

Oakland | Folsom | Irvine

INTERIM ACTION DESIGN REPORT

EMERALD GATEWAY SITE 3301 SOUTH NORFOLK STREET SEATTLE/TUKWILA, WASHINGTON

Submitted by: Farallon Consulting, L.L.C. 975 5th Avenue Northwest Issaquah, Washington 98027

Farallon PN: 1071-026

For:
Prologis, Inc.
Pier 1, Bay 1
San Francisco, California 94111

April 2, 2020

Prepared by:

Pete Kingston, L.G. Senior Geologist

LEETER J. KINGSTON

Reviewed by:

Peter Jewett, L.G., L.E.G. Principal Engineering Geologist

TABLE OF CONTENTS

ACR	ACRONYMS AND ABBREVIATIONSiv		
1.0	INTI	RODUCTION	1-1
	1.1	PURPOSE	
	1.2	DOCUMENT ORGANIZATION	
2.0	PRE.	-INTERIM ACTION DESIGN INVESTIGATION	2-1
2.0	2.1	FIELD PROGRAM	
	2.1	2.1.1 Utility Reconnaissance	
		2.1.2 Boring Advancement and Soil Sample Collection	
		2.1.3 Reconnaissance Groundwater Sample Collection	
		2.1.4 Groundwater Monitoring Well Installation and Development.	
		2.1.5 Groundwater Monitoring	
		2.1.6 Tidal Study	
		2.1.7 Laboratory Analyses	
		2.1.8 Deviations from the Proposed Scope of Work	
	2.2	RESULTS	
	2.2	2.2.1 Soil Profile	
		2.2.2 Groundwater	
		2.2.3 Tidal Study	
		2.2.4 Laboratory Analytical Results	
3.0	INIT	IAL SITE SCREENING	3_1
5. 0	3.1	PRELIMINARY SOIL PATHWAYS	
	5.1	3.1.1 Terrestrial Ecological Evaluation	
	3.2	PRELIMINARY GROUNDWATER PATHWAYS	
	J.2	3.2.1 Non-Potable Groundwater Determination	
	3.3	SCREENING OF SOIL AND GROUNDWATER DATA	
	0.0	3.3.1 Sample Statistics	
		3.3.2 Elimination Criteria	
4.0	CHM	MARY OF CONDITIONS AT INTERIM ACTION AREAS AND	
4.0		EDIATION LEVELS	<i>1</i> 1
	4.1	SUMMARY OF CONDITIONS AT INTERIM ACTION AREAS	
	4.2	SOIL REMEDIATION LEVELS	
5.0	INTI	ERIM ACTION SCOPE OF WORK	5 1
3.0	5.1	SITE PREPARATION AND MOBILIZATION	
	5.1	MONITORING WELL DECOMMISSIONING	
	5.2	AREA 2: PERISHABLES WAREHOUSE	
	5.4	AREA 6: FORMER TRUCK REPAIR SHOP	
	5.4 5.5	AREA 7: FORMER AUTOMOBILE SERVICE STATIONS	
	5.5	AREA /. FURWIER AUTUWIODILE SERVICE STATIONS	<i>3-</i> 2

	5.6 5.7	CONTINGENCY EXCAVATION AREAS DEWATERING AND TREATMENT	
		5.7.1 Soil Disposal Facility	5-3
6.0	CO	MPLIANCE SOIL MONITORING	6-1
	6.1	PROTECTION MONITORING	
	6.2		
		6.2.1 Soil Sampling Frequency	
	6.3	6.2.2 Soil Sample Locations	
7.0	RE	FERENCES	7-1
8.0	LI	MITATIONS	8-1
		FIGURES	
		FIGURES	
Figure		Site Vicinity Map	
Figure 2	2	Property Plan with Historical Site Features	
Figure 3	3	Investigation Areas	
Figure 4	4	Sample Locations, Pre-Interim Action Design Investigation	
Figure :	5	Groundwater Elevation Contours for Low Tide on July 1, 2019	
Figure (6A	Soil Analytical Results for DRO and ORO, Areas 2, 4, and 11	
Figure 6	6B	Soil Analytical Results for DRO and ORO, Areas 5 and 6	
Figure 6	6C	Soil Analytical Results for DRO and ORO, Areas 7, 12, and 13	
Figure '	7	Groundwater Analytical Results for DRO and ORO	
Figure 8	8A	Soil Analytical Results for GRO and BTEX, Areas 2, 4, and 11	
Figure 8	8B	Soil Analytical Results for GRO and BTEX, Areas 5 and 6	
Figure 8	8C	Soil Analytical Results for GRO and BTEX, Areas 7 and 13	
Figure 9	9	Groundwater Analytical Results for GRO and BTEX	
Figure	10	Soil and Groundwater Analytical Results for Arsenic	
Figure	11	Soil and Groundwater Analytical Results for Copper	
Figure	12	Soil and Groundwater Analytical Results for Naphthalene	
Figure	13	Soil and Groundwater Analytical Results for cPAHs	
Figure	14	Soil and Groundwater Analytical Results for Total PCB Aroclors	

TABLES

Table 1A	Summary of Soil Sample Analyses
Table 1B	Summary of Groundwater Sample Analyses
Table 2	Groundwater Elevations
Table 3	Soil Analytical Results for TPH and BTEX
Table 4	Soil Analytical Results for PAHs
Table 5	Soil Analytical Results for Select VOCs
Table 6	Soil Analytical Results for PCBs
Table 7	Soil Analytical Results for Metals
Table 8	Groundwater Analytical Results for TPH and BTEX
Table 9	Groundwater Analytical Results for PAHs
Table 10	Groundwater Analytical Results for Select VOCs
Table 11	Groundwater Analytical Results for Metals
Table 12	Groundwater Analytical Results for PCB Aroclors
Table 13	Summary of COPCs in Soil
Table 14	Summary of COPCs in Groundwater
Table 15	Evaluation of Soil to Groundwater Pathway for COPCs
Table 16	Soil and Groundwater COPCs for the Interim Action
Table 17	Soil Remediation Levels

APPENDICES

Appendix A	Boring Logs
Appendix B	Tidal Study Hydrographs
Appendix C	Laboratory Analytical Reports
Appendix D	Terrestrial Ecological Evaluation
Appendix E	Sampling and Analysis Plan
Appendix F	Health and Safety Plan

ACRONYMS AND ABBREVIATIONS

ARI Analytical Resources, Inc.

BTEX benzene, toluene, ethylbenzene, and xylenes

bgs below ground surface

CFR Code of Federal Regulations

COPCs constituents of potential concern

DRO total petroleum hydrocarbons as diesel-range organics

Ecology Washington State Department of Ecology

EPA U.S. Environmental Protection Agency

Farallon Farallon Consulting, L.L.C.

GRO total petroleum hydrocarbons as gasoline-range organics

HASP Health and Safety Plan, Pre-Remedial Design Investigation, Emerald

Gateway, 3301 South Norfolk Street, Seattle, Washington dated June 18,

2019, prepared by Farallon Consulting, L.L.C.

IAWP Interim Action Work Plan, Emerald Gateway Site, 3301 South Norfolk

Street, Seattle/Tukwila, Washington dated December 13, 2019, prepared

by Farallon Consulting, L.L.C.

LDW Lower Duwamish Waterway

μg/l micrograms per liter

MTCA Washington State Model Toxics Control Act Cleanup Regulation

ORO total petroleum hydrocarbons as oil-range organics

PAHs polycyclic aromatic hydrocarbons

PCB polychlorinated biphenyl

PCULs Preliminary Cleanup Levels

PID photoionization detector

PQL practical quantitation limit

Prologis Prologis-Exchange 3301 South Norfolk LLC

Property the Emerald Gateway Site at 3301 South Norfolk Street in Seattle and

Tukwila, Washington

PVC polyvinyl chloride

RI/FS Remedial Investigation and Feasibility Study

SAP Sampling and Analysis Plan, Pre-Interim Action Design Investigation,

Emerald Gateway Site, 3301 South Norfolk Street, Seattle/Tukwila, Washington dated June 21, 2019, prepared by Farallon Consulting, L.L.C.

TEE Terrestrial Ecological Evaluation

TPH total petroleum hydrocarbons

UST underground storage tank

VOCs volatile organic compounds

WAC Washington Administrative Code

1.0 INTRODUCTION

Farallon Consulting, L.L.C. (Farallon) has prepared this Interim Action Design Report on behalf of Prologis-Exchange 3301 South Norfolk LLC (Prologis) for the Emerald Gateway Site at 3301 South Norfolk Street in Seattle and Tukwila, Washington (herein referred to as the Property) (Figures 1 and 2). This Interim Action Design Report has been prepared pursuant to Agreed Order No. DE 16659 between Prologis and the Washington State Department of Ecology (Ecology). Additional information on the Emerald Gateway Site is provided in the Interim Action Work Plan (Farallon 2019b) (IAWP).

As described in the IAWP, an interim action will be conducted in conjunction with redevelopment of the Property by Prologis into multiple warehouse and distribution centers. Redevelopment will require extensive reconfiguration of the existing surface features and stormwater infrastructure (Farallon 2019b). The interim action will be performed consistent with the cleanup requirements of the Washington State Model Toxics Control Act Cleanup Regulation (MTCA), as established in Chapter 173-340 of the Washington Administrative Code (WAC 173-340).

This Interim Action Design Report documents the results from the pre-interim action design investigation and historical site investigations, summarizes the data screening process used to evaluate and select constituents of potential concern (COPCs) for the interim action, summarizes the soil and groundwater conditions at the interim action areas, establishes the remediation levels applicable for the interim action, and provides the final design components of the interim action.

1.1 PURPOSE

The purpose of this Interim Action Design Report is to provide sufficient information to implement the interim action at the Property.

To support the source control efforts and prevent recontamination of sediments in the Lower Duwamish Waterway (LDW), Ecology (2018) published Preliminary Cleanup Levels (PCULs), which are applied to upland sites that may have open transport pathways for contamination to reach the LDW and may impact surface water, sediments, or organisms. The Remedial Investigation and Feasibility Study (RI/FS) have not been completed for the Emerald Gateway Site, but sufficient data has been collected during subsurface investigations, remedial actions, and the pre-interim action design investigation to evaluate the chemical concentrations in soil and groundwater, to identify COPCs for the interim action, to evaluate potential transport pathways to the LDW, to refine the preliminary conceptual site model, and to design the interim action.

1.2 DOCUMENT ORGANIZATION

This Interim Action Design Report has been organized into the following sections:

• Section 2, Pre-Interim Action Design Investigation, summarizes the field program and presents results from the pre-interim action design investigation.

- Section 3, Initial Site Screening, discusses the preliminary soil and groundwater pathways and provides the statistical evaluation of chemical concentrations in soil and groundwater.
- Section 4, Summary of Conditions at Interim Action Areas and Remediation Levels, summarizes the distribution and occurrence of petroleum hydrocarbon-related constituents in the interim action areas and provides the soil remediation levels for the interim action.
- Section 5, Interim Action Scope of Work, describes the interim action scope of work, including contaminated soil excavation and potential groundwater dewatering and treatment.
- Section 6, Compliance Monitoring, describes the protection, performance, and confirmational monitoring that will be conducted as part of the interim action.
- Section 7, References, lists the documents cited in this Interim Action Design Report.
- **Section 8**, **Limitations**, provides Farallon's standard limitations applicable to this Interim Action Design Report.

2.0 PRE-INTERIM ACTION DESIGN INVESTIGATION

The objective of the pre-interim action design investigation was to collect supplemental data to further evaluate the chemical concentrations in soil and groundwater, to identify COPCs for the interim action, to evaluate potential transport pathways to the LDW, and to continue to refine the preliminary conceptual site model. Previous environmental reports subdivided the Property into investigation areas based on operational history. Locations of investigation areas are shown on Figure 3. Sampling locations for the pre-interim action design investigation are shown on Figure 4.

The scope of work for the pre-interim action design investigation was developed after evaluating soil and groundwater data collected during previous subsurface investigations and remedial actions performed in the investigation areas (Figure 3). Additionally, the investigation includes a Property-wide groundwater monitoring event to evaluate groundwater quality proximate to known and suspected source areas, previously conducted remedial action areas, and the down-gradient Property boundary (Figure 4).

The pre-interim action design investigation was conducted by Farallon at the Property in accordance with the Sampling and Analysis Plan (Farallon 2019a) (SAP) approved by Ecology on June 24, 2019. This section summarizes the field program and results from the pre-interim action design investigation.

2.1 FIELD PROGRAM

The field program was performed in June and July 2019, and was comprised of work elements, including utility reconnaissance, soil sample and reconnaissance groundwater sample collection, monitoring well installation and development, groundwater monitoring, and tidal study. A summary of the scope of work completed for each work element and the results of the field program are provided below.

2.1.1 Utility Reconnaissance

Linescape, LLC of Seattle, Washington performed a private utility locate survey before commencement of drilling activities and identified underground utilities in the vicinity of each of the proposed boring and well locations. Northwest Utility Notification Center located public utilities in the vicinity of the Property.

2.1.2 Boring Advancement and Soil Sample Collection

A total of 13 borings, including those completed as monitoring wells, were advanced between June 26 and 28, 2019 (Figure 4). Drilling services were provided by Cascade Drilling, LP. of Woodinville, Washington. The field program was conducted in accordance with a site-specific Health and Safety Plan as required by Part 1910 of Title 29 of the Code of Federal Regulations and WAC 296-62.

Borings F-24 through F-33 and FMW-01 through FMW-03 were advanced for collection of soil samples. Prior to advancing borings for soil sample collection, each boring location was manually cleared for utilities using a vacuum excavator to depths between 3 and 5 feet below ground surface (bgs). Soil samples collected within the utility clearance interval were collected using a hand auger. Once each location was cleared for utilities, a direct-push drill rig was used to advance each boring to total depth. Borings were continuously sampled using 5-foot probe rods lined with disposable polyvinyl chloride (PVC) liners that were removed and cut to reveal the sample after each interval driven. Soil samples were described by a Farallon Geologist in accordance with the Unified Soil Classification System and screened in the field for potential evidence of contamination using visual and olfactory observations and by conducting headspace analysis using a photoionization detector (PID) to detect the presence of volatile organic compounds (VOCs). Headspace analysis was performed by placing soil from each sample interval into a sealable plastic bag and allowing the sample to sit for at least 30 seconds. The probe of the PID was inserted into the bag, and the highest reading obtained over an approximately 30-second interval was recorded. The Unified Soil Classification System symbol, visual and olfactory observations for the samples, and PID readings were recorded on boring logs. The boring logs are provided in Appendix A.

Soil samples retained for laboratory analysis were collected in appropriate laboratory-supplied containers, placed on ice, and transported to Analytical Resources, Inc. (ARI) of Tukwila, Washington under standard chain-of-custody procedures.

Upon reaching total depth, borings that were not completed as groundwater monitoring wells were backfilled with bentonite and completed at the surface with concrete or cold-patch asphalt.

2.1.3 Reconnaissance Groundwater Sample Collection

Reconnaissance groundwater samples were collected from borings F-27, F-28, and F-31 (Figure 4). The samples were collected by placing a temporary PVC well screen into the open boring and using a peristaltic pump to draw water from the boring directly into laboratory-prepared sample containers. Each container was labeled with a unique sample identification number, placed on ice in a cooler, and transported to ARI under standard chain-of-custody procedures for laboratory analysis.

2.1.4 Groundwater Monitoring Well Installation and Development

Monitoring wells FMW-01 through FMW-03 were installed in June 2019 (Figure 4). Borings that were converted to monitoring wells were enlarged using 3.75-inch-diameter direct-push drive rods. Groundwater monitoring wells were installed using pre-packed 2-inch-diameter Schedule 40 PVC well screen with 0.010-inch slots. Sand filter pack was placed to a depth 1 foot above the top of the screened intervals. The remaining annular spaces were then backfilled with bentonite, and the wells were completed with flush-mounted traffic-rated well monuments set in concrete to match the surrounding grade.

Following monitoring well installation, each well was developed by using a downhole pump or inertial pump to surge and purge the well until water pumped from the well appeared clear. In

addition, existing monitoring wells MW-101, MW-203, MW-207, MW-AG1, MW-AG2, MW-4, and DOF-1 through DOF-5 were redeveloped to ensure representative groundwater samples would be collected during the subsequent groundwater monitoring event.

The new and existing monitoring well locations and elevations were surveyed by Professional Land Surveyors, Inc. of Issaquah, Washington. The monitoring well top of casings and top of monument were surveyed to an accuracy of 0.01 foot using a North American Vertical Datum of 1988 benchmark.

2.1.5 Groundwater Monitoring

The groundwater monitoring event was conducted on July 1 and 2, 2019. During the groundwater monitoring event, monitoring wells were opened and allowed to sit for at least 30 minutes to allow groundwater levels to equilibrate with atmospheric pressure. The depth to groundwater in each monitoring well was then measured to the nearest 0.01 foot using a water level meter.

Groundwater samples were collected in accordance with U.S. Environmental Protection Agency (EPA) (1996) procedures and the SAP. Purging and sampling of each monitoring well was performed using a peristaltic pump and dedicated silicone and polyethylene tubing at flow rates ranging from approximately 100 to 300 milliliters per minute. The tubing intake was generally placed approximately 3 feet below the water table in each monitoring well, or in the middle of the screen interval if the screen was submerged or there was less than 3 feet of water column present.

During purging, water quality was monitored using a YSI Pro DSS water quality system equipped with a flow-through cell. Water quality parameters were monitored and recorded at 3-minute intervals during purging and included temperature, pH, specific conductance, dissolved oxygen, oxidation reduction potential, and turbidity. Purging was continued until stabilization criteria were achieved for all water quality parameters. Following purging, groundwater samples were collected from the pump outlet tubing located upstream of the flow-through cell and placed directly into laboratory-prepared sample containers. Sample containers collected for analysis of dissolved metals were collected through a 0.45-micron field filter that was attached to the pump outlet and removed prior to filling containers for other analyses. Each container was labeled with a unique sample identification number, placed on ice in a cooler, and transported to ARI for laboratory analysis under standard chain-of-custody procedures.

2.1.6 Tidal Study

A tidal study was completed at the Property between July 5 and 8, 2019. The tidal study was completed by placing pressure transducers in monitoring wells DOF-1, DOF-3, DOF-5, and MW-AG1, and allowing the transducers to record changes in groundwater elevations every 5 minutes over a period of approximately 83 hours. The transducers were then removed, and the groundwater elevation data was downloaded from each transducer for compilation and evaluation. Groundwater elevations were compared to tidal elevations obtained from National Oceanic and Atmospheric Administration Seattle Tidal Station No. 9447130, with measurements recorded in 6-minute intervals.

2.1.7 Laboratory Analyses

Samples collected during the pre-interim action design investigation were submitted to ARI for laboratory analysis in accordance with the SAP. Tables 1A and 1B show the laboratory analyses conducted for each sample collected.

2.1.7.1 Soil

Soil samples collected during the field program were analyzed for one or more of the following analytes, depending on the sample location:

- Total petroleum hydrocarbons (TPH) as diesel-range organics (DRO) and as oil-range organics (ORO) by Northwest Method NWTPH-Dx;
- TPH as gasoline-range organics (GRO) by Northwest Method NWTPH-Gx;
- VOCs by EPA Method 8260C;
- Metals (arsenic, cadmium, copper, lead, mercury, manganese, and zinc) by EPA Method 6010D/6020B/7471B; and
- Polychlorinated biphenyl (PCB) aroclors by EPA Method 8082A.

2.1.7.2 Groundwater

Reconnaissance groundwater samples were submitted for laboratory analysis for one or more of the following analytes:

- DRO and ORO by NWTPH-Dx; and
- PCB aroclors by EPA Method 8082A.

Groundwater samples collected from monitoring wells during the groundwater monitoring event were submitted for laboratory analysis for the following analytes:

- DRO and ORO by NWTPH-Dx;
- GRO by NWTPH-Gx;
- VOCs by EPA 8260C;
- Total and dissolved metals (arsenic, cadmium, copper, lead, mercury, manganese, and zinc) by EPA Methods 200.7, 200.8, 245.1, and 7470A;
- PCB aroclors by EPA Method 8082A; and
- Polycyclic aromatic hydrocarbons (PAHs) by EPA Method 8270D/SIM.

2.1.8 Deviations from the Proposed Scope of Work

The following deviations were made from the SAP during completion of the pre-interim action design investigation:

- An additional boring (F-31) was advanced down-gradient of the former fueling area in Area 4, approximately 20 feet north of boring F-26, which was terminated at a depth of approximately 5 feet bgs due to refusal;
- Monitoring wells FMW-01 through FMW-03, and boring F-31 were advanced to depths of 20 feet bgs, instead of the proposed depth of 15 feet bgs due to the depth of encountered groundwater; and
- During well development activities, several wells were purged of water volumes in excess
 of five well volumes due to persistent elevated turbidity observed during development of
 the wells.

These deviations did not affect the results and conclusions of the investigation.

2.2 RESULTS

This section provides a summary of the results of the pre-interim action design investigation.

2.2.1 Soil Profile

The soil profile observed in borings advanced by Farallon generally consisted of fill material extending from the ground surface to a depth of 4 to 10 feet bgs, underlain by native silty sands or sandy silts to the maximum explored depth of 20 feet bgs. Boring logs describing soil lithology observed during the pre-interim action design investigation are included as Appendix A.

2.2.2 Groundwater

A shallow unconfined groundwater-bearing zone, as measured in borings and groundwater monitoring wells at the Property, is present at depths ranging from approximately 7.5 to 14.5 feet bgs. Synoptic depth-to-groundwater measurements from the monitoring wells on the Property and corresponding calculated groundwater elevations are provided in Table 2. Based on groundwater contours developed using the synoptic measurements collected July 1, 2019 during low tidal level, the interpreted flow direction of the shallow groundwater-bearing zone is to the west-southwest (Figure 5). However, based on the results of the tidal study, there are periodic reversals in flow direction on the western portion of the Property during high tide events. During the July 1, 2019 groundwater monitoring event, the estimated horizontal gradient ranged from 0.012 foot per foot on the southern portion of the Property to 0.002 foot per foot on the northern portion of the Property.

2.2.3 Tidal Study

Surface water elevations recorded for the National Oceanic and Atmospheric Administration Seattle Tidal Station No. 9447130 during the 83-hour period of the tidal study fluctuated by a

maximum of approximately 15 feet and indicated that the LDW has a mixed semidiumal tidal pattern resulting in a once-daily occurrence of a lower low tide.

The results of the tidal study show that the groundwater elevations in the tidal study monitoring wells are influenced by tidal elevations by varying degrees. The amplitude of tidal fluctuations is dependent on distance from the LDW with the amplitude decreasing as distance increases. The strongest tidal variation recorded during the tidal study was approximately 3.79 feet in monitoring well DOF-1, which is located near the western Property boundary approximately 200 feet east of the LDW. The weakest tidal variation recorded during the tidal study was approximately 0.50 foot in monitoring well MW-AG1, which is located in the north-central portion of the Property approximately 1,000 feet east of the LDW.

The timing of observed tidal highs and lows lagged behind the measured tide in the LDW. Lag times generally increased with distance from the LDW. Groundwater highs and lows were observed in monitoring well DOF-1, which was located closest to the LDW, approximately 1 hour after the tidal highs and lows. Groundwater highs and lows were observed in the remaining monitoring wells at times ranging from approximately 2 to 6 hours after the tidal highs and lows.

Hydrographs depicting monitoring well groundwater elevations and the surface water elevation recorded for the tidal study are provided in Appendix B.

2.2.4 Laboratory Analytical Results

Soil and groundwater samples were submitted for laboratory analysis from several investigation areas at the Property. This section provides a summary of analytical results obtained during the pre-interim action design investigation, organized by investigation area (Figures 3 and 4).

Tables and figures include the results from the pre-interim action design investigation and historical site investigations. Figures 6A, 6B, 6C, 7, 8A, 8B, 8C, and 9 through 14 present analytical results for COPCs compared to the most stringent PCULs applicable to the Property. Tables 3 through 12 present analytical results for soil and groundwater. The laboratory analytical reports for the pre-interim action design investigation are provided in Appendix C.

2.2.4.1 Area 2: Perishables Warehouse

DRO, GRO, ORO, and benzene, toluene, ethylbenzene, and xylenes (BTEX) were either reported non-detect at the laboratory practical quantitation limit (PQL), or were detected at concentrations less than the most stringent PCUL in the soil samples analyzed from borings F-24 and F-25, which were located inside the Perishables Warehouse (Figures 6A and 8A; Table 3). The soil analytical results confirm the lateral and vertical extent of petroleum-contaminated soil beneath the Perishables Warehouse located proximate to the former UST-D.

Concentrations of total and dissolved arsenic and manganese exceeded the most stringent PCULs in the groundwater sample collected from monitoring well MW-101. DRO, ORO, GRO, BTEX, PAHs, VOCs, PCBs, and metals (cadmium, copper, lead, mercury, and zinc)

were either reported non-detect at the laboratory PQL, or were detected at concentrations less than the most stringent PCUL in the groundwater sample collected from monitoring well MW-101. The laboratory PQLs for cPAHs and PCBs exceeded the most-stringent PCUL for non-potable groundwater.

2.2.4.2 Area 4: Former Fueling Area

Borings F-26 and F-31 were advanced down-gradient of the former fueling area (Figure 4). Boring F-26 was terminated at a depth of approximately 5 feet bgs due to refusal. Boring F-31 was advanced as a replacement to boring F-26. Soil collected from borings F-26 and F-31 did not exhibit evidence of petroleum contamination and soil samples were not collected for laboratory analysis. ORO was reported non-detect at the laboratory PQL and DRO was detected at a concentration of 580 micrograms per liter (μ g/l) in the reconnaissance groundwater sample collected from boring F-31 (Figure 6A; Table 8).

In addition, DRO and ORO were reported non-detect at the laboratory PQLs in the groundwater sample collected from monitoring well FMW-02, which is on the western Property boundary down-gradient of Area 4.

2.2.4.3 Area 7: Former Automobile Service Stations

Available historical records, including aerial photographs, fire insurance maps, and archive files, were reviewed for evidence of additional automobile service stations. Based on the review of the available records, the potential location of a former automobile service station was identified south of previous investigations conducted in Area 7. Monitoring well FMW-01 was advanced on the western Property boundary in the vicinity of the potential former automobile service station (Figure 4).

GRO and ethylbenzene were detected at concentrations exceeding the most stringent PCULs in soil samples collected from monitoring well FMW-01 between depths of 10 and 14 feet bgs. DRO, ORO, and VOCs either were reported non-detect at the laboratory PQL, or were detected at concentrations less than the most stringent PCUL in soil samples analyzed (Figures 6C and 8C; Tables 3 and 5).

Concentrations of naphthalene exceeded the most stringent PCUL in the groundwater sample collected from monitoring well FMW-01 (Figure 12; Table 9). DRO, ORO, GRO, and BTEX either were reported non-detect at the laboratory PQLs, or were detected at concentrations less than the most stringent PCULs in groundwater samples collected from monitoring wells DOF-1 and FMW-01 (Figures 7 and 9; Table 8).

2.2.4.4 Area 11: Former South Maintenance Shop

Monitoring well FMW-03 was advanced on the western Property boundary in the vicinity of the former south maintenance shop and dry cleaner (Figure 4). DRO, ORO, GRO, and VOCs, including BTEX and halogenated volatile organic compounds (HVOCs), were either reported non-detect at the laboratory PQLs, or were detected at concentrations less than the

most stringent PCULs in soil samples collected from monitoring well FMW-03 (Figures 6A and 8A; Tables 3 and 5). In addition, VOCs, including BTEX and HVOCs, either were reported non-detect at the laboratory PQLs, or were detected at concentrations less than the most stringent PCULs in a groundwater sample collected from monitoring well FMW-03.

2.2.4.5 Former Detention Pond

Boring F-29 was advanced proximate to a former detention pond located north of Area 13 (Figure 4). Arsenic, copper, and mercury were detected at concentrations exceeding the most stringent PCULs in a soil sample collected from boring F-29 at a depth of 2.5 feet bgs (Figures 10 and 11; Table 7). Remaining metals, including cadmium, lead, manganese, and zinc, either were reported non-detect at the laboratory PQLs, or were detected at concentrations less than the most stringent PCULs (Table 7). Arsenic, copper, lead, manganese, mercury, and zinc were detected in a soil sample collected from boring F-29 at a depth of 8.5 feet bgs at concentrations less than the most stringent PCULs; cadmium was reported non-detect at the laboratory PQL in this sample.

DRO and ORO were detected at concentrations less than the most stringent PCULs in a soil sample collected from boring F-29 at a depth of 2.5 feet bgs (Figure 6C; Table 3). Concentrations of DRO and ORO were reported non-detect at the laboratory PQL in a soil sample collected from boring F-29 at a depth of 8.5 feet bgs.

2.2.4.6 Northern Property Boundary

There are confirmed sources of PCBs north of the Property across South Norfolk Street. Borings F-27 and F-28 were advanced proximate to the northern Property boundary to evaluate the potential migration of PCBs to the Property from north-adjacent properties (Figure 4). Soil and reconnaissance groundwater samples were collected from borings F-27 and F-28 and analyzed for PCB aroclors.

Total PCB aroclors were detected at a concentration of 0.0269 milligram per kilogram, exceeding the most stringent PCUL in a soil sample collected from boring F-28 at a depth of 2.5 feet bgs. Total PCB aroclors were reported non-detect at the laboratory PQL in the remaining soil samples analyzed from boring F-27 at depths of 2.5 and 10.0 feet bgs and boring F-28 at a depth of 8.5 feet bgs. Each individual PCB aroclor was reported non-detect at the laboratory PQL in reconnaissance groundwater samples collected from borings F-27 and F-28 (Figure 14; Tables 6 and 12).

2.2.4.7 Transformers

Three transformers are located on the northern and central portions of the Property (Figure 4). During the pre-interim action design investigation, the transformers and surrounding concrete were visually assessed for potential releases. The visual assessment did not identify any leaks or spills proximate to the transformers.

Borings F-30, F-32, and F-33 were advanced adjacent to the transformers. Soil samples were collected at a depth of 1 foot bgs from each boring and analyzed for PCB aroclors. Each individual PCB aroclor was reported non-detect at the laboratory PQL in the soil samples analyzed from borings F-30, F-32, and F-33 (Figure 14; Table 6).

2.2.4.8 Property-Wide Groundwater Quality

A groundwater monitoring event was conducted to evaluate groundwater quality at the Property. Monitoring wells were installed at the Property during previous subsurface investigations and remedial actions, and during the pre-interim action design investigation. The wells are located proximate to known and suspected source areas, previously conducted remedial action areas, and the down-gradient Property boundary (Figure 4).

Groundwater samples were collected from monitoring wells DOF-1 through DOF-5, FMW-01 through FMW-03, MW-4, MW-101, MW-203, MW-207, MW-AG1, and MW-AG2 (Figure 4).

DRO, ORO, GRO, and BTEX either were reported non-detect at the laboratory PQLs, or were detected at concentrations less than the most stringent PCULs in groundwater samples collected from monitoring wells at the Property (Figures 7 and 9; Table 8). The full suite of VOCs were reported non-detect at the laboratory PQLs, or were detected at concentrations less than the most stringent PCULs in the groundwater sample collected from monitoring well FMW-03 (Table 10). The full suite of VOCs was not analyzed in groundwater samples collected from the remaining monitoring wells.

The total cPAH toxicity equivalent concentration (TEC) exceeded the most stringent PCUL in groundwater samples collected from monitoring wells MW-AG1 and DOF-1 (Figure 13; Table 9). However, chrysene was the only cPAH detected at concentrations exceeding the laboratory PQL and the concentrations were less than the PCUL for chrysene. In addition, the laboratory data qualifier indicated that the results were an estimated quantity and the results may be biased high based on non-conformance identified during data validation.

Concentrations of naphthalene exceeded the most stringent PCUL in the groundwater sample collected from monitoring well FMW-01 (Figure 12; Table 9).

Total arsenic, copper, manganese, mercury, and zinc were detected at concentrations exceeding the most stringent PCULs in one or more groundwater samples collected from the Property (Figures 10 and 11; Table 11). Total cadmium and lead either were reported non-detect at the laboratory PQLs, or were detected at concentrations less than the most stringent PCUL (Table 11).

Dissolved arsenic, copper, manganese, and mercury were detected at concentrations exceeding the most stringent PCULs in one or more groundwater samples collected from the Property (Figures 10 and 11; Table 11). Dissolved cadmium, lead, and zinc either were

reported non-detect at the laboratory PQLs, or were detected at concentrations less than the most stringent PCUL (Table 11).

Each individual PCB aroclor was reported non-detect at the laboratory PQL in groundwater samples collected from monitoring wells at the Property (Figure 14; Table 12).

3.0 INITIAL SITE SCREENING

Ecology calculated PCULs for a variety of environmental transport and exposure pathways (Ecology 2018). The PCULs were used to conduct an initial screening of existing soil and groundwater chemical concentrations to identify COPCs, and transport and exposure pathways of potential concern for the interim action. Chemical concentrations in soil and groundwater samples collected from the Property were initially screened against the most stringent PCULs. Transport and exposure pathways were then evaluated for the Property and specific PCULs were removed from the screening process (Sections 3.1.1 and 3.2.1).

A multi-tiered statistical screening process was conducted in accordance with WAC 173-340-703 and 173-340-708(2). The screening process included calculation of sample statistics, which were compared to specific criteria to support the retention or elimination of COPCs for the interim action. In accordance with WAC 173-340-747(9), groundwater data were used to demonstrate empirically that soil concentrations would not cause an exceedance of the applicable PCULs. If groundwater data demonstrated that the soil leaching to groundwater pathway was incomplete, the applicable PCULs were removed from the screening process (Section 4.4).

The following sections provide a summary of the screening process used to select COPCs for the interim action.

3.1 PRELIMINARY SOIL PATHWAYS

Soil PCULs are labeled SL-1 through SL-10, which are listed below:

PCUL Number	PCUL Name
SL-1	Direct contact under unrestricted land use
SL-2	Vadose zone protection of drinking water
SL-3	Vadose zone protection of surface water via ground water
SL-4	Vadose zone protection of sediment via ground water
SL-5	Saturated zone protection of drinking water
SL-6	Saturated zone protection of surface water via ground water
SL-7	Saturated zone protection of sediment via ground water
SL-8	Protection of sediment via bank erosion or soil transport through a storm drain
SL-9	Site-specific Terrestrial Ecological Evaluation (TEE) for unrestricted land use
SL-10	Natural background concentration

The following have been identified as potential soil transport pathways: direct contact (SL-1); leaching of soil contaminants to potable groundwater from the vadose zone (SL-2) or the saturated zone (SL-5); leaching of soil contaminants to the vadose zone (SL-3) or the saturated zone (SL-6) to groundwater followed by transport to surface water; leaching of soil contaminants from the vadose zone (SL-4) or the saturated zone (SL-7) to groundwater followed by partitioning to

sediment; transport of soil into stormwater infrastructure that discharges to the LDW (SL-8); and protection of terrestrial plants and animals (SL-9). Also, if the PCUL is less than the natural background concentrations for the COPC, it is adjusted to the natural background concentration (SL-10).

Based on the information provided in Sections 3.1.1 and 3.2.1, the PCULs for potable groundwater (SL-2 and SL-5) and protection of terrestrial plants and animals (SL-9) do not apply to the Emerald Gateway Site. As discussed in Sections 3.3 and 4.4, groundwater data were evaluated to determine whether the soil to groundwater leaching pathway was complete. If empirical evidence indicated that groundwater had not been impacted (i.e., groundwater results did not exceed the most stringent PCUL), then the direct contact PCUL (SL-1) will apply to the Emerald Gateway Site.

3.1.1 Terrestrial Ecological Evaluation

A TEE is required by WAC 173-340-7490 where a release of hazardous substances to soil has occurred. The regulation requires that one of the following actions be taken:

- Documenting a TEE exclusion using the criteria presented in WAC 173-340-7491;
- Conducting a simplified TEE in accordance with WAC 173-340-7492; or
- Conducting a site-specific TEE in accordance with WAC 173-340-7493.

According to the criteria presented under WAC 173-340-7491(1), the Property does not qualify for one of the primary exclusions from a TEE. However, it does qualify for use of a simplified TEE based on the relationship between potential terrestrial ecological receptors and the existing ecological conditions at the Property and immediately adjacent properties.

A simplified TEE was completed in accordance with WAC 173-340-7492. Based on the results of the simplified TEE, terrestrial ecological receptors are currently not considered to be potential receptors for soil contaminants at the Property. A majority of the Property is currently developed with pavement and buildings. Area 13 is entirely covered with concrete debris and vegetation is not present. Land surrounding the Property is generally used for industrial purposes; however, vegetation is present on adjacent properties. Following redevelopment, the Property will continue to be used for industrial purposes and covered with pavement and buildings. Consistent with the simplified TEE screening criteria, no further evaluation is required for the Property based on the exposure analysis consideration that planned land use makes wildlife exposure unlikely per WAC 173-340-7492(2)(a), and the pathway analysis consideration that no potential exposure pathways from soil contamination to ecological receptors exist consistent with WAC 173-340-7492(2)(b). Because there are no potential exposure pathways from soil contamination to ecological receptors, the site-specific TEE for unrestricted land use and the associated PCUL (SL-9) do not apply to the Emerald Gateway Site. Terrestrial ecological receptors will be reevaluated during the RI/FS to determine whether there are potential exposure pathways from soil contamination to ecological receptors. Documentation for the TEE simplified evaluation is provided in Appendix D.

3.2 PRELIMINARY GROUNDWATER PATHWAYS

Groundwater PCULs are labeled GW-1 through GW-5, which are listed below:

PCUL Number	PCUL Name
GW-1	Drinking water
GW-2	Protection of surface water
GW-3	Protection of sediment
GW-4	Protection of air
GW-5	Natural background concentration

The following have been identified as potential groundwater transport pathways for the LDW: groundwater contaminants in a potable aquifer (GW-1); transport of contaminated groundwater to surface water (GW-2); partitioning of groundwater contamination to sediment (GW-3); and volatilization of contaminated groundwater followed by intrusion into a building (GW-4). Also, if the PCUL is less than the natural background concentrations for the COPC, it is adjusted to the natural background concentration (GW-5).

Based on the information provided in Section 3.2.1, the PCUL for potable groundwater (GW-1) does not apply to the Emerald Gateway Site. The remaining PCULs (GW-2 through GW-5) are applicable for the Emerald Gateway Site. PCUL values for total petroleum hydrocarbons are not available for GW-2 through GW-5; however, MTCA Method B surface water cleanup levels protective of marine water aquatic life are still applicable for the Emerald Gateway Site. The preliminary surface water values protective of marine water aquatic life are derived from Ecology (2019) Draft Implementation Memorandum No. 23 for fresh gasoline- and diesel-range organics and from a publication in process for weathered diesel, for which Ecology provided the value.

3.2.1 Non-Potable Groundwater Determination

In accordance with MTCA, groundwater cleanup levels are based on estimates of the highest beneficial use, which is drinking water, unless the Property meets the criteria for non-potable groundwater listed in WAC 173-340-720(2). Because groundwater at the Property meets the criteria for non-potable groundwater, it is considered non-potable and the PCULs protective of drinking water (SL-2, SL-5, and GW-1) do not apply to the Emerald Gateway Site.

These criteria, together with a description of how the criteria are met, are provided below:

- 1. WAC 173-340-720(2)(a): "The ground water does not serve as a current source of drinking water."
 - The City of Seattle currently supplies drinking water to the Property.
 - There are no drinking water supply wells at the Property or any identified within a 1-mile radius.

- 2. WAC 173-340-720(2)(c): "... it is unlikely that hazardous substances will be transported from the contaminated ground water to ground water that is a current or potential future source of drinking water ... at concentrations which exceed ground water quality criteria published in chapter 173-200 WAC."
 - Hydraulic gradients are generally upward between the upper and lower groundwater zones, limiting the potential for contaminants in the upper groundwater zone to migrate to the lower groundwater zone (Booth and Herman 1998). Based on this information, contaminated groundwater at the Property will not flow vertically downward into a deeper aquifer that could be a potential future source of drinking water.
- 3. WAC 173-340-720(2)(d): "Even if groundwater is classified as a potential future source of drinking water ... there may be sites where there is an extremely low probability that the ground water will be used for that purpose because of the site's proximity to surface water that is not suitable as a domestic water supply. . . . At such sites, the department may allow ground water to be classified as nonpotable . . . if each of the following conditions can be demonstrated."
 - WAC 173-340-720(2)(d)(ii): "There are known or projected points of entry of the ground water into the surface water."
 - O Shallow groundwater is known to discharge to the LDW (Booth and Herman 1998).
 - WAC 173-340-720(2)(d)(iii): "The surface water is not classified as a suitable domestic water supply source under chapter 173-201A WAC."
 - Per WAC 173-201A-602, the designated uses of the LDW do not include use as a domestic water supply.
 - WAC 173-340-720(2)(d)(iv): "The ground water is sufficiently hydraulically connected to the surface water that the ground water is not practicable to use as a drinking water source."
 - o Groundwater at the Property is hydraulically connected with the LDW; tidal effects on groundwater are described in Section 2.2.3. If groundwater at the Property was used as source for drinking water, there is potential to draw brackish water into the shallow water-bearing zone resulting in increased salinity in groundwater at the Property.

3.3 SCREENING OF SOIL AND GROUNDWATER DATA

A multi-tiered statistical screening process was used to derive the COPCs for the interim action. The screening process included calculation of sample statistics for chemicals analyzed in soil and groundwater samples collected from the Property. The summary statistics were compared to specific criteria to support the retention or elimination of COPCs for the interim action. The screening process is not appropriate for investigation areas that have not been fully characterized. Soil and groundwater data collected during the interim action will be used during the statistical evaluation conducted as part of the RI/FS.

3.3.1 Sample Statistics

The following statistics were calculated for each chemical:

- Number of samples;
- Number of detections;
- Detection frequency;
- Maximum detected concentration;
- Frequency of exceedance; and
- Maximum exceedance factor.

Sample statistics for soil and groundwater are summarized in Tables 13 and 14.

The sample statistics do not include analytical results from reconnaissance groundwater samples. Reconnaissance groundwater samples are collected from open borings with limited to no development prior to sampling. This typically results in increased sample turbidity, which can bias detected chemical concentrations high, particularly for metals and hydrophobic organic compounds. If no exceedances are detected in reconnaissance groundwater samples, there is a high level of confidence that contaminant concentrations in the groundwater are less than PCULs at that location. Groundwater samples collected from properly installed and developed monitoring wells are considered to be most representative of groundwater quality. During the screening process, reconnaissance groundwater data were evaluated in areas where concentrations of one or more of the COPCs detected in reconnaissance groundwater samples exceeded PCULs. Analytical results from nearby monitoring wells and/or reconnaissance groundwater sampling locations indicated the detected chemical concentrations in the reconnaissance groundwater samples were likely biased high.

3.3.2 Elimination Criteria

Following calculation of the sample statistics, the results were compared in a sequential manner to the following criteria to determine whether the chemical should be retained or eliminated as an interim action COPC for soil and groundwater:

- 1. Eliminated chemicals without a PCUL.
- 2. Eliminated chemicals that were never detected if less than 20 percent of the PQLs exceeded the PCUL.
 - o If the PQL frequency of exceedance was greater than 20 percent, eliminated the chemical if the maximum PQL was less than 10 times the PCUL.
 - o If the maximum PQL exceeded the PCUL by greater than 10 times, eliminated the chemical if the median reporting limit was less than 5 times the achievable PQL.
- 3. Eliminated chemicals that did not exceed the most stringent PCUL for both detects and non-detects.

- 4. If a chemical was detected at a frequency of less than 10 percent and all detected concentrations were less than the PCUL, eliminated the chemical if the PQLs met the criteria specified in Item 2.
- 5. Eliminated chemicals that were detected at concentrations exceeding PCULs if 1) the detected concentrations did not exceed two times the PCUL; and 2) the PCUL frequency of exceedance for the samples was less than 10 percent.
- 6. For every COPC identified in soil, groundwater data were evaluated to determine whether the soil to groundwater leaching pathway was complete. If empirical evidence indicated that groundwater had not been impacted (i.e., groundwater results did not exceed the most stringent PCUL), then the soil chemical concentration was compared to the direct contact PCUL instead of a partitioning to groundwater PCUL. If the soil chemical concentration did not exceed the direct-contact PCUL, the chemical was eliminated as a COPC. Additional site-specific information is provided in Section 4.0.
- 7. Where a chemical was detected at a concentration exceeding PCULs within a limited area, the compound was retained as a COPC within that area only.

Tables 13 and 14 identify which chemicals were eliminated, the rationale for the elimination, and which chemicals were retained as interim action COPCs for groundwater and soil, respectively. Table 15 provides the evaluation of soil COPCs against direct contact PCULs where no impacts to groundwater were identified. Table 16 identifies the COPCs that are applicable for each investigation area.

4.0 SUMMARY OF CONDITIONS AT INTERIM ACTION AREAS AND REMEDIATION LEVELS

Subsurface investigations and remedial actions have been conducted at the Property since 1989. A detailed description of the subsurface investigations and remedial actions is provided in the Interim Action Work Plan (Farallon 2019b).

This section summarizes the distribution and occurrence of petroleum hydrocarbon-related constituents in the interim action areas. Following the interim action, an RI/FS will be conducted to determine whether further remedial actions are needed for the Emerald Gateway Site.

4.1 SUMMARY OF CONDITIONS AT INTERIM ACTION AREAS

Petroleum hydrocarbon-related constituents including DRO, GRO, petroleum VOCs, and PAHs have been detected in soil and/or groundwater samples at concentrations exceeding the most stringent PCULs in several locations at the Property proximate to former underground storage tank (UST) systems and maintenance operations.

Petroleum hydrocarbon-related constituents are the predominant COPCs for the Property. The distribution of petroleum hydrocarbon-related constituents in soil and groundwater are discussed in the sections below.

4.1.1.1 Area 2: Perishables Warehouse

DRO and PAHs (total naphthalenes, fluorene, phenanthrene, benzo(a)anthracene, total cPAH TEC, and total low molecular weight PAHs) were detected at concentrations exceeding the most stringent PCULs in soil samples collected at depths ranging from 5 to 7 feet bgs proximate to the former UST-D. The PAH exceedances were co-located with DRO in a single soil sample collected from boring F-1. PAHs, including total naphthalenes, fluorene, phenanthrene, benzo(a)anthracene, and total cPAH TEC, were detected at concentrations less than PCULs in the reconnaissance groundwater sample collected from boring F-1 and the groundwater sample collected from down-gradient monitoring well MW-101. Based on this data, the leaching to groundwater pathway for PAHs, including total naphthalenes, fluorene, phenanthrene, benzo(a)anthracene, and total cPAH TEC, is not complete for Area 2. Naphthalene, fluorene, and total cPAH TEC were detected at concentrations less than direct contact PCUL (SL-1) in the soil sample collected in Area 2. In addition, there is no direct contact PCUL (SL-1) for phenanthrene and benzo(a)anthracene. Based on the data, PAHs are not considered interim action COPCs for Area 2.

DRO, ORO, GRO, and benzene were detected at concentrations exceeding the most stringent PCULs in two reconnaissance groundwater samples collected proximate to the former UST-D. However, concentrations of DRO, ORO, GRO, and benzene in groundwater samples collected from down-gradient monitoring well MW-101, which is

approximately 15 feet from the closest reconnaissance groundwater sample, were less than the most stringent PCULs in samples collected from the well in 2001, 2016, and 2019. Groundwater samples collected from properly installed and developed monitoring wells are considered to be most representative of groundwater quality. Based on the data, the leaching to groundwater pathway for DRO, ORO, GRO, and benzene is not complete for Area 2. In addition, DRO is the only petroleum hydrocarbon constituent that exceeds the direct contact PCUL (SL-1) for Area 2.

Based on these findings, the interim action related to petroleum hydrocarbon-related constituents is only warranted for DRO-impacted soil in Area 2. In addition, the PAHs that exceeded the most stringent PCULs were co-located with DRO and will be excavated with DRO-impacted soil during the interim action. Section 5.1 provides details on the proposed interim action for Area 2.

4.1.1.2 Area 6: Former Truck Repair Shop

In July and August 2007, approximately 12,200 tons of petroleum-impacted soil and 17,500 gallons of petroleum-impacted groundwater were excavated from Area 6 to the maximum extent practicable. Soil was excavated to depths ranging from 9 to 15 feet bgs. The excavation was backfilled with inert fill and mixed with oxygen-release compound to enhance natural degradation of residual petroleum hydrocarbons.

Performance soil samples were collected at the extents of the remedial excavation and confirmed that GRO, benzene, toluene, and ethylbenzene were detected at concentrations exceeding the most stringent PCULs. In addition, petroleum-impacted soil was not accessible in the northern portion of the excavation beneath the adjacent Office Building.

Following completion of the soil excavation in 2007, reconnaissance groundwater samples have been collected from temporary borings and groundwater samples have been collected from a network of five monitoring wells proximate to the Area 6 excavation area. DRO, GRO, benzene, and ethylbenzene were detected at concentrations exceeding the most stringent PCULs in a reconnaissance groundwater sample collected in 2016 from boring F-17, which is located down-gradient of the area of known petroleum impact beneath the Office Building. Reconnaissance groundwater samples typically have increased turbidity, which can bias detected chemical concentrations high. Petroleum hydrocarbon constituents were detected at concentrations less than the most stringent PCULs or were reported nondetect at the laboratory PQL in groundwater samples collected during six groundwater monitoring events performed at the monitoring well network between November 2009 and July 2019. In addition, petroleum hydrocarbon constituents were detected at concentrations less than the PCULs or were reported non-detect at the laboratory PQL in several reconnaissance groundwater samples collected proximate to the remedial excavation. Based on the data, the leaching to groundwater pathway for DRO, GRO, benzene, and ethylbenzene is potentially incomplete. The leaching to groundwater pathway will be further evaluated following completion of the interim action.

In addition, soil gas samples were collected to evaluate the vapor intrusion pathway proximate to the area of residual petroleum impact and the north-adjacent Office Building. Benzene, naphthalene, and chloroform were detected at concentrations exceeding PCULs in soil gas samples collected from borings F-17 and F-18.

Based on the data, additional petroleum-contaminated soil may be located beneath the Office Building and an interim action is warranted in Area 6. Section 5.2 provides details on the proposed interim action for Area 6.

4.1.1.3 Area 7: Former Automobile Service Stations

GRO, ethylbenzene, and naphthalene were detected at concentrations exceeding the most stringent PCULs in soil samples collected in 2019 from boring FMW-01. GRO was detected in soil samples at concentrations of 12,300 and 8,940 milligrams per kilogram in soil samples collected at depths of 10 and 14 feet bgs, respectively, which exceed the direct contact PCUL (SL-1). Naphthalene was detected in groundwater at a concentration of 2.34 μ g/l, which exceeds the protection of surface water PCUL (GW-2) of 1.4 μ g/l, in a groundwater sample collected from monitoring well FMW-01 in 2019. The remaining COPCs, including GRO and ethylbenzene, were reported at concentrations less than the most stringent PCULs or the laboratory PQLs in a groundwater sample collected from monitoring well FMW-01.

The interim action in Area 7 will address contamination of petroleum hydrocarbon-related constituents. Section 5.3 provides details on the proposed interim action for Area 7.

4.2 SOIL REMEDIATION LEVELS

This section presents the soil remediation levels for the interim action COPCs based on the screening process described in Section 3.0 and the distribution of COPCs described in Section 4.4. The soil remediation levels are shown on Table 17.

MTCA Method A soil cleanup levels for GRO and DRO, and MTCA Method B soil direct contact cleanup levels for benzene, naphthalene, and cPAHs will be used as the remediation levels for the interim action.

5.0 INTERIM ACTION SCOPE OF WORK

The interim action will eliminate and/or reduce the threat to human health and the environment during Property redevelopment by removing impacted media from areas exceeding the interim action remediation levels. The interim action will take advantage of the previously unavailable access to the subsurface provided by the proposed redevelopment project. Components of the interim action include excavation of impacted soil to eliminate source material, and installation of a new stormwater conveyance and treatment system for the development.

The interim action scope of work was revised based on the results from the pre-interim action design investigation. Based on the available data, the interim action includes investigation, remediation, and/or mitigation in the following areas:

- Area 2: Perishables Warehouse;
- Area 6: Former Truck Repair Shop;
- Area 7: Former Automobile Service Stations; and
- Contingency Excavation Areas.

Specific details regarding the interim action activities that will be conducted in each investigation area are provided below and in the SAP (Appendix E).

5.1 SITE PREPARATION AND MOBILIZATION

Before the redevelopment project is initiated, site controls will be established to ensure that the work zone is properly secured. The entire perimeter of the Property will be fenced, and points of ingress and egress will be clearly marked. The access points to the Property will be monitored by authorized personnel during construction activities.

Before excavation activities are initiated, temporary erosion- and sediment-control measures will be established as part of the redevelopment project. Once all temporary erosion- and sediment-control measures have been implemented in accordance with the construction project plan, construction equipment and supplies will be mobilized to the Property.

5.2 MONITORING WELL DECOMMISSIONING

Monitoring wells within the footprint of the redevelopment area, including monitoring wells MW-4, MW-101, MW-203, MW-207, MW-AG1, MW-AG2, DOF-4, and DOF-5, will be decommissioned by a licensed well driller in accordance with the Washington State Water Well Construction Act, Chapter 18.104 of the Revised Code of Washington (WAC 173-160-460). Following well decommissioning, the required documentation will be submitted to Ecology. Excavation activities will not begin until the monitoring wells have been decommissioned.

Monitoring wells located on the western boundary of the Property, including monitoring wells DOF-1 through DOF-3 and the monitoring wells that were installed during the pre-interim action design investigation, may be retained for future compliance sampling if they can be protected during redevelopment activities. If the monitoring wells cannot be protected, they will be decommissioned in accordance with the Washington State Water Well Construction Act.

5.3 AREA 2: PERISHABLES WAREHOUSE

Based on previous investigations, concentrations of DRO exceeding the remediation level extend to a depth of approximately 7 feet bgs proximate to the former UST-D. DRO-contaminated soil will be excavated to the maximum extent practicable and disposed of off the Property at the selected disposal facility. The excavation will be coordinated to first excavate the areas of known DRO-contaminated soil at borings P2-1 and F-1. The excavation will progress vertically and laterally based on field-screening methods described in the SAP (Appendix E). Farallon will conduct performance and confirmation soil sampling per Section 6.0, Compliance Soil Monitoring, and the SAP (Appendix E). DRO-contaminated soil will be excavated until remediation levels are achieved to the maximum extent practicable. If excavation of DRO-contaminated soil is not practicable during the interim action, it will be addressed in the RI/FS.

5.4 AREA 6: FORMER TRUCK REPAIR SHOP

During previous remedial excavations, petroleum-contaminated soil, which may exceed remediation levels, was not accessible and was left in-place beneath the Office Building. The Office Building will be demolished during redevelopment allowing for access to the remaining petroleum-contaminated soil proximate to the southeastern corner of the Office Building. Petroleum-contaminated soil will be excavated to the maximum extent practicable and disposed of off the Property at the selected disposal facility. The excavation will be coordinated to first excavate the areas of known contamination. The excavation will progress vertically and laterally based on field-screening methods described in the SAP (Appendix E). Farallon will conduct performance and confirmation soil sampling per Section 6.0, Compliance Soil Monitoring, and the SAP (Appendix E). Petroleum-contaminated soil will be excavated until remediation levels are achieved to the maximum extent practicable . If excavation of petroleum-contaminated soil is not practicable during the interim action, it will be addressed in the RI/FS.

5.5 AREA 7: FORMER AUTOMOBILE SERVICE STATIONS

The nature and extent of GRO- and naphthalene-contaminated soil is not characterized in Area 7 proximate to monitoring well FMW-01. GRO- and naphthalene-contaminated soil will be excavated to the maximum extent practicable and disposed of off the Property at the selected disposal facility. The excavation will be coordinated to first excavate the areas of known contamination proximate to well FMW-01. The excavation will progress vertically and laterally based on field-screening methods described in the SAP (Appendix E). Farallon will conduct performance and confirmation soil sampling per Section 6.0, Compliance Soil Monitoring, and the SAP (Appendix E). GRO- and naphthalene-contaminated soil will be excavated until remediation

levels are achieved to the maximum extent practicable. If excavation of GRO- and naphthalene-contaminated soil is not practicable during the interim action, it will be addressed in the RI/FS.

5.6 CONTINGENCY EXCAVATION AREAS

This interim action includes a contingency to permanently remove contaminant source materials exceeding remediation levels, to the maximum extent practicable, that may be encountered during redevelopment activities. If contaminant source materials are encountered that exceed remediation levels, removal of the source will be expected to be conducted using the same procedures described in the IAWP (Farallon 2019b).

5.7 DEWATERING AND TREATMENT

Dewatering may be necessary to allow for excavation of impacted soil located below the water table. If necessary, generated wastewater will be pumped to aboveground tanks, pretreated on the Property, and discharged to surface water under a Construction Stormwater General Permit and an Administrative Order issued by the Ecology Water Quality Program. The Administrative Order will establish Indicator Levels for the project based on known contaminants for compliance with Water Quality Standards for the Surface Water of the State of Washington. The Administrative Order defines the conditions and actions necessary to comply with the Construction Stormwater General Permit.

5.7.1 Soil Disposal Facility

The Waste Management Columbia Ridge Landfill in Arlington, Oregon and the Republic Services Roosevelt Regional Landfill in Roosevelt, Washington are the preferred Subtitle D disposal facilities for contaminated soil excavated during the interim action. A waste profile will be submitted to the selected disposal facility for approval before contaminated soil is excavated.

6.0 COMPLIANCE SOIL MONITORING

Three types of compliance monitoring have been identified for remedial actions performed under MTCA (WAC 173-340-410): protection monitoring, performance monitoring, and confirmational monitoring. A paraphrased purpose for each is presented below (WAC 173-340-410[1]):

- **Protection Monitoring** confirms whether human health and the environment are adequately protected during the interim action;
- **Performance Monitoring** confirms that the interim action has attained the remediation levels at the points of compliance; and
- Confirmational Monitoring confirms the long-term effectiveness of the interim action once remediation levels or other performance standards have been attained.

6.1 PROTECTION MONITORING

A Health and Safety Plan has been prepared for the interim action that meets the minimum requirements for such a plan identified in federal (Part 1910.120 of Title 29 of the Code of Federal Regulations (29 CFR 1910.120) and CFR 1926) and state (WAC 173-340-810 and 296) regulations. The Health and Safety Plan identifies all known physical, chemical, and biological hazards; hazard monitoring protocols; and administrative and engineering controls required to mitigate the identified hazards (Appendix F).

Construction workers encountering impacted soil will have completed 40-Hour Hazardous Waste Operations and Emergency Response training in accordance with 29 CFR 1910.120 and will have completed Annual 8-Hour Hazardous Waste Operations and Emergency Response refresher training, as needed.

6.2 PERFORMANCE MONITORING

Performance monitoring provides soil analytical results to refine, classify, and/or identify the presence of COPCs exceeding remediation levels in an area with confirmation or evidence of potentially contaminated soil. The soil analytical results define whether COPCs are present at concentrations exceeding remediation levels and, if contamination is present, the lateral and vertical extent of excavation requiring off-site disposal to achieve the remediation levels established for COPCs under MTCA to the maximum extent practicable.

Performance monitoring will involve collecting in-situ samples for laboratory analysis to quantify concentrations of COPCs in soil. Discrete soil samples will be collected from the excavation areas to serve as confirmation samples where remediation levels are attained.

Soil samples collected for performance monitoring, for confirmation monitoring, and to support soil profiling and disposal will be analyzed for the COPCs identified in Section 3, Initial Site

Screening. Samples of confirmed or potentially contaminated soil may be analyzed by one or more of the following:

- GRO and BTEX by Northwest Method NWTPH-Gx;
- DRO by Northwest Method NWTPH-Dx; and/or
- PAHs, including naphthalenes and cPAHs, by EPA Method 8270D.

The performance and confirmation soil samples will be analyzed on an appropriate turnaround schedule to facilitate soil cleanup activities during construction. The procedures for soil sample collection (e.g., frequency, location) and sample handling are described in the following sections.

6.2.1 Soil Sampling Frequency

The frequency of performance soil sampling will depend on the existing analytical data set and qualitative indications of potentially contaminated soil observed by the Farallon field personnel using the field-screening methods described in the SAP (Appendix E). The frequency of performance soil sampling may be higher near the lateral and vertical limits of an excavation area to provide sufficient samples for confirmational monitoring.

6.2.2 Soil Sample Locations

A 20- by 20-foot or comparable-sized sampling grid will be established over each excavation area to guide the excavation process and the collection of performance and confirmational soil samples. As soil is excavated, performance soil samples will be collected from the bottom and outer margins of the sampling grids. At the excavation sidewall limits, grab samples will be collected at a depth corresponding to the historical zone of seasonal groundwater level fluctuation (between approximately 5 and 12 feet bgs) where the highest COPC concentrations would be expected. Bottom samples will be collected at the approximate centers of the grids.

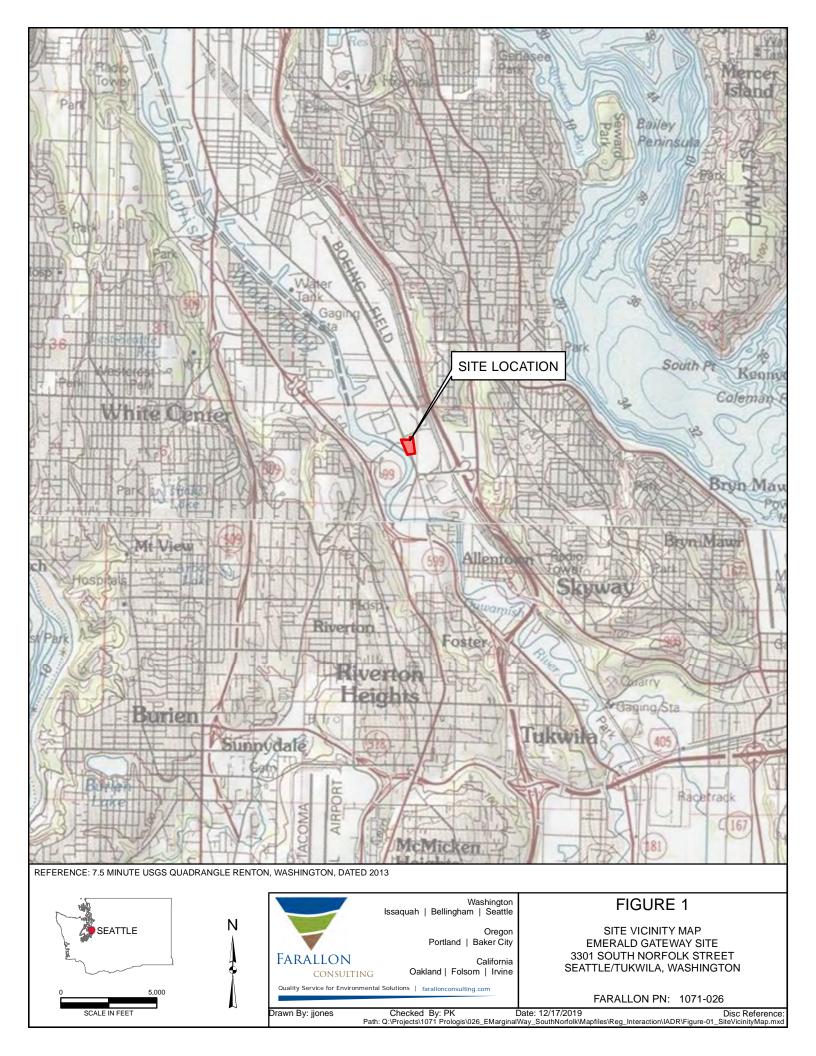
6.3 CONFIRMATIONAL MONITORING

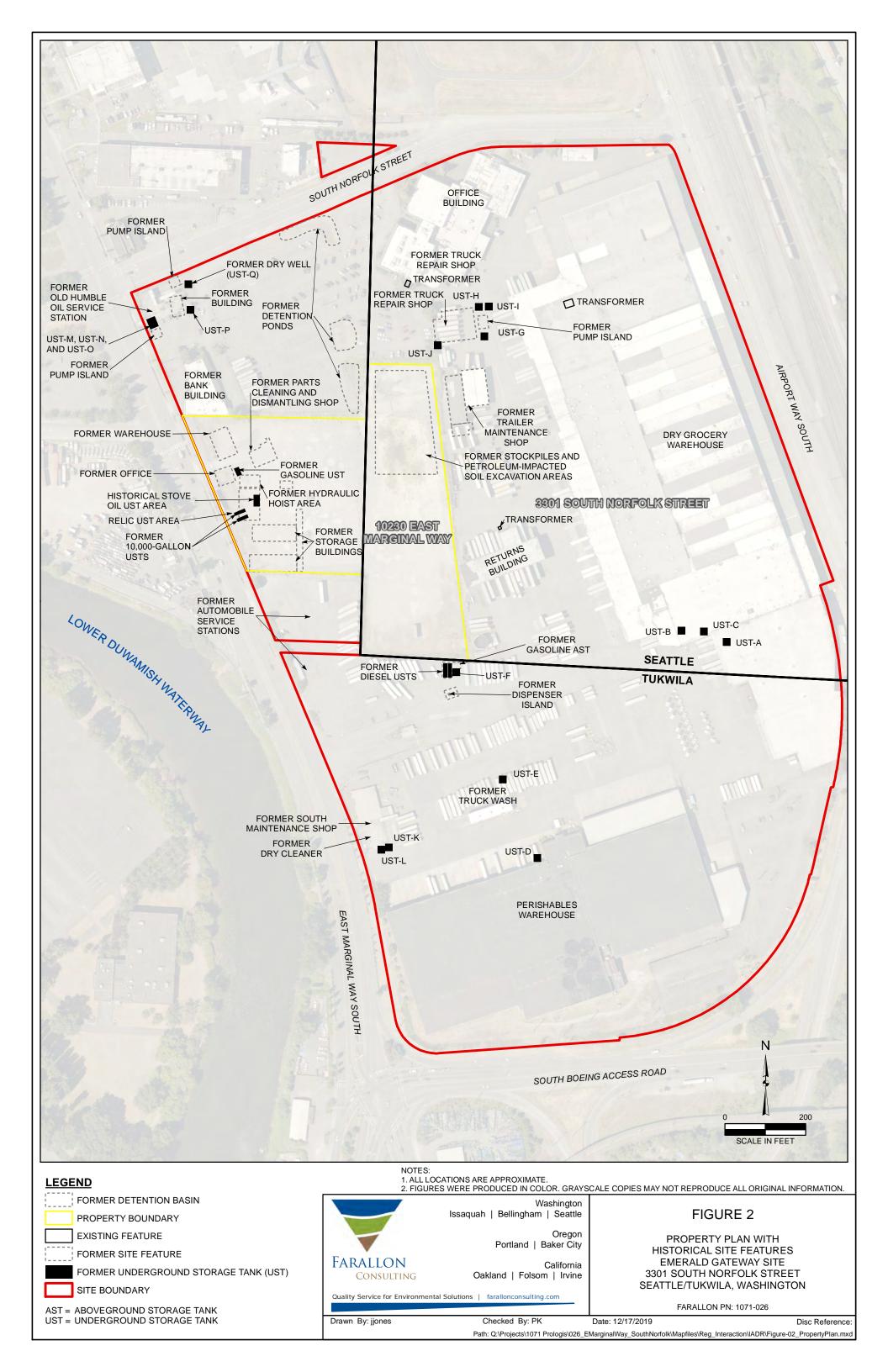
Confirmational monitoring will be conducted once performance monitoring results indicate that the remediation levels have been attained at the limits of the excavations. Confirmational monitoring will consist of collecting in-situ soil samples from the base and/or sidewalls at the final limits of contamination for each completed excavation area. Performance monitoring soil sample locations will be used as confirmation soil sampling points in cases where the analytical results for the performance soil samples confirm that remediation levels have been attained.

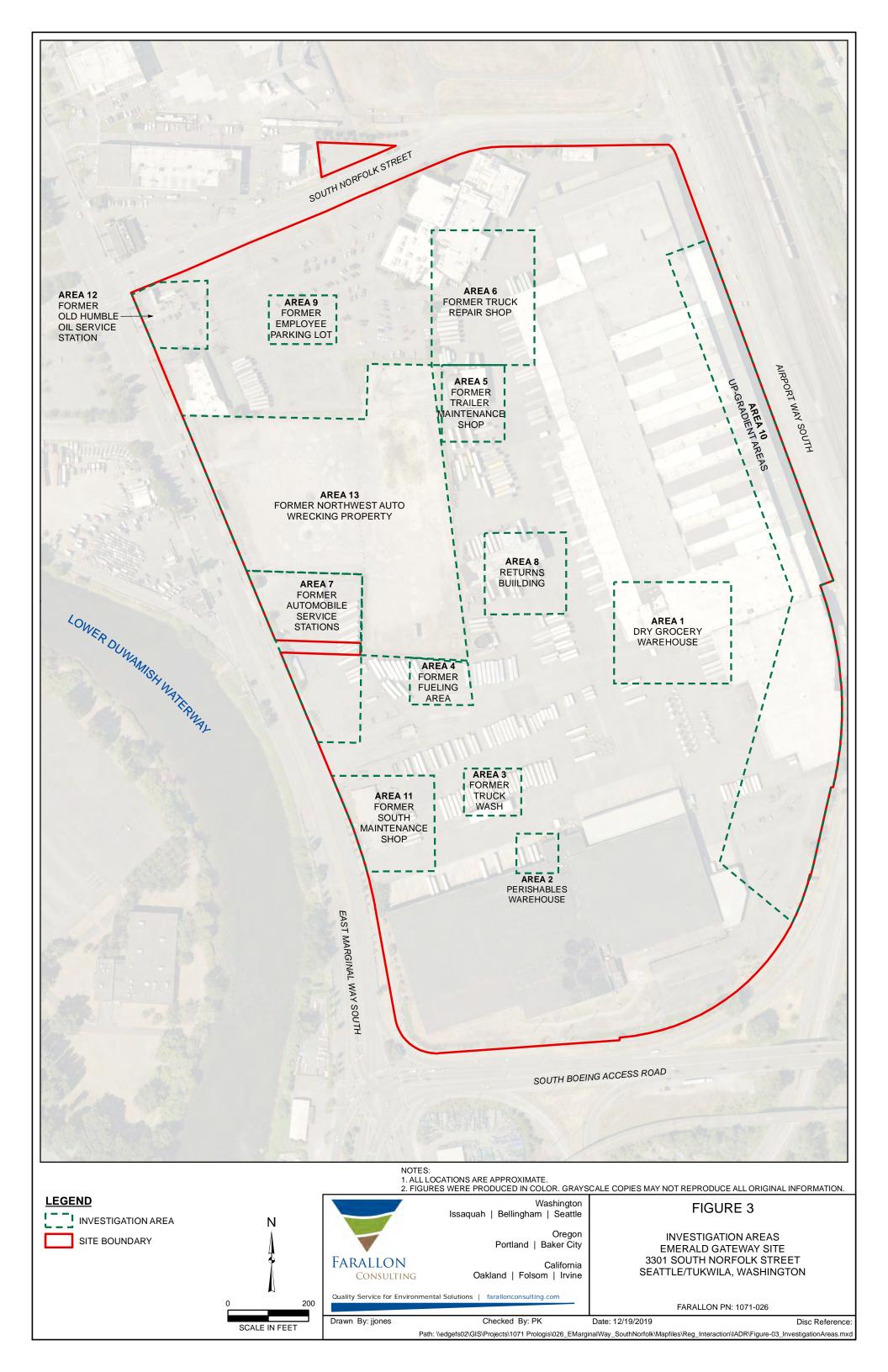
7.0 REFERENCES

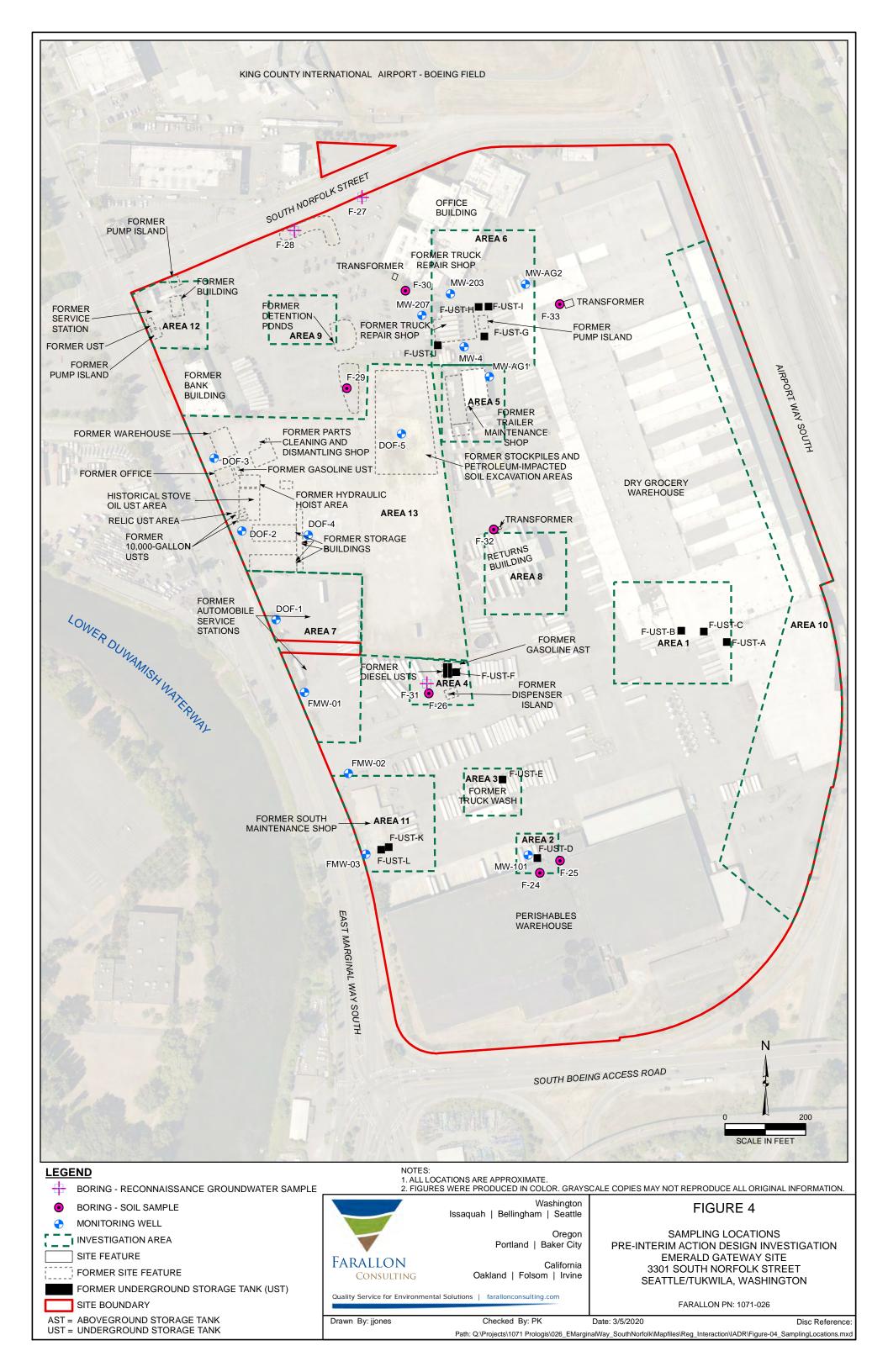
- Booth, D. and L. Herman. 1998. *Duwamish Industrial Area Hydrogeologic Pathways Project, Duwamish Basin Groundwater Pathways Conceptual Model Report*. Derek Booth, Ph.D., University of Washington, and Lori Herman, CGWP, Hart Crower, Inc. Prepared for City of Seattle Office of Economic Development and King County Office of Budget and Strategic Planning. Produced by Hart Crowser, Inc. April.
- Farallon Consulting, L.L.C. (Farallon). 2019a. Sampling and Analysis Plan, Pre-Interim Action Design Investigation, Emerald Gateway Site, 3301 South Norfolk Street, Seattle/Tukwila, Washington. Prepared for Prologis-Exchange 3301 South Norfolk LLC. June 21.
- . 2019b. Interim Action Work Plan, Emerald Gateway Site, 3301 South Norfolk Street, Seattle/Tukwila, Washington. Prepared for Prologis-Exchange 3301 South Norfolk LLC. December 13.
- United States Environmental Protection Agency (EPA). 1996. Low Stress (Low Flow) Purging and Sampling Procedure for the Collection of Groundwater Samples from Monitoring Wells. Revised September 19, 2017. July 30.
- Washington State Department of Ecology (Ecology). 2011. *Guidance for Remediation of Petroleum Contaminated Soils*. Publication No. 10-09-057. Revised June 2016. September.
- ———. 2018. Lower Duwamish Waterway Preliminary Cleanup Level Workbook Supplemental Information. Revised April 2019. December.
- ———. 2019. Draft Implementation Memorandum No. 23 Regarding Concentrations of Fresh Gasoline and Diesel Range Organics Predicted to be Protective of Aquatic Receptors in Surface Water. Draft for Public Comment. From Jeff Johnston. To Interested Persons. March 7.

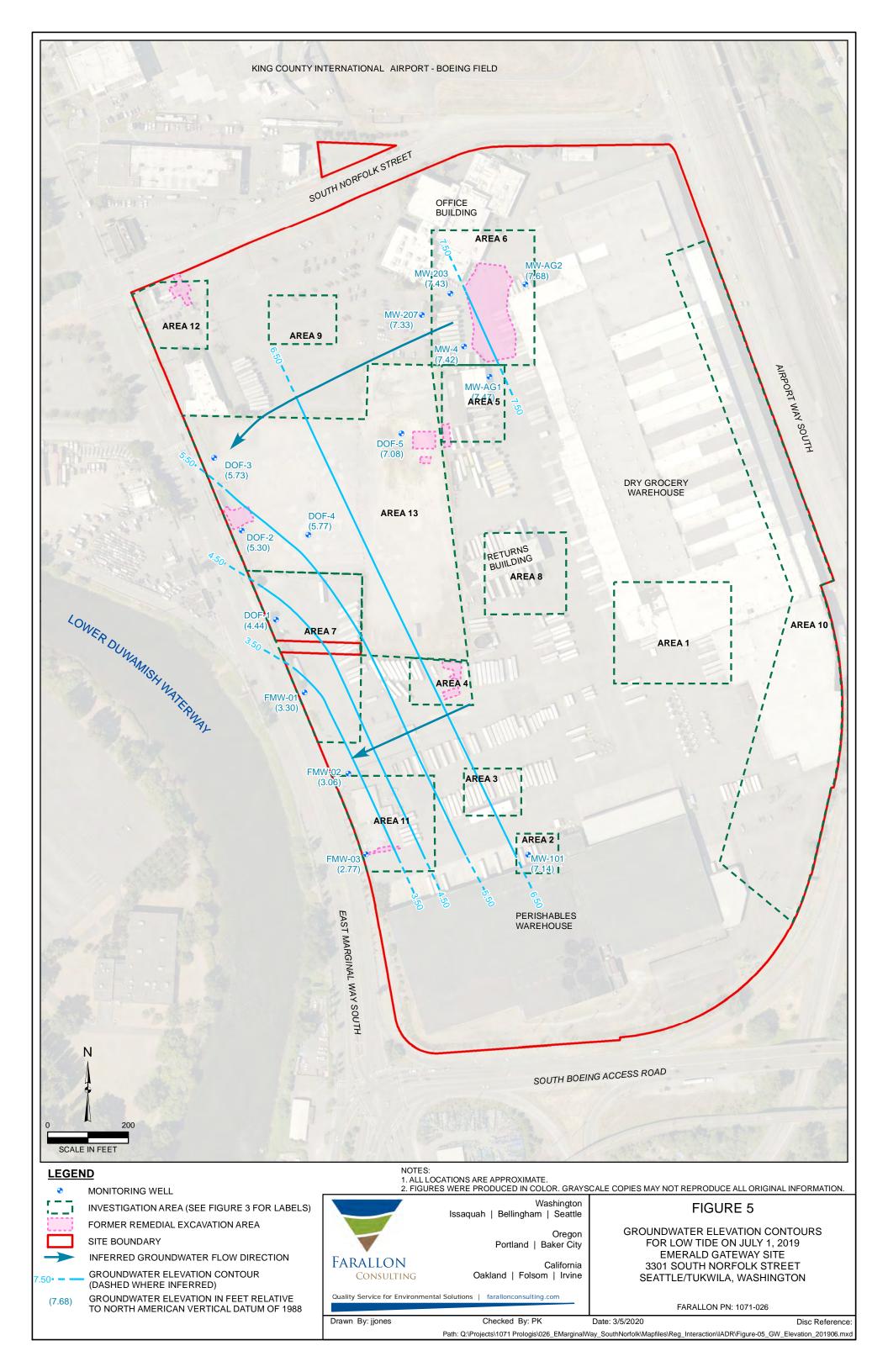
8.0 LIMITATIONS

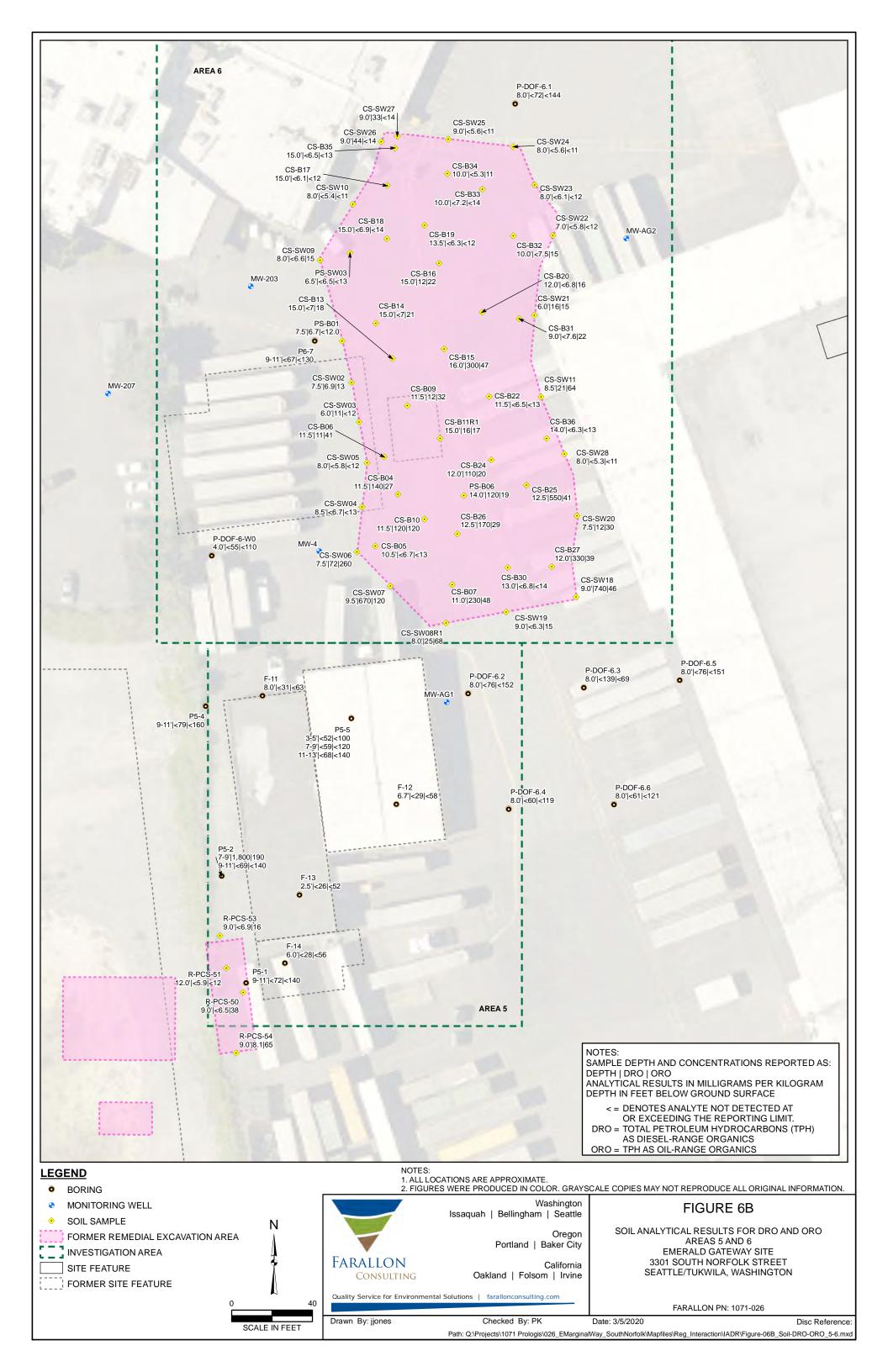

This report/assessment has been prepared in accordance with the contract for services between Farallon and Prologis-Exchange 3301 South Norfolk LLC, and currently accepted industry standards. No other warranties, representations, or certifications are made.

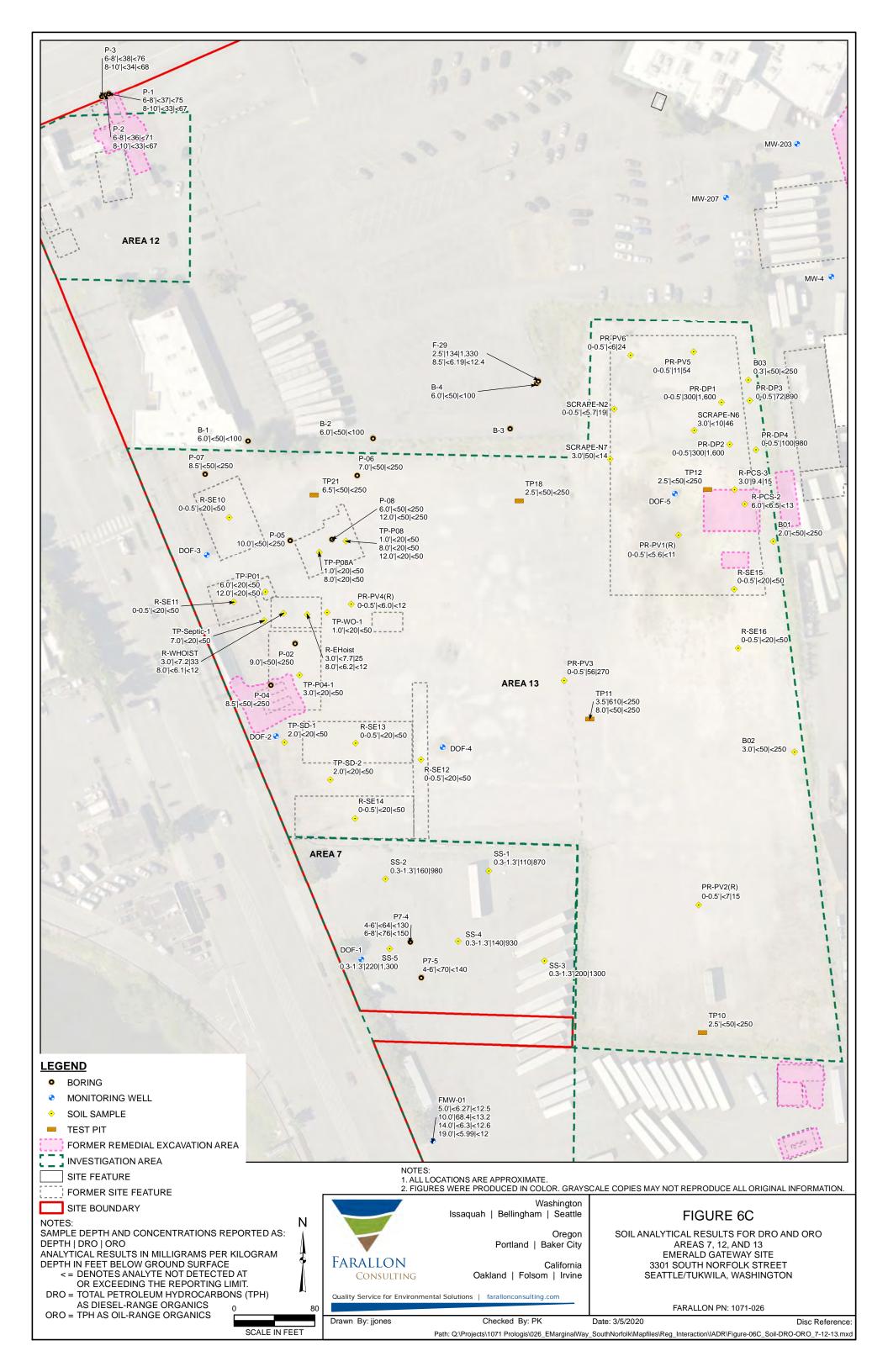

This report/assessment has been prepared for the exclusive use of Prologis-Exchange 3301 South Norfolk LLC to address the unique needs of Prologis-Exchange 3301 South Norfolk LLC at the Property at a specific point in time. No one other than Prologis-Exchange 3301 South Norfolk LLC may rely on this report unless Farallon agrees in advance to such reliance in writing. Any unauthorized use, interpretation, or reliance on this report/assessment is at the sole risk of that party, and Farallon will have no liability for such unauthorized use, interpretation, or reliance.

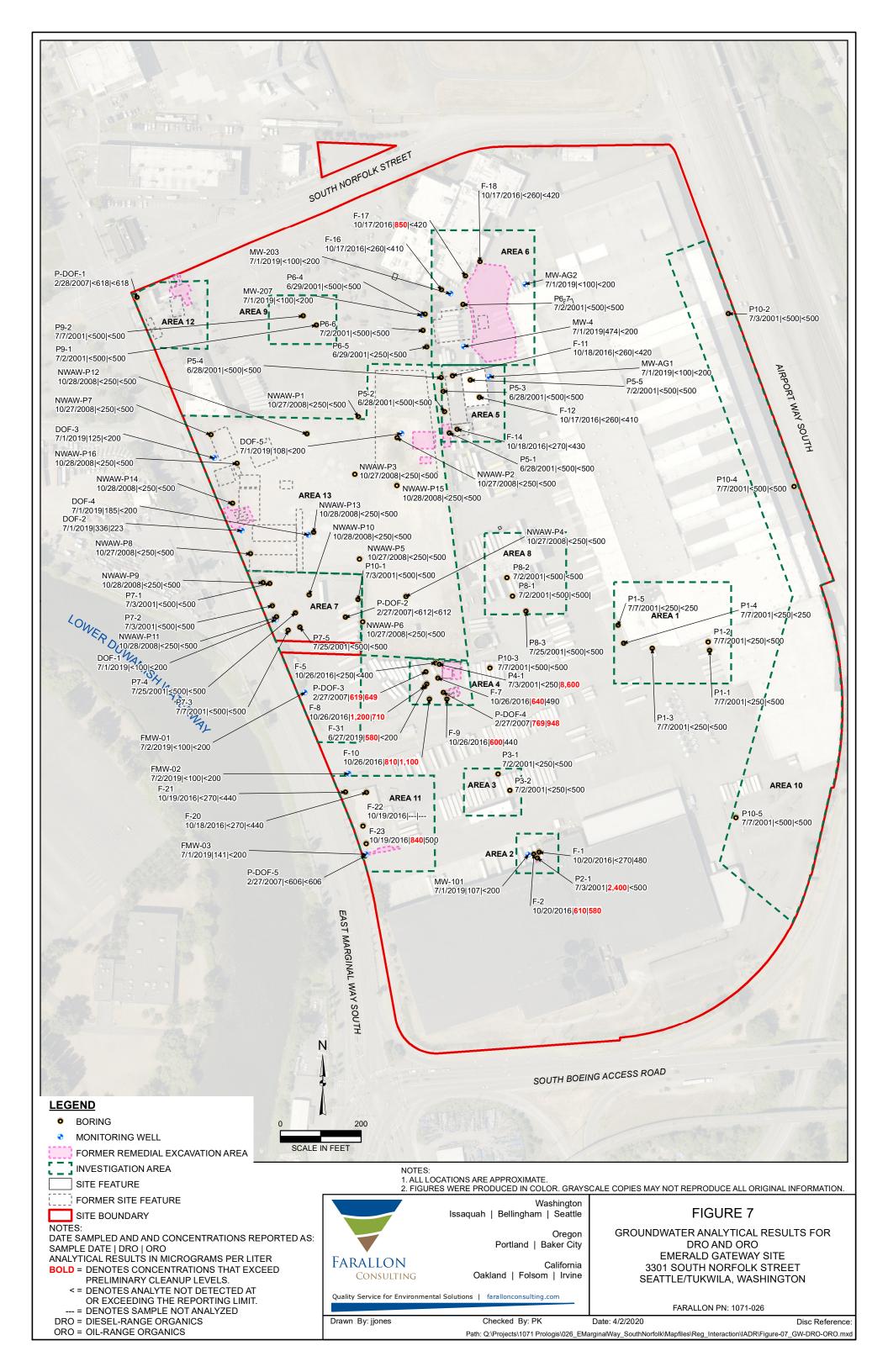

FIGURES

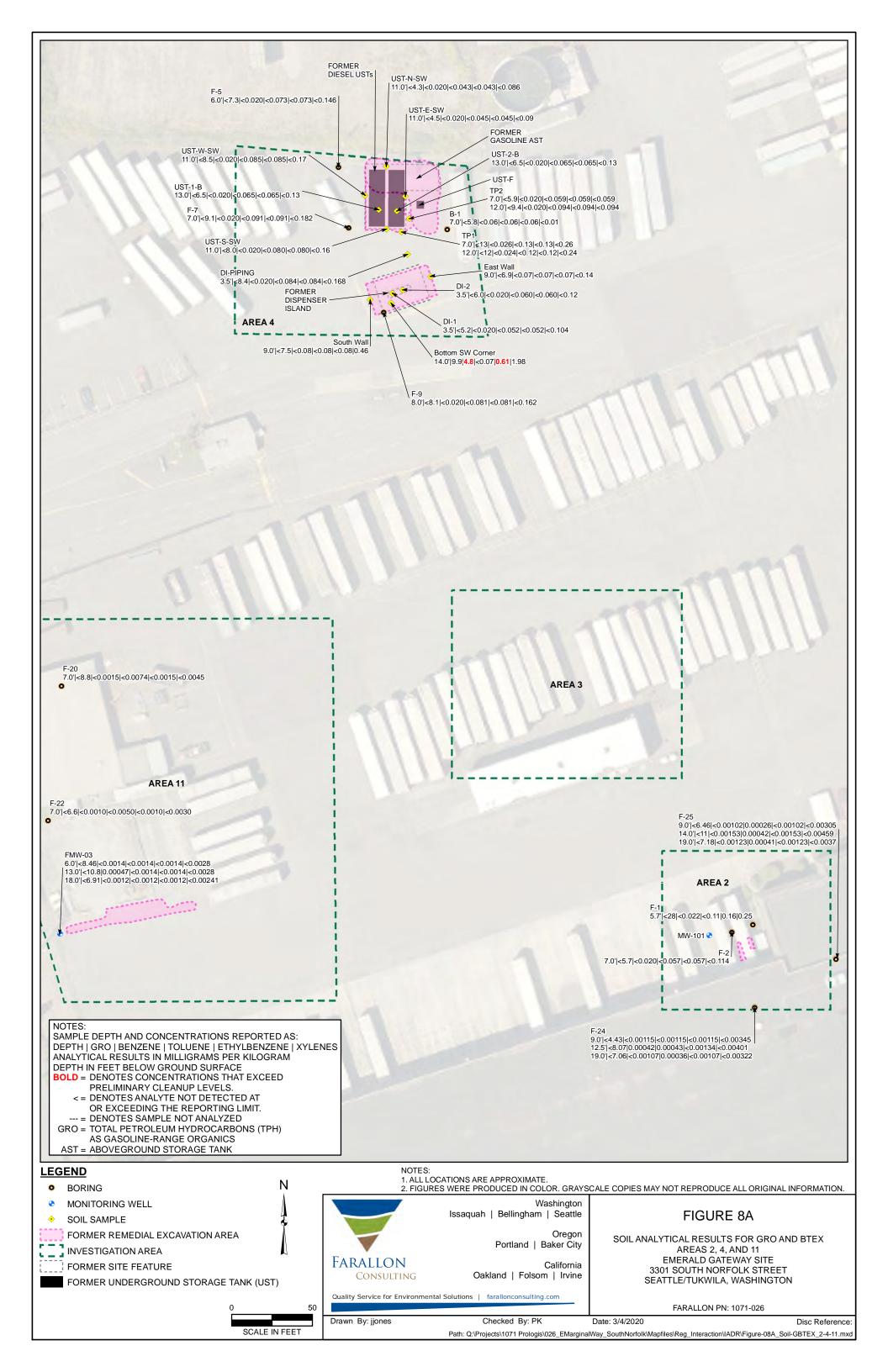

INTERIM ACTION DESIGN REPORT
Emerald Gateway Site
3301 South Norfolk Street
Seattle/Tukwila, Washington

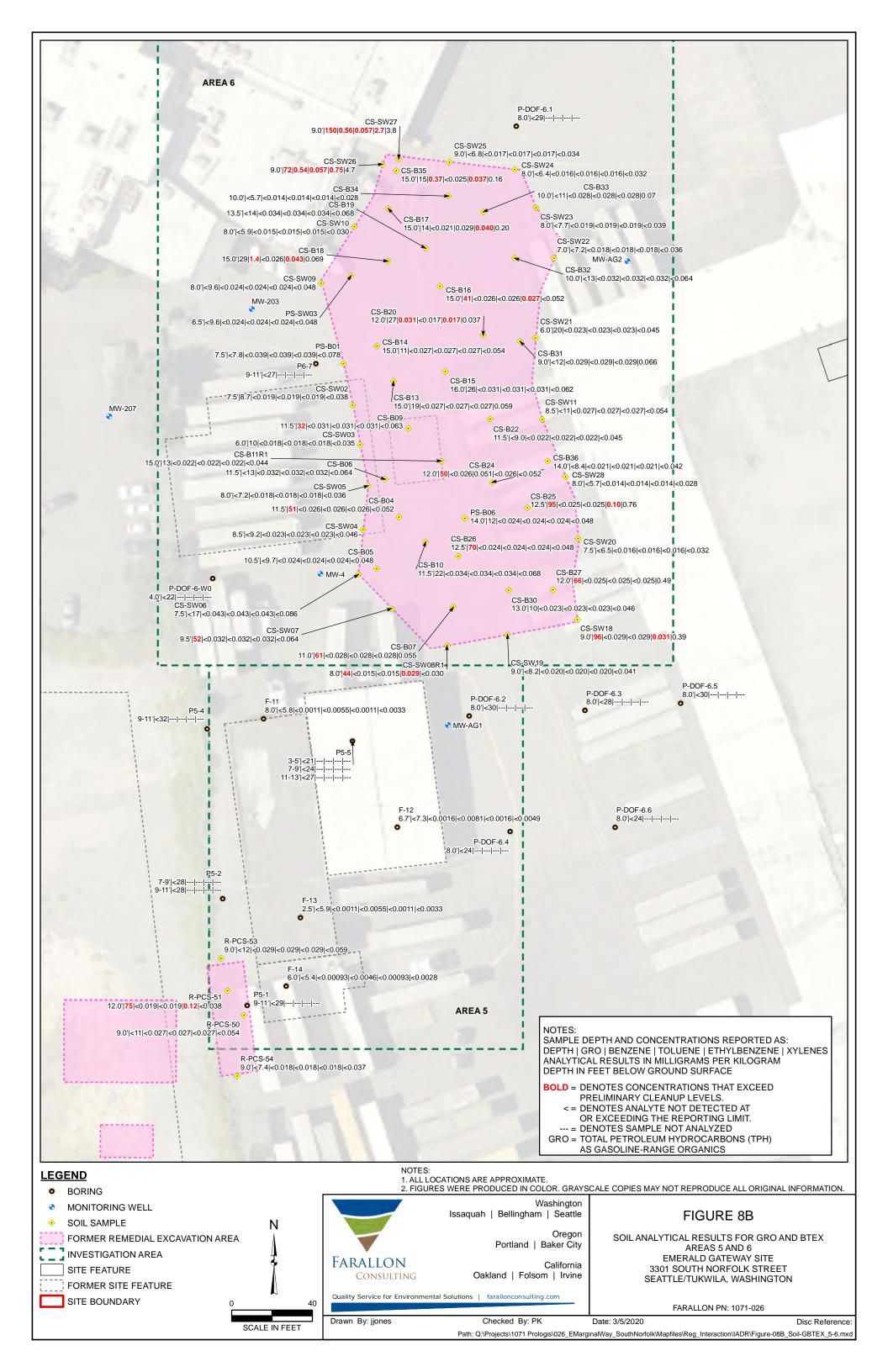

Farallon PN: 1071-026

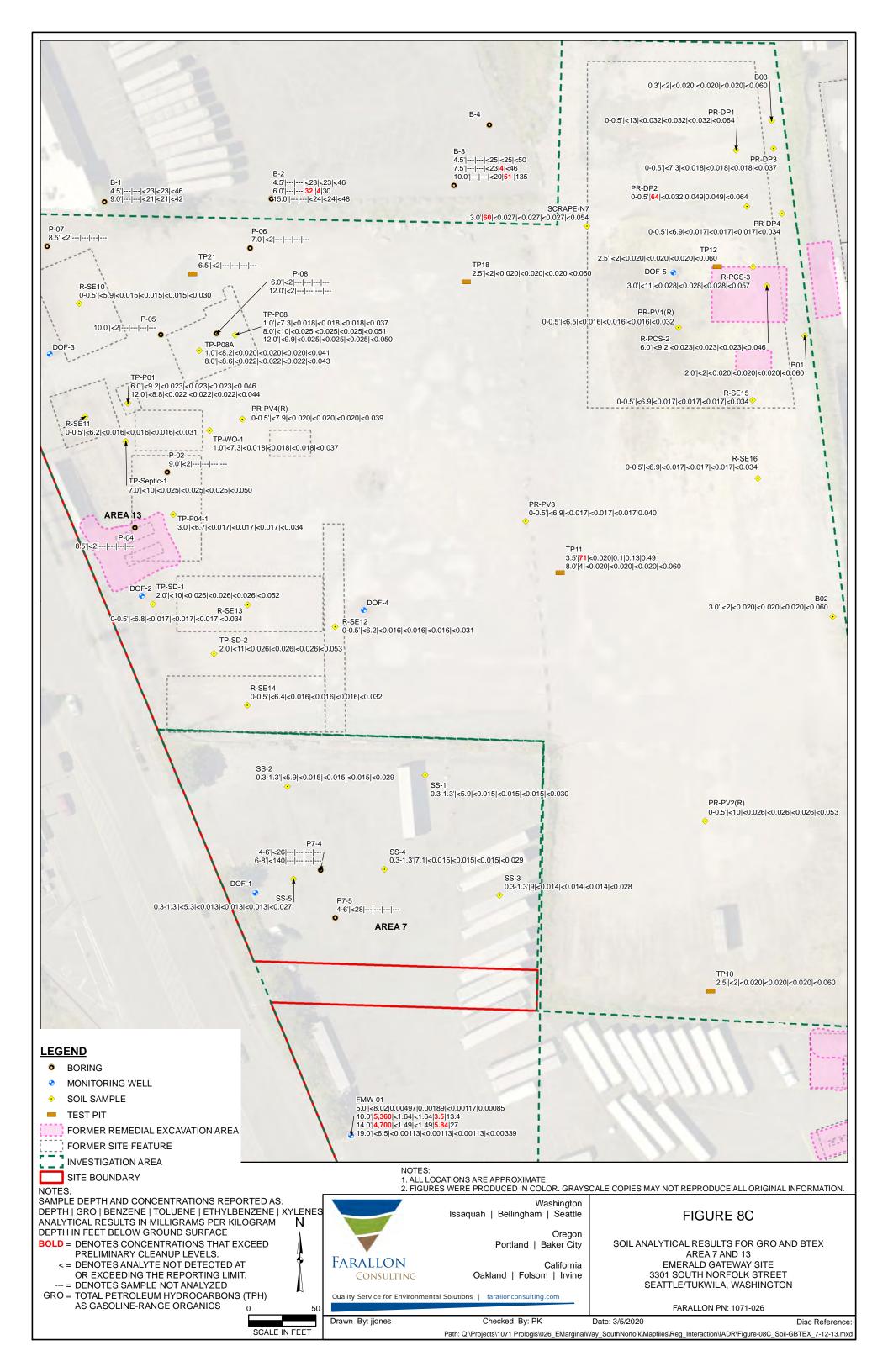


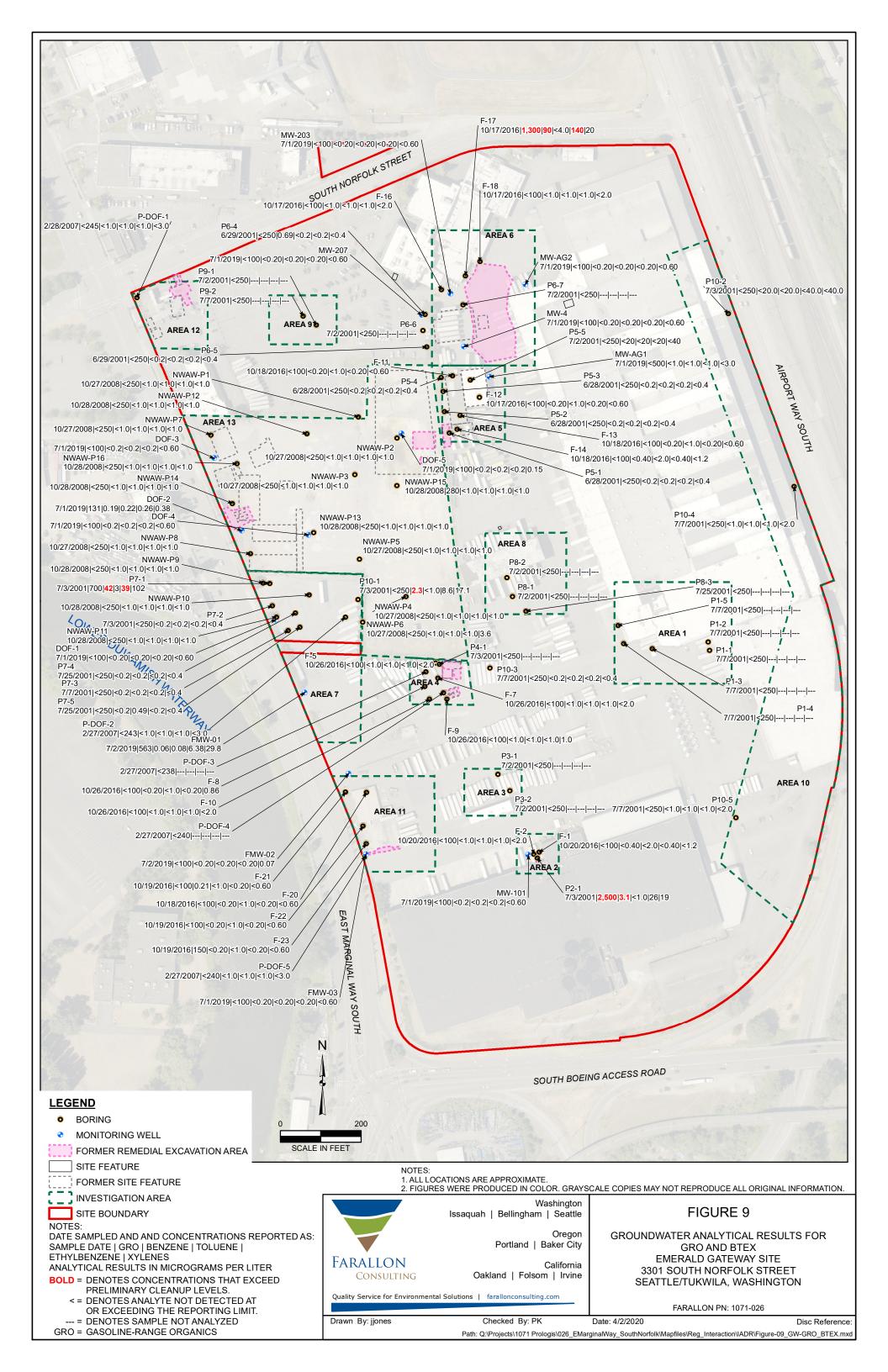


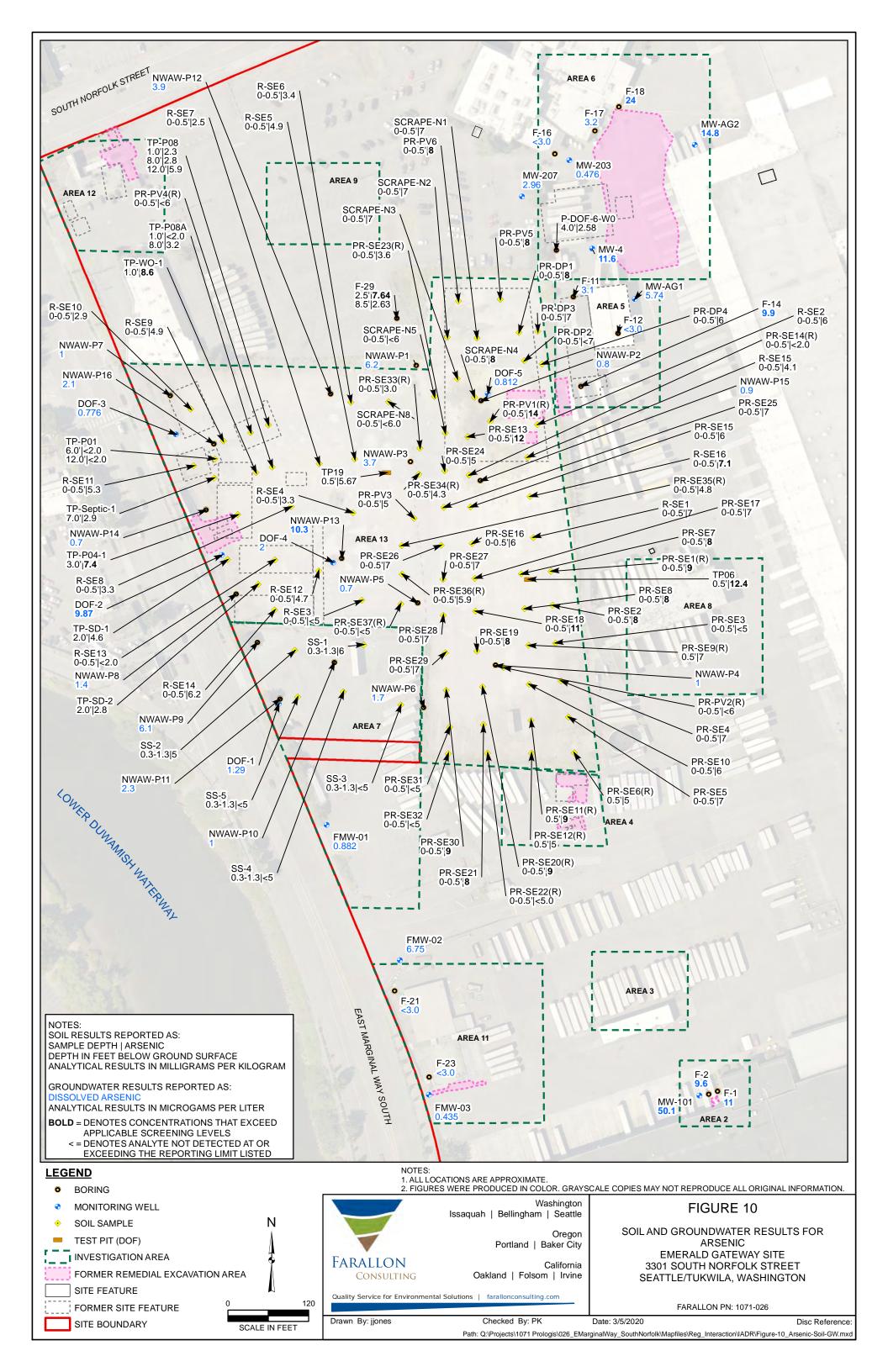


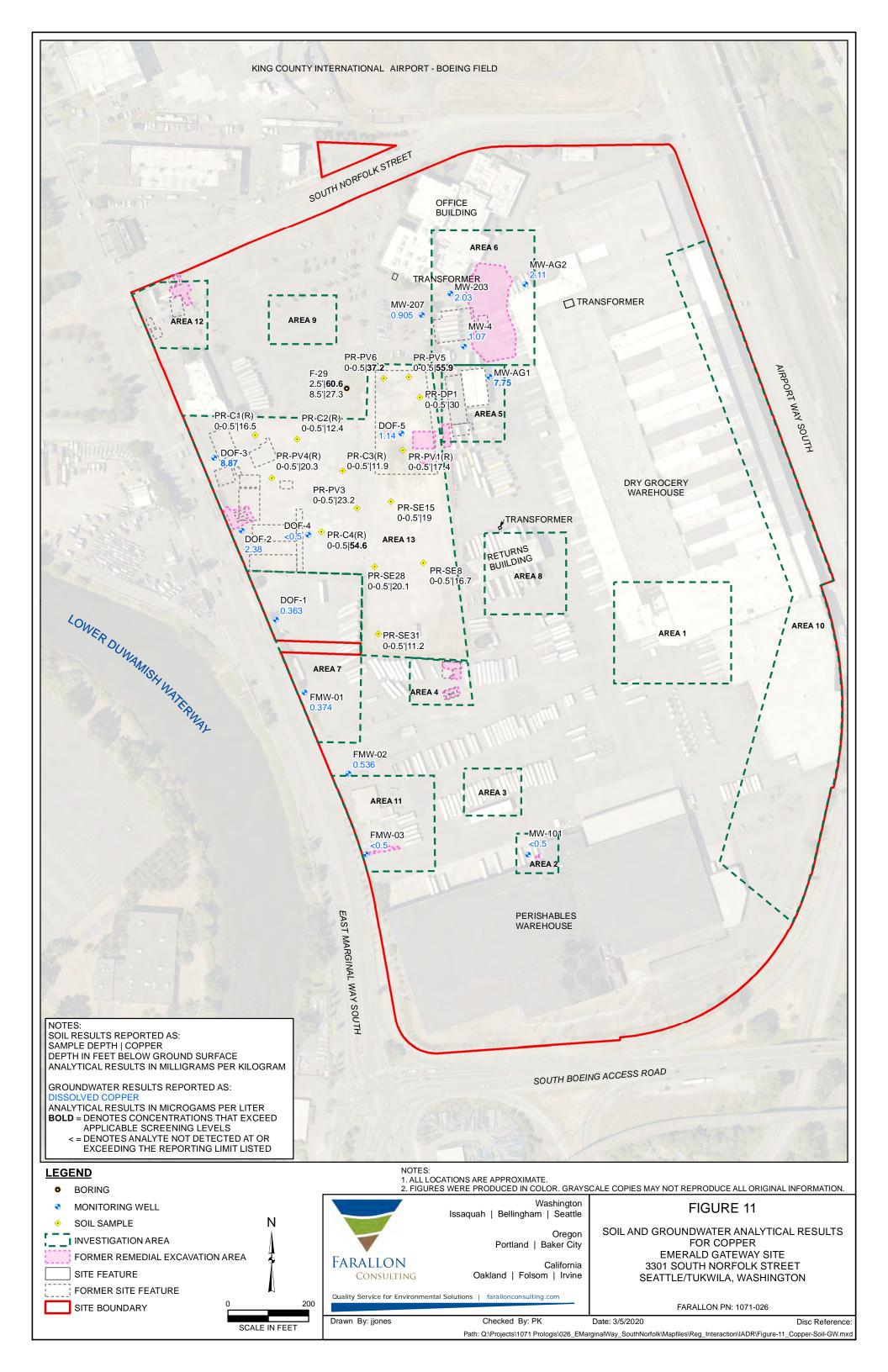


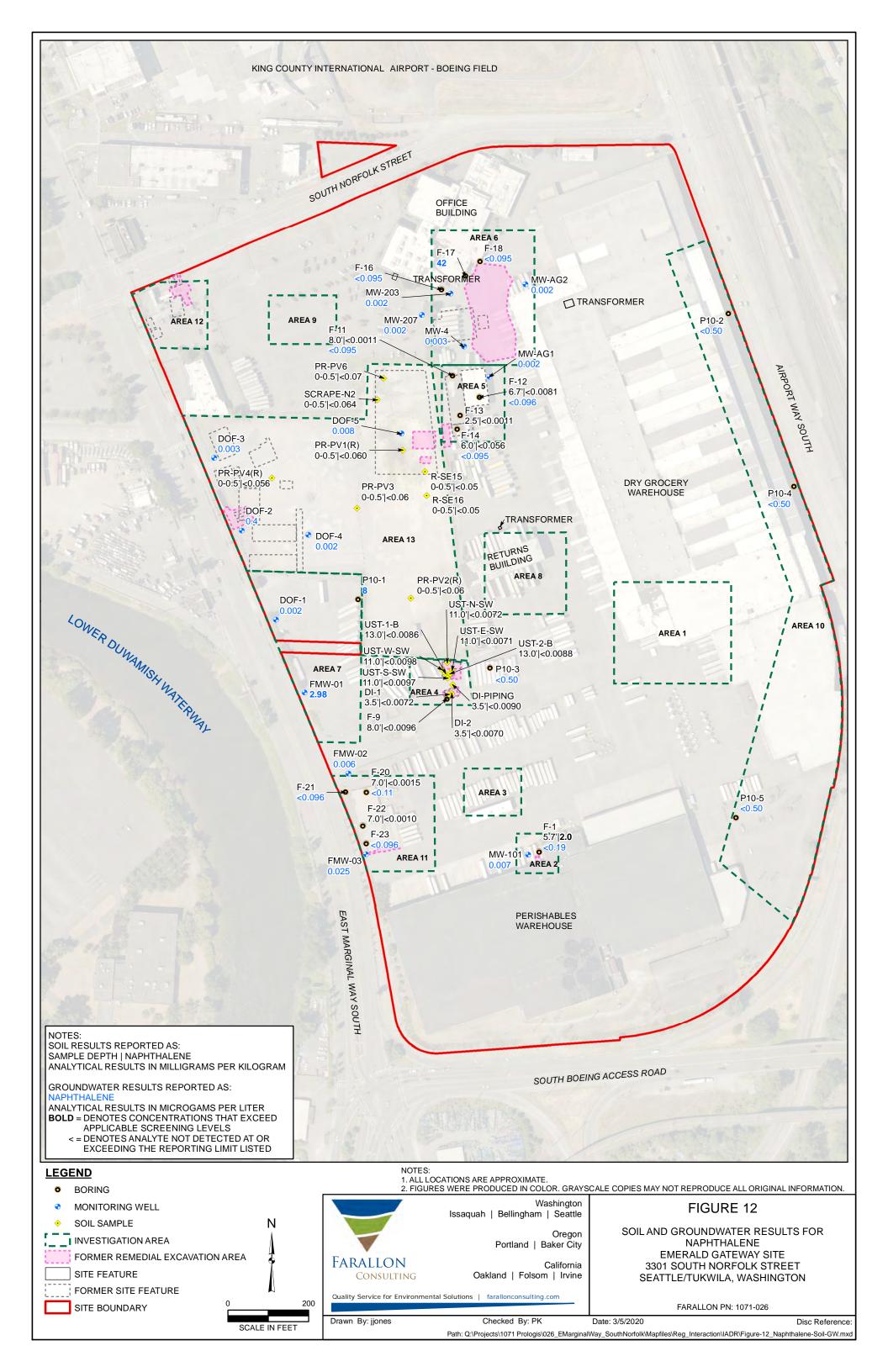


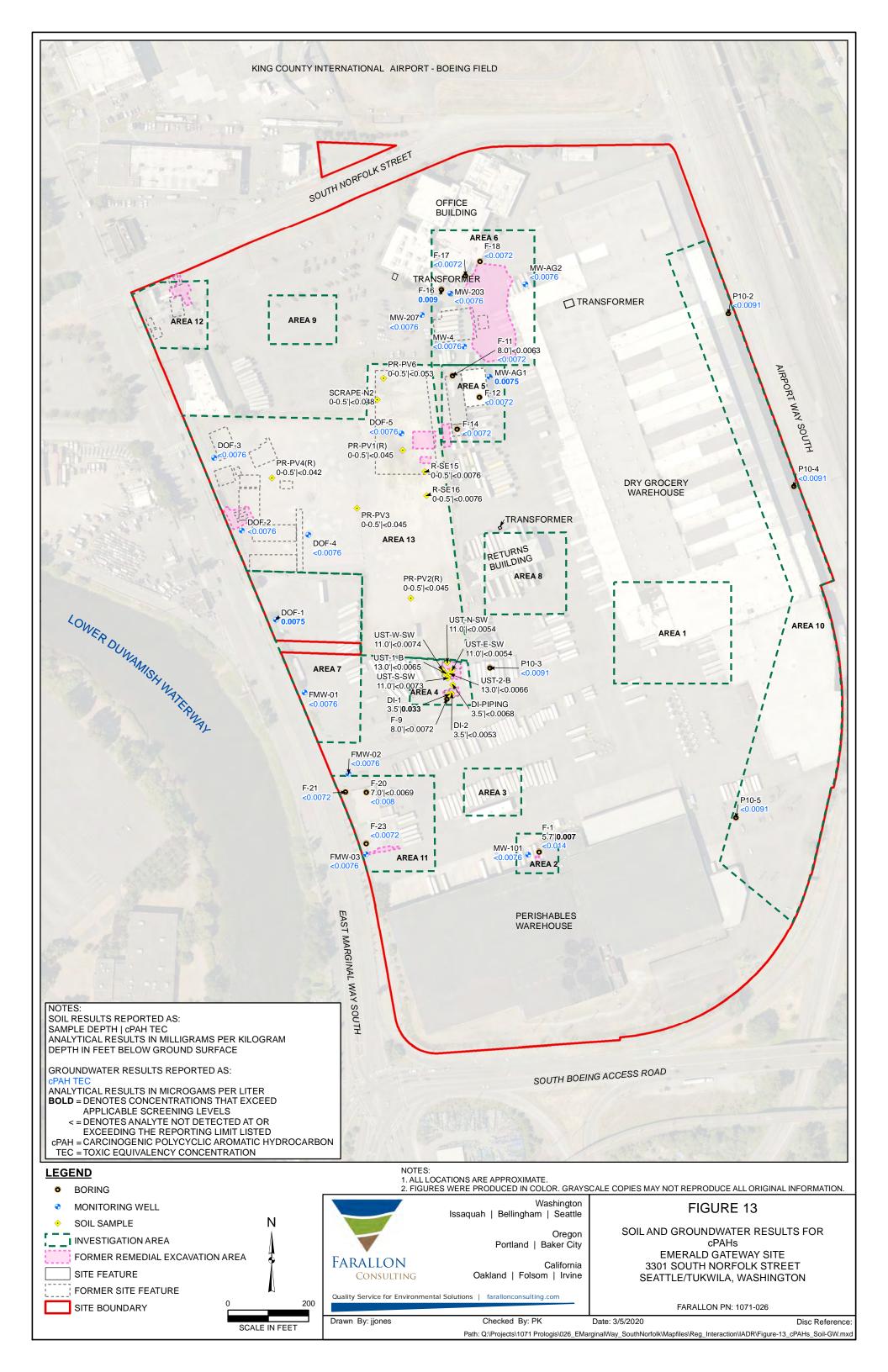


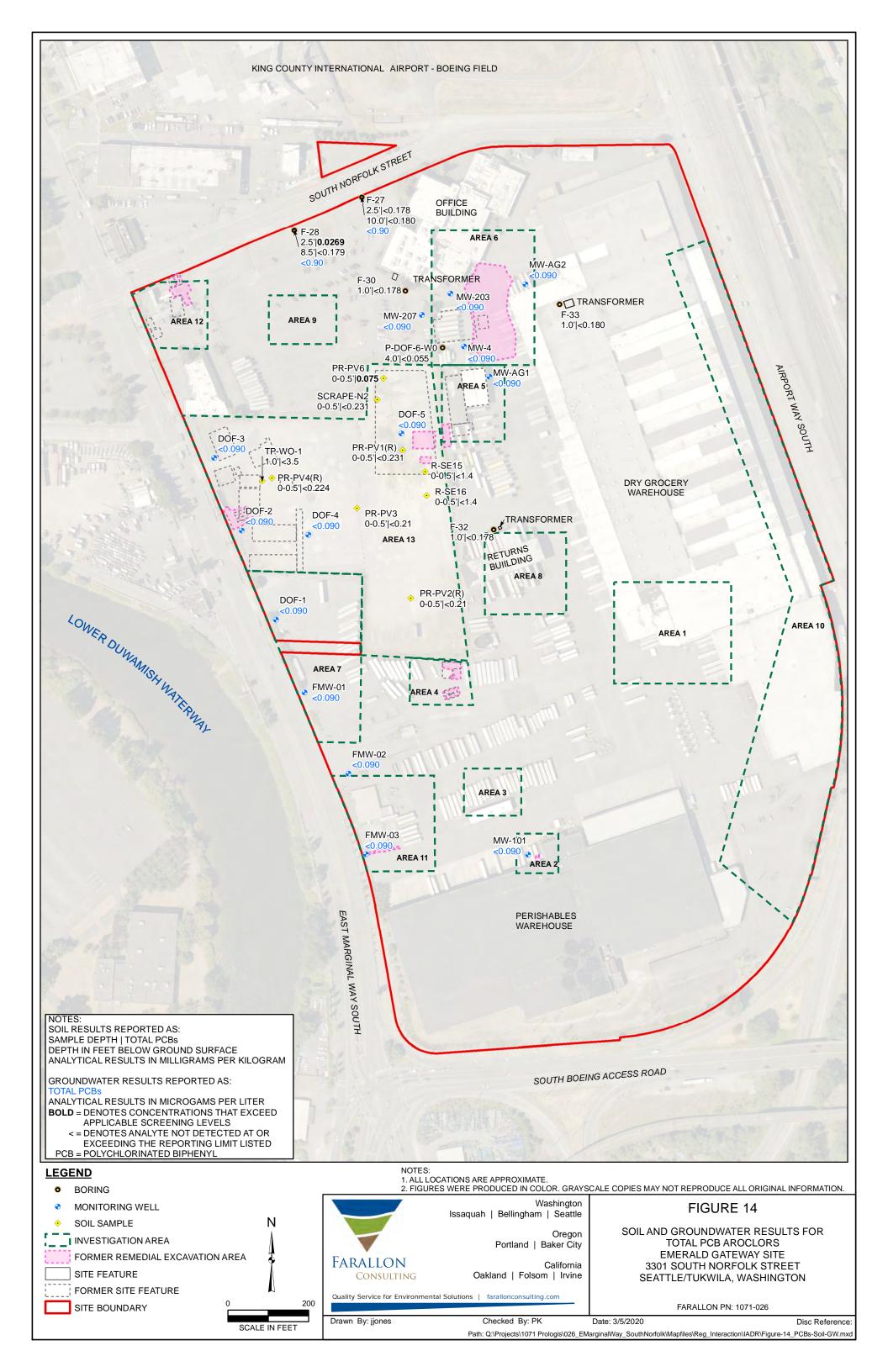












TABLES

INTERIM ACTION DESIGN REPORT
Emerald Gateway Site
3301 South Norfolk Street
Seattle/Tukwila, Washington

Table 1A Summary of Soil Sample Analyses Emerald Gateway Site Seattle/Tukwila, Washington Farallon PN: 1071-026

								Analytic	cal Method ²				
Sample Location	Sampled By	Sample Identification	Sample Depth (feet) ¹	Zone	Sample Date Northern Proper	DRO/ORO by NWTPH-Dx	GRO by NWTPH-Gx	VOCs by EPA Method 8021 or 8260	•	PCBs by EPA Method 8082	Metals by EPA Method 6010/6020		
					2019 Subsurface								
	Farallon	F-27-2.5	2.5	Vadose	6/27/2019	lar (esergereren				X			
F-27	Farallon	F-27-10.0	10.0	Saturated	6/27/2019					X			
	Farallon	F-28-2.5	2.5	Vadose	6/27/2019					X			
F-28	Farallon	F-28-8.5	8.5	Saturated	6/28/2019					X			
					Transfor	mers							
					2019 Subsurface	Investigation							
F-30	Farallon	F-30-1.0	1.0	Vadose	6/27/2019					X			
F-32	Farallon	F-32-1.0	1.0	Vadose	6/27/2019					X			
F-33	Farallon	F-33-1.0	1.0	Vadose	6/27/2019					X			
					Former Deten	tion Pond							
				,	2019 Subsurface	Investigation							
F-29	Farallon	F-29-2.5	2.5	Vadose	6/27/2019	X					X		
r-29	Farallon	F-29-8.5	8.5	Saturated	6/28/2019	X					X		
				A	Area 2: Perishabl	es Warehouse							
				,	2019 Subsurface	Investigation							
	Farallon	F-24-9.0	9.0	Saturated	6/27/2019	X	X	X					
F-24	Farallon	F-24-12.5	12.5	Saturated	6/27/2019	X	X	X					
	Farallon	F-24-19.0	19.0	Saturated	6/27/2019	X	X	X					
	Farallon	F-25-9.0	9.0	Saturated	6/27/2019	X	X	X					
F-25	Farallon	F-25-14.0	14.0	Saturated	6/27/2019	X	X	X					
	Farallon	F-25-19.0	19.0	Saturated	6/27/2019	X	X	X					
	Area 4: Former Fueling Area												
					2019 Subsurface	Investigation							
FMW-02	Farallon	FMW-02-6.0	6.0	Vadose	6/26/2019	X							
11,11,1 02	Farallon	FMW-02-11.0	11.0	Saturated	6/26/2019	X							

Table 1A Summary of Soil Sample Analyses Emerald Gateway Site Seattle/Tukwila, Washington

Farallon PN: 1071-026

								Analytic	cal Method ²		
Sample Location	Sampled By	Sample Identification	Sample Depth (feet) ¹	Zone	Sample Date	DRO/ORO by NWTPH-Dx	GRO by NWTPH-Gx	VOCs by EPA Method 8021 or 8260	·	PCBs by EPA Method 8082	Metals by EPA Method 6010/6020
				Area 7:	Former Automo	bile Service Statio	ns				
				-	2019 Subsurface	Investigation					
	Farallon	FMW-01-5.0	5.0	Vadose	6/26/2019	X	X	X			
FMW-01	Farallon	FMW-01-10.0	10.0	Saturated	6/26/2019	X	X	X	X		
1 1V1 VV -O1	Farallon	FMW-01-14.0	14.0	Saturated	6/26/2019	X	X	X			
	Farallon	FMW-01-19.0	19.0	Saturated	6/26/2019	X	X	X			
				Area 1	1: Former South	Maintenance Sho	p				
				2	2019 Subsurface	Investigation					
	Farallon	FMW-03-6.0	6.0	Vadose	6/26/2019	X	X	X			
FMW-03	Farallon	FMW-03-13.0	13.0	Saturated	6/26/2019	X	X	X			
	Farallon	FMW-03-18.0	18.0	Saturated	6/26/2019	X	X	X			

NOTES:

DRO = total petroleum hydrocarbons (TPH) as diesel-range organics

EPA = U.S. Environmental Protection Agency

Farallon = Farallon Consulting, L.L.C.

GRO = TPH as gasoline-range organics

ORO = TPH as oil-range organics

PAH = polycyclic aromatic hydrocarbon

PCB = polychlorinated biphenyl

UST = underground storage tank

VOC = volatile organic compound

¹Depth in feet below ground surface.

²An "X" indicates the sample was analyzed by the method identified in that respective column.

Table 1B

Summary of Groundwater Sample Analyses

Emerald Gateway Site Seattle/Tukwila, Washington

						Analytica	l Methods ¹						
Sample Location	Sampled By	Sample Date	Sample Identification	DRO/ORO by NWTPH-Dx	GRO by NWTPH-Gx	VOCs by EPA Method 8021 or 8260	PAHs by EPA Method 8270	PCBs by EPA Method 8082	Metals by EPA Methods 200.8/6010				
				Northern Prope	rty Boundary								
			Re	connaissance Boring (Groundwater Samples	s							
F-27	Farallon	6/27/2019	F-27-190627					X					
F-28	Farallon	6/28/2019	F-28-190628					X					
				Area 2: Perishab	les Warehouse								
				Monitoring Well Gro	undwater Samples								
MW-101	Farallon	7/1/2019	MW-101-190701	X	X	X	X	X	X				
				Area 4: Former	Fueling Area								
Reconnaissance Boring Groundwater Samples													
F-31 Farallon 6/27/2019 F-31-190627 X													
				Monitoring Well Gro	undwater Samples	,							
FMW-02	Farallon	7/2/2019	FMW-02-190702	X	X	X	X	X	X				
				Area 6: Former Tr	uck Repair Shop								
				Monitoring Well Gro	undwater Samples								
MW-4	Farallon	7/1/2019	MW-4-190701	X	X	X	X	X	X				
MW-203	Farallon	7/1/2019	MW-203-190701	X	X	X	X	X	X				
MW-207	Farallon	7/1/2019	MW-207-190701	X	X	X	X	X	X				
MW-AG1	Farallon	7/1/2019	MW-AG1-190701	X	X	X	X	X	X				
MW-AG2	Farallon	7/1/2019	MW-AG2-190701	X	X	X	X	X	X				
			A	rea 7: Former Autom	obile Service Stations								
				Monitoring Well Gro	undwater Samples	1	<u>-</u>	,					
DOF-1	Farallon	7/1/2019	DOF-1-190701	X	X	X	X	X	X				
FMW-01	Farallon	7/2/2019	FMW-01-190702	X	X	X	X	X	X				
				Area 11: Former Soutl	<u>-</u>								
			T	Monitoring Well Gro	_								
FMW-03	Farallon	7/1/2019	FMW-03-190701	X	X	X	X	X	X				

Table 1B

Summary of Groundwater Sample Analyses

Emerald Gateway Site Seattle/Tukwila, Washington

Farallon PN: 1071-026

						Analytica	l Methods ¹						
Sample Location	Sampled By	Sample Date	Sample Identification	DRO/ORO by NWTPH-Dx	GRO by NWTPH-Gx	VOCs by EPA Method 8021 or 8260	PAHs by EPA Method 8270	PCBs by EPA Method 8082	Metals by EPA Methods 200.8/6010				
	Area 13: Former Northwest Auto Wrecking Property												
				Monitoring Well Gro	oundwater Samples								
DOF-2	Farallon	7/1/2019	DOF-2-190701	X	X	X	X	X	X				
DOF-3	Farallon	7/1/2019	DOF-3-190701	X	X	X	X	X	X				
DOF-4	Farallon	7/1/2019	DOF-4-190701	X	X	X	X	X	X				
DOF-5	Farallon	7/1/2019	DOF-5-190701	X	X	X	X	X	X				

NOTES:

¹An "X" indicates the sample was analyzed by the method identified in that respective column.

DRO = total petroleum hydrocarbons (TPH) as diesel-range organics

EPA = U.S. Environmental Protection Agency

Farallon = Farallon Consulting, L.L.C.

GRO = TPH as gasoline-range organics

ORO = TPH as oil-range organics

PAH = polycyclic aromatic hydrocarbon

PCB = polychlorinated biphenyl

UST = underground storage tank

VOC = volatile organic compound

Table 2 Groundwater Elevations Emerald Gateway Site Seattle/Tukwila, Washington

Farallon PN: 1071-026

Sample Location	Top of Casing Elevation (feet NAVD88) ¹	Monitoring Date	Depth to Water (feet) ²	Water Level Elevation (feet NAVD88) ¹
DOF-1	16.38	7/1/2019	11.94	4.44
DOF-2	18.19	7/1/2019	12.89	5.30
DOF-3	19.08	7/1/2019	13.35	5.73
DOF-4	17.37	7/1/2019	11.60	5.77
DOF-5	14.89	7/1/2019	7.81	7.08
FMW-01	17.84	7/1/2019	14.54	3.30
FMW-02	17.41	7/1/2019	14.35	3.06
FMW-03	17.17	7/1/2019	14.40	2.77
MW-4	17.83	7/1/2019	10.41	7.42
MW-101	15.47	7/1/2019	8.33	7.14
MW-203	17.99	7/1/2019	10.56	7.43
MW-207	15.63	7/1/2019	8.30	7.33
MW-AG1	16.79	7/1/2019	9.32	7.47
MW-AG2	15.81	7/1/2019	8.13	7.68

NOTES:

² In feet below top of well casing.

NAVD88 = North American Vertical Datum of 1988

¹ In feet above mean sea level.

Table 3 Soil Analytical Results for TPH and BTEX

Emerald Gateway Site Seattle/Tukwila, Washington Farallon PN: 1071-026

							Τ	Analytical I	Results (milligr I	ams per kilogra	am) I	
			Sample Depth									
Sample Location	Sampled By	Sample Identification	(feet) ¹	Zone	Sample Date	DRO^2	ORO^2	GRO^3	Benzene ⁴	Toluene ⁴	Ethylbenzene ⁴	Xylenes ⁴
·		•	, ,	F	Former Detention	n Pond					·	·
				2019	9 Subsurface Inv	estigation						
F 20	Farallon	F-29-2.5	2.5	Vadose	6/27/2019	134	1,330					
F-29	Farallon	F-29-8.5	8.5	Saturated	6/28/2019	< 6.19	< 12.4					
				Area	2: Perishables V	Varehouse						
P2-1	DOF	Probe 2-1	5 - 7	Vadose	7/3/2001	9,900	< 570					
EX-2-2	DOF	Exc. Spl. 2-2	7.0	Vadose	4/2/2002	< 33	< 65					
EX-2-3	DOF	Exc. Spl. 2-3	7.0	Vadose	4/2/2002	1,300	< 59					
EX-2-4	DOF	Exc. Spl. 2-4	3.0	Vadose	4/2/2002	< 28	< 55					
EX-2-5	DOF	Exc. Spl. 2-5	9.0	Saturated	4/2/2002	< 34	< 68					
EX-2-6	DOF	Exc. Spl. 2-6	7.0	Vadose	4/2/2002	< 28	< 55					
F-1	Farallon	F-1-5.7	5.7	Vadose	10/20/2016	5,900	< 280	< 28	< 0.022	< 0.11	0.16	0.25
F-2	Farallon	F-2-7.0	7.0	Vadose	10/20/2016	< 28	< 56	< 5.7	< 0.020	< 0.057	< 0.057	< 0.114
	Farallon	F-24-9.0	9.0	Saturated	6/27/2019	< 5.35	< 10.7	< 4.43	< 0.00115	< 0.00115	< 0.00115	< 0.00345
F-24	Farallon	F-24-12.5	12.5	Saturated	6/27/2019	< 6.8	32.9	< 8.07	0.00042 J	0.00043 J	< 0.00134	< 0.00401
	Farallon	F-24-19.0	19.0	Saturated	6/27/2019	< 6.15	< 12.3	< 7.06	< 0.00107	0.00036 J	< 0.00107	< 0.00322
	Farallon	F-25-9.0	9.0	Saturated	6/27/2019	< 5.3	< 10.6	< 6.46	< 0.00102	0.00026 J	< 0.00102	< 0.00305
F-25	Farallon	F-25-14.0	14.0	Saturated	6/27/2019	< 6.97	29.0	< 11	< 0.00153	0.00042 J	< 0.00153	< 0.00459
	Farallon	F-25-19.0	19.0	Saturated	6/27/2019	< 6.15	< 12.3	< 7.18	< 0.00123	0.00041 J	< 0.00123	< 0.0037
				Are	a 4: Former Fue	ling Area						
				199	8 UST Decomm	issioning						
				Former	Dispenser Islan	d Excavation						
E. Sidewall	Global	East Sidewall	9.0	Saturated	2/6/1998	< 35	< 69	< 6.9	< 0.07	< 0.07	< 0.07	< 0.14
S. Sidewall	Global	South Sidewall	9.0	Saturated	2/6/1998	< 37	< 75	< 7.5	< 0.08	< 0.08	< 0.08	0.46
Bottom SW Corner	Global	Bottom SW Corner	14.0	Saturated	2/6/1998	36	< 72	9.9	4.8	< 0.07	0.61	1.98
Boring B-1	Global	Boring B-1	7.0	Vadose	5/28/2007	< 200	< 200	< 5.8	< 0.06	< 0.06	< 0.06	< 0.01
					UST Excavat	ion						
Tank 3 E Wall	Global	East Sidewall	Unknown		2/9/1998	< 36	< 59					
West Wall	Global	West Sidewall	Unknown		2/9/1998	< 31	< 62					
N. Wall	Global	North Sidewall	Unknown		2/9/1998	< 32	< 63					
				2002	2 Surface Spill E	xcavation						
4-1	Terra	Exc. Spl. 4-1	2.0	Vadose	4/1/2002	300	190					
4-3	Terra	Exc. Spl. 4-3	2.0	Vadose	4/1/2002	54	<53					
4-4	Terra	Exc. Spl. 4-4	2.0	Vadose	4/1/2002	<28	190					
4-5	Terra	Exc. Spl. 4-5	2.5	Vadose	4/1/2002	<33	74					
LDW Most-Stringent So	oil PCUL: Vado	se Zone, Nonpotable Grour	ndwater ⁶			2,000	2,000	30	0.0088	0.92	0.26	16,000
LDW Most-Stringent So	oil PCUL: Satur	ated Zone, Nonpotable Gro	oundwater ⁶			2,000	2,000	30	0.00056	0.055	0.015	16,000

								Analytical F	Results (milligr	ams per kilogr	am)	
Sample Location	Sampled By	Sample Identification	Sample Depth (feet) ¹	Zone	Sample Date	DRO^2	ORO ²	GRO ³	Benzene ⁴	Toluene ⁴	Ethylbenzene ⁴	Xylenes ⁴
,	T I	F	(2 2 3)		Subsurface Inv	estigation					, and a	J 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
F-5	Farallon	F-5-6.0	6.0	Vadose	10/26/2016	< 34	< 68	< 7.3	< 0.020	< 0.073	< 0.073	< 0.146
F-7	Farallon	F-7-7.0	7.0	Vadose	10/26/2016	< 38	< 76	< 9.1	< 0.020	< 0.091	< 0.091	< 0.182
F-9	Farallon	F-9-8.0	8.0	Saturated	10/26/2016	< 36	< 72	< 8.1	< 0.020	< 0.081	< 0.081	< 0.162
				2019	Subsurface Inv	estigation		,				
EMW 02	Farallon	FMW-02-6.0	6.0	Vadose	6/26/2019	< 6.02	< 12.0					
FMW-02	Farallon	FMW-02-11.0	11.0	Saturated	6/26/2019	< 7.98	93.8					
				201	9 UST Decomm	issioning		<u>,</u>				
	Farallon	DI-1-3.5-040819	3.5	Vadose	4/8/2019	200 N	970	< 5.2	< 0.020	< 0.052	< 0.052	< 0.104
DI	Farallon	DI-2-3.5-040819	3.5	Vadose	4/8/2019	< 26	< 52	< 6.0	< 0.020	< 0.060	< 0.060	< 0.12
	Farallon	DI-PIPING-3.5-040819	3.5	Vadose	4/8/2019	< 34	89	< 8.4	< 0.020	< 0.084	< 0.084	< 0.168
	Farallon	TP1-7.0	7.0	Vadose	4/8/2019	72 N	320	< 13	< 0.026	< 0.13	< 0.13	< 0.26
TP1	Farallon	TP1-12.0	12.0	Saturated	4/8/2019	< 39	< 79	< 12	< 0.024	< 0.12	< 0.12	< 0.24
	Farallon	TP2-7.0	7.0	Vadose	4/9/2019	< 26	72	< 5.9	< 0.020	< 0.059	< 0.059	< 0.12
TP2	Farallon	TP2-12.0	12.0	Saturated	4/9/2019	63	< 70	< 9.4	< 0.020	< 0.094	< 0.094	< 0.19
	Farallon	UST-1-B-13.0	13.0	Saturated	4/5/2019	< 32	< 64	< 6.5	< 0.020	< 0.065	< 0.065	< 0.13
	Farallon	UST-2-B-13.0	13.0	Saturated	4/5/2019	< 33	< 66	< 6.5	< 0.020	< 0.065	< 0.065	< 0.13
	Farallon	UST-E-SW-11.0	11.0	Saturated	4/5/2019	< 27	53	< 4.5	< 0.020	< 0.045	< 0.045	< 0.09
UST	Farallon	UST-N-SW-11.0	11.0	Saturated	4/5/2019	< 27	< 54	< 4.3	< 0.020	< 0.043	< 0.043	< 0.086
	Farallon	UST-S-SW-11.0	11.0	Saturated	4/5/2019	160	< 72	< 8.0	< 0.020	< 0.080	< 0.080	< 0.16
	Farallon	UST-W-SW-11.0	11.0	Saturated	4/5/2019	< 37	< 74	< 8.5	< 0.020	< 0.085	< 0.085	< 0.17
					rmer Trailer M		ļ.					
P5-1	DOF	Probe 5-1	9 - 11	Saturated	6/28/2001	< 72	< 140	< 29				
	DOF	Probe 5-2	7 - 9	Saturated	6/28/2001	1,800	190	< 28				
P5-2	DOF	Probe 5-2	9 - 11	Saturated	6/28/2001	< 69	< 140	< 28				
P5-4	DOF	Probe 5-4	9 - 11	Saturated	6/28/2001	< 79	< 160	< 32				
13 4	DOF	Probe 5-5	3 - 5	Vadose	7/2/2001	< 52	< 100	< 21				
P5-5	DOF	Probe 5-5	7 - 9	Saturated	7/2/2001	< 59	< 120	< 24				
133	DOF	Probe 5-5	11 - 13	Saturated	7/2/2001	< 68	< 140	< 27				
	BOI	11000 3-3	11-13		Subsurface Inv		140	~ 21				
F-11	Farallon	F-11-8.0	8.0	Saturated	10/18/2016	< 31	< 63	< 5.8	< 0.0011	< 0.0055	< 0.0011	< 0.003
F-12	Farallon	F-12-6.7	6.7	Vadose	10/17/2016	< 29	< 58	< 7.3	< 0.0011	< 0.0081	< 0.0011	< 0.003
F-13	Farallon	F-13-2.5	2.5	Vadose	10/18/2016	< 26	< 52	< 5.9	< 0.0010	< 0.0055	< 0.0011	< 0.003
F-14	Farallon	F-14-6.0	6.0	Vadose	10/18/2016	< 28	< 56	< 5.4	< 0.00093	< 0.0035	< 0.00093	< 0.002
	1			, 44050	10/10/2010	2,000	2,000	30	0.0088	0.92	0.26	16,000
	Most-Stringent Soil PCUL: Vadose Zone, Nonpotable Groundwater ⁶ Most-Stringent Soil PCUL: Saturated Zone, Nonpotable Groundwater ⁶					2,000	2,000	30	0.00056	0.055	0.015	16,000

								Analytical F	Results (milligr	ams per kilogr	am)	
Sample Location	Sampled By	Sample Identification	Sample Depth (feet) ¹	Zone	Sample Date	DRO^2	ORO ²	GRO ³	Benzene ⁴	Toluene ⁴	Ethylbenzene ⁴	Xylenes ⁴
			2009 Excavation	Along Bounda	ry Between Asso	ciated Grocer	's Property an	d Area 13				
R-PCS-50	DOF	R-PCS-50	9.0	Saturated	5/20/2010	< 6.5	38	< 11	< 0.027	< 0.027	< 0.027	< 0.054
R-PCS-51	DOF	R-PCS-51	12.0	Saturated	5/20/2010	< 5.9	< 12	75	< 0.019	< 0.019	0.12	< 0.038
R-PCS-52	DOF	R-PCS-52 R	13.0	Saturated	5/24/2010			< 6.2	< 0.016	< 0.016	0.028	< 0.016
R-PCS-53	DOF	R-PCS-53	9.0	Saturated	5/20/2010	< 6.9	16	< 12	< 0.029	< 0.029	< 0.029	< 0.059
R-PCS-54	DOF	R-PCS-54	9.0	Saturated	5/20/2010	8.1	65	< 7.4	< 0.018	< 0.018	< 0.018	< 0.037
				Area 6	: Former Truck	Repair Shop						
				2001 and	2007 Subsurfac	e Investigation	n					
P6-7	DOF	Probe 6-7	9 - 11	Saturated	7/2/2001	< 67	< 130	< 27				
P-DOF-6.1	DOF	P-DOF-6.1	8.0	Saturated	2/2007	< 72	< 144	< 29				
P-DOF-6.2	DOF	P-DOF-6.2	8.0	Saturated	2/2007	< 76	< 152	< 30				
P-DOF-6.3	DOF	P-DOF-6.3	8.0	Saturated	2/2007	< 139	< 69	< 28				
P-DOF-6.4	DOF	P-DOF-6.4	8.0	Saturated	2/2007	< 60	< 119	< 24				
P-DOF-6.5	DOF	P-DOF-6.5	8.0	Saturated	2/2007	< 76	< 151	< 30				
P-DOF-6.6	DOF	P-DOF-6.6	8.0	Saturated	2/2007	< 61	< 121	< 24				
P-DOF-6-WO	DOF	P-DOF-6.WO	4.0	Vadose	2/2007	< 55	< 110	< 22				
					2007 Excavat	ion						
CS-B04	DOF	CS-B04	11.5	Saturated	8/2/2007	140	27	51	< 0.026	< 0.026	< 0.026	< 0.052
CS-B05	DOF	CS-B05	10.5	Saturated	8/2/2007	< 6.7	< 13	< 9.7	< 0.024	< 0.024	< 0.024	< 0.048
CS-B06	DOF	CS-B06	11.5	Saturated	8/2/2007	11	41	< 13	< 0.032	< 0.032	< 0.032	< 0.064
CS-B07	DOF	CS-B07	11.0	Saturated	8/3/2007	230	48	61	< 0.028	< 0.028	< 0.028	0.055
CS-B09	DOF	CS-B09	11.5	Saturated	8/6/2007	12	32	32	< 0.031	< 0.031	< 0.031	< 0.063
CS-B10	DOF	CS-B10	11.5	Saturated	8/6/2007	120	120	22	< 0.034	< 0.034	< 0.034	< 0.068
CS-B11R1	DOF	CS-B11R1	15.0	Saturated	8/9/2007	16	17	13	< 0.022	< 0.022	< 0.022	< 0.044
CS-B13	DOF	CS-B13	15.0	Saturated	8/9/2007	< 7	18	19	< 0.027	< 0.027	< 0.027	0.059
CS-B14	DOF	CS-B14	15.0	Saturated	8/9/2007	< 7	21	11	< 0.027	< 0.027	< 0.027	< 0.054
CS-B15	DOF	CS-B15	16.0	Saturated	8/9/2007	300	47	26	< 0.031	< 0.031	< 0.031	< 0.062
CS-B16	DOF	CS-B16	15.0	Saturated	8/15/2007	12	22	41	< 0.026	< 0.026	0.027	< 0.052
CS-B17	DOF	CS-B17	15.0	Saturated	8/15/2007	< 6.1	< 12	14	< 0.021	0.029	0.040	0.20
CS-B18	DOF	CS-B18	15.0	Saturated	8/15/2007	< 6.9	< 14	29	1.4	< 0.026	0.043	0.069
CS-B19	DOF	CS-B19	13.5	Saturated	8/17/2007	< 6.3	< 12	< 14	< 0.034	< 0.034	< 0.034	< 0.068
CS-B20	DOF	CS-B20	12.0	Saturated	8/17/2007	< 6.8	16	27	0.031	< 0.017	0.017	0.037
CS-B22	DOF	CS-B22	11.5	Saturated	8/21/2007	< 6.5	< 13	< 9.0	< 0.022	< 0.022	< 0.022	< 0.045
CS-B24	DOF	CS-B24	12.0	Saturated	8/22/2007	110	20	50	< 0.026	0.051	< 0.026	< 0.052
	Soil PCUL: Vado		ndwater ⁶			2,000	2,000	30	0.0088	0.92	0.26	16,000
W Most-Stringent Soil PCUL: Vadose Zone, Nonpotable Groundwater ⁶ W Most-Stringent Soil PCUL: Saturated Zone, Nonpotable Groundwater ⁶							2,000	30	0.00056	0.055	0.015	16,000

							I	Analytical I	Results (milligr	ams per kilogr	am)	
Sample Location	Sampled By	Sample Identification	Sample Depth (feet) ¹	Zone	Sample Date	DRO ²	ORO ²	GRO ³	Benzene ⁴	Toluene ⁴	Ethylbenzene ⁴	Xylenes ⁴
	_				7 Excavation (co	,						
CS-B25	DOF	CS-B25	12.5	Saturated	8/22/2007	550	41	95	< 0.025	< 0.025	0.10	0.76
CS-B26	DOF	CS-B26	12.5	Saturated	8/22/2007	170	29	70	< 0.024	< 0.024	< 0.024	< 0.048
CS-B27	DOF	CS-B27	12.0	Saturated	8/22/2007	330	39	66	< 0.025	< 0.025	< 0.025	0.49
CS-B30	DOF	CS-B30	13.0	Saturated	8/27/2007	< 6.8	< 14	10	< 0.023	< 0.023	< 0.023	< 0.046
CS-B31	DOF	CS-B31	9.0	Saturated	8/28/2007	< 7.6	22	< 12	< 0.029	< 0.029	< 0.029	0.066
CS-B32	DOF	CS-B32	10.0	Saturated	8/28/2007	< 7.5	15	< 13	< 0.032	< 0.032	< 0.032	< 0.064
CS-B33	DOF	CS-B33	10.0	Saturated	8/29/2007	< 7.2	< 14	< 11	< 0.028	< 0.028	< 0.028	0.07
CS-B34	DOF	CS-B34	10.0	Saturated	8/29/2007	< 5.3	11	< 5.7	< 0.014	< 0.014	< 0.014	< 0.028
CS-B35	DOF	CS-B35	15.0	Saturated	8/30/2007	< 6.5	< 13	15	0.37	< 0.025	0.037	0.16
CS-B36	DOF	CS-B36	14.0	Saturated	8/30/2007	< 6.3	< 13	< 8.4	< 0.021	< 0.021	< 0.021	< 0.042
CS-SW02	DOF	CS-SW02	7.5	Saturated	8/1/2007	6.9	13	8.7	< 0.019	< 0.019	< 0.019	< 0.038
CS-SW03	DOF	CS-SW03	6.0	Vadose	8/2/2007	11	< 12	10	< 0.018	< 0.018	< 0.018	< 0.035
CS-SW04	DOF	CS-SW04	8.5	Saturated	8/2/2007	< 6.7	< 13	< 9.2	< 0.023	< 0.023	< 0.023	< 0.046
CS-SW05	DOF	CS-SW05	8.0	Saturated	8/2/2007	< 5.8	< 12	< 7.2	< 0.018	< 0.018	< 0.018	< 0.036
CS-SW06	DOF	CS-SW06	7.5	Saturated	8/2/2007	72	260	< 17	< 0.043	< 0.043	< 0.043	< 0.086
CS-SW07	DOF	CS-SW07	9.5	Saturated	8/3/2007	670	120	52	< 0.032	< 0.032	< 0.032	< 0.064
CS-SW08R1	DOF	CS-SW08R1	8.0	Saturated	8/7/2007	25	68	44	< 0.015	< 0.015	0.029	< 0.030
CS-SW09	DOF	CS-SW09	8.0	Saturated	8/14/2007	< 6.6	15	< 9.6	< 0.024	< 0.024	< 0.024	< 0.048
CS-SW10	DOF	CS-SW10	8.0	Saturated	8/15/2007	< 5.4	< 11	< 5.9	< 0.015	< 0.015	< 0.015	< 0.030
CS-SW11	DOF	CS-SW11	8.5	Saturated	8/21/2007	21	64	< 11	< 0.027	< 0.027	< 0.027	< 0.054
CS-SW18	DOF	CS-SW18	9.0	Saturated	8/23/2007	740	46	96	< 0.029	< 0.029	0.031	0.39
CS-SW19	DOF	CS-SW19	9.0	Saturated	8/27/2007	< 6.3	15	< 8.2	< 0.020	< 0.020	< 0.020	< 0.041
CS-SW20	DOF	CS-SW20	7.5	Saturated	8/27/2007	12	30	< 6.5	< 0.016	< 0.016	< 0.016	< 0.032
CS-SW22	DOF	CS-SW22	7.0	Saturated	8/28/2007	< 5.8	< 12	< 7.2	< 0.018	< 0.018	< 0.018	< 0.036
CS-SW21	DOF	CS-SW21	6.0	Vadose	8/28/2007	16	15	20	< 0.023	< 0.023	< 0.023	< 0.045
CS-SW23	DOF	CS-SW23	8.0	Saturated	8/29/2007	< 6.1	< 12	< 7.7	< 0.019	< 0.019	< 0.019	< 0.039
CS-SW24	DOF	CS-SW24	8.0	Saturated	8/29/2007	< 5.6	< 11	< 6.4	< 0.016	< 0.016	< 0.016	< 0.032
CS-SW25	DOF	CS-SW25	9.0	Saturated	8/30/2007	< 5.6	< 11	< 6.8	< 0.017	< 0.017	< 0.017	< 0.034
CS-SW26	DOF	CS-SW26	9.0	Saturated	8/30/2007	44	< 14	72	0.54	0.057	0.75	4.7
CS-SW27	DOF	CS-SW27	9.0	Saturated	8/30/2007	33	< 14	150	0.56	0.057	2.7	3.8
CS-SW28	DOF	CS-SW28	8.0	Saturated	8/30/2007	< 5.3	< 11	< 5.7	< 0.014	< 0.014	< 0.014	< 0.028
PS-B01	DOF	PS-B01	7.5	Saturated	7/30/2007	6.7	< 12.0	< 7.8	< 0.039	< 0.039	< 0.039	< 0.078
PS-B06	DOF	PS-B06	14.0	Saturated	8/6/2007	120	19	12	< 0.024	< 0.024	< 0.024	< 0.048
PS-SW03	DOF	PS-SW03	6.5	Vadose	7/31/2007	< 6.5	< 13	< 9.6	< 0.024	< 0.024	< 0.024	< 0.048
		se Zone, Nonpotable Grour	!		<u>'</u>	2,000	2,000	30	0.0088	0.92	0.26	16,000
	V Most-Stringent Soil PCUL: Saturated Zone, Nonpotable Groundwater ⁶					2,000	2,000	30	0.00056	0.055	0.015	16,000

								Analytical I	Results (milligr	ams per kilogra	am)	
			Sample Depth						(g.	waa per aaagr		
Sample Location	Sampled By	Sample Identification	(feet) ¹	Zone	Sample Date	DRO^2	ORO^2	GRO^3	Benzene ⁴	Toluene ⁴	Ethylbenzene ⁴	Xylenes ⁴
Sumple Education	Sumpreu Dy	Sumple Tuentification	(1000)		rmer Automobile			GRO	Delizene	Totache	Zenjusenzene	Tijiches
	Farallon	FMW-01-5.0	5.0	Vadose	6/26/2019	< 6.27	< 12.5	< 8.02	0.00497	0.00189	< 0.00117	0.00085
F) (IV. 0.1	Farallon	FMW-01-10.0	10.0	Saturated	6/26/2019	68.4	< 13.2	5,360	< 1.64	< 1.64	3.5	13.4
FMW-01	Farallon	FMW-01-14.0	14.0	Saturated	6/26/2019	< 6.3	< 12.6	4,700	< 1.49	< 1.49	5.84	27
	Farallon	FMW-01-19.0	19.0	Saturated	6/26/2019	< 5.99	< 12.0	< 6.5	< 0.00113	< 0.00113	< 0.00113	< 0.00339
D7 4	DOF	Probe 7-4	4 - 6	Vadose	7/25/2001	< 64	< 130	< 26				
P7-4	DOF	Probe 7-4	6 - 8	Saturated	7/25/2001	< 76	< 150	< 140				
P7-5	DOF	Probe 7-5	4 - 6	Vadose	7/25/2001	< 70	< 140	< 28				
SS-1	DOF	SS-1	0.3-1.3	Vadose	10/29/2008	110	870	< 5.9	< 0.015	< 0.015	< 0.015	< 0.030
SS-2	DOF	SS-2	0.3-1.3	Vadose	10/29/2008	160	980	< 5.9	< 0.015	< 0.015	< 0.015	< 0.029
SS-3	DOF	SS-3	0.3-1.3	Vadose	10/29/2008	200	1,300	9	< 0.014	< 0.014	< 0.014	< 0.028
SS-4	DOF	SS-4	0.3-1.3	Vadose	10/29/2008	140	930	7.1	< 0.015	< 0.015	< 0.015	< 0.029
SS-5	DOF	SS-5	0.3-1.3	Vadose	10/29/2008	220	1,300	< 5.3	< 0.013	< 0.013	< 0.013	< 0.027
				Area 11: F	Former South Ma	aintenance Sh	ор					
				199	6 UST Decommi	issioning						
D 1	Global	B-1@4.5'	4.5	Vadose	April 1996					< 23	< 23	< 46
B-1	Global	B-1@9'	9.0	Saturated	April 1996					< 21	< 21	< 42
	Global	B-2@4.5'	4.5	Vadose	April 1996					< 23	< 23	< 46
B-2	Global	B-2@6'	6.0	Vadose	April 1996					32	4 J	30 J
	Global	B-2@15'	15.0	Saturated	April 1996					< 24	< 24	< 48
	Global	B-3@4.5'	4.5	Vadose	April 1996					< 25	< 25	< 50
B-3	Global	B-3@7.5'	7.5	Saturated	April 1996					< 23	4 J	< 46
	Global	B-3@10'	10.0	Saturated	April 1996					< 20	51	135 J
F-20	Farallon	F-20-7.0	7.0	Saturated	10/18/2016	< 34	< 68	< 8.8	< 0.0015	< 0.0074	< 0.0015	< 0.0045
F-22 Farallon F-22-7.0 7.0 Saturated 10/19/2016						< 32	< 63	< 6.6	< 0.0010	< 0.0050	< 0.0010	< 0.0030
W Most-Stringent S	Most-Stringent Soil PCUL: Vadose Zone, Nonpotable Groundwater ⁶					2,000	2,000	30	0.0088	0.92	0.26	16,000
W Most-Stringent S	Most-Stringent Soil PCUL: Saturated Zone, Nonpotable Groundwater ⁶					2,000	2,000	30	0.00056	0.055	0.015	16,000

Table 3 Soil Analytical Results for TPH and BTEX Emerald Gateway Site

Seattle/Tukwila, Washington Farallon PN: 1071-026

							1	Analytical F	Results (milligr	ams per kilogr	am)	
Sample Location	Sampled By	Sample Identification	Sample Depth (feet) ¹	Zone	Sample Date	DRO^2	ORO ²	GRO^3	Benzene ⁴	Toluene ⁴	Ethylbenzene ⁴	Xylenes ⁴
Sample Location	Sampled by	Sample Identification	(leet)		Subsurface Inv		UKU	GRO	Delizelle	Toluene	Ethyldenzene	Aylelles
	Farallon	FMW-03-6.0	6.0	Vadose	6/26/2019	< 6.48	< 13	< 8.46	< 0.0014	< 0.0014	< 0.0014	< 0.0028
FMW-03	Farallon	FMW-03-13.0	13.0	Saturated	6/26/2019	14.8	89.5	< 10.8	0.00047 J	< 0.0014	< 0.0014	< 0.0028
111111 00	Farallon	FMW-03-18.0	18.0	Saturated	6/26/2019	< 5.9	< 11.8	< 6.91	< 0.0012	< 0.0014	< 0.0014	< 0.0024
	Turunon	111111 03 10.0	10.0		ner Old Humble		<u>.</u>	7 0.5 1	0.0012	.0.0012	0.0012	.0.0021
	Terra	P-1@6-8 feet	6 - 8	Vadose	11/23/1998	< 37	< 75					
P-1	Terra	P-1@8-10 feet	8 - 10	Saturated	11/23/1998	< 33	< 67					
	Terra	P-2@6-8 feet	6 - 8	Vadose	11/23/1998	< 36	< 71					
P-2	Terra	P-2@8-10 feet	8 - 10	Saturated	11/23/1998	< 33	< 67					
	1 3110	1 200 10 100	0 10		ner Old Humble		ļ					
	Terra	P-3@6-8 feet	6 - 8	Vadose	11/23/1998	< 38	< 76					
P-3	Terra	P-3@8-10 feet	8 - 10	Saturated	11/23/1998	< 34	< 68					
	Terra	1-3(6)-10 1001			r Northwest Au							
	T ~ . T	0.60.60.70.4			•			2.77			T	
B-1	Geotech	96068-B1-2	6.0	Vadose	3/4/1996	$ND < 50^5$	$ND < 100^5$	$ND < 20^5$				
B-2	Geotech	96068-B2-2	6.0	Vadose	3/4/1996	$ND < 50^5$	$ND < 100^5$	$ND < 20^5$				
B-4	Geotech	96068-B4-2	6.0	Vadose	3/4/1996	ND < 50 ⁵	$ND < 100^5$	$ND < 20^5$				
	 				Subsurface Inv		1	-				
B01	SES	B01	2.0	Vadose	1/19/2007	< 50	< 250	< 2	< 0.020	< 0.020	< 0.020	< 0.060
B02	SES	B02	3.0	Vadose	1/19/2007	< 50	< 250	< 2	< 0.020	< 0.020	< 0.020	< 0.060
B03	SES	B03	0.3	Vadose	1/19/2007	< 50	< 250	< 2	< 0.020	< 0.020	< 0.020	< 0.06
TP-10	SES	TP-10	2.5	Vadose	1/11/2007	< 50	< 250	< 2	< 0.020	< 0.020	< 0.020	< 0.060
TP-11	SES	TP-11	3.5	Vadose	1/11/2007	610	< 250	71	< 0.020	0.10	0.13	0.49
	SES	TP-11	8.0	Saturated	1/11/2007	< 50	< 250	4	< 0.020	< 0.020	< 0.020	< 0.060
TP-12	SES	TP-12	2.5	Vadose	1/12/2007	< 50	< 250	< 2	< 0.020	< 0.020	< 0.020	< 0.060
TP-18	SES	TP-18	2.5	Vadose	1/12/2007	< 50	< 250	< 2	< 0.020	< 0.020	< 0.020	< 0.060
TP-21	SES	TP-21	6.5	Vadose	1/12/2007	< 50	< 250	< 2				
			1		Subsurface Inv	8	1	_			1	
P02	SES	P02	9.0	Saturated	1/10/2007	< 50	< 250	< 2				
P04	SES	P04	8.5	Saturated	1/10/2007	< 50	< 250	< 2				
P05	SES	P05	10.0	Saturated	1/10/2007	< 50	< 250	< 2				
P06	SES	P06	7.0	Vadose	1/11/2007	< 50	< 250	< 2				
P07	SES	P07-8.5	8.5	Saturated	1/11/2007	< 50	< 250	< 2				
P08	SES	P08-6	6.0	Vadose	1/11/2007	< 50	< 250	< 2				
	SES	P08-12	12.0	Saturated	1/11/2007	< 50	< 250	< 2				
OW Most-Stringent S	Most-Stringent Soil PCUL: Vadose Zone, Nonpotable Groundwater ⁶					2,000	2,000	30	0.0088	0.92	0.26	16,000

								Analytical l	Results (millign	ams per kilogr	am)	
Sample Location	Sampled By	Sample Identification	Sample Depth (feet) ¹	Zone	Sample Date	DRO^2	ORO ²	GRO ³	Benzene ⁴	Toluene ⁴	Ethylbenzene ⁴	Xylenes ⁴
				2007 - 2008	Site-Wide Surfac	ce Soil Excava	tion					
PR-PV1(R)	DOF	PR-PV1(R)	0 - 0.5	Vadose	6/27/2008	< 5.6	< 11	< 6.5	< 0.016	< 0.016	< 0.016	< 0.032
PR-PV2(R)	DOF	PR-PV2(R)	0 - 0.5	Vadose	11/1/2007	< 7	15	< 10	< 0.026	< 0.026	< 0.026	< 0.053
PR-PV3	DOF	PR-PV3	0 - 0.5	Vadose	7/27/2007	56	270	< 6.9	< 0.017	< 0.017	< 0.017	0.040
PR-PV4(R)	DOF	PR-PV4(R)	0 - 0.5	Vadose	6/28/2008	< 6.0	< 12	< 7.9	< 0.020	< 0.020	< 0.020	< 0.039
PR-PV5	DOF	PR-PV5	0 - 0.5	Vadose	2/11/2008	11	54					
PR-PV6	DOF	PR-PV6	0 - 0.5	Vadose	2/11/2008	< 6	24					
R-SE10	DOF	R-SE10	0 - 0.5	Vadose	7/17/2008	< 20	< 50	< 5.9	< 0.015	< 0.015	< 0.015	< 0.030
R-SE11	DOF	R-SE11	0 - 0.5	Vadose	7/17/2008	< 20	< 50	< 6.2	< 0.016	< 0.016	< 0.016	< 0.031
R-SE12	DOF	R-SE12	0 - 0.5	Vadose	7/17/2008	< 20	< 50	< 6.2	< 0.016	< 0.016	< 0.016	< 0.031
R-SE13	DOF	R-SE13	0 - 0.5	Vadose	7/17/2008	< 20	< 50	< 6.8	< 0.017	< 0.017	< 0.017	< 0.034
R-SE14	DOF	R-SE14	0 - 0.5	Vadose	7/17/2008	< 20	< 50	< 6.4	< 0.016	< 0.016	< 0.016	< 0.032
R-SE15	DOF	R-SE15	0 - 0.5	Vadose	7/17/2008	< 20	< 50	< 6.9	< 0.017	< 0.017	< 0.017	< 0.034
R-SE16	DOF	R-SE16	0 - 0.5	Vadose	7/17/2008	< 20	< 50	< 6.9	< 0.017	< 0.017	< 0.017	< 0.034
PR-DP1	DOF	PR-DP1	0 - 0.5	Vadose	7/25/2007	300	1,600	< 13	< 0.032	< 0.032	< 0.032	< 0.064
PR-DP2	DOF	PR-DP-2	0 - 0.5	Vadose	7/25/2007	300	1,600	64	< 0.032	0.049	0.049	< 0.064
PR-DP3	DOF	PR-DP3	0 - 0.5	Vadose	7/25/2007	72	890	< 7.3	< 0.018	< 0.018	< 0.018	< 0.037
PR-DP4	DOF	PR-DP4	0 - 0.5	Vadose	7/25/2007	100	980	< 6.9	< 0.017	< 0.017	< 0.017	< 0.034
Scrape-N2	DOF	Scrape-N2	0 - 0.5	Vadose	2/18/2008	< 5.7	19					
R-PCS-2	DOF	R-PCS-2	6.0	Vadose	6/19/2008	< 6.5	< 13	< 9.2	< 0.023	< 0.023	< 0.023	< 0.046
R-PCS-3	DOF	R-PCS-3	3.0	Vadose	6/19/2008	9.4	15	< 11	< 0.028	< 0.028	< 0.028	< 0.057
R-PCS-4	DOF	R-PCS-4	6.0	Vadose	7/23/2008			< 8.4	< 0.021	< 0.021	0.29	< 0.042
R-PCS-6	DOF	R-PCS-6	mid-slope	Vadose	7/23/2008			14	< 0.027	< 0.027	< 0.027	< 0.054
R-PCS-7	DOF	R-PCS-7	3.0	Vadose	7/23/2008			64	0.030 J	< 0.035	< 0.035	< 0.069
R-PCS-8	DOF	R-PCS-8	2.0	Vadose	7/23/2008			< 11	< 0.027	< 0.027	< 0.027	< 0.054
NUST-ESW	DOF	NUST-ESW	9.0	Saturated	7/2/2008			< 11	< 0.028	< 0.028	< 0.028	< 0.057
SUST-ESW	DOF	SUST-ESW	9.0	Saturated	7/2/2008			< 11	< 0.028	< 0.028	< 0.028	< 0.056
NUST-WSW	DOF	NUST-WSW	8.0	Saturated	7/11/2008			< 5.8	< 0.015	< 0.015	< 0.015	< 0.029
SUST-WSW	DOF	SUST-WSW	8.0	Saturated	7/11/2008			< 5.6	< 0.014	< 0.014	< 0.014	< 0.028
NUST-B1	DOF	NUST-B1	14.0	Saturated	7/2/2008			< 11	< 0.027	< 0.027	< 0.027	< 0.053
SUST-B3	DOF	SUST-B3	14.0	Saturated	7/10/2008			12	< 0.022	< 0.022	< 0.022	< 0.044
LDW Most-Stringent S	DW Most-Stringent Soil PCUL: Vadose Zone, Nonpotable Groundwater ⁶						2,000	30	0.0088	0.92	0.26	16,000
LDW Most-Stringent S	Most-Stringent Soil PCUL: Saturated Zone, Nonpotable Groundwater ⁶						2,000	30	0.00056	0.055	0.015	16,000

Table 3 Soil Analytical Results for TPH and BTEX Emerald Gateway Site

Seattle/Tukwila, Washington Farallon PN: 1071-026

								Analytical F	Results (milligr	ams per kilogra	am)			
									l l	per imogre				
			Sample Depth			2	2	2	4	4	4	4		
Sample Location	Sampled By	Sample Identification	(feet) ¹	Zone	Sample Date	DRO ²	ORO ²	GRO ³	Benzene ⁴	Toluene ⁴	Ethylbenzene ⁴	Xylenes ⁴		
	D.O.F.	D FILORET GIV	2.0		2008 Hoist Excav			ı	ı					
R-EHOIST	DOF	R-EHOIST-SW	3.0	Vadose	6/25/2008	< 7.7	25							
	DOF	R-EHOIST-BOT	8.0	Saturated	6/25/2008	< 6.2	< 12							
R-WHOIST	DOF	R-WHOIST-SW	3.0	Vadose	6/25/2008	< 7.2	33							
	DOF	R-WHOIST-BOT	8.0	Saturated	6/25/2008	< 6.1	< 12							
	T				Storm Drain Inv									
TP-SD-1	DOF	TP-SD-1	2.0	Vadose	7/24/2008	< 20	< 50	< 10	< 0.026	< 0.026	< 0.026	< 0.052		
TP-SD-2	DOF	TP-SD-2	2.0	Vadose	7/24/2008	< 20	< 50	< 11	< 0.026	< 0.026	< 0.026	< 0.053		
LDW Most-Stringent S	oil PCUL: Vado	se Zone, Nonpotable Grour	ndwater ⁶			2,000	2,000	30	0.0088	0.92	0.26	16,000		
LDW Most-Stringent S	oil PCUL: Satur	rated Zone, Nonpotable Gro	oundwater ⁶	2,000	2,000	30	0.00056	0.055	0.015	16,000				
2008 Former Parts Shop Investigation														
	DOF	TP-P08-1	1.0	Vadose	7/24/2008	< 20	< 50	< 7.3	< 0.018	< 0.018	< 0.018	< 0.037		
TP-P08	DOF	TP-P08-8	8.0	Saturated	7/24/2008	< 20	< 50	< 10	< 0.025	< 0.025	< 0.025	< 0.051		
	DOF	TP-P08-12	12.0	Saturated	7/24/2008	< 20	< 50	< 9.9	< 0.025	< 0.025	< 0.025	< 0.050		
TD DOG A	DOF	TP-P08A-1	1.0	Vadose	7/24/2008	< 20	< 50	< 8.2	< 0.020	< 0.020	< 0.020	< 0.041		
TP-P08A	DOF	TP-P08A-8	8.0	Saturated	7/24/2008	< 20	< 50	< 8.6	< 0.022	< 0.022	< 0.022	< 0.043		
			2008 Fo	rmer Waste O	Oil Aboveground	Storage Tank	Investigation							
TP-WO-1	DOF	TP-WO-1	1.0	Vadose	7/24/2008	< 20	< 50	< 7.3	< 0.018	< 0.018	< 0.018	< 0.037		
				2008	Former UST Inv	vestigation								
TP-P01	DOF	TP-P01-SW	6.0	Vadose	7/24/2008	< 20	< 50	< 9.2	< 0.023	< 0.023	< 0.023	< 0.046		
117-1701	DOF	TP-P01-B	12.0	Saturated	7/24/2008	< 20	< 50	< 8.8	< 0.022	< 0.022	< 0.022	< 0.044		
TP-P04-1	DOF	TP-P04-1	3.0	Vadose	7/24/2008	< 20	< 50	< 6.7	< 0.017	< 0.017	< 0.017	< 0.034		
	•			2008 Se	eptic Drain Field	Investigation								
TP-Septic-1	DOF	TP-SEPTIC-1	7.0	Vadose	7/24/2008	< 20	< 50	< 10	< 0.025	< 0.025	< 0.025	< 0.050		
				2008 Investigat	tion - Northeaste	rn Portion of	Area 3							
Scrape-N6	DOF	Scrape-N6	3.0	Vadose	2/21/2008	< 10	46							
Scrape-N7	DOF	Scrape-N7	3.0	Vadose	2/21/2008	50	< 14	60	< 0.027	< 0.027	< 0.027	< 0.054		
		se Zone, Nonpotable Grour			2,000	2,000	30	0.0088	0.92	0.26	16,000			
LDW Most-Stringent S	oil PCUL: Satur	rated Zone, Nonpotable Gro	oundwater ⁶			2,000	2,000	30	0.00056	0.055	0.015	16,000		

Soil Analytical Results for TPH and BTEX

Emerald Gateway Site Seattle/Tukwila, Washington

Farallon PN: 1071-026

								Analytical I	Results (milligr	ams per kilogr	am)	
Sample Location	Sampled By	Sample Identification	Sample Depth (feet) ¹	Zone	Sample Date	\mathbf{DRO}^2	ORO ²	GRO ³	Benzene ⁴	Toluene ⁴	Ethylbenzene ⁴	Xylenes ⁴
•		•	2009 Investigation	a Along Bound	ary Between Ass	sociated Groce	er's Property a	nd Area 3			·	
	DOF	UNI-P1-9	9.0	Saturated	8/31/2009			< 12	< 0.030	< 0.030	< 0.030	< 0.060
P1	DOF	UNI-P1-14	14.0	Saturated	8/31/2009			< 11	< 0.027	< 0.027	< 0.027	< 0.055
	DOF	UNI-P1-19	19.0	Saturated	8/31/2009			< 8.7	< 0.022	< 0.022	< 0.022	< 0.044
	DOF	UNI-P2-9	9.0	Saturated	8/31/2009			< 12	< 0.031	< 0.031	< 0.031	< 0.062
P2	DOF	UNI-P2-14	14.0	Saturated	8/31/2009			< 9.3	< 0.023	< 0.023	< 0.023	< 0.046
	DOF	UNI-P2-19	19.0	Saturated	8/31/2009			< 8.9	< 0.022	< 0.022	< 0.022	< 0.044
	DOF	UNI-P3-9	9.0	Saturated	8/31/2009			< 13	< 0.034	< 0.034	< 0.034	< 0.067
Р3	DOF	UNI-P3-14	14.0	Saturated	8/31/2009			< 8.8	< 0.022	< 0.022	< 0.022	< 0.044
	DOF	UNI-P3-19	19.0	Saturated	8/31/2009			< 8.9	< 0.022	< 0.022	< 0.022	< 0.044
W Most-Stringent S	Soil PCUL: Vado	se Zone, Nonpotable Grou	ndwater ⁶		-	2,000	2,000	30	0.0088	0.92	0.26	16,000
W Most-Stringent S	Soil PCUL: Satur	rated Zone, Nonpotable Gr	oundwater ⁶			2,000	2,000	30	0.00056	0.055	0.015	16,000

NOTES:

Results in **bold** and highlighted denote concentrations exceeding one or more screening levels.

< denotes analyte not detected at or exceeding the laboratory reporting limit listed.

Cleanup Level Workbook, revised April 2019.

BTEX = benzene, toluene, ethylbenzene, and xylenes

DOF = Dalton, Olmsted & Fuglevand, Inc.

DRO = total petroleum hydrocarbons (TPH) as diesel-range organics

E = concentration exceeds upper limit of the instrument calibration range.

Farallon = Farallon Consulting, L.L.C.

Geotech = Geotech Consultants, Inc. Global = Global Environmental

GRO = TPH as gasoline-range organics

J = result is an estimate.

LDW = Lower Duwamish Waterway

N = Hydrocarbons in the oil range are impacting the diesel range result.

ND = not detected exceeding the laboratory reporting limit

ORO = TPH as oil-range organics

PCUL = preliminary cleanup level

SES = SoundEarth Strategies, Inc.

SW = southwestern

Terra = Terra Associates, Inc.

UST = underground storage tank

[—] denotes sample not analyzed.

¹Depth in feet below ground surface.

²Analyzed by Northwest Method NWTPH-Dx.

³Analyzed by Northwest Method NWTPH-Gx.

⁴Analyzed by U.S. Environmental Protection Agency Method 8021 or 8260. ⁵Analyzed by Northwest Method NWTPH-HCID (hydrocarbon identification).

⁶Washington State Department of Ecology Lower Duwamish Waterway Preliminary

Table 4 **Soil Analytical Results for PAHs**

Emerald Gateway Site Seattle/Tukwila, Washington

Farallon	DNI.	1071	026
r aranon	PN:	10/1	-∪∠0

Coation Sample Sample Identification Creen Zone Date \$\bar{E}\$ \$\bar{E}\$	Total TPAHS Total LPAHS HPAH
Sampled By Sample dentification Sample	TEC ^{5,6} LPAHs HPAH 0.007 11.91 0.694 < 0.0072 0 0 0.033 0.014 0.22 < 0.0053 0 0 < 0.0068 0.016 0 < 0.0065 0 0 < 0.0066 0 0 < 0.0054 0 0 < 0.0073 0.15 0 < 0.0074 0 0
F-1 Farallon F-1-5.7 S.7 Vados 10/20/16 2.0 9.5 9.1 2.0 0.50 0.37 0.44 0.0076 0.076 0.076 0.076 0.076 0.0080 0.0076	 < 0.0072 0 0.033 0.014 0.22 < 0.0053 0 < 0.0068 0.016 0 < 0.0065 0 < 0.0066 0 < 0.0054 0 < 0.0054 0 < 0.0073 0.15 0
F-9	 < 0.0072 0 0.033 0.014 0.22 < 0.0053 0 < 0.0068 0.016 0 < 0.0065 0 < 0.0066 0 < 0.0054 0 < 0.0054 0 < 0.0073 0.15 0
F-9 Farallon F-9-8.0 8.0 Saturated 10/26/2016 0.0096	0.033 0.014 0.22 < 0.0053 0 0 < 0.0068 0.016 0 < 0.0065 0 0 < 0.0066 0 0 < 0.0054 0 0 < 0.0054 0 0 < 0.0073 0.15 0 < 0.0074 0 0
Farllon DI-13.5-040819 3.5 Vados 4/8/2019 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0	0.033 0.014 0.22 < 0.0053 0 0 < 0.0068 0.016 0 < 0.0065 0 0 < 0.0066 0 0 < 0.0054 0 0 < 0.0054 0 0 < 0.0073 0.15 0 < 0.0074 0 0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	 < 0.0053 0 0.0068 0.016 0 < 0.0065 0 < 0.0066 0 < 0.0054 0 < 0.0054 0 < 0.0073 < 0.0074 0
Farallon DI-PIPING-3.5-040819 3.5 Vadose 4/8/2019 < 0.0090 < 0.0090 0.014 0.014 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.0090 < 0.	 < 0.0068 0.016 0 < 0.0065 0 < 0.0066 0 < 0.0054 0 < 0.0054 0 < 0.0054 0 < 0.0073 < 0.0074 0
Farallon UST-1-B-13.0 13.0 Saturated 4/5/2019 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0086 < 0.0088 < 0.0088 < 0.0088 < 0.0088 < 0.0088 < 0.0088 < 0.0088 < 0.0088 < 0.0088 < 0.0088 < 0.0088 < 0.0088 < 0.0088 < 0.0088 < 0.0088 < 0.0088 < 0.0088 < 0.0088 < 0.0088 < 0.0088 < 0.0088 < 0.0088 < 0.0088 < 0.0088 < 0.0088 < 0.0088 < 0.0088 < 0.0088 < 0.0088 < 0.0088 < 0.0088 < 0.0088 < 0.0088 < 0.0088 < 0.0088 < 0.0088 < 0.0088 < 0.0088 < 0.0088 < 0.0088 < 0.0088 < 0.0088 < 0.0088 < 0.0088 < 0.0088 < 0.0088 < 0.0088 < 0.0088 < 0.0088 < 0.0088 < 0.0088 < 0.0088 < 0.0088 < 0.0088 < 0.0088 < 0.0088 < 0.0088 < 0.0088 < 0.0088 < 0.0088 < 0.0088 < 0.0088 < 0.0088 < 0.0088 < 0.0088 < 0.0088 < 0.0088 < 0.0088 < 0.0088 < 0.0088 < 0.0088 < 0.0088 < 0.0088 < 0.0088 < 0.0088 < 0.0088 <	 < 0.0065 0 < 0.0066 0 < 0.0054 0 < 0.0054 0 < 0.0073 < 0.0073 < 0.0074 0
Farallon UST-2-B-13.0 13.0 Saturated 4/5/2019 < 0.0088	 < 0.0066 0 < 0.0054 0 < 0.0054 0 < 0.0074 0 < 0.0073 < 0.0074 0
Farallon UST-E-SW-11.0 11.0 Saturated 4/5/2019 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.0071 < 0.007	< 0.0054 0 0 < 0.0054 0 0 < 0.0073 0.15 0 < 0.0074 0 0
Farallon UST-N-SW-11.0 11.0 Saturated 4/5/2019 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.007	< 0.0054 0 0 < 0.0073 0.15 0 < 0.0074 0 0
Farallon UST-N-SW-11.0 11.0 Saturated 4/5/2019 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 < 0.0072 <	< 0.0073
Farallon UST-W-SW-11.0 11.0 Saturated 4/5/2019 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 < 0.0098 <	< 0.0074 0 0
Area 5: Former Trailer Maintenance Shop F-11 Farallon F-11-8.0 8.0 Saturated 10/18/2016 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084	
F-11 Farallon F-11-8.0 8.0 Saturated 10/18/2016 < 0.0011 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084 < 0.0084	T T
F-12 Farallon F-12-6.7 6.7 Vadose 10/17/2016 < 0.0081	< 0.0063 0 0
F-13 Farallon F-13-2.5 2.5 Vadose 10/18/2016 < 0.0011 < 0.0011	
F-14 Farallon F-14-6.0 6.0 Vadose 10/18/2016 < 0.056 < 0.056	
Area 7: Former Automobile Service Stations	
FMW-01 Farallon FMW-01-10.0 10.0 Saturated 6/26/2019 0.00595 J 0.00595 JD	
Area 11: Former South Maintenance Shop	
F-20 Farallon F-20-7.0 7.0 Vadose 10/18/2016 < 0.0015 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091 < 0.0091	< 0.0069 0 0
F-22 Farallon F-22-7.0 7.0 Vadose 10/19/2016 < 0.0010 < 0.0010	
Area 13: Former Northwest Auto Wrecking Property	
PR-PV1(R) DOF PR-PV1(R) 0 - 0.5 Vadose 6/27/2008 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.060 < 0.0	< 0.045 0 0
	< 0.045 0 0
	< 0.045 0 0
	< 0.042 0 0
	< 0.053 0 0
	< 0.0076 0 0
	< 0.0076 0 0
Scrape-N2 DOF Scrape-N2 0 - 0.5 Vadose 2/18/2008 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.064 < 0.0	< 0.048 0 0
	0.00031 5.2 12
LDW Most-Stringent Soil PCUL: Saturated Zone, Nonpotable Groundwater 0.0021 29 0.67 0.028 1.3 0.051 0.67 0.09 0.029 1.5 0.14 0.00016 0.000057 0.00020 0.0020 0.0024 0.00029 0.00056 0.000055 0.0005 0.00	0.000016 5.2 12

Results in **bold** and highlighted denote concentrations exceeding one or more screening levels.

< denotes analyte not detected at or exceeding the reporting limit listed.

cPAHs = carcinogenic polycyclic aromatic hydrocarbons DOF = Dalton, Olmsted & Fuglevand, Inc.

Farallon = Farallon Consulting, L.L.C. HPAH = high molecular weight polycyclic aromatic hydrocarbons

J = result is an estimate
LDW = Lower Duwamish Waterway

 $\label{eq:LPAH} LPAH = low molecular weight polycyclic aromatic hydrocarbons $NA = not applicable $NE = not established$

PAHs = polycyclic aromatic hydrocarbons

PCUL = preliminary cleanup level TEC = toxic equivalent concentration

⁻⁻ denotes sample not analyzed.

¹Depth in feet below ground surface.

²Analyzed by U.S. Environmental Protection Agency Method 8270 or 8270D/SIM, unless otherwise noted.

³Analyzed by U.S. Environmental Protection Agency Method 8270, 8270D/SIM, or 8260C.

 $^{^4\}mathrm{Sum}$ of naphthalenes, 1-methylnaphthalene, and 2-methylnaphthalene.

Stand PAHs derived using the total toxicity equivalency method in Section 708(8) of Chapter 173-340 of the Washington Administrative Code.

6For concentrations reported at less than the laboratory reporting limit, half the reporting limit was used to calculate the TEC.

Washington State Department of Ecology Lower Duwamish Waterway Preliminary Cleanup Level Workbook, revised April 2019.

Soil Analytical Results for Select VOCs

Emerald Gateway Site Seattle/Tukwila, Washington

Farallon PN: 1071-026

				1	I	1																								
												1		1		An	alytical Resu	lts (milligran	ns per kilogra	m) ²	1 1		ı	1			1			1
Sample Location	Sampled By	Sample Identification	Sample Depth (feet) ¹	Zone	Sample Date	1,1,1,2-Tetrachloroethane	1,1,1-Trichloroethane	1,1,2,2-Tetrachloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	1,1-Dichloropropene	1,2,3-Trichlorobenzene	1,2,3-Trichloropropane	1,2,4-Trichlorobenzene	1,2,4-Trimethylbenzene	1,2-Dibromo-3-chloropropane	1,2-Dibromoethane	1,2-Dichlorobenzene	1,2-Dichloroethane	1,2-Dichloropropane	1,3,5-Trimethylbenzene	1,3-Dichlorobenzene	1,3-Dichloropropane	1,4-Dichlorobenzene	2,2-Dichloropropane	2-Butanone (MEK)	2-Chloroethyl Vinyl Ether	2-Chlorotoluene	2-Hexanone
																A	rea 5: Form	er Trailer Ma	aintenance Sh	ор										
F-11	Farallon	F-11-8.0	8.0	Saturated	10/18/2016	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0055	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0069	< 0.0055	< 0.0011	< 0.0055
F-12	Farallon	F-12-6.7	6.7	Vadose	10/17/2016	< 0.0016	< 0.0016	< 0.0016	< 0.0016	< 0.0016	< 0.0016	< 0.0016	< 0.0016	< 0.0016	< 0.0016	< 0.0016	< 0.0081	< 0.0016	< 0.0016	< 0.0016	< 0.0016	< 0.0016	< 0.0016	< 0.0016	< 0.0016	< 0.0016	0.017	< 0.0081	< 0.0016	< 0.0081
F-13	Farallon	F-13-2.5	2.5	Vadose	10/18/2016	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0055	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0069	< 0.0055	< 0.0011	< 0.0055
F-14	Farallon	F-14-6.0	6.0	Vadose	10/18/2016	< 0.00093	< 0.00093	< 0.056	< 0.00093	< 0.00093	< 0.00093	< 0.00093	< 0.056	< 0.056	< 0.056	< 0.056	< 0.28	< 0.00093	< 0.056	< 0.00093	< 0.00093	< 0.056	< 0.056	< 0.00093	< 0.056	< 0.00093	0.038 Y	< 0.0046	< 0.056	< 0.0046
						•											rea 7: Forme		Service Stati				,	,			•			
FMW-01	Farallon	FMW-01-10.0	10.0	Saturated	6/26/2019	< 0.00164	< 0.00164	< 0.00164	< 0.00164	< 0.00164	< 0.00164	< 0.00164	< 0.0082	< 0.00328	< 0.0082	0.0342	< 0.0082	< 0.00164	< 0.00164	< 0.00164	< 0.00164	0.0119	< 0.00164	< 0.00164	< 0.00164	< 0.00164	< 0.0082	< 0.0082	< 0.00164	< 0.0082
																A	rea 11: Forn	ner South Ma	aintenance Sh	ор										
B-1	Global	B-1@4.5'	4.5	Vadose	April 1996											< 23			< 23			< 23	< 23		< 23		< 23			
B-1	Global	B-1@9'	9.0	Saturated	April 1996		1						1			360			< 21			< 21	< 21		< 21		< 21			
	Global	B-2@4.5'	4.5	Vadose	April 1996											< 23			< 23			< 23	< 23		< 23		< 23			
B-2	Global	B-2@6'	6.0	Vadose	April 1996											21 J			< 23			< 23	< 23		< 23		< 23			
	Global	B-2@15'	15.0	Saturated	April 1996											< 24			< 24			< 24	< 24		< 24		< 24			
	Global	B-3@4.5'	4.5	Vadose	April 1996											< 25			< 25			< 25	< 25		< 25		< 25			
B-3	Global	B-3@7.5'	7.5	Saturated	April 1996											14 J			65			<23	6 J		5 J		120			
	Global	B-3@10'	10.0	Saturated	April 1996								-			1,600			91			410	< 20		6 J		< 20			
F-20	Farallon	F-20-7.0	7.0	Saturated	10/18/2016	< 0.0015	< 0.0015	< 0.0015	< 0.0015	< 0.0015	< 0.0015	< 0.0015	< 0.0015	< 0.0015	< 0.0015	< 0.0015	< 0.0074	< 0.0015	< 0.0015	< 0.0015	< 0.0015	< 0.0015	< 0.0015	< 0.0015	< 0.0015	< 0.0015	0.058 Y	< 0.0074	< 0.0015	< 0.0074
F-22	Farallon	F-22-7.0	7.0	Saturated	10/19/2016	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0050	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0050	< 0.0050	< 0.0010	< 0.0050
	Farallon	FMW-03-6.0	6.0	Vadose	6/26/2019	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.007	< 0.0028	< 0.007	< 0.0014	< 0.007	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	0.00656 J	< 0.007	< 0.0014	< 0.007
FMW-03	Farallon	FMW-03-13.0	13.0	Saturated	6/26/2019	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.007	< 0.0028	< 0.007	< 0.0014	< 0.007	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	0.00609 J	< 0.007	< 0.0014	< 0.007
	Farallon	FMW-03-18.0	18.0	Saturated	6/26/2019	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.00602	< 0.00241	< 0.00602	< 0.0012	< 0.00602	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.00602	< 0.00602	< 0.0012	< 0.00602
-		PCUL: Vadose Zone,				38	371	0.0017	0.0050	175	NE	NA	20	0.033	0.0014	800	1.3	0.50	0.036	0.35	0.016	800	NA	NA	0.11	NA	48,000	NA	1,600	400
LDW Most-S	Stringent Soil	PCUL: Saturated Zor	ne, Nonpotab	le Groundwate	r	38	21	0.00011	0.00033	175	NE	NA	20	0.033	0.000072	800	1.3	0.50	0.0031	0.024	0.0010	800	NA	NA	0.0081	NA	48,000	NA	1,600	400
B-1	Geotech	96068-B1-2	6.0	Vadose	3/4/1996	1						1		I I		T T	T T	T T	< 0.34		ı ı		< 0.34		< 0.34		1			I
																			< 0.34				< 0.34		< 0.34					
B-2	Geotech	96068-B2-2	6.0	Vadose	3/4/1996																									
B-4	Geotech	96068-B4-2	6.0	Vadose	3/4/1996														< 0.33				< 0.33		< 0.33					
TP-21	SES	TP-21	6.5	Vadose	1/12/2007																									
P02	SES	P02	9.0	Saturated	1/10/2007																									
P04	SES	P04	8.5	Saturated	1/10/2007																									
P05	SES	P05	10.0	Saturated	1/10/2007																									
P06	SES	P06	7.0	Vadose	1/11/2007																									
P07	SES	P07-8.5	8.5	Saturated	1/11/2007																									
P08	SES	P08-6	6.0	Vadose	1/11/2007																									
I DWA - :	SES	P08-12	12.0	Saturated	1/11/2007		271	0.0017	0.0050	175	NIE.	N/A	20	0.022	0.0014		1.2	0.50	0.026	0.25	0.016		N/A	NIA	0.11	N/A	49,000	NIA	1.600	400
		PCUL: Vadose Zone, PCUL: Saturated Zon			r ³	38 38	371 21	0.0017 0.00011	0.0050 0.00033	175 175	NE NE	NA NA	20	0.033	0.0014	800 800	1.3	0.50 0.50	0.036	0.35	0.016 0.0010	800	NA NA	NA NA	0.11	NA NA	48,000 48,000	NA NA	1,600 1,600	400 400
NOTES:	magent 3011	1 CCL. Saturated ZOI	ic, rionpotan	ac Groundwate		- 50	21	3.00011	3.00033	1/0	1112	11/1	20	0.000	5.000072	000	1.0	0.50	0.0031	0.027	0.0010	000	11/12	11/1	0.0001	11/1	40,000	1771	1,000	400

NOTES:

Results in bold and highlighted denote concentrations exceeding one or more screening levels.

< denotes analyte not detected at or exceeding the laboratory reporting limit listed.

— denotes sample not analyzed or result not reported.

Denth in feet below ground surface.

Analyzed by U.S. Environmental Protection Agency Method 8260.

Washington State Department of Ecology Lower Duwamish Waterway Preliminary Cleanup Level Workbook, revised April 2019.

Geotech = Geotech Consultants, Inc.
Global = Global Environmental
J = result is an estimate
LDW = Lower Duwamish Waterway
MEK = methyl ethyl ketone
NE = not established
PCE = tetrachloreothene
PCUL = preliminary cleanup level
SES = SoundEarth Strategies, Inc.
VOCs = volatile organic compounds
Y = calibration verification for this analyte exceeded the limit and value is an estimate

Soil Analytical Results for Select VOCs

Emerald Gateway Site Seattle/Tukwila, Washington

Farallon PN: 1071-026

		I	1			1																										
							1		1	1						1	Aı	nalytical Resu	lts (milligran	s per kilogra	m) ²		1	1								
Sample Location	Sampled By	Sample Identification	Sample Depth (feet) ¹	Zone	Sample Date	2-Pentanone	4-Chlorotoluene	4-Methyl-2-Pentanone (MIBK)	Acetone	Acrolein	Acrylonitrile	Вготорепzепе	Bromochloromethane	Bromodichloromethane	Bromoform	Bromomethane	Carbon Disulfide	Carbon Tetrachloride	Chlorobenzene	Chloroethane	Chloroform	Chloromethane	cis-1,3-Dichloropropene	Dibromochloromethane	Dibromomethane	Dichlorodifluoromethane	Ethyl Bromide	Freon 113	Hexachlorobutadiene	Iodonethane	Isopropylbenzene	Methyl tertiary butyl ether (MTBE)
F-11	Farallon	F-11-8.0	8.0	Saturated	10/18/2016	l	< 0.0011	< 0.0055	< 0.017	l	T	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0055	< 0.0011	< 0.0055	< 0.0011	< 0.0011	< 0.0011	< 0.0011			< 0.0055	< 0.0055	< 0.0011	< 0.0011
F-12	Farallon	F-12-6.7	6.7	Vadose	10/17/2016		< 0.0011	< 0.0033	0.05			< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0033	< 0.0011	< 0.0033	< 0.0011	< 0.0011	< 0.0011	< 0.0011			< 0.0033	< 0.0033	< 0.0011	< 0.0011
F-13	Farallon	F-13-2.5	2.5	Vadose	10/18/2016		< 0.0010	< 0.0055	< 0.017			< 0.0010	< 0.0010	< 0.0011	< 0.0011	< 0.0010	< 0.0011	< 0.0010	< 0.0010	< 0.0055	< 0.0011	< 0.0055	< 0.0010	< 0.0011	< 0.0011	< 0.0011			< 0.0055	< 0.0055	< 0.0011	< 0.0010
F-14	Farallon	F-14-6.0	6.0	Vadose	10/18/2016		< 0.056	< 0.0046	0.1 Y			< 0.056	< 0.00093	< 0.00093	< 0.00093	< 0.00093	0.0015	< 0.00093	< 0.00093	< 0.0046	< 0.00093	< 0.0046	< 0.00093	< 0.00093	< 0.00093	< 0.00093			< 0.28	< 0.0046	< 0.00093	< 0.00093
				<u>I</u>														rea 7: Former		L	·											
FMW-01	Farallon	FMW-01-10.0	10.0	Saturated	6/26/2019	< 0.0082	< 0.00164	< 0.0082	< 0.0082	< 0.0082	< 0.0082	< 0.00164	< 0.00164	< 0.00164	< 0.00164	< 0.00164	< 0.00164		< 0.00164		< 0.00164	< 0.00164	< 0.00164	< 0.00164	< 0.00164		< 0.00328	< 0.00328	< 0.0082	< 0.00164	0.00217	< 0.00164
			1			******		******		******	******				***************************************			Area 11: Forn							*******							0.0000
	Global	B-1@4.5'	4.5	Vadose	April 1996																< 23											
B-1	Global	B-1@9'	9.0	Saturated	April 1996																< 21											
	Global	B-2@4.5'	4.5	Vadose	April 1996																< 23											
B-2	Global	B-2@6'	6.0	Vadose	April 1996																< 23											
D-2	Global	B-2@15'	15.0	Saturated	April 1996																< 24											
	Global	B-3@4.5'	4.5	Vadose	April 1996																6 J											
B-3	Global	B-3@4.5'	7.5	Saturated	April 1996																< 23											
	Global	B-3@7.5 B-3@10'	10.0	Saturated	April 1996																< 20											
F-20	Farallon	F-20-7.0	7.0	Saturated	10/18/2016		< 0.0015	< 0.0074	0.13 Y			< 0.0015	< 0.0015	< 0.0015	< 0.0015	< 0.0015	0.002	< 0.0015	< 0.0015	< 0.0074	< 0.0015	< 0.0074	< 0.0015	< 0.0015	< 0.0015	< 0.0015			< 0.0074	< 0.0074	< 0.0015	< 0.0015
F-22	Farallon	F-22-7.0	7.0	Saturated	10/19/2016		< 0.0010	< 0.0050	< 0.0050			< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0050	< 0.0010	< 0.0050	< 0.0010	< 0.0010	< 0.0010	< 0.0010			< 0.0050	< 0.0050	< 0.0010	< 0.0010
	Farallon	FMW-03-6.0	6.0	Vadose	6/26/2019	< 0.007	< 0.0014	< 0.007	< 0.007	< 0.007	< 0.007	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0028	< 0.0028	< 0.007	< 0.0014	< 0.0014	< 0.0014
FMW-03	Farallon	FMW-03-13.0	13.0	Saturated	6/26/2019	< 0.007	< 0.0014	< 0.007	0.0523	< 0.007	< 0.007	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	0.00143	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0028	< 0.0028	< 0.007	< 0.0014	< 0.0014	< 0.0014
	Farallon	FMW-03-18.0	18.0	Saturated	6/26/2019	< 0.00602	< 0.0012	< 0.00602	0.0248	< 0.00602	< 0.00602	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012	0.00191	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.00241	< 0.00241	< 0.00602	< 0.0012	< 0.0012	< 0.0012
LDW Most-	Stringent Soil	PCUL: Vadose Zon	e, Nonpotable	Groundwater ³		NA	NA	6,400	72,000	40	1.9	640	NA	NE	0.078	1.2	8,000	0.0029	1.7	NA	0.81	NA	0.010	0.012	800	16,000	NA	NA	0.011	NE	8,000	556
LDW Most-	Stringent Soil	PCUL: Saturated Z	one, Nonpotal	ole Groundwate	er ³	NA	NA	6,400	72,000	40	1.9	640	NA	NE	0.0050	0.079	8,000	0.00015	0.10	NA	0.052	NA	0.00063	0.00077	800	16,000	NA	NA	0.00054	NE	8,000	556
						•			•	•	•						Area 1	3: Former No	orthwest Aut	Wrecking P	Property		•	•			•					
B-1	Geotech	96068-B1-2	6.0	Vadose	3/4/1996																< 0.34 B											
B-2	Geotech	96068-B2-2	6.0	Vadose	3/4/1996																< 0.34 B											
B-4	Geotech	96068-B4-2	6.0	Vadose	3/4/1996																< 0.33 B											
TP-21	SES	TP-21	6.5	Vadose	1/12/2007																											
P02	SES	P02	9.0	Saturated	1/10/2007																											
P04	SES	P04	8.5	Saturated	1/10/2007																											
P05	SES	P05	10.0	Saturated	1/10/2007																											
P06	SES	P06	7.0	Vadose	1/11/2007																											
P07	SES	P07-8.5	8.5	Saturated	1/11/2007																											
P08	SES	P08-6	6.0	Vadose	1/11/2007																											
P08	SES	P08-12	12.0	Saturated	1/11/2007										-															-		
LDW Most-	Stringent Soil	PCUL: Vadose Zon	e, Nonpotable	Groundwater ³		NA	NA	6,400	72,000	40	1.9	640	NA	NE	0.078	1.2	8,000	0.0029	1.7	NA	0.81	NA	0.010	0.012	800	16,000	NA	NA	0.011	NE	8,000	556
LDW Most-	Stringent Soil	PCUL: Saturated Z	one, Nonpotal	ole Groundwate	er ³	NA	NA	6,400	72,000	40	1.9	640	NA	NE	0.0050	0.079	8,000	0.00015	0.10	NA	0.052	NA	0.00063	0.00077	800	16,000	NA	NA	0.00054	NE	8,000	556
NOTES:																																

NOTES:

Results in bold and highlighted denote concentrations exceeding one or more screening levels.

denotes analyte not detected at or exceeding the laboratory reporting limit listed.

denotes sample not analyzed or result not reported.

Depth in feet below ground surface.

Analyzed by U.S. Environmental Protection Agency Method 8260.

Washington State Department of Ecology Lower Duwamish Waterway Preliminary Cleanup Level Workbook, revised.

D = the reported value is from a dilution.

Geotech = Geotech Consultants, Inc.

Global = Global Environmental

J = result is an estimate

LDW = Lower Duwamish Waterway

MEK = methyl ethyl ketone

NE = not established

PCE = tetrachloroethene

PCUL = preliminary cleanup level

SES = SoundEarth Strategies, Inc.

VOCs = volatile organic compounds

Y = calibration verification for this analyte exceeded the limit and value is an estimate

Soil Analytical Results for Select VOCs

Emerald Gateway Site Seattle/Tukwila, Washington

Farallon PN: 1071-026

													nalytical Resu	14 ('111'		,2						
Sample Location	Sampled By	Sample Identification	Sample Depth (feet) ¹	Zone	Sample Date	Methylene Chloride	Naphthalene	n-Butylbenzene	n-Propylbenzene	p-IsopropyItoluene	sec-Butylbenzene	Styrene	tert-Butylbenzene	trans-1,3-Dichloropropene	trans-1,4-Dichloro-2-butene	Trichlorofluoromethane	Vinyl Acetate	Tetrachloroethene (PCE)	Trichloroethene (TCE)	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	Vinyl Chloride
F-11	Farallon	F-11-8.0	8.0	Saturated	10/18/2016	< 0.0055	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011		< 0.0011	< 0.0055	0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011
F-12	Farallon	F-12-6.7	6.7	Vadose	10/17/2016	< 0.0081	< 0.0081	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011		< 0.0011	< 0.0081	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011
F-13	Farallon	F-13-2.5	2.5	Vadose	10/18/2016	< 0.0055	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011		< 0.0011	< 0.0055	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011
F-14	Farallon	F-14-6.0	6.0	Vadose	10/18/2016	< 0.0046	< 0.056	< 0.056	< 0.056	< 0.056	< 0.056	< 0.00093	< 0.056	< 0.00093		< 0.00093	< 0.0046	< 0.00093	< 0.00093	< 0.00093	< 0.00093	< 0.00093
													rea 7: Forme	<u> </u>	Service Stati	<u> </u>						
FMW-01	Farallon	FMW-01-10.0	10.0	Saturated	6/26/2019	0.00204 J	0.00595 J	0.00375	0.00422	0.00395	0.00214	< 0.00164	< 0.00164	< 0.00164	< 0.0082	< 0.00164	< 0.0082	< 0.00164	< 0.00164	< 0.00164	< 0.00164	< 0.00164
1 141 14 -01	1 aranon	11111-01-10.0	10.0	Bardiated	0/20/2019	0.0020 1 J	0.00333 1	0.00575	0.00422	0.00333	0.00217	<u> </u>	rea 11: Forn	<u> </u>		<u> </u>	- 0.0002	- 0.00104	- 0.00104	. 0.00104	- 0.00104	. 0.00104
	Global	B-1@4.5'	4.5	Vadose	April 1996			< 23	< 23	l	< 23		< 23						l	T		
B-1		0							310		< 21		< 21									
	Global Global	B-1@9' B-2@4.5'	9.0 4.5	Saturated Vadose	April 1996			390 < 23	< 23		< 23		< 23									
D 2		Ŭ	-	1	April 1996				-		< 23											
B-2	Global	B-2@6'	6.0	Vadose	April 1996			< 23	< 23				< 23									
	Global	B-2@15'	15.0	Saturated	April 1996			< 24	< 24		< 24		< 24									
p. 2	Global	B-3@4.5'	4.5	Vadose	April 1996			< 25	< 25		< 25		< 25									
B-3	Global	B-3@7.5'	7.5	Saturated	April 1996			120	620		350		36									
	Global	B-3@10'	10.0	Saturated	April 1996			< 20	1,000		230		25									
F-20	Farallon	F-20-7.0	7.0	Saturated	10/18/2016	< 0.0074	< 0.0015	< 0.0015	< 0.0015	< 0.0015	< 0.0015	< 0.0015	< 0.0015	< 0.0015		< 0.0015	< 0.0074	< 0.0015	< 0.0015	< 0.0015	< 0.0015	< 0.0015
F-22	Farallon	F-22-7.0	7.0	Saturated	10/19/2016	< 0.0050	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010		< 0.0010	< 0.0050	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010
EV 4177 03	Farallon	FMW-03-6.0	6.0	Vadose	6/26/2019	0.00175 J	< 0.007	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.007	< 0.0014	< 0.007	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014
FMW-03	Farallon	FMW-03-13.0	13.0	Saturated	6/26/2019	0.00199 J	< 0.007	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.007	< 0.0014	< 0.007	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014
	Farallon	FMW-03-18.0	18.0	Saturated	6/26/2019	0.00114 J	< 0.00602	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.00602	< 0.0012	< 0.00602	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012
-		PCUL: Vadose Zone	-		3	0.43	0.039	4,000 4,000	8,000	NA NA	8,000	300	8,000	0.010	NA NA	24,000	80,000	0.029	0.0044	160	5.2	0.0010
LDW Most-	Stringent Soil	PCUL: Saturated Zo	ne, Nonpotab	le Groundwate	er	0.030	0.0021	4,000	8,000	NA	8,000	300 Area 1	8,000 3: Former No		NA Wrocking P	24,000	80,000	0.0016	0.00027	160	0.32	0.000055
B-1	Geotech	96068-B1-2	6.0	Vadose	3/4/1996					l								< 0.34	< 0.34	< 0.34		< 0.34
B-2	Geotech	96068-B2-2	6.0	Vadose	3/4/1996													< 0.34	< 0.34	< 0.34		< 0.34
B-4	Geotech	96068-B4-2	6.0	Vadose	3/4/1996													< 0.33	< 0.33	< 0.34		< 0.33
TP-21	SES	TP-21	6.5	Vadose	1/12/2007													< 0.05	< 0.05	< 0.05		< 0.05
			1								1		1									
P02	SES	P02	9.0	Saturated	1/10/2007													< 0.05	< 0.05	< 0.05		< 0.05
P04	SES	P04	8.5	Saturated	1/10/2007													< 0.05	< 0.05	< 0.05		< 0.05
P05	SES	P05	10.0	Saturated	1/10/2007													< 0.05	< 0.05	< 0.05		< 0.05
P06 P07	SES	P06	7.0 8.5	Vadose	1/11/2007													< 0.05	< 0.05	< 0.05		< 0.05
P0/	SES	P07-8.5		Saturated	1/11/2007													< 0.05	< 0.05 < 0.05	< 0.05		< 0.05
P08	SES SES	P08-6 P08-12	6.0 12.0	Vadose	1/11/2007													< 0.05		< 0.05		< 0.05
I DW Mc-4				Saturated	1/11/2007	0.43	0.039	4,000	8,000	NA	8,000	300	8,000	0.010	NA	24,000	80,000	< 0.05 0.029	< 0.05 0.0044	< 0.05 160	5.2	< 0.05 0.0010
		PCUL: Vadose Zone PCUL: Saturated Zo		0.43	0.039	4,000	8,000	NA NA	8,000	300	8,000	0.00063	NA NA	24,000	80,000	0.029	0.0044	160	0.32	0.0010		
NOTES:	Jamgent 9011	. COL. Saturated ZO	, . wiipotan	Groundwall		0.000	0.0021	.,500	5,300	. 173	5,000	200	5,000	0.0000	. 4/1	,000	55,000	0.0010	0.03027	100	0.02	0.000000

NOTES:

Results in bold and highlighted denote concentrations exceeding one or more screening levels.

< denotes analyte not detected at or exceeding the laboratory reporting limit listed.

— denotes sample not analyzed or result not reported.

Depth in feet below ground surface.

Analyzed by U.S. Environmental Protection Agency Method 8260.

Washington State Department of Ecology Lower Duwamish Waterway Preliminary Cleanup Level Workbook, revised.

D = the reported value is from a dilution.

Geotech = Geotech Consultants, Inc.

Global = Global Environmental

J = result is an estimate

LDW = Lower Duwamish Waterway

MEK = methyl ethyl ketone

NE = not established

PCE = tetrachloroethene

PCUL = preliminary cleanup level

SES = SoundEarth Strategies, Inc.

VOCs = volatile organic compounds

Y = calibration verification for this analyte exceeded the limit and value is an estimate

Table 6 Soil Analytical Results for PCBs Emerald Gateway Site Seattle/Tukwila, Washington

Farallon PN: 1071-026

									Analytical	Results (n	nilligrams j	per kilogra	m) ²		
Sample Location	Sampled By	Sample Identification	Sample Depth (feet) ¹	Zone	Sample Date	Aroclor 1016	Aroclor 1221	Aroclor 1232	Aroclor 1242	Aroclor 1248	Aroclor 1254	Aroclor 1260	Aroclor 1262	Aroclor 1268	Total PCBs
					Nor	thern Prop	erty Boun	dary							
F-27	Farallon	F-27-2.5	2.5	Vadose	6/27/2019	< 0.0198	< 0.0198	< 0.0198	< 0.0198	< 0.0198	< 0.0198	< 0.0198	< 0.0198	< 0.0198	< 0.178
r-27	Farallon	F-27-10.0	10.0	Saturated	6/27/2019	< 0.0200	< 0.0200	< 0.0200	< 0.0200	< 0.0200	< 0.0200	< 0.0200	< 0.0200	< 0.0200	< 0.180
F-28	Farallon	F-28-2.5	2.5	Vadose	6/27/2019	< 0.0199	< 0.0199	< 0.0199	< 0.0199	< 0.0199	< 0.0199	0.0269	< 0.0199	< 0.0199	0.0269
1 20	Farallon	F-28-8.5	8.5	Saturated	6/28/2019	< 0.0199	< 0.0199	< 0.0199	< 0.0199	< 0.0199	< 0.0199	< 0.0199	< 0.0199	< 0.0199	< 0.179
						Transf	cormers								
F-30	Farallon	F-30-1.0	1.0	Vadose	6/27/2019	< 0.0198	< 0.0198	< 0.0198	< 0.0198	< 0.0198	< 0.0198	< 0.0198	< 0.0198	< 0.0198	< 0.178
F-32	Farallon	F-32-1.0	1.0	Vadose	6/27/2019	< 0.0198	< 0.0198	< 0.0198	< 0.0198	< 0.0198	< 0.0198	< 0.0198	< 0.0198	< 0.0198	< 0.178
F-33	Farallon	F-33-1.0	1.0	Vadose	6/27/2019	< 0.0200	< 0.0200	< 0.0200	< 0.0200	< 0.0200	< 0.0200	< 0.0200	< 0.0200	< 0.0200	< 0.180
Area 6: Former Truck Repair Shop															
P-DOF-6-WO															
				Area	a 13: Forme	er Northwe	st Auto Wi	ecking Pro	perty						
				2	2007 - 2008	Site-Wide	Surface So	il Excavati	on						
PR-PV1(R)	DOF	PR-PV1(R)	0 - 0.5	Vadose	6/27/2008	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033			< 0.231
PR-PV2(R)	DOF	PR-PV2(R)	0 - 0.5	Vadose	11/1/2007	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03			< 0.21
PR-PV3	DOF	PR-PV3	0 - 0.5	Vadose	7/27/2007	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03			< 0.21
PR-PV4(R)	DOF	PR-PV4(R)	0 - 0.5	Vadose	6/28/2008	< 0.032	< 0.032	< 0.032	< 0.032	< 0.032	< 0.032	< 0.032			< 0.224
PR-PV6	DOF	PR-PV6	0 - 0.5	Vadose	2/11/2008	< 0.03	< 0.03	< 0.03	< 0.03	0.038	0.037	< 0.03			0.075
R-SE15	DOF	R-SE15	0 - 0.5	Vadose	7/17/2008	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2			< 1.4
R-SE16	DOF	R-SE16	0 - 0.5	Vadose	7/17/2008	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2			< 1.4
Scrape-N2	DOF	Scrape-N2	0 - 0.5	Vadose	2/18/2008	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033			< 0.231
				2008 Forn	ner Waste O	oil Abovegr	ound Stora	age Tank I	nvestigatio	n					
TP-WO-1	DOF	TP-WO-1	1.0	Vadose	7/24/2008	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5			< 3.5
LDW Most-Stri	ngent Soil PCUI	L: Vadose Zone,	Nonpotable Gro	undwater ³											0.000043
LDW Most-Strii	ngent Soil PCUI	L: Saturated Zon	ne, Nonpotable G	roundwater	.3										0.0000022

NOTES:

Results in **bold** and highlighted denote concentrations exceeding one or more screening levels.

DOF = Dalton, Olmsted & Fuglevand, Inc.

LDW = Lower Duwamish Waterway

PCB = polychlorinated biphenyl

PCUL = preliminary cleanup level

< denotes analyte not detected at or exceeding the reporting limit listed.

¹Depth in feet below ground surface.

 $^{^2\}mbox{Analyzed}$ by U.S. Environmental Protection Agency Method 8082.

³Washington State Department of Ecology Lower Duwamish Waterway Preliminary Cleanup Level Workbook, revised April 2019.

Table 7
Soil Analytical Results for Metals
Emerald Gateway Site
Seattle/Tukwila, Washington
Farallon PN: 1071-026

	F		1	1	1 1											
										Analytical Res	ults (milligrams	per kilogram) ²				
		Sample	Sample Depth							ř						
Sample Location	Sampled By	Identification	(feet) ¹	Zone	Sample Date	Arsenic	Barium	Cadmium	Chromium	Copper	Lead	Manganese	Mercury	Selenium	Silver	Zinc
	T		T	ı	 		Former	Detention Pond			1	_	т			
F-29	Farallon	F-29-2.5	2.5	Vadose	6/27/2019	7.64		0.64		60.6	45.1	290	0.357			64.3
	Farallon	F-29-8.5	8.5	Saturated	6/28/2019	2.63		< 0.11		27.3	1.58	33.0	0.0142 J			11.6
	1	Ī	ı	T	•		Area 2: Per	ishables Wareho	ouse		ı		1			
F-1	Farallon	F-1-5.7	5.7	Vadose	10/20/2016						< 5.7					
				_			Area 4: Fo	rmer Fueling Ar	ea							
F-9	Farallon	F-9-8.0	8.0	Saturated	10/26/2016						< 7.2					
							Area 6: Form	er Truck Repair	Shop							
P-DOF-6-WO	DOF	P-DOF-6.WO	4.0	Vadose	2/2007	2.58	37.6	< 0.55	10.3		1.96		< 0.11	< 0.55	< 0.55	
						Ar	ea 7: Former A	utomobile Servic	e Stations							
SS-1	DOF	SS-1	0.3 - 1.3	Vadose	10/29/2008	6		0.2			13					
SS-2	DOF	SS-2	0.3 - 1.3	Vadose	10/29/2008	5		0.3			15					
SS-3	DOF	SS-3	0.3 - 1.3	Vadose	10/29/2008	< 5		0.3			7					
SS-4	DOF	SS-4	0.3 - 1.3	Vadose	10/29/2008	< 5		0.3			11					
SS-5	DOF	SS-5	0.3 - 1.3	Vadose	10/29/2008	< 5		0.2			4					
						Area 13	3: Former North	nwest Auto Wred	cking Property							
TP06	SES	TP-06	0.5	Vadose	1/11/2007	12.4	54.9	< 1	10.7		27.3		< 0.2	< 1	< 1	59.2
TP19	SES	TP-19	0.5	Vadose	1/12/2007	5.67	35.4	1.38	5.28		21.7		< 0.2	< 1	< 1	42
PR-C1(R)	DOF	PR-C1(R)	0 - 0.5	Vadose	6/24/2008				13.5	16.5	3.0					
PR-C2(R)	DOF	PR-C2(R)	0 - 0.5	Vadose	6/24/2008				13.5	12.4	3.0					
PR-C3(R)	DOF	PR-C3(R)	0 - 0.5	Vadose	6/25/2008				10.2	11.9	10.0					
PR-C4(R)	DOF	PR-C4(R)	0 - 0.5	Vadose	6/26/2008				13.6	54.6	18.0					
PR-PV1(R)	DOF	PR-PV1(R)	0 - 0.5	Vadose	6/27/2008	14		< 0.2	12.7	17.4	12.0					
PR-PV2(R)	DOF	PR-PV2(R)	0 - 0.5	Vadose	11/1/2007	< 6	54.9	< 0.3	19.6		3		< 0.06	< 6.0	< 0.4	
PR-PV3	DOF	PR-PV3	0 - 0.5	Vadose	7/27/2007	5		0.7	10.6	23.2	13					183
PR-PV4(R)	DOF	PR-PV4(R)	0 - 0.5	Vadose	6/28/2008	< 6		< 0.2	16.1	20.3	3.0					
PR-PV5	DOF	PR-PV5	0 - 0.5	Vadose	2/11/2008	8		0.3	16.9	55.9	59					89
PR-PV6	DOF	PR-PV6	0 - 0.5	Vadose	2/11/2008	8		0.3	17.4	37.2	30					64
PR-SE1(R)	DOF	PR-SE1(R)	0 - 0.5	Vadose	6/12/2008	9		0.4			36					
PR-SE2	DOF	PR-SE2	0 - 0.5	Vadose	7/25/2007	8		1.4			150					
PR-SE3	DOF	PR-SE3	0 - 0.5	Vadose	7/25/2007	< 5		0.3			88					
LDW Most-Stringer						7.0	100	1.0	48	36	50	1,200	0.07	0.30	0.32	86
LDW Most-Stringer	nt Soil PCUL: S	Saturated Zone, No	npotable Groundwa	ater ³		7.0	8.3	1.0	48	36	50	1,200	0.07	0.30	0.016	85

Table 7
Soil Analytical Results for Metals
Emerald Gateway Site
Seattle/Tukwila, Washington
Farallon PN: 1071-026

										Analytical Res	ulte (milliorame	per kilogram) ²				
Sample Location	Sampled By	Sample Identification	Sample Depth (feet) ¹	Zone	Sample Date	Arsenic	Barium	Cadmium	Chromium	Copper	Lead	Manganese	Mercury	Selenium	Silver	Zinc
PR-SE4	DOF	PR-SE4	0 - 0.5	Vadose	7/25/2007	7		0.5			75					
PR-SE5	DOF	PR-SE5	0 - 0.5	Vadose	7/25/2007	7		0.3			66					
PR-SE6(R)	DOF	PR-SE6(R)	0.5	Vadose	9/7/2007	5		< 0.2			12					
PR-SE7	DOF	PR-SE7	0 - 0.5	Vadose	7/25/2007	8		0.4			47					
PR-SE8	DOF	PR-SE8	0 - 0.5	Vadose	7/25/2007	8		0.4	12.6	16.7	51					52
PR-SE9(R)	DOF	PR-SE9(R)	0.5	Vadose	10/23/2007	7	76.8	< 0.2	21.6		7		0.07	< 6.0	< 0.4	
PR-SE10	DOF	PR-SE10	0 - 0.5	Vadose	7/25/2007	6		0.3			187					
PR-SE11(R)	DOF	PR-SE11(R)	0.5	Vadose	9/7/2007	9		< 0.2			16					
PR-SE12(R)	DOF	PR-SE12(R)	0.5	Vadose	9/7/2007	5		< 0.2			13					
PR-SE13	DOF	PR-SE13	0 - 0.5	Vadose	7/26/2007	12		0.7			220					
PR-SE14(R)	DOF	PR-SE14(R)	0 - 0.5	Vadose	7/10/2008	< 2.0		< 2.0			3.5					
PR-SE15	DOF	PR-SE15	0 - 0.5	Vadose	7/26/2007	6		0.3	14.4	19	31					48
PR-SE16	DOF	PR-SE16	0 - 0.5	Vadose	7/25/2007	6		0.7			67					
PR-SE17	DOF	PR-SE17	0 - 0.5	Vadose	7/25/2007	7		0.3			13					
PR-SE18	DOF	PR-SE18	0 - 0.5	Vadose	7/25/2007	11		0.2			150					
PR-SE19	DOF	PR-SE19	0 - 0.5	Vadose	7/25/2007	8		0.3			40					
PR-SE20(R	DOF	PR-SE20(R	0 - 0.5	Vadose	10/23/2007	9	35.1	< 0.2	13		6		< 0.04	< 5.0	< 0.3	
PR-SE21	DOF	PR-SE21	0 - 0.5	Vadose	7/25/2007	8		1.0			89					
PR-SE22(R	DOF	PR-SE22(R	0 - 0.5	Vadose	9/7/2007	< 5.0		< 0.2			5					
PR-SE23(R)	DOF	PR-SE23(R)	0 - 0.5	Vadose	7/10/2008	3.6		< 2.0			8.2					
PR-SE24	DOF	PR-SE24	0 - 0.5	Vadose	7/24/2007	5		0.4			151					
PR-SE25	DOF	PR-SE25	0 - 0.5	Vadose	7/26/2007	7		0.9			120					
PR-SE26	DOF	PR-SE26	0 - 0.5	Vadose	7/25/2007	7		0.9			167					
PR-SE27	DOF	PR-SE27	0 - 0.5	Vadose	7/25/2007	7		0.9			113					
PR-SE28	DOF	PR-SE28	0 - 0.5	Vadose	7/25/2007	7		0.3	13.3	20.1	49					56
PR-SE29	DOF	PR-SE29	0 - 0.5	Vadose	7/25/2007	7		0.6			40					
PR-SE30	DOF	PR-SE30	0 - 0.5	Vadose	7/25/2007	9		< 0.2			24					
LDW Most-Stringen	nt Soil PCUL: V	adose Zone, Nonp	otable Groundwater	r^3		7.0	100	1.0	48	36	50	1,200	0.07	0.30	0.32	86
LDW Most-Stringen	nt Soil PCUL: S	aturated Zone, No	npotable Groundwa	nter ³		7.0	8.3	1.0	48	36	50	1,200	0.07	0.30	0.016	85

Table 7
Soil Analytical Results for Metals
Emerald Gateway Site
Seattle/Tukwila, Washington
Farallon PN: 1071-026

										Analytical Res	ults (milligrams	per kilogram) ²				
Sample Location	Sampled By	Sample Identification	Sample Depth (feet) ¹	Zone	Sample Date	Arsenic	Barium	Cadmium	Chromium	Copper	Lead	Manganese	Mercury	Selenium	Silver	Zinc
PR-SE31	DOF	PR-SE31	0 - 0.5	Vadose	7/25/2007	< 5		0.3	8.8	11.2	64					40
PR-SE32	DOF	PR-SE32	0 - 0.5	Vadose	7/25/2007	< 5		0.3			26					
PR-SE33(R)	DOF	PR-SE33(R)	0 - 0.5	Vadose	7/10/2008	3.0		< 2.0			11					
PR-SE34(R)	DOF	PR-SE34(R)	0 - 0.5	Vadose	7/10/2008	4.3		< 2.0			48					
PR-SE35(R)	DOF	PR-SE35(R)	0 - 0.5	Vadose	7/10/2008	4.8		< 2.0			14					
PR-SE36(R)	DOF	PR-SE36(R)	0 - 0.5	Vadose	7/10/2008	5.9		< 2.0			70					
PR-SE-37(R)	DOF	PR-SE-37(R)	0 - 0.5	Vadose	6/12/2008	< 5		0.2			5					
R-SE1	DOF	R-SE1	0 - 0.5	Vadose	6/12/2008	7		0.5			19					
R-SE2	DOF	R-SE2	0 - 0.5	Vadose	6/12/2008	6		< 0.2			9					
R-SE3	DOF	R-SE3	0 - 0.5	Vadose	6/12/2008	< 5		0.3			3					
R-SE4	DOF	R-SE4	0 - 0.5	Vadose	7/10/2008	3.3		< 2.0			2.6					
R-SE5	DOF	R-SE5	0 - 0.5	Vadose	7/10/2008	4.9		< 2.0			8.4					
R-SE6	DOF	R-SE6	0 - 0.5	Vadose	7/10/2008	3.4		< 2.0			5.3					
R-SE7	DOF	R-SE7	0 - 0.5	Vadose	7/10/2008	2.5		< 2.0			3.6					
R-SE8	DOF	R-SE8	0 - 0.5	Vadose	7/10/2008	3.3		< 2.0			7.4					
R-SE9	DOF	R-SE9	0 - 0.5	Vadose	7/10/2008	4.9		< 2.0			22					
R-SE10	DOF	R-SE10	0 - 0.5	Vadose	7/17/2008	2.9		< 2.0			24					
R-SE11	DOF	R-SE11	0 - 0.5	Vadose	7/17/2008	5.3		2.0			160					
R-SE12	DOF	R-SE12	0 - 0.5	Vadose	7/17/2008	4.7		< 2.0			16					
R-SE13	DOF	R-SE13	0 - 0.5	Vadose	7/17/2008	< 2.0		< 2.0			4.2					
R-SE14	DOF	R-SE14	0 - 0.5	Vadose	7/17/2008	6.2		< 2.0			74					
R-SE15	DOF	R-SE15	0 - 0.5	Vadose	7/17/2008	4.1		< 2.0			30					
R-SE16	DOF	R-SE16	0 - 0.5	Vadose	7/17/2008	7.1		< 2.0			33					
PR-DP1	DOF	PR-DP1	0 - 0.5	Vadose	7/25/2007	8		0.5	29.6	30	91					109
LDW Most-Stringer	nt Soil PCUL: V	adose Zone, Nonpo	otable Groundwater	r ³		7.0	100	1.0	48	36	50	1,200	0.07	0.30	0.32	86
LDW Most-Stringer	nt Soil PCUL: S	aturated Zone, No	npotable Groundwa	iter ³		7.0	8.3	1.0	48	36	50	1,200	0.07	0.30	0.016	85

Table 7
Soil Analytical Results for Metals
Emerald Gateway Site
Seattle/Tukwila, Washington
Farallon PN: 1071-026

										Analytical Res	sults (milligrams	ner kilogram) ²				
Sample Location	Sampled By	Sample Identification	Sample Depth (feet) ¹	Zone	Sample Date	Arsenic	Barium	Cadmium	Chromium	Copper	Lead	Manganese	Mercury	Selenium	Silver	Zinc
PR-DP-2	DOF	PR-DP-2	0 - 0.5	Vadose	7/25/2007	< 7		0.4			83					
PR-DP3	DOF	PR-DP3	0 - 0.5	Vadose	7/25/2007	7		0.6			162					
PR-DP4	DOF	PR-DP4	0 - 0.5	Vadose	7/25/2007	6		0.5			144					
Scrape-N1	DOF	Scrape-N1	0 - 0.5	Vadose	2/18/2008	7		< 0.2			18					
Scrape-N2	DOF	Scrape-N2	0 - 0.5	Vadose	2/18/2008	7		0.3			51					
Scrape-N3	DOF	Scrape-N3	0 - 0.5	Vadose	2/18/2008	7		0.3			21					
Scrape-N4	DOF	Scrape-N4	0 - 0.5	Vadose	2/20/2008	8		0.5			78					
Scrape-N5	DOF	Scrape-N5	0 - 0.5	Vadose	2/20/2008	< 6		0.3			24					
Scrape-N8	DOF	Scrape-N8	0 - 0.5	Vadose	2/21/2008	< 6.0		< 0.2			11					
Underground Storag	ge Tank (UST)	Removal Excavation	on													
NUST-ESW	DOF	NUST-ESW	9.0	Saturated	7/2/2008						4.0					
SUST-ESW	DOF	SUST-ESW	9.0	Saturated	7/2/2008						4.6					
SUST-SSW	DOF	SUST-SSW	8.0	Saturated	7/10/2008						7.0					
UST-PI	DOF	UST-PI	4.0	Vadose	7/11/2008						4.0					
NUST-WSW	DOF	NUST-WSW	8.0	Saturated	7/11/2008						< 4.0					
SUST-WSW	DOF	SUST-WSW	8.0	Saturated	7/11/2008						< 4.0					
NUST-B1	DOF	NUST-B1	14.0	Saturated	7/2/2008						< 4.0					
SUST-B3	DOF	SUST-B3	14.0	Saturated	7/10/2008						5.0					
Storm Drains								•			•					
TP-SD-1	DOF	TP-SD-1	2.0	Vadose	7/24/2008	4.6		< 2.0			2.7					
TP-SD-2	DOF	TP-SD-2	2.0	Vadose	7/24/2008	2.8		< 2.0			< 4.0					
Former Parts Shop	Test Pits		•	Į.								•	<u>I</u>			
	DOF	TP-P08-1	1.0	Vadose	7/24/2008	2.3		< 2.0			3.6					
TP-P08	DOF	TP-P08-8	8.0	Saturated	7/24/2008	2.8		< 2.0			< 4.0					
	DOF	TP-P08-12	12.0	Saturated	7/24/2008	5.9		< 2.0			< 4.0					
TID TOO	DOF	TP-P08A-1	1.0	Vadose	7/24/2008	< 2.0		< 2.0			< 4.0					
TP-P08A	DOF	TP-P08A-8	8.0	Saturated	7/24/2008	3.2		< 2.0			< 4.0					
LDW Most-Stringen	nt Soil PCUL: V	adose Zone, Nonpo	otable Groundwate	r ³	•	7.0	100	1.0	48	36	50	1,200	0.07	0.30	0.32	86
LDW Most-Stringen	nt Soil PCUL: S	aturated Zone, No	npotable Groundwa	ater ³		7.0	8.3	1.0	48	36	50	1,200	0.07	0.30	0.016	85

Table 7 Soil Analytical Results for Metals Emerald Gateway Site Seattle/Tukwila, Washington

Farallon PN: 1071-026

										Analytical Res	ults (milligrams	per kilogram) ²				
Sample Location	Sampled By	Sample Identification	Sample Depth (feet) ¹	Zone	Sample Date	Arsenic	Barium	Cadmium	Chromium	Copper	Lead	Manganese	Mercury	Selenium	Silver	Zinc
Former Waste Oil A		orage Tank			•		•	•		•	•		•			
TP-WO-1	DOF	TP-WO-1	1.0	Vadose	7/24/2008	8.6		< 2.0			15					
Former UST Sampli	ing Locations															
TP-P01	DOF	TP-P01-SW	6.0	Vadose	7/24/2008	< 2.0		< 2.0			< 4.0					
117-1701	DOF	TP-P01-B	12.0	Saturated	7/24/2008	< 2.0		< 2.0			< 4.0					
TP-P04-1	DOF	TP-P04-1	3.0	Vadose	7/24/2008	7.4		< 2.0			4.6					
Septic Drain field																
TP-SEPTIC-1	DOF	TP-SEPTIC-1	7.0	Vadose	7/24/2008	2.9		< 2.0			< 4.0					
LDW Most-Stringer	nt Soil PCUL: V	adose Zone, Nonpo	otable Groundwate	r ³		7.0	100	1.0	48	36	50	1,200	0.07	0.30	0.32	86
LDW Most-Stringer	nt Soil PCUL: S	Saturated Zone, No	npotable Groundwa	ater ³		7.0	8.3	1.0	48	36	50	1,200	0.07	0.30	0.016	85

NOTES

Results in **bold** and highlighted denote concentrations exceeding one or more screening levels.

DOF = Dalton, Olmsted & Fuglevand, Inc. Farallon = Farallon Consulting, L.L.C.

J = result is an estimate

LDW = Lower Duwamish Waterway PCUL = preliminary cleanup level

 $SES = SoundEarth\ Strategies,\ Inc.$

< denotes analyte not detected at or exceeding the laboratory reporting limit listed.

[—] denotes sample not analyzed.

¹Depth in feet below ground surface.

²Analyzed by U.S. Environmental Protection Agency Methods 6010 or 6020.

³Washington State Department of Ecology Lower Duwamish Waterway Preliminary Cleanup Level Workbook, revised April 2019.

Table 8 Groundwater Analytical Results for TPH and BTEX Emerald Gateway Site

Seattle/Tukwila, Washington Farallon PN: 1071-026

						Analytic	al Results (micrograms	per liter)		
Sample Location	Sampled By	Sample Date	Sample Identification	DRO ¹	ORO ¹	GRO ²	Benzene ³	Toluene ³	Ethylbenzene ³	Xylenes ³
					1: Dry Grocery Wareho					
		T	T T		ance Boring Groundwate			ı		
P1-1	DOF	7/7/2001	Probe 1-1	< 250	< 500	< 250				
P1-2	DOF	7/7/2001	Probe 1-2	< 250	< 500	< 250				
P1-3	DOF	7/7/2001	Probe 1-3	< 250	< 500	< 250				
P1-4	DOF	7/7/2001	Probe 1-4	< 250	< 500	< 250				
P1-5	DOF	7/7/2001	Probe 1-5	< 250	< 500	< 250				
					a 2: Perishables Wareho					
		T	I		ance Boring Groundwate			1		
P2-1	DOF	7/3/2001	Probe 2-1 (b)	2,400	< 500	2,500	3.1	< 1.0	26	19
F-1	Farallon	10/20/2016	F-1-GW	< 270	480	< 100	< 0.40	< 2.0	< 0.40	< 1.2
F-2	Farallon	10/20/2016	F-2-GW	610	580	< 100	< 1.0	< 1.0	< 1.0	< 2.0
		•	1		ing Well Groundwater S			1		
	DOF	8/12/2001	MW-101	< 250	< 500	< 100	< 1.0	< 1.0	< 1.0	< 1.0
MW-101	Farallon	10/19/2016	MW-101-101916	290	< 410	< 100	< 0.40	< 2.0	< 0.40	< 1.2
	Farallon	7/1/2019	MW-101-190701	107	< 200	< 100	< 0.2	< 0.2	< 0.2	< 0.60
				Ar	rea 3: Former Truck Was	sh				
				Reconnaiss	ance Boring Groundwate	er Samples				
P3-1	DOF	7/2/2001	Probe 3-1	< 250	< 500	< 250				
P3-2	DOF	7/2/2001	Probe 3-2	< 250	< 500	< 250				
				Ar	ea 4: Former Fueling Ar	ea				
				Reconnaiss	ance Boring Groundwate	er Samples				
P4-1	DOF	7/3/2001	Probe 4-1	< 250	8,600	< 250				
P10-3	DOF	7/7/2001	Probe 10-3	< 500	< 500	< 250	< 0.2	< 0.2	< 0.2	< 0.4
P-DOF-3	DOF	2/27/2007	P-DOF-3	619	649	< 238				
P-DOF-4	DOF	2/27/2007	P-DOF-4	769	948	< 240				
F-5	Farallon	10/26/2016	F-5-GW	< 250	< 400	< 100	< 1.0	< 1.0	< 1.0	< 2.0
F-7	Farallon	10/26/2016	F-7-GW	640	490	< 100	< 1.0	< 1.0	< 1.0	< 2.0
F-8	Farallon	10/26/2016	F-8-GW	1,200	710	< 100	< 0.20	< 1.0	< 0.20	0.86
F-9	Farallon	10/26/2016	F-9-GW	600	440	< 100	< 1.0	< 1.0	< 1.0	1.0
F-10	Farallon	10/26/2016	F-10-GW	810	1,100	< 100	< 1.0	< 1.0	< 1.0	< 2.0
F-31	Farallon	6/27/2019	F-31-190627	580	< 200					
				Monitor	ing Well Groundwater S	amples				
MW-2	DOF	5/29/1998	MW-2	< 100	< 100	< 100	< 1	< 1	< 1	< 1
FMW-02	Farallon	7/2/2019	FMW-02-190702	< 100	< 200	< 100	< 0.20	< 0.20	< 0.20	0.070 J
OW Most-Stringent Gr	oundwater PCUL: Nonp	ootable Water ³		500 ⁴	500 ⁴	800/1,000 ⁵	1.6	130	31	330

Table 8 Groundwater Analytical Results for TPH and BTEX Emerald Gateway Site Seattle/Tukwila, Washington

						Analytic	cal Results (micrograms	per liter)	-	
Sample Location	Sampled By	Sample Date	Sample Identification	DRO^1	ORO ¹	GRO^2	Benzene ³	Toluene ³	Ethylbenzene ³	Xylenes ³
				Area 5: I	Former Trailer Maintena	nce Shop				·
				Reconnais	sance Boring Groundwat	er Samples				
P5-1	DOF	6/28/2001	Probe 5-1	< 500	< 500	< 250	< 0.2	< 0.2	< 0.2	< 0.4
P5-2	DOF	6/28/2001	Probe 5-2	< 500	< 500	< 250	< 0.2	< 0.2	< 0.2	< 0.4
P5-3	DOF	6/28/2001	Probe 5-3	< 500	< 500	< 250	< 0.2	< 0.2	< 0.2	< 0.4
P5-4	DOF	6/28/2001	Probe 5-4	< 500	< 500	< 250	< 0.2	< 0.2	< 0.2	< 0.4
P5-5	DOF	7/2/2001	Probe 5-5	< 500	< 500	< 250	< 20	< 20	< 20	< 40
F-11	Farallon	10/18/2016	F-11-GW	< 260	< 420	< 100	< 0.20	< 1.0	< 0.20	< 0.60
F-12	Farallon	10/17/2016	F-12-GW	< 260	< 410	< 100	< 0.20	< 1.0	< 0.20	< 0.60
F-13	Farallon	10/18/2016	F-13-GW			< 100	< 0.20	< 1.0	< 0.20	< 0.60
F-14	Farallon	10/18/2016	F-14-GW	< 270	< 430	< 100	< 0.40	< 2.0	< 0.40	< 1.2
				Area	6: Former Truck Repair	Shop				
				Reconnais	sance Boring Groundwat	er Samples				
P6-4	DOF	6/29/2001	P6-4	< 500	< 500	< 250	0.69	< 0.2	< 0.2	< 0.4
P6-5	DOF	6/29/2001	P6-5	< 250	< 500	< 250	< 0.2	< 0.2	< 0.2	< 0.4
P6-6	DOF	7/2/2001	P6-6	< 500	< 500	< 250				
P6-7	DOF	7/2/2001	P6-7	< 500	< 500	< 250				
F-16	Farallon	10/17/2016	F-16-GW	< 260	< 410	< 100	< 1.0	< 1.0	< 1.0	< 2.0
F-17	Farallon	10/17/2016	F-17-GW	850 M	< 420	1,300	90	< 4.0	140	20
F-18	Farallon	10/17/2016	F-18-GW	< 260	< 420	< 100	< 1.0	< 1.0	< 1.0	< 2.0
				Monito	ring Well Groundwater S	Samples				
	DOF	11/12/2009	MW-4	< 250	< 500	< 250	< 1.0	< 1.0	< 1.0	< 2.0
	DOF	3/17/2010	MW-4	< 250	< 500	< 250	< 1.0	< 1.0	< 1.0	< 2.0
NASS7 4	DOF	10/4/2010	MW-4	< 100	< 200	< 250	< 1.0	< 1.0	< 1.0	< 2.0
MW-4	DOF	3/1/2011	MW-4	< 100	< 200	< 250	< 1.0	< 1.0	< 1.0	< 2.0
	Farallon	10/21/2016	MW-4-102116	< 260	< 410	< 400	< 0.20	< 1.0	< 0.20	< 0.60
	Farallon	7/1/2019	MW-4-190701	474	< 200	< 100	< 0.20	< 0.20	< 0.20	< 0.60
Most-Stringent Gro	oundwater PCUL: Nonpo	otable Water ³		500 ⁴	500 ⁴	800/1,000 ⁵	1.6	130	31	330

Table 8 Groundwater Analytical Results for TPH and BTEX Emerald Gateway Site Seattle/Tukwila, Washington

						Analytic	cal Results (micrograms)	per liter)		
Sample Location	Sampled By	Sample Date	Sample Identification	DRO ¹	ORO¹	GRO ²	Benzene ³	Toluene ³	Ethylbenzene ³	Xylenes ³
=	DOF	1/8/2002	MW-203	< 250	< 500	< 100	< 1.0	< 1.0	< 1.0	< 1.0
	DOF	11/12/2009	MW-203	< 250	< 500	< 250	< 1.0	< 1.0	< 1.0	< 2.0
	DOF	3/17/2010	MW-203	< 250	< 500	< 250	< 1.0	< 1.0	< 1.0	< 2.0
MW-203	DOF	10/4/2010	MW-203	< 100	< 200	< 250	< 1.0	< 1.0	< 1.0	< 2.0
	DOF	3/1/2011	MW-203	< 100	< 200	< 250	< 1.0	< 1.0	< 1.0	< 2.0
	Farallon	10/21/2016	MW-203-102116	< 260	< 410	< 100	< 0.20	< 1.0	< 0.20	< 0.60
	Farallon	7/1/2019	MW-203-190701	< 100	< 200	< 100	< 0.20	< 0.20	< 0.20	< 0.60
	DOF	11/12/2009	MW-207	< 250	< 500	< 250	< 1.0	< 1.0	< 1.0	< 2.0
	DOF	3/17/2010	MW-207	< 250	< 500	< 250	< 1.0	< 1.0	< 1.0	< 2.0
MW-207	DOF	10/4/2010	MW-207	< 100	< 200	< 250	< 1.0	< 1.0	< 1.0	< 2.0
IVI W -207	DOF	3/1/2011	MW-207	< 100	< 200	< 250	< 1.0	< 1.0	< 1.0	< 2.0
	Farallon	10/21/2016	MW-207-102116	< 260	< 410	< 100	< 0.20	< 1.0	< 0.20	< 0.60
	Farallon	7/1/2019	MW-207-190701	< 100	< 200	< 100	< 0.20	< 0.20	< 0.20	< 0.60
	DOF	11/12/2009	MW-AG1	< 250	< 500	< 250	< 1.0	< 1.0	< 1.0	< 2.0
	DOF	3/17/2010	MW-AG1	< 250	< 500	< 250	< 1.0	< 1.0	< 1.0	< 2.0
MW-AG1	DOF	10/4/2010	MW-AG1	< 100	< 200	< 250	< 1.0	< 1.0	< 1.0	< 2.0
MW-AGI	DOF	3/1/2011	MW-AG1	< 100	< 200	< 250	< 1.0	< 1.0	< 1.0	< 2.0
	Farallon	10/21/2016	MW-AG1-102116	< 260	< 420	< 400	< 0.20	< 1.0	< 0.20	< 0.60
	Farallon	7/1/2019	MW-AG1-190701	< 100	< 200	< 500	< 1.0	< 1.0	< 1.0	< 3.0
	DOF	11/12/2009	MW-AG2	< 250	< 500	< 250	< 1.0	< 1.0	< 1.0	< 2.0
	DOF	3/17/2010	MW-AG2	< 250	< 500	< 250	< 1.0	< 1.0	< 1.0	< 2.0
MW-AG2	DOF	10/4/2010	MW-AG2	< 100	< 200	< 250	< 1.0	< 1.0	< 1.0	< 2.0
MW-AG2	DOF	3/1/2011	MW-AG2	< 100	< 200	< 250	< 1.0	< 1.0	< 1.0	< 2.0
	Farallon	10/19/2016	MW-AG2-101916	< 250	< 410	< 100	< 0.20	< 1.0	< 0.20	< 0.60
	Farallon	7/1/2019	MW-AG2-190701	< 100	< 200	< 100	< 0.20	< 0.20	< 0.20	< 0.60
				Area 7: F	ormer Automobile Servic	e Stations				
-		T	,		sance Boring Groundwate	· · · · · · · · · · · · · · · · · · ·		Γ		
P7-1	DOF	7/3/2001	Probe 7-1	< 500	< 500	700	42	3	39	102
P7-2	DOF	7/3/2001	Probe 7-2	< 500	< 500	< 250	< 0.2	< 0.2	< 0.2	< 0.4
P7-3	DOF	7/7/2001	Probe 7-3	< 500	< 500	< 250	< 0.2	< 0.2	< 0.2	< 0.4
P7-4	DOF	7/25/2001	Probe 7-4	< 500	< 500	< 250	< 0.2	< 0.2	< 0.2	< 0.4
P7-5	DOF	7/25/2001	Probe 7-5	< 500	< 500	< 250	< 0.2	0.49	< 0.2	< 0.4
P-DOF-2	DOF	2/27/2007	P-DOF-2	< 612	< 612	< 243	< 1.0	< 1.0	< 1.0	< 3.0
W Most-Stringent Gro	oundwater PCUL: Nonp	ootable Water ³		500^4	500 ⁴	800/1,000 ⁵	1.6	130	31	330

Table 8 Groundwater Analytical Results for TPH and BTEX Emerald Gateway Site

Seattle/Tukwila, Washington Farallon PN: 1071-026

						Analytic	cal Results (micrograms	per liter)		
Sample Location	Sampled By	Sample Date	Sample Identification	\mathbf{DRO}^1	ORO ¹	GRO ²	Benzene ³	Toluene ³	Ethylbenzene ³	Xylenes ³
		-		Monitor	ing Well Groundwater S	Samples				-
	DOF	11/12/2009	DOF-1	< 250	< 500	< 250	< 1.0	< 1.0	< 1.0	< 2.0
-	DOF	3/18/2010	DOF-1	< 250	< 500	< 250	< 1.0	< 1.0	< 1.0	< 2.0
-	DOF	10/4/2010	DOF-1	< 100	< 200	< 250	< 1.0	< 1.0	< 1.0	< 2.0
-	DOF	3/3/2011	DOF-1	< 100	< 200	< 250	< 1.0	< 1.0	< 1.0	< 2.0
DOF-1	DOF	3/23/2012	DOF-1	< 100	< 200	< 250	< 1.0	< 1.0	< 1.0	< 2.0
	DOF	8/28/2014	DOF-1			1	Well Dry	•		
	DOF	11/26/2014	DOF-1			< 250	< 1.0	< 1.0	< 1.0	< 3.0
	Farallon	10/19/2016	DOF-1-101916	< 260	< 410	< 100	< 0.20	< 1.0	< 0.20	< 0.60
	Farallon	7/1/2019	DOF-1-190701	< 100	< 200	< 100	< 0.20	< 0.20	< 0.20	< 0.60
FMW-01	Farallon	7/2/2019	FMW-01-190702	< 100	< 200	563	0.060 J	0.080 J	6.38	29.8 J
		•		A	Area 8: Returns Building	3			•	
				Reconnaissa	ance Boring Groundwate	er Samples				
P8-1	DOF	7/2/2001	Probe 8-1	< 500	< 500	< 250				
P8-2	DOF	7/2/2001	Probe 8-2	< 500	< 500	< 250				
P8-3	DOF	7/25/2001	Probe 8-3	< 500	< 500	< 250				
			<u> </u>	Area 9:	Former Employee Park	ing Lot				
				Reconnaissa	ance Boring Groundwate	er Samples				
P9-1	DOF	7/2/2001	Probe 9-1	< 500	< 500	< 250				
P9-2	DOF	7/7/2001	Probe 9-2	< 500	< 500	< 250				
				Ar	ea 10: Up-Gradient Are	as			•	
				Reconnaissa	ance Boring Groundwate	er Samples				
P10-2	DOF	7/3/2001	Probe 10-2	< 500	< 500	< 250	< 20.0	< 20.0	< 40.0	< 40.0
P10-4	DOF	7/7/2001	Probe 10-4	< 500	< 500	< 250	< 1.0	< 1.0	< 1.0	< 2.0
P10-5	DOF	7/7/2001	Probe 10-5	< 500	< 500	< 250	< 1.0	< 1.0	< 1.0	< 2.0
W Most-Stringent Gro	oundwater PCUL: Nonpo	otable Water ³		500 ⁴	500 ⁴	800/1,000 ⁵	1.6	130	31	330

Table 8 Groundwater Analytical Results for TPH and BTEX Emerald Gateway Site Seattle/Tukwila, Washington

						Analytic	eal Results (micrograms)	oer liter)		
Sample Location	Sampled By	Sample Date	Sample Identification	DRO ¹	ORO¹	GRO ²	Benzene ³	Toluene ³	Ethylbenzene ³	Xylenes ³
				Area 11:	Former South Maintena	nce Shop				
				Reconnaiss	sance Boring Groundwate	er Samples				
P-DOF-5	DOF	2/27/2007	P-DOF-5	< 606	< 606	< 240	< 1.0	< 1.0	< 1.0	< 3.0
F-20	Farallon	10/18/2016	F-20-GW	< 270	< 440	< 100	< 0.20	< 1.0	< 0.20	< 0.60
F-21	Farallon	10/19/2016	F-21-GW	< 270	< 440	< 100	0.21	< 1.0	< 0.20	< 0.60
F-22	Farallon	10/19/2016	F-22-GW			< 100	< 0.20	< 1.0	< 0.20	< 0.60
F-23	Farallon	10/19/2016	F-23-GW	840	500	150	< 0.20	< 1.0	< 0.20	< 0.60
-				Monitor	ring Well Groundwater S	amples			•	
FMW-03	Farallon	7/1/2019	FMW-03-190701	141	< 200	< 100	< 0.20	< 0.20	< 0.20	< 0.60
		•		Area 12: For	rmer Old Humble Oil Ser	vice Station			•	
				Reconnaiss	sance Boring Groundwate	er Samples				
P-DOF-1	DOF	2/28/2007	P-DOF-1	< 618	< 618	< 245	< 1.0	< 1.0	< 1.0	< 3.0
				Area 13: Form	ner Northwest Auto Wrec	king Property				
				Reconnaiss	sance Boring Groundwate	er Samples				
P10-1	DOF	7/3/2001	Probe 10-1	< 500	< 500	< 250	2.3	< 1.0	8.6	17.1
NWAW-P1	DOF	10/27/2008	NWAW-P1	< 250	< 500	< 250	< 1.0	< 1.0	< 1.0	< 1.0
NWAW-P2	DOF	10/27/2008	NWAW-P2	< 250	< 500	< 250	< 1.0	< 1.0	< 1.0	< 1.0
NWAW-P3	DOF	10/27/2008	NWAW-P3	< 250	< 500	< 250	< 1.0	< 1.0	< 1.0	< 1.0
NWAW-P4	DOF	10/27/2008	NWAW-P4	< 250	< 500	< 250	< 1.0	< 1.0	< 1.0	< 1.0
NWAW-P5	DOF	10/27/2008	NWAW-P5	< 250	< 500	< 250	< 1.0	< 1.0	< 1.0	< 1.0
NWAW-P6	DOF	10/27/2008	NWAW-P6	< 250	< 500	< 250	< 1.0	< 1.0	< 1.0	3.6
NWAW-P7	DOF	10/27/2008	NWAW-P7	< 250	< 500	< 250	< 1.0	< 1.0	< 1.0	< 1.0
NWAW-P8	DOF	10/27/2008	NWAW-P8	< 250	< 500	< 250	< 1.0	< 1.0	< 1.0	< 1.0
NIWAW DO	DOF	10/28/2008	NWAW-P9	< 250	< 500	< 250	< 1.0	< 1.0	< 1.0	< 1.0
NWAW-P9	DOF	10/28/2008	NWAW-P9 (duplicate)	< 250	< 500	< 250	< 1.0	< 1.0	< 1.0	< 1.0
NWAW-P10	DOF	10/28/2008	NWAW-P10	< 250	< 500	< 250	< 1.0	< 1.0	< 1.0	< 1.0
NWAW-P11	DOF	10/28/2008	NWAW-P11	< 250	< 500	< 250	< 1.0	< 1.0	< 1.0	< 1.0
NWAW-P12	DOF	10/28/2008	NWAW-P12	< 250	< 500	< 250	< 1.0	< 1.0	< 1.0	< 1.0
NWAW-P13	DOF	10/28/2008	NWAW-P13	< 250	< 500	< 250	< 1.0	< 1.0	< 1.0	< 1.0
NWAW-P14	DOF	10/28/2008	NWAW-P14	< 250	< 500	< 250	< 1.0	< 1.0	< 1.0	< 1.0
NWAW-P15	DOF	10/28/2008	NWAW-P15	< 250	< 500	280	< 1.0	< 1.0	< 1.0	< 1.0
NWAW-P16	DOF	10/28/2008	NWAW-P16	< 250	< 500	< 250	< 1.0	< 1.0	< 1.0	< 1.0
W Most-Stringent Gro	oundwater PCUL: Nonp	ootable Water ³		500 ⁴	500 ⁴	800/1,000 ⁵	1.6	130	31	330

Table 8 Groundwater Analytical Results for TPH and BTEX Emerald Gateway Site Seattle/Tukwila, Washington

						Analytic	cal Results (micrograms]	per liter)		
Sample Location	Sampled By	Sample Date	Sample Identification	\mathbf{DRO}^1	ORO¹	GRO ²	Benzene ³	Toluene ³	Ethylbenzene ³	Xylenes ³
				Monitor	ring Well Groundwater S	amples				
	DOF	11/12/2009	DOF-2	< 250	< 500	1,200	5.9	1.2	9.7	1.8
	DOF	3/18/2010	DOF-2	< 250	< 500	850	3.3	< 1.0	4.3	1.3
	DOF	10/5/2010	DOF-2	< 100	< 200	370	1.1	< 1.0	< 1.0	< 2.0
	DOF	3/3/2011	DOF-2	< 100	< 200	770	3.2	< 1.0	3.4	< 2.0
DOE 2	DOF	3/23/2012	DOF-2	< 100	< 200	720	5.4	1.1	5	< 2.0
DOF-2	DOF	8/28/2014	DOF-2			420	< 1.0	< 1.0	< 1.0	< 3.0
	DOF	11/26/2014	DOF-2			1,200	1.5	1.2	1.5	< 3.0
	DOF	6/5/2015	DOF-2			450	0.39	0.43	0.88	0.93
	Farallon	10/24/2016	DOF-2-102416	380	560	180	0.27	< 1.0	0.31	< 0.60
	Farallon	7/1/2019	DOF-2-190701	336	223	131	0.19 J	0.22	0.26	0.38 J
	DOF	11/12/2009	DOF-3	< 250	< 500	< 250	< 1.0	< 1.0	< 1.0	< 2.0
	DOF	3/18/2010	DOF-3	< 250	< 500	< 250	< 1.0	< 1.0	< 1.0	< 2.0
	DOF	10/5/2010	DOF-3	< 100	< 200	< 250	< 1.0	< 1.0	< 1.0	< 2.0
	DOF	3/3/2011	DOF-3	< 100	< 200	< 250	< 1.0	< 1.0	< 1.0	< 2.0
DOF-3	DOF	3/23/2012	DOF-3	< 100	< 200	< 250	< 1.0	< 1.0	< 1.0	< 2.0
	DOF	8/28/2014	DOF-3			< 250	< 1.0	< 1.0	< 1.0	< 3.0
	DOF	11/26/2014	DOF-3			< 250	< 1.0	< 1.0	< 1.0	< 3.0
	Farallon	10/21/2016	DOF-3-102116	< 260	< 410	< 100	< 0.20	< 1.0	< 0.20	< 0.60
	Farallon	7/1/2019	DOF-3-190701	125	< 200	< 100	< 0.2	< 0.2	< 0.2	< 0.60
	DOF	11/12/2009	DOF-4	< 250	< 500	< 250	< 1.0	< 1.0	< 1.0	< 2.0
	DOF	3/18/2010	DOF-4	< 250	< 500	< 250	< 1.0	< 1.0	< 1.0	< 2.0
	DOF	10/5/2010	DOF-4	< 100	< 200	< 250	< 1.0	< 1.0	< 1.0	< 2.0
	DOF	3/3/2011	DOF-4	< 100	< 200	< 250	< 1.0	< 1.0	< 1.0	< 2.0
DOF-4	DOF	3/23/2012	DOF-4	< 100	< 200	< 250	< 1.0	< 1.0	< 1.0	< 2.0
	DOF	8/28/2014	DOF-4			< 250	< 1.0	< 1.0	< 1.0	< 3.0
	DOF	11/26/2014	DOF-4			< 250	< 1.0	< 1.0	< 1.0	< 3.0
	Farallon	10/24/2016	DOF-4-102416	< 260	450	< 100	< 0.20	< 1.0	< 0.20	< 0.60
	Farallon	7/1/2019	DOF-4-190701	185	< 200	< 100	< 0.2	< 0.2	< 0.2	< 0.60
W Most-Stringent Gro	oundwater PCUL: Nonp			500 ⁴	500 ⁴	800/1,000 ⁵	1.6	130	31	330

Groundwater Analytical Results for TPH and BTEX

Emerald Gateway Site Seattle/Tukwila, Washington

Farallon PN: 1071-026

						Analytic	cal Results (micrograms)	per liter)		
Sample Location	Sampled By	Sample Date	Sample Identification	DRO ¹	ORO¹	GRO ²	Benzene ³	Toluene ³	Ethylbenzene ³	Xylenes ³
	DOF	11/12/2009	DOF-5	< 250	< 500	< 250	< 1.0	< 1.0	< 1.0	< 2.0
	DOF	3/18/2010	DOF-5	< 250	< 500	< 250	< 1.0	< 1.0	< 1.0	< 2.0
	DOF	10/5/2010	DOF-5	< 100	< 200	< 250	< 1.0	< 1.0	< 1.0	1.2
DOE 5	DOF	3/3/2011	DOF-5	< 100	< 200	< 250	< 1.0	< 1.0	< 1.0	< 2.0
DOF-5	DOF	3/23/2012	DOF-5	< 100	< 200	< 250	< 1.0	< 1.0	< 1.0	< 2.0
	DOF	8/28/2014	DOF-5			< 250	< 1.0	< 1.0	< 1.0	< 3.0
	DOF	11/26/2014	DOF-5			< 250	< 1.0	< 1.0	< 1.0	< 3.0
	Farallon	7/1/2019	DOF-5-190701	108	< 200	< 100	< 0.2	< 0.2	< 0.2	0.15 J
DW Most-Stringent Gro	oundwater PCUL: Nonp	otable Water ³	•	500 ⁴	500 ⁴	800/1,000 ⁵	1.6	130	31	330

NOTES:

Results in **bold** and highlighted denote concentrations exceeding one or more screening levels.

BTEX = benzene, toluene, ethylbenzene, and xylenes

DOF = Dalton, Olmsted & Fuglevand, Inc.

DRO = total petroleum hydrocarbons (TPH) as diesel-range organics

Farallon = Farallon Consulting, L.L.C.

GRO = TPH as gasoline-range organics

J = result is an estimate

LDW = Lower Duwamish Waterway

M = hydrocarbons in the gasoline-range are impacting the DRO result

NA = not applicable

ORO = TPH as oil-range organics

PCUL = preliminary cleanup level

< denotes analyte not detected at or exceeding the reporting limit listed.

[—] denotes sample not analyzed.

¹Analyzed by Northwest Method NWTPH-Dx.

²Analyzed by Northwest Method NWTPH-Gx.

³Washington State Department of Ecology Lower Duwamish Waterway Preliminary Cleanup Level Workbook, revised April 2019, unless otherwise noted.

⁴Washington State Model Toxics Control Act Cleanup Regulation Method A Cleanup Levels for Groundwater, Table 720-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as amended 2013.

⁵Cleanup level is 800 micrograms per liter if benzene is detected and 1,000 micrograms per liter if benzene is not detected.

Groundwater Analytical Results for PAHs Emerald Gateway Site

Seattle/Tukwila, Washington Farallon PN: 1071-0266

									Га	iralion P	14. 10/1-0	1200											-
												Analyti	ical Results	(microgram	s per liter) ¹								
								1	Non-Carcino	ogenic PAH	s								Carcino	genic PAH	S		
Sample Location	Sampled By	Sample Date	Sample Identification	Naphthalene	1-Methylnaphthalene	2-Methylnaphthalene	Total Naphthalenes ²	Acenaphthene	Acenaphthylene	Anthracene	Benzo(g,h,i)Perylene	Fluoranthene	Fluorene	Phenanthrene	Pyrene	Benzo(a)Pyrene	Benzo(a)Anthracene	Benzo(b)Fluoranthene	Benzo(j,k)Fluoranthene	Chrysene	Dibenzo(a,h)Anthracene	Indeno(1,2,3-cd)Pyrene	Total cPAHs TEC ^{3,4}
									Ar	ea 2: Perish	ables Wareh	ouse											
									Reconnais	sance Borin	g Groundwa	ter Samples	3										
F-1	Farallon	10/20/2016	F-1-GW	< 0.19	1.9	1.6	3.5	< 0.19	< 0.19	< 0.19	< 0.019	< 0.19	< 0.19	0.23	< 0.19	< 0.019	< 0.019	< 0.019	< 0.019	< 0.019	< 0.019	< 0.019	< 0.014
									Monito	oring Well G	Froundwater	Samples											
MW 101	Monitoring Well Groundwater Samples Monitoring Well Groundwater Samples MW-101 MW-101-101916 MW-101-101916 0.10 3.0 0.43 3.5 0.20 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.0094 0.																						
WIW-101	Monitoring Well Groundwater Samples Samples Sample Sample																						
									A	rea 4: Form	er Fueling A	rea											
									Reconnais	sance Borin	g Groundwa	ater Samples	3										
P10-3	DOF	7/7/2001	Probe 10-3	< 0.50	< 0.50	< 0.50	< 1.5	< 0.50	< 0.50	< 0.50	< 0.012	< 0.50	< 0.50	< 0.50	< 0.50	< 0.012	< 0.012	< 0.012	< 0.012	< 0.012	< 0.012	< 0.012	< 0.0091
									Monito	oring Well G	Froundwater	Samples											
FMW-02	Farallon	7/2/2019	FMW-02-190702	0.006 J	0.005 J	0.005 J	0.011	0.016	< 0.010	0.004 J	< 0.010	0.003 J	0.015	0.022	0.002 J	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.0076
									Area 5:	Former Tra	iler Mainten	ance Shop											
									Reconnais	sance Borin	g Groundwa	ter Samples	5										
F-11	Farallon	10/18/2016	F-11-GW	< 0.095	< 0.095	< 0.095	< 0.285	< 0.095	< 0.095	< 0.095	< 0.0095	< 0.095	< 0.095	< 0.095	< 0.095	< 0.0095	< 0.0095	< 0.0095	< 0.0095	< 0.0095	< 0.0095	< 0.0095	< 0.0072
F-12	Farallon	10/17/2016	F-12-GW	< 0.096	< 0.096	< 0.096	< 0.288	< 0.096	< 0.096	< 0.096	< 0.0096	< 0.096	< 0.096	< 0.096	< 0.096	< 0.0096	< 0.0096	< 0.0096	< 0.0096	< 0.0096	< 0.0096	< 0.0096	< 0.0072
F-14	Farallon	10/18/2016	F-14-GW	< 0.095	< 0.095	< 0.095	< 0.285	< 0.095	< 0.095	< 0.095	< 0.0095	< 0.095	< 0.095	< 0.095	< 0.095	< 0.0095	< 0.0095	< 0.0095	< 0.0095	< 0.0095	< 0.0095	< 0.0095	< 0.0072
									Area	6: Former	Truck Repai	r Shop											
									Reconnais	sance Borin	g Groundwa	ter Samples	S										
F-16	Farallon	10/17/2016	F-16-GW	< 0.095	< 0.095	< 0.095	< 0.285	< 0.095	< 0.095	< 0.095	0.016	< 0.095	< 0.095	< 0.095	< 0.095	< 0.0095	< 0.0095	< 0.0095	< 0.0095	< 0.0095	0.014	0.014	0.009
F-17	Farallon	10/17/2016	F-17-GW	42	14	23	79	0.20	< 0.096	< 0.096	< 0.0096	< 0.096	0.37	0.38	< 0.096	< 0.0096	< 0.0096	< 0.0096	< 0.0096	< 0.0096	< 0.0096	< 0.0096	< 0.0072
F-18	Farallon	10/17/2016	F-18-GW	< 0.095	< 0.095	< 0.095	< 0.285	< 0.095	< 0.095	< 0.095	< 0.0095	< 0.095	< 0.095	< 0.095	< 0.095	< 0.0095	< 0.0095	< 0.0095	< 0.0095	< 0.0095	< 0.0095	< 0.0095	< 0.0072
	,					T	1	T	Monito	oring Well G	roundwater	Samples	T	1	1	1		•		1			
MW-4	Farallon	10/21/2016	MW-4-102116	< 0.19	< 0.19	< 0.19	< 0.57	< 0.19	< 0.19	< 0.19	< 0.019	< 0.19	< 0.19	< 0.19	< 0.19	< 0.019	< 0.019	< 0.019	< 0.019	< 0.019	< 0.019	< 0.019	< 0.014
	Farallon	7/1/2019	MW-4-190701	0.003 J	0.005 J	0.003 J	0.011	0.084	< 0.010	< 0.010	< 0.010	< 0.010	0.011	0.012	0.002 J	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.0076
MW-203	Farallon	10/21/2016	MW-203-102116	< 0.095	< 0.095	< 0.095	< 0.285	< 0.095	< 0.095	< 0.095	< 0.0095	< 0.095	< 0.095	< 0.095	< 0.095	< 0.0095	< 0.0095	< 0.0095	< 0.0095	< 0.0095	< 0.0095	< 0.0095	< 0.0072
	Farallon Farallon	7/1/2019 10/21/2016	MW-203-190701 MW-207-102116	0.002 J < 0.095	< 0.010 < 0.095	< 0.010 < 0.095	0.002 < 0.285	< 0.010 < 0.095	< 0.010 < 0.095	< 0.010 < 0.095	< 0.010 < 0.0095	< 0.010 < 0.095	< 0.010 < 0.095	< 0.010 < 0.095	< 0.010 < 0.095	< 0.010 < 0.0095	< 0.010 < 0.0095	< 0.010 < 0.0095	< 0.010 < 0.0095	< 0.010 < 0.0095	< 0.010 < 0.0095	< 0.010 < 0.0095	< 0.0076 < 0.0072
MW-207	Farallon	7/1/2019	MW-207-102116 MW-207-190701	0.002 J	< 0.095	< 0.095	0.002	< 0.095	< 0.095	< 0.095	< 0.0095	< 0.095	< 0.095	< 0.095	< 0.095	< 0.0095	< 0.0095	< 0.0095	< 0.0095	< 0.0095	< 0.0095	< 0.0095	< 0.0072
	Farallon	10/21/2016	MW-AG1-102116	< 0.19	< 0.010	< 0.010	< 0.57	< 0.19	< 0.010	< 0.010	< 0.010	< 0.19	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.0076
MW-AG1	Farallon	7/1/2019	MW-AG1-190701	0.002 J	0.002 J	0.001 J	0.005	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	0.003 J	0.001 J	< 0.019	< 0.019	< 0.019	< 0.019	0.001 J	< 0.019	< 0.019	0.0075
MW-AG2	Farallon	10/19/2016	MW-AG2-101916	< 0.094	< 0.094	< 0.094	< 0.282	< 0.094	< 0.094	< 0.094	< 0.0094	< 0.094	< 0.094	< 0.094	< 0.094	< 0.0094	< 0.0094	< 0.0094	< 0.0094	< 0.0094	< 0.0094	< 0.0094	< 0.0071
WW-AG2	Farallon	7/1/2019	MW-AG2-190701	0.002 J	0.001 J	0.001 J	0.004	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	0.002 J	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.0076
LDW Most-Strii	ngent Groundwa	ater PCUL: Non	potable Water ⁵	1.4	NA	NA		5.3	NA	2.1	NA	1.8	3.7	NA	2.0	0.000016	0.00016	0.00016	0.0016	0.016	0.000016	0.00016	0.000016

Groundwater Analytical Results for PAHs

Emerald Gateway Site Seattle/Tukwila, Washington

Farallon PN: 1071-0266

Note Continue Note Note Continue Note Continue Note Continue Note Continue Note Continue Note													Analyti	cal Results ((micrograms	s per liter) ¹								
Sumple S]	Non-Carcin	ogenic PAH	s			(8	, F == ==== ,				Carcino	genic PAHs	<u> </u>		
Point Familian 1019/2016 Doi: 1019/2016 Doi: 1019/2016 Doi: 1019/2016 O.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004 <.0.0004	_	Sampled By	Sample Date	Sample Identification	Naphthalene	1-Methylnaphthalene	2-Methylnaphthalene	Total Naphthalenes²	Acenaphthene	Acenaphthylene	Anthracene	Benzo(g,h,i)Perylene	Fluoranthene	Fluorene	Phenanthrene	Pyrene	Benzo(a)Pyrene	Benzo(a)Anthracene	Benzo(b)Fluoranthene	Benzo(j,k)Fluoranthene	Chrysene	Dibenzo(a,h)Anthracene	2,3	Total cPAHs TEC ^{3,4}
Part Fund Part																								
		1		1	1		[1	1		_	ı	_						1	1	1		1	
MW-01 Parallon P	DOF-1																							
Pig-2 DOF 73/2001 Probe 10-2 0.50	EMW 01																				i i			1
Pio DOF 73/2001 Probe 10-2 Co.50 C	FMW-01	Farallon 7/1/2019 DOF-1-190701 0.002 J 0.001 J 0.001 J 0.001 0.003 0.001 0.003 0.001 0.0000 0.00																						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$																								
P10-4 DOF 7/72001 Probe 10-4 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50	D10.2	DOE	7/2/2001	D 1 10.2	< 0.50	< 0.50	< 0.50	-15	< 0.50					< 0.50	< 0.50	< 0.50	< 0.012	< 0.012	< 0.012	< 0.012	< 0.012	< 0.012	< 0.012	< 0.0001
Pi0-5 DOF 7/7/2001 Probe 10-5 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.01		-			-							+												
Familian												+								_				
Feature Frank F	P10-3	DOF	////2001	P100e 10-3	< 0.30	< 0.30	< 0.30	< 1.5	< 0.30					< 0.30	< 0.30	< 0.30	< 0.012	< 0.012	< 0.012	< 0.012	< 0.012	< 0.012	< 0.012	< 0.0091
F-20													•											
F-21 Farallon 10/19/2016 F-21-GW C-0.096 C-0	F-20	Farallon	10/18/2016	F-20-GW	< 0.11	< 0.11	< 0.11	< 0.33	< 0.11			Ī	_	< 0.11	< 0.11	< 0.11	< 0.011	< 0.011	< 0.011	< 0.011	< 0.011	< 0.011	< 0.011	< 0.008
FMW-03 Farallon 7/1/2019 FMW-03-190701 0.025 1.31 0.011 1.35 0.096 0.0081 0.0021 < 0.010 < 0.010 0.051 0.048 0.0021 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.01	F-21	Farallon		F-21-GW	< 0.096		< 0.096		< 0.096	< 0.096	< 0.096	< 0.0096	< 0.096	< 0.096	< 0.096	< 0.096	< 0.0096	< 0.0096		< 0.0096	< 0.0096	< 0.0096	< 0.0096	< 0.0072
FMW-03 Farallon 7/1/2019 FMW-03-190701 0.025 1.31 0.011 1.35 0.096 0.0081 0.0021 0.010 0.010 0.051 0.048 0.0021 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.000	F-23	Farallon	10/19/2016	F-23-GW	< 0.096	< 0.096	< 0.096	< 0.288	< 0.096	< 0.096	< 0.096	< 0.0096	< 0.096	< 0.096	< 0.096	< 0.096	< 0.0096	< 0.0096	< 0.0096	< 0.0096	< 0.0096	< 0.0096	< 0.0096	< 0.0072
					•					Monito	oring Well (Froundwater	Samples						•		•			
P-10-1 DOF 7/3/2001 Proble 10-1 8 2.1 4.3 14.4 .	FMW-03	Farallon	7/1/2019	FMW-03-190701	0.025	1.31	0.011	1.35	0.096	0.008 J	0.002 J	< 0.010	< 0.010	0.051	0.048	0.002 J	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.0076
P-10-1 DOF 7/3/2001 Proble 10-1 8 2.1 4.3 14.4 -									A	rea 13: Fori	ner Northw	est Auto Wr	ecking Prope	erty					•	•				
$ DOF-2 = \frac{Farallon}{Farallon} \frac{10/24/2016}{71/2019} \frac{DOF-2-102416}{DOF-2-102416} \frac{0.64}{0.64} \frac{1.8}{0.64} \times \frac{0.19}{0.094} \times \frac{0.19}{0.094} \times \frac{0.19}{0.094} \times \frac{0.19}{0.019} \times \frac{0.19}{0.019} \times \frac{0.19}{0.019} \times \frac{0.19}{0.019} \times \frac{0.19}{0.019} \times \frac{0.019}{0.019} \times \frac{0.019} \times \frac{0.019}{0.019} \times \frac{0.019}{0.019} \times \frac{0.019}{0.019} \times $										Reconnais	sance Borir	ng Groundw	ater Samples											
$\frac{100}{100} = \frac{100}{100} = $	P-10-1	DOF	7/3/2001	Proble 10-1	8	2.1	4.3	14.4																
Farallon 7/1/2019 DOF-2-190701 0.4 0.646 0.609 1.655 0.128 0.004 J 0.004 J 0.004 J 0.010 0.147 0.045 0.002 J 0.010					<u></u>					Monito	oring Well (Groundwater	Samples		- 			- 						
Farallon 7/1/2019 DOF-2-190701 0.4 0.646 0.609 1.655 0.128 0.004 J 0.004 J 0.004 J 0.010 0.147 0.045 0.002 J 0.010	DOE-2	Farallon	10/24/2016	DOF-2-102416	0.64	1.8	< 0.19	2.4	< 0.19	< 0.19	< 0.19	< 0.019	< 0.19	< 0.19	< 0.19	< 0.19	< 0.019	< 0.019	< 0.019	< 0.019	< 0.019	< 0.019	< 0.019	< 0.014
Farallon 7/1/2019 DOF-3-190701 0.003 J 0.001 J	DOI-2	Farallon	7/1/2019	DOF-2-190701	0.4	0.646	0.609	1.655	0.128	0.004 J	0.004 J	< 0.010	< 0.010	0.147	0.045	0.002 J	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.0076
Farallon 7/1/2019 DOF-3-190701 0.003 J 0.001 J 0.001 J 0.005 S	DOF-3	Farallon		DOF-3-102116	< 0.094	< 0.094			< 0.094	< 0.094	< 0.094	< 0.0094	< 0.094	< 0.094	< 0.094	< 0.094	< 0.0094	< 0.0094	< 0.0094	< 0.0094		< 0.0094	< 0.0094	< 0.0071
Farallon 7/1/2019 DOF-4-190701 0.002 J 0.001 J		Farallon	7/1/2019		0.003 J				< 0.010		< 0.010	1		< 0.010		< 0.010			< 0.010					< 0.0076
Farallon 7/1/2019 DOF-4-190701 0.002 J 0.001 J 0.001 J 0.004 0.001 0.004 0.010 0.001	DOF-4	Farallon				< 0.095			< 0.095		< 0.095			< 0.095		< 0.095		< 0.0095		< 0.0095	1			< 0.0072
																				< 0.010	1			< 0.0076
LDW Most-Stringent Groundwater PCUL: Nonpotable Water ⁵ 1.4 NA NA 5.3 NA 2.1 NA 1.8 3.7 NA 2.0 0.000016 0.00016 0.00016 0.00016 0.00016 0.00016 0.000016 0.00016					t			0.189	0.009 J	< 0.010	< 0.010	< 0.010	< 0.010	0.003 J	0.001 J	< 0.010				†				< 0.0076
NOTES:		ngent Groundw	ater PCUL: Non	potable Water ⁵	1.4	NA	NA		5.3	NA	2.1	NA	1.8	3.7	NA	2.0	0.000016	0.00016	0.00016	0.0016	0.016	0.000016	0.00016	0.000016

Results in **bold** and highlighted denote concentrations exceeding one or more screening levels.

cPAHs = carcinogenic polycyclic aromatic hydrocarbons

DOF = Dalton, Olmsted & Fuglevand, Inc.

E = concentration exceeds upper limit of the instrument calibration range.

Farallon = Farallon Consulting, L.L.C.

J = result is an estimate

LDW = Lower Duwamish Waterway

NA = not applicable

NE = not established

PAHs = polycyclic aromatic hydrocarbons PCUL = preliminary cleanup level

TEC = toxic equivalent concentration

< denotes analyte not detected at or exceeding the reporting limit listed.

¹Analyzed by U.S. Environmental Protection Agency Method 8270 or 8270D/SIM.

²Sum of naphthalenes, 1-methylnaphthalene, and 2-methylnaphthalene.

³Total ePAHs derived using the total toxicity equivalency method in Section 708(8) of Chapter 173-340 of the Washington Administrative Code.

⁴For concentrations reported at less than the laboratory reporting limit, half the reporting limit was used to calculate the TEC.

⁵Washington State Department of Ecology Lower Duwamish Waterway Preliminary Cleanup Level Workbook, revised April 2019.

Groundwater Analytical Results for Select VOCs

Emerald Gateway Site Seattle/Tukwila, Washington

		I									An	alvtical Res	ults (microg	rams per lite	r) ¹							
											111	_		per ne	/							
Sample Location	Sampled By	Sample Date	Sample Identification	1,2,4-Trimethylbenzene	1,3,5-Trimethylbenzene	1,2-Dichloropropane	Acetone	Carbon Disulfide	Chloroform	cis-1,2-Dichloroethene	Dichlorodifluoromethane	Isopropylbenzene (Cumene)	Methyl Tertiary Butyl Ether	n-Butylbenzene	n-Propylbenzene	p-Isopropyltoluene	sec-Butylbenzene	tert-Butylbenzene	Tetrachloroethene (PCE)	Trichloroethene (TCE)	Trichlorofluoromethane	Vinyl Chloride
									Area 2:	Perishables	Warehouse											
								Rec	connaissance	Boring Gre	oundwater S	amples										
F-1	Farallon	10/20/2016	F-1-GW	< 0.40	< 0.40	< 0.40	< 10	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40
]	Monitoring	Well Groun	dwater Sam	ples										
MW-101	Farallon	10/19/2016	MW-101-101916	< 0.40	< 0.40	< 0.40	< 10	< 0.40	< 0.40	< 0.40	2.7	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40
									Area 4	: Former Fu	eling Area											
								Rec	connaissance	Boring Gr	oundwater S	amples										
F-8	Farallon	10/26/2016	F-8-GW	0.24	< 0.20	< 0.20	< 8.0	< 0.20	< 0.20	< 0.20	< 0.28	< 0.20	4.5	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.40	< 0.20	< 0.20	< 0.20
											Maintenance	-										
					_			Rec	connaissance	Boring Gro	oundwater S	amples		_				_				
F-11	Farallon	10/18/2016	F-11-GW	< 0.20	< 0.20	< 0.20	< 5.0	0.36	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	0.22	< 0.20	< 0.20	< 0.20
F-12	Farallon	10/17/2016	F-12-GW	< 0.20	< 0.20	< 0.20	< 5.0	0.22	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
F-13	Farallon	10/18/2016	F-13-GW	< 0.20	< 0.20	< 0.20	7.1	0.52	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
F-14	Farallon	10/18/2016	F-14-GW	< 0.40	< 0.40	< 0.40	< 10	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40
											k Repair Sho	=										
P10.2	DOE	7/7/2001	D 1 10.2	.0.20	. 0.20	.0.20	. 7.0			_	oundwater S	_	. 0. 20	.0.20	. 0.20	.0.20	.0.20	.0.20	.0.20	. 0. 20	. 0. 20	. 0. 20
P10-3 P-DOF-6.3	DOF DOF	7/7/2001 2/27/2008	Probe 10-3 P-DOF-6.3	< 0.20 5.5	< 0.20	< 0.20	< 5.0	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
F-DOF-0.3	DOF	2/2//2008	F-DOF-0.5	3.3						l .	dwater Sam											
MW-4	Farallon	10/21/2016	MW-4-102116	< 0.20	< 0.20	< 0.20	< 5.0	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
MW-203	Farallon	10/21/2016	MW-203-102116	< 0.20	< 0.20	< 0.20	< 5.0	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
MW-207	Farallon	10/21/2016	MW-207-102116	< 0.20	< 0.20	< 0.20	< 5.0	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
MW-AG1	Farallon	10/21/2016	MW-AG1-102116	< 0.20	< 0.20	< 0.20	< 5.0	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
MW-AG2	Farallon	10/19/2016	MW-AG2-101916	< 0.20	< 0.20	< 0.20	< 5.0	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
								Ar	rea 7: Forme	er Automobi	le Service St	ations										
								Rec	connaissance	Boring Gro	oundwater S	amples										
P7-1	DOF	7/3/2001	P7-1	12	2.1							1.3		1.1	1.1							
P7-4	DOF	7/3/2001	P7-4		0.42																	
P-DOF-2	DOF	2/27/2007	P-DOF-2	< 1.00	< 1.00	< 1.00	< 20.0	8.80	< 1.00	< 1.00	< 1.00	< 1.00	< 2.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 0.200
DOT 1	Б. "	10/10/2017	POP 1 101016	.0.20	.0.20	.0.20					dwater Sam		.0.20		. 0.20	.0.20	.0.20	.0.20	.0.20	.0.20	.0.20	.0.20
DOF-1	Farallon	10/19/2016	DOF-1-101916	< 0.20	< 0.20	< 0.20	< 5.0	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
LDW Most-Str	ingent Groundwa	ater PCUL: Non	potable Water ²	240	NA	3.1	NA	400	1.2	NA	5.6	NA	600	NA	NA	NA	NA	NA	2.9	0.70	120	0.18
									Area 1	0: Up-Grad	ient Areas											
P10-2	DOF	7/3/2001	Probe 10-2	< 20		< 20			< 20	< 20	< 20								< 20	< 20	< 20	< 20
P10-4	DOF	7/7/2001	Probe 10-4	< 1.0	< 1.0	< 1.0	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
P10-5	DOF	7/7/2001	Probe 10-5	< 1.0	< 1.0	< 1.0	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Groundwater Analytical Results for Select VOCs

Emerald Gateway Site Seattle/Tukwila, Washington

Farallon PN: 1071-026

											An	alytical Res	ults (microg	rams per lite	er) ¹							
Sample Location	Sampled By	Sample Date	Sample Identification	1,2,4-Trimethylbenzene	1,3,5-Trimethylbenzene	1,2-Dichloropropane	Acetone	Carbon Disulfide	Chloroform	cis-1,2-Dichloroethene	Dichlorodifluoromethane	Isopropylbenzene (Cumene)	Methyl Tertiary Butyl Ether	n-Butylbenzene	n-Propylbenzene	p-Isopropyltoluene	sec-Butylbenzene	tert-Butylbenzene	Tetrachloroethene (PCE)	Trichloroethene (TCE)	Trichlorofluoromethane	Vinyl Chloride
								A	rea 11: Forr	ner South M	laintenance l	Shop										
								Rec	onnaissance	Boring Gro	undwater S	amples										
F-20	Farallon	10/18/2016	F-20-GW	0.25	< 0.20	< 0.20	5.7	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
F-21	Farallon	10/19/2016	F-21-GW	< 0.20	< 0.20	< 0.20	< 5.0	0.81	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
F-22	Farallon	10/19/2016	F-22-GW	< 0.20	< 0.20	< 0.20	< 5.0	< 0.20	< 0.20	0.24	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
F-23	Farallon	10/19/2016	F-23-GW	< 0.20	< 0.20	0.39	< 5.0	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	0.40	< 0.20	< 0.20	< 0.20	< 0.20
		1	I	T		1					dwater Samj			T							1	
FMW-03	Farallon	7/1/2019	FMW-03-190701	0.060 B J	< 0.20	< 0.20	8.47	0.090 J	< 0.20	< 0.20	0.95	< 0.20	< 0.50	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
								Area	12: Former	Old Humbl	e Oil Service	Station										
								Rec	onnaissance	Boring Gro	undwater S	amples	•								Ī	
P-DOF-1	DOF	2/28/2007	P-DOF-1					10.6														
								Area 1	3: Former N	orthwest Au	ito Wrecking	Property										
								Rec	onnaissance	Boring Gro	undwater Sa	amples										
P10-1	DOF	7/3/2001	P10-1	43	23				0.77			5.4			18	1	1.4					
									Monitoring	Well Groun	dwater Sam _l	oles										
DOF-2	Farallon	10/24/2016	DOF-2-102416	0.33	< 0.20	< 0.20	< 7.4	< 0.20	< 0.20	< 0.20	< 0.27	6.1	< 0.20	1.2	1.5	< 0.20	1.7	0.67	< 0.20	< 0.20	0.33	< 0.20
DOF-4	Farallon	10/24/2016	DOF-4-102416	< 0.20	< 0.20	< 0.20	< 7.4	< 0.20	< 0.20	< 0.20	< 0.27	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
LDW Most-Stri	ngent Groundwa	ater PCUL: Non	potable Water ²	240	NA	3.1	NA	400	1.2	NA	5.6	NA	600	NA	NA	NA	NA	NA	2.9	0.70	120	0.18

NOTES:

DOF = Dalton, Olmsted & Fuglevand, Inc. Farallon = Farallon Consulting, L.L.C. LDW = Lower Duwamish Waterway

NA = not applicable
PCUL = preliminary cleanup level
VOCs = volatile organic compounds.

< denotes analyte not detected at or exceeding the reporting limit listed.</p>

[—] denotes sample not analyzed or reporting limit unknown for non-detected analytes.

¹Analyzed by U.S. Environmental Protection Agency Method 8260.
²Washington State Department of Ecology Lower Duwamish Waterway Preliminary Cleanup Level Workbook, revised April 2019.

Table 11 Groundwater Analytical Results for Metals 3301 South Norfolk Street Seattle/Tukwila, Washington

									Ana	alytical Result (n	nicrograms per li	iter) ¹					
Sample				Total	Dissolved	Total	Dissolved		Dissolved	Total	Dissolved	Total	Dissolved		Dissolved		T
Location	Sampled By	Sample Date	Sample Identification	Arsenic	Arsenic	Cadmium	Cadmium	Total Copper	Copper	Lead	Lead	Manganese	Manganese	Total Mercury	Mercury	Total Zinc	Dissolved Zinc
							A	rea 2: Perishable	s Warehouse								
							Reconnai	ssance Boring G	roundwater Sam	ples							
F-1	Farallon	10/20/2016	F-1-GW		11												
F-2	Farallon	10/20/2016	F-2-GW		9.6												
							Monit	oring Well Grou	ndwater Samples	S							
MW-101	Farallon	10/19/2016	MW-101-101916		48						< 1.0						
	Farallon	7/1/2019	MW-101-190701	49.2	50.1	< 0.1	< 0.1	< 0.5	< 0.5	< 0.1	< 0.1	4,130	4,060	< 0.02	< 0.02	7.22 B	2.59 J
							A	Area 4: Former F	ueling Area								
							Monit	oring Well Grou	ndwater Samples	S							
FMW-02	Farallon	7/2/2019	FMW-02-190702	7.14	6.75	< 0.1	< 0.1	1.03	0.536	< 0.1	< 0.1	723	685	0.016 J	0.015 J	8.2	2.44 J
							Area 5:	Former Trailer	Maintenance Sho	Op .							
								`									
F-11	Farallon	10/18/2016	F-11-GW		3.1												
F-12	Farallon	10/17/2016	F-12-GW		< 3.0												
F-14	Farallon	10/18/2016	F-14-GW		9.9												
							Area	6: Former Truc	k Shop Building								
							Reconnai	ssance Boring G	roundwater Sam	ples							
F-16	Farallon	10/17/2016	F-16-GW		< 3.0						< 1.0						
F-17	Farallon	10/17/2016	F-17-GW		3.2						< 1.0						
F-18	Farallon	10/17/2016	F-18-GW		24						< 1.0						
	1	1		•	1	1	Monit	oring Well Grou	ndwater Samples	5	1	1	1	,		1	
MW-4	Farallon	10/21/2016	MW-4-102116		38												
	Farallon	7/1/2019	MW-4-190701	12.3	11.6	< 0.2	< 0.2	2.21	1.07	0.216	< 0.2	904	937	0.015 J	0.014 J	3.56 J	3.11 J
MW-203	Farallon	10/21/2016	MW-203-102116		< 3.0												
	Farallon	7/1/2019	MW-203-190701	0.629	0.476	< 0.1	< 0.1	2.09	2.03	< 0.1	< 0.1	483	481	0.019 J	0.017 J	3.97 J	4.43
MW-207	Farallon	10/21/2016	MW-207-102116		27	0.050 x	0.064.7										1.06
	Farallon	7/1/2019	MW-207-190701	8.5	2.96	0.073 J	0.061 J	1.64	0.905	0.466	< 0.1	140	137	0.019 J	0.018 J	7.04	4.86
MW-AG1	Farallon	10/21/2016	MW-AG1-102116		4.8									0.020		20.6	2.05.1
	Farallon	7/1/2019	MW-AG1-190701	7.57	5.74	< 0.2	< 0.1	30.2	7.75	2.22	0.4	94.3	74.6	0.029	0.018 J	20.6	3.05 J
MW-AG2	Farallon Farallon	10/19/2016 7/1/2019	MW-AG2-101916 MW-AG2-190701	15.9	5.8 14.8	< 0.1	< 0.1	5.79	2.11	0.576	0.223	59.6	60.6	0.018 J	0.017 J	3.33 J	2.17 J
	Paranon	//1/2019	WW-AG2-190/01	13.9	14.0	<u> </u>		Former Automob			0.223	39.0	00.0	0.016 J	0.0173	3.33 3	2.1 / 3
	DOE	11/12/2000	DOE 1	2.1	1.0	I		oring Well Grou	•		1	1	1	 		1	
	DOF DOF	11/12/2009 3/18/2010	DOF-1 DOF-1	1.0	1.8												
	DOF	10/4/2010	DOF-1 DOF-1	1.0	2.1												
	DOF	3/3/2011	DOF-1	0.5	0.5												
DOE 1	DOF	3/23/2012	DOF-1	1.5	0.3												
DOF-1	DOF	8/28/2014	DOF-1		•	•	•	•		Wel	l Dry	•	·			•	
	DOF	11/26/2014	DOF-1	0.5	0.4					< 0.1	< 0.1						
	DOF	6/5/2015	DOF-1	0.7	0.3					0.2	< 0.1						
	Farallon	10/19/2016	DOF-1-101916		< 3.0						< 1.0						
EN MY 04	Farallon	7/1/2019	DOF-1-190701	1.32	1.29	0.084 J	0.044 J	< 0.5	0.363 J	< 0.1	< 0.1	928	931	0.016 J	0.015 J	5.03	4.98
FMW-01	Farallon	7/2/2019	FMW-01-190702	0.996	0.882	< 0.1	< 0.1	0.75	0.374 J	0.126	0.074 J	528	526	0.019 J	0.017 J	22.5	2.17 J

Table 11 Groundwater Analytical Results for Metals 3301 South Norfolk Street Seattle/Tukwila, Washington Farallon PN: 1071-026

									Anal	lytical Result (m	nicrograms per li	ter) ¹					
Sample Location	Sampled By	Sample Date	Sample Identification	Total Arsenic	Dissolved Arsenic	Total Cadmium	Dissolved Cadmium	Total Copper	Dissolved Copper	Total Lead	Dissolved Lead	Total Manganese	Dissolved Manganese	Total Mercury	Dissolved Mercury	Total Zinc	Dissolved Zinc
			<u> </u>			L	Area 1	1: Former South N	Maintenance Sho	D	L		L	L			
								ssance Boring Gr	•	-							
F-21	Farallon	10/19/2016	F-21-GW		< 3.0												
F-23	Farallon	10/19/2016	F-23-GW		< 3.0												
1 23	1 dranon	10/19/2010	1 23 0 11		13.0	ı		toring Well Groun					l				
FMW-03	Farallon	7/1/2019	FMW-03-190701	0.45	0.435	< 0.1	< 0.1	< 0.5	< 0.5	< 0.1	< 0.1	612	628	0.011 J	0.016 J	3.07 J	3.1 J
		nter PCUL: Nonp	•		3.0		.2	3.			3.1	2,5		0.0113		1	81
LDW Most Strill	igent Groundwa	iter FCUL: Nonp	otable water	a	0.0	1					<u> </u>	2,5	500	0.0	<u> </u>		01
							Area 13: For	mer Northwest A	uto Wrecking Pr	operty							
							Reconnai	ssance Boring Gr	oundwater Samp	oles							
NWAW-P1	DOF	10/27/2008	NWAW-P1		6.2		< 1				< 0.2						
NWAW-P2	DOF	10/27/2008	NWAW-P2		0.8		< 1				< 0.2						
NWAW-P3	DOF	10/27/2008	NWAW-P3		3.7		< 1				< 0.2						
NWAW-P4	DOF	10/27/2008	NWAW-P4		1.0		< 1				< 0.2						
NWAW-P5	DOF	10/27/2008	NWAW-P5		0.7		< 1				< 0.2						
NWAW-P6	DOF	10/27/2008	NWAW-P6		1.7		< 1				< 0.2						
NWAW-P7	DOF	10/27/2008	NWAW-P7		1.0		< 1				< 0.2						
NWAW-P8	DOF	10/27/2008	NWAW-P8		1.4		< 1				< 0.2						
NWAW-P9	DOF	10/28/2008	NWAW-P9		6.1		< 1				< 0.2						
NIWAW DIO	DOF	10/28/2008	NWAW-P9 (duplicate)		2.6		< 1				< 0.2						
NWAW-P10	DOF DOF	10/28/2008	NWAW-P10		1.0		< 1				< 0.2						
NWAW-P11 NWAW-P12	DOF	10/28/2008 10/28/2008	NWAW-P11 NWAW-P12		2.3		< 1				< 0.2 < 0.2						
NWAW-P12 NWAW-P13	DOF	10/28/2008	NWAW-P12 NWAW-P13		3.9 10.3		< 1 < 1				< 0.2						
NWAW-P13 NWAW-P14	DOF	10/28/2008	NWAW-P13		0.7		< 1				< 0.2						
NWAW-P15	DOF	10/28/2008	NWAW-P14 NWAW-P15		0.7		< 1				< 0.2						
NWAW-P16	DOF	10/28/2008	NWAW-P16		2.1		< 1				< 0.2						
14WAW-110	DOI	10/20/2000	1(WAW-110		2.1			toring Well Groun			V 0.2						
	DOF	11/12/2009	DOF-2	9.0	8.9		Nionii	oring wen Groun				l					
	DOF	3/18/2010	DOF-2 DOF-2	15.7	13.7			 			1			+ + +		•	
	DOF	10/5/2010	DOF-2 DOF-2	14.2	12.6												
	DOF	3/3/2011	DOF-2 DOF-2	24.5	19.7												
	DOF	3/23/2012	DOF-2	19.0	17.1												
DOF-2	DOF	8/28/2014	DOF-2	35.1	35.7					1.8	0.7	1,620					
	DOF	11/26/2014	DOF-2	25.3	28.2					1.0	0.3						
	DOF	6/5/2015	DOF-2	20.5	20.2					1.9	0.6						
	Farallon	10/24/2016	DOF-2-102416		6.1						< 1.0						
	Farallon	7/1/2019	DOF-2-190701	10.1	9.87	< 0.1	< 0.1	2.95	2.38	0.44	0.479	18.4	19.1	0.024	0.022	3.56 J	5.35
	DOF	11/12/2009	DOF-3	9.1	8.6												
	DOF	3/18/2010	DOF-3	5.2	5.2												
	DOF	10/5/2010	DOF-3	2.0	1.8												
	DOF	3/3/2011	DOF-3	1.6	1.3												
DOF-3	DOF	3/23/2012	DOF-3	1.5	0.9												
DOI:-5	DOF	8/28/2014	DOF-3	3.4	1.2					1.6	0.5	15,700					
	DOF	11/26/2014	DOF-3	1.0	1.0					< 0.1	< 0.1						
	DOF	6/5/2015	DOF-3	0.9	0.9					< 0.1	< 0.1						
	Farallon	10/21/2016	DOF-3-102116		< 3.0						<1.0						
	Farallon	7/1/2019	DOF-3-190701	0.857	0.776	0.053 J	0.062 J	9.43	8.87	< 0.1	< 0.1	991	953	0.031	0.026	7.8	7.52
LDW Most Strin	gent Groundwa	iter PCUL: Nonp	ootable Water ²	8	3.0	1	.2	3.	.1	8	3.1	2,5	500	0.0	25	1	81

Table 11 **Groundwater Analytical Results for Metals** 3301 South Norfolk Street Seattle/Tukwila, Washington

Farallon PN: 1071-026

									Ana	lytical Result (m	nicrograms per li	ter) ¹					
Sample Location	Sampled By	Sample Date	Sample Identification	Total Arsenic	Dissolved Arsenic	Total Cadmium	Dissolved Cadmium	Total Copper	Dissolved Copper	Total Lead	Dissolved Lead	Total Manganese	Dissolved Manganese	Total Mercury	Dissolved Mercury	Total Zinc	Dissolved Zinc
	DOF	11/12/2009	DOF-4	7.5	7.9												
	DOF	3/18/2010	DOF-4	5.7	6.5												
	DOF	10/5/2010	DOF-4	11.5	9.4												
	DOF	3/3/2011	DOF-4	5.5	6.0												
DOF-4	DOF	3/23/2012	DOF-4	5.8	6.4												
DOI -4	DOF	8/28/2014	DOF-4	8.2	9.3					< 0.1	< 0.1	10,100					
	DOF	11/26/2014	DOF-4	11.0	11.3					0.1	< 0.1						
	DOF	6/5/2015	DOF-4	7.4	7.4					< 0.1	< 0.1						
	Farallon	10/24/2016	DOF-4-102416		< 3.0						<1.0						
	Farallon	7/1/2019	DOF-4-190701	2.17	2	< 0.1	< 0.1	0.426 J	< 0.5	< 0.1	< 0.1	675	702	< 0.02	< 0.02	10.2	2.92 J
	DOF	11/12/2009	DOF-5	1.1	1.1												
	DOF	3/18/2010	DOF-5	1.1	0.9												
	DOF	10/5/2010	DOF-5	1.1	1.2												
	DOF	3/3/2011	DOF-5	1.0	0.9												
DOF-5	DOF	3/23/2012	DOF-5	1.1	0.8												
	DOF	8/28/2014	DOF-5	1.2	1.1					0.2	< 0.1	14,400					
	DOF	11/26/2014	DOF-5	1.2	0.9					0.4	< 0.1						
	DOF	6/5/2015	DOF-5	0.8	0.7					0.1	< 0.1						
	Farallon	7/1/2019	DOF-5-190701	0.893	0.812	< 0.1	< 0.1	1.45	1.14	2.27	0.14	210	216	0.013 J	0.016 J	159	3.2 J
DW Most Stri	ingent Groundwa	ter PCUL: Nonp	otable Water ²	8	.0	1	.2	3.	1	8	3.1	2,5	500	0.0	25		81

NOTES:

Results in **bold and highlighted** denote concentrations exceeding one or more screening levels.

B = analyte detected in associated method blank. DOF = Dalton, Olmsted & Fuglevand, Inc. Farallon = Farallon Consulting, L.L.C. J = result is an estimate LDW = Lower Duwamish Waterway NA = not applicable

PCUL = preliminary cleanup level

< denotes analyte not detected at or exceeding the reporting limit listed.

[—] denotes sample not analyzed.

¹Analyzed by U.S. Environmental Protection Agency Method 200.8/6010 Series.
³Washington State Department of Ecology Lower Duwamish Waterway Preliminary Cleanup Level Workbook, revised April 2019.

Table 12 Groundwater Analytical Results for PCB Aroclors Emerald Gateway Site

Seattle/Tukwila, Washington Farallon PN: 1071-026

							Analyt	ical Results (1	nicrograms p	er liter) ¹			
Sample Location	Sampled By	Sample Date	Sample Identification	Aroclor 1016	Aroclor 1221	Aroclor 1232	Aroclor 1242	Aroclor 1248	Aroclor 1254	Aroclor 1260	Aroclor 1262	Aroclor 1268	Total PCBs ²
				No	orthern Prope	rty Boundary	7		•		•		
				Reconnaiss	sance Boring	Groundwater	Samples						
F-27	Farallon	6/27/2019	F-27-190627	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.90
F-28	Farallon	6/28/2019	F-28-190628	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.90
٠				Arc	ea 2: Perishab	les Warehous	e	•		•			
MW-101	Farallon	7/1/2019	MW-101-190701	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.090
				Aı	rea 4: Former	Fueling Area	ı						
FMW-02	Farallon	7/2/2019	FMW-02-190702	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.090
·				Area (6: Former Tru	ick Shop Buil	ding	•		•			
MW-4	Farallon	7/1/2019	MW-4-190701	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.090
MW-203	Farallon	7/1/2019	MW-203-190701	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.090
MW-207	Farallon	7/1/2019	MW-207-190701	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.090
MW-AG1	Farallon	7/1/2019	MW-AG1-190701	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.090
MW-AG2	Farallon	7/1/2019	MW-AG2-190701	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.090
				Area 7: F	ormer Autom	obile Service	Stations						
DOF-1	Farallon	7/1/2019	DOF-1-190701	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.090
FMW-01	Farallon	7/2/2019	FMW-01-190702	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.090
·				Area 11:	Former Sout	h Maintenanc	e Shop	•		•			
FMW-03	Farallon	7/1/2019	FMW-03-190701	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.090
				Area 13: Forn	ner Northwest	Auto Wrecki	ing Property						
DOF-2	Farallon	7/1/2019	DOF-2-190701	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.090
DOF-3	Farallon	7/1/2019	DOF-3-190701	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.090
DOF-4	Farallon	7/1/2019	DOF-4-190701	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.090
DOF-5	Farallon	7/1/2019	DOF-5-190701	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.090
LDW Most Stringe	ent Groundwater	PCUL: Nonpotable V	Vater ³										0.0000070

NOTES:

LDW = Lower Duwamish Waterway

PCB = polychlorinated biphenyl

PCUL = preliminary cleanup level

< denotes analyte not detected at or exceeding the reporting limit listed.

¹Analyzed by U.S. Environmental Protection Agency Method 8082A.

²Where all Aroclors were non-detect in a specific sample, half the reporting limit for each Aroclor was used to calculate total PCBs.

³Washington State Department of Ecology Lower Duwamish Waterway Preliminary Cleanup Level Workbook, revised April 2019.

Table 13 Summary of COPCs in Soil Emerald Gateway Site Seattle/Tukwila, Washington Farallon PN: 1071-026

	1				T	1							1	ı			1	1	1	
				requency of	LDW Most-Stringent Soil PCUL: Vadose	Soil PCUL: Saturated	Number of Detects	Number of Detects	Number of Non- Detects	Number of Non- Detects	Exceedance	Exceedance Frequency of	Exceedance	Exceedance Frequency of Non		Maximum Detected	Maximum			
Constituents of Potential Concern	Number of Results	of Number Detection		Detection (%)	(w/o SL-9) ¹	Zone, Nonpotable GW (w/o SL-9) ¹	Exceeding the PCUL	Exceeding 2x the PCUL	Exceeding the PCUL	Exceeding 10x the PCUL	Frequency of Detects (%)	Detects > 2x PCUL (%)	Frequency of Non- Detects (%)	Detects > 10x PCUL (%)	Reporting Limit for Non-Detects	Concentration (mg/kg)	Exceedance Factor	Eliminated	Elimination Rationale	Retained as COC
Total Petroleum Hydrocarbons and		Detec		(70)	(1110 (311-5))	(#/052-5)	TCCL	thereeL	TCCL	thereen	Detects (70)	TCCE (70)	Detects (70)	1002 (70)	101 11011-Detects	(mg/kg)	Tuctor	Limmucu	Autonac	
DRO	199	54		27%	2000	2000	2	2	0	0	1%	1%	0%	0%	23.5	9900	5.0			Yes
ORO	199	64		32%	2000	2000	0	0	0	0	0%	0%	0%	0%	58.25	1600	0.80	X	Detects/NDs never exceeded most stringent PCUL; RLs <pcul< td=""><td></td></pcul<>	
GRO Benzene	192 163	41 10		21% 6%	30 0.0088	30 0.00056	20 7	13	2 149	83	10% 4%	7% 4%	1% 91%	0% 51%	8.075 0.021	12300 4.8	410 8571			Yes Yes
Toluene	171	13		8%	0.92	0.0055	3	1	19	9	2%	1%	11%	5%	0.021	32	35			Yes
Ethylbenzene	171	22		13%	0.26	0.015	19	14	74	5	11%	8%	43%	3%	0.02225	51	3400			Yes
Xylenes	171	24		14%	16,000	16,000	0	0	0	0	0%	0%	0%	0%	0.047	135	0.01	X	Detects/NDs never exceeded most stringent PCUL; RLs <pcul< td=""><td></td></pcul<>	
Polycyclic Aromatic Hydrocarbons				***	1	1 1					407	40/	C 40/	00/	1 000005		1		1	
Naphthalene 1-Methylnaphthalene	25	1		4% 10%	0.039	0.0021 29	0	0	16	0	4% 0%	4% 0%	64% 0%	0% 0%	0.02935 0.0308	9.5	51.28 0.33	Y	Detects/NDs never exceeded most stringent PCUL; RLs <pcul< td=""><td>Yes</td></pcul<>	Yes
2-Methylnaphthalene	21	3		14%	0.67	0.67	1	1	0	0	5%	5%	0%	0%	0.0308	9.1	13.58	^	Detects/NDs never exceeded most stringent FCOL, RLs\FCOL	Yes
Total Naphthalenes	25	3		12%	NE	NE	0	0	0	0	0%	0%	0%	0%	0.0879	20.6	0.00	X	No Ecology-provided PCUL	
Acenaphthene	21	2		10%	0.5	0.028	0	0	0	0	0%	0%	0%	0%	0.0308	0.5	1.00	X	Detects/NDs never exceeded most stringent PCUL; RLs <pculs< td=""><td>_</td></pculs<>	_
Acenaphthylene Anthracene	21	1		10% 5%	1.3 0.96	1.3 0.051	0	0	0	0	0% 0%	0% 0%	0% 0%	0% 0%	0.0308 0.03085	0.37	0.28	X	Detects/NDs never exceeded most stringent PCUL; RLs <pcul detects="" exceeded="" most="" nds="" never="" pcul;="" rls<pculs<="" stringent="" td=""><td>-</td></pcul>	-
Benzo(g,h,i)Perylene	21	1		5%	0.67	0.67	0	0	0	0	0%	0%	0%	0%	0.03085	0.035	0.052	X	Detects/NDs never exceeded most stringent PCUL; RLs <pcul< td=""><td></td></pcul<>	
Fluoranthene	21	2		10%	1.7	0.09	0	0	0	0	0%	0%	0%	0%	0.03235	0.11	0.065	X	Detects/NDs never exceeded most stringent PCUL; RLs <pculs< td=""><td></td></pculs<>	
Fluorene	21	2		10%	0.54	0.029	2	2	0	0	10%	10%	0%	0%	0.0308	3.2	5.93			Yes
Phenanthrene Pyrene	21	4 2		19%	1.5	1.5 0.14	0	0	0	0	5% 0%	5% 0%	0% 0%	0% 0%	0.0333 0.03235	5.4 0.53	3.60	Y	Detects/NDs never exceeded most stringent PCUL; RLs <pculs< td=""><td>Yes</td></pculs<>	Yes
Benzo(a)Pyrene	21	1		5%	0.00031	0.000016	1	1	20	20	5%	5%	95%	95%	0.02085	0.025	80.65	Λ	Detects/1975 never exceeded most sumgent FCUL; RLS\FCULS	Yes
Benzo(a)Anthracene	21	2		10%	0.0011	0.000057	2	2	19	14	10%	10%	90%	67%	0.03235	0.015	13.64			Yes
Benzo(b)Fluoranthene	21	1		5%	0.0039	0.0002	1	1	20	14	5%	5%	95%	67%	0.02085	0.029	7.44			Yes
Benzo(j,k)Fluoranthene Chrysene	21	0		10%	0.039	0.002 0.0064	0	0	14	0	0% 0%	0% 0%	67% 38%	0% 0%	0.00935 0.03235	0.046	0.35	X	FOD = 0%; max RL < 10x PCUL Detects less than most stringent PCUL; max RL < 10x PCUL	-
Dibenzo(a,h)Anthracene	21	1		5%	0.00057	0.0004	1	1	20	20	5%	5%	95%	95%	0.02085	0.040	13.7	Λ	Detects less than most stringent I COL, max RE > 10x I COL	Yes
Indeno(1,2,3-cd)Pyrene	21	1		5%	0.011	0.00056	1	0	14	8	5%	0%	67%	38%	0.02085	0.02	1.82	X	FOE < 10%; no exceedances >2x PCUL	
Total cPAHs TEC	21	2		10%	0.00031	0.000016	2	2	19	19	10%	10%	90%	90%	0.024275	0.03283	106	ļ		Yes
Total LPAHs Total HPAHs	21	21		100%	5.2	5.2 12	1	0	0	0	5% 0%	5% 0%	0% 0%	0% 0%		11.91 0.694	2.29 0.058	v	Detects/NDs never exceeded most stringent PCUL;RLs <pculs< td=""><td>Yes</td></pculs<>	Yes
Volatile Organic Compounds				10076	12	12	U	U	U	U	070	070	070	070		0.094	0.038	^	Detects/NDs never exceeded most stringent FCOL;RES\FCOLS	
1,1,1,2-Tetrachloroethane	10	0		0%	38	38	0	0	0	0	0%	0%	0%	0%	0.001275			Х	FOD = 0%; all RLs < PCUL	
1,1,1-Trichloroethane	10	0		0%	371	21	0	0	0	0	0%	0%	0%	0%	0.001275			X	FOD = 0%; all RLs < PCUL	
1,1,2,2-Tetrachloroethane	10	0		0%	0.0017	0.00011	0	0	7	6	0%	0%	70%	60%	0.0014			X	FOD = 0%; RL <= 5x achievable PQL of 0.0010 mg/kg	
1,1,2-Trichloroethane 1,1-Dichloroethane	10	0		0%	0.0050 175	0.00033 175	0	0	6	0	0% 0%	0% 0%	60% 0%	0%	0.001275 0.001275			X	FOD = 0%; max RL < 10x PCUL FOD = 0%; all RLs < PCUL	
1,1-Dichloroethene	10	0		0%	NE	NE	0	0	0	0	0%	0%	0%	0%	0.001275			X	No Ecology-provided PCUL	-
1,1-Dichloropropene	10	0		0%	NE	NE	0	0	0	0	0%	0%	0%	0%	0.001275			X	No Ecology-provided PCUL	
1,2,3-Trichlorobenzene	10	0		0%	NE	NE	0	0	0	0	0%	0%	0%	0%	0.00403			X	No Ecology-provided PCUL	
1,2,3-Trichloropropane 1,2,4-Trichlorobenzene	10	0		0%	0.033 0.0014	0.033 0.000072	0	0	9	7	0% 0%	0% 0%	10% 90%	0% 70%	0.0020775 0.00403			X	FOD = 0%; FOE of RL < 20% FOD = 0%; RL <= 5x achievable PQL of 0.0010 mg/kg	
1,2,4-Trimethylbenzene	18	5		28%	800	800	1	0	0	0	6%	0%	0%	0%	0.00403	1600	2.00	X	FOE < 10%; no exceedances > 2x PCUL	
1,2-Dibromo-3-chloropropane	10	0		0%	1.25	1.3	0	0	0	0	0%	0%	0%	0%	0.00703			X	FOD = 0%; all RLs < PCUL	
1,2-Dibromoethane	10	0		0%	0.5	0.50	0	0	0	0	0%	0%	0%	0%	0.001275			X	FOD = 0%; all RLs < PCUL	
1,2-Dichlorobenzene 1,2-Dichloroethane	10	2		10%	0.036	0.0031 0.024	0	0	10	6	10% 0%	10%	48% 0%	29% 0%	0.170725 0.001275	91	29355	Y	FOD = 0%; all RLs < PCUL	Yes
1,2-Dichloropropane	10	0		0%	0.016	0.0010	0	0	5	0	0%	0%	50%	0%	0.001275			X	FOD = 0%; max RL < 10x PCUL	
1,3,5-Trimethylbenzene	18	2		11%	800	800	0	0	0	0	0%	0%	0%	0%	5.764725	410	0.51	X	Detects/NDs never exceeded most stringent PCUL; RLs <pcul< td=""><td></td></pcul<>	
1,3-Dichlorobenzene	21	1		5%	NE	NE	0	0	0	0	0%	0%	0%	0%	0.17075	6	0.00	X	No Ecology-provided PCUL	
1,3-Dichloropropane 1,4-Dichlorobenzene	10	0		0% 10%	NE 0.11	NE 0.0081	0	0	9	0	0% 10%	0% 10%	0% 43%	0% 29%	0.001275 0.170725	6	741	X	No Ecology-provided PCUL	Yes
2,2-Dichloropropane	10	0		0%	NE	0.0081 NE	0	0	0	0	0%	0%	0%	0%	0.001275		741	Х	No Ecology-provided PCUL	1 es
2-Butanone (MEK)	18	6		33%	48000	48000	0	0	0	0	0%	0%	0%	0%	11.5041	120	0.003	X	Detects/NDs never exceeded most stringent PCUL; RLs <pcul< td=""><td></td></pcul<>	
2-Chloroethyl Vinyl Ether	10	0		0%	NE 1600	NE 1600	0	0	0	0	0%	0%	0%	0%	0.00638				No Ecology-provided PCUL	_
2-Chlorotoluene 2-Hexanone	10	0		0%	1600 400	1600 400	0	0	0	0	0% 0%	0% 0%	0% 0%	0% 0%	0.0014 0.00638			X	FOD = 0%; all RLs < PCUL FOD = 0%; all RLs < PCUL	+
2-Pentanone	4	0	t	0%	NE	NE	0	0	0	0	0%	0%	0%	0%	0.0038			X	No Ecology-provided PCUL	
4-Chlorotoluene	10	0		0%	NE	NE	0	0	0	0	0%	0%	0%	0%	0.0014			X	No Ecology-provided PCUL	\perp
4-Methyl-2-Pentanone (MIBK)	10	0		0%	6400	6400	0	0	0	0	0%	0%	0%	0%	0.00638	0.12	0.00	X	FOD = 0%; all RLs < PCUL	_
Acetone Acrolein	10	5		50% 0%	72000 40	72000 40	0	0	0	0	0%	0%	0% 0%	0%	0.0101	0.13	0.00	X	Detects/NDs never exceeded most stringent PCUL; RLs <pcul FOD = 0%; all RLs < PCUL</pcul 	+
Acrylonitrile	4	0	-	0%	1.9	1.9	0	0	0	0	0%	0%	0%	0%	0.007			X	FOD = 0%; all RLs < PCUL	
Bromobenzene	10	0		0%	640	640	0	0	0	0	0%	0%	0%	0%	0.0014			X	FOD = 0%; all RLs < PCUL	
Bromochloromethane	10	0		0%	NE NE	NE NE	0	0	0	0	0%	0%	0%	0%	0.001275			X	No Ecology-provided PCUL	_
Bromodichloromethane Bromoform	10	0		0%	NE 0.078	NE 0.0050	0	0	0	0	0% 0%	0% 0%	0% 0%	0% 0%	0.001275 0.001275			X	No Ecology-provided PCUL FOD = 0%: all RLs < PCUL	+
Bromomethane	10	0	t	0%	1.2	0.0030	0	0	0	0	0%	0%	0%	0%	0.001275			X	FOD = 0%; all RLs < PCULs	
Carbon Disulfide	10	4		40%	8000	8000	0	0	0	0	0%	0%	0%	0%	0.00125	0.002	0.00	X	Detects/NDs never exceeded most stringent PCUL; RLs <pcul< td=""><td></td></pcul<>	
Carbon Tetrachloride	10	0		0%	0.0029	0.00015	0	0	6	1	0%	0%	60%	10%	0.001275			X	FOD = 0%; median RL < 5x achievable PQL of 0.0010 mg/kg	_
Chlorobenzene Chloroethane	10	0		0%	1.7 NE	0.10 NE	0	0	0	0	0% 0%	0% 0%	0% 0%	0% 0%	0.001275 0.004185			X	FOD = 0%; all RLs < PCUL No Ecology-provided PCUL	+
Chloroform	21	1	-	5%	0.81	0.052	1	1	7	7	5%	5%	33%	33%	0.168285	6	7.41	Λ	The Ecology-provided I COL	Yes
Chloromethane	10	0		0%	NE	NE	0	0	0	0	0%	0%	0%	0%	0.004185			X	No Ecology-provided PCUL	
cis-1,3-Dichloropropene	10	0		0%	0.010	0.00063	0	0	6	0	0%	0%	60%	0%	0.001275			X	FOD = 0%; max RL < 10x PCUL	
Dibromochloromethane Dibromomethane	10	0		0%	0.012 800	0.00077 800	0	0	6	0	0%	0% 0%	60% 0%	0% 0%	0.001275 0.001275			X	FOD = 0%; max RL < 10x PCUL FOD = 0%; all RLs < PCUL	
Dichlorodifluoromethane	9	0		0%	16000	800 16000	0	0	0	0	0%	0%	0%	0%	0.001275			X	FOD = 0%; all RLs < PCUL FOD = 0%; all RLs < PCUL	+
Ethyl Bromide	4	0		0%	NE	NE	0	0	0	0	0%	0%	0%	0%	0.0028			X	No Ecology-provided PCUL	
Freon 113	4	0		0%	NE	NE	0	0	0	0	0%	0%	0%	0%	0.0028			X	No Ecology-provided PCUL	
Hexachlorobutadiene	10	0		0%	0.011	0.00054	0	0	7	6	0%	0%	70%	60%	0.00703			X	FOD = 0%; median RL < 5x achievable PQL of 0.0050 mg/kg	

Table 13 **Summary of COPCs in Soil Emerald Gateway Site** Seattle/Tukwila, Washington

Farallon PN: 1071-026

				1		1						I	1	1	I		1		$\overline{}$
																			'
				LDW Most-Stringent		Number of	Number of		Number of Non-		Exceedance		Exceedance		Maximum				
			Frequency of	Soil PCUL: Vadose	Soil PCUL: Saturated	Detects	Detects	Detects	Detects	Exceedance	Frequency of	Exceedance	Frequency of Non		Detected	Maximum			
Constituents of Potential		Number of	Detection	Zone, Nonpotable GW	, .	Exceeding the	Exceeding 2x	Exceeding the	Exceeding 10x	Frequency of	Detects > 2x	Frequency of Non		Reporting Limit	Concentration	Exceedance		Elimination	Retained as
Concern	Results	Detects	(%)	(w/o SL-9) ¹	(w/o SL-9) ¹	PCUL	the PCUL	PCUL	the PCUL	Detects (%)	PCUL (%)	Detects (%)	PCUL (%)	for Non-Detects	(mg/kg)	Factor	Eliminated	Rationale	COC
Iodomethane	10	0	0%	NE	NE	0	0	0	0	0%	0%	0%	0%	0.004185			X	No Ecology-provided PCUL	
Isopropylbenzene	10	1	10%	8000	8000	0	0	0	0	0%	0%	0%	0%	0.001225	0.00217	0.00	X	Detects/NDs never exceeded most stringent PCUL; RLs <pcul< td=""><td></td></pcul<>	
Methyl tertiary butyl ether (MTBE)	10	0	0%	556	556	0	0	0	0	0%	0%	0%	0%	0.001275			X	FOD = 0%; all RLs < PCUL	
Methylene Chloride	10	4	40%	0.43	0.030	0	0	0	0	0%	0%	0%	0%	0.0055	0.00204	0.07	X	Detects/NDs never exceeded most stringent PCUL; RLs <pculs< td=""><td></td></pculs<>	
Naphthalene	10	1	10%	0.039	0.0021	1	1	3	0	10%	10%	30%	0%	0.004525	0.00595	2.88			Yes
n-Butylbenzene	18	3	17%	4000	4000	0	0	0	0	0%	0%	0%	0%	5.7647	390	0.10	X	Detects/NDs never exceeded most stringent PCUL; RLs <pculs< td=""><td></td></pculs<>	
Volatile Organic Compounds (contin	ued)																		
n-Propylbenzene	18	4	22%	8000	8000	0	0	0	0	0%	0%	0%	0%	5.76465	1000	0.13	X	Detects/NDs never exceeded most stringent PCUL; RLs <pcul< td=""><td></td></pcul<>	
p-Isopropyltoluene	10	1	10%	NE	NE	0	0	0	0	0%	0%	0%	0%	0.00135	0.00395		X	No Ecology-provided PCUL	
sec-Butylbenzene	18	3	17%	8000	8000	0	0	0	0	0%	0%	0%	0%	5.7647	350	0.04	X	Detects/NDs never exceeded most stringent PCUL: RLs <pcul< td=""><td></td></pcul<>	
Styrene	10	0	0%	16000	16000	0	0	0	0	0%	0%	0%	0%	0.001275			X	FOD = 0%; all RLs < PCUL	
tert-Butylbenzene	18	2	11%	8000	8000	0	0	0	0	0%	0%	0%	0%	5.764725	36	0.00	X	Detects/NDs never exceeded most stringent PCUL; RLs <pcul< td=""><td></td></pcul<>	
trans-1,3-Dichloropropene	10	0	0%	0.010	0.00063	0	0	6	0	0%	0%	60%	0%	0.001275			X	FOD = 0%; max RL < $10x$ PCUL	
trans-1,4-Dichloro-2-butene	4	0	0%	NE	NE	0	0	0	0	0%	0%	0%	0%	0.007			X	No Ecology-provided PCUL	
Trichlorofluoromethane	10	0	0%	24000	24000	0	0	0	0	0%	0%	0%	0%	0.001275			X	FOD = 0%; all RLs < PCUL	
Vinyl Acetate	10	0	0%	80000	80000	0	0	0	0	0%	0%	0%	0%	0.00638			X	FOD = 0%; all RLs < PCUL	
Tetrachloroethene (PCE)	21	1	5%	0.029	0.0016	0	0	12	8	0%	0%	57%	38%	0.03791	0.0011	0.69		No exceedances; median RL > 5x achievable PQL of 0.0010 mg/kg	Data Gap*
Trichloroethene (TCE)	21	0	0%	0.0044	0.00027	0	0	17	11	0%	0%	81%	52%	0.02582				FOD = 0%; median RL > 5x achievable PQL of 0.0010 mg/kg	Data Gap*
cis-1,2-Dichloroethene	21	0	0%	160	160	0	0	0	0	0%	0%	0%	0%	0.02582			X	FOD = 0%; all RLs < PCUL	
trans-1,2-Dichloroethene	10	0	0%	5.2	0.32	0	0	0	0	0%	0%	0%	0%	0.001275			X	FOD = 0%; all RLs < PCUL	
Vinyl Chloride	21	0	0%	0.0010	0.000055	0	0	20	17	0%	0%	95%	81%	0.02582				FOD = 0%; median RL > 5x achievable PQL of 0.0010 mg/kg	Data Gap*
Metals																			
Arsenic	91	72	79%	7	7	21	0	0	0	23%	0%	0%	0%	3.5	14	2.00			Yes
Barium	6	6	100%	160	8.3	0	0	0	0	0%	0%	0%	0%		76.8	0.48	X	Detects/NDs never exceeded most stringent PCUL; RLs <pculs< td=""><td></td></pculs<>	
Cadmium	91	45	49%	1	1	3	0	30	0	3%	0%	33%	0%	2	2	2.00	X	FOE < 10%; no exceedances 2x PCUL	
Chromium	20	20	100%	48	48	0	0	0	0	0%	0%	0%	0%		29.6	0.62	X	Detects/NDs never exceeded most stringent PCUL; RLs <pculs< td=""><td></td></pculs<>	
Copper	16	16	100%	36	36	4	0	0	0	25%	0%	0%	0%		60.6	1.68			Yes
Lead	105	92	88%	250	81	0	0	0	0	0%	0%	0%	0%	4	220	0.88	X	Detects/NDs never exceeded most stringent PCUL; RLs <pculs< td=""><td></td></pculs<>	
Manganese	2	2	100%	1200	1200	0	0	0	0	0%	0%	0%	0%		290	0.24	X	Detects/NDs never exceeded most stringent PCUL; RLs <pcul< td=""><td></td></pcul<>	
Mercury	8	3	38%	0.07	0.07	1	1	3	0	13%	13%	38%	0%	0.11	0.357	5.10			Yes
Selenium	6	0	0%	7.4	0.38	0	0	0	0	0%	0%	0%	0%	3			X	FOD = 0%; all RLs < PCUL	
Silver	6	0	0%	0.32	0.016	0	0	5	0	0%	0%	83%	0%	0.475			X	FOD = 0%; max RL < 10x PCUL	
Zinc	12	12	100%	100	85	2	0	0	0	17%	0%	0%	0%		183	1.83			Yes
Polychlorinated Biphenyl Aroclors (I	PCBs)																		
Aroclor 1016	16	0	0%	NE	NE	0	0	0	0	0%	0%	0%	0%	0.024975			X	No Ecology-provided PCUL; part of Total PCB Aroclors calculation	
Aroclor 1221	16	0	0%	NE	NE	0	0	0	0	0%	0%	0%	0%	0.024975			X	No Ecology-provided PCUL; part of Total PCB Aroclors calculation	
Aroclor 1232	16	0	0%	NE	NE	0	0	0	0	0%	0%	0%	0%	0.024975			X	No Ecology-provided PCUL; part of Total PCB Aroclors calculation	
Aroclor 1242	16	0	0%	NE	NE	0	0	0	0	0%	0%	0%	0%	0.024975			X	No Ecology-provided PCUL; part of Total PCB Aroclors calculation	
Aroclor 1248	16	1	6%	NE	NE	0	0	0	0	0%	0%	0%	0%	0.024975	0.038		X	No Ecology-provided PCUL; part of Total PCB Aroclors calculation	
Aroclor 1254	16	1	6%	NE	NE	0	0	0	0	0%	0%	0%	0%	0.024975	0.037		X	No Ecology-provided PCUL; part of Total PCB Aroclors calculation	
Aroclor 1260	16	1	6%	NE	NE	0	0	0	0	0%	0%	0%	0%	0.024975	0.0269		X	No Ecology-provided PCUL; part of Total PCB Aroclors calculation	
Aroclor 1262	7	0	0%	NE	NE	0	0	0	0	0%	0%	0%	0%	0.019875			X	No Ecology-provided PCUL; part of Total PCB Aroclors calculation	
Aroclor 1268	7	0	0%	NE	NE	0	0	0	0	0%	0%	0%	0%	0.019875			X	No Ecology-provided PCUL; part of Total PCB Aroclors calculation	
Total PCB Aroclors	17	2	12%	0.000043	0.0000022	2	2	15	15	12%	12%	88%	88%	0.025975	0.075	1744	1		Yes

NOTES:

Parameter names highlighted in yellow indicate chemical selected as a COPC based on initial screening.

Parameter names highlighted in gray indicate chemical has been eliminated as a COPC.

---- denotes calculation is not applicable due to zero detected values, zero non-detected values, or no established screening limits available for the given parameter.

Washington State Department of Ecology (Ecology) Lower Duwanish Waterway Preliminary Cleanup Level Workbook, revised April 2019.

Data Gap* = Chemical is not considered a COPC because results were reported non-detect at the lowest PQL achievable in all samples collected between 2016 and 2019.

BTEX = benzene, toluene, ethylbenzene, and xylenes
COC = constituent of concern
COPC = constituents of pontetial concern
ePAH = carcinogenic polycyclic aromatic hydrocarbon
DRO = total petroleum hydrocarbons (TPH) as diesel-range organics
Ecology = Washington State Department of Ecology

EF = exceedance frequency

FOD = frequency of detection FOE = frequency of exceedance

GRO = TPH as gasoline-range organics

GW = groundwater
HPAH = high molecular weight polycyclic aromatic hydrocarbon

LDW = Lower Duwamish Waterway LPAH = low molecular weight polycyclic aromatic hydrocarbon mg/kg = milligram per kilogram

ND = non-detect

NE = not established ORO = TPH as oil-range organics

ORO = 17F1 as oir-range organics
PCUL = preliminary cleanup level
POL = practical quantitation limit
RL = reporting limit
RL-PCUL = reporting limits are less than the most stringent applicable preliminary cleanup level

Table 14 **Summary of COPCs in Groundwater Emerald Gateway Site** Seattle/Tukwila, Washington Farallon PN: 1071-026

Constituents of Potential	Number of		Detection Frequency	LDW Most Stringent GW PCUL: Nonpotable	Number of Detects Exceeding the	Detects Exceeding 2x	Detects Exceeding the		Maximum Detected Concentration	Frequency of	Exceedance Frequency of Detects >2x	Exceedance Frequency of Non-	Median Reporting Limit for Non-	Exceedance		Elimination
Concern	Samples	Detections	(%)	Water ¹	PCUL	the PCUL	PCUL	the PCUL	(ug/l)	Exceedance (%)	PCUL (%)	Detects (%)	Detects	Factor	Eliminated	Rationale
otal Petroleum Hydrocarbons	and BTEX															
DRO	72	9	13%	500	0	0	0	0	474	0%	0%	0%	100	0.9	X	Detects/NDs never exceeded most stringent PCUL; RLs <pcul< td=""></pcul<>
RO	72	3	4%	500	1	0	0	0	560	1%	0%	0%	200	1.1	X	FOE < 10%; no exceedances >2x PCUL
RO	82	11	13%	800	3	0	0	0	1200	4%	0%	0%	250	1.5	X	FOE < 10%; no exceedances >2x PCUL
enzene	82	10	12%	1.6	4	3	0	0	5.9	5%	4%	0%	1	3.7		
oluene	82	6	7%	130	0	0	0	0	1.2	0%	0%	0%	1	0.009	X	Detects/NDs never exceeded most stringent PCUL; RLs <pcul< td=""></pcul<>
thylbenzene	82	9	11%	31	0	0	0	0	9.7	0%	0%	0%	1	0.3	X	Detects/NDs never exceeded most stringent PCUL; RLs <pcul< td=""></pcul<>
ylenes	82	8	10%	330	0	0	0	0	29.8	0%	0%	0%	2	0.09	X	Detects/NDs never exceeded most stringent PCUL; RLs <pcul< td=""></pcul<>
olycyclic Aromatic Hydrocarbo	ons (PAHs)															
Innhthalana	22	1.4	6.40/	1.4	1	1	0	0	2.09	50/	50/	00/-	0.005	2.1		

G 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			Detection	PCUL:	Detects	Detects	Detects	Detects	Detected		Frequency of	Exceedance	Median Reporting	Maximum		
Constituents of Potential	Number of	Number of	Frequency	Nonpotable	Exceeding the	Exceeding 2x	Exceeding the	U	Concentration	Frequency of		Frequency of Non-		Exceedance	Elimination	Retained as
Concern	Samples	Detections	(%)	Water ¹	PCUL	the PCUL	PCUL	the PCUL	(ug/l)	Exceedance (%)	PCUL (%)	Detects (%)	Detects	Factor	Eliminated Rationale	COC
otal Petroleum Hydrocarbons	and BTEX	1 0	120/	T 500	1 0		1 0	0	47.4	00/	00/	00/	100	0.0	The same of the same points and the same points are same points.	
ORO ORO	72	2	13%	500	1	0	0	0	474 560	0% 1%	0%	0% 0%	100	0.9	X Detects/NDs never exceeded most stringent PCUL; RLs <pcul 10%;="" <="" exceedances="" foe="" no="" x="">2x PCUL</pcul>	
iro	82	11	13%	800	3	0	0	0	1200	4%	0%	0%	250	1.1	X FOE < 10%; no exceedances >2x PCUL X FOE < 10%; no exceedances >2x PCUL	
Senzene	82	10	12%	1.6	4	3	0	0	5.9	5%	4%	0%	1	3.7	A TOL \ 10/0, no exceedances > 2x T COL	Yes
oluene	82	6	7%	130	0	0	0	0	1.2	0%	0%	0%	1	0.009	X Detects/NDs never exceeded most stringent PCUL; RLs <pcul< td=""><td>105</td></pcul<>	105
thylbenzene	82	9	11%	31	0	0	0	0	9.7	0%	0%	0%	1	0.3	X Detects/NDs never exceeded most stringent PCUL; RLs <pcul< td=""><td></td></pcul<>	
Tylenes	82	8	10%	330	0	0	0	0	29.8	0%	0%	0%	2	0.09	X Detects/NDs never exceeded most stringent PCUL; RLs <pcul< td=""><td></td></pcul<>	
olycyclic Aromatic Hydrocarb	ons (PAHs)															
laphthalene	22	14	64%	1.4	1	1	0	0	2.98	5%	5%	0%	0.095	2.1		Yes
-Methylnaphthalene	22	12	55%	NE	0	0	0	0	3	0%	0%	0%	0.0945		X No Ecology-provided PCUL for non-potable water	
-Methylnaphthalene	22	10	45%	NE	0	0	0	0	0.609	0%	0%	0%	0.0945		X No Ecology-provided PCUL for non-potable water	
otal Naphthalenes	22	14	64%	NE 5 3	0	0	0	0	3.5	0% 0%	0% 0%	0% 0%	0.285 0.052	0.038	X No Ecology-provided PCUL	
cenaphthene cenaphthylene	22	1	18% 5%	3.3 NE	0	0	0	0	0.2 0.004	0%	0%	0%	0.032	0.020	X Detects/NDs never exceeded most stringent PCUL; RLs <pcul ecology-provided="" no="" pcul<="" td="" x=""><td></td></pcul>	
anthracene	22	1	5%	2 1	0	0	0	0	0.004	0%	0%	0%	0.01	0.002	X Detects/NDs never exceeded most stringent PCUL; RLs <pcul< td=""><td></td></pcul<>	
Senzo(g,h,i)Perylene	22	0	0%	NE.	0	0	0	0		0%	0%	0%	0.01	0.002	X No Ecology-provided PCUL	
luoranthene	22	0	0%	1.8	0	0	0	0		0%	0%	0%	0.01		X FOD = 0%; all RLs < PCUL	
luorene	22	4	18%	3.7	0	0	0	0	0.16	0%	0%	0%	0.052	0.04	X Detects/NDs never exceeded most stringent PCUL; RLs <pcul< td=""><td></td></pcul<>	
henanthrene	22	8	36%	NE	0	0	0	0	0.17	0%	0%	0%	0.094		X No Ecology-provided PCUL	
yrene	22	3	14%	2	0	0	0	0	0.002	0%	0%	0%	0.094	0.001	X Detects/NDs never exceeded most stringent PCUL; RLs <pcul< td=""><td></td></pcul<>	
Benzo(a)Pyrene	22	0	0%	0.000016	0	0	22	22		0%	0%	100%	0.01		X FOD = 0%; median RL =< $5x$ achievable PQL of 0.010 μg/l	
Senzo(a)Anthracene	22	0	0%	0.00016	0	0	22	22		0%	0%	100%	0.01		X FOD = 0%; median RL =< $5x$ achievable PQL of 0.010 μg/l	
Senzo(b)Fluoranthene	22	0	0%	0.00016	0	0	22	22		0%	0%	100%	0.01		X FOD = 0%; median RL =< $5x$ achievable PQL of $0.010 \mu g/l$	
enzo(j,k)Fluoranthene	22	0	0%	0.0016	0	0	22	3		0%	0%	100%	0.01		X FOD = 0%; median RL =< $5x$ achievable PQL of $0.010 \mu g/l$	
Chrysene	22	2	9%	0.016	0	0	3	0	0.001	0%	0%	14%	0.01	0.063	X Detects less than most stringent PCUL; RL FOE < 20%	
Dibenzo(a,h)Anthracene ndeno(1,2,3-cd)Pyrene	22	0	0% 0%	0.000016 0.00016	0	0	22	22		0%	0%	100% 100%	0.01	875 87.5	X FOD = 0%; median RL =< $5x$ achievable PQL of $0.010 \mu g/l$	
otal cPAHs TEC	22	2	9%	0.00016	2	2	20	20	0.00751	9%	9%	91%	0.0076	469	X FOD = 0%; median RL =< $5x$ achievable PQL of 0.010 μg/l	Yes
olatile Organic Compounds			7/0	0.000010	<u> </u>	<u>L</u>		20	0.00731	770	770	<i>J</i> 170	0.0070	407		1 CS
,2,4-Trimethylbenzene	10	1	10%	240	0	0	0	0	0.33	0%	0%	0%	0.2	0.001	X Detects/NDs never exceeded most stringent PCUL; RLs <pcul< td=""><td></td></pcul<>	
,3,5-Trimethylbenzene	10	0	0%	NE NE	0	0	0	0		0%	0%	0%	0.2		X No Ecology-provided PCUL for non-potable water	
,2-Dichloropropane	10	0	0%	3.1	0	0	0	0		0%	0%	0%	0.2		X FOD = 0%; all RLs < PCUL	
cetone	10	0	0%	NE	0	0	0	0		0%	0%	0%	5		X No Ecology-provided PCUL for non-potable water	
Carbon Disulfide	10	0	0%	400	0	0	0	0		0%	0%	0%	0.2		X FOD = 0%; all RLs < PCUL	
Chloroform	10	0	0%	1.2	0	0	0	0		0%	0%	0%	0.2		X FOD = 0%; all RLs < PCUL	
is-1,2-Dichloroethene	10	0	0%	NE	0	0	0	0		0%	0%	0%	0.2		X No Ecology-provided PCUL for non-potable water	
Dichlorodifluoromethane	10	1	10%	5.6	0	0	0	0	2.7	0%	0% 0%	0% 0%	0.2	0.48	X Detects/NDs never exceeded most stringent PCUL; RLs <pcul< td=""><td></td></pcul<>	
sopropylbenzene (Cumene) Methyl Tertiary Butyl Ether	10	0	10% 0%	NE 600	0	0	0	0	6.1	0%	0%	0%	0.2		X No Ecology-provided PCUL for non-potable water X FOD = 0%; all RLs < PCUL	
-Butylbenzene	10	1	10%	NE	0	0	0	0	1.2	0%	0%	0%	0.2		X No Ecology-provided PCUL for non-potable water	
-Propylbenzene	10	1	10%	NE NE	0	0	0	0	1.5	0%	0%	0%	0.2		X No Ecology-provided PCUL for non-potable water	
-Isopropyltoluene	10	0	0%	NE NE	0	0	0	0		0%	0%	0%	0.2		X No Ecology-provided PCUL for non-potable water	
ec-Butylbenzene	10	1	10%	NE	0	0	0	0	1.7	0%	0%	0%	0.2		X No Ecology-provided PCUL for non-potable water	
ert-Butylbenzene	10	1	10%	NE	0	0	0	0	0.67	0%	0%	0%	0.2		X No Ecology-provided PCUL for non-potable water	
etrachloroethene (PCE)	10	0	0%	2.9	0	0	0	0		0%	0%	0%	0.2		X FOD = 0% ; all RLs < PCUL	
richloroethene (TCE)	10	0	0%	0.7	0	0	0	0		0%	0%	0%	0.2		X FOD = 0%; all RLs < PCUL	
richlorofluoromethane	10	1	10%	120	0	0	0	0	0.33	0%	0%	0%	0.2	0.003	X Detects/NDs never exceeded most stringent PCUL; RLs <pcul< td=""><td></td></pcul<>	
inyl Chloride Ietals	10	0	0%	0.18	1 0	1 0	10	0		0%	0%	100%	0.2		$X \qquad \text{FOD} = 0\%; \text{ Max RL} < 10x \text{ PCUL}$	
	12	12	100%	Ι ο	1 4	1 1	Ι ο	0	50.1	33%	8%	0%		6.26		X 7
Dissolved Arsenic Dissolved Cadmium	12	12	25%	1 2	4	1	0	0	0.062	0%	0%	0%	0.1	0.05	X Detects/NDs never exceeded most stringent PCUL; RLs <pcul< td=""><td>Yes</td></pcul<>	Yes
Dissolved Copper	12	10	83%	3.1	2	2	0	0	8.87	17%	17%	0%	0.1	2.86	A Detects/NDs never exceeded most stringent PCUL; RLsSPCUL	Yes
Dissolved Lead	12	5	42%	8.1	0	0	0	0	0.479	0%	0%	0%	0.1	0.06	X Detects/NDs never exceeded most stringent PCUL; RLs <pcul< td=""><td>165</td></pcul<>	165
Dissolved Manganese	12	12	100%	2,500	1	0	0	0	4060	8%	0%	0%		1.62	X FOE < 10%; no exceedances >2x PCUL	
Dissolved Mercury	12	10	83%	0.025	1	0	0	0	0.026	8%	0%	0%	0.02	1.04	X FOE < 10%; no exceedances >2x PCUL	
Dissolved Zinc	12	12	100%	81	0	0	0	0	7.52	0%	0%	0%		0.09	X Detects never exceeded most stringent PCUL; RLs <pcul< td=""><td></td></pcul<>	
olychlorinated Biphenyl Arocl	ors (PCBs)															
aroclor 1016	14	0	0%	NE	0	0	0	0		0%	0%	0%	0.01		X No Ecology-provided PCUL; part of Total PCB Aroclors calcula	
roclor 1221	14	0	0%	NE	0	0	0	0		0%	0%	0%	0.01		X No Ecology-provided PCUL; part of Total PCB Aroclors calcula	
roclor 1232	14	0	0%	NE	0	0	0	0		0%	0%	0%	0.01		X No Ecology-provided PCUL; part of Total PCB Aroclors calcula	
roclor 1242	14	0	0%	NE	0	0	0	0		0%	0%	0%	0.01		X No Ecology-provided PCUL; part of Total PCB Aroclors calcula	
roclor 1248	14	0	0%	NE NE	0	0	0	0		0%	0%	0%	0.01		X No Ecology-provided PCUL; part of Total PCB Aroclors calcula	
roclor 1254	14	0	0% 0%	NE NE	0	0	0	0		0% 0%	0%	0% 0%	0.01 0.01		X No Ecology-provided PCUL; part of Total PCB Aroclors calcula X No Ecology-provided PCUL; part of Total PCB Aroclors calcula	
	1 /							U		U70	U70	U70			A INO Ecology-provided PCUL; part of Total PCB Aroclors calcula	
roclor 1260	14	0			0	0	n	Ω		0%	00%	00%	0.01		Y No Feelegy provided DCIII - next of Total DCD Areal	tion
roclor 1262	14	0	0%	NE	0	0	0	0		0%	0%	0%	0.01		X No Ecology-provided PCUL; part of Total PCB Aroclors calcula Y No Ecology-provided PCUL: part of Total PCB Aroclors calcula	
		0 0			0 0	0	0	0 0 14		0% 0% 0%	0% 0% 0%	0% 0% 100%	0.01 0.01 0.01		X No Ecology-provided PCUL; part of Total PCB Aroclors calcula X No Ecology-provided PCUL; part of Total PCB Aroclors calcula X FOD = 0%; median RL =< 5x achievable POL of 0.010 µg/l	

BTEX = benzene, toluene, ethylbenzene, and xylenes

COC = constituent of concern

COPC = constituent of potential concern cPAH = carcinogenic polycyclic aromatic hydrocarbon

DRO = total petroleum hydrocarbons (TPH) as diesel-range organics

Ecology = Washington State Department of Ecology

FOD = frequency of detection

FOE = frequency of exceedance GRO = TPH as gasoline-range organics GW = groundwater

LDW = Lower Duwamish Waterway $\mu g/l = micrograms \ per \ liter$

ND = non-detectNE = not established ORO = TPH as oil-range organics PCUL = preliminary cleanup level PQL = practical quantitation limit RL = reporting limit

TEC = toxic equivalent concentration

NOTES:

Parameter names highlighted in yellow indicate chemical selected as a COPC.

Parameter names highlighted in gray indicate chemical has been eliminated as a COPC.

--- denotes calculation is not applicable due to zero detected values, zero non-detected values, or no established screening limits available for the given parameter.

¹Washington State Department of Ecology (Ecology) Lower Duwamish Waterway Preliminary Cleanup Level Workbook, revised April 2019.

Evaluation of Soil to Groundwater Pathway for COPCs

Emerald Gateway Site

Seattle/Tukwila, Washington

Farallon PN: 1071-026

Constituents of Potential Concern (COPCs)		erall Site Groundwater	to Groundwater based Contact LDW		Maximum Detected Soil Concentration (mg/kg)	Eliminated as	Comments				
(=====)				etroleum Hydroc							
DRO	X		Yes	2,000	9,900	No					
GRO	X		Yes	30	12,300	No					
Benzene	X		Yes	18	4.8	Yes					
Toluene	X		Yes	6,400	32	Yes					
Ethylbenzene	X		Yes	8,000	51	Yes					
Polycyclic Aromatic Hydrocarbons (PAHs)											
Naphthalene	X	X				No					
2-Methylnaphthalene	X		Yes	320	9.1	Yes					
Fluorene	X		Yes	3,200	3.2	Yes					
Phenanthrene	X		Yes	NA		Yes	Direct contact PCUL not available				
Benzo(a)Pyrene	X		Yes	0.19	0.025	Yes					
Benzo(a)Anthracene	X		Yes	NA		Yes	Direct contact PCUL not available				
Benzo(b)Fluoranthene	X		Yes	NA		Yes	Direct contact PCUL not available				
Dibenzo(a,h)Anthracene	X		Yes	NA		Yes	Direct contact PCUL not available				
Total cPAHs TEC	X	X				No					
Total LPAHs	X					Yes					
			Volatile	Organic Compo	unds (VOCs)						
1,2-Dichlorobenzene	X		Yes	7,200	91	Yes					
1,4-Dichlorobenzene	X		Yes	190	6	Yes					
Chloroform	X		Yes	32	6	Yes					
				Metals							
Arsenic	X	X				No					
Copper	X	X				No					
Mercury	X		Yes	24	0.357	Yes					
Zinc	X		Yes	24,000	183	Yes					
			Polycl	nlorinated Bipher	nyls (PCBs)						
Total PCB Aroclors	X		Yes	1.0	0.075	Yes					

NOTES:

X denotes the analyte has been detected at concentrations exceeding the most stringent Lower Duwamish Waterway (LDW) PCUL or screening level in one or more samples collected from the site.

--- denotes not applicable

¹Washington State Department of Ecology Lower Duwamish Waterway Preliminary Cleanup Level Workbook, revised April 2019. cPAH = carcinogenic polycyclic aromatic hydrocarbons

COC = constituent of concern

COPC = constituents of pontetial concern

DRO = total petroleum hydrocarbons (TPH) as diesel-range organics

GRO = TPH as gasoline-range organics

LPAH = low molecular weight polycyclic aromatic hydrocarbon

mg/kg = milligrams per kilogram

NA = not available

PCUL = preliminary cleanup level

TEC = toxic equivalent concentration

Table 16 Soil and Groundwater COPCs for the Interim Action

Emerald Gateway Site Seattle/Tukwila, Washington

Farallon PN: 1071-026

Constituents of Potential Concern	Area 2: Peri	ishables Warehouse Groundwater	Area 6: For	mer Truck Repair Shop Groundwater	Area 7: Former Auto Service Stations Soil Groundwater							
Petroleum Hydrocarbons												
DRO	X		X		X	X						
ORO*					X*	X*						
GRO			X	X	X	X						
Benzene			X		X							
Toluene			X	X	X	X						
Ethylbenzene			X	X	X	X						
Xylenes			X	X	X	X						
		Polycyclic Aroma	tic Hydrocar	bons (PAHs)								
Naphthalene					X	X						
Total cPAHs TEC						X						

NOTES:

X denotes the analyte has been detected at concentrations exceeding the most stringent Lower Duwamish Waterway (LDW) PCUL or screening level in one or more samples collected from the site.

COPC = constituents of pontetial concern

cPAH = carcinogenic polycyclic aromatic hydrocarbons

DRO = total petroleum hydrocarbons (TPH) as diesel-range organics

GRO = TPH as gasoline-range organics

LPAH = low molecular weight polycyclic aromatic hydrocarbon

PCUL = preliminary cleanup level TEC = toxic equivalent concentration

^{*} COPC added as area has not been fully characterized, is suspected to be present, and is a data gap.

Table 17 Soil Remediation Levels Emerald Gateway Site Seattle/Tukwila, Washington

Farallon PN: 1071-026

Consituents of Potential	Remediation Levels								
Concern	(milligrams per kilogram)								
Petroleum Hydrocarbons									
DRO	2000								
GRO	$30/100^1$								
Benzene	18								
Polycyclic Aromatic l	Hydrocarbons (PAHs)								
Naphthalene	1600								
Total cPAHs TEC	0.19								

NOTES:

cPAH = carcinogenic polycyclic aromatic hydrocarbons

DRO = total petroleum hydrocarbons (TPH) as diesel-range organics

GRO = TPH as gasoline-range organics

PCUL = preliminary cleanup level

¹Cleanup level is 30 milligrams per kilogram if benzene is detected and 100 milligrams per kilogram if benzene is not detected.

APPENDIX A BORING LOGS

INTERIM ACTION DESIGN REPORT
Emerald Gateway Site
3301 South Norfolk Street
Seattle/Tukwila, Washington

Page 1 of 1

Y: NA

Client: Prologis

Project: Emerald Gateway Site **Location:** Tukwila, Washington

Farallon PN: 1071-026

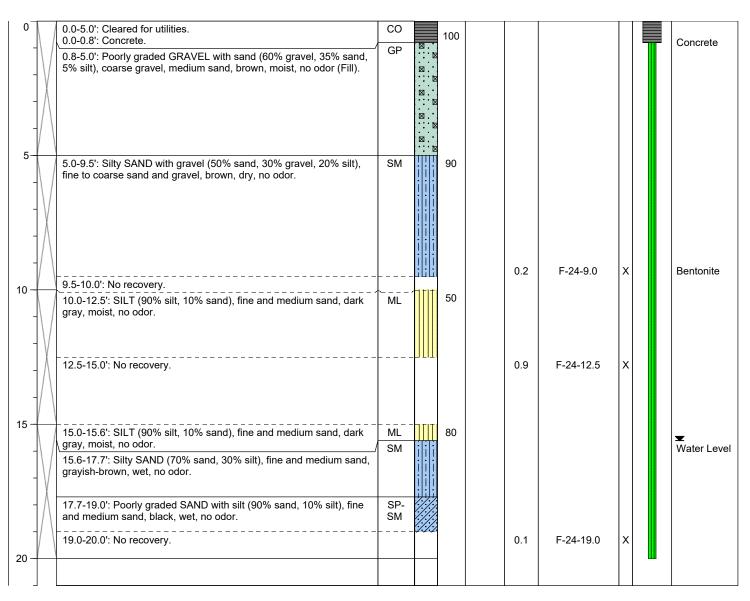
Logged By: Y. Pehlivan / C. Banfield

 Date/Time Started:
 6/26/19 @ 1352

 Date/Time Completed:
 6/27/19 @ 1020

 Equipment:
 Geoprobe 7822DT

Drilling Company: Cascade Drilling


Drilling Foreman: Steven Eddins

Drilling Method: Direct Push

Sampler Type: 5' Macrocore

Drive Hammer (lbs.): Auto
Depth of Water ATD (ft bgs): 15.6
Total Boring Depth (ft bgs): 20
Total Well Depth (ft bgs): NA

								_	
Depth (feet bgs.)	Sample Interval	Lithologic Description	SOSN	USCS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample Analyzed	Boring/Well Construction Details

Well Construction Information Monument Type: NA Filter Pack: NA Ground Surface Elevation (ft): NA Casing Diameter (inches): Surface Seal: Concrete Top of Casing Elevation (ft): NA NA NA Screen Slot Size (inches): NA Annular Seal: Surveyed Location: X: NA Screened Interval (ft bgs): NA Boring Abandonment: Bentonite Unique Well ID: NA

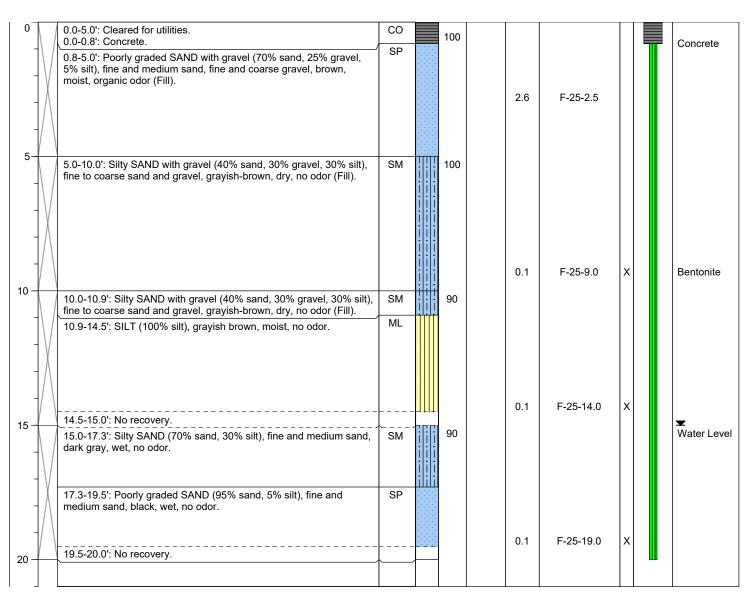
Page 1 of 1

Client: **Prologis**

Project: Emerald Gateway Site Location: Tukwila, Washington

Farallon PN: 1071-026

Logged By: Y. Pehlivan / C. Banfield Date/Time Started: 6/26/19 @ 1355 Date/Time Completed: 6/27/19 @ 1120 Geoprobe 7822DT **Equipment:**


Drilling Company: Cascade Drilling Steven Eddins **Drilling Foreman:**

Direct Push

Sampler Type: 5' Macrocore Auto Drive Hammer (lbs.): Depth of Water ATD (ft bgs): 15.0 Total Boring Depth (ft bgs): 20 Total Well Depth (ft bgs): NA

Drilling Method:

Sample Interval Tithologic Descripti	USCS USCS Graphic	% Recovery	ε Sample ID	Boring/Well Construction Details
---------------------------------------	----------------------	------------	-------------	----------------------------------

Well Construction Information Monument Type: NA Filter Pack: Ground Surface Elevation (ft): NA NA Casing Diameter (inches): Surface Seal: Concrete Top of Casing Elevation (ft): NA NA Screen Slot Size (inches): NA Annular Seal: NA Surveyed Location: X: NA Y: NA

Screened Interval (ft bgs): NA **Boring Abandonment:** Unique Well ID: NA Bentonite

Page 1 of 1

Client: Prologis

Project: Emerald Gateway Site **Location:** Tukwila, Washington

Farallon PN: 1071-026

Logged By: Y. Pehlivan / C. Banfield

 Date/Time Started:
 6/26/19 @ 1558

 Date/Time Completed:
 6/27/19 @ 1700

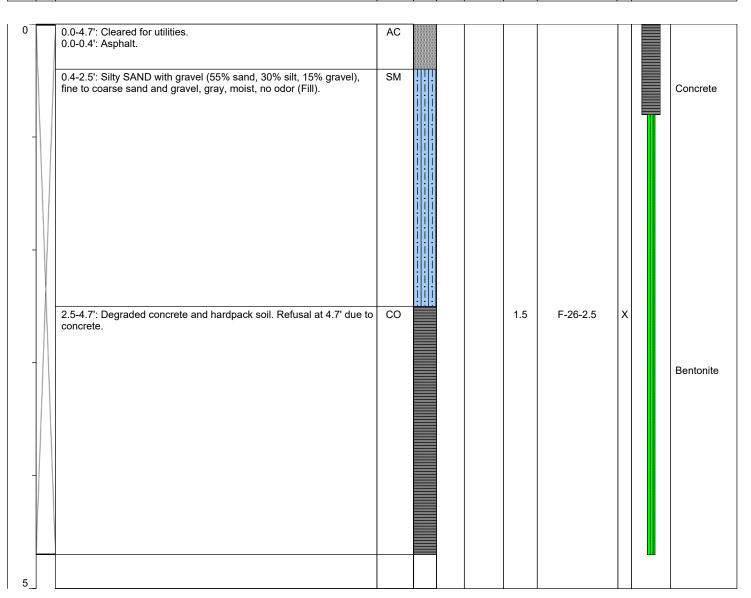
Equipment: Geoprobe 7822DT

Drilling Company: Cascade Drilling

Drilling Foreman: Steven Eddins

Drilling Method: Air Knife

Sampler Type: Hand Auger


Drive Hammer (lbs.): NA
Depth of Water ATD (ft bgs): NE
Total Boring Depth (ft bgs): 4.7

NA

NA

Y: NA

Total Well Depth (ft bgs): NA

Well Construction Information

Monument Type:NAFilter Pack:NAGround Surface Elevation (ft):Casing Diameter (inches):NASurface Seal:ConcreteTop of Casing Elevation (ft):Screen Slot Size (inches):NAAnnular Seal:NASurveyed Location:X: NA

Screened Interval (ft bgs): NA Boring Abandonment: Fill Unique Well ID: NA

Page 1 of 1

Client: Prologis

Project: Emerald Gateway Site **Location:** Tukwila, Washington

Farallon PN: 1071-026

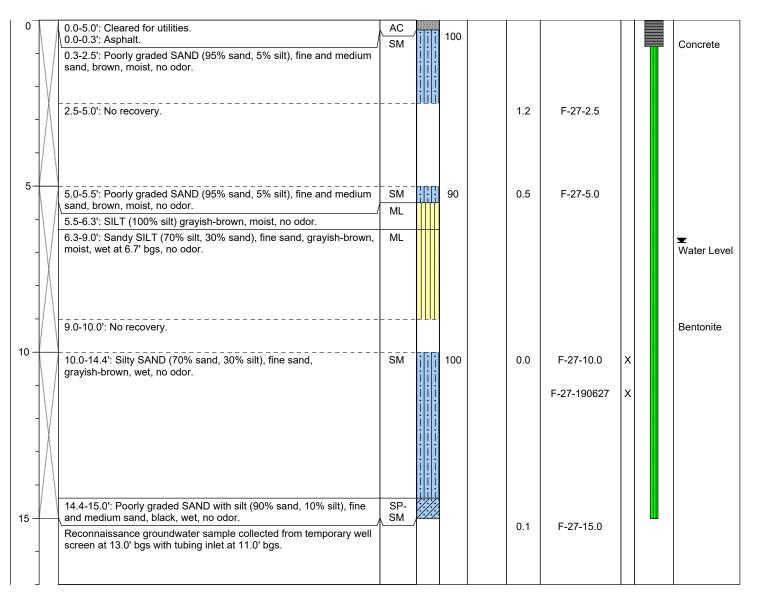
Logged By: Y. Pehlivan / C. Banfield

Date/Time Started: 6/26/19 @ 0900 **Date/Time Completed:** 6/27/19 @ 1510

Equipment: Geoprobe 7822DT

Drilling Company: Cascade Drilling

Drilling Foreman: Steven Eddins


Drilling Method: Direct Push

Sampler Type: 5' Macrocore

Y: NA

Drive Hammer (lbs.): Auto
Depth of Water ATD (ft bgs): 6.7
Total Boring Depth (ft bgs): 15.0
Total Well Depth (ft bgs): 13.0 (Temp)

Depth (feet bgs.)	≿ ⊑ Lithologic Descriptior	USCS USCS Graphic	overy	Blow Counts 8/8/8 PID (ppm)	Oll eldures	Boring/Well Construction Details
-------------------	-------------------------------	----------------------	-------	-----------------------------	-------------	--

Well Construction Information

Monument Type: NA Filter Pack: NA Ground Surface Elevation (ft): NA Casing Diameter (inches): Surface Seal: Concrete Top of Casing Elevation (ft): NA NA Screen Slot Size (inches): NA Annular Seal: NA Surveyed Location: X: NA

Screened Interval (ft bgs): 8.0-13.0 Boring Abandonment: Bentonite Unique Well ID: NA

Page 1 of 1

Client: **Prologis**

Project: Emerald Gateway Site Location: Tukwila, Washington

Farallon PN: 1071-026

Logged By: Y. Pehlivan / C. Banfield

Date/Time Started: 6/27/19 @ 0930 Date/Time Completed: 6/28/19 @ 0915

Equipment: Geoprobe 7822DT **Drilling Company:** Cascade Drilling Steven Eddins **Drilling Foreman:**

Direct Push **Drilling Method:**

Sampler Type: 5' Macrocore

Auto Drive Hammer (lbs.): Depth of Water ATD (ft bgs): 7.6 Total Boring Depth (ft bgs): 15.0

Total Well Depth (ft bgs): 14.0 (Temp)

NA

NA

Y: NA

pth (feet bg	Sample Interval	Lithologic Description	USCS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Boring/Well Construction Details

Well Construction Information

Monument Type: NA Filter Pack: NA Ground Surface Elevation (ft): Casing Diameter (inches): Surface Seal: NA Top of Casing Elevation (ft): NA Screen Slot Size (inches): NA NA Annular Seal: Surveyed Location: X: NA

Screened Interval (ft bgs): 9.0-14.0 Boring Abandonment: Bentonite Unique Well ID: NA

Page 1 of 1

Client: Prologis

Project: Emerald Gateway Site **Location:** Tukwila, Washington

Farallon PN: 1071-026

Logged By: Y. Pehlivan / C. Banfield

 Date/Time Started:
 6/27/19 @ 1010

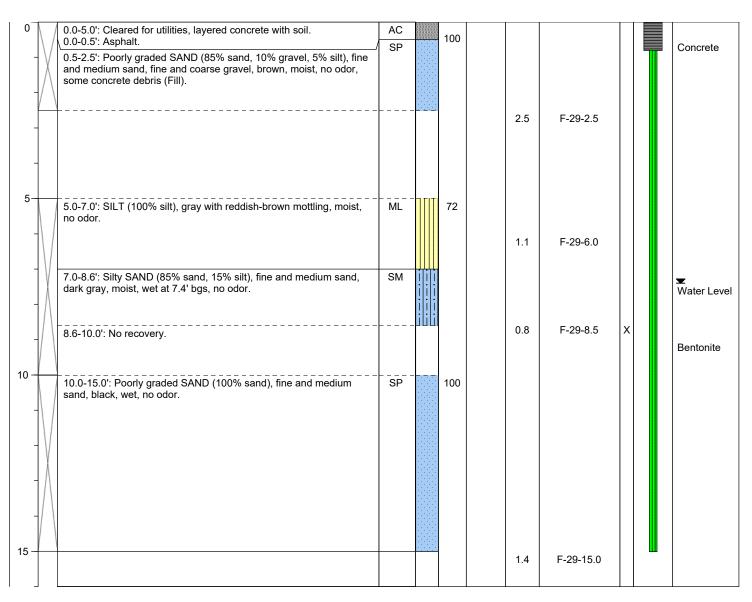
 Date/Time Completed:
 6/28/19 @ 0915

Equipment: Geoprobe 7822DT

Drilling Company: Cascade Drilling

Drilling Foreman: Steven Eddins

Drilling Method: Direct Push


Sampler Type: 5' Macrocore

Y: NA

Drive Hammer (lbs.): Auto
Depth of Water ATD (ft bgs): 7.4
Total Boring Depth (ft bgs): 15.0

Total Well Depth (ft bgs): NA

Depth (feet bgs.) Sample Interval	Lithologic Description	nscs	USCS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)		Sample Analyzed	Boring/Well Construction Details
--------------------------------------	------------------------	------	--------------	------------	-------------------	-----------	--	-----------------	--

Well Construction Information

Monument Type: NA Filter Pack: NA

Ground Surface Elevation (ft): NA Casing Diameter (inches): NA Surface Seal: Concrete Top of Casing Elevation (ft): NA Screen Slot Size (inches): NA NA Annular Seal: Surveyed Location: X: NA Screened Interval (ft bgs): NA **Boring Abandonment:** Bentonite Unique Well ID: NA

Page 1 of 1

Client: Prologis

Project: Emerald Gateway Site **Location:** Tukwila, Washington

Farallon PN: 1071-026

Logged By: Y. Pehlivan / C. Banfield

Date/Time Started: 6/27/19 @ 1100 **Date/Time Completed:** 6/27/19 @ 1200

Equipment: Hand Auger

Drilling Company: Cascade Drilling

Drilling Foreman: Steven Eddins
Drilling Method: Hand Auger

Sampler Type: Hand Auger

Drive Hammer (lbs.): NA
Depth of Water ATD (ft bgs): NE
Total Boring Depth (ft bgs): 3.0

Total Well Depth (ft bgs): NA

NA

NA

Y: NA

0	0.0-0.5': Asphalt.	AC					
	0.5-1.0': Sandy SILT (60% silt, 30% sand, 10% gravel), fine and medium sand, fine and coarse gravel, large cobbles, grayish-brown, moist, no odor.	ML					Cold Patch Asphalt
	1.0-3.0': Poorly graded SAND (95% sand, 5% silt), fine and medium sand, brown, moist, no odor.	SP		1.1	F-30-1.0	x	
- \						x	Native Backfill
				5.2	F-30-3.0	L L	
5_							

Well Construction Information

Monument Type:NAFilter Pack:NAGround Surface Elevation (ft):Casing Diameter (inches):NASurface Seal:AsphaltTop of Casing Elevation (ft):Screen Slot Size (inches):NAAnnular Seal:NASurveyed Location:X: NA

Screened Interval (ft bgs): NA Boring Abandonment: Fill Unique Well ID: NA

Page 1 of 1

Y: NA

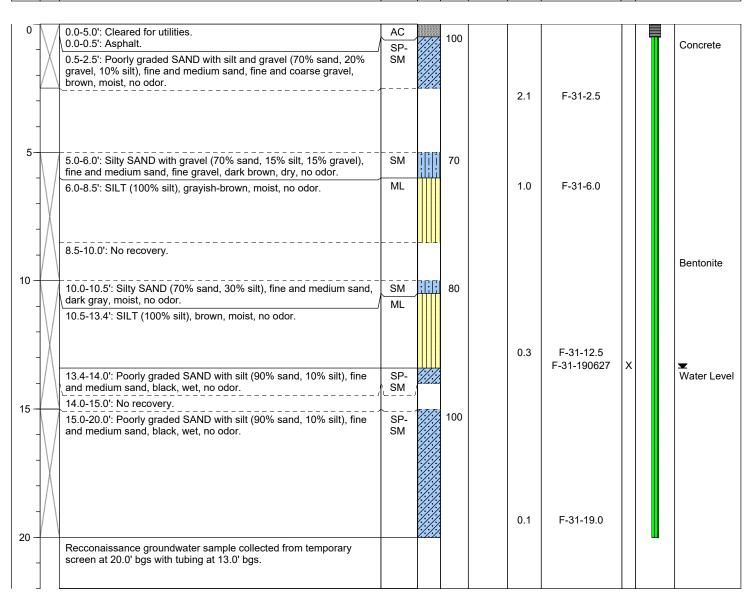
Client: **Prologis**

Project: Emerald Gateway Site Location: Tukwila, Washington

Farallon PN: 1071-026

Logged By: Y. Pehlivan / C. Banfield

Date/Time Started: 6/27/19 @ 1140 Date/Time Completed: 6/27/19 @ 1300


Geoprobe 7822DT **Equipment: Drilling Company:** Cascade Drilling Steven Eddins **Drilling Foreman:**

Drilling Method: Direct Push Sampler Type: 5' Macrocore

Auto Drive Hammer (lbs.): Depth of Water ATD (ft bgs): 13.4 Total Boring Depth (ft bgs): 20.0

Total Well Depth (ft bgs): Temp.

Depth (feet bgs.)	Lithologic Descriptio	n Scs	ISCS Gr	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Boring/Well Construction Details
-------------------	-----------------------	----------	---------	------------	-------------------	-----------	-----------	-----------------	--

Well Construction Information

Monument Type: NA Filter Pack: NA Ground Surface Elevation (ft): NA Casing Diameter (inches): Surface Seal: NA Top of Casing Elevation (ft): NA NA NA Screen Slot Size (inches): NA Surveyed Location: X: NA Annular Seal:

Screened Interval (ft bgs): 20.0 (Temp) **Boring Abandonment:** Bentonite Unique Well ID: NA

Log of Boring: F-32

Page 1 of 1

Client: **Prologis**

Project: **Emerald Gateway Site** Location: Tukwila, Washington

Farallon PN: 1071-026

Logged By: Y. Pehlivan / C. Banfield

6/27/19 @ 1236 Date/Time Started: Date/Time Completed: 6/27/19 @ 1300

Equipment: Hand Auger **Drilling Company:** Cascade Drilling

Steven Eddins

Drilling Method: Hand Auger Sampler Type: Hand Auger

NA Drive Hammer (lbs.): Depth of Water ATD (ft bgs): $\ensuremath{\mathsf{NE}}$ Total Boring Depth (ft bgs): 3.0

Total Well Depth (ft bgs): NA

Depth (feet bgs.) Sample Interval	Lithologic Description	nscs	USCS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)		Sample Analyzed	Boring/Well Construction Details
--------------------------------------	------------------------	------	--------------	------------	-------------------	-----------	--	-----------------	--

Drilling Foreman:

0	0.0-0.5': Asphalt.	AC					Cold Patch Asphalt
	0.5-3.0': Poorly graded SAND (95% sand, 5% silt), fine and medium sand, brown, moist, no odor.	SP		1.8	F-32-1.0	×	Native Backfill
5_				1.8	F-32-3.0		

Well Construction Information

Monument Type: NA Filter Pack: Ground Surface Elevation (ft): NA NA Casing Diameter (inches): Asphalt NA Surface Seal: Top of Casing Elevation (ft): NA Screen Slot Size (inches): NA NA Surveyed Location: X: NA Annular Seal:

Screened Interval (ft bgs): NA **Boring Abandonment:** Fill

Unique Well ID: NA

Y: NA

Log of Boring: F-33

Page 1 of 1

Y: NA

Client: Prologis

Project: Emerald Gateway Site **Location:** Tukwila, Washington

Farallon PN: 1071-026

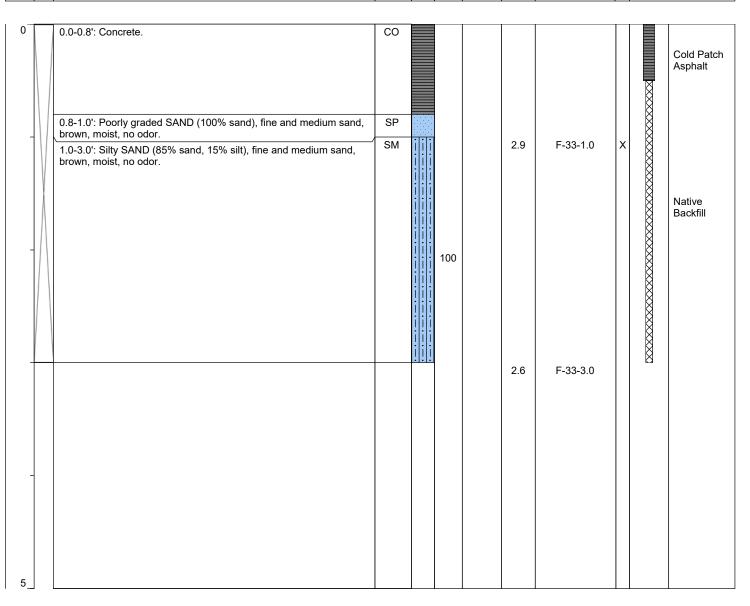
Logged By: Y. Pehlivan / C. Banfield

Date/Time Started: 6/26/19 @ 1330 **Date/Time Completed:** 6/26/19 @ 1410

Equipment: Hand Auger

Drilling Company: Cascade Drilling

Drilling Foreman: Steven Eddins


Drilling Method: Hand Auger

Sampler Type: Hand Auger

Drive Hammer (lbs.): NA
Depth of Water ATD (ft bgs): NE
Total Boring Depth (ft bgs): 3.0

Total Well Depth (ft bgs): NA

Depth (feet bgs.) Sample Interval	Lithologic Description	n SOSN	ISCS Grap	% Recovery Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Boring/Well Construction Details
-----------------------------------	------------------------	-----------	-----------	------------------------------	-----------	-----------	-----------------	--

Well Construction Information

Filter Pack: Monument Type: NA NA Ground Surface Elevation (ft): NA Casing Diameter (inches): NA Surface Seal: Concrete Top of Casing Elevation (ft): NA Screen Slot Size (inches): NA NA Annular Seal: Surveyed Location: X: NA

Screened Interval (ft bgs): NA Boring Abandonment: Fill Unique Well ID: NA

Log of Boring: FMW-01

Page 1 of 1

Client: **Prologis**

Project: Emerald Gateway Site Location: Tukwila, Washington

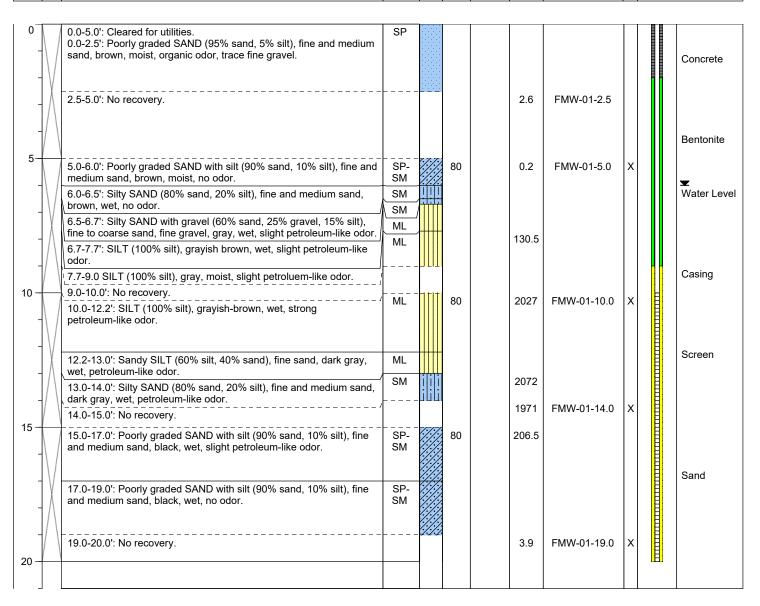
Farallon PN: 1071-026

Logged By: Y. Pehlivan / C. Banfield

Date/Time Started: 6/26/19 @ 0830 Date/Time Completed: 6/26/19 @ 1140

Geoprobe 7822DT **Equipment: Drilling Company:** Cascade Drilling

Drilling Method: Direct Push


Kyle Ceruti **Drilling Foreman:**

Sampler Type: 5' Macrocore

Auto Drive Hammer (lbs.): Depth of Water ATD (ft bgs): 6.0 Total Boring Depth (ft bgs): 20

Total Well Depth (ft bgs): 20

Blow Counts 8/8/8 Sample Analyzed Depth (feet bgs.) Sample Interval **USCS Graphic** Recovery Boring/Well **Lithologic Description** PID (ppm) Construction Sample ID **Details**

Well Construction Information

Monument Type: Flush Mount Casing Diameter (inches): Screen Slot Size (inches): 0.010 Screened Interval (ft bgs): 10.0-20.0

Prepacked Sand Filter Pack: Surface Seal: Cement Bentonite Annular Seal: **Boring Abandonment:**

Ground Surface Elevation (ft): Top of Casing Elevation (ft): Surveyed Location: X: NA Unique Well ID: BLK-238

NA Y: NA

NA

Log of Boring: FMW-02

Page 1 of 1

Client: **Prologis**

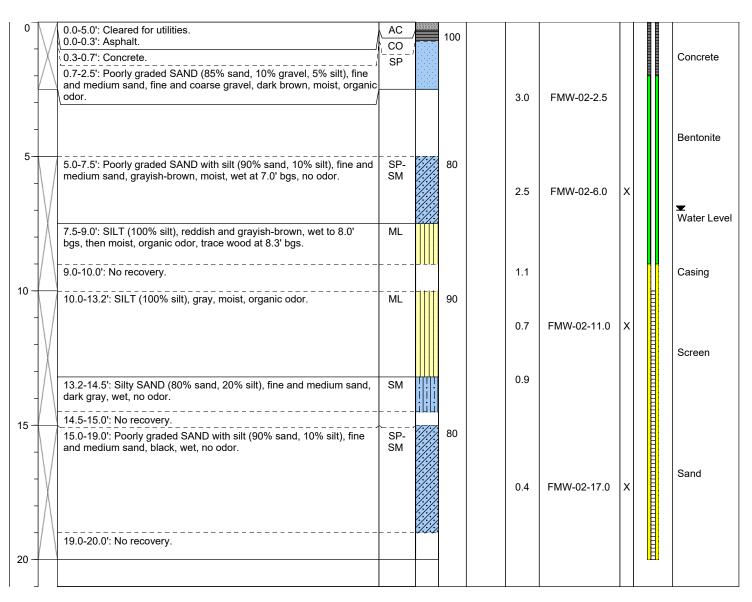
Project: Emerald Gateway Site Location: Tukwila, Washington

Farallon PN: 1071-026

Logged By: Y. Pehlivan / C. Banfield

Date/Time Started: 6/26/19 @ 1015 **Date/Time Completed:** 6/26/19 @ 1330

Equipment: Geoprobe 7822DT **Drilling Company:** Cascade Drilling


Drilling Method: Direct Push

Kyle Ceruti **Drilling Foreman:**

Auto Drive Hammer (lbs.): Depth of Water ATD (ft bgs): 7.0 Total Boring Depth (ft bgs): 20 Total Well Depth (ft bgs): 20

Sampler Type: 5' Macrocore

Depth (feet bgs.) Sample Interval	Lithologic Description	nscs	USCS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Boring/Well Construction Details
--------------------------------------	------------------------	------	--------------	------------	-------------------	-----------	-----------	-----------------	--

Well Construction Information

Monument Type: Flush Mount Casing Diameter (inches): Screen Slot Size (inches): 0.010 Screened Interval (ft bgs): 10.0-20.0

Prepacked Sand Filter Pack: Surface Seal: Cement Bentonite Annular Seal: **Boring Abandonment:**

Ground Surface Elevation (ft): Top of Casing Elevation (ft): Surveyed Location: X: NA Unique Well ID: BLK-239

NA Y: NA

NA

Log of Boring: FMW-03

Page 1 of 1

Y: NA

Client: Prologis

Project: Emerald Gateway Site **Location:** Tukwila, Washington

Farallon PN: 1071-026

Logged By: Y. Pehlivan / C. Banfield

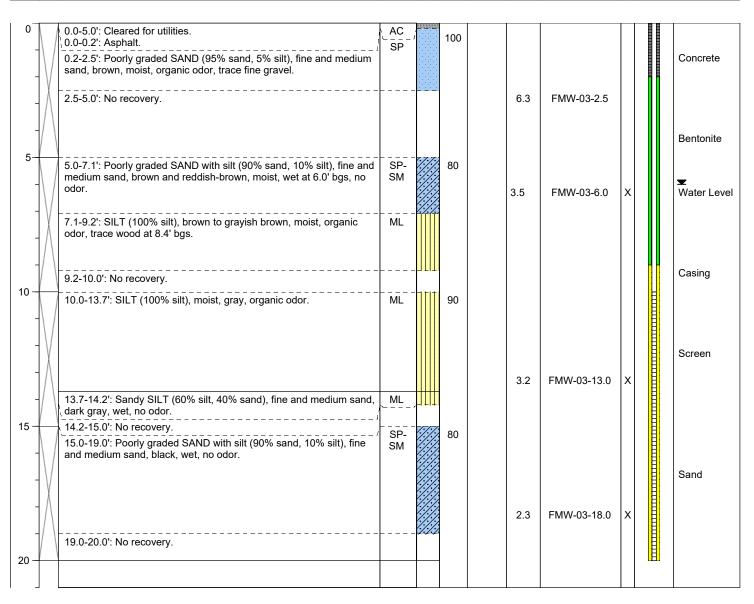
Date/Time Started: 6/26/19 @ 1134 **Date/Time Completed:** 6/26/19 @ 1435

Equipment: Geoprobe 7822DT

Drilling Company: Cascade Drilling

Kyle Ceruti

Drilling Method: Direct Push


Sampler Type: 5' Macrocore

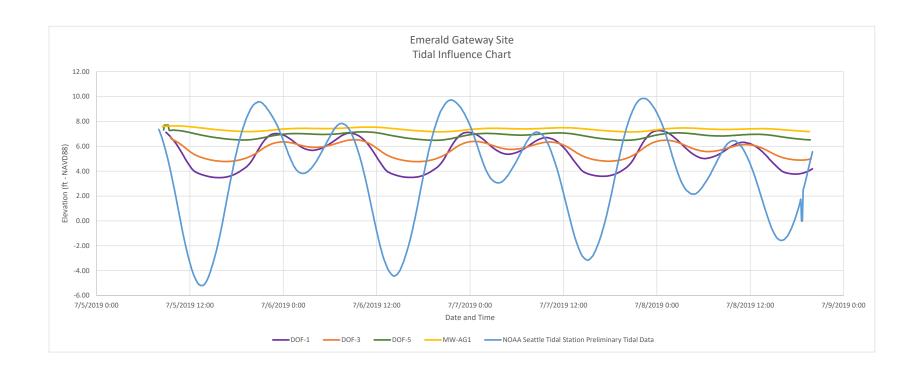
Drive Hammer (lbs.):AutoDepth of Water ATD (ft bgs):6.0Total Boring Depth (ft bgs):20

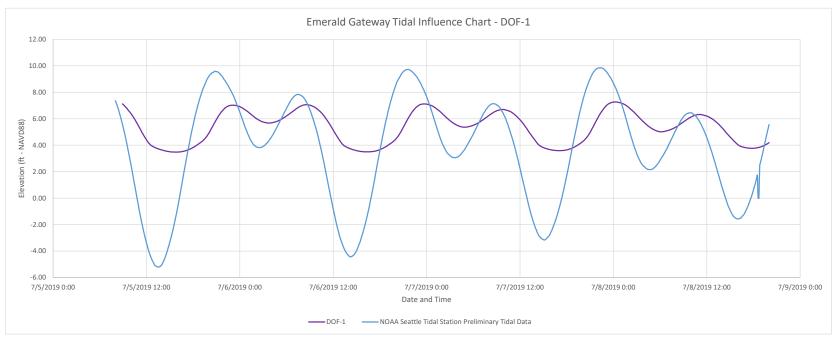
Total Well Depth (ft bgs): 20

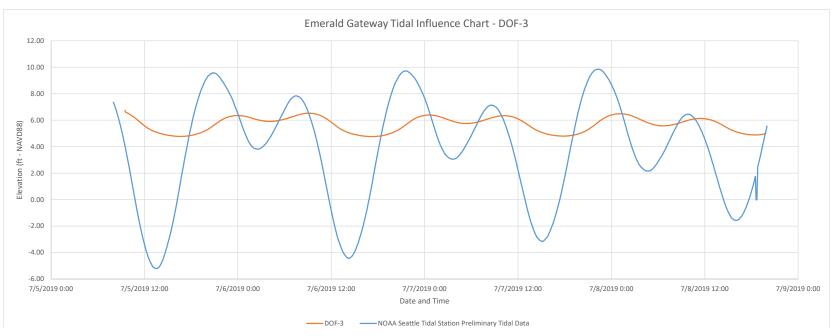
Depth (feet bgs.)	Lithologic Descriptio	USCS USCS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Boring/Well Construction Details
-------------------	-----------------------	----------------------	------------	-------------------	-----------	-----------	-----------------	--

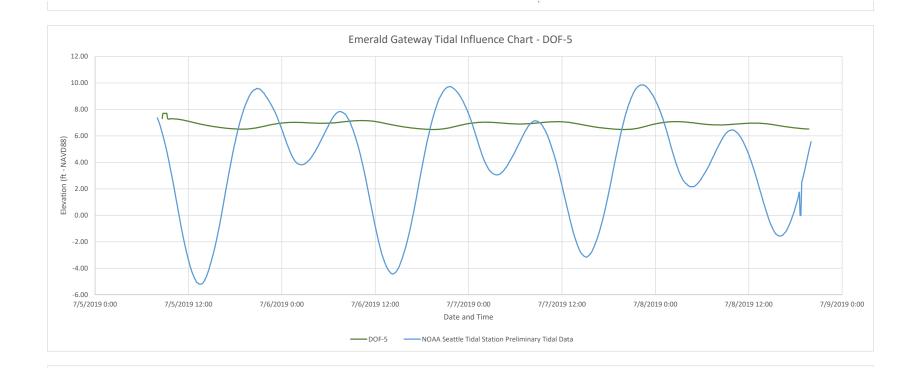
Drilling Foreman:

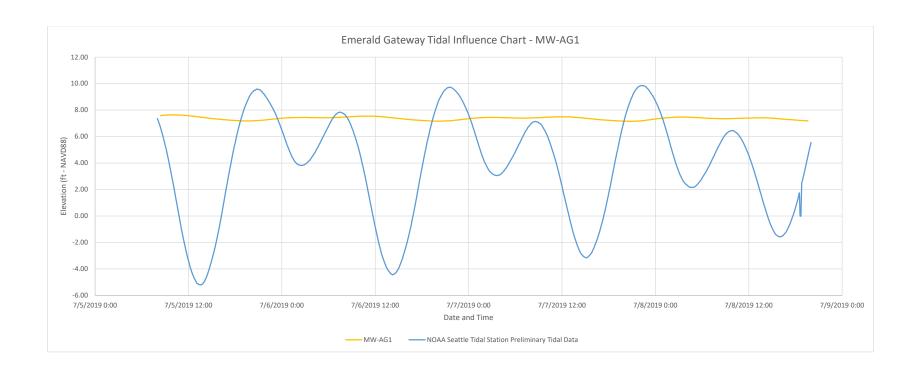
Well Construction Information


Monument Type:Flush MountFilter Pack:Prepacked SandGround Surface Elevation (ft):NACasing Diameter (inches):2.0Surface Seal:CementTop of Casing Elevation (ft):NAScreen Slot Size (inches):0.010Annular Seal:BentoniteSurveyed Location:X: NA


Screened Interval (ft bgs): 10.0-20.0 Boring Abandonment: NA Unique Well ID: BLK-240


APPENDIX B TIDAL STUDY HYDROGRAPHS


INTERIM ACTION DESIGN REPORT
Emerald Gateway Site
3301 South Norfolk Street
Seattle/Tukwila, Washington


Farallon PN: 1071-026

APPENDIX C LABORATORY ANALYTICAL REPORTS

INTERIM ACTION DESIGN REPORT
Emerald Gateway Site
3301 South Norfolk Street
Seattle/Tukwila, Washington

Farallon PN: 1071-026

17 July 2019

Pete Kingston Farallon Consulting, LLC 1809 7th Ave, Suite 1111 Seattle, WA 98101

RE: Emerald Gateway Site 1071-026

Please find enclosed sample receipt documentation and analytical results for samples from the project referenced above.

Sample analyses were performed according to ARI's Quality Assurance Plan and any provided project specific Quality Assurance Plan. Each analytical section of this report has been approved and reviewed by an analytical peer, the appropriate Laboratory Supervisor or qualified substitute, and a technical reviewer.

Should you have any questions or problems, please feel free to contact us at your convenience.

Associated Work Order(s)

19F0377

Associated SDG ID(s)
N/A

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed in the enclose Narrative. ARI, an accredited laboratory, certifies that the report results for which ARI is accredited meets all the requirements of the accrediting body. A list of certified analyses, accreditations, and expiration dates is included in this report.

Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in it entirety.

Cert# 100006

Chain of Custody Record & Laboratory Analysis Request

ARI Assigned Number:	Turn-around	Requested:	day		Analytical Chem						cal Resources, Incorporated cal Chemists and Consultants	
ARI Client Company: Farellon		Phone: 41	5-394	L4146	Date:	6/26/1	lce Prese	ent? Le	S		Tukwila	, WA 98168 5-6200 206-695-6201 (fax)
Client Contact: Pete Kingston	`				No. of Coolers:	-	Coole Temp	er Si	8"(ilabs.com
Client Project Name:	rway							Analysis F	Requested	7		Notes/Comments
Client Project #:	Samplers:	P/CB			8	#-(EX		20				7
Sample ID	Date	Time	Matrix	No. Containers	DRD PORD NUTFH-DX	GRO MUTPH-LIX	BTEX 8260C	WC 5				
FMW-01-2.5	6/26/19	6909	5	6								
FMW-01-5.0	1	1030		6	X	X	×					
FMW-0-10.0		1035		6	X	X	X					
FMW-01-14.0		1050		6	X	×	×					
FMW-01-19.0		1100		6	X	X	X					
FMW-02-25		1045		1								
FMW-02-6.0		1250		1	X							
FMW-02-6.0 FMW-02-11-0		1255		1	X							
FMW-02-17.0		1300		j								
FMW-03-2.5		1205	V	6		1						
Comments/Special Instructions	Relinquished by (Signature) 2	he-		Received by: (Signature)	hel	1	2	Relinquished (Signature)			Received by: (Signature)	
	Printed Name:	Pehleven		Printed Name	Tacos	ne	He	Printed Name	9:		Printed Name	9:
	Company: Familla			Company:	az			Company:			Company:	
	Date & Time:	1650		Date & Time:	36/19	16:	50	Date & Time:			Date & Time:	

Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or cosigned agreement between ARI and the Client.

Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract.

Chain of Custody Record & Laboratory Analysis Request

ARI Assigned Number:	Turn-around		5 do		Page:	Z	of Z	7			Analytica	al Resources, Incorporated al Chemists and Consultants		
ARI Client Company:		Phone: 42	5-394-	4146	Date	126/10	Ice Prese	ent? Le	5		Tukwila,	uth 134th Place, Suite 100 WA 98168		
Client Contact: Pete Kingston					No. of Coolers:	1	Coole Temp		8°C		www.aril	200 206-695-6201 (fax) bs.com		
Client Project Name:						×		Analysis F		1		Notes/Comments		
Client Project #: 1071-026	Samplers:	CB			3 4	14-6x	V V	20						
Sample ID	Date	Time	Matrix	No. Containers	DROPORD NW TPH-DX	GRO NWTPH-	BTEX 8260C	VOC 5 8260						
FMW-03-6.0	6/26/19	1400	5	6	X	X		X						
=MV-03-13.0		1410		6	X	X		X						
FMW-03-18.0		1415		6	×	X		X						
FATURE F- 25-2.5	V	1450	V	6										
F-26-2.5	V	1623	5	1										
Comments/Special Instructions	Relinquished by:	2		Received by:		/		Relinquished	by:		Received by:			
	(Signature)			(Signature)	while	1	>	(Signature)			(Signature)			
	Printed Name YUSV	Pehlive	M	Printed Name:	Jacob	sina	He	Printed Name	d.		Printed Name:			
	Company:			Company:	72			Company:			Company:			
	Date & Time:	/19 16	50	Date & Time: /	96/19	16:	50	Date & Time:			Date & Time:			

Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or cosigned agreement between ARI and the Client.

Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract.

RE: 19F0377 Emerald Gateway Report and EDD

Yusuf Pehlivan <ypehlivan@farallonconsulting.com>

Tue 7/16/2019 8:36 AM

To:Amanda Volgardsen <amanda.volgardsen@arilabs.com>;

Cc:Peter Kingston <pkingston@farallonconsulting.com>;

Hi Amanda,

Can you please analyze sample FMW-01-10.0, collected on 6/26 for VOCs by 8260C? We would like to run the analysis even though it is outside of the hold time.

Thanks

Yusuf Pehlivan, L.G., Project Geologist

D: 425-394-4415 | C: 425-606-7051 | Bio | LinkedIn

From: Amanda Volgardsen <amanda.volgardsen@arilabs.com>

Sent: Monday, July 8, 2019 1:26 PM

To: Peter Kingston < pkingston@farallonconsulting.com>; Yusuf Pehlivan < ypehlivan@farallonconsulting.com>

Subject: 19F0377 Emerald Gateway Report and EDD

Hello,

Attached is the final data for 19F0377. Please let me know if you have any questions.

Regards, Amanda Volgardsen Analytical Resources, Inc. Project Manager

206-695-6220

https://www.arilabs.com

Version changes coming this summer to SW-846 8260 and 8270 organic and 6010 and 6020 metals analysis methods.

"Humor is the universal solvent against the abrasive elements of life." - Alan Simpson

Analytical Report

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston17-Jul-2019 12:04

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
FMW-01-10.0	19F0377-03	Solid	26-Jun-2019 10:35	26-Jun-2019 16:50

Analytical Resources, Inc.

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston17-Jul-2019 12:04

Work Order Case Narrative

Sample receipt

Samples as listed on the preceding page were received June 26, 2019 under ARI work order 19F0377. For details regarding sample receipt, please refer to the Cooler Receipt Form.

Gasoline by NWTPH-g (GC/MS)

The samples were analyzed within the recommended holding times.

Samples FMW-01-10.0 and FMW-01-14.0 were reanalyzed at dilutions due to the gas concentration exceeding the upper calibration range. The initial analyses have been flagged with "E" qualifiers. No further corrective action was taken.

Initial and continuing calibrations were within method requirements.

Internal standard areas were within limits.

The surrogate percent recoveries were within control limits with the exception of surrgates associated with sample FMW-01-14.0

which are outside of the control limits for the original analysis. The sample was re-analyzed at a dilution with surrogate recoveries in control.

The method blanks were clean at the reporting limits.

The LCS/LCSD percent recoveries and RPD were within control limits.

Volatiles - EPA Method SW8260C

The samples were analyzed within the recommended holding times.

Initial and continuing calibrations were within method requirements, with the exception the ICV for NT5 on 6/28/19 which is outside of control limits high for Trichlorofluoromethane. The samples are non-detect for this compound. Associated QC has been flagged with "Q" qualifiers. No further corrective action was taken.

Internal standard areas were within limits.

The surrogate percent recoveries were within control limits.

The method blanks were clean at the reporting limits.

The LCSD has high RPD for Chloroethane. All other LCS/LCSD percent recoveries and RPD were within control limits. No corrective action was taken.

Diesel/Heavy Oil Range Organics - WA-Ecology Method NW-TPHDx

Analytical Resources, Inc.

Analytical Report

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston17-Jul-2019 12:04

The samples were extracted and analyzed within the recommended holding times.

Initial and continuing calibrations were within method requirements.

The surrogate percent recoveries were within control limits.

The method blank was clean at the reporting limits.

The LCS percent recoveries were within control limits.

Analytical Resources, Inc.

WORK ORDER

19F0377

	lon Consulting, LLC ald Gateway Site 1071-026	Project Manage Project Number	r: Amanda Volgardsen : Emerald Gateway Site 1071-026	
Report To:		Invoice To:		
Farallon Consu	lting, LLC	Farallon Consulti	ing, LLC	
Yusuf Pehlivan		Yusuf Pehlivan		
975 5th Avenue	Northwest	975 5th Avenue N	Northwest	
Issaquah, WA 9	8027	Issaquah, WA 980		
Phone: (425) 39		Phone :(425) 394		
Fax: -		Fax: -	-	
Date Due:	05-Jul-2019 18:00 (5 day TAT)			
Received By:	Jacob Walter	Date Received:	26-Jun-2019 16:50	
Logged In By:	Erin I. Salle	Date Logged In:	27-Jun-2019 08:01	
Samples Received at	:5.8°C		The second secon	
	signed and dated custody seals attached to outside of cooler(s)		apers included with the cooler	
Custody papers	properly filled out (in, signed, analyses requested, etc)	Yes Was a temp	perature blank included in the cooler	No
All hottles arrive	te used (if appropriate)d in good condition (unbroken)	Vec All bottles	sealed in individual plastic bags	No
Number of conta	niners listed on COC match number received.	Yes Bottle labe	abels complete and legiblels and tags agree with COC	Yes
	sed for the requested analyses	Yes All VOC v	ials free of air bubbles	No
Analyses/bottles	require preservation (attach preservation sheet excluding VOC).No Sufficient a	amount of sample sent in each bottle	

Freeze and Hold Extractions Container 05-Jul-2019 15:00

WORK ORDER

19F0377

Client: Farallon Consulting, LLC Project Manager: Amanda Volgardsen

Project: Emerald Gateway Site 1071-026 Project Number: Emerald Gateway Site 1071-026

Analysis	Due	TAT	Expires	Comments
19F0377-01 FMW-01-2.5 Sol	id Sampled 26-Jun-2	2019 09:09	(GMT-08:00)	
Pacific Time (US & Canada)		***************************************		
			VOA Vial, Clear, 40 m	L, NaHSO4D = VOA Vial, Clear, 40 mL, MeOH
E = VOA Vial, Clear, 40 mL, MeOH F	= VOA Vial, Clear, 40 ml., 1	МеОН		
Freeze and Hold - VOC	05-Jul-2019 15:00	5	25-Jun-2020 09:0	9
Freeze and Hold Extractions Contain	ner 05-Jul-2019 15:00	.5	25-Jun-2020 09:0	9
19F0377-02 FMW-01-5.0 [Sol Pacific Time (US & Canada)	id Sampled 26-Jun-2	2019 10:30	(GMT-08:00)	
A = Glass WM. Clear, 8 oz B	= VOA Vial, Clear, 40 mL, 1	NaHSO4C =	VOA Vial, Clear, 40 m	L, NaHSO4D = VOA Vial, Clear, 40 mL, MeOH
E = VOA Vial, Clear, 40 mL, MeOH F				
8260C VOA Solid (MeOH)	05-Jul-2019 15:00	5	10-Jul-2019 10:3	0
TPH NW (Extractables) low level	05-Jul-2019 15:00	5	10-Jul-2019 10:3	
Freeze and Hold Extractions Contain	ner 05-Jul-2019 15:00	5	25-Jun-2020 10:3	0
Freeze and Hold - VOC	05-Jul-2019 15:00	5	25-Jun-2020 10:3	0
Solids, Total, Dried at 103 -105 °C,	Soli 05-Jul-2019 15:00	5	24-Jul-2019 10:3	0
8260C VOA	05-Jul-2019 15:00	5	10-Jul-2019 10:3	0
8260C Gas (NWTPH)	05-Jul-2019 15:00	5	10-Jul-2019 10:3	0
$A = Glass \ WM, \ Clear, \ 8 \ oz $ B $E = VOA \ Vial, \ Clear, \ 40 \ mL, \ MeOH $ F			VOA Vial, Clear, 40 m.	L, NaHSO4D = VOA Vial, Clear, 40 mL, MeOH
TPH NW (Extractables) low level	05-Jul-2019 15:00	5	10-Jul-2019 10:3.	5
Solids, Total, Dried at 103 -105 °C,	Soli 05-Jul-2019 15:00	5	24-Jul-2019 10:3	5
8260C VOA	05-Jul-2019 15:00	5	10-Jul-2019 10:3:	5
8260C VOA Solid (MeOH)	05-Jul-2019 15:00	5	10-Jul-2019 10:3:	5
Freeze and Hold Extractions Contain	ier 05-Jul-2019 15:00	5	25-Jun-2020 10:3	5
Freeze and Hold - VOC	05-Jul-2019 15:00	5	25-Jun-2020 10:3	5
8260C Gas (NWTPH)	05-Jul-2019 15:00	5	10-Jul-2019 10:3:	5
19F0377-04 FMW-01-14.0 [Sc	lid1 Sampled 26-Jun-	2019 10:50	0 (GMT-08:00)	
Pacific Time (US & Canada)			(
A = Glass WM, Clear, 8 oz B	= VOA Vial, Clear, 40 mL, N	VaHSO4C =	VOA Vial, Clear, 40 m	L, NaHSO4D = VOA Vial, Clear, 40 mL, MeOH
E = VOA Vial, Clear, 40 mL, MeOH F				A COLOR OF THE PARTY OF THE PAR
8260C VOA	05-Jul-2019 15:00	5	10-Jul-2019 10:50	0
8260C Gas (NWTPH)	05-Jul-2019 15:00	5	10-Jul-2019 10:50	
8260C VOA Solid (MeOH)	05-Jul-2019 15:00	5	10-Jul-2019 10:50	
Freeze and Hold - VOC	05-Jul-2019 15:00	5	25-Jun-2020 10:5	
TPH NW (Extractables) low level	05-Jul-2019 15:00	5	10-Jul-2019 10:50	
Solids, Total, Dried at 103 -105 °C, 5	Soli 05-Jul-2019 15:00	5	24-Jul-2019 10:50	
			20 0 0000000000	3)

25-Jun-2020 10:50

Freeze and Hold Extractions Container 05-Jul-2019 15:00

WORK ORDER

19F0377

Client: Farallon Consulting, LLC Project Manager: Amanda Volgardsen

Project: Emerald Gateway Site 1071-026 Project Number: Emerald Gateway Site 1071-026

Analysis	Due	TAT	Expires	Comments
19F0377-05 FMW-01-19.0 Pacific Time (US & Canad		-2019 11:0	0 (GMT-08:00)	
A = Glass WM, Clear, 8 oz E = VOA Vial, Clear, 40 mL, MeO.			VOA Vial, Clear, 40 mL,	NaHSO4D = 1'OA Vial, Clear, 40 mL, MeOH
8260C Gas (NWTPH)	05-Jul-2019 15:00	5	10-Jul-2019 11:00	
Freeze and Hold Extractions Co		5	25-Jun-2020 11:00	
Freeze and Hold - VOC	05-Jul-2019 15:00	5	25-Jun-2020 11:00	
TPH NW (Extractables) low lev		5	10-Jul-2019 11:00	
Solids, Total, Dried at 103 -105		5	24-Jul-2019 11:00	
8260C VOA	05-Jul-2019 15:00	5	10-Jul-2019 11:00	
8260C VOA Solid (MeOH)	05-Jul-2019 15:00	5	10-Jul-2019 11:00	
19F0377-06 FMW-02-2.5		019 10:45	(GMT-08:00)	
Pacific Time (US & Canada A = Glass WM, Clear, 8 oz	a)			
Freeze and Hold Extractions Co	ontainer 05-Jul-2019 15:00	5	25-Jun-2020 10:45	
Pacific Time (US & Canada A = Glass WM, Clear, 8 oz Solids, Total, Dried at 103 -105		5	24-Jul-2019 12:50	
Freeze and Hold Extractions Co	The second of th	77		
TPH NW (Extractables) low lev		5	25-Jun-2020 12:50 10-Jul-2019 12:50	
19F0377-08 FMW-02-11.0 Pacific Time (US & Canad:		2019 12:5	5 (GMT-08:00)	
A = Glass WM, Clear, 8 oz		***		
TPH NW (Extractables) low lev		5	10-Jul-2019 12:55	
Freeze and Hold Extractions Co		5	25-Jun-2020 12:55	
Solids, Total, Dried at 103 -105	The state of the s	5	24-Jul-2019 12:55	
19F0377-09 FMW-02-17.0 Pacific Time (US & Canada A = Glass WM, Clear, 8 oz		2019 13:0	0 (GMT-08:00)	
	05 1 1 2010 15 00		0.5.1	
reeze and Hold Extractions ('c	ontainer 05-Jul-2019 15:00	5	25-Jun-2020 13:00	11
reeze and riold Extractions et	10 1111 0 1 107 1	019 12:05	(GMT-08:00)	
19F0377-10 FMW-03-2.5 Pacific Time (US & Canada				
19F0377-10 FMW-03-2.5	a) B = VOA Vial, Clear, 40 mL, N	VaHSO4C =	VOA Vial, Clear, 40 mL,	NaHSO4D = VOA Vial, Clear, 40 mL, MeOH
19F0377-10 FMW-03-2.5 Pacific Time (US & Canada A = Glass WM, Clear, 8 oz	a) B = VOA Vial, Clear, 40 mL, N H F = VOA Vial, Clear, 40 mL, N	VaHSO4C =	VOA Vial, Clear, 40 mL, 24-Jul-2019 12:05	NaHSO4D = VOA Vial, Clear, 40 mL, MeOH

25-Jun-2020 12:05

Freeze and Hold Extractions Container 05-Jul-2019 15:00

WORK ORDER

19F0377

Client: Farallon Consulting, LLC Project Manager: Amanda Volgardsen

Project: Emerald Gateway Site 1071-026 Project Number: Emerald Gateway Site 1071-026

Froject: Ellieraid Gateway Site	10/1-020		rroject Number;	Emeraid Gateway Site 10/1-026
Analysis	Due	TAT	Expires	Comments
19F0377-11 FMW-03-6.0 [Soli Pacific Time (US & Canada)	d] Sampled 26-Jun-2	019 14:0	0 (GMT-08:00)	
$A = Glass \ WM. \ Clear. \ 8 \ oz $ B $E = VOA \ Vial, \ Clear. \ 40 \ mL, \ MeOH $ F			= VOA Vial, Clear, 40 mL,	NaHSO4D = VOA Vial, Clear, 40 mL, MeOH
8260C Gas (NWTPH)	05-Jul-2019 15:00	5	10-Jul-2019 14:00	
8260C VOA Solid (MeOH)	05-Jul-2019 15:00	5	10-Jul-2019 14:00	
Solids, Total, Dried at 103 -105 °C, S	Soli 05-Jul-2019 15:00	5	24-Jul-2019 14:00	
TPH NW (Extractables) low level	05-Jul-2019 15:00	5	10-Jul-2019 14:00	
Freeze and Hold - VOC	05-Jul-2019 15:00	5	25-Jun-2020 14:00	
Freeze and Hold Extractions Contain	er 05-Jul-2019 15:00	5	25-Jun-2020 14:00	
19F0377-12 FMW-03-13.0 [So Pacific Time (US & Canada)	lid Sampled 26-Jun-	2019 14:	10 (GMT-08:00)	
			= VOA Vial, Clear, 40 mL,	NaHSO4D = VOA Vial, Clear, 40 mL, MeOH
E = VOA Vial, Clear, 40 mL, MeOH F	= VOA Vial, Clear, 40 mL, N	1eOH		
Freeze and Hold Extractions Contain	er 05-Jul-2019 15:00	5	25-Jun-2020 14:10	
8260C Gas (NWTPH)	05-Jul-2019 15:00	5	10-Jul-2019 14:10	
8260C VOA Solid (MeOH)	05-Jul-2019 15:00	5	10-Jul-2019 14:10	
Solids, Total, Dried at 103 -105 °C, S		5	24-Jul-2019 14:10	
TPH NW (Extractables) low level	05-Jul-2019 15:00	5	10-Jul-2019 14:10	
Freeze and Hold - VOC	05-Jul-2019 15:00	5	25-Jun-2020 14:10	
19F0377-13 FMW-03-18.0 [So Pacific Time (US & Canada)	lid Sampled 26-Jun-	2019 14:	15 (GMT-08:00)	
			= VOA Vial, Clear, 40 mL,	NaHSO4D = VOA Vial, Clear, 40 mL, MeOH
E = VOA Vial, Clear, 40 mL, MeOH F			25 1 2020 14 15	
Freeze and Hold - VOC Freeze and Hold Extractions Contain	05-Jul-2019 15:00	5	25-Jun-2020 14:15	
Solids, Total, Dried at 103 -105 °C, S		5	25-Jun-2020 14:15	
TPH NW (Extractables) low level		5	24-Jul-2019 14:15	
8260C Gas (NWTPH)	05-Jul-2019 15:00		10-Jul-2019 14:15	
	05-Jul-2019 15:00	5	10-Jul-2019 14:15	
8260C VOA Solid (MeOH)	05-Jul-2019 15:00	5	10-Jul-2019 14:15	
19F0377-14 F-25-2.5 Solid S Time (US & Canada)	ampled 26-Jun-2019 1	14:50 (GI	MT-08:00) Pacific	
$A = Glass \ WM. \ Clear, 8 \ oz $ $B \ E = VOA \ Vial, \ Clear, 40 \ mL, \ MeOH $ $F \ $			= VOA Vial, Clear, 40 mL,	NaHSO4D = l'OA Vial, Clear, 40 mL, MeOH
Freeze and Hold - VOC	05-Jul-2019 15:00	5	25-Jun-2020 14:50	
	The State of the Contract of the State of th			

25-Jun-2020 14:50

Printed: 6/27/2019 8:25:18AM

WORK ORDER

19F0377

Client: Farallon Consulting, LLC Project Manager: Amanda Volgardsen

Project: Emerald Gateway Site 1071-026 Project Number: Emerald Gateway Site 1071-026

Analysis Due	TAT	Expires	Comments
19F0377-15 F-26-2.5 [Solid] Sampled 26-Jun-2019 Time (US & Canada)	16:23 (GN	MT-08:00) Pacific	
A = Glass WM. Clear, 8 oz	*******************************		
Freeze and Hold Extractions Container 05-Jul-2019 15:00	5	25-Jun-2020 16:23	

Reviewed By Date

Cooler Receipt Form

C 11			.1 2 1		
ARI Client:Carallo		Project Name:Cmea	1d Cate	nerf	
COC No(s):	NA	Delivered by: Fed-Ex UPS Court	ier Hand Delivered C	Other:	
Assigned ARI Job No:	0377	Tracking No:		-	NA,
Preliminary Examination Phase	:			-	
Were intact, properly signed and	d dated custody seals attached to the	ne outside of the cooler?	YES	0	NO
Were custody papers included w	vith the cooler?	*********************	YES	1	NO
Were custody papers properly fi	lled out (ink, signed, etc.)		YES		NO
	recommended 2.0-6.0 °C for chemis	stry)			
Time 1650		5,80			
If cooler temperature is out of co	mpliance fill out form 00070F		Temp Gun ID#: DO	00520	,6
Cooler Accepted by:	710	Date: 06/06/19 Time:	1650		
		d attach all shipping documents			
Log-In Phase:		= system of the property of th			
	ded in the cooler?			YES	NO
		p Wet lise Gel Packs Baggies Foam	-	-	200
	opriate)?	27. 1.6.17.1.2.1.6. 40.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	NA 	YES	NO
	stic bags?		Individually	Grouped	Not
	and logible?			VES VES	NO
	and legible?			YES)	NO
		er of containers received?	as	YES	NO
	or the requested analyses?		GRANG	VES	NO
		servation sheet, excluding VOCs)	NA	YES	NO
	ubbles?		NA	17000	NO
	le sent in each bottle?		NA (YES	NO
		***************************************	(NA)	ILO	140
Were the sample(s) split	~	Equipment:		lit by:	
by ARI?	0 14	Cquipment.		ш Бу	
Samples Logged by:	Date: 6/27/19	Time: OSO Lat	pels checked by:	2	
	_	of discrepancies or concerns **		-0	
Sample ID on Bottle	Sample ID on COC	Sample ID on Bottle	Sample ID	on COC	
FMW-01-	FMW-01-19.0				
Additional Notes, Discrepand	cies, & Resolutions:				
By: 6 - SPD - 1	Date: 6/27/19				

0016F 01/17/2018

Cooler Receipt Form

Revision 014A

Project Number: 1071-026 1809 7th Ave, Suite 1111 Reported: Seattle WA, 98101 Project Manager: Pete Kingston 17-Jul-2019 12:04

FMW-01-10.0 19F0377-03 (Solid)

Volatile Organic Compounds

Method: EPA 8260C Sampled: 06/26/2019 10:35 Instrument: NT5 Analyst: PB Analyzed: 06/28/2019 17:36

Sample Preparation: Preparation Method: EPA 5035 (Methanol Extraction)

Preparation Batch: BHF0743 Sample Size: 5.015 g (wet) Prepared: 28-Jun-2019 Final Volume: 5 mL

Dry Weight:3.79 g % Solids: 75.62

Extract ID: 19F0377-03 E

1 Tepated: 28-Juli-2019	Tiliai voiulile.	/ IIIL					70 Solius. 75.02
			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Chloromethane	74-87-3	1	0.42	1.64	ND	ug/kg	U
Vinyl Chloride	75-01-4	1	0.26	1.64	ND	ug/kg	U
Bromomethane	74-83-9	1	0.33	1.64	ND	ug/kg	U
Chloroethane	75-00-3	1	0.61	1.64	ND	ug/kg	U
Trichlorofluoromethane	75-69-4	1	0.39	1.64	ND	ug/kg	U
Acrolein	107-02-8	1	1.87	8.20	ND	ug/kg	U
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1	1	0.27	3.28	ND	ug/kg	U
Acetone	67-64-1	1	1.48	8.20	ND	ug/kg	U
1,1-Dichloroethene	75-35-4	1	0.26	1.64	ND	ug/kg	U
Bromoethane	74-96-4	1	0.26	3.28	ND	ug/kg	U
Iodomethane	74-88-4	1	0.95	1.64	ND	ug/kg	U
Methylene Chloride	75-09-2	1	0.31	3.28	2.04	ug/kg	J, D
Acrylonitrile	107-13-1	1	0.48	8.20	ND	ug/kg	U
Carbon Disulfide	75-15-0	1	0.51	1.64	ND	ug/kg	U
trans-1,2-Dichloroethene	156-60-5	1	0.37	1.64	ND	ug/kg	U
Vinyl Acetate	108-05-4	1	0.61	8.20	ND	ug/kg	U
1,1-Dichloroethane	75-34-3	1	0.27	1.64	ND	ug/kg	U
2-Butanone	78-93-3	1	1.35	8.20	ND	ug/kg	U
2,2-Dichloropropane	594-20-7	1	0.34	1.64	ND	ug/kg	U
cis-1,2-Dichloroethene	156-59-2	1	0.30	1.64	ND	ug/kg	U
Chloroform	67-66-3	1	0.35	1.64	ND	ug/kg	U
Bromochloromethane	74-97-5	1	0.38	1.64	ND	ug/kg	U
1,1,1-Trichloroethane	71-55-6	1	0.33	1.64	ND	ug/kg	U
1,1-Dichloropropene	563-58-6	1	0.32	1.64	ND	ug/kg	U
Carbon tetrachloride	56-23-5	1	0.43	1.64	ND	ug/kg	U
1,2-Dichloroethane	107-06-2	1	0.32	1.64	ND	ug/kg	U
Benzene	71-43-2	1000	269	1640	ND	ug/kg	U
Trichloroethene	79-01-6	1	0.30	1.64	ND	ug/kg	U
1,2-Dichloropropane	78-87-5	1	0.21	1.64	ND	ug/kg	U
Bromodichloromethane	75-27-4	1	0.22	1.64	ND	ug/kg	U
Dibromomethane	74-95-3	1	0.40	1.64	ND	ug/kg	U
2-Chloroethyl vinyl ether	110-75-8	1	0.25	8.20	ND	ug/kg	U
4-Methyl-2-Pentanone	108-10-1	1	1.25	8.20	ND	ug/kg	U
cis-1,3-Dichloropropene	10061-01-5	1	0.31	1.64	ND	ug/kg	U
Toluene	108-88-3	1000	282	1640	ND	ug/kg	U
trans-1,3-Dichloropropene	10061-02-6	1	0.32	1.64	ND	ug/kg	U

Analytical Resources, Inc.

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston17-Jul-2019 12:04

FMW-01-10.0 19F0377-03 (Solid)

Volatile Organic Compounds

 Method: EPA 8260C
 Sampled: 06/26/2019 10:35

 Instrument: NT5
 Analyst: PB

 Analyzed: 06/28/2019 17:36

			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
2-Hexanone	591-78-6	1	1.96	8.20	ND	ug/kg	U
1,1,2-Trichloroethane	79-00-5	1	0.25	1.64	ND	ug/kg	U
1,3-Dichloropropane	142-28-9	1	0.25	1.64	ND	ug/kg	U
Tetrachloroethene	127-18-4	1	0.45	1.64	ND	ug/kg	U
Dibromochloromethane	124-48-1	1	0.29	1.64	ND	ug/kg	U
1,2-Dibromoethane	106-93-4	1	0.41	1.64	ND	ug/kg	U
Chlorobenzene	108-90-7	1	0.46	1.64	ND	ug/kg	U
Ethylbenzene	100-41-4	1000	446	1640	3500	ug/kg	D
1,1,1,2-Tetrachloroethane	630-20-6	1	0.17	1.64	ND	ug/kg	U
m,p-Xylene	179601-23-1	1000	916	3280	13400	ug/kg	D
o-Xylene	95-47-6	1000	374	1640	ND	ug/kg	U
Xylenes, total	1330-20-7	1	1.27	3.28	13.4	ug/kg	D
Styrene	100-42-5	1	0.45	1.64	ND	ug/kg	U
Bromoform	75-25-2	1	0.43	1.64	ND	ug/kg	U
1,1,2,2-Tetrachloroethane	79-34-5	1	0.35	1.64	ND	ug/kg	U
1,2,3-Trichloropropane	96-18-4	1	0.46	3.28	ND	ug/kg	U
trans-1,4-Dichloro 2-Butene	110-57-6	1	0.84	8.20	ND	ug/kg	U
n-Propylbenzene	103-65-1	1	0.63	1.64	4.22	ug/kg	D
Bromobenzene	108-86-1	1	0.74	1.64	ND	ug/kg	U
Isopropyl Benzene	98-82-8	1	0.55	1.64	2.17	ug/kg	D
2-Chlorotoluene	95-49-8	1	0.65	1.64	ND	ug/kg	U
4-Chlorotoluene	106-43-4	1	0.74	1.64	ND	ug/kg	U
t-Butylbenzene	98-06-6	1	0.63	1.64	ND	ug/kg	U
1,3,5-Trimethylbenzene	108-67-8	1	0.62	1.64	11.9	ug/kg	D
1,2,4-Trimethylbenzene	95-63-6	1	0.74	1.64	34.2	ug/kg	D
s-Butylbenzene	135-98-8	1	0.70	1.64	2.14	ug/kg	D
4-Isopropyl Toluene	99-87-6	1	0.76	1.64	3.95	ug/kg	D
1,3-Dichlorobenzene	541-73-1	1	0.76	1.64	ND	ug/kg	U
1,4-Dichlorobenzene	106-46-7	1	0.83	1.64	ND	ug/kg	U
n-Butylbenzene	104-51-8	1	0.94	1.64	3.75	ug/kg	D
1,2-Dichlorobenzene	95-50-1	1	0.80	1.64	ND	ug/kg	U
1,2-Dibromo-3-Chloropropane	96-12-8	1	0.80	8.20	ND	ug/kg	U
1,2,4-Trichlorobenzene	120-82-1	1	1.69	8.20	ND	ug/kg	U
Hexachloro-1,3-Butadiene	87-68-3	1	1.36	8.20	ND	ug/kg	U
Naphthalene	91-20-3	1	2.52	8.20	5.95	ug/kg	J, D
1,2,3-Trichlorobenzene	87-61-6	1	1.96	8.20	ND	ug/kg	U
Methyl tert-butyl Ether	1634-04-4	1	0.38	1.64	ND	ug/kg	U
2-Pentanone	107-87-9	1	8.20	8.20	ND	ug/kg	U

 Surrogate: 1,2-Dichloroethane-d4
 80-124 %
 120
 %

Analytical Resources, Inc.

Analytical Report

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston17-Jul-2019 12:04

FMW-01-10.0 19F0377-03 (Solid)

Volatile Organic Compounds

 Method: EPA 8260C
 Sampled: 06/26/2019 10:35

 Instrument: NT5
 Analyst: PB

 Analyzed: 06/28/2019 17:36

		Recovery			
Analyte	CAS Number	Limits	Recovery	Units	Notes
Surrogate: Toluene-d8		80-120 %	103	%	
Surrogate: 4-Bromofluorobenzene		80-120 %	99.5	%	
Surrogate: 1,2-Dichlorobenzene-d4		80-120 %	101	%	

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston17-Jul-2019 12:04

Volatile Organic Compounds - Quality Control

Batch BHF0743 - EPA 5035 (Methanol Extraction)

Instrument: NT5 Analyst: PB

QC Sample/Analyte	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
	_100011		2311111								
Blank (BHF0743-BLK1)	ND	12.7	50.0		red: 28-Jun	1-2019 Ana	ıyzed: 28-Jı	un-2019 11	:19		U
Chloromethane Vinyl Chloride	ND ND	12.7 7.80	50.0 50.0	ug/kg ug/kg							U
Bromomethane	ND ND	10.2	50.0	ug/kg ug/kg							U
Chloroethane	ND ND	18.6	50.0	ug/kg ug/kg							U
Trichlorofluoromethane	ND	12.0	50.0	ug/kg ug/kg							U
Acrolein	ND	57.0	250	ug/kg ug/kg							U
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	8.10	100	ug/kg							U
Acetone	ND	45.2	250	ug/kg							U
1,1-Dichloroethene	ND	7.90	50.0	ug/kg							U
Bromoethane	ND	8.00	100	ug/kg							U
Iodomethane	ND	28.8	50.0	ug/kg							U
Methylene Chloride	53.6	9.50	100	ug/kg							J
Acrylonitrile	ND	14.7	250	ug/kg							U
Carbon Disulfide	ND	15.4	50.0	ug/kg							U
trans-1,2-Dichloroethene	ND	11.2	50.0	ug/kg							U
Vinyl Acetate	ND	18.6	250	ug/kg							U
1,1-Dichloroethane	ND	8.20	50.0	ug/kg							U
2-Butanone	ND	41.1	250	ug/kg							U
2,2-Dichloropropane	ND	10.3	50.0	ug/kg							U
cis-1,2-Dichloroethene	ND	9.00	50.0	ug/kg							U
Chloroform	ND	10.8	50.0	ug/kg							U
Bromochloromethane	ND	11.7	50.0	ug/kg							U
1,1,1-Trichloroethane	ND	10.1	50.0	ug/kg							U
1,1-Dichloropropene	ND	9.70	50.0	ug/kg							U
Carbon tetrachloride	ND	13.0	50.0	ug/kg							U
1,2-Dichloroethane	ND	9.70	50.0	ug/kg							U
Benzene	ND	8.20	50.0	ug/kg							U
Trichloroethene	ND	9.00	50.0	ug/kg							U
1,2-Dichloropropane	ND	6.40	50.0	ug/kg							U
Bromodichloromethane	ND	6.70	50.0	ug/kg							U
Dibromomethane	ND	12.1	50.0	ug/kg							U
2-Chloroethyl vinyl ether	ND	7.50	250	ug/kg							U
4-Methyl-2-Pentanone	ND	38.0	250	ug/kg							U
cis-1,3-Dichloropropene	ND	9.40	50.0	ug/kg							U
Toluene	ND	8.60	50.0	ug/kg							U

Analytical Resources, Inc.

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston17-Jul-2019 12:04

Volatile Organic Compounds - Quality Control

Batch BHF0743 - EPA 5035 (Methanol Extraction)

Instrument: NT5 Analyst: PB

QC Sample/Analyte	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Blank (BHF0743-BLK1) trans-1,3-Dichloropropene	ND	9.60	50.0	ug/kg	red: 28-Jun	1-2019 Ana	ıyzed: 28-Ji	un-2019 II	:19		U
2-Hexanone	ND ND	59.8	250	ug/kg ug/kg							U
1,1,2-Trichloroethane	ND	7.70	50.0	ug/kg ug/kg							U
1,3-Dichloropropane	ND	7.70	50.0	ug/kg ug/kg							U
Tetrachloroethene	ND	13.8	50.0	ug/kg ug/kg							U
Dibromochloromethane	ND	8.70	50.0	ug/kg							U
1,2-Dibromoethane	ND	12.5	50.0	ug/kg							U
Chlorobenzene	ND	14.1	50.0	ug/kg							U
Ethylbenzene	ND	13.6	50.0	ug/kg							U
1,1,1,2-Tetrachloroethane	ND	5.10	50.0	ug/kg							U
m,p-Xylene	ND	27.9	100	ug/kg							U
o-Xylene	ND	11.4	50.0	ug/kg							U
Xylenes, total	ND	38.7	100	ug/kg							U
Styrene	ND	13.8	50.0	ug/kg							U
Bromoform	ND	13.2	50.0	ug/kg							U
1,1,2,2-Tetrachloroethane	ND	10.7	50.0	ug/kg							U
1,2,3-Trichloropropane	ND	14.0	100	ug/kg							U
trans-1,4-Dichloro 2-Butene	ND	25.5	250	ug/kg							U
n-Propylbenzene	ND	19.3	50.0	ug/kg							U
Bromobenzene	ND	22.4	50.0	ug/kg							U
Isopropyl Benzene	ND	16.7	50.0	ug/kg							U
2-Chlorotoluene	ND	19.7	50.0	ug/kg							U
4-Chlorotoluene	ND	22.4	50.0	ug/kg							U
t-Butylbenzene	ND	19.2	50.0	ug/kg							U
1,3,5-Trimethylbenzene	ND	18.9	50.0	ug/kg							U
1,2,4-Trimethylbenzene	ND	22.7	50.0	ug/kg							U
s-Butylbenzene	ND	21.2	50.0	ug/kg							U
4-Isopropyl Toluene	ND	23.1	50.0	ug/kg							U
1,3-Dichlorobenzene	ND	23.3	50.0	ug/kg							U
1,4-Dichlorobenzene	ND	25.3	50.0	ug/kg							U
n-Butylbenzene	ND	28.6	50.0	ug/kg							U
1,2-Dichlorobenzene	ND	24.4	50.0	ug/kg							U
1,2-Dibromo-3-Chloropropane	ND	24.4	250	ug/kg							U
1,2,4-Trichlorobenzene	ND	51.5	250	ug/kg							U
Hexachloro-1,3-Butadiene	ND	41.4	250	ug/kg							U

Analytical Resources, Inc.

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston17-Jul-2019 12:04

Volatile Organic Compounds - Quality Control

Batch BHF0743 - EPA 5035 (Methanol Extraction)

Instrument: NT5 Analyst: PB

Naphthalene	QC Sample/Analyte	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
ND 59.8 250 wg/kg	Blank (BHF0743-BLK1)				Prepa	red: 28-Jun	-2019 Ana	ılyzed: 28-J	un-2019 11	19		
No. 10.4 50.0 ug/kg	Naphthalene	ND	76.9	250	ug/kg							U
Methyl tert-buyl Ether ND 11.6 50.0 ug/kg Ug/kg	1,2,3-Trichlorobenzene	ND	59.8	250	ug/kg							U
Pertantane ND 250 250 ug/kg	Dichlorodifluoromethane	ND	10.4	50.0	ug/kg							U
Surrogate: 1,2-Dichloroethane-d4 51.3 ug/kg 50.0 103 80-124	Methyl tert-butyl Ether	ND	11.6	50.0	ug/kg							U
Surrogate: Toluene-d8 50.3 ug/kg 50.0 101 80-120	2-Pentanone	ND	250	250	ug/kg							U
Surrogate: 4-Bromofluorobenzene	Surrogate: 1,2-Dichloroethane-d4	51.3			ug/kg	50.0		103	80-124			
Number 1,2-Dichlorobenzene-d4 51.5 ug/kg 50.0 103 80-120	Surrogate: Toluene-d8	50.3			ug/kg	50.0		101	80-120			
Prepared: 28-Jun-2019 Analyzed: 28-Jun-2019 10:14	Surrogate: 4-Bromofluorobenzene	48.9			ug/kg	50.0		97.9	80-120			
Chloromethane 2520 ug/kg 2500 101 42-153 Vinyl Chloride 2660 ug/kg 2500 106 74-133 Bromomethane 2730 ug/kg 2500 109 41-147 Chlorotehane 2730 ug/kg 2500 109 41-147 Chlorotehane 2030 ug/kg 2500 81.2 66-133 Trichlorofluoromethane 3020 ug/kg 2500 121 60-145 Q Acrolein 10800 ug/kg 12500 86.4 45-149 1.1,2-Trichloro-1,2,2-Trifluoroethane 2560 ug/kg 2500 102 70-133 Acetone 12000 ug/kg 12500 95.7 45-147 1.1-Dichloroethene 2530 ug/kg 2500 101 67-132 Bromoethane 2540 ug/kg 2500 101 67-132 Bromoethane 2540 ug/kg 2500 97.7 42-187 Methylene Chloride 2450 ug/kg 2500 98.0 53-169 Acrylonitile 2450 ug/kg 2500 98.0 53-169 Acrylonitile 2450 ug/kg 2500 98.0 53-169 Acrylonitile 2560 ug/kg 2500 101 71-136 Carbon Disulfide 2500 ug/kg 2500 101 71-136 Carbon Disulfide 2500 ug/kg 2500 101 71-136 Vinyl Acetate 2490 ug/kg 2500 99.5 72-127 1.1-Dichloroethane 2560 ug/kg 2500 103 76-121 2-Butanone 2560 ug/kg 2500 104 65-136 2-Butanone 2560 ug/kg 2500 105 75-121 1.1-Dichloropopane 2560 ug/kg 2500 107 76-121 2-Butanone 2550 ug/kg 2500 107 76-121 Bromochloromethane 2550 ug/kg 2500 107 76-123	Surrogate: 1,2-Dichlorobenzene-d4	51.5			ug/kg	50.0		103	80-120			
Vinyl Chloride 2660 ug/kg 2500 106 74-133 Bromomethane 2730 ug/kg 2500 109 41-147 Chlorocthane 2030 ug/kg 2500 81.2 66-133 Trichlorofluoromethane 3020 ug/kg 2500 121 66-145 Acrolein 10800 ug/kg 12500 86.4 45-149 Acrolein 12000 ug/kg 12500 95.7 45-147 Acetone 12000 ug/kg 2500 101 67-132 Bromoethane 2530 ug/kg 2500 104 68-135 Odomethane 2440 ug/kg 2500 104 68-135 Methylene Chloride 2450 ug/kg 2500 98.0 53-169 Acrylonitrile 2450 ug/kg 2500 98.0 53-169 Acrylonitrile 2450 ug/kg 2500 101 71-136 Vinyl Acetate 2490 ug/kg 2	LCS (BHF0743-BS1)				Prepa	red: 28-Jun	-2019 Ana	ılyzed: 28-J	un-2019 10	:14		
Bromomethane 2730 ug/kg 2500 109 41-147 Chloroethane 2030 ug/kg 2500 81.2 66-133 Trichlorofluoromethane 3020 ug/kg 2500 121 60-145 Q Acrolein 10800 ug/kg 12500 86.4 45-149 11,1-2-Trichloro-1,2,2-Trifluoroethane 2560 ug/kg 2500 102 70-133 Acetone 12000 ug/kg 12500 95.7 45-147 11,1-Dichloroethane 2530 ug/kg 2500 101 67-132 Bromoethane 2590 ug/kg 2500 101 67-132 Bromoethane 2590 ug/kg 2500 97.7 42-187 Methylene Chloride 2450 ug/kg 2500 98.0 35-169 Acetylonitrile 2450 ug/kg 2500 98.0 35-169 Acetylonitrile 2560 ug/kg 2500 98.0 35-169 Acetylonitrile 2560 ug/kg 2500 98.2 63-133 Carbon Disulfide 2560 ug/kg 2500 101 71-136 Vinyl Acetate 2490 ug/kg 2500 99.5 72-127 1,1-Dichloroethane 2500 ug/kg 2500 101 65-136 2,2-Dichloroethane 2640 ug/kg 2500 101 65-136 2,2-Dichloroethane 2550 ug/kg 2500 102 76-123 Bromochloromethane 2550 ug/kg 2500 101 77-121 Chloroform 2550 ug/kg 2500 102 76-123 Bromochloromethane 2550 ug/kg 2500 101 78-120 1,1-1-Trichloroethane 2550 ug/kg 2500 101 78-120 1,1-1-Trichloroethane 2550 ug/kg 2500 101 78-120 1,1-1-Trichloroethane 2550 ug/kg 2500 102 76-123 Bromochloromethane 2550 ug/kg 2500 101 78-120	Chloromethane	2520			ug/kg	2500		101	42-153			
Chloroethane 2030 ug/kg 2500 81.2 66-133 Trichlorofluoromethane 3020 ug/kg 2500 121 60-145 Q Acrolein 10800 ug/kg 12500 86.4 45-149 1,1,2-Trichloro-1,2,2-Trifluoroethane 2560 ug/kg 2500 102 70-133 Acetone 12000 ug/kg 12500 95.7 45-147 1,1-Dichloroethene 2530 ug/kg 2500 101 67-132 Bromoethane 2590 ug/kg 2500 101 67-132 Bromoethane 2440 ug/kg 2500 97.7 42-187 Methylene Chloride 2450 ug/kg 2500 98.0 53-169 Acrylonitrile 2450 ug/kg 2500 98.2 63-133 Carbon Disulfide 2560 ug/kg 2500 101 71-136 Carbon Disulfide 2560 ug/kg 2500 99.5 72-127 L1,1-Dichloroethane 2520 ug/kg 2500 101 71-136 Winyl Acetate 2490 ug/kg 2500 99.5 72-127 L1,1-Dichloroethane 2560 ug/kg 2500 103 76-121 Butanone 12600 ug/kg 2500 103 76-121 Butanone 2560 ug/kg 2500 102 73-129 cisi-1,2-Dichloroethene 2550 ug/kg 2500 102 76-123 Bromochloromethane 2550 ug/kg 2500 101 78-120 L1,1-Trichloroethane 2550 ug/kg 2500 101 78-120 L1,1-Trichloroethane 2550 ug/kg 2500 101 78-120 L1,1-Trichloroethane 2550 ug/kg 2500 101 78-120	Vinyl Chloride	2660			ug/kg	2500		106	74-133			
Trichlorofluoromethane 3020 ug/kg 2500 121 60-145 Q Acrolein 10800 ug/kg 12500 86.4 45-149 1,1,2-Trichloro-1,2,2-Trifluoroethane 2560 ug/kg 2500 102 70-133 Acetone 12000 ug/kg 12500 95.7 45-147 1,1,1-Dichloroethene 2530 ug/kg 2500 101 67-132 Bromoethane 2590 ug/kg 2500 104 68-135 Idomethane 2440 ug/kg 2500 97.7 42-187 Methylene Chloride 2450 ug/kg 2500 98.0 53-169 Acrylonitrile 2450 ug/kg 2500 98.0 53-169 Acrylonitrile 2560 ug/kg 2500 98.2 63-133 Carbon Disulfide 2560 ug/kg 2500 102 62-140 Brans-1,2-Dichloroethene 2520 ug/kg 2500 99.5 72-127 1,1-Dichloroethane 2560 ug/kg 2500 101 71-136 Winyl Acetate 2490 ug/kg 2500 99.5 72-127 1,1-Dichloroethane 2560 ug/kg 2500 103 76-121 2-Butanone 2560 ug/kg 2500 101 65-136 2-Butanone 2560 ug/kg 2500 102 73-129 2-Sichloropropane 2560 ug/kg 2500 102 73-129 2-Sichloropropane 2550 ug/kg 2500 102 76-123 Bromochloromethane 2520 ug/kg 2500 102 76-123 Bromochloromethane 2550 ug/kg 2500 101 78-120 1,1,1-Trichloroethane 2550 ug/kg 2500 101 78-120	Bromomethane	2730			ug/kg	2500		109	41-147			
Acrolein 10800 ug/kg 12500 86.4 45-149 1,1,2-Trichloro-1,2,2-Trifluoroethane 2560 ug/kg 2500 102 70-133 Acetone 12000 ug/kg 12500 95.7 45-147 1,1-Dichloroethene 2530 ug/kg 2500 101 67-132 Bromoethane 2590 ug/kg 2500 104 68-135 lodomethane 2440 ug/kg 2500 97.7 42-187 Methylene Chloride 2450 ug/kg 2500 98.0 53-169 Acrylonitrile 2450 ug/kg 2500 98.2 63-133 Carbon Disulfide 2560 ug/kg 2500 98.2 63-133 Carbon Disulfide 2560 ug/kg 2500 101 71-136 Winyl Acetate 2490 ug/kg 2500 99.5 72-127 1,1-Dichloroethane 2560 ug/kg 2500 99.5 72-127 1,1-Dichloroethane 2560 ug/kg 2500 101 65-136 2-Butanone 12600 ug/kg 1500 101 65-136 2-2-Dichloropropane 2560 ug/kg 2500 102 73-129 cis-1,2-Dichloroethene 2600 ug/kg 2500 102 73-129 cis-1,2-Dichloroethene 2550 ug/kg 2500 102 76-123 Bromochloromethane 2550 ug/kg 2500 101 78-120 Chloroform 2550 ug/kg 2500 101 78-120 Chloroform 2550 ug/kg 2500 101 78-120 Chloroform 2550 ug/kg 2500 101 78-120 Chloroformethane 2550 ug/kg 2500 101 78-120	Chloroethane	2030			ug/kg	2500		81.2	66-133			
1,1,2-Trichloro-1,2,2-Trifluoroethane 2560 ug/kg 2500 102 70-133 1,1-Dichloroethene 12000 ug/kg 12500 95.7 45-147 1,1-Dichloroethene 2530 ug/kg 2500 101 67-132 1,1-Dichloroethane 2590 ug/kg 2500 104 68-135 1,1-Dichloroethane 2440 ug/kg 2500 97.7 42-187 1,1-Dichloroethane 2450 ug/kg 2500 98.0 53-169 Acrylonitrile 2450 ug/kg 2500 98.2 63-133 Carbon Disulfide 2560 ug/kg 2500 102 62-140 1,1-Dichloroethane 2520 ug/kg 2500 99.5 72-127 1,1-Dichloroethane 2560 ug/kg 2500 99.5 72-127 1,1-Dichloroethane 2560 ug/kg 2500 103 76-121 2-Butanone 12600 ug/kg 12500 101 65-136 2,2-Dichloropropane 2560 ug/kg 2500 102 73-129 cis-1,2-Dichloroethane 2550 ug/kg 2500 106 77-121 Chloroform 2550 ug/kg 2500 102 76-123 Bromochloromethane 2520 ug/kg 2500 101 78-120 1,1-Trichloroethane 2520 ug/kg 2500 101 78-120 1,1-Trichloroethane 2550 ug/kg 2500 101 78-120 1,1-Trichloroethane 2550 ug/kg 2500 101 78-120 1,1,1-Trichloroethane 2550 ug/kg 2500 101 78-120 1,1,1-Trichloroethane 2550 ug/kg 2500 102 76-123 1,1-Trichloroethane 2550 ug/kg 2500 101 78-120 1,1,1-Trichloroethane 2550 ug/kg 2500 102 76-123	Trichlorofluoromethane	3020			ug/kg	2500		121	60-145			Q
Actone 12000 ug/kg 12500 95.7 45-147 1,1-Dichloroethene 2530 ug/kg 2500 101 67-132 Bromoethane 2590 ug/kg 2500 97.7 42-187 Methylene Chloride 2450 ug/kg 2500 98.0 53-169 Acrylonitrile 2450 ug/kg 2500 98.2 63-133 Carbon Disulfide 2560 ug/kg 2500 102 62-140 Ug/kg 2500 ug/kg 2500 101 71-136 Ug/kg 2500 101 71-136 Ug/kg 2500 102 62-140 Ug/kg 2500 101 71-136 Ug/kg 2500 101 71-121 Ug/kg 2500 101 71-121 Ug/kg 2500 102 71-121 Ug/kg 2500 102 71-121 Ug/kg 2500 103 71-121 Ug/kg 2500 104 71-121 Ug/kg 2500 105 71-121 Ug/kg 2500 107 71-121	Acrolein	10800			ug/kg	12500		86.4	45-149			
1,1-Dichloroethene 2530 ug/kg 2500 101 67-132 10	1,1,2-Trichloro-1,2,2-Trifluoroethane	2560			ug/kg	2500		102	70-133			
Bromoethane 2590 ug/kg 2500 104 68-135 lodomethane 2440 ug/kg 2500 97.7 42-187 Methylene Chloride 2450 ug/kg 2500 98.0 53-169 Acrylonitrile 2450 ug/kg 2500 98.2 63-133 Carbon Disulfide 2560 ug/kg 2500 102 62-140 trans-1,2-Dichloroethene 2520 ug/kg 2500 101 71-136 Vinyl Acetate 2490 ug/kg 2500 99.5 72-127 1,1-Dichloroethane 2560 ug/kg 2500 103 76-121 2-Butanone 12600 ug/kg 12500 101 65-136 2,2-Dichloropropane 2560 ug/kg 2500 102 73-129 cis-1,2-Dichloroethene 2640 ug/kg 2500 106 77-121 Chloroform 2550 ug/kg 2500 102 76-123 Bromochloromethane 2520 ug/kg 2500 101 78-120 11,1-Trichloroethane 2550 ug/kg 2500 102 76-125	Acetone	12000			ug/kg	12500		95.7	45-147			
dodomethane 2440 ug/kg 2500 97.7 42-187 Methylene Chloride 2450 ug/kg 2500 98.0 53-169 Acrylonitrile 2450 ug/kg 2500 98.2 63-133 Carbon Disulfide 2560 ug/kg 2500 102 62-140 trans-1,2-Dichloroethene 2520 ug/kg 2500 101 71-136 Vinyl Acetate 2490 ug/kg 2500 99.5 72-127 1,1-Dichloroethane 2560 ug/kg 2500 103 76-121 2-Butanone 12600 ug/kg 12500 101 65-136 2,2-Dichloropropane 2560 ug/kg 2500 102 73-129 cis-1,2-Dichloroethene 2640 ug/kg 2500 106 77-121 Chloroform 2550 ug/kg 2500 102 76-123 Bromochloromethane 2520 ug/kg 2500 101 78-120 1,1,1-Trichloroethane <t< td=""><td>1,1-Dichloroethene</td><td>2530</td><td></td><td></td><td>ug/kg</td><td>2500</td><td></td><td>101</td><td>67-132</td><td></td><td></td><td></td></t<>	1,1-Dichloroethene	2530			ug/kg	2500		101	67-132			
Methylene Chloride 2450 ug/kg 2500 98.0 53-169 Acrylonitrile 2450 ug/kg 2500 98.2 63-133 Carbon Disulfide 2560 ug/kg 2500 102 62-140 crans-1,2-Dichloroethene 2520 ug/kg 2500 101 71-136 Vinyl Acetate 2490 ug/kg 2500 99.5 72-127 1,1-Dichloroethane 2560 ug/kg 2500 103 76-121 2-Butanone 12600 ug/kg 12500 101 65-136 2,2-Dichloropropane 2560 ug/kg 2500 102 73-129 cis-1,2-Dichloroethene 2640 ug/kg 2500 106 77-121 Chloroform 2550 ug/kg 2500 102 76-123 Bromochloromethane 2520 ug/kg 2500 101 78-120 1,1,1-Trichloroethane 2550 ug/kg 2500 102 76-125	Bromoethane	2590			ug/kg	2500		104	68-135			
Acrylonitrile 2450 ug/kg 2500 98.2 63-133 Carbon Disulfide 2560 ug/kg 2500 102 62-140 rans-1,2-Dichloroethene 2520 ug/kg 2500 101 71-136 Vinyl Acetate 2490 ug/kg 2500 99.5 72-127 1,1-Dichloroethane 2560 ug/kg 2500 103 76-121 2-Butanone 12600 ug/kg 12500 101 65-136 2,2-Dichloropropane 2560 ug/kg 2500 102 73-129 cis-1,2-Dichloroethene 2640 ug/kg 2500 106 77-121 Chloroform 2550 ug/kg 2500 102 76-123 Bromochloromethane 2520 ug/kg 2500 101 78-120 1,1,1-Trichloroethane 2550 ug/kg 2500 102 76-125	Iodomethane	2440			ug/kg	2500		97.7	42-187			
Carbon Disulfide 2560 ug/kg 2500 102 62-140 trans-1,2-Dichloroethene 2520 ug/kg 2500 101 71-136 Vinyl Acetate 2490 ug/kg 2500 99.5 72-127 1,1-Dichloroethane 2560 ug/kg 2500 103 76-121 2-Butanone 12600 ug/kg 12500 101 65-136 2,2-Dichloropropane 2560 ug/kg 2500 102 73-129 cis-1,2-Dichloroethene 2640 ug/kg 2500 106 77-121 Chloroform 2550 ug/kg 2500 102 76-123 Bromochloromethane 2520 ug/kg 2500 101 78-120 1,1,1-Trichloroethane 2550 ug/kg 2500 102 76-125	Methylene Chloride	2450			ug/kg	2500		98.0	53-169			
trans-1,2-Dichloroethene 2520 ug/kg 2500 101 71-136 Vinyl Acetate 2490 ug/kg 2500 99.5 72-127 1,1-Dichloroethane 2560 ug/kg 2500 103 76-121 2-Butanone 12600 ug/kg 12500 101 65-136 2,2-Dichloropropane 2560 ug/kg 2500 102 73-129 cis-1,2-Dichloroethene 2640 ug/kg 2500 106 77-121 Chloroform 2550 ug/kg 2500 102 76-123 Bromochloromethane 2520 ug/kg 2500 101 78-120 1,1,1-Trichloroethane 2550 ug/kg 2500 102 76-125	Acrylonitrile	2450			ug/kg	2500		98.2	63-133			
Vinyl Acetate 2490 ug/kg 2500 99.5 72-127 1,1-Dichloroethane 2560 ug/kg 2500 103 76-121 2-Butanone 12600 ug/kg 12500 101 65-136 2,2-Dichloropropane 2560 ug/kg 2500 102 73-129 cis-1,2-Dichloroethene 2640 ug/kg 2500 106 77-121 Chloroform 2550 ug/kg 2500 102 76-123 Bromochloromethane 2520 ug/kg 2500 101 78-120 1,1,1-Trichloroethane 2550 ug/kg 2500 102 76-125	Carbon Disulfide	2560			ug/kg	2500		102	62-140			
1,1-Dichloroethane 2560 ug/kg 2500 103 76-121 2-Butanone 12600 ug/kg 12500 101 65-136 2,2-Dichloropropane 2560 ug/kg 2500 102 73-129 cis-1,2-Dichloroethene 2640 ug/kg 2500 106 77-121 Chloroform 2550 ug/kg 2500 102 76-123 Bromochloromethane 2520 ug/kg 2500 101 78-120 1,1,1-Trichloroethane 2550 ug/kg 2500 102 76-125	trans-1,2-Dichloroethene	2520			ug/kg	2500		101	71-136			
2-Butanone 12600 ug/kg 12500 101 65-136 2,2-Dichloropropane 2560 ug/kg 2500 102 73-129 2is-1,2-Dichloroethene 2640 ug/kg 2500 106 77-121 Chloroform 2550 ug/kg 2500 102 76-123 Bromochloromethane 2520 ug/kg 2500 101 78-120 1,1,1-Trichloroethane 2550 ug/kg 2500 102 76-125	Vinyl Acetate	2490			ug/kg	2500		99.5	72-127			
2,2-Dichloropropane 2560 ug/kg 2500 102 73-129 cis-1,2-Dichloroethene 2640 ug/kg 2500 106 77-121 Chloroform 2550 ug/kg 2500 102 76-123 Bromochloromethane 2520 ug/kg 2500 101 78-120 1,1,1-Trichloroethane 2550 ug/kg 2500 102 76-125	1,1-Dichloroethane	2560			ug/kg	2500		103	76-121			
2640 ug/kg 2500 106 77-121 2510-1,2-Dichloroethene 2550 ug/kg 2500 102 76-123 2510-1,1,1-Trichloroethane 2520 ug/kg 2500 101 78-120 1,1,1-Trichloroethane 2550 ug/kg 2500 102 76-125	2-Butanone	12600			ug/kg	12500		101	65-136			
Chloroform 2550 ug/kg 2500 102 76-123 Bromochloromethane 2520 ug/kg 2500 101 78-120 1,1,1-Trichloroethane 2550 ug/kg 2500 102 76-125	2,2-Dichloropropane	2560			ug/kg	2500		102	73-129			
Bromochloromethane 2520 ug/kg 2500 101 78-120 1,1,1-Trichloroethane 2550 ug/kg 2500 102 76-125	cis-1,2-Dichloroethene	2640			ug/kg	2500		106	77-121			
1,1,1-Trichloroethane 2550 ug/kg 2500 102 76-125	Chloroform	2550			ug/kg	2500		102	76-123			
	Bromochloromethane	2520			ug/kg	2500		101	78-120			
1,1-Dichloropropene 2530 ug/kg 2500 101 78-120	1,1,1-Trichloroethane	2550			ug/kg	2500		102	76-125			
	1,1-Dichloropropene	2530			ug/kg	2500		101	78-120			

Analytical Resources, Inc.

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston17-Jul-2019 12:04

Volatile Organic Compounds - Quality Control

Batch BHF0743 - EPA 5035 (Methanol Extraction)

Instrument: NT5 Analyst: PB

		Detection	Reporting		Spike	Source		%REC		RPD	
QC Sample/Analyte	Result	Limit	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
LCS (BHF0743-BS1)				Prepa	ared: 28-Jun	-2019 Ana	lyzed: 28-Ji	un-2019 10	:14		
Carbon tetrachloride	2440			ug/kg	2500		97.8	78-120			
1,2-Dichloroethane	2300			ug/kg	2500		91.9	75-120			
Benzene	2480			ug/kg	2500		99.3	80-120			
Trichloroethene	2430			ug/kg	2500		97.1	77-120			
1,2-Dichloropropane	2430			ug/kg	2500		97.1	78-120			
Bromodichloromethane	2400			ug/kg	2500		95.8	73-128			
Dibromomethane	2420			ug/kg	2500		96.9	78-120			
2-Chloroethyl vinyl ether	2380			ug/kg	2500		95.3	66-128			
4-Methyl-2-Pentanone	12000			ug/kg	12500		96.0	80-120			
cis-1,3-Dichloropropene	2510			ug/kg	2500		101	83-120			
Toluene	2420			ug/kg	2500		96.8	77-120			
trans-1,3-Dichloropropene	2500			ug/kg	2500		99.8	82-120			
2-Hexanone	11700			ug/kg	12500		93.5	73-122			
1,1,2-Trichloroethane	2370			ug/kg	2500		95.0	79-120			
1,3-Dichloropropane	2370			ug/kg	2500		94.6	80-120			
Tetrachloroethene	2300			ug/kg	2500		92.0	76-120			
Dibromochloromethane	2410			ug/kg	2500		96.3	79-120			
1,2-Dibromoethane	2420			ug/kg	2500		96.7	79-120			
Chlorobenzene	2360			ug/kg	2500		94.3	77-120			
Ethylbenzene	2360			ug/kg	2500		94.2	79-122			
1,1,1,2-Tetrachloroethane	2420			ug/kg	2500		96.6	78-120			
m,p-Xylene	4730			ug/kg	5000		94.7	81-122			
o-Xylene	2410			ug/kg	2500		96.3	79-120			
Xylenes, total	7140			ug/kg	7500		95.2	80-120			
Styrene	2450			ug/kg	2500		97.8	77-124			
Bromoform	2390			ug/kg	2500		95.6	80-120			
1,1,2,2-Tetrachloroethane	2390			ug/kg	2500		95.7	79-120			
1,2,3-Trichloropropane	2390			ug/kg	2500		95.5	79-120			
trans-1,4-Dichloro 2-Butene	2390			ug/kg	2500		95.5	75-123			
n-Propylbenzene	2450			ug/kg	2500		98.1	80-125			
Bromobenzene	2410			ug/kg	2500		96.6	76-120			
Isopropyl Benzene	2500			ug/kg	2500		100	74-130			
2-Chlorotoluene	2410			ug/kg	2500		96.5	77-120			
4-Chlorotoluene	2400			ug/kg	2500		96.0	77-121			
t-Butylbenzene	2440			ug/kg	2500		97.5	74-126			
-											

Analytical Resources, Inc.

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston17-Jul-2019 12:04

Volatile Organic Compounds - Quality Control

Batch BHF0743 - EPA 5035 (Methanol Extraction)

Instrument: NT5 Analyst: PB

OC Samula/Analysta		Detection	Reporting	Lluito	Spike	Source	0/DEC	%REC	מממ	RPD	Notes
QC Sample/Analyte	Result	Limit	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
LCS (BHF0743-BS1)				Prepa	ared: 28-Jun-2	2019 Ar	nalyzed: 28-J	un-2019 10	:14		
,3,5-Trimethylbenzene	2470			ug/kg	2500		98.8	79-124			
,2,4-Trimethylbenzene	2450			ug/kg	2500		98.1	79-125			
a-Butylbenzene	2460			ug/kg	2500		98.2	80-127			
1-Isopropyl Toluene	2490			ug/kg	2500		99.5	75-132			
,3-Dichlorobenzene	2350			ug/kg	2500		94.2	75-120			
,4-Dichlorobenzene	2330			ug/kg	2500		93.2	76-120			
n-Butylbenzene	2410			ug/kg	2500		96.5	79-130			
,2-Dichlorobenzene	2320			ug/kg	2500		92.8	76-120			
,2-Dibromo-3-Chloropropane	2350			ug/kg	2500		94.0	75-120			
,2,4-Trichlorobenzene	2390			ug/kg	2500		95.7	74-121			
Hexachloro-1,3-Butadiene	2380			ug/kg	2500		95.2	74-120			
Naphthalene	2460			ug/kg	2500		98.4	75-120			
,2,3-Trichlorobenzene	2380			ug/kg	2500		95.0	75-120			
Dichlorodifluoromethane	2720			ug/kg	2500		109	62-143			
Methyl tert-butyl Ether	2500			ug/kg	2500		100	68-132			
2-Pentanone	12100			ug/kg	12500		96.9	77-120			
Surrogate: Dibromofluoromethane	52.7			ug/kg	50.0		105	30-160			
Surrogate: 1,2-Dichloroethane-d4	52.0			ug/kg	50.0		104	80-124			
Surrogate: Toluene-d8	51.2			ug/kg	50.0		102	80-120			
Surrogate: 4-Bromofluorobenzene	49.5			ug/kg	50.0		99.1	80-120			
Surrogate: 1,2-Dichlorobenzene-d4	50.5			ug/kg	50.0		101	80-120			
LCS Dup (BHF0743-BSD1)				Drane	ared: 28-Jun-2	2019 4	12 Vzed. 20 1	un-2010 10	:56		
Chloromethane	2800			ug/kg	2500	LUIJ AI	112	42-153	10.50	30	
Vinyl Chloride	2880			ug/kg ug/kg	2500		115	74-133	7.87	30	
Bromomethane	2900			ug/kg ug/kg	2500		116	41-147	6.05	30	
Chloroethane	2850			ug/kg	2500		114	66-133	33.70	30	*
Frichlorofluoromethane	2750			ug/kg ug/kg	2500		110	60-133	9.28	30	Q
Acrolein	12200			ug/kg ug/kg	12500		97.6	45-149	12.20	30	*
,1,2-Trichloro-1,2,2-Trifluoroethane	2800			ug/kg ug/kg	2500		112	70-133	9.09	30	
Acetone	12700			ug/kg ug/kg	12500		102	45-147	6.02	30	
.1-Dichloroethene	2720			ug/kg ug/kg	2500		102	67-132	6.90	30	
Bromoethane	2640			ug/kg ug/kg	2500		106	68-135	1.92	30	
odomethane	2630			ug/kg ug/kg	2500		105	42-187	7.29	30	
Methylene Chloride	2550				2500		103	53-169	4.03	30	
remyrene emoriae	2330			ug/kg	2300		102	23-109	4.03	30	

Analytical Resources, Inc.

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston17-Jul-2019 12:04

Volatile Organic Compounds - Quality Control

Batch BHF0743 - EPA 5035 (Methanol Extraction)

Instrument: NT5 Analyst: PB

		Detection	Reporting		Spike	Source		%REC		RPD	
QC Sample/Analyte	Result	Limit	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
LCS Dup (BHF0743-BSD1)				Prepa	ared: 28-Jun	-2019 Ana	lyzed: 28-Jı	ın-2019 10	:56		
Acrylonitrile	2530			ug/kg	2500		101	63-133	3.05	30	
Carbon Disulfide	2820			ug/kg	2500		113	62-140	9.48	30	
trans-1,2-Dichloroethene	2700			ug/kg	2500		108	71-136	6.88	30	
Vinyl Acetate	2600			ug/kg	2500		104	72-127	4.62	30	
1,1-Dichloroethane	2700			ug/kg	2500		108	76-121	5.05	30	
2-Butanone	14500			ug/kg	12500		116	65-136	14.40	30	
2,2-Dichloropropane	2770			ug/kg	2500		111	73-129	7.84	30	
cis-1,2-Dichloroethene	2670			ug/kg	2500		107	77-121	1.09	30	
Chloroform	2620			ug/kg	2500		105	76-123	2.75	30	
Bromochloromethane	2520			ug/kg	2500		101	78-120	0.21	30	
1,1,1-Trichloroethane	2700			ug/kg	2500		108	76-125	5.71	30	
1,1-Dichloropropene	2770			ug/kg	2500		111	78-120	8.78	30	
Carbon tetrachloride	2580			ug/kg	2500		103	78-120	5.56	30	
1,2-Dichloroethane	2340			ug/kg	2500		93.6	75-120	1.87	30	
Benzene	2580			ug/kg	2500		103	80-120	3.93	30	
Trichloroethene	2550			ug/kg	2500		102	77-120	5.12	30	
1,2-Dichloropropane	2490			ug/kg	2500		99.6	78-120	2.52	30	
Bromodichloromethane	2480			ug/kg	2500		99.0	73-128	3.31	30	
Dibromomethane	2490			ug/kg	2500		99.6	78-120	2.74	30	
2-Chloroethyl vinyl ether	2420			ug/kg	2500		96.8	66-128	1.55	30	
4-Methyl-2-Pentanone	12800			ug/kg	12500		102	80-120	6.14	30	
cis-1,3-Dichloropropene	2580			ug/kg	2500		103	83-120	2.47	30	
Toluene	2540			ug/kg	2500		102	77-120	4.78	30	
trans-1,3-Dichloropropene	2530			ug/kg	2500		101	82-120	1.42	30	
2-Hexanone	12300			ug/kg	12500		98.7	73-122	5.39	30	
1,1,2-Trichloroethane	2360			ug/kg	2500		94.5	79-120	0.53	30	
1,3-Dichloropropane	2390			ug/kg	2500		95.5	80-120	0.89	30	
Tetrachloroethene	2570			ug/kg	2500		103	76-120	11.10	30	
Dibromochloromethane	2470			ug/kg	2500		98.9	79-120	2.69	30	
1,2-Dibromoethane	2460			ug/kg	2500		98.3	79-120	1.70	30	
Chlorobenzene	2480			ug/kg	2500		99.2	77-120	5.12	30	
Ethylbenzene	2510			ug/kg	2500		100	79-122	6.43	30	
1,1,1,2-Tetrachloroethane	2470			ug/kg	2500		98.7	78-120	2.14	30	
m,p-Xylene	5060			ug/kg	5000		101	81-122	6.69	30	
o-Xylene	2490			ug/kg	2500		99.6	79-120	3.34	30	
•											

Analytical Resources, Inc.

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston17-Jul-2019 12:04

Volatile Organic Compounds - Quality Control

Batch BHF0743 - EPA 5035 (Methanol Extraction)

Instrument: NT5 Analyst: PB

		Detection	Reporting		Spike	Source		%REC		RPD	
QC Sample/Analyte	Result	Limit	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
LCS Dup (BHF0743-BSD1)				Prepa	red: 28-Jun	-2019 Ana	alyzed: 28-J	un-2019 10	:56		
Xylenes, total	7550			ug/kg	7500		101	80-120	5.57	30	
Styrene	2520			ug/kg	2500		101	77-124	2.89	30	
Bromoform	2430			ug/kg	2500		97.1	80-120	1.57	30	
1,1,2,2-Tetrachloroethane	2460			ug/kg	2500		98.3	79-120	2.61	30	
1,2,3-Trichloropropane	2620			ug/kg	2500		105	79-120	9.12	30	
trans-1,4-Dichloro 2-Butene	2650			ug/kg	2500		106	75-123	10.30	30	
n-Propylbenzene	2650			ug/kg	2500		106	80-125	7.56	30	
Bromobenzene	2500			ug/kg	2500		100	76-120	3.50	30	
Isopropyl Benzene	2670			ug/kg	2500		107	74-130	6.43	30	
2-Chlorotoluene	2560			ug/kg	2500		102	77-120	5.75	30	
4-Chlorotoluene	2580			ug/kg	2500		103	77-121	7.30	30	
t-Butylbenzene	2580			ug/kg	2500		103	74-126	5.61	30	
1,3,5-Trimethylbenzene	2600			ug/kg	2500		104	79-124	5.08	30	
1,2,4-Trimethylbenzene	2610			ug/kg	2500		104	79-125	6.24	30	
s-Butylbenzene	2610			ug/kg	2500		104	80-127	6.05	30	
4-Isopropyl Toluene	2660			ug/kg	2500		106	75-132	6.64	30	
1,3-Dichlorobenzene	2520			ug/kg	2500		101	75-120	6.99	30	
1,4-Dichlorobenzene	2490			ug/kg	2500		99.4	76-120	6.47	30	
n-Butylbenzene	2640			ug/kg	2500		106	79-130	9.15	30	
1,2-Dichlorobenzene	2450			ug/kg	2500		98.1	76-120	5.54	30	
1,2-Dibromo-3-Chloropropane	2510			ug/kg	2500		100	75-120	6.69	30	
1,2,4-Trichlorobenzene	2540			ug/kg	2500		101	74-121	5.78	30	
Hexachloro-1,3-Butadiene	2500			ug/kg	2500		100	74-120	5.04	30	
Naphthalene	2550			ug/kg	2500		102	75-120	3.59	30	
1,2,3-Trichlorobenzene	2480			ug/kg	2500		99.0	75-120	4.12	30	
Dichlorodifluoromethane	2780			ug/kg	2500		111	62-143	2.29	30	
Methyl tert-butyl Ether	2580			ug/kg	2500		103	68-132	2.86	30	
2-Pentanone	12700			ug/kg	12500		101	77-120	4.67	30	
Surrogate: Dibromofluoromethane	53.1			ug/kg	50.0		106	30-160			
Surrogate: 1,2-Dichloroethane-d4	52.9			ug/kg	50.0		106	80-124			
Surrogate: Toluene-d8	50.5			ug/kg	50.0		101	80-120			
Surrogate: 4-Bromofluorobenzene	49.7			ug/kg	50.0		99.4	80-120			
Surrogate: 1,2-Dichlorobenzene-d4	50.2			ug/kg	50.0		100	80-120			

Analytical Resources, Inc.

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston17-Jul-2019 12:04

Certified Analyses included in this Report

Analyte	Certifications

EPA 8260C in Solid	
Chloromethane	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
Vinyl Chloride	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
Bromomethane	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
Chloroethane	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
Trichlorofluoromethane	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
Acrolein	WADOE,DoD-ELAP,NELAP,CALAP
1,1,2-Trichloro-1,2,2-Trifluoroethane	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
Acetone	WADOE,DoD-ELAP,NELAP,CALAP
1,1-Dichloroethene	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
Bromoethane	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
Iodomethane	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
Methylene Chloride	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
Acrylonitrile	WADOE,DoD-ELAP,NELAP,CALAP
Carbon Disulfide	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
trans-1,2-Dichloroethene	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
Vinyl Acetate	WADOE,DoD-ELAP,NELAP,CALAP
1,1-Dichloroethane	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
2-Butanone	WADOE,DoD-ELAP,NELAP,CALAP
2,2-Dichloropropane	WADOE,DoD-ELAP,NELAP,CALAP
cis-1,2-Dichloroethene	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
Chloroform	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
Bromochloromethane	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
1,1,1-Trichloroethane	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
1,1-Dichloropropene	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
Carbon tetrachloride	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
1,2-Dichloroethane	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
Benzene	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
Trichloroethene	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
1,2-Dichloropropane	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
Bromodichloromethane	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
Dibromomethane	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
2-Chloroethyl vinyl ether	DoD-ELAP
4-Methyl-2-Pentanone	WADOE,DoD-ELAP,NELAP,CALAP
cis-1,3-Dichloropropene	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
Toluene	WADOE,DoD-ELAP,NELAP,CALAP,ADEC

Analytical Resources, Inc.

Farallon Consulting, LLC
Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111
Project Number: 1071-026

Reported:
Seattle WA, 98101
Project Manager: Pete Kingston
17-Jul-2019 12:04

trans-1,3-Dichloropropene WADOE, DoD-ELAP, NELAP, CALAP, ADEC 2-Hexanone WADOE, DoD-ELAP, NELAP, CALAP 1,1,2-Trichloroethane WADOE, DoD-ELAP, NELAP, CALAP, ADEC 1,3-Dichloropropane WADOE, DoD-ELAP, NELAP, CALAP, ADEC Tetrachloroethene WADOE, DoD-ELAP, NELAP, CALAP, ADEC Dibromochloromethane WADOE, DoD-ELAP, NELAP, CALAP, ADEC WADOE, DoD-ELAP, NELAP, CALAP, ADEC 1,2-Dibromoethane WADOE, DoD-ELAP, NELAP, CALAP, ADEC Chlorobenzene Ethylbenzene WADOE, DoD-ELAP, NELAP, CALAP, ADEC 1,1,1,2-Tetrachloroethane WADOE, DoD-ELAP, NELAP, CALAP, ADEC m,p-Xylene WADOE, DoD-ELAP, NELAP, CALAP, ADEC o-Xylene WADOE, DoD-ELAP, NELAP, CALAP, ADEC Styrene WADOE, DoD-ELAP, NELAP, CALAP, ADEC **Bromoform** WADOE, DoD-ELAP, NELAP, CALAP, ADEC 1,1,2,2-Tetrachloroethane WADOE, DoD-ELAP, NELAP, CALAP, ADEC WADOE, DoD-ELAP, NELAP, CALAP, ADEC 1,2,3-Trichloropropane trans-1,4-Dichloro 2-Butene WADOE.DoD-ELAP WADOE, DoD-ELAP, NELAP, CALAP n-Propylbenzene Bromobenzene WADOE, DoD-ELAP, NELAP, CALAP, ADEC Isopropyl Benzene WADOE, DoD-ELAP, NELAP, CALAP, ADEC 2-Chlorotoluene WADOE, DoD-ELAP, NELAP, CALAP 4-Chlorotoluene WADOE, DoD-ELAP, NELAP, CALAP t-Butylbenzene WADOE, DoD-ELAP, NELAP, CALAP 1,3,5-Trimethylbenzene WADOE, DoD-ELAP, NELAP, CALAP 1,2,4-Trimethylbenzene WADOE, DoD-ELAP, NELAP, CALAP s-Butylbenzene WADOE, DoD-ELAP, NELAP, CALAP WADOE, DoD-ELAP, NELAP, CALAP 4-Isopropyl Toluene 1,3-Dichlorobenzene WADOE, DoD-ELAP, NELAP, CALAP 1,4-Dichlorobenzene WADOE, DoD-ELAP, NELAP, CALAP n-Butylbenzene WADOE, DoD-ELAP, NELAP, CALAP WADOE, DoD-ELAP, NELAP, CALAP 1,2-Dichlorobenzene 1,2-Dibromo-3-Chloropropane WADOE, DoD-ELAP, NELAP, CALAP, ADEC 1.2.4-Trichlorobenzene WADOE, DoD-ELAP, NELAP, CALAP, ADEC Hexachloro-1,3-Butadiene WADOE, DoD-ELAP, NELAP, CALAP, ADEC Naphthalene WADOE.DoD-ELAP.NELAP.CALAP 1.2.3-Trichlorobenzene WADOE, DoD-ELAP, NELAP, CALAP, ADEC Dichlorodifluoromethane WADOE, DoD-ELAP, NELAP, CALAP, ADEC Methyl tert-butyl Ether WADOE, DoD-ELAP, NELAP, CALAP n-Hexane **WADOE**

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston17-Jul-2019 12:04

Code	Description	Number	Expires
ADEC	Alaska Dept of Environmental Conservation	17-015	01/31/2021
CALAP	California Department of Public Health CAELAP	2748	06/30/2019
DoD-ELAP	DoD-Environmental Laboratory Accreditation Program	66169	01/01/2021
NELAP	ORELAP - Oregon Laboratory Accreditation Program	WA100006-012	05/12/2020
WADOE	WA Dept of Ecology	C558	06/30/2019
WA-DW	Ecology - Drinking Water	C558	06/30/2019

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston17-Jul-2019 12:04

Notes and Definitions

*	Flagged value is not within established control limits.
D	The reported value is from a dilution
J	Estimated concentration value detected below the reporting limit.
Q	Indicates a detected analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20% RSD, <20% drift or minimum RRF)
U	This analyte is not detected above the reporting limit (RL) or if noted, not detected above the limit of detection (LOD).
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

[2C] Indicates this result was quantified on the second column on a dual column analysis.

08 July 2019

Pete Kingston Farallon Consulting, LLC 1809 7th Ave, Suite 1111 Seattle, WA 98101

RE: Emerald Gateway Site 1071-026

Please find enclosed sample receipt documentation and analytical results for samples from the project referenced above.

Sample analyses were performed according to ARI's Quality Assurance Plan and any provided project specific Quality Assurance Plan. Each analytical section of this report has been approved and reviewed by an analytical peer, the appropriate Laboratory Supervisor or qualified substitute, and a technical reviewer.

Should you have any questions or problems, please feel free to contact us at your convenience.

Associated Work Order(s)

Associated SDG ID(s)

19F0377

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed in the enclose Narrative. ARI, an accredited laboratory, certifies that the report results for which ARI is accredited meets all the requirements of the accrediting body. A list of certified analyses, accreditations, and expiration dates is included in this report.

Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in it entirety.

Cert# 100006

PJLA Testing
Accreditation # 66169

Chain of Custody Record & Laboratory Analysis Request

ARI Assigned Number:	Turn-around	Requested:	day		Page:		of	2		Analytical Resources, Incorporate Analytical Chemists and Consultar 4611 South 134th Place, Suite 100		
ARI Client Company: Farallon		Phone: 41	5-394	L4146	Date:	6/26/1	q Ice Prese	ent? Ye	5		Tukwila	, WA 98168 5-6200 206-695-6201 (fax)
Client Contact: Pete Kingsto	n				No. of Coolers:	1	Coole	er S	8~(www.ar	ilabs.com
Client Project Name:	Loway							Analysis F	Requested			Notes/Comments
Client Project #:	Samplers	P/CB			80°	#-(*)				7
Sample ID	Date	Time	Matrix	No. Containers	DRO 10RO NUTFH-DX	GRO	BTEX 8260C	WC 5				
FMW-0+2.5	6/26/19	6909	5	6								
FMW-01-5.0	1	1030		6	×	X	×					
FMW-0+10.0		1035		6	X	X	X					
FMW-01-14.0		1050		6	X	×	×					
FMW-01-19.0		1100		6	X	X	X					
FMW-02-2.5		1045		1								
FMW-02-6.0		1250		1	X							
FMW-02-11-0		1255		1	X							
FMW-02-17.0		1300		j								
FMW-03-2.5		1205	V	6		1						
Comments/Special Instructions	Relinquished by (Signature)	the-		Received by: (Signature)	bel	1	7	Relinquished (Signature)	by:		Received by: (Signature)	
	Printed Name:	Pehleven		Printed Name	Toucos	ne	Te	Printed Nam	9:		Printed Name	e: -
	Company:			Company:	az			Company:			Company:	
	Date & Time:	1650		Date & Time:	36/19	16:	50	Date & Time:			Date & Time:	

Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or cosigned agreement between ARI and the Client.

Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract.

Chain of Custody Record & Laboratory Analysis Request

ARI Assigned Number:	Turn-around		5 do		Page: Z of Z					Analytical Resources, Incorporate Analytical Chemists and Consultar 4611 South 134th Place, Suite 100		
ARI Client Company:		Phone: 42	5-394-	4146	Date	126/10	Ice Prese	ent? Le	5		Tukwila,	WA 98168
Client Contact: Pete Kingston					No. of Coolers:	1	Coole Temp		8°C		www.aril	-6200 206-695-6201 (fax) abs.com
Client Project Name:						×		Analysis F		1		Notes/Comments
Client Project #: 1071-026	Samplers:	CB			3 4	14-6x	V V	20				
Sample ID	Date	Time	Matrix	No. Containers	DROPORD NW TPH-DX	GRO NWTPH-	BTEX 8260C	VOC 5 8260				
FMW-03-6.0	6/26/19	1400	5	6	X	X		X				
=MV-03-13.0		1410		6	X	X		X				
FMW-03-18.0		1415		6	×	X		X				
FATURE F- 25-2.5	V	1450	V	6								
F-26-2.5	V	1623	5	1								
Comments/Special Instructions	Relinquished by:	2		Received by:		/		Relinquished	by:		Received by:	
	(Signature)			(Signature)	while	1	>	(Signature)			(Signature)	
	Printed Name YUSV	Pehlive	M	Printed Name:	Jacob	sina	He	Printed Name	d.		Printed Name:	
	Company:			Company:	72			Company:			Company:	
	Date & Time:	/19 16	50	Date & Time: /	96/19	16:	50	Date & Time:			Date & Time:	

Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or cosigned agreement between ARI and the Client.

Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston08-Jul-2019 13:16

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
FMW-01-5.0	19F0377-02	Solid	26-Jun-2019 10:30	26-Jun-2019 16:50
FMW-01-10.0	19F0377-03	Solid	26-Jun-2019 10:35	26-Jun-2019 16:50
FMW-01-14.0	19F0377-04	Solid	26-Jun-2019 10:50	26-Jun-2019 16:50
FMW-01-19.0	19F0377-05	Solid	26-Jun-2019 11:00	26-Jun-2019 16:50
FMW-02-6.0	19F0377-07	Solid	26-Jun-2019 12:50	26-Jun-2019 16:50
FMW-02-11.0	19F0377-08	Solid	26-Jun-2019 12:55	26-Jun-2019 16:50
FMW-03-6.0	19F0377-11	Solid	26-Jun-2019 14:00	26-Jun-2019 16:50
FMW-03-13.0	19F0377-12	Solid	26-Jun-2019 14:10	26-Jun-2019 16:50
FMW-03-18.0	19F0377-13	Solid	26-Jun-2019 14:15	26-Jun-2019 16:50

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston08-Jul-2019 13:16

Work Order Case Narrative

Sample receipt

Samples as listed on the preceding page were received June 26, 2019 under ARI work order 19F0377. For details regarding sample receipt, please refer to the Cooler Receipt Form.

Gasoline by NWTPH-g (GC/MS)

The samples were analyzed within the recommended holding times.

Samples FMW-01-10.0 and FMW-01-14.0 were reanalyzed at dilutions due to the gas concentration exceeding the upper calibration range. The initial analyses have been flagged with "E" qualifiers. No further corrective action was taken.

Initial and continuing calibrations were within method requirements.

Internal standard areas were within limits.

The surrogate percent recoveries were within control limits with the exception of surrgates associated with sample FMW-01-14.0

which are outside of the control limits for the original analysis. The sample was re-analyzed at a dilution with surrogate recoveries in control.

The method blanks were clean at the reporting limits.

The LCS/LCSD percent recoveries and RPD were within control limits.

Volatiles - EPA Method SW8260C

The samples were analyzed within the recommended holding times.

Initial and continuing calibrations were within method requirements, with the exception the ICV for NT5 on 6/28/19 which is outside of control limits high for Trichlorofluoromethane. The samples are non-detect for this compound. Associated QC has been flagged with "Q" qualifiers. No further corrective action was taken.

Internal standard areas were within limits.

The surrogate percent recoveries were within control limits.

The method blanks were clean at the reporting limits.

The LCSD has high RPD for Chloroethane. All other LCS/LCSD percent recoveries and RPD were within control limits. No corrective action was taken.

Diesel/Heavy Oil Range Organics - WA-Ecology Method NW-TPHDx

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston08-Jul-2019 13:16

The samples were extracted and analyzed within the recommended holding times.

Initial and continuing calibrations were within method requirements.

The surrogate percent recoveries were within control limits.

The method blank was clean at the reporting limits.

The LCS percent recoveries were within control limits.

Analytical Resources, Inc.

WORK ORDER

19F0377

				r: Amanda Volgardsen Emerald Gateway Site 1071-026	
Report To:		Invoid	e To:		
Farallon Consu	lting, LLC	Faral	on Consultin	ng, LLC	
Yusuf Pehlivan		Yusuf	Pehlivan		
975 5th Avenue	Northwest	975 5	th Avenue N	orthwest	
Issaquah, WA 9	8027	Issagi	uah, WA 980	027	
Phone: (425) 39	94-4415		:(425) 394-		
Fax: -		Fax: -	Service and the service and th		
Date Due:	05-Jul-2019 18:00 (5 day TAT)				
Received By:	Jacob Walter	Date	Received:	26-Jun-2019 16:50	
Logged In By:	Erin I. Salle	Date	Logged In:	27-Jun-2019 08:01	
Custody papers	t:5.8°C signed and dated custody seals attached to outside of coo properly filled out (in, signed, analyses requested, etc) the used (if appropriate)	Yes	Was a temp	pers included with the coolererature blank included in the coolereseled in individual plastic bags	No
All bottles arrive	ed in good condition (unbroken)ainers listed on COC match number received	Yes	All bottle la		Yes
Correct bottles u	ised for the requested analyses	Yes	All VOC vi	s and tags agree with COCals free of air bubbles	Yes No
Analyses/bottles	require preservation (attach preservation sheet excluding	g VOC).No			Yes
Analysis	Due T	AT	Expires	Comments	

Freeze and Hold Extractions Container 05-Jul-2019 15:00

WORK ORDER

19F0377

Client: Farallon Consulting, LLC Project Manager: Amanda Volgardsen

Project: Emerald Gateway Site 1071-026 Project Number: Emerald Gateway Site 1071-026

Troject. Emeraid Gateway Si	16 10/1-020		r roject Number:	Emeraid Gateway Site 10/1-026
Analysis	Due	TAT	Expires	Comments
19F0377-01 FMW-01-2.5 So Pacific Time (US & Canada)	olid Sampled 26-Jun-2	019 09:0	9 (GMT-08:00)	
A = Glass WM, Clear, 8 oz	B = VOA Vial, Clear, 40 mL, N	NaHSO4C =	= VOA Vial, Clear, 40 ml.,	NaHSO4D = VOA Vial, Clear, 40 mL, MeOH
E = VOA Vial, Clear, 40 mL, MeOH				
Freeze and Hold - VOC	05-Jul-2019 15:00	5	25-Jun-2020 09:09	
Freeze and Hold Extractions Conta	iner 05-Jul-2019 15:00	5	25-Jun-2020 09:09	
19F0377-02 FMW-01-5.0 [So Pacific Time (US & Canada)	olid Sampled 26-Jun-2	019 10:3	0 (GMT-08:00)	
A = Glass WM. Clear, 8 oz E = VOA Vial, Clear, 40 mL, MeOH			= VOA Vial, Clear, 40 mL,	NaHSO4D = VOA Vial, Clear, 40 mL, MeOH
8260C VOA Solid (MeOH)	05-Jul-2019 15:00	5	10-Jul-2019 10:30	
TPH NW (Extractables) low level	05-Jul-2019 15:00	5	10-Jul-2019 10:30	
Freeze and Hold Extractions Conta	iner 05-Jul-2019 15:00	5	25-Jun-2020 10:30	
Freeze and Hold - VOC	05-Jul-2019 15:00	5	25-Jun-2020 10:30	
Solids, Total, Dried at 103 -105 °C	, Soli 05-Jul-2019 15:00	5	24-Jul-2019 10:30	
8260C VOA	05-Jul-2019 15:00	5	10-Jul-2019 10:30	
8260C Gas (NWTPH)	05-Jul-2019 15:00	5	10-Jul-2019 10:30	
Pacific Time (US & Canada) A = Glass WM, Clear, 8 oz E = VOA Vial, Clear, 40 mL, MeOH			= VOA Vial, Clear, 40 mL,	NaHSO4D = VOA Vial, Clear, 40 mL, MeOH
TPH NW (Extractables) low level	05-Jul-2019 15:00	5	10-Jul-2019 10:35	
Solids, Total, Dried at 103 -105 °C		5	24-Jul-2019 10:35	
8260C VOA	05-Jul-2019 15:00	5	10-Jul-2019 10:35	
8260C VOA Solid (MeOH)	05-Jul-2019 15:00	5	10-Jul-2019 10:35	
Freeze and Hold Extractions Conta	iner 05-Jul-2019 15:00	5	25-Jun-2020 10:35	
Freeze and Hold - VOC	05-Jul-2019 15:00	5	25-Jun-2020 10:35	
8260C Gas (NWTPH)	05-Jul-2019 15:00	5	10-Jul-2019 10:35	
19F0377-04 FMW-01-14.0 [S Pacific Time (US & Canada)		***************************************		
A = Glass WM, Clear, 8 oz E = VOA Vial, Clear, 40 mL, MeOH			= VOA Vial, Clear, 40 mL,	NaHSO4D = VOA Vial, Clear, 40 mL, MeOH
8260C VOA	05-Jul-2019 15:00	5	10-Jul-2019 10:50	
8260C Gas (NWTPH)	05-Jul-2019 15:00	5	10-Jul-2019 10:50	
8260C VOA Solid (MeOH)	05-Jul-2019 15:00	5	10-Jul-2019 10:50	
Freeze and Hold - VOC	05-Jul-2019 15:00	5	25-Jun-2020 10:50	
TPH NW (Extractables) low level	05-Jul-2019 15:00	5	10-Jul-2019 10:50	
Solids, Total, Dried at 103 -105 °C.	, Soli 05-Jul-2019 15:00	5	24-Jul-2019 10:50	
D 111 11 D		-		

25-Jun-2020 10:50

Freeze and Hold Extractions Container 05-Jul-2019 15:00

WORK ORDER

19F0377

Client: Farallon Consulting, LLC Project Manager: Amanda Volgardsen

Project: Emerald Gateway Site 1071-026 Project Number: Emerald Gateway Site 1071-026

Analysis	Due	TAT	Expires	Comments
19F0377-05 FMW-01-19.0 Pacific Time (US & Canad		-2019 11:0	0 (GMT-08:00)	
A = Glass WM, Clear, 8 oz E = VOA Vial, Clear, 40 mL, MeO.			VOA Vial, Clear, 40 mL,	NaHSO4D = 1'OA Vial, Clear, 40 mL, MeOH
8260C Gas (NWTPH)	05-Jul-2019 15:00	5	10-Jul-2019 11:00	
Freeze and Hold Extractions Co		5	25-Jun-2020 11:00	
Freeze and Hold - VOC	05-Jul-2019 15:00	5	25-Jun-2020 11:00	
TPH NW (Extractables) low lev		5	10-Jul-2019 11:00	
Solids, Total, Dried at 103 -105		5	24-Jul-2019 11:00	
8260C VOA	05-Jul-2019 15:00	5	10-Jul-2019 11:00	
8260C VOA Solid (MeOH)	05-Jul-2019 15:00	5	10-Jul-2019 11:00	
19F0377-06 FMW-02-2.5		019 10:45	(GMT-08:00)	
Pacific Time (US & Canada A = Glass WM, Clear, 8 oz	a)			
Freeze and Hold Extractions Co	ontainer 05-Jul-2019 15:00	5	25-Jun-2020 10:45	
Pacific Time (US & Canada A = Glass WM, Clear, 8 oz Solids, Total, Dried at 103 -105		5	24-Jul-2019 12:50	
Freeze and Hold Extractions Co	The second of th	77		
TPH NW (Extractables) low lev		5	25-Jun-2020 12:50 10-Jul-2019 12:50	
19F0377-08 FMW-02-11.0 Pacific Time (US & Canad:		2019 12:5	5 (GMT-08:00)	
A = Glass WM, Clear, 8 oz		***		
TPH NW (Extractables) low lev		5	10-Jul-2019 12:55	
Freeze and Hold Extractions Co		5	25-Jun-2020 12:55	
Solids, Total, Dried at 103 -105	The state of the s	5	24-Jul-2019 12:55	
19F0377-09 FMW-02-17.0 Pacific Time (US & Canada A = Glass WM, Clear, 8 oz		2019 13:0	0 (GMT-08:00)	
	05 1 1 2010 15 00		0.5.1	
reeze and Hold Extractions ('c	ontainer 05-Jul-2019 15:00	5	25-Jun-2020 13:00	11
reeze and riold Extractions et	10 1111 0 1 107 1	019 12:05	(GMT-08:00)	
19F0377-10 FMW-03-2.5 Pacific Time (US & Canada				
19F0377-10 FMW-03-2.5	a) B = VOA Vial, Clear, 40 mL, N	VaHSO4C =	VOA Vial, Clear, 40 mL,	NaHSO4D = VOA Vial, Clear, 40 mL, MeOH
19F0377-10 FMW-03-2.5 Pacific Time (US & Canada A = Glass WM, Clear, 8 oz	a) B = VOA Vial, Clear, 40 mL, N H F = VOA Vial, Clear, 40 mL, N	VaHSO4C =	VOA Vial, Clear, 40 mL, 24-Jul-2019 12:05	NaHSO4D = VOA Vial, Clear, 40 mL, MeOH

25-Jun-2020 12:05

Freeze and Hold Extractions Container 05-Jul-2019 15:00

WORK ORDER

19F0377

Client: Farallon Consulting, LLC Project Manager: Amanda Volgardsen

Project: Emerald Gateway Site 1071-026 Project Number: Emerald Gateway Site 1071-026

Project: Emerald Gateway Site	oject: Emerald Gateway Site 1071-026		Project Number:	Emerald Gateway Site 1071-026
Analysis	Due	TAT	Expires	Comments
19F0377-11 FMW-03-6.0 [Soli Pacific Time (US & Canada)	d] Sampled 26-Jun-2	019 14:00	(GMT-08:00)	
$A = Glass \ WM, \ Clear, \ 8 \ oz $ B $E = VOA \ Vial, \ Clear, \ 40 \ mL, \ MeOH $ F			= VOA Vial, Clear, 40 mL,	NaHSO4D = VOA Vial, Clear, 40 mL, MeOH
8260C Gas (NWTPH)	05-Jul-2019 15:00	5	10-Jul-2019 14:00	
8260C VOA Solid (MeOH)	05-Jul-2019 15:00	5	10-Jul-2019 14:00	
Solids, Total, Dried at 103 -105 °C, S	Soli 05-Jul-2019 15:00	5	24-Jul-2019 14:00	
TPH NW (Extractables) low level	05-Jul-2019 15:00	5	10-Jul-2019 14:00	
Freeze and Hold - VOC	05-Jul-2019 15:00	5	25-Jun-2020 14:00	
Freeze and Hold Extractions Contain	er 05-Jul-2019 15:00	5	25-Jun-2020 14:00	
19F0377-12 FMW-03-13.0 [So Pacific Time (US & Canada)	*	***************************************		V. IROJE IVOJE I
A = Glass WM, Clear, 8 oz $BE = VOA Vial, Clear, 40 mL, MeOH$ F			VOA Vial, Clear, 40 mL,	NaHSO4D = VOA Vial, Clear, 40 mL, MeOH
Freeze and Hold Extractions Contain	er 05-Jul-2019 15:00	5	25-Jun-2020 14:10	
8260C Gas (NWTPH)	05-Jul-2019 15:00	5	10-Jul-2019 14:10	
8260C VOA Solid (MeOH)	05-Jul-2019 15:00	5	10-Jul-2019 14:10	
Solids, Total, Dried at 103 -105 °C, S	Soli 05-Jul-2019 15:00	5	24-Jul-2019 14:10	
TPH NW (Extractables) low level	05-Jul-2019 15:00	5	10-Jul-2019 14:10	
Freeze and Hold - VOC	05-Jul-2019 15:00	5	25-Jun-2020 14:10	
19F0377-13 FMW-03-18.0 So Pacific Time (US & Canada)	lid Sampled 26-Jun-	2019 14:1	15 (GMT-08:00)	
A = Glass WM, Clear, 8 oz B E = VOA Vial, Clear, 40 mL, MeOH F			VOA Vial, Clear, 40 mL,	NaHSO4D = VOA Vial, Clear, 40 mL, MeOH
Freeze and Hold - VOC	05-Jul-2019 15:00	5	25-Jun-2020 14:15	
Freeze and Hold Extractions Contain	er 05-Jul-2019 15:00	5	25-Jun-2020 14:15	
Solids, Total, Dried at 103 -105 °C, S	Soli 05-Jul-2019 15:00	5	24-Jul-2019 14:15	
TPH NW (Extractables) low level	05-Jul-2019 15:00	5	10-Jul-2019 14:15	
8260C Gas (NWTPH)	05-Jul-2019 15:00	5	10-Jul-2019 14:15	
8260C VOA Solid (MeOH)	05-Jul-2019 15:00	5	10-Jul-2019 14:15	
19F0377-14 F-25-2.5 Solid S Time (US & Canada)	ampled 26-Jun-2019	14:50 (GN	AT-08:00) Pacific	
A = Glass WM, Clear, 8 oz B = E = VOA Vial, Clear, 40 mL, MeOH F			VOA Vial, Clear, 40 mL,	NaHSO4D = VOA Vial, Clear, 40 mL, MeOH
Freeze and Hold - VOC	05-Jul-2019 15:00	5	25-Jun-2020 14:50	
and the second and the second	at the second color of the second			

5

25-Jun-2020 14:50

Printed: 6/27/2019 8:25:18AM

WORK ORDER

19F0377

Client: Farallon Consulting, LLC Project Manager: Amanda Volgardsen

Project: Emerald Gateway Site 1071-026 Project Number: Emerald Gateway Site 1071-026

Analysis Due	TAT	Expires	Comments
19F0377-15 F-26-2.5 [Solid] Sampled 26-Jun-2019 Time (US & Canada)	16:23 (GN	MT-08:00) Pacific	
A = Glass WM. Clear, 8 oz			
Freeze and Hold Extractions Container 05-Jul-2019 15:00	5	25-Jun-2020 16:23	

Reviewed By Date

Cooler Receipt Form

		C	101		
ARI Client: Fava COC No(s):	<u> </u>	Project Name:Cmea	ild bate	nerf	
	NA	Delivered by: Fed-Ex UPS Cour	ier Hand Delivered Of	ther:	
Assigned ARI Job No:	0377	Tracking No:		N	A,
Preliminary Examination Phase:					
Were intact, properly signed and	dated custody seals attached to the	e outside of the cooler?	YES	NO)
Were custody papers included w	rith the cooler?		XES	NC	5
Were custody papers properly fill	led out (ink, signed, etc.)		YES	NC)
Temperature of Cooler(s) (°C) (re	ecommended 2.0-6.0 °C for chemis	stry)			
Time 1650		5,8°C			
If cooler temperature is out of co	mpliance fill out form 00070F		Temp Gun ID#: DO	0520	6
Cooler Accepted by:	71-	Date: 06/06/19 Time:	1650		
obolici Nodepied by.		d attach all shipping documents	100		
Log-In Phase:	complete ductous forms and	a attach an simpping accuments			_
	ded in the cooler?			YES	NO
		Wet lise Gel Packs Baggies Foam	Block Paper Other:	-	_
	opriate)?		NA	YES	NO
	stic bags?		Individually		Not
	ndition (unbroken)?			1	NO
	and legible?		/		NO
		er of containers received?	as	X	NO
	ree with custody papers?		6/27/19)	7	NO
	r the requested analyses?				NO
	require preservation? (attach pres	and the second s	NA		NO
	ubbles?		(NA)	7	NO
	e sent in each bottle?			YES	NO
Mere the sample(s) split	e at ARI		(NA)		-
by ARI?	NA) YES Date/Time:	Equipment:	Spli	t by:	_
Samples Logged by:	2 M 21 CM 7/12	a = 000	C	0	
Samples Logged by:	Date: 6/CT//9		bels checked by:	8	_
	Notiny Project Manager of	f discrepancies or concerns **			
Comple ID on Dattle	Commis ID an COO	I 0 1 15 5 4			
Sample ID on Bottle	Sample ID on COC	Sample ID on Bottle	Sample ID o	on COC	
F1 100 - 01	1110201110				
					-#
					-
Additional Notes, Discrepance	ies. & Resolutions:				-
					- 1
0.0					
. 0.0					
By: 6 200 - D	Date: 6/27/19				

0016F 01/17/2018

Cooler Receipt Form

Revision 014A

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston08-Jul-2019 13:16

FMW-01-5.0 19F0377-02 (Solid)

Volatile Organic Compounds

Method: EPA 8260CSampled: 06/26/2019 10:30Instrument: NT5Analyst: PBAnalyzed: 06/28/2019 17:13Sample Preparation:Preparation Method: EPA 5035 (Sodium Bisulfate)Extract ID: 19F0377-02 BPreparation Batch: BHF0741Sample Size: 5.38 g (wet)Dry Weight: 4.28 gPrepared: 28-Jun-2019Final Volume: 5 mL% Solids: 79.48

Analyte	CAS Number	Dilution	Detection Limit	Reporting Limit	Result	Units	Notes
Benzene	71-43-2	1	0.35	1.17	4.97	ug/kg	
Toluene	108-88-3	1	0.18	1.17	1.89	ug/kg	
Ethylbenzene	100-41-4	1	0.24	1.17	ND	ug/kg	U
m,p-Xylene	179601-23-1	1	0.46	2.34	0.85	ug/kg	J
o-Xylene	95-47-6	1	0.26	1.17	ND	ug/kg	U
Surrogate: Toluene-d8				77-120 %	103	%	
Surrogate: 4-Bromofluorobenzene				80-120 %	99.8	%	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston08-Jul-2019 13:16

FMW-01-5.0 19F0377-02 (Solid)

Volatile Organic Compounds

Method: NWTPHgSampled: 06/26/2019 10:30Instrument: NT3Analyst: PKCAnalyzed: 06/27/2019 16:50Sample Preparation:Preparation Method: EPA 5035 (Methanol Extraction)Extract ID: 19F0377-02 DPreparation Batch: BHF0698Sample Size: 4.676 g (wet)Dry Weight: 3.72 gPrepared: 27-Jun-2019Final Volume: 5 mL% Solids: 79.48

			Reporting			
Analyte	CAS Number	Dilution	Limit	Result	Units	Notes
Gasoline Range Organics (Tol-Nap)	GRO	50	8020	ND	ug/kg	U
Surrogate: Toluene-d8			80-120 %	103	%	
Surrogate: 4-Bromofluorobenzene			78-123 %	97.8	%	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston08-Jul-2019 13:16

FMW-01-5.0 19F0377-02 (Solid)

Petroleum Hydrocarbons

Method: NWTPH-DxSampled: 06/26/2019 10:30Instrument: FID4Analyst: VTSAnalyzed: 07/03/2019 00:51Sample Preparation:Preparation Method: EPA 3546 (Microwave)Extract ID: 19F0377-02 A 01Preparation Batch: BHF0697Sample Size: 10.04 g (wet)Dry Weight: 7.98 gPrepared: 28-Jun-2019Final Volume: 1 mL% Solids: 79.48

Analyte	CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Diesel Range Organics (C12-C24)	DRO	1	6.27	ND	mg/kg	U
Motor Oil Range Organics (C24-C38)	RRO	1	12.5	ND	mg/kg	U
Surrogate: o-Terphenyl			50-150 %	78.1	%	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston08-Jul-2019 13:16

FMW-01-10.0 19F0377-03 (Solid)

Volatile Organic Compounds

Method: EPA 8260CSampled: 06/26/2019 10:35Instrument: NT5Analyst: PBAnalyzed: 06/28/2019 17:36Sample Preparation:Preparation Method: EPA 5035 (Methanol Extraction)Extract ID: 19F0377-03 EPreparation Batch: BHF0743Sample Size: 5.015 g (wet)Dry Weight: 3.79 gPrepared: 28-Jun-2019Final Volume: 5 mL% Solids: 75.62

			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Benzene	71-43-2	1000	269	1640	ND	ug/kg	U
Toluene	108-88-3	1000	282	1640	ND	ug/kg	U
Ethylbenzene	100-41-4	1000	446	1640	3500	ug/kg	D
m,p-Xylene	179601-23-1	1000	916	3280	13400	ug/kg	D
o-Xylene	95-47-6	1000	374	1640	ND	ug/kg	U
Surrogate: Toluene-d8				80-120 %	103	%	
Surrogate: 4-Bromofluorobenzene				80-120 %	99.5	%	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston08-Jul-2019 13:16

FMW-01-10.0 19F0377-03 (Solid)

Volatile Organic Compounds

Method: NWTPHgSampled: 06/26/2019 10:35Instrument: NT3Analyst: PKCAnalyzed: 06/27/2019 17:17Sample Preparation:Preparation Method: EPA 5035 (Methanol Extraction)Extract ID: 19F0377-03 DPreparation Batch: BHF0698Sample Size: 5.026 g (wet)Dry Weight: 3.80 gPrepared: 27-Jun-2019Final Volume: 5 mL% Solids: 75.62

Analyte	CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Gasoline Range Organics (Tol-Nap)	GRO	1000	164000	12300000	ug/kg	D, E
HC ID: GAS						
Surrogate: Toluene-d8			80-120 %	117	%	
Surrogate: 4-Bromofluorobenzene			78-123 %	100	%	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston08-Jul-2019 13:16

FMW-01-10.0 19F0377-03 (Solid)

Petroleum Hydrocarbons

Method: NWTPH-DxSampled: 06/26/2019 10:35Instrument: FID4 Analyst: VTSAnalyzed: 07/03/2019 01:11Sample Preparation:Preparation Method: EPA 3546 (Microwave)Extract ID: 19F0377-03 A 01Preparation Batch: BHF0697Sample Size: 10.02 g (wet)Dry Weight: 7.58 gPrepared: 28-Jun-2019Final Volume: 1 mL% Solids: 75.62

1						
Analyte	CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Diesel Range Organics (C12-C24)	DRO	1	6.60	68.4	mg/kg	
HC ID: DRO Motor Oil Range Organics (C24-C38)	RRO	1	13.2	ND	mg/kg	U
Surrogate: o-Terphenyl			50-150 %	92.3	%	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston08-Jul-2019 13:16

FMW-01-10.0 19F0377-03RE1 (Solid)

Volatile Organic Compounds

Method: NWTPHgSampled: 06/26/2019 10:35Instrument: NT3Analyst: PKCAnalyzed: 06/28/2019 17:45Sample Preparation:Preparation Method: EPA 5035 (Methanol Extraction)Extract ID: 19F0377-03RE1 DPreparation Batch: BHF0745Sample Size: 5.026 g (wet)Dry Weight: 3.80 gPrepared: 28-Jun-2019Final Volume: 5 mL% Solids: 75.62

Analyte	CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Gasoline Range Organics (Tol-Nap)	GRO	5000	819000	5360000	ug/kg	D
HC ID: GAS						
Surrogate: Toluene-d8			80-120 %	102	%	
Surrogate: 4-Bromofluorobenzene			78-123 %	98.0	%	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston08-Jul-2019 13:16

FMW-01-14.0 19F0377-04 (Solid)

Volatile Organic Compounds

Method: EPA 8260CSampled: 06/26/2019 10:50Instrument: NT5Analyst: PBAnalyzed: 06/28/2019 17:58Sample Preparation:Preparation Method: EPA 5035 (Methanol Extraction)Extract ID: 19F0377-04 EPreparation Batch: BHF0743Sample Size: 5.177 g (wet)Dry Weight: 4.09 gPrepared: 28-Jun-2019Final Volume: 5 mL% Solids: 79.04

			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Benzene	71-43-2	1000	244	1490	ND	ug/kg	U
Toluene	108-88-3	1000	256	1490	ND	ug/kg	U
Ethylbenzene	100-41-4	1000	404	1490	5840	ug/kg	D
m,p-Xylene	179601-23-1	1000	830	2970	27000	ug/kg	D
o-Xylene	95-47-6	1000	339	1490	ND	ug/kg	U
Surrogate: Toluene-d8				80-120 %	104	%	
Surrogate: 4-Bromofluorobenzene				80-120 %	98.6	%	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston08-Jul-2019 13:16

FMW-01-14.0 19F0377-04 (Solid)

Volatile Organic Compounds

Method: NWTPHgSampled: 06/26/2019 10:50Instrument: NT3Analyst: PKCAnalyzed: 06/27/2019 17:43Sample Preparation:Preparation Method: EPA 5035 (Methanol Extraction)Extract ID: 19F0377-04 DPreparation Batch: BHF0698Sample Size: 5.304 g (wet)Dry Weight:4.19 gPrepared: 27-Jun-2019Final Volume: 5 mL% Solids: 79.04

			Reporting			
Analyte	CAS Number	Dilution	Limit	Result	Units	Notes
Gasoline Range Organics (Tol-Nap)	GRO	1000	146000	8940000	ug/kg	D, E
HC ID: GAS						
Surrogate: Toluene-d8			80-120 %	124	%	*
Surrogate: 4-Bromofluorobenzene			78-123 %	103	%	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston08-Jul-2019 13:16

FMW-01-14.0 19F0377-04 (Solid)

Petroleum Hydrocarbons

Method: NWTPH-DxSampled: 06/26/2019 10:50Instrument: FID4Analyst: VTSAnalyzed: 07/03/2019 01:32Sample Preparation:Preparation Method: EPA 3546 (Microwave)Extract ID: 19F0377-04 A 01Preparation Batch: BHF0697Sample Size: 10.04 g (wet)Dry Weight: 7.94 gPrepared: 28-Jun-2019Final Volume: 1 mL% Solids: 79.04

Analyte	CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Diesel Range Organics (C12-C24)	DRO	1	6.30	ND	mg/kg	U
Motor Oil Range Organics (C24-C38)	RRO	1	12.6	ND	mg/kg	U
Surrogate: o-Terphenyl			50-150 %	74.8	%	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston08-Jul-2019 13:16

FMW-01-14.0 19F0377-04RE1 (Solid)

Volatile Organic Compounds

Method: NWTPHgSampled: 06/26/2019 10:50Instrument: NT3Analyst: PKCAnalyzed: 06/28/2019 18:11Sample Preparation:Preparation Method: EPA 5035 (Methanol Extraction)Extract ID: 19F0377-04RE1 DPreparation Batch: BHF0745Sample Size: 5.304 g (wet)Dry Weight:4.19 gPrepared: 28-Jun-2019Final Volume: 5 mL% Solids: 79.04

			Reporting			
Analyte	CAS Number	Dilution	Limit	Result	Units	Notes
Gasoline Range Organics (Tol-Nap)	GRO	5000	729000	4700000	ug/kg	D
HC ID: GAS						
Surrogate: Toluene-d8			80-120 %	106	%	
Surrogate: 4-Bromofluorobenzene			78-123 %	99.7	%	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston08-Jul-2019 13:16

FMW-01-19.0 19F0377-05 (Solid)

Volatile Organic Compounds

Method: EPA 8260CSampled: 06/26/2019 11:00Instrument: NT5Analyst: PBAnalyzed: 06/28/2019 18:20Sample Preparation:Preparation Method: EPA 5035 (Sodium Bisulfate)Extract ID: 19F0377-05 BPreparation Batch: BHF0741Sample Size: 5.3 g (wet)Dry Weight:4.42 gPrepared: 28-Jun-2019Final Volume: 5 mL% Solids: 83.40

Austra	CACNI	Diletien	Detection Limit	Reporting Limit	D14	I I	Nistra
Analyte	CAS Number	Dilution	LIIIII	LIIIII	Result	Units	Notes
Benzene	71-43-2	1	0.33	1.13	ND	ug/kg	U
Toluene	108-88-3	1	0.17	1.13	ND	ug/kg	U
Ethylbenzene	100-41-4	1	0.23	1.13	ND	ug/kg	U
m,p-Xylene	179601-23-1	1	0.44	2.26	ND	ug/kg	U
o-Xylene	95-47-6	1	0.25	1.13	ND	ug/kg	U
Surrogate: Toluene-d8				77-120 %	104	%	
Surrogate: 4-Bromofluorobenzene				80-120 %	101	%	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston08-Jul-2019 13:16

FMW-01-19.0 19F0377-05 (Solid)

Volatile Organic Compounds

Method: NWTPHgSampled: 06/26/2019 11:00Instrument: NT3Analyst: PKCAnalyzed: 06/28/2019 18:37Sample Preparation:Preparation Method: EPA 5035 (Methanol Extraction)Extract ID: 19F0377-05 DPreparation Batch: BHF0745Sample Size: 5.448 g (wet)Dry Weight: 4.54 gPrepared: 28-Jun-2019Final Volume: 5 mL% Solids: 83.40

Analyte	CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Gasoline Range Organics (Tol-Nap)	GRO	50	6500	ND	ug/kg	U
Surrogate: Toluene-d8			80-120 %	100	%	
Surrogate: 4-Bromofluorobenzene			78-123 %	98.9	%	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston08-Jul-2019 13:16

FMW-01-19.0 19F0377-05 (Solid)

Petroleum Hydrocarbons

Method: NWTPH-DxSampled: 06/26/2019 11:00Instrument: FID4Analyst: VTSAnalyzed: 07/03/2019 01:53Sample Preparation:Preparation Method: EPA 3546 (Microwave)Extract ID: 19F0377-05 A 01Preparation Batch: BHF0697Sample Size: 10.01 g (wet)Dry Weight: 8.35 gPrepared: 28-Jun-2019Final Volume: 1 mL% Solids: 83.40

Analyte	CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Diesel Range Organics (C12-C24)	DRO	1	5.99	ND	mg/kg	U
Motor Oil Range Organics (C24-C38)	RRO	1	12.0	ND	mg/kg	U
Surrogate: o-Terphenyl			50-150 %	87.1	%	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston08-Jul-2019 13:16

FMW-02-6.0 19F0377-07 (Solid)

Petroleum Hydrocarbons

Method: NWTPH-Dx		Sampled: 06/26/2019 12:50	
Instrument: FID4 Analy	st: VTS		Analyzed: 07/03/2019 02:14
Sample Preparation:	Preparation Method: EPA 3546 (Microv	vave)	Extract ID: 19F0377-07 A 01
	Preparation Batch: BHF0697	Sample Size: 10.04 g (wet)	Dry Weight:8.30 g
	Prepared: 28-Jun-2019	Final Volume: 1 mL	% Solids: 82.68

Analyte	CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Diesel Range Organics (C12-C24)	DRO	1	6.02	ND	mg/kg	U
Motor Oil Range Organics (C24-C38)	RRO	1	12.0	ND	mg/kg	U
Surrogate: o-Terphenyl			50-150 %	79.5	%	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston08-Jul-2019 13:16

FMW-02-11.0 19F0377-08 (Solid)

Petroleum Hydrocarbons

Method: NWTPH-Dx		Sampled: 06/26/2019 12:55	
Instrument: FID4 Analys	st: VTS	Analyzed: 07/03/2019 03:16	
Sample Preparation:	Preparation Method: EPA 3546 (Microw	ave)	Extract ID: 19F0377-08 A 01
	Preparation Batch: BHF0697	Sample Size: 10 g (wet)	Dry Weight:6.27 g
	Prepared: 28-Jun-2019	Final Volume: 1 mL	% Solids: 62.65

Analyte	CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Analyte	CAS Nullibel	Dilution	Liiiit	Result	Omis	Notes
Diesel Range Organics (C12-C24)	DRO	1	7.98	ND	mg/kg	U
Motor Oil Range Organics (C24-C38)	RRO	1	16.0	93.8	mg/kg	
HC ID: MOTOR OIL						
Surrogate: o-Terphenyl			50-150 %	72.9	%	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

Project Number: 1071-026 1809 7th Ave, Suite 1111 Reported: Seattle WA, 98101 Project Manager: Pete Kingston 08-Jul-2019 13:16

FMW-03-6.0 19F0377-11 (Solid)

Volatile Organic Compounds

Method: EPA 8260C Sampled: 06/26/2019 14:00 Instrument: NT5 Analyst: PB Analyzed: 06/28/2019 18:43

Sample Preparation: Preparation Method: EPA 5035 (Sodium Bisulfate)

Extract ID: 19F0377-11 B Preparation Batch: BHF0741 Sample Size: 4.63 g (wet) Dry Weight:3.57 g % Solids: 77.10 Prepared: 28-Jun-2019 Final Volume: 5 mL

			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Chloromethane	74-87-3	1	0.37	1.40	ND	ug/kg	U
Vinyl Chloride	75-01-4	1	0.33	1.40	ND	ug/kg	U
Bromomethane	74-83-9	1	0.26	1.40	ND	ug/kg	U
Chloroethane	75-00-3	1	0.65	1.40	ND	ug/kg	U
Trichlorofluoromethane	75-69-4	1	0.37	1.40	ND	ug/kg	U
Acrolein	107-02-8	1	5.34	7.00	ND	ug/kg	U
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1	1	0.40	2.80	ND	ug/kg	U
Acetone	67-64-1	1	0.68	7.00	ND	ug/kg	U
1,1-Dichloroethene	75-35-4	1	0.47	1.40	ND	ug/kg	U
Bromoethane	74-96-4	1	0.62	2.80	ND	ug/kg	U
Iodomethane	74-88-4	1	0.30	1.40	ND	ug/kg	U
Methylene Chloride	75-09-2	1	0.89	2.80	1.75	ug/kg	J
Acrylonitrile	107-13-1	1	1.44	7.00	ND	ug/kg	U
Carbon Disulfide	75-15-0	1	0.78	1.40	ND	ug/kg	U
trans-1,2-Dichloroethene	156-60-5	1	0.37	1.40	ND	ug/kg	U
Vinyl Acetate	108-05-4	1	0.53	7.00	ND	ug/kg	U
1,1-Dichloroethane	75-34-3	1	0.28	1.40	ND	ug/kg	U
2-Butanone	78-93-3	1	0.72	7.00	6.56	ug/kg	J
2,2-Dichloropropane	594-20-7	1	0.41	1.40	ND	ug/kg	U
cis-1,2-Dichloroethene	156-59-2	1	0.34	1.40	ND	ug/kg	U
Chloroform	67-66-3	1	0.33	1.40	ND	ug/kg	U
Bromochloromethane	74-97-5	1	0.45	1.40	ND	ug/kg	U
1,1,1-Trichloroethane	71-55-6	1	0.32	1.40	ND	ug/kg	U
1,1-Dichloropropene	563-58-6	1	0.44	1.40	ND	ug/kg	U
Carbon tetrachloride	56-23-5	1	0.30	1.40	ND	ug/kg	U
1,2-Dichloroethane	107-06-2	1	0.27	1.40	ND	ug/kg	U
Benzene	71-43-2	1	0.41	1.40	ND	ug/kg	U
Trichloroethene	79-01-6	1	0.30	1.40	ND	ug/kg	U
1,2-Dichloropropane	78-87-5	1	0.23	1.40	ND	ug/kg	U
Bromodichloromethane	75-27-4	1	0.36	1.40	ND	ug/kg	U
Dibromomethane	74-95-3	1	0.21	1.40	ND	ug/kg	U
2-Chloroethyl vinyl ether	110-75-8	1	0.39	7.00	ND	ug/kg	U
4-Methyl-2-Pentanone	108-10-1	1	0.59	7.00	ND	ug/kg	U
cis-1,3-Dichloropropene	10061-01-5	1	0.32	1.40	ND	ug/kg	U
Toluene	108-88-3	1	0.21	1.40	ND	ug/kg	U
trans-1,3-Dichloropropene	10061-02-6	1	0.30	1.40	ND	ug/kg	U

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston08-Jul-2019 13:16

FMW-03-6.0 19F0377-11 (Solid)

Volatile Organic Compounds

 Method: EPA 8260C
 Sampled: 06/26/2019 14:00

 Instrument: NT5
 Analyst: PB

 Analyzed: 06/28/2019 18:43

			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
2-Hexanone	591-78-6	1	0.61	7.00	ND	ug/kg	U
1,1,2-Trichloroethane	79-00-5	1	0.40	1.40	ND	ug/kg	U
1,3-Dichloropropane	142-28-9	1	0.29	1.40	ND	ug/kg	U
Tetrachloroethene	127-18-4	1	0.36	1.40	ND	ug/kg	U
Dibromochloromethane	124-48-1	1	0.37	1.40	ND	ug/kg	U
1,2-Dibromoethane	106-93-4	1	0.25	1.40	ND	ug/kg	U
Chlorobenzene	108-90-7	1	0.31	1.40	ND	ug/kg	U
Ethylbenzene	100-41-4	1	0.28	1.40	ND	ug/kg	U
1,1,1,2-Tetrachloroethane	630-20-6	1	0.33	1.40	ND	ug/kg	U
m,p-Xylene	179601-23-1	1	0.55	2.80	ND	ug/kg	U
o-Xylene	95-47-6	1	0.31	1.40	ND	ug/kg	U
Xylenes, total	1330-20-7	1	0.86	2.80	ND	ug/kg	U
Styrene	100-42-5	1	0.19	1.40	ND	ug/kg	U
Bromoform	75-25-2	1	0.42	1.40	ND	ug/kg	U
1,1,2,2-Tetrachloroethane	79-34-5	1	0.35	1.40	ND	ug/kg	U
1,2,3-Trichloropropane	96-18-4	1	0.72	2.80	ND	ug/kg	U
trans-1,4-Dichloro 2-Butene	110-57-6	1	0.61	7.00	ND	ug/kg	U
n-Propylbenzene	103-65-1	1	0.38	1.40	ND	ug/kg	U
Bromobenzene	108-86-1	1	0.21	1.40	ND	ug/kg	U
Isopropyl Benzene	98-82-8	1	0.33	1.40	ND	ug/kg	U
2-Chlorotoluene	95-49-8	1	0.42	1.40	ND	ug/kg	U
4-Chlorotoluene	106-43-4	1	0.39	1.40	ND	ug/kg	U
t-Butylbenzene	98-06-6	1	0.43	1.40	ND	ug/kg	U
1,3,5-Trimethylbenzene	108-67-8	1	0.36	1.40	ND	ug/kg	U
1,2,4-Trimethylbenzene	95-63-6	1	0.32	1.40	ND	ug/kg	U
s-Butylbenzene	135-98-8	1	0.34	1.40	ND	ug/kg	U
4-Isopropyl Toluene	99-87-6	1	0.33	1.40	ND	ug/kg	U
1,3-Dichlorobenzene	541-73-1	1	0.32	1.40	ND	ug/kg	U
1,4-Dichlorobenzene	106-46-7	1	0.32	1.40	ND	ug/kg	U
n-Butylbenzene	104-51-8	1	0.37	1.40	ND	ug/kg	U
1,2-Dichlorobenzene	95-50-1	1	0.41	1.40	ND	ug/kg	U
1,2-Dibromo-3-chloropropane	96-12-8	1	0.82	7.00	ND	ug/kg	U
1,2,4-Trichlorobenzene	120-82-1	1	0.47	7.00	ND	ug/kg	U
Hexachloro-1,3-Butadiene	87-68-3	1	0.57	7.00	ND	ug/kg	U
Naphthalene	91-20-3	1	0.60	7.00	ND	ug/kg	U
1,2,3-Trichlorobenzene	87-61-6	1	0.43	7.00	ND	ug/kg	U
Dichlorodifluoromethane	75-71-8	1	0.29	1.40	ND	ug/kg	U
Methyl tert-butyl Ether	1634-04-4	1	0.32	1.40	ND	ug/kg	U
2-Pentanone	107-87-9	1	7.00	7.00	ND	ug/kg	U

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston08-Jul-2019 13:16

FMW-03-6.0 19F0377-11 (Solid)

Volatile Organic Compounds

 Method: EPA 8260C
 Sampled: 06/26/2019 14:00

 Instrument: NT5
 Analyst: PB

 Analyzed: 06/28/2019 18:43

		Recovery			
Analyte	CAS Number	Limits	Recovery	Units	Notes
Surrogate: 1,2-Dichloroethane-d4		80-149 %	132	%	
Surrogate: Toluene-d8		77-120 %	104	%	
Surrogate: 4-Bromofluorobenzene		80-120 %	101	%	
Surrogate: 1,2-Dichlorobenzene-d4		80-120 %	103	%	

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston08-Jul-2019 13:16

FMW-03-6.0 19F0377-11 (Solid)

Volatile Organic Compounds

Method: NWTPHgSampled: 06/26/2019 14:00Instrument: NT3Analyst: PKCAnalyzed: 06/27/2019 18:36Sample Preparation:Preparation Method: EPA 5035 (Methanol Extraction)Extract ID: 19F0377-11 DPreparation Batch: BHF0698Sample Size: 4.651 g (wet)Dry Weight: 3.59 gPrepared: 27-Jun-2019Final Volume: 5 mL% Solids: 77.10

Analyte	CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Gasoline Range Organics (Tol-Nap)	GRO	50	8460	ND	ug/kg	U
Surrogate: Toluene-d8			80-120 %	101	%	
Surrogate: 4-Bromofluorobenzene			78-123 %	98.2	%	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston08-Jul-2019 13:16

FMW-03-6.0 19F0377-11 (Solid)

Petroleum Hydrocarbons

Method: NWTPH-DxSampled: 06/26/2019 14:00Instrument: FID4Analyst: VTSAnalyzed: 07/03/2019 03:36Sample Preparation:Preparation Method: EPA 3546 (Microwave)Extract ID: 19F0377-11 A 01Preparation Batch: BHF0697Sample Size: 10.01 g (wet)Dry Weight: 7.72 gPrepared: 28-Jun-2019Final Volume: 1 mL% Solids: 77.10

Analyte	CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Diesel Range Organics (C12-C24)	DRO	1	6.48	ND	mg/kg	U
Motor Oil Range Organics (C24-C38)	RRO	1	13.0	ND	mg/kg	U
Surrogate: o-Terphenyl			50-150 %	83.3	%	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

Project Number: 1071-026 1809 7th Ave, Suite 1111 Reported: Seattle WA, 98101 Project Manager: Pete Kingston 08-Jul-2019 13:16

FMW-03-13.0 19F0377-12 (Solid)

Volatile Organic Compounds

Method: EPA 8260C Sampled: 06/26/2019 14:10 Instrument: NT5 Analyst: PB Analyzed: 06/28/2019 19:05

Sample Preparation: Preparation Method: EPA 5035 (Sodium Bisulfate)

Extract ID: 19F0377-12 B Preparation Batch: BHF0741 Sample Size: 5.5 g (wet) Dry Weight:3.57 g % Solids: 64.98 Prepared: 28-Jun-2019 Final Volume: 5 mL

			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Chloromethane	74-87-3	1	0.37	1.40	ND	ug/kg	U
Vinyl Chloride	75-01-4	1	0.33	1.40	ND	ug/kg	U
Bromomethane	74-83-9	1	0.26	1.40	ND	ug/kg	U
Chloroethane	75-00-3	1	0.65	1.40	ND	ug/kg	U
Trichlorofluoromethane	75-69-4	1	0.37	1.40	ND	ug/kg	U
Acrolein	107-02-8	1	5.33	7.00	ND	ug/kg	U
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1	1	0.40	2.80	ND	ug/kg	U
Acetone	67-64-1	1	0.67	7.00	52.3	ug/kg	
1,1-Dichloroethene	75-35-4	1	0.47	1.40	ND	ug/kg	U
Bromoethane	74-96-4	1	0.62	2.80	ND	ug/kg	U
Iodomethane	74-88-4	1	0.30	1.40	ND	ug/kg	U
Methylene Chloride	75-09-2	1	0.89	2.80	1.99	ug/kg	J
Acrylonitrile	107-13-1	1	1.44	7.00	ND	ug/kg	U
Carbon Disulfide	75-15-0	1	0.78	1.40	1.43	ug/kg	
trans-1,2-Dichloroethene	156-60-5	1	0.37	1.40	ND	ug/kg	U
Vinyl Acetate	108-05-4	1	0.53	7.00	ND	ug/kg	U
1,1-Dichloroethane	75-34-3	1	0.28	1.40	ND	ug/kg	U
2-Butanone	78-93-3	1	0.72	7.00	6.09	ug/kg	J
2,2-Dichloropropane	594-20-7	1	0.41	1.40	ND	ug/kg	U
cis-1,2-Dichloroethene	156-59-2	1	0.34	1.40	ND	ug/kg	U
Chloroform	67-66-3	1	0.33	1.40	ND	ug/kg	U
Bromochloromethane	74-97-5	1	0.45	1.40	ND	ug/kg	U
1,1,1-Trichloroethane	71-55-6	1	0.32	1.40	ND	ug/kg	U
1,1-Dichloropropene	563-58-6	1	0.44	1.40	ND	ug/kg	U
Carbon tetrachloride	56-23-5	1	0.30	1.40	ND	ug/kg	U
1,2-Dichloroethane	107-06-2	1	0.27	1.40	ND	ug/kg	U
Benzene	71-43-2	1	0.41	1.40	0.47	ug/kg	J
Trichloroethene	79-01-6	1	0.30	1.40	ND	ug/kg	U
1,2-Dichloropropane	78-87-5	1	0.23	1.40	ND	ug/kg	U
Bromodichloromethane	75-27-4	1	0.36	1.40	ND	ug/kg	U
Dibromomethane	74-95-3	1	0.21	1.40	ND	ug/kg	U
2-Chloroethyl vinyl ether	110-75-8	1	0.39	7.00	ND	ug/kg	U
4-Methyl-2-Pentanone	108-10-1	1	0.59	7.00	ND	ug/kg	U
cis-1,3-Dichloropropene	10061-01-5	1	0.32	1.40	ND	ug/kg	U
Toluene	108-88-3	1	0.21	1.40	ND	ug/kg	U
trans-1,3-Dichloropropene	10061-02-6	1	0.30	1.40	ND	ug/kg	U

Analytical Resources, Inc.

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston08-Jul-2019 13:16

FMW-03-13.0 19F0377-12 (Solid)

Volatile Organic Compounds

 Method: EPA 8260C
 Sampled: 06/26/2019 14:10

 Instrument: NT5
 Analyst: PB

 Analyzed: 06/28/2019 19:05

Asalyse CAS Number Dilution Limit Result Notes 1,12-Trichlorocethane 591-88 1 0.61 7.00 ND ugkg U 1,12-Trichlorocethane 79-00-5 1 0.40 1.40 ND ugkg U 1,13-Dichlorocethane 112-28-8 1 0.39 1.40 ND ugkg U 1,12-Diromochlane 116-93-4 1 0.37 1.40 ND ugkg U 1,12-Diromochlane 116-93-4 1 0.32 1.40 ND ugkg U 1,12-Diromochlane 116-93-4 1 0.38 1.40 ND ugkg U 1,12-Diromochlane 610-44-4 1 0.38 1.40 ND ugkg U 1,12-Tertachlorochlane 63-90-6 1 0.31 1.40 ND ugkg U Nylene 100-45-5 1 0.61 0.51 ND ugkg U Nylene	Instrument 1113 Thatyst 12			Detection	Reporting		<u> </u>	20/2017 17:03
1.1.2-17-inchiorechame	Analyte	CAS Number	Dilution			Result	Units	Notes
1,1,2,1-Tichlororopane		591-78-6		0.61	7.00		110/kg	ŢŢ
1.3-Dichloropropane								
Ternachloroethene								
Dibromochlaromethane 124-48-1 1 0.37 1.40 ND ug/kg U 1.2-Dibromochlaromethane 106-93-4 1 0.25 1.40 ND ug/kg U U Ug/kg Ug								
1.2. Dibromoethane 106-93-4 1 0.25 1.40 ND ug/kg U Chlorobenzene 108-90-7 1 0.31 1.40 ND ug/kg U U Ug/kg U Ug/kg U U Ug/kg								
Chlorobenzene								
Ethylhenzene 100-41-4 1 0.28 1.40 ND ug/kg U 1,1,1,1-Teirachloroethane 630-20-6 1 0.33 1.40 ND ug/kg U 0 mg-Xylene 179601-23-1 1 0.35 1.40 ND ug/kg U 0 mg-Xylene 95-47-6 1 0.31 1.40 ND ug/kg U 0 mg-Xylene 95-47-6 1 0.31 1.40 ND ug/kg U 0 mg-Xylene 1330-20-7 1 0.86 2.80 ND ug/kg U 0 mg-Xylene 150-47-5 1 0.86 2.80 ND ug/kg U 0 mg-Xylene 150-47-5 1 0.86 2.80 ND ug/kg U 0 mg-Xylene 150-47-5 1 0.86 2.80 ND ug/kg U 0 mg-Xylene 150-47-5 1 0.86 2.80 ND ug/kg U 0 mg-Xylene 150-47-5 1 0.86 2.80 ND ug/kg U 0 mg-Xylene 150-47-5 1 0.86 2.80 ND ug/kg U 0 mg-Xylene 150-47-5 1 0.55 1.40 ND ug/kg U 0 mg-Xylene 150-47-5 1 0.55 1.40 ND ug/kg U 0 mg-Xylene 150-47-5 1 0.55 1.40 ND ug/kg U 0 mg-Xylene 150-47-5 1 0.55 1.40 ND ug/kg U 0 mg-Xylene 150-47-5 1 0.55 1.40 ND ug/kg U 0 mg-Xylene 150-47-6 1 0.61 7.00 ND ug/kg U 0 mg-Xylene 150-47-6 1 0.61 7.00 ND ug/kg U 0 mg-Xylene 150-47-6 1 0.61 7.00 ND ug/kg U 0 mg-Xylene 150-47-6 1 0.61 7.00 ND ug/kg U 0 mg-Xylene 150-47-6 1 0.61 7.00 ND ug/kg U 0 mg-Xylene 150-47-6 1 0.61 7.00 ND ug/kg U 0 mg-Xylene 150-47-6 1 0.61 7.00 ND ug/kg U 0 mg-Xylene 150-47-6 1 0.61 7.00 ND ug/kg U 0 mg-Xylene 150-47-6 1 0.61 7.00 ND ug/kg U 0 mg-Xylene 150-47-6 1 0.61 7.00 ND ug/kg U 0 mg-Xylene 150-47-6 1 0.63 1.40 ND ug/kg U 0 mg-Xylene 150-47-6 1 0.63 1.40 ND ug/kg U 0 mg-Xylene 150-47-6 1 0.63 1.40 ND ug/kg U 0 mg-Xylene 150-47-6 1 0.63 1.40 ND ug/kg U 0 mg-Xylene 150-47-7 1 0.63 1.40 ND ug/kg U 0 mg-Xylene 150-47-7 1 0.63 1.40 ND ug/kg U 0 mg-Xylene 150-47-7 1 0.63 1.40 ND ug/kg U 0 mg-Xylene 150-47-7 1 0.63 1.40 ND ug/kg U 0 mg-Xylene 150-47-7 1 0.63 1.40 ND ug/kg U 0 mg-Xylene 150-47-7 1 0.63 1.40 ND ug/kg U 0 mg-Xylene 150-47-7 1 0.63 1.40 ND ug/kg U 0 mg-Xylene 150-47-7 1 0.63 1.40 ND ug/kg U 0 mg-Xylene 150-47-7 1 0.63 1.40 ND ug/kg U 0 mg-Xylene 150-47-7 1 0.63 1.40 ND ug/kg U 0 mg-Xylene 150-47-7 1 0.63 1.40 ND ug/kg U 0 mg-Xylene 150-47-7 1 0.63 1.40 ND ug/kg U 0 mg-Xylene 150-47-7 1 0.63 1.40 ND ug/kg U 0 mg-Xylene 150-47-7 1 0.63 1.40 ND ug/kg U 0 mg-Xylene 150-47-7 1 0.53 1.40 ND ug/kg U 0 mg-								
1,1,1,2-Tetrachloroethane								
mp-Xylene 179601-23-1 1 0.55 2.80 ND ug/kg U o-Xylene 95-47-6 1 0.31 1.40 ND ug/kg U Sylenes, total 1330-20-7 1 0.86 2.80 ND ug/kg U Sylenes, total 1330-20-7 1 0.86 2.80 ND ug/kg U Sylenes, total 1330-20-7 1 0.86 2.80 ND ug/kg U Sylenes, total 100-42-5 1 0.19 1.40 ND ug/kg U Sylenes 100-42-5 1 0.19 1.40 ND ug/kg U Sylenes 100-42-5 1 0.19 1.40 ND ug/kg U L1,2,3-Trichlorocthane 75-25-2 1 0.42 1.40 ND ug/kg U L1,2,3-Trichlorocthane 96-18-4 1 0.72 2.80 ND ug/kg U L1,2,3-Trichlorocthane 110-57-6 1 0.61 7.00 ND ug/kg U L1,2,3-Trichlorocthane 110-57-6 1 0.61 7.00 ND ug/kg U L1,2,3-Trichlorocthane 110-58-6 1 0.33 1.40 ND ug/kg U L1,3-Strichlorocthane 110-58-6 1 0.33 1.40 ND ug/kg U L1,3-Strichlorocthane 110-58-6 1 0.33 1.40 ND ug/kg U L1,3-Strimethylbenzene 110-58-6 1 0.43 1.40 ND ug/kg U L1,3-Strimethylbenzene 110-58-6 1 0.33 1.40 ND ug/kg U L1,3-Strimethylbenzene 110-58-6 1 0.33 1.40 ND ug/kg U L1,3-Strimethylbenzene 110-58-6 1 0.33 1.40 ND ug/kg U L1,3-Dichlorobenzene 110-58-6 1 0.43 1.40 ND ug/kg U L1,3-Dich								
No.								
Styrene 100-42-5 1 0.19 1.40 ND ug/kg U Bromoform 75-25-2 1 0.42 1.40 ND ug/kg U 1,2,3-Trichloroethane 79-34-5 1 0.35 1.40 ND ug/kg U 1,2,3-Trichloropropane 66-18-4 1 0.72 2.80 ND ug/kg U 1,2,3-Trichloropropane 103-65-1 1 0.61 7.00 ND ug/kg U 1,2,3-Trichloropropane 108-86-1 1 0.61 7.00 ND ug/kg U 1,2,3-Trichloropropane 108-86-1 1 0.61 7.00 ND ug/kg U 1,2,3-Trichloropropane 108-86-1 1 0.21 1.40 ND ug/kg U 2,5-Chiorotoluene 95-49-8 1 0.42 1.40 ND ug/kg U 4-Chlorotoluene 95-49-8 1 0.43 1.40 ND ug/kg U	-							
Promoform 75-25-2 1 0.42 1.40 ND ug/kg U 1.1,2,2-Tritachlorochane 79-34-5 1 0.35 1.40 ND ug/kg U 1.2,3-Trichlorocpane 96-18-4 1 0.72 2.80 ND ug/kg U 1.2,3-Trichlorocpane 96-18-4 1 0.61 7.00 ND ug/kg U 1.2,3-Trichlorocpane 103-65-1 1 0.61 7.00 ND ug/kg U 1.2,3-Trichlorocpane 103-65-1 1 0.38 1.40 ND ug/kg U 1.2,3-Trichlorocpane 103-65-1 1 0.38 1.40 ND ug/kg U 1.2,3-Trichlorocpane 18-86-1 1 0.21 1.40 ND ug/kg U 1.2,3-Trichlorocpane 18-86-1 1 0.33 1.40 ND ug/kg U 1.2,3-Trichlorocpane 106-43-4 1 0.39 1.40 ND ug/kg U 1.2,3-Trichlorocpane 106-43-4 1 0.39 1.40 ND ug/kg U 1.3,5-Trimethylbenzene 18-80-66 1 0.43 1.40 ND ug/kg U 1.3,5-Trimethylbenzene 18-67-8 1 0.36 1.40 ND ug/kg U 1.3,5-Trimethylbenzene 18-67-8 1 0.32 1.40 ND ug/kg U 1.3,5-Trimethylbenzene 18-67-8 1 0.32 1.40 ND ug/kg U 1.3-Dichlorocpane 18-67-8 1 0.32 1.40 ND ug/kg U 1.3-Dichlorocpane 19-51-8 1 0.46 7.00 ND ug/kg U 1.3-Dichlorocpane 19-51-8 1 0.46 7								
1,1,2,2-Tetrachloroethane	-							
1,2,3-Trichloropropane 96-18-4 1 0.72 2.80 ND ug/kg U U U U U U U U U								
trans-1,4-Dichloro 2-Butene 110-57-6 1 0.61 7.00 ND ug/kg U n-Propylbenzene 103-65-1 1 0.38 1.40 ND ug/kg U Bromobenzene 108-86-1 1 0.21 1.40 ND ug/kg U Bromobenzene 108-86-1 1 0.33 1.40 ND ug/kg U Bromobenzene 108-86-8 1 0.33 1.40 ND ug/kg U 2-Chlorotoluene 106-43-4 1 0.39 1.40 ND ug/kg U 4-Chlorotoluene 106-43-4 1 0.39 1.40 ND ug/kg U 1-Butylbenzene 108-67-8 1 0.43 1.40 ND ug/kg U 1-Butylbenzene 108-67-8 1 0.39 1.40 ND ug/kg U 1-Butylbenzene 135-98-8 1 0.36 1.40 ND ug/kg U 1-Butylbenzene 135-98-8 1 0.34 1.40 ND ug/kg U 1-Butylbenzene 135-98-8 1 0.34 1.40 ND ug/kg U 1-Butylbenzene 135-98-8 1 0.33 1.40 ND ug/kg U 1-Butylbenzene 135-98-8 1 0.34 1.40 ND ug/kg U 1-Butylbenzene 135-98-8 1 0.34 1.40 ND ug/kg U 1-Butylbenzene 135-98-8 1 0.35 1.40 ND ug/kg U 1-Butylbenzene 136-46-7 1 0.32 1.40 ND ug/kg U 1-Butylbenzene 136-46-7 1 0.32 1.40 ND ug/kg U 1-Butylbenzene 136-46-7 1 0.35 1.40 ND ug/kg U 1-Butylbenzene 136-46-7 1 0.35 1.40 ND ug/kg U 1-Butylbenzene 136-46-7 1 0.41 1.40 ND ug/kg U 1-Butylbenzene 138-98-8 1 0.60 7.00 ND ug/kg U 1-Butylbenzene 158-98-8 1 0.60 7.00 ND ug/kg U 1-Butylbenzene 158-98-8 1 0.60 7.00 ND ug/kg U								
103-65-1 1 0.38 1.40 ND ug/kg U	• •							
Bromobenzene 108-86-1 1 0.21 1.40 ND ug/kg U								
Sepropy Benzene 98-82-8 1 0.33 1.40 ND ug/kg U	• •							
2-Chlorotoluene 95.49-8 1 0.42 1.40 ND ug/kg U 4-Chlorotoluene 106-43-4 1 0.39 1.40 ND ug/kg U 1-Butylbenzene 98-06-6 1 0.43 1.40 ND ug/kg U 1.3,5-Trimethylbenzene 108-67-8 1 0.36 1.40 ND ug/kg U 1,2,4-Trimethylbenzene 95-63-6 1 0.32 1.40 ND ug/kg U 4-Isopropyl Toluene 135-98-8 1 0.34 1.40 ND ug/kg U 4-Isopropyl Toluene 99-87-6 1 0.33 1.40 ND ug/kg U 4-Isopropyl Toluene 99-87-6 1 0.33 1.40 ND ug/kg U 1,3-Dichlorobenzene 106-46-7 1 0.32 1.40 ND ug/kg U 1,4-Dichlorobenzene 106-46-7 1 0.32 1.40 ND ug/kg U 1,4-Dichlorobenzene 104-51-8 1 0.32 1.40 ND ug/kg U 1,2-Dichlorobenzene 104-51-8 1 0.37 1.40 ND ug/kg U 1,2-Dichlorobenzene 95-50-1 1 0.41 1.40 ND ug/kg U 1,2-Dichlorobenzene 104-51-8 1 0.82 7.00 ND ug/kg U 1,2-Dichlorobenzene 106-8-3 1 0.60 7.00 ND ug/kg U 1,2-Trichlorobenzene 106-8-3 1 0.60 7.00 ND ug/kg U 1-Reduction 1,2-Butadiene 87-68-3 1 0.60 7.00 ND ug/kg U 1-Reduction 1,2-Trichlorobenzene 87-61-6 1 0.43 7.00 ND ug/kg U								
4-Chlorotoluene 106-43-4 1 0.39 1.40 ND ug/kg U 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1								
1. 1. 1. 1. 1. 1. 1. 1.								
1,3,5-Trimethylbenzene 108-67-8 1 0.36 1.40 ND ug/kg U 1,2,4-Trimethylbenzene 95-63-6 1 0.32 1.40 ND ug/kg U s-Butylbenzene 135-98-8 1 0.34 1.40 ND ug/kg U 4-Isopropyl Toluene 99-87-6 1 0.33 1.40 ND ug/kg U 1,3-Dichlorobenzene 541-73-1 1 0.32 1.40 ND ug/kg U 1,4-Dichlorobenzene 106-46-7 1 0.32 1.40 ND ug/kg U 1,2-Dichlorobenzene 104-51-8 1 0.37 1.40 ND ug/kg U 1,2-Dichlorobenzene 95-50-1 1 0.41 1.40 ND ug/kg U 1,2-Dibromo-3-chloropropane 96-12-8 1 0.82 7.00 ND ug/kg U 1,2-4-Trichlorobenzene 120-82-1 1 0.46 7.00 ND ug/kg U Naphthalene 91-20-3 1 0.60 7.00								
1,2,4-Trimethylbenzene 95-63-6 1 0.32 1.40 ND ug/kg U s-Butylbenzene 135-98-8 1 0.34 1.40 ND ug/kg U 4-Isopropyl Toluene 99-87-6 1 0.33 1.40 ND ug/kg U 1,3-Dichlorobenzene 541-73-1 1 0.32 1.40 ND ug/kg U 1,4-Dichlorobenzene 106-46-7 1 0.32 1.40 ND ug/kg U n-Butylbenzene 104-51-8 1 0.37 1.40 ND ug/kg U n-Butylbenzene 95-50-1 1 0.41 1.40 ND ug/kg U 1,2-Dichlorobenzene 95-50-1 1 0.41 1.40 ND ug/kg U 1,2-Dibromo-3-chloropropane 96-12-8 1 0.82 7.00 ND ug/kg U Hexachloro-1,3-Butadiene 87-68-3 1 0.57 7.00 ND ug/kg U Naphthalene 91-20-3 1 0.60 7.00 ND<	•							
s-Butylbenzene 135-98-8 1 0.34 1.40 ND ug/kg U 4-Isopropyl Toluene 99-87-6 1 0.33 1.40 ND ug/kg U 1,3-Dichlorobenzene 541-73-1 1 0.32 1.40 ND ug/kg U 1,4-Dichlorobenzene 106-46-7 1 0.32 1.40 ND ug/kg U 1,2-Dichlorobenzene 104-51-8 1 0.37 1.40 ND ug/kg U 1,2-Dichlorobenzene 95-50-1 1 0.41 1.40 ND ug/kg U 1,2-Dichlorobenzene 95-50-1 1 0.41 1.40 ND ug/kg U 1,2-Dichlorobenzene 120-82-1 1 0.82 7.00 ND ug/kg U 1,2,4-Trichlorobenzene 120-82-1 1 0.46 7.00 ND ug/kg U Hexachloro-1,3-Butadiene 87-68-3 1 0.57 7.00 ND ug/kg U Naphthalene 91-20-3 1 0.60 7.00 ND ug/kg U 1,2,3-Trichlorobenzene 87-61-6 1 0.43 7.00 ND ug/kg U Dichlorodifluoromethane 75-71-8 1 0.29 1.40 ND ug/kg U	•							
4-Isopropyl Toluene 99-87-6 1 0.33 1.40 ND ug/kg U 1,3-Dichlorobenzene 541-73-1 1 0.32 1.40 ND ug/kg U 1,4-Dichlorobenzene 106-46-7 1 0.32 1.40 ND ug/kg U 1,4-Dichlorobenzene 106-46-7 1 0.32 1.40 ND ug/kg U 1,2-Dichlorobenzene 104-51-8 1 0.37 1.40 ND ug/kg U 1,2-Dichlorobenzene 95-50-1 1 0.41 1.40 ND ug/kg U 1,2-Dichlorobenzene 96-12-8 1 0.82 7.00 ND ug/kg U 1,2-A-Trichlorobenzene 120-82-1 1 0.46 7.00 ND ug/kg U 1,2-A-Trichlorobenzene 87-68-3 1 0.57 7.00 ND ug/kg U 1,2-A-Trichlorobenzene 87-68-3 1 0.57 7.00 ND ug/kg U 1,2-A-Trichlorobenzene 87-68-3 1 0.57 7.00 ND ug/kg U 1,2-A-Trichlorobenzene 87-61-6 1 0.43 7.00 ND ug/kg U 1,2-A-Trichlorobenzene 75-71-8 1 0.29 1.40 ND ug/kg U	•							U
1,3-Dichlorobenzene 541-73-1 1 0.32 1.40 ND ug/kg U 1,4-Dichlorobenzene 106-46-7 1 0.32 1.40 ND ug/kg U n-Butylbenzene 104-51-8 1 0.37 1.40 ND ug/kg U 1,2-Dichlorobenzene 95-50-1 1 0.41 1.40 ND ug/kg U 1,2-Dibromo-3-chloropropane 96-12-8 1 0.82 7.00 ND ug/kg U 1,2,4-Trichlorobenzene 120-82-1 1 0.46 7.00 ND ug/kg U Hexachloro-1,3-Butadiene 87-68-3 1 0.57 7.00 ND ug/kg U Naphthalene 91-20-3 1 0.60 7.00 ND ug/kg U 1,2,3-Trichlorobenzene 87-61-6 1 0.43 7.00 ND ug/kg U Dichlorodifluoromethane 75-71-8 1 0.29 1.40 ND ug/kg U	-							
1,4-Dichlorobenzene 106-46-7 1 0.32 1.40 ND ug/kg U n-Butylbenzene 104-51-8 1 0.37 1.40 ND ug/kg U 1,2-Dichlorobenzene 95-50-1 1 0.41 1.40 ND ug/kg U 1,2-Dibromo-3-chloropropane 96-12-8 1 0.82 7.00 ND ug/kg U 1,2,4-Trichlorobenzene 120-82-1 1 0.46 7.00 ND ug/kg U Hexachloro-1,3-Butadiene 87-68-3 1 0.57 7.00 ND ug/kg U Naphthalene 91-20-3 1 0.60 7.00 ND ug/kg U 1,2,3-Trichlorobenzene 87-61-6 1 0.43 7.00 ND ug/kg U Dichlorodifluoromethane 75-71-8 1 0.29 1.40 ND ug/kg U	1,3-Dichlorobenzene		1					
104-51-8 1 0.37 1.40 ND ug/kg U 1,2-Dichlorobenzene 95-50-1 1 0.41 1.40 ND ug/kg U 1,2-Dibromo-3-chloropropane 96-12-8 1 0.82 7.00 ND ug/kg U 1,2,4-Trichlorobenzene 120-82-1 1 0.46 7.00 ND ug/kg U Hexachloro-1,3-Butadiene 87-68-3 1 0.57 7.00 ND ug/kg U Naphthalene 91-20-3 1 0.60 7.00 ND ug/kg U 1,2,3-Trichlorobenzene 87-61-6 1 0.43 7.00 ND ug/kg U Dichlorodifluoromethane 75-71-8 1 0.29 1.40 ND ug/kg U U	1.4-Dichlorobenzene	106-46-7	1		1.40	ND		U
1,2-Dichlorobenzene 95-50-1 1 0.41 1.40 ND ug/kg U 1,2-Dibromo-3-chloropropane 96-12-8 1 0.82 7.00 ND ug/kg U 1,2,4-Trichlorobenzene 120-82-1 1 0.46 7.00 ND ug/kg U Hexachloro-1,3-Butadiene 87-68-3 1 0.57 7.00 ND ug/kg U Naphthalene 91-20-3 1 0.60 7.00 ND ug/kg U 1,2,3-Trichlorobenzene 87-61-6 1 0.43 7.00 ND ug/kg U Dichlorodifluoromethane 75-71-8 1 0.29 1.40 ND ug/kg U	n-Butylbenzene		1					
1,2-Dibromo-3-chloropropane 96-12-8 1 0.82 7.00 ND ug/kg U 1,2,4-Trichlorobenzene 120-82-1 1 0.46 7.00 ND ug/kg U Hexachloro-1,3-Butadiene 87-68-3 1 0.57 7.00 ND ug/kg U Naphthalene 91-20-3 1 0.60 7.00 ND ug/kg U 1,2,3-Trichlorobenzene 87-61-6 1 0.43 7.00 ND ug/kg U Dichlorodifluoromethane 75-71-8 1 0.29 1.40 ND ug/kg U	1,2-Dichlorobenzene	95-50-1	1		1.40	ND		U
1,2,4-Trichlorobenzene 120-82-1 1 0.46 7.00 ND ug/kg U Hexachloro-1,3-Butadiene 87-68-3 1 0.57 7.00 ND ug/kg U Naphthalene 91-20-3 1 0.60 7.00 ND ug/kg U 1,2,3-Trichlorobenzene 87-61-6 1 0.43 7.00 ND ug/kg U Dichlorodifluoromethane 75-71-8 1 0.29 1.40 ND ug/kg U	1,2-Dibromo-3-chloropropane	96-12-8	1					U
Hexachloro-1,3-Butadiene 87-68-3 1 0.57 7.00 ND ug/kg U Naphthalene 91-20-3 1 0.60 7.00 ND ug/kg U 1,2,3-Trichlorobenzene 87-61-6 1 0.43 7.00 ND ug/kg U Dichlorodifluoromethane 75-71-8 1 0.29 1.40 ND ug/kg U	1,2,4-Trichlorobenzene							
Naphthalene 91-20-3 1 0.60 7.00 ND ug/kg U 1,2,3-Trichlorobenzene 87-61-6 1 0.43 7.00 ND ug/kg U Dichlorodifluoromethane 75-71-8 1 0.29 1.40 ND ug/kg U	Hexachloro-1,3-Butadiene		1					U
1,2,3-Trichlorobenzene 87-61-6 1 0.43 7.00 ND ug/kg U Dichlorodifluoromethane 75-71-8 1 0.29 1.40 ND ug/kg U	Naphthalene							
Dichlorodifluoromethane 75-71-8 1 0.29 1.40 ND ug/kg U	1,2,3-Trichlorobenzene		1					U
· · · · · · · · · · · · · · · · · · ·	Dichlorodifluoromethane							
Methyl tert-butyl Ether 1634-04-4 1 0.32 1.40 ND ug/kg U	Methyl tert-butyl Ether	1634-04-4	1			ND		U
	2-Pentanone	107-87-9	1		7.00	ND		U

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston08-Jul-2019 13:16

FMW-03-13.0 19F0377-12 (Solid)

Volatile Organic Compounds

 Method: EPA 8260C
 Sampled: 06/26/2019 14:10

 Instrument: NT5
 Analyst: PB

 Analyzed: 06/28/2019 19:05

		Recovery			
Analyte	CAS Number	Limits	Recovery	Units	Notes
Surrogate: 1,2-Dichloroethane-d4		80-149 %	133	%	
Surrogate: Toluene-d8		77-120 %	102	%	
Surrogate: 4-Bromofluorobenzene		80-120 %	99.9	%	
Surrogate: 1,2-Dichlorobenzene-d4		80-120 %	105	%	

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston08-Jul-2019 13:16

FMW-03-13.0 19F0377-12 (Solid)

Volatile Organic Compounds

Method: NWTPHgSampled: 06/26/2019 14:10Instrument: NT3Analyst: PKCAnalyzed: 06/27/2019 19:02Sample Preparation:Preparation Method: EPA 5035 (Methanol Extraction)Extract ID: 19F0377-12 DPreparation Batch: BHF0698Sample Size: 4.741 g (wet)Dry Weight: 3.08 gPrepared: 27-Jun-2019Final Volume: 5 mL% Solids: 64.98

			Reporting			
Analyte	CAS Number	Dilution	Limit	Result	Units	Notes
Gasoline Range Organics (Tol-Nap)	GRO	50	10800	ND	ug/kg	U
Surrogate: Toluene-d8			80-120 %	104	%	
Surrogate: 4-Bromofluorobenzene			78-123 %	96.5	%	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston08-Jul-2019 13:16

FMW-03-13.0 19F0377-12 (Solid)

Petroleum Hydrocarbons

Method: NWTPH-DxSampled: 06/26/2019 14:10Instrument: FID4 Analyst: VTSAnalyzed: 07/05/2019 14:13Sample Preparation:Preparation Method: EPA 3546 (Microwave)Extract ID: 19F0377-12 A 01Preparation Batch: BHF0697Sample Size: 10.02 g (wet)Dry Weight: 6.51 gPrepared: 28-Jun-2019Final Volume: 1 mL% Solids: 64.98

Analyte	CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Diesel Range Organics (C12-C24)	DRO	1	7.68	14.8	mg/kg	
HC ID: DRO Motor Oil Range Organics (C24-C38)	RRO	1	15.4	89.5	mg/kg	
HC ID: MOTOR OIL						
Surrogate: o-Terphenyl			50-150 %	70.0	%	

Analytical Resources, Inc.

Project Number: 1071-026 1809 7th Ave, Suite 1111 Reported: Seattle WA, 98101 Project Manager: Pete Kingston 08-Jul-2019 13:16

FMW-03-18.0 19F0377-13 (Solid)

Volatile Organic Compounds

Method: EPA 8260C Sampled: 06/26/2019 14:15 Instrument: NT5 Analyst: PB Analyzed: 06/28/2019 19:28

Sample Preparation: Preparation Method: EPA 5035 (Sodium Bisulfate)

Extract ID: 19F0377-13 B Preparation Batch: BHF0741 Sample Size: 4.93 g (wet) Dry Weight:4.15 g % Solids: 84.18 Prepared: 28-Jun-2019 Final Volume: 5 mL

			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Chloromethane	74-87-3	1	0.32	1.20	ND	ug/kg	U
Vinyl Chloride	75-01-4	1	0.28	1.20	ND	ug/kg	U
Bromomethane	74-83-9	1	0.23	1.20	ND	ug/kg	U
Chloroethane	75-00-3	1	0.56	1.20	ND	ug/kg	U
Trichlorofluoromethane	75-69-4	1	0.32	1.20	ND	ug/kg	U
Acrolein	107-02-8	1	4.59	6.02	ND	ug/kg	U
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1	1	0.35	2.41	ND	ug/kg	U
Acetone	67-64-1	1	0.58	6.02	24.8	ug/kg	
1,1-Dichloroethene	75-35-4	1	0.40	1.20	ND	ug/kg	U
Bromoethane	74-96-4	1	0.53	2.41	ND	ug/kg	U
Iodomethane	74-88-4	1	0.26	1.20	ND	ug/kg	U
Methylene Chloride	75-09-2	1	0.77	2.41	1.14	ug/kg	J
Acrylonitrile	107-13-1	1	1.24	6.02	ND	ug/kg	U
Carbon Disulfide	75-15-0	1	0.67	1.20	1.91	ug/kg	
trans-1,2-Dichloroethene	156-60-5	1	0.32	1.20	ND	ug/kg	U
Vinyl Acetate	108-05-4	1	0.46	6.02	ND	ug/kg	U
1,1-Dichloroethane	75-34-3	1	0.24	1.20	ND	ug/kg	U
2-Butanone	78-93-3	1	0.62	6.02	ND	ug/kg	U
2,2-Dichloropropane	594-20-7	1	0.35	1.20	ND	ug/kg	U
cis-1,2-Dichloroethene	156-59-2	1	0.29	1.20	ND	ug/kg	U
Chloroform	67-66-3	1	0.28	1.20	ND	ug/kg	U
Bromochloromethane	74-97-5	1	0.39	1.20	ND	ug/kg	U
1,1,1-Trichloroethane	71-55-6	1	0.27	1.20	ND	ug/kg	U
1,1-Dichloropropene	563-58-6	1	0.38	1.20	ND	ug/kg	U
Carbon tetrachloride	56-23-5	1	0.26	1.20	ND	ug/kg	U
1,2-Dichloroethane	107-06-2	1	0.23	1.20	ND	ug/kg	U
Benzene	71-43-2	1	0.36	1.20	ND	ug/kg	U
Trichloroethene	79-01-6	1	0.26	1.20	ND	ug/kg	U
1,2-Dichloropropane	78-87-5	1	0.20	1.20	ND	ug/kg	U
Bromodichloromethane	75-27-4	1	0.31	1.20	ND	ug/kg	U
Dibromomethane	74-95-3	1	0.18	1.20	ND	ug/kg	U
2-Chloroethyl vinyl ether	110-75-8	1	0.33	6.02	ND	ug/kg	U
4-Methyl-2-Pentanone	108-10-1	1	0.51	6.02	ND	ug/kg	U
cis-1,3-Dichloropropene	10061-01-5	1	0.27	1.20	ND	ug/kg	U
Toluene	108-88-3	1	0.18	1.20	ND	ug/kg	U
trans-1,3-Dichloropropene	10061-02-6	1	0.26	1.20	ND	ug/kg	U

Analytical Resources, Inc.

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston08-Jul-2019 13:16

FMW-03-18.0 19F0377-13 (Solid)

Volatile Organic Compounds

 Method: EPA 8260C
 Sampled: 06/26/2019 14:15

 Instrument: NT5
 Analyst: PB

 Analyzed: 06/28/2019 19:28

			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
2-Hexanone	591-78-6	1	0.53	6.02	ND	ug/kg	U
1,1,2-Trichloroethane	79-00-5	1	0.34	1.20	ND	ug/kg	U
1,3-Dichloropropane	142-28-9	1	0.25	1.20	ND	ug/kg	U
Tetrachloroethene	127-18-4	1	0.31	1.20	ND	ug/kg	U
Dibromochloromethane	124-48-1	1	0.32	1.20	ND	ug/kg	U
1,2-Dibromoethane	106-93-4	1	0.21	1.20	ND	ug/kg	U
Chlorobenzene	108-90-7	1	0.26	1.20	ND	ug/kg	U
Ethylbenzene	100-41-4	1	0.24	1.20	ND	ug/kg	U
1,1,1,2-Tetrachloroethane	630-20-6	1	0.28	1.20	ND	ug/kg	U
m,p-Xylene	179601-23-1	1	0.47	2.41	ND	ug/kg	U
o-Xylene	95-47-6	1	0.27	1.20	ND	ug/kg	U
Xylenes, total	1330-20-7	1	0.74	2.41	ND	ug/kg	U
Styrene	100-42-5	1	0.17	1.20	ND	ug/kg	U
Bromoform	75-25-2	1	0.36	1.20	ND	ug/kg	U
1,1,2,2-Tetrachloroethane	79-34-5	1	0.30	1.20	ND	ug/kg	U
1,2,3-Trichloropropane	96-18-4	1	0.62	2.41	ND	ug/kg	U
trans-1,4-Dichloro 2-Butene	110-57-6	1	0.53	6.02	ND	ug/kg	U
n-Propylbenzene	103-65-1	1	0.33	1.20	ND	ug/kg	U
Bromobenzene	108-86-1	1	0.18	1.20	ND	ug/kg	U
Isopropyl Benzene	98-82-8	1	0.28	1.20	ND	ug/kg	U
2-Chlorotoluene	95-49-8	1	0.36	1.20	ND	ug/kg	U
4-Chlorotoluene	106-43-4	1	0.33	1.20	ND	ug/kg	U
t-Butylbenzene	98-06-6	1	0.37	1.20	ND	ug/kg	U
1,3,5-Trimethylbenzene	108-67-8	1	0.31	1.20	ND	ug/kg	U
1,2,4-Trimethylbenzene	95-63-6	1	0.28	1.20	ND	ug/kg	U
s-Butylbenzene	135-98-8	1	0.29	1.20	ND	ug/kg	U
4-Isopropyl Toluene	99-87-6	1	0.28	1.20	ND	ug/kg	U
1,3-Dichlorobenzene	541-73-1	1	0.27	1.20	ND	ug/kg	U
1,4-Dichlorobenzene	106-46-7	1	0.28	1.20	ND	ug/kg	U
n-Butylbenzene	104-51-8	1	0.32	1.20	ND	ug/kg	U
1,2-Dichlorobenzene	95-50-1	1	0.35	1.20	ND	ug/kg	U
1,2-Dibromo-3-chloropropane	96-12-8	1	0.71	6.02	ND	ug/kg	U
1,2,4-Trichlorobenzene	120-82-1	1	0.40	6.02	ND	ug/kg	U
Hexachloro-1,3-Butadiene	87-68-3	1	0.49	6.02	ND	ug/kg	U
Naphthalene	91-20-3	1	0.52	6.02	ND	ug/kg	U
1,2,3-Trichlorobenzene	87-61-6	1	0.37	6.02	ND	ug/kg	U
Dichlorodifluoromethane	75-71-8	1	0.25	1.20	ND	ug/kg	U
Methyl tert-butyl Ether	1634-04-4	1	0.28	1.20	ND	ug/kg	U
2-Pentanone	107-87-9	1	6.02	6.02	ND	ug/kg	U

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston08-Jul-2019 13:16

FMW-03-18.0 19F0377-13 (Solid)

Volatile Organic Compounds

 Method: EPA 8260C
 Sampled: 06/26/2019 14:15

 Instrument: NT5
 Analyst: PB

 Analyzed: 06/28/2019 19:28

		Recovery			
Analyte	CAS Number	Limits	Recovery	Units	Notes
Surrogate: 1,2-Dichloroethane-d4		80-149 %	136	%	
Surrogate: Toluene-d8		77-120 %	103	%	
Surrogate: 4-Bromofluorobenzene		80-120 %	99.9	%	
Surrogate: 1,2-Dichlorobenzene-d4		80-120 %	106	%	

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston08-Jul-2019 13:16

FMW-03-18.0 19F0377-13 (Solid)

Volatile Organic Compounds

Method: NWTPHgSampled: 06/26/2019 14:15Instrument: NT3Analyst: PKCAnalyzed: 06/27/2019 19:29Sample Preparation:Preparation Method: EPA 5035 (Methanol Extraction)Extract ID: 19F0377-13 DPreparation Batch: BHF0698Sample Size: 4.977 g (wet)Dry Weight: 4.19 gPrepared: 27-Jun-2019Final Volume: 5 mL% Solids: 84.18

	GAGN. I	Dil di	Reporting Limit	D 1:	TT 1.	N
Analyte	CAS Number	Dilution	Limit	Result	Units	Notes
Gasoline Range Organics (Tol-Nap)	GRO	50	6910	ND	ug/kg	U
Surrogate: Toluene-d8			80-120 %	100	%	
Surrogate: 4-Bromofluorobenzene			78-123 %	95.1	%	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston08-Jul-2019 13:16

FMW-03-18.0 19F0377-13 (Solid)

Petroleum Hydrocarbons

Method: NWTPH-Dx			Sampled: 06/26/2019 14:15
Instrument: FID4 Analy	st: VTS		Analyzed: 07/03/2019 04:17
Sample Preparation:	Preparation Method: EPA 3546 (Microv	vave)	Extract ID: 19F0377-13 A 01
	Preparation Batch: BHF0697	Sample Size: 10.06 g (wet)	Dry Weight:8.47 g
	Prepared: 28-Jun-2019	Final Volume: 1 mL	% Solids: 84.18

Analyte	CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Diesel Range Organics (C12-C24)	DRO	1	5.90	ND	mg/kg	U
Motor Oil Range Organics (C24-C38)	RRO	1	11.8	ND	mg/kg	U
Surrogate: o-Terphenyl			50-150 %	84.6	%	

Analytical Resources, Inc.

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston08-Jul-2019 13:16

Volatile Organic Compounds - Quality Control

Batch BHF0698 - EPA 5035 (Methanol Extraction)

Instrument: NT3 Analyst: PKC

QC Sample/Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Blank (BHF0698-BLK1)			Prepa	ared: 27-Jun	-2019 Ana	lyzed: 27-J	Jun-2019 11:	:57		
Gasoline Range Organics (Tol-Nap)	ND	5000	ug/kg							U
Surrogate: Toluene-d8	5.04		ug/kg	5.00		101	80-120			
Surrogate: 4-Bromofluorobenzene	5.08		ug/kg	5.00		102	78-123			
LCS (BHF0698-BS1)			Prepa	ared: 27-Jun	-2019 Ana	lyzed: 27-J	fun-2019 11:	03		
Gasoline Range Organics (Tol-Nap)	44700	5000	ug/kg	50000		89.4	70-121			
Surrogate: Toluene-d8	5.14		ug/kg	5.00		103	80-120			
Surrogate: 4-Bromofluorobenzene	5.14		ug/kg	5.00		103	78-123			
LCS Dup (BHF0698-BSD1)			Prepa	ared: 27-Jun	-2019 Ana	lyzed: 27-J	fun-2019 11:	30		
Gasoline Range Organics (Tol-Nap)	46200	5000	ug/kg	50000		92.4	70-121	3.35	30	
Surrogate: Toluene-d8	5.07		ug/kg	5.00		101	80-120			
Surrogate: 4-Bromofluorobenzene	4.97		ug/kg	5.00		99.4	78-123			

Analytical Resources, Inc.

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston08-Jul-2019 13:16

Volatile Organic Compounds - Quality Control

Batch BHF0741 - EPA 5035 (Sodium Bisulfate)

Instrument: NT5 Analyst: PB

QC Sample/Analyte	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Blank (BHF0741-BLK1)						-2019 Anal					
Chloromethane	ND	0.26	1.00	ug/kg	ucu. 20-Jun	-2019 Ana.	iyzcu: 28-Jl	ııı-∠019 II.	.17		U
Uniorometnane Vinyl Chloride	ND ND	0.26	1.00	ug/kg ug/kg							U
Bromomethane	ND	0.24	1.00	ug/kg ug/kg							U
Chloroethane	ND	0.19	1.00	ug/kg ug/kg							U
Trichlorofluoromethane	ND	0.40	1.00	ug/kg ug/kg							U
Acrolein	ND	3.81	5.00	ug/kg ug/kg							U
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	0.29	2.00	ug/kg ug/kg							U
Acetone	ND	0.48	5.00	ug/kg							U
1,1-Dichloroethene	ND	0.34	1.00	ug/kg							U
Bromoethane	ND	0.44	2.00	ug/kg							U
Iodomethane	ND	0.22	1.00	ug/kg							U
Methylene Chloride	1.07	0.64	2.00	ug/kg							J
Acrylonitrile	ND	1.03	5.00	ug/kg							U
Carbon Disulfide	ND	0.56	1.00	ug/kg							U
trans-1,2-Dichloroethene	ND	0.27	1.00	ug/kg							U
Vinyl Acetate	ND	0.38	5.00	ug/kg							U
1,1-Dichloroethane	ND	0.20	1.00	ug/kg							U
2-Butanone	ND	0.51	5.00	ug/kg							U
2,2-Dichloropropane	ND	0.29	1.00	ug/kg							U
cis-1,2-Dichloroethene	ND	0.24	1.00	ug/kg							U
Chloroform	ND	0.23	1.00	ug/kg							U
Bromochloromethane	ND	0.32	1.00	ug/kg							U
1,1,1-Trichloroethane	ND	0.23	1.00	ug/kg							U
1,1-Dichloropropene	ND	0.31	1.00	ug/kg							U
Carbon tetrachloride	ND	0.21	1.00	ug/kg							U
1,2-Dichloroethane	ND	0.19	1.00	ug/kg							U
Benzene	ND	0.30	1.00	ug/kg							U
Trichloroethene	ND	0.21	1.00	ug/kg							U
1,2-Dichloropropane	ND	0.16	1.00	ug/kg							U
Bromodichloromethane	ND	0.25	1.00	ug/kg							U
Dibromomethane	ND	0.15	1.00	ug/kg							U
2-Chloroethyl vinyl ether	ND	0.28	5.00	ug/kg							U
4-Methyl-2-Pentanone	ND	0.42	5.00	ug/kg							U
cis-1,3-Dichloropropene	ND	0.23	1.00	ug/kg							U
Toluene	ND	0.15	1.00	ug/kg							U

Analytical Resources, Inc.

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston08-Jul-2019 13:16

Volatile Organic Compounds - Quality Control

Batch BHF0741 - EPA 5035 (Sodium Bisulfate)

Instrument: NT5 Analyst: PB

Prepared: 28-Jun-2019 Analyzed: 28-Jun-2019 11:19	QC Sample/Analyte	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
trans-1,3-Dichloropropene ND 0.22 1.00 ug/kg 2-Hexanone ND 0.44 5.00 ug/kg 1,3-Dichloroptoane ND 0.21 1.00 ug/kg 1,3-Dichloropropane ND 0.21 1.00 ug/kg Tetrachorochene ND 0.26 1.00 ug/kg 1,2-Dibromochlane ND 0.18 1.00 ug/kg 1,2-Dibromochlane ND 0.18 1.00 ug/kg Chlorobenzene ND 0.22 1.00 ug/kg Elhylbenzene ND 0.23 1.00 ug/kg Lil,1,2-Ternachorochane ND 0.23 1.00 ug/kg Nylene ND 0.23 1.00 ug/kg Styrene ND 0.04 2.00 ug/kg Styrene ND 0.14 1.00 ug/kg Bromoform ND 0.52 2.00 ug/kg Irischloropropane ND 0.52 2.00	-	Result	PHUIT	Limit							PHIIII	notes
2-Hexanone ND 0.44 5.00 ug/kg 1,1,2-Tichlorochane ND 0.29 1.00 ug/kg 1-3-Dichloropropane ND 0.21 1.00 ug/kg Dibromochance ND 0.26 1.00 ug/kg L2-Dibromochane ND 0.27 1.00 ug/kg Chlorobaczane ND 0.22 1.00 ug/kg Ethylbenzene ND 0.23 1.00 ug/kg L1,1,12-Tetrachlorochane ND 0.23 1.00 ug/kg mp-Xylene ND 0.23 1.00 ug/kg Xylenes, total ND 0.62 2.00 ug/kg Syrene ND 0.62 2.00 ug/kg Homoform ND 0.30 1.00 ug/kg L1,2,3-Tetachlorochane ND 0.52 2.00 ug/kg n-Propylbenzene ND 0.52 2.00 ug/kg n-Propylbenzene ND 0.23 1.00	,					ared: 28-Jun-	-2019 Ana	alyzed: 28-J	un-2019 11	:19		
1,1.2-Trichloroethane ND 0.29 1.00 ug/kg 1,3-Dichloropropane ND 0.21 1.00 ug/kg Titerhelhoroethane ND 0.26 1.00 ug/kg 1,2-Dibromoethane ND 0.27 1.00 ug/kg Chlorobenzene ND 0.22 1.00 ug/kg Chlorobenzene ND 0.22 1.00 ug/kg 1,1,1,2-Tetrachloroethane ND 0.23 1.00 ug/kg 1,1,1,2-Tetrachloroethane ND 0.23 1.00 ug/kg Sylenes, total ND 0.22 1.00 ug/kg Sylenes, total ND 0.62 2.00 ug/kg Bromoform ND 0.62 2.00 ug/kg L1,2,2-Tetrachloroethane ND 0.52 2.00 ug/kg 1,2,2-Tetrachloroethane ND 0.52 2.00 ug/kg 1-2,3-Trichloropropane ND 0.52 2.00 ug/kg 1-2,2-Trichlorobropropane	• •											U
1,3-Dielloropropane ND 0,21 1,00 ug/kg Tetrachloroethene ND 0,26 1,00 ug/kg 1,2-Dibromoethane ND 0,18 1,00 ug/kg Chlorobenzene ND 0,22 1,00 ug/kg Ethylbenzene ND 0,20 1,00 ug/kg Ethylbenzene ND 0,23 1,00 ug/kg Int,1,2-Ternachloroethane ND 0,23 1,00 ug/kg m.p-Xylene ND 0,22 1,00 ug/kg xylenes, total ND 0,22 1,00 ug/kg Styrene ND 0,14 1,00 ug/kg Styrene ND 0,14 1,00 ug/kg Styrene ND 0,24 1,00 ug/kg Italiza-Ertemchloroethane ND 0,25 1,00 ug/kg Italiza-Ertemchloroethane ND 0,22 1,00 ug/kg Italiza-Ertemchloroethane ND 0,42												U
Tetnachlore-there ND 0.26 1.00 ug/kg Dibromochloromethane ND 0.27 1.00 ug/kg Chlorobenzene ND 0.22 1.00 ug/kg Ehlyblenzene ND 0.22 1.00 ug/kg L1,1,2-Tetrachloroethane ND 0.23 1.00 ug/kg n-Xylene ND 0.39 2.00 ug/kg Sylene, Stotal ND 0.62 2.00 ug/kg Bromoform ND 0.14 1.00 ug/kg Bromoform ND 0.30 1.00 ug/kg L1,2,2-Tetrachloroethane ND 0.30 1.00 ug/kg L1,2,2-Tetrachloroethane ND 0.52 2.00 ug/kg L1,2,2-Tetrachloroethane ND 0.52 2.00 ug/kg L2,2-Trischloropropane ND 0.52 1.00 ug/kg n-Propylbenzene ND 0.52 1.00 ug/kg Bromophenzene ND 0												U
Dibromochloromethane ND 0.27 1.00 19/kg	• •	ND	0.21	1.00	ug/kg							U
1.2-Dibromoethane												U
Chlorobenzene ND 0.22 1.00 ug/kg Ethylbenzene ND 0.20 1.00 ug/kg 1.1,1,2-Tetrachloroethane ND 0.23 1.00 ug/kg o-Xylene ND 0.32 2.00 ug/kg Xylenes, total ND 0.62 2.00 ug/kg Styrene ND 0.14 1.00 ug/kg 1,1,2,2-Tetrachloroethane ND 0.25 1.00 ug/kg 1,2,2-Trichloropropane ND 0.52 2.00 ug/kg 1,2,2-Trichloropropane ND 0.52 2.00 ug/kg 1,2,3-Trichloropropane ND 0.52 2.00 ug/kg 1,2,3-Trichloropropane ND 0.52 2.00 ug/kg Bromobenzene ND 0.51 1.00 ug/kg Isopropyl Benzene ND 0.23 1.00 ug/kg 2-Chlorotoluene ND 0.30 1.00 ug/kg 1,3,5-Trimethylbenzene ND					ug/kg							U
Ethylbenzene ND 0.20 1.00 ug/kg 1,1,1,2-Tetrachloroethane ND 0.23 1.00 ug/kg m.p-Xylene ND 0.39 2.00 ug/kg o-Xylene ND 0.62 2.00 ug/kg Styrene ND 0.62 2.00 ug/kg Styrene ND 0.14 1.00 ug/kg Bromoform ND 0.30 1.00 ug/kg 1,1,2,2-Tetrachloroethane ND 0.25 1.00 ug/kg 1,2,2-Trichloropropane ND 0.44 5.00 ug/kg 1-Propylbenzene ND 0.44 5.00 ug/kg 1-Propylbenzene ND 0.41 1.00 ug/kg 1-Sopropyl Benzene ND 0.31 1.00 ug/kg 4-Chlorotoluene ND 0.31 1.00 ug/kg 4-Butylbenzene ND 0.25 1.00 ug/kg 4-Butylbenzene ND 0.24 1.00												U
1,1,2-Tetrachloroethane ND 0.23 1.00 ug/kg m.p-Xylene ND 0.39 2.00 ug/kg o-Xylene ND 0.22 1.00 ug/kg Xylenes, total ND 0.62 2.00 ug/kg Bromoform ND 0.30 1.00 ug/kg 1,1,2,2-Tetrachloroethane ND 0.52 1.00 ug/kg 1,2,2-Tetrachloropropane ND 0.52 2.00 ug/kg 1,2,3-Trichloropropane ND 0.52 2.00 ug/kg n-Propylbenzene ND 0.44 5.00 ug/kg spromobenzene ND 0.51 1.00 ug/kg spropyl Benzene ND 0.53 1.00 ug/kg 4-Chlorotoluene ND 0.23 1.00 ug/kg 4-Butylbenzene ND 0.31 1.00 ug/kg 4-Butylbenzene ND 0.23 1.00 ug/kg 4-Sopropyl Toluene ND 0.24												U
m.pXylene ND 0.39 2.00 ug/kg o-Xylene ND 0.22 1.00 ug/kg Xylene, total ND 0.62 2.00 ug/kg Bromeform ND 0.30 1.00 ug/kg I.1,2,2-Tetrachloroethane ND 0.52 1.00 ug/kg 1,2,2-Tichloropropane ND 0.52 2.00 ug/kg 1,-Propylbenzene ND 0.44 5.00 ug/kg 1-Propylbenzene ND 0.27 1.00 ug/kg 1-sopropyl Benzene ND 0.23 1.00 ug/kg 1-chlorotoluene ND 0.31 1.00 ug/kg 4-Chlorotoluene ND 0.31 1.00 ug/kg 4-Butylbenzene ND 0.31 1.00 ug/kg 4-Butylbenzene ND 0.23 1.00 ug/kg 4-Butylbenzene ND 0.23 1.00 ug/kg 4-Butylbenzene ND 0.24 1.00<	•											U
o-Xylene ND 0.22 1.00 ug/kg Xylenes, total ND 0.62 2.00 ug/kg Styrene ND 0.14 1.00 ug/kg Bromoform ND 0.30 1.00 ug/kg 1,1,2,2-Tetrachloroethane ND 0.25 1.00 ug/kg 1,2,2-Tetrachloropopane ND 0.24 5.00 ug/kg 1,2,3-Trichloropopane ND 0.44 5.00 ug/kg 1-Propylbenzene ND 0.44 5.00 ug/kg Bromobenzene ND 0.15 1.00 ug/kg Sopropyl Benzene ND 0.23 1.00 ug/kg 2-Chlorotoluene ND 0.31 1.00 ug/kg 4-Chlorotoluene ND 0.28 1.00 ug/kg 1,3,5-Trimethylbenzene ND 0.25 1.00 ug/kg 1,24-Trimethylbenzene ND 0.24 1.00 ug/kg 4-Isopropyl Toluene ND 0.24 <td></td> <td>U</td>												U
Xylenes, total ND 0.62 2.00 ug/kg Styrene ND 0.14 1.00 ug/kg Bromoform ND 0.30 1.00 ug/kg 1,1,2,2-Tetrachloroethane ND 0.25 1.00 ug/kg 1,2,3-Trichloropropane ND 0.52 2.00 ug/kg n-Propylbenzene ND 0.44 5.00 ug/kg n-Propylbenzene ND 0.27 1.00 ug/kg Bromobenzene ND 0.15 1.00 ug/kg Isopropyl Benzene ND 0.23 1.00 ug/kg 4-Chlorotoluene ND 0.30 1.00 ug/kg 4-Chlorotoluene ND 0.31 1.00 ug/kg 4-Supylbenzene ND 0.28 1.00 ug/kg 1,3-5-Trimethylbenzene ND 0.25 1.00 ug/kg 1,24-Trimethylbenzene ND 0.24 1.00 ug/kg 4-Isopropyl Toluene ND 0.24 <td>* *</td> <td></td> <td></td> <td></td> <td>ug/kg</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>U</td>	* *				ug/kg							U
Styrene ND 0.14 1.00 ug/kg Bromoform ND 0.30 1.00 ug/kg 1,1,2,2-Tetrachloroethane ND 0.25 1.00 ug/kg 1,2,3-Trichloropropane ND 0.52 2.00 ug/kg trans-1,4-Dichloro 2-Butene ND 0.44 5.00 ug/kg n-Propylbenzene ND 0.27 1.00 ug/kg Bromobenzene ND 0.15 1.00 ug/kg Bromobenzene ND 0.23 1.00 ug/kg 2-Chlorotoluene ND 0.30 1.00 ug/kg 4-Chlorotoluene ND 0.31 1.00 ug/kg 4-Butylbenzene ND 0.31 1.00 ug/kg 1,3-5-Trimethylbenzene ND 0.25 1.00 ug/kg 4-Isopropyl Toluene ND 0.23 1.00 ug/kg 4-Isopropyl Toluene ND 0.24 1.00 ug/kg 1,4-Dichlorobenzene 0.33	o-Xylene			1.00	ug/kg							U
Bromoform ND 0.30 1.00 ug/kg 1,1,2,2-Tetrachloroethane ND 0.25 1.00 ug/kg 1,2,3-Trichloropropane ND 0.52 2.00 ug/kg trans-1,4-Dichloro 2-Butene ND 0.44 5.00 ug/kg n-Propylbenzene ND 0.27 1.00 ug/kg Bromobenzene ND 0.15 1.00 ug/kg Isopropyl Benzene ND 0.23 1.00 ug/kg 2-Chlorotoluene ND 0.30 1.00 ug/kg 4-Chlorotoluene ND 0.28 1.00 ug/kg 1-Butylbenzene ND 0.21 1.00 ug/kg 1,2,4-Trimethylbenzene ND 0.25 1.00 ug/kg 1,2,4-Trimethylbenzene ND 0.24 1.00 ug/kg 4-Isopropyl Toluene ND 0.24 1.00 ug/kg 1,3-Dichlorobenzene 0.23 1.00 ug/kg 1,4-Dichlorobenzene 0.03	•											U
1,1,2,2-Tetrachloroethane ND 0.25 1.00 ug/kg 1,2,3-Trichloropropane ND 0.52 2.00 ug/kg trans-1,4-Dichloro 2-Butene ND 0.44 5.00 ug/kg n-Propylbenzene ND 0.27 1.00 ug/kg Bromobenzene ND 0.15 1.00 ug/kg Isopropyl Benzene ND 0.23 1.00 ug/kg 2-Chlorotuluene ND 0.30 1.00 ug/kg 4-Chlorotuluene ND 0.28 1.00 ug/kg 1-Butylbenzene ND 0.31 1.00 ug/kg 1,3,5-Trimethylbenzene ND 0.23 1.00 ug/kg 1,2,4-Trimethylbenzene ND 0.23 1.00 ug/kg 4-Isopropyl Toluene ND 0.24 1.00 ug/kg 1,4-Dichlorobenzene 0.25 0.23 1.00 ug/kg 1,4-Dichlorobenzene 0.33 0.23 1.00 ug/kg 1,2-Dichlorobenzene<	•			1.00								U
1,2,3-Trichloropropane ND 0.52 2.00 ug/kg trans-1,4-Dichloro 2-Butene ND 0.44 5.00 ug/kg n-Propylbenzene ND 0.27 1.00 ug/kg Bromobenzene ND 0.15 1.00 ug/kg Isopropyl Benzene ND 0.23 1.00 ug/kg 2-Chlorotoluene ND 0.30 1.00 ug/kg 4-Chlorotoluene ND 0.28 1.00 ug/kg 1,3,5-Trimethylbenzene ND 0.21 1.00 ug/kg 1,2,4-Trimethylbenzene ND 0.23 1.00 ug/kg 8-Butylbenzene ND 0.24 1.00 ug/kg 4-Isopropyl Toluene ND 0.24 1.00 ug/kg 1,3-Dichlorobenzene 0.25 0.23 1.00 ug/kg 1,4-Dichlorobenzene 0.25 0.23 1.00 ug/kg 1,2-Dichlorobenzene 0.33 0.23 1.00 ug/kg 1,2-Dichlorobenzene 0.03 0.26 1.00 ug/kg 1,2-Dichlorobenzene </td <td></td> <td>U</td>												U
trans-1,4-Dichloro 2-Butene ND 0.44 5.00 ug/kg n-Propylbenzene ND 0.27 1.00 ug/kg Bromobenzene ND 0.15 1.00 ug/kg Isopropyl Benzene ND 0.23 1.00 ug/kg 2-Chlorotoluene ND 0.30 1.00 ug/kg 4-Chlorotoluene ND 0.31 1.00 ug/kg t-Butylbenzene ND 0.31 1.00 ug/kg 1,3,5-Trimethylbenzene ND 0.25 1.00 ug/kg 1,2,4-Trimethylbenzene ND 0.23 1.00 ug/kg s-Butylbenzene ND 0.24 1.00 ug/kg s-Butylbenzene ND 0.24 1.00 ug/kg 4-Isopropyl Toluene ND 0.24 1.00 ug/kg 1,3-Dichlorobenzene 0.33 0.23 1.00 ug/kg 1,4-Dichlorobenzene ND 0.26 1.00 ug/kg 1,4-Dichlorobenzene ND 0.26 1.00 ug/kg 1,4-Dichlorobenzene ND 0.26 1.00 ug/kg 1,2-Dichlorobenzene ND 0.26 1.00 ug/kg 1,2-Dichlorobenzene ND 0.26 1.00 ug/kg 1,2-Dichlorobenzene ND 0.26 1.00 ug/kg	1,1,2,2-Tetrachloroethane											U
n-Propylbenzene ND 0.27 1.00 ug/kg Bromobenzene ND 0.15 1.00 ug/kg Isopropyl Benzene ND 0.23 1.00 ug/kg 2-Chlorotoluene ND 0.30 1.00 ug/kg 4-Chlorotoluene ND 0.28 1.00 ug/kg t-Butylbenzene ND 0.31 1.00 ug/kg 1,3,5-Trimethylbenzene ND 0.25 1.00 ug/kg 1,2,4-Trimethylbenzene ND 0.23 1.00 ug/kg 8-Butylbenzene ND 0.24 1.00 ug/kg 4-Isopropyl Toluene ND 0.24 1.00 ug/kg 1,4-Dichlorobenzene 0.25 0.23 1.00 ug/kg 1,4-Dichlorobenzene 0.33 0.23 1.00 ug/kg 1,2-Dichlorobenzene 0.33 0.23 1.00 ug/kg 1,2-Dichlorobenzene 0.33 0.29 1.00 ug/kg 1,2-Dichlorobenzene 0	• •											U
Bromobenzene ND 0.15 1.00 ug/kg Isopropyl Benzene ND 0.23 1.00 ug/kg 2-Chlorotoluene ND 0.30 1.00 ug/kg 4-Chlorotoluene ND 0.28 1.00 ug/kg 4-Chlorotoluene ND 0.31 1.00 ug/kg 1,3,5-Trimethylbenzene ND 0.25 1.00 ug/kg 1,2,4-Trimethylbenzene ND 0.23 1.00 ug/kg 1,2,4-Trimethylbenzene ND 0.24 1.00 ug/kg 4-Isopropyl Toluene ND 0.24 1.00 ug/kg 1,3-Dichlorobenzene 0.25 0.23 1.00 ug/kg 1,4-Dichlorobenzene 0.33 0.23 1.00 ug/kg 1,4-Dichlorobenzene ND 0.26 1.00 ug/kg 1,2-Dichlorobenzene 0.33 0.29 1.00 ug/kg 1,2-Dichlorobenzene ND 0.59 5.00 ug/kg					ug/kg							U
Sopropyl Benzene ND 0.23 1.00 ug/kg	••		0.27	1.00								U
2-Chlorotoluene ND 0.30 1.00 ug/kg 4-Chlorotoluene ND 0.28 1.00 ug/kg t-Butylbenzene ND 0.31 1.00 ug/kg 1,3,5-Trimethylbenzene ND 0.25 1.00 ug/kg 1,2,4-Trimethylbenzene ND 0.23 1.00 ug/kg s-Butylbenzene ND 0.24 1.00 ug/kg s-Butylbenzene ND 0.24 1.00 ug/kg 4-Isopropyl Toluene ND 0.24 1.00 ug/kg 1,3-Dichlorobenzene 0.25 0.23 1.00 ug/kg 1,4-Dichlorobenzene 0.33 0.23 1.00 ug/kg 1,4-Dichlorobenzene 0.33 0.23 1.00 ug/kg 1,2-Dichlorobenzene ND 0.26 1.00 ug/kg 1,2-Dichlorobenzene ND 0.39 0.39 1.00 ug/kg 1,2-Dichlorobenzene ND 0.59 5.00 ug/kg	Bromobenzene	ND	0.15	1.00	ug/kg							U
4-Chlorotoluene ND 0.28 1.00 ug/kg t-Butylbenzene ND 0.31 1.00 ug/kg 1,3,5-Trimethylbenzene ND 0.25 1.00 ug/kg 1,2,4-Trimethylbenzene ND 0.23 1.00 ug/kg s-Butylbenzene ND 0.24 1.00 ug/kg 4-Isopropyl Toluene ND 0.24 1.00 ug/kg 1,3-Dichlorobenzene 0.25 0.23 1.00 ug/kg 1,4-Dichlorobenzene 0.33 0.23 1.00 ug/kg 1,4-Dichlorobenzene 0.33 0.23 1.00 ug/kg 1,2-Dichlorobenzene ND 0.26 1.00 ug/kg 1,2-Dichlorobenzene ND 0.39 0.39 1.00 ug/kg 1,2-Dichlorobenzene ND 0.39 0.39 1.00 ug/kg	Isopropyl Benzene	ND	0.23	1.00	ug/kg							U
t-Butylbenzene ND 0.31 1.00 ug/kg 1,3,5-Trimethylbenzene ND 0.25 1.00 ug/kg 1,2,4-Trimethylbenzene ND 0.23 1.00 ug/kg s-Butylbenzene ND 0.24 1.00 ug/kg 4-Isopropyl Toluene ND 0.24 1.00 ug/kg 1,3-Dichlorobenzene 0.25 0.23 1.00 ug/kg 1,4-Dichlorobenzene 0.33 0.23 1.00 ug/kg n-Butylbenzene ND 0.26 1.00 ug/kg 1,2-Dichlorobenzene 0.33 0.29 1.00 ug/kg 1,2-Dichlorobenzene ND 0.59 5.00 ug/kg	2-Chlorotoluene	ND	0.30	1.00	ug/kg							U
1,3,5-Trimethylbenzene ND 0.25 1.00 ug/kg 1,2,4-Trimethylbenzene ND 0.23 1.00 ug/kg s-Butylbenzene ND 0.24 1.00 ug/kg 4-Isopropyl Toluene ND 0.24 1.00 ug/kg 1,3-Dichlorobenzene 0.25 0.23 1.00 ug/kg 1,4-Dichlorobenzene 0.33 0.23 1.00 ug/kg n-Butylbenzene ND 0.26 1.00 ug/kg 1,2-Dichlorobenzene 0.33 0.29 1.00 ug/kg 1,2-Dibromo-3-chloropropane ND 0.59 5.00 ug/kg	4-Chlorotoluene	ND	0.28	1.00	ug/kg							U
1,2,4-Trimethylbenzene ND 0.23 1.00 ug/kg s-Butylbenzene ND 0.24 1.00 ug/kg 4-Isopropyl Toluene ND 0.24 1.00 ug/kg 1,3-Dichlorobenzene 0.25 0.23 1.00 ug/kg 1,4-Dichlorobenzene 0.33 0.23 1.00 ug/kg n-Butylbenzene ND 0.26 1.00 ug/kg 1,2-Dichlorobenzene 0.33 0.29 1.00 ug/kg 1,2-Dibromo-3-chloropropane ND 0.59 5.00 ug/kg	t-Butylbenzene	ND	0.31	1.00	ug/kg							U
s-Butylbenzene ND 0.24 1.00 ug/kg 4-Isopropyl Toluene ND 0.24 1.00 ug/kg 1,3-Dichlorobenzene 0.25 0.23 1.00 ug/kg 1,4-Dichlorobenzene 0.33 0.23 1.00 ug/kg n-Butylbenzene ND 0.26 1.00 ug/kg 1,2-Dichlorobenzene 0.33 0.29 1.00 ug/kg 1,2-Dibromo-3-chloropropane ND 0.59 5.00 ug/kg	•	ND	0.25	1.00	ug/kg							U
4-Isopropyl Toluene ND 0.24 1.00 ug/kg 1,3-Dichlorobenzene 0.25 0.23 1.00 ug/kg 1,4-Dichlorobenzene 0.33 0.23 1.00 ug/kg n-Butylbenzene ND 0.26 1.00 ug/kg 1,2-Dichlorobenzene 0.33 0.29 1.00 ug/kg 1,2-Dibromo-3-chloropropane ND 0.59 5.00 ug/kg	1,2,4-Trimethylbenzene	ND	0.23	1.00	ug/kg							U
1,3-Dichlorobenzene 0.25 0.23 1.00 ug/kg 1,4-Dichlorobenzene 0.33 0.23 1.00 ug/kg n-Butylbenzene ND 0.26 1.00 ug/kg 1,2-Dichlorobenzene 0.33 0.29 1.00 ug/kg 1,2-Dibromo-3-chloropropane ND 0.59 5.00 ug/kg	s-Butylbenzene	ND	0.24	1.00								U
1,4-Dichlorobenzene 0.33 0.23 1.00 ug/kg n-Butylbenzene ND 0.26 1.00 ug/kg 1,2-Dichlorobenzene 0.33 0.29 1.00 ug/kg 1,2-Dibromo-3-chloropropane ND 0.59 5.00 ug/kg	4-Isopropyl Toluene	ND	0.24	1.00	ug/kg							U
n-Butylbenzene ND 0.26 1.00 ug/kg 1,2-Dichlorobenzene 0.33 0.29 1.00 ug/kg 1,2-Dibromo-3-chloropropane ND 0.59 5.00 ug/kg	1,3-Dichlorobenzene	0.25	0.23	1.00								J
1,2-Dichlorobenzene 0.33 0.29 1.00 ug/kg 1,2-Dibromo-3-chloropropane ND 0.59 5.00 ug/kg	1,4-Dichlorobenzene	0.33	0.23	1.00	ug/kg							J
1,2-Dibromo-3-chloropropane ND 0.59 5.00 ug/kg	n-Butylbenzene	ND	0.26	1.00	ug/kg							U
• •	1,2-Dichlorobenzene	0.33	0.29	1.00	ug/kg							J
	1,2-Dibromo-3-chloropropane	ND	0.59	5.00	ug/kg							U
1,2,4-Trichlorobenzene 0.89 0.33 5.00 ug/kg	1,2,4-Trichlorobenzene	0.89	0.33	5.00	ug/kg							J
Hexachloro-1,3-Butadiene 0.50 0.41 5.00 ug/kg	Hexachloro-1,3-Butadiene	0.50	0.41	5.00								J

Analytical Resources, Inc.

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston08-Jul-2019 13:16

Volatile Organic Compounds - Quality Control

Batch BHF0741 - EPA 5035 (Sodium Bisulfate)

Instrument: NT5 Analyst: PB

QC Sample/Analyte	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Blank (BHF0741-BLK1)				Prepa	red: 28-Jun				:19		
Naphthalene	1.30	0.43	5.00	ug/kg			<u> </u>				J
1,2,3-Trichlorobenzene	1.16	0.31	5.00	ug/kg							J
Dichlorodifluoromethane	ND	0.21	1.00	ug/kg							U
Methyl tert-butyl Ether	ND	0.23	1.00	ug/kg							U
2-Pentanone	ND	5.00	5.00	ug/kg							U
Surrogate: 1,2-Dichloroethane-d4	51.3			ug/kg	50.0		103	80-149			
Surrogate: Toluene-d8	50.3			ug/kg	50.0		101	77-120			
Surrogate: 4-Bromofluorobenzene	48.9			ug/kg	50.0		97.9	80-120			
Surrogate: 1,2-Dichlorobenzene-d4	51.5			ug/kg	50.0		103	80-120			
LCS (BHF0741-BS1)				Prepa	red: 28-Jun	-2019 An	alyzed: 28-J	un-2019 10	:14		
Chloromethane	50.3			ug/kg	50.0		101	64-132			
Vinyl Chloride	53.2			ug/kg	50.0		106	74-135			
Bromomethane	54.5			ug/kg	50.0		109	53-144			
Chloroethane	40.6			ug/kg	50.0		81.2	55-149			
Trichlorofluoromethane	60.3			ug/kg	50.0		121	61-164			Q
Acrolein	216			ug/kg	250		86.4	59-140			
1,1,2-Trichloro-1,2,2-Trifluoroethane	51.1			ug/kg	50.0		102	74-143			
Acetone	239			ug/kg	250		95.7	48-137			
1,1-Dichloroethene	50.7			ug/kg	50.0		101	77-134			
Bromoethane	51.8			ug/kg	50.0		104	65-145			
Iodomethane	48.9			ug/kg	50.0		97.7	31-162			
Methylene Chloride	49.0			ug/kg	50.0		98.0	69-129			
Acrylonitrile	49.1			ug/kg	50.0		98.2	69-134			
Carbon Disulfide	51.2			ug/kg	50.0		102	71-137			
trans-1,2-Dichloroethene	50.4			ug/kg	50.0		101	79-130			
Vinyl Acetate	49.7			ug/kg	50.0		99.5	66-141			
1,1-Dichloroethane	51.3			ug/kg	50.0		103	80-126			
2-Butanone	252			ug/kg	250		101	70-132			
2,2-Dichloropropane	51.2			ug/kg	50.0		102	77-138			
cis-1,2-Dichloroethene	52.9			ug/kg	50.0		106	80-125			
Chloroform	51.0			ug/kg	50.0		102	80-126			
Bromochloromethane	50.3			ug/kg	50.0		101	80-129			
1,1,1-Trichloroethane	51.0			ug/kg	50.0		102	78-133			
1,1-Dichloropropene	50.7			ug/kg	50.0		101	79-120			

Analytical Resources, Inc.

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston08-Jul-2019 13:16

Volatile Organic Compounds - Quality Control

Batch BHF0741 - EPA 5035 (Sodium Bisulfate)

Instrument: NT5 Analyst: PB

000 1/4 1/		Detection	Reporting	TT '-	Spike	Source	0/850	%REC	DPD	RPD	N
QC Sample/Analyte	Result	Limit	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
LCS (BHF0741-BS1)				Prep	ared: 28-Jun	-2019 Ana	lyzed: 28-Ji	un-2019 10	:14		
Carbon tetrachloride	48.9			ug/kg	50.0		97.8	71-129			
1,2-Dichloroethane	45.9			ug/kg	50.0		91.9	76-120			
Benzene	49.7			ug/kg	50.0		99.3	80-120			
Trichloroethene	48.5			ug/kg	50.0		97.1	80-120			
1,2-Dichloropropane	48.6			ug/kg	50.0		97.1	79-120			
Bromodichloromethane	47.9			ug/kg	50.0		95.8	80-122			
Dibromomethane	48.4			ug/kg	50.0		96.9	80-120			
2-Chloroethyl vinyl ether	47.7			ug/kg	50.0		95.3	51-129			
4-Methyl-2-Pentanone	240			ug/kg	250		96.0	73-121			
cis-1,3-Dichloropropene	50.3			ug/kg	50.0		101	80-120			
Toluene	48.4			ug/kg	50.0		96.8	75-120			
trans-1,3-Dichloropropene	49.9			ug/kg	50.0		99.8	80-124			
2-Hexanone	234			ug/kg	250		93.5	68-122			
1,1,2-Trichloroethane	47.5			ug/kg	50.0		95.0	79-120			
1,3-Dichloropropane	47.3			ug/kg	50.0		94.6	78-120			
Tetrachloroethene	46.0			ug/kg	50.0		92.0	74-124			
Dibromochloromethane	48.1			ug/kg	50.0		96.3	74-125			
1,2-Dibromoethane	48.3			ug/kg	50.0		96.7	80-120			
Chlorobenzene	47.1			ug/kg	50.0		94.3	78-120			
Ethylbenzene	47.1			ug/kg	50.0		94.2	80-125			
1,1,1,2-Tetrachloroethane	48.3			ug/kg	50.0		96.6	80-120			
m,p-Xylene	94.7			ug/kg	100		94.7	76-121			
o-Xylene	48.2			ug/kg	50.0		96.3	67-132			
Xylenes, total	143			ug/kg	150		95.2	67-132			
Styrene	48.9			ug/kg	50.0		97.8	80-120			
Bromoform	47.8			ug/kg	50.0		95.6	64-128			
1,1,2,2-Tetrachloroethane	47.9			ug/kg	50.0		95.7	74-120			
1,2,3-Trichloropropane	47.8			ug/kg	50.0		95.5	73-120			
trans-1,4-Dichloro 2-Butene	47.8			ug/kg	50.0		95.5	65-125			
n-Propylbenzene	49.1			ug/kg	50.0		98.1	72-124			
Bromobenzene	48.3			ug/kg	50.0		96.6	76-120			
Isopropyl Benzene	50.0			ug/kg	50.0		100	74-121			
2-Chlorotoluene	48.3			ug/kg	50.0		96.5	75-120			
4-Chlorotoluene	48.0			ug/kg	50.0		96.0	69-124			
t-Butylbenzene	48.8			ug/kg	50.0		97.5	72-122			
•				2 2							

Analytical Resources, Inc.

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston08-Jul-2019 13:16

Volatile Organic Compounds - Quality Control

Batch BHF0741 - EPA 5035 (Sodium Bisulfate)

Instrument: NT5 Analyst: PB

QC Sample/Analyte	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result		%REC Limits	RPD	RPD Limit	Notes
LCS (BHF0741-BS1)				Prepa	red: 28-Jun	-2019 A	nalyzed: 28-J	un-2019 10	:14		
1,3,5-Trimethylbenzene	49.4			ug/kg	50.0		98.8	74-122			
1,2,4-Trimethylbenzene	49.1			ug/kg	50.0		98.1	75-121			
s-Butylbenzene	49.1			ug/kg	50.0		98.2	70-128			
4-Isopropyl Toluene	49.7			ug/kg	50.0		99.5	75-125			
1,3-Dichlorobenzene	47.1			ug/kg	50.0		94.2	75-120			
1,4-Dichlorobenzene	46.6			ug/kg	50.0		93.2	73-120			
n-Butylbenzene	48.2			ug/kg	50.0		96.5	73-130			
1,2-Dichlorobenzene	46.4			ug/kg	50.0		92.8	76-120			
1,2-Dibromo-3-chloropropane	47.0			ug/kg	50.0		94.0	65-126			
1,2,4-Trichlorobenzene	47.9			ug/kg	50.0		95.7	66-140			
Hexachloro-1,3-Butadiene	47.6			ug/kg	50.0		95.2	67-133			
Naphthalene	49.2			ug/kg	50.0		98.4	69-125			
1,2,3-Trichlorobenzene	47.5			ug/kg	50.0		95.0	68-132			
Dichlorodifluoromethane	54.3			ug/kg	50.0		109	67-142			
Methyl tert-butyl Ether	50.1			ug/kg	50.0		100	79-127			
2-Pentanone	242			ug/kg	250		96.9	77-120			
Surrogate: 1,2-Dichloroethane-d4	52.0			ug/kg	50.0		104	80-149			
Surrogate: Toluene-d8	51.2			ug/kg	50.0		102	77-120			
Surrogate: 4-Bromofluorobenzene	49.5			ug/kg	50.0		99.1	80-120			
Surrogate: 1,2-Dichlorobenzene-d4	50.5			ug/kg	50.0		101	80-120			
LCS Dup (BHF0741-BSD1)				Drane	rad: 28 Jun	2010 A	nalyzed: 28-J	un 2010 10	.56		
Chloromethane	55.9			ug/kg	50.0	-2019 A	112	64-132	10.50	30	
Vinyl Chloride	57.6			ug/kg	50.0		115	74-135	7.87	30	
Bromomethane	57.9			ug/kg ug/kg	50.0		116	53-144	6.05	30	
Chloroethane	57.0			ug/kg	50.0		114	55-149	33.70	30	*
Trichlorofluoromethane	55.0			ug/kg	50.0		110	61-164	9.28	30	Q
Acrolein	244			ug/kg	250		97.6	59-140	12.20	30	•
1,1,2-Trichloro-1,2,2-Trifluoroethane	56.0			ug/kg	50.0		112	74-143	9.09	30	
Acetone	254			ug/kg	250		102	48-137	6.02	30	
1,1-Dichloroethene	54.3			ug/kg	50.0		109	77-134	6.90	30	
Bromoethane	52.8			ug/kg	50.0		106	65-145	1.92	30	
Iodomethane	52.6			ug/kg	50.0		105	31-162	7.29	30	
Methylene Chloride	51.0			ug/kg	50.0		102	69-129	4.03	30	
Acrylonitrile	50.6			ug/kg	50.0		101	69-134	3.05	30	

Analytical Resources, Inc.

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston08-Jul-2019 13:16

Volatile Organic Compounds - Quality Control

Batch BHF0741 - EPA 5035 (Sodium Bisulfate)

Instrument: NT5 Analyst: PB

		Detection	Reporting		Spike	Source		%REC		RPD	
QC Sample/Analyte	Result	Limit	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
LCS Dup (BHF0741-BSD1)				Prep	ared: 28-Jun	-2019 Ana	lyzed: 28-Jı	ın-2019 10	:56		
Carbon Disulfide	56.3			ug/kg	50.0		113	71-137	9.48	30	
trans-1,2-Dichloroethene	54.0			ug/kg	50.0		108	79-130	6.88	30	
Vinyl Acetate	52.1			ug/kg	50.0		104	66-141	4.62	30	
1,1-Dichloroethane	53.9			ug/kg	50.0		108	80-126	5.05	30	
2-Butanone	291			ug/kg	250		116	70-132	14.40	30	
2,2-Dichloropropane	55.4			ug/kg	50.0		111	77-138	7.84	30	
cis-1,2-Dichloroethene	53.5			ug/kg	50.0		107	80-125	1.09	30	
Chloroform	52.4			ug/kg	50.0		105	80-126	2.75	30	
Bromochloromethane	50.4			ug/kg	50.0		101	80-129	0.21	30	
1,1,1-Trichloroethane	53.9			ug/kg	50.0		108	78-133	5.71	30	
1,1-Dichloropropene	55.3			ug/kg	50.0		111	79-120	8.78	30	
Carbon tetrachloride	51.7			ug/kg	50.0		103	71-129	5.56	30	
1,2-Dichloroethane	46.8			ug/kg	50.0		93.6	76-120	1.87	30	
Benzene	51.7			ug/kg	50.0		103	80-120	3.93	30	
Trichloroethene	51.1			ug/kg	50.0		102	80-120	5.12	30	
1,2-Dichloropropane	49.8			ug/kg	50.0		99.6	79-120	2.52	30	
Bromodichloromethane	49.5			ug/kg	50.0		99.0	80-122	3.31	30	
Dibromomethane	49.8			ug/kg	50.0		99.6	80-120	2.74	30	
2-Chloroethyl vinyl ether	48.4			ug/kg	50.0		96.8	51-129	1.55	30	
4-Methyl-2-Pentanone	255			ug/kg	250		102	73-121	6.14	30	
cis-1,3-Dichloropropene	51.5			ug/kg	50.0		103	80-120	2.47	30	
Toluene	50.8			ug/kg	50.0		102	75-120	4.78	30	
trans-1,3-Dichloropropene	50.6			ug/kg	50.0		101	80-124	1.42	30	
2-Hexanone	247			ug/kg	250		98.7	68-122	5.39	30	
1,1,2-Trichloroethane	47.2			ug/kg	50.0		94.5	79-120	0.53	30	
1,3-Dichloropropane	47.7			ug/kg	50.0		95.5	78-120	0.89	30	
Tetrachloroethene	51.4			ug/kg	50.0		103	74-124	11.10	30	
Dibromochloromethane	49.5			ug/kg	50.0		98.9	74-125	2.69	30	
1,2-Dibromoethane	49.2			ug/kg	50.0		98.3	80-120	1.70	30	
Chlorobenzene	49.6			ug/kg	50.0		99.2	78-120	5.12	30	
Ethylbenzene	50.2			ug/kg	50.0		100	80-125	6.43	30	
1,1,1,2-Tetrachloroethane	49.4			ug/kg	50.0		98.7	80-120	2.14	30	
m,p-Xylene	101			ug/kg	100		101	76-121	6.69	30	
o-Xylene	49.8			ug/kg	50.0		99.6	67-132	3.34	30	
Xylenes, total	151			ug/kg	150		101	67-132	5.57	30	

Analytical Resources, Inc.

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston08-Jul-2019 13:16

Volatile Organic Compounds - Quality Control

Batch BHF0741 - EPA 5035 (Sodium Bisulfate)

Instrument: NT5 Analyst: PB

OC Committee		Detection	Reporting	II-2	Spike	Source	0/PEC	%REC	DPD	RPD	NI-
QC Sample/Analyte	Result	Limit	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
LCS Dup (BHF0741-BSD1)				Prepa	red: 28-Jun-	-2019 Ana	ılyzed: 28-Jı	un-2019 10:	:56		
Styrene	50.4			ug/kg	50.0		101	80-120	2.89	30	
Bromoform	48.6			ug/kg	50.0		97.1	64-128	1.57	30	
1,1,2,2-Tetrachloroethane	49.1			ug/kg	50.0		98.3	74-120	2.61	30	
1,2,3-Trichloropropane	52.3			ug/kg	50.0		105	73-120	9.12	30	
trans-1,4-Dichloro 2-Butene	53.0			ug/kg	50.0		106	65-125	10.30	30	
n-Propylbenzene	52.9			ug/kg	50.0		106	72-124	7.56	30	
Bromobenzene	50.0			ug/kg	50.0		100	76-120	3.50	30	
Isopropyl Benzene	53.3			ug/kg	50.0		107	74-121	6.43	30	
2-Chlorotoluene	51.1			ug/kg	50.0		102	75-120	5.75	30	
4-Chlorotoluene	51.6			ug/kg	50.0		103	69-124	7.30	30	
t-Butylbenzene	51.6			ug/kg	50.0		103	72-122	5.61	30	
1,3,5-Trimethylbenzene	52.0			ug/kg	50.0		104	74-122	5.08	30	
1,2,4-Trimethylbenzene	52.2			ug/kg	50.0		104	75-121	6.24	30	
s-Butylbenzene	52.2			ug/kg	50.0		104	70-128	6.05	30	
4-Isopropyl Toluene	53.1			ug/kg	50.0		106	75-125	6.64	30	
1,3-Dichlorobenzene	50.5			ug/kg	50.0		101	75-120	6.99	30	
1,4-Dichlorobenzene	49.7			ug/kg	50.0		99.4	73-120	6.47	30	
n-Butylbenzene	52.9			ug/kg	50.0		106	73-130	9.15	30	
1,2-Dichlorobenzene	49.1			ug/kg	50.0		98.1	76-120	5.54	30	
1,2-Dibromo-3-chloropropane	50.2			ug/kg	50.0		100	65-126	6.69	30	
1,2,4-Trichlorobenzene	50.7			ug/kg	50.0		101	66-140	5.78	30	
Hexachloro-1,3-Butadiene	50.1			ug/kg	50.0		100	67-133	5.04	30	
Naphthalene	51.0			ug/kg	50.0		102	69-125	3.59	30	
1,2,3-Trichlorobenzene	49.5			ug/kg	50.0		99.0	68-132	4.12	30	
Dichlorodifluoromethane	55.6			ug/kg	50.0		111	67-142	2.29	30	
Methyl tert-butyl Ether	51.5			ug/kg	50.0		103	79-127	2.86	30	
2-Pentanone	254			ug/kg	250		101	77-120	4.67	30	
Surrogate: 1,2-Dichloroethane-d4	52.9			ug/kg	50.0		106	80-149			
Surrogate: Toluene-d8	50.5			ug/kg	50.0		101	77-120			
Surrogate: 4-Bromofluorobenzene	49.7			ug/kg	50.0		99.4	80-120			
Surrogate: 1,2-Dichlorobenzene-d4	50.2			ug/kg	50.0		100	80-120			

Analytical Resources, Inc.

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston08-Jul-2019 13:16

Volatile Organic Compounds - Quality Control

Batch BHF0743 - EPA 5035 (Methanol Extraction)

Instrument: NT5 Analyst: PB

QC Sample/Analyte	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Blank (BHF0743-BLK1)				Prepa	ared: 28-Jun	-2019 An	alyzed: 28-J	un-2019 11	:19		
Benzene	ND	8.20	50.0	ug/kg							U
Toluene	ND	8.60	50.0	ug/kg							U
Ethylbenzene	ND	13.6	50.0	ug/kg							U
m,p-Xylene	ND	27.9	100	ug/kg							U
o-Xylene	ND	11.4	50.0	ug/kg							U
Surrogate: Toluene-d8	50.3			ug/kg	50.0		101	80-120			
Surrogate: 4-Bromofluorobenzene	48.9			ug/kg	50.0		97.9	80-120			
LCS (BHF0743-BS1)				Prepa	ared: 28-Jun	-2019 An	alyzed: 28-J	un-2019 10	:14		
Benzene	2480			ug/kg	2500		99.3	80-120			
Toluene	2420			ug/kg	2500		96.8	77-120			
Ethylbenzene	2360			ug/kg	2500		94.2	79-122			
m,p-Xylene	4730			ug/kg	5000		94.7	81-122			
o-Xylene	2410			ug/kg	2500		96.3	79-120			
Surrogate: Toluene-d8	51.2			ug/kg	50.0		102	80-120			
Surrogate: 4-Bromofluorobenzene	49.5			ug/kg	50.0		99.1	80-120			
LCS Dup (BHF0743-BSD1)				Prepa	ared: 28-Jun	-2019 An	alyzed: 28-J	un-2019 10	:56		
Benzene	2580			ug/kg	2500		103	80-120	3.93	30	
Toluene	2540			ug/kg	2500		102	77-120	4.78	30	
Ethylbenzene	2510			ug/kg	2500		100	79-122	6.43	30	
m,p-Xylene	5060			ug/kg	5000		101	81-122	6.69	30	
o-Xylene	2490			ug/kg	2500		99.6	79-120	3.34	30	
Surrogate: Toluene-d8	50.5			ug/kg	50.0		101	80-120			
Surrogate: 4-Bromofluorobenzene	49.7			ug/kg	50.0		99.4	80-120			

Analytical Resources, Inc.

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston08-Jul-2019 13:16

Volatile Organic Compounds - Quality Control

Batch BHF0745 - EPA 5035 (Methanol Extraction)

Instrument: NT3 Analyst: PKC

QC Sample/Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Blank (BHF0745-BLK1)			Prepa	ared: 28-Jun	-2019 Ana	alyzed: 28-J	Jun-2019 11:	:59		
Gasoline Range Organics (Tol-Nap)	ND	5000	ug/kg							U
Surrogate: Toluene-d8	4.96		ug/kg	5.00		99.2	80-120			
Surrogate: 4-Bromofluorobenzene	5.08		ug/kg	5.00		102	78-123			
LCS (BHF0745-BS1)			Prepa	ared: 28-Jun	-2019 Ana	alyzed: 28-J	Jun-2019 11:	:06		
Gasoline Range Organics (Tol-Nap)	45300	5000	ug/kg	50000		90.6	70-121			
Surrogate: Toluene-d8	4.96		ug/kg	5.00		99.3	80-120			
Surrogate: 4-Bromofluorobenzene	5.08		ug/kg	5.00		102	78-123			
LCS Dup (BHF0745-BSD1)			Prepa	ared: 28-Jun	-2019 Ana	alyzed: 28-J	Jun-2019 11:	:33		
Gasoline Range Organics (Tol-Nap)	44700	5000	ug/kg	50000		89.3	70-121	1.38	30	
Surrogate: Toluene-d8	4.89		ug/kg	5.00		97.7	80-120			
Surrogate: 4-Bromofluorobenzene	5.08		ug/kg	5.00		102	78-123			

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston08-Jul-2019 13:16

Petroleum Hydrocarbons - Quality Control

Batch BHF0697 - EPA 3546 (Microwave)

Instrument: FID4 Analyst: VTS

QC Sample/Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Blank (BHF0697-BLK1)			Prepa	red: 28-Jun	-2019 Ar	nalyzed: 03-J	ful-2019 00:	10		
Diesel Range Organics (C12-C24)	ND	5.00	mg/kg							U
Motor Oil Range Organics (C24-C38)	ND	10.0	mg/kg							U
Surrogate: o-Terphenyl	10.3		mg/kg	11.3		91.7	50-150			
LCS (BHF0697-BS1)			Prepa	ared: 28-Jun	-2019 Ar	nalyzed: 03-J	ful-2019 00:	30		
Diesel Range Organics (C12-C24)	142	5.00	mg/kg	150		94.9	63-120			
Surrogate: o-Terphenyl	10.7		mg/kg	11.3		95.3	50-150			

Analytical Resources, Inc.

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston08-Jul-2019 13:16

Certified Analyses included in this Report

Analyte	Certifications

EPA 8260C in Solid	
Chloromethane	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
Vinyl Chloride	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
Bromomethane	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
Chloroethane	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
Trichlorofluoromethane	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
Acrolein	WADOE,DoD-ELAP,NELAP,CALAP
1,1,2-Trichloro-1,2,2-Trifluoroethane	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
Acetone	WADOE,DoD-ELAP,NELAP,CALAP
1,1-Dichloroethene	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
Bromoethane	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
lodomethane	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
Methylene Chloride	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
Acrylonitrile	WADOE,DoD-ELAP,NELAP,CALAP
Carbon Disulfide	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
trans-1,2-Dichloroethene	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
Vinyl Acetate	WADOE,DoD-ELAP,NELAP,CALAP
1,1-Dichloroethane	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
2-Butanone	WADOE,DoD-ELAP,NELAP,CALAP
2,2-Dichloropropane	WADOE,DoD-ELAP,NELAP,CALAP
cis-1,2-Dichloroethene	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
Chloroform	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
Bromochloromethane	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
1,1,1-Trichloroethane	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
1,1-Dichloropropene	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
Carbon tetrachloride	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
1,2-Dichloroethane	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
Benzene	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
Trichloroethene	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
1,2-Dichloropropane	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
Bromodichloromethane	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
Dibromomethane	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
2-Chloroethyl vinyl ether	WADOE,DoD-ELAP,NELAP
4-Methyl-2-Pentanone	WADOE,DoD-ELAP,NELAP,CALAP
cis-1,3-Dichloropropene	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
Toluene	WADOE,DoD-ELAP,NELAP,CALAP,ADEC

Analytical Resources, Inc.

Farallon Consulting, LLC	Project: Emerald Gateway Site 1071-026	
1809 7th Ave, Suite 1111	Project Number: 1071-026	Reported:
Seattle WA, 98101	Project Manager: Pete Kingston	08-Jul-2019 13:16

trans-1,3-Dichloropropene WADOE, DoD-ELAP, NELAP, CALAP, ADEC 2-Hexanone WADOE, DoD-ELAP, NELAP, CALAP 1,1,2-Trichloroethane WADOE, DoD-ELAP, NELAP, CALAP, ADEC 1,3-Dichloropropane WADOE, DoD-ELAP, NELAP, CALAP, ADEC Tetrachloroethene WADOE, DoD-ELAP, NELAP, CALAP, ADEC Dibromochloromethane WADOE, DoD-ELAP, NELAP, CALAP, ADEC 1,2-Dibromoethane WADOE, DoD-ELAP, NELAP, CALAP, ADEC WADOE, DoD-ELAP, NELAP, CALAP, ADEC Chlorobenzene Ethylbenzene WADOE, DoD-ELAP, NELAP, CALAP, ADEC 1,1,1,2-Tetrachloroethane WADOE, DoD-ELAP, NELAP, CALAP, ADEC m,p-Xylene WADOE, DoD-ELAP, NELAP, CALAP, ADEC o-Xylene WADOE, DoD-ELAP, NELAP, CALAP, ADEC Xylenes, total **WADOE** WADOE, DoD-ELAP, NELAP, CALAP, ADEC Styrene Bromoform WADOE, DoD-ELAP, NELAP, CALAP, ADEC 1,1,2,2-Tetrachloroethane WADOE, DoD-ELAP, NELAP, CALAP, ADEC 1,2,3-Trichloropropane WADOE, DoD-ELAP, NELAP, CALAP, ADEC WADOE, DoD-ELAP, NELAP trans-1,4-Dichloro 2-Butene n-Propylbenzene WADOE, DoD-ELAP, NELAP, CALAP Bromobenzene WADOE, DoD-ELAP, NELAP, CALAP, ADEC WADOE, DoD-ELAP, NELAP, CALAP, ADEC Isopropyl Benzene 2-Chlorotoluene WADOE, DoD-ELAP, NELAP, CALAP 4-Chlorotoluene WADOE, DoD-ELAP, NELAP, CALAP t-Butylbenzene WADOE, DoD-ELAP, NELAP, CALAP 1,3,5-Trimethylbenzene WADOE, DoD-ELAP, NELAP, CALAP 1,2,4-Trimethylbenzene WADOE, DoD-ELAP, NELAP, CALAP WADOE, DoD-ELAP, NELAP, CALAP s-Butylbenzene 4-Isopropyl Toluene WADOE, DoD-ELAP, NELAP, CALAP 1,3-Dichlorobenzene WADOE, DoD-ELAP, NELAP, CALAP 1,4-Dichlorobenzene WADOE, DoD-ELAP, NELAP, CALAP WADOE, DoD-ELAP, NELAP, CALAP n-Butylbenzene WADOE, DoD-ELAP, NELAP, CALAP 1,2-Dichlorobenzene 1,2-Dibromo-3-chloropropane WADOE, DoD-ELAP, NELAP, CALAP, ADEC 1,2,4-Trichlorobenzene WADOE, DoD-ELAP, NELAP, CALAP, ADEC Hexachloro-1.3-Butadiene WADOE.DoD-ELAP.NELAP.CALAP.ADEC Naphthalene WADOE, DoD-ELAP, NELAP, CALAP 1,2,3-Trichlorobenzene WADOE, DoD-ELAP, NELAP, CALAP, ADEC WADOE, DoD-ELAP, NELAP, CALAP, ADEC Dichlorodifluoromethane Methyl tert-butyl Ether WADOE, DoD-ELAP, NELAP, CALAP **WADOE** n-Hexane

Analytical Resources, Inc.

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston08-Jul-2019 13:16

2-PentanoneWADOEDibromofluoromethaneWADOE4-BromofluorobenzeneWADOE

Chloromethane WADOE,DoD-ELAP,NELAP,CALAP,ADEC
Vinyl Chloride WADOE,DoD-ELAP,NELAP,CALAP,ADEC
Bromomethane WADOE,DoD-ELAP,NELAP,CALAP,ADEC
Chloroethane WADOE,DoD-ELAP,NELAP,CALAP,ADEC
Trichlorofluoromethane WADOE,DoD-ELAP,NELAP,CALAP,ADEC
Acrolein WADOE,DoD-ELAP,NELAP,CALAP

1,1,2-Trichloro-1,2,2-Trifluoroethane WADOE,DoD-ELAP,NELAP,CALAP,ADEC Acetone WADOE,DoD-ELAP,NELAP,CALAP

1,1-DichloroetheneWADOE,DoD-ELAP,NELAP,CALAP,ADECBromoethaneWADOE,DoD-ELAP,NELAP,CALAP,ADECIodomethaneWADOE,DoD-ELAP,NELAP,CALAP,ADECMethylene ChlorideWADOE,DoD-ELAP,NELAP,CALAP,ADEC

Acrylonitrile WADOE,DoD-ELAP,NELAP,CALAP

Carbon Disulfide WADOE,DoD-ELAP,NELAP,CALAP,ADEC trans-1,2-Dichloroethene WADOE,DoD-ELAP,NELAP,CALAP,ADEC

Vinyl Acetate WADOE, DoD-ELAP, NELAP, CALAP

1,1-DichloroethaneWADOE,DoD-ELAP,NELAP,CALAP,ADEC2-ButanoneWADOE,DoD-ELAP,NELAP,CALAP2,2-DichloropropaneWADOE,DoD-ELAP,NELAP,CALAP

cis-1,2-Dichloroethene WADOE, DoD-ELAP, NELAP, CALAP, ADEC Chloroform WADOE, DoD-ELAP, NELAP, CALAP, ADEC Bromochloromethane WADOE, DoD-ELAP, NELAP, CALAP, ADEC 1,1,1-Trichloroethane WADOE, DoD-ELAP, NELAP, CALAP, ADEC WADOE, DoD-ELAP, NELAP, CALAP, ADEC 1,1-Dichloropropene WADOE, DoD-ELAP, NELAP, CALAP, ADEC Carbon tetrachloride 1,2-Dichloroethane WADOE, DoD-ELAP, NELAP, CALAP, ADEC Benzene WADOE, DoD-ELAP, NELAP, CALAP, ADEC WADOE, DoD-ELAP, NELAP, CALAP, ADEC Trichloroethene

1,2-DichloropropaneWADOE,DoD-ELAP,NELAP,CALAP,ADECBromodichloromethaneWADOE,DoD-ELAP,NELAP,CALAP,ADECDibromomethaneWADOE,DoD-ELAP,NELAP,CALAP,ADEC

2-Chloroethyl vinyl ether DoD-ELAP

4-Methyl-2-Pentanone WADOE,DoD-ELAP,NELAP,CALAP

cis-1,3-Dichloropropene WADOE,DoD-ELAP,NELAP,CALAP,ADEC
Toluene WADOE,DoD-ELAP,NELAP,CALAP,ADEC
trans-1,3-Dichloropropene WADOE,DoD-ELAP,NELAP,CALAP,ADEC
2-Hexanone WADOE,DoD-ELAP,NELAP,CALAP

Analytical Resources, Inc.

	Farallon Consulting, LLC	Project: Emerald Gateway Site 1071-026	
ı	1809 7th Ave, Suite 1111	Project Number: 1071-026	Reported:
١	Seattle WA, 98101	Project Manager: Pete Kingston	08-Jul-2019 13:16

1,1,2-Trichloroethane	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
1,3-Dichloropropane	WADOE, DoD-ELAP, NELAP, CALAP, ADEC
Tetrachloroethene	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
Dibromochloromethane	WADOE, DoD-ELAP, NELAP, CALAP, ADEC
1,2-Dibromoethane	WADOE, DoD-ELAP, NELAP, CALAP, ADEC
Chlorobenzene	WADOE, DoD-ELAP, NELAP, CALAP, ADEC
Ethylbenzene	WADOE, DoD-ELAP, NELAP, CALAP, ADEC
1,1,1,2-Tetrachloroethane	WADOE, DoD-ELAP, NELAP, CALAP, ADEC
m,p-Xylene	WADOE, DoD-ELAP, NELAP, CALAP, ADEC
o-Xylene	WADOE, DoD-ELAP, NELAP, CALAP, ADEC
Styrene	WADOE, DoD-ELAP, NELAP, CALAP, ADEC
Bromoform	WADOE, DoD-ELAP, NELAP, CALAP, ADEC
1,1,2,2-Tetrachloroethane	WADOE, DoD-ELAP, NELAP, CALAP, ADEC
1,2,3-Trichloropropane	WADOE, DoD-ELAP, NELAP, CALAP, ADEC
trans-1,4-Dichloro 2-Butene	WADOE,DoD-ELAP
n-Propylbenzene	WADOE, DoD-ELAP, NELAP, CALAP
Bromobenzene	WADOE, DoD-ELAP, NELAP, CALAP, ADEC
Isopropyl Benzene	WADOE, DoD-ELAP, NELAP, CALAP, ADEC
2-Chlorotoluene	WADOE, DoD-ELAP, NELAP, CALAP
4-Chlorotoluene	WADOE, DoD-ELAP, NELAP, CALAP
t-Butylbenzene	WADOE, DoD-ELAP, NELAP, CALAP
1,3,5-Trimethylbenzene	WADOE, DoD-ELAP, NELAP, CALAP
1,2,4-Trimethylbenzene	WADOE, DoD-ELAP, NELAP, CALAP
s-Butylbenzene	WADOE, DoD-ELAP, NELAP, CALAP
4-Isopropyl Toluene	WADOE,DoD-ELAP,NELAP,CALAP
1,3-Dichlorobenzene	WADOE,DoD-ELAP,NELAP,CALAP
1,4-Dichlorobenzene	WADOE,DoD-ELAP,NELAP,CALAP
n-Butylbenzene	WADOE,DoD-ELAP,NELAP,CALAP
1,2-Dichlorobenzene	WADOE,DoD-ELAP,NELAP,CALAP
1,2-Dibromo-3-Chloropropane	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
1,2,4-Trichlorobenzene	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
Hexachloro-1,3-Butadiene	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
Naphthalene	WADOE, DoD-ELAP, NELAP, CALAP
1,2,3-Trichlorobenzene	WADOE, DoD-ELAP, NELAP, CALAP, ADEC
Dichlorodifluoromethane	WADOE, DoD-ELAP, NELAP, CALAP, ADEC
Methyl tert-butyl Ether	WADOE, DoD-ELAP, NELAP, CALAP

NWTPH-Dx in Solid

n-Hexane

Diesel Range Organics (C12-C24) DoD-ELAP, NELAP, WADOE

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

WADOE

l	Farallon Consulting, LLC	Project: Emerald Gateway Site 1071-026	
l	1809 7th Ave, Suite 1111	Project Number: 1071-026	Reported:
L	Seattle WA, 98101	Project Manager: Pete Kingston	08-Jul-2019 13:16

Diesel Range Organics (C10-C25)	DoD-ELAP,NELAP,WADOE
Diesel Range Organics (Tol-C18)	DoD-ELAP,NELAP,WADOE
Diesel Range Organics (C10-C24)	DoD-ELAP,NELAP,WADOE
Diesel Range Organics (C10-C28)	DoD-ELAP,NELAP,WADOE
Diesel Range Organics (C12-C22)	DoD-ELAP
Motor Oil Range Organics (C24-C38)	DoD-ELAP,NELAP,WADOE
Motor Oil Range Organics (C25-C36)	DoD-ELAP,NELAP,WADOE
Motor Oil Range Organics (C24-C40)	DoD-ELAP,NELAP,WADOE
Residual Range Organics (C23-C32)	DoD-ELAP
Mineral Oil Range Organics (C16-C28)	DoD-ELAP,NELAP,WADOE
Mineral Spirits Range Organics (Tol-C12)	DoD-ELAP,NELAP,WADOE
JP8 Range Organics (C8-C18)	DoD-ELAP,NELAP,WADOE
JP5 Range Organics (C10-C16)	DoD-ELAP,NELAP,WADOE
JP4 Range Organics (Tol-C14)	DoD-ELAP,NELAP,WADOE
Jet-A Range Organics (C10-C18)	DoD-ELAP,NELAP,WADOE
Kerosene Range Organics (Tol-C18)	DoD-ELAP,NELAP,WADOE
Stoddard Range Organics (C8-C12)	DoD-ELAP,NELAP,WADOE
Creosote Range Organics (C12-C22)	DoD-ELAP,NELAP,WADOE
Bunker C Range Organics (C10-C38)	DoD-ELAP,NELAP,WADOE
Transformer Oil Range Organics (C12-C28)	DoD-ELAP,NELAP,WADOE
NWTPHg in Solid	

Gasoline Range Organics (Tol-Nap)	DoD-ELAP
Gasoline Range Organics (2MP-TMB)	DoD-ELAP
Gasoline Range Organics (Tol-C12)	DoD-ELAP
Gasoline Range Organics (C6-C10)	DoD-ELAP
Gasoline Range Organics (C5-C12)	DoD-ELAP
4-Bromofluorobenzene (field spiked)	DoD-ELAP

Code	Description	Number	Expires
ADEC	Alaska Dept of Environmental Conservation	17-015	01/31/2021
CALAP	California Department of Public Health CAELAP	2748	06/30/2019
DoD-ELAP	DoD-Environmental Laboratory Accreditation Program	66169	01/01/2021
NELAP	ORELAP - Oregon Laboratory Accreditation Program	WA100006-012	05/12/2020
WADOE	WA Dept of Ecology	C558	06/30/2019
WA-DW	Ecology - Drinking Water	C558	06/30/2019

Analytical Resources, Inc.

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston08-Jul-2019 13:16

Notes and Definitions

*	Flagged value is not within established control limits.
D	The reported value is from a dilution
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL)
Н	Hold time violation - Hold time was exceeded.
J	Estimated concentration value detected below the reporting limit.
Q	Indicates a detected analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20% RSD, <20% drift or minimum RRF)
U	This analyte is not detected above the reporting limit (RL) or if noted, not detected above the limit of detection (LOD).
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
[2C]	Indicates this result was quantified on the second column on a dual column analysis.

17 July 2019

Pete Kingston Farallon Consulting, LLC 1809 7th Ave, Suite 1111 Seattle, WA 98101

RE: Emerald Gateway Site 1071-026

Please find enclosed sample receipt documentation and analytical results for samples from the project referenced above.

Sample analyses were performed according to ARI's Quality Assurance Plan and any provided project specific Quality Assurance Plan. Each analytical section of this report has been approved and reviewed by an analytical peer, the appropriate Laboratory Supervisor or qualified substitute, and a technical reviewer.

Should you have any questions or problems, please feel free to contact us at your convenience.

Associated Work Order(s)

19F0377

Associated SDG ID(s)
N/A

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed in the enclose Narrative. ARI, an accredited laboratory, certifies that the report results for which ARI is accredited meets all the requirements of the accrediting body. A list of certified analyses, accreditations, and expiration dates is included in this report.

Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in it entirety.

Cert# 100006

Chain of Custody Record & Laboratory Analysis Request

ARI Assigned Number:	Turn-around	Requested:	day		Page: j of 2						Analytical Resources, Incorporated Analytical Chemists and Consultants 4611 South 134th Place, Suite 100		
ARI Client Company: Farellon		Phone: 41	5-394	L4146	Date:	6/26/1	lce Prese	sent? Yes			Tukwila, WA 98168 206-695-6200 206-695-6201 (fax)		
Client Contact: Pete Kingston	`				No. of Coolers:	-	Coole Temp	er Si	8"(-6200 206-695-6201 (tax) abs.com	
Client Project Name:	rway							Analysis F	Requested	7		Notes/Comments	
Client Project #:	Samplers:	P/CB			8	#-(EX		20				7	
Sample ID	Date	Time	Matrix	No. Containers	DRD PORD NUTFH-DX	GRO MUTPH-LIX	BTEX 8260C	WC 5					
FMW-01-2.5	6/26/19	6909	5	6									
FMW-01-5.0	1	1030		6	X	X	×						
FMW-0-10.0		1035		6	X	X	X						
FMW-01-14.0		1050		6	X	×	×						
FMW-01-19.0		1100		6	X	X	X						
FMW-02-25		1045		1									
FMW-02-6.0		1250		1	X								
FMW-02-6.0 FMW-02-11-0		1255		1	X								
FMW-02-17.0		1300		j									
FMW-03-2.5		1205	V	6		1							
Comments/Special Instructions	Relinquished by (Signature) 2	he-		Received by: (Signature)	hel	1	2	Relinquished (Signature)			Received by: (Signature)		
	Printed Name:	Pehleven		Printed Name	Tacos	ne	He	Printed Name	9:		Printed Name	9:	
	Company: Famille			Company:	az			Company:			Company:		
	Date & Time:	1650		Date & Time:	36/19	16:	50	Date & Time:			Date & Time:		

Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or cosigned agreement between ARI and the Client.

Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract.

Chain of Custody Record & Laboratory Analysis Request

ARI Assigned Number:	Turn-around		5 do		Page:	Page: Z of						Analytical Resources, Incorporated Analytical Chemists and Consultants		
ARI Client Company:		Phone: 42	5-394-	4146	Date	0//		sent? Les			4611 South 134th Place, Suite 100 Tukwila, WA 98168 206-695-6200 206-695-6201 (fax)			
Client Contact: Pete Kingston					No. of Coolers:	1	Coole Temp		8°C		www.aril			
Client Project Name:						×		Analysis F		1		Notes/Comments		
Client Project #: 1071-026	Samplers:	CB			3 4	H-6x	V V	20						
Sample ID	Date	Time	Matrix	No. Containers	DROPORD NW TPH-DX	GRO NWTPH-	BTEX 8260C	VOC 5 8260						
FMW-03-6.0	6/26/19	1400	5	6	X	X		X						
=MV-03-13.0		1410		6	X	X		X						
FMW-03-18.0		1415		6	×	X		X						
FATURE F- 25-2.5	V	1450	V	6										
F-26-2.5	V	1623	5	1										
Comments/Special Instructions	Relinquished by:	2		Received by:	1	/		Relinquished	by:		Received by:			
	(Signature)			(Signature)	while	1	>	(Signature)			(Signature)			
	Printed Name?	Pehlive	M	Printed Name:	Jacob	sina	He	Printed Name	d.		Printed Name:			
	Company:			Company:	72			Company:			Company:			
	Date & Time:	/19 16	50	Date & Time: /	96/19	16:	50	Date & Time:			Date & Time:			

Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or cosigned agreement between ARI and the Client.

Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract.

RE: 19F0377 Emerald Gateway Report and EDD

Yusuf Pehlivan <ypehlivan@farallonconsulting.com>

Tue 7/16/2019 8:36 AM

To:Amanda Volgardsen <amanda.volgardsen@arilabs.com>;

Cc:Peter Kingston <pkingston@farallonconsulting.com>;

Hi Amanda,

Can you please analyze sample FMW-01-10.0, collected on 6/26 for VOCs by 8260C? We would like to run the analysis even though it is outside of the hold time.

Thanks

Yusuf Pehlivan, L.G., Project Geologist

D: 425-394-4415 | C: 425-606-7051 | Bio | LinkedIn

From: Amanda Volgardsen <amanda.volgardsen@arilabs.com>

Sent: Monday, July 8, 2019 1:26 PM

To: Peter Kingston < pkingston@farallonconsulting.com>; Yusuf Pehlivan < ypehlivan@farallonconsulting.com>

Subject: 19F0377 Emerald Gateway Report and EDD

Hello,

Attached is the final data for 19F0377. Please let me know if you have any questions.

Regards, Amanda Volgardsen Analytical Resources, Inc. Project Manager

206-695-6220

https://www.arilabs.com

Version changes coming this summer to SW-846 8260 and 8270 organic and 6010 and 6020 metals analysis methods.

"Humor is the universal solvent against the abrasive elements of life." - Alan Simpson

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston17-Jul-2019 12:04

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
FMW-01-10.0	19F0377-03	Solid	26-Jun-2019 10:35	26-Jun-2019 16:50

Analytical Resources, Inc.

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston17-Jul-2019 12:04

Work Order Case Narrative

Sample receipt

Samples as listed on the preceding page were received June 26, 2019 under ARI work order 19F0377. For details regarding sample receipt, please refer to the Cooler Receipt Form.

Gasoline by NWTPH-g (GC/MS)

The samples were analyzed within the recommended holding times.

Samples FMW-01-10.0 and FMW-01-14.0 were reanalyzed at dilutions due to the gas concentration exceeding the upper calibration range. The initial analyses have been flagged with "E" qualifiers. No further corrective action was taken.

Initial and continuing calibrations were within method requirements.

Internal standard areas were within limits.

The surrogate percent recoveries were within control limits with the exception of surrgates associated with sample FMW-01-14.0

which are outside of the control limits for the original analysis. The sample was re-analyzed at a dilution with surrogate recoveries in control.

The method blanks were clean at the reporting limits.

The LCS/LCSD percent recoveries and RPD were within control limits.

Volatiles - EPA Method SW8260C

The samples were analyzed within the recommended holding times.

Initial and continuing calibrations were within method requirements, with the exception the ICV for NT5 on 6/28/19 which is outside of control limits high for Trichlorofluoromethane. The samples are non-detect for this compound. Associated QC has been flagged with "Q" qualifiers. No further corrective action was taken.

Internal standard areas were within limits.

The surrogate percent recoveries were within control limits.

The method blanks were clean at the reporting limits.

The LCSD has high RPD for Chloroethane. All other LCS/LCSD percent recoveries and RPD were within control limits. No corrective action was taken.

Diesel/Heavy Oil Range Organics - WA-Ecology Method NW-TPHDx

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston17-Jul-2019 12:04

The samples were extracted and analyzed within the recommended holding times.

Initial and continuing calibrations were within method requirements.

The surrogate percent recoveries were within control limits.

The method blank was clean at the reporting limits.

The LCS percent recoveries were within control limits.

Analytical Resources, Inc.

WORK ORDER

19F0377

	lon Consulting, LLC ald Gateway Site 1071-026	Project Manage Project Number	r: Amanda Volgardsen : Emerald Gateway Site 1071-026	
Report To:		Invoice To:		
Farallon Consu	lting, LLC	Farallon Consulti	ing, LLC	
Yusuf Pehlivan		Yusuf Pehlivan		
975 5th Avenue	Northwest	975 5th Avenue N	Northwest	
Issaquah, WA 9	8027	Issaquah, WA 980		
Phone: (425) 39		Phone :(425) 394		
Fax: -		Fax: -	-	
Date Due:	05-Jul-2019 18:00 (5 day TAT)			
Received By:	Jacob Walter	Date Received:	26-Jun-2019 16:50	
Logged In By:	Erin I. Salle	Date Logged In:	27-Jun-2019 08:01	
Samples Received at	:5.8°C		The second secon	
	signed and dated custody seals attached to outside of cooler(s)		apers included with the cooler	
Custody papers	properly filled out (in, signed, analyses requested, etc)	Yes Was a temp	perature blank included in the cooler	No
All hottles arrive	te used (if appropriate)d in good condition (unbroken)	Vec All bottles	sealed in individual plastic bags	No Voc
Number of conta	niners listed on COC match number received.	Yes Bottle labe	abels complete and legiblels and tags agree with COC	Yes
	sed for the requested analyses	Yes All VOC v	ials free of air bubbles	No
Analyses/bottles	require preservation (attach preservation sheet excluding VOC).No Sufficient a	amount of sample sent in each bottle	

Freeze and Hold Extractions Container 05-Jul-2019 15:00

WORK ORDER

19F0377

Client: Farallon Consulting, LLC Project Manager: Amanda Volgardsen

Project: Emerald Gateway Site 1071-026 Project Number: Emerald Gateway Site 1071-026

Analysis	Due	TAT	Expires	Comments
19F0377-01 FMW-01-2.5 Sol	id Sampled 26-Jun-2	2019 09:09	(GMT-08:00)	
Pacific Time (US & Canada)		***************************************		
			VOA Vial, Clear, 40 m	L, NaHSO4D = VOA Vial, Clear, 40 mL, MeOH
E = VOA Vial, Clear, 40 mL, MeOH F	= VOA Vial, Clear, 40 ml., 1	МеОН		
Freeze and Hold - VOC	05-Jul-2019 15:00	5	25-Jun-2020 09:0	9
Freeze and Hold Extractions Contain	ner 05-Jul-2019 15:00	.5	25-Jun-2020 09:0	9
19F0377-02 FMW-01-5.0 [Sol Pacific Time (US & Canada)	id Sampled 26-Jun-2	2019 10:30	(GMT-08:00)	
A = Glass WM. Clear, 8 oz B	= VOA Vial, Clear, 40 mL, 1	NaHSO4C =	VOA Vial, Clear, 40 m	L, NaHSO4D = VOA Vial, Clear, 40 mL, MeOH
E = VOA Vial, Clear, 40 mL, MeOH F				
8260C VOA Solid (MeOH)	05-Jul-2019 15:00	5	10-Jul-2019 10:3	0
TPH NW (Extractables) low level	05-Jul-2019 15:00	5	10-Jul-2019 10:3	
Freeze and Hold Extractions Contain	ner 05-Jul-2019 15:00	5	25-Jun-2020 10:3	0
Freeze and Hold - VOC	05-Jul-2019 15:00	5	25-Jun-2020 10:3	0
Solids, Total, Dried at 103 -105 °C,	Soli 05-Jul-2019 15:00	5	24-Jul-2019 10:3	0
8260C VOA	05-Jul-2019 15:00	5	10-Jul-2019 10:3	0
8260C Gas (NWTPH)	05-Jul-2019 15:00	5	10-Jul-2019 10:3	0
$A = Glass \ WM, \ Clear, \ 8 \ oz $ B $E = VOA \ Vial, \ Clear, \ 40 \ mL, \ MeOH $ F			VOA Vial, Clear, 40 m.	L, NaHSO4D = VOA Vial, Clear, 40 mL, MeOH
TPH NW (Extractables) low level	05-Jul-2019 15:00	5	10-Jul-2019 10:3.	5
Solids, Total, Dried at 103 -105 °C,	Soli 05-Jul-2019 15:00	5	24-Jul-2019 10:3	5
8260C VOA	05-Jul-2019 15:00	5	10-Jul-2019 10:3:	5
8260C VOA Solid (MeOH)	05-Jul-2019 15:00	5	10-Jul-2019 10:3:	5
Freeze and Hold Extractions Contain	ier 05-Jul-2019 15:00	5	25-Jun-2020 10:3	5
Freeze and Hold - VOC	05-Jul-2019 15:00	5	25-Jun-2020 10:3	5
8260C Gas (NWTPH)	05-Jul-2019 15:00	5	10-Jul-2019 10:3:	5
19F0377-04 FMW-01-14.0 [Sc	lid1 Sampled 26-Jun-	2019 10:50	0 (GMT-08:00)	
Pacific Time (US & Canada)	AC 31 CON 21 CON CONT. CONT.		(
A = Glass WM, Clear, 8 oz B	= VOA Vial, Clear, 40 mL, N	VaHSO4C =	VOA Vial, Clear, 40 m	L, NaHSO4D = VOA Vial, Clear, 40 mL, MeOH
E = VOA Vial, Clear, 40 mL, MeOH F				A COLOR OF THE PARTY OF THE PAR
8260C VOA	05-Jul-2019 15:00	5	10-Jul-2019 10:50	0
8260C Gas (NWTPH)	05-Jul-2019 15:00	5	10-Jul-2019 10:50	
8260C VOA Solid (MeOH)	05-Jul-2019 15:00	5	10-Jul-2019 10:50	
Freeze and Hold - VOC	05-Jul-2019 15:00	5	25-Jun-2020 10:5	
TPH NW (Extractables) low level	05-Jul-2019 15:00	5	10-Jul-2019 10:50	
Solids, Total, Dried at 103 -105 °C, 5	Soli 05-Jul-2019 15:00	5	24-Jul-2019 10:50	
			20 0 0000000000	3)

25-Jun-2020 10:50

Freeze and Hold Extractions Container 05-Jul-2019 15:00

WORK ORDER

19F0377

Client: Farallon Consulting, LLC Project Manager: Amanda Volgardsen

Project: Emerald Gateway Site 1071-026 Project Number: Emerald Gateway Site 1071-026

Analysis	Due	TAT	Expires	Comments
19F0377-05 FMW-01-19.0 Pacific Time (US & Canad		-2019 11:0	0 (GMT-08:00)	
A = Glass WM, Clear, 8 oz E = VOA Vial, Clear, 40 mL, MeO			VOA Vial, Clear, 40 mL,	NaHSO4D = 1'OA Vial, Clear, 40 mL, MeOH
8260C Gas (NWTPH)	05-Jul-2019 15:00	5	10-Jul-2019 11:00	
Freeze and Hold Extractions Co		5	25-Jun-2020 11:00	
Freeze and Hold - VOC	05-Jul-2019 15:00	5	25-Jun-2020 11:00	
TPH NW (Extractables) low lev		5	10-Jul-2019 11:00	
Solids, Total, Dried at 103 -105		5	24-Jul-2019 11:00	
8260C VOA	05-Jul-2019 15:00	5	10-Jul-2019 11:00	
8260C VOA Solid (MeOH)	05-Jul-2019 15:00	5	10-Jul-2019 11:00	
19F0377-06 FMW-02-2.5		019 10:45	(GMT-08:00)	
Pacific Time (US & Canada A = Glass WM, Clear, 8 oz	a)			
Freeze and Hold Extractions Co	ontainer 05-Jul-2019 15:00	5	25-Jun-2020 10:45	
Pacific Time (US & Canad: A = Glass WM, Clear, 8 oz Solids, Total, Dried at 103 -105		5	24-Jul-2019 12:50	
Freeze and Hold Extractions Co		77		
TPH NW (Extractables) low lev		5	25-Jun-2020 12:50 10-Jul-2019 12:50	
19F0377-08 FMW-02-11.0 Pacific Time (US & Canada		2019 12:5	5 (GMT-08:00)	
A = Glass WM, Clear, 8 oz		***		
TPH NW (Extractables) low lev		5	10-Jul-2019 12:55	
Freeze and Hold Extractions Co		5	25-Jun-2020 12:55	
Solids, Total, Dried at 103 -105	°C, Soli 05-Jul-2019 15:00	5	24-Jul-2019 12:55	
19F0377-09 FMW-02-17.0 Pacific Time (US & Canada A = Glass WM, Clear, 8 oz		2019 13:0	0 (GMT-08:00)	
A - Glass W.M. Clear, o oz	05 I 1 2010 15 00		0.5.1	
	mrainer 03-101-2019 15:00	5	25-Jun-2020 13:00	
	Mitamer 03-3th-2019 15:00			
Freeze and Hold Extractions Co 19F0377-10 FMW-03-2.5 Pacific Time (US & Canada	[Solid] Sampled 26-Jun-2	019 12:05	(GMT-08:00)	
Freeze and Hold Extractions Co 19F0377-10 FMW-03-2.5	[Solid] Sampled 26-Jun-26 a) B = VOA Vial, Clear, 40 mL, N	VaHSO4C =		NaHSO4D = VOA Vial, Clear, 40 mL, MeOH
Freeze and Hold Extractions Co 19F0377-10 FMW-03-2.5 Pacific Time (US & Canada 4 = Glass WM, Clear, 8 oz	[Solid] Sampled 26-Jun-26 a) $B = VOA \ Vial, \ Clear, \ 40 \ mL, \ NH F = VOA \ Vial, \ Clear, \ 40 \ mL, \ MH$	VaHSO4C =		NaHSO4D = VOA Vial, Clear, 40 mL, MeOH

25-Jun-2020 12:05

Freeze and Hold Extractions Container 05-Jul-2019 15:00

WORK ORDER

19F0377

Client: Farallon Consulting, LLC Project Manager: Amanda Volgardsen

Project: Emerald Gateway Site 1071-026 Project Number: Emerald Gateway Site 1071-026

Froject: Ellieraid Gateway Site	10/1-020		rroject Number;	Emeraid Gateway Site 10/1-026
Analysis	Due	TAT	Expires	Comments
19F0377-11 FMW-03-6.0 [Soli Pacific Time (US & Canada)	d] Sampled 26-Jun-2	019 14:0	0 (GMT-08:00)	
$A = Glass \ WM. \ Clear. \ 8 \ oz $ B $E = VOA \ Vial, \ Clear. \ 40 \ mL, \ MeOH $ F			= VOA Vial, Clear, 40 mL,	NaHSO4D = VOA Vial, Clear, 40 mL, MeOH
8260C Gas (NWTPH)	05-Jul-2019 15:00	5	10-Jul-2019 14:00	
8260C VOA Solid (MeOH)	05-Jul-2019 15:00	5	10-Jul-2019 14:00	
Solids, Total, Dried at 103 -105 °C, S	Soli 05-Jul-2019 15:00	5	24-Jul-2019 14:00	
TPH NW (Extractables) low level	05-Jul-2019 15:00	5	10-Jul-2019 14:00	
Freeze and Hold - VOC	05-Jul-2019 15:00	5	25-Jun-2020 14:00	
Freeze and Hold Extractions Contain	er 05-Jul-2019 15:00	5	25-Jun-2020 14:00	
19F0377-12 FMW-03-13.0 [So Pacific Time (US & Canada)	lid Sampled 26-Jun-	2019 14:	10 (GMT-08:00)	
			= VOA Vial, Clear, 40 mL,	NaHSO4D = VOA Vial, Clear, 40 mL, MeOH
E = VOA Vial, Clear, 40 mL, MeOH F	= VOA Vial, Clear, 40 mL, N	1eOH		
Freeze and Hold Extractions Contain	er 05-Jul-2019 15:00	5	25-Jun-2020 14:10	
8260C Gas (NWTPH)	05-Jul-2019 15:00	5	10-Jul-2019 14:10	
8260C VOA Solid (MeOH)	05-Jul-2019 15:00	5	10-Jul-2019 14:10	
Solids, Total, Dried at 103 -105 °C, S		5	24-Jul-2019 14:10	
TPH NW (Extractables) low level	05-Jul-2019 15:00	5	10-Jul-2019 14:10	
Freeze and Hold - VOC	05-Jul-2019 15:00	5	25-Jun-2020 14:10	
19F0377-13 FMW-03-18.0 [So Pacific Time (US & Canada)	lid Sampled 26-Jun-	2019 14:	15 (GMT-08:00)	
			= VOA Vial, Clear, 40 mL,	NaHSO4D = VOA Vial, Clear, 40 mL, MeOH
E = VOA Vial, Clear, 40 mL, MeOH F			25 1 2020 14 15	
Freeze and Hold - VOC Freeze and Hold Extractions Contain	05-Jul-2019 15:00	5	25-Jun-2020 14:15	
Solids, Total, Dried at 103 -105 °C, S		5	25-Jun-2020 14:15	
TPH NW (Extractables) low level		5	24-Jul-2019 14:15	
8260C Gas (NWTPH)	05-Jul-2019 15:00		10-Jul-2019 14:15	
	05-Jul-2019 15:00	5	10-Jul-2019 14:15	
8260C VOA Solid (MeOH)	05-Jul-2019 15:00	5	10-Jul-2019 14:15	
19F0377-14 F-25-2.5 Solid S Time (US & Canada)	ampled 26-Jun-2019 1	14:50 (GI	MT-08:00) Pacific	
$A = Glass \ WM. \ Clear, 8 \ oz $ $B \ E = VOA \ Vial, \ Clear, 40 \ mL, \ MeOH $ $F \ $			= VOA Vial, Clear, 40 mL,	NaHSO4D = l'OA Vial, Clear, 40 mL, MeOH
Freeze and Hold - VOC	05-Jul-2019 15:00	5	25-Jun-2020 14:50	
	The State of the Control of the State of the			

25-Jun-2020 14:50

Printed: 6/27/2019 8:25:18AM

WORK ORDER

19F0377

Client: Farallon Consulting, LLC Project Manager: Amanda Volgardsen

Project: Emerald Gateway Site 1071-026 Project Number: Emerald Gateway Site 1071-026

Analysis Due	TAT	Expires	Comments
19F0377-15 F-26-2.5 [Solid] Sampled 26-Jun-2019 Time (US & Canada)	16:23 (GN	MT-08:00) Pacific	
A = Glass WM. Clear, 8 oz	*******************************		
Freeze and Hold Extractions Container 05-Jul-2019 15:00	5	25-Jun-2020 16:23	

Reviewed By Date

Cooler Receipt Form

C 11			.1 2 1		
ARI Client:Carallo		Project Name:Cmea	1d Cate	nerf	
COC No(s):	NA	Delivered by: Fed-Ex UPS Court	ier Hand Delivered C	Other:	
Assigned ARI Job No:	0377	Tracking No:		-	NA,
Preliminary Examination Phase	:			-	
Were intact, properly signed and	d dated custody seals attached to the	ne outside of the cooler?	YES	0	NO
Were custody papers included w	vith the cooler?	**********************	YES	1	NO
Were custody papers properly fi	lled out (ink, signed, etc.)		YES		NO
	recommended 2.0-6.0 °C for chemis	stry)			
Time 1650		5,80			
If cooler temperature is out of co	mpliance fill out form 00070F		Temp Gun ID#: DO	00520	,6
Cooler Accepted by:	710	Date: 06/06/19 Time:	1650		
		d attach all shipping documents			
Log-In Phase:		= system of the property of th			
	ded in the cooler?			YES	NO
		p Wet lise Gel Packs Baggies Foam	-	-	200
	opriate)?	27. 1.6.17.1.2.1.6. 40.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	NA 	YES	NO
	stic bags?		Individually	Grouped	Not
	and logible?			VES VES	NO
	and legible?			YES)	NO
		er of containers received?	as	YES	NO
	or the requested analyses?		GRANG	VES	NO
		servation sheet, excluding VOCs)	NA	YES	NO
	ubbles?		NA	17000	NO
	le sent in each bottle?		NA (YES	NO
		***************************************	(NA)	ILO	140
Were the sample(s) split	~	Equipment:		lit by:	
by ARI?	0 14	Cquipment.		ш Бу	
Samples Logged by:	Date: 6/27/19	Time: OSO Lat	pels checked by:	2	
		of discrepancies or concerns **		-0	
Sample ID on Bottle	Sample ID on COC	Sample ID on Bottle	Sample ID	on COC	
FMW-01-	FMW-01-19.0				
Additional Notes, Discrepand	cies, & Resolutions:				
By: 6 - SPD - 1	Date: 6/27/19				

0016F 01/17/2018

Cooler Receipt Form

Revision 014A

Project Number: 1071-026 1809 7th Ave, Suite 1111 Reported: Seattle WA, 98101 Project Manager: Pete Kingston 17-Jul-2019 12:04

FMW-01-10.0 19F0377-03 (Solid)

Volatile Organic Compounds

Method: EPA 8260C Sampled: 06/26/2019 10:35 Instrument: NT5 Analyst: PB Analyzed: 06/28/2019 17:36

Sample Preparation: Preparation Method: EPA 5035 (Methanol Extraction)

Preparation Batch: BHF0743 Sample Size: 5.015 g (wet) Prepared: 28-Jun-2019 Final Volume: 5 mL

Dry Weight:3.79 g % Solids: 75.62

Extract ID: 19F0377-03 E

1 Tepated: 28-Juli-2019	Tiliai voiulile.	/ IIIL					70 Solius. 75.02
			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Chloromethane	74-87-3	1	0.42	1.64	ND	ug/kg	U
Vinyl Chloride	75-01-4	1	0.26	1.64	ND	ug/kg	U
Bromomethane	74-83-9	1	0.33	1.64	ND	ug/kg	U
Chloroethane	75-00-3	1	0.61	1.64	ND	ug/kg	U
Trichlorofluoromethane	75-69-4	1	0.39	1.64	ND	ug/kg	U
Acrolein	107-02-8	1	1.87	8.20	ND	ug/kg	U
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1	1	0.27	3.28	ND	ug/kg	U
Acetone	67-64-1	1	1.48	8.20	ND	ug/kg	U
1,1-Dichloroethene	75-35-4	1	0.26	1.64	ND	ug/kg	U
Bromoethane	74-96-4	1	0.26	3.28	ND	ug/kg	U
Iodomethane	74-88-4	1	0.95	1.64	ND	ug/kg	U
Methylene Chloride	75-09-2	1	0.31	3.28	2.04	ug/kg	J, D
Acrylonitrile	107-13-1	1	0.48	8.20	ND	ug/kg	U
Carbon Disulfide	75-15-0	1	0.51	1.64	ND	ug/kg	U
trans-1,2-Dichloroethene	156-60-5	1	0.37	1.64	ND	ug/kg	U
Vinyl Acetate	108-05-4	1	0.61	8.20	ND	ug/kg	U
1,1-Dichloroethane	75-34-3	1	0.27	1.64	ND	ug/kg	U
2-Butanone	78-93-3	1	1.35	8.20	ND	ug/kg	U
2,2-Dichloropropane	594-20-7	1	0.34	1.64	ND	ug/kg	U
cis-1,2-Dichloroethene	156-59-2	1	0.30	1.64	ND	ug/kg	U
Chloroform	67-66-3	1	0.35	1.64	ND	ug/kg	U
Bromochloromethane	74-97-5	1	0.38	1.64	ND	ug/kg	U
1,1,1-Trichloroethane	71-55-6	1	0.33	1.64	ND	ug/kg	U
1,1-Dichloropropene	563-58-6	1	0.32	1.64	ND	ug/kg	U
Carbon tetrachloride	56-23-5	1	0.43	1.64	ND	ug/kg	U
1,2-Dichloroethane	107-06-2	1	0.32	1.64	ND	ug/kg	U
Benzene	71-43-2	1000	269	1640	ND	ug/kg	U
Trichloroethene	79-01-6	1	0.30	1.64	ND	ug/kg	U
1,2-Dichloropropane	78-87-5	1	0.21	1.64	ND	ug/kg	U
Bromodichloromethane	75-27-4	1	0.22	1.64	ND	ug/kg	U
Dibromomethane	74-95-3	1	0.40	1.64	ND	ug/kg	U
2-Chloroethyl vinyl ether	110-75-8	1	0.25	8.20	ND	ug/kg	U
4-Methyl-2-Pentanone	108-10-1	1	1.25	8.20	ND	ug/kg	U
cis-1,3-Dichloropropene	10061-01-5	1	0.31	1.64	ND	ug/kg	U
Toluene	108-88-3	1000	282	1640	ND	ug/kg	U
trans-1,3-Dichloropropene	10061-02-6	1	0.32	1.64	ND	ug/kg	U

Analytical Resources, Inc.

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston17-Jul-2019 12:04

FMW-01-10.0 19F0377-03 (Solid)

Volatile Organic Compounds

 Method: EPA 8260C
 Sampled: 06/26/2019 10:35

 Instrument: NT5
 Analyst: PB

 Analyzed: 06/28/2019 17:36

			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
2-Hexanone	591-78-6	1	1.96	8.20	ND	ug/kg	U
1,1,2-Trichloroethane	79-00-5	1	0.25	1.64	ND	ug/kg	U
1,3-Dichloropropane	142-28-9	1	0.25	1.64	ND	ug/kg	U
Tetrachloroethene	127-18-4	1	0.45	1.64	ND	ug/kg	U
Dibromochloromethane	124-48-1	1	0.29	1.64	ND	ug/kg	U
1,2-Dibromoethane	106-93-4	1	0.41	1.64	ND	ug/kg	U
Chlorobenzene	108-90-7	1	0.46	1.64	ND	ug/kg	U
Ethylbenzene	100-41-4	1000	446	1640	3500	ug/kg	D
1,1,1,2-Tetrachloroethane	630-20-6	1	0.17	1.64	ND	ug/kg	U
m,p-Xylene	179601-23-1	1000	916	3280	13400	ug/kg	D
o-Xylene	95-47-6	1000	374	1640	ND	ug/kg	U
Xylenes, total	1330-20-7	1	1.27	3.28	13.4	ug/kg	D
Styrene	100-42-5	1	0.45	1.64	ND	ug/kg	U
Bromoform	75-25-2	1	0.43	1.64	ND	ug/kg	U
1,1,2,2-Tetrachloroethane	79-34-5	1	0.35	1.64	ND	ug/kg	U
1,2,3-Trichloropropane	96-18-4	1	0.46	3.28	ND	ug/kg	U
trans-1,4-Dichloro 2-Butene	110-57-6	1	0.84	8.20	ND	ug/kg	U
n-Propylbenzene	103-65-1	1	0.63	1.64	4.22	ug/kg	D
Bromobenzene	108-86-1	1	0.74	1.64	ND	ug/kg	U
Isopropyl Benzene	98-82-8	1	0.55	1.64	2.17	ug/kg	D
2-Chlorotoluene	95-49-8	1	0.65	1.64	ND	ug/kg	U
4-Chlorotoluene	106-43-4	1	0.74	1.64	ND	ug/kg	U
t-Butylbenzene	98-06-6	1	0.63	1.64	ND	ug/kg	U
1,3,5-Trimethylbenzene	108-67-8	1	0.62	1.64	11.9	ug/kg	D
1,2,4-Trimethylbenzene	95-63-6	1	0.74	1.64	34.2	ug/kg	D
s-Butylbenzene	135-98-8	1	0.70	1.64	2.14	ug/kg	D
4-Isopropyl Toluene	99-87-6	1	0.76	1.64	3.95	ug/kg	D
1,3-Dichlorobenzene	541-73-1	1	0.76	1.64	ND	ug/kg	U
1,4-Dichlorobenzene	106-46-7	1	0.83	1.64	ND	ug/kg	U
n-Butylbenzene	104-51-8	1	0.94	1.64	3.75	ug/kg	D
1,2-Dichlorobenzene	95-50-1	1	0.80	1.64	ND	ug/kg	U
1,2-Dibromo-3-Chloropropane	96-12-8	1	0.80	8.20	ND	ug/kg	U
1,2,4-Trichlorobenzene	120-82-1	1	1.69	8.20	ND	ug/kg	U
Hexachloro-1,3-Butadiene	87-68-3	1	1.36	8.20	ND	ug/kg	U
Naphthalene	91-20-3	1	2.52	8.20	5.95	ug/kg	J, D
1,2,3-Trichlorobenzene	87-61-6	1	1.96	8.20	ND	ug/kg	U
Methyl tert-butyl Ether	1634-04-4	1	0.38	1.64	ND	ug/kg	U
2-Pentanone	107-87-9	1	8.20	8.20	ND	ug/kg	U

 Surrogate: 1,2-Dichloroethane-d4
 80-124 %
 120
 %

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston17-Jul-2019 12:04

FMW-01-10.0 19F0377-03 (Solid)

Volatile Organic Compounds

 Method: EPA 8260C
 Sampled: 06/26/2019 10:35

 Instrument: NT5
 Analyst: PB

 Analyzed: 06/28/2019 17:36

		Recovery		•	
Analyte	CAS Number	Limits	Recovery	Units	Notes
Surrogate: Toluene-d8		80-120 %	103	%	
Surrogate: 4-Bromofluorobenzene		80-120 %	99.5	%	
Surrogate: 1,2-Dichlorobenzene-d4		80-120 %	101	%	

Analytical Resources, Inc.

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston17-Jul-2019 12:04

Volatile Organic Compounds - Quality Control

Batch BHF0743 - EPA 5035 (Methanol Extraction)

Instrument: NT5 Analyst: PB

QC Sample/Analyte	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
	_100011		2311111								
Blank (BHF0743-BLK1)	ND	12.7	50.0		red: 28-Jun	1-2019 Ana	ıyzed: 28-Jı	un-2019 11	:19		U
Chloromethane Vinyl Chloride	ND ND	12.7 7.80	50.0 50.0	ug/kg ug/kg							U
Bromomethane	ND ND	10.2	50.0	ug/kg ug/kg							U
Chloroethane	ND ND	18.6	50.0	ug/kg ug/kg							U
Trichlorofluoromethane	ND	12.0	50.0	ug/kg ug/kg							U
Acrolein	ND	57.0	250	ug/kg ug/kg							U
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	8.10	100	ug/kg							U
Acetone	ND	45.2	250	ug/kg							U
1,1-Dichloroethene	ND	7.90	50.0	ug/kg							U
Bromoethane	ND	8.00	100	ug/kg							U
Iodomethane	ND	28.8	50.0	ug/kg							U
Methylene Chloride	53.6	9.50	100	ug/kg							J
Acrylonitrile	ND	14.7	250	ug/kg							U
Carbon Disulfide	ND	15.4	50.0	ug/kg							U
trans-1,2-Dichloroethene	ND	11.2	50.0	ug/kg							U
Vinyl Acetate	ND	18.6	250	ug/kg							U
1,1-Dichloroethane	ND	8.20	50.0	ug/kg							U
2-Butanone	ND	41.1	250	ug/kg							U
2,2-Dichloropropane	ND	10.3	50.0	ug/kg							U
cis-1,2-Dichloroethene	ND	9.00	50.0	ug/kg							U
Chloroform	ND	10.8	50.0	ug/kg							U
Bromochloromethane	ND	11.7	50.0	ug/kg							U
1,1,1-Trichloroethane	ND	10.1	50.0	ug/kg							U
1,1-Dichloropropene	ND	9.70	50.0	ug/kg							U
Carbon tetrachloride	ND	13.0	50.0	ug/kg							U
1,2-Dichloroethane	ND	9.70	50.0	ug/kg							U
Benzene	ND	8.20	50.0	ug/kg							U
Trichloroethene	ND	9.00	50.0	ug/kg							U
1,2-Dichloropropane	ND	6.40	50.0	ug/kg							U
Bromodichloromethane	ND	6.70	50.0	ug/kg							U
Dibromomethane	ND	12.1	50.0	ug/kg							U
2-Chloroethyl vinyl ether	ND	7.50	250	ug/kg							U
4-Methyl-2-Pentanone	ND	38.0	250	ug/kg							U
cis-1,3-Dichloropropene	ND	9.40	50.0	ug/kg							U
Toluene	ND	8.60	50.0	ug/kg							U

Analytical Resources, Inc.

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston17-Jul-2019 12:04

Volatile Organic Compounds - Quality Control

Batch BHF0743 - EPA 5035 (Methanol Extraction)

Instrument: NT5 Analyst: PB

QC Sample/Analyte	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Blank (BHF0743-BLK1) trans-1,3-Dichloropropene	ND	9.60	50.0	ug/kg	red: 28-Jun	1-2019 Ana	ıyzed: 28-Ji	un-2019 II	:19		U
2-Hexanone	ND ND	59.8	250	ug/kg ug/kg							U
1,1,2-Trichloroethane	ND	7.70	50.0	ug/kg ug/kg							U
1,3-Dichloropropane	ND	7.70	50.0	ug/kg ug/kg							U
Tetrachloroethene	ND	13.8	50.0	ug/kg ug/kg							U
Dibromochloromethane	ND	8.70	50.0	ug/kg							U
1,2-Dibromoethane	ND	12.5	50.0	ug/kg							U
Chlorobenzene	ND	14.1	50.0	ug/kg							U
Ethylbenzene	ND	13.6	50.0	ug/kg							U
1,1,1,2-Tetrachloroethane	ND	5.10	50.0	ug/kg							U
m,p-Xylene	ND	27.9	100	ug/kg							U
o-Xylene	ND	11.4	50.0	ug/kg							U
Xylenes, total	ND	38.7	100	ug/kg							U
Styrene	ND	13.8	50.0	ug/kg							U
Bromoform	ND	13.2	50.0	ug/kg							U
1,1,2,2-Tetrachloroethane	ND	10.7	50.0	ug/kg							U
1,2,3-Trichloropropane	ND	14.0	100	ug/kg							U
trans-1,4-Dichloro 2-Butene	ND	25.5	250	ug/kg							U
n-Propylbenzene	ND	19.3	50.0	ug/kg							U
Bromobenzene	ND	22.4	50.0	ug/kg							U
Isopropyl Benzene	ND	16.7	50.0	ug/kg							U
2-Chlorotoluene	ND	19.7	50.0	ug/kg							U
4-Chlorotoluene	ND	22.4	50.0	ug/kg							U
t-Butylbenzene	ND	19.2	50.0	ug/kg							U
1,3,5-Trimethylbenzene	ND	18.9	50.0	ug/kg							U
1,2,4-Trimethylbenzene	ND	22.7	50.0	ug/kg							U
s-Butylbenzene	ND	21.2	50.0	ug/kg							U
4-Isopropyl Toluene	ND	23.1	50.0	ug/kg							U
1,3-Dichlorobenzene	ND	23.3	50.0	ug/kg							U
1,4-Dichlorobenzene	ND	25.3	50.0	ug/kg							U
n-Butylbenzene	ND	28.6	50.0	ug/kg							U
1,2-Dichlorobenzene	ND	24.4	50.0	ug/kg							U
1,2-Dibromo-3-Chloropropane	ND	24.4	250	ug/kg							U
1,2,4-Trichlorobenzene	ND	51.5	250	ug/kg							U
Hexachloro-1,3-Butadiene	ND	41.4	250	ug/kg							U

Analytical Resources, Inc.

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston17-Jul-2019 12:04

Volatile Organic Compounds - Quality Control

Batch BHF0743 - EPA 5035 (Methanol Extraction)

Instrument: NT5 Analyst: PB

QC Sample/Analyte	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
	Trebuit	2,1111								Ziiiiiv	110100
Blank (BHF0743-BLK1)	ND	76.0	250		ared: 28-Jun	-2019 Ana	alyzed: 28-J	ın-2019 11	:19		***
Naphthalene	ND ND	76.9	250	ug/kg							U U
1,2,3-Trichlorobenzene Dichlorodifluoromethane	ND ND	59.8 10.4	250	ug/kg							U
			50.0	ug/kg							U
Methyl tert-butyl Ether 2-Pentanone	ND ND	11.6 250	50.0 250	ug/kg							U
2-rentatione	ND	230	230	ug/kg							
Surrogate: 1,2-Dichloroethane-d4	51.3			ug/kg	50.0		103	80-124			
Surrogate: Toluene-d8	50.3			ug/kg	50.0		101	80-120			
Surrogate: 4-Bromofluorobenzene	48.9			ug/kg	50.0		97.9	80-120			
Surrogate: 1,2-Dichlorobenzene-d4	51.5			ug/kg	50.0		103	80-120			
LCS (BHF0743-BS1)				Prepa	red: 28-Jun	-2019 Ana	alyzed: 28-Ji	ın-2019 10	:14		
Chloromethane	2520			ug/kg	2500		101	42-153			
Vinyl Chloride	2660			ug/kg	2500		106	74-133			
Bromomethane	2730			ug/kg	2500		109	41-147			
Chloroethane	2030			ug/kg	2500		81.2	66-133			
Trichlorofluoromethane	3020			ug/kg	2500		121	60-145			Q
Acrolein	10800			ug/kg	12500		86.4	45-149			
1,1,2-Trichloro-1,2,2-Trifluoroethane	2560			ug/kg	2500		102	70-133			
Acetone	12000			ug/kg	12500		95.7	45-147			
1,1-Dichloroethene	2530			ug/kg	2500		101	67-132			
Bromoethane	2590			ug/kg	2500		104	68-135			
Iodomethane	2440			ug/kg	2500		97.7	42-187			
Methylene Chloride	2450			ug/kg	2500		98.0	53-169			
Acrylonitrile	2450			ug/kg	2500		98.2	63-133			
Carbon Disulfide	2560			ug/kg	2500		102	62-140			
trans-1,2-Dichloroethene	2520			ug/kg	2500		101	71-136			
Vinyl Acetate	2490			ug/kg	2500		99.5	72-127			
1,1-Dichloroethane	2560			ug/kg	2500		103	76-121			
2-Butanone	12600			ug/kg	12500		101	65-136			
2,2-Dichloropropane	2560			ug/kg	2500		102	73-129			
cis-1,2-Dichloroethene	2640			ug/kg	2500		106	77-121			
Chloroform	2550			ug/kg	2500		102	76-123			
Bromochloromethane	2520			ug/kg	2500		101	78-120			
1,1,1-Trichloroethane	2550			ug/kg	2500		102	76-125			
1,1-Dichloropropene	2530			ug/kg	2500		101	78-120			

Analytical Resources, Inc.

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston17-Jul-2019 12:04

Volatile Organic Compounds - Quality Control

Batch BHF0743 - EPA 5035 (Methanol Extraction)

Instrument: NT5 Analyst: PB

		Detection	Reporting		Spike	Source		%REC		RPD	
QC Sample/Analyte	Result	Limit	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
LCS (BHF0743-BS1)				Prepa	ared: 28-Jun	-2019 Ana	lyzed: 28-Ji	un-2019 10	:14		
Carbon tetrachloride	2440			ug/kg	2500		97.8	78-120			
1,2-Dichloroethane	2300			ug/kg	2500		91.9	75-120			
Benzene	2480			ug/kg	2500		99.3	80-120			
Trichloroethene	2430			ug/kg	2500		97.1	77-120			
1,2-Dichloropropane	2430			ug/kg	2500		97.1	78-120			
Bromodichloromethane	2400			ug/kg	2500		95.8	73-128			
Dibromomethane	2420			ug/kg	2500		96.9	78-120			
2-Chloroethyl vinyl ether	2380			ug/kg	2500		95.3	66-128			
4-Methyl-2-Pentanone	12000			ug/kg	12500		96.0	80-120			
cis-1,3-Dichloropropene	2510			ug/kg	2500		101	83-120			
Toluene	2420			ug/kg	2500		96.8	77-120			
trans-1,3-Dichloropropene	2500			ug/kg	2500		99.8	82-120			
2-Hexanone	11700			ug/kg	12500		93.5	73-122			
1,1,2-Trichloroethane	2370			ug/kg	2500		95.0	79-120			
1,3-Dichloropropane	2370			ug/kg	2500		94.6	80-120			
Tetrachloroethene	2300			ug/kg	2500		92.0	76-120			
Dibromochloromethane	2410			ug/kg	2500		96.3	79-120			
1,2-Dibromoethane	2420			ug/kg	2500		96.7	79-120			
Chlorobenzene	2360			ug/kg	2500		94.3	77-120			
Ethylbenzene	2360			ug/kg	2500		94.2	79-122			
1,1,1,2-Tetrachloroethane	2420			ug/kg	2500		96.6	78-120			
m,p-Xylene	4730			ug/kg	5000		94.7	81-122			
o-Xylene	2410			ug/kg	2500		96.3	79-120			
Xylenes, total	7140			ug/kg	7500		95.2	80-120			
Styrene	2450			ug/kg	2500		97.8	77-124			
Bromoform	2390			ug/kg	2500		95.6	80-120			
1,1,2,2-Tetrachloroethane	2390			ug/kg	2500		95.7	79-120			
1,2,3-Trichloropropane	2390			ug/kg	2500		95.5	79-120			
trans-1,4-Dichloro 2-Butene	2390			ug/kg	2500		95.5	75-123			
n-Propylbenzene	2450			ug/kg	2500		98.1	80-125			
Bromobenzene	2410			ug/kg	2500		96.6	76-120			
Isopropyl Benzene	2500			ug/kg	2500		100	74-130			
2-Chlorotoluene	2410			ug/kg	2500		96.5	77-120			
4-Chlorotoluene	2400			ug/kg	2500		96.0	77-121			
t-Butylbenzene	2440			ug/kg	2500		97.5	74-126			
-				~ ~							

Analytical Resources, Inc.

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston17-Jul-2019 12:04

Volatile Organic Compounds - Quality Control

Batch BHF0743 - EPA 5035 (Methanol Extraction)

Instrument: NT5 Analyst: PB

QC Sample/Analyte	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
	Kesult	Liiiit	Limit							LIIIII	notes
LCS (BHF0743-BS1)				Prepa	ared: 28-Jun-2	2019 An	alyzed: 28-J	Jun-2019 10	:14		
1,3,5-Trimethylbenzene	2470			ug/kg	2500		98.8	79-124			
1,2,4-Trimethylbenzene	2450			ug/kg	2500		98.1	79-125			
s-Butylbenzene	2460			ug/kg	2500		98.2	80-127			
4-Isopropyl Toluene	2490			ug/kg	2500		99.5	75-132			
1,3-Dichlorobenzene	2350			ug/kg	2500		94.2	75-120			
1,4-Dichlorobenzene	2330			ug/kg	2500		93.2	76-120			
n-Butylbenzene	2410			ug/kg	2500		96.5	79-130			
1,2-Dichlorobenzene	2320			ug/kg	2500		92.8	76-120			
1,2-Dibromo-3-Chloropropane	2350			ug/kg	2500		94.0	75-120			
1,2,4-Trichlorobenzene	2390			ug/kg	2500		95.7	74-121			
Hexachloro-1,3-Butadiene	2380			ug/kg	2500		95.2	74-120			
Naphthalene	2460			ug/kg	2500		98.4	75-120			
1,2,3-Trichlorobenzene	2380			ug/kg	2500		95.0	75-120			
Dichlorodifluoromethane	2720			ug/kg	2500		109	62-143			
Methyl tert-butyl Ether	2500			ug/kg	2500		100	68-132			
2-Pentanone	12100			ug/kg	12500		96.9	77-120			
Surrogate: Dibromofluoromethane	52.7			ug/kg	50.0		105	30-160			
Surrogate: 1,2-Dichloroethane-d4	52.0			ug/kg	50.0		104	80-124			
Surrogate: Toluene-d8	51.2			ug/kg	50.0		102	80-120			
Surrogate: 4-Bromofluorobenzene	49.5			ug/kg	50.0		99.1	80-120			
Surrogate: 1,2-Dichlorobenzene-d4	50.5			ug/kg	50.0		101	80-120			
LCS Dup (BHF0743-BSD1)				Drene	ared: 28-Jun-2	2019 An	alvzed: 28-1	Jun-2019 10	.56		
Chloromethane	2800			ug/kg	2500	2017 AII	112	42-153	10.50	30	
Vinyl Chloride	2880			ug/kg	2500		115	74-133	7.87	30	
Bromomethane	2900			ug/kg	2500		116	41-147	6.05	30	
Chloroethane	2850			ug/kg	2500		114	66-133	33.70	30	*
Trichlorofluoromethane	2750			ug/kg	2500		110	60-145	9.28	30	Q
Acrolein	12200			ug/kg	12500		97.6	45-149	12.20	30	•
1,1,2-Trichloro-1,2,2-Trifluoroethane	2800			ug/kg	2500		112	70-133	9.09	30	
Acetone	12700			ug/kg	12500		102	45-147	6.02	30	
1,1-Dichloroethene	2720			ug/kg	2500		109	67-132	6.90	30	
Bromoethane	2640			ug/kg	2500		106	68-135	1.92	30	
Iodomethane	2630			ug/kg	2500		105	42-187	7.29	30	
Methylene Chloride	2550			ug/kg	2500		102	53-169	4.03	30	

Analytical Resources, Inc.

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston17-Jul-2019 12:04

Volatile Organic Compounds - Quality Control

Batch BHF0743 - EPA 5035 (Methanol Extraction)

Instrument: NT5 Analyst: PB

		Detection	Reporting		Spike	Source		%REC		RPD	
QC Sample/Analyte	Result	Limit	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
LCS Dup (BHF0743-BSD1)				Prepa	ared: 28-Jun	-2019 Ana	lyzed: 28-Jı	ın-2019 10	:56		
Acrylonitrile	2530			ug/kg	2500		101	63-133	3.05	30	
Carbon Disulfide	2820			ug/kg	2500		113	62-140	9.48	30	
trans-1,2-Dichloroethene	2700			ug/kg	2500		108	71-136	6.88	30	
Vinyl Acetate	2600			ug/kg	2500		104	72-127	4.62	30	
1,1-Dichloroethane	2700			ug/kg	2500		108	76-121	5.05	30	
2-Butanone	14500			ug/kg	12500		116	65-136	14.40	30	
2,2-Dichloropropane	2770			ug/kg	2500		111	73-129	7.84	30	
cis-1,2-Dichloroethene	2670			ug/kg	2500		107	77-121	1.09	30	
Chloroform	2620			ug/kg	2500		105	76-123	2.75	30	
Bromochloromethane	2520			ug/kg	2500		101	78-120	0.21	30	
1,1,1-Trichloroethane	2700			ug/kg	2500		108	76-125	5.71	30	
1,1-Dichloropropene	2770			ug/kg	2500		111	78-120	8.78	30	
Carbon tetrachloride	2580			ug/kg	2500		103	78-120	5.56	30	
1,2-Dichloroethane	2340			ug/kg	2500		93.6	75-120	1.87	30	
Benzene	2580			ug/kg	2500		103	80-120	3.93	30	
Trichloroethene	2550			ug/kg	2500		102	77-120	5.12	30	
1,2-Dichloropropane	2490			ug/kg	2500		99.6	78-120	2.52	30	
Bromodichloromethane	2480			ug/kg	2500		99.0	73-128	3.31	30	
Dibromomethane	2490			ug/kg	2500		99.6	78-120	2.74	30	
2-Chloroethyl vinyl ether	2420			ug/kg	2500		96.8	66-128	1.55	30	
4-Methyl-2-Pentanone	12800			ug/kg	12500		102	80-120	6.14	30	
cis-1,3-Dichloropropene	2580			ug/kg	2500		103	83-120	2.47	30	
Toluene	2540			ug/kg	2500		102	77-120	4.78	30	
trans-1,3-Dichloropropene	2530			ug/kg	2500		101	82-120	1.42	30	
2-Hexanone	12300			ug/kg	12500		98.7	73-122	5.39	30	
1,1,2-Trichloroethane	2360			ug/kg	2500		94.5	79-120	0.53	30	
1,3-Dichloropropane	2390			ug/kg	2500		95.5	80-120	0.89	30	
Tetrachloroethene	2570			ug/kg	2500		103	76-120	11.10	30	
Dibromochloromethane	2470			ug/kg	2500		98.9	79-120	2.69	30	
1,2-Dibromoethane	2460			ug/kg	2500		98.3	79-120	1.70	30	
Chlorobenzene	2480			ug/kg	2500		99.2	77-120	5.12	30	
Ethylbenzene	2510			ug/kg	2500		100	79-122	6.43	30	
1,1,1,2-Tetrachloroethane	2470			ug/kg	2500		98.7	78-120	2.14	30	
m,p-Xylene	5060			ug/kg	5000		101	81-122	6.69	30	
o-Xylene	2490			ug/kg	2500		99.6	79-120	3.34	30	
•				~ ~							

Analytical Resources, Inc.

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston17-Jul-2019 12:04

Volatile Organic Compounds - Quality Control

Batch BHF0743 - EPA 5035 (Methanol Extraction)

Instrument: NT5 Analyst: PB

		Detection	Reporting		Spike	Source		%REC		RPD	
QC Sample/Analyte	Result	Limit	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
LCS Dup (BHF0743-BSD1)				Prepa	red: 28-Jun	-2019 Ana	alyzed: 28-J	un-2019 10	:56		
Xylenes, total	7550			ug/kg	7500		101	80-120	5.57	30	
Styrene	2520			ug/kg	2500		101	77-124	2.89	30	
Bromoform	2430			ug/kg	2500		97.1	80-120	1.57	30	
1,1,2,2-Tetrachloroethane	2460			ug/kg	2500		98.3	79-120	2.61	30	
1,2,3-Trichloropropane	2620			ug/kg	2500		105	79-120	9.12	30	
trans-1,4-Dichloro 2-Butene	2650			ug/kg	2500		106	75-123	10.30	30	
n-Propylbenzene	2650			ug/kg	2500		106	80-125	7.56	30	
Bromobenzene	2500			ug/kg	2500		100	76-120	3.50	30	
Isopropyl Benzene	2670			ug/kg	2500		107	74-130	6.43	30	
2-Chlorotoluene	2560			ug/kg	2500		102	77-120	5.75	30	
4-Chlorotoluene	2580			ug/kg	2500		103	77-121	7.30	30	
t-Butylbenzene	2580			ug/kg	2500		103	74-126	5.61	30	
1,3,5-Trimethylbenzene	2600			ug/kg	2500		104	79-124	5.08	30	
1,2,4-Trimethylbenzene	2610			ug/kg	2500		104	79-125	6.24	30	
s-Butylbenzene	2610			ug/kg	2500		104	80-127	6.05	30	
4-Isopropyl Toluene	2660			ug/kg	2500		106	75-132	6.64	30	
1,3-Dichlorobenzene	2520			ug/kg	2500		101	75-120	6.99	30	
1,4-Dichlorobenzene	2490			ug/kg	2500		99.4	76-120	6.47	30	
n-Butylbenzene	2640			ug/kg	2500		106	79-130	9.15	30	
1,2-Dichlorobenzene	2450			ug/kg	2500		98.1	76-120	5.54	30	
1,2-Dibromo-3-Chloropropane	2510			ug/kg	2500		100	75-120	6.69	30	
1,2,4-Trichlorobenzene	2540			ug/kg	2500		101	74-121	5.78	30	
Hexachloro-1,3-Butadiene	2500			ug/kg	2500		100	74-120	5.04	30	
Naphthalene	2550			ug/kg	2500		102	75-120	3.59	30	
1,2,3-Trichlorobenzene	2480			ug/kg	2500		99.0	75-120	4.12	30	
Dichlorodifluoromethane	2780			ug/kg	2500		111	62-143	2.29	30	
Methyl tert-butyl Ether	2580			ug/kg	2500		103	68-132	2.86	30	
2-Pentanone	12700			ug/kg	12500		101	77-120	4.67	30	
Surrogate: Dibromofluoromethane	53.1			ug/kg	50.0		106	30-160			
Surrogate: 1,2-Dichloroethane-d4	52.9			ug/kg	50.0		106	80-124			
Surrogate: Toluene-d8	50.5			ug/kg	50.0		101	80-120			
Surrogate: 4-Bromofluorobenzene	49.7			ug/kg	50.0		99.4	80-120			
Surrogate: 1,2-Dichlorobenzene-d4	50.2			ug/kg	50.0		100	80-120			

Analytical Resources, Inc.

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston17-Jul-2019 12:04

Certified Analyses included in this Report

Analyte	Certifications

EPA 8260C in Solid	
Chloromethane	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
Vinyl Chloride	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
Bromomethane	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
Chloroethane	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
Trichlorofluoromethane	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
Acrolein	WADOE,DoD-ELAP,NELAP,CALAP
1,1,2-Trichloro-1,2,2-Trifluoroethane	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
Acetone	WADOE,DoD-ELAP,NELAP,CALAP
1,1-Dichloroethene	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
Bromoethane	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
lodomethane	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
Methylene Chloride	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
Acrylonitrile	WADOE,DoD-ELAP,NELAP,CALAP
Carbon Disulfide	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
trans-1,2-Dichloroethene	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
Vinyl Acetate	WADOE,DoD-ELAP,NELAP,CALAP
1,1-Dichloroethane	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
2-Butanone	WADOE,DoD-ELAP,NELAP,CALAP
2,2-Dichloropropane	WADOE,DoD-ELAP,NELAP,CALAP
cis-1,2-Dichloroethene	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
Chloroform	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
Bromochloromethane	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
1,1,1-Trichloroethane	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
1,1-Dichloropropene	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
Carbon tetrachloride	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
1,2-Dichloroethane	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
Benzene	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
Trichloroethene	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
1,2-Dichloropropane	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
Bromodichloromethane	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
Dibromomethane	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
2-Chloroethyl vinyl ether	DoD-ELAP
4-Methyl-2-Pentanone	WADOE,DoD-ELAP,NELAP,CALAP
cis-1,3-Dichloropropene	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
Toluene	WADOE,DoD-ELAP,NELAP,CALAP,ADEC

Analytical Resources, Inc.

Farallon Consulting, LLC
Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111
Project Number: 1071-026

Reported:
Seattle WA, 98101
Project Manager: Pete Kingston
17-Jul-2019 12:04

trans-1,3-Dichloropropene WADOE, DoD-ELAP, NELAP, CALAP, ADEC 2-Hexanone WADOE, DoD-ELAP, NELAP, CALAP 1,1,2-Trichloroethane WADOE, DoD-ELAP, NELAP, CALAP, ADEC 1,3-Dichloropropane WADOE, DoD-ELAP, NELAP, CALAP, ADEC Tetrachloroethene WADOE, DoD-ELAP, NELAP, CALAP, ADEC Dibromochloromethane WADOE, DoD-ELAP, NELAP, CALAP, ADEC WADOE, DoD-ELAP, NELAP, CALAP, ADEC 1,2-Dibromoethane WADOE, DoD-ELAP, NELAP, CALAP, ADEC Chlorobenzene Ethylbenzene WADOE, DoD-ELAP, NELAP, CALAP, ADEC 1,1,1,2-Tetrachloroethane WADOE, DoD-ELAP, NELAP, CALAP, ADEC m,p-Xylene WADOE, DoD-ELAP, NELAP, CALAP, ADEC o-Xylene WADOE, DoD-ELAP, NELAP, CALAP, ADEC Styrene WADOE, DoD-ELAP, NELAP, CALAP, ADEC **Bromoform** WADOE, DoD-ELAP, NELAP, CALAP, ADEC 1,1,2,2-Tetrachloroethane WADOE, DoD-ELAP, NELAP, CALAP, ADEC WADOE, DoD-ELAP, NELAP, CALAP, ADEC 1,2,3-Trichloropropane trans-1,4-Dichloro 2-Butene WADOE.DoD-ELAP WADOE, DoD-ELAP, NELAP, CALAP n-Propylbenzene Bromobenzene WADOE, DoD-ELAP, NELAP, CALAP, ADEC Isopropyl Benzene WADOE, DoD-ELAP, NELAP, CALAP, ADEC 2-Chlorotoluene WADOE, DoD-ELAP, NELAP, CALAP 4-Chlorotoluene WADOE, DoD-ELAP, NELAP, CALAP t-Butylbenzene WADOE, DoD-ELAP, NELAP, CALAP 1,3,5-Trimethylbenzene WADOE, DoD-ELAP, NELAP, CALAP 1,2,4-Trimethylbenzene WADOE, DoD-ELAP, NELAP, CALAP s-Butylbenzene WADOE, DoD-ELAP, NELAP, CALAP WADOE, DoD-ELAP, NELAP, CALAP 4-Isopropyl Toluene 1,3-Dichlorobenzene WADOE, DoD-ELAP, NELAP, CALAP 1,4-Dichlorobenzene WADOE, DoD-ELAP, NELAP, CALAP n-Butylbenzene WADOE, DoD-ELAP, NELAP, CALAP WADOE, DoD-ELAP, NELAP, CALAP 1,2-Dichlorobenzene 1,2-Dibromo-3-Chloropropane WADOE, DoD-ELAP, NELAP, CALAP, ADEC 1.2.4-Trichlorobenzene WADOE, DoD-ELAP, NELAP, CALAP, ADEC Hexachloro-1,3-Butadiene WADOE, DoD-ELAP, NELAP, CALAP, ADEC Naphthalene WADOE.DoD-ELAP.NELAP.CALAP 1.2.3-Trichlorobenzene WADOE, DoD-ELAP, NELAP, CALAP, ADEC Dichlorodifluoromethane WADOE, DoD-ELAP, NELAP, CALAP, ADEC Methyl tert-butyl Ether WADOE, DoD-ELAP, NELAP, CALAP n-Hexane **WADOE**

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston17-Jul-2019 12:04

Code	Description	Number	Expires
ADEC	Alaska Dept of Environmental Conservation	17-015	01/31/2021
CALAP	California Department of Public Health CAELAP	2748	06/30/2019
DoD-ELAP	DoD-Environmental Laboratory Accreditation Program	66169	01/01/2021
NELAP	ORELAP - Oregon Laboratory Accreditation Program	WA100006-012	05/12/2020
WADOE	WA Dept of Ecology	C558	06/30/2019
WA-DW	Ecology - Drinking Water	C558	06/30/2019

Analytical Resources, Inc.

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston17-Jul-2019 12:04

Notes and Definitions

*	Flagged value is not within established control limits.
D	The reported value is from a dilution
J	Estimated concentration value detected below the reporting limit.
Q	Indicates a detected analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20% RSD, <20% drift or minimum RRF)
U	This analyte is not detected above the reporting limit (RL) or if noted, not detected above the limit of detection (LOD).
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

[2C] Indicates this result was quantified on the second column on a dual column analysis.

09 July 2019

Pete Kingston Farallon Consulting, LLC 1809 7th Ave, Suite 1111 Seattle, WA 98101

RE: Emerald Gateway Site 1071-026

Please find enclosed sample receipt documentation and analytical results for samples from the project referenced above.

Sample analyses were performed according to ARI's Quality Assurance Plan and any provided project specific Quality Assurance Plan. Each analytical section of this report has been approved and reviewed by an analytical peer, the appropriate Laboratory Supervisor or qualified substitute, and a technical reviewer.

Should you have any questions or problems, please feel free to contact us at your convenience.

Associated Work Order(s)

19F0407

Associated SDG ID(s)
N/A

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed in the enclose Narrative. ARI, an accredited laboratory, certifies that the report results for which ARI is accredited meets all the requirements of the accrediting body. A list of certified analyses, accreditations, and expiration dates is included in this report.

Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in it entirety.

Cert# 10000

Chain of Custody Record & Laboratory Analysis Request

ARI Assigned Number: 19F() 407	Turn-	-around	Requested:	5 day.	5	Page:		of	3		4	Analytic	al Chemists and Consultants
ARI Client Company: Farall 0	\cap		Phone: 42	5.295	.0800	Date:	7/19	Ice Prese	ent? Z	وع	1	Tukwila,	uth 134th Place, Suite 100 WA 98168 -6200 206-695-6201 (fax)
Client Contact: Lete Vinc	Kt	20				No. of Coolers:	2	Coole Temps	r s: 5/10	2.8.0			ilabs.com
Client Project Name: Emeral	d	Gut	enal	1		Ç×	0 ×		Analysis	Requested			Notes/Comments
Client Project #:	Sam	plers: N	bantidd	3 Y. Pe	hlivan	ьу ТРИ (DRO/ORO						
Sample ID		Date	Time	Matrix	No. Containers	GRO NW-	1900 COSTO	8260 (PCBS \$087				
F-24-9.D	6/2	7/19	0940	S	6	X	X	×					
F-24-12.5			0950	5	6	X	X	×					
F-24-19.0			1000	S	6	X	X	X					
F-25-9.0	-		1055	S	6	X	X	×					
F-25-14.0			1110	S	6	X	X	X					
F-25-19.0			1120	5	6	X	×	X					
F-31-2.5			1155	5	1								
F-31-6.0			1255	2	1								
F-31-19.0			1310	5	1								
f-30-1.0	4	1	1120	S	I	1 /	7		X				
Comments/Special Instructions	Relinq (Signa	uished by: ture)	1/12		Received by: (Signature)	all	2	3	Relinquishe (Signature)			Received by: (Signature)	
	Printed	Name:	e Pehln	ran	Printed Mame:	2006	wal-	fer	Printed Na	ne:		Printed Name	20
	Compa	Eral			Company:	1I			Company:			Company:	
+ 13	Date 8	Time:	119 16	41	Date & Time:	107/1	9 16	41	Date & Tim	e:		Date & Time:	

Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or cosigned agreement between ARI and the Client.

Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract.

Analytical Decouper Incompany

Chain of Custody Record & Laboratory Analysis Request

ARI Assigned Number:	Turn-	around	Requested:	5 da	15	Page	2	of	3		Analytica	al Resources, Incorporated al Chemists and Consultants uth 134th Place, Suite 100
ARI Client Company: Faval			Phone: 42	5-295	-0800	Date 6/2	7/19	Ice Prese	ent? Z	es	Tukwila,	WA 98168 -6200 206-695-6201 (fax)
Client Contact: Peter Cly	1000	stor	1			No. o Coolers	2	Coole Temp	s: 5,/(5,80	www.ari	
ement Project Name. Emera	12	Gu	temay	Y .		×	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	,		Requested		Notes/Comments
Client Project #:	Samo	olers:	rfield /	Y. Per	nlivan	7.4.6	JOKE CHIC	000	2 5			
Sample ID	D	ate	Time	Matrix	No. Containers	GRO NNTPH-GX	DRO/ORO	BTEX	PCB3			-
F-30-3.0	6/2	7/19	1127	S	1							
F-32-1.0	,		1245	5	1				X			
F-32-3.0			1300	2	1							
F-33-1.0			1350	S	1				X			
F-33-3.0			1355	S	ユ							
F-27-2.5		, i	0918	5	1				X			
F-27-5.0		i - A.	1500	S	1							
F-27-10.0		7	1505	S	1				X			
F-27-15.0		-	1510	5	1							
F-28-2.5		1	0953	S	7	1 0			X			
Comments/Special Instructions	Relinqu (Signat	uished by: ture)	11	_	Received by: (Signature)	11			Relinquishe (Signature)		Received by: (Signature)	
	- Contract of the Contract of	Name!	Peh liver	1	Printed Name:	aussi	alt		Printed Nar	ne:	Printed Name	
	Compa	inv:		,	Company:	07			Company:		Company:	
	Date &	Time:	1641		Date & Time:	27/19	7 16	41	Date & Tim	e:	Date & Time:	

Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or cosigned agreement between ARI and the Client.

Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract.

Chain of Custody Record & Laboratory Analysis Request

ARI Assigned Number:	Turn-around I		- Chock		Page:	3	of	3		Analytica	al Resources, Incorporated al Chemists and Consultants of 134th Place, Suite 100
ARI Client Company: Farallor		Phone: 4Z	5.295.	0800	GDate:	7/19	Ice Prese	nt? Ye	5	Tukwila,	WA 98168 -6200 206-695-6201 (fax)
	aston				No. of Coolers:	2	Coole Temps	: 51	(5.80	www.ari	
Client Project Name: Emerculo		way.			×	×		Analysis I	Requested		Notes/Comments
Client Project #:	Samplers:	field	Y. Per	Ilivan	MUTPHLX	ORO/ORO	2000	35 72. A	Source		
Sample ID	Date	Time	Matrix	No. Containers	GRO	Drologo Nutrito	BTEX	8082	Metals		
F-29-25	6/27/19	1026	S	2		X			X		
F-27-190627		1530	W	.2				X			
F-31-190627	4	1335	w	2		X					
F-31-12.5	6/27/19	1305	5	1							
								J			
											1
				1	7	/					
Comments/Special Instructions	Relinquished by: (Signature)	111		Received by: (Signature)	led			Relinquished (Signature)	d by:	Received by: (Signature)	
	Printed Name: V	Pehliva	M	Printed Name:	acob	walte		Printed Nam	ne:	Printed Name	
	Company:			Company:	27_			Company:		Company:	
1	Date & Time: 6/27/		11	Date & Time:	7/19	16	11	Date & Time	11	Date & Time:	

Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or cosigned agreement between ARI and the Client.

Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston09-Jul-2019 11:41

ANALYTICAL REPORT FOR SAMPLES

G I ID	T. 1	35.41	B (C 1 1	D (D . 1 . 1
Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
F-24-9.0	19F0407-01	Solid	27-Jun-2019 09:40	27-Jun-2019 16:41
F-24-12.5	19F0407-02	Solid	27-Jun-2019 09:50	27-Jun-2019 16:41
F-24-19.0	19F0407-03	Solid	27-Jun-2019 10:00	27-Jun-2019 16:41
F-25-9.0	19F0407-04	Solid	27-Jun-2019 10:55	27-Jun-2019 16:41
F-25-14.0	19F0407-05	Solid	27-Jun-2019 11:10	27-Jun-2019 16:41
F-25-19.0	19F0407-06	Solid	27-Jun-2019 11:20	27-Jun-2019 16:41
F-30-1.0	19F0407-10	Solid	27-Jun-2019 11:20	27-Jun-2019 16:41
F-32-1.0	19F0407-12	Solid	27-Jun-2019 12:45	27-Jun-2019 16:41
F-33-1.0	19F0407-14	Solid	27-Jun-2019 13:50	27-Jun-2019 16:41
F-27-2.5	19F0407-16	Solid	27-Jun-2019 09:18	27-Jun-2019 16:41
F-27-10.0	19F0407-18	Solid	27-Jun-2019 15:05	27-Jun-2019 16:41
F-28-2.5	19F0407-20	Solid	27-Jun-2019 09:53	27-Jun-2019 16:41
F-29-2.5	19F0407-21	Solid	27-Jun-2019 10:26	27-Jun-2019 16:41
F-27-190627	19F0407-22	Water	27-Jun-2019 15:30	27-Jun-2019 16:41
F-31-190627	19F0407-23	Water	27-Jun-2019 13:35	27-Jun-2019 16:41

Analytical Resources, Inc.

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston09-Jul-2019 11:41

Work Order Case Narrative

Sample receipt

Samples as listed on the preceding page were received June 27, 2019 under ARI work order 19F0407. For details regarding sample receipt, please refer to the Cooler Receipt Form.

Volatiles - EPA Method SW8260C

The samples were analyzed within the recommended holding times.

Initial and continuing calibrations were within method requirements.

Internal standard areas were within limits.

The surrogate percent recoveries were within control limits.

The method blank was clean at the reporting limits.

The LCS/LCSD percent recoveries and RPD were within control limits.

Gasoline by NWTPH-g (GC/MS)

The samples were analyzed within the recommended holding times.

Initial and continuing calibrations were within method requirements.

Internal standard areas were within limits.

The surrogate percent recoveries were within control limits.

The method blank was clean at the reporting limits.

The LCS/LCSD percent recoveries and RPD were within control limits.

Diesel/Heavy Oil Range Organics - WA-Ecology Method NW-TPHDx

The samples were extracted and analyzed within the recommended holding times.

Initial and continuing calibrations were within method requirements.

The surrogate percent recoveries were within control limits.

The method blanks were clean at the reporting limits.

The LCS percent recoveries were within control limits.

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston09-Jul-2019 11:41

PCB Aroclors - EPA Method SW8082A

The samples were extracted and analyzed within the recommended holding times.

Initial and continuing calibrations were within method requirements.

Internal standard areas were within limits.

The surrogate percent recoveries were within control limits.

The method blanks were clean at the reporting limits.

The LCS percent recoveries were within control limits.

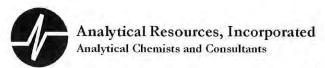
Total Metals - EPA Method 6020A

The sample was digested and analyzed within the recommended holding times.

Initial and continuing calibrations were within method requirements.

The method blank was clean at the reporting limits.

The LCS percent recoveries were within control limits.


Total Hg - EPA Method 7471B

The sample was digested and analyzed within the recommended holding times.

Initial and continuing calibrations were within method requirements.

The method blank was clean at the reporting limits.

The LCS percent recoveries were within control limits.

WORK ORDER

19F0407

Report To: Farallon Consulting, LLC Pete Kingston 1809 7th Ave, Suite 1111 1809 7th Ave, Suite 1				
Pete Kingston Yusuf Pehlivan 1809 7th Ave, Suite 1111 975 5th Avenue Northwest Seattle, WA 98101 Issaquah, WA 98027 Phone: (425) 394-4146 Phone : (425) 394-4415 Fax: - Fax: - Date Due: 08-Jul-2019 18:00 (5 day TAT) Received By: Jacob Walter Date Received: 27-Jun-2019 Logged In By: Erin I. Salle Date Logged In: 28-Jun-2019 Samples Received at: 5.8°C				
1809 7th Ave, Suite 1111 975 5th Avenue Northwest Seattle, WA 98101 Issaquah, WA 98027 Phone: (425) 394-4146 Phone :(425) 394-4415 Fax: - Fax: - Date Due: 08-Jul-2019 18:00 (5 day TAT) Received By: Jacob Walter Date Received: 27-Jun-2019 Logged In By: Erin I. Salle Date Logged In: 28-Jun-2019 Samples Received at: 5.8°C				
Seattle, WA 98101 Issaquah, WA 98027 Phone: (425) 394-4146 Phone : (425) 394-4415 Fax: - Fax: - Date Due: 08-Jul-2019 18:00 (5 day TAT) Received By: Jacob Walter Date Received: 27-Jun-2019 Logged In By: Erin I. Salle Date Logged In: 28-Jun-2019 Samples Received at: 5.8°C				
Phone: (425) 394-4146 Phone : (425) 394-4415 Fax: - Fax: - Date Due: 08-Jul-2019 18:00 (5 day TAT) Date Received: 27-Jun-2019 Received By: Jacob Walter Date Received: 27-Jun-2019 Date Logged In: 28-Jun-2019 Samples Received at: 5.8°C Date Logged In: 28-Jun-2019	975 5th Avenue Northwest			
Phone: (425) 394-4146 Phone : (425) 394-4415 Fax: - Fax: - Date Due: 08-Jul-2019 18:00 (5 day TAT) Date Received: 27-Jun-2019 Received By: Jacob Walter Date Received: 27-Jun-2019 Date Logged In: 28-Jun-2019 Samples Received at: 5.8°C Date Logged In: 28-Jun-2019				
Fax: - Date Due: 08-Jul-2019 18:00 (5 day TAT) Received By: Jacob Walter Date Received: 27-Jun-2019 Logged In By: Erin I. Salle Date Logged In: 28-Jun-2019 Samples Received at: 5.8°C				
Received By: Jacob Walter Date Received: 27-Jun-2019 Logged In By: Erin I. Salle Date Logged In: 28-Jun-2019 Samples Received at: 5.8°C				
Logged In By: Erin I. Salle Date Logged In: 28-Jun-2019 Samples Received at: 5.8°C				
Samples Received at:5.8°C	16:41			
	07:50			
Intact, properly signed and dated custody seals attached to outside of cooler(s)No Custody papers included wit				
Custody papers properly filled out (in, signed, analyses requested, etc). Yes Was a temperature blank inc Was sufficient ice used (if appropriate). Yes All bottles arrived in good condition (unbroken). Yes Number of containers listed on COC match number received. Yes Correct bottles used for the requested analyses. Yes Was a temperature blank inc All bottles sealed in individu All bottle labels complete an Bottle labels and tags agree we have to be the requested analyses. Yes All VOC vials free of air but	n the cooler			

8260C VOA

WORK ORDER

19F0407

Client: Farallon Consulting, LLC Project Manager: Amanda Volgardsen

Project: Emerald Gateway Site 1071-026 Project Number: 1071-026

08-Jul-2019 15:00

5

11-Jul-2019 10:55

Project: Emerald Gateway Sit	e 10/1-026		Project Number:	: 1071-026		
Analysis	Due	TAT	Expires	Comments		
19F0407-01 F-24-9.0 [Solid] : Time (US & Canada)	Sampled 27-Jun-2019	09:40 (GN	1T-08:00) Pacific			
A = Glass WM, Clear, 8 oz E E = VOA Vial, Clear, 40 mL, MeOH F			VOA Vial, Clear, 40 mL,	NaHSO4D = VOA Vial, Clear, 40 mL, MeOH		
8260C VOA	08-Jul-2019 15:00	5	11-Jul-2019 09:40			
8260C VOA Solid (MeOH)	08-Jul-2019 15:00	5	11-Jul-2019 09:40			
Solids, Total, Dried at 103 -105 °C,	Soli 08-Jul-2019 15:00	5	25-Jul-2019 09:40			
TPH NW (Extractables) low level	08-Jul-2019 15:00	5	11-Jul-2019 09:40			
8260C Gas (NWTPH)	08-Jul-2019 15:00	5	11-Jul-2019 09:40			
19F0407-02 F-24-12.5 [Solid] Time (US & Canada)	Sampled 27-Jun-2019	09:50 (G	MT-08:00) Pacific			
			VOA Vial, Clear, 40 mL,	NaHSO4D = VOA Vial, Clear, 40 mL, MeOH		
8260C VOA	08-Jul-2019 15:00	5	11-Jul-2019 09:50			
8260C VOA Solid (MeOH)	08-Jul-2019 15:00	5	11-Jul-2019 09:50			
TPH NW (Extractables) low level	08-Jul-2019 15:00	5	11-Jul-2019 09:50			
8260C Gas (NWTPH)	08-Jul-2019 15:00	5	11-Jul-2019 09:50			
Solids, Total, Dried at 103 -105 °C,		5	25-Jul-2019 09:50			
19F0407-03 F-24-19.0 [Solid] Time (US & Canada) A = Glass WM. Clear, 8 oz B E = VOA Vial, Clear, 40 mL, MeOH F	= VOA Vial, Clear, 40 mL, N	NaHSO4C =		NaHSO4D = VOA Vial, Clear, 40 mL, MeOH		
TPH NW (Extractables) low level	08-Jul-2019 15:00	5	11-Jul-2019 10:00			
8260C Gas (NWTPH)	08-Jul-2019 15:00	5	11-Jul-2019 10:00			
8260C VOA	08-Jul-2019 15:00	5	11-Jul-2019 10:00			
8260C VOA Solid (MeOH)	08-Jul-2019 15:00	5	11-Jul-2019 10:00			
Solids, Total, Dried at 103 -105 °C,	Soli 08-Jul-2019 15:00	.5	25-Jul-2019 10:00			
19F0407-04 F-25-9.0 [Solid] S Time (US & Canada) A = Glass WM. Clear, 8 oz B E = VOA Vial, Clear, 40 mL, MeOH F	= VOA Vial, Clear, 40 mL, N	vaHSO4C =		NaHSO4D = VOA Vial, Clear, 40 mL, MeOH		
TPH NW (Extractables) low level	······································	5	11-Jul-2019 10:55			
Solids, Total, Dried at 103 -105 °C,		5	25-Jul-2019 10:55			
8260C VOA Solid (MeOH)	08-Jul-2019 15:00	5	11-Jul-2019 10:55			
8260C Gas (NWTPH)	08-Jul-2019 15:00	5	11-Jul-2019 10:55			
00 200 110 1	20.00	-	TO SHE WOLF TO SE			

Solids, Total, Dried at 103 -105 °C, Soli 08-Jul-2019 15:00

WORK ORDER

19F0407

Client: Farallon Consulting, LLC Project Manager: Amanda Volgardsen

Project: Emerald Gateway Site 1071-026 Project Number: 1071-026

Analysis	Due	TAT	Expires	Comments
9F0407-05 F-25-14.0 [Solid] Fime (US & Canada)	Sampled 27-Jun-2019	11:10 (0		
A = Glass WM, Clear, 8 oz E = VOA Vial, Clear, 40 mL, MeOH			= VOA Vial, Clear, 40 mL,	NaHSO4D = VOA Vial, Clear, 40 mL, MeOH
8260C Gas (NWTPH)	08-Jul-2019 15:00	5	11-Jul-2019 11:10	
8260C VOA	08-Jul-2019 15:00	5	11-Jul-2019 11:10	
8260C VOA Solid (MeOH)	08-Jul-2019 15:00	5	11-Jul-2019 11:10	
Solids, Total, Dried at 103 -105 °C,	Soli 08-Jul-2019 15:00	5	25-Jul-2019 11:10	
TPH NW (Extractables) low level	08-Jul-2019 15:00	5	11-Jul-2019 11:10	
19F0407-06 F-25-19.0 [Solid] Time (US & Canada)	Sampled 27-Jun-2019	11:20 (0	GMT-08:00) Pacific	1
			= VOA Vial, Clear, 40 mL,	NaHSO4D = VOA Vial, Clear, 40 mL, MeOH
TPH NW (Extractables) low level	08-Jul-2019 15:00	5	11-Jul-2019 11:20	
8260C Gas (NWTPH)	08-Jul-2019 15:00	5	11-Jul-2019 11:20	
8260C VOA	08-Jul-2019 15:00	5	11-Jul-2019 11:20	
8260C VOA Solid (MeOH)	08-Jul-2019 15:00	5	11-Jul-2019 11:20	
Solids, Total, Dried at 103 -105 °C,	Soli 08-Jul-2019 15:00	.5	25-Jul-2019 11:20	
19F0407-07 F-31-2.5 [Solid] Time (US & Canada)	Sampled 27-Jun-2019 1	11:55 (GI	MT-08:00) Pacific	
A = Glass WM, Clear, 8 oz				
Hold Sample	08-Jul-2019 15:00	5	26-Jun-2020 11:55	
19F0407-08 F-31-6.0 [Solid] Time (US & Canada)	Sampled 27-Jun-2019 1	2:55 (G)	MT-08:00) Pacific	
A = Glass WM, Clear, 8 oz				
Hold Sample	08-Jul-2019 15:00	5	26-Jun-2020 12:55	
19F0407-09 F-31-19.0 [Solid] Time (US & Canada)	Sampled 27-Jun-2019	13:10 (0	GMT-08:00) Pacific	
A = Glass WM, Clear, 8 oz		***************************************		
Hold Sample	08-Jul-2019 15:00	5	26-Jun-2020 13:10	
19F0407-10 F-30-1.0 [Solid] Time (US & Canada)	Sampled 27-Jun-2019 1	1:20 (G	MT-08:00) Pacific	
A = Glass WM, Clear, 8 oz				
8082A PCB (20 ug/kg) or (MTCA (0.1 u 08-Jul-2019 15:00	5	11-Jul-2019 11:20	The state of the s
	Contract to the contract of the state of the			

25-Jul-2019 11:20

WORK ORDER

19F0407

Client: Farallon Consulting, LLC Project Manager: Amanda Volgardsen
Project: Emerald Gateway Site 1071-026 Project Number: 1071-026

Analysis Due		TAT	Expires	Comments
19F0407-11 F-30-3.0 [Solid] Sample Time (US & Canada)	d 27-Jun-2019 1	1:27 (GM	T-08:00) Pacific	
A = Glass WM, Clear, 8 oz				
Hold Sample 08	Jul-2019 15:00	5	26-Jun-2020 11:27	
19F0407-12 F-32-1.0 [Solid] Sample Time (US & Canada)	d 27-Jun-2019 1	12:45 (GM	IT-08:00) Pacific	
A = Glass WM, Clear, 8 oz				
8082A PCB (20 ug/kg) or (MTCA 0.1 u;08	Jul-2019 15:00	5	11-Jul-2019 12:45	
Solids, Total, Dried at 103 -105 °C, Soli 08	Jul-2019 15:00	5	25-Jul-2019 12:45	
19F0407-13 F-32-3.0 [Solid] Sample Time (US & Canada)	d 27-Jun-2019 1	3:00 (GM	IT-08:00) Pacific	
A = Glass WM, Clear, 8 oz				
Hold Sample 08	Jul-2019 15:00	5	26-Jun-2020 13:00	
19F0407-14 F-33-1.0 Solid Sample Time (US & Canada)	d 27-Jun-2019 1	3:50 (GM	T-08:00) Pacific	
A = Glass WM, Clear, 8 oz				
8082A PCB (20 ug/kg) or (MTCA 0.1 u ₂ 08-	Jul-2019 15:00	5	11-Jul-2019 13:50	
Solids, Total, Dried at 103 -105 °C, Soli 08	Jul-2019 15:00	5	25-Jul-2019 13:50	
19F0407-15 F-33-3.0 [Solid] Sample Time (US & Canada)	d 27-Jun-2019 1	3:55 (GM	T-08:00) Pacific	
A = Glass WM, Clear, 8 oz			**************************************	
Hold Sample 08	Jul-2019 15:00	5	26-Jun-2020 13:55	
19F0407-16 F-27-2.5 [Solid] Sample Time (US & Canada)	d 27-Jun-2019 (9:18 (GM	TT-08:00) Pacific	
A = Glass WM, Clear, 8 oz				
8082A PCB (20 ug/kg) or (MTCA 0.1 u; 08 -J		5	11-Jul-2019 09:18	
Solids, Total, Dried at 103 -105 °C, Soli 08-J	Jul-2019 15:00	5	25-Jul-2019 09:18	
19F0407-17 F-27-5.0 [Solid] Sample Time (US & Canada)	d 27-Jun-2019 1	5:00 (GM	T-08:00) Pacific	
A = Glass WM, Clear, 8 oz				
Hold Sample 08-J	Jul-2019 15:00	5	26-Jun-2020 15:00	
19F0407-18 F-27-10.0 [Solid] Sampl Time (US & Canada)	ed 27-Jun-2019	15:05 (GN	MT-08:00) Pacific	
A = Glass WM. Clear, 8 oz				
8082A PCB (20 ug/kg) or (MTCA 0.1 u _i 08-J	Jul-2019 15:00	5	11-Jul-2019 15:05	
Solids, Total, Dried at 103 -105 °C, Soli 08-J	Jul-2019 15:00	5	25-Jul-2019 15:05	

WORK ORDER

19F0407

Client: Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026			Project Manager: Project Number:	Amanda Volgardsen 1071-026	
Analysis	Due	TAT	Expires	Comments	
19F0407-19 F-27-15.0 Solid Time (US & Canada)	Sampled 27-Jun-2019	15:10 (C	GMT-08:00) Pacific		
A = Glass WM, Clear, 8 oz					
Hold Sample	08-Jul-2019 15:00	5	26-Jun-2020 15:10	N	
19F0407-20 F-28-2.5 Solid Time (US & Canada)	Sampled 27-Jun-2019 (09:53 (GI	MT-08:00) Pacific		
A = Glass WM, Clear, 8 oz					***************************************
8082A PCB (20 ug/kg) or (MTCA	0.1 u _. 08-Jul-2019 15:00	5	11-Jul-2019 09:53		
Solids, Total. Dried at 103 -105 °C,	Soli 08-Jul-2019 15:00	5	25-Jul-2019 09:53		
19F0407-21 F-29-2.5 [Solid] Time (US & Canada)	Sampled 27-Jun-2019	10:26 (GI	MT-08:00) Pacific		
A = Glass WM, Clear, 8 oz	B = Glass WM, Clear, 4 oz	***************************************			***************************************
Met 6020A - Cu UCT	08-Jul-2019 15:00	5	24-Dec-2019 10:26		THE STATE OF THE S
TPH NW (Extractables) low level	08-Jul-2019 15:00	5	11-Jul-2019 10:26		
Met 7471B Hg	08-Jul-2019 15:00	5	25-Jul-2019 10:26		
Met 6020A - Zn UCT	08-Jul-2019 15:00	5	24-Dec-2019 10:26		
Met 6020A - Mn	08-Jul-2019 15:00	5	24-Dec-2019 10:26		
Met 6020A - Cd UCT	08-Jul-2019 15:00	5	24-Dec-2019 10:26		
Met 6020A - As UCT	08-Jul-2019 15:00	5	24-Dec-2019 10:26		
Met 6020A - Pb	08-Jul-2019 15:00	5	24-Dec-2019 10:26		
19F0407-22 F-27-190627 [Wa Pacific Time (US & Canada)	nter Sampled 27-Jun-2	2019 15:3	0 (GMT-08:00)		
	B = Glass NM, Amber, 500 mL				***************************************
8082A PCB (20 ug/kg) or (MTCA (0.1 u;08-Jul-2019 15:00	5	04-Jul-2019 15:30		
19F0407-23 F-31-190627 Wa Pacific Time (US & Canada)	iter Sampled 27-Jun-2	2019 13:3	5 (GMT-08:00)		
A = Glass NM, Amber, 500 mL	B = Glass NM, Amber, 500 mL				
TPH NW (Extractables) low level	08-Jul-2019 15:00	5	04-Jul-2019 13:35		Marian Commission of the Commi
19F0407-24 F-31-12.5 [Solid] Time (US & Canada)	Sampled 27-Jun-2019	13:05 (G	MT-08:00) Pacific		
A = Glass WM, Clear, 8 oz					
Hold Sample	08-Jul-2019 15:00	5	26-Jun-2020 13:05		- to telephone and the

Reviewed By Date

Cooler Receipt Form

ARI Client: Faral	lon	Project Name: Eme	ald Gat	enery	
COC No(s):	(NA ₂	Delivered by: Fed-Ex UPS Cou	rier Hand Delivered	d Other:	=
Assigned ARI Job No: 19FO		Tracking No:			-NA
Preliminary Examination Phase		, asim, g , to		-	2
Were intact, properly signed and	d dated custody seals attached to the	e outside of the cooler?	YE	s c	NO
	vith the cooler?		(YE		NO
	lled out (ink, signed, etc.)recommended 2.0-6.0 °C for chemis		XE.	S	NO
Time 1641		511 C 5.8°C			
If cooler temperature is out of co	ompliance fill out form 00070F		Temp Gun ID#:	000520	6
Cooler Accepted by:	TSw 1	Date: 06/27/19 Time	1641		
	Complete custody forms and	attach all shipping documents			
Log-In Phase:					
Mas a tomporature blank inclu	ded in the cooler?			VEO	NO
What kind of packing materia		Wet Ice Gel Packs Baggles Foam	Block Paner Othe	YES	UNC.
	opriate)?		NA	(YES)	NO
	stic bags?		Individually	Grouped	Not
	ondition (unbroken)?			YES	NO
Were all bottle labels complete	and legible?	7135141111111111111111111111111111111111		YES	NO
Did the number of containers li	sted on COC match with the numbe	r of containers received?	•••	(YES)	NO
Did all bottle labels and tags ag	gree with custody papers?			YES	NO
Were all bottles used correct for	or the requested analyses?			YES	NO
Do any of the analyses (bottles	require preservation? (attach pres	ervation sheet, excluding VOCs)	. NA	YES	NO
Were all VOC vials free of air b	oubbles?	***********************	NA	YES	NO
Was sufficient amount of samp	le sent in each bottle?			YES	NO
and the second of the second s	e at ARI	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(NA)		
Were the sample(s) split by ARI?	NA YES Date/Time:	Equipment:		Split by:	
Samples Logged by:	Date: 6/25/	f discrepancies or concerns **	abels checked by: _	as	
Sample ID on Bottle	Sample ID on COC	Sample ID on Bottle	Sample	ID on COC	
Gumple is on Bottle	Cumple is on occ	Cample ID on Bottle	Sample	ID OII COC	
Additional Notes, Discrepand	cies, & Resolutions:				
Bv:	Date:				

0016F 01/17/2018

Cooler Receipt Form

Revision 014A

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston09-Jul-2019 11:41

F-24-9.0 19F0407-01 (Solid)

Volatile Organic Compounds

Method: EPA 8260CSampled: 06/27/2019 09:40Instrument: NT5Analyst: PBAnalyzed: 06/28/2019 14:59Sample Preparation:Preparation Method: EPA 5035 (Sodium Bisulfate)Extract ID: 19F0407-01 BPreparation Batch: BHF0741Sample Size: 4.65 g (wet)Dry Weight: 4.35 gPrepared: 28-Jun-2019Final Volume: 5 mL% Solids: 93.47

Analyte	CAS Number	Dilution	Detection Limit	Reporting Limit	Result	Units	Notes
Benzene	71-43-2	1	0.34	1.15	ND	ug/kg	U
Toluene	108-88-3	1	0.17	1.15	ND	ug/kg	U
Ethylbenzene	100-41-4	1	0.23	1.15	ND	ug/kg	U
m,p-Xylene	179601-23-1	1	0.45	2.30	ND	ug/kg	U
o-Xylene	95-47-6	1	0.26	1.15	ND	ug/kg	U
Surrogate: Toluene-d8				77-120 %	103	%	
Surrogate: 4-Bromofluorobenzene				80-120 %	100	%	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston09-Jul-2019 11:41

F-24-9.0 19F0407-01 (Solid)

Volatile Organic Compounds

Method: NWTPHgSampled: 06/27/2019 09:40Instrument: NT2Analyst: LHAnalyzed: 07/02/2019 15:54Sample Preparation:Preparation Method: EPA 5035 (Methanol Extraction)Extract ID: 19F0407-01 DPreparation Batch: BHG0061Sample Size: 6.561 g (wet)Dry Weight: 6.13 gPrepared: 02-Jul-2019Final Volume: 5 mL% Solids: 93.47

Analyte	CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Gasoline Range Organics (Tol-Nap)	GRO	50	4430	ND	ug/kg	U
Surrogate: Toluene-d8			80-120 %	96.1	%	
Surrogate: 4-Bromofluorobenzene			78-123 %	93.9	%	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston09-Jul-2019 11:41

F-24-9.0 19F0407-01 (Solid)

Petroleum Hydrocarbons

Method: NWTPH-Dx		Sampled: 06/27/2019 09:40	
Instrument: FID4 Analy	st: VTS	Analyzed: 07/03/2019 08:24	
Sample Preparation:	Preparation Method: EPA 3546 (Microv	vave)	Extract ID: 19F0407-01 A 01
	Preparation Batch: BHF0752	Sample Size: 10 g (wet)	Dry Weight:9.35 g
	Prepared: 01-Jul-2019	Final Volume: 1 mL	% Solids: 93.47

Analyte	CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Diesel Range Organics (C12-C24)	DRO	1	5.35	ND	mg/kg	U
Motor Oil Range Organics (C24-C38)	RRO	1	10.7	ND	mg/kg	U
Surrogate: o-Terphenyl			50-150 %	90.0	%	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston09-Jul-2019 11:41

F-24-12.5 19F0407-02 (Solid)

Volatile Organic Compounds

Method: EPA 8260CSampled: 06/27/2019 09:50Instrument: NT5Analyst: PBAnalyzed: 06/28/2019 15:21Sample Preparation:Preparation Method: EPA 5035 (Sodium Bisulfate)Extract ID: 19F0407-02 BPreparation Batch: BHF0741Sample Size: 5.12 g (wet)Dry Weight: 3.74 gPrepared: 28-Jun-2019Final Volume: 5 mL% Solids: 73.07

	a.a	5.11	Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Benzene	71-43-2	1	0.40	1.34	0.42	ug/kg	J
Toluene	108-88-3	1	0.20	1.34	0.43	ug/kg	J
Ethylbenzene	100-41-4	1	0.27	1.34	ND	ug/kg	U
m,p-Xylene	179601-23-1	1	0.52	2.67	ND	ug/kg	U
o-Xylene	95-47-6	1	0.30	1.34	ND	ug/kg	U
Surrogate: Toluene-d8				77-120 %	103	%	
Surrogate: 4-Bromofluorobenzene				80-120 %	101	%	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston09-Jul-2019 11:41

F-24-12.5 19F0407-02 (Solid)

Volatile Organic Compounds

Method: NWTPHgSampled: 06/27/2019 09:50Instrument: NT2Analyst: LHAnalyzed: 07/02/2019 16:14Sample Preparation:Preparation Method: EPA 5035 (Methanol Extraction)Extract ID: 19F0407-02 DPreparation Batch: BHG0061Sample Size: 5.497 g (wet)Dry Weight: 4.02 gPrepared: 02-Jul-2019Final Volume: 5 mL% Solids: 73.07

Analyte	CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Gasoline Range Organics (Tol-Nap)	GRO	50	8070	ND	ug/kg	U
Surrogate: Toluene-d8			80-120 %	97.0	%	
Surrogate: 4-Bromofluorobenzene			78-123 %	92.3	%	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston09-Jul-2019 11:41

F-24-12.5 19F0407-02 (Solid)

Petroleum Hydrocarbons

Method: NWTPH-Dx			Sampled: 06/27/2019 09:50
Instrument: FID4 Analy	st: VTS	Analyzed: 07/03/2019 08:44	
Sample Preparation:	Preparation Method: EPA 3546 (Microv	vave)	Extract ID: 19F0407-02 A 01
	Preparation Batch: BHF0752	Sample Size: 10.06 g (wet)	Dry Weight: 7.35 g
	Prepared: 01-Jul-2019	Final Volume: 1 mL	% Solids: 73.07

Analyte	CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Diesel Range Organics (C12-C24)	DRO	1	6.80	ND	mg/kg	U
Motor Oil Range Organics (C24-C38)	RRO	1	13.6	32.9	mg/kg	
HC ID: MOTOR OIL						
Surrogate: o-Terphenyl			50-150 %	98.0	%	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston09-Jul-2019 11:41

F-24-19.0 19F0407-03 (Solid)

Volatile Organic Compounds

Method: EPA 8260CSampled: 06/27/2019 10:00Instrument: NT5Analyst: PBAnalyzed: 06/28/2019 15:44Sample Preparation:Preparation Method: EPA 5035 (Sodium Bisulfate)Extract ID: 19F0407-03 BPreparation Batch: BHF0741Sample Size: 5.76 g (wet)Dry Weight: 4.66 gPrepared: 28-Jun-2019Final Volume: 5 mL% Solids: 80.93

	GLON I	D1 -:	Detection	Reporting	D 1:	TT 1.	NI.
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Benzene	71-43-2	1	0.32	1.07	ND	ug/kg	U
Toluene	108-88-3	1	0.16	1.07	0.36	ug/kg	J
Ethylbenzene	100-41-4	1	0.22	1.07	ND	ug/kg	U
m,p-Xylene	179601-23-1	1	0.42	2.15	ND	ug/kg	U
o-Xylene	95-47-6	1	0.24	1.07	ND	ug/kg	U
Surrogate: Toluene-d8				77-120 %	102	%	
Surrogate: 4-Bromofluorobenzene				80-120 %	99.9	%	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston09-Jul-2019 11:41

F-24-19.0 19F0407-03 (Solid)

Volatile Organic Compounds

Method: NWTPHgSampled: 06/27/2019 10:00Instrument: NT2Analyst: LHAnalyzed: 07/02/2019 16:35Sample Preparation:Preparation Method: EPA 5035 (Methanol Extraction)Extract ID: 19F0407-03 DPreparation Batch: BHG0061Sample Size: 5.254 g (wet)Dry Weight: 4.25 gPrepared: 02-Jul-2019Final Volume: 5 mL% Solids: 80.93

Analyte	CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Gasoline Range Organics (Tol-Nap)	GRO	50	7060	ND	ug/kg	U
Surrogate: Toluene-d8			80-120 %	96.4	%	
Surrogate: 4-Bromofluorobenzene			78-123 %	89.8	%	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston09-Jul-2019 11:41

F-24-19.0 19F0407-03 (Solid)

Petroleum Hydrocarbons

Method: NWTPH-Dx			Sampled: 06/27/2019 10:00
Instrument: FID4 Analy	st: VTS		Analyzed: 07/03/2019 09:04
Sample Preparation:	Preparation Method: EPA 3546 (Microv	vave)	Extract ID: 19F0407-03 A 01
	Preparation Batch: BHF0752	Sample Size: 10.05 g (wet)	Dry Weight:8.13 g
	Prepared: 01-Jul-2019	Final Volume: 1 mL	% Solids: 80.93

Analyte	CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Diesel Range Organics (C12-C24)	DRO	1	6.15	ND	mg/kg	U
Motor Oil Range Organics (C24-C38)	RRO	1	12.3	ND	mg/kg	U
Surrogate: o-Terphenyl			50-150 %	87.6	%	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston09-Jul-2019 11:41

F-25-9.0 19F0407-04 (Solid)

Volatile Organic Compounds

Method: EPA 8260CSampled: 06/27/2019 10:55Instrument: NT5Analyst: PBAnalyzed: 06/28/2019 16:06Sample Preparation:Preparation Method: EPA 5035 (Sodium Bisulfate)Extract ID: 19F0407-04 BPreparation Batch: BHF0741Sample Size: 5.23 g (wet)Dry Weight: 4.92 gPrepared: 28-Jun-2019Final Volume: 5 mL% Solids: 94.02

			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Benzene	71-43-2	1	0.30	1.02	ND	ug/kg	U
Toluene	108-88-3	1	0.15	1.02	0.26	ug/kg	J
Ethylbenzene	100-41-4	1	0.21	1.02	ND	ug/kg	U
m,p-Xylene	179601-23-1	1	0.40	2.03	ND	ug/kg	U
o-Xylene	95-47-6	1	0.23	1.02	ND	ug/kg	U
Surrogate: Toluene-d8				77-120 %	103	%	
Surrogate: 4-Bromofluorobenzene				80-120 %	99.8	%	

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston09-Jul-2019 11:41

F-25-9.0 19F0407-04 (Solid)

Volatile Organic Compounds

Method: NWTPHgSampled: 06/27/2019 10:55Instrument: NT2Analyst: LHAnalyzed: 07/02/2019 16:56Sample Preparation:Preparation Method: EPA 5035 (Methanol Extraction)Extract ID: 19F0407-04 DPreparation Batch: BHG0061Sample Size: 4.327 g (wet)Dry Weight: 4.07 gPrepared: 02-Jul-2019Final Volume: 5 mL% Solids: 94.02

Analyte	CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Gasoline Range Organics (Tol-Nap)	GRO	50	6460	ND	ug/kg	U
Surrogate: Toluene-d8			80-120 %	96.6	%	
Surrogate: 4-Bromofluorobenzene			78-123 %	92.0	%	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston09-Jul-2019 11:41

F-25-9.0 19F0407-04 (Solid)

Petroleum Hydrocarbons

Method: NWTPH-Dx			Sampled: 06/27/2019 10:55
Instrument: FID4 Analy	st: VTS		Analyzed: 07/03/2019 09:25
Sample Preparation:	Preparation Method: EPA 3546 (Microv	vave)	Extract ID: 19F0407-04 A 01
	Preparation Batch: BHF0752	Sample Size: 10.04 g (wet)	Dry Weight: 9.44 g
	Prepared: 01-Jul-2019	Final Volume: 1 mL	% Solids: 94.02

Analyte	CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Diesel Range Organics (C12-C24)	DRO	1	5.30	ND	mg/kg	U
Motor Oil Range Organics (C24-C38)	RRO	1	10.6	ND	mg/kg	U
Surrogate: o-Terphenyl			50-150 %	85.6	%	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston09-Jul-2019 11:41

F-25-14.0 19F0407-05 (Solid)

Volatile Organic Compounds

Method: EPA 8260CSampled: 06/27/2019 11:10Instrument: NT5Analyst: PBAnalyzed: 06/28/2019 16:29Sample Preparation:Preparation Method: EPA 5035 (Sodium Bisulfate)Extract ID: 19F0407-05 BPreparation Batch: BHF0741Sample Size: 4.58 g (wet)Dry Weight: 3.26 gPrepared: 28-Jun-2019Final Volume: 5 mL% Solids: 71.25

Analyte	CAS Number	Dilution	Detection Limit	Reporting Limit	Result	Units	Notes
Benzene	71-43-2	1	0.45	1.53	ND	ug/kg	U
Toluene	108-88-3	1	0.23	1.53	0.42	ug/kg	J
Ethylbenzene	100-41-4	1	0.31	1.53	ND	ug/kg	U
m,p-Xylene	179601-23-1	1	0.60	3.06	ND	ug/kg	U
o-Xylene	95-47-6	1	0.34	1.53	ND	ug/kg	U
Surrogate: Toluene-d8				77-120 %	103	%	
Surrogate: 4-Bromofluorobenzene				80-120 %	99.1	%	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston09-Jul-2019 11:41

F-25-14.0 19F0407-05 (Solid)

Volatile Organic Compounds

Method: NWTPHgSampled: 06/27/2019 11:10Instrument: NT2Analyst: LHAnalyzed: 07/02/2019 17:16Sample Preparation:Preparation Method: EPA 5035 (Methanol Extraction)Extract ID: 19F0407-05 DPreparation Batch: BHG0061Sample Size: 3.895 g (wet)Dry Weight: 2.78 gPrepared: 02-Jul-2019Final Volume: 5 mL% Solids: 71.25

Analyte	CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Gasoline Range Organics (Tol-Nap)	GRO	50	11000	ND	ug/kg	U
Surrogate: Toluene-d8			80-120 %	96.2	%	
Surrogate: 4-Bromofluorobenzene			78-123 %	89.9	%	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston09-Jul-2019 11:41

F-25-14.0 19F0407-05 (Solid)

Petroleum Hydrocarbons

Method: NWTPH-Dx			Sampled: 06/27/2019 11:10
Instrument: FID4 Analy	st: VTS		Analyzed: 07/03/2019 09:45
Sample Preparation:	Preparation Method: EPA 3546 (Microv	wave)	Extract ID: 19F0407-05 A 01
	Preparation Batch: BHF0752	Sample Size: 10.07 g (wet)	Dry Weight: 7.17 g
	Prepared: 01-Jul-2019	Final Volume: 1 mL	% Solids: 71.25

Analyte	CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Diesel Range Organics (C12-C24)	DRO	1	6.97	ND	mg/kg	U
Motor Oil Range Organics (C24-C38) HC ID: MOTOR OIL	RRO	1	13.9	29.0	mg/kg	
Surrogate: o-Terphenyl			50-150 %	88.1	%	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston09-Jul-2019 11:41

F-25-19.0 19F0407-06 (Solid)

Volatile Organic Compounds

Method: EPA 8260CSampled: 06/27/2019 11:20Instrument: NT5Analyst: PBAnalyzed: 06/28/2019 16:51Sample Preparation:Preparation Method: EPA 5035 (Sodium Bisulfate)Extract ID: 19F0407-06 BPreparation Batch: BHF0741Sample Size: 4.99 g (wet)Dry Weight: 4.05 gPrepared: 28-Jun-2019Final Volume: 5 mL% Solids: 81.17

Analyte	CAS Number	Dilution	Detection Limit	Reporting Limit	Result	Units	Notes
Analyte	CAS Number	Dilution	Liiiit	Liiiit	Result	Units	Notes
Benzene	71-43-2	1	0.37	1.23	ND	ug/kg	U
Toluene	108-88-3	1	0.19	1.23	0.41	ug/kg	J
Ethylbenzene	100-41-4	1	0.25	1.23	ND	ug/kg	U
m,p-Xylene	179601-23-1	1	0.48	2.47	ND	ug/kg	U
o-Xylene	95-47-6	1	0.28	1.23	ND	ug/kg	U
Surrogate: Toluene-d8				77-120 %	103	%	
Surrogate: 4-Bromofluorobenzene				80-120 %	102	%	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston09-Jul-2019 11:41

F-25-19.0 19F0407-06 (Solid)

Volatile Organic Compounds

Method: NWTPHgSampled: 06/27/2019 11:20Instrument: NT2Analyst: LHAnalyzed: 07/02/2019 17:37Sample Preparation:Preparation Method: EPA 5035 (Methanol Extraction)Extract ID: 19F0407-06 DPreparation Batch: BHG0061Sample Size: 5.113 g (wet)Dry Weight: 4.15 gPrepared: 02-Jul-2019Final Volume: 5 mL% Solids: 81.17

Analyte	CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Gasoline Range Organics (Tol-Nap)	GRO	50	7180	ND	ug/kg	U
Surrogate: Toluene-d8			80-120 %	95.8	%	
Surrogate: 4-Bromofluorobenzene			78-123 %	91.4	%	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston09-Jul-2019 11:41

F-25-19.0 19F0407-06 (Solid)

Petroleum Hydrocarbons

Method: NWTPH-Dx			Sampled: 06/27/2019 11:20
Instrument: FID4 Analy	st: VTS	Analyzed: 07/03/2019 10:06	
Sample Preparation:	Preparation Method: EPA 3546 (Microw	vave)	Extract ID: 19F0407-06 A 01
	Preparation Batch: BHF0752	Sample Size: 10.02 g (wet)	Dry Weight:8.13 g
	Prepared: 01-Jul-2019	Final Volume: 1 mL	% Solids: 81.17

Analyte	CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Diesel Range Organics (C12-C24)	DRO	1	6.15	ND	mg/kg	U
Motor Oil Range Organics (C24-C38)	RRO	1	12.3	ND	mg/kg	U
Surrogate: o-Terphenyl			50-150 %	87.2	%	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston09-Jul-2019 11:41

F-30-1.0 19F0407-10 (Solid)

Aroclor PCB

Method: EPA 8082ASampled: 06/27/2019 11:20Instrument: ECD7Analyst: JGRAnalyzed: 07/02/2019 19:11Sample Preparation:Preparation Method: EPA 3546 (Microwave)
Preparation Batch: BHG0007Extract ID: 19F0407-10 A 01
Dry Weight: 5.06 g
Final Volume: 5 mL

F							
			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Aroclor 1016	12674-11-2	1	7.9	19.8	ND	ug/kg	U
Aroclor 1221	11104-28-2	1	7.9	19.8	ND	ug/kg	U
Aroclor 1232	11141-16-5	1	7.9	19.8	ND	ug/kg	U
Aroclor 1242	53469-21-9	1	7.9	19.8	ND	ug/kg	U
Aroclor 1248	12672-29-6	1	7.9	19.8	ND	ug/kg	U
Aroclor 1254	11097-69-1	1	7.9	19.8	ND	ug/kg	U
Aroclor 1260	11096-82-5	1	9.2	19.8	ND	ug/kg	U
Aroclor 1262	37324-23-5	1	9.2	19.8	ND	ug/kg	U
Aroclor 1268	11100-14-4	1	9.2	19.8	ND	ug/kg	U
Surrogate: Decachlorobiphenyl				40-133 %	95.0	%	
Surrogate: Tetrachlorometaxylene				53-120 %	97.0	%	
Surrogate: Decachlorobiphenyl [2C]				40-133 %	95.5	%	
Surrogate: Tetrachlorometaxylene [2C]				53-120 %	90.4	%	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston09-Jul-2019 11:41

F-32-1.0 19F0407-12 (Solid)

Aroclor PCB

Method: EPA 8082A
Instrument: ECD7 Analyst: JGR
Sample Preparation: Preparation Method: EPA 3546 (Microwave)
Preparation Batch: BHG0007 Sample Size: 5.43 g (wet)
Prepared: 01-Jul-2019 Final Volume: 5 mL
Sample Sample Size: 5.43 g (wet)
Prepared: 01-Jul-2019 Final Volume: 5 mL
Sample : Sampled: 06/27/2019 12:45
Analyzed: 07/02/2019 19:32
Extract ID: 19F0407-12 A 01
Dry Weight: 5.04 g
Solids: 92.82

1							
			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Aroclor 1016	12674-11-2	1	7.9	19.8	ND	ug/kg	U
Aroclor 1221	11104-28-2	1	7.9	19.8	ND	ug/kg	U
Aroclor 1232	11141-16-5	1	7.9	19.8	ND	ug/kg	U
Aroclor 1242	53469-21-9	1	7.9	19.8	ND	ug/kg	U
Aroclor 1248	12672-29-6	1	7.9	19.8	ND	ug/kg	U
Aroclor 1254	11097-69-1	1	7.9	19.8	ND	ug/kg	U
Aroclor 1260	11096-82-5	1	9.2	19.8	ND	ug/kg	U
Aroclor 1262	37324-23-5	1	9.2	19.8	ND	ug/kg	U
Aroclor 1268	11100-14-4	1	9.2	19.8	ND	ug/kg	U
Surrogate: Decachlorobiphenyl				40-133 %	89.4	%	
Surrogate: Tetrachlorometaxylene				53-120 %	90.6	%	
Surrogate: Decachlorobiphenyl [2C]				40-133 %	89.7	%	
Surrogate: Tetrachlorometaxylene [2C]				53-120 %	86.5	%	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston09-Jul-2019 11:41

F-33-1.0 19F0407-14 (Solid)

Aroclor PCB

Method: EPA 8082ASampled: 06/27/2019 13:50Instrument: ECD7Analyst: JGRAnalyzed: 07/02/2019 20:34Sample Preparation:Preparation Method: EPA 3546 (Microwave)
Preparation Batch: BHG0007Extract ID: 19F0407-14 A 01
Dry Weight: 5.01 gPrepared: 01-Jul-2019Final Volume: 5 mL% Solids: 97.20

1							
	0.007	5.1	Detection	Reporting	-		37.
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Aroclor 1016	12674-11-2	1	8.0	20.0	ND	ug/kg	U
Aroclor 1221	11104-28-2	1	8.0	20.0	ND	ug/kg	U
Aroclor 1232	11141-16-5	1	8.0	20.0	ND	ug/kg	U
Aroclor 1242	53469-21-9	1	8.0	20.0	ND	ug/kg	U
Aroclor 1248	12672-29-6	1	8.0	20.0	ND	ug/kg	U
Aroclor 1254	11097-69-1	1	8.0	20.0	ND	ug/kg	U
Aroclor 1260	11096-82-5	1	9.3	20.0	ND	ug/kg	U
Aroclor 1262	37324-23-5	1	9.3	20.0	ND	ug/kg	U
Aroclor 1268	11100-14-4	1	9.3	20.0	ND	ug/kg	U
Surrogate: Decachlorobiphenyl				40-133 %	93.3	%	
Surrogate: Tetrachlorometaxylene				53-120 %	97.5	%	
Surrogate: Decachlorobiphenyl [2C]				40-133 %	94.2	%	
Surrogate: Tetrachlorometaxylene [2C]				53-120 %	90.4	%	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston09-Jul-2019 11:41

F-27-2.5 19F0407-16 (Solid)

Aroclor PCB

Method: EPA 8082ASampled: 06/27/2019 09:18Instrument: ECD7Analyst: JGRAnalyzed: 07/02/2019 20:55Sample Preparation:Preparation Method: EPA 3546 (Microwave)
Preparation Batch: BHG0007Extract ID: 19F0407-16 A 01
Dry Weight: 5.05 g
Final Volume: 5 mL
Sample Size: 5.69 g (wet)
Dry Weight: 5.05 g
% Solids: 88.67

1							
			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Aroclor 1016	12674-11-2	1	7.9	19.8	ND	ug/kg	U
Aroclor 1221	11104-28-2	1	7.9	19.8	ND	ug/kg	U
Aroclor 1232	11141-16-5	1	7.9	19.8	ND	ug/kg	U
Aroclor 1242	53469-21-9	1	7.9	19.8	ND	ug/kg	U
Aroclor 1248	12672-29-6	1	7.9	19.8	ND	ug/kg	U
Aroclor 1254	11097-69-1	1	7.9	19.8	ND	ug/kg	U
Aroclor 1260	11096-82-5	1	9.2	19.8	ND	ug/kg	U
Aroclor 1262	37324-23-5	1	9.2	19.8	ND	ug/kg	U
Aroclor 1268	11100-14-4	1	9.2	19.8	ND	ug/kg	U
Surrogate: Decachlorobiphenyl				40-133 %	94.6	%	
Surrogate: Tetrachlorometaxylene				53-120 %	95.4	%	
Surrogate: Decachlorobiphenyl [2C]				40-133 %	94.7	%	
Surrogate: Tetrachlorometaxylene [2C]				53-120 %	89.2	%	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston09-Jul-2019 11:41

F-27-10.0 19F0407-18 (Solid)

Aroclor PCB

Method: EPA 8082ASampled: 06/27/2019 15:05Instrument: ECD7Analyst: JGRAnalyzed: 07/02/2019 21:16Sample Preparation:Preparation Method: EPA 3546 (Microwave)
Preparation Batch: BHG0007Extract ID: 19F0407-18 A 01
Dry Weight: 5.01 gPrepared: 01-Jul-2019Final Volume: 5 mL% Solids: 76.90

			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Aroclor 1016	12674-11-2	1	8.0	20.0	ND	ug/kg	U
Aroclor 1221	11104-28-2	1	8.0	20.0	ND	ug/kg	U
Aroclor 1232	11141-16-5	1	8.0	20.0	ND	ug/kg	U
Aroclor 1242	53469-21-9	1	8.0	20.0	ND	ug/kg	U
Aroclor 1248	12672-29-6	1	8.0	20.0	ND	ug/kg	U
Aroclor 1254	11097-69-1	1	8.0	20.0	ND	ug/kg	U
Aroclor 1260	11096-82-5	1	9.3	20.0	ND	ug/kg	U
Aroclor 1262	37324-23-5	1	9.3	20.0	ND	ug/kg	U
Aroclor 1268	11100-14-4	1	9.3	20.0	ND	ug/kg	U
Surrogate: Decachlorobiphenyl				40-133 %	88.8	%	
Surrogate: Tetrachlorometaxylene				53-120 %	90.2	%	
Surrogate: Decachlorobiphenyl [2C]				40-133 %	88.4	%	
Surrogate: Tetrachlorometaxylene [2C]				53-120 %	85.2	%	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston09-Jul-2019 11:41

F-28-2.5 19F0407-20 (Solid)

Aroclor PCB

Method: EPA 8082ASampled: 06/27/2019 09:53Instrument: ECD7Analyst: JGRAnalyzed: 07/02/2019 21:37Sample Preparation:Preparation Method: EPA 3546 (Microwave)Extract ID: 19F0407-20 A 01Preparation Batch: BHG0007Sample Size: 5.73 g (wet)Dry Weight: 5.02 gPrepared: 01-Jul-2019Final Volume: 5 mL% Solids: 87.57

	·		Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Aroclor 1016	12674-11-2	1	8.0	19.9	ND	ug/kg	U
Aroclor 1221	11104-28-2	1	8.0	19.9	ND	ug/kg	U
Aroclor 1232	11141-16-5	1	8.0	19.9	ND	ug/kg	U
Aroclor 1242	53469-21-9	1	8.0	19.9	ND	ug/kg	U
Aroclor 1248	12672-29-6	1	8.0	19.9	ND	ug/kg	U
Aroclor 1254	11097-69-1	1	8.0	19.9	ND	ug/kg	U
Aroclor 1260	11096-82-5	1	9.2	19.9	26.9	ug/kg	
Aroclor 1262	37324-23-5	1	9.2	19.9	ND	ug/kg	U
Aroclor 1268	11100-14-4	1	9.2	19.9	ND	ug/kg	U
Surrogate: Decachlorobiphenyl				40-133 %	99.0	%	
Surrogate: Tetrachlorometaxylene				53-120 %	97.6	%	
Surrogate: Decachlorobiphenyl [2C]				40-133 %	98.2	%	
Surrogate: Tetrachlorometaxylene [2C]				53-120 %	94.4	%	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston09-Jul-2019 11:41

F-29-2.5 19F0407-21 (Solid)

Petroleum Hydrocarbons

Method: NWTPH-Dx			Sampled: 06/27/2019 10:26
Instrument: FID4 Analy	st: VTS	Analyzed: 07/03/2019 19:26	
Sample Preparation:	Preparation Method: EPA 3546 (Microv	vave)	Extract ID: 19F0407-21 A 01
	Preparation Batch: BHF0752	Sample Size: 10.08 g (wet)	Dry Weight: 9.17 g
	Prepared: 01-Jul-2019	Final Volume: 1 mL	% Solids: 91.02

			Reporting			
Analyte	CAS Number	Dilution	Limit	Result	Units	Notes
Diesel Range Organics (C12-C24)	DRO	10	54.5	134	mg/kg	D
HC ID: DRO Motor Oil Range Organics (C24-C38)	RRO	10	109	1330	mg/kg	D
HC ID: MOTOR OIL						
Surrogate: o-Terphenyl			50-150 %	61.3	%	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston09-Jul-2019 11:41

F-29-2.5 19F0407-21 (Solid)

Metals and Metallic Compounds

Method: EPA 6020A			Sampled: 06/27/2019 10:26
Instrument: ICPMS2 Ar	alyst: MCB		Analyzed: 07/03/2019 15:47
Sample Preparation:	Preparation Method: SWN EPA 3050B		Extract ID: 19F0407-21 B 01
	Preparation Batch: BHG0004	Sample Size: 1.019 g (wet)	Dry Weight: 0.93 g
	Prepared: 01-Jul-2019	Final Volume: 50 mL	% Solids: 90.78

	Troparea. or ear 2019	I IIIai (Ciaille)	, o 1112					70 2011421 70170
				Detection	Reporting			
Analyte		CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Lead		7439-92-1	20	0.07	0.11	45.1	mg/kg	
Manganese		7439-96-5	20	0.09	0.54	290	mg/kg	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston09-Jul-2019 11:41

F-29-2.5 19F0407-21 (Solid)

Metals and Metallic Compounds

Method: EPA 6020A UC	Γ-KED		Sampled: 06/27/2019 10:26
Instrument: ICPMS2 An	alyst: MCB		Analyzed: 07/03/2019 15:47
Sample Preparation:	Preparation Method: SWN EPA 3050B		Extract ID: 19F0407-21 B 01
	Preparation Batch: BHG0004	Sample Size: 1.019 g (wet)	Dry Weight: 0.93 g
	Prepared: 01-Jul-2019	Final Volume: 50 mL	% Solids: 90.78

	Trepared. 01-3df-2017	i mai voiume.	JO IIIL					70 Bollus. 70.76
				Detection	Reporting			
Analyte		CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Arsenic		7440-38-2	20	0.02	0.22	7.64	mg/kg	
Cadmium		7440-43-9	20	0.03	0.11	0.64	mg/kg	
Copper		7440-50-8	20	0.37	0.54	60.6	mg/kg	
Zinc		7440-66-6	20	0.9	4.3	64.3	mg/kg	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston09-Jul-2019 11:41

F-29-2.5 19F0407-21 (Solid)

Metals and Metallic Compounds

Method: EPA 7471B						S	ampled: 06/	/27/2019 10:26
Instrument: CVAA Anal	yst: SKM					Aı	nalyzed: 07/	/08/2019 16:04
Sample Preparation:	Preparation Method: SMM EPA 7471B						Extract ID:	19F0407-21 B
	Preparation Batch: BHG0140	Sample Size: 0	.207 g (wet)				Dry	Weight:0.19 g
	Prepared: 05-Jul-2019	Final Volume:	50 mL				9,	6 Solids: 90.78
				Detection	Reporting			
Analyte		CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Mercury		7439-97-6	1	0.00559	0.0266	0.357	mg/kg	

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston09-Jul-2019 11:41

F-27-190627 19F0407-22 (Water)

Aroclor PCB

Method: EPA 8082A			Sampled: 06/27/2019 15:30
Instrument: ECD7 Anal	yst: VTS		Analyzed: 06/29/2019 21:05
Sample Preparation:	Preparation Method: EPA 3510C SepF Preparation Batch: BHF0748 Prepared: 28-Jun-2019	Sample Size: 500 mL Final Volume: 1 mL	Extract ID: 19F0407-22 A 01
Sample Cleanup:	Cleanup Method: Silica Gel Cleanup Batch: CHF0246 Cleaned: 28-Jun-2019	Initial Volume: 1 mL Final Volume: 1 mL	Extract ID: 19F0407-22 A 01
Sample Cleanup:	Cleanup Method: Sulfuric Acid Cleanup Batch: CHF0244 Cleaned: 28-Jun-2019	Initial Volume: 1 mL Final Volume: 1 mL	Extract ID:19F0407-22 A 01
Sample Cleanup:	Cleanup Method: Sulfur Cleanup Batch: CHF0245 Cleaned: 28-Jun-2019	Initial Volume: 1 mL Final Volume: 1 mL	Extract ID:19F0407-22 A 01

			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Aroclor 1016	12674-11-2	1	0.018	0.100	ND	ug/L	U
Aroclor 1221	11104-28-2	1	0.018	0.100	ND	ug/L	U
Aroclor 1232	11141-16-5	1	0.018	0.100	ND	ug/L	U
Aroclor 1242	53469-21-9	1	0.018	0.100	ND	ug/L	U
Aroclor 1248	12672-29-6	1	0.018	0.100	ND	ug/L	U
Aroclor 1254	11097-69-1	1	0.018	0.100	ND	ug/L	U
Aroclor 1260	11096-82-5	1	0.017	0.100	ND	ug/L	U
Aroclor 1262	37324-23-5	1	0.017	0.100	ND	ug/L	U
Aroclor 1268	11100-14-4	1	0.017	0.100	ND	ug/L	U
Surrogate: Decachlorobiphenyl				26-120 %	51.3	%	
Surrogate: Tetrachlorometaxylene				39-120 %	69.3	%	
Surrogate: Decachlorobiphenyl [2C]				26-120 %	51.0	%	
Surrogate: Tetrachlorometaxylene [2C]				39-120 %	59.4	%	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston09-Jul-2019 11:41

F-31-190627 19F0407-23 (Water)

Petroleum Hydrocarbons

 Method: NWTPH-Dx
 Sampled: 06/27/2019 13:35

 Instrument: FID4 Analyst: VTS
 Analyzed: 07/03/2019 05:18

Sample Preparation: Preparation Method: EPA 3510C SepF Extract ID: 19F0407-23 A 01
Preparation Batch: BHF0747 Sample Size: 500 mL

Prepared: 28-Jun-2019 Final Volume: 1 mL

Reporting CAS Number Dilution Limit Analyte Result Units Notes Diesel Range Organics (C12-C24) DRO 0.100 0.580 mg/LHC ID: DRO Motor Oil Range Organics (C24-C38) RRO 0.200 1 ND mg/L U Surrogate: o-Terphenyl 50-150 % 70.5

Analytical Resources, Inc.

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston09-Jul-2019 11:41

Volatile Organic Compounds - Quality Control

Batch BHF0741 - EPA 5035 (Sodium Bisulfate)

Instrument: NT5 Analyst: PB

QC Sample/Analyte	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Blank (BHF0741-BLK1)				Prepa	ared: 28-Jun	-2019 An	alyzed: 28-J	un-2019 11:	19		
Benzene	ND	0.30	1.00	ug/kg							U
Toluene	ND	0.15	1.00	ug/kg							U
Ethylbenzene	ND	0.20	1.00	ug/kg							U
m,p-Xylene	ND	0.39	2.00	ug/kg							U
o-Xylene	ND	0.22	1.00	ug/kg							U
Surrogate: Toluene-d8	50.3			ug/kg	50.0		101	77-120			
Surrogate: 4-Bromofluorobenzene	48.9			ug/kg	50.0		97.9	80-120			
LCS (BHF0741-BS1)				Prepa	ared: 28-Jun	-2019 An	alyzed: 28-J	un-2019 10:	:14		
Benzene	49.7			ug/kg	50.0		99.3	80-120			
Toluene	48.4			ug/kg	50.0		96.8	75-120			
Ethylbenzene	47.1			ug/kg	50.0		94.2	80-125			
m,p-Xylene	94.7			ug/kg	100		94.7	76-121			
o-Xylene	48.2			ug/kg	50.0		96.3	67-132			
Surrogate: Toluene-d8	51.2			ug/kg	50.0		102	77-120			
Surrogate: 4-Bromofluorobenzene	49.5			ug/kg	50.0		99.1	80-120			
LCS Dup (BHF0741-BSD1)				Prepa	ared: 28-Jun	-2019 An	alyzed: 28-J	un-2019 10:	:56		
Benzene	51.7			ug/kg	50.0		103	80-120	3.93	30	
Toluene	50.8			ug/kg	50.0		102	75-120	4.78	30	
Ethylbenzene	50.2			ug/kg	50.0		100	80-125	6.43	30	
m,p-Xylene	101			ug/kg	100		101	76-121	6.69	30	
o-Xylene	49.8			ug/kg	50.0		99.6	67-132	3.34	30	
Surrogate: Toluene-d8	50.5			ug/kg	50.0		101	77-120			
Surrogate: 4-Bromofluorobenzene	49.7			ug/kg	50.0		99.4	80-120			

Analytical Resources, Inc.

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston09-Jul-2019 11:41

Volatile Organic Compounds - Quality Control

Batch BHG0061 - EPA 5035 (Methanol Extraction)

Instrument: NT2 Analyst: LH

QC Sample/Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Blank (BHG0061-BLK1)			Prepa	ared: 02-Jul-	·2019 Ana	alyzed: 02-J	ıl-2019 10:1	9		
Gasoline Range Organics (Tol-Nap)	ND	5000	ug/kg			-				U
Surrogate: Toluene-d8	4.68		ug/kg	5.00		93.6	80-120			
Surrogate: 4-Bromofluorobenzene	4.49		ug/kg	5.00		89.9	78-123			
LCS (BHG0061-BS1)			Prepa	ared: 02-Jul-	2019 Ana	alyzed: 02-J	ul-2019 08:1	7		
Gasoline Range Organics (Tol-Nap)	50300		ug/kg	50000		101	70-121			
Surrogate: Toluene-d8	4.99		ug/kg	5.00		99.8	80-120			
Surrogate: 4-Bromofluorobenzene	4.90		ug/kg	5.00		97.9	78-123			
LCS Dup (BHG0061-BSD1)			Prepa	ared: 02-Jul-	2019 Ana	alyzed: 02-J	ul-2019 08:5	7		
Gasoline Range Organics (Tol-Nap)	49300		ug/kg	50000		98.6	70-121	1.99	30	
Surrogate: Toluene-d8	5.08		ug/kg	5.00		102	80-120			
Surrogate: 4-Bromofluorobenzene	5.05		ug/kg	5.00		101	78-123			

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston09-Jul-2019 11:41

Petroleum Hydrocarbons - Quality Control

Batch BHF0747 - EPA 3510C SepF

Instrument: FID4 Analyst: VTS

QC Sample/Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Blank (BHF0747-BLK1)			Prepa	ared: 28-Jun-	-2019 Ar	alyzed: 03-J	ul-2019 04:	37		
Diesel Range Organics (C12-C24)	ND	0.100	mg/L							U
Motor Oil Range Organics (C24-C38)	ND	0.200	mg/L							U
Surrogate: o-Terphenyl	0.193		mg/L	0.225		85.9	50-150			
LCS (BHF0747-BS1)			Prepa	ared: 28-Jun-	-2019 Ar	nalyzed: 03-J	ul-2019 04::	58		
Diesel Range Organics (C12-C24)	2.49	0.100	mg/L	3.00		83.0	70-120			
Surrogate: o-Terphenyl	0.200		mg/L	0.225		88.9	50-150			

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston09-Jul-2019 11:41

Petroleum Hydrocarbons - Quality Control

Batch BHF0752 - EPA 3546 (Microwave)

Instrument: FID4 Analyst: VTS

QC Sample/Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Blank (BHF0752-BLK1)			Prepa	red: 01-Jul-	2019 An	alyzed: 03-J	ul-2019 07:4	13		
Diesel Range Organics (C12-C24)	ND	5.00	mg/kg							U
Motor Oil Range Organics (C24-C38)	ND	10.0	mg/kg							U
Surrogate: o-Terphenyl	10.8		mg/kg	11.3		95.7	50-150			
LCS (BHF0752-BS1)			Prepa	ared: 01-Jul-	2019 An	alyzed: 03-J	ul-2019 08:0)3		
Diesel Range Organics (C12-C24)	150	5.00	mg/kg	150		99.9	63-120			
Surrogate: o-Terphenyl	11.4		mg/kg	11.3		101	50-150			

Analytical Resources, Inc.

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston09-Jul-2019 11:41

Aroclor PCB - Quality Control

Batch BHF0748 - EPA 3510C SepF

Instrument: ECD7 Analyst: VTS

QC Sample/Analyte	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
QC Sample/Analyte	Result	LIIIII	LIIIII	Units	Level	Kesuit	/OKEC	Limits	KrD	Lillit	ivotes
Blank (BHF0748-BLK1)				Prepa	ared: 28-Jun-	-2019 Ana	ılyzed: 29-J	un-2019 20	:23		
Aroclor 1016	ND	0.018	0.100	ug/L							U
Aroclor 1221	ND	0.018	0.100	ug/L							U
Aroclor 1232	ND	0.018	0.100	ug/L							U
Aroclor 1242	ND	0.018	0.100	ug/L							U
Aroclor 1248	ND	0.018	0.100	ug/L							U
Aroclor 1254	ND	0.018	0.100	ug/L							U
Aroclor 1260	ND	0.017	0.100	ug/L							U
Aroclor 1262	ND	0.017	0.100	ug/L							U
Aroclor 1268	ND	0.017	0.100	ug/L							U
Surrogate: Decachlorobiphenyl	0.0672			ug/L	0.0800		84.0	26-120			
Surrogate: Tetrachlorometaxylene	0.0474			ug/L	0.0800		59.2	39-120			
Surrogate: Decachlorobiphenyl [2C]	0.0651			ug/L	0.0800		81.4	26-120			
Surrogate: Tetrachlorometaxylene [2C]	0.0394			ug/L	0.0800		49.3	39-120			
LCS (BHF0748-BS1)				Prepa	ared: 28-Jun-	-2019 Ana	ılyzed: 29-J	un-2019 20	:44		
Aroclor 1016	0.915	0.018	0.100	ug/L	1.00		91.5	51-120			
Aroclor 1260	0.943	0.017	0.100	ug/L	1.00		94.3	56-120			
Surrogate: Decachlorobiphenyl	0.0661			ug/L	0.0800		82.6	26-120			
Surrogate: Tetrachlorometaxylene	0.0557			ug/L	0.0800		69.7	39-120			
Surrogate: Decachlorobiphenyl [2C]	0.0654			ug/L	0.0800		81.7	26-120			
Surrogate: Tetrachlorometaxylene [2C]	0.0473			ug/L	0.0800		59.2	39-120			

Analytical Resources, Inc.

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston09-Jul-2019 11:41

Aroclor PCB - Quality Control

Batch BHG0007 - EPA 3546 (Microwave)

Instrument: ECD7 Analyst: JGR

		Detection	Reporting		Spike	Source		%REC		RPD	
QC Sample/Analyte	Result	Limit	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Blank (BHG0007-BLK1)				Prepa	red: 01-Jul-	2019 Ana	lyzed: 02-Ju	ıl-2019 18:2	.9		
Aroclor 1016	ND	8.0	20.0	ug/kg							U
Aroclor 1221	ND	8.0	20.0	ug/kg							U
Aroclor 1232	ND	8.0	20.0	ug/kg							U
Aroclor 1242	ND	8.0	20.0	ug/kg							U
Aroclor 1248	ND	8.0	20.0	ug/kg							U
Aroclor 1254	ND	8.0	20.0	ug/kg							U
Aroclor 1260	ND	9.3	20.0	ug/kg							U
Aroclor 1262	ND	9.3	20.0	ug/kg							U
Aroclor 1268	ND	9.3	20.0	ug/kg							U
Surrogate: Decachlorobiphenyl	37.4			ug/kg	40.0		93.5	40-133			
Surrogate: Tetrachlorometaxylene	39.5			ug/kg	40.0		98.8	53-120			
Surrogate: Decachlorobiphenyl [2C]	37.4			ug/kg	40.0		93.5	40-133			
Surrogate: Tetrachlorometaxylene [2C]	35.7			ug/kg	40.0		89.4	53-120			
LCS (BHG0007-BS1)				Prepa	red: 01-Jul-	2019 Ana	lyzed: 02-Jı	ıl-2019 18:5	50		
Aroclor 1016	494	8.0	20.0	ug/kg	500		98.9	52-120			
Aroclor 1260	422	9.3	20.0	ug/kg	500		84.5	57-120			
Surrogate: Decachlorobiphenyl	38.6			ug/kg	40.0		96.5	40-133			
Surrogate: Tetrachlorometaxylene	40.1			ug/kg	40.0		100	53-120			
Surrogate: Decachlorobiphenyl [2C]	38.6			ug/kg	40.0		96.6	40-133			
Surrogate: Tetrachlorometaxylene [2C]	36.4			ug/kg	40.0		90.9	53-120			

Analytical Resources, Inc.

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston09-Jul-2019 11:41

Metals and Metallic Compounds - Quality Control

Batch BHG0004 - SWN EPA 3050B

Instrument: ICPMS2 Analyst: MCB

			Detection	Reporting		Spike	Source		%REC		RPD	
QC Sample/Analyte	Isotope	Result	Limit	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Blank (BHG0004-BLK1)					Prepa	ared: 01-Jul-	2019 Ana	lyzed: 03-Jı	ul-2019 14:1	15		
Lead	208	ND	0.07	0.10	mg/kg							U
Manganese	55	ND	0.09	0.50	mg/kg							U
Arsenic	75a	ND	0.02	0.20	mg/kg							U
Cadmium	111	ND	0.03	0.10	mg/kg							U
Cadmium	114	ND	0.04	0.10	mg/kg							U
Copper	63	ND	0.34	0.50	mg/kg							U
Copper	65	ND	0.35	0.50	mg/kg							U
Zinc	66	ND	0.8	4.0	mg/kg							U
Zinc	67	ND	0.9	4.0	mg/kg							U
LCS (BHG0004-BS1)					Prepa	ared: 01-Jul-	2019 Ana	lyzed: 03-Jı	ul-2019 14:2	20		
Lead	208	26.2	0.07	0.10	mg/kg	25.0		105	80-120			
Manganese	55	24.2	0.09	0.50	mg/kg	25.0		96.9	80-120			
Arsenic	75a	24.2	0.02	0.20	mg/kg	25.0		96.8	80-120			
Cadmium	111	24.3	0.03	0.10	mg/kg	25.0		97.2	80-120			
Cadmium	114	24.3	0.04	0.10	mg/kg	25.0		97.0	80-120			
Copper	63	26.1	0.34	0.50	mg/kg	25.0		104	80-120			
Copper	65	25.8	0.35	0.50	mg/kg	25.0		103	80-120			
Zinc	66	79.6	0.8	4.0	mg/kg	80.0		99.5	80-120			
Zinc	67	76.0	0.9	4.0	mg/kg	80.0		95.0	80-120			

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston09-Jul-2019 11:41

Metals and Metallic Compounds - Quality Control

Batch BHG0140 - SMM EPA 7471B

Instrument: CVAA Analyst: SKM

QC Sample/Analyte	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Blank (BHG0140-BLK1)				Prepa	ared: 05-Jul-	2019 Ana	lyzed: 08-J	ul-2019 15:5	50		
Mercury	ND	0.00525	0.0250	mg/kg							U
LCS (BHG0140-BS1)				Prepa	ared: 05-Jul-	2019 Ana	lyzed: 08-J	ul-2019 15:5	52		
Mercury	0.541	0.00525	0.0250	mg/kg	0.500		108	80-120			

Analytical Resources, Inc.

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston09-Jul-2019 11:41

Certified Analyses included in this Report

Analyte	Certifications			
EPA 6020A in Solid				
Manganese-55	NELAP,DoD-ELAP,WADOE			
Lead-208	NELAP, DoD-ELAP, WADOE, ADEC			
EPA 6020A UCT-KED in Solid				
Arsenic-75a	NELAP, DoD-ELAP, WADOE, ADEC			
Cadmium-111	NELAP,DoD-ELAP,WADOE,ADEC			
Cadmium-114	NELAP,DoD-ELAP,WADOE,ADEC			
Copper-63	NELAP,DoD-ELAP,WADOE			
Copper-65	NELAP,DoD-ELAP,WADOE			
Zinc-66	NELAP,DoD-ELAP,WADOE			
Zinc-67	NELAP,DoD-ELAP,WADOE			
EPA 7471B in Solid				
Mercury	WADOE,NELAP,DoD-ELAP,CALAP			
EPA 8082A in Solid				
Aroclor 1016	WADOE,DoD-ELAP,NELAP,CALAP,ADEC			
Aroclor 1016 [2C]	WADOE,DoD-ELAP,NELAP,CALAP,ADEC			
Aroclor 1221	WADOE,DoD-ELAP,NELAP,CALAP,ADEC			
Aroclor 1221 [2C]	WADOE,DoD-ELAP,NELAP,CALAP,ADEC			
Aroclor 1232	WADOE,DoD-ELAP,NELAP,CALAP,ADEC			
Aroclor 1232 [2C]	WADOE,DoD-ELAP,NELAP,CALAP,ADEC			
Aroclor 1242	WADOE,DoD-ELAP,NELAP,CALAP,ADEC			
Aroclor 1242 [2C]	WADOE,DoD-ELAP,NELAP,CALAP,ADEC			
Aroclor 1248	WADOE,DoD-ELAP,NELAP,CALAP,ADEC			
Aroclor 1248 [2C]	WADOE,DoD-ELAP,NELAP,CALAP,ADEC			
Aroclor 1254	WADOE,DoD-ELAP,NELAP,CALAP,ADEC			
Aroclor 1254 [2C]	WADOE,DoD-ELAP,NELAP,CALAP,ADEC			
Aroclor 1260	WADOE,DoD-ELAP,NELAP,CALAP,ADEC			
Aroclor 1260 [2C]	WADOE,DoD-ELAP,NELAP,CALAP,ADEC			
Aroclor 1262	WADOE,DoD-ELAP,NELAP,CALAP,ADEC			
Aroclor 1262 [2C]	WADOE,DoD-ELAP,NELAP,CALAP,ADEC			
Aroclor 1268	WADOE, DoD-ELAP, NELAP, CALAP, ADEC			
Aroclor 1268 [2C]	WADOE,DoD-ELAP,NELAP,CALAP,ADEC			
EPA 8082A in Water				
Aroclor 1016	ADEC,CALAP,DoD-ELAP,NELAP,WADOE			
Aroclor-1016 (1)	ADEC,CALAP			

Analytical Resources, Inc.

Farallon Consulting, LLC	Project: Emerald Gateway Site 1071-026	
1809 7th Ave, Suite 1111	Project Number: 1071-026	Reported:
Seattle WA, 98101	Project Manager: Pete Kingston	09-Jul-2019 11:41
Aroclor-1016 (2)	ADEC,CALAP	
Aroclor-1016 (3)	ADEC,CALAP	
Aroclor-1016 (4)	ADEC,CALAP	
Aroclor 1016 [2C]	ADEC,CALAP,DoD-ELAP,NELAP,WADOE	
Aroclor-1016 (1) [2C]	ADEC,CALAP	
Aroclor-1016 (2) [2C]	ADEC,CALAP	
Aroclor-1016 (3) [2C]	ADEC,CALAP	
Aroclor-1016 (4) [2C]	ADEC,CALAP	
Aroclor 1221	ADEC,CALAP,DoD-ELAP,NELAP,WADOE	
Aroclor-1221 (1)	ADEC,CALAP	
Aroclor-1221 (2)	ADEC,CALAP	
Aroclor-1221 (3)	ADEC,CALAP	
Aroclor 1221 [2C]	ADEC,CALAP,DoD-ELAP,NELAP,WADOE	
Aroclor-1221 (1) [2C]	ADEC,CALAP	
Aroclor-1221 (2) [2C]	ADEC,CALAP	
Aroclor-1221 (3) [2C]	ADEC,CALAP	
Aroclor-1221 (4) [2C]	ADEC,CALAP	
Aroclor 1232	ADEC,CALAP,DoD-ELAP,NELAP,WADOE	
Aroclor-1232 (1)	ADEC,CALAP	
Aroclor-1232 (2)	ADEC,CALAP	
Aroclor-1232 (3)	ADEC,CALAP	
Aroclor-1232 (4)	ADEC,CALAP	
Aroclor 1232 [2C]	ADEC,CALAP,DoD-ELAP,NELAP,WADOE	
Aroclor-1232 (1) [2C]	ADEC,CALAP	
Aroclor-1232 (2) [2C]	ADEC,CALAP	
Aroclor-1232 (3) [2C]	ADEC,CALAP	
Aroclor-1232 (4) [2C]	ADEC,CALAP	
Aroclor 1242	ADEC,CALAP,DoD-ELAP,NELAP,WADOE	
Aroclor-1242 (1)	ADEC,CALAP	
Aroclor-1242 (2)	ADEC,CALAP	
Aroclor-1242 (3)	ADEC,CALAP	
Aroclor-1242 (4)	ADEC,CALAP	
Aroclor 1242 [2C]	ADEC,CALAP,DoD-ELAP,NELAP,WADOE	
Aroclor-1242 (1) [2C]	ADEC,CALAP	
Aroclor-1242 (2) [2C]	ADEC,CALAP	
Aroclor-1242 (3) [2C]	ADEC,CALAP	
Aroclor-1242 (4) [2C]	ADEC,CALAP	
Aroclor 1248	ADEC,CALAP,DoD-ELAP,NELAP,WADOE	
Aroclor-1248 (1)	ADEC,CALAP	
Aroclor-1248 (2)	ADEC,CALAP	

Analytical Resources, Inc.

Farallon Consulting, LLC	Project: Emerald Gateway Site 1071-026	
1809 7th Ave, Suite 1111	Project Number: 1071-026	Reported:
Seattle WA, 98101	Project Manager: Pete Kingston	09-Jul-2019 11:41
Aroclor-1248 (3)	ADEC,CALAP	
Aroclor-1248 (4)	ADEC,CALAP	
Aroclor 1248 [2C]	ADEC,CALAP,DoD-ELAP,NELAP,WADOE	
Aroclor-1248 (1) [2C]	ADEC,CALAP	
Aroclor-1248 (2) [2C]	ADEC,CALAP	
Aroclor-1248 (3) [2C]	ADEC,CALAP	
Aroclor-1248 (4) [2C]	ADEC,CALAP	
Aroclor 1254	ADEC,CALAP,DoD-ELAP,NELAP,WADOE	
Aroclor-1254 (1)	ADEC,CALAP	
Aroclor-1254 (2)	ADEC,CALAP	
Aroclor-1254 (3)	ADEC,CALAP	
Aroclor-1254 (4)	ADEC,CALAP	
Aroclor-1254 (5)	ADEC,CALAP	
Aroclor 1254 [2C]	ADEC,CALAP,DoD-ELAP,NELAP,WADOE	
Aroclor-1254 (1) [2C]	ADEC,CALAP	
Aroclor-1254 (2) [2C]	ADEC,CALAP	
Aroclor-1254 (3) [2C]	ADEC,CALAP	
Aroclor-1254 (4) [2C]	ADEC,CALAP	
Aroclor-1254 (5) [2C]	ADEC,CALAP	
Aroclor 1260	ADEC,CALAP,DoD-ELAP,NELAP,WADOE	
Aroclor-1260 (1)	ADEC,CALAP	
Aroclor-1260 (2)	ADEC,CALAP	
Aroclor-1260 (3)	ADEC,CALAP	
Aroclor-1260 (4)	ADEC,CALAP	
Aroclor-1260 (5)	ADEC,CALAP	
Aroclor 1260 [2C]	ADEC,CALAP,DoD-ELAP,NELAP,WADOE	
Aroclor-1260 (1) [2C]	ADEC,CALAP	
Aroclor-1260 (2) [2C]	ADEC,CALAP	
Aroclor-1260 (3) [2C]	ADEC,CALAP	
Aroclor-1260 (4) [2C]	ADEC,CALAP	
Aroclor 1262	ADEC,CALAP,DoD-ELAP,NELAP,WADOE	
Aroclor-1262 (1)	ADEC,CALAP	
Aroclor-1262 (2)	ADEC,CALAP	
Aroclor-1262 (3)	ADEC,CALAP	
Aroclor-1262 (4)	ADEC,CALAP	
Aroclor-1262 (5)	ADEC,CALAP	
Aroclor 1262 [2C]	ADEC,CALAP,DoD-ELAP,NELAP,WADOE	
Aroclor-1262 (1) [2C]	ADEC,CALAP	
Aroclor-1262 (2) [2C]	ADEC,CALAP	
Aroclor-1262 (3) [2C]	ADEC,CALAP	

Analytical Resources, Inc.

arallon Consulting, LLC	Project: En	merald Gateway Site 1071-026	
809 7th Ave, Suite 1111	Project Number: 10'	071-026	Reported:
eattle WA, 98101	Project Manager: Pet	ete Kingston	09-Jul-2019 11:41
20101	Troject Manager. Tel	AC Kingston	09-Jul-2019

Aroclor-1262 (4) [2C] ADEC,CALAP Aroclor-1262 (5) [2C] ADEC,CALAP

Aroclor 1268 ADEC, CALAP, DoD-ELAP, NELAP, WADOE

Aroclor-1268 (1) ADEC,CALAP
Aroclor-1268 (2) ADEC,CALAP
Aroclor-1268 (3) ADEC,CALAP
Aroclor-1268 (4) ADEC,CALAP

Aroclor 1268 [2C] ADEC, CALAP, DoD-ELAP, NELAP, WADOE

Aroclor-1268 (1) [2C] ADEC,CALAP
Aroclor-1268 (2) [2C] ADEC,CALAP
Aroclor-1268 (3) [2C] ADEC,CALAP
Aroclor-1268 (4) [2C] ADEC,CALAP

EPA 8260C in Solid

Chloromethane WADOE, DoD-ELAP, NELAP, CALAP, ADEC Vinyl Chloride WADOE, DoD-ELAP, NELAP, CALAP, ADEC Bromomethane WADOE, DoD-ELAP, NELAP, CALAP, ADEC Chloroethane WADOE.DoD-ELAP.NELAP.CALAP.ADEC Trichlorofluoromethane WADOE, DoD-ELAP, NELAP, CALAP, ADEC Acrolein WADOE, DoD-ELAP, NELAP, CALAP 1,1,2-Trichloro-1,2,2-Trifluoroethane WADOE, DoD-ELAP, NELAP, CALAP, ADEC WADOE, DoD-ELAP, NELAP, CALAP Acetone WADOE, DoD-ELAP, NELAP, CALAP, ADEC 1,1-Dichloroethene Bromoethane WADOE, DoD-ELAP, NELAP, CALAP, ADEC Iodomethane WADOE, DoD-ELAP, NELAP, CALAP, ADEC Methylene Chloride WADOE, DoD-ELAP, NELAP, CALAP, ADEC Acrylonitrile WADOE, DoD-ELAP, NELAP, CALAP WADOE, DoD-ELAP, NELAP, CALAP, ADEC Carbon Disulfide trans-1,2-Dichloroethene WADOE, DoD-ELAP, NELAP, CALAP, ADEC Vinyl Acetate WADOE, DoD-ELAP, NELAP, CALAP 1,1-Dichloroethane WADOE, DoD-ELAP, NELAP, CALAP, ADEC 2-Butanone WADOE, DoD-ELAP, NELAP, CALAP WADOE, DoD-ELAP, NELAP, CALAP 2,2-Dichloropropane cis-1,2-Dichloroethene WADOE, DoD-ELAP, NELAP, CALAP, ADEC Chloroform WADOE, DoD-ELAP, NELAP, CALAP, ADEC WADOE, DoD-ELAP, NELAP, CALAP, ADEC Bromochloromethane 1,1,1-Trichloroethane WADOE, DoD-ELAP, NELAP, CALAP, ADEC

Analytical Resources, Inc.

1,1-Dichloropropene

Carbon tetrachloride

1,2-Dichloroethane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

WADOE, DoD-ELAP, NELAP, CALAP, ADEC

WADOE, DoD-ELAP, NELAP, CALAP, ADEC

WADOE, DoD-ELAP, NELAP, CALAP, ADEC

Farallon Consulting, LLC
Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111
Project Number: 1071-026

Reported:
Seattle WA, 98101
Project Manager: Pete Kingston
09-Jul-2019 11:41

Benzene WADOE, DoD-ELAP, NELAP, CALAP, ADEC Trichloroethene WADOE, DoD-ELAP, NELAP, CALAP, ADEC 1,2-Dichloropropane WADOE, DoD-ELAP, NELAP, CALAP, ADEC Bromodichloromethane WADOE, DoD-ELAP, NELAP, CALAP, ADEC Dibromomethane WADOE, DoD-ELAP, NELAP, CALAP, ADEC 2-Chloroethyl vinyl ether WADOE, DoD-ELAP, NELAP WADOE, DoD-ELAP, NELAP, CALAP 4-Methyl-2-Pentanone cis-1,3-Dichloropropene WADOE, DoD-ELAP, NELAP, CALAP, ADEC Toluene WADOE, DoD-ELAP, NELAP, CALAP, ADEC trans-1,3-Dichloropropene WADOE, DoD-ELAP, NELAP, CALAP, ADEC 2-Hexanone WADOE, DoD-ELAP, NELAP, CALAP 1,1,2-Trichloroethane WADOE, DoD-ELAP, NELAP, CALAP, ADEC 1,3-Dichloropropane WADOE, DoD-ELAP, NELAP, CALAP, ADEC WADOE, DoD-ELAP, NELAP, CALAP, ADEC Tetrachloroethene Dibromochloromethane WADOE, DoD-ELAP, NELAP, CALAP, ADEC 1,2-Dibromoethane WADOE, DoD-ELAP, NELAP, CALAP, ADEC Chlorobenzene WADOE, DoD-ELAP, NELAP, CALAP, ADEC WADOE, DoD-ELAP, NELAP, CALAP, ADEC Ethylbenzene 1,1,1,2-Tetrachloroethane WADOE, DoD-ELAP, NELAP, CALAP, ADEC m,p-Xylene WADOE, DoD-ELAP, NELAP, CALAP, ADEC o-Xylene WADOE, DoD-ELAP, NELAP, CALAP, ADEC Xylenes, total WADOE Styrene WADOE, DoD-ELAP, NELAP, CALAP, ADEC Bromoform WADOE, DoD-ELAP, NELAP, CALAP, ADEC 1,1,2,2-Tetrachloroethane WADOE, DoD-ELAP, NELAP, CALAP, ADEC 1,2,3-Trichloropropane WADOE, DoD-ELAP, NELAP, CALAP, ADEC trans-1,4-Dichloro 2-Butene WADOE, DoD-ELAP, NELAP n-Propylbenzene WADOE, DoD-ELAP, NELAP, CALAP Bromobenzene WADOE, DoD-ELAP, NELAP, CALAP, ADEC Isopropyl Benzene WADOE, DoD-ELAP, NELAP, CALAP, ADEC 2-Chlorotoluene WADOE, DoD-ELAP, NELAP, CALAP WADOE, DoD-ELAP, NELAP, CALAP 4-Chlorotoluene t-Butylbenzene WADOE, DoD-ELAP, NELAP, CALAP

1,3,5-TrimethylbenzeneWADOE,DoD-ELAP,NELAP,CALAP1,2,4-TrimethylbenzeneWADOE,DoD-ELAP,NELAP,CALAPs-ButylbenzeneWADOE,DoD-ELAP,NELAP,CALAP4-Isopropyl TolueneWADOE,DoD-ELAP,NELAP,CALAP1,3-DichlorobenzeneWADOE,DoD-ELAP,NELAP,CALAP1,4-DichlorobenzeneWADOE,DoD-ELAP,NELAP,CALAPn-ButylbenzeneWADOE,DoD-ELAP,NELAP,CALAP

Analytical Resources, Inc.

Farallon Consulting, LLC	Project: Emerald Gateway Site 1071-026	
1809 7th Ave, Suite 1111	Project Number: 1071-026	Reported:
Seattle WA, 98101	Project Manager: Pete Kingston	09-Jul-2019 11:41

1,2-Dichlorobenzene WADOE,DoD-ELAP,NELAP,CALAP

1,2-Dibromo-3-chloropropaneWADOE,DoD-ELAP,NELAP,CALAP,ADEC1,2,4-TrichlorobenzeneWADOE,DoD-ELAP,NELAP,CALAP,ADECHexachloro-1,3-ButadieneWADOE,DoD-ELAP,NELAP,CALAP,ADEC

Naphthalene WADOE, DoD-ELAP, NELAP, CALAP

1,2,3-TrichlorobenzeneWADOE,DoD-ELAP,NELAP,CALAP,ADECDichlorodifluoromethaneWADOE,DoD-ELAP,NELAP,CALAP,ADECMethyl tert-butyl EtherWADOE,DoD-ELAP,NELAP,CALAP

n-Hexane WADOE
2-Pentanone WADOE
Dibromofluoromethane WADOE
4-Bromofluorobenzene WADOE

NWTPH-Dx in Solid

Diesel Range Organics (C12-C24)

DoD-ELAP,NELAP,WADOE

Diesel Range Organics (C10-C25)

Diesel Range Organics (Tol-C18)

Diesel Range Organics (C10-C24)

Diesel Range Organics (C10-C24)

Diesel Range Organics (C10-C28)

DoD-ELAP,NELAP,WADOE

Diesel Range Organics (C12-C22) DoD-ELAP

Motor Oil Range Organics (C24-C38)

Motor Oil Range Organics (C25-C36)

Motor Oil Range Organics (C24-C40)

DoD-ELAP,NELAP,WADOE

DoD-ELAP,NELAP,WADOE

Residual Range Organics (C23-C32) DoD-ELAP

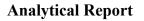
Mineral Oil Range Organics (C16-C28) DoD-ELAP, NELAP, WADOE Mineral Spirits Range Organics (Tol-C12) DoD-ELAP, NELAP, WADOE JP8 Range Organics (C8-C18) DoD-ELAP, NELAP, WADOE JP5 Range Organics (C10-C16) DoD-ELAP, NELAP, WADOE JP4 Range Organics (Tol-C14) DoD-ELAP, NELAP, WADOE Jet-A Range Organics (C10-C18) DoD-ELAP, NELAP, WADOE Kerosene Range Organics (Tol-C18) DoD-ELAP, NELAP, WADOE Stoddard Range Organics (C8-C12) DoD-ELAP, NELAP, WADOE Creosote Range Organics (C12-C22) DoD-ELAP, NELAP, WADOE Bunker C Range Organics (C10-C38) DoD-ELAP, NELAP, WADOE Transformer Oil Range Organics (C12-C28) DoD-ELAP, NELAP, WADOE

NWTPH-Dx in Water

Diesel Range Organics (C12-C24)

DoD-ELAP,NELAP,WADOE

Diesel Range Organics (C10-C25)


Diesel Range Organics (Tol-C18)

Diesel Range Organics (C10-C24)

DoD-ELAP,NELAP,WADOE

DoD-ELAP,NELAP,WADOE

Analytical Resources, Inc.

Farallon Consulting, LLC	Project: Emerald Gateway Site 1071-026	
1809 7th Ave, Suite 1111	Project Number: 1071-026	Reported:
Seattle WA, 98101	Project Manager: Pete Kingston	09-Jul-2019 11:41

Diesel Range Organics (C10-C28)	DoD-ELAP,NELAP,WADOE
Diesel Range Organics (C12-C22)	DoD-ELAP
Diesel Range Organics (C12-C25)	DoD-ELAP
Motor Oil Range Organics (C24-C38)	DoD-ELAP,NELAP,WADOE
Motor Oil Range Organics (C25-C36)	DoD-ELAP,NELAP,WADOE
Motor Oil Range Organics (C24-C40)	DoD-ELAP,NELAP,WADOE
Residual Range Organics (C23-C32)	DoD-ELAP
Mineral Spirits Range Organics (Tol-C12)	DoD-ELAP,NELAP,WADOE
Mineral Oil Range Organics (C16-C28)	DoD-ELAP,NELAP,WADOE
Kerosene Range Organics (Tol-C18)	DoD-ELAP,NELAP,WADOE
JP8 Range Organics (C8-C18)	DoD-ELAP,NELAP,WADOE
JP5 Range Organics (C10-C16)	DoD-ELAP,NELAP,WADOE
JP4 Range Organics (Tol-C14)	DoD-ELAP,NELAP,WADOE
Jet-A Range Organics (C10-C18)	DoD-ELAP,NELAP,WADOE
Creosote Range Organics (C12-C22)	DoD-ELAP,NELAP,WADOE
Bunker C Range Organics (C10-C38)	DoD-ELAP,NELAP,WADOE
Stoddard Range Organics (C8-C12)	DoD-ELAP,NELAP,WADOE
Transformer Oil Range Organics (C12-C28)	DoD-ELAP,NELAP,WADOE
NWTPHg in Solid	

Gasoline Range Organics (Tol-Nap)	DoD-ELAP
Gasoline Range Organics (2MP-TMB)	DoD-ELAP
Gasoline Range Organics (Tol-C12)	DoD-ELAP
Gasoline Range Organics (C6-C10)	DoD-ELAP
Gasoline Range Organics (C5-C12)	DoD-ELAP
4-Bromofluorobenzene (field spiked)	DoD-ELAP

Code	Description	Number	Expires
ADEC	Alaska Dept of Environmental Conservation	17-015	01/31/2021
CALAP	California Department of Public Health CAELAP	2748	06/30/2019
DoD-ELAP	DoD-Environmental Laboratory Accreditation Program	66169	01/01/2021
NELAP	ORELAP - Oregon Laboratory Accreditation Program	WA100006-012	05/12/2020
WADOE	WA Dept of Ecology	C558	06/30/2019
WA-DW	Ecology - Drinking Water	C558	06/30/2019

Analytical Resources, Inc.

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston09-Jul-2019 11:41

Notes and Definitions

*	Flagged value is not within established control limits.
D	The reported value is from a dilution
Н	Hold time violation - Hold time was exceeded.
J	Estimated concentration value detected below the reporting limit.
NRS	This surrogate not reported due to chromatographic interference
P1	The reported value is greater than 40% difference between the concentrations determined on two GC columns where applicable.
Q	Indicates a detected analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20% RSD, <20% drift or minimum RRF)
U	This analyte is not detected above the reporting limit (RL) or if noted, not detected above the limit of detection (LOD).
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
[2C]	Indicates this result was quantified on the second column on a dual column analysis.

09 July 2019

Pete Kingston Farallon Consulting, LLC 1809 7th Ave, Suite 1111 Seattle, WA 98101

RE: Emerald Gateway Site 1071-026

Please find enclosed sample receipt documentation and analytical results for samples from the project referenced above.

Sample analyses were performed according to ARI's Quality Assurance Plan and any provided project specific Quality Assurance Plan. Each analytical section of this report has been approved and reviewed by an analytical peer, the appropriate Laboratory Supervisor or qualified substitute, and a technical reviewer.

Should you have any questions or problems, please feel free to contact us at your convenience.

Associated Work Order(s)

19F0415

Associated SDG ID(s)
N/A

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed in the enclose Narrative. ARI, an accredited laboratory, certifies that the report results for which ARI is accredited meets all the requirements of the accrediting body. A list of certified analyses, accreditations, and expiration dates is included in this report.

Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in it entirety.

Cert# 100006

Chain of Custody Record & Laboratory Analysis Request

ARI Assigned Number: (위단시년)	Turn-around		5 Da	у .	Page	1	of	1			Analytica	al Resources, Incorporated al Chemists and Consultants
ARI Client Company:		Phone 42	5-391	44146	Date	6/28/1	9 Ice Prese	ent?			Tukwila,	uth 134th Place, Suite 100 WA 98168 -6200 206-695-6201 (fax)
Pete Kngi	ston				No. o Coolers		Coole Temp	er 4.3			www.ari	
Client Project Name: E Meral	d Cate	Way						Analysis R	equested	1		Notes/Comments
Client Project #: (071-02-6	Samplers:	P/Js			no c	10RO	25.25					
Sample ID	Date	Time	Matrix	No. Containers	See S	DRO/ORD NUTPHD	Matals 6000 series					
F-28-5.0	6/28/19	0845	2	1								
F-28-8.5		0850		1	X							
F-28-15-0		0855		1								
F-29-6.0		1000		2								
F-29-8.5		1005		2		X	X					
F-29-15.0		1010	V	7								
F-28-190628	V	9395	W	2	X							
Comments/Special Instructions	Relinquished by:			Received by:				Balling				
comments/special instructions	(Signature)	1	~	(Signature) Z	-	Sa		Relinquished b (Signature)	y.		Received by: (Signature)	
	Printed Name:	Pelliver	_	Printed Name:	Sall	2		Printed Name:			Printed Name:	
	Company:	100		Company:				Company:			Company:	
I	Date & Time: 6/28/1	19 1145	5	Date & Time: 6/28/	19	1145		Date & Time:			Date & Time:	

Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or cosigned agreement between ARI and the Client.

Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston09-Jul-2019 11:49

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
F-28-8.5	19F0415-02	Solid	28-Jun-2019 08:50	28-Jun-2019 11:45
F-29-8.5	19F0415-05	Solid	28-Jun-2019 10:05	28-Jun-2019 11:45
F-28-190628	19F0415-07	Water	28-Jun-2019 09:15	28-Jun-2019 11:45

Analytical Resources, Inc.

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston09-Jul-2019 11:49

Work Order Case Narrative

Sample receipt

Samples as listed on the preceding page were received June 28, 2019 under ARI work order 19F0415. For details regarding sample receipt, please refer to the Cooler Receipt Form.

Diesel/Heavy Oil Range Organics - WA-Ecology Method NW-TPHDx

The samples were extracted and analyzed within the recommended holding times.

Initial and continuing calibrations were within method requirements.

The surrogate percent recoveries were within control limits.

The method blank was clean at the reporting limits.

The LCS percent recoveries were within control limits.

PCB Aroclors - EPA Method SW8082A

The samples were extracted and analyzed within the recommended holding times.

Initial and continuing calibrations were within method requirements.

Internal standard areas were within limits.

The surrogate percent recoveries were within control limits.

The method blanks were clean at the reporting limits.

The LCS percent recoveries were within control limits.

Total Metals - EPA Method 6020A

The sample was digested and analyzed within the recommended holding times.

Initial and continuing calibrations were within method requirements.

The method blank was clean at the reporting limits.

The LCS percent recoveries were within control limits.

Total Hg - EPA Method 7471B

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston09-Jul-2019 11:49

The sample was digested and analyzed within the recommended holding times.

Initial and continuing calibrations were within method requirements.

The method blank was clean at the reporting limits.

The LCS percent recoveries were within control limits.

Analytical Resources, Inc.

WORK ORDER

19F0415

Client: Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026		Project Manager: Amanda Volgardsen Project Number: 1071-026				
Report To:		Invoice To:				
Farallon Consu	lting, LLC	Farallon Consultin	ng, LLC			
Pete Kingston		Yusuf Pehlivan				
1809 7th Ave, Suite 1111		975 5th Avenue N	orthwest			
Seattle, WA 98	101	Issaquah, WA 980	27			
Phone: (425) 39	94-4146	Phone :(425) 394-				
Fax: -		Fax: -				
Date Due:	08-Jul-2019 18:00 (5 day TAT)					
Received By:	Erin I. Salle	Date Received:	28-Jun-2019 11:45			
Logged In By:	Erin I. Salle	Date Logged In:	28-Jun-2019 12:05			
Samples Received a			5 42 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5			
	signed and dated custody seals attached to outside of cooler(s). properly filled out (in, signed, analyses requested, etc)		pers included with the cooler			
	te used (if appropriate)	Yes All bottles se	ealed in individual plastic bags			
All bottles arrive	ed in good condition (unbroken)	Yes All bottle lal	bels complete and legibleYes			
	ainers listed on COC match number received	Yes Bottle labels	s and tags agree with COC Yes			
	require preservation (attach preservation sheet excluding VOC		als free of air bubbles			
	RI		mount of sample sent in each oothe			
Analysis	Due TAT	Expires	Comments			

WORK ORDER

19F0415

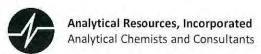
Client: Farallon Consulting, LLC Project Manager: Amanda Volgardsen

Project: Emerald Gateway S	Site 1071-026		Project Number:	1071-026
Analysis	Due	TAT	Expires	Comments
19F0415-01 F-28-5.0 Solid Time (US & Canada)	Sampled 28-Jun-2019 (08:45 (GN	MT-08:00) Pacific	
A = Glass WM, Clear, 8 oz		·		
Hold Sample	08-Jul-2019 15:00	5	27-Jun-2020 08:45	
19F0415-02 F-28-8.5 Solid Time (US & Canada)	Sampled 28-Jun-2019 (08:50 (GN	MT-08:00) Pacific	
A = Glass WM, Clear, 8 oz		***************************************		
8082A PCB (20 ug/kg) or (MTC/	A 0.1 u 08-Jul-2019 15:00	5	12-Jul-2019 08:50	
Solids, Total, Dried at 103 -105 °		5	26-Jul-2019 08:50	
Hold Sample	08-Jul-2019 15:00	5	27-Jun-2020 08:50	
19F0415-03 F-28-15.0 [Soli Time (US & Canada)	d] Sampled 28-Jun-2019	08:55 (G	MT-08:00) Pacific	
A = Glass WM, Clear, 8 oz				
Hold Sample	08-Jul-2019 15:00	5	27-Jun-2020 08:55	
Time (US & Canada) A = Glass WM, Clear, 8 oz Hold Sample	B = Glass WM, Clear, 4 oz 08-Jul-2019 15:00	5	27-Jun-2020 10:00	
19F0415-05 F-29-8.5 Solid Time (US & Canada)	Sampled 28-Jun-2019 1	0:05 (GN	AT-08:00) Pacific	
A = Glass WM, Clear, 8 oz	B = Glass WM, Clear, 4 oz			
Met 6020A - Mn	08-Jul-2019 15:00	5	25-Dec-2019 10:05	
Hold Sample	08-Jul-2019 15:00	5	27-Jun-2020 10:05	
Met 6020A - As UCT	08-Jul-2019 15:00	5	25-Dec-2019 10:05	
Met 6020A - Cu UCT	08-Jul-2019 15:00	5	25-Dec-2019 10:05	
Met 6020A - Pb	08-Jul-2019 15:00	5	25-Dec-2019 10:05	
Met 6020A - Zn UCT	08-Jul-2019 15:00	5	25-Dec-2019 10:05	
Met 7471B Hg	08-Jul-2019 15:00	5	26-Jul-2019 10:05	
Solids, Total, Dried at 103 -105 °C		5	26-Jul-2019 10:05	
TPH NW (Extractables) low level		5	12-Jul-2019 10:05	
Met 6020A - Cd UCT	00 1.1 2010 12.00	5	25-Dec-2019 10:05	
	08-Jul-2019 15:00		20 0 00 00 00 00 00 00 00 00 00 00 00 00	
19F0415-06 F-29-15.0 Solid Time (US & Canada)				

Printed: 6/28/2019 12:13:04PM

WORK ORDER

19F0415


Client: Farallon Consulting, LLC Project Manager: Amanda Volgardsen

Project: Emerald Gateway Site 1071-026 Project Number: 1071-026

Analysis	Due	TAT	Expires	Comments
19F0415-07 F-28-190628 Pacific Time (US & Canad	[Water] Sampled 28-Jun-2 la)	2019 09:1	15 (GMT-08:00)	
A = Glass NM, Amber, 500 mL	B = Glass NM, Amber, 500 mL			
Hold Sample	08-Jul-2019 15:00	5	27-Jun-2020 09:15	
8082A PCB Water 0.01	08-Jul-2019 15:00	5	05-Jul-2019 09:15	

Reviewed By

Date

Cooler Receipt Form

ARI Client: Fara 101		Project Name: Emera lo	Gateno	2)	
COC No(s):	NA	Delivered by: Fed-Ex UPS Cour	ier Hand Delivere	Other:	
Assigned ARI Job No: MPO4	15	Tracking No:			NA
Preliminary Examination Phase:		9.50			
Were intact, properly signed and date	ed custody seals attached to the	e outside of the cooler?	YE	S_ (N	NO D
Were custody papers included with the	he cooler?		YE	8 1	NO
Were custody papers properly filled of	out (ink, signed, etc.)		YE	S N	10
Temperature of Cooler(s) (°C) (recor	mmended 2.0-6.0 °C for chemis	try)			
Time 1145		4.3			
If cooler temperature is out of compli	ance fill out form 00070F		Temp Gun ID#:	DO2565	
Cooler Accepted by:	SOV 1	Date: 6/28/19 Time:	1145		
	Complete custody forms and	d attach all shipping documents			
Log-In Phase:					
Was a temperature blank included	in the cooler?			VEC	NO
What kind of packing material wa		Wet Ice Gel Packs Baggies Foam	Block Paner Othe	YES	NO
Was sufficient ice used (if appropria			NA	YES	NO
How were bottles sealed in plastic t	and the second s		Individually	Grouped	Not
Did all bottles arrive in good conditi			manadany	YES	NO
Were all bottle labels complete and	The state of the s			ES	NO
Did the number of containers listed	on COC match with the numbe	r of containers received?		YES	NO
Did all bottle labels and tags agree	with custody papers?			YES	NO
Were all bottles used correct for the	e requested analyses?			YES	NO
Do any of the analyses (bottles) rec	quire preservation? (attach pres	ervation sheet, excluding VOCs)	(NA)	YES	NO
Were all VOC vials free of air bubbl	es?		(NA)	YES	NO
Was sufficient amount of sample se	ent in each bottle?			(ES)	NO
Date VOC Trip Blank was made at	ARI		(NA)		
Were the sample(s) split by ARI?	YES Date/Time:	Equipment:		Split by:	
oy / ((1)	01000			. 0	
	1 1-1 (1)	1010		1.5	
Samples Logged by:	Date: 6/28/[Time: 100 Lal	oels checked by:	400	
Samples Logged by:	** Notify Project Manager of	f discrepancies or concerns **	oels checked by: _	400	
Samples Logged by:	** Notify Project Manager of		oels checked by: _		
Samples Logged by: Sample ID on Bottle	** Notify Project Manager of Sample ID on COC			ID on COC	
		f discrepancies or concerns **		ID on COC	
Samples Logged by: Sample ID on Bottle		f discrepancies or concerns **		ID on COC	
		f discrepancies or concerns **		ID on COC	
	Sample ID on COC	f discrepancies or concerns **		ID on COC	

0016F 01/17/2018

Cooler Receipt Form

Revision 014A

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston09-Jul-2019 11:49

F-28-8.5 19F0415-02 (Solid)

Aroclor PCB

Method: EPA 8082ASampled: 06/28/2019 08:50Instrument: ECD7Analyst: JGRAnalyzed: 07/02/2019 21:57Sample Preparation:Preparation Method: EPA 3546 (Microwave)
Preparation Batch: BHG0007Extract ID: 19F0415-02 A 01
Dry Weight: 5.02 g
Final Volume: 5 mL

			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Aroclor 1016	12674-11-2	1	8.0	19.9	ND	ug/kg	U
Aroclor 1221	11104-28-2	1	8.0	19.9	ND	ug/kg	U
Aroclor 1232	11141-16-5	1	8.0	19.9	ND	ug/kg	U
Aroclor 1242	53469-21-9	1	8.0	19.9	ND	ug/kg	U
Aroclor 1248	12672-29-6	1	8.0	19.9	ND	ug/kg	U
Aroclor 1254	11097-69-1	1	8.0	19.9	ND	ug/kg	U
Aroclor 1260	11096-82-5	1	9.2	19.9	ND	ug/kg	U
Aroclor 1262	37324-23-5	1	9.2	19.9	ND	ug/kg	U
Aroclor 1268	11100-14-4	1	9.2	19.9	ND	ug/kg	U
Surrogate: Decachlorobiphenyl				40-133 %	92.1	%	
Surrogate: Tetrachlorometaxylene				53-120 %	92.5	%	
Surrogate: Decachlorobiphenyl [2C]				40-133 %	90.1	%	
Surrogate: Tetrachlorometaxylene [2C]				53-120 %	86.4	%	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston09-Jul-2019 11:49

F-29-8.5 19F0415-05 (Solid)

Petroleum Hydrocarbons

Method: NWTPH-Dx			Sampled: 06/28/2019 10:05
Instrument: FID4 Analy	st: VTS		Analyzed: 07/03/2019 10:46
Sample Preparation:	Preparation Method: EPA 3546 (Microv	vave)	Extract ID: 19F0415-05 A 01
	Preparation Batch: BHF0752	Sample Size: 10.07 g (wet)	Dry Weight: 8.08 g
	Prepared: 01-Jul-2019	Final Volume: 1 mL	% Solids: 80.26

Analyte	CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Diesel Range Organics (C12-C24)	DRO	1	6.19	ND	mg/kg	U
Motor Oil Range Organics (C24-C38)	RRO	1	12.4	ND	mg/kg	U
Surrogate: o-Terphenyl			50-150 %	85.7	%	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston09-Jul-2019 11:49

F-29-8.5 19F0415-05 (Solid)

Metals and Metallic Compounds

Method: EPA 6020A			Sampled: 06/28/2019 10:05
Instrument: ICPMS2 An	alyst: MCB		Analyzed: 07/03/2019 15:55
Sample Preparation:	Preparation Method: SWN EPA 3050B		Extract ID: 19F0415-05 B 01
	Preparation Batch: BHG0004	Sample Size: 1.084 g (wet)	Dry Weight: 0.87 g
	Prepared: 01-Jul-2019	Final Volume: 50 mL	% Solids: 80.26

	F							
				Detection	Reporting			
Analyte		CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Lead		7439-92-1	20	0.08	0.11	1.58	mg/kg	
Manganese		7439-96-5	20	0.10	0.57	33.0	mg/kg	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston09-Jul-2019 11:49

F-29-8.5 19F0415-05 (Solid)

Metals and Metallic Compounds

Method: EPA 6020A UC	Γ-KED	Sampled: 06/28/2019 10:05	
Instrument: ICPMS2 An	alyst: MCB		Analyzed: 07/03/2019 15:55
Sample Preparation:	Preparation Method: SWN EPA 3050B		Extract ID: 19F0415-05 B 01
	Preparation Batch: BHG0004	Sample Size: 1.084 g (wet)	Dry Weight: 0.87 g
	Prepared: 01-Jul-2019	Final Volume: 50 mL	% Solids: 80.26

	1							
				Detection	Reporting			
Analyte	CAS	Number	Dilution	Limit	Limit	Result	Units	Notes
Arsenic	7.	440-38-2	20	0.03	0.23	2.63	mg/kg	
Cadmium	7-	440-43-9	20	0.03	0.11	ND	mg/kg	U
Copper	7-	440-50-8	20	0.39	0.57	27.3	mg/kg	
Zinc	7.	440-66-6	20	0.9	4.6	11.6	mg/kg	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston09-Jul-2019 11:49

F-29-8.5 19F0415-05 (Solid)

Metals and Metallic Compounds

Mercury

Analyte		CAS Number	Dilution	Limit	Limit	Result	Units	Notes
				Detection	Reporting			
	Prepared: 05-Jul-2019	Final Volume: 50	0 mL				%	Solids: 80.26
	Preparation Batch: BHG0140	Sample Size: 0.2	288 g (wet)				Dry	Weight:0.23 g
Sample Preparation:	Preparation Method: SMM EPA 7471B						Extract ID:	19F0415-05 B
Instrument: CVAA Anal	yst: SKM					Aı	nalyzed: 07/	08/2019 16:06
Method: EPA 7471B						S	ampled: 06/2	28/2019 10:05

7439-97-6

1

0.00454

0.0216

0.0142

mg/kg

J

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston09-Jul-2019 11:49

F-28-190628 19F0415-07 (Water)

Aroclor PCB

Method: EPA 8082A			Sampled: 06/28/2019 09:15
Instrument: ECD7 Anal	yst: VTS		Analyzed: 06/29/2019 21:26
Sample Preparation:	Preparation Method: EPA 3510C SepF Preparation Batch: BHF0748 Prepared: 28-Jun-2019	Sample Size: 500 mL Final Volume: 1 mL	Extract ID: 19F0415-07 A 01
Sample Cleanup:	Cleanup Method: Silica Gel Cleanup Batch: CHF0246 Cleaned: 28-Jun-2019	Initial Volume: 1 mL Final Volume: 1 mL	Extract ID: 19F0415-07 A 01
Sample Cleanup:	Cleanup Method: Sulfuric Acid Cleanup Batch: CHF0244 Cleaned: 28-Jun-2019	Initial Volume: 1 mL Final Volume: 1 mL	Extract ID:19F0415-07 A 01
Sample Cleanup:	Cleanup Method: Sulfur Cleanup Batch: CHF0245 Cleaned: 28-Jun-2019	Initial Volume: 1 mL Final Volume: 1 mL	Extract ID:19F0415-07 A 01

			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Aroclor 1016	12674-11-2	1	0.018	0.100	ND	ug/L	U
Aroclor 1221	11104-28-2	1	0.018	0.100	ND	ug/L	U
Aroclor 1232	11141-16-5	1	0.018	0.100	ND	ug/L	U
Aroclor 1242	53469-21-9	1	0.018	0.100	ND	ug/L	U
Aroclor 1248	12672-29-6	1	0.018	0.100	ND	ug/L	U
Aroclor 1254	11097-69-1	1	0.018	0.100	ND	ug/L	U
Aroclor 1260	11096-82-5	1	0.017	0.100	ND	ug/L	U
Aroclor 1262	37324-23-5	1	0.017	0.100	ND	ug/L	U
Aroclor 1268	11100-14-4	1	0.017	0.100	ND	ug/L	U
Surrogate: Decachlorobiphenyl				26-120 %	68.9	%	
Surrogate: Tetrachlorometaxylene				39-120 %	69.0	%	
Surrogate: Decachlorobiphenyl [2C]				26-120 %	68.0	%	
Surrogate: Tetrachlorometaxylene [2C]				39-120 %	59.7	%	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston09-Jul-2019 11:49

Petroleum Hydrocarbons - Quality Control

Batch BHF0752 - EPA 3546 (Microwave)

Instrument: FID4 Analyst: VTS

QC Sample/Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Blank (BHF0752-BLK1)			Prepa	ared: 01-Jul-	2019 An	alyzed: 03-J	ul-2019 07:4	13		
Diesel Range Organics (C12-C24)	ND	5.00	mg/kg							U
Motor Oil Range Organics (C24-C38)	ND	10.0	mg/kg							U
Surrogate: o-Terphenyl	10.8		mg/kg	11.3		95.7	50-150			
LCS (BHF0752-BS1)			Prepa	ared: 01-Jul-	2019 An	alyzed: 03-J	ul-2019 08:0)3		
Diesel Range Organics (C12-C24)	150	5.00	mg/kg	150		99.9	63-120			
Surrogate: o-Terphenyl	11.4		mg/kg	11.3		101	50-150			

Analytical Resources, Inc.

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston09-Jul-2019 11:49

Aroclor PCB - Quality Control

Batch BHF0748 - EPA 3510C SepF

Instrument: ECD7 Analyst: VTS

		Detection	Reporting		Spike	Source	0/775	%REC		RPD	
QC Sample/Analyte	Result	Limit	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Blank (BHF0748-BLK1)				Prepa	ared: 28-Jun	-2019 Ana	alyzed: 29-J	un-2019 20	:23		
Aroclor 1016	ND	0.018	0.100	ug/L							U
Aroclor 1221	ND	0.018	0.100	ug/L							U
Aroclor 1232	ND	0.018	0.100	ug/L							U
Aroclor 1242	ND	0.018	0.100	ug/L							U
Aroclor 1248	ND	0.018	0.100	ug/L							U
Aroclor 1254	ND	0.018	0.100	ug/L							U
Aroclor 1260	ND	0.017	0.100	ug/L							U
Aroclor 1262	ND	0.017	0.100	ug/L							U
Aroclor 1268	ND	0.017	0.100	ug/L							U
Surrogate: Decachlorobiphenyl	0.0672			ug/L	0.0800		84.0	26-120			
Surrogate: Tetrachlorometaxylene	0.0474			ug/L	0.0800		59.2	39-120			
Surrogate: Decachlorobiphenyl [2C]	0.0651			ug/L	0.0800		81.4	26-120			
Surrogate: Tetrachlorometaxylene [2C]	0.0394			ug/L	0.0800		49.3	39-120			
LCS (BHF0748-BS1)				Prepa	ared: 28-Jun	-2019 Ana	alyzed: 29-J	un-2019 20	:44		
Aroclor 1016	0.915	0.018	0.100	ug/L	1.00		91.5	51-120			
Aroclor 1260	0.943	0.017	0.100	ug/L	1.00		94.3	56-120			
Surrogate: Decachlorobiphenyl	0.0661		<u> </u>	ug/L	0.0800		82.6	26-120		<u> </u>	
Surrogate: Tetrachlorometaxylene	0.0557			ug/L	0.0800		69.7	39-120			
Surrogate: Decachlorobiphenyl [2C]	0.0654			ug/L	0.0800		81.7	26-120			
Surrogate: Tetrachlorometaxylene [2C]	0.0473			ug/L	0.0800		59.2	39-120			

Analytical Resources, Inc.

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston09-Jul-2019 11:49

Aroclor PCB - Quality Control

Batch BHG0007 - EPA 3546 (Microwave)

Instrument: ECD7 Analyst: JGR

		Detection	Reporting		Spike	Source		%REC		RPD	
QC Sample/Analyte	Result	Limit	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Blank (BHG0007-BLK1)				Prepa	ared: 01-Jul-	-2019 Ana	lyzed: 02-Ju	ıl-2019 18:2	.9		
Aroclor 1016	ND	8.0	20.0	ug/kg							U
Aroclor 1221	ND	8.0	20.0	ug/kg							U
Aroclor 1232	ND	8.0	20.0	ug/kg							U
Aroclor 1242	ND	8.0	20.0	ug/kg							U
Aroclor 1248	ND	8.0	20.0	ug/kg							U
Aroclor 1254	ND	8.0	20.0	ug/kg							U
Aroclor 1260	ND	9.3	20.0	ug/kg							U
Aroclor 1262	ND	9.3	20.0	ug/kg							U
Aroclor 1268	ND	9.3	20.0	ug/kg							U
Surrogate: Decachlorobiphenyl	37.4			ug/kg	40.0		93.5	40-133			
Surrogate: Tetrachlorometaxylene	39.5			ug/kg	40.0		98.8	53-120			
Surrogate: Decachlorobiphenyl [2C]	37.4			ug/kg	40.0		93.5	40-133			
Surrogate: Tetrachlorometaxylene [2C]	35.7			ug/kg	40.0		89.4	53-120			
LCS (BHG0007-BS1)				Prepa	ared: 01-Jul-	2019 Ana	lyzed: 02-Jı	ıl-2019 18:5	50		
Aroclor 1016	494	8.0	20.0	ug/kg	500		98.9	52-120			
Aroclor 1260	422	9.3	20.0	ug/kg	500		84.5	57-120			
Surrogate: Decachlorobiphenyl	38.6			ug/kg	40.0		96.5	40-133			
Surrogate: Tetrachlorometaxylene	40.1			ug/kg	40.0		100	53-120			
Surrogate: Decachlorobiphenyl [2C]	38.6			ug/kg	40.0		96.6	40-133			
Surrogate: Tetrachlorometaxylene [2C]	36.4			ug/kg	40.0		90.9	53-120			

Analytical Resources, Inc.

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston09-Jul-2019 11:49

Metals and Metallic Compounds - Quality Control

Batch BHG0004 - SWN EPA 3050B

Instrument: ICPMS2 Analyst: MCB

QC Sample/Analyte	Isotope	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Blank (BHG0004-BLK1)					Prepa	ared: 01-Jul-	-2019 Ana	lyzed: 03-Jı	ul-2019 14:1	15		
Lead	208	ND	0.07	0.10	mg/kg							U
Manganese	55	ND	0.09	0.50	mg/kg							U
Arsenic	75a	ND	0.02	0.20	mg/kg							U
Cadmium	111	ND	0.03	0.10	mg/kg							U
Cadmium	114	ND	0.04	0.10	mg/kg							U
Copper	63	ND	0.34	0.50	mg/kg							U
Copper	65	ND	0.35	0.50	mg/kg							U
Zinc	66	ND	0.8	4.0	mg/kg							U
Zinc	67	ND	0.9	4.0	mg/kg							U
LCS (BHG0004-BS1)					Prepa	ared: 01-Jul-	-2019 Anal	lyzed: 03-Jı	ul-2019 14:2	20		
Lead	208	26.2	0.07	0.10	mg/kg	25.0		105	80-120			
Manganese	55	24.2	0.09	0.50	mg/kg	25.0		96.9	80-120			
Arsenic	75a	24.2	0.02	0.20	mg/kg	25.0		96.8	80-120			
Cadmium	111	24.3	0.03	0.10	mg/kg	25.0		97.2	80-120			
Cadmium	114	24.3	0.04	0.10	mg/kg	25.0		97.0	80-120			
Copper	63	26.1	0.34	0.50	mg/kg	25.0		104	80-120			
Copper	65	25.8	0.35	0.50	mg/kg	25.0		103	80-120			
Zinc	66	79.6	0.8	4.0	mg/kg	80.0		99.5	80-120			
Zinc	67	76.0	0.9	4.0	mg/kg	80.0		95.0	80-120			

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston09-Jul-2019 11:49

Metals and Metallic Compounds - Quality Control

Batch BHG0140 - SMM EPA 7471B

Instrument: CVAA Analyst: SKM

QC Sample/Analyte	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Blank (BHG0140-BLK1)				Prepa	ared: 05-Jul-	2019 Ana	lyzed: 08-J	ul-2019 15:5	50		
Mercury	ND	0.00525	0.0250	mg/kg							U
LCS (BHG0140-BS1)				Prepa	ared: 05-Jul-	2019 Ana	lyzed: 08-J	ul-2019 15:5	52		
Mercury	0.541	0.00525	0.0250	mg/kg	0.500		108	80-120			

Analytical Resources, Inc.

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston09-Jul-2019 11:49

Certified Analyses included in this Report

Analyte	Certifications
EPA 6020A in Solid	
Manganese-55	NELAP,DoD-ELAP,WADOE
Lead-208	NELAP,DoD-ELAP,WADOE,ADEC
EPA 6020A UCT-KED in Solid	
Arsenic-75a	NELAP,DoD-ELAP,WADOE,ADEC
Cadmium-111	NELAP, DoD-ELAP, WADOE, ADEC
Cadmium-114	NELAP,DoD-ELAP,WADOE,ADEC
Copper-63	NELAP,DoD-ELAP,WADOE
Copper-65	NELAP,DoD-ELAP,WADOE
Zinc-66	NELAP,DoD-ELAP,WADOE
Zinc-67	NELAP,DoD-ELAP,WADOE
EPA 7471B in Solid	
Mercury	WADOE, NELAP, DoD-ELAP, CALAP
EPA 8082A in Solid	
Aroclor 1016	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
Aroclor 1016 [2C]	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
Aroclor 1221	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
Aroclor 1221 [2C]	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
Aroclor 1232	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
Aroclor 1232 [2C]	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
Aroclor 1242	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
Aroclor 1242 [2C]	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
Aroclor 1248	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
Aroclor 1248 [2C]	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
Aroclor 1254	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
Aroclor 1254 [2C]	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
Aroclor 1260	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
Aroclor 1260 [2C]	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
Aroclor 1262	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
Aroclor 1262 [2C]	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
Aroclor 1268	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
Aroclor 1268 [2C]	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
EPA 8082A in Water	
Aroclor 1016	ADEC,CALAP,DoD-ELAP,NELAP,WADOE
Aroclor-1016 (1)	ADEC,CALAP

Analytical Resources, Inc.

Farallon Consulting, LLC	Project: Emerald Gateway Site 1071-026	
1809 7th Ave, Suite 1111	Project Number: 1071-026	Reported:
Seattle WA, 98101	Project Manager: Pete Kingston	09-Jul-2019 11:49
Aroclor-1016 (2)	ADEC,CALAP	
Aroclor-1016 (3)	ADEC,CALAP	
Aroclor-1016 (4)	ADEC,CALAP	
Aroclor 1016 [2C]	ADEC,CALAP,DoD-ELAP,NELAP,WADOE	
Aroclor-1016 (1) [2C]	ADEC,CALAP	
Aroclor-1016 (2) [2C]	ADEC,CALAP	
Aroclor-1016 (3) [2C]	ADEC,CALAP	
Aroclor-1016 (4) [2C]	ADEC,CALAP	
Aroclor 1221	ADEC,CALAP,DoD-ELAP,NELAP,WADOE	
Aroclor-1221 (1)	ADEC,CALAP	
Aroclor-1221 (2)	ADEC,CALAP	
Aroclor-1221 (3)	ADEC,CALAP	
Aroclor 1221 [2C]	ADEC,CALAP,DoD-ELAP,NELAP,WADOE	
Aroclor-1221 (1) [2C]	ADEC,CALAP	
Aroclor-1221 (2) [2C]	ADEC,CALAP	
Aroclor-1221 (3) [2C]	ADEC,CALAP	
Aroclor-1221 (4) [2C]	ADEC,CALAP	
Aroclor 1232	ADEC,CALAP,DoD-ELAP,NELAP,WADOE	
Aroclor-1232 (1)	ADEC,CALAP	
Aroclor-1232 (2)	ADEC,CALAP	
Aroclor-1232 (3)	ADEC,CALAP	
Aroclor-1232 (4)	ADEC,CALAP	
Aroclor 1232 [2C]	ADEC,CALAP,DoD-ELAP,NELAP,WADOE	
Aroclor-1232 (1) [2C]	ADEC,CALAP	
Aroclor-1232 (2) [2C]	ADEC,CALAP	
Aroclor-1232 (3) [2C]	ADEC,CALAP	
Aroclor-1232 (4) [2C]	ADEC,CALAP	
Aroclor 1242	ADEC,CALAP,DoD-ELAP,NELAP,WADOE	
Aroclor-1242 (1)	ADEC,CALAP	
Aroclor-1242 (2)	ADEC,CALAP	
Aroclor-1242 (3)	ADEC,CALAP	
Aroclor-1242 (4)	ADEC,CALAP	
Aroclor 1242 [2C]	ADEC,CALAP,DoD-ELAP,NELAP,WADOE	
Aroclor-1242 (1) [2C]	ADEC,CALAP	
Aroclor-1242 (2) [2C]	ADEC,CALAP	
Aroclor-1242 (3) [2C]	ADEC,CALAP	
Aroclor-1242 (4) [2C]	ADEC,CALAP	
Aroclor 1248	ADEC,CALAP,DoD-ELAP,NELAP,WADOE	
Aroclor-1248 (1)	ADEC,CALAP	
Aroclor-1248 (2)	ADEC,CALAP	

Analytical Resources, Inc.

Farallon Consulting, LLC	Project: Emerald Gateway Site 1071-026	
1809 7th Ave, Suite 1111	Project Number: 1071-026	Reported:
Seattle WA, 98101	Project Manager: Pete Kingston	09-Jul-2019 11:49
Aroclor-1248 (3)	ADEC,CALAP	
Aroclor-1248 (4)	ADEC,CALAP	
Aroclor 1248 [2C]	ADEC,CALAP,DoD-ELAP,NELAP,WADOE	
Aroclor-1248 (1) [2C]	ADEC,CALAP	
Aroclor-1248 (2) [2C]	ADEC,CALAP	
Aroclor-1248 (3) [2C]	ADEC,CALAP	
Aroclor-1248 (4) [2C]	ADEC,CALAP	
Aroclor 1254	ADEC,CALAP,DoD-ELAP,NELAP,WADOE	
Aroclor-1254 (1)	ADEC,CALAP	
Aroclor-1254 (2)	ADEC,CALAP	
Aroclor-1254 (3)	ADEC,CALAP	
Aroclor-1254 (4)	ADEC,CALAP	
Aroclor-1254 (5)	ADEC,CALAP	
Aroclor 1254 [2C]	ADEC,CALAP,DoD-ELAP,NELAP,WADOE	
Aroclor-1254 (1) [2C]	ADEC,CALAP	
Aroclor-1254 (2) [2C]	ADEC,CALAP	
Aroclor-1254 (3) [2C]	ADEC,CALAP	
Aroclor-1254 (4) [2C]	ADEC,CALAP	
Aroclor-1254 (5) [2C]	ADEC,CALAP	
Aroclor 1260	ADEC,CALAP,DoD-ELAP,NELAP,WADOE	
Aroclor-1260 (1)	ADEC,CALAP	
Aroclor-1260 (2)	ADEC,CALAP	
Aroclor-1260 (3)	ADEC,CALAP	
Aroclor-1260 (4)	ADEC,CALAP	
Aroclor-1260 (5)	ADEC,CALAP	
Aroclor 1260 [2C]	ADEC,CALAP,DoD-ELAP,NELAP,WADOE	
Aroclor-1260 (1) [2C]	ADEC,CALAP	
Aroclor-1260 (2) [2C]	ADEC,CALAP	
Aroclor-1260 (3) [2C]	ADEC,CALAP	
Aroclor-1260 (4) [2C]	ADEC,CALAP	
Aroclor 1262	ADEC,CALAP,DoD-ELAP,NELAP,WADOE	
Aroclor-1262 (1)	ADEC,CALAP	
Aroclor-1262 (2)	ADEC,CALAP	
Aroclor-1262 (3)	ADEC,CALAP	
Aroclor-1262 (4)	ADEC,CALAP	
Aroclor-1262 (5)	ADEC,CALAP	
Aroclor 1262 [2C]	ADEC,CALAP,DoD-ELAP,NELAP,WADOE	
Aroclor-1262 (1) [2C]	ADEC,CALAP	
Aroclor-1262 (2) [2C]	ADEC,CALAP	
Aroclor-1262 (3) [2C]	ADEC,CALAP	

Analytical Resources, Inc.

Farallon Consulting, LLC	Project: Emerald Gateway Site 1071-026	
1809 7th Ave, Suite 1111	Project Number: 1071-026	Reported:
Seattle WA, 98101	Project Manager: Pete Kingston	09-Jul-2019 11:49
Aroclor-1262 (4) [2C]	ADEC,CALAP	
Aroclor-1262 (5) [2C]	ADEC,CALAP	
Aroclor 1268	ADEC,CALAP,DoD-ELAP,NELAP,WADOE	
Aroclor-1268 (1)	ADEC,CALAP	
Aroclor-1268 (2)	ADEC,CALAP	
Aroclor-1268 (3)	ADEC,CALAP	
Aroclor-1268 (4)	ADEC,CALAP	
Aroclor 1268 [2C]	ADEC,CALAP,DoD-ELAP,NELAP,WADOE	
Aroclor-1268 (1) [2C]	ADEC,CALAP	
Aroclor-1268 (2) [2C]	ADEC,CALAP	
Aroclor-1268 (3) [2C]	ADEC,CALAP	
Aroclor-1268 (4) [2C]	ADEC,CALAP	
NWTPH-Dx in Solid		
Diesel Range Organics (C12-C24)	DoD-ELAP,NELAP,WADOE	
Diesel Range Organics (C10-C25)	DoD-ELAP,NELAP,WADOE	
Diesel Range Organics (Tol-C18)	DoD-ELAP,NELAP,WADOE	
Diesel Range Organics (C10-C24)	DoD-ELAP,NELAP,WADOE	
Diesel Range Organics (C10-C28)	DoD-ELAP,NELAP,WADOE	
Diesel Range Organics (C12-C22)	DoD-ELAP	
Motor Oil Range Organics (C24-C38)	DoD-ELAP,NELAP,WADOE	
Motor Oil Range Organics (C25-C36)	DoD-ELAP,NELAP,WADOE	
Motor Oil Range Organics (C24-C40)	DoD-ELAP,NELAP,WADOE	
Residual Range Organics (C23-C32)	DoD-ELAP	
Mineral Oil Range Organics (C16-C28)	DoD-ELAP,NELAP,WADOE	
Mineral Spirits Range Organics (Tol-C12)	DoD-ELAP,NELAP,WADOE	
JP8 Range Organics (C8-C18)	DoD-ELAP,NELAP,WADOE	
JP5 Range Organics (C10-C16)	DoD-ELAP,NELAP,WADOE	
JP4 Range Organics (Tol-C14)	DoD-ELAP,NELAP,WADOE	
Jet-A Range Organics (C10-C18)	DoD-ELAP,NELAP,WADOE	
Kerosene Range Organics (Tol-C18)	DoD-ELAP,NELAP,WADOE	
Stoddard Range Organics (C8-C12)	DoD-ELAP,NELAP,WADOE	
Creosote Range Organics (C12-C22)	DoD-ELAP,NELAP,WADOE	
Durker C Dense Organica (C10 C20)	D-D ELADNELADWADOE	

Analytical Resources, Inc.

Bunker C Range Organics (C10-C38)

Transformer Oil Range Organics (C12-C28)

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

DoD-ELAP, NELAP, WADOE

DoD-ELAP, NELAP, WADOE

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston09-Jul-2019 11:49

Code	Description	Number	Expires
ADEC	Alaska Dept of Environmental Conservation	17-015	01/31/2021
CALAP	California Department of Public Health CAELAP	2748	06/30/2019
DoD-ELAP	DoD-Environmental Laboratory Accreditation Program	66169	01/01/2021
NELAP	ORELAP - Oregon Laboratory Accreditation Program	WA100006-012	05/12/2020
WADOE	WA Dept of Ecology	C558	06/30/2019
WA-DW	Ecology - Drinking Water	C558	06/30/2019

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston09-Jul-2019 11:49

Notes and Definitions

 Flagged value is not within established control limits.

D The reported value is from a dilution

H Hold time violation - Hold time was exceeded.

Estimated concentration value detected below the reporting limit.

NRS This surrogate not reported due to chromatographic interference

P1 The reported value is greater than 40% difference between the concentrations determined on two GC columns where applicable.

U This analyte is not detected above the reporting limit (RL) or if noted, not detected above the limit of detection (LOD).

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

[2C] Indicates this result was quantified on the second column on a dual column analysis.

12 July 2019

Pete Kingston Farallon Consulting, LLC 1809 7th Ave, Suite 1111 Seattle, WA 98101

RE: Emerald Gateway Site 1071-026

Please find enclosed sample receipt documentation and analytical results for samples from the project referenced above.

Sample analyses were performed according to ARI's Quality Assurance Plan and any provided project specific Quality Assurance Plan. Each analytical section of this report has been approved and reviewed by an analytical peer, the appropriate Laboratory Supervisor or qualified substitute, and a technical reviewer.

Should you have any questions or problems, please feel free to contact us at your convenience.

Associated Work Order(s) Associated SDG ID(s) 19G0017

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed in the enclose Narrative. ARI, an accredited laboratory, certifies that the report results for which ARI is accredited meets all the requirements of the accrediting body. A list of certified analyses, accreditations, and expiration dates is included in this report.

Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in it entirety.

Accreditation # 66169

4611 S. 134th Place, Suite 100 • Tukwila, WA 98168 • Ph: (206) 695-6200 • Fax: (206) 695-6202

Chain of Custody Record & Laboratory Analysis Request Analytical Resources, Incorporated ARI Assigned Number: Turn-around Requested: Page: Analytical Chemists and Consultants 4611 South 134th Place, Suite 100 ARI Client Company: Date: Tukwila, WA 98168 Present? Foralla 206-200-2346 206-695-6200 206-695-6201 (fax) Client Contact: No. of Cooler www.arilabs.com Temps: See CRF Coolers: Client Project Name: Analysis Requested Notes/Comments Emerald Š NW TPH-D 1000 NWTP#-CX Diss. Medals Client Project #: Samplers: YP JS. GP 1071-026 8082 DRO Vocs FAMS Sample ID Date Time Matrix No. Containers 7/1/19 W 1040 DOF-4-190701 1155 305 535 X MW-101-19070 FMW-03-19070 636 1103 X X 520 Relinquished by: Received by: Relinquished by: Received by: Metals = As, Cd, (Signature) (Signature) (Signature) (Signature) Printed Name: Printed Name Printed Name Printed Name: Pallven Company: Company: Zh

Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or cosigned agreement between ARI and the Client.

1800

Date & Time:

Date & Time:

1800

Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract.

Date & Time:

Chain of Custody Record & Laboratory Analysis Request Turn-around Requested: Analytical Resources, Incorporated ARI Assigned Number: Page: Analytical Chemists and Consultants 1960017 4611 South 134th Place, Suite 100 ARI Client Company: Date: Tukwila, WA 98168 206-200-2346 Present? 206-695-6200 206-695-6201 (fax) Client Contact: No. of Cooler www.arilabs.com Coolers: Temps: 10 Client Project Name: Analysis Requested Notes/Comments アキマ Client Project #: Samplers: No JPA 1071-026 Dao 8082 PAH Sample ID Date Time Matrix No. Containers 1323 13 X 207 Comments/Special Instructions Relinquished by; Received by: Relinquished by: Received by: Metals = As, Cd, Cu, Pb, Hg, Mn, Zn (Signature) (Signature) (Signature) (Signature) Printed Name: Printed Name: Printed Name: Printed Name: Company: Company: Date & Time: Date & Time:

Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or cosigned agreement between ARI and the Client.

1800

Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
DOF-4-190701	19G0017-01	Water	01-Jul-2019 10:40	01-Jul-2019 18:00
DOF-5-190701	19G0017-02	Water	01-Jul-2019 11:55	01-Jul-2019 18:00
MW-AG2-190701	19G0017-03	Water	01-Jul-2019 13:05	01-Jul-2019 18:00
MW-AG1-190701	19G0017-04	Water	01-Jul-2019 14:20	01-Jul-2019 18:00
MW-101-190701	19G0017-05	Water	01-Jul-2019 15:35	01-Jul-2019 18:00
FMW-03-190701	19G0017-06	Water	01-Jul-2019 16:40	01-Jul-2019 18:00
DOF-1-190701	19G0017-07	Water	01-Jul-2019 16:36	01-Jul-2019 18:00
DOF-2-190701	19G0017-08	Water	01-Jul-2019 11:03	01-Jul-2019 18:00
MW-4-190701	19G0017-09	Water	01-Jul-2019 15:20	01-Jul-2019 18:00
MW-203-190701	19G0017-10	Water	01-Jul-2019 14:21	01-Jul-2019 18:00
MW-207-190701	19G0017-11	Water	01-Jul-2019 13:23	01-Jul-2019 18:00
DOF-3-190701	19G0017-12	Water	01-Jul-2019 12:07	01-Jul-2019 18:00
DOF-4-190701	19G0017-13	Water	01-Jul-2019 10:40	01-Jul-2019 18:00
DOF-5-190701	19G0017-14	Water	01-Jul-2019 11:55	01-Jul-2019 18:00
MW-AG2-190701	19G0017-15	Water	01-Jul-2019 13:05	01-Jul-2019 18:00
MW-AG1-190701	19G0017-16	Water	01-Jul-2019 14:20	01-Jul-2019 18:00
MW-101-190701	19G0017-17	Water	01-Jul-2019 15:35	01-Jul-2019 18:00
FMW-03-190701	19G0017-18	Water	01-Jul-2019 16:40	01-Jul-2019 18:00
DOF-1-190701	19G0017-19	Water	01-Jul-2019 16:36	01-Jul-2019 18:00
DOF-2-190701	19G0017-20	Water	01-Jul-2019 11:03	01-Jul-2019 18:00
MW-4-190701	19G0017-21	Water	01-Jul-2019 15:20	01-Jul-2019 18:00
MW-203-190701	19G0017-22	Water	01-Jul-2019 14:21	01-Jul-2019 18:00
MW-207-190701	19G0017-23	Water	01-Jul-2019 13:23	01-Jul-2019 18:00
DOF-3-190701	19G0017-24	Water	01-Jul-2019 12:07	01-Jul-2019 18:00

Analytical Resources, Inc.

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

Work Order Case Narrative

Sample receipt

Samples as listed on the preceding page were received July 1, 2019 under ARI work order 19G0017. For details regarding sample receipt, please refer to the Cooler Receipt Form.

Volatiles - EPA Method SW8260C

The samples were analyzed within the recommended holding times.

Data reported from bubble free volume.

Initial and continuing calibrations were within method requirements, with the exception of the ICV which is outside of control limits low for 1,2-Dibromo-3-Chloropropane. The samples are non-detect for this compound. Associated LCS/LCSD have been flagged with "Q" qualifiers. No further corrective action was taken.

Internal standard areas were within limits.

The surrogate percent recoveries were within control limits.

The method blanks were clean at the reporting limits.

The LCS/LCSD percent recoveries and RPD were within control limits.

Gasoline by NWTPH-g (GC/MS)

The samples were analyzed within the recommended holding times.

The data was reported from bubble free volume.

Initial and continuing calibrations were within method requirements.

Internal standard areas were within limits.

The surrogate percent recoveries were within control limits.

The method blanks were clean at the reporting limits.

The LCS/LCSD percent recoveries and RPD were within control limits.

Polynuclear Aromatic Hydrocarbons (PAH) - EPA Method SW8270D-SIM

The samples were extracted and analyzed within the recommended holding times.

Sample FMW-03-190701 was reanalyzed at a dilution due to the 1-Methylnaphthalene concentration exceeding the upper

Analytical Resources, Inc.

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

calibration range. The initial analysis has been flagged with an "E" qualifier. No further corrective action was taken.

Initial and continuing calibrations were within method requirements.

Internal standard areas were within limits.

The surrogate percent recoveries were within control limits.

The method blank was clean at the reporting limits.

The LCS/LCSD percent recoveries and RPD were within control limits.

<u>Diesel/Heavy Oil Range Organics - WA-Ecology Method NW-TPHDx</u>

The samples were extracted and analyzed within the recommended holding times.

Initial and continuing calibrations were within method requirements.

Sample DOF-5-190701 has low surrogate percent recovery. The sample was reanalyzed with the same outcome. The volume was consumed so a re-extraction was not possible. Data was reported as is. All other surrogate percent recoveries were within control limits. No further corrective action was taken.

The method blank was clean at the reporting limits.

The LCS/LCSD percent recoveries and RPD were within control limits.

PCB Aroclors - EPA Method SW8082A

The samples were extracted and analyzed within the recommended holding times.

Initial and continuing calibrations were within method requirements.

Internal standard areas were within limits.

Samples MW-101-190701, FMW-03-190701 and MW-4-190701 have low surrogate percent recoveries for both columns of Decachlorobiphenyl. Sample DOF-5-190701 has low surrogate percent recovery for the second column Decachlorobiphenyl. Sample MW-AGI-190701 has low surrogate percent recoveries for the second column surrogates Decachlorobiphenyl and Tetrachlorometaxylene. The method blank has low surrogate percent recovery for the second column Tetrachlorometaxylene. The samples are non-detect. All other surrogate percent recoveries were within control limits. No corrective action was taken.

The method blank was clean at the reporting limits.

The LCS/LCSD percent recoveries and RPD were within control limits.

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

Total and Dissolved Metals - EPA Method 6020A

The samples were digested and analyzed within the recommended holding times.

Initial and continuing calibrations were within method requirements.

The method blanks were clean at the reporting limits.

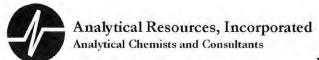
The LCS percent recoveries were within control limits.

A total matrix spike and duplicate were prepared in conjunction with sample DOF -4-190701. The matrix spike percent recoveries and duplicate RPD were within QC limits.

Total and Dissolved Hg - EPA Method 7470A

The samples were digested and analyzed within the recommended holding times.

Initial and continuing calibrations were within method requirements.


The method blank was clean at the reporting limits.

The LCS percent recoveries were within control limits.

Matrix spikes and duplicates were prepared in conjunction with sample MW-101-190701. The matrix spike percent recoveries and duplicate RPD were within QC limits.

WORK ORDER

Client: Farall	on Consulting, LLC	Project Manager: Amanda Volgardsen
Project: Emera	ald Gateway Site 1071-026	Project Number: 1071-026
Report To:		Invoice To:
Farallon Consul	lting, LLC	Farallon Consulting, LLC
Pete Kingston		Yusuf Pehlivan
1809 7th Ave, S	uite 1111	975 5th Avenue Northwest
Seattle, WA 981	01	Issaquah, WA 98027
Phone: (425) 39	94-4146	Phone :(425) 394-4415
Fax: -		Fax: -
Date Due:	10-Jul-2019 18:00 (5 day TAT)	
Received By:	Jacob Walter	Date Received: 01-Jul-2019 18:00
Logged In By:	Erin I. Salle	Date Logged In: 02-Jul-2019 08:05
Custody papers p Was sufficient ice All bottles arrived Number of contai Correct bottles us Analyses/bottles r	4.5°C gned and dated custody seals attached to outside of cooler(s)	Yes Was a temperature blank included in the cooler No Yes All bottles sealed in individual plastic bags. No Yes All bottle labels complete and legible. Yes Bottle labels and tags agree with COC. Yes All VOC vials free of air bubbles. No Yes Sufficient amount of sample sent in each bottle. Yes

19G0017

Client: Farallon Consulting, LLC Project Manager: Amanda Volgardsen

Project: Emerald Gateway Site 1071-026 Project Number: 1071-026

Analysis	Due	TAT	Expires	Comments
19G0017-01 DOF-4-190701 [Water]	Sampled 01-Jul-	-2019 10:	40	
Met 6020A - Zn UCT	07/10/2019	5	12/28/2019	
Met 6020A - As UCT	07/10/2019	5	12/28/2019	
Met 7470A Hg	07/10/2019	5	7/29/2019	
Met 6020A - Pb	07/10/2019	5	12/28/2019	
Met 6020A - Mn	07/10/2019	5	12/28/2019	
Met 6020A - Cd UCT	07/10/2019	5	12/28/2019	
8270D-SIM PAH Low (0.01 ug/L - 0.5 ug/kg	07/10/2019	5	7/8/2019	
8270D-SIM PAH (0.1 ug/L or 5 ug/kg)	07/10/2019	5	7/8/2019	
8260C VOA	07/10/2019	5	7/15/2019	
8260C Gas (NWTPH)	07/10/2019	5	7/15/2019	
8082A PCB Water 0.01	07/10/2019	5	7/8/2019	
Met 6020A - Cu UCT	07/10/2019	5	12/28/2019	
8082A PCB (20 ug/kg) or (MTCA 0.1 ug/L)	07/10/2019	5	7/8/2019	
TPH NW (Extractables) low level	07/10/2019	5	7/8/2019	
19G0017-02 DOF-5-190701 [Water]	Sampled 01-Jul-	-2019 11:	55	
TPH NW (Extractables) low level	07/10/2019	5	7/8/2019	
Met 6020A - As UCT	07/10/2019	5	12/28/2019	
8082A PCB Water 0.01	07/10/2019	5	7/8/2019	
8082A PCB (20 ug/kg) or (MTCA 0.1 ug/L)	07/10/2019	5	7/8/2019	
8260C Gas (NWTPH)	07/10/2019	5	7/15/2019	
Met 7470A Hg	07/10/2019	5	7/29/2019	
Met 6020A - Pb	07/10/2019	5	12/28/2019	
Met 6020A - Mn	07/10/2019	5	12/28/2019	
Met 6020A - Cu UCT	07/10/2019	5	12/28/2019	
Met 6020A - Cd UCT	07/10/2019	5	12/28/2019	
8260C VOA	07/10/2019	5	7/15/2019	
Met 6020A - Zn UCT	07/10/2019	5	12/28/2019	
8270D-SIM PAH Low (0.01 ug/L - 0.5 ug/kg	07/10/2019	5	7/8/2019	
8270D-SIM PAH (0.1 ug/L or 5 ug/kg)	07/10/2019	5	7/8/2019	
19G0017-03 MW-AG2-190701 [Wat	er Sampled 01-	Jul-2019	13:05	
Met 6020A - Zn UCT	07/10/2019	5	12/28/2019	
TPH NW (Extractables) low level	07/10/2019	5	7/8/2019	
Met 7470A Hg	07/10/2019	5	7/29/2019	
8260C VOA	07/10/2019	5	7/15/2019	
Met 6020A - As UCT	07/10/2019	5	12/28/2019	
Met 6020A - Cu UCT	07/10/2019	5	12/28/2019	
8270D-SIM PAH Low (0.01 ug/L - 0.5 ug/kg	07/10/2019	5	7/8/2019	
Met 6020A - Pb	07/10/2019	5	12/28/2019	
Met 6020A - Cd UCT	07/10/2019	5	12/28/2019	

WORK ORDER

19G0017

Client: Farallon Consulting, LLC

Project Manager: Amanda Volgardsen

Project: Emerald Gateway Site 1071-026

Analysis	Due	TAT	Expires	Comments
8270D-SIM PAH (0.1 ug/L or 5 ug/kg)	07/10/2019	5	7/8/2019	
8260C Gas (NWTPH)	07/10/2019	5	7/15/2019	
Met 6020A - Mn	07/10/2019	5	12/28/2019	
8082A PCB Water 0.01	07/10/2019	5	7/8/2019	
8082A PCB (20 ug/kg) or (MTCA 0.1 ug/L)	07/10/2019	5	7/8/2019	
19G0017-04 MW-AG1-190701 [Water	er Sampled 01-	Jul-2019	14:20	
8082A PCB (20 ug/kg) or (MTCA 0.1 ug/L)	07/10/2019	5	7/8/2019	
8082A PCB Water 0.01	07/10/2019	5	7/8/2019	
Met 6020A - As UCT	07/10/2019	5	12/28/2019	
8260C Gas (NWTPH)	07/10/2019	5	7/15/2019	
Met 6020A - Zn UCT	07/10/2019	5	12/28/2019	
8270D-SIM PAH (0.1 ug/L or 5 ug/kg)	07/10/2019	5	7/8/2019	
Met 7470A Hg	07/10/2019	5	7/29/2019	
8270D-SIM PAH Low (0.01 ug/L - 0.5 ug/kg	07/10/2019	5	7/8/2019	
Met 6020A - Pb	07/10/2019	5	12/28/2019	
Met 6020A - Mn	07/10/2019	5	12/28/2019	
Met 6020A - Cd UCT	07/10/2019	5	12/28/2019	
TPH NW (Extractables) low level	07/10/2019	5	7/8/2019	
8260C VOA	07/10/2019	5	7/15/2019	
Met 6020A - Cu UCT	07/10/2019	.5	12/28/2019	
19G0017-05 MW-101-190701 [Water	Sampled 01-Ju	ul-2019 1:	5:35	
TPH NW (Extractables) low level	07/10/2019	5	7/8/2019	
Met 6020A - Mn	07/10/2019	5	12/28/2019	
Met 6020A - Zn UCT	07/10/2019	5	12/28/2019	
8270D-SIM PAH (0.1 ug/L or 5 ug/kg)	07/10/2019	5	7/8/2019	
8270D-SIM PAH Low (0.01 ug/L - 0.5 ug/kg	07/10/2019	5	7/8/2019	
Met 6020A - As UCT	07/10/2019	5	12/28/2019	
Met 7470A Hg	07/10/2019	5	7/29/2019	
8082A PCB (20 ug/kg) or (MTCA 0.1 ug/L)	07/10/2019	5	7/8/2019	
8082A PCB Water 0.01	07/10/2019	5	7/8/2019	
8260C Gas (NWTPH)	07/10/2019	5	7/15/2019	
8260C VOA	07/10/2019	5	7/15/2019	
Met 6020A - Cu UCT	07/10/2019	5	12/28/2019	
Met 6020A - Pb	07/10/2019	5	12/28/2019	
Met 6020A - Cd UCT	07/10/2019	5	12/28/2019	
19G0017-06 FMW-03-190701 Water	Sampled 01-Ju	ul-2019 1	6:40	
TPH NW (Extractables) low level	07/10/2019	5	7/8/2019	
Met 6020A - Pb	07/10/2019	5	12/28/2019	
Met 6020A - Zn UCT	07/10/2019	5	12/28/2019	

WORK ORDER

19G0017

Client: Farallon Consulting, LLC

Project: Emerald Gateway Site 1071-026

Project Manager: Amanda Volgardsen

Analysis	Due	TAT	Expires	Comments
8260C Gas (NWTPH)	07/10/2019	5	7/15/2019	
Met 7470A Hg	07/10/2019	.5	7/29/2019	
8270D-SIM PAH Low (0.01 ug/L - 0.5 ug/kg	07/10/2019	5	7/8/2019	
8270D-SIM PAH (0.1 ug/L or 5 ug/kg)	07/10/2019	5	7/8/2019	
8260C VOA	07/10/2019	5	7/15/2019	
8082A PCB (20 ug/kg) or (MTCA 0.1 ug/L)	07/10/2019	5	7/8/2019	
8082A PCB Water 0.01	07/10/2019	5	7/8/2019	
Met 6020A - As UCT	07/10/2019	5	12/28/2019	
Met 6020A - Cd UCT	07/10/2019	5	12/28/2019	
Met 6020A - Cu UCT	07/10/2019	5	12/28/2019	
Met 6020A - Mn	07/10/2019	5	12/28/2019	
19G0017-07 DOF-1-190701 [Water]	Sampled 01-Jul-	2019 16:	36	
Met 7470A Hg	07/10/2019	5	7/29/2019	
Met 6020A - Pb	07/10/2019	5	12/28/2019	
8082A PCB Water 0.01	07/10/2019	5	7/8/2019	
8260C Gas (NWTPH)	07/10/2019	5	7/15/2019	
Met 6020A - Zn UCT	07/10/2019	5	12/28/2019	
Met 6020A - Cu UCT	07/10/2019	5	12/28/2019	
Met 6020A - Cd UCT	07/10/2019	5	12/28/2019	
Met 6020A - As UCT	07/10/2019	5	12/28/2019	
TPH NW (Extractables) low level	07/10/2019	5	7/8/2019	
8270D-SIM PAH (0.1 ug/L or 5 ug/kg)	07/10/2019	5	7/8/2019	
8082A PCB (20 ug/kg) or (MTCA 0.1 ug/L)	07/10/2019	5	7/8/2019	
8260C VOA	07/10/2019	5	7/15/2019	
Met 6020A - Mn	07/10/2019	5	12/28/2019	
8270D-SIM PAH Low (0.01 ug/L - 0.5 ug/kg	07/10/2019	5	7/8/2019	
19G0017-08 DOF-2-190701 [Water] 5	Sampled 01-Jul-	2019 11:	03	
8082A PCB Water 0.01	07/10/2019	5	7/8/2019	
8260C Gas (NWTPH)	07/10/2019	5	7/15/2019	
8260C VOA	07/10/2019	5	7/15/2019	
8270D-SIM PAH (0.1 ug/L or 5 ug/kg)	07/10/2019	5	7/8/2019	
Met 6020A - As UCT	07/10/2019	5	12/28/2019	
Met 6020A - Cu UCT	07/10/2019	5	12/28/2019	
8270D-SIM PAH Low (0.01 ug/L - 0.5 ug/kg	07/10/2019	5	7/8/2019	
Met 6020A - Cd UCT	07/10/2019	5	12/28/2019	
Met 6020A - Pb	07/10/2019	5	12/28/2019	
Met 6020A - Zn UCT	07/10/2019	5	12/28/2019	
Met 7470A Hg	07/10/2019	5	7/29/2019	
TPH NW (Extractables) low level	07/10/2019	5	7/8/2019	
Met 6020A - Mn	07/10/2019	5	12/28/2019	

WORK ORDER

19G0017

Client: Farallon Consulting, LLC

Project Manager: Amanda Volgardsen

Project: Emerald Gateway Site 1071-026

Analysis	Due	TAT	Expires	Comments
8082A PCB (20 ug/kg) or (MTCA 0.1 ug/L)	07/10/2019	5	7/8/2019	
19G0017-09 MW-4-190701 [Water]	Sampled 01-Jul-	2019 15:2	20	
TPH NW (Extractables) low level	07/10/2019	5	7/8/2019	
Met 6020A - Mn	07/10/2019	5	12/28/2019	
8260C Gas (NWTPH)	07/10/2019	5	7/15/2019	
8082A PCB (20 ug/kg) or (MTCA 0.1 ug/L)	07/10/2019	5	7/8/2019	
Met 6020A - Cd UCT	07/10/2019	5	12/28/2019	
Met 7470A Hg	07/10/2019	5	7/29/2019	
8082A PCB Water 0.01	07/10/2019	5	7/8/2019	
8270D-SIM PAH Low (0.01 ug/L - 0.5 ug/kg	07/10/2019	5	7/8/2019	
Met 6020A - Pb	07/10/2019	5	12/28/2019	
Met 6020A - As UCT	07/10/2019	5	12/28/2019	
Met 6020A - Zn UCT	07/10/2019	5	12/28/2019	
8260C VOA	07/10/2019	5	7/15/2019	
8270D-SIM PAH (0.1 ug/L or 5 ug/kg)	07/10/2019	5	7/8/2019	
Met 6020A - Cu UCT	07/10/2019	5	12/28/2019	
19G0017-10 MW-203-190701 [Wate	er Sampled 01-Ju	ıl-2019 1	4:21	
TPH NW (Extractables) low level	07/10/2019	5	7/8/2019	
8270D-SIM PAH Low (0.01 ug/L - 0.5 ug/kg	07/10/2019	5	7/8/2019	
8270D-SIM PAH (0.1 ug/L or 5 ug/kg)	07/10/2019	5	7/8/2019	
3082A PCB Water 0.01	07/10/2019	5	7/8/2019	
Met 6020A - As UCT	07/10/2019	5	12/28/2019	
8082A PCB (20 ug/kg) or (MTCA 0.1 ug/L)	07/10/2019	5	7/8/2019	
Met 6020A - Cu UCT	07/10/2019	5	12/28/2019	
Met 6020A - Mn	07/10/2019	5	12/28/2019	
Met 6020A - Pb	07/10/2019	5	12/28/2019	
Met 6020A - Zn UCT	07/10/2019	5	12/28/2019	
Met 7470A Hg	07/10/2019	5	7/29/2019	
8260C Gas (NWTPH)	07/10/2019	5	7/15/2019	
Met 6020A - Cd UCT	07/10/2019	5	12/28/2019	
8260C VOA	07/10/2019	5	7/15/2019	
19G0017-11 MW-207-190701 Wate	r Sampled 01-Ju	1-2019 13	3:23	
8082A PCB Water 0.01	07/10/2019	5	7/8/2019	
Met 6020A - Cd UCT	07/10/2019	5	12/28/2019	
3270D-SIM PAH Low (0.01 ug/L - 0.5 ug/kg	07/10/2019	5	7/8/2019	
TPH NW (Extractables) low level	07/10/2019	5	7/8/2019	
Met 6020A - Zn UCT	07/10/2019	5	12/28/2019	
3270D-SIM PAH (0.1 ug/L or 5 ug/kg)	07/10/2019	5	7/8/2019	
Met 6020A - As UCT	07/10/2019	5	12/28/2019	

WORK ORDER

19G0017

Client: Farallon Consulting, LLC

Project Manager: Amanda Volgardsen

Project: Emerald Gateway Site 1071-026

Project Number: 1071-026

8082A PCB (20 ug/kg) or (MTCA 0.1 ug/L) Met 7470A Hg Met 6020A - Pb Met 6020A - Cu UCT 8260C VOA 19G0017-12 DOF-3-190701 [Water] Sam Met 6020A - Cu UCT 8270D-SIM PAH (0.1 ug/L or 5 ug/kg) TPH NW (Extractables) low level Met 7470A Hg Met 6020A - Cd UCT 8270D-SIM PAH Low (0.01 ug/L - 0.5 ug/kg Met 6020A - As UCT 8260C VOA Met 6020A - Pb	Due 07/10/2019 07/10/2019 07/10/2019 07/10/2019 07/10/2019 07/10/2019 07/10/2019 07/10/2019 07/10/2019 07/10/2019 07/10/2019 07/10/2019 07/10/2019 07/10/2019 07/10/2019 07/10/2019 07/10/2019 07/10/2019	TAT 5 5 5 5 5 5 5 5 5 5 5 5 5	7/15/2019 7/8/2019 7/8/2019 7/29/2019 12/28/2019 12/28/2019 12/28/2019 7/15/2019 07 12/28/2019 7/8/2019 7/8/2019 7/8/2019 7/29/2019 12/28/2019	Comments
8082A PCB (20 ug/kg) or (MTCA 0.1 ug/L) Met 7470A Hg Met 6020A - Pb Met 6020A - Cu UCT 8260C VOA 19G0017-12 DOF-3-190701 [Water] Sam Met 6020A - Cu UCT 8270D-SIM PAH (0.1 ug/L or 5 ug/kg) TPH NW (Extractables) low level Met 7470A Hg Met 6020A - Cd UCT 8270D-SIM PAH Low (0.01 ug/L - 0.5 ug/kg Met 6020A - As UCT 8260C VOA Met 6020A - Pb	07/10/2019 07/10/2019 07/10/2019 07/10/2019 07/10/2019 07/10/2019 pled 01-Jul- 07/10/2019 07/10/2019 07/10/2019 07/10/2019 07/10/2019 07/10/2019 07/10/2019	5 5 5 5 5 -2019 12: 5 5 5	7/8/2019 7/29/2019 12/28/2019 12/28/2019 12/28/2019 7/15/2019 07 12/28/2019 7/8/2019 7/8/2019 7/8/2019 7/29/2019	
Met 7470A Hg Met 6020A - Pb Met 6020A - Cu UCT 8260C VOA 19G0017-12 DOF-3-190701 [Water] Sam Met 6020A - Cu UCT 8270D-SIM PAH (0.1 ug/L or 5 ug/kg) TPH NW (Extractables) low level Met 7470A Hg Met 6020A - Cd UCT 8270D-SIM PAH Low (0.01 ug/L - 0.5 ug/kg) Met 6020A - Cd UCT 8270D-SIM PAH Low (0.01 ug/L - 0.5 ug/kg)	07/10/2019 07/10/2019 07/10/2019 07/10/2019 07/10/2019 07/10/2019 07/10/2019 07/10/2019 07/10/2019 07/10/2019 07/10/2019 07/10/2019	5 5 5 5 5 -2019 12: 5 5 5	7/29/2019 12/28/2019 12/28/2019 12/28/2019 7/15/2019 07 12/28/2019 7/8/2019 7/8/2019 7/29/2019	
Met 6020A - Pb Met 6020A - Mn Met 6020A - Cu UCT 8260C VOA 19G0017-12 DOF-3-190701 Water Sam Met 6020A - Cu UCT 8270D-SIM PAH (0.1 ug/L or 5 ug/kg) TPH NW (Extractables) low level Met 7470A Hg Met 6020A - Cd UCT 8270D-SIM PAH Low (0.01 ug/L - 0.5 ug/kg Met 6020A - As UCT 8260C VOA Met 6020A - Pb	07/10/2019 07/10/2019 07/10/2019 07/10/2019 pled 01-Jul- 07/10/2019 07/10/2019 07/10/2019 07/10/2019 07/10/2019 07/10/2019	5 5 5 -2019 12: 5 5 5 5	12/28/2019 12/28/2019 12/28/2019 7/15/2019 07 12/28/2019 7/8/2019 7/8/2019 7/29/2019	
Met 6020A - Mn Met 6020A - Cu UCT 8260C VOA 19G0017-12 DOF-3-190701 [Water] Sam Met 6020A - Cu UCT 8270D-SIM PAH (0.1 ug/L or 5 ug/kg) TPH NW (Extractables) low level Met 7470A Hg Met 6020A - Cd UCT 8270D-SIM PAH Low (0.01 ug/L - 0.5 ug/kg Met 6020A - As UCT 8260C VOA Met 6020A - Pb	07/10/2019 07/10/2019 07/10/2019 pled 01-Jul- 07/10/2019 07/10/2019 07/10/2019 07/10/2019 07/10/2019 07/10/2019	5 5 5 -2019 12: 5 5 5 5	12/28/2019 12/28/2019 7/15/2019 07 12/28/2019 7/8/2019 7/8/2019 7/29/2019	
Met 6020A - Cu UCT 8260C VOA 19G0017-12 DOF-3-190701 Water Sam Met 6020A - Cu UCT 8270D-SIM PAH (0.1 ug/L or 5 ug/kg) TPH NW (Extractables) low level Met 7470A Hg Met 6020A - Cd UCT 8270D-SIM PAH Low (0.01 ug/L - 0.5 ug/kg Met 6020A - As UCT 8260C VOA Met 6020A - Pb	07/10/2019 07/10/2019 pled 01-Jul- 07/10/2019 07/10/2019 07/10/2019 07/10/2019 07/10/2019	5 5 -2019 12: 5 5 5 5 5	12/28/2019 7/15/2019 07 12/28/2019 7/8/2019 7/8/2019 7/29/2019	
8260C VOA 19G0017-12 DOF-3-190701 [Water] Sam Met 6020A - Cu UCT 8270D-SIM PAH (0.1 ug/L or 5 ug/kg) TPH NW (Extractables) low level Met 7470A Hg Met 6020A - Cd UCT 8270D-SIM PAH Low (0.01 ug/L - 0.5 ug/kg Met 6020A - As UCT 8260C VOA Met 6020A - Pb	07/10/2019 pled 01-Jul- 07/10/2019 07/10/2019 07/10/2019 07/10/2019 07/10/2019 07/10/2019	5 -2019 12: 5 5 5 5 5	7/15/2019 07 12/28/2019 7/8/2019 7/8/2019 7/29/2019	
19G0017-12 DOF-3-190701 Water Sam Met 6020A - Cu UCT 8270D-SIM PAH (0.1 ug/L or 5 ug/kg) TPH NW (Extractables) low level Met 7470A Hg Met 6020A - Cd UCT 8270D-SIM PAH Low (0.01 ug/L - 0.5 ug/kg Met 6020A - As UCT 8260C VOA Met 6020A - Pb	pled 01-Jul- 07/10/2019 07/10/2019 07/10/2019 07/10/2019 07/10/2019 07/10/2019	5 5 5 5 5 5	07 12/28/2019 7/8/2019 7/8/2019 7/29/2019	
Met 6020A - Cu UCT 8270D-SIM PAH (0.1 ug/L or 5 ug/kg) TPH NW (Extractables) low level Met 7470A Hg Met 6020A - Cd UCT 8270D-SIM PAH Low (0.01 ug/L - 0.5 ug/kg Met 6020A - As UCT 8260C VOA Met 6020A - Pb	07/10/2019 07/10/2019 07/10/2019 07/10/2019 07/10/2019 07/10/2019	5 5 5 5	12/28/2019 7/8/2019 7/8/2019 7/29/2019	
8270D-SIM PAH (0.1 ug/L or 5 ug/kg) TPH NW (Extractables) low level Met 7470A Hg Met 6020A - Cd UCT 8270D-SIM PAH Low (0.01 ug/L - 0.5 ug/kg Met 6020A - As UCT 8260C VOA Met 6020A - Pb	07/10/2019 07/10/2019 07/10/2019 07/10/2019 07/10/2019	5 5 5 5	7/8/2019 7/8/2019 7/29/2019	
TPH NW (Extractables) low level Met 7470A Hg Met 6020A - Cd UCT 8270D-SIM PAH Low (0.01 ug/L - 0.5 ug/kg Met 6020A - As UCT 8260C VOA Met 6020A - Pb	07/10/2019 07/10/2019 07/10/2019 07/10/2019	5 5 5	7/8/2019 7/29/2019	
Met 7470A Hg Met 6020A - Cd UCT 8270D-SIM PAH Low (0.01 ug/L - 0.5 ug/kg Met 6020A - As UCT 8260C VOA Met 6020A - Pb	07/10/2019 07/10/2019 07/10/2019	5 5	7/29/2019	
Met 6020A - Cd UCT 8270D-SIM PAH Low (0.01 ug/L - 0.5 ug/kg Met 6020A - As UCT 8260C VOA Met 6020A - Pb	07/10/2019 07/10/2019	5		
8270D-SIM PAH Low (0.01 ug/L - 0.5 ug/kg Met 6020A - As UCT 8260C VOA Met 6020A - Pb	07/10/2019		12/28/2010	
Met 6020A - As UCT 8260C VOA Met 6020A - Pb		5	14/40/4019	
8260C VOA Met 6020A - Pb	07/10/2019	-	7/8/2019	
Met 6020A - Pb		5	12/28/2019	
	07/10/2019	5	7/15/2019	
Met 6020A - Mn	07/10/2019	5	12/28/2019	
	07/10/2019	5	12/28/2019	
8260C Gas (NWTPH)	07/10/2019	5	7/15/2019	
Met 6020A - Zn UCT	07/10/2019	5	12/28/2019	
8082A PCB (20 ug/kg) or (MTCA 0.1 ug/L)	07/10/2019	5	7/8/2019	
8082A PCB Water 0.01	07/10/2019	5	7/8/2019	
19G0017-13 DOF-4-190701 [Water] Samp	pled 01-Jul-	2019 10:	40	
Met Diss 7470A Hg	07/10/2019	5	7/29/2019	
Met Diss 6020A - Mn	07/10/2019	5	12/28/2019	
Met Diss 6020A - Cu UCT	07/10/2019	5	12/28/2019	
Met Diss 6020A - Cd UCT	07/10/2019	5	12/28/2019	
Met Diss 6020A - As UCT	07/10/2019	5	12/28/2019	
Met Diss 6020A - Pb	07/10/2019	5	12/28/2019	
Met Diss 6020A - Zn UCT	07/10/2019	5	12/28/2019	
19G0017-14 DOF-5-190701 [Water] Samj	pled 01-Jul-	2019 11:	55	
Met Diss 6020A - Pb	07/10/2019	5	12/28/2019	
Met Diss 6020A - Mn	07/10/2019	5	12/28/2019	
Met Diss 6020A - Cu UCT	07/10/2019	5	12/28/2019	
Met Diss 6020A - As UCT	07/10/2019	5	12/28/2019	
Met Diss 6020A - Zn UCT	07/10/2019	5	12/28/2019	
Met Diss 7470A Hg	07/10/2019	5	7/29/2019	
Met Diss 6020A - Cd UCT	07/10/2019	5	12/28/2019	

Reviewed By

Date

WORK ORDER

19G0017

Client: Farallon Consulting, LLC

Project Manager: Amanda Volgardsen

Project: Emerald Gateway Site 1071-026

Analysis	Due	TAT	Expires	Comments
Met Diss 6020A - Pb	07/10/2019	5	12/28/2019	
Met Diss 6020A - Cd UCT	07/10/2019	5	12/28/2019	
Met Diss 6020A - Cu UCT	07/10/2019	5	12/28/2019	
Met Diss 6020A - As UCT	07/10/2019	5	12/28/2019	
Met Diss 6020A - Mn	07/10/2019	5	12/28/2019	
Met Diss 6020A - Zn UCT	07/10/2019	5	12/28/2019	
Met Diss 7470A Hg	07/10/2019	5	7/29/2019	
19G0017-16 MW-AG1-190701	[Water] Sampled 01-	Jul-2019	14:20	
Met Diss 7470A Hg	07/10/2019	5	7/29/2019	
Met Diss 6020A - As UCT	07/10/2019	5	12/28/2019	
Met Diss 6020A - Cu UCT	07/10/2019	5	12/28/2019	
Met Diss 6020A - Mn	07/10/2019	5	12/28/2019	
Met Diss 6020A - Pb	07/10/2019	5	12/28/2019	
Met Diss 6020A - Zn UCT	07/10/2019	5	12/28/2019	
Met Diss 6020A - Cd UCT	07/10/2019	5	12/28/2019	
19G0017-17 MW-101-190701	[Water] Sampled 01-Ju	ıl-2019 1:	5:35	
Met Diss 6020A - Pb	07/10/2019	5	12/28/2019	*
Met Diss 7470A Hg	07/10/2019	5	7/29/2019	
Met Diss 6020A - Cu UCT	07/10/2019	5	12/28/2019	
Met Diss 6020A - Zn UCT	07/10/2019	5	12/28/2019	
Met Diss 6020A - As UCT	07/10/2019	5	12/28/2019	
Met Diss 6020A - Mn	07/10/2019	5	12/28/2019	
Met Diss 6020A - Cd UCT	07/10/2019	5	12/28/2019	
19G0017-18 FMW-03-190701	[Water] Sampled 01-J	ul-2019 1	6:40	
Met Diss 6020A - Cd UCT	07/10/2019	5	12/28/2019	
Met Diss 6020A - Pb	07/10/2019	5	12/28/2019	
Met Diss 6020A - Zn UCT	07/10/2019	5	12/28/2019	
Met Diss 7470A Hg	07/10/2019	5	7/29/2019	
Met Diss 6020A - As UCT	07/10/2019	5	12/28/2019	
Met Diss 6020A - Mn	07/10/2019	5	12/28/2019	
Met Diss 6020A - Cu UCT	07/10/2019	5	12/28/2019	
19G0017-19 DOF-1-190701 [W	ater] Sampled 01-Jul-	2019 16:3	36	
Met Diss 7470A Hg	07/10/2019	5	7/29/2019	-
Met Diss 6020A - Cu UCT	07/10/2019	5	12/28/2019	
Met Diss 6020A - Mn	07/10/2019	5	12/28/2019	
Met Diss 6020A - Pb	07/10/2019	5	12/28/2019	
Met Diss 6020A - Zn UCT	07/10/2019	5	12/28/2019	
Met Diss 6020A - As UCT	07/10/2019	5	12/28/2019	
Met Diss 6020A - Cd UCT	07/10/2019	5	12/28/2019	

WORK ORDER

19G0017

Client: Farallon Consulting, LLC Project Manager: Amanda Volgardsen

Project: Emerald Gateway Site 1071-026 Project Number: 1071-026

Analysis	Due	TAT	Expires	Comments
19G0017-20 DOF-2-190701 [Water Sampled 01-Jul-	-2019 11:	03	
Met Diss 6020A - Cd UCT	07/10/2019	5	12/28/2019	
Met Diss 6020A - Mn	07/10/2019	5	12/28/2019	
Met Diss 7470A Hg	07/10/2019	5	7/29/2019	
Met Diss 6020A - As UCT	07/10/2019	5	12/28/2019	
Met Diss 6020A - Zn UCT	07/10/2019	5	12/28/2019	
Met Diss 6020A - Pb	07/10/2019	5	12/28/2019	
Met Diss 6020A - Cu UCT	07/10/2019	5	12/28/2019	
19G0017-21 MW-4-190701 [V	Water Sampled 01-Jul-	2019 15:2	20	
Met Diss 6020A - As UCT	07/10/2019	5	12/28/2019	
Met Diss 7470A Hg	07/10/2019	5	7/29/2019	
Met Diss 6020A - Zn UCT	07/10/2019	5	12/28/2019	
Met Diss 6020A - Mn	07/10/2019	5	12/28/2019	
Met Diss 6020A - Pb	07/10/2019	5	12/28/2019	
Met Diss 6020A - Cd UCT	07/10/2019	5	12/28/2019	
Met Diss 6020A - Cu UCT	07/10/2019	5	12/28/2019	
19G0017-22 MW-203-190701	[Water] Sampled 01-Ju	ul-2019 1	4:21	
Met Diss 6020A - Zn UCT	07/10/2019	5	12/28/2019	
Met Diss 6020A - Pb	07/10/2019	5	12/28/2019	
Met Diss 6020A - As UCT	07/10/2019	5	12/28/2019	
Met Diss 6020A - Cd UCT	07/10/2019	5	12/28/2019	
Met Diss 6020A - Cu UCT	07/10/2019	5	12/28/2019	
Met Diss 6020A - Mn	07/10/2019	5	12/28/2019	
Met Diss 7470A Hg	07/10/2019	5	7/29/2019	
19G0017-23 MW-207-190701	[Water] Sampled 01-Ju	ul-2019 1.	3:23	
Met Diss 6020A - Mn	07/10/2019	5	12/28/2019	
Met Diss 6020A - Cu UCT	07/10/2019	5	12/28/2019	
Met Diss 6020A - As UCT	07/10/2019	5	12/28/2019	
Met Diss 6020A - Zn UCT	07/10/2019	5	12/28/2019	
Met Diss 6020A - Pb	07/10/2019	5	12/28/2019	
Met Diss 6020A - Cd UCT	07/10/2019	5	12/28/2019	
Met Diss 7470A Hg	07/10/2019	5	7/29/2019	
19G0017-24 DOF-3-190701 [Water] Sampled 01-Jul-	2019 12:	07	
Met Diss 6020A - Pb	07/10/2019	5	12/28/2019	
Met Diss 6020A - Mn	07/10/2019	5	12/28/2019	
Met Diss 6020A - Cu UCT	07/10/2019	5	12/28/2019	
Met Diss 6020A - Cd UCT	07/10/2019	5	12/28/2019	
Met Diss 6020A - As UCT	07/10/2019	5	12/28/2019	
Met Diss 7470A Hg	07/10/2019	5	7/29/2019	

WORK ORDER

19G0017

Client: Farallon Consulting, LLC

Project Manager: Amanda Volgardsen

Project: Emerald Gateway Site 1071-026

Project Number: 1071-026

Analysis	Due	TAT	Expires	Comments	
Met Diss 6020A - Zn UCT	07/10/2019	5	12/28/2019		7.5

Reviewed By

Date

Project: Emerald Gateway Site 1071-026

Printed: 7/2/2019 8:50:19AM

WORK ORDER

19G0017

Client: Farallon Consulting, LLC

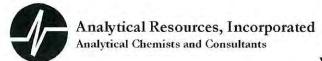
Project Manager: Amanda Volgardsen

Project Number: 1071-026

Preservation Confirmation

Container ID	Container Type	pН	
19G0017-01 A	HDPE NM, 500 mL, 1:1 HNO3	42	PC55
19G0017-01 B	Glass NM, Amber, 500 mL		1
19G0017-01 C	Glass NM, Amber, 500 mL		
19G0017-01 D	Glass NM, Amber, 500 mL		
19G0017-01 E	Glass NM, Amber, 500 mL		
19G0017-01 F	Glass NM, Amber, 500 mL		
19G0017-01 G	Glass NM, Amber, 500 mL		
19G0017-01 H	VOA Vial, Clear, 40 mL, HCL		
19G0017-01 I	VOA Vial, Clear, 40 mL, HCL		
19G0017-01 J	VOA Vial, Clear, 40 mL, HCL		
19G0017-01 K	VOA Vial, Clear, 40 mL, HCL		
19G0017-01 L	VOA Vial, Clear, 40 mL, HCL		
19G0017-02 A	HDPE NM, 500 mL, 1:1 HNO3	47_	10055
19G0017-02 B	Glass NM, Amber, 500 mL		1
19G0017-02 C	Glass NM, Amber, 500 mL		
19G0017-02 D	Glass NM, Amber, 500 mL		
19G0017-02 E	Glass NM, Amber, 500 mL		
19G0017-02 F	Glass NM, Amber, 500 mL		
19G0017-02 G	Glass NM, Amber, 500 mL		
19G0017-02 H	VOA Vial, Clear, 40 mL, HCL		
19G0017-02 I	VOA Vial, Clear, 40 mL, HCL		
19G0017-02 J	VOA Vial, Clear, 40 mL, HCL		
19G0017-02 K	VOA Vial, Clear, 40 mL, HCL		
19G0017-02 L	VOA Vial, Clear, 40 mL, HCL		
19G0017-03 A	HDPE NM, 500 mL, 1:1 HNO3	<2	Pass
19G0017-03 B	Glass NM, Amber, 500 mL		1 3 3 4
19G0017-03 C	Glass NM, Amber, 500 mL		
19G0017-03 D	Glass NM, Amber, 500 mL		
19G0017-03 E	Glass NM, Amber, 500 mL		
19G0017-03 F	Glass NM, Amber, 500 mL		
19G0017-03 G	Glass NM, Amber, 500 mL		
19G0017-03 H	VOA Vial, Clear, 40 mL, HCL		
19G0017-03 I	VOA Vial, Clear, 40 mL, HCL		
19G0017-03 J	VOA Vial, Clear, 40 mL, HCL		
19G0017-03 K	VOA Vial, Clear, 40 mL, HCL		

Reviewed By


Date

Client: Farallon	Consulting, LLC	Project Manager: Amanda Volga	ardsen
Project: Emerald	Gateway Site 1071-026	Project Number: 1071-026	
19G0017-03 L	VOA Vial, Clear, 40 mL, HCL		
19G0017-04 A	HDPE NM, 500 mL, 1:1 HNO3	62	Pass
19G0017-04 B	Glass NM, Amber, 500 mL		
19G0017-04 C	Glass NM, Amber, 500 mL		
19G0017-04 D	Glass NM, Amber, 500 mL		
19G0017-04 E	Glass NM, Amber, 500 mL		
19G0017-04 F	Glass NM, Amber, 500 mL		
19G0017-04 G	Glass NM, Amber, 500 mL		
19G0017-04 H	VOA Vial, Clear, 40 mL, HCL		
19G0017-04 I	VOA Vial, Clear, 40 mL, HCL		
19G0017-04 J	VOA Vial, Clear, 40 mL, HCL		
19G0017-04 K	VOA Vial, Clear, 40 mL, HCL		
19G0017-04 L	VOA Vial, Clear, 40 mL, HCL		
19G0017-05 A	HDPE NM, 500 mL, 1:1 HNO3	27	PG55
19G0017-05 B	Glass NM, Amber, 500 mL		
19G0017-05 C	Glass NM, Amber, 500 mL		
19G0017-05 D	Glass NM, Amber, 500 mL		
19G0017-05 E	Glass NM, Amber, 500 mL		
19G0017-05 F	Glass NM, Amber, 500 mL		
19G0017-05 G	Glass NM, Amber, 500 mL		
19G0017-05 H	VOA Vial, Clear, 40 mL, HCL		
19G0017-05 I	VOA Vial, Clear, 40 mL, HCL		
19G0017-05 J	VOA Vial, Clear, 40 mL, HCL		
19G0017-05 K	VOA Vial, Clear, 40 mL, HCL		
19G0017-05 L	VOA Vial, Clear, 40 mL, HCL		
19G0017-06 A	HDPE NM, 500 mL, 1:1 HNO3	L	Pa.55
19G0017-06 B	Glass NM, Amber, 500 mL		F 4.703
19G0017-06 C	Glass NM, Amber, 500 mL		
19G0017-06 D	Glass NM, Amber, 500 mL		
19G0017-06 E	Glass NM, Amber, 500 mL		
9G0017-06 F	Glass NM, Amber, 500 mL		
9G0017-06 G	Glass NM, Amber, 500 mL		
9G0017-06 H	VOA Vial, Clear, 40 mL, HCL		
9G0017-06 I	VOA Vial, Clear, 40 mL, HCL		
9G0017-06 J	VOA Vial, Clear, 40 mL, HCL		
19G0017-06 K	VOA Vial, Clear, 40 mL, HCL		
19G0017-06 L	VOA Vial, Clear, 40 mL, HCL		

Client: Farallon	Consulting, LLC	Project Manager: Amanda	Volgardsen
Project: Emerald	Gateway Site 1071-026	Project Number: 1071-026	
19G0017-07 A	HDPE NM, 500 mL, 1:1 HNO3	12	0655
19G0017-07 B	Glass NM, Amber, 500 mL		1
19G0017-07 C	Glass NM, Amber, 500 mL		
19G0017-07 D	Glass NM, Amber, 500 mL		
19G0017-07 E	Glass NM, Amber, 500 mL		
19G0017-07 F	Glass NM, Amber, 500 mL		
19G0017-07 G	Glass NM, Amber, 500 mL		
19G0017-07 H	VOA Vial, Clear, 40 mL, HCL		
19G0017-07 I	VOA Vial, Clear, 40 mL, HCL		
19G0017-07 J	VOA Vial, Clear, 40 mL, HCL		
19G0017-07 K	VOA Vial, Clear, 40 mL, HCL		
19G0017-07 L	VOA Vial, Clear, 40 mL, HCL		
19G0017-08 A	HDPE NM, 500 mL, 1:1 HNO3	22	0655
19G0017-08 B	Glass NM, Amber, 500 mL		
19G0017-08 C	Glass NM, Amber, 500 mL		
19G0017-08 D	Glass NM, Amber, 500 mL		
19G0017-08 E	Glass NM, Amber, 500 mL		
9G0017-08 F	Glass NM, Amber, 500 mL		
19G0017-08 G	Glass NM, Amber, 500 mL		
19G0017-08 H	VOA Vial, Clear, 40 mL, HCL		
19G0017-08 I	VOA Vial, Clear, 40 mL, HCL		
19G0017-08 J	VOA Vial, Clear, 40 mL, HCL		
9G0017-08 K	VOA Vial, Clear, 40 mL, HCL		
9G0017-08 L	VOA Vial, Clear, 40 mL, HCL		
19G0017-09 A	HDPE NM, 500 mL, 1:1 HNO3	42	19655
9G0017-09 B	Glass NM, Amber, 500 mL		1 4-13
19G0017-09 C	Glass NM, Amber, 500 mL		
9G0017-09 D	Glass NM, Amber, 500 mL		
19G0017-09 E	Glass NM, Amber, 500 mL		
19G0017-09 F	Glass NM, Amber, 500 mL		
19G0017-09 G	Glass NM, Amber, 500 mL		
9G0017-09 H	VOA Vial, Clear, 40 mL, HCL		
9G0017-09 I	VOA Vial, Clear, 40 mL, HCL		
19G0017-09 J	VOA Vial, Clear, 40 mL, HCL		
19G0017-09 K	VOA Vial, Clear, 40 mL, HCL		
19G0017-09 L	VOA Vial, Clear, 40 mL, HCL		
19G0017-10 A	HDPE NM, 500 mL, 1:1 HNO3	22	PC 55

Client: Farallon	Consulting, LLC	Project Manager:	Amanda Volgardsen	
	Gateway Site 1071-026	Project Number:	1071-026	
19G0017-10 B	Glass NM, Amber, 500 mL			
19G0017-10 C	Glass NM, Amber, 500 mL			
19G0017-10 D	Glass NM, Amber, 500 mL			
19G0017-10 E	Glass NM, Amber, 500 mL			
19G0017-10 F	Glass NM, Amber, 500 mL			
19G0017-10 G	Glass NM, Amber, 500 mL			
19G0017-10 H	VOA Vial, Clear, 40 mL, HCL			
19G0017-10 I	VOA Vial, Clear, 40 mL, HCL			
19G0017-10 J	VOA Vial, Clear, 40 mL, HCL			
19G0017-10 K	VOA Vial, Clear, 40 mL, HCL			
19G0017-10 L	VOA Vial, Clear, 40 mL, HCL			
19G0017-11 A	HDPE NM, 500 mL, 1:1 HNO3		<7	ach
19G0017-11 B	Glass NM, Amber, 500 mL			10000
19G0017-11 C	Glass NM, Amber, 500 mL			
19G0017-11 D	Glass NM, Amber, 500 mL			
19G0017-11 E	Glass NM, Amber, 500 mL			
19G0017-11 F	Glass NM, Amber, 500 mL			
19G0017-11 G	Glass NM, Amber, 500 mL			
19G0017-11 H	VOA Vial, Clear, 40 mL, HCL			
19G0017-11 I	VOA Vial, Clear, 40 mL, HCL			
19G0017-11 J	VOA Vial, Clear, 40 mL, HCL			
19G0017-11 K	VOA Vial, Clear, 40 mL, HCL			
9G0017-11 L	VOA Vial, Clear, 40 mL, HCL			
19G0017-12 A	HDPE NM, 500 mL, 1:1 HNO3		22	004
19G0017-12 B	Glass NM, Amber, 500 mL			1
19G0017-12 C	Glass NM, Amber, 500 mL			
19G0017-12 D	Glass NM, Amber, 500 mL			
19G0017-12 E	Glass NM, Amber, 500 mL			
19G0017-12 F	Glass NM, Amber, 500 mL			
19G0017-12 G	Glass NM, Amber, 500 mL			
19G0017-12 H	VOA Vial, Clear, 40 mL, HCL			
19G0017-12 I	VOA Vial, Clear, 40 mL, HCL			
9G0017-12 J	VOA Vial, Clear, 40 mL, HCL			
19G0017-12 K	VOA Vial, Clear, 40 mL, HCL			
19G0017-12 L	VOA Vial, Clear, 40 mL, HCL			
19G0017-13 A	HDPE NM, 500 mL, 1:1 HNO3		12	Onsc.
19G0017-14 A	HDPE NM, 500 mL, 1:1 HNO3		12	DOSC

WORK ORDER

19	(1)	(1)	17	
19	TI		/	

Client: Farallon Project: Emerald	Consulting, LLC Gateway Site 1071-026	Project Manager: Amanda Vo Project Number: 1071-026	lgardsen
19G0017-15 A	HDPE NM, 500 mL, 1:1 HNO3	22	perss
19G0017-16 A	HDPE NM, 500 mL, 1:1 HNO3	22	PCSS
19G0017-17 A	HDPE NM, 500 mL, 1:1 HNO3	22	20655
9G0017-18 A	HDPE NM, 500 mL, 1:1 HNO3	22	pass
9G0017-19 A	HDPE NM, 500 mL, 1:1 HNO3	22	pass
9G0017-20 A	HDPE NM, 500 mL, 1:1 HNO3	47	coss
9G0017-21 A	HDPE NM, 500 mL, 1:1 HNO3	42	2005
9G0017-22 A	HDPE NM, 500 mL, 1:1 HNO3	42	0655
19G0017-23 A	HDPE NM, 500 mL, 1:1 HNO3	62	Rass
19G0017-24 A	HDPE NM, 500 mL, 1:1 HNO3	42	pass

Cooler Receipt Form

Gara	llan	Project Name:	1d Calo.	0. 2
ARI Client:Fara	-			U
COC No(s):	NA	Delivered by: Fed-Ex UPS Courier		
Assigned ARI Job No: 1961	5017	Tracking No:		NA
reliminary Examination Phas				
Were intact, properly signed ar	nd dated custody seals attached to the	he outside of the cooler?	YES	NO
Were custody papers included	with the cooler?		YES	NO
Were custody papers properly	filled out (ink, signed, etc.)		YES	NO
Temperature of Cooler(s) (°C)	(recommended 2.0-6.0 °C for chemi	P	0, 0	
Time 1800		5.96 4.86 31	0 (4,5 (5,6)	C 1.7C
If cooler temperature is out of o	compliance fill out form 00070F	, / Te	emp Gun ID#: DOOS	106
ooler Accepted by:	JBW	Date: 07/01/19 Time:	1800	
		nd attach all shipping documents		=
og-In Phase:		Pr-S		
3				10.0
A STATE OF THE STA	luded in the cooler?			ES NO
What kind of packing mater	THE RESERVE OF THE PARTY OF THE	ap Wet-Ice Gel Packs Baggies Foam Blo		
	propriate)?			ES NO
The state of the s	lastic bags?		Individually (Gro	uped Not
Did all bottles arrive in good of	condition (unbroken)?		CO. YI	ES NO
Were all bottle labels complet	te and legible?		7/2/10	ES (NO)
Did the number of containers	listed on COC match with the numb	er of containers received?	11419 (A)	ES NO
Did all bottle labels and tags	agree with custody papers?			ES NO
Were all bottles used correct	for the requested analyses?		Y	ES NO
Do any of the analyses (bottle	es) require preservation? (attach pre-	servation sheet, excluding VOCs)	NA (YI	ES NO
Were all VOC vials free of air	bubbles?	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	NA Y	ES NO
Was sufficient amount of sam	nple sent in each bottle?		(YI	ES NO
Date VOC Trip Blank was ma	ade at ARI		NA")	
Were the sample(s) split	NA YES Date/Time:	Equipment:	Split by	y:
by ARI?	2.00			0
amples Logged by:	Soll Date: 7/2/8	1 Time: 0805 Labels	s checked by:	K
	** Notify Project Manager	of discrepancies or concerns **		
Sample ID on Bottle	Sample ID on COC	Sample ID on Bottle	Sample ID on	COC
		1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		
		+		
Additional Notes, Discrepa	ncies & Resolutions		4 1 11	
MI. 11 - 1907/21	dissolved metals bot	He doesn't have the	, sample tin	ne 201-191
1 The make	10 bol MW-ACI-1907	OI - All but I vial have a	r bubbles, fr	VIW-03-1
watter on the	the part of 1967cm La	He doesn't have the of-All but I vial have a as not have a Sample dai air bubble, MW-203 1	teltime on t	otal merals
(Ivial) has allowed	200700 - Lune (1000 OUR	air bubble, MW-203 1	907015imPN	14 bottle
container, MW4-1	70to - I vial has an	wir bubble, MW-203 1		
doesn't have ask	mple time written	Orline Continue		
By: 6 10	Date: 7/2/19			
	Duit.			

0016F 01/17/2018

Cooler Receipt Form

Revision 014A

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

DOF-4-190701 19G0017-01 (Water)

Volatile Organic Compounds

 Method: EPA 8260C
 Sampled: 07/01/2019 10:40

 Instrument: NT2
 Analyst: LH

 Analyzed: 07/03/2019 16:26

Sample Preparation: Preparation Method: EPA 5030 (Purge and Trap) Extract ID: 19G0017-01 J

Preparation Batch: BHG0047 Sample Size: 10 mL Prepared: 03-Jul-2019 Final Volume: 10 mL

Analyte	CAS Number	Dilution	Detection Limit	Reporting Limit	Result	Units	Notes
Benzene	71-43-2	1	0.03	0.20	ND	ug/L	U
Toluene	108-88-3	1	0.04	0.20	ND	ug/L	U
Ethylbenzene	100-41-4	1	0.04	0.20	ND	ug/L	U
m,p-Xylene	179601-23-1	1	0.05	0.40	ND	ug/L	U
o-Xylene	95-47-6	1	0.03	0.20	ND	ug/L	U
Surrogate: Toluene-d8				80-120 %	96.0	%	
Surrogate: 4-Bromofluorobenzene				80-120 %	87.5	%	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

DOF-4-190701 19G0017-01 (Water)

Volatile Organic Compounds

 Method: NWTPHg
 Sampled: 07/01/2019 10:40

 Instrument: NT2
 Analyst: LH

 Analyzed: 07/03/2019 16:26

Sample Preparation: Preparation Method: EPA 5030 (Purge and Trap) Extract ID: 19G0017-01 J

Preparation Batch: BHG0047 Sample Size: 10 mL Prepared: 03-Jul-2019 Final Volume: 10 mL

Analyte	CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Gasoline Range Organics (Tol-Nap)	GRO	1	100	ND	ug/L	U
Surrogate: Toluene-d8			80-120 %	96.0	%	
Surrogate: 4-Bromofluorobenzene			80-120 %	87.2	%	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

Project Number: 1071-026 1809 7th Ave, Suite 1111 Reported: Seattle WA, 98101 Project Manager: Pete Kingston 12-Jul-2019 16:01

DOF-4-190701 19G0017-01 (Water)

Semivolatile Organic Compounds - SIM

Method: EPA 8270D-SIM Sampled: 07/01/2019 10:40 Instrument: NT11 Analyst: VTS Analyzed: 07/06/2019 13:48 Extract ID: 19G0017-01 E 01

Sample Preparation: Preparation Method: EPA 3510C SepF

Preparation Batch: BHG0068 Sample Size: 500 mL Prepared: 03-Jul-2019 Final Volume: 0.5 mL

11-Parea. 05 tai 2017							
			Detection	Reporting			<u> </u>
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Naphthalene	91-20-3	1	0.001	0.010	0.002	ug/L	J
2-Methylnaphthalene	91-57-6	1	0.001	0.010	0.001	ug/L	J
1-Methylnaphthalene	90-12-0	1	0.0009	0.010	0.001	ug/L	J
2-Chloronaphthalene	91-58-7	1	0.001	0.010	0.003	ug/L	J
Acenaphthylene	208-96-8	1	0.002	0.010	ND	ug/L	U
Acenaphthene	83-32-9	1	0.003	0.010	ND	ug/L	U
Dibenzofuran	132-64-9	1	0.002	0.010	0.003	ug/L	J
Fluorene	86-73-7	1	0.002	0.010	ND	ug/L	U
Phenanthrene	85-01-8	1	0.001	0.010	ND	ug/L	U
Anthracene	120-12-7	1	0.001	0.010	ND	ug/L	U
Carbazole	86-74-8	1	0.001	0.010	ND	ug/L	U
Fluoranthene	206-44-0	1	0.002	0.010	ND	ug/L	U
Pyrene	129-00-0	1	0.001	0.010	ND	ug/L	U
Benzo(a)anthracene	56-55-3	1	0.0008	0.010	ND	ug/L	U
Chrysene	218-01-9	1	0.0009	0.010	ND	ug/L	U
Benzo(b)fluoranthene	205-99-2	1	0.0005	0.010	ND	ug/L	U
Benzo(k)fluoranthene	207-08-9	1	0.003	0.010	ND	ug/L	U
Benzo(j)fluoranthene	205-82-3	1	0.002	0.010	ND	ug/L	U
Benzofluoranthenes, Total		1	0.004	0.010	ND	ug/L	U
Benzo(a)pyrene	50-32-8	1	0.002	0.010	ND	ug/L	U
Perylene	1985-5-0	1	0.006	0.010	ND	ug/L	U
Indeno(1,2,3-cd)pyrene	193-39-5	1	0.001	0.010	ND	ug/L	U
Dibenzo(a,h)anthracene	53-70-3	1	0.001	0.010	ND	ug/L	U
Benzo(g,h,i)perylene	191-24-2	1	0.001	0.010	ND	ug/L	U
Surrogate: 2-Methylnaphthalene-d10				42-120 %	85.2	%	
Surrogate: Dibenzo[a,h]anthracene-d14				29-120 %	105	%	
Surrogate: Fluoranthene-d10				57-120 %	92.8	%	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

DOF-4-190701 19G0017-01 (Water)

Petroleum Hydrocarbons

 Method: NWTPH-Dx
 Sampled: 07/01/2019 10:40

 Instrument: FID4 Analyst: JGR
 Analyzed: 07/04/2019 22:35

Sample Preparation: Preparation Method: EPA 3510C SepF Extract ID: 19G0017-01 B 01

Preparation Batch: BHG0065 Sample Size: 500 mL Prepared: 03-Jul-2019 Final Volume: 1 mL

110purou. 05 cur 2015	1 11101 (0101110) 1	1112				
Analyte	CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Diesel Range Organics (C12-C24)	DRO	1	0.100	0.185	mg/L	
HC ID: DRO						
Motor Oil Range Organics (C24-C38)	RRO	1	0.200	ND	mg/L	U
Surrogate: o-Terphenyl			50-150 %	71.1	%	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

DOF-4-190701 19G0017-01 (Water)

Aroclor PCB

AIOCIOI I CB									
Method: EPA 8082A						S	ampled: 07/	01/2019 10:40	
Instrument: ECD7 Anal	yst: JGR					Aı	nalyzed: 07/	03/2019 16:56	
Sample Preparation:	Preparation Method: EPA 3510C SepF					Ext	ract ID: 190	G0017-01 C 01	
• •	Preparation Batch: BHG0066	Sample Size: 10	000 mL						
	Prepared: 02-Jul-2019	Final Volume: ().5 mL						
Sample Cleanup:	Cleanup Method: Silica Gel					Ext	ract ID: 190	60017-01 C 01	
	Cleanup Batch: CHG0019	Initial Volume:	0.5 mL						
	Cleaned: 03-Jul-2019	Final Volume: ().5 mL						
Sample Cleanup:	Cleanup Method: Sulfuric Acid				Extract ID:19G0017-01 C (
	Cleanup Batch: CHG0017	Initial Volume:	0.5 mL						
	Cleaned: 03-Jul-2019	Final Volume: ().5 mL						
Sample Cleanup:	Cleanup Method: Sulfur					Ex	tract ID:190	60017-01 C 01	
	Cleanup Batch: CHG0018	Initial Volume:	0.5 mL						
	Cleaned: 03-Jul-2019	Final Volume: ().5 mL						
				Detection	Reporting				
Analyte		CAS Number	Dilution	Limit	Limit	Result	Units	Notes	
Aroclor 1016		12674-11-2	1	0.002	0.010	ND	ug/L	U	
Aroclor 1221		11104-28-2	1	0.002	0.010	ND	ug/L	U	
Aroclor 1232		11141-16-5	1	0.002	0.010	ND	ug/L	U	
Aroclor 1242		53469-21-9	1	0.002	0.010	ND	ug/L	U	

			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Aroclor 1016	12674-11-2	1	0.002	0.010	ND	ug/L	U
Aroclor 1221	11104-28-2	1	0.002	0.010	ND	ug/L	U
Aroclor 1232	11141-16-5	1	0.002	0.010	ND	ug/L	U
Aroclor 1242	53469-21-9	1	0.002	0.010	ND	ug/L	U
Aroclor 1248	12672-29-6	1	0.002	0.010	ND	ug/L	U
Aroclor 1254	11097-69-1	1	0.002	0.010	ND	ug/L	U
Aroclor 1260	11096-82-5	1	0.003	0.010	ND	ug/L	U
Aroclor 1262	37324-23-5	1	0.003	0.010	ND	ug/L	U
Aroclor 1268	11100-14-4	1	0.003	0.010	ND	ug/L	U
Surrogate: Decachlorobiphenyl				29-120 %	42.2	%	
Surrogate: Tetrachlorometaxylene				32-120 %	49.6	%	
Surrogate: Decachlorobiphenyl [2C]				29-120 %	40.4	%	
Surrogate: Tetrachlorometaxylene [2C]				32-120 %	40.4	%	

Analytical Resources, Inc.

ND

ug/L

ug/L

U

D

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

DOF-4-190701 19G0017-01 (Water)

Metals and Metallic Compounds

Analyte

Manganese

Lead

Method: EPA 6020ASampled: 07/01/2019 10:40Instrument: ICPMS2Analyst: MCBAnalyzed: 07/09/2019 00:31Sample Preparation:Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrixExtract ID: 19G0017-01 A 01

7439-92-1

7439-96-5

Preparation Batch: BHG0166 Sample Size: 25 mL

Prepared: 08-Jul-2019 Final Volume: 25 mL

Detection Reporting

CAS Number Dilution Limit Limit Result Units Notes

1

0.0680

0.425

0.100

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

DOF-4-190701 19G0017-01 (Water)

Metals and Metallic Compounds

Copper

Zinc

Method: EPA 6020A UCT-KED
Sampled: 07/01/2019 10:40
Instrument: ICPMS2 Analyst: MCB
Analyzed: 07/09/2019 00:31

Sample Preparation: Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix Extract ID: 19G0017-01 A 01

Preparation Batch: BHG0166 Sample Size: 25 mL Prepared: 08-Jul-2019 Final Volume: 25 mL

Detection Reporting Analyte CAS Number Dilution Limit Limit Result Units Notes Arsenic 7440-38-2 1 0.0220 0.200 2.17 ug/L Cadmium 7440-43-9 1 0.0300 0.100 ND ug/L U

7440-50-8

7440-66-6

0.340

0.820

0.500

4.00

0.426

10.2

ug/L

ug/L

J

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

DOF-4-190701 19G0017-01 (Water)

Metals and Metallic Compounds

 Method: EPA 7470A
 Sampled: 07/01/2019 10:40

 Instrument: CVAA Analyst: SKM
 Analyzed: 07/10/2019 15:58

Sample Preparation: Preparation Method: TLM EPA 7470A low level Preparation Batch: BHG0168 Sample Size: 20 mL Extract ID: 19G0017-01 A

Prepared: 08-Jul-2019 Final Volume: 20 mL

Detection Reporting Limit Analyte CAS Number Dilution Limit Result Units Notes 7439-97-6 0.000020 ND Mercury 1 0.000010 mg/L U

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

DOF-5-190701 19G0017-02 (Water)

Volatile Organic Compounds

 Method: EPA 8260C
 Sampled: 07/01/2019 11:55

 Instrument: NT2 Analyst: LH
 Analyzed: 07/03/2019 16:46

Sample Preparation: Preparation Method: EPA 5030 (Purge and Trap) Extract ID: 19G0017-02 L
Preparation Batch: BHG0047 Sample Size: 10 mL

Prepared: 03-Jul-2019 Final Volume: 10 mL

Analyte	CAS Number	Dilution	Detection Limit	Reporting Limit	Result	Units	Notes
Benzene	71-43-2	1	0.03	0.20	ND	ug/L	U
Toluene	108-88-3	1	0.04	0.20	ND	ug/L	U
Ethylbenzene	100-41-4	1	0.04	0.20	ND	ug/L	U
m,p-Xylene	179601-23-1	1	0.05	0.40	0.15	ug/L	J
o-Xylene	95-47-6	1	0.03	0.20	ND	ug/L	U
Surrogate: Toluene-d8				80-120 %	93.7	%	
Surrogate: 4-Bromofluorobenzene				80-120 %	90.9	%	

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

DOF-5-190701 19G0017-02 (Water)

Volatile Organic Compounds

 Method: NWTPHg
 Sampled: 07/01/2019 11:55

 Instrument: NT2 Analyst: LH
 Analyzed: 07/03/2019 16:46

Sample Preparation: Preparation Method: EPA 5030 (Purge and Trap) Extract ID: 19G0017-02 L

Preparation Batch: BHG0047 Sample Size: 10 mL Prepared: 03-Jul-2019 Final Volume: 10 mL

Analyte	CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Gasoline Range Organics (Tol-Nap)	GRO	1	100	ND	ug/L	U
Surrogate: Toluene-d8			80-120 %	93.7	%	
Surrogate: 4-Bromofluorobenzene			80-120 %	90.7	%	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

Project Number: 1071-026 1809 7th Ave, Suite 1111 Reported: Seattle WA, 98101 Project Manager: Pete Kingston 12-Jul-2019 16:01

DOF-5-190701 19G0017-02 (Water)

Semivolatile Organic Compounds - SIM

Method: EPA 8270D-SIM Sampled: 07/01/2019 11:55 Instrument: NT11 Analyst: VTS Analyzed: 07/06/2019 14:18 Extract ID: 19G0017-02 E 01

Sample Preparation: Preparation Method: EPA 3510C SepF

Preparation Batch: BHG0068 Sample Size: 500 mL Prepared: 03-Jul-2019 Final Volume: 0.5 mL

Prepared: 03-Jul-2019	Final Volume:).5 mL					
A 1.	CAGN	D''L d'	Detection	Reporting	D 1:	TT '4	N
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Naphthalene	91-20-3	1	0.001	0.010	0.008	ug/L	J
2-Methylnaphthalene	91-57-6	1	0.001	0.010	0.009	ug/L	J
1-Methylnaphthalene	90-12-0	1	0.0009	0.010	0.172	ug/L	
2-Chloronaphthalene	91-58-7	1	0.001	0.010	ND	ug/L	U
Acenaphthylene	208-96-8	1	0.002	0.010	ND	ug/L	U
Acenaphthene	83-32-9	1	0.003	0.010	0.009	ug/L	J
Dibenzofuran	132-64-9	1	0.002	0.010	0.002	ug/L	J
Fluorene	86-73-7	1	0.002	0.010	0.003	ug/L	J
Phenanthrene	85-01-8	1	0.001	0.010	0.001	ug/L	J
Anthracene	120-12-7	1	0.001	0.010	ND	ug/L	U
Carbazole	86-74-8	1	0.001	0.010	0.003	ug/L	J
Fluoranthene	206-44-0	1	0.002	0.010	ND	ug/L	U
Pyrene	129-00-0	1	0.001	0.010	ND	ug/L	U
Benzo(a)anthracene	56-55-3	1	0.0008	0.010	ND	ug/L	U
Chrysene	218-01-9	1	0.0009	0.010	ND	ug/L	U
Benzo(b)fluoranthene	205-99-2	1	0.0005	0.010	ND	ug/L	U
Benzo(k)fluoranthene	207-08-9	1	0.003	0.010	ND	ug/L	U
Benzo(j)fluoranthene	205-82-3	1	0.002	0.010	ND	ug/L	U
Benzofluoranthenes, Total		1	0.004	0.010	ND	ug/L	U
Benzo(a)pyrene	50-32-8	1	0.002	0.010	ND	ug/L	U
Perylene	1985-5-0	1	0.006	0.010	ND	ug/L	U
Indeno(1,2,3-cd)pyrene	193-39-5	1	0.001	0.010	ND	ug/L	U
Dibenzo(a,h)anthracene	53-70-3	1	0.001	0.010	ND	ug/L	U
Benzo(g,h,i)perylene	191-24-2	1	0.001	0.010	ND	ug/L	U
Surrogate: 2-Methylnaphthalene-d10				42-120 %	77.4	%	
Surrogate: Dibenzo[a,h]anthracene-d14				29-120 %	80.7	%	
Surrogate: Fluoranthene-d10				57-120 %	80.6	%	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

DOF-5-190701 19G0017-02 (Water)

Petroleum Hydrocarbons

 Method: NWTPH-Dx
 Sampled: 07/01/2019 11:55

 Instrument: FID4 Analyst: JGR
 Analyzed: 07/04/2019 22:55

Sample Preparation: Preparation Method: EPA 3510C SepF Extract ID: 19G0017-02 B 01

Preparation Batch: BHG0065 Sample Size: 500 mL Prepared: 03-Jul-2019 Final Volume: 1 mL

Trepared, of the 2015	1 11141 / 0141110/ 1					
Analyte	CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Diesel Range Organics (C12-C24)	DRO	1	0.100	0.108	mg/L	
HC ID: DRO Motor Oil Range Organics (C24-C38)	RRO	1	0.200	ND	mg/L	U
Surrogate: o-Terphenyl		-	50-150 %	41.9	%	*

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

DOF-5-190701 19G0017-02 (Water)

Aroclor PCB

Method: EPA 8082A			Sampled: 07/01/2019 11:55
Instrument: ECD7 Anal	yst: JGR		Analyzed: 07/03/2019 17:17
Sample Preparation:	Preparation Method: EPA 3510C SepF Preparation Batch: BHG0066 Prepared: 02-Jul-2019	Sample Size: 1000 mL Final Volume: 0.5 mL	Extract ID: 19G0017-02 C 01
Sample Cleanup:	Cleanup Method: Silica Gel Cleanup Batch: CHG0019 Cleaned: 03-Jul-2019	Initial Volume: 0.5 mL Final Volume: 0.5 mL	Extract ID: 19G0017-02 C 01
Sample Cleanup:	Cleanup Method: Sulfuric Acid Cleanup Batch: CHG0017 Cleaned: 03-Jul-2019	Initial Volume: 0.5 mL Final Volume: 0.5 mL	Extract ID:19G0017-02 C 01
Sample Cleanup:	Cleanup Method: Sulfur Cleanup Batch: CHG0018 Cleaned: 03-Jul-2019	Initial Volume: 0.5 mL Final Volume: 0.5 mL	Extract ID:19G0017-02 C 01

			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Aroclor 1016	12674-11-2	1	0.002	0.010	ND	ug/L	U
Aroclor 1221	11104-28-2	1	0.002	0.010	ND	ug/L	U
Aroclor 1232	11141-16-5	1	0.002	0.010	ND	ug/L	U
Aroclor 1242	53469-21-9	1	0.002	0.010	ND	ug/L	U
Aroclor 1248	12672-29-6	1	0.002	0.010	ND	ug/L	U
Aroclor 1254	11097-69-1	1	0.002	0.010	ND	ug/L	U
Aroclor 1260	11096-82-5	1	0.003	0.010	ND	ug/L	U
Aroclor 1262	37324-23-5	1	0.003	0.010	ND	ug/L	U
Aroclor 1268	11100-14-4	1	0.003	0.010	ND	ug/L	U
Surrogate: Decachlorobiphenyl				29-120 %	29.0	%	
Surrogate: Tetrachlorometaxylene				32-120 %	36.7	%	
Surrogate: Decachlorobiphenyl [2C]				29-120 %	28.0	%	*
Surrogate: Tetrachlorometaxylene [2C]				32-120 %	32.3	%	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

DOF-5-190701 19G0017-02 (Water)

Metals and Metallic Compounds

Method: EPA 6020ASampled: 07/01/2019 11:55Instrument: ICPMS2Analyst: MCBAnalyzed: 07/08/2019 21:31Sample Preparation:Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrixExtract ID: 19G0017-02 A 01

Preparation Batch: BHG0166 Sample Size: 25 mL

Prepared: 08-Jul-2019 Final Volume: 25 mL

	Trepared: 00 tar 2017	i mai voiame.	23 IIID					
				Detection	Reporting			
Analyte		CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Lead		7439-92-1	1	0.0680	0.100	2.27	ug/L	
Manganese		7439-96-5	1	0.0850	0.500	210	ug/L	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

DOF-5-190701 19G0017-02 (Water)

Metals and Metallic Compounds

 Method: EPA 6020A UCT-KED
 Sampled: 07/01/2019 11:55

 Instrument: ICPMS2
 Analyst: MCB

 Analyzed: 07/08/2019 21:31

Sample Preparation: Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix Extract ID: 19G0017-02 A 01

Preparation Batch: BHG0166 Sample Size: 25 mL

Prepared: 08-Jul-2019 Final Volume: 25 mL

			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Arsenic	7440-38-2	1	0.0220	0.200	0.893	ug/L	
Cadmium	7440-43-9	1	0.0300	0.100	ND	ug/L	U
Copper	7440-50-8	1	0.340	0.500	1.45	ug/L	
Zinc	7440-66-6	1	0.940	4.00	159	ug/L	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

DOF-5-190701 19G0017-02 (Water)

Metals and Metallic Compounds

 Method: EPA 7470A
 Sampled: 07/01/2019 11:55

 Instrument: CVAA Analyst: SKM
 Analyzed: 07/10/2019 16:01

Sample Preparation: Preparation Method: TLM EPA 7470A low level Extract ID: 19G0017-02 A

Preparation Batch: BHG0168 Sample Size: 20 mL Prepared: 08-Jul-2019 Final Volume: 20 mL

Detection Reporting Limit Analyte CAS Number Dilution Limit Result Units Notes 7439-97-6 0.000020 Mercury 1 0.000010 0.000013 mg/L J

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

DOF-5-190701 19G0017-02RE1 (Water)

Petroleum Hydrocarbons

 Method: NWTPH-Dx
 Sampled: 07/01/2019 11:55

 Instrument: FID4 Analyst: VTS
 Analyzed: 07/05/2019 15:57

Sample Preparation: Preparation Method: EPA 3510C SepF Extract ID: 19G0017-02RE1 B 01

Preparation Batch: BHG0065 Sample Size: 500 mL Prepared: 03-Jul-2019 Final Volume: 1 mL

			Reporting			
Analyte	CAS Number	Dilution	Limit	Result	Units	Notes
Diesel Range Organics (C12-C24)	DRO	1	0.100	0.105	mg/L	
HC ID: DRO						
Motor Oil Range Organics (C24-C38)	RRO	1	0.200	ND	mg/L	U
HC ID: MOTOR OIL						
Surrogate: o-Terphenyl			50-150 %	40.7	%	*

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

MW-AG2-190701 19G0017-03 (Water)

Volatile Organic Compounds

 Method: EPA 8260C
 Sampled: 07/01/2019 13:05

 Instrument: NT2
 Analyst: LH

 Analyzed: 07/03/2019 17:07

Sample Preparation: Preparation Method: EPA 5030 (Purge and Trap) Extract ID: 19G0017-03 K

Preparation Batch: BHG0047 Sample Size: 10 mL Prepared: 03-Jul-2019 Final Volume: 10 mL

Analyte	CAS Number	Dilution	Detection Limit	Reporting Limit	Result	Units	Notes
Benzene	71-43-2	1	0.03	0.20	ND	ug/L	U
Toluene	108-88-3	1	0.04	0.20	ND	ug/L	U
Ethylbenzene	100-41-4	1	0.04	0.20	ND	ug/L	U
m,p-Xylene	179601-23-1	1	0.05	0.40	ND	ug/L	U
o-Xylene	95-47-6	1	0.03	0.20	ND	ug/L	U
Surrogate: Toluene-d8				80-120 %	94.0	%	
Surrogate: 4-Bromofluorobenzene				80-120 %	89.4	%	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

MW-AG2-190701 19G0017-03 (Water)

Volatile Organic Compounds

 Method: NWTPHg
 Sampled: 07/01/2019 13:05

 Instrument: NT2
 Analyst: LH

 Analyzed: 07/03/2019 17:07

Sample Preparation: Preparation Method: EPA 5030 (Purge and Trap) Extract ID: 19G0017-03 K

Preparation Batch: BHG0047 Sample Size: 10 mL Prepared: 03-Jul-2019 Final Volume: 10 mL

Reporting CAS Number Dilution Limit Analyte Result Units Notes GRO ND U Gasoline Range Organics (Tol-Nap) 100 ug/L 80-120 % 94.0 % Surrogate: Toluene-d8 80-120 % Surrogate: 4-Bromofluorobenzene 89.1 %

Analytical Resources, Inc.

Extract ID: 19G0017-03 E 01

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

MW-AG2-190701 19G0017-03 (Water)

Semivolatile Organic Compounds - SIM

 Method: EPA 8270D-SIM
 Sampled: 07/01/2019 13:05

 Instrument: NT11 Analyst: VTS
 Analyzed: 07/06/2019 14:47

Sample Preparation: Preparation Method: EPA 3510C SepF

Preparation Batch: BHG0068 Sample Size: 500 mL Prepared: 03-Jul-2019 Final Volume: 0.5 mL

110parou. 05 var 201,		-					
			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Naphthalene	91-20-3	1	0.001	0.010	0.002	ug/L	J
2-Methylnaphthalene	91-57-6	1	0.001	0.010	0.001	ug/L	J
1-Methylnaphthalene	90-12-0	1	0.0009	0.010	0.001	ug/L	J
2-Chloronaphthalene	91-58-7	1	0.001	0.010	ND	ug/L	U
Acenaphthylene	208-96-8	1	0.002	0.010	ND	ug/L	U
Acenaphthene	83-32-9	1	0.003	0.010	ND	ug/L	U
Dibenzofuran	132-64-9	1	0.002	0.010	ND	ug/L	U
Fluorene	86-73-7	1	0.002	0.010	ND	ug/L	U
Phenanthrene	85-01-8	1	0.001	0.010	0.002	ug/L	J
Anthracene	120-12-7	1	0.001	0.010	ND	ug/L	U
Carbazole	86-74-8	1	0.001	0.010	ND	ug/L	U
Fluoranthene	206-44-0	1	0.002	0.010	ND	ug/L	U
Pyrene	129-00-0	1	0.001	0.010	ND	ug/L	U
Benzo(a)anthracene	56-55-3	1	0.0008	0.010	ND	ug/L	U
Chrysene	218-01-9	1	0.0009	0.010	ND	ug/L	U
Benzo(b)fluoranthene	205-99-2	1	0.0005	0.010	ND	ug/L	U
Benzo(k)fluoranthene	207-08-9	1	0.003	0.010	ND	ug/L	U
Benzo(j)fluoranthene	205-82-3	1	0.002	0.010	ND	ug/L	U
Benzofluoranthenes, Total		1	0.004	0.010	ND	ug/L	U
Benzo(a)pyrene	50-32-8	1	0.002	0.010	ND	ug/L	U
Perylene	1985-5-0	1	0.006	0.010	0.014	ug/L	
Indeno(1,2,3-cd)pyrene	193-39-5	1	0.001	0.010	ND	ug/L	U
Dibenzo(a,h)anthracene	53-70-3	1	0.001	0.010	ND	ug/L	U
Benzo(g,h,i)perylene	191-24-2	1	0.001	0.010	ND	ug/L	U
Surrogate: 2-Methylnaphthalene-d10				42-120 %	76.2	%	
Surrogate: Dibenzo[a,h]anthracene-d14				29-120 %	93.6	%	
Surrogate: Fluoranthene-d10				57-120 %	90.6	%	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

MW-AG2-190701 19G0017-03 (Water)

Petroleum Hydrocarbons

 Method: NWTPH-Dx
 Sampled: 07/01/2019 13:05

 Instrument: FID4 Analyst: JGR
 Analyzed: 07/04/2019 23:15

Sample Preparation: Preparation Method: EPA 3510C SepF Extract ID: 19G0017-03 B 01

Preparation Batch: BHG0065 Sample Size: 500 mL Prepared: 03-Jul-2019 Final Volume: 1 mL

			Reporting			
Analyte	CAS Number	Dilution	Limit	Result	Units	Notes
Diesel Range Organics (C12-C24)	DRO	1	0.100	ND	mg/L	U
Motor Oil Range Organics (C24-C38)	RRO	1	0.200	ND	mg/L	U
Surrogate: o-Terphenyl			50-150 %	84.7	%	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

MW-AG2-190701 19G0017-03 (Water)

Aroclor PCB

Method: EPA 8082A			Sampled: 07/01/2019 13:05
Instrument: ECD7 Anal	yst: JGR		Analyzed: 07/03/2019 17:38
Sample Preparation:	Preparation Method: EPA 3510C SepF Preparation Batch: BHG0066 Prepared: 02-Jul-2019	Sample Size: 1000 mL Final Volume: 0.5 mL	Extract ID: 19G0017-03 C 01
Sample Cleanup:	Cleanup Method: Silica Gel Cleanup Batch: CHG0019 Cleaned: 03-Jul-2019	Initial Volume: 0.5 mL Final Volume: 0.5 mL	Extract ID: 19G0017-03 C 01
Sample Cleanup:	Cleanup Method: Sulfuric Acid Cleanup Batch: CHG0017 Cleaned: 03-Jul-2019	Initial Volume: 0.5 mL Final Volume: 0.5 mL	Extract ID:19G0017-03 C 01
Sample Cleanup:	Cleanup Method: Sulfur Cleanup Batch: CHG0018 Cleaned: 03-Jul-2019	Initial Volume: 0.5 mL Final Volume: 0.5 mL	Extract ID:19G0017-03 C 01

			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Aroclor 1016	12674-11-2	1	0.002	0.010	ND	ug/L	U
Aroclor 1221	11104-28-2	1	0.002	0.010	ND	ug/L	U
Aroclor 1232	11141-16-5	1	0.002	0.010	ND	ug/L	U
Aroclor 1242	53469-21-9	1	0.002	0.010	ND	ug/L	U
Aroclor 1248	12672-29-6	1	0.002	0.010	ND	ug/L	U
Aroclor 1254	11097-69-1	1	0.002	0.010	ND	ug/L	U
Aroclor 1260	11096-82-5	1	0.003	0.010	ND	ug/L	U
Aroclor 1262	37324-23-5	1	0.003	0.010	ND	ug/L	U
Aroclor 1268	11100-14-4	1	0.003	0.010	ND	ug/L	U
Surrogate: Decachlorobiphenyl				29-120 %	47.6	%	
Surrogate: Tetrachlorometaxylene				32-120 %	44.1	%	
Surrogate: Decachlorobiphenyl [2C]				29-120 %	46.0	%	
Surrogate: Tetrachlorometaxylene [2C]				32-120 %	38.4	%	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

MW-AG2-190701 19G0017-03 (Water)

Metals and Metallic Compounds

Method: EPA 6020ASampled: 07/01/2019 13:05Instrument: ICPMS2Analyst: MCBAnalyzed: 07/09/2019 00:36Sample Preparation:Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrixExtract ID: 19G0017-03 A 01

Preparation Batch: BHG0166 Sample Size: 25 mL

Prepared: 08-Jul-2019 Final Volume: 25 mL

	Trepared: 00 tar 2017	i mai voiame. 2	-5 IIIL					
				Detection	Reporting			
Analyte		CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Lead		7439-92-1	1	0.0680	0.100	0.576	ug/L	
Manganese		7439-96-5	1	0.0850	0.500	59.6	ug/L	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

MW-AG2-190701 19G0017-03 (Water)

Metals and Metallic Compounds

 Method: EPA 6020A UCT-KED
 Sampled: 07/01/2019 13:05

 Instrument: ICPMS2
 Analyst: MCB

 Analyzed: 07/09/2019 00:36

Sample Preparation: Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix Extract ID: 19G0017-03 A 01

Preparation Batch: BHG0166 Sample Size: 25 mL

Prepared: 08-Jul-2019 Final Volume: 25 mL

			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Arsenic	7440-38-2	1	0.0220	0.200	15.9	ug/L	
Cadmium	7440-43-9	1	0.0300	0.100	ND	ug/L	U
Copper	7440-50-8	1	0.340	0.500	5.79	ug/L	
Zinc	7440-66-6	1	0.820	4.00	3.33	ug/L	J

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

MW-AG2-190701 19G0017-03 (Water)

Metals and Metallic Compounds

 Method: EPA 7470A
 Sampled: 07/01/2019 13:05

 Instrument: CVAA Analyst: SKM
 Analyzed: 07/10/2019 16:13

Sample Preparation: Preparation Method: TLM EPA 7470A low level Extract ID: 19G0017-03 A

Preparation Batch: BHG0168 Sample Size: 20 mL Prepared: 08-Jul-2019 Final Volume: 20 mL

Detection Reporting Limit Analyte CAS Number Dilution Limit Result Units Notes 7439-97-6 0.000020 Mercury 1 0.000010 0.000018 mg/L J

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

MW-AG1-190701 19G0017-04 (Water)

Volatile Organic Compounds

 Method: EPA 8260C
 Sampled: 07/01/2019 14:20

 Instrument: NT3 Analyst: PKC
 Analyzed: 07/03/2019 16:14

Sample Preparation: Preparation Method: EPA 5030 (Purge and Trap) Extract ID: 19G0017-04 K

Preparation Batch: BHG0064 Sample Size: 2 mL Prepared: 03-Jul-2019 Final Volume: 10 mL

Analyte	CAS Number	Dilution	Detection Limit	Reporting Limit	Result	Units	Notes
Benzene	71-43-2	1	0.13	1.00	ND	ug/L	U
Toluene	108-88-3	1	0.20	1.00	ND	ug/L	U
Ethylbenzene	100-41-4	1	0.19	1.00	ND	ug/L	U
m,p-Xylene	179601-23-1	1	0.26	2.00	ND	ug/L	U
o-Xylene	95-47-6	1	0.17	1.00	ND	ug/L	U
Surrogate: Toluene-d8				80-120 %	99.5	%	
Surrogate: 4-Bromofluorobenzene				80-120 %	97.0	%	

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

MW-AG1-190701 19G0017-04 (Water)

Volatile Organic Compounds

 Method: NWTPHg
 Sampled: 07/01/2019 14:20

 Instrument: NT3 Analyst: PKC
 Analyzed: 07/03/2019 16:14

Sample Preparation: Preparation Method: EPA 5030 (Purge and Trap) Extract ID: 19G0017-04 K

Preparation Batch: BHG0064 Sample Size: 2 mL Prepared: 03-Jul-2019 Final Volume: 10 mL

Reporting CAS Number Dilution Limit Analyte Result Units Notes GRO 500 ND U Gasoline Range Organics (Tol-Nap) ug/L 80-120 % 99.5 % Surrogate: Toluene-d8 80-120 % Surrogate: 4-Bromofluorobenzene 97.0 %

Analytical Resources, Inc.

Extract ID: 19G0017-04 E 01

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

MW-AG1-190701 19G0017-04 (Water)

Semivolatile Organic Compounds - SIM

 Method: EPA 8270D-SIM
 Sampled: 07/01/2019 14:20

 Instrument: NT11 Analyst: VTS
 Analyzed: 07/06/2019 15:17

Sample Preparation: Preparation Method: EPA 3510C SepF

Preparation Batch: BHG0068 Sample Size: 500 mL Prepared: 03-Jul-2019 Final Volume: 0.5 mL

110041041 05 041 2015							
			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Naphthalene	91-20-3	1	0.001	0.010	0.002	ug/L	J
2-Methylnaphthalene	91-57-6	1	0.001	0.010	0.001	ug/L	J
1-Methylnaphthalene	90-12-0	1	0.0009	0.010	0.002	ug/L	J
2-Chloronaphthalene	91-58-7	1	0.001	0.010	ND	ug/L	U
Acenaphthylene	208-96-8	1	0.002	0.010	ND	ug/L	U
Acenaphthene	83-32-9	1	0.003	0.010	ND	ug/L	U
Dibenzofuran	132-64-9	1	0.002	0.010	ND	ug/L	U
Fluorene	86-73-7	1	0.002	0.010	ND	ug/L	U
Phenanthrene	85-01-8	1	0.001	0.010	0.003	ug/L	J
Anthracene	120-12-7	1	0.001	0.010	ND	ug/L	U
Carbazole	86-74-8	1	0.001	0.010	ND	ug/L	U
Fluoranthene	206-44-0	1	0.002	0.010	ND	ug/L	U
Pyrene	129-00-0	1	0.001	0.010	0.001	ug/L	J
Benzo(a)anthracene	56-55-3	1	0.0008	0.010	ND	ug/L	U
Chrysene	218-01-9	1	0.0009	0.010	0.001	ug/L	J
Benzo(b)fluoranthene	205-99-2	1	0.0005	0.010	ND	ug/L	U
Benzo(k)fluoranthene	207-08-9	1	0.003	0.010	ND	ug/L	U
Benzo(j)fluoranthene	205-82-3	1	0.002	0.010	ND	ug/L	U
Benzofluoranthenes, Total		1	0.004	0.010	ND	ug/L	U
Benzo(a)pyrene	50-32-8	1	0.002	0.010	ND	ug/L	U
Perylene	1985-5-0	1	0.006	0.010	0.084	ug/L	
Indeno(1,2,3-cd)pyrene	193-39-5	1	0.001	0.010	ND	ug/L	U
Dibenzo(a,h)anthracene	53-70-3	1	0.001	0.010	ND	ug/L	U
Benzo(g,h,i)perylene	191-24-2	1	0.001	0.010	ND	ug/L	U
Surrogate: 2-Methylnaphthalene-d10				42-120 %	68.5	%	
Surrogate: Dibenzo[a,h]anthracene-d14				29-120 %	90.0	%	
Surrogate: Fluoranthene-d10				57-120 %	77.4	%	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

MW-AG1-190701 19G0017-04 (Water)

Petroleum Hydrocarbons

 Method: NWTPH-Dx
 Sampled: 07/01/2019 14:20

 Instrument: FID4 Analyst: JGR
 Analyzed: 07/04/2019 23:36

Sample Preparation: Preparation Method: EPA 3510C SepF Extract ID: 19G0017-04 B 01

Preparation Batch: BHG0065 Sample Size: 500 mL Prepared: 03-Jul-2019 Final Volume: 1 mL

Analyte	CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Diesel Range Organics (C12-C24)	DRO	1	0.100	ND	mg/L	U
Motor Oil Range Organics (C24-C38)	RRO	1	0.200	ND	mg/L	U
Surrogate: o-Terphenyl			50-150 %	53.2	%	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

MW-AG1-190701 19G0017-04 (Water)

Aroclor PCB

Method: EPA 8082A			·	Sampled: 07/01/2019 14:20
Instrument: ECD7 Analy	yst: JGR			Analyzed: 07/03/2019 17:59
Sample Preparation:	Preparation Method: EPA 3510C SepF	- 1 - 1 - 1000		Extract ID: 19G0017-04 C 01
	Preparation Batch: BHG0066	Sample Size: 1000 mL		
	Prepared: 02-Jul-2019	Final Volume: 0.5 mL		
Sample Cleanup:	Cleanup Method: Silica Gel			Extract ID: 19G0017-04 C 01
	Cleanup Batch: CHG0019	Initial Volume: 0.5 mL		
	Cleaned: 03-Jul-2019	Final Volume: 0.5 mL		
Sample Cleanup:	Cleanup Method: Sulfuric Acid			Extract ID:19G0017-04 C 01
	Cleanup Batch: CHG0017	Initial Volume: 0.5 mL		<u> </u>
	Cleaned: 03-Jul-2019	Final Volume: 0.5 mL		
Sample Cleanup:	Cleanup Method: Sulfur			Extract ID:19G0017-04 C 01
•	Cleanup Batch: CHG0018	Initial Volume: 0.5 mL		
	Cleaned: 03-Jul-2019	Final Volume: 0.5 mL		
			Detection Reporting	

Analysis	CACNoorles	D:1	Detection Limit	Reporting Limit	D14	Units	N-4
Analyte	CAS Number	Dilution	LIIIII	Liiiit	Result	Units	Notes
Aroclor 1016	12674-11-2	1	0.002	0.010	ND	ug/L	U
Aroclor 1221	11104-28-2	1	0.002	0.010	ND	ug/L	U
Aroclor 1232	11141-16-5	1	0.002	0.010	ND	ug/L	U
Aroclor 1242	53469-21-9	1	0.002	0.010	ND	ug/L	U
Aroclor 1248	12672-29-6	1	0.002	0.010	ND	ug/L	U
Aroclor 1254	11097-69-1	1	0.002	0.010	ND	ug/L	U
Aroclor 1260	11096-82-5	1	0.003	0.010	ND	ug/L	U
Aroclor 1262	37324-23-5	1	0.003	0.010	ND	ug/L	U
Aroclor 1268	11100-14-4	1	0.003	0.010	ND	ug/L	U
Surrogate: Decachlorobiphenyl				29-120 %	30.2	%	
Surrogate: Tetrachlorometaxylene				32-120 %	35.4	%	
Surrogate: Decachlorobiphenyl [2C]				29-120 %	28.6	%	*
Surrogate: Tetrachlorometaxylene [2C]				32-120 %	30.3	%	*

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

MW-AG1-190701 19G0017-04 (Water)

Metals and Metallic Compounds

Method: EPA 6020ASampled: 07/01/2019 14:20Instrument: ICPMS2Analyst: MCBAnalyzed: 07/09/2019 00:40Sample Preparation:Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrixExtract ID: 19G0017-04 A 01

Sample Preparation: Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix
Preparation Batch: BHG0166 Sample Size: 25 mL

Prepared: 08-Jul-2019 Final Volume: 25 mL

	F							
				Detection	Reporting			
Analyte		CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Lead		7439-92-1	2	0.136	0.200	2.22	ug/L	D
Manganese		7439-96-5	2	0.170	1.00	94.3	ug/L	D

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

MW-AG1-190701 19G0017-04 (Water)

Metals and Metallic Compounds

Method: EPA 6020A UCT-KED

Instrument: ICPMS2 Analyst: MCB

Sampled: 07/01/2019 14:20

Analyzed: 07/09/2019 00:40

Sample Preparation: Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix Extract ID: 19G0017-04 A 01

Preparation Batch: BHG0166 Sample Size: 25 mL Prepared: 08-Jul-2019 Final Volume: 25 mL

Detection Reporting Analyte CAS Number Dilution Limit Limit Result Units Notes Arsenic 7440-38-2 2 0.0440 0.400 7.57 ug/L D Cadmium 7440-43-9 2 0.0600 0.200 ND ug/L U Copper 7440-50-8 2 0.680 1.00 30.2 ug/L D ug/L Zinc 7440-66-6 2 1.64 8.00 20.6 D

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

MW-AG1-190701 19G0017-04 (Water)

Metals and Metallic Compounds

 Method: EPA 7470A
 Sampled: 07/01/2019 14:20

 Instrument: CVAA Analyst: SKM
 Analyzed: 07/10/2019 16:16

Sample Preparation: Preparation Method: TLM EPA 7470A low level Preparation Batch: BHG0168 Sample Size: 20 mL Extract ID: 19G0017-04 A

Prepared: 08-Jul-2019 Final Volume: 20 mL

Detection Reporting Limit Analyte CAS Number Dilution Limit Result Units Notes 7439-97-6 0.000020 Mercury 1 0.000010 0.000029 mg/L

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

MW-101-190701 19G0017-05 (Water)

Volatile Organic Compounds

 Method: EPA 8260C
 Sampled: 07/01/2019 15:35

 Instrument: NT3
 Analyst: PKC

 Analyzed: 07/03/2019 16:40

Sample Preparation: Preparation Method: EPA 5030 (Purge and Trap) Extract ID: 19G0017-05 J

Preparation Batch: BHG0064 Sample Size: 10 mL Prepared: 03-Jul-2019 Final Volume: 10 mL

	parear os car zors	1 11141 (0141114) 1	·					
Analyte		CAS Number	Dilution	Detection Limit	Reporting Limit	Result	Units	Notes
Benzene		71-43-2	1	0.03	0.20	ND	ug/L	U
Toluene		108-88-3	1	0.04	0.20	ND	ug/L	U
Ethylbenzene		100-41-4	1	0.04	0.20	ND	ug/L	U
m,p-Xylene		179601-23-1	1	0.05	0.40	ND	ug/L	U
o-Xylene		95-47-6	1	0.03	0.20	ND	ug/L	U
Surrogate: Toluene-d8		<u> </u>			80-120 %	96.4	%	
Surrogate: 4-Bromofluorobenzene					80-120 %	96.7	%	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

MW-101-190701 19G0017-05 (Water)

Volatile Organic Compounds

 Method: NWTPHg
 Sampled: 07/01/2019 15:35

 Instrument: NT3
 Analyst: PKC

 Analyzed: 07/03/2019 16:40

Sample Preparation: Preparation Method: EPA 5030 (Purge and Trap) Extract ID: 19G0017-05 J

Preparation Batch: BHG0064 Sample Size: 10 mL Prepared: 03-Jul-2019 Final Volume: 10 mL

Reporting CAS Number Dilution Limit Analyte Result Units Notes GRO ND U Gasoline Range Organics (Tol-Nap) 100 ug/L 80-120 % 96.4 % Surrogate: Toluene-d8 80-120 % Surrogate: 4-Bromofluorobenzene 96.7 %

Analytical Resources, Inc.

Extract ID: 19G0017-05 E 01

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

MW-101-190701 19G0017-05 (Water)

Semivolatile Organic Compounds - SIM

 Method: EPA 8270D-SIM
 Sampled: 07/01/2019 15:35

 Instrument: NT11
 Analyst: VTS

 Analyzed: 07/06/2019 15:47

Sample Preparation: Preparation Method: EPA 3510C SepF

Preparation Batch: BHG0068 Sample Size: 500 mL Prepared: 03-Jul-2019 Final Volume: 0.5 mL

			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Naphthalene	91-20-3	1	0.001	0.010	0.007	ug/L	J
2-Methylnaphthalene	91-57-6	1	0.001	0.010	0.003	ug/L	J
1-Methylnaphthalene	90-12-0	1	0.0009	0.010	0.002	ug/L	J
2-Chloronaphthalene	91-58-7	1	0.001	0.010	ND	ug/L	U
Acenaphthylene	208-96-8	1	0.002	0.010	ND	ug/L	U
Acenaphthene	83-32-9	1	0.003	0.010	ND	ug/L	U
Dibenzofuran	132-64-9	1	0.002	0.010	ND	ug/L	U
Fluorene	86-73-7	1	0.002	0.010	ND	ug/L	U
Phenanthrene	85-01-8	1	0.001	0.010	0.002	ug/L	J
Anthracene	120-12-7	1	0.001	0.010	ND	ug/L	U
Carbazole	86-74-8	1	0.001	0.010	ND	ug/L	U
Fluoranthene	206-44-0	1	0.002	0.010	ND	ug/L	U
Pyrene	129-00-0	1	0.001	0.010	ND	ug/L	U
Benzo(a)anthracene	56-55-3	1	0.0008	0.010	ND	ug/L	U
Chrysene	218-01-9	1	0.0009	0.010	ND	ug/L	U
Benzo(b)fluoranthene	205-99-2	1	0.0005	0.010	ND	ug/L	U
Benzo(k)fluoranthene	207-08-9	1	0.003	0.010	ND	ug/L	U
Benzo(j)fluoranthene	205-82-3	1	0.002	0.010	ND	ug/L	U
Benzofluoranthenes, Total		1	0.004	0.010	ND	ug/L	U
Benzo(a)pyrene	50-32-8	1	0.002	0.010	ND	ug/L	U
Perylene	1985-5-0	1	0.006	0.010	ND	ug/L	U
Indeno(1,2,3-cd)pyrene	193-39-5	1	0.001	0.010	ND	ug/L	U
Dibenzo(a,h)anthracene	53-70-3	1	0.001	0.010	ND	ug/L	U
Benzo(g,h,i)perylene	191-24-2	1	0.001	0.010	ND	ug/L	U
Surrogate: 2-Methylnaphthalene-d10				42-120 %	72.4	%	
Surrogate: Dibenzo[a,h]anthracene-d14				29-120 %	89.8	%	
Surrogate: Fluoranthene-d10				57-120 %	83.3	%	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

MW-101-190701 19G0017-05 (Water)

Petroleum Hydrocarbons

 Method: NWTPH-Dx
 Sampled: 07/01/2019 15:35

 Instrument: FID4 Analyst: JGR
 Analyzed: 07/04/2019 23:56

Sample Preparation: Preparation Method: EPA 3510C SepF Extract ID: 19G0017-05 B 01

Preparation Batch: BHG0065 Sample Size: 500 mL Prepared: 03-Jul-2019 Final Volume: 1 mL

Reporting CAS Number Dilution Limit Analyte Result Units Notes Diesel Range Organics (C12-C24) DRO 0.100 0.107 mg/LHC ID: DRO RRO 0.200 Motor Oil Range Organics (C24-C38) 1 ND mg/L U Surrogate: o-Terphenyl 50-150 % 80.9

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

MW-101-190701 19G0017-05 (Water)

Aroclor PCB

Method: EPA 8082A						S	ampled: 07/	01/2019 15:35
Instrument: ECD7 Anal	yst: JGR					Aı	nalyzed: 07/	03/2019 18:20
Sample Preparation:	Preparation Method: EPA 3510C SepF					Ext	ract ID: 190	60017-05 C 01
	Preparation Batch: BHG0066	Sample Size: 10	00 mL					
	Prepared: 02-Jul-2019	Final Volume: 0.	5 mL					
Sample Cleanup:	Cleanup Method: Silica Gel					Ext	ract ID: 190	60017-05 C 01
	Cleanup Batch: CHG0019	Initial Volume: ().5 mL					
	Cleaned: 03-Jul-2019	Final Volume: 0.	5 mL					
Sample Cleanup:	Cleanup Method: Sulfuric Acid					Ex	tract ID:190	60017-05 C 01
	Cleanup Batch: CHG0017	Initial Volume: ().5 mL					
	Cleaned: 03-Jul-2019	Final Volume: 0.	5 mL					
Sample Cleanup:	Cleanup Method: Sulfur					Ex	tract ID:190	60017-05 C 01
	Cleanup Batch: CHG0018	Initial Volume: ().5 mL					
	Cleaned: 03-Jul-2019	Final Volume: 0.	5 mL					
				Detection	Reporting			
Analyte		CAS Number	Dilution	Limit	Limit	Result	Units	Notes

			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Aroclor 1016	12674-11-2	1	0.002	0.010	ND	ug/L	U
Aroclor 1221	11104-28-2	1	0.002	0.010	ND	ug/L	U
Aroclor 1232	11141-16-5	1	0.002	0.010	ND	ug/L	U
Aroclor 1242	53469-21-9	1	0.002	0.010	ND	ug/L	U
Aroclor 1248	12672-29-6	1	0.002	0.010	ND	ug/L	U
Aroclor 1254	11097-69-1	1	0.002	0.010	ND	ug/L	U
Aroclor 1260	11096-82-5	1	0.003	0.010	ND	ug/L	U
Aroclor 1262	37324-23-5	1	0.003	0.010	ND	ug/L	U
Aroclor 1268	11100-14-4	1	0.003	0.010	ND	ug/L	U
Surrogate: Decachlorobiphenyl				29-120 %	26.1	%	*
Surrogate: Tetrachlorometaxylene				32-120 %	39.3	%	
Surrogate: Decachlorobiphenyl [2C]				29-120 %	26.1	%	*
Surrogate: Tetrachlorometaxylene [2C]				32-120 %	38.9	%	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

MW-101-190701 19G0017-05 (Water)

Metals and Metallic Compounds

Method: EPA 6020ASampled: 07/01/2019 15:35Instrument: ICPMS2Analyst: MCBAnalyzed: 07/09/2019 00:44Sample Preparation:Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrixExtract ID: 19G0017-05 A 01

Sample Preparation: Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix
Preparation Batch: BHG0166 Sample Size: 25 mL

Prepared: 08-Jul-2019 Final Volume: 25 mL

	1						
			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Lead	7439-92-1	1	0.0680	0.100	ND	ug/L	U
Manganese	7439-96-5	20	1.70	10.0	4130	ug/L	D

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

MW-101-190701 19G0017-05 (Water)

Metals and Metallic Compounds

Method: EPA 6020A UCT-KEDSampled: 07/01/2019 15:35Instrument: ICPMS2Analyst: MCBAnalyzed: 07/09/2019 00:44Sample Preparation:Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrixExtract ID: 19G0017-05 A 01

Sample Preparation: Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix
Preparation Batch: BHG0166 Sample Size: 25 mL

Prepared: 08-Jul-2019 Final Volume: 25 mL

			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Arsenic	7440-38-2	1	0.0220	0.200	49.2	ug/L	
Cadmium	7440-43-9	1	0.0300	0.100	ND	ug/L	U

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

MW-101-190701 19G0017-05 (Water)

Metals and Metallic Compounds

 Method: EPA 7470A
 Sampled: 07/01/2019 15:35

 Instrument: CVAA Analyst: SKM
 Analyzed: 07/10/2019 15:42

Sample Preparation: Preparation Method: TLM EPA 7470A low level Extract ID: 19G0017-05 A

Preparation Batch: BHG0168 Sample Size: 20 mL Prepared: 08-Jul-2019 Final Volume: 20 mL

Detection Reporting Limit Analyte CAS Number Dilution Limit Result Units Notes 7439-97-6 0.000020 ND Mercury 1 0.000010 mg/L U

Analytical Resources, Inc.

Extract ID: 19G0017-05RE1 A 01

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

MW-101-190701 19G0017-05RE1 (Water)

Metals and Metallic Compounds

 Method: EPA 6020A UCT-KED
 Sampled: 07/01/2019 15:35

 Instrument: ICPMS2 Analyst: MCB
 Analyzed: 07/10/2019 19:34

Sample Preparation: Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix
Preparation Batch: BHG0166 Sample Size: 25 mL

Prepared: 08-Jul-2019 Final Volume: 25 mL

Detection Reporting Analyte CAS Number Dilution Limit Limit Result Units Notes ND Copper 7440-50-8 1 0.340 0.500 ug/L U Zinc 7440-66-6 0.820 4.00 7.22 ug/L

Analytical Resources, Inc.

Extract ID: 19G0017-06 J

Notes

ΤI

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

FMW-03-190701 19G0017-06 (Water)

Volatile Organic Compounds

 Method: EPA 8260C
 Sampled: 07/01/2019 16:40

 Instrument: NT3
 Analyst: PKC

 Analyzed: 07/03/2019 17:07

Sample Preparation: Preparation Method: EPA 5030 (Purge and Trap)

Preparation Batch: BHG0064 Sample Size: 10 mL Prepared: 03-Jul-2019 Final Volume: 10 mL

Chloromethane	74-87-3	1	0.09	0.50	ND	ug/L	U	
Vinyl Chloride	75-01-4	1	0.06	0.20	ND	ug/L	U	
Bromomethane	74-83-9	1	0.25	1.00	ND	ug/L	U	
Chloroethane	75-00-3	1	0.09	0.20	ND	ug/L	U	
Trichlorofluoromethane	75-69-4	1	0.04	0.20	ND	ug/L	U	
Acrolein	107-02-8	1	2.48	5.00	ND	ug/L	U	
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1	1	0.04	0.20	ND	ug/L	U	
Acetone	67-64-1	1	2.06	5.00	8.47	ug/L		
1,1-Dichloroethene	75-35-4	1	0.05	0.20	ND	ug/L	U	
Bromoethane	74-96-4	1	0.04	0.20	ND	ug/L	U	
Iodomethane	74-88-4	1	0.23	1.00	ND	ug/L	U	
Methylene Chloride	75-09-2	1	0.49	1.00	ND	ug/L	U	
Acrylonitrile	107-13-1	1	0.60	1.00	ND	ug/L	U	
Carbon Disulfide	75-15-0	1	0.04	0.20	0.09	ug/L	J	
trans-1,2-Dichloroethene	156-60-5	1	0.05	0.20	ND	ug/L	U	
Vinyl Acetate	108-05-4	1	0.07	0.20	ND	ug/L	U	
1,1-Dichloroethane	75-34-3	1	0.05	0.20	ND	ug/L	U	
2-Butanone	78-93-3	1	0.81	5.00	ND	ug/L	U	
2,2-Dichloropropane	594-20-7	1	0.05	0.20	ND	ug/L	U	
cis-1,2-Dichloroethene	156-59-2	1	0.04	0.20	ND	ug/L	U	
Chloroform	67-66-3	1	0.03	0.20	ND	ug/L	U	
Bromochloromethane	74-97-5	1	0.06	0.20	ND	ug/L	U	
1,1,1-Trichloroethane	71-55-6	1	0.04	0.20	ND	ug/L	U	
1,1-Dichloropropene	563-58-6	1	0.03	0.20	ND	ug/L	U	
Carbon tetrachloride	56-23-5	1	0.04	0.20	ND	ug/L	U	
1,2-Dichloroethane	107-06-2	1	0.07	0.20	ND	ug/L	U	
Benzene	71-43-2	1	0.03	0.20	ND	ug/L	U	
Trichloroethene	79-01-6	1	0.05	0.20	ND	ug/L	U	
1,2-Dichloropropane	78-87-5	1	0.04	0.20	ND	ug/L	U	
Bromodichloromethane	75-27-4	1	0.05	0.20	ND	ug/L	U	
Dibromomethane	74-95-3	1	0.15	0.20	ND	ug/L	U	
2-Chloroethyl vinyl ether	110-75-8	1	0.25	1.00	ND	ug/L	U	
4-Methyl-2-Pentanone	108-10-1	1	0.97	5.00	ND	ug/L	U	
cis-1,3-Dichloropropene	10061-01-5	1	0.06	0.20	ND	ug/L	U	
Toluene	108-88-3	1	0.04	0.20	ND	ug/L	U	
trans-1,3-Dichloropropene	10061-02-6	1	0.08	0.20	ND	ug/L	U	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

FMW-03-190701 19G0017-06 (Water)

Volatile Organic Compounds

 Method: EPA 8260C
 Sampled: 07/01/2019 16:40

 Instrument: NT3
 Analyst: PKC

 Analyzed: 07/03/2019 17:07

I I I I I I I I I I I I I I I I I I I			Detection	Reporting			03/2017 17.0
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
2-Hexanone	591-78-6	1	0.90	5.00	ND	ug/L	U
1,1,2-Trichloroethane	79-00-5	1	0.13	0.20	ND	ug/L	U
1,3-Dichloropropane	142-28-9	1	0.06	0.20	ND	ug/L	U
Tetrachloroethene	127-18-4	1	0.05	0.20	ND	ug/L	U
Dibromochloromethane	124-48-1	1	0.05	0.20	ND	ug/L	U
1,2-Dibromoethane	106-93-4	1	0.07	0.20	ND	ug/L	U
Chlorobenzene	108-90-7	1	0.02	0.20	ND	ug/L	U
Ethylbenzene	100-41-4	1	0.04	0.20	ND	ug/L	U
1,1,1,2-Tetrachloroethane	630-20-6	1	0.04	0.20	ND	ug/L	U
m,p-Xylene	179601-23-1	1	0.05	0.40	ND	ug/L	U
o-Xylene	95-47-6	1	0.03	0.20	ND	ug/L	U
Xylenes, total	1330-20-7	1	0.09	0.60	ND	ug/L	U
Styrene	100-42-5	1	0.05	0.20	ND	ug/L	U
Bromoform	75-25-2	1	0.06	0.20	ND	ug/L	U
1,1,2,2-Tetrachloroethane	79-34-5	1	0.06	0.20	ND	ug/L	U
1,2,3-Trichloropropane	96-18-4	1	0.13	0.50	ND	ug/L	U
trans-1,4-Dichloro 2-Butene	110-57-6	1	0.32	1.00	ND	ug/L	U
n-Propylbenzene	103-65-1	1	0.02	0.20	ND	ug/L	U
Bromobenzene	108-86-1	1	0.06	0.20	ND	ug/L	U
Isopropyl Benzene	98-82-8	1	0.02	0.20	ND	ug/L	U
2-Chlorotoluene	95-49-8	1	0.02	0.20	ND	ug/L	U
4-Chlorotoluene	106-43-4	1	0.02	0.20	ND	ug/L	U
t-Butylbenzene	98-06-6	1	0.03	0.20	ND	ug/L	U
1,3,5-Trimethylbenzene	108-67-8	1	0.02	0.20	ND	ug/L	U
1,2,4-Trimethylbenzene	95-63-6	1	0.02	0.20	0.06	ug/L	J
s-Butylbenzene	135-98-8	1	0.02	0.20	ND	ug/L	U
4-Isopropyl Toluene	99-87-6	1	0.03	0.20	ND	ug/L	U
1,3-Dichlorobenzene	541-73-1	1	0.04	0.20	ND	ug/L	U
1,4-Dichlorobenzene	106-46-7	1	0.04	0.20	ND	ug/L	U
n-Butylbenzene	104-51-8	1	0.02	0.20	ND	ug/L	U
1,2-Dichlorobenzene	95-50-1	1	0.04	0.20	ND	ug/L	U
1,2-Dibromo-3-chloropropane	96-12-8	1	0.37	0.50	ND	ug/L	U
1,2,4-Trichlorobenzene	120-82-1	1	0.11	0.50	ND	ug/L	U
Hexachloro-1,3-Butadiene	87-68-3	1	0.07	0.50	ND	ug/L	U
Naphthalene	91-20-3	1	0.12	0.50	ND	ug/L	U
1,2,3-Trichlorobenzene	87-61-6	1	0.11	0.50	ND	ug/L	U
Dichlorodifluoromethane	75-71-8	1	0.05	0.20	0.95	ug/L	
Methyl tert-butyl Ether	1634-04-4	1	0.07	0.50	ND	ug/L	U
2-Pentanone	107-87-9	1	5.00	5.00	ND	ug/L	U

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

FMW-03-190701 19G0017-06 (Water)

Volatile Organic Compounds

 Method: EPA 8260C
 Sampled: 07/01/2019 16:40

 Instrument: NT3
 Analyst: PKC

 Analyzed: 07/03/2019 17:07

		Recovery			
Analyte	CAS Number	Limits	Recovery	Units	Notes
Surrogate: 1,2-Dichloroethane-d4		80-129 %	106	%	
Surrogate: Toluene-d8		80-120 %	97.2	%	
Surrogate: 4-Bromofluorobenzene		80-120 %	95.3	%	
Surrogate: 1,2-Dichlorobenzene-d4		80-120 %	103	%	

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

FMW-03-190701 19G0017-06 (Water)

Volatile Organic Compounds

 Method: NWTPHg
 Sampled: 07/01/2019 16:40

 Instrument: NT3
 Analyst: PKC

 Analyzed: 07/03/2019 17:07

Sample Preparation: Preparation Method: EPA 5030 (Purge and Trap) Extract ID: 19G0017-06 J
Preparation Batch: BHG0064 Sample Size: 10 mL

Prepared: 03-Jul-2019 Final Volume: 10 mL

Reporting CAS Number Dilution Limit Analyte Result Units Notes GRO ND U Gasoline Range Organics (Tol-Nap) 100 ug/L 80-120 % 97.2 % Surrogate: Toluene-d8 80-120 % Surrogate: 4-Bromofluorobenzene 95.3 %

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

Project Number: 1071-026 1809 7th Ave, Suite 1111 Reported: Seattle WA, 98101 Project Manager: Pete Kingston 12-Jul-2019 16:01

FMW-03-190701 19G0017-06 (Water)

Semivolatile Organic Compounds - SIM

Method: EPA 8270D-SIM Sampled: 07/01/2019 16:40 Instrument: NT11 Analyst: VTS Analyzed: 07/06/2019 16:17 Extract ID: 19G0017-06 E 01

Sample Preparation: Preparation Method: EPA 3510C SepF

Preparation Batch: BHG0068 Sample Size: 500 mL Prepared: 03-Jul-2019 Final Volume: 0.5 mL

			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Naphthalene	91-20-3	1	0.001	0.010	0.025	ug/L	
2-Methylnaphthalene	91-57-6	1	0.001	0.010	0.011	ug/L	
1-Methylnaphthalene	90-12-0	1	0.0009	0.010	1.26	ug/L	E
2-Chloronaphthalene	91-58-7	1	0.001	0.010	ND	ug/L	U
Acenaphthylene	208-96-8	1	0.002	0.010	0.008	ug/L	J
Acenaphthene	83-32-9	1	0.003	0.010	0.096	ug/L	
Dibenzofuran	132-64-9	1	0.002	0.010	0.023	ug/L	
Fluorene	86-73-7	1	0.002	0.010	0.051	ug/L	
Phenanthrene	85-01-8	1	0.001	0.010	0.048	ug/L	
Anthracene	120-12-7	1	0.001	0.010	0.002	ug/L	J
Carbazole	86-74-8	1	0.001	0.010	ND	ug/L	U
Fluoranthene	206-44-0	1	0.002	0.010	ND	ug/L	U
Pyrene	129-00-0	1	0.001	0.010	0.002	ug/L	J
Benzo(a)anthracene	56-55-3	1	0.0008	0.010	ND	ug/L	U
Chrysene	218-01-9	1	0.0009	0.010	ND	ug/L	U
Benzo(b)fluoranthene	205-99-2	1	0.0005	0.010	ND	ug/L	U
Benzo(k)fluoranthene	207-08-9	1	0.003	0.010	ND	ug/L	U
Benzo(j)fluoranthene	205-82-3	1	0.002	0.010	ND	ug/L	U
Benzofluoranthenes, Total		1	0.004	0.010	ND	ug/L	U
Benzo(a)pyrene	50-32-8	1	0.002	0.010	ND	ug/L	U
Perylene	1985-5-0	1	0.006	0.010	ND	ug/L	U
Indeno(1,2,3-cd)pyrene	193-39-5	1	0.001	0.010	ND	ug/L	U
Dibenzo(a,h)anthracene	53-70-3	1	0.001	0.010	ND	ug/L	U
Benzo(g,h,i)perylene	191-24-2	1	0.001	0.010	ND	ug/L	U
Surrogate: 2-Methylnaphthalene-d10				42-120 %	69.3	%	
Surrogate: Dibenzo[a,h]anthracene-d14				29-120 %	63.6	%	
Surrogate: Fluoranthene-d10				57-120 %	75.7	%	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

FMW-03-190701 19G0017-06 (Water)

Petroleum Hydrocarbons

Method: NWTPH-DxSampled: 07/01/2019 16:40Instrument: FID4 Analyst: JGRAnalyzed: 07/05/2019 00:16Sample Preparation:Preparation Method: EPA 3510C SepFExtract ID: 19G0017-06 B 01

Preparation Batch: BHG0065 Sample Size: 500 mL

Prepared: 03-Jul-2019 Final Volume: 1 mL

			Reporting			
Analyte	CAS Number	Dilution	Limit	Result	Units	Notes
Diesel Range Organics (C12-C24)	DRO	1	0.100	0.141	mg/L	
HC ID: DRO						
Motor Oil Range Organics (C24-C38)	RRO	1	0.200	ND	mg/L	U
Surrogate: o-Terphenyl			50-150 %	74.5	%	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

FMW-03-190701 19G0017-06 (Water)

Aroclor PCB

Method: EPA 8082A		·		Sampled: 07/01/2019 16:40
Instrument: ECD7 Anal	yst: JGR			Analyzed: 07/03/2019 18:40
Sample Preparation:	Preparation Method: EPA 3510C SepF Preparation Batch: BHG0066	Sample Size: 1000 mL Final Volume: 0.5 mL		Extract ID: 19G0017-06 C 01
Sample Cleanup:	Prepared: 02-Jul-2019 Cleanup Method: Silica Gel	Final Volume: 0.3 mL		Extract ID: 19G0017-06 C 01
Sample Cleanup.	Cleanup Batch: CHG0019 Cleaned: 03-Jul-2019	Initial Volume: 0.5 mL Final Volume: 0.5 mL		EXTRACT ID: 19G001/-00 C 01
Sample Cleanup:	Cleanup Method: Sulfuric Acid Cleanup Batch: CHG0017 Cleaned: 03-Jul-2019	Initial Volume: 0.5 mL Final Volume: 0.5 mL		Extract ID:19G0017-06 C 01
Sample Cleanup:	Cleanup Method: Sulfur Cleanup Batch: CHG0018 Cleaned: 03-Jul-2019	Initial Volume: 0.5 mL Final Volume: 0.5 mL		Extract ID:19G0017-06 C 01
			Detection Reportin	ia.

Cicalica, 03-Jul-2019	Tillai voluine.	J.J IIIL					
Analyte	CAS Number	Dilution	Detection Limit	Reporting Limit	Result	Units	Notes
Allaryte	CAS Nulliber	Dilution	Lillit	Ziiiii	Result	Onns	110168
Aroclor 1016	12674-11-2	1	0.002	0.010	ND	ug/L	U
Aroclor 1221	11104-28-2	1	0.002	0.010	ND	ug/L	U
Aroclor 1232	11141-16-5	1	0.002	0.010	ND	ug/L	U
Aroclor 1242	53469-21-9	1	0.002	0.010	ND	ug/L	U
Aroclor 1248	12672-29-6	1	0.002	0.010	ND	ug/L	U
Aroclor 1254	11097-69-1	1	0.002	0.010	ND	ug/L	U
Aroclor 1260	11096-82-5	1	0.003	0.010	ND	ug/L	U
Aroclor 1262	37324-23-5	1	0.003	0.010	ND	ug/L	U
Aroclor 1268	11100-14-4	1	0.003	0.010	ND	ug/L	U
Surrogate: Decachlorobiphenyl				29-120 %	28.8	%	*
Surrogate: Tetrachlorometaxylene				32-120 %	40.2	%	
Surrogate: Decachlorobiphenyl [2C]				29-120 %	28.5	%	*
Surrogate: Tetrachlorometaxylene [2C]				32-120 %	34.2	%	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

FMW-03-190701 19G0017-06 (Water)

Metals and Metallic Compounds

Method: EPA 6020ASampled: 07/01/2019 16:40Instrument: ICPMS2Analyst: MCBAnalyzed: 07/09/2019 00:49Sample Preparation:Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrixExtract ID: 19G0017-06 A 01

Sample Preparation: Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix
Preparation Batch: BHG0166 Sample Size: 25 mL

Prepared: 08-Jul-2019 Final Volume: 25 mL

	F							
				Detection	Reporting			
Analyte		CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Lead		7439-92-1	1	0.0680	0.100	ND	ug/L	U
Manganese		7439-96-5	5	0.425	2.50	612	ug/L	D

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

FMW-03-190701 19G0017-06 (Water)

Metals and Metallic Compounds

Method: EPA 6020A UCT-KEDSampled: 07/01/2019 16:40Instrument: ICPMS2Analyst: MCBAnalyzed: 07/09/2019 00:49Sample Preparation:Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrixExtract ID: 19G0017-06 A 01

Sample Preparation: Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix
Preparation Batch: BHG0166 Sample Size: 25 mL

Prepared: 08-Jul-2019 Final Volume: 25 mL

			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Arsenic	7440-38-2	1	0.0220	0.200	0.450	ug/L	
Cadmium	7440-43-9	1	0.0300	0.100	ND	ug/L	U

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

FMW-03-190701 19G0017-06 (Water)

Metals and Metallic Compounds

 Method: EPA 7470A
 Sampled: 07/01/2019 16:40

 Instrument: CVAA Analyst: SKM
 Analyzed: 07/10/2019 16:19

Sample Preparation: Preparation Method: TLM EPA 7470A low level Extract ID: 19G0017-06 A

Preparation Batch: BHG0168 Sample Size: 20 mL Prepared: 08-Jul-2019 Final Volume: 20 mL

Detection Reporting Limit Analyte CAS Number Dilution Limit Result Units Notes 7439-97-6 0.000020 Mercury 1 0.000010 0.000011 mg/L J

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

FMW-03-190701 19G0017-06RE1 (Water)

Semivolatile Organic Compounds - SIM

 Method: EPA 8270D-SIM
 Sampled: 07/01/2019 16:40

 Instrument: NT11
 Analyst: VTS

 Analyzed: 07/09/2019 14:53

Sample Preparation: Preparation Method: EPA 3510C SepF Extract ID: 19G0017-06RE1 E 01
Preparation Batch: BHG0068 Sample Size: 500 mL

Prepared: 03-Jul-2019 Final Volume: 0.5 mL

Prepared: 03-Jul-2019	Final Volume: (Final Volume: 0.5 mL					
	CAGN	Dil di	Detection Limit	Reporting Limit	D. I.	TT '.	N
Analyte	CAS Number	Dilution	Limit		Result	Units	Notes
Naphthalene	91-20-3	2	0.003	0.020	0.005	ug/L	J, D
2-Methylnaphthalene	91-57-6	2	0.002	0.020	0.010	ug/L	J, D
1-Methylnaphthalene	90-12-0	2	0.002	0.020	1.31	ug/L	D
2-Chloronaphthalene	91-58-7	2	0.002	0.020	ND	ug/L	U
Acenaphthylene	208-96-8	2	0.004	0.020	0.007	ug/L	J, D
Acenaphthene	83-32-9	2	0.006	0.020	0.092	ug/L	D
Dibenzofuran	132-64-9	2	0.003	0.020	0.021	ug/L	D
Fluorene	86-73-7	2	0.003	0.020	0.047	ug/L	D
Phenanthrene	85-01-8	2	0.003	0.020	0.044	ug/L	D
Anthracene	120-12-7	2	0.002	0.020	ND	ug/L	U
Carbazole	86-74-8	2	0.002	0.020	ND	ug/L	U
Fluoranthene	206-44-0	2	0.003	0.020	ND	ug/L	U
Pyrene	129-00-0	2	0.002	0.020	ND	ug/L	U
Benzo(a)anthracene	56-55-3	2	0.002	0.020	ND	ug/L	U
Chrysene	218-01-9	2	0.002	0.020	ND	ug/L	U
Benzo(b)fluoranthene	205-99-2	2	0.0009	0.020	ND	ug/L	U
Benzo(k)fluoranthene	207-08-9	2	0.006	0.020	ND	ug/L	U
Benzo(j)fluoranthene	205-82-3	2	0.004	0.020	ND	ug/L	U
Benzofluoranthenes, Total		2	0.007	0.020	ND	ug/L	U
Benzo(a)pyrene	50-32-8	2	0.005	0.020	ND	ug/L	U
Perylene	1985-5-0	2	0.012	0.020	ND	ug/L	U
Indeno(1,2,3-cd)pyrene	193-39-5	2	0.002	0.020	ND	ug/L	U
Dibenzo(a,h)anthracene	53-70-3	2	0.003	0.020	ND	ug/L	U
Benzo(g,h,i)perylene	191-24-2	2	0.003	0.020	ND	ug/L	U
Surrogate: 2-Methylnaphthalene-d10				42-120 %	67.1	%	
Surrogate: Dibenzo[a,h]anthracene-d14				29-120 %	56.1	%	
Surrogate: Fluoranthene-d10				57-120 %	71.5	%	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

FMW-03-190701 19G0017-06RE1 (Water)

Metals and Metallic Compounds

 Method: EPA 6020A UCT-KED
 Sampled: 07/01/2019 16:40

 Instrument: ICPMS2
 Analyst: MCB

 Analyzed: 07/10/2019 19:40

Sample Preparation: Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix Extract ID: 19G0017-06RE1 A 01

Preparation Batch: BHG0166 Sample Size: 25 mL

Prepared: 08-Jul-2019 Final Volume: 25 mL

	•		D	D .:			
			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Copper	7440-50-8	1	0.340	0.500	ND	ug/L	U
Zinc	7440-66-6	1	0.820	4.00	3.07	ug/L	J

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

DOF-1-190701 19G0017-07 (Water)

Volatile Organic Compounds

 Method: EPA 8260C
 Sampled: 07/01/2019 16:36

 Instrument: NT3 Analyst: PKC
 Analyzed: 07/03/2019 17:33

Sample Preparation: Preparation Method: EPA 5030 (Purge and Trap) Extract ID: 19G0017-07 K

Preparation Batch: BHG0064 Sample Size: 10 mL Prepared: 03-Jul-2019 Final Volume: 10 mL

	rieparea. 05 var 2019	That volume. To the						
Analyte		CAS Number	Dilution	Detection Limit	Reporting Limit	Result	Units	Notes
			1					
Benzene		71-43-2	1	0.03	0.20	ND	ug/L	U
Toluene		108-88-3	1	0.04	0.20	ND	ug/L	U
Ethylbenzene		100-41-4	1	0.04	0.20	ND	ug/L	U
m,p-Xylene		179601-23-1	1	0.05	0.40	ND	ug/L	U
o-Xylene		95-47-6	1	0.03	0.20	ND	ug/L	U
Surrogate: Toluene-d8					80-120 %	97.7	%	
Surrogate: 4-Bromofluorobenzen	e				80-120 %	96.3	%	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

DOF-1-190701 19G0017-07 (Water)

Volatile Organic Compounds

 Method: NWTPHg
 Sampled: 07/01/2019 16:36

 Instrument: NT3 Analyst: PKC
 Analyzed: 07/03/2019 17:33

Sample Preparation: Preparation Method: EPA 5030 (Purge and Trap) Extract ID: 19G0017-07 K

Preparation Batch: BHG0064 Sample Size: 10 mL Prepared: 03-Jul-2019 Final Volume: 10 mL

Analyte	CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Gasoline Range Organics (Tol-Nap)	GRO	1	100	ND	ug/L	U
Surrogate: Toluene-d8			80-120 %	97.7	%	
Surrogate: 4-Bromofluorobenzene			80-120 %	96.3	%	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

Project Number: 1071-026 1809 7th Ave, Suite 1111 Reported: Seattle WA, 98101 Project Manager: Pete Kingston 12-Jul-2019 16:01

DOF-1-190701 19G0017-07 (Water)

Semivolatile Organic Compounds - SIM

Method: EPA 8270D-SIM Sampled: 07/01/2019 16:36 Instrument: NT11 Analyst: VTS Analyzed: 07/06/2019 16:46 Extract ID: 19G0017-07 E 01

Sample Preparation: Preparation Method: EPA 3510C SepF

Preparation Batch: BHG0068 Sample Size: 500 mL Prepared: 03-Jul-2019 Final Volume: 0.5 mL

11-Parea. 05 tai 2017							
			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Naphthalene	91-20-3	1	0.001	0.010	0.002	ug/L	J
2-Methylnaphthalene	91-57-6	1	0.001	0.010	ND	ug/L	U
1-Methylnaphthalene	90-12-0	1	0.0009	0.010	0.001	ug/L	J
2-Chloronaphthalene	91-58-7	1	0.001	0.010	ND	ug/L	U
Acenaphthylene	208-96-8	1	0.002	0.010	ND	ug/L	U
Acenaphthene	83-32-9	1	0.003	0.010	ND	ug/L	U
Dibenzofuran	132-64-9	1	0.002	0.010	0.002	ug/L	J
Fluorene	86-73-7	1	0.002	0.010	ND	ug/L	U
Phenanthrene	85-01-8	1	0.001	0.010	ND	ug/L	U
Anthracene	120-12-7	1	0.001	0.010	ND	ug/L	U
Carbazole	86-74-8	1	0.001	0.010	ND	ug/L	U
Fluoranthene	206-44-0	1	0.002	0.010	ND	ug/L	U
Pyrene	129-00-0	1	0.001	0.010	ND	ug/L	U
Benzo(a)anthracene	56-55-3	1	0.0008	0.010	ND	ug/L	U
Chrysene	218-01-9	1	0.0009	0.010	0.0009	ug/L	J
Benzo(b)fluoranthene	205-99-2	1	0.0005	0.010	ND	ug/L	U
Benzo(k)fluoranthene	207-08-9	1	0.003	0.010	ND	ug/L	U
Benzo(j)fluoranthene	205-82-3	1	0.002	0.010	ND	ug/L	U
Benzofluoranthenes, Total		1	0.004	0.010	ND	ug/L	U
Benzo(a)pyrene	50-32-8	1	0.002	0.010	ND	ug/L	U
Perylene	1985-5-0	1	0.006	0.010	ND	ug/L	U
Indeno(1,2,3-cd)pyrene	193-39-5	1	0.001	0.010	ND	ug/L	U
Dibenzo(a,h)anthracene	53-70-3	1	0.001	0.010	ND	ug/L	U
Benzo(g,h,i)perylene	191-24-2	1	0.001	0.010	ND	ug/L	U
Surrogate: 2-Methylnaphthalene-d10				42-120 %	70.8	%	
Surrogate: Dibenzo[a,h]anthracene-d14				29-120 %	100	%	
Surrogate: Fluoranthene-d10				57-120 %	88.5	%	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

DOF-1-190701 19G0017-07 (Water)

Petroleum Hydrocarbons

 Method: NWTPH-Dx
 Sampled: 07/01/2019 16:36

 Instrument: FID4 Analyst: JGR
 Analyzed: 07/05/2019 01:18

Sample Preparation: Preparation Method: EPA 3510C SepF Extract ID: 19G0017-07 B 01

Preparation Batch: BHG0065 Sample Size: 500 mL Prepared: 03-Jul-2019 Final Volume: 1 mL

Analyte	CAS Number	Dilution	Reporting Limit	Result	Units	Notes
,		Dilution				Trotes
Diesel Range Organics (C12-C24)	DRO	1	0.100	ND	mg/L	U
Motor Oil Range Organics (C24-C38)	RRO	1	0.200	ND	mg/L	U
Surrogate: o-Terphenyl			50-150 %	77.2	%	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

DOF-1-190701 19G0017-07 (Water)

Aroclor PCB

Method: EPA 8082A			Sampled: 07/01/2019 16:36
Instrument: ECD7 Anal	yst: JGR		Analyzed: 07/03/2019 19:43
Sample Preparation:	Preparation Method: EPA 3510C SepF Preparation Batch: BHG0066 Prepared: 02-Jul-2019	Sample Size: 1000 mL Final Volume: 0.5 mL	Extract ID: 19G0017-07 C 01
Sample Cleanup:	Cleanup Method: Silica Gel Cleanup Batch: CHG0019 Cleaned: 03-Jul-2019	Initial Volume: 0.5 mL Final Volume: 0.5 mL	Extract ID: 19G0017-07 C 01
Sample Cleanup:	Cleanup Method: Sulfuric Acid Cleanup Batch: CHG0017 Cleaned: 03-Jul-2019	Initial Volume: 0.5 mL Final Volume: 0.5 mL	Extract ID:19G0017-07 C 01
Sample Cleanup:	Cleanup Method: Sulfur Cleanup Batch: CHG0018 Cleaned: 03-Jul-2019	Initial Volume: 0.5 mL Final Volume: 0.5 mL	Extract ID:19G0017-07 C 01

			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Aroclor 1016	12674-11-2	1	0.002	0.010	ND	ug/L	U
Aroclor 1221	11104-28-2	1	0.002	0.010	ND	ug/L	U
Aroclor 1232	11141-16-5	1	0.002	0.010	ND	ug/L	U
Aroclor 1242	53469-21-9	1	0.002	0.010	ND	ug/L	U
Aroclor 1248	12672-29-6	1	0.002	0.010	ND	ug/L	U
Aroclor 1254	11097-69-1	1	0.002	0.010	ND	ug/L	U
Aroclor 1260	11096-82-5	1	0.003	0.010	ND	ug/L	U
Aroclor 1262	37324-23-5	1	0.003	0.010	ND	ug/L	U
Aroclor 1268	11100-14-4	1	0.003	0.010	ND	ug/L	U
Surrogate: Decachlorobiphenyl				29-120 %	46.8	%	
Surrogate: Tetrachlorometaxylene				32-120 %	45.3	%	
Surrogate: Decachlorobiphenyl [2C]				29-120 %	45.4	%	
Surrogate: Tetrachlorometaxylene [2C]				32-120 %	38.2	%	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

DOF-1-190701 19G0017-07 (Water)

Metals and Metallic Compounds

Method: EPA 6020ASampled: 07/01/2019 16:36Instrument: ICPMS2Analyst: MCBAnalyzed: 07/09/2019 00:53Sample Preparation:Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrixExtract ID: 19G0017-07 A 01

Preparation Batch: BHG0166 Sample Size: 25 mL

Prepared: 08-Jul-2019 Final Volume: 25 mL

	F							
				Detection	Reporting			
Analyte		CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Lead		7439-92-1	1	0.0680	0.100	ND	ug/L	U
Manganese		7439-96-5	5	0.425	2.50	931	ug/L	D

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

DOF-1-190701 19G0017-07 (Water)

Metals and Metallic Compounds

Method: EPA 6020A UCT-KEDSampled: 07/01/2019 16:36Instrument: ICPMS2Analyst: MCBAnalyzed: 07/09/2019 00:53Sample Preparation:Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrixExtract ID: 19G0017-07 A 01

Sample Preparation: Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix
Preparation Batch: BHG0166 Sample Size: 25 mL

Prepared: 08-Jul-2019 Final Volume: 25 mL

	F							
				Detection	Reporting			
Analyte		CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Arsenic		7440-38-2	1	0.0220	0.200	1.29	ug/L	
Cadmium		7440-43-9	1	0.0300	0.100	0.0440	ug/L	J

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

DOF-1-190701 19G0017-07 (Water)

Metals and Metallic Compounds

 Method: EPA 7470A
 Sampled: 07/01/2019 16:36

 Instrument: CVAA Analyst: SKM
 Analyzed: 07/10/2019 16:22

Sample Preparation: Preparation Method: TLM EPA 7470A low level Extract ID: 19G0017-07 A

Preparation Batch: BHG0168 Sample Size: 20 mL Prepared: 08-Jul-2019 Final Volume: 20 mL

Detection Reporting Limit Analyte CAS Number Dilution Limit Result Units Notes 7439-97-6 0.000020 Mercury 1 0.000010 0.000015 mg/L J

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

DOF-1-190701 19G0017-07RE1 (Water)

Metals and Metallic Compounds

Method: EPA 6020A UCT-KEDSampled: 07/01/2019 16:36Instrument: ICPMS2Analyst: MCBAnalyzed: 07/10/2019 19:45Sample Preparation:Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrixExtract ID: 19G0017-07RE1 A 01

Sample Preparation: Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix
Preparation Batch: BHG0166 Sample Size: 25 mL

Prepared: 08-Jul-2019 Final Volume: 25 mL

	11eparea. 00 tar 2017	I III (CIMIII)						
				Detection	Reporting			
Analyte		CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Copper	_	7440-50-8	1	0.340	0.500	0.363	ug/L	J
Zinc		7440-66-6	1	0.820	4.00	4.98	ug/L	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

DOF-2-190701 19G0017-08 (Water)

Volatile Organic Compounds

 Method: EPA 8260C
 Sampled: 07/01/2019 11:03

 Instrument: NT3 Analyst: PKC
 Analyzed: 07/03/2019 17:59

Sample Preparation: Preparation Method: EPA 5030 (Purge and Trap) Extract ID: 19G0017-08 J

Preparation Batch: BHG0064 Sample Size: 10 mL Prepared: 03-Jul-2019 Final Volume: 10 mL

	Trepared: 05 var 2019	i mai voiame. i	O IIIL					
Analyte		CAS Number	Dilution	Detection Limit	Reporting Limit	Result	Units	Notes
Benzene		71-43-2	1	0.03	0.20	0.19	ug/L	I
Toluene		108-88-3	1	0.03	0.20	0.15	ug/L ug/L	J
Ethylbenzene		100-41-4	1	0.04	0.20	0.26	ug/L	
m,p-Xylene		179601-23-1	1	0.05	0.40	0.28	ug/L	J
o-Xylene		95-47-6	1	0.03	0.20	0.10	ug/L	J
Surrogate: Toluene-d8		<u> </u>			80-120 %	101	%	
Surrogate: 4-Bromofluorobenz	zene				80-120 %	97.7	%	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

DOF-2-190701 19G0017-08 (Water)

Volatile Organic Compounds

 Method: NWTPHg
 Sampled: 07/01/2019 11:03

 Instrument: NT3 Analyst: PKC
 Analyzed: 07/03/2019 17:59

Sample Preparation: Preparation Method: EPA 5030 (Purge and Trap) Extract ID: 19G0017-08 J

Preparation Batch: BHG0064 Sample Size: 10 mL Prepared: 03-Jul-2019 Final Volume: 10 mL

Reporting CAS Number Dilution Limit Analyte Result Units Notes Gasoline Range Organics (Tol-Nap) GRO 100 131 ug/L HC ID: GRO Surrogate: Toluene-d8 80-120 % 101 % Surrogate: 4-Bromofluorobenzene 80-120 % 97.7 %

Analytical Resources, Inc.

Analytical Resources, Incorporated

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

Project Number: 1071-026 1809 7th Ave, Suite 1111 Reported: Seattle WA, 98101 Project Manager: Pete Kingston 12-Jul-2019 16:01

DOF-2-190701 19G0017-08 (Water)

Semivolatile Organic Compounds - SIM

Method: EPA 8270D-SIM Sampled: 07/01/2019 11:03 Instrument: NT11 Analyst: VTS Analyzed: 07/06/2019 17:16 Extract ID: 19G0017-08 E 01

Sample Preparation: Preparation Method: EPA 3510C SepF

Preparation Batch: BHG0068 Sample Size: 500 mL Prepared: 03-Jul-2019 Final Volume: 0.5 mL

			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Naphthalene	91-20-3	1	0.001	0.010	0.400	ug/L	
2-Methylnaphthalene	91-57-6	1	0.001	0.010	0.609	ug/L	
1-Methylnaphthalene	90-12-0	1	0.0009	0.010	0.646	ug/L	
2-Chloronaphthalene	91-58-7	1	0.001	0.010	ND	ug/L	U
Acenaphthylene	208-96-8	1	0.002	0.010	0.004	ug/L	J
Acenaphthene	83-32-9	1	0.003	0.010	0.128	ug/L	
Dibenzofuran	132-64-9	1	0.002	0.010	0.045	ug/L	
Fluorene	86-73-7	1	0.002	0.010	0.147	ug/L	
Phenanthrene	85-01-8	1	0.001	0.010	0.045	ug/L	
Anthracene	120-12-7	1	0.001	0.010	0.004	ug/L	J
Carbazole	86-74-8	1	0.001	0.010	0.110	ug/L	
Fluoranthene	206-44-0	1	0.002	0.010	ND	ug/L	U
Pyrene	129-00-0	1	0.001	0.010	0.002	ug/L	J
Benzo(a)anthracene	56-55-3	1	0.0008	0.010	ND	ug/L	U
Chrysene	218-01-9	1	0.0009	0.010	ND	ug/L	U
Benzo(b)fluoranthene	205-99-2	1	0.0005	0.010	ND	ug/L	U
Benzo(k)fluoranthene	207-08-9	1	0.003	0.010	ND	ug/L	U
Benzo(j)fluoranthene	205-82-3	1	0.002	0.010	ND	ug/L	U
Benzofluoranthenes, Total		1	0.004	0.010	ND	ug/L	U
Benzo(a)pyrene	50-32-8	1	0.002	0.010	ND	ug/L	U
Perylene	1985-5-0	1	0.006	0.010	ND	ug/L	U
Indeno(1,2,3-cd)pyrene	193-39-5	1	0.001	0.010	ND	ug/L	U
Dibenzo(a,h)anthracene	53-70-3	1	0.001	0.010	ND	ug/L	U
Benzo(g,h,i)perylene	191-24-2	1	0.001	0.010	ND	ug/L	U
Surrogate: 2-Methylnaphthalene-d10				42-120 %	72.6	%	
Surrogate: Dibenzo[a,h]anthracene-d14				29-120 %	92.0	%	
Surrogate: Fluoranthene-d10				57-120 %	87.0	%	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

DOF-2-190701 19G0017-08 (Water)

Petroleum Hydrocarbons

Method: NWTPH-DxSampled: 07/01/2019 11:03Instrument: FID4 Analyst: JGRAnalyzed: 07/05/2019 01:38Sample Preparation:Preparation Method: EPA 3510C SepFExtract ID: 19G0017-08 B 01

Preparation Batch: BHG0065 Sample Size: 500 mL Prepared: 03-Jul-2019 Final Volume: 1 mL

110000000000000000000000000000000000000	I III (CIMIII)					
			Reporting			
Analyte	CAS Number	Dilution	Limit	Result	Units	Notes
Diesel Range Organics (C12-C24)	DRO	1	0.100	0.336	mg/L	
HC ID: DRO						
Motor Oil Range Organics (C24-C38)	RRO	1	0.200	0.223	mg/L	
HC ID: RRO						
Surrogate: o-Terphenyl			50-150 %	74.0	%	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

DOF-2-190701 19G0017-08 (Water)

Aroclor PCB

Method: EPA 8082A				Sampled: 07/01/2019 11:03
Instrument: ECD7 Anal	yst: JGR			Analyzed: 07/03/2019 20:04
Sample Preparation:	Preparation Method: EPA 3510C SepF Preparation Batch: BHG0066 Prepared: 02-Jul-2019	Sample Size: 1000 mL Final Volume: 0.5 mL		Extract ID: 19G0017-08 C 01
Sample Cleanup:	Cleanup Method: Silica Gel Cleanup Batch: CHG0019 Cleaned: 03-Jul-2019	Initial Volume: 0.5 mL Final Volume: 0.5 mL		Extract ID: 19G0017-08 C 01
Sample Cleanup:	Cleanup Method: Sulfuric Acid Cleanup Batch: CHG0017 Cleaned: 03-Jul-2019	Initial Volume: 0.5 mL Final Volume: 0.5 mL		Extract ID:19G0017-08 C 01
Sample Cleanup:	Cleanup Method: Sulfur Cleanup Batch: CHG0018 Cleaned: 03-Jul-2019	Initial Volume: 0.5 mL Final Volume: 0.5 mL		Extract ID:19G0017-08 C 01
		Г	Detection Reporting	

			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Aroclor 1016	12674-11-2	1	0.002	0.010	ND	ug/L	U
Aroclor 1221	11104-28-2	1	0.002	0.010	ND	ug/L	U
Aroclor 1232	11141-16-5	1	0.002	0.010	ND	ug/L	U
Aroclor 1242	53469-21-9	1	0.002	0.010	ND	ug/L	U
Aroclor 1248	12672-29-6	1	0.002	0.010	ND	ug/L	U
Aroclor 1254	11097-69-1	1	0.002	0.010	ND	ug/L	U
Aroclor 1260	11096-82-5	1	0.003	0.010	ND	ug/L	U
Aroclor 1262	37324-23-5	1	0.003	0.010	ND	ug/L	U
Aroclor 1268	11100-14-4	1	0.003	0.010	ND	ug/L	U
Surrogate: Decachlorobiphenyl				29-120 %	53.8	%	
Surrogate: Tetrachlorometaxylene				32-120 %	47.0	%	
Surrogate: Decachlorobiphenyl [2C]				29-120 %	51.6	%	
Surrogate: Tetrachlorometaxylene [2C]				32-120 %	42.6	%	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

DOF-2-190701 19G0017-08 (Water)

Metals and Metallic Compounds

Method: EPA 6020ASampled: 07/01/2019 11:03Instrument: ICPMS2Analyst: MCBAnalyzed: 07/09/2019 00:58Sample Preparation:Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrixExtract ID: 19G0017-08 A 01

Preparation Batch: BHG0166 Sample Size: 25 mL

Prepared: 08-Jul-2019 Final Volume: 25 mL Detection Reporting Analyte CAS Number Dilution Limit Limit Result Units Notes Lead 7439-92-1 1 0.06800.100 0.440 ug/L Manganese 7439-96-5 0.0850 0.500 18.4 ug/L

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

DOF-2-190701 19G0017-08 (Water)

Metals and Metallic Compounds

Copper

Zinc

 Method: EPA 6020A UCT-KED
 Sampled: 07/01/2019 11:03

 Instrument: ICPMS2
 Analyst: MCB

 Analyzed: 07/09/2019 00:58

Sample Preparation: Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix Extract ID: 19G0017-08 A 01

Preparation Batch: BHG0166 Sample Size: 25 mL Prepared: 08-Jul-2019 Final Volume: 25 mL

Detection Reporting Analyte CAS Number Dilution Limit Limit Result Units Notes Arsenic 7440-38-2 1 0.0220 0.200 10.1 ug/L Cadmium 7440-43-9 1 0.0300 0.100 ND ug/L U

7440-50-8

7440-66-6

0.340

0.820

0.500

4.00

2.95

3.56

ug/L

ug/L

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

DOF-2-190701 19G0017-08 (Water)

Metals and Metallic Compounds

 Method: EPA 7470A
 Sampled: 07/01/2019 11:03

 Instrument: CVAA Analyst: SKM
 Analyzed: 07/10/2019 16:25

Sample Preparation: Preparation Method: TLM EPA 7470A low level Extract ID: 19G0017-08 A

Preparation Batch: BHG0168 Sample Size: 20 mL Prepared: 08-Jul-2019 Final Volume: 20 mL

Detection Reporting Limit Analyte CAS Number Dilution Limit Result Units Notes 7439-97-6 0.000020 Mercury 1 0.000010 0.000024 mg/L

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

MW-4-190701 19G0017-09 (Water)

Volatile Organic Compounds

 Method: EPA 8260C
 Sampled: 07/01/2019 15:20

 Instrument: NT3 Analyst: PKC
 Analyzed: 07/03/2019 18:26

Sample Preparation: Preparation Method: EPA 5030 (Purge and Trap) Extract ID: 19G0017-09 L

Preparation Batch: BHG0064 Sample Size: 10 mL Prepared: 03-Jul-2019 Final Volume: 10 mL

	Trepured: 05 but 2019	Tillar voranie. I	O IIIL					
Analyte		CAS Number	Dilution	Detection Limit	Reporting Limit	Result	Units	Notes
			Dilution				Omto	
Benzene		71-43-2	1	0.03	0.20	ND	ug/L	U
Toluene		108-88-3	1	0.04	0.20	ND	ug/L	U
Ethylbenzene		100-41-4	1	0.04	0.20	ND	ug/L	U
m,p-Xylene		179601-23-1	1	0.05	0.40	ND	ug/L	U
o-Xylene		95-47-6	1	0.03	0.20	ND	ug/L	U
Surrogate: Toluene-d8					80-120 %	101	%	
Surrogate: 4-Bromofluorobenz	rene				80-120 %	94.2	%	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

MW-4-190701 19G0017-09 (Water)

Volatile Organic Compounds

 Method: NWTPHg
 Sampled: 07/01/2019 15:20

 Instrument: NT3 Analyst: PKC
 Analyzed: 07/03/2019 18:26

Sample Preparation: Preparation Method: EPA 5030 (Purge and Trap) Extract ID: 19G0017-09 L

Preparation Batch: BHG0064 Sample Size: 10 mL Prepared: 03-Jul-2019 Final Volume: 10 mL

Analyte	CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Gasoline Range Organics (Tol-Nap)	GRO	1	100	ND	ug/L	U
Surrogate: Toluene-d8			80-120 %	101	%	
Surrogate: 4-Bromofluorobenzene			80-120 %	94.2	%	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

Project Number: 1071-026 1809 7th Ave, Suite 1111 Reported: Seattle WA, 98101 Project Manager: Pete Kingston 12-Jul-2019 16:01

MW-4-190701 19G0017-09 (Water)

Semivolatile Organic Compounds - SIM

Method: EPA 8270D-SIM Sampled: 07/01/2019 15:20 Instrument: NT11 Analyst: VTS Analyzed: 07/06/2019 17:46 Extract ID: 19G0017-09 E 01

Sample Preparation: Preparation Method: EPA 3510C SepF

Preparation Batch: BHG0068 Sample Size: 500 mL Prepared: 03-Jul-2019 Final Volume: 0.5 mL

Trepared of the 2019							
			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Naphthalene	91-20-3	1	0.001	0.010	0.003	ug/L	J
2-Methylnaphthalene	91-57-6	1	0.001	0.010	0.003	ug/L	J
1-Methylnaphthalene	90-12-0	1	0.0009	0.010	0.005	ug/L	J
2-Chloronaphthalene	91-58-7	1	0.001	0.010	ND	ug/L	U
Acenaphthylene	208-96-8	1	0.002	0.010	ND	ug/L	U
Acenaphthene	83-32-9	1	0.003	0.010	0.084	ug/L	
Dibenzofuran	132-64-9	1	0.002	0.010	0.003	ug/L	J
Fluorene	86-73-7	1	0.002	0.010	0.011	ug/L	
Phenanthrene	85-01-8	1	0.001	0.010	0.012	ug/L	
Anthracene	120-12-7	1	0.001	0.010	ND	ug/L	U
Carbazole	86-74-8	1	0.001	0.010	ND	ug/L	U
Fluoranthene	206-44-0	1	0.002	0.010	ND	ug/L	U
Pyrene	129-00-0	1	0.001	0.010	0.002	ug/L	J
Benzo(a)anthracene	56-55-3	1	0.0008	0.010	ND	ug/L	U
Chrysene	218-01-9	1	0.0009	0.010	ND	ug/L	U
Benzo(b)fluoranthene	205-99-2	1	0.0005	0.010	ND	ug/L	U
Benzo(k)fluoranthene	207-08-9	1	0.003	0.010	ND	ug/L	U
Benzo(j)fluoranthene	205-82-3	1	0.002	0.010	ND	ug/L	U
Benzofluoranthenes, Total		1	0.004	0.010	ND	ug/L	U
Benzo(a)pyrene	50-32-8	1	0.002	0.010	ND	ug/L	U
Perylene	1985-5-0	1	0.006	0.010	0.011	ug/L	
Indeno(1,2,3-cd)pyrene	193-39-5	1	0.001	0.010	ND	ug/L	U
Dibenzo(a,h)anthracene	53-70-3	1	0.001	0.010	ND	ug/L	U
Benzo(g,h,i)perylene	191-24-2	1	0.001	0.010	ND	ug/L	U
Surrogate: 2-Methylnaphthalene-d10				42-120 %	83.4	%	
Surrogate: Dibenzo[a,h]anthracene-d14				29-120 %	92.1	%	
Surrogate: Fluoranthene-d10				57-120 %	88.7	%	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

MW-4-190701 19G0017-09 (Water)

Petroleum Hydrocarbons

 Method: NWTPH-Dx
 Sampled: 07/01/2019 15:20

 Instrument: FID4 Analyst: JGR
 Analyzed: 07/05/2019 01:59

Sample Preparation: Preparation Method: EPA 3510C SepF Extract ID: 19G0017-09 B 01

Preparation Batch: BHG0065 Sample Size: 500 mL Prepared: 03-Jul-2019 Final Volume: 1 mL

	I mai voiame.					
Analyte	CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Diesel Range Organics (C12-C24)	DRO	1	0.100	0.474	mg/L	
HC ID: DIESEL Motor Oil Range Organics (C24-C38)	RRO	1	0.200	ND	mg/L	U
Surrogate: o-Terphenyl			50-150 %	83.8	%	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

MW-4-190701 19G0017-09 (Water)

Aroclor PCB

Method: EPA 8082A			Sampled: 07/01/2019 15:20
Instrument: ECD7 Anal	yst: JGR		Analyzed: 07/03/2019 20:25
Sample Preparation:	Preparation Method: EPA 3510C SepF Preparation Batch: BHG0066 Prepared: 02-Jul-2019	Sample Size: 1000 mL Final Volume: 0.5 mL	Extract ID: 19G0017-09 C 01
Sample Cleanup:	Cleanup Method: Silica Gel Cleanup Batch: CHG0019 Cleaned: 03-Jul-2019	Initial Volume: 0.5 mL Final Volume: 0.5 mL	Extract ID: 19G0017-09 C 01
Sample Cleanup:	Cleanup Method: Sulfuric Acid Cleanup Batch: CHG0017 Cleaned: 03-Jul-2019	Initial Volume: 0.5 mL Final Volume: 0.5 mL	Extract ID:19G0017-09 C 01
Sample Cleanup:	Cleanup Method: Sulfur Cleanup Batch: CHG0018 Cleaned: 03-Jul-2019	Initial Volume: 0.5 mL Final Volume: 0.5 mL	Extract ID:19G0017-09 C 01

Analysis	CAC Normhan	Dilatian	Detection Limit	Reporting Limit	D14	Units	N-4
Analyte	CAS Number	Dilution	LIIIII	Lillit	Result	Units	Notes
Aroclor 1016	12674-11-2	1	0.002	0.010	ND	ug/L	U
Aroclor 1221	11104-28-2	1	0.002	0.010	ND	ug/L	U
Aroclor 1232	11141-16-5	1	0.002	0.010	ND	ug/L	U
Aroclor 1242	53469-21-9	1	0.002	0.010	ND	ug/L	U
Aroclor 1248	12672-29-6	1	0.002	0.010	ND	ug/L	U
Aroclor 1254	11097-69-1	1	0.002	0.010	ND	ug/L	U
Aroclor 1260	11096-82-5	1	0.003	0.010	ND	ug/L	U
Aroclor 1262	37324-23-5	1	0.003	0.010	ND	ug/L	U
Aroclor 1268	11100-14-4	1	0.003	0.010	ND	ug/L	U
Surrogate: Decachlorobiphenyl				29-120 %	28.0	%	*
Surrogate: Tetrachlorometaxylene				32-120 %	36.1	%	
Surrogate: Decachlorobiphenyl [2C]				29-120 %	26.8	%	*
Surrogate: Tetrachlorometaxylene [2C]				32-120 %	32.2	%	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

MW-4-190701 19G0017-09 (Water)

Metals and Metallic Compounds

Method: EPA 6020ASampled: 07/01/2019 15:20Instrument: ICPMS2Analyst: MCBAnalyzed: 07/09/2019 01:02Sample Preparation:Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrixExtract ID: 19G0017-09 A 01

Preparation Batch: BHG0166 Sample Size: 25 mL

Prepared: 08-Jul-2019 Final Volume: 25 mL

	1						
			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Lead	7439-92-1	2	0.136	0.200	0.216	ug/L	D
Manganese	7439-96-5	5	0.425	2.50	904	ug/L	D

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

MW-4-190701 19G0017-09 (Water)

Metals and Metallic Compounds

 Method: EPA 6020A UCT-KED
 Sampled: 07/01/2019 15:20

 Instrument: ICPMS2
 Analyst: MCB

 Analyzed: 07/09/2019 01:02

Sample Preparation: Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix Extract ID: 19G0017-09 A 01

Preparation Batch: BHG0166 Sample Size: 25 mL

Prepared: 08-Jul-2019 Final Volume: 25 mL

			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Arsenic	7440-38-2	2	0.0440	0.400	12.3	ug/L	D
Cadmium	7440-43-9	2	0.0600	0.200	ND	ug/L	U

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

MW-4-190701 19G0017-09 (Water)

Metals and Metallic Compounds

 Method: EPA 7470A
 Sampled: 07/01/2019 15:20

 Instrument: CVAA Analyst: SKM
 Analyzed: 07/10/2019 16:28

Sample Preparation: Preparation Method: TLM EPA 7470A low level Extract ID: 19G0017-09 A

Preparation Batch: BHG0168 Sample Size: 20 mL Prepared: 08-Jul-2019 Final Volume: 20 mL

Detection Reporting Limit Analyte CAS Number Dilution Limit Result Units Notes 7439-97-6 0.000020 Mercury 1 0.000010 0.000015 mg/L J

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

MW-4-190701 19G0017-09RE1 (Water)

Metals and Metallic Compounds

 Method: EPA 6020A UCT-KED
 Sampled: 07/01/2019 15:20

 Instrument: ICPMS2
 Analyst: MCB

 Analyzed: 07/10/2019 20:03

Sample Preparation: Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix Extract ID: 19G0017-09RE1 A 01

Preparation Batch: BHG0166 Sample Size: 25 mL Prepared: 08-Jul-2019 Final Volume: 25 mL

Detection Reporting Analyte CAS Number Dilution Limit Limit Result Units Notes Copper 7440-50-8 1 0.340 0.500 2.21 ug/L Zinc 7440-66-6 0.820 4.00 ug/L

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

MW-203-190701 19G0017-10 (Water)

Volatile Organic Compounds

 Method: EPA 8260C
 Sampled: 07/01/2019 14:21

 Instrument: NT3 Analyst: PKC
 Analyzed: 07/03/2019 18:52

Sample Preparation: Preparation Method: EPA 5030 (Purge and Trap) Extract ID: 19G0017-10 K

Preparation Batch: BHG0064 Sample Size: 10 mL Prepared: 03-Jul-2019 Final Volume: 10 mL

	rieparea. 05 bar 2019	Tillar voranie. I	O IIIL					
Analyte		CAS Number	Dilution	Detection Limit	Reporting Limit	Result	Units	Notes
			1					
Benzene		71-43-2	1	0.03	0.20	ND	ug/L	U
Toluene		108-88-3	1	0.04	0.20	ND	ug/L	U
Ethylbenzene		100-41-4	1	0.04	0.20	ND	ug/L	U
m,p-Xylene		179601-23-1	1	0.05	0.40	ND	ug/L	U
o-Xylene		95-47-6	1	0.03	0.20	ND	ug/L	U
Surrogate: Toluene-d8					80-120 %	99.6	%	
Surrogate: 4-Bromofluorobenzene	?				80-120 %	94.9	%	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

MW-203-190701 19G0017-10 (Water)

Volatile Organic Compounds

 Method: NWTPHg
 Sampled: 07/01/2019 14:21

 Instrument: NT3
 Analyst: PKC

 Analyzed: 07/03/2019 18:52

Sample Preparation: Preparation Method: EPA 5030 (Purge and Trap) Extract ID: 19G0017-10 K

Preparation Batch: BHG0064 Sample Size: 10 mL Prepared: 03-Jul-2019 Final Volume: 10 mL

Reporting CAS Number Dilution Limit Analyte Result Units Notes GRO ND U Gasoline Range Organics (Tol-Nap) 100 ug/L 80-120 % 99.6 % Surrogate: Toluene-d8 80-120 % Surrogate: 4-Bromofluorobenzene 94.9 %

Analytical Resources, Inc.

Extract ID: 19G0017-10 E 01

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

MW-203-190701 19G0017-10 (Water)

Semivolatile Organic Compounds - SIM

 Method: EPA 8270D-SIM
 Sampled: 07/01/2019 14:21

 Instrument: NT11 Analyst: VTS
 Analyzed: 07/06/2019 18:15

Sample Preparation: Preparation Method: EPA 3510C SepF

Preparation Batch: BHG0068 Sample Size: 500 mL Prepared: 03-Jul-2019 Final Volume: 0.5 mL

1 Tepated: 03-3ut-2019	1 mai volume: (Final volume. 0.5 mL					
	CACAL	D'I d'	Detection	Reporting	D 1:	TT '	N
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Naphthalene	91-20-3	1	0.001	0.010	0.002	ug/L	J
2-Methylnaphthalene	91-57-6	1	0.001	0.010	ND	ug/L	U
1-Methylnaphthalene	90-12-0	1	0.0009	0.010	ND	ug/L	U
2-Chloronaphthalene	91-58-7	1	0.001	0.010	ND	ug/L	U
Acenaphthylene	208-96-8	1	0.002	0.010	ND	ug/L	U
Acenaphthene	83-32-9	1	0.003	0.010	ND	ug/L	U
Dibenzofuran	132-64-9	1	0.002	0.010	ND	ug/L	U
Fluorene	86-73-7	1	0.002	0.010	ND	ug/L	U
Phenanthrene	85-01-8	1	0.001	0.010	ND	ug/L	U
Anthracene	120-12-7	1	0.001	0.010	ND	ug/L	U
Carbazole	86-74-8	1	0.001	0.010	ND	ug/L	U
Fluoranthene	206-44-0	1	0.002	0.010	ND	ug/L	U
Pyrene	129-00-0	1	0.001	0.010	ND	ug/L	U
Benzo(a)anthracene	56-55-3	1	0.0008	0.010	ND	ug/L	U
Chrysene	218-01-9	1	0.0009	0.010	ND	ug/L	U
Benzo(b)fluoranthene	205-99-2	1	0.0005	0.010	ND	ug/L	U
Benzo(k)fluoranthene	207-08-9	1	0.003	0.010	ND	ug/L	U
Benzo(j)fluoranthene	205-82-3	1	0.002	0.010	ND	ug/L	U
Benzofluoranthenes, Total		1	0.004	0.010	ND	ug/L	U
Benzo(a)pyrene	50-32-8	1	0.002	0.010	ND	ug/L	U
Perylene	1985-5-0	1	0.006	0.010	ND	ug/L	U
Indeno(1,2,3-cd)pyrene	193-39-5	1	0.001	0.010	ND	ug/L	U
Dibenzo(a,h)anthracene	53-70-3	1	0.001	0.010	ND	ug/L	U
Benzo(g,h,i)perylene	191-24-2	1	0.001	0.010	ND	ug/L	U
Surrogate: 2-Methylnaphthalene-d10				42-120 %	75.7	%	
Surrogate: Dibenzo[a,h]anthracene-d14				29-120 %	100	%	
Surrogate: Fluoranthene-d10				57-120 %	87.2	%	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

MW-203-190701 19G0017-10 (Water)

Petroleum Hydrocarbons

 Method: NWTPH-Dx
 Sampled: 07/01/2019 14:21

 Instrument: FID4 Analyst: JGR
 Analyzed: 07/05/2019 02:20

Sample Preparation: Preparation Method: EPA 3510C SepF Extract ID: 19G0017-10 B 01

Preparation Batch: BHG0065 Sample Size: 500 mL Prepared: 03-Jul-2019 Final Volume: 1 mL

Analyte	CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Diesel Range Organics (C12-C24)	DRO	1	0.100	ND	mg/L	U
Motor Oil Range Organics (C24-C38)	RRO	1	0.200	ND	mg/L	U
Surrogate: o-Terphenyl			50-150 %	87.1	%	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

MW-203-190701 19G0017-10 (Water)

Aroclor PCB

Method: EPA 8082A						S	ampled: 07/	01/2019 14:21	
Instrument: ECD7 Anal	yst: JGR					Aı	nalyzed: 07/	03/2019 20:45	
Sample Preparation:	Preparation Method: EPA 3510C SepF					Ext	ract ID: 190	60017-10 C 01	
	Preparation Batch: BHG0066	Sample Size: 10	000 mL						
	Prepared: 02-Jul-2019	Final Volume: 0	.5 mL						
Sample Cleanup:	Cleanup Method: Silica Gel					Ext	ract ID: 190	60017-10 C 01	
	Cleanup Batch: CHG0019	Initial Volume:	0.5 mL						
	Cleaned: 03-Jul-2019	Final Volume: 0	.5 mL						
Sample Cleanup:	Cleanup Method: Sulfuric Acid					Ex	tract ID:190	60017-10 C 01	
	Cleanup Batch: CHG0017	Initial Volume:	0.5 mL		2.11.11.15.11.7.6.001.7.10.6.0				
	Cleaned: 03-Jul-2019	Final Volume: 0	.5 mL						
Sample Cleanup:	Cleanup Method: Sulfur					Ex	tract ID:190	60017-10 C 01	
	Cleanup Batch: CHG0018	Initial Volume: 0.5 mL							
	Cleaned: 03-Jul-2019	Final Volume: 0	.5 mL						
				Detection	Reporting				
Analyte		CAS Number	Dilution	Limit	Limit	Result	Units	Notes	
Aroclor 1016		12674-11-2	1	0.002	0.010	ND	ug/L	U	
Aroclor 1221		11104-28-2	1	0.002	0.010	ND	ug/L	U	
Aroclor 1232		11141-16-5	1	0.002	0.010	ND	ug/L	U	
Aroclor 1242		53469-21-9	1	0.002	0.010	ND	ug/L	U	
Aroclor 1248		12672-29-6	1	0.002	0.010	ND	ug/L	U	
Aroclor 1254		11097-69-1	1	0.002	0.010	ND	ug/L	U	
Aroclor 1260		11096-82-5	1	0.003	0.010	ND	ug/L	U	
Aroclor 1262		37324-23-5	1	0.003	0.010	ND	ug/L	U	
Aroclor 1268		11100-14-4	1	0.003	0.010	ND	ug/L	U	

Analytical Resources, Inc.

Surrogate: Decachlorobiphenyl

Surrogate: Tetrachlorometaxylene

Surrogate: Decachlorobiphenyl [2C]

Surrogate: Tetrachlorometaxylene [2C]

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

29-120 %

32-120 %

29-120 %

32-120 %

59.8

46.8

57.6

38.6

%

%

%

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

MW-203-190701 19G0017-10 (Water)

Metals and Metallic Compounds

Sample Preparation: Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix
Preparation Batch: BHG0166 Sample Size: 25 mL

Prepared: 08-Jul-2019 Final Volume: 25 mL

	1						
			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Lead	7439-92-1	1	0.0680	0.100	ND	ug/L	U
Manganese	7439-96-5	5	0.425	2.50	483	ug/L	D

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111 Project Number: 1071-026 Reported: Seattle WA, 98101 Project Manager: Pete Kingston 12-Jul-2019 16:01

> MW-203-190701 19G0017-10 (Water)

Metals and Metallic Compounds

Method: EPA 6020A UCT-KED Sampled: 07/01/2019 14:21 Instrument: ICPMS2 Analyst: MCB Analyzed: 07/09/2019 01:07 Extract ID: 19G0017-10 A 01

Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix Sample Preparation:

Preparation Batch: BHG0166 Sample Size: 25 mL Prepared: 08-Jul-2019 Final Volume: 25 mL

Detection Reporting Analyte CAS Number Dilution Limit Limit Result Units Notes Arsenic 7440-38-2 1 0.0220 0.200 0.629 ug/L Cadmium 7440-43-9 0.0300 0.100 ND ug/L U

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

MW-203-190701 19G0017-10 (Water)

Metals and Metallic Compounds

 Method: EPA 7470A
 Sampled: 07/01/2019 14:21

 Instrument: CVAA Analyst: SKM
 Analyzed: 07/10/2019 16:31

Sample Preparation: Preparation Method: TLM EPA 7470A low level Extract ID: 19G0017-10 A

Preparation Batch: BHG0168 Sample Size: 20 mL Prepared: 08-Jul-2019 Final Volume: 20 mL

Detection Reporting Limit Analyte CAS Number Dilution Limit Result Units Notes 7439-97-6 0.000020 Mercury 1 0.000010 0.000019 mg/L J

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111 Project Number: 1071-026 Reported: Seattle WA, 98101 Project Manager: Pete Kingston 12-Jul-2019 16:01

MW-203-190701 19G0017-10RE1 (Water)

Metals and Metallic Compounds

Method: EPA 6020A UCT-KED Sampled: 07/01/2019 14:21 Instrument: ICPMS2 Analyst: MCB Analyzed: 07/10/2019 20:08 Extract ID: 19G0017-10RE1 A 01

Sample Preparation: Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix

Preparation Batch: BHG0166 Sample Size: 25 mL Prepared: 08-Jul-2019 Final Volume: 25 mL

Detection Reporting Limit Analyte CAS Number Dilution Limit Result Units Notes Copper 7440-50-8 1 0.340 0.500 2.09 ug/L Zinc 7440-66-6 0.820 4.00 3.97 ug/L

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

MW-207-190701 19G0017-11 (Water)

Volatile Organic Compounds

 Method: EPA 8260C
 Sampled: 07/01/2019 13:23

 Instrument: NT3 Analyst: PKC
 Analyzed: 07/03/2019 19:19

Sample Preparation: Preparation Method: EPA 5030 (Purge and Trap) Extract ID: 19G0017-11 J

Preparation Batch: BHG0064 Sample Size: 10 mL Prepared: 03-Jul-2019 Final Volume: 10 mL

Analyte	CAS Number	Dilution	Detection Limit	Reporting Limit	Result	Units	Notes
Benzene	71-43-2	1	0.03	0.20	ND	ug/L	U
Toluene	108-88-3	1	0.04	0.20	ND	ug/L	U
Ethylbenzene	100-41-4	1	0.04	0.20	ND	ug/L	U
m,p-Xylene	179601-23-1	1	0.05	0.40	ND	ug/L	U
o-Xylene	95-47-6	1	0.03	0.20	ND	ug/L	U
Surrogate: Toluene-d8				80-120 %	100	%	
Surrogate: 4-Bromofluorobenzene				80-120 %	93.9	%	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

MW-207-190701 19G0017-11 (Water)

Volatile Organic Compounds

 Method: NWTPHg
 Sampled: 07/01/2019 13:23

 Instrument: NT3 Analyst: PKC
 Analyzed: 07/03/2019 19:19

Sample Preparation: Preparation Method: EPA 5030 (Purge and Trap) Extract ID: 19G0017-11 J

Preparation Batch: BHG0064 Sample Size: 10 mL Prepared: 03-Jul-2019 Final Volume: 10 mL

Reporting CAS Number Dilution Limit Analyte Result Units Notes GRO ND U Gasoline Range Organics (Tol-Nap) 100 ug/L 80-120 % 100 % Surrogate: Toluene-d8 80-120 % Surrogate: 4-Bromofluorobenzene 93.9 %

Analytical Resources, Inc.

Extract ID: 19G0017-11 E 01

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

MW-207-190701 19G0017-11 (Water)

Semivolatile Organic Compounds - SIM

 Method: EPA 8270D-SIM
 Sampled: 07/01/2019 13:23

 Instrument: NT11 Analyst: VTS
 Analyzed: 07/06/2019 18:45

Sample Preparation: Preparation Method: EPA 3510C SepF

Preparation Batch: BHG0068 Sample Size: 500 mL Prepared: 03-Jul-2019 Final Volume: 0.5 mL

110000000000000000000000000000000000000							
			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Naphthalene	91-20-3	1	0.001	0.010	0.002	ug/L	J
2-Methylnaphthalene	91-57-6	1	0.001	0.010	ND	ug/L	U
1-Methylnaphthalene	90-12-0	1	0.0009	0.010	ND	ug/L	U
2-Chloronaphthalene	91-58-7	1	0.001	0.010	ND	ug/L	U
Acenaphthylene	208-96-8	1	0.002	0.010	ND	ug/L	U
Acenaphthene	83-32-9	1	0.003	0.010	ND	ug/L	U
Dibenzofuran	132-64-9	1	0.002	0.010	ND	ug/L	U
Fluorene	86-73-7	1	0.002	0.010	ND	ug/L	U
Phenanthrene	85-01-8	1	0.001	0.010	ND	ug/L	U
Anthracene	120-12-7	1	0.001	0.010	ND	ug/L	U
Carbazole	86-74-8	1	0.001	0.010	ND	ug/L	U
Fluoranthene	206-44-0	1	0.002	0.010	ND	ug/L	U
Pyrene	129-00-0	1	0.001	0.010	ND	ug/L	U
Benzo(a)anthracene	56-55-3	1	0.0008	0.010	ND	ug/L	U
Chrysene	218-01-9	1	0.0009	0.010	ND	ug/L	U
Benzo(b)fluoranthene	205-99-2	1	0.0005	0.010	ND	ug/L	U
Benzo(k)fluoranthene	207-08-9	1	0.003	0.010	ND	ug/L	U
Benzo(j)fluoranthene	205-82-3	1	0.002	0.010	ND	ug/L	U
Benzofluoranthenes, Total		1	0.004	0.010	ND	ug/L	U
Benzo(a)pyrene	50-32-8	1	0.002	0.010	ND	ug/L	U
Perylene	1985-5-0	1	0.006	0.010	ND	ug/L	U
Indeno(1,2,3-cd)pyrene	193-39-5	1	0.001	0.010	ND	ug/L	U
Dibenzo(a,h)anthracene	53-70-3	1	0.001	0.010	ND	ug/L	U
Benzo(g,h,i)perylene	191-24-2	1	0.001	0.010	ND	ug/L	U
Surrogate: 2-Methylnaphthalene-d10				42-120 %	74.3	%	
Surrogate: Dibenzo[a,h]anthracene-d14				29-120 %	95.3	%	
Surrogate: Fluoranthene-d10				57-120 %	84.9	%	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

MW-207-190701 19G0017-11 (Water)

Petroleum Hydrocarbons

 Method: NWTPH-Dx
 Sampled: 07/01/2019 13:23

 Instrument: FID4 Analyst: JGR
 Analyzed: 07/05/2019 02:41

Sample Preparation: Preparation Method: EPA 3510C SepF Extract ID: 19G0017-11 B 01

Preparation Batch: BHG0065 Sample Size: 500 mL Prepared: 03-Jul-2019 Final Volume: 1 mL

Analyte	CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Diesel Range Organics (C12-C24)	DRO	1	0.100	ND	mg/L	U
Motor Oil Range Organics (C24-C38)	RRO	1	0.200	ND	mg/L	U
Surrogate: o-Terphenyl			50-150 %	90.3	%	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

MW-207-190701 19G0017-11 (Water)

Aroclor PCB

AIUCIUI I CB								
Method: EPA 8082A						S	ampled: 07/	01/2019 13:23
Instrument: ECD7 Anal	yst: JGR					Aı	nalyzed: 07/	03/2019 21:06
Sample Preparation:	Preparation Method: EPA 3510C SepF					Ext	ract ID: 190	G0017-11 C 01
	Preparation Batch: BHG0066	Sample Size: 1	000 mL					
	Prepared: 02-Jul-2019	Final Volume: ().5 mL					
Sample Cleanup:	Cleanup Method: Silica Gel					Ext	ract ID: 190	G0017-11 C 01
	Cleanup Batch: CHG0019	Initial Volume:	0.5 mL					
	Cleaned: 03-Jul-2019	Final Volume: 0).5 mL					
Sample Cleanup:	Cleanup Method: Sulfuric Acid					Ex	tract ID:190	G0017-11 C 01
	Cleanup Batch: CHG0017	Initial Volume:	0.5 mL					
	Cleaned: 03-Jul-2019	Final Volume: ().5 mL					
Sample Cleanup:	Cleanup Method: Sulfur					Ex	tract ID:190	G0017-11 C 01
	Cleanup Batch: CHG0018	Initial Volume:	0.5 mL					
	Cleaned: 03-Jul-2019	Final Volume: ().5 mL					
				Detection	Reporting			
Analyte		CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Aroclor 1016		12674-11-2	1	0.002	0.010	ND	ug/L	U
Aroclor 1221		11104-28-2	1	0.002	0.010	ND	ug/L	U
Aroclor 1232		11141-16-5	1	0.002	0.010	ND	ug/L	U
. 1 1040		52460.21.0			0.010	NID	- /-	***

			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Aroclor 1016	12674-11-2	1	0.002	0.010	ND	ug/L	U
Aroclor 1221	11104-28-2	1	0.002	0.010	ND	ug/L	U
Aroclor 1232	11141-16-5	1	0.002	0.010	ND	ug/L	U
Aroclor 1242	53469-21-9	1	0.002	0.010	ND	ug/L	U
Aroclor 1248	12672-29-6	1	0.002	0.010	ND	ug/L	U
Aroclor 1254	11097-69-1	1	0.002	0.010	ND	ug/L	U
Aroclor 1260	11096-82-5	1	0.003	0.010	ND	ug/L	U
Aroclor 1262	37324-23-5	1	0.003	0.010	ND	ug/L	U
Aroclor 1268	11100-14-4	1	0.003	0.010	ND	ug/L	U
Surrogate: Decachlorobiphenyl				29-120 %	45.8	%	
Surrogate: Tetrachlorometaxylene				32-120 %	40.5	%	
Surrogate: Decachlorobiphenyl [2C]				29-120 %	42.5	%	
Surrogate: Tetrachlorometaxylene [2C]				32-120 %	35.0	%	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

MW-207-190701 19G0017-11 (Water)

Metals and Metallic Compounds

Method: EPA 6020ASampled: 07/01/2019 13:23Instrument: ICPMS2Analyst: MCBAnalyzed: 07/09/2019 01:11Sample Preparation:Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrixExtract ID: 19G0017-11 A 01

Preparation Batch: BHG0166 Sample Size: 25 mL

Prepared: 08-Jul-2019 Final Volume: 25 mL

	F							
				Detection	Reporting			
Analyte		CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Lead		7439-92-1	1	0.0680	0.100	0.466	ug/L	
Manganese		7439-96-5	1	0.0850	0.500	140	ug/L	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

MW-207-190701 19G0017-11 (Water)

Metals and Metallic Compounds

 Method: EPA 6020A UCT-KED
 Sampled: 07/01/2019 13:23

 Instrument: ICPMS2
 Analyst: MCB

 Analyzed: 07/09/2019 01:11

Sample Preparation: Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix Extract ID: 19G0017-11 A 01

Preparation Batch: BHG0166 Sample Size: 25 mL

Prepared: 08-Jul-2019 Final Volume: 25 mL

			Detection I	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Arsenic	7440-38-2	1	0.0220	0.200	8.50	ug/L	
Cadmium	7440-43-9	1	0.0300	0.100	0.0730	ug/L	J
Copper	7440-50-8	1	0.340	0.500	1.64	ug/L	
Zinc	7440-66-6	1	0.820	4.00	7.04	ug/L	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

MW-207-190701 19G0017-11 (Water)

Metals and Metallic Compounds

 Method: EPA 7470A
 Sampled: 07/01/2019 13:23

 Instrument: CVAA Analyst: SKM
 Analyzed: 07/10/2019 16:34

Sample Preparation: Preparation Method: TLM EPA 7470A low level Extract ID: 19G0017-11 A

Preparation Batch: BHG0168 Sample Size: 20 mL Prepared: 08-Jul-2019 Final Volume: 20 mL

Detection Reporting Limit Analyte CAS Number Dilution Limit Result Units Notes 7439-97-6 0.000020 Mercury 1 0.000010 0.000019 mg/L J

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

DOF-3-190701 19G0017-12 (Water)

Volatile Organic Compounds

 Method: EPA 8260C
 Sampled: 07/01/2019 12:07

 Instrument: NT3 Analyst: PKC
 Analyzed: 07/03/2019 19:46

Sample Preparation: Preparation Method: EPA 5030 (Purge and Trap)
Preparation Batch: BHG0064 Sample Size: 10 mL

Extract ID: 19G0017-12 I

Prepared: 03-Jul-2019 Final Volume: 10 mL

Analyte	CAS Number	Dilution	Detection Limit	Reporting Limit	Result	Units	Notes
Benzene	71-43-2	1	0.03	0.20	ND	ug/L	U
Toluene	108-88-3	1	0.04	0.20	ND	ug/L	U
Ethylbenzene	100-41-4	1	0.04	0.20	ND	ug/L	U
m,p-Xylene	179601-23-1	1	0.05	0.40	ND	ug/L	U
o-Xylene	95-47-6	1	0.03	0.20	ND	ug/L	U
Surrogate: Toluene-d8				80-120 %	102	%	
Surrogate: 4-Bromofluorobenzene				80-120 %	95.5	%	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

DOF-3-190701 19G0017-12 (Water)

Volatile Organic Compounds

 Method: NWTPHg
 Sampled: 07/01/2019 12:07

 Instrument: NT3 Analyst: PKC
 Analyzed: 07/03/2019 19:46

Sample Preparation: Preparation Method: EPA 5030 (Purge and Trap) Extract ID: 19G0017-12 I

Preparation Batch: BHG0064 Sample Size: 10 mL Prepared: 03-Jul-2019 Final Volume: 10 mL

Reporting CAS Number Dilution Limit Analyte Result Units Notes GRO ND U Gasoline Range Organics (Tol-Nap) 100 ug/L 80-120 % 102 % Surrogate: Toluene-d8 80-120 % Surrogate: 4-Bromofluorobenzene 95.5 %

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

DOF-3-190701 19G0017-12 (Water)

Semivolatile Organic Compounds - SIM

 Method: EPA 8270D-SIM
 Sampled: 07/01/2019 12:07

 Instrument: NT11
 Analyst: VTS

 Analyzed: 07/06/2019 19:15

Sample Preparation: Preparation Method: EPA 3510C SepF Extract ID: 19G0017-12 E 01

Preparation Batch: BHG0068 Sample Size: 500 mL Prepared: 03-Jul-2019 Final Volume: 0.5 mL

Trepured of the 2019							
			Detection	Reporting		_	
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Naphthalene	91-20-3	1	0.001	0.010	0.003	ug/L	J
2-Methylnaphthalene	91-57-6	1	0.001	0.010	0.001	ug/L	J
1-Methylnaphthalene	90-12-0	1	0.0009	0.010	0.001	ug/L	J
2-Chloronaphthalene	91-58-7	1	0.001	0.010	ND	ug/L	U
Acenaphthylene	208-96-8	1	0.002	0.010	ND	ug/L	U
Acenaphthene	83-32-9	1	0.003	0.010	ND	ug/L	U
Dibenzofuran	132-64-9	1	0.002	0.010	0.002	ug/L	J
Fluorene	86-73-7	1	0.002	0.010	ND	ug/L	U
Phenanthrene	85-01-8	1	0.001	0.010	ND	ug/L	U
Anthracene	120-12-7	1	0.001	0.010	ND	ug/L	U
Carbazole	86-74-8	1	0.001	0.010	ND	ug/L	U
Fluoranthene	206-44-0	1	0.002	0.010	ND	ug/L	U
Pyrene	129-00-0	1	0.001	0.010	ND	ug/L	U
Benzo(a)anthracene	56-55-3	1	0.0008	0.010	ND	ug/L	U
Chrysene	218-01-9	1	0.0009	0.010	ND	ug/L	U
Benzo(b)fluoranthene	205-99-2	1	0.0005	0.010	ND	ug/L	U
Benzo(k)fluoranthene	207-08-9	1	0.003	0.010	ND	ug/L	U
Benzo(j)fluoranthene	205-82-3	1	0.002	0.010	ND	ug/L	U
Benzofluoranthenes, Total		1	0.004	0.010	ND	ug/L	U
Benzo(a)pyrene	50-32-8	1	0.002	0.010	ND	ug/L	U
Perylene	1985-5-0	1	0.006	0.010	ND	ug/L	U
Indeno(1,2,3-cd)pyrene	193-39-5	1	0.001	0.010	ND	ug/L	U
Dibenzo(a,h)anthracene	53-70-3	1	0.001	0.010	ND	ug/L	U
Benzo(g,h,i)perylene	191-24-2	1	0.001	0.010	ND	ug/L	U
Surrogate: 2-Methylnaphthalene-d10				42-120 %	74.2	%	
Surrogate: Dibenzo[a,h]anthracene-d14				29-120 %	92.2	%	
Surrogate: Fluoranthene-d10				57-120 %	83.1	%	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

DOF-3-190701 19G0017-12 (Water)

Petroleum Hydrocarbons

Method: NWTPH-Dx
Instrument: FID4 Analyst: JGR
Analyzed: 07/01/2019 12:07
Analyzed: 07/05/2019 03:01

Sample Preparation: Preparation Method: EPA 3510C SepF Extract ID: 19G0017-12 B 01

Preparation Batch: BHG0065 Sample Size: 500 mL Prepared: 03-Jul-2019 Final Volume: 1 mL

	Tiller (creation)	1112				
Analyte	CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Diesel Range Organics (C12-C24)	DRO	1	0.100	0.125	mg/L	
HC ID: DRO						
Motor Oil Range Organics (C24-C38)	RRO	1	0.200	ND	mg/L	U
Surrogate: o-Terphenyl			50-150 %	76.8	%	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

DOF-3-190701 19G0017-12 (Water)

Aroclor PCB

Method: EPA 8082A					S	ampled: 07/	/01/2019 12:07
Instrument: ECD7 Anal	yst: JGR				A	nalyzed: 07/	/03/2019 21:27
Sample Preparation:	Preparation Method: EPA 3510C SepF				Ext	ract ID: 190	G0017-12 C 01
	Preparation Batch: BHG0066	Sample Size: 1000 mL					
	Prepared: 02-Jul-2019	Final Volume: 0.5 mL					
Sample Cleanup:	Cleanup Method: Silica Gel				Ext	ract ID: 190	G0017-12 C 01
	Cleanup Batch: CHG0019	Initial Volume: 0.5 mL					
	Cleaned: 03-Jul-2019	Final Volume: 0.5 mL					
Sample Cleanup:	Cleanup Method: Sulfuric Acid				Ex	tract ID:190	G0017-12 C 01
	Cleanup Batch: CHG0017	Initial Volume: 0.5 mL					
	Cleaned: 03-Jul-2019	Final Volume: 0.5 mL					
Sample Cleanup:	Cleanup Method: Sulfur				Ex	tract ID:190	G0017-12 C 01
	Cleanup Batch: CHG0018	Initial Volume: 0.5 mL					
	Cleaned: 03-Jul-2019	Final Volume: 0.5 mL					
			Detection	Reporting			
Analyte		CAS Number Dilution	Limit	Limit	Result	Units	Notes
Aradar 1016		12674 11 2 1	0.002	0.010	ND	no/I	II

			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Aroclor 1016	12674-11-2	1	0.002	0.010	ND	ug/L	U
Aroclor 1221	11104-28-2	1	0.002	0.010	ND	ug/L	U
Aroclor 1232	11141-16-5	1	0.002	0.010	ND	ug/L	U
Aroclor 1242	53469-21-9	1	0.002	0.010	ND	ug/L	U
Aroclor 1248	12672-29-6	1	0.002	0.010	ND	ug/L	U
Aroclor 1254	11097-69-1	1	0.002	0.010	ND	ug/L	U
Aroclor 1260	11096-82-5	1	0.003	0.010	ND	ug/L	U
Aroclor 1262	37324-23-5	1	0.003	0.010	ND	ug/L	U
Aroclor 1268	11100-14-4	1	0.003	0.010	ND	ug/L	U
Surrogate: Decachlorobiphenyl				29-120 %	41.8	%	
Surrogate: Tetrachlorometaxylene				32-120 %	43.1	%	
Surrogate: Decachlorobiphenyl [2C]				29-120 %	39.9	%	
Surrogate: Tetrachlorometaxylene [2C]				32-120 %	36.7	%	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

DOF-3-190701 19G0017-12 (Water)

Metals and Metallic Compounds

Method: EPA 6020ASampled: 07/01/2019 12:07Instrument: ICPMS2Analyst: MCBAnalyzed: 07/09/2019 01:29Sample Preparation:Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrixExtract ID: 19G0017-12 A 01

Preparation Batch: BHG0166 Sample Size: 25 mL Prepared: 08-Jul-2019 Final Volume: 25 mL

Detection Reporting Analyte CAS Number Dilution Limit Limit Result Units Notes ND Lead 7439-92-1 1 0.06800.100 ug/L U Manganese 7439-96-5 0.425 991 ug/L D

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

DOF-3-190701 19G0017-12 (Water)

Metals and Metallic Compounds

 Method: EPA 6020A UCT-KED
 Sampled: 07/01/2019 12:07

 Instrument: ICPMS2
 Analyst: MCB

 Analyzed: 07/09/2019 01:29

Sample Preparation: Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix Extract ID: 19G0017-12 A 01

Preparation Batch: BHG0166 Sample Size: 25 mL Prepared: 08-Jul-2019 Final Volume: 25 mL

Detection Reporting Analyte CAS Number Dilution Limit Limit Result Units Notes Arsenic 7440-38-2 1 0.0220 0.200 0.857 ug/L Cadmium 7440-43-9 0.0300 0.100 0.0530 ug/L

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

DOF-3-190701 19G0017-12 (Water)

Metals and Metallic Compounds

 Method: EPA 7470A
 Sampled: 07/01/2019 12:07

 Instrument: CVAA Analyst: SKM
 Analyzed: 07/10/2019 16:37

Sample Preparation: Preparation Method: TLM EPA 7470A low level Preparation Batch: BHG0168 Sample Size: 20 mL Extract ID: 19G0017-12 A

Prepared: 08-Jul-2019 Final Volume: 20 mL

Detection Reporting Limit Analyte CAS Number Dilution Limit Result Units Notes 7439-97-6 0.000020 Mercury 1 0.000010 0.000031 mg/L

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

DOF-3-190701 19G0017-12RE1 (Water)

Metals and Metallic Compounds

Method: EPA 6020A UCT-KED

Instrument: ICPMS2 Analyst: MCB

Sample Preparation: Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix

Extract ID: 19G0017-12RE1 A 01

Sample Preparation: Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix
Preparation Batch: BHG0166 Sample Size: 25 mL

Prepared: 08-Jul-2019 Final Volume: 25 mL

Detection Reporting Analyte CAS Number Dilution Limit Limit Result Units Notes Copper 7440-50-8 1 0.340 0.500 9.43 ug/L Zinc 7440-66-6 0.820 4.00 7.80 ug/L

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

DOF-4-190701 19G0017-13 (Water)

Metals and Metallic Compounds (dissolved)

Method: EPA 6020ASampled: 07/01/2019 10:40Instrument: ICPMS2Analyst: MCBAnalyzed: 07/09/2019 01:33Sample Preparation:Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrixExtract ID: 19G0017-13 A 01

Sample Preparation: Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix
Preparation Batch: BHG0132 Sample Size: 25 mL

Prepared: 05-Jul-2019 Final Volume: 25 mL

			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Lead, Dissolved	7439-92-1	1	0.0680	0.100	ND	ug/L	U
Manganese, Dissolved	7439-96-5	5	0.425	2.50	702	ug/L	D

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

DOF-4-190701 19G0017-13 (Water)

Metals and Metallic Compounds (dissolved)

Method: EPA 6020A UCT-KEDSampled: 07/01/2019 10:40Instrument: ICPMS2Analyst: MCBAnalyzed: 07/09/2019 01:33Sample Preparation:Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrixExtract ID: 19G0017-13 A 01

Sample Preparation: Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix
Preparation Batch: BHG0132 Sample Size: 25 mL

Prepared: 05-Jul-2019 Final Volume: 25 mL

			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Arsenic, Dissolved	7440-38-2	1	0.0220	0.200	2.00	ug/L	
Cadmium, Dissolved	7440-43-9	1	0.0300	0.100	ND	ug/L	U

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

DOF-4-190701 19G0017-13 (Water)

Metals and Metallic Compounds (dissolved)

 Method: EPA 7470A
 Sampled: 07/01/2019 10:40

 Instrument: CVAA Analyst: SKM
 Analyzed: 07/10/2019 17:11

Sample Preparation: Preparation Method: TLM EPA 7470A low level Preparation Batch: BHG0169 Sample Size: 20 mL Extract ID: 19G0017-13 A

Prepared: 08-Jul-2019 Final Volume: 20 mL

Detection Reporting Limit Analyte CAS Number Dilution Limit Result Units Notes 7439-97-6 0.000020 ND Mercury, Dissolved 1 0.000010 mg/L U

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

DOF-4-190701 19G0017-13RE1 (Water)

Metals and Metallic Compounds (dissolved)

Method: EPA 6020A UCT-KEDSampled: 07/01/2019 10:40Instrument: ICPMS2Analyst: MCBAnalyzed: 07/10/2019 20:18Sample Preparation:Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrixExtract ID: 19G0017-13RE1 A 01

Sample Preparation: Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix
Preparation Batch: BHG0132 Sample Size: 25 mL

Prepared: 05-Jul-2019 Final Volume: 25 mL

	F							
				Detection	Reporting			
Analyte		CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Copper, Dissolved		7440-50-8	1	0.340	0.500	ND	ug/L	U
Zinc, Dissolved		7440-66-6	1	0.820	4.00	2.92	ug/L	J

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

DOF-5-190701 19G0017-14 (Water)

Metals and Metallic Compounds (dissolved)

Manganese, Dissolved

Method: EPA 6020ASampled: 07/01/2019 11:55Instrument: ICPMS2Analyst: MCBAnalyzed: 07/09/2019 01:38Sample Preparation:Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrixExtract ID: 19G0017-14 A 01

Preparation Batch: BHG0132 Sample Size: 25 mL

Prepared: 05-Jul-2019 Final Volume: 25 mL Detection Reporting Analyte CAS Number Dilution Limit Limit Result Units Notes Lead, Dissolved 7439-92-1 1 0.06800.100 0.140 ug/L

7439-96-5

0.0850

0.500

216

ug/L

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

DOF-5-190701 19G0017-14 (Water)

Metals and Metallic Compounds (dissolved)

Method: EPA 6020A UCT-KEDSampled: 07/01/2019 11:55Instrument: ICPMS2Analyst: MCBAnalyzed: 07/09/2019 01:38Sample Preparation:Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrixExtract ID: 19G0017-14 A 01

Sample Preparation: Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix
Preparation Batch: BHG0132 Sample Size: 25 mL

Prepared: 05-Jul-2019 Final Volume: 25 mL

			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Arsenic, Dissolved	7440-38-2	1	0.0220	0.200	0.812	ug/L	
Cadmium, Dissolved	7440-43-9	1	0.0300	0.100	ND	ug/L	U
Copper, Dissolved	7440-50-8	1	0.340	0.500	1.14	ug/L	
Zinc, Dissolved	7440-66-6	1	0.820	4.00	3.20	ug/L	J

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

DOF-5-190701 19G0017-14 (Water)

Metals and Metallic Compounds (dissolved)

 Method: EPA 7470A
 Sampled: 07/01/2019 11:55

 Instrument: CVAA Analyst: SKM
 Analyzed: 07/10/2019 17:14

Sample Preparation: Preparation Method: TLM EPA 7470A low level Preparation Batch: BHG0169 Sample Size: 20 mL Extract ID: 19G0017-14 A

Prepared: 08-Jul-2019 Final Volume: 20 mL

Detection Reporting Limit Analyte CAS Number Dilution Limit Result Units Notes 7439-97-6 0.000020 Mercury, Dissolved 1 0.000010 0.000016 mg/L J

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

MW-AG2-190701 19G0017-15 (Water)

Metals and Metallic Compounds (dissolved)

Method: EPA 6020ASampled: 07/01/2019 13:05Instrument: ICPMS2Analyst: MCBAnalyzed: 07/09/2019 01:42Sample Preparation:Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrixExtract ID: 19G0017-15 A 01

Preparation Batch: BHG0132 Sample Size: 25 mL

Prepared: 05-Jul-2019 Final Volume: 25 mL

	110pairea. 00 tail 2017	I mai volumer i						
				Detection	Reporting			
Analyte		CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Lead, Dissolved		7439-92-1	1	0.0680	0.100	0.223	ug/L	
Manganese, Dissolved		7439-96-5	1	0.0850	0.500	60.6	ug/L	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

MW-AG2-190701 19G0017-15 (Water)

Metals and Metallic Compounds (dissolved)

 Method: EPA 6020A UCT-KED
 Sampled: 07/01/2019 13:05

 Instrument: ICPMS2
 Analyst: MCB

 Analyzed: 07/09/2019 01:42

Sample Preparation: Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix Extract ID: 19G0017-15 A 01

Preparation Batch: BHG0132 Sample Size: 25 mL Prepared: 05-Jul-2019 Final Volume: 25 mL

Detection Reporting Analyte CAS Number Dilution Limit Limit Result Units Notes Arsenic, Dissolved 7440-38-2 1 0.0220 0.200 14.8 ug/L Cadmium, Dissolved 7440-43-9 0.0300 0.100 ND ug/L U Copper, Dissolved 7440-50-8 0.340 0.500 2.11 ug/L Zinc, Dissolved 7440-66-6 0.820 4.00 2.17 ug/L

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

MW-AG2-190701 19G0017-15 (Water)

Metals and Metallic Compounds (dissolved)

 Method: EPA 7470A
 Sampled: 07/01/2019 13:05

 Instrument: CVAA Analyst: SKM
 Analyzed: 07/10/2019 17:24

Sample Preparation: Preparation Method: TLM EPA 7470A low level Extract ID: 19G0017-15 A

Preparation Batch: BHG0169 Sample Size: 20 mL Prepared: 08-Jul-2019 Final Volume: 20 mL

Detection Reporting Limit Analyte CAS Number Dilution Limit Result Units Notes 7439-97-6 0.000020 Mercury, Dissolved 1 0.000010 0.000017 mg/L J

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

MW-AG1-190701 19G0017-16 (Water)

Metals and Metallic Compounds (dissolved)

Method: EPA 6020ASampled: 07/01/2019 14:20Instrument: ICPMS2Analyst: MCBAnalyzed: 07/09/2019 01:47Sample Preparation:Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrixExtract ID: 19G0017-16 A 01

Sample Preparation: Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix
Preparation Batch: BHG0132 Sample Size: 25 mL

Prepared: 05-Jul-2019 Final Volume: 25 mL

	F							
				Detection	Reporting			
Analyte		CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Lead, Dissolved		7439-92-1	1	0.0680	0.100	0.400	ug/L	
Manganese, Dissolved		7439-96-5	2	0.170	1.00	74.6	ug/L	D

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

MW-AG1-190701 19G0017-16 (Water)

Metals and Metallic Compounds (dissolved)

 Method: EPA 6020A UCT-KED
 Sampled: 07/01/2019 14:20

 Instrument: ICPMS2
 Analyst: MCB

 Analyzed: 07/09/2019 01:47

Sample Preparation: Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix Extract ID: 19G0017-16 A 01

Preparation Batch: BHG0132 Sample Size: 25 mL Prepared: 05-Jul-2019 Final Volume: 25 mL

Detection Reporting Analyte CAS Number Dilution Limit Limit Result Units Notes Arsenic, Dissolved 7440-38-2 1 0.0220 0.200 5.74 ug/L Cadmium, Dissolved 7440-43-9 0.0300 0.100 ND ug/L U Copper, Dissolved 7440-50-8 0.340 0.500 7.75 ug/L Zinc, Dissolved 7440-66-6 0.820 4.00 3.05 ug/L

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

MW-AG1-190701 19G0017-16 (Water)

Metals and Metallic Compounds (dissolved)

 Method: EPA 7470A
 Sampled: 07/01/2019 14:20

 Instrument: CVAA Analyst: SKM
 Analyzed: 07/10/2019 17:27

Sample Preparation: Preparation Method: TLM EPA 7470A low level Extract ID: 19G0017-16 A

Preparation Batch: BHG0169 Sample Size: 20 mL Prepared: 08-Jul-2019 Final Volume: 20 mL

Detection Reporting Limit Analyte CAS Number Dilution Limit Result Units Notes 7439-97-6 0.000020 Mercury, Dissolved 1 0.000010 0.000018 mg/L J

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

MW-101-190701 19G0017-17 (Water)

Metals and Metallic Compounds (dissolved)

 Method: EPA 6020A
 Sampled: 07/01/2019 15:35

 Instrument: ICPMS2
 Analyst: MCB

 Analyzed: 07/09/2019 01:51

Sample Preparation: Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix Extract ID: 19G0017-17 A 01

Preparation Batch: BHG0132 Sample Size: 25 mL Prepared: 05-Jul-2019 Final Volume: 25 mL

			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Lead, Dissolved	7439-92-1	1	0.0680	0.100	ND	ug/L	U
Manganese, Dissolved	7439-96-5	20	1.70	10.0	4060	ug/L	D

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

MW-101-190701 19G0017-17 (Water)

Metals and Metallic Compounds (dissolved)

Method: EPA 6020A UCT-KEDSampled: 07/01/2019 15:35Instrument: ICPMS2Analyst: MCBAnalyzed: 07/09/2019 01:51Sample Preparation:Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrixExtract ID: 19G0017-17 A 01

Sample Preparation: Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix
Preparation Batch: BHG0132 Sample Size: 25 mL

Prepared: 05-Jul-2019 Final Volume: 25 mL

			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Arsenic, Dissolved	7440-38-2	1	0.0220	0.200	50.1	ug/L	
Cadmium, Dissolved	7440-43-9	1	0.0300	0.100	ND	ug/L	U

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

MW-101-190701 19G0017-17 (Water)

Metals and Metallic Compounds (dissolved)

 Method: EPA 7470A
 Sampled: 07/01/2019 15:35

 Instrument: CVAA Analyst: SKM
 Analyzed: 07/10/2019 17:02

Sample Preparation: Preparation Method: TLM EPA 7470A low level Preparation Batch: BHG0169 Sample Size: 20 mL Extract ID: 19G0017-17 A

Prepared: 08-Jul-2019 Final Volume: 20 mL

Detection Reporting Limit Analyte CAS Number Dilution Limit Result Units Notes 7439-97-6 0.000020 ND Mercury, Dissolved 1 0.000010 mg/L U

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

MW-101-190701 19G0017-17RE1 (Water)

Metals and Metallic Compounds (dissolved)

 Method: EPA 6020A UCT-KED
 Sampled: 07/01/2019 15:35

 Instrument: ICPMS2
 Analyst: MCB

 Analyzed: 07/10/2019 20:22

Sample Preparation: Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix Extract ID: 19G0017-17RE1 A 01

Preparation Batch: BHG0132 Sample Size: 25 mL

Prepared: 05-Jul-2019 Final Volume: 25 mL

			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Copper, Dissolved	7440-50-8	1	0.340	0.500	ND	ug/L	U
Zinc, Dissolved	7440-66-6	1	0.820	4.00	2.59	ug/L	J

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

FMW-03-190701 19G0017-18 (Water)

Metals and Metallic Compounds (dissolved)

Method: EPA 6020ASampled: 07/01/2019 16:40Instrument: ICPMS2Analyst: MCBAnalyzed: 07/09/2019 01:56Sample Preparation:Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrixExtract ID: 19G0017-18 A 01

Preparation Batch: BHG0132 Sample Size: 25 mL Prepared: 05-Jul-2019 Final Volume: 25 mL

Detection Reporting Analyte CAS Number Dilution Limit Limit Result Units Notes Lead, Dissolved 7439-92-1 1 0.06800.100 ND ug/L U Manganese, Dissolved 7439-96-5 0.425 ug/L D

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

FMW-03-190701 19G0017-18 (Water)

Metals and Metallic Compounds (dissolved)

Method: EPA 6020A UCT-KEDSampled: 07/01/2019 16:40Instrument: ICPMS2Analyst: MCBAnalyzed: 07/09/2019 01:56Sample Preparation:Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrixExtract ID: 19G0017-18 A 01

Preparation Batch: BHG0132 Sample Size: 25 mL

Prepared: 05-Jul-2019 Final Volume: 25 mL

			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Arsenic, Dissolved	7440-38-2	1	0.0220	0.200	0.435	ug/L	
Cadmium, Dissolved	7440-43-9	1	0.0300	0.100	ND	ug/L	U

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

FMW-03-190701 19G0017-18 (Water)

Metals and Metallic Compounds (dissolved)

 Method: EPA 7470A
 Sampled: 07/01/2019 16:40

 Instrument: CVAA Analyst: SKM
 Analyzed: 07/10/2019 17:30

Sample Preparation: Preparation Method: TLM EPA 7470A low level Extract ID: 19G0017-18 A

Preparation Batch: BHG0169 Sample Size: 20 mL Prepared: 08-Jul-2019 Final Volume: 20 mL

Detection Reporting Limit Analyte CAS Number Dilution Limit Result Units Notes 7439-97-6 0.000020 Mercury, Dissolved 1 0.000010 0.000016 mg/L J

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

FMW-03-190701 19G0017-18RE1 (Water)

Metals and Metallic Compounds (dissolved)

Method: EPA 6020A UCT-KEDSampled: 07/01/2019 16:40Instrument: ICPMS2Analyst: MCBAnalyzed: 07/10/2019 20:27Sample Preparation:Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrixExtract ID: 19G0017-18RE1 A 01

Sample Preparation: Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix
Preparation Batch: BHG0132 Sample Size: 25 mL

Prepared: 05-Jul-2019 Final Volume: 25 mL

			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Copper, Dissolved	7440-50-8	1	0.340	0.500	ND	ug/L	U
Zinc, Dissolved	7440-66-6	1	0.820	4.00	3.10	ug/L	J

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

DOF-1-190701 19G0017-19 (Water)

Metals and Metallic Compounds (dissolved)

Method: EPA 6020ASampled: 07/01/2019 16:36Instrument: ICPMS2Analyst: MCBAnalyzed: 07/09/2019 02:00Sample Preparation:Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrixExtract ID: 19G0017-19 A 01

Preparation Batch: BHG0132 Sample Size: 25 mL Prepared: 05-Jul-2019 Final Volume: 25 mL

Detection Reporting Analyte CAS Number Dilution Limit Limit Result Units Notes Lead, Dissolved 7439-92-1 1 0.06800.100 ND ug/L U Manganese, Dissolved 7439-96-5 0.425 928 ug/L D

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

DOF-1-190701 19G0017-19 (Water)

Metals and Metallic Compounds (dissolved)

 Method: EPA 6020A UCT-KED
 Sampled: 07/01/2019 16:36

 Instrument: ICPMS2
 Analyst: MCB

 Analyzed: 07/09/2019 02:00

Sample Preparation: Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix Extract ID: 19G0017-19 A 01

Preparation Batch: BHG0132 Sample Size: 25 mL

Prepared: 05-Jul-2019 Final Volume: 25 mL

			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Arsenic, Dissolved	7440-38-2	1	0.0220	0.200	1.32	ug/L	
Cadmium, Dissolved	7440-43-9	1	0.0300	0.100	0.0840	ug/L	J
Copper, Dissolved	7440-50-8	1	0.340	0.500	ND	ug/L	U
Zinc, Dissolved	7440-66-6	1	0.820	4.00	5.03	ug/L	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

DOF-1-190701 19G0017-19 (Water)

Metals and Metallic Compounds (dissolved)

 Method: EPA 7470A
 Sampled: 07/01/2019 16:36

 Instrument: CVAA Analyst: SKM
 Analyzed: 07/10/2019 17:33

Sample Preparation: Preparation Method: TLM EPA 7470A low level Preparation Batch: BHG0169 Sample Size: 20 mL Extract ID: 19G0017-19 A

Prepared: 08-Jul-2019 Final Volume: 20 mL

Detection Reporting Limit Analyte CAS Number Dilution Limit Result Units Notes 7439-97-6 0.000020 Mercury, Dissolved 1 0.000010 0.000016 mg/L J

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

DOF-2-190701 19G0017-20 (Water)

Metals and Metallic Compounds (dissolved)

Method: EPA 6020ASampled: 07/01/2019 11:03Instrument: ICPMS2Analyst: MCBAnalyzed: 07/09/2019 02:05Sample Preparation:Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrixExtract ID: 19G0017-20 A 01

Preparation Batch: BHG0132 Sample Size: 25 mL

Prepared: 05-Jul-2019 Final Volume: 25 mL

	Trepared: 05 but 2017	I mai votame.	23 IIID					
				Detection	Reporting			
Analyte		CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Lead, Dissolved		7439-92-1	1	0.0680	0.100	0.479	ug/L	
Manganese, Dissolved		7439-96-5	1	0.0850	0.500	19.1	ug/L	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

DOF-2-190701 19G0017-20 (Water)

Metals and Metallic Compounds (dissolved)

Method: EPA 6020A UCT-KEDSampled: 07/01/2019 11:03Instrument: ICPMS2Analyst: MCBAnalyzed: 07/09/2019 02:05Sample Preparation:Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrixExtract ID: 19G0017-20 A 01

Sample Preparation: Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix
Preparation Batch: BHG0132 Sample Size: 25 mL

Prepared: 05-Jul-2019 Final Volume: 25 mL

			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Arsenic, Dissolved	7440-38-2	1	0.0220	0.200	9.87	ug/L	
Cadmium, Dissolved	7440-43-9	1	0.0300	0.100	ND	ug/L	U
Copper, Dissolved	7440-50-8	1	0.340	0.500	2.38	ug/L	
Zinc, Dissolved	7440-66-6	1	0.820	4.00	5.35	ug/L	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

DOF-2-190701 19G0017-20 (Water)

Metals and Metallic Compounds (dissolved)

 Method: EPA 7470A
 Sampled: 07/01/2019 11:03

 Instrument: CVAA Analyst: SKM
 Analyzed: 07/10/2019 17:36

Sample Preparation: Preparation Method: TLM EPA 7470A low level Extract ID: 19G0017-20 A

Preparation Batch: BHG0169 Sample Size: 20 mL Prepared: 08-Jul-2019 Final Volume: 20 mL

Detection Reporting Limit Analyte CAS Number Dilution Limit Result Units Notes 7439-97-6 0.000020 Mercury, Dissolved 1 0.000010 0.000022 mg/L

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

MW-4-190701 19G0017-21 (Water)

Metals and Metallic Compounds (dissolved)

Method: EPA 6020ASampled: 07/01/2019 15:20Instrument: ICPMS2Analyst: MCBAnalyzed: 07/09/2019 02:09Sample Preparation:Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrixExtract ID: 19G0017-21 A 01

Sample Preparation: Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix
Preparation Batch: BHG0132 Sample Size: 25 mL

Prepared: 05-Jul-2019 Final Volume: 25 mL

			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Lead, Dissolved	7439-92-1	2	0.136	0.200	ND	ug/L	U
Manganese, Dissolved	7439-96-5	5	0.425	2.50	937	ug/L	D

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

MW-4-190701 19G0017-21 (Water)

Metals and Metallic Compounds (dissolved)

Method: EPA 6020A UCT-KEDSampled: 07/01/2019 15:20Instrument: ICPMS2Analyst: MCBAnalyzed: 07/09/2019 02:09Sample Preparation:Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrixExtract ID: 19G0017-21 A 01

Sample Preparation: Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix
Preparation Batch: BHG0132 Sample Size: 25 mL

Prepared: 05-Jul-2019 Final Volume: 25 mL

			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Arsenic, Dissolved	7440-38-2	2	0.0440	0.400	11.6	ug/L	D
Cadmium, Dissolved	7440-43-9	2	0.0600	0.200	ND	ug/L	U
Copper, Dissolved	7440-50-8	2	0.680	1.00	1.07	ug/L	D
Zinc, Dissolved	7440-66-6	2	1.64	8.00	3.11	ug/L	J, D

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

MW-4-190701 19G0017-21 (Water)

Metals and Metallic Compounds (dissolved)

 Method: EPA 7470A
 Sampled: 07/01/2019 15:20

 Instrument: CVAA Analyst: SKM
 Analyzed: 07/10/2019 17:39

Sample Preparation: Preparation Method: TLM EPA 7470A low level Extract ID: 19G0017-21 A

Preparation Batch: BHG0169 Sample Size: 20 mL Prepared: 08-Jul-2019 Final Volume: 20 mL

Detection Reporting Limit Analyte CAS Number Dilution Limit Result Units Notes 7439-97-6 0.000020 Mercury, Dissolved 1 0.000010 0.000014 mg/L J

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

MW-203-190701 19G0017-22 (Water)

Metals and Metallic Compounds (dissolved)

Method: EPA 6020ASampled: 07/01/2019 14:21Instrument: ICPMS2Analyst: MCBAnalyzed: 07/09/2019 02:43Sample Preparation:Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrixExtract ID: 19G0017-22 A 01

Preparation Batch: BHG0132 Sample Size: 25 mL

Prepared: 05-Jul-2019 Final Volume: 25 mL

			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Lead, Dissolved	7439-92-1	1	0.0680	0.100	ND	ug/L	U
Manganese, Dissolved	7439-96-5	5	0.425	2.50	481	ug/L	D

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

MW-203-190701 19G0017-22 (Water)

Metals and Metallic Compounds (dissolved)

Method: EPA 6020A UCT-KEDSampled: 07/01/2019 14:21Instrument: ICPMS2Analyst: MCBAnalyzed: 07/09/2019 02:43Sample Preparation:Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrixExtract ID: 19G0017-22 A 01

Sample Preparation: Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix
Preparation Batch: BHG0132 Sample Size: 25 mL

Prepared: 05-Jul-2019 Final Volume: 25 mL

Analyte	CAS Number	Dilution	Detection Limit	Reporting Limit	Result	Units	Notes
Arsenic, Dissolved	7440-38-2	1	0.0220	0.200	0.476	ug/L	
Copper, Dissolved	7440-50-8	1	0.340	0.500	2.03	ug/L	
Zinc, Dissolved	7440-66-6	1	0.820	4.00	4.43	ug/L	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

MW-203-190701 19G0017-22 (Water)

Metals and Metallic Compounds (dissolved)

 Method: EPA 7470A
 Sampled: 07/01/2019 14:21

 Instrument: CVAA Analyst: SKM
 Analyzed: 07/10/2019 17:42

Sample Preparation: Preparation Method: TLM EPA 7470A low level Extract ID: 19G0017-22 A

Preparation Batch: BHG0169 Sample Size: 20 mL Prepared: 08-Jul-2019 Final Volume: 20 mL

Detection Reporting Limit Analyte CAS Number Dilution Limit Result Units Notes 7439-97-6 0.000020 Mercury, Dissolved 1 0.000010 0.000017 mg/L J

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

MW-203-190701 19G0017-22RE1 (Water)

Metals and Metallic Compounds (dissolved)

Method: EPA 6020A UCT-KEDSampled: 07/01/2019 14:21Instrument: ICPMS2Analyst: MCBAnalyzed: 07/10/2019 21:14Sample Preparation:Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrixExtract ID: 19G0017-22RE1 A 01

Sample Preparation: Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix
Preparation Batch: BHG0132 Sample Size: 25 mL

Prepared: 05-Jul-2019 Final Volume: 25 mL

Detection Reporting Analyte CAS Number Dilution Limit Limit Result Units Notes Cadmium, Dissolved ND 7440-43-9 1 0.0300 0.100 ug/L U

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

MW-207-190701 19G0017-23 (Water)

Metals and Metallic Compounds (dissolved)

Method: EPA 6020ASampled: 07/01/2019 13:23Instrument: ICPMS2Analyst: MCBAnalyzed: 07/09/2019 02:47Sample Preparation:Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrixExtract ID: 19G0017-23 A 01

Preparation Batch: BHG0132 Sample Size: 25 mL

Prepared: 05-Jul-2019 Final Volume: 25 mL

			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Lead, Dissolved	7439-92-1	1	0.0680	0.100	ND	ug/L	U
Manganese, Dissolved	7439-96-5	1	0.0850	0.500	137	ug/L	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

MW-207-190701 19G0017-23 (Water)

Metals and Metallic Compounds (dissolved)

 Method: EPA 6020A UCT-KED
 Sampled: 07/01/2019 13:23

 Instrument: ICPMS2
 Analyst: MCB

 Analyzed: 07/09/2019 02:47

Sample Preparation: Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix Extract ID: 19G0017-23 A 01

Preparation Batch: BHG0132 Sample Size: 25 mL Prepared: 05-Jul-2019 Final Volume: 25 mL

			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Arsenic, Dissolved	7440-38-2	1	0.0220	0.200	2.96	ug/L	
Cadmium, Dissolved	7440-43-9	1	0.0300	0.100	0.0610	ug/L	J
Copper, Dissolved	7440-50-8	1	0.340	0.500	0.905	ug/L	
Zinc, Dissolved	7440-66-6	1	0.820	4.00	4.86	ug/L	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

MW-207-190701 19G0017-23 (Water)

Metals and Metallic Compounds (dissolved)

 Method: EPA 7470A
 Sampled: 07/01/2019 13:23

 Instrument: CVAA Analyst: SKM
 Analyzed: 07/10/2019 17:45

Sample Preparation: Preparation Method: TLM EPA 7470A low level Extract ID: 19G0017-23 A

Preparation Batch: BHG0169 Sample Size: 20 mL Prepared: 08-Jul-2019 Final Volume: 20 mL

Detection Reporting Limit Analyte CAS Number Dilution Limit Result Units Notes 7439-97-6 0.000020 Mercury, Dissolved 1 0.000010 0.000018 mg/L J

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

DOF-3-190701 19G0017-24 (Water)

Metals and Metallic Compounds (dissolved)

Manganese, Dissolved

Method: EPA 6020ASampled: 07/01/2019 12:07Instrument: ICPMS2Analyst: MCBAnalyzed: 07/09/2019 02:52Sample Preparation:Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrixExtract ID: 19G0017-24 A 01

Preparation Batch: BHG0132 Sample Size: 25 mL

Prepared: 05-Jul-2019 Final Volume: 25 mL Detection Reporting Analyte CAS Number Dilution Limit Limit Result Units Notes ND Lead, Dissolved 7439-92-1 1 0.06800.100 ug/L U

7439-96-5

0.425

953

ug/L

D

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

DOF-3-190701 19G0017-24 (Water)

Metals and Metallic Compounds (dissolved)

Method: EPA 6020A UCT-KEDSampled: 07/01/2019 12:07Instrument: ICPMS2Analyst: MCBAnalyzed: 07/09/2019 02:52Sample Preparation:Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrixExtract ID: 19G0017-24 A 01

Sample Preparation: Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix
Preparation Batch: BHG0132 Sample Size: 25 mL

Prepared: 05-Jul-2019 Final Volume: 25 mL

Detection Reporting Analyte CAS Number Dilution Limit Limit Result Units Notes Arsenic, Dissolved 7440-38-2 1 0.0220 0.200 0.776 ug/L Copper, Dissolved 7440-50-8 1 0.340 0.500 8.87 ug/L Zinc, Dissolved 7440-66-6 0.820 4.00 7.52 ug/L

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

DOF-3-190701 19G0017-24 (Water)

Metals and Metallic Compounds (dissolved)

 Method: EPA 7470A
 Sampled: 07/01/2019 12:07

 Instrument: CVAA Analyst: SKM
 Analyzed: 07/10/2019 17:48

Sample Preparation: Preparation Method: TLM EPA 7470A low level Preparation Batch: BHG0169 Sample Size: 20 mL Extract ID: 19G0017-24 A

Prepared: 08-Jul-2019 Final Volume: 20 mL

Detection Reporting Limit Analyte CAS Number Dilution Limit Result Units Notes 7439-97-6 0.000020 Mercury, Dissolved 1 0.000010 0.000026 mg/L

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

DOF-3-190701 19G0017-24RE1 (Water)

Metals and Metallic Compounds (dissolved)

Method: EPA 6020A UCT-KEDSampled: 07/01/2019 12:07Instrument: ICPMS2Analyst: MCBAnalyzed: 07/10/2019 21:18Sample Preparation:Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrixExtract ID: 19G0017-24RE1 A 01

Preparation Batch: BHG0132 Sample Size: 25 mL Prepared: 05-Jul-2019 Final Volume: 25 mL

Detection Reporting Analyte CAS Number Dilution Limit Limit Result Units Notes Cadmium, Dissolved 7440-43-9 1 0.0300 0.100 0.0620 ug/L J

Analytical Resources, Inc.

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

Volatile Organic Compounds - Quality Control

Batch BHG0047 - EPA 5030 (Purge and Trap)

Instrument: NT2 Analyst: LH

OC Samula/Amakuta	D anult		Reporting	I Imita	Spike	Source	0/DEC	%REC	DDD	RPD	Not
QC Sample/Analyte	Result		Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Blank (BHG0047-BLK1)				Prepa	red: 03-Jul-2	2019 Ana	alyzed: 03-Ju	ıl-2019 10:2	20		
Gasoline Range Organics (Tol-Nap)	ND		100	ug/L							U
Surrogate: Toluene-d8	4.70			ug/L	5.00		94.0	80-120			
Surrogate: 4-Bromofluorobenzene	4.55			ug/L	5.00		91.0	80-120			
Blank (BHG0047-BLK2)				Prepa	ared: 03-Jul-2	2019 Ana	alyzed: 03-Ju	ıl-2019 10:2	20		
Benzene	ND	0.03	0.20	ug/L							U
Toluene	ND	0.04	0.20	ug/L							U
Ethylbenzene	ND	0.04	0.20	ug/L							U
m,p-Xylene	ND	0.05	0.40	ug/L							U
o-Xylene	ND	0.03	0.20	ug/L							U
Surrogate: Toluene-d8	4.70			ug/L	5.00		94.0	80-120			
Surrogate: 4-Bromofluorobenzene	4.55			ug/L	5.00		91.0	80-120			
LCS (BHG0047-BS1)				Prepa	ared: 03-Jul-2	2019 Ana	alyzed: 03-Ju	ıl-2019 07:5	58		
Gasoline Range Organics (Tol-Nap)	1040		100	ug/L	1000		104	72-128			
Surrogate: Toluene-d8	5.03			ug/L	5.00		101	80-120			
Surrogate: 4-Bromofluorobenzene	5.03			ug/L	5.00		101	80-120			
LCS (BHG0047-BS2)				Prepa	ared: 03-Jul-2	2019 Ana	alyzed: 03-Ju	ıl-2019 08:1	8		
Benzene	10.5	0.03	0.20	ug/L	10.0		105	80-120			
Toluene	10.2	0.04	0.20	ug/L	10.0		102	80-120			
Ethylbenzene	10.7	0.04	0.20	ug/L	10.0		107	80-120			
m,p-Xylene	21.6	0.05	0.40	ug/L	20.0		108	80-121			
o-Xylene	10.9	0.03	0.20	ug/L	10.0		109	80-121			
Surrogate: Toluene-d8	4.93			ug/L	5.00		98.6	80-120			
Surrogate: 4-Bromofluorobenzene	5.08			ug/L	5.00		102	80-120			
LCS Dup (BHG0047-BSD1)				Prepa	ared: 03-Jul-2	2019 Ana	ılyzed: 03-Jı	ıl-2019 08:3	8		
Gasoline Range Organics (Tol-Nap)	992		100	ug/L	1000		99.2	72-128	5.09	30	
Surrogate: Toluene-d8	5.00			ug/L	5.00		100	80-120			
Surrogate: 4-Bromofluorobenzene	5.09			ug/L	5.00		102	80-120			
LCS Dup (BHG0047-BSD2)				Prepa	ared: 03-Jul-2	2019 Ana	alyzed: 03-Ju	ıl-2019 08:5	59		
Benzene	10.6	0.03	0.20	ug/L	10.0		106	80-120	0.92	30	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

Volatile Organic Compounds - Quality Control

Batch BHG0047 - EPA 5030 (Purge and Trap)

Instrument: NT2 Analyst: LH

QC Sample/Analyte	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
LCS Dup (BHG0047-BSD2)				Prep	ared: 03-Jul-	2019 Ana	lyzed: 03-J	ul-2019 08:5	59		
Toluene	10.3	0.04	0.20	ug/L	10.0		103	80-120	0.77	30	
Ethylbenzene	10.6	0.04	0.20	ug/L	10.0		106	80-120	0.84	30	
m,p-Xylene	21.5	0.05	0.40	ug/L	20.0		108	80-121	0.11	30	
o-Xylene	11.0	0.03	0.20	ug/L	10.0		110	80-121	0.78	30	
Surrogate: Toluene-d8	4.97			ug/L	5.00		99.4	80-120			
Surrogate: 4-Bromofluorobenzene	5.01			ug/L	5.00		100	80-120			

Analytical Resources, Inc.

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

Volatile Organic Compounds - Quality Control

Batch BHG0064 - EPA 5030 (Purge and Trap)

Instrument: NT3 Analyst: PKC

QC Sample/Analyte	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Blank (BHG0064-BLK1)				Prepa	red: 03-Jul-	2019 Analy	vzed: 03-Ju	1-2019 12:5	8		
Chloromethane	ND	0.09	0.50	ug/L			<u> </u>				U
Vinyl Chloride	ND	0.06	0.20	ug/L							U
Bromomethane	ND	0.25	1.00	ug/L							U
Chloroethane	ND	0.09	0.20	ug/L							U
Trichlorofluoromethane	ND	0.04	0.20	ug/L							U
Acrolein	ND	2.48	5.00	ug/L							U
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	0.04	0.20	ug/L							U
Acetone	ND	2.06	5.00	ug/L							U
1,1-Dichloroethene	ND	0.05	0.20	ug/L							U
Bromoethane	ND	0.04	0.20	ug/L							U
Iodomethane	ND	0.23	1.00	ug/L							U
Methylene Chloride	ND	0.49	1.00	ug/L							U
Acrylonitrile	ND	0.60	1.00	ug/L							U
Carbon Disulfide	ND	0.04	0.20	ug/L							U
trans-1,2-Dichloroethene	ND	0.05	0.20	ug/L							U
Vinyl Acetate	ND	0.07	0.20	ug/L							U
1,1-Dichloroethane	ND	0.05	0.20	ug/L							U
2-Butanone	ND	0.81	5.00	ug/L							U
2,2-Dichloropropane	ND	0.05	0.20	ug/L							U
cis-1,2-Dichloroethene	ND	0.04	0.20	ug/L							U
Chloroform	ND	0.03	0.20	ug/L							U
Bromochloromethane	ND	0.06	0.20	ug/L							U
1,1,1-Trichloroethane	ND	0.04	0.20	ug/L							U
1,1-Dichloropropene	ND	0.03	0.20	ug/L							U
Carbon tetrachloride	ND	0.04	0.20	ug/L							U
1,2-Dichloroethane	ND	0.07	0.20	ug/L							U
Benzene	ND	0.03	0.20	ug/L							U
Trichloroethene	ND	0.05	0.20	ug/L							U
1,2-Dichloropropane	ND	0.04	0.20	ug/L							U
Bromodichloromethane	ND	0.05	0.20	ug/L							U
Dibromomethane	ND	0.15	0.20	ug/L							U
2-Chloroethyl vinyl ether	ND	0.25	1.00	ug/L							U
4-Methyl-2-Pentanone	ND	0.97	5.00	ug/L							U
cis-1,3-Dichloropropene	ND	0.06	0.20	ug/L							U
Toluene	ND	0.04	0.20	ug/L							U

Analytical Resources, Inc.

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

Volatile Organic Compounds - Quality Control

Batch BHG0064 - EPA 5030 (Purge and Trap)

Instrument: NT3 Analyst: PKC

QC Sample/Analyte	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Blank (BHG0064-BLK1)					red: 03-Jul-2						
trans-1,3-Dichloropropene	ND	0.08	0.20	ug/L	(J-Jul-	ZVI Alidi	<u>, 200. 05-31</u>	201/ 12			U
2-Hexanone	ND	0.90	5.00	ug/L							U
1,1,2-Trichloroethane	ND	0.13	0.20	ug/L							U
1,3-Dichloropropane	ND	0.06	0.20	ug/L							U
Tetrachloroethene	ND	0.05	0.20	ug/L							U
Dibromochloromethane	ND	0.05	0.20	ug/L							U
1,2-Dibromoethane	ND	0.07	0.20	ug/L							U
Chlorobenzene	ND	0.02	0.20	ug/L							U
Ethylbenzene	ND	0.04	0.20	ug/L							U
1,1,1,2-Tetrachloroethane	ND	0.04	0.20	ug/L							U
m,p-Xylene	ND	0.05	0.40	ug/L							U
o-Xylene	ND	0.03	0.20	ug/L							U
Xylenes, total	ND	0.09	0.60	ug/L							U
Styrene	ND	0.05	0.20	ug/L							U
Bromoform	ND	0.06	0.20	ug/L							U
1,1,2,2-Tetrachloroethane	ND	0.06	0.20	ug/L							U
1,2,3-Trichloropropane	ND	0.13	0.50	ug/L							U
trans-1,4-Dichloro 2-Butene	ND	0.32	1.00	ug/L							U
n-Propylbenzene	ND	0.02	0.20	ug/L							U
Bromobenzene	ND	0.06	0.20	ug/L							U
Isopropyl Benzene	ND	0.02	0.20	ug/L							U
2-Chlorotoluene	ND	0.02	0.20	ug/L							U
4-Chlorotoluene	ND	0.02	0.20	ug/L							U
t-Butylbenzene	ND	0.03	0.20	ug/L							U
1,3,5-Trimethylbenzene	ND	0.02	0.20	ug/L							U
1,2,4-Trimethylbenzene	0.03	0.02	0.20	ug/L							J
s-Butylbenzene	ND	0.02	0.20	ug/L							U
4-Isopropyl Toluene	ND	0.03	0.20	ug/L							U
1,3-Dichlorobenzene	ND	0.04	0.20	ug/L							U
1,4-Dichlorobenzene	ND	0.04	0.20	ug/L							U
n-Butylbenzene	ND	0.02	0.20	ug/L							U
1,2-Dichlorobenzene	ND	0.04	0.20	ug/L							U
1,2-Dibromo-3-chloropropane	ND	0.37	0.50	ug/L							U
1,2,4-Trichlorobenzene	ND	0.11	0.50	ug/L							U
Hexachloro-1,3-Butadiene	ND	0.07	0.50	ug/L							U

Analytical Resources, Inc.

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

Volatile Organic Compounds - Quality Control

Batch BHG0064 - EPA 5030 (Purge and Trap)

Instrument: NT3 Analyst: PKC

QC Sample/Analyte	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result		%REC Limits	RPD	RPD Limit	Notes
	resuit	Ziiiit	Ziiiit								110000
Blank (BHG0064-BLK1)	ND	0.12	0.50		ared: 03-Jul-	-2019 A	nalyzed: 03-J	ui-2019 12:5	08		U
Naphthalene	ND ND	0.12	0.50 0.50	ug/L							U
1,2,3-Trichlorobenzene Dichlorodifluoromethane	ND ND	0.11 0.05	0.50	ug/L							U
	ND ND	0.03		ug/L							U
Methyl tert-butyl Ether 2-Pentanone	ND ND	5.00	0.50 5.00	ug/L ug/L							U
		3.00	3.00	-							
Surrogate: 1,2-Dichloroethane-d4	5.09			ug/L	5.00		102	80-129			
Surrogate: Toluene-d8	4.88			ug/L	5.00		97.5	80-120			
Surrogate: 4-Bromofluorobenzene	4.72			ug/L	5.00		94.3	80-120			
Surrogate: 1,2-Dichlorobenzene-d4	4.95			ug/L	5.00		99.0	80-120			
Blank (BHG0064-BLK2)				Prep	ared: 03-Jul-	-2019 A	nalyzed: 03-J	ul-2019 12:5	58		
Gasoline Range Organics (Tol-Nap)	ND		100	ug/L							U
Surrogate: Toluene-d8	4.88			ug/L	5.00		97.5	80-120			
Surrogate: 4-Bromofluorobenzene	4.72			ug/L	5.00		94.3	80-120			
LCS (BHG0064-BS1)				Prep	ared: 03-Jul-	-2019 A	nalyzed: 03-J	ul-2019 10:4	14		
Chloromethane	9.35	0.09	0.50	ug/L	10.0		93.5	60-138			
Vinyl Chloride	9.72	0.06	0.20	ug/L	10.0		97.2	66-133			
Bromomethane	9.41	0.25	1.00	ug/L	10.0		94.1	72-131			
Chloroethane	9.45	0.09	0.20	ug/L	10.0		94.5	60-155			
Trichlorofluoromethane	9.59	0.04	0.20	ug/L	10.0		95.9	80-129			
Acrolein	41.9	2.48	5.00	ug/L	50.0		83.8	52-144			
1,1,2-Trichloro-1,2,2-Trifluoroethane	9.92	0.04	0.20	ug/L	10.0		99.2	76-129			
Acetone	48.0	2.06	5.00	ug/L	50.0		96.1	58-142			
1,1-Dichloroethene	9.29	0.05	0.20	ug/L	10.0		92.9	69-135			
Bromoethane	10.4	0.04	0.20	ug/L	10.0		104	78-128			
Iodomethane	9.36	0.23	1.00	ug/L	10.0		93.6	56-147			
Methylene Chloride	8.53	0.49	1.00	ug/L	10.0		85.3	65-135			
Acrylonitrile	9.51	0.60	1.00	ug/L	10.0		95.1	64-134			
Carbon Disulfide	9.60	0.04	0.20	ug/L	10.0		96.0	78-125			
trans-1,2-Dichloroethene	9.82	0.05	0.20	ug/L	10.0		98.2	78-128			
Vinyl Acetate	8.99	0.07	0.20	ug/L	10.0		89.9	55-138			
1,1-Dichloroethane	9.70	0.05	0.20	ug/L	10.0		97.0	76-124			
2-Butanone	44.7	0.81	5.00	ug/L	50.0		89.4	61-140			
2,2-Dichloropropane	10.2	0.05	0.20	ug/L	10.0		102	78-125			

Analytical Resources, Inc.

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

Volatile Organic Compounds - Quality Control

Batch BHG0064 - EPA 5030 (Purge and Trap)

Instrument: NT3 Analyst: PKC

QC Sample/Analyte	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
	Kesult	Lillit	Dillit								110105
LCS (BHG0064-BS1)					ared: 03-Jul-2	2019 Anal	•		4		
cis-1,2-Dichloroethene	9.43	0.04	0.20	ug/L	10.0		94.3	80-121			
Chloroform	9.65	0.03	0.20	ug/L	10.0		96.5	80-122			
Bromochloromethane	9.53	0.06	0.20	ug/L	10.0		95.3	80-121			
1,1,1-Trichloroethane	9.79	0.04	0.20	ug/L	10.0		97.9	79-123			
1,1-Dichloropropene	9.51	0.03	0.20	ug/L	10.0		95.1	80-120			
Carbon tetrachloride	9.81	0.04	0.20	ug/L	10.0		98.1	53-137			
1,2-Dichloroethane	8.88	0.07	0.20	ug/L	10.0		88.8	75-123			
Benzene	9.52	0.03	0.20	ug/L	10.0		95.2	80-120			
Trichloroethene	9.73	0.05	0.20	ug/L	10.0		97.3	80-120			
1,2-Dichloropropane	9.23	0.04	0.20	ug/L	10.0		92.3	80-120			
Bromodichloromethane	9.26	0.05	0.20	ug/L	10.0		92.6	80-121			
Dibromomethane	8.18	0.15	0.20	ug/L	10.0		81.8	80-120			
2-Chloroethyl vinyl ether	8.97	0.25	1.00	ug/L	10.0		89.7	74-127			
4-Methyl-2-Pentanone	44.3	0.97	5.00	ug/L	50.0		88.6	67-133			
cis-1,3-Dichloropropene	9.68	0.06	0.20	ug/L	10.0		96.8	80-124			
Toluene	9.55	0.04	0.20	ug/L	10.0		95.5	80-120			
trans-1,3-Dichloropropene	9.65	0.08	0.20	ug/L	10.0		96.5	71-127			
2-Hexanone	43.4	0.90	5.00	ug/L	50.0		86.9	69-133			
1,1,2-Trichloroethane	9.01	0.13	0.20	ug/L	10.0		90.1	80-121			
1,3-Dichloropropane	9.14	0.06	0.20	ug/L	10.0		91.4	80-120			
Tetrachloroethene	9.39	0.05	0.20	ug/L	10.0		93.9	80-120			
Dibromochloromethane	9.32	0.05	0.20	ug/L	10.0		93.2	65-135			
1,2-Dibromoethane	9.34	0.07	0.20	ug/L	10.0		93.4	80-121			
Chlorobenzene	9.45	0.02	0.20	ug/L	10.0		94.5	80-120			
Ethylbenzene	9.36	0.04	0.20	ug/L	10.0		93.6	80-120			
1,1,1,2-Tetrachloroethane	9.06	0.04	0.20	ug/L	10.0		90.6	80-120			
m,p-Xylene	18.8	0.05	0.40	ug/L	20.0		93.9	80-121			
o-Xylene	9.58	0.03	0.20	ug/L	10.0		95.8	80-121			
Xylenes, total	28.4	0.09	0.60	ug/L	30.0		94.5	76-127			
Styrene	9.30	0.05	0.20	ug/L	10.0		93.0	80-124			
Bromoform	9.02	0.06	0.20	ug/L	10.0		90.2	51-134			
1,1,2,2-Tetrachloroethane	8.65	0.06	0.20	ug/L	10.0		86.5	77-123			
1,2,3-Trichloropropane	8.30	0.13	0.50	ug/L	10.0		83.0	76-125			
trans-1,4-Dichloro 2-Butene	9.45	0.32	1.00	ug/L	10.0		94.5	55-129			
n-Propylbenzene	9.53	0.02	0.20	ug/L	10.0		95.3	78-130			
				-							

Analytical Resources, Inc.

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

Volatile Organic Compounds - Quality Control

Batch BHG0064 - EPA 5030 (Purge and Trap)

Instrument: NT3 Analyst: PKC

QC Sample/Analyte	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
LCS (BHG0064-BS1)				Prepa	ared: 03-Jul-	2019 Ana	lyzed: 03-Jı	1-2019 10:4	4		
Bromobenzene	9.07	0.06	0.20	ug/L	10.0		90.7	80-120			
Isopropyl Benzene	9.37	0.02	0.20	ug/L	10.0		93.7	80-128			
2-Chlorotoluene	9.46	0.02	0.20	ug/L	10.0		94.6	78-122			
4-Chlorotoluene	9.48	0.02	0.20	ug/L	10.0		94.8	80-121			
t-Butylbenzene	9.34	0.03	0.20	ug/L	10.0		93.4	78-125			
1,3,5-Trimethylbenzene	9.56	0.02	0.20	ug/L	10.0		95.6	80-129			
1,2,4-Trimethylbenzene	9.58	0.02	0.20	ug/L	10.0		95.8	80-127			
s-Butylbenzene	9.49	0.02	0.20	ug/L	10.0		94.9	78-129			
4-Isopropyl Toluene	9.35	0.03	0.20	ug/L	10.0		93.5	79-130			
1,3-Dichlorobenzene	8.97	0.04	0.20	ug/L	10.0		89.7	80-120			
1,4-Dichlorobenzene	8.94	0.04	0.20	ug/L	10.0		89.4	80-120			
n-Butylbenzene	9.81	0.02	0.20	ug/L	10.0		98.1	74-129			
1,2-Dichlorobenzene	9.13	0.04	0.20	ug/L	10.0		91.3	80-120			
1,2-Dibromo-3-chloropropane	7.68	0.37	0.50	ug/L	10.0		76.8	62-123			Q
1,2,4-Trichlorobenzene	9.05	0.11	0.50	ug/L	10.0		90.5	64-124			
Hexachloro-1,3-Butadiene	9.71	0.07	0.50	ug/L	10.0		97.1	58-123			
Naphthalene	9.02	0.12	0.50	ug/L	10.0		90.2	50-134			
1,2,3-Trichlorobenzene	8.44	0.11	0.50	ug/L	10.0		84.4	49-133			
Dichlorodifluoromethane	9.84	0.05	0.20	ug/L	10.0		98.4	48-147			
Methyl tert-butyl Ether	9.37	0.07	0.50	ug/L	10.0		93.7	71-132			
2-Pentanone	44.7	5.00	5.00	ug/L	50.0		89.4	69-134			
Surrogate: 1,2-Dichloroethane-d4	5.20			ug/L	5.00		104	80-129			
Surrogate: Toluene-d8	4.93			ug/L	5.00		98.6	80-120			
Surrogate: 4-Bromofluorobenzene	4.83			ug/L	5.00		96.6	80-120			
Surrogate: 1,2-Dichlorobenzene-d4	4.95			ug/L	5.00		99.0	80-120			
LCS (BHG0064-BS2)				Prens	ared: 03-Jul-	2019 Anal	lyzed: 03-Ji	1-2019 11:3	.8		
Gasoline Range Organics (Tol-Nap)	1020		100	ug/L	1000	2017 / Illus	102	72-128			
Surrogate: Toluene-d8	5.20			ug/L	5.00		104	80-120			
Surrogate: 4-Bromofluorobenzene	5.08			ug/L	5.00		102	80-120			
LCS Dup (BHG0064-BSD1)				Prepa	ared: 03-Jul-	2019 Anal	lyzed: 03-Jı	1-2019 11:1	1		
Chloromethane	9.47	0.09	0.50	ug/L	10.0		94.7	60-138	1.25	30	
Vinyl Chloride	9.83	0.06	0.20	ug/L	10.0		98.3	66-133	1.17	30	
Bromomethane	10.0	0.25	1.00	ug/L	10.0		100	72-131	6.24	30	

Analytical Resources, Inc.

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

Volatile Organic Compounds - Quality Control

Batch BHG0064 - EPA 5030 (Purge and Trap)

Instrument: NT3 Analyst: PKC

Prepared: 03-Jul-2019 Analyzed: 03-Jul-2019 List Chicroethane 9.21 0.09 0.20 ugl. 10.0 92.1 60-155 2.63 30 10 10 10 10 10 10 1			Detection	Reporting		Spike	Source		%REC		RPD	
Chicrochiane 9.21 0.09 0.20 wg/L 10.0 92.1 60-155 2.63 30	QC Sample/Analyte	Result	Limit	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Circline Online One Mentance 9.67 0.04 0.20 wg/L 10.0 96.7 80.129 0.77 30 Necroticin 43.8 2.48 5.00 wg/L 50.0 87.5 52.144 4.27 30 Necroticin 4.27	LCS Dup (BHG0064-BSD1)				Prepa	ared: 03-Jul-2	2019 Anal	yzed: 03-J	ul-2019 11:1	1		
Nerolein 43.8 2.48 5.00 vg/L 5.00 87.5 52-144 4.27 30 1.12-Tiriluror-litaro-l.22-Triluror-thane 10.0 0.04 0.20 vg/L 10.0 10.0 76-129 1.04 30 30 1.12-Tiriluror-thane 49.7 2.06 5.00 vg/L 50.0 99.4 58.14 2.33 30 30 30 30 30 30 30	Chloroethane	9.21	0.09	0.20	ug/L	10.0		92.1	60-155	2.63	30	
	Trichlorofluoromethane	9.67	0.04	0.20	ug/L	10.0		96.7	80-129	0.77	30	
Nectone 49.7 2.06 5.00 ug/L 50.0 99.4 58.142 3.35 30 1.1-Dichlorocthene 9.48 0.05 0.20 ug/L 10.0 98.6 78.128 5.09 30 0.00	Acrolein	43.8	2.48	5.00	ug/L	50.0		87.5	52-144	4.27	30	
	1,1,2-Trichloro-1,2,2-Trifluoroethane	10.0	0.04	0.20	ug/L	10.0		100	76-129	1.04	30	
Fromoethane 9.86 0.04 0.20 ug/L 10.0 98.6 78.128 5.09 30 odomethane 9.57 0.23 1.00 ug/L 10.0 95.7 56.147 2.23 30 odomethane 9.57 0.23 1.00 ug/L 10.0 95.7 56.147 2.23 30 odomethane 9.57 0.60 0.00 ug/L 10.0 95.5 56.135 0.26 30 odomethane 9.57 0.60 1.00 ug/L 10.0 96.0 64.134 0.97 30 odomethane 9.50 0.06 1.00 ug/L 10.0 96.0 64.134 0.97 30 odomethane 9.50 0.05 0.20 ug/L 10.0 97.5 78.125 1.56 30 odomethane 9.50 0.05 0.20 ug/L 10.0 97.0 78.128 1.23 30 odomethane 9.60 0.05 0.20 ug/L 10.0 97.0 78.125 1.56 30 odomethane 9.60 0.05 0.20 ug/L 10.0 97.0 78.125 1.56 30 odomethane 9.94 0.05 0.20 ug/L 10.0 97.0 78.125 1.56 30 odomethane 9.94 0.05 0.20 ug/L 10.0 97.0 78.125 1.56 30 odomethane 9.94 0.05 0.20 ug/L 10.0 97.0 78.125 1.56 30 odomethane 9.94 0.05 0.20 ug/L 10.0 97.0 78.125 1.56 30 odomethane 9.94 0.05 0.20 ug/L 10.0 97.0 78.125 0.67 30 odomethane 9.94 0.05 0.20 ug/L 10.0 97.0 78.125 0.67 30 odomethane 9.94 0.05 0.20 ug/L 10.0 97.0 78.125 0.67 30 odomethane 9.94 0.05 0.20 ug/L 10.0 97.0 78.125 0.67 30 odomethane 9.94 0.05 0.20 ug/L 10.0 97.0 78.125 0.67 30 odomethane 9.84 0.04 0.20 ug/L 10.0 97.0 78.125 0.67 30 odomethane 9.85 0.06 0.20 ug/L 10.0 97.0 97.0 78.125 0.67 30 odomethane 9.85 0.06 0.20 ug/L 10.0 97.0 97.0 97.0 97.0 97.0 97.0 97.0 9	Acetone	49.7	2.06	5.00	ug/L	50.0		99.4	58-142	3.35	30	
Second columentane 9.57 0.23 1.00	1,1-Dichloroethene	9.48	0.05	0.20	ug/L	10.0		94.8	69-135	2.01	30	
Methylene Chloride	Bromoethane	9.86	0.04	0.20	ug/L	10.0		98.6	78-128	5.09	30	
Acylonitrile 9.60 0.60 1.00 ug/L 10.0 96.0 64-134 0.97 30 and carbon Disulfide 9.75 0.04 0.20 ug/L 10.0 97.5 78-125 1.56 30 and carbon Disulfide 9.75 0.05 0.20 ug/L 10.0 97.0 78-128 1.23 30 and carbon Disulfide 9.76 0.07 0.20 ug/L 10.0 97.0 78-128 1.23 30 and carbon Disulfide 9.76 0.07 0.20 ug/L 10.0 97.0 78-128 1.23 30 and carbon Disulfide 9.76 0.07 0.20 ug/L 10.0 97.0 78-128 1.23 30 and carbon Disulfide 9.76 0.07 0.20 ug/L 10.0 97.0 78-128 1.23 30 and carbon Disulfide 9.76 0.07 0.20 ug/L 10.0 97.0 78-128 1.23 30 and carbon Disulfide 9.76 0.07 0.20 ug/L 10.0 99.4 76-124 2.46 30 and carbon Disulfide 9.78 0.81 0.81 0.80 ug/L 10.0 99.4 76-124 2.46 30 and carbon Disulfide 9.78 0.81 0.81 0.80 ug/L 10.0 99.5 61-140 6.65 30 and carbon Disulfide 9.78 0.81 0.81 0.81 0.80 ug/L 10.0 99.5 61-140 6.65 30 and carbon Disulfide 9.78 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.8	Iodomethane	9.57	0.23	1.00	ug/L	10.0		95.7	56-147	2.23	30	
Carbon Disulfide 9.75 0.04 0.20 ug/L 10.0 97.5 78-125 1.56 30 cansel, 2-Dichloroethene 9.70 0.05 0.20 ug/L 10.0 97.0 78-128 1.23 30 vinyl Acetate 9.46 0.07 0.20 ug/L 10.0 94.6 55-138 5.05 30 Libridoroethane 9.94 0.05 0.20 ug/L 10.0 99.4 76-124 2.46 30 2-Dichloropropane 10.3 0.05 0.20 ug/L 10.0 103 78-125 0.67 30 2-Dichloropropane 10.3 0.05 0.20 ug/L 10.0 97.4 80-121 3.28 30 Chloroform 9.65 0.03 0.20 ug/L 10.0 95.3 80-121 0.04 30 1,1-Dichloropropene 10.0 0.03 0.20 ug/L 10.0 95.3 80-121 0.04 30 1,1-Dichlorop	Methylene Chloride	8.55	0.49	1.00	ug/L	10.0		85.5	65-135	0.26	30	
Parallel	Acrylonitrile	9.60	0.60	1.00	ug/L	10.0		96.0	64-134	0.97	30	
Vinyl Acetate 9.46 0.07 0.20 ug/L 10.0 94.6 55.138 5.05 30 Li-Dichloroethane 9.94 0.05 0.20 ug/L 10.0 99.4 76-124 2.46 30 2-Butanone 47.8 0.81 5.00 ug/L 50.0 95.5 61-140 6.65 30 2.2-Dichloropropane 10.3 0.05 0.20 ug/L 10.0 19.5 61-140 6.65 30 2.2-Dichloroptopane 19.74 0.04 0.20 ug/L 10.0 19.5 80-121 3.28 30 Chloroform 9.65 0.03 0.20 ug/L 10.0 96.5 80-122 0.04 30 Bromochloromethane 9.53 0.06 0.20 ug/L 10.0 95.3 80-121 0.03 30 JLi-Dichloropropane 10.0 0.03 0.20 ug/L 10.0 10.0 80-120 9.5 30 Carbon tertachlo	Carbon Disulfide	9.75	0.04	0.20	ug/L	10.0		97.5	78-125	1.56	30	
1. Dichloroethane	trans-1,2-Dichloroethene	9.70	0.05	0.20	ug/L	10.0		97.0	78-128	1.23	30	
A-1,	Vinyl Acetate	9.46	0.07	0.20	ug/L	10.0		94.6	55-138	5.05	30	
2.2-Dichloropropane 10.3 0.05 0.20 ug/L 10.0 103 78-125 0.67 30 cis-1,2-Dichloroethene 9.74 0.04 0.20 ug/L 10.0 97.4 80-121 3.28 30 chloroform 9.65 0.03 0.20 ug/L 10.0 96.5 80-122 0.04 30 and semblar sembla	1,1-Dichloroethane	9.94	0.05	0.20	ug/L	10.0		99.4	76-124	2.46	30	
10.0 10.0	2-Butanone	47.8	0.81	5.00	ug/L	50.0		95.5	61-140	6.65	30	
Chloroform 9.65 0.03 0.20 ug/L 10.0 96.5 80-122 0.04 30 Gromochloromethane 9.53 0.06 0.20 ug/L 10.0 95.3 80-121 0.03 30 1,1-Trichloroethane 9.88 0.04 0.20 ug/L 10.0 98.8 79-123 0.86 30 1,1-Dichloropropene 10.0 0.03 0.20 ug/L 10.0 100 80-120 5.04 30 Carbon tetrachloride 9.91 0.04 0.20 ug/L 10.0 99.1 53-137 0.95 30 Q.2-Dichloroptropane 9.94 0.07 0.20 ug/L 10.0 99.4 80-120 4.38 30 Serzene 9.94 0.03 0.20 ug/L 10.0 99.4 80-120 4.38 30 Trichloroethene 10.0 0.05 0.20 ug/L 10.0 96.4 80-120 3.07 30 A-2-Dichloroethe	2,2-Dichloropropane	10.3	0.05	0.20	ug/L	10.0		103	78-125	0.67	30	
Armochloromethane 9.53 0.06 0.20 ug/L 10.0 95.3 80-121 0.03 30 J.1,1-Trichloroethane 9.88 0.04 0.20 ug/L 10.0 98.8 79-123 0.86 30 J.1-Dichloropropene 10.0 0.03 0.20 ug/L 10.0 100 80-120 5.04 30 Carbon tetrachloride 9.91 0.04 0.20 ug/L 10.0 99.1 53-137 0.95 30 J.2-Dichloroptopane 9.54 0.07 0.20 ug/L 10.0 99.4 80-120 4.38 30 Arcichloroptopane 9.94 0.03 0.20 ug/L 10.0 99.4 80-120 4.38 30 Arcichloroptopane 9.64 0.04 0.20 ug/L 10.0 96.4 80-120 4.36 30 Bromodichloromethane 9.82 0.05 0.20 ug/L 10.0 98.2 80-121 5.85 30	cis-1,2-Dichloroethene	9.74	0.04	0.20	ug/L	10.0		97.4	80-121	3.28	30	
1,1-Trichloroethane 9.88 0.04 0.20 ug/L 10.0 98.8 79-123 0.86 30 30 30 30 30 30 30 3	Chloroform	9.65	0.03	0.20	ug/L	10.0		96.5	80-122	0.04	30	
1-Dichloropropene 10.0 0.03 0.20 ug/L 10.0 100 80-120 5.04 30	Bromochloromethane	9.53	0.06	0.20	ug/L	10.0		95.3	80-121	0.03	30	
Carbon tetrachloride 9.91 0.04 0.20 ug/L 10.0 99.1 53-137 0.95 30 32-Dichloroethane 9.54 0.07 0.20 ug/L 10.0 95.4 75-123 7.22 30	1,1,1-Trichloroethane	9.88	0.04	0.20	ug/L	10.0		98.8	79-123	0.86	30	
1,2-Dichloroethane	1,1-Dichloropropene	10.0	0.03	0.20	ug/L	10.0		100	80-120	5.04	30	
Senzene 9.94 0.03 0.20 ug/L 10.0 99.4 80-120 4.38 30 10.2-Dichloroethene 10.0 0.05 0.20 ug/L 10.0 100 80-120 3.07 30 10.2-Dichloropropane 9.64 0.04 0.20 ug/L 10.0 96.4 80-120 4.36 30 10.2-Dichloromethane 9.82 0.05 0.20 ug/L 10.0 98.2 80-121 5.85 30 10.2-Dichloromethane 8.94 0.15 0.20 ug/L 10.0 89.4 80-120 8.84 30 10.2-Chloroethyl vinyl ether 9.96 0.25 1.00 ug/L 10.0 99.6 74-127 10.40 30 10.2-Pentanone 49.1 0.97 5.00 ug/L 50.0 98.2 67-133 10.20 30 10.2-Dichloropropene 10.1 0.06 0.20 ug/L 10.0 99.4 80-120 3.96 30 10.2-Dichloropropene 10.3 0.08 0.20 ug/L 10.0 99.4 80-120 3.96 30 10.2-Dichloropropene 10.3 0.08 0.20 ug/L 10.0 10.3 71-127 6.35 30 10.2-Dichloropropene 10.3 0.08 0.20 ug/L 10.0 10.3 71-127 6.35 30 10.2-Dichloropropene 10.3 0.08 0.20 ug/L 10.0 10.3 71-127 6.35 30 10.2-Dichloropropene 10.3 0.08 0.20 ug/L 50.0 95.4 69-133 9.40 30 10.2-Dichloropropene 10.3 0.08 0.20 ug/L 50.0 95.4 69-133 9.40 30 10.2-Dichloropropene 10.3 0.08 0.20 ug/L 50.0 0.25-Dichloropropene 10.3 0.08 0.20 ug/L 50.0 95.4 69-133 9.40 30 10.2-Dichloropropene 10.3 0.08 0.20 ug/L 50.0 0.2-Dichloropropene 10.3 0.08 0.20 ug/L 50.0 95.4 69-133 9.40 30 10.2-Dichloropropene 10.3 0.08 0.20 ug/L 50.0 0.2-Dichloropropene 10.3 0.08 0.20 ug/L 50.0 0.2-Dichloropropene 10.3 0.08 0.20 ug/L 50.0 0.2-Dichloropropene 10.3 0.08 0.2-Dichloropropene 10.3 0.2-Dichloropropene 10.3 0.08 0.2-Dichloropropene 10.3-Dichloropropene 10.3-Dichloroprope	Carbon tetrachloride	9.91	0.04	0.20	ug/L	10.0		99.1	53-137	0.95	30	
Trichloroethene 10.0 0.05 0.20 ug/L 10.0 100 80-120 3.07 30 1.2-Dichloropropane 9.64 0.04 0.20 ug/L 10.0 96.4 80-120 4.36 30 30 30 30 30 30 30 30 30 30 30 30 30	1,2-Dichloroethane	9.54	0.07	0.20	ug/L	10.0		95.4	75-123	7.22	30	
1,2-Dichloropropane 9.64 0.04 0.20 ug/L 10.0 96.4 80-120 4.36 30 30 30 30 30 30 30	Benzene	9.94	0.03	0.20	ug/L	10.0		99.4	80-120	4.38	30	
Bromodichloromethane 9.82 0.05 0.20 ug/L 10.0 98.2 80-121 5.85 30 Dibromomethane 8.94 0.15 0.20 ug/L 10.0 89.4 80-120 8.84 30 2-Chloroethyl vinyl ether 9.96 0.25 1.00 ug/L 10.0 99.6 74-127 10.40 30 1-Methyl-2-Pentanone 49.1 0.97 5.00 ug/L 50.0 98.2 67-133 10.20 30 cis-1,3-Dichloropropene 10.1 0.06 0.20 ug/L 10.0 101 80-124 4.45 30 Foluene 9.94 0.04 0.20 ug/L 10.0 99.4 80-120 3.96 30 1-Hexanone 47.7 0.90 5.00 ug/L 10.0 103 71-127 6.35 30	Trichloroethene	10.0	0.05	0.20	ug/L	10.0		100	80-120	3.07	30	
Dibromomethane 8.94 0.15 0.20 ug/L 10.0 89.4 80-120 8.84 30 9.4 80-120 8.4 80-120 8.84 30 9.4 80-120 8.84 30 9.4 80-120 8.84 30 9.4 80-120 8.84 30 9.4 80-120 8.84 30 9.4 80-120 8.4	1,2-Dichloropropane	9.64	0.04	0.20	ug/L	10.0		96.4	80-120	4.36	30	
2-Chloroethyl vinyl ether 9.96 0.25 1.00 ug/L 10.0 99.6 74-127 10.40 30 1-Methyl-2-Pentanone 49.1 0.97 5.00 ug/L 50.0 98.2 67-133 10.20 30 10.5 1.3-Dichloropropene 10.1 0.06 0.20 ug/L 10.0 101 80-124 4.45 30 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.	Bromodichloromethane	9.82	0.05	0.20	ug/L	10.0		98.2	80-121	5.85	30	
H-Methyl-2-Pentanone 49.1 0.97 5.00 ug/L 50.0 98.2 67-133 10.20 30 cis-1,3-Dichloropropene 10.1 0.06 0.20 ug/L 10.0 101 80-124 4.45 30 foluene 9.94 0.04 0.20 ug/L 10.0 99.4 80-120 3.96 30 crans-1,3-Dichloropropene 10.3 0.08 0.20 ug/L 10.0 103 71-127 6.35 30 c-Hexanone 47.7 0.90 5.00 ug/L 50.0 95.4 69-133 9.40 30	Dibromomethane	8.94	0.15	0.20	ug/L	10.0		89.4	80-120	8.84	30	
cis-1,3-Dichloropropene 10.1 0.06 0.20 ug/L 10.0 101 80-124 4.45 30 Foluene 9.94 0.04 0.20 ug/L 10.0 99.4 80-120 3.96 30 crans-1,3-Dichloropropene 10.3 0.08 0.20 ug/L 10.0 103 71-127 6.35 30 2-Hexanone 47.7 0.90 5.00 ug/L 50.0 95.4 69-133 9.40 30	2-Chloroethyl vinyl ether	9.96	0.25	1.00	ug/L	10.0		99.6	74-127	10.40	30	
Foluene 9.94 0.04 0.20 ug/L 10.0 99.4 80-120 3.96 30 rans-1,3-Dichloropropene 10.3 0.08 0.20 ug/L 10.0 103 71-127 6.35 30 2-Hexanone 47.7 0.90 5.00 ug/L 50.0 95.4 69-133 9.40 30	4-Methyl-2-Pentanone	49.1	0.97	5.00	ug/L	50.0		98.2	67-133	10.20	30	
rans-1,3-Dichloropropene 10.3 0.08 0.20 ug/L 10.0 103 71-127 6.35 30 2-Hexanone 47.7 0.90 5.00 ug/L 50.0 95.4 69-133 9.40 30	cis-1,3-Dichloropropene	10.1	0.06	0.20	ug/L	10.0		101	80-124	4.45	30	
2-Hexanone 47.7 0.90 5.00 ug/L 50.0 95.4 69-133 9.40 30	Toluene	9.94	0.04	0.20	ug/L	10.0		99.4	80-120	3.96	30	
	trans-1,3-Dichloropropene	10.3	0.08	0.20	ug/L	10.0		103	71-127	6.35	30	
	2-Hexanone	47.7	0.90	5.00	ug/L	50.0		95.4	69-133	9.40	30	
	1,1,2-Trichloroethane	9.54	0.13	0.20	ug/L	10.0		95.4	80-121	5.75	30	

Analytical Resources, Inc.

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

Volatile Organic Compounds - Quality Control

Batch BHG0064 - EPA 5030 (Purge and Trap)

Instrument: NT3 Analyst: PKC

QC Sample/Analyte	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
LCS Dup (BHG0064-BSD1)				Prend	ared: 03-Jul-				1		
1,3-Dichloropropane	9.73	0.06	0.20	ug/L	10.0	2017 Allal	97.3	80-120	6.27	30	
Tetrachloroethene	9.75	0.05	0.20	ug/L ug/L	10.0		97.5	80-120	3.80	30	
Dibromochloromethane	10.0	0.05	0.20	ug/L	10.0		100	65-135	7.54	30	
1,2-Dibromoethane	10.4	0.07	0.20	ug/L	10.0		104	80-121	11.00	30	
Chlorobenzene	9.67	0.02	0.20	ug/L	10.0		96.7	80-120	2.28	30	
Ethylbenzene	9.63	0.04	0.20	ug/L	10.0		96.3	80-120	2.82	30	
1,1,1,2-Tetrachloroethane	9.42	0.04	0.20	ug/L	10.0		94.2	80-120	3.89	30	
m,p-Xylene	19.4	0.05	0.40	ug/L	20.0		97.2	80-121	3.46	30	
o-Xylene	9.79	0.03	0.20	ug/L	10.0		97.9	80-121	2.19	30	
Xylenes, total	29.2	0.09	0.60	ug/L	30.0		97.4	76-127	3.04	30	
Styrene	9.70	0.05	0.20	ug/L	10.0		97.0	80-124	4.21	30	
Bromoform	10.1	0.06	0.20	ug/L	10.0		101	51-134	11.00	30	
1,1,2,2-Tetrachloroethane	9.70	0.06	0.20	ug/L	10.0		97.0	77-123	11.50	30	
1,2,3-Trichloropropane	9.92	0.13	0.50	ug/L	10.0		99.2	76-125	17.70	30	
trans-1,4-Dichloro 2-Butene	10.5	0.32	1.00	ug/L	10.0		105	55-129	10.90	30	
n-Propylbenzene	10.0	0.02	0.20	ug/L	10.0		100	78-130	5.16	30	
Bromobenzene	10.0	0.06	0.20	ug/L	10.0		100	80-120	9.85	30	
Isopropyl Benzene	9.87	0.02	0.20	ug/L	10.0		98.7	80-128	5.23	30	
2-Chlorotoluene	9.91	0.02	0.20	ug/L	10.0		99.1	78-122	4.63	30	
4-Chlorotoluene	9.86	0.02	0.20	ug/L	10.0		98.6	80-121	3.92	30	
t-Butylbenzene	9.84	0.03	0.20	ug/L	10.0		98.4	78-125	5.20	30	
1,3,5-Trimethylbenzene	9.98	0.02	0.20	ug/L	10.0		99.8	80-129	4.29	30	
1,2,4-Trimethylbenzene	9.93	0.02	0.20	ug/L	10.0		99.3	80-127	3.57	30	
s-Butylbenzene	9.98	0.02	0.20	ug/L	10.0		99.8	78-129	5.00	30	
4-Isopropyl Toluene	9.85	0.03	0.20	ug/L	10.0		98.5	79-130	5.27	30	
1,3-Dichlorobenzene	9.72	0.04	0.20	ug/L	10.0		97.2	80-120	7.99	30	
1,4-Dichlorobenzene	9.44	0.04	0.20	ug/L	10.0		94.4	80-120	5.44	30	
n-Butylbenzene	10.1	0.02	0.20	ug/L	10.0		101	74-129	2.58	30	
1,2-Dichlorobenzene	9.75	0.04	0.20	ug/L	10.0		97.5	80-120	6.65	30	
1,2-Dibromo-3-chloropropane	8.41	0.37	0.50	ug/L	10.0		84.1	62-123	9.03	30	Q
1,2,4-Trichlorobenzene	10.0	0.11	0.50	ug/L	10.0		100	64-124	9.91	30	
Hexachloro-1,3-Butadiene	10.3	0.07	0.50	ug/L	10.0		103	58-123	5.93	30	
Naphthalene	10.1	0.12	0.50	ug/L	10.0		101	50-134	11.60	30	
1,2,3-Trichlorobenzene	9.52	0.11	0.50	ug/L	10.0		95.2	49-133	12.10	30	
Dichlorodifluoromethane	10.4	0.05	0.20	ug/L	10.0		104	48-147	5.71	30	

Analytical Resources, Inc.

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

Volatile Organic Compounds - Quality Control

Batch BHG0064 - EPA 5030 (Purge and Trap)

Instrument: NT3 Analyst: PKC

QC Sample/Analyte	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
LCS Dup (BHG0064-BSD1)				Prepa	ared: 03-Jul-	2019 Ana	lyzed: 03-J	ul-2019 11:1	1		
Methyl tert-butyl Ether	9.79	0.07	0.50	ug/L	10.0		97.9	71-132	4.43	30	
2-Pentanone	49.0	5.00	5.00	ug/L	50.0		97.9	69-134	9.10	30	
Surrogate: 1,2-Dichloroethane-d4	5.13			ug/L	5.00		103	80-129			
Surrogate: Toluene-d8	5.12			ug/L	5.00		102	80-120			
Surrogate: 4-Bromofluorobenzene	5.00			ug/L	5.00		100	80-120			
Surrogate: 1,2-Dichlorobenzene-d4	5.08			ug/L	5.00		102	80-120			
LCS Dup (BHG0064-BSD2)				Prepa	ared: 03-Jul-	2019 Ana	lyzed: 03-J	ul-2019 12:0)4		
Gasoline Range Organics (Tol-Nap)	1000		100	ug/L	1000		100	72-128	1.83	30	
Surrogate: Toluene-d8	5.09			ug/L	5.00		102	80-120			
Surrogate: 4-Bromofluorobenzene	4.82			ug/L	5.00		96.4	80-120			

Analytical Resources, Inc.

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

Semivolatile Organic Compounds - SIM - Quality Control

Batch BHG0068 - EPA 3510C SepF

Instrument: NT11 Analyst: VTS

QC Sample/Analyte	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
	IXESUIT	Liiiit	Limit							LIIIII	noies
Blank (BHG0068-BLK1)					ared: 03-Jul-	2019 Ana	lyzed: 06-J	ul-2019 12:1	19		
Naphthalene	0.002	0.001	0.010	ug/L							J
2-Methylnaphthalene	ND	0.001	0.010	ug/L							U
1-Methylnaphthalene	ND	0.0009	0.010	ug/L							U
2-Chloronaphthalene	ND	0.001	0.010	ug/L							U
Acenaphthylene	ND	0.002	0.010	ug/L							U
Acenaphthene	ND	0.003	0.010	ug/L							U
Dibenzofuran	ND	0.002	0.010	ug/L							U
Fluorene	ND	0.002	0.010	ug/L							U
Phenanthrene	ND	0.001	0.010	ug/L							U
Anthracene	ND	0.001	0.010	ug/L							U
Carbazole	ND	0.001	0.010	ug/L							U
Fluoranthene	ND	0.002	0.010	ug/L							U
Pyrene	ND	0.001	0.010	ug/L							U
Benzo(a)anthracene	ND	0.0008	0.010	ug/L							U
Chrysene	ND	0.0009	0.010	ug/L							U
Benzo(b)fluoranthene	ND	0.0005	0.010	ug/L							U
Benzo(k)fluoranthene	ND	0.003	0.010	ug/L							U
Benzo(j)fluoranthene	ND	0.002	0.010	ug/L							U
Benzofluoranthenes, Total	ND	0.004	0.010	ug/L							U
Benzo(a)pyrene	ND	0.002	0.010	ug/L							U
Perylene	ND	0.006	0.010	ug/L							U
Indeno(1,2,3-cd)pyrene	ND	0.001	0.010	ug/L							U
Dibenzo(a,h)anthracene	ND	0.001	0.010	ug/L							U
Benzo(g,h,i)perylene	ND	0.001	0.010	ug/L							U
Surrogate: 2-Methylnaphthalene-d10	0.204			ug/L	0.300		68.1	42-120			
Surrogate: Dibenzo[a,h]anthracene-d14	0.232			ug/L	0.300		77.3	29-120			
Surrogate: Fluoranthene-d10	0.224			ug/L	0.300		74.6	57-120			
LCS (BHG0068-BS1)				Prena	ared: 03-Jul-	2019 Anal	lyzed: 06-J	ul-2019 12:4	19		
Naphthalene	0.214	0.001	0.010	ug/L	0.300		71.4	37-120			
2-Methylnaphthalene	0.212	0.001	0.010	ug/L	0.300		70.7	37-120			
1-Methylnaphthalene	0.218	0.0009	0.010	ug/L	0.300		72.5	29-120			
2-Chloronaphthalene	0.208	0.001	0.010	ug/L	0.300		69.5	30-160			
Biphenyl	0.221	0.001	0.010	ug/L	0.300		73.7	30-160			
2,6-Dimethylnaphthalene	0.211	0.001	0.010	ug/L	0.300		70.5	30-160			

Analytical Resources, Inc.

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

Semivolatile Organic Compounds - SIM - Quality Control

Batch BHG0068 - EPA 3510C SepF

Instrument: NT11 Analyst: VTS

Prepared: 03-Jul-2019 Analyzed: 06-Jul-2019 12-49 Nemaphthylene 0.221 0.002 0.010 ug/L 0.300 73.6 41-120 12-49			Detection	Reporting		Spike	Source		%REC		RPD	
New Holy High Research 1,000 1,0	QC Sample/Analyte	Result	Limit	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Name	LCS (BHG0068-BS1)				Prep	ared: 03-Jul-	2019 Anal	lyzed: 06-Ju	ıl-2019 12:4	19		
Disenzofuran 0.226 0.002 0.010 ug/L 0.300 75.4 38-120 1.35-Trimethylnaphthalene 0.219 0.001 0.010 ug/L 0.300 77.2 43-120 1.35-Trimethylnaphthalene 0.232 0.002 0.010 ug/L 0.300 77.6 0.30-160 1.35-Trimethylnaphthalene 0.233 0.001 0.010 ug/L 0.300 0.77.6 0.30-160 1.35-Trimethylnaphthalene 0.218 0.001 0.010 ug/L 0.300 0.77.6 0.30-160 1.35-Trimethylnaphthalene 0.218 0.001 0.010 ug/L 0.300 0.77.6 0.30-160 1.35-Trimethylnaphthalene 0.238 0.001 0.010 ug/L 0.300 0.79.4 0.30-160 1.35-Trimethylnaphthalene 0.238 0.001 0.010 ug/L 0.300 0.79.4 0.30-160 1.35-Trimethylnaphthalene 0.237 0.002 0.010 ug/L 0.300 0.79.4 0.30-160 1.35-Trimethylnaphthalene 0.235 0.002 0.010 ug/L 0.300 0.78.6 0.30-160 1.35-Trimethylnaphthalene 0.235 0.0008 0.010 ug/L 0.300 0.78.6 0.30-160 1.35-Trimethylnaphthalene 0.219 0.0005 0.010 ug/L 0.300 0.78.6 0.30-160 1.35-Trimethylnaphthalene 0.219 0.0005 0.010 ug/L 0.300 0.78.6 0.30-160 1.35-Trimethylnaphthalene 0.219 0.0005 0.010 ug/L 0.300 0.78.6 0.30-160 1.35-Trimethylnaphthalene 0.224 0.000 0.010 ug/L 0.300 0.73.0 0.73.0 0.74.7 0.74-120 1.35-Trimethylnaphthalene 0.224 0.000 0.010 ug/L 0.300 0.74.7 0.74-120 0.74	Acenaphthylene	0.221	0.002	0.010	ug/L	0.300		73.6	41-120			
1.3.5 Trimethylmaphthalene 0.219 0.001 0.010	Acenaphthene	0.222	0.003	0.010	ug/L	0.300		74.0	41-120			
Property	Dibenzofuran	0.226	0.002	0.010	ug/L	0.300		75.4	38-120			
Diserzothiophene 0.233 0.001 0.010 ug/L 0.300 77.6 30-160 1.000 1.	2,3,5-Trimethylnaphthalene	0.219	0.001	0.010	ug/L	0.300		73.1	30-160			
Parl mathrene	Fluorene	0.232	0.002	0.010	ug/L	0.300		77.2	43-120			
Anthracene	Dibenzothiophene	0.233	0.001	0.010	ug/L	0.300		77.6	30-160			
Carbazole 0.238 0.001 0.010 ug/L 0.300 79.4 30-160 79.4 30	Phenanthrene	0.234	0.001	0.010	ug/L	0.300		77.9	41-120			
Pare	Anthracene	0.218	0.001	0.010	ug/L	0.300		72.6	40-120			
Pyrene 0.235 0.001 0.010 ug/L 0.300 78.2 41-120	Carbazole	0.238	0.001	0.010	ug/L	0.300		79.4	30-160			
-Methylphenanthrene 0.236 0.002 0.010 ug/L 0.300 78.6 30-160 -Benzo(a)anthracene 0.235 0.0008 0.010 ug/L 0.300 78.2 42-120 -Benzo(b)fluoranthene 0.239 0.0009 0.010 ug/L 0.300 78.2 42-120 -Benzo(b)fluoranthene 0.219 0.0005 0.010 ug/L 0.300 73.0 44-120 -Benzo(b)fluoranthene 0.216 0.003 0.010 ug/L 0.300 73.0 44-120 -Benzo(b)fluoranthene 0.220 0.002 0.010 ug/L 0.300 73.2 39-160 -Benzo(b)fluoranthene 0.220 0.002 0.010 ug/L 0.300 73.2 39-160 -Benzo(b)pyrene 0.230 0.001 0.010 ug/L 0.300 76.6 30-160 -Benzo(a)pyrene 0.230 0.001 0.010 ug/L 0.300 76.6 30-160 -Benzo(a)pyrene 0.219 0.002 0.010 ug/L 0.300 76.6 30-160 -Benzo(a)pyrene 0.224 0.006 0.010 ug/L 0.300 76.7 31-100 -Benzo(a)pyrene 0.247 0.001 0.010 ug/L 0.300 86.7 37-120 -Benzo(a)pyrene 0.247 0.001 0.010 ug/L 0.300 88.2 34-120 -Benzo(a)pyrene 0.247 0.001 0.010 ug/L 0.300 88.2 34-120 -Benzo(a)pyrene 0.248 0.001 0.010 ug/L 0.300 88.2 3-120 -Benzo(b)hiophene 0.247 0.001 0.010 ug/L 0.300 88.2 5-120 -Benzo(a)pyrene 0.248 0.001 0.010 ug/L 0.300 88.2 5-120 -Benzo(a)pyrene 0.249 0.000 0.010 ug/L 0.300 88.2 5-120 -Benzo(a)pyrene 0.240 0.001 0.010 ug/L 0.300 88.3 3-120 -Benzo(a)pyrene 0.240 0.001 0.010 ug/L 0.300 88.3 3-120 -Benzo(a)pyrene 0.240 0.001 0.010 ug/L 0.300 88.3 3-120 -Benzo(a)pyrene 0.240 0.00	Fluoranthene	0.237	0.002	0.010	ug/L	0.300		79.0	45-120			
Serizo (a) anthracene 0.235 0.0008 0.010 ug/L 0.300 78.2 42-120 12-100 12	Pyrene	0.235	0.001	0.010	ug/L	0.300		78.2	41-120			
Chrysene 0.239 0.0009 0.010 ug/L 0.300 79.7 44-120 1	1-Methylphenanthrene	0.236	0.002	0.010	ug/L	0.300		78.6	30-160			
Serizo(b)fluoranthene 0.219 0.0005 0.010 ug/L 0.300 73.0 44-120 1.20	Benzo(a)anthracene	0.235	0.0008	0.010	ug/L	0.300		78.2	42-120			
Semzo(k)fluoranthene 0.216 0.003 0.010 ug/L 0.300 71.9 50-120	Chrysene	0.239	0.0009	0.010	ug/L	0.300		79.7	44-120			
Serizo (i) filuoranthene 0.220 0.002 0.010 ug/L 0.300 73.2 39-160	Benzo(b)fluoranthene	0.219	0.0005	0.010	ug/L	0.300		73.0	44-120			
Senzofiluoranthenes, Total 0.654 0.004 0.010 ug/L 0.900 72.7 46-120 30-160	Benzo(k)fluoranthene	0.216	0.003	0.010	ug/L	0.300		71.9	50-120			
Senzo(e)pyrene 0.230 0.001 0.010 ug/L 0.300 76.6 30-160	Benzo(j)fluoranthene	0.220	0.002	0.010	ug/L	0.300		73.2	39-160			
Senzo(a)pyrene 0.219 0.002 0.010 ug/L 0.300 73.1 35-120 Perylene 0.224 0.006 0.010 ug/L 0.300 74.7 30-160 Indeno(1,2,3-ed)pyrene 0.260 0.001 0.010 ug/L 0.300 86.7 37-120 Sibenzo(a,h)anthracene 0.247 0.001 0.010 ug/L 0.300 81.0 38-120 Senzo(g,h,i)perylene 0.243 0.001 0.010 ug/L 0.300 81.0 38-120 Senzo(b)thiophene 0.217 0.001 0.010 ug/L 0.300 72.3 30-160 Sibenzo(a,h)anthracene 0.247 0.001 0.010 ug/L 0.300 72.3 30-160 Sibenzo(a,h)anthracene 0.241 0.010 0.010 ug/L 0.300 72.3 30-160 Sibenzo(a,h)anthracene 0.241 0.010 0.010 ug/L 0.300 72.3 30-160 Sibenzo(a,h)anthracene 0.242 0.001 0.010 ug/L 0.300 81.2 57-120 Sibenzo(a,h)anthracene 0.244 0.001 0.010 ug/L 0.300 81.2 37-120 12.90 30 Sibenzo(a,h)anthracene 0.244 0.001 0.010 ug/L 0.300 80.7 37-120 13.30 30 Sibenzo(a,h)anthracene 0.249 0.0009 0.010 ug/L 0.300 80.7 37-120 13.30 30 Sibenzo(a,h)anthracene 0.249 0.0009 0.010 ug/L 0.300 80.3 30-160 14.50 30 Sibenzo(a,h)anthracene 0.241 0.001 0.010 ug/L 0.300 80.3 30-160 14.50 30 Sibenzo(a,h)anthracene 0.241 0.001 0.010 ug/L 0.300 80.3 30-160 14.50 30 Sibenzo(a,h)anthracene 0.241 0.001 0.010 ug/L 0.300 80.3 30-160 14.50 30 Sibenzo(a,h)anthracene 0.241 0.001 0.010 ug/L 0.300 80.3 30-160 14.50 30 Sibenzo(a,h)anthracene 0.241 0.001 0.010 ug/L 0.300 80.3 30-160 14.50 30 Sibenzo(a,h)anthracene 0.241 0.001 0.010 ug/L 0.300 80.3 30-160 14.50 30 Sibenzo(a,h)anthracene 0.242 0.001 0.010 ug/L 0.300 80.3 30-160 14.50 30 Sibenzo(a,h)anthracene 0.242 0.001 0.010 ug/L 0.300 80.3 30-160 14.50 30 Sibenzo(a,h)anthracene 0.242 0.001 0.010 ug/L 0.300 80.3 30-160 14.50 30 Sibenzo(a,h)anth	Benzofluoranthenes, Total	0.654	0.004	0.010	ug/L	0.900		72.7	46-120			
Perylene 0.224 0.006 0.010 ug/L 0.300 74.7 30-160 ndeno(1,2,3-cd)pyrene 0.260 0.001 0.010 ug/L 0.300 86.7 37-120 obbenzo(a,h)anthracene 0.247 0.001 0.010 ug/L 0.300 82.2 34-120 obbenzo(a,h)anthracene 0.243 0.001 0.010 ug/L 0.300 81.0 38-120 obbenzo(b,hiophene 0.217 0.001 0.010 ug/L 0.300 72.3 30-160 obbenzo(a,h)anthracene 0.217 0.001 0.010 ug/L 0.300 72.3 30-160 obbenzo(a,h)anthracene 0.217 0.001 0.010 ug/L 0.300 72.3 30-160 obbenzo(a,h)anthracene-d10 0.222 ug/L 0.300 74.0 42-120 obbenzo(a,h)anthracene-d10 0.244 ug/L 0.300 81.2 57-120 obbenzo(a,h)anthracene-d10 0.244 0.001 0.010 ug/L 0.300 81.2 57-120 obbenzo(a,h)anthracene-d10 0.244 0.001 0.010 ug/L 0.300 81.2 37-120 13.30 30 obbenzo(a,h)anthracene-d10 0.244 0.001 0.010 ug/L 0.300 81.2 37-120 13.30 30 obbenzo(a,h)anthracene-d10 0.244 0.001 0.010 ug/L 0.300 81.2 37-120 13.30 30 obbenzo(a,h)anthracene-d10 0.244 0.001 0.010 ug/L 0.300 81.2 37-120 13.30 30 obbenzo(a,h)anthracene-d10 0.244 0.001 0.010 ug/L 0.300 81.2 37-120 13.30 30 obbenzo(a,h)anthracene-d10 0.244 0.001 0.010 ug/L 0.300 81.2 37-120 13.30 30 obbenzo(a,h)anthracene-d10 0.244 0.001 0.010 ug/L 0.300 81.2 37-120 13.30 30 obbenzo(a,h)anthracene-d10 0.244 0.001 0.010 ug/L 0.300 81.2 37-120 13.30 30 obbenzo(a,h)anthracene-d10 0.244 0.001 0.010 ug/L 0.300 81.2 37-120 13.60 30 obbenzo(a,h)anthracene-d10 0.244 0.001 0.010 ug/L 0.300 81.2 37-120 13.60 30 obbenzo(a,h)anthracene-d10 0.244 0.001 0.010 ug/L 0.300 81.2 37-120 13.60 30 obbenzo(a,h)anthracene-d10 0.244 0.001 0.010 ug/L 0.300 81.2 37-120 13.60 30 obbenzo(a,h)anthracene-d10 0.244 0.001 0.010 ug/L 0.300 81.2 37-120 13.60 30 obbenzo(a,h)anthracene-d10 0	Benzo(e)pyrene	0.230	0.001	0.010	ug/L	0.300		76.6	30-160			
ndeno(1,2,3-cd)pyrene 0.260 0.001 0.010 ug/L 0.300 86.7 37-120 Dibenzo(a,h)anthracene 0.247 0.001 0.010 ug/L 0.300 82.2 34-120 Benzo(g,h,i)perylene 0.243 0.001 0.010 ug/L 0.300 81.0 38-120 Benzo(b)thiophene 0.217 0.001 0.010 ug/L 0.300 72.3 30-160 Surrogate: 2-Methylnaphthalene-d10 0.222 ug/L 0.300 74.0 42-120 Surrogate: Dibenzo[a,h]anthracene-d14 0.272 ug/L 0.300 90.5 29-120 Surrogate: Fluoranthene-d10 0.244 ug/L 0.300 81.2 57-120 CCS Dup (BHG0068-BSD1) Prepared: 03-Jul-2019 Analyzed: 06-Jul-2019 13:18 CMethylnaphthalene 0.244 0.001 0.010 ug/L 0.300 81.2 37-120 12.90 30 CMethylnaphthalene 0.242 0.001 0.010 ug/L 0.300 80.7 37-120 13.30 30 -Methylnaphthalene 0.249 0.0009 0.010 ug/L 0.300 83.1 29-120 13.60 30 C-Chloronaphthalene 0.241 0.001 0.010 ug/L 0.300 80.3 30-160 14.50 30	Benzo(a)pyrene	0.219	0.002	0.010	ug/L	0.300		73.1	35-120			
Dibenzo(a,h)anthracene 0.247 0.001 0.010 ug/L 0.300 82.2 34-120 Benzo(g,h,i)perylene 0.243 0.001 0.010 ug/L 0.300 81.0 38-120 Benzo(b)thiophene 0.217 0.001 0.010 ug/L 0.300 72.3 30-160 Surrogate: 2-Methylnaphthalene-d10 0.222 ug/L 0.300 74.0 42-120 Surrogate: Bibenzo[a,h]anthracene-d14 0.272 ug/L 0.300 90.5 29-120 Surrogate: Fluoranthene-d10 0.244 ug/L 0.300 81.2 57-120 CCS Dup (BHG0068-BSD1) Prepared: 03-Jul-2019 Analyzed: 06-Jul-2019 13:18 Naphthalene 0.244 0.001 0.010 ug/L 0.300 81.2 37-120 12.90 30 Methylnaphthalene 0.242 0.001 0.010 ug/L 0.300 80.7 37-120 13.30 30 Methylnaphthalene 0.249 0.0009 0.010 ug/L 0.300 83.1 29-120 13.60 30 Chloronaphthalene 0.241 0.001 0.010 ug/L 0.300 80.3 30-160 14.50 30	Perylene	0.224	0.006	0.010	ug/L	0.300		74.7	30-160			
Senzo(g,h,i)perylene 0.243 0.001 0.010 ug/L 0.300 81.0 38-120	Indeno(1,2,3-cd)pyrene	0.260	0.001	0.010	ug/L	0.300		86.7	37-120			
Senzo(b)thiophene 0.217 0.001 0.010 ug/L 0.300 72.3 30-160	Dibenzo(a,h)anthracene	0.247	0.001	0.010	ug/L	0.300		82.2	34-120			
Surrogate: 2-Methylnaphthalene-d10 0.222 ug/L 0.300 74.0 42-120	Benzo(g,h,i)perylene	0.243	0.001	0.010	ug/L	0.300		81.0	38-120			
Surrogate: Dibenzo[a,h]anthracene-d14 0.272 ug/L 0.300 90.5 29-120 Surrogate: Fluoranthene-d10 0.244 ug/L 0.300 81.2 57-120 Prepared: 03-Jul-2019 Analyzed: 06-Jul-2019 13:18 Naphthalene 0.244 0.001 0.010 ug/L 0.300 81.2 37-120 12.90 30 P-Methylnaphthalene 0.242 0.001 0.010 ug/L 0.300 80.7 37-120 13.30 30 P-Methylnaphthalene 0.249 0.0009 0.010 ug/L 0.300 83.1 29-120 13.60 30 P-Chloronaphthalene 0.241 0.001 0.010 ug/L 0.300 80.3 30-160 14.50 30	Benzo(b)thiophene	0.217	0.001	0.010	ug/L	0.300		72.3	30-160			
LCS Dup (BHG0068-BSD1) Prepared: 03-Jul-2019 Analyzed: 06-Jul-2019 13:18	Surrogate: 2-Methylnaphthalene-d10	0.222			ug/L	0.300		74.0	42-120			
CCS Dup (BHG0068-BSD1) Prepared: 03-Jul-2019 Analyzed: 06-Jul-2019 13:18	Surrogate: Dibenzo[a,h]anthracene-d14	0.272			ug/L	0.300		90.5	29-120			
Naphthalene 0.244 0.001 0.010 ug/L 0.300 81.2 37-120 12.90 30 2-Methylnaphthalene 0.242 0.001 0.010 ug/L 0.300 80.7 37-120 13.30 30 -Methylnaphthalene 0.249 0.0009 0.010 ug/L 0.300 83.1 29-120 13.60 30 2-Chloronaphthalene 0.241 0.001 0.010 ug/L 0.300 80.3 30-160 14.50 30	Surrogate: Fluoranthene-d10	0.244			ug/L	0.300		81.2	57-120			
Naphthalene 0.244 0.001 0.010 ug/L 0.300 81.2 37-120 12.90 30 2-Methylnaphthalene 0.242 0.001 0.010 ug/L 0.300 80.7 37-120 13.30 30 -Methylnaphthalene 0.249 0.0009 0.010 ug/L 0.300 83.1 29-120 13.60 30 2-Chloronaphthalene 0.241 0.001 0.010 ug/L 0.300 80.3 30-160 14.50 30	LCS Dun (BHG0068-BSD1)				Pren	ared: 03-Jul-	2019 Anal	lyzed: 06-Ji	ıl-2019 13:1	18		
-Methylnaphthalene 0.242 0.001 0.010 ug/L 0.300 80.7 37-120 13.30 30 -Methylnaphthalene 0.249 0.0009 0.010 ug/L 0.300 83.1 29-120 13.60 30 -Chloronaphthalene 0.241 0.001 0.010 ug/L 0.300 80.3 30-160 14.50 30	Naphthalene	0.244	0.001	0.010				•			30	
-Methylnaphthalene 0.249 0.0009 0.010 ug/L 0.300 83.1 29-120 13.60 30 e-Chloronaphthalene 0.241 0.001 0.010 ug/L 0.300 80.3 30-160 14.50 30	2-Methylnaphthalene				-							
2-Chloronaphthalene 0.241 0.001 0.010 ug/L 0.300 80.3 30-160 14.50 30	• •				-							
•	• •				-							
	Biphenyl	0.252	0.001	0.010	ug/L	0.300		83.9	30-160	12.90	30	

Analytical Resources, Inc.

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

Semivolatile Organic Compounds - SIM - Quality Control

Batch BHG0068 - EPA 3510C SepF

Instrument: NT11 Analyst: VTS

QC Sample/Analyte	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
LCS Dup (BHG0068-BSD1)					ared: 03-Jul-						
2,6-Dimethylnaphthalene	0.245	0.001	0.010	ug/L	0.300	2019 Anai	81.5	30-160	14.50	30	
Acenaphthylene	0.243	0.001	0.010	ug/L ug/L	0.300		82.9	41-120	11.90	30	
Acenaphthene	0.249	0.002	0.010	ug/L ug/L	0.300		83.8	41-120	12.40	30	
Acenaphinene Dibenzofuran	0.251	0.003	0.010	ug/L ug/L	0.300		85.6	38-120	12.40	30	
2,3,5-Trimethylnaphthalene	0.257	0.002	0.010	ug/L ug/L	0.300		83.6	30-160	13.30	30	
Fluorene	0.251	0.001	0.010	ug/L ug/L	0.300		86.3	43-120	11.10	30	
Dibenzothiophene	0.259	0.002	0.010	ug/L ug/L	0.300		85.4	30-160	9.64	30	
Dibenzotniopnene Phenanthrene	0.256	0.001	0.010	ug/L ug/L	0.300		85.4 86.9	41-120	9.64 10.80	30	
Anthracene	0.243	0.001	0.010	ug/L ug/L	0.300		80.9	40-120	10.70	30	
Carbazole	0.243	0.001	0.010	ug/L ug/L	0.300		88.4	30-160	10.70	30	
Fluoranthene	0.263	0.001	0.010	ug/L ug/L	0.300		87.5	45-120	10.70	30	
Pyrene	0.262	0.002	0.010	ug/L ug/L	0.300		87.4	41-120	11.20	30	
-Methylphenanthrene	0.262	0.001	0.010	_	0.300		87.6	30-160	10.90	30	
vremyrphenanthrene Benzo(a)anthracene	0.263	0.002	0.010	ug/L ug/L	0.300		87.2	42-120	10.90	30	
Chrysene	0.262	0.0008	0.010	ug/L ug/L	0.300		89.4	44-120	11.50	30	
Benzo(b)fluoranthene	0.268	0.0009	0.010	ug/L ug/L	0.300		81.1	44-120	10.50	30	
Benzo(b)fluoranthene Benzo(k)fluoranthene		0.0003		_			80.2	50-120		30	
Benzo(k)Huoranthene Benzo(j)fluoranthene	0.240		0.010	ug/L	0.300 0.300				10.80	30	
• ,	0.245	0.002	0.010	ug/L			81.8	39-160	11.10		
Benzofluoranthenes, Total	0.729	0.004	0.010	ug/L	0.900		81.0	46-120	10.80	30	
Benzo(e)pyrene	0.258	0.001	0.010	ug/L	0.300		86.2	30-160	11.70	30	
Benzo(a)pyrene	0.242	0.002	0.010	ug/L	0.300		80.8	35-120	10.00	30	
Perylene	0.251	0.006	0.010	ug/L	0.300		83.8	30-160	11.50	30	
indeno(1,2,3-cd)pyrene	0.296	0.001	0.010	ug/L	0.300		98.7	37-120	12.90	30	
Dibenzo(a,h)anthracene	0.278	0.001	0.010	ug/L	0.300		92.7	34-120	12.00	30	
Benzo(g,h,i)perylene	0.278	0.001	0.010	ug/L	0.300		92.7	38-120	13.50	30	
Benzo(b)thiophene	0.244	0.001	0.010	ug/L	0.300		81.5	30-160	11.90	30	
Surrogate: 2-Methylnaphthalene-d10	0.241			ug/L	0.300		80.3	42-120			
Surrogate: Dibenzo[a,h]anthracene-d14	0.299			ug/L	0.300		99.7	29-120			
Surrogate: Fluoranthene-d10	0.270			ug/L	0.300		89.9	57-120			

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

Petroleum Hydrocarbons - Quality Control

Batch BHG0065 - EPA 3510C SepF

Instrument: FID4 Analyst: JGR

QC Sample/Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Blank (BHG0065-BLK1)			Prepa	ared: 03-Jul-	2019 Anal	yzed: 04-J	ul-2019 21:3	3		
Diesel Range Organics (C12-C24)	ND	0.100	mg/L							U
Motor Oil Range Organics (C24-C38)	ND	0.200	mg/L							U
Surrogate: o-Terphenyl	0.171		mg/L	0.225		76.0	50-150			
LCS (BHG0065-BS1)			Prepa	ared: 03-Jul-	2019 Anal	yzed: 04-J	ul-2019 21:5	4		
Diesel Range Organics (C12-C24)	2.34	0.100	mg/L	3.00		77.8	70-120			
Surrogate: o-Terphenyl	0.173		mg/L	0.225		76.9	50-150			
LCS Dup (BHG0065-BSD1)			Prepa	ared: 03-Jul-	2019 Anal	yzed: 04-J	ul-2019 22:1	4		
Diesel Range Organics (C12-C24)	2.28	0.100	mg/L	3.00		76.1	70-120	2.25	30	
Surrogate: o-Terphenyl	0.169		mg/L	0.225		75.0	50-150			

Analytical Resources, Inc.

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

Aroclor PCB - Quality Control

Batch BHG0066 - EPA 3510C SepF

Instrument: ECD7 Analyst: JGR

		Detection	Reporting		Spike	Source		%REC		RPD	
QC Sample/Analyte	Result	Limit	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Blank (BHG0066-BLK1)				Prepa	ared: 02-Jul-	2019 Ana	lyzed: 03-Jı	ıl-2019 15:5	54		
Aroclor 1016	ND	0.002	0.010	ug/L							U
Aroclor 1221	ND	0.002	0.010	ug/L							U
Aroclor 1232	ND	0.002	0.010	ug/L							U
Aroclor 1242	ND	0.002	0.010	ug/L							U
Aroclor 1248	ND	0.002	0.010	ug/L							U
Aroclor 1254	ND	0.002	0.010	ug/L							U
Aroclor 1260	ND	0.003	0.010	ug/L							U
Aroclor 1262	ND	0.003	0.010	ug/L							U
Aroclor 1268	ND	0.003	0.010	ug/L							U
Surrogate: Decachlorobiphenyl	0.00870			ug/L	0.0200		43.5	29-120			
Surrogate: Tetrachlorometaxylene	0.00666			ug/L	0.0200		33.3	32-120			
Surrogate: Decachlorobiphenyl [2C]	0.00821			ug/L	0.0200		41.0	29-120			
Surrogate: Tetrachlorometaxylene [2C]	0.00561			ug/L	0.0200		28.0	32-120			*
LCS (BHG0066-BS1)				Prepa	ared: 02-Jul-	2019 Ana	lyzed: 03-Jı	ıl-2019 16:1	.5		
Aroclor 1016	0.039	0.002	0.010	ug/L	0.0500		78.8	54-120			
Aroclor 1260	0.037	0.003	0.010	ug/L	0.0500		73.7	51-128			
Surrogate: Decachlorobiphenyl	0.0118			ug/L	0.0200		59.2	29-120			
Surrogate: Tetrachlorometaxylene	0.00957			ug/L	0.0200		47.8	32-120			
Surrogate: Decachlorobiphenyl [2C]	0.0116			ug/L	0.0200		58.0	29-120			
Surrogate: Tetrachlorometaxylene [2C]	0.00815			ug/L	0.0200		40.8	32-120			
LCS Dup (BHG0066-BSD1)				Prepa	ared: 02-Jul-	2019 Anal	lyzed: 03-Jı	1-2019 16:3	66		
Aroclor 1016	0.042	0.002	0.010	ug/L	0.0500		83.4	54-120	9.87	30	
Aroclor 1260	0.036	0.003	0.010	ug/L	0.0500		71.3	51-128	3.32	30	
Surrogate: Decachlorobiphenyl	0.0101			ug/L	0.0200		50.5	29-120			
Surrogate: Tetrachlorometaxylene	0.0101			ug/L	0.0200		50.7	32-120			
Surrogate: Decachlorobiphenyl [2C]	0.00976			ug/L	0.0200		48.8	29-120			
Surrogate: Tetrachlorometaxylene [2C]	0.00833			ug/L	0.0200		41.7	32-120			

Analytical Resources, Inc.

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

Metals and Metallic Compounds - Quality Control

Batch BHG0166 - REN EPA 600/4-79-020 4.1.4 HNO3 matrix

Instrument: ICPMS2 Analyst: MCB

	_		Detection	Reporting		Spike	Source		%REC		RPD	
QC Sample/Analyte	Isotope	Result	Limit	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Blank (BHG0166-BLK1)					Prep	ared: 08-Jul-	-2019 Anal	yzed: 08-J	ul-2019 17:0)8		
Lead	208	ND	0.0680	0.100	ug/L							U
Manganese	55	ND	0.0850	0.500	ug/L							U
Arsenic	75a	ND	0.0220	0.200	ug/L							U
Cadmium	111	ND	0.0300	0.100	ug/L							U
Cadmium	114	ND	0.0400	0.100	ug/L							U
Copper	63	ND	0.340	0.500	ug/L							U
Copper	65	ND	0.350	0.500	ug/L							U
Zinc	66	1.48	0.820	4.00	ug/L							J
Zinc	67	1.58	0.940	4.00	ug/L							J
LCS (BHG0166-BS1)					Prep	ared: 08-Jul-	-2019 Anal	yzed: 08-J	ul-2019 17:1	12		
Lead	208	25.9	0.0680	0.100	ug/L	25.0		104	80-120			
Manganese	55	26.5	0.0850	0.500	ug/L	25.0		106	80-120			
Arsenic	75a	24.0	0.0220	0.200	ug/L	25.0		96.1	80-120			
Cadmium	111	25.2	0.0300	0.100	ug/L	25.0		101	80-120			
Cadmium	114	25.3	0.0400	0.100	ug/L	25.0		101	80-120			
Copper	63	26.2	0.340	0.500	ug/L	25.0		105	80-120			
Copper	65	26.3	0.350	0.500	ug/L	25.0		105	80-120			
Zinc	66	84.3	0.820	4.00	ug/L	80.0		105	80-120			
Zinc	67	81.5	0.940	4.00	ug/L	80.0		102	80-120			
Duplicate (BHG0166-DUP1)	S	ource: 190	G0017-01	Prep	ared: 08-Jul-	-2019 Anal	yzed: 08-J	ul-2019 21:3	36			
Lead	208	ND	0.0680	0.100	ug/L		ND	•				U
Arsenic	75a	2.08	0.0220	0.200	ug/L		2.17			4.34	20	
Cadmium	111	ND	0.0300	0.100	ug/L		ND					U
Copper	63	0.423	0.340	0.500	ug/L		0.426			0.71	20	J
Zinc	66	7.61	0.820	4.00	ug/L		10.2			29.20	20	
Duplicate (BHG0166-DUP2)	Source: 19G0017-01			Prep	Prepared: 08-Jul-2019 Analyzed: 09-Jul-2019 19:00							
Manganese	55	677	0.425	2.50	ug/L		675			0.32	20	D
Matrix Spike (BHG0166-MS1)		Source: 19G0017-01			Prep	Prepared: 08-Jul-2019 Analyzed: 08-Jul-2019 21						
Lead	208	25.7	0.0680	0.100	ug/L	25.0	ND	103	75-125			
Arsenic	75a	26.6	0.0220	0.200	ug/L	25.0	2.17	97.7	75-125			
Cadmium	111	25.5	0.0300	0.100	ug/L	25.0	ND	102	75-125			
Copper	63	26.7	0.340	0.500	ug/L	25.0	0.426	105	75-125			
					-							

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

Metals and Metallic Compounds - Quality Control

Batch BHG0166 - REN EPA 600/4-79-020 4.1.4 HNO3 matrix

Instrument: ICPMS2 Analyst: MCB

Isotope	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
	Sou	ırce: 19G	0017-01	Prepa	red: 08-Jul-	2019 Ana	lyzed: 08-Jı	ıl-2019 21:4	10		
66	87.6	0.820	4.00	ug/L	80.0	10.2	96.7	75-125			
		Isotope Result Sou	Source: 19G	Source: 19G0017-01	Source: 19G0017-01 Prepa	Isotope Result Limit Limit Units Level Source: 19G0017-01 Prepared: 08-Jul-	Source: 19G0017-01 Prepared: 08-Jul-2019 Anal	Isotope Result Limit Limit Units Level Result %REC Source: 19G0017-01 Prepared: 08-Jul-2019 Analyzed: 08-Jul-2019	Isotope Result Limit Limit Units Level Result %REC Limits Source: 19G0017-01 Prepared: 08-Jul-2019 Analyzed: 08-Jul-2019 21:4	Source: 19G0017-01 Prepared: 08-Jul-2019 Analyzed: 08-Jul-2019 21:40	Source: 19G0017-01 Prepared: 08-Jul-2019 Analyzed: 08-Jul-2019 21:40

Recovery limits for target analytes in MS/MSD QC samples are advisory only.

Matrix Spike (BHG0166-MS2)	So	Source: 19G0017-01			Prepared: 08-Jul-2019 Analyzed: 09-Jul-2019 19:04						
Manganese	55	713	0.425	2.50	ug/L	25.0	675	151	75-125		D

Recovery limits for target analytes in MS/MSD QC samples are advisory only.

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

Metals and Metallic Compounds - Quality Control

Batch BHG0168 - TLM EPA 7470A low level

Instrument: CVAA Analyst: SKM

		Detection	Reporting		Spike	Source		%REC		RPD	
QC Sample/Analyte	Result	Limit	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Blank (BHG0168-BLK1)				Prepa	ared: 08-Jul-	2019 Anal	lyzed: 10-J	ul-2019 15:3	66		
Mercury	ND	0.000010	0.000020	mg/L							U
LCS (BHG0168-BS1)				Prepa	ared: 08-Jul-	2019 Anal	lyzed: 10-J	ul-2019 15:3	19		
Mercury	0.000207	0.000010	0.000020	mg/L	0.000200		104	80-120			
Duplicate (BHG0168-DUP1)	S	Source: 190	G0017-05	Prepa	ared: 08-Jul-	2019 Anal	lyzed: 10-J	ul-2019 15:4	6		
Mercury	ND	0.000010	0.000020	mg/L		ND					U
Matrix Spike (BHG0168-MS1)	S	Source: 190	G0017-05	Prepa	ared: 08-Jul-	2019 Anal	lyzed: 10-J	ul-2019 15:4	19		
Mercury	0.000113	0.000010	0.000020	mg/L	0.000100	ND	113	75-125			

Recovery limits for target analytes in MS/MSD QC samples are advisory only.

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

Metals and Metallic Compounds (dissolved) - Quality Control

Batch BHG0132 - REN EPA 600/4-79-020 4.1.4 HNO3 matrix

Instrument: ICPMS2 Analyst: MCB

QC Sample/Analyte	Isotope	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Blank (BHG0132-BLK1)					Prepa	ared: 05-Jul-	2019 Ana	yzed: 08-Ju	ıl-2019 15:1	4		
Lead, Dissolved	208	ND	0.0680	0.100	ug/L							U
Manganese, Dissolved	55	ND	0.0850	0.500	ug/L							U
Arsenic, Dissolved	75a	ND	0.0220	0.200	ug/L							U
Cadmium, Dissolved	111	ND	0.0300	0.100	ug/L							U
Cadmium, Dissolved	114	ND	0.0400	0.100	ug/L							U
Copper, Dissolved	63	ND	0.340	0.500	ug/L							U
Copper, Dissolved	65	ND	0.350	0.500	ug/L							U
Zinc, Dissolved	66	1.18	0.820	4.00	ug/L							J
Zinc, Dissolved	67	0.999	0.940	4.00	ug/L							J
LCS (BHG0132-BS1)					Prepa	ared: 05-Jul-	2019 Ana	yzed: 08-Jı	ıl-2019 15:1	9		
Lead, Dissolved	208	23.7	0.0680	0.100	ug/L	25.0		95.0	80-120			
Manganese, Dissolved	55	24.0	0.0850	0.500	ug/L	25.0		96.1	80-120			
Arsenic, Dissolved	75a	23.3	0.0220	0.200	ug/L	25.0		93.1	80-120			
Cadmium, Dissolved	111	23.0	0.0300	0.100	ug/L	25.0		92.2	80-120			
Cadmium, Dissolved	114	22.8	0.0400	0.100	ug/L	25.0		91.2	80-120			
Copper, Dissolved	63	23.6	0.340	0.500	ug/L	25.0		94.6	80-120			
Copper, Dissolved	65	23.9	0.350	0.500	ug/L	25.0		95.5	80-120			
Zinc, Dissolved	66	77.3	0.820	4.00	ug/L	80.0		96.7	80-120			
Zinc, Dissolved	67	76.2	0.940	4.00	ug/L	80.0		95.2	80-120			

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

Metals and Metallic Compounds (dissolved) - Quality Control

Batch BHG0169 - TLM EPA 7470A low level

Instrument: CVAA Analyst: SKM

		Detection	Reporting		Spike	Source		%REC		RPD	
QC Sample/Analyte	Result	Limit	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Blank (BHG0169-BLK1)				Prepa	ared: 08-Jul-	2019 Anal	yzed: 10-J	ul-2019 16:5	66		
Mercury, Dissolved	0.000014	0.000010	0.000020	mg/L							J
LCS (BHG0169-BS1)				Prepa	ared: 08-Jul-	2019 Anal	yzed: 10-J	ul-2019 16:5	59		
Mercury, Dissolved	0.000212	0.000010	0.000020	mg/L	0.000200		106	80-120			
Duplicate (BHG0169-DUP1)	S	ource: 190	G0017-17	Prepa	ared: 08-Jul-	2019 Anal	yzed: 10-J	ul-2019 17:0)5		
Mercury, Dissolved	0.000015	0.000010	0.000020	mg/L		ND					J
Matrix Spike (BHG0169-MS1)	S	ource: 190	G0017-17	Prepa	ared: 08-Jul-	2019 Anal	yzed: 10-J	ul-2019 17:0	08		
Mercury, Dissolved	0.000118	0.000010	0.000020	mg/L	0.000100	ND	118	75-125			

Recovery limits for target analytes in MS/MSD QC samples are advisory only.

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

Certified Analyses included in this Report

Analyte	Certifications	
EPA 6020A in Water		
Manganese-55	NELAP,WADOE,DoD-ELAP	
Lead-208	NELAP,WADOE,DoD-ELAP,ADEC	
Manganese-55	NELAP,WADOE,DoD-ELAP	
Lead-208	NELAP,WADOE,DoD-ELAP,ADEC	
EPA 6020A UCT-KED in Water		
Arsenic-75a	WADOE,WA-DW,DoD-ELAP,ADEC,NELAP	
Cadmium-111	NELAP,WADOE,DoD-ELAP,ADEC	
Cadmium-114	NELAP,WADOE,DoD-ELAP,ADEC	
Copper-63	NELAP,WADOE,DoD-ELAP	
Copper-65	NELAP,WADOE,DoD-ELAP	
Zinc-66	WADOE,WA-DW,DoD-ELAP	
Zinc-67	WADOE,WA-DW,DoD-ELAP	
Arsenic-75a	NELAP,WADOE,DoD-ELAP,ADEC	
Cadmium-111	NELAP,WADOE,DoD-ELAP,ADEC	
Cadmium-114	NELAP,WADOE,DoD-ELAP,ADEC	
Copper-63	NELAP,WADOE,DoD-ELAP	
Copper-65	NELAP,WADOE,DoD-ELAP	
Zinc-66	NELAP,WADOE,DoD-ELAP	
Zinc-67	NELAP,WADOE,DoD-ELAP	
EPA 7470A in Water		
Mercury	WADOE,NELAP,DoD-ELAP,CALAP	
Mercury	WADOE,NELAP,DoD-ELAP,CALAP	
EPA 8082A in Water		
Aroclor 1016	WADOE, DoD-ELAP, NELAP, CALAP, ADEC	
Aroclor 1016 [2C]	WADOE, DoD-ELAP, NELAP, CALAP, ADEC	
Aroclor 1221	WADOE, DoD-ELAP, NELAP, CALAP, ADEC	
Aroclor 1221 [2C]	WADOE, DoD-ELAP, NELAP, CALAP, ADEC	
Aroclor 1232	WADOE, DoD-ELAP, NELAP, CALAP, ADEC	
Aroclor 1232 [2C]	WADOE,DoD-ELAP,NELAP,CALAP,ADEC	
Aroclor 1242	WADOE,DoD-ELAP,NELAP,CALAP,ADEC	
Aroclor 1242 [2C]	WADOE,DoD-ELAP,NELAP,CALAP,ADEC	
Aroclor 1248	WADOE,DoD-ELAP,NELAP,CALAP,ADEC	
Aroclor 1248 [2C]	WADOE,DoD-ELAP,NELAP,CALAP,ADEC	

Analytical Resources, Inc.

Aroclor 1254

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

WADOE, DoD-ELAP, NELAP, CALAP, ADEC

Farallon Consulting, LLC	Project: Emerald Gateway Site 1071-026	
1809 7th Ave, Suite 1111	Project Number: 1071-026	Reported:
Seattle WA, 98101	Project Manager: Pete Kingston	12-Jul-2019 16:01
Aroclor 1254 [2C]	WADOE, DoD-ELAP, NELAP, CALAP, ADEC	
Aroclor 1260	WADOE,DoD-ELAP,NELAP,CALAP,ADEC	
Aroclor 1260 [2C]	WADOE, DoD-ELAP, NELAP, CALAP, ADEC	
Aroclor 1262	WADOE, DoD-ELAP, NELAP, CALAP, ADEC	
Aroclor 1262 [2C]	WADOE, DoD-ELAP, NELAP, CALAP, ADEC	
Aroclor 1268	WADOE, DoD-ELAP, NELAP, CALAP, ADEC	
Aroclor 1268 [2C]	WADOE,DoD-ELAP,NELAP,CALAP,ADEC	
EPA 8260C in Water		
Chloromethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
Vinyl Chloride	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
Bromomethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
Chloroethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
Trichlorofluoromethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
Acrolein	DoD-ELAP,NELAP,CALAP,WADOE	
1,1,2-Trichloro-1,2,2-Trifluoroethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
Acetone	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
1,1-Dichloroethene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
Bromoethane	DoD-ELAP,NELAP,CALAP,WADOE	
lodomethane	DoD-ELAP,NELAP,CALAP,WADOE	
Methylene Chloride	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
Acrylonitrile	DoD-ELAP,NELAP,CALAP,WADOE	
Carbon Disulfide	DoD-ELAP,NELAP,CALAP,WADOE	
trans-1,2-Dichloroethene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
Vinyl Acetate	DoD-ELAP,NELAP,CALAP,WADOE	
1,1-Dichloroethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
2-Butanone	DoD-ELAP,NELAP,CALAP,WADOE	
2,2-Dichloropropane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
cis-1,2-Dichloroethene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
Chloroform	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
Bromochloromethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
1,1,1-Trichloroethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
1,1-Dichloropropene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
Carbon tetrachloride	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
1,2-Dichloroethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
Benzene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
Trichloroethene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
1,2-Dichloropropane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
Bromodichloromethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
Dibromomethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	

Analytical Resources, Inc.

l	Farallon Consulting, LLC	Project: Emerald Gateway Site 1071-026	
l	1809 7th Ave, Suite 1111	Project Number: 1071-026	Reported:
l	Seattle WA, 98101	Project Manager: Pete Kingston	12-Jul-2019 16:01

2-Chloroethyl vinyl ether DoD-ELAP, ADEC, NELAP, CALAP, WADOE 4-Methyl-2-Pentanone DoD-ELAP, NELAP, CALAP, WADOE cis-1,3-Dichloropropene DoD-ELAP, ADEC, NELAP, CALAP, WADOE Toluene DoD-ELAP, ADEC, NELAP, CALAP, WADOE trans-1,3-Dichloropropene DoD-ELAP, ADEC, NELAP, CALAP, WADOE 2-Hexanone DoD-ELAP, NELAP, CALAP, WADOE 1,1,2-Trichloroethane DoD-ELAP,ADEC,NELAP,CALAP,WADOE DoD-ELAP, ADEC, NELAP, CALAP, WADOE 1,3-Dichloropropane Tetrachloroethene DoD-ELAP, ADEC, NELAP, CALAP, WADOE Dibromochloromethane DoD-ELAP, ADEC, NELAP, CALAP, WADOE 1,2-Dibromoethane DoD-ELAP, NELAP, CALAP, WADOE Chlorobenzene DoD-ELAP, ADEC, NELAP, CALAP, WADOE Ethylbenzene DoD-ELAP, ADEC, NELAP, CALAP, WADOE 1,1,1,2-Tetrachloroethane DoD-ELAP, ADEC, NELAP, CALAP, WADOE m,p-Xylene DoD-ELAP, ADEC, NELAP, CALAP, WADOE o-Xylene DoD-ELAP, ADEC, NELAP, CALAP, WADOE Styrene DoD-ELAP, NELAP, CALAP, WADOE Bromoform DoD-ELAP, NELAP, CALAP, WADOE DoD-ELAP, ADEC, NELAP, CALAP, WADOE 1,1,2,2-Tetrachloroethane 1,2,3-Trichloropropane DoD-ELAP, ADEC, NELAP, CALAP, WADOE trans-1.4-Dichloro 2-Butene DoD-ELAP, ADEC, NELAP, CALAP, WADOE n-Propylbenzene DoD-ELAP, NELAP, CALAP, WADOE Bromobenzene DoD-ELAP, NELAP, CALAP, WADOE Isopropyl Benzene DoD-ELAP, NELAP, CALAP, WADOE 2-Chlorotoluene DoD-ELAP, ADEC, NELAP, CALAP, WADOE 4-Chlorotoluene DoD-ELAP, ADEC, NELAP, CALAP, WADOE DoD-ELAP, NELAP, CALAP, WADOE t-Butylbenzene 1,3,5-Trimethylbenzene DoD-ELAP, NELAP, CALAP, WADOE 1,2,4-Trimethylbenzene DoD-ELAP, NELAP, CALAP, WADOE s-Butylbenzene DoD-ELAP, NELAP, CALAP, WADOE 4-Isopropyl Toluene DoD-ELAP, NELAP, CALAP, WADOE 1,3-Dichlorobenzene DoD-ELAP, ADEC, NELAP, CALAP, WADOE 1,4-Dichlorobenzene DoD-ELAP, ADEC, NELAP, CALAP, WADOE n-Butylbenzene DoD-ELAP, NELAP, CALAP, WADOE 1.2-Dichlorobenzene DoD-ELAP, ADEC, NELAP, CALAP, WADOE 1,2-Dibromo-3-chloropropane DoD-ELAP, ADEC, NELAP, CALAP, WADOE 1.2.4-Trichlorobenzene DoD-ELAP, ADEC, NELAP, CALAP, WADOE Hexachloro-1,3-Butadiene DoD-ELAP,ADEC,NELAP,CALAP,WADOE Naphthalene DoD-ELAP, ADEC, NELAP, CALAP, WADOE 1,2,3-Trichlorobenzene DoD-ELAP, ADEC, NELAP, CALAP, WADOE

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston12-Jul-2019 16:01

Dichlorodifluoromethane

DoD-ELAP,ADEC,NELAP,CALAP,WADOE

Methyl tert-butyl Ether

DoD-ELAP,ADEC,NELAP,CALAP,WADOE

n-Hexane WADOE 2-Pentanone WADOE

EPA 8270D-SIM in Water

Naphthalene ADEC, DoD-ELAP, NELAP, CALAP, WADOE

2-Methylnaphthalene ADEC,DoD-ELAP,NELAP,CALAP

1-Methylnaphthalene ADEC,DoD-ELAP,NELAP,CALAP,WADOE

Biphenyl NELAP

Acenaphthylene ADEC,DoD-ELAP,NELAP,CALAP,WADOE Acenaphthene ADEC,DoD-ELAP,NELAP,CALAP,WADOE

Dibenzofuran ADEC, DoD-ELAP, NELAP, CALAP

Fluorene ADEC,DoD-ELAP,NELAP,CALAP,WADOE Phenanthrene ADEC,DoD-ELAP,NELAP,CALAP,WADOE Anthracene ADEC,DoD-ELAP,NELAP,CALAP,WADOE

Carbazole NELAP

Fluoranthene ADEC,DoD-ELAP,NELAP,CALAP,WADOE
Pyrene ADEC,DoD-ELAP,NELAP,CALAP,WADOE
Benzo(a)anthracene ADEC,DoD-ELAP,NELAP,CALAP,WADOE
Chrysene ADEC,DoD-ELAP,NELAP,CALAP,WADOE
Benzo(b)fluoranthene ADEC,DoD-ELAP,NELAP,CALAP,WADOE
Benzo(k)fluoranthene ADEC,DoD-ELAP,NELAP,CALAP,WADOE

Benzo(j)fluoranthene ADEC,DoD-ELAP,NELAP,WADOE

Benzo(e)pyrene NELAP

Benzo(a)pyrene ADEC,DoD-ELAP,NELAP,CALAP,WADOE

Perylene ADEC,NELAP,CALAP

Indeno(1,2,3-cd)pyreneADEC,DoD-ELAP,NELAP,CALAP,WADOEDibenzo(a,h)anthraceneADEC,DoD-ELAP,NELAP,CALAP,WADOEBenzo(g,h,i)peryleneADEC,DoD-ELAP,NELAP,CALAP,WADOE

NWTPH-Dx in Water

Diesel Range Organics (C12-C24)

DoD-ELAP,NELAP,WADOE

Diesel Range Organics (C10-C25)

Diesel Range Organics (Tol-C18)

Diesel Range Organics (C10-C24)

Diesel Range Organics (C10-C24)

Diesel Range Organics (C10-C28)

DoD-ELAP,NELAP,WADOE

DoD-ELAP,NELAP,WADOE

Diesel Range Organics (C12-C22) DoD-ELAP
Diesel Range Organics (C12-C25) DoD-ELAP

Motor Oil Range Organics (C24-C38)

DoD-ELAP,NELAP,WADOE

DoD-ELAP,NELAP,WADOE

Analytical Resources, Inc.

	Farallon Consulting, LLC	Project: Emerald Gateway Site 1071-026	
ı	1809 7th Ave, Suite 1111	Project Number: 1071-026	Reported:
١	Seattle WA, 98101	Project Manager: Pete Kingston	12-Jul-2019 16:01

Motor Oil Range Organics (C24-C40)	DoD-ELAP,NELAP,WADOE
Residual Range Organics (C23-C32)	DoD-ELAP
Mineral Spirits Range Organics (Tol-C12)	DoD-ELAP,NELAP,WADOE
Mineral Oil Range Organics (C16-C28)	DoD-ELAP,NELAP,WADOE
Kerosene Range Organics (Tol-C18)	DoD-ELAP,NELAP,WADOE
JP8 Range Organics (C8-C18)	DoD-ELAP,NELAP,WADOE
JP5 Range Organics (C10-C16)	DoD-ELAP,NELAP,WADOE
JP4 Range Organics (Tol-C14)	DoD-ELAP,NELAP,WADOE
Jet-A Range Organics (C10-C18)	DoD-ELAP,NELAP,WADOE
Creosote Range Organics (C12-C22)	DoD-ELAP,NELAP,WADOE
Bunker C Range Organics (C10-C38)	DoD-ELAP,NELAP,WADOE
Stoddard Range Organics (C8-C12)	DoD-ELAP,NELAP,WADOE
Transformer Oil Range Organics (C12-C28)	DoD-ELAP,NELAP,WADOE

NWTPHg in Water

Gasoline Range Organics (Tol-Nap)

Gasoline Range Organics (2MP-TMB)

Gasoline Range Organics (Tol-C12)

Gasoline Range Organics (C6-C10)

Gasoline Range Organics (C5-C12)

WADOE,DoD-ELAP

WADOE,ADEC,DoD-ELAP

WADOE,DoD-ELAP

Code	Description	Number	Expires
ADEC	Alaska Dept of Environmental Conservation	17-015	01/31/2021
CALAP	California Department of Public Health CAELAP	2748	06/30/2019
DoD-ELAP	DoD-Environmental Laboratory Accreditation Program	66169	01/01/2021
NELAP	ORELAP - Oregon Laboratory Accreditation Program	WA100006-012	05/12/2020
WADOE	WA Dept of Ecology	C558	06/30/2019
WA-DW	Ecology - Drinking Water	C558	06/30/2019

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111 Project Number: 1071-026 Reported: Seattle WA, 98101 Project Manager: Pete Kingston 12-Jul-2019 16:01

Notes and Definitions

*	Flagged value is not within established control limits.
D	The reported value is from a dilution
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL)
Н	Hold time violation - Hold time was exceeded.
J	Estimated concentration value detected below the reporting limit.
P1	The reported value is greater than 40% difference between the concentrations determined on two GC columns where applicable.
Q	Indicates a detected analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20% RSD, <20% drift or minimum RRF)
U	This analyte is not detected above the reporting limit (RL) or if noted, not detected above the limit of detection (LOD).
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
[2C]	Indicates this result was quantified on the second column on a dual column analysis.

11 July 2019

Pete Kingston Farallon Consulting, LLC 1809 7th Ave, Suite 1111 Seattle, WA 98101

RE: Emerald Gateway Site 1071-026

Please find enclosed sample receipt documentation and analytical results for samples from the project referenced above.

Sample analyses were performed according to ARI's Quality Assurance Plan and any provided project specific Quality Assurance Plan. Each analytical section of this report has been approved and reviewed by an analytical peer, the appropriate Laboratory Supervisor or qualified substitute, and a technical reviewer.

Should you have any questions or problems, please feel free to contact us at your convenience.

Associated Work Order(s)

19G0023

Associated SDG ID(s)
N/A

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed in the enclose Narrative. ARI, an accredited laboratory, certifies that the report results for which ARI is accredited meets all the requirements of the accrediting body. A list of certified analyses, accreditations, and expiration dates is included in this report.

Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in it entirety.

Cert# 100006 Acc

Chain of Custody Record & Laboratory Analysis Request Analytical Resources, Incorporated ARI Assigned Number: Turn-around Requested: Page: of Analytical Chemists and Consultants 460023 4611 South 134th Place, Suite 100 ARI Client Company: Phone: Date: Ice Tukwila, WA 98168 206-200-2346 Favallon Present? 206-695-6200 206-695-6201 (fax) Client Contact: No. of Cooler www.arilabs.com Kingston Coolers: Temps: Client Project Name; Analysis Requested Notes/Comments antew any Emerald 7/200.5/7470 NWTP H-DX Samplers: Total Metals Client Project #: DRO/020 Sugar 8052.A PAHS PC BS BTEX 6,00 Sample ID Date Time Matrix No. Containers FMW-01-190702 13 X W X X FMW-02-190702 13 X Comments/Special Instructions Relinguished by: Received by: Relinquished by: Received by: Metals = As, Cd, Cu, Pb, Ag, Mn, Zn (Signature) (Signature) (Signature) Printed Name: Printed Name: Company: Company: Company: Date & Time: Date & Time: 1202

Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or cosigned agreement between ARI and the Client.

Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston11-Jul-2019 12:11

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
FMW-01-190702	19G0023-01	Water	02-Jul-2019 10:15	02-Jul-2019 12:02
FMW-01-190702	19G0023-02	Water	02-Jul-2019 10:15	02-Jul-2019 12:02
FMW-02-190702	19G0023-03	Water	02-Jul-2019 11:15	02-Jul-2019 12:02
FMW-02-190702	19G0023-04	Water	02-Jul-2019 11:15	02-Jul-2019 12:02

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston11-Jul-2019 12:11

Work Order Case Narrative

Sample receipt

Samples as listed on the preceding page were received July 2, 2019 under ARI work order 19G0023. For details regarding sample receipt, please refer to the Cooler Receipt Form.

Volatiles - EPA Method SW8260C

The samples were analyzed within the recommended holding times.

Initial and continuing calibrations were within method requirements.

Internal standard areas were within limits.

The surrogate percent recoveries were within control limits.

The method blanks were clean at the reporting limits.

The LCS/LCSD percent recoveries and RPD were within control limits.

Gasoline by NWTPH-g (GC/MS)

The samples were analyzed within the recommended holding times.

Initial and continuing calibrations were within method requirements.

Internal standard areas were within limits.

The surrogate percent recoveries were within control limits.

The method blanks were clean at the reporting limits.

The LCS/LCSD percent recoveries and RPD were within control limits.

Polynuclear Aromatic Hydrocarbons (PAH) - EPA Method SW8270D-SIM

The samples were extracted and analyzed within the recommended holding times.

Sample FMW-01-190702 was reanalyzed at a dilution due to the Naphthalene concentration exceeding the upper calibration range. The initial analysis has been flagged with an "E" qualifier. No further corrective action was taken.

Initial and continuing calibrations were within method requirements.

Internal standard areas were within limits.

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston11-Jul-2019 12:11

The surrogate percent recoveries were within control limits.

The method blank was clean at the reporting limits.

The LCS/LCSD percent recoveries and RPD were within control limits.

<u>Diesel/Heavy Oil Range Organics - WA-Ecology Method NW-TPHDx</u>

The samples were extracted and analyzed within the recommended holding times.

Initial and continuing calibrations were within method requirements.

The surrogate percent recoveries were within control limits.

The method blank was clean at the reporting limits.

The LCS/LCSD percent recoveries and RPD were within control limits.

PCB Aroclors - EPA Method SW8082A

The samples were extracted and analyzed within the recommended holding times.

Initial and continuing calibrations were within method requirements.

Internal standard areas were within limits.

Sample FMW-01-190702 has low surrogate percent recoveries for both columns of Decachlorobiphenyl. The samples are non-detect, and due to the rush nature of the work order the sample was not re-extracted. All other surrogate percent recoveries were within control limits. No corrective action was taken.

The method blank was clean at the reporting limits.

The LCS/LCSD percent recoveries and RPD were within control limits.

Total and Dissolved Metals - EPA Method 6020A

The samples were digested and analyzed within the recommended holding times.

Initial and continuing calibrations were within method requirements.

The method blanks were clean at the reporting limits.

The LCS percent recoveries were within control limits.

Total and Dissolved Hg - EPA Method 7470A

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston11-Jul-2019 12:11

The samples were digested and analyzed within the recommended holding times.

Initial and continuing calibrations were within method requirements.

The method blanks were clean at the reporting limits.

The LCS percent recoveries were within control limits.

A dissolved matrix spike and duplicate were prepared in conjunction with sample FMW -01-190702. The matrix spike percent recovery and duplicate RPD were within QC limits.

Analytical Resources, Inc.

Printed: 7/2/2019 1:15:43PM

WORK ORDER

19G0023

Client: Farallon Consulting, LLC Project Manager: Amanda Volgardsen Project: Emerald Gateway Site 1071-026 Project Number: 1071-026 **Invoice To:** Report To: Farallon Consulting, LLC Farallon Consulting, LLC Pete Kingston Yusuf Pehlivan 1809 7th Ave, Suite 1111 975 5th Avenue Northwest Seattle, WA 98101 Issaquah, WA 98027 Phone: (425) 394-4146 Phone: (425) 394-4415 Fax: -Fax: -Date Due: 10-Jul-2019 18:00 (5 day TAT) Received By: Jacob Walter Date Received: 02-Jul-2019 12:02 Logged In By: Erin I. Salle Date Logged In: 02-Jul-2019 13:09 Samples Received at:5.2°C Intact, properly signed and dated custody seals attached to outside of cooler(s).....No Custody papers included with the cooler Custody papers properly filled out (in, signed, analyses requested, etc)......Yes Was a temperature blank included in the cooler...... No All bottle labels complete and legible..... Bottle labels and tags agree with COC..... Correct bottles used for the requested analyses..... Analyses/bottles require preservation (attach preservation sheet excluding VOC). Yes Sufficient amount of sample sent in each bottle..... Sample split at ARI No

WORK ORDER

19G0023

Client: Farallon Consulting, LLC Project Manager: Amanda Volgardsen

Project: Emerald Gateway Site 1071-026 Project Number: 1071-026

Analysis	Due	TAT	Expires	Comments
19G0023-01 FMW-01-190702 [Wate	r] Sampled 02-J	ul-2019 1	0:15	
TPH NW (Extractables) low level	07/10/2019	5	7/9/2019	
8082A PCB Water 0.01	07/10/2019	5	7/9/2019	
Met 7470A Hg Low Level	07/10/2019	5	7/30/2019	
Met 6020A - Pb	07/10/2019	5	12/29/2019	
Met 6020A - Mn	07/10/2019	5	12/29/2019	
Met 6020A - Cu UCT	07/10/2019	5	12/29/2019	
Met 6020A - Cd UCT	07/10/2019	5	12/29/2019	
Met 6020A - As UCT	07/10/2019	5	12/29/2019	
8270D-SIM PAH Low (0.01 ug/L - 0.5 ug/kg	07/10/2019	5	7/9/2019	
8260C VOA	07/10/2019	5	7/16/2019	
Met 6020A - Zn UCT	07/10/2019	5	12/29/2019	
8260C Gas (NWTPH)	07/10/2019	5	7/16/2019	
19G0023-02 FMW-01-190702 Wate	r Sampled 02-J	ul-2019 1	0:15	
Met Diss 6020A - Zn UCT	07/10/2019	5	12/29/2019	
Met Diss 6020A - Pb	07/10/2019	5	12/29/2019	
Met Diss 6020A - Mn	07/10/2019	5	12/29/2019	
Met Diss 6020A - Cu UCT	07/10/2019	5	12/29/2019	
Met Diss 6020A - Cd UCT	07/10/2019	5	12/29/2019	
Met Diss 6020A - As UCT	07/10/2019	5	12/29/2019	
Met Diss 7470A Hg	07/10/2019	5	7/30/2019	
Met Diss 7470A Hg Low level	07/10/2019	5	7/30/2019	
19G0023-03 FMW-02-190702 [Wate	r Sampled 02-J	ul-2019 1	1:15	
Met 6020A - Cu UCT	07/10/2019	5	12/29/2019	
8260C Gas (NWTPH)	07/10/2019	5	7/16/2019	
8260C VOA	07/10/2019	5	7/16/2019	
8082A PCB Water 0.01	07/10/2019	5	7/9/2019	
8270D-SIM PAH Low (0.01 ug/L - 0.5 ug/kg	07/10/2019	5	7/9/2019	
Met 6020A - Zn UCT	07/10/2019	5	12/29/2019	
Met 6020A - Cd UCT	07/10/2019	5	12/29/2019	
Met 6020A - Mn	07/10/2019	5	12/29/2019	
Met 6020A - Pb	07/10/2019	5	12/29/2019	
TPH NW (Extractables) low level	07/10/2019	5	7/9/2019	
Met 7470A Hg Low Level	07/10/2019	5	7/30/2019	
Met 6020A - As UCT	07/10/2019	5	12/29/2019	
19G0023-04 FMW-02-190702 [Wate	rl Sampled 02-1	ul-2019 1	1:15	
Met Diss 6020A - Zn UCT	07/10/2019	5	12/29/2019	
Met Diss 6020A - Cu UCT	07/10/2019	5	12/29/2019	
Met Diss 6020A - Pb	07/10/2019	5	12/29/2019	

Reviewed By

Date

Printed: 7/2/2019 1:15:43PM

WORK ORDER

19G0023

Client: Farallon Consulting, LLC

Project Manager: Amanda Volgardsen

Project: Emerald Gateway Site 1071-026

Project Number: 1071-026

Analysis	Due	TAT	Expires	Comments	
Met Diss 6020A - Mn	07/10/2019	5	12/29/2019		
Met Diss 6020A - Cd UCT	07/10/2019	5	12/29/2019		
Met Diss 6020A - As UCT	07/10/2019	5	12/29/2019		
Met Diss 7470A Hg Low level	07/10/2019	5	7/30/2019		
Met Diss 7470A Hg	07/10/2019	5	7/30/2019		

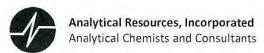
Printed: 7/2/2019 1:15:43PM

WORK ORDER

A last characteristic field and the control of the	
19G0023	
1700023	

Client: Farallon Consulting, LLC

Project: Emerald Gateway Site 1071-026


Project Manager: Amanda Volgardsen
Project Number: 1071-026

Preservation Confirmation

Container ID	Container Type	pН	
19G0023-01 A	HDPE NM, 500 mL, 1:1 HNO3	12	pass
19G0023-01 B	Glass NM, Amber, 500 mL	070 130 70	foots
19G0023-01 C	Glass NM, Amber, 500 mL		
19G0023-01 D	Glass NM, Amber, 500 mL		
19G0023-01 E	Glass NM, Amber, 500 mL		
19G0023-01 F	Glass NM, Amber, 500 mL		
19G0023-01 G	Glass NM, Amber, 500 mL		
19G0023-01 H	VOA Vial, Clear, 40 mL, HCL		
19G0023-01 I	VOA Vial, Clear, 40 mL, HCL		
19G0023-01 J	VOA Vial, Clear, 40 mL, HCL		
19G0023-01 K	VOA Vial, Clear, 40 mL, HCL		
19G0023-01 L	VOA Vial, Clear, 40 mL, HCL		
19G0023-02 A	HDPE NM, 500 mL, 1:1 HNO3	22	Dass
19G0023-03 A	HDPE NM, 500 mL, 1:1 HNO3	12	cass
19G0023-03 B	Glass NM, Amber, 500 mL		1
19G0023-03 C	Glass NM, Amber, 500 mL		
19G0023-03 D	Glass NM, Amber, 500 mL		
19G0023-03 E	Glass NM, Amber, 500 mL		
19G0023-03 F	Glass NM, Amber, 500 mL		
19G0023-03 G	Glass NM, Amber, 500 mL		
19G0023-03 H	VOA Vial, Clear, 40 mL, HCL		
19G0023-03 I	VOA Vial, Clear, 40 mL, HCL		
19G0023-03 J	VOA Vial, Clear, 40 mL, HCL		
19G0023-03 K	VOA Vial, Clear, 40 mL, HCL		
19G0023-03 L	VOA Vial, Clear, 40 mL, HCL		
19G0023-04 A	HDPE NM, 500 mL, 1:1 HNO3	47_	pass

Preservation Confirmed By

Date

Cooler Receipt Form

Call	9.2	Com	rald Ga	1000	,
ARI Client: Faralla	× 1	Project Name:	are or	rtent	7
COC No(s):	NA	Delivered by: Fed-Ex UPS Cou	rier Hand Delivere	d Other:	_
Assigned ARI Job No:	0023	Tracking No:		ϵ	NA
Preliminary Examination Phase:					
Were intact, properly signed and	dated custody seals attached to the	e outside of the cooler?	YE	is d	NO
Were custody papers included will	th the cooler?	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	YE	is i	NO
	ed out (ink, signed, etc.)commended 2.0-6.0 °C for chemis			§ 1	NO .
If cooler temperature is out of con	opliance fill out form 00070F	1 1-	Temp Gun ID#:	06200D	6
Cooler Accepted by:	J3w	Date: 07/02/19 Time	1200	L	
		d attach all shipping documents			
Log-In Phase:					
W-1	11.10			1.25	
	ed in the cooler?		Dlack Danes Othe	YES	NO
	was used? Bubble Wrat				NO
	priate)? tic bags?		NA Individually	YES'	NO
			Individually	Grouped	Not
	dition (unbroken)?			YES'	NO
	and legible?			YES	NO
Did the number of containers list	ted on COC match with the numbe	r of containers received?	**	YES	NO
Did all bottle labels and tags agr	ee with custody papers?			YES	NO
Were all bottles used correct for	the requested analyses?			YES	NO
Do any of the analyses (bottles)	require preservation? (attach pres	ervation sheet, excluding VOCs)	. NA	YES)	NO
Were all VOC vials free of air bu	bbles?	*******************	NA	YES	NO
Was sufficient amount of sample	sent in each bottle?	econtration and a contration and the contration of the contration		YES	NO
Date VOC Trip Blank was made	at ARI		NA		
Were the sample(s) split	IA YES Date/Time:	Equipment:		Split by:	
by ARI?	Ton			C 0 /	
Samples Logged by:	Date: 7/2/19	7 Time: 1309 L	abels checked by:	us	
Samples Edgged Sylve		f discrepancies or concerns **	abelo officered by.		
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	and open did of controlling			
Sample ID on Bottle	Sample ID on COC	Sample ID on Bottle	Cample	ID on COC	
Sample is on some	Sample ib on coc	Sample ID on Bottle	Sample	ID on COC	
			-		-
		1			
A JULY - LAV A DI					
Additional Notes, Discrepanci	es, & Resolutions:				
					- 1
					- 1
By: Da	ate:				

0016F 01/17/2018

Cooler Receipt Form

Revision 014A

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston11-Jul-2019 12:11

FMW-01-190702 19G0023-01 (Water)

Volatile Organic Compounds

 Method: EPA 8260C
 Sampled: 07/02/2019 10:15

 Instrument: NT3 Analyst: PKC
 Analyzed: 07/03/2019 20:13

Sample Preparation: Preparation Method: EPA 5030 (Purge and Trap)
Preparation Batch: BHG0064 Sample Size: 10 mL

Extract ID: 19G0023-01 H
Sample Size: 10 mL

Prepared: 03-Jul-2019 Final Volume: 10 mL

Analyte	CAS Number	Dilution	Detection Limit	Reporting Limit	Result	Units	Notes
Benzene	71-43-2	1	0.03	0.20	0.06	ug/L	J
Toluene	108-88-3	1	0.04	0.20	0.08	ug/L	J
Ethylbenzene	100-41-4	1	0.04	0.20	6.38	ug/L	
m,p-Xylene	179601-23-1	1	0.05	0.40	29.6	ug/L	
o-Xylene	95-47-6	1	0.03	0.20	0.15	ug/L	J
Surrogate: Toluene-d8				80-120 %	101	%	
Surrogate: 4-Bromofluorobenzene				80-120 %	97.3	%	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston11-Jul-2019 12:11

FMW-01-190702 19G0023-01 (Water)

Volatile Organic Compounds

 Method: NWTPHg
 Sampled: 07/02/2019 10:15

 Instrument: NT3
 Analyst: PKC

 Analyzed: 07/03/2019 20:13

Sample Preparation: Preparation Method: EPA 5030 (Purge and Trap) Extract ID: 19G0023-01 H

Preparation Batch: BHG0064 Sample Size: 10 mL Prepared: 03-Jul-2019 Final Volume: 10 mL

Reporting CAS Number Dilution Limit Analyte Result Units Notes ug/L Gasoline Range Organics (Tol-Nap) GRO 100 563 HC ID: GAS Surrogate: Toluene-d8 80-120 % 101 % Surrogate: 4-Bromofluorobenzene 80-120 % 97.3 %

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

Project Number: 1071-026 1809 7th Ave, Suite 1111 Reported: Seattle WA, 98101 Project Manager: Pete Kingston 11-Jul-2019 12:11

FMW-01-190702 19G0023-01 (Water)

Semivolatile Organic Compounds - SIM

Method: EPA 8270D-SIM Sampled: 07/02/2019 10:15 Instrument: NT11 Analyst: VTS Analyzed: 07/06/2019 19:45 Extract ID: 19G0023-01 C 01

Sample Preparation: Preparation Method: EPA 3510C SepF

Preparation Batch: BHG0068 Sample Size: 500 mL Prepared: 03-Jul-2019 Final Volume: 0.5 mL

			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Naphthalene	91-20-3	1	0.001	0.010	2.34	ug/L	Е
2-Methylnaphthalene	91-57-6	1	0.001	0.010	0.337	ug/L	
1-Methylnaphthalene	90-12-0	1	0.0009	0.010	0.152	ug/L	
2-Chloronaphthalene	91-58-7	1	0.001	0.010	ND	ug/L	U
Acenaphthylene	208-96-8	1	0.002	0.010	ND	ug/L	U
Acenaphthene	83-32-9	1	0.003	0.010	ND	ug/L	U
Dibenzofuran	132-64-9	1	0.002	0.010	ND	ug/L	U
Fluorene	86-73-7	1	0.002	0.010	ND	ug/L	U
Phenanthrene	85-01-8	1	0.001	0.010	0.002	ug/L	J
Anthracene	120-12-7	1	0.001	0.010	ND	ug/L	U
Carbazole	86-74-8	1	0.001	0.010	ND	ug/L	U
Fluoranthene	206-44-0	1	0.002	0.010	ND	ug/L	U
Pyrene	129-00-0	1	0.001	0.010	ND	ug/L	U
Benzo(a)anthracene	56-55-3	1	0.0008	0.010	ND	ug/L	U
Chrysene	218-01-9	1	0.0009	0.010	ND	ug/L	U
Benzo(b)fluoranthene	205-99-2	1	0.0005	0.010	ND	ug/L	U
Benzo(k)fluoranthene	207-08-9	1	0.003	0.010	ND	ug/L	U
Benzo(j)fluoranthene	205-82-3	1	0.002	0.010	ND	ug/L	U
Benzofluoranthenes, Total		1	0.004	0.010	ND	ug/L	U
Benzo(a)pyrene	50-32-8	1	0.002	0.010	ND	ug/L	U
Perylene	1985-5-0	1	0.006	0.010	ND	ug/L	U
Indeno(1,2,3-cd)pyrene	193-39-5	1	0.001	0.010	ND	ug/L	U
Dibenzo(a,h)anthracene	53-70-3	1	0.001	0.010	ND	ug/L	U
Benzo(g,h,i)perylene	191-24-2	1	0.001	0.010	ND	ug/L	U
Surrogate: 2-Methylnaphthalene-d10				42-120 %	73.0	%	
Surrogate: Dibenzo[a,h]anthracene-d14				29-120 %	75.1	%	
Surrogate: Fluoranthene-d10				57-120 %	82.0	%	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston11-Jul-2019 12:11

FMW-01-190702 19G0023-01 (Water)

Petroleum Hydrocarbons

 Method: NWTPH-Dx
 Sampled: 07/02/2019 10:15

 Instrument: FID4 Analyst: JGR
 Analyzed: 07/05/2019 03:22

Sample Preparation: Preparation Method: EPA 3510C SepF Extract ID: 19G0023-01 F 01

Preparation Batch: BHG0065 Sample Size: 500 mL Prepared: 03-Jul-2019 Final Volume: 1 mL

Analyte	CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Diesel Range Organics (C12-C24)	DRO	1	0.100	ND	mg/L	U
Motor Oil Range Organics (C24-C38)	RRO	1	0.200	ND	mg/L	U
Surrogate: o-Terphenyl			50-150 %	58.1	%	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston11-Jul-2019 12:11

FMW-01-190702 19G0023-01 (Water)

Aroclor PCB

Method: EPA 8082A			Sampled: 07/02/2019 10:15
Instrument: ECD7 Anal	yst: JGR		Analyzed: 07/06/2019 02:13
Sample Preparation:	Preparation Method: EPA 3510C SepF Preparation Batch: BHG0070 Prepared: 03-Jul-2019	Sample Size: 1000 mL Final Volume: 0.5 mL	Extract ID: 19G0023-01 B 01
Sample Cleanup:	Cleanup Method: Silica Gel Cleanup Batch: CHG0036 Cleaned: 05-Jul-2019	Initial Volume: 0.5 mL Final Volume: 0.5 mL	Extract ID: 19G0023-01 B 01
Sample Cleanup:	Cleanup Method: Sulfuric Acid Cleanup Batch: CHG0034 Cleaned: 05-Jul-2019	Initial Volume: 0.5 mL Final Volume: 0.5 mL	Extract ID:19G0023-01 B 01
Sample Cleanup:	Cleanup Method: Sulfur Cleanup Batch: CHG0035 Cleaned: 05-Jul-2019	Initial Volume: 0.5 mL Final Volume: 0.5 mL	Extract ID:19G0023-01 B 01

			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Aroclor 1016	12674-11-2	1	0.002	0.010	ND	ug/L	U
Aroclor 1221	11104-28-2	1	0.002	0.010	ND	ug/L	U
Aroclor 1232	11141-16-5	1	0.002	0.010	ND	ug/L	U
Aroclor 1242	53469-21-9	1	0.002	0.010	ND	ug/L	U
Aroclor 1248	12672-29-6	1	0.002	0.010	ND	ug/L	U
Aroclor 1254	11097-69-1	1	0.002	0.010	ND	ug/L	U
Aroclor 1260	11096-82-5	1	0.003	0.010	ND	ug/L	U
Aroclor 1262	37324-23-5	1	0.003	0.010	ND	ug/L	U
Aroclor 1268	11100-14-4	1	0.003	0.010	ND	ug/L	U
Surrogate: Decachlorobiphenyl				29-120 %	22.6	%	*
Surrogate: Tetrachlorometaxylene				32-120 %	38.9	%	
Surrogate: Decachlorobiphenyl [2C]				29-120 %	21.7	%	*
Surrogate: Tetrachlorometaxylene [2C]				32-120 %	34.3	%	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston11-Jul-2019 12:11

FMW-01-190702 19G0023-01 (Water)

Metals and Metallic Compounds

Method: EPA 6020A Sampled: 07/02/2019 10:15
Instrument: ICPMS2 Analyst: MCB Analyzed: 07/08/2019 21:22
Sample Preparation: Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix Extract ID: 19G0023-01 A 01

Sample Preparation: Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix
Preparation Batch: BHG0082 Sample Size: 25 mL

Prepared: 03-Jul-2019 Final Volume: 25 mL

Detection Reporting Analyte CAS Number Dilution Limit Limit Result Units Notes Lead 7439-92-1 1 0.06800.100 0.126 ug/L Manganese 7439-96-5 0.170 1.00 528 ug/L

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston11-Jul-2019 12:11

FMW-01-190702 19G0023-01 (Water)

Metals and Metallic Compounds

 Method: EPA 6020A UCT-KED
 Sampled: 07/02/2019 10:15

 Instrument: ICPMS2
 Analyst: MCB

 Analyzed: 07/08/2019 21:22

Sample Preparation: Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix Extract ID: 19G0023-01 A 01

Preparation Batch: BHG0082 Sample Size: 25 mL

Prepared: 03-Jul-2019 Final Volume: 25 mL

			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Arsenic	7440-38-2	1	0.0220	0.200	0.996	ug/L	
Cadmium	7440-43-9	1	0.0300	0.100	ND	ug/L	U
Copper	7440-50-8	1	0.340	0.500	0.750	ug/L	
Zinc	7440-66-6	1	0.820	4.00	22.5	ug/L	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston11-Jul-2019 12:11

FMW-01-190702 19G0023-01 (Water)

Metals and Metallic Compounds

 Method: EPA 7470A
 Sampled: 07/02/2019 10:15

 Instrument: CVAA Analyst: SKM
 Analyzed: 07/10/2019 16:50

Sample Preparation: Preparation Method: TLM EPA 7470A low level Extract ID: 19G0023-01 A

Preparation Batch: BHG0168 Sample Size: 20 mL Prepared: 08-Jul-2019 Final Volume: 20 mL

Detection Reporting Limit Analyte CAS Number Dilution Limit Result Units Notes 7439-97-6 0.000020 Mercury 1 0.000010 0.000019 mg/L J

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston11-Jul-2019 12:11

FMW-01-190702 19G0023-01RE1 (Water)

Semivolatile Organic Compounds - SIM

 Method: EPA 8270D-SIM
 Sampled: 07/02/2019 10:15

 Instrument: NT11
 Analyst: VTS

 Analyzed: 07/09/2019 15:23

Sample Preparation: Preparation Method: EPA 3510C SepF Extract ID: 19G0023-01RE1 C 01

Preparation Batch: BHG0068 Sample Size: 500 mL
Prepared: 03-Jul-2019 Final Volume: 0.5 mL

Prepared: 03-Jul-2019	Final Volume: 0	0.5 mL					
			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Naphthalene	91-20-3	5	0.007	0.050	2.98	ug/L	D
2-Methylnaphthalene	91-57-6	5	0.005	0.050	0.328	ug/L	D
1-Methylnaphthalene	90-12-0	5	0.005	0.050	0.149	ug/L	D
2-Chloronaphthalene	91-58-7	5	0.005	0.050	ND	ug/L	U
Acenaphthylene	208-96-8	5	0.009	0.050	ND	ug/L	U
Acenaphthene	83-32-9	5	0.014	0.050	ND	ug/L	U
Dibenzofuran	132-64-9	5	0.008	0.050	ND	ug/L	U
Fluorene	86-73-7	5	0.008	0.050	ND	ug/L	U
Phenanthrene	85-01-8	5	0.007	0.050	ND	ug/L	U
Anthracene	120-12-7	5	0.006	0.050	ND	ug/L	U
Carbazole	86-74-8	5	0.006	0.050	ND	ug/L	U
Fluoranthene	206-44-0	5	0.009	0.050	ND	ug/L	U
Pyrene	129-00-0	5	0.006	0.050	ND	ug/L	U
Benzo(a)anthracene	56-55-3	5	0.004	0.050	ND	ug/L	U
Chrysene	218-01-9	5	0.005	0.050	ND	ug/L	U
Benzo(b)fluoranthene	205-99-2	5	0.002	0.050	ND	ug/L	U
Benzo(k)fluoranthene	207-08-9	5	0.016	0.050	ND	ug/L	U
Benzo(j)fluoranthene	205-82-3	5	0.009	0.050	ND	ug/L	U
Benzofluoranthenes, Total		5	0.018	0.050	ND	ug/L	U
Benzo(a)pyrene	50-32-8	5	0.012	0.050	ND	ug/L	U
Perylene	1985-5-0	5	0.029	0.050	ND	ug/L	U
Indeno(1,2,3-cd)pyrene	193-39-5	5	0.005	0.050	ND	ug/L	U
Dibenzo(a,h)anthracene	53-70-3	5	0.007	0.050	ND	ug/L	U
Benzo(g,h,i)perylene	191-24-2	5	0.007	0.050	ND	ug/L	U
Surrogate: 2-Methylnaphthalene-d10				42-120 %	70.9	%	
Surrogate: Dibenzo[a,h]anthracene-d14				29-120 %	63.2	%	
Surrogate: Fluoranthene-d10				57-120 %	75.5	%	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston11-Jul-2019 12:11

FMW-01-190702 19G0023-02 (Water)

Metals and Metallic Compounds (dissolved)

Method: EPA 6020A Sampled: 07/02/2019 10:15
Instrument: ICPMS2 Analyst: MCB Analyzed: 07/08/2019 21:13
Sample Preparation: Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix Extract ID: 19G0023-02 A 01

Sample Preparation: Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix
Preparation Batch: BHG0132 Sample Size: 25 mL

Prepared: 05-Jul-2019 Final Volume: 25 mL

			Detection				
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Lead, Dissolved	7439-92-1	1	0.0680	0.100	0.0740	ug/L	J
Manganese, Dissolved	7439-96-5	2	0.170	1.00	526	ug/L	D

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston11-Jul-2019 12:11

FMW-01-190702 19G0023-02 (Water)

Metals and Metallic Compounds (dissolved)

 Method: EPA 6020A UCT-KED
 Sampled: 07/02/2019 10:15

 Instrument: ICPMS2
 Analyst: MCB

 Analyzed: 07/08/2019 21:13

Sample Preparation: Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix Extract ID: 19G0023-02 A 01

Preparation Batch: BHG0132 Sample Size: 25 mL Prepared: 05-Jul-2019 Final Volume: 25 mL

Detection Reporting Analyte CAS Number Dilution Limit Limit Result Units Notes Arsenic, Dissolved 7440-38-2 1 0.0220 0.200 0.882 ug/L Cadmium, Dissolved 7440-43-9 0.0300 0.100 ND ug/L U Copper, Dissolved 7440-50-8 0.340 0.500 0.374 ug/L J Zinc, Dissolved 7440-66-6 0.820 4.00 2.17 ug/L J

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston11-Jul-2019 12:11

FMW-01-190702 19G0023-02 (Water)

Metals and Metallic Compounds (dissolved)

Method: EPA 7470A	. , ,					S	Sampled: 07	7/02/2019 10:15		
Instrument: CVAA Analyst: JPK							Analyzed: 07/03/2019 15:50			
Sample Preparation:	Preparation Method: TWM EPA 7470A Preparation Batch: BHG0086 Prepared: 03-Jul-2019	Sample Size: 20 mL Final Volume: 20 mL				Extract ID:	19G0023-02 A			
Analyte		CAS Number	Dilution	Detection Limit	Reporting Limit	Result	Units	Notes		
Mercury, Dissolved		7439-97-6	1	0.000013	0.000100	ND	mg/L	U		
Sample Preparation:	Preparation Method: TLM EPA 7470A low lo Preparation Batch: BHG0169 Prepared: 08-Jul-2019	evel Sample Size: 2 Final Volume:					Extract ID:	19G0023-02 A		
Analyte		CAS Number	Dilution	Detection Limit	Reporting Limit	Result	Units	Notes		
Mercury, Dissolved		7439-97-6	1	0.000010	0.000020	0.000017	mg/L	J		

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston11-Jul-2019 12:11

FMW-02-190702 19G0023-03 (Water)

Volatile Organic Compounds

 Method: EPA 8260C
 Sampled: 07/02/2019 11:15

 Instrument: NT3 Analyst: PKC
 Analyzed: 07/05/2019 16:08

Sample Preparation: Preparation Method: EPA 5030 (Purge and Trap) Extract ID: 19G0023-03 J

Preparation Batch: BHG0144 Sample Size: 10 mL Prepared: 05-Jul-2019 Final Volume: 10 mL

Analyte	CAS Number	Dilution	Detection Limit	Reporting Limit	Result	Units	Notes
Benzene	71-43-2	1	0.03	0.20	ND	ug/L	U
Toluene	108-88-3	1	0.04	0.20	ND	ug/L	U
Ethylbenzene	100-41-4	1	0.04	0.20	ND	ug/L	U
m,p-Xylene	179601-23-1	1	0.05	0.40	0.07	ug/L	J
o-Xylene	95-47-6	1	0.03	0.20	ND	ug/L	U
Surrogate: Toluene-d8				80-120 %	101	%	
Surrogate: 4-Bromofluorobenzene				80-120 %	93.8	%	

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston11-Jul-2019 12:11

FMW-02-190702 19G0023-03 (Water)

Volatile Organic Compounds

 Method: NWTPHg
 Sampled: 07/02/2019 11:15

 Instrument: NT3 Analyst: PKC
 Analyzed: 07/05/2019 16:08

Sample Preparation: Preparation Method: EPA 5030 (Purge and Trap) Extract ID: 19G0023-03 J

Preparation Batch: BHG0144 Sample Size: 10 mL Prepared: 05-Jul-2019 Final Volume: 10 mL

Reporting CAS Number Dilution Limit Analyte Result Units Notes GRO ND U Gasoline Range Organics (Tol-Nap) 100 ug/L 80-120 % 101 % Surrogate: Toluene-d8 80-120 % Surrogate: 4-Bromofluorobenzene 93.8 %

Analytical Resources, Inc.

Extract ID: 19G0023-03 C 01

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston11-Jul-2019 12:11

FMW-02-190702 19G0023-03 (Water)

Semivolatile Organic Compounds - SIM

 Method: EPA 8270D-SIM
 Sampled: 07/02/2019 11:15

 Instrument: NT11
 Analyst: VTS

 Analyzed: 07/09/2019 14:23

Sample Preparation: Preparation Method: EPA 3510C SepF

Preparation Batch: BHG0068 Sample Size: 500 mL Prepared: 03-Jul-2019 Final Volume: 0.5 mL

1 repared: 05 sur 2017	Tillar vorame: e	i mai voiame. 0.5 mb					
			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Naphthalene	91-20-3	1	0.001	0.010	0.006	ug/L	J
2-Methylnaphthalene	91-57-6	1	0.001	0.010	0.005	ug/L	J
1-Methylnaphthalene	90-12-0	1	0.0009	0.010	0.005	ug/L	J
2-Chloronaphthalene	91-58-7	1	0.001	0.010	ND	ug/L	U
Acenaphthylene	208-96-8	1	0.002	0.010	ND	ug/L	U
Acenaphthene	83-32-9	1	0.003	0.010	0.016	ug/L	
Dibenzofuran	132-64-9	1	0.002	0.010	0.009	ug/L	J
Fluorene	86-73-7	1	0.002	0.010	0.015	ug/L	
Phenanthrene	85-01-8	1	0.001	0.010	0.022	ug/L	
Anthracene	120-12-7	1	0.001	0.010	0.004	ug/L	J
Carbazole	86-74-8	1	0.001	0.010	0.005	ug/L	J
Fluoranthene	206-44-0	1	0.002	0.010	0.003	ug/L	J
Pyrene	129-00-0	1	0.001	0.010	0.002	ug/L	J
Benzo(a)anthracene	56-55-3	1	0.0008	0.010	ND	ug/L	U
Chrysene	218-01-9	1	0.0009	0.010	ND	ug/L	U
Benzo(b)fluoranthene	205-99-2	1	0.0005	0.010	ND	ug/L	U
Benzo(k)fluoranthene	207-08-9	1	0.003	0.010	ND	ug/L	U
Benzo(j)fluoranthene	205-82-3	1	0.002	0.010	ND	ug/L	U
Benzofluoranthenes, Total		1	0.004	0.010	ND	ug/L	U
Benzo(a)pyrene	50-32-8	1	0.002	0.010	ND	ug/L	U
Perylene	1985-5-0	1	0.006	0.010	ND	ug/L	U
Indeno(1,2,3-cd)pyrene	193-39-5	1	0.001	0.010	ND	ug/L	U
Dibenzo(a,h)anthracene	53-70-3	1	0.001	0.010	ND	ug/L	U
Benzo(g,h,i)perylene	191-24-2	1	0.001	0.010	ND	ug/L	U
Surrogate: 2-Methylnaphthalene-d10				42-120 %	72.4	%	
Surrogate: Dibenzo[a,h]anthracene-d14				29-120 %	82.0	%	
Surrogate: Fluoranthene-d10				57-120 %	79.8	%	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston11-Jul-2019 12:11

FMW-02-190702 19G0023-03 (Water)

Petroleum Hydrocarbons

 Method: NWTPH-Dx
 Sampled: 07/02/2019 11:15

 Instrument: FID4 Analyst: JGR
 Analyzed: 07/05/2019 03:42

Sample Preparation: Preparation Method: EPA 3510C SepF Extract ID: 19G0023-03 F 01

Preparation Batch: BHG0065 Sample Size: 500 mL Prepared: 03-Jul-2019 Final Volume: 1 mL

Analyte	CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Diesel Range Organics (C12-C24)	DRO	1	0.100	ND	mg/L	U
Motor Oil Range Organics (C24-C38)	RRO	1	0.200	ND	mg/L	U
Surrogate: o-Terphenyl			50-150 %	94.2	%	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston11-Jul-2019 12:11

FMW-02-190702 19G0023-03 (Water)

Aroclor PCB

Method: EPA 8082A			Sampled: 07/02/2019 11:15
Instrument: ECD7 Anal	yst: JGR		Analyzed: 07/06/2019 02:33
Sample Preparation:	Preparation Method: EPA 3510C SepF Preparation Batch: BHG0070 Prepared: 03-Jul-2019	Sample Size: 1000 mL Final Volume: 0.5 mL	Extract ID: 19G0023-03 B 01
Sample Cleanup:	Cleanup Method: Silica Gel Cleanup Batch: CHG0036 Cleaned: 05-Jul-2019	Initial Volume: 0.5 mL Final Volume: 0.5 mL	Extract ID: 19G0023-03 B 01
Sample Cleanup:	Cleanup Method: Sulfuric Acid Cleanup Batch: CHG0034 Cleaned: 05-Jul-2019	Initial Volume: 0.5 mL Final Volume: 0.5 mL	Extract ID:19G0023-03 B 01
Sample Cleanup:	Cleanup Method: Sulfur Cleanup Batch: CHG0035 Cleaned: 05-Jul-2019	Initial Volume: 0.5 mL Final Volume: 0.5 mL	Extract ID:19G0023-03 B 01

			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Aroclor 1016	12674-11-2	1	0.002	0.010	ND	ug/L	U
Aroclor 1221	11104-28-2	1	0.002	0.010	ND	ug/L	U
Aroclor 1232	11141-16-5	1	0.002	0.010	ND	ug/L	U
Aroclor 1242	53469-21-9	1	0.002	0.010	ND	ug/L	U
Aroclor 1248	12672-29-6	1	0.002	0.010	ND	ug/L	U
Aroclor 1254	11097-69-1	1	0.002	0.010	ND	ug/L	U
Aroclor 1260	11096-82-5	1	0.003	0.010	ND	ug/L	U
Aroclor 1262	37324-23-5	1	0.003	0.010	ND	ug/L	U
Aroclor 1268	11100-14-4	1	0.003	0.010	ND	ug/L	U
Surrogate: Decachlorobiphenyl				29-120 %	40.7	%	
Surrogate: Tetrachlorometaxylene				32-120 %	44.0	%	
Surrogate: Decachlorobiphenyl [2C]				29-120 %	38.2	%	
Surrogate: Tetrachlorometaxylene [2C]				32-120 %	37.9	%	

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston11-Jul-2019 12:11

FMW-02-190702 19G0023-03 (Water)

Metals and Metallic Compounds

 Method: EPA 6020A
 Sampled: 07/02/2019 11:15

 Instrument: ICPMS2
 Analyst: MCB

 Analyzed: 07/08/2019 21:27

Sample Preparation: Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix Extract ID: 19G0023-03 A 01
Preparation Batch: BHG0082 Sample Size: 25 mL

Prepared: 03-Jul-2019 Final Volume: 25 mL

			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Lead	7439-92-1	1	0.0680	0.100	ND	ug/L	U
Manganese	7439-96-5	5	0.425	2.50	723	ug/L	D

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston11-Jul-2019 12:11

FMW-02-190702 19G0023-03 (Water)

Metals and Metallic Compounds

Method: EPA 6020A UCT-KED

Instrument: ICPMS2 Analyst: MCB

Sampled: 07/02/2019 11:15

Analyzed: 07/08/2019 21:27

Sample Preparation: Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix Extract ID: 19G0023-03 A 01

Preparation Batch: BHG0082 Sample Size: 25 mL Prepared: 03-Jul-2019 Final Volume: 25 mL

Detection Reporting Analyte CAS Number Dilution Limit Limit Result Units Notes Arsenic 7440-38-2 1 0.0220 0.200 7.14 ug/L Cadmium 7440-43-9 1 0.0300 0.100 ND ug/L U Copper 7440-50-8 0.340 0.500 1.03 ug/L Zinc 7440-66-6 0.820 4.00 8.20 ug/L

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston11-Jul-2019 12:11

FMW-02-190702 19G0023-03 (Water)

Metals and Metallic Compounds

 Method: EPA 7470A
 Sampled: 07/02/2019 11:15

 Instrument: CVAA Analyst: SKM
 Analyzed: 07/10/2019 16:53

Sample Preparation: Preparation Method: TLM EPA 7470A low level Extract ID: 19G0023-03 A

Preparation Batch: BHG0168 Sample Size: 20 mL Prepared: 08-Jul-2019 Final Volume: 20 mL

Detection Reporting Limit Analyte CAS Number Dilution Limit Result Units Notes 7439-97-6 0.000020 Mercury 1 0.000010 0.000016 mg/L J

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston11-Jul-2019 12:11

FMW-02-190702 19G0023-04 (Water)

Metals and Metallic Compounds (dissolved)

Method: EPA 6020ASampled: 07/02/2019 11:15Instrument: ICPMS2Analyst: MCBAnalyzed: 07/08/2019 21:18Sample Preparation:Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrixExtract ID: 19G0023-04 A 01

Preparation Batch: BHG0132 Sample Size: 25 mL Prepared: 05-Jul-2019 Final Volume: 25 mL

Detection Reporting Analyte CAS Number Dilution Limit Limit Result Units Notes Lead, Dissolved 7439-92-1 1 0.06800.100 ND ug/L U Manganese, Dissolved 7439-96-5 0.425 ug/L D

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston11-Jul-2019 12:11

FMW-02-190702 19G0023-04 (Water)

Metals and Metallic Compounds (dissolved)

 Method: EPA 6020A UCT-KED
 Sampled: 07/02/2019 11:15

 Instrument: ICPMS2
 Analyst: MCB

 Analyzed: 07/08/2019 21:18

Sample Preparation: Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix Extract ID: 19G0023-04 A 01

Preparation Batch: BHG0132 Sample Size: 25 mL Prepared: 05-Jul-2019 Final Volume: 25 mL

			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Arsenic, Dissolved	7440-38-2	1	0.0220	0.200	6.75	ug/L	
Cadmium, Dissolved	7440-43-9	1	0.0300	0.100	ND	ug/L	U
Copper, Dissolved	7440-50-8	1	0.340	0.500	0.536	ug/L	
Zinc, Dissolved	7440-66-6	1	0.820	4.00	2.44	ug/L	J

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston11-Jul-2019 12:11

FMW-02-190702 19G0023-04 (Water)

Metals and Metallic Compounds (dissolved)

Method: EPA 7470A Instrument: CVAA Anal	lyst: JPK						•	/02/2019 11:15 /03/2019 15:57
Sample Preparation:	Preparation Method: TWM EPA 7470A Preparation Batch: BHG0086 Prepared: 03-Jul-2019	Sample Size: 2 Final Volume:]	Extract ID:	19G0023-04 A
Analyte		CAS Number	Dilution	Detection Limit	Reporting Limit	Result	Units	Notes
Mercury, Dissolved		7439-97-6	1	0.000013	0.000100	ND	mg/L	U
Sample Preparation:	Preparation Method: TLM EPA 7470A low le Preparation Batch: BHG0169 Prepared: 08-Jul-2019	evel Sample Size: 2 Final Volume:				1	Extract ID:	19G0023-04 A
Analyte		CAS Number	Dilution	Detection Limit	Reporting Limit	Result	Units	Notes
Mercury, Dissolved		7439-97-6	1	0.000010	0.000020	0.000015	mg/L	J

Analytical Resources, Inc.

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston11-Jul-2019 12:11

Volatile Organic Compounds - Quality Control

Batch BHG0064 - EPA 5030 (Purge and Trap)

Instrument: NT3 Analyst: PKC

		Detection	Reporting		Spike	Source	0/=	%REC		RPD	
QC Sample/Analyte	Result	Limit	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Blank (BHG0064-BLK1)				Prep	ared: 03-Jul-	2019 Ana	lyzed: 03-J	ul-2019 12:5	8		
Benzene	ND	0.03	0.20	ug/L							U
Toluene	ND	0.04	0.20	ug/L							U
Ethylbenzene	ND	0.04	0.20	ug/L							U
m,p-Xylene	ND	0.05	0.40	ug/L							U
o-Xylene	ND	0.03	0.20	ug/L							U
Surrogate: Toluene-d8	4.88			ug/L	5.00		97.5	80-120			
Surrogate: 4-Bromofluorobenzene	4.72			ug/L	5.00		94.3	80-120			
Blank (BHG0064-BLK2)				Prep	ared: 03-Jul-	2019 Ana	lyzed: 03-J	ul-2019 12:5	8		
Gasoline Range Organics (Tol-Nap)	ND		100	ug/L							U
Surrogate: Toluene-d8	4.88			ug/L	5.00		97.5	80-120			
Surrogate: 4-Bromofluorobenzene	4.72			ug/L	5.00		94.3	80-120			
LCS (BHG0064-BS1)				Prep	ared: 03-Jul-	2019 Ana	ılyzed: 03-J	ul-2019 10:4	4		
Benzene	9.52	0.03	0.20	ug/L	10.0		95.2	80-120			
Toluene	9.55	0.04	0.20	ug/L	10.0		95.5	80-120			
Ethylbenzene	9.36	0.04	0.20	ug/L	10.0		93.6	80-120			
m,p-Xylene	18.8	0.05	0.40	ug/L	20.0		93.9	80-121			
o-Xylene	9.58	0.03	0.20	ug/L	10.0		95.8	80-121			
Surrogate: Toluene-d8	4.93			ug/L	5.00		98.6	80-120			
Surrogate: 4-Bromofluorobenzene	4.83			ug/L	5.00		96.6	80-120			
LCS (BHG0064-BS2)				Prep	ared: 03-Jul-	2019 Ana	lyzed: 03-J	ul-2019 11:3	8		
Gasoline Range Organics (Tol-Nap)	1020		100	ug/L	1000		102	72-128			
Surrogate: Toluene-d8	5.20			ug/L	5.00		104	80-120			
Surrogate: 4-Bromofluorobenzene	5.08			ug/L	5.00		102	80-120			
LCS Dup (BHG0064-BSD1)				Prep	ared: 03-Jul-	2019 Ana	ılyzed: 03-J	ul-2019 11:1	1		
Benzene	9.94	0.03	0.20	ug/L	10.0		99.4	80-120	4.38	30	
Toluene	9.94	0.04	0.20	ug/L	10.0		99.4	80-120	3.96	30	
Ethylbenzene	9.63	0.04	0.20	ug/L	10.0		96.3	80-120	2.82	30	
m,p-Xylene	19.4	0.05	0.40	ug/L	20.0		97.2	80-121	3.46	30	
o-Xylene	9.79	0.03	0.20	ug/L	10.0		97.9	80-121	2.19	30	
Surrogate: Toluene-d8	5.12			ug/L	5.00		102	80-120			

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston11-Jul-2019 12:11

Volatile Organic Compounds - Quality Control

Batch BHG0064 - EPA 5030 (Purge and Trap)

Instrument: NT3 Analyst: PKC

QC Sample/Analyte	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
LCS Dup (BHG0064-BSD1)				Prepa	red: 03-Jul-	2019 Ana	lyzed: 03-J	ul-2019 11:1	1		
Surrogate: 4-Bromofluorobenzene	5.00			ug/L	5.00		100	80-120			
LCS Dup (BHG0064-BSD2)				Prepa	red: 03-Jul-	2019 Ana	lyzed: 03-J	ul-2019 12:0	14		
Gasoline Range Organics (Tol-Nap)	1000		100	ug/L	1000		100	72-128	1.83	30	
Surrogate: Toluene-d8	5.09			ug/L	5.00		102	80-120			
Surrogate: 4-Bromofluorobenzene	4.82			ug/L	5.00		96.4	80-120			

Analytical Resources, Inc.

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston11-Jul-2019 12:11

Volatile Organic Compounds - Quality Control

Batch BHG0144 - EPA 5030 (Purge and Trap)

Instrument: NT3 Analyst: PKC

		Detection	Reporting		Spike	Source	0/775	%REC		RPD	
QC Sample/Analyte	Result	Limit	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Blank (BHG0144-BLK1)				Prep	ared: 05-Jul-	2019 Ana	lyzed: 05-J	ul-2019 13:0	19		
Benzene	ND	0.03	0.20	ug/L							U
Toluene	ND	0.04	0.20	ug/L							U
Ethylbenzene	ND	0.04	0.20	ug/L							U
m,p-Xylene	ND	0.05	0.40	ug/L							U
o-Xylene	ND	0.03	0.20	ug/L							U
Surrogate: Toluene-d8	4.92			ug/L	5.00		98.3	80-120			
Surrogate: 4-Bromofluorobenzene	4.85			ug/L	5.00		97.0	80-120			
Blank (BHG0144-BLK2)				Prep	ared: 05-Jul-	2019 Ana	lyzed: 05-J	ul-2019 13:0	9		
Gasoline Range Organics (Tol-Nap)	ND		100	ug/L							U
Surrogate: Toluene-d8	4.92			ug/L	5.00		98.3	80-120			
Surrogate: 4-Bromofluorobenzene	4.85			ug/L	5.00		97.0	80-120			
LCS (BHG0144-BS1)				Prep	ared: 05-Jul-	2019 Ana	lyzed: 05-J	ul-2019 10:5	5		
Benzene	9.93	0.03	0.20	ug/L	10.0		99.3	80-120			
Toluene	10.2	0.04	0.20	ug/L	10.0		102	80-120			
Ethylbenzene	9.86	0.04	0.20	ug/L	10.0		98.6	80-120			
m,p-Xylene	20.0	0.05	0.40	ug/L	20.0		99.8	80-121			
o-Xylene	9.82	0.03	0.20	ug/L	10.0		98.2	80-121			
Surrogate: Toluene-d8	4.93			ug/L	5.00		98.6	80-120			
Surrogate: 4-Bromofluorobenzene	4.87			ug/L	5.00		97.3	80-120			
LCS (BHG0144-BS2)				Prep	ared: 05-Jul-	2019 Ana	lyzed: 05-J	ul-2019 11:4	9		
Gasoline Range Organics (Tol-Nap)	908		100	ug/L	1000		90.8	72-128			
Surrogate: Toluene-d8	4.83			ug/L	5.00		96.6	80-120			
Surrogate: 4-Bromofluorobenzene	4.74			ug/L	5.00		94.8	80-120			
LCS Dup (BHG0144-BSD1)				Prep	ared: 05-Jul-	2019 Ana	lyzed: 05-J	ul-2019 11:2	2		
Benzene	9.94	0.03	0.20	ug/L	10.0		99.4	80-120	0.13	30	
Toluene	10.0	0.04	0.20	ug/L	10.0		100	80-120	1.35	30	
Ethylbenzene	9.69	0.04	0.20	ug/L	10.0		96.9	80-120	1.74	30	
m,p-Xylene	19.8	0.05	0.40	ug/L	20.0		98.8	80-121	0.98	30	
o-Xylene	9.78	0.03	0.20	ug/L	10.0		97.8	80-121	0.42	30	
Surrogate: Toluene-d8	4.93			ug/L	5.00		98.5	80-120			

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston11-Jul-2019 12:11

Volatile Organic Compounds - Quality Control

Batch BHG0144 - EPA 5030 (Purge and Trap)

Instrument: NT3 Analyst: PKC

QC Sample/Analyte	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
LCS Dup (BHG0144-BSD1)				Prepa	red: 05-Jul-	2019 Ana	ılyzed: 05-Jı	ul-2019 11:2	.2		
Surrogate: 4-Bromofluorobenzene	4.88			ug/L	5.00		97.7	80-120			
LCS Dup (BHG0144-BSD2)				Prepa	ared: 05-Jul-	2019 Ana	ılyzed: 05-Jı	ul-2019 12:1	.6		
Gasoline Range Organics (Tol-Nap)	736		100	ug/L	1000		73.6	72-128	20.90	30	
Surrogate: Toluene-d8	4.92			ug/L	5.00		98.5	80-120			
Surrogate: 4-Bromofluorobenzene	5.01			ug/L	5.00		100	80-120			

Analytical Resources, Inc.

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston11-Jul-2019 12:11

Semivolatile Organic Compounds - SIM - Quality Control

Batch BHG0068 - EPA 3510C SepF

Instrument: NT11 Analyst: VTS

		Detection	Reporting		Spike	Source		%REC		RPD	
QC Sample/Analyte	Result	Limit	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Blank (BHG0068-BLK1)				Prepa	red: 03-Jul-	2019 Ana	lyzed: 06-Ju	ul-2019 12:1	19		
Naphthalene	0.002	0.001	0.010	ug/L							J
2-Methylnaphthalene	ND	0.001	0.010	ug/L							U
1-Methylnaphthalene	ND	0.0009	0.010	ug/L							U
2-Chloronaphthalene	ND	0.001	0.010	ug/L							U
Acenaphthylene	ND	0.002	0.010	ug/L							U
Acenaphthene	ND	0.003	0.010	ug/L							U
Dibenzofuran	ND	0.002	0.010	ug/L							U
Fluorene	ND	0.002	0.010	ug/L							U
Phenanthrene	ND	0.001	0.010	ug/L							U
Anthracene	ND	0.001	0.010	ug/L							U
Carbazole	ND	0.001	0.010	ug/L							U
Fluoranthene	ND	0.002	0.010	ug/L							U
Pyrene	ND	0.001	0.010	ug/L							U
Benzo(a)anthracene	ND	0.0008	0.010	ug/L							U
Chrysene	ND	0.0009	0.010	ug/L							U
Benzo(b)fluoranthene	ND	0.0005	0.010	ug/L							U
Benzo(k)fluoranthene	ND	0.003	0.010	ug/L							U
Benzo(j)fluoranthene	ND	0.002	0.010	ug/L							U
Benzofluoranthenes, Total	ND	0.004	0.010	ug/L							U
Benzo(a)pyrene	ND	0.002	0.010	ug/L							U
Perylene	ND	0.006	0.010	ug/L							U
Indeno(1,2,3-cd)pyrene	ND	0.001	0.010	ug/L							U
Dibenzo(a,h)anthracene	ND	0.001	0.010	ug/L							U
Benzo(g,h,i)perylene	ND	0.001	0.010	ug/L							U
Surrogate: 2-Methylnaphthalene-d10	0.204			ug/L	0.300		68.1	42-120			
Surrogate: Dibenzo[a,h]anthracene-d14	0.232			ug/L	0.300		77.3	29-120			
Surrogate: Fluoranthene-d10	0.224			ug/L	0.300		74.6	57-120			
LCS (BHG0068-BS1)				Prens	ared: 03-Jul-	2019 Ana	lyzed: 06-J	ıl-2019 12·4	19		
Naphthalene	0.214	0.001	0.010	ug/L	0.300	2017 / Ma	71.4	37-120	17		
2-Methylnaphthalene	0.212	0.001	0.010	ug/L	0.300		70.7	37-120			
1-Methylnaphthalene	0.218	0.0009	0.010	ug/L	0.300		72.5	29-120			
2-Chloronaphthalene	0.208	0.001	0.010	ug/L	0.300		69.5	30-160			
Biphenyl	0.221	0.001	0.010	ug/L	0.300		73.7	30-160			
2,6-Dimethylnaphthalene	0.211	0.001	0.010	ug/L	0.300		70.5	30-160			

Analytical Resources, Inc.

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston11-Jul-2019 12:11

Semivolatile Organic Compounds - SIM - Quality Control

Batch BHG0068 - EPA 3510C SepF

Instrument: NT11 Analyst: VTS

QC Sample/Analyte	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
LCS (BHG0068-BS1)				Prepa	ared: 03-Jul-2	2019 Anal	yzed: 06-Ju	ıl-2019 12:4	.9		
Acenaphthylene	0.221	0.002	0.010	ug/L	0.300		73.6	41-120			
Acenaphthene	0.222	0.003	0.010	ug/L	0.300		74.0	41-120			
Dibenzofuran	0.226	0.002	0.010	ug/L	0.300		75.4	38-120			
2,3,5-Trimethylnaphthalene	0.219	0.001	0.010	ug/L	0.300		73.1	30-160			
Fluorene	0.232	0.002	0.010	ug/L	0.300		77.2	43-120			
Dibenzothiophene	0.233	0.001	0.010	ug/L	0.300		77.6	30-160			
Phenanthrene	0.234	0.001	0.010	ug/L	0.300		77.9	41-120			
Anthracene	0.218	0.001	0.010	ug/L	0.300		72.6	40-120			
Carbazole	0.238	0.001	0.010	ug/L	0.300		79.4	30-160			
Fluoranthene	0.237	0.002	0.010	ug/L	0.300		79.0	45-120			
Pyrene	0.235	0.001	0.010	ug/L	0.300		78.2	41-120			
1-Methylphenanthrene	0.236	0.002	0.010	ug/L	0.300		78.6	30-160			
Benzo(a)anthracene	0.235	0.0008	0.010	ug/L	0.300		78.2	42-120			
Chrysene	0.239	0.0009	0.010	ug/L	0.300		79.7	44-120			
Benzo(b)fluoranthene	0.219	0.0005	0.010	ug/L	0.300		73.0	44-120			
Benzo(k) fluoranthene	0.216	0.003	0.010	ug/L	0.300		71.9	50-120			
Benzo(j)fluoranthene	0.220	0.002	0.010	ug/L	0.300		73.2	39-160			
Benzofluoranthenes, Total	0.654	0.004	0.010	ug/L	0.900		72.7	46-120			
Benzo(e)pyrene	0.230	0.001	0.010	ug/L	0.300		76.6	30-160			
Benzo(a)pyrene	0.219	0.002	0.010	ug/L	0.300		73.1	35-120			
Perylene	0.224	0.006	0.010	ug/L	0.300		74.7	30-160			
Indeno(1,2,3-cd)pyrene	0.260	0.001	0.010	ug/L	0.300		86.7	37-120			
Dibenzo(a,h)anthracene	0.247	0.001	0.010	ug/L	0.300		82.2	34-120			
Benzo(g,h,i)perylene	0.243	0.001	0.010	ug/L	0.300		81.0	38-120			
Benzo(b)thiophene	0.217	0.001	0.010	ug/L	0.300		72.3	30-160			
Surrogate: 2-Methylnaphthalene-d10	0.222			ug/L	0.300		74.0	42-120			
Surrogate: Dibenzo[a,h]anthracene-d14	0.272			ug/L	0.300		90.5	29-120			
Surrogate: Fluoranthene-d10	0.244			ug/L	0.300		81.2	57-120			
LCS Dup (BHG0068-BSD1)				Prepa	ared: 03-Jul-2	2019 Anal	yzed: 06-Ju	1-2019 13:1	8		
Naphthalene	0.244	0.001	0.010	ug/L	0.300		81.2	37-120	12.90	30	
2-Methylnaphthalene	0.242	0.001	0.010	ug/L	0.300		80.7	37-120	13.30	30	
1-Methylnaphthalene	0.249	0.0009	0.010	ug/L	0.300		83.1	29-120	13.60	30	
2-Chloronaphthalene	0.241	0.001	0.010	ug/L	0.300		80.3	30-160	14.50	30	
Biphenyl	0.252	0.001	0.010	ug/L	0.300		83.9	30-160	12.90	30	
* *				J							

Analytical Resources, Inc.

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston11-Jul-2019 12:11

Semivolatile Organic Compounds - SIM - Quality Control

Batch BHG0068 - EPA 3510C SepF

Instrument: NT11 Analyst: VTS

QC Sample/Analyte	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
LCS Dup (BHG0068-BSD1)				Prepa	ared: 03-Jul-	2019 Anal	yzed: 06-Ju	ıl-2019 13:1	.8		
2,6-Dimethylnaphthalene	0.245	0.001	0.010	ug/L	0.300		81.5	30-160	14.50	30	
Acenaphthylene	0.249	0.002	0.010	ug/L	0.300		82.9	41-120	11.90	30	
Acenaphthene	0.251	0.003	0.010	ug/L	0.300		83.8	41-120	12.40	30	
Dibenzofuran	0.257	0.002	0.010	ug/L	0.300		85.6	38-120	12.60	30	
2,3,5-Trimethylnaphthalene	0.251	0.001	0.010	ug/L	0.300		83.6	30-160	13.30	30	
Fluorene	0.259	0.002	0.010	ug/L	0.300		86.3	43-120	11.10	30	
Dibenzothiophene	0.256	0.001	0.010	ug/L	0.300		85.4	30-160	9.64	30	
Phenanthrene	0.261	0.001	0.010	ug/L	0.300		86.9	41-120	10.80	30	
Anthracene	0.243	0.001	0.010	ug/L	0.300		80.9	40-120	10.70	30	
Carbazole	0.265	0.001	0.010	ug/L	0.300		88.4	30-160	10.70	30	
Fluoranthene	0.263	0.002	0.010	ug/L	0.300		87.5	45-120	10.30	30	
Pyrene	0.262	0.001	0.010	ug/L	0.300		87.4	41-120	11.20	30	
I-Methylphenanthrene	0.263	0.002	0.010	ug/L	0.300		87.6	30-160	10.90	30	
Benzo(a)anthracene	0.262	0.0008	0.010	ug/L	0.300		87.2	42-120	10.80	30	
Chrysene	0.268	0.0009	0.010	ug/L	0.300		89.4	44-120	11.50	30	
Benzo(b)fluoranthene	0.243	0.0005	0.010	ug/L	0.300		81.1	44-120	10.50	30	
Benzo(k)fluoranthene	0.240	0.003	0.010	ug/L	0.300		80.2	50-120	10.80	30	
Benzo(j)fluoranthene	0.245	0.002	0.010	ug/L	0.300		81.8	39-160	11.10	30	
Benzofluoranthenes, Total	0.729	0.004	0.010	ug/L	0.900		81.0	46-120	10.80	30	
Benzo(e)pyrene	0.258	0.001	0.010	ug/L	0.300		86.2	30-160	11.70	30	
Benzo(a)pyrene	0.242	0.002	0.010	ug/L	0.300		80.8	35-120	10.00	30	
Perylene	0.251	0.006	0.010	ug/L	0.300		83.8	30-160	11.50	30	
Indeno(1,2,3-cd)pyrene	0.296	0.001	0.010	ug/L	0.300		98.7	37-120	12.90	30	
Dibenzo(a,h)anthracene	0.278	0.001	0.010	ug/L	0.300		92.7	34-120	12.00	30	
Benzo(g,h,i)perylene	0.278	0.001	0.010	ug/L	0.300		92.7	38-120	13.50	30	
Benzo(b)thiophene	0.244	0.001	0.010	ug/L	0.300		81.5	30-160	11.90	30	
Surrogate: 2-Methylnaphthalene-d10	0.241			ug/L	0.300		80.3	42-120			
Surrogate: Dibenzo[a,h]anthracene-d14	0.299			ug/L	0.300		99.7	29-120			
Surrogate: Fluoranthene-d10	0.270			ug/L	0.300		89.9	57-120			

Analytical Resources, Inc.

Farallon Consulting, LLC

Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston11-Jul-2019 12:11

Petroleum Hydrocarbons - Quality Control

Batch BHG0065 - EPA 3510C SepF

Instrument: FID4 Analyst: JGR

QC Sample/Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Blank (BHG0065-BLK1)			Prepa	ared: 03-Jul-2	2019 Anal	yzed: 04-J	ul-2019 21:3	3		
Diesel Range Organics (C12-C24)	ND	0.100	mg/L							U
Motor Oil Range Organics (C24-C38)	ND	0.200	mg/L							U
Surrogate: o-Terphenyl	0.171		mg/L	0.225		76.0	50-150			
LCS (BHG0065-BS1)			Prepa	ared: 03-Jul-2	2019 Anal	yzed: 04-J	ul-2019 21:5	4		
Diesel Range Organics (C12-C24)	2.34	0.100	mg/L	3.00		77.8	70-120			
Surrogate: o-Terphenyl	0.173		mg/L	0.225		76.9	50-150			
LCS Dup (BHG0065-BSD1)			Prepa	ared: 03-Jul-2	2019 Anal	yzed: 04-J	ul-2019 22:1	4		
Diesel Range Organics (C12-C24)	2.28	0.100	mg/L	3.00		76.1	70-120	2.25	30	
Surrogate: o-Terphenyl	0.169		mg/L	0.225		75.0	50-150			

Analytical Resources, Inc.

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston11-Jul-2019 12:11

Aroclor PCB - Quality Control

Batch BHG0070 - EPA 3510C SepF

Instrument: ECD7 Analyst: JGR

		Detection	Reporting		Spike	Source		%REC		RPD	
QC Sample/Analyte	Result	Limit	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Blank (BHG0070-BLK1)				Prepa	ared: 03-Jul-	2019 Ana	lyzed: 06-Ju	ıl-2019 01:3	1		
Aroclor 1016	ND	0.002	0.010	ug/L							U
Aroclor 1221	ND	0.002	0.010	ug/L							U
Aroclor 1232	ND	0.002	0.010	ug/L							U
Aroclor 1242	ND	0.002	0.010	ug/L							U
Aroclor 1248	ND	0.002	0.010	ug/L							U
Aroclor 1254	ND	0.002	0.010	ug/L							U
Aroclor 1260	ND	0.003	0.010	ug/L							U
Aroclor 1262	ND	0.003	0.010	ug/L							U
Aroclor 1268	ND	0.003	0.010	ug/L							U
Surrogate: Decachlorobiphenyl	0.0103			ug/L	0.0200		51.7	29-120			
Surrogate: Tetrachlorometaxylene	0.0101			ug/L	0.0200		50.7	32-120			
Surrogate: Decachlorobiphenyl [2C]	0.00953			ug/L	0.0200		47.7	29-120			
Surrogate: Tetrachlorometaxylene [2C]	0.00840			ug/L	0.0200		42.0	32-120			
LCS (BHG0070-BS1)				Prepa	ared: 03-Jul-	2019 Ana	lyzed: 06-Jı	ıl-2019 01:5	52		
Aroclor 1016	0.037	0.002	0.010	ug/L	0.0500		74.5	54-120			
Aroclor 1260	0.035	0.003	0.010	ug/L	0.0500		69.5	51-128			
Surrogate: Decachlorobiphenyl	0.0102			ug/L	0.0200		51.0	29-120			
Surrogate: Tetrachlorometaxylene	0.00992			ug/L	0.0200		49.6	32-120			
Surrogate: Decachlorobiphenyl [2C]	0.00938			ug/L	0.0200		46.9	29-120			
Surrogate: Tetrachlorometaxylene [2C]	0.00832			ug/L	0.0200		41.6	32-120			

Analytical Resources, Inc.

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston11-Jul-2019 12:11

Metals and Metallic Compounds - Quality Control

Batch BHG0082 - REN EPA 600/4-79-020 4.1.4 HNO3 matrix

Instrument: ICPMS2 Analyst: MCB

QC Sample/Analyte	Isotope	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Blank (BHG0082-BLK1)					Prepa	ared: 03-Jul-	2019 Ana	yzed: 03-Ju	ıl-2019 14:2	25		
Lead	208	ND	0.0680	0.100	ug/L							U
Manganese	55	ND	0.0850	0.500	ug/L							U
Arsenic	75a	ND	0.0220	0.200	ug/L							U
Cadmium	111	ND	0.0300	0.100	ug/L							U
Cadmium	114	ND	0.0400	0.100	ug/L							U
Copper	63	ND	0.340	0.500	ug/L							U
Copper	65	ND	0.350	0.500	ug/L							U
Zinc	66	1.30	0.820	4.00	ug/L							J
Zinc	67	1.11	0.940	4.00	ug/L							J
LCS (BHG0082-BS1)					Prepa	ared: 03-Jul-	2019 Anal	yzed: 03-Jı	ıl-2019 14:3	60		
Lead	208	25.6	0.0680	0.100	ug/L	25.0		102	80-120			
Manganese	55	23.9	0.0850	0.500	ug/L	25.0		95.6	80-120			
Arsenic	75a	24.5	0.0220	0.200	ug/L	25.0		97.9	80-120			
Cadmium	111	24.7	0.0300	0.100	ug/L	25.0		98.8	80-120			
Cadmium	114	24.7	0.0400	0.100	ug/L	25.0		98.7	80-120			
Copper	63	24.9	0.340	0.500	ug/L	25.0		99.7	80-120			
Copper	65	24.8	0.350	0.500	ug/L	25.0		99.3	80-120			
Zinc	66	81.2	0.820	4.00	ug/L	80.0		101	80-120			
Zinc	67	77.4	0.940	4.00	ug/L	80.0		96.7	80-120			

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston11-Jul-2019 12:11

Metals and Metallic Compounds - Quality Control

Batch BHG0168 - TLM EPA 7470A low level

Instrument: CVAA Analyst: SKM

QC Sample/Analyte	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Blank (BHG0168-BLK1)				Prep	ared: 08-Jul-	2019 Ana	lyzed: 10-J	ıl-2019 15:3	36		
Mercury	ND	0.000010	0.000020	mg/L							U
LCS (BHG0168-BS1)				Prep	ared: 08-Jul-	2019 Anal	lyzed: 10-J	ıl-2019 15:3	39		
Mercury	0.000207	0.000010	0.000020	mg/L	0.000200		104	80-120			

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston11-Jul-2019 12:11

Metals and Metallic Compounds (dissolved) - Quality Control

Batch BHG0086 - TWM EPA 7470A

Instrument: CVAA Analyst: JPK

QC Sample/Analyte	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Blank (BHG0086-BLK1)				Prepa	ared: 03-Jul-	2019 Anal	yzed: 03-J	ul-2019 15:4	.5		
Mercury, Dissolved	ND	0.000013	0.000100	mg/L							U
LCS (BHG0086-BS1)				Prepa	ared: 03-Jul-	2019 Anal	yzed: 03-J	ul-2019 15:4	-8		
Mercury, Dissolved	0.00200	0.000013	0.000100	mg/L	0.00200		100	80-120			
Duplicate (BHG0086-DUP1)		Source: 19G	G0023-02	Prepa	ared: 03-Jul-	2019 Anal	yzed: 03-J	ul-2019 15:5	3		
Mercury, Dissolved	ND	0.000013	0.000100	mg/L		ND					U
Matrix Spike (BHG0086-MS1)	5	Source: 19G	G0023-02	Prepa	ared: 03-Jul-	2019 Anal	yzed: 03-J	ul-2019 15:5	5		
Mercury, Dissolved	0.00106	0.000013	0.000100	mg/L	0.00100	ND	106	75-125			

Recovery limits for target analytes in MS/MSD QC samples are advisory only.

Analytical Resources, Inc.

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston11-Jul-2019 12:11

Metals and Metallic Compounds (dissolved) - Quality Control

Batch BHG0132 - REN EPA 600/4-79-020 4.1.4 HNO3 matrix

Instrument: ICPMS2 Analyst: MCB

QC Sample/Analyte	Isotope	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Blank (BHG0132-BLK1)					Prepa	ared: 05-Jul-	2019 Ana	yzed: 08-Ju	ıl-2019 15:1	4		
Lead, Dissolved	208	ND	0.0680	0.100	ug/L							U
Manganese, Dissolved	55	ND	0.0850	0.500	ug/L							U
Arsenic, Dissolved	75a	ND	0.0220	0.200	ug/L							U
Cadmium, Dissolved	111	ND	0.0300	0.100	ug/L							U
Cadmium, Dissolved	114	ND	0.0400	0.100	ug/L							U
Copper, Dissolved	63	ND	0.340	0.500	ug/L							U
Copper, Dissolved	65	ND	0.350	0.500	ug/L							U
Zinc, Dissolved	66	1.18	0.820	4.00	ug/L							J
Zinc, Dissolved	67	0.999	0.940	4.00	ug/L							J
LCS (BHG0132-BS1)					Prepa	ared: 05-Jul-	2019 Ana	yzed: 08-Jı	ıl-2019 15:1	9		
Lead, Dissolved	208	23.7	0.0680	0.100	ug/L	25.0		95.0	80-120			
Manganese, Dissolved	55	24.0	0.0850	0.500	ug/L	25.0		96.1	80-120			
Arsenic, Dissolved	75a	23.3	0.0220	0.200	ug/L	25.0		93.1	80-120			
Cadmium, Dissolved	111	23.0	0.0300	0.100	ug/L	25.0		92.2	80-120			
Cadmium, Dissolved	114	22.8	0.0400	0.100	ug/L	25.0		91.2	80-120			
Copper, Dissolved	63	23.6	0.340	0.500	ug/L	25.0		94.6	80-120			
Copper, Dissolved	65	23.9	0.350	0.500	ug/L	25.0		95.5	80-120			
Zinc, Dissolved	66	77.3	0.820	4.00	ug/L	80.0		96.7	80-120			
Zinc, Dissolved	67	76.2	0.940	4.00	ug/L	80.0		95.2	80-120			

Analytical Resources, Inc.

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston11-Jul-2019 12:11

Metals and Metallic Compounds (dissolved) - Quality Control

Batch BHG0169 - TLM EPA 7470A low level

Instrument: CVAA Analyst: SKM

QC Sample/Analyte	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Blank (BHG0169-BLK1)				Prep	ared: 08-Jul-	2019 Ana	lyzed: 10-Jı	ıl-2019 16:5	56		
Mercury, Dissolved	0.000014	0.000010	0.000020	mg/L							J
LCS (BHG0169-BS1)				Prep	ared: 08-Jul-2	2019 Ana	lyzed: 10-Ji	ıl-2019 16:5	59		
Mercury, Dissolved	0.000212	0.000010	0.000020	mg/L	0.000200		106	80-120			

Analytical Resources, Inc.

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston11-Jul-2019 12:11

Certified Analyses included in this Report

Analyte	Certifications
EPA 6020A in Water	
Manganese-55	NELAP,WADOE,DoD-ELAP
Lead-208	NELAP,WADOE,DoD-ELAP,ADEC
Manganese-55	NELAP,WADOE,DoD-ELAP
Lead-208	NELAP,WADOE,DoD-ELAP,ADEC
EPA 6020A UCT-KED in Water	
Arsenic-75a	WADOE,WA-DW,DoD-ELAP,ADEC,NELAP
Cadmium-111	NELAP,WADOE,DoD-ELAP,ADEC
Cadmium-114	NELAP,WADOE,DoD-ELAP,ADEC
Copper-63	NELAP,WADOE,DoD-ELAP
Copper-65	NELAP,WADOE,DoD-ELAP
Zinc-66	WADOE,WA-DW,DoD-ELAP
Zinc-67	WADOE,WA-DW,DoD-ELAP
Arsenic-75a	NELAP,WADOE,DoD-ELAP,ADEC
Cadmium-111	NELAP,WADOE,DoD-ELAP,ADEC
Cadmium-114	NELAP,WADOE,DoD-ELAP,ADEC
Copper-63	NELAP,WADOE,DoD-ELAP
Copper-65	NELAP,WADOE,DoD-ELAP
Zinc-66	NELAP,WADOE,DoD-ELAP
Zinc-67	NELAP,WADOE,DoD-ELAP
EPA 7470A in Water	
Mercury	WADOE,NELAP,DoD-ELAP,CALAP
Mercury	WADOE,NELAP,DoD-ELAP,CALAP
Mercury	WADOE,NELAP,DoD-ELAP,CALAP
EPA 8082A in Water	
Aroclor 1016	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
Aroclor 1016 [2C]	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
Aroclor 1221	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
Aroclor 1221 [2C]	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
Aroclor 1232	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
Aroclor 1232 [2C]	WADOE,DoD-ELAP,NELAP,CALAP,ADEC

Analytical Resources, Inc.

Aroclor 1242 Aroclor 1242 [2C]

Aroclor 1248

Aroclor 1248 [2C]

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

WADOE, DoD-ELAP, NELAP, CALAP, ADEC

Farallon Consulting, LLC 1809 7th Ave, Suite 1111	Project: Emerald Gateway Site 1071-026 Project Number: 1071-026	D (1
Seattle WA, 98101	Project Number: 10/1-026 Project Manager: Pete Kingston	Reported: 11-Jul-2019 12:11
,		11 (41 201) 12111
Aroclor 1254	WADOE DOD ELARNELAR CALARADEC	
Aroclor 1254 [2C] Aroclor 1260	WADOE, DoD-ELAP, NELAP, CALAP, ADEC	
Aroclor 1260 [2C]	WADOE, DoD-ELAP, NELAP, CALAP, ADEC	
Aroclor 1260 [20] Aroclor 1262	WADOE,DoD-ELAP,NELAP,CALAP,ADEC WADOE,DoD-ELAP,NELAP,CALAP,ADEC	
	WADOE,DoD-ELAP,NELAP,CALAP,ADEC WADOE,DoD-ELAP,NELAP,CALAP,ADEC	
Aroclor 1262 [2C]		
Aroclor 1268	WADOE, DoD-ELAP, NELAP, CALAP, ADEC	
Aroclor 1268 [2C]	WADOE,DoD-ELAP,NELAP,CALAP,ADEC	
EPA 8260C in Water		
Chloromethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
Vinyl Chloride	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
Bromomethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
Chloroethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
Trichlorofluoromethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
Acrolein	DoD-ELAP,NELAP,CALAP,WADOE	
1,1,2-Trichloro-1,2,2-Trifluoroethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
Acetone	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
1,1-Dichloroethene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
Bromoethane	DoD-ELAP,NELAP,CALAP,WADOE	
Iodomethane	DoD-ELAP,NELAP,CALAP,WADOE	
Methylene Chloride	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
Acrylonitrile	DoD-ELAP,NELAP,CALAP,WADOE	
Carbon Disulfide	DoD-ELAP,NELAP,CALAP,WADOE	
trans-1,2-Dichloroethene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
Vinyl Acetate	DoD-ELAP,NELAP,CALAP,WADOE	
1,1-Dichloroethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
2-Butanone	DoD-ELAP,NELAP,CALAP,WADOE	
2,2-Dichloropropane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
cis-1,2-Dichloroethene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
Chloroform	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
Bromochloromethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
1,1,1-Trichloroethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
1,1-Dichloropropene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
Carbon tetrachloride	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
1,2-Dichloroethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
Benzene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
Trichloroethene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
1,2-Dichloropropane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
Promo diable remothers	DOD-ELAF,ADEC,NELAF,CALAF,WADOE	

Analytical Resources, Inc.

Bromodichloromethane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

DoD-ELAP,ADEC,NELAP,CALAP,WADOE

Farallon Consulting, LLC	Project: Emerald Gateway Site 1071-026	
1809 7th Ave, Suite 1111	Project Number: 1071-026	Reported:
Seattle WA, 98101	Project Manager: Pete Kingston	11-Jul-2019 12:11

Dibromomethane DoD-ELAP, ADEC, NELAP, CALAP, WADOE 2-Chloroethyl vinyl ether DoD-ELAP, ADEC, NELAP, CALAP, WADOE 4-Methyl-2-Pentanone DoD-ELAP, NELAP, CALAP, WADOE cis-1,3-Dichloropropene DoD-ELAP, ADEC, NELAP, CALAP, WADOE Toluene DoD-ELAP, ADEC, NELAP, CALAP, WADOE trans-1,3-Dichloropropene DoD-ELAP, ADEC, NELAP, CALAP, WADOE 2-Hexanone DoD-ELAP, NELAP, CALAP, WADOE DoD-ELAP, ADEC, NELAP, CALAP, WADOE 1,1,2-Trichloroethane 1,3-Dichloropropane DoD-ELAP, ADEC, NELAP, CALAP, WADOE Tetrachloroethene DoD-ELAP, ADEC, NELAP, CALAP, WADOE Dibromochloromethane DoD-ELAP, ADEC, NELAP, CALAP, WADOE 1,2-Dibromoethane DoD-ELAP, NELAP, CALAP, WADOE Chlorobenzene DoD-ELAP, ADEC, NELAP, CALAP, WADOE Ethylbenzene DoD-ELAP, ADEC, NELAP, CALAP, WADOE 1,1,1,2-Tetrachloroethane DoD-ELAP, ADEC, NELAP, CALAP, WADOE DoD-ELAP, ADEC, NELAP, CALAP, WADOE m,p-Xylene o-Xylene DoD-ELAP, ADEC, NELAP, CALAP, WADOE Styrene DoD-ELAP, NELAP, CALAP, WADOE DoD-ELAP, NELAP, CALAP, WADOE Bromoform 1,1,2,2-Tetrachloroethane DoD-ELAP, ADEC, NELAP, CALAP, WADOE DoD-ELAP, ADEC, NELAP, CALAP, WADOE 1,2,3-Trichloropropane trans-1,4-Dichloro 2-Butene DoD-ELAP, ADEC, NELAP, CALAP, WADOE n-Propylbenzene DoD-ELAP, NELAP, CALAP, WADOE Bromobenzene DoD-ELAP, NELAP, CALAP, WADOE Isopropyl Benzene DoD-ELAP, NELAP, CALAP, WADOE 2-Chlorotoluene DoD-ELAP, ADEC, NELAP, CALAP, WADOE 4-Chlorotoluene DoD-ELAP,ADEC,NELAP,CALAP,WADOE t-Butylbenzene DoD-ELAP, NELAP, CALAP, WADOE 1,3,5-Trimethylbenzene DoD-ELAP, NELAP, CALAP, WADOE 1,2,4-Trimethylbenzene DoD-ELAP, NELAP, CALAP, WADOE DoD-ELAP, NELAP, CALAP, WADOE s-Butylbenzene DoD-ELAP, NELAP, CALAP, WADOE 4-Isopropyl Toluene 1,3-Dichlorobenzene DoD-ELAP, ADEC, NELAP, CALAP, WADOE 1,4-Dichlorobenzene DoD-ELAP, ADEC, NELAP, CALAP, WADOE n-Butylbenzene DoD-ELAP, NELAP, CALAP, WADOE 1,2-Dichlorobenzene DoD-ELAP,ADEC,NELAP,CALAP,WADOE 1,2-Dibromo-3-chloropropane DoD-ELAP, ADEC, NELAP, CALAP, WADOE 1,2,4-Trichlorobenzene DoD-ELAP, ADEC, NELAP, CALAP, WADOE Hexachloro-1,3-Butadiene DoD-ELAP, ADEC, NELAP, CALAP, WADOE Naphthalene DoD-ELAP, ADEC, NELAP, CALAP, WADOE

Analytical Resources, Inc.

Farallon Consulting, LLC	Project: Emerald Gateway Site 1071-026	
1809 7th Ave, Suite 1111	Project Number: 1071-026	Reported:
Seattle WA, 98101	Project Manager: Pete Kingston	11-Jul-2019 12:11

1,2,3-TrichlorobenzeneDoD-ELAP,ADEC,NELAP,CALAP,WADOEDichlorodifluoromethaneDoD-ELAP,ADEC,NELAP,CALAP,WADOEMethyl tert-butyl EtherDoD-ELAP,ADEC,NELAP,CALAP,WADOE

n-Hexane WADOE 2-Pentanone WADOE

EPA 8270D-SIM in Water

Naphthalene ADEC, DoD-ELAP, NELAP, CALAP, WADOE

2-Methylnaphthalene ADEC,DoD-ELAP,NELAP,CALAP

1-Methylnaphthalene ADEC,DoD-ELAP,NELAP,CALAP,WADOE

Biphenyl NELAP

Acenaphthylene ADEC,DoD-ELAP,NELAP,CALAP,WADOE Acenaphthene ADEC,DoD-ELAP,NELAP,CALAP,WADOE

Dibenzofuran ADEC, DoD-ELAP, NELAP, CALAP

Fluorene ADEC,DoD-ELAP,NELAP,CALAP,WADOE Phenanthrene ADEC,DoD-ELAP,NELAP,CALAP,WADOE Anthracene ADEC,DoD-ELAP,NELAP,CALAP,WADOE

Carbazole NELAP

Fluoranthene ADEC,DoD-ELAP,NELAP,CALAP,WADOE Pyrene ADEC,DoD-ELAP,NELAP,CALAP,WADOE Benzo(a)anthracene ADEC,DoD-ELAP,NELAP,CALAP,WADOE Chrysene ADEC,DoD-ELAP,NELAP,CALAP,WADOE Benzo(b)fluoranthene ADEC,DoD-ELAP,NELAP,CALAP,WADOE Benzo(k)fluoranthene ADEC,DoD-ELAP,NELAP,CALAP,WADOE

Benzo(j)fluoranthene ADEC,DoD-ELAP,NELAP,WADOE

Benzo(e)pyrene NELAP

Benzo(a)pyrene ADEC,DoD-ELAP,NELAP,CALAP,WADOE

Perylene ADEC,NELAP,CALAP

Indeno(1,2,3-cd)pyreneADEC,DoD-ELAP,NELAP,CALAP,WADOEDibenzo(a,h)anthraceneADEC,DoD-ELAP,NELAP,CALAP,WADOEBenzo(g,h,i)peryleneADEC,DoD-ELAP,NELAP,CALAP,WADOE

NWTPH-Dx in Water

Diesel Range Organics (C12-C24)

DoD-ELAP,NELAP,WADOE

Diesel Range Organics (C10-C25)

Diesel Range Organics (Tol-C18)

Diesel Range Organics (C10-C24)

Diesel Range Organics (C10-C24)

Diesel Range Organics (C10-C28)

DoD-ELAP,NELAP,WADOE

DoD-ELAP,NELAP,WADOE

Diesel Range Organics (C12-C22)

DoD-ELAP

Diesel Range Organics (C12-C25)

DoD-ELAP

Motor Oil Range Organics (C24-C38) DoD-ELAP, NELAP, WADOE

Analytical Resources, Inc.

Farallon Consulting, LLC	Project: Emerald Gateway Site 1071-026	
1809 7th Ave, Suite 1111	Project Number: 1071-026	Reported:
Seattle WA, 98101	Project Manager: Pete Kingston	11-Jul-2019 12:11

Motor Oil Range Organics (C25-C36)	DoD-ELAP,NELAP,WADOE
Motor Oil Range Organics (C24-C40)	DoD-ELAP,NELAP,WADOE
Residual Range Organics (C23-C32)	DoD-ELAP
Mineral Spirits Range Organics (Tol-C12)	DoD-ELAP,NELAP,WADOE
Mineral Oil Range Organics (C16-C28)	DoD-ELAP,NELAP,WADOE
Kerosene Range Organics (Tol-C18)	DoD-ELAP,NELAP,WADOE
JP8 Range Organics (C8-C18)	DoD-ELAP,NELAP,WADOE
JP5 Range Organics (C10-C16)	DoD-ELAP,NELAP,WADOE
JP4 Range Organics (Tol-C14)	DoD-ELAP,NELAP,WADOE
Jet-A Range Organics (C10-C18)	DoD-ELAP,NELAP,WADOE
Creosote Range Organics (C12-C22)	DoD-ELAP,NELAP,WADOE
Bunker C Range Organics (C10-C38)	DoD-ELAP,NELAP,WADOE
Stoddard Range Organics (C8-C12)	DoD-ELAP,NELAP,WADOE
Transformer Oil Range Organics (C12-C28)	DoD-ELAP,NELAP,WADOE

NWTPHg in Water

Gasoline Range Organics (Tol-Nap)

Gasoline Range Organics (2MP-TMB)

Gasoline Range Organics (Tol-C12)

Gasoline Range Organics (Tol-C12)

WADOE,DoD-ELAP

WADOE,DoD-ELAP

WADOE,ADEC,DoD-ELAP

Gasoline Range Organics (C5-C12)

WADOE,DoD-ELAP

Code	Description	Number	Expires
ADEC	Alaska Dept of Environmental Conservation	17-015	01/31/2021
CALAP	California Department of Public Health CAELAP	2748	06/30/2019
DoD-ELAP	DoD-Environmental Laboratory Accreditation Program	66169	01/01/2021
NELAP	ORELAP - Oregon Laboratory Accreditation Program	WA100006-012	05/12/2020
WADOE	WA Dept of Ecology	C558	06/30/2019
WA-DW	Ecology - Drinking Water	C558	06/30/2019

Analytical Resources, Inc.

[2C]

Farallon Consulting, LLC Project: Emerald Gateway Site 1071-026

Indicates this result was quantified on the second column on a dual column analysis.

1809 7th Ave, Suite 1111Project Number: 1071-026Reported:Seattle WA, 98101Project Manager: Pete Kingston11-Jul-2019 12:11

Notes and Definitions

*	Flagged value is not within established control limits.
D	The reported value is from a dilution
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL)
Н	Hold time violation - Hold time was exceeded.
J	Estimated concentration value detected below the reporting limit.
U	This analyte is not detected above the reporting limit (RL) or if noted, not detected above the limit of detection (LOD).
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference

APPENDIX D TERRESTRIAL ECOLOGICAL EVALUATION

INTERIM ACTION DESIGN REPORT
Emerald Gateway Site
3301 South Norfolk Street
Seattle/Tukwila, Washington

Farallon PN: 1071-026

Voluntary Cleanup Program

Washington State Department of Ecology Toxics Cleanup Program

TERRESTRIAL ECOLOGICAL EVALUATION FORM

Under the Model Toxics Control Act (MTCA), a terrestrial ecological evaluation is necessary if hazardous substances are released into the soils at a Site. In the event of such a release, you must take one of the following three actions as part of your investigation and cleanup of the Site:

- 1. Document an exclusion from further evaluation using the criteria in WAC 173-340-7491.
- 2. Conduct a simplified evaluation as set forth in WAC 173-340-7492.

Step 1: IDENTIFY HAZARDOUS WASTE SITE

3. Conduct a site-specific evaluation as set forth in WAC 173-340-7493.

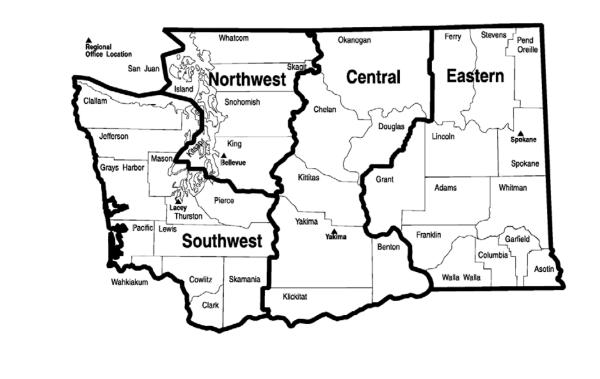
When requesting a written opinion under the Voluntary Cleanup Program (VCP), you must complete this form and submit it to the Department of Ecology (Ecology). The form documents the type and results of your evaluation.

Completion of this form is not sufficient to document your evaluation. You still need to document your analysis and the basis for your conclusion in your cleanup plan or report.

If you have questions about how to conduct a terrestrial ecological evaluation, please contact the Ecology site manager assigned to your Site. For additional guidance, please refer to www.ecy.wa.gov/programs/tcp/policies/terrestrial/TEEHome.htm.

Please identify below the hazardous waste site for which you are documenting an evaluation.				
Facility/Site Name:				
Facility/Site Address:				
Facility/Site No:	No: VCP Project No.:			
	·			
Step 2: IDENTIFY EVAL	UATOR			
Please identify below the person who conducted the evaluation and their contact information.				
Name: Title:			Title:	
Organization:				
Mailing address:				
City:		Sta	te:	Zip code:
Phone:			E-mail:	

Step 3: DOCUMENT EVALUATION TYPE AND RESULTS A. Exclusion from further evaluation. 1. Does the Site qualify for an exclusion from further evaluation? Yes If you answered "YES," then answer Question 2. No or If you answered "NO" or "UKNOWN," then skip to Step 3B of this form. Unknown 2. What is the basis for the exclusion? Check all that apply. Then skip to Step 4 of this form. Point of Compliance: WAC 173-340-7491(1)(a) All soil contamination is, or will be,* at least 15 feet below the surface. All soil contamination is, or will be,* at least 6 feet below the surface (or alternative depth if approved by Ecology), and institutional controls are used to manage remaining contamination. Barriers to Exposure: WAC 173-340-7491(1)(b) All contaminated soil, is or will be,* covered by physical barriers (such as buildings or paved roads) that prevent exposure to plants and wildlife, and institutional controls are used to manage remaining contamination. Undeveloped Land: WAC 173-340-7491(1)(c) There is less than 0.25 acres of contiguous# undeveloped* land on or within 500 feet of any area of the Site and any of the following chemicals is present: chlorinated dioxins or furans, PCB mixtures, DDT, DDE, DDD, aldrin, chlordane, dieldrin, endosulfan, endrin, heptachlor, heptachlor epoxide, benzene hexachloride. toxaphene, hexachlorobenzene, pentachlorophenol, or pentachlorobenzene. For sites not containing any of the chemicals mentioned above, there is less than 1.5 acres of contiguous# undeveloped± land on or within 500 feet of any area of the Site. Background Concentrations: WAC 173-340-7491(1)(d) Concentrations of hazardous substances in soil do not exceed natural background levels as described in WAC 173-340-200 and 173-340-709. * An exclusion based on future land use must have a completion date for future development that is acceptable to Ecology. # "Undeveloped land" is land that is not covered by building, roads, paved areas, or other barriers that would prevent wildlife from feeding on plants, earthworms, insects, or other food in or on the soil. # "Contiguous" undeveloped land is an area of undeveloped land that is not divided into smaller areas of highways, extensive paving, or similar structures that are likely to reduce the potential use of the overall area by wildlife.


В.	Simplified	evaluation.			
1.	. Does the Site qualify for a simplified evaluation?				
		es If you answered "YES," then answer Question 2 below.			
	□ N Unkno	o or own If you answered "NO" or "UNKNOWN," then skip to Step 3C of this form.			
2.	Did you co	nduct a simplified evaluation?			
	☐ Y	es If you answered "YES," then answer Question 3 below.			
	□ N	o If you answered "NO," then skip to Step 3C of this form.			
3.	Was furthe	r evaluation necessary?			
		es If you answered "YES," then answer Question 4 below.			
	□ N	o If you answered "NO," then answer Question 5 below.			
4.	If further e	valuation was necessary, what did you do?			
		Used the concentrations listed in Table 749-2 as cleanup levels. If so, then skip to Step 4 of this form.			
		Conducted a site-specific evaluation. If so, then skip to Step 3C of this form.			
5.		er evaluation was necessary, what was the reason? Check all that apply. Then skip			
	to Step 4 of this form.				
	Exposure Analysis: WAC 173-340-7492(2)(a) Area of soil contamination at the Site is not more than 350 square feet.				
	▣	Current or planned land use makes wildlife exposure unlikely. Used Table 749-1.			
	Pathway Analysis: WAC 173-340-7492(2)(b)				
	No potential exposure pathways from soil contamination to ecological receptors. Contaminant Analysis: WAC 173-340-7492(2)(c)				
	Contamina	No contaminant listed in Table 749-2 is, or will be, present in the upper 15 feet at			
		concentrations that exceed the values listed in Table 749-2.			
		No contaminant listed in Table 749-2 is, or will be, present in the upper 6 feet (or alternative depth if approved by Ecology) at concentrations that exceed the values listed in Table 749-2, and institutional controls are used to manage remaining contamination.			
		No contaminant listed in Table 749-2 is, or will be, present in the upper 15 feet at concentrations likely to be toxic or have the potential to bioaccumulate as determined using Ecology-approved bioassays.			
		No contaminant listed in Table 749-2 is, or will be, present in the upper 6 feet (or alternative depth if approved by Ecology) at concentrations likely to be toxic or have the potential to bioaccumulate as determined using Ecology-approved bioassays, and institutional controls are used to manage remaining contamination.			

C.	Site-specific evaluation. A site-specific evaluation process consists of two parts: (1) formulating the problem, and (2) selecting the methods for addressing the identified problem. Both steps require consultation with and approval by Ecology. See WAC 173-340-7493(1)(c).		
1.	Was there a problem? See WAC 173-340-7493(2).		
	Yes If you answered "YES," then answer Question 2 below.		
	☐ No If you answered "NO," then identify the reason here and then skip to Question 5 below:		
	No issues were identified during the problem formulation step.		
	While issues were identified, those issues were addressed by the cleanup actions for protecting human health.		
2.	What did you do to resolve the problem? See WAC 173-340-7493(3).		
	Used the concentrations listed in Table 749-3 as cleanup levels. <i>If so, then skip to</i> Question 5 below.		
	Used one or more of the methods listed in WAC 173-340-7493(3) to evaluate and address the identified problem. <i>If so, then answer Questions 3 and 4 below.</i>		
3.	If you conducted further site-specific evaluations, what methods did you use? Check all that apply. See WAC 173-340-7493(3).		
	Literature surveys.		
	☐ Soil bioassays.		
	Wildlife exposure model.		
	☐ Biomarkers.		
	Site-specific field studies.		
	Weight of evidence.		
	Other methods approved by Ecology. If so, please specify:		
4.	What was the result of those evaluations?		
	Confirmed there was no problem.		
	Confirmed there was a problem and established site-specific cleanup levels.		
5.	5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps?		
	Yes If so, please identify the Ecology staff who approved those steps:		
	□ No		

Step 4: SUBMITTAL

Please mail your completed form to the Ecology site manager assigned to your Site. If a site manager has not yet been assigned, please mail your completed form to the Ecology regional office for the County in which your Site is located.

Northwest Region: Attn: VCP Coordinator 3190 160 th Ave. SE Bellevue, WA 98008-5452	Central Region: Attn: VCP Coordinator 1250 West Alder St. Union Gap, WA 98903-0009	
Southwest Region: Attn: VCP Coordinator P.O. Box 47775 Olympia, WA 98504-7775	Eastern Region: Attn: VCP Coordinator N. 4601 Monroe Spokane WA 99205-1295	

Table 749-1

Simplified Terrestrial Ecological Evaluation-Exposure Analysis Procedure

Estimate the area of contiguous (connected) <u>undeveloped land</u> on the site or within 500 feet of any area of the site to the nearest 1/2 acre (1/4 acre if the area is less than 0.5 acre).

area of the site to the nearest 1/2 acre (1/4 acre if the area is less than 0.5 acre).		
1) From the table below, find the number of points corresponding to the area and enter this number in the field to the right.		
Area (acres) Points 0.25 or less 4 0.5 5 1.0 6 1.5 7 2.0 8 2.5 9 3.0 10 3.5 11 4.0 or more 12	8	
2) Is this an <u>industrial</u> or <u>commercial</u> property? If yes, enter a score of 3. If no, enter a score of 1	3	
3) ^a Enter a score in the box to the right for the habitat quality of the site, using the following rating system ^b . High=1, Intermediate=2, Low=3	3	
4) Is the undeveloped land likely to attract wildlife? If yes, enter a score of 1 in the box to the right. If no, enter a score of 2^{c}		
5) Are there any of the following soil contaminants present: Chlorinated dioxins/furans, PCB mixtures, DDT, DDE, DDD, aldrin, chlordane, dieldrin, endosulfan, endrin, heptachlor, benzene hexachloride, toxaphene, hexachlorobenzene, pentachlorophenol, pentachlorobenzene? If yes, enter a score of 1 in the box to the right. If no, enter a score of 4.		
6) Add the numbers in the boxes on lines 2-5 and enter this number in the box to the right. If this number is larger than the number in the box on line 1, the simplified evaluation may be ended.		

Notes for Table 749-1

Low: Early <u>successional</u> vegetative stands; vegetation predominantly noxious, nonnative, exotic plant species or weeds. Areas severely disturbed by human activity, including intensively cultivated croplands. Areas isolated from other habitat used by wildlife.

^a It is expected that this habitat evaluation will be undertaken by an experienced field biologist. If this is not the case, enter a conservative score of (1) for questions 3 and 4.

^b **Habitat rating system.** Rate the quality of the habitat as high, intermediate or low based on your professional judgment as a field biologist. The following are suggested factors to consider in making this evaluation:

High: Area is ecologically significant for one or more of the following reasons: Late-<u>successional</u> native plant communities present; relatively high species diversity; used by an uncommon or rare species; <u>priority habitat</u> (as defined by the Washington Department of fish and Wildlife); part of a larger area of habitat where size or fragmentation may be important for the retention of some species.

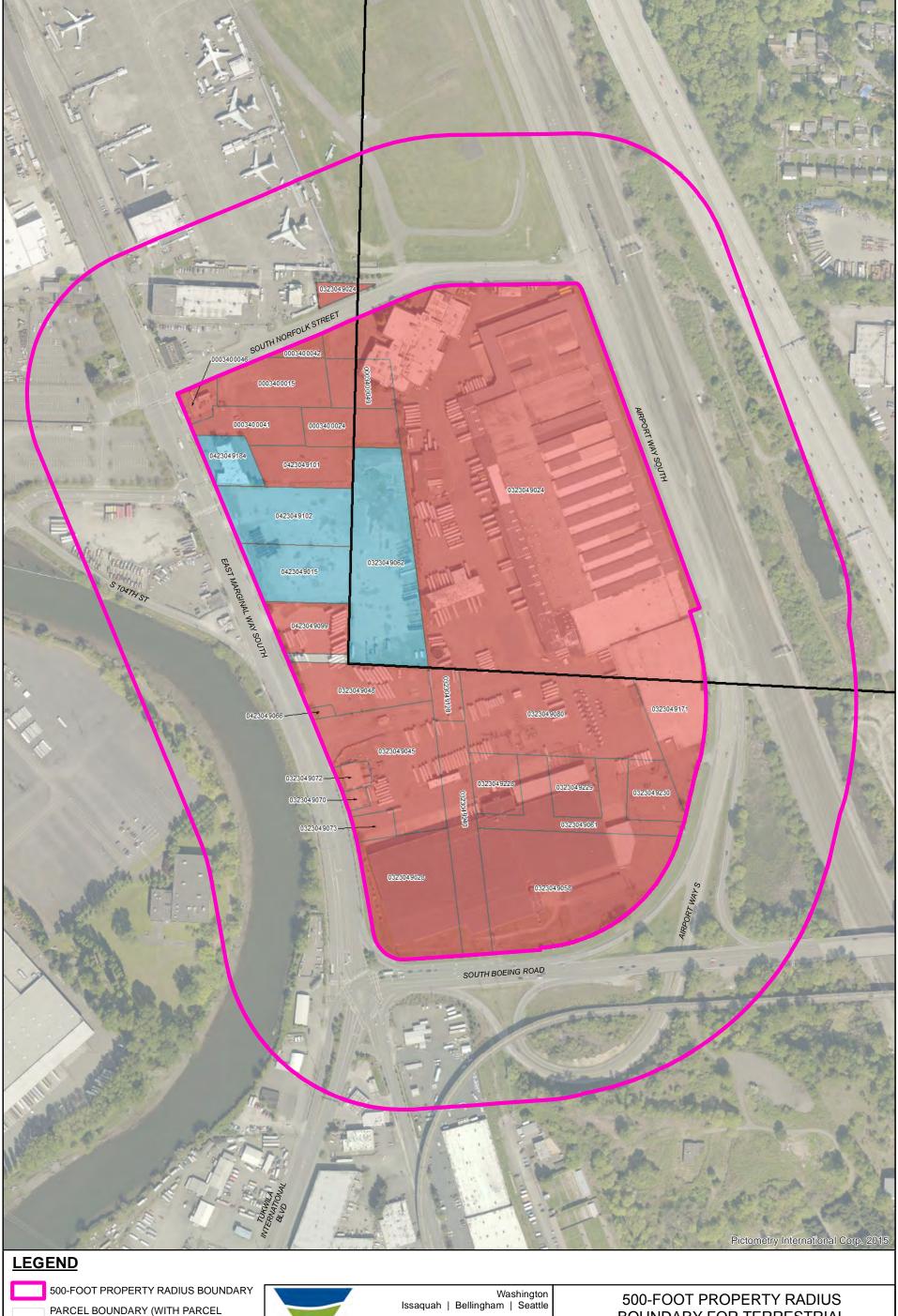
Intermediate: Area does not rate as either high or low.

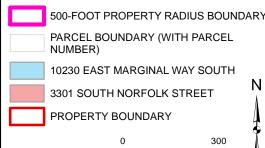
[Area Calculation Aid] [Aerial Photo with Area Designations] [TEE Table 749-1] [Index of Tables]

[Exclusions Main] [TEE Definitions] [Simplified or Site-Specific?] [Simplified Ecological Evaluation] [Site-Specific Ecological Evaluation] [WAC 173-340-7493]

[TEE Home]

^c Indicate "yes" if the area attracts wildlife or is likely to do so. Examples: Birds frequently visit the area to feed; evidence of high use b mammals (tracks, scat, etc.); habitat "island" in an industrial area; unusual features of an area that make it important for feeding animals; heavy use during seasonal migrations.


Terrestrial Ecological Evaluation Process- Simplified Evaluation


Documentation Form

Criteria # (Concern)	Criteria	Response (Circle One)
1 (exposure)	Is the total area of soil contamination at the site less than or equal to 350 square feet	Yes (End TEE) No
2 (exposure)	Does land use at the site and surrounding area make substantial wildlife exposure unlikely based on completion of <u>Table 749-1</u> ?	Yes (End TEE) No
3 (pathway)	Is there a potential exposure pathway from soil contamination to soil biota, plants, or wildlife?	Yes / No (End TEE)
4 (contaminant)	Are the hazardous substances at your site listed in Table 749-2 and is (or will) their location in the soil at your site be at a depth not exceeding the point of compliance, and at concentrations that do not exceed the values provided in Table 749-2.	Yes (End TEE) / No Note: You must perform bioassays for contaminants at your site if no table value is provided.
5 (contaminant)	Will hazardous substances listed in Table 749-2 be present in the soil at your site within 6 feet of the ground surface at concentrations likely to be toxic, or with the potential to bioaccumulate, based on bioassays using methods approved by the department.	Yes / No (End TEE)

[Exclusions Main] [TEE Definitions] [Simplified or Site-Specific?] [Simplified Ecological Evaluation] [Site-Specific Ecological Evaluation] [WAC 173-340-7493] [Index of Tables]

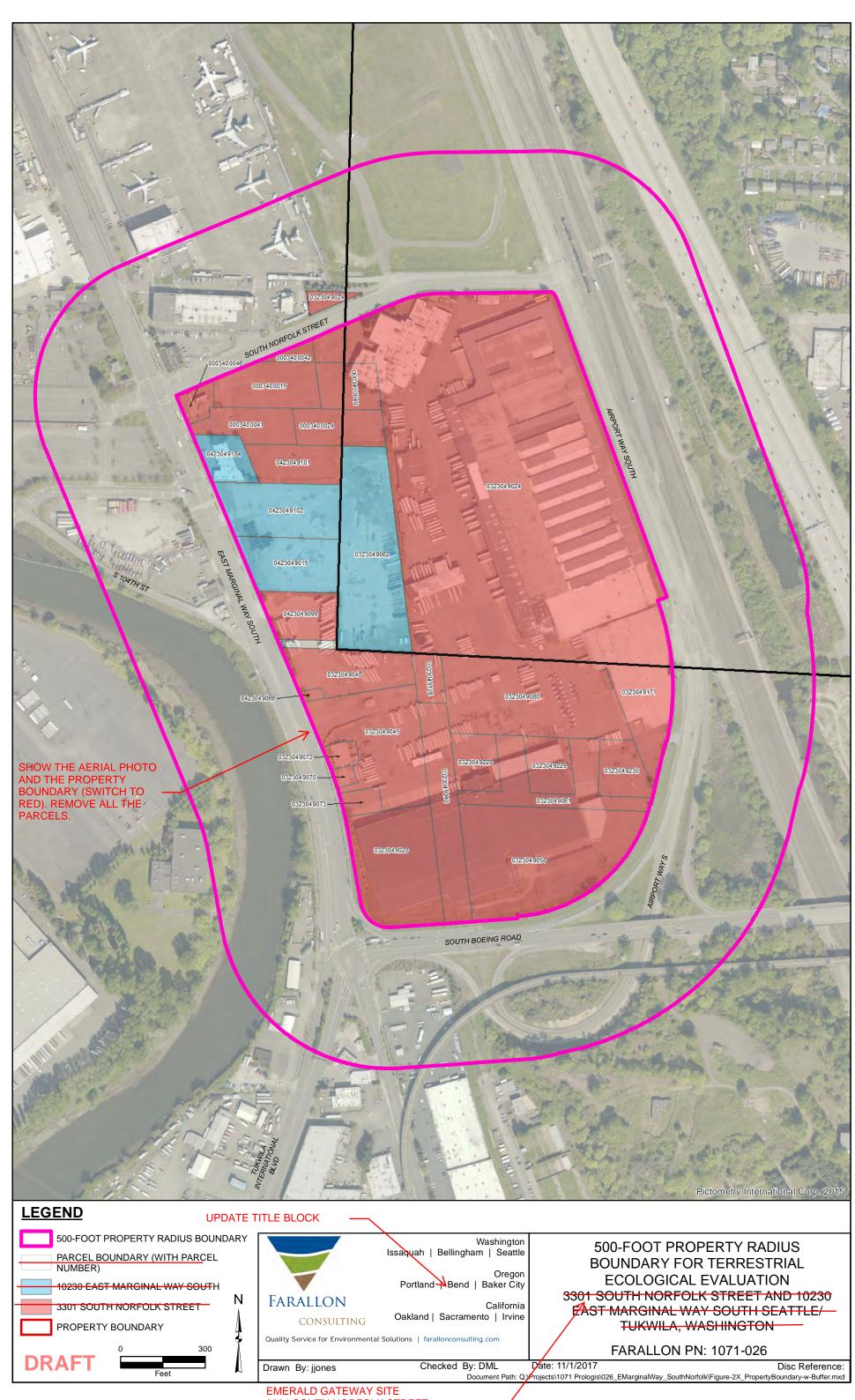
[TEE Home]

Drawn By: jjones

Oregon Portland | Bend | Baker City

California Oakland | Sacramento | Irvine

Checked By: DML


Date: 11/1/2017

Quality Service for Environmental Solutions | farallonconsulting.com

BOUNDARY FOR TERRESTRIAL ECOLOGICAL EVALUATION 3301 SOUTH NORFOLK STREET AND 10230 EAST MARGINAL WAY SOUTH SEATTLE/ TUKWILA, WASHINGTON

FARALLON PN: 1071-026

Disc Reference:

EMERALD GATEWAY SITE
3301 SOUTH NORFOLK STREET
SEATTLE/TUKWILA , EASHINGTON

APPENDIX E SAMPLING AND ANALYSIS PLAN

INTERIM ACTION DESIGN REPORT
Emerald Gateway Site
3301 South Norfolk Street
Seattle/Tukwila, Washington

Farallon PN: 1071-026

SAMPLING AND ANALYSIS PLAN INTERIM ACTION DESIGN REPORT

EMERALD GATEWAY SITE 3301 SOUTH NORFOLK STREET SEATTLE/TUKWILA, WASHINGTON

Submitted by: Farallon Consulting, L.L.C. 975 5th Avenue Northwest Issaquah, Washington 98027

Farallon PN: 1071-026

For:
Prologis-Exchange 3301 South Norfolk LLC
Pier 1, Bay 1
San Francisco, California 94111

March 24, 2020

Prepared by:

Pete Kingston, L.G. Senior Geologist

Reviewed by:

Peter Jewett, L.G., L.E.G. Principal Engineering Geologist

TABLE OF CONTENTS

1.0	INTRODUCTION1-				
	1.1	PURPOSE			
2.0	PROJECT DESCRIPTION2-2				
	2.1	PROJECT ORGANIZATION AND RESPONSIBILITIES			
	2.2	PROJECT SCHEDULE	2-3		
3.0	FIELD PROCEDURES				
	3.1	FIELD SCREENING	3-1		
		3.1.1 Visual and Olfactory Observations	3-1		
		3.1.2 Organic Vapor Screening	3-1		
		3.1.3 Soil Sheen Test	3-2		
	3.2	SOIL SAMPLING	3-2		
		3.2.1 Performance Soil Sampling	3-2		
		3.2.2 Confirmation Soil Sampling	3-3		
		3.2.3 General Field Procedures	3-3		
	3.3	DECONTAMINATION PROCEDURES	3-4		
4.0	SAMPLE HANDLING4-1				
	4.1	SAMPLE DOCUMENTATION	4-1		
	4.2	SAMPLE DESIGNATION	4-1		
		4.2.1 Soil Sample Identifiers	4-1		
	4.3	SAMPLE CONTAINERS, PRESERVATION PROCEDURES,			
		AND HOLDING TIMES	4-1		
	4.4	FIELD QUALITY ASSURANCE/QUALITY CONTROL SAMPLE	ES.4-2		
	4.5	SAMPLE PACKAGING AND SHIPMENT			
5.0	LAB	ORATORY ANALYSIS	5-1		
	5.1	LABORATORY ANALYSES	5-1		
	5.2	REPORTING LIMITS	5-1		
6.0	MANAGEMENT OF INVESTIGATION-DERIVED WASTE6-1				
	6.1	WASTE SOIL	6-1		
	6.2	WASTEWATER	6-1		
	6.3	DISPOSABLES	6-1		
7.0	FIELD DOCUMENTATION				
	7.1	FIELD REPORT FORM	7-1		
	7.2	TRUCK TRACKING LOG	7-1		
	7.3	SOIL SAMPLE DATA LOG	7-1		
	7.4	SAMPLE LABEL	7-1		
	7.5	WASTE MATERIAL LABEL	7-2		

	7.6	WASTE INVENTORY FORM	7-2
	7.7	CHAIN OF CUSTODY FORM	7-2
8.0	QUA	LITY ASSURANCE PROJECT PLAN	8-1
	8.1	DATA QUALITY OBJECTIVES	
		8.1.1 PRECISION	
		8.1.2 ACCURACY	8-2
		8.1.3 REPRESENTATIVENESS	8-2
		8.1.4 COMPLETENESS	8-3
		8.1.5 COMPARABILITY	8-3
	8.2	DATA QUALITY CONTROL	8-3
	8.3	LABORATORY DATA PACKAGE REQUIREMENTS	8-4
	8.4	CORRECTIVE ACTION	8-5
	8.5	DATA MANAGEMENT	8-5
	8.6	DATA VALIDATION	8-5
9.0	REFI	ERENCES	9-1
		FIGURE	
Figure	e 1 In	citial Boundaries of the Proposed Interim Action Excavation Areas	
		TABLES	
Table	1 Sc	ample Containers, Preservatives, and Hold Times	
Table	2 <i>Sa</i>	oil Laboratory Reporting Limits	
		APPENDICES	
Appen	ndix A	Farallon Standard Operating Procedures	
Annen	ndix B	Farallon Field Forms and Records	
- PPOI	D	T DI DI LI TOTAL I CITAL MILA TEACOLAD	

1.0 INTRODUCTION

Farallon Consulting, L.L.C. (Farallon) has prepared this Sampling and Analysis Plan (SAP) on behalf of Prologis-Exchange 3301 South Norfolk LLC (Prologis) to present specific methodologies for the collection, handling, and analysis of samples that will be conducted during an interim action for the property at 3301 South Norfolk Street in Seattle/Tukwila, Washington (herein referred to as the Property) (Figure 1). This Interim Action Design Report has been prepared pursuant to Agreed Order No. DE 16659 between Prologis and the Washington State Department of Ecology (Ecology 2020). Additional information on the Emerald Gateway Site is provided in the Interim Action Work Plan (Farallon 2019) (IAWP).

This SAP has been prepared in accordance with the Washington State Model Toxics Control Act Cleanup Regulation (MTCA) as established in Section 820 of Chapter 173-340 of the Washington Administrative Code WAC 173-340-820) and *Guidelines for Preparing Quality Assurance Project Plans for Environmental Studies* revised December 2016, prepared by the Washington State Department of Ecology (Ecology) (2004).

1.1 PURPOSE

The purposes of this SAP are to:

- Describe the interim action scope of work;
- Identify sample locations and media, sample quantities, analytical methods, and documentation protocols for the sampling program;
- Describe standard operating procedures (SOPs) for field sampling of soil; and
- Provide quality assurance (QA) and quality control (QC) protocols for field activities and laboratory analysis to ensure collection of representative and useable data.

2.0 PROJECT DESCRIPTION

This section provides a summary of the scope of work and Farallon's project organization and schedule.

2.1 PROJECT ORGANIZATION AND RESPONSIBILITIES

The project organization for conducting the scope of work described in the SAP, including identification of key personnel and their responsibilities, is presented below.

Regulatory Agency. Ecology is the lead regulatory agency for the Site. Ecology's Site manager for the Emerald Gateway Site is:

Ms. Jing Liu
Washington State Department of Ecology
Northwest Regional Office
3190 160th Avenue Southeast
Bellevue, Washington 98008
Telephone: (425) 649-4310
iliu461@ecy.wa.gov

Project Contact. Farallon has been contracted by Prologis to plan and implement the SAP. The Project Contact for Prologis is:

Ms. Janet Frentzel Prologis, Inc. Pier 1, Bay 1 San Francisco, California 94111 Telephone: (425) 733-9431 jfrentzel@prologis.com

Project Principal. The Project Principal provides support for all project activities and reviews data and deliverables prior to their submittal to the Project Contact or Regulatory Agency.

Mr. Peter Jewett, L.G., L.E.G. Farallon Consulting, L.L.C. 975 5th Avenue Northwest Issaquah, Washington 98027 Telephone: (425) 295-0800 pjewett@farallonconsulting.com

Project Manager. The Project Manager has day-to-day responsibility for project implementation. The Project Manager will be responsible monitoring the quality of the technical and managerial

aspects of the project, and implementing the SAP and corresponding corrective actions, if necessary. The Project Manager for Farallon is:

Mr. Pete Kingston, L.G. Farallon Consulting, L.L.C. 1809 7th Avenue Seattle, Washington 98101 Telephone: (425) 295-0800

pkingston@farallonconsulting.com

Project Data Manager. The Project Data Manager manages data as it is received from the laboratory and is responsible for data validation. Data validation responsibilities include reviewing laboratory reports, advising on data corrective action procedures, and performing QA/QC on analytical data reports. In addition, the Project Data Manager will directly transfer laboratory data into an EQuIS environmental data management system database (EQuIS database) and the Ecology Environmental Information Management System. The Data Manager for Farallon is:

Mr. Thomas Metos Farallon Consulting, L.L.C. 975 5th Avenue Northwest Issaquah, Washington 98027 Telephone: (425) 295-0800 tmetos@farallonconsulting.com

Field Staff. Members of the field staff supervise contractor procedures, manage collection of samples, coordinate sample deliveries to the laboratory, and document field-sampling activities. Field Staff also will communicate progress updates to the Project Manager, including deviations from the SAP.

Laboratory – **Analytical Resources, Inc.** Analytical Resources, Inc. (ARI), of Tukwila, Washington will perform analytical services in support of the pre-interim action design investigation and will be responsible for implementing specific QA/QC requirements.

2.2 PROJECT SCHEDULE

The interim action will be completed in conjunction with Property redevelopment, and the schedule for completion is dependent on Property redevelopment following Ecology approval of IAWP and Interim Action Design Report.

3.0 FIELD PROCEDURES

This section summarizes the protocols and procedures that will be followed for field data collection. Farallon SOPs for fieldwork, including detailed step-by-step protocols, are provided in Appendix A.

3.1 FIELD SCREENING

Field screening will be performed by the Field Scientist to guide the interim action excavation work and to supplement soil sample analytical data, as needed, in identifying extents of the general categories of soil for purposes of soil handling and disposal.

Field screening will consist of any or all of the following:

- Visual and olfactory observations;
- Organic vapor screening; and
- Soil sheen testing.

Results of field screening will be recorded by the Field Scientist on a Field Report form.

3.1.1 Visual and Olfactory Observations

Field Scientist visual and olfactory observations will include at a minimum: elevation and soil lift identification, Unified Soil Classification System soil description, estimated soil moisture, physical indications of contamination (e.g., odor, staining), and estimate of percentage of wood debris by volume.

3.1.2 Organic Vapor Screening

Organic vapor screening may be performed by the Field Scientist using a calibrated photoionization detector (PID) for purposes of identifying soil containing volatile organic compounds (VOCs) or for health and safety monitoring. A PID reading exceeding ambient or background concentrations indicates potential confirmation of VOC concentrations in a soil sample. Organic vapor screening will be conducted as follows:

- Approximately 100 grams of the soil sample will be sealed in a heavy re-sealable plastic bag, and care will be taken to leave air (headspace) in the bag for the volatile organic vapors to collect;
- The sealed bag will be shaken to volatilize the contaminants in the soil;
- After waiting approximately 5 minutes, the Field Scientist will insert the PID probe tip into a small opening in the seal at the top of the bag, and the highest PID reading will be recorded on the Soil Sample Data Log form; and
- The bag will be resealed after taking the headspace reading in case further assessment of the sample is needed.

3.1.3 Soil Sheen Test

Soil sheen testing will be performed for purposes of identifying soil containing petroleum hydrocarbons. The Field Scientist will place a soil sample into a clean sample jar and add fresh water. The surface of the water will then be observed for the presence or absence of a sheen in accordance with Ecology (2011) guidance, with the following sheen descriptors noted:

- NS No visible sheen on the water surface.
- SS Slight (light, colorless, or dull) sheen on the water surface, with irregular non-rapid spread. Natural organic oils or iron bacteria in the soil may produce a slight sheen.
- MS Moderate (pronounced over limited area) sheen. Sheen may have some color/iridescence, with irregular and possibly rapid spread, but does not spread over entire water surface.
- HS Heavy sheen with pronounced color/iridescence and rapid spread, with the sheen covering the entire water surface.

Decaying organic matter and/or iron bacteria can produce a rainbow-like sheen similar to an oil sheen. However, these sheens typically can be broken up when agitated or disturbed, unlike oil sheens, which can be iridescent.

3.2 SOIL SAMPLING

The interim action provides for compliance monitoring soil sampling in accordance with WAC 173-340-410 to document the effectiveness of the interim action. The following sections summarize methodology for compliance monitoring. Performance soil sample results will be used to identify the limits of each interim action excavation and may also be used, as needed, to document compliance of soil with waste profiles approved by selected disposal facilities. Confirmation soil sampling results will confirm the compliance with remediation levels identified in the Interim Action Design Report. Data pertaining to soil sampling will be recorded by the Field Scientist on a Field Report form and a Soil Sample Data Log form.

3.2.1 Performance Soil Sampling

Performance soil sampling will involve collecting discrete in-situ soil samples for laboratory analysis to quantify concentrations of COPCs in soil. Discrete soil samples will be collected from the centers of excavation grids and the excavation bottom and sidewalls to guide the excavation and to serve as confirmational samples where remediation levels are attained.

The frequency and location of performance soil sampling will be dependent on the sampling data available at the time and results of field screening described in Section 3.1, Field Screening; and at the discretion of the Field Scientist. Performance soil sample locations and elevations will be measured using a geographic positioning system or by a construction land surveyor.

Figures will be continually updated with results of field screening and performance soil sampling, and will be used for planning of additional performance soil sampling. If soil contamination is confirmed within an excavation grid area, the grid area may be further divided into subareas and additional performance samples collected to assess the lateral extent of contamination, as needed. The frequency of performance soil sampling may be higher near the lateral and vertical limits of the interim action excavations to confirm that remediation levels are attained.

3.2.2 Confirmation Soil Sampling

Confirmation soil sampling will be conducted at each excavation location once performance soil sampling results and field screening procedures indicate that the remediation levels have been attained at the limits of each excavation. Confirmation soil sampling will consist of collecting discrete in-situ soil samples from the base and sidewalls of the final limits of each completed excavation area where COPCs for the interim action were previously present and/or where previous concentrations of constituents of concern exceeded remediation levels. Performance soil samples will be used as confirmation samples in cases where the analytical results of performance soil samples confirm that remediation levels have been attained.

3.2.3 General Field Procedures

Soil samples will be collected and handled in accordance with the general procedures listed below, and Farallon's SOP SL-02 (Appendix A):

- Don a new pair of powder-free nitrile gloves prior to collecting each individual soil sample to avoid potential cross-contamination.
- Collect soil samples directly from the top 6 inches of exposed surface of the sidewalls and/or bottom of the interim action excavations, unless otherwise directed by the Farallon Project Manager. If sampling personnel are not allowed into the excavation area due to health and safety concerns, samples can be collected directly from the excavator bucket, taking care to collect soil from the center of the bucket and to <u>not</u> collect soil samples that have come in contact with the excavator bucket. Samples collected for laboratory analysis should only come into contact with decontaminated stainless-steel equipment or laboratory certified-clean sample containers.
- Transfer the soil immediately into appropriate laboratory-supplied and certified-clean sampling containers. Care will be taken not to handle the seal or the inside cap of the container while placing the sample into the container. The container will be filled to eliminate headspace and the seal/cap will be secured. Non-dedicated sampling equipment will be decontaminated between uses, as appropriate.
- Record the following information, at a minimum, on the Soil Sample Data Log form during sampling: sample identification, sample depth, Unified Soil Classification System soil description, soil moisture, and physical indications of contamination (e.g., visual observations, PID readings).

- Label the sample container in accordance with the procedures described in Section 4, Sample Handing.
- Log the sample on a Chain of Custody form and place into a cooler on ice for transport to the laboratory under standard chain-of-custody protocols. The Chain of Custody form will clearly indicate that each sample is to be thoroughly homogenized by the laboratory.
- Deliver soil samples to the analytical laboratory as soon as possible after sampling in order for the laboratory to analyze the samples within regulatory holding times as described in Section 5, Laboratory Analysis.

3.3 DECONTAMINATION PROCEDURES

Reusable equipment will be decontaminated in accordance with Farallon SOP EQ-01 (Appendix A).

4.0 SAMPLE HANDLING

This section discusses the sample designation and labeling and sample-handling methods to be used during the pre-interim action design investigation. The protocols discussed include sample containers, preservation and holding times, sample documentation, collection of QA/QC samples, and sample packaging and shipment.

4.1 SAMPLE DOCUMENTATION

Sample documentation includes sample labels, Field Report forms, Soil Sample Data Log forms, and Chain of Custody forms. Other sample documentation to be maintained by field personnel are provided in Appendix B.

Each sample container will be marked with a durable adhesive label and labeled with a unique identifier. The sample identifier for each sample will be constructed according to Section 4.2, Sample Designation, and recorded in the Field Report forms and on the sample Chain of Custody form (Appendix B). Sample labels will include the client name, project name and number, date and time sampled, sample identifier, sampler's initials, requested sample analysis, and analyte preservative(s), if any. The Chain of Custody form will include the sample identifier, date and time of sample collection, sampler's initials, number of containers, and requested sample analysis. Entries for all samples will be made on the Chain of Custody form prior to the transfer of the samples off the area of interest.

4.2 SAMPLE DESIGNATION

Sample designation and labeling procedures for soil samples are presented below.

4.2.1 Soil Sample Identifiers

Soil samples will be assigned a unique sample identifier that will include the sample location (e.g., excavation grid identification), the number of the sample within that grid, and the depth of the sample stated in feet bgs. For example, the first soil sample collected from grid A1 at a depth of 5 feet bgs would be assigned the identifier A1-01-5.0. The next soil sample collected from grid A1 at a depth of 10 feet bgs would be assigned the identifier A1-02-10.0. The sample identifier will be recorded on the sample label, Field Report form, Soil Sample Data Log, and Chain of Custody form.

4.3 SAMPLE CONTAINERS, PRESERVATION PROCEDURES, AND HOLDING TIMES

Sample container requirements for soil sampling are based on the medium to be sampled and the type(s) of analysis to be performed. The containers, preservation procedures, and hold times for soil are shown in Table 1 and follow standard laboratory protocols.

4.4 FIELD QUALITY ASSURANCE/QUALITY CONTROL SAMPLES

Field duplicate samples will be collected during sampling to assess the precision of laboratory analytical and field sampling methods. Soil sampling is subject to potentially wide ranges of variability due to the heterogeneity of the sample and the limited mass of soil sampled. Field duplicate soil samples will not be collected.

4.5 SAMPLE PACKAGING AND SHIPMENT

The samples shipped for laboratory analysis will be packaged according to applicable regulations and the recommendations of the laboratory performing the analysis. Samples will be expeditiously transported to the analytical laboratory after being sealed in coolers.

The following procedures (representing the minimum shipping and handling requirements) will be used for sample packaging:

- A sample label will be affixed to the corresponding sample container at the time of sample collection.
- Bubble-wrap bags or an equivalent will be used to protect sample containers.
- Sample containers will be placed into a cooler and checked against the Chain of Custody form to ensure that all samples are listed and are placed into the correct cooler.
- One copy of the Chain of Custody form will be detached and retained by the Farallon Field Scientist.
- Remaining paperwork will be sealed in a resealable plastic bag and taped to the inside of the cooler lid.
- One to three resealable bags will be filled with ice and/or a chemical equivalent and included in the cooler. Ice will be double-bagged in heavy-duty bags.
- The cooler will be sealed with a chain-of-custody seal and taped shut using strapping tape.
- The laboratory address will be affixed to the cooler.
- Extraneous stickers will be removed from the cooler.
- The cooler will be examined to ensure that Farallon's return address is affixed.

Upon transfer of the samples to laboratory personnel or arrival of the samples at the laboratory facility, the laboratory will assume responsibility for custody of the samples. Laboratory personnel will document the status of shipping and handling containers and will adhere to standard chain-of-custody procedures to track each sample through all of the stages of laboratory processing.

5.0 LABORATORY ANALYSIS

This section describes the details of the laboratory analysis associated with soil samples that will be collected during this interim action. Laboratory analyses will be conducted by ARI. ARI is accredited by Ecology and meets the QA/QC requirements of Ecology and EPA.

5.1 LABORATORY ANALYSES

Soil samples will be analyzed for one or more of the following analytes, depending on the sample location:

- DRO and ORO by Northwest Method NWPTH-Dx;
- Total petroleum hydrocarbons as gasoline-range organics (GRO) by Northwest Method NWTPH-Gx;
- Polycyclic aromatic hydrocarbons by EPA Method 8270D/SIM;
- Metals (arsenic and copper) by EPA Methods 6010D/6020B/7471B/200.7/200.8/7470/245.1; and

Sample analysis will be determined by which COPCs are expected to be encountered at each excavation area.

5.2 REPORTING LIMITS

The analytical methods identified above result in the reporting limits (or practical quantitation limits) that are shown on Table 2. The laboratory reporting limits are based on current laboratory data and may be modified during the investigation as methodology is refined. Instances may arise where high sample concentration, nonhomogeneity of samples, or matrix interferences preclude achieving the laboratory reporting limits.

6.0 MANAGEMENT OF INVESTIGATION-DERIVED WASTE

Excavated soil, wastewater, and other products generated during the interim action may be contaminated and will be properly disposed of pending receipt of analytical results. Specific criteria that will be used to manage investigation-derived waste, including the profiling and selection of an appropriate disposal option for each of the expected waste streams, are discussed below.

6.1 WASTE SOIL

Excavated soil will be transported by haul trucks to an appropriate landfill during the interim action. A waste profile will be submitted to the selected disposal facility for approval before contaminated soil is excavated.

6.2 WASTEWATER

If necessary, wastewater generated during excavation dewatering will be conveyed to aboveground holding tanks and a groundwater pre-treatment system which will be installed at the Property. Groundwater will be pretreated on the Property and discharged to surface water under a Construction Stormwater General Permit and an Administrative Order issued by the Ecology Water Quality Program.

6.3 DISPOSABLES

Disposable personal protective clothing (e.g., Tyvek suits, rubber gloves, boot covers) and disposable sampling devices (e.g., plastic soil sample plungers) will be cleaned, placed into plastic garbage bags, and disposed of as nonhazardous waste.

7.0 FIELD DOCUMENTATION

Documentation of field activities will be provided on Field Report forms, Truck Tracking logs, Soil Sample Data Logs, sample and waste material labels, Waste Inventory forms, and Chain of Custody forms. Documentation generated during the field program will be retained in the project files and included in the reports generated, as appropriate. Filled forms and records will be maintained in the Farallon project files. Example forms and labels are provided in Appendix B.

7.1 FIELD REPORT FORM

Field personnel will be required to keep a daily field log on a Field Report form. Field notes will be as descriptive and inclusive as possible, enabling independent parties to reconstruct the sampling situation from the recorded information. Language will be objective, factual, and free of inappropriate or ambiguous terms and/or opinions.

A summary of each day's events will be provided on the Field Report form. At a minimum, field documentation will include the date, job number, project identification and location, weather conditions, sample collection data, personnel present and responsibilities, field equipment used, and any activities performed in a manner other than as specified in this SAP. In addition, if other forms or documents such as well-head surveys or maps are completed or used, they will be cited in and attached to the Field Report form. Field personnel will sign the completed Field Report form.

7.2 TRUCK TRACKING LOG

Truck tracking logs will be prepared by a Farallon Scientist to determine the number of truckloads of soil removed during excavation activities. Truck tracking logs will include truck identification, container type, the time the truck left the Emerald Gateway Site, and the category of soil exported, if applicable.

7.3 SOIL SAMPLE DATA LOG

A Soil Sample Data Log will be used to record information pertaining to soil samples collected. This log includes entries for the sample location, identification, and depth; the time sampled; field-screening results; the types and number of containers collected; and a brief lithologic description.

7.4 SAMPLE LABEL

Sample labels will be filled out and affixed to appropriate sample containers immediately prior to sample collection. The label will be filled out with indelible ink and includes the medium, date, time sampled, sample identifier (see Section 4.2, Sample Designation), project name, project number, sampler's initials, and analyte preservative(s) if any.

7.5 WASTE MATERIAL LABEL

A waste material label is filled out and affixed to the appropriate waste container immediately upon filling. The label is filled out in indelible ink and includes the job number and name, address where the waste was generated, container contents, date, consultant's name and phone number, and sampler's initials.

7.6 WASTE INVENTORY FORM

A Waste Inventory form will be used to document and track the wastes generated during the characterization field work. The form will include information on the waste container, origin of the waste, type of waste, date generated, date removed from the Site, transporter, and disposal location. A copy of the Waste Inventory form is included in Appendix B.

7.7 CHAIN OF CUSTODY FORM

The Chain of Custody form provides an accurate written record that can be used to trace the possession and handling of the sample from the moment of its collection through analysis and reporting of analytical values. The Chain of Custody form should be updated whenever samples are collected, transferred, stored, analyzed, or destroyed. The Chain of Custody form includes the client name, project name and number, date and time sampled, sample identifier, sampler's initials, and requested sample analysis.

8.0 QUALITY ASSURANCE PROJECT PLAN

This section describes the analytical program to be conducted for each sample selected for chemical analysis, as well as the laboratory QA objectives and QC protocols required to be met to ensure collection of representative and useable data.

8.1 DATA QUALITY OBJECTIVES

Data quality objectives (DQOs) for this project will be used to develop and implement procedures to ensure that the data collected are of sufficient quality to adequately address the interim action objectives. Observations and measurements will be made and recorded in a manner so as to yield results representative of the media and conditions observed and/or measured. Goals for representativeness will be met by ensuring that sampling locations are selected properly, a sufficient number of samples are collected, and field screening and laboratory analyses are conducted properly.

DQOs for this project include:

- Collect performance and confirmation soil samples from each remedial excavation at the Emerald Gateway Site in order to determine the effectiveness of the interim action and expand excavation boundaries if necessary;
- Collect soil samples from borings advanced at the Emerald Gateway Site to further evaluate the lateral or vertical extent of COPCs if necessary;
- Collect water samples from the groundwater treatment system inlet and discharge to verify that dewatered groundwater is treated and discharged with concentrations of COPCs less than applicable discharge limits; and
- Implement QA/QC protocols described in this SAP so that data collected are scientifically defensible.

The quality of the field sampling methods and laboratory data will be assessed using the parameters of precision, accuracy, representativeness, comparability, completeness, and sensitivity (PARCCS). QC procedures for PARCCS are described in the following sections. Quantitative DQOs for applicable parameters (i.e., precision, accuracy, and completeness) are provided following their definition. Laboratory DQOs have been established by the analytical laboratories and are specified in the individual analytical laboratory Quality Assurance Manuals. The applicable analytical laboratory Quality Assurance Manual will be kept on file at the Farallon corporate office in Issaquah, Washington.

8.1.1 PRECISION

Precision is defined as the degree of agreement between or among independent, similar, or repeated measures, and is expressed in terms of analytical variability. For this project, analytical variability will be measured as the relative percent difference (RPD) or coefficient of variation between

analytical laboratory duplicates, and between the matrix spike (MS) and matrix spike duplicate (MSD) analyses. Monitoring and sampling variability will be measured by analysis of blind field-replicate samples.

The tolerance limit for percent differences between laboratory duplicates will be ± 20 percent; deviations from these criteria will be reported. If the criteria are not met, the laboratory will provide an explanation of why the limits were exceeded, and will implement appropriate corrective actions for laboratory control samples (LCSs)/LCS duplicates only. RPDs will be evaluated during data review and validation. If precision limit exceedances are linked to field sampling, those field sampling procedures will be reviewed, and any problems will be identified. Re-sampling and analysis may be required.

8.1.2 ACCURACY

Accuracy (bias) is a statistical measurement of correctness and includes components of random error (i.e., variability due to imprecision) and systematic error. It therefore reflects the total error associated with a measurement. A measurement is accurate when the value reported does not differ excessively from the known concentration of the spike or standard.

Accuracy measures the bias in a measurement system and is difficult to measure for the entire data collection activity. Sources of error include the sampling process, field contamination, preservative handling, sample matrix effects, and sample preparation and analysis techniques. To confirm that the samples collected are not contaminated, laboratory method blank samples will be analyzed.

Laboratory MSs and surrogates will be carried out at the analytical laboratory in accordance with EPA SW-846 requirements for organic chemical analyses. The frequency for both MSs and MSDs analysis will be one per batch of 20 or fewer samples. Quantitative percent recovery criteria for organic analyses will be based on laboratory-derived control limits for surrogate recovery and MS results.

The resultant percent recovery will be compared to the acceptance criteria defined in the SAP, and deviations from specified limits will be reported. If the objective criteria are not met, the laboratory will provide an explanation of why acceptability limits were exceeded, and will implement appropriate corrective actions. Percent recoveries will be reviewed during data validation, and deviations from the specified limits will be noted. The data reviewer will comment on the effect of the deviations on reported data.

8.1.3 REPRESENTATIVENESS

Representativeness is a qualitative assessment of how closely the measured results reflect the actual concentration or distribution of the constituent concentrations in the matrix sampled. The sampling plan design, sample collection techniques, sample handling protocols, sample analysis methods, and data review procedures have been developed to ensure that the results obtained are representative of site conditions. Representativeness also will be determined by evaluating holding

times, sample preservation, and blank contamination. Samples with expired holding times, improper preservation, or blank contamination may not be representative.

8.1.4 COMPLETENESS

Completeness, defined as the number of acceptable data points relative to the total number of data points, will be assessed for all samples within a given media (i.e., soil). The QA/QC objective for completeness for all components of this project is 95 percent. Data that were qualified as estimated because the QA/QC criteria were not met will be considered valid for the purpose of assessing completeness. Data that have been qualified as estimated will be further reviewed for usability. For this investigation, the primary use of the data is to perform initial screening of environmental chemical concentrations to identify potential chemicals and transport pathways of concern. Data that were qualified as rejected will not be considered valid for the purpose of assessing completeness. If a sample medium has an unacceptable completeness percentage after comparison to the individual data quality objectives described above, original samples will be re-analyzed if sufficient sample volume is available, archived samples will be analyzed if appropriate, or additional samples will be collected during the interim action and/or remedial investigation.

8.1.5 COMPARABILITY

Comparability is a qualitative parameter expressing the confidence with which one dataset can be compared to another. In order to ensure results are comparable, samples will be analyzed using standard EPA or Ecology methods and protocols. Calibration and reference standards will be traceable to certified standards, and standard data reporting formats will be employed. Data will also be reviewed to verify that precision and accuracy criteria were achieved and, if not, that data were appropriately qualified.

8.2 DATA QUALITY CONTROL

Data will undergo two levels of QA/QC evaluation: one by the laboratory and one by Farallon. Initial data reduction, evaluation, and reporting will be performed by the laboratory, as specified in the laboratory Quality Assurance Manual. The analytical data will then be validated by Farallon under the supervision of the Project Data Manager. The following types of QC information will be reviewed, as appropriate:

- Method deviations:
- Sample extraction and hold times;
- Method reporting limits;
- Blank samples (e.g., equipment rinsate, trip, and laboratory method);
- Field duplicate samples;
- RPD (for precision);
- MS/MSD samples (for accuracy);

- Surrogate recoveries; and
- Percent completeness.

Farallon will review field records and the results of field observations and measurements to ensure that procedures were properly performed and documented. Field procedures will be reviewed for the following elements:

- Completeness and legibility of field logs;
- Preparation and frequency of field QC samples;
- Field equipment calibration and maintenance; and
- Chain of Custody forms.

8.3 LABORATORY DATA PACKAGE REQUIREMENTS

Laboratory data packages will consist of a laboratory report and electronic data deliverable. Laboratory reports will include the following elements:

- Case narrative:
- Analytical notes;
- QC narrative;
- Sample inventory report;
- Analytical results; and
- Data qualifiers and abbreviations.

The electronic data deliverable will include at a minimum:

- Sample identification information;
- Sample media;
- Sampling, laboratory receiving, extraction, and analysis dates;
- Analyte and Chemical Abstracts Service Reference No.;
- Reported concentrations and reporting units;
- Analytical method detection limits;
- Machine reporting limits and reporting units; and
- QA/QC results, including identification of MS/MSD and surrogate samples.

8.4 CORRECTIVE ACTION

Corrective action will be the joint responsibility of the Project Manager and the Project Data Manager. Corrective procedures may include:

- Identifying the source of deviation from the quality standards set forth in the SAP and its supporting documents;
- Re-analyzing soil samples if hold-time criteria permit;
- Re-sampling and analyzing soil if necessary to meet the quality standards set forth in this SAP;
- Evaluating and amending sampling, analytical, and/or data transfer procedures; and/or
- Qualifying data to indicate the level of uncertainty.

During field operations and sampling procedures, field team members will be responsible for identifying and correcting equipment malfunctions and documenting sampling procedures in a manner that will enable the Project Manager or the Project Data Manager to evaluate whether corrective action is warranted.

Equipment malfunctions, variances in sampling protocols, and corrective actions taken by field team members will be documented in the field notes. The Project Manager or the Project Data Manager will evaluate the field notes upon submittal to determine whether the corrective action taken was adequate to meet project quality standards or whether additional corrective action is required.

8.5 DATA MANAGEMENT

The final repository for sample analytical information will be an EQuIS database. The electronic data deliverables received from the laboratories will be directly transferred into the EQuIS database, reducing the likelihood of data entry errors. The Project Data Manager will manage and maintain the EQuIS database.

Farallon will directly transfer the analytical data provided by the laboratory into the Ecology Environmental Information Management System, thus eliminating the likelihood of data entry errors inherent with manual data entry.

Field measurements and other data requiring manual entry will be reviewed by Farallon personnel other than the data entry staff prior to submission to the Environmental Information Management System. Ecology's confirmation of receipt of the data will be maintained in Farallon project files.

8.6 DATA VALIDATION

Farallon will conduct a Level I Compliance Screening on all the analytical data.

All chemical data will be reviewed with regard to the following:

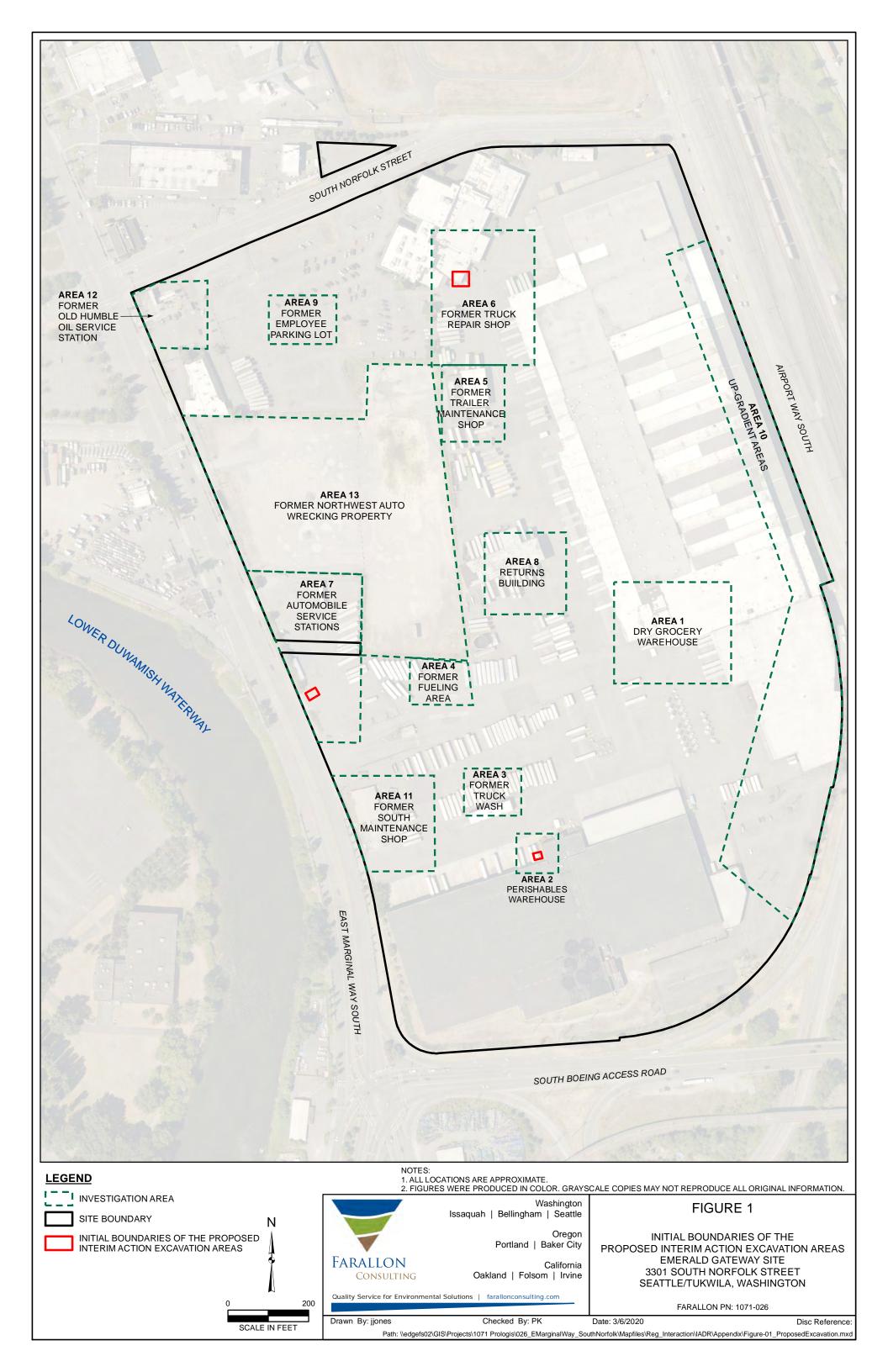
- Chain-of-custody/documentation;
- Sample preservation and holding times;
- Method blanks;
- Reporting limits;
- Surrogate recoveries;
- MS/MSD recoveries;
- LCS recoveries; and
- Laboratory and field duplicate RPDs.

Data validation will be based on the QA/QC criteria as recommended in the methods identified in this SAP and in the *National Functional Guidelines for Organic and/or Inorganic Methods Data Review* (EPA 2014a, 2014b).

Data usability, conformance with the QA/QC objectives, and any deviations that may have affected the quality of the data, as well as the basis of application of qualifiers, will be included in the final reporting of the data. Any required corrective actions based on the evaluation of the analytical data will be determined by the laboratory in consultation with the Farallon Project Manager and may include qualification or rejection of the data.

9.0 REFERENCES

- U.S. Environmental Protection Agency (EPA). 2017a. *National Functional Guidelines for Organic Superfund Methods Data Review*. EPA Administrative Record EPA-540-R-2017-002. January.
- ——. 2017b. *National Functional Guidelines for Organic Superfund Methods Data Review*. EPA Administrative Record EPA-540-R-2017-001. January.
- Washington Department of Ecology (Ecology). 2004. *Guidelines for Preparing Quality Assurance Project Plans for Environmental Studies*. Publication No. 04-03-030. Revised December 2016. July.


FIGURE

SAMPLING AND ANALYSIS PLAN INTERIM ACTION DESIGN REPORT

Emerald Gateway Site

3301 South Norfolk Street
Seattle/Tukwila, Washington

Farallon PN: 1071-026

TABLES

SAMPLING AND ANALYSIS PLAN INTERIM ACTION DESIGN REPORT

Emerald Gateway Site

3301 South Norfolk Street
Seattle/Tukwila, Washington

Farallon PN: 1071-026

Table 1

Sample Containers, Preservatives, and Hold Times

Emerald Gateway Site Seattle/Tukwila, Washington

Farallon PN: 1071-026

Analytical Method	Soil Sample Container(s)/ Preservation ^{1,2}	Soil Sample Hold Time ²
Northwest Method NWTPH-Dx	1 x 8-oz CWMJ unpreserved	14 days to analyze
Northwest Method NWTPH-Gx	2 x 40 ml vials without a stir bar preserved with MeOH	14 days to analyze
EPA 8270D/SIM	1 x 8-oz CWMJ unpreserved	14 days to analyze
EPA 8260D	2 x 40 ml vials without a stir bar preserved with MeOH; and 1 x 40 ml vial without a stir bar preserved with sodium bisulfate	14 days to analyze
EPA 6000 Series	1 x 4-oz CWMJ unpreserved	6 months to analyze
EPA 7470/245.1	1 x 4-oz CWMJ unpreserved	28 days to analyze

NOTES:

CWMJ = clear wide-mouthed jar

EPA = U.S. Environmental Protection Agency

MeOH = Methanol

ml = milliliters

¹All samples must have a temperature ≤ 6 degrees Celsius.

²Information obtained from Analytical Resources, Inc. of Tukwila, Washington.

Table 2 Soil Laboratory Reporting Limits Emerald Gateway Site Seattle/Tukwila, Washington

Farallon PN: 1071-026

Analyte	Laboratory Soil RL ¹ (mg/kg)
Total cPAH TEQ	0.005
Arsenic	0.200
Copper	0.500
DRO	5.00
ORO	10.0
GRO	5.0
Benzene	0.001
Toluene	0.001
Ethylbenzene	0.001
Xylenes	0.002

NOTES:

cPAH = carcinogenic polycyclic aromatic hydrocarbons

DRO = total petroleum hydrocarbons (TPH) as diesel-range organics

EPA = U.S. Environmental Protection Agency

GRO = TPH as gasoline-range organics

mg/kg = milligrams per kilogram

ORO = TPH as oil-range organics

RL = reporting limit

TEQ toxicity equivalency quotient

¹ Laboratory reporting limits are based on current laboratory data and may be modified during the investigation as methodology is refined. Instances may arise where high sample concentrations, nonhomogeneity of samples, or matrix interferences preclude achieveing the laboratory reporting limits.

APPENDIX A FARALLON STANDARD OPERATING PROCEDURES

SAMPLING AND ANALYSIS PLAN INTERIM ACTION DESIGN REPORT

Emerald Gateway Site

3301 South Norfolk Street
Seattle/Tukwila, Washington

Farallon PN: 1071-026

STANDARD OPERATING PROCEDURE EQ-01 EQUIPMENT DECONTAMINATION PROCEDURES

PURPOSE AND APPLICATION

The purpose of this standard operating procedure (SOP) is to provide field personnel with the methodology for decontaminating sampling equipment during various field activities. The step-by-step guidelines provided in this SOP are to be followed by the field crew during all site visits, as applicable.

EQUIPMENT AND SUPPLIES/REAGENTS

The following equipment is necessary to properly decontaminate field equipment during various field tasks:

- Rinse water or distilled water.
- Deionized water.
- Liquinox or other phosphate-free detergent.
- Paper towels.
- Labeled squirt bottles.
- Long-handled hard-bristle brushes (for sediment and soil).
- Cotton swabs.
- Plastic sheeting, garbage bags, and aluminum foil (for sediment and soil).
- Core liner caps or plastic wrap and rubber bands (for sediment and soil).
- Extension arm for cleaning core liners (for sediment and soil).
- Plastic 5-gallon bucket.
- U.S. Department of Transportation-approved drum(s) for decontamination water unless other water-handling arrangements have been made. Separate drums are needed for liquid and solid wastes (see Farallon SOP WM-01, Field-Handling of Investigation-Derived Waste). Liquid wastes should not be added to drums containing solid wastes.

Dilute Liquinox with distilled water in a squirt bottle in accordance with the instructions on the Liquinox package, and label the bottle. Fill another squirt bottle with distilled water, and label the bottle.

SOP EQ-01 Revision: June 2017

FIELD EQUIPMENT TO BE DECONTAMINATED AFTER USE

Decontaminate the following field equipment at the conclusion of field work each day, in accordance with the procedures outlined in this SOP:

- Water-level meter.
- Horiba/YSI multiparameter probe.
- Bladder pump.
- Submersible pump.
- Sediment and soil collection and processing equipment.

WATER-LEVEL METER DECONTAMINATION

Decontaminate the water-level meter after measuring the water level at a monitoring well before moving to a new monitoring well, using the following procedures:

- Spray the bottom half of a paper towel with the diluted Liquinox solution, and the upper half with deionized water.
- Grip the measuring tape of the water-level meter with the paper towel in one hand with the Liquinox side down toward the monitoring well casing.
- Begin slowly reeling up the water-level meter while maintaining firm contact between the measuring tape and the paper towel.
- Ensure that no debris or contamination remains on the measuring tape of the water-level meter once it has been reeled up.
- Use a clean new paper towel for each successive decontamination of the measuring tape of the water-level meter.

HORIBA/YSI MULTIPARAMETER PROBE DECONTAMINATION

Decontaminate the Horiba/YSI multiparameter probe at the end of each workday or after sampling a monitoring well with high concentrations of contamination, using the following procedures:

- Remove the multiparameter probe from the flow-through cell, and thoroughly spray each component with deionized water.
- Use a cotton swab to gently clean around each sensor probe, ensuring that all contaminated water and material has been washed away.
- Refill the protective dissolved oxygen and pH probe caps with deionized water, and replace prior to storage.
- Once the multiparameter probe has been adequately cleaned, replace the protective shield, and return the probe to the case. If the device appears to be overly wet, allow it to air-dry with the case open.

SOP EQ-01 Revision: June 2017

• Do not use Liquinox to clean any probes on the Horiba multiparameter probe, as it may damage the device.

BLADDER PUMP DECONTAMINATION

Decontaminate the bladder pump after sampling a well and at the end of each workday, using the following procedures:

- After extracting the bladder pump from the well, break down the pump, remove and dispose of the used bladder, and spray each component with the diluted Liquinox solution, followed by deionized water.
- Wipe away any visible contamination or debris with a paper towel.
- Capture cleaning water in a liquid waste drum for proper disposal in accordance with Farallon SOP WM-01, Field-Handling of Investigation-Derived Waste.
- Ensure that all contamination and Liquinox solution is washed off all components before reassembling the device, installing a new bladder, and moving to sample a new well.

SUBMERSIBLE PUMP DECONTAMINATION

Decontaminate the submersible pump after purging water from any well, using the following procedures:

- After extracting the submersible pump from the well, thoroughly spray down the pump with the diluted Liquinox solution, followed by deionized water.
- Wipe away any visible contamination or debris with a paper towel.
- Purge clean water through the pump and tubing to ensure that contaminated water has been cleared from all lines.
- Capture cleaning water in a liquid waste drum for proper disposal in accordance with Farallon SOP WM-01, Field-Handling of Investigation-Derived Waste.

SEDIMENT AND SOIL SAMPLING AND PROCESSING EQUIPMENT DECONTAMINATION

Decontaminate sampling equipment used to collect and process sediment and soil samples, using the following procedures:

- Place contaminated equipment and decontamination tools on plastic sheeting.
- Thoroughly rinse all used equipment with distilled water in a 5-gallon bucket to remove excess sediment or soil.
- Pour one capful of Liquinox solution into a 5-gallon bucket filled with tap water or distilled water.
- Using a long-handled hard-bristle brush, thoroughly scrub the equipment with the Liquinox solution until no sediment or soil particles remain.

SOP EQ-01 Revision: June 2017

- Holding the equipment over a 5-gallon bucket, double-rinse the equipment with distilled water until no Liquinox solution remains. Do not allow clean equipment to come into contact with a contaminated surface.
- Drain the equipment and place it in a clean, dry place to prevent recontamination.
- If decontaminated equipment will not be re-used immediately, wrap stainless steel equipment (e.g., bowls, spoons) in aluminum foil with the dull side facing the equipment. Seal polycarbonate core liners with core caps or cellophane plastic. Rubber-band ends to ensure a proper seal.
- After decontamination has been completed, place disposable items into a garbage bag, and store decontamination water in a drum in accordance with Farallon SOP WM-01, Field-Handling of Investigation-Derived Waste.

Oregon
Portland
California
Oakland | Sacramento

STANDARD OPERATING PROCEDURE (SOP) GN-02 UTILITY LOCATE

PURPOSE

The purpose of this SOP is to provide Farallon Consulting, L.L.C. (Farallon) personnel with the specific information needed to identify and locate utilities on sites where drilling or excavation activities will occur. Excavation is defined by Section 20 of Chapter 19.122 of the Revised Code of Washington (RCW 19.122.020) as "any operation, including the installation of signs, in which earth, rock, or other material on or below the ground is moved or otherwise displaced by any means." For the purposes of this SOP, the excavation area refers to the area of an excavation or a perimeter around all proposed borings, test pits, soil gas sampling locations, and subslab soil gas sampling locations. Identifying utilities within the boundaries of a proposed excavation area prior to any digging is required by law and is necessary for the safety of Farallon personnel and contractors.

The guidelines provided in this SOP are to be followed by Farallon personnel who coordinate utility locating, mark locate boundaries, and/or observe field work that involves any type of excavation.

EQUIPMENT AND SUPPLIES

The following equipment and supplies are necessary to arrange and conduct utility locating:

- A map of the site with the proposed excavation area(s);
- Readable side sewer card figures, if applicable;
- Geographic information system (GIS) utility figures, if applicable;
- Readable American Land Title Association (ALTA) survey figures, if applicable;
- Any previous utility figures associated with the site;
- White marking products (e.g., paint, flags, stakes, grease marking pen, tape, chalk);
- Materials necessary to provide required documentation (e.g., Field Report form, camera, measuring wheel, global positioning system); and
- Personal protective equipment (PPE) as described in the site-specific Health and Safety Plan, or Level D PPE at a minimum.

PROCEDURES

The following utility locating procedures have been developed for use before excavation occurs on a site. The procedures are divided into the following five parts:

- Call Before You Dig System;
- Private Utility Locating Services;
- Hand-Clearing Proposed Excavation Areas;
- Maintaining Public Utility Locate Marks; and
- Utility Line Damage.

The Project Manager should discuss the scope of work, details of the project location, and any essential information with the project field team before any of the procedures described below commence. When practicable, an on-site kickoff meeting involving a member of the field team and the Project Manager should be conducted to discuss the work to be performed, mark the boundaries of the excavation area, and mark potential boring locations, if applicable.

Call Before You Dig System

According to RCW 19.122.030, excavators are required to mark the boundary of a proposed excavation area using white marking products. Marking products include paint, flags, and stakes. Boundary marks should conform to the following guidelines:

- A continuous line, hashed line, dots, or corner marks with arrows are acceptable ways to mark the boundary.
- Flags and stakes can be used if paint is not adequate.

The location(s) of the proposed excavation area(s) must be reviewed to verify that no visible utilities that would interfere with the proposed excavation area(s) are present. If utilities are present, the Project Manager and field personnel should communicate the changes to the excavation that are area necessary before the boundaries are marked with white paint.

After marking the boundaries of the proposed excavation area, Farallon personnel must provide notice of the scheduled excavation to the owner/operators of buried utilities at least 2 but no more than 10 business days in advance by calling 811 or 1-800-424-5555, or using the online tool at www.callbeforeyoudig.org. Use of the online tool is preferred.

A map with the excavation area boundaries depicted and/or photos of the white paint marks is helpful in conveying the scope of work to the Call Before You Dig service.

The following information should be available to provide the Call Before You Dig service at the time of initial contact:

- Scope of work, including the start date and time.
- Contact information for the Project Manager and a field person able to answer questions from public utility locators regarding project details.

• Site address, township/range/section quarter, and name of property owner.

Once the Call Before You Dig system has been notified of the upcoming work, the system provides a ticket number, which

- Should be referenced whenever the Call Before You Dig service is contacted about the job.
- Provides proof that the Call Before You Dig system was notified prior to excavation. Public utility locators, inspectors, and law enforcement personnel may ask for the ticket number.
- Should be supplied to any subcontractors doing work on the site for reference when contacting the system for their own ticket number.

Call Before You Dig personnel will provide a list of public utilities present on the site, and will notify public utility operators of the planned work.

Public utility operators have 2 full business days after the day notification was received to locate and mark their lines, or to provide reasonable information on lines that they are not able to locate. The day notice is given is not included as 1 of these 2 days. Therefore, if excavation work is planned to start on a Monday, for example, the Call Before You Dig system must be notified by Wednesday the week before.

Two full business days must elapse between Call Before You Dig notification and the start of excavation. No excavation is to take place until all known utilities are marked or otherwise accounted for with information provided by the facility operator.

Locators mark their lines with colored hash marks. The American Public Works Association determines the colors to be used to denote different kinds of lines:

Red:	Power Lines and Cable	Yellow:	Gas, Oil, Petroleum
Orange:	Telephone and Cable	Blue:	Drinking Water
Green:	Sewer (Storm and Sanitary)	Purple:	Non-Potable Water
Pink:	Survey Marks	White:	Excavator Marks

Public utility operators are required to mark their lines only to the meter. Utility lines located beyond the meter are the responsibility of the property owner. Public utility operators should indicate by marking if no public utilities are present.

Public utility locators are required to mark their lines with reasonable accuracy. According to RCW 19.122.020, "reasonable accuracy means location within twenty-four inches of the outside dimensions of both sides of an underground facility."

At this time, public utility companies are not required to mark abandoned or deactivated lines in Washington.

An individual not following the protocols established by the Call Before You Dig system can be held liable for up to three times the cost to repair a utility line damaged during excavation.

Records of ticket numbers and communications with the Call Before You Dig service should be stored in the project folder and supplied to on-site project personnel.

Before any excavation work is started, Farallon personnel should verify that all public utility marks are present on the site. The public utility company/ies listed on the Call Before You Dig system ticket should be contacted if marks for that utility/ies are not present.

Private Utility Locating Services

After the public utility companies have marked their lines and before excavation begins, it is standard practice to have a private utility locating service clear areas that will be excavated.

Private locates generally are scheduled for the day before or the morning of the start of excavation.

Areas where excavation will occur must be cleared for conductible utilities by a private locator. Depending on the nature of the site and the proximity of utility lines, the private locator may also mark non-conductible utilities.

If possible, the excavation contractor should be on the site during the private utility locating to verify with the private locator that all proposed excavation areas are accessible.

When working with private utility locators, Farallon personnel should:

- Study existing figures of the site, noting the locations of known utilities.
- Use available side sewer cards or geographic information system utility figures to verify utility locations at the site.
- Verify that all public utilities have been marked by physically verifying that colored paint
 marks are present for all of the public utility companies listed on the One Call Before You
 Dig ticket. If any public utilities have not been marked, the utility company must be
 contacted and requested to mark the area, or to provide confirmation that the area is clear
 of their utility.
- Discuss the scope of work/excavation areas with the private locator.
- Document the name of the locating company and the name of the locator.
- Observe the locator clear the excavation area(s).
- Document the locate marks with photos, and note any uncertainties in the Field Report form.
- Identify the locations of shut-off valves for utilities such as water and natural gas.
- Contact the Project Manager or Principal to discuss relocating the excavation area if a proposed excavation area is in conflict with a utility identified by the private locator.
- Sign the locator's paperwork, if necessary, and depart the site if no additional field work is to be performed that day.

Private location of conductible utilities should sweep the excavation area in two perpendicular directions.

Private location of non-conductible utilities (typically storm and sanitary sewer) can use either a probe or a camera for accessible lines. Appropriately colored paint marks are applied by the private locator based on a signal sent from the probe or camera. For inaccessible lines, a ground-penetrating radar or magnetometer can be used to approximate the line locations. Marks based on this method should be considered approximate.

Hand-Clearing Excavation Areas

Prior to conducting certain excavation activities, excavators will clear the proposed excavation area to verify that no utilities are present. This can be accomplished through use of an air knife/vacuum truck, post-hole digging, hand-augering, or use of other hand tools that allow the excavation location be explored sufficiently to verify that no utilities are present. Farallon Project Managers will confirm the method of clearing and depths with the field team before the excavation work is performed. Farallon Project Managers also need to discuss shallow soil sampling needs with the field team if clearing activities are being performed. Clearing activities should be conducted according to the following guidelines:

- Hollow-Stem Auger Drilling: Hand-clear to a minimum depth of 5 feet below ground surface (bgs) using an air knife/vacuum truck whenever possible. Alternative methods such as post-hole digging or hand-augering also may be used.
- Sonic Drilling: Hand-clear to a minimum depth of 5 feet bgs using an air knife/vacuum truck whenever possible. Alternative methods such as post-hole digging or hand-augering also may be used.
- Geoprobe Drilling: Clearing activity requirements are dependent on known utilities and results of the public and private utility location procedures completed above. Hand-clear using a post-hole digger or hand-auger to a maximum depth of 5 feet bgs is necessary. An air knife/vacuum truck may be used to hand clear each boring location to a maximum depth of 5 feet bgs, if available.
- Test Pit Excavation: No hand-clearing is necessary. Excavation contractors should be directed to dig cautiously in the upper 5 feet bgs in the event an unknown utility is present. A test pit excavation or regular excavation using machinery (e.g., track hoe, backhoe) should include using a spotter to watch for unidentified utility lines. Ideally, the spotter should be provided by the excavation contractor.
- Rotary Hammer for Soil Gas Sampling: No hand-clearing is necessary.
- Rotary Hammer for Subslab Soil Gas Sampling: No-hand clearing is necessary.

Some drilling contractors require that a utility line be exposed prior to drilling if the proposed drilling location is within a certain distance of the utility line. Farallon personnel should confirm drilling contractor requirements prior to conducting drilling activities.

If a utility line is encountered during clearing, excavators should verify that the utility has not been damaged, and Farallon personnel should document the encounter on the Field Report form with photos and details. RCW 19.122.020 states that "damage" includes the substantial weakening of

structural or lateral support of an underground facility, penetration, impairment, or destruction of any underground protective coating, housing, or other protective device, or the severance, partial or complete, of any underground facility to the extent that the project owner of the affected facility operator determines that repairs are required. The Project Manager or Principal should be notified immediately if a utility line is encountered during hand-clearing, and an alternate location will be proposed. A hand-cleared area having an exposed utility line should be backfilled with a bentonite seal and finished to match existing grade.

Maintaining Public Utility Locate Marks

According to RCW 19.122.030, "public utility locate marks expire 45 days from the date the excavator provides notice," and "it is the responsibility of the excavator to maintain the public utility marks for 45 days, or for the length of the project—whichever is shortest. In any case, the public utility locate marks expire after 45 days."

Locate marks can be maintained digitally through both photos and figures drawn to scale.

Locate marks can be maintained in the field using white paint. White paint can be applied between original hash marks, on either side of the hash marks, or on both ends. Offset paint or staking can be used if placed a uniform distance from the original marks with a clear indication of the direction and distance from the original marks. The original marks should not be painted over, and white paint should never be applied over colored paint. White marks should include a letter identifying the type of buried line.

Utility Line Damage

A utility line does not need to be ruptured or severed to be considered damaged. Scratching or denting a utility line or its protective tape also is considered damage, as the integrity of the line may have damaged even if the damage does not appear to be significant. Before excavation work begins, shut-off valve locations for applicable utilities should be documented. If a utility is believed to be damaged, the utility should be shut down if practicable and safe to do so. According to RCW 19.122.053, "all facility operators and excavators who observe or cause damage to an underground facility must report the damage event to the Washington State Utilities and Transportation Commission."

If a utility line is hit and public safety is a concern, 911 should be the first call made after the immediate area has been evacuated. If a utility line is hit and the public is not at risk, the field team should notify the Project Manager, who will notify the Principal and the corporate Health and Safety Coordinator immediately. The Project Manager should then contact the utility that owns the damaged line, and report to the field team any instructions issued by the utility owner, and an expected timeframe for arrival of a utility owner representative at the site. Repairs to a utility line will not be attempted by Farallon personnel or contractors.

Damage must be reported through the Common Ground Alliance Damage Information Reporting Tool website, hosted by the Washington State Utilities and Transportation Commission: http://www.utc.wa.gov/publicSafety/pipelineSafety/Pages/Damagereportingrequirements.aspx

Access to damaged utility lines should be maintained to allow inspection by the utility company. An exposed utility should not be backfilled or patched until instruction to do so has been provided by the Project Manager or Principal.

DOCUMENTATION

Farallon personnel should document in the Field Report form the work performed and methods used by private utility locators, and photos from multiple angles with good reference points for each utility line in the excavation area(s).

REFERENCES

Washington Utilities Coordinating Council. 2014. Guide to Safe Digging, Washington State Law and Industry Best Practices.

STANDARD OPERATING PROCEDURE SL-01 SOIL CORE SAMPLING

PURPOSE AND APPLICATION

The purpose of this standard operating procedure (SOP) is to provide field personnel with the methodology for collecting and documenting soil core samples using a hollow-stem-auger drill rig, a direct-push drill rig, and a sonic drill rig. All drilling operations will be conducted by a licensed drilling subcontractor in accordance with subcontractor SOPs. This SOP presents the procedures that will be performed by Farallon field staff once the soil core has been collected by the drilling subcontractor. The step-by-step guidelines provided in this SOP are to be followed by the field crew conducting subsurface soil sampling.

EQUIPMENT AND SUPPLIES/REAGENTS

The following equipment is necessary to properly collect soil samples from borings:

- Personal protective equipment (PPE) as described in the site-specific Health and Safety Plan.
- Differential global positioning system, if required in project-specific plans. Discuss the
 methodology for recording the location of the sample point with the Project Manager
 before conducting the field work.
- Photoionization detector (PID) to monitor and record soil headspace readings.
- Applicable soil sampling equipment, including:
 - o Stainless steel hand-auger.
 - o Wooden or steel stakes to stabilize cores on table while sampling.
 - o Folding table.
 - Utility knife.
 - o Stainless steel spoons or scoops.
 - Six-mil plastic sheeting.
 - Resealable plastic bags.
 - Duct tape.
 - o Aluminum foil.
 - Tape measure.
 - o Five-gallon buckets, and scrub brushes.
 - Alconox phosphate-free cleanser.
 - o Laboratory-provided certified pre-cleaned sample containers.

- o Soil sample plunger and syringes for sampling volatile organic compounds (VOCs) using U.S. Environmental Protection Agency (EPA) Method 5035A.
- Materials necessary to provide required documentation, including:
 - o Camera.
 - o White board and dry-erase markers, if specified in project-specific plan.
 - Sample labels.
 - Field Report forms.
 - o Boring Log forms.
 - o Chain of Custody forms.
 - o Chain-of-custody seals for the sample cooler(s).
- U.S. Department of Transportation-approved drum(s) for decontamination wastewater and excess soil cuttings. Separate drums are needed for liquid and solid wastes (refer to Farallon SOP WM-01, Field Handling of Investigation-Derived Waste). Liquid wastes should not be added to drums containing solid wastes.
- Decontamination equipment as specified in Farallon SOP EQ-01, Equipment Decontamination Procedures.
- Sampling support equipment (e.g., sample coolers, ice, bubble wrap, clear packing tape, heavy resealable plastic bags, razor knives, garbage bags, paper towels, distilled water, nitrile gloves).

DECONTAMINATION

Reusable equipment that will come into contact with soil boring samples or will be used to acquire soil samples is to be decontaminated before arrival at the site, between soil samples collected, upon relocation at the site, and upon demobilization from the site, in accordance with Farallon SOP EQ-01, Equipment Decontamination Procedures.

PROCEDURES

Prior to drilling, all underground utilities must be located, and cleared with an air-knife or other method approved by the Farallon Health and Safety Coordinator.

Collect soil samples from areas known or suspected to have the lowest concentrations of constituents of concern first, with areas of higher concentrations of constituents of concern sampled last, unless the Project Manager indicates a different project-specific sampling protocol. The procedures listed below may be modified, with approval from the field team lead and the Project Manager. Any modifications must be identified in the project-specific sampling plans or, at a minimum, details must be noted on the Field Report form.

Soil core collection methods differ for hollow-stem-auger, direct-push, and sonic drilling techniques, each summarized below:

- Hollow-stem-auger: Collect soil core samples using a standard 18-inch-length (6-inch waste barrel) Dames & Moore split-spoon sampler with a 2.5-inch inner diameter that can be used with or without brass or stainless steel liners.
- Direct-push: Collect soil core samples using 5-foot macrocore samplers with acetate sample liners.
- Sonic: Collect soil core samples using a standard 6-inch-diameter stainless steel sampling rod. Use a 2.5-, 5.0-, or 10-foot polyethylene liner inside the sampling rod for soil sample collection.

Record the specific drilling and soil sampling equipment used on the Boring Log form and on the Field Report form.

Setup

The instructions below are to be followed at each boring site:

- Don appropriate PPE as described in the site-specific Health and Safety Plan.
- Ensure that each borehole has been cleared to a minimum depth of 5 feet below ground surface using an air knife, per the Farallon health and safety policy.
- Set up a temporary sampling table adjacent to the drill rig to log and collect soil samples from the soil cores as they are recovered during drilling. During sunny conditions, consider using a portable canopy for protection from the sun. Lay plastic sheeting over the table to keep the surface clean and to prevent potential cross-contamination between borings and soil samples. Designate clean areas for decontaminated sampling equipment and laboratory-provided certified pre-cleaned soil sample containers.
- Set up 5-gallon buckets for decontaminating soil sampling equipment between samples. These decontamination buckets are separate from the buckets provided by the drillers for their split spoons and core barrels. (Refer to Farallon SOP EQ-01, Equipment Decontamination Procedures.)
- Calibrate the PID to monitor headspace for selected soil core samples in accordance with the equipment manual.

Sample Collection and Processing

The instructions listed below are to be followed for collecting samples using lined and unlined split-spoon and tube samplers:

• Don a new pair of nitrile sampling gloves for each individual soil sample collected, and prior to decontaminating sampling equipment to avoid potential cross-contamination.

- Ensure that the drillers have properly decontaminated all drill shoes and caps prior to initiating drilling operations. Drill shoes and caps must be decontaminated between sampling intervals and stations in accordance with Farallon SOP EQ-01, Equipment Decontamination Procedures. Replace dirty or ineffective decontamination water as needed throughout the workday.
- Ensure that the drillers position the sampling rig over the sample station and remove any surface material or debris that would interfere with sampling. Note on the Field Report form any surface material removed.
- Note on the Field Report form and the Boring Log forms any difficulties encountered during drilling operations. Include the number of blow counts (if applicable) or any resistance encountered during drilling operations.
- Place the core tube, core liner, or split spoon on a new piece of aluminum foil on the sample logging/processing table. If necessary, use wood or metal stakes as shims to stabilize the tube, liner, or split spoon on the sample logging/processing table.
- If a core liner is used, split the liner open with a decontaminated utility knife, taking care not to penetrate the soil in the liner with the blade or knife.
- Briefly examine the soil sample visually for obvious signs of contamination, and take PID readings.
- Take care to:
 - o **Not** collect soil in contact with the sidewalls of the sampler or liner.
 - o **Always** use decontaminated stainless-steel spoons or scoops to handle the soil within a given sample interval.
 - o **Always** don a new pair of nitrile gloves before processing each sample interval in each soil core to prevent cross-contamination in the soil core.
- When sampling for VOCs, collect them as soon as possible after opening the core tube, split spoon, or core liner. Use a decontaminated stainless steel spoon to collect the VOC samples with minimal disturbance to soil by placing a representative amount of soil from the length and depth of the desired sample interval directly into the laboratory-provided VOC sample container with no headspace, and seal it tightly. Follow the sample collection guidelines provided by the manufacturer or the analytical laboratory when using a plunger-type sampling device in accordance with EPA Method 5035A.
- Retain approximately 100 grams of the soil sample in a heavy resealable plastic bag or glass sample container, shake the sealed bag to volatilize the contaminants in the soil, and wait approximately 5 minutes before measuring for headspace analysis using the PID (Washington State Department of Ecology 2011). Insert the PID probe tip into a small opening in the top of the bag, and record the PID units on the Boring Log form. Reseal the bag after taking the headspace reading in case further assessment of the sample is needed. Do not puncture the resealable plastic bag to obtain headspace readings.

- If specified in the project-specific plans, photograph each section of the boring, including in the photograph notations on a white board documenting sample location identifier, date, orientation, depth, and site markers.
- Describe the soil samples in accordance with ASTM International Standard D-2488-00, Standard Practice for Description and Identification of Soils.
- Record on the Field Report form any deviations from the project-specified sampling procedures or from this SOP, or any obstacle encountered.
- Examine the remaining soil core sample for lithology using the Unified Soil Classification System, and record the lithology on the Boring Log form.
- Discard excess soil cuttings in a labeled waste drum or a soil bin in accordance with Farallon SOP WM-01, Field Handling of Investigation-Derived Waste. Do not add soil to a liquid waste drum.
- Backfill the borehole, as appropriate.
- Upon completion of sampling at a boring, measure the boring's location to an on-site permanent datum, collect the location using the differential global positioning system, or have the sample location surveyed by a licensed surveyor.
- Decontaminate the soil sampling equipment, and don a new pair of sampling gloves before collecting each new soil sample.

DOCUMENTATION

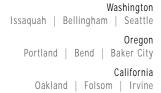
Document the soil sampling activities on the Boring Log form, the Chain of Custody form, and the Field Report form.

REFERENCE

American Society for Testing Materials. 1989. Standard Method for Penetration Test and Split-Barrel Sampling of Soils. Method D-1586-11.

U.S. Environmental Protection Agency. 1987. A Compendium of Superfund Field Operation Methods. EPA Document No. 540-P-87-001. December 1.

Washington State Department of Ecology. 2011. *Guidance for Remediation of Petroleum Contaminated Sites*. Ecology Publication No. 10-09-057. Toxics Cleanup Program. September.


APPENDIX B FARALLON FIELD FORMS AND RECORDS

SAMPLING AND ANALYSIS PLAN INTERIM ACTION DESIGN REPORT

Emerald Gateway Site

3301 South Norfolk Street
Seattle/Tukwila, Washington

Farallon PN: 1071-026

Date:		FIEL	D REPORT			
Project: Site Address: Contractor: Temp: Equipment Used: Project Manager: Contractor Staff Prepared By: Reviewed By: Comments: Staff Staf					Page	of
Client: Weather: Squipment Used: Hours: Contractor Staff Prepared By: Comments: Comments:	Date:	Project #:		Task #:		
Weather: Temp:	Project:		Site Address:			
Equipment Used: Hours: Mileage: Project Manager: Contractor Staff Prepared By: Reviewed By: Comments:	Client:		Contractor:			
Hours: Mileage: Project Manager:	Weather:		Temp:			
Hours: Mileage: Project Manager:	Equipment Used: _					
Prepared By: Reviewed By: Comments:						
Comments:	Contractor	Staff				
	Prepared By:		Reviewed By:			
	Comments:					

FIELD REPORT (continued) Page ___ of ___ Project: _____ Date: ____ Project #: ____ Task #:____

Soil Sample Data Log

	0 C-2-1NI		Name:_					rallon P/N:				
	& Serial No:						_	libration Date/S	andard:			
_		☐ 16 oz gl			\square 8 oz glass \square Zip-loc \square Other							
Sample Me	thod:	☐ Hand au	ıger	☐ Direct p	oush	spoon	\Box C	\square Corer \square Other				
Equip Deco	n:	☐ Tap wat	er wash	□ DIST/D	EION 1 Rinse 🗆 Isopr	opanol	$\Box A$	analyte-free fina	rinse			
		☐ Alconox	ι wash	☐ Liquino:	x Wash □ DIST	Γ/DEION 2 r		Other solvent	☐ DIST/DEION final rin	ise □Air Dry		
					т			1				
Test Pit/Boring Location	Sample ID	Time	Depth	PID	Odor	Sheen Tare Weight	Staining Field Weight	Containers	Lithological Descriptio	n Romarks		
Lucation	Sample 1D	111116	Бери	1110	Outi	Weight	Weight	Containers	Littiological Descriptio	II Keliiai KS		
		ļ										
	,	!										
		ļ ļ]									
			ļ									
		ļ ļ]									
			1				1					

Sheet

of

2 oz = two-ounce jars

4 oz = four-ounce jars

WASTE INVENTORY TRACKING SHEET

Proje	ect Number:			_		Page:	of	
Pr	oject Name:			_	Gene			
Proje	ect Address:			_	P	repared By: _		
Field Work I	Description:			_	Date Waste	e Removed: _		
Projec	ct Manager:			_	Waste T	Transporter: _		
					Waste Disposa	al Location:		
Unique Container ID	Container Size	% Capacity Used	Contents (Soil/GW/Decon Water)/ Origin (Boring or Well ID)	Date(s) Accumulated	Labeling (Contents Under Test/ Haz/Non-Haz/Other- Specify)	Sampled (Y/N)	Comments	
				!				
				1				
Container ID	OTES: Contents should be specified and include identification of well/boring, media, source, depth of soil (if applicable), and any other helpful information. Container ID should be unique when compared against other nearby containers. Special waste labels may include flammable, corrosive, dangerous when wet, and/or oxidizer. Occation of Drums (sketch or describe): FARALLON CONSULTING							
							CONSULTI	NG

Chain of Custody Record & Laboratory Analysis Request

ARI Assigned Number:	Turn-around	Requested:			Date:						Analyt Analyt	ical Resources, Incorporated ical Chemists and Consultants
ARI Client Company:	annall.	Phone:			Page:		of				4611	South 134th Place, Suite 100
										•		Tukwila, WA 98168
Client Contact:					No. of Coolers:		Cooler Temps:				206	6-695-6200 206-695-6201 (fax)
Client Project Name:						1	1	Analysis I	Requested		•	Notes/Comments
Client Project #:	Samplers:											
			1	<u> </u>								
Sample ID	Date	Time	Matrix	No. Containers								
Comments/Special Instructions	Relinquished by:			Received by:				Relinquished	l by:		Received by	:
	(Signature)			(Signature)				(Signature)			(Signature)	
	Printed Name:			Printed Name:				Printed Nam	e:		Printed Nam	e:
	Company:			Company:				Company:			Company:	
	Date & Time:			Date & Time:				Date & Time:		Date & Time:		

Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or co-signed agreement between ARI and the Client.

Sample Retention Policy: Unless specified by workorder or contract, all water/soil samples submitted to ARI will be discarded or returned, no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer. Sediment samples submitted under PSDDA/PSEP/SMS protocol will be stored frozen for up to one year and then discarded.

APPENDIX F HEALTH AND SAFETY PLAN

INTERIM ACTION DESIGN REPORT
Emerald Gateway Site
3301 South Norfolk Street
Seattle/Tukwila, Washington

Farallon PN: 1071-026

HEALTH AND SAFETY PLAN

EMERALD GATEWAY SITE 3301 SOUTH NORFOLK STREET SEATTLE/TUKWILA, WASHINGTON

Submitted by: Farallon Consulting, L.L.C. 975 5th Avenue Northwest Issaquah, Washington 98027

Farallon PN: 1071-026

For:
Prologis, Inc.
Pier 1, Bay 1
San Francisco, California 94111

January 24, 2020

HEALTH AND SAFETY PLAN REVIEW AND APPROVAL

Client: Prologis, Inc.	Facility Name: Emerald	Facility Name: Emerald Gateway Site				
Type of Work: Interim Action						
Plan Expiration Date: The Health						
completed. The Health and Safety Pl	<u>an will be reviewed whenever t</u>	he scope of work for the				
interim action is modified or at a mini	mum of every 6 months.					
APPROVED BY:						
Pete Kingston, L.G.						
Project Manager						
	Signature	Date				
Joseph Rounds						
Health and Safety Coordinator						
<u> </u>	Signature	Date				
Peter Jewett, L.G., L.E.G.						
Principal-in-Charge		<u> </u>				
	Signature	Data				

This Health and Safety Plan (HASP) was written for the use of Farallon Consulting, L.L.C. (Farallon) and its employees. It may be used also by trained and experienced Farallon subcontractors as a guidance document. However, Farallon does not guarantee the health or safety of any person entering this site.

Due to the potentially hazardous nature of the site and the activities occurring thereon, it is not possible to discover, evaluate, or provide protection for all possible hazards that may be encountered. Strict adherence to the health and safety guidelines set forth herein will reduce, but does not eliminate, the potential for injury. The health and safety guidelines in this HASP were prepared specifically for this site, its conditions, purposes, dates of field work, and personnel, and must be amended if conditions change.

Farallon claims no responsibility for the use of this HASP by others. This HASP will provide useful information to subcontractors and will assist them in developing their own HASP, but it should not be construed as a substitute for their own HASP. Subcontractors should sign this HASP (see Attachment 1, *Health and Safety Plan Acknowledgment and Agreement Form*) as an acknowledgement of hazard information and as notice that this HASP does not satisfy their requirement to develop their own HASP.

CONTENTS

1.0	SITE	-SPECIFIC INFORMATION	
	1.1	BACKGROUND INFORMATION	1-1
	1.2	SCOPE OF WORK	
	1.3	SITE-SPECIFIC SAFETY CONCERNS	1-2
2.0	DRU	G AND ALCOHOL POLICY	2-1
3.0	WEA	PONS POLICY	3-1
4.0	INCI	DENT PREPAREDNESS AND RESPONSE	4-1
	4.1	HEALTH AND SAFETY PREPAREDNESS	4-1
	4.2	INJURY OR ILLNESS	4-1
	4.3	REPORTING PROCEDURES FOR MINOR CUTS, SCRATCHES,	
		BRUISES, ETC.	
	4.4	NEAR MISSES	
	4.5	MEDICAL INCIDENTS NOT REQUIRING AMBULANCE SERVI	CE 4-2
	4.6	EMERGENCY CASES REQUIRING AMBULANCE SERVICE	
	4.7	EMPLOYEE DEATH, OR HOSPITALIZATION OF ONE OR MC	
		EMPLOYEES	
	4.8	RESPONSE TO SPILLS OR UTILITY BREACHES	4-4
	4.9	NOTIFICATIONS	
	4.10	SHUTOFF VALVES AND/OR SWITCHES FOR UTILITIES ANI PRODUCTS	
5.0	EME	RGENCY RESPONSE AND EVACUATION PLAN	5-1
6.0	LOC	AL EMERGENCY CONTACT NAMES AND	
		EPHONE NUMBERS	6-1
7.0	PRO.	JECT PERSONNEL AND RELEVANT INFORMATION	7-1
	7.1	PROJECT PERSONNEL CONTACT INFORMATION	
8.0	POT	ENTIAL CHEMICAL EXPOSURE	8-1
9.0	POT	ENTIAL SITE HAZARDS AND APPROPRIATE PRECAUTION	S 9-1
	9.1	ENVIRONMENTAL DRILLING	9-2
	9.2	EXCAVATION ACTIVITIES	9-10
	9.3	UNDERGROUND STORAGE TANK DECOMMISSIONING	9-14
	9.4	MONITORING WELL SAMPLING/GAUGING	9-18
10.0	WAS	TE CHARACTERISTICS	10-1
11.0	TRA	FFIC CONTROL	11-1

ATTACHMENTS

Attachment 1	Health and Safety Plan Acknowledgement and Agreement Form
Attachment 2	Directions to Hospital
Attachment 3	Potential Topics for Daily Health and Safety Meeting
Attachment 4	Daily Health and Safety Briefing Log
Attachment 5	Incident Report Form
Attachment 6	Near Miss and Safety Observation Report
Attachment 7	Utility Clearance Logs
Attachment 8	Farallon Field Personnel Training Dates

1.0 SITE-SPECIFIC INFORMATION

Information specifically pertaining to the project site, the scope of work for the project, and related safety concerns are discussed in this section.

1.1 BACKGROUND INFORMATION

Farallon Consulting, L.L.C. (Farallon) has prepared this Health and Safety Plan (HASP) on behalf of Prologis-Exchange 3301 South Norfolk LLC (Prologis) for the Emerald Gateway Site at 3301 South Norfolk Street in Seattle and Tukwila, Washington (herein referred to as the Property). Prologis is conducting an interim action at the Property in accordance with Agreed Order No. DE 16659.

Subsurface investigations have been conducted at the Property since 1989. Based on the results of the subsurface investigations, petroleum hydrocarbon constituents, metals, polycyclic aromatic hydrocarbons, and polychlorinated biphenyls have been detected at concentrations exceeding regulatory screening levels in one or more of the following media: soil and groundwater. Numerous remedial actions have been conducted at the Property between 1989 and 2019 to reduce concentrations of contaminants.

This interim action partially addresses contamination with petroleum hydrocarbon constituents, metals, polycyclic aromatic hydrocarbons, and polychlorinated biphenyls in soil and groundwater. The interim action will be conducted concurrent with Property redevelopment, which will correct a problem that may become substantially worse or cost substantially more to address if delayed, because extensive reconfiguration of the Property, including new structures, is part of the planned redevelopment.

The scope of work for the interim action includes:

- **Impacted Soil Excavation.** Soil with concentrations of petroleum hydrocarbons exceeding remediation levels will be excavated to the maximum extent practicable in three localized areas at the Property. Excavated soil will be transported to a permitted off-site facility for disposal.
- **Dewatering and Treatment.** Dewatering may be necessary to allow for excavation of contaminated soil located below the water table. If necessary, dewatering wastewater will be pumped to aboveground tanks, pretreated on the Property, and discharged to surface water under a Construction Stormwater General Permit and an Administrative Order issued by the Ecology Water Quality Program.
- Contingency Excavation. Any contaminant materials encountered during redevelopment activities that exceed remediation levels will be excavated to the maximum extent practicable and transported to a permitted off-site facility for disposal.
- **Reconfiguration of Stormwater Infrastructure.** Existing stormwater infrastructure at the Property will be removed or abandoned in-place. New catch basins and conveyance piping

will be installed to collect and convey stormwater across the entire Property before it is treated and discharged to the Lower Duwamish Waterway.

1.2 SCOPE OF WORK

This HASP was prepared for the use of Farallon personnel while performing the interim action at the Property. The interim action includes mass excavation of contaminated soil, monitoring well decommissioning, UST decommissioning (if discovered during the interim action), drilling and/or test pitting, dewatering, and soil and groundwater sampling. Specific details on each component of the interim action are provided in the Pre-Interim Action Design Report.

1.3 SITE-SPECIFIC SAFETY CONCERNS

Specific hazards that the field employee(s) will encounter on this project include, but are not limited to:

- Working around heavy equipment;
- Working with hand tools and small mechanical equipment;
- Truck traffic;
- Pinch points;
- Work exclusion zone safety;
- Slips, trips, and falls;
- Loud noise;
- Chemical exposure related to contaminated soil, groundwater, and windblown dust; and
- Environmental hazards, including exposure to sun, heat, and cold.

2.0 DRUG AND ALCOHOL POLICY

It is Farallon's policy to maintain a drug-free workplace. Farallon has a responsibility to all of its staff members to provide a safe and inoffensive work environment, and a responsibility to its clients to provide accurate and consistent service. For these reasons, Farallon prohibits the following behavior by staff members in the field:

- Use of tobacco in any form by any person at any time in sensitive or hazardous areas that may pose a health and safety or environmental risk. The Site Health and Safety Officer (SHSO) may designate an area away from hazards that is safe for tobacco use.
- Possession or consumption of alcohol and/or marijuana, or being under the influence of alcohol and/or marijuana during field activities.
- Abuse of prescription and/or over-the-counter drugs in such a manner as to negatively impact performance or field safety.
- Possession, use, sale, or being under the influence of illicit drugs while in the field or during any work hours.

Violation of any of the above codes of conduct is grounds for immediate removal from the work site and discipline in accordance with Farallon company policy. If an incident occurs as a result of an employee's actions, drug and alcohol testing will be performed in accordance with Farallon company policy.

3.0 WEAPONS POLICY

Farallon employees, contractors, subcontractors, and their employees working at the Property are to ensure that they do not bring weapons onto the work site. Weapons include but are not limited to guns, knives, and explosives. Tools that are used during the course of field events, including but not limited to box knives, are exempt from this weapons policy. All vehicles and persons can be subjected to search while working at the Property.

Failure to comply with the weapons policy can result in disciplinary action for the individual(s) involved in accordance with Farallon company policy.

4.0 INCIDENT PREPAREDNESS AND RESPONSE

Farallon employees and subcontractors working at the Property must be prepared to respond appropriately to an incident involving injury, illness, death, spills, or utility breaches. This section outlines the degree of preparedness required for employees at a work site, and describes the actions to be taken in the event of a health and safety incident.

4.1 HEALTH AND SAFETY PREPAREDNESS

All individuals working at the Property are required to be familiar with the contents of this HASP. Additionally, the items on the following health and safety preparedness list should be reviewed prior to the commencement of work and during daily health and safety meetings:

- The directions to the hospital (provided in Attachment 2);
- The locations of first aid kits, personal eye washes, and fire extinguishers (located in field vehicles);
- The locations of the keys to field vehicles; and
- Hand sign language providing for the immediate stoppage of work (such as a horizontal hand movement in front of the neck).

Additional topics for daily health and safety meetings are included in Attachment 3, Potential Topics for Daily Health and Safety Meeting. Participation in daily health and safety meetings should be documented in Attachment 4, Daily Health and Safety Briefing Log.

4.2 INJURY OR ILLNESS

If an injury or illness occurs, the following actions should be taken, regardless of the severity of the injury or illness:

- Stop work.
- Determine whether emergency response staff (e.g., fire, ambulance) are necessary. If so, dial 911 on a cell phone or the closest available telephone. Describe the location of the injured person and provide other details as requested. If an individual requires non-emergency medical care at a hospital, follow the directions to the nearest hospital, which are provided in Attachment 2. IF EMERGENCY MEDICAL CARE IS NEEDED, CALL 911.
- Administer first aid to the individual immediately, using the first aid kit provided in the field vehicle. Use the bloodborne pathogens kit and personal eyewash, as needed.
- Notify the SHSO immediately. The SHSO is responsible for preparing and submitting an Incident Report form to Farallon's Health and Safety Coordinator (HSC) within 24 hours of the incident, and for notifying the employee's supervisor and the Principal-in-Charge. The Incident Report form is provided in Attachment 5.

• All incidents must be reported to the HSC within 24 hours; however, the actual investigation need not be completed within 24 hours. A telephone message that includes the date, time, and general incident circumstances should be left at one of the following numbers if the HSC cannot be reached directly:

o HSC work phone: (425) 295-0800

o HSC cell phone: (206) 484-2748

- o If the HSC cannot be located, contact the Principal-in-Charge
- The SHSO will assume responsibility during a medical emergency until emergency response personnel arrive at the Property.

4.3 REPORTING PROCEDURES FOR MINOR CUTS, SCRATCHES, BRUISES, ETC.

Every occupational illness or injury is to be reported immediately by the employee to the SHSO. The SHSO is to complete the Incident Report form provided in Attachment 5, and report the incident to the HSC.

4.4 NEAR MISSES

A near miss is defined as an incident in which no personal injury is sustained and no property damage is incurred, but in which injury and/or property damage could have occurred under slightly different timing or location.

In the event of a near miss, the following actions are to be taken:

- Stop work if there is immediate danger of injury or property damage;
- Report the near miss to the SHSO as soon as practicable;
- Resume work upon satisfactory resolution of the near-miss condition, if work was stopped, and document the corrective action(s) taken by the SHSO; and
- Complete and submit the Near Miss Report and Safety Observation Report form in Attachment 6 to the HSC within 2 business days.

4.5 MEDICAL INCIDENTS NOT REQUIRING AMBULANCE SERVICE

Medical incidents not requiring ambulance services include injuries and conditions such as minor lacerations and sprains. In the event of an injury, an illness, or a condition that does not require ambulance service, the following actions are to be taken:

- Stop work.
- Administer first aid as necessary to stabilize the individual for transport to the hospital.
- The SHSO is to facilitate prompt transportation of the individual to the hospital. Directions to the nearest hospital are provided in Attachment 2.

- A representative of Farallon or the subcontractor is to drive the individual to the medical facility and remain at the facility until the individual is able to return to the work site, or arrangements for further care have been established.
- If the driver is not familiar with the route to the hospital, a second person who is familiar with the route is to accompany the driver and the injured employee to the hospital.
- If it is necessary for the SHSO to accompany the injured employee to a medical facility, provisions must be made for another employee who is trained and certified in first aid to act as the temporary SHSO before work at the work site can resume.
- If the injured employee is able to return to the work site the same day, he/she is to bring a statement from the doctor that provides the following information:
 - o Date of incident
 - o Employee's name
 - o Diagnosis
 - o Date he/she is able to return to work, and whether regular or light duty
 - o Date he/she is to return to the doctor for a follow-up appointment, if necessary
 - Signature and address of doctor
- The SHSO is to complete the Incident Report form provided in Attachment 5, and report the incident to the HSC.
- If the injured employee is unable to return to the work site the same day, the employee who transported him/her should bring the statement from the doctor back to the work site. The information on this statement should be reported to the HSC immediately.

4.6 EMERGENCY CASES REQUIRING AMBULANCE SERVICE

In the event of an injury or illness that requires emergency response and transport to a hospital by ambulance the following actions should be taken:

- **Dial 911** to request ambulance service;
- Notify the SHSO;
- Administer first aid until the ambulance service arrives:
- One designated company representative should accompany the injured employee to the medical facility and remain there until final diagnosis, treatment plan, and other relevant information has been obtained; and
- The SHSO is to complete the Incident Report form provided in Attachment 5, and report the incident to the HSC immediately.

4.7 EMPLOYEE DEATH, OR HOSPITALIZATION OF ONE OR MORE EMPLOYEES

The procedures outlined in Section 6.2 should be followed in the event of an employee injury or illness. If an employee fatality occurs, the HSC, local emergency personnel, and the coroner must be notified <u>immediately</u>. The HSC will initiate the required State of Washington Department of Labor and Industries and Occupational Safety and Health Administration (OSHA) notifications within 8 hours of a fatality or the hospitalization of one or more employees.

4.8 RESPONSE TO SPILLS OR UTILITY BREACHES

The location of underground utilities (e.g., product, sewer, telephone, fiber optic) and facilities (e.g., underground storage tanks, septic tanks, utility vaults) is to be noted prior to commencement of intrusive subsurface work activities. Use the public and private locate services as required and complete the Utility Clearance Log (Attachment 7). If a utility line or tank is breached or a spill or release occurs, the event is to be documented on the Incident Report form provided in Attachment 5 as soon as possible. The date, time, name of the person(s) involved, actions taken, and discussions with other affected parties are to be included. The SHSO, Project Manager (PM), and client are to be notified immediately. The PM is to notify the regulatory authority and/or utility company, as necessary.

In the event of a spill or release, the following actions should be taken:

- Stay upwind of the spill or release.
- Don appropriate personal protective equipment (PPE).
- Turn off equipment and other sources of ignition.
- Turn off pumps and shut valves to stop the flow or leak.
- Plug the leak or collect drippings, if possible.
- Use sorbent pads to collect the product and impede its flow, if possible.
- Dial 911 or telephone the local fire department immediately if a fire or another emergency situation develops.
- Inform the Farallon PM of the situation.
- Determine whether the client would like Farallon to repair the damage or would rather use an emergency repair contractor.
- Advise the client of spill discharge notification requirements, and establish who will complete and submit the required forms. *Do not report or submit information to an agency without the client's consent*. Document each interaction with the client and regulators, and note in writing names, titles, authorizations, refusals, decisions, and commitments to any action.

- Do not transport or approve transportation of contaminated soils or product until proper manifests have been completed and approved. Be aware that soil and/or product may meet criteria for hazardous waste.
- Do not sign manifests as a generator of wastes. Contact the PM to discuss waste transportation.

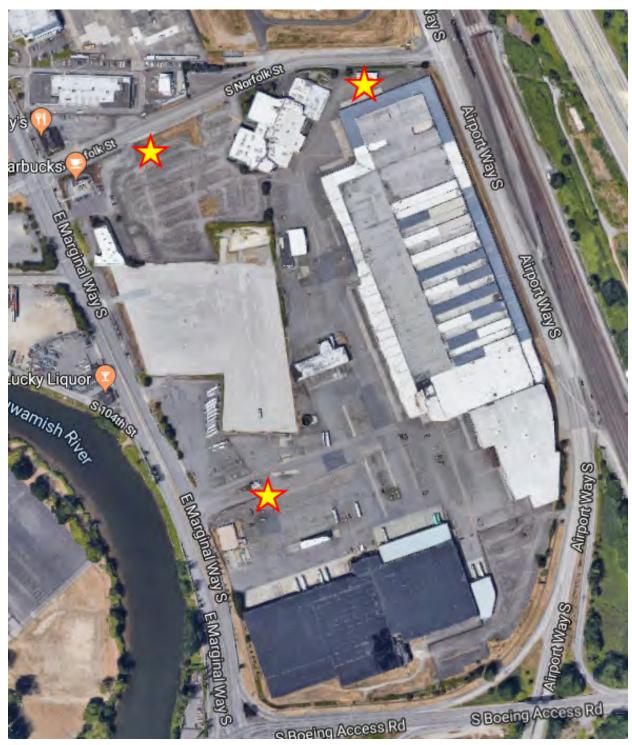
4.9 NOTIFICATIONS

A spill or release requires completion of an Incident Report form (provided in Attachment 5) per Farallon's Health and Safety program. The PM must involve the client and/or generator in the incident reporting process. The client and/or generator is under obligation to report the incident to the appropriate government agency(ies). If the spill extends into waterways, the Coast Guard and the National Response Center must be notified immediately by the client or with client permission (1-800-424-8802).

4.10 SHUTOFF VALVES AND/OR SWITCHES FOR UTILITIES AND PRODUCTS

Before starting work, locate, discuss, and list on the Daily Health and Safety Briefing Log the locations of utility and product line shutoff valves and switches on the work site. Review the location of shutoff valves and switches with other field personnel before beginning work.

5.0 EMERGENCY RESPONSE AND EVACUATION PLAN


Farallon personnel and subcontractors working on the Property are to be aware of site-specific emergency and evacuation procedures, including alarm systems and evacuation plans and routes. If an incident occurs that requires emergency response, such as a fire or spill, **CALL 911 and request assistance**. Farallon staff, subcontractors, and/or others working in an area where an emergency occurs are to evacuate to a safe location away from the incident area, preferably upwind, and take attendance.

For this project, the emergency evacuation gathering location will be dependent on where work is being conducted due to the size of the Property. Farallon has selected areas near the northwestern driveway, near the northeastern driveway, and near the southwestern driveway as emergency evacuation locations for this project. The emergency evacuation locations are marked by stars in the image below.

If the emergency causes the route to be obstructed, Farallon personnel and subcontractors are to move to an open area upwind of the hazard area, and remain there until instructed by emergency response personnel (e.g., police, fire, ambulance personnel, paramedics) to do otherwise.

Subcontractors have the responsibility to account for their own employees and provide requested information to emergency response personnel immediately upon request. Farallon staff, subcontractors, and/or contractors may not reenter the scene of the emergency without specific approval from emergency response personnel.

= Emergency Evacuation Gathering Location

6.0 LOCAL EMERGENCY CONTACT NAMES AND TELEPHONE NUMBERS

Local emergency response personnel can be contacted at the following numbers. Directions and a map to the hospital are included in Attachment 2.

Emergency Contact	Name and Location	Telephone No.
Hospital	Virginia Mason Hospital and Seattle Medical Center 1100 9 th Avenue Seattle, Washington	(206) 223-6600
Police	Tukwila Police Department 6200 Southcenter Boulevard Tukwila, Washington	911 or (206) 433-1808
Fire	Seattle Fire Station 33 9645 Renton Avenue South Seattle, Washington	911 or (206) 386-1433
National Response Center		1-800-424-8802
Washington State Department of Ecology		(360) 407-6300
Poison Control		1-800-222-1222

7.0 PROJECT PERSONNEL AND RELEVANT INFORMATION

The following section provides contact information for the project and the HSC and client-specific health and safety requirements. Farallon field personnel training and medical surveillance dates are included in Attachment 8.

7.1 PROJECT PERSONNEL CONTACT INFORMATION

Questions about this project that are posed by neighbors, the press, or other interested parties should be directed to the Principal-in-Charge at Farallon: (425) 295-0802.

PERSONNEL TITLE PERSONNEL NAME PERSONNEL CONTACT INFORMATION	GENERAL PROJECT RESPONSIBILITIES
Health and Safety Coordinator Joseph Rounds Office: (425) 295-0800 Cell: (206) 484-2748	Provide support in implementing HASP. Provide immediate support upon notice of any incident.
Principal-in-Charge Peter Jewett Office: (425) 295-0802 Cell: (425) 765-3366	Provide immediate support upon notice of any incident.
Project Manager Pete Kingston Office: (425) 394-4146 Cell: (206) 200-2346	Provide immediate support upon notice of any incident.
Client Contact Janet Frentzel Office: (415) 733-9451	Provide known analytical data from work performed by others. Provide notice of work site hazards. Provide access to work site. Provide information regarding available emergency supplies at the work site.

8.0 POTENTIAL CHEMICAL EXPOSURE

Farallon employees working at the Property may become exposed to the chemicals listed in the table below. These chemicals are present either due to current work site activities or due to the presence of contamination. This table should be reviewed prior to the start of work and questions directed to the SHSO. Air monitoring may be required at the Property based on the scope of work for the project. The Farallon Project Manager and SHSO will let the Farallon Field Scientists know if air monitoring will be required for the scope of work.

	POTENTIAL AIRBORNE CHEMICALS ON SITE FOR THIS PROJECT REVIEW THIS TABLE AND CONTACT THE SHSO WITH ANY QUESTION					
Chemical (or Class)	OSHA PEL ACGIH TLV	Other Pertinent Limits	Properties	Routes of Exposure or Irritation	Acute Health Effects	Chronic Health Effects/ Target Organs
Toluene	PEL – 200 ppm TLV – 50 ppm	NIOSH REL – 100 ppm TWA; 150 ppm STEL ILDH – 500 ppm	Sweet, pungent, benzene-like odor.	Eye contact.	Skin (dermatitis); eye, respiratory tract irritant; headache; dizziness; weakness; fatigue.	CNS; liver; kidneys; skin.
Benzene	PEL – 1 ppm TLV – 0.5 ppm (skin)	PEL STEL – 5 ppm IDLH – 500 ppm	Characteristic benzene odor.	Inhalation; dermal; ingestion; eye contact.	Skin (dermatitis); eye, respiratory tract irritant; headache; dizziness; nausea.	Carcinogen; CNS; eye damage; bone marrow; blood; skin; leukemia.
Naphthalene	PEL – 10 ppm TLV – 10 ppm	TLV STEL – 15 ppm NIOSH REL – 10 ppm REL STEL – 15 ppm IDLH – 250 ppm	Mothball-like odor.	Inhalation; dermal; ingestion; eye contact.	Skin, eye, mucous membrane irritant, nausea.	Eyes, blood, skin, liver, kidney, RBC; CNS.
Xylenes	PEL – 100 ppm TLV – 100 ppm	TLV STEL – 500 ppm NIOSH REL – 100 ppm NIOSH REL STEL – 100 ppm IDLH – 900 ppm	Aromatic odor.	Inhalation; dermal; ingestion; eye contact.	Throat, skin irritant (dermatitis); headache; nausea; drowsiness; fatigue.	CNS, liver, kidneys, skin, gastrointestinal damage; eye damage.

POTENTIAL AIRBORNE CHEMICALS ON SITE FOR THIS PROJECT REVIEW THIS TABLE AND CONTACT THE SHSO WITH ANY QUESTION

	REVIEW THIS TABLE AND CONTACT THE SHOO WITH ANT QUESTION					
Chemical (or Class)	OSHA PEL ACGIH TLV	Other Pertinent Limits	Properties	Routes of Exposure or Irritation	Acute Health Effects	Chronic Health Effects/ Target Organs
Ethylbenzene	PEL – 100 ppm TLV – 100 ppm	PEL STEL – 125 ppm TLV STEL – 125 ppm NIOSH REL – 100 ppm REL STEL – 125 ppm IDLH – 800 ppm	Pungent, aromatic odor.	Inhalation; dermal; ingestion; eye contact.	Skin, eye, mucous membrane irritant; headache; dizziness; drowsiness.	Eyes; respiratory tract; skin; CNS; blood; kidneys; liver.
Coal tar pitch volatiles (aka polycyclic aromatic hydrocarbons pyrene, phenanthrene, chrysene, anthracene, and benzo[a]pyrene)	PEL – 0.2 mg/m ³	NIOSH REL – 0.1 mg/m³ (cyclohexane- extractable fraction) IDLH – 80 mg/m³	Black or dark- brown amorphous residue.	Inhalation; dermal; ingestion; eye contact.	Irritation to eyes, skin; nose, throat irritation that may cause difficulty breathing.	Skin and lung cancer; damage to the reproductive system; thickening and darkening of the skin.
Arsenic	PEL – 0.010 mg/m ³	NIOSH REL – CA C 0.002 mg/m³ [15- minutes]	Metal: Silver- gray or tin- white, brittle, odorless solid.	Inhalation; skin absorption; skin and/or eye contact; ingestion.	Ulceration of nasal septum; peripheral neuropathy; gastrointestinal disturbances; dermatitis; respiratory irritation; hyperpigmentation of skin (potential occupational carcinogen).	Lung and lymphatic cancer; liver; kidneys; skin; lungs; lymphatic system.

POTENTIAL AIRBORNE CHEMICALS ON SITE FOR THIS PROJECT REVIEW THIS TABLE AND CONTACT THE SHSO WITH ANY QUESTION

Chemical (or Class)	OSHA PEL ACGIH TLV	Other Pertinent Limits	Properties	Routes of Exposure or Irritation	Acute Health Effects	Chronic Health Effects/ Target Organs
Cadmium	PEL – 0.005 mg/m ³		Odorless, yellow-brown, finely divided particulate dispersed in air.	Inhalation.	Pulmonary edema; dyspnea (breathing difficulty); cough; chest tightness; substernal (occurring beneath the sternum) pain; headache; chills; muscle aches; nausea; vomiting; diarrhea; emphysema; proteinuria; anosmia (loss of the sense of smell); mild anemia; potential occupational carcinogen.	Prostate and lung cancer; respiratory system; kidneys; blood.
Copper	PEL – 1 mg/m ³ TLV – 1 mg/m ³	IDLH – 100 mg/m ³	Reddish, lustrous, malleable, odorless solid.	Inhalation, ingestion, skin and/or eye contact.	Irritation to eyes, nose, and pharynx, nasal septum perforation; metallic taste; dermatitis.	Lung, liver, and/or kidney damage; anemia. Eyes, skin, respiratory system, liver, kidneys.

NOTES:

°F = degrees Fahrenheit

ACGIH = American Conference of Governmental Industrial Hygienists

AIHA = American Industrial Hygiene Association

AIHA WEEL = AIHA-set workplace environmental exposure limits

C = ceiling limit

CNS = central nervous system

CVS = cardiovascular system

IDLH = immediately dangerous to life or health

mg/m3 = milligrams per cubic meter

NIOSH = National Institute for Occupation Safety and Health

OSHA = Occupation Safety and Health Administration

PEL = permissible exposure limit

ppm = parts per million

RBC = red blood cells

REL = recommended exposure limit set by NIOSH

Skin = skin absorption

STEL = short-term exposure limit

TLV = threshold limit value set by ACGIH

TWA = time-weighted average

9.0 POTENTIAL SITE HAZARDS AND APPROPRIATE PRECAUTIONS

Activities listed may be associated with work performed by others. The information contained in this section is for the use of Farallon personnel and not intended for use by others. The following tables list potential hazards and appropriate precautions associated with planned field work.

The following are a few basic guidelines to remember while performing field work at the Property:

- No eating, drinking, or smoking on the work site;
- No wearing contact lenses on the work site;
- No facial hair that will interfere with proper respirator fit when respirators are required; and
- A safety meeting will be held every day, even if only one person is working on the project on a given day.

9.1 ENVIRONMENTAL DRILLING

Job Steps	Personal Protective Equipment	Potential Hazards	Critical Actions
Clear drilling locations.	Reflective vest, steel-toed and -shank shoes, hard hat, safety glasses with side shields, and work gloves.	Traffic hazards. Overhead or underground installations. Product releases. Property damage. Occupant inconvenience.	 Refer to Utility Clearance Log (Attachment 7). Coordinate with Site Manger (or designee) to minimize potential conflicts. Review proposed locations against available construction drawings and known utilities, tanks, product lines, etc. Mark out the proposed borehole locations. Call underground utility locating service for public line location clearance and obtain a list of utilities being contacted. If necessary, coordinate private line locator for private property. Maintain minimum distance of 5 feet from marked utilities. Develop a traffic control plan with the client and local agencies, as applicable, which may include use of cones, barrier tape, jersey barriers, etc.
Mobilize with equipment/supplies suitable for drilling.	Reflective vest, steel-toed and -shank shoes, hard hat, safety glasses with side shields, and work gloves.	Vehicle accident. Lifting hazards. Delay or improper performance of work due to improper equipment on Site.	 Begin each work day with tailgate safety meeting. Follow safe driving procedures. Employ safe lifting procedures. Verify that subcontractors are aware of their responsibilities for labor, equipment, and supplies. Review permit conditions.
Visually clear proposed drilling locations.	Reflective vest, steel-toed and -shank shoes, hard hat, safety glasses with side shields, and work gloves.	Underground or overhead installations.	 Complete Utilities and Structures checklist on the Utility Clearance Log (provided in Attachment 7) and adjust drilling locations as necessary. If drilling within 3 feet of marked utilities, must daylight utility to verify location.

Job Steps	Personal Protective Equipment	Potential Hazards	Critical Actions
Set up necessary traffic control.	Reflective vest, steel-toed and -shank shoes, hard hat, safety glasses with side shields, and work gloves.	Struck by vehicle during placement. Vehicle accident resulting from improper placement of traffic control equipment.	Use buddy system for implementing traffic control plan, such as setting out cones and tape to define the safety area.
Assist with setup of rig.	Reflective vest, steel-toed and -shank shoes, hard hat, safety glasses with side shields, and work gloves.	Vehicle accident during rig movement. Damage caused by rig while accessing set-up location. Contact with overhead installations. Soft terrain. Unexpected rig movement.	 All staff should know the location of the kill switch for the drilling rig. Verify a clear pathway to the drilling location and clearance for raising mast. Provide hand signals and guidance to the driver, as needed, to place rig. Visually inspect rig (e.g., fire extinguisher on board, no oil or other fluid leaks, cabling and associated equipment in good condition, pressurized hoses secured with whip-checks or adequate substitute, jacks in good condition). Use wooden blocks under jacks to spread load, if necessary. Chock wheels.
Set up exclusion zone(s) and work stations (drilling and logging and/or sample collection).	Reflective vest, steel-toed and -shank shoes, hard hat, safety glasses with side shields, and work gloves.	Struck by vehicle during setup. Slip or fall hazards.	Implement exclusion zone setup. Set up work stations with clear walking paths to and from rig. Use safety tape and cone(s).

Job Steps	Personal Protective Equipment	Potential Hazards	Critical Actions
Clear upper 5 feet of drilling location using post-hole digger or hand auger.	Reflective vest, steel-toed and -shank shoes, hard hat, safety glasses with side shields, ear plugs or muffs, and work gloves. Respirator with organic vapor cartridges, chemical-resistant gloves, and chemical-resistant apron as required.	Back strain. Exposure to chemical hazards. Hitting an underground utility. Repetitive motion.	 Keep full-face respirator with organic vapor cartridges readily accessible. Initiate air quality monitoring in accordance with the air monitoring protocol presented in Attachment 9. Stand upwind to avoid exposure when possible. Use the organic vapor monitor aggressively to track the airborne concentration of contaminants close to potential sources such as the core when it is raised from the hole, the core when opened, etc. Evaluate any soil samples inside a resealable plastic bag at arm's length. DO NOT EVALUATE THE SAMPLE IN THE OPEN, IN ORDER TO AVOID UNNECESSARY EXPOSURE. Use correct lifting techniques and tools. Complete the Pre-Drilling section of the Borehole Clearance Review form.
Drilling.	Reflective vest, steel-toed and -shank shoes, hard hat, safety glasses with side shields, ear plugs or muffs, work gloves. Respirator with organic vapor cartridges, chemical-resistant gloves, chemical-resistant apron as required.	Back strain. Heat or cold. Eye injury. Noise. Exposure to chemical hazards. Breaching an underground utility. Trip or fall. Equipment failure.	 Stand clear of operating equipment. Use correct lifting techniques. Monitor air quality in accordance with the air monitoring protocol presented in Attachment 9. Monitor drilling progress. Keep work area clear of tripping or slipping hazards. Perform periodic visual inspections of drill rig.

Job Steps	Personal Protective Equipment	Potential Hazards	Critical Actions
Collect samples in accordance with sampling plan.	Reflective vest, steel-toed and -shank shoes, hard hat, safety glasses with side shields, ear plugs or muffs, work gloves. Respirator with organic vapor cartridges, chemical-resistant gloves, chemical-resistant apron as required.	Back strain. Heat or cold. Eye injury. Noise. Exposure to chemical hazards. Breaching an underground utility. Trip or fall. Equipment failure.	 Stand clear of operating equipment. Use correct lifting techniques. Monitor air quality in accordance with the air monitoring protocol presented in Attachment 9. Monitor drilling progress. Keep work area clear of tripping or slipping hazards. Perform periodic visual inspections of drill rig.
Manage cuttings.	Reflective vest, steel-toed and -shank shoes, hard hat, safety glasses with side shields, ear plugs or muffs, work gloves. Respirator with organic vapor cartridges, chemical-resistant gloves, chemical-resistant apron as required.	Back strain. Heat or cold. Eye injury. Noise. Exposure to chemical hazards. Breaching an underground utility. Trip or fall. Equipment failure.	 Stand clear of operating equipment. Use correct lifting techniques. Monitor air quality in accordance with the air monitoring protocol presented in Attachment 9. Monitor drilling progress. Keep work area clear of tripping or slipping hazards. Perform periodic visual inspections of drill rig.

Job Steps	Personal Protective Equipment	Potential Hazards	Critical Actions
Backfill borehole.	Reflective vest, steel-toed and -shank shoes, hard hat, safety glasses with side shields, ear plugs or muffs, work gloves. Respirator with organic vapor cartridges, chemical-resistant gloves, chemical-resistant apron as required.	Back strain. Trip hazards. Eye injury from splashing or release of pressurized grout.	 Mix grout to specification and completely fill the hole. Use proper lifting techniques. Keep work area clear of tripping hazards. Verify presence of and/or authorization by required grouting inspectors.
Develop well.	Reflective vest, steel-toed and -shank shoes, hard hat, safety glasses with side shields, ear plugs or muffs, work gloves. Respirator with organic vapor cartridges, chemical-resistant gloves, chemical-resistant apron as required.	Physical injury from mechanical failure, drill rig, or air compressor. Trip hazards. Exposure to contaminants. Electric shock.	 Verify that equipment is in good working order and that pressurized hoses are whip-checked. Keep full-face respirator with organic cartridges readily accessible. Keep work area orderly. Any generators must be equipped with a ground fault circuit interrupter.
Gauge water levels and product thickness in wells, where applicable.	Reflective vest, steel-toed and -shank shoes, hard hat, safety glasses with side shields, ear plugs or muffs, work gloves. Respirator with organic vapor cartridges, chemical-resistant gloves, chemical-resistant apron as required.	Back strain. Inhalation or dermal exposure to chemical hazards. Repetitive motion.	 Have full-face respirator with organic cartridges readily accessible. Conduct air quality monitoring in accordance with the protocol presented in Attachment 9. Maintain a safe distance from the well head. Bend at knees rather than at the waist.
Purge well(s) and collect purge water.	Reflective vest, steel-toed and -shank shoes, hard hat, safety glasses with side shields, ear plugs or muffs, work gloves. Respirator with organic vapor cartridges, chemical-resistant gloves, chemical-resistant apron as required.	Back strain. Inhalation or dermal exposure to chemical hazards. Slip or fall. Contaminated water spill.	 Use proper lifting techniques. Use PPE, and adhere to air monitoring guidelines as presented in Attachment 9. Keep work area clear of tripping or slipping hazards. Store purge water in appropriate containers.

Job Steps	Personal Protective Equipment	Potential Hazards	Critical Actions
Collect groundwater samples in accordance with sampling plan.	Reflective vest, steel-toed and -shank shoes, hard hat, safety glasses with side shields, ear plugs or muffs, work gloves. Respirator with organic vapor cartridges, chemical-resistant gloves, chemical-resistant apron as required.	Cross-contamination. Back strain. Inhalation or dermal exposure to chemical hazards. Slip or fall. Improper labeling or storage of samples. Injury from broken sample bottle (cuts or acid burns).	 Decontaminate sampling equipment between each well (unless disposable). Use proper lifting techniques. Have full-face respirator with organic cartridges within 3 to 5 feet of working location, and readily accessible. Label samples in accordance with sampling plan. Keep samples stored in appropriate containers, at correct temperature, and away from work area. Handle bottles carefully.
Dispose of or store any purge water on the Site.	Reflective vest, steel-toed and -shank shoes, hard hat, safety glasses with side shields, ear plugs or muffs, work gloves. Respirator with organic vapor cartridges, chemical-resistant gloves, chemical-resistant apron as required.	Back strain. Exposure to contaminants.	 Use suitable equipment to transport water (e.g., pumps, drum dollies). Have full-face respirator with organic cartridges within 3 to 5 feet of working location, and readily accessible. Label storage containers properly, and locate in an isolated area away from traffic and other Site functions. Coordinate off-Site disposal (where applicable).
Clean the Site; demobilize.	Reflective vest, steel-toed and -shank shoes, hard hat, safety glasses with side shields, ear plugs or muffs, work gloves. Respirator with organic vapor cartridges, chemical-resistant gloves, chemical-resistant apron as required.	Traffic. Lifting hazards.	 Use buddy system to remove traffic control, as necessary. Leave the Site clear of refuse and debris. Clearly mark or barricade any borings that need topping off or curing at a later time. Notify Site personnel of departure, final well locations, and any cuttings and/or purge water left on the Site. Use proper lifting techniques.

Job Steps	Personal Protective Equipment	Potential Hazards	Critical Actions
Package and deliver samples to laboratory.		Back strain. Traffic accidents.	 Handle and pack bottles carefully (e.g., bubble wrap bags). Use proper lifting techniques. Apply safe driving practices.
Typical work.	Steel-toed and -shank shoes, hard hat, safety glasses with side shields, hearing protection, reflective safety vest, leather gloves for non-chemical aspects of work. Chemical-resistant gloves and apron if chemical exposure is suspected.	Weather-related incidents: automobile accidents, slips or falls.	 Check weather reports daily. Project visits are not to be performed during inclement weather. Sampling may be performed during light rain mist. Wear raincoats. Drive at speed limit or less, as needed, to keep a safe distance from vehicle in front. Avoid short stops.
Typical work.		Cold stress.	 For temperatures below 40°F, adequate insulating clothing must be worn. If the temperature is below 20°F, workers will be allowed to enter a heated shelter at regular intervals. Warm, sweet drinks should be available. Coffee intake should be limited. No one should begin work or return to work from a heated shelter with wet clothes. Workers should be aware of signs of cold stress, such as heavy shivering, pain in fingers or toes, drowsiness, or irritability. Onset of any of these signs is an indication that immediate return to a heated shelter is needed. Refer to ACGIH TLV Booklet for the section on Cold Stress.

Job Steps	Personal Protective Equipment	Potential Hazards	Critical Actions
Typical work.		Heat stress.	 Discuss health effects and symptoms during daily health and safety meetings. Drink water regularly (at least one cup every 20 to 30 minutes, depending upon level of effort and the PPE worn). Refer to ACGIH TLV booklet for heat stress guidance, especially regarding PPE, type of work, and frequency of breaks. Breaks should be taken in an area cooler than the work area. Monitor temperature and relative humidity using a wetbulb globe temperature meter.
A safety meeting will be held every day, even if only one person is working on the project on a given day.			 Topics are to always include the work scheduled for the day and restatement of hazards and the means to avoid them. Other topics may include sampling in general, and advances in technology and how they may be applied to the project. Use the <i>Daily Health and Safety Briefing Log</i> in Attachment 4 to log the topics discussed.

9.2 EXCAVATION ACTIVITIES

Job Steps	Personal Protective Equipment	Potential Hazard	Critical Actions
Clear excavation locations.	Reflective vest, steel-toed and -shank shoes, hard hat, safety glasses with side shields, ear plugs or muffs, work gloves.	Traffic hazards. Overhead and underground installations. Product releases. Property damage. Dealer inconvenience.	 Refer to Utility Clearance Log. Coordinate with facility contact (or designee) to minimize potential conflicts. Review proposed locations against available construction drawings and known utilities, tanks, product lines, etc. Mark out the proposed excavation locations. Call the underground utility locating service for public line location clearance. Obtain a list of utilities being contacted. If necessary, coordinate private line locator for private property. Maintain minimum distance of 5 feet from marked utilities.
Set up necessary traffic control.	Reflective vest, steel-toed and -shank shoes, hard hat, safety glasses with side shields, ear plugs or muffs, work gloves.	Being struck by vehicle during placement. Vehicle accident as a result of improper traffic control equipment placement.	 Use buddy system to place traffic control. Implement traffic control plan as required.
Set up exclusion zone(s) and stockpile area and establish work areas/heavy equipment pathways.	Reflective vest, steel-toed and -shank shoes, hard hat, safety glasses with side shields, ear plugs or muffs, work gloves.	Injury or exposure to public or other Site personnel. Slip or fall hazards. On-Site vehicular accident with heavy equipment.	 Implement exclusion zone set-up instructions. Establish clear walking paths between work stations.

Job Steps	Personal Protective Equipment	Potential Hazard	Critical Actions
Hand digging/post-holing where necessary to expose and protect underground installations as needed.	Reflective vest, steel-toed and -shank shoes, hard hat, safety glasses with side shields, ear plugs or muffs, work gloves. Respirator with organic vapor cartridges, chemical-resistant gloves, chemical-resistant apron as required.	Damage to lines and associated physical hazards or property damage. Back strain. Injury or vehicle damage from falling into a hole.	 Use hand tools whenever possible. Use proper lifting techniques. Barricade or cover holes until job has been completed.
Assist with set up of heavy equipment.	Reflective vest, steel-toed and -shank shoes, hard hat, safety glasses with side shields, ear plugs or muffs, work gloves.	Damage caused by heavy equipment while accessing set-up location. Being struck by equipment.	 Verify a clear pathway to excavation and stockpiling locations. Provide hand signals and guidance to driver as needed to place rig. Visually inspect equipment (e.g., fire extinguisher on board, no oil or other fluid leaks, cabling and associated equipment in good condition, pressurized hoses secured with whip-checks or adequate substitute, jacks in good condition). Maintain eye contact with operator.

Job Steps	Personal Protective Equipment	Potential Hazard	Critical Actions
Commence excavation.	Reflective vest, steel-toed and -shank shoes, hard hat, safety glasses with side shields, ear plugs or muffs, work gloves. Respirator with organic vapor cartridges, chemical-resistant gloves, chemical-resistant apron as required.	Heat or cold exposure. Exposure to chemical hazards. Hitting an underground or overhead utility. Flammable or oxygendeficient atmosphere from accumulated vapors. Trip or fall. Side wall cave-in. Equipment failure. Noise.	 Monitor weather conditions and take breaks as needed for cold or hot weather. Conduct air monitoring as presented in Attachment 9. Include Lower Explosive Limit (LEL) and oxygen (O2) monitoring. If >10% LEL or O2 <19.5%, discontinue work or ventilate area with explosion-proof equipment. Maintain required excavation set-backs for workers and equipment. Monitor condition of side walls and surrounding ground conditions. Keep work area clear of tripping or slipping hazards. Perform periodic visual inspections of heavy equipment and keep equipment a minimum of 5 feet from excavation edge, or 1 foot away from the edge for every foot of depth, if greater than 5 feet deep. Perform necessary soil classification. Slope or bench walls, or shore excavation to prevent cavein. Keep all spoils more than 2 feet from excavation edge. Keep excavation entry controlled and equipped with required ladders and crosswalks.
Collect samples in accordance with sampling plan.	Reflective vest, steel-toed and -shank shoes, hard hat, safety glasses with side shields, ear plugs or muffs, work gloves. Respirator with organic vapor cartridges, chemical-resistant gloves, chemical-resistant apron as required.	Cave-in of side wall if entering excavation. Injury from heavy equipment. Exposure to Site contaminants.	 Stay out of excavation whenever possible (collect samples from backhoe bucket). Use agreed-upon hand signals with heavy equipment operators. Monitor air around excavation in accordance with the protocol presented in Attachment 9.

Job Steps	Personal Protective Equipment	Potential Hazard	Critical Actions
Store excavated materials according to Site-specific requirements.	Reflective vest, steel-toed and -shank shoes, hard hat, safety glasses with side shields, ear plugs or muffs, work gloves. Respirator with organic vapor cartridges, chemical-resistant gloves, chemical-resistant apron as required.	Exposure to public. Traffic hazard, obstruction, or inconvenience to business operation. Improper storage or disposal.	 Have necessary storage containment and labeling available on the Site. Place materials in isolated location away from traffic and other Site functions. Stockpile excavated materials on suitable plastic or in appropriately designed container. Cover with plastic, and barricade access to waste in accordance with local regulations. Coordinate proper disposal off the Site, where applicable.
Backfill excavation.	Reflective vest, steel-toed and -shank shoes, hard hat, safety glasses with side shields, ear plugs or muffs, work gloves. Respirator with organic vapor cartridges, chemical-resistant gloves, chemical-resistant apron as required.	Being struck by heavy equipment. Side wall collapse. Damage or accidents resulting from subsequent subsidence.	 Use agreed-upon hand signals with heavy equipment operators. Compact soils to meet specifications. Maintain eye contact with equipment operators.
Clean the Site; demobilize.	Reflective vest, steel-toed and -shank shoes, hard hat, safety glasses with side shields, ear plugs or muffs, work gloves.	Traffic. Safety hazard left on the Site. Lifting hazards.	 Use buddy system to remove traffic control, as necessary. Leave Site clear of refuse and debris. Notify business personnel of departure. Use proper lifting techniques or use mechanical assistance.
Package and deliver samples to laboratory.		Back strain. Traffic accidents.	 Handle and pack bottles carefully (e.g., bubble wrap bags). Use proper lifting techniques. Apply safe driving practices.

Job Steps	Personal Protective Equipment	Potential Hazard	Critical Actions
General			
Typical work.	Steel-toed and -shank shoes, hard hat, safety glasses with side shields, hearing protection, reflective safety vest, and leather gloves for non-chemical aspects of the work. If equipment contamination is suspected, wear chemical-resistant gloves during decontamination of equipment.	Weather-related incidents: automobile accidents, slips or falls.	 Check weather reports daily. Project visits are not to be performed during inclement weather. Sampling may be performed during light rain mist. Wear raincoats. Drive at the speed limit or less as needed to keep safe distance from vehicle in front. Avoid short stops.
A safety meeting will be held each day, even if only one person is working on the project on any given day.			 Topics are always to include the work scheduled for that day, and restatement of hazards and the means to avoid them. Other topics may include sampling in general, and advances in technology and how they may be applied to the project. Use the <i>Daily Health and Safety Briefing Log</i> provided in Attachment 4 to log the topics discussed.

9.3 UNDERGROUND STORAGE TANK DECOMMISSIONING

Job Steps	Personal Protective Equipment	Potential Hazard	Critical Actions
Eliminate all potential sources of ignition.	Reflective vest, steel-toed and -shank shoes, hard hat, safety glasses with side shields, ear plugs or muffs, work gloves. Respirator with organic vapor cartridges, chemical-resistant gloves, chemical-resistant apron as required.	Explosion. Fire.	 Ban smoking. Shut down all open-flame and spark-producing equipment within vapor hazard. Use only explosion-proof equipment in hazard area. Ground heavy equipment that will or may touch underground storage tank (UST).

Job Steps	Personal Protective Equipment	Potential Hazard	Critical Actions
Clear overburden (e.g., concrete, pavement, rebar).	Reflective vest, steel-toed and -shank shoes, hard hat, safety glasses with side shields, ear plugs or muffs, work gloves. Respirator with organic vapor cartridges, chemical-resistant gloves, chemical-resistant apron as required.	Explosion. Fire. Release of product. Injury from heavy equipment. Back strain. Hand, eye, or foot injury from hand tools. Trip or fall. Noise. Traffic hazards.	 Watch for underground utilities and product piping. Keep clear of heavy equipment. Use agreed-upon hand signals. Keep area as clear of loose debris and other trip hazards, as possible. Heed vehicle backup alarm. Establish eye contact with operator.
Disconnect and drain product lines and vent lines.	Reflective vest, steel-toed and -shank shoes, hard hat, safety glasses with side shields, ear plugs or muffs, work gloves. Respirator with organic vapor cartridges, chemical-resistant gloves, chemical-resistant apron as required.	Explosion. Fire. Product spill. Chemical exposure.	 Use non-sparking tools. Place containment (e.g., bucket) under points where lines will be disconnected or cut. Cap or remove lines. Conduct air monitoring for previous contents in accordance with Attachment 9.
Remove product and residues from UST.	Reflective vest, steel-toed and -shank shoes, hard hat, safety glasses with side shields, ear plugs or muffs, work gloves. Respirator with organic vapor cartridges, chemical-resistant gloves, chemical-resistant apron as required.	Explosion. Fire. Product spill. Chemical exposure.	 Locate vacuum truck and other vehicles upwind of UST and outside probable path of vapor dispersion. Keep area vapor-free. Discharge vacuum pump exhaust through a hose directed downwind of the tank area. Use explosion-proof or air-driven pumps. Bond (or otherwise ground) pump motors and suction hoses to the tank. Avoid using plastic (PVC) or other non-conductive pick-up tubes on vacuum trucks to minimize static charge build-up.

Job Steps	Personal Protective Equipment	Potential Hazard	Critical Actions
Purge UST vapors rather than inerting them.	Reflective vest, steel-toed and -shank shoes, hard hat, safety glasses with side shields, ear plugs or muffs, work gloves. Respirator with organic vapor cartridges, chemical-resistant gloves, chemical-resistant apron as required.	Explosion. Fire. Inhalation of vapors (for both workers and the public).	 Frequently test the percentage of the Lower Explosion Limit (LEL) in the bottom, middle, and top of tank. O₂ must be <10% in tank. Bond drop tube (if not already connected) to UST. Use hot water spray rather than steam to clean UST to minimize static build up. If using steam, bond or ground all isolated conductors and objects, including discharge hose, that are subject to impingement or condensation. Vent purged UST fumes a minimum of 12 feet above ground and/or 3 feet above adjacent rooflines.
Inert UST vapors rather than purging them.	Reflective vest, steel-toed and -shank shoes, hard hat, safety glasses with side shields, ear plugs or muffs, work gloves. Respirator with organic vapor cartridges, chemical-resistant gloves, chemical-resistant apron as required.	Explosion. Fire. Inhalation of vapors (for both workers and the public). Skin burns from dry ice. Injury from compressed gas (nitrogen) cylinder failure. Bottled carbon dioxide (CO ₂) condensation causing static electricity and associated explosion and/or fire hazard. Slip, trip, or fall when accessing tank. Risks from climbing ladder to access UST.	 Frequently test the percentage of O₂ in the bottom, middle, and top of tank. O₂ must be <10% in UST. Carbon dioxide (dry ice): Avoid skin contact. Wear resistant gloves and long sleeves. Nitrogen gas: Keep compressed gas cylinders secured; use correct regulators and cylinder caps. Introduce nitrogen, which is lighter than air, near bottom of UST to get effective purge. Bond or ground cylinder nozzle. CO₂ (bottled gas): Not recommended because of condensation formation. If CO₂ is used, follow the precautions for nitrogen gas bottles. Vent exhaust vapors a minimum of 12 feet above ground and/or 3 feet above adjacent rooflines.

Job Steps	Personal Protective Equipment	Potential Hazard	Critical Actions
Prepare UST for removal from excavation.	Reflective vest, steel-toed and -shank shoes, hard hat, safety glasses with side shields, ear plugs or muffs, work gloves.	Product spill. Slip or fall from top of UST.	Plug or cap all accessible holes. One plug should have a 0.125-inch vent hole to allow for pressure changes.
	Respirator with organic vapor cartridges, chemical-resistant gloves, chemical-resistant apron as required.		
Excavate around UST.	Reflective vest, steel-toed and -shank shoes, hard hat, safety glasses with side shields, ear plugs or muffs, work gloves. Respirator with organic vapor cartridges, chemical-resistant gloves, chemical-resistant apron as required.	Injury from heavy equipment. Cave in of excavation walls. Explosion. Fire. Slip or fall due to uneven work surfaces. Struck by excavator.	 Maintain safe distance from equipment and excavation—a minimum of 1 foot away from the edge of the excavation for each foot of depth. Stay in sight lines of operators. Use agreed-upon hand signals. Heed equipment backup alarm. Establish eye contact with operator. Monitor air for LEL conditions and wind direction. Ventilate as needed.
Remove UST.	Reflective vest, steel-toed and -shank shoes, hard hat, safety glasses with side shields, ear plugs or muffs, work gloves. Respirator with organic vapor cartridges, chemical-resistant gloves, chemical-resistant apron as required.	Snapping cables/straps. Injury from heavy equipment. Explosion. Fire. Product spill. Exposure to vapors.	 Inspect cables and strapping. Stay clear of equipment and tank removal pathway. Monitor air for LEL conditions, personnel exposure, and wind direction. Ventilate as needed. Stay away from UST ends in particular, the weakest point in the event of an explosion. Have spill containment available.

Job Steps	Personal Protective Equipment	Potential Hazard	Critical Actions
Collect samples according to sampling plan.	Reflective vest, steel-toed and -shank shoes, hard hat, safety glasses with side shields, ear plugs or muffs, work gloves. Respirator with organic vapor cartridges, chemical-resistant gloves, chemical-resistant apron as required.	Collapse of side walls. Injury from heavy equipment. Slip or fall due to uneven terrain.	 Stay out of excavation. Collect samples from backhoe bucket at safe distance from edge of excavation. Keep footing secure.
Load and transport UST and associated piping.	Reflective vest, steel-toed and -shank shoes, hard hat, safety glasses with side shields, ear plugs or muffs, work gloves. Respirator with organic vapor cartridges, chemical-resistant gloves, chemical-resistant apron as required.	Material falling from truck. Explosion. Fire. Risks from equipment backing up.	 Verify that all material is secured to truck. Recheck vapor concentrations in UST and vent as needed. Heed backup alarms on vehicles.

9.4 MONITORING WELL SAMPLING/GAUGING

Job Steps	Personal Protective Equipment	Potential Hazard	Critical Actions
Mobilize with equipment/supplies suitable for sampling.	Reflective vest, steel-toed and -shank shoes, hard hat, safety glasses with side shields, ear plugs or muffs, work gloves.	Vehicle accident. Lifting hazards. Delay or unsafe performance of work due to lack of necessary equipment on Site. Cross-contamination of wells.	 Follow safe driving procedures. Use proper lifting techniques. Review work plan to determine equipment/supply needs. Verify that all sampling/gauging equipment has been decontaminated. Bring ice for sample storage. Review the HASP. Gather the necessary PPE.

Job Steps	Personal Protective Equipment	Potential Hazard	Critical Actions
Set up necessary traffic control.	Reflective vest, steel-toed and -shank shoes, hard hat, safety glasses with side shields, ear plugs or muffs, work gloves.	Struck by vehicle during placement. Vehicle accident as a result of improper traffic-control equipment placement.	Use buddy system for placing traffic control. Refer to the traffic control plan section of the HASP (which may include specific requirements based on encroachment permit).
Set up exclusion zone(s).	Reflective vest, steel-toed and -shank shoes, hard hat, safety glasses with side shields, ear plugs or muffs, work gloves.	Struck by vehicle. Slip or fall hazards to workers.	 Face incoming traffic. Implement exclusion zone setup instructions of the HASP (e.g., barricades, caution tape, cones). Set up work area free of trip hazards.
Gauge water levels and product thickness (where applicable) in wells.	Reflective vest, steel-toed and -shank shoes, hard hat, safety glasses with side shields, ear plugs or muffs, work gloves. Respirator with organic vapor cartridges, chemical-resistant gloves, chemical-resistant apron as required.	Back strain. Inhalation of, or dermal exposure to, chemical hazards. Repetitive motion.	 Wear required PPE. Initiate air quality monitoring in accordance with the HASP. Maintain a safe distance from wellhead. Bend at knees rather than at waist.
Purge well(s) and collect purge water.	Reflective vest, steel-toed and -shank shoes, hard hat, safety glasses with side shields, ear plugs or muffs, work gloves. Respirator with organic vapor cartridges, chemical-resistant gloves, chemical-resistant apron as required.	Cross-contamination. Back strain. Inhalation of, or dermal exposure to, chemical hazards. Slip or fall. Contaminated water spill.	 Decontaminate purging equipment between each sampling location. Use proper lifting techniques. Use PPE and conduct monitoring in accordance with the HASP. Keep work area clear of tripping or slipping hazards. Store purge water in appropriate containers.

Job Steps	Personal Protective Equipment	Potential Hazard	Critical Actions
Collect samples in accordance with sampling plan.	Reflective vest, steel-toed and -shank shoes, hard hat, safety glasses with side shields, ear plugs or muffs, work gloves. Respirator with organic vapor cartridges, chemical-resistant gloves, chemical-resistant apron as required.	Cross-contamination. Back strain. Inhalation of, or dermal exposure to, chemical hazards. Slip or fall. Improper labeling or storage. Injury from broken sample bottle (e.g., cut or acid burn).	 Decontaminate sampling equipment between each well (unless disposable equipment). Use proper lifting techniques. Use PPE in accordance with the HASP. Label samples in accordance with sampling plan. Keep samples stored in suitable containers, at correct temperature, and away from work area. Handle bottles carefully.
Dispose of or store purge water on the Site.	Reflective vest, steel-toed and -shank shoes, hard hat, safety glasses with side shields, ear plugs or muffs, work gloves. Respirator with organic vapor cartridges, chemical-resistant gloves, chemical-resistant apron as required.	Back strain. Exposure to contaminants. Damage or injury from improper use of on-Site treatment system equipment. Improper storage or disposal.	 Use suitable equipment to transport water (e.g., pumps, drum dollies). Wear PPE in accordance with the HASP. Review any necessary instructions for use of on-Site treatment systems. Label storage containers properly and locate in an isolated area away from traffic and other Site functions. Coordinate off-Site disposal, where applicable.
Clean the Site; demobilize.	Reflective vest, steel-toed and -shank shoes, hard hat, safety glasses with side shields, ear plugs or muffs, work gloves.	Traffic. Safety hazard left on the Site. Lifting hazard.	 Use buddy system to remove traffic control, as necessary. Leave the Site clear of refuse and debris. Notify business personnel of departure, and of any purge water left on the Site. Use proper lifting techniques.
Package and deliver samples to laboratory.		Bottle breakage. Back strain.	 Handle and pack bottles carefully (e.g., bubble wrap bags). Use proper lifting techniques.

10.0 WASTE CHARACTERISTICS

Waste anticipate	Waste anticipated to be generated on the Site:							
Type(s): \(\sum \) Liquid \(\sum \) Solid \(\sum \) Sludge \(\sum \) Other								
The approximate volume for each anticipated waste stream:								
Waste: Soil	Approximate	Volume: Unknown						
Waste: Ground	Waste: Groundwater Approximate Volume: Unknown							
Characteristics:								
Corrosive	☐ Flammable/Ignitable	Radioactive	∑ Toxic					
Reactive	Unknown	Other (specify)						

11.0 TRAFFIC CONTROL

An exclusion zone will be placed around the work area to prevent undesirable interface between pedestrian traffic and project workers and equipment. These devices may include:

- Cones;
- Tubular markers; and
- Barricade tape.

Cones/tubular markers and barricade tape will be used to inhibit access to the work area in locations where pedestrians will be encountered.

ATTACHMENT 1 HEALTH AND SAFETY PLAN ACKNOWLEDGEMENT AND AGREEMENT FORM

HEALTH AND SAFETY PLAN Emerald Gateway Site 3301 South Norfolk Street Seattle/Tukwila, Washington

HEALTH AND SAFETY PLAN ACKNOWLEDGMENT AND AGREEMENT FORM

(All Farallon and subcontractor personnel must sign on a daily basis.)

This Health and Safety Plan (HASP) has been developed for the purpose of informing Farallon employees of the hazards they are likely to encounter on the project site, and the precautions they should take to avoid those hazards. Subcontractors and other parties at the site must develop their own HASP to address the hazards faced by their own employees. Farallon will make a copy of this HASP available to subcontractors and other interested parties to fully disclose hazards we may be aware of, and to satisfy Farallon's responsibilities under the Occupational Safety and Health Administration (OSHA) Hazard Communication standard. Similarly, subcontractors and others on site are required to inform Farallon of any hazards they are aware of or that their work on site might possibly pose to Farallon employees, including but not limited to Material Safety Data Sheets for chemicals brought on site. This plan should NOT be understood by contractors to provide information pertaining to all of the hazards that a contractor's employees may be exposed to as a result of their work.

All parties conducting site activities are required to coordinate their activities and practices with the project Site Health and Safety Officer (SHSO). Your signature below affirms that you have read and understand the hazards discussed in this HASP, and that you understand that subcontractors and other parties working on site must develop their own HASP for their employees. Your signature also affirms that you understand that you could be prohibited by the SHSO or other Farallon personnel from working on this project for not complying with any aspect of this HASP. The SHSO will be noted on the sheet below on a daily basis.

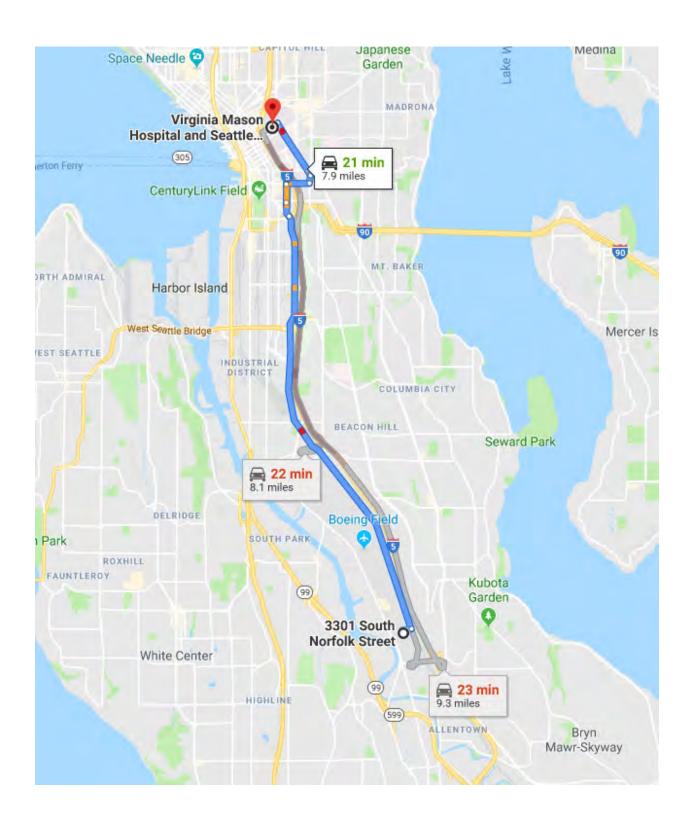
	HEALTH AND SAFETY PLAN ACKNOWLEDGMENT AND AGREEMENT FORM									
Check for SHSO	Name	Title	Signature	Company	Date					

	HEALTH AND SAFETY PLAN ACKNOWLEDGMENT AND AGREEMENT FORM								
Check for SHSO	Name	Title	Signature	Company	Date				
51150	rame	Title	Signature	Company	Date				

ATTACHMENT 2 DIRECTIONS TO HOSPITAL

HEALTH AND SAFETY PLAN
Emerald Gateway Site
3301 South Norfolk Street
Seattle/Tukwila, Washington

DIRECTIONS TO HOSPITAL


3301 S Norfolk St

Seattle, WA 98118

1	1.	Head northeast on S Norfolk St toward Ai S	rport Way
			21 s (0,1 mi
Cont	inue	on Airport Way S to Seneca St	
		21	min (7.7 m)
4	2.	Turn left at the 1st cross street onto Airpo Pass by Flying Squirrel Pizza Co. (on the I 3.0 mi)	
			6.0 m
1	3.	Continue straight onto 7th Ave S	
			0.2 m
†	4	Continue straight to stay on 7th Ave S	
		Pass by KeyBank (on the left)	
		• • • • • • • • • • • • • • • • • • • •	0.3 m
-	5	Turn right onto S Jackson St	0.3 11
	٥.	1 Pass by Pacific Rim Center (on the left)	
		Pass by Pacific Riff Center (of the left)	
		letters to the least of the	0.3 m
7	6.	Turn left onto 12th Ave S	
			0.1 m
4	7.	Turn left onto Boren Ave S	
			0.8 m
4	8.	Turn left onto Seneca St	
		1 Destination will be on the left	
		3/2007	31 s (354 ft

Virginia Mason Hospital and Seattle Medical Center

1100 9th Ave Seattle, WA 98101

ATTACHMENT 3 POTENTIAL TOPICS FOR DAILY HEALTH AND SAFETY MEETING

HEALTH AND SAFETY PLAN
Emerald Gateway Site
3301 South Norfolk Street
Seattle/Tukwila, Washington

POTENTIAL TOPICS FOR DAILY HEALTH AND SAFETY MEETING

Emergency response plan, emergency vehicle (full of fuel) and muster point
Route to medical aid (hospital or other facility)
Work hours. Is night work planned?
Hand signals around heavy equipment
Traffic control
Pertinent legislation and regulations
Above- and below-ground utilities (energized or de-energized)
Material Safety Data Sheets
Reporting an incident: to whom, what, why, and when to report
Fire extinguisher and first aid kit locations
Excavations, trenching, sloping, and shoring
Personal protective equipment and training
Safety equipment and training
Emergency telephone location(s) and telephone numbers (in addition to 911)
Eye wash stations and washroom locations
Energy lock-out/tag-out procedures. Location of "kill switches," etc.
Weather restrictions
Site security. Site hazards. Is special waste present?
Traffic and people movement
Working around machinery (both static and mobile)
Sources of ignition, static electricity, etc.
Stings, bites, large animals, and other nature-related injuries and conditions
Working above grade
Working at isolated sites
Decontamination procedures (for both personnel and equipment)
How to prevent falls, trips, sprains, and lifting injuries
Right to refuse unsafe work
Adjacent property issues (e.g., residence, business, school, daycare center)

ATTACHMENT 4 DAILY HEALTH AND SAFETY BRIEFING LOG

HEALTH AND SAFETY PLAN
Emerald Gateway Site
3301 South Norfolk Street
Seattle/Tukwila, Washington

DAILY HEALTH AND SAFETY BRIEFING LOG

ATTACHMENT 5 INCIDENT REPORT FORM

HEALTH AND SAFETY PLAN
Emerald Gateway Site
3301 South Norfolk Street
Seattle/Tukwila, Washington

Oregon

Portland | Baker City

California

Oakland | Folsom | Irvine

INCIDENT REPORT FORM

This report must be completed by the employee or Health and Safety Coordinator (HSC) immediately upon learning of the incident. The completed report must be reviewed and signed by Project Principal, within 24 hours of the incident, even if the employee is not available to review and sign. The employee or employee's doctor must submit a copy of the doctor's report to Joe Rounds within 24 hours of the initial exam and any subsequent exams. After hours or weekends, please call Joe Rounds: Mobile (206) 484-2748. Document the incident with photographs if possible. For environmental releases, discuss possible regulatory spill reporting with the Project Principal.

EMPLOYEE INFORMATION								
Employee Name:			Employee Title:					
Employment Status: □ Full-Time □ Part-Time □	Hourly-As-Needed		Yea	Years Employed at Farallon Consulting, L.L.C. (Farallon)?				
INCIDENT TYPE								
☐ Fatality ☐	Industrial Non-Recordable			Spill/Leak		General Liability		
☐ Lost Workday (LW) ☐	Non-Industrial			Product Integrity		Vandalism/Criminal Activity		
☐ Restricted Duty ☐	Off-the-Job Injury			Equipment		Notice of Violation		
☐ OSHA Medical or Illness w/o LW ☐	Motor Vehicle Accident			Business Interruption	n \square	Other		
☐ First Aid ☐	Fire							
INCIDENT DESCRIPTION								
Date of incident, injury, or onset of illness: Click	or tap to enter a date.		Tin	ne of incident, injury	or onset of illness:	□AM □ PM		
Brief description of incident. Provide full incident	details on Page 2.							
Describe the equipment, materials, or chemicals the inhaled, or material swallowed; what the employed		e.g., the	e ma	chine employee struck	c against or which s	truck employee; the vapor		
Date employer notified: Click or tap to enter a c	late.		Tin	ne employer notified:		□ AM □ PM		
To whom reported?								
INJURY OR ILLNESS INFORMATI	ON							
Exact Location of Incident (address, geographical	location, floor, building, etc.)	:						
County:		On E	Emplo	oyer's premises? Y	es 🗆 No			
Describe the specific injury or illness (e.g., punctu	re, cut, contusion, strain, fract	ure, sk	in ra	sh, etc.):				
Body part(s) affected (e.g., back, left wrist, right e	ye, etc.):							
Name and address of Health Care Provider:						Phone No.:		
Treated in Emergency Room: ☐ Yes ☐ No			Но	spitalized Overnight a	as Inpatient: Yes	□ No		
Injury/Illness Severity	Time Loss (Check all	that a	pply.	.)	Workday Phase			
☐ No treatment required.	☐ No time loss.	☐ No time loss.			☐ Performing nor	rmal work duties.		
	☐ Return to work the	☐ Return to work the next da			☐ During meal pe	eriod.		
☐ First aid only.	☐ Restricted activity.				☐ During rest per			
	Begin date:	Begin date:			☐ Entering/leavir	ng work area or site.		
☐ Professional medical treatment.	Return date:				☐ Chronic exposi			
	☐ Lost workday, not a	ıt work			☐ Other, specify:			
☐ Fatality. Enter date: Click or tap to enter a	Begin date:							
date.	Return date:							

Pode	MOTOR VEHICLE ACCIDENT (MVA)									
No. of Vehicles Towed: No. of Injuries No. of Fabilities Insurance information for other driver(s): Address Phone No.: P	Professional Driver? ☐ Yes ☐ No	Total	Total Years Driving:				Company Vehicle? ☐ Yes ☐ No] No
Rosumone information for other drivertys: Witness Name:	Vehicle Type:	Vehic	le Owner (not Faral	llon):			Vehicle License Plate:			
Witness Name: Address: Plone No.: Text Note No.: Plone No.: Text Note Note Note Note Note Note Note Not	No. of Vehicles Towed:		No. of Injuries:			No. of Fatali	ties:			
Moderance Mod	Insurance information for other driver(s):									
THITED PARTY PROPERTY DAMSE (INCLUDING UTILITIES - PLEASE PROVIDE PHOTOS) Owner Name for Damaget Property: Address:	Witness Name:		Address:				Phone	No.:		
Owner Name for Damaged Property: Address: Phone No.: Description of Damaged Property: Address: Phone No.: Phone N							Phone	No.:		
Owner Name for Damage! Address: Phone No: Description of Damage: Property Owner Insurance information: Property Owner Insurance										
Property Owner Insurance information:				1					Phone No.:	
Witness Name: Address: Phone No.: Detailed Description of Events (Use space below to provide full detailed and secription of Events (Use space below to provide full detailed and secription of Events (Use space below to provide full detailed and secription of Events (Use space below to provide full detailed to the control of Events (Use space below to provide full detailed to the control of Events (Use space below to provide full detailed to the control of Events (Use space below to provide full detailed to the control of Events (Use space below to provide full detailed to the control of Events (Use space below to provide full detailed to the control of Events (Use space below to provide full detailed to the control of Events (Use space below to provide full detailed to the control of Events (Use space below to provide full detailed to the control of Events (Use space below to provide full detailed to the control of Events (Use space below to provide full detailed to the control of Events (Use space below to provide full detailed to the control of Events (Use space below to provide full detailed to the control of Events (Use space below to provide full detailed to the control of Events (Use space below to th	Description of Damage:			I.						
Witness Name: Address: Phone No.: Detailed Description of Events (Use space below to provide full detailed and secription of Events (Use space below to provide full detailed and secription of Events (Use space below to provide full detailed and secription of Events (Use space below to provide full detailed to the control of Events (Use space below to provide full detailed to the control of Events (Use space below to provide full detailed to the control of Events (Use space below to provide full detailed to the control of Events (Use space below to provide full detailed to the control of Events (Use space below to provide full detailed to the control of Events (Use space below to provide full detailed to the control of Events (Use space below to provide full detailed to the control of Events (Use space below to provide full detailed to the control of Events (Use space below to provide full detailed to the control of Events (Use space below to provide full detailed to the control of Events (Use space below to provide full detailed to the control of Events (Use space below to provide full detailed to the control of Events (Use space below to provide full detailed to the control of Events (Use space below to th										
Miness Name: Address: Phone No.: Detailed Description of Events (Use space below to provide full detailed description of incident. Include Specific Activity During Incident (Lifting, Pushing, Walking, etc.) SIGNATURES OF EMPLOYEE AND REVIEWERS Name (print): Signature: Title: Date: Employee: Employee's Group Manager: Employee's Group Manager: Regional Operations Manager: Farallon Corporate Health and Safety Coordinator: Earling Corporate Health and Safety Coordinator: Date: Da	Property Owner Insurance information:									
Detailed Description of Events (Use space below to provide full detailed description of incident. Include Specific Activity During Incident (Lifting, Pushing, Walking, etc.) Signatures of EMPLOYEE AND REVIEWERS	Witness Name:			Address:					Phone No.:	
Cignatures of EmpLoyee And Reviewers Signature: Sign	Witness Name:			Address:					Phone No.:	
Name (print): Employee: Employee's Group Manager: Regional Operations Manager: Farallon Corporate Health and Safety Coordinator:	(Use space below to provide full de	tailed	description of	incident	. Include S	specific Act	ivity I	Ouring Inci	dent (Lifting	, Pushing,
Name (print): Employee: Employee's Group Manager: Regional Operations Manager: Farallon Corporate Health and Safety Coordinator:										
Employee's Group Manager: Regional Operations Manager: Farallon Corporate Health and Safety Coordinator:	SIGNATURES OF EMPLOYEE A	ND F	REVIEWERS							
Employee's Group Manager: Regional Operations Manager: Farallon Corporate Health and Safety Coordinator:	Name (print):	;	Signature:			Т	itle:			Date:
Regional Operations Manager: Farallon Corporate Health and Safety Coordinator:	Employee:									
Regional Operations Manager: Farallon Corporate Health and Safety Coordinator:										
Farallon Corporate Health and Safety Coordinator:	Employee's Group Manager:									
Farallon Corporate Health and Safety Coordinator:										
	Regional Operations Manager:									
	Farallon Corporate Health and Safety Coo	rdinato	r:							
Entered into Database By: Date:	2									
	Entered into Database By:				Date:					

ATTACHMENT 6 NEAR MISS AND SAFETY OBSERVATION REPORT

HEALTH AND SAFETY PLAN
Emerald Gateway Site
3301 South Norfolk Street
Seattle/Tukwila, Washington

NEAR MISS AND SAFETY OBSERVATION REPORT

This report is to be filled out by any employee involved in or witnessing a near miss, or making a safety observation. A near miss is an occurrence that did not result in any personal injury, property damage, environmental release, or production interruption, but could have under slightly different circumstances. A safety observation is witnessing any activity that places a person or property at risk of injury, accident, or damage but does not fit the definition of a near miss. These are very important indicators of potentially harmful future accidents, and provide valuable insights to preventing personal injury and/or property damage.

PROJECT INFORMATION								
Farallon PN:	Project Name:							
Site Address:	City/State:							
NEAR MISS/SAFETY OBSERVATION INFORMATION								
Employee Completing Report:								
Date: Click or tap to enter a date.	Time:	□AM □ PM						
Near Miss Category: Choose an item.								
Exact Location:								
Description of Potential Incident or Hazard:								
Corrective Action Taken:								
Lessons Learned:								
SIGNATURES AND NOTIFICATIONS								
Date employer notified: Click or tap to enter a date.	Time employer i	notified: ☐ AM ☐ PM						
To whom reported?	Time employer							
Employee Signature:		Date:						
Employee Signature.		Date.						
HSC Signature:		Date:						
Entered into Database By:		Date:						

ATTACHMENT 7 UTILITY CLEARANCE LOGS

HEALTH AND SAFETY PLAN
Emerald Gateway Site
3301 South Norfolk Street
Seattle/Tukwila, Washington

UTILITY CLEARANCE LOG

Project Name:									
Location:									
Instructions. To excavation (e.g.,	his log r	nust be c	omplet	ed by a Fa	arallon st				
	UNT	IL UTIL	ITY L	OCATES	HAVE	BEEN C	OT COMMOMPLET the follow	ED	
	ting test ilities if j	pit excav possible.	vation of Any ex	perations. cavation	Drilling within 3	location feet of a	s should be marked uti	e a mii lity mu	nimum of 5 feet ust be done with
Owners of underprivate property appurtenances.	. Owners	s of unde	rground	utilities a	re <u>not re</u>	quired to	o mark exis	sting se	ervice laterals or
Private utility lo Site electric dist							and other b	uried u	tilities (e.g., on-
Re-mark after 1	0 days o	r maintai	n as app	ropriate.					
Utility Locate (Checklis	t		_					
☐ Attach map s			nd/or ex	veavation	cites and	known 11	tilities		
☐ Attach copy of	•	•						totus o	om/)
One-Call Ut			-						5111 <i>i</i>)
☐ Attach copy of	•			·-					for oxidiability)
☐ Attach copy of					Thy of Sc	attie, cire	ck mumci	panty	ioi availability)
☐ Photograph a			•		ana and d	ourmload	to musicat	filo	
☐ Review utilit				ing iocain	ons and u	owiiioau	to project	1116	
					DI				
Name:					Phone: _				· · · · · · · · · · · · · · · · · · ·
Utilities and St	ructures	<u> </u>							
Utility Ty	pe	Utility	Name	Public V Marked		Utilitie	ivate s/Laterals ed (Y/N)	(flag	arking Method s, wooden stakes, on pavement, etc.)
Petroleum produ	ict lines								
Natural gas line									
Water line									
Sewer line									
Storm drain Telephone cable	a								
Electric power l									
Product tank									
Septic tank/drai	n field								
Other									
Farallon Consul	•	C.							
Field Team Lea	der:					Date	::		
Electric = RED		-Steam = LOW		a-CATV = ANGE	Wate	er = PURPLE	Sewer : GREE		Temp Survey = PINK

ONE-CALL UTILITY LOCATE REQUEST PROCEDURE

THE ONE-CALL UTILITY NOTIFICATION CENTER REQUIRES 48 HOURS NOTICE TO MARK UTILITIES BEFORE YOU CAN DIG OR DRILL

Washington: 1-800-424-5555

Washington state law states that "before commencing **any** excavation," the excavator or driller must provide notice to all owners of underground utilities by use of the One-Call locator service, and that the excavator or driller shall not dig or drill until all known utilities are marked. To fully comply with the law, you **must** take the following steps:

- 1. Call before you dig or drill: Notify the One-Call Utility Notification Center (OCUNC) a minimum of 48 hours (2 full business days) before digging or drilling. Provide the following **required** information:
 - a. Your name and phone number, company name and mailing address, and Farallon Account Number 25999.
 - b. The type of work being done.
 - c. Who the work is being done for.
 - d. The county and city where the work is being done.
 - e. The address or street where the work is being done.
 - f. Marking Instructions: "Generally locate entire site including rights-of-way and easements."

Provide the following information if applicable or requested:

- a. The name and phone number of an alternate contact person.
- b. If the work is being done within 10 feet of any overhead power lines.
- c. The nearest cross street.
- d. The distance and direction of the work site from the intersection.
- e. Township, range, section, and quarter section of the work site.
- 2. Record the utilities that will be notified: OCUNC will tell you the utilities that are on or adjacent to the work site, based on their database. Record the name(s) of the utility on the reverse side of this form.
- 3. After the 48-hour waiting period, confirm that the utility locations have been marked: Before digging or drilling, walk the work site and confirm that the utility companies have marked the utility locations in the field.
- **4. If a locate appears to be missing:** If a utility locate appears to be missing and the utility company has not notified you that there are no utilities in the area, call OCUNC and:
 - a. Provide the OCUNC locate number.
 - b. Clearly state which utility has not been marked. The call is being recorded.
 - c. Ask for a contact person at that utility.
 - **d.** Call the contact person for the missing utility locate: Determine why there is no utility locate in the field.

Electric =	Gas-Oil-Steam =	Comm-CATV =	Water =	Sewer =	Temp Survey =
RED	YELLOW	ORANGE	BLUE/PURPLE	GREEN	PINK

- e. Record the reason(s) for the missing locate(s): There are valid reasons that locates do not appear in the field (e.g., there are no utilities located on the work site or the utility has been abandoned). However, IF THEY ARE LATE, YOU MUST WAIT TO DRILL OR DIG. If the utility fails to mark a locate within the required 48 hours (2 full business days), the utility is liable for delay costs.
- **5.** Hand dig within 3 feet of a marked utility: When digging or drilling within 3 feet of any marked utility, the utility must be exposed <u>first</u> by using hand tools.
- **6. Record reason(s) for missing locate(s)**: There may be reasons that locates do not appear in the field (e.g., no utilities are located on the site, utility has been abandoned). Record the reason given. IF THEY ARE LATE YOU WAIT TO DRILL OR DIG. If the utility failed to mark within the required two days, they are liable for delay costs.

Electric =	Gas-Oil-Steam =	Comm- $CATV =$	Water =	Sewer =	Temp Survey =
RED	YELLOW	ORANGE	BLUE/PURPLE	GREEN	PINK

FARALLON CONSULTING, L.L.C. TELEPHONE CONVERSATION

975 5 th Avenue Northwest	Date:Time:														
Issaquah, Washington 98027	Project Name:														
	Job No.:														
											Call:	Ц	Piacea	Ц	Received
										Contact/Title:					
Agency/Region: One-Call Utility Notific	ation Center														
PROJECT:															
1. Your name and the Farallon Account															
2. What is the type of work being conduc															
. What is the type of work being conduct	cica (c.g., c.i.		antur ur miniş	s, test p	i cheu vuelon).										
3. Who is the property owner?															
4. County and city were work is being do															
5. Address or street where work is takin															
6. Nearest cross street?															
7. Distance and direction of the work site f	rom the interse	ection?													
3. Marking Instructions (generally le															
easements):															
easements).															
9. What time and date will the locate be co															
10. Utility Locate Request Number?															
11. Utilities that will be notified?															
The Control that will be notified.															
12. Any Overhead Concerns?															
ጉ!		P	age		oť										

Note: Bold indicates required information.

ATTACHMENT 8 FARALLON FIELD PERSONNEL TRAINING DATES

HEALTH AND SAFETY PLAN
Emerald Gateway Site
3301 South Norfolk Street
Seattle/Tukwila, Washington

Health and Safety Certifications and Training

									Expiration Dates						Ê	
Мате	Medical Monitoring		=	e.	Test			Extinguisher Training		or .	ent Training			sor	40 Hour Training Taken (Initial)	er
	Date of Last Exam	Next Exam Due	Annual/Biennial	Resp. Clearance	Respirator Fit 1	CPR	First Aid	Fire Extinguish	BNSF E-Railsafe (Bi-annual)	BNSF Contracto Orientation (Annual)	Harassment	GHS Training	Lead Awareness	8 Hour Supervisor	40 Hour Trainii	8 Hour Refresher
Bailey, Amber	04/08/19	04/08/21	В	04/19/17		11/02/18	11/02/18	06/16/16	12/06/19	11/28/19	06/04/18		02/07/19	10/30/17	11/22/13	02/07/19
Banfield, Chantal	10/15/18	10/15/20	В	10/15/18		11/02/18	11/02/18	06/14/17	06/14/19	11/13/19	10/16/18		01/25/19		10/11/18	01/25/19
Bowser, Matthew	04/05/19	04/05/21	В	04/12/17	07/25/19	11/02/18	11/02/18	05/16/16	07/21/19	07/30/19	05/11/18		01/29/19	10/30/17	06/11/15	01/29/19
Brand, Tegan	10/02/19	10/01/21	В	10/02/19				10/15/19			07/16/19				09/20/19	
Brown, Stuart	05/02/19	05/02/21	В	08/23/18		01/11/17	01/11/17	06/28/11			05/09/18		01/25/19	06/28/11	09/08/08	01/25/19
Burns, Anastasia	04/26/18	04/25/20	В	04/26/18		11/02/18	11/02/18	05/16/16	01/25/20	04/25/19	05/08/18		04/19/19	10/30/17	09/15/14	04/19/19
Cannon, George	09/19/19	09/19/21	В	09/19/19				09/30/19			09/30/19				09/26/19	
Charney, Ryan	02/12/19	02/12/21	В	02/12/19				02/11/19			02/11/19		02/22/19	02/06/18	01/03/15	02/22/19
Cordell, Phil	08/27/18	08/27/20	В	08/27/18		04/05/17	04/05/17	09/17/18			09/11/18		01/25/19	06/20/08	11/15/05	01/25/19
Emahiser, Parker	04/30/19	04/30/21	В	04/18/17		12/21/17	12/21/17	05/16/16			06/07/18		01/25/19		02/17/13	01/25/19
Ferreira, Gabriela	03/19/18	03/18/20	В	03/19/18		01/04/18	01/04/18	03/26/18			05/10/18		01/31/19		09/18/15	01/31/19
Fisco, Gavin	08/08/18	08/07/20	В	08/08/18		09/26/16	09/26/16	05/18/16			05/17/18		01/25/19	12/12/14	05/04/07	01/25/19
Gehring, Megan	07/10/19	07/10/21	В	07/10/19	07/15/19			06/05/18	06/05/20		07/12/19				07/19/19	
Loeb, Steffany	07/10/19	07/10/21	В	07/10/19				06/24/19			07/12/19				07/12/19	
Luiten, Russell	N/A	N/A	В	04/19/17		11/02/18	11/02/18	05/17/16	11/15/19	12/29/18	09/13/18		01/25/19	12/19/17	6/2012?	01/25/19
Ostrom, Ryan	04/15/19	04/15/21	В	04/11/17		11/02/18	11/02/18	06/06/16	11/15/19	07/31/18	05/07/18		01/25/19	10/30/17	05/09/13	01/25/19
Pehlivan, Yusuf	04/26/19	04/26/21	В	05/13/17		10/19/17	10/19/17	05/04/17			06/29/18		01/25/19	02/02/13	10/17/09	01/25/19
Peters, Greg	05/28/19	05/28/21	В	06/07/19		11/02/18	11/02/18	06/12/17	01/31/20	01/30/19	05/08/18		01/25/19		03/12/17	01/25/19
Rayl, Katie	10/02/19	10/01/21	В	10/02/19		10/10/16	10/10/16	10/26/17			05/08/18		01/25/19		11/19/14	01/25/19
Roskamp, Melissa	12/20/18	12/19/20	В	12/20/18				04/18/19			01/02/19		01/25/19		07/26/13	01/25/19
Scott, Ken	01/18/18	01/18/20	В	01/18/18		11/02/18	11/02/18	09/02/16	04/19/19	05/22/19	05/09/18		01/25/19	02/17/05	09/01/95	01/25/19
Taylor, Brenden	04/24/18	04/23/20	В	04/24/18		03/01/18	03/01/18	08/23/16		05/11/17	05/22/18		01/25/19	04/17/09	07/18/06	01/25/19
Thompson, Lisa	11/30/18	11/29/20	В	11/30/18		10/07/18	10/07/18	11/29/18	12/11/20	12/12/19	11/28/18		02/05/19		12/07/18	02/05/19
Train, Brittany	06/19/19	06/19/21	В	06/19/19				06/14/19			06/14/19				07/03/19	
Turpen, Nate	05/30/19	05/30/21	В	06/14/17		01/16/18	01/16/18	06/14/17	10/24/19	11/19/19	07/06/18		01/25/19	02/19/19	06/09/17	01/25/19
Wishnoff, Benjamin						11/24/15	04/16/16	06/24/16			06/29/18		01/25/19	06/09/15	05/29/07	01/25/19