5mL/5mL	1.00
A9C1035-32	Water	EPA 8260C	03/28/19 09:20	04/01/19 15:58	5mL/5mL	5mL/5mL	1.00
A9C1035-33	Water	EPA 8260C	03/28/19 08:35	04/01/19 15:58	5mL/5mL	5mL/5mL	1.00

Apex Laboratories

Assa A Zomenighini

Lisa Domenighini, Client Services Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

HydroCon LLC
314 W 15th Street Suite 300
Vancouver, WA 98660

Project: Coleman Wenatchee

Project Number: 2017-074 Project Manager: Craig Hultgren <u>Report ID:</u> A9C1035 - 04 04 19 1058

QUALIFIER DEFINITIONS

Client Sample and Quality Control (QC) Sample Qualifier Definitions:

Apex Laboratories

- **F-03** The result for this hydrocarbon range is elevated due to the presence of individual analyte peaks in the quantitation range that are not representative of the fuel pattern reported.
- F-11 The hydrocarbon pattern indicates possible weathered diesel, mineral oil, or a contribution from a related component.
- F-13 The chromatographic pattern does not resemble the fuel standard used for quantitation
- F-15 Results for diesel are estimated due to overlap from the reported oil result.
- F-16 Results for oil are estimated due to overlap from the reported diesel result.
- F-20 Result for Diesel is Estimated due to overlap from Gasoline Range Organics or other VOCs.
- Q-19 Blank Spike Duplicate (BSD) sample analyzed in place of Matrix Spike/Duplicate samples due to limited sample amount available for analysis.
- S-02 Surrogate recovery cannot be accurately quantified due to interference from coeluting organic compounds present in the sample extract.
- S-05 Surrogate recovery is estimated due to sample dilution required for high analyte concentration and/or matrix interference.
- S-06 Surrogate recovery is outside of established control limits.

Apex Laboratories

Jusa A Zomenichini

Lisa Domenighini, Client Services Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>HydroCon LLC</u> 314 W 15th Street Suite 300 Vancouver, WA 98660

Project: Coleman Wenatchee

Project Number: 2017-074 Project Manager: Craig Hultgren <u>Report ID:</u> A9C1035 - 04 04 19 1058

REPORTING NOTES AND CONVENTIONS:

Abbreviations:

DET	Analyte DETECTED at or above the detection or reporting limit.	

- ND Analyte NOT DETECTED at or above the detection or reporting limit.
- NR Result Not Reported
- RPD Relative Percent Difference

Detection Limits: Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ). If no value is listed ('-----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as " dry", " wet", or " " (blank) designation.

- <u>" dry"</u> Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry") See Percent Solids section for details of dry weight analysis.
- "wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.
- "___ Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

QC Source:

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) are not included in this report. Please request a Full QC report if this data is required.

Miscellaneous Notes:

- "--- " QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.
- "*** " Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to ½ the Reporting Limit (RL). -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier. -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy. For further details, please request a copy of this document.

Apex Laboratories

Ausa A Zomenighini

Lisa Domenighini, Client Services Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>HydroCon LLC</u> 314 W 15th Street Suite 300 Vancouver, WA 98660

Project: Coleman Wenatchee

Project Number: 2017-074 Project Manager: Craig Hultgren <u>Report ID:</u> A9C1035 - 04 04 19 1058

REPORTING NOTES AND CONVENTIONS (Cont.):

Blanks (Cont.):

Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.

'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

Apex Laboratories

Ausa A Zomenichini

Lisa Domenighini, Client Services Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

IydroCon LLC		Project:	Coleman Wenatchee							
314 W 15th Street Suite 300		Project Number:	2017-074	<u>Report ID:</u>						
ancouver, WA 9	98660	Project Manager:	Craig Hultgren	A9C1035 - 04 04 19 1058						
	LABORATORY ACCREDITATION INFORMATION									
	<u>TNI Certification ID: OR100062 (Primary Accreditation)</u> - <u>EPA ID: OR01039</u> All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:									
Matrix	Analysis	TNI_ID	Analyte	TNI_ID Accreditation						
	All reported analytes are included in Apex Laboratories' current ORELAP scope.									

Secondary Accreditations

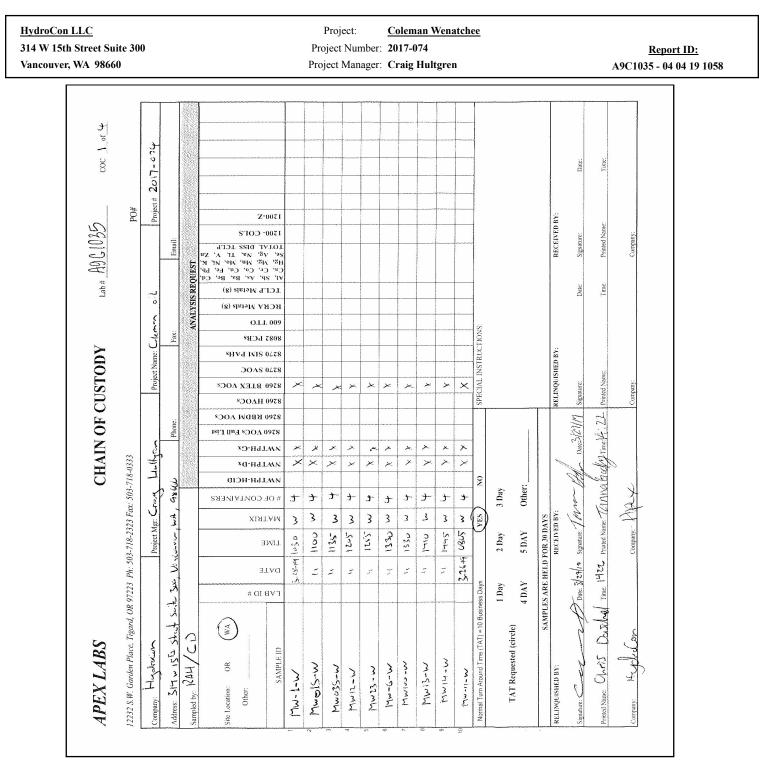
Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation. Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

Field Testing Parameters

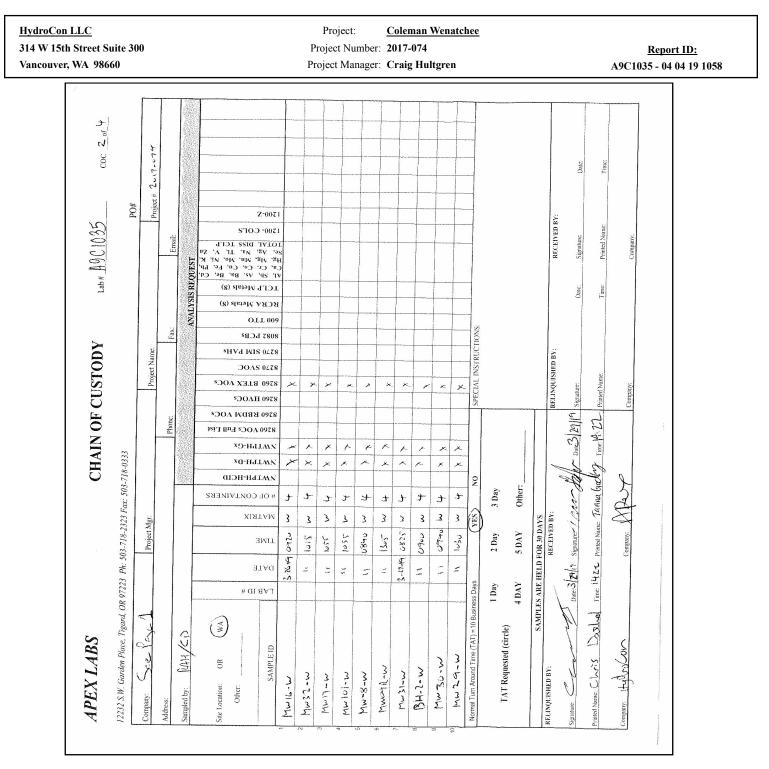
Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.


Apex Laboratories

Assa A Zomenighini

Lisa Domenighini, Client Services Manager

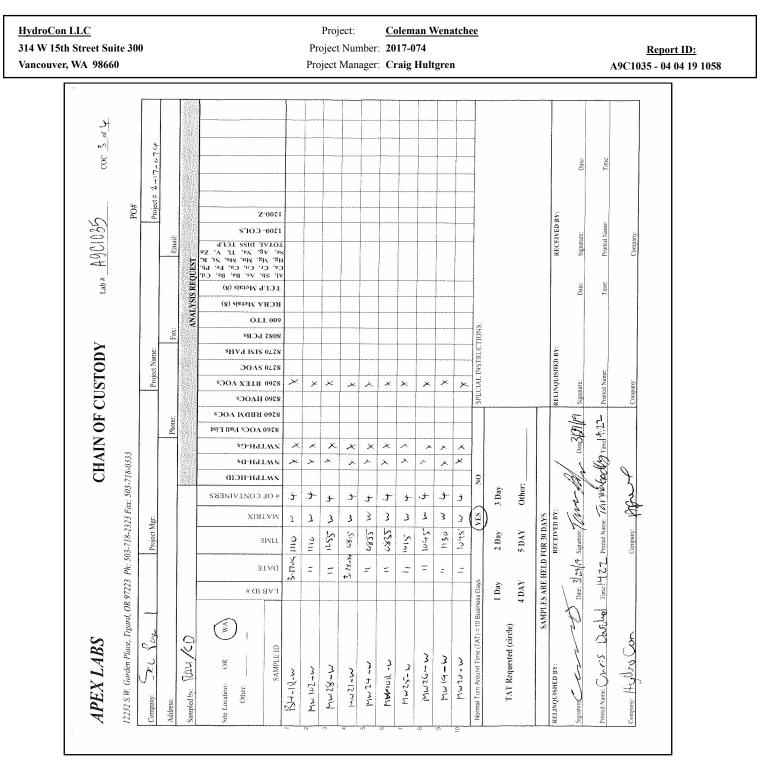
12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>


Apex Laboratories

Ausa A Zomenighini

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

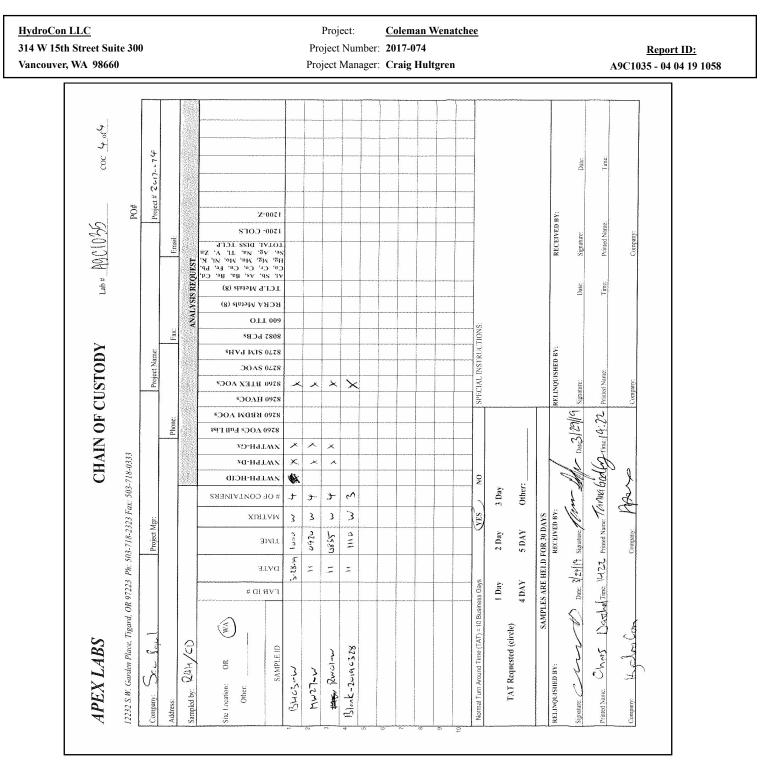
12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>


Apex Laboratories

Ausa A Zomenighini

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>



Apex Laboratories

Ausa A Zomenighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Apex Laboratories

Ausa A Zomenighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

lydroCon LLC	Project:	Coleman Wenatchee	
4 W 15th Street Suite 300	Project Number:	2017-074	<u>Report ID:</u>
ncouver, WA 98660	Project Manager:	Craig Hultgren	A9C1035 - 04 04 19 1058
Cooler InspectionDate/tilChain of Custody included?Signed/dated by client?Signed/dated by Apex?Temperature (°C)Received on ice? (Y/N)Temp. blanks? (Y/N)Ice type: (Gel/Real/Other)Condition:Cooler out of temp? (Y/N)If some coolers are in temp anOut of temperature samples forSamples Inspection:Date/tAll samples intact? Yes	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Element WO#: A9 TAG PSSwiftSenvoyS @ <u>/ 4: 2.2</u> By: <u>7 49</u> Custody seals? Yes r #3 Cooler #4 Cooler #5 G 2.3 <u>1, 8</u> <u>4</u> <u>7</u> <u>7</u> <u>7</u> <u>7</u> <u>7</u> <u>7</u> <u>7</u> <u>7</u>	DSOther
COC/container discrepancies f Containers/volumes received a	ASA VeccIS HAW	<u>00-W</u> 1300 Stirupt □ NA <u>X</u> Is <u>X</u> No <u>Comments:</u>	
Do VOA vials have visible her Comments Water samples: pH checked: Y Comments:	·		
Additional information: 5 T	Bs # 2014 received	but not listed on G	
Labeled by: Witne	SS: Cooler Insp 5 JS	ected by: See Projec	et Contact Form: Y

Apex Laboratories

Assa A Zomenighini

APPENDIX C

DATA QUALITY REVIEW REPORT

TO:	Craig Hultgren, HydroCon		
FROM:	Manon Tanner-Dave		
DATE:	April 15, 2019		
SUBJECT:	Laboratory Validation Report		
HydroCon TOC Site No.	Coleman Wenatchee – 2017-074		
Sampling Event Type:	Water Sampling	Number of Samples:	34
Laboratory Work Order:	A9C1035	Final Report Date & Time:	April 4, 2019
Analysis & Method			

- ⊠ Gasoline Range Hydrocarbon (NWTPH-Gx)
- oxtimes Diesel Range Hydrocarbon without Silica Gel (NWTPH-Dx) \Box
- □ Diesel Range Organics with Silica Gel (NWTPH-DxSG)
- □ Volatile Organic Compounds (EPA 8260C)
- ⊠ BTEX (EPA 8260C)
- □ Total Lead (EPA 6020A), Organic Lead and Manganese Speciation (GC/ECD)
- □ Sulfate (300.0)
- \Box Other

Data Package Completeness:

Data package was complete.

EDD to Hardcopy Verification:

An EDD was not provided.

Technical Data Validation:

- ⊠ Holding Times & Sample Receipt
- \boxtimes Surrogate Compounds
- Associated Matrix Spike/Matrix Spike Duplicate (MS/MSD)
- ⊠ Associated Laboratory Duplicate
- ☑ Laboratory Control Sample/ Laboratory Control Sample Duplicates (LCS/LCSD)
- ⊠ Method Blank
- ⊠ Field Duplicates
- ⊠ Target Analyte List
- ⊠ Reporting Limits (MDL and MRL)
- \boxtimes Reported Results

Holding Times & Sample Receipt:

All holding times and sample receipt were acceptable.

Surrogate Compounds:

All surrogate percent recoveries (%R) were within laboratory limits, with the exceptions noted below:

Sample ID	Laboratory ID	Analysis	Surrogate %R	QC Limits	Qualifier/Comments
MW-8-W	A9C1035-15	NWTPH-Dx	o-Terphenyl: 46%	50-150%	S-06: J/UJ-SSR all results.
MW13-W	A9C1035-08	NWTPH-Gx	1,4-Difluorobenzene: 152%	50-150%	S-02: J-SSR result.
MW14-W	A9C1035-09	NWTPH-Gx	1,4-Difluorobenzene: 2080%	50-150%	S-02: J-SSR result.
MW17-W	A9C1035-13	NWTPH-Gx	1,4-Difluorobenzene: 377%	50-150%	S-02: J-SSR result.
MW101-W	A9C1035-14	NWTPH-Gx	1,4-Difluorobenzene: 373%	50-150%	S-02: J-SSR result.

Associated Matrix Spike/Matrix Spike Duplicate (MS/MSD):

Matrix spikes were analyzed at the appropriate frequency and all %R were within the acceptance criteria, with the following exceptions.

NWTPH-Dx: Laboratory control sample duplicate (LCSD) analyzed in place of matrix spike/duplicate samples due to limited sample amount available for analysis.

Associated Laboratory Duplicate:

Laboratory duplicates were analyzed at the appropriate frequency and all %D were within the acceptance criteria.

Laboratory Control Sample/Laboratory Control Sample Duplicates:

LCS were analyzed at the appropriate frequency and all %R were within the acceptance criteria.

Method Blank:

Method blanks were analyzed at the appropriate frequency and were non-detect (ND) for all target analytes.

NWTPH-Gx & BTEX: One field blank (Blank-20190328) was collected and analyzed; all results were ND for the target analytes.

Field Duplicate(s):

Three sets of parent/field duplicate samples were collected and analyzed (MW-6-W/MW100-W, MW17-W/MW101-W, and BH-1R-W/MW102/W); all RPDs were within control limits, with the following exceptions:

Sample/Duplicate Pair	Analyte	Sample Result	Duplicate Result	RPD	Control Limit	Comments/Qualifiers
BH-1R-W/MW102-W	Gasoline Range Organics	1130	2600	78.8%	35%	Both results were >5x the MRL; J-REP qualify result.

Target Analyte List:

All requested analytes were present.

Reporting Limits (MDL and MRL):

Reporting limits were within the acceptance criteria, with the following exceptions noted below:

Select samples had elevated MRLs due to sample dilution as a result of high analyte concentrations or matrix interference issues. Results were reported from the dilution analyses, as applicable.

Reported Results:

All reported results are acceptable; except for the rejected Oxygenates results.

Laboratory qualifiers for NWTPH-Dx:

- (F-03) The result for this hydrocarbon range is elevated due to the presence of individual analyte peaks in the quantitation range that are not representative of the fuel pattern reported.
 - J/UJ-Other qualify affected results.
- (F-11) The hydrocarbon pattern indicates possible weathered diesel, or a contribution from a related component.
 - J/UJ-Other qualify affected results.
- (F-13) The chromatographic pattern does not resemble the fuel standard used for quantitation.
 J/UJ-Chrom qualify affected results.
- (F-15) Results for diesel are estimated due to overlap from the reported oil result.
 J/UJ-Mi qualify affected results.
- (F-16) Results for oil are estimated due to overlap from the reported diesel result.
 - o J/UJ-Mi qualify affected results.
- (F-20) Result for Diesel is estimated due to overlap from Gasoline Range Organics or other VOCs.
 J/UJ-Mi qualify affected results.

Laboratory qualifiers for NWTPH-Gx:

- (S-02) Surrogate recovery cannot be accurately quantified due to interference from coeluting organic compounds present in the sample extract.
 - J/UJ-SSR qualify affected results.

Lab Validation Assessment

Analytical results are usable to meet the project objectives.

Data Quality Review Statement for Report

Aside from the data quality issues discussed above, the data quality review identified no concerns with respect to the quality or usability of the data presented herein.

Appendix A. Data Validation Qualifiers and Definitions

The following lists the data validation qualifier codes and their definitions that were assigned to analytical results in this data validation review process.

 Data Validation

 (R) The sample result is reject due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

 $\hfill\square$ (DNR) Do not report. A more appropriate result is reported from another analysis or dilution.

Appendix B. Data Validation Qualified Summary Table

Laboratory qualifiers:

- (F-03) The result for this hydrocarbon range is elevated due to the presence of individual analyte peaks in the quantitation range that are not representative of the fuel pattern reported.
- (F-11) The hydrocarbon pattern indicates possible weathered diesel, or a contribution from a related component.
- (F-13) The chromatographic pattern does not resemble the fuel standard used for quantitation.
- (F-15) Results for diesel are estimated due to overlap from the reported oil result.
- (F-16) Results for oil are estimated due to overlap from the reported diesel result.
- (F-20) Result for Diesel is estimated due to overlap from Gasoline Range Organics or other VOCs.
- (S-02) Surrogate recovery cannot be accurately quantified due to interference from coeluting organic compounds present in the sample extract.
- (S-06) Surrogate recovery is outside of established control limits.

Validation qualifiers:

- (J) The result is an estimated quantity.
- (UJ) Estimated and not detected. The analyte is considered not detected at the reported value, and the associated numerical value is an estimated value.

Reason codes:

- Chrom = Chromatographic pattern doesn't match the pattern of the calibration standard.
- Mi = Matrix interference.
- Other = Other, described in data validation report.
- REP = Precision (all replicates).
- SSR = Surrogate spike recovery.

Sample	Laboratory ID	Method	Parameter Name	Result	Result Units	Laboratory Qualifier	Validator Qualifier	Reason Code
MW-1-W	A9C1035-01	NWTPH-Dx	Diesel	126	µg/L	F-11, F-20	J	Other, Mi
MW01S-W	A9C1035-02	NWTPH-Dx	Diesel	116	µg/L	F-11, F-20	J	Other, Mi
MW23-W	A9C1035-05	NWTPH-Dx	Diesel	339	µg/L	F-11	J	Other
MW-6-W	A9C1035-06	NWTPH-Dx	Diesel	1010	µg/L	F-13, F-20	J	Chrom, Mi
MW100-W	A9C1035-07	NWTPH-Dx	Diesel	1130	µg/L	F-13, F-20	J	Chrom, Mi
MW13-W	A9C1035-08	NWTPH-Dx	Diesel	4650	µg/L	F-11, F-20	J	Other, Mi
MW14-W	A9C1035-09	NWTPH-Dx	Diesel	1070	µg/L	F-11, F-20	J	Other, Mi
MW-11-W	A9C1035-10	NWTPH-Dx	Diesel	1130	µg/L	F-13, F-20	J	Chrom, Mi
MW16-W	A9C1035-11	NWTPH-Dx	Diesel	183	µg/L	F-11	J	Other
MW32-W	A9C1035-12	NWTPH-Dx	Diesel	296	µg/L	F-11	J	Other
MW17-W	A9C1035-13	NWTPH-Dx	Diesel	2520	µg/L	F-13, F-20	J	Chrom, Mi
MW101-W	A9C1035-14	NWTPH-Dx	Diesel	3220	µg/L	F-13, F-20	J	Chrom, Mi
MW-8-W	A9C1035-15	NWTPH-Dx	Diesel	2220	µg/L	F-13, F-20, S-06	J	Chrom, Mi, SSR
MW-8-W	A9C1035-15	NWTPH-Dx	Oil	< 150	µg/L	S-06	UJ	SSR
MW09R-W	A9C1035-16	NWTPH-Dx	Diesel	5690	µg/L	F-13, F-20	J	Chrom, Mi
BH-2-W	A9C1035-18	NWTPH-Dx	Diesel	5310	µg/L	F-13, F-15	J	Chrom, Mi
BH-2-W	A9C1035-18	NWTPH-Dx	Oil	475	µg/L	F-03, F-16	J	Other, Mi
MW30-W	A9C1035-19	NWTPH-Dx	Diesel	612	µg/L	F-13	J	Chrom
MW29-W	A9C1035-20	NWTPH-Dx	Diesel	2930	µg/L	F-13, F-15	J	Chrom, Mi
MW29-W	A9C1035-20	NWTPH-Dx	Oil	928	µg/L	F-16	J	Mi

Appendix B. Validator Qualified Data Summary Table

BH-1R-W	A9C1035-21RE1	NWTPH-Dx	Diesel	13600	µg/L	F-13	J	Chrom
MW102-W	A9C1035-22RE1	NWTPH-Dx	Diesel	15500	µg/L	F-13	J	Chrom
MW28-W	A9C1035-23	NWTPH-Dx	Diesel	1370	µg/L	F-13	J	Chrom
MW21-W	A9C1035-24	NWTPH-Dx	Diesel	1400	µg/L	F-13	J	Chrom
MW24-W	A9C1035-25	NWTPH-Dx	Diesel	695	µg/L	F-13	J	Chrom
MW10R-W	A9C1035-26	NWTPH-Dx	Diesel	2960	µg/L	F-13	J	Chrom
MW25-W	A9C1035-27	NWTPH-Dx	Diesel	302	µg/L	F-11	J	Other
MW26-W	A9C1035-28	NWTPH-Dx	Diesel	591	µg/L	F-13	J	Chrom
MW19-W	A9C1035-29	NWTPH-Dx	Diesel	4300	µg/L	F-13	J	Chrom
MW20-W	A9C1035-30	NWTPH-Dx	Diesel	2190	µg/L	F-13	J	Chrom
BH03-W	A9C1035-31	NWTPH-Dx	Diesel	1850	µg/L	F-13	J	Chrom
MW27-W	A9C1035-32	NWTPH-Dx	Diesel	185	µg/L	F-13	J	Chrom
MW13-W	A9C1035-08	NWTPH-Gx	Gasoline Range Organics	28500	µg/L	S-02	J	SSR
MW14-W	A9C1035-09	NWTPH-Gx	Gasoline Range Organics	2650	µg/L	S-02	J	SSR
MW17-W	A9C1035-13	NWTPH-Gx	Gasoline Range Organics	1180	µg/L	S-02	J	SSR
MW101-W	A9C1035-14	NWTPH-Gx	Gasoline Range Organics	1120	µg/L	S-02	J	SSR
BH-1R-W	A9C1035-21	NWTPH-Gx	Gasoline Range Organics	1130	µg/L		J	REP
MW102-W	A9C1035-22	NWTPH-Gx	Gasoline Range Organics	2600	µg/L		J	REP

APPENDIX D

WATER LEVEL AND PRODUCT THICKNESS MEASUREMENTS FORM

Depth to Water/Depth to Product Measurements

Coleman Oil Wenatchee, Washington

Date:

	Total Well	Well	Screened Interval	Well Casing	Depth to	Depth to	Sheen
	Depth	Diameter	(feet bgs)	Elevation	Water	Product (feet	Detected
Well ID	(feet bgs)	(inch)		(feet)	(feet BTOC)	BTOC)	(Y/N)
	, , ,	, , ,		, , , , , , , , , , , , , , , , , , ,	, , , , , , , , , , , , , , , , , , ,	, ,	())
MW-1	35.00	2	20-35	658.01			
MW01S	19.99	4	5.37 - 20.37	657.54			
MW-2	40.00	2	25-40	657.76			
MW-3	35.00	2	25-35	658.26			
MW03S	19.30	4	4.43 - 19.43	658.17			
MW-4	37.00	2	27-37	657.48			
MW-5	45.00	2	30-45	656.00			
MW-6	18.00	4	8-18	657.70			
MW-7	20.00	4	10-20	657.52			
MW-8	25.00	4	15-25	656.20			
MW-9R	24.00	4	14-24	655.29			
MW-10R	30.00	2	14-30	645.80			
MW-11	22.00	4	12-22	658.00			
MW12	19.52	4	4.63 - 19.63	658.27			
MW13	19.80	4	4.91 - 19.91	657.04			
MW14	20.02	4	5.23 - 20.23	657.15			
MW15	35.10	4	10.33 - 35.33	654.99			
MW16	29.15	4	9.28 - 29.28	656.93			
MW17	29.41	4	9.52 - 29.52	655.55			
MW18	34.65	4	15.86 - 35.86	654.51			
MW19	31.48	4	11.66 - 31.66	653.31			
MW20	29.50	4	9.79 - 29.79	650.85			
MW21	32.10	4	12.30 - 32.30	643.88			
MW22	39.10	4	9.19 - 34.19	641.85			
MW23	22.04	4	7.13 - 22.13	656.91			
MW24	30.00	4	14.17-34.17	644.38			
MW25	35.00	4	12.81-32.81	645.57			
MW26	30.00	4	13.54-33.54	646.65			
MW27	30.00	4	13.56-38.56	649.00			
MW28	38.74	4	13.62-38.62	650.64			
MW29	39.11	4	14.05-39.05	652.34			
MW30	39.79	4	14.67-39.67	652.83			
MW31	39.28	4	14.11-39.11	653.97			
MW32	34.02	4	8.95-33.95	655.83			
BH01R	40.00	4	14.52-39.97	651.03			
BH-2	35.00	2	20-35	653.77			
BH-3	30.00	2	15-30	648.76			
RW-1	30.00	3	15-30	650.42			

Notes:

bgs = below ground surface

BTOC = below top of casing

Sheen = audible sound at the surface of the water table that is less than 0.01' thick