APPENDIX A

Photographs from Pipe Plugging Activities

PIPE A ASPECT CONSULTING

Photograph 1. Manhole D in foreground, Catch Basins C and B, respectively, in background, looking south.

Photograph 2. Catch Basin B in foreground, Catch Basin C in background, looking north.

ASPECT CONSULTING PIPE A

Photograph 3. Catch Basin A in foreground, Catch Basins B and C, respectively, in background, looking north.

Photograph 1. Catch basins for B1 (background) and B2 (foreground), with downstream B2 pipe initially exposed.

Photograph 2. B1 pipe at B2 catch basin excavation. B1 pipe was fully removed up to B2 catch basin, which was also removed.

Photograph 3. Downstream Pipe B2 exposed, preplugging.

Photograph 4. Pipe B2 pipe CDF plug ~6 feet downstream of its former catch basin location.

Photograph 5. B3 catch basin preexcavation. Thin veneer of CM adjacent to catch basin was removed and stockpiled.

Photograph 6: Pipe B3 downstream of former catch basin, before being plugged.

Photograph 6. 2020.05.15: Pipe B3 after plugging with CDF.

Photograph 1. Pipe C manhole adjacent to station 10+98.

Photograph 2. Open Pipe C manhole (adjacent to station 10+98).

Photograph 3. Pipe C after vactor cleaning (1).

Photograph 4. Pipe C after vactor cleaning (2).

Photograph 5. One Pipe C sandbag dam prior to placing CDF between dams.

Photograph 6. Pipe C CDF plug at station 10+98.

Photograph 7. Pipe C CDF plug at station 11+31.

PIPE D ASPECT CONSULTING

Photograph 1. Pipe D not observed at west end of ecology block wall, adjacent to bulkhead (it is plugged 18 inches east of bulkhead)

Photograph 2. Same as Photograph 1.

PIPE E ASPECT CONSULTING

Photograph 1. Pipe E, uncovered. T-junction at ~45 feet inland shown.

Photograph 2. Trench after removal of pipe E.

ASPECT CONSULTING PIPE E

Photograph 3. Section of pipe E left in ground, preplugging.

Photograph 4. Pipe E plugged with CDF \sim 7 feet east of bulkhead.

PIPE E ASPECT CONSULTING

Photograph 5. Pipe E T-joint (at 45 feet) plugged on both ends with CDF.

PIPE F ASPECT CONSULTING

Photograph 1. Exposing top of Pipe F, east side of the bulkhead.

Photograph 2. Pipe F, looking east from under wharf at void in bulkhead around pipe.

ASPECT CONSULTING PIPE F

Photograph 3. Pipe F at bulkhead, fabric and quarry spalls placed to stabilize materials around void.

Photograph 4. Top of Pipe F exposed 75 feet east of bulkhead.

PIPE F ASPECT CONSULTING

Photograph 5. Saw cutting 16+ inches of concrete 15 feet east of bulkhead.

Photograph 6. Pipe F breached 15 feet east of bulkhead.

ASPECT CONSULTING PIPE F

Photograph 7. Pipe F breached 75 feet east of bulkhead.

Photograph 8. Interior of Pipe F near 15-foot breach.

PIPE F ASPECT CONSULTING

Photograph 9. Tide gate in Pipe F approx. 80 feet inland from bulkhead.

Photograph 10. Pneumatic plug in place at bulkhead.

ASPECT CONSULTING PIPE F

Photograph 11. Sandbag wall in place at 15-foot breach. Air line and cable for pneumatic plug visible.

Photograph 12. Top of CDF plug at bulkhead.

PIPE F ASPECT CONSULTING

Photograph 13. Top of CDF plug at 75 feet inland. CDF plug is continuous from bulkhead to 75 feet.

PIPE G ASPECT CONSULTING

Photograph 1. Pipe G exposed near bulkhead, preplugging.

Photograph 2. Trench after Pipe G removal to ~78 feet inland.

ASPECT CONSULTING PIPE G

Photograph 3. Pipe G after being removed.

Photograph 4. Pipe G CDF plug at bulkhead.

PIPE H ASPECT CONSULTING

Photograph 1. Pipe H catch basin near bulkhead before excavation.

Photograph 2. Pipe H catch basin and pipe through bulkhead with thermos plug installed.

ASPECT CONSULTING PIPE H

Photograph 3. Pipe H catch basin plugged with CDF.

PIPE J ASPECT CONSULTING

Photograph 1. Pipe J not present on west side of ecology block wall adjacent to bulkhead. Pipe plugged 16 feet east of bulkhead.

Photograph 2. Pipe J location excavated to 4.5 feet on west side of ecology block wall.

PIPE K ASPECT CONSULTING

Photograph 1. Pipe K outfall under wharf with temporary pneumatic plug.

Photograph 2. Pipe K cut ~12 feet east of bulkhead, within shored excavation with active dewatering from sump. Tieback on right side was not damaged during excavation.

ASPECT CONSULTING PIPE K

Photograph 3. Pipe K with "Fernco" removable plug attached.

Photograph 4. Pipe K with "Fernco" plug and ecology block to brace the plug against tidal pressure.

PIPE K ASPECT CONSULTING

Photograph 5. Pipe K excavation backfilled, view west. A vertical 2-x-4 protruding from the backfill marks the location of the "Fernco" plug at depth.

PIPE L ASPECT CONSULTING

Photograph 1. Pipe L, with thermos plug installed, on west side of ecology block wall adjacent to bulkhead.

Photograph 2. Pipe L plugged with CDF adjacent to bulkhead.

PIPE M ASPECT CONSULTING

Photograph 1. Pipe M exposed 75 feet inland; concrete covering encountered on the wood stave pipe was partially intact.

Photograph 2. Pipe M exposed 75 feet inland; concrete covering completely removed to expose wood stave pipe.

ASPECT CONSULTING PIPE M

Photograph 3. Pipe M entering/exiting vault near shoreline.

Photograph 4. Jet set concrete in Pipe M placed downstream of vault.

PIPE M ASPECT CONSULTING

Photograph 5. Sandbags placed to confine area of CDF placement around sealed pipe entry/exit points, and, thus avoid, filling entire vault bottom with CDF.

Photograph 6. CDF plug placed in bottom of vault covering pipe entry/exit points.

ASPECT CONSULTING PIPE M

Photograph 7. Vault backfilled with Parcel O sand.

Photograph 8. Backfilled trench from removed pipe inland from vault.

PIPE N ASPECT CONSULTING

Photograph 1. Pipe N not present 7 feet east of bulkhead.

PIPE P ASPECT CONSULTING

Photograph 1. Pipe P not present 7 feet east of bulkhead.

Q-Series Pipes (Q and Q1 through Q5)

Photograph 1. Excavation for pipe Q, ~7 feet east of bulkhead, no pipe found.

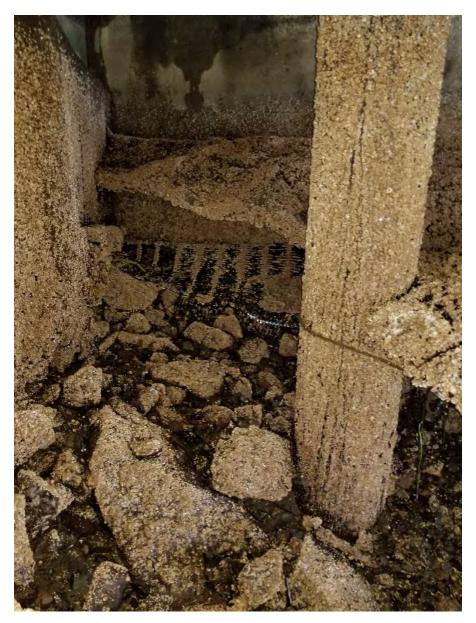
Photograph 2. Excavation for pipes Q1 and Q2 (collocated), ~7 feet east of bulkhead, no pipes found.

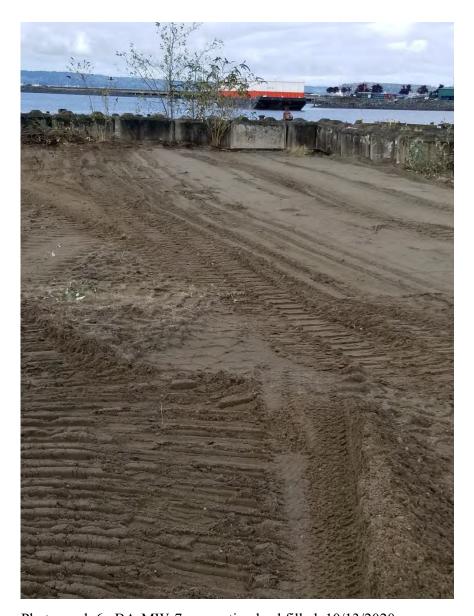
Photograph 3. Excavation for pipes Q3, Q4, and Q5, \sim 7 feet east of bulkhead, no pipes found.

APPENDIX B

Photographs from Soil Removal Activities

Photograph 1. Initial excavation above water table, 10/5/2020, view looking east-northeast.


Photograph 2. Eastern wall in initial excavation, 10/5/2020, view looking east. Note treated timbers in north sidewall (left side of photo)


Photograph 3. Initial excavation, 10/5/2020, view looking southwest.

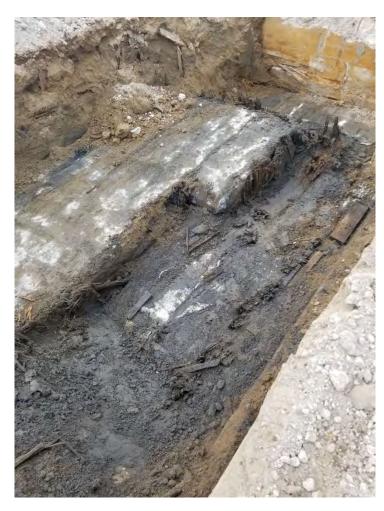
Photograph 4. Excavation bottom at ~ 9 feet, 10/12/2020. Note lower portion of BA-MW-7 well casing next to creosote-treated wood piling, quarry spalls across entire base.

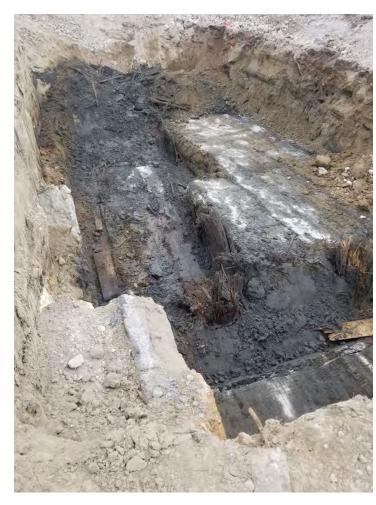
Photograph 5. View beneath wharf just west of BA-MW-7 excavation, looking east at concrete bulkhead. Black geotextile containing quarry spalls visible beneath bulkhead—same materials as in BA-MW-7 excavation immediately east of bulkhead, 10/12/2020.

Photograph 6. BA-MW-7 excavation backfilled, 10/13/2020.

Photograph 1. Southern leg of BBH Area excavation, view looking north towards yet-to-be-excavated main excavation.

Photograph 2. Western end of western extension of BBH Area excavation, view looking north.


Photograph 3. Eastern end of western extension of BBH Area excavation, view looking east.


Photograph 4. Western extension of BBH Area excavation, view looking west from main excavation area.

Photograph 5. Northern leg of BBH Area excavation, view looking north.

Photograph 6. Concrete slab in south sidewall of western excavation extension, beneath sidewall sample S-25 at approximately 5 feet bgs.

Photograph 7. Concrete slab in north sidewall of western excavation extension, beneath sidewall sample S-26 at approximately 5 feet bgs.

Photograph 8. Southern leg of BBH Area excavation, view looking north towards yet to be excavated main excavation.

Photograph 9. Southern sidewall of main BBH Area excavation, showing concrete in upper 6 feet above sample S-67.

Photograph 10. Final limits of southern leg of BBH Area excavation, view looking southwest.

Photograph 11. Final limits of southern leg of BBH Area excavation, northern portion of west sidewall, view looking west.

Photograph 12. View from NE corner of north leg, looking south into main part of BBH Area excavation. Concrete in eastern portion of south sidewall is evident in background.

Photograph 13. View from west leg of BBH Area looking at connector segment to GFB12 Area in the background, looking south. Concrete on both sidewalls and base.

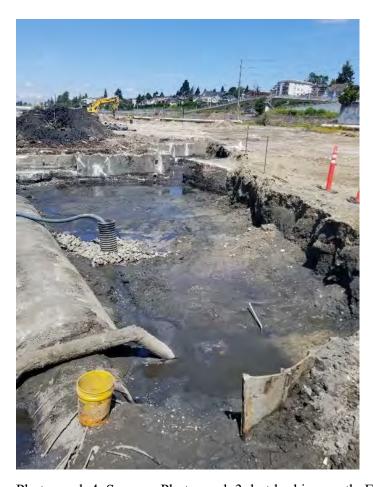
Photograph 14. View across main BBH Area, looking southwest towards the south leg of the excavation area.

Photograph 15. View across main BBH Area to the west-southwest, with south leg to the left, west leg in the middle, and north leg on the right.

ASPECT CONSULTING BOILER BAGHOUSE AREA EXCAVATION

Photograph 16. View across main BBH Area, looking east.

Photograph 17. View of south leg, looking south-southeast.


Photograph 1. South end of excavation, looking east. North-south-trending wooden utilidor on west side of concrete foundation elements.

Photograph 2. South end of excavation, looking west. Concrete-encased wood stave pipe in foreground.

Photograph 3. Eastern side of south end of excavation, looking south. Concrete-encased wood stave pipe in center of photo, runs through/beneath east-west-trending concrete foundation structure.

Photograph 4. Same as Photograph 3, but looking north. Eastwest-trending sheet pile wall in foreground.

Photograph 5. Initial observation of Bunker C fuel pipe and utility pipe near south end of excavation.

Photograph 6. Asbestos-containing material insulation on pipes.

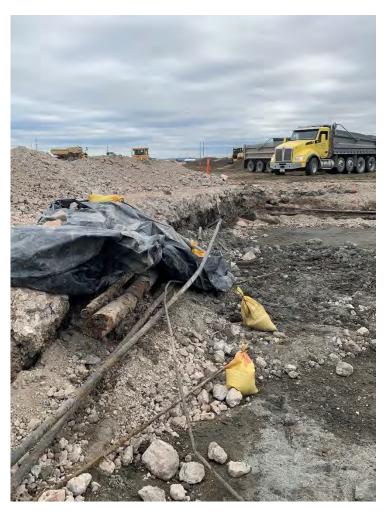
Photograph 7. One Bunker C fuel pipe encountered within wooden conduit, looking north.

Photograph 8. Utilidor covered pending asbestos abatement (left side), dewatering in process, view north.

Photograph 9. South end of excavation, looking south.

Photograph 10. Open excavation extent on 7/30/2020, view looking southwest.

Photograph 11. Open excavation extent on 7/30/2020, view looking southeast.


Photograph 12. Open excavation prior to dewatering on 8/10/2020, view looking northeast.


Photograph 13. Aerial view of excavation taken on 8/12/2020, view looking north.

Photograph 14. Initial observation of fuel pipes near northwest corner of excavation.

Photograph 15. Northwest corner of excavation on 8/18/2020.

Photograph 16. Limits of excavation on 8/20/2020 for removal of NW bunker fuel pipes.

Photograph 17. Concrete slab and structures at base of CMS excavation at B-36 sample location, view looking west.

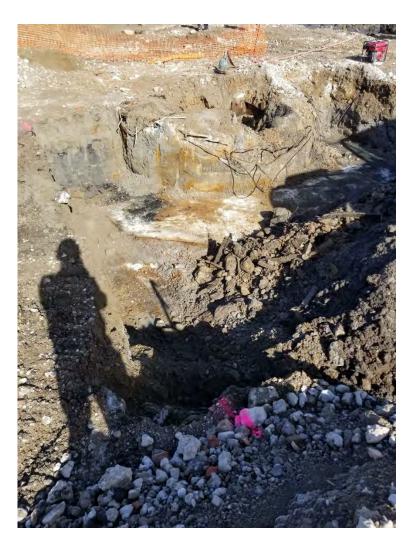
Photograph 1. Stockpiled overburden from CN-West excavation.

Photograph 2. CN-West initial excavation, dewatering turned off.

ASPECT CONSULTING CLARK NICKERSON AREA EXCAVATION

Photograph 3. CN-East excavation, dewatering turned off.

Photograph 4. CN-West after overexcavation of base, dewatering turned off.


Photograph 5. CN-East excavation backfilled.

Photograph 6. CN-West excavation backfilled.

Photograph 1. Initial excavation limits, view to the southeast.

Photograph 2. Initial excavation limits, looking northeast.

Photograph 3. Limits after first overexcavation, view looking north.

Photograph 4. Limits after first overexcavation, view looking northwest.

Photograph 5. Excavation extension between south leg of BBH Area (in foreground) and GFB12 Area (in background), view looking west, concrete structure comprising north sidewall evident in upper righthand corner of photo.

Photograph 6. North sidewall of extension between south leg of BBH Area and GFB12 Area, view looking north.

Photograph 7. South sidewall of extension between east sidewall of GFB12 Area and south leg of BBH Area, view looking south.

Photograph 8. Excavation extension between south leg of BBH Area (in background) and GFB12 Area (in foreground), view looking east, concrete structure comprising north sidewall evident in lefthand side of photo.

Photograph 1. South wall of excavation at 12-foot depth prior to installing dewatering sump.

Photograph 2. Excavation after first overexcavation of north sidewall with dewatering turned off, view west. Soil on visqueen is staged awaiting loading for off-site disposal.

Photograph 3. East side of north sidewall of excavation after second overexcavation encounters large concrete structure.

Photograph 4. Hydraulic Barker excavation backfilled to surrounding soil grade (beneath adjacent CM awaiting removal).

Photograph 1. Initial dewatered excavation, conveyor foundation on right, looking south.

Photograph 2. Initial dewatered excavation, conveyor foundation on left, looking north.

LOG POND CHIP CONVEYOR EXCAVATION

Photograph 3. West sidewall beneath foundation after second overexcavation, looking west.

Photograph 4. Looking south in excavation after second overexcavation.

Photograph 5. Log Pond Chip Conveyor excavation being backfilled, 7/14/2020.

Photograph 1. Large concrete foundation elements extending beneath excavation base, looking west.

Photograph 2. Excavation looking east prior to overexcavation.

Photograph 3. South sidewall, start of excavation, looking east.

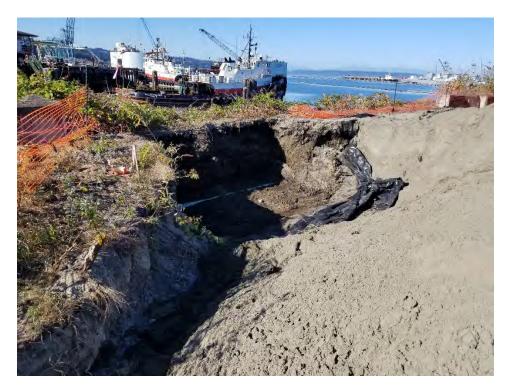
Photograph 4. Excavation looking east after first overexcavation.

OMS-2 OLD MACHINE SHOP AREA PROJECT NO. 110207 • AUGUST 2020

Photograph 5. South sidewall after ecology blocks moved back and first overexcavation performed.

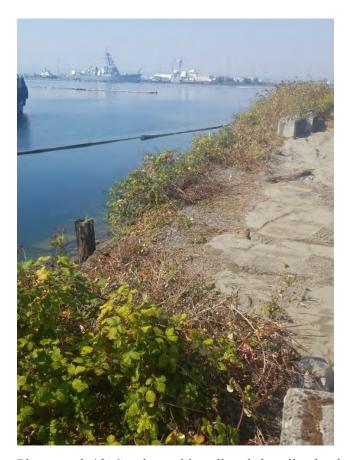
Photograph 6. South sidewall following removal of ecology blocks and second overexcavation.

Photograph 7. Southern sidewall showing backfill placed immediately after second overexcavation to protect bank stability.

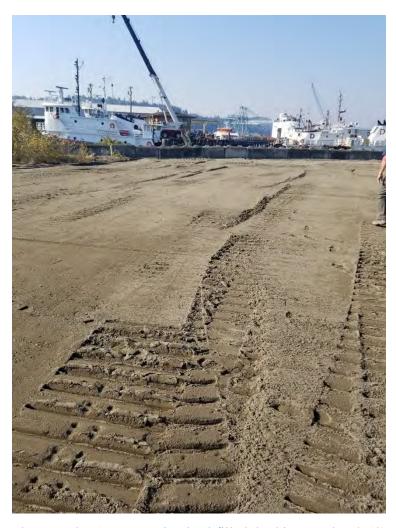


Photograph 8. Southern sidewall showing top of shoreline bank after second overexcavation, looking west.

OMS-4 OLD MACHINE SHOP AREA PROJECT NO. 110207 • AUGUST 2020


Photograph 9. Southern sidewall showing top of shoreline bank after second overexcavation, looking east.

Photograph 10. Eastern corner of southern sidewall showing third overexcavation to wood stave Pipe C on 8/27/2020, looking southwest.


Photograph 11. Close up of wood stave Pipe C in southeasternmost sidewall.

Photograph 12. Southern sidewall and shoreline bank, including remnants of wooden bulkhead, after third overexcavation on 8/27/2020.

Photograph 13. Southern shoreline bank, including remnants of wooden bulkhead, after third overexcavation on 8/27/2020.

Photograph 14. Excavation backfilled, looking south, 9/14/2020.

Photograph 1. Approximately 3 feet of CM overlying soil at the PM-B-6 Area, view looking east.

Photograph 2. Excavation showing mid-excavation concrete wall and wood stave pipe on north sidewall, view looking west.

Photograph 3. Extensive structures and little soil on west sidewall north of concrete wall, view looking west.

Photograph 4. North and east sidewalls on north side of concrete wall, view looking east.

Photograph 5. West sidewall on south side of concrete wall, view looking west.

Photograph 6. South sidewall with concrete wall in the foreground, view looking east.

Photograph 7. East sidewall on south side of concrete wall, view looking east.

Photograph 8. Western overexcavation of west sidewall, on the south side of the concrete wall, view looking south.

Photograph 9. PM-B-6 Area excavation backfilled.

Photograph 1. Initial excavation limits on 8/28/2020, view looking northeast.

Photograph 2. Initial excavation limits on 8/28/2020 with sheet pile wall on west sidewall, view looking west.

Photograph 3. Final excavation limits on 8/28/2020, view looking southwest.

Photograph 4. Excavation backfilled, 9/16/2020, view looking west.

Photograph 1. Fuel oil pipe exposed, in place.

Photograph 2. Fuel oil pipe trench, after pipe removal.

Photograph 3. Fuel oil pipe staged in visqueen pending off-site disposal.

Photograph 4. Impacted soil removed from fuel oil pipe trench, stockpiled pending off-site disposal.

APPENDIX C

Data Validation Reports

2701 Loker Ave. West, Suite 220, Carlsbad, CA 92010 Bus: 760-827-1100 Fax: 760-827-1099

Aspect Consulting LLC 701 Second Ave., Suite 550 Seattle, WA 98104 ATTN: Carla Brock, LHG cbrock@aspectconsulting.com

SUBJECT: Kimberly-Clark Upland Area, Data Validation

Dear Ms. Brock,

Enclosed are the final validation reports for the fractions listed below. These SDGs were received on July 27, 2020. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project #48734:

SDG # Fraction

005373,005398,006082 006251,006275,006294 006358,006387,006419 006466,006498 Polynuclear Aromatic Hydrocarbons, Polychlorinated Biphenyls, Metals, TPH as Gasoline, TPH as Extractables

The data validation was performed under Stage 2A guidelines. The analyses were validated using the following documents, as applicable to each method:

- USEPA National Functional Guidelines for Organic Superfund Methods Data Review, January 2017
- USEPA National Functional Guidelines for Inorganic Superfund Methods Data Review; January 2017
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; update IV, February 2007; update V, July 2014

Please feel free to contact us if you have any questions.

Sincerely,

Christina Rink

crink@lab-data.com

Cheiotina Rink

Project Manager/Senior Chemist

August 19, 2020

Attachment 1 371 pages-ADV LDC #48734 (Aspect Consulting, LLC - Seattle, WA / Kimberly-Clark Upland Area 2020 Interm Action) Stage 2A EDD (16) PAH (7) PAHs TPH-G TPH-E PCBs (NWTPH (NWTPH DATE DATE (8270E (8270E Metals Cu Cu.Zn Hg LDC SDG# REC'D DUE -SIM) -SIM) (8082A) (6020B) (6020B) (6020B) (1631E) -Gx) -Dx) w | s | w | s | w | s | w | s w s w s w s w s w w s S w s w s w s W w s w s Matrix: Water/Soil S 0 0 005373 07/27/20 08/17/20 В 005398 07/27/20 08/17/20 0 10 0 11 0 10 0 10 5 07/27/20 08/17/20 0 0 006082 19 D 006251 07/27/20 08/17/20 0 19 0 F 07/27/20 08/17/20 0 6 6 0 006275 0 0 8 0 0 8 006294 07/27/20 08/17/20 8 G 006358 07/27/20 08/17/20 0 16 16 0 Н 006387 07/27/20 08/17/20 0 15 0 3 0 10 006419 07/27/20 08/17/20 0 11 0 12 0 12 07/27/20 08/17/20 17 16 16 006466 0 0 07/27/20 08/17/20 6 0 6 0 11 006498 0 32 69 19 0 116 0 14 0 0 0 0 T/CR Total

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Kimberly-Clark Upland Area

LDC Report Date:

August 17, 2020

Parameters:

Polychlorinated Biphenyls

Validation Level:

Stage 2A

Laboratory:

Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 005373

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
HB-S-01-9-052820	005373-01	Soil	05/28/20
HB-S-02-9-052820	005373-02	Soil	05/28/20
HB-S-03-9-052820	005373-03	Soil	05/28/20
HB-S-04-9-052820	005373-04	Soil	05/28/20
HB-501-052820	005373-05	Soil	05/28/20
HB-S-01-9-052820MS	005373-01MS	Soil	05/28/20
HB-S-01-9-052820MSD	005373-01MSD	Soil	05/28/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polychlorinated Biphenyls (PCBs) by Environmental Protection Agency (EPA) SW 846 Method 8082A

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Compound	MS (%R) (Limits)	MSD (%R) (Limits)	Flag	A or P
HB-S-01-9-052820MS/MSD (HB-S-01-9-052820)	Aroclor-1260	200 (38-124)	172 (38-124)	NA	-

Relative percent differences (RPD) were within QC limits.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

Samples HB-S-03-9-052820 and HB-501-052820 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentra		
Compound	HB-S-03-9-052820	HB-501-052820	RPD
Aroclor-1262	0.04	0.057	35

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identification

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Kimberly-Clark Upland Area Polychlorinated Biphenyls - Data Qualification Summary - SDG 005373

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Polychlorinated Biphenyls - Laboratory Blank Data Qualification Summary - SDG 005373

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Polychlorinated Biphenyls - Field Blank Data Qualification Summary - SDG 005373

No Sample Data Qualified in this SDG

SDG Labo	#:48734A3b VALIDATION #:005373 ratory: Friedman & Bruya, Inc HOD: GC Polychlorinated Biphenyls (EP.	S	Stage 2A	S WORKSHEET	Re	Date: 1/2/2 Page: _of _ eviewer: _
The s	samples listed below were reviewed for e ation findings worksheets.		,		on findings are n	oted in attached
	Validation Area			Comm	nents	
I.	Sample receipt/Technical holding times	AIA				
11.	Initial calibration/ICV	N/N				
III.	Continuing calibration	N				
IV.	Laboratory Blanks	A				
V.	Field blanks	I N				
VI.	Surrogate spikes	A				
VII.	Matrix spike/Matrix spike duplicates	SN	(6.7)			
VIII.	Laboratory control samples	A,	LCS			
IX.	Field duplicates	SW	D=3+	5	W	
X.	Compound quantitation/RL/LOQ/LODs	N	Dry waigh	- basis		
XI.	Target compound identification	N N			· · · · · · · · · · · · · · · · · · ·	
עע	Overall assessment of data	1 7	1			
Note:	N = Not provided/applicable $R = R$	No compounds insate Field blank	s detected	D = Duplicate TB = Trip blank EB = Equipment blar	SB=Source OTHER: sk	e blank
	Client ID			Lab ID	Matrix	Date
1 .	HB-S-01-9-052820			005373-01	Soil	05/28/20
2 ·	HB-S-02-9-052820	····		005373-02	Soil	05/28/20
з ·	HB-S-03-9-052820		D	005373-03	Soil	05/28/20
4 .	HB-S-04-9-052820			005373-04	Soil	05/28/20
5 .	HB-501-052820		<u> </u>	005373-05	Soil	05/28/20
6	HB-S-01-9-052820MS		WW	005373-01MS	Soil	05/28/20
7	HB-S-01-9-052820MSD			005373-01MSD	Soil	05/28/20
8						
9						
10	and the second s					
11						
12						
13 Notes:						
	70-1200 MB 1/6			<u> </u>		

LDC #: 48734A3b

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

Page:1	of_1
Reviewer:_	LT
2nd Reviewe	er:

METHOD: X GC __ HPLC

Please see qualifications	below for all questions	answered "N". Not applic	cable questions are identified as "N/A".

Yx N_ N/A Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG?

Yx N N/A Was an MS/MSD analyzed every 20 samples for each matrix or whenever a sample extraction was performed?

Y___ N_x__ N/A___ Were the MS/MSD percent recoveries (%R) and relative percent differences (RPD) within QC limits?

#	MS/MSD ID	Compound	MS %R (Limits)	MSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
	6/7	Aroclor 1260	200 (38 - 124)	172 (38 - 124)		1 (ND)	J/A dets
<u> </u>		****					
<u> </u>							
						· .	
		· · · · · · · · · · · · · · · · · · ·					
				-			
\parallel							
\Vdash							
\parallel							

LDC#:48734A3b VALIDATION FINDINGS WORKSHEET Field Duplicates

Page:_1_of_1_	
Reviewer: LT	
2nd Reviewer:	

METHOD: GC PCBs (EPA SW846 Method 8082A)

	Concer		
Compound	3 1	RPD	
Aroclor 1262	0.04	0.057	35

Laboratory Data Consultants, Inc. **Data Validation Report**

Project/Site Name:

Kimberly-Clark Upland Area

LDC Report Date:

August 13, 2020

Parameters:

Metals

Validation Level:

Stage 2A

Laboratory:

Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 005373

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
HB-S-02-9-052820	005373-02	Soil	05/28/20
HB-S-03-9-052820	005373-03	Soil	05/28/20
HB-S-04-9-052820	005373-04	Soil	05/28/20
HB-501-052820	005373-05	Soil	05/28/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Copper and Zinc by Environmental Protection Agency (EPA) SW 846 Method 6020B Mercury by EPA Method 1631E

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. ICPMS Tune

ICP-MS tune data were not reviewed for Stage 2A validation.

III. Instrument Calibration

Instrument calibration data were not reviewed for Stage 2A validation.

IV. ICP Interference Check Sample Analysis

ICP Interference check sample (ICS) analysis data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

IX. Serial Dilution

Serial dilution was not performed for this SDG.

X. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits.

XI. Field Duplicates

Samples HB-S-03-9-052820 and HB-501-052820 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentra		
Analyte	HB-S-03-9-052820	HB-501-052820	RPD
Copper	45.2	28.8	44
Zinc	49.1	43.4	12
Mercury	0.076	0.07U	Not calculable

XII. Internal Standards (ICP-MS)

Internal standards data were not reviewed for Stage 2A validation.

XIII. Sample Result Verification

Raw data were not reviewed for Stage 2A validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected in this SDG.

Kimberly-Clark Upland Area Metals - Data Qualification Summary - SDG 005373

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Metals - Laboratory Blank Data Qualification Summary - SDG 005373

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Metals - Field Blank Data Qualification Summary - SDG 005373

No Sample Data Qualified in this SDG

LDC #: 48734A4a

VALIDATION COMPLETENESS WORKSHEET

SDG #: 005373 Laboratory: Friedman & Bruya, Inc. Stage 2A

Reviewer: 1 2nd Reviewer

METHOD: Metals (EPA SW 846 Method 6020B/EPA Method 1631E)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I.	Sample receipt/Technical holding times	AIA	
II.	ICP/MS Tune	N	
III.	Instrument Calibration	N	
IV.	ICP Interference Check Sample (ICS) Analysis	N	
V.	Laboratory Blanks	A	
VI.	Field Blanks	2	
VII.	Matrix Spike/Matrix Spike Duplicates	.2	
VIII.	Duplicate sample analysis	2	
IX.	Serial Dilution	2	
X.	Laboratory control samples	А	US
XI.	Field Duplicates	2	(2,4)
XII.	Internal Standard (ICP-MS)	N	
XIII.	Sample Result Verification	Ν	
XIV	Overall Assessment of Data	A	

Note:

A = Acceptable

N = Not provided/applicable SW = See worksheet

ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate

TB = Trip blank

EB = Equipment blank

SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	HB-S-02-9-052820	005373-02	Soil	05/28/20
2	HB-S-03-9-052820	005373-03	Soil	05/28/20
3	HB-S-04-9-052820	005373-04	Soil	05/28/20
4	HB-501-052820	005373-05	Soil	05/28/20
5				
6				
7				
8				
9				
10				
11				
12				
13				

Notes:			 	
		-		
	-			

LDC #: 48731A49

VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference

Page: 1 of 1
Reviewer: DTM
2nd reviewer:

All circled elements are applicable to each sample.

Sample ID	Matrix	Target Analyte List (TAL)
A11	S	Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cy, Fe, Pb, Li, Mg, Mo, Mn, Ag, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, (2n)
··-		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
·		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
	, 	Analysis Method
ICP		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
ICP-MS		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
GEAA		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn

Comments: Mercury by CVAA if performed

LDC#: 48734A4a

VALIDATION FINDINGS WORKSHEET

Field Duplicates

Page:_1_of_1_ Reviewer:_DTM_ 2nd Reviewer:____

METHOD: Metals (EPA Method 6010/6020/7000)

	Concentrat		
Analyte	2	4	RPD
Copper	45.2	28.8	44
Zinc	49.1	43.4	12
Mercury	0.076	0.07U	NC

V:\Darionna\FIELD DUPLICATES\Field Duplicates\FD_inorganic\2020\48734A4a.wpd

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Kimberly-Clark Upland Area

LDC Report Date:

August 17, 2020

Parameters:

Total Petroleum Hydrocarbons as Extractables

Validation Level:

Stage 2A

Laboratory:

Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 005373

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
HB-S-02-9-052820	005373-02	Soil	05/28/20
HB-S-03-9-052820	005373-03	Soil	05/28/20
HB-S-04-9-052820	005373-04	Soil	05/28/20
HB-501-052820	005373-05	Soil	05/28/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Petroleum Hydrocarbons (TPH) as Extractables by NWTPH-Dx

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered not detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

Samples HB-S-03-9-052820 and HB-501-052820 were identified as field duplicates. No results were detected in any of the samples.

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Kimberly-Clark Upland Area

Total Petroleum Hydrocarbons as Extractables - Data Qualification Summary -SDG 005373

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area

Total Petroleum Hydrocarbons as Extractables - Laboratory Blank Data **Qualification Summary - SDG 005373**

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area

Total Petroleum Hydrocarbons as Extractables - Field Blank Data Qualification **Summary - SDG 005373**

No Sample Data Qualified in this SDG

SDG	#:48734A8		PLETENES: Stage 2A	S WORKSHEE	1	Date: ぬんろん Page: しof し Reviewer: _ ゾ
MET	HOD: GC TPH as Extractables (NWTP	H-Dx)			2nd l	Reviewer:
	samples listed below were reviewed for ation findings worksheets.	each of the fo	ollowing valida	ation areas. Valida	ation findings are	noted in attached
	Validation Area			Con	nments	
1.	Sample receipt/Technical holding times	Ar, A				
II.	Initial calibration/ICV	N/N_				
III.	Continuing calibration	N				
IV.	Laboratory Blanks	A				
V.	Field blanks	<u> </u>			·	
VI.	Surrogate spikes	A				
VII.	Matrix spike/Matrix spike duplicates	N	Non aire	M		
VIII	. Laboratory control samples	<u> </u>	LCS			
IX.	Field duplicates	ND	D=2+4	-	······································	
X.	Compound quantitation RL/LOQ/LODs	N	Dry weigh	basis		
XI.	Target compound identification	N				
ווצ	Overall assessment of data	A				
Note:	N = Not provided/applicable R =	= No compounds Rinsate = Field blank	s detected	D = Duplicate TB = Trip blank EB = Equipment b	OTHER:	rce blank
	Client ID			Lab ID	Matrix	Date
1	HB-S-02-9-052820			005373-02	Soil	05/28/20
2	HB-S-03-9-052820		D	005373-03	Soil	05/28/20
3	HB-S-04-9-052820			005373-04	Soil	05/28/20
4	HB-501-052820		D	005373-05	Soil	05/28/20
5						
6						
7						
8						
9						
10						
11						
12						

1 00-1198 MB2

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Kimberly-Clark Upland Area

LDC Report Date: August 17, 2020

Parameters: Polychlorinated Biphenyls

Validation Level: Stage 2A

Friedman & Bruya, Inc. Laboratory:

Sample Delivery Group (SDG): 005398

Ola lala utification	Laboratory Sample	B4 a 4 visa	Collection
Sample Identification	Identification	Matrix	<u> Date</u>
HB-B-01-13-052920	005398-01	Soil	05/29/20
HB-B-02-13-052920	005398-02	Soil	05/29/20
HB-B-03-13-052920	005398-03	Soil	05/29/20
HB-S-02-12-052920	005398-04	Soil	05/29/20
HB-S-03-12-052920	005398-05	Soil	05/29/20
HB-S-04-12-052920	005398-06	Soil	05/29/20
HB-S-05-12-052920	005398-07	Soil	05/29/20
HB-S-06-12-052920	005398-08	Soil	05/29/20
HB-S-07-12-052920	005398-09	Soil	05/29/20
HB-S-08-12-052920	005398-10	Soil	05/29/20
HB-B-01-13-052920MS	005398-01MS	Soil	05/29/20
HB-B-01-13-052920MSD	005398-01MSD	Soil	05/29/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polychlorinated Biphenyls (PCBs) by Environmental Protection Agency (EPA) SW 846 Method 8082A

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits.

Relative percent differences (RPD) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Compound	RPD (Limits)	Flag	A or P
HB-B-01-13-052920MS/MSD (HB-B-01-13-052920)	Aroclor-1016 Aroclor-1260	34 (≤20) 26 (≤20)	NA	-

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identification

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Kimberly-Clark Upland Area Polychlorinated Biphenyls - Data Qualification Summary - SDG 005398

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Polychlorinated Biphenyls - Laboratory Blank Data Qualification Summary - SDG 005398

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Polychlorinated Biphenyls - Field Blank Data Qualification Summary - SDG 005398

No Sample Data Qualified in this SDG

LDC #:	48734B3b	1

VALIDATION COMPLETENESS WORKSHEET

SDG #: 005398 Laboratory: Friedman & Bruya, Inc. Stage 2A

2nd Reviewer

METHOD: GC Polychlorinated Biphenyls (EPA SW846 Method 8082A)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I.	Sample receipt/Technical holding times	A,A	
II.	Initial calibration/ICV	N/N	
III.	Continuing calibration	N	
IV.	Laboratory Blanks	A	
V.	Field blanks	N	
VI.	Surrogate spikes	A	
VII.	Matrix spike/Matrix spike duplicates	SW	(11,12)
VIII.	Laboratory control samples	A.	LCS
IX.	Field duplicates	N	
X.	Compound quantitation/RL/LOQ/LODs	N	Dry weight basis
XI.	Target compound identification	N	, and the second
LXIL	Overall assessment of data	K	

Note: A = Acceptable

N = Not provided/applicable SW = See worksheet

ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate

TB = Trip blank EB = Equipment blank SB=Source blank

OTHER:

	Client ID	Lab ID	Matrix	Date
1	HB-B-01-13-052920	005398-01	Soil	05/29/20
2	HB-B-02-13-052920	005398-02	Soil	05/29/20
3	HB-B-03-13-052920	005398-03	Soil	05/29/20
4	HB-S-02-12-052920	005398-04	Soil	05/29/20
5	HB-S-03-12-052920	005398-05	Soil	05/29/20
6	HB-S-04-12-052920	005398-06	Soil	05/29/20
 7	HB-S-05-12-052920	005398-07	Soil	05/29/20
8	HB-S-06-12-052920	005398-08	Soil	05/29/20
9	HB-S-07-12-052920	005398-09	Soil	05/29/20
10	HB-S-08-12-052920	005398-10	Soil	05/29/20
11	HB-B-01-13-052920MS	005398-01MS	Soil	05/29/20
12	HB-B-01-13-052920MSD	005398-01MSD	Soil	05/29/20
13				
14				

00-1212MB 1/6			

LDC #: 48734B3b

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

Page: <u>1</u>	_of1
Reviewer:	LT
2nd Reviewer:	

METH	OD:	Χ	GC	HPLC

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Y<u>x</u> N_ N/A __ Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG?

Yx N N/A Was an MS/MSD analyzed every 20 samples for each matrix or whenever a sample extraction was performed?

Y Nx N/A Were the MS/MSD percent recoveries (%R) and relative percent differences (RPD) within QC limits?

#	MS/MSD ID	Compound	MS %R (Limits)	MSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
	11/12	Aroclor 1016			34 (≤20)	1 (ND)	J/A dets
		Aroclor 1260			26 (≤20)	1	1
	,					-	
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
		W. W. L.					

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Kimberly-Clark Upland Area

LDC Report Date:

August 13, 2020

Parameters:

Metals

Validation Level:

Stage 2A

Laboratory:

Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 005398

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
HB-B-01-13-052920	005398-01	Soil	05/29/20
HB-B-02-13-052920	005398-02	Soil	05/29/20
HB-B-03-13-052920	005398-03	Soil	05/29/20
HB-S-02-12-052920	005398-04	Soil	05/29/20
HB-S-03-12-052920	005398-05	Soil	05/29/20
HB-S-04-12-052920	005398-06	Soil	05/29/20
HB-S-04-12-052920DL	005398-06DL	Soil	05/29/20
HB-S-05-12-052920	005398-07	Soil	05/29/20
HB-S-06-12-052920	005398-08	Soil	05/29/20
HB-S-07-12-052920	005398-09	Soil	05/29/20
HB-S-08-12-052920	005398-10	Soil	05/29/20
HB-B-01-13-052920MS	005398-01MS	Soil	05/29/20
HB-B-01-13-052920MSD	005398-01MSD	Soil	05/29/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Copper and Zinc by Environmental Protection Agency (EPA) SW 846 Method 6020B Mercury by EPA Method 1631E

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- DNR Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. ICPMS Tune

ICP-MS tune data were not reviewed for Stage 2A validation.

III. Instrument Calibration

Instrument calibration data were not reviewed for Stage 2A validation.

IV. ICP Interference Check Sample Analysis

ICP Interference check sample (ICS) analysis data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	MS (%R) (Limits)	MSD (%R) (Limits)	Flag	A or P
HB-B-01-13-052920MS/MSD (All samples in SDG 005398)	Zinc	61 (75-125)	70 (75-125)	J (all detects) UJ (all non-detects)	А

Relative percent differences (RPD) were within QC limits.

VIII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

IX. Serial Dilution

Serial dilution was not performed for this SDG.

X. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits.

XI. Field Duplicates

No field duplicates were identified in this SDG.

XII. Internal Standards (ICP-MS)

Internal standards data were not reviewed for Stage 2A validation.

XIII. Sample Result Verification

Raw data were not reviewed for Stage 2A validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the methods.

In the case where more than one result was reported for an individual sample, the least technically acceptable results were deemed not reportable as follows:

Sample	Analyte	Reason	Flag	A or P
HB-S-04-12-052920DL	Copper Zinc	Diluted results were non-detect.	DNR	Α

Due to MS/MSD %R, data were qualified as estimated in ten samples.

No results were rejected in this SDG.

Kimberly-Clark Upland Area Metals - Data Qualification Summary - SDG 005398

Sample	Analyte	Flag	A or P	Reason
HB-B-01-13-052920 HB-B-02-13-052920 HB-B-03-13-052920 HB-S-02-12-052920 HB-S-03-12-052920 HB-S-04-12-052920 HB-S-05-12-052920 HB-S-06-12-052920 HB-S-07-12-052920 HB-S-07-12-052920 HB-S-08-12-052920	Zinc	J (all detects) UJ (all non-detects)	Α	Matrix spike/Matrix spike duplicate (%R)
HB-S-04-12-052920DL	Copper Zinc	DNR	А	Overall assessment of data

Kimberly-Clark Upland Area Metals - Laboratory Blank Data Qualification Summary - SDG 005398

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Metals - Field Blank Data Qualification Summary - SDG 005398

No Sample Data Qualified in this SDG

LDC #: 48734B4a

VALIDATION COMPLETENESS WORKSHEET

SDG #: 005398 Laboratory: Friedman & Bruya, Inc. Stage 2A

Date: 81/21/2020 Page: \ of \ Reviewer: D 2nd Reviewer:

METHOD: Metals (EPA SW 846 Method 6020B/EPA Method 1631E)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Sample receipt/Technical holding times	AIA	
11.	ICP/MS Tune	N	
111.	Instrument Calibration	N	
IV.	ICP Interference Check Sample (ICS) Analysis	N	
V.	Laboratory Blanks	A	
VI.	Field Blanks	2	
VII.	Matrix Spike/Matrix Spike Duplicates	92	
VIII.	Duplicate sample analysis	7	
IX.	Serial Dilution	2	
X.	Laboratory control samples	A	ics
XI.	Field Duplicates	2	
XII.	Internal Standard (ICP-MS)	N	
XIII.	Sample Result Verification	N .	
XIV	Overall Assessment of Data	X SW	

Note:

A = Acceptable

N = Not provided/applicable

SW = See worksheet

ND = No compounds detected

R = Rinsate FB = Field blank

D = Duplicate TB = Trip blank

EB = Equipment blank

SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	HB-B-01-13-052920	005398-01	Soil	05/29/20
2	HB-B-02-13-052920	005398-02	Soil	05/29/20
3	HB-B-03-13-052920	005398-03	Soil	05/29/20
4	HB-S-02-12-052920	005398-04	Soil	05/29/20
5	HB-S-03-12-052920	005398-05	Soil	05/29/20
6	HB-S-04-12-052920	005398-06	Soil	05/29/20
7	HB-S-04-12-052920DL	005398-06DL	Soil	05/29/20
88	HB-S-05-12-052920	005398-07	Soil	05/29/20
9	HB-S-06-12-052920	005398-08	Soil	05/29/20
10	HB-S-07-12-052920	005398-09	Soil	05/29/20
11	HB-S-08-12-052920	005398-10	Soil	05/29/20
12	HB-B-01-13-052920MS	005398-01MS	Soil	05/29/20
13	HB-B-01-13-052920MSD	005398-01MSD	Soil	05/29/20
14				
15				

Notes:

LDC #: 48784849

VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference

Page: 1 of 1
Reviewer: DTM
2nd reviewer:

All circled elements are applicable to each sample.

Sample ID	Matrix	Target Analyte List (TAL)
1-6,8-11	0	Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu) Fe, Pb, Li, Mg, Mo, Mn, Ag, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
7	S	Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
04/2-13	S	Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, 27
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
· · · · · · · · · · · · · · · · · · ·		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Analysis Method
ICP		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
ICP-MS		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
GFAA		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, 7n

Comments:	Mercury by CVAA if performed			

LDC #: 48734B4a

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

Page: <u>1</u>	_of_	1_
Reviewer:_	D٦	<u> M</u>
2nd Reviewer: <	2	

METHOD: Trace metals (EPA SW 846 Method 6020/6010/7470)

Please see	qualifications	below for all	questions answered '	"N". Not applicable	questions are i	dentified as "N	√A".

(Ý) N N/A Was a matrix spike analyzed for each matrix in this SDG?

Were matrix spike percent recoveries (%R) within the control limits of 75-125? If the sample concentration exceeded the spike concentration by a factor

of 4 or more, no action was taken.

Were all duplicate sample relative percent differences (RPD) ≤ 20% for samples?

LEVEL IV ONLY:

Y N N/A Were recalculated results acceptable? See Level IV Recalculation Worksheet for recalculations.

#	MS/MSD.ID	Matrix	Analyte	MS %Recovery	MSD %Recovery	RPD (Limits)	Associated Samples	Qualifications
	12/13	S	Zn	61	70			J/UJ/A (det,ND)
Ш								
$\ \cdot \ $								
H						<u></u>		
H								
П								
H								
Ш								
Ш					-			
\Vdash								
H								
П								
H			.,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
$\parallel \parallel$								
╟┤								

Comments:	 			 	

LDC #: 48734B4a

VALIDATION FINDINGS WORKSHEET Overall Assessment of Data

Page: <u>1</u>	_of1
Reviewer: _D	MTC
2nd Reviewer:	<u> </u>

METHOD: Trace Metals (EPA SW 846 Method 6010/6020/7000)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

All available information pertaining to the data were reviewed using professional judgement to compliment the determination of the overall quality of the data.

Y N N/A Was the overall quality and usability of the data acceptable?

#	Date	Sample ID	Analyte	Finding	Qualification
		7	Cu,Zn	Sample was re-analyzed with a dilution due to internal standard failure. Diluted M	① NR

Comments:					

Laboratory Data Consultants, Inc. **Data Validation Report**

Project/Site Name:

Kimberly-Clark Upland Area

LDC Report Date:

August 17, 2020

Parameters:

Total Petroleum Hydrocarbons as Extractables

Validation Level:

Stage 2A

Laboratory:

Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 005398

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
HB-B-01-13-052920	005398-01	Soil	05/29/20
HB-B-02-13-052920	005398-02	Soil	05/29/20
HB-B-03-13-052920	005398-03	Soil	05/29/20
HB-S-02-12-052920	005398-04	Soil	05/29/20
HB-S-03-12-052920	005398-05	Soil	05/29/20
HB-S-04-12-052920	005398-06	Soil	05/29/20
HB-S-05-12-052920	005398-07	Soil	05/29/20
HB-S-06-12-052920	005398-08	Soil	05/29/20
HB-S-07-12-052920	005398-09	Soil	05/29/20
HB-S-08-12-052920	005398-10	Soil	05/29/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Petroleum Hydrocarbons (TPH) as Extractables by NWTPH-Dx

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- (Estimated): The compound or analyte was analyzed for and positively identified J by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered not detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Kimberly-Clark Upland Area Total Petroleum Hydrocarbons as Extractables - Data Qualification Summary -SDG 005398

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Total Petroleum Hydrocarbons as Extractables - Laboratory Blank Data **Qualification Summary - SDG 005398**

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Total Petroleum Hydrocarbons as Extractables - Field Blank Data Qualification **Summary - SDG 005398**

No Sample Data Qualified in this SDG

SDG#	:48734B8		PLETENES: Stage 2A	S WORKSHEET	Rev	Date: <u>B(15/</u> Page: lof l viewer: S viewer:
	OD: GC TPH as Extractable amples listed below were rev		following valida	ation areas. Validation		
	ion findings worksheets.					
	Validation Are			Comme	nts	
<u>l.</u>	Sample receipt/Technical holding	g times A, A				
II.	Initial calibration/ICV	N/N				
III.	Continuing calibration	N				
IV.	Laboratory Blanks	I A				
V.	Field blanks	N				
VI.	Surrogate spikes					
VII.	Matrix spike/Matrix spike duplica	tes	Vona	iang		
VIII.	Laboratory control samples	A	XLC5			
IX.	Field duplicates	N				
X.	Compound quantitation RL/LOQ/	LODs N	Dry weight	- basis		
XI.	Target compound identification	N				
XII	Overall assessment of data	A		44,00		***************************************
lote:	A = Acceptable N = Not provided/applicable SW = See worksheet	ND = No compound R = Rinsate FB = Field blank	ls detected	D = Duplicate TB = Trip blank EB = Equipment blank	SB=Source I OTHER:	blank
0	Client ID			Lab ID	Matrix	Date
1 F	HB-B-01-13-052920			005398-01	Soil	05/29/20
	HB-B-02-13-052920			005398-02	Soil	05/29/20
	HB-B-03-13-052920	3748.	- 111	005398-03	Soil	05/29/20
	HB-S-02-12-052920			005398-04	Soil	05/29/20
	HB-S-03-12-052920			005398-05	Soil	05/29/20
	HB-S-04-12-052920			005398-06	Soil	05/29/20
	HB-S-05-12-052920			005398-07	Soil	05/29/20
	HB-S-06-12-052920			005398-08	Soil	05/29/20
	HB-S-07-12-052920	•		005398-09	Soil	05/29/20
	HB-S-08-12-052920			005398-10	Soil	05/29/20
11		, , , , , , , , , , , , , , , , , , , ,	1 - 10 - 10 day	7		
12						
otes:						

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Kimberly-Clark Upland Area

August 17, 2020 **LDC Report Date:**

Parameters: Polychlorinated Biphenyls

Validation Level: Stage 2A

Friedman & Bruya, Inc. Laboratory:

Sample Delivery Group (SDG): 006082

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
HB-S-05-9-060420	006082-01	Soil	06/04/20
HB-S-06-9-060420	006082-02	Soil	06/04/20
HB-S-07-9-060420	006082-03	Soil	06/04/20
HB-S-08-9-060420	006082-04	Soil	06/04/20
HB-S-09-9-060420	006082-05	Soil	06/04/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polychlorinated Biphenyls (PCBs) by Environmental Protection Agency (EPA) SW 846 Method 8082A

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- (Rejected): The sample results were rejected due to gross non-conformances R discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identification

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Kimberly-Clark Upland Area Polychlorinated Biphenyls - Data Qualification Summary - SDG 006082

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Polychlorinated Biphenyls - Laboratory Blank Data Qualification Summary - SDG 006082

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Polychlorinated Biphenyls - Field Blank Data Qualification Summary - SDG 006082

No Sample Data Qualified in this SDG

LDC #: 48734C3b

VALIDATION COMPLETENESS WORKSHEET

Stage 2A

SDG #: 006082 Laboratory: Friedman & Bruya, Inc.

Reviewer: 2nd Reviewer

METHOD: GC Polychlorinated Biphenyls (EPA SW846 Method 8082A)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
<u>I.</u>	Sample receipt/Technical holding times	A, A	
II.	Initial calibration/ICV	N/N	
111.	Continuing calibration	N	
IV.	Laboratory Blanks	A	
V.	Field blanks	N	
VI.	Surrogate spikes	A	
VII.	Matrix spike/Matrix spike duplicates	N	Non Client
VIII.	Laboratory control samples	A-	LOS
IX.	Field duplicates	N	
X.	Compound quantitation/RL/LOQ/LODs	N	Dry weight basis
XI.	Target compound identification	N	
XII	Overall assessment of data	A	

Note:

A = Acceptable

N = Not provided/applicable SW = See worksheet

ND = No compounds detected

R = Rinsate FB = Field blank D = Duplicate

TB = Trip blank EB = Equipment blank SB=Source blank

OTHER:

	Client ID	Lab ID	Matrix	Date
1	HB-S-05-9-060420	006082-01	Soil	06/04/20
2	HB-S-06-060420	006082-02	Soil	06/04/20
3	HB-S-07-060420	006082-03	Soil	06/04/20
4	HB-S-08-060420	006082-04	Soil	06/04/20
5	HB-S-09-060420	006082-05	Soil	06/04/20
6				
7				
8				
9				
10				
11				
12				
13_				

Laboratory Data Consultants, Inc. **Data Validation Report**

Project/Site Name: Kimberly-Clark Upland Area

LDC Report Date: August 13, 2020

Metals Parameters:

Validation Level: Stage 2A

Laboratory: Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 006082

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
HB-S-06-9-060420	006082-02	Soil	06/04/20
HB-S-07-9-060420	006082-03	Soil	06/04/20
HB-S-08-9-060420	006082-04	Soil	06/04/20
HB-S-09-9-060420	006082-05	Soil	06/04/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Copper and Zinc by Environmental Protection Agency (EPA) SW 846 Method 6020B Mercury by EPA Method 1631E

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. ICPMS Tune

ICP-MS tune data were not reviewed for Stage 2A validation.

III. Instrument Calibration

Instrument calibration data were not reviewed for Stage 2A validation.

IV. ICP Interference Check Sample Analysis

ICP Interference check sample (ICS) analysis data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

IX. Serial Dilution

Serial dilution was not performed for this SDG.

X. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits.

XI. Field Duplicates

No field duplicates were identified in this SDG.

XII. Internal Standards (ICP-MS)

Internal standards data were not reviewed for Stage 2A validation.

XIII. Sample Result Verification

Raw data were not reviewed for Stage 2A validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected in this SDG.

Kimberly-Clark Upland Area Metals - Data Qualification Summary - SDG 006082

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Metals - Laboratory Blank Data Qualification Summary - SDG 006082

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Metals - Field Blank Data Qualification Summary - SDG 006082

No Sample Data Qualified in this SDG

LDC #:	48734C4a	

SDG #: 006082

VALIDATION COMPLETENESS WORKSHEET

Stage 2A

Laboratory: Friedman & Bruya, Inc.

Page: \ of | Reviewer: OM 2nd Reviewer

Date: 2/12/200

METHOD: Metals (EPA SW 846 Method 6020B/EPA Method 1631E)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
l.	Sample receipt/Technical holding times	AIA	
11.	ICP/MS Tune	N	
111.	Instrument Calibration	N	
IV.	ICP Interference Check Sample (ICS) Analysis	N	
V.	Laboratory Blanks	A	
VI.	Field Blanks	.2	
VII.	Matrix Spike/Matrix Spike Duplicates	2	
VIII.	Duplicate sample analysis	2	
IX.	Serial Dilution	2	
X.	Laboratory control samples	A	res
XI.	Field Duplicates	2	
XII.	Internal Standard (ICP-MS)	N	
XIII.	Sample Result Verification	N	
XIV	Overall Assessment of Data	A	

Note:

A = Acceptable

N = Not provided/applicable SW = See worksheet

ND = No compounds detected

R = Rinsate FB = Field blank D = Duplicate

TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	HB-8-06-060420 AB-S-06-9-060420 I-D7-9-	006082-02	Soil	06/04/20
2	HB-5-07-060420 -i)7-9-	006082-03	Soil	06/04/20
3	HB-S-08-060420 - (10)-01-	006082-04	Soil	06/04/20
4	HB-9-09-060420 V -09-9-	006082-05	Soil	06/04/20
5				
6				
7				
8				
9				
10				
11				
12				
13_				

LDC #: 48734049

VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference

Page: 1 of 1
Reviewer: DTM
2nd reviewer:

All circled elements are applicable to each sample.

Sample ID	Matrix	Target Analyte List (TAL)
AII	Φ	Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu) Fe, Pb, Li, Mg, Mo, Mn, (fg) Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V,
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
	L	
	<u> </u>	Analysis Method
ICP		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
ICP-MS		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
GFAA	<u> </u>	Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn

Comments:	Mercury by CVAA if performed

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Kimberly-Clark Upland Area

LDC Report Date:

August 17, 2020

Parameters:

Total Petroleum Hydrocarbons as Extractables

Validation Level:

Stage 2A

Laboratory:

Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 006082

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
HB-S-06-9-060420	006082-02	Soil	06/04/20
HB-S-07-9-060420	006082-03	Soil	06/04/20
HB-S-08-9-060420	006082-04	Soil	06/04/20
HB-S-09-9-060420	006082-05	Soil	06/04/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Petroleum Hydrocarbons (TPH) as Extractables by NWTPH-Dx

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered not detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Kimberly-Clark Upland Area

Total Petroleum Hydrocarbons as Extractables - Data Qualification Summary -SDG 006082

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area

Total Petroleum Hydrocarbons as Extractables - Laboratory Blank Data **Qualification Summary - SDG 006082**

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area

Total Petroleum Hydrocarbons as Extractables - Field Blank Data Qualification **Summary - SDG 006082**

No Sample Data Qualified in this SDG

SDG #	t: 48734C8 VALIDATIO t: 006082 atory: <u>Friedman & Bruya, Inc.</u>		LETENES tage 2A	S WORKSHEE		Date: <u>& lala</u> Page: <u>L</u> of <u>J</u> Reviewer: <u>L</u> O Reviewer:
he sa	OD: GC TPH as Extractables (NWTPH- amples listed below were reviewed for eation findings worksheets.	•	ollowing valid	ation areas. Valida	ation findings are	noted in attached
	Validation Area			Con	nments	
1.	Sample receipt/Technical holding times	A,A				
H.	Initial calibration/ICV	N/N				
<u>III.</u>	Continuing calibration	N_		····		
IV.	Laboratory Blanks	<u> </u>				
V.	Field blanks	Ϋ́				
VI.	Surrogate spikes	<u> </u>	. ,			
VII.	Matrix spike/Matrix spike duplicates	I N	Non Clia	A		
VIII.	Laboratory control samples	 	LCS			
IX.	Field duplicates	P				
X.	Compound quantitation RL/LOQ/LODs	N_	Dry weigh	t basis		
XI.	Target compound identification	N K	A			
lote:	N = Not provided/applicable R = Rir	lo compounds nsate ield blank	- detected	D = Duplicate TB = Trip blank EB = Equipment b	OTHER	rce blank
	Client ID			Lab ID	Matrix	Date
	-HB-S-06-060420 и-	·····		006082-02	Soil	06/04/20
	HB-S-07-060420 4 -		***************************************	006082-03	Soil	06/04/20
	HB-S-08-060420			006082-04	Soil	06/04/20
	HB-S-09-060420			006082-05	Soil	06/04/20
5						
6						
7						```
8						
9				<u> </u>		
10						
11						
otes:						
1 0	0-1259 MBZ					

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Kimberly-Clark Upland Area

August 13, 2020 **LDC Report Date:**

Parameters: Metals

Stage 2A Validation Level:

Laboratory: Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 006251

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
PM-B-6-S-06-6	006251-01	Soil	06/16/20
PM-B-6-S-07-6	006251-02	Soil	06/16/20
PM-B-6-S-08-6	006251-03	Soil	06/16/20
PM-B-6-502	006251-04	Soil	06/16/20
PM-B-6-S-05-6	006251-05	Soil	06/16/20
PM-B-6-S-05-9	006251-06	Soil	06/16/20
PM-B-6-S-06-9	006251-07	Soil	06/16/20
PM-B-6-S-07-9	006251-08	Soil	06/16/20
PM-B-6-S-01-6	006251-09	Soil	06/16/20
PM-B-6-S-02-6	006251-10	Soil	06/16/20
PM-B-6-B-01-10	006251-11	Soil	06/16/20
PM-B-6-B-02-10	006251-12	Soil	06/16/20
PM-B-6-B-03-10	006251-13	Soil	06/16/20
PM-B-6-S-01-4	006251-14	Soil	06/16/20
PM-B-6-S-02-4	006251-15	Soil	06/16/20
PM-B-6-S-03-6	006251-16	Soil	06/16/20
PM-B-6-S-03-9	006251-17	Soil	06/16/20
PM-B-6-S-04-6	006251-18	Soil	06/16/20
PM-B-6-S-04-9	006251-19	Soil	06/16/20
PM-B-6-S-06-6MS	006251-01MS	Soil	06/16/20
PM-B-6-S-06-6MSD	006251-01MSD	Soil	06/16/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Copper by Environmental Protection Agency (EPA) SW 846 Method 6020B Mercury by EPA Method 1631E

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- (Not Applicable): The non-conformance discovered during data validation NA demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. ICPMS Tune

ICP-MS tune data were not reviewed for Stage 2A validation.

III. Instrument Calibration

Instrument calibration data were not reviewed for Stage 2A validation.

IV. ICP Interference Check Sample Analysis

ICP Interference check sample (ICS) analysis data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	MS (%R) (Limits)	MSD (%R) (Limits)	Flag	A or P
PM-B-6-S-06-6MS/MSD (PM-B-6-S-06-6 PM-B-6-S-07-6 PM-B-6-S-08-6 PM-B-6-S-05-6 PM-B-6-S-05-9 PM-B-6-S-01-6 PM-B-6-S-02-6 PM-B-6-S-02-10 PM-B-6-S-01-4 PM-B-6-S-01-4 PM-B-6-S-03-6 PM-B-6-S-03-6 PM-B-6-S-03-9 PM-B-6-S-04-6 PM-B-6-S-04-9)	Mercury	185 (75-125)	118 (75-125)	J (all detects)	A

Spike ID (Associated Samples)	Analyte	MS (%R) (Limits)	MSD (%R) (Limits)	Flag	A or P
PM-B-6-S-06-6MS/MSD (PM-B-6-S-06-9 PM-B-6-S-07-9 PM-B-6-B-01-10 PM-B-6-B-03-10)	Mercury	185 (75-125)	118 (75-125)	NA	_

Relative percent differences (RPD) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	RPD (Limits)	Flag	A or P
PM-B-6-S-06-6MS/MSD (All samples in SDG 006251)	Mercury	44 (≤20)	J (all detects) UJ (all non-detects)	А

VIII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

IX. Serial Dilution

Serial dilution was not performed for this SDG.

X. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits.

XI. Field Duplicates

Samples PM-B-6-S-06-6 and PM-B-6-502 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentra	tion (mg/Kg)	
Analyte	PM-B-6-S-06-6	PM-B-6-502	RPD
Copper	39.9	33.6	17
Mercury	4.4	2.5	55

XII. Internal Standards (ICP-MS)

Internal standards data were not reviewed for Stage 2A validation.

XIII. Sample Result Verification

Raw data were not reviewed for Stage 2A validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the methods.

Due to MS/MSD %R and RPD, data were qualified as estimated in nineteen samples.

No results were rejected in this SDG.

Kimberly-Clark Upland Area Metals - Data Qualification Summary - SDG 006251

Sample	Analyte	Flag	A or P	Reason
PM-B-6-S-06-6 PM-B-6-S-07-6 PM-B-6-S-08-6 PM-B-6-S-02 PM-B-6-S-05-6 PM-B-6-S-05-9 PM-B-6-S-02-6 PM-B-6-S-02-10 PM-B-6-S-01-4 PM-B-6-S-02-4 PM-B-6-S-03-6 PM-B-6-S-03-9 PM-B-6-S-04-6 PM-B-6-S-04-9	Mercury	J (all detects)	A	Matrix spike/Matrix spike duplicate (%R)
PM-B-6-S-06-6 PM-B-6-S-07-6 PM-B-6-S-08-6 PM-B-6-S-05-6 PM-B-6-S-05-9 PM-B-6-S-05-9 PM-B-6-S-07-9 PM-B-6-S-01-6 PM-B-6-S-01-6 PM-B-6-B-01-10 PM-B-6-B-02-10 PM-B-6-B-03-10 PM-B-6-S-01-4 PM-B-6-S-01-4 PM-B-6-S-03-6 PM-B-6-S-03-6 PM-B-6-S-03-9 PM-B-6-S-03-9 PM-B-6-S-04-6 PM-B-6-S-04-9	Mercury	J (all detects) UJ (all non-detects)	A .	Matrix spike/Matrix spike duplicate (RPD)

Kimberly-Clark Upland Area Metals - Laboratory Blank Data Qualification Summary - SDG 006251

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Metals - Field Blank Data Qualification Summary - SDG 006251

No Sample Data Qualified in this SDG

LDC #: 48734D4a

VALIDATION COMPLETENESS WORKSHEET

Stage 2A

SDG #: 006251 Laboratory: Friedman & Bruya, Inc.

Reviewer: 2nd Reviewer:

METHOD: Cr, Hg (EPA SW 846 Method 6020B/EPA Method 1631E)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
<u>l.</u>	Sample receipt/Technical holding times	AIA	
II.	ICP/MS Tune	N	
111.	Instrument Calibration	N	
IV.	ICP Interference Check Sample (ICS) Analysis	N	
_ V.	Laboratory Blanks	B	
VI.	Field Blanks	2	
VII.	Matrix Spike/Matrix Spike Duplicates	Z	
VIII.	Duplicate sample analysis	2	
IX.	Serial Dilution	7	
X.	Laboratory control samples	Ä	ILS
XI.	Field Duplicates	100	(1,4)
XII.	Internal Standard (ICP-MS)	N	
XIII.	Sample Result Verification	N	
XIV	Overall Assessment of Data	A	

Note:

A = Acceptable

N = Not provided/applicable SW = See worksheet

ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate

TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	PM-B-6-S-06-6	006251-01	Soil	06/16/20
2	PM-B-6-S-07-6	006251-02	Soil	06/16/20
3	PM-B-6-S-08-6	006251-03	Soil	06/16/20
4	PM-B-6-502	006251-04	Soil	06/16/20
5	PM-B-6-S-05-6	006251-05	Soil	06/16/20
6	PM-B-6-S-05-9	006251-06	Soil	06/16/20
7	PM-B-6-S-06-9	006251-07	Soil	06/16/20
8	PM-B-6-S-07-9	006251-08	Soil	06/16/20
9	PM-B-6-S-01-6	006251-09	Soil	06/16/20
10	PM-B-6-S-02-6	006251-10	Soil	06/16/20
11	PM-B-6-B-01-10	006251-11	Soil	06/16/20
12	PM-B-6-B-02-10	006251-12	Soil	06/16/20
13	PM-B-6-B-03-10	006251-13	Soil	06/16/20
14	PM-B-6-S-01-4	006251-14	Soil	06/16/20
15	PM-B-6-S-02-4	006251-15	Soil	06/16/20

LDC #: 48734D4a

VALIDATION COMPLETENESS WORKSHEET

Stage 2A

SDG #: 006251 Laboratory: Friedman & Bruya, Inc.

Date: 0121000
Page: 2 of 2
Reviewer: 55M
2nd Reviewer:

METHOD: Cr, Hg (EPA SW 846 Method 6020B/EPA Method 1631E)

	Client ID	Lab ID	Matrix	Date
16	PM-B-6-S-03-6	006251-16	Soil	06/16/20
17	PM-B-6-S-03-9	006251-17	Soil	06/16/20
18	PM-B-6-S-04-6	006251-18	Soil	06/16/20
19	PM-B-6-S-04-9	006251-19	Soil	06/16/20
20	PM-B-6-S-06-6MS	006251-01MS	Soil	06/16/20
21	PM-B-6-S-06-6MSD	006251-01MSD	Soil	06/16/20
22				
23				
24				

24			
Notes:			

LDC #: 4973404a

VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference

Page: 1 of 1
Reviewer: DTM
2nd reviewer:

All circled elements are applicable to each sample.

Sample ID	Matrix	Target Analyte List (TAL)							
1-19	S	Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn							
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn							
QC20-21	S	Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, 🔞 Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn							
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn							
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn							
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn							
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn							
:		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn							
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn							
'		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn							
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn							
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn							
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn							
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn							
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn							
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn							
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn							
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn							
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn							
		AI, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn							
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn							
	Analysis Method								
ICP		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn							
ICP-MS		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn							
GFAA		Al Sh. As. Ba. Be. B. Cd. Ca. Cr. Co. Cu. Fe. Ph. Li, Mg. Mo. Mn. Hg. Ni, K. Se. Ag. Na, Sr. Tl. Sn. Ti, W. U. V. Zn							

Comments: Mercury by CVAA if performed

LDC #: 48734D4a

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

Page:_	1_	_of_	1_
Review	D٦	M	
2nd Reviewer	r:_C		
			_

METHOD: Trace metals (EPA SW 846 Method 6020/6010/7470)

Please se	e qualifications	below for all	questions answered "	N". Not applicable of	questions are	identified as "N/A".
. 10000	o qualificationic	DOI:011 101 011	940000000000000000000000000000000000000		quocaono are	idollation do 1471.

(Y) N N/A Was a matrix spike analyzed for each matrix in this SDG?

Were matrix spike percent recoveries (%R) within the control limits of /5-125? If) the sample concentration exceeded the spike concentration by a factor Y (13) N/A

of 4 or more, no action was taken.

Were all duplicate sample relative percent differences (RPD) £ 20% for samples? Y (N) N/A

LEVEL IV ONLY:

Were recalculated results acceptable? See Level IV Recalculation Worksheet for recalculations. Y N N/A

	MS/MSD ID	Matrix	Analyte	MS %Recovery	MSD %Recovery	RPD (Limits)	Associated Samples	Qualific	eations
	20/21	·S	Hg	185	118		All	J/A (det)/W)	M=7,811,B
			Hg			44	ALL	J/UJ/A (det)	
							·		
Ш									
Ш									
Щ									
Ш									
\square									
\Box									

Comments:_	 		 	 		

LDC#: 48734D4a

VALIDATION FINDINGS WORKSHEET

Field Duplicates

Page:_1_of_1_ Reviewer: DTM_ 2nd Reviewer

METHOD: Metals (EPA Method 6010/6020/7000)

	Concentrati	Concentration (mg/Kg)		
Analyte	1	4	RPD	
Copper	39.9	33.6	17	
Mercury	4.4	2.5	55	

V:\Darionna\FIELD DUPLICATES\Field Duplicates\FD_inorganic\2020\48734D4a.wpd

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Kimberly-Clark Upland Area

LDC Report Date:

August 17, 2020

Parameters:

Polynuclear Aromatic Hydrocarbons

Validation Level:

Stage 2A

Laboratory:

Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 006275

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
LP-S-01-6.5	006275-01	Soil	06/17/20
LP-S-02-6.5	006275-02	Soil	06/17/20
LP-S-03-6.5	006275-03	Soil	06/17/20
LP-B-01-8	006275-04	Soil	06/17/20
LP-S-10-6.5	006275-05	Soil	06/17/20
LP-503	006275-06	Soil	06/17/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polynuclear Aromatic Hydrocarbons (PAHs) by Environmental Protection Agency (EPA) SW 846 Method 8270E in Selected Ion Monitoring (SIM) mode

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

Instrument performance check data were not reviewed for Stage 2A validation.

III. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

IV. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

X. Field Duplicates

Samples LP-B-01-8 and LP-503 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentra		
Compound	LP-B-01-8	LP-503	RPD
Benzo(a)anthracene	0.087	0.064	30
Chrysene	0.098	0.079	21
Benzo(a)pyrene	0.11	0.080	32
Benzo(b)fluoranthene	0.12	0.086	33
Benzo(k)fluoranthene	0.045	0.034	28
Indeno(1,2,3-cd)pyrene	0.053	0.040	28
Dibenzo(a,h)anthracene	0.011	0.01U	Not calculable

XI. Internal Standards

Internal standards data were not reviewed for Stage 2A validation.

XII. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XIV. System Performance

Raw data were not reviewed for Stage 2A validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Kimberly-Clark Upland Area Polynuclear Aromatic Hydrocarbons - Data Qualification Summary - SDG 006275

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Polynuclear Aromatic Hydrocarbons - Laboratory Blank Data Qualification **Summary - SDG 006275**

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Polynuclear Aromatic Hydrocarbons - Field Blank Data Qualification Summary -SDG 006275

No Sample Data Qualified in this SDG

SDG	#:48734E2b		PLETENI Stage 2A	ESS	S WORKSHEET		I Rev	Date: <u>ಶ/ಡ/</u> Page: <u></u> of \ iewer: <u>\</u> 7
MET	HOD: GC/MS Polynuclear Aromatic Hydronic Samples listed below were reviewed for eation findings worksheets.	·					2nd Rev	iewer:
	Validation Area				Comm	ent	3	
1.	Sample receipt/Technical holding times	A,A						
11.	GC/MS Instrument performance check	N						
III.	Initial calibration/ICV	N/N						
IV.	Continuing calibration	N						
V.	Laboratory Blanks	A						
VI.	Field blanks	17						
VII	. Surrogate spikes	I A						
VIII		N	Non	Cli.	ent			
IX.		A	LCS					
X.		SW	D= 4	+/	0			·
XI.		N						
XII	. Compound quantitation RL/LOQ/LODs	N	Dry were	m	basis			
XIII	. Target compound identification	N						
XIV	. System performance	N						
XV		A						
Note:	N = Not provided/applicable $R = R$	No compound: insate Field blank	s detected		D = Duplicate TB = Trip blank EB = Equipment blar	nk	SB=Source b OTHER:	olank
	Client ID				Lab ID	N	latrix	Date
1 *	LP-S-01-6.5				006275-01	5	Soil	06/17/20
2.	LP-S-02-6.5				006275-02	S	Soil	06/17/20
3 .	LP-S-03-6.5				006275-03	5	Soil	06/17/20
4 •	LP-B-01-8		D		006275-04	S	Soil	06/17/20
5	LP-S-10-6.5				006275-05		Soil	06/17/20
6_	LP-503				006275-06	5	Soil	06/17/20
7_								
8								
9								
Notes						T		
μ	00-1408 MB2 115				***			
1 1						1		

VALIDATION FINDINGS WORKSHEET

METHOD: GC/MS SVOA

WIETHOD, GC/IVIS SVOA				
A. Phenol	CC. Dimethylphthalate	EEE. Bis(2-ethylhexyl)phthalate	GGGG. C30-Hopane	I1. Methyl methanesulfonate
B. Bis (2-chloroethyl) ether	DD. Acenaphthylene	FFF. Di-n-octylphthalate	HHHH. 1-Methylphenanthrene	J1. Ethyl methanesulfonate
C. 2-Chlorophenoi	EE. 2,6-Dinitrotoluene	GGG. Benzo(b)fluoranthene	IIII. 1,4-Dioxane	K1. o,o',o''-Triethylphosphorothioate
D. 1,3-Dichlorobenzene	FF. 3-Nitroaniline	HHH. Benzo(k)fluoranthene	JJJJ. Acetophenone	L1. n-Phenylene diamine
E. 1,4-Dichlorobenzene	GG. Acenaphthene	III. Benzo(a)pyrene	KKKK. Atrazine	M1. 1,4-Naphthoquinone
F. 1,2-Dichlorobenzene	HH. 2,4-Dinitrophenol	JJJ. Indeno(1,2,3-cd)pyrene	LLLL. Benzaldehyde	N1. N-Nitro-o-toluidine
G. 2-Methylphenol	II. 4-Nitrophenol	KKK. Dibenz(a,h)anthracene	MMMM. Caprolactam	O1. 1,3,5-Trinitrobenzene
H. 2,2'-Oxybis(1-chloropropane)	JJ. Dibenzofuran	LLL. Benzo(g,h,i)perylene	NNNN. 2,6-Dichlorophenol	P1. Pentachlorobenzene
I. 4-Methylphenol	KK. 2,4-Dinitrotoluene	MMM. Bis(2-Chloroisopropyl)ether	OOOO. 1,2-Diphenylhydrazine	Q1. 4-Aminobiphenyl
J. N-Nitroso-di-n-propylamine	LL. Diethylphthalate	NNN. Aniline	PPPP. 3-Methylphenol	R1. 2-Naphthylamine
K. Hexachloroethane	MM. 4-Chlorophenyl-phenyl ether	OOO. N-Nitrosodimethylamine	QQQQ. 3&4-Methylphenol	S1. Triphenylene
L. Nitrobenzene	NN. Fluorene	PPP. Benzoic Acid	RRRR. 4-Dimethyldibenzothiophene (4MDT)	T1. Octachlorostyrene
M. Isophorone	OO. 4-Nitroaniline	QQQ. Benzyl alcohol	SSSS. 2/3-Dimethyldibenzothiophene (4MDT)	U1. Famphur
N. 2-Nitrophenol	PP. 4,6-Dinitro-2-methylphenol	RRR. Pyridine	TTTT. 1-Methyldibenzothiophene (1MDT)	V1. 1,4-phenylenediamine
O. 2,4-Dimethylphenol	QQ. N-Nitrosodiphenylamine	SSS. Benzidine	UUUU 2,3,4,6-Tetrachlorophenol	W1. Methapyrilene
P. Bis(2-chloroethoxy)methane	RR. 4-Bromophenyl-phenylether	TTT. 1-Methylnaphthalene	VVVV. 1,2,4,5-Tetrachlorobenzene	X1. Pentachloroethane
Q. 2,4-Dichlorophenol	SS. Hexachlorobenzene	UUU.Benzo(b)thiophene	WWWW 2-Picoline	Y1. 3,3'-Dimethylbenzidine
R. 1,2,4-Trichlorobenzene	TT. Pentachlorophenol	VVV.Benzonaphthothiophene	XXXX. 3-Methylcholanthrene	Z1. o-Toluidine
S. Naphthalene	UU. Phenanthrene	WWW.Benzo(e)pyrene	YYYY. a,a-Dimethylphenethylamine	A2. 1-Naphthylamine
T. 4-Chloroaniline	VV. Anthracene	XXX. 2,6-Dimethylnaphthalene	ZZZZ. Hexachloropropene	B2. 4-Aminobiphenyl
U. Hexachlorobutadiene	WW. Carbazole	YYY. 2,3,5-Trimethylnaphthalene	A1. N-Nitrosodiethylamine	C2. 4-Nitroquinoline-1-oxide
V. 4-Chloro-3-methylphenol	XX. Di-n-butylphthalate	ZZZ. Perylene	B1. N-Nitrosodi-n-butylamine	D2. Hexachloropene
W. 2-Methylnaphthalene	YY. Fluoranthene	AAAA. Dibenzothiophene	C1. N-Nitrosomethylethylamine	E2. Bis (2-chloro-1-methylethyl) ether
X. Hexachlorocyclopentadiene	ZZ. Pyrene	BBBB. Benzo(a)fluoranthene	D1. N-Nitrosomorpholine	F2. Bifenthrin
Y. 2,4,6-Trichlorophenol	AAA. Butylbenzylphthalate	CCCC. Benzo(b)fluorene	E1. N-Nitrosopyrrolidine	G2. Cyfluthrin
Z. 2,4,5-Trichlorophenol	BBB. 3,3'-Dichlorobenzidine	DDDD. cis/trans-Decalin	F1. Phenacetin	H2. Cypermethrin
AA. 2-Chloronaphthalene	CCC. Benzo(a)anthracene	EEEE. 1,1'-Biphenyl	G1. 2-Acetylaminofluorene	I2. Permethrin (cis/trans)
BB. 2-Nitroaniline	DDD. Chrysene	FFFF. Retene	H1. Pronamide	J2. 5-Nitro-o-toluidine

LDC#:48734E2b

VALIDATION FINDINGS WORKSHEET <u>Field Duplicates</u>

Page:_1_of_1_ Reviewer:__LT___ 2nd Reviewer:____

METHOD: GC/MS PAHs (EPA SW846 Method 8270E SIM)

	Concentra	Concentration (mg/kg)			
Compound	4	6	RPD		
ccc	0.087	0.064	30		
DDD	0.098	0.079	21		
Ш	0.11	0.080	32		
GGG	0.12	0.086	33		
ннн	0.045	0.034	28		
111	0.053	0.040	28		
KKK	0.011	0.01U	NC		

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Kimberly-Clark Upland Area

LDC Report Date:

August 13, 2020

Parameters:

Mercury

Validation Level:

Stage 2A

Laboratory:

Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 006275

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
LP-S-01-6.5	006275-01	Soil	06/17/20
LP-S-02-6.5	006275-02	Soil	06/17/20
LP-S-03-6.5	006275-03	Soil	06/17/20
LP-B-01-8	006275-04	Soil	06/17/20
LP-S-10-6.5	006275-05	Soil	06/17/20
LP-503	006275-06	Soil	06/17/20
LP-503MS	006275-06MS	Soil	06/17/20
LP-503MSD	006275-06MSD	Soil	06/17/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Mercury by Environmental Protection Agency (EPA) Method 1631E

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Instrument Calibration

Instrument calibration data were not reviewed for Stage 2A validation.

III. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

IV. Field Blanks

No field blanks were identified in this SDG.

V. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VI. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

VII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

VIII. Field Duplicates

Samples LP-B-01-8 and LP-503 were identified as field duplicates. No results were detected in any of the samples.

IX. Sample Result Verification

Raw data were not reviewed for Stage 2A validation.

X. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Kimberly-Clark Upland Area Mercury - Data Qualification Summary - SDG 006275

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Mercury - Laboratory Blank Data Qualification Summary - SDG 006275

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Mercury - Field Blank Data Qualification Summary - SDG 006275

No Sample Data Qualified in this SDG

LDC #: 48734E4c

VALIDATION COMPLETENESS WORKSHEET

Stage 2A

SDG #: 006275 Laboratory: Friedman & Bruya, Inc.

Reviewer:_{ 2nd Reviewer;

METHOD: Mercury (EPA Method 1631E)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Sample receipt/Technical holding times	AIB	
II.	Instrument Calibration	N	
III.	Laboratory Blanks	A	
IV.	Field Blanks	17	
V.	Matrix Spike/Matrix Spike Duplicates	A	
VI.	Duplicate sample analysis	Ň	
VII.	Laboratory control samples	A	US
VIII.	Field Duplicates	ND	(4,6)
IX.	Sample Result Verification	N	,
Lx	Overall Assessment of Data	4	

Note:

A = Acceptable

N = Not provided/applicable

SW = See worksheet

ND = No compounds detected

R = Rinsate FB = Field blank D = Duplicate

TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

Client ID Lab ID Matrix Date 006275-01 Soil 06/17/20 LP-S-01-6.5 LP-S-02-6.5 006275-02 Soil 06/17/20 2 LP-S-03-6.5 006275-03 Soil 06/17/20 LP-B-01-8 006275-04 Soil 06/17/20 5 LP-S-10-6.5 006275-05 Soil 06/17/20 006275-06 Soil 06/17/20 6 LP-503 LP-503MS 006275-06MS Soil 06/17/20 006275-06MSD 06/17/20 LP-503MSD Soil 8 9 10 11 12 13 14 1<u>5</u> 16 Notes:

Laboratory Data Consultants, Inc. **Data Validation Report**

Project/Site Name: Kimberly-Clark Upland Area

LDC Report Date: August 17, 2020

Total Petroleum Hydrocarbons as Gasoline Parameters:

Validation Level: Stage 2A

Laboratory: Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 006275

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
LP-S-01-6.5	006275-01	Soil	06/17/20
LP-S-02-6.5	006275-02	Soil	06/17/20
LP-S-03-6.5	006275-03	Soil	06/17/20
LP-B-01-8	006275-04	Soil	06/17/20
LP-S-10-6.5	006275-05	Soil	06/17/20
LP-503	006275-06	Soil	06/17/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Petroleum Hydrocarbons (TPH) as Gasoline by NWTPH-Gx

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered not detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

Samples LP-B-01-8 and LP-503 were identified as field duplicates. No results were detected in any of the samples.

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Kimberly-Clark Upland Area Total Petroleum Hydrocarbons as Gasoline - Data Qualification Summary - SDG 006275

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Total Petroleum Hydrocarbons as Gasoline - Laboratory Blank Data Qualification **Summary - SDG 006275**

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Total Petroleum Hydrocarbons as Gasoline - Field Blank Data Qualification **Summary - SDG 006275**

No Sample Data Qualified in this SDG

#:48734E7 VALIDATIO #:006275 ratory:_Friedman & Bruya, Inc			S WORKSHE		Date: 4/13 Page: _\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
IOD: GC TPH as Gasoline (NWTPH-G	x)			LIM	Neviewei.
amples listed below were reviewed for e	each of the fo	ollowing valida	ation areas, Valid	lation findings are	e noted in attacl
tion findings worksheets.	7440.1.2.	J. J			/ 110t0 a 111 a 1110.
Validation Area			Col	mments	
	A,A				
Initial calibration/ICV	N/N				
	N				
Laboratory Blanks	A			***************************************	*****
Field blanks	77				
Surrogate spikes	A				
Matrix spike/Matrix spike duplicates	N	Von aie	<u></u>		
Laboratory control samples	K	LCS			
Field duplicates	M	D=4+6			
Compound quantitation RL/LOQ/LODs	N	Dry weigh	t basis		1111
Target compound identification	N				
Overall assessment of data	A				
N = Not provided/applicable R = R	Rinsate	s detected	D = Duplicate TB = Trip blank EB = Equipment	OTHER	urce blank l:
Client ID			Lab ID	Matrix	Date
LP-S-01-6.5			006275-01	Soil	06/17/20
LP-S-02-6.5			006275-02	Soil	06/17/20
LP-S-03-6.5			006275-03	Soil	06/17/20
LP-B-01-8		D	006275-04	Soil	06/17/20
LP-S-10-6.5			006275-05	Soil	06/17/20
LP-503		D	006275-06	Soil	06/17/20
2 2 2	<u></u>			11	
)-1312MB2 1					
	#:006275 atory: Friedman & Bruya, Inc. ### Bruya, Inc.	#: 006275 atory: Friedman & Bruya, Inc. ##ODD: GC TPH as Gasoline (NWTPH-Gx) ##Image: Bisted below were reviewed for each of the fotion findings worksheets. Validation Area	#:	#: 006275 atory: Friedman & Bruya, Inc. ##: 006275 atory: Friedman & Bruya, Inc. ##: 006275 ##: 0	#Obe275

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Kimberly-Clark Upland Area

LDC Report Date: August 17, 2020

Parameters: Total Petroleum Hydrocarbons as Extractables

Validation Level: Stage 2A

Friedman & Bruya, Inc. Laboratory:

Sample Delivery Group (SDG): 006275

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
LP-S-01-6.5	006275-01	Soil	06/17/20
LP-S-02-6.5	006275-02	Soil	06/17/20
LP-S-03-6.5	006275-03	Soil	06/17/20
LP-B-01-8	006275-04	Soil	06/17/20
LP-S-10-6.5	006275-05	Soil	06/17/20
LP-503	006275-06	Soil	06/17/20
LP-S-01-6.5MS	006275-01MS	Soil	06/17/20
LP-S-01-6.5MSD	006275-01MSD	Soil	06/17/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Petroleum Hydrocarbons (TPH) as Extractables by NWTPH-Dx

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered not detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

Samples LP-B-01-8 and LP-503 were identified as field duplicates. No results were detected in any of the samples.

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Kimberly-Clark Upland Area Total Petroleum Hydrocarbons as Extractables - Data Qualification Summary -SDG 006275

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Total Petroleum Hydrocarbons as Extractables - Laboratory Blank Data **Qualification Summary - SDG 006275**

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Total Petroleum Hydrocarbons as Extractables - Field Blank Data Qualification **Summary - SDG 006275**

No Sample Data Qualified in this SDG

SDG # Labor	#:48734E8VALIDATIO #:006275 atory: Friedman & Bruya, Inc IOD: GC TPH as Extractables (NWTPH	S	LETENESS tage 2A	S WORKSHEET		Date: <u>08/(3/2</u> Page:(of _ Reviewer:/ Reviewer:
	amples listed below were reviewed for e tion findings worksheets.	ach of the fo	ollowing valida	ition areas. Validati	on findings are	noted in attached
	Validation Area	11/	**	Comn	nents	
I.	Sample receipt/Technical holding times	1 1/1			**************************************	
II.	Initial calibration/ICV	N/N				
111.	Continuing calibration	N A				
IV.	Laboratory Blanks	17			·	
V	Field blanks	A	· · · · · · · · · · · · · · · · · · ·			
VI.	Surrogate spikes	1	(0.0)			
VII.	Matrix spike/Matrix spike duplicates	A	(7.8)			
VIII.	Laboratory control samples	A	LC5			
IX.	Field duplicates	ND	D=4+6			
X.	Compound quantitation RL/LOQ/LODs	N	Dry weigh	+ basis		
XI.	Target compound identification	N A	*****		····	
Note:	N = Not provided/applicable R = R	No compounds insate Field blank	s detected	D = Duplicate TB = Trip blank EB = Equipment blan	OTHER	rce blank
	Client ID			Lab ID	Matrix	Date
1	LP-S-01-6.5			006275-01	Soil	06/17/20
2	LP-S-02-6.5			006275-02	Soil	06/17/20
3	LP-S-03-6.5			006275-03	Soil	06/17/20
4	LP-B-01-8		D	006275-04	Soil	06/17/20
5	LP-S-10-6.5			006275-05	Soil	06/17/20
	LP-503		D	006275-06	Soil	06/17/20
	LP-S-01-6.5MS			006275-01MS	Soil	06/17/20
8 1	LP-S-01-6.5MSD			006275-01MSD	Soil	06/17/20
9						
-						

Note	lotes:							
П	00-1413 MB							

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Kimberly-Clark Upland Area

LDC Report Date:

August 17, 2020

Parameters:

Polynuclear Aromatic Hydrocarbons

Validation Level:

Stage 2A

Laboratory:

Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 006294

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
LP-S-09-6.5	006294-01	Soil	06/18/20
LP-B-02-8	006294-02	Soil	06/18/20
LP-S-04-6.5	006294-03	Soil	06/18/20
LP-S-08-6.5	006294-04	Soil	06/18/20
LP-S-06-6.5	006294-05	Soil	06/18/20
LP-B-03-8	006294-06	Soil	06/18/20
LP-S-05-6.5	006294-07	Soil	06/18/20
LP-S-07-6.5	006294-08	Soil	06/18/20
LP-S-09-6.5MS	006294-01MS	Soil	06/18/20
LP-S-09-6.5MSD	006294-01MSD	Soil	06/18/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polynuclear Aromatic Hydrocarbons (PAHs) by Environmental Protection Agency (EPA) SW 846 Method 8270E in Selected Ion Monitoring (SIM) mode

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

Instrument performance check data were not reviewed for Stage 2A validation.

III. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

IV. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Compound	MS (%R) (Limits)	MSD (%R) (Limits)	Flag	A or P
LP-S-09-6.5MS/MSD (LP-S-09-6.5)	Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene	16 (23-170) 20 (31-146)	14 (23-170) 18 (31-146)	J (all detects) J (all detects)	А

Relative percent differences (RPD) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Compound	RPD (Limits)	Flag	A or P
LP-S-09-6.5MS/MSD (LP-S-09-6.5)	Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene	41 (≤20) 55 (≤20) 91 (≤20) 43 (≤20) 69 (≤20)	J (all detects)	A

IX. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

Internal standards data were not reviewed for Stage 2A validation.

XII. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XIV. System Performance

Raw data were not reviewed for Stage 2A validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method.

Due to MS/MSD %R and RPD, data were qualified as estimated in one sample.

No results were rejected in this SDG.

Kimberly-Clark Upland Area Polynuclear Aromatic Hydrocarbons - Data Qualification Summary - SDG 006294

Sample	Compound	Flag	A or P	Reason
LP-S-09-6.5	Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene	J (all detects) J (all detects)	Α	Matrix spike/Matrix spike duplicate (%R)
LP-S-09-6.5	Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene	J (all detects)	А	Matrix spike/Matrix spike duplicate (RPD)

Kimberly-Clark Upland Area Polynuclear Aromatic Hydrocarbons - Laboratory Blank Data Qualification **Summary - SDG 006294**

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Polynuclear Aromatic Hydrocarbons - Field Blank Data Qualification Summary -SDG 006294

No Sample Data Qualified in this SDG

SDG	#:48734F2b VALIDATI #:006294 ratory: <u>Friedman & Bruya, Inc.</u>		PLETENES: Stage 2A	S WORKSHEET	Re	Date: <u>&(ዼ/</u> Page: <u></u> of <u>)</u> eviewer: <u></u>
MET	HOD: GC/MS Polynuclear Aromatic Hyd	drocarbons (l	EPA SW 846	Method 8270E-SIM	2nd R∈)	eviewer:
The s	samples listed below were reviewed for a ation findings worksheets.	•				oted in attached
	Validation Area			Comn	nents	
I.	Sample receipt/Technical holding times	A A			_	100
11.	GC/MS Instrument performance check	N				
111.	Initial calibration/ICV	N/N				
IV.	Continuing calibration	N				
V.	Laboratory Blanks	A				
VI.	Field blanks	N				
VII.	Surrogate spikes	A				
VIII.	Matrix spike/Matrix spike duplicates	SN	(9,0)			
IX.	Laboratory control samples	A	LCS			
Χ.	Field duplicates	h				
XI.	Internal standards	N				
XII.	Compound quantitation RL/LOQ/LODs	N	Dry weight	- basis		
XIII.	Target compound identification	N				
XIV	System performance	N				
XV.	Overall assessment of data	<u> </u>				
lote:	N = Not provided/applicable R = I	= No compound Rinsate : Field blank	s detected	D = Duplicate TB = Trip blank EB = Equipment bla	SB=Source OTHER: nk	e blank
	Client ID			Lab ID	Matrix	Date
1	LP-S-09-6.5			006294-01	Soil	06/18/20
2	LP-B-02-8			006294-02	Soil	06/18/20
3	LP-S-04-6.5			006294-03	Soil	06/18/20
4	LP-S-08-6.5			006294-04	Soil	06/18/20_
5	LP-S-06-6.5			006294-05	Soil	06/18/20
6	LP-B-03-8			006294-06	Soil	06/18/20
7	LP-S-05-6.5			006294-07	Soil	06/18/20
88	LP-S-07-6.5			006294-08	Soil	06/18/20_
9	LP-S-09-6.5MS			006294-01MS	Soil	06/18/20
10	LP-S-09-6.5MSD			006294-01MSD	Soil	06/18/20
44						

Notes:

00-1416MB

VALIDATION FINDINGS WORKSHEET

METHOD: GC/MS SVOA

WIETHOD: GC/IVIS SVOA				
A. Phenol	CC. Dimethylphthalate	EEE. Bis(2-ethylhexyl)phthalate	GGGG. C30-Hopane	I1. Methyl methanesulfonate
B. Bis (2-chloroethyl) ether	DD. Acenaphthylene	FFF. Di-n-octylphthalate	HHHH. 1-Methylphenanthrene	J1. Ethyl methanesulfonate
C. 2-Chlorophenol	EE. 2,6-Dinitrotoluene	GGG. Benzo(b)fluoranthene	IIII. 1,4-Dioxane	K1. o,o',o''-Triethylphosphorothioate
D. 1,3-Dichlorobenzene	FF. 3-Nitroaniline	HHH. Benzo(k)fluoranthene	JJJJ. Acetophenone	L1. n-Phenylene diamine
E. 1,4-Dichlorobenzene	GG. Acenaphthene	III. Benzo(a)pyrene	KKKK. Atrazine	M1. 1,4-Naphthoquinone
F. 1,2-Dichlorobenzene	HH. 2,4-Dinitrophenol	JJJ. Indeno(1,2,3-cd)pyrene	LLLL. Benzaldehyde	N1. N-Nitro-o-toluidine
G. 2-Methylphenol	II. 4-Nitrophenol	KKK. Dibenz(a,h)anthracene	MMMM. Caprolactam	O1. 1,3,5-Trinitrobenzene
H. 2,2'-Oxybis(1-chloropropane)	JJ. Dibenzofuran	LLL. Benzo(g,h,i)perylene	NNNN. 2,6-Dichlorophenol	P1. Pentachlorobenzene
I. 4-Methylphenol	KK. 2,4-Dinitrotoluene	MMM. Bis(2-Chloroisopropyl)ether	OOOO. 1,2-Diphenylhydrazine	Q1. 4-Aminobiphenyl
J. N-Nitroso-di-n-propylamine	LL. Diethylphthalate	NNN. Aniline	PPPP. 3-Methylphenol	R1. 2-Naphthylamine
K. Hexachloroethane	MM. 4-Chlorophenyl-phenyl ether	OOO. N-Nitrosodimethylamine	QQQQ. 3&4-Methylphenol	S1. Triphenylene
L. Nitrobenzene	NN. Fluorene	PPP. Benzoic Acid	RRRR. 4-Dimethyldibenzothiophene (4MDT)	T1. Octachlorostyrene
M. Isophorone	OO. 4-Nitroaniline	QQQ. Benzyl alcohol	SSSS. 2/3-Dimethyldibenzothiophene (4MDT)	U1. Famphur
N. 2-Nitrophenol	PP. 4,6-Dinitro-2-methylphenol	RRR. Pyridine	TTTT. 1-Methyldibenzothiophene (1MDT)	V1. 1,4-phenylenediamine
O. 2,4-Dimethylphenol	QQ. N-Nitrosodiphenylamine	SSS. Benzidine	UUUU 2,3,4,6-Tetrachlorophenol	W1. Methapyrilene
P. Bis(2-chloroethoxy)methane	RR. 4-Bromophenyl-phenylether	TTT. 1-Methylnaphthalene	VVVV. 1,2,4,5-Tetrachlorobenzene	X1. Pentachloroethane
Q. 2,4-Dichlorophenol	SS. Hexachlorobenzene	UUU.Benzo(b)thiophene	WWWW 2-Picoline	Y1. 3,3'-Dimethylbenzidine
R. 1,2,4-Trichlorobenzene	TT. Pentachlorophenol	VVV.Benzonaphthothiophene	XXXX. 3-Methylcholanthrene	Z1. o-Toluidine
S. Naphthalene	UU. Phenanthrene	WWW.Benzo(e)pyrene	YYYY. a,a-Dimethylphenethylamine	A2. 1-Naphthylamine
T. 4-Chloroaniline	VV. Anthracene	XXX. 2,6-Dimethylnaphthalene	ZZZZ. Hexachloropropene	B2. 4-Aminobiphenyl
U. Hexachlorobutadiene	WW. Carbazole	YYY. 2,3,5-Trimethylnaphthalene	A1. N-Nitrosodiethylamine	C2. 4-Nitroquinoline-1-oxide
V. 4-Chloro-3-methylphenol	XX. Di-n-butylphthalate	ZZZ. Perylene	B1. N-Nitrosodi-n-butylamine	D2. Hexachloropene
W. 2-Methylnaphthalene	YY. Fluoranthene	AAAA. Dibenzothiophene	C1. N-Nitrosomethylethylamine	E2. Bis (2-chloro-1-methylethyl) ether
X. Hexachlorocyclopentadiene	ZZ. Pyrene	BBBB. Benzo(a)fluoranthene	D1. N-Nitrosomorpholine	F2. Bifenthrin
Y. 2,4,6-Trichlorophenol	AAA. Butylbenzylphthalate	CCCC. Benzo(b)fluorene	E1. N-Nitrosopyrrolidine	G2. Cyfluthrin
Z. 2,4,5-Trichlorophenol	BBB. 3,3'-Dichlorobenzidine	DDDD. cis/trans-Decalin	F1. Phenacetin	H2. Cypermethrin
AA. 2-Chloronaphthalene	CCC. Benzo(a)anthracene	EEEE. 1,1'-Biphenyl	G1. 2-Acetylaminofluorene	I2. Permethrin (cis/trans)
BB. 2-Nitroaniline	DDD. Chrysene	FFFF. Retene	H1. Pronamide	J2. 5-Nitro-o-toluidine

LDC #: 48734F2b

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

Page: <u>1</u>	_of_1_
Reviewer:	LT
2nd Reviewer:	0

METHOD: GC/MS PAHs (EPA SW 846 Method 8270E SIM)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Yx N_ N/A_ Were a matrix spike (MS) and matrix spike duplicate (MSD) or duplicate sample analyzed for each matrix in this SDG?

Yx N N/A Was a MS/MSD analyzed every 20 samples of each matrix?

Y_ Nx N/A Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

#	Date	MS/MSD ID	Compound	MS %R (Limits)	MSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
		9/10	JJJ	16 (23 - 170)	14 (23 - 170)		1 (DET)	J/UJ/A
			KKK	20 (31 -146)	18 (31 -146)		ţ	1
			ccc			41 (≤20)	1	J/A DETS
			DDD			55 (≤20)	1	Ļ
			GGG			91 (≤20)	ļ	ļ
			ННН			43 (≤20)	<u> </u>	Į.
Ш			III			69 (≤20)	↓	ļ
Ш								
Ш								
Ш			<u> </u>					
Щ				10 (10 to 10 to			A STATE OF THE STA	
П				· · · · · · · · · · · · · · · · · · ·				
H								
H								
H								
H								
Ц								
Π								
H				•				
$\vdash \vdash$							1.0.00	
H								
H	i							
H								

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Kimberly-Clark Upland Area

LDC Report Date: August 13, 2020

Mercury Parameters:

Validation Level: Stage 2A

Laboratory: Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 006294

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
LP-S-09-6.5	006294-01	Soil	06/18/20
LP-B-02-8	006294-02	Soil	06/18/20
LP-S-04-6.5	006294-03	Soil	06/18/20
LP-S-08-6.5	006294-04	Soil	06/18/20
LP-S-06-6.5	006294-05	Soil	06/18/20
LP-B-03-8	006294-06	Soil	06/18/20
LP-S-05-6.5	006294-07	Soil	06/18/20
LP-S-07-6.5	006294-08	Soil	06/18/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Mercury by Environmental Protection Agency (EPA) Method 1631E

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Instrument Calibration

Instrument calibration data were not reviewed for Stage 2A validation.

III. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

IV. Field Blanks

No field blanks were identified in this SDG.

V. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VI. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

VII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

VIII. Field Duplicates

No field duplicates were identified in this SDG.

IX. Sample Result Verification

Raw data were not reviewed for Stage 2A validation.

X. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Kimberly-Clark Upland Area Mercury - Data Qualification Summary - SDG 006294

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Mercury - Laboratory Blank Data Qualification Summary - SDG 006294

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Mercury - Field Blank Data Qualification Summary - SDG 006294

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET LDC #: 48734F4c SDG #: 006294

Stage 2A

Pate:۲	3/12/2010
Page:_	1 of 1
Reviewer:	MICE
2nd Reviewer:_	

Laboratory: Friedman & Bruya, Inc.

METHOD: Mercury (EPA Method 1631E)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
l.	Sample receipt/Technical holding times	AIA	
Н.	Instrument Calibration	N	
III.	Laboratory Blanks	A	
IV.	Field Blanks	2	
V.	Matrix Spike/Matrix Spike Duplicates	7	
VI.	Duplicate sample analysis	N	
VII.	Laboratory control samples	A	US
VIII.	Field Duplicates	7	
IX.	Sample Result Verification	N	
X	Overall Assessment of Data	B	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet

ND = No compounds detected

R = Rinsate FB = Field blank D = Duplicate TB = Trip blank

EB = Equipment blank

SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	LP-S-09-6.5	006294-01	Soil	06/18/20
2	LP-B-02-8	006294-02	Soil	06/18/20
3	LP-S-04-6.5	006294-03	Soil	06/18/20
4	LP-S-08-6.5	006294-04	Soil	06/18/20
5	LP-S-06-6.5	006294-05	Soil	06/18/20
6	LP-B-03-8	006294-06	Soil	06/18/20
7	LP-S-05-6.5	006294-07	Soil	06/18/20
8	LP-S-07-6.5	006294-08	Soil	06/18/20
9				
10				
11 12				
12				
13				
14				
15				
16				
17				
Vote	e·		·	

	-			
		 	 	_

Laboratory Data Consultants, Inc. **Data Validation Report**

Project/Site Name:

Kimberly-Clark Upland Area

LDC Report Date:

August 17, 2020

Parameters:

Total Petroleum Hydrocarbons as Gasoline

Validation Level:

Stage 2A

Laboratory:

Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 006294

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
LP-S-09-6.5	006294-01	Soil	06/18/20
LP-B-02-8	006294-02	Soil	06/18/20
LP-S-04-6.5	006294-03	Soil	06/18/20
LP-S-08-6.5	006294-04	Soil	06/18/20
LP-S-06-6.5	006294-05	Soil	06/18/20
LP-B-03-8	006294-06	Soil	06/18/20
LP-S-05-6.5	006294-07	Soil	06/18/20
LP-S-07-6.5	006294-08	Soil	06/18/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Petroleum Hydrocarbons (TPH) as Gasoline by NWTPH-Gx

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered not detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Kimberly-Clark Upland Area Total Petroleum Hydrocarbons as Gasoline - Data Qualification Summary - SDG 006294

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Total Petroleum Hydrocarbons as Gasoline - Laboratory Blank Data Qualification **Summary - SDG 006294**

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Total Petroleum Hydrocarbons as Gasoline - Field Blank Data Qualification **Summary - SDG 006294**

No Sample Data Qualified in this SDG

	tory: Friedman & Bruya, Inc.	,			2nd	Reviewer: Le Reviewer:
	OD: GC TPH as Gasoline (NWTPH-G	•				
	mples listed below were reviewed for election findings worksheets.	each of the f	ollowing valid	ation areas. Valida	ition findings are	noted in attac
	Validation Area			Com	ments	
l.	Sample receipt/Technical holding times	A, A				
II.	Initial calibration/ICV	N/N				
II. <u> </u>	Continuing calibration	N_				
V.	Laboratory Blanks	A				
V.	Field blanks	N				
VI.	Surrogate spikes	A				
/II.	Matrix spike/Matrix spike duplicates	N	Non dia	W _		
/III.	Laboratory control samples	A	LUS			
X.	Field duplicates	N				
X.	Compound quantitation RL/LOQ/LODs	N	Dry wern	w basis		
(I.	Target compound identification	N_	•			
31	Overall assessment of data	I A			·	
e: 	N = Not provided/applicable R = F SW = See worksheet FB =	No compound: Rinsate Field blank		D = Duplicate TB = Trip blank EB = Equipment bl	OTHER	
	Client ID			Lab ID	Matrix	Date
\neg	P-S-09-6.5			006294-01	Soil	06/18/20
_	P-B-02-8			006294-02	Soil	06/18/20
<u> L</u>	P-S-04-6.5			006294-03	Soil	06/18/20
<u> </u>	P-S-08-6.5			006294-04	Soil	06/18/20
<u> </u> _	P-S-06-6.5			006294-05	Soil	06/18/20
4	P-B-03-8			006294-06	Soil	06/18/20
<u> </u> _	P-S-05-6.5			006294-07	Soil	06/18/20
_ _	P-S-07-6.5			006294-08	Soil	06/18/20
\bot						
\perp	- PARALANA MANANA M					
_						
es:	6 12 12 AM2 2		T T		<u> </u>	
10	0-1312 MB2	,				
+						
┼						
1			i i		1 1	

Stage 2A

LDC #: 48734F7 VALIDATION COMPLETENESS WORKSHEET

SDG #: 006294

Date: odeho

Page: lofl

Laboratory Data Consultants, Inc. **Data Validation Report**

Project/Site Name: Kimberly-Clark Upland Area

LDC Report Date: August 17, 2020

Parameters: Total Petroleum Hydrocarbons as Extractables

Stage 2A Validation Level:

Friedman & Bruya, Inc. Laboratory:

Sample Delivery Group (SDG): 006294

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
LP-S-09-6.5	006294-01	Soil	06/18/20
LP-B-02-8	006294-02	Soil	06/18/20
LP-S-04-6.5	006294-03	Soil	06/18/20
LP-S-08-6.5	006294-04	Soil	06/18/20
LP-S-06-6.5	006294-05	Soil	06/18/20
LP-B-03-8	006294-06	Soil	06/18/20
LP-S-05-6.5	006294-07	Soil	06/18/20
LP-S-07-6.5	006294-08	Soil	06/18/20
LP-S-09-6.5MS	006294-01MS	Soil	06/18/20
LP-S-09-6.5MSD	006294-01MSD	Soil	06/18/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Petroleum Hydrocarbons (TPH) as Extractables by NWTPH-Dx

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered not detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Kimberly-Clark Upland Area Total Petroleum Hydrocarbons as Extractables - Data Qualification Summary -SDG 006294

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area

Total Petroleum Hydrocarbons as Extractables - Laboratory Blank Data **Qualification Summary - SDG 006294**

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Total Petroleum Hydrocarbons as Extractables - Field Blank Data Qualification **Summary - SDG 006294**

No Sample Data Qualified in this SDG

_DC #: <u>48734F8</u>	VALIDATION COMPLETENESS WORKSHEET
SDG # 006294	Stage 2A

Laboratory: Friedman & Bruya, Inc.

Date: ゆんしつ Page: しの Reviewer: 2nd Reviewer:

METHOD: GC TPH as Extractables (NWTPH-Dx)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I.	Sample receipt/Technical holding times	T+,A	
II.	Initial calibration/ICV	N/N	
_111.	Continuing calibration	N	
IV.	Laboratory Blanks	A	
V.	Field blanks	N_	
VI.	Surrogate spikes	A	
VII.	Matrix spike/Matrix spike duplicates	A	(9,10)
VIII.	Laboratory control samples	1	LCS
IX.	Field duplicates	h	
X.	Compound quantitation RL/LOQ/LODs	N	Dry wagna basis
XI.	Target compound identification	Ŋ	·
XII	Overall assessment of data	A	

Note: A = Acceptable

N = Not provided/applicable

SW = See worksheet

ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate

TB = Trip blank EB = Equipment blank SB=Source blank

OTHER:

	Client ID	Lab ID	Matrix	Date
1	LP-S-09-6.5	006294-01	Soil	06/18/20
2	LP-B-02-8	006294-02	Soil	06/18/20
3	LP-S-04-6.5	006294-03	Soil	06/18/20
4	LP-S-08-6.5	006294-04	Soil	06/18/20
5	LP-S-06-6.5	006294-05	Soil	06/18/20
6	LP-B-03-8	006294-06	Soil	06/18/20
7	LP-S-05-6.5	006294-07	Soil	06/18/20
8	LP-S-07-6.5	006294-08	Soil	06/18/20
9	LP-S-09-6.5MS	006294-01MS	Soil	06/18/20
10	LP-S-09-6.5MSD	006294-01MSD	Soil	06/18/20
11				
12				
Votes	i:			

Laboratory Data Consultants, Inc. Data Validation Report

Kimberly-Clark Upland Area **Project/Site Name:**

LDC Report Date: August 13, 2020

Parameters: Metals

Validation Level: Stage 2A

Laboratory: Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 006358

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
PB-B-6-S-09-6-062220	006358-01	Soil	06/22/20
PB-B-6-S-09-4-062220	006358-02	Soil	06/22/20
PB-B-6-S-10-6-062220	006358-03	Soil	06/22/20
PB-B-6-S-10-4-062220	006358-04	Soil	06/22/20
PB-B-6-S-11-6-062220	006358-05	Soil	06/22/20
PB-B-6-S-11-9-062220	006358-06	Soil	06/22/20
PB-B-6-S-15-6-062220	006358-07	Soil	06/22/20
PB-B-6-B-02-11-062220	006358-08	Soil	06/22/20
PB-B-6-B-03-11-062220	006358-09	Soil	06/22/20
PB-B-6-S-12-6-062220	006358-10	Soil	06/22/20
PB-B-6-S-12-9-062220	006358-11	Soil	06/22/20
PB-B-6-S-13-6-062220	006358-12	Soil	06/22/20
PB-B-6-S-13-9-062220	006358-13	Soil	06/22/20
PB-B-6-S-14-6-062220	006358-14	Soil	06/22/20
PB-B-6-S03-062220	006358-15	Soil	06/22/20
PB-B-6-S-14-9-062220	006358-16	Soil	06/22/20
PB-B-6-S-09-9-062220MS	006358-01MS	Soil	06/22/20
PB-B-6-S-09-9-062220MSD	006358-01MSD	Soil	06/22/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Copper by Environmental Protection Agency (EPA) SW 846 Method 6020B Mercury by EPA Method 1631E

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. ICPMS Tune

ICP-MS tune data were not reviewed for Stage 2A validation.

III. Instrument Calibration

Instrument calibration data were not reviewed for Stage 2A validation.

IV. ICP Interference Check Sample Analysis

ICP Interference check sample (ICS) analysis data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits.

Relative percent differences (RPD) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	RPD (Limits)	Flag	A or P
PB-B-6-S-09-9-062220MS/MSD (All samples in SDG 006358)	Mercury	36 (≤20)	J (all detects) UJ (all non-detects)	Α

VIII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

IX. Serial Dilution

Serial dilution was not performed for this SDG.

X. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits.

XI. Field Duplicates

Samples PB-B-6-S-14-6-062220 and PB-B-6-S03-062220 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentra		
Analyte	PB-B-6-S-14-6-062220	PB-B-6-S03-062220	RPD
Copper	31.7	42.7	30
Mercury	3.1	7.2	80

XII. Internal Standards (ICP-MS)

Internal standards data were not reviewed for Stage 2A validation.

XIII. Sample Result Verification

Raw data were not reviewed for Stage 2A validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the methods.

Due to MS/MSD RPD, data were qualified as estimated in sixteen samples.

No results were rejected in this SDG.

Kimberly-Clark Upland Area **Metals - Data Qualification Summary - SDG 006358**

Sample	Analyte	Flag	A or P	Reason
PB-B-6-S-09-6-062220 PB-B-6-S-09-4-062220 PB-B-6-S-10-6-062220 PB-B-6-S-11-6-062220 PB-B-6-S-11-9-062220 PB-B-6-S-15-6-062220 PB-B-6-S-15-6-062220 PB-B-6-S-12-6-062220 PB-B-6-S-12-6-062220 PB-B-6-S-12-6-062220 PB-B-6-S-13-6-062220 PB-B-6-S-13-6-062220 PB-B-6-S-13-9-062220 PB-B-6-S-13-9-062220 PB-B-6-S-14-6-062220 PB-B-6-S-14-9-062220 PB-B-6-S-14-9-062220	Mercury	J (all detects) UJ (all non-detects)	A	Matrix spike/Matrix spike duplicate (RPD)

Kimberly-Clark Upland Area Metals - Laboratory Blank Data Qualification Summary - SDG 006358

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Metals - Field Blank Data Qualification Summary - SDG 006358

No Sample Data Qualified in this SDG

LDC #: 48734G4a

VALIDATION COMPLETENESS WORKSHEET

Stage 2A

SDG #: 006358 Laboratory: Friedman & Bruya, Inc.

Reviewer: 2nd Reviewe

METHOD: Cr, Hg (EPA SW 846 Method 6020B/EPA Method 1631E)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
l.	Sample receipt/Technical holding times	A,A	
11.	ICP/MS Tune	N	
111.	Instrument Calibration	N	
IV.	ICP Interference Check Sample (ICS) Analysis	N	
V.	Laboratory Blanks	A	
VI.	Field Blanks	7	
VII.	Matrix Spike/Matrix Spike Duplicates	62	
VIII.	Duplicate sample analysis	7	
IX.	Serial Dilution	7	
X.	Laboratory control samples	A	LCS
XI.	Field Duplicates	KSY	(14.15)
XII.	Internal Standard (ICP-MS)	N	
XIII.	Sample Result Verification	N	
XIV	Overall Assessment of Data	A	

Note:

A = Acceptable

N = Not provided/applicable SW = See worksheet

ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate

TB = Trip blank

EB = Equipment blank

SB=Source blank OTHER:

	OU	I - L ID	30-4-1	
-	Client ID	Lab ID	Matrix	Date
1	PB-B-6-S-09- 9 -062220	006358-01	Soil	06/22/20
2	PB-B-6-S-09-4-062220	006358-02	Soil	06/22/20
3	PB-B-6-S-10-6-062220	006358-03	Soil	06/22/20
4	PB-B-6-S-10-4-062220	006358-04	Soil	06/22/20
5	PB-B-6-S-11-6-062220	006358-05	Soil	06/22/20
6	PB-B-6-S-11-9-062220	006358-06	Soil	06/22/20
7	PB-B-6-S-15-6-062220	006358-07	Soil	06/22/20
8	PB-B-6-B-02-11-062220	006358-08	Soil	06/22/20
9	PB-B-6-B-03-11-062220	006358-09	Soil	06/22/20
10	PB-B-6-S-12-6-062220	006358-10	Soil	06/22/20
11	PB-B-6-S-12-9-062220	006358-11	Soil	06/22/20
12	PB-B-6-S-13-6-062220	006358-12	Soil	06/22/20
13	PB-B-6-S-13-9-062220	006358-13	Soil	06/22/20
14	PB-B-6-S-14-6-062220	006358-14	Soil	06/22/20
15	PB-B-6-S03-062220	006358-15	Soil	06/22/20

LDC #: 48734G4a

VALIDATION COMPLETENESS WORKSHEET

SDG #: 006358 Laboratory: Friedman & Bruya, Inc. Stage 2A

Page: 2 of 2
Reviewer: 01 M
2nd Reviewer:

METHOD: Cr, Hg (EPA SW 846 Method 6020B/EPA Method 1631E)

	Client ID	Lab ID	Matrix	Date
16	PB-B-6-S-14-9-062220	006358-16	Soil	06/22/20
17	PB-B-6-S-09-9-062220MS	006358-01MS	Soil	06/22/20
18	PB-B-6-S-09-9-062220MSD	006358-01MSD	Soil	06/22/20
19				
20				
21				

211	 	 <u> </u>	
Notes:			

LDC #: 48734949

VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference

Page: 1_of_1 Reviewer: DTM 2nd reviewer:

All circled elements are applicable to each sample.

-		
Sample ID	Matrix	Target Analyte List (TAL)
1-110	0	Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, (C), Fe, Pb, Li, Mg, Mo, Mn, (rg) Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
0017-18	8	Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Co, Fe, Pb, Li, Mg, Mo, Mn, Mg Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Analysis Method
ICP		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
ICP-MS		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
GFAA		Al Sh. As. Ba. Be. B. Cd. Ca. Cr. Co. Cu. Fe. Ph. Li. Mg. Mo. Mn. Hg. Ni, K. Se. Ag. Na, Sr. Tl. Sn. Ti, W. U. V. Zn.

Comments: Mercury by CVAA if performed

LDC #: 48734G4a

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

Page: <u>1</u>	_of	_1_
Reviewer:_	DT	M
nd Reviewer.	U	

METHOD: Trace metals (EPA SW 846 Method 6020/6010/7470)

P	ease see	qualifications	below for all	questions answere	ed "N". Not	t applicable	questions a	re identified as	s "N/A".
---	----------	----------------	---------------	-------------------	-------------	--------------	-------------	------------------	----------

VN N/A Was a matrix spike analyzed for each matrix in this SDG?

Were matrix spike percent recoveries (%R) within the control limits of 75-125? If the sample concentration exceeded the spike concentration by a factor

of 4 or more, no action was taken.

Were all duplicate sample relative percent differences (RPD) € 20% for samples?

LEVEL IV ONLY:

Y N N/A

Were recalculated results acceptable? See Level IV Recalculation Worksheet for recalculations.

#	MS/MSD ID	Matrix	Analyte	MS %Recovery	MSD %Recovery	RPD (Limits)	Associated Samples	Qualifications
	17/18	S	Hg			36		J/UJ/A (det) / /
Ш		****						1
Н								
H								
П								
П								
\sqcup								
H								
				9340 10				
Ш								
Ш								
dash								
\vdash								
H		<u> </u>		-				

Comments:				
			-	

LDC#: 48734G4a

VALIDATION FINDINGS WORKSHEET

Field Duplicates

Page:_1_of_1_ Reviewer:_DTM 2nd Reviewer:____

METHOD: Metals (EPA Method 6010/6020/7000)

	Concentrati		
Analyte	14	26	RPD
Copper	31.7	42.7	30
Mercury	3.1	7.2	80

V:\Darionna\FIELD DUPLICATES\Field Duplicates\FD_inorganic\2020\48734G4a.wpd

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Kimberly-Clark Upland Area

LDC Report Date: August 17, 2020

Polynuclear Aromatic Hydrocarbons Parameters:

Stage 2A Validation Level:

Friedman & Bruya, Inc. Laboratory:

Sample Delivery Group (SDG): 006387

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
LP-S-17-6.5-062320	006387-02	Soil	06/23/20
LP-B-03-9-062320	006387-03	Soil	06/23/20
LP-S-11-6.5-062320	006387-04	Soil	06/23/20
LP-S-12-6.5-062320	006387-05	Soil	06/23/20
LP-S-13-6.5-062320	006387-06	Soil	06/23/20
LP-S-14-6.5-062320	006387-07	Soil	06/23/20
LP-S-15-6.5-062320	006387-08	Soil	06/23/20
CNW-OB-01-062320	006387-09	Soil	06/23/20
CNW-OB-02-062320	006387-10	Soil	06/23/20
CNW-OB-03-062320	006387-11	Soil	06/23/20
CNW-B-01-6-062320	006387-12	Soil	06/23/20
CNW-B-02-6-062320	006387-13	Soil	06/23/20
CNW-B-03-6-062320	006387-14	Soil	06/23/20
CNW-S-01-5-062320	006387-15	Soil	06/23/20
CNW-S-02-5-062320	006387-16	Soil	06/23/20
CNW-S-03-5-062320	006387-17	Soil	06/23/20
CNW-S-04-5-062320	006387-18	Soil	06/23/20
CNW-S04-062320	006387-19	Soil	06/23/20
CNW-S-05-5-062320	006387-20	Soil	06/23/20
CNW-S-06-5-062320	006387-21	Soil	06/23/20
CNW-S-07-5-062320	006387-22	Soil	06/23/20
CNW-S-08-5-062320	006387-23	Soil	06/23/20
CNW-S-01-5-062320MS	006387-15MS	Soil	06/23/20
CNW-S-01-5-062320MSD	006387-15MSD	Soil	06/23/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polynuclear Aromatic Hydrocarbons (PAHs) by Environmental Protection Agency (EPA) SW 846 Method 8270E in Selected Ion Monitoring (SIM) mode

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- (Estimated): The compound or analyte was analyzed for and positively identified J by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

Instrument performance check data were not reviewed for Stage 2A validation.

III. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

IV. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

X. Field Duplicates

Samples CNW-S-03-5-062320 and CNW-S04-062320 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentra		
Compound	CNW-S-03-5-062320	CNW-S04-062320	RPD
Phenanthrene	0.01U	0.019	Not calculable
Fluoranthene	0.01U	0.022	Not calculable
Pyrene	0.01U	0.025	Not calculable
Benzo(a)anthracene	0.01U	0.016	Not calculable
Chrysene	0.01U	0.014	Not calculable
Benzo(a)pyrene	0.01U	0.013	Not calculable
Benzo(b)fluoranthene	0.01U	0.014	Not calculable

XI. Internal Standards

Internal standards data were not reviewed for Stage 2A validation.

XII. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XIV. System Performance

Raw data were not reviewed for Stage 2A validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Kimberly-Clark Upland Area Polynuclear Aromatic Hydrocarbons - Data Qualification Summary - SDG 006387

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Polynuclear Aromatic Hydrocarbons - Laboratory Blank Data Qualification **Summary - SDG 006387**

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Polynuclear Aromatic Hydrocarbons - Field Blank Data Qualification Summary -SDG 006387

No Sample Data Qualified in this SDG

LDC #: 48734H2b VALIDATION COMPLETENESS WORKSHEET SDG #: 006387 Stage 2A F Laboratory: Friedman & Bruya, Inc.

Page: 1012 Page: 1012 Reviewer: 17 2nd Reviewer:

METHOD: GC/MS Polynuclear Aromatic Hydrocarbons (EPA SW 846 Method 8270E-SIM)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I.	Sample receipt/Technical holding times	A, A	
<u>II.</u>	GC/MS Instrument performance check	N	
111.	Initial calibration/ICV	N/N	
IV.	Continuing calibration	N	
V.	Laboratory Blanks	A,	
VI.	Field blanks	N	
VII.	Surrogate spikes	A	
VIII.	Matrix spike/Matrix spike duplicates	A	(23,24)
IX.	Laboratory control samples	A	LCS
X.	Field duplicates	SW	D=16+18
XI.	Internal standards	2	
XII.	Compound quantitation RL/LOQ/LODs	N	Dry weight basis
XIII.	Target compound identification	N	
XIV.	System performance	N	
XV.	Overall assessment of data	A	

Note: A = Acceptable

N = Not provided/applicable SW = See worksheet ND = No compounds detected

R = Rinsate FB = Field blank D = Duplicate

TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	LP-S-17-6.5-062320	006387-02	Soil	06/23/20
2	LP-B-03-9-062320	006387-03	Soil	06/23/20
3	LP-S-11-6.5-062320	006387-04	Soil	06/23/20
4	LP-S-12-6.5-062320	006387-05	Soil	06/23/20
5	LP-S-13-6.5-062320	006387-06	Soil	06/23/20
6	LP-S-14-6.5-062320	006387-07	Soil	06/23/20
7	LP-S-15-6.5-062320	006387-08	Soil	06/23/20
8	CNW-OB-01-062320	006387-09	Soil	06/23/20
9	CNW-OB-02-062320	006387-10	Soil	06/23/20
10	CNW-OB-03-062320	006387-11	Soil	06/23/20
11	CNW-B-01-6-062320	006387-12	Soil	06/23/20
12	CNW-B-02-6-062320	006387-13	Soil	06/23/20
13	CNW-B-03-6-062320	006387-14	Soil	06/23/20
14	CNW-S-01-5-062320	006387-15	Soil	06/23/20

LDC #: 48734H2b	VALIDATION COMPLETENESS WORKSHEET
SDG #: 006387	Stage 2A

Stage 2A

Reviewer: 2nd Reviewer:

Laboratory: Friedman & Bruya, Inc.

METHOD: GC/MS Polynuclear Aromatic Hydrocarbons (EPA SW 846 Method 8270E-SIM)

	Client ID	Lab ID	Matrix	Date
15	CNW-S-02-5-062320	006387-16	Soil	06/23/20
16	CNW-S-03-5-062320	006387-17	Soil	06/23/20
17	CNW-S-04-5-062320	006387-18	Soil	06/23/20
18	CNW-S04-062320	006387-19	Soil	06/23/20
19	CNW-S-05-5-062320	006387-20	Soil	06/23/20
20	CNW-S-06-5-062320	006387-21	Soil	06/23/20
21	CNW-S-07-5-062320	006387-22	Soil	06/23/20
22	CNW-S-08-5-062320	006387-23	Soil	06/23/20
23	CNW-S-01-5-062320MS	006387-15MS	Soil	06/23/20
24	CNW-S-01-5-062320MSD	006387-15MSD	Soil	06/23/20
25				
26				
27				
lotes	:			

VALIDATION FINDINGS WORKSHEET

METHOD: GC/MS SVOA

METHOD: COMO CVOA				
A. Phenol	CC. Dimethylphthalate	EEE. Bis(2-ethylhexyl)phthalate	GGGG. C30-Hopane	I1. Methyl methanesulfonate
B. Bis (2-chloroethyl) ether	DD. Acenaphthylene	FFF. Di-n-octylphthalate	HHHH. 1-Methylphenanthrene	J1. Ethyl methanesulfonate
C. 2-Chlorophenol	EE. 2,6-Dinitrotoluene	GGG. Benzo(b)fluoranthene	IIII. 1,4-Dioxane	K1. o,o',o''-Triethylphosphorothioate
D. 1,3-Dichlorobenzene	FF. 3-Nitroaniline	HHH. Benzo(k)fluoranthene	JJJJ. Acetophenone	L1. n-Phenylene diamine
E. 1,4-Dichlorobenzene	GG. Acenaphthene	III. Benzo(a)pyrene	KKKK. Atrazine	M1. 1,4-Naphthoquinone
F. 1,2-Dichlorobenzene	HH. 2,4-Dinitrophenol	JJJ. Indeno(1,2,3-cd)pyrene	LLLL. Benzaldehyde	N1. N-Nitro-o-toluidine
G. 2-Methylphenol	II. 4-Nitrophenol	KKK. Dibenz(a,h)anthracene	MMMM. Caprolactam	O1. 1,3,5-Trinitrobenzene
H. 2,2'-Oxybis(1-chloropropane)	JJ. Dibenzofuran	LLL. Benzo(g,h,i)perylene	NNNN. 2,6-Dichlorophenol	P1. Pentachlorobenzene
I. 4-Methylphenol	KK. 2,4-Dinitrotoluene	MMM. Bis(2-Chloroisopropyl)ether	OOOO. 1,2-Diphenylhydrazine	Q1. 4-Aminobiphenyl
J. N-Nitroso-di-n-propylamine	LL. Diethylphthalate	NNN. Aniline	PPPP. 3-Methylphenol	R1. 2-Naphthylamine
K. Hexachloroethane	MM. 4-Chlorophenyl-phenyl ether	OOO. N-Nitrosodimethylamine	QQQQ. 3&4-Methylphenol	S1. Triphenylene
L. Nitrobenzene	NN. Fluorene	PPP. Benzoic Acid	RRRR. 4-Dimethyldibenzothiophene (4MDT)	T1. Octachlorostyrene
M. Isophorone	OO. 4-Nitroaniline	QQQ. Benzyl alcohol	SSSS. 2/3-Dimethyldibenzothiophene (4MDT)	U1. Famphur
N. 2-Nitrophenol	PP. 4,6-Dinitro-2-methylphenol	RRR. Pyridine	TTTT. 1-Methyldibenzothiophene (1MDT)	V1. 1,4-phenylenediamine
O. 2,4-Dimethylphenol	QQ. N-Nitrosodiphenylamine	SSS. Benzidine	UUUU 2,3,4,6-Tetrachlorophenol	W1. Methapyrilene
P. Bis(2-chloroethoxy)methane	RR. 4-Bromophenyl-phenylether	TTT. 1-Methylnaphthalene	VVVV. 1,2,4,5-Tetrachlorobenzene	X1. Pentachloroethane
Q. 2,4-Dichlorophenol	SS. Hexachlorobenzene	UUU.Benzo(b)thiophene	WWWW 2-Picoline	Y1. 3,3'-Dimethylbenzidine
R. 1,2,4-Trichlorobenzene	TT. Pentachlorophenol	VVV.Benzonaphthothiophene	XXXX. 3-Methylcholanthrene	Z1. o-Toluidine
S. Naphthalene	UU. Phenanthrene	WWW.Benzo(e)pyrene	YYYY. a,a-Dimethylphenethylamine	A2. 1-Naphthylamine
T. 4-Chloroaniline	VV. Anthracene	XXX. 2,6-Dimethylnaphthalene	ZZZZ. Hexachloropropene	B2. 4-Aminobiphenyl
U. Hexachlorobutadiene	WW. Carbazole	YYY. 2,3,5-Trimethylnaphthalene	A1. N-Nitrosodiethylamine	C2. 4-Nitroquinoline-1-oxide
V. 4-Chloro-3-methylphenol	XX. Di-n-butylphthalate	ZZZ. Perylene	B1. N-Nitrosodi-n-butylamine	D2. Hexachloropene
W. 2-Methylnaphthalene	YY. Fluoranthene	AAAA. Dibenzothiophene	C1. N-Nitrosomethylethylamine	E2. Bis (2-chloro-1-methylethyl) ether
X. Hexachlorocyclopentadiene	ZZ. Pyrene	BBBB. Benzo(a)fluoranthene	D1. N-Nitrosomorpholine	F2. Bifenthrin
Y. 2,4,6-Trichlorophenol	AAA. Butylbenzylphthalate	CCCC. Benzo(b)fluorene	E1. N-Nitrosopyrrolidine	G2. Cyfluthrin
Z. 2,4,5-Trichlorophenol	BBB. 3,3'-Dichlorobenzidine	DDDD. cis/trans-Decalin	F1. Phenacetin	H2. Cypermethrin
AA. 2-Chloronaphthalene	CCC. Benzo(a)anthracene	EEEE. 1,1'-Biphenyl	G1. 2-Acetylaminofluorene	l2. Permethrin (cis/trans)
BB. 2-Nitroaniline	DDD. Chrysene	FFFF. Retene	H1. Pronamide	J2. 5-Nitro-o-toluidine

LDC#:<u>48734H2b</u> **VALIDATION FINDINGS WORKSHEET Field Duplicates**

Page:_1_of_1_ Reviewer:__LT 2nd Reviewer:___

METHOD: GC/MS PAHs (EPA SW846 Method 8270E SIM)

	Concentra	tion (mg/kg)	-
Compound	16	18	RPD
υυ	0.01U	0.019	NC
YY	0.01U	0.022	NC
ZZ	0.01U	0.025	NC
ccc	0.01U	0.016	NC
DDD	0.01U	0.014	NC
Ш	0.01U	0.013	NC
GGG	0.01U	0.014	NC

Laboratory Data Consultants, Inc. Data Validation Report

Kimberly-Clark Upland Area **Project/Site Name:**

LDC Report Date: August 17, 2020

Polychlorinated Biphenyls Parameters:

Validation Level: Stage 2A

Friedman & Bruya, Inc. Laboratory:

Sample Delivery Group (SDG): 006387

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
CNW-OB-01-062320	006387-09	Soil	06/23/20
CNW-OB-02-062320	006387-10	Soil	06/23/20
CNW-OB-03-062320	006387-11	Soil	06/23/20
CNW-OB-03-062320MS	006387-11MS	Soil	06/23/20
CNW-OB-03-062320MSD	006387-11MSD	Soil	06/23/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polychlorinated Biphenyls (PCBs) by Environmental Protection Agency (EPA) SW 846 Method 8082A

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- (Rejected): The sample results were rejected due to gross non-conformances R discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identification

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Kimberly-Clark Upland Area Polychlorinated Biphenyls - Data Qualification Summary - SDG 006387

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Polychlorinated Biphenyls - Laboratory Blank Data Qualification Summary - SDG 006387

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Polychlorinated Biphenyls - Field Blank Data Qualification Summary - SDG 006387

No Sample Data Qualified in this SDG

LDC #: 48734H3b

VALIDATION COMPLETENESS WORKSHEET

Stage 2A

SDG #: 006387 Laboratory: Friedman & Bruya, Inc. e 2A Page: <u>\</u>of\ Reviewer: <u>।</u> 2nd Reviewer:

METHOD: GC Polychlorinated Biphenyls (EPA SW846 Method 8082A)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
<u>l.</u>	Sample receipt/Technical holding times	AIA	
11.	Initial calibration/ICV	N/N	
<u>III.</u>	Continuing calibration	N	
IV.	Laboratory Blanks	A	
V	Field blanks	N	
VI.	Surrogate spikes	A	
VII.	Matrix spike/Matrix spike duplicates	À'	(4,5)
VIII.	Laboratory control samples	A	LC8
IX.	Field duplicates	N	
X.	Compound quantitation/RL/LOQ/LODs	N	Dry weight basis
XI.	Target compound identification	N	
LxII	Overall assessment of data	A	

Note:

A = Acceptable

N = Not provided/applicable SW = See worksheet ND = No compounds detected

R = Rinsate FB = Field blank D = Duplicate

TB = Trip blank EB = Equipment blank SB=Source blank

OTHER:

	Client ID		Lab ID	Matrix	Date
1	CNW-OB-01-062320		006387-09	Soil	06/23/20
2	CNW-OB-02-062320	_	006387-10	Soil	06/23/20
3	CNW-OB-03-062320		006387-11	Soil	06/23/20
4	CNW-OB-03-062320MS		006387-11MS	Soil	06/23/20
5	CNW-OB-03-062320MSD		006387-11MSD	Soil	06/23/20
6					
7					
8					
9					
10					
11					
12					
13					
Votes	::				

	10-1461 MB/16	_		
L				

Laboratory Data Consultants, Inc. **Data Validation Report**

Project/Site Name: Kimberly-Clark Upland Area

LDC Report Date: August 13, 2020

Parameters: Metals

Validation Level: Stage 2A

Laboratory: Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 006387

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
LP-S-17-6.5-062320	006387-02	Soil	06/23/20
LP-B-03-9-062320	006387-03	Soil	06/23/20
LP-S-11-6.5-062320	006387-04	Soil	06/23/20
LP-S-12-6.5-062320	006387-05	Soil	06/23/20
LP-S-13-6.5-062320	006387-06	Soil	06/23/20
LP-S-14-6.5-062320	006387-07	Soil	06/23/20
LP-S-15-6.5-062320	006387-08	Soil	06/23/20
CNW-OB-01-062320	006387-09	Soil	06/23/20
CNW-OB-02-062320	006387-10	Soil	06/23/20
CNW-OB-03-062320	006387-11	Soil	06/23/20
CNW-OB-01-062320MS	006387-09MS	Soil	06/23/20
CNW-OB-01-062320MSD	006387-09MSD	Soil	06/23/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Arsenic, Copper, Lead, Nickel, and Zinc by Environmental Protection Agency (EPA) SW 846 Method 6020B Mercury by EPA Method 1631E

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory: however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. ICPMS Tune

ICP-MS tune data were not reviewed for Stage 2A validation.

III. Instrument Calibration

Instrument calibration data were not reviewed for Stage 2A validation.

IV. ICP Interference Check Sample Analysis

ICP Interference check sample (ICS) analysis data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VIII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

IX. Serial Dilution

Serial dilution was not performed for this SDG.

X. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits.

XI. Field Duplicates

No field duplicates were identified in this SDG.

XII. Internal Standards (ICP-MS)

Internal standards data were not reviewed for Stage 2A validation.

XIII. Sample Result Verification

Raw data were not reviewed for Stage 2A validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected in this SDG.

Kimberly-Clark Upland Area Metals - Data Qualification Summary - SDG 006387

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Metals - Laboratory Blank Data Qualification Summary - SDG 006387

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Metals - Field Blank Data Qualification Summary - SDG 006387

No Sample Data Qualified in this SDG

LDC #: 48734H4a

VALIDATION COMPLETENESS WORKSHEET

Stage 2A

SDG #: 006387 Laboratory: Friedman & Bruya, Inc. ge 2A

Page: \ of \ Reviewer: O\M 2nd Reviewer:

METHOD: Metals (EPA SW 846 Method 6020B/EPA Method 1631E)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I.	Sample receipt/Technical holding times	AIA	
11.	ICP/MS Tune	N	
III.	Instrument Calibration	N	
IV.	ICP Interference Check Sample (ICS) Analysis	N	
V.	Laboratory Blanks	A	
VI.	Field Blanks	2	
VII.	Matrix Spike/Matrix Spike Duplicates	A	
VIII.	Duplicate sample analysis	2	
IX.	Serial Dilution	-2	
X.	Laboratory control samples	A	US
XI.	Field Duplicates	2	
XII.	Internal Standard (ICP-MS)	N	
XIII.	Sample Result Verification	N	
XIV	Overall Assessment of Data	A	

Note:

A = Acceptable

N = Not provided/applicable

SW = See worksheet

ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate

TB = Trip blank

EB = Equipment blank

SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	LP-S-17-6.5-062320	006387-02	Soil	06/23/20
2	LP-B-03-9-062320	006387-03	Soil	06/23/20
3	LP-S-11-6.5-062320	006387-04	Soil	06/23/20
4	LP-S-12-6.5-062320	006387-05	Soil	06/23/20
5	LP-S-13-6.5-062320	006387-06	Soil	06/23/20
6	LP-S-14-6.5-062320	006387-07	Soil	06/23/20
7	LP-S-15-6.5-062320	006387-08	Soil	06/23/20
8	CNW-OB-01-062320	006387-09	Soil	06/23/20
9	CNW-OB-02-062320	006387-10	Soil	06/23/20
10	CNW-OB-03-062320	006387-11	Soil	06/23/20
11	CNW-OB-01-062320MS	006387-09MS	Soil	06/23/20
12	CNW-OB-01-062320MSD	006387-09MSD	Soil	06/23/20
13				

Notes:		 	 	
		-		
	-			

LDC #: 4073444a

VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference

Page: 1 of 1

Reviewer: DTM

2nd reviewer:

All circled elements are applicable to each sample.

		
Sample ID	Matrix	Target Analyte List (TAL)
8-10	S	Al, Sb, As Ba, Be, B, Cd, Ca, Cr, Co, Cl, Fe, Itb Li, Mg, Mo, Mn, Hg, Ni K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, (In)
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
1-7	S	Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Mo, Mn, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
m (Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
oc 11-12	5	Al, Sb, 🔊 Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, (b) Li, Mg, Mo, Mn, Hg, (N), K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, (27)
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Analysis Method
ICP		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
ICP-MS		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
GFAA		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn

Comments: Mercury by CVAA if performed

Laboratory Data Consultants, Inc. Data Validation Report

Kimberly-Clark Upland Area Project/Site Name:

August 17, 2020 **LDC Report Date:**

Polynuclear Aromatic Hydrocarbons Parameters:

Validation Level: Stage 2A

Friedman & Bruya, Inc. Laboratory:

Sample Delivery Group (SDG): 006419

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
CNE-S-08-3-062420	006419-01	Soil	06/24/20
CNE-S-07-3-062420	006419-02	Soil	06/24/20
CNE-S-05-3-062420	006419-03	Soil	06/24/20
CNE-S-06-3-062420	006419-04	Soil	06/24/20
CNE-B-02-6-062420	006419-05	Soil	06/24/20
CNE-S-01-3-062420	006419-06	Soil	06/24/20
CNE-S-04-3-062420	006419-07	Soil	06/24/20
CNE-B-03-6-062420	006419-08	Soil	06/24/20
CNE-S-02-3-062420	006419-09	Soil	06/24/20
CNE-S-03-3-062420	006419-10	Soil	06/24/20
CNE-B-01-6-062420	006419-11	Soil	06/24/20
CNE-S-08-3-062420MS	006419-01MS	Soil	06/24/20
CNE-S-08-3-062420MSD	006419-01MSD	Soil	06/24/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polynuclear Aromatic Hydrocarbons (PAHs) by Environmental Protection Agency (EPA) SW 846 Method 8270E in Selected Ion Monitoring (SIM) mode

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory: however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

Instrument performance check data were not reviewed for Stage 2A validation.

III. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

IV. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

Internal standards data were not reviewed for Stage 2A validation.

XII. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XIV. System Performance

Raw data were not reviewed for Stage 2A validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Kimberly-Clark Upland Area Polynuclear Aromatic Hydrocarbons - Data Qualification Summary - SDG 006419

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Polynuclear Aromatic Hydrocarbons - Laboratory Blank Data Qualification **Summary - SDG 006419**

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Polynuclear Aromatic Hydrocarbons - Field Blank Data Qualification Summary -SDG 006419

No Sample Data Qualified in this SDG

LDC #: 48734I2b VALIDATION COMPLETENESS WORKSHEET SDG #: 006419 Stage 2A Laboratory: Friedman & Bruya, Inc.

Page: \(\sigma \) of \(\sigma \)
Reviewer: \(\sigma \)
2nd Reviewer:

METHOD: GC/MS Polynuclear Aromatic Hydrocarbons (EPA SW 846 Method 8270E-SIM)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I.	Sample receipt/Technical holding times	AIA	
11.	GC/MS Instrument performance check	N	
	Initial calibration/ICV	N/N_	
IV.	Continuing calibration	N	
V.	Laboratory Blanks	A	
VI.	Field blanks	N	
VII.	Surrogate spikes	A	
VIII.	Matrix spike/Matrix spike duplicates	A	(11,12)
IX.	Laboratory control samples	A	LC5
X.	Field duplicates	7	
XI.	Internal standards	N	
XII.	Compound quantitation RL/LOQ/LODs	N	Dry weight basis
XIII.	Target compound identification	N	
XIV.	System performance	N	
XV.	Overall assessment of data	A	

Note: A = Acceptable

N = Not provided/applicable SW = See worksheet ND = No compounds detected

R = Rinsate FB = Field blank D = Duplicate

TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	CNE-S-08-3-062420	006419-01	Soil	06/24/20
2	CNE-S-07-3-062420	006419-02	Soil	06/24/20
3	CNE-S-05-3-062420	006419-03	Soil	06/24/20
4	CNE-S-06-3-062420	006419-04	Soil	06/24/20
5	CNE-B-02-6-062420	006419-05	Soil	06/24/20
6	CNE-S-01-3-062420	006419-06	Soil	06/24/20
7	CNE-S-04-3-062420	006419-07	Soil	06/24/20
8	CNE-B-03-6-062420	006419-08	Soil	06/24/20
9	CNE-S-02-3-062420	006419-09	Soil	06/24/20
10	CNE-S-03-3-062420	006419-10	Soil	06/24/20
11	CNE-B-01-6-062420	006419-11	Soil	06/24/20
12	CNE-S-08-3-062420MS	006419-01MS	Soil	06/24/20
13	CNE-S-08-3-062420MSD	006419-01MSD	Soil	06/24/20
14				

1.00-148 MB 1/5

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Kimberly-Clark Upland Area

LDC Report Date:

August 13, 2020

Parameters:

Metals

Validation Level:

Stage 2A

Laboratory:

Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 006419

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
PM-B-6-S-16-4-062420	006419-12	Soil	06/24/20
PM-B-6-S-16-6-062420	006419-13	Soil	06/24/20
PM-B-6-S-17-4-062420	006419-14	Soil	06/24/20
PM-B-6-S-17-6-062420	006419-15	Soil	06/24/20
PM-B-6-S-18-6-062420	006419-16	Soil	06/24/20
PM-B-6-B-02-12-062420	006419-17	Soil	06/24/20
PM-B-6-S-20-9-062420	006419-18	Soil	06/24/20
PM-B-6-S-21-9-062420	006419-19	Soil	06/24/20
PM-B-6-S-22-6-062420	006419-20	Soil	06/24/20
PM-B-6-S-19-6-062420	006419-21	Soil	06/24/20
PM-B-6-S-19-9-062420	006419-22	Soil	06/24/20
PM-B-6-S-505-062420	006419-23	Soil	06/24/20
PM-B-6-S-16-4-062420MS	006419-12MS	Soil	06/24/20
PM-B-6-S-16-4-062420MSD	006419-12MSD	Soil	06/24/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Copper by Environmental Protection Agency (EPA) SW 846 Method 6020B Mercury by EPA Method 1631E

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- (Non-detected estimated): The compound or analyte was reported as not UJ detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. ICPMS Tune

ICP-MS tune data were not reviewed for Stage 2A validation.

III. Instrument Calibration

Instrument calibration data were not reviewed for Stage 2A validation.

IV. ICP Interference Check Sample Analysis

ICP Interference check sample (ICS) analysis data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits.

Relative percent differences (RPD) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	RPD (Limits)	Flag	A or P
PM-B-6-S-16-4-062420MS/MSD (All samples in SDG 006419)	Mercury	36 (≤20)	J (all detects) UJ (all non-detects)	А

VIII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

IX. Serial Dilution

Serial dilution was not performed for this SDG.

X. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits.

XI. Field Duplicates

Samples PM-B-6-S-16-4-062420 and PM-B-6-S-505-062420 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentra		
Analyte	PM-B-6-S-16-4-062420 PM-B-6-S-505-062420		RPD
Copper	43.5	33.7	25
Mercury	0.31	0.24	25

XII. Internal Standards (ICP-MS)

Internal standards data were not reviewed for Stage 2A validation.

XIII. Sample Result Verification

Raw data were not reviewed for Stage 2A validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the methods.

Due to MS/MSD RPD, data were qualified as estimated in twelve samples.

No results were rejected in this SDG.

Kimberly-Clark Upland Area Metals - Data Qualification Summary - SDG 006419

Sample	Analyte	Flag	A or P	Reason
PM-B-6-S-16-4-062420 PM-B-6-S-16-6-062420 PM-B-6-S-17-4-062420 PM-B-6-S-17-6-062420 PM-B-6-S-18-6-062420 PM-B-6-B-02-12-062420 PM-B-6-S-20-9-062420 PM-B-6-S-21-9-062420 PM-B-6-S-21-9-062420 PM-B-6-S-19-6-062420 PM-B-6-S-19-062420 PM-B-6-S-19-9-062420 PM-B-6-S-505-062420	Mercury	J (all detects) UJ (all non-detects)	A	Matrix spike/Matrix spike duplicate (RPD)

Kimberly-Clark Upland Area Metals - Laboratory Blank Data Qualification Summary - SDG 006419

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Metals - Field Blank Data Qualification Summary - SDG 006419

No Sample Data Qualified in this SDG

LDC #: 48734I4a SDG #: 006419

VALIDATION COMPLETENESS WORKSHEET

Stage 2A

Laboratory: Friedman & Bruya, Inc.

Page: 1 of Reviewer: 2nd Reviewer:

METHOD: Cr, Hg (EPA SW 846 Method 6020B/EPA Method 1631E)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I.	Sample receipt/Technical holding times	AIA	
<u>II.</u>	ICP/MS Tune	N	
III.	Instrument Calibration	N	
IV.	ICP Interference Check Sample (ICS) Analysis	N	
V.	Laboratory Blanks	A	
VI.	Field Blanks	7	
VII.	Matrix Spike/Matrix Spike Duplicates	SW	
VIII.	Duplicate sample analysis	2	
IX.	Serial Dilution	2	
X.	Laboratory control samples	A	LCS
XI.	Field Duplicates	SUL	(1,12)
XII.	Internal Standard (ICP-MS)	N _	
XIII.	Sample Result Verification	N	
XIV	Overall Assessment of Data	A	

Note:

A = Acceptable

N = Not provided/applicable SW = See worksheet ND = No compounds detected

R = Rinsate FB = Field blank D = Duplicate TB = Trip blank

EB = Equipment blank

SB=Source blank OTHER:

	OU. LID		1	
⊩—	Client ID	Lab ID	Matrix	Date
1	PM-B-6-S-16-4-062420	006419-12	Soil	06/24/20
2	PM-B-6-S-16-6-062420	006419-13	Soil	06/24/20
3	PM-B-6-S-17-4-062420	006419-14	Soil	06/24/20
4	PM-B-6-S-17-6-062420	006419-15	Soil	06/24/20
5	PM-B-6-S-18-6-062420	006419-16	Soil	06/24/20
6	PM-B-6-B-02-12-062420	006419-17	Soil	06/24/20
7	PM-B-6-S-20-9-062420	006419-18	Soil	06/24/20
8	PM-B-6-S-21-9-062420	006419-19	Soil	06/24/20
9	PM-B-6-S-22-6-062420	006419-20	Soil	06/24/20
10	PM-B-6-S-19-6-062420	006419-21	Soil	06/24/20
11	PM-B-6-S-19-9-062420	006419-22	Soil	06/24/20
12	PM-B-6-S-505-062420	006419-23	Soil	06/24/20
13	PM-B-6-S-16-4-062420MS	006419-12MS	Soil	06/24/20
14	PM-B-6-S-16-4-062420MSD	006419-12MSD	Soil	06/24/20
15				

LDC#: 4973414a

VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference

Page: 1 of 1
Reviewer: DTM
2nd reviewer:

All circled elements are applicable to each sample.

Sample ID	Matrix	Target Analyte List (TAL)
1-12	5	Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu Fe, Pb, Li, Mg, Mo, Mn, (G) Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
OC13-14	<u>S</u>	Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, (Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
	.,,	
	=	Analysis Method
ICP		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
ICP-MS		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
GFAA.		Al, Sh, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Ph, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn

Comments: Mercury by CVAA if performed

LDC #: 48734I4a

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

Page:	1	_of_	1
Review	er:	_D	<u>[M</u>
2nd Reviewe	r		_

METHOD: Trace metals (EPA SW 846 Method 6020/6010/7470)

riease see qualifications below for all questions answered in . Not applicable questions are identified as in/A	Please see qualifications below for a	questions answered "N". Not applicable ques	stions are identified as "N/A".
---	---------------------------------------	---	---------------------------------

Mas a matrix spike analyzed for each matrix in this SDG?

Were matrix spike percent recoveries (%R) within the control limits of 75-125? If the sample concentration exceeded the spike concentration by a factor

of 4 or more, no action was taken.

Y N/A Were all duplicate sample relative percent differences (RPD) ₹ 20% for samples?

LEVEL IV ONLY:

Y N N/A Were recalculated results acceptable? See Level IV Recalculation Worksheet for recalculations.

#	MS/MSD ID	Matrix	Analyte	MS %Recovery	MSD %Recovery	RPD (Limits)	Associated Samples	Qualifications
	13/14	S	Hg			36		J/UJ/A (det)
								1 0
Ш								
							· · · · · · · · · · · · · · · · · · ·	
Ш								
H								
Ш								
Ш								
Ш								
Ш								
Н								
Н								
H								
H								
Н								
Н								
H								
H								
H								
H								

Comments:_		 	 	 		 	

LDC#: 48734I4a

VALIDATION FINDINGS WORKSHEET

Field Duplicates

Page:_1_of_1_ Reviewer:_DTM_ 2nd Reviewer:____

METHOD: Metals (EPA Method 6010/6020/7000)

	Concentrati			
Analyte	1	12	RPD	
Copper	43.5	33.7	25	
Mercury	0.31	0.24	25	

V:\Darionna\FIELD DUPLICATES\Field Duplicates\FD_inorganic\2020\48734I4a.wpd

Laboratory Data Consultants, Inc. **Data Validation Report**

Project/Site Name:

Kimberly-Clark Upland Area

LDC Report Date:

August 17, 2020

Parameters:

Polychlorinated Biphenyls

Validation Level:

Stage 2A

Laboratory:

Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 006466

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
OMS-S-01-2.5-062620	006466-01	Soil	06/26/20
OMS-S-02-2.5-062620	006466-02	Soil	06/26/20
OMS-S-02-2.5-062620DL	006466-02DL	Soil	06/26/20
OMS-S-03-2.5-062620	006466-03	Soil	06/26/20
OMS-S-04-2.5-062620	006466-04	Soil	06/26/20
OMS-B-01-5-062620	006466-05	Soil	06/26/20
OMS-B-02-5-062620	006466-06	Soil	06/26/20
OMS-B-03-5-062620	006466-07	Soil	06/26/20
OMS-S-05-2.5-062620	006466-08	Soil	06/26/20
OMS-S-06-2.5-062620	006466-09	Soil	06/26/20
OMS-B-04-5-062620	006466-10	Soil	06/26/20
OMS-506-062620	006466-11	Soil	06/26/20
OMS-S-07-2.5-062620	006466-12	Soil	06/26/20
OMS-B-05-5-062620	006466-13	Soil	06/26/20
OMS-S-12-2.5-062620	006466-14	Soil	06/26/20
OMS-S-11-2.5-062620	006466-15	Soil	06/26/20
OMS-B-06-5-062620	006466-16	Soil	06/26/20
OMS-S-01-2.5-062620MS	006466-01MS	Soil	06/26/20
OMS-S-01-2.5-062620MSD	006466-01MSD	Soil	06/26/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polychlorinated Biphenyls (PCBs) by Environmental Protection Agency (EPA) SW 846 Method 8082A

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- DNR Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- (Rejected): The sample results were rejected due to gross non-conformances R discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

Samples OMS-B-04-5-062620 and OMS-506-062620 were identified as field duplicates. No results were detected in any of the samples.

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identification

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method.

In the case where more than one result was reported for an individual sample, the least technically acceptable results were deemed not reportable as follows:

Sample	Compound	Reason	Flag	A or P
OMS-S-02-2.5-062620	Aroclor-1254	Results exceeded calibration range.	DNR	А
OMS-S-02-2.5-062620DL	All compounds except Aroclor-1254	Results from undiluted analyses were more usable.	DNR	А

No results were rejected in this SDG.

Kimberly-Clark Upland Area Polychlorinated Biphenyls - Data Qualification Summary - SDG 006466

Sample	Compound	Flag	A or P	Reason
OMS-S-02-2.5-062620	Aroclor-1254	DNR	Α	Overall assessment of data
OMS-S-02-2.5-062620DL	All compounds except Aroclor-1254	DNR	Α	Overall assessment of data

Kimberly-Clark Upland Area

Polychlorinated Biphenyls - Laboratory Blank Data Qualification Summary - SDG 006466

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Polychlorinated Biphenyls - Field Blank Data Qualification Summary - SDG 006466

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET LDC #: 48734J3b

Stage 2A

SDG #: 006466 Laboratory: Friedman & Bruya, Inc.

Reviewer: 2nd Reviewer:

METHOD: GC Polychlorinated Biphenyls (EPA SW846 Method 8082A)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Sample receipt/Technical holding times	AA	
11.	Initial calibration/ICV	N/N	
III.	Continuing calibration	N	
IV.	Laboratory Blanks	A	
V.	Field blanks	N	
VI.	Surrogate spikes	A	
VII.	Matrix spike/Matrix spike duplicates	A	(18,4)
VIII.	Laboratory control samples	Ä	LCS
IX.	Field duplicates	ND	D= 11+2
Χ.	Compound quantitation/RL/LOQ/LODs	N	Dry weight basis
XI.	Target compound identification	N	
XII	Overall assessment of data	SW	

Note: A = Acceptable

SW = See worksheet

ND = No compounds detected N = Not provided/applicable

R = Rinsate

FB = Field blank

D = Duplicate TB = Trip blank

EB = Equipment blank

SB=Source blank

OTHER:

	Client ID	Lab ID	Matrix	Date
1	OMS-S-01-2.5-062620	006466-01	Soil	06/26/20
2	OMS-S-02-2.5-062620	006466-02	Soil	06/26/20
3	OMS-S-02-2.5-062620DL	006466-02DL	Soil	06/26/20
4	OMS-S-03-2.5-062620	006466-03	Soil	06/26/20
5	OMS-S-04-2.5-062620	006466-04	Soil	06/26/20
3	OMS-B-01-5-062620	006466-05	Soil	06/26/20
7	OMS-B-02-5-062620	006466-06	Soil	06/26/20
3	OMS-B-03-5-062620	006466-07	Soil	06/26/20
9	OMS-S-05-2.5-062620	006466-08	Soil	06/26/20
10	OMS-S-06-2.5-062620	006466-09	Soil	06/26/20
11_	OMS-B-04-5-062620	006466-10	Soil	06/26/20
12	OMS-506-062620	006466-11	Soil	06/26/20
13	OMS-S-07-2.5-062620	006466-12	Soil	06/26/20
14	OMS-B-05-5-062620	006466-13	Soil	06/26/20
15	OMS-S-12-2.5-062620	006466-14	Soil	06/26/20
16	OMS-S-11-2.5-062620	006466-15	Soil	06/26/20
17	OMS-B-06-5-062620	006466-16	Soil	06/26/20

LDOR. $TOI OTOOD$	L	DC	#:	48734J3b
-------------------	---	----	----	----------

VALIDATION COMPLETENESS WORKSHEET

Stage 2A

SDG #: 006466 Laboratory: Friedman & Bruya, Inc.

Reviewer:_ 2nd Reviewer:

METHOD: GC Polychlorinated Biphenyls (EPA SW846 Method 8082A)

	Client ID	Lab ID	Matrix	Date
18	OMS-S-01-2.5-062620MS	006466-01MS	Soil	06/26/20
19	OMS-S-01-2.5-062620MSD	006466-01MSD	Soil	06/26/20
20				
21				
22				

Note	S.		 	
T	10-1482MB1/6			

LDC #: 48734J3b

VALIDATION FINDINGS WORKSHEET Overall Assessment of Data

Page:	1_	_of_	1_
Reviewe	r:	_L	
2nd Reviewer:	\subseteq	<u> </u>	_

METHOD: GC PCBs (EPA SW 846 Method 8082A)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

All available information pertaining to the data were reviewed using professional judgement to compliment the determination of the overall quality of the data.

Yes<u>x</u> No_ N/A_ Was the overall quality and usability of the data acceptable?

#	Date	Sample ID	Compound	Finding	Qualifications
		2	Aroclor 1254	exceed calibration range	DNR
		3	All except Aroclor 1254	diluted	DNR
ļ					
		and the second s			
		16			

Comments:			 	
	· <u>-</u>			

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Kimberly-Clark Upland Area

August 13, 2020 **LDC Report Date:**

Metals Parameters:

Stage 2A Validation Level:

Laboratory: Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 006466

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	<u> Date</u>
OMS-S-01-2.5-062620	006466-01	Soil	06/26/20
OMS-S-02-2.5-062620	006466-02	Soil	06/26/20
OMS-S-03-2.5-062620	006466-03	Soil	06/26/20
OMS-S-04-2.5-062620	006466-04	Soil	06/26/20
OMS-B-01-5-062620	006466-05	Soil	06/26/20
OMS-B-02-5-062620	006466-06	Soil	06/26/20
OMS-B-03-5-062620	006466-07	Soil	06/26/20
OMS-S-05-2.5-062620	006466-08	Soil	06/26/20
OMS-S-06-2.5-062620	006466-09	Soil	06/26/20
OMS-B-04-5-062620	006466-10	Soil	06/26/20
OMS-506-062620	006466-11	Soil	06/26/20
OMS-S-07-2.5-062620	006466-12	Soil	06/26/20
OMS-B-05-5-062620	006466-13	Soil	06/26/20
OMS-S-12-2.5-062620	006466-14	Soil	06/26/20
OMS-S-11-2.5-062620	006466-15	Soil	06/26/20
OMS-B-06-5-062620	006466-16	Soil	06/26/20
OMS-S-01-2.5-062620MS	006466-01MS	Soil	06/26/20
OMS-S-01-2.5-062620MSD	006466-01MSD	Soil	06/26/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Copper by Environmental Protection Agency (EPA) SW 846 Method 6020B Mercury by EPA Method 1631E

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. ICPMS Tune

ICP-MS tune data were not reviewed for Stage 2A validation.

III. Instrument Calibration

Instrument calibration data were not reviewed for Stage 2A validation.

IV. ICP Interference Check Sample Analysis

ICP Interference check sample (ICS) analysis data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	MS (%R) (Limits)	MSD (%R) (Limits)	Flag	A or P
OMS-S-01-2.5-062620MS/MSD (OMS-S-01-2.5-062620 OMS-S-02-2.5-062620 OMS-S-03-2.5-062620 OMS-S-04-2.5-062620 OMS-B-01-5-062620 OMS-B-02-5-062620 OMS-S-05-2.5-062620 OMS-S-06-2.5-062620 OMS-S-06-2.5-062620 OMS-S-07-2.5-062620 OMS-S-07-2.5-062620 OMS-S-12-2.5-062620 OMS-S-12-2.5-062620 OMS-S-11-2.5-062620 OMS-S-11-2.5-062620 OMS-B-06-5-062620 OMS-B-06-5-062620	Copper	-	164 (75-125)	J (all detects)	A

Spike ID (Associated Samples)	Analyte	MS (%R) (Limits)	MSD (%R) (Limits)	Flag	A or P
OMS-S-01-2.5-062620MS/MSD (OMS-B-03-5-062620 OMS-B-04-5-062620)	Copper	-	164 (75-125)	NA	-

Relative percent differences (RPD) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	RPD (Limits)	Flag	A or P
OMS-S-01-2.5-062620MS/MSD (All samples in SDG 006466)	Соррег	56 (≤20)	J (all detects) UJ (all non-detects)	А

VIII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

IX. Serial Dilution

Serial dilution was not performed for this SDG.

X. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits.

XI. Field Duplicates

Samples OMS-B-04-5-062620 and OMS-506-062620 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

Concentral		tion (mg/Kg)	
Analyte	OMS-B-04-5-062620	OMS-506-062620	RPD
Copper	5U	5.11	Not calculable

XII. Internal Standards (ICP-MS)

Internal standards data were not reviewed for Stage 2A validation.

XIII. Sample Result Verification

Raw data were not reviewed for Stage 2A validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the methods.

Due to MS/MSD %R and RPD, data were qualified as estimated in sixteen samples.

No results were rejected in this SDG.

Kimberly-Clark Upland Area Metals - Data Qualification Summary - SDG 006466

Sample	Analyte	Flag	A or P	Reason
OMS-S-01-2.5-062620 OMS-S-02-2.5-062620 OMS-S-03-2.5-062620 OMS-S-04-2.5-062620 OMS-B-01-5-062620 OMS-B-02-5-062620 OMS-B-02-5-062620 OMS-S-06-2.5-062620 OMS-S-06-2.5-062620 OMS-S-07-2.5-062620 OMS-B-05-5-062620 OMS-S-11-2.5-062620 OMS-S-11-2.5-062620 OMS-S-11-2.5-062620	Copper	J (all detects)	A	Matrix spike/Matrix spike duplicate (%R)
OMS-S-01-2.5-062620 OMS-S-02-2.5-062620 OMS-S-03-2.5-062620 OMS-S-04-2.5-062620 OMS-B-01-5-062620 OMS-B-02-5-062620 OMS-B-03-5-062620 OMS-S-05-2.5-062620 OMS-S-06-2.5-062620 OMS-B-04-5-062620 OMS-S-07-2.5-062620 OMS-S-77-2.5-062620 OMS-B-04-5-062620 OMS-B-05-5-062620 OMS-B-05-5-062620 OMS-B-05-5-062620 OMS-B-05-5-062620 OMS-B-05-5-062620 OMS-B-06-5-062620	Copper	J (all detects) UJ (all non-detects)	A	Matrix spike/Matrix spike duplicate (RPD)

Kimberly-Clark Upland Area Metals - Laboratory Blank Data Qualification Summary - SDG 006466

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Metals - Field Blank Data Qualification Summary - SDG 006466

No Sample Data Qualified in this SDG

LDC #: 48734J4a

VALIDATION COMPLETENESS WORKSHEET

Stage 2A

SDG #: 006466 Laboratory: Friedman & Bruya, Inc.

Page: 1 of 2
Reviewer: DTM
2nd Reviewer:

METHOD: Cu, Hg (EPA SW 846 Method 6020B/EPA Method 1631E)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
<u> </u>	Sample receipt/Technical holding times	A/A	
<u>II.</u>	ICP/MS Tune	N	
III.	Instrument Calibration	N	
IV.	ICP Interference Check Sample (ICS) Analysis	N	
V	Laboratory Blanks	Ą	
VI.	Field Blanks	7	
VII.	Matrix Spike/Matrix Spike Duplicates	SN	
VIII.	Duplicate sample analysis	2	
IX.	Serial Dilution	2	
X.	Laboratory control samples	4	ies
XI.	Field Duplicates	MSV	(10,11)
XII.	Internal Standard (ICP-MS)	, N	
XIII.	Sample Result Verification	N	
XIV	Overall Assessment of Data	A	

Note:

A = Acceptable

N = Not provided/applicable SW = See worksheet ND = No compounds detected

R = Rinsate FB = Field blank D = Duplicate TB = Trip blank

EB = Equipment blank

SB=Source blank OTHER:

T	1			
<u> </u>	Client ID	Lab ID	Matrix	Date
1	OMS-S-01-2.5-062620	006466-01	Soil	06/26/20
2	OMS-S-02-2.5-062620	006466-02	Soil	06/26/20
3	OMS-S-03-2.5-062620	006466-03	Soil	06/26/20
4	OMS-S-04-2.5-062620	006466-04	Soil	06/26/20
5	OMS-B-01-5-062620	006466-05	Soil	06/26/20
6	OMS-B-02-5-062620	006466-06	Soil	06/26/20
7	OMS-B-03-5-062620	006466-07	Soil	06/26/20
8	OMS-S-05-2.5-062620	006466-08	Soil	06/26/20
9	OMS-S-06-2.5-062620	006466-09	Soil	06/26/20
10	OMS-B-04-5-062620	006466-10	Soil	06/26/20
11	OMS-506-062620	006466-11	Soil	06/26/20
12	OMS-S-07-2.5-062620	006466-12	Soil	06/26/20
13	OMS-B-05-5-062620	006466-13	Soil	06/26/20
14	OMS-S-12-2.5-062620	006466-14	Soil	06/26/20
15	OMS-S-11-2.5-062620	006466-15	Soil	06/26/20

LDC	#:	48734J4a
	π	<u> </u>

VALIDATION COMPLETENESS WORKSHEET

Stage 2A

SDG #: 006466 Laboratory: Friedman & Bruya, Inc.

Date: 1212020
Page: 2 of 2
Reviewer: DTM
2nd Reviewer:

METHOD: Cu, Hg (EPA SW 846 Method 6020B/EPA Method 1631E)

	Client ID	Lab ID	Matrix	Date
16	OMS-B-06-5-062620	006466-16	Soil	06/26/20
17	OMS-S-01-2.5-062620MS	006466-01MS	Soil	06/26/20
18	OMS-S-01-2.5-062620MSD	006466-01MSD	Soil	06/26/20
19				
20				
21_				

21		
Notes:		

LDC #: 49734149

VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference

Page: 1 of 1
Reviewer: DTM
2nd reviewer:

All circled elements are applicable to each sample.

Sample ID	Matrix	Target Analyte List (TAL)
1-16	S	Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, H, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
4CH-18	S	Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Co, Fe, Pb, Li, Mg, Mo, Mn, 🎢 Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
	·	Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
	_	Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
-		Analysis Method
ICP		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
CP-MS		
GEAA		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn

Comments: Mercury by CVAA if performed

LDC #: 48734J4a

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

Page:1		of_	_ 1	
Reviewer	:	D	ТМ	
2nd Reviewer.	_	\supset	$\overline{}$	

METHOD: Trace metals (EPA SW 846 Method 6020/6010/7470)

Please see qua	lifications below for all questions answered "N". Not applicable questions are identified as "N/A".
N N/A	Was a matrix spike analyzed for each matrix in this SDG?
Y (N) N/A	Were matrix spike percent recoveries (%R) within the control limits of (75-125?) f the sample concentration exceeded the spike concentration by a facto
•	of 4 or more, no action was taken.
Y (N) N/A	Were all duplicate sample relative percent differences (RPD) ≰ 20% for samples?
LEVEL IV ONL	Y :
Y N N/A	Were recalculated results acceptable? See Level IV Recalculation Worksheet for recalculations.

#	MS/MSD ID	Matrix	Analyte	MS %Recovery	MSD %Recovery	RPD (Limits)	Associated Samples	Qualifications
	17/18	S	Cu		164		ALL	J/A (det, NG) $7, W = M$
			Cu		L	56	ALL	J/UJ/A (det,ND)
Ш	· · · · · · · · · · · · · · · · · · ·							
Ш								
Ш				10-1				
Щ								
Ш					***			
Н		[<u> </u>		The land			
Ш								
Ш								
Ш								
ll l								

Comments:				 	

LDC#: 48734J4a

VALIDATION FINDINGS WORKSHEET

Field Duplicates

Page:_1_of_1_ Reviewer:_DTM_ 2nd Reviewer:____

METHOD: Metals (EPA Method 6010/6020/7000)

	Concentrat			
Analyte	10	11	RPD	
Copper	5U	5.11	NC	

V:\Darionna\FIELD DUPLICATES\Field Duplicates\FD_inorganic\2020\48734J4a.wpd

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Kimberly-Clark Upland Area

LDC Report Date: August 17, 2020

Polynuclear Aromatic Hydrocarbons Parameters:

Validation Level: Stage 2A

Laboratory: Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 006498

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
LP-S-18-6.5	006498-07	Soil	06/29/20
LP-S-19-6.5	006498-08	Soil	06/29/20
LP-S-20-6.5	006498-09	Soil	06/29/20
LP-S-21-6.5	006498-10	Soil	06/29/20
LP-B-03-10	006498-11	Soil	06/29/20
CNW-B-03-7	006498-12	Soil	06/29/20
LP-S-18-6.5MS	006498-07MS	Soil	06/29/20
LP-S-18-6.5MSD	006498-07MSD	Soil	06/29/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polynuclear Aromatic Hydrocarbons (PAHs) by Environmental Protection Agency (EPA) SW 846 Method 8270E in Selected Ion Monitoring (SIM) mode

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory: however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

Instrument performance check data were not reviewed for Stage 2A validation.

III. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

IV. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

Internal standards data were not reviewed for Stage 2A validation.

XII. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XIV. System Performance

Raw data were not reviewed for Stage 2A validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Kimberly-Clark Upland Area Polynuclear Aromatic Hydrocarbons - Data Qualification Summary - SDG 006498

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Polynuclear Aromatic Hydrocarbons - Laboratory Blank Data Qualification **Summary - SDG 006498**

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Polynuclear Aromatic Hydrocarbons - Field Blank Data Qualification Summary -SDG 006498

No Sample Data Qualified in this SDG

SDG	#: 48734K2b VALIDATIO #: 006498 ratory: <u>Friedman & Bruya</u> , Inc.		LETEN tage 2 <i>F</i>		WORKSHEET		F	Date: <u>๗(३)</u> Page: <u>L</u> of <u>)</u> ewer: ਯ
The	HOD: GC/MS Polynuclear Aromatic Hydro samples listed below were reviewed for eac ation findings worksheets.	·			•		2nd Revi ndings are note	
	Validation Area				Comm	ont		
	Sample receipt/Technical holding times	AIA				GIII		
II.	GC/MS Instrument performance check	N						
III.	Initial calibration/ICV	N/N						
IV.	Continuing calibration	N						
V.	Laboratory Blanks	A						
VI.	Field blanks	N						
VII.	Surrogate spikes	A						
VIII	T N	-got	(7.8)				
IX.	Laboratory control samples	H	LC5					
X.	Field duplicates	7					******	***************************************
XI.	Internal standards	N						
XII.	Compound quantitation RL/LOQ/LODs	N						
XIII.		N						
XIV.	System performance	N						
XV.		H						
Note:	N = Not provided/applicable R = Rins	o compounds sate eld blank	detected		D = Duplicate TB = Trip blank EB = Equipment blanl	<	SB=Source bl OTHER:	ank
	Client ID				Lab ID	1	Matrix	Date
1	LP-S-18-6.5				006498-07		Soil	06/29/20
2	LP-S-19-6.5				006498-08	5	Soil	06/29/20
3	LP-S-20-6 2 .5				006498-09	- 9	Soil	06/29/20
4	LP-S-21-3.5				006498-10		Soil	06/29/20
5	LP-B-03-10				006498-11		Soil	06/29/20
6	CNW-B-03-7				006498-12		Soil	06/29/20
7	LP-S-18-6.5MS				006498-07MS		Soil	06/29/20
8	LP-S-18-6.5MSD				006498-07MSD	5	Soil	06/29/20
9								
10								
lotes:			<u> </u>	l			1	
l	00-1529 MB 1(5			l				

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Kimberly-Clark Upland Area

LDC Report Date: August 17, 2020

Polychlorinated Biphenyls Parameters:

Validation Level: Stage 2A

Laboratory: Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 006498

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
OMS-B-07-5	006498-01	Soil	06/29/20
OMS-B-08-5	006498-02	Soil	06/29/20
OMS-S-10-2.5	006498-03	Soil	06/29/20
OMS-S-10-2.5DL	006498-03DL	Soil	06/29/20
OMS-S-09-2.5	006498-04	Soil	06/29/20
OMS-S-08-2.5	006498-05	Soil	06/29/20
OMS-B-09-5	006498-06	Soil	06/29/20
OMS-B-07-5MS	006498-01MS	Soil	06/29/20
OMS-B-07-5MSD	006498-01MSD	Soil	06/29/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polychlorinated Biphenyls (PCBs) by Environmental Protection Agency (EPA) SW 846 Method 8082A

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- DNR Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- (Rejected): The sample results were rejected due to gross non-conformances R discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identification

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method.

In the case where more than one result was reported for an individual sample, the least technically acceptable results were deemed not reportable as follows:

Sample	Compound	Reason	Flag	A or P
OMS-S-10-2.5	Aroclor-1254	Results exceeded calibration range.	DNR	Α

No results were rejected in this SDG.

Kimberly-Clark Upland Area Polychlorinated Biphenyls - Data Qualification Summary - SDG 006498

Sample	Compound	Flag	A or P	Reason
OMS-S-10-2.5	Aroclor-1254	DNR	А	Overall assessment of data

Kimberly-Clark Upland Area

Polychlorinated Biphenyls - Laboratory Blank Data Qualification Summary - SDG 006498

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area

Polychlorinated Biphenyls - Field Blank Data Qualification Summary - SDG 006498

No Sample Data Qualified in this SDG

LDC #: 48734K3b	VALIDATION COMPLETENESS WORKSHEET
SDG #:_006498	Stage 2A

Stage 2A

Date: 08/13/2
Page: Lof
Reviewer:
2nd Reviewer:

Laboratory: Friedman & Bruya, Inc.

METHOD: GC Polychlorinated Biphenyls (EPA SW846 Method 8082A)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Sample receipt/Technical holding times	AA	
II.	Initial calibration/ICV	N/N	
111.	Continuing calibration	N	
IV.	Laboratory Blanks	A	
V.	Field blanks	N	
VI.	Surrogate spikes	A	
VII.	Matrix spike/Matrix spike duplicates	A	(8,9)
VIII.	Laboratory control samples	A	LCS
IX.	Field duplicates	N	
Χ.	Compound quantitation/RL/LOQ/LODs	N	
XI.	Target compound identification	N	
LXII	Overall assessment of data	SW	

Note:

A = Acceptable N = Not provided/applicable

SW = See worksheet

ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate

TB = Trip blank EB = Equipment blank SB=Source blank

OTHER:

	Client ID	Lab ID	Matrix	Date
1	OMS-B-07-5	006498-01	Soil	06/29/20
2	OMS-B-08-5	006498-02	Soil	06/29/20
3	OMS-S-10-2.5	006498-03	Soil	06/29/20
4	OMS-S-10-2.5DL	006498-03DL	Soil	06/29/20
5	OMS-S-09-2.5	006498-04	Soil	06/29/20
6	OMS-S-08-2.5	006498-05	Soil	06/29/20
7	OMS-B-09-5	006498-06	Soil	06/29/20
8	OMS-B-07-5MS	006498-01MS	Soil	06/29/20
9	OMS-B-07-5MSD	006498-01MSD	Soil	06/29/20
10				
11				
12				
13				

LDC #: 48734K3b

VALIDATION FINDINGS WORKSHEET Overall Assessment of Data

Page: <u>1</u> of 1
Reviewer: <u>LT</u>
2nd Reviewer:

METHOD: GC PCBs (EPA SW 846 Method 8082A)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

All available information pertaining to the data were reviewed using professional judgement to compliment the determination of the overall quality of the data.

Yes_x_ No__ N/A__ Was the overall quality and usability of the data acceptable?

#	Date	Sample ID	Compound	Finding	Qualifications
		3	Aroclor 1254	exceed calibration range	DNR

Comments:			

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Kimberly-Clark Upland Area

LDC Report Date: August 13, 2020

Parameters: Metals

Validation Level: Stage 2A

Laboratory: Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 006498

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
OMS-B-07-5	006498-01	Soil	06/29/20
OMS-B-08-5	006498-02	Soil	06/29/20
OMS-S-10-2.5	006498-03	Soil	06/29/20
OMS-S-09-2.5	006498-04	Soil	06/29/20
OMS-S-08-2.5	006498-05	Soil	06/29/20
OMS-B-09-5	006498-06	Soil	06/29/20
LP-S-18-6.5	006498-07	Soil	06/29/20
LP-S-19-6.5	006498-08	Soil	06/29/20
LP-S-20-63.5	006498-09	Soil	06/29/20
LP-S-21-3.5	006498-10	Soil	06/29/20
LP-B-03-10	006498-11	Soil	06/29/20
OMS-B-07-5MS	006498-01MS	Soil	06/29/20
OMS-B-07-5MSD	006498-01MSD	Soil	06/29/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Copper by Environmental Protection Agency (EPA) SW 846 Method 6020B Mercury by EPA Method 1631E

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- (Rejected): The sample results were rejected due to gross non-conformances R discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. ICPMS Tune

ICP-MS tune data were not reviewed for Stage 2A validation.

III. Instrument Calibration

Instrument calibration data were not reviewed for Stage 2A validation.

IV. ICP Interference Check Sample Analysis

ICP Interference check sample (ICS) analysis data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VIII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

IX. Serial Dilution

Serial dilution was not performed for this SDG.

X. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits.

XI. Field Duplicates

No field duplicates were identified in this SDG.

XII. Internal Standards (ICP-MS)

Internal standards data were not reviewed for Stage 2A validation.

XIII. Sample Result Verification

Raw data were not reviewed for Stage 2A validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected in this SDG.

Kimberly-Clark Upland Area Metals - Data Qualification Summary - SDG 006498

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Metals - Laboratory Blank Data Qualification Summary - SDG 006498

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Metals - Field Blank Data Qualification Summary - SDG 006498

No Sample Data Qualified in this SDG

LDC #:___48734K4a

VALIDATION COMPLETENESS WORKSHEET

Stage 2A

SDG #: 006498 Laboratory: Friedman & Bruya, Inc.

METHOD: Cu, Hg (EPA SW 846 Method 6020B/EPA Method 1631E)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
l.	Sample receipt/Technical holding times	A/A	
11.	ICP/MS Tune	N	
111.	Instrument Calibration	N	
IV.	ICP Interference Check Sample (ICS) Analysis	N	
V.	Laboratory Blanks	A	
VI.	Field Blanks	2	
VII.	Matrix Spike/Matrix Spike Duplicates	A	
VIII.	Duplicate sample analysis	2	
IX.	Serial Dilution	2	
X.	Laboratory control samples	A	ics
XI.	Field Duplicates	2	
XII.	Internal Standard (ICP-MS)	N	
XIII.	Sample Result Verification	N	
XIV	Overall Assessment of Data	A	

Note:

A = Acceptable

N = Not provided/applicable SW = See worksheet ND = No compounds detected

R = Rinsate FB = Field blank D = Duplicate

TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	OMS-B-07-5	006498-01	Soil	06/29/20
2	OMS-B-08-5	006498-02	Soil	06/29/20
3	OMS-S-10-2.5	006498-03	Soil	06/29/20
4	OMS-S-09-2.5	006498-04	Soil	06/29/20
5	OMS-S-08-2.5	006498-05	Soil	06/29/20
6	OMS-B-09-5	006498-06	Soil	06/29/20
7_	LP-S-18-6.5	006498-07	Soil	06/29/20
8	LP-S-19-6.5	006498-08	Soil	06/29/20
9	LP-S-20-63.5	006498-09	Soil	06/29/20
10	LP-S-21-3.5	006498-10	Soil	06/29/20
11	LP-B-03-10	006498-11	Soil	06/29/20
12	OMS-B-07-5MS	006498-01MS	Soil	06/29/20
13	OMS-B-07-5MSD	006498-01MSD	Soil	06/29/20
14				
15				

LDC#:48734KNa

VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference

Page: 1 of 1
Reviewer: DTM
2nd reviewer:

All circled elements are applicable to each sample.

		
Sample ID	Matrix	Target Analyte List (TAL)
1-36	S	Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, (Ĉu) Fe, Pb, Li, Mg, Mo, Mn, (fg) Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
7-11	8	Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, 炳 Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
0012-13	8	Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, 🗘 Fe, Pb, Li, Mg, Mo, Mn, 🎒 Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		AI, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		AI, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
-		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Ti, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
	 -	Analysis Method
ICP		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
ICP-MS		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
GEAA		Al, Sh, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Ph, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn

Comments: Mercury by CVAA if performed

2701 Loker Ave. West, Suite 220, Carlsbad, CA 92010 Bus: 760-827-1100 Fax: 760-827-1099

Aspect Consulting LLC 701 Second Ave., Suite 550 Seattle, WA 98104 ATTN: Carla Brock, LHG cbrock@aspectconsulting.com September 11, 2020

SUBJECT: Kimberly-Clark Upland Area, Data Validation

Dear Ms. Brock,

Enclosed are the final validation reports for the fractions listed below. These SDGs were received on August 20, 2020. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project #48922:

007064, 007149, 007180, 007206	Polynuclear Aromatic Hydrocarbons, Polychlorinated
007234, 007259, 007302, 007347	Biphenyls, Metals, Oil & Grease

Fraction

007234, 007259, 007302, 007347 007450, 007468, 007498, 007525 008016, 008046, 008072, 008170

008214

SDG#

The data validation was performed under Stage 2A guidelines. The analyses were validated using the following documents, as applicable to each method:

- USEPA National Functional Guidelines for Organic Superfund Methods Data Review, January 2017
- USEPA National Functional Guidelines for Inorganic Superfund Methods Data Review;
 January 2017
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; update IV, February 2007; update V, July 2014

Please feel free to contact us if you have any questions.

Sincerely,

Christina Rink crink@lab-data.com

Project Manager/Senior Chemist

Attachment 1 342 pages-ADV LDC #48922 (Aspect Consulting, LLC - Seattle, WA / Kimberly-Clark Upland Area 2020 Interm Action) Stage 2A EDD (16) PAH O&G DATE DATE (8270E **PCBs** Metals Cu Hg LDC SDG# REC'D DUE (8082A) (200.8)(6020B) (1631E) (1664)-SIM) ws w s | w | s | w | s | w | s | w | s | w | s | w | s | w | s | w | s | w | s | w | s | w | w s w s w s Matrix: Water/Soil S 0 0 0 12 007064 08/20/20 09/11/20 В 007149 08/20/20 09/11/20 0 8 0 9 6 0 007180 08/20/20 09/11/20 6 5 0 D 007206 08/20/20 09/11/20 6 F 08/20/20 09/11/20 5 0 5 007234 0 5 007259 08/20/20 09/11/20 6 0 0 G 007302 08/20/20 09/11/20 0 9 0 9 Н 007347 08/20/20 09/11/20 0 007450 08/20/20 09/11/20 0 12 0 12 08/20/20 09/11/20 11 007468 08/20/20 09/11/20 0 3 0 3 007498 007525 08/20/20 09/11/20 0 2 0 2 5 0 Μ 008016 08/20/20 09/11/20 0 5 0 0 5 008046 08/20/20 09/11/20 0 0 Ν 0 008072 08/20/20 09/11/20 0 0 Р 2 008170 08/20/20 09/11/20 0 0 11 0 3 Q 08/20/20 09/11/20 0 008214 0 0 0 0 0 0 0 T/CR Total

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Kimberly-Clark Upland Area

LDC Report Date:

September 9, 2020

Parameters:

Polychlorinated Biphenyls

Validation Level:

Stage 2A

Laboratory:

Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 007064

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
OMS-S-13-2.5-070620	007064-07	Soil	07/06/20
OMS-S-13-2.5-070620DL	007064-07DL	Soil	07/06/20
OMS-S-14-2.5-070620	007064-08	Soil	07/06/20
OMS-S-14-2.5-070620DL	007064-08DL	Soil	07/06/20
OMS-S-15-2.5-070620	007064-09	Soil	07/06/20
OMS-S-17-2.5-070620	007064-10	Soil	07/06/20
OMS-S-16-2.5-070620	007064-11	Soil	07/06/20
OMS-S-18-2.5-070620	007064-12	Soil	07/06/20
OMS-S-13-2.5-070620MS	007064-07MS	Soil	07/06/20
OMS-S-13-2.5-070620MSD	007064-07MSD	Soil	07/06/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polychlorinated Biphenyls (PCBs) by Environmental Protection Agency (EPA) SW 846 Method 8082A

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- DNR Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Compound	MS (%R) (Limits)	MSD (%R) (Limits)	Flag	A or P
OMS-S-13-2.5-070620MS/MSD (OMS-S-13-2.5-070620)	Aroclor-1016 Aroclor-1260	156 (44-107) 10500 (38-124)	- 6460 (38-124)	NA	-

Relative percent differences (RPD) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Compound	RPD (Limits)	Flag	A or P
OMS-S-13-2.5-070620MS/MSD (OMS-S-13-2.5-070620)	Aroclor-1016 Aroclor-1260	50 (≤20) 48 (≤20)	NA	-

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identification

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method.

In the case where more than one result was reported for an individual sample, the least technically acceptable results were deemed not reportable as follows:

Sample	Compound	Reason	Flag	A or P
OMS-S-13-2.5-070620 OMS-S-14-2.5-070620	Aroclor-1254	Results exceeded calibration range.	DNR	A

No results were rejected in this SDG.

Kimberly-Clark Upland Area Polychlorinated Biphenyls - Data Qualification Summary - SDG 007064

Sample	Compound	Flag	A or P	Reason
OMS-S-13-2.5-070620 OMS-S-14-2.5-070620	Aroclor-1254	DNR	Α	Overall assessment of data

Kimberly-Clark Upland Area Polychlorinated Biphenyls - Laboratory Blank Data Qualification Summary - SDG 007064

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Polychlorinated Biphenyls - Field Blank Data Qualification Summary - SDG 007064

No Sample Data Qualified in this SDG

				S WORKSHEET		Date: 64/04
	#: <u> 007064 </u>	3	Stage 2A			Page: \ of _ Reviewer:
					2nd	Reviewer:
NETH	IOD: GC Polychlorinated Biphenyls (EPA	4 SW846 N	flethod 8082A)			
	amples listed below were reviewed for eation findings worksheets.	ach of the f	ollowing valida	ition areas. Validatio	on findings are	e noted in attach
	Validation Area			Comm	nents	
l.	Sample receipt/Technical holding times	AIA				
II.	Initial calibration/ICV	N/N				
III.	Continuing calibration	N				
IV.	Laboratory Blanks	A				
V.	Field blanks	N				
VI.	Surrogate spikes	A.				
VII.	Matrix spike/Matrix spike duplicates	SW	(9,10)			
VIII.	Laboratory control samples	A	LCS			
IX.	Field duplicates	N				
X.	Compound quantitation/RL/LOQ/LODs	N	Dry weigh	ut basis = 1-8		
XI.	Target compound identification	N				
XII	Overall assessment of data	1 SN				
te:	N = Not provided/applicable R = Ri	No compound nsate Field blank	s detected	D = Duplicate TB = Trip blank EB = Equipment blar	OTHER	urce blank ::
- (Client ID			Lab ID	Matrix	Date
	OMS-S-13-2.5-070620			007064-07	Soil	07/06/20
4	DMS-S-13-2.5-070620DL		****	007064-07DL	Soil	07/06/20
	DMS-S-14-2.5-070620	· · · · · · · · · · · · · · · · · · ·		007064-08	Soil	07/06/20
	DMS-S-14-2.5-070620DL	******	V 11	007064-08DL	Soil	07/06/20
4	DMS-S-15-2.5-070620			007064-09	Soil	07/06/20
4	DMS-S-17-2.5-070620			007064-10	Soil	07/06/20
	DMS-S-16-2.5-070620			007064-11	Soil	07/06/20
4	DMS-S-18-2.5-070620			007064-12	Soil	07/06/20
_	DMS-S-13-2.5-070620MS			007064-07MS	Soil	07/06/20
	DMS-S-13-2.5-070620MSD			007064-07MSD	Soil	07/06/20
,						

1 00-1561 MB 1/6

LDC #: 48922A3b

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

Page:_	1	_of_	1
Reviewer:		LT	

METHOD: X GC HPLC

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Yx N_ N/A_ Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG?

Y<u>x</u> N_ N/A_ Was an MS/MSD analyzed every 20 samples for each matrix or whenever a sample extraction was performed?

Nx N/A Were the MS/MSD percent recoveries (%R) and relative percent differences (RPD) within QC limits?

#	MS/MSD ID	Compound	MS %R (Limits)	MSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
	9/10	Aroclor-1016	156 (44 - 107)			1 (ND)	J/A DETS
		Aroclor-1260	10,500 (38 - 124)	6,460 (38 - 124)		ļ	1
		Aroclor-1016			50 (≤ 20)	.	ı
		Aroclor-1260			48 (≤ 20)	1	1
							
						<u> </u>	
							
						<u> </u>	
\vdash							
			Ì		<u></u>		
\vdash					 		
				<u> </u>			
				ļ			
							
$\vdash \vdash \vdash$							
		L	<u>L</u>	<u> </u>	<u> </u>	<u> </u>	

LDC #: 48922A3b

VALIDATION FINDINGS WORKSHEET <u>Overall Assessment of Data</u>

Page: _1	<u>1_</u> of	1_
Reviewer:	L	T

METHOD: GC PCBs (EPA SW 846 Method 8082A)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

All available information pertaining to the data were reviewed using professional judgement to compliment the determination of the overall quality of the data.

Yes x No N/A Was the overall quality and usability of the data acceptable?

#	Date	Sample ID	Compound	Finding	Qualifications
		1,3	Aroclor 1254	exceed calibration range	DNR
 					· · · · · · · · · · · · · · · · · · ·

Comments:	

Laboratory Data Consultants, Inc. **Data Validation Report**

Project/Site Name:

Kimberly-Clark Upland Area

LDC Report Date:

August 27, 2020

Parameters:

Metals

Validation Level:

Stage 2A

Laboratory:

Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 007064

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
PM-B-6-S-26-6-070620	007064-01	Soil	07/06/20
PM-B-6-S-23-6-070620	007064-02	Soil	07/06/20
PM-B-6-S-24-4-070620	007064-03	Soil	07/06/20
PM-B-6-S07-070620	007064-04	Soil	07/06/20
PM-B-6-S-24-6-070620	007064-05	Soil	07/06/20
PM-B-6-S-25-6-070620	007064-06	Soil	07/06/20
OMS-S-13-2.5-070620	007064-07	Soil	07/06/20
OMS-S-14-2.5-070620	007064-08	Soil	07/06/20
OMS-S-15-2.5-070620	007064-09	Soil	07/06/20
OMS-S-17-2.5-070620	007064-10	Soil	07/06/20
OMS-S-16-2.5-070620	007064-11	Soil	07/06/20
OMS-S-18-2.5-070620	007064-12	Soil	07/06/20
OMS-S-13-2.5-070620MS	007064-07MS	Soil	07/06/20
OMS-S-13-2.5-070620MSD	007064-07MSD	Soil	07/06/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Copper by Environmental Protection Agency (EPA) SW 846 Method 6020B Mercury by EPA Method 1631E

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. ICPMS Tune

ICP-MS tune data were not reviewed for Stage 2A validation.

III. Instrument Calibration

Instrument calibration data were not reviewed for Stage 2A validation.

IV. ICP Interference Check Sample Analysis

ICP Interference check sample (ICS) analysis data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample.

For OMS-S-13-2.5-070620MS/MSD, no data were qualified for mercury and copper percent recoveries (%R) outside the QC limits since the parent sample results were greater than 4X the spike concentration.

Relative percent differences (RPD) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	RPD (Limits)	Flag	A or P
OMS-S-13-2.5-070620MS/MSD (All samples in SDG 007064)	Mercury	200 (≤20)	J (all detects) UJ (all non-detects)	A

Spike ID (Associated Samples)	Analyte	RPD (Limits)	Flag	A or P
OMS-S-13-2.5-070620MS/MSD (OMS-S-13-2.5-070620 OMS-S-14-2.5-070620 OMS-S-15-2.5-070620 OMS-S-17-2.5-070620 OMS-S-16-2.5-070620 OMS-S-16-2.5-070620 OMS-S-18-2.5-070620)	Copper	147 (≤20)	J (all detects)	A

VIII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

IX. Serial Dilution

Serial dilution was not performed for this SDG.

X. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits.

XI. Field Duplicates

No field duplicates were identified in this SDG.

XII. Internal Standards (ICP-MS)

Internal standards data were not reviewed for Stage 2A validation.

XIII. Sample Result Verification

Raw data were not reviewed for Stage 2A validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the methods.

Due to MS/MSD RPD, data were qualified as estimated in twelve samples.

No results were rejected in this SDG.

Kimberly-Clark Upland Area Metals - Data Qualification Summary - SDG 007064

Sample	Analyte	Flag	A or P	Reason
PM-B-6-S-26-6-070620 PM-B-6-S-23-6-070620 PM-B-6-S-24-4-070620 PM-B-6-S07-070620 PM-B-6-S-24-6-070620 PM-B-6-S-25-6-070620 OMS-S-13-2.5-070620 OMS-S-14-2.5-070620 OMS-S-15-2.5-070620 OMS-S-17-2.5-070620 OMS-S-18-2.5-070620	Mercury	J (all detects) UJ (all non-detects)	Α	Matrix spike/Matrix spike duplicate (RPD)
OMS-S-13-2.5-070620 OMS-S-14-2.5-070620 OMS-S-15-2.5-070620 OMS-S-17-2.5-070620 OMS-S-16-2.5-070620 OMS-S-18-2.5-070620	Copper	J (all detects)	Α	Matrix spike/Matrix spike duplicate (RPD)

Kimberly-Clark Upland Area Metals - Laboratory Blank Data Qualification Summary - SDG 007064

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Metals - Field Blank Data Qualification Summary - SDG 007064

No Sample Data Qualified in this SDG

LDC #: 48922A4a	VALIDATION COMPLETENESS WORKSHEET
SDG #: 007064	Stage 2A

Dutc. (7 (2) 10
Page: Lof 1
Reviewer: Dr
2nd Poviower:

Date: 812074

Laboratory: Friedman & Bruya, Inc.

METHOD: &, Hg (EPA SW 846 Method 6020B/EPA Method 1631E)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I.	Sample receipt/Technical holding times	AA	
<u>II.</u>	ICP/MS Tune	N	
111.	Instrument Calibration	N	
IV.	ICP Interference Check Sample (ICS) Analysis	N	
V.	Laboratory Blanks	'n	
VI.	Field Blanks	2	
VII.	Matrix Spike/Matrix Spike Duplicates	3	
VIII.	Duplicate sample analysis	2	
IX.	Serial Dilution	2	
X.	Laboratory control samples	A	ics
XI.	Field Duplicates	2	
XII.	Internal Standard (ICP-MS)	N	
XIII.	Sample Result Verification	N	
XIV	Overall Assessment of Data	A	

Note:

A = Acceptable

N = Not provided/applicable SW = See worksheet

ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate

TB = Trip blank

EB = Equipment blank

SB=Source blank

OTHER:

	Client ID	Lab ID	Matrix	Date
1	PM-B-6-S-26-6-070620	007064-01	Soil	07/06/20
2	PM-B-6-S-23-6-070620	007064-02	Soil	07/06/20
3	PM-B-6-S-24-4-070620	007064-03	Soil	07/06/20
4	PM-B-6-S07-070620	007064-04	Soil	07/06/20
5	PM-B-6-S-24-6-070620	007064-05	Soil	07/06/20
6	PM-B-6-S-25-6-070620	007064-06	Soil	07/06/20
7	OMS-S-13-2.5-070620	007064-07	Soil	07/06/20
8	OMS-S-14-2.5-070620	007064-08	Soil	07/06/20
9	OMS-S-15-2.5-070620	007064-09	Soil	07/06/20
10	OMS-S-17-2.5-070620	007064-10	Soil	07/06/20
11	OMS-S-16-2.5-070620	007064-11	Soil	07/06/20
12	OMS-S-18-2.5-070620	007064-12	Soil	07/06/20
13	OMS-S-13-2.5-070620MS	007064-07MS	Soil	07/06/20
14	OMS-S-13-2.5-070620MSD	007064-07MSD	Soil	07/06/20
15				

Notes:

LDC #: 48927 A4 A

VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference

Page: 1 of 1
Reviewer: DTM

All circled elements are applicable to each sample.

		
Sample ID	Matrix	Target Analyte List (TAL)
1-6	S	Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Ag, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
7-12	S	Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, 🗘, Fe, Pb, Li, Mg, Mo, Mn, 🙉 Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
QC13-14	ς	Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, 📵, Fe, Pb, Li, Mg, Mo, Mn, 🗐, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Analysis Method
ICP		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
ICP-MS	- 11	Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
GFAA	- 11	Al Sh. As. Ba. Be. B. Cd. Ca. Cr. Co. Cu. Fe. Ph. Li. Mg. Mo. Mn. Hg. Ni. K. Se. Ag. Na. Sr. Tl. Sn. Ti. W. U. V. Zn

Comments: Mercury by CVAA if performed

LDC #: 48922A4a

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

Page:	1	_of_	_1
Reviewe	r·	DT	М

METHOD: Trace metals (EPA SW 846 Method 6020/6010/7470)

Please	see qualifications	below for all	questions answered "N".	Not applicable	questions are	identified as "N/A".

Was a matrix spike analyzed for each matrix in this SDG?

Were matrix spike percent recoveries (%R) within the control limits of 75-125? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken.

YANA W LEVEL IV ONLY: Were all duplicate sample relative percent differences (RPD) ≤ 20% for samples?

Were recalculated results acceptable? See Level IV Recalculation Worksheet for recalculations.

#	MS/MSD ID	Matrix	Analyte	MS %Recovery	MSD %Recovery	RPD (Limits)	Associated Samples	Qualifications
	13/14	S	Hg		•	200(20)		J/UJ/A (det/ND)
			Cu			147(20)	ALL	J/UJ/A (det)
Ш								
Щ							· -	
Щ							 	
Ш								
\parallel								
\Vdash		1		-	-			
H		l						
\mathbb{H}								
$\ \cdot \ $								
\parallel								
$\ \cdot \ $							· ·	
\mathbb{H}		<u> </u>						
\parallel								
H								

Comments:	13/14 Hg, Cu >4xSpike			
		·		

Laboratory Data Consultants, Inc. **Data Validation Report**

Project/Site Name: Kimberly-Clark Upland Area

LDC Report Date: September 9, 2020

Polynuclear Aromatic Hydrocarbons Parameters:

Stage 2A Validation Level:

Laboratory: Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 007149

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
CMS-S-01-4-070920	007149-01	Soil	07/09/20
CMS-S-02-4-070920	007149-02	Soil ·	07/09/20
CMS-S-03-4-070920	007149-03	Soil	07/09/20
CMS-S-04-4-070920	007149-04	Soil	07/09/20
CMS-B-35-6-070920	007149-05	Soil	07/09/20
CMS-B-38-6-070920	007149-06	Soil	07/09/20
CMS-B-36-6-070920	007149-07	Soil	07/09/20
CMS-S-05-4-070920	007149-08	Soil	07/09/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polynuclear Aromatic Hydrocarbons (PAHs) by Environmental Protection Agency (EPA) SW 846 Method 8270E in Selected Ion Monitoring (SIM) mode

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

Instrument performance check data were not reviewed for Stage 2A validation.

III. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

IV. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

Internal standards data were not reviewed for Stage 2A validation.

XII. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XIV. System Performance

Raw data were not reviewed for Stage 2A validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Kimberly-Clark Upland Area Polynuclear Aromatic Hydrocarbons - Data Qualification Summary - SDG 007149

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Polynuclear Aromatic Hydrocarbons - Laboratory Blank Data Qualification **Summary - SDG 007149**

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Polynuclear Aromatic Hydrocarbons - Field Blank Data Qualification Summary -SDG 007149

No Sample Data Qualified in this SDG

SDG:	#:48922B2b VALIDATIO #:007149 atory: <u>Friedman & Bruya, Inc.</u>		PLETEN Stage 2/		S WORKSHEET		F Revi	Date: ʊব/অ/ Page: _lof \ ewer: _ لح ewer:		
METH	METHOD: GC/MS Polynuclear Aromatic Hydrocarbons (EPA SW 846 Method 8270E-SIM)									
	he samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached alidation findings worksheets.									
	Validation Area				Comm	ent	s			
<u> </u>	Sample receipt/Technical holding times	A/A								
II.	GC/MS Instrument performance check	N								
JII.	Initial calibration/ICV	N/N								
IV.	Continuing calibration	N								
V.	Laboratory Blanks	A								
VI.	Field blanks	2								
VII.	Surrogate spikes	A								
VIII.	Matrix spike/Matrix spike duplicates	N	Non	olia	M					
IX.	Laboratory control samples	A	Las							
X.	Field duplicates	N								
XI.	Internal standards	N								
XII.	Compound quantitation RL/LOQ/LODs	N	Dry w	eign	+ basis = 1-8	3				
XIII.	Target compound identification	N								
XIV.	System performance	N								
XV.	Overall assessment of data	A								
lote:	A = Acceptable ND = N N = Not provided/applicable R = Rin	o compounds sate eld blank	s detected		D = Duplicate TB = Trip blank EB = Equipment blar	k	SB=Source bl OTHER:	ank		
	Client ID				Lab ID	^	latrix	Date		
1	CSM-S-01-4-070920				007149-01	_ s	oil	07/09/20		
2	M) CSM-S-02-4-070920				007149-02	s	oil	07/09/20		
3	CSM-S-03-4-070920				007149-03	s	oil	07/09/20		
4	CSM-S-04-4-070920				007149-04	s	oil	07/09/20		
- 1	M S CSM-B-35-6-070920		_		007149-05	s	oil	07/09/20		
	MS						07/09/20			
	MS							07/09/20		
	が 5 CSM-S-05-4-070920				007149-08	S	oil	07/09/20		
9	55. C.									
lotes:	.1_1 1			T						
1 0	10-1576 MB2 1/5					-		·		
1	1 1		1	1		1	1			

Laboratory Data Consultants, Inc. **Data Validation Report**

Project/Site Name:

Kimberly-Clark Upland Area

LDC Report Date:

September 9, 2020

Parameters:

Polychlorinated Biphenyls

Validation Level:

Stage 2A

Laboratory:

Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 007149

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
CMS-S-01-4-070920	007149-01	Soil	07/09/20
CMS-S-02-4-070920	007149-02	Soil	07/09/20
CMS-S-03-4-070920	007149-03	Soil	07/09/20
CMS-S-04-4-070920	007149-04	Soil	07/09/20
CMS-B-35-6-070920	007149-05	Soil	07/09/20
CMS-B-38-6-070920	007149-06	Soil	07/09/20
CMS-B-36-6-070920	007149-07	Soil	07/09/20
CMS-B-36-6-070920DL	007149-07DL	Soil	07/09/20
CMS-S-05-4-070920	007149-08	Soil	07/09/20
CMS-S-01-4-070920MS	007149-01MS	Soil	07/09/20
CMS-S-01-4-070920MSD	007149-01MSD	Soil	07/09/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polychlorinated Biphenyls (PCBs) by Environmental Protection Agency (EPA) SW 846 Method 8082A

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- DNR Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Compound	MS (%R) (Limits)	MSD (%R) (Limits)	Flag	A or P
CMS-S-01-4-070920MS/MSD (CMS-S-01-4-070920)	Aroclor-1260	-	199 (38-124)	J (all detects)	Α

Relative percent differences (RPD) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Compound	RPD (Limits)	Flag	A or P
CMS-S-01-4-070920MS/MSD (CMS-S-01-4-070920)	Aroclor-1260	74 (≤20)	J (all detects)	А

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identification

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method.

In the case where more than one result was reported for an individual sample, the least technically acceptable results were deemed not reportable as follows:

Sample	Compound	Reason	Flag	A or P
CMS-B-36-6-070920	Aroclor-1254 Aroclor-1260	Results exceeded calibration range.	DNR	А

Due to MS/MSD %R and RPD, data were qualified as estimated in one sample.

No results were rejected in this SDG.

Kimberly-Clark Upland Area Polychlorinated Biphenyls - Data Qualification Summary - SDG 007149

Sample	Compound	Flag	A or P	Reason
CMS-S-01-4-070920	Aroclor-1260	J (all detects)	Α	Matrix spike/Matrix spike duplicate (%R)
CMS-S-01-4-070920	Aroclor-1260	J (all detects)	Α	Matrix spike/Matrix spike duplicate (RPD)
CMS-B-36-6-070920	Aroclor-1254 Aroclor-1260	DNR	Α	Overall assessment of data

Kimberly-Clark Upland Area Polychlorinated Biphenyls - Laboratory Blank Data Qualification Summary - SDG 007149

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Polychlorinated Biphenyls - Field Blank Data Qualification Summary - SDG 007149

No Sample Data Qualified in this SDG

DG # abora	t: 48922B3b VALIDA t: 007149 atory: Friedman & Bruya, Inc. IOD: GC Polychlorinated Biphenyls (I	S	Stage 2/	A	WORKSHEET		Date: <u>o</u> 4 Page: <u>l</u> o Reviewer: <u>l</u> Reviewer:
	amples listed below were reviewed fo tion findings worksheets.	r each of the f	ollowing	validat	ion areas. Validati	on findings are	e noted in attac
	Validation Area				Comn	nents	
1.	Sample receipt/Technical holding times	AIA					
II.	Initial calibration/ICV	N/N					
III.	Continuing calibration	N _					
IV.	Laboratory Blanks	A					
V.	Field blanks	N					
VI.	Surrogate spikes	A					
VII.	Matrix spike/Matrix spike duplicates	Sw	(10,11	1)			
VIII.	Laboratory control samples	A	LCS				
IX.	Field duplicates	N_					
X.	Compound quantitation/RL/LOQ/LODs	N	Dry v	neigh	+ basis = 1-6	1	
XI.	Target compound identification	N L	,				
XII	Overall assessment of data	SW					
ite:	N = Not provided/applicable R =) = No compounds = Rinsate = Field blank	s detected		D = Duplicate TB = Trip blank EB = Equipment blan	OTHER	irce blank :
6	Client ID				Lab ID	Matrix	Date
	MS CSM-S-01-4-070920				007149-01	Soil	07/09/20
	CSM-S-02-4-070920				007149-02	Soil	07/09/20
	MS CSM-S-03-4-070920				007149-03	Soil	07/09/20
	MS CSM-S-04-4-070920				007149-04	Soil	07/09/20
C	ሎ ያ ር <mark>ያ</mark> M-B-35-6-070920				007149-05	Soil	07/09/20
c	M) CSM-B-38-6-070920				007149-06	Soil	07/09/20
c	MS CSM-B-36-6-070920				007149-07	Soil	07/09/20
c	ル \$ C\$M-B-36-6-070920DL	entre an ex			007149-07DL	Soil	07/09/20
	MS CSM-S-05-4-070920				007149-08	Soil	07/09/20
) (MS CSM-S-01-4-070920MS				007149-01MS	Soil	07/09/20
1 C	M S CSM-S-01-4-070920MSD				007149-01MSD	Soil	07/09/20
2							
3							
tes:			1				
1 00	0-1579 MB 16						

LDC #: 48922B3b

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

Page:_	1	_of_	1
Reviewer:		LT	

METHOD: X GC HPLC

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Yx N_ N/A_ Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG?

Yx N N/A Was an MS/MSD analyzed every 20 samples for each matrix or whenever a sample extraction was performed?

Y___ N_x__ N/A__ Were the MS/MSD percent recoveries (%R) and relative percent differences (RPD) within QC limits?

#	MS/MSD ID	Compound	MS %R (Limits)	MSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
	10/11	Aroclor-1260		199 (38 - 124)		1 (DET)	J/A DETS
		Aroclor-1260			74 (≤ 20)	1	1
				-			
							<u> </u>
							<u> </u>

LDC #: 48922B3b

VALIDATION FINDINGS WORKSHEET Overall Assessment of Data

Page:	_1	_of_	1	
Reviewe	r:	L٦	Γ	

METHOD: GC PCBs (EPA SW 846 Method 8082A)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

All available information pertaining to the data were reviewed using professional judgement to compliment the determination of the overall quality of the data.

Yes x No_ N/A_ Was the overall quality and usability of the data acceptable?

#	Date	Sample ID	Compound	Finding	Qualifications
 -	Date	Sample ID	Compound	Finding	Qualifications
		7	Aroclor 1254 and Aroclor 1260	exceed calibration range	DNR

Comments: _					
		100			

Laboratory Data Consultants, Inc. **Data Validation Report**

Project/Site Name: Kimberly-Clark Upland Area

LDC Report Date: September 9, 2020

Polynuclear Aromatic Hydrocarbons Parameters:

Stage 2A Validation Level:

Laboratory: Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 007180

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
CMS-B-37-6-071020	007180-01	Soil	07/10/20
CMS-S-06-4-071020	007180-02	Soil	07/10/20
CMS-S-07-4-071020	007180-03	Soil	07/10/20
CMS-508-071020	007180-04	Soil	07/10/20
CMS-S-08-4-071020	007180-05	Soil	07/10/20
CMS-B-34-6-071020	007180-06	Soil	07/10/20
CMS-B-37-6-071020MS	007180-01MS	Soil	07/10/20
CMS-B-37-6-071020MSD	007180-01MSD	Soil	07/10/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polynuclear Aromatic Hydrocarbons (PAHs) by Environmental Protection Agency (EPA) SW 846 Method 8270E in Selected Ion Monitoring (SIM) mode

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

Instrument performance check data were not reviewed for Stage 2A validation.

III. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

IV. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

X. Field Duplicates

Samples CMS-S-07-4-071020 and CMS-508-071020 were identified as field duplicates. No results were detected in any of the samples.

XI. Internal Standards

Internal standards data were not reviewed for Stage 2A validation.

XII. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XIV. System Performance

Raw data were not reviewed for Stage 2A validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Kimberly-Clark Upland Area Polynuclear Aromatic Hydrocarbons - Data Qualification Summary - SDG 007180

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Polynuclear Aromatic Hydrocarbons - Laboratory Blank Data Qualification **Summary - SDG 007180**

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Polynuclear Aromatic Hydrocarbons - Field Blank Data Qualification Summary -**SDG 007180**

No Sample Data Qualified in this SDG

SDG : Labor	#:48922C2b	S	Stage 2A	S WORKSHEET Method 8270E-SIM	2nd	Date: of /a Page:lof _l Reviewer: /z Reviewer:
	amples listed below were reviewed for extion findings worksheets.	ach of the f	ollowing valid	ation areas. Validati	ion findings are	e noted in attache
	Validation Area			Comr	ments	
I.	Sample receipt/Technical holding times	AIA				
11.	GC/MS Instrument performance check	N				
III.	Initial calibration/ICV	N/N				
IV.	Continuing calibration	N				
V.	Laboratory Blanks	A				
VI.	Field blanks	17				
VII.	Surrogate spikes	A				
VIII.	Matrix spike/Matrix spike duplicates	A	(7,5)			
IX.	Laboratory control samples	A	LCS			
X.	Field duplicates	ND	D=344			
XI.	Internal standards	N				
XII.	Compound quantitation RL/LOQ/LODs	N	Dry weig	nt basis= 1-6		
XIII.	Target compound identification	N	•			
XIV.	System performance	N				
XV.	Overall assessment of data	A				
lote:	N = Not provided/applicable R = Ri	No compounds nsate Field blank	s detected	D = Duplicate TB = Trip blank EB = Equipment bla	OTHER	urce blank R:
	Client ID			Lab ID	Matrix	Date
1	CMS-B-37-6-071020			007180-01	Soil	07/10/20
2	CMS-S-06-4-071020			007180-02	Soil	07/10/20
3 (CMS-S-07-4-071020		D	007180-03	Soil	07/10/20
	CMS-508-071020		D	007180-04	Soil	07/10/20
	CMS-S-08-4-071020			007180-05	Soil	07/10/20
	CMS-B-34-6-071020	007180-06	Soil	07/10/20		
	CMS-B-37-6-071020MS	007180-01MS	Soil	07/10/20		
	CMS-B-37-6-071020MSD			007180-01MSD	Soil	07/10/20
9						
otes:						
1 00	6-1387 MB 1/5					
- 1			1 1		1 1	

Laboratory Data Consultants, Inc. **Data Validation Report**

Kimberly-Clark Upland Area **Project/Site Name:**

LDC Report Date: September 9, 2020

Polychlorinated Biphenyls Parameters:

Stage 2A Validation Level:

Laboratory: Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 007180

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
CMS-B-37-6-071020	007180-01	Soil	07/10/20
CMS-S-06-4-071020	007180-02	Soil	07/10/20
CMS-S-07-4-071020	007180-03	Soil	07/10/20
CMS-508-071020	007180-04	Soil	07/10/20
CMS-S-08-4-071020	007180-05	Soil	07/10/20
CMS-B-34-6-071020	007180-06	Soil	07/10/20
CMS-B-37-6-071020MS	007180-01MS	Soil	07/10/20
CMS-B-37-6-071020MSD	007180-01MSD	Soil	07/10/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polychlorinated Biphenyls (PCBs) by Environmental Protection Agency (EPA) SW 846 Method 8082A

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits.

Relative percent differences (RPD) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Compound	RPD (Limits)	Flag	A or P
CMS-B-37-6-071020MS/MSD (CMS-B-37-6-071020)	Aroclor-1016 Aroclor-1260	27 (≤20) 29 (≤20)	NA	-

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

Samples CMS-S-07-4-071020 and CMS-508-071020 were identified as field duplicates. No results were detected in any of the samples.

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identification

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Kimberly-Clark Upland Area Polychlorinated Biphenyls - Data Qualification Summary - SDG 007180

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Polychlorinated Biphenyls - Laboratory Blank Data Qualification Summary - SDG 007180

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Polychlorinated Biphenyls - Field Blank Data Qualification Summary - SDG 007180

No Sample Data Qualified in this SDG

LDC #: 48922C3b	VALIDATION COMPLETENESS WORKSHEET
SDG #: 007180	Stage 2A

e 2A	Page: <u> </u> of <u> \</u>
	Reviewer: <i>し</i>
	2nd Reviewer:

wer:

Date: 09/04/2

METHOD: GC Polychlorinated Biphenyls (EPA SW846 Method 8082A)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I.	Sample receipt/Technical holding times	AIA	
II.	Initial calibration/ICV	N/N	
III.	Continuing calibration	N	
IV.	Laboratory Blanks	A	
V.	Field blanks	N	
VI.	Surrogate spikes	*	
VII.	Matrix spike/Matrix spike duplicates	SW	(7,8)
VIII.	Laboratory control samples	A	LCS
IX.	Field duplicates	ND	D=3+4
X.	Compound quantitation/RL/LOQ/LODs	N	Dry weight basis = 1-6
XI.	Target compound identification	Ŋ	
LXIL	Overall assessment of data	1 8	

Note: A = Acceptable

N = Not provided/applicable SW = See worksheet

Laboratory: Friedman & Bruya, Inc.

ND = No compounds detected

R = Rinsate FB = Field blank D = Duplicate

TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	CMS-B-37-6-071020	007180-01	Soil	07/10/20
2	CMS-S-06-4-071020	007180-02	Soil	07/10/20
3	CMS-S-07-4-071020	007180-03	Soil	07/10/20
4	CMS-508-071020	007180-04	Soil	07/10/20
5	CMS-S-08-4-071020	007180-05	Soil	07/10/20
6	CMS-B-34-6-071020	007180-06	Soil	07/10/20
7	CMS-B-37-6-071020MS	007180-01MS	Soil	07/10/20
8	CMS-B-37-6-071020MSD	007180-01MSD	Soil	07/10/20
9				
10				
11				
12				
13				

Note	ა.	<u> </u>		 	
١	60-1587	MB 1/5			
		<i>'</i>			

LDC #: 48922C3b

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

Page:_	1	_of_	1
Reviewer:		LT	

METHOD: X GC HPLC

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Yx N_ N/A_ Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG?

Yx N_ N/A_ Was an MS/MSD analyzed every 20 samples for each matrix or whenever a sample extraction was performed?

Y___ N_x_ N/A__ Were the MS/MSD percent recoveries (%R) and relative percent differences (RPD) within QC limits?

7/8	Aroclor-1016 Aroclor-1260	%R (Limits)	MSD %R (Limits)	RPD (Limits) 27 (≤ 20) 29 (≤ 20)	Associated Samples 1 (ND)	Qualifications J/A DETS
						1
						
				1		
				<u> </u>		
1						
	<u> </u>					
<u> </u>						
					-	
						<u> </u>
			<u> </u>			
			1			

Laboratory Data Consultants, Inc. **Data Validation Report**

Project/Site Name:

Kimberly-Clark Upland Area

LDC Report Date:

September 9, 2020

Parameters:

Polynuclear Aromatic Hydrocarbons

Validation Level:

Stage 2A

Laboratory:

Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 007206

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
CMS-B-27-6	007206-01	Soil	07/13/20
CMS-B-26-6	007206-02	Soil	07/13/20
CMS-B-31-6	007206-03	Soil	07/13/20
CMS-S-09-4	007206-04	Soil	07/13/20
CMS-S-10-4	007206-05	Soil	07/13/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polynuclear Aromatic Hydrocarbons (PAHs) by Environmental Protection Agency (EPA) SW 846 Method 8270E in Selected Ion Monitoring (SIM) mode

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

Instrument performance check data were not reviewed for Stage 2A validation.

III. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

IV. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

Internal standards data were not reviewed for Stage 2A validation.

XII. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XIV. System Performance

Raw data were not reviewed for Stage 2A validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Kimberly-Clark Upland Area Polynuclear Aromatic Hydrocarbons - Data Qualification Summary - SDG 007206

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Polynuclear Aromatic Hydrocarbons - Laboratory Blank Data Qualification **Summary - SDG 007206**

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Polynuclear Aromatic Hydrocarbons - Field Blank Data Qualification Summary -**SDG 007206**

No Sample Data Qualified in this SDG

SDG Labor METI The s	#: 48922D2b VALIDATIO #: 007206 ratory: Friedman & Bruya, Inc. HOD: GC/MS Polynuclear Aromatic Hydronian amples listed below were reviewed for extion findings worksheets.	rocarbons (I	etage 2A EPA SW 846	,	2nd Rev			
	Validation Area	Validation Area			Comments			
ı.	Sample receipt/Technical holding times	AIA						
II.	GC/MS Instrument performance check	N						
111.	Initial calibration/ICV	N/N						
IV.	Continuing calibration	N						
V.	Laboratory Blanks	A						
VI.	Field blanks	17						
VII.	Surrogate spikes	A						
VIII.	Matrix spike/Matrix spike duplicates	A	SDG 01)7+18D				
IX.	Laboratory control samples	A	L CS	7 (50				
X.	Field duplicates	12				** <u>*</u>		
XI.	Internal standards		Dry meins	t bass = $1-5$				
XII.	Compound quantitation RL/LOQ/LODs	N N	Pry weigh	1 1 1 3				
XIII.	Target compound identification	N N						
XIV.	System performance	A						
XV.	N = Not provided/applicable R = Ri	No compounds	s detected	D = Duplicate TB = Trip blank EB = Equipment blank	SB=Source b OTHER:	lank		
	Client ID			Lab ID	Matrix	Date		
1	CMS-B-27-6			007206-01	Soil	07/13/20		
2	CMS-B-26-6			007206-02	Soil	07/13/20		
3	CMS-B-31-6			007206-03	Soil	07/13/20		
	CMS-S-09-4			007206-04	Soil	07/13/20		
	CMS-S-10-4			007206-05	Soil	07/13/20		
6			*******					
7								
8								
9								
lotes:								
	10-15A MB21 5							

Laboratory Data Consultants, Inc. **Data Validation Report**

Project/Site Name: Kimberly-Clark Upland Area

LDC Report Date: September 9, 2020

Polychlorinated Biphenyls Parameters:

Stage 2A Validation Level:

Laboratory: Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 007206

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date	
CMS-B-27-6	007206-01	Soil	07/13/20	
CMS-B-26-6	007206-02	Soil	07/13/20	
CMS-B-31-6	007206-03	Soil	07/13/20	
CMS-S-09-4	007206-04	Soil	07/13/20	
CMS-S-09-4DL	007206-04DL	Soil	07/13/20	
CMS-S-10-4	007206-05	Soil	07/13/20	

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polychlorinated Biphenyls (PCBs) by Environmental Protection Agency (EPA) SW 846 Method 8082A

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- DNR Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- (Rejected): The sample results were rejected due to gross non-conformances R discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were not within QC limits. No data were qualified since there were no associated samples in this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identification

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method.

In the case where more than one result was reported for an individual sample, the least technically acceptable results were deemed not reportable as follows:

Sample	Compound	Reason	Flag	A or P
CMS-S-09-4	Aroclor-1254 Aroclor-1260	Results exceeded calibration range.	DNR	A

No results were rejected in this SDG.

Kimberly-Clark Upland Area Polychlorinated Biphenyls - Data Qualification Summary - SDG 007206

Sample	Compound	Flag	A or P	Reason
CMS-S-09-4	Aroclor-1254 Aroclor-1260	DNR	А	Overall assessment of data

Kimberly-Clark Upland Area Polychlorinated Biphenyls - Laboratory Blank Data Qualification Summary - SDG 007206

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Polychlorinated Biphenyls - Field Blank Data Qualification Summary - SDG 007206

No Sample Data Qualified in this SDG

- ,,	WALIDATI	~·· ^^u	·- ===:==== WOBVOUE	- -	- calcul
SDG#	t: 48922D3b VALIDATI(t: 007206 atory: <u>Friedman & Bruya, Inc.</u>		PLETENESS WORKSHE		Date: O9/u/- Page: _of_\ Reviewer: _\tau Reviewer: _\tau
	IOD: GC Polychlorinated Biphenyls (EP		·		
	amples listed below were reviewed for e tion findings worksheets.	ach of the fo	الان)llowing validation areas. Valid	ation findings are	e noted in attache
	Validation Area		Col	mments	
l.	Sample receipt/Technical holding times	A, A			
II.	Initial calibration/ICV	N/N			
III.	Continuing calibration	N	The state of the s		
IV.	Laboratory Blanks	A			
V.	Field blanks	N			
VI.	Surrogate spikes	À			
VII.	Matrix spike/Matrix spike duplicates	SW	SDG 007180 RPPS 00	t not asso	xiated
VIII.	Laboratory control samples	A	19		
IX.	Field duplicates	N		WATER OF THE STATE	
X.	Compound quantitation/RL/LOQ/LODs	N	Dry Weight basis =	= 1-6	
XI.	Target compound identification	N			
XII	Overall assessment of data	SU			
Note:	N = Not provided/applicable R = R	No compounds Rinsate Field blank	D = Duplicate TB = Trip blank EB = Equipment	OTHER	urce blank R:
C	Client ID		Lab ID	Matrix	Date
1 0	CMS-B-27-6		007206-01	Soil	07/13/20
2 0	CMS-B-26-6		007206-02	Soil	07/13/20
3 0	CMS-B-31-6		007206-03	Soil	07/13/20
4 C	CMS-S-09-4	007206-04	Soil	07/13/20	
5 C	CMS-S-09-4DL		007206-04DL	Soil	07/13/20
	CMS-S-10-4		007206-05	Soil	07/13/20
7					
8					
9					

Note	s:	 		
١	00-1586 MBZ 1/6			

LDC #: 48922D3b

VALIDATION FINDINGS WORKSHEET <u>Overall Assessment of Data</u>

Page: <u>1</u>	of1_
Reviewer:	LT

METHOD: GC PCBs (EPA SW 846 Method 8082A)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

All available information pertaining to the data were reviewed using professional judgement to compliment the determination of the overall quality of the data.

Yes x No_ N/A_ Was the overall quality and usability of the data acceptable?

#	Date	Sample ID	Compound	Finding	Qualifications
		4	Aroclor 1254 and Aroclor 1260	exceed calibration range	DNR
		·			

Comments:	 		
	-		

Laboratory Data Consultants, Inc. **Data Validation Report**

Project/Site Name: Kimberly-Clark Upland Area

September 9, 2020 **LDC Report Date:**

Polynuclear Aromatic Hydrocarbons Parameters:

Stage 2A Validation Level:

Friedman & Bruya, Inc. Laboratory:

Sample Delivery Group (SDG): 007234

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
CMS-B-33-6	007234-01	Soil	07/14/20
CMS-B-32-6	007234-02	Soil	07/14/20
CMS-B-28-6	007234-03	Soil	07/14/20
CMS-B-29-6	007234-04	Soil	07/14/20
CMS-B-30-6	007234-05	Soil	07/14/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polynuclear Aromatic Hydrocarbons (PAHs) by Environmental Protection Agency (EPA) SW 846 Method 8270E in Selected Ion Monitoring (SIM) mode

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- (Estimated): The compound or analyte was analyzed for and positively identified J by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

Instrument performance check data were not reviewed for Stage 2A validation.

III. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

IV. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. Surrogate recoveries (%R) were not within QC limits for sample CMS-B-28-6. Using professional judgment, no data were qualified when one surrogate %R was outside the QC limits and the %R was greater than or equal to 10% or for samples analyzed at greater than or equal to 5X dilution.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

Internal standards data were not reviewed for Stage 2A validation.

XII. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XIV. System Performance

Raw data were not reviewed for Stage 2A validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Kimberly-Clark Upland Area Polynuclear Aromatic Hydrocarbons - Data Qualification Summary - SDG 007234

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Polynuclear Aromatic Hydrocarbons - Laboratory Blank Data Qualification **Summary - SDG 007234**

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Polynuclear Aromatic Hydrocarbons - Field Blank Data Qualification Summary -SDG 007234

No Sample Data Qualified in this SDG

SDG Labo ME T The s	#:007234 ratory: Friedman & Bruya, Inc. HOD: GC/MS Polynuclear Aromatic Hydr samples listed below were reviewed for ea	S rocarbons (I	Stage 2A EPA SW 8		2n M)	Date: onlow Page: lof l Reviewer: ball d Reviewer re noted in attached
valida	ation findings worksheets.	T				
<u> </u>	Validation Area	A, A		Com	<u>ments</u>	
<u>1.</u> 	Sample receipt/Technical holding times	N			**************************************	
<u> . </u> 	GC/MS Instrument performance check Initial calibration/ICV	N/N				
IV.		N N		- Water Marie	44, 144.	
V.	Laboratory Blanks	 				
VI.		N				
VII.		52	3-000 0	4 3 25x dilutu	n = NO	
VIII.		N		client		-
IX.	Laboratory control samples	A	LC5	nice (
X.	Field duplicates	17				
XI.	Internal standards	T N				
XII.		N	DINI WE	ight basis = 1-		
XIII.		N				
XIV.		N				1
XV.		A				
Note:	A = Acceptable ND = N N = Not provided/applicable R = Rin	No compounds nsate Field blank	s detected	D = Duplicate TB = Trip blank EB = Equipment bla	OTHE	ource blank R:
	Client ID			Lab ID	Matrix	Date
1	CMS-B-33-6			007234-01	Soil	07/14/20
2	CMS-B-32-6	-		007234-02	Soil	07/14/20
3	CMS-B-28-6		y - 93.	007234-03	Soil	07/14/20
4	CMS-B-29-6			007234-04	Soil	07/14/20
5	CMS-B-30-6		**************************************	007234-05	Soil	07/14/20
6						
7		,				
8						
9						
lotes:	00-1603MBZ1/5					
-	00-1003100243					
					 	

Laboratory Data Consultants, Inc. **Data Validation Report**

Project/Site Name: Kimberly-Clark Upland Area

September 9, 2020 **LDC Report Date:**

Parameters: Polychlorinated Biphenyls

Validation Level: Stage 2A

Laboratory: Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 007234

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
CMS-B-33-6	007234-01	Soil	07/14/20
CMS-B-32-6	007234-02	Soil	07/14/20
CMS-B-28-6	007234-03	Soil	07/14/20
CMS-B-29-6	007234-04	Soil	07/14/20
CMS-B-30-6	007234-05	Soil	07/14/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polychlorinated Biphenyls (PCBs) by Environmental Protection Agency (EPA) SW 846 Method 8082A

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identification

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Kimberly-Clark Upland Area Polychlorinated Biphenyls - Data Qualification Summary - SDG 007234

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Polychlorinated Biphenyls - Laboratory Blank Data Qualification Summary - SDG 007234

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Polychlorinated Biphenyls - Field Blank Data Qualification Summary - SDG 007234

No Sample Data Qualified in this SDG

SDG Labo ME1 The	C#:48922E3b	S PA SW846 M	Stage 2A Nethod 8082A)		F Revi 2nd Revi	
	Validation Area			Comme	nts	
I.		A, A				
11.		N/N				
111.	. Continuing calibration	N				
IV	. Laboratory Blanks	A				
V.	. Field blanks					
VI	. Surrogate spikes	A	3 one out			
VII	I. Matrix spike/Matrix spike duplicates	2	Non a	ient		
VII	I. Laboratory control samples	A	LG			
IX.		N				
X.		N	Dry weigh	ut basis = 1-5		***
XI.		N	•			
ווא		A				
Note:	N = Not provided/applicable $R = I$	= No compounds Rinsate = Field blank	s detected	D = Duplicate TB = Trip blank EB = Equipment blank	SB=Source bl OTHER:	ank
	Client ID			Lab ID	Matrix	Date
1	CMS-B-33-6			007234-01	Soil	07/14/20
2	CMS-B-32-6			007234-02	Soil	07/14/20

	Client ID	Lab ID	Matrix	Date
1	CMS-B-33-6	007234-01	Soil	07/14/20
2	CMS-B-32-6	007234-02	Soil	07/14/20
3	CMS-B-28-6	007234-03	Soil	07/14/20
4	CMS-B-29-6	007234-04	Soil	07/14/20
5	CMS-B-30-6	007234-05	Soil	07/14/20
6				
7				
8				
9				
10				
11				
12				
13				

Laboratory Data Consultants, Inc. **Data Validation Report**

Project/Site Name:

Kimberly-Clark Upland Area

LDC Report Date:

September 9, 2020

Parameters:

Polychlorinated Biphenyls

Validation Level:

Stage 2A

Laboratory:

Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 007259

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
OMS-S-17-2.5	007259-01	Soil	07/15/20
OMS-S-17-2.5DL	007259-01DL	Soil	07/15/20
OMS-S-18-2.5	007259-02	Soil	07/15/20
OMS-509	007259-03	Soil	07/15/20
OMS-509DL	007259-03DL	Soil	07/15/20
OMS-S-19-2.5	007259-04	Soil	07/15/20
OMS-S-17-2.5MS	007259-01MS	Soil	07/15/20
OMS-S-17-2.5MSD	007259-01MSD	Soil	07/15/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polychlorinated Biphenyls (PCBs) by Environmental Protection Agency (EPA) SW 846 Method 8082A

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- DNR Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- (Rejected): The sample results were rejected due to gross non-conformances R discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Compound	MS (%R) (Limits)	MSD (%R) (Limits)	Flag	A or P
OMS-S-17-2.5MS/MSD (OMS-S-17-2.5)	Aroclor-1260	1600 (38-124)	1400 (38-124)	NA	-

Relative percent differences (RPD) were within QC limits.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

Samples OMS-S-17-2.5 and OMS-509 and samples OMS-S-17-2.5DL and OMS-509DL were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentrat		
Compound	OMS-S-17-2.5DL	OMS-509DL	RPD
Aroclor-1254	20	8.0	86

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identification

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method.

In the case where more than one result was reported for an individual sample, the least technically acceptable results were deemed not reportable as follows:

Sample	Compound	Reason	Flag	A or P
OMS-S-17-2.5 OMS-509	Aroclor-1254	Results exceeded calibration range.	DNR	А

No results were rejected in this SDG.

Kimberly-Clark Upland Area Polychlorinated Biphenyls - Data Qualification Summary - SDG 007259

Sample	Compound	Flag	A or P	Reason
OMS-S-17-2.5 OMS-509	Aroclor-1254	DNR	Α	Overall assessment of data

Kimberly-Clark Upland Area Polychlorinated Biphenyls - Laboratory Blank Data Qualification Summary - SDG 007259

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Polychlorinated Biphenyls - Field Blank Data Qualification Summary - SDG 007259

No Sample Data Qualified in this SDG

LDC #: 48922F3b	VALIDATION COMPLETENESS WORKSHEET
SDG #: 007259	Stage 2A

Laboratory: Friedman & Bruya, Inc.

Date: oa/au/2~ Page: \ of \ Reviewer: 2nd Reviewer:

METHOD: GC Polychlorinated Biphenyls (EPA SW846 Method 8082A)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I.	Sample receipt/Technical holding times	A/A	
11.	Initial calibration/ICV	N/N	
111.	Continuing calibration	N	
IV.	Laboratory Blanks	A	
V.	Field blanks	N	
VI.	Surrogate spikes	A	
VII.	Matrix spike/Matrix spike duplicates	SW	(7,8)
VIII.	Laboratory control samples	A	LCS
IX.	Field duplicates	5W	D=1+42+5
X.	Compound quantitation/RL/LOQ/LODs	N	Dry wagna basis = 1-6
XI.	Target compound identification	N	
ZII	Overall assessment of data	500	

Note: A = Acceptable

N = Not provided/applicable SW = See worksheet

ND = No compounds detected

R = Rinsate FB = Field blank D = Duplicate

TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID		Lab ID	Matrix	Date
1	OMS-S-17-2.5	D	007259-01	Soil	07/15/20
2	OMS-S-17-2.5DL	D	007259-01DL	Soil	07/15/20
3	OMS-S-18-2.5		007259-02	Soil	07/15/20
4	OMS-509	D	007259-03	Soil	07/15/20
5	OMS-509DL	D	007259-03DL	Soil	07/15/20
6	OMS-S-19-2.5		007259-04	Soil	07/15/20
7	OMS-S-17-2.5MS		007259-01MS	Soil	07/15/20
8	OMS-S-17-2.5MSD		007259-01MSD	Soil	07/15/20
9					
10_					
11_					
12_					
13					

00-1640pms1/6					
 			<u> </u>		

LDC #: 48922F3b

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

Page:_	1	_of_	1
Reviewer.	1	т	

METHOD: X GC HPLC

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Yx N_ N/A_ Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG?

Yx N N/A Was an MS/MSD analyzed every 20 samples for each matrix or whenever a sample extraction was performed?

Nx N/A Were the MS/MSD percent recoveries (%R) and relative percent differences (RPD) within QC limits?

MS/MSD ID	Compound	MS %R (Limits)	MSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
7/8	Aroclor-1260	1,600 (38 - 124)	1,400 (38 - 124)		1 (ND)	J/A DETS
`						
			1			
						
_	***					
		7/8 Aroclor-1260	7/8 Aroclor-1260 1,600 (38 - 124)	7/8 Aroclor-1260 1,600 (38 - 124) 1,400 (38 - 124)	7/8 Aroclor-1260 1,600 (38 - 124) 1,400 (38 - 124)	7/8 Aroclor-1260 1,600 (38 - 124) 1,400 (38 - 124) 1 (ND) 1 (ND) 1 (ND)

LDC#:48922F3b VALIDATION FINDINGS WORKSHEET Field Duplicates

Page:_1_of_1_
Reviewer:__LT
2nd Reviewer:__

METHOD: GC PCBs (EPA SW846 Method 8082A)

	Concentration (mg/kg)		
Compound	2	5	RPD
Aroclor 1254	20	8.0	86

LDC #: 48922F3b

VALIDATION FINDINGS WORKSHEET <u>Overall Assessment of Data</u>

Page: _	1	_of_	1_	
Reviewe	r: _	L ¹	Γ	

METHOD: GC PCBs (EPA SW 846 Method 8082A)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

All available information pertaining to the data were reviewed using professional judgement to compliment the determination of the overall quality of the data.

Yes<u>x</u> No_ N/A_ Was the overall quality and usability of the data acceptable?

#	Date	Sample ID	Compound	Finding	Qualifications
		1,4	Aroclor 1254	exceed calibration range	DNR
ļ					

Comments:				 	
_	 				

Laboratory Data Consultants, Inc. **Data Validation Report**

Kimberly-Clark Upland Area **Project/Site Name:**

August 27, 2020 **LDC Report Date:**

Parameters: Metals

Stage 2A Validation Level:

Laboratory: Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 007259

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
OMS-S-17-2.5	007259-01	Soil	07/15/20
OMS-S-18-2.5	007259-02	Soil	07/15/20
OMS-509	007259-03	Soil	07/15/20
OMS-S-19-2.5	007259-04	Soil	07/15/20
PM-B-6-S-27-6	007259-05	Soil	07/15/20
OMS-S-17-2.5MS	007259-01MS	Soil	07/15/20
OMS-S-17-2.5MSD	007259-01MSD	Soil	07/15/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Copper by Environmental Protection Agency (EPA) SW 846 Method 6020B Mercury by EPA Method 1631E

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. ICPMS Tune

ICP-MS tune data were not reviewed for Stage 2A validation.

III. Instrument Calibration

Instrument calibration data were not reviewed for Stage 2A validation.

IV. ICP Interference Check Sample Analysis

ICP Interference check sample (ICS) analysis data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	MS (%R) (Limits)	MSD (%R) (Limits)	Flag	A or P
OMS-S-17-2.5MS/MSD (All samples in SDG 007259)	Mercury	134 (71-125)	-	J (all detects) UJ (all non-detects)	А
OMS-S-17-2.5MS/MSD (OMS-S-17-2.5 OMS-S-18-2.5 OMS-509 OMS-S-19-2.5)	Copper	471 (75-125)	66 (75-125)	J (all detects)	А

Relative percent differences (RPD) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	RPD (Limits)	Flag	A or P
OMS-S-17-2.5MS/MSD (OMS-S-17-2.5 OMS-S-18-2.5 OMS-509 OMS-S-19-2.5)	Copper	151 (≤20)	J (all detects)	A

VIII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

IX. Serial Dilution

Serial dilution was not performed for this SDG.

X. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits.

XI. Field Duplicates

Samples OMS-S-17-2.5 and OMS-509 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentra		
Analyte	OMS-S-17-2.5	OMS-509	RPD
Copper	66.2	81.9	21
Mercury	0.12	0.13	8

XII. Internal Standards (ICP-MS)

Internal standards data were not reviewed for Stage 2A validation.

XIII. Sample Result Verification

Raw data were not reviewed for Stage 2A validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the methods.

Due to MS/MSD %R and RPD, data were qualified as estimated in five samples.

No results were rejected in this SDG.

Kimberly-Clark Upland Area Metals - Data Qualification Summary - SDG 007259

Sample	Analyte	Flag	A or P	Reason
OMS-S-17-2.5 OMS-S-18-2.5 OMS-509 OMS-S-19-2.5 PM-B-6-S-27-6	Mercury	J (all detects) UJ (all non-detects)	А	Matrix spike/Matrix spike duplicate (%R)
OMS-S-17-2.5 OMS-S-18-2.5 OMS-509 OMS-S-19-2.5	Copper	J (all detects)	А	Matrix spike/Matrix spike duplicate (%R)
OMS-S-17-2.5 OMS-S-18-2.5 OMS-509 OMS-S-19-2.5	Copper	J (all detects)	Α	Matrix spike/Matrix spike duplicate (RPD)

Kimberly-Clark Upland Area Metals - Laboratory Blank Data Qualification Summary - SDG 007259

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Metals - Field Blank Data Qualification Summary - SDG 007259

No Sample Data Qualified in this SDG

LDC #:	48922F4a	_ VALIDATION COMPLETENESS WORKSHEET	Da
SDG #:_	007259	_ Stage 2A	Pag
Laborato	ry: Friedman & I	Bruya, Inc.	Review
			مراجع المحار

2nd Reviewer

METHOD: Øf, Hg (EPA SW 846 Method 6020B/EPA Method 1631E)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
]I.	Sample receipt/Technical holding times	AIA	
11.	ICP/MS Tune	N	
III.	Instrument Calibration	N	
IV.	ICP Interference Check Sample (ICS) Analysis	N	
V.	Laboratory Blanks	A	
VI.	Field Blanks	2	
VII.	Matrix Spike/Matrix Spike Duplicates	500	
VIII.	Duplicate sample analysis	2	
IX.	Serial Dilution	2	
X.	Laboratory control samples	Α	lcs
XI.	Field Duplicates	Si	(1,3)
XII.	Internal Standard (ICP-MS)	N _	
XIII.	Sample Result Verification	N	
XIV	Overall Assessment of Data	A	

Note: A = Acceptable

SW = See worksheet

ND = No compounds detected N = Not provided/applicable R = Rinsate

FB = Field blank

D = Duplicate TB = Trip blank

EB = Equipment blank

SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1_	OMS-S-17-2.5	007259-01	Soil	07/15/20
2	OMS-S-18-2.5	007259-02	Soil_	07/15/20
3	OMS-509	007259-03	Soil	07/15/20
4	OMS-S-19-2.5	007259-04	Soil	07/15/20
5	PM-B-6-S-27-6	007259-05	Soil	07/15/20
6	OMS-S-17-2.5MS	007259-01MS	Soil	07/15/20
7	OMS-S-17-2.5MSD	007259-01MSD	Soil	07/15/20
8				
9				
10				
11				
12				
13				
Note	es:			

LDC #: 48922849

VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference

Page: 1 of 1
Reviewer: DTM

All circled elements are applicable to each sample.

		
Sample ID	Matrix	Target Analyte List (TAL)
1-4	9	Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
5	S	Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, 📆, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
0607	9	Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Co, Fe, Pb, Li, Mg, Mo, Mn, Ho, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
	,,,,,	Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
	i	Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
-		
		Analysis Method
ICP		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
ICP-MS		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
GFAA		Al Sh. As. Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Ph, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn

Comments: Mercury by CVAA if performed

LDC #: 48922F4a

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

Page: <u>1</u> of <u>1</u>	
Reviewer: DTM	
2nd Reviewer:	

METHOD: Trace metals (EPA SW 846 Method 6020/6010/7470)

Please see qualifications below for all	questions answered "N"	. Not applicable questions	are identified as "N/A".

(Y) N N/A Was a matrix spike analyzed for each matrix in this SDG?

Were matrix spike percent recoveries (%R) within the control limits of 75-125? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken.

<u>/A</u> Were all duplicate sample relative percent differences (RPD) ≤ 20% for samples?

LEVEL IV ONLY:

Were recalculated results acceptable? See Level IV Recalculation Worksheet for recalculations.

#	MS/MSD ID	Matrix	Analyte	MS %Recovery	MSD %Recovery	RPD (Limits)	Associated Samples	Qualifications
	6/7	S	Hg	134(71-125)			ALL	J/A (det/ND)
П			Cu	471(75-125)	66		1-4	J/UJ/A (det)
П						151(20)	1-4	J/UJ/A (det)
П					-			
Ш								
Щ								
								·

Comments:		 		 	 	 	 	
							 	 ٠

LDC#: 48922F4a

VALIDATION FINDINGS WORKSHEET

Field Duplicates

Page:_1_of_1_ Reviewer:_DTM_ 2nd Reviewer:____

METHOD: Metals (EPA Method 6010/6020/7000)

	Concentrat		
Analyte	1	3	RPD
Copper	66.2	81.9	21
Mercury	0.12	0.13	8

V:\Darionna\FIELD DUPLICATES\Field Duplicates\FD_inorganic\2020\48922F4a.wpd

Laboratory Data Consultants, Inc. **Data Validation Report**

Kimberly-Clark Upland Area Project/Site Name:

September 9, 2020 LDC Report Date:

Polynuclear Aromatic Hydrocarbons Parameters:

Stage 2A Validation Level:

Friedman & Bruya, Inc. Laboratory:

Sample Delivery Group (SDG): 007302

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
CMS-B-24-6	007302-01	Soil	07/16/20
CMS-B-25-6	007302-02	Soil	07/16/20
CMS-B-18-6	007302-03	Soil	07/17/20
CMS-B-19-6	007302-04	Soil	07/17/20
CMS-B-20-6	007302-05	Soil	07/17/20
CMS-S-11-4	007302-06	Soil	07/17/20
CMS-S-12-4	007302-07	Soil	07/17/20
CMS-B-22-6	007302-08	Soil	07/17/20
CMS-B-21-6	007302-09	Soil	07/17/20
CMS-B-25-6MS	007302-02MS	Soil	07/16/20
CMS-B-25-6MSD	007302-02MSD	Soil	07/16/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polynuclear Aromatic Hydrocarbons (PAHs) by Environmental Protection Agency (EPA) SW 846 Method 8270E in Selected Ion Monitoring (SIM) mode

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

Instrument performance check data were not reviewed for Stage 2A validation.

III. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

IV. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

Internal standards data were not reviewed for Stage 2A validation.

XII. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XIV. System Performance

Raw data were not reviewed for Stage 2A validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Kimberly-Clark Upland Area Polynuclear Aromatic Hydrocarbons - Data Qualification Summary - SDG 007302

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Polynuclear Aromatic Hydrocarbons - Laboratory Blank Data Qualification **Summary - SDG 007302**

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Polynuclear Aromatic Hydrocarbons - Field Blank Data Qualification Summary -SDG 007302

No Sample Data Qualified in this SDG

LDC #: 48922G2b	VALIDATION COMPLETENESS WORKSHEET	Date: 0/04/20
SDG #: 007302	Stage 2A	Page: <u></u>
Laboratory: Friedman & Bruya,	Inc.	Reviewer: 15
		2nd Reviewer:

METHOD: GC/MS Polynuclear Aromatic Hydrocarbons (EPA SW 846 Method 8270E-SIM)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
l.	Sample receipt/Technical holding times	AA	
11.	GC/MS Instrument performance check	N	
111.	Initial calibration/ICV	N/N	
IV.	Continuing calibration	N_	
V.	Laboratory Blanks	A	
VI.	Field blanks	Ŋ	
VII.	Surrogate spikes	L A	
VIII.	Matrix spike/Matrix spike duplicates	H	(1911)
IX.	Laboratory control samples	A	LCS
X.	Field duplicates	7	
XI.	Internal standards	N	
XII.	Compound quantitation RL/LOQ/LODs	N	Onlyweight basis = 1-9
XIII.	Target compound identification	N	
XIV.	System performance	N	
XV.	Overall assessment of data	A	

Note: A = Acceptable ND = No compounds detected D = Duplicate SB=Source blank OTHER:
SW = See worksheet FB = Field blank EB = Equipment blank

	Client ID	Lab ID	Matrix	Date
1	CMS-B-24-6	007302-01	Soil	07/16/20
2	CMS-B-25-6	007302-02	Soil	07/16/20
3	CMS-B-18-6	007302-03	Soil	07/17/20
4	CMS-B-19-6	007302-04	Soil	07/17/20
5	CMS-B-20-6	007302-05	Soil	07/17/20
6	CMS-S-11-4	007302-06	Soil	07/17/20
7	CMS-S-12-4	007302-07	Soil	07/17/20
8	CMS-B-22-6	007302-08	Soil_	07/17/20
9	CMS-B-21-6	007302-09	Soil	07/17/20
10	CMS-B-25-6MS	007302-02MS	Soil	07/16/20
11	CMS-B-25-6MSD	007302-02MSD	Soil	07/16/20
12				
13	1.00-1650 MB 1/5			
14				

Laboratory Data Consultants, Inc. Data Validation Report

Kimberly-Clark Upland Area **Project/Site Name:**

September 9, 2020 **LDC Report Date:**

Polychlorinated Biphenyls Parameters:

Validation Level: Stage 2A

Laboratory: Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 007302

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
CMS-B-24-6	007302-01	Soil	07/16/20
CMS-B-25-6	007302-02	Soil	07/16/20
CMS-B-18-6	007302-03	Soil	07/17/20
CMS-B-19-6	007302-04	Soil	07/17/20
CMS-B-20-6	007302-05	Soil	07/17/20
CMS-S-11-4	007302-06	Soil	07/17/20
CMS-S-12-4	007302-07	Soil	07/17/20
CMS-B-22-6	007302-08	Soil	07/17/20
CMS-B-21-6	007302-09	Soil	07/17/20
CMS-B-24-6MS	007302-01MS	Soil	07/16/20
CMS-B-24-6MSD	007302-01MSD	Soil	07/16/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polychlorinated Biphenyls (PCBs) by Environmental Protection Agency (EPA) SW 846 Method 8082A

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

Vi. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Compound	MS (%R) (Limits)	MSD (%R) (Limits)	Flag	A or P
CMS-B-24-6MS/MSD (CMS-B-24-6)	Aroclor-1260	-	614 (38-124)	J (all detects)	Α

Relative percent differences (RPD) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Compound	RPD (Limits)	Flag	A or P
CMS-B-24-6MS/MSD (CMS-B-24-6)	Aroclor-1016	33 (≤20)	NA	-

Spike ID (Associated Samples)	Compound	RPD (Limits)	Flag	A or P
CMS-B-24-6MS/MSD (CMS-B-24-6)	Aroclor-1260	149 (≤20)	J (all detects)	А

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identification

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method.

Due to MS/MSD %R and RPD, data were qualified as estimated in one sample.

No results were rejected in this SDG.

Kimberly-Clark Upland Area Polychlorinated Biphenyls - Data Qualification Summary - SDG 007302

Sample	Compound	Flag	A or P	Reason
CMS-B-24-6	Aroclor-1260	J (all detects)	Α	Matrix spike/Matrix spike duplicate (%R)
CMS-B-24-6	Aroclor-1260	J (all detects)	Α	Matrix spike/Matrix spike duplicate (RPD)

Kimberly-Clark Upland Area Polychlorinated Biphenyls - Laboratory Blank Data Qualification Summary - SDG 007302

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Polychlorinated Biphenyls - Field Blank Data Qualification Summary - SDG 007302

No Sample Data Qualified in this SDG

			÷			
SDG #	#:48922G3b		PLETENESS Stage 2A	S WORKSHEET	Revi	Date: 01/04/
METH	HOD: GC Polychlorinated Biphenyls (EPA	SW846 N	/lethod 8082A))	2nd Revi	iewer
	samples listed below were reviewed for each	ch of the fo	ollowing valida	ntion areas. Validation	findings are note	ed in attached
	Validation Area			Comme	nts	
I.	Sample receipt/Technical holding times	A, A				
II.	Initial calibration/ICV	N/N				
III.	Continuing calibration	N				
IV.	Laboratory Blanks	A				
V.	Field blanks	Ŋ				
VI.	Surrogate spikes	A				
VII.	Matrix spike/Matrix spike duplicates	52	(11101)			
VIII.	Laboratory control samples	A	LUS			
IX.	Field duplicates	7				
X.	Compound quantitation/RL/LOQ/LODs	N	Dry weigh	t basis = 1-9		
XI.	Target compound identification	N				
XII	Overall assessment of data	A				
Note:	N = Not provided/applicable R = Rins	lo compounds nsate ield blank	s detected	D = Duplicate TB = Trip blank EB = Equipment blank	SB=Source b OTHER:	lank
	Client ID			Lab ID	Matrix	Date
1 (CMS-B-24-6			007302-01	Soil	07/16/20
	CMS-B-25-6			007302-02	Soil	07/16/20
	CMS-B-18-6			007302-03	Soil	07/17/20
	CMS-B-19-6			007302-04	Soil	07/17/20
5 (CMS-B-20-6			007302-05	Soil	07/17/20
6 (CMS-S-11-4			007302-06	Soil	07/17/20
7 (CMS-S-12-4			007302-07	Soil	07/17/20
8 (CMS-B-22-6			007302-08	Soil	07/17/20
9 (CMS-B-21-6			007302-09	Soil	07/17/20
10 C	CMS-B-24-6MS			007302-01MS	Soil	07/16/20
11 (CMS-B-24-6MSD		;	007302-01MSD	Soil	07/16/20

Note		- -		1	 	
1	00-1651 MB 1/5					

LDC #: 48922G3b

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

Page:_	1	_of_	1	
Reviewer:		LT		

METHOD: X GC HPLC

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Yx N_ N/A Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG?

Yx N_ N/A_ Was an MS/MSD analyzed every 20 samples for each matrix or whenever a sample extraction was performed?

__ N_x_ N/A__ Were the MS/MSD percent recoveries (%R) and relative percent differences (RPD) within QC limits?

#	MS/MSD ID	Compound	MS %R (Limits)	MSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
	10/11	Aroclor-1260		614 (38 - 124)		1 (DET)	J/A DETS
		Aroclor-1016			33 (≤20)	(ND)	1
		Aroclor-1260			149 (≤20)	(DET)	1
]		

Laboratory Data Consultants, Inc. **Data Validation Report**

Project/Site Name: Kimberly-Clark Upland Area

LDC Report Date: August 27, 2020

Parameters: Mercury

Validation Level: Stage 2A

Friedman & Bruya, Inc. Laboratory:

Sample Delivery Group (SDG): 007347

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
PM-B-6-S-28-6-072220	007347-01	Soil	07/22/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Mercury by Environmental Protection Agency (EPA) Method 1631E

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Instrument Calibration

Instrument calibration data were not reviewed for Stage 2A validation.

III. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

IV. Field Blanks

No field blanks were identified in this SDG.

V. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VI. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

VII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

VIII. Field Duplicates

No field duplicates were identified in this SDG.

IX. Sample Result Verification

Raw data were not reviewed for Stage 2A validation.

X. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Kimberly-Clark Upland Area Mercury - Data Qualification Summary - SDG 007347

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Mercury - Laboratory Blank Data Qualification Summary - SDG 007347

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Mercury - Field Blank Data Qualification Summary - SDG 007347

No Sample Data Qualified in this SDG

SDG	#: <u>48922H4c</u> VALIDAT #: <u>007347</u> ratory: <u>Friedman & Bruya, Inc.</u>		PLETENESS WORKSHEET Stage 2A		Date: 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	HOD: Mercury (EPA Method 1631E)			2nd	Reviewer
The s valida	amples listed below were reviewed for tion findings worksheets.	each of the f	ollowing validation areas. Validat	ion findings are	noted in attached
					
	Validation Area		Comi	ments	
I.	Sample receipt/Technical holding times	AIR			
II.	Instrument Calibration	N N			
111.	Laboratory Blanks	<u> </u>			
IV.	Field Blanks	,			/
V.	Matrix Spike/Matrix Spike Duplicates	7			
VI.	Duplicate sample analysis	2			
VII.	Laboratory control samples	A.	LCS		
VIII.	Field Duplicates	7			
IX.	Sample Result Verification	N N			
X	Overall Assessment of Data	4			
lote:	N = Not provided/applicable R = SW = See worksheet FB =	No compound Rinsate Field blank	TB = Trip blank EB = Equipment bla	OTHER	
	Client ID		Lab ID	Matrix	Date
	PM-B-6-S-28-6-072220		007347-01	Soil	07/22/20
2					1 11
3				1	
5					
5					
4 5 6 7					
5					
5					
5 5 7 7 8 9 10					
0					
0 1 2					
0 1 2 3					
0 1 2 3 4					
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6					
5					

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Kimberly-Clark Upland Area

LDC Report Date:

September 9, 2020

Parameters:

Polynuclear Aromatic Hydrocarbons

Validation Level:

Stage 2A

Laboratory:

Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 007450

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
CMS-B-17-6	007450-01	Soil	07/27/20
CMS-B-16-6	007450-02	Soil	07/27/20
CMS-B-12-6	007450-03	Soil	07/27/20
CMS-S-13-4	007450-04	Soil	07/27/20
CMS-S-14-4	007450-05	Soil	07/27/20
CMS-S-15-4	007450-06	Soil	07/27/20
CMS-S-16-4	007450-07	Soil	07/27/20
CMS-510	007450-08	Soil	07/27/20
CMS-S-17-4	007450-09	Soil	07/27/20
CMS-S-18-4	007450-10	Soil	07/27/20
CMS-S-19-4	007450-11	Soil	07/27/20
CMS-S-20-4	007450-12	Soil	07/27/20
CMS-S-19-4MS	007450-11MS	Soil	07/27/20
CMS-S-19-4MSD	007450-11MSD	Soil	07/27/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polynuclear Aromatic Hydrocarbons (PAHs) by Environmental Protection Agency (EPA) SW 846 Method 8270E in Selected Ion Monitoring (SIM) mode

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

Instrument performance check data were not reviewed for Stage 2A validation.

III. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

IV. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

X. Field Duplicates

Samples CMS-S-16-4 and CMS-510 were identified as field duplicates. No results were detected in any of the samples.

XI. Internal Standards

Internal standards data were not reviewed for Stage 2A validation.

XII. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XIV. System Performance

Raw data were not reviewed for Stage 2A validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Kimberly-Clark Upland Area Polynuclear Aromatic Hydrocarbons - Data Qualification Summary - SDG 007450

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Polynuclear Aromatic Hydrocarbons - Laboratory Blank Data Qualification **Summary - SDG 007450**

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Polynuclear Aromatic Hydrocarbons - Field Blank Data Qualification Summary -SDG 007450

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET LDC #: 48922I2b Stage 2A SDG #: 007450

Date:01/04/2 Page: \of_ Reviewer: 2nd Reviewer:

Laboratory: Friedman & Bruya, Inc.

METHOD: GC/MS Polynuclear Aromatic Hydrocarbons (EPA SW 846 Method 8270E-SIM)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Sample receipt/Technical holding times	+, A	
<u>II.</u>	GC/MS Instrument performance check	N	
III.	Initial calibration/ICV	N/N	
IV.	Continuing calibration	N	
V.	Laboratory Blanks	A	
VI.	Field blanks	N	
VII.	Surrogate spikes	A	
VIII.	Matrix spike/Matrix spike duplicates	A	(1314)
IX.	Laboratory control samples	*	LCS
X.	Field duplicates	ND	D= 7+8
XI.	Internal standards	N	
XII.	Compound quantitation RL/LOQ/LODs	N	Dry weight basis = 1-12
XIII.	Target compound identification	N	
XIV.	System performance	N	
XV.	Overall assessment of data	A	

Note:

A = Acceptable

ND = No compounds detected R = Rinsate

D = Duplicate

SB=Source blank

N = Not provided/applicable SW = See worksheet

FB = Field blank

EB = Equipment blank

TB = Trip blank

OTHER:

	Client ID	Lab ID	Matrix	Date
1	CMS-B-17-6	007450-01	Soil	07/27/20
2	CMS-B-16-6	007450-02	Soil	07/27/20
3	CMS-B-12-6	007450-03	Soil	07/27/20
4	CMS-S-13-4	007450-04	Soil	07/27/20
5	CMS-S-14-4	007450-05	Soil	07/27/20
6	CMS-S-15-4	007450-06	Soil	07/27/20
7	CMS-S-16-4	007450-07	Soil	07/27/20
8 _	CMS-510	007450-08	Soil	07/27/20
9	CMS-S-17-4	007450-09	Soil	07/27/20
10_	CMS-S-18-4	007450-10	Soil	07/27/20
11_	CMS-S-19-4	007450-11	Soil	07/27/20
12	CMS-S-20-4	007450-12	Soil	07/27/20
13_	CMS-S-19-4MS	007450-11MS	Soil	07/27/20
14_	CMS-S-19-4MSD	007450-11MSD	Soil	07/27/20

^{1.00-1678}MB2 1/5

^{2.00-1701} NB1/5 L:\Aspect Consulting\Kimberly Clark\48922I2bW.wpd

Laboratory Data Consultants, Inc. **Data Validation Report**

Project/Site Name:

Kimberly-Clark Upland Area

LDC Report Date:

September 9, 2020

Parameters:

Polychlorinated Biphenyls

Validation Level:

Stage 2A

Laboratory:

Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 007450

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
CMS-B-17-6	007450-01	Soil	07/27/20
CMS-B-16-6	007450-02	Soil	07/27/20
CMS-B-12-6	007450-03	Soil	07/27/20
CMS-S-13-4	007450-04	Soil	07/27/20
CMS-S-14-4	007450-05	Soil	07/27/20
CMS-S-15-4	007450-06	Soil	07/27/20
CMS-S-16-4	007450-07	Soil	07/27/20
CMS-510	007450-08	Soil	07/27/20
CMS-S-17-4	007450-09	Soil	07/27/20
CMS-S-18-4	007450-10	Soil	07/27/20
CMS-S-19-4	007450-11	Soil	07/27/20
CMS-S-20-4	007450-12	Soil	07/27/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polychlorinated Biphenyls (PCBs) by Environmental Protection Agency (EPA) SW 846 Method 8082A

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- (Estimated): The compound or analyte was analyzed for and positively identified J by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

Samples CMS-S-16-4 and CMS-510 were identified as field duplicates. No results were detected in any of the samples.

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identification

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Kimberly-Clark Upland Area Polychlorinated Biphenyls - Data Qualification Summary - SDG 007450

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Polychlorinated Biphenyls - Laboratory Blank Data Qualification Summary - SDG 007450

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Polychlorinated Biphenyls - Field Blank Data Qualification Summary - SDG 007450

No Sample Data Qualified in this SDG

LDC #: 4892213b	VALIDATION COMPLETENESS WORKSHEET
SDG #: 007450	Stage 2A

Laboratory: Friedman & Bruya, Inc.

Date: 09/04/2-
Page: <u> </u> _of <u> </u>
Reviewer: <u>V+</u>
2nd Reviewer:

METHOD: GC Polychlorinated Biphenyls (EPA SW846 Method 8082A)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I.	Sample receipt/Technical holding times	AIA	
II.	Initial calibration/ICV	N/N	
111.	Continuing calibration	N	
IV.	Laboratory Blanks	A	
V.	Field blanks	N	
VI.	Surrogate spikes	A.	
VII.	Matrix spike/Matrix spike duplicates	7	Non Cliana
VIII.	Laboratory control samples	A	LCS
IX.	Field duplicates	ND	D= 7+8
X.	Compound quantitation/RL/LOQ/LODs	N	by weight basis = 1-12
XI.	Target compound identification	N	,
XII	Overall assessment of data	A	

Note: A = Acceptable

N = Not provided/applicable SW = See worksheet

ND = No compounds detected

R = Rinsate FB = Field blank D = Duplicate

TB = Trip blank
EB = Equipment blank

SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	CMS-B-17-6	007450-01	Soil	07/27/20
2	CMS-B-16-6	007450-02	Soil	07/27/20
3	CMS-B-12-6	007450-03	Soil	07/27/20
4	CMS-S-13-4	007450-04	Soil	07/27/20
5	CMS-S-14-4	007450-05	Soil	07/27/20
6	CMS-S-15-4	007450-06	Soil	07/27/20
7	CMS-S-16-4	007450-07	Soil	07/27/20
8	CMS-510	007450-08	Soil	07/27/20
9	CMS-S-17-4	007450-09	Soil	07/27/20
10	CMS-S-18-4	007450-10	Soil	07/27/20
11	CMS-S-19-4	007450-11	Soil	07/27/20
12	CMS-S-20-4	007450-12	Soil	07/27/20
13				
14				

Note	s:	 		
I	00-1694 MB2 1/6			

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Kimberly-Clark Upland Area

September 9, 2020 **LDC Report Date:**

Polynuclear Aromatic Hydrocarbons Parameters:

Stage 2A Validation Level:

Friedman & Bruya, Inc. Laboratory:

Sample Delivery Group (SDG): 007468

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
CMS-B-06-6	007468-01	Soil	07/28/20
CMS-B-11-6	007468-02	Soil	07/28/20
CMS-S-21-4	007468-03	Soil	07/28/20
CMS-S-22-4	007468-04	Soil	07/28/20
CMS-B-10-6	007468-05	Soil	07/28/20
CMS-B-05-6	007468-06	Soil	07/28/20
CMS-B-15-6	007468-07	Soil	07/28/20
CMS-B-14-6	007468-08	Soil	07/28/20
CMS-B-13-6	007468-09	Soil	07/28/20
CMS-B-09-6	007468-10	Soil	07/28/20
CMS-S-23-4	007468-11	Soil	07/28/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polynuclear Aromatic Hydrocarbons (PAHs) by Environmental Protection Agency (EPA) SW 846 Method 8270E in Selected Ion Monitoring (SIM) mode

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

Instrument performance check data were not reviewed for Stage 2A validation.

III. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

IV. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

Internal standards data were not reviewed for Stage 2A validation.

XII. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XIV. System Performance

Raw data were not reviewed for Stage 2A validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Kimberly-Clark Upland Area Polynuclear Aromatic Hydrocarbons - Data Qualification Summary - SDG 007468

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Polynuclear Aromatic Hydrocarbons - Laboratory Blank Data Qualification **Summary - SDG 007468**

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Polynuclear Aromatic Hydrocarbons - Field Blank Data Qualification Summary -**SDG 007468**

No Sample Data Qualified in this SDG

LDC #: 48922J2b VALIDATION COMPLETENESS WORKSHEET SDG #: 007468 Stage 2A Laboratory: Friedman & Bruya, Inc.

METHOD: GC/MS Polynuclear Aromatic Hydrocarbons (EPA SW 846 Method 8270E-SIM)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I.	Sample receipt/Technical holding times	AIA	
11.	GC/MS Instrument performance check	N	
JII.	Initial calibration/ICV	N/N	
IV.	Continuing calibration	Ņ	
V.	Laboratory Blanks	A	
VI.	Field blanks	N	
VII.	Surrogate spikes	H	
VIII.	Matrix spike/Matrix spike duplicates	A	SDG 807450
IX.	Laboratory control samples	A	LCS
X.	Field duplicates	2	
XI.	Internal standards	N	
XII.	Compound quantitation RL/LOQ/LODs	N	Dry weight basis = 1-11
XIII.	Target compound identification	N	
XIV.	System performance	N _	
XV.	Overall assessment of data	A	

Note: A = Acceptable N = Not provided/applicable

SW = See worksheet

ND = No compounds detected R = Rinsate

FB = Field blank

D = Duplicate TB = Trip blank

EB = Equipment blank

SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	CMS-B-06-6	007468-01	Soil	07/28/20
2	CMS-B-11-6	007468-02	Soil	07/28/20
3	CMS-S-21-4	007468-03	Soil_	07/28/20
4	CMS-S-22-4	007468-04	Soil	07/28/20
5	CMS-B-10-6	007468-05	Soil	07/28/20
6	CMS-B-05-6	007468-06	Soil	07/28/20
7	CMS-B-15-6	007468-07	Soil	07/28/20
8	CMS-B-14-6	007468-08	Soil	07/28/20
9	CMS-B-13-6	007468-09	Soil	07/28/20
10	CMS-B-09-6	007468-10	Soil	07/28/20
11	CMS-S-23-4	007468-11	Soil	07/28/20
12				
13	1.00-1701 MBZ 1/5			
14				

Laboratory Data Consultants, Inc. **Data Validation Report**

Project/Site Name:

Kimberly-Clark Upland Area

LDC Report Date:

September 9, 2020

Parameters:

Polychlorinated Biphenyls

Validation Level:

Stage 2A

Laboratory:

Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 007468

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
CMS-B-06-6	007468-01	Soil	07/28/20
CMS-B-11-6	007468-02	Soil	07/28/20
CMS-S-21-4	007468-03	Soil	07/28/20
CMS-S-22-4	007468-04	Soil	07/28/20
CMS-B-10-6	007468-05	Soil	07/28/20
CMS-B-05-6	007468-06	Soil	07/28/20
CMS-B-15-6	007468-07	Soil	07/28/20
CMS-B-14-6	007468-08	Soil	07/28/20
CMS-B-13-6	007468-09	Soil	07/28/20
CMS-B-09-6	007468-10	Soil	07/28/20
CMS-S-23-4	007468-11	Soil	07/28/20
CMS-B-06-6MS	007468-01MS	Soil	07/28/20
CMS-B-06-6MSD	007468-01MSD	Soil	07/28/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polychlorinated Biphenyls (PCBs) by Environmental Protection Agency (EPA) SW 846 Method 8082A

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identification

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Kimberly-Clark Upland Area Polychlorinated Biphenyls - Data Qualification Summary - SDG 007468

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Polychlorinated Biphenyls - Laboratory Blank Data Qualification Summary - SDG 007468

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Polychlorinated Biphenyls - Field Blank Data Qualification Summary - SDG 007468

No Sample Data Qualified in this SDG

LDC #: 48922J3b	VALIDATION COMPLETENESS WORKSHEET	Date: 09/04/h
SDG #: 007468	Stage 2A	Page: <u> (</u> of <u>\</u>
Laboratory: Friedman & Bro	uya, Inc.	Reviewer: 4
METHOD: GC Polychlorina	ated Biphenyls (EPA SW846 Method 8082A)	2nd Reviewer:
The samples listed below w	vere reviewed for each of the following validation areas. Validation fir	ndings are noted in attached

validation findings worksheets.

	Validation Area		Comments
1.	Sample receipt/Technical holding times	A , A	
II.	Initial calibration/ICV	N/N	
111.	Continuing calibration	N	
IV.	Laboratory Blanks	<u> </u>	
V	Field blanks	N	
VI.	Surrogate spikes	A	
VII.	Matrix spike/Matrix spike duplicates	A	(12/13)
VIII.	Laboratory control samples	A	LCC
IX.	Field duplicates	N	
X.	Compound quantitation/RL/LOQ/LODs	N	Dry weight basis = 1-11
XI.	Target compound identification	N	
XIL	Overall assessment of data	A	

D = Duplicate TB = Trip blank EB = Equipment blank A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate SB=Source blank OTHER: Note: FB = Field blank

	Client ID	Lab ID	Matrix	Date
1	CMS-B-06-6	007468-01	Soil	07/28/20
2	CMS-B-11-6	007468-02	Soil	07/28/20
3	CMS-S-21-4	007468-03	Soil	07/28/20
4	CMS-S-22-4	007468-04	Soil	07/28/20
5	CMS-B-10-6	007468-05	Soil	07/28/20
6	CMS-B-05-6	007468-06	Soil	07/28/20
7	CMS-B-15-6	007468-07	Soil	07/28/20
8	CMS-B-14-6	007468-08	Soil	07/28/20
9	CMS-B-13-6	007468-09	Soil	07/28/20
10	CMS-B-09-6	007468-10	Soil	07/28/20
11	CMS-S-23-4	007468-11	Soil	07/28/20
12	CMS-B-06-6MS	007468-01MS	Soil	07/28/20
13_	CMS-B-06-6MSD	007468-01MSD	Soil	07/28/20
14				

Note	Notes:								
1	00-1702 MB 1/6								

Laboratory Data Consultants, Inc. Data Validation Report

Kimberly-Clark Upland Area **Project/Site Name:**

September 9, 2020 **LDC Report Date:**

Polynuclear Aromatic Hydrocarbons Parameters:

Stage 2A Validation Level:

Friedman & Bruya, Inc. Laboratory:

Sample Delivery Group (SDG): 007498

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
CMS-S-24-4	007498-01	Soil	07/29/20
CMS-B-04-6	007498-02	Soil	07/29/20
CMS-B-03-6	007498-03	Soil	07/29/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polynuclear Aromatic Hydrocarbons (PAHs) by Environmental Protection Agency (EPA) SW 846 Method 8270E in Selected Ion Monitoring (SIM) mode

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

Instrument performance check data were not reviewed for Stage 2A validation.

III. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

IV. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

Internal standards data were not reviewed for Stage 2A validation.

XII. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XIV. System Performance

Raw data were not reviewed for Stage 2A validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Kimberly-Clark Upland Area Polynuclear Aromatic Hydrocarbons - Data Qualification Summary - SDG 007498

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Polynuclear Aromatic Hydrocarbons - Laboratory Blank Data Qualification **Summary - SDG 007498**

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Polynuclear Aromatic Hydrocarbons - Field Blank Data Qualification Summary -SDG 007498

No Sample Data Qualified in this SDG

SDG Labo MET The s	#:48922K2b VALIDATIO #:007498 pratory: Friedman & Bruya, Inc. THOD: GC/MS Polynuclear Aromatic Hydro samples listed below were reviewed for ea ation findings worksheets.	Socarbons (I	Stage 2A EPA SW 84	46 Meth		n fin	P Revi 2nd Revi	
	Validation Area				Comm	ents	<u> </u>	
l.	Sample receipt/Technical holding times	A, A						
II.	GC/MS Instrument performance check	N						
111.	Initial calibration/ICV	N/N						
IV.	Continuing calibration	N						
V.	Laboratory Blanks	Δ						
VI.	Field blanks	N						
VII.	. Surrogate spikes	A_{\perp}						
VIII.	. Matrix spike/Matrix spike duplicates	N						
IX.	Laboratory control samples	A	LCS/D					
Χ.	Field duplicates	7						
XI.	Internal standards	7						
XII.	Compound quantitation RL/LOQ/LODs	Z	Dry wei	ant 1	oasi3 = 1-3			
XIII.	. Target compound identification	N						
XIV.	. System performance	N						
XV.		A						
lote:	A = Acceptable ND = N N = Not provided/applicable R = Rin	lo compounds	detected	TB	= Duplicate B = Trip blank B = Equipment blank		SB=Source bla OTHER:	ank
	Client ID			Lab	ID	M	atrix	Date
1	CMS-S-24-4			0074	498-01	Sc	oil	07/29/20
2	CMS-B-04-6			0074	498-02	Sc	oil	07/29/20
3	CMS-B-03-6			0074	498-03	Sc	oil	07/29/20
4								
5								
6								
7								
В								
9								
otes:								
4	00-1708 MB 1/5					\dashv		
_						_		
_						_		

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Kimberly-Clark Upland Area

LDC Report Date:

September 9, 2020

Parameters:

Polychlorinated Biphenyls

Validation Level:

Stage 2A

Laboratory:

Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 007498

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
CMS-S-24-4	007498-01	Soil	07/29/20
CMS-B-04-6	007498-02	Soil	07/29/20
CMS-B-03-6	007498-03	Soil	07/29/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polychlorinated Biphenyls (PCBs) by Environmental Protection Agency (EPA) SW 846 Method 8082A

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identification

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Kimberly-Clark Upland Area Polychlorinated Biphenyls - Data Qualification Summary - SDG 007498

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Polychlorinated Biphenyls - Laboratory Blank Data Qualification Summary - SDG 007498

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Polychlorinated Biphenyls - Field Blank Data Qualification Summary - SDG 007498

No Sample Data Qualified in this SDG

SDG # Labora	#:007498 atory: <u>Friedman & Bruya, Inc.</u>	S	Stage 2A	S WORKSHEE		Date: <u>valoulo</u> Page: <u>L</u> of <u>\</u> Reviewer: <u>V</u> Reviewer:
The sa	IOD: GC Polychlorinated Biphenyls (EPA amples listed below were reviewed for eation findings worksheets.		ŕ		ation findings are	e noted in attached
	Validation Area			Com	ments	
1.	Sample receipt/Technical holding times	A/A				
11.	Initial calibration/ICV	N/N				
III.	Continuing calibration	A				
IV.	Laboratory Blanks	<i>t</i>				
V.	Field blanks	N				
VI.	Surrogate spikes	LA_				
VII.	Matrix spike/Matrix spike duplicates	A	SDG 00	7468	3.44 · · ·	
VIII.	Laboratory control samples	A	LUS			
ix.	Field duplicates	N				
X.	Compound quantitation/RL/LOQ/LODs	N	Dry Weigh	n4 basis = 1-3	3	
XI.	Target compound identification	N		-		
XII	Overall assessment of data	1		· ************************************		
	N = Not provided/applicable R = Rin	o compounds sate eld blank		D = Duplicate TB = Trip blank EB = Equipment bl	OTHER ank	Date
	CMS-S-24-4			007498-01	Soil	07/29/20
	CMS-B-04-6			007498-02	Soil	07/29/20
	CMS-B-03-6		·····	007498-03	Soil	07/29/20
	SW3-D-00-0	<u></u>		007490-03	3011	07729720
5						
5						
6			·			
7						
8			**************************************			
9						
10						
11						
12						
13 lotes:				<u> </u>		
	0-1702MB21/6			<u> </u>		
1 7	- 1,7-1-11-0					
-						

Laboratory Data Consultants, Inc. **Data Validation Report**

Project/Site Name:

Kimberly-Clark Upland Area

LDC Report Date:

September 9, 2020

Parameters:

Polynuclear Aromatic Hydrocarbons

Validation Level:

Stage 2A

Laboratory:

Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 007525

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
CMS-S-25-4	007525-01	Soil	07/30/20
CMS-B-02-6	007525-02	Soil	07/30/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polynuclear Aromatic Hydrocarbons (PAHs) by Environmental Protection Agency (EPA) SW 846 Method 8270E in Selected Ion Monitoring (SIM) mode

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

Instrument performance check data were not reviewed for Stage 2A validation.

III. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

IV. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

Internal standards data were not reviewed for Stage 2A validation.

XII. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XIV. System Performance

Raw data were not reviewed for Stage 2A validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Kimberly-Clark Upland Area Polynuclear Aromatic Hydrocarbons - Data Qualification Summary - SDG 007525

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Polynuclear Aromatic Hydrocarbons - Laboratory Blank Data Qualification **Summary - SDG 007525**

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Polynuclear Aromatic Hydrocarbons - Field Blank Data Qualification Summary -SDG 007525

No Sample Data Qualified in this SDG

SDG Labor METH The s	#:48922L2b	lrocarbons (Stage 2A EPA SW 84		2ı M)	Date: Page: of Page:		
	Validation Area			Com	ments			
I.	Sample receipt/Technical holding times	AIA						
II.	GC/MS Instrument performance check	N						
III.	Initial calibration/ICV	N/N						
IV.	Continuing calibration	N						
V.	Laboratory Blanks	A						
VĮ.	Field blanks	N						
VII.	Surrogate spikes	A						
VIII.	Matrix spike/Matrix spike duplicates	<u> </u>						
IX.	Laboratory control samples	A	LCS/D					
X.	Field duplicates	N						
XI.	Internal standards	N_			W. W.			
XII.	Compound quantitation RL/LOQ/LODs	N	Dry wei	914 basis = 1,7				
XIII.	Target compound identification	N						
XIV.	System performance	N						
XV.	Overall assessment of data	<u> </u>						
lote:	N = Not provided/applicable R = R	No compounds insate Field blank	s detected	D = Duplicate TB = Trip blank EB = Equipment bla	OTH	Source blank ER:		
	Client ID			Lab ID	Matrix	Date		
1	CMS-S-25-4			007525-01	Soil	07/30/20		
2	CMS-B-02-6			007525-02	Soil	07/30/20		
3								
4								
5					-			
6								
7								
8								
g lotes:								
	2 242 1/-		- T T					
1 0	0-1708 MB2 1/5							
+								
				·····				

Laboratory Data Consultants, Inc. **Data Validation Report**

Project/Site Name:

Kimberly-Clark Upland Area

LDC Report Date:

September 9, 2020

Parameters:

Polychlorinated Biphenyls

Validation Level:

Stage 2A

Laboratory:

Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 007525

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
CMS-S-25-4	007525-01	Soil	07/30/20
CMS-B-02-6	007525-02	Soil	07/30/20
CMS-S-25-4MS	007525-01MS	Soil	07/30/20
CMS-S-25-4MSD	007525-01MSD	Soil	07/30/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polychlorinated Biphenyls (PCBs) by Environmental Protection Agency (EPA) SW 846 Method 8082A

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identification

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Kimberly-Clark Upland Area Polychlorinated Biphenyls - Data Qualification Summary - SDG 007525

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Polychlorinated Biphenyls - Laboratory Blank Data Qualification Summary - SDG 007525

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Polychlorinated Biphenyls - Field Blank Data Qualification Summary - SDG 007525

No Sample Data Qualified in this SDG

SDG : Labor	#:48922L3b	8	Stage 2A	S WORKSHEE		Page:
	amples listed below were reviewed for e tion findings worksheets.	each of the f	ollowing valida	ation areas. Validat	ion findings are	e noted in attached
	Validation Area			Comi	ments	
<u>l.</u>	Sample receipt/Technical holding times	A , A				
II.	Initial calibration/ICV	N/N				
III.	Continuing calibration	N				
IV.	Laboratory Blanks	A				
V.	Field blanks	N				
VI.	Surrogate spikes	A				
VII.	Matrix spike/Matrix spike duplicates	A	(3,4)			
VIII.	Laboratory control samples	A	LC5			
IX.	Field duplicates	N				
X.	Compound quantitation/RL/LOQ/LODs	N	Dry weigh	nt basis = 1,	<u> </u>	
XI.	Target compound identification	N				
XII	Overall assessment of data	A		- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10		
Note:	N = Not provided/applicable $R = R$	No compound: linsate Field blank	s detected	D = Duplicate TB = Trip blank EB = Equipment bla	OTHER	urce blank :: Date
	CMS-S-25-4			007525-01	Soil	07/30/20
	CMS-B-02-6			007525-02	Soil	07/30/20
	CMS-S-25-4MS			007525-01MS	Soil	07/30/20
	CMS-S-25-4MSD	14- 819), 15		007525-01MSD	Soil	07/30/20
5						
6						
7						
8		-	-	 		
9						
10				<u> </u>		
11						
12						
13 Notes:					<u> </u>	
	0-1750 MB 16					
, 0	0 (130)					
——					 	

Laboratory Data Consultants, Inc. **Data Validation Report**

Project/Site Name:

Kimberly-Clark Upland Area

LDC Report Date:

September 9, 2020

Parameters:

Polynuclear Aromatic Hydrocarbons

Validation Level:

Stage 2A

Laboratory:

Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 008016

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
CMS-S-26-4-080320	008016-02	Soil	08/03/20
CMS-B-08-6-080320	008016-03	Soil	08/03/20
CMS-S-27-4-080320	008016-04	Soil	08/03/20
CMS-S-28-4-080320	008016-05	Soil	08/03/20
CMS-B-01-6-080320	008016-06	Soil	08/03/20
CMS-S-26-4-080320MS	008016-02MS	Soil	08/03/20
CMS-S-26-4-080320MSD	008016-02MSD	Soil	08/03/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polynuclear Aromatic Hydrocarbons (PAHs) by Environmental Protection Agency (EPA) SW 846 Method 8270E in Selected Ion Monitoring (SIM) mode

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

Instrument performance check data were not reviewed for Stage 2A validation.

III. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

IV. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. Surrogate recoveries (%R) were not within QC limits for samples CMS-S-26-4-080320 and CMS-S-27-4-080320. Using professional judgment, no data were qualified when one surrogate %R was outside the QC limits and the %R was greater than or equal to 10% or for samples analyzed at greater than or equal to 5X dilution.

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits.

Relative percent differences (RPD) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Compound	RPD (Limits)	Flag	A or P
CMS-S-26-4-080320MS/MSD (CMS-S-26-4-080320)	Benzo(g,h,i)perylene	22 (≤20)	NA	-

IX. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

Internal standards data were not reviewed for Stage 2A validation.

XII. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XIV. System Performance

Raw data were not reviewed for Stage 2A validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Kimberly-Clark Upland Area Polynuclear Aromatic Hydrocarbons - Data Qualification Summary - SDG 008016

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Polynuclear Aromatic Hydrocarbons - Laboratory Blank Data Qualification **Summary - SDG 008016**

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Polynuclear Aromatic Hydrocarbons - Field Blank Data Qualification Summary -SDG 008016

No Sample Data Qualified in this SDG

SDG ; _abor METH	#: 48922M2b #: 008016 ratory: Friedman & Bruya,	Inc. Aromatic Hyd	rocarbons (Stage 2 EPA SW	⁷ 846 Method 8	270E-SIM)		Date: Of a factor of the control of
	amples listed below were tion findings worksheets.		each of the f	ollowing	validation area			e noted in attached
	Validation A	Area				Comment	<u>s</u>	
<u>l.</u>	Sample receipt/Technical hol	ding times	A/A		-956			
II.	GC/MS Instrument performar	nce check	N N					
III.	Initial calibration/ICV		N/N					
IV.	Continuing calibration		N 1Å					
V.	Laboratory Blanks	···········	A					
VI.	Field blanks		h		1) 4			
VII.	Surrogate spikes		SN	 	ovt; NO	3 - one	04 3 =	=5×dilunon-1
VIII.	Matrix spike/Matrix spike dupl	licates	SW.	(6)	})			
IX.	Laboratory control samples		A	LCS		***		
X.	Field duplicates		N					
XI.	Internal standards		N N					
XII.	Compound quantitation RL/LC	DQ/LODs	N					
XIII.	Target compound identification	n	N					
XIV.	System performance		N					
XV.	Overall assessment of data		A					
ote:	A = Acceptable N = Not provided/applicable SW = See worksheet	R = R	No compounds insate ⁼ ield blank	s detected	TB = Tri		SB=Soi OTHER	urce blank t:
- 1	Client ID				Lab ID		//atrix	Date
	CMS-S-26-4-080320				008016-0	2 5	Soil	08/03/20
	CMS-B-08-6-080320	K			008016-0	3 8	Soil	08/03/20
	CMS-S-27-4-080320				008016-0	4 5	Soil	08/03/20
	CMS-S-28-4-080320		<u> </u>		008016-0		Soil	08/03/20
	CMS-B-01-6-080320				008016-0		Soil	08/03/20
	CMS-S-26-4-080320MS				008016-0		Soil	08/03/20
	CMS-S-26-4-080320MSD				008016-02		Soil	08/03/20
	55 5 L5 1 0000201110D				000010-02			03/03/20
	<u> </u>							
otes:							_	
10	0-1765 MB 1/5		_					
		· · · · · · · · · · · · · · · · · · ·			1			

VALIDATION FINDINGS WORKSHEET

METHOD: GC/MS SVOA

		··		
A. Phenol	CC. Dimethylphthalate	EEE. Bis(2-ethylhexyl)phthalate	GGGG. C30-Hopane	I1. Methyl methanesulfonate
B. Bis (2-chloroethyl) ether	DD. Acenaphthylene	FFF. Di-n-octylphthalate	HHHH. 1-Methylphenanthrene	J1. Ethyl methanesulfonate
C. 2-Chlorophenol	EE. 2,6-Dinitrotoluene	GGG. Benzo(b)fluoranthene	IIII. 1,4-Dioxane	K1. o,o',o''-Triethylphosphorothioate
D. 1,3-Dichlorobenzene	FF. 3-Nitroaniline	HHH. Benzo(k)fluoranthene	JJJJ. Acetophenone	L1. n-Phenylene diamine
E. 1,4-Dichlorobenzene	GG. Acenaphthene	III. Benzo(a)pyrene	KKKK. Atrazine	M1. 1,4-Naphthoquinone
F. 1,2-Dichlorobenzene	HH. 2,4-Dinitrophenol	JJJ. Indeno(1,2,3-cd)pyrene	LLLL. Benzaldehyde	N1. N-Nitro-o-toluidine
G. 2-Methylphenol	II. 4-Nitrophenol	KKK. Dibenz(a,h)anthracene	MMMM. Caprolactam	O1. 1,3,5-Trinitrobenzene
H. 2,2'-Oxybis(1-chloropropane)	JJ. Dibenzofuran	LLL. Benzo(g,h,i)perylene	NNNN. 2,6-Dichlorophenol	P1. Pentachlorobenzene
I. 4-Methylphenol	KK. 2,4-Dinitrotoluene	MMM. Bis(2-Chloroisopropyl)ether	OOOO. 1,2-Diphenylhydrazine	Q1. 4-Aminobiphenyl
J. N-Nitroso-di-n-propylamine	LL. Diethylphthalate	NNN. Aniline	PPPP. 3-Methylphenol	R1. 2-Naphthylamine
K. Hexachloroethane	MM. 4-Chlorophenyl-phenyl ether	OOO. N-Nitrosodimethylamine	QQQQ. 3&4-Methylphenol	S1. Triphenylene
L. Nitrobenzene	NN. Fluorene	PPP. Benzoic Acid	RRRR. 4-Dimethyldibenzothiophene (4MDT)	T1. Octachlorostyrene
M. Isophorone	OO. 4-Nitroaniline	QQQ. Benzyl alcohol	SSSS. 2/3-Dimethyldibenzothiophene (4MDT)	U1. Famphur
N. 2-Nitrophenol	PP. 4,6-Dinitro-2-methylphenol	RRR. Pyridine	TTTT. 1-Methyldibenzothiophene (1MDT)	V1. 1,4-phenylenediamine
O. 2,4-Dimethylphenol	QQ. N-Nitrosodiphenylamine	SSS. Benzidine	UUUU 2,3,4,6-Tetrachlorophenol	W1. Methapyrilene
P. Bis(2-chloroethoxy)methane	RR. 4-Bromophenyl-phenylether	TTT. 1-Methylnaphthalene	VVVV. 1,2,4,5-Tetrachlorobenzene	X1. Pentachloroethane
Q. 2,4-Dichlorophenol	SS. Hexachlorobenzene	UUU.Benzo(b)thiophene	WWWW 2-Picoline	Y1. 3,3'-Dimethylbenzidine
R. 1,2,4-Trichlorobenzene	TT. Pentachlorophenol	VVV.Benzonaphthothiophene	XXXX. 3-Methylcholanthrene	Z1. o-Toluidine
S. Naphthalene	UU. Phenanthrene	WWW.Benzo(e)pyrene	YYYY. a,a-Dimethylphenethylamine	A2. 1-Naphthylamine
T. 4-Chloroaniline	VV. Anthracene	XXX. 2,6-Dimethylnaphthalene	ZZZZ. Hexachloropropene	B2. 4-Aminobiphenyl
U. Hexachlorobutadiene	WW. Carbazole	YYY. 2,3,5-Trimethylnaphthalene	A1. N-Nitrosodiethylamine	C2. 4-Nitroquinoline-1-oxide
V. 4-Chloro-3-methylphenol	XX. Di-n-butylphthalate	ZZZ. Perylene	B1. N-Nitrosodi-n-butylamine	D2. Hexachloropene
W. 2-Methylnaphthalene	YY. Fluoranthene	AAAA. Dibenzothiophene	C1. N-Nitrosomethylethylamine	E2. Bis (2-chloro-1-methylethyl) ether
X. Hexachlorocyclopentadiene	ZZ. Pyrene	BBBB. Benzo(a)fluoranthene	D1. N-Nitrosomorpholine	F2. Bifenthrin
Y. 2,4,6-Trichlorophenol	AAA. Butylbenzylphthalate	CCCC. Benzo(b)fluorene	E1. N-Nitrosopyrrolidine	G2. Cyfluthrin
Z. 2,4,5-Trichlorophenol	BBB. 3,3'-Dichlorobenzidine	DDDD. cis/trans-Decalin	F1. Phenacetin	H2. Cypermethrin
AA. 2-Chloronaphthalene	CCC. Benzo(a)anthracene	EEEE. 1,1'-Biphenyl	G1. 2-Acetylaminofluorene	I2. Permethrin (cis/trans)
BB. 2-Nitroaniline	DDD. Chrysene	FFFF. Retene	H1. Pronamide	J2. 5-Nitro-o-toluidine

LDC #: 48922M2b

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

Page:_	1	_of_	1	
Reviewer		ΙT		

METHOD: GC/MS PAHs (EPA SW 846 Method 8270E SIM)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Yx N_ N/A_ Were a matrix spike (MS) and matrix spike duplicate (MSD) or duplicate sample analyzed for each matrix in this SDG?

Yx N N/A Was a MS/MSD analyzed every 20 samples of each matrix?

Y Nx N/A Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

#	Date	MS/MSD ID	Compound	MS %R (Limits)	MSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
		6/7	LLL			22 (≤20)	1 (ND)	J/A DETS
<u> </u>								
<u> </u>								
-	<u> </u>							
╟─	****							
⊨								
-								
<u> </u>		^						
-								
⊩_								
_								
		<u> </u>				<u> </u>		
\vdash								
	11-10							

Laboratory Data Consultants, Inc. **Data Validation Report**

Project/Site Name: Kimberly-Clark Upland Area

LDC Report Date: September 9, 2020

Polychlorinated Biphenyls Parameters:

Stage 2A Validation Level:

Laboratory: Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 008016

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
CMS-S-26-4-080320	008016-02	Soil	08/03/20
CMS-B-08-6-080320	008016-03	Soil	08/03/20
CMS-S-27-4-080320	008016-04	Soil	08/03/20
CMS-S-28-4-080320	008016-05	Soil	08/03/20
CMS-B-01-6-080320	008016-06	Soil	08/03/20
CMS-S-26-4-080320MS	008016-02MS	Soil	08/03/20
CMS-S-26-4-080320MSD	008016-02MSD	Soil	08/03/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polychlorinated Biphenyls (PCBs) by Environmental Protection Agency (EPA) SW 846 Method 8082A

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identification

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Kimberly-Clark Upland Area Polychlorinated Biphenyls - Data Qualification Summary - SDG 008016

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Polychlorinated Biphenyls - Laboratory Blank Data Qualification Summary - SDG 008016

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Polychlorinated Biphenyls - Field Blank Data Qualification Summary - SDG 008016

No Sample Data Qualified in this SDG

SDG#	#:48922M3b		PLETENE: Stage 2A	SS WORKSHEE	T 2nd	Page: Lof \ Reviewer: \(\tag{\text{Seviewer}} \)
METH	IOD: GC Polychlorinated Biphenyls (EPA	A SW846 N	lethod 8082	A)	ZHU	ricviewei
	amples listed below were reviewed for extion findings worksheets.	ach of the f	ollowing vali	dation areas. Validat	tion findings are	e noted in attached
	Validation Area			Com	ments	
l.	Sample receipt/Technical holding times	AIA				
II.	Initial calibration/ICV	N/N				
111.	Continuing calibration	N				
IV.	Laboratory Blanks	A				
V.	Field blanks	N				
VI.	Surrogate spikes	A				
VII.	Matrix spike/Matrix spike duplicates	A	(617)		······	
VIII.	Laboratory control samples	A	LCS			
IX.	Field duplicates	N_				
X.	Compound quantitation/RL/LOQ/LODs	N				
XI.	Target compound identification	N				
XII	Overall assessment of data	<u> </u>				
lote:	N = Not provided/applicable $R = Ri$	No compound nsate Field blank	s detected	D = Duplicate TB = Trip blank EB = Equipment bla	OTHER	ırce blank :
	Client ID			Lab ID	Matrix	Date
1 (CMS-S-26-4-080320			008016-02	Soil	08/03/20
2 (CMS-B-08-6-080320		***	008016-03	Soil	08/03/20
3 (CMS-S-27-4-080320			008016-04	Soil	08/03/20
4 (CMS-S-28-4-080320			008016-05	Soil	08/03/20
5 C	CMS-B-01-6-080320			008016-06	Soil	08/03/20
6 0	CMS-S-26-4-080320MS			008016-02MS	Soil	08/03/20
7 (CMS-S-26-4-080320MSD			008016-02MSD	Soil	08/03/20
8						
9						
10	·					
11						
12						
13						
otes:	2 12 (11		T		1 1	
10	0-1766 MB 1/6					

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Kimberly-Clark Upland Area

LDC Report Date:

August 31, 2020

Parameters:

Metals

Validation Level:

Stage 2A

Laboratory:

Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 008016

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
WT-EffluentA-080320	008016-01	Water	08/03/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Arsenic, Cadmium, Chromium, Copper, Lead, Mercury, Nickel, Silver, and Zinc by Environmental Protection Agency (EPA) Method 200.8

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. ICPMS Tune

ICP-MS tune data were not reviewed for Stage 2A validation.

III. Instrument Calibration

Instrument calibration data were not reviewed for Stage 2A validation.

IV. ICP Interference Check Sample Analysis

ICP Interference check sample (ICS) analysis data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

IX. Serial Dilution

Serial dilution was not performed for this SDG.

X. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

XI. Field Duplicates

No field duplicates were identified in this SDG.

XII. Internal Standards (ICP-MS)

Internal standards data were not reviewed for Stage 2A validation.

XIII. Sample Result Verification

Raw data were not reviewed for Stage 2A validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Kimberly-Clark Upland Area Metals - Data Qualification Summary - SDG 008016

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Metals - Laboratory Blank Data Qualification Summary - SDG 008016

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Metals - Field Blank Data Qualification Summary - SDG 008016

No Sample Data Qualified in this SDG

±: <u>008016</u>			WORKSHEET		Date: <u>₹2\2#</u> Page: <u></u> of <u>1</u>
atory: Friedman & Bruya, Inc.					Reviewer: Off Reviewer:
OD: Metals (EPA Method 200.8)					
amples listed below were reviewed for ea	ch of the fo	ving validati	ion areas. Validatio	n findings are	noted in attache
		ving validat	on areas. Vandatio	n mango aro	noted in attache
	Ī				
Validation Area			Comm	ents	
Sample receipt/Technical holding times	AIA				
ICP/MS Tune	N				
Instrument Calibration	N				
ICP Interference Check Sample (ICS) Analysis	N				
Laboratory Blanks	A				
Field Blanks	N				
Matrix Spike/Matrix Spike Duplicates					
Duplicate sample analysis	N				
Serial Dilution	12				
Laboratory control samples	A	LS			
Field Duplicates	2				
Internal Standard (ICP-MS)	N				
	N				
Overall Assessment of Data	A				
N = Not provided/applicable R = Rins	sate	ected	D = Duplicate TB = Trip blank EB = Equipment blank	OTHER:	rce blank
Client ID			Lab ID	Matrix	Date
VT-Effluent-080320			008016-01	Water	08/03/20
		·····			
		1			
	#:008016 atory: Friedman & Bruya, Inc. ##OD: Metals (EPA Method 200.8) ##IDO: Metals (EPA Method 200.8	#:	# 008016 Stage 2A atory: Friedman & Bruya, Inc. ## 008016 Stage 2A atory: Friedman & Bruya, Inc. ## 10D: Metals (EPA Method 200.8) ## amples listed below were reviewed for each of the following validate tion findings worksheets. Validation Area	#:	#:

Notes:_

LDC #48922M4a

VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference

Page: 1 of 1 Reviewer: DTM

All circled elements are applicable to each sample.

Sample ID	Matrix	Target Analyte List (TAL)
All	\mathcal{V}	Al, Sb, (48) Ba, Be, B, (2), Ca, (2) Co, (20) Fe, (2), Li, Mg, Mo, Mn, (1), (1), K, Se, (1), Na, Sr, Tl, Sn, Ti, W, U, V, (2n)
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
·		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
i 		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
	——— п	Analysis Method
ICP		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
ICP-MS		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
GEAA		Al Sh. As. Ba. Be. B. Cd. Ca. Cr. Co. Cu. Fe. Ph. Li. Mg. Mo. Mn. Hg. Ni. K. Se. Ag. Na. Sr. Tl. Sn. Ti. W. U. V. Zn

Comments:	Mercury by CVAA if performed

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Kimberly-Clark Upland Area

LDC Report Date: August 31, 2020

Parameters: Oil & Grease

Validation Level: Stage 2A

Laboratory: Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 008016

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
WT-EffluentA-080320	008016-01	Water	08/03/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Oil and Grease by Environmental Protection Agency (EPA) Method 1664

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Initial Calibration

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Sample Result Verification

Raw data were not reviewed for Stage 2A validation.

XI. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Kimberly-Clark Upland Area Oil & Grease - Data Qualification Summary - SDG 008016

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Oil & Grease - Laboratory Blank Data Qualification Summary - SDG 008016

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Oil & Grease - Field Blank Data Qualification Summary - SDG 008016

No Sample Data Qualified in this SDG

	#:48922M6 VALIDA 7 #:008016 atory:_ <u>Friedman & Bruya, Inc.</u>		LETENES tage 2A	SS WORKSHE		Date: 81200 Page: of 1 Reviewer: 0000 Reviewer:
METH	IOD: (Analyte) Oil & Grease (EPA N	Method 1664)				
	amples listed below were reviewed fo tion findings worksheets.	or each of the fo	ollowing valid	dation areas. Valid	ation findings are	noted in attached
	Validation Area			Cor	nments	
ı.	Sample receipt/Technical holding times	A,A				
ll	Initial calibration	N				
Ш.	Calibration verification	N				
IV	Laboratory Blanks	A				
V	Field blanks	2				
VI.	Matrix Spike/Matrix Spike Duplicates	12				
VII.	Duplicate sample analysis	P				
VIII.	Laboratory control samples	A	us			
IX.	Field duplicates	2				
X	Sample result verification	N				
XI	Overall assessment of data	A				
Note:	N = Not provided/applicable R =	0 = No compounds = Rinsate s = Field blank	s detected	D = Duplicate TB = Trip blank EB = Equipment l	OTHER:	rce blank
	Client ID			Lab ID	Matrix	Date
1 \	WT-Effluent-080320			008016-01	Water	08/03/20
2						
3						
4						
5						
6						
7						
8						
9						
10						
11						
12		<u> </u>				
13						
14 Jotop:						
Notes:					 -	

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Kimberly-Clark Upland Area

LDC Report Date:

September 9, 2020

Parameters:

Polynuclear Aromatic Hydrocarbons

Validation Level:

Stage 2A

Laboratory:

Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 008046

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
CMS-B-07-6-080420	008046-01	Soil	08/04/20
CMS-S-29-4-080420	008046-02	Soil	08/04/20
CMS-B-30-7-080420	008046-03	Soil	08/04/20
CMS-511-080420	008046-04	Soil	08/04/20
CMS-B-07-6-080420MS	008046-01MS	Soil	08/04/20
CMS-B-07-6-080420MSD	008046-01MSD	Soil	08/04/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polynuclear Aromatic Hydrocarbons (PAHs) by Environmental Protection Agency (EPA) SW 846 Method 8270E in Selected Ion Monitoring (SIM) mode

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

Instrument performance check data were not reviewed for Stage 2A validation.

III. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

IV. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits.

Relative percent differences (RPD) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Compound	RPD (Limits)	Flag	A or P
CMS-B-07-6-080420MS/MSD (CMS-B-07-6-080420)	Naphthalene	24 (≤20)	NA	-

IX. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

X. Field Duplicates

Samples CMS-B-30-7-080420 and CMS-511-080420 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentra	tion (mg/Kg)	
Compound	CMS-B-30-7-080420	CMS-511-080420	RPD
Naphthalene	0.021	0.13	144
Acenaphthene	0.028	0.12	124
Fluorene	0.027	0.60	183
Phenanthrene	0.12	1.5	170
Anthracene	0.042	1.6	190
Fluoranthene	0.26	0.83	105
Pyrene	0.24	0.84	111
Benzo(a)anthracene	0.10	0.52	135
Chrysene	0.12	0.81	148
Benzo(a)pyrene	0.096	0.45	130
Benzo(b)fluoranthene	0.11	0.48	125
Benzo(k)fluoranthene	0.044	0.17	118
Indeno(1,2,3-cd)pyrene	0.051	0.20	119
Dibenzo(a,h)anthracene	0.013	0.060	129
Benzo(g,h,i)perylene	0.050	0.17	109

XI. Internal Standards

Internal standards data were not reviewed for Stage 2A validation.

XII. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XIV. System Performance

Raw data were not reviewed for Stage 2A validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Kimberly-Clark Upland Area Polynuclear Aromatic Hydrocarbons - Data Qualification Summary - SDG 008046

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Polynuclear Aromatic Hydrocarbons - Laboratory Blank Data Qualification **Summary - SDG 008046**

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Polynuclear Aromatic Hydrocarbons - Field Blank Data Qualification Summary -SDG 008046

No Sample Data Qualified in this SDG

SDG Labor	#:48922N2bVALIDATIC #:_008046 ratory: Friedman & Bruya, Inc HOD: GC/MS Polynuclear Aromatic Hydr	S	Stage 2A	S WORKSHEET Method 8270E-SIM)		Date: only Page: of Page: of Page: of Page: of Page: of Page: of Page: only P
	amples listed below were reviewed for eation findings worksheets.	ach of the fo	ollowing valid	lation areas. Validatio	on findings ar	e noted in attache
	Validation Area			Comm	ents	
I.	Sample receipt/Technical holding times	AIA				
II.	GC/MS Instrument performance check	N				
Ш.	Initial calibration/ICV	N/N				
IV.	Continuing calibration	N				
V.	Laboratory Blanks	L A				
VI.	Field blanks					
VII.	Surrogate spikes	IA	•			
VIII.	Matrix spike/Matrix spike duplicates	SW	(5/6)			
IX.	Laboratory control samples	TA	LUS			
X.	Field duplicates	SW	1 = 341	1		
XI.	Internal standards	IN				
XII.	Compound quantitation RL/LOQ/LODs	N	Dry weig	M4 basis = H4		
XIII.	Target compound identification	N	1			
XIV.	System performance	N				
XV.	Overall assessment of data	A				
lote:	N = Not provided/applicable R = Ri	No compounds nsate rield blank	s detected	D = Duplicate TB = Trip blank EB = Equipment blan	OTHER	urce blank R:
	Client ID			Lab iD	Matrix	Date
1	CMS-B-07- ∮ 6-080420			008046-01	Soil	08/04/20
2	CMS-S-29-4-080420			008046-02	Soil	08/04/20
3	CMS-B-30-7-080420		\mathcal{D}	008046-03	Soil	08/04/20
4	CMS-511-080420		D	008046-04	Soil	08/04/20
	CMS-B-07- J 6-080420MS			008046-01MS	Soil	08/04/20
6	CMS-B-07- ∮ 6-080420MSD			008046-01MSD	Soil	08/04/20
7						
8						
9						
lotes:						
10	0-1768MB 115					
\perp						
- 1			1 1		1 1	

VALIDATION FINDINGS WORKSHEET

METHOD: GC/MS SVOA

A. Phenol	CC. Dimethylphthalate	EEE. Bis(2-ethylhexyl)phthalate	GGGG. C30-Hopane	I1. Methyl methanesulfonate
B. Bis (2-chloroethyl) ether	DD. Acenaphthylene	FFF. Di-n-octylphthalate	HHHH. 1-Methylphenanthrene	J1. Ethyl methanesulfonate
C. 2-Chlorophenol	EE. 2,6-Dinitrotoluene	GGG. Benzo(b)fluoranthene	IIII. 1,4-Dioxane	K1. o,o',o''-Triethylphosphorothioate
D. 1,3-Dichlorobenzene	FF. 3-Nitroaniline	HHH. Benzo(k)fluoranthene	JJJJ. Acetophenone	L1. n-Phenylene diamine
E. 1,4-Dichlorobenzene	GG. Acenaphthene	III. Benzo(a)pyrene	KKKK. Atrazine	M1. 1,4-Naphthoquinone
F. 1,2-Dichlorobenzene	HH. 2,4-Dinitrophenol	JJJ. Indeno(1,2,3-cd)pyrene	LLLL. Benzaldehyde	N1. N-Nitro-o-toluidine
G. 2-Methylphenol	II. 4-Nitrophenol	KKK. Dibenz(a,h)anthracene	MMMM. Caprolactam	O1. 1,3,5-Trinitrobenzene
H. 2,2'-Oxybis(1-chloropropane)	JJ. Dibenzofuran	LLL. Benzo(g,h,i)perylene	NNNN. 2,6-Dichlorophenol	P1. Pentachlorobenzene
I. 4-Methylphenol	KK. 2,4-Dinitrotoluene	MMM. Bis(2-Chloroisopropyl)ether	OOOO. 1,2-Diphenylhydrazine	Q1. 4-Aminobiphenyl
J. N-Nitroso-di-n-propylamine	LL. Diethylphthalate	NNN. Aniline	PPPP. 3-Methylphenol	R1. 2-Naphthylamine
K. Hexachloroethane	MM. 4-Chlorophenyl-phenyl ether	OOO. N-Nitrosodimethylamine	QQQQ. 3&4-Methylphenol	S1. Triphenylene
L. Nitrobenzene	NN. Fluorene	PPP. Benzoic Acid	RRRR. 4-Dimethyldibenzothiophene (4MDT)	T1. Octachlorostyrene
M. Isophorone	OO. 4-Nitroaniline	QQQ. Benzyl alcohol	SSSS. 2/3-Dimethyldibenzothiophene (4MDT)	U1. Famphur
N. 2-Nitrophenol	PP. 4,6-Dinitro-2-methylphenol	RRR. Pyridine	TTTT. 1-Methyldibenzothiophene (1MDT)	V1. 1,4-phenylenediamine
O. 2,4-Dimethylphenol	QQ. N-Nitrosodiphenylamine	SSS. Benzidine	UUUU 2,3,4,6-Tetrachlorophenol	W1. Methapyrilene
P. Bis(2-chloroethoxy)methane	RR. 4-Bromophenyl-phenylether	TTT. 1-Methylnaphthalene	VVVV. 1,2,4,5-Tetrachlorobenzene	X1. Pentachloroethane
Q. 2,4-Dichlorophenol	SS. Hexachlorobenzene	UUU.Benzo(b)thiophene	WWWW 2-Picoline	Y1. 3,3'-Dimethylbenzidine
R. 1,2,4-Trichlorobenzene	TT. Pentachlorophenol	VVV.Benzonaphthothiophene	XXXX. 3-Methylcholanthrene	Z1. o-Toluidine
S. Naphthalene	UU. Phenanthrene	WWW.Benzo(e)pyrene	YYYY. a,a-Dimethylphenethylamine	A2. 1-Naphthylamine
T. 4-Chloroaniline	VV. Anthracene	XXX. 2,6-Dimethylnaphthalene	ZZZZ. Hexachloropropene	B2. 4-Aminobiphenyl
U. Hexachlorobutadiene	WW. Carbazole	YYY. 2,3,5-Trimethylnaphthalene	A1. N-Nitrosodiethylamine	C2. 4-Nitroquinoline-1-oxide
V. 4-Chloro-3-methylphenol	XX. Di-n-butylphthalate	ZZZ. Perylene	B1. N-Nitrosodi-n-butylamine	D2. Hexachloropene
W. 2-Methylnaphthalene	YY. Fluoranthene	AAAA. Dibenzothiophene	C1. N-Nitrosomethylethylamine	E2. Bis (2-chloro-1-methylethyl) ether
X. Hexachlorocyclopentadiene	ZZ. Pyrene	BBBB. Benzo(a)fluoranthene	D1. N-Nitrosomorpholine	F2. Bifenthrin
Y. 2,4,6-Trichlorophenol	AAA. Butylbenzylphthalate	CCCC. Benzo(b)fluorene	E1. N-Nitrosopyrrolidine	G2. Cyfluthrin
Z. 2,4,5-Trichlorophenol	BBB. 3,3'-Dichlorobenzidine	DDDD. cis/trans-Decalin	F1. Phenacetin	H2. Cypermethrin
AA. 2-Chloronaphthalene	CCC. Benzo(a)anthracene	EEEE. 1,1'-Biphenyl	G1. 2-Acetylaminofluorene	I2. Permethrin (cis/trans)
BB. 2-Nitroaniline	DDD. Chrysene	FFFF. Retene	H1. Pronamide	J2. 5-Nitro-o-toluidine

LDC #: 48922N2b

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

Page:_	1	_of_	1	
Reviewer:		LT		

METHOD: GC/MS PAHs (EPA SW 846 Method 8270E SIM)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Yx N N/A Were a matrix spike (MS) and matrix spike duplicate (MSD) or duplicate sample analyzed for each matrix in this SDG?

Yx N N/A Was a MS/MSD analyzed every 20 samples of each matrix?

Y_ Nx N/A_ Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

	MS/MSD ID	Compound	MS %R (Limits)	MSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
	5/6	S			24 (≤20)	1 (ND)	J/A DETS
						!	
							
	la						
			-				

						J	
		 			-		
		-			-	· · · · · · · · · · · · · · · · · · ·	
		 					

LDC#:48922N2b VALIDATION FINDINGS WORKSHEET Field Duplicates

Page:_1_of_1_ Reviewer:__<u>LT</u>__

METHOD: GC/MS PAHs (EPA SW846 Method 8270E SIM)

	Concent		
Compound	3	4	RPD
s	0.021	0.13	144
GG	0.028	0.12	124
NN	0.027	0.60	183
υυ	0.12	1.5	170
W	0.042	1.6	190
YY	0.26	0.83	105
zz	0.24	0.84	111
ccc	0.10	0.52	135
DDD	0.12	0.81	148
III	0.096	0.45	130
GGG	0.11	0.48	125
ннн	0.044	0.17	118
111	0.051	0.20	119
ккк	0.013	0.060	129
LLL	0.050	0.17	109

Laboratory Data Consultants, Inc. **Data Validation Report**

Project/Site Name:

Kimberly-Clark Upland Area

LDC Report Date:

September 9, 2020

Parameters:

Polychlorinated Biphenyls

Validation Level:

Stage 2A

Laboratory:

Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 008046

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
CMS-B-07-6-080420	008046-01	Soil	08/04/20
CMS-S-29-4-080420	008046-02	Soil	08/04/20
CMS-B-30-7-080420	008046-03	Soil	08/04/20
CMS-511-080420	008046-04	Soil	08/04/20
CMS-B-31-7-080420	008046-05	Soil	08/04/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polychlorinated Biphenyls (PCBs) by Environmental Protection Agency (EPA) SW 846 Method 8082A

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

Samples CMS-B-30-7-080420 and CMS-511-080420 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentra			
Compound	CMS-B-30-7-080420	CMS-511-080420	RPD	
Aroclor-1254	0.042	0.12	96	
Aroclor-1260	0.025	0.12	131	

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identification

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Kimberly-Clark Upland Area Polychlorinated Biphenyls - Data Qualification Summary - SDG 008046

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Polychlorinated Biphenyls - Laboratory Blank Data Qualification Summary - SDG 008046

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Polychlorinated Biphenyls - Field Blank Data Qualification Summary - SDG 008046

No Sample Data Qualified in this SDG

SDG # _abora	:: 48922N3b VALIDATI b: 008046 atory: Friedman & Bruya, Inc. IOD: GC Polychlorinated Biphenyls (EF	S	Stage 2A	S WORKSHE		Date: 09/94/ Page:
	amples listed below were reviewed for e ion findings worksheets.	each of the f	ollowing valida	ation areas. Valid	lation findings are	e noted in attache
	Validation Area			Co	mments	
l.	Sample receipt/Technical holding times	A,A				
II.	Initial calibration/ICV	N/N				
III.	Continuing calibration	N				
IV.	Laboratory Blanks	A				
V.	Field blanks	12				
VI.	Surrogate spikes	A				
VII.	Matrix spike/Matrix spike duplicates	A	506-00	कार		
VIII.	Laboratory control samples	A	LCS			
IX.	Field duplicates	SM	D=344			
X.	Compound quantitation/RL/LOQ/LODs	N	Dry weig	nt basis = 1-	5	
XI.	Target compound identification	Ņ				
XII	Overall assessment of data	A				
lote:	N = Not provided/applicable $R = F$	No compound: Rinsate Field blank	s detected	D = Duplicate TB = Trip blank EB = Equipment	OTHER	ırce blank :
-	Client ID			Lab ID	Matrix	Date
1 0	CMS-B-07-06-080420			008046-01	Soil	08/04/20
2 (CMS-S-29-4-080420			008046-02	Soil	08/04/20
3 0	CMS-B-30-7-080420		D	008046-03	Soil	08/04/20
‡ C	CMS-511-080420		P	008046-04	Soil	08/04/20
	CMS-B-31-7-080420			008046-05	Soil	08/04/20
3						
,						
3						
,						
0						
11						
12			· · · · · · · · · · · · · · · · · · ·			
13						
otes:						

LDC#:48922N3b

VALIDATION FINDINGS WORKSHEET <u>Field Duplicates</u>

Page:_1_of_1_
Reviewer:__LT
2nd Reviewer:____

METHOD: GC PCBs (EPA SW846 Method 8082A)

	Concentration (mg/kg)		
Compound	3	4	RPD
Aroclor 1254	0.042	0.12	96
Aroclor 1260	0.025	0.12	131

Laboratory Data Consultants, Inc. **Data Validation Report**

Project/Site Name: Kimberly-Clark Upland Area

LDC Report Date: September 9, 2020

Polynuclear Aromatic Hydrocarbons Parameters:

Validation Level: Stage 2A

Friedman & Bruya, Inc. Laboratory:

Sample Delivery Group (SDG): 008072

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
CMS-S-30-4-080520	008072-01	Soil	08/05/20
CMS-S-31-4-080520	008072-02	Soil	08/05/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polynuclear Aromatic Hydrocarbons (PAHs) by Environmental Protection Agency (EPA) SW 846 Method 8270E in Selected Ion Monitoring (SIM) mode

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

Instrument performance check data were not reviewed for Stage 2A validation.

III. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

IV. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were not within QC limits. No data were qualified since there were no associated samples in this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

Internal standards data were not reviewed for Stage 2A validation.

XII. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XIV. System Performance

Raw data were not reviewed for Stage 2A validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Kimberly-Clark Upland Area Polynuclear Aromatic Hydrocarbons - Data Qualification Summary - SDG 008072

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Polynuclear Aromatic Hydrocarbons - Laboratory Blank Data Qualification **Summary - SDG 008072**

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Polynuclear Aromatic Hydrocarbons - Field Blank Data Qualification Summary -SDG 008072

No Sample Data Qualified in this SDG

SDG Labor METI The s	#:48922O2b	S ocarbons (E	Stage 2A EPA SW 846	,		Date: 69 04) Page:lofl Reviewer:l Reviewer:l e noted in attached
	Validation Area	T		Comm		
1.	Sample receipt/Technical holding times	A,A			ems	
11.	GC/MS Instrument performance check	N		*****		
III.	Initial calibration/ICV	N/N				
IV.		N				
V.	Laboratory Blanks	A				
VI.	Field blanks	7				
VII.		A				
VIII.		SV	SPG 00'	8046 RPD DUY, 1	not associo	Hed
IX.	Laboratory control samples	A	LCS			
X.	Field duplicates	2				
XI.	Internal standards	N				
XII.	Compound quantitation RL/LOQ/LODs	N	Dry wei	gut basis = 1,2		
XIII.	Target compound identification	N				
XIV.	System performance	N				
XV.	Overall assessment of data	A				
lote:	N = Not provided/applicable R = Rins	o compounds sate eld blank	; detected	D = Duplicate TB = Trip blank EB = Equipment blank	OTHER	urce blank R:
	Client ID			Lab ID	Matrix	Date
	CMS-S-30-4-080520			008072-01	Soil	08/05/20
	CMS-S-31-4-080520			008072-02	Soil	08/05/20
3						
4						
5						
6						
7						
8						
9						
otes:					T	
110	00-1768 MB 1/5					
$ \vdash$						

Laboratory Data Consultants, Inc. **Data Validation Report**

Project/Site Name: Kimberly-Clark Upland Area

LDC Report Date: September 9, 2020

Polychlorinated Biphenyls Parameters:

Validation Level: Stage 2A

Laboratory: Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 008072

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
CMS-S-30-4-080520	008072-01	Soil	08/05/20
CMS-S-31-4-080520	008072-02	Soil	08/05/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polychlorinated Biphenyls (PCBs) by Environmental Protection Agency (EPA) SW 846 Method 8082A

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identification

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Kimberly-Clark Upland Area Polychlorinated Biphenyls - Data Qualification Summary - SDG 008072

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Polychlorinated Biphenyls - Laboratory Blank Data Qualification Summary - SDG 008072

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Polychlorinated Biphenyls - Field Blank Data Qualification Summary - SDG 008072

No Sample Data Qualified in this SDG

SDG # Labora	#:48922O3b	\$	Stage 2A	S WORKSHE		Page: _\log _\
	amples listed below were reviewed for e tion findings worksheets.	each of the f	ollowing valid	ation areas. Valid	ation findings are	e noted in attached
	Validation Area			Сон	nments	
<u> </u>	Sample receipt/Technical holding times	AIA				
II.	Initial calibration/ICV	N/N				
III.	Continuing calibration	N				
IV.	Laboratory Blanks	A				
V.	Field blanks	7				
VI.	Surrogate spikes	A				
VII.	Matrix spike/Matrix spike duplicates	A	SDG- 001	8016		
VIII.	Laboratory control samples	A				
IX.	Field duplicates	N				
X.	Compound quantitation/RL/LOQ/LODs	N	Dry wern	n4 basis = 1	.2	
XI.	Target compound identification	N	1 - 1			
XII	Overall assessment of data	A				
Note:	N = Not provided/applicable R = F SW = See worksheet FB =	No compound Rinsate Field blank	s detected	D = Duplicate TB = Trip blank EB = Equipment l	OTHER blank	
	Client ID	· · · · · · · · · · · · · · · · · · ·	- 14 - 14 - 11 - 11	Lab ID	Matrix	Date
	CMS-S-30-4-080520		· · · · · · · · · · · · · · · · · · ·	008072-01	Soil	08/05/20
	CMS-S-31-4-080520			008072-02	Soil	08/05/20
3						
4	And the second s					
5						
6						
7						
8						
9						
10			31			
11						
12						
13					. <u> </u>	
lotes:	n 17 (/ Amp 1 /		- 1 1			1
1 0	0-1766 MBZ 1/6					

Laboratory Data Consultants, Inc. **Data Validation Report**

Project/Site Name:

Kimberly-Clark Upland Area

LDC Report Date:

September 9, 2020

Parameters:

Polynuclear Aromatic Hydrocarbons

Validation Level:

Stage 2A

Laboratory:

Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 008170

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
CMS-B-23-6	008170-09	Soil	08/11/20
CMS-512	008170-10	Soil	08/11/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polynuclear Aromatic Hydrocarbons (PAHs) by Environmental Protection Agency (EPA) SW 846 Method 8270E in Selected Ion Monitoring (SIM) mode

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

Instrument performance check data were not reviewed for Stage 2A validation.

III. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

IV. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

Samples CMS-B-23-6 and CMS-512 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentra		
Compound	CMS-B-23-6	CMS-512	RPD
Fluoranthene	0.014	0.01U	Not calculable
Pyrene	0.017	0.01U	Not calculable
Chrysene	0.012	0.01U	Not calculable
4-Nitrophenol	0.012	0.01U	Not calculable
Benzo(b)fluoranthene	0.013	0.01U	Not calculable

XI. Internal Standards

Internal standards data were not reviewed for Stage 2A validation.

XII. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XIV. System Performance

Raw data were not reviewed for Stage 2A validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Kimberly-Clark Upland Area Polynuclear Aromatic Hydrocarbons - Data Qualification Summary - SDG 008170

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Polynuclear Aromatic Hydrocarbons - Laboratory Blank Data Qualification **Summary - SDG 008170**

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Polynuclear Aromatic Hydrocarbons - Field Blank Data Qualification Summary -**SDG 008170**

No Sample Data Qualified in this SDG

SDG#	±: 48922P2b VALIDATIO ±: 008170 atory: Friedman & Bruya, Inc.		PLETENES: Stage 2A	S WORKSHEET	20-1	Date: 09/04/20 Page: _of _ Reviewer: _
METH	OD: GC/MS Polynuclear Aromatic Hydro	ocarbons (EPA SW 846 I	Method 8270E-SIM)	2na	Reviewer:
	amples listed below were reviewed for ea ion findings worksheets.	ch of the f	ollowing valida	ition areas. Validatio	n findings are	noted in attached
	Validation Area			Comm	ents	
1.	Sample receipt/Technical holding times	A,A				
II.	GC/MS Instrument performance check	N				
<u>III.</u>	Initial calibration/ICV	N/N				
IV.	Continuing calibration	N				
V.	Laboratory Blanks	A				
VI.	Field blanks	N				
VII.	Surrogate spikes	A				
VIII.	Matrix spike/Matrix spike duplicates	7				
IX.	Laboratory control samples	A	LOS/D			
X.	Field duplicates	50	D= 1+2			
XI.	Internal standards	N				
XII.	Compound quantitation RL/LOQ/LODs	N	Dry weigns	- basis = IR		
XIII.	Target compound identification	N				
XIV.	System performance	N				
XV.	Overall assessment of data	A				
Note:	N = Not provided/applicable R = Rin	o compound sate eld blank	s detected	D = Duplicate TB = Trip blank EB = Equipment blank	OTHER:	rce blank
	Client ID			Lab ID	Matrix	Date
1 (CMS-B-23-6		******	008170-09	Soil	08/11/20
2 (CMS-512			008170-10	Soil	08/11/20
3						
4						
5						
6						
7						
8						
9						
Notes:	., 1 1					
1 0	06-1838 MB2 1/8			· · · · · · · · · · · · · · · · · · ·		

VALIDATION FINDINGS WORKSHEET

METHOD: GC/MS SVOA

WIETHOD. GC/WIS SVOA				
A. Phenol	CC. Dimethylphthalate	EEE. Bis(2-ethylhexyl)phthalate	GGGG. C30-Hopane	I1. Methyl methanesulfonate
B. Bis (2-chloroethyl) ether	DD. Acenaphthylene	FFF. Di-n-octylphthalate	HHHH. 1-Methylphenanthrene	J1. Ethyl methanesulfonate
C. 2-Chlorophenol	EE. 2,6-Dinitrotoluene	GGG. Benzo(b)fluoranthene	IIII. 1,4-Dioxane	K1. o,o',o''-Triethylphosphorothioate
D. 1,3-Dichlorobenzene	FF. 3-Nitroaniline	HHH. Benzo(k)fluoranthene	JJJJ. Acetophenone	L1. n-Phenylene diamine
E. 1,4-Dichlorobenzene	GG. Acenaphthene	III. Benzo(a)pyrene	KKKK. Atrazine	M1. 1,4-Naphthoquinone
F. 1,2-Dichlorobenzene	HH. 2,4-Dinitrophenol	JJJ. Indeno(1,2,3-cd)pyrene	LLLL. Benzaldehyde	N1. N-Nitro-o-toluidine
G. 2-Methylphenol	II. 4-Nitrophenol	KKK. Dibenz(a,h)anthracene	MMMM. Caprolactam	O1. 1,3,5-Trinitrobenzene
H. 2,2'-Oxybis(1-chloropropane)	JJ. Dibenzofuran	LLL. Benzo(g,h,i)perylene	NNNN. 2,6-Dichlorophenol	P1. Pentachiorobenzene
I. 4-Methylphenol	KK. 2,4-Dinitrotoluene	MMM. Bis(2-Chloroisopropyl)ether	OOOO. 1,2-Diphenylhydrazine	Q1. 4-Aminobiphenyl
J. N-Nitroso-di-n-propylamine	LL. Diethylphthalate	NNN. Aniline	PPPP. 3-Methylphenol	R1. 2-Naphthylamine
K. Hexachloroethane	MM. 4-Chlorophenyl-phenyl ether	OOO. N-Nitrosodimethylamine	QQQQ. 3&4-Methylphenol	S1. Triphenylene
L. Nitrobenzene	NN. Fluorene	PPP. Benzoic Acid	RRRR. 4-Dimethyldibenzothiophene (4MDT)	T1. Octachlorostyrene
M. Isophorone	OO. 4-Nitroaniline	QQQ. Benzyl alcohol	SSSS. 2/3-Dimethyldibenzothiophene (4MDT)	U1. Famphur
N. 2-Nitrophenol	PP. 4,6-Dinitro-2-methylphenol	RRR. Pyridine	TTTT. 1-Methyldibenzothiophene (1MDT)	V1. 1,4-phenylenediamine
O. 2,4-Dimethylphenol	QQ. N-Nitrosodiphenylamine	SSS. Benzidine	UUUU 2,3,4,6-Tetrachlorophenol	W1. Methapyrilene
P. Bis(2-chloroethoxy)methane	RR. 4-Bromophenyl-phenylether	TTT. 1-Methylnaphthalene	VVVV. 1,2,4,5-Tetrachlorobenzene	X1. Pentachloroethane
Q. 2,4-Dichlorophenol	SS. Hexachlorobenzene	UUU.Benzo(b)thiophene	WWWW 2-Picoline	Y1. 3,3'-Dimethylbenzidine
R. 1,2,4-Trichlorobenzene	TT. Pentachiorophenol	VVV.Benzonaphthothiophene	XXXX. 3-Methylcholanthrene	Z1. o-Toluidine
S. Naphthalene	UU. Phenanthrene	WWW.Benzo(e)pyrene	YYYY. a,a-Dimethylphenethylamine	A2. 1-Naphthylamine
T. 4-Chloroaniline	VV. Anthracene	XXX. 2,6-Dimethylnaphthalene	ZZZZ. Hexachloropropene	B2. 4-Aminobiphenyl
U. Hexachlorobutadiene	WW. Carbazole	YYY. 2,3,5-Trimethylnaphthalene	A1. N-Nitrosodiethylamine	C2. 4-Nitroquinoline-1-oxide
V. 4-Chloro-3-methylphenol	XX. Di-n-butylphthalate	ZZZ. Perylene	B1. N-Nitrosodi-n-butylamine	D2. Hexachloropene
W. 2-Methylnaphthalene	YY. Fluoranthene	AAAA. Dibenzothiophene	C1. N-Nitrosomethylethylamine	E2. Bis (2-chloro-1-methylethyl) ether
X. Hexachlorocyclopentadiene	ZZ. Pyrene	BBBB. Benzo(a)fluoranthene	D1. N-Nitrosomorpholine	F2. Bifenthrin
Y. 2,4,6-Trichlorophenol	AAA. Butylbenzylphthalate	CCCC. Benzo(b)fluorene	E1. N-Nitrosopyrrolidine	G2. Cyfluthrin
Z. 2,4,5-Trichlorophenol	BBB. 3,3'-Dichlorobenzidine	DDDD. cis/trans-Decalin	F1. Phenacetin	H2. Cypermethrin
AA. 2-Chloronaphthalene	CCC. Benzo(a)anthracene	EEEE. 1,1'-Biphenyl	G1. 2-Acetylaminofluorene	I2. Permethrin (cis/trans)
BB. 2-Nitroaniline	DDD. Chrysene	FFFF. Retene	H1. Pronamide	J2. 5-Nitro-o-toluidine

LDC#:48922P2b

VALIDATION FINDINGS WORKSHEET Field Duplicates

Page:_1_of_1_	
Reviewer: LT	

METHOD: GC/MS PAHs (EPA SW846 Method 8270E SIM)

	Concentra	222	
Compound	1 2		RPD
YY	0.014	0.01U	NC
ZZ	0.017	0.01U	NC
DDD	0.012	0.01U	NC
II	0.012	0.01U	NC
GGG	0.013	0.01U	NC

Laboratory Data Consultants, Inc. **Data Validation Report**

Project/Site Name:

Kimberly-Clark Upland Area

LDC Report Date:

September 9, 2020

Parameters:

Polychlorinated Biphenyls

Validation Level:

Stage 2A

Laboratory:

Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 008170

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
CMS-B-27-7	008170-04	Soil	08/11/20
CMS-S-32-4	008170-05	Soil	08/11/20
CMS-S-33-4	008170-06	Soil	08/11/20
CMS-S-34-4	008170-07	Soil	08/11/20
CMS-S-35-4	008170-08	Soil	08/11/20
CMS-B-23-6	008170-09	Soil	08/11/20
CMS-512	008170-10	Soil	08/11/20
CMS-B-19-7	008170-11	Soil	08/12/20
CMS-B-14-7	008170-12	Soil	08/12/20
CMS-B-20-7	008170-13	Soil	08/12/20
CMS-B-16-7	008170-14	Soil	08/12/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polychlorinated Biphenyls (PCBs) by Environmental Protection Agency (EPA) SW 846 Method 8082A

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

Samples CMS-B-23-6 and CMS-512 were identified as field duplicates. No results were detected in any of the samples.

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identification

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Kimberly-Clark Upland Area Polychlorinated Biphenyls - Data Qualification Summary - SDG 008170

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Polychlorinated Biphenyls - Laboratory Blank Data Qualification Summary - SDG 008170

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Polychlorinated Biphenyls - Field Blank Data Qualification Summary - SDG 008170

No Sample Data Qualified in this SDG

LDC #:48922P3b	VALIDATION COMPLETENESS WORKSHEET
SDG #: 008170	Stage 2A

Date:	09/04/20
Page:_	\of_
Reviewer:	6
2nd Reviewer:	

Laboratory: Friedman & Bruya, Inc.

METHOD: GC Polychlorinated Biphenyls (EPA SW846 Method 8082A)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
J.	Sample receipt/Technical holding times	A/A	
II.	Initial calibration/ICV	N/N_	
111.	Continuing calibration	N_	
IV.	Laboratory Blanks	A	
V.	Field blanks	7	·
VI.	Surrogate spikes	A	
VII.	Matrix spike/Matrix spike duplicates	h,	Non Client
VIII.	Laboratory control samples	A.	LCS
IX.	Field duplicates	ND	D=6+7
X.	Compound quantitation/RL/LOQ/LODs	N	D=6+7 Dry weight basis = 1-11
XI.	Target compound identification	N	
LXIL	Overall assessment of data	A_	

A = Acceptable Note:

N = Not provided/applicable SW = See worksheet

ND = No compounds detected

R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	CMS-B-27-7	008170-04	Soil	08/11/20
2	CMS-S-32-4	008170-05	Soil	08/11/20
3	CMS-S-33-4	008170-06	Soil	08/11/20
4	CMS-S-34-4	008170-07	Soil	08/11/20
5	CMS-S-35-4	008170-08	Soil	08/11/20
6	CMS-B-23-6	008170-09	Soil	08/11/20
7	CMS-512	008170-10	Soil	08/11/20
8	CMS-B-19-7	008170-11	Soil	08/12/20
9	CMS-B-14-7	008170-12	Soil	08/12/20
10	CMS-B-20-7	008170-13	Soil	08/12/20
11_	CMS-B-16-7	008170-14	Soil	08/12/20
12				
13_				

Notes.	10-1834 MB2 1/6			

Laboratory Data Consultants, Inc. Data Validation Report

Kimberly-Clark Upland Area **Project/Site Name:**

LDC Report Date: August 27, 2020

Mercury Parameters:

Validation Level: Stage 2A

Friedman & Bruya, Inc. Laboratory:

Sample Delivery Group (SDG): 008170

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
TP-GFB12-03-5	008170-01	Soil	08/11/20
TP-GFB12-02-5	008170-02	Soil	08/11/20
TP-GFB12-01-5	008170-03	Soil	08/11/20
TP-GFB12-03-5MS	008170-01MS	Soil	08/11/20
TP-GFB12-03-5MSD	008170-01MSD	Soil	08/11/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Mercury by Environmental Protection Agency (EPA) Method 1631E

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Instrument Calibration

Instrument calibration data were not reviewed for Stage 2A validation.

III. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

IV. Field Blanks

No field blanks were identified in this SDG.

V. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	MS (%R) (Limits)	MSD (%R) (Limits)	Flag	A or P
TP-GFB12-03-5MS/MSD (All samples in SDG 008170)	Mercury	-	54 (71-125)	J (all detects)	А

Relative percent differences (RPD) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	RPD (Limits)	Flag	A or P
TP-GFB12-03-5MS/MSD (All samples in SDG 008170)	Mercury	79 (≤20)	J (all detects)	А

VI. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

VII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

VIII. Field Duplicates

No field duplicates were identified in this SDG.

IX. Sample Result Verification

Raw data were not reviewed for Stage 2A validation.

X. Overall Assessment of Data

The analysis was conducted within all specifications of the method.

Due to MS/MSD %R and RPD, data were qualified as estimated in three samples.

No results were rejected in this SDG.

Kimberly-Clark Upland Area **Mercury - Data Qualification Summary - SDG 008170**

Sample	Analyte	Flag	A or P	Reason
TP-GFB12-03-5 TP-GFB12-02-5 TP-GFB12-01-5	Mercury	J (all detects)	А	Matrix spike/Matrix spike duplicate (%R)
TP-GFB12-03-5 TP-GFB12-02-5 TP-GFB12-01-5	Mercury	J (all detects)	А	Matrix spike/Matrix spike duplicate (RPD)

Kimberly-Clark Upland Area Mercury - Laboratory Blank Data Qualification Summary - SDG 008170

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Mercury - Field Blank Data Qualification Summary - SDG 008170

No Sample Data Qualified in this SDG

_DC #:	48922P4c	VALIDATION COMPLETENESS WORKSHEET
SDG #:_	008170	Stage 2A

Stage 2A

Date: 8 25 20 70
Page: _of
Reviewer: 0m
2nd Reviewer:

Laboratory: Friedman & Bruya, Inc.

METHOD: Mercury (EPA Method 1631E)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
<u>l.</u>	Sample receipt/Technical holding times	A/A	
II.	Instrument Calibration	N	
III.	Laboratory Blanks	A	
IV.	Field Blanks	2	
V.	Matrix Spike/Matrix Spike Duplicates	SW	
VI.	Duplicate sample analysis	2	
VII.	Laboratory control samples	À	ies
VIII.	Field Duplicates	2	
IX.	Sample Result Verification	N	
X	Overall Assessment of Data	A	

Note:

A = Acceptable

N = Not provided/applicable SW = See worksheet

ND = No compounds detected

R = Rinsate FB = Field blank D = Duplicate TB = Trip blank

EB = Equipment blank

SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	TP-GFB12-03-5	008170-01	Soil	08/11/20
2	TP-GFB12-02-5	008170-02	Soil	08/11/20
3	TP-GFB12-01-5	008170-03	Soil	08/11/20
4	TP-GFB12-03-5MS	008170-01MS	Soil	08/11/20
5	TP-GFB12-03-5MSD	008170-01MSD	Soil	08/11/20
6				
6 7				
8				
8 9				
10				
11				
12				
13				
14				
15				
16 17				

Notes:				
			-	

LDC #: 48922P4c

VALIDATION FINDINGS WORKSHEET <u>Matrix Spike/Matrix Spike Duplicates</u>

Page: <u>1</u>	_of_	1
Reviewer:	Dī	ГМ
2nd Reviewer.		
	_	

METHOD: Trace metals (EPA SW 846 Method 6020/6010/7470)

⊬tease see qua	ilifications below for all questions answered "N". Not applicable questions are identified as "N/A".
N N/A	Was a matrix spike analyzed for each matrix in this SDG?
Y(N) N/A	Were matrix spike percent recoveries (%R) within the control limits of 75-125? If the sample concentration exceeded the spike concentration by a facto
- O	of 4 or more, no action was taken.

YNN/A Were all duplicate sample relative percent differences (RPD) ≤ 20% for samples? **LEVEL IV ONLY**:

Y N N/A

Were recalculated results acceptable? See Level IV Recalculation Worksheet for recalculations.

#	MS/MSD ID	Matrix	Analyte	MS %Recovery	MSD %Recovery	RPD (Limits)	Associated Samples	Qualifications
	4/5	S	Hg		54(71-125)	<u> </u>		J/UJ/A (det)
						79(20)		J/UJ/A (det)
Ш								
Н								
Щ								
Ц							<u> </u>	
Н				· · · · · · · · · · · · · · · · · · ·				
Н								
Н								
_								
		<u> </u>		· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	
Ш								
\vdash								
Ш		L	<u> </u>					<u> </u>

Comments:			

Laboratory Data Consultants, Inc. **Data Validation Report**

Project/Site Name: Kimberly-Clark Upland Area

LDC Report Date: September 9, 2020

Parameters: Polynuclear Aromatic Hydrocarbons

Validation Level: Stage 2A

Laboratory: Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 008214

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
CMS-B-29-7	008214-02	Soil	08/13/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polynuclear Aromatic Hydrocarbons (PAHs) by Environmental Protection Agency (EPA) SW 846 Method 8270E in Selected Ion Monitoring (SIM) mode

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- (Estimated): The compound or analyte was analyzed for and positively identified J by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- (Rejected): The sample results were rejected due to gross non-conformances R discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

Instrument performance check data were not reviewed for Stage 2A validation.

III. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

IV. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

Internal standards data were not reviewed for Stage 2A validation.

XII. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XIV. System Performance

Raw data were not reviewed for Stage 2A validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Kimberly-Clark Upland Area Polynuclear Aromatic Hydrocarbons - Data Qualification Summary - SDG 008214

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Polynuclear Aromatic Hydrocarbons - Laboratory Blank Data Qualification **Summary - SDG 008214**

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Polynuclear Aromatic Hydrocarbons - Field Blank Data Qualification Summary -SDG 008214

No Sample Data Qualified in this SDG

SDG # Labora MET H The sa	#: 48922Q2b #: 008214 ratory: Friedman & Bruya, Inc. HOD: GC/MS Polynuclear Aromatic Hyd amples listed below were reviewed for extion findings worksheets.	S Irocarbons (I	Stage 2A EPA SW 846 I		2nd Re	Date: 2/2/20/2 Page:lof_! eviewer: \(\forall \) eviewer:
	Validation Area			Comm	ents	
1.	Sample receipt/Technical holding times	A, A				
II.	GC/MS Instrument performance check	N				
111.	Initial calibration/ICV	N/N				
IV.	Continuing calibration	N				
V.	Laboratory Blanks	A				
		17				
VI.	Field blanks	A				
VII.	Surrogate spikes	$\frac{1}{N}$	Non alev			
VIII.	Matrix spike/Matrix spike duplicates		1 /6	<u> </u>		
IX.	Laboratory control samples	<u> </u>	L()			
X.	Field duplicates	12				
XI.	Internal standards	17				
XII.	Compound quantitation RL/LOQ/LODs	N	Dry weigh	nt basis=1		
XIII.	Target compound identification	N	·			
XIV.	System performance	N				
XV.	Overall assessment of data	LA				
Note:	N = Not provided/applicable R = R	No compounds Rinsate Field blank	s detected	D = Duplicate TB = Trip blank EB = Equipment blanl	SB=Source OTHER: k	e blank
	Client ID			Lab ID	Matrix	Date
1 (CMS-B-29-7			008214-02	Soil	08/13/20
2						
3						
4	4 1					
			<u> </u>			
5						
6						
7	Language - Special States and Control of the Contro					
8					_	
o l lotes:				<u></u>		
	0-1876MB 1/5					
-\\	3-1876 PUB 173					
+					 	
-					<u> </u>	

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Kimberly-Clark Upland Area

LDC Report Date:

September 9, 2020

Parameters:

Polychlorinated Biphenyls

Validation Level:

Stage 2A

Laboratory:

Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 008214

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
CMS-B-33-7	008214-01	Soil	08/13/20
CMS-B-29-7	008214-02	Soil	08/13/20
CMS-B-24-7	008214-03	Soil	08/13/20
CMS-B-05-7	008214-04	Soil	08/14/20
CMS-B-03-7	008214-05	Soil	08/14/20
CMS-B-33-7MS	008214-01MS	Soil	08/13/20
CMS-B-33-7MSD	008214-01MSD	Soil	08/13/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polychlorinated Biphenyls (PCBs) by Environmental Protection Agency (EPA) SW 846 Method 8082A

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- (Estimated): The compound or analyte was analyzed for and positively identified J by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identification

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Kimberly-Clark Upland Area Polychlorinated Biphenyls - Data Qualification Summary - SDG 008214

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Polychlorinated Biphenyls - Laboratory Blank Data Qualification Summary - SDG 008214

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Polychlorinated Biphenyls - Field Blank Data Qualification Summary - SDG 008214

No Sample Data Qualified in this SDG

SDG #	#:48922Q3b VALIDATI #:008214 atory: <u>Friedman & Bruya, Inc.</u>		PLETENES Stage 2A	S WORKSHEE		Date: 64/4/ Page: lof l Reviewer:
METH	HOD: GC Polychlorinated Biphenyls (EF	PA SW846 M	/lethod 8082A)	∠na	Reviewer:
	amples listed below were reviewed for e tion findings worksheets.	each of the f	ollowing valida	ation areas. Valida	tion findings are	e noted in attache
	Validation Area			Com	ments	
1.	Sample receipt/Technical holding times	AA				
II.	Initial calibration/ICV	N/N				
III.	Continuing calibration	N				
IV.	Laboratory Blanks	A				
V.	Field blanks	1				
VI.	Surrogate spikes	A				
VII.	Matrix spike/Matrix spike duplicates	A	(6,7)			
VIII.	Laboratory control samples	A	LCS			
IX.	Field duplicates	7				
Χ.	Compound quantitation/RL/LOQ/LODs	N _	Dry weigh	nt basis=1-	5	
XI.	Target compound identification	N				
XII	Overall assessment of data	A				
lote:	N = Not provided/applicable $R = R$	No compounds Rinsate Field blank	s detected	D = Duplicate TB = Trip blank EB = Equipment bla	OTHER	urce blank ::
	Client ID			Lab ID	Matrix	Date
1 (CMS-B-33-7			008214-01	Soil	08/13/20
2 (CMS-B-29-7			008214-02	Soil	08/13/20
3 (CMS-B-24-7			008214-03	Soil	08/13/20
4 (CMS-B-05-7			008214-04	Soil	08/14/20
5 (CMS-B-03-7			008214-05	Soil	08/14/20
	CMS-B-33-7MS		_	008214-01MS	Soil	08/13/20
	CMS-B-33-7MSD	· · · · · · · · · · · · · · · · · · ·		008214-01MSD	Soil	08/13/20
8						
9_						
10						
11						
12						

00-1879NB116

2701 Loker Ave. West, Suite 220, Carlsbad, CA 92010 Bus: 760-827-1100 Fax: 760-827-1099

Aspect Consulting LLC 701 Second Ave., Suite 550 Seattle, WA 98104 ATTN: Carla Brock, LHG cbrock@aspectconsulting.com October 13, 2020

SUBJECT: Kimberly-Clark Upland Area, Data Validation

Dear Ms. Brock,

Enclosed are the final validation reports for the fractions listed below. These SDGs were received on September 22, 2020. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project #49215:

SDG #	<u>Fraction</u>
008290, 008321, 008379, 008403 008433, 008462, 008492, 009024	Polynuclear Aromatic Hydrocarbons, Polychlorinated Biphenyls, Metals, Total Petroleum Hydrocarbons as
009056, 009132, 009182, 009238	Extractables

The data validation was performed under Stage 2A guidelines. The analyses were validated using the following documents, as applicable to each method:

- USEPA National Functional Guidelines for Organic Superfund Methods Data Review, January 2017
- USEPA National Functional Guidelines for Inorganic Superfund Methods Data Review; January 2017
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; update IV, February 2007; update V, July 2014

Please feel free to contact us if you have any questions.

Sincerely,

Christina Rink crink@lab-data.com

Christma Prink

Project Manager/Senior Chemist

Attachment 1 244 pages-ADV LDC #49215 (Aspect Consulting, LLC - Seattle, WA / Kimberly-Clark Upland Area 2020 Interm Action) Stage 2A EDD TPH-E (16) PAH **PCBs** (NWTPH DATE DATE (8270E Cu Metals Metals Hg LDC SDG# REC'D DUE -SIM) (8082A) (6020B) (6020B) (6020B) (1631E) -Dx) S w s | w | s | w | s | w | s | w | s | w | s | w | s | w | s | w | s | w | w s S w s w s w s W Matrix: Water/Soil 0 0 2 008290 09/22/20 10/13/20 2 В 008321 09/22/20 10/13/20 0 2 0 0 2 10/13/20 0 0 008379 09/22/20 10 0 09/22/20 10/13/20 3 D 008403 3 F 09/22/20 10/13/20 0 2 0 5 008433 008462 09/22/20 10/13/20 0 29 G 008492 09/22/20 10/13/20 0 4 Н 009024 09/22/20 10/13/20 0 8 0 8 009056 09/22/20 10/13/20 0 9 0 8 9 09/22/20 10/13/20 009132 09/22/20 10/13/20 0 23 0 23 009182 009238 09/22/20 10/13/20 0 4 0 8 12 0 55 0 0 0 0 0 T/CR Total

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Kimberly-Clark Upland Area

LDC Report Date: October 12, 2020

Parameters: Polychlorinated Biphenyls

Validation Level: Stage 2A

Laboratory: Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 008290

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
CMS-S-36-4	008290-01	Soil	08/17/20
CMS-S-37-4	008290-04	Soil	08/17/20
CMS-S-38-4	008290-05	Soil	08/17/20
CMS-S-39-4	008290-06	Soil	08/17/20
CMS-S-36-4MS	008290-01MS	Soil	08/17/20
CMS-S-36-4MSD	008290-01MSD	Soil	08/17/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polychlorinated Biphenyls (PCBs) by Environmental Protection Agency (EPA) SW 846 Method 8082A

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- (Rejected): The sample results were rejected due to gross non-conformances R discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identification

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Kimberly-Clark Upland Area Polychlorinated Biphenyls - Data Qualification Summary - SDG 008290

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Polychlorinated Biphenyls - Laboratory Blank Data Qualification Summary - SDG 008290

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Polychlorinated Biphenyls - Field Blank Data Qualification Summary - SDG 008290

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET LDC #: 49215A3b SDG #: 008290

Stage 2A

Date: 10/10/20 Reviewer: 2nd Reviewer:

Laboratory: Friedman & Bruya, Inc.

METHOD: GC Polychlorinated Biphenyls (EPA SW846 Method 8082A)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
l.	Sample receipt/Technical holding times	A,A	
11.	Initial calibration/ICV	N/N	
111.	Continuing calibration	N	
IV.	Laboratory Blanks	A	
V.	Field blanks	N	
VI.	Surrogate spikes	A	
VII.	Matrix spike/Matrix spike duplicates	A	(5,6)
VIII.	Laboratory control samples	A	LOS
IX.	Field duplicates	N	
X.	Compound quantitation/RL/LOQ/LODs	N	Dryweigny= 1-4
XI.	Target compound identification	Ņ	,
XII	Overall assessment of data	A	

Note: A = Acceptable

N = Not provided/applicable SW = See worksheet

ND = No compounds detected

R = Rinsate FB = Field blank D = Duplicate

TB = Trip blank EB = Equipment blank SB=Source blank

OTHER:

	Client ID	Lab ID	Matrix	Date
1	CMS-S-36-4	008290-01	Soil	08/17/20
2	CMS-S-37-4	008290-04	Soil	08/17/20
3	CMS-S-38-4	008290-05	Soil	08/17/20
4	CMS-S-39-4	008290-06	Soil	08/17/20
5	CMS-S-36-4MS	008290-01MS	Soil	08/17/20
6	CMS-S-36-4MSD	008290-01MSD	Soil	08/17/20
7				
8				
9				
10				
11_				
12				
13_				

Notes: 1 10-1899 MB

Laboratory Data Consultants, Inc. **Data Validation Report**

Project/Site Name: Kimberly-Clark Upland Area

LDC Report Date: October 12, 2020

Total Petroleum Hydrocarbons as Extractables Parameters:

Validation Level: Stage 2A

Laboratory: Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 008290

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date	
CMSB2-S-1-4	008290-02	Soil	08/17/20	
CMSB2-S-2-4	008290-03	Soil	08/17/20	

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Petroleum Hydrocarbons (TPH) as Extractables by NWTPH-Dx

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered not detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Kimberly-Clark Upland Area

Total Petroleum Hydrocarbons as Extractables - Data Qualification Summary -SDG 008290

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area

Total Petroleum Hydrocarbons as Extractables - Laboratory Blank Data **Qualification Summary - SDG 008290**

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area

Total Petroleum Hydrocarbons as Extractables - Field Blank Data Qualification **Summary - SDG 008290**

No Sample Data Qualified in this SDG

SDG #	t: 49215A8 VALIDATION THE WALIDATION		PLETENES Stage 2A	S WORKSHEE		Page: of J Reviewer: M
METH	IOD: GC TPH as Extractables (NWTPH	l-Dx)			Zila	The viewer.
	amples listed below were reviewed for e tion findings worksheets.	ach of the fo	ollowing valid	ation areas. Valida	tion findings are	e noted in attached
	Validation Area			Com	ments	
1.	Sample receipt/Technical holding times	AIA				
II.	Initial calibration/ICV	N/N				
III.	Continuing calibration	N				
IV.	Laboratory Blanks	\				
V.	Field blanks	N				
VI.	Surrogate spikes	A				
VII.	Matrix spike/Matrix spike duplicates	N	Non clian	4		
VIII.	Laboratory control samples	A	LCS			
IX.	Field duplicates	N				
Χ.	Compound quantitation RL/LOQ/LODs	N	Dry weigh	basis =1,2		
XI.	Target compound identification	N				
XII	Overall assessment of data	<u> </u>				
lote:	N = Not provided/applicable $R = Ri$	No compounds nsate Field blank	s detected	D = Duplicate TB = Trip blank EB = Equipment bla	OTHER	ırce blank :
	Client ID			Lab ID	Matrix	Date
1 (CMSB2-S-1-4			008290-02	Soil	08/17/20
2 (CMSB2-S-2-4			008290-03	Soil	08/17/20
3						
4						
5						
3		····-				
,		·				
3						
,						
10_						
11						
12			· · · · · · · · · · · · · · · · · · ·			
13						
otes:						
1 00	1-1895 MB2					

Laboratory Data Consultants, Inc. **Data Validation Report**

Kimberly-Clark Upland Area **Project/Site Name:**

October 12, 2020 **LDC Report Date:**

Polynuclear Aromatic Hydrocarbons Parameters:

Validation Level: Stage 2A

Friedman & Bruya, Inc. Laboratory:

Sample Delivery Group (SDG): 008321

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
CMSB2-B-1-7	008321-01	Soil	08/20/20
CMSB2-B-2-7.5	008321-02	Soil	08/20/20
CMSB2-B-1-7MS	008321-01MS	Soil	08/20/20
CMSB2-B-1-7MSD	008321-01MSD	Soil	08/20/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polynuclear Aromatic Hydrocarbons (PAHs) by Environmental Protection Agency (EPA) SW 846 Method 8270E in Selected Ion Monitoring (SIM) mode

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

Instrument performance check data were not reviewed for Stage 2A validation.

III. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

IV. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

Internal standards data were not reviewed for Stage 2A validation.

XII. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XIV. System Performance

Raw data were not reviewed for Stage 2A validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Kimberly-Clark Upland Area Polynuclear Aromatic Hydrocarbons - Data Qualification Summary - SDG 008321

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Polynuclear Aromatic Hydrocarbons - Laboratory Blank Data Qualification **Summary - SDG 008321**

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Polynuclear Aromatic Hydrocarbons - Field Blank Data Qualification Summary -SDG 008321

No Sample Data Qualified in this SDG

SDG _abo	#:49215B2bVALIDATION #:008321 ratory:_Friedman & Bruya, Inc. HOD: GC/MS Polynuclear Aromatic Hydronic	S	stage 2A	SS WORKSHEET 6 Method 8270E-SIM	2nd	Date: \(\frac{1}{\sigma\chi_1}\) Page: \(\left(\text{of}\right)\) Reviewer: \(\sigma\chi\) Reviewer:
	samples listed below were reviewed for eation findings worksheets.	ach of the fo	ollowing valid	dation areas. Validati	on findings are	e noted in attached
	Validation Area			Comn	nents	
ı.	Sample receipt/Technical holding times	A,A				
11.	GC/MS Instrument performance check	N				
III.	Initial calibration/ICV	N/N				
IV.	Continuing calibration	N				
V.	Laboratory Blanks	A				
VI.	Field blanks	N				
VII.	Surrogate spikes	1				
VIII.	Matrix spike/Matrix spike duplicates	A	(3,4)			
IX.	Laboratory control samples	<u> </u>	Las		- <u></u>	
<u>X.</u>	Field duplicates	H				
XI.	Internal standards	N				
XII.	Compound quantitation RL/LOQ/LODs	N	Dry weig	int basis= 1,2		
XIII.	Target compound identification	N	<u> </u>			
XIV.	System performance	N				
XV.	Overall assessment of data	<u> </u>				
lote:	N = Not provided/applicable R = Ri	No compounds insate ⁼ ield blank	s detected	D = Duplicate TB = Trip blank EB = Equipment blar	OTHER	urce blank R:
	Client ID			Lab ID	Matrix	Date
1	CMSB2-B-1-7			008321-01	Soil	08/20/20
2	CMSB2-B-2-7.5			008321-02	Soil	08/20/20
3	CMSB2-B-1-7MS			008321-01MS	Soil	08/20/20
4	CMSB2-B-1-7MSD			008321-01MSD	Soil	08/20/20
5						
6						
7						
8						
9						
otes:	10-10-0 14-0					
++	00-1902 MB					
+						

Laboratory Data Consultants, Inc. **Data Validation Report**

Project/Site Name:

Kimberly-Clark Upland Area

LDC Report Date:

October 12, 2020

Parameters:

Polychlorinated Biphenyls

Validation Level:

Stage 2A

Laboratory:

Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 008321

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
CMS-S-40-4	008321-03	Soil	08/20/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polychlorinated Biphenyls (PCBs) by Environmental Protection Agency (EPA) SW 846 Method 8082A

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identification

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Kimberly-Clark Upland Area Polychlorinated Biphenyls - Data Qualification Summary - SDG 008321

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Polychlorinated Biphenyls - Laboratory Blank Data Qualification Summary - SDG 008321

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Polychlorinated Biphenyls - Field Blank Data Qualification Summary - SDG 008321

No Sample Data Qualified in this SDG

LDC #: 49215B3b VA	LIDATION CC
---------------------------	-------------

OMPLETENESS WORKSHEET

SDG #: 008321 Laboratory: Friedman & Bruya, Inc. Stage 2A

Page: Volume Page:

METHOD: GC Polychlorinated Biphenyls (EPA SW846 Method 8082A)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Sample receipt/Technical holding times	A, A	
II.	Initial calibration/ICV	N/N	
111.	Continuing calibration	N	
IV.	Laboratory Blanks	A	
V.	Field blanks	N	
VI.	Surrogate spikes	A	
VII.	Matrix spike/Matrix spike duplicates	Á	SDG 008290
VIII.	Laboratory control samples	A	LS
IX.	Field duplicates	2	
X.	Compound quantitation/RL/LOQ/LODs	N	Dry weight basis = 1
XI.	Target compound identification	N	
XII	Overall assessment of data	A	

Note: A = Acceptable

N = Not provided/applicable

SW = See worksheet

ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate

TB = Trip blank
EB = Equipment blank

SB=Source blank

OTHER:

	Client ID		Lab ID	Matrix	Date
1	CMS-S-40-4		008321-03	Soil	08/20/20
2					
3					
4					
5		•			
6					
7					
8					
9					
10					
11					
12					
13					
lotes	S:				

I	00-1899 MB			

Laboratory Data Consultants, Inc. **Data Validation Report**

Project/Site Name:

Kimberly-Clark Upland Area

LDC Report Date:

October 12, 2020

Parameters:

Total Petroleum Hydrocarbons as Extractables

Validation Level:

Stage 2A

Laboratory:

Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 008321

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date	
CMSB2-B-1-7	008321-01	Soil	08/20/20	
CMSB2-B-2-7.5	008321-02	Soil	08/20/20	

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Petroleum Hydrocarbons (TPH) as Extractables by NWTPH-Dx

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered not detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Kimberly-Clark Upland Area Total Petroleum Hydrocarbons as Extractables - Data Qualification Summary -SDG 008321

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Total Petroleum Hydrocarbons as Extractables - Laboratory Blank Data **Qualification Summary - SDG 008321**

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Total Petroleum Hydrocarbons as Extractables - Field Blank Data Qualification **Summary - SDG 008321**

No Sample Data Qualified in this SDG

SDG #	:49215B8 VALIDATIC ::008321 atory:_Friedman & Bruya, Inc		PLETENES Stage 2A	S WORKSHEE		Date: [✔ℓ✔² Page: _ of _\ Reviewer: _ 与
METH	OD: GC TPH as Extractables (NWTPH	-Dx)			∠na	Reviewer:
	imples listed below were reviewed for eation findings worksheets.	ach of the f	ollowing valida	ation areas. Valida	ition findings are	e noted in attache
	Validation Area			Com	ments	
<u>l.</u>	Sample receipt/Technical holding times	A, A				
11.	Initial calibration/ICV	N/N				
III.	Continuing calibration	N				
IV.	Laboratory Blanks	A				
V.	Field blanks	N				
VI.	Surrogate spikes	A				
VII.	Matrix spike/Matrix spike duplicates	1 12	Non Cliev	W		
VIII.	Laboratory control samples	A	LCS			
IX.	Field duplicates	N				
X.	Compound quantitation RL/LOQ/LODs	N	Dry weign	4 basis = 4,2		
XI.	Target compound identification	N _				
XII	Overall assessment of data	<u> </u>				
ote:	N = Not provided/applicable R = Ri	No compound nsate ïeld blank	s detected	D = Duplicate TB = Trip blank EB = Equipment bl	OTHER	urce blank ::
C	Client ID			Lab ID	Matrix	Date
1 (MSB2-B-1-7			008321-01	Soil	08/20/20
2 0	MSB2-B-2-7.5			008321-02	Soil	08/20/20
3						
4						
5						
3						
7						
3						
9						
10						

Laboratory Data Consultants, Inc. **Data Validation Report**

Project/Site Name:

Kimberly-Clark Upland Area

LDC Report Date:

October 12, 2020

Parameters:

Polynuclear Aromatic Hydrocarbons

Validation Level:

Stage 2A

Laboratory:

Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 008379

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
CMS-B-28-9	008379-01	Soil	08/25/20
CMS-B-30-8	008379-03	Soil	08/25/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polynuclear Aromatic Hydrocarbons (PAHs) by Environmental Protection Agency (EPA) SW 846 Method 8270E in Selected Ion Monitoring (SIM) mode

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

Instrument performance check data were not reviewed for Stage 2A validation.

III. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

IV. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits with the following exceptions:

LCS ID (Associated Samples)	Compound	LCS %R (Limits)	LCSD %R (Limits)	Flag	A or P
LCS/LCSD-082620 (CMS-B-28-9 CMS-B-30-8)	Naphthalene	92 (69-89)	92 (69-89)	NA	-

Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

Internal standards data were not reviewed for Stage 2A validation.

XII. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XIV. System Performance

Raw data were not reviewed for Stage 2A validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Kimberly-Clark Upland Area Polynuclear Aromatic Hydrocarbons - Data Qualification Summary - SDG 008379

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Polynuclear Aromatic Hydrocarbons - Laboratory Blank Data Qualification **Summary - SDG 008379**

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Polynuclear Aromatic Hydrocarbons - Field Blank Data Qualification Summary -SDG 008379

No Sample Data Qualified in this SDG

SDG # _abora	t: 49215C2b VALIDATION t: 008379 atory: Friedman & Bruya, Inc. IOD: GC/MS Polynuclear Aromatic Hydro	S	Stage 2A	S WORKSHEET Method 8270E-SIM)	F Rev 2nd Rev	Date: 19/15/2 Page:Lof) iewer: iewer:
	amples listed below were reviewed for eaction findings worksheets.	ch of the f	ollowing valida	ition areas. Validation	findings are not	ed in attached
	Validation Area			Comme	nts	
l.	Sample receipt/Technical holding times	A /A				
11.	GC/MS Instrument performance check	N				
<u>III.</u>	Initial calibration/ICV	N/N				
IV.	Continuing calibration	N				
V	Laboratory Blanks	4)				
VI.	Field blanks	Ŋ		<u>.</u>		
VII.	Surrogate spikes	A		····		
VIII.	Matrix spike/Matrix spike duplicates	N				
IX.	Laboratory control samples	کسک	LCS/D			
Χ.	Field duplicates	N				
XI.	Internal standards	1		******		
XII.	Compound quantitation RL/LOQ/LODs	N	Dry weigh	4=1,2	·	·
XIII.	Target compound identification	N				
XIV.	System performance	Ŋ				
XV.	Overall assessment of data	A				
lote:	N = Not provided/applicable R = Rins	o compounds sate eld blank	s detected	D = Duplicate TB = Trip blank EB = Equipment blank	SB=Source b OTHER:	lank
(Client ID			Lab ID	Matrix	Date
1 (CMS-B-28-9			008379-01	Soil	08/25/20
2 0	CMS-B-30-8			008379-03	Soil	08/25/20
3			···			
4						
5						
6						
7						
8						
9						
otes:				<u> </u>		
110	0-1916 MB3					
_						
- 1			1 1			

VALIDATION FINDINGS WORKSHEET

METHOD: GC/MS SVOA

WIETHOD: GC/IVIS SVOA			<u> </u>	
A. Phenol	CC. Dimethylphthalate	EEE. Bis(2-ethylhexyl)phthalate	GGGG. C30-Hopane	I1. Methyl methanesulfonate
B. Bis (2-chloroethyl) ether	DD. Acenaphthylene	FFF. Di-n-octylphthalate	HHHH. 1-Methylphenanthrene	J1. Ethyl methanesulfonate
C. 2-Chlorophenol	EE. 2,6-Dinitrotoluene	GGG. Benzo(b)fluoranthene	IIII. 1,4-Dioxane	K1. o,o',o"-Triethylphosphorothioate
D. 1,3-Dichlorobenzene	FF. 3-Nitroaniline	HHH. Benzo(k)fluoranthene	JJJJ. Acetophenone	L1. n-Phenylene diamine
E. 1,4-Dichlorobenzene	GG. Acenaphthene	III. Benzo(a)pyrene	KKKK. Atrazine	M1. 1,4-Naphthoquinone
F. 1,2-Dichlorobenzene	HH. 2,4-Dinitrophenol	JJJ. Indeno(1,2,3-cd)pyrene	LLLL. Benzaldehyde	N1. N-Nitro-o-toluidine
G. 2-Methylphenol	II. 4-Nitrophenol	KKK. Dibenz(a,h)anthracene	MMMM. Caprolactam	O1. 1,3,5-Trinitrobenzene
H. 2,2'-Oxybis(1-chloropropane)	JJ. Dibenzofuran	LLL. Benzo(g,h,i)perylene	NNNN. 2,6-Dichlorophenol	P1. Pentachlorobenzene
I. 4-Methylphenol	KK. 2,4-Dinitrotoluene	MMM. Bis(2-Chloroisopropyl)ether	OOOO. 1,2-Diphenylhydrazine	Q1. 4-Aminobiphenyl
J. N-Nitroso-di-n-propylamine	LL. Diethylphthalate	NNN. Aniline	PPPP. 3-Methylphenol	R1. 2-Naphthylamine
K. Hexachloroethane	MM. 4-Chlorophenyl-phenyl ether	OOO. N-Nitrosodimethylamine	QQQQ. 3&4-Methylphenol	S1. Triphenylene
L. Nitrobenzene	NN. Fluorene	PPP. Benzoic Acid	RRRR. 4-Dimethyldibenzothiophene (4MDT)	T1. Octachlorostyrene
M. Isophorone	OO. 4-Nitroaniline	QQQ. Benzyl alcohol	SSSS. 2/3-Dimethyldibenzothiophene (4MDT)	U1. Famphur
N. 2-Nitrophenol	PP. 4,6-Dinitro-2-methylphenol	RRR. Pyridine	TTTT. 1-Methyldibenzothiophene (1MDT)	V1. 1,4-phenylenediamine
O. 2,4-Dimethylphenol	QQ. N-Nitrosodiphenylamine	SSS. Benzidine	UUUU 2,3,4,6-Tetrachlorophenol	W1. Methapyrilene
P. Bis(2-chloroethoxy)methane	RR. 4-Bromophenyl-phenylether	TTT. 1-Methylnaphthalene	VVVV. 1,2,4,5-Tetrachlorobenzene	X1. Pentachloroethane
Q. 2,4-Dichlorophenol	SS. Hexachlorobenzene	UUU.Benzo(b)thiophene	WWWW 2-Picoline	Y1. 3,3'-Dimethylbenzidine
R. 1,2,4-Trichlorobenzene	TT. Pentachlorophenol	VVV.Benzonaphthothiophene	XXXX. 3-Methylcholanthrene	Z1. o-Toluidine
S. Naphthalene	UU. Phenanthrene	WWW.Benzo(e)pyrene	YYYY. a,a-Dimethylphenethylamine	A2. 1-Naphthylamine
T. 4-Chloroaniline	VV. Anthracene	XXX. 2,6-Dimethylnaphthalene	ZZZZ. Hexachloropropene	B2. 4-Aminobiphenyl
U. Hexachlorobutadiene	WW. Carbazole	YYY. 2,3,5-Trimethylnaphthalene	A1. N-Nitrosodiethylamine	C2. 4-Nitroquinoline-1-oxide
V. 4-Chloro-3-methylphenol	XX. Di-n-butylphthalate	ZZZ. Perylene	B1. N-Nitrosodi-n-butylamine	D2. Hexachloropene
W. 2-Methylnaphthalene	YY. Fluoranthene	AAAA. Dibenzothiophene	C1. N-Nitrosomethylethylamine	E2. Bis (2-chloro-1-methylethyl) ether
X. Hexachlorocyclopentadiene	ZZ. Pyrene	BBBB. Benzo(a)fluoranthene	D1. N-Nitrosomorpholine	F2. Bifenthrin
Y. 2,4,6-Trichlorophenol	AAA. Butylbenzylphthalate	CCCC. Benzo(b)fluorene	E1. N-Nitrosopyrrolidine	G2. Cyfluthrin
Z. 2,4,5-Trichlorophenol	BBB. 3,3'-Dichlorobenzidine	DDDD. cis/trans-Decalin	F1. Phenacetin	H2. Cypermethrin
AA. 2-Chloronaphthalene	CCC. Benzo(a)anthracene	EEEE. Biphenyl	G1. 2-Acetylaminofluorene	I2. Permethrin (cis/trans)
BB. 2-Nitroaniline	DDD. Chrysene	FFFF. Retene	H1. Pronamide	J2. 5-Nitro-o-toluidine

LDC #: 49215C2b

VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS)

Page: .	1	_of_	_1_
Reviewer:		LT	

METHOD: GC/MS PAHs (EPA SW 846 Method 8270C-SIM)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Was a LCS required?

Y<u>x</u> N_ N/A_ Y_ N<u>x</u> N/A_ Were the LCS/LCSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

	N <u>X N/A</u>		[LCS		It differences (RPD) w		
#	Date	LCS/LCSD ID	Compound	%R (Limits)	LCSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
		LCS/LCSD-082620	s	92 (69 - 89)	92 (69 - 89)		1,2 (ND)	J/P DETS
		""						
							-	· <u>·</u>
							· · · · · · · · · · · · · · · · · · ·	<u> </u>
				<u> </u>				
								
							 	
								···
						· · · · · · · · · · · · · · · · · · ·		
				- w				<u> </u>
		eran eran						
								
			 					
			 					
			 					
			 					
			<u> </u>		L	L		L

Laboratory Data Consultants, Inc. **Data Validation Report**

Project/Site Name: Kimberly-Clark Upland Area

LDC Report Date: October 12, 2020

Polychlorinated Biphenyls Parameters:

Validation Level: Stage 2A

Laboratory: Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 008379

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
CMS-B-28-9	008379-01	Soil	08/25/20
CMS-B-30-8	008379-03	Soil	08/25/20
CMS-B-27-8	008379-04	Soil	08/25/20
CMS-S-41-4	008379-05	Soil	08/25/20
CMS-S-42-4	008379-06	Soil	08/25/20
CMS-S-42-4DL	008379-06DL	Soil	08/25/20
CMS-513	008379-07	Soil	08/25/20
CMS-S-43-4	008379-08	Soil	08/25/20
CMS-B-38-7	008379-09	Soil	08/25/20
CMS-S-44-4	008379-10	Soil	08/25/20
CMS-B-28-9MS	008379-01MS	Soil	08/25/20
CMS-B-28-9MSD	008379-01MSD	Soil	08/25/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polychlorinated Biphenyls (PCBs) by Environmental Protection Agency (EPA) SW 846 Method 8082A

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- DNR Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- (Not Applicable): The non-conformance discovered during data validation NA demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

Samples CMS-S-41-4 and CMS-513 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentration (mg/Kg)		
Compound	CMS-S-41-4	CMS-513	RPD
Aroclor-1254	0.21	0.17	21
Aroclor-1260	0.23	0.18	24

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identification

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method.

In the case where more than one result was reported for an individual sample, the least technically acceptable results were deemed not reportable as follows:

Sample	Compound	Reason	Flag	A or P
CMS-S-42-4	Arolcor-1254 Arolcor-1260	Results exceeded calibration range.	DNR	-
CMS-S-42-4DL	All compounds except Arolcor-1254 Arolcor-1260	Results from undiluted analyses were more usable.	DNR	-

No results were rejected in this SDG.

Kimberly-Clark Upland Area Polychlorinated Biphenyls - Data Qualification Summary - SDG 008379

Sample	Compound	Flag	A or P	Reason
CMS-S-42-4	Arolcor-1254 Arolcor-1260	DNR	-	Overall assessment of data
CMS-S-42-4DL	All compounds except Arolcor-1254 Arolcor-1260	DNR	-	Overall assessment of data

Kimberly-Clark Upland Area Polychlorinated Biphenyls - Laboratory Blank Data Qualification Summary - SDG 008379

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Polychlorinated Biphenyls - Field Blank Data Qualification Summary - SDG 008379

No Sample Data Qualified in this SDG

LDC #: 49215C3b

SDG #: 008379

VALIDATION COMPLETENESS WORKSHEET

Stage 2A

Laboratory: Friedman & Bruya, Inc.

Page: \lof_\lof_\l Reviewer:_ 2nd Reviewer:

Date: 10/10/20

METHOD: GC Polychlorinated Biphenyls (EPA SW846 Method 8082A)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
l.	Sample receipt/Technical holding times	A, A	
II.	Initial calibration/ICV	N/N	
111.	Continuing calibration	N	
IV.	Laboratory Blanks	A	
V.	Field blanks	N_	
VI.	Surrogate spikes	A_	
VII.	Matrix spike/Matrix spike duplicates	A	(11) Ms only (11,12)
VIII.	Laboratory control samples	A	Les
IX.	Field duplicates	SV	D = 4+7
X.	Compound quantitation/RL/LOQ/LODs	N	Dry weight basis = 1-10
XI.	Target compound identification	N	1
L.XII	Overall assessment of data	SV	

Note:

A = Acceptable

SW = See worksheet

N = Not provided/applicable

ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate

TB = Trip blank EB = Equipment blank SB=Source blank

OTHER:

	Client ID	Lab ID	Matrix	Date
1 ′	CMS-B-28-9	008379-01	Soil	08/25/20
2 .	CMS-B-30-8	008379-03	Soil	08/25/20
3 .	CMS-B-27-8	008379-04	Soil	08/25/20
4 .	CMS-S-41-4	008379-05	Soil	08/25/20
5 •	CMS-S-42-4	008379-06	Soil	08/25/20
6 .	CMS-S-42-4DL	008379-06DL	Soil	08/25/20
7 ·	CMS-513	008379-07	Soil	08/25/20
3	CMS-S-43-4	008379-08	Soil	08/25/20
9 .	CMS-B-38-7	008379-09	Soil	08/25/20
10 -	CMS-S-44-4	008379-10	Soil	08/25/20
11	CMS-B-28-9MS	008379-01MS	Soil	08/25/20
12	V MD	J MSD	1	1
13				

1	00-1921 MB			

LDC#:49215C3b

VALIDATION FINDINGS WORKSHEET Field Duplicates

Page:_1_of_1_ Reviewer:__LT

METHOD: GC PCBs (EPA SW846 Method 8082A)

	Concentr	Concentration (mg/kg)				
Compound	4	7	RPD			
Aroclor 1254	0.21	0.17	21			
Aroclor 1260	0.23	0.18	24			

LDC #: 49215C3b

VALIDATION FINDINGS WORKSHEET Overall Assessment of Data

Page: <u>1</u>	_of_1_
Reviewer:	LT

METHOD: GC PCBs (EPA SW 846 Method 8082A)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

All available information pertaining to the data were reviewed using professional judgement to compliment the determination of the overall quality of the data.

Yes x No_ N/A_ Was the overall quality and usability of the data acceptable?

#_	Date	Sample ID	Compound	Finding	Qualifications
		5	Aroclor 1254 and Aroclor 1260	exceed calibration range	DNR
		6	All except Aroclor 1254 and Aroclor 1260	diluted	DNR

Comments:	 	 		 	 	 	 		

Laboratory Data Consultants, Inc. **Data Validation Report**

Project/Site Name: Kimberly-Clark Upland Area

LDC Report Date: October 12, 2020

Polynuclear Aromatic Hydrocarbons Parameters:

Validation Level: Stage 2A

Friedman & Bruya, Inc. Laboratory:

Sample Delivery Group (SDG): 008403

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
CMSB1-B-01-6	008403-04	Soil	08/26/20
CMSB1-B-01-6MS	008403-04MS	Soil	08/26/20
CMSB1-B-01-6MSD	008403-04MSD	Soil	08/26/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polynuclear Aromatic Hydrocarbons (PAHs) by Environmental Protection Agency (EPA) SW 846 Method 8270E in Selected Ion Monitoring (SIM) mode

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- IJJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

Instrument performance check data were not reviewed for Stage 2A validation.

III. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

IV. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

Internal standards data were not reviewed for Stage 2A validation.

XII. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XIV. System Performance

Raw data were not reviewed for Stage 2A validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Kimberly-Clark Upland Area Polynuclear Aromatic Hydrocarbons - Data Qualification Summary - SDG 008403

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Polynuclear Aromatic Hydrocarbons - Laboratory Blank Data Qualification **Summary - SDG 008403**

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Polynuclear Aromatic Hydrocarbons - Field Blank Data Qualification Summary -SDG 008403

No Sample Data Qualified in this SDG

SDG # Labora	t:49215D2b VALIDATIO t:008403 atory: Friedman & Bruya, Inc IOD: GC/MS Polynuclear Aromatic Hydro	S	Stage 2A	SS WORKSHEE	2nd	Date: 10/10/2 Page:lof! Reviewer:
	amples listed below were reviewed for eation findings worksheets.	ch of the f	ollowing val	dation areas. Validat	ion findings are	e noted in attache
	Validation Area			Com	ments	
I.	Sample receipt/Technical holding times	A,A				
11.	GC/MS Instrument performance check	N				
III.	Initial calibration/ICV	N/N				
IV.	Continuing calibration	N				
V.	Laboratory Blanks	A				
VI.	Field blanks	N				
VII.	Surrogate spikes	A				
VIII.	Matrix spike/Matrix spike duplicates	<u> </u>	(23)			
IX.	Laboratory control samples	A	LCS			
X.	Field duplicates	N				
XI.	Internal standards	7				
XII.	Compound quantitation RL/LOQ/LODs	N	Dry weig	nt basis = 1		
XIII.	Target compound identification	N	7			
XIV.	System performance	N				
XV.	Overall assessment of data	A				
lote:	N = Not provided/applicable R = Rin	o compounds sate eld blank	s detected	D = Duplicate TB = Trip blank EB = Equipment bla	OTHER	urce blank :
	Client ID			Lab ID	Matrix	Date
1 (CMSB1-B-01-6			008403-04	Soil	08/26/20
2 (CMSB1-B-01-6MS			008403-04MS	Soil	08/26/20
3 C	CMSB1-B-01-6MSD			008403-04MSD	Soil	08/26/20
4						
5						
6						
7						
8						
9						
otes:						
1 0	10-1957 MB					
				92 1000		

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Kimberly-Clark Upland Area

LDC Report Date:

October 12, 2020

Parameters:

Polychlorinated Biphenyls

Validation Level:

Stage 2A

Laboratory:

Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 008403

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
CMS-S-45-4	008403-01	Soil	08/26/20
CMS-S-46-4	008403-02	Soil	08/26/20
CMS-S-47-4	008403-03	Soil	08/26/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polychlorinated Biphenyls (PCBs) by Environmental Protection Agency (EPA) SW 846 Method 8082A

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identification

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Kimberly-Clark Upland Area Polychlorinated Biphenyls - Data Qualification Summary - SDG 008403

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Polychlorinated Biphenyls - Laboratory Blank Data Qualification Summary - SDG 008403

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Polychlorinated Biphenyls - Field Blank Data Qualification Summary - SDG 008403

No Sample Data Qualified in this SDG

LDC #: 49215D3b	VALIDATION COMPLETENESS WORKSHEET
	<u> </u>

SDG #: 008403 Laboratory: Friedman & Bruya, Inc.

Stage 2A

Date: 10/10/20 Page: \of_ Reviewer: 2nd Reviewer

METHOD: GC Polychlorinated Biphenyls (EPA SW846 Method 8082A)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I.	Sample receipt/Technical holding times	AIA	
11.	Initial calibration/ICV	N/N	
III.	Continuing calibration	N	
IV.	Laboratory Blanks	l A	
V.	Field blanks	_ N	
VI.	Surrogate spikes	A	-
VII.	Matrix spike/Matrix spike duplicates	A	SDG1 008379
VIII.	Laboratory control samples	A	Les
IX.	Field duplicates	7	
X.	Compound quantitation/RL/LOQ/LODs	N	Dry weight basis = 1-3
XI.	Target compound identification	N	. ,
LXII	Overall assessment of data	A	

A = Acceptable Note:

N = Not provided/applicable

ND = No compounds detected

R = Rinsate

D = Duplicate

TB = Trip blank

SB=Source blank OTHER:

SW = See worksheet

FB = Field blank

EB = Equipment blank

	Client ID	Lab ID	Matrix	Date
1	CMS-S-45-4	008403-01	Soil	08/26/20
2	CMS-S-46-4	008403-02	Soil	08/26/20
3	CMS-S-47-4	008403-03	Soil	08/26/20
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
Votes	\			

1010	NOIES.								
	00-1921 MB								

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Kimberly-Clark Upland Area

LDC Report Date: October 12, 2020

Total Petroleum Hydrocarbons as Extractables Parameters:

Stage 2A Validation Level:

Laboratory: Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 008403

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
CMSB1-B-01-6	008403-04	Soil	08/26/20
CMSB1-S-01-4	008403-05	Soil	08/26/20
CMSB1-S-02-4	008403-06	Soil	08/26/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Petroleum Hydrocarbons (TPH) as Extractables by NWTPH-Dx

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered not detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Kimberly-Clark Upland Area Total Petroleum Hydrocarbons as Extractables - Data Qualification Summary -SDG 008403

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Total Petroleum Hydrocarbons as Extractables - Laboratory Blank Data **Qualification Summary - SDG 008403**

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Total Petroleum Hydrocarbons as Extractables - Field Blank Data Qualification **Summary - SDG 008403**

No Sample Data Qualified in this SDG

_DC #	t: 49215D8 VALIDA	TION COMP	PLETENESS	S WORKSHEET	-	Date: <u> լ ժ/ լ</u> ⊳
	#: 008403		Stage 2A			
	atory: Friedman & Bruya, Inc.		J			Page:lof_ Reviewer:h Reviewer:
METH	IOD: GC TPH as Extractables (NW	TDH-Dv)			2nd	Reviewer:
V1	IOD. GC II II as Extractables (IVVV)	11 11-DX)				
	amples listed below were reviewed for the state of the st	or each of the f	ollowing valida	tion areas. Validati	on findings are	e noted in attache
	T		T			
	Validation Area			Comn	nents	
<u>l.</u>	Sample receipt/Technical holding times	AIA				
II.	Initial calibration/ICV	N/N				
III.	Continuing calibration	N N				
IV.	Laboratory Blanks	 #				
V.	Field blanks	N N				
VI.	Surrogate spikes	A				
VII.	Matrix spike/Matrix spike duplicates	N	Non giev	A		
VIII.	Laboratory control samples	I A	LCS			
IX.	Field duplicates	N				-
X.	Compound quantitation RL/LOQ/LODs	N	Dry weight	basis=1-3		
XI.	Target compound identification	Ŋ				
XII	Overall assessment of data	A				
lote:	N = Not provided/applicable R	D = No compound: = Rinsate B = Field blank	s detected	D = Duplicate TB = Trip blank EB = Equipment blan	OTHER	irce blank :
	Client ID			Lab ID	Matrix	Date
1 C	CMSB1-B-01-6			008403-04	Soil	08/26/20
2 0	CMSB1-S-01-4			008403-05	Soil	08/26/20
3 0	CMSB1-S-02-4			008403-06	Soil	08/26/20
4						
5						
5						
7						
В	-					
9				· · · · · · · · · · · · · · · · · · ·		
10						
11						
11						

Note	5.	 	 and the state of t	
1	00-1926 MBZ			

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Kimberly-Clark Upland Area

LDC Report Date:

October 12, 2020

Parameters:

Polynuclear Aromatic Hydrocarbons

Validation Level:

Stage 2A

Laboratory:

Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 008433

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
CMSB1-B-03-6	008433-03	Soil	08/27/20
CMSB1-B-02-6	008433-04	Soil	08/27/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polynuclear Aromatic Hydrocarbons (PAHs) by Environmental Protection Agency (EPA) SW 846 Method 8270E in Selected Ion Monitoring (SIM) mode

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

Instrument performance check data were not reviewed for Stage 2A validation.

III. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

IV. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. Surrogate recoveries (%R) were not within QC limits for sample CMSB1-B-02-6. Using professional judgment, no data were qualified when one surrogate %R was outside the QC limits and the %R was greater than or equal to 10%.

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

Internal standards data were not reviewed for Stage 2A validation.

XII. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XIV. System Performance

Raw data were not reviewed for Stage 2A validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Kimberly-Clark Upland Area Polynuclear Aromatic Hydrocarbons - Data Qualification Summary - SDG 008433

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Polynuclear Aromatic Hydrocarbons - Laboratory Blank Data Qualification **Summary - SDG 008433**

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Polynuclear Aromatic Hydrocarbons - Field Blank Data Qualification Summary -SDG 008433

No Sample Data Qualified in this SDG

SDG # _abora MET H	#:008433 atory: <u>Friedman & Bruya, Inc.</u> IOD: GC/MS Polynuclear Aromatic Hydro	S ocarbons (I	Stage 2A EPA SW 846 I	•	2nd Re	Date: <u>Ide ha</u> Page: <u>I of I</u> eviewer: <u>V</u> eviewer:
	amples listed below were reviewed for eaction findings worksheets.	ch of the fo	ollowing valida	tion areas. Validatior	n findings are no	oted in attached
	Validation Area			Comme	ents	
l.	Sample receipt/Technical holding times	A, A				
11.	GC/MS Instrument performance check	N				
111.	Initial calibration/ICV	N/N				
IV.	Continuing calibration	N				
V.	Laboratory Blanks	A				
VI.	Field blanks	N			· · · · · · · · · · · · · · · · · · ·	
VII.	Surrogate spikes	SN	2-one at	, NO		
VIII.	Matrix spike/Matrix spike duplicates	A	SDG 00	8403	· · · · · · · · · · · · · · · · · · ·	
IX.	Laboratory control samples	A	LS			
_X.	Field duplicates	7				
XI.	Internal standards	N				
XII.	Compound quantitation RL/LOQ/LODs	N	Dry weigh	+ basis=12		
XIII.	Target compound identification	N				
XIV.	System performance	N				
XV.	Overall assessment of data	<u>A</u>				
lote:	N = Not provided/applicable R = Rins	o compounds sate eld blank	s detected	D = Duplicate TB = Trip blank EB = Equipment blank	SB=Source OTHER:	blank
0	Client ID			Lab ID	Matrix	Date
1 (CMSB1-B-03-6			008433-03	Soil	08/27/20
2 (CMSB1-B-02-6			008433-04	Soil	08/27/20
3						
4						
5						
6						
7						
8						
9			-			
otes:						
1 01	U-1957MB					
_						
- 1	i i		1 1		1	

Laboratory Data Consultants, Inc. **Data Validation Report**

Project/Site Name: Kimberly-Clark Upland Area

LDC Report Date: October 12, 2020

Polychlorinated Biphenyls Parameters:

Stage 2A Validation Level:

Laboratory: Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 008433

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
OMS-S-20-2.5	008433-02	Soil	08/27/20
OMS-S-20-2.5DL	008433-02DL	Soil	08/27/20
OMS-S-20-2.5MS	008433-02MS	Soil	08/27/20
OMS-S-20-2.5MSD	008433-02MSD	Soil	08/27/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polychlorinated Biphenyls (PCBs) by Environmental Protection Agency (EPA) SW 846 Method 8082A

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- DNR Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Compound	MS (%R) (Limits)	MSD (%R) (Limits)	Flag	A or P
OMS-S-20-2.5MS/MSD (OMS-S-20-2.5)	Aroclor-1260	880 (25-137)	1300 (25-137)	NA	-

Relative percent differences (RPD) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Compound	RPD (Limits)	Flag	A or P
OMS-S-20-2.5MS/MSD (OMS-S-20-2.5)	Aroclor-1016 Aroclor-1260	23 (≤20) 39 (≤20)	NA	-

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identification

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method.

In the case where more than one result was reported for an individual sample, the least technically acceptable results were deemed not reportable as follows:

Sample	Compound	Reason	Flag	A or P
OMS-S-20-2.5	Aroclor-1254	Results exceeded calibration range.	DNR	-

No results were rejected in this SDG.

Kimberly-Clark Upland Area Polychlorinated Biphenyls - Data Qualification Summary - SDG 008433

Sample	Compound	Flag	A or P	Reason
OMS-S-20-2.5	Aroclor-1254	DNR	-	Overall assessment of data

Kimberly-Clark Upland Area

Polychlorinated Biphenyls - Laboratory Blank Data Qualification Summary - SDG 008433

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area

Polychlorinated Biphenyls - Field Blank Data Qualification Summary - SDG 008433

No Sample Data Qualified in this SDG

LDC #: 49215E3b	VALIDATION COMPLETENESS WORKSHEET
SDG #: 008433	Stage 2A

Stage 2A

Date: 19/19/2	صا
Page:of	_
Reviewer: 194	
2nd Reviewer:	_

Laboratory: Friedman & Bruya, Inc.

METHOD: GC Polychlorinated Biphenyls (EPA SW846 Method 8082A)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I.	Sample receipt/Technical holding times	AIA	
11.	Initial calibration/ICV	N/N	
III.	Continuing calibration	Ņ	
IV.	Laboratory Blanks	A	
V.	Field blanks	N	
VI.	Surrogate spikes	A	
VII.	Matrix spike/Matrix spike duplicates	52	(3,4)
VIII.	Laboratory control samples	Ą	LCS
IX.	Field duplicates	2	
X.	Compound quantitation/RL/LOQ/LODs	Ν	Dry weight basis = 1,2
XI.	Target compound identification	N	
XII	Overall assessment of data	54	

Note:

A = Acceptable

SW = See worksheet

N = Not provided/applicable

ND = No compounds detected

R = Rinsate

D = Duplicate TB = Trip blank FB = Field blank EB = Equipment blank SB=Source blank OTHER:

Client ID Lab ID Matrix Date OMS-S-20-2.5 008433-02 Soil 08/27/20 OMS-S-20-2.5DL 008433-02DL Soil 08/27/20 OMS-S-20-2.5MS 008433-02MS Soil 08/27/20 OMS-S-20-2.5MSD 008433-02MSD Soil 08/27/20 5 6 8 9 10 11 12

Note	s:	_	 		
	082807-MB				

LDC #: 49215E3b

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

Page:_	1	_of_	1	
Reviewer		LT		

METHOD: X GC __ HPLC

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Yx N_ N/A Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG?

Yx N_ N/A_ Was an MS/MSD analyzed every 20 samples for each matrix or whenever a sample extraction was performed?

Y___N_x__N/A___ Were the MS/MSD percent recoveries (%R) and relative percent differences (RPD) within QC limits?

#	MS/MSD ID	Compound	MS %R (Limits)	MSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
	3/4	Aroclor 1260	880 (25 - 137)	1300 (25 - 137)		1 (ND)	J/A dets
		Aroclor 1016			23 (≤ 20)	1	Ţ
		Aroclor 1260			39 (≤ 20)		Į.
	74						
			·	<u> </u>			
			-				
_							
-							
-							
	· · · · · · · · · · · · · · · · · · ·						
-							
لــــــا					<u> </u>	<u> </u>	

LDC #: 49215E3b

VALIDATION FINDINGS WORKSHEET <u>Overall Assessment of Data</u>

Page: _	1	_of_	1	
Reviewe	r:	L٦		

METHOD: GC PCBs (EPA SW 846 Method 8082A)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

All available information pertaining to the data were reviewed using professional judgement to compliment the determination of the overall quality of the data.

Yes x No N/A Was the overall quality and usability of the data acceptable?

#	Date	Sample ID	Compound	Finding	Qualifications
	Date	1			
Ì		1	Aroclor 1254	exceed calibration range	DNR
ļ					
					
<u> </u>					

Comments:				

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Kimberly-Clark Upland Area

LDC Report Date:

October 12, 2020

Parameters:

Metals

Validation Level:

Stage 2A

Laboratory:

Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 008433

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
OMS-S-20-2.5	008433-02	Soil	08/27/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Copper by Environmental Protection Agency (EPA) SW 846 Method 6020B Mercury by EPA Method 1631E

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- (Not Applicable): The non-conformance discovered during data validation NA demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. ICPMS Tune

ICP-MS tune data were not reviewed for Stage 2A validation.

III. Instrument Calibration

Instrument calibration data were not reviewed for Stage 2A validation.

IV. ICP Interference Check Sample Analysis

ICP Interference check sample (ICS) analysis data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

IX. Serial Dilution

Serial dilution was not performed for this SDG.

X. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits.

XI. Field Duplicates

No field duplicates were identified in this SDG.

XII. Internal Standards (ICP-MS)

Internal standards data were not reviewed for Stage 2A validation.

XIII. Sample Result Verification

Raw data were not reviewed for Stage 2A validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected in this SDG.

Kimberly-Clark Upland Area Metals - Data Qualification Summary - SDG 008433

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Metals - Laboratory Blank Data Qualification Summary - SDG 008433

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Metals - Field Blank Data Qualification Summary - SDG 008433

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Stage 2A

SDG #: 008433 Laboratory: Friedman & Bruya, Inc.

Laboratory: <u>Friedman & Bruya, Inc.</u>

Cy

METHOD: Cf, Hg (EPA SW 846 Method 6020B/EPA Method 1631E)

Page: \(\frac{1}{\psi_1} \)
Reviewer: \(\frac{1}{2}\)
2nd Reviewer:

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Sample receipt/Technical holding times	AIA	
II.	ICP/MS Tune	N	
111.	Instrument Calibration	N	
IV.	ICP Interference Check Sample (ICS) Analysis	N	
V.	Laboratory Blanks		
VI.	Field Blanks	2	
VII.	Matrix Spike/Matrix Spike Duplicates	2	Non client
VIII.	Duplicate sample analysis	2	
IX.	Serial Dilution	2	
X.	Laboratory control samples	A	LCS
XI.	Field Duplicates	7	
XII.	Internal Standard (ICP-MS)	N	
XIII.	Sample Result Verification	Ν	Dry weight basis = 1
XIV	Overall Assessment of Data	A	

Note: A = Acce

A = Acceptable N = Not provided/applicable

SW = See worksheet

ND = No compounds detected

R = Rinsate FB = Field blank D = Duplicate

TB = Trip blank
EB = Equipment blank

SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	OMS-S-20-2.5	008433-02	Soil	08/27/20
2				
3				
1				
5				
3				
,				
0 1				
0				
1				
2 3 4				
<u> </u>				

Natara.	
Notes:	
1000	

LDC #: 49215E4a

VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference

Page:_	1	_of_	1	
Reviewer		ΙΤ		

All circled elements are applicable to each sample.

Sample ID	Matrix	Target Analyte List (TAL)
1	S	Cu, Hg
	i	
	· · · · · · · · · · · · · · · · · · ·	
		Analysis Method
ICP/MS	S	Cu
CVAA	S	Hg

ELEMENTS.4

Comments: Mercury by CVAA if performed

Laboratory Data Consultants, Inc. Data Validation Report

Kimberly-Clark Upland Area **Project/Site Name:**

LDC Report Date: October 12, 2020

Total Petroleum Hydrocarbons as Extractables Parameters:

Stage 2A Validation Level:

Laboratory: Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 008433

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
CMSB1-S-03-4	008433-01	Soil	08/27/20
CMSB1-B-03-6	008433-03	Soil	08/27/20
CMSB1-B-02-6	008433-04	Soil	08/27/20
CMSB1-S-04-4	008433-05	Soil	08/27/20
CMSB1-S-05-4	008433-06	Soil	08/27/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Petroleum Hydrocarbons (TPH) as Extractables by NWTPH-Dx

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered not detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Kimberly-Clark Upland Area Total Petroleum Hydrocarbons as Extractables - Data Qualification Summary -SDG 008433

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Total Petroleum Hydrocarbons as Extractables - Laboratory Blank Data **Qualification Summary - SDG 008433**

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Total Petroleum Hydrocarbons as Extractables - Field Blank Data Qualification **Summary - SDG 008433**

No Sample Data Qualified in this SDG

_DC #	#: <u>49215E8</u> VALIDATI	ON COMP	PLETENES	S WORKSHEE		Date: <u>19/0/20</u>
SDG	SDG #: 008433 Stage 2A					Page: <u></u> of <u></u> Reviewer: <u></u> りて
_abor	atory: Friedman & Bruya, Inc.		-			Reviewer: <u></u> \(\forall 7
METH	HOD: GC TPH as Extractables (NWTPH	1-D^)			2nd	Reviewer:
VII	100. OO 11 11 as Extractables (1444 11 1	I-DX)				
	amples listed below were reviewed for e tion findings worksheets.	each of the f	ollowing valida	ation areas. Valida	ation findings are	noted in attached
	Validation Area			Con	nments	
l.	Sample receipt/Technical holding times	A,A				
II.	Initial calibration/ICV	N/N				
III.	Continuing calibration	N				
IV.	Laboratory Blanks	T				
V.	Field blanks	N				
VI.	Surrogate spikes	A				
VII.	Matrix spike/Matrix spike duplicates	N	Non clien	 Y		
VIII.	Laboratory control samples	A	LCS			
IX.	Field duplicates	N				
Χ.	Compound quantitation RL/LOQ/LODs	N	Dry wainst	- lasis = 1-5		
XI.	Target compound identification	N				
XII	Overall assessment of data	A				
lote:	N = Not provided/applicable R = R	No compound linsate Field blank	s detected	D = Duplicate TB = Trip blank EB = Equipment b	OTHER	rce blank
	Client ID			Lab ID	Matrix	Date
1	CMSB1-S-03-4			008433-01	Soil	08/27/20
2	CMSB1-B-03-6			008433-03	Soil	08/27/20
3	CMSB1-B-02-6			008433-04	Soil	08/27/20
4	CMSB1-S-04-4			008433-05	Soil	08/27/20
5	CMSB1-S-05-4			008433-06	Soil	08/27/20
6						
7						
8						
9						
10						
11						
12						
13			····			
otes:					- 	
1 0	<u>0-1960 MB</u>					

			1 1			

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Kimberly-Clark Upland Area

LDC Report Date:

October 8, 2020

Parameters:

Metals

Validation Level:

Stage 2A

Laboratory:

Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 008462

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
REC5-S-01-4	008462-01	Soil	08/28/20
REC5-S-01-7	008462-02	Soil	08/28/20
REC5-S-01-10	008462-03	Soil	08/28/20
REC5-B-01-12	008462-04	Soil	08/28/20
REC5-S-02-4	008462-05	Soil	08/28/20
REC5-S-02-7	008462-06	Soil	08/28/20
REC5-S-02-7DL	008462-06DL	Soil	08/28/20
REC5-514	008462-07	Soil	08/28/20
REC5-514DL	008462-07DL	Soil	08/28/20
REC5-S-06-4	008462-08	Soil	08/28/20
REC5-S-03-4	008462-09	Soil	08/28/20
REC5-S-03-7	008462-10	Soil	08/28/20
REC5-S-02-10	008462-11	Soil	08/28/20
REC5-S-03-10	008462-12	Soil	08/28/20
REC5-B-02-12	008462-13	Soil	08/28/20
REC5-B-02-12DL	008462-13DL	Soil	08/28/20
REC5-S-06-7	008462-14	Soil	08/28/20
REC5-S-05-4	008462-15	Soil	08/28/20
REC5-S-04-4	008462-16	Soil	08/28/20
REC5-B-03-12	008462-17	Soil	08/28/20
REC5-B-03-12DL	008462-17DL	Soil	08/28/20
REC5-S-06-10	008462-18	Soil	08/28/20
REC5-S-06-10DL	008462-18DL	Soil	08/28/20
REC5-S-05-7	008462-19	Soil	08/28/20
REC5-S-05-10	008462-20	Soil	08/28/20
REC5-S-05-10DL	008462-20DL	Soil	08/28/20
REC5-S-04-7	008462-21	Soil	08/28/20

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
REC5-S-04-7DL	008462-21DL	Soil	08/28/20
REC5-S-04-10	008462-22	Soil	08/28/20
REC5-S-01-4MS	008462-01MS	Soil	08/28/20
REC5-S-01-4MSD	008462-01MSD	Soil	08/28/20
REC5-S-04-7MS	008462-21MS	Soil	08/28/20
REC5-S-04-7MSD	008462-21MSD	Soil	08/28/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Arsenic, Copper and Lead by Environmental Protection Agency (EPA) SW 846 Method 6020B

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.
- DNR (Do Not Report): A more appropriate result is reported from another analysis or dilution.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. ICPMS Tune

ICP-MS tune data were not reviewed for Stage 2A validation.

III. Instrument Calibration

Instrument calibration data were not reviewed for Stage 2A validation.

IV. ICP Interference Check Sample Analysis

ICP Interference check sample (ICS) analysis data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	MS (%R) (Limits)	MSD (%R) (Limits)	Flag	A or P
REC5-S-04-7MS/MSD (REC5-S-04-7 REC5-S-04-10)	Arsenic	72 (75-125)	74 (75-125)	J (all detects)	А

Relative percent differences (RPD) were within QC limits.

VIII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

IX. Serial Dilution

Serial dilution was not performed for this SDG.

X. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits.

XI. Field Duplicates

Samples REC5-B-01-12 and REC5-514 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentra	Concentration (mg/Kg)		
Analyte	REC5-B-01-12	REC5-514	RPD	
Arsenic	4.75	6.51	31	
Copper	17.7	19.9	12	
Lead	2.59	3.17	20	

XII. Internal Standards (ICP-MS)

Internal standards data were not reviewed for Stage 2A validation.

XIII. Sample Result Verification

Raw data were not reviewed for Stage 2A validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the methods.

In the case where more than one result was reported for an individual sample, the least technically acceptable results were deemed not reportable as follows:

Sample	Analyte	Reason	Flag	A or P
REC5-S-02-7DL REC5-514DL REC5-B-02-12DL REC5-B-03-12DL REC5-S-06-10DL REC5-S-05-10DL REC5-S-04-7DL	Copper	Results from undiluted analyses were more usable.	DNR	-

Due to MS/MSD %R, data were qualified as estimated in two samples.

No results were rejected in this SDG.

Kimberly-Clark Upland Area Metals - Data Qualification Summary - SDG 008462

Sample	Analyte	Flag	A or P	Reason
REC5-S-04-7 REC5-S-04-10	Arsenic	J (all detects)	А	Matrix spike/Matrix spike duplicate (%R)
REC5-S-02-7DL REC5-514DL REC5-B-02-12DL REC5-B-03-12DL REC5-S-06-10DL REC5-S-05-10DL REC5-S-04-7DL	Copper	DNR	-	Overall assessment of data

Kimberly-Clark Upland Area Metals - Laboratory Blank Data Qualification Summary - SDG 008462

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Metals - Field Blank Data Qualification Summary - SDG 008462

No Sample Data Qualified in this SDG

LDC #: 49215F4a

VALIDATION COMPLETENESS WORKSHEET

Stage 2A

SDG #: 008462 Laboratory: Friedman & Bruya, Inc.

Reviewer: D 2nd Reviewer:

METHOD: Metals (EPA SW 846 Method 6020B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I.	Sample receipt/Technical holding times	A, A	
II.	ICP/MS Tune	N	
111.	Instrument Calibration	N	
IV.	ICP Interference Check Sample (ICS) Analysis	N	
V.	Laboratory Blanks	A	
VI.	Field Blanks	2	
VII.	Matrix Spike/Matrix Spike Duplicates	50	
VIII.	Duplicate sample analysis	2	
IX.	Serial Dilution	2	
X.	Laboratory control samples	A	ves
XI.	Field Duplicates	X8h	(4,8) (4,9)
XII.	Internal Standard (ICP-MS)	N	
XIII.	Sample Result Verification	N	
XIV	Overall Assessment of Data	SW	

Note:

A = Acceptable

N = Not provided/applicable SW = See worksheet

ND = No compounds detected

R = Rinsate FB = Field blank D = Duplicate

TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

_				
	Client ID	Lab ID	Matrix	Date
1	REC5-S-01-4	008462-01	Soil	08/28/20
2	REC5-S-01-7	008462-02	Soil	08/28/20
3	REC5-S-01-10	008462-03	Soil	08/28/20
4	REC5-B-01-12	008462-04	Soil	08/28/20
5	REC5-S-02-4	008462-05	Soil	08/28/20
6	REC5-S-02-7	008462-06	Soil	08/28/20
7	REC5-S-02-7DL	008462-06DL	Soil	08/28/20
8	REC5-514	008462-07	Soil	08/28/20
9	REC5-514DL	008462-07DL	Soil	08/28/20
10	REC5-S-06-4	008462-08	Soil	08/28/20
11	REC5-S-03-4	008462-09	Soil	08/28/20
12	REC5-S-03-7	008462-10	Soil	08/28/20
13	REC5-S-02-10	008462-11	Soil	08/28/20
14	REC5-S-03-10	008462-12	Soil	08/28/20
15_	REC5-B-02-12	008462-13	Soil	08/28/20

LDC #: 49215F4a

VALIDATION COMPLETENESS WORKSHEET

Stage 2A

SDG #: 008462 Laboratory: Friedman & Bruya, Inc. Page: Zof?
Reviewer: Dom
2nd Reviewer:

METHOD: Metals (EPA SW 846 Method 6020B)

	Client ID	Lab ID	Matrix	Date
16	REC5-B-02-12DL	008462-13DL	Soil	08/28/20
17	REC5-S-06-7	008462-14	Soil	08/28/20
18	REC5-S-05-4	008462-15	Soil	08/28/20
19	REC5-S-04-4	008462-16	Soil	08/28/20
20	REC5-B-03-12	008462-17	Soil	08/28/20
21	REC5-B-03-12DL	008462-17DL	Soil	08/28/20
22	REC5-S-06-10	008462-18	Soil	08/28/20
23	REC5-S-06-10DL	008462-18DL	Soil	08/28/20
24	REC5-S-05-7	008462-19	Soil	08/28/20
25	REC5-S-05-10	008462-20	Soil	08/28/20
26	REC5-S-05-10DL	008462-20DL	Soil	08/28/20
27	REC5-S-04-7	008462-21	Soil	08/28/20
28_	REC5-S-04-7DL	008462-21DL	Soil	08/28/20
29	REC5-S-04-10	008462-22	Soil	08/28/20
30	REC5-S-01-4MS	008462-01MS	Soil	08/28/20
31	REC5-S-01-4MSD	008462-01MSD	Soil	08/28/20
32	REC5-S-04-7MS	008462-21MS	Soil	08/28/20
33	REC5-S-04-7MSD	008462-21MSD	Soil	08/28/20
34				
35				
36				

1.30	 	 		 	 	
-						

LDC #: 492151749

VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference

Page: 1 of 1
Reviewer: DTM

All circled elements are applicable to each sample.

Sample ID	Matrix	
1-6,80	S	Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu). Fe, Ply, Li, Mg, Mo, Mn, Mg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
1-6.8,10-15	l	Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
17 -20, 22,		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
24-25,27,		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
29		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
7.16,21,	3	Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, 🗘, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
23,26,19		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
ac 30-33	5	Al, Sb, 🚱, Ba, Be, B, Cd, Ca, Cr, Co, 👣, Fe, 🎮, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
	1	Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
T		Analysis Method
ICP		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
ICP-MS		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
GFAA		Al, Sh, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Ph, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn

Comments: Mercury by CVAA if performed

LDC #:49215F4a

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

Page:_	1_	of_	1
Reviews	·r-	דח	M

METHOD: Trace metals (EPA SW 846 Method 6020/6010/7470)

Diagram and availities tiens below for all a	aatiama amauususad IINIII. Nist s		-1 41 6 11
Please see qualifications below for all of	questions answered in . Not a	applicable questions are i	dentified as "N/A".

N N/A Was a matrix spike analyzed for each matrix in this SDG?

Were matrix spike percent recoveries (%R) within the control limits of 75-125? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken.

Were all duplicate sample relative percent differences (RPD) ≤ 20% for samples?

TEVEL IV ONLY:

Y M/N/A

Y)N N/A

Were recalculated results acceptable? See Level IV Recalculation Worksheet for recalculations.

#_	MS/MSD ID	Matrix	Analyte	MS %Recovery	MSD %Recovery	RPD (Limits)	Associated Samples	Qualifications
	32/33	S	As	72(75-125)	74			J/UJ/A (det)
<u> </u> _								
⊩								
⊩								
╟						-		
\vdash								
<u> </u>								
L								
┝		 	I					
⊩			<u> </u>					
╟								
L								
L	L	L				L		<u> </u>

Comments:			

LDC#: 49215F4a

VALIDATION FINDINGS WORKSHEET Field Duplicates

Page:_1_of_1_ Reviewer:_DTM

METHOD: Metals (EPA Method 6010/6020/7000)

	Concentration		
Analyte	4	8	RPD
Arsenic	4.75	6.51	31
Copper	17.7	19.9	12
Lead	2.59	3.17	20

	Concentrat		
Analyte	4	9	RPD
Соррег		25U	NC

V:\Darionna\FIELD DUPLICATES\Field Duplicates\FD_inorganic\2020\49215F4a.wpd

VALIDATION FINDINGS WORKSHEET <u>Overall Assessment of Data</u>

Page: _1_of__1 Reviewer: _DTM

METHOD: Trace Metals (EPA SW 846 Method 6010/6020/7000)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

All available information pertaining to the data were reviewed using professional judgement to compliment the determination of the overall quality of the data.

Y N N/A Was the overall quality and usability of the data acceptable?

	 	 			
#	Date	Sample ID	Analyte	Finding	Qualification
		7,9,16,21,23,26,28	Cu	Samples' internal standard passed, but original analyses was accepted due to detected result.	D NR
<u></u>					
	<u> </u>				
-					
 					
<u></u>					

Laboratory Data Consultants, Inc. **Data Validation Report**

Project/Site Name:

Kimberly-Clark Upland Area

LDC Report Date:

October 12, 2020

Parameters:

Polychlorinated Biphenyls

Validation Level:

Stage 2A

Laboratory:

Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 008492

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
CMS-S-48-4	008492-01	Soil	08/31/20
CMS-S-49-4	008492-02	Soil	08/31/20
CMS-515	008492-03	Soil	08/31/20
CMS-S-50-4	008492-04	Soil	08/31/20
CMS-S-48-4MS	008492-01MS	Soil	08/31/20
CMS-S-48-4MSD	008492-01MSD	Soil	08/31/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polychlorinated Biphenyls (PCBs) by Environmental Protection Agency (EPA) SW 846 Method 8082A

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Compound	MS (%R) (Limits)	MSD (%R) (Limits)	Flag	A or P
CMS-S-48-4MS/MSD (CMS-S-48-4)	Aroclor-1260	-	140 (25-137)	NA	-

Relative percent differences (RPD) were within QC limits.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

Samples CMS-515 and CMS-S-50-4 were identified as field duplicates. No results were detected in any of the samples.

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identification

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Kimberly-Clark Upland Area Polychlorinated Biphenyls - Data Qualification Summary - SDG 008492

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Polychlorinated Biphenyls - Laboratory Blank Data Qualification Summary - SDG 008492

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Polychlorinated Biphenyls - Field Blank Data Qualification Summary - SDG 008492

No Sample Data Qualified in this SDG

LDC #: 49215G3b	VALIDATION COMPLETENESS WORKSHEET
	64 64

Stage 2A

SDG #:	Sia
Laboratory: Friedman & Bruya,	lnc

METHOD: GC Polychlorinated Biphenyls (EPA SW846 Method 8082A)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I.	Sample receipt/Technical holding times	AIA	
11.	Initial calibration/ICV	N/N	
III.	Continuing calibration	N	
IV.	Laboratory Blanks	A	
V.	Field blanks	7	
VI.	Surrogate spikes	A	
VII.	Matrix spike/Matrix spike duplicates	SV	(5,6)
VIII.	Laboratory control samples	A	LCS
IX.	Field duplicates	NO	D=3+4
X.	Compound quantitation/RL/LOQ/LODs	N	
XI.	Target compound identification	N	
XII	Overall assessment of data	A	

Note:

A = Acceptable

N = Not provided/applicable SW = See worksheet ND = No compounds detected

R = Rinsate FB = Field blank D = Duplicate

TB = Trip blank EB = Equipment blank SB=Source blank

OTHER:

CMS-S-48-4 CMS-S-49-4 CMS-515	008492-01 008492-02 008492-03	Soil Soil	08/31/20 08/31/20
CMS-515			08/31/20
	008492-03	Soil	
ONO 0 50 4			08/31/20
CMS-S-50-4 U	008492-04	Soil	08/31/20
CMS-S-48-4MS	008492-01MS	Soil	08/31/20
CMS-S-48-4MSD	008492-01MSD	Soil	08/31/20
	L.,,,,,,,		
•	CMS-S-48-4MS	CMS-S-48-4MS 008492-01MS	CMS-S-48-4MS 008492-01MS Soil

I	00-1976 MB			

LDC #: 49215G3b

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

Page:_	1	_of_	1	_
Reviewer:		LT		

METHOD: X GC HPLC

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Yx N_ N/A Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG?

Yx N_ N/A Was an MS/MSD analyzed every 20 samples for each matrix or whenever a sample extraction was performed?

Y___N_x__ N/A__ Were the MS/MSD percent recoveries (%R) and relative percent differences (RPD) within QC limits?

#	MS/MSD ID	Compound	MS %R (Limits)	MSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
	5/6	Aroclor 1260		140 (25 - 137)		1 (ND)	J/A dets
				-			
						·	
<u>L</u>							
			<u> </u>		<u></u>		
L_					<u> </u>		

Laboratory Data Consultants, Inc. Data Validation Report

Kimberly-Clark Upland Area **Project/Site Name:**

October 8, 2020 **LDC Report Date:**

Parameters: Metals

Validation Level: Stage 2A

Friedman & Bruya, Inc. Laboratory:

Sample Delivery Group (SDG): 009024

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
BBH-S-01-4	009024-01	Soil	09/01/20
BBH-S-02-4	009024-02	Soil	09/01/20
BBH-S-03-4	009024-03	Soil	09/01/20
BBH-S-04-4	009024-04	Soil	09/01/20
BBH-S-05-4	009024-05	Soil	09/01/20
BBH-S-06-4	009024-06	Soil	09/01/20
BBH-S-08-4	009024-07	Soil	09/01/20
BBH-S-07-4	009024-08	Soil	09/01/20
BBH-S-01-4MS	009024-01MS	Soil	09/01/20
BBH-S-01-4MSD	009024-01MSD	Soil	09/01/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Copper and Zinc by Environmental Protection Agency (EPA) SW 846 Method 6020B Mercury by EPA Method 1631E

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. ICPMS Tune

ICP-MS tune data were not reviewed for Stage 2A validation.

III. Instrument Calibration

Instrument calibration data were not reviewed for Stage 2A validation.

IV. ICP Interference Check Sample Analysis

ICP Interference check sample (ICS) analysis data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	MS (%R) (Limits)	MSD (%R) (Limits)	Flag	A or P
BBH-S-01-4MS/MSD (All samples in SDG 009024)	Copper	0 (75-125)	0 (75-125)	J (all detects)	A
BBH-S-01-4MS/MSD (BBH-S-01-4 BBH-S-02-4 BBH-S-03-4 BBH-S-05-4 BBH-S-08-4)	Mercury	224 (71-125)	232 (71-125)	J (all detects)	А
BBH-S-01-4MS/MSD (BBH-S-04-4 BBH-S-06-4 BBH-S-07-4)	Mercury	224 (71-125)	232 (71-125)	NA	-

Relative percent differences (RPD) were within QC limits.

VIII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

IX. Serial Dilution

Serial dilution was not performed for this SDG.

X. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits.

XI. Field Duplicates

No field duplicates were identified in this SDG.

XII. Internal Standards (ICP-MS)

Internal standards data were not reviewed for Stage 2A validation.

XIII. Sample Result Verification

Raw data were not reviewed for Stage 2A validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the methods.

Due to MS/MSD %R, data were qualified as estimated in eight samples.

No results were rejected in this SDG.

Kimberly-Clark Upland Area Metals - Data Qualification Summary - SDG 009024

Sample	Analyte	Flag	A or P	Reason
BBH-S-01-4 BBH-S-02-4 BBH-S-03-4 BBH-S-05-4 BBH-S-06-4 BBH-S-06-4 BBH-S-08-4 BBH-S-07-4	Copper	J (all detects)	А	Matrix spike/Matrix spike duplicate (%R)
BBH-S-01-4 BBH-S-02-4 BBH-S-03-4 BBH-S-05-4 BBH-S-08-4	Mercury	J (all detects)	Α	Matrix spike/Matrix spike duplicate (%R)

Kimberly-Clark Upland Area Metals - Laboratory Blank Data Qualification Summary - SDG 009024

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Metals - Field Blank Data Qualification Summary - SDG 009024

No Sample Data Qualified in this SDG

LDC #: 49215H4a SDG #: 009024

VALIDATION COMPLETENESS WORKSHEET

Stage 2A

Laboratory: Friedman & Bruya, Inc.

Page: الهاري الموادد الموادد

METHOD: Metals (EPA SW 846 Method 6020B/EPA Method 1631E)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I.	Sample receipt/Technical holding times	AIA	
<u>II.</u>	ICP/MS Tune	N	
III.	Instrument Calibration	N	
IV.	ICP Interference Check Sample (ICS) Analysis	. N	
V.	Laboratory Blanks	A	
VI.	Field Blanks	7	
VII.	Matrix Spike/Matrix Spike Duplicates	SW	
VIII.	Duplicate sample analysis	2	
IX.	Serial Dilution	2	
X.	Laboratory control samples	Α	ics
XI.	Field Duplicates	2	
XII.	Internal Standard (ICP-MS)	N	
XIII.	Sample Result Verification	N	
XIV	Overall Assessment of Data	Α	

Note:

A = Acceptable

N = Not provided/applicable SW = See worksheet ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate

TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1_	BBH-S-01-4	009024-01	Soil	09/01/20
2	BBH-S-02-4	009024-02	Soil	09/01/20
3	BBH-S-03-4	009024-03	Soil	09/01/20
4	BBH-S-04-4	009024-04	Soil	09/01/20
5	BBH-S-05-4	009024-05	Soil	09/01/20
6	BBH-S-06-4	009024-06	Soil	09/01/20
7	BBH-S-08-4	009024-07	Soil	09/01/20
8	BBH-S-07-4	009024-08	Soil	09/01/20
9	BBH-S-01-4MS	009024-01MS	Soil	09/01/20
10	BBH-S-01-4MSD	009024-01MSD	Soil	09/01/20
11_				
12_				
13				
14_	·			

Notes:				

LDC #: 49715HU1

VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference

Page: 1 of 1
Reviewer: DTM

All circled elements are applicable to each sample.

		
Sample ID	Matrix	Target Analyte List (TAL)
1-8	S	Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cy, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, (2n)
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
OC0-10	5	Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
i		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
	·	Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
]-		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Analysis Method
ICP		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
ICP-MS		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
GEAA		Al Sb. As. Ba. Be. B. Cd. Ca. Cr. Co. Cu. Fe. Pb. Li, Mg. Mo. Mn. Hg. Ni, K. Se. Ag. Na, Sr. Tl. Sn. Ti, W. U. V. 7n

Comments: Mercury by CVAA if performed

LDC #:49215H4a_

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

Page:_	1	_of	1
Reviewe	r.	דח	М

METHOD: Trace metals (EPA SW 846 Method 6020/6010/7470)

Y(N)	<u>N/A</u> Were m of 4 or m <u>N/A</u> Were a ▶√V ONLY :	matrix spike a natrix spike p more, no acti Il duplicate sa	analyzed for ea ercent recoverion on was taken. ample relative p	ch matrix in this S	DG? control limits of $(RPD) \le 20\%$	f 75-125? If the for samples?	sample concentration e	xceeded the spike concentration by a factor
#	MS/MSD ID	Matrix	Analyte	MS %Recovery	MSD %Recovery	RPD (Limits)	Associated Samples	Qualifications
	9/10	S	Cu	0(75-125)	0		ALL	J/R/A (det)
		· · · · · · · · · · · · · · · · · · ·	Hg	224(71-125)	232		ALL	J/A (ND/det): (1-3,5,7=Act)
 				 				
╟┼								
┡								
⊩∔_								
⊩∔								
\vdash								
╟┼								
\vdash								
广								
計								
1								
\vdash			 	 				

Comments:		

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Kimberly-Clark Upland Area

LDC Report Date: October 8, 2020

Parameters: Metals

Stage 2A Validation Level:

Laboratory: Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 009056

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
BBH-S-09-4	009056-01	Soil	09/02/20
BBH-S-10-4	009056-02	Soil	09/02/20
BBH-S-11-4	009056-03	Soil	09/02/20
BBH-S-12-4	009056-04	Soil	09/02/20
BBH-S-13-4	009056-05	Soil	09/02/20
BBH-S-14-4	009056-06	Soil	09/02/20
BBH-S-15-4	009056-07	Soil	09/02/20
BBH-S-16-4	009056-08	Soil	09/02/20
BBH-S-16-4DL	009056-08DL	Soil	09/02/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Copper and Zinc by Environmental Protection Agency (EPA) SW 846 Method 6020B Mercury by EPA Method 1631E

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.
- DNR (Do Not Report): A more appropriate result is reported from another analysis or dilution.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. ICPMS Tune

ICP-MS tune data were not reviewed for Stage 2A validation.

III. Instrument Calibration

Instrument calibration data were not reviewed for Stage 2A validation.

IV. ICP Interference Check Sample Analysis

ICP Interference check sample (ICS) analysis data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

IX. Serial Dilution

Serial dilution was not performed for this SDG.

X. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits.

XI. Field Duplicates

No field duplicates were identified in this SDG.

XII. Internal Standards (ICP-MS)

Internal standards data were not reviewed for Stage 2A validation.

XIII. Sample Result Verification

Raw data were not reviewed for Stage 2A validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the methods.

In the case where more than one result was reported for an individual sample, the least technically acceptable results were deemed not reportable as follows:

Sample	Analyte	Reason	Flag	A or P
BBH-S-16-4DL	Copper Zinc	Results from undiluted analyses were more usable.	DNR	-

No results were rejected in this SDG.

Kimberly-Clark Upland Area Metals - Data Qualification Summary - SDG 009056

Sample	Analyte	Flag	A or P	Reason
BBH-S-16-4DL	Copper Zinc	DNR	-	Overall assessment of data

Kimberly-Clark Upland Area Metals - Laboratory Blank Data Qualification Summary - SDG 009056

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Metals - Field Blank Data Qualification Summary - SDG 009056

No Sample Data Qualified in this SDG

LDC #: 49215I4a SDG #: 009056

VALIDATION COMPLETENESS WORKSHEET

Stage 2A

Laboratory: Friedman & Bruya, Inc.

METHOD: Metals (EPA SW 846 Method 6020B/EPA Method 1631E)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Sample receipt/Technical holding times	AIA	
11.	ICP/MS Tune	N	
111.	Instrument Calibration	N	
IV.	ICP Interference Check Sample (ICS) Analysis	N	
V.	Laboratory Blanks	A	
VI.	Field Blanks	2	
VII.	Matrix Spike/Matrix Spike Duplicates	2	
VIII.	Duplicate sample analysis	2	
IX.	Serial Dilution	2	
X.	Laboratory control samples	A	(6)
XI.	Field Duplicates	2	
XII.	Internal Standard (ICP-MS)	N	
XIII.	Sample Result Verification	N	
XIV	Overall Assessment of Data	SU	

Note:

A = Acceptable

N = Not provided/applicable SW = See worksheet ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate

TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID	Lab ID	Madeine	D-4-
ļ	Client ID	Lab ID	Matrix	Date
1	BBH-S-09-4	009056-01	Soil	09/02/20
2	BBH-S-10-4	009056-02	Soil	09/02/20
3	BBH-S-11-4	009056-03	Soil	09/02/20
4	BBH-S-12-4	009056-04	Soil	09/02/20
5	BBH-S-13-4	009056-05	Soil	09/02/20
6	BBH-S-14-4	009056-06	Soil	09/02/20
7	BBH-S-15-4	009056-07	Soil	09/02/20
8	BBH-S-16-4	009056-08	Soil	09/02/20
9	BBH-S-16-4DL	009056-08DL	Soil	09/02/20
10	·			
11				
12				
13				
14				

Notes:_			

LDC #: 49215149

VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference

Page: 1 of 1
Reviewer: DTM

All circled elements are applicable to each sample.

	 -1	
Sample ID	Matrix	Target Analyte List (TAL)
1-8	S	Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu) Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V,
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
9	5	Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, (2n)
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
i		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
]	
-	<u> </u>	Analysis Method
ICP		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
ICP-MS		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
GFAA		Al Sh. As. Ba. Be. B. Cd. Ca. Cr. Co. Cu. Fe. Ph. Li. Mg. Mo. Mn. Hg. Ni. K. Se. Ag. Na. Sr. Tl. Sn. Ti. W. U. V. 7n

Comments: Mercury by CVAA if performed

VALIDATION FINDINGS WORKSHEET <u>Overall Assessment of Data</u>

Page:	_1	_of_	1
Reviewer.	г	TM	

METHOD: Trace Metals (EPA SW 846 Method 6010/6020/7000)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

All available information pertaining to the data were reviewed using professional judgement to compliment the determination of the overall quality of the data.

Y N N/A Was the overall quality and usability of the data acceptable?

	1		T	T	
#	Date	Sample ID	Analyte	Finding	Qualification
		9	Cu,Zn	Samples' internal standard passed, but original analyses was accepted due to detected result.	DNR
		· · · · · · · · · · · · · · · · · · ·			
		· · · · · · · · · · · · · · · · · · ·			
	<u> </u>				
		<u> </u>			

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Kimberly-Clark Upland Area

October 8, 2020 **LDC Report Date:**

Parameters: Metals

Validation Level: Stage 2A

Laboratory: Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 009132

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
BBH-S-17-4	009132-01	Soil	09/08/20
BBH-S-17-4DL	009132-01DL	Soil	09/08/20
BBH-S-18-4	009132-02	Soil	09/08/20
BBH-S-19-4	009132-03	Soil	09/08/20
BBH-S-19-4DL	009132-03DL	Soil	09/08/20
BBH-S-20-4	009132-04	Soil	09/08/20
BBH-516	009132-05	Soil	09/08/20
BBH-S-21-4	009132-06	Soil	09/08/20
BBH-S-22-4	009132-07	Soil	09/08/20
BBH-S-17-4MS	009132-01MS	Soil	09/08/20
BBH-S-17-4MSD	009132-01MSD	Soil	09/08/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Copper and Zinc by Environmental Protection Agency (EPA) SW 846 Method 6020B Mercury by EPA Method 1631E

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.
- DNR (Do Not Report): A more appropriate result is reported from another analysis or dilution.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. ICPMS Tune

ICP-MS tune data were not reviewed for Stage 2A validation.

III. Instrument Calibration

Instrument calibration data were not reviewed for Stage 2A validation.

IV. ICP Interference Check Sample Analysis

ICP Interference check sample (ICS) analysis data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VIII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

IX. Serial Dilution

Serial dilution was not performed for this SDG.

X. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits.

XI. Field Duplicates

Samples BBH-S-20-4 and BBH-516 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentra		
Analyte	BBH-S-20-4	BBH-516	RPD
Copper	28.7	23.4	20
Zinc	50.6	44.5	13
Mercury	0.30	0.37	21

XII. Internal Standards (ICP-MS)

Internal standards data were not reviewed for Stage 2A validation.

XIII. Sample Result Verification

Raw data were not reviewed for Stage 2A validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the methods.

In the case where more than one result was reported for an individual sample, the least technically acceptable results were deemed not reportable as follows:

Sample	Analyte	Reason	Flag	A or P
BBH-S-17-4DL BBH-S-19-4DL	Copper	Results from undiluted analyses were more usable.	DNR	-

No results were rejected in this SDG.

Kimberly-Clark Upland Area Metals - Data Qualification Summary - SDG 009132

Sample	Analyte	Flag	A or P	Reason
BBH-S-17-4DL BBH-S-19-4DL	Copper	DNR	-	Overall assessment of data

Kimberly-Clark Upland Area Metals - Laboratory Blank Data Qualification Summary - SDG 009132

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Metals - Field Blank Data Qualification Summary - SDG 009132

No Sample Data Qualified in this SDG

LDC #: 49215J4a

VALIDATION COMPLETENESS WORKSHEET

SDG #: 009132

Stage 2A

Laboratory: Friedman & Bruya, Inc.

Reviewer: 2nd Reviewer:

METHOD: Metals (EPA SW 846 Method 6020B/EPA Method 1631E)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Sample receipt/Technical holding times	AIA	
<u>II.</u>	ICP/MS Tune	, N	
III.	Instrument Calibration	N	
IV.	ICP Interference Check Sample (ICS) Analysis	N	
V.	Laboratory Blanks	4	
VI.	Field Blanks	2	
VII.	Matrix Spike/Matrix Spike Duplicates	A	
VIII.	Duplicate sample analysis	2	
IX.	Serial Dilution	2	
X.	Laboratory control samples	Α	US
XI.	Field Duplicates	رين	(6,7)
XII.	Internal Standard (ICP-MS)	N	
XIII.	Sample Result Verification	N	
XIV	Overall Assessment of Data	K SN	

Note:

A = Acceptable

SW = See worksheet

N = Not provided/applicable

ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate

TB = Trip blank

OTHER: EB = Equipment blank

SB=Source blank

	Client ID	Lab ID	Matrix	Date
1	BBH-S-17-4	009132-01	Soil	09/08/20
2	BBH-S-17-4DL	009132-01DL	Soil	09/08/20
3	BBH-S-18-4	009132-02	Soil	09/08/20
4	BBH-S-19-4	009132-03	Soil	09/08/20
5_	BBH-S-19-4DL	009132-03DL	Soil_	09/08/20
6	BBH-S-20-4	009132-04	Soil	09/08/20
7	BBH-516	009132-05	Soil	09/08/20
8	BBH-S-21-4	009132-06	Soil	09/08/20
9	BBH-S-22-4	009132-07	Soil	09/08/20
10_	BBH-S-17-4MS	009132-01MS	Soil_	09/08/20
11_	BBH-S-17-4MSD	009132-01MSD	Soil_	09/08/20
12				
13_				
14_				

Notes:

LDC #: 49215)49

VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference

Page: 1 of 1
Reviewer: DTM

All circled elements are applicable to each sample.

Sample ID	Matrix	Target Analyte List (TAL)
1,4	<u></u>	Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, (1), Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
3,5	S	Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Co, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V,
	<u>, </u>	Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
37-9	5	Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, C), Fe, Pb, Li, Mg, Mo, Mn, (19), Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V,
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
6		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, (2n)
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
6	2	Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Ag, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
86		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
ac 10-11		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu) Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V,
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Analysis Method
ICP		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
ICP-MS		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
GEAA		Al Sh As Ba Be B Cd Ca Cr Co Cu Fe Ph Li Mg Mo Mn Hg Ni K Se Ag Na Sr Tl Sn Ti W U V Zn

Comments: Mercury by CVAA if performed

LDC#: 49215J4a

VALIDATION FINDINGS WORKSHEET <u>Field Duplicates</u>

Page:_1_of_1_ Reviewer:_DTM

METHOD: Metals (EPA Method 6010/6020/7000)

	tion (mg/Kg)		
Analyte	6	7	RPD
Copper	28.7	23.4	20
Zinc	50.6	44.5	13
Mercury	0.30	0.37	21

V:\Darionna\FIELD DUPLICATES\Field Duplicates\FD_inorganic\2020\49215J4a.wpd

LDC #: 49215J4a

VALIDATION FINDINGS WORKSHEET Overall Assessment of Data

Page: _	1	_of_	1
Reviewer:	С	MT	

METHOD: Trace Metals (EPA SW 846 Method 6010/6020/7000)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

All available information pertaining to the data were reviewed using professional judgement to compliment the determination of the overall quality of the data.

Y N N/A Was the overall quality and usability of the data acceptable?

#	Date	Sample ID	Analyte	Finding	Qualification
		2,5	Cu	Samples' internal standard passed, but original analyses was accepted due to detected result.	D NR

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Kimberly-Clark Upland Area

LDC Report Date:

October 8, 2020

Parameters:

Metals

Validation Level:

Stage 2A

Laboratory:

Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 009182

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
BBH-S-23-4	009182-01	Soil	09/09/20
BBH-S-24-4	009182-02	Soil	09/09/20
BBH-S-25-4	009182-03	Soil	09/09/20
BBH-S-26-4	009182-04	Soil	09/09/20
BBH-S-27-4	009182-05	Soil	09/09/20
BBH-S-28-4	009182-06	Soil	09/09/20
BBH-S-27-8	009182-07	Soil	09/10/20
BBH-S-28-8	009182-08	Soil	09/10/20
BBH-S-29-4	009182-09	Soil	09/10/20
BBH-S-29-8	009182-10	Soil	09/10/20
BBH-S-30-4	009182-11	Soil	09/10/20
BBH-S-30-8	009182-12	Soil	09/10/20
BBH-B-30-10	009182-13	Soil	09/10/20
BBH-B-36-10	009182-14	Soil	09/10/20
BBH-S-31-4	009182-15	Soil	09/10/20
BBH-S-31-8	009182-16	Soil	09/10/20
BBH-S-32-4	009182-17	Soil	09/10/20
BBH-S-32-8	009182-18	Soil	09/10/20
BBH-517	009182-19	Soil	09/10/20
BBH-S-34-4	009182-20	Soil	09/10/20
BBH-S-34-8	009182-21	Soil	09/10/20
BBH-B-31-10	009182-22	Soil	09/10/20
BBH-S-33-4	009182-23	Soil	09/10/20
BBH-S-23-4MS	009182-01MS	Soil	09/09/20
BBH-S-23-4MSD	009182-01MSD	Soil	09/09/20
BBH-S-34-8MS	009182-21MS	Soil	09/10/20
BBH-S-34-8MSD	009182-21MSD	Soil	09/10/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Copper and Zinc by Environmental Protection Agency (EPA) SW 846 Method 6020B Mercury by EPA Method 1631E

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. ICPMS Tune

ICP-MS tune data were not reviewed for Stage 2A validation.

III. Instrument Calibration

Instrument calibration data were not reviewed for Stage 2A validation.

IV. ICP Interference Check Sample Analysis

ICP Interference check sample (ICS) analysis data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	MS (%R) (Limits)	MSD (%R) (Limits)	Flag	A or P
BBH-S-34-8MS/MSD (BBH-S-34-8 BBH-B-31-10 BBH-S-33-4)	Copper	361 (75-125)	0 (75-125)	J (all detects)	А
BBH-S-34-8MS/MSD (BBH-S-34-8 BBH-B-31-10 BBH-S-33-4)	Zinc	69 (75-125)	152 (75-125)	J (all detects) UJ (all non-detects)	А
BBH-S-34-8MS/MSD (BBH-S-33-4)	Mercury	127 (71-125)	-	J (all detects)	Α

Spike ID (Associated Samples)	Analyte	MS (%R) (Limits)	MSD (%R) (Limits)	Flag	A or P
BBH-S-34-8MS/MSD (BBH-S-34-8 BBH-B-31-10)	Mercury	127 (71-125)	-	NA	-

Relative percent differences (RPD) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	RPD (Limits)	Flag	A or P
BBH-S-34-8MS/MSD (BBH-S-34-8 BBH-B-31-10 BBH-S-33-4)	Copper	200 (≤20)	J (all detects)	A

VIII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

IX. Serial Dilution

Serial dilution was not performed for this SDG.

X. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits.

XI. Field Duplicates

Samples BBH-S-32-8 and BBH-517 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentration (mg/Kg)		
Analyte	BBH-S-32-8	BBH-517	RPD
Copper	32.0	44.6	33
Zinc	101	75.2	29

XII. Internal Standards (ICP-MS)

Internal standards data were not reviewed for Stage 2A validation.

XIII. Sample Result Verification

Raw data were not reviewed for Stage 2A validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the methods.

Due to MS/MSD %R and RPD, data were qualified as estimated in three samples.

No results were rejected in this SDG.

Kimberly-Clark Upland Area Metals - Data Qualification Summary - SDG 009182

Sample	Analyte	Flag	A or P	Reason
BBH-S-34-8 BBH-B-31-10 BBH-S-33-4	Copper	J (all detects)	А	Matrix spike/Matrix spike duplicate (%R)
BBH-S-34-8 BBH-B-31-10 BBH-S-33-4	Zinc	J (all detects) UJ (all non-detects)	А	Matrix spike/Matrix spike duplicate (%R)
BBH-S-33-4	Mercury	J (all detects)	А	Matrix spike/Matrix spike duplicate (%R)
BBH-S-34-8 BBH-B-31-10 BBH-S-33-4	Соррег	J (all detects)	Α	Matrix spike/Matrix spike duplicate (RPD)

Kimberly-Clark Upland Area Metals - Laboratory Blank Data Qualification Summary - SDG 009182

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Metals - Field Blank Data Qualification Summary - SDG 009182

No Sample Data Qualified in this SDG

LDC #: 49215K4a

VALIDATION COMPLETENESS WORKSHEET

Stage 2A

SDG #: 009182 Laboratory: Friedman & Bruya, Inc.

Reviewer: (2) 2nd Reviewer:

METHOD: Metals (EPA SW 846 Method 6020B/EPA Method 1631E)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Sample receipt/Technical holding times	A /A	
11.	ICP/MS Tune	N	
III.	Instrument Calibration	N	
IV.	ICP Interference Check Sample (ICS) Analysis	N	
V.	Laboratory Blanks	Å	
VI.	Field Blanks	2	
VII.	Matrix Spike/Matrix Spike Duplicates	SW	
VIII.	Duplicate sample analysis	N	
IX.	Serial Dilution	゚゚゚゚	
X.	Laboratory control samples	Α	us
XI.	Field Duplicates	للأكل	(18,19)
XII.	Internal Standard (ICP-MS)	N	
XIII.	Sample Result Verification	N	
ΧIV	Overall Assessment of Data	A	

Note:

A = Acceptable

SW = See worksheet

N = Not provided/applicable

ND = No compounds detected

R = Rinsate FB = Field blank

D = Duplicate TB = Trip blank

EB = Equipment blank

SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	BBH-S-23-4	009182-01	Soil	09/09/20
2	BBH-S-24-4	009182-02	Soil	09/09/20
3	BBH-S-25-4	009182-03	Soil	09/09/20
4	BBH-S-26-4	009182-04	Soil	09/09/20
5	BBH-S-27-4	009182-05	Soil	09/09/20
6	BBH-S-28-4	009182-06	Soil	09/09/20
7	BBH-S-27-8	009182-07	Soil	09/10/20
8	BBH-S-28-8	009182-08	Soil	09/10/20
9	BBH-S-29-4	009182-09	Soil	09/10/20
10	BBH-S-29-8	009182-10	Soil	09/10/20
11	BBH-S-30-4	009182-11	Soil	09/10/20
12	BBH-S-30-8	009182-12	Soil	09/10/20
13	BBH-B-30-10	009182-13	Soil	09/10/20
14	BBH-B-36-10	009182-14	Soil	09/10/20
15_	BBH-S-31-4	009182-15	Soil	09/10/20

LDC #: 49215K4a

VALIDATION COMPLETENESS WORKSHEET

Stage 2A

SDG #: 009182 Laboratory: Friedman & Bruya, Inc. Date to 2 100
Page: 2 of 2
Reviewer: 0m
2nd Reviewer:

METHOD: Metals (EPA SW 846 Method 6020B/EPA Method 1631E)

	Client ID	Lab ID	Matrix	Date
16	BBH-S-31-8	009182-16	Soil	09/10/20
17	BBH-S-32-4	009182-17	Soil	09/10/20
18	BBH-S-32-8	009182-18	Soil	09/10/20
19	BBH-517	009182-19	Soil	09/10/20
20	BBH-S-34-4	009182-20	Soil	09/10/20
21	BBH-S-34-8	009182-21	Soil	09/10/20
22	BBH-B-31-10	009182-22	Soil	09/10/20
23	BBH-S-33-4	009182-23	Soil	09/10/20
24	BBH-S-23-4MS	009182-01MS	Soil	09/09/20
25	BBH-S-23-4MSD	009182-01MSD	Soil	09/09/20
26	BBH-S-34-8MS	009182-21MS	Soil	09/10/20
27	BBH-S-34-8MSD	009182-21MSD	Soil	09/10/20
28				
29				
30				

30	 			
Notes:				
		_	 	

LDC #: 49215 K49

VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference

Page: 1 of 1
Reviewer: DTM

All circled elements are applicable to each sample.

 		
Sample ID	Matrix	Target Analyte List (TAL)
1-14,14-73	S	Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, 🙉 Fe, Pb, Li, Mg, Mo, Mn, (Hg), Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V,
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
15	S	Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu) Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
15	2	Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
]	Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
DC 24-77	S	Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu) Fe, Pb, Li, Mg, Mo, Mn, Hg Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V,
	,	Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Analysis Method
ICP		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
ICP-MS		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
GFAA		Al Sh As Ba Be B Cd Ca Cr Co Cu Fe Ph Li Mg Mo Mn Hg Ni K Se Ag Na Sr Tl Sn Ti W U V Zn

Comments:	Mercury by CVAA if performed		

LDC #:49215K4a

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

Page:_	1	_of	1
Reviewe	ır.	דח	M

METHOD: Trace metals (EPA SW 846 Method 6020/6010/7470)

Please see qua	lifications below for all questions answered "N". Not applicable question	ns are ide	ntified as "N/A".
Y N N/A Y N N/A	Was a matrix spike analyzed for each matrix in this SDG?		
Y N/A	Were matrix spike percent recoveries (%R) within the control limits of	75-125?	the sample concentration exceeded the spike concentration by a facto
	of 4 or more, no action was taken.	、ノ	,
Y N N/A LEVEL IV ONL	Were all duplicate sample relative percent differences (RPD) £ 20% ₹	or sample:	s?
	Y:		
YNNA	Were recalculated results acceptable? See Level IV Recalculation W	orksheet f	or recalculations

#	MS/MSD ID	Matrix	Analyte	MS %Recovery	MSD %Recovery	RPD (Limits)	Associated Samples	Qualifications
	26/27	S	Cu	361	0		21-23	J/R/A (det)
			Zn	69	152		21-23	J/UJ/A (det)
			Cu			200	21-23	J/UJ/A (det)
			Hg	127 (71-	- 125)		21-23	J/UJ/A (ND/det) 23=Det
								DagsA
					:			
		-						

Comments:	 	 	 				

LDC#: 49215K4a

VALIDATION FINDINGS WORKSHEET

Field Duplicates

Page:_1_of_1_ Reviewer:_DTM

METHOD: Metals (EPA Method 6010/6020/7000)

	Concentration (mg/Kg)		
Analyte	18	19	RPD
Copper	32.0	44.6	33
Zinc	101	75.2	29

V:\Darionna\FIELD DUPLICATES\Field Duplicates\FD_inorganic\2020\49215K4a.wpd

Laboratory Data Consultants, Inc. **Data Validation Report**

Project/Site Name: Kimberly-Clark Upland Area

LDC Report Date: October 8, 2020

Parameters: Metals

Validation Level: Stage 2A

Friedman & Bruya, Inc. Laboratory:

Sample Delivery Group (SDG): 009238

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
BBH-S-35-4	009238-01	Soil	09/14/20
BBH-S-36-4	009238-02	Soil	09/14/20
BBH-S-37-4	009238-03	Soil	09/14/20
BBH-S-38-4	009238-04	Soil	09/14/20
BBH-S-39-4	009238-05	Soil	09/14/20
BBH-S-40-4	009238-06	Soil	09/14/20
BBH-S-41-4	009238-07	Soil	09/14/20
BBH-S-42-4	009238-08	Soil	09/14/20
BBH-S-35-4MS	009238-01MS	Soil	09/14/20
BBH-S-35-4MSD	009238-01MSD	Soil	09/14/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Copper by Environmental Protection Agency (EPA) SW 846 Method 6020B Mercury by EPA Method 1631E

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- (Rejected): The sample results were rejected due to gross non-conformances R discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.
- DNR (Do Not Report): A more appropriate result is reported from another analysis or dilution.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. ICPMS Tune

ICP-MS tune data were not reviewed for Stage 2A validation.

III. Instrument Calibration

Instrument calibration data were not reviewed for Stage 2A validation.

IV. ICP Interference Check Sample Analysis

ICP Interference check sample (ICS) analysis data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VIII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

IX. Serial Dilution

Serial dilution was not performed for this SDG.

X. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits.

XI. Field Duplicates

No field duplicates were identified in this SDG.

XII. Internal Standards (ICP-MS)

Internal standards data were not reviewed for Stage 2A validation.

XIII. Sample Result Verification

Raw data were not reviewed for Stage 2A validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected in this SDG.

Kimberly-Clark Upland Area Metals - Data Qualification Summary - SDG 009238

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Metals - Laboratory Blank Data Qualification Summary - SDG 009238

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Metals - Field Blank Data Qualification Summary - SDG 009238

No Sample Data Qualified in this SDG

LDC #: 49215L4a

VALIDATION COMPLETENESS WORKSHEET

Stage 2A

SDG #: 009238 Laboratory: Friedman & Bruya, Inc.

Page: of \ Reviewer: DT 2nd Reviewer

METHOD: Cr, Hg (EPA SW 846 Method 6020B/EPA Method 1631E)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Sample receipt/Technical holding times	AIA	
II.	ICP/MS Tune	N	
III.	Instrument Calibration	N	
IV.	ICP Interference Check Sample (ICS) Analysis	N	
V.	Laboratory Blanks	A	
VI.	Field Blanks	2	
VII.	Matrix Spike/Matrix Spike Duplicates	A	
VIII.	Duplicate sample analysis	2	
IX.	Serial Dilution	2	
X.	Laboratory control samples	A	UCS
XI.	Field Duplicates	2	
XII.	Internal Standard (ICP-MS)	N	
XIII.	Sample Result Verification	N	
XIV	Overall Assessment of Data	A	

Note:

A = Acceptable

N = Not provided/applicable SW = See worksheet

ND = No compounds detected

R = Rinsate FB = Field blank

D = Duplicate TB = Trip blank EB = Equipment blank

SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	BBH-S-35-4	009238-01	Soil	1 Ϥ 09/1 p /20
2	BBH-S-36-4	009238-02	Soil	09/19/20
3	BBH-S-37-4	009238-03	Soil	09/19/20
1	BBH-S-38-4	009238-04	Soil	09/19/20
5	BBH-S-39-4	009238-05	Soil	09/19/20
3	BBH-S-40-4	009238-06	Soil	09/19/20
,	BBH-S-41-4	009238-07	Soil	09/19/20
	BBH-S-42-4	009238-08	Soil	09/19/20
)	BBH-S-35-4MS	009238-01MS	Soil	09/19/20
0_	BBH-S-35-4MSD	009238-01MSD	Soil	09/19/20
1_				V
2				
3				
4				

Notes:

LDC #: 49215 WG

VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference

Page: 1 of 1
Reviewer: DTM

All circled elements are applicable to each sample.

		
Sample ID	Matrix	Target Analyte List (TAL)
1-3,7	S	Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, (Cu) Fe, Pb, Li, Mg, Mo, Mn, (A), Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
4-6,8	S	Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Mg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
0°9-10	<u>S</u>	Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, 🐠 Fe, Pb, Li, Mg, Mo, Mn, ᠪ, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
_		
1		
		Analysis Method
ICP		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
ICP-MS	- 1	Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
GFAA_		Al Sh As Ba Be B Cd Ca Cr Co Cu Fe Ph Li Mg Mo Mn Hg Ni K Se Ag Na Sr Tl Sn Ti W U V Zn

Comments: Mercury by CVAA if performed

2701 Loker Ave. West, Suite 220, Carlsbad, CA 92010 Bus: 760-827-1100 Fax: 760-827-1099

Aspect Consulting LLC 701 Second Ave., Suite 550 Seattle, WA 98104 ATTN: Ms. Carla Brock November 17, 2020

cbrock@aspectconsulting.com

SUBJECT: Kimberly-Clark Upland Area, Data Validation

Dear Ms. Brock,

Enclosed are the final validation reports for the fractions listed below. These SDGs were received on October 30, 2020. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project #49554:

SDG #	Fraction
009289, 009316, 009348, 009369 009431, 009494, 009564, 010033 010063, 010302, 010084, 010110	Polynuclear Aromatic Hydrocarbons, Metals, Total Petroleum Hydrocarbons as Extractables
010130, 010155, 010179, 010208 010237, 010269	

The data validation was performed under Stage 2A guidelines. The analyses were validated using the following documents, as applicable to each method:

- USEPA National Functional Guidelines for Organic Superfund Methods Data Review, January 2017
- USEPA National Functional Guidelines for Inorganic Superfund Methods Data Review;
 January 2017
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; update IV, February 2007; update V, July 2014

Please feel free to contact us if you have any questions.

Sincerely.

Christina Rink crink@lab-data.com

Project Manager/Senior Chemist

Attachment 1 309 pages-ADV LDC #49554 (Aspect Consulting, LLC - Seattle, WA / Kimberly-Clark Upland Area 2020 Interm Action) Stage 2A EDD (18) PAH (3) TPH-E (NWTPH DATE DATE (8270E | Metals Cu Cu.Zn Zn Hg LDC SDG# REC'D DUE (6020B) (6020B) (6020B) (6020B) (1631E) -Dx) -SIM) ws | w | s | w | s | w | s w s w s w s w s w w s w s w s w s W w s Matrix: Water/Soil S S 0 0 0 009289 10/30/20 11/20/20 В 009316 10/30/20 11/20/20 0 13 0 13 0 0 009348 10/30/20 11/20/20 4 0 D 009369 10/30/20 11/20/20 0 19 19 F 10/30/20 11/20/20 0 0 8 009431 8 0 009494 10/30/20 11/20/20 0 0 G 009564 10/30/20 11/20/20 0 0 0 10 Н 010033 10/30/20 11/20/20 0 0 010063 10/30/20 11/20/20 0 5 0 2 0 2 0 8 0 5 10/30/20 11/20/20 010302 10/30/20 11/20/20 0 4 0 0 010084 010110 10/30/20 11/20/20 0 6 0 6 0 Μ 010130 10/30/20 11/20/20 0 12 12 010155 10/30/20 11/20/20 0 10 0 10 Ν 0 010179 10/30/20 11/20/20 0 13 0 13 Р 010208 10/30/20 11/20/20 0 0 0 0 11 Q 0 3 10/30/20 11/20/20 010237 R 10/30/20 11/20/20 0 3 0 17 010269 6 0 0 0 0 0 T/CR 102 163 Total

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Kimberly-Clark Upland Area

LDC Report Date:

November 16, 2020

Parameters:

Metals

Validation Level:

Stage 2A

Laboratory:

Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 009289

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
BBH-S-43-41	009289-01	Soil	09/16/20
BBH-S-44-4	009289-02	Soil	09/16/20
BBH-S-45-4	009289-03	Soil	09/16/20
BBH-S-46-4	009289-04	Soil	09/16/20
BBH-B-25-10	009289-05	Soil	09/16/20
BBH-S-16-8	009289-06	Soil	09/16/20
BBH-S-33-8	009289-07	Soil	09/16/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Copper and Zinc by Environmental Protection Agency (EPA) SW 846 Method 6020B Mercury by EPA Method 1631E

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. ICPMS Tune

ICP-MS tune data were not reviewed for Stage 2A validation.

III. Instrument Calibration

Instrument calibration data were not reviewed for Stage 2A validation.

IV. ICP Interference Check Sample Analysis

ICP Interference check sample (ICS) analysis data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

IX. Serial Dilution

Serial dilution was not performed for this SDG.

X. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits.

XI. Field Duplicates

No field duplicates were identified in this SDG.

XII. Internal Standards (ICP-MS)

Internal standards data were not reviewed for Stage 2A validation.

XIII. Sample Result Verification

Raw data were not reviewed for Stage 2A validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected in this SDG.

Kimberly-Clark Upland Area Metals - Data Qualification Summary - SDG 009289

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Metals - Laboratory Blank Data Qualification Summary - SDG 009289

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Metals - Field Blank Data Qualification Summary - SDG 009289

No Sample Data Qualified in this SDG

LDC #: 49554A4a SDG #: 009289

VALIDATION COMPLETENESS WORKSHEET

Stage 2A

Date: 11/12/2020 Page: 1 of 1 Reviewer: DTM 2nd Reviewer:

Laboratory: Friedman & Bruya, Inc.

METHOD: Metals (EPA SW 846 Method 6020B/EPA Method 1631E)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
	I vandation state	+	
l.	Sample receipt/Technical holding times	A/A	
II.	ICP/MS Tune	N	
111.	Instrument Calibration	N	
IV.	ICP Interference Check Sample (ICS) Analysis	N	
V.	Laboratory Blanks	А	
VI.	Field Blanks	N	
VII.	Matrix Spike/Matrix Spike Duplicates	N	
VIII.	Duplicate sample analysis	N	
IX.	Serial Dilution	N	
x.	Laboratory control samples	Α	LCS
XI.	Field Duplicates	N	
XII.	Internal Standard (ICP-MS)	N	
XIII.	Sample Result Verification	N	
XIV.	Overall Assessment of Data	А	

Note:

A = Acceptable

ND = No compounds detected D = Duplicate

SB=Source blank OTHER:

N = Not provided/applicable SW = See worksheet

R = Rinsate FB = Field blank

TB = Trip blank EB = Equipment blank

	Client ID	Lab ID	Matrix	Date
1	BBH-S-43-41	009289-01	Soil	09/16/20
2	BBH-S-44-4	009289-02	Soil	09/16/20
3	BBH-S-45-4	009289-03	Soil	09/16/20
4	BBH-S-46-4	009289-04	Soil	09/16/20
5	BBH-B-25-10	009289-05	Soil	09/16/20
6	BBH-S-16-8	009289-06	Soil	09/16/20
7	BBH-S-33-8	009289-07	Soil	09/16/20
8				

Notes:

LDC #: 49554A4a

VALIDATION FINDINGS WORKSHEET <u>Sample Specific Element Reference</u>

Page: 1 of 1
Reviewer: DTM

All circled elements are applicable to each sample.

All circled elements are applicable to each sample.				
Sample ID	Matrix	Target Analyte List (TAL)		
1	S	Cu		
5-7	S	Cu, Zn		
ALL	S	Hg		
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn		
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn		
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn		
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn		
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn		
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn		
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn		
		Analysis Method		
ICP		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn		
ICP-MS		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn		
GFAA		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn		

Comments: Mercury by CVAA if performed

Laboratory Data Consultants, Inc. **Data Validation Report**

Project/Site Name:

Kimberly-Clark Upland Area

LDC Report Date:

November 16, 2020

Parameters:

Metals

Validation Level:

Stage 2A

Laboratory:

Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 009316

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
BBH-B-23-10	009316-01	Soil	09/17/20
BBH-S-18-8	009316-02	Soil	09/17/20
BBH-S-17-8	009316-03	Soil	09/17/20
BBH-B-22-10	009316-04	Soil	09/17/20
BBH-S-14-8	009316-05	Soil	09/17/20
BBH-S-13-8	009316-06	Soil	09/17/20
BBH-518	009316-07	Soil	09/17/20
BBH-S-15-8	009316-08	Soil	09/17/20
BBH-S-19-8	009316-09	Soil	09/17/20
BBH-S-20-8	009316-10	Soil	09/17/20
BBH-B-25-10	009316-11	Soil	09/17/20
BBH-S-22-8	009316-12	Soil	09/17/20
BBH-S-21-8	009316-13	Soil	09/17/20
BBH-B-23-10MS	009316-01MS	Soil	09/17/20
BBH-B-23-10MSD	009316-01MSD	Soil	09/17/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Copper and Zinc by Environmental Protection Agency (EPA) SW 846 Method 6020B Mercury by EPA Method 1631E

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. ICPMS Tune

ICP-MS tune data were not reviewed for Stage 2A validation.

III. Instrument Calibration

Instrument calibration data were not reviewed for Stage 2A validation.

IV. ICP Interference Check Sample Analysis

ICP Interference check sample (ICS) analysis data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	MS (%R) (Limits)	MSD (%R) (Limits)	Flag	A or P
BBH-B-23-10MS/MSD (BBH-B-23-10)	Mercury	157 (71-125)	-	J (all detects)	А
BBH-B-23-10MS/MSD (BBH-S-18-8 BBH-S-17-8 BBH-B-22-10 BBH-S-13-8 BBH-S-13-8 BBH-S-15-8 BBH-S-19-8 BBH-S-20-8 BBH-B-25-10 BBH-S-22-8 BBH-S-21-8)	Mercury	157 (71-125)	-	NA	-

Relative percent differences (RPD) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	RPD (Limits)	Flag	A or P
BBH-B-23-10MS/MSD (All samples in SDG 009316)	Mercury	23 (≤20)	J (all detects) UJ (all non-detects)	A

VIII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

IX. Serial Dilution

Serial dilution was not performed for this SDG.

X. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits.

XI. Field Duplicates

Samples BBH-B-23-10 and BBH-518 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentra	Concentration (mg/Kg)		
Analyte	BBH-B-23-10	BBH-518	RPD	
Copper	49.2	32.5	41	
Zinc	86.3	60.2	36	
Mercury	0.13	0.1U	Not calculable	

XII. Internal Standards (ICP-MS)

Internal standards data were not reviewed for Stage 2A validation.

XIII. Sample Result Verification

Raw data were not reviewed for Stage 2A validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the methods.

Due to MS/MSD %R and RPD, data were qualified as estimated in thirteen samples.

No results were rejected in this SDG.

Kimberly-Clark Upland Area Metals - Data Qualification Summary - SDG 009316

Sample	Analyte	Flag	A or P	Reason
BBH-B-23-10	Mercury	J (all detects)	А	Matrix spike/Matrix spike duplicate (%R)
BBH-B-23-10 BBH-S-18-8 BBH-S-17-8 BBH-B-22-10 BBH-S-14-8 BBH-S-13-8 BBH-S-15-8 BBH-S-15-8 BBH-S-19-8 BBH-S-20-8 BBH-B-25-10 BBH-S-22-8 BBH-S-22-8 BBH-S-21-8	Mercury	J (all detects) UJ (all non-detects)	Α	Matrix spike/Matrix spike duplicate (RPD)

Kimberly-Clark Upland Area Metals - Laboratory Blank Data Qualification Summary - SDG 009316

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Metals - Field Blank Data Qualification Summary - SDG 009316

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Stage 2A

SDG #: 009316
Laboratory: Friedman & Bruya, Inc.

LDC #: 49554B4a

Page:<u>1</u> of <u>2</u> Reviewer: <u>DTM</u> 2nd Reviewer:

Date: 11/12/2020

METHOD: Metals (EPA SW 846 Method 6020B/EPA Method 1631E)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Sample receipt/Technical holding times	A/A	
JI	ICP/MS Tune	N	
111.	Instrument Calibration	N	
IV.	ICP Interference Check Sample (ICS) Analysis	N	
V.	Laboratory Blanks	А	
VI.	Field Blanks	N	
VII.	Matrix Spike/Matrix Spike Duplicates	sw	
VIII.	Duplicate sample analysis	N	
IX.	Serial Dilution	N	
X.	Laboratory control samples	А	LCS
XI.	Field Duplicates	sw	(1,7)
XII.	Internal Standard (ICP-MS)	N	
XIII.	Sample Result Verification	N	
XIV.	Overall Assessment of Data	А	

Note:

A = Acceptable

N = Not provided/applicable

SW = See worksheet

ND = No compounds detected D = Duplicate

R = Rinsate FB = Field blank TB = Trip blank

EB = Equipment blank

SB=Source blank

OTHER:

			,	 _
	Client ID	Lab ID	Matrix	Date
1	BBH-B-23-10	009316-01	Soil	09/17/20
2	BBH-S-18-8	009316-02	Soil	09/17/20
3	BBH-S-17-8	009316-03	Soil	09/17/20
4	BBH-B-22-10	009316-04	Soil	09/17/20
5	BBH-S-14-8	009316-05	Soil	09/17/20
6	BBH-S-13-8	009316-06	Soil	09/17/20
7	BBH-518	009316-07	Soil	09/17/20
8	BBH-S-15-8	009316-08	Soil	09/17/20
9	BBH-S-19-8	009316-09	Soil	09/17/20
10	BBH-S-20-8	009316-10	Soil	09/17/20
11	BBH-B-25-10	009316-11	Soil	09/17/20
12	BBH-S-22-8	009316-12	Soil	09/17/20

LDC #: 49554B4a SDG #: 009316

VALIDATION COMPLETENESS WORKSHEET

Stage 2A

Date: <u>11/12/2020</u> Page: <u>2</u> of <u>2</u>

Reviewer: <u>DTM</u>
2nd Reviewer:

Laboratory: Friedman & Bruya, Inc.

METHOD: Metals (EPA SW 846 Method 6020B/EPA Method 1631E)

	Client ID	Lab ID	Matrix	Date
13	BBH-S-21-8	009316-13	Soil	09/17/20
14	BBH-B-23-10MS	009316-01MS	Soil	09/17/20
15	BBH-B-23-10MSD	009316-01MSD	Soil	09/17/20
16				
17_				
18				

Notes:

LDC #: 49554B4a

VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference

Page: 1 of 1
Reviewer: DTM

All circled elements are applicable to each sample.

All circled elements are applicable to each sample.					
Sample ID	Matrix	Target Analyte List (TAL)			
2-3,5-7,10-13	S	Cu, Zn, Hg			
1,4,8-9	S	Cu, Zn			
1,4,8-9	s	Hg			
QC 14-15	S	Cu, Zn, Hg			
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn			
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn			
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn			
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn			
	-	Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn			
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn			
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn			
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn			
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn			
		Analysis Method			
ICP		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn			
ICP-MS		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn			
GFAA		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn			

Comments: Mercury by CVAA if performed

LDC #: 49554B4a

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

Page: 1 of 1
Reviewer: DTM

METHOD: Trace metals (EPA SW 846 Method 6020/6010/7470)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Was a matrix spike analyzed for each matrix in this SDG?

YNA Were matrix spike percent recoveries (%R) within the control limits of 75-125? If the sample concentration exceeded the spike concentration

by a factor of 4 or more, no action was taken.

<u>Y \bigcirc N/A</u> Were all duplicate sample relative percent differences (RPD) ≤ 20% for samples?

LEVEL IV ONLY:

YNMXA

Were recalculated results acceptable? See Level IV Recalculation Worksheet for recalculations.

#	MS/MSD ID	Matrix	Analyte	MS %Recovery	MSD %Recovery	RPD (Limits)	Associated Samples	Qual	DET	ND	PS Recovery%
	14/15	S	Hg	157(71-125)			ALL	J/A	1	2-13	
			Hg			23(20)	ALL	J/UJ/A	1	2-13	
-			! 								
						<u> </u>		 	-	├	}
\vdash		<u> </u>						 	 	+-	;
-		<u> </u>								1	
┢					<u> </u>		<u> </u>	 	<u> </u>	†	
\vdash										-	
\vdash											
				<u> </u>					<u> </u>	<u> </u>	<u> </u>
-								 	<u> </u>	├	
-									-	 	-
									 	 	
										1	

Comments:

LDC#: 49554B4a

VALIDATION FINDINGS WORKSHEET

Field Duplicates

Page:_1_of_1_ Reviewer:_DTM_

METHOD: Metals (EPA Method 6010/6020/7000)

	Concentrat	RPD	
Analyte	1	7	
Copper	49.2	32.5	41
Zinc	86.3	60.2	36
Mercury	0.13	0.1U	NC

Laboratory Data Consultants, Inc. **Data Validation Report**

Project/Site Name:

Kimberly-Clark Upland Area

LDC Report Date:

November 16, 2020

Parameters:

Metals

Validation Level:

Stage 2A

Laboratory:

Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 009348

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
BBH-B-16-10	009348-01	Soil	09/18/20
BBH-S-23-8	009348-02	Soil	09/18/20
BBH-S-24-8	009348-03	Soil	09/18/20
BBH-B-27-10	009348-04	Soil	09/18/20
BBH-B-16-10MS	009348-01MS	Soil	09/18/20
BBH-B-16-10MSD	009348-01MSD	Soil	09/18/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Copper and Zinc by Environmental Protection Agency (EPA) SW 846 Method 6020B Mercury by EPA Method 1631E

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- (Not Applicable): The non-conformance discovered during data validation NA demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. ICPMS Tune

ICP-MS tune data were not reviewed for Stage 2A validation.

III. Instrument Calibration

Instrument calibration data were not reviewed for Stage 2A validation.

IV. ICP Interference Check Sample Analysis

ICP Interference check sample (ICS) analysis data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VIII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

IX. Serial Dilution

Serial dilution was not performed for this SDG.

X. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits.

XI. Field Duplicates

No field duplicates were identified in this SDG.

XII. Internal Standards (ICP-MS)

Internal standards data were not reviewed for Stage 2A validation.

XIII. Sample Result Verification

Raw data were not reviewed for Stage 2A validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected in this SDG.

Kimberly-Clark Upland Area Metals - Data Qualification Summary - SDG 009348

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Metals - Laboratory Blank Data Qualification Summary - SDG 009348

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Metals - Field Blank Data Qualification Summary - SDG 009348

No Sample Data Qualified in this SDG

LDC #: 49554C4a VALIDATION COMPLETENESS WORKSHEET

Stage 2A

SDG #: 009348 Laboratory: Friedman & Bruya, Inc. Page: 1_of 1 Reviewer: <u>DTM</u> 2nd Reviewer:

Date:11/12/2020

METHOD: Metals (EPA SW 846 Method 6020B/EPA Method 1631E)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
	Validation Area		Comments
1.	Sample receipt/Technical holding times	A/A	
11.	ICP/MS Tune	N	
m.	Instrument Calibration	N	
IV.	ICP Interference Check Sample (ICS) Analysis	N	
V.	Laboratory Blanks	А	
VI.	Field Blanks	N	
VII.	Matrix Spike/Matrix Spike Duplicates	А	
VIII.	Duplicate sample analysis	N	
IX.	Serial Dilution	N	
X.	Laboratory control samples	А	LCS
XI.	Field Duplicates	N	
XII.	Internal Standard (ICP-MS)	N	
XIII.	Sample Result Verification	N	
XIV.	Overall Assessment of Data	А	

Note:

A = Acceptable

ND = No compounds detected D = Duplicate

R = Rinsate Ti

TB = Trip blank

SB=Source blank

N = Not provided/applicable SW = See worksheet

FB = Field blank

EB = Equipment blank

OTHER:

	Client ID	Lab ID	Matrix	Date
}	Client ID	Labib	IVIALITA	Date
1	BBH-B-16-10	009348-01	Soil	09/18/20
2	BBH-S-23-8	009348-02	Soil	09/18/20
3	BBH-S-24-8	009348-03	Soil	09/18/20
4	BBH-B-27-10	009348-04	Soil	09/18/20
5	BBH-B-16-10MS	009348-01MS	Soil	09/18/20
6	BBH-B-16-10MSD	009348-01MSD	Soil	09/18/20
7				
8				
9				

Notes:

LDC #: 49554C4a

VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference

Page: 1 of 1
Reviewer: DTM

All circled elements are applicable to each sample.

Till Silver	C.Helles	are applicable to each sample.
Sample ID	Matrix	Target Analyte List (TAL)
1-4	S	Cu, Zn, Hg
		cu, zii, rig
QC 5-6	S	Cu, Zn, Hg
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Analysis Method
ICP		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
ICP-MS		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
GFAA		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn

Comments: Mercury by CVAA if performed

Laboratory Data Consultants, Inc. **Data Validation Report**

Project/Site Name:

Kimberly-Clark Upland Area

LDC Report Date:

November 16, 2020

Parameters:

Metals

Validation Level:

Stage 2A

Laboratory:

Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 009369

	Laboratory Sample	T	Collection
Sample Identification	Identification	Matrix	Date
BBH-S-47-4	0093969-01	Soil	09/21/20
BBH-S-48-4	0093969-02	Soil	09/21/20
BBH-S-49-4	0093969-03	Soil	09/21/20
BBH-S-49-8	0093969-04	Soil	09/21/20
BBH-519	0093969-05	Soil	09/21/20
BBH-S-50-4	0093969-06	Soil	09/21/20
BBH-S-51-4	0093969-07	Soil	09/21/20
BBH-S-51-8	0093969-08	Soil	09/21/20
BBH-S-53-4	0093969-09	Soil	09/21/20
BBH-S-52-8	0093969-10	Soil	09/21/20
BBH-S-54-4	0093969-11	Soil	09/21/20
BBH-S-55-4	0093969-12	Soil	09/21/20
BBH-B-21-10	0093969-13	Soil	09/21/20
BBH-S-04-8	0093969-14	Soil	09/21/20
BBH-S-06-8	0093969-15	Soil	09/21/20
BBH-B-26-10	0093969-16	Soil	09/21/20
BBH-S-56-4	0093969-17	Soil	09/21/20
BBH-S-08-8	0093969-18	Soil	09/21/20
BBH-S-05-8	0093969-19	Soil	09/21/20
BBH-S-47-4MS	0093969-01MS	Soil	09/21/20
BBH-S-47-4MSD	0093969-01MSD	Soil	09/21/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Copper and Zinc by Environmental Protection Agency (EPA) SW 846 Method 6020B Mercury by EPA Method 1631E

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. ICPMS Tune

ICP-MS tune data were not reviewed for Stage 2A validation.

III. Instrument Calibration

Instrument calibration data were not reviewed for Stage 2A validation.

IV. ICP Interference Check Sample Analysis

ICP Interference check sample (ICS) analysis data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VIII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

IX. Serial Dilution

Serial dilution was not performed for this SDG.

X. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits.

XI. Field Duplicates

Samples BBH-S-49-8 and BBH-519 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentra		
Analyte	BBH-S-49-8	BBH-519	RPD
Copper	20.5	18.7	9
Zinc	43.0	42.4	1

XII. internal Standards (ICP-MS)

Internal standards data were not reviewed for Stage 2A validation.

XIII. Sample Result Verification

Raw data were not reviewed for Stage 2A validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected in this SDG.

Kimberly-Clark Upland Area Metals - Data Qualification Summary - SDG 009369

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Metals - Laboratory Blank Data Qualification Summary - SDG 009369

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Metals - Field Blank Data Qualification Summary - SDG 009369

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Stage 2A

SDG #: 009369
Laboratory: Friedman & Bruya, Inc.

LDC #: 49554D4a

Page: 1_of_2
Reviewer: DTM
2nd Reviewer:

METHOD: Metals (EPA SW 846 Method 6020B/EPA Method 1631E)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
<u>l.</u>	Sample receipt/Technical holding times	A/A	
11.	ICP/MS Tune	N	
111.	Instrument Calibration	N	
IV.	ICP Interference Check Sample (ICS) Analysis	N	
V.	Laboratory Blanks	А	
VI.	Field Blanks	N	
VII.	Matrix Spike/Matrix Spike Duplicates	А	
VIII.	Duplicate sample analysis	N	
IX.	Serial Dilution	N	
X.	Laboratory control samples	А	LCS
XI.	Field Duplicates	sw	(4,5)
XII.	Internal Standard (ICP-MS)	N	
XIII.	Sample Result Verification	N	
XIV.	Overall Assessment of Data	А	

Note:

A = Acceptable

SW = See worksheet

N = Not provided/applicable

ND = No compounds detected D = Duplicate

R = Rinsate FB = Field blank TB = Trip blank

EB = Equipment blank

SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	BBH-S-47-4	0093969-01	Soil	09/21/20
2	BBH-S-48-4	0093969-02	Soil	09/21/20
3	BBH-S-49-4	0093969-03	Soil	09/21/20
4	BBH-S-49-8	0093969-04	Soil	09/21/20
5	BBH-519	0093969-05	Soil	09/21/20
6	BBH-S-50-4	0093969-06	Soil	09/21/20
7	BBH-S-51-4	0093969-07	Soil	09/21/20
8	BBH-S-51-8	0093969-08	Soil	09/21/20
9	BBH-S-53-4	0093969-09	Soil	09/21/20
10	BBH-S-52-8	0093969-10	Soil	09/21/20
11	BBH-S-54-4	0093969-11	Soil	09/21/20
12	BBH-S-55-4	0093969-12	Soil	09/21/20

LDC #: 49554D4a

VALIDATION COMPLETENESS WORKSHEET

Stage 2A

SDG #: 009369 Laboratory: Friedman & Bruya, Inc.

Date:11/12/2020 Page: 2 of 2 Reviewer: <u>DTM</u> 2nd Reviewer:

METHOD: Metals (EPA SW 846 Method 6020B/EPA Method 1631E)

	Client ID	Lab ID	Matrix	Date
13	BBH-B-21-10	0093969-13	Soil	09/21/20
14	BBH-S-04-8	0093969-14	Soil	09/21/20
15_	BBH-S-06-8	0093969-15	Soil	09/21/20
16	BBH-B-26-10	0093969-16	Soil	09/21/20
17	BBH-S-56-4	0093969-17	Soil	09/21/20
18	BBH-S-08-8	0093969-18	Soil	09/21/20
19	BBH-S-05-8	0093969-19	Soil	09/21/20
20	BBH-S-47-4MS	0093969-01MS	Soil	09/21/20
21_	BBH-S-47-4MSD	0093969-01MSD	Soil	09/21/20
22				
23				
24				

Notes:

LDC #: 49554D4a

VALIDATION FINDINGS WORKSHEET <u>Sample Specific Element Reference</u>

Page: 1 of 1
Reviewer: DTM

All circled elements are applicable to each sample.

Sample ID	Matrix	Target Analyte List (TAL)
1-19	S	Cu, Zn, Hg
QC20-21	S	Cu, Zn, Hg
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn Analysis Method
ICP ICP-MS		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
GFAA		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn

Comments: Mercury by CVAA if performed

LDC#: 49554D4a

VALIDATION FINDINGS WORKSHEET

Field Duplicates

Page:_1_of_1_ Reviewer:_DTM_

METHOD: Metals (EPA Method 6010/6020/7000)

	Concen	RPD	
Analyte	4	5	
Copper	20.5	18.7	9
Zinc	43.0	42.4	1

Laboratory Data Consultants, Inc. **Data Validation Report**

Project/Site Name:

Kimberly-Clark Upland Area

LDC Report Date:

November 16, 2020

Parameters:

Metals

Validation Level:

Stage 2A

Laboratory:

Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 009431

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
BBH-S-57-4	009431-01	Soil	09/22/20
BBH-S-57-8	009431-02	Soil	09/22/20
BBH-B-24-10	009431-03	Soil	09/22/20
BBH-S-58-4	009431-04	Soil	09/23/20
BBH-S-59-4	009431-05	Soil	09/23/20
BBH-S-10-8	009431-06	Soil	09/23/20
BBH-B-15-10	009431-07	Soil	09/23/20
BBH-S-09-8	009431-08	Soil	09/23/20
BBH-S-57-4MS	009431-01MS	Soil	09/22/20
BBH-S-57-4MSD	009431-01MSD	Soil	09/22/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Copper and Zinc by Environmental Protection Agency (EPA) SW 846 Method 6020B Mercury by EPA Method 1631E

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. ICPMS Tune

ICP-MS tune data were not reviewed for Stage 2A validation.

III. Instrument Calibration

Instrument calibration data were not reviewed for Stage 2A validation.

IV. ICP Interference Check Sample Analysis

ICP Interference check sample (ICS) analysis data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	MS (%R) (Limits)	MSD (%R) (Limits)	Flag	A or P
BBH-S-57-4MS/MSD (BBH-S-57-4 BBH-S-57-8 BBH-S-58-4 BBH-S-59-4 BBH-S-10-8 BBH-B-15-10 BBH-S-09-8)	Mercury	-	137 (71-125)	J (all detects)	Α
BBH-S-57-4MS/MSD (BBH-B-24-10)	Mercury	-	137 (71-125)	NA	-

Relative percent differences (RPD) were within QC limits.

VIII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

IX. Serial Dilution

Serial dilution was not performed for this SDG.

X. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits.

XI. Field Duplicates

No field duplicates were identified in this SDG.

XII. Internal Standards (ICP-MS)

Internal standards data were not reviewed for Stage 2A validation.

XIII. Sample Result Verification

Raw data were not reviewed for Stage 2A validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the methods.

Due to MS/MSD %R, data were qualified as estimated in seven samples.

No results were rejected in this SDG.

Kimberly-Clark Upland Area Metals - Data Qualification Summary - SDG 009431

Sample	Analyte	Flag	A or P	Reason
BBH-S-57-4 BBH-S-57-8 BBH-S-58-4 BBH-S-59-4 BBH-S-10-8 BBH-B-15-10 BBH-S-09-8	Mercury	J (all detects)	A	Matrix spike/Matrix spike duplicate (%R)

Kimberly-Clark Upland Area Metals - Laboratory Blank Data Qualification Summary - SDG 009431

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Metals - Field Blank Data Qualification Summary - SDG 009431

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET Stage 2A

SDG #: 009431

LDC #: 49554E4a

Laboratory: Friedman & Bruya, Inc.

Date: 11/12/2020

Page: 1 of 1 Reviewer: DTM 2nd Reviewer;

METHOD: Metals (EPA SW 846 Method 6020B/EPA Method 1631E)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Sample receipt/Technical holding times	A/A	
11.	ICP/MS Tune	N	
III.	Instrument Calibration	N	
IV.	ICP Interference Check Sample (ICS) Analysis	N	
V.	Laboratory Blanks	А	
VI.	Field Blanks	N	
VII.	Matrix Spike/Matrix Spike Duplicates	sw	
VIII.	Duplicate sample analysis	N	
IX.	Serial Dilution	N	
X.	Laboratory control samples	А	LCS
XI.	Field Duplicates	N	
XII.	Internal Standard (ICP-MS)	N	
XIII.	Sample Result Verification	N	
XIV.	Overall Assessment of Data	А	

Note:

A = Acceptable

ND = No compounds detected D = Duplicate

R = Rinsate

SB=Source blank

N = Not provided/applicable SW = See worksheet

FB = Field blank

TB = Trip blank EB = Equipment blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	BBH-S-57-4	009431-01	Soil	09/22/20
2	BBH-S-57-8	009431-02	Soil	09/22/20
3	BBH-B-24-10	009431-03	Soil	09/22/20
4	BBH-S-58-4	009431-04	Soil	09/23/20
5	BBH-S-59-4	009431-05	Soil	09/23/20
6	BBH-S-10-8	009431-06	Soil	09/23/20
7	BBH-B-15-10	009431-07	Soil	09/23/20
8	BBH-S-09-8	009431-08	Soil	09/23/20
9	BBH-S-57-4MS	009431-01MS	Soil	09/22/20
10	BBH-S-57-4MSD	009431-01MSD	Soil	09/22/20

Notes:

_LDC #:__49544E4a

VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference

Page: 1 of 1
Reviewer: DTM

All circled elements are applicable to each sample.

All circled elements are applicable to each sample.					
Sample ID	Matrix	Target Analyte List (TAL)			
1-6	s	Cu, Zn			
1-6	S	Hg			
7-8	S	Cu, Zn, Hg			
QC910	S	Cu, Zn, Hg			
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn			
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn			
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn			
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn			
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn			
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn			
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn			
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn			
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn			
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn			
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn			
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn			
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn			
	<u> </u>	Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn			
		Analysis Method			
ICP		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn			
ICP-MS		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn			
GFAA		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn			

Comments: Mercury by CVAA if performed

LDC #: 49554E4a

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

Page: 1 of 1
Reviewer: DTM

METHOD: Trace metals (EPA SW 846 Method 6020/6010/7470)

R	ease see qualifications below for al	l questions answered	"N". Not applicable o	uestions are identified as "	'N/A".

✓ N N/A Was a matrix spike analyzed for each matrix in this SDG?

Were matrix spike percent recoveries (%R) within the control limits of 75-125? If the sample concentration exceeded the spike concentration

by a factor of 4 or more, no action was taken.

<u>A</u> Were all duplicate sample relative percent differences (RPD) \leq 20% for samples?

TEVEL IY ONLY:

Were recalculated results acceptable? See Level IV Recalculation Worksheet for recalculations.

#	MS/MSD ID	Matrix	Analyte	MS %Recovery	MSD %Recovery	RPD (Limits)	Associated Samples	Qual	DET	ND	PS Recovery%
	9/10	s	Hg		137(71-125)		ALL	J/A	1-2,4-8	3	
							<u> </u>			<u> </u>	
\vdash	-										
⊩								1	<u> </u>	<u> </u>	
<u> </u>								-		<u> </u>	
-	<u> </u>									-	
										1	
╟		 								1	
										ļ	<u> </u>
		-							<u> </u>	-	<u> </u>
-		-								<u> </u>	-
			1							}	

Comments:

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Kimberly-Clark Upland Area

LDC Report Date:

November 16, 2020

Parameters:

Metals

Validation Level:

Stage 2A

Laboratory:

Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 009494

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
B2-Trench-01-8	009494-01	Soil	09/25/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Copper, Lead, and Zinc by Environmental Protection Agency (EPA) SW 846 Method 6020B

Mercury by EPA Method 1631E

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- (Not Applicable): The non-conformance discovered during data validation NA demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. ICPMS Tune

ICP-MS tune data were not reviewed for Stage 2A validation.

III. Instrument Calibration

Instrument calibration data were not reviewed for Stage 2A validation.

IV. ICP Interference Check Sample Analysis

ICP Interference check sample (ICS) analysis data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

IX. Serial Dilution

Serial dilution was not performed for this SDG.

X. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits.

XI. Field Duplicates

No field duplicates were identified in this SDG.

XII. Internal Standards (ICP-MS)

Internal standards data were not reviewed for Stage 2A validation.

XIII. Sample Result Verification

Raw data were not reviewed for Stage 2A validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected in this SDG.

Kimberly-Clark Upland Area Metals - Data Qualification Summary - SDG 009494

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Metals - Laboratory Blank Data Qualification Summary - SDG 009494

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Metals - Field Blank Data Qualification Summary - SDG 009494

No Sample Data Qualified in this SDG

LDC #: 49554F4a

VALIDATION COMPLETENESS WORKSHEET

Stage 2A

SDG #: 009494

Laboratory: Friedman & Bruya, Inc.

Date: 11/12/2020 Page: 1_of 1 Reviewer: DTM

2nd Reviewer:

METHOD: Metals (EPA SW 846 Method 6020B/EPA Method 1631E)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1	Sample receipt/Technical holding times	A/A	
II.	ICP/MS Tune	N	
III.	Instrument Calibration	N	
IV.	ICP Interference Check Sample (ICS) Analysis	N	
V.	Laboratory Blanks	Α	
VI.	Field Blanks	N	
VII.	Matrix Spike/Matrix Spike Duplicates	N	
VIII.	Duplicate sample analysis	N	
IX.	Serial Dilution	N	
X.	Laboratory control samples	А	LCS
XI.	Field Duplicates	N	
XII.	Internal Standard (ICP-MS)	N	
XIII.	Sample Result Verification	N	
XIV.	Overall Assessment of Data	А	

Note:

A = Acceptable

ND = No compounds detected D = Duplicate

SB=Source blank

N = Not provided/applicable

SW = See worksheet

R = Rinsate

FB = Field blank

TB = Trip blank EB = Equipment blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	B2-Trench-01-8	009494-01	Soil	09/25/20
2				
3				
4				
5				
6				

Notes:

LDC #: 49554F4a

VALIDATION FINDINGS WORKSHEET <u>Sample Specific Element Reference</u>

Page: 1 of 1
Reviewer: DTM

All circled elements are applicable to each sample.

All circled el	ll circled elements are applicable to each sample.					
l.						
Sample ID	Matrix	Target Analyte List (TAL)				
ALL	S	Pb, Cu, Zn,				
ALL	S	Hg				
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn				
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn				
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn				
-		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn				
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn				
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn				
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn				
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn				
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn				
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn				
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn				
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn				
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn				
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn				
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn				
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn				
T		Analysis Method				
ICP		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn				
ICP-MS		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn				
GFAA		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn				

Comments: Mercury by CVAA if performed

Laboratory Data Consultants, Inc. **Data Validation Report**

Project/Site Name:

Kimberly-Clark Upland Area

LDC Report Date:

November 16, 2020

Parameters:

Total Petroleum Hydrocarbons as Extractables

Validation Level:

Stage 2A

Laboratory:

Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 009494

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
B2-Trench-01-8	009494-01	Soil	09/25/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Petroleum Hydrocarbons (TPH) as Extractables by NWTPH-Dx

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered not detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Kimberly-Clark Upland Area

Total Petroleum Hydrocarbons as Extractables - Data Qualification Summary -SDG 009494

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area

Total Petroleum Hydrocarbons as Extractables - Laboratory Blank Data **Qualification Summary - SDG 009494**

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area

Total Petroleum Hydrocarbons as Extractables - Field Blank Data Qualification **Summary - SDG 009494**

No Sample Data Qualified in this SDG

Labo	ratory: Friedman & Bruya, Inc.				2nd	Reviewer:
METI	HOD: GC TPH as Extractables (NWTP	H-Dx)			ZIIU	rteviewer.
	samples listed below were reviewed for ation findings worksheets.	each of the f	ollowing valida	ation areas. Valid	ation findings are	e noted in attached
	Validation Area			Cor	nments	
ı.	Sample receipt/Technical holding times	AA				
II.	Initial calibration/ICV	N/N			•	
III.	Continuing calibration	N				
IV.	Laboratory Blanks	A				
V.	Field blanks	12				
VI.	Surrogate spikes	I A				
VII.	Matrix spike/Matrix spike duplicates	1 7	Non air	N	•	
VIII.	Laboratory control samples	A	LCS			
IX.	Field duplicates	N				
X.	Compound quantitation RL/LOQ/LODs	N	Dry weigh	4 basis=1		
XI.	Target compound identification	N				
XII	Overall assessment of data	P				
	SW = See worksheet FB =	Field blank		EB = Equipment b	Matrix	Date
	B2-Trench-01-8			009494-01	Soil	09/25/20
2	BE HONOTO			00010101	0011	00/20/20
3						
4						
5						
6						
7			W **			
8						
9			***			
10						
11						
12						
13						
otes:	<u> </u>		1 1		· I I	
110	10-2202 MB					
\dashv				***************************************		
- 1			1 1		1 1	

VALIDATION COMPLETENESS WORKSHEET

Stage 2A

Date: 11/12/20

Page: lof 1

LDC #: 49554F8

SDG #: 009494

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Kimberly-Clark Upland Area

LDC Report Date:

November 16, 2020

Parameters:

Metals

Validation Level:

Stage 2A

Laboratory:

Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 009564

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
BBH-S-60-4	009564-01	Soil	09/30/20
BBH-S-60-8	009564-02	Soil	09/30/20
BBH-S-61-4	009564-03	Soil	09/30/20
BBH-S-61-8	009564-04	Soil	09/30/20
BBH-S-62-4	009564-05	Soil	09/30/20
BBH-S-63-4	009564-06	Soil	09/30/20
BBH-520	009564-07	Soil	09/30/20
BBH-S-64-4	009564-08	Soil	09/30/20
BBH-S-12-8	009564-09	Soil	09/30/20
BBH-B-13-10	009564-10	Soil	09/30/20
BBH-S-61-4MS	009564-03MS	Soil	09/30/20
BBH-S-61-4MSD	009564-03MSD	Soil	09/30/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Copper and Zinc by Environmental Protection Agency (EPA) SW 846 Method 6020B Mercury by EPA Method 1631E

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. ICPMS Tune

ICP-MS tune data were not reviewed for Stage 2A validation.

III. Instrument Calibration

Instrument calibration data were not reviewed for Stage 2A validation.

IV. ICP Interference Check Sample Analysis

ICP Interference check sample (ICS) analysis data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	MS (%R) (Limits)	MSD (%R) (Limits)	Flag	A or P
BBH-S-61-4MS/MSD (BBH-S-61-4 BBH-S-63-4 BBH-S-64-4 BBH-S-12-8 BBH-B-13-10)	Соррег	-	153 (75-125)	J (all detects)	А
BBH-S-61-4MS/MSD (BBH-S-61-4 BBH-S-63-4 BBH-S-12-8 BBH-B-13-10)	Zinc	162 (75-125)	215 (75-125)	J (all detects)	А

Relative percent differences (RPD) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	RPD (Limits)	Flag	A or P
BBH-S-61-4MS/MSD (BBH-S-61-4 BBH-S-63-4 BBH-S-64-4 BBH-S-12-8 BBH-B-13-10)	Copper	25 (≤20)	J (all detects)	A
BBH-S-61-4MS/MSD (BBH-S-61-4 BBH-S-63-4 BBH-S-12-8 BBH-B-13-10)	Zinc	28 (≤20)	J (all detects)	A

VIII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

IX. Serial Dilution

Serial dilution was not performed for this SDG.

X. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits.

XI. Field Duplicates

Samples BBH-S-60-4 and BBH-520 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentra		
Analyte	BBH-S-60-4	BBH-520	RPD
Mercury	1.9	1.5	24

XII. Internal Standards (ICP-MS)

Internal standards data were not reviewed for Stage 2A validation.

XIII. Sample Result Verification

Raw data were not reviewed for Stage 2A validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the methods.

Due to MS/MSD %R and RPD, data were qualified as estimated in five samples.

No results were rejected in this SDG.

Kimberly-Clark Upland Area Metals - Data Qualification Summary - SDG 009564

Sample	Analyte	Flag	A or P	Reason
BBH-S-61-4 BBH-S-63-4 BBH-S-64-4 BBH-S-12-8 BBH-B-13-10	Copper	J (all detects)	А	Matrix spike/Matrix spike duplicate (%R)(RPD)
BBH-S-61-4 BBH-S-63-4 BBH-S-12-8 BBH-B-13-10	Zinc	J (all detects)	А	Matrix spike/Matrix spike duplicate (%R)(RPD)

Kimberly-Clark Upland Area Metals - Laboratory Blank Data Qualification Summary - SDG 009564

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Metals - Field Blank Data Qualification Summary - SDG 009564

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Stage 2A

SDG #: 009564 Laboratory: Friedman & Bruya, Inc.

LDC #: 49554G4a

Date: 11/12/2020 Page: 1 of 1 Reviewer:DTM 2nd Reviewer:

METHOD: Metals (EPA SW 846 Method 6020B/EPA Method 1631E)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
l.	Sample receipt/Technical holding times	A/A	
11.	ICP/MS Tune	N	
111.	Instrument Calibration	N	
IV.	ICP Interference Check Sample (ICS) Analysis	N	
V.	Laboratory Blanks	A	
VI.	Field Blanks	N	
VII.	Matrix Spike/Matrix Spike Duplicates	sw	·
VIII.	Duplicate sample analysis	N	
IX.	Serial Dilution	N	
Х.	Laboratory control samples	Α	LCS
XI.	Field Duplicates	sw	(1,7)
XII.	Internal Standard (ICP-MS)	N	
XIII.	Sample Result Verification	N	
XIV.	Overall Assessment of Data	Α	

Note:

A = Acceptable

ND = No compounds detected D = Duplicate

R = Rinsate

SB=Source blank

N = Not provided/applicable SW = See worksheet

FB = Field blank

TB = Trip blank EB = Equipment blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	BBH-S-60-4	009564-01	Soil	09/30/20
2	BBH-S-60-8	009564-02	Soil	09/30/20
3	BBH-S-61-4	009564-03	Soil	09/30/20
4	BBH-S-61-8	009564-04	Soil	09/30/20
5	BBH-S-62-4	009564-05	Soil	09/30/20
6	BBH-S-63-4	009564-06	Soil	09/30/20
7	BBH-520	009564-07	Soil	09/30/20
8	BBH-S-64-4	009564-08	Soil	09/30/20
9	BBH-S-12-8	009564-09	Soil	09/30/20
10	BBH-B-13-10	009564-10	Soil	09/30/20
11	BBH-S-61-4MS	009564-03MS	Soil	09/30/20
12	BBH-S-61-4MSD	009564-03MSD	Soil	09/30/20

Notes:

LDC #: 49554G4a

VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference

Page: 1 of 1
Reviewer: DTM

All circled elements are applicable to each sample.

All circled elements are applicable to each sample.								
Sample ID	Matrix	Target Analyte List (TAL)						
3,6	S	Cu, Zn						
3,6	s	Нg						
8	s	Cu						
9-10	S	Cu, Zn, Hg						
1-7	S	Hg						
QC 11-12	S	Cu, Zn, Hg						
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn						
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn						
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn						
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn						
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn						
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn						
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn						
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn						
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn						
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn						
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn						
Analysis Method								
ICP		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn						
ICP-MS		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn						
GFAA		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn						

Comments: Mercury by CVAA if performed

LDC #: 49554G4a

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

Page: 1 of 1
Reviewer: DTM

METHOD: Trace metals (EPA SW 846 Method 6020/6010/7470)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

DN N/A

Was a matrix spike analyzed for each matrix in this SDG?

Y(N/ N/A

Were matrix spike percent recoveries (%R) within the control limits of 75-125? If the sample concentration exceeded the spike concentration

by a factor of 4 or more, no action was taken.

Were all duplicate sample relative percent differences (RPD) \leq 20% for samples?

LEVEL IV ONLY:

YN N/A

Were recalculated results acceptable? See Level IV Recalculation Worksheet for recalculations.

#	MS/MSD ID	Matrix	Analyte	MS %Recovery	MSD %Recovery	RPD (Limits)	Associated Samples	Qual	DET	ND	PS Recovery%
	11/12	S	Cu		153(75-125)		3,6,8-10	J/A	ALL		
			Cu			25(20)	3,6,8-10	J/UJ/A	ALL		
			Zn	162(75-125)	215		3,6,9-10	J/A	ALL		
			Zn			28(20)	3,6,9-10	J/UJ/A	ALL		
<u></u>											
<u> </u>										<u> </u>	
			-								
		<u> </u>									

Comments:

LDC#: 49554G4a

VALIDATION FINDINGS WORKSHEET

Field Duplicates

Page:_1_of_1_ Reviewer:_DTM_

METHOD: Metals (EPA Method 6010/6020/7000)

Analyte	Concentra	RPD	
	1	7	
Mercury	1.9	1.5	24

Laboratory Data Consultants, Inc. **Data Validation Report**

Project/Site Name:

Kimberly-Clark Upland Area

LDC Report Date:

November 16, 2020

Parameters:

Metals

Validation Level:

Stage 2A

Laboratory:

Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 010033

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
BBH-S-65-4	010033-01	Soil	10/01/20
BBH-S-66-4	010033-02	Soil	10/01/20
BBH-B-19-10	010033-03	Soil	10/01/20
BBH-S-42-8	010033-04	Soil	10/01/20
BBH-B-20-10	010033-05	Soil	10/01/20
BBH-S-67-8	010033-06	Soil	10/01/20
BBH-B-04-10	010033-07	Soil	10/01/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Copper and Zinc by Environmental Protection Agency (EPA) SW 846 Method 6020B Mercury by EPA Method 1631E

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. ICPMS Tune

ICP-MS tune data were not reviewed for Stage 2A validation.

III. Instrument Calibration

Instrument calibration data were not reviewed for Stage 2A validation.

IV. ICP Interference Check Sample Analysis

ICP Interference check sample (ICS) analysis data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

IX. Serial Dilution

Serial dilution was not performed for this SDG.

X. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits.

XI. Field Duplicates

No field duplicates were identified in this SDG.

XII. Internal Standards (ICP-MS)

Internal standards data were not reviewed for Stage 2A validation.

XIII. Sample Result Verification

Raw data were not reviewed for Stage 2A validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected in this SDG.

Kimberly-Clark Upland Area Metals - Data Qualification Summary - SDG 010033

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Metals - Laboratory Blank Data Qualification Summary - SDG 010033

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Metals - Field Blank Data Qualification Summary - SDG 010033

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

LDC #: 49554H4a SDG #: 010033

Laboratory: Friedman & Bruya, Inc.

Stage 2A

Page: 1 of 1
Reviewer: DTM
2nd Reviewer:

METHOD: Metals (EPA SW 846 Method 6020B/EPA Method 1631E)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Sample receipt/Technical holding times	A/A	
11.	ICP/MS Tune	N	
111.	Instrument Calibration	N	
IV.	ICP Interference Check Sample (ICS) Analysis	N	
V.	Laboratory Blanks	А	·
VI.	Field Blanks	N	
VII.	Matrix Spike/Matrix Spike Duplicates	N	
VIII.	Duplicate sample analysis	N	
IX.	Serial Dilution	N_	
X.	Laboratory control samples	А	LCS
XI.	Field Duplicates	N	
XII.	Internal Standard (ICP-MS)	N	
XIII.	Sample Result Verification	N	
XIV.	Overall Assessment of Data	А	

Note:

A = Acceptable

ND = No compounds detected D = Duplicate

TB = Trip blank

SB=Source blank

N = Not provided/applicable SW = See worksheet R = Rinsate FB = Field blank

EB = Equipment blank

OTHER:

	Client ID	Lab ID	Matrix	Date	
1	BBH-S-65-4	010033-01	Soil	10/01/20	
2	BBH-S-66-4	010033-02	Soil	10/01/20	
3	BBH-B-19-10	010033-03	Soil	10/01/20	
4	ввн-s-42-8	010033-04	Soil	10/01/20	
5	ввн-в-20-10	010033-05	Soil	10/01/20	
6	BBH-S-67-8	010033-06	Soil	10/01/20	
7	BBH-B-04-10	010033-07	Soil	10/01/20	
8					

Notes:

LDC #: 49554H4a

VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference

Page: 1 of 1
Reviewer: DTM

All circled elements are applicable to each sample.

		аге аррисавие то еаси запирие.
Sample ID	Matrix	Target Analyte List (TAL)
2-3,5-7	S	Cu, Zn, Hg
1,4	S	Нg
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Analysis Method
ICP		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
ICP-MS		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
GFAA		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn

Comments: Mercury by CVAA if performed

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Kimberly-Clark Upland Area

November 16, 2020 **LDC Report Date:**

Parameters: Metals

Validation Level: Stage 2A

Friedman & Bruya, Inc. Laboratory:

Sample Delivery Group (SDG): 010063

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
BBH-B-24-11	010063-01	Soil	10/02/20
BBH-B-17-10	010063-02	Soil	10/02/20
DT-B-04-8	010063-03	Soil	10/02/20
DT-B-02-8	010063-04	Soil	10/02/20
DT-B-05-8	010063-05	Soil	10/02/20
DT-521	010063-06	Soil	10/02/20
DT-B-03-8	010063-07	Soil	10/02/20
BBH-S-68-8	010063-08	Soil	10/02/20
BBH-S-69-4	010063-09	Soil	10/02/20
BBH-B-17-10MS	010063-02MS	Soil	10/02/20
BBH-B-17-10MSD	010063-02MSD	Soil	10/02/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Copper, Lead, and Zinc by Environmental Protection Agency (EPA) SW 846 Method 6020B

Mercury by EPA Method 1631E

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. ICPMS Tune

ICP-MS tune data were not reviewed for Stage 2A validation.

III. Instrument Calibration

Instrument calibration data were not reviewed for Stage 2A validation.

IV. ICP Interference Check Sample Analysis

ICP Interference check sample (ICS) analysis data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VIII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

IX. Serial Dilution

Serial dilution was not performed for this SDG.

X. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits.

XI. Field Duplicates

Samples DT-B-05-8 and DT-521 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentra			
Analyte	DT-B-05-8 DT-521		RPD	
Copper	45.2	51.0	12	
Lead	12.7	13.7	8	
Zinc	55.4	65.5	17	
Mercury	0.14	0.20	35	

XII. Internal Standards (ICP-MS)

Internal standards data were not reviewed for Stage 2A validation.

XIII. Sample Result Verification

Raw data were not reviewed for Stage 2A validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected in this SDG.

Kimberly-Clark Upland Area Metals - Data Qualification Summary - SDG 010063

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Metals - Laboratory Blank Data Qualification Summary - SDG 010063

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Metals - Field Blank Data Qualification Summary - SDG 010063

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

LDC #: 49554I4a SDG #: 010063

Stage 2A

Laboratory: Friedman & Bruya, Inc.

Date:11/12/2020 Page:__1_of__1 Reviewer: DTM 2nd Reviewer:

METHOD: Metals (EPA SW 846 Method 6020B/EPA Method 1631E)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
		.,,	
<u> </u>	Sample receipt/Technical holding times	A/A	
11.	ICP/MS Tune	N	
III.	Instrument Calibration	N	
IV.	ICP Interference Check Sample (ICS) Analysis	N	
V.	Laboratory Blanks	А	
VI.	Field Blanks	N	
VII.	Matrix Spike/Matrix Spike Duplicates	А	
VIII.	Duplicate sample analysis	N	
IX.	Serial Dilution	N N	
X.	Laboratory control samples	А	LCS
XI.	Field Duplicates	sw	(5,6)
XII.	Internal Standard (ICP-MS)	N	
XIII.	Sample Result Verification	N	
XIV.	Overall Assessment of Data	А	

Note:

A = Acceptable

SW = See worksheet

N = Not provided/applicable

ND = No compounds detected D = Duplicate

R = Rinsate FB = Field blank

TB = Trip blank

EB = Equipment blank

SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date	
1	BBH-B-24-11	010063-01	Soil	10/02/20	
2	BBH-B-17-10	010063-02	Soil	10/02/20	
3	DT-B-04-8	010063-03	Soil	10/02/20	
4	DT-B-02-8	010063-04	Soil	10/02/20	
5	DT-B-05-8	010063-05	Soil	10/02/20	
6	DT-521	010063-06	Soil	10/02/20	
7	DT-B-03-8	010063-07	Soil	10/02/20	
8	BBH-S-68-8	010063-08	Soil	10/02/20	
9	BBH-S-69-4	010063-09	Soil	10/02/20	
10	BBH-B-17-10MS	010063-02MS	Soil	10/02/20	
11	BBH-B-17-10MSD	010063-02MSD	Soil	10/02/20	

Notes:

LDC #: 49554I4a

VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference

Page: 1 of 1
Reviewer: DTM

All circled elements are applicable to each sample.

All circled el	Il circled elements are applicable to each sample.			
Sample ID	Matrix	Target Analyte List /TAL\		
Sample ID	watrix	Target Analyte List (TAL)		
1	S	Cu		
8	S	Cu, Hg		
2,9	S	Cu, Zn, Hg		
3-7	S	Cu, Pb, Zn		
3-7	S	Hg		
QC 10-11	S	Cu, Pb, Zn, Hg		
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn		
UN DISUNCE.		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn		
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn		
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn		
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn		
		Analysis Method		
ICP		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn		
ICP-MS		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn		
GFAA		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn		

Comments: Mercury by CVAA if performed

_LDC#: 4955414a

VALIDATION FINDINGS WORKSHEET

Field Duplicates

Page:_1_of_1_ Reviewer:_DTM_

METHOD: Metals (EPA Method 6010/6020/7000)

	Concentra	RPD	
Analyte	5	6	
Copper	45.2	51.0	12
Lead	12.7	13.7	8
Zinc	55.4	65.5	17
Mercury	0.14	0.20	35

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Kimberly-Clark Upland Area

LDC Report Date:

November 16, 2020

Parameters:

Total Petroleum Hydrocarbons as Extractables

Validation Level:

Stage 2A

Laboratory:

Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 010063

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
DT-B-04-8	010063-03	Soil	10/02/20
DT-B-02-8	010063-04	Soil	10/02/20
DT-B-05-8	010063-05	Soil	10/02/20
DT-521	010063-06	Soil	10/02/20
DT-B-03-8	010063-07	Soil	10/02/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Petroleum Hydrocarbons (TPH) as Extractables by NWTPH-Dx

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered not detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

Samples DT-B-05-8 and DT-521 were identified as field duplicates. No results were detected in any of the samples.

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Kimberly-Clark Upland Area Total Petroleum Hydrocarbons as Extractables - Data Qualification Summary -SDG 010063

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Total Petroleum Hydrocarbons as Extractables - Laboratory Blank Data **Qualification Summary - SDG 010063**

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Total Petroleum Hydrocarbons as Extractables - Field Blank Data Qualification **Summary - SDG 010063**

No Sample Data Qualified in this SDG

LDC #	#: <u>4955418</u> VALIDATI	ON COMP	PLETENES	S WORKSHE	ET	Date: 11/12/2
	#:			Page: <u> </u>		
_abor	atory: <u>Friedman & Bruya, Inc.</u>				01	Reviewer:
WETH	IOD: GC TPH as Extractables (NWTPF	I-Dx)			2nd	Reviewer:
	·	•			•	•
	amples listed below were reviewed for e	each of the f	ollowing valid	lation areas. Valid	lation findings are	noted in attache
/aiiuai	tion findings worksheets.					
	Validation Area			0		
	Validation Area	A,A		<u> </u>	mments	
<u>l.</u>	Sample receipt/Technical holding times				-	
<u>II.</u>	Initial calibration/ICV	N/N				
111.	Continuing calibration	A				
IV.	Laboratory Blanks					
V.	Field blanks	1 1/2			•	
VI.	Surrogate spikes	A	1 1			
VII.	Matrix spike/Matrix spike duplicates	$\frac{1}{N}$	Non air	ent		
VIII.	Laboratory control samples	 				
IX.	Field duplicates	ND	D = 3+	4		
Х.	Compound quantitation RL/LOQ/LODs	N	Dry weig	ing basis=15		
XI.	Target compound identification	N	<u>'</u>			
XII	Overall assessment of data	<u> </u>	<u> </u>			
lote:	N = Not provided/applicable $R = R$	No compound: insate Field blank	s detected	D = Duplicate TB = Trip blank EB = Equipment l	OTHER	urce blank :
	Client ID			Lab ID	Matrix	Date
1 [OT-B-04-8			010063-03	Soil	10/02/20
2 [OT-B-02-8		· · · · · · · · · · · · · · · · · · ·	010063-04	Soil	10/02/20
3 [OT-B-05-8		D	010063-05	Soil	10/02/20
4 [DT-521		D	010063-06	Soil	10/02/20
5 [OT-B-03-8			010063-07	Soil	10/02/20
6						
7						
В						
9			1TT			
10						
11				1		
12						
otes:						
110	0-2270 MB					
						

Laboratory Data Consultants, Inc. **Data Validation Report**

Project/Site Name:

Kimberly-Clark Upland Area

LDC Report Date:

November 16, 2020

Parameters:

Metals

Validation Level:

Stage 2A

Laboratory:

Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 010302

	Laboratory Sample	1	Collection
Sample Identification	Identification	Matrix	Date
BBH-B-05-11	010302-01	Soil	10/16/20
BBH-S-91-4	010302-02	Soil	10/16/20
BBH-S-91-8	010302-03	Soil	10/16/20
BBH-B-02-11	010302-04	Soil	10/16/20
BBH-S-94-4	010302-05	Soil	10/16/20
BBH-S-92-8	010302-06	Soil	10/16/20
BBH-S-93-8	010302-07	Soil	10/16/20
BBH-S-94-4	010302-08	Soil	10/16/20
BBH-S-95-4	010302-09	Soil	10/16/20
BBH-S-96-4	010302-10	Soil	10/16/20
BBH-S-97-8	010302-11	Soil	10/16/20
BBH-525	010302-12	Soil	10/16/20
BBH-525DL	010302-12DL	Soil	10/16/20
BBH-S-94-8	010302-13	Soil	10/16/20
BBH-S-94-8DL	010302-13DL	Soil	10/16/20
BBH-S-97-8MS	010302-11MS	Soil	10/16/20
BBH-S-97-8MSD	010302-11MSD	Soil	10/16/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Copper and Zinc by Environmental Protection Agency (EPA) SW 846 Method 6020B Mercury by EPA Method 1631E

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- DNR Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. ICPMS Tune

ICP-MS tune data were not reviewed for Stage 2A validation.

III. Instrument Calibration

Instrument calibration data were not reviewed for Stage 2A validation.

IV. ICP Interference Check Sample Analysis

ICP Interference check sample (ICS) analysis data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	MS (%R) (Limits)	MSD (%R) (Limits)	Flag	A or P
BBH-S-97-8MS/MSD (BBH-S-91-4 BBH-S-97-8 BBH-525 BBH-525DL BBH-S-94-8 BBH-S-94-8DL)	Copper	30 (75-125)	136 (75-125)	J (all detects) UJ (all non-detects)	А

Relative percent differences (RPD) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	RPD (Limits)	Flag	A or P
BBH-S-97-8MS/MSD (BBH-S-91-4 BBH-S-97-8 BBH-525 BBH-525DL BBH-S-94-8 BBH-S-94-8DL)	Copper	128 (≤20)	J (all detects) UJ (all non-detects)	Α

VIII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

IX. Serial Dilution

Serial dilution was not performed for this SDG.

X. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits.

XI. Field Duplicates

Samples BBH-525 and BBH-S-94-8 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentra		
Analyte	BBH-525	BBH-S-94-8	RPD
Copper	19.8	18.4	7
Mercury	0.83	0.78	6

XII. internal Standards (ICP-MS)

Internal standards data were not reviewed for Stage 2A validation.

XIII. Sample Result Verification

Raw data were not reviewed for Stage 2A validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the methods.

In the case where more than one result was reported for an individual sample, the least technically acceptable results were deemed not reportable as follows:

Sample	Analyte	Reason	Flag	A or P
BBH-525DL BBH-S-94-8DL	Copper	Sample with lower dilution is more acceptable due to having a detected result.	DNR	-

Due to MS/MSD %R and RPD, data were qualified as estimated in four samples.

No results were rejected in this SDG.

Kimberly-Clark Upland Area Metals - Data Qualification Summary - SDG 010302

Sample	Analyte	Flag	A or P	Reason
BBH-S-91-4 BBH-S-97-8 BBH-525 BBH-S-94-8	Copper	J (all detects)	А	Matrix spike/Matrix spike duplicate (%R)
BBH-S-91-4 BBH-S-97-8 BBH-525 BBH-S-94-8	Copper	J (all detects)	А	Matrix spike/Matrix spike duplicate (RPD)
BBH-525DL BBH-S-94-8DL	Copper	DNR	-	Overall assessment of data

Kimberly-Clark Upland Area Metals - Laboratory Blank Data Qualification Summary - SDG 010302

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Metals - Field Blank Data Qualification Summary - SDG 010302

No Sample Data Qualified in this SDG

LDC #: 49554J4a SDG #: 010302

VALIDATION COMPLETENESS WORKSHEET

Stage 2A

Date: 11/12/2020 Page: 1_of 2 Reviewer: DTM 2nd Reviewer:

Laboratory: Friedman & Bruya, Inc.

METHOD: Metals (EPA SW 846 Method 6020B/EPA Method 1631E)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
ı.	Sample receipt/Technical holding times	A/A	
II.	ICP/MS Tune	N	
111.	Instrument Calibration	N	
IV.	ICP Interference Check Sample (ICS) Analysis	N	
V.	Laboratory Blanks	А	
VI.	Field Blanks	N	
VII.	Matrix Spike/Matrix Spike Duplicates	sw	
VIII.	Duplicate sample analysis	N	
IX.	Serial Dilution	N	
X.	Laboratory control samples	А	LCS
XI.	Field Duplicates	SW	(12,14)(13,15)
XII.	Internal Standard (ICP-MS)	N	
XIII.	Sample Result Verification	N	
XIV.	Overall Assessment of Data	SW	

Note:

A = Acceptable

SW = See worksheet

N = Not provided/applicable

ND = No compounds detected D = Duplicate

R = Rinsate

FB = Field blank

TB = Trip blank

EB = Equipment blank

SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	BBH-B-05-11	010302-01	Soil	10/16/20
2	BBH-S-91-4	010302-02	Soil	10/16/20
3	BBH-S-91-8	010302-03	Soil	10/16/20
4	BBH-B-02-11	010302-04	Soil	10/16/20
5	BBH-S-94-4	010302-05	Soil	10/16/20
6	BBH-S-92-8	010302-06	Soil	10/16/20
7	BBH-S-93-8	010302-07	Soil	10/16/20
8	BBH-S-94-4	010302-08	Soil	10/16/20
9	BBH-S-95-4	010302-09	Soil	10/16/20
10	BBH-S-96-4	010302-10	Soil	10/16/20
11	BBH-S-97-8	010302-11	Soil	10/16/20
12	BBH-525	010302-12	Soil	10/16/20

SDG #: 010302

VALIDATION COMPLETENESS WORKSHEET

Stage 2A

Date: 11/12/2020 Page: 2 of 2

> Reviewer:DTM 2nd Reviewer:

Laboratory: Friedman & Bruya, Inc.

METHOD: Metals (EPA SW 846 Method 6020B/EPA Method 1631E)

	Client ID	Lab ID	Matrix	Date
13	BBH-525DL	010302-12DL	Soil	10/16/20
14	BBH-S-94-8	010302-13	Soil	10/16/20
15_	BBH-S-94-8DL	010302-13DL	Soil	10/16/20
16_	BBH-S-97-8MS	010302-11MS	Soil	10/16/20
17	BBH-S-97-8MSD	010302-11MSD	Soil	10/16/20
18				
19				
20				

Notes:

VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference

Page: 1 of 1
Reviewer: DTM

All circled elements are applicable to each sample.

All circled elements are applicable to each sample.							
1							
Sample ID	Matrix	Target Analyte List (TAL)					
2, 13,15	s	Cu					
12,14	S	Cu, Hg					
3	S	Zn					
11	S	Cu, Zn					
1-11,	S	Hg					
QC 16-17	S	Cu, Zn, Hg					
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn					
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn					
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn					
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn					
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn					
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn					
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn					
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn					
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn					
		Analysis Method					
ICP		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn					
ICP-MS		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn					
GFAA		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn					

Comments: Mercury by CVAA if performed

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

Page: 1 of 1
Reviewer: DTM

METHOD: Trace metals (EPA SW 846 Method 6020/6010/7470)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Was a matrix spike analyzed for each matrix in this SDG?

Y N N/A

Were matrix spike percent recoveries (%R) within the cor

Were matrix spike percent recoveries (%R) within the control limits of 75-125? If the sample concentration exceeded the spike concentration

by a factor of 4 or more, no action was taken.

Y N/A Were all duplicate sample relative percent differences (RPD) ≤ 20% for samples?

LEVEL IV ONLY:

Were recalculated results acceptable? See Level IV Recalculation Worksheet for recalculations.

#	MS/MSD ID	Matrix	Analyte	MS %Recovery	MSD %Recovery	RPD (Limits)	Associated Samples	Qual	DET	ND	PS Recovery%
	16/17	S	Cu	30(75-125)	136		2, 11-15	J/UJ/A		13,15	
			Cu			128(20)	2, 11-15	J/UJ/A		13,15	
-										<u> </u>	
-										 	
-											
											†
H		<u> </u>			1			<u> </u>			┼──┤
\vdash											
<u> </u>											
\vdash						<u> </u>				 	
\vdash											+
-						-					

Comments:

VALIDATION FINDINGS WORKSHEET Field Duplicates

Page:_1_of_1_ Reviewer:_DTM_

METHOD: Metals (EPA Method 6010/6020/7000)

Analyte	Concentrat	RPD	
	12	14	
Copper	19.8	18.4	7
Mercury	0.83	0.78	6

VALIDATION FINDINGS WORKSHEET Overall Assessment of Data

Page: <u>1</u> of <u>:</u> Reviewer: <u>DTN</u>

METHOD: Trace Metals (EPA SW 846 Method 6010/6020/7000)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

All available information pertaining to the data were reviewed using professional judgement to compliment the determination of the overall quality of the data.

Y N N/A Was the overall quality and usability of the data acceptable?

#	Sample ID	Analyte	Finding	Qualification
	13,15	Cu	Sample with lower dilution is more acceptable due to having a detected result.	DNR

Comments:

Laboratory Data Consultants, Inc. **Data Validation Report**

Project/Site Name:

Kimberly-Clark Upland Area

LDC Report Date:

November 16, 2020

Parameters:

Polynuclear Aromatic Hydrocarbons

Validation Level:

Stage 2A

Laboratory:

Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 010084

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
BA7-S-01-3	010084-01	Soil	10/05/20
BA7-S-02-3	010084-02	Soil	10/05/20
BA7-S-01-6	010084-03	Soil	10/05/20
BA7-S-02-6	010084-04	Soil	10/05/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polynuclear Aromatic Hydrocarbons (PAHs) by Environmental Protection Agency (EPA) SW 846 Method 8270E in Selected Ion Monitoring (SIM) mode

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

Instrument performance check data were not reviewed for Stage 2A validation.

III. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

IV. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. Surrogate recoveries (%R) were not within QC limits for sample BA7-S-02-3. Using professional judgment, no data were qualified when one surrogate %R was outside the QC limits and the %R was greater than or equal to 10%.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

Internal standards data were not reviewed for Stage 2A validation.

XII. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XIV. System Performance

Raw data were not reviewed for Stage 2A validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Kimberly-Clark Upland Area Polynuclear Aromatic Hydrocarbons - Data Qualification Summary - SDG 010084

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Polynuclear Aromatic Hydrocarbons - Laboratory Blank Data Qualification **Summary - SDG 010084**

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Polynuclear Aromatic Hydrocarbons - Field Blank Data Qualification Summary -SDG 010084

No Sample Data Qualified in this SDG

SDG #	:49554K2b	LIDATION COMF	PLETENES Stage 2A	S WORKSHEE	•	Date: <u>۱۷۲/۵۰</u> Page:۱ of _ Reviewer: <u></u>	
METH	IOD: GC/MS Polynuclear Aror	matic Hydrocarbons (EPA SW 846	Method 8270E-SII		Reviewer:	
	amples listed below were revie ion findings worksheets.	ewed for each of the f	ollowing valid	ation areas. Valida	tion findings ar	e noted in attache	
	Validation Area			Com	ıments		
1.	Sample receipt/Technical holding t	imes A/A					
H.	GC/MS Instrument performance ch	neck N					
III.	Initial calibration/ICV	N/N					
IV.	IV. Continuing calibration N						
V.	Laboratory Blanks	A					
VI.	Field blanks	N					
VII.	Surrogate spikes	SW	2- one aci	d and one base	out, No		
VIII.	1 NB-one base out, NB-					-	
IX.	Laboratory control samples	A					
X.	Field duplicates	N					
XI.	Internal standards	N					
XII.	Compound quantitation RL/LOQ/LC	DDs N	Dry weigh	NA basis = LY	4		
XIII.	Target compound identification	N					
XIV.	System performance	N					
XV.	Overall assessment of data	A					
lote:	A = Acceptable N = Not provided/applicable SW = See worksheet	ND = No compounds R = Rinsate FB = Field blank	s detected	D = Duplicate TB = Trip blank EB = Equipment bl	OTHER	urce blank R:	
6	Client ID			Lab ID	Matrix	Date	
1 E	3A7-S-01-3			010084-01	Soil	10/05/20	
	3A7-S-02-3			010084-02	Soil	10/05/20	
	3A7-S-01-6			010084-03	Soil	10/05/20	
	3A7-S-02-6			010084-04	Soil	10/05/20	
5		,					
6							
7							
8			= #1				
9							
lotes:							
10	0-2266 MBZ						

Laboratory Data Consultants, Inc. **Data Validation Report**

Project/Site Name:

Kimberly-Clark Upland Area

LDC Report Date:

November 16, 2020

Parameters:

Metals

Validation Level:

Stage 2A

Laboratory:

Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 010084

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
BBH-B-34-10	010084-05	Soil	10/05/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Copper and Zinc by Environmental Protection Agency (EPA) SW 846 Method 6020B Mercury by EPA Method 1631E

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. ICPMS Tune

ICP-MS tune data were not reviewed for Stage 2A validation.

III. Instrument Calibration

Instrument calibration data were not reviewed for Stage 2A validation.

IV. ICP Interference Check Sample Analysis

ICP Interference check sample (ICS) analysis data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

IX. Serial Dilution

Serial dilution was not performed for this SDG.

X. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits.

XI. Field Duplicates

No field duplicates were identified in this SDG.

XII. Internal Standards (ICP-MS)

Internal standards data were not reviewed for Stage 2A validation.

XIII. Sample Result Verification

Raw data were not reviewed for Stage 2A validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected in this SDG.

Kimberly-Clark Upland Area Metals - Data Qualification Summary - SDG 010084

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Metals - Laboratory Blank Data Qualification Summary - SDG 010084

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Metals - Field Blank Data Qualification Summary - SDG 010084

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET LDC #: 49554K4a

Stage 2A

SDG #: 010084

Laboratory: Friedman & Bruya, Inc.

METHOD: Metals (EPA SW 846 Method 6020B/EPA Method 1631E)

Date: 11/12/2020 Page: 1 of 1 Reviewer: DTM 2nd Reviewer:

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I.	Sample receipt/Technical holding times	A/A	
II.	ICP/MS Tune	N	
111.	Instrument Calibration	N	
IV.	ICP Interference Check Sample (ICS) Analysis	N	
V.	Laboratory Blanks	А	
VI.	Field Blanks	N	
VII.	Matrix Spike/Matrix Spike Duplicates	N	
VIII.	Duplicate sample analysis	N	
IX.	Serial Dilution	N	
X.	Laboratory control samples	А	LCS
XI.	Field Duplicates	N	
XII.	Internal Standard (ICP-MS)	N	
XIII.	Sample Result Verification	N	
XIV.	Overall Assessment of Data	А	

Note:

A = Acceptable

ND = No compounds detected D = Duplicate

SB=Source blank

N = Not provided/applicable SW = See worksheet

FB = Field blank

R = Rinsate

TB = Trip blank EB = Equipment blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	BBH-B-34-10	010084-05	Soil	10/05/20
2				
3				
4				
5				
6				
7				

Notes:

VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference

Page: 1_of_1 Reviewer: <u>DTM</u>

All circled elements are applicable to each sample.

All circled el	ements	are applicable to each sample.
Sample ID	Matrix	Target Analyte List (TAL)
ALL	S	Cu, Zn
ALL	s	Hg
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
Г	11	Analysis Method
ICP		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
ICP-MS		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
GFAA		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn

Comments: Mercury by CVAA if performed

Laboratory Data Consultants, Inc. **Data Validation Report**

Project/Site Name: Kimberly-Clark Upland Area

November 16, 2020 **LDC Report Date:**

Metals Parameters:

Validation Level: Stage 2A

Laboratory: Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 010110

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
BBH-B-15-11	010110-01	Soil	10/06/20
BBH-B-28-10	010110-02	Soil	10/06/20
BBH-B-32-10	010110-03	Soil	10/06/20
BBH-B-07-10	010110-04	Soil	10/06/20
BBH-B-01-10	010110-05	Soil	10/06/20
BBH-B-10-10	010110-06	Soil	10/06/20
BBH-B-15-11MS	010110-01MS	Soil	10/06/20
BBH-B-15-11MSD	010110-01MSD	Soil	10/06/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Copper and Zinc by Environmental Protection Agency (EPA) SW 846 Method 6020B Mercury by EPA Method 1631E

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. ICPMS Tune

ICP-MS tune data were not reviewed for Stage 2A validation.

III. Instrument Calibration

Instrument calibration data were not reviewed for Stage 2A validation.

IV. ICP Interference Check Sample Analysis

ICP Interference check sample (ICS) analysis data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	MS (%R) (Limits)	MSD (%R) (Limits)	Flag	A or P
BBH-B-15-11MS/MSD (All samples in SDG 010110)	Copper	198 (75-125)	130 (75-125)	J (all detects)	A

Relative percent differences (RPD) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	RPD (Limits)	Flag	A or P
BBH-B-15-11MS/MSD (All samples in SDG 010110)	Copper	41 (≤20)	J (all detects)	А

VIII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

IX. Serial Dilution

Serial dilution was not performed for this SDG.

X. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits.

XI. Field Duplicates

No field duplicates were identified in this SDG.

XII. Internal Standards (ICP-MS)

Internal standards data were not reviewed for Stage 2A validation.

XIII. Sample Result Verification

Raw data were not reviewed for Stage 2A validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the methods.

Due to MS/MSD %R and RPD, data were qualified as estimated in six samples.

No results were rejected in this SDG.

Kimberly-Clark Upland Area Metals - Data Qualification Summary - SDG 010110

Sample	Analyte	Flag	A or P	Reason
BBH-B-15-11 BBH-B-28-10 BBH-B-32-10 BBH-B-07-10 BBH-B-01-10 BBH-B-10-10	Соррег	J (all detects)	А	Matrix spike/Matrix spike duplicate (%R)
BBH-B-15-11 BBH-B-28-10 BBH-B-32-10 BBH-B-07-10 BBH-B-01-10 BBH-B-10-10	Copper	J (all detects)	А	Matrix spike/Matrix spike duplicate (RPD)

Kimberly-Clark Upland Area Metals - Laboratory Blank Data Qualification Summary - SDG 010110

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Metals - Field Blank Data Qualification Summary - SDG 010110

No Sample Data Qualified in this SDG

LDC #: 49554L4a **VALIDATION COMPLETENESS WORKSHEET** SDG #: 010110

Stage 2A

Date: 11/12/2020 Page: 1_of 1

> Reviewer: DTM 2nd Reviewer:

Laboratory: Friedman & Bruya, Inc.

METHOD: Metals (EPA SW 846 Method 6020B/EPA Method 1631E)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
l.	Sample receipt/Technical holding times	A/A	
II.	ICP/MS Tune	N	
111.	Instrument Calibration	N	
IV.	ICP Interference Check Sample (ICS) Analysis	N	
V.	Laboratory Blanks	Α	
VI.	Field Blanks	N	
VII.	Matrix Spike/Matrix Spike Duplicates	sw	
VIII.	Duplicate sample analysis	N	
IX.	Serial Dilution	N	
X.	Laboratory control samples	А	LCS
XI.	Field Duplicates	N	
XII.	Internal Standard (ICP-MS)	N	
XIII.	Sample Result Verification	N	
XIV.	Overall Assessment of Data	А	

Note:

A = Acceptable

ND = No compounds detected D = Duplicate

R = Rinsate

SB=Source blank

N = Not provided/applicable SW = See worksheet

FB = Field blank

TB = Trip blank EB = Equipment blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	BBH-B-15-11	010110-01	Soil	10/06/20
2	BBH-B-28-10	010110-02	Soil	10/06/20
3	BBH-B-32-10	010110-03	Soil	10/06/20
1	BBH-B-07-10	010110-04	Soil	10/06/20
5	BBH-B-01-10	010110-05	Soil	10/06/20
5	BBH-B-10-10	010110-06	Soil	10/06/20
,	BBH-B-15-11MS	010110-01MS	Soil	10/06/20
3	BBH-B-15-11MSD	010110-01MSD	Soil	10/06/20
)				

Notes:

VALIDATION FINDINGS WORKSHEET <u>Sample Specific Element Reference</u>

Page: 1 of 1
Reviewer: DTM

All circled elements are applicable to each sample.

All circled el	Il circled elements are applicable to each sample.							
Sample ID	Matrix	Target Analyte List (TAL)						
1-6	S	Cu,Zn, Hg						
QC 7-8	S	Cu,Zn, Hg						
		•						
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn						
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn						
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn						
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn						
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn						
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn						
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn						
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn						
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn						
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn						
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn						
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn						
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn						
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn						
	Analysis Method							
ICP		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn						
ICP-MS		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn						
GFAA		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn						

Comments: Mercury by CVAA if performed

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

Page: 1 of 1
Reviewer: DTM

METHOD: Trace metals (EPA SW 846 Method 6020/6010/7470)

Please see qualifications below for all of	questions answered "N".	Not applicable of	uestions are identified as "N	/A".

N N/A Was a matrix spike analyzed for each matrix in this SDG?

Were matrix spike percent recoveries (%R) within the control limits of 75-125? If the sample concentration exceeded the spike concentration

by a factor of 4 or more, no action was taken.

Were all duplicate sample relative percent differences (RPD) \leq 20% for samples?

.EVEL,IV ONLY:

Were recalculated results acceptable? See Level IV Recalculation Worksheet for recalculations.

#	MS/MSD ID	Matrix	Analyte	MS %Recovery	MSD %Recovery	RPD (Limits)	Associated Samples	Qual	DET	ND	PS Recovery%
	7/8	S	Cu	198(75-125)	130		ALL	J/A	ALL		
			Cu			41(20)	ALL	J/UJ/A	ALL		
\vdash											
-											
F										<u> </u>	
\parallel											-
		-									
\Vdash									<u></u>	<u> </u>	
\vdash									 		
\vdash			****								

Comments:

Laboratory Data Consultants, Inc. **Data Validation Report**

Project/Site Name:

Kimberly-Clark Upland Area

LDC Report Date:

November 16, 2020

Parameters:

Metals

Validation Level:

Stage 2A

Laboratory:

Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 010130

	Laboratory Sample		Collection		
Sample Identification	Identification	Matrix	Date		
BBH-S-70-4	010130-01	Soil	10/07/20		
BBH-S-70-8	010130-02	Soil	10/07/20		
BBH-B-08-10	010130-03	Soil	10/07/20		
BBH-B-02-10	010130-04	Soil	10/07/20		
BBH-S-71-4	010130-05	Soil	10/07/20		
BBH-S-71-8	010130-06	Soil	10/07/20		
BBH-S-72-4	010130-07	Soil	10/07/20		
BBH-S-72-8	010130-08	Soil	10/07/20		
BBH-B-05-10	010130-09	Soil	10/07/20		
BBH-B-33-10	010130-10	Soil	10/07/20		
BBH-522	010130-11	Soil	10/07/20		
BBH-B-29-10	010130-12	Soil	10/07/20		
BBH-S-70-4MS	010130-01MS	Soil	10/07/20		
BBH-S-70-4MSD	010130-01MSD	Soil	10/07/20		

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Copper and Zinc by Environmental Protection Agency (EPA) SW 846 Method 6020B Mercury by EPA Method 1631E

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. ICPMS Tune

ICP-MS tune data were not reviewed for Stage 2A validation.

III. Instrument Calibration

Instrument calibration data were not reviewed for Stage 2A validation.

IV. ICP Interference Check Sample Analysis

ICP Interference check sample (ICS) analysis data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VIII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

IX. Serial Dilution

Serial dilution was not performed for this SDG.

X. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits.

XI. Field Duplicates

Samples BBH-B-33-10 and BBH-522 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentra		
Analyte	BBH-B-33-10	BBH-522	RPD
Copper	9.09	11.7	25
Zinc	22.7	28.5	23

XII. Internal Standards (ICP-MS)

Internal standards data were not reviewed for Stage 2A validation.

XIII. Sample Result Verification

Raw data were not reviewed for Stage 2A validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected in this SDG.

Kimberly-Clark Upland Area Metals - Data Qualification Summary - SDG 010130

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Metals - Laboratory Blank Data Qualification Summary - SDG 010130

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Metals - Field Blank Data Qualification Summary - SDG 010130

No Sample Data Qualified in this SDG

LDC #: 49554M4a SDG #: 010130

VALIDATION COMPLETENESS WORKSHEET

Stage 2A

Date: 11/12/2020 Page: 1 of 1 Reviewer: DTM 2nd Reviewer:

Laboratory: Friedman & Bruya, Inc.

METHOD: Metals (EPA SW 846 Method 6020B/EPA Method 1631E)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Sample receipt/Technical holding times	A/A	
II.	ICP/MS Tune	N	
111.	Instrument Calibration	N	
IV.	ICP Interference Check Sample (ICS) Analysis	N	
V	Laboratory Blanks	A	
VI.	Field Blanks	N	
VII.	Matrix Spike/Matrix Spike Duplicates	А	
VIII.	Duplicate sample analysis	N	
IX.	Serial Dilution	N	
Х.	Laboratory control samples	Α	LCS
XI.	Field Duplicates	sw	(10,11)
XII.	Internal Standard (ICP-MS)	N	
XIII.	Sample Result Verification	N	
XIV.	Overall Assessment of Data	А	

Note:

A = Acceptable

N = Not provided/applicable

SW = See worksheet

ND = No compounds detected D = Duplicate

R = Rinsate

FB = Field blank

TB = Trip blank

EB = Equipment blank

SB=Source blank

OTHER:

_				
	Client ID	Lab ID	Matrix	Date
1	BBH-S-70-4	010130-01	Soil	10/07/20
2	BBH-S-70-8	010130-02	Soil	10/07/20
3	ВВН-В-08-10	010130-03	Soil	10/07/20
4	ВВН-В-02-10	010130-04	Soil	10/07/20
5	BBH-S-71-4	010130-05	Soil	10/07/20
6	BBH-S-71-8	010130-06	Soil	10/07/20
7	BBH-S-72-4	010130-07	Soil	10/07/20
8	BBH-S-72-8	010130-08	Soil	10/07/20
9	BBH-B-05-10	010130-09	Soil	10/07/20
10	ввн-в-33-10	010130-10	Soil	10/07/20
11	BBH-522	010130-11	Soil	10/07/20
12	BBH-B-29-10	010130-12	Soil	10/07/20

LDC #: 49554M4a SDG #: 010130

VALIDATION COMPLETENESS WORKSHEET

Stage 2A

Date:11/12/2020 Page:_2_of_2

Reviewer: DTM 2nd Reviewer:

Laboratory: Friedman & Bruya, Inc.

METHOD: Metals (EPA SW 846 Method 6020B/EPA Method 1631E)

	Client ID	Lab ID	Matrix	Date
13	BBH-S-70-4MS	010130-01MS	Soil	10/07/20
14	BBH-S-70-4MSD	010130-01MSD	Soil	10/07/20
15				
16				
17				

Notes:

VALIDATION FINDINGS WORKSHEET <u>Sample Specific Element Reference</u>

Page: 1 of 1
Reviewer: DTM

All circled elements are applicable to each sample.

All Circled el	ements a	are applicable to each sample.
Sample ID	Matrix	Target Analyte List (TAL)
1-3,7,12	S	Cu, Zn
4-6,8-11	S	Cu, Zn, Hg
1-3,7,12	s	Hg
QC 13-14	S	Cu, Zn, Hg
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
!		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
i		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Analysis Method
ICP		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
ICP-MS		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
GFAA		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn

Comments: Mercury by CVAA if performed

_LDC#:<u>49554M4a</u>

VALIDATION FINDINGS WORKSHEET Field Duplicates

Page:_1_of_1_ Reviewer:_DTM_

METHOD: Metals (EPA Method 6010/6020/7000)

Analyte	Concentra	RPD	
	10	11	
Copper	9.09	11.7	25
Mercury	22.7	28.5	23

Laboratory Data Consultants, Inc. **Data Validation Report**

Kimberly-Clark Upland Area **Project/Site Name:**

LDC Report Date: November 16, 2020

Parameters: Metals

Validation Level: Stage 2A

Friedman & Bruya, Inc. Laboratory:

Sample Delivery Group (SDG): 010155

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
BBH-B-29-10	010155-01	Soil	10/08/20
BBH-B-35-10	010155-02	Soil	10/08/20
BBH-S-73-4	010155-03	Soil	10/08/20
BBH-S-73-8	010155-04	Soil	10/08/20
BBH-S-74-4	010155-05	Soil	10/08/20
BBH-S-74-8	010155-06	Soil	10/08/20
BBH-S-75-4	010155-07	Soil	10/08/20
BBH-B-11-10	010155-08	Soil	10/08/20
BBH-B-09-10	010155-09	Soil	10/08/20
BBH-B-12-10	010155-10	Soil	10/08/20
BBH-B-29-10MS	010155-01MS	Soil	10/08/20
BBH-B-29-10MSD	010155-01MSD	Soil	10/08/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Copper and Zinc by Environmental Protection Agency (EPA) SW 846 Method 6020B Mercury by EPA Method 1631E

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. ICPMS Tune

ICP-MS tune data were not reviewed for Stage 2A validation.

III. Instrument Calibration

Instrument calibration data were not reviewed for Stage 2A validation.

IV. ICP Interference Check Sample Analysis

ICP Interference check sample (ICS) analysis data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VIII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

IX. Serial Dilution

Serial dilution was not performed for this SDG.

X. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits.

XI. Field Duplicates

No field duplicates were identified in this SDG.

XII. Internal Standards (ICP-MS)

Internal standards data were not reviewed for Stage 2A validation.

XIII. Sample Result Verification

Raw data were not reviewed for Stage 2A validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected in this SDG.

Kimberly-Clark Upland Area Metals - Data Qualification Summary - SDG 010155

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Metals - Laboratory Blank Data Qualification Summary - SDG 010155

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Metals - Field Blank Data Qualification Summary - SDG 010155

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET LDC #: 49554N4a

Stage 2A

Date: 11/13/2020 Page: 1 of 1 Reviewer: DTM 2nd Reviewer

Laboratory: Friedman & Bruya, Inc.

SDG #: 010155

METHOD: Metals (EPA SW 846 Method 6020B/EPA Method 1631E)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
l.	Sample receipt/Technical holding times	A/A	
II.	ICP/MS Tune	N	
III.	Instrument Calibration	N	
IV.	ICP Interference Check Sample (ICS) Analysis	N	
V.	Laboratory Blanks	А	
VI.	Field Blanks	N	
VII.	Matrix Spike/Matrix Spike Duplicates	А	
VIII.	Duplicate sample analysis	N	
IX.	Serial Dilution	N	
X.	Laboratory control samples	A	LCS
XI.	Field Duplicates	N	
XII.	Internal Standard (ICP-MS)	N	
XIII.	Sample Result Verification	N	
XIV.	Overall Assessment of Data	А	

Note:

A = Acceptable

ND = No compounds detected D = Duplicate

SB=Source blank

OTHER:

N = Not provided/applicable SW = See worksheet

FB = Field blank

R = Rinsate

TB = Trip blank EB = Equipment blank

	Client ID	Lab ID	Matrix	Date
1	BBH-B-29-10	010155-01	Soil	10/08/20
2	BBH-B-35-10	010155-02	Soil	10/08/20
3	BBH-S-73-4	010155-03	Soil	10/08/20
4	BBH-S-73-8	010155-04	Soil	10/08/20
5	BBH-S-74-4	010155-05	Soil	10/08/20
6	BBH-S-74-8	010155-06	Soil	10/08/20
7	BBH-S-75-4	010155-07	Soil	10/08/20
8	BBH-B-11-10	010155-08	Soil	10/08/20
9	BBH-B-09-10	010155-09	Soil	10/08/20
10	BBH-B-12-10	010155-10	Soil	10/08/20
11	BBH-B-29-10MS	010155-01MS	Soil	10/08/20
12	BBH-B-29-10MSD	010155-01MSD	Soil	10/08/20

Notes:

_LDC #:___49554N4a__

VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference

Page: 1 of 1
Reviewer: DTM

All circled elements are applicable to each sample.

All circled el	ements	are applicable to each sample.
Sample ID	Matrix	Target Analyte List (TAL)
1-8,10	S	Cu, Zn, Hg
9	S	Cu, Zn
9	S	Нg
QC 11-12	S	Cu, Zn, Hg
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
	_	Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn Analysis Method
ICP		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
ICP-MS		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
GFAA		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn

Comments: Mercury by CVAA if performed

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Kimberly-Clark Upland Area

LDC Report Date: November 16, 2020

Parameters: Metals

Stage 2A Validation Level:

Friedman & Bruya, Inc. Laboratory:

Sample Delivery Group (SDG): 010179

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
BBH-S-76-4	010179-01	Soil	10/09/20
BBH-S-76-8	010179-02	Soil	10/09/20
BBH-S-77-8	010179-03	Soil	10/09/20
BBH-B-03-10	010179-04	Soil	10/09/20
BBH-B-06-10	010179-05	Soil	10/09/20
BBH-S-78-4	010179-06	Soil	10/09/20
BBH-S-78-8	010179-07	Soil	10/09/20
BBH-S-79-4	010179-08	Soil	10/09/20
BBH-S-79-8	010179-09	Soil	10/09/20
BBH-S-79-8DL	010179-09DL	Soil	10/09/20
BBH-B-18-10	010179-10	Soil	10/09/20
BBH-S-80-4	010179-11	Soil	10/09/20
BBH-S-80-8	010179-12	Soil	10/09/20
BBH-S-75-8	010179-13	Soil	10/09/20
BBH-S-76-4MS	010179-01MS	Soil	10/09/20
BBH-S-76-4MSD	010179-01MSD	Soil	10/09/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Copper and Zinc by Environmental Protection Agency (EPA) SW 846 Method 6020B Mercury by EPA Method 1631E

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- DNR Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. ICPMS Tune

ICP-MS tune data were not reviewed for Stage 2A validation.

III. Instrument Calibration

Instrument calibration data were not reviewed for Stage 2A validation.

IV. ICP Interference Check Sample Analysis

ICP Interference check sample (ICS) analysis data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	MS (%R) (Limits)	MSD (%R) (Limits)	Flag	A or P
BBH-S-76-4MS/MSD (BBH-S-76-4 BBH-S-76-8 BBH-B-03-10 BBH-B-06-10 BBH-S-78-4 BBH-S-78-8 BBH-S-79-4 BBH-S-79-8 BBH-S-79-8 BBH-S-79-8DL BBH-B-18-10 BBH-S-80-4 BBH-S-80-8 BBH-S-75-8)	Zinc	68 (75-125)	-	J (all detects) UJ (all non-detects)	A

Spike ID (Associated Samples)	Analyte	MS (%R) (Limits)	MSD (%R) (Limits)	Flag	A or P
BBH-S-76-4MS/MSD (BBH-S-76-4 BBH-S-76-8 BBH-S-78-4 BBH-S-79-4 BBH-S-75-8)	Mercury	-	144 (71-125)	J (all detects)	A
BBH-S-76-4MS/MSD (BBH-S-77-8 BBH-B-03-10 BBH-B-06-10 BBH-S-78-8 BBH-S-79-8 BBH-B-18-10 BBH-S-80-4 BBH-S-80-4	Mercury	-	144 (71-125)	NA	-

Relative percent differences (RPD) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	RPD (Limits)	Flag	A or P
BBH-S-76-4MS/MSD (BBH-S-76-4 BBH-S-76-8 BBH-B-03-10 BBH-B-06-10 BBH-S-78-4 BBH-S-78-8 BBH-S-79-4 BBH-S-79-8 BBH-S-79-8 BBH-S-79-8DL BBH-B-18-10 BBH-S-80-4 BBH-S-80-8 BBH-S-75-8)	Copper Zinc	21 (≤20) 32 (≤20)	J (all detects) UJ (all non-detects) J (all detects) UJ (all non-detects)	A
BBH-S-76-4MS/MSD (BBH-S-76-4 BBH-S-76-8 BBH-S-77-8 BBH-B-03-10 BBH-B-06-10 BBH-S-78-4 BBH-S-78-8 BBH-S-79-8 BBH-S-79-8 BBH-S-79-8 BBH-B-18-10 BBH-S-80-4 BBH-S-80-8 BBH-S-75-8)	Mercury	26 (≤20)	J (all detects) UJ (all non-detects)	A

VIII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

IX. Serial Dilution

Serial dilution was not performed for this SDG.

X. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits.

XI. Field Duplicates

No field duplicates were identified in this SDG.

XII. Internal Standards (ICP-MS)

Internal standards data were not reviewed for Stage 2A validation.

XIII. Sample Result Verification

Raw data were not reviewed for Stage 2A validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the methods.

In the case where more than one result was reported for an individual sample, the least technically acceptable results were deemed not reportable as follows:

Sample	Analyte	Reason	Flag	A or P
BBH-S-79-8DL	Copper Zinc	Sample with lower dilution is more acceptable due to having a detected result.	DNR	-

Due to MS/MSD %R and RPD, data were qualified as estimated in thirteen samples.

No results were rejected in this SDG.

Kimberly-Clark Upland Area Metals - Data Qualification Summary - SDG 010179

Sample	Analyte	Flag	A or P	Reason
BBH-S-76-4 BBH-S-76-8 BBH-B-03-10 BBH-B-06-10 BBH-S-78-4 BBH-S-78-8 BBH-S-79-4 BBH-S-79-8 BBH-B-18-10 BBH-S-80-4 BBH-S-80-8 BBH-S-75-8	Zinc	J (all detects) UJ (all non-detects)	A	Matrix spike/Matrix spike duplicate (%R)
BBH-S-76-4 BBH-S-76-8 BBH-S-78-4 BBH-S-79-4 BBH-S-75-8	Mercury	J (all detects)	A	Matrix spike/Matrix spike duplicate (%R)
BBH-S-76-4 BBH-S-76-8 BBH-B-03-10 BBH-B-06-10 BBH-S-78-4 BBH-S-79-8 BBH-S-79-8 BBH-S-79-8 BBH-B-18-10 BBH-S-80-4 BBH-S-80-8 BBH-S-80-8 BBH-S-75-8	Copper Zinc	J (all detects) UJ (all non-detects) J (all detects) UJ (all non-detects)	А	Matrix spike/Matrix spike duplicate (RPD)
BBH-S-76-4 BBH-S-76-8 BBH-S-77-8 BBH-B-03-10 BBH-B-06-10 BBH-S-78-4 BBH-S-78-8 BBH-S-79-4 BBH-S-79-8 BBH-S-80-4 BBH-S-80-4 BBH-S-80-8 BBH-S-80-8 BBH-S-80-8	Mercury	J (all detects) UJ (all non-detects)	Α	Matrix spike/Matrix spike duplicate (RPD)
BBH-S-79-8DL	Copper Zinc	DNR	-	Overall assessment of data

Kimberly-Clark Upland Area Metals - Laboratory Blank Data Qualification Summary - SDG 010179

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Metals - Field Blank Data Qualification Summary - SDG 010179

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Stage 2A

SDG #: 010179 Laboratory: Friedman & Bruya, Inc.

Page: 1 of 2 Reviewer:DTM 2nd Reviewer:

Date: 11/13/2020

METHOD: Metals (EPA SW 846 Method 6020B/EPA Method 1631E)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

		T	
	Validation Area		Comments
1.	Sample receipt/Technical holding times	A/A	
li.	ICP/MS Tune	N	
III.	Instrument Calibration	N	
IV.	ICP Interference Check Sample (ICS) Analysis	N	
V.	Laboratory Blanks	А	
VI.	Field Blanks	N	
Vil.	Matrix Spike/Matrix Spike Duplicates	sw	
VIII.	Duplicate sample analysis	N	
IX.	Serial Dilution	N	
Х.	Laboratory control samples	А	LCS
XI.	Field Duplicates	N	
XII.	Internal Standard (ICP-MS)	N	
XIII.	Sample Result Verification	N	
XIV.	Overall Assessment of Data	SW	

Note:

A = Acceptable

ND = No compounds detected D = Duplicate

TB = Trip blank

SB=Source blank

N = Not provided/applicable SW = See worksheet

R = Rinsate FB = Field blank

EB = Equipment blank

OTHER:

	Client ID	Lab ID	Matrix	Date
1	BBH-S-76-4	010179-01	Soil	10/09/20
2	BBH-S-76-8	010179-02	Soil	10/09/20
3	BBH-S-77-8	010179-03	Soil	10/09/20
4	BBH-B-03-10	010179-04	Soil	10/09/20
5	BBH-B-06-10	010179-05	Soil	10/09/20
6	BBH-S-78-4	010179-06	Soil	10/09/20
7	BBH-S-78-8	010179-07	Soil	10/09/20
8	BBH-S-79-4	010179-08	Soil	10/09/20
9	BBH-S-79-8	010179-09	Soil	10/09/20
10	BBH-S-79-8DL	010179-09DL	Soil	10/09/20
11	BBH-8-18-10	010179-10	Soil	10/09/20
12	BBH-S-80-4	010179-11	Soil	10/09/20

LDC #: 49554O4a SDG #: 010179

VALIDATION COMPLETENESS WORKSHEET

Stage 2A

Date:11/13/2020

Page: 2 of 2 Reviewer: DTM

2nd Reviewer:

Laboratory: Friedman & Bruya, Inc.

METHOD: Metals (EPA SW 846 Method 6020B/EPA Method 1631E)

	Client ID	Lab ID	Matrix	Date
13	BBH-S-80-8	010179-12	Soil	10/09/20
14	BBH-S-75-8	010179-13	Soil	10/09/20
15	BBH-S-76-4MS	010179-01MS	Soil	10/09/20
16	BBH-S-76-4MSD	010179-01MSD	Soil	10/09/20
17				
18				
19				

Notes:

VALIDATION FINDINGS WORKSHEET <u>Sample Specific Element Reference</u>

Page: 1 of 1
Reviewer: DTM

All circled elements are applicable to each sample.

All circled el	ements a	All circled elements are applicable to each sample.					
Sample ID	Matrix	Target Analyte List (TAL)					
1-2,8-13	S	Cu, Zn, Hg					
4-7,14	S	Cu, Zn					
3-7,14	S	Нg					
QC 15-16	S	Cu, Zn, Hg					
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn					
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn					
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn					
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn					
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn					
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn					
Analysis Method							
ICP		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn					
ICP-MS		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn					
GFAA		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn					

Comments: Mercury by CVAA if performed

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

Page: 1 of 1
Reviewer: DTM

METHOD: Trace metals (EPA SW 846 Method 6020/6010/7470)

YN N/A

Was a matrix spike analyzed for each matrix in this SDG?

A/N PA

Were matrix spike percent recoveries (%R) within the control limits of 75-125? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken.

Y(N N/A

Were all duplicate sample relative percent differences (RPD) < 20% for samples?

LEVEL_IV ONLY:

Y N N/A

Were recalculated results acceptable? See Level IV Recalculation Worksheet for recalculations.

#	MS/MSD ID	Matrix	Analyte	MS %Recovery	MSD %Recovery	RPD (Limits)	Associated Samples	Qual	DET	ND	PS Recovery%
	15/16	S	Cu			21(20)	1-2, 4-14	J/UJ/A		10	
		s	Zn	68(75-125)			1-2, 4-14	J/UJ/A		10	
			Zn			32(20)	1-2, 4-14	J/UJ/A		10	
	- · · · ·		Hg		144(71-125)		1-9,11-14	J/A	1,2,6,8,14		
			Hg			26(20)	1-9,11-14	J/UJ/A	1,2,6,8,14		
										1	
	<u></u>										
			1								

Comments:

VALIDATION FINDINGS WORKSHEET <u>Overall Assessment of Data</u>

Page: _1_of__:
Reviewer: _DTN

METHOD: Trace Metals (EPA SW 846 Method 6010/6020/7000)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

All available information pertaining to the data were reviewed using professional judgement to compliment the determination of the overall quality of the data.

Y N N/A Was the overall quality and usability of the data acceptable?

#	Sample ID	Analyte	Finding	Qualification
	10	Cu, Zn	Sample with lower dilution is more acceptable due to having a detected result.	DNR

Comments:

Laboratory Data Consultants, Inc. **Data Validation Report**

Project/Site Name: Kimberly-Clark Upland Area

November 16, 2020 **LDC Report Date:**

Parameters: Metals

Stage 2A Validation Level:

Friedman & Bruya, Inc. Laboratory:

Sample Delivery Group (SDG): 010208

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
BBH-523	010208-01	Soil	10/12/20
BBH-S-39-8	010208-02	Soil	10/12/20
BBH-S-81-4	010208-03	Soil	10/12/20
BBH-S-82-4	010208-04	Soil	10/12/20
BBH-S-83-4	010208-05	Soil	10/13/20
BBH-S-84-4	010208-06	Soil	10/13/20
BBH-S-85-8	010208-07	Soil	10/13/20
BBH-S-85-4	010208-08	Soil	10/13/20
BBH-S-65-8	010208-09	Soil	10/13/20
BBH-S-86-4	010208-10	Soil	10/13/20
BBH-S-57-8	010208-11	Soil	10/13/20
BBH-S-41-8	010208-12	Soil	10/13/20
BBH-523MS	010208-01MS	Soil	10/12/20
BBH-523MSD	010208-01MSD	Soil	10/12/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Copper and Zinc by Environmental Protection Agency (EPA) SW 846 Method 6020B Mercury by EPA Method 1631E

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. ICPMS Tune

ICP-MS tune data were not reviewed for Stage 2A validation.

III. Instrument Calibration

Instrument calibration data were not reviewed for Stage 2A validation.

IV. ICP Interference Check Sample Analysis

ICP Interference check sample (ICS) analysis data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	MS (%R) (Limits)	MSD (%R) (Limits)	Flag	A or P
BBH-523MS/MSD (BBH-S-81-4 BBH-S-82-4 BBH-S-83-4 BBH-S-85-4 BBH-S-65-8)	Copper	63 (75-125)	-	J (all detects) UJ (all non-detects)	А

For BBH-523MS/MSD, no data were qualified for mercury percent recoveries (%R) outside the QC limits since the parent sample results were greater than 4X the spike concentration.

Relative percent differences (RPD) were within QC limits.

VIII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

IX. Serial Dilution

Serial dilution was not performed for this SDG.

X. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits.

XI. Field Duplicates

Samples BBH-523 and BBH-S-39-8 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentra	ation (mg/Kg)	
Analyte	BBH-523	BBH-S-39-8	RPD
Mercury	1.1	0.94	16

XII. Internal Standards (ICP-MS)

Internal standards data were not reviewed for Stage 2A validation.

XIII. Sample Result Verification

Raw data were not reviewed for Stage 2A validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the methods.

Due to MS/MSD %R, data were qualified as estimated in five samples.

No results were rejected in this SDG.

Kimberly-Clark Upland Area Metals - Data Qualification Summary - SDG 010208

Sample	Analyte	Flag	A or P	Reason
BBH-S-81-4 BBH-S-82-4 BBH-S-83-4 BBH-S-85-4 BBH-S-65-8	Copper	J (all detects) UJ (all non-detects)	Α	Matrix spike/Matrix spike duplicate (%R)

Kimberly-Clark Upland Area Metals - Laboratory Blank Data Qualification Summary - SDG 010208

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Metals - Field Blank Data Qualification Summary - SDG 010208

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Stage 2A

SDG #: 010208 Laboratory: Friedman & Bruya, Inc.

Page:_1_of_2 Reviewer:DTM 2nd Reviewer:

Date: 11/13/2020

METHOD: Metals (EPA SW 846 Method 6020B/EPA Method 1631E)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
ı.	Sample receipt/Technical holding times	A/A	
II.	ICP/MS Tune	N	
111.	Instrument Calibration	N	
IV.	ICP Interference Check Sample (ICS) Analysis	N	
V.	Laboratory Blanks	А	
VI.	Field Blanks	N	
VII.	Matrix Spike/Matrix Spike Duplicates	SW	
VIII.	Duplicate sample analysis	N	
IX.	Serial Dilution	Ν	
X.	Laboratory control samples	Α	LCS
XI.	Field Duplicates	SW	(1,2)
XII.	Internal Standard (ICP-MS)	N	
XIII.	Sample Result Verification	N	
XIV.	Overall Assessment of Data	A	

A = Acceptable Note:

N = Not provided/applicable

ND = No compounds detected D = Duplicate

SB=Source blank

OTHER:

R = Rinsate

TB = Trip blank

SW = See worksheet

FB = Field blank

EB = Equipment blank

	Client ID	Lab ID	Matrix	Date
1	BBH-523	010208-01	Soil	10/12/20
2	BBH-S-39-8	010208-02	Soil	10/12/20
3	BBH-S-81-4	010208-03	Soil	10/12/20
4	BBH-S-82-4	010208-04	Soil	10/12/20
5	BBH-S-83-4	010208-05	Soil	10/13/20
6	BBH-S-84-4	010208-06	Soil	10/13/20
7	BBH-S-85-8	010208-07	Soil	10/13/20
8	BBH-S-85-4	010208-08	Soil	10/13/20
9	BBH-S-65-8	010208-09	Soil	10/13/20
10	BBH-S-86-4	010208-10	Soil	10/13/20
11	BBH-S-57-8	010208-11	Soil	10/13/20
12	BBH-S-41-8	010208-12	Soil	10/13/20

SDG #: 010208

VALIDATION COMPLETENESS WORKSHEET

Stage 2A

Date:12/13/2020 Page: 2_of 2

Reviewer: DTM
2nd Reviewer:

Laboratory: Friedman & Bruya, Inc.

METHOD: Metals (EPA SW 846 Method 6020B/EPA Method 1631E)

	Client ID	Lab ID	Matrix	Date
13	BBH-523MS	010208-01MS	Soil	10/12/20
14	BBH-523MSD	010208-01MSD	Soil	10/12/20
15				
16				
17				

Notes:

VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference

Page: 1 of 1 Reviewer: DTM

All circled elements are applicable to each sample.

All Circled elei	All circled elements are applicable to each sample.						
Sample ID	Matrix	Target Analyte List (TAL)					
3-4, 8-9	S	Cu, Hg					
5	s	Cu, Zn, Hg					
12	S	Zn					
1-2, 6-7, 10-11	S	Нg					
QC 13/14	S	Cu, Zn, Hg					
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn					
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn					
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn					
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn					
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn					
		Analysis Method					
ICP		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn					
ICP-MS		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn					
GFAA		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn					

Comments: Mercury by CVAA if performed

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

Page: 1 of 1
Reviewer: DTM

METHOD: Trace metals (EPA SW 846 Method 6020/6010/7470)

Please see qualifications below for all o	uestions answered "N". N	Not applicable questions	are identified as "N/A".

YN N/A Was a matrix spike analyzed for each matrix in this SDG?

Were matrix spike percent recoveries (%R) within the control limits of 75-125? If the sample concentration exceeded the spike concentration

by a factor of 4 or more, no action was taken.

Were all duplicate sample relative percent differences (RPD) \leq 20% for samples?

LEVEL IV ONLY:

Y N N/A

Were recalculated results acceptable? See Level IV Recalculation Worksheet for recalculations.

	# M:	S/MSD ID	Matrix	Analyte	MS %Recovery	MSD %Recovery	RPD (Limits)	Associated Samples	Qual	DET	ND	PS Recovery%
	13/:	14	S	Cu	63(75-125)	75		3-5,8-9	J/UJ/A		3	
L												
L											ļ	
L											<u> </u>	
L	-										ļ	
-										_	<u> </u>	-
L												
											}	
L												
L												
L												<u> </u>
											1	<u> </u>
L											-	
F										<u> </u>	-	
L											-	
\parallel											<u> </u>	<u> </u>
L											-	

Comments: 13/14 Hg >4x Spike

VALIDATION FINDINGS WORKSHEET

Field Duplicates

Page:_1_of_1_ Reviewer:_DTM_

METHOD: Metals (EPA Method 6010/6020/7000)

Analyte	Concentra	RPD	
	1	2	
Mercury	1.1	0.94	16

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Kimberly-Clark Upland Area

November 16, 2020 **LDC Report Date:**

Parameters: Metals

Validation Level: Stage 2A

Friedman & Bruya, Inc. Laboratory:

Sample Delivery Group (SDG): 010237

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
BBH-B-15-12	010237-01	Soil	10/14/20
BBH-S-87-4	010237-02	Soil	10/14/20
BBH-S-88-8	010237-03	Soil	10/14/20
BBH-B-23-11	010237-04	Soil	10/14/20
BBH-B-23-11DL	010237-04DL	Soil	10/14/20
BBH-B-15-12MS	010237-01MS	Soil	10/14/20
BBH-B-15-12MSD	010237-01MSD	Soil	10/14/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Copper by Environmental Protection Agency (EPA) SW 846 Method 6020B Mercury by EPA Method 1631E

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- DNR Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- (Rejected): The sample results were rejected due to gross non-conformances R discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. ICPMS Tune

ICP-MS tune data were not reviewed for Stage 2A validation.

III. Instrument Calibration

Instrument calibration data were not reviewed for Stage 2A validation.

IV. ICP Interference Check Sample Analysis

ICP Interference check sample (ICS) analysis data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VIII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

IX. Serial Dilution

Serial dilution was not performed for this SDG.

X. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits.

XI. Field Duplicates

No field duplicates were identified in this SDG.

XII. Internal Standards (ICP-MS)

Internal standards data were not reviewed for Stage 2A validation.

XIII. Sample Result Verification

Raw data were not reviewed for Stage 2A validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the methods.

In the case where more than one result was reported for an individual sample, the least technically acceptable results were deemed not reportable as follows:

Sample	Analyte	Reason	Flag	A or P
BBH-B-23-11DL	Copper	Sample with lower dilution is more acceptable due to having a detected result.	DNR	-

No results were rejected in this SDG.

Kimberly-Clark Upland Area Metals - Data Qualification Summary - SDG 010237

Sample	Analyte	Flag	A or P	Reason
BBH-B-23-11DL	Copper	DNR	-	Overall assessment of data

Kimberly-Clark Upland Area Metals - Laboratory Blank Data Qualification Summary - SDG 010237

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Metals - Field Blank Data Qualification Summary - SDG 010237

No Sample Data Qualified in this SDG

LDC #: 49554Q4a SDG #: 010237

VALIDATION COMPLETENESS WORKSHEET

Stage 2A

Date: 11/13/2020 Page: 1_of1 Reviewer: DTM

2nd Reviewer:

Laboratory: Friedman & Bruya, Inc.

METHOD: Cu, Hg (EPA SW 846 Method 6020B/EPA Method 1631E)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
ı.	Sample receipt/Technical holding times	A/A	
II.	ICP/MS Tune	N	
111.	Instrument Calibration	N	
IV.	ICP Interference Check Sample (ICS) Analysis	N	
V.	Laboratory Blanks	A	
VI.	Field Blanks	N	
VII.	Matrix Spike/Matrix Spike Duplicates	А	
VIII.	Duplicate sample analysis	N	
IX.	Serial Dilution	N	
X.	Laboratory control samples	А	LCS
XI.	Field Duplicates	N	
XII.	Internal Standard (ICP-MS)	N	
XIII.	Sample Result Verification	N	
XIV.	Overall Assessment of Data	SW	

Note:

A = Acceptable

SW = See worksheet

N = Not provided/applicable

ND = No compounds detected D = Duplicate

SB=Source blank

R = Rinsate

FB = Field blank

TB = Trip blank EB = Equipment blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	BBH-B-15-12	010237-01	Soil	10/14/20
2	BBH-S-87-4	010237-02	Soil	10/14/20
3	BBH-S-88-8	010237-03	Soil	10/14/20
4	BBH-B-23-11	010237-04	Soil	10/14/20
5	BBH-B-23-11DL	010237-04DL	Soil	10/14/20
6	BBH-B-15-12MS	010237-01MS	Soil	10/14/20
7_	BBH-B-15-12MSD	010237-01MSD	Soil	10/14/20
8				

Notes:

LDC #: 49554Q4a

VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference

Page: 1 of 1
Reviewer: DTM

All circled elements are applicable to each sample.

		ате аррисавие то еасп sample.
Sample ID	Matrix	Target Analyte List (TAL)
1, 4	S	Cu, Hg
3, 5	S	Cu
2	s	Hg
QC 6-7	s	Hg, Cu
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
	1	Analysis Method
ICP		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
ICP-MS		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
GFAA		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn

Comments: Mercury by CVAA if performed

LDC #: 49554Q4a

VALIDATION FINDINGS WORKSHEET Overall Assessment of Data

Page: <u>1</u> of <u>1</u> Reviewer: <u>DTM</u>

METHOD: Trace Metals (EPA SW 846 Method 6010/6020/7000)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

All available information pertaining to the data were reviewed using professional judgement to compliment the determination of the overall quality of the data.

Y N N/A Was the overall quality and usability of the data acceptable?

#	Sample ID	Analyte	Finding	Qualification
	5	Cu	Sample with lower dilution is more acceptable due to having a detected result.	DNR

Comments:

Laboratory Data Consultants, Inc. **Data Validation Report**

Kimberly-Clark Upland Area **Project/Site Name:**

November 16, 2020 **LDC Report Date:**

Parameters: Metals

Validation Level: Stage 2A

Friedman & Bruya, Inc. Laboratory:

Sample Delivery Group (SDG): 010269

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
GFB12-S-01-4	010269-01	Soil	10/15/20
GFB12-S-02-4	010269-02	Soil	10/15/20
GFB12-S-03-4	010269-03	Soil	10/15/20
GFB12-S-04-4	010269-04	Soil	10/15/20
GFB12-S-05-4	010269-05	Soil	10/15/20
GFB12-S-06-4	010269-06	Soil	10/15/20
GFB12-S-07-4	010269-07	Soil	10/15/20
GFB12-S-08-4	010269-08	Soil	10/15/20
GFB12-B-01-6	010269-09	Soil	10/15/20
GFB12-B-02-6	010269-10	Soil	10/15/20
GFB12-524	010269-11	Soil	10/15/20
BBH-S-89-4	010269-12	Soil	10/15/20
BBH-B-20-11	010269-13	Soil	10/15/20
BBH-B-04-11	010269-14	Soil	10/15/20
BBH-S-90-8	010269-15	Soil	10/15/20
BBH-B-28-11	010269-16	Soil	10/15/20
BBH-B-08-11	010269-17	Soil	10/15/20
BBH-B-08-11DL	010269-17DL	Soil	10/15/20
BBH-B-08-11MS	010269-17MS	Soil	10/15/20
BBH-B-08-11MSD	010269-17MSD	Soil	10/15/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Copper by Environmental Protection Agency (EPA) SW 846 Method 6020B Mercury by EPA Method 1631E

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- DNR Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. ICPMS Tune

ICP-MS tune data were not reviewed for Stage 2A validation.

III. Instrument Calibration

Instrument calibration data were not reviewed for Stage 2A validation.

IV. ICP Interference Check Sample Analysis

ICP Interference check sample (ICS) analysis data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VIII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

IX. Serial Dilution

Serial dilution was not performed for this SDG.

X. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits.

XI. Field Duplicates

Samples GFB12-S-06-4 and GFB12-524 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentration (mg/Kg)		
Analyte	GFB12-S-06-4	GFB12-524	RPD
Mercury	1.2	1.3	8

XII. Internal Standards (ICP-MS)

Internal standards data were not reviewed for Stage 2A validation.

XIII. Sample Result Verification

Raw data were not reviewed for Stage 2A validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the methods.

In the case where more than one result was reported for an individual sample, the least technically acceptable results were deemed not reportable as follows:

Sample	Analyte	Reason	Flag	A or P
BBH-B-08-11DL	Copper	Sample with lower dilution is more acceptable due to having a detected result.	DNR	-

No results were rejected in this SDG.

Kimberly-Clark Upland Area Metals - Data Qualification Summary - SDG 010269

Sample	Analyte	Flag	A or P	Reason
BBH-B-08-11DL	Copper	DNR	-	Overall assessment of data

Kimberly-Clark Upland Area Metals - Laboratory Blank Data Qualification Summary - SDG 010269

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Metals - Field Blank Data Qualification Summary - SDG 010269

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Stage 2A

SDG #: 010269 Laboratory: Friedman & Bruya, Inc.

LDC #: 49554R4a

Page: 1 of 2 Reviewer:DTM 2nd Reviewer:

Date:11/13/2020

METHOD: Cu, Hg (EPA SW 846 Method 6020B/EPA Method 1631E)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Sample receipt/Technical holding times	A/A	
11.	ICP/MS Tune	N	
111.	Instrument Calibration	N	
IV.	ICP Interference Check Sample (ICS) Analysis	N	
V.	Laboratory Blanks	А	
VI.	Field Blanks	N	
VII.	Matrix Spike/Matrix Spike Duplicates	A	
VIII.	Duplicate sample analysis	N	
IX.	Serial Dilution	N	
X.	Laboratory control samples	А	LCS
XI.	Field Duplicates	sw	(6,11)
XII.	Internal Standard (ICP-MS)	N	
XIII.	Sample Result Verification	N	
XIV.	Overall Assessment of Data	sw	

Note:

A = Acceptable

ND = No compounds detected D = Duplicate

R = Rinsate

TB = Trip blank

SB=Source blank

N = Not provided/applicable SW = See worksheet

FB = Field blank

EB = Equipment blank

OTHER:

	Client ID	Lab ID	Matrix	Date			
1	GFB12-S-01-4	010269-01	Soil	10/15/20			
2	GFB12-S-02-4	010269-02	Soil	10/15/20			
3	GFB12-S-03-4	010269-03	Soil	10/15/20			
4	GFB12-S-04-4	010269-04	Soil	10/15/20			
5	GFB12-S-05-4	010269-05	Soil	10/15/20			
6	GFB12-S-06-4	010269-06	Soil	10/15/20			
7	GFB12-S-07-4	010269-07	Soil	10/15/20			
8	GFB12-S-08-4	010269-08	Soil	10/15/20			
9	GFB12-B-01-6	010269-09	Soil	10/15/20			
10	GFB12-B-02-6	010269-10	Soil	10/15/20			
11	GFB12-524	010269-11	Soil	10/15/20			

VALIDATION COMPLETENESS WORKSHEET

Stage 2A

SDG #: 010269
Laboratory: Friedman & Bruya, Inc.

LDC #: 49554R4a

Date:11/13/2020
Page: 2 of 2
Reviewer: DTM
2nd Reviewer:

METHOD: Cu, Hg (EPA SW 846 Method 6020B/EPA Method 1631E)

	Client ID	Lab ID	Matrix	Date
12	BBH-S-89-4	010269-12	Soil	10/15/20
13	BBH-B-20-11	010269-13	Soil	10/15/20
14	BBH-B-04-11	010269-14	Soil	10/15/20
15	BBH-S-90-8	010269-15	Soil	10/15/20
16	BBH-B-28-11	010269-16	Soil	10/15/20
17	BBH-B-08-11	010269-17	Soil	10/15/20
18	BBH-B-08-11DL	010269-17DL	Soil	10/15/20
19	BBH-B-08-11MS	010269-17MS	Soil	10/15/20
20	BBH-B-08-11MSD	010269-17MSD	Soil	10/15/20
21				
22				
23				

Notes:

LDC #: 49554R4a

VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference

Page: 1 of 1
Reviewer: DTM

All circled elements are applicable to each sample.

7 th chick ci		are applicable to each sample.
Sample ID	Matrix	Target Analyte List (TAL)
13,17	S	Cu, Hg
18	S	Cu
QC 19-20	S	Cu, Hg
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Analysis Method
ICP		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
ICP-MS		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
GFAA		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn

Comments: Mercury by CVAA if performed

LDC#: 49554R4a

VALIDATION FINDINGS WORKSHEET Field Duplicates

Page:_1_of_1_ Reviewer:_DTM_

METHOD: Metals (EPA Method 6010/6020/7000)

Analyte	Concentra	RPD	
	6	11	·
Mercury	1.2	1.3	8

LDC #: 49554R4a

VALIDATION FINDINGS WORKSHEET <u>Overall Assessment of Data</u>

Page: 1_of_:
Reviewer: DTM

METHOD: Trace Metals (EPA SW 846 Method 6010/6020/7000)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

All available information pertaining to the data were reviewed using professional judgement to compliment the determination of the overall quality of the data.

Y N N/A Was the overall quality and usability of the data acceptable?

#	Sample ID	Analyte	Finding	Qualification
	18	Cu	Sample with lower dilution is more acceptable due to having a detected result.	DNR

Comments:

2701 Loker Ave. West, Suite 220, Carlsbad, CA 92010 Bus: 760-827-1100 Fax: 760-827-1099

Aspect Consulting LLC 701 Second Ave., Suite 550 Seattle, WA 98104 ATTN: Ms. Carla Brock cbrock@aspectconsulting.com December 3, 2020

SUBJECT: Kimberly-Clark Upland Area, Data Validation

Dear Ms. Brock,

Enclosed are the final validation reports for the fractions listed below. These SDGs were received on November 12, 2020. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project #49664:

SDG # Fraction

010352, 010369, 010391 010462, 010506, 010541 011027, 011068 Metals, Total Petroleum Hydrocarbons as Extractables

The data validation was performed under Stage 2A guidelines. The analyses were validated using the following documents, as applicable to each method:

- USEPA National Functional Guidelines for Organic Superfund Methods Data Review, January 2017
- USEPA National Functional Guidelines for Inorganic Superfund Methods Data Review; January 2017
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; update IV, February 2007; update V, July 2014

Please feel free to contact us if you have any questions.

Sincerely,

Christina Rink crink@lab-data.com

Christina Rink

Project Manager/Senior Chemist

Attachment 1 61 pages-ADV LDC #49664 (Aspect Consulting, LLC - Seattle, WA / Kimberly-Clark Upland Area 2020 Interm Action) Stage 2A EDD TPH-E (NWTPH Cu DATE DATE Metals Hg LDC SDG# **REC'D** DUE (6020B) (6020B) (1631E) -Dx) | w | s | w | ws S w s w s Matrix: Water/Soil 11/12/20 12/07/20 0 010352 0 В 010369 11/12/20 12/07/20 6 0 11/12/20 12/07/20 010391 3 11/12/20 12/07/20 D 010462 F 11/12/20 12/07/20 3 0 2 010506 0 010541 11/12/20 12/07/20 0 G 011027 11/12/20 12/07/20 Н 0 011068 11/12/20 12/07/20 0 0 0 T/CR

Laboratory Data Consultants, Inc. **Data Validation Report**

Project/Site Name: Kimberly-Clark Upland Area

LDC Report Date: December 2, 2020

Parameters: Metals

Validation Level: Stage 2A

Friedman & Bruya, Inc. Laboratory:

Sample Delivery Group (SDG): 010352

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
BBH-S-98-4	010352-01	Soil	10/20/20
BBH-S-99-8	010352-02	Soil	10/20/20
BBH-S-100-4	010352-03	Soil	10/20/20
GFB12-S-09-4	010352-04	Soil	10/20/20
GFB12-S-10-4	010352-05	Soil	10/20/20
GFB12-S-11-4	010352-06	Soil	10/20/20
GFB12-S-12-4	010352-07	Soil	10/20/20
GFB12-B-01-8	010352-08	Soil	10/20/20
BBH-S-98-4MS	010352-01MS	Soil	10/20/20
BBH-S-98-4MSD	010352-01MSD	Soil	10/20/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Copper by Environmental Protection Agency (EPA) SW 846 Method 6020B Mercury by EPA Method 1631E

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- (Not Applicable): The non-conformance discovered during data validation NA demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. ICPMS Tune

ICP-MS tune data were not reviewed for Stage 2A validation.

III. Instrument Calibration

Instrument calibration data were not reviewed for Stage 2A validation.

IV. ICP Interference Check Sample Analysis

ICP Interference check sample (ICS) analysis data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	MS (%R) (Limits)	MSD (%R) (Limits)	Flag	A or P
BBH-S-98-4MS/MSD (BBH-S-98-4 BBH-S-99-8 GFB12-S-09-4 GFB12-S-12-4)	Mercury	-	130 (71-125)	J (all detects)	А
BBH-S-98-4MS/MSD (BBH-S-100-4 GFB12-S-10-4 GFB12-S-11-4 GFB12-B-01-8)	Mercury	-	130 (71-125)	NA	-

Relative percent differences (RPD) were within QC limits.

VIII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

IX. Serial Dilution

Serial dilution was not performed for this SDG.

X. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits.

XI. Field Duplicates

No field duplicates were identified in this SDG.

XII. Internal Standards (ICP-MS)

Internal standards data were not reviewed for Stage 2A validation.

XIII. Sample Result Verification

Raw data were not reviewed for Stage 2A validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the methods.

Due to MS/MSD %R, data were qualified as estimated in four samples.

No results were rejected in this SDG.

Kimberly-Clark Upland Area **Metals - Data Qualification Summary - SDG 010352**

Sample	Analyte	Flag	A or P	Reason
BBH-S-98-4 BBH-S-99-8 GFB12-S-09-4 GFB12-S-12-4	Mercury	J (all detects)	A	Matrix spike/Matrix spike duplicate (%R)

Kimberly-Clark Upland Area Metals - Laboratory Blank Data Qualification Summary - SDG 010352

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Metals - Field Blank Data Qualification Summary - SDG 010352

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Stage 2A

SDG #: 010352 Laboratory: Friedman & Bruya, Inc.

LDC #: 49664A4a

Date: 12/1/2020 Page: 1 of 1 Reviewer: DTM 2nd Reviewer:

METHOD: Metals (EPA SW 846 Method 6020B/EPA Method 1631E)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
l.	Sample receipt/Technical holding times	A/A	
II.	ICP/MS Tune	N	
III.	Instrument Calibration	N	
IV.	ICP Interference Check Sample (ICS) Analysis	N	
V.	Laboratory Blanks	Α	
VI.	Field Blanks	N	
VII.	Matrix Spike/Matrix Spike Duplicates	sw	
VIII.	Duplicate sample analysis	N	
IX.	Serial Dilution	N	
X.	Laboratory control samples	Α	LCS
XI.	Field Duplicates	N	
XII.	Internal Standard (ICP-MS)	N	
XIII.	Sample Result Verification	N	
XIV.	Overall Assessment of Data	Α	

Note:

A = Acceptable

ND = No compounds detected D = Duplicate

R = Rinsate

TB = Trip blank

SB=Source blank

OTHER:

N = Not provided/applicable SW = See worksheet

FB = Field blank

EB = Equipment blank

	Client ID	Lab ID	Matrix	Date
1	BBH-S-98-4	010352-01	Soil	10/20/20
2	BBH-S-99-8	010352-02	Soil	10/20/20
3	BBH-S-100-4	010352-03	Soil	10/20/20
4	GFB12-S-09-4	010352-04	Soil	10/20/20
5	GFB12-5-10-4	010352-05	Soil	10/20/20
6	GFB12-S-11-4	010352-06	Soil	10/20/20
7	GFB12-S-12-4	010352-07	Soil	10/20/20
8	GFB12-B-01-8	010352-08	Soil	10/20/20
9	BBH-S-98-4MS	010352-01MS	Soil	10/20/20
10	BBH-S-98-4MSD	010352-01MSD	Soil	10/20/20

Notes:

_LDC #: <u>49664A4a</u>

VALIDATION FINDINGS WORKSHEET <u>Sample Specific Element Reference</u>

Page: 1 of 1
Reviewer: DTM

All circled elements are applicable to each sample.

All circled el	All circled elements are applicable to each sample.						
Sample ID	Matrix	Target Analyte List (TAL)					
1	s	Cu, Hg					
2-8	S	Нg					
QC 9-10	S	Cu, Hg					
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn					
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn					
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn					
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn					
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn					
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn					
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn					
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn					
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn					
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn					
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn					
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn					
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn					
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn					
	11	Analysis Method					
ICP		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn					
ICP-MS		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn					
GFAA		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn					

Comments: Mercury by CVAA if performed

LDC #: 49664A4a

VALIDATION FINDINGS WORKSHEET <u>Matrix Spike/Matrix Spike Duplicates</u>

Page: 1 of 1
Reviewer: DTM

METHOD: Trace metals (EPA SW 846 Method 6020/6010/7470)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Y N N/A Was a matrix spike analyzed for each matrix in this SDG?

YNN/A Were matrix spike percent recoveries (%R) within the control limits of 75-125? If the sample concentration exceeded the spike concentration

by a factor of 4 or more, no action was taken.

Y N N/A Were all duplicate sample relative percent differences (RPD) < 20% for samples?

LEVEL IV ONLY:

Y N N/A Were recalculated results acceptable? See Level IV Recalculation Worksheet for recalculations.

#	MS/MSD ID	Matrix	Analyte	MS %Recovery	MSD %Recovery	RPD (Limits)	Associated Samples	Qual	DET	ND	PS Recovery%
	9-10	s	Hg		130 (71-125)		ALL	J/A		3,5-6,8	
						· · · · · · · · · · · · · · · · · · ·					
											i
						and a file day.					

Comments:

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Kimberly-Clark Upland Area

LDC Report Date:

December 2, 2020

Parameters:

Mercury

Validation Level:

Stage 2A

Laboratory:

Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 010369

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
GFB12-S-13-4	010369-01	Soil	10/21/20
GFB12-S-14-4	010369-02	Soil	10/21/20
GFB12-S-15-4	010369-03	Soil	10/21/20
GFB12-B-02-8	010369-04	Soil	10/21/20
GFB12-B-03-8	010369-05	Soil	10/21/20
BBH-S-101-4	010369-06	Soil	10/21/20
GFB12-S-13-4MS	010369-01MS	Soil	10/21/20
GFB12-S-13-4MSD	010369-01MSD	Soil	10/21/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Mercury by Environmental Protection Agency (EPA) Method 1631E

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Instrument Calibration

Instrument calibration data were not reviewed for Stage 2A validation.

III. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

IV. Field Blanks

No field blanks were identified in this SDG.

V. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VI. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

VII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

VIII. Field Duplicates

No field duplicates were identified in this SDG.

IX. Sample Result Verification

Raw data were not reviewed for Stage 2A validation.

X. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Kimberly-Clark Upland Area Mercury - Data Qualification Summary - SDG 010369

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Mercury - Laboratory Blank Data Qualification Summary - SDG 010369

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Mercury - Field Blank Data Qualification Summary - SDG 010369

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Stage 2A

SDG #: 010369 Laboratory: Friedman & Bruya, Inc.

LDC #: 49664B4c

Date: 12/1/2020 Page: 1 of 1 Reviewer: DTM 2nd Reviewer:

METHOD: Mercury (EPA Method 1631E)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Sample receipt/Technical holding times	A/A	
11.	Instrument Calibration	N	
111.	Laboratory Blanks	А	
IV.	Field Blanks	N	
V.	Matrix Spike/Matrix Spike Duplicates	А	
VI.	Duplicate sample analysis	N	
VII.	Laboratory control samples	А	LCS
VIII.	Field Duplicates	N	
IX.	Sample Result Verification	N	
X.	Overall Assessment of Data	А	

Note: A = Acceptable

R = Rinsate

ND = No compounds detected D = Duplicate TB = Trip blank SB=Source blank

N = Not provided/applicable SW = See worksheet

FB = Field blank

EB = Equipment blank

OTHER:

	Client ID	Lab ID	Matrix	Date
1	GFB12-S-13-4	010369-01	Soil	10/21/20
2	GFB12-S-14-4	010369-02	Soil	10/21/20
3	GFB12-S-15-4	010369-03	Soil	10/21/20
4	GFB12-B-02-8	010369-04	Soil	10/21/20
5	GFB12-B-03-8	010369-05	Soil	10/21/20
6	BBH-S-101-4	010369-06	Soil	10/21/20
7	GFB12-S-13-4MS	010369-01MS	Soil	10/21/20
8	GFB12-S-13-4MSD	010369-01MSD	Soil	10/21/20
9				
10				

Notes:

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Kimberly-Clark Upland Area

LDC Report Date:

December 2, 2020

Parameters:

Mercury

Validation Level:

Stage 2A

Laboratory:

Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 010391

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
BBH-S-102-8	010391-01	Soil	10/22/20
BBH-S-102-4	010391-02	Soil	10/22/20
BBH-S-103-4	010391-03	Soil	10/22/20
BBH-S-104-4	010391-04	Soil	10/22/20
BBH-S-105-8	010391-05	Soil	10/22/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Mercury by Environmental Protection Agency (EPA) Method 1631E

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Instrument Calibration

Instrument calibration data were not reviewed for Stage 2A validation.

III. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

IV. Field Blanks

No field blanks were identified in this SDG.

V. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VI. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

VII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

VIII. Field Duplicates

No field duplicates were identified in this SDG.

IX. Sample Result Verification

Raw data were not reviewed for Stage 2A validation.

X. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Kimberly-Clark Upland Area Mercury - Data Qualification Summary - SDG 010391

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Mercury - Laboratory Blank Data Qualification Summary - SDG 010391

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Mercury - Field Blank Data Qualification Summary - SDG 010391

No Sample Data Qualified in this SDG

LDC #: 49664C4c **VALIDATION COMPLETENESS WORKSHEET** SDG #: 010391

Stage 2A

Date: 12/1/2020 Page: 1_of 1 Reviewer:DTM 2nd Reviewer:

Laboratory: Friedman & Bruya, Inc.

METHOD: Mercury (EPA Method 1631E)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Sample receipt/Technical holding times	A/A	
II.	Instrument Calibration	N	
III.	Laboratory Blanks	А	
IV.	Field Blanks	N	
V.	Matrix Spike/Matrix Spike Duplicates	N	
VI.	Duplicate sample analysis	N_	
VII.	Laboratory control samples	А	LCS
VIII.	Field Duplicates	N_	
IX.	Sample Result Verification	N	
X.	Overall Assessment of Data	А	

Note:

A = Acceptable

ND = No compounds detected D = Duplicate

R = Rinsate

TB = Trip blank

SB=Source blank

N = Not provided/applicable SW = See worksheet

FB = Field blank

EB = Equipment blank

OTHER:

	Client ID	Lab ID	Matrix	Date
1	BBH-S-102-8	010391-01	Soil	10/22/20
2	BBH-S-102-4	010391-02	Soil	10/22/20
3	BBH-S-103-4	010391-03	Soil	10/22/20
4	BBH-S-104-4	010391-04	Soil	10/22/20
5	BBH-S-105-8	010391-05	Soil	10/22/20
6				
7				
8				
9				

Notes:

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Kimberly-Clark Upland Area

LDC Report Date: December 2, 2020

Parameters: Mercury

Validation Level: Stage 2A

Friedman & Bruya, Inc. Laboratory:

Sample Delivery Group (SDG): 010462

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
BBH-S-106-4	010462-01	Soil	10/27/20
BBH-S-107-4	010462-02	Soil	10/27/20
BBH-S-108-4	010462-03	Soil	10/27/20
BBH-S-106-4MS	010462-01MS	Soil	10/27/20
BBH-S-106-4MSD	010462-01MSD	Soil	10/27/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Mercury by Environmental Protection Agency (EPA) Method 1631E

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- (Rejected): The sample results were rejected due to gross non-conformances R discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Instrument Calibration

Instrument calibration data were not reviewed for Stage 2A validation.

III. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

IV. Field Blanks

No field blanks were identified in this SDG.

V. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	MS (%R) (Limits)	MSD (%R) (Limits)	Flag	A or P
BBH-S-106-4MS/MSD (All samples in SDG 010462)	Mercury	145 (71-125)	148 (71-125)	J (all detects)	А

Relative percent differences (RPD) were within QC limits.

VI. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

VII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

VIII. Field Duplicates

No field duplicates were identified in this SDG.

IX. Sample Result Verification

Raw data were not reviewed for Stage 2A validation.

X. Overall Assessment of Data

The analysis was conducted within all specifications of the method.

Due to MS/MSD %R, data were qualified as estimated in three samples.

No results were rejected in this SDG.

Kimberly-Clark Upland Area Mercury - Data Qualification Summary - SDG 010462

Sample	Analyte	Flag	A or P	Reason
BBH-S-106-4 BBH-S-107-4 BBH-S-108-4	Mercury	J (all detects)	Α	Matrix spike/Matrix spike duplicate (%R)

Kimberly-Clark Upland Area Mercury - Laboratory Blank Data Qualification Summary - SDG 010462

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Mercury - Field Blank Data Qualification Summary - SDG 010462

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Stage 2A

Date:12/1/2020 Page: 1 of 1 Reviewer: DTM 2nd Reviewer:

SDG #: 010462 Laboratory: Friedman & Bruya, Inc.

LDC #: 49664D4c

METHOD: Mercury (EPA Method 1631E)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
l.	Sample receipt/Technical holding times	A/A	
II.	Instrument Calibration	N	
111.	Laboratory Blanks	А	
IV.	Field Blanks	N	
V.	Matrix Spike/Matrix Spike Duplicates	sw	
VI.	Duplicate sample analysis	N	
VII.	Laboratory control samples	А	LCS
VIII.	Field Duplicates	N	
IX.	Sample Result Verification	N	
X.	Overall Assessment of Data	А	

A = Acceptable Note:

ND = No compounds detected D = Duplicate

SB=Source blank

N = Not provided/applicable SW = See worksheet

R = Rinsate FB = Field blank

TB = Trip blank EB = Equipment blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	BBH-S-106-4	010462-01	Soil	10/27/20
2	BBH-S-107-4	010462-02	Soil	10/27/20
3	BBH-S-108-4	010462-03	Soil	10/27/20
4	BBH-S-106-4MS	010462-01MS	Soil	10/27/20
5	BBH-S-106-4MSD	010462-01MSD	Soil	10/27/20
6				
7				
8				
9				
10				
11				

Notes:

LDC #: 49664D4c

VALIDATION FINDINGS WORKSHEET <u>Matrix Spike/Matrix Spike Duplicates</u>

Page: 1 of 1
Reviewer: DTM

METHOD: Trace metals (EPA SW 846 Method 6020/6010/7470)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Y N N/A Was a matrix spike analyzed for each matrix in this SDG?

YNN/A Were matrix spike percent recoveries (%R) within the control limits of 75-125? If the sample concentration exceeded the spike concentration

by a factor of 4 or more, no action was taken.

<u>Y N N/A</u>

Were all duplicate sample relative percent differences (RPD) < 20% for samples?

LEVEL IV ONLY:

Y N N/A Were recalculated results acceptable? See Level IV Recalculation Worksheet for recalculations.

#	MS/MSD ID	Matrix	Analyte	MS %Recovery	MSD %Recovery	RPD (Limits)	Associated Samples	Qual	DET	ND	P Reco
	4/5	S	Hg	145(71-125)	148		ALL	J/A	ALL		
<u> </u>								<u>.</u>			
-											
<u> </u>		<u> </u>									
L											<u></u>
											<u> </u>
									ļ		_
<u> </u>									ļ	ļ <u> </u>	—
-									ļ		
_									<u> </u>	ļ	₩
_					· · · · · · · · · · · · · · · · · · ·				ļ		
-		ļ							<u> </u>	<u> </u>	₩
							<u> </u>				

Comments:

Laboratory Data Consultants, Inc. **Data Validation Report**

Project/Site Name: Kimberly-Clark Upland Area

December 2, 2020 **LDC Report Date:**

Parameters: Metals

Validation Level: Stage 2A

Friedman & Bruya, Inc. Laboratory:

Sample Delivery Group (SDG): 010506

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
BBH-S-109-4	010506-01	Soil	10/28/20
DT-B-06-8	010506-02	Soil	10/28/20
DT-S-01-4	010506-03	Soil	10/28/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Copper, Lead, and Zinc by Environmental Protection Agency (EPA) SW 846 Method 6020B

Mercury by EPA Method 1631E

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. ICPMS Tune

ICP-MS tune data were not reviewed for Stage 2A validation.

III. Instrument Calibration

Instrument calibration data were not reviewed for Stage 2A validation.

IV. ICP Interference Check Sample Analysis

ICP Interference check sample (ICS) analysis data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

IX. Serial Dilution

Serial dilution was not performed for this SDG.

X. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits.

XI. Field Duplicates

No field duplicates were identified in this SDG.

XII. Internal Standards (ICP-MS)

Internal standards data were not reviewed for Stage 2A validation.

XIII. Sample Result Verification

Raw data were not reviewed for Stage 2A validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected in this SDG.

Kimberly-Clark Upland Area Metals - Data Qualification Summary - SDG 010506

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Metals - Laboratory Blank Data Qualification Summary - SDG 010506

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Metals - Field Blank Data Qualification Summary - SDG 010506

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET LDC #: 49664E4a

Stage 2A

SDG #: 010506 Laboratory: Friedman & Bruya, Inc. Date: 12/1/2020 Page: 1 of 1 Reviewer: DTM 2nd Reviewer.

METHOD: Metals (EPA SW 846 Method 6020B/EPA Method 1631E)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
l.	Sample receipt/Technical holding times	A/A	
II.	ICP/MS Tune	N	
111.	Instrument Calibration	N _	
IV.	ICP Interference Check Sample (ICS) Analysis	N	
V.	Laboratory Blanks	А	
VI.	Field Blanks	N	
VII.	Matrix Spike/Matrix Spike Duplicates	N	
VIII.	Duplicate sample analysis	N	
IX.	Serial Dilution	N _	
X.	Laboratory control samples	A	LCS
XI.	Field Duplicates	N	
XII.	Internal Standard (ICP-MS)	N	
XIII.	Sample Result Verification	N	
XIV.	Overall Assessment of Data	А	

Note:

A = Acceptable

ND = No compounds detected D = Duplicate

SB=Source blank

N = Not provided/applicable SW = See worksheet

R = Rinsate FB = Field blank

TB = Trip blank EB = Equipment blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	BBH-S-109-4	010506-01	Soil	10/28/20
2	DT-B-06-8	010506-02	Soil	10/28/20
3	DT-S-01-4	010506-03	Soil	10/28/20
4				

Notes:

__LDC #:___49664E4a_

VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference

Page: 1 of 1 Reviewer: DTM

All circled elements are applicable to each sample.					
Sample ID	Matrix	Target Analyte List (TAL)			
2-3	S	Cu, Pb, Zn, Hg			
1	S	Hg			
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn			
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn			
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn			
-		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn			
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn			
	_	Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn			
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn			
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn			
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn			
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn			
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn			
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn			
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn			
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn			
		Analysis Method			
ICP		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn			
ICP-MS		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn			
GFAA		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mo, Mn, Hg, Ni, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn			

Comments: Mercury by CVAA if performed

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Kimberly-Clark Upland Area

LDC Report Date:

November 20, 2020

Parameters:

Total Petroleum Hydrocarbons as Extractables

Validation Level:

Stage 2A

Laboratory:

Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 010506

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
DT-B-06-8	010506-02	Soil	10/28/20
DT-S-01-4	010506-03	Soil	10/28/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Petroleum Hydrocarbons (TPH) as Extractables by NWTPH-Dx

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- (Estimated): The compound or analyte was analyzed for and positively identified J by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered not detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- (Rejected): The sample results were rejected due to gross non-conformances R discovered during data validation. Data qualified as rejected is not usable.
- (Not Applicable): The non-conformance discovered during data validation NA demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Kimberly-Clark Upland Area

Total Petroleum Hydrocarbons as Extractables - Data Qualification Summary -SDG 010506

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area

Total Petroleum Hydrocarbons as Extractables - Laboratory Blank Data **Qualification Summary - SDG 010506**

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area

Total Petroleum Hydrocarbons as Extractables - Field Blank Data Qualification **Summary - SDG 010506**

No Sample Data Qualified in this SDG

SDG	#:49664E8		PLETENES: Stage 2A	S WORKSHE		Date: "//8/2 Page: lof l Reviewer: LT Reviewer:
MET	HOD: GC TPH as Extractables (NWTPH	I-Dx)			ZIIG	reviewer
	samples listed below were reviewed for e ation findings worksheets.	ach of the f	ollowing valida	ation areas. Valid	dation findings are	noted in attached
	Validation Area			Co	mments	
1.	Sample receipt/Technical holding times	A,A				
II.	Initial calibration/ICV	N/N			•	
III.	Continuing calibration	N				
IV.	Laboratory Blanks	A				
V.	Field blanks	N				
VI.	Surrogate spikes	A				
VII.	Matrix spike/Matrix spike duplicates	7	Non clier	4		
VIII	Laboratory control samples	A	LC5			
IX.	Field duplicates	N_				
X.	Compound quantitation RL/LOQ/LODs	N	Dry weigh	4 basis= $1,2$		
XI.	Target compound identification	N			•	
XII	Overall assessment of data	A				
Note:	N = Not provided/applicable R = Ri	No compounds insate Field blank	s detected	D = Duplicate TB = Trip blank EB = Equipment	OTHER:	rce blank
	Client ID			Lab ID	Matrix	Date
1	DT-B-06-8			010506-02	Soil	10/28/20
2	DT-S-01-4			010506-03	Soil	10/28/20
3						
4						
5						
6						
7						
8			-			
9						
10						
11						
12						
13						

00-2438 MB

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Kimberly-Clark Upland Area

LDC Report Date:

December 2, 2020

Parameters:

Mercury

Validation Level:

Stage 2A

Laboratory:

Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 010541

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
GFB12-S-16-4	010541-01	Soil	10/29/20
GFB12-S-16-4MS	010541-01MS	Soil	10/29/20
GFB12-S-16-4MSD	010541-01MSD	Soil	10/29/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Mercury by Environmental Protection Agency (EPA) Method 1631E

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Instrument Calibration

Instrument calibration data were not reviewed for Stage 2A validation.

III. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

IV. Field Blanks

No field blanks were identified in this SDG.

V. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. For GFB12-S-16-4MS/MSD, no data were qualified for mercury percent recoveries outside the QC limits since the parent sample results were greater than 4X the spike concentration. Relative percent differences (RPD) were within QC limits.

VI. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

VII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

VIII. Field Duplicates

No field duplicates were identified in this SDG.

IX. Sample Result Verification

Raw data were not reviewed for Stage 2A validation.

X. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Kimberly-Clark Upland Area Mercury - Data Qualification Summary - SDG 010541

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Mercury - Laboratory Blank Data Qualification Summary - SDG 010541

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Mercury - Field Blank Data Qualification Summary - SDG 010541

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET LDC #: 49664F4c

Stage 2A

Date: 12/2/2020 Page: 1 of 1

Reviewer: DTM 2nd Reviewer:

Laboratory: Friedman & Bruya, Inc.

SDG #: 010541

METHOD: Mercury (EPA Method 1631E)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
l.	Sample receipt/Technical holding times	A/A	
11.	Instrument Calibration	N	
III.	Laboratory Blanks	Α	
IV.	Field Blanks	N	
V.	Matrix Spike/Matrix Spike Duplicates	SW	2/3 Hg > 4xSpike
VI.	Duplicate sample analysis	N	
VII.	Laboratory control samples	Α	LCS
VIII.	Field Duplicates	N	
IX.	Sample Result Verification	N	
X.	Overall Assessment of Data	Α	

Note:

A = Acceptable

ND = No compounds detected D = Duplicate

SB=Source blank

N = Not provided/applicable

SW = See worksheet

R = Rinsate FB = Field blank

TB = Trip blank

EB = Equipment blank

OTHER:

		1		1
	Client ID	Lab ID	Matrix	Date
1	GFB12-S-16-4	010541-01	Soil	10/29/20
2	GFB12-S-16-4MS	010541-01MS	Soil	10/29/20
3	GFB12-S-16-4MSD	010541-01MSD	Soil	10/29/20
4				
5				
6				
7				
8				

Notes:

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Kimberly-Clark Upland Area

LDC Report Date: December 2, 2020

Parameters: Mercury

Validation Level: Stage 2A

Laboratory: Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 011027

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
GFB12-S-17-4	011027-01	Soil	11/03/20
GFB12-S-17-4MS	011027-01MS	Soil	11/03/20
GFB12-S-17-4MSD	011027-01MSD	Soil	11/03/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Mercury by Environmental Protection Agency (EPA) Method 1631E

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Instrument Calibration

Instrument calibration data were not reviewed for Stage 2A validation.

III. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

IV. Field Blanks

No field blanks were identified in this SDG.

V. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample.

For GFB12-S-17-4MS/MSD, no data were qualified for mercury percent recoveries outside the QC limits since the parent sample results were greater than 4X the spike concentration.

Relative percent differences (RPD) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	RPD (Limits)	Flag	A or P
GFB12-S-17-4MS/MSD (All samples in SDG 011027)	Mercury	50 (≤20)	J (all detects)	А

VI. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

VII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

VIII. Field Duplicates

No field duplicates were identified in this SDG.

IX. Sample Result Verification

Raw data were not reviewed for Stage 2A validation.

X. Overall Assessment of Data

The analysis was conducted within all specifications of the method.

Due to MS/MSD RPD, data were qualified as estimated in one sample.

No results were rejected in this SDG.

Kimberly-Clark Upland Area Mercury - Data Qualification Summary - SDG 011027

Sample	Analyte	Flag	A or P	Reason
GFB12-S-17-4	Mercury	J (all detects)	A	Matrix spike/Matrix spike duplicate (RPD)

Kimberly-Clark Upland Area Mercury - Laboratory Blank Data Qualification Summary - SDG 011027

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Mercury - Field Blank Data Qualification Summary - SDG 011027

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET LDC #: 49664G4c SDG #: 011027

Stage 2A

Date: 12/2/2020 Page: 1 of 1 Reviewer: DTM 2nd Reviewer

Laboratory: Friedman & Bruya, Inc.

METHOD: Mercury (EPA Method 1631E)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Sample receipt/Technical holding times	A/A	
II.	Instrument Calibration	N_	
III.	Laboratory Blanks	А	
IV.	Field Blanks	N	
V.	Matrix Spike/Matrix Spike Duplicates	sw	2/3 > 4x Spike
VI.	Duplicate sample analysis	N	
VII.	Laboratory control samples	А	LCS
VIII.	Field Duplicates	N	
IX.	Sample Result Verification	N	
X.	Overall Assessment of Data	А	

Note:

A = Acceptable

ND = No compounds detected D = Duplicate

SB=Source blank

N = Not provided/applicable SW = See worksheet

R = Rinsate FB = Field blank

TB = Trip blank EB = Equipment blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	GFB12-S-17-4	011027-01	Soil	11/03/20
2	GFB12-S-17-4MS	011027-01MS	Soil	11/03/20
3	GFB12-S-17-4MSD	011027-01MSD	Soil	11/03/20
4				
5				
6				
7				
8				

Notes:

LDC #: 49664G4c

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

Page: 1 of 1
Reviewer: DTM

METHOD: Trace metals (EPA SW 846 Method 6020/6010/7470)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Y N N/A Was a matrix spike analyzed for each matrix in this SDG?

YNN/A Were matrix spike percent recoveries (%R) within the control limits of 75-125? If the sample concentration exceeded the spike concentration

by a factor of 4 or more, no action was taken.

Y N N/A Were all duplicate sample relative percent differences (RPD) \leq 20% for samples?

LEVEL IV ONLY:

Y N N/A Were recalculated results acceptable? See Level IV Recalculation Worksheet for recalculations.

#	MS/MSD ID	Matrix	Analyte	MS %Recovery	MSD %Recovery	RPD (Limits)	Associated Samples	Qual	DET	ND	P Reco
	2/3	S	Hg			50(20)	ALL	J/UJ/A	ALL		
<u>_</u>											
										<u> </u>	
										_	
									1	<u> </u>	
L											
						i					

Comments:

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Kimberly-Clark Upland Area

LDC Report Date:

December 2, 2020

Parameters:

Mercury

Validation Level:

Stage 2A

Laboratory:

Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 011068

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
GFB12-S-18-4	011068-01	Soil	11/04/20
GFB12-S-18-4MS	011068-01MS	Soil	11/04/20
GFB12-S-18-4MSD	011068-01MSD	Soil	11/04/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Mercury by Environmental Protection Agency (EPA) Method 1631E

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- (Not Applicable): The non-conformance discovered during data validation NA demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Instrument Calibration

Instrument calibration data were not reviewed for Stage 2A validation.

III. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

IV. Field Blanks

No field blanks were identified in this SDG.

V. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. For GFB12-S-18-4MS/MSD, no data were qualified for mercury percent recoveries outside the QC limits since the parent sample results were greater than 4X the spike concentration. Relative percent differences (RPD) were within QC limits.

VI. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

VII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

VIII. Field Duplicates

No field duplicates were identified in this SDG.

IX. Sample Result Verification

Raw data were not reviewed for Stage 2A validation.

X. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Kimberly-Clark Upland Area Mercury - Data Qualification Summary - SDG 011068

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Mercury - Laboratory Blank Data Qualification Summary - SDG 011068

No Sample Data Qualified in this SDG

Kimberly-Clark Upland Area Mercury - Field Blank Data Qualification Summary - SDG 011068

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Stage 2A

SDG #: 011068

LDC #: 49664H4c

Laboratory: Friedman & Bruya, Inc.

METHOD: Mercury (EPA Method 1631E)

Date: 12/2/2020 Page: 1 of 1 Reviewer: DTM 2nd Reviewer

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Sample receipt/Technical holding times	A/A	
11.	Instrument Calibration	N	
111.	Laboratory Blanks	Α	
IV.	Field Blanks	N	
V.	Matrix Spike/Matrix Spike Duplicates	sw	2/3 Hg >4x Spike
VI.	Duplicate sample analysis	N	
VII.	Laboratory control samples	А	LCS
VIII.	Field Duplicates	N	
IX.	Sample Result Verification	N	
X.	Overall Assessment of Data	Α	

Note:

A = Acceptable

SW = See worksheet

ND = No compounds detected

D = Duplicate

SB=Source blank

N = Not provided/applicable

R = Rinsate FB = Field blank

TB = Trip blank EB = Equipment blank OTHER:

_	Client ID	Lab ID	Matrix	Date
1	GFB12-S-18-4	011068-01	Soil	11/04/20
2	GFB12-S-18-4MS	011068-01MS	Soil	11/04/20
3	GFB12-S-18-4MSD	011068-01MSD	Soil	11/04/20
4				
5				
6				

Notes:

APPENDIX D

Report of Archaeological Monitoring (Perteet Inc.)

December 28, 2020

Mr. Steve Germiat Principal Hydrogeologist Aspect Consulting

In future correspondence please refer to: Project Tracking Code: 050912-24-SN

Property: Kimberly Clark Pulp and Paper Mill Demolition World Wide

Re: Archaeology - Concur with Monitoring Report

Dear Mr. Germiat:

The State Historic Preservation Officer (SHPO) and the Department of Archaeology and Historic Preservation (DAHP) has been provided with documentation regarding the above referenced project. In response, we concur with the results and recommendations made in the monitoring report entitled "Results of Archaeological Monitoring for the Kimberly-Clark Everett Interim Action." Specifically, we agree that although the building remnants and infrastructure found during monitoring likely date to the historical period, not enough was found during this project to require any further archaeological work at this time. No further archaeological work is recommended for this project.

These comments are based on the information available at the time of this review and on behalf of the SHPO pursuant to Washington State law. Please note that should the project scope of work and/or location change significantly, please contact DAHP for further review.

Thank you for the opportunity to review and comment. Please ensure that the DAHP Project Number (a.k.a. Project Tracking Code) is attached to any further communications with the DAHP about this project. Should you have any questions, please feel free to contact me.

Sincerely,

Stephanie Jolivette

Local Governments Archaeologist

(360) 628-2755

Stephanie.Jolivette@dahp.wa.gov

CULTURAL RESOURCES REPORT COVER SHEET

Author: <u>Jack Johnson, PhD, RPA</u>
Title of Report: Results of Archaeological Monitoring for the Kimberly-Clark Everett
Interim Action
Date of Report: October 23, 2020
County(ies): Snohomish Section: 19 Township: 29 N Range: 5 E
Quad: Everett, Wa, 7.5' Quad. Acres: <1
PDF of report submitted (REQUIRED)
Historic Property Export Files submitted? ☐ Yes ☐ No
Archaeological Site(s)/Isolate(s) Found or Amended? ☐ Yes ⊠ No
TCP(s) found? ☐ Yes ☒ No
Replace a draft? Yes No
Satisfy a DAHP Archaeological Excavation Permit requirement? Yes # No
DAHP Archaeological Site #:

October 23, 2020

Steve J. Germiat, LHG
Principal Hydrogeologist
Aspect Consulting, LLC
710 Second Avenue, Suite 550
Seattle, WA 98104

Re: Results of Archaeological Monitoring for the Kimberly-Clark Everett Interim Action

Dear Mr. Germiat,

This letter provides the results of cultural resources monitoring conducted by Perteet for the Kimberly-Clark Interim Action Project at the Kimberly-Clark Worldwide Site Upland Area (Site) in Everett, Washington (Figure 1). The project location, regulatory context, monitoring methods, and results are described in detail below. Detailed background information on the natural and cultural environments of the project area are provided by Rinck and colleagues (2013) and will not be repeated in this report.

Archaeological monitoring of excavations for the current phase of the Interim Action Project is now complete. Sediments removed during excavation were limited to historical fill; no native sediments or soils were encountered during monitoring. No pre-contact archaeological materials were observed during monitoring. Subsurface remnants of historical mill structures were encountered and documented during monitoring of excavation in two project areas. Structural elements documented in the Hydraulic Barker (HB) area probably represent remnants of the hydraulic debarking facility erected by the Soundview Pulp Company in 1945 (Everett Daily Herald, Feb. 8, 1954:20). Structural elements documented in the Central Maintenance Shop (CMS) area represent remnants of various infrastructure and facilities installed from the 1930s onward. Subsurface structural remains observed during monitoring were not removed and remain in situ.

No observed structural elements incorporated distinctive features that could yield historical insight through additional research, and no historical artifacts were encountered in association with structural remains. Standing historical mill structures throughout the site were demolished in 2013 after a Final Mitigated Determination of Non-Significance issued by the City of Everett (Attachment A) required an evaluation of the historical significance of only the Puget Sound Pulp and Timber Main Office Building, which is outside the current project area. No additional work is therefore recommended within the current project area.

PROJECT LOCATION AND DESCRIPTION

Kimberly-Clark (K-C) has undertaken removal of contaminated soil in nine areas within the Site (Figure 2). The Site lies within Section 19 of Township 29 North, Range 5 East, Willamette Meridian. It is south of US Naval Station Everett, adjacent to the East Waterway in Port Gardner Bay, and bordered to the west by the BNSF railroad. Data from geotechnical boreholes and geoarchaeological analysis indicate that seven of the nine

planned cleanup areas were entirely within historical dredge fill associated with development of the mill site (Rinck et al. 2013). However, the CMS and HB areas lie within an area previously identified as having a high potential for encountering native sediment during excavations (Figure 3). These two areas therefore required archaeological monitoring during removal of contaminated sediments.

Removal of contaminated materials involved excavation of uncontaminated backfill overburden and underlying contaminated deposits, followed by disposal of contaminated materials at an off-site facility. Cleanup work was conducted by Aspect Consulting, LLC (Aspect) on behalf of K-C under the guidance of an Interim Action Work Plan (IAWP) prepared by Aspect as an exhibit to an Amendment to Agreed Order No. DE 9476 (Order) between K-C and the Washington State Department of Ecology (Ecology) (Aspect 2019). A prior phase of interim cleanup was undertaken in 2013-2014 under this Order. All documents pertaining to the current IAWP and Order are available on the Ecology website (WSDE 2020).

REGULATORY SETTING

The project is subject to the Washington State Environmental Policy Act (SEPA) that requires the project proponent to identify any places or objects listed on or eligible for national, state, or local preservation registers in the vicinity of the project. The regulation also requires proponents to describe evidence for sites of historic, archaeological, scientific, or cultural importance in the vicinity of a project, and describe proposed measures to reduce or control impacts to those sites. Agencies are encouraged by SEPA to consult with others to find acceptable ways to avoid or mitigate any adverse impacts that may be caused by the project.

The project is also subject to several Washington state laws pertaining to archaeological cultural resources. For example, the Archaeological Sites and Resources Act [RCW 27.53] prohibits knowingly excavating or disturbing prehistoric and historic archaeological sites on public or private land. The Indian Graves and Records Act [RCW 27.44] prohibits knowingly destroying American Indian graves and provides that inadvertent disturbance through construction or other activities requires re-interment under supervision of the appropriate Indian tribe. In order to prevent the looting or depredation of sites, any maps, records, or other information identifying the location of archaeological sites, historic sites, artifacts, or the site of traditional ceremonial, or social uses and activities of Indian Tribes are also exempt from disclosure [RCW 42.56.300].

The Tulalip Tribes have previously communicated to Ecology that the Everett waterfront is a very culturally sensitive area. Previous cultural resources assessment (Rinck et al. 2013) and was completed due to the Tribe's and other interested parties' concern for cultural resources in the project vicinity.

PROJECT BACKGROUND

A cultural resources assessment was conducted in 2013 prior to demolition of historical mill structures and initial cleanup efforts at the Site (Rinck et al. 2013). This work reviewed extensive historical and geotechnical data to detail the long history of use of the project vicinity by Native Americans and subsequent Euroamerican settlers, including extensive modification of the Site in conjunction with development of the historical mill. This land modification emplaced large amounts of dredge and mill fill across the Site, and extended the former shoreline westward by over 500 feet (152 meters) in some areas, covering native foreshore, marshland, and sub-tidal depositional environments. Variable depths of fill across the Site were documented, and areas of high archaeological sensitivity within the Site were identified (Figure 3). An archaeological monitoring and discovery plan (MDP) was formulated to guide subsequent demolition and cleanup efforts (Rinck 2013). This plan calls for monitoring of fill excavations by a geologist, and archaeological monitoring of excavation below fill in moderate and high sensitivity areas or when intact cultural materials are observed by the geologist.

Archaeological monitoring following this MDP was performed during prior cleanup efforts at the site in 2013 to the south of current project areas (Undem et al. 2014). Monitoring efforts documented a small amount of historical and pre-contact cultural material within historical fill. In all cases where cultural materials were encountered, poor integrity and a lack of data potential precluded the need for additional targeted recovery or mitigation measures. Historical features observed were associated with mill construction and operation. Precontact materials encountered include one pre-contact edge-altered cobble (stone chopping/digging tool) and several fragments of fire-modified rock (FMR). All pre-contact materials were encountered in displaced contexts within lower fill at about 6.5 feet (2 meters) below the surface. The stone tool was recorded as an isolate (Smithsonian trinomial 45SN629) (Undem 2014) and donated to Hibulb Cultural Center; no other cultural remains encountered during this phase of work were formally recorded as archaeological sites.

In the current project area, fill deposits were expected to be roughly 6 feet (1.8 meters) thick in the HB area and between 6 and 12 feet (1.8 to 3.7 meters) thick in the CMS area based on available geotechnical data (Rinck et al. 2013) and observations from previous cleanup efforts in the vicinity (Aspect 2015). Natural deposits below the fill include sediments deposited in backshore, beach, foreshore, marsh, and sub-tidal deltaic environments. Thus current project excavations had potential to encounter pre-contact and early historical cultural materials along the historical shoreline but buried below the fill. The fill could also harbor stable former surfaces with potential for historical cultural materials.

CULTURAL RESOURCES MONITORING METHODS

Prior to the start of excavation, Perteet archaeologist Emily Peterson coordinated with Aspect project leads to review the site MDP established prior to earlier cleanup efforts. As per this plan, site excavation in historical fill containing no cultural remains was monitored by a geologist. Aspect notified Perteet when excavation was anticipated to extend below fill, and a Perteet archaeologist was then deployed to perform excavation monitoring. On the first day of archaeological monitoring, Perteet archaeologist Jack Johnson met with Aspect and other project personnel on-site to review monitoring and site safety protocols.

Archaeological monitoring was performed in two distinct areas within the Site: the Hydraulic Barker (HB) area and the Central Maintenance Shop (CMS) area. Archaeological monitoring of the HB area was performed on May 29, 2020 by Jack Johnson. In this location, removal of a roughly 50 foot by 20 foot (15.2 by 9.1 meter) area of overburden to a depth of roughly 6 feet (1.8 meters) below surface was completed prior to archaeological monitoring to allow equipment access for dewatering. At the eastern edge of this area, a roughly 20 foot by 20 foot (6 by 6 meter) area of historical fill had also been excavated to a depth of roughly 10 feet (3 meters) below surface prior to the arrival of the archaeological monitor. The archaeological monitor observed subsequent excavation of this smaller area to a depth of roughly 13 feet (4 meters) below the surface, where excavation ended. Archaeological monitoring of the CMS area was performed on July 10, 13, and 14 by Perteet archaeologist Patrick Garrison. A small amount of overburden fill had been removed prior to archaeological monitoring in this area; archaeological monitoring observed subsequent excavation of this area to a depth of about 6 feet (1.8 meters) below the surface, where excavation ended.

Throughout archaeological monitoring, Perteet archaeologists described excavation methods, sediments, and cultural materials encountered using standardized forms and terminology. Photographs were taken using digital cameras and a log of all photographs taken was kept. Location data were recorded on hand-drawn maps. Excavation spoils were examined for cultural materials.

Due to the contaminated nature of the site, archaeological monitoring in both areas was performed at a safe distance from potentially-contaminated deposits. This inhibited the archaeologists' ability to closely examine cultural materials or subsurface stratigraphy encountered during excavation, especially in the small HB area

where a combination of contaminated materials, space constraints, and excavation depth prevented safe entry into the fully-excavated pit. However, historical structural remains and debris encountered during excavation were identifiable from the surface grade in this area. Further, because project objectives focused on the removal of loose contaminated sediment, site excavation was able to work around extant structural remains without displacing these remains, facilitating exposure and documentation from a safe working distance.

RESULTS OF CULTURAL RESOURCES MONITORING

In both excavation areas, archaeological monitors observed and documented structural remains and building debris associated with historical mill operations. Identified structural remains were within historical fill, and no evidence of intact cultural remains within native sediment was observed. No pre-contact cultural materials were observed.

Within the HB area, structural remains included concrete foundations, wood pilings, and brick and metal debris. Debris was encountered between roughly 6 and 10 feet (1.8 to 3 meters) below the surface within mottled brown fill (Figure 4). Concrete features and wood piling were encountered at roughly 10 feet (3 meters) to 11 feet (3.35 meters) below the surface. They include a 10-inch (25 centimeter) thick, 5-foot (1.5 meter) wide concrete foundation in the south wall of the excavation pit, a small concrete footing at the east edge of the pit, and an elbow-shaped concrete feature protruding from the north wall of the pit and trending westward (Figures 5 and 6). One displaced timber piling protruded from the south wall of the pit adjacent to the concrete foundation, and another remained *in situ* at the elbow of the concrete feature protruding from the north wall. These materials are remnants of the former hydraulic bark removal facility erected in 1945 at this location (Figure 7), and the elbow-shaped concrete feature probably represents the remnant of the southernmost of the former log ways used to collect floated logs from the shoreline waterway, which was adjacent to this structure at the time.

Within the CMS area, structural remains included a concrete vault, concrete pipe, foundations, and walkways, one segment of wood stave pipe, steel pipes, and brick debris (Figure 8). Cultural materials in this location were shallowly-buried, and all lie within historical fill in the upper 6 feet (1.8 meters) of subsurface deposits. The wood stave pipe (Figure 9) represents remnant mill process sewer pipes indicated in historic maps from 1957 (Figure 10), and were probably installed during the early period of mill operation in the 1930s given the construction methods and materials used. Other extant structural remains probably date to the 1950s or later; historic maps and aerial imagery indicate this portion of the site was relatively undeveloped until sometime between 1941 and 1952 (Figures 11 and 12) with most of the previous structures in this area dating to the 1960s or later.

The types of historic features and debris encountered during monitoring are ubiquitous and lack the potential to yield historical insights in the absence of diagnostic features or associated intact deposits of contemporary artifacts. For example, similar structural remnants of dozens of buildings can be expected at this Site alone. Perteet therefore did not record these features as one or more archaeological sites, but instead documented them with detailed notes and photographs. Observed structural features described above also remain *in situ*, and were not removed or otherwise adversely affected by cleanup excavations.

DISCUSSION

Structural remains associated with the historical mill were encountered during archaeological monitoring of excavations in both the HB and the CMS areas. Observed structural remains date primarily to the mid-1940s or later, although a segment of wood stave pipe in the CMS area may date to initial mill operation in the 1930s. Remains were not associated with deposits of other cultural materials that could provide additional information related to the history of mill operations at the Site, and therefore do not hold any potential for yielding additional historical insights.

No precontact artifacts or buried surfaces were observed during monitoring. Ground disturbance in the HB and CMS areas is now complete, and no further monitoring or cultural resources investigations are recommended.

Thank you for the opportunity to work with you on this project. Please do not hesitate to contact me with any questions regarding this report.

Sincerely,

Jack Johnson, Ph.D., RPA

Jack Johnson

Project Archaeologist, Perteet Inc.

REFERENCES

Aspect Consulting, LLC

2015 Interim Action Report, Kimberly-Clark Worldwide Site Upland Area, Everett, Washington. Report Prepared for Kimberly-Clark Worldwide, Inc.

Work Plan for Second Interim Action, Kimberly-Clark Worldwide Site Upland Area, Everett, Washington. Report prepared for Kimberly-Clark Worldwide, Inc.

Rinck, Brandy

2013 Cultural Resources Monitoring and Discovery Plan for the Kimberly-Clark Worldwide Site Upland Area, Everett, Snohomish County, Washington. Report prepared for Aspect Consulting, LLC. SWCA/Northwest Archaeological Associates, Seattle, Washington.

Rinck, Brandy, Sharon Boswell, and Johonna Shea

Archaeological Resources Assessment for the Kimbely-Clark Worldwide Site Upland Area, Everett, Snohomish County, Washington. Report prepared for Aspect Consulting, LLC. SWCA/Northwest Archaeological Associates, Seattle, Washington.

Undem, Cyrena

2014 State of Washington Archaeological Isolate Inventory Form, 45SN629, KC-WW-13-01. On file, Washington State Department of Archaeology and Historic Preservation, Olympia, Washington.

Undem, Cyrena, Michael Shong, and Brandy Rinck

2014 Results of Cultural Resources Monitoring at the Kimberly-Clark Worldwide Site Upland Area, Everett, Washington. SWCA Project No. 24976. Letter report to Aspect Consulting, LLC. SWCA Environmental Consultants, Seattle, Washington.

PERTEET
SEATTLE, WA

Washington State Department of Ecology

2020 *Kimberly-Clark Worldwide.* Online resource accessed October 15, 2020. https://apps.ecology.wa.gov/gsp/Sitepage.aspx?csid=2569

Figure 1. Project location.

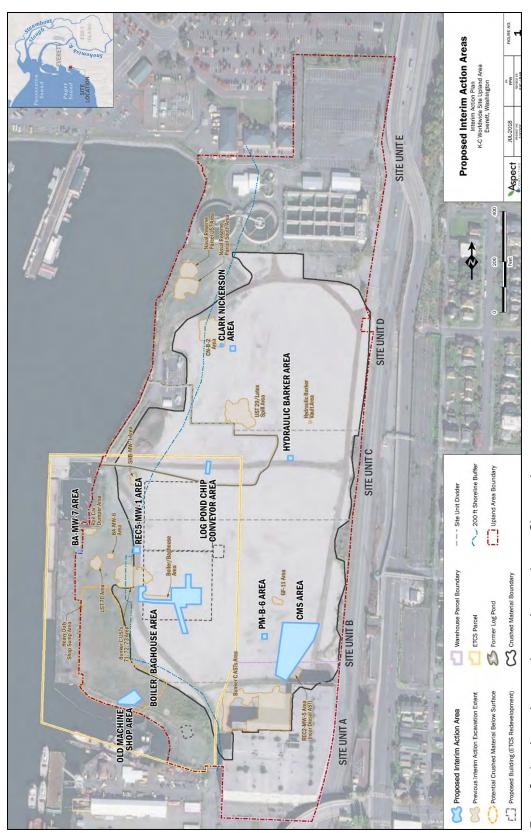


Figure 2. Air photo showing the nine Interim Action Cleanup Areas.

Figure 3. Air photo showing monitored areas over site sensitivity model in Rinck et al. 2013:55 (Figure 24).

PERTEET SEATTLE, WA

Figure 4. Cultural debris observed in the Hydraulic Barker Area.

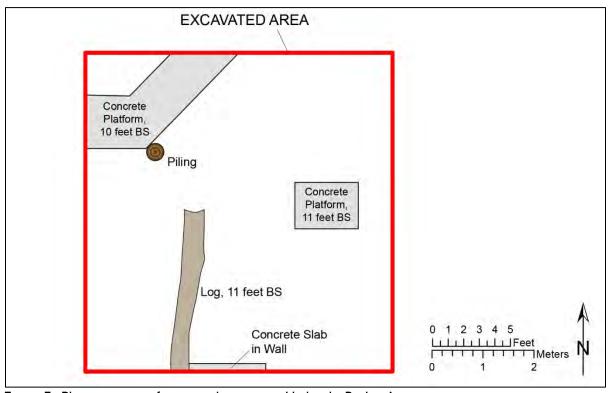


Figure 5. Plan view map of structural remains in Hydraulic Barker Area.

Figure 6. Photo of excavated Hydraulic Barker Area showing concrete and wood structural remains.

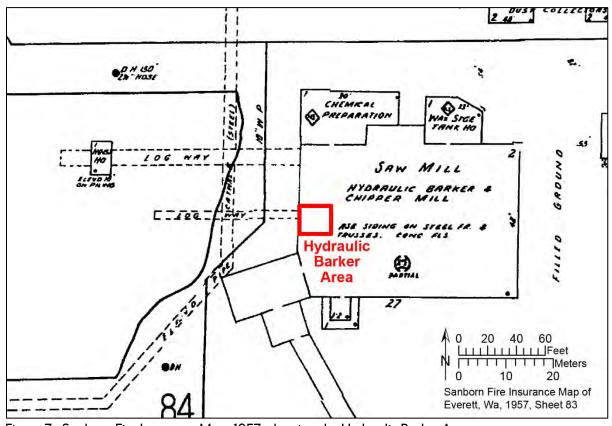


Figure 7. Sanborn Fire Insurance Map, 1957, showing the Hydraulic Barker Area.

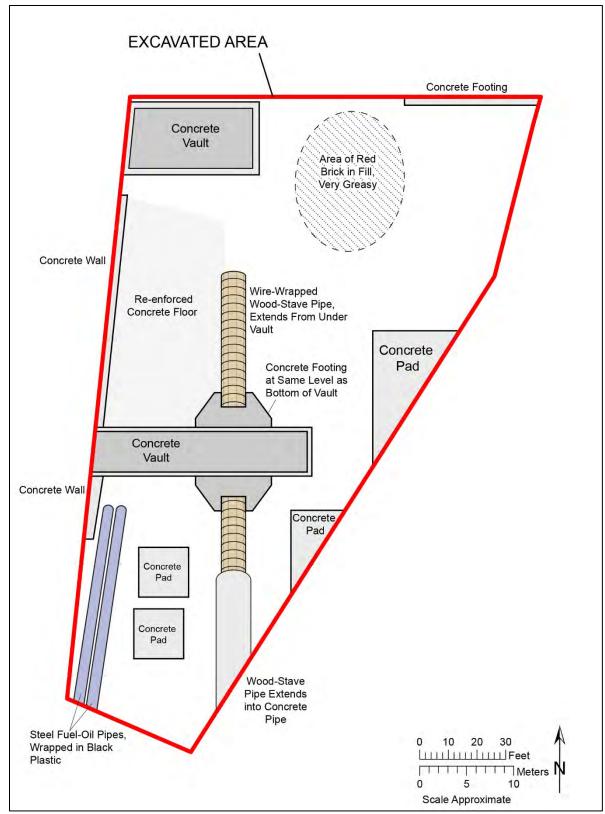


Figure 8. Plan view of observed remains in the CMS Area.

Figure 9. Overview of wood-stave pipe in the CMS Area.

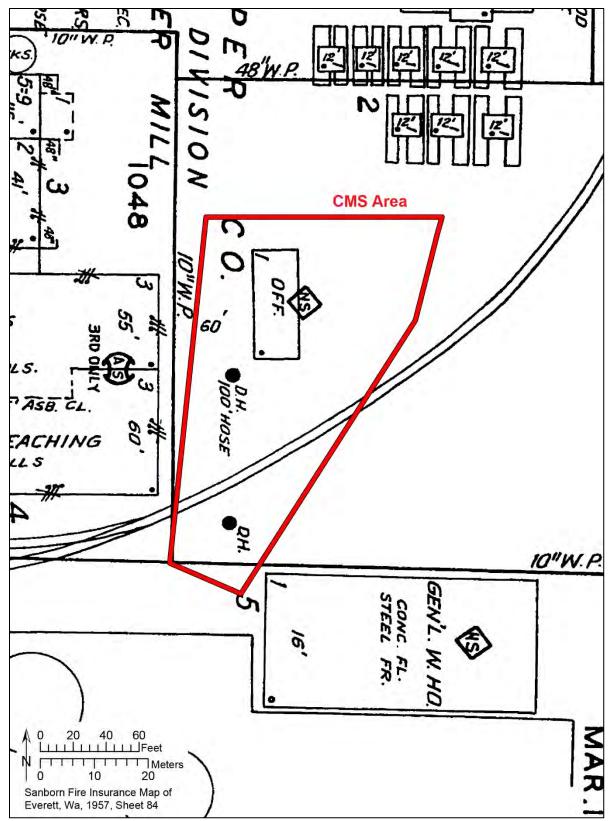


Figure 10. Sanborn Fire Insurance Map, 1957, showing the CMS Area.

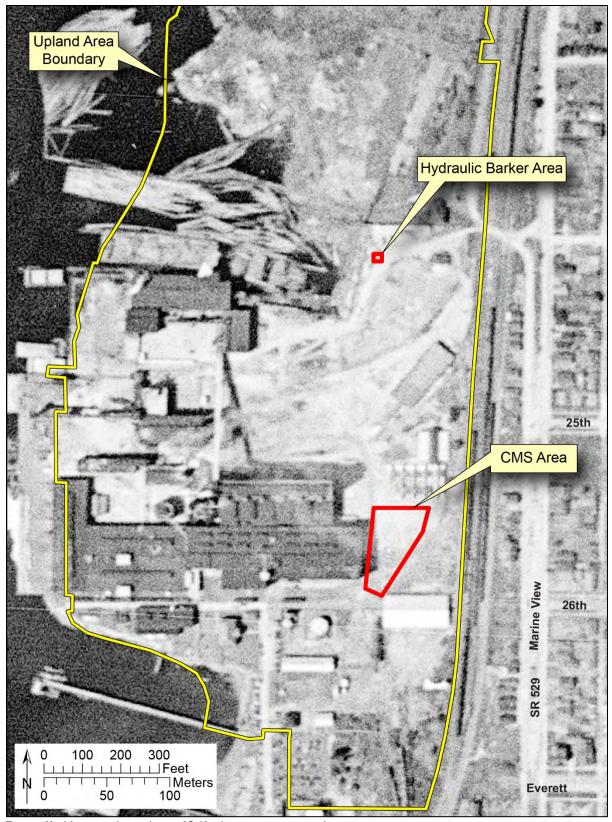


Figure 11. Historical air photo, 1941, showing monitored areas.

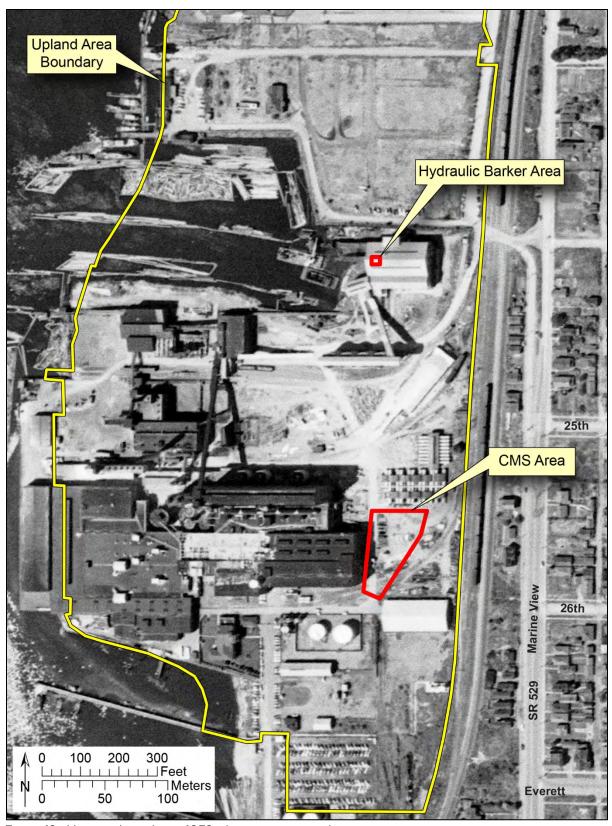


Figure 12. Historical air photo, 1952, showing monitored areas.

ATTACHMENT A

Determination of Non-Significance

FINAL MITIGATED DETERMINATION OF NON-SIGNIFICANCE SEPA12-010 May 25, 2012

Description of Proposal: Demolition of Kimberly Clark Pulp and Paper Mill facilities upland from the shoreline, not including any structures or utilities located more than 2 feet below existing grade.

Applicant: Kimberly Clark Worldwide

Rick Tucker, Mill Manager 2600 Federal Avenue Everett, WA 98201

Location: 2600 Federal Ave

Zoning: M-2 -- Heavy Industry

Lead Agency: City of Everett Planning Department

Contact Person: John Jimerson Phone: (425) 257-8731

AGENCIES WITH JURISDICTION

The following agencies have been identified as possibly having jurisdiction over the proposal. It is the responsibility of the applicant to identify and obtain all necessary permits and approvals.

- Department of Ecology (Construction Stormwater General Permit, NPDES Water Discharge Permit Modification/ Demolition Notification).
- Department of Labor and Industries (Asbestos Abatement/Demolition Notification).

THRESHOLD DETERMINATION

The lead agency for this proposal has determined that it does not have a probable significant adverse impact on the environment. An Environmental Impact Statement is not required under RCW 43.21C.030(2)(c). This determination assumes compliance with State law and City ordinances related to general environmental protection including but not limited to right-of-way improvement requirements, drainage, etc. This decision was made after review of a completed environmental checklist and other information on file with the lead agency. This information is available to the public on request. This Mitigated Determination of Non-Significance is specifically conditioned on compliance with the conditions attached hereto which are incorporated by reference as if fully set forth herein.

This Final DNS is issued under WAC 197-11-355. A 14-day public comment period for this proposal has been completed.

MITIGATION MEASURES

 No demolition in the immediate vicinity of the Puget Sound Pulp and Timber Main Office Building, or of the building itself, may be commenced before: 1) Kimberly Clark has submitted an evaluation of the historical significance of that building, prepared by a qualified historian or other professional qualified to perform such evaluation; 2) the City, in consultation with the Washington State Department of Archeology and Historic Preservation, has deemed the evaluation complete and adequate; and 3) Kimberly Clark has made a binding commitment approved by the City in consultation with the Washington State Department of Archeology and Historic Preservation to document and record historically significant aspects or features of the building and contribute same to an agency or entity as directed by the City.

This Final DNS is issued under WAC 197-11-355. A 14-day public comment period for this proposal has been completed.

Responsible

Official:

Allan Giffen, Director

Phone: (425) 257-8731

Address:

2930 Wetmore Avenue, Suite 8-A, Everett, WA 98201

Date:

May 25, 2012

Signature:

You may appeal this determination by filing an appeal on forms provided by the Planning Department and a fee to the Planning/Community Development Permit Services Counter at 3200 Cedar Street, 2nd Floor, no later than June 8, 2012.

Contact John Jimerson to read or ask about the procedures for SEPA appeals.

NOTE:

A DNS may be withdrawn in the event of significant changes in the proposal, disclosure of new significant information, misrepresentation by the applicant, or failure to comply with the conditions upon which this Determination of Non-Significance is predicated.

APPENDIX E

Statistical Calculation Results for Area-Specific Compliance Evaluations

	Α	В	С	D E	F	G H I J K	L
1				Nonparametric UCL	_ Statistics for	or Data Sets with Non-Detects	
2							
3			cted Options				
4	Date	e/Time of Co	•	ProUCL 5.112/18/2020 9	:28:14 AM		
5			From File	WorkSheet.xls			
6			II Precision	OFF			
7		Confidence		95%			
8	Number of	f Bootstrap (Operations	2000			
9	_						
10	Copper						
11							
12			-		General		
13			I otal	Number of Observations	84	Number of Distinct Observations	66
14				Number of Detects	81	Number of Non-Detects	3
15			N	umber of Distinct Detects	65	Number of Distinct Non-Detects	2
16				Minimum Detect	6.81	Minimum Non-Detect	5
17				Maximum Detect	58.3	Maximum Non-Detect	25
18				Variance Detects	112.6	Percent Non-Detects	3.571%
19				Mean Detects	17.52	SD Detects	10.61
20				Median Detects	13.7	CV Detects	0.605
21				Skewness Detects	2.122	Kurtosis Detects	4.388
22				Mean of Logged Detects	2.736	SD of Logged Detects	0.474
23				Nannanama	Anio Diodnikud	ion Free UCL Statistics	
24				•		stribution at 5% Significance Level	
25				Data do not follow a Dis	Scerrible Dis	urbudon at 5% Significance Level	
26			Kanlan-	Meier (KM) Statistics using	a Normal Cr	itical Values and other Nonparametric UCLs	
27			Kapian	Mean	17.18	Standard Error of Mean	1.159
28				SD	10.55	95% KM (BCA) UCL	19.17
29				95% KM (t) UCL	19.11	95% KM (Percentile Bootstrap) UCL	19.15
30				95% KM (z) UCL	19.09	95% KM Bootstrap t UCL	19.5
31			•	90% KM Chebyshev UCL	20.66	95% KM Chebyshev UCL	22.23
32				7.5% KM Chebyshev UCL	24.42	99% KM Chebyshev UCL	28.71
33						35.5.1 5.152,5.167 552	
34			Statis	stics using KM estimates o	n Logged D	ata and Assuming Lognormal Distribution	
35 36				KM SD (logged)	0.495	95% Critical H Value (KM-Log)	1.841
37				KM Mean (logged)	2.707	KM Geo Mean	14.99
38			KM Standa	rd Error of Mean (logged)	0.0545	95% H-UCL (KM -Log)	18.73
38				, 55 /		, 3/	
40					Suggested	UCL to Use	
41				95% KM (t) UCL	19.11	KM H-UCL	18.73
42				95% KM (BCA) UCL	19.17		
43	N	lote: Sugge	stions regard	ding the selection of a 95%	UCL are pr	ovided to help the user to select the most appropriate 95% UCL.	
44			F	Recommendations are bas	sed upon dat	a size, data distribution, and skewness.	
45	<u>-</u>	These recor	mmendation	s are based upon the resu	Its of the sin	nulation studies summarized in Singh, Maichle, and Lee (2006).	
46	Hov	vever, simu	lations resul	ts will not cover all Real W	orld data se	ts; for additional insight the user may want to consult a statisticial	n.
47							
7/							

	Α	В	С	D E	F	G	Н	ı	J	K		L
1				Nonparametric UC	L Statistics 1	ior Data Sets wit	th Non-Dete	cts				
2												
3			cted Options									
4	Date	Time of C	omputation	ProUCL 5.112/18/2020 9	:30:52 AM							
5			From File	WorkSheet.xls								
6			Il Precision	OFF								
7			Coefficient	95%								
8	Number of	Bootstrap	Operations	2000								
9												
10	7ino											
	Zinc											
12					Gonoral	Statistics						
13	<u> </u>		Total	Number of Observations	75	Jiansucs		Number	of Distinct C	heenvation	s 72	2
14			Total	Trumber of Observations	73				of Missing (
15				Minimum	12.2			- Tallibel	or wildding (Mea		5.26
16				Maximum	220					Media		9.9
17				SD	25.59				Std. F	rror of Mea		.955
18				Coefficient of Variation	0.726					Skewnes		.314
19				Mean of logged Data	3.437				SD of	logged Dat		.454
20										99		
21				Nonparame	tric Distribu	tion Free UCL S	tatistics					
22				<u> </u>		ernible Distributi						
24												
25				As	suming Nor	mal Distribution						
26			95% No	ormal UCL			95% U	CLs (Adjus	sted for Skev	vness)		
27				95% Student's-t UCL	40.18		95	% Adjuste	d-CLT UCL	(Chen-199	5) 42	2.05
28							95	5% Modifie	ed-t UCL (Jo	hnson-197	3) 40	0.48
29												
30				Nonpar	ametric Dis	tribution Free U	CLs					
31				95% CLT UCL	40.12				95% Ja	ckknife UC	L 40	0.18
32			95%	Standard Bootstrap UCL	40.16				95% Boo	tstrap-t UC	L 43	3.78
33	·		9	5% Hall's Bootstrap UCL	62.52			95% F	Percentile Bo	otstrap UC	L 40	0.8
34				95% BCA Bootstrap UCL	42.72							
35			90% Ch	ebyshev(Mean, Sd) UCL	44.12			95% Ch	ebyshev(Me	an, Sd) UC	L 48	3.14
36			97.5% Ch	ebyshev(Mean, Sd) UCL	53.71			99% Ch	ebyshev(Me	an, Sd) UC	L 64	4.66
37												
38					Suggested	UCL to Use						
39				95% Student's-t UCL	40.18				or 95% Mo	odified-t UC	L 40	0.48
40												
41	No	ote: Sugge		ling the selection of a 95%		•				iate 95% U	CL.	
42				Recommendations are bas								
43				s are based upon the resu						•	-	
44	How	ever, simu	llations result	s will not cover all Real W	orld data se	ets; for additiona	I insight the	user may	want to cons	sult a statist	ician.	
45												

	Α	В	С	D E	F	G	H I	J	K	L
1				Nonparametric UCL	. Statistics f	for Data Sets wi	ith Non-Detects			
2										
3			cted Options							
4	Date	:/Time of Co	omputation	ProUCL 5.112/18/2020 9	:35:48 AM					
5	 		From File	WorkSheet.xls						
6	 		II Precision	OFF						
7			Coefficient	95%						
8	Number of	Bootstrap	Operations	2000						
9										
10	Mercury									
11					Gonoral	Statistics				
12			Tota	Number of Observations	113	Statistics	Num	ber of Distinct Ob	eonyations	17
13			TOLA	Number of Detects	20			Number of No		93
14	<u> </u>		N	umber of Distinct Detects	16		Nun	ber of Distinct No		1
15	<u> </u>			Minimum Detect	0.11		INUIT	Minimum N		0.1
16	<u> </u>			Maximum Detect	0.78			Maximum N		0.1
17				Variance Detects	0.0544			Percent No		82.3%
18				Mean Detects	0.0344				SD Detects	0.233
19	<u> </u>			Median Detects	0.313				CV Detects	0.745
20				Skewness Detects	1.17				sis Detects	-0.132
21				Mean of Logged Detects	-1.391			SD of Logg		0.669
22				Mean of Logged Detects				3D of Logg	ed Delects	0.003
23				Nonparame [*]	tric Distribu	tion Free UCL S	Statistics			
24				Data do not follow a Dis						
25										
26			Kaplan-	Meier (KM) Statistics using	Normal C	ritical Values an	nd other Nonparame	tric UCLs		
27 28			•	Mean	0.138		<u>.</u>	Standard Err	or of Mean	0.0121
29				SD	0.126			95% KM (BCA) UCL	0.158
30				95% KM (t) UCL	0.158		95% KM	(Percentile Boots	strap) UCL	0.157
31	<u> </u>			95% KM (z) UCL	0.158			95% KM Boots	strap t UCL	0.168
32				90% KM Chebyshev UCL	0.174			95% KM Cheby	yshev UCL	0.191
33			97	7.5% KM Chebyshev UCL	0.213			99% KM Cheby	yshev UCL	0.258
34										
35			Statis	stics using KM estimates o	n Logged C	ata and Assum	ing Lognormal Distr	ibution		
36				KM SD (logged)	0.443		959	% Critical H Value	e (KM-Log)	1.803
37				KM Mean (logged)	-2.141			KM	Geo Mean	0.118
38			KM Standa	rd Error of Mean (logged)	0.0428			95% H-UCL	(KM -Log)	0.14
39				I						
40					Suggested	UCL to Use				
41			9!	5% KM (Chebyshev) UCL	0.191					
42	N	ote: Sugge	estions regard	ding the selection of a 95%	UCL are p	rovided to help	the user to select th	e most appropria	te 95% UCL	
43			F	Recommendations are bas	ed upon da	ita size, data dis	stribution, and skew	ness.		
44	-	These reco	mmendation	s are based upon the resul	Its of the sir	nulation studies	summarized in Sin	gh, Maichle, and	Lee (2006).	
45	Hov	vever, simu	ılations resul	ts will not cover all Real W	orld data se	ets; for additiona	al insight the user m	ay want to consu	lt a statisticia	an.
46	·									
. •		-								

	Α		В	С		D	E	1.00	F	G		Н				J			K	L	\Box
1						Log	normal UC	L Statis	tics tor	Data S	ets Wi	ith Non	-Dete	cts							_
2			C-l-	ected Option	0-	ntual Mai	:_+ (Nam An													
3				Computation			112/9/2020	-													
4	L	Jate/ I	ime of C	<u>'</u>				11:49:	16 AW												
5			г.	From File		orkSheet	.XIS														
6		0		e Coefficient																	
7	Niversia																				
8	Numbe	er or Bo	ootstrap	Operations	s 20	00															
9	Total PC	-																			
10	Total PC	5 8																			
11								_		Otatiatia											
12				Т.,	And Nive	b	Observation			Statistic					l	af Diat	i 4 O	\h		10	
13				100	itai ivu										vumbe	r of Dist				10	
14					Nicocole		er of Detec								N I In .	Numb				59	
15					Numr		stinct Detec								Numbe	er of Dis				1	
16							imum Dete		.024										Detect	0.02	
17							imum Dete		0.3										Detect	0.02	0/
18							ance Detec		0093							Per			etects	86.769	
19							lean Detec		.0883										etects	0.0964	
20		Median Detec							.054										etects	1.092	
21		Skewness Detec							.773										etects	2.305	
22					Ме	an of Log	gged Detec	ts -2	.844							SD c	of Log	ged D	etects	0.909	1
23											01		•								
24					01		ognormal G			etected	Obse	ervation	s Oni								
25					-		Test Statist		0.862					_		ik GOF					
26				5%			Critical Valu		.829		Dete	ected D	ata a		•	ormal at		ignitic	cance L	evel	
27							Test Statist		.212							GOF Te					
28					5% L		Critical Valu		.274	L.,					Logno	ormal at	5% S	ignitic	cance L	evel	
29						Dete	ected Data	appear	Logno	rmai at t	5% SI	gnitical	nce L	evei							
30								00.0													
31							gnormal R			Jsing im	puted	ı Non-ı	Jetec	ts					0 1	0.000	
32					N		Original Sca		.0136	1						IV.		_	Scale	-6.933	
33							riginal Sca		.0446						050/	D :		_	Scale	2.504	
34			050/ :	1101 /			etric d_mea			1						Percent				0.0232	
35			95% t	UCL (assur		-		1	.0226	1						95% BC				0.0283	
36						95% Boo	otstrap t UC	,L 0.	.0404							95% F	⊣-UCL	_ (Log	KUS)	0.0569	J
37				0.	_ 41 _ 44					\	A				D: "						
38				Sta	atistics		M estimates			vata and	ASSU	ımıng L	.ogno	rmai [Stribi	ution	171	1.0	14-	0.000	
39							lean (logge	1	.771	1					050/	Ouisi - II			Mean	0.023	
40				KNA O:	d =		SD (logged	-	0.478						95% (Critical I		-		1.854	
41				KIVI Stand	uard E	rror of M	lean (logge	a) 0.	.0614							95%	H-UC	L (KIV	1 -Log)	0.0288	5
42																					
56																					

1	A B C	D E UCL Statist	F ics for Data	G H I J K Sets with Non-Detects	L
2					
3	User Selected Options	Hydraulic Barker Area Re	ecord Sampl	es	
4	Date/Time of Computation	ProUCL 5.112/8/2020 3:0			
5	From File	WorkSheet.xls			
	Full Precision	OFF			
6	Confidence Coefficient	95%			
7	Number of Bootstrap Operations	2000			
8	Number of Bootstrap Operations	2000			
9					
10	Conner				
H	Copper				
12			0	Disabel and	
13			General S		10
14	I otal	Number of Observations	18	Number of Distinct Observations	18
15				Number of Missing Observations	0
16		Minimum	9.64	Mean	33.61
17		Maximum	64.4	Median	29.6
18		SD	18.32	Std. Error of Mean	4.317
19		Coefficient of Variation	0.545	Skewness	0.281
20		L			
21			Normal C	OF Test	
22	9	Shapiro Wilk Test Statistic	0.933	Shapiro Wilk GOF Test	
23	5% S	hapiro Wilk Critical Value	0.897	Data appear Normal at 5% Significance Level	
24		Lilliefors Test Statistic	0.136	Lilliefors GOF Test	
25	5	5% Lilliefors Critical Value	0.202	Data appear Normal at 5% Significance Level	
26		Data appea	r Normal at	5% Significance Level	
26		•••			
		Ass	suming Norn	nal Distribution	
28	95% No	ormal UCL		95% UCLs (Adjusted for Skewness)	
29	35.011	95% Student's-t UCL	41.12	95% Adjusted-CLT UCL (Chen-1995)	41.02
30				95% Modified-t UCL (Johnson-1978)	41.17
31					
32			Gamma (GOF Test	
33		A-D Test Statistic	0.432	Anderson-Darling Gamma GOF Test	
34		5% A-D Critical Value	0.432	Detected data appear Gamma Distributed at 5% Significance	a Level
35		K-S Test Statistic	0.746	Kolmogorov-Smirnov Gamma GOF Test	LEVEI
36		5% K-S Critical Value	0.147	-	N ovel
37				Detected data appear Gamma Distributed at 5% Significance	: Level
38		Detected data appear	Gamma DIS	tributed at 5% Significance Level	
39				Destate a	
40			Gamma		0.500
41		k hat (MLE)	3.038	k star (bias corrected MLE)	2.569
42		Theta hat (MLE)	11.06	Theta star (bias corrected MLE)	13.09
43		nu hat (MLE)	109.4	nu star (bias corrected)	92.47
44	M	LE Mean (bias corrected)	33.61	MLE Sd (bias corrected)	20.97
45				Approximate Chi Square Value (0.05)	71.3
46	Adju	sted Level of Significance	0.0357	Adjusted Chi Square Value	69.51
47					
48			uming Gam	ma Distribution	
49	95% Approximate Gamma	a UCL (use when n>=50))	43.6	95% Adjusted Gamma UCL (use when n<50)	44.71
50					
51			Lognormal	GOF Test	
52	\$	Shapiro Wilk Test Statistic	0.904	Shapiro Wilk Lognormal GOF Test	
J2					

53	Α		В		C 5'	% Sha	D piro Wi	ilk Cr	E itical Va	alue	F 0.897		G	D:	H ata app	pear	Logn	l orma	l at 5	J % Sigr	nificar	K nce L		L	
54							Lilliefo	ors Te	est Stati	istic	0.15					Lillie	efors	Logn	orma	GOF	Test				_
55						5%	Lilliefo	rs Cr	itical Va	alue	0.202			D	ata app	pear	Logn	orma	l at 5	% Sigr	nificar	nce L	evel		
56								0	Data app	pear l	Lognormal	at 5	5% Significance Level												
57																									
58											Lognorma	al St	tatistics												
59						M	inimum	of Lo	ogged D	Data	2.266									Mean	of log	ged [Data	3.341	1
60						Ma	ximum	of Lo	ogged D	Data	4.165									SD	of log	ged [Data	0.647	7
61												1													
62									,	Assui	ming Logn	orm	al Distrib	outio	n										
63								9	95% H-L	JCL	49.05							90%	Che	byshev	(MV	UE) I	UCL	50.98	;
64							•	•	IVUE) L		58.49						9	7.5%	Che	byshev	(MV	UE) I	UCL	68.93	;
65					9	9% CI	nebysh	ev (N	IVUE) L	JCL	89.43														
66												•													
67									-		tric Distribu														
68							ata app	pear	to follov	w a D	iscernible l	Dist	ribution a	at 59	% Sign	ificar	nce L	evel							
69																									
70										•	ametric Dis	stribu	ution Fre	e U	CLs										
71									% CLT U		40.71									95% .				41.12	
72					ç				otstrap (40.49									95% Bo				41.85	,
73									tstrap U		41.43							95%	Perc	entile E	Boots	trap	UCL	40.76	i
74									tstrap (40.76														
75								`	n, Sd) l		46.56									shev(N				52.43	
76					97.5%	6 Chel	oyshev((Mea	n, Sd) l	JCL	60.57						99	9% C	heby	shev(N	lean,	Sd)	UCL	76.57	1
77																									
78											Suggested	J UC	L to Use	•											
79							95%	Stud	ent's-t L	JCL	41.12														
80																									
81		Note	e: Sugg	gestio	ns re						UCL are p									appro	oriate	95%	6 UCL		
82											ed upon da														
83											Its of the si							_					•		
84		Howe	ver, sın	nulati	ons re	esults	will not	cove	er all Re	eal Wo	orld data s	ets;	for additi	iona	ıl ınsıgl	nt the	use	r may	/ wan	t to co	nsult a	a sta	itisticia	in.	
85																									
86	Mercury																								
87											0		41-41												
88						N		-4 01		:	General	Sta	itistics				N.I.		a.f F) - 4i 4	Oha		. :		_
89						otal N			servati r of Dete		18						N	umbe		Distinct mber c				8 10	_
90						NI			nct Dete		8 7							اسدا		Distinc				10	_
91						INUN			nct Dete		0.076						ľ	vuIIID		Minimu				0.07	_
92									num De		0.076									viinimu Iaximu				0.07	_
93									num De		0.0079									Percen				55.56	30/6
94							V		an Dete		0.0079									ercen		n-Det		0.088	
95									ian Dete		0.105											/ Det		0.088	
96									ess Dete		0.17									Ľ.	ırtosis			1.094	
97						N/			ess Dete		-1.926								0	D of Lo				0.541	
98						ıv	.ouri Ul	99	, 54 0616	5013	1.520									- O1 L(-99 c c	. 561			
99									, k	Jorma	al GOF Tes	st or	n Detects	s On	lv										_
100						Shr	aniro \//	/ilk Tr	est Stati		0.874	J. UI	. 2010013	J ()	.,		Shani	iro W	ilk (24	OF Tes	:t				\dashv
101					50		•		itical Va		0.818	+	ח)ete	cted D					at 5% S		canc	e l ev	el	\dashv
102					J	,u OIIC	·		est Stati		0.223			JU10	oicu Di	ata d				Test	, igi iiii	Jane	~ LEVI	υ Ι	\dashv
103						5%			itical Va		0.223		ח)ete	cted D	ata a				at 5% S	Signifi	canc	e Lev	 el	_
104						J /0	Lilleio		incai va	uiue	0.203			JU10	olou Di	ata a	hhea	1001	mal d	AL U /0 C	, igi iiii	Jane	~ Levi	υ Ι	

\vdash	A B C D E	F Norm	G H I I I at 5% Significance Level	J K	L
105	Detected Data a	ippear North	rat 5 % Significance Level		
106	Kanlan Major (KM) Statistics usin	a Normal Cr	cal Values and other Nonparametric U(71 c	
107	KM Mean	0.112	<u> </u>	tandard Error of Mean	0.0184
108	KM SD	0.0729	KIVI SI	95% KM (BCA) UCL	0.144
109	95% KM (t) UCL	0.0729	Q5% KM (Doro	centile Bootstrap) UCL	0.144
110	95% KM (z) UCL	0.144	,	% KM Bootstrap t UCL	0.142
111	90% KM Chebyshev UCL	0.143		·	0.192
112	•			6 KM Chebyshev UCL	
113	97.5% KM Chebyshev UCL	0.227	99%	6 KM Chebyshev UCL	0.295
114	0	T D.	ata d Ohana at'ana Oata		
115			ected Observations Only	- 00F T+	
116	A-D Test Statistic	0.448	Anderson-Darling		
117	5% A-D Critical Value	0.719	Detected data appear Gamma Distri	-	ce Level
118	K-S Test Statistic	0.222	Kolmogorov-Smi		
119	5% K-S Critical Value	0.295	Detected data appear Gamma Distri	buted at 5% Significan	ce Level
120	Detected data appear	Gamma Dis	ibuted at 5% Significance Level		
121					
122			Detected Data Only		
123	k hat (MLE)	4.122		(bias corrected MLE)	2.66
124	Theta hat (MLE)	0.0401		(bias corrected MLE)	0.0621
125	nu hat (MLE)	65.96	nı	u star (bias corrected)	42.56
126	Mean (detects)	0.165			
127					
128			ng Imputed Non-Detects		
129			NDs with many tied observations at mu	•	
130	GROS may not be used when kstar of detects is s	small such a	<1.0, especially when the sample size	is small (e.g., <15-20)	
131	For such situations, GROS r	method may	ield incorrect values of UCLs and BTVs	6	
132	This is especia	ally true whe	the sample size is small.		
133	For gamma distributed detected data, BTVs a	nd UCLs ma	be computed using gamma distribution	n on KM estimates	
134	Minimum	0.01		Mean	0.0805
135	Maximum	0.34		Median	0.0231
136	SD	0.0968		CV	1.203
137	k hat (MLE)	0.741	k star	(bias corrected MLE)	0.654
138	Theta hat (MLE)	0.109	Theta star	(bias corrected MLE)	0.123
139	nu hat (MLE)	26.67	n	u star (bias corrected)	23.56
140	Adjusted Level of Significance (β)	0.0357			
141	Approximate Chi Square Value (23.56, α)	13.51	Adjusted Chi So	quare Value (23.56, β)	12.78
142	95% Gamma Approximate UCL (use when n>=50)	0.14	95% Gamma Adjusted	UCL (use when n<50)	0.148
143					
144	Estimates of Ga	amma Paran	eters using KM Estimates		
145	Mean (KM)	0.112		SD (KM)	0.0729
146	Variance (KM)	0.00531		SE of Mean (KM)	0.0184
147	k hat (KM)	2.375		k star (KM)	2.016
148	nu hat (KM)	85.5		nu star (KM)	72.59
149	theta hat (KM)	0.0473		theta star (KM)	0.0557
150	80% gamma percentile (KM)	0.168	90% ga	amma percentile (KM)	0.218
151	95% gamma percentile (KM)	0.266	99% ga	amma percentile (KM)	0.372
152	- ' ' '			` '	
	Gamm	a Kaplan-Me	er (KM) Statistics		
153	Approximate Chi Square Value (72.59, α)	53.97	•	quare Value (72.59, β)	52.43
154	95% Gamma Approximate KM-UCL (use when n>=50)	0.151	95% Gamma Adjusted KM-		0.156
155				,	
156					

157	Α	В	С	D	E Lognormal G0	F OF Test on De	G etected Observ	H vations On	nly	J	J	K		L
158				Shapiro W	/ilk Test Statistic	0.898			Shapiro V	Vilk GOF	Test			
159			5% 9	Shapiro W	ilk Critical Value	0.818	Detec	ted Data a	appear Logi	normal at	t 5% Si	gnificance	Lev	el
160	-			Lilliefo	ors Test Statistic	0.21		-	Lilliefor	s GOF Te	est			
161				5% Lilliefo	ors Critical Value	0.283	Detec	ted Data a	appear Logi	normal at	t 5% Si	gnificance	Lev	el
162					Detected Data a	ppear Lognor	mal at 5% Sig	nificance L	_evel					
163														
164	-				Lognormal RC	S Statistics U	Ising Imputed	Non-Detec	cts					
165				Mean i	in Original Scale	0.0912				N	Mean ir	n Log Scal	e	-2.845
166	-			SD i	in Original Scale	0.0896		-			SD ir	n Log Scal	е	1.007
167	-	95% t l	JCL (assum	nes norma	lity of ROS data	0.128		-	95%	6 Percent	tile Boo	otstrap UC	:L	0.126
168				95% BCA	A Bootstrap UCL	0.131				95%	% Boot	strap t UC	;L	0.141
169				95% H-	-UCL (Log ROS	0.184								
170	-							-						
171			Stat	istics using	g KM estimates	on Logged Da	ata and Assun	ning Logno	ormal Distril	bution				
172				KN	M Mean (logged	-2.334					KM	Geo Mea	ın	0.0969
173	-				KM SD (logged)	0.497		-	95%	6 Critical	H Valu	e (KM-Lo	3)	2.018
174			KM Stand	ard Error o	of Mean (logged) 0.125				95%	H-UCI	_ (KM -Loç	3)	0.14
175					KM SD (logged)	0.497			95%	6 Critical	H Valu	e (KM-Lo	3)	2.018
176			KM Stand	ard Error o	of Mean (logged) 0.125							+	
177						-1	<u> </u>							
178						DL/2 St	atistics							
179			DL/2	Normal					DL/2 Log	-Transfor	rmed			
180				Mean i	in Original Scale	0.0929				N	Mean ir	n Log Scal	le	-2.719
181				SD i	in Original Scale	0.0877					SD ir	n Log Scal	e	0.808
182			95% t	UCL (Ass	umes normality	0.129					95%	H-Stat UC	;L	0.145
183			DL/2	2 is not a re	ecommended m	ethod, provide	ed for compari	sons and	historical re	easons			-	
184														
185					Nonparam	etric Distribut	ion Free UCL	Statistics						
186	-			Dete	cted Data appea	ar Normal Dis	tributed at 5%	Significan	ce Level					
187														
188						Suggested	UCL to Use							
189				!	95% KM (t) UCL	0.144							Т	
190														
191		Note: Sugge	stions rega	rding the s	election of a 95	% UCL are pr	ovided to help	the user t	o select the	e most ap	propria	ate 95% U	CL.	
192				Recomme	endations are ba	sed upon dat	a size, data di	stribution,	and skewn	iess.				
193		These recor	mmendatio	ns are bas	ed upon the res	ults of the sin	nulation studie	s summari	ized in Sing	jh, Maich	le, and	Lee (200	6).	
194	Н	wever, simu	lations resu	ılts will not	cover all Real \	Norld data se	ts; for addition	al insight t	the user ma	ay want to	consu	ılt a statist	ician	l.
195														
196														
_	Zinc													
198														
199						General	Statistics							
200			Tota	al Number	of Observations	18			Numb	er of Dist	tinct O	bservation	ıs	18
201									Numb	er of Miss	sing O	bservation	ıs	0
202					Minimum	17.4						Mea	n	61.2
203					Maximum	145						Media	n	61.45
204					SD	35.59					Std. Er	ror of Mea	ın	8.389
205				Coeffic	cient of Variation	0.582						Skewnes	ss	0.919
206														
207						Normal C	OF Test							
207				Shapiro W	/ilk Test Statistic				Shapiro V	Vilk GOF	Test			
200				•					-					

	Α		В		C		hanir	D Wilk (E Critical V	عرراد	F 0.897	C	ો		d a anne	ar No	l rmal :	at 5%	J Signific	canc	K a Level		L
209						5 70 OI	•		Test Stat		0.173			Date	а аррс		liefors			caric	C LCVCI		
210						59			Critical V		0.202			Data	a anne					canc	e Level		
211							70 =				ar Normal a	t 5% Sid	nificar										
212													J										
213										Ass	suming Nor	mal Dis	tributio	n									
214					95	5% No	rmal	UCL			9				95%	UCLs	(Adiu	ısted	for Ske	wne	ss)		
215									ıdent's-t	UCL	75.79										en-1995)	76.94
216																	-			•	on-1978	1	76.1
217 218																			•			,	
219											Gamma	GOF T	est										
220								A-D	Test Stat	tistic	0.575				Ander	son-D	arling	Gam	ma GC)F Te	est		
221							59	% A-D (Critical V	alue	0.746	De	etected	data	appea	ır Gan	nma D	Distrib	uted at	5%	Significa	nce	Level
222								K-S	Test Stat	tistic	0.149			K	olmog	orov-S	Smirno	ov Ga	mma G	OF	Геst		
223							59	% K-S (Critical V	alue	0.205	De	etected	data	appea	r Gan	nma D	Distrib	uted at	5%	Significa	nce	Level
224							D	etected	data ap	pear	Gamma Di	stribute	d at 5%	6 Sigr	nifican	ce Lev	vel						
225																							
226											Gamma	Statisti	cs										
227									k hat (N	ΛLE)	2.954						k	star (bias co	rrect	ed MLE)	2.498
228								The	eta hat (M	ΛLE)	20.72						Theta	star (bias co	rrect	ed MLE)	24.5
229									nu hat (N	ΛLE)	106.3							nu	star (bi	ias c	orrected)	89.94
230						ML	E M	ean (bi	as correc	cted)	61.2							MLE	Sd (bi	ias c	orrected)	38.72
231															,	Appro	ximat	e Chi	Square	e Val	ue (0.05)	69.07
232						Adjus	ted L	evel of	Significa	ance	0.0357						Α	djuste	ed Chi	Squa	re Value	Э	67.32
233																							
234										Ass	suming Gar	nma Dis	stributio	on									
235		95%	Approx	xima	ate Ga	amma	UCL	(use v	vhen n>=	=50))	79.69			9	5% Ad	justed	d Gam	ıma U	CL (us	e wh	en n<50))	81.76
236																							
237											Lognorma	al GOF	Test										
238						SI	hapir	o Wilk	Test Stat	tistic	0.899				Shap	iro W	ilk Log	gnorm	nal GOF	F Tes	st		
239					ļ	5% Sh	hapir	o Wilk (Critical V	alue	0.897			Data	appea	r Logi	norma	l at 5	% Signi	ificar	ice Leve	el	
240									Test Stat		0.186						_		GOF T				
241						59	% Lill	liefors (Critical V		0.202					r Logi	norma	l at 5	% Signi	ificar	ice Leve	el	
242									Data ap	pear	Lognormal	at 5% 5	Signific	ance	Level								
243																							
244											Lognorma	al Statis	tics										
245									Logged I		2.856							l			ged Data		3.935
246						N	/laxin	num of	Logged I	Data	4.977								SD o	f log	ged Data	а	0.652
247																							
248											ıming Logn	ormal D	istribut	ion						411			
249									95% H-I		89.35								•	•	JE) UCI		92.77
250								-	(MVUE)		106.5						97.5%	Chel	oyshev	(MV	JE) UCI	_ 1	25.6
251						99% (Cheb	yshev	(MVUE)	UCL	163.1												
252																							
253									•		tric Distribu												
254							Data	appea	r to follo	w a C	Discernible I	Distribu	tion at	5% S	ignifica	ance L	_evel						
255																							
256											ametric Dis	tribution	n Free	UCLs	1								
257							_		5% CLT		75										nife UCI		75.79
258									ootstrap		74.52										ap-t UCI		78.47
259									ootstrap		84.87						95%	Perce	entile B	oots	trap UCI		74.79
260						9	95%	BCA Bo	ootstrap	UCL	74.84												

	Α	В	С	D	E	F	G	Н	I	J	K	L]
261			90% Ch	nebyshev(Me	an, Sd) UCL	86.37			95% Cł	nebyshev(Me	an, Sd) UCL	97.76]
262			97.5% Ch	nebyshev(Me	an, Sd) UCL	113.6			99% Cł	nebyshev(Me	an, Sd) UCL	144.7	
263													
264						Suggested	UCL to Use						
265				95% Stu	dent's-t UCL	75.79							
266													
267	ľ	Note: Sugge	stions regard	ling the selec	tion of a 95%	6 UCL are pr	ovided to he	elp the user to	select the i	most appropr	riate 95% UC	L	
268			F	Recommenda	itions are bas	sed upon dat	a size, data	distribution,	and skewne	SS.			
269		These recor	mmendations	s are based ι	ipon the resu	ılts of the sin	nulation stud	ies summari:	zed in Singh	, Maichle, an	id Lee (2006)		
270	Но	wever, simu	lations result	s will not cov	er all Real W	orld data se	ts; for addition	onal insight tl	he user may	want to cons	sult a statistic	ian.	
271	·								·				

	Α	В	С	D E	F	G	Н		J	K	L	
1				Nonparametric UCI	_ Statistics 1	or Data Sets wi	th Non-Dete	cts				
2												
3			cted Options	,								
4	Date	:/Time of C	omputation	ProUCL 5.112/18/2020 9	:30:52 AM							
5			From File	WorkSheet.xls								
6			II Precision	OFF								
7			Coefficient	95%								
8	Number of	Bootstrap	Operations	2000								
9												
10	7ino											
11	Zinc											
12					General	Statistics						
13			Total	Number of Observations	75	Otatiotics		Number	of Distinct C	hservations	s 72	
14			10101	Trumber of Observations	75				of Missing C			
15				Minimum	12.2			Number	or wildsing c	Mear		26
16				Maximum	220					Mediar		
17				SD	25.59				Std. F	rror of Mear		
18				Coefficient of Variation	0.726					Skewness		
19				Mean of logged Data	3.437				SD of	logged Data		
20				a o. loggod 2 did								-
21				Nonparame	tric Distribu	tion Free UCL S	Statistics					
22				<u> </u>		ernible Distribut						-
24												
25				As	suming Nor	mal Distribution						
26			95% No	ormal UCL			95% U	CLs (Adjus	ted for Skev	vness)		
27				95% Student's-t UCL	40.18		95	% Adjuste	d-CLT UCL	(Chen-1995	42.0	05
28							9!	5% Modifie	ed-t UCL (Jo	hnson-1978	40.4	48
29												
30				Nonpar	ametric Dis	tribution Free U	CLs					
31				95% CLT UCL	40.12				95% Ja	ckknife UCI	40.	18
32			95%	Standard Bootstrap UCL	40.16				95% Boo	tstrap-t UCI	43.7	78
33			9	95% Hall's Bootstrap UCL	62.52			95% F	Percentile Bo	otstrap UCI	L 40.8	8
34				95% BCA Bootstrap UCL	42.72							
35			90% Cł	nebyshev(Mean, Sd) UCL	44.12				ebyshev(Me	•		14
36			97.5% Cł	nebyshev(Mean, Sd) UCL	53.71			99% Ch	ebyshev(Me	an, Sd) UCI	64.6	66
37												
38					Suggested	UCL to Use						
39				95% Student's-t UCL	40.18				or 95% Mo	odified-t UCI	L 40.4	48
40												
41	N	ote: Sugge		ling the selection of a 95%		•				iate 95% UC	CL.	
42				Recommendations are bas								
43				s are based upon the resu						•		
44	How	vever, simu	ılations resul	ts will not cover all Real W	orld data se	ets; for additiona	al insight the	user may	want to cons	sult a statisti	cian.	
	·				-							
45												

	Α	В	С	D E	F	G	НІ	J	K	L
1				Nonparametric UCL	. Statistics f	or Data Sets wi	th Non-Detects			
2										
3			cted Options							
4	Date	/Time of C	omputation	ProUCL 5.112/18/2020 9	:35:48 AM					
5			From File	WorkSheet.xls						
6			II Precision	OFF						
7			Coefficient	95%						
8	Number of	Bootstrap	Operations	2000						
9										
10	Mercury									
11					Gonoral	Statistics				
12			Total	Number of Observations	113		Nur	nber of Distinct Ob	ecryations	17
13			TOtal	Number of Detects	20			Number of N		93
14			N	umber of Distinct Detects	16		Nur	mber of Distinct N		1
15				Minimum Detect	0.11		- INGI		Non-Detect	0.1
16	<u> </u>			Maximum Detect	0.78				Non-Detect	0.1
17				Variance Detects	0.0544				on-Detects	82.3%
18				Mean Detects	0.0344				SD Detects	0.233
19				Median Detects	0.195				CV Detects	0.745
20				Skewness Detects	1.17				sis Detects	-0.132
21				Mean of Logged Detects	-1.391			SD of Logg		0.669
22				Wear of Logged Detects				OD 01 Logg	cu Detects	
23				Nonparame ¹	tric Distribu	tion Free UCL S	Statistics			
24				Data do not follow a Dis						
25 26										
27			Kaplan-	Meier (KM) Statistics using	Normal C	ritical Values an	ıd other Nonparame	etric UCLs		
28			<u> </u>	Mean	0.138			Standard Err	or of Mean	0.0121
29	<u> </u>			SD	0.126			95% KM	(BCA) UCL	0.158
30				95% KM (t) UCL	0.158		95% KN	/I (Percentile Boot	strap) UCL	0.157
31				95% KM (z) UCL	0.158			95% KM Boots	strap t UCL	0.168
32			;	90% KM Chebyshev UCL	0.174			95% KM Cheb	yshev UCL	0.191
33			97	7.5% KM Chebyshev UCL	0.213			99% KM Cheb	yshev UCL	0.258
34										
35			Statis	stics using KM estimates o	n Logged C	ata and Assum	ing Lognormal Dist	ribution		
36				KM SD (logged)	0.443		95	% Critical H Valu	e (KM-Log)	1.803
37				KM Mean (logged)	-2.141			KM	Geo Mean	0.118
38			KM Standa	rd Error of Mean (logged)	0.0428			95% H-UCL	(KM -Log)	0.14
39										
40					Suggested	UCL to Use				
41			95	5% KM (Chebyshev) UCL	0.191					
42	No	ote: Sugge	stions regard	ding the selection of a 95%	UCL are p	rovided to help	the user to select th	ne most appropria	ite 95% UCL	
43			F	Recommendations are bas	ed upon da	ta size, data dis	stribution, and skew	ness.		
44	Т	hese reco	mmendation	s are based upon the resul	Its of the sir	nulation studies	summarized in Sir	ngh, Maichle, and	Lee (2006).	
45	How	ever, simu	lations resul	ts will not cover all Real W	orld data se	ets; for additiona	al insight the user m	nay want to consu	lt a statisticia	an.
46										

	Α		В	С		D	E		F	G	Ι.	Н		<u> </u>		J		K		L
1						LOQ	gnormal UC	L Statist	ics for	Data Set	S WIT	n Non-	Detec	πs						
2			C-l-			Santual Ma	intenance S													
3	6			Computation			112/9/2020	-												
4	D	pate/ i	ime of C	<u> </u>				11:49:16	O AIVI											
5			г.	From File		VorkSheet OFF	xis													
6		0		e Coefficien		5%														
7	Niconala																			
8	Numbe	r ot Bo	ootstrap	Operations	is 2	000														
9	Total PCE																			
10	Total PCE	55																		
11										Ototicalca										
12				Т	-4-1 NI		Observation			Statistics				Nicon		of Distinct	Ohaa			0
13				10	otal in									INUI		of Distinct				0
14					NI		per of Detec	-						NI		Number of				59
15					Nun		stinct Detec		20.4					Nu	mber	of Distinct				1
16							nimum Dete)24									n-Detect		0.02
17							kimum Dete									Maximui				0.02
18							ance Detec		093							Percent		-Detects		86.76%
19							Mean Detec		0883									Detects		0.0964
20							edian Detec)54									Detects		1.092
21							ness Detec		773									Detects		2.305
22					M	ean of Lo	gged Detec	ts -2.8	344							SD of Lo	gged	Detects	(0.909
23													0.1							
24							ognormal G			etected O	bser	vations								
25				F0/		-	Test Statist		862	_				- '		GOF Test				
26				5%	6 Sha	•	Critical Valu		829	L	Dete	cted Da	ata ap	•	-	mal at 5%	Sign	ificance	Level	I
27					5 0/		Test Statist		212	_						OF Test	0:			
28					5%		Critical Valu		274					-	gnor	mal at 5%	Sign	ificance	Level	I
29						Det	ected Data	appear L	.ognoi	mai at 5%	6 Sig	nitican	ce Le	vei						
30								00 0: ::	_A! - '	lain = !		No	_4- *							
31							ognormal R			using impi	uted	NON-D	etects	S			. !:- !	0: '		000
32							Original Sca		0136									og Scale		5.933
33							Original Sca		05.4						F0/ F			og Scale		2.504
34			050/ :	1101 /			etric d_mea							9		ercentile B		•		0.0232
35			95% t	UCL (assui	ımes	-	of ROS dat)226						9	5% BCA B				0.0283
36						95% Bo	otstrap t UC	,L 0.0)404							95% H-U0	L (L	og ROS)	0	0.0569
37				٥.	_4!'		1.4								!I ·	•				
38				Sta	atistic		M estimate			ata and A	ASSU	ning Lo	gnor	mai Dis	rribut		(NA C	14		000
39							lean (logge	-						0.5	=0/ ^			eo Mean		0.023
40				IZNA C:	·		1 SD (logge	-	478					95	5% C	ritical H Va				1.854
41				KIVI Stand	ıaard	⊏rror of N	lean (logge	u) 0.0	0614							95% H-U	CL (ł	Nivi -Log)	0	0.0288
42																				
56																				

1	A B C	D E UCL Statist	F ics for Data	G H I J K Sets with Non-Detects	L
2					
3	User Selected Options	Hydraulic Barker Area Re	ecord Sampl	es es	
4	Date/Time of Computation	ProUCL 5.112/8/2020 3:0			
5	From File	WorkSheet.xls			
	Full Precision	OFF			
6	Confidence Coefficient	95%			
7	Number of Bootstrap Operations	2000			
8	Number of Bootstrap Operations	2000			
9					
10	Conner				
H	Copper				
12			0	Disated -	
13			General S		10
14	I otal	Number of Observations	18	Number of Distinct Observations	18
15				Number of Missing Observations	0
16		Minimum	9.64	Mean	33.61
17		Maximum	64.4	Median	29.6
18		SD	18.32	Std. Error of Mean	4.317
19		Coefficient of Variation	0.545	Skewness	0.281
20		1			
21			Normal C	OF Test	
22	9	Shapiro Wilk Test Statistic	0.933	Shapiro Wilk GOF Test	
23	5% S	hapiro Wilk Critical Value	0.897	Data appear Normal at 5% Significance Level	
24		Lilliefors Test Statistic	0.136	Lilliefors GOF Test	
25	5	5% Lilliefors Critical Value	0.202	Data appear Normal at 5% Significance Level	
26		Data appea	r Normal at	5% Significance Level	
27					
		Ass	suming Norn	nal Distribution	
28	95% No	ormal UCL		95% UCLs (Adjusted for Skewness)	
29		95% Student's-t UCL	41.12	95% Adjusted-CLT UCL (Chen-1995)	41.02
30				95% Modified-t UCL (Johnson-1978)	41.17
31				,	
32			Gamma (SOF Test	
33		A-D Test Statistic	0.432	Anderson-Darling Gamma GOF Test	
34		5% A-D Critical Value	0.746	Detected data appear Gamma Distributed at 5% Significance	a Lovol
35		K-S Test Statistic	0.746	Kolmogorov-Smirnov Gamma GOF Test	FEAGI
36		5% K-S Critical Value	0.147	_	a Love
37				Detected data appear Gamma Distributed at 5% Significance	e Level
38		Detected data appear	Gamma DIS	tributed at 5% Significance Level	
39				District and a second s	
40			Gamma		0.500
41		k hat (MLE)	3.038	k star (bias corrected MLE)	2.569
42		Theta hat (MLE)	11.06	Theta star (bias corrected MLE)	13.09
43		nu hat (MLE)	109.4	nu star (bias corrected)	92.47
44	M	LE Mean (bias corrected)	33.61	MLE Sd (bias corrected)	20.97
45				Approximate Chi Square Value (0.05)	71.3
46	Adju	sted Level of Significance	0.0357	Adjusted Chi Square Value	69.51
47					
48		Ass	uming Gam	ma Distribution	
49	95% Approximate Gamma	a UCL (use when n>=50))	43.6	95% Adjusted Gamma UCL (use when n<50)	44.71
50		<u> </u>			
51			Lognormal	GOF Test	
52	5	Shapiro Wilk Test Statistic	0.904	Shapiro Wilk Lognormal GOF Test	
JZ					

53	A		В			5% S	hapi	D ro Wil	lk Cr	E itical V			F .897		G		H Data ap	ppear	r Log	l Jnorm	al at	J t 5% :		fican	K ce Le	evel	L	
54							L	illiefo	rs Te	est Sta	tistic	0	.15					Lilli	efor	s Log	norm	nal G	OF T	est				
55						5	% Li	lliefor	rs Cr	itical V	/alue	0	.202			I	Data ap	pear	r Log	norm	al at	5%	Signif	ican	ce Lo	evel		
56										Data ap	pear	Logr	ormal	at 5	% Sign	nifica	ance Le	evel										
57																												
58												Log	gnorma	al St	tatistics	;												
59							Mini	mum	of L	ogged	Data	2	.266									Ме	an of	logg	ed D)ata	3.34	.1
60						1	Maxi	mum	of L	ogged	Data	4	.165									5	SD of	logg	ed D)ata	0.64	.7
61												I		ı														
62											Assu	ıming	Logno	orm	al Distri	ibuti	ion											
63									ç	95% H-	UCL	49	9.05							909	% Ch	nebys	shev (MVL	JE) l	JCL	50.98	3
64								•	•	(IVUE)		58	3.49							97.59	% Ch	nebys	shev (MVL	JE) l	JCL	68.93	3
65						99%	Che	byshe	ev (N	(IVUE	UCL	89	9.43															
66																												
67										-					Free U													
68							Dat	а арр	ear	to follo	w a [Disce	rnible [Dist	ribution	at !	5% Sig	nifica	nce	Level	I							
69																												
70											-			tribu	ution Fr	ee l	UCLs											
71										% CLT			0.71										5% Ja				41.12	
72										otstrap			0.49										% Boo				41.8	5
73										otstrap			1.43							95%	% Pe	rcent	tile Bo	otst	rap l	JCL	40.76	5
74										otstrap			0.76															
75								•		ın, Sd)			5.56							95% (•				52.43	
76					97.5	5% Cr	nebys	shev(Mea	ın, Sd)	UCL	60	0.57							99% (Cheb	oyshe	ev(Me	an, S	Sd) L	JCL	76.5	7
77																												
78												_	_	UC	L to Us	e												
79								95% 5	Stud	ent's-t	UCL	4	1.12															
80																												
81		Not	e: Sug	gesti	ons										ided to I								propr	iate	95%	UCL.		
82															size, dat			-										
83															ation stu										•			
84		Howe	ver, sır	mulat	lions	resul	ts wi	II not (COVE	er all R	eal V	/orld	data se	ets;	for addi	itior	nal insig	ght th	ie us	er ma	ay wa	ant to	cons	sult a	stat	isticia	ın.	
85																												
86	Mercury																											
87														01-	41-41													
88						Takal	l Ni		-4 0	bserva	4:		eneral	Sta	itistics					N I		t D:-4	·· 4 <i>(</i>	h				
89						Total	INUI													Numb			er of				8	
90						N.I	ما ممدد			r of De										Nicona							10	
91						IN	umb			nct De num D			076							inum	ner (stinct imun				0.07	
92										num D			.34										imum				0.07	
93										num D			0079										rcent				55.56	6%
94								va		an De			.165									rer	CEIII		Dete		0.088	
95										ian De			.105												Dete		0.08	
96										ess De			.17										Kur		Dete		1.09	
97							Mac			ged De			.977									SD	of Log				0.54	
98							ıvı€ć	an OI L	Loge	ien ne	icus	-1.	320									30 (JI LO(_J y c u	שט	JU15	0.04	-
99											Norm	رم اور اور)F T	et or	n Detect	te ^)nh/											
100							Shop:	iro \//:	ilk T	est Sta			.874	or Ol	י הפופנו	.is C	ıııy.		Sho	piro V	N/iIレ 4	COF	Test					_
101										itical V			.818			Dot	ected [•				anific	-anc	مامه		_
102						J /0 O				est Sta			.818			Del	ecieu L	Jala i		lliefor				griilic	,aiiC	= Leve		
103						F				ritical V			.223			Dot	ected [)ata :						anific	2222	<u> </u>		_
104						0	, /0 Ll	iii C IUI	o U	ilical V	aiue	U	.203			Det	ecieu L	Jala i	appe	ai INC	Jillid	ıı at 0	, 70 OI	griilic	,aiiC	= Leve		

	A B C D E	F Norm	G H I J K mal at 5% Significance Level	L
105	Detected Data a	ippear North	Tial at 5 % Significance Level	
106	Kanlan Majar (KM) Statistics usin	a Normal Cr	Critical Values and other Nonparametric UCLs	
107	KM Mean	0.112	-	0.0184
108	KM SD	0.0729		0.144
109	95% KM (t) UCL	0.0729	` '	0.144
110	95% KM (z) UCL	0.144	` ' '	0.142
111	90% KM Chebyshev UCL	0.143		0.156
112	•			
113	97.5% KM Chebyshev UCL	0.227	99% KM Chebyshev UCL	0.295
114	0	T D.	about d'Observations Only	
115			etected Observations Only	
116	A-D Test Statistic	0.448	Anderson-Darling GOF Test	
117	5% A-D Critical Value	0.719	Detected data appear Gamma Distributed at 5% Significance L	_evel
118	K-S Test Statistic	0.222	Kolmogorov-Smirnov GOF	
119	5% K-S Critical Value	0.295	Detected data appear Gamma Distributed at 5% Significance L	_evel
120	Detected data appear	Gamma Dis	istributed at 5% Significance Level	
121				
122			n Detected Data Only	
123	k hat (MLE)	4.122	` '	2.66
124	Theta hat (MLE)	0.0401	,	0.0621
125	nu hat (MLE)	65.96	nu star (bias corrected) 4	12.56
126	Mean (detects)	0.165		
127				
128			sing Imputed Non-Detects	
129	•		% NDs with many tied observations at multiple DLs	
130	GROS may not be used when kstar of detects is s	small such a	as <1.0, especially when the sample size is small (e.g., <15-20)	
131	For such situations, GROS r	nethod may	y yield incorrect values of UCLs and BTVs	
132	This is especia	ally true whe	en the sample size is small.	
133	For gamma distributed detected data, BTVs a	nd UCLs ma	nay be computed using gamma distribution on KM estimates	
134	Minimum	0.01	Mean 0	0.0805
135	Maximum	0.34	Median 0	0.0231
136	SD	0.0968	CV	1.203
137	k hat (MLE)	0.741	k star (bias corrected MLE)	0.654
138	Theta hat (MLE)	0.109	Theta star (bias corrected MLE)	0.123
139	nu hat (MLE)	26.67	nu star (bias corrected) 2	23.56
140	Adjusted Level of Significance (β)	0.0357		
141	Approximate Chi Square Value (23.56, α)	13.51	Adjusted Chi Square Value (23.56, β) 1	12.78
142	95% Gamma Approximate UCL (use when n>=50)	0.14	95% Gamma Adjusted UCL (use when n<50)	0.148
143			·	
144	Estimates of Ga	amma Paran	meters using KM Estimates	
145	Mean (KM)	0.112	SD (KM)	0.0729
146	Variance (KM)	0.00531	SE of Mean (KM)	0.0184
147	k hat (KM)	2.375	k star (KM)	2.016
148	nu hat (KM)	85.5	nu star (KM) 7	72.59
149	theta hat (KM)	0.0473	theta star (KM)	0.0557
150	80% gamma percentile (KM)	0.168	90% gamma percentile (KM)	0.218
151	95% gamma percentile (KM)	0.266	99% gamma percentile (KM)	0.372
152	- ' ' '		- ' ' '	
	Gamm	a Kaplan-Me	Meier (KM) Statistics	
153	Approximate Chi Square Value (72.59, α)	53.97		52.43
154	95% Gamma Approximate KM-UCL (use when n>=50)	0.151		0.156
155	.,	-	, , , , , , , , , , , , , , , , , , , ,	
156				

	Α		В		С		[D L	E		F Test on D	G	een/a	H tions O	nhv.	I		J			K		L
157						Sh	aniro		Test Sta		0.898		JSCI VA	uons O	-	apiro V	Nilk C	20E	Teet				
158					E0		•		Critical \		0.818	D	otooto	d Data		•				Sign	ificano	20 0	vol
159					J /	/0 OII			Test Sta		0.010		Ciccic	u Data		_illiefor				Jigiti	ilicario	,e Le	VCI
160						50			Critical \		0.21	D	otocto	d Data						Sian	ificano		vol
161						3 /	o Lille				pear Logno					_	1101111	iai ai	J /0 C	Jigi i	ilicario		VEI
162								Dete	cleu De	ata app	Dear Logilor	iliai at 570	Olgili	icarice	Leve								
163								Lo	anorma	I DOS	Statistics U	leina Impu	tod N	n-Dote	octe								
164							Меа		riginal S		0.0912	sing impu	iteu iv	JII-Dele	5013			N	/lean	in L	og Sc	ale	-2.845
165									riginal S		0.0896							- ''			og Sc		1.007
166			05% +	LICI	(acci	umos			of ROS		0.128					05%	/ Dor	rcont			rap U		0.126
167			95 /6 [UCL	(assi			•	otstrap	´	0.120					95 /	o rei				ap t U		0.120
168						9					0.131							957	% DUC	JISH	арто	CL	0.141
169							95%	H-UC	L (Log F	ROS)	0.184												
170					-	!			\			_4 4				I Disasi							
171					Si	tatist					n Logged D	ata and As	ssumii	ıg Logr	norma	I Distri	butio	n	1.71				0.0000
172									ean (log		-2.334					0=1					eo Me		0.0969
173									SD (log		0.497					95%				•	KM-L	•	2.018
174				ΚN	/I Star	ndar	d Erro		ean (log		0.125									•	KM -Lo	•	0.14
175									SD (log	,	0.497					95%	6 Crit	tical	H Val	ue (KM-L	og)	2.018
176				K۱	/I Star	ndar	d Erro	or of M	ean (lo	gged)	0.125												
177																							
178											DL/2 S	tatistics											
179					DL	/2 N	ormal	ı							DL	/2 Log	-Trar	nsfor	med				
180							Mea	ın in O	riginal S	Scale	0.0929							N	/lean	in L	og Sc	ale	-2.719
181							SI	D in O	riginal S	Scale	0.0877								SD	in L	og Sc	ale	0.808
182					95%	% t U	CL (A	ssum	es norm	nality)	0.129								95%	H-9	Stat U	CL	0.145
183					DL	L/2 is	not a	reco	mmende	ed met	thod, provid	ed for com	paris	ns and	l histo	rical re	easor	าร					
184																							
185									Nonpa	aramet	tric Distribut	ion Free U	ICL S	atistics									
186							De	tectec	l Data a	ppear	Normal Dis	tributed at	5% S	gnifica	nce L	evel							
187																							
188											Suggested	UCL to Us	е										
189								95%	6 KM (t)	UCL	0.144												
190																							
191		Note	: Sugge	estion	ns reg	gardi	ng the	e seled	ction of	a 95%	UCL are p	ovided to I	help tl	ne user	to se	lect the	e mos	st ap	propr	iate	95%	UCL.	
192						Re	ecomi	menda	ations a	re bas	ed upon da	ta size, dat	ta dist	ribution	, and	skewn	ness.						
193		The	se reco	omme	endat	tions	are b	ased (upon the	e resul	Its of the sir	nulation stu	udies	summa	rized	in Sing	gh, M	aich	le, an	d Le	e (20	06).	
194	He	owev	er, sim	ulatio	ons re	sults	will r	not cov	ver all R	Real W	orld data se	ts; for addi	itional	insight	the u	ser ma	ay wa	ant to	cons	sult a	a stati:	sticia	n.
195														-									
196																							
-	Zinc																						
197																							
198											General	Statistics											
199					To	otal l	Numh	er of (Observa	ations	18					Numb	oer of	f Dist	inct (Obse	ervatio	ons	18
200											-					Numb							0
201									Mini	mum	17.4						01		9		Me		61.2
202										mum	145										Medi		61.45
203									MUAI	SD	35.59								Std F	rror	of Me		8.389
											0.582								,.u. ∟				0.919
204							Coo	fficion	t へt ソヘヴ		0.002	1								C1	COMMO		บ.ฮาฮ
204 205							Coe	fficien	t of Vari	duon										SI	kewne	ess	
204 205 206							Coe	fficien	t of Vari			OF Toot								SI	kewne	ess	
204 205						C			t of Vari			GOF Test			CI-	apiro V	۸/;II- ر	205	Tari	SI	kewne		

	Α		В		C		hanir	D Wilk (E Critical V	عرراد	F 0.897	C	ો		d a anne	ar No	l rmal :	at 5%	J Signific	canc	K a Level		L
209						5 70 OI	•		Test Stat		0.173			Date	а аррс		liefors			caric	C LCVCI		
210						59			Critical V		0.202			Data	a anne					canc	e Level		
211							70 =				ar Normal a	t 5% Sid	nificar										
212													J										
213										Ass	suming Nor	mal Dis	tributio	n									
214					95	5% No	rmal	UCL			9				95%	UCLs	(Adiu	ısted	for Ske	wne	ss)		
215									ıdent's-t	UCL	75.79										en-1995)	76.94
216																	-			•	on-1978	1	76.1
217 218																			•			,	
219											Gamma	GOF T	est										
220								A-D	Test Stat	tistic	0.575				Ander	son-D	arling	Gam	ma GC)F Te	est		
221							59	% A-D (Critical V	alue	0.746	De	etected	data	appea	ır Gan	nma D	Distrib	uted at	5%	Significa	nce	Level
222								K-S	Test Stat	tistic	0.149			K	olmog	orov-S	Smirno	ov Ga	mma G	OF	Геst		
223							59	% K-S (Critical V	alue	0.205	De	etected	data	appea	r Gan	nma D	Distrib	uted at	5%	Significa	nce	Level
224							D	etected	data ap	pear	Gamma Di	stribute	d at 5%	6 Sigr	nifican	ce Lev	vel						
225																							
226											Gamma	Statisti	cs										
227									k hat (N	ΛLE)	2.954						k	star (bias co	rrect	ed MLE)	2.498
228								The	eta hat (M	ΛLE)	20.72						Theta	star (bias co	rrect	ed MLE)	24.5
229									nu hat (N	ΛLE)	106.3							nu	star (bi	ias c	orrected)	89.94
230						ML	E M	ean (bi	as correc	cted)	61.2							MLE	Sd (bi	ias c	orrected)	38.72
231															,	Appro	ximat	e Chi	Square	e Val	ue (0.05)	69.07
232						Adjus	ted L	evel of	Significa	ance	0.0357						Α	djuste	ed Chi	Squa	re Value	Э	67.32
233																							
234										Ass	suming Gar	nma Dis	stributio	on									
235		95%	Approx	xima	ate Ga	amma	UCL	(use v	vhen n>=	=50))	79.69			9	5% Ad	justed	d Gam	ıma U	CL (us	e wh	en n<50))	81.76
236																							
237											Lognorma	al GOF	Test										
238						SI	hapir	o Wilk	Test Stat	tistic	0.899				Shap	iro W	ilk Log	gnorm	nal GOF	F Tes	st		
239					ļ	5% Sh	hapir	o Wilk (Critical V	alue	0.897			Data	appea	r Logi	norma	l at 5	% Signi	ificar	ice Leve	el	
240									Test Stat		0.186						_		GOF T				
241						59	% Lill	liefors (Critical V		0.202					r Logi	norma	l at 5	% Signi	ificar	ice Leve	el	
242									Data ap	pear	Lognormal	at 5% 5	Signific	ance	Level								
243																							
244											Lognorma	al Statis	tics										
245									Logged I		2.856							l			ged Data		3.935
246						N	/laxin	num of	Logged I	Data	4.977								SD o	f log	ged Data	а	0.652
247																							
248											ıming Logn	ormal D	istribut	ion						411			
249									95% H-I		89.35								•	•	JE) UCI		92.77
250								-	(MVUE)		106.5						97.5%	Chel	oyshev	(MV	JE) UCI	_ 1	25.6
251						99% (Cheb	yshev	(MVUE)	UCL	163.1												
252																							
253									•		tric Distribu												
254							Data	appea	r to follo	w a C	Discernible I	Distribu	tion at	5% S	ignifica	ance L	_evel						
255																							
256											ametric Dis	tribution	n Free	UCLs	1								
257							_		5% CLT		75										nife UCI		75.79
258									ootstrap		74.52										ap-t UCI		78.47
259									ootstrap		84.87						95%	Perce	entile B	oots	trap UCI		74.79
260						9	95%	BCA Bo	ootstrap	UCL	74.84												

	Α	В	С	D	E	F	G	Н	I	J	K	L]
261			90% Ch	nebyshev(Me	an, Sd) UCL	86.37			95% Cł	nebyshev(Me	an, Sd) UCL	97.76]
262			97.5% Ch	nebyshev(Me	an, Sd) UCL	113.6			99% Cł	nebyshev(Me	an, Sd) UCL	144.7	
263													
264						Suggested	UCL to Use						
265				95% Stu	dent's-t UCL	75.79							
266													
267	ľ	Note: Sugge	stions regard	ling the selec	tion of a 95%	6 UCL are pr	ovided to he	elp the user to	select the i	most appropr	riate 95% UC	L	
268			F	Recommenda	itions are bas	sed upon dat	a size, data	distribution,	and skewne	SS.			
269		These recor	mmendations	s are based ι	ipon the resu	ılts of the sin	nulation stud	ies summari:	zed in Singh	, Maichle, an	id Lee (2006)		
270	Но	wever, simu	lations result	s will not cov	er all Real W	orld data se	ts; for addition	onal insight tl	he user may	want to cons	sult a statistic	ian.	
271	·								·				

APPENDIX F

Groundwater pH Monitoring Data Collected during CM Removal

F. Groundwater pH Monitoring Conducted during CM Removal

This appendix presents groundwater pH monitoring data collected throughout the crushed material (CM) removal project, conducted in general accordance with the pH Monitoring Plan included as Appendix E to the Interim Action Work Plan (Work Plan; Aspect, 2019).

F.1.1. pH Monitoring Methods

As required by the CM Removal Plan of Operations (K-C, 2018), the CM was removed from 17 CM Excavation Sequencing Areas (Areas), arranged in three "rows" denoted Eastern Areas, Central Areas, and Western Areas based on their position on the Site, as follows:

- The Eastern Areas were, from south to north, A1, B1, F, G, L, and M (Figure F1)
- The Central Areas were, from south to north, A2, B2, E, H, K, and N (Figure F2)
- The Western Areas were, from south to north, C, D, I, J, and O (Figure F3)

CM removal was conducted in the Eastern Areas, followed by the Central Areas, followed by the Western Areas, except for minor areas of CM serving as haul roads and remaining beneath part of the eastern fence line until the last phases of the project.

Groundwater across the Site flows generally from east to west with discharge to the East Waterway. Monitoring was conducted in existing monitoring wells located downgradient (west) of an Area undergoing CM removal to assess whether that action created a pH increase in groundwater that posed a risk of migration to the East Waterway.

For each Area, two sets of wells were established in the pH Monitoring Plan: "proximal wells" positioned as close as possible downgradient (west) of the Area, and "downgradient wells" located downgradient of the proximal wells. Due to decommissioning of monitoring wells as the interim action or CM removal projects progressed, the following changes to wells monitored were implemented during the monitoring program, following discussion with and approval by Washington State Department of Ecology (Ecology):

- For monitoring of Eastern Area G, downgradient well GF9-MW-1 was not found in the field. Adjacent well GF9-MW-2, located approximately 25 feet south of it, was monitored to achieve coverage (Figure F1).
- For monitoring of Western Area C, well MW-1 replaced proximal wells PM-MW-7, REC7-MW-3, and UST68-MW-5 (Figure F3).
- For monitoring of Western Area D, wells UST71-MW-102 and BA6-MW-101 replaced proximal wells UST71-MW-101, UST71-MW-104, and BA-MW-5 (Figure F3).

ASPECT CONSULTING

As required by the pH Monitoring Plan, Ecology evaluated the pH data being collected during CM removal and agreed that no change to the proposed Area K proximal wells TM-MW-5 and LP-MW-1 was warranted based on the lack of other suitably located wells and lack of pH impact observed in monitoring through the first 3 months of CM removal, including all of the Eastern Areas.

Figures F1, F2, and F3 depict the proximal wells (blue-highlighted) and downgradient wells (orange-highlighted) monitored for the Eastern, Central, and Western Areas, respectively. The wells monitored for each Area are also included with their data in Tables F-1 through F-17.

Prior to the start of CM removal in each Area, monitoring was conducted in designated proximal and downgradient wells three times within a 1-week or longer period to document the baseline pH condition, defined as the average of the three pH measurements. Throughout the subsequent CM removal in an Area, and for a period of 3 weeks following its completion, pH monitoring was conducted at least weekly in the proximal wells. When CM excavation was occurring in the first Areas (A1 and B1), pH monitoring was conducted daily as required by the pH Monitoring Plan. Based on that initial dataset, Ecology agreed to maintain the weekly monitoring frequency unless CM was observed beneath the water table during its removal in a specific Area. Ultimately, CM was not observed beneath the water table¹ during the removal project, except in localized subsurface structures (e.g., vaults) that were generally isolated from the surrounding subsurface, and around the LP-MW-1 well location as described in Section F.1.2.1 below.

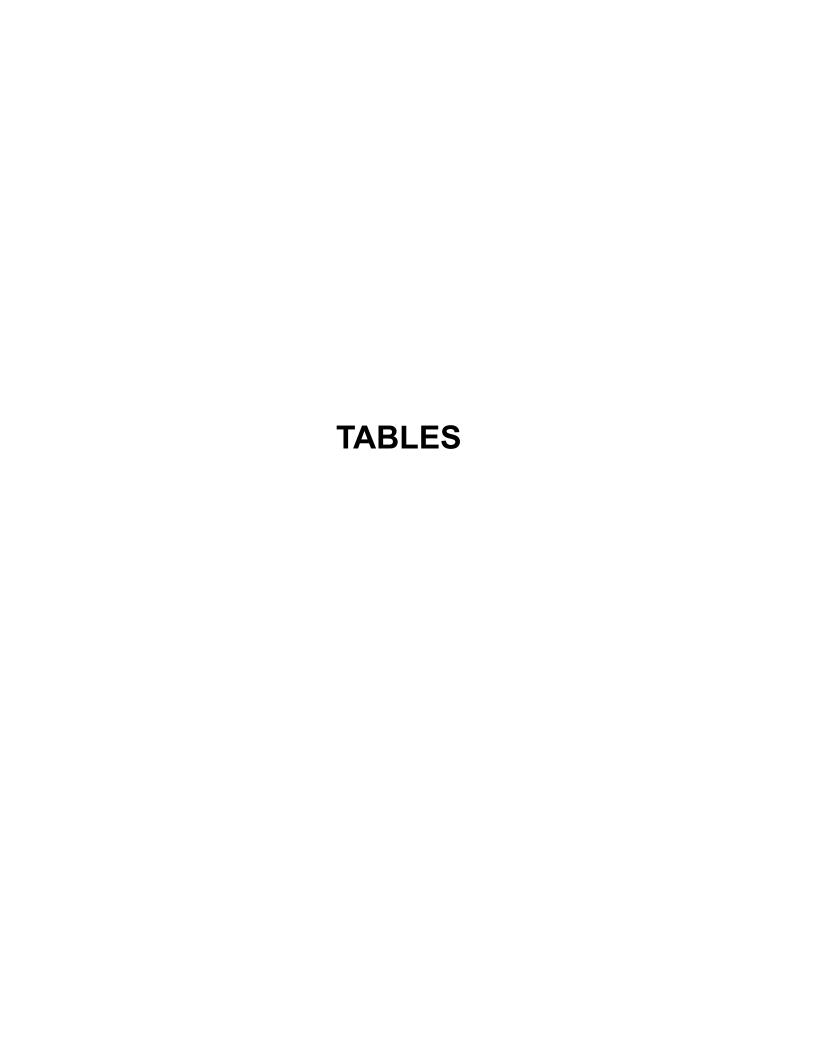
A "trigger pH" value was defined for each well as the baseline pH value plus 0.5 pH unit. If, during or following CM removal in an Area, groundwater pH in a proximal monitoring well was observed to increase and exceed the trigger pH for a period of 3 weeks, it would have triggered daily monitoring of the proximal wells and the start of monitoring in the downgradient wells for that Area. If groundwater pH was observed to increase and exceed the trigger pH for 1 week at the downgradient wells, K-C would have notified Ecology to discuss the situation and decide whether to implement a contingency remediation action to achieve protection of the East Waterway. The pH Monitoring Plan provides additional details regarding the pH monitoring program and the contingency action decision process.

F.1.2. pH Monitoring Results

Monitoring of 35 proximal wells over more than 4 months of CM removal covering approximately 32 acres documented no exceedances of a trigger pH value attributable to the CM removal action (Tables F-1 through F-17). Well LP-MW-1 did record a substantial pH increase, but it was not related to the CM removal action as discussed in the following section.

¹ Largely because CM removal was conducted during dry-season conditions when the water table was low.

The collective pH monitoring data demonstrate that removing the more than 200,000 tons of CM from the Site did not create migration of high-pH groundwater toward the East Waterway.


F.1.2.1. Well LP-MW-1

Between September 22 and 28, 2020, a dramatic groundwater pH increase, from pH 7.20 to pH 9.72, was measured in well LP-MW-1, which is located on the boundary between Western Areas I and J and within the footprint of the former log pond (Figure F2). As per the pH Monitoring Plan, LP-MW-1 was a proximal well to be monitored during CM removal in Areas H and K east of it. The pH spike was confirmed with a second measurement on September 29—a reading of pH 10.52, which was nearly 3 pH units greater than the pH 7.62 trigger value based on the well's baseline readings (Table F-10). However, collective information indicates that the pH spike was a result of a rapidly rising groundwater level submerging the base of the CM in that area, in response to a large-scale rain event; it was not due to CM removal activities.

As discussed in Aspect (2017) and again in the pH Monitoring Plan, well LP-MW-1 has historically had the highest pH readings measured on the Site, which is due to the facts that (1) its well screen is shallow enough that it intercepts the thick layer of CM in that area and (2) the log pond fill has low enough permeability that precipitation does not infiltrate there nearly as readily as the dredge fill outside of the log pond. Consequently, when the seasonal rains begin, the groundwater level within the log pond footprint "mounds up" because infiltration is so slow. The mounded groundwater submerges CM within the well's screened interval, which creates very high pH groundwater in the shallow depth interval screened by LP-MW-1.

Between August 31 and September 22, 2020, the pH readings in LP-MW-1, collected prior to and then during CM removal in Areas H and K, ranged from 7.0 to 7.5—near-neutral values typical of the water table being below the base of the CM in that area. For example, on September 3, the water level was 7.0 feet below the well's top of casing, confirming it was below the base of the CM. Between September 24 and 26, the Site received approximately 1.6 inches of rain. On September 28, the pH in LP-MW-1 had risen to 9.7; the water level was not measured that day. On September 29, when a pH of 10.5 was measured, the water level had risen to 3.3 feet below top of casing. Comparing the September 3 and September 29 readings, the water level rose about 3.7 feet, submerging the base of the CM, and the pH increased about 3.3 units in response. Figure F4 illustrates the relationship of water level (relative to the base of the CM) and pH at well LP-MW-1, with data going back to 2013.

The water level-pH effect was clearly observed at well LP-MW-1 both in 2016 and 2017, and the September 2020 data are a continuation of that seasonal effect—a result of the large precipitation event that preceded it and not the CM removal activities occurring east of it. That conclusion is further supported by the fact that pH changed by 0.3 pH units or less in each of the other six wells monitored on September 28 that are located outside of the log pond footprint: wells BA-MW-2, BA-MW-3, and CN-MW-101 increased slightly, while wells SHB-MW-102, PM-MW-4, and TM-MW-5 decreased slightly, relative to their prior measurement (Tables F-8, F-9, F-10, and F-12).

Table F-1. Groundwater pH Data for Excavation Sequencing Area A1

Project No. 110207, Everett, Washington

		pH Rea	ding in Standa	rd Units	
	Proxim	al Wells	to Monitor	owngradient We if pH Increase red in Proximal	>0.5 unit is
Date	BCT-MW-104	BCT-MW-106	REC7-MW-3	UST68-MW-5	REC7-MW-4
Baseline Reading	յs for this Seqւ	uencing Area (3	x in 1 week)		
6/3/2020	7.25	7.08	-	7.88	7.81
6/4/2020	7.34	7.18		7.93	7.95
6/5/2020	7.33	7.18		7.96	7.94
6/10/2020	7.24	7.12	7.53		7.77
6/11/2020			7.67		
6/12/2020			7.84		
Average Baseline		7.14	7.68	7.92	7.87
"Trigger pH"	7.79	7.64	8.18	8.42	8.37
First Areas A1 + Daily Compliance	Readings Dur		al in this Sequ	encing Area	
6/30/2020	7.06	7.19			
7/1/2020	7.21	7.12			
7/6/2020 7/7/2020	7.35 7.37	7.19 7.17			
7/8/2020	7.35	7.17			
Weekly (at least) Sequencing Area	Compliance Re		eeks After CM	Removal is Do	ne in this
7/9/2020	7.44	7.12			
7/13/2020	7.40	7.18			
7/21/2020	7.52	7.16			
7/27/2020	7.43	7.14			
8/3/2020	7.38	7.10			

Notes

Page 1 of 1

[&]quot;Trigger pH" for proximal wells is the pH that, if exceeded for 3 weeks, triggers daily monitoring of proximal well and start monitoring of downgradient wells.

[&]quot;Trigger pH" for downgradient wells is the pH that, if exceeded for 1 week, triggers consultation with Ecology regarding response action.

Table F-2. Groundwater pH Data for Excavation Sequencing Area B1

Project No. 110207, Everett, Washington

	pH Reading in Standard Units				
			to Monitor if pl unit is Observ	lient Wells H Increase >0.5 ed in Proximal	
		al Wells	We	II(s)	
Date	PM-MW-5	BCT-MW-108	PM-MW-2	PM-MW-4	
Baseline Readings	for this Seque	ncing Area (3x	in 1 week)		
6/3/2020	10.74	11.02	7.65	10.11	
6/4/2020	10.72	11.06	7.63	10.15	
6/5/2020	10.72	11.04	7.63	10.16	
Average Baseline	10.73	11.04	7.64	10.14	
"Trigger pH"	11.23	11.54	8.14	10.64	
First Areas A1 + B Daily Compliance		ıg CM Removal	in this Sequenc	ing Area	
6/30/2020	10.80	10.82			
7/1/2020	10.85	10.90			
7/6/2020	10.76	11.14			
7/7/2020	10.73	11.22			
7/8/2020	10.69	11.20			
7/9/2020	10.73	11.22			
7/10/2020	10.67	11.13			
7/13/2020	10.66	11.19			
Weekly (at least) C	•	dings for 3 Wee	eks After CM Re	moval is Done	
in this Sequencing		44.44	T	T	
7/14/2020	10.68	11.14			
7/16/2020	10.68	11.20			
7/17/2020	10.58	11.11			
7/20/2020	10.57	11.04			
7/22/2020	10.54	11.11			
7/23/2020	10.48	11.08			
7/27/2020 7/29/2020	10.55 10.53	11.09			
7/30/2020	10.53	11.03 11.06			
8/3/2020	10.54	11.05			
8/10/2020	10.41	11.05			
0/10/2020	10.40	11.01	l		

Notes

Aspect Consulting Table F-2

[&]quot;Trigger pH" for proximal wells is the pH that, if exceeded for 3 weeks, triggers daily monitoring of proximal well and start monitoring of downgradient wells.

[&]quot;Trigger pH" for downgradient wells is the pH that, if exceeded for 1 week, triggers consultation with Ecology regarding response action.

Table F-3. Groundwater pH Data for Excavation Sequencing Area F

Project No. 110207, Everett, Washington

	pH Reading in Standard Units				
	Proxima	al Wells	Downgradient Wells to Monitor if pH Increase >0.5 unit is Observed in Proximal Well(s)		
Date	AP-MW-1R	PM-MW-3	BA-MW-2	BA-MW-3	PM-MW-6
Baseline Readings	s for this Seque	encing Area (3	x in 1 week)		
6/10/2020	10.63		9.30	7.28	6.86
6/11/2020	10.44	9.52	9.32	7.34	7.05
6/12/2020	10.40	9.58	9.29	7.31	7.15
6/15/2020		9.46			
6/19/2020		9.20			
Average Baseline	10.49	9.44	9.30	7.31	7.02
"Trigger pH"	10.99	9.94	9.80	7.81	7.52
Weekly (at least) C	Compliance Rea	adings During	CM Removal i	n this Sequenc	ing Area
7/9/2020	10.37	8.98			
7/10/2020	10.41	9.22			
7/13/2020	10.35	8.91			
7/14/2020					
1711/2020	10.27	8.59			
7/21/2020	10.27 10.34	8.59 8.07			
	10.34	8.07	eeks After CM	Removal is Do	ne in this
7/21/2020 Weekly (at least) C	10.34	8.07	eeks After CM	Removal is Do	ne in this
7/21/2020 Weekly (at least) C Sequencing Area	10.34 Compliance Rea	8.07 adings for 3 W	eeks After CM	Removal is Do	ne in this

[&]quot;Trigger pH" for proximal wells is the pH that, if exceeded for 3 weeks, triggers daily monitoring of proximal well and start monitoring of downgradient wells.

[&]quot;Trigger pH" for downgradient wells is the pH that, if exceeded for 1 week, triggers consultation with Ecology regarding response action.

Table F-4. Groundwater pH Data for Excavation Sequencing Area G

Project No. 110207, Everett, Washington

	pH Reading in Standard Units				
	Proximal Wells	Downgradient Wells to Monitor if pH Increase >0. unit is Observed in Proxima Well(s)			
Date	GF9-MW-3	GF9-MW-1	GF9-MW-2		
Baseline Readings	for this Seque	ncing Area (3x i	n 1 week)		
7/13/2020	6.90				
7/14/2020	6.91				
7/16/2020	6.88	Well not found.	11.70		
7/17/2020	6.93	GF9-MW-2 is	11.75		
7/20/2020	6.91	24 ft from it.	11.83		
		24 11 11 0111 11.			
Average Baseline	6.91		11.76		
"Trigger pH"	7.41		12.26		
Weekly (at least) C this Sequencing A	-	dings During Cl	M Removal in		
7/21/2020	6.92				
8/3/2020	6.84				
8/10/2020	6.88				
8/17/2020	6.88				
Weekly (at least) Compliance Readings for 3 Weeks After CM Removal is Done in this Sequencing Area					
8/24/2020	6.92				
8/31/2020	6.88				
9/3/2020	6.92				
9/8/2020	6.92				

[&]quot;Trigger pH" for proximal wells is the pH that, if exceeded for 3 weeks, triggers daily monitoring of proximal well and start monitoring of downgradient wells.

[&]quot;Trigger pH" for downgradient wells is the pH that, if exceeded for 1 week, triggers consultation with Ecology regarding response action.

Table F-5. Groundwater pH Data for Excavation Sequencing Area L

Project No. 110207, Everett, Washington

	pH Reading in Standard Units					
	Proximal Wells		Downgradient Wells to Monitor if pH Increase >0.5 unit is Observed in Proximal Well(s)			
Date	UST29-MW-103	LP-MW-4	UST29-MW101	UST29-MW102		
Baseline Readings	for this Sequenci	ng Area (3x in 1	week)			
7/13/2020	9.21	6.92				
7/14/2020	9.22	6.92				
7/16/2020	9.19	6.91	9.97	7.91		
7/17/2020	9.21	6.90	10.01	7.91		
7/20/2020	8.82	6.89	10.07	8.68		
Average Baseline	9.13	6.91	10.02	8.17		
"Trigger pH"	9.63	7.41	10.52	8.67		
	ompliance Reading	-	emoval in this Se	quencing Area		
8/3/2020	8.68	6.89				
8/10/2020	8.66	6.91				
8/17/2020	8.29	6.98				
Weekly (at least) C Sequencing Area	Weekly (at least) Compliance Readings for 3 Weeks After CM Removal is Done in this Sequencing Area					
8/24/2020	8.33	6.95				
8/31/2020	8.43	6.90				
9/3/2020	8.68	6.90				
9/8/2020	8.06	6.99				

Notes

No CM was observed below water table during removal.

[&]quot;Trigger pH" for proximal wells is the pH that, if exceeded for 3 weeks, triggers daily monitoring of proximal well and start monitoring of downgradient wells.

[&]quot;Trigger pH" for downgradient wells is the pH that, if exceeded for 1 week, triggers consultation with Ecology regarding response action.

Table F-6. Groundwater pH Data for Excavation Sequencing Area M

Project No. 110207, Everett, Washington

	pH Reading in Standard Units					
Date	Proximal Wells TM-MW-2	Downgradient Wells to Monitor if pH Increase >0.5 unit is Observed in Proximal Well(s) TM-MW-1 CN-MW-103 TM-MW-5				
				1101 10100 0		
Baseline Readings		ncing Area (3x	in 1 week)			
7/14/2020	8.61					
7/16/2020	8.64	6.57	6.51	7.78		
7/17/2020	8.66	6.58	6.48	7.79		
7/20/2020	7.37	6.56	6.50	7.83		
Average Baseline	8.32	6.57	6.50	7.80		
"Trigger pH"	8.82	7.07	7.00	8.30		
Weekly (at least) C Sequencing Area (-	-		his		
8/5/2020	7.29	6.63				
8/10/2020	7.32					
8/17/2020	7.26					
8/24/2020	7.22					
Weekly (at least) Compliance Readings for 3 Weeks After CM Removal is Done in this Sequencing Area						
8/31/2020	7.24					
9/8/2020	7.06					
9/14/2020	7.20					
9/22/2020	7.01					

[&]quot;Trigger pH" for proximal wells is the pH that, if exceeded for 3 weeks, triggers daily monitoring of proximal well and start monitoring of downgradient wells.

[&]quot;Trigger pH" for downgradient wells is the pH that, if exceeded for 1 week, triggers consultation with Ecology regarding response action.

Table F-7. Groundwater pH Data for Excavation Sequencing Area A2

Project No. 110207, Everett, Washington

	pH Reading in Standard Units						
	Proximal Wells			Downgradion to Monitor if posture >0.5 unit is Output Proximal	oH Increase Observed in		
Date	UST68-MW-5	MW-2	REC7-MW-4	REC7-MW-3	MW-1		
Baseline Readings	for this Seque	ncing Area (3x in 1 week)				
8/10/2020	8.05	7.82	7.95	7.17	7.41		
8/12/2020	8.08	7.88	7.96	7.60	7.43		
8/13/2020	8.04	7.89	7.93	7.62	7.45		
8/17/2020	7.99	7.72	7.85				
Average Baseline	8.04	7.83	7.92	7.46	7.43		
"Trigger pH"	8.54	8.33	8.42	7.96	7.93		
Weekly (at least) 0 8/31/2020	compliance Read	dings During 7.77	g CM Removal ii	n this Sequencii	ng Area		
Weekly (at least) Compliance Readings for 3 Weeks After CM Removal is Done in this Sequencing Area							
9/8/2020	8.18	7.68	7.77				
9/14/2020	8.27	7.77	7.90				
9/21/2020	8.12						
9/22/2020	8.13	7.60	7.82				

[&]quot;Trigger pH" for proximal wells is the pH that, if exceeded for 3 weeks, triggers daily monitoring of proximal well and start monitoring of downgradient wells.

[&]quot;Trigger pH" for downgradient wells is the pH that, if exceeded for 1 week, triggers consultation with Ecology regarding response action.

Table F-8. Groundwater pH Data for Excavation Sequencing Area B2

Project No. 110207, Everett, Washington

	pH Reading in Standard Units						
Date	Proximal Wells PM-MW-4	Downgradient Wells to Monitor if pH Increase >0 unit is Observed in Proxima Well(s) REC7-MW-3 PM-MW-7					
Baseline Readings	for this Seque	ncing Area (3x i	n 1 week)				
8/10/2020	10.14	7.60	7.17				
8/12/2020	10.18	7.60	7.15				
8/13/2020	10.17	7.62	7.09				
8/17/2020	9.86						
Average Baseline	10.09	7.61	7.14				
"Trigger pH"	10.59	8.11	7.64				
	Weekly (at least) Compliance Readings During CM Removal in this Sequencing Area						
9/8/2020	9.79						
Weekly (at least) C	ompliance Rea	dings for 3 Wee	ks After CM				
Removal is Done i	n this Sequenci	ing Area					
9/14/2020	9.77						
9/22/2020	9.75						
9/28/2020	9.60						

[&]quot;Trigger pH" for proximal wells is the pH that, if exceeded for 3 weeks, triggers daily monitoring of proximal well and start monitoring of downgradient wells.

[&]quot;Trigger pH" for downgradient wells is the pH that, if exceeded for 1 week, triggers consultation with Ecology regarding response action.

Table F-9. Groundwater pH Data for Excavation Sequencing Area E

Project No. 110207, Everett, Washington

	pH Reading in Standard Units					
	Downgradient Wells to Monitor if pH Increase >0.5 unit is Observe Proximal Wells Proximal Well(s)			erved in		
Date	BA-MW-2	BA-MW-3	BA-MW-1	UST71-MW-104	UST71-MW-103	PM-MW-6
Baseline Reading	gs for this S	equencing A	rea (3x in 1	week)		
8/26/2020	9.03	7.41	7.50	7.56	6.43	7.12
8/27/2020	9.05	7.44	7.49	7.58	6.46	7.11
8/28/2020	9.03	7.40	7.52	7.57	6.47	7.09
Average Baseline	9.04	7.42	7.50	7.57	6.45	7.11
"Trigger pH"	9.54	7.92	8.00	8.07	6.95	7.61
Weekly (at least)	Compliance	Readings D	During CM Re	emoval in this Sec	quencing Area	
Weekly (at least) Compliance Readings for 3 Weeks After CM Removal is Done in this Sequencing Area						
9/14/2020	8.79	7.50				
9/22/2020	8.90	7.27				
9/28/2020	9.15	7.58				

[&]quot;Trigger pH" for proximal wells is the pH that, if exceeded for 3 weeks, triggers daily monitoring of proximal well and start monitoring of downgradient wells.

[&]quot;Trigger pH" for downgradient wells is the pH that, if exceeded for 1 week, triggers consultation with Ecology regarding response action.

Table F-10. Groundwater pH Data for Excavation Sequencing Area H

Project No. 110207, Everett, Washington

	pH Reading in Standard Units					
		Proximal Wells			dient Wells FpH Increase Observed in al Well(s)	
Date	LP-MW-1	SHB-MW-102*	SHB-MW101	LP-MW-2	SHB-MW-2	
Baseline Readings	for this Sequ	encing Area (3x	in 1 week)			
8/31/2020	7.04	7.28	6.84	6.52	6.69	
9/2/2020	7.07	7.30	6.83	6.50	6.63	
9/3/2020	7.24	7.31	6.82	6.54	6.61	
Average Baseline	7.12	7.30	6.83	6.52	6.64	
"Trigger pH"	7.62	7.80	7.33	7.02	7.14	
Weekly (at least) C 9/14/2020	7.52	adings During C	M Removal in t	his Sequencir	ng Area	
Weekly (at least) C Sequencing Area	ompliance Re	adings for 3 Wee	eks After CM R	emoval is Don	e in this	
9/22/2020	7.20	7.30				
9/28/2020	9.72	7.20				
9/29/2020	10.52	inaccessible*	6.85			
10/1/2020	10.84		6.85	6.71	6.60	
10/2/2020	10.85					
10/5/2020	11.34		6.87	6.95	7.13	
				0.07	_	
10/7/2020	11.30		6.98	6.97	7.06	
10/7/2020 10/9/2020 10/12/2020	11.30 11.38 11.60		6.98 6.99 7.07	7.02 6.57	_	

Notes

Red highlighted values exceed Trigger pH value.

^{*:} The driller decommissioning wells in an adjacent area inadvertently decommissioned this well on 9/29. Well SHB-MW-101, located 25 feet from this well, is substituted as a proximal well for the rest of the monitoring.

[&]quot;Trigger pH" for proximal wells is the pH that, if exceeded for 3 weeks, triggers daily monitoring of proximal well and start monitoring of downgradient wells.

[&]quot;Trigger pH" for downgradient wells is the pH that, if exceeded for 1 week, triggers consultation with Ecology regarding response action.

Table F-11. Groundwater pH Data for Excavation Sequencing Area K

Project No. 110207, Everett, Washington

	pH Reading in Standard Units					
	Proxim	al Wells	Downgradient Wells to Monitor if pH Increase >0.5 un Observed in Proximal Well(s)			
Date	TM-MW-5	LP-MW-1	TM-MW-6	REC6-MW-2	MW-6	
Baseline Readings	s for this Seque	encing Area (3	x in 1 week)			
9/8/2020	7.68	7.18	7.37	7.00	7.13	
9/9/2020	7.49	7.27	7.34	7.02	7.14	
9/10/2020	7.56	7.26	7.31	7.01	7.19	
Average Baseline	7.58	7.24	7.34	7.01	7.15	
"Trigger pH"	8.08	7.74	7.84	7.51	7.65	
Weekly (at least) 0	Compliance Real	adings During	CM Removal	in this Sequenci	ng Area	
9/28/2020	7.50	9.72				
9/29/2020		10.52				
Weekly (at least) Compliance Readings for 3 Weeks After CM Removal is Done in this Sequencing Area						
Sequencing Area		adings for 3 W	eeks After CN	l Removal is Doi	ne in this	
10/1/2020	8.05	adings for 3 W	eeks After CN 7.35	Removal is Doi	ne in this	
10/1/2020	8.05	10.84				
10/1/2020 10/2/2020	8.05 7.45	10.84 10.85	7.35	6.96	7.20	
10/1/2020 10/2/2020 10/5/2020	8.05 7.45 7.43	10.84 10.85 11.24	7.35 7.52	6.96	7.20 7.29	

Notes

Red highlighted values exceed Trigger pH value.

[&]quot;Trigger pH" for proximal wells is the pH that, if exceeded for 3 weeks, triggers daily monitoring of proximal well and start monitoring of downgradient wells.

[&]quot;Trigger pH" for downgradient wells is the pH that, if exceeded for 1 week, triggers consultation with Ecology regarding response action.

Table F-12. Groundwater pH Data for Excavation Sequencing Area N

Project No. 110207, Everett, Washington

	pH Reading in Standard Units						
	Proxima	al Wells	to Monitor	Downgradient Wells to Monitor if pH Increase >0.5 unit is Observed in Proximal Well(s)			
Date	CN-MW-101	TM-MW-5	NRU-MW-102	NRS-MW-102	` '	TM-MW-6	
Baseline Reading	gs for this Sec	quencing Are	a (3x in 1 week)				
9/8/2020	6.52	7.68	7.12	6.56	6.85	7.37	
9/9/2020	6.59	7.49	6.89	6.67	6.86	7.34	
9/10/2020	6.56	7.56	6.91	6.54	6.89	7.31	
Average Baseline	6.56	7.58	6.97	6.59	6.87	7.34	
"Trigger pH"	7.06	8.08	7.47	7.09	7.37	7.84	
Weekly (at least) 9/28/2020	Compliance F	Readings Dur	ring CM Remova	al in this Seque	ncing Area		
10/1/2020	0.57	8.05					
10/1/2020		0.00					
10/2/2020	6.57	7.45					
10/2/2020 Weekly (at least) Area		7.45	3 Weeks After C	CM Removal is I	Done in this Se	equencing	
Weekly (at least)		7.45	3 Weeks After C	M Removal is [Done in this Se	equencing	
Weekly (at least) Area	Compliance F	7.45 Readings for	3 Weeks After C	CM Removal is [Done in this Se	equencing	

[&]quot;Trigger pH" for proximal wells is the pH that, if exceeded for 3 weeks, triggers daily monitoring of proximal well and start monitoring of downgradient wells.

[&]quot;Trigger pH" for downgradient wells is the pH that, if exceeded for 1 week, triggers consultation with Ecology regarding response action.

Table F-13. Groundwater pH Data for Excavation Sequencing Area C

Project No. 110207, Everett, Washington

<u> </u>	pH Reading in Standard Units						
		Proximal Wells					
Date	PM-MW-7*	REC7-MW-3*	UST68-MW-5*	MW-1			
Baseline Readings	s for this Sequ	uencing Area (3x in 1 week)				
9/21/2020	7.17	7.57	8.12	7.40			
9/22/2020	7.16	7.60	8.13	7.43			
9/23/2020	7.17	7.57	8.15	7.49			
Average Baseline	7.17	7.58	8.13	7.44			
"Trigger pH"	7.67	8.08	8.63	7.94			
Weekly (at least) C Sequencing Area	Compliance R	eadings Durinç	g CM Removal ir	this			
10/2/2020	inaccessible*	inaccessible*	inaccessible*	6.84			
10/5/2020				6.88			
Weekly (at least) Compliance Readings for 3 Weeks After CM Removal is Done in this Sequencing Area							
10/12/2020	inaccessible*	inaccessible*	inaccessible*	7.50			
10/19/2020				6.79			
10/28/2020				7.26			

^{*:} The driller decommissioning wells in an adjacent area inadvertently decommissioned these wells on 9/29. Therefore, well MW-1 has been substituted as a proximal well for the rest of the monitoring. Other adjacent wells were decommissioned for the OMS excavation.

[&]quot;Trigger pH" for proximal wells is the pH that, if exceeded for 3 weeks, triggers daily monitoring of proximal well and start monitoring of downgradient wells.

[&]quot;Trigger pH" for downgradient wells is the pH that, if exceeded for 1 week, triggers consultation with Ecology regarding response action.

Table F-14. Groundwater pH Data for Excavation Sequencing Area D

Project No. 110207, Everett, Washington

	pH Reading in Standard Units								
	Proximal Wells				Downgradient Wells to Monitor if pH Increase >0.5 unit is Observed in Proximal Well(s)				
Date	BA-MW-5*	UST71-MW-101*	UST71-MW-103*	UST71-MW-102	BA6-MW101	RCD-MW-101	UST70-MW-2	REC3-MW-1R	PM-MW-8
Baseline Read	Baseline Readings for this Sequencing Area (3x in 1 week)								
9/21/2020	6.62	7.12	6.21			6.66	7.08	7.26	7.05
9/22/2020	6.62	7.14	6.24			6.68	7.12	7.24	7.07
9/23/2020	6.64	7.17	6.26			6.64	7.11	7.30	7.10
10/2/2020	inaccessible*	inaccessible*	inaccessible*	6.30	7.20				
10/5/2020				6.33	7.22				
10/6/2020				6.35	7.19				
Avg Baseline	6.63	7.14	6.24	6.33	7.20	6.66	7.10	7.27	7.07
"Trigger pH"	7.13	7.64	6.74	6.83	7.70	7.16	7.60	7.77	7.57
Weekly (at least) Compliance Readings During CM Removal in this Sequencing Area									
10/9/2020 inaccessible* inaccessible* inaccessible* 6.36 7.26 Weekly (at least) Compliance Readings for 3 Weeks After CM Removal is Done in this Sequencing Area									
10/12/2020				Dry	7.07				
10/19/2020	inaccessible*	inaccessible*	inaccessible*	6.33	7.05				
10/28/2020	_			6.26	6.61	_	_		_
Notes	•	·-	_	_		-	-	_	

Notes

Page 1 of 1

12/17/2020

^{*:} Well UST71-MW-103 was located just within the CM footprint and required decommissioning to allow complete CM removal. However, the driller inadvertently also decommissioned nearby wells UST71-MW-101 and BA-MW-5 on 9/29. Consequently, adjacent non-shoreline wells UST71-MW-102 and BA6-MW-101 have been replaced as proximal wells.

[&]quot;Trigger pH" for proximal wells is the pH that, if exceeded for 3 weeks, triggers daily monitoring of proximal well and start monitoring of downgradient wells.

[&]quot;Trigger pH" for downgradient wells is the pH that, if exceeded for 1 week, triggers consultation with Ecology regarding response action.

Table F-15. Groundwater pH Data for Excavation Sequencing Area I

No Downgradient Wells

Project No. 110207, Everett, Washington

	pH Reading in Standard Units					
	Proximal Wells					
Date	LP-MW-2	SHB-MW-2				
Baseline Readings for this Sequencing Area (3x in 1 week)						
10/5/2020	6.95	7.13				
10/6/2020	6.92	7.14				
10/7/2020	7.17	7.16				
Average Baseline	7.01	7.14				
"Trigger pH"	7.51	7.64				
Weekly (at least) Compliance Readings During CM Removal in this Sequencing Area						
10/9/2020	7.02	7.13				
10/12/2020	6.57	6.66				
Weekly (at least) Compliance Readings for 3 Weeks After CM Removal is Done in this Sequencing Area						
10/19/2020	6.55	6.87				
10/28/2020	6.65	6.89				
11/2/2020	6.60	6.87				

Notes

Aspect Consulting Table F-15

[&]quot;Trigger pH" for proximal wells is the pH that, if exceeded for 3 weeks, triggers daily monitoring of proximal well and start monitoring of downgradient wells.

[&]quot;Trigger pH" for downgradient wells is the pH that, if exceeded for 1 week, triggers consultation with Ecology regarding response action.

Table F-16. Groundwater pH Data for Excavation Sequencing Area J

Project No. 110207, Everett, Washington

	pH Reading in Standard Units			
		Proximal Wells	No Downgradient Wells	
Date	TM-MW-6	REC6-MW-2	MW-6	
Baseline Readings	s for this Sequ	encing Area (3x i	n 1 week)	
10/1/2020	7.35	6.96	7.20	
10/5/2020	7.52	7.22	7.29	
10/7/2020	7.57	7.20	7.34	
10/9/2020	7.55	7.18	7.32	
Average Baseline	7.50	7.14	7.29	
"Trigger pH"	8.00	7.64	7.79	
Weekly (at least) C	ompliance Re	adings During Cl	M Removal in	
this Sequencing A	•	aamgo zamg o		
10/12/2020	7.21	6.99	7.17	
10/19/2020	7.22	6.67	7.20	
Weekly (at least) C	compliance Re	adings for 3 Wee	ks After CM	
Removal is Done i			ALOI OIII	
10/28/2020	7.18	6.66	7.22	
11/2/2020	7.15	6.67	7.10	
11/12/2020	7.18	6.75	7.06	

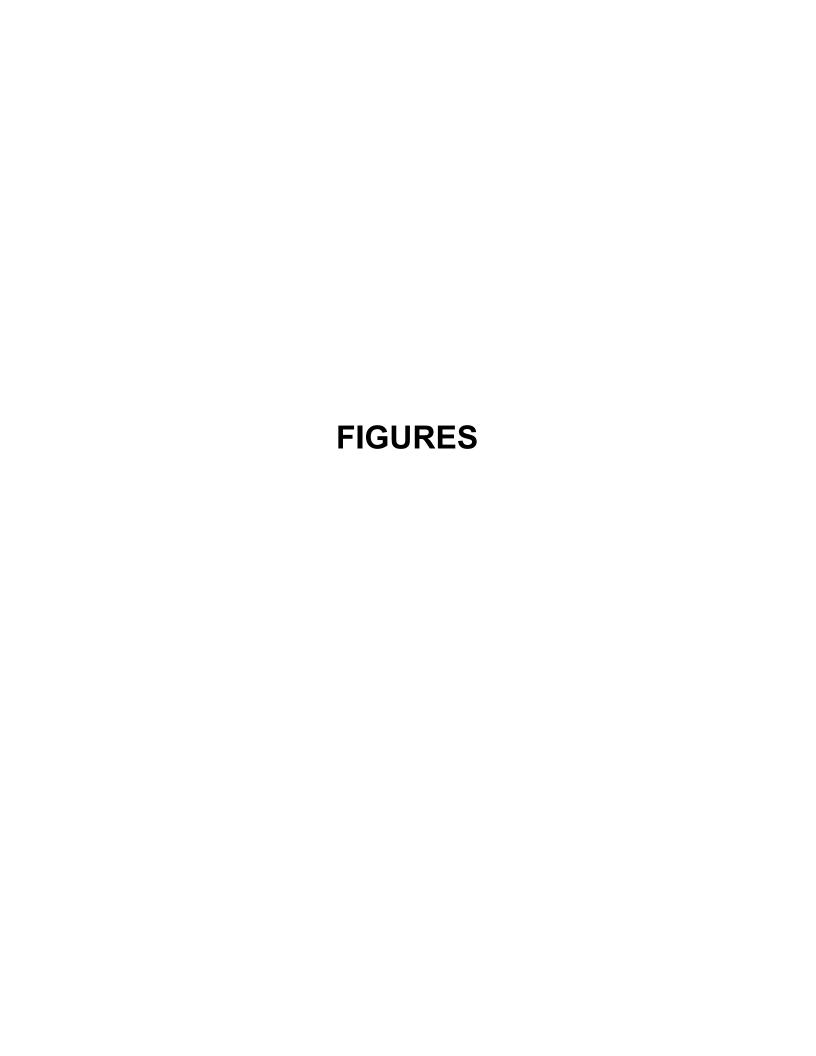
Notes

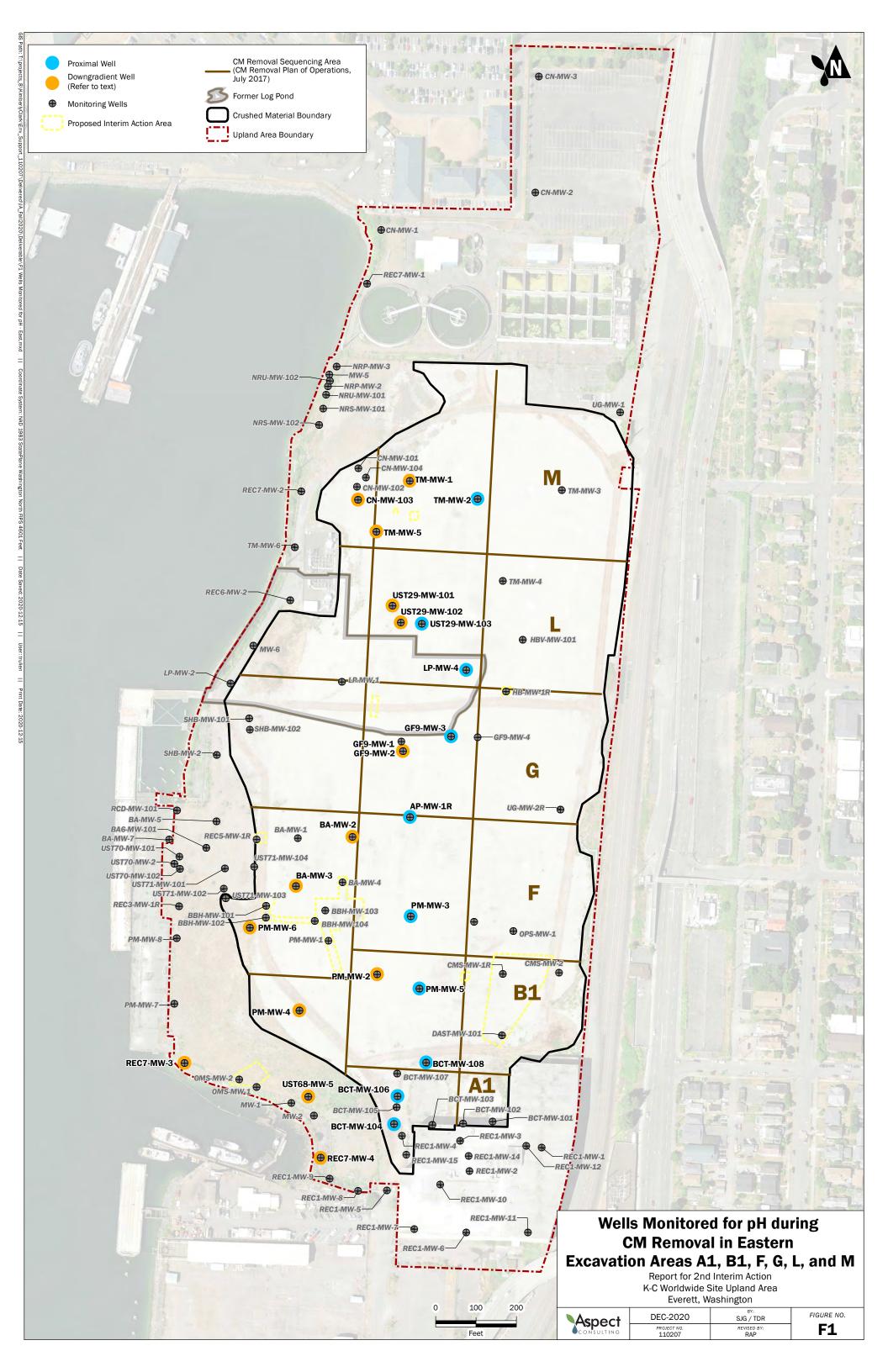
Aspect Consulting Table F-16

[&]quot;Trigger pH" for proximal wells is the pH that, if exceeded for 3 weeks, triggers daily monitoring of proximal well and start monitoring of downgradient wells.

[&]quot;Trigger pH" for downgradient wells is the pH that, if exceeded for 1 week, triggers consultation with Ecology regarding response action.

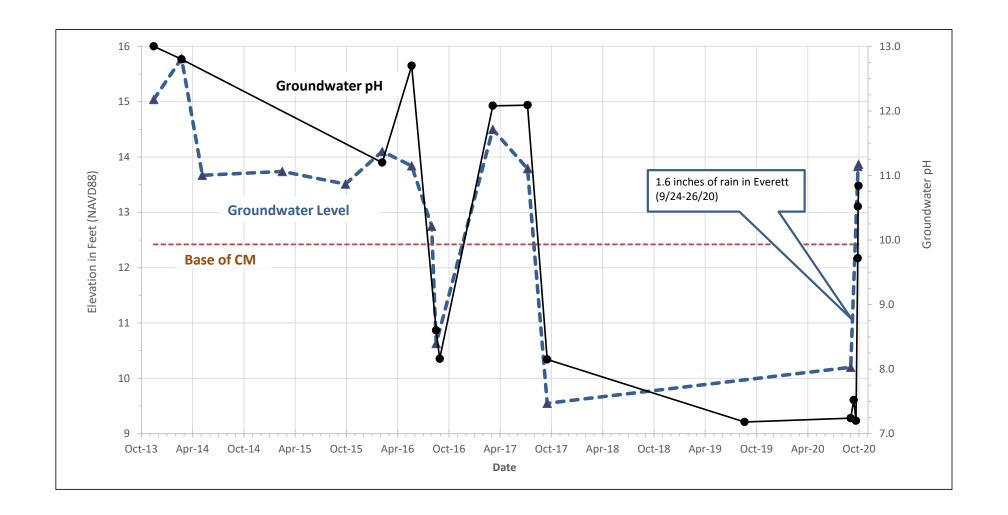
Table F-17. Groundwater pH Data for Excavation Sequencing Area O

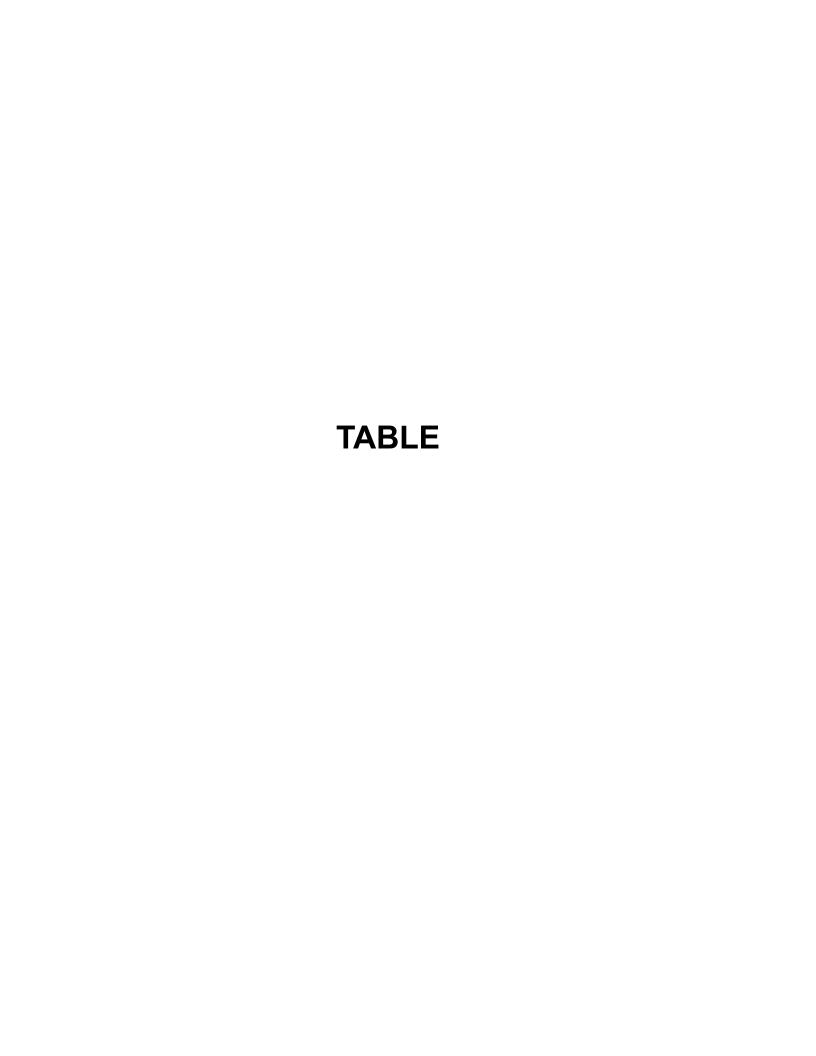

Project No. 110207, Everett, Washington


	pH Reading in Standard Units						
	Proximal Wells						
Date	NRU-MW-102	NRS-MW-102	REC7-MW-2	TM-MW-6			
Baseline Readings for this Sequencing Area (3x in 1 week)							
10/8/2020	6.96	7.05	6.99	7.54			
10/9/2020	6.99	7.09	6.93	7.55			
10/12/2020	7.04	6.91	6.64	7.21			
Average Baseline	7.00	7.02	6.85	7.43			
"Trigger pH"	7.50	7.52	7.35	7.93			
Weekly (at least) Compliance Readings During CM Removal in this Sequencing Area							
10/19/2020	7.00	7.03	6.65	7.22			
Weekly (at least) Compliance Readings for 3 Weeks After CM Removal is Done							
in this Sequencing Area							
10/28/2020	7.02	7.05	6.68	7.18			
11/2/2020	6.96	6.92	6.66	7.15			
11/12/2020	7.00	6.94	7.33	7.18			

No Downgradient Wells

[&]quot;Trigger pH" for proximal wells is the pH that, if exceeded for 3 weeks, triggers daily monitoring of proximal well and start monitoring of downgradient wells.


[&]quot;Trigger pH" for downgradient wells is the pH that, if exceeded for 1 week, triggers consultation with Ecology regarding response action.



K-C Upland Area, Everett, WA

APPENDIX G

Tabulation of Dust Monitoring Data/Observations and Controls Implemented

Project No. 110207, Everett, Washington

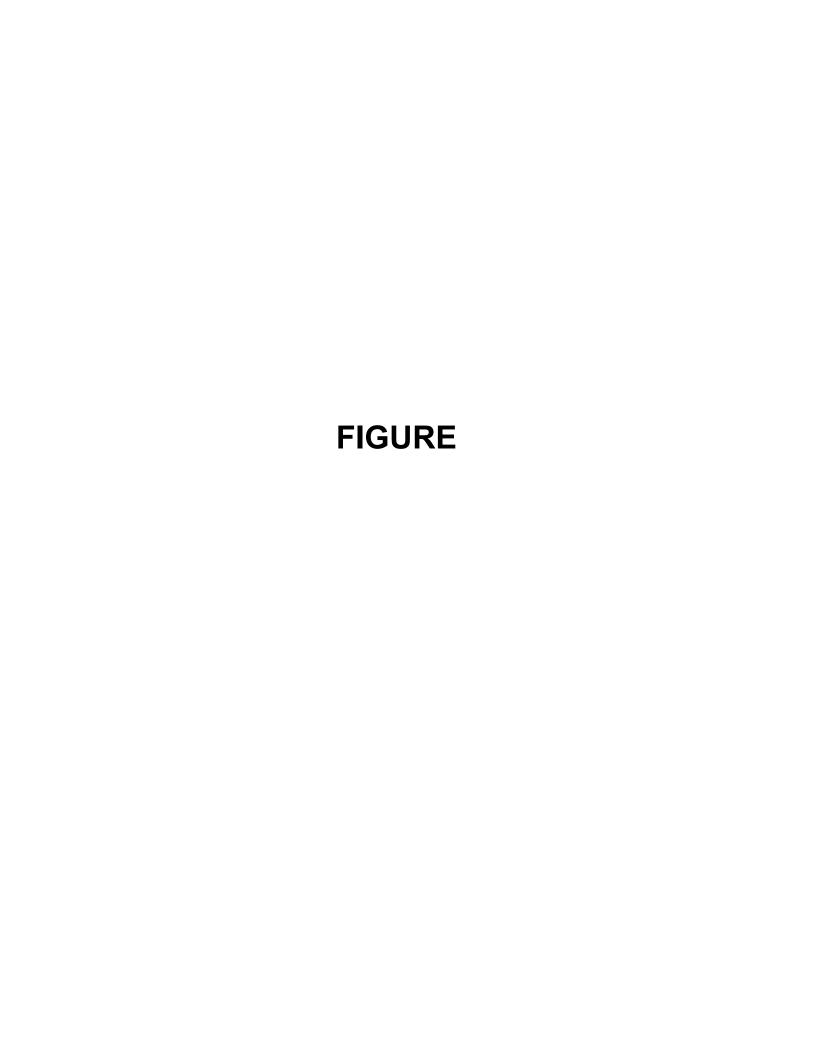
		Quantitative I	Measurements		
		Monitoring	Daily Average		
		Monitoring Duration	PM ₁₀ Conc.		
Date	General Site Earthwork Activities	(Hour:Min)	(mg/m ³)	Qualitative Observations regarding Visible Dust	Contractor Dust Control Measures Employed
Butc	•		(g / /	Qualitative Observations regarding visible base	Contractor Bust Control Incusures Employed
	Maximum Daily Average PM 10 Concentration during Work		0.029		
	excluding smoke		0.029	Air quality standard for PM10 is 0.15 mg/m ³ as 24-hr average.	
	Average PM ₁₀ Concentration during Work Hours for Project Du				
	excluding smoke				
05/20/20	Breach Pipe C; constructed settling basin on pavement for vactor materials	6:20	0.005		
05/21/20	Video/vactor pipes C and M. Remove unusable wood chips	6:50	0.004		
05/22/20	Remove unusable wood chips	2:40	0.005		
05/26/20	Pipe K excavation; Remove unusable wood chips	7:40	0.001		
05/27/20	Pipe K excavation; Pipe C plug w/ CDF	7:05	0.002		
05/28/20	Hydraulic Barker area scrape/stockpile CM, start soil excavation. Wood chip removal. Hydraulic Barker area soil excavation	7:35	0.010		
05/29/20	Removal of Pipe M inland of plugged vault.	8:00	0.010 0.003		
06/01/20	Expose, breach, plug Pipe K at shoreline	7:40 6:00	0.003		
06/02/20 06/03/20	Removed inland portion of Pipe M. Potholed to find inland portion of Pipe K.	7:45	0.008		
06/03/20	Pipe K plugging. Backfill Pipe M vault. Hydraulic Barker overexcavation.	7:10	0.003		
06/04/20	Cut concrete to expose wooden Pipe F @ shoreline. Pipe M pipe removal, backfill.	7:10	0.002		
06/03/20	Breached Pipe F @ 15' and 75', video pipe. Hydraulic Barker overexcavation.		monitoring		
06/09/20	Begin filling Pipe F with CDF.	4	monitoring		
06/10/20	Complete CDF placement inside and around Pipe F @15' and 75' breaches.	8:00	0.003		
06/11/20	CM potholing.	6:00	0.008		
06/12/20	(half-day rain) CM removal from PM-B-6 area. CM potholing.	4:20	0.008		
06/15/20	PM-B-6 CM scraping/stockpiling and soil excavation.		monitoring		
06/16/20	PM-B-6 soil excavation.	6:45	0.001		
06/17/20	Log Pond chip conveyor area CM stripping, then soil excavation.	6:50	0.002		
06/18/20	Log Pond chip conveyor area soil excav. Clark Nickerson CM & overburden stripping,	8:00	0.002		
06/19/20	Brush clearing but no earthwork.		- no monitoring		
06/22/20	Soil over-excavation in PMB6 and Log Pond conveyor areas.	7:15	0.002		
06/23/20	Soil excavation in Log Pond conveyor and Clark-Nickerson west areas.	7:25	0.002		
06/24/20	Soil excavation in Clark Nickerson east and soil over-excavation in PMB6 areas.	8:00	0.005		
06/25/20	Soil excavation in OMS area.	8:00	0.005		
06/26/20	Soil excavation in OMS area.	7:20	0.004		
06/29/20	Soil excavation in OMS area, soil over-excavation in LP Conveyor and CN-west areas.	8:00	0.014		
06/30/20	CM excavation/stockpiling onsite from areas A1 and B1.	3:05 before rain	0.004		
07/01/20	CM removal from A1 and B1.		monitoring		
07/02/20	CM removal from A1 and B1.	Rain - no	monitoring		
07/06/20	Over-excavation in PMB6 and OMS areas.	7:30	0.009		
07/07/20	Soil excavation in OMS area. Backfilling Log Pond & CN excavations. CM removal A1 & B1.		monitoring		
07/08/20	CMS soil excavation. CM removal A1 & B1.	7:40	0.006		
07/09/20	CMS soil excavation. CM removal B1 & F.	7:30	0.008		
07/10/20	CMS soil excavation. CM removal B1 & F.	7:20	0.005		
07/13/20	Soil excavation in CMS area. CM removal B1 & F.	7:50	0.008		
07/14/20	Soil excavation in CMS area. CM removal F.	7:55	-0.001*		
07/15/20	Soil over-excavation in OMS and PMB6 areas. CM removal F.	7:50	0.010		
07/16/20	Soil excavation in CMS area. CM removal F.	7:35	0.014		
07/17/20	Soil excavation in CMS area. CM removal F.	7:10	0.013		
07/20/20	Soil excavation in CMS area. CM removal F.	8:00	0.009		

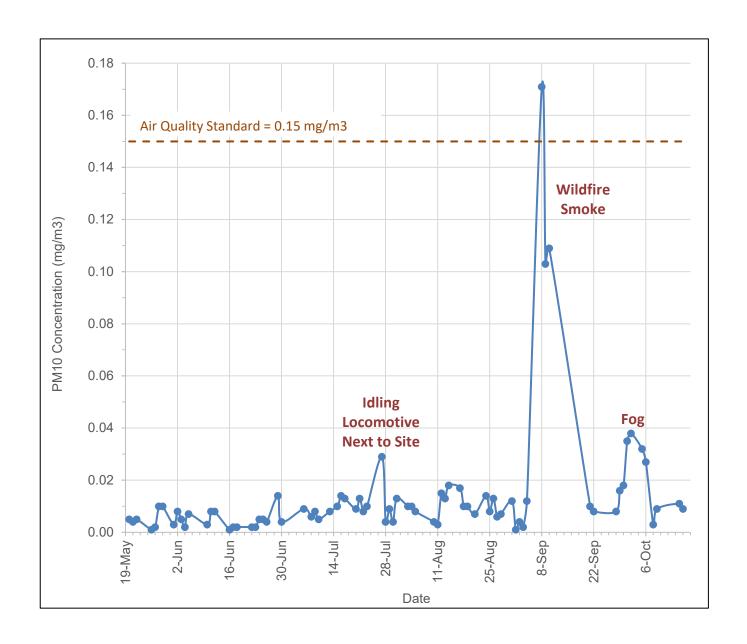
Project No. 110207, Everett, Washington

Some as above Some as abov			Quantitative Measurements			
1972/220 Sol over-autoritor in PMS6 available size. Of termoral in PMS6 available size	.		Duration	PM ₁₀ Conc.		
Section Comment Comm				i I	Qualitative Observations regarding Visible Dust	Contractor Dust Control Measures Employed
Section of the control of the cont	07/21/20	CM removal in F and G areas.	8:00	0.013	NE'S LIVE AND A LIVE ON THE STATE OF THE STA	
Memoral in New G						Water truck operated continuously to control dust on travelways.
Some exactation in CMS area. CM removal in Area G. 7.55 0.029 Same as above. Minimal dust generated from CM excavation, minimal to moderate dust when loading CM, and benefits fluction, or site. No visible dust observed at fenceline. 8.000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.00000 6.00000 6.00000 6.00000 6.00000 6.000000 6.000000 6.00000000						
Some as above, Some	07/24/20	CM removal in Area G.	Meter m	alfunction		Same as above.
Original Colorador Color	07/27/20	Soil excavation in CMS area. CM removal in Area G.	7:55	0.029		Same as above.
Origination CMS area CM removal in Areas G and L 6,40 0,004 Same as above. Same	07/28/20	Soil excavation in CMS area. CM removal in Area G.	7:30	0.004		Same as above.
1973/120 CM removal in Area L	07/29/20	Soil excavation in CMS area. CM removal in Area G.	7:20	0.009	Same as above.	Same as above.
08/03/20 Soil excavation in CMS area. CM removal in Areas G and L 7:40 0.010 Same as above. Same	07/30/20	Soil excavation in CMS area. CM removal in Areas G and L.	6:40	0.004	Same as above.	Same as above.
Soil excavation in CMS area. CM removal in Areas G and L Si00 0.010 Same as above.					Same as above.	Same as above.
Soli excavation in CMS area. CM removal in Area & Land M. Rain - no monitoring No dust observed at fenceline. Same as above. Same as ab	08/03/20		7:40	0.010	Same as above.	Same as above.
Rain - no monitoring No dust observed at fenceline. None.	08/04/20		8:00	0.010		Same as above.
OB/07/20 CM removal in Area M.	08/05/20	Soil excavation in CMS area. CM removal in Areas L and M.	8:00	0.008	Same as above.	Same as above.
08/10/20 CM removal in Area M. Backfilling PMB6 excavation and CM Area F. 08/10/20 Soil excavation in CMS area. Test pitting GFB12 location. CM removal in Area M. 08/10/20 Soil excavation in CMS area. CM removal in Area M. 08/10/20 Soil excavation in CMS area. CM removal in Area M. 08/10/20 Soil excavation in CMS area. CM removal in Area M. 08/10/20 Soil excavation in CMS area. CM removal in Area M. 08/10/20 Soil excavation in CMS area. CM removal in Area M. 08/10/20 Soil excavation in CMS area. CM removal in Area M. 08/10/20 Soil excavation in CMS area. CM removal in Area M. 08/10/20 Soil excavation in CMS area. CM removal in Area M. Backfilling Areas B1 & F. 08/10/20 Soil excavation in CMS area. CM removal in Area M. Backfilling Areas B1 & F. 08/10/20 Soil excavation in CMS area. CM removal in Area M. Backfilling Areas B1 & F. 08/10/20 Soil excavation in CMS area. CM removal in Area M. Backfilling Areas B1 & F. 08/10/20 Soil excavation in CMS area. CM removal in Area M. Backfilling Areas B1 & F. 08/10/20 Soil excavation in CMS area. CM removal in Area M. Backfilling Areas B1 & F. 08/10/20 Soil excavation in CMS area. CM removal in Area M. Backfilling Areas B1 & F. 08/10/20 Soil excavation in CMS area. CM removal in Area M. Backfilling Areas B1 & F. 08/10/20 Soil excavation in CMS area. CM removal in Area M. Backfilling Areas B1 & F. 08/10/20 Soil excavation in CMS area. CM removal in Area M. Backfilling Areas B1 & F. 08/10/20 Soil excavation in CMS area. CM removal in Area M. Backfilling Areas B1 & F. 08/10/20 Soil excavation in CMS area. CM removal in Area M. Backfilling Areas B1 & F. 08/10/20 Soil excavation in CMS area. CM removal in Area M. Backfilling Areas B1 & F. 08/10/20 Soil excavation in CMS area. CM removal in Area M. Backfilling Areas B1 & F. 08/10/20 Soil excavation in CMS area. CM removal in Area M. Backfilling Areas B1 & F. 08/10/20 Soil excavation in CMS area. CM removal in Area M. Backfilling Areas B1 & F. 08/10/20 Soil excavation in CMS area. CM removal in Area M. Mo	08/06/20		Rain - no	monitoring	No dust observed at fenceline.	
O8/11/20 Soil excavation in CMS area. CM removal in Area M. O8/12/20 Soil excavation in CMS area. CM removal in Area M. O8/13/20 Soil excavation in CMS area. CM removal in Area M. O8/13/20 Soil excavation in CMS area. CM removal in Area M. O8/14/20 Soil excavation in CMS area. CM removal in Area M. O8/14/20 Soil excavation in CMS area. CM removal in Area M. O8/14/20 Soil excavation in CMS area. CM removal in Area M. O8/14/20 Soil excavation in CMS area. CM removal in Area M. O8/14/20 Soil excavation in CMS area. CM removal in Area M. O8/14/20 Soil excavation in CMS area. CM removal in Area M. O8/14/20 Soil excavation in CMS area. CM removal in Area M. O8/14/20 Soil excavation in CMS area. CM removal in Area M. O8/14/20 Soil excavation in CMS area. CM removal in Area M. O8/14/20 Soil excavation in CMS area. CM removal in Area M. O8/14/20 Soil excavation in CMS area. CM removal in Area M. Backfilling Areas B1 & F. O8/18/20 Soil excavation in CMS area. CM removal in Area M. Backfilling Areas B1 & F. O8/18/20 Soil excavation in CMS area. CM removal in Area M. Backfilling Areas B1 & F. O8/18/20 Soil excavation in CMS area. CM removal in Area M. Backfilling Areas B1 & F. O8/18/20 Soil excavation in CMS area. CM removal in Area M. Backfilling Areas B1 & F. O8/18/20 Soil excavation in CMS area. CM removal in Area M. Backfilling Areas B1 & F. O8/18/20 Soil excavation in CMS area. CM removal in Area M. Backfilling Areas B1 & F. O8/18/20 Soil excavation in CMS area. CM removal in Area M. Backfilling Areas B1 & F. O8/18/20 Soil excavation in CMS area. CM removal in Area M. Backfilling Areas B1 & F. O8/18/20 Soil excavation in CMS area. CM removal in Area M. Backfilling Areas B1 & F. O8/18/20 Soil excavation in CMS area. CM removal in Area M. Backfilling Areas B1 & F. O8/18/20 Soil excavation in CMS area. CM removal in Area M. Backfilling Areas B1 & F. O8/18/20 Soil excavation in CMS area. CM removal in Area M. A2, and B2. Backfilling Areas F & G. O8/18/20 Soil excavation in CMS area. CM removal i	08/07/20	CM removal in Area M.	Mist - no	monitoring		Periodic use of water truck for selected parts of haul route.
Soli excavation in CMS area. CM removal in Area M. Soli excavation in CMS area. CM removal in Area M. Soli excavation in CMS area. CM removal in Area M. Soli excavation in CMS area. CM removal in Area M. Soli excavation in CMS area. CM removal in Area M. Soli excavation in CMS area. CM removal in Area M. Backfilling Areas B1 & F. 7:35 0.010 Same as above.	08/10/20	CM removal in Area M. Backfilling PMB6 excavation and CM Area F.	5:15	0.004	No dust observed at fenceline.	Water truck operated continuously to control dust on travelways.
Soil excavation in CMS area. CM removal in Area M. Since CM re	08/11/20		7:25	0.003	No dust observed at fenceline.	Same as above.
08/13/20 Soil excavation in CMS area. CM removal in Area M. Backfilling Areas B1 & F. 7:35 0.010 Same as above. 08/18/20 Soil excavation in CMS area. CM removal in Area M. Backfilling Areas B1 & F. 7:35 0.010 Same as above. 08/19/20 Soil excavation in CMS area. CM removal in Area M. Backfilling Areas B1 & F. 7:35 0.010 Same as above. 08/19/20 Soil excavation in CMS area. CM removal in Area M. Backfilling Areas B1 & F. 7:35 0.010 Same as above. 08/20/20 Soil excavation in CMS area. CM removal in Area M. Backfilling Areas B1 & F. 7:35 0.010 Same as above. 08/20/20 Soil excavation in CMS area. CM removal in Area M. Backfilling Areas B1 & F. 8.00 0.007 Same as above. 08/20/20 Soil excavation in CMS area. CM removal in Area M. Backfilling Areas F & G. 0.007 Same as above. 08/20/20 Soil excavation in CMS area. CM removal in Area M. Moved water conveyance line and water storage tank. Backfilling Areas F & G. 0.007 Same as above. 08/20/20 CM removal in Areas M, A2, and B2. Backfilling Areas F & G. 0.008 No dust observed at fenceline. 08/25/20 Soil excavation in CMS area. CM removal in Areas M, A2, and B2. Backfilling Areas F & G. 7:35 0.008 No dust observed at fenceline. 08/26/20 Soil excavation in CMS area. CM removal in Areas M, A2, and B2. Backfilling Areas F & G. 7:00 0.013 City conducted construction work near the siteon 25th St. west of 529. No dust observed at fenceline. 08/26/20 Soil excavation in CMS area. CM removal in Areas M, A2, and B2. Backfilling Areas F & G. 7:00 0.013 City conducted construction work near the siteon 25th St. west of 529. No dust observed at fenceline.	08/12/20		7:20	0.015	No dust observed at fenceline.	Same as above.
08/17/20 Soil excavation in CMS area. CM removal in Area M. Backfilling Areas B1 & F. 7:35 0.010 Same as above. Sam	08/13/20	Soil excavation in CMS area. CM removal in Area M.	8:00	0.013		Same as above.
Same as above. Same	08/14/20		6:50	0.018	Same as above.	Same as above.
Soil excavation in CMS area. CM removal in Area M. Backfilling Areas B1 & F. 7:35 0.010 Same as above. Same as above. Same as above. Periodic use of water truck for selected parts of haul of the storage tank. Backfilling Areas F & L. Backfilling Areas F & G. Soil excavation in CMS area. CM removal in Area M, A2, and B2. Backfilling Areas F & G. Rain - no monitoring Same as above. Same as above. Periodic use of water truck for selected parts of haul of the storage tank. Backfilling Areas F & G. Same as above. Water truck operated continuously to control dust on the storage tank. Backfilling Areas F & G. Soil excavation in CMS area. CM removal in Areas M, A2, and B2. Backfilling Areas F & G. 7:35 0.008 No dust observed at fenceline. Same as above. Same as	08/17/20	F .	8:00	0.017	Same as above.	Same as above.
08/20/20 Soil excavation in CMS area. CM removal in Area M. Backfilling Areas B1 & F. Rain - no monitoring Same as above. Rain - no monitoring Same as above. 8:00 0.007 Same as above. 08/24/20 CM removal in Areas M, A2, and B2. Backfilling Areas F & G. 08/25/20 Soil excavation in CMS area. CM removal in Areas M, A2, and B2. Backfilling Areas F & G. 08/26/20 Soil excavation in CMS area. CM removal in Areas M, A2, and B2. Backfilling Areas F & G. 08/26/20 Soil excavation in CMS area. CM removal in Areas M, A2, and B2. Backfilling Areas F & G. 08/26/20 Soil excavation in CMS area. CM removal in Areas M, A2, and B2. Backfilling Areas F & G. 08/26/20 Soil excavation in CMS area. CM removal in Areas M, A2, and B2. Backfilling Areas F & G. 7:00 0.013 City conducted construction work near the site—on 25th St. west of 529. No dust observed at fenceline. Same as above.	08/18/20		7:35	0.010	Same as above.	Same as above.
Soil excavation in CMS area. CM removal in Area M. Moved water conveyance line and water storage tank. Backfilling Areas F & L. O8/24/20 CM removal in Areas M, A2, and B2. Backfilling Areas F & G. O8/25/20 Soil excavation in CMS area. CM removal in Areas M, A2, and B2. Backfilling Areas F & G. O8/25/20 Soil excavation in CMS area. CM removal in Areas M, A2, and B2. Backfilling Areas F & G. O8/26/20 Soil excavation in CMS area. CM removal in Areas M, A2, and B2. Backfilling Areas F & G. O8/26/20 Soil excavation in CMS area. CM removal in Areas M, A2, and B2. Backfilling Areas F & G. O8/26/20 Soil excavation in CMS area. CM removal in Areas M, A2, and B2. Backfilling Areas F & G. O8/26/20 Soil excavation in CMS area. CM removal in Areas M, A2, and B2. Backfilling Areas F & G. O8/26/20 Soil excavation in CMS area. CM removal in Areas M, A2, and B2. Backfilling Areas F & G. O8/26/20 Soil excavation in CMS area. CM removal in Areas M, A2, and B2. Backfilling Areas F & G. O8/26/20 Soil excavation in CMS area (bunker pipe trench) and SE corner of OMS area. CM removal in Gistorage and the continuously to control dust on One of Company and the continuously to control dust on One of Company and the continuously to control dust on One of Company and the continuously to control dust on One of Company and the continuously to control dust on One of Company and the continuously to control dust on One of Company and the continuously to control dust on One of Company and the continuously to control dust on One of Company and Company an	08/19/20	Soil excavation in CMS area. CM removal in Area M. Backfilling Areas B1 & F.	7:35	0.010	Same as above.	Same as above.
storage tank. Backfilling Areas F & L. O8/24/20 CM removal in Areas M, A2, and B2. Backfilling Areas F & G. O8/25/20 Soil excavation in CMS area. CM removal in Areas M, A2, and B2. Backfilling Areas F & G. O8/26/20 Soil excavation in CMS area. CM removal in Areas M, A2, and B2. Backfilling Areas F & G. O8/26/20 Soil excavation in CMS area. CM removal in Areas M, A2, and B2. Backfilling Areas F & G. O8/26/20 Soil excavation in CMS area. CM removal in Areas M, A2, and B2. Backfilling Areas F & G. O8/26/20 Soil excavation in CMS area. CM removal in Areas M, A2, and B2. Backfilling Areas F & G. O8/26/20 Soil excavation in CMS area (bunker pipe trench) and SE corner of OMS area. CM removal in OMS area (bunker pipe trench) and SE corner of OMS area. CM removal in OMS area (bunker pipe trench) and SE corner of OMS area. CM removal in OMS area (bunker pipe trench) and SE corner of OMS area. CM removal in OMS area (bunker pipe trench) and SE corner of OMS area. CM removal in OMS area (bunker pipe trench) and SE corner of OMS area. CM removal in OMS area (bunker pipe trench) and SE corner of OMS area. CM removal in OMS area (bunker pipe trench) and SE corner of OMS area. CM removal in OMS area (bunker pipe trench) and SE corner of OMS area. CM removal in OMS area (bunker pipe trench) and SE corner of OMS area. CM removal in OMS area (bunker pipe trench) and SE corner of OMS area. CM removal in OMS area (bunker pipe trench) and SE corner of OMS area. CM removal in OMS area (bunker pipe trench) and SE corner of OMS area. CM removal in OMS area (bunker pipe trench) and SE corner of OMS area. CM removal in OMS area (bunker pipe trench) and SE corner of OMS area. CM removal in OMS area (bunker pipe trench) and SE corner of OMS area. CM removal in OMS area (bunker pipe trench) and SE corner of OMS area. CM removal in OMS area (bunker pipe trench) and SE corner of OMS area. CM removal in OMS area (bunker pipe trench) and SE corner of OMS area.	08/20/20	Soil excavation in CMS area. CM removal in Area M. Backfilling Areas B1 & F.	Rain - no	monitoring	Same as above.	Periodic use of water truck for selected parts of haul route.
Soil excavation in CMS area. CM removal in Areas M, A2, and B2. Backfilling Areas F & G. O8/25/20 Soil excavation in CMS area. CM removal in Areas M, A2, and B2. Backfilling Areas F & G. O8/26/20 Soil excavation in CMS area. CM removal in Areas M, A2, and B2. Backfilling Areas F & G. O8/26/20 Soil excavation in CMS area. CM removal in Areas M, A2, and B2. Backfilling Areas F & G. O8/26/20 Soil excavation in CMS area. CM removal in Areas M, A2, and B2. Backfilling Areas F & G. O8/26/20 Soil excavation in CMS area. CM removal in Areas M, A2, and B2. Backfilling Areas F & G. O8/26/20 Soil excavation in CMS area. CM removal in Areas M, A2, and B2. Backfilling Areas F & G. O8/26/20 Soil excavation in CMS area. CM removal in Areas M, A2, and B2. Backfilling Areas F & G. O8/26/20 Soil excavation in CMS area. CM removal in Areas M, A2, and B2. Backfilling Areas F & G. O8/26/20 Soil excavation in CMS area. CM removal in Areas M, A2, and B2. Backfilling Areas F & G. O8/26/20 Soil excavation in CMS area. CM removal in Areas M, A2, and B2. Backfilling Areas F & G. O8/26/20 Soil excavation in CMS area. CM removal in Areas M, A2, and B2. Backfilling Areas F & G. O8/26/20 Soil excavation in CMS area. CM removal in Areas M, A2, and B2. Backfilling Areas F & G. O8/26/20 Soil excavation in CMS area. CM removal in Areas M, A2, and B2. Backfilling Areas F & G. O8/26/20 Soil excavation in CMS area. CM removal in Areas M, A2, and B2. Backfilling Areas F & G. O8/26/20 Soil excavation in CMS area. CM removal in Areas M, A2, and B2. Backfilling Areas F & G. O8/26/20 Soil excavation in CMS area. CM removal in Areas M, A2, and B2. Backfilling Areas F & G. O8/26/20 Soil excavation in CMS area. CM removal in Areas M, A2, and B2. Backfilling Areas F & G. O8/26/20 Soil excavation in CMS area. CM removal in Areas M, A2, and B2. Backfilling Areas F & G. O8/26/20 Soil excavation in CMS area. CM removal in Areas M, A2, and B2. Backfilling Areas F & G. O8/26/20 Soil excavation in CMS area. CM removal in Areas M, A2, and B2. Ba	08/21/20	Soil excavation in CMS area. CM removal in Area M. Moved water conveyance line and water storage tank. Backfilling Areas F & L.	8:00	0.007	Same as above.	Water truck operated continuously to control dust on travelways.
08/25/20 Soil excavation in CMS area. CM removal in Areas M, A2, and B2. Backfilling Areas F & G. 08/26/20 Soil excavation in CMS area (bunker pipe trench) and SE corner of OMS area. CM removal in 6:55 0.006 No dust observed at fenceline. Same as above. City conducted construction work near the siteon 25th St. west of 529. No dust observed at fenceline.	08/24/20	CM removal in Areas M, A2, and B2. Backfilling Areas F & G.	6:20	0.014	No dust observed at fenceline.	Same as above.
08/26/20 observed at fenceline. Same as above. Observed at fenceline.	08/25/20	Soil excavation in CMS area. CM removal in Areas M, A2, and B2. Backfilling Areas F & G.	7:35	0.008	No dust observed at fenceline.	Same as above.
	08/26/20	Soil excavation in CMS area. CM removal in Areas M, A2, and B2. Backfilling Areas F & G.	7:00	0.013		Same as above.
Areas A2 and B2. Backfilling Areas F & G.	08/27/20		6:55	0.006	No dust observed at fenceline.	Same as above.
08/28/20 Soil excavation in REC5-MW-1 area. CM removal in Areas A2 and B2. Backfilling Areas F & G. 7:30 0.007 Same as above.	08/28/20		7:30	0.007	Same as above.	Same as above.
08/31/20 Soil excavation in CMS area. CM removal in Areas A2, and B2. Backfilling Areas F & G. 7:15 0.012 Same as above.	08/31/20	Soil excavation in CMS area. CM removal in Areas A2, and B2. Backfilling Areas F & G.	7:15	0.012	Same as above.	Same as above.
09/01/20 Soil excavation in BBH area. CM removal in Areas A2, B2, and E. Backfilling Areas F, G, & L. 5:55 0.001 Same as above.	09/01/20		5:55	0.001	Same as above.	Same as above.
09/02/20 Soil excavation in BBH area. CM removal in Areas B2 and E. Backfilling Areas F & L. 7:35 0.004 Same as above.	09/02/20	Soil excavation in BBH area. CM removal in Areas B2 and E. Backfilling Areas F & L.	7:35	0.004	Same as above.	Same as above.
09/03/20 CM removal in Areas B2 and E. Backfilling Areas F & L. 7:55 0.002 Same as above. Same as above.		•	7:55	0.002	Same as above.	Same as above.
	09/04/20	CM removal in Areas B2 and E. Backfilling Areas F & L.	7:05	0.012	Same as above.	Same as above.

Project No. 110207, Everett, Washington

		Quantitative Measurements			
Date	General Site Earthwork Activities	Monitoring Duration (Hour:Min)	Daily Average PM ₁₀ Conc. (mg/m³)		Contractor Dust Control Measures Employed
09/08/20	Soil excavation in BBH area. CM removal in Area E. Backfilling Areas F & L.	7:40		Heavy to moderate smoke from fires present all day - reflected in particulate monitoring data (max reading = 0.245 mg/m3). Slight dust generated during CM removal activities, no dust visible at fence line.	Two water trucks operated continuously to control dust on travelways.
09/09/20	Soil excavation in BBH area. CM removal in Area E, minor removal in A2 and B2 as needed to maintain haul road. Backfilling Areas F & L.	7:45	0.103	Light to moderate smoke from fires present all day - reflected in particulate monitoring data. Slight dust generated during CM removal activities, no visible dust at fence line.	Water truck operated continuously to control dust on travelways.
09/10/20	Soil excavation in BBH area. CM removal in Area E. Backfilling Areas F & L.	7:25	0.109	Same as above.	Same as above.
09/11/20	CM removal in Area E, minor removal in A2 and B2 as needed to maintain haul road. Backfilling Areas F & L.		Smoke - nitoring	Moderate to heavy smoke from fires present throughout the day. ICI water truck watered roads onsite throughout the day. No dust visible at fence line.	Same as above.
09/14/20	Soil excvation in BBH area. CM removal in Area H and minor removal in B2. Backfilling CMS area and Area L.	no mo	Smoke - nitoring	Same as above.	Same as above.
09/15/20	CM removal in Area H and minor removal in B2. Backfilling CMS and REC5 areas and CM Areas B2 and L.	no mo	Smoke - nitoring	Same as above.	Same as above.
09/16/20	Soil excavation in BBH area. CM removal in Area H and minor removal in B2. Backfilling CMS and REC5 areas and Areas B1 and B2.	no mo	Smoke - nitoring	Same as above.	Same as above.
09/17/20	Soil excavation in BBH area. CM removal in Area H and minor removal in Area E. Backfilling CMS area and Areas B1 and B2.	Wildfire Smoke - no monitoring		Same as above.	Same as above.
09/18/20	Soil excavation in BBH area. CM removal in Area H and started removal in Area K. Backfilling CMS area and Areas B1 and B2.	Wildfire Smoke - no monitoring		Same as above.	Same as above.
09/21/20	Soil excavation in BBH area. CM removal in Area K. Backfilling Areas B2 and L.	7:05	0.010	No dust observed at fenceline.	Same as above.
09/22/20	Soil excavation in BBH area. CM removal in Area K and minor removal in Area E. Backfilling Areas B2 and L.	3:05	0.008	Monitoring stopped once light rain began. No dust observed at fenceline.	Water truck operated until rain was well underway.
09/23/20	Soil excavation in BBH area. CM removal in Area K. Backfilling Areas A1, A2, B2, and L.	Rain - no	monitoring	No dust observed at fenceline.	Active dust control not needed due to rain.
09/24/20	Excavation in Digester Trench area. CM removal in Area K. Backfilling Areas B2 and L.	Rain - no monitoring		Same as above.	Same as above.
09/25/20	Excavation in Digester Trench area. CM removal in Area K and starting Area N. Backfilling Area L.	Rain - no monitoring		Same as above.	Same as above.
09/28/20	Excavation in Digester Trench area. CM removal in Areas K and N. Backfilling Area L.	6:25	0.008	Same as above.	Water truck operated continuously to control dust on travelways.
09/29/20	Excavation in Digester Trench area. CM removal in Areas K and N. Backfilling Area L.	8:00	0.016	Same as above.	Same as above.
09/30/20	Excavation in Digester Trench and BBH areas. CM removal in Areas N and C.	7:05	0.018	City of Everett doing construction on 25th St east of site. Visible dust not apparent at fenceline.	Same as above.
10/01/20	Excavation in BBH area. CM removal in Areas N and C.	8:00	0.035	Fog^ present most of day. City of Everett doing construction on 25th St east of site. Visible dust not apparent at fenceline.	Same as above.
10/02/20	Excavation in Digester Trench and BBH areas. CM removal in Areas N and C.	7:25	0.038	Fog^ present much of day. Visible dust not apparent at fenceline.	Same as above.
10/05/20	Excavation in BBH area. CM removal in Areas N, C. Backfill in completed eastern and central areas.	7:20	0.032	Fog^ present much of day. Visible dust not apparent at fenceline.	Same as above.
10/06/20	Excavation in BBH area. CM removal in Area C. Backfill in completed eastern and central areas.	6:20 0.027		Fog^ present until early afternoon. Visible dust not apparent at fenceline.	Same as above.
10/07/20	Excavation in BBH area. CM removal in Areas C,D. Backfill in completed eastern and central areas.	Rain - no monitoring		Visible dust not apparent at fenceline.	Water truck operated periodically as needed.
10/08/20	Excavation in BBH area. CM removal in Areas D. Backfill in completed eastern and central areas.	6:00	0.003	Same as above.	Water truck operated continuously to control dust on travelways.
10/09/20	Excavation in BBH area. CM removal in Areas D,I. Backfill in completed eastern and central areas.	6:15	0.009	Same as above.	Same as above.


Project No. 110207, Everett, Washington


		Quantitative Measurements			
		Duration	Daily Average PM ₁₀ Conc.		
Date	General Site Earthwork Activities	(Hour:Min)	(mg/m³)	Qualitative Observations regarding Visible Dust	Contractor Dust Control Measures Employed
10/12/20	Excavation in BBH and BAMW7 areas. CM removal in Area I. Backfill in completed eastern and central areas.	Rain - no monitoring		Visible dust not apparent at fenceline.	Water truck operated periodically as needed.
10/13/20	Excavation in BBH area. CM removal in Area I. Backfill in completed eastern and central areas.	Rain - no monitoring		Visible dust not apparent at fenceline.	Same as above.
10/14/20	Excavation in BBH and GFB12 areas. CM removal in Area I. Backfill in completed eastern and central areas.	Rain - no monitoring		Visible dust not apparent at fenceline.	Same as above.
10/15/20	Excavation in BBH and GFB12 areas. CM removal in Areas I, J. Backfill in completed eastern and central areas.	7:05	0.011	Visible dust not apparent at fenceline.	Same as above.
10/16/20	Excavation in BBH area. CM removal in Areas I, J, O. Backfill in completed eastern and central areas.	7:05	0.009	Visible dust not apparent at fenceline.	Same as above.
10/19/20	CM removal in Area J. Backfill in completed eastern and central areas.	Rain - no monitoring		Visible dust not apparent at fenceline.	Water truck operated periodically as needed.
10/20/20	Excavation in BBH and GFB12 areas. CM removal in Area J. Backfill in completed eastern and central areas.	Rain - no monitoring		Visible dust not apparent at fenceline.	Same as above.
10/21/20	Excavation in BBH and GFB12 areas. CM removal in Areas J, O. Backfill in completed eastern and central areas.	Rain - no monitoring		Visible dust not apparent at fenceline.	Same as above.
10/22/20	Excavation in BBH area. CM removal in Areas J, O. Backfill in completed eastern and central areas.	Rain - no monitoring		Visible dust not apparent at fenceline.	Same as above.
10/23/20	CM removal in Areas J, O. Backfill in completed eastern and central areas.	Rain - no monitoring		Visible dust not apparent at fenceline.	Same as above.

Notes:

^{*:} Meter malfunctioned, generating negative readings.

^{^:} High humidity and esp. fog can cause high bias in the dust monitor's readings. This is due to water-uptake and resulting hygroscopic growth of the aerosol particles, causing them to scatter more light and generate higher apparent mass concentration readings by the photometric instrument (TSI Application Note EXPMN-008 [2014]).

APPENDIX H

Waste Disposal Records

ASIN 4

ASBESTOS WASTE SHIPMENT REPORT FORM

PLEASE PRINT OR TYPE. If you have questions, contact your local DEQ Regional Office in Portland 503-229-5982, Salem 503-378-5086, Medford 541-776-6010 ext. 235, or Bend 541-633-2019, Pendleton 541-278-4626, OR eall 800-452-4011 for the location of your local regional DEQ office.

WASTE GENERATOR: (1. Asbestos removal site	name and address:	TcI				. 9	
2600 Fed	eral Ave Everen	un		 	305 2 c	10 0 09/	19
DUGGL		City Compa		County		Zip	***************************************
Contact person: _/(c	eau fruhling		Phone:	360-66	1-6301	Will be seen to the second	
2. Operator's name and	address: <u>Fenomance Abaten</u>	nent Services	Phone:	425-806-84 <u>0</u>	14		
*************************************	W. Bostian Rd.	Woodinville,	WA	Snohomis	'n	98072	CHINARA
Street 3. Waste disposal site: _V	Vesco County Lendfill	City/State	Phone:	County 541-296-408	2	Zip	-
2550	Steele Road	The Dalles, (Wasco		97058	E-PATANCE .
Street	A	City/State		County	***************************************	Zip	
 Describe asbestos mati 	erials: A.c. pipe in	SUIGTION					
Containers:	Number: 10 ung 86	13035	Type: La	erao 3	00 S		1000-1
. Total quantity (cubic ye	ards): 0.4	-					
RANSPORTER(S):	ero Garcia Villa (M.S.		_Company	y: <u>Perionnar</u> e: <u>5- (</u> 9	ce Abatemen	Services	
Agent: An. Cero	wledgment of receipt of materials)	Com	NA PROTECT	045			
Address: 7415 W. Bo	stian Rd. Woodinville, WA 98	072	Phonas 4	25-806-8404		4-protection works & are desired to the contract of the contra	Ma.
Signature: 442	· cue		ruono.	Date: 8-	19-20	**************************************	1986
Transporter #2: (Acknow	viedgment of receipt of materials)				December of the second		uş.
Address:	, j, (844-44). Major es es estato la constanta de la constanta de la constanta de la constanta de la constanta de						
				Date:		***************************************	
	eccipt of asbestos materials,covere			in item II bel	>w.}		•
Name and Title:	ASCO COUNTY LANDFIL	L / 1/ /		Traka.	and the state of t	Allenen	រាកាក
Signature: Wi	1960 COUNT LINE:			Date: Phone: <u>541-</u> 2	296-4082 _C	AUG 2 5 2	ar al
··	E: (Add attachments as needed)	4/ /					- 18 W

CERTIFICATE OF DESTRUCTION

ı, <u>Joseph Allen-Thompson</u> , of <u>Region</u>	onal Disposal Company							
(RSI facility), hereby certify that the entire pr	oduct described in Section A has							
been properly and legally disposed of in Ro	osevelt Regional MSW Landfill							
on 6/02-10/16 , 2020 (attach any appropri	ate documentation).							
I understand that due to potential concerns i	related to such things as health,							
quality, and loss of goodwill, Interwest Construction (Company) does not								
want this product to be distributed to consum	ners, even through so called							
"distressed merchandise" channels of trade,	and I further certify that these items							
were destroyed in such a manner that it can	not be sold, and that the company							
has taken every reasonable step to prevent	resale of said items.							
Name (print): Joseph Allen-Thompson								
Name (print): Joseph Allen-Thompson								
Signature: Joseph Allen Thompson								
Title: General Manager								
Date: 12/22/2020								
Section A- Products Destroyed (attached	additional sheets if needed):							
Waste Profile Number (if applicable): 417820	01498, 4178201504 4178201495, 4178202676							
Description of Product	Quantity or Weight							
Contaminated Soil MC-19151(intermodal)	15,733.20 Tons							
Contaminated Soil MC-19193 (dirt pit)	4,942.40 Tons							

1

May 2009

APPENDIX I

City of Everett Documentation for

PS04 Outfall Decommissioning

MEMORANDUM

Abandonment Close Out Report for Puget Sound Outfall No. 4, Work Order 2018 1433

FROM: Brian Doolan, P.E. Sewer/Drainage Maintenance Supervisor

DATE: February 24, 2021

PSO 4 Abandonment Work Plan (submitted February 19, 2020)

The City of Everett's plans to abandon Puget Sound Outfall No. 4 (PSO 4) were submitted to the Department of Ecology on February 19, 2020. PSO 4 runs through the former Kimberly Clark (KC) upland property.

The PSO4 pipeline previously carried stormwater from the local collection basin and infrequently the combined sewer overflow from the City's Lift Station No. 5. Approximately seven acres of storm water from two private parking lots and a small area of West Marine View Drive flowed through the line and out PSO 4 whenever it rained. When PSO 4 was functional, stormwater (that bypassed LS No. 5) or combined sewer overflows (from LS No. 5) entered a manhole east of the railroad tracks and were carried through a 10-inch pipe under the tracks. The PSO 4 pipeline also carried the historical discharges originating from the KC site.

The abandonment of PSO 4 has resulted in no further stormwater or combined sewer overflow discharges from the outfall. With Ecology Water Quality approval, city forces have temporarily re-routed PSO 4 stormwater and combined sewer flows to combine with the city's PSO No. 5 located at Lift Station No. 3.PSO 4 is permitted by Ecology to discharge combined sewer overflows and stormwater. The City of Everett's NPDES wastewater collection and treatment permit, Permit No. WA0024490 (expired October 30, 2020 and now administratively extended), lists PSO 4 as a permitted point of discharge for combined sewer (Section S.8); stormwater discharges from PSO 4 and the city's stormwater collection are covered under the Western Washington Phase II Stormwater General Permit (effective date August 1, 2019).

The PSO 4 pipeline started at Lift Station No. 5 as a 10-inch diameter pipe, where it crossed under the railroad tracks to enter the former KC site. As the pipeline traveled west across the KC site, multiple revisions, pipe types, and pipe upsizing occurred over the years to accommodate the site's historical industrial use, with multiple connections added from the KC facilities. By the time effluent reached the point of discharge, the pipe was 30 inches in diameter, an increase of nine times the flow capacity. Pipe types used included clay tiles, ductile, and concrete. Nine manhole structures were abandoned across the site, varying between brick and concrete.

The methods used to abandon the pipeline and manholes were from documents provided to the Ecology Toxics Cleanup Program for this site (Aspect Consulting memorandum to Andy Kallus, *Approach for Plugging Open Pipes at Shoreline*, June 27, 2018) and were referenced in the February 2020 work plan.

Each manhole and pipe access location along the pipeline alignment was filled with a control density fill mix (CDF) as specified in the submitted work plan. The CDF mix was applied for a length of at least five times the pipe diameter at each manhole and all connections. The CDF mix is lean cement, which upon setting has only a few hundred psi compressive strength. The work plan presented the metal analyses of the CDF aggregate materials from the gravel pit indicating the aggregate metal levels are well below MTCA Method A for soils.

Figure 1 shows PSO 4 across the former KC site, the manhole locations, and the lay lengths that were fully filled with CDF.

Concrete trucks were brought on site and delivered the CDF at a consistency and viscosity that allowed the CDF to be pumped to at least the five times the pipe diameter length for each manhole connection stated in the Aspect Consulting memo. The CDF supplier provided a mix that was able to fill the pipes (adjustments had to be made as viscosity specifications are not normal for concrete mixes). The pump hose was measured and marked with the required length to be used at each manhole location to ensure the volume requirement of five times the diameter length was met. At the end of the entire pour the volume required at all nine manhole locations was exceeded by one yard of CDF, surpassing the established quantity for the length requirement.

The CDF was delivered in two pours due to the CDF viscosity and to ensure the head pressure of CDF in a manhole did not push the CDF beyond the length needed to keep the pipe's full circumference filled. The first pour filled the pipes to the required length and then was allowed to set, preventing the CDF from being pushed further down the pipe due to the manhole head pressure. A visual inspection was completed after each pour to ensure the pipe's circumference was filled after the pump hose was removed. Once the pipe connections were filled and

2

allowed to initially set, the entire manhole structure was filled but for the last foot. The remaining roughly one-foot depth from the top of the CDF fill to the surface of the manholes was left unfilled to allow for final grading of the site by KC's contractor and to avoid impacting and damaging the structure and CDF.

Specific Details

On Thursday February 27, 2020, all connections including inlet and outlet pipes from each of the nine manholes across the site were filled with the specified CDF mix. At each location, the manhole was prepared by city crews prior to being abandoned. Manholes and their connecting pipes were previously cleaned by city crews and were void of debris. At each location, a crew member made entry to and inspected the manhole and connecting lines to verify the lines were still clean.

Once a manhole was ready, a cement mixer with a pumper delivered the CDF directly to each manhole and their connecting pipes. The pumper hose was inserted by the crew member into each pipe for the CDF volume needed to meet the five times the diameter length requirement. For example, the first upstream manhole had a 10-inch pipe for its inlet and outlet and therefore required a length of 50 inches of each pipe to be filled. The hose was inserted 50 inches resulting in the CDF being pumped into and filling the pipe beyond the required 50 inches. This allowed the full lay length of CDF required to fully fill the circumference. This was repeated at each of the manhole and connecting pipe locations for all inlets and the outlet segments of pipe. Once the pumping was completed at each manhole the pipe was visually checked to ensure that it was filled.

On Friday February 28th, 2020, after the previous day's applied CDF could initially cure, each of the nine manholes had additional CDF added to within one foot of the surface. This eliminated air gaps and prevented ground water inflow.

Some of the manholes were smaller due to their last section being a cone rather than a cylinder shape. Manhole No. 9, the last structure discharge was smaller than was estimated.

See photos below for typical installation examples. Photo 1 shows how a pump line was typically processed with the entrant entering the manhole to push the line up the pipe. Photo 2 shows a manhole after both upstream and downstream pipes had been filled.

3

Below is a summary of the abandonment information for each location, listed by manhole number (per Figure 1).

Manhole No. 1

Manhole No. 1 has a 10-inch pipe entering and exiting the structure. The structure is 5-feet deep and 4-feet in dimeter. The pipe distance filled with CDF was 50 inches in both directions. The estimated total CDF volume that filled the pipes and the manhole was three cubic yards.

Manhole No. 2

This manhole has a 10-inch pipe entering and a 16-inch pipe exiting the structure. The structure is 6-feet deep and 4-feet in diameter. The pipe length filled was 50 inches on the inlet pipe and 80 inches on the outlet pipe. Approximately five cubic yards of CDF filled the pipes and manhole.

Manhole No. 3

This manhole has a 16-inch pipe entering and a 16-inch pipe exiting the structure. The structure is 6-feet deep and 4-feet in diameter. The pipe length filled was 80 inches on both the inlet and outlet pipes. About six cubic yards of CDF filled the pipes and manhole.

Manhole No. 4

This manhole has a 16-inch pipe entering and a 16-inch pipe exiting the structure. The structure is 6-feet deep and 4-feet in diameter. The pipe length filled was 80 inches on both the inlet and outlet pipes. An estimated six cubic yards of CDF filled the pipes and manhole.

Manhole No. 5

This manhole has a 16-inch pipe entering and an 18-inch pipe exiting the structure. The structure is 8.5 feet deep and 4.5 feet in diameter. The pipe length filled was 80 inches on the inlet pipe and 90 inches on the outlet pipe. An estimated nine cubic yards of CDF filled the pipes and manhole.

Manhole No. 6

This manhole has an 18-inch pipe entering and an 18-inch pipe exiting the structure. The structure is 9-feet deep and 4.5 feet in diameter. The pipe length filled was 90 inches on the inlet pipe and 90 inches on the outlet pipe. Just over nine cubic yards of CDF filled the pipes and manhole.

4

Manhole No. 7

This manhole has an 18-inch pipe entering and an 18-inch pipe exiting the structure. The structure is 13.5 feet deep and 4.5 feet in diameter. The pipe length filled was 90 inches on the inlet pipe and 90 inches on the outlet pipe. An estimated 12 cubic yards of CDF filled the pipes and manhole.

Manhole No. 8

This manhole has an 18-inch pipe entering and a 30-inch pipe exiting the structure. The structure is 14-feet deep and 6-feet in diameter. The pipe length filled was 90 inches on the inlet pipe and 150 inches on the outlet pipe. An estimated 20 cubic yards of CDF filled the pipes and manhole.

Manhole No. 9 – (or Vault)

This structure is a vault rather than a manhole. The structure has a 30-inch pipe entering and a 30-inch pipe exiting the structure. The vault was smaller than expected. The pipe length filled was 90 inches on the inlet pipe and the outlet pipe. Both the inlet and outlet pipe were capped at the structure to allow complete filling and blocked to prevent water from entering or exiting. The total volume of CDF to abandon this vault and piping was approximately 20 cubic yards.

End of Pipe for PS 04

The pipe west of Manhole No. 9 is attached underneath the wharf and is a 30-inch diameter clay-tile pipe. City crews planned to plug the accessible end of pipe with a mechanical plug during low tides in July 2020. Due to the cleanup effort going on during the summer of 2020, city forces could not access the wharf area to install the plug. This work is now being coordinated with the Port of Everett and installation of the mechanical plug is now scheduled during a low tide cycle the last week of March 2021.

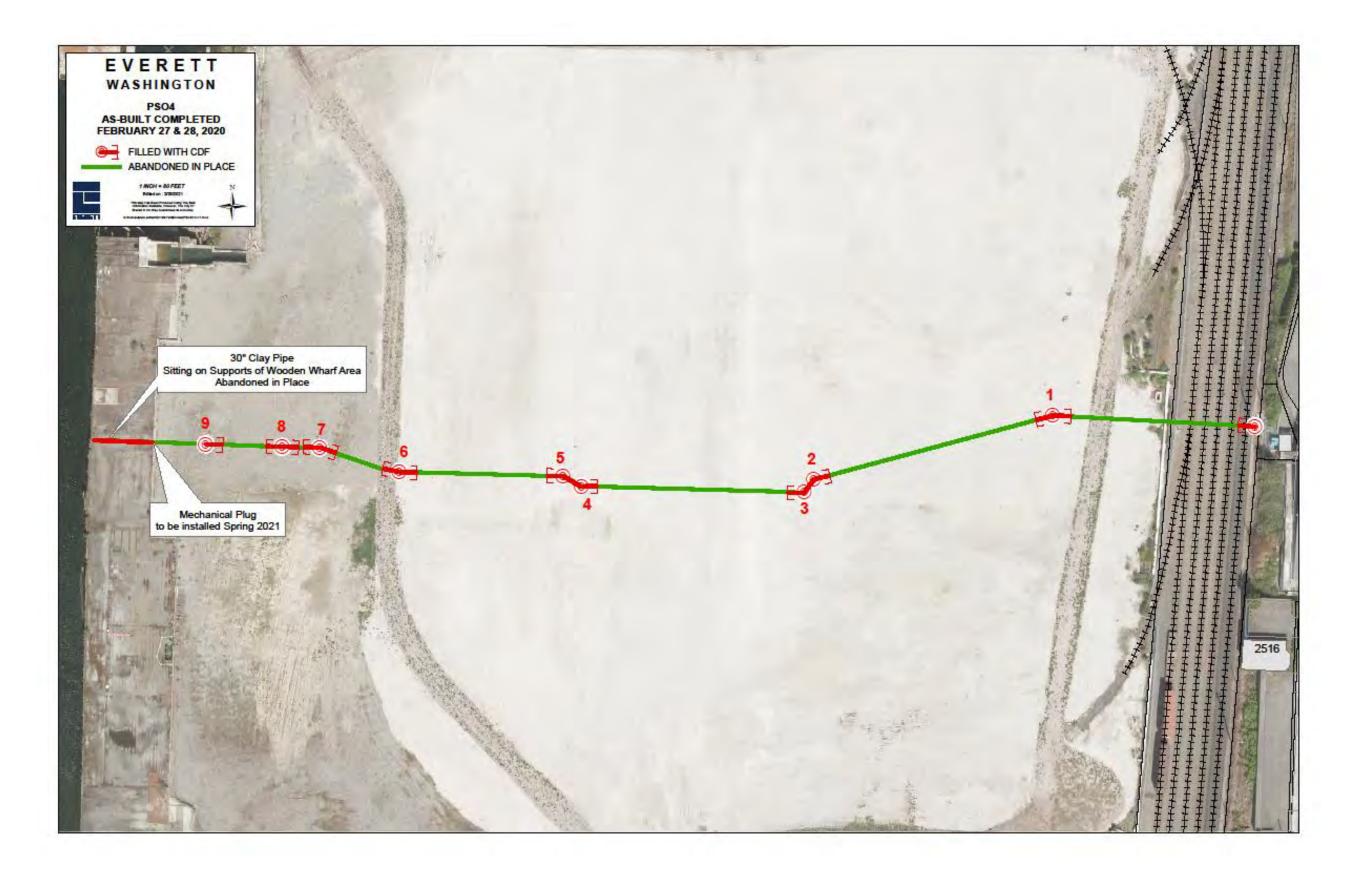
5

Once the mechanical plug is installed photos will be emailed to Ecology.

Photo 1: Preparing a manhole for CDF Fill

6

Photo 2: Typical CDF Fill of Pipes and Manhole



Att. Figure 1, Site Map

Cc: Andy Kallus, Department of Ecology Toxics Cleanup Kate Snider, Floyd | Snider Hanna Lintukorpi, City of Everett Mark Sadler, City of Everett Project Files

7 3/1/2021

