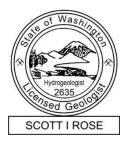


Remedial Investigation / Feasibility Study Report

Conducted on: **Lacey Urban Center** 7131-7269 Martin Way East Olympia, Washington 98516

Prepared for: Ms. Keum Woo 6730 Troon Lane SE Olympia, Washington 98501-5179


Prepared & Reviewed by:

Cls. sh

Charles Swift, R.S.A. Project Manager

AEG Project #: 17-126 Date of Report: April 1, 2021

Scott Rose, L.H.G. Senior Hydrogeologist

TABLE OF CONTENTS

1.0	INTRO	DDUCTION	1
1.	1 Gen	ieral Site Information	1
1.		HISTORY	
1.		USE	
	-		
2.0	FIELL	INVESTIGATIONS	
2.		CHARACTERIZATION HISTORY	
	2.1.1	Phase I Environmental Site Assessment – Partner Engineering, July 2018	
	2.1.2	Phase II ESA – Envitechnology, Inc., July and August 2018	
	2.1.3	Remedial Investigation – AEG, July and October 2020	
	2.1.4	Quarterly Groundwater Monitoring – AEG, July 2020 to January 2021	
2.		D METHODOLOGY	
	2.2.1	Soil Sampling Procedures	
	2.2.2	Soil Gas Sampling Procedures	
	2.2.3	Indoor Air and Sub-Slab Vapor Sampling Procedures	
	2.2.4	Well Construction	
	2.2.5	Boring Groundwater and Monitoring Well Groundwater Sampling Procedures	
	2.2.6	Quality Controls	
	2.2.7	Investigation-Derived Waste	
2.	-	LYTICAL RESULTS	
	2.3.1	Soil Results	
	2.3.2	Groundwater Results	
	2.3.3	Soil Gas Results	
	2.3.4	Sub-Slab Vapor and Indoor Air Results	
3.0	CONC	EPTUAL SITE MODEL (CSM)	
3.	1 CON	ISTITUENTS OF CONCERN AND AFFECTED MEDIA	
3.		Geology and Hydrogeology	
3.		IRONMENTAL FATE OF CHLORINATED SOLVENTS IN THE SUBSURFACE	
3.	4 Рот	ENTIAL EXPOSURE PATHWAYS	
	3.4.1	Potential Soil Exposure Pathways	
	3.4.2	Potential Groundwater Exposure Pathways	
	3.4.3	Potential Air Exposure Pathways	
	3.4.4	Terrestrial Ecological Evaluation	
4.0	CLEA	NUP STANDARDS	14
4.	1 Рот	ENTIALLY APPLICABLE LAWS	14
4.		IEDIAL ACTION OBJECTIVES	
4.		ANUP STANDARDS	
	4.3.1	Proposed Cleanup Levels	
	4.3.2	Points of Compliance	
5.0	IDENT	TIFICATION AND SCREENING OF REMEDIATION TECHNOLOGIES	
5.	1 Gen	IERAL RESPONSE ACTIONS	17
5.	, OEI		

2633 PARKMONT LANE SW. SUITE A • OLYMPIA, WA • 98502-5751 Phone: 360.352.9835 • Fax: 360.352.8164 • Email: <u>admin@aegwa.com</u>

5.2 IDEN	VTIFICATION AND SCREENING OF APPLICABLE TECHNOLOGIES	17
5.2.1	Institutional Controls	17
5.2.2	Monitored Natural Attenuation	
5.2.3	Containment (Capping)	
5.2.4	In-Situ Treatment (Soil Vapor Extraction [SVE])	19
5.2.5	In-Situ Treatment (Enhanced Bioremediation)	20
5.2.6	In-Situ Treatment (Chemical Oxidation)	20
5.2.7	In-Situ Treatment (Thermal Desorption)	21
6.0 DESCI	RIPTION AND SELECTION OF REMEDIAL ALTERNATIVES	22
6.1 MT	CA THRESHOLD REQUIREMENTS	
6.2 Des	CRIPTION OF REMEDIAL ALTERNATIVES	23
6.2.1	Alternative 1 – No Action	
6.2.2	Alternative 2 – In-Situ Treatment via Soil Vapor Extraction	
6.2.3	Alternative 3 – Closure with Vapor Mitigation System Installation and Environmental	Covenant24
6.3 Eva	LUATION OF REMEDIAL ALTERNATIVES	24
6.3.1	Protectiveness	25
6.3.2	Permanence	25
6.3.3	Effectiveness over the Long Term	
6.3.4	Management of Short-Term Risks	
6.3.5	Technical and Administrative Implementability	
6.3.6	Consideration of Public Concerns	
6.3.7	Restoration Time Frame	27
6.4 Ben	EFIT VALUE DETERMINATION	
6.4.1	Estimated Alternative Costs	29
6.5 Disp	PROPORTIONATE COST ANALYSIS	29
6.6 Seli	ECTION OF PREFERRED ALTERNATIVE	
7.0 LIMIT	ATIONS	32
8.0 REFEI	RENCES	

FIGURES

- Figure 1: Vicinity Map
- Figure 2: Site Map
- Figure 3: *PCE in Soil Plume Map*
- Figure 4: *PCE in Soil Vapor Plume Map*
- Figure 5: PCE Plume Map with Geologic Cross Sections A-A', B-B', and C-C'
- Figure 6: Geologic Cross Section A-A'
- Figure 7: Geologic Cross Section B-B'
- Figure 8: Geologic Cross Section C-C'
- Figure 9: Groundwater Elevation Contour Map 07/30/2020
- Figure 10: Groundwater Elevation Contour Map 10/16/2020
- Figure 11: Groundwater Elevation Contour Map 01/07/2021
- Figure 12: Vapor Mitigation System

TABLES and CHARTS

- Table 1:Summary of Soil Analytical Results
- Table 2:
 Summary of Groundwater Analytical Results
- Table 3:Summary of Groundwater Elevations
- Table 4:Summary of Soil Gas Analytical Results
- Table 5:Summary of Sub-Slab Vapor and Indoor Air Analytical Results
- Table 6:
 Identification and Screening of Response Actions and Remediation Technologies
- Table 7:
 Remedial Alternatives Evaluation / Disproportionate Cost Analysis
- Chart 1: Disproportionate Cost Analysis

APPENDICES

- Appendix A: Site Photographs
- Appendix B: Supporting Documents:

Boring Logs Laboratory Datasheets TEE Form

1.0 INTRODUCTION

This report presents the findings of a Remedial Investigation and Feasibility Study (RI/FS) conducted by Associated Environmental Group, LLC (AEG) for the Lacey Urban Center property located at 7131-7269 Martin Way East, Olympia, Washington (Site). The purpose of this report is to document the completion of the RI and provide support for remedial actions proposed in the FS. The scope of work for this investigation was developed based on our professional judgment and experience in accordance with requirements in the Washington State Department of Ecology (Ecology) Model Toxics Control Act (MTCA) Cleanup Regulations (Chapter 173-340 WAC). The investigation was performed in general accordance with the American Society for Testing and Materials (ASTM) Standard E 1903-11, Standard Guide Environmental Site Assessments: Phase II Environmental Site Assessment Process.

1.1 General Site Information

Site Name: Lacey Urban Center Site Address: 7131-7269 Martin Way East, Olympia, Washington 98516 Thurston County Parcel No.: 78801200000 Property Owner: Ms. Keum Woo

The *Lacey Urban Center* shopping center consists of four buildings, occupying one footprint with a total square footage of approximately 89,000 square feet, and the shopping center occupies a 4-acre area and multiple tax parcels. The building that housed the former dry cleaner from 1965 to 1997 is a slab-on-grade, single-story masonry building located in the western portion of the shopping center. Occupancy of the multi-tenant shopping center has primarily been for retail, office, and service tenants, and have included a bank, barber shop, post office, donut shop, drapery shop, hair salon, drug store, restaurants, shoe repair, floral and gift shops, nail shops, bakery, dentist, and chiropractic center.

The Site is located within a mixed commercial and residential area of Thurston County. The Site is bound to the north by Martin Way East with commercial properties beyond; to the east by Ranger Drive Southeast with commercial properties beyond; to the west by Tanglewilde Lumber; and to the south by residential single-family homes. Figure 1, *Vicinity Map*, presents the general layout of the Site vicinity. The Site's current layout can be seen in Figure 2, *Site Map*.

1.2 *Site History*

Based a Phase I Environmental Site Assessment (ESA) performed by Partner Engineering and Science, Inc. (Partner) in 2018, the Site was occupied by a dry-cleaning business from circa 1965 through approximately 1997. The dry-cleaning business occupied the southwestern corner of the

multi-tenant building. The Site was formerly served by an on-Site septic system, with the septic tank serving the dry-cleaning building. The tank was located adjacent to the south of the building and the leachfield was located adjacent to the west of the building.

1.3 Site Use

The Site is used as a multi-tenant shopping center, including retail, office, and service tenants. The former dry cleaner tenant space is currently used as a coin-operated laundromat.

2.0 FIELD INVESTIGATIONS

2.1 Site Characterization History

2.1.1 Phase I Environmental Site Assessment – Partner Engineering, July 2018

On July 3, 2018, a Phase I Environmental Site Assessment (ESA) was conducted on the Site and according to the study, Partner recommended the following:

• Based on the duration of onsite dry cleaning operations (at least 15 years), the use of septic systems at the subject property prior to 1994, the lack of previous subsurface investigations, and the nature of dry cleaning chemicals, the former presence of the dry cleaning business is considered a recognized environmental condition. The study recommended a limited subsurface investigation.

2.1.2 Phase II ESA – Envitechnology, Inc., July and August 2018

In July 2018, Envitechnology, Inc. (Envitech) conducted Site investigation activities on the Site to determine whether a release had occurred from the former dry-cleaning operation. These included advancing 18 soil borings (B-1 through B-18) both inside and outside the Site building. Soil samples were collected from all borings, soil gas samples were collected from 10 of the borings (B-1 through B-8, B-10, and B-11), and groundwater was encountered and sampled from one boring (B-14) at about 26 feet below ground surface (bgs). Analytical results indicated the presence of tetrachloroethylene (PCE) in select soil and soil gas samples above MTCA cleanup levels or screening levels.

Boring locations are illustrated on Figure 2, *Site Map.* Analytical results of the soil, groundwater, and soil gas samples are presented in Table 1, *Summary of Soil Analytical Results*, Table 2, *Summary of Groundwater Analytical Results*, and Table 4, *Summary of Soil Gas Analytical Results*, respectively.

2.1.3 Remedial Investigation – AEG, July and October 2020

In July 2020, AEG mobilized to the Site to collect additional data to fill in remaining data gaps from the work done by Envitech. AEG's scope of work included the following:

- Two borings (B-19 and B-20) were advanced inside the laundromat adjacent to Envitech borings B-3 and B-1, respectively, to define the vertical extent of tetrachloroethylene (PCE) in soil.
- Borings B-21, B-22, and B-23, and well boring MW-1, were advanced on the south and southwest sides of the building to laterally define the extent of PCE in soil.

- Three soil gas borings (SG-1, SG-2, and SG-3) were advanced west of the former leachfield to laterally define soil gas impacts in this area, and soil gas samples SG-4, SG-5, and SG-6 were collected from borings B-23, B-22, and B-21, respectively, on the south side of the building to laterally define soil gas impacts in this area.
- Three monitoring wells (MW-1, MW-2, and MW-3) were installed to determine potential impacts to shallow groundwater. Groundwater was encountered at about 31 feet bgs, and the wells were screened from 25 to 35 feet bgs.

All samples were submitted for analysis for PCE and daughter products. Analytical results for all constituents analyzed in soil, groundwater, and soil gas samples were either non-detect or were detected below their respective MTCA Method A cleanup levels or Method B sub-slab screening levels.

Boring/well locations are illustrated on Figure 2, *Site Map*. Analytical results of the soil, groundwater, and soil gas samples are presented in Table 1, *Summary of Soil Analytical Results*, Table 2, *Summary of Groundwater Analytical Results*, and Table 4, *Summary of Soil Gas Analytical Results*, respectively. Copies of the boring/well logs and laboratory datasheets are provided in Appendix B, Supporting Documents.

In October 2020, AEG returned to the Site to install two deep wells (MW-4 and MW-5) to account for the potential presence of dense non-aqueous phase liquid (DNAPL) that may not be detectable in shallow groundwater. Groundwater flow in the shallow groundwater was determined to be to the southwest, so the wells were installed on the south (MW-4) and west (MW-5) sides of the building. The well borings were advanced until a confining layer was encountered as PCE and its daughter products are heavier than water and tend to sink in the formation until reaching a confining layer that prevents further downward migration. A confining layer was encountered at about 75 to 80 feet bgs, and the wells were installed with 5 feet of screen. Soil samples collected and analyzed from the well borings were non-detect for all constituents.

During this time, AEG also completed a Tier II Vapor Assessment, which included sampling indoor air from two locations (Indoor-1 and Indoor-2), ambient air from one location outside and upwind (Ambient), and sub-slab vapor from two locations (SS-1 and SS-2). The assessment was done to determine if the PCE detected in the soil beneath the building is present and/or has to potential to migrate into the indoor air inside the Lacey Urban Center facility.

Analytical results indicated PCE and associated daughter products were non-detect in the indoor and ambient air samples submitted for analysis. However, PCE was detected above the MTCA Method B sub-slab screening level at both sampling locations (SS-1 and SS-2). All other daughter products were below the laboratory detection limits for each compound.

Well/sample locations are illustrated on Figure 2, *Site Map*. Analytical results of the soil, and air/sub-slab vapor samples are presented in Table 1, *Summary of Soil Analytical Results*, and Table 5, *Summary of Sub-Slab and Indoor Air Analytical Results*. Copies of the well logs and laboratory datasheets are provided in Appendix B, Supporting Documents.

2.1.4 Quarterly Groundwater Monitoring – AEG, July 2020 to January 2021

Beginning in July 2020 with the installation of MW-1 through MW-3, AEG has performed three rounds of groundwater monitoring at the Site. Deep monitoring wells MW-4 and MW-5 were included in the January 2021 event following installation in late October. PCE and daughter products have been either non-detect or below MTCA cleanup levels in all events to date. The analytical results are presented in Table 2, *Summary of Groundwater Analytical Results*.

2.2 Field Methodology

2.2.1 Soil Sampling Procedures

Soil sampling methods for this work followed the protocols established by Ecology and the U.S. Environmental Protection Agency (EPA). To minimize VOC losses, soil sampling for VOCs and field preservation methods followed methods set forth by EPA's Method 5035A and Ecology's guidance, "Collecting and Preparing Soil Samples for VOC Analysis". Soil samples were collected from the boreholes via continuous soil cores in an acetate sleeve inside the drilling rod's core barrel for direct-push borings, or via a split-spoon sampler advanced inside the augers for hollow-stem auger borings. Soils were observed to document soil lithology, color, moisture content, and sensory evidence of contamination.

Soil samples from each boring were transferred to laboratory provided pre-weighed 40-milliliter (ml) volatile organic analysis (VOA) glass vials. The soil samples were submitted for laboratory analysis to Libby Environmental (Libby), a Washington State-certified laboratory, following industry standard chain-of-custody procedures.

2.2.2 Soil Gas Sampling Procedures

Soil gas samples were collected from selected borings as follows: After reaching the desired depth, a Summa canister was attached to a retractable drilling rod end via post-run tubing, and vacated of one volume of interstitial air in the tubing for quality control. The tubing was connected to a 1-liter, 10-minute Summa canister. A water bath over hydrated bentonite seal was used to assure a tight seal and no leaking.

2.2.3 Indoor Air and Sub-Slab Vapor Sampling Procedures

Indoor air and ambient background air samples were collected in accordance with Ecology's *Guidance for Evaluating Soil Vapor Intrusion in Washington State*. Samples were collected using 6-liter (L) Summa canisters with 8-hour inlet flow regulators, and placed within the breathing zone at about 4 to 6 feet above the ground surface. After placing the canisters at each sampling location, AEG opened the inlet valves, and returned at the end of the 8-hour event to close the canisters. Ambient background samples were placed upwind of on-Site source areas.

For sub-slab vapor samples, the concrete slab was drilled out to subgrade level to allow for sampling just below the slab (typically about 1 to 2 feet bgs). A tube was placed in the hole and sealed using a bentonite seal to the concrete. A water bath was used to check for leaks in the bentonite seal. Once no leaks were found, a 1-L Summa canister with a 10-minute regulator was opened after the tube was purged for one volume of air.

2.2.4 Well Construction

The five monitoring wells at the Site were constructed pursuant to Ecology's *Minimum Standards for Construction and Maintenance of Wells*, Chapter 173-160 WAC. Three groundwater monitoring wells at the Site (MW-1, MW-2, and MW-3) were constructed to a depth of 35 feet bgs, with 10 feet of 2-inch diameter 0.020-inch slotted PVC screen. Two groundwater monitoring wells at the Site (MW-4 and MW-5) were constructed to a depth of either 75 or 80 feet bgs, with 5 feet of 2-inch diameter 0.020-inch slotted PVC screen. The annular space around the well screen was filled with 10/20 Colorado sand to approximately 1.5 feet above the top of the well screen. To seal each well, bentonite chips were placed above the sand and a traffic-rated surface monument was placed over the well casing to protect it. The monitoring wells were properly developed after installation using high-flow pumping until turbidity decreased and stabilized.

2.2.5 Boring Groundwater and Monitoring Well Groundwater Sampling Procedures

AEG sampled the groundwater from each of the borings where groundwater was encountered. A temporary PVC well screen was installed in each boring to collect a groundwater sample immediately after reaching the total boring depth. The temporary well screen was placed at the interval below the vadose zone where groundwater was encountered during drilling activities. Dedicated polyethylene tubing was inserted into the retractable screen, and groundwater was then purged using a peristaltic pump until the discharge was relatively free of sediment, for sample collection via the EPA approved low-flow purge technique.

Groundwater monitoring wells were sampled via the low flow-purging technique, and purged until the field parameters, including pH, temperature, specific conductivity, dissolved oxygen, and/or total dissolved solids were stabilized, and the water was relatively free of sediment.

Groundwater samples were collected in laboratory provided 40-ml vials. Upon collection, the samples were placed in a chilled cooler for transport to Libby, in Olympia, Washington under strict chain of custody.

2.2.6 Quality Controls

To ensure that quality information was obtained at the Site:

- All samples were collected in general accordance with industry protocols for the collection, documentation, and handling of samples.
- Nitrile gloves were used in handling all sampling containers and sampling devices.
- Upon sampling, all soil vapor samples were placed into a cooler.
- The samples were transported under a chain-of-custody to the laboratory for analysis.

The laboratory provided standard quality assurance/quality control (QA/QC), which included:

- Surrogate recoveries for each sample.
- Method blank results.
- Duplicate analyses, matrix or blank spiked analyses.
- Duplicate spiked analyses.

2.2.7 Investigation-Derived Waste

Investigation-derived waste for this project consisted of soil cuttings and purge water from the subsurface exploration activities, and decontamination water from decontamination of the drilling core barrel and associated equipment. These wastes were separated and placed in Washington State Department of Transportation (DOT) approved 55-gallon drums. The drums were appropriately labelled and stored on Site for subsequent characterization and disposal.

2.3 Analytical Results

Soil, groundwater, soil gas, indoor air, and sub-slab vapor samples collected to date have been analyzed for the following analyses:

- Chlorinated VOCs using EPA Method 8260.
- PCE and its daughter products using EPA Method TO-15 SIM.

All analytical results were compared to MTCA Method A or B cleanup levels for soil, groundwater, and indoor air, and Method B sub-slab screening levels for soil gas and sub-slab vapor. Copies of the laboratory datasheets are provided in Appendix B, Supporting Documents, *Laboratory Datasheets*.

2.3.1 Soil Results

PCE was detected above the MTCA Method A cleanup level of 0.05 milligrams per kilogram (mg/kg) in selected soil samples collected by Envitech. Exceedances were present in borings B-1, B-3, B-5, B-9, and B-12 at concentrations ranging from 0.06 to 0.25 mg/kg. No other chlorinated VOCs were detected in any of the other soil samples. Table 1, *Summary of Soil Analytical Results*, presents analytical results as compared to MTCA cleanup levels for soil. The distribution of soil concentrations in excess of MTCA Method A cleanup levels is illustrated in plan view on Figure 3, *PCE Concentrations in Soil Map*, and in cross section on Figure 6, *Geologic Cross Section A-A'*, Figure 7, *Geologic Cross Section B-B'*, and Figure 8, *Geologic Cross Section C-C'*.

2.3.2 Groundwater Results

PCE was not detected above MTCA cleanup levels in any groundwater samples submitted for analysis to date from shallow borings/wells or deep wells. No other chlorinated VOCs were detected in any of the other groundwater samples. Table 3, *Summary of Groundwater Analytical Results*, presents the analytical results as compared to MTCA cleanup levels for groundwater.

2.3.3 Soil Gas Results

Analytical results of soil gas samples collected by Envitech indicated the presence of PCE at concentrations above the MTCA Method B sub-slab screening level of 321 micrograms per cubic meter (μ g/m³) in selected samples ranging from 350 to 1,800 μ g/m³. Analytical results of remaining soil gas samples collected by Envitech and AEG were either non-detect or detected at concentrations below their respective MTCA Method B sub-slab screening levels for the constituents analyzed. Table 4, *Summary of Soil Gas Analytical Results*, presents the analytical results as compared to MTCA Method B sub-slab screening levels for soil gas. The distribution of soil gas concentrations in excess of MTCA Method B sub-slab screening levels is illustrated on Figure 4, *PCE In Soil Vapor Plume Map*.

2.3.4 Sub-Slab Vapor and Indoor Air Results

Analytical results of the sub-slab vapor samples indicated the presence of PCE above the MTCA Method B sub-slab screening level of $321 \,\mu g/m^3$ in vapor samples SS-1 and SS-2. Concentrations included 1,600 $\mu g/m^3$ (SS-1) and 410 $\mu g/m^3$ (SS-2). Both samples were from beneath the southern portion of the former dry-cleaning space. These results were included in the distribution of soil

gas concentrations in excess of MTCA Method B sub-slab screening levels illustrated on Figure 4, *PCE In Soil Vapor Plume Map*.

Analytical results of indoor and outdoor ambient air samples were all non-detect for the constituents analyzed.

Analytical results of all sub-slab vapor and indoor air samples collected from the Site to date are summarized in Table 5, *Summary of Sub-Slab Vapor & Indoor Air Analytical Results*. Copies of the laboratory datasheets are provided in Appendix B, Supporting Documents, *Laboratory Datasheets*.

3.0 CONCEPTUAL SITE MODEL (CSM)

This section provides a conceptual understanding of the Site, derived from the results of the subsurface investigations performed at the Site. The CSM is dynamic and may be refined as additional information becomes available.

3.1 Constituents of Concern and Affected Media

PCE and its anaerobic sequential degradation chain constituents, including trichloroethene (TCE), cis-1,2-dichloroethene (DCE), trans-1,2-DCE, and vinyl chloride, are the contaminants of concern (COCs) for the Site. Shallow soil and sub-slab soil vapor are the media affected. Groundwater was encountered at various depths from 30 to 33 feet bgs and did not contain VOCs above MTCA cleanup levels. Soil impacts at the Site are likely the result of use and storage of PCE formerly used in the former dry cleaner machine and dry-cleaning process.

PCE was the only COC detected in soil above MTCA cleanup levels. PCE was detected above the MTCA Method A cleanup level of 0.05 mg/kg in selected soil samples collected by Envitech. Exceedances were present in borings B-1, B-3, B-5, B-9, and B-12 at concentrations ranging from 0.06 to 0.25 mg/kg. No other chlorinated VOCs were detected in any of the other soil samples. The distribution of soil concentrations in excess of MTCA Method A cleanup levels is illustrated in plan view on Figure 3, *PCE Concentrations in Soil Map*, and in cross section on Figure 6, *Geologic Cross Section A-A'*, Figure 7, *Geologic Cross Section B-B'*, and Figure 8, *Geologic Cross Section C-C'*.

PCE was the only COC detected in soil gas and sub-slab vapor above MTCA screening levels. The distribution of soil gas and sub-slab vapor concentrations in excess of MTCA Method B sub-slab screening levels is illustrated on Figure 4, *PCE In Soil Vapor Plume Map*.

There was also a former septic sewer system identified and was likely used by the dry cleaner tenant space to suggest this as a preferential pathway, which would explain the limited impacts to the south and west of the building. The location of the septic sewer system layout is illustrated on Figure 2, *Site Map*.

AEG believes the Site has been sufficiently characterized to be able to establish cleanup standards and select a cleanup action for the Site. Remedial alternatives presented in the accompanying FS contemplate contamination in both accessible and inaccessible areas of the Site.

3.2 Site Geology and Hydrogeology

The Site is situated at the southern end of the Puget Sound Lowlands physiographic province of the State of Washington. During the Quaternary, the Puget Lowland was covered a number of times by continental ice sheets. The most recent glaciation (Fraser) reached its peak about 14,000 years ago. The uppermost geologic formation underlying the soils at the subject property parcel is Pleistocene continental glacial drift, mostly Vashon Shade recessional outwash. The unit consists mostly of recessional and proglacial stratified, moderately to well-rounded, poorly to moderately sorted outwash sand and gravel of northern or mixed northern and Cascade source.

According to the information obtained from the USDA Natural Resources Conservation Service Web Soil Survey online database, the Site is mapped as Spanaway gravelly sandy loam. The Spanaway series consists of deep and moderately deep, moderately well and well drained soils with moderately coarse textures that formed on outwash plains and terraces from volcanic ash over gravelly outwash of Pleistocene age. Slopes range from 0 to 3 percent.

Soils encountered at the Site during subsurface investigations generally consisted of silt with gravel to approximately 35 feet bgs, underlain by dense, sandy gravel with fine- to coarse-sized gravels, and cobbles to about 85 feet bgs. Groundwater at the time of drilling was encountered at various depths from 30 to 33 feet bgs. Depth to water measured in Site wells ranges from about 17 to 25 feet bgs. Groundwater flow direction is generally to the west-southwest and varies seasonally to the north. Lake Lois is located about 5,000 feet southwest of the Site.

Depth to water measurements for the shallow Site wells on July 30, 2020 ranged from 30 to 31 feet bgs, on October 16, 2020 ranged from 21.8 to 24.2 feet bgs, and on January 7, 2021 ranged from 17.44 to 20.89 feet bgs (Table 3, *Summary of Groundwater Elevations*). The groundwater flow direction for the July 2020 sampling event is primarily towards the southwest with an approximate gradient of 0.01 feet per foot (ft/ft) (Figure 9, *Groundwater Elevation Contour Map 07/30/2020*). The groundwater flow direction for the October 2020 sampling event is primarily towards the southwest with an approximate gradient of 0.02 ft/ft (Figure 10, *Groundwater Elevation Contour Map 07/30/2020*). The groundwater flow direction for the Juny 2021 sampling event is primarily towards the southwest with an approximate gradient of 0.03 ft/ft (Figure 11, *Groundwater Elevation Contour Map 01/07/2021*).

Depth to water measurements for the deep Site wells on January 7, 2021 ranged from 23.90 to 24.82 feet bgs (Table 3, *Summary of Groundwater Elevations*).

3.3 Environmental Fate of Chlorinated Solvents in the Subsurface

The density of PCE and its breakdown products is greater than water. Upon release into the environment, chlorinated VOCs can sink through the vadose zone, through the water table, and possibly penetrate leaking aquitards. These chemicals can also exist as a residual non-mobile phase either sorbed to the soil or trapped in the pore spaces between the soil particles. At this Site, residual dissolved-phase PCE, TCE, DCE, and vinyl chloride have not been detected in groundwater; however, sorbed-phase PCE has been detected in soil, and PCE is present in soil gas.

AEG advanced two deep wells on Site (MW-4 and MW-5) to the first-encountered confining layer (about 75-80 feet bgs) to investigate the potential presence of dense non-aqueous phase liquid (DNAPL). No DNAPL was detected.

Chlorinated VOCs and their associated compounds can be volatilized under the appropriate conditions. In the subsurface, volatilization releases COCs from soil and/or groundwater into soil vapor where, if conditions are right, can migrate beneath or into structures.

The most common anaerobic dechlorination pathway of PCE is the degradation to ethenes. In the sequential transformation of the chlorinated ethenes, chlorine is replaced using hydrogen as an electron donor. The occurrence of the lesser chlorinated ethenes (such as vinyl chloride and DCE) in groundwater is primarily a consequence of incomplete anaerobic reductive dechlorination of the more highly chlorinated ethenes (PCE and TCE). Vinyl chloride and DCE are toxic, and vinyl chloride is a known human carcinogen.

3.4 Potential Exposure Pathways

As defined in WAC 173-340-200, an exposure pathway describes the mechanism by which a hazardous substance takes or could take a pathway from a source or contaminated medium to an exposed receptor.

3.4.1 Potential Soil Exposure Pathways

Potentially complete soil exposure pathways at the Site include:

• <u>Contact (dermal contact, incidental ingestion) with hazardous substances in soil by visitors,</u> residents, and workers (including excavation workers). Direct ingestion of, or dermal contact with, soil containing PCE is considered a potential exposure pathway. However, impacted areas are currently covered by the building or asphalt cover, and unless disturbed, are not available for potential direct contact or ingestion. Soil impacts have been documented at and below 2 feet bgs.

3.4.2 Potential Groundwater Exposure Pathways

Potentially complete groundwater exposure pathways at the Site include:

- <u>Contact (dermal, incidental ingestion) with hazardous substances dissolved in groundwater</u> by visitors, residents, and workers (including excavation workers). Groundwater in Site borings and completed monitoring wells was measured at depths ranging from about 25 to 33 feet bgs. This is below the direct contact point of compliance of 15 feet. Therefore, direct contact with potentially impacted groundwater is not considered a potentially complete pathway.
- <u>Consumption of hazardous substances in groundwater</u>. Currently, drinking water is provided by the city. In addition, no Site COCs have been detected in groundwater above MTCA cleanup levels. As such, consumption of hazardous substances in groundwater is not considered a completed pathway.

3.4.3 Potential Air Exposure Pathways

Potentially complete air exposure pathways include:

• <u>Inhalation of hazardous substances in soil vapor by visitors, residents, and workers</u> (including excavation workers). Analytical results of the soil gas and sub-slab vapor samples indicated the presence of PCE above the MTCA Method B screening level for sub-slab vapor. However, PCE and daughter products were below the MTCA Method B Indoor Air screening level in the two indoor air sampling events. An exceedance of the MTCA Method B sub-slab screening levels indicates that particular constituent is present at a concentration that has the potential to migrate into indoor air. For the purpose of this CSM and establishing cleanup standards, this pathway is considered potentially complete.

3.4.4 Terrestrial Ecological Evaluation

This Site qualifies for an exclusion from further terrestrial ecological evaluation based on the following:

- <u>Barriers to Exposure: WAC 173-340-7491(1)(b)</u>: All contaminated soil, is or will be, covered by physical barriers (such as buildings or paved roads) that prevent exposure to plants and wildlife, and institutional controls are used to manage remaining contamination.
- <u>Undeveloped Land: WAC 173-340-7491(1)(c)</u>: There is less than 1.5 acres of contiguous undeveloped land on or within 500 feet of any area of the Site.

A Terrestrial Ecological Evaluation Form is included in Appendix B.

4.0 CLEANUP STANDARDS

The following sections identify applicable or relevant and appropriate requirements (ARARs), remedial action objectives (RAOs), and preliminary cleanup standards for the Site, which were developed to address Ecology's requirements for cleanup. These requirements address conditions relative to potential identified impacts. Together, ARARs, RAOs, and cleanup standards provide the framework for evaluating remedial alternatives.

4.1 Potentially Applicable Laws

All cleanup actions conducted under MTCA shall comply with applicable state and federal laws [WAC 173-340-710(1)]. MTCA defines applicable state and federal laws to include legally applicable requirements and those requirements that are relevant and appropriate. Collectively, these requirements are referred to as ARARs. The primary ARAR is the MTCA regulation (WAC 173-340), especially with regard to the development of cleanup levels and procedures for development and implementation of a cleanup under MTCA. ARARs for the Site cleanup also include the following:

- Federal Safe Drinking Water Act Maximum Contaminant Levels (MCLs; 40 CFR Part 141).
- Washington Clean Air Act (Chapter 70.94 RCW).
- Olympic Region Clean Air Agency (ORCAA), Regulation I.
- Washington Solid and Hazardous Waste Management (RCW 70.105); Chapter 173-303 WAC; 40 CFR 241, 257; Chapter 173-350 and 173-351 WAC) and Land Disposal Restrictions (40 CFR 268; WAC 173-303-340).
- Washington Industrial Safety and Health Act (RCW 49.17) and other Federal Occupational Safety and Health Act (29 CFR 1910, 1926).

4.2 *Remedial Action Objectives*

RAOs have been established for the Site to establish remedial alternatives protective of human health and the environment under the MTCA cleanup process (WAC 173-340-350). The primary RAO for this cleanup action focuses on substantially eliminating, reducing, and controlling unacceptable risks to human health and the environment posed by the COCs, to the greatest extent practicable.

RAOs are important for the evaluation of the general response actions, technologies, process options, and cleanup action alternatives. Based on the assessment of Site-specific conditions and the potentially applicable cleanup levels presented below, the RAOs for the Site have been established as follows:

• In a reasonable restoration time frame, reduce concentrations of COCs in Site soils and soil vapors to levels protective of human health and the environment and which are protective of groundwater quality.

4.3 Cleanup Standards

Cleanup standards include cleanup levels and points of compliance (POCs) as described in WAC 173-340-700 through WAC 173-340-760. Cleanup standards must also incorporate other state and federal regulatory requirements applicable.

4.3.1 Proposed Cleanup Levels

MTCA Method A cleanup levels for the soil exposure pathways are appropriate for this Site. MTCA Method B cleanup levels are appropriate for the air exposure pathway, and for constituents where MTCA Method A cleanup levels are not promulgated. These cleanup levels are based on the most stringent values for each exposure pathway and are considered appropriate for the Site COCs. Proposed MTCA cleanup levels for the Site COCs that have been measured in soil at the Site include:

Constituent	Soil	Groundwater	Indoor Air
• PCE	0.05 mg/kg	5 µg/L	$9.62 \ \mu g/m^{3*}$
• TCE	0.03 mg/kg	5 µg/L	$0.37 \ \mu g/m^{3*}$
• cis-1,2-DCE	160 mg/kg*	16 µg/L*	NL
• trans-1,2-DCE	1,600 mg/kg*	160 µg/L*	NL
Vinyl Chloride	0.67 mg/kg*	0.2 µg/L	$0.28 \ \mu g/m^{3*}$

mg/kg = milligrams per kilogram

 $\mu g/m^3 = micrograms per cubic meter$

NL = Not Listed; no cleanup/screening levels have been promulgated for these constituents * Method B cleanup level (Method A cleanup level not established)

4.3.2 Points of Compliance

For this Site, it is assumed that standard points of compliance will be used.

- <u>Soil Direct Contact</u>: For soil cleanup levels based on human exposure via direct contact, the point of compliance is throughout the Site from the ground surface to 15 feet bgs.
- <u>Soil Leaching</u>: For soil cleanup levels based on protection of groundwater, the point of compliance is throughout the Site.

- <u>Groundwater</u>: For groundwater, the point of compliance is throughout the Site from the uppermost level of the saturated zone extending vertically to the lowest most depth that could potentially be affected by the Site.
- <u>Indoor Air/Soil Gas</u>: The point of compliance is ambient and indoor air throughout the Site.

5.0 IDENTIFICATION AND SCREENING OF REMEDIATION TECHNOLOGIES

This section identifies general response actions and screens remediation technologies for use in assembling remediation alternatives.

5.1 General Response Actions

General response actions are broad categories of remedial actions that can be combined to meet the RAOs for a site. The following are typical general response actions that are applicable to most impacted sites:

- No action
- Institutional controls
- Monitored natural attenuation
- Containment
- Removal
- Ex-situ treatment
- In-situ treatment

Potentially applicable technologies associated with these general response actions have been identified and screened based on the Site COCs and affected media and take into consideration the current and future use of the property. An overview of those technologies is provided in the following section.

5.2 Identification and Screening of Applicable Technologies

Applicable technologies associated with general response actions have been identified and screened for potential inclusion in the remediation alternatives for the Site. Each identified technology was screened based on applicability to Site conditions, overall effectiveness, implementability, and relative cost. Potentially applicable technologies considered for the Site are presented in Table 6, *Identification and Screening of Response Actions and Remediation Technologies*, which provides a summary of the screening results. Seven remedial technologies were retained for further consideration. Details of each technology are summarized below. The technologies determined to be most appropriate for the Site were then incorporated into three potentially applicable remediation alternatives.

5.2.1 Institutional Controls

Institutional controls considered for this RI/FS include legal restrictions on land and on groundwater use to limit potential exposure to contamination, often through an environmental covenant filed at the time of Site closure. Environmental covenants are often appropriate as a component of a remedial alternative for Sites where residual contamination is constrained within

the property at the completion of active remediation, and where a POC can be determined and monitored over time. Such controls prohibit or limit activities on a property that may interfere with the integrity of engineered controls or result in exposure to hazardous substances. Except under certain specified circumstances, such controls must be executed through an environmental covenant on the affected property. Environmental covenants are typically not appropriate for sites where residual contamination above cleanup standards extends off property at the time of closure unless agreed upon by adjacent property owners. Institutional controls alone do not fully mitigate the potential vapor migration pathway, and additional technologies may be required to address that exposure pathway as part of the overall cleanup.

5.2.2 Monitored Natural Attenuation

The term "natural attenuation" as used in this RI/FS refers to a variety of physical, chemical, or biological processes that, under favorable conditions, act without human intervention to reduce the mass, toxicity, mobility, volume, or concentration of hazardous substances in the environment (Ecology, 2005). These in-situ processes include: natural biodegradation, dispersion, dilution by recharge, sorption, volatilization, chemical or biological stabilization, transformation or destruction of hazardous substances (WAC 173-340-200).

When applied as part of a cleanup action, natural attenuation is often referred to by EPA as "monitored natural attenuation" to distinguish the action from "no action". "Monitored natural attenuation", as the term is used in EPA OSWER Directive 9200.4-17P (1999a), means the reliance on natural attenuation processes (within the context of a carefully controlled and monitored site cleanup approach) to achieve site-specific remedial objectives within a timeframe that is reasonable compared to that offered by more active cleanup methods.

The natural attenuation processes can be classified as either physical (dispersion, dilution by recharge, and volatilization), chemical (sorption and chemical degradation), or biological (biodegradation).

Natural attenuation processes that result in the reduction of concentration or mobility of a contaminant, but not the total mass, are referred to as "non-destructive" mechanisms. Those processes include the physical dispersion and dilution processes and the chemical sorption process (ASTM, 1998). Natural attenuation processes that result in the reduction of the total contaminant mass in the system are referred to as "destructive" mechanisms. Those processes include the chemical degradation processes. For petroleum hydrocarbons in the subsurface, biological degradation is often the most important destructive mechanism because hydrocarbons can be destroyed (ASTM, 1998).

Although some natural attenuation typically occurs at most contaminated sites, the effectiveness of these processes varies depending on the types and concentrations of contaminants present at the site and the physical, chemical, and biological characteristics of the site. Natural attenuation should be evaluated as one potential remedial approach along with other cleanup action alternatives involving more active remedial technologies. Natural attenuation processes alone do not fully mitigate the potential vapor migration pathway, and additional technologies would be required to address that exposure pathway as part of the overall cleanup.

5.2.3 Containment (Capping)

This retained containment technology option for this Site would include retaining capped portions of the Site with an impervious surface, such as use of the existing building and asphalt. Capping would prevent exposure to contamination in soil or soil gas if contamination remains above cleanup levels at the end of any active remediation. Capping would be memorialized with institutional controls at the Site. Containment technologies do not fully mitigate the potential vapor migration pathway, and additional technologies may be required to address that exposure pathway as part of the overall cleanup.

5.2.4 In-Situ Treatment (Soil Vapor Extraction [SVE])

SVE technology may be implemented alone or coupled with other technologies such as groundwater extraction or air sparging. This technology would require installation of SVE wells screened within the vadose zone where impacts are present in soil. SVE technology may also utilize appropriately constructed monitoring wells for either vapor and vacuum monitoring or for active extraction. Using vacuum blower equipment, a vacuum is applied to the SVE wells to extract volatile contaminants from the subsurface. Volatile compounds are present in soil gas either through volatilization or as the result of extraction.

Extracted vapors require treatment prior to atmospheric discharge. Vapor effluent treatment technologies include granulated activated carbon (GAC), thermal oxidation (therm-ox), or catalytic oxidation (cat-ox). Any thermal treatment of chlorinated VOCs may require preliminary treatment of the air stream before entering the destruction chamber of the unit. GAC is typically applicable to lower air effluent discharges while therm-ox and cat-ox are more applicable to higher mass loadings. If vapor concentrations are expected to be significantly elevated during the initial phase of remediation, a therm-ox or cat-ox is often more suitable and more cost-effective than using GAC adsorption equipment for vapor treatment. However, GAC could be more practical for vapor treatment once concentrations are significantly reduced. Remedial pilot testing should be conducted for this technology to evaluate the effective radius of influence for extraction and determine the appropriate well spacing.

5.2.5 In-Situ Treatment (Enhanced Bioremediation)

Enhanced bioremediation is a process in which indigenous or inoculated micro-organisms (e.g., fungi, bacteria, and other microbes) degrade (metabolize) organic contaminants found in soil and/or groundwater, converting them to innocuous end products. Nutrients, oxygen, or other amendments may be used to enhance bioremediation and contaminant desorption from subsurface materials. For this Site, in-situ treatment may consist of using the "Trap and Treat" process in which granulated carbon is injected in a grid-like pattern in areas of concern, which traps the contaminants and provides plume control. The plume is then treated with a matrix, which incorporates both aerobic and anaerobic biological processes, providing longer term remedial degradation.

5.2.6 In-Situ Treatment (Chemical Oxidation)

Application of chemical oxidation technology mineralizes contaminants within subsurface soil and groundwater through chemical reactions. A mixture of oxidant and buffering compounds are typically injected into impacted soil and groundwater and, upon contact with contaminants, the oxidizer(s) break down the dissolved contaminants into carbon dioxide, water, and salts.

Delivery of oxidants to the subsurface can be conducted using direct-push probes or injection wells installed across the Site. Typical chemical oxidants used for chemical oxidation of chlorinated VOCs include Fenton's reagent and ozone, both of which have been proven to effectively destroy petroleum hydrocarbons and chlorinated solvents. Fenton's reagent consists of hydrogen peroxide combined with an iron catalyst. The injection mixture also typically includes the addition of acid, as Fenton's reagent is more effective at acidic pH. Regardless of the oxidant that is used, the destruction efficiency of contaminants can be greatly affected by the organic content of the soil and other subsurface characteristics that can be readily oxidized. Therefore, testing should be conducted at the Site to analyze the overall soil and water oxygen demand and determine the appropriate oxidant dose to be applied.

Permanganates are chemical oxidants that exist as salts and are traditionally available in a sodium or potassium form. Permanganates are commonly used for many industrial purposes including water and wastewater treatment operations. The use of permanganates in groundwater treatment applications is a proven, well documented technology. In-situ permanganate oxidation technology relies on the enhanced delivery of a permanganate oxidant compound within the subsurface providing recalcitrant contaminant (e.g., PCE, TCE, DCE isomers, and vinyl chloride) remediation; with final benign reaction products of carbon dioxide, water, and inorganic salts (e.g. chlorides) via direct electron exchange processes.

When ozone is used for chemical oxidation, it is applied through sparging technology, discussed above. For ozone sparging, ozone is generated on site from air and then injected as a gas into the subsurface.

5.2.7 In-Situ Treatment (Thermal Desorption)

Electrical Resistance Heating (ERH) is an in-situ, thermal technology that uses commonly available electricity and applies it into the ground through electrodes. These electrodes can be installed either vertically to any depth or horizontally underneath buildings, operating facilities, and in the presence of buried utilities. The technology is equally effective in both soil and groundwater.

Electric current is passed through a targeted soil volume between subsurface electrode elements. The resistance to electrical flow that exists in the soil causes the formation of heat; resulting in an increase in temperature until the boiling point of water at depth is reached. After reaching this temperature, further energy input causes a phase change, forming steam and removing volatile contaminants. ERH is typically more cost effective when used for treating contaminant source areas.

In-Situ Thermal Conduction Heating (TCH) is a soil remediation process in which heat and vacuum are applied simultaneously to subsurface soils, either with surface heater blankets or with an array of vertical heater/vacuum wells. Radiation heat transport dominates near the heaters, which are operated at 800 to 900° C; however, thermal conduction accounts for most of the heating at greater distances into the soil. As soil is heated, contaminants in the soil are vaporized or destroyed by a number of mechanisms, including (1) evaporation into the air stream, (2) steam distillation into the water vapor stream, (3) boiling, (4) oxidation, and (5) pyrolysis. The vaporized water, contaminants, and natural organic compounds are drawn by the vacuum in a direction countercurrent to the heat flow into the vacuum source using trenches or wells.

ERH and TCH are typically most effective on chlorinated VOCs. Less volatile contaminants like xylene or diesel can also be remediated with ERH, but energy requirements increase as the volatility decreases.

6.0 DESCRIPTION AND SELECTION OF REMEDIAL ALTERNATIVES

Based on the requirements of WAC 173-340-360, *Selection of Cleanup Actions*, three potential remedial alternatives were developed from the general response actions and technologies screened in Table 7, *Identification and Screening of Response Actions and Remediation Technologies*, and described above.

All three alternatives directly address soil contamination at the Site, and are also intended to indirectly address ambient air quality at the Site. By reducing remaining contamination in the soil to below cleanup levels, the source of contamination for ambient air is removed, and ambient air is expected to meet appropriate cleanup standards.

Based on preliminary screening of the general response actions identified in Section 5.2, *Identification and Screening of Remediation Technologies*, individual general response actions are not expected to individually meet MTCA threshold requirements, and therefore are not considered as stand-alone remedial alternatives.

6.1 MTCA Threshold Requirements

Potential remedial alternatives must meet the threshold requirements described in WAC 173-340-360(2)(a), which specifies that cleanup actions shall:

- Protect human health and the environment;
- Comply with cleanup standards;
- Comply with applicable state and federal laws; and
- Provide for compliance monitoring.

MTCA [WAC 173-340-360(2)(b)] also indicates other requirements that must be met by any cleanup alternative:

- Use permanent solutions to the maximum extent practicable;
- Provide for a reasonable restoration time frame; and
- Consider public concerns.

Local Requirements

All required local permits to implement the chosen Remedial Action will be obtained according to Thurston County requirements. These could include, but are not limited to, construction, air quality, right-of-way (ROW), and building permits.

6.2 Description of Remedial Alternatives

Based upon the screening evaluation, MTCA threshold and other requirements, AEG proposes four remedial alternatives for the Site. The alternatives were developed and are evaluated with the goal of achieving remedial objectives within a reasonable timeframe, with the most permanent cleanup and minimal disruption to the Site.

6.2.1 Alternative 1 – No Action

While no exposure pathways are currently complete at the Site, the no action alternative does not alone meet the RAOs identified for the Site and is not applicable because contaminant concentrations in soil would not be reduced or isolated and potential exposure pathways would not be mitigated. However, this option is retained to provide a baseline of comparison for other more permanent remedial alternatives.

Estimated time to closure: 15 to 20 years.

6.2.2 Alternative 2 – In-Situ Treatment via Soil Vapor Extraction

Alternative 2 includes:

- Installation of four SVE extraction wells on the south and west sides of the existing building.
- Complete underground conveyance piping to the four extraction wells, and place vacuum equipment on the south and west sides of the building.
- Provide electrical power to the remediation equipment from the existing building power source.
- Treatment of extracted soil vapors with carbon filtration.
- Obtain air permits from the State and Local authorities.
- Eight quarters of performance monitoring using vapor samples pre & post GAC filtration units to establish trends in contaminant reduction and for permit requirements.
- Confirmatory sampling and SVE well abandonment.

Alternative 2 would cause the most impacts on vehicular and pedestrian traffic in the parking lot during installation of the extraction wells and conveyance piping. If a permanent cleanup is unable to be performed due to accessibility, institutional controls via an environmental covenant on the property would be needed to achieve cleanup standards.

Estimated time to closure: 2 to 3 years.

6.2.3 Alternative 3 – Closure with Vapor Mitigation System Installation and Environmental Covenant

Alternative 3 includes the following:

- Installation of sub-slab depressurization (SSD) system with extraction points in the areas shown to have the highest vapor concentrations.
- Complete conveyance piping to the extraction points, and place vacuum equipment in accessible areas of the southside of the building.
- Provide electrical power to the vacuum equipment from the existing building power source.
- Baseline vapor sampling from the SSD system to establish trends in contaminant concentrations and to confirm impacted vapors are successfully being redirected to outdoor air.

Institutional controls by legal restrictions on land use to limit potential exposure to contamination through an environmental covenant restricting removal of the asphalt cover and overburden soils (acting as a cap and preventing stormwater infiltration) in areas that exceed safe concentrations. An environmental covenant is a deed restriction filed for the property that would limit access to contaminated areas of the Site without prior approval of Ecology.

Estimated time to closure: 1 to 2 years.

6.3 Evaluation of Remedial Alternatives

This section presents an evaluation and comparison of the three proposed remedial alternatives. In accordance with MTCA, the alternatives are evaluated relative to the criteria specified in WAC 173-340-360(3)(f) and WAC 173-340-360(4), which include the following:

- 1. Protectiveness;
- 2. Permanence;
- 3. Effectiveness over the long term;
- 4. Management of short-term risks;
- 5. Technical and administrative implementability;
- 6. Consideration of public concerns;
- 7. Restoration time frame; and
- 8. Cost.

Each of these criteria is evaluated below, except for cost, which is evaluated separately. A summary of the evaluation is provided in Table 7, *Remedial Alternatives Evaluation* /

Disproportionate Cost Analysis. The overall evaluation is then used to determine the relative benefit of each alternative.

Each criterion was first assigned a score ranging from 5 (best) to 1 (worst), based upon AEG's experience, best professional judgement, and the application of scientific principles. Each score is based on the perceived benefit associated with the criterion, and is included in Table 7, *Remedial Alternatives Evaluation / Disproportionate Cost Analysis*. Alternatives deemed equally beneficial are given the same score. Several criteria are comprised of subcriteria. In such cases, each subcriterion is scored and the average of those scores is used as the criterion score.

6.3.1 Protectiveness

Protectiveness is defined in WAC 173-340-360(3)(f)(i) as:

"Overall protectiveness of human health and the environment, including the degree to which existing risks are reduced, time required to reduce risk at the facility and attain cleanup standards, on-site and off-site risks resulting from implementing and alternative, and improvement of the overall environmental quality."

Each of the three remedial alternatives reduce risk at the Site, and each is protective of human health and the environment. Alternative 1 is the least certain to reduce risks and attain cleanup standards at the Site due to a lack of shallow groundwater and access within the tenant space, and received the lowest score. Alternatives 2 and 3 ranked similarly for protectiveness.

6.3.2 Permanence

Permanence is defined in WAC 173-340-360(3)(f)(ii) as:

"The degree to which the alternative permanently reduces the toxicity, mobility or volume of hazardous substances, including the adequacy of the alternative in destroying the hazardous substances, the reduction or elimination of hazardous substance releases and sources of releases, the degree of irreversibility of waste treatment process, and the characteristics and improvement of the overall environmental quality."

At the completion of remedial activities, each of the alternatives would result in a solution that is permanent. Permanence includes the subcriteria of reduction in toxicity, degree of irreversibility, and the type and character of the waste streams generated during treatment. While each of the technologies, if successfully implemented would be permanent, the degree of certainty in the success of the technology varies due to the nature of the technologies. Alternative 1 received the

lowest score due to the timeframe associated with reducing toxicity, mobility, and volume, as well as its reversibility. Alternatives 2 and 3 ranked similarly for permanence.

6.3.3 Effectiveness over the Long Term

Effectiveness over the long term is defined in WAC 173-340-360(3)(f)(iv):

"Long-term effectiveness includes the degree of certainty that the alternative will be successful, the reliability of the alternative during the period of time hazardous substances are expected to remain on-site at concentrations that exceed cleanup levels, the magnitude of residual risk with the alternative in place, and the effectiveness of controls required to manage treatment residues or remaining wastes. The following types of cleanup action components may be used as a guide, in descending order, when assessing the relative degree of long-term effectiveness: Reuse or recycling; destruction or detoxification; immobilization or solidification; on-site or off-site disposal in an engineered, lined and monitored facility; on-site isolation or containment with attendant engineering controls; and institutional controls and monitoring."

Long-term effectiveness includes the subcriteria of certainty, reliability, residual risk, and utilization of preferred remedies. Each of the alternatives have the intent of meeting cleanup standards and protecting human health and the environment after completion of the remedial action. However, there are varying levels of uncertainty and reliability associated with each technology throughout the process. Alternative 1 is the least certain to reduce risks and attain cleanup standards at the Site due to a lack of shallow groundwater and access within the tenant space, and received the lowest score. Alternatives 2 and 3 ranked similarly as they intend to destroy the contaminants in-situ, and not leave any residuals behind.

6.3.4 Management of Short-Term Risks

Management of short-term risks is defined in WAC 173-340-360(3)(f)(v):

"The risk to human health and the environment associated with the alternative during construction and implementation, and the effectiveness of measures that will be taken to manage such risks."

All of the alternatives have manageable short-term risks and effective measures for mitigating those risks. Alternatives 2 and 3 ranked similarly as they all include intrusive activities.

6.3.5 Technical and Administrative Implementability

Technical and administrative implementability is defined in WAC 173-340-360(3)(f)(vi):

"Ability to be implemented including consideration of whether the alternative is technically possible, availability of necessary off-site facilities, services and materials, administrative and regulatory requirements, scheduling, size, complexity, monitoring requirements, access for construction operations and monitoring, and integration with existing facility operations and other current or potential remedial actions."

This criterion includes the concepts of technical possibility, access, necessary resources, monitoring requirements and integration into existing facility features. The primary determining subcriterion is technical possibility. Alternative 2 and Alternative 3 received a similar score based on their similar advantages and disadvantages.

6.3.6 Consideration of Public Concerns

Consideration of public concerns is defined in WAC 173-340-360(3)(f)(vii):

"Whether the community has concerns regarding the alternative and, if so, the extent to which the alternative addresses those concerns. This process includes concerns from individuals, community groups, local governments, tribes, federal and state agencies, or any other organization that may have an interest in or knowledge of the site."

Alternatives with significant construction components, or alternatives that leave contamination in place at the end of active remedial activities are assumed to have the most concern to the public. All three alternatives ranked similarly for this category.

6.3.7 Restoration Time Frame

Restoration Time Frame (RTF) is evaluated using the following factors described in WAC 173-340-360(4)(b)(i through ix):

- 1. Potential risks posed by the site to human health and the environment.
- 2. Practicability of achieving a shorter restoration timeframe.
- 3. Current use of the site.
- 4. Potential future use of the site.
- 5. Availability of alternative water supplies.
- 6. Likely effectiveness and reliability of institutional controls.

7. Ability to monitor and control migration of hazardous substances from the site.

- 8. Toxicity of hazardous substances at the site.
- 9. Natural processes that reduce concentrations of hazardous substances at the site.

Estimates of restoration time frame are necessarily subjective. Each of the alternatives is assumed to provide a reasonable restoration time frame. Actual estimates of effectiveness are premature without performance monitoring data regarding actual effectiveness. Reasonable restoration time frame was ranked based upon the general aggressiveness of each of the technologies and perceived certainty associated with the technology. Alternative 2 received a slightly lower score than Alternative 3.

6.4 Benefit Value Determination

Average criterion scores determined in Section 6.3 are multiplied by weighting. Weighting factors adapted from those established by Ecology are used to determine the total weighted scores:

Criteria	Weighting Factor
Protectiveness	30%
Permanence	25%
Long Term Effectiveness	20%
Short-Term Risk Management	5%
Implementability	5%
Public Concerns	10%
Restoration Time Frame	5%
Total	100%

Each criteria is multiplied by the weighting factor and the products summed to determine each Alternative's Benefit Value. The scoring of these values is summarized in Table 7, *Remedial Alternatives Evaluation / Disproportionate Cost Analysis*.

The results show that Alternatives 2 and 3 are the preferred alternatives for the non-cost criteria, as they result in the same and highest overall benefit value. Alternative Benefit Values are compared to Estimated Alternative Costs, discussed below.

6.4.1 Estimated Alternative Costs

Cost is defined in WAC 173-340-360(f)(iii) as:

"The cost to implement the alternative, including the cost of construction, the net present value of any long-term costs, and agency oversight costs that are cost recoverable. Long-term costs include operation and maintenance costs, monitoring costs, equipment replacement costs, and the cost of maintaining institutional controls. Cost estimates for treatment technologies shall describe pretreatment, analytical, labor, and waste management costs. The design life of the cleanup action shall be estimated, and the cost of replacement or repair of major elements shall be included in the cost estimate."

Estimated Alternative costs have been estimated for each of the remedial alternatives based on the descriptions and associated assumptions presented above. The expected accuracy range of the cost estimates is -30% to +50%. Costs are based on typical costs for Washington State, and the current knowledge of the Site. All costs are assumed to be for newly purchased equipment. Cost estimates are not based upon refurbished or used equipment. Estimated capital costs are based on current dollar values. Estimated recurring costs and periodic costs associated with system operation and maintenance, performance and compliance monitoring, and Site closure activities are adjusted to reflect the net present value. The following table summarizes estimated costs for each alternative. These costs are for comparison purposes only and actual implementation costs will vary from those provided. Estimated costs incorporate a variety of necessary assumptions and the validity of those assumptions cannot be fully known at this time.

Remedial Alternatives Cost Summary			
Alternative Number	Remedial Alternative	Estimated Alternative Costs	
1	No Action	\$ 10,477	
2	In-Situ Treatment via Soil Vapor Extraction	\$294,570	
3	In-Situ Treatment via Thermal Heating and Vapor Extraction	\$ 82,838	

6.5 Disproportionate Cost Analysis

The disproportionate cost analysis is made by comparing Alternative Benefit Values from Section 6.3, to each remedial alternative's estimated cost from Section 6.4. Based upon WAC 173-340-360(3)(e), a cleanup action shall not be considered practicable *"if the incremental cost of the alternative over that of a lower cost alternative exceeds the incremental degree of benefits achieved by the alternative over that of the other lower cost alternative."*

Disproportionate Cost Analysis				
Alternative Number	Cost	Benefit Value	Cost per Benefit Value	
1	\$ 10,477	2.13	\$ 4,911	
2	\$294,570	3.99	\$73,920	
3	\$ 82,838	3.99	\$20,779	

This comparison is provided below:

The results of the disproportionate cost analysis show that the cost per benefit value of Alternative 1 is least. The results also show that Alternatives 3 and 2 are each incrementally more costly per Benefit Value than Alternative 1. Based solely upon analysis of disproportionate cost, Alternative 1 is the preferred alternative.

Alternatives 2 and 3 have a similar restoration time frame. However, Alternative 2 has a higher cost per benefit value than Alternative 3. Therefore, the results of the disproportionate cost analysis for practicable alternatives with similar reasonable restoration timeframes show that Alternative 3 is the preferred alternative. The analysis of disproportionate cost is included in the attachments graphically as *Chart 1, Disproportionate Cost Analysis*.

6.6 Selection of Preferred Alternative

Selection of the preferred alternative for the Site takes into account the following considerations:

- RAOs for the Site.
- Restoration Timeframe.
- Regulatory Requirements.
- Disproportionate Cost Analysis.
- The Site's continued retail operation.

Based solely on the Disproportionate Cost Analysis, Alternative 1 would be the preferred alternative, as Alternatives 3 and 2 are incrementally more costly per benefit value.

Alternatives 2 and 3 are assumed to meet RAOs, and have a restoration timeframe of between 1 and 3 years.

Meeting regulatory requirements is also not as certain for Alternative 1 as the other two alternatives. The net benefit value of Alternative 1 is close to one half of Alternatives 2 and 3,

reflecting uncertainties regarding outcome. For these reasons, AEG does not currently recommend Alternative 1 as the preferred alternative.

Alternative 2 is the most expensive, and provides the same benefit value as Alternative 3. Of the two alternatives with similar net benefit values, Alternative 3 is the least expensive, and is therefore AEG's preferred alternative for this Site.

7.0 LIMITATIONS

This report summarizes the findings of the services authorized under our agreement with Ms. Keum Woo. It has been prepared using generally accepted professional practices, related to the nature of the work accomplished. This report was prepared for the exclusive use of Ms. Woo and her designated representatives for the specific application to the project purpose.

Recommendations, opinions, site history, and proposed actions contained in this report apply to conditions and information available at the time this report was completed. Since conditions and regulations beyond our control can change at any time after completion of this report, or our proposed work, we are not responsible for any impacts of any changes in conditions, standards, practices, and/or regulations subsequent to our performance of services. We cannot warrant or validate the accuracy of information supplied by others, in whole or part.

Remedial Investigation / Feasibility Study Report Lacey Urban Center, Olympia, Washington AEG Project No. 18-236 April 1, 2021

8.0 REFERENCES

American Society for Testing and Materials (ASTM) Standard E 1903-11. *Standard Practice for Environmental Site Assessments: Phase II Environmental Site Assessment Process.*

American Society for Testing and Materials (ASTM) E 1943-98 (2015), *Standard Guide for Remediation of Ground Water by Natural Attenuation at Petroleum Release Sites*

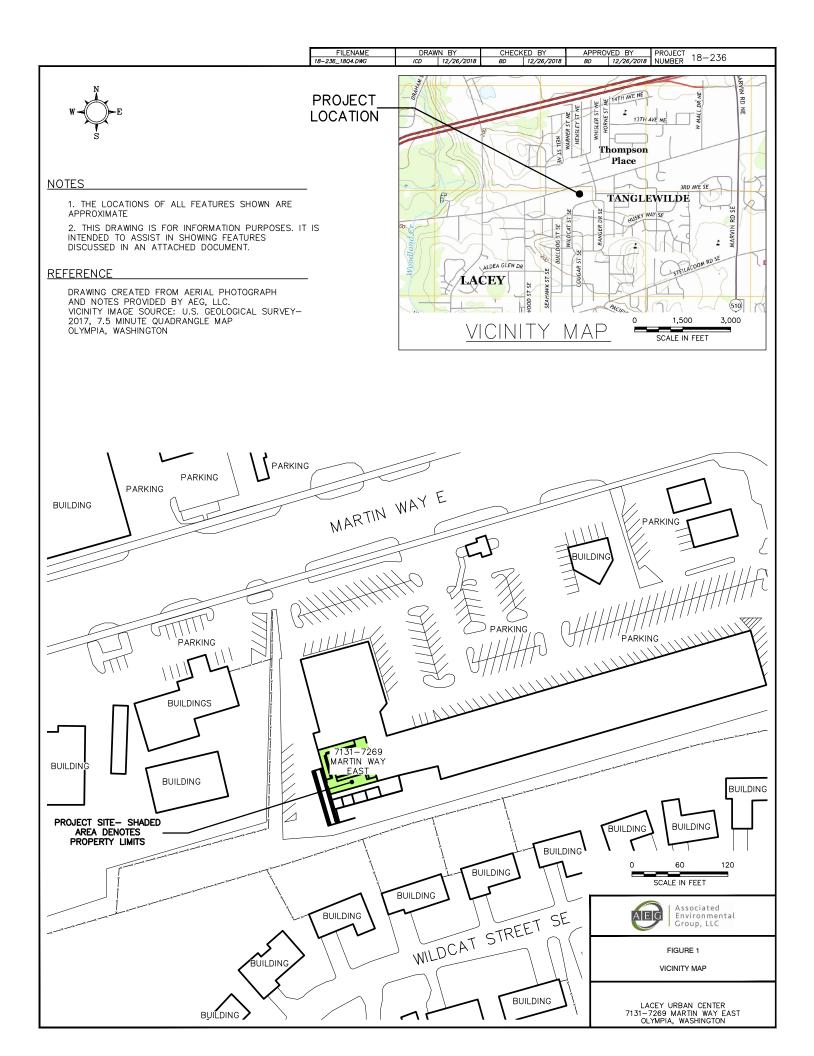
Envitechnology. 2018. Additional Phase II Subsurface Investigation, Lacey Urban Center, 7131-7269 Martin Way East, Olympia, Washington. Dated November 30.

US EPA, Engineering Bulletin, Granular Activated Carbon Treatment, EPA/540/2-91/024, October 1991.

US EPA OSWER Directive 9200.4-17P, 1999a, Use of Monitored Natural Attenuation at Superfund, RCRA Corrective Action, and Underground Storage Tank Sites.

US EPA OSWER Publication 9200.2-154, June 2015, OSWER Technical Guide for Assessing and Mitigating the Vapor Intrusion Pathway from Subsurface Vapor Sources to Indoor Air.

Washington State Department of Ecology, 2004, *Collecting and Preparing Soil Samples for VOC Analysis*, Implementation Memorandum #5.


Washington State Department of Ecology, 2009, *Guidance for Evaluating Soil Vapor Intrusion in Washington State: Investigation and Remedial Action*, Publication number 09-09-047. DRAFT.

Washington State Department of Ecology, 2013, *Model Toxic Control Act Statute and Regulation* – *Chapter 173-340 WAC*, Publication number 94-06 (Revised 2013).

Washington State Department of Natural Resources, 2013, The Geology of Washington State, http://file.dnr.wa.gov/publications/ger_geol_map_washington_pagesize.pdf.

FIGURES

2633 Parkmont Lane SW, Suite A • Olympia, WA • 98502 Phone: 360-352-9835 • Fax: 360-352-8164 • Email: admin@aegwa.com

LEGEND

MW-1	+
MW-4	+
SG-1	
B-1	٠
SS-1	\odot
AMBIEN	ΠÐ
	×—

SHALLOW MONITORING WELL LOCATION DEEP MONITORING WELL LOCATION SOIL GAS SAMPLE LOCATION SOIL BORING LOCATION SUB-SLAB VAPOR SAMPLE LOCATION AIR SAMPLE LOCATION FENCE

NOTES

1. THE LOCATIONS OF ALL FEATURES SHOWN ARE APPROXIMATE 2. THIS DRAWING IS FOR INFORMATION PURPOSES. IT IS INTENDED TO ASSIST IN SHOWING FEATURES DISCUSSED IN AN ATTACHED DOCUMENT.

<u>REFERENCE</u>

DRAWING CREATED FROM AERIAL PHOTOGRAPH AND NOTES PROVIDED BY AEG, LLC.

| Associated | Environmental | Group, LLC

FIGURE 2

SITE MAP

LACEY URBAN CENTER 7131–7269 MARTIN WAY EAST OLYMPIA, WASHINGTON

LEGEND

V—1 💠	SHALLOW MONITORING WELL LOCATION
V-4 🔶	DEEP MONITORING WELL LOCATION
i—1 🔺	SOIL GAS SAMPLE LOCATION
-1 🔸	SOIL BORING LOCATION
i—1 👄	SUB-SLAB VAPOR SAMPLE LOCATION
1BIEN T⊕	AIR SAMPLE LOCATION
- x x	FENCE
	400 μg/m ³ ISOCONCENTRATION LINE
	1,000 μg/m³ ISOCONCENTRATION LINE
0	PCE CONCENTRATION IN SOIL VAPOR (µg/m³)
/m³	MICROGRAMS PER CUBIC METER
ΣE	TETRACHLOROETHYLENE
	NOT DETECTED ABOVE LIMIT NOTED

RED BOLD INDICATES THE DETECTED CONCENTRATION EXCEEDS ECOLOGY MTCA METHOD B SCREENING LEVELS BOLD INDICATES THE DETECTED CONCENTRATION IS BELOW ECOLOGY MTCA METHOD B SCREENING LEVELS

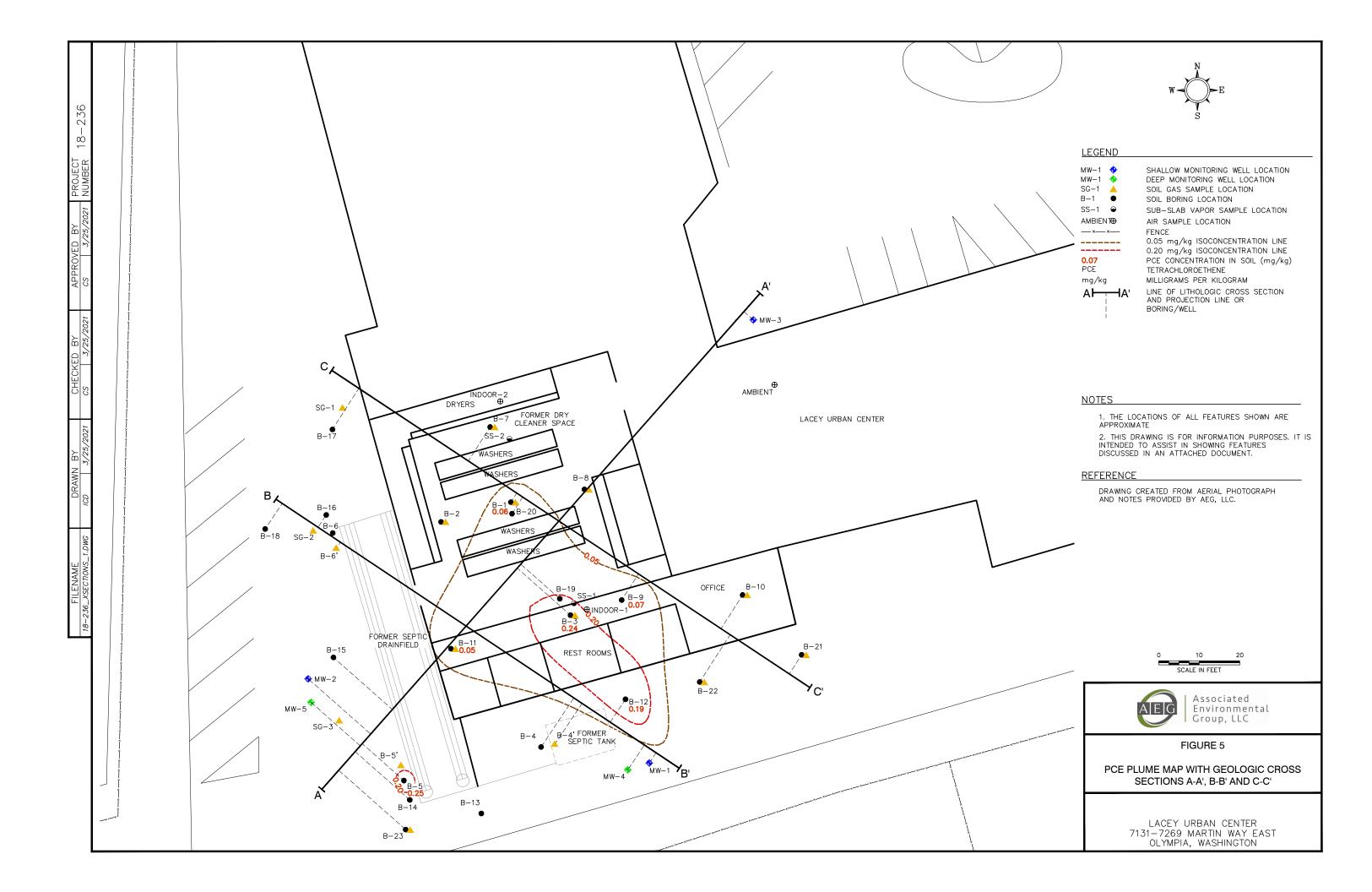
<u>NOTES</u>

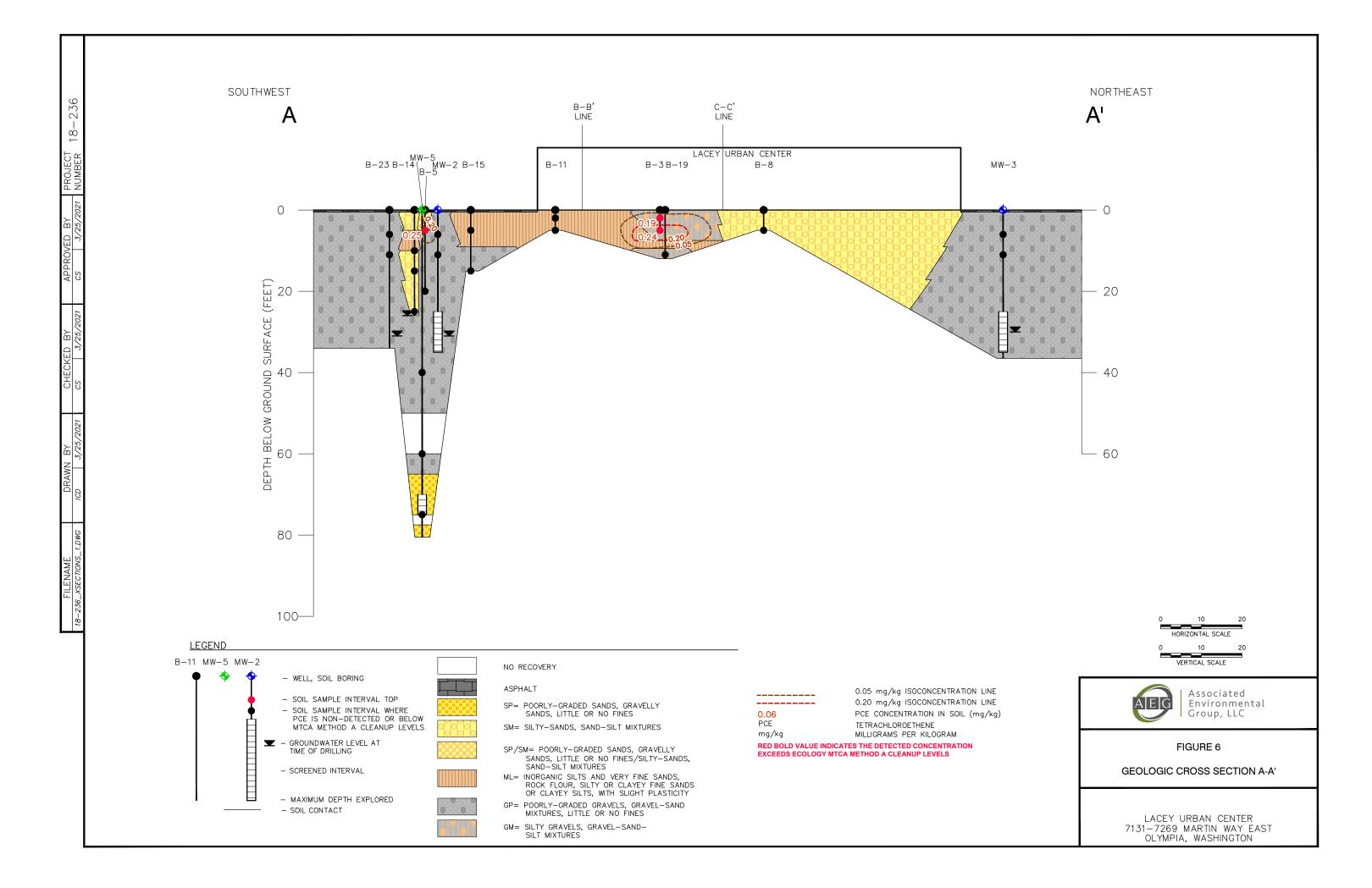
1. THE LOCATIONS OF ALL FEATURES SHOWN ARE APPROXIMATE

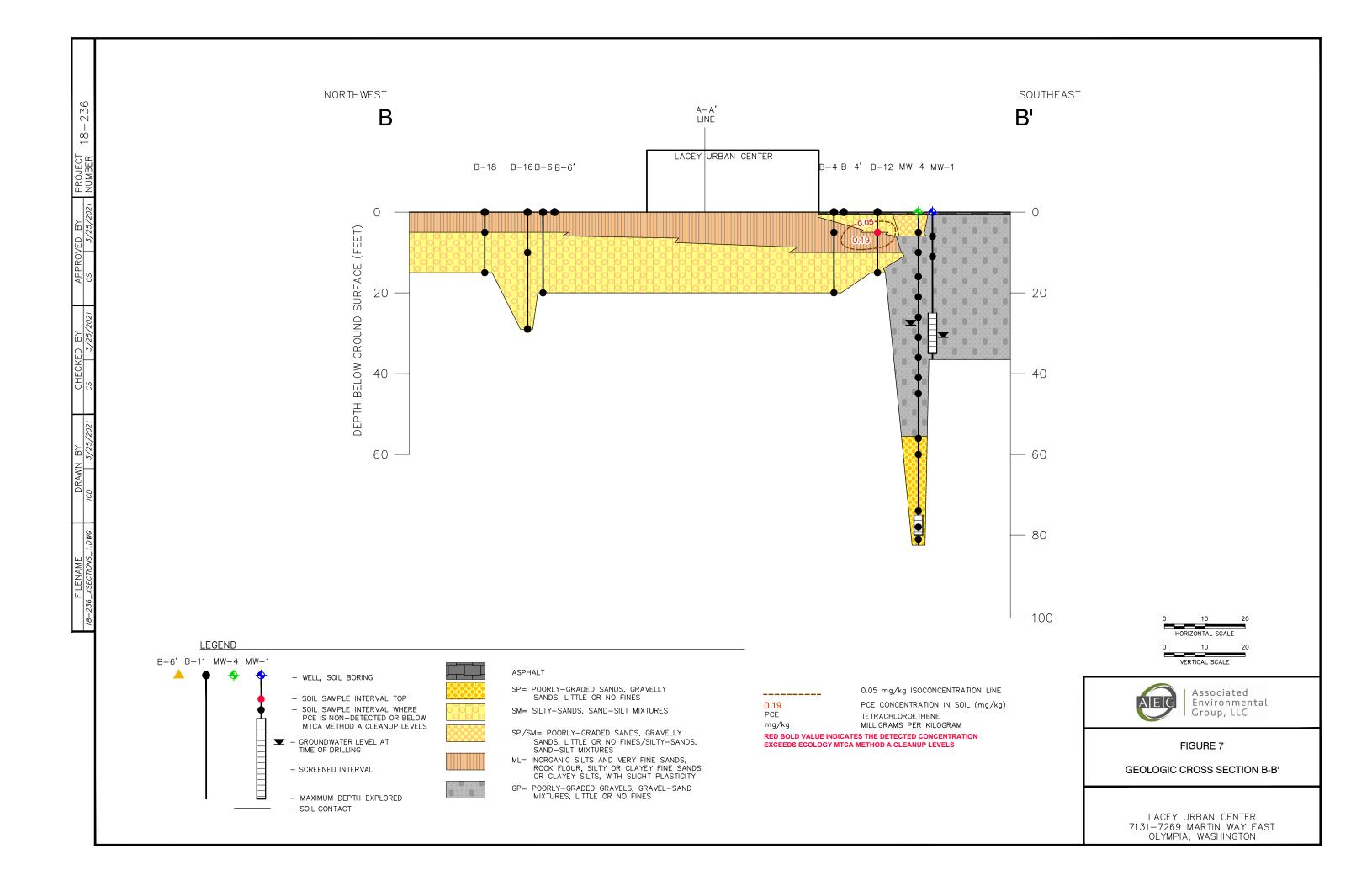
2. THIS DRAWING IS FOR INFORMATION PURPOSES. IT IS INTENDED TO ASSIST IN SHOWING FEATURES DISCUSSED IN AN ATTACHED DOCUMENT.

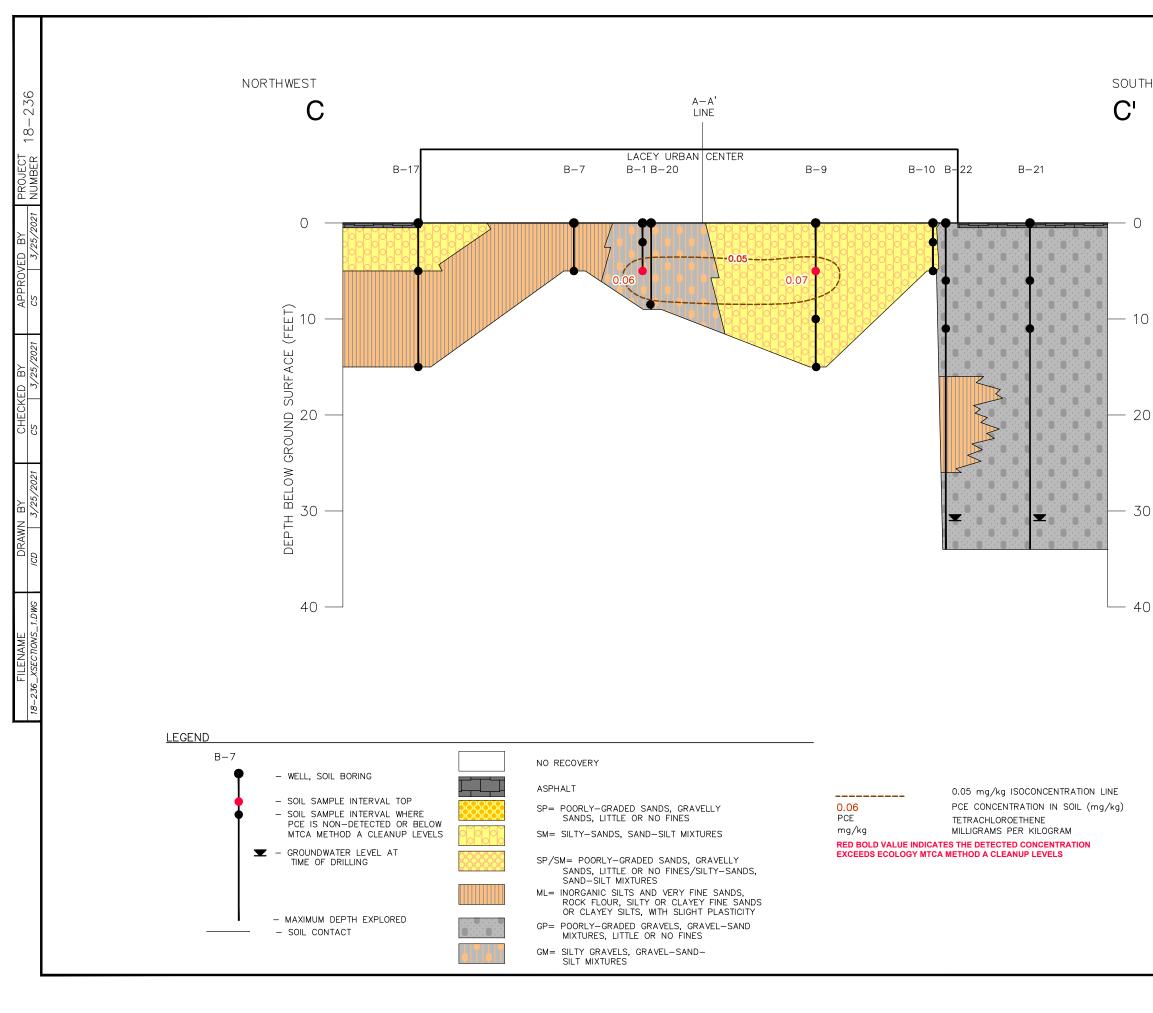
REFERENCE

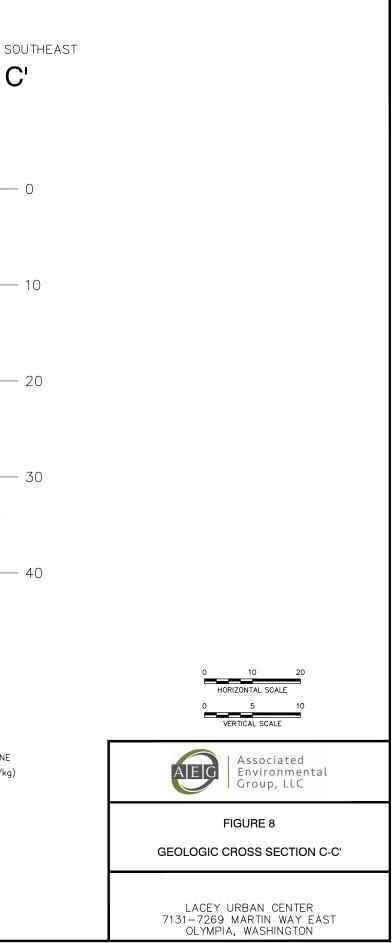
DRAWING CREATED FROM AERIAL PHOTOGRAPH AND NOTES PROVIDED BY AEG, LLC.

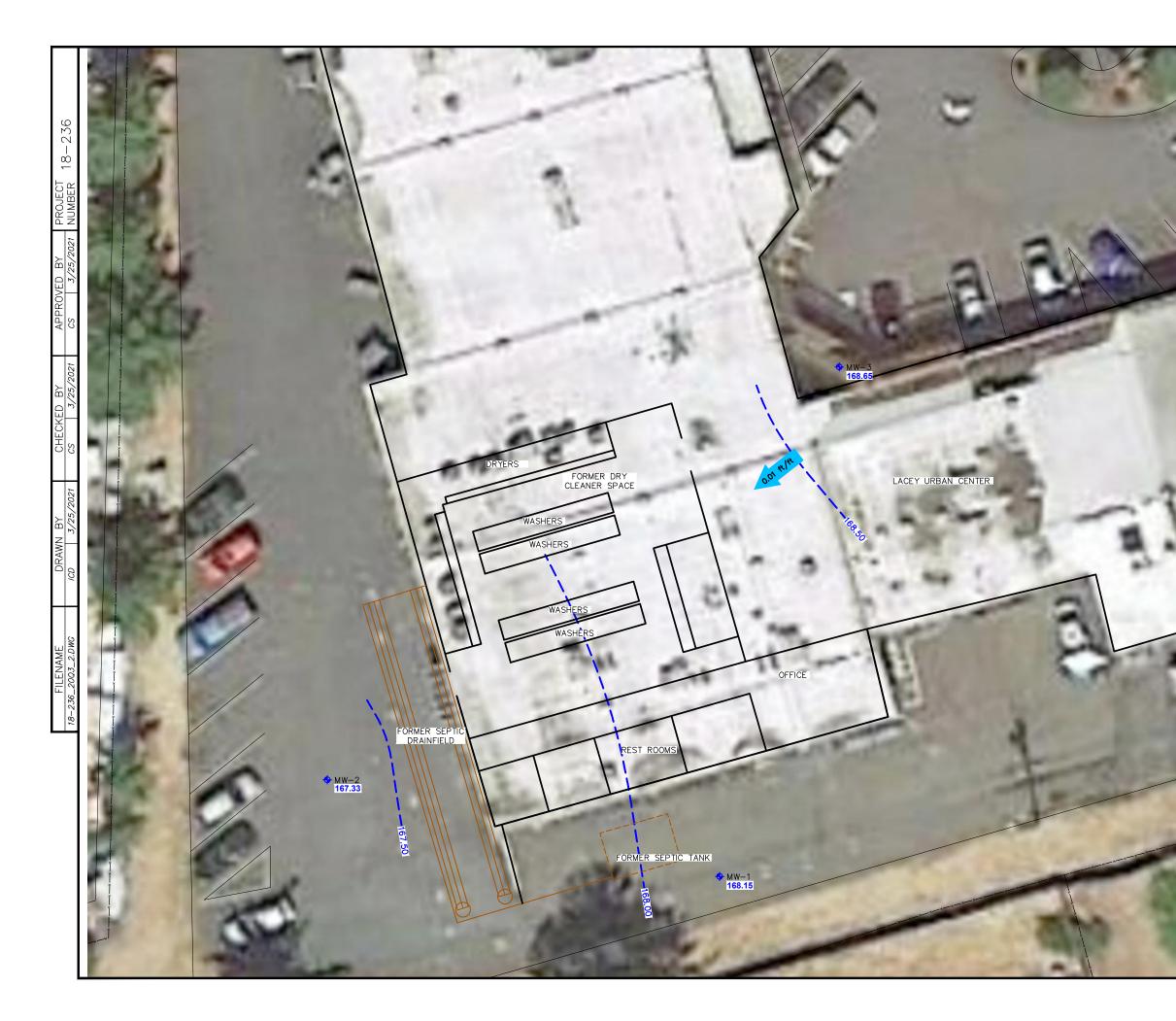


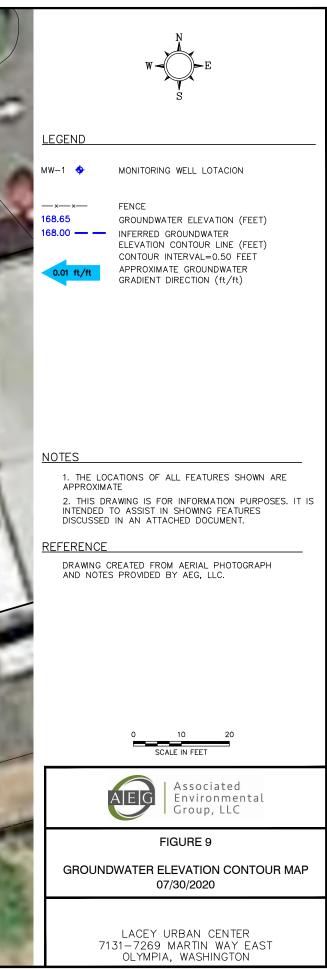

Associated Environmental Group, LLC


FIGURE 4


PCE IN SOIL VAPOR PLUME MAP


LACEY URBAN CENTER 7131–7269 MARTIN WAY EAST OLYMPIA, WASHINGTON

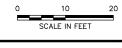






LEGEND

MW−1 💠 MW−4 💠	SHALLOW MONITORING WELL LOCATION DEEP MONITORING WELL LOCATION
x	FENCE
176.85	GROUNDWATER ELEVATION (FEET)
176.00 — —	INFERRED GROUNDWATER ELEVATION CONTOUR LINE (FEET) CONTOUR INTERVAL=0.50 FEET
0.02 ft/ft	APPROXIMATE GROUNDWATER GRADIENT DIRECTION (ft/ft)
NRE	NO REFERENCE ELEVATION


NOTES

1. THE LOCATIONS OF ALL FEATURES SHOWN ARE APPROXIMATE

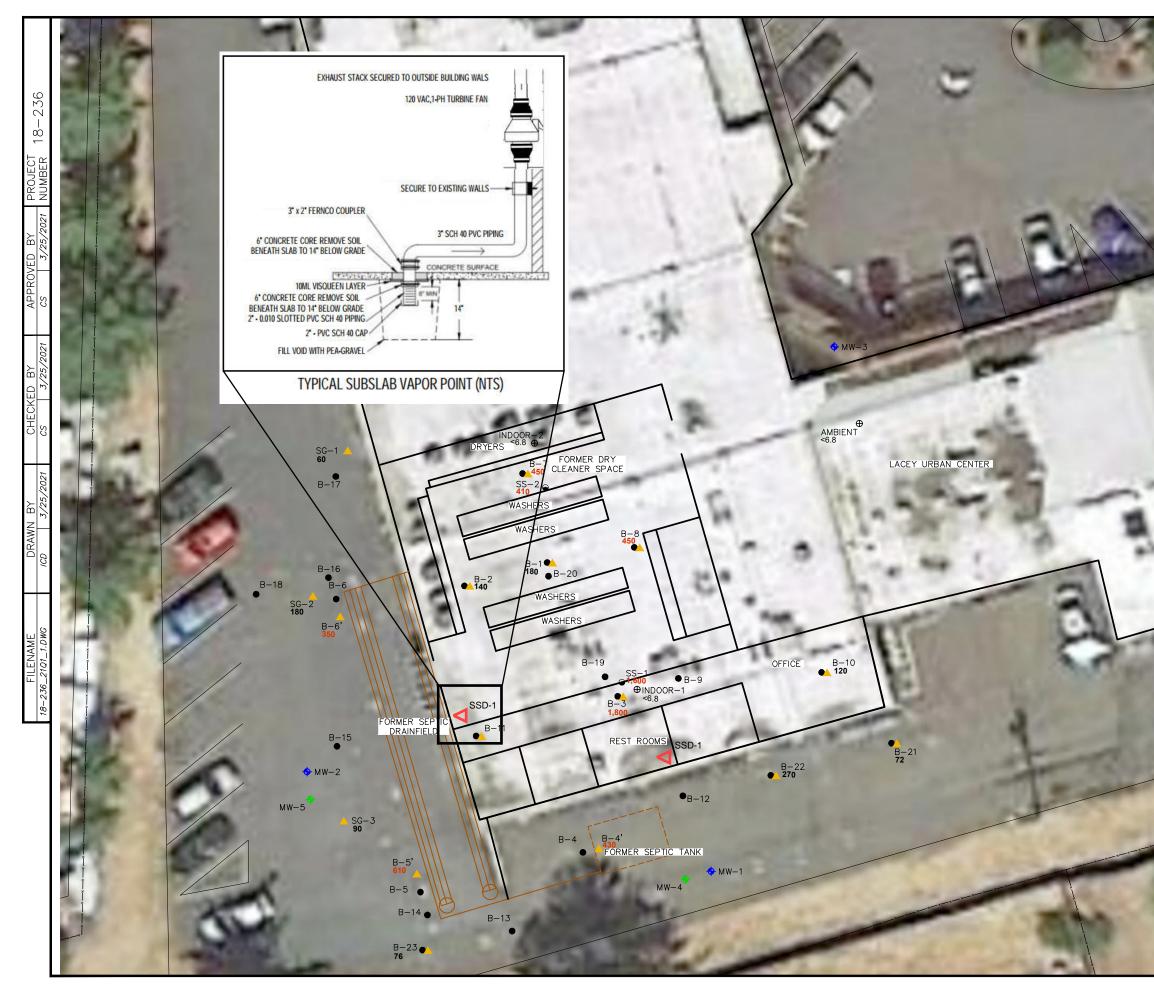
2. THIS DRAWING IS FOR INFORMATION PURPOSES. IT IS INTENDED TO ASSIST IN SHOWING FEATURES DISCUSSED IN AN ATTACHED DOCUMENT.

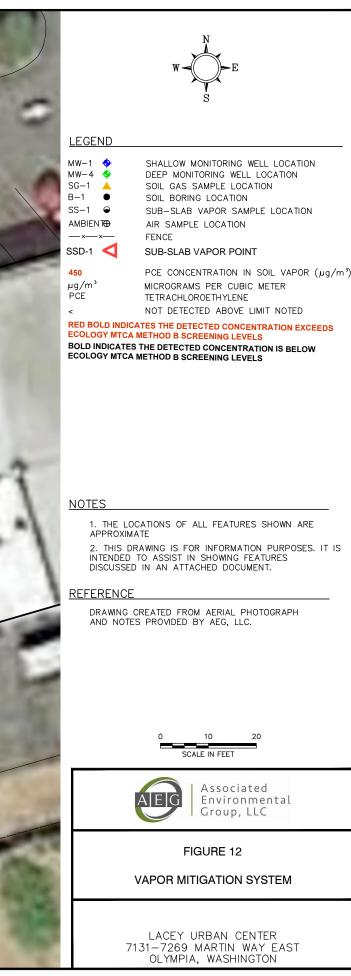
REFERENCE

DRAWING CREATED FROM AERIAL PHOTOGRAPH AND NOTES PROVIDED BY AEG, LLC.

| Associated | Environmental | Group, LLC

FIGURE 10


GROUNDWATER ELEVATION CONTOUR MAP 10/16/2020


LACEY URBAN CENTER 7131–7269 MARTIN WAY EAST OLYMPIA, WASHINGTON

MW-1 MW-4	*
—×— 181.21	x—
180.00	

TABLES

2633 Parkmont Lane SW, Suite A • Olympia, WA • 98502 Phone: 360-352-9835 • Fax: 360-352-8164 • Email: admin@aegwa.com

Table 1 - Summary of Soil Analytical ResultsLacey Urban Center (18-236)

Olympia, Washington

Sample	Depth	Date		Chlorinated '	Volatile Organic	c Compounds	
Number	(feet)	Collected	PCE	TCE	cis-1,2 DCE	trans-1,2- DCE	Vinyl Chloride
			Envitechnolo	ogy, 2018			
B1-2	2	7/20/2018	0.04	< 0.03	< 0.15	< 0.15	< 0.15
B1-5	5	7/20/2018	0.06	< 0.03	< 0.15	< 0.15	< 0.15
B2-2	2	7/20/2018	0.02	< 0.03	< 0.15	< 0.15	< 0.15
B2-5	5	7/20/2018	0.02	< 0.03	< 0.15	< 0.15	< 0.15
B3-2	2	7/20/2018	0.19	< 0.03	< 0.15	< 0.15	< 0.15
B3-5	5	7/20/2018	0.24	< 0.03	< 0.15	< 0.15	< 0.15
B4-5	5	7/20/2018	0.04	< 0.03	< 0.15	< 0.15	< 0.15
B4-20	20	7/20/2018	< 0.05	< 0.03	< 0.15	< 0.15	< 0.15
B5-5	5	7/20/2018	0.25	< 0.03	< 0.15	< 0.15	< 0.15
B5-20	20	7/20/2018	< 0.05	< 0.03	< 0.15	< 0.15	< 0.15
B6-20	20	7/20/2018	< 0.05	< 0.03	< 0.15	< 0.15	< 0.15
B7-5	5	8/20/2018	< 0.05	< 0.03	< 0.15	< 0.15	< 0.15
B8-5	5	8/20/2018	0.03	< 0.03	< 0.15	< 0.15	< 0.15
B9-5	5	8/20/2018	0.07	< 0.03	< 0.15	< 0.15	< 0.15
B9-10	10	8/20/2018	< 0.05	< 0.03	< 0.15	< 0.15	< 0.15
B9-15	15	8/20/2018	< 0.05	< 0.03	< 0.15	< 0.15	< 0.15
B10-2	2	8/20/2018	< 0.05	< 0.03	< 0.15	< 0.15	< 0.15
B10-5	5	8/20/2018	< 0.05	< 0.03	< 0.15	< 0.15	< 0.15
B11-2	2	8/20/2018	0.05	< 0.03	< 0.15	< 0.15	< 0.15
B11-5	5	8/20/2018	0.04	< 0.03	< 0.15	< 0.15	< 0.15
B12-5	5	8/20/2018	0.19	< 0.03	< 0.15	< 0.15	< 0.15
B12-15	15	8/20/2018	< 0.05	< 0.03	< 0.15	< 0.15	< 0.15
B13-5	5	8/20/2018	0.02	< 0.03	< 0.15	< 0.15	< 0.15
B13-15	15	8/20/2018	< 0.05	< 0.03	< 0.15	< 0.15	< 0.15
B14-10	10	8/20/2018	< 0.05	< 0.03	< 0.15	< 0.15	< 0.15
B14-15	15	8/20/2018	< 0.05	< 0.03	< 0.15	< 0.15	< 0.15
B14-25	25	8/20/2018	< 0.05	< 0.03	< 0.15	< 0.15	< 0.15
B15-5	5	8/20/2018	< 0.05	< 0.03	< 0.15	< 0.15	< 0.15
B15-15	15	8/20/2018	< 0.05	< 0.03	< 0.15	< 0.15	< 0.15
B16-10	10	8/20/2018	< 0.05	< 0.03	<0.15	< 0.15	< 0.15
B16-29	29	8/20/2018	< 0.05	< 0.03	< 0.15	< 0.15	< 0.15
B17-5	5	8/20/2018	< 0.05	< 0.03	< 0.15	< 0.15	< 0.15
B17-15	15	8/20/2018	< 0.05	< 0.03	< 0.15	< 0.15	< 0.15
B18-5	5	8/20/2018	< 0.05	< 0.03	< 0.15	< 0.15	< 0.15
B18-15	15	8/20/2018	< 0.05	< 0.03	< 0.15	< 0.15	< 0.15
			AEG, 2	020			
B19-9	9	7/22/2020	< 0.05	< 0.03	< 0.15	< 0.15	< 0.15
B20-9	9	7/22/2020	< 0.05	< 0.03	< 0.15	< 0.15	< 0.15
B21-6	6	7/28/2020	< 0.05	< 0.03	<0.15	< 0.15	< 0.15
B21-11	11	7/28/2020	< 0.05	< 0.03	< 0.15	< 0.15	< 0.15

Table 1 - Summary of Soil Analytical Results

Lacey Urban Center (18-236) Olympia, Washington

Sample	Depth	Date		Chlorinated V	Volatile Organio	c Compounds	
Number	(feet)	Collected	PCE	TCE	cis-1,2 DCE	trans-1,2- DCE	Vinyl Chloride
B22-6	6	7/28/2020	< 0.05	< 0.03	< 0.15	< 0.15	< 0.15
B22-11	11	7/28/2020	< 0.05	< 0.03	< 0.15	< 0.15	< 0.15
B23-6	6	7/29/2020	< 0.05	< 0.03	< 0.15	< 0.15	< 0.15
B23-11	11	7/29/2020	< 0.05	< 0.03	< 0.15	< 0.15	< 0.15
MW1-6	6	7/29/2020	< 0.05	< 0.03	< 0.15	< 0.15	< 0.15
MW1-11	11	7/29/2020	< 0.05	< 0.03	< 0.15	< 0.15	< 0.15
MW2-6	6	7/29/2020	< 0.05	< 0.03	< 0.15	< 0.15	< 0.15
MW2-11	11	7/29/2020	< 0.05	< 0.03	< 0.15	< 0.15	< 0.15
MW3-6	6	7/30/2020	< 0.05	< 0.03	< 0.15	< 0.15	< 0.15
MW3-11	11	7/30/2020	< 0.05	< 0.03	< 0.15	< 0.15	< 0.15
B24-5/MW4-5	5	10/30/2020	< 0.03	< 0.02	< 0.03	< 0.03	< 0.02
B24-10/MW4-10	10	10/30/2020	< 0.03	< 0.02	< 0.03	< 0.03	< 0.02
B24-16/MW4-16	16	10/30/2020	< 0.03	< 0.02	< 0.03	< 0.03	< 0.02
B24-21/MW4-21	21	10/30/2020	< 0.03	< 0.02	< 0.03	< 0.03	< 0.02
B24-26/MW4-26	26	10/30/2020	< 0.03	< 0.02	< 0.03	< 0.03	< 0.02
B24-31/MW4-31	31	10/30/2020	< 0.03	< 0.02	< 0.03	< 0.03	< 0.02
B24-36/MW4-36	36	10/30/2020	< 0.03	< 0.02	< 0.03	< 0.03	< 0.02
B24-41/MW4-41	41	10/30/2020	< 0.03	< 0.02	< 0.03	< 0.03	< 0.02
B24-45/MW4-45	45	10/30/2020	< 0.03	< 0.02	< 0.03	< 0.03	< 0.02
B24-56/MW4-56	56	10/30/2020	< 0.03	< 0.02	< 0.03	< 0.03	< 0.02
B24-60/MW4-60	60	10/30/2020	< 0.03	< 0.02	< 0.03	< 0.03	< 0.02
B24-74/MW4-74	74	10/30/2020	< 0.03	< 0.02	< 0.03	< 0.03	< 0.02
B24-78/MW4-78	78	10/30/2020	< 0.03	< 0.02	< 0.03	< 0.03	< 0.02
B24-81/MW4-81	81	10/30/2020	< 0.03	< 0.02	< 0.03	< 0.03	< 0.02
MW5-40	40	10/30/2020	< 0.03	< 0.02	< 0.03	< 0.03	< 0.02
MW5-60	60	10/30/2020	< 0.03	< 0.02	< 0.03	< 0.03	< 0.02
MW5-75	75	10/30/2020	< 0.03	< 0.02	< 0.03	< 0.03	< 0.02
Lal	boratory PQL		0.03/0.05	0.02/0.03	0.03/0.15	0.03/0.15	0.02/0.15
MTCA Met	hod A Cleanup	Levels	0.05	0.03	*160	*1,600	*0.67

Notes:

All values are presented in milligrams per kilogram (mg/kg)

< = Not detected at the listed laboratory detection limits

PQL = Practical Quantification Limit (laboratory detection limit)

Red Bold indicates the detected concentration exceeds MTCA cleanup level

Bold indicates the detected concentration is below MTCA cleanup level

PCE = Tetrachloroethylene

TCE = Trichloroethylene

DCE = Dichloroethylene

* MTCA Method B cleanup level; Method A cleanup level not established

Table 2 - Summary of Groundwater Analytical Results

Lacey Urban Center (18-236)

Olympia, Washington

Sample/Well	Date		Halogenated	Volatile Organie	c Compounds	
Number	Collected	PCE	PCE TCE cis-1,2-DCE		trans-1,2-DCE	Vinyl Chloride
	Bor	ing Groundwate	er Results (Envi	itechnology)		
W14	8/20/2018	<1.0	< 0.4	<1.0	<1.0	< 0.2
		Boring Groun	dwater Results	(AEG)		
B21-W	7/28/2020	0.6	<0.4	<1.0	<1.0	< 0.2
B22-W	7/29/2020	1.6	< 0.4	<1.0	<1.0	< 0.2
B23-W	7/30/2020	1.3	< 0.4	<1.0	<1.0	< 0.2
		Monitoring	Well Results (A	EG)		
	7/30/2020	0.82	< 0.4	<1.0	<1.0	< 0.2
MW-1	10/16/2020	0.7 J	<0.4	<1.0	<1.0	< 0.2
	1/7/2021	<1.0	<0.4	<1.0	<1.0	< 0.2
	7/30/2020	0.66	<0.4	<1.0	<1.0	< 0.2
MW-2	10/16/2020	0.6J	<0.4	<1.0	<1.0	< 0.2
	1/7/2021	<1.0	<0.4	<1.0	<1.0	<0.2
	7/30/2020	<1.0	<0.4	<1.0	<1.0	< 0.2
MW-3	10/16/2020	<1.0	<0.4	<1.0	<1.0	< 0.2
	1/7/2021	<1.0	<0.4	<1.0	<1.0	<0.2
MW-4	1/7/2021	<1.0	<0.4	<1.0	<1.0	< 0.2
MW-5	1/7/2021	<1.0	<0.4	<1.0	<1.0	<0.2
PQ)L	1.0	0.4/1.0	1.0	1.0	0.2
MTCA Method A	A Cleanup Levels	5	5	16*	160*	0.2

Notes:

All values reported in micrograms per liter (μ g/L)

-- = Not analyzed for constituent

< = Not detected at the listed laboratory detection limits

PQL = Practical Quantification Limit (laboratory detection limit)

Red Bold indicates the detected concentration exceeds MTCA cleanup levels

Bold indicates the detected concentration is below MTCA cleanup levels

* MTCA Method B cleanup level; Method A cleanup level not established

PCE = Tetrachloroethylene

TCE = Trichloroethylene

DCE = Dichloroethylene

Table 3 - Summary of Groundwater Elevations

Well No./ TOC Elevation	Well Screen Interval	Date	Depth to Water	Depth to Free Product	Free Product Thickness	Apparent Groundwater Elevation	Actual Groundwater Elevation	Change in Elevation
MW-1		7/30/2020	31.00				168.15	
199.15	25-35	10/16/2020	24.20				174.95	6.80
		1/7/2021	20.89				178.26	3.31
MW-2		7/30/2020	31.00				167.33	
198.33	25-35	10/16/2020	24.18				174.15	6.82
		1/7/2021	20.60				177.73	3.58
MW-3		7/30/2020	30.00				168.65	
198.65	25-35	10/16/2020	21.80				176.85	8.20
		1/7/2021	17.44				181.21	4.36
MW-4		1/7/2021	24.82					
	75-80							
MW-5		1/7/2021	23.90					
	70-75							

Lacey Urban Center (18-236) Olympia, Washington

Notes:

All values reported in feet

TOC = Top of casing elevation relative to assigned benchmark.

-- = Not measured, not available, or not applicable

Table 4 - Summary of Soil Gas Analytical Results

Lacey Urban Center (18-236) Olympia, Washington

G 1		(Chlorinated	Volatile Org	ganic Compour	nds
Sample Number	Date Collected	PCE	TCE	cis-1,2- DCE	trans-1,2- DCE	Vinyl Chloride
		Envitec	hnology, 2()18		
SG1-5 (B-1)	7/20/2018	180	6.6	<4.0	<4.0	<2.6
SG2-5 (B-2)	7/20/2018	140	3.8	<4.0	<4.0	<2.6
SG3-5 (B-3)	7/20/2018	1,800	<2.7	<4.0	<4.0	<2.6
SG4-5 (B-4')	7/20/2018	430	<2.7	<4.0	<4.0	<2.6
SG5-5 (B-5')	7/20/2018	610	<2.7	<4.0	<4.0	<2.6
SG6-5 (B-6')	7/20/2018	350	<2.7	<4.0	<4.0	<2.6
SG7-5 (B-7)	8/21/2018	450	1.7	<4.0	<4.0	<2.6
SG8-5 (B-8)	8/21/2018	450	3.3	<4.0	<4.0	<2.6
SG10-5 (B-10)	8/21/2018	120	7.3	<4.0	<4.0	<2.6
SG11-5 (B-11)	8/21/2018	780	3.5	<4.0	<4.0	6.2
		AF	EG, 2020			
SG-1	7/29/2020	60	<1.8	<2.7	<2.7	<1.7
SG-2	7/29/2020	180	<1.8	<2.7	<2.7	<1.7
SG-3	7/29/2020	90	<1.8	<2.7	<2.7	<1.7
SG-4	7/29/2020	72	2.4	<2.7	<2.7	<1.7
SG-5	7/29/2020	270	<3.5	<5.2	<5.2	<3.3
SG-6	7/29/2020	76	<1.9	<2.8	<2.8	<1.8
	MTCA Method B Sub-Slab Screening Levels			NL	NL	9.33*

Notes:

All values presented in micrograms per cubic meter ($\mu g/m^3$)

< = Not detected above the laboratory practical quantitation limit (PQL)

* Cancer cleanup/screening level (all other constituents listed have non-cancer values)

Red Bold indicates the detected concentration exceeds MTCA Method B screening levels

Bold indicates the detected concentration is below MTCA Method B screening levels

NL = Not Listed; no screening level has been promulgated for these constituents

PCE = Tetrachloroethylene

TCE = Trichloroethylene

DCE = Dichloroethene

Table 5 - Summary of Sub-Slab Vapor and Indoor Air Analytical ResultsLacey Urban Center (18-236)Olympia, Washington

Sample ID		Indoor-1	Indoor-2	Ambient	Method B	SS-1	SS-2	Method B Sub-
Date Collected		10/29/2020	10/29/2020	10/29/2020	Indoor Air Cleanup Level	10/29/2020	10/29/2020	Slab Screening Level
	Vinyl Chloride	< 0.26	< 0.26	< 0.26	0.28*	<8.9	<1.8	9.33*
TO-15 - Volatile	trans-1,2-DCE	< 0.4	<0.4	< 0.4	NL	<14	<2.8	NL
Organic	cis-1,2-DCE	< 0.4	<0.4	< 0.4	NL	<14	<2.8	NL
Compounds	TCE	< 0.11	< 0.11	< 0.11	0.37*	<3.8	< 0.75	12.3*
I. I	PCE	<6.8	<6.8	<6.8	9.62*	1,600	410	321*

Notes:

All values presented in micrograms per cubic meter ($\mu g/m^3$)

-- = Not analyzed for constituent

< = Not detected above laboratory limits

* Cancer cleanup/screening level (all other constituents listed have non-cancer values)

Red Bold indicates the detected concentration exceeds MTCA Method B cleanup or screening levels

Bold indicates the detected concentration is below MTCA Method B cleanup or screening levels

NL = Not Listed; no cleanup/screening levels have been promulgated for these constituents

PCE = Tetrachloroethylene TCE = Trichloroethylene DCE = Dichloroethylene

Table 6 - Identification and Screening of Response Actions and Remediation Technologies, Lacey Urban Center, 7131-7269 Martin Way East, Olympia, Washington 98516

General Response Action	Technology/Options	Process Description	Applicability to Site Conditions	Effectiveness	Implementability	Relative Cost	Retain for Further Consideration	Reasons for Screening Decision
No Action	None		Not applicable. Contamination exceeds MTCA Method A cleanup levels	Unable to achieve RAOs. Not effective.	Not implementable	Low	Not retained	RAOs not achievable.
Institutional Controls	Site access and use restrictions	Legal Restrictions/environmental covenant limiting exposure to contamination. Deed restrictions to control soil excavation or access to groundwater.	Possibly applicable for closure after site demonstrates no off-property impacts	Effective at limiting exposure pathways to remaining contamination above CULs on-property, where disproportionate cost analysis demonstrates additional remediation not cost-effective.	Implementable	Low, with possible future monitoring requirements.	Retained	Environmental Covenant may be appropriate as part of a remedial option.
Monitored Natural Attenuation	Long term monitoring of affected media at Site	Actively and regularly monitor ongoing natural processes acting to reduce contaminant concentrations in affected media. Enhancement of natural attenuation processes possible through injection of chemicals or microbes to increase the rate of attenuation.	May be applicable	Effective on petroleum hydrocarbons where natural conditions determined to be conducive to attenuation.	Implementable	Low, with possible future monitoring requirements.	Retained	Could be appropriate remedial solution for residual contamination.
	Vertical Barriers	Impermeable subsurface slurry wall or dike constructed to prevent migration of contamination.	Not applicable	Can be effective for preventing lateral migration of contaminants. Not effective in reducing LNAPL or dissolved phase contamination.	Not implementable	High	Not retained	No LNAPL present with a number of utilities present make it impractical.
Containment	Hydraulic Containment	Groundwater pumping.	Not applicable	Not effective in Site-specific conditions.	Not implementable	High	Not retained	Low permeability soils make hydraulic containment ineffective at this site.
	Capping	Impervious concrete or asphalt surfaces over contamination, limiting exposure pathways at Site.	May be applicable	Effective at limiting exposure pathways to remaining contamination above CULs.	Implementable	Moderate	Retained	Site is currently capped in some areas with impermeable surfaces.
	Soil Excavation	Excavation and removal of contaminated soil.	Not applicable	Effective at removing PCS where accessible.	Not implementable	High	Not retained	Contaminated soil excavation is not appropriate with the building and sidewalk placement.
Removal	LNAPL Recovery	Extraction of LNAPL from groundwater table by pumping or skimming.	Not applicable	Effective at reducing LNAPL sources.	Not implementable	Moderate	Not retained	LNAPL not present at Site
	Groundwater Extraction	Pumping groundwater from extraction wells to ex-situ treatment system	Not applicable	Effective at removing dissolved phase contamination from groundwater.	Not implementable	High	Not retained	Groundwater not an issue at the Site.
Ex-Situ Treatment- Soil	Excavated soil treatment	Treatment and on-site reuse of contaminated soil.	Not applicable	Effective at reducing soil contamination levels.	Not implementable.	High, depending on methods of access and treatment.	Not retained	Not likely implementable at this Site. Possible permitting issues. Would require areas on the property to properly contain and treat contaminated soil.
	Activated Carbon Adsorption	Contaminated groundwater is passed through granular activated carbon (GAC) filters to absorb contaminants. Treated water may be discharged or reinjected.	Not applicale	Effective for reducing dissolved phase contamination in groundwater.	Not implementable	Moderate	Not retained	Groundwater not an issue at the Site.
Ex-Situ Treatment- Groundwater	Air Stripping	Extract groundwater to volatilize through air stripper.	Not applicable	Effective for reducing dissolved phase contamination in groundwater.	Not implementable	Moderate	Not retained	Groundwater not an issue at the Site.
	Chemical Oxidation	Injection of chemical oxidants such as ozone or hydrogen peroxide into extracted groundwater.	Not applicable	Effective for reducing dissolved phase contamination in groundwater.	Not Implementable	High	Not retained	Groundwater not an issue at the Site.

Table 6 - Identification and Screening of Response Actions and Remediation Technologies, Lacey Urban Center, 7131-7269 Martin Way East, Olympia, Washington 98516

General Response Action	Technology/Options	Process Description	Applicability to Site Conditions	Effectiveness	Implementability	Relative Cost	Retain for Further Consideration	Reasons for Screening Decision
	Air/Ozone Sparging	Air or ozone injection into the subsurface to volatilize contamination and provide oxygen for enhanced aerobic biodegradation.	Applicable	Effective for reducing dissolved phase contamination in groundwater.	Not implementable	Moderate	Not retained	Groundwater not an issue at the Site.
In-Situ Treatment, Soil and Groundwater	Soil Vapor Extraction	Extract volatile contaminants by applying a vacuum to subsurface. Collected gasses would require additional treatment in vapor phase- GAC filter or through thermal treatment prior to discharge.	Applicable	Effective for reducing dissolved phase contamination.	Implementable	Moderate	Retained	Appropriate for soils at the Site.
	High Vacuum Dual-Phase Extraction	Extract volatile and dissolved phase contaminants by applying a vacuum to subsurface. Collected water and soil gasses would require additional treatment in liquid and vapor phase-GAC filters .	Not applicable	Effective for reducing dissolved phase contamination.	Implementable	Moderate	Not retained	Groundwater not an issue at the Site.
	In-Situ Chemical Injection	Injection of chemicals and substances promoting degradation of contamination into the subsurface.	Applicable	Effective for reducing dissolved phase contamination.	Implementable	Moderate	Retained	Appropriate for soils at the Site.
	Enhanced Bioremediation	Injection of chlorinated hydrocarbon-degrading microbes along with other substances to provide additional biodegradation in the subsurface	Applicable	Can be effective.	Implementable	Moderate	Retained	Appropriate for groundwater and soils at the Site and deeper groundwater table.
	Electrical Resistance Heating	Heat subsurface by heated water, steam or electrical resistance to volatilize contamination.	Applicable	Effective for reducing dissolved phase contamination in groundwater.	Implementable	High	Retained	Appropriate for soils at the Site and groundwater table but the limitations of ERH needs large area of equipment makes this option very costly and will impede site activities.

	Alternative 1		Alternative 2		Alternative 3			
	Alternative 1, No Action		Alternative 2, Soil Vapor Extraction (SVE)		Alternative 3, Vapor Mitigation System and Environmental Covenant. Results showed PCE vapors were not impacting indoor air above MTCA			
	Alternative1 includes EIM submittals and existing monito abandonment.	ring well	Alternative 2 includes the installation and operation of compliance air sampling, confirmatory soil sampling, a decommissioning.	ind system	cleanup levels as the building slab is likely acting as a cap and preventing vapor from migrating into indoor air. However, sub-slab vapor concentrations of PCE were deemed high enough that they had the potential to affect indoor air at some point in the future.			
				a permanent cleanup is unable to be performed due to accessibility, stitutional controls via an environmental covenant on the property would be beded to achieve cleanup standards.		nants, a sub-slab ystems reduce the sure barrier to the		
Description of Alternative	ription of Alternative				interior air space. SSDs are often deployed in existing installing collection sumps equipped with extraction fair vapor enters the piping and sumps, and is then dischar the outside atmosphere. Following installation of the SSD system, institutional of	ns. The volatile arged by the fan to controls in the		
					fomr of an environmental covenant would be needed t cleanup standards.	o achieve mitca		
		SCORE		SCORE		SCORE		
-			Protectiveness					
Overall protectiveness Reduces existing risks	Not as protective when complete Reduces risks when implemented	1	More protective when complete Reduces risks when implemented	4 4	More protective when complete Reduces risks when implemented	4 4		
Time required to reduce risk	Longer duration required with less certainty	1	Medium duration to reduce risks	4 4	Medium duration to reduce risks	4 4		
On-Site risks	Reduces risk with lower level of certainty	1	Reduces risks with a moderate level of certainty	4	Reduces risks with a moderate level of certainty	4		
Off-Site risks	Reduces risk with lower level of certainty	1	Reduces risks with a moderate level of certainty	4	Reduces risks with a moderate level of certainty	4		
Improvement in environmental quality	Low level of improvement	1	Moderate to high level of improvement	4	Moderate to high level of improvement	4		
Criterion Score x wei	ighting factor (average* 0.30)	0.30		1.20		1.20		
	1		Permanence		1			
Reduces toxicity, mobility, and volume	Longer term reduction	1	Reduces toxicity, mobility, and volume rapidly. May leave some toxicity in place under building or in vadose zone soils.	4	Longer term reduction. May leave some toxicity in place under building or in vadose zone soils.	3		
Degree of irreversibility	Can be reversed	1	Irreversible. Waste treated in-situ.	4	Irreversible. Waste treated in-situ.	4		
Waste characteristics	No waste generated from action. Some waste from monitoring.	5	Solid waste from monitoring and air treatment operations.	4	Some waste generated from action. No waste from monitoring.	4		
		0.58	Long-Term Effectiveness	1.00	montoring.	0.92		
					Mandamata in Manufactura and in state			
Degree of Certainty	Low certainity.	1	Moderately certain. May leave some waste in place under the building vadose zone soils.	4	Moderately certain. May leave some waste in place under the building vadose zone soils.	4		
Reliability	Low reliable	1	Reliable and proven Moderate to High level based on potential to leave	5	Reliable and proven Moderate to High level based on potential to leave	5		
Residual Risk	Low	1	residuals in soil.	4	residuals in soil.	4		
Technology hierarchy	Low rank - treats in-situ	1	Mid rank - treats in-situ	4	Mid rank - treats in-situ	4		
Criterion Score x wei	ighting factor (average* 0.20)	0.20		0.85		0.85		
			Short-Term Risk Management		1			
During construction	Low risk	5	Moderate risks associated with system installation, utilities, and traffic	3	Low risk disruption to indoor tenants.	4		
Effectiveness of risk management	Effective	5	Moderately effective	4	Moderately effective	4		
Criterion Score x we	ighting factor (average* 0.05)	0.25		0.18		0.20		
			Implementability		1			
Technically possible	Possible	5	Possible, demonstrated at similar sites. Possible issues with residuals in Site soils.	4	Possible, demonstrated at similar sites. Possible issues with residuals in Site soils.	3		
Access Availability of necessary resources	Not Difficult Readily available	<u>5</u> 5	Moderately accessible Readily available	<u>3</u> 5	Moderately to Easily accessible Readily available	4 5		
Monitoring requirements	Low to None	5	Moderate	1	Low monitoring required	4		
Integration with existing features	Possible	5	Moderate	3	No Changes required	1		
Criterion Score x we	ighting factor (average* 0.05)	0.25		0.16		0.17		
			Public Concerns					
Public Concerns	Leaves contamination in place and possible concerns with off site migration	5	Treats contamination in place. May leave residuals under the building and/or in vadose zone soils.	4	Treats contamination in place. May leave residuals under building and/or in vadose zone soils.	4		
Criterion Score x we	ighting factor (average* 0.10)	0.50		0.40		0.40		
			Restoration Time Frame					
Restoration Time Frame	Long time frame (15-20 years)	1	Short to moderate time frame (2-3 years)	4	Short time frame (1-3 years)	5		
	ighting factor (average* 0.05)	0.05		0.20		0.25		
Alternative Benefit Value	2.13		3.99	3.99				
Estimated Alternative Cost to Closure	Estimated Alternative Cost to Closure \$10,477			\$294,570 \$82,838				
Cost per Benefit Value	\$73,920 \$20,779							
* Alternative Benefit Values are determined by multiplying crit	terion scores by weighting factors described in Section 10.4				• · · · · · · · · · · · · · · · · · · ·			

APPENDIX A

Site Photographs

2633 Parkmont Lane SW, Suite A • Olympia, WA • 98502 Phone: 360-352-9835 • Fax: 360-352-8164 • Email: admin@aegwa.com

SITE PHOTOGRAPHIC RECORD

Lacey Urban Center AEG Project #18-236

Photo *Installation of monitoring well MW-5 facing* #1: *northeast.*

Photo *Installation of monitoring well MW-4 facing* #2: *north.*

Photo #3: *Typical soil profile from location B-19 sand/silts.*

Photo Deep soil profile from location MW-4 silts/sands #4: with gravels.

SITE PHOTOGRAPHIC RECORD

Lacey Urban Center AEG Project #18-236

APPENDIX B

Supporting Documents: Boring Logs Laboratory Datasheets TEE Form

å

EGE	nviro	iated onmental o, LLC	BORING AND WELL LOG LEGEND
LITHOLOGY WATER LEVEL WELL RORING	COMPLETION Sample Type		DESCRIPTION
		Poorly grad Silty GRAVI Clayey GRA Well-graded Poorly grad Well-graded Poorly grad Well-graded Poorly grad Silty SAND Clayey SAN Well-graded Poorly grad Silty SAND Clayey SAN Well-graded Poorly grad SILT (ML) Lean CLAY Organic SC Elastic SILT Fat CLAY (0 Organic SC Organic SC PEAT (PT) Volume Des Trace = <59 Few = 5-10 Little = 15-2 Some = 30 Mostly = >= Water Leve Water Leve Cap Riser Screen End Plug Annular Ses Sanitary Se Filter Pack Backfill Grab Encore Split Spoon Shelby Tub Core Barrel Direct Push	Nock PHIC Rock ARY Rock IGRAVEL (GV) ad GRAVEL (GP) L (GM) VEL (GC) IGRAVEL with silt (GV-GM) ad GRAVEL with silt (GV-GC) ad GRAVEL with clay (GP-GC) (GAVEL with clay (GP-GC) (SAMD (SP) (SMD (SP) (SMD (SP) (SMD (SP) (SMD (SP) (SAMD with clay (SP-SC) (CL) L (CL) (MH) SAND with clay (SP-SC) (CL) L (OL) (MH) SHD L (OLO) (MH) SHD SAND with clay (SP-SC) (CL) L (OLD) (MH) SHD L (OLO) (MH) SHD L (OLO) (MH) SHD SHD SHD SHD SHD SHD SHD SHD

Associated Environmental Group, LLC	Client: AEG-CLIENTS Project: 18-236 Address: 7131-7269 Martin Way East, Olympia, WA Boring Depth (ft): 12.0	BORING LOG Boring No. B-19 Page: 1 of 1
Drilling Start Date: 07/22/2020 12:25 Drilling End Date: 07/22/2020 13:07 Drilling Company: Cascade Drilling Method: Direct Push Drilling Equipment: Limited Acces Geoprobe Driller: Scott Logged By: B. Dilba	Boring Diameter (in): 2.00	ct Push
DEPTH (ft) LITHOLOGY WATER LEVEL COMPLETION Sample Type Blow Counts Recovery (ft)	SOIL/ROCK VISUAL DESCRIPTION	PID (ppm) Lab Sample DEPTH (ft)
	(0') Concrete (0.5') Silty GRAVEL with sand (GM); mostly fine-coarse grained of fine-coarse sand, poorly graded, dense, dry, light reddish-brown (7.5') SILT with gravel (ML); few fine gravel, mostly silt, nonplasti light reddish-brown (9.5') Silty GRAVEL with sand (GM); mostly fine-coarse grained of fine-coarse sand, dense, dry, light reddish-brown (12') Boring terminated	c, medium stiff, moist,
20 NOTES:		20

Associ Enviro Group,	nmental	Client:AEG-CLIENTSProject:18-236Address:7131-7269 Martin Way East, Olympia, WA	BORING L Boring No. B-20 Page: 1 of 1	OG
Drilling Start Date:07/22/2020Drilling End Date:07/22/2020Drilling Company:CascadeDrilling Method:Direct PushDrilling Equipment:Limited AcDriller:ScottLogged By:B. Dilba	12:20 h	Boring Depth (ft):9.0Boring Diameter (in):2.00Sampling Method(s):DireDTW During Drilling (ft):N/ADTW After Drilling (ft):N/AGround Surface Elev. (ft):Location (Lat, Long):	ect Push	
H (ft) H (ft) H (ft) H (ft)	Blow Counts Recovery (ft)	SOIL/ROCK VISUAL DESCRIPTION		EASURE Lab Sample DEPTH (ft)
0 DP 11 DP 11 5 DP 12 DP 12 10 10 10 15 15 15 15 15 15 15 15 15 15		(0') Concrete (0.5') Silty GRAVEL with sand (GM); mostly fine-coarse grained fine-coarse sand, poorly graded, dense, dry, light reddish-brown (9') Boring terminated		B20-3

Drilling Start Date:	Associa Enviror Group,	nmei LLC	ntal	Client: Project: Address:	AEG-CLIEN 18-236 7131-7269 I Olympia, W	Martin Way East,	Boring No. Page:	BORING B-21 1 of 2	LOG	6	
Drilling Start Date: Drilling End Date: Drilling Company: Drilling Method: Drilling Equipment: Driller: Logged By:	07/28/2020 Cascade Hollow Ster	09:34 n Auge				Boring Diameter (in): 0	t Spoon				
DEPTH (ft) LITHOLOGY WATER LEVEL	BORING COMPLETION Sample Type	Blow Counts	Recovery (ft)		SOIL	ROCK VISUAL DESCRIPTION			MEAS (mdd) OIA	Lab Sample BU	DEPTH (ft)
	SS 09: SS 09: SS 09: SS 09:	 6 6 7 10 13 15 09 37 31 25 	1.50			GP); mostly fine-coarse grained g ry, light reddish-brown	ravel, trace			B21-6 B21-11	0 5 5 10 10 10 110 115 15 12
NOTES:											

Associated Environmental Group, LLC Drilling Start Date: 07/28/2020 08:55	Client: AEG-CLIENTS Project: 18-236 Address: 7131-7269 Martin Way East, Olympia, WA Boring Depth (ft): 34.0	BORING LOG Boring No. B-21 Page: 2 of 2
Drilling End Date:07/28/2020 09:34Drilling Company:CascadeDrilling Method:Hollow Stem AugerDrilling Equipment:Truck Mounted AugerDriller:JamesLogged By:B. Dilba	Boring Diameter (in):0Sampling Method(s):SplitDTW During Drilling (ft):31.0DTW After Drilling (ft):N/AGround Surface Elev. (ft):Location (Lat, Long):	
DEPTH (ft) LITTHOLOGY WATER LEVEL BORING COMPLETION Sample Type Ime Blow Counts Recovery (ft)	SOIL/ROCK VISUAL DESCRIPTION	PID (ppm) Lab Sample DEPTH (ft)
	(0.5') Poorly graded GRAVEL (GP); mostly fine-coarse grained g medium-coarse sand, dense, dry, light reddish-brown (31') Wet (34') Boring terminated	ravel, trace
40 NOTES: Water sample B21-W collecte	d at 30-34 ft bgs.	40

AEG	Associated Environmental Group, LLC	Client:AEG-CLIENTSProject:18-236Address:7131-7269 Martin Way East, Olympia, WA	BORIN Boring No. B-22 Page: 1 of 2	G LOG
Drilling End Date: Drilling Company: Drilling Method:	07/28/2020 10:46 07/28/2020 11:33 Cascade Hollow Stem Auger Truck Mounted Auger James B. Dilba	Boring Depth (ft):0Boring Diameter (in):0Sampling Method(s):SplitDTW During Drilling (ft):31.0DTW After Drilling (ft):N/AGround Surface Elev. (ft):Location (Lat, Long):	: Spoon	
DEPTH (ft) LITHOLOGY WATER LEVEL	BORING COMPLETION Sample Type Time Blow Counts Recovery (ft)	SOIL/ROCK VISUAL DESCRIPTION		PID (ppm) Lab Sample DEPTH (ft)
	SS 10:57 11 1.50 12 12 12 12 12 12 SS 11:10 7 1.50 SS 11:10 7 1.50 SS 11:15 12 1.50 SS 11:15 12 1.50 SS 11:23 13 1.50 SS 11:23 13 1.50	(0') Asphalt (0.5') Poorly graded GRAVEL (GP); mostly fine-coarse grained g medium-coarse sand, dense, dry, light reddish-brown (16') SILT with gravel (ML); few fine gravel, mostly silt, nonplastic reddish-brown		
NOTES:				

Drilling Sam Date: 07282020 11:33 Boring Daty 0 Drilling Company Cascade Boring Daty 0 Drilling Company Cascade Boring Daty 9 Drilling Company Concol Singling Methods: Split Spoon Drilling Company Truck Mounted Auger DTW During Diffing (th: 31.0 DTW After Dolling (th: 20.1 Drilling Company NA Concol Surface Eleve. (th: Long): Location (Lat. Long):	Associated Environmental Group, LLC	Client: AEG-CLIENTS Project: 18-236 Address: 7131-7269 Martin Way East, Olympia, WA	BORING LOG Boring No. B-22 Page: 2 of 2
UP UP<	Drilling End Date:07/28/2020 11:33Drilling Company:CascadeDrilling Method:Hollow Stem AugerDrilling Equipment:Truck Mounted AugerDriller:James	Boring Diameter (in):0Sampling Method(s):SplitDTW During Drilling (ft):31.0DTW After Drilling (ft):N/AGround Surface Elev. (ft):	
15 1.0.0 (16) BLT with gravel (ML); few fine gravel, mostly slit, nonplastic, sliff, molst, light 8221 1 1.5 1.5 1.5 1.5 1.5 25 1.5 1.5 1.5 1.5 1.5 30 55 11.32 19 1.5 1.5 30 55 11.32 19 1.5 1.5 30 55 11.32 19 1.5 1.5 30 55 11.32 19 1.5 1.5 30 55 11.32 19 1.5 1.5 30 55 11.32 19 1.5 1.5 30 55 11.32 19 1.5 1.5 30 55 11.32 19 1.5 1.5 30 5 5 1.3 1.5 1.5 30 5 5 1.3 1.5 1.5 30 5 5 1.4 1.5 1.5 30 5 5 5 5 5 30		SOIL/ROCK VISUAL DESCRIPTION	E E
	$ \begin{array}{c} $	(30') Wet	c, stiff, moist, light

AEG	Asso Envir Grou	onm p, Ll	nei LC		Client: Project: Address:	AEG-CLIEN 18-236 7131-7269 Olympia, V	Martin Way East, /A	l Boring No. Page:	BORING B-23 1 of 2	G LOC	3	
Drilling Start Date: Drilling End Date: Drilling Company: Drilling Method: Drilling Equipment Driller: Logged By:	07/29/20 Cascade Hollow S	20 11:1 e Stem A ounted	15 uge				Boring Depth (ft):0Boring Diameter (in):0Sampling Method(s):SplitDTW During Drilling (ft):31.0DTW After Drilling (ft):N/AGround Surface Elev. (ft):Location (Lat, Long):					
DEPTH (ft) LITHOLOGY WATER LEVEL	BORING COMPLETION Sample Type	COLLE	Blow Counts D	Recovery (ft)		SOIL	/ROCK VISUAL DESCRIPTION			MEAS (mdd) OIA	Lab Sample	DEPTH (ft)
	SS	10:39	4 5 7	1.50			GP); mostly fine-coarse grained g Iry, light reddish-brown	ravel, trace			-	0 - - -
5	SS	10:45	12 13 13	1.50							B23-6	5 - - - - 10
	SS	10:48	50 0 0	0.50								- -
	SS		21 23 26	1.50							B23-16 - - -	-
20 NOTES:												20

Associated Environment Group, LLC	Client: AEG-CLIENTS Project: 18-236 Address: 7131-7269 Martin Way East, Olympia, WA	BORING LOG Boring No. B-23 Page: 2 of 2
Drilling End Date:07/29/2020 11:15Drilling Company:CascadeDrilling Method:Hollow Stem AugerDrilling Equipment:Truck Mounted AugeDriller:JamesLogged By:B. Dilba	Boring Diameter (in):0Sampling Method(s):SplitDTW During Drilling (ft):31.0	
DEPTH (ft) LITHOLOGY WATER LEVEL COMPRING COMPRING COMPRING Sample Type Blow Counts Blow Counts	SOIL/ROCK VISUAL DESCRIPTION	PID (ppm) Lab Sample DEPTH (ft)
26	00 (0.5') Poorly graded GRAVEL (GP); mostly fine-coarse grained gr 00 (26') Poorly graded GRAVEL (GP); mostly fine-coarse grained gr 50 (26') Poorly graded GRAVEL (GP); mostly fine-coarse grained gr 50 (26') Poorly graded GRAVEL (GP); mostly fine-coarse grained gr 50 (34') Boring terminated	B23-26 25
NOTES:		

	Associated Environmental Group, LLC	Client: AEG-CLIENTS Project: 18-236 Address: 7131-7269 Martin Way East, Olympia, WA	WELL LOG Well No. MW-1 Page: 1 of 2
Drilling End Date: Drilling Company: Drilling Method:	07/29/2020 07:34 07/29/2020 08:31 Cascade Hollow Stem Auger Truck Mounted Auger James B. Dilba	Boring Diameter (in):0WeilSampling Method(s):Split SpoonScreetDTW During Drilling (ft):31.0RiseDTW After Drilling (ft):N/AScreetTop of Casing Elev. (ft):Sea	I Depth (ft):35.0I Diameter (in):2.0een Slot (in):0.010er Material:Sch 40 PVCeen Material:Sch 40 PVC SlottedI Material(s):Bent. Chipser Type:Sand
DEPTH (ft) LITHOLOGY WATER LEVEL	WELL COMPLETION Sample Type Time Blow Counts Recovery (ft)	SOIL/ROCK VISUAL DESCRIPTION	PID (ppm) Lab Sample DEPTH (ft)
	SS 07:40 4 0.50 4 5 16 1.50 SS 07:46 16 1.50 SS 07:52 50 0.50 SS 07:52 50 0.50 0 0 16 1.50 SS 08:02 16 1.50 21 29 1.50 1.50	(0') Asphalt (0.5') Poorly graded GRAVEL (GP); mostly fine-coarse grained medium-coarse sand, dense, dry, light reddish-brown	d gravel, trace
NOTES: Ec	ology ID#: BLK 961		

Associated Environmental Group, LLC	Client: AEG-CLIENTS Project: 18-236 Address: 7131-7269 Martin Way East, Olympia, WA	WELL LOG Well No. MW-1 Page: 2 of 2
Drilling Start Date:07/29/2020 07:34Drilling End Date:07/29/2020 08:31Drilling Company:CascadeDrilling Method:Hollow Stem AugerDrilling Equipment:Truck Mounted AugerDriller:JamesLogged By:B. Dilba	Boring Diameter (in):0WellSampling Method(s):Split SpoonScreetDTW During Drilling (ft):31.0RiseDTW After Drilling (ft):N/AScreetTop of Casing Elev. (ft):Sea	I Depth (ft):35.0I Diameter (in):2.0een Slot (in):0.010er Material:Sch 40 PVCeen Material:Sch 40 PVC SlottedIl Material(s):Bent. Chipser Type:Sand
DEPTH (ft) LITHOLOGY WATER LEVEL COMPLETION Sample Type Time Blow Counts Recovery (ft)	SOIL/ROCK VISUAL DESCRIPTION	MEASURE Lab Sample DEPTH (ft)
	(0.5') Poorly graded GRAVEL (GP); mostly fine-coarse grained medium-coarse sand, dense, dry, light reddish-brown (36.5') Boring terminated	20 d gravel, trace
NOTES: Ecology ID#: BLK 961 Water	ample MW1-W collected at 30-35.0 ft bgs.	

AEG	Associated Environmental	Client: AEG-CLIENTS Project: 18-236 Address: 7131-7269 Martin Way East, Olympia, WA	WELL LOG Well No. MW-2 Page: 1 of 2
Drilling End Date: Drilling Company: Drilling Method:	07/29/2020 13:14 07/29/2020 14:21 Cascade Hollow Stem Auger : Truck Mounted Auger James B. Dilba	Boring Diameter (in):0WellSampling Method(s):Split SpoonScreetDTW During Drilling (ft):31.0RiseDTW After Drilling (ft):N/AScreetTop of Casing Elev. (ft):Sea	Depth (ft):35.0Diameter (in):2.0een Slot (in):0.010er Material:Sch 40 PVCeen Material:Sch 40 PVC SlottedI Material(s):Bent. Chipsr Type:Sand
DEPTH (ft) LITHOLOGY WATER LEVEL	WELL COMPLETION Sample Type Ime Time Blow Counts Recovery (ft)	SOIL/ROCK VISUAL DESCRIPTION	PID (ppm) Lab Sample DEPTH (ft)
	SS 13:22 4 1.50 5 7 5 7 7 1.50 SS 13:24 15 1.50 11 1.50 1.1 1.50 SS 13:31 23 1.00 SS 13:35 37 0.00 SS 13:35 37 0.00 SS 13:35 37 0.00	(0') Asphalt (0.5') Poorly graded GRAVEL (GP); mostly fine-coarse grained medium-coarse sand, dense, dry, light reddish-brown	d gravel, trace
NOTES: Ec	ology ID#: BLK 962		

Associate Environm Group, LL	ental Pr	ent: AEG-CLIEN oject: 18-236 Idress: 7131-7269 M Olympia, W	Martin Way East,	Well No. Page:	WELL MW-2 2 of 2	LOG	
Drilling Start Date:07/29/2020 13:1Drilling End Date:07/29/2020 14:2Drilling Company:CascadeDrilling Method:Hollow Stem AuDrilling Equipment:Truck MountedDriller:JamesLogged By:B. Dilba	1 Iger	Boring Depth (ft): Boring Diameter (in): Sampling Method(s): DTW During Drilling (ft): DTW After Drilling (ft): Top of Casing Elev. (ft): Location (Lat, Long):	0 Split Spoon 31.0 N/A	Well Depth (ft): Well Diameter (in): Screen Slot (in): Riser Material: Screen Material: Seal Material(s): Filter Type:	35.0 2.0 0.010 Sch 40 PV Sch 40 PV Bent. Chip Sand	C Slotted	
DEPTH (ft) LITHOLOGY WATER LEVEL COMPLETION Sample Type	Blow Counts T2 Recovery (ft)	SOIL	./ROCK VISUAL DESCRIPT	ION		PID (ppm) Lab Sample	DEPTH (ft)
20 	25 1.50 28 35 1.00 50 0 0 (3	0.5') Poorly graded GRAVEL hedium-coarse sand, dense,	. (GP); mostly fine-coarse gra dry, light reddish-brown	ined gravel, trace		MW2-26	20 25 25 30 30 30 35 35 35 35 35 36 36 36 37

Drilling Start Date: 07/30/2020 08:58		
Drilling End Date: 07/30/2020 10:10 Drilling Company: Cascade Drilling Method: Hollow Stem Auger Drilling Equipment: Truck Mounted Auger Driller: James Logged By: B. Dilba	Boring Diameter (in):0WSampling Method(s):Split SpoonSoDTW During Drilling (ft):30.0RiDTW After Drilling (ft):N/ASoTop of Casing Elev. (ft):So	Vell Depth (ft):35.0Vell Diameter (in):2.0creen Slot (in):0.010iser Material:Sch 40 PVCcreen Material:Sch 40 PVC Slottedeal Material(s):Bent. ChipsIter Type:Sand
DEPTH (ft) LITHOLOGY WATER LEVEL WATER LEVEL COMPLETION Sample Type Time Blow Counts	SOIL/ROCK VISUAL DESCRIPTIO	MEASURE PID (ppm) Lab Sample DEPTH (ft)
0 - - - - - - - - - - - - -	50	0 hed gravel, trace 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Associated Environmenta Group, LLC	Client:AEG-CLIENTSProject:18-236Address:7131-7269 Martin Way East, Olympia, WA	WELL LOG Well No. MW-3 Page: 2 of 2
Drilling Start Date:07/30/2020 08:58Drilling End Date:07/30/2020 10:10Drilling Company:CascadeDrilling Method:Hollow Stem AugerDrilling Equipment:Truck Mounted AugerDriller:JamesLogged By:B. Dilba	Boring Diameter (in):0WellSampling Method(s):Split SpoonScreetDTW During Drilling (ft):30.0RiseDTW After Drilling (ft):N/AScreetTop of Casing Elev. (ft):ScreetScreet	I Depth (ft):35.0I Diameter (in):2.0een Slot (in):0.010er Material:Sch 40 PVCeen Material:Sch 40 PVC SlottedI Material(s):Bent. Chipser Type:Sand
DEPTH (ft) LITHOLOGY WATER LEVEL COMPLETION Sample Type Sample Type Derovary (ft)	SOIL/ROCK VISUAL DESCRIPTION	MEASURE (mpd) DID Lab Sample DEPTH (ft)
	medium-coarse sand, dense, dry, light reddish-brown	20 d gravel, trace
NOTES: Ecology ID#: BLK 963		

Associated Environmental Group, LLC	Client: AEG-CLIENTS Project: 18-236 Address: 7131-7269 Martin Way East, Olympia, WA	WELL LOG Well No. MW-4 Page: 1 of 5
Drilling Start Date:10/29/2020 09:52Drilling End Date:10/30/2020 08:56Drilling Company:CascadeDrilling Method:Hollow Stem AugerDrilling Equipment:Truck Mounted Auger RIgDriller:JamesLogged By:B. Dilba	Boring Diameter (in):8.00WellSampling Method(s):Split SpoonScreeDTW During Drilling (ft):28.0RiseDTW After Drilling (ft):N/AScreeGround Surface Elev. (ft):Seal	Depth (ft):80.0Diameter (in):2.0ten Slot (in):0.010tr Material:Sch 40 PVCten Material:Sch 40 PVC SlottedMaterial(s):Bent. Chipstr Type:Sand
DEPTH (ft) LITHOLOGY WATER LEVEL WATER LEVEL COMPLETION Sample Type Time Diaw Counts Blow Counts Recovery (ft)	SOIL/ROCK VISUAL DESCRIPTION	PID (ppm) Lab Sample DEPTH (ft)
	(0') Asphalt (0.5') Poorly graded SAND with silt (SP-SM); mostly coarse gra gravel, some silt, medium dense, dry, dark reddish-brown (6') Poorly graded GRAVEL with sand (GP); mostly fine-coarse fine-coarse sand, dense, moist, light bluish-gray	B24-5 5
NOTES: Ecology Well ID#:		

Associated Environmental Group, LLC	Client:AEG-CLIENTSProject:18-236Address:7131-7269 Martin Way East, Olympia, WA	WELL LOG Well No. MW-4 Page: 2 of 5
Drilling Start Date:10/29/2020 09:52Drilling End Date:10/30/2020 08:56Drilling Company:CascadeDrilling Method:Hollow Stem AugerDrilling Equipment:Truck Mounted Auger RIgDriller:JamesLogged By:B. Dilba	Boring Diameter (in):8.00WellSampling Method(s):Split SpoonScreetDTW During Drilling (ft):28.0RiseDTW After Drilling (ft):N/AScreetGround Surface Elev. (ft):Seal	Depth (ft):80.0Diameter (in):2.0een Slot (in):0.010er Material:Sch 40 PVCeen Material:Sch 40 PVC SlottedMaterial(s):Bent. Chipsr Type:Sand
DEPTH (ft) LITHOLOGY WATER LEVEL COMPLETION Sample Type Blow Counts Recovery (ft)	SOIL/ROCK VISUAL DESCRIPTION	MEASURE (bbm) (t) DEPTH (f) DEPTH (f)
20 20 	(6') Poorly graded GRAVEL with sand (GP); mostly fine-coarse fine-coarse sand, dense, moist, light bluish-gray (30') Poorly graded GRAVEL (GP); mostly fine grained gravel, saturated, light bluish-gray	B24-26
NOTES: Ecology Well ID#:		

AEG Env	sociated vironmental oup, LLC	Client: AEG-CLIENTS Project: 18-236 Address: 7131-7269 Martin Way East, Olympia, WA	WELL LOG Well No. MW-4 Page: 3 of 5
Drilling Start Date:10/29Drilling End Date:10/30Drilling Company:CaseDrilling Method:HolloDrilling Equipment:TruckDriller:JameLogged By:B. Di	0/2020 08:56 cade ow Stem Auger k Mounted Auger Rig es	Boring Diameter (in):8.00WeilSampling Method(s):Split SpoonScreetDTW During Drilling (ft):28.0RiseDTW After Drilling (ft):N/AScreetGround Surface Elev. (ft):Sea	II Depth (ft):80.0II Diameter (in):2.0een Slot (in):0.010er Material:Sch 40 PVCeen Material:Sch 40 PVC Slottedal Material(s):Bent. Chipser Type:Sand
DEPTH (ft) LITHOLOGY WATER LEVEL COMPLETION	Sample Type Time Blow Counts Recovery (ft)	SOIL/ROCK VISUAL DESCRIPTION	PID (ppm) MEASOLE Lab Sample DEPTH (ft)
	SS 11:33 50 0.50 SS 13:15 0.00 SS 12:52 50 0.50	(30') Poorly graded GRAVEL (GP); mostly fine grained gravel, saturated, light bluish-gray	
NOTES: Ecology	Well ID#:		

	Address: Olympia, WA	Page: 4 of 5
Drilling Start Date:10/29/2020 09:52Drilling End Date:10/30/2020 08:56Drilling Company:CascadeDrilling Method:Hollow Stem AugerDrilling Equipment:Truck Mounted Auger RIgDriller:JamesLogged By:B. Dilba	Boring Diameter (in):8.00WSampling Method(s):Split SpoonSoDTW During Drilling (ft):28.0RiDTW After Drilling (ft):N/ASoGround Surface Elev. (ft):So	Bell Depth (ft):80.0ell Diameter (in):2.0reen Slot (in):0.010ser Material:Sch 40 PVCreen Material:Sch 40 PVC Slottedal Material(s):Bent. Chipsser Type:Sand
DEPTH (ft) LITHOLOGY WATER LEVEL COMPLETION Sample Type Sample Type Blow Counts Blow Counts Recovery (ft)	SOIL/ROCK VISUAL DESCRIPTIO	PID (ppm) Hab Sample DEPTH (ft)
60 65 65 65 70 70 65 65 70 70 70 70 70 70 70 70 70 70	(55.5') Poorly graded SAND (SP); mostly fine grained sand, light reddish-brown (73') Poorly graded SAND (SP); mostly fine-medium grained wet, dark bluish (77.5') Poorly graded SAND (SP); mostly fine grained sand, dark bluish	sand, medium dense,

Associated Environmenta Group, LLC	Client: AEG-CLIENTS Project: 18-236 Address: 7131-7269 Martin Way East, Olympia, WA	WELL LOG Well No. MW-4 Page: 5 of 5
Drilling Start Date:10/29/2020 09:52Drilling End Date:10/30/2020 08:56Drilling Company:CascadeDrilling Method:Hollow Stem AugerDrilling Equipment:Truck Mounted Auger RIDriller:JamesLogged By:B. Dilba	Boring Diameter (in):8.00WeilSampling Method(s):Split SpoonScruDTW During Drilling (ft):28.0RiseDTW After Drilling (ft):N/AScruGround Surface Elev. (ft):Sea	I Depth (ft):80.0I Diameter (in):2.0een Slot (in):0.010er Material:Sch 40 PVCeen Material:Sch 40 PVC SlottedIl Material(s):Bent. Chipser Type:Sand
DEPTH (ft) LITHOLOGY WATER LEVEL COMPLETION Sample Type Time Blow Counts Recovery (ft)	SOIL/ROCK VISUAL DESCRIPTION	PID (ppm) Lab Sample DEPTH (ft)
80	(77.5') Poorly graded SAND (SP); mostly fine grained sand, m dark bluish (80.5') Poorly graded SAND (SP); mostly fine grained sand, lif dry, dark bluish-gray (82.5') Boring terminated	

Associated Environmen Group, LLC	Client:AEG-CLIENTSalProject:18-236Address:7131-7269 Martin Way East, Olympia, WA	WELL LOG Well No. MW-5 Page: 1 of 5
Drilling Start Date:10/30/2020 12:25Drilling End Date:10/30/2020 14:41Drilling Company:CascadeDrilling Method:Hollow Stem AugerDrilling Equipment:Truck Mounted AugeDriller:JamesLogged By:B. Dilba	Boring Diameter (in): 8.00 N Sampling Method(s): Split Spoon S DTW During Drilling (ft): N/A F RIg DTW After Drilling (ft): N/A S Ground Surface Elev. (ft): S S	Vell Depth (ft):75.0Vell Diameter (in):2.0Screen Slot (in):0.010Riser Material:Sch 40 PVCScreen Material:Sch 40 PVC SlottedSeal Material(s):Bent. ChipsFilter Type:Sand
DEPTH (ft) LITHOLOGY WATER LEVEL COMPLETION Sample Type Time Blow Counts	(I) SOIL/ROCK VISUAL DESCRIPTION	MEASURE PID (bbm) Lab Sample DEPTH (ft)
	(0') Asphalt (0.5') Poorly graded SAND with silt (SP-SM); mostly coarse gravel, some silt, medium dense, dry, dark reddish-brown (6') Poorly graded GRAVEL with sand (GP); mostly fine-coa fine-coarse sand, dense, moist, light bluish-gray	5
NOTES: Samples not collected fr Ecology Well ID#:	n 5' t0 35' due to the proximity to MW-2, where samples at the	ose depths were already collected.

Associated Environment Group, LLC	Client: AEG-CLIENTS Project: 18-236 Address: 7131-7269 Martin Way East, Olympia, WA	WELL LOG Well No. MW-5 Page: 2 of 5
Drilling Start Date:10/30/2020 12:25Drilling End Date:10/30/2020 14:41Drilling Company:CascadeDrilling Method:Hollow Stem AugerDrilling Equipment:Truck Mounted AugerDriller:JamesLogged By:B. Dilba	Boring Diameter (in): 8.00 We Sampling Method(s): Split Spoon Scr DTW During Drilling (ft): N/A Ris DTW After Drilling (ft): N/A Scr Ground Surface Elev. (ft): Sea	Il Depth (ft): 75.0 Il Diameter (in): 2.0 een Slot (in): 0.010 er Material: Sch 40 PVC een Material: Sch 40 PVC Slotted al Material(s): Bent. Chips er Type: Sand
DEPTH (ft) LITHOLOGY WATER LEVEL COMPLETION Sample Type Time Blow Counts	SOIL/ROCK VISUAL DESCRIPTION	PID (ppm) Lab Sample DEPTH (ft)
20 	(6') Poorly graded GRAVEL with sand (GP); mostly fine-coarse fine-coarse sand, dense, moist, light bluish-gray (30') Poorly graded GRAVEL (GP); mostly fine grained gravel saturated, light bluish-gray 5' to 35' due to the proximity to MW-2, where samples at those	, few fine sand, dense,

AEG Envi	ociated ronmer up, LLC	ntal	Client: AEG-CLIENTS Project: 18-236 Address: 7131-7269 Martin Way East, Olympia, WA	WELL Well No. MW-5 Page: 3 of 5	LOG			
Drilling Equipment: Truck I Driller: James	10/30/2020 14:41 Boring Diameter (in): 8.00 Well Diameter (in): 2.0							
DEPTH (ft) LITHOLOGY WATER LEVEL COMPLETION	Sample Type Time Blow Counts		SOIL/ROCK VISUAL DESCRIPTIO	Ν	PID (ppm) Lab Sample DEPTH (ft)			
	SS 13:21 31 5C 13:22 5C 3SS 13:22 5C 0 0 0 3SS 13:22 5C 0 0 0 3SS 13:22 5C 0 0 0 3SS 13:22 5C 0 0 0) 0.50	(30') Poorly graded GRAVEL (GP); mostly fine grained grave saturated, light bluish-gray (50') No Recovery (55.5') No Recovery	I, few fine sand, dense,	40 MW5-40 			

Associated Environmental Group, LLC	Client: AEG-CLIENTS Project: 18-236 Address: 7131-7269 Martin Way East, Olympia, WA	WELL LOG Well No. MW-5 Page: 4 of 5
Drilling Start Date: 10/30/2020 12:25 Drilling End Date: 10/30/2020 14:41 Drilling Company: Cascade Drilling Method: Hollow Stem Auger Drilling Equipment: Truck Mounted Auger Rlg Driller: James Logged By: B. Dilba	Boring Diameter (in):8.00WellSampling Method(s):Split SpoonScreeDTW During Drilling (ft):N/ARiseDTW After Drilling (ft):N/AScreeGround Surface Elev. (ft):Seal	I Depth (ft):75.0I Diameter (in):2.0een Slot (in):0.010er Material:Sch 40 PVCeen Material:Sch 40 PVC SlottedI Material(s):Bent. Chipser Type:Sand
DEPTH (ft) LITHOLOGY WATER LEVEL COMPLETION Sample Type Time Blow Counts Recovery (ft)	SOIL/ROCK VISUAL DESCRIPTION	PID (ppm) Lab Sample DEPTH (ft)
	(60') Poorly graded GRAVEL with sand (GP); mostly fine grain sand, very dense, wet, dark bluish-gray	ed gravel, some fine
65 65 65 65 65 65 65 65 65 65	(65') Poorly graded SAND (SP); mostly fine-coarse grained sa dense, wet, dark bluish-gray	nd, trace fine gravel,
70		MW5-70 70
	(73') Poorly graded SAND (SP); mostly fine-medium grained s wet, dark bluish (75') Boring terminated	and, medium dense, MW5-75
80 NOTES: Samples not collected from 5 Ecology Well ID#:	(77.5') Poorly graded SAND (SP); mostly fine grained sand, m dark bluish t0 35' due to the proximity to MW-2, where samples at those	edium dense, moist,

Associated Environmen Group, LLC Drilling Start Date: 10/30/2020 12:25	Address: 7131-7269 Martin Way East, Olympia, WA	WELL LOG Well No. MW-5 Page: 5 of 5 Ill Depth (ft): 75.0
Drilling End Date:10/30/2020 14:41Drilling Company:CascadeDrilling Method:Hollow Stem AugerDrilling Equipment:Truck Mounted AugerDriller:JamesLogged By:B. Dilba	Sampling Method(s): Split Spoon Scr DTW During Drilling (ft): N/A Ris r RIg DTW After Drilling (ft): N/A Scr Ground Surface Elev. (ft): Ser	Il Diameter (in): 2.0 reen Slot (in): 0.010 wer Material: Sch 40 PVC reen Material: Sch 40 PVC Slotted al Material(s): Bent. Chips er Type: Sand
DEPTH (ft) LITHOLOGY WATER LEVEL COMPLETION Sample Type Time Blow Counts	(1) SOIL/ROCK VISUAL DESCRIPTION	PID (ppm) MEASAMple Lab Sample DEPTH (ft)
80	(77.5') Poorly graded SAND (SP); mostly fine grained sand, r dark bluish (80.5') Poorly graded SAND (SP); mostly fine grained sand, li dry, dark bluish-gray	ittle clay, very dense,

ENVI * TLCHNOLOGY

	Major Divisi	ons	Graph	USCS	Typica	d Description	
Coarse Grained Soils	Gravel	Clean Gravels		GW	Well-graded Gra tures	vels, Gravel-Sand Mix-	
	More Than 50% of Coarse Frac-			GP	Poorly-Graded G Mixtures	iravels, Gravel-Sand	
More Than 50% Retained On	tion Retained On No. 4 Sieve	Gravels With Fines	000	GM	Silty Gravels, Gr	avel-Sand-Silt Mixtures	
No. 200 Sieve			0 0 0	GC	Clayey Gravels, (tures	Gravel-Sand-Clay Mix-	
	Sand	Clean Sands	· · · · · · · · · · · · · · · · · · ·	sw	Well-graded San	ds, Gravelly Sands	
	More Than 50% of Coarse Frac-			SP	Poorly-Graded S	ands, Gravelly Sands	
	tion Passing No. 4 Sieve	Sands With Fines		SM	Silty Sands, Sand	I-Silt Mixtures	
				SC	Chyey Sands, Cl	ay Mixtures	
Fine Grained Soils				ML	Inorganic Silts, rock Flour, Clayey With Low Plasticity		
More Than 50%	Silts & Clays	Líquid Limít Less Than 50		CL	Inorganic Clays o Plasticity	of Low To Medium	
Passing The No. 200 Sieve				OL	Organic Silts and Low Plasticity	Organic Silty Chys of	
				MH	Inorganic Silts of	Moderate Plasticity	
	Silts & Clays	Líquid Limit Greater Than 50		СН	Inorganic Clays o	of High Plasticity	
			:/:	ОН	Organic Clays Ar High Plasticity	id Sills of Medium to	
H	lighly Organic	Soils	PT	Peat, Humus, Soi Organic Content	ls with Predominantly		
	ENVITECI	4		The Unified Soil			
	www.envitechn	ology.com	0	Classification System			
ENVITECH	support@envited Tel 425.890.3517	Fax 425.310.6600			(US	CS)	
aanara wii	10041 Kedmond V	/ay #358C Redmond WA 98	07	07/20/2018 Figure A1			

ENVI * TLCHNOLOGY

16541 Red	541 Redmond Way #358c Redmond, WA 98052											
						Lc	og of B	orehole – B7				
Proje	ct:La	icey U	Irban C	enter				Approximate Elevation:	197 ft. above sea level			
Loc: 7131 Martin Way E, Olympia, WA 98516							516	Drilling Method: Hand p	probe			
Drille	r: ESN	l Nort	hwest					Logged by: Jake Lee				
Depth (ft)	Well	Water Table	Symbol	uscs	Soil Sample	Water sample	PID Reading	Soil D	escription			
5 10 10 20	NO WELL CONSTRUCTED			SM	B7-5		<1.0	Top concrete Dark brown Gravelly silty SAND (SM Light brown, silty SAND Soil sample (B7-5), Soil- Boring termination at 5	(SM) gas sample (SG7-5)			
ENVI]	www. suppo Tel 42	ITECH envitech rt@envite 5.890.3517	nology.c	om .com			Lacey U	rban Center			
TECH	NOLOGY		Redmond			id WA 98	052	8/20/2018	Figure A2			

ENVI ⁴ Tlichnology

16541 Redmond	6541 Redmond Way #358c Redmond, WA 98052										
	Log of Borehole – B8										
Project :	-						Approximate Elevation:	197 ft. above sea level			
Loc: 713			-	npia, V	VA 98	516	Drilling Method: Hand p	robe			
Driller: E	SN Nort	hwest	1				Logged by: Jake Lee				
Depth (ft) Well	Water Table	Symbol	uscs	Soil Sample	Water sample	PID Reading	Soil D	escription			
5 10 10 15 20 20			SM	B8-5		<1.0	Top concrete Light brown, gravelly silf No recovery between 2- Light brown, silty SAND Soil sample (B8-5), Soil-g Boring termination at 5	4ft. (SM) gas sample (SG8-5)			
ENVI	ENVI ENVI ENVI ENVI ENVI ENVI ENVI ENVI						Lacey U	rban Center			
TECHNOL		Redmond			nd WA 98	1052	8/20/2018	Figure A3			

ENVI + TLCHNOLOGY

10341 N	5541 Redmond Way #358c Redmond, WA 98052 Log of Borehole – B9									
Proi	ect · La		rhan (Contor		LC	og of E	Approximate Elevation: 197 ft. above sea level		
	Project : Lacey Urban Center Loc: 7131 Martin Way E, Olympia, WA 98516									
	er: ESN				πρια, v	VA 90		Drilling Method: Limited		
			T	T	1	-	T	Logged by: Jake Lee		
Depth (ft)	Well	Water Table	Symbol	uscs	Soil Sample	Water sample	PID Reading	Soil D	escription	
								Top concrete		
				:				Dark brown, gravelly silt	y SAND (SM)	
5	ED				B9-5		<1.0	Dark brown, gravelly silt Soil sample (B9-5)	y SAND (SM)	
10	CONSTRUCT			SM	B9-10		<1.0	Soil sample (B9-10)		
20	NO WELL CO				B9-15		<1.0	Soil sample (B9-15) Boring termination at 15	5 feet bgs	
20										
ENV	ENVITECHNOLOGY www.envitechnology.com support@envitechnology.com						Lacey U	rban Center		
<u>ika</u>	Tel 425.890.3517 Fax 425.310.6600 TECHNOLOGY 16541 Redmond Way #358C Redmond WA 98052						3052	8/21/2018	Figure A4	

ENVI ⁴ Tlchnology

Log of Borehole – B10										
Project : Lacey Urban Center			Approximate Elevation: 197 ft. above sea level							
Loc: 7131 Martin Way E, Olyr	npia, WA 98	516	Drilling Method: Hand p	robe						
Driller: ESN Northwest			Logged by: Jake Lee							
Depth (ft) Well Water Table Symbol USCS	Soil Sample Water sample	PID Reading	Soil D	escription						
5 0 10 10 10 15 20 20 15 15 15 15 15 15 15 15 15 15	B10-2 B10-5	<1.0	Top concrete Light brown gravelly silty No recovery between 2- Light brown, silty SAND Soil sample (B10-5), Soil Boring termination at 5 t	(SM) -gas sample (SG10-5)						
ENVIL ENVIL ENVIL ENVIL ENVIL ENVIL ENVIL ENVIL ENVIL ENVIL ENVIL ENVIL ENVIL ENVIL ENVIL ENVIL ENVITECHNOLOC www.envitechnology.cu support@envitechnology.cu support@envitechnology Tel 425.890.3517 Fax 425.	om .com		Lacey U	rban Center						
TECHNOLOGY 16541 Redmond Way #35	8C Redmond WA 98	052	8/20/2018	Figure A5						

ENVI 4 TLCHNOLOGY

	Log of Borehole – B11									
Project : Lacey Urban Center								Approximate Elevation: 197 ft. above sea level		
	7131 N			E, Olyr	npia, V	VA 98	516	Drilling Method: Limited	access	
Drille	er: ESN	North	nwest					Logged by: Jake Lee		
Depth (ft)	Well	Water Table	Symbol	uscs	Soil Sample	Water sample	PID Reading	Soil De	escription	
5 10 10 20 20	NO WELL CONSTRUCTED	www.e		iology.co	om		<1.0	Top concrete Dark brown, gravelly san Soil sample (B11-2) Dark brown, gravelly san Soil sample (B11-5), Soil Boring termination at 5 f	dy SILT (ML) gas sample (SG11-5)	
ENVI TECH	www.envitechnology.com support@envitechnology.com Tel 425.890.3517 Fax 425.310.6600 TECHNOLOGY 16541 Redmond Way #3586 Redmond WA 98052						157	8/21/2018	Figure A6	
	16541 Redmond Way #358C Redmond WA 98052							0/21/2010	Figure Ad	

ÉRVI * TLCHNOLOGY

10341 6		ay #358c	Keamond,	WA 980	1		-		
						Lo	g of B	orehole – B12	
	ect : La							Approximate Elevation:	
					npia, V	VA 98	516	Drilling Method: Geopre	obe
Drille	er: ESN	l Nort	hwest					Logged by: Jake Lee	
Depth (ft)	Well	Water Table	Symbol	uscs	Soil Sample	Water sample	PID Reading	Soil D	escription
5				SM	B12-5		<1.0	Top asphalt Dark brown, gravelly silt Soil sample (B12-5) Light Brown, coarse-gra	
10	UCTED			ML			<1.0	Medium dense, gravelly	
	CONSTRUCT			SM			1.0	Grayish Gravelly silty SAND (SM)	
15 20	NO WELL				B12-15		<1.0	Soil sample (B12-15) Boring termination at 15	5 feet bgs
ENVI		www. suppor	ITECH envitech t@envit 5.890.3517	nology.c echnology	om .com			Lacey U	rban Center
<u>etsti</u>	NOLOG	1 6541	Redmond	Way #39	8C Redmon	d WA 98	052	8/20/2018	Figure A7

ENVI TLCHNOLOGY

16541 Redmond \	14/ 11/200	ncumunu	. WA 7003	2	1	f D		
Project : L	2001	rhan (Contor		LO	g of B	orehole – B13	407.0
Loc: 7131	-					516	Approximate Elevation:	
Driller: ES				пріа, V	VH 98	910	Drilling Method: Geopre	
			1	1		1	Logged by: Jake Lee	
Depth (ft) Well	Water Table	Symbol	uscs	Soil Sample	Water sample	PID Reading	Soil D	escription
							Top asphalt	
			SM				Dark brown, gravelly sill	ty SAND (SM)
5				B13-5		<1.0	Soil sample (B13-5)	
							Light Brown, coarse-gra	ined,
							Medium dense, gravelly	
			ML			<1.0		
			SM	B13-15		<1.0	Grayish, gravelly silty SA Soil sample (B13-15) Boring termination at 15	
20 20								
ENVI	www. suppor	ITECH envitech rt@envit 5.890.3517	nology.co echnology	om .com	1		Lacey U	rban Center
TECHNOLOG				STU.0000 8C Redmon	d WA 98	052	8/20/2018	Figure A8

ENVI ⁺ Tlchnology

10541 Ke	dmond Wa	ay #358c	Redmond	, WA 9809	52				
						Lo	g of B	orehole – B14	
		icey Ui						Approximate Elevation:	197 ft. above sea level
				-	mpia, V	VA 98	516	Drilling Method: Geopro	obe
Drille	er: ESN	l Nortł	nwest					Logged by: Jake Lee	
Depth (ft)	Well	Water Table	Symbol	USCS	Soil Sample	Water sample	PID Reading	Soil D	escription
								Top asphalt	
				SM				Dark brown, gravelly silt	y SAND (SM)
5							<1.0		
	<u> </u>							Light Brown, coarse-grai	ined
	Ц							Medium dense, gravelly	sandy SILT (MT)
	U U			ML					
10	۲ ۲				B14-10		<1.0	Soil sample (B14-10)	
	CONSTRUCT								
	Ŭ							Grayish, gravelly silty SA	ND (SM)
15					B14-15		<1.0	Soil sample (B14-15)	
	ΝE			SM					
	0 Z								
20	-						<1.0		
								Soil sample (B14-20). Wa	ater sample (W14) at 26 ft.
		∇			B14-25	W14	<1.0	Boring termination at 26	
		www.e	envitech	NOLO nology.c	om			and the second se	rban Center
ERWI TERMI	- NOLOG	Tel 425	.890.351	echnology 7 Fax 425	.310.6600			• /	
BAAAL	<u></u>	# 1654	Kedmond	Way #3	58C Redmo	nd WA 98	1052	8/20/2018	Figure A9

www.envitechnology.com support@envitechnology.com TECHROLOGY TECHROLOGY

Project : Lacey Urban Center Approximate Elevation: 197 ft. above sea level Loc: 7131 Martin Way E, Olympia, WA 98516 Drilling Method: Geoprobe Driller: ESN Northwest Logged by: Jake Lee (1) age age (1) age age (1) age age (2) ML B15-12 (3) age age (2) age age (3) age age (4) <th>10541 Kedmond Way #35</th> <th>oc neumona,</th> <th>117 7005</th> <th></th> <th>Lo</th> <th>g of B</th> <th>orehole – B15</th>	10541 Kedmond Way #35	oc neumona,	117 7005		Lo	g of B	orehole – B15
Driller: ESN Northwest Logged by: Jake Lee Guild in the structure of the struct	Project : Lacey	Urban C	enter				
41 10 90 10 10 Soil Description 5 0 10 </td <td>Loc: 7131 Mart</td> <td>in Way I</td> <td>E, Olyr</td> <td>npia, V</td> <td>VA 98</td> <td>516</td> <td>Drilling Method: Geoprobe</td>	Loc: 7131 Mart	in Way I	E, Olyr	npia, V	VA 98	516	Drilling Method: Geoprobe
10 10 ML B15-5 <1.0	Driller: ESN No	rthwest					Logged by: Jake Lee
5 GBUDAL ML B15-5 <1.0	Depth (ft) Well Water Table	Symbol	USCS	Soil Sample	Water sample	PID Reading	Soil Description
15 J B15-15 <1.0			ML	B15-5			Dark brown, coarse-grained Medium dense, gravelly sandy SILT (MT) Soil sample (B15-5) Light Brown, coarse-grained Medium dense, gravelly sandy SILT (MT)
www.envitechnology.com support@envitechnology.com Tel 425.890.3517 Fax 425.310.6600				B15-15		<1.0	Soil sample (B15-15)
ARRELINGTUCKY 16541 Redmond Way #358C Redmond WA 98052 8/20/2018 Figure A10	envi el	w.envitechi port@envite 425.890.3517	nology.co chnology Fax 425.	om .com 310.6600	1	052	Lacey Urban Center 8/20/2018 Figure A10

4

ÉRVI * TLCHNOLOGY

	unonu ma	<i>ii</i> 1 3 3 0 C	ICOBIUII	d, WA 9805		Lo	g of B	orehole – B16	
Proj	ect : La	icey Ui	rban	Center				Approximate Elevation:	197 ft. above sea level
			-	E, Olyr	npia, V	VA 98	516	Drilling Method: Geopre	obe
Drill	er: ESN	l North	nwest	t				Logged by: Jake Lee	
Depth (ft)	Well	Water Table	Symbol	uscs	Soil Sample	Water sample	PID Reading	Soil D	escription
5	CTED			ML			<1.0	Top asphalt Dark brown, coarse-grai Medium dense, gravelly	
10	L CONSTRUCTE			SM	316-10		<1.0	Soil sample (B16-10) Grayish, Medium dense Gravelly silty SAND (SM)	
20	NO WELL						<1.0		
~ 29					B16-29		<1.0	Soil sample (B16-29), No	water, boring stop at 29'
ENVI		www.e suppor Tel 425	envitec t@envi .890.351	INOLO(hnology.c itechnology 7 Fax 425.	om .com 310.6600		L		rban Center
1934	NOLOGY			1 Way #35		nd WA 98	052	8/20/2018	Figure A11

SNVI 4 TLCHNOLOGY

16541 Kedma	unu maj	#3300	Neumon	1, 1YA 7003	2	Lo	g of B	orehole – B17
Project	t:La	cey U	rban	Center			<u> </u>	Approximate Elevation: 197 ft. above sea level
Loc: 71	131 N	/lartin	Way	E, Olyr	npia, V	VA 98	516	Drilling Method: Geoprobe
Driller:	ESN	Nort	nwest	İ				Logged by: Jake Lee
Depth (ft)	Well	Water Table	Symbol	uscs	Soil Sample	Water sample	PID Reading	Soil Description
10	NO WELL CONSTRUCTED	FNV		ML	B17-5		<1.0	Top asphalt Dark brown, coarse-grained Medium dense, gravelly sandy SILT (ML) Soil sample (B17-5) Grayish, Medium dense Gravelly silty SAND (SM) Soil sample (B17-15) Boring termination at 15 ft.
ENVI TECHNO	-+ 1064	www.o suppor Tel 425	envitec t@envi 5.890.351	nology.c technology 7 Fax 425.	om .com 310.6600			Lacey Urban Center
alanın(V	44491	16541	Redmon	1 Way #35	8C Redmor	nd WA 98	052	8/20/2018 Figure A12

ENVI * TECHNOLOGY

Log of Borehole – B18 Project : Lacey Urban Center Approximate Elevation: 197 ft. above sea level Loc: 7131 Martin Way E, Olympia, WA 98516 Drilling Method: Geoprobe Driller: ESN Northwest Logged by: Jake Lee (1) age to the sea level (1) base to the sea level (2) (1) (2) (2) (2) (3) (2) (3) (2) (4)	16541 Re	dmond W	ay #358c	Redmond,	WA 980	52			
Loc: 7131 Martin Way E, Olympia, WA 98516 Drilling Method: Geoprobe Driller: ESN Northwest Logged by: Jake Lee gi and and and and and and (gi) and and and and bigged by: Jake Lee Soil Description (gi) and and and and and bigged by: Jake Lee (gi) and and and and bigged by: Jake Lee (gi) and and and bigged by: Jake Lee Soil Description (gi) and and and bigged by: Jake Lee Soil Description (gi) and and and bigged by: Jake Lee Soil Description (gi) and and and and bigged by: Jake Lee (gi) and and and and bigged by: Jake Lee (gi) and and and bigged by: Jake Lee and bigged by: Jake Lee (gi) and and and bigged by: Jake Lee and bigged by: Jake Lee and bigged by: Jake Lee (gi) bigged by: Jake Le							Lo	g of B	orehole – B18
Driller: ESN Northwest Logged by: Jake Lee 41 9									Approximate Elevation: 197 ft. above sea level
(1) (Loc:	7131	Martin	ı Way	E, Olyı	mpia, V	VA 98	516	Drilling Method: Geoprobe
Image: State of the state	Drille	er: ESN	Nort	hwest					Logged by: Jake Lee
5 ML B18-5 <1.0	Depth (ft)	Well	Water Table	Symbol	uscs	Soil Sample	Water sample	PID Reading	Soil Description
ENVITECHNOLOGY www.envitechnology.com support@envitechnology.com Tel 425.890.3517 Fax 425.310.6600	10	O WELL CONSTRUCTE						<1.0	Dark brown, coarse-grained Medium dense, gravelly sandy SILT (ML) Soil sample (B18-5) Grayish, Medium dense Gravelly silty SAND (SM) Soil sample (B18-15)
www.envitechnology.com support@envitechnology.com Tel 425.890.3517 Fax 425.310.6600	25								
TECHNOLOGY 101 125070.0017 18X 125.010.0000	ENVI		WWW. suppor	envitech rt@envit	nology.c echnology	om .com			Lacey Urban Center
	11301	NOLOG					id WA 98	3052	8/20/2018 Figure A13

3322 South Bay Road NE • Olympia, WA 98506-2957

July 27, 2020

Becky Dilba Associated Environmental Group, LLC 2633 Parkmont Lane SW, Suite A Olympia, WA 98502

Dear Ms. Dilba:

Please find enclosed the analytical data report for the Lacey Urban Center Project located in Lacey, Washington.

The results of the analyses are summarized in the attached tables. Applicable detection limits and QA/QC data are included. The sample(s) will be disposed of in 30 days unless we are contacted to arrange long term storage.

Libby Environmental, Inc. appreciates the opportunity to have provided analytical services for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

Aby Ille

Sherry L. Chilcutt Senior Chemist Libby Environmental, Inc.

LACEY URBAN CENTER PROJECT AEG, LLC Lacey, Washington Libby Project # L200722-9 Client Project # 18-236 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Sample Description		Method	B20-9	B19-19	
		Blank			
Date Sampled		N/A	7/22/2020	7/22/2020	
Date Analyzed	PQL	7/23/2020	7/23/2020	7/23/2020	
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	
Vinyl Chloride (VC)	0.02	nd	nd	nd	
1,1-Dichloroethene	0.05	nd	nd	nd	
trans-1,2-Dichloroethene	0.03	nd	nd	nd	
cis-1,2-Dichloroethene	0.03	nd	nd	nd	
Trichloroethene (TCE)	0.02	nd	nd	nd	
Tetrachloroethene (PCE)	0.03	nd	nd	nd	
Surrogate Recovery					
Dibromofluoromethane		99	105	95	
1,2-Dichloroethane-d4		107	105	104	
Toluene-d8		100	104	106	
4-Bromofluorobenzene		93	96	94	
"nd" Indicates not deter	cted at listed	detection lin	mit.		
"int" Indicates that inte	rference pre	vents determ	ination.		

Volatile Organic Compounds by EPA Method 8260D in Soil

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE : 65% TO 135%

LACEY URBAN CENTER PROJECT AEG, LLC Lacey, Washington Libby Project # L200722-9 Client Project # 18-236 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

							.	
	Spiked	MS	MSD	MS	MSD	RPD	Limits	Data
	Conc.	Response	Response	Recovery	Recovery		Recovery	Flag
	(mg/kg)	(mg/kg)	(mg/kg)	(%)	(%)	(%)	(%)	
Vinyl Chloride (VC)	0.25	0.29	0.29	116	116	0.0	65-135	
1,1-Dichloroethene	0.25	0.27	0.27	108	108	0.0	65-135	
trans-1,2-Dichloroethene	0.25	0.27	0.27	108	108	0.0	65-135	
cis-1,2-Dichloroethene	0.25	0.29	0.29	116	116	0.0	65-135	
Trichloroethene (TCE)	0.25	0.29	0.29	116	116	0.0	65-135	
Tetrachloroethene (PCE)	0.25	0.33	0.32	132	128	3.1	65-135	
Surrogate Recovery (%)					MS	MSD		
Dibromofluoromethane					94	93	65-135	
1,2-Dichloroethane-d4					104	105	65-135	
Foluene-d8					109	110	65-135	
4-Bromofluorobenzene					105	106	65-135	

QA/QC for Volatile Organic Compounds by EPA Method 8260D in Soil

LACEY URBAN CENTER PROJECT AEG, LLC Lacey, Washington Libby Project # L200722-9 Client Project # 18-236 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

	Spiked	LCS	LCS	LCS	Data
	Conc.	Response	Recovery	Recovery	Flag
	(mg/kg)	(mg/kg)	(%)	Limits (%)	
Vinyl Chloride (VC)	0.25	0.21	84	80-120	
1,1-Dichloroethene	0.25	0.23	92	80-120	
trans-1,2-Dichloroethene	0.25	0.22	86	80-120	
cis-1,2-Dichloroethene	0.25	0.27	107	80-120	
Trichloroethene (TCE)	0.25	0.27	108	80-120	
Tetrachloroethene (PCE)	0.25	0.23	92	80-120	
Surrogate Recovery					
Dibromofluoromethane			123	65-135	
1,2-Dichloroethane-d4			129	65-135	
Toluene-d8			122	65-135	
4-Bromofluorobenzene			102	65-135	

Laboratory Control Sample

LACEY URBAN CENTER PROJECT AEG, LLC Lacey, Washington Libby Project # L200722-9 Client Project # 18-236 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Sample Description		Method	Trip Blank	Trip Blank
		Blank		Dup
Date Sampled		N/A	7/22/2020	7/22/2020
Date Analyzed	PQL	7/23/2020	7/23/2020	7/23/2020
	(µg/L)	(µg/L)	(µg/L)	(µg/L)
Vinyl Chloride (VC)	0.2	nd	nd	nd
1,1-Dichloroethene	0.5	nd	nd	nd
trans-1,2-Dichloroethene	1.0	nd	nd	nd
cis-1,2-Dichloroethene	1.0	nd	nd	nd
Trichloroethene (TCE)	0.4	nd	nd	nd
Tetrachloroethene (PCE)	1.0	nd	nd	nd
Surrogate Recovery				
Dibromofluoromethane		99	102	83
1,2-Dichloroethane-d4		107	105	86
Toluene-d8		100	100	76
4-Bromofluorobenzene		93	91	91
"nd" Indicates not detec	ted at listed	d detection lin	mit.	

Volatile Organic Compounds by EPA Method 8260D in Water

"int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE : 65% TO 135%

LACEY URBAN CENTER PROJECT AEG, LLC Lacey, Washington Libby Project # L200722-9 Client Project # 18-236 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Matrix Spike Sample Identification: Trip Blank										
	Spiked	MS	MSD	MS	MSD	RPD	Limits	Data		
	Conc.	Response	Response	Recovery	Recovery		Recovery	Flag		
	(µg/L)	$(\mu g/L)$	$(\mu g/L)$	(%)	(%)	(%)	(%)	-		
Vinyl Chloride (VC)	5.0	4.4	4.2	88	84	4.7	65-135			
1,1-Dichloroethene	5.0	4.3	4.6	86	92	6.7	65-135			
trans-1,2-Dichloroethene	5.0	4.4	4.0	88	80	9.5	65-135			
cis-1,2-Dichloroethene	5.0	4.5	4.4	90	88	1.8	65-135			
Trichloroethene (TCE)	5.0	6.4	5.9	128	118	8.1	65-135			
Tetrachloroethene (PCE)	5.0	6.1	5.8	121	117	3.7	65-135			
Surrogate Recovery (%)				MS	MSD					
Dibromofluoromethane				86	83		65-135			
1,2-Dichloroethane-d4				88	85		65-135			
Toluene-d8				81	79		65-135			
4-Bromofluorobenzene				107	107		65-135			

QA/QC for Volatile Organic Compounds by EPA Method 8260D in Water

ACCEPTABLE RPD IS 35%

ANALYSES PERFORMED BY: Paul Burke

LACEY URBAN CENTER PROJECT AEG, LLC Lacey, Washington Libby Project # L200722-9 Client Project # 18-236 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

	Spiked	LCS	LCS	LCS	Data
	Conc.	Response	Recovery	Recovery	Flag
	(µg/L)	(µg/L)	(%)	Limits (%)	
Vinyl Chloride (VC)	5.0	4.5	90	80-120	
1,1-Dichloroethene	5.0	4.6	92	80-120	
trans-1,2-Dichloroethene	5.0	4.3	86	80-120	
cis-1,2-Dichloroethene	5.0	5.3	106	80-120	
Trichloroethene (TCE)	5.0	5.6	112	80-120	
Tetrachloroethene (PCE)	5.0	4.6	92	80-120	
Surrogate Recovery					
Dibromofluoromethane			123	65-135	
1,2-Dichloroethane-d4			129	65-135	
Toluene-d8			122	65-135	
4-Bromofluorobenzene			102	65-135	

Laboratory Control Sample

ANALYSES PERFORMED BY: Paul Burke

LACEY URBAN CENTER PROJECT AEG, LLC Libby Project # L200722-9 Date Received 7/22/2020

Time Received 1:36 PM

3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Received By MH

Sample Receipt Checklist

Chain of Custody			
1. Is the Chain of Custody complete?	✓ Yes	No No	
2. How was the sample delivered?	✓ Hand Delivered	Picked Up	Shipped
Log In			
3. Cooler or Shipping Container is present.	✓ Yes	No No	□ N/A
4. Cooler or Shipping Container is in good condition.	✓ Yes	No No	□ N/A
5. Cooler or Shipping Container has Custody Seals present.	Yes	✓ No	□ N/A
6. Was an attempt made to cool the samples?	✓ Yes	No No	□ N/A
7. Temperature of cooler (0°C to 8°C recommended)	8.8	-	
8. Temperature of sample(s) (0°C to 8°C recommended)	0.0	°C	
9. Did all containers arrive in good condition (unbroken)?	✓ Yes	No No	
10. Is it clear what analyses were requested?	✓ Yes	No No	
11. Did container labels match Chain of Custody?	✓ Yes	No No	
12. Are matrices correctly identified on Chain of Custody?	✓ Yes	No No	
13. Are correct containers used for the analysis indicated?	✓ Yes	No No	
14. Is there sufficient sample volume for indicated analysis?	✓ Yes	No No	
15. Were all containers properly preserved per each analysis?	✓ Yes	No No	
16. Were VOA vials collected correctly (no headspace)?	✓ Yes	No No	□ N/A
17. Were all holding times able to be met?	✓ Yes	No No	
Discrepancies/ Notes			
18. Was client notified of all discrepancies?	Yes	No No	✓ N/A
Person Notified:		_	Date:
By Whom:		_	Via:
Regarding:		_	
19. Comments.			

Libby Environm	ental,	Inc.		Cł	nair	1 01	f Ci	ust	od	y R	lec	or	d							www.L	ibbyEn	vironm	ental.com
3322 South Bay Road NE Olympia, WA 98506	Ph: Fax:	360-352-2 360-352-4	110 154				Date	:	7	12	2/	20	20				Page	e:	١		of	J	
Client: AFG							Proje	ect M	lana	ger:	B	·D	lba	4									
Address:							Proje	ect N	ame	: 1	Ac	ey.	Vr	bar		?en	te	ĸ					
City:		State:	Zip):			Loca										City,	Stat	e: L	heer	, 64		
Phone: 300-352-98	35	Fax:							Collector: $\beta \cdot \rho$.				Date of					Collection: 7/22/2020			20		
Client Project # 18-23			÷										ege			n							
Sample Number	Depth	Time	Sample Type	Container Type	10	C 826	ALD HIL	5+ 802 5+ 802	ALL AND	CID N.C.	\$* 12 C	2410+ P	10 11 10 51 10 51	onivol	8270 8 8087	SA SHE	13 13 15 15 15 15 15 15 15 15 15 15 15 15 15	Metals	Jul Mark	F	ield No	otes	
1 820 - 3	3	1148	5																				
2 1320.6	6	1156	5																				
3 BZO-9	9	1210	2														X						
4 BF1-3	3	123)	2																				
5 B19-6	6	239																					
6 Pt B19-9	9	1253	1														X						
7 Thip Blank Thip ame			1720														X						
8																							
9																							
10																							
11																							
12																							
13																							
14																							
15																							
16																							
17																							
Relinquished by: 7/22/2	Date	/Time 33	ic l	Received by: Miliser 79		A	2 1/22/2020 1336			Sample Receipt Good Condition? Y N				Remarks:									
Relinquished by:		/ Time		Received by:	- 1	0	- 1	- 1			/ Time		1	er Terr			Y	N °C					
														ole Tei				°C					
Relinquished by:	Date	/ Time		Received by:						Date	/ Time)	Tota	Numb	per of				TA'	T: 24	HR	48HR	5-DAY

LEGAL ACTION CLAUSE: In the event of default of payment and/or failure to pay,	Client agrees to pay the costs of collection including court costs and reasonable att	mey fees to be determined by a cout of law.

3322 South Bay Road NE • Olympia, WA 98506-2957

August 4, 2020

Becky Dilba Associated Environmental Group, LLC 2633 Parkmont Lane SW, Suite A Olympia, WA 98502

Dear Ms. Dilba:

Please find enclosed the analytical data report for the Lacey Urban Center Project located in Lacey, Washington.

The results of the analyses are summarized in the attached tables. Applicable detection limits and QA/QC data are included. The sample(s) will be disposed of in 30 days unless we are contacted to arrange long term storage.

Libby Environmental, Inc. appreciates the opportunity to have provided analytical services for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

Shy Ille

Sherry L. Chilcutt Senior Chemist Libby Environmental, Inc.

LACEY URBAN CENTER PROJECT AEG, LLC Lacey, Washington Libby Project # L200728-3 Client Project # 18-236 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Sample Description		Method	B21-6	B21-6 Dup	B21-11	B22-6	B22-11			
		Blank								
Date Sampled		N/A	7/28/2020	7/28/2020	7/28/2020	7/28/2020	7/28/2020			
Date Analyzed	PQL	7/29/2020	7/29/2020	7/29/2020	7/29/2020	7/29/2020	7/29/2020			
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)			
Vinyl Chloride (VC)	0.02	nd	nd	nd	nd	nd	nd			
1,1-Dichloroethene	0.05	nd	nd	nd	nd	nd	nd			
trans-1,2-Dichloroethene	0.03	nd	nd	nd	nd	nd	nd			
cis-1,2-Dichloroethene	0.03	nd	nd	nd	nd	nd	nd			
Trichloroethene (TCE)	0.02	nd	nd	nd	nd	nd	nd			
Tetrachloroethene (PCE)	0.03	nd	nd	nd	nd	nd	nd			
Surrogate Recovery										
Dibromofluoromethane		132	133	131	131	134	126			
1,2-Dichloroethane-d4		113	113	110	116	119	117			
Toluene-d8		93	93	90	91	92	88			
4-Bromofluorobenzene		100	99	94	95	94	102			
"nd" Indicates not detec	"nd" Indicates not detected at listed detection limit.									
"int" Indicates that inter	rference pre	vents determ	ination.							

Volatile Organic Compounds by EPA Method 8260D in Soil

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE : 65% TO 135%

LACEY URBAN CENTER PROJECT AEG, LLC Lacey, Washington Libby Project # L200728-3 Client Project # 18-236 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

1v.	latrix Spike	Sample Ide	intification.	L200729-3				
	Spiked	MS	MSD	MS	MSD	RPD	Limits	Data
	Conc.	Response	Response	Recovery	Recovery		Recovery	Flag
	(mg/kg)	(mg/kg)	(mg/kg)	(%)	(%)	(%)	(%)	
Vinyl Chloride (VC)	0.25	0.18	0.19	72	78	7.5	65-135	
1,1-Dichloroethene	0.25	0.21	0.24	82	95	14.4	65-135	
trans-1,2-Dichloroethene	0.25	0.24	0.27	96	109	12.1	65-135	
cis-1,2-Dichloroethene	0.25	0.24	0.27	94	108	13.8	65-135	
Trichloroethene (TCE)	0.25	0.24	0.25	96	101	5.3	65-135	
Tetrachloroethene (PCE)	0.25	0.34	0.32	134	129	4.0	65-135	
Surrogate Recovery (%)				MS	MSD			
Dibromofluoromethane				124	133		65-135	
1,2-Dichloroethane-d4				120	107		65-135	
Toluene-d8				94	94		65-135	
4-Bromofluorobenzene				112	104		65-135	

QA/QC for Volatile Organic Compounds by EPA Method 8260D in Soil

ACCEPTABLE RPD IS 35%

LACEY URBAN CENTER PROJECT AEG, LLC Lacey, Washington Libby Project # L200728-3 Client Project # 18-236 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

	Spiked	LCS	LCS	LCS	Data
	Conc.	Response	Recovery	Recovery	Flag
	(mg/kg)	(mg/kg)	(%)	Limits (%)	
Vinyl Chloride (VC)	0.25	0.24	96	80-120	
1,1-Dichloroethene	0.25	0.22	88	80-120	
trans-1,2-Dichloroethene	0.25	0.22	90	80-120	
cis-1,2-Dichloroethene	0.25	0.27	106	80-120	
Trichloroethene (TCE)	0.25	0.21	83	80-120	
Tetrachloroethene (PCE)	0.25	0.22	90	80-120	
Surrogate Recovery					
Dibromofluoromethane			123	65-135	
1,2-Dichloroethane-d4			114	65-135	
Toluene-d8			96	65-135	
4-Bromofluorobenzene			111	65-135	

Laboratory Control Sample

LACEY URBAN CENTER PROJECT AEG, LLC Lacey, Washington Libby Project # L200728-3 Client Project # 18-236

3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Sample Description		Method	B21-W
		Blank	
Date Sampled		N/A	7/28/2020
Date Analyzed	PQL	7/31/2020	7/31/2020
	(µg/L)	(µg/L)	(µg/L)
Vinyl Chloride (VC)	0.2	nd	nd
1,1-Dichloroethene	0.5	nd	nd
trans-1,2-Dichloroethene	1.0	nd	nd
cis-1,2-Dichloroethene	1.0	nd	nd
Trichloroethene (TCE)	0.4	nd	nd
Tetrachloroethene (PCE)	1.0	nd	0.6 J
Surrogate Recovery			
Dibromofluoromethane		90	85
1,2-Dichloroethane-d4		101	86
Toluene-d8		106	69
4-Bromofluorobenzene		91	89
"nd" Indicates not detec	ted at liste	d detection li	mit.

Volatile Organic Compounds by EPA Method 8260D in Water

'nd" Indicates not detected at listed detection limit.

"J" Result is less than the PQL but greater than the MDL. Reported value is approximate.

"int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE : 65% TO 135%

LACEY URBAN CENTER PROJECT AEG, LLC Lacey, Washington Libby Project # L200728-3 Client Project # 18-236 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

M	latrix Spike	Sample Ider	ntification:	B21-W				
	Spiked	MS	MSD	MS	MSD	RPD	Limits	Data
	Conc.	Response	Response	Recovery	Recovery		Recovery	Flag
	(µg/L)	(µg/L)	(µg/L)	(%)	(%)	(%)	(%)	
Vinyl Chloride (VC)	5.0	4.3	3.5	85	70	19.5	65-135	
1,1-Dichloroethene	5.0	5.3	4.4	105	88	18.4	65-135	
trans-1,2-Dichloroethene	5.0	5.2	4.3	105	86	20.0	65-135	
cis-1,2-Dichloroethene	5.0	5.4	5.2	108	103	5.1	65-135	
Trichloroethene (TCE)	5.0	5.2	4.3	104	85	20.5	65-135	
Tetrachloroethene (PCE)	5.0	5.6	5.2	112	104	7.4	65-135	
Surrogate Recovery (%)				MS	MSD			
Dibromofluoromethane				115	117		65-135	
1,2-Dichloroethane-d4				115	114		65-135	
Toluene-d8				101	94		65-135	
4-Bromofluorobenzene				104	106		65-135	

QA/QC for Volatile Organic Compounds by EPA Method 8260D in Water

ACCEPTABLE RPD IS 35%

LACEY URBAN CENTER PROJECT AEG, LLC Lacey, Washington Libby Project # L200728-3 Client Project # 18-236 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

	Spiked	LCS	LCS	LCS	Data
	Conc.	Response	Recovery	Recovery	Flag
	(µg/L)	$(\mu g/L)$	(%)	Limits (%)	
Vinyl Chloride (VC)	5.0	5.5	110	80-120	
1,1-Dichloroethene	5.0	5.8	117	80-120	
trans-1,2-Dichloroethene	5.0	5.7	113	80-120	
cis-1,2-Dichloroethene	5.0	5.0	100	80-120	
Trichloroethene (TCE)	5.0	5.6	113	80-120	
Tetrachloroethene (PCE)	5.0	4.2	84	80-120	
Surrogate Recovery					
Dibromofluoromethane			75	65-135	
1,2-Dichloroethane-d4			75	65-135	
Toluene-d8			103	65-135	
4-Bromofluorobenzene			103	65-135	

Laboratory Control Sample

LACEY URBAN CENTER PROJECT AEG, LLC Libby Project # L200728-3 Date Received 7/28/2020

Time Received 1:24 PM

3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Received By KD

Sample Receipt Checklist

Chain of Custody			
1. Is the Chain of Custody complete?	✓ Yes	No	
2. How was the sample delivered?	✓ Hand Delivered	Picked Up	Shipped
Log In			
3. Cooler or Shipping Container is present.	✓ Yes	No	N/A
4. Cooler or Shipping Container is in good condition.	✓ Yes	No No	□ N/A
5. Cooler or Shipping Container has Custody Seals present.	Yes	✓ No	N/A
6. Was an attempt made to cool the samples?	✓ Yes	No	N/A
7. Temperature of cooler (0°C to 8°C recommended)	4.9	°C	
8. Temperature of sample(s) (0°C to 8°C recommended)	15.7	°C	
9. Did all containers arrive in good condition (unbroken)?	✓ Yes	No No	
10. Is it clear what analyses were requested?	✓ Yes	No	
11. Did container labels match Chain of Custody?	✓ Yes	No No	
12. Are matrices correctly identified on Chain of Custody?	✓ Yes	No No	
13. Are correct containers used for the analysis indicated?	✓ Yes	No No	
14. Is there sufficient sample volume for indicated analysis?	✓ Yes	No No	
15. Were all containers properly preserved per each analysis?	✓ Yes	No No	
16. Were VOA vials collected correctly (no headspace)?	✓ Yes	No	□ N/A
17. Were all holding times able to be met?	✓ Yes	No No	
Discrepancies/ Notes			
18. Was client notified of all discrepancies?	Yes	No	✓ N/A
Person Notified:			Date:
By Whom:			Via:
Regarding:			
19. Comments.			

3322 South Bay Road NE Ph: 360-352-2110 Olympia, WA 98506 Fax: 360-352-4154 Date: Field Notes Client: Actor Project Manager: Bit Notes Ditter Address: Client: State: Zip: Date: Field Notes City: State: Zip: Date: Field Notes Date: Field Notes Client Project # Field Notes Fax: Sample Container Collector: Bit Notes Bit Notes Sample Number Depth Time Sample Container Collector: State: Sample Field Notes 1 Bail: Date: Container Collector: Bit Nation Notes Field Notes 3 Bail: V Sample Container X Sample Samp	nental.com
Client: AEG Project Manager: BECKY DILBA Address: Project Manager: BECKY DILBA City: State: Zip: Phone: 3.60-352-9835 Fax: Client Project # +1 -140 18-236 Client Project # +1 -140 18-236 Email: DL.162 Sample Number Depth Time Type Type Container Type Type Cotto State: Sample Number Depth Time Type Type Type Cotto Type Sample Number Field Notes 1 Bal-6 2 Bal-76 3 Bal-76 3 Bal-76	1
Address: Project Name: Hut Address LACEY URBAN CENTE City: State: Zip: Location: City, State: Location: Phone: 3 CO-352-9835 Fax: Collector: Project Name: City, State: City, State: Client Project # How 18-236 Fax: Collector: Project Name: Collector: Col	+
City: State: Zip: Location: City, State: LACENT Phone: 3 G2-9835 Fax: Collector: B:D Date of Collection: H228/202 Client Project # H1 - H0 18-1360 Email: D1 D2 Date of Collection: H228/202 Image: Sample Number Depth Time Type Container Collector: B:D Difference Collector: B:D Difference B:D B:D Difference B:D Difference B:D Difference Difference<	
Phone: 360-352-9835 Fax: Collector: B-Y Date of Collection: 7/28/2020 Client Project # 18-230 Email: DL/Dc 0.00-9 0.00-9 0.00-9 Imail: DL/Dc 0.00-9 0.00-9 0.00-9 0.00-9 Imail: DL/Dc 0.00-9 0.00-9 0.00-9 Imail: DL/Dc	R
Client Project # H <td>WA</td>	WA
Image: Sample Number Depth Time Sample Type Container Type	
2 B21-11 4 905 X 1 1 1 3 B21-16 16 710 X 1 1	
2 B21-11 4 905 X 1 1 1 3 B21-16 16 710 X 1 1	
2 B21-11 4 905 X 1 1 1 3 B21-16 16 710 X 1 1	
2 B21-11 7 965 X 3 B21-16 16 910	
4 B21-21 21 919	
5 B21-26 26 926	
6 B21-31 31 731	
7 BR2-6 4 1058 X	
8 B 22-11 11 11/0 X	
9 Baz-16 16 118	
10 BRD-21 21 1123	
11 B22-24 26 1126	
12 822-31 31 1133	
13 B 21-w - 1014 Hw X - 1014 Hw - 10	
14	
15	
16	
17	
Relinquished by 7/28/2020 134 Time Received by: Date / Time Sample Receipt Remarks: PROJECT N Good Condition? Y N CHANGED 8-3-202	o per
Relinquished by: Date / Time Received by: Date / Time Cooler Temp. 4,9 °C BECKY VIA EMAIL	
Sample Temp. 5,7 °C Relinquished by: Date / Time Received by: Date / Time Total Number of Containers TAT: 24HR 48HR	~)

LEGAL ACTION CLAUSE: In the event of default of payment and/or failure	to pay, Client agrees to pay the costs of collectic	on including court costs and reasonable a	ttorney fees to be determined by a court of law
--	---	---	---

Distribution: White - Lab, Yellow - Originator

3322 South Bay Road NE • Olympia, WA 98506-2957

August 5, 2020

Becky Dilba Associated Environmental Group, LLC 2633 Parkmont Lane SW, Suite A Olympia, WA 98502

Dear Ms. Dilba:

Please find enclosed the analytical data report for the Lacey Urban Center Project located in Lacey, Washington.

The results of the analyses are summarized in the attached tables. Applicable detection limits and QA/QC data are included. The sample(s) will be disposed of in 30 days unless we are contacted to arrange long term storage.

Libby Environmental, Inc. appreciates the opportunity to have provided analytical services for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

Shy Ille

Sherry L. Chilcutt Senior Chemist Libby Environmental, Inc.

LACEY URBAN CENTER PROJECT AEG, LLC Lacey, Washington Libby Project # L200729-2 Client Project # 18-236 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Sample Description		Method	MW1-6	MW1-11	B23-6	B23-11	MW2-6
		Blank					
Date Sampled		N/A	7/29/2020	7/29/2020	7/29/2020	7/29/2020	7/29/2020
Date Analyzed	PQL	7/29/2020	7/29/2020	7/29/2020	7/29/2020	7/30/2020	7/30/2020
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Vinyl Chloride (VC)	0.02	nd	nd	nd	nd	nd	nd
1,1-Dichloroethene	0.05	nd	nd	nd	nd	nd	nd
trans-1,2-Dichloroethene	0.03	nd	nd	nd	nd	nd	nd
cis-1,2-Dichloroethene	0.03	nd	nd	nd	nd	nd	nd
Trichloroethene (TCE)	0.02	nd	nd	nd	nd	nd	nd
Tetrachloroethene (PCE)	0.03	nd	nd	nd	nd	nd	nd
Surrogate Recovery							
Dibromofluoromethane		132	131	133	133	133	125
1,2-Dichloroethane-d4		113	98	92	92	91	83
Toluene-d8		93	91	92	91	94	92
4-Bromofluorobenzene		100	101	94	99	94	93
"nd" Indicates not detec	cted at listed	l detection lin	mit.				
"int" Indicates that inte	rference nre	wents determ	ination				

Volatile Organic Compounds by EPA Method 8260D in Soil

"int" Indicates that interference prevents determination. ACCEPTABLE RECOVERY LIMITS FOR SURROGATE : 65% TO 135%

LACEY URBAN CENTER PROJECT AEG, LLC Lacey, Washington Libby Project # L200729-2 Client Project # 18-236 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Sample Description		MW2-11	
Date Sampled		7/29/2020	
Date Analyzed	PQL	7/30/2020	
	(mg/kg)	(mg/kg)	
Vinyl Chloride (VC)	0.02	nd	
1,1-Dichloroethene	0.05	nd	
trans-1,2-Dichloroethene	0.03	nd	
cis-1,2-Dichloroethene	0.03	nd	
Trichloroethene (TCE)	0.02	nd	
Tetrachloroethene (PCE)	0.03	nd	
Surrogate Recovery			
Dibromofluoromethane		129	
1,2-Dichloroethane-d4		96	
Toluene-d8		93	
4-Bromofluorobenzene		98	
"nd" Indicates not detec	cted at listed	d detection lin	nit.
"int" Indicates that inter	rference pre	events determ	ination.
ACCEPTABLE RECOV	VERY LIM	ITS FOR SU	RROGATE : 65% TO 135%

Volatile Organic Compounds by EPA Method 8260D in Soil

LACEY URBAN CENTER PROJECT AEG, LLC Lacey, Washington Libby Project # L200729-2 Client Project # 18-236 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

1v.	latrix Spike	Sample Ide	intification.	L200729-3				
	Spiked	MS	MSD	MS	MSD	RPD	Limits	Data
	Conc.	Response	Response	Recovery	Recovery		Recovery	Flag
	(mg/kg)	(mg/kg)	(mg/kg)	(%)	(%)	(%)	(%)	
Vinyl Chloride (VC)	0.25	0.18	0.19	72	78	7.5	65-135	
1,1-Dichloroethene	0.25	0.21	0.24	82	95	14.4	65-135	
trans-1,2-Dichloroethene	0.25	0.24	0.27	96	109	12.1	65-135	
cis-1,2-Dichloroethene	0.25	0.24	0.27	94	108	13.8	65-135	
Trichloroethene (TCE)	0.25	0.24	0.25	96	101	5.3	65-135	
Tetrachloroethene (PCE)	0.25	0.34	0.32	134	129	4.0	65-135	
Surrogate Recovery (%)				MS	MSD			
Dibromofluoromethane				124	133		65-135	
1,2-Dichloroethane-d4				120	107		65-135	
Toluene-d8				94	94		65-135	
4-Bromofluorobenzene				112	104		65-135	

QA/QC for Volatile Organic Compounds by EPA Method 8260D in Soil

ACCEPTABLE RPD IS 35%

LACEY URBAN CENTER PROJECT AEG, LLC Lacey, Washington Libby Project # L200729-2 Client Project # 18-236 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

	Spiked	LCS	LCS	LCS	Data
	Conc.	Response	Recovery	Recovery	Flag
	(mg/kg)	(mg/kg)	(%)	Limits (%)	
Vinyl Chloride (VC)	0.25	0.24	96	80-120	
1,1-Dichloroethene	0.25	0.22	88	80-120	
trans-1,2-Dichloroethene	0.25	0.22	90	80-120	
cis-1,2-Dichloroethene	0.25	0.27	106	80-120	
Trichloroethene (TCE)	0.25	0.21	83	80-120	
Tetrachloroethene (PCE)	0.25	0.22	90	80-120	
Surrogate Recovery					
Dibromofluoromethane			123	65-135	
1,2-Dichloroethane-d4			114	65-135	
Toluene-d8			96	65-135	
4-Bromofluorobenzene			111	65-135	

Laboratory Control Sample

LACEY URBAN CENTER PROJECT AEG, LLC Lacey, Washington Libby Project # L200729-2 Client Project # 18-236 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Sample Description		Method	B22-W	B22-W	Trip Blank	
Sumple Description		Blank	$\mathbf{D}\mathbf{Z}\mathbf{Z}$ \mathbf{W}	D22 W	The Drank	
				-		
Date Sampled		N/A	7/29/2020	7/29/2020	7/29/2020	
Date Analyzed	PQL	7/31/2020	7/31/2020	7/31/2020	7/31/2020	
_	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	
Vinyl Chloride (VC)	0.2	nd	nd	nd	nd	
1,1-Dichloroethene	0.5	nd	nd	nd	nd	
trans-1,2-Dichloroethene	1.0	nd	nd	nd	nd	
cis-1,2-Dichloroethene	1.0	nd	nd	nd	nd	
Trichloroethene (TCE)	0.4	nd	nd	nd	nd	
Tetrachloroethene (PCE)	1.0	nd	1.6	1.4	nd	
Surrogate Recovery						
Dibromofluoromethane		90	84	84	116	
1,2-Dichloroethane-d4		101	84	85	109	
Toluene-d8		106	67	65	85	
4-Bromofluorobenzene		91	90	89	86	
"nd" Indicates not detec	ted at listed	d detection lin	nit.			

Volatile Organic Compounds by EPA Method 8260D in Water

"int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE : 65% TO 135%

LACEY URBAN CENTER PROJECT AEG, LLC Lacey, Washington Libby Project # L200729-2 Client Project # 18-236 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

M	latrix Spike	Sample Ider	ntification:	L200728-3				
	Spiked	MS	MSD	MS	MSD	RPD	Limits	Data
	Conc.	Response	Response	Recovery	Recovery		Recovery	Flag
	(µg/L)	(µg/L)	$(\mu g/L)$	(%)	(%)	(%)	(%)	
Vinyl Chloride (VC)	5.0	4.3	3.5	85	70	19.5	65-135	
1,1-Dichloroethene	5.0	5.3	4.4	105	88	18.4	65-135	
trans-1,2-Dichloroethene	5.0	5.2	4.3	105	86	20.0	65-135	
cis-1,2-Dichloroethene	5.0	5.4	5.2	108	103	5.1	65-135	
Trichloroethene (TCE)	5.0	5.2	4.3	104	85	20.5	65-135	
Tetrachloroethene (PCE)	5.0	5.0	4.6	100	92	8.3	65-135	
Surrogate Recovery (%)				MS	MSD			
Dibromofluoromethane				115	117		65-135	
1,2-Dichloroethane-d4				115	114		65-135	
Toluene-d8				101	94		65-135	
4-Bromofluorobenzene				104	106		65-135	

QA/QC for Volatile Organic Compounds by EPA Method 8260D in Water

ACCEPTABLE RPD IS 35%

LACEY URBAN CENTER PROJECT AEG, LLC Lacey, Washington Libby Project # L200729-2 Client Project # 18-236 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

	Spiked	LCS	LCS	LCS	Data
	Conc.	Response	Recovery	Recovery	Flag
	(µg/L)	$(\mu g/L)$	(%)	Limits (%)	
Vinyl Chloride (VC)	5.0	5.5	110	80-120	
1,1-Dichloroethene	5.0	5.8	117	80-120	
trans-1,2-Dichloroethene	5.0	5.7	113	80-120	
cis-1,2-Dichloroethene	5.0	5.0	100	80-120	
Trichloroethene (TCE)	5.0	5.6	113	80-120	
Tetrachloroethene (PCE)	5.0	4.2	84	80-120	
Surrogate Recovery					
Dibromofluoromethane			75	65-135	
1,2-Dichloroethane-d4			75	65-135	
Toluene-d8			103	65-135	
4-Bromofluorobenzene			103	65-135	

Laboratory Control Sample

LACEY URBAN CENTER PROJECT AEG, LLC Libby Project # L200729-2 Date Received 7/29/2020

Time Received 3:24 PM

3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Received By SC

Sample Receipt Checklist

Chain of Custody			
1. Is the Chain of Custody complete?	✓ Yes	No No	
2. How was the sample delivered?	✓ Hand Delivered	Picked Up	Shipped
Log In			
3. Cooler or Shipping Container is present.	✓ Yes	No	□ N/A
4. Cooler or Shipping Container is in good condition.	✓ Yes	No No	□ N/A
5. Cooler or Shipping Container has Custody Seals present.	Yes	✓ No	□ N/A
6. Was an attempt made to cool the samples?	✓ Yes	No	□ N/A
7. Temperature of cooler (0°C to 8°C recommended)	0.1	°C	
8. Temperature of sample(s) (0°C to 8°C recommended)	28.6	°C	
9. Did all containers arrive in good condition (unbroken)?	✓ Yes	No	
10. Is it clear what analyses were requested?	✓ Yes	No	
11. Did container labels match Chain of Custody?	✓ Yes	No	
12. Are matrices correctly identified on Chain of Custody?	✓ Yes	No	
13. Are correct containers used for the analysis indicated?	✓ Yes	No	
14. Is there sufficient sample volume for indicated analysis?	✓ Yes	No	
15. Were all containers properly preserved per each analysis?	✓ Yes	No	
16. Were VOA vials collected correctly (no headspace)?	✓ Yes	No	□ N/A
17. Were all holding times able to be met?	✓ Yes	No	
Discrepancies/ Notes			
18. Was client notified of all discrepancies?	Yes	No	✓ N/A
Person Notified:		Date:	
By Whom:		Via:	
Regarding:		_	
19. Comments.			

Libby Environmental, Inc.	Ch	ain of Cust	ody Recor	d		www.LibbyEnvironmental.com			
3322 South Bay Road NE Ph: 360-352-211 Olympia, WA 98506 Fax: 360-352-415		Date: 7	129/202	Ø	Page:	of -?			
Client: MES		Project M	anager: B.C.).					
Address:					to				
City: State:	Zip:	Location:	ame: La cey		City, Sta	te: lacen un			
Phone: 360-352-9835 Fax:	F		-		Date of (te: Lacy, wh Collection: 7/20/2020			
Client Project # 18-236		Email: 🖌	Jilba @ ale	and the second					
THE BOAT	Sample Container Type Type	SC 254 200 100		5 Nett 1 1 2 2 2 2 2 1 2 1 2 1 2 1 2 1 2 1 2	258710 108210 258711108210	Field Notes			
	SOIL 402 VUA	XIII							
2 mul-11 746		X							
3 Mul-16 752									
4 MW1-21 803									
5 MW1-26 808									
6 441. 36 840	1/								
ZAALOT a SC 954	W WOA	X				AIO to B22-W			
	402VOA	X				St			
8 323-6 1040 9 Baz.11 1045	1 1000	X							
10 323-16 1048									
10 B23-16 1048 11 B23-21 1059									
12 823-26 1107									
13 (323-3) 11/16						Şi.			
14 MW2-6 1324		X							
15 MWZ-11 1327		4.							
16 Anw 2-16 1332	V				NEWLOCKER AND ACCOUNTS OF A DESCRIPTION OF	Duplicate			
17 The Block 730	W VUA	X				and the second se			
Relinguished by The IDa	ate / Time Received by:	WA724-	Date / Time		No. of Concession, Name of Con	Remarks:			
		UNA7-24-		Good Condition? Cooler Temp.	Y N °C	-			
	ate / Time Received by		Daterrime	Sample Temp.	0°C	-			
Relinquished by: Da	ate / Time Received by:		Date / Time			TAT: 24HR 48HR 5-DAY			

Distribution: White - Lab, Yellow - Originator

Libby Environme	ntal, Ir	IC.		Cł	nain	of	Cus	tod	ly F	Rec	or	d						www	.Libby	Environn	nental.com
3322 South Bay Road NE Olympia, WA 98506		360-352-2 360-352-4				D)ate:	71	29	120	20	2			Pa	ige:		2	C	of 2	
Client: MEG						P	Project	Mana	ger:	B.	0										
Address:							Project														
City:		State:	Zip	:		L	ocation	1:			(Ci	tv. St	tate:	19	carl	vp	
Phone: 300-352-983	5	Fax:				0	Collecto	r:	3.n	,					Da	ate of	f Coll	ection	7	1291	1220
	Client Project # 18-2-36					E	mail:	Br	rib	9 6										- 1	
Sample Number	Depth	Time	Sample Type	Container Type	55	8260 8260	a Daught	PHO PHO ST OF ST OF ST OF	60 H	SA D	4 10 th	N ST ST	81919 M	5815 10 H 82 10	8210 58111	018275			Field	Notes	
1 MW2-16		1332	5	402 VDA																	
2 Muraz		1355	1	1																	
2 MW2-26		1355																			
4 MW2-31		1401	Y																		
5																					
6																					
7																					
8																					
9																					
10						+															
11																					
12																+					
13																1	1				
14																-	+				
15						+										-	+	1			
16						+							1			-	+				
17						-							-			+	+	+			
	200	1000	Date / Time	Received by:	ſ	1./	11		D	ate / T	īme	5	Sam	ple R	ecei	pt	Re	emarks	s:		-
Relinquisher by: 7/24	low	1523		All		W	H	+		-201		Good			Y	Ν					
Relinquished by:			Date / Time	Received by:					D	ate / T	ime	Cooler				0° 0°					
Relinquished by:			Date / Time	Received by:					D	ate / T	ime	Sampl Total I				0	-			(\sim
													ntainer				T	AT: 2	24HR	48HR	5-DAY

LEGAL ACTION CLAUSE: In the event of default of payment and/or failure to pay, Client agrees to pay the costs of collection including court costs and reasonable attorney fees to be determined by a	a court of law
--	----------------

Distribution: White - Lab, Yeilow - Originator

3322 South Bay Road NE • Olympia, WA 98506-2957

August 6, 2020

Becky Dilba Associated Environmental Group, LLC 2633 Parkmont Lane SW, Suite A Olympia, WA 98502

Dear Ms. Dilba:

Please find enclosed the analytical data report for the Lacey Urban Center Project located in Lacey, Washington.

The results of the analyses are summarized in the attached tables. Applicable detection limits and QA/QC data are included. The sample(s) will be disposed of in 30 days unless we are contacted to arrange long term storage.

Libby Environmental, Inc. appreciates the opportunity to have provided analytical services for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

Shy Ille

Sherry L. Chilcutt Senior Chemist Libby Environmental, Inc.

LACEY URBAN CENTER PROJECT AEG, LLC Lacey, Washington Libby Project # L200730-2 Client Project # 18-236 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Sample Description		Method	Method	MW3-6	MW3-11	
Sample Description				101 00 3-0	101 00 5-11	
		Blank	Blank			
Date Sampled		N/A	N/A	7/30/2020	7/30/2020	
Date Analyzed	PQL	8/3/2020	8/3/2020	8/3/2020	8/3/2020	
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	
Vinyl Chloride (VC)	0.02	nd	nd	nd	nd	
1,1-Dichloroethene	0.05	nd	nd	nd	nd	
trans-1,2-Dichloroethene	0.03	nd	nd	nd	nd	
cis-1,2-Dichloroethene	0.03	nd	nd	nd	nd	
Trichloroethene (TCE)	0.02	nd	nd	nd	nd	
Tetrachloroethene (PCE)	0.03	nd	nd	nd	nd	
Surrogate Recovery						
Dibromofluoromethane		133	133	135	131	
1,2-Dichloroethane-d4		114	111	108	119	
Toluene-d8		96	93	92	93	
4-Bromofluorobenzene		100	98	97	117	
"nd" Indicates not detec	cted at listed	l detection lin	nit.			
"int" Indicates that inter	rference pre	vents determ	ination.			

Volatile Organic Compounds by EPA Method 8260D in Soil

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE : 65% TO 135%

LACEY URBAN CENTER PROJECT AEG, LLC Lacey, Washington Libby Project # L200730-2 Client Project # 18-236 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

N	latrix Spike	Sample Ide	ntification:	L200729-2	,			
	Spiked	MS	MSD	MS	MSD	RPD	Limits	Data
	Conc.	Response	Response	Recovery	Recovery		Recovery	Flag
	(mg/kg)	(mg/kg)	(mg/kg)	(%)	(%)	(%)	(%)	
Vinyl Chloride (VC)	0.25	0.18	0.21	72	84	15.4	65-135	
1,1-Dichloroethene	0.25	0.22	0.26	88	104	16.7	65-135	
trans-1,2-Dichloroethene	0.25	0.25	0.27	100	108	7.7	65-135	
cis-1,2-Dichloroethene	0.25	0.30	0.34	120	136	12.5	65-135	S
Trichloroethene (TCE)	0.25	0.21	0.23	84	92	9.1	65-135	
Tetrachloroethene (PCE)	0.25	0.31	0.37	124	148	17.6	65-135	S
Surrogate Recovery (%)				MS	MSD			
Dibromofluoromethane				128	130		65-135	
1,2-Dichloroethane-d4				117	117		65-135	
Toluene-d8				96	94		65-135	
4-Bromofluorobenzene				114	113		65-135	

QA/QC for Volatile Organic Compounds by EPA Method 8260D in Soil

ACCEPTABLE RPD IS 35%

S" Spike compound recovery is outside acceptance limits.

LACEY URBAN CENTER PROJECT AEG, LLC Lacey, Washington Libby Project # L200730-2 Client Project # 18-236 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

	Spiked	LCS	LCS	LCS	Data
	Conc.	Response	Recovery	Recovery	Flag
	(mg/kg)	(mg/kg)	(%)	Limits (%)	
Vinyl Chloride (VC)	0.25	0.21	84	80-120	
1,1-Dichloroethene	0.25	0.27	108	80-120	
trans-1,2-Dichloroethene	0.25	0.26	104	80-120	
cis-1,2-Dichloroethene	0.25	0.27	108	80-120	
Trichloroethene (TCE)	0.25	0.27	108	80-120	
Tetrachloroethene (PCE)	0.25	0.30	120	80-120	
Surrogate Recovery					
Dibromofluoromethane			117	65-135	
1,2-Dichloroethane-d4			94	65-135	
Toluene-d8			89	65-135	
4-Bromofluorobenzene			92	65-135	

Laboratory Control Sample

LACEY URBAN CENTER PROJECT AEG, LLC Lacey, Washington Libby Project # L200730-2 Client Project # 18-236 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

	Spiked	MS	MSD	MS	MSD	RPD	Limits	Data
	Conc.	Response	Response	Recovery	Recovery		Recovery	Flag
	(mg/kg)	(mg/kg)	(mg/kg)	(%)	(%)	(%)	(%)	C
Vinyl Chloride (VC)	0.25	0.17	0.19	68	76	11.1	65-135	
1,1-Dichloroethene	0.25	0.23	0.23	92	92	0.0	65-135	
trans-1,2-Dichloroethene	0.25	0.24	0.23	96	92	4.3	65-135	
cis-1,2-Dichloroethene	0.25	0.17	0.23	68	92	30.0	65-135	
Trichloroethene (TCE)	0.25	0.23	0.22	92	88	4.4	65-135	
Tetrachloroethene (PCE)	0.25	0.33	0.33	132	132	0.0	65-135	
Surrogate Recovery (%)				MS	MSD			
Dibromofluoromethane				113	135		65-135	
1,2-Dichloroethane-d4				110	106		65-135	
Toluene-d8				100	102		65-135	
4-Bromofluorobenzene				130	109		65-135	

QA/QC for Volatile Organic Compounds by EPA Method 8260D in Soil

ACCEPTABLE RPD IS 35%

LACEY URBAN CENTER PROJECT AEG, LLC Lacey, Washington Libby Project # L200730-2 Client Project # 18-236 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

	Spiked	LCS	LCS	LCS	Data
	Conc.	Response	Recovery	Recovery	Flag
	(mg/kg)	(mg/kg)	(%)	Limits (%)	
Vinyl Chloride (VC)	0.25	0.20	80	80-120	
1,1-Dichloroethene	0.25	0.26	104	80-120	
trans-1,2-Dichloroethene	0.25	0.30	120	80-120	
cis-1,2-Dichloroethene	0.25	0.25	100	80-120	
Trichloroethene (TCE)	0.25	0.24	96	80-120	
Tetrachloroethene (PCE)	0.25	0.29	116	80-120	
Surrogate Recovery					
Dibromofluoromethane			135	65-135	
1,2-Dichloroethane-d4			115	65-135	
Toluene-d8			102	65-135	
4-Bromofluorobenzene			96	65-135	

Laboratory Control Sample

LACEY URBAN CENTER PROJECT AEG, LLC Lacey, Washington Libby Project # L200730-2 Client Project # 18-236 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Sample Description		Method	B23-W	MW3-W	MW2-W	MW2-W	MW1-W
		Blank				Dup	
Date Sampled		N/A	7/30/2020	7/30/2020	7/30/2020	7/30/2020	7/30/2020
Date Analyzed	PQL	7/31/2020	7/31/2020	7/31/2020	7/31/2020	7/31/2020	7/31/2020
	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
Vinyl Chloride (VC)	0.2	nd	nd	nd	nd	nd	nd
1,1-Dichloroethene	0.5	nd	nd	nd	nd	nd	nd
trans-1,2-Dichloroethene	1.0	nd	nd	nd	nd	nd	nd
cis-1,2-Dichloroethene	1.0	nd	nd	nd	nd	nd	nd
Trichloroethene (TCE)	0.4	nd	nd	nd	nd	nd	nd
Tetrachloroethene (PCE)	1.0	nd	1.3	nd	0.66 J 0.61 J		0.82 J
Surrogate Recovery							
Dibromofluoromethane		90	94	85	86	84	84
1,2-Dichloroethane-d4		101	103	89	88	86	99
Toluene-d8		106	104	71	70	70	104
4-Bromofluorobenzene		91	93	94	89	90	94

Volatile Organic Compounds by EPA Method 8260D in Water

"nd" Indicates not detected at listed detection limit.

int Indicates that interference prevents determination.

"J" Result is less than the PQL but greater than the MDL. Reported value is approximate.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE : 65% TO 135%

LACEY URBAN CENTER PROJECT AEG, LLC Lacey, Washington Libby Project # L200730-2 Client Project # 18-236 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

N	latrix Spike	Sample Ide	ntification:	L200728-3				
	Spiked	MS	MSD	MS	MSD	RPD	Limits	Data
	Conc.	Response	Response	Recovery	Recovery		Recovery	Flag
	(µg/L)	$(\mu g/L)$	(µg/L)	(%)	(%)	(%)	(%)	
Vinyl Chloride (VC)	5.0	4.3	3.5	85	70	19.5	65-135	
1,1-Dichloroethene	5.0	5.3	4.4	105	88	18.4	65-135	
trans-1,2-Dichloroethene	5.0	5.2	4.3	105	86	20.0	65-135	
cis-1,2-Dichloroethene	5.0	5.4	5.2	108	103	5.1	65-135	
Trichloroethene (TCE)	5.0	5.2	4.3	104	85	20.5	65-135	
Tetrachloroethene (PCE)	5.0	5.6	5.2	112	104	7.4	65-135	
Surrogate Recovery (%)				MS	MSD			
Dibromofluoromethane				115	117		65-135	
1,2-Dichloroethane-d4				115	114		65-135	
Toluene-d8				101	94		65-135	
4-Bromofluorobenzene				104	106		65-135	

QA/QC for Volatile Organic Compounds by EPA Method 8260D in Water

ACCEPTABLE RPD IS 35%

LACEY URBAN CENTER PROJECT AEG, LLC Lacey, Washington Libby Project # L200730-2 Client Project # 18-236 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

	Spiked	LCS	LCS	LCS	Data
	Conc.	Response	Recovery	Recovery	Flag
	(µg/L)	$(\mu g/L)$	(%)	Limits (%)	
Vinyl Chloride (VC)	5.0	5.5	110	80-120	
1,1-Dichloroethene	5.0	5.8	117	80-120	
trans-1,2-Dichloroethene	5.0	5.7	113	80-120	
cis-1,2-Dichloroethene	5.0	5.0	100	80-120	
Trichloroethene (TCE)	5.0	5.6	113	80-120	
Tetrachloroethene (PCE)	5.0	4.2	84	80-120	
Surrogate Recovery					
Dibromofluoromethane			75	65-135	
1,2-Dichloroethane-d4			75	65-135	
Toluene-d8			103	65-135	
4-Bromofluorobenzene			103	65-135	

Laboratory Control Sample

LACEY URBAN CENTER PROJECT AEG, LLC Libby Project # L200730-2

Date Received 7/30/2020 Time Received 12:25 PM 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Received By KD

Sample Receipt Checklist

Chain of Custody			
1. Is the Chain of Custody complete?	✓ Yes	No	
2. How was the sample delivered?	✓ Hand Delivered	Picked Up	Shipped
Log In			
3. Cooler or Shipping Container is present.	✓ Yes	No	□ N/A
4. Cooler or Shipping Container is in good condition.	✓ Yes	No No	□ N/A
5. Cooler or Shipping Container has Custody Seals present.	Yes	✓ No	N/A
6. Was an attempt made to cool the samples?	✓ Yes	No	□ N/A
7. Temperature of cooler (0°C to 8°C recommended)	2.0	°C	
8. Temperature of sample(s) (0°C to 8°C recommended)	14.8	°C	
9. Did all containers arrive in good condition (unbroken)?	✓ Yes	No No	
10. Is it clear what analyses were requested?	✓ Yes	No No	
11. Did container labels match Chain of Custody?	✓ Yes	No No	
12. Are matrices correctly identified on Chain of Custody?	✓ Yes	No No	
13. Are correct containers used for the analysis indicated?	✓ Yes	No No	
14. Is there sufficient sample volume for indicated analysis?	✓ Yes	No No	
15. Were all containers properly preserved per each analysis?	✓ Yes	No No	
16. Were VOA vials collected correctly (no headspace)?	✓ Yes	No No	□ N/A
17. Were all holding times able to be met?	✓ Yes	No No	
Discrepancies/ Notes			
18. Was client notified of all discrepancies?	Yes	No No	✓ N/A
Person Notified:		_	Date:
By Whom:		_	Via:
Regarding:		_	
19. Comments.			

Libby Environmen	ital, In	IC.	<u></u>	Cł	nain d	of Cu	isto	dy I	Rec	or	d						www.Libb	yEnviron	mental.com
3322 South Bay Road NE	Ph:	360-352-2												_					
Olympia, WA 98506		360-352-4	154			Date:		()	\mathcal{D}	20	120			Pa	ge:			of	
Client:	ig					Projec	ct Mai	nager:		12.10	0								+
Address:						Projec	ct Nar	ne: L	ale	70	ms	er.	C	the	\				
City:		State:	Zip:			Locat	ion:							City	, Sta	ite: L	ACEY	WA	
Phone: 300-352-98						Collec	ctor:	Bir	2	*****				Dat	eof	Colle	ction: $7/$	130/00	05
Client Project # / 8	-236					Email	1	1.11	10	0	ú	29	crec						
Sample Number	Depth	Time	Sample Type	Container Type	1000	60 Cal	2 ^{He} 2 ^{FE}	ANN TON	ROLL P	3880 101 101	2 5 2 2 2 2 2 2 2 2 2 2	Reference of the second	8485 PH 8210 PH 8210	Seril V	18270		Fiel	d Notes	
1 323-6		725	5	Ut /in	X														
2 MW3-6		912		701	X														
3 MW 3-11		913)														
4 MW3-16		921																	
5 MW2-21		930																	
6 Mc 3-26		945																	
7 MW3-31		954																	
8 MU3-36		1002																	
9 MWZ-W 10 MWZ-W		1125		A	7	(
10 11W2-W		1(33																	
11 MW/-W		1140			y y	et													
12																			
12 13 14 15																	1.		
14																			
15																			
16																			
17																			
Relinguished by:	2.02			Received by:			_ / .		Date /		Statement and		ple R		and the second data and the se	Rem	arks:		
Relinquished by:	1010	122		Received by:	4	1	7/30/	2020	12 Date /		Good			Y	°C	-			Į.
rteiniquisneu ay .				Neceived by.				1	Jale /	i iiile	Coole Samp		-		0°	-			5
Relinquished by:			Date / Time	Received by:				[Date /	Time	Total	Numb	er of						\frown
											Co	ntaine	rs			TAT	r: 24HF	R 48HF	S-DAY

LEGAL ACTION CLAUSE: In the event of default of payment and/or failure to pay, Client agrees to pay the costs of collection including court costs and reasonable attorney fees to be determined by a court of law.
--

Distribution: White - Lab, Yellow - Originator

FRIEDMAN & BRUYA, INC.

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

August 17, 2020

Becky Dilba, Project Manager AEG 605 11th Ave SE Suite 201 Olympia, WA 98501

Dear Ms Dilba:

Included are the results from the testing of material submitted on July 31, 2020 from the Lacey Urban Center 7269 Martin Way East, Olympia PO 18-236, F&BI 007546 project. There are 10 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

al

Michael Erdahl Project Manager

Enclosures AEG0817R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on July 31, 2020 by Friedman & Bruya, Inc. from the AEG Lacey Urban Center 7269 Martin Way East, Olympia PO 18-236, F&BI 007546 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	AEG
007546 -01	SG-1
007546 -02	SG-2
007546 -03	SG-3
007546 -04	SG-4
007546 - 05	SG-5
007546 -06	SG-6

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	SG-1 07/31/2 07/29/2 08/13/2 Air ug/m3	0	Clie Proj Lab Dat Inst Ope	AEG Lacey Urban Center 007546-01 1/6.8 081234.D GCMS7 bat	
		%	Lower	Upper	
Surrogates:		Recovery:	Limit:	Limit:	
4-Bromofluorobenz	ene	95	70	130	
		Concent	tration		
Compounds:		ug/m3	ppbv		
Vinyl chloride		<1.7	<0.68		
Chloroethane		<18	< 6.8		
1,1-Dichloroethene		<2.7	< 0.68		
trans-1,2-Dichloroe		<2.7	< 0.68		
1,1-Dichloroethane		<2.8	< 0.68		
cis-1,2-Dichloroeth		<2.7	< 0.68		
1,2-Dichloroethane		< 0.28	< 0.068		
1,1,1-Trichloroetha	ne	<3.7	< 0.68		
Trichloroethene		<1.8	< 0.34		
1,1,2-Trichloroetha	ne	< 0.74	< 0.14		
Tetrachloroethene		60	8.9		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	SG-2 07/31/2 07/29/2 08/13/2 Air ug/m3	0	Clie Proj Lab Dat Inst Ope	AEG Lacey Urban Center 007546-02 1/6.8 081233.D GCMS7 bat	
		%	Lower	Upper	
Surrogates:		Recovery:	Limit:	Limit:	
4-Bromofluorobenz	ene	106	70	130	
		Concent			
Compounds:		ug/m3	ppbv		
Vinyl chloride		<1.7	< 0.68		
Chloroethane		<18	< 6.8		
1,1-Dichloroethene		<2.7	< 0.68		
trans-1,2-Dichloroe	thene	<2.7	< 0.68		
1,1-Dichloroethane		<2.8	< 0.68		
cis-1,2-Dichloroethe	ene	<2.7	< 0.68		
1,2-Dichloroethane	(EDC)	< 0.28	< 0.068		
1,1,1-Trichloroetha	ne	<3.7	< 0.68		
Trichloroethene		<1.8	< 0.34		
1,1,2-Trichloroetha	ne	< 0.74	< 0.14		
Tetrachloroethene		180	27		

ENVIRONMENTAL CHEMISTS

	r
% Lower Upper	
Surrogates: Recovery: Limit: Limit:	
4-Bromofluorobenzene 108 70 130	
Concentration	
Compounds: ug/m3 ppbv	
Vinyl chloride <1.7 <0.67	
Chloroethane <18 <6.7	
1,1-Dichloroethene <2.7 <0.67	
trans-1,2-Dichloroethene <2.7 <0.67	
1,1-Dichloroethane <2.7 <0.67	
cis-1,2-Dichloroethene <2.7 <0.67	
1,2-Dichloroethane (EDC) $< 0.27 < 0.067$	
1,1,1-Trichloroethane <3.7 <0.67	
Trichloroethene <1.8 <0.33	
1,1,2-Trichloroethane $< 0.73 < 0.13$	
Tetrachloroethene 90 13	

ENVIRONMENTAL CHEMISTS

Date Received: Date Collected: Date Analyzed: Matrix:	SG-4 07/31/20 07/29/20 08/13/20 Air ug/m3	Clie Proj Lab Data Inst Ope	AEG Lacey Urban Center 007546-04 1/6.6 081235.D GCMS7 bat	
	%	Lower	Upper	
Surrogates:	Recovery:	Limit:	Limit:	
4-Bromofluorobenzer	ne 107	70	130	
	Concer	itration		
Compounds:	ug/m3	ppbv		
Vinyl chloride	<1.7	< 0.66		
Chloroethane	<17	<6.6		
1,1-Dichloroethene	<2.6	<0.66		
trans-1,2-Dichloroet	hene <2.6	<0.66		
1,1-Dichloroethane	<2.7	<0.66		
cis-1,2-Dichloroether	ne <2.6	< 0.66		
1,2-Dichloroethane (EDC) <0.27	< 0.066		
1,1,1-Trichloroethan	e <3.6	< 0.66		
Trichloroethene	2.4	0.45		
1,1,2-Trichloroethan	e <0.72	< 0.13		
Tetrachloroethene	72	11		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	SG-5 07/31/2 07/29/2 08/11/2 Air ug/m3	0	Clie Proj Lab Data Inst Ope	AEG Lacey Urban Center 007546-05 1/13 081032.D GCMS7 bat	
		%	Lower	Upper	
Surrogates:		Recovery:	Limit:	Limit:	
4-Bromofluorobenz	ene	100	70	130	
		Concent	ration		
Compounds:		ug/m3	ppbv		
View lablasida		<3.3	<1.3		
Vinyl chloride Chloroethane		0.0	<1.5 <13		
0 0 - 0 0		<34			
1,1-Dichloroethene		<5.2	<1.3		
trans-1,2-Dichloroe		<5.2	<1.3		
1,1-Dichloroethane		<5.3	<1.3		
cis-1,2-Dichloroeth		<5.2	<1.3		
1,2-Dichloroethane	, ,	< 0.53	< 0.13		
1,1,1-Trichloroetha	ine	<7.1	<1.3		
Trichloroethene		<3.5	< 0.65		
1,1,2-Trichloroetha	ine	<1.4	< 0.26		
Tetrachloroethene		270	39		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	SG-6 07/31/2 07/29/2 08/11/2 Air ug/m3	20	Clie Proj Lab Dat Inst Ope	AEG Lacey Urban Center 007546-06 1/7.0 081031.D GCMS7 bat	
		%	Lower	Upper	
Surrogates:		Recovery:	Limit:	Limit:	
4-Bromofluorobenze	ene	105	70	130	
		Concent			
Compounds:		ug/m3	ppbv		
Vinyl chloride		<1.8	< 0.7		
Chloroethane		<18	<7		
1,1-Dichloroethene		<2.8	< 0.7		
trans-1,2-Dichloroe	thene	<2.8	< 0.7		
1,1-Dichloroethane		<2.8	< 0.7		
cis-1,2-Dichloroethe	ene	<2.8	< 0.7		
1,2-Dichloroethane	(EDC)	< 0.28	< 0.07		
1,1,1-Trichloroetha	ne	<3.8	< 0.7		
Trichloroethene		<1.9	< 0.35		
1,1,2-Trichloroetha	ne	< 0.76	< 0.14		
Tetrachloroethene		76	11		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Not A		Inst	ect:	AEG Lacey Urban Center 00-1730 mb 081016.D GCMS7 bat
		%	Lower	Upper	
Surrogates:		Recovery:	Limit:	Limit:	
4-Bromofluorobenz	ene	91	70	130	
		Concen	tration		
Compounds:		ug/m3	ppbv		
T 7· 1 11 · 1		.0.00	.0.1		
Vinyl chloride		< 0.26	< 0.1		
Chloroethane		<2.6	<1		
1,1-Dichloroethene		< 0.4	< 0.1		
trans-1,2-Dichloroe		< 0.4	< 0.1		
1,1-Dichloroethane		< 0.4	< 0.1		
cis-1,2-Dichloroeth	ene	< 0.4	< 0.1		
1,2-Dichloroethane	(EDC)	< 0.04	< 0.01		
1,1,1-Trichloroetha	ne	< 0.55	< 0.1		
Trichloroethene		< 0.27	< 0.05		
1,1,2-Trichloroetha	ne	< 0.11	< 0.02		
Tetrachloroethene		< 6.8	<1		

ENVIRONMENTAL CHEMISTS

Date of Report: 08/17/20 Date Received: 07/31/20 Project: Lacey Urban Center 7269 Martin Way East, Olympia PO 18-236, F&BI 007546

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 008120-01 1/8.3 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
Vinyl chloride	ug/m3	12	8.4	35 vo
Chloroethane	ug/m3	<22	<22	nm
1,1-Dichloroethene	ug/m3	<3.3	<3.3	nm
trans-1,2-Dichloroethene	ug/m3	<3.3	<3.3	nm
1,1-Dichloroethane	ug/m3	<3.4	<3.4	nm
cis-1,2-Dichloroethene	ug/m3	<3.3	<3.3	nm
1,2-Dichloroethane (EDC)	ug/m3	< 0.34	< 0.34	nm
1,1,1-Trichloroethane	ug/m3	<4.5	<4.5	nm
Trichloroethene	ug/m3	<2.2	<2.2	nm
1,1,2-Trichloroethane	ug/m3	< 0.91	< 0.91	nm
Tetrachloroethene	ug/m3	<56	<56	nm

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Vinyl chloride	ug/m3	35	79	70-130
Chloroethane	ug/m3	36	80	70-130
1,1-Dichloroethene	ug/m3	54	94	70-130
trans-1,2-Dichloroethene	ug/m3	54	86	70-130
1,1-Dichloroethane	ug/m3	55	81	70-130
cis-1,2-Dichloroethene	ug/m3	54	94	70-130
1,2-Dichloroethane (EDC)	ug/m3	55	83	70-130
1,1,1-Trichloroethane	ug/m3	74	84	70-130
Trichloroethene	ug/m3	73	77	70-130
1,1,2-Trichloroethane	ug/m3	74	92	70-130
Tetrachloroethene	ug/m3	92	97	70-130

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

007546				SAMPLI	E CHAII	NOF	CUST	ODY		M	. E	0	7-	31-1	20		
Report Port B -	0:10	2°6 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 -		SAMPL	ERS (sign	ature)	-Ar							J	Tage #	#0f NAROUND TIME	<u> </u>
CompanyA					CT NAME		DRESS			PO #				Star	ndaro SH	1	
Address	··· ⁻ ····			- Lacal	ualoan car g Mmichi	n way	Bast,	Olynf	zić B	-23	55		Rush charges authorized by:				
City, State, ZIP				NOTES			a			INVOICE TO				SAMPLE DISPOSAL			
PhoneE				*					A	TEC 1						(Fee may apply)	
	mau		<u> </u>	ua car						ANA	TVC	TQP		TEST	<u>TED</u>		<u> </u>
SAMPLE INFORMATION	-T	T				: -	I			AINA		1 01	<u>1980</u>	1001			
				Reporting Level:						Full Scan	5 BTEXN	TO15 cVOCs	APH	Helium	chaughtes		
Sample Name	Lab ID	Canister ID	Flow Cont. ID	IA=Indoor Air SG=Soil Gas (Circle One)	Date Sampled	Initial Vac. ("Hg)	Initial	Final Vac. ("Hg)	Field Final Time	T015	T015	TO1		H	Reic	Notes	
SG-1	DI	3868	117	IA / 🜀	Hzspa	2-30	7:58	-0	8:09						7		
5G-2	02	4.83	07	1A / \$G			B:03	-0	820						Ŷ		
54.3	03	3254	106	IA / \$G	~	-29	S:18	-0	826						¥		
59-4	04	2299	109	IA / \$G		~30	8:42	0	\$ 50						*		
59-5	05	4(8)	105	IA / SG		-30	958	ک. ۲	923						4		
5676	06	3312	029	IA / \$6		-30	938	-2	607						4]
				IA / SG													
				IA / SG								¢	Sam	ples	s re	eived at <u>27</u>	۰ <mark>C</mark>
														:			

Friedman & Bruya, Inc.	SIGNATURE	PRINT NAME	COMPANY -	DATE, TIME
3012 16th Avenue West	Relinquished by:	Beeg Dilba	Assa	3-73 953
Seattle, WA 98119-2029	Received by: The D. M.B.	Liz Webbor-Bruya	FİB	7/31/20 1520
Ph. (206) 285-8282	Relinquished by:			
Fax (206) 283-5044	Received by:			
FORMS\COC\COCTO-15.DOC				

3322 South Bay Road NE • Olympia, WA 98506-2957

November 2, 2020

Becky Dilba Associated Environmental Group, LLC 2633 Parkmont Lane SW, Suite A Olympia, WA 98502

Dear Ms. Dilba:

Please find enclosed the analytical data report for the Lacey Urban Center Project located in Olympia, Washington.

The results of the analyses are summarized in the attached tables. Applicable detection limits and QA/QC data are included. The sample(s) will be disposed of in 30 days unless we are contacted to arrange long term storage.

Libby Environmental, Inc. appreciates the opportunity to have provided analytical services for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

Shy Ille

Sherry L. Chilcutt Senior Chemist Libby Environmental, Inc.

LACEY URBAN CENTER PROJECT AEG, LLC Olympia, Washington Libby Project # L201030-3 Client Project # 18-236

3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Sample Description		Method	B24-	B24-	B24-	B24-	MW5-40
		Blank	41/MW4-	60/MW4-	81/MW4-	81/MW4-	
			41	60	81	81 Dup	
Date Sampled		N/A	10/29/2020	10/29/2020	10/30/2020	10/30/2020	10/30/2020
Date Analyzed	PQL	10/30/2020	10/30/2020	10/30/2020	10/30/2020	10/30/2020	10/30/2020
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Vinyl Chloride (VC)	0.02	nd	nd	nd	nd	nd	nd
1,1-Dichloroethene	0.05	nd	nd	nd	nd	nd	nd
trans-1,2-Dichloroethene	0.03	nd	nd	nd	nd	nd	nd
cis-1,2-Dichloroethene	0.03	nd	nd	nd	nd	nd	nd
Trichloroethene (TCE)	0.02	nd	nd	nd	nd	nd	nd
Tetrachloroethene (PCE)	0.03	nd	nd	nd	nd	nd	nd
Surrogate Recovery							
Dibromofluoromethane		105	98	98	97	97	98
1,2-Dichloroethane-d4		95	83	80	79	78	79
Toluene-d8		95	95	95	94	95	97
4-Bromofluorobenzene		86	95	94	91	91	90
"nd" Indicates not deter	cted at listed	d detection lin	mit.				

Volatile Organic Compounds by EPA Method 8260D in Soil

"int" Indicates that interference prevents determination. ACCEPTABLE RECOVERY LIMITS FOR SURROGATE : 65% TO 135%

LACEY URBAN CENTER PROJECT AEG, LLC Olympia, Washington Libby Project # L201030-3 Client Project # 18-236

Sample Description		MW5-60	MW5-75					
Date Sampled		10/30/2020	10/30/2020					
Date Analyzed	PQL	10/30/2020	10/30/2020					
	(mg/kg)	(mg/kg)	(mg/kg)					
Vinyl Chloride (VC)	0.02	nd	nd					
1,1-Dichloroethene	0.05	nd	nd					
trans-1,2-Dichloroethene	0.03	nd	nd					
cis-1,2-Dichloroethene	0.03	nd	nd					
Trichloroethene (TCE)	0.02	nd	nd					
Tetrachloroethene (PCE)	0.03	nd	nd					
Surrogate Recovery								
Dibromofluoromethane		97	108					
1,2-Dichloroethane-d4		77	96					
Toluene-d8		97	96					
4-Bromofluorobenzene		88	92					
"nd" Indicates not detec	"nd" Indicates not detected at listed detection limit.							
"int" Indicates that inter	ference pre	events determ	ination.					
ACCEPTABLE RECOV	VERY LIM	ITS FOR SU	RROGATE :	65% TO 135%				

Volatile Organic Compounds by EPA Method 8260D in Soil

LACEY URBAN CENTER PROJECT AEG, LLC Olympia, Washington Libby Project # L201030-3 Client Project # 18-236 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Matrix Spike Sample Identification: B24-81/MW4-81										
	Spiked Conc. (mg/kg)	MS Response (mg/kg)	MSD Response (mg/kg)	MS Recovery (%)	MSD Recovery (%)	RPD (%)	Limits Recovery (%)	Data Flag		
Vinyl Chloride (VC)	0.25	0.23	0.23	90	92	2.2	65-135			
1,1-Dichloroethene	0.25	0.27	0.26	107	102	4.6	65-135			
trans-1,2-Dichloroethene	0.25	0.34	0.30	137	120	13.0	65-135	S		
cis-1,2-Dichloroethene	0.25	0.27	0.26	108	102	6.1	65-135			
Trichloroethene (TCE)	0.25	0.24	0.23	95	92	2.6	65-135			
Tetrachloroethene (PCE)	0.25	0.23	0.26	91	104	13.1	65-135			
Surrogate Recovery (%)					MS	MSD				
Dibromofluoromethane					99	96	65-135			
1,2-Dichloroethane-d4					78	78	65-135			
Toluene-d8					97	96	65-135			
4-Bromofluorobenzene					95	98	65-135			

QA/QC for Volatile Organic Compounds by EPA Method 8260D in Soil

ACCEPTABLE RPD IS 35%

"S" Spike compound recovery is outside acceptance limits.

LACEY URBAN CENTER PROJECT AEG, LLC Olympia, Washington Libby Project # L201030-3 Client Project # 18-236 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

	Spiked	LCS	LCS	LCS	Data
	Conc.	Response	Recovery	Recovery	Flag
	(mg/kg)	(mg/kg)	(%)	Limits (%)	
Vinyl Chloride (VC)	0.25	0.24	97	80-120	
1,1-Dichloroethene	0.25	0.25	100	80-120	
trans-1,2-Dichloroethene	0.25	0.30	120	80-120	
cis-1,2-Dichloroethene	0.25	0.25	101	80-120	
Trichloroethene (TCE)	0.25	0.24	98	80-120	
Tetrachloroethene (PCE)	0.25	0.27	107	80-120	
Surrogate Recovery					
Dibromofluoromethane			104	65-135	
1,2-Dichloroethane-d4			96	65-135	
Toluene-d8			97	65-135	
4-Bromofluorobenzene			96	65-135	

Laboratory Control Sample

LACEY URBAN CENTER PROJECT AEG, LLC Libby Project # L201030-3

Date Received 10/30/2020 Time Received 3:19 PM 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Received By JC

Sample Receipt Checklist

Chain of Custody			
1. Is the Chain of Custody complete?	✓ Yes	🗌 No	
2. How was the sample delivered?	Hand Delivered	✓ Picked Up	Shipped
Log In			
3. Cooler or Shipping Container is present.	✓ Yes	🗌 No	□ N/A
4. Cooler or Shipping Container is in good condition.	✓ Yes	🗌 No	🗌 N/A
5. Cooler or Shipping Container has Custody Seals present.	Yes	✓ No	🗌 N/A
6. Was an attempt made to cool the samples?	✓ Yes	🗌 No	□ N/A
7. Temperature of cooler (0°C to 8°C recommended)	3.5		
8. Temperature of sample(s) (0°C to 8°C recommended)	12.5	°C	
9. Did all containers arrive in good condition (unbroken)?	✓ Yes	🗌 No	
10. Is it clear what analyses were requested?	✓ Yes	🗌 No	
11. Did container labels match Chain of Custody?	✓ Yes	🗌 No	
12. Are matrices correctly identified on Chain of Custody?	✓ Yes	🗌 No	
13. Are correct containers used for the analysis indicated?	✓ Yes	🗌 No	
14. Is there sufficient sample volume for indicated analysis?	✓ Yes	🗌 No	
15. Were all containers properly preserved per each analysis?	✓ Yes	🗌 No	
16. Were VOA vials collected correctly (no headspace)?	✓ Yes	🗌 No	□ N/A
17. Were all holding times able to be met?	✓ Yes	🗌 No	
Discrepancies/ Notes			
18. Was client notified of all discrepancies?	Yes	🗌 No	✓ N/A
Person Notified:		Date:	
By Whom:		Via:	
Regarding:			
19. Comments.			

Libby Environmen				С	hain o	of Cus	tody	Reco	ord				www.LibbyE	Environmental.com
3322 South Bay Road NE Olympia, WA 98506		360-352-2 360-352-4				Date:)	0/30/2	9			Page		1 0	f 2
Client: AFEG						Project I							1	
Address:										Center				
City:		State:	Zip:			Location	: 7131	MANA	n Man	East	City,	State:	Olympia. 4	n.
Phone:		Fax:	·			Collecto			1 00 47		Date	of Colle	ection: 10/24	12020-19/30
Client Project # 18-236						Email:								
Sample Number	Depth	Time	Sample Type	Container Type	1000	1 Inte	9100 9100 5+ 8200	ANT PHOT	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	348 1948 11 20 2 1941 821 20 2 1941 821 20 2 1941 821	8210 10 P	3210	Field	Notes
1 824-5 / MW 4-5	5	1002	Soil	Vogeral jon	1 T	\mathbf{f}	\int	ŤŤ	Ť Ť	- T		1	10729	
2 B24-10/ MW4-10	10	1612	1	Come della									(
3 B24- 16 MW4-16	16	1023		1										
4 B24- 21/ MW4-21	21	1036												
5 B24-26/ MW4-26	26	1041											/	
6 B24-31/ MW4-31	31	1058											1	
7 B24-36/mw4.36	36	1116												1
8 B24- 41/ Man 4-41	41	1122				(1	
9 B24-45/mw4-45	45	1134											$\left \right\rangle$	
10 B2 4- 56 / muy-Sp	54	1254											18	
11 824-66/may-60	40	1221)	Y								1	
12 B24-74/ MW4-74		830	\langle										10/30	
13 B24- 73 / MW4-78		841				_							(
14 B24-81/ MW4-81	31	901			Y									
15 MW 5- 40	40	1321			X									
16 mw5-45	45	1322	1											
17 MWS-60	60	1466											5	
Relinquished by: 10/30/20 Relinquished by:		40		Received by: Apple Received by:	Child	lus	10/30	Date / Tin 2003 Date / Tin	9 Giood	Condition? Temp.	YI	N °C	marks:	1. 1.
			0.1.7					D		e Temp.		°C		\cap
Relinquished by:			Date / Time	Received by:				Date / Tin	1 otal 1	lumber of tainers		TA	T: 24HR	48HR 5-DAY

LEGAL ACTION CLAUSE: In the event of default of payment and/or failure to pay, Client agrees to pay the costs of collection including court costs and reasonable attorney fees to be determined by a court of law.

Distribution: White - Lab, Yellow - Originator

Libby Environme	ntal, In	IC.		CI	naii	n o	f C	ust	tod	y F	Rec	cor	ď							www.L	ibbyEr	vironme	ental.com
3322 South Bay Road NE	Ph: Fax:	360-352-2	2110 1154				Date	:	10/3	0/20	w						Pag	le:	1	2	of	2	
Client: Arec							Date: Image: Image Page: Image Of Image Project Manager: B Image B Image Image Image																
Address:							Proje	ect N	lame	: L	Aca	, U	2 hour	Cen	har								
City:		State:	Zip:				Project Name: Lacy Ushan Central Location: City						City	City, State: Ohynp ayun									
Phone:	Fax:						Colle	ector	: 6	3.0												hore	
Client Project # 18-286						Ema																	
Sample Number	Depth	Time	Sample Type	Container Type	1	88	A A A	ALCH-	2100 2100 27 002	S AN AN	SC CO CO CO CO CO CO CO CO CO CO CO CO CO	101 101 101	4 5 4 8 5 4	Melan C	10 2 PH 25	10 11 21 821 5	o vo	8210		F	Field N	otes	
1 MWS-65	65	1722	Sul	Vorx2/Um																			
2 MW5-70	70	1426	6	(
3 MW5-75	75	1439				×																	
4																							
5																							
6																							
7																							
8																							
9																							
10																							
11																							
12																							
13																							
14																							
15																							
16																							
17																							
	10/30/2	20 14	Date / Time	Received by:	Til	Au	ND		at)ate /	Time	Good	San	nple	Rec			Ren	narks:			
Relinquished by:	14	100		Received by:	my	o m	5	(1		Date /	Time	Cool	er Ten	np.		T	N °C					
Relinquished by:			Date / Time	Received by:						Г	Date /	Time		ole Te				°C					1
			Date / Time	Coolined by.							ato /	inte	1.0.00	Numl					TAT	Г: 24	HR	48HR/	5-DAY

LEGAL ACTION CLAUSE: In the event of default of payment and/or failure to pay, Client agrees to pay the costs of collection including court costs and reasonable attorney fees to be determined by a court of law.

Distribution: White - Lab, Yellow - Originator

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

November 13, 2020

Becky Dilba, Project Manager AEG 2633 Parkmont Lane SW, Suite A Olympia, WA 98502

Dear Ms Dilba:

Included are the results from the testing of material submitted on November 2, 2020 from the Lacey urban center PO 18-238, F&BI 011016 project. There are 11 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Colo

Michael Erdahl Project Manager

Enclosures AEG1113R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on November 2, 2020 by Friedman & Bruya, Inc. from the AEG Lacey urban center PO 18-238, F&BI 011016 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	AEG
011016 -01	Indoor-1
011016 -02	Indoor-2
011016 -03	Ambient-1
011016 -04	SS-1
011016 -05	SS-2

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Indoor- 11/02/2 10/29/2 11/06/2 Air ug/m3	0 0	Client Projec Lab II Data I Instru Opera	et: D: File: ument:	AEG Lacey urban center PO 18-238 011016-01 100212.D GCMS7 bat
		%	Lower	Upper	
Surrogates:		Recovery:	Limit:	Limit:	
4-Bromofluorobenz	ene	79	70	130	
Compounds:		Concent ug/m3	ration ppbv		
Compounds.		ug/iii0	ppov		
Vinyl chloride		< 0.26	< 0.1		
Chloroethane		<2.6	<1		
1,1-Dichloroethene		< 0.4	< 0.1		
trans-1,2-Dichloroe	ethene	< 0.4	< 0.1		
1,1-Dichloroethane		< 0.4	< 0.1		
cis-1,2-Dichloroeth	ene	< 0.4	< 0.1		
1,2-Dichloroethane	(EDC)	0.14	0.034		
1,1,1-Trichloroetha	ne	< 0.55	< 0.1		
Trichloroethene		< 0.11	< 0.02		
1,1,2-Trichloroetha	ne	< 0.055	< 0.01		
Tetrachloroethene		<6.8	<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Indoor-2 11/02/20 10/29/20 11/06/20 Air ug/m3	0 0	Client Projec Lab II Data I Instru Opera	et: D: File: ument:	AEG Lacey urban center PO 18-238 011016-02 100213.D GCMS7 bat
		%	Lower	Upper	
Surrogates:		Recovery:	Limit:	Limit:	
4-Bromofluorobenz	ene	88	70	130	
Compounds:		Concent ug/m3	ration ppbv		
Vinyl chloride		< 0.26	< 0.1		
Chloroethane		<2.6	<1		
1,1-Dichloroethene		< 0.4	< 0.1		
trans-1,2-Dichloroe	ethene	< 0.4	< 0.1		
1,1-Dichloroethane		< 0.4	< 0.1		
cis-1,2-Dichloroeth	ene	< 0.4	< 0.1		
1,2-Dichloroethane	(EDC)	0.13	0.033		
1,1,1-Trichloroetha	ne	< 0.55	< 0.1		
Trichloroethene		< 0.11	< 0.02		
1,1,2-Trichloroetha	ne	< 0.055	< 0.01		
Tetrachloroethene		<6.8	<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Ambien 11/02/24 10/29/24 11/06/24 Air ug/m3	0 0	Client Projec Lab II Data I Instru Opera	et: D: File: ument:	AEG Lacey urban center PO 18-238 011016-03 100214.D GCMS7 bat
		%	Lower	Upper	
Surrogates:		Recovery:	Limit:	Limit:	
4-Bromofluorobenz	ene	95	70	130	
Compounds:		Concent ug/m3	cration ppbv		
Vinyl chloride		< 0.26	< 0.1		
Chloroethane		<2.6	<1		
1,1-Dichloroethene		< 0.4	< 0.1		
trans-1,2-Dichloroe	ethene	< 0.4	< 0.1		
1,1-Dichloroethane		< 0.4	< 0.1		
cis-1,2-Dichloroeth	ene	< 0.4	< 0.1		
1,2-Dichloroethane	(EDC)	0.073	0.018		
1,1,1-Trichloroetha	ne	< 0.55	< 0.1		
Trichloroethene		< 0.11	< 0.02		
1,1,2-Trichloroetha	ne	< 0.055	< 0.01		
Tetrachloroethene		<6.8	<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	SS-1 11/02/2 10/29/2 11/04/2 Air ug/m3	0	Clien Projec Lab I Data Instru Opera	et: D: File: ument:	AEG Lacey urban center PO 18-238 011016-04 1/35 110339.D GCMS7 bat
		%	Lower	Upper	
Surrogates:		Recovery:	Limit:	Limit:	
4-Bromofluorobenz	ene	101	70	130	
Compounds:		Concent ug/m3	ration ppbv		
Vinyl chloride		<8.9	<3.5		
Chloroethane		<92	<35		
1,1-Dichloroethene		<14	<3.5		
trans-1,2-Dichloroe		<14	<3.5		
1,1-Dichloroethane		<14	<3.5		
cis-1,2-Dichloroeth	ene	<14	<3.5		
1,2-Dichloroethane	(EDC)	<1.4	< 0.35		
1,1,1-Trichloroetha	ine	<19	<3.5		
Trichloroethene		<3.8	< 0.7		
1,1,2-Trichloroetha	ine	<1.9	< 0.35		
Tetrachloroethene		1,600	230		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	SS-2 11/02/2 10/30/2 11/04/2 Air ug/m3	20	Clien Proje Lab I Data Instr Opera	ct: D: File: ument:	AEG Lacey urban center PO 18-238 011016-05 1/7 110338.D GCMS7 bat
~		%	Lower	Upper	
Surrogates:		Recovery:	Limit:	Limit:	
4-Bromofluorobenz	ene	99	70	130	
		Concent	tration		
Compounds:		ug/m3	ppbv		
Vinul ablamida		<1.8	< 0.7		
Vinyl chloride Chloroethane			<0.7 <7		
		<18			
1,1-Dichloroethene		<2.8	<0.7		
trans-1,2-Dichloroe		<2.8	<0.7		
1,1-Dichloroethane		<2.8	<0.7		
cis-1,2-Dichloroeth		<2.8	< 0.7		
1,2-Dichloroethane	, ,	< 0.28	< 0.07		
1,1,1-Trichloroetha	ne	<3.8	<0.7		
Trichloroethene		< 0.75	< 0.14		
1,1,2-Trichloroetha	ne	< 0.38	< 0.07		
Tetrachloroethene		410	60		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Not Ap		Clien Proje Lab I Data Instru Opera	ct: D: File: ument:	AEG Lacey urban center PO 18-238 00-2664 MB 100211.D GCMS7 bat
a i		%	Lower	Upper	
Surrogates: 4-Bromofluorobenz		Recovery:	Limit: 70	Limit:	
4-Dromonuorobenz	ene	101	70	130	
		Concent	tration		
Compounds:		ug/m3	ppbv		
Vinyl chloride		< 0.26	< 0.1		
Chloroethane		<2.6	<1		
1,1-Dichloroethene		< 0.4	< 0.1		
trans-1,2-Dichloroe	ethene	< 0.4	< 0.1		
1,1-Dichloroethane	•	< 0.4	< 0.1		
cis-1,2-Dichloroeth	ene	< 0.4	< 0.1		
1,2-Dichloroethane		< 0.04	< 0.01		
1,1,1-Trichloroetha	ine	< 0.55	< 0.1		
Trichloroethene		< 0.11	< 0.02		
1,1,2-Trichloroetha	ine	< 0.055	< 0.01		
Tetrachloroethene		<6.8	<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Not Ap	d Blank pplicable pplicable 20	Clien Proje Lab I Data Instru Opera	ct: D: File: ument:	AEG Lacey urban center PO 18-238 00-2649 MB 110327.D GCMS7 bat
~		%	Lower	Upper	
Surrogates:		Recovery:	Limit:	Limit:	
4-Bromofluorobenz	zene	96	70	130	
		Concent	cration		
Compounds:		ug/m3	ppbv		
Vinyl chloride		< 0.26	< 0.1		
Chloroethane		<2.6	<1		
1,1-Dichloroethene		< 0.4	< 0.1		
trans-1,2-Dichloroe		< 0.4	< 0.1		
1,1-Dichloroethane	•	< 0.4	< 0.1		
cis-1,2-Dichloroeth	ene	< 0.4	< 0.1		
1,2-Dichloroethane	e (EDC)	< 0.04	< 0.01		
1,1,1-Trichloroetha	ine	< 0.55	< 0.1		
Trichloroethene		< 0.11	< 0.02		
1,1,2-Trichloroetha	ine	< 0.055	< 0.01		
Tetrachloroethene		<6.8	<1		

ENVIRONMENTAL CHEMISTS

Date of Report: 11/13/20 Date Received: 11/02/20 Project: Lacey urban center PO 18-238, F&BI 011016

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 011057-01 1/2.7 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
Vinyl chloride	ug/m3	< 0.69	< 0.69	nm
Chloroethane	ug/m3	<7.1	<7.1	nm
1,1-Dichloroethene	ug/m3	<1.1	<1.1	nm
trans-1,2-Dichloroethene	ug/m3	<1.1	<1.1	nm
1,1-Dichloroethane	ug/m3	<1.1	<1.1	nm
cis-1,2-Dichloroethene	ug/m3	<1.1	<1.1	nm
1,2-Dichloroethane (EDC)	ug/m3	< 0.11	< 0.11	nm
1,1,1-Trichloroethane	ug/m3	<1.5	<1.5	nm
Trichloroethene	ug/m3	0.30	0.30	0
1,1,2-Trichloroethane	ug/m3	< 0.15	< 0.15	nm
Tetrachloroethene	ug/m3	21	21	0

Laboratory Code: Laboratory Control Sample

	inor sampro		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Vinyl chloride	ug/m3	35	96	70-130
Chloroethane	ug/m3	36	95	70-130
1,1-Dichloroethene	ug/m3	54	105	70-130
trans-1,2-Dichloroethene	ug/m3	54	102	70-130
1,1-Dichloroethane	ug/m3	55	100	70-130
cis-1,2-Dichloroethene	ug/m3	54	105	70-130
1,2-Dichloroethane (EDC)	ug/m3	55	100	70-130
1,1,1-Trichloroethane	ug/m3	74	101	70-130
Trichloroethene	ug/m3	73	108	70-130
1,1,2-Trichloroethane	ug/m3	74	110	70-130
Tetrachloroethene	ug/m3	92	109	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 11/13/20 Date Received: 11/02/20 Project: Lacey urban center PO 18-238, F&BI 011016

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 011008-02 1/3.7 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
Vinyl chloride	ug/m3	< 0.95	< 0.95	nm
Chloroethane	ug/m3	<9.8	<9.8	nm
1,1-Dichloroethene	ug/m3	<1.5	<1.5	nm
trans-1,2-Dichloroethene	ug/m3	<1.5	<1.5	nm
1,1-Dichloroethane	ug/m3	<1.5	<1.5	nm
cis-1,2-Dichloroethene	ug/m3	<1.5	<1.5	nm
1,2-Dichloroethane (EDC)	ug/m3	< 0.15	< 0.15	nm
1,1,1-Trichloroethane	ug/m3	<2	<2	nm
Trichloroethene	ug/m3	< 0.4	< 0.4	nm
1,1,2-Trichloroethane	ug/m3	< 0.2	< 0.2	nm
Tetrachloroethene	ug/m3	<25	<25	nm

Laboratory Code: Laboratory Control Sample

Laboratory coue. Laboratory con	cioi sampio		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Vinyl chloride	ug/m3	35	101	70-130
Chloroethane	ug/m3	36	98	70-130
1,1-Dichloroethene	ug/m3	54	108	70-130
trans-1,2-Dichloroethene	ug/m3	54	102	70-130
1,1-Dichloroethane	ug/m3	55	103	70-130
cis-1,2-Dichloroethene	ug/m3	54	107	70-130
1,2-Dichloroethane (EDC)	ug/m3	55	104	70-130
1,1,1-Trichloroethane	ug/m3	74	103	70-130
Trichloroethene	ug/m3	73	108	70-130
1,1,2-Trichloroethane	ug/m3	74	110	70-130
Tetrachloroethene	ug/m3	92	108	70-130

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

a wall is				SA	AMPI	E CHAI	N OF	CUST	LODA		λE	-	11	12	1-	20	> <u> </u>
O11016 Report To_ Porty Beck					SAMP	LERS (sigi	nature)			1						Page	# of
Report To The Beck	4 21	ba						nnraa			PC	<u> </u>				TUR Indar	NAROUND TIME
Company AEL					PROJ	ECT NAM	5 & AL	DRESS			P)#		6	d RU	SH_	
Address					1		*			18-	238			I I	₹ush	char	ges authorized by:
City, State, ZIP		· .			NOTES:				JVOI		O.		LDef		APLE DISPOSAL Clean after 3 days		
PhoneE				m				_,		AE	4] Arc	:hive	(Fee may apply)
SAMPLE INFORMATION							-				AN	ALYS	SIS R	EQU	JESI	FED	
Sample Name	Lab ID	Canister ID	Flow Cont. ID	Lev IA=Ind SG=Sc	orting vel: loor Air oil Gas e One)	Date Sampled		Initial Time	("Hg)	Final Time	TO16 Full Scan	TO15 BTEXN	TO15 cVOCs	APH	Helium	PCE : dansvitas	Notes
Insool-1	01	影子	wha	کم ا	SG	10/24/2020	-30	1026	1	145						4	
Insor-2 Insor-2	02	18564	nla	Q_{i}	' SG		-78	1028	-12	Hart 2						7	
Ambient-1	03	18572	NG	JA /	SG		-20	1030	-12	747						×	
55-1	<u>9</u> 1	3387	222	-IA /	Q	10 30 200	-70	1553	Hotes	1603						×	
55-2	05	3251	240	IA /	60	10/3/2020	-30	iwo_	E	1624						_X	-
	÷			IA /	SG												
				IA /	SG												· · · · · · · · · · · · · · · · · · ·
				IA /	SG) :										

Friedman & Bruya, Inc.	SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
3012 16th Avenue West	Relinquished by:	Becen public	Arch	1700	19/30/2024
Seattle, WA 98119-2029	Received by	Liz webber-Bry	FZB	1440	11/2/20
Ph. (206) 285-8282	Relinquished by:	· · · O .			
Fax (206) 283-5044	Received by:				in Station
FORMS\COC\COCTO-15.DOC	L	1		f	·

Samples received at 22 °C

. .

3322 South Bay Road NE • Olympia, WA 98506-2957

October 19, 2020

Scott Rose Associated Environmental Group, LLC 2633 Parkmont Lane SW, Suite A Olympia, WA 98502

Dear Mr. Rose:

Please find enclosed the analytical data report for the Lacey Urban Center Project located in Olympia, Washington.

The results of the analyses are summarized in the attached tables. Applicable detection limits and QA/QC data are included. The sample(s) will be disposed of in 30 days unless we are contacted to arrange long term storage.

Libby Environmental, Inc. appreciates the opportunity to have provided analytical services for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

Shy Ille

Sherry L. Chilcutt Senior Chemist Libby Environmental, Inc.

LACEY URBAN CENTER PROJECT AEG, LLC Lacey, Washington Libby Project # L201016-8 Client Project # 18-236 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Sample Description		Method	MW-1	MW-2	MW-3	MW-3 Dup	
1 1		Blank				L	
Date Sampled		N/A	10/16/2020	10/16/2020	10/16/2020	10/16/2020	
Date Analyzed	PQL	10/17/2020	10/17/2020	10/17/2020	10/17/2020	10/17/2020	
	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	$(\mu g/L)$	
Vinyl Chloride (VC)	0.2	nd	nd	nd	nd	nd	
1,1-Dichloroethene	0.5	nd	nd	nd	nd	nd	
trans-1,2-Dichloroethene	1.0	nd	nd	nd	nd	nd	
cis-1,2-Dichloroethene	1.0	nd	nd	nd	nd	nd	
Trichloroethene (TCE)	0.4	nd	nd	nd	nd	nd	
Tetrachloroethene (PCE)	1.0	nd	0.7 J	0.6 J	nd	nd	
Surrogate Recovery							
Dibromofluoromethane		100	100	101	101	101	
1,2-Dichloroethane-d4		90	89	89	90	90	
Toluene-d8		94	94	96	95	95	
4-Bromofluorobenzene		93	93	92	110	94	
"nd" Indicates not detect	ed at liste	d detection lin	mit.				

Volatile Organic Compounds by EPA Method 8260D in Water

"J" Result is less than the PQL but greater than the MDL. Reported value is approximate.

"int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE : 65% TO 135%

LACEY URBAN CENTER PROJECT AEG, LLC Lacey, Washington Libby Project # L201016-8 Client Project # 18-236 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

М	atrix Spike	Sample Ider	ntification:	L201013-7	1			
	Spiked Conc. (µg/L)	MS Response (µg/L)	MSD Response (µg/L)	MS Recovery (%)	MSD Recovery (%)	RPD (%)	Limits Recovery (%)	Data Flag
Vinyl Chloride (VC)	5.0	6.0	5.1	120	102	16.2	65-135	
1,1-Dichloroethene	5.0	9.0	6.7	180	134	29.3	65-135	S
trans-1,2-Dichloroethene	5.0	8.0	6.4	160	128	22.2	65-135	S
cis-1,2-Dichloroethene	5.0	6.4	5.0	128	100	24.6	65-135	
Trichloroethene (TCE)	5.0	5.6	4.2	112	84	28.6	65-135	
Tetrachloroethene (PCE)	5.0	5.8	4.5	116	90	25.2	65-135	
Surrogate Recovery (%)				MS	MSD			
Dibromofluoromethane				102	100		65-135	
1,2-Dichloroethane-d4				89	90		65-135	
Toluene-d8				98	98		65-135	
4-Bromofluorobenzene				97	97		65-135	

QA/QC for Volatile Organic Compounds by EPA Method 8260D in Water

ACCEPTABLE RPD IS 35%

"S" Spike compound recovery is outside acceptance limits.

LACEY URBAN CENTER PROJECT AEG, LLC Lacey, Washington Libby Project # L201016-8 Client Project # 18-236 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

	Spiked	LCS	LCS	LCS	Data
	Conc.	Response	Recovery	Recovery	Flag
	(µg/L)	(µg/L)	(%)	Limits (%)	
Vinyl Chloride (VC)	5.0	4.6	92	80-120	
1,1-Dichloroethene	5.0	6.0	120	80-120	
trans-1,2-Dichloroethene	5.0	5.6	112	80-120	
cis-1,2-Dichloroethene	5.0	5.3	106	80-120	
Trichloroethene (TCE)	5.0	4.4	88	80-120	
Tetrachloroethene (PCE)	5.0	5.8	116	80-120	
Surrogate Recovery					
Dibromofluoromethane			97	65-135	
1,2-Dichloroethane-d4			86	65-135	
Toluene-d8			96	65-135	
4-Bromofluorobenzene			97	65-135	

Laboratory Control Sample

LACEY URBAN CENTER PROJECT AEG, LLC

Libby Project # L201016-8 Date Received 10/16/2020 Time Received 11:45 AM 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Received By PB

Sample Receipt Checklist

Chain of Custody			
1. Is the Chain of Custody complete?	✓ Yes	□ No	
2. How was the sample delivered?	✓ Hand Delive	red 🗌 Picked Up	Shipped
Log In			
3. Cooler or Shipping Container is present.	✓ Yes	🗌 No	🗌 N/A
4. Cooler or Shipping Container is in good condition.	✓ Yes	🗌 No	□ N/A
5. Cooler or Shipping Container has Custody Seals present.	🗌 Yes	✓ No	□ N/A
6. Was an attempt made to cool the samples?	✓ Yes	□ No	□ N/A
7. Temperature of cooler (0°C to 8°C recommended)		0.0 °C	
8. Temperature of sample(s) (0°C to 8°C recommended)		<u>1.9</u> °C	
9. Did all containers arrive in good condition (unbroken)?	✓ Yes	□ No	
10. Is it clear what analyses were requested?	✓ Yes	□ No	
11. Did container labels match Chain of Custody?	✓ Yes	🗌 No	
12. Are matrices correctly identified on Chain of Custody?	✓ Yes	🗌 No	
13. Are correct containers used for the analysis indicated?	✓ Yes	🗌 No	
14. Is there sufficient sample volume for indicated analysis?	✓ Yes	□ No	
15. Were all containers properly preserved per each analysis?	✓ Yes	□ No	
16. Were VOA vials collected correctly (no headspace)?	✓ Yes	□ No	□ N/A
17. Were all holding times able to be met?	✓ Yes	□ No	
Discrepancies/ Notes			
18. Was client notified of all discrepancies?	Yes	🗌 No	✓ N/A
Person Notified:		Date	:
By Whom:		Via	:
Regarding:			
19. Comments.			

Libby Environm	nental	, Inc.		Ch	nair	n of	Cus	tod	y R	lec	or	d					www.Libb	yEnvir	onmental.com
4139 Libby Road NE		360-352-2	2110							,									1
Olympia, WA 98506	Fax:	360-352-4	1154				ate:		/16						Page	e:		of	
Client: AEG						Ρ	roject N	Mana	ger:	50	D	+ 6	305						
Address: \$7239 M	artic	Man	1 Eas	+ 605 11th : 98501	AK	SEP	roject N	Vame	: 4	ace	N	Urk	no	æ	ote	2			
City: Olympia		State: 9	JA Zip	9850	Suit	te Zoll	ocation	: 7	730	1 6	ha	ctic	Wa	VE	City,	Stat	e: Olyma	Dia	WA
	9835	Fax:				c	ollecto	r: F	ost	Pr	ŀ	soet	701		Date	of C	Collection:	10/1	5/20
	236			\			mail:					EGWF					h		
THE BRA			Sample	Container		88218 88218	JOA 82	S OUND	S CP H	ER C	ST PH	27 12 28H	2 10 99 2 10 99	88 5 M	34 A C	JALO .	HE FIDIE	7	
Sample Number	Depth	Time	Туре	Type	K	237	2/9	$\mathbb{X}_{\mathbb{X}}$		$\overline{\langle \xi \rangle}$	14	<u>7 97</u>	8	2	<u>7</u> 1	4	Field No	tes	
1 MW-1 2 MW-2		1021	GW	3-VOA 3-VOA										1×					
3 MW-3		0906	GW GW	3-VOA			-	-						॑					
4		0-100	GW	VOFI			-				_			F		_			
5								1						+		-			
6														1					
7																			
8																			
9																			
10																			
11																			
12																			
13																			
14																			
15																			
16																			
17																			
Relinquished by		/ Time		Received by		_			Date /	f .	114	Samp	le Re	ceipt	:		Remarks:		
Relinquished by:		/ Time	(/-	Received to.	m	1		10	Date /	Time	110	Good C	anditie	2			19 comete		
TAR	-	14/20	1230	1/1/4	K.	10	1101	20		230		Cold?	onultion	r			1.9 sample		
Relinquished by:		/ Time	100/	Received by.	May (. /	, -/	~~	Date /			Seals Ir	ntact?				U.O coulp		
												Total N		f Conta	ainers		TAT: 24HF	R 48	HR (5-DAY)

3322 South Bay Road NE • Olympia, WA 98506-2957

January 11, 2021

Scott Rose Associated Environmental Group, LLC 2633 Parkmont Lane SW, Suite A Olympia, WA 98502

Dear Mr. Rose:

Please find enclosed the analytical data report for the Lacey Urban Center Project located in Olympia, Washington.

The results of the analyses are summarized in the attached tables. Applicable detection limits and QA/QC data are included. The sample(s) will be disposed of in 30 days unless we are contacted to arrange long term storage.

Libby Environmental, Inc. appreciates the opportunity to have provided analytical services for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

Shy Ille

Sherry L. Chilcutt Senior Chemist Libby Environmental, Inc.

LACEY URBAN CENTER PROJECT AEG, LLC Olympia, Washington Libby Project # L210107-5 Client Project # 18-236

3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Sample Description		Method	MW-1	MW-1 Dup	MW-2	MW-3	MW-4
		Blank					
Date Sampled		N/A	1/7/2021	1/7/2021	1/7/2021	1/7/2021	1/7/2021
Date Analyzed	PQL	1/8/2021	1/8/2021	1/8/2021	1/8/2021	1/8/2021	1/8/2021
	(µg/L)	(µg/L)	(µg/L)	$(\mu g/L)$	(µg/L)	(µg/L)	(µg/L)
Vinyl Chloride (VC)	0.2	nd	nd	nd	nd	nd	nd
1,1-Dichloroethene	0.5	nd	nd	nd	nd	nd	nd
trans-1,2-Dichloroethene	1.0	nd	nd	nd	nd	nd	nd
cis-1,2-Dichloroethene	1.0	nd	nd	nd	nd	nd	nd
Trichloroethene (TCE)	0.4	nd	nd	nd	nd	nd	nd
Tetrachloroethene (PCE)	1.0	nd	nd	nd	nd	nd	nd
Surrogate Recovery							
Dibromofluoromethane		102	105	107	109	115	110
1,2-Dichloroethane-d4		104	101	107	118	106	102
Toluene-d8		96	91	96	95	101	99
4-Bromofluorobenzene		92	88	81	81	89	88
"nd" Indicates not detec	ted at listed	d detection lin	mit.				

Volatile Organic Compounds by EPA Method 8260D in Water

"int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE : 65% TO 135%

ANALYSES PERFORMED BY: Melissa Harrington

LACEY URBAN CENTER PROJECT AEG, LLC Olympia, Washington Libby Project # L210107-5 Client Project # 18-236

Sample Description		MW-5				
Date Sampled		1/7/2021				
Date Analyzed	PQL	1/8/2021				
	(µg/L)	(µg/L)				
Vinyl Chloride (VC)	0.2	nd				
1,1-Dichloroethene	0.5	nd				
trans-1,2-Dichloroethene	1.0	nd				
cis-1,2-Dichloroethene	1.0	nd				
Trichloroethene (TCE)	0.4	nd				
Tetrachloroethene (PCE)	1.0	nd				
Surrogate Recovery						
Dibromofluoromethane		112				
1,2-Dichloroethane-d4		104				
Toluene-d8		98				
4-Bromofluorobenzene		86				
"nd" Indicates not detec	ted at listed	detection lin	nit.			
"int" Indicates that inter	ference pre	vents determ	ination.			
ACCEPTABLE RECOVERY LIMITS FOR SURROGATE : 65% TO 135%						

Volatile Organic Compounds by EPA Method 8260D in Water

ANALYSES PERFORMED BY: Melissa Harrington

LACEY URBAN CENTER PROJECT AEG, LLC Olympia, Washington Libby Project # L210107-5 Client Project # 18-236

QA/QC for Volatile Organic Compounds by EPA Method 8260D in Water

Matrix Spike Sample Identification: MW-1										
		Da	ate Analyzed:	1/8/2021						
	Spiked	MS	MSD	MS	MSD	RPD	Limits	Data		
	Conc.	Response	Response	Recovery	Recovery		Recovery	Flag		
	(µg/L)	(µg/L)	(µg/L)	(%)	(%)	(%)	(%)			
Vinyl Chloride (VC)	4.0	3.4	3.4	85	85	0.0	65-135			
1,1-Dichloroethene	4.0	4.2	4.5	105	113	6.9	65-135			
trans-1,2-Dichloroethene	4.0	4.4	4.2	110	105	4.7	65-135			
cis-1,2-Dichloroethene	4.0	4.1	4.5	103	113	9.3	65-135			
Trichloroethene (TCE)	4.0	3.5	4.3	88	108	20.5	65-135			
Tetrachloroethene (PCE)	4.0	4.6	5.0	115	125	8.3	65-135			
Surrogate Recovery (%)				MS	MSD					
Dibromofluoromethane				110	112		65-135			
1,2-Dichloroethane-d4				103	104	65-135				
Toluene-d8				99	99		65-135			
4-Bromofluorobenzene				94	91	65-135				

ACCEPTABLE RPD IS 35%

ANALYSES PERFORMED BY: Melissa Harrington

Laboratory Control Sample

J	Spiked	LCS	LCS	LCS	Data
	Conc.	Response	Recovery	Recovery	Flag
	(µg/L)	(μg/L)	(%)	Limits (%)	U
Vinyl Chloride (VC)	4.0	3.4	85	80-120	
1,1-Dichloroethene	4.0	4.4	110	80-120	
trans-1,2-Dichloroethene	4.0	4.3	108	80-120	
cis-1,2-Dichloroethene	4.0	4.2	105	80-120	
Trichloroethene (TCE)	4.0	3.9	98	80-120	
Tetrachloroethene (PCE)	4.0	4.8	120	80-120	
Surrogate Recovery					
Dibromofluoromethane			104	65-135	
1,2-Dichloroethane-d4			96	65-135	
Toluene-d8			95	65-135	
4-Bromofluorobenzene			92	65-135	

ANALYSES PERFORMED BY: Melissa Harrington

LACEY URBAN CENTER PROJECT AEG, LLC Libby Project # L210107-5 Date Received 1/7/2021 14:55 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Received By KD

Sample Receipt Checklist

Chain of Custody			
1. Is the Chain of Custody complete?	✓ Yes	🗌 No	
2. How was the sample delivered?	✓ Hand Delivered	Picked Up	Shipped
Log In			
3. Cooler or Shipping Container is present.	✓ Yes	🗌 No	🗌 N/A
4. Cooler or Shipping Container is in good condition.	✓ Yes	🗌 No	□ N/A
5. Cooler or Shipping Container has Custody Seals present.	🗌 Yes	✓ No	🗌 N/A
6. Was an attempt made to cool the samples?	✓ Yes	🗌 No	🗌 N/A
7. Temperature of cooler (0°C to 8°C recommended)	-3.0	°C	
8. Temperature of sample(s) (0°C to 8°C recommended)	3.1	°C	
9. Did all containers arrive in good condition (unbroken)?	✓ Yes	🗌 No	
10. Is it clear what analyses were requested?	✓ Yes	🗌 No	
11. Did container labels match Chain of Custody?	✓ Yes	🗌 No	
12. Are matrices correctly identified on Chain of Custody?	✓ Yes	🗌 No	
13. Are correct containers used for the analysis indicated?	✓ Yes	🗌 No	
14. Is there sufficient sample volume for indicated analysis?	✓ Yes	🗌 No	
15. Were all containers properly preserved per each analysis?	✓ Yes	🗌 No	
16. Were VOA vials collected correctly (no headspace)?	✓ Yes	🗌 No	□ N/A
17. Were all holding times able to be met?	✓ Yes	🗌 No	
Discrepancies/ Notes			
18. Was client notified of all discrepancies?	Yes	🗌 No	✓ N/A
Person Notified:		Date:	
By Whom:		Via:	
Regarding:			
19. Comments.			

Libby Environmental, Inc.			Chain of Custody Record							d						www.Lib	byEnvir	onmental.com	
3322 South Bay Road NE		360-352-2						11-	1-1					2			1		1
Olympia, WA 98506	Fax:	360-352-4	154			Date	э:	1/7	121	- 1				Pag	ge:		1	of	1
Client: AEG						Proj	ect M	anag	jer:	xot	FR	0SC	r						
Address: m605 11th A	ver ST	E Suit	e 201			Proj	ect N	ame:	fa	cer	U	bar	7 6	ent	er	10 10			la en
City: Olympia		State: W	A Zip:	98501		Loca	ation:	n	39	Mar	tin	was	IE I	City	, Sta	te: (21vm	Dia	WA
Phone: (360) 352			Colle	ector:	An	trew	lura		Ű		Dat	e of (Collec	ction:	1/7/	21			
Client Project # 18-236						Ema	ail: 🤇	SRO	Sela	AE	61	1A.0	Om					, (
THE BARA			Sample	Container	10/2	00 00 00 00 00 00 00 00 00 00 00 00 00	augher augher	2100 5+ 826 5+ 1826	APHING C	H.D. 01		hields hields	10 10 10 10 10 10	58ril	18210				
Sample Number	Depth	Time 1217		Type V0A	X	2/4	2			2/4	$\gamma \epsilon$	7 4	24	5%	-	\leftarrow	/ Fie	eld Note	es
2 MW-2		1423	GW GW	VOA	X					+									
3 MW-3		1144	GW	VOA	X	1													
4 MW-4		1255	GW	VoA	ΤX										1				
5 MW-5		1739	GW	VOA	X														
6		~																	
7																			
8																			
9																			
10																			
11																			
12																			
13																			
14																			
15																			
16			1							~									
17																			
Relinguished by:	-	m		Received by:			11	2/21	Date	/ Time		Sam		And and a second second second	And in case of the local division in which the local division in which the local division in which the local division in which the local division in the l	Rem	narks:		
Relinguished by:		101	7/21 44 Date / Time	Received by:	2-+-		1/1	74			-	d Condit		Y	N ℃	-			0
				C								ole Tem			°C	1			
Relinquished by:			Date / Time	Received by:					Date) / Time		Numbe				TAT	F: 24H	IR 48	HR 5-DAY

Voluntary Cleanup Program

Washington State Department of Ecology Toxics Cleanup Program

Title: Project Manager

TERRESTRIAL ECOLOGICAL EVALUATION FORM

Under the Model Toxics Control Act (MTCA), a terrestrial ecological evaluation is necessary if hazardous substances are released into the soils at a Site. In the event of such a release, you must take one of the following three actions as part of your investigation and cleanup of the Site:

- 1. Document an exclusion from further evaluation using the criteria in WAC 173-340-7491.
- 2. Conduct a simplified evaluation as set forth in WAC 173-340-7492.
- 3. Conduct a site-specific evaluation as set forth in WAC 173-340-7493.

When requesting a written opinion under the Voluntary Cleanup Program (VCP), you must complete this form and submit it to the Department of Ecology (Ecology). The form documents the type and results of your evaluation.

Completion of this form is not sufficient to document your evaluation. You still need to document your analysis and the basis for your conclusion in your cleanup plan or report.

If you have questions about how to conduct a terrestrial ecological evaluation, please contact the Ecology site manager assigned to your Site. For additional guidance, please refer to www.ecy.wa.gov/programs/tcp/policies/terrestrial/TEEHome.htm.

Step 1: IDENTIFY HAZARDOUS WASTE SITE

Please identify below the hazardous waste site for which you are documenting an evaluation.

Facility/Site Name: Lacey Urban Center

Facility/Site Address: 7131 - 7269 Martin Way East, Olympia, WA 98516

Facility/Site No:

VCP Project No.:

Step 2: IDENTIFY EVALUATOR

Please identify below the person who conducted the evaluation and their contact information.

Name:	Charles	Swift
numo.	Gilaries	0,0110

Organization: Associated Environmental Group

Mailing address: 2633 Parkmont Lane SW, Suite A

City: Olympia		Sta	te: WA	Zip code: 98502
Phone: 360-352-9835	Fax: 360-352-8164		E-mail: cswif	t@aegwa.com

Step 3: DOCUMENT EVALUATION TYPE AND RESULTS
A. Exclusion from further evaluation.
1. Does the Site qualify for an exclusion from further evaluation?
Yes If you answered " YES ," then answer Question 2 .
No or Unknown If you answered "NO" or "UKNOWN," then skip to Step 3B of this form.
2. What is the basis for the exclusion? Check all that apply. Then skip to Step 4 of this form.
Point of Compliance: WAC 173-340-7491(1)(a)
All soil contamination is, or will be,* at least 15 feet below the surface.
All soil contamination is, or will be,* at least 6 feet below the surface (or alternative depth if approved by Ecology), and institutional controls are used to manage remaining contamination.
Barriers to Exposure: WAC 173-340-7491(1)(b)
All contaminated soil, is or will be,* covered by physical barriers (such as buildings or paved roads) that prevent exposure to plants and wildlife, and institutional controls are used to manage remaining contamination.
Undeveloped Land: WAC 173-340-7491(1)(c)
 There is less than 0.25 acres of contiguous[#] undeveloped[±] land on or within 500 feet of any area of the Site and any of the following chemicals is present: chlorinated dioxins or furans, PCB mixtures, DDT, DDE, DDD, aldrin, chlordane, dieldrin, endosulfan, endrin, heptachlor, heptachlor epoxide, benzene hexachloride, toxaphene, hexachlorobenzene, pentachlorophenol, or pentachlorobenzene.
\boxtimes For sites not containing any of the chemicals mentioned above, there is less than 1.5 acres of contiguous [#] undeveloped [±] land on or within 500 feet of any area of the Site.
Background Concentrations: WAC 173-340-7491(1)(d)
Concentrations of hazardous substances in soil do not exceed natural background levels as described in WAC 173-340-200 and 173-340-709.
 * An exclusion based on future land use must have a completion date for future development that is acceptable to Ecology. * "Undeveloped land" is land that is not covered by building, roads, paved areas, or other barriers that would prevent wildlife from feeding on plants, earthworms, insects, or other food in or on the soil. * "Contiguous" undeveloped land is an area of undeveloped land that is not divided into smaller areas of highways, extensive paving, or similar structures that are likely to reduce the potential use of the overall area by wildlife.

B	Simplified evaluation.								
1.	Does the S	ite qualify for a simplified evaluation?							
		es If you answered "YES," then answer Question 2 below.							
	□ N Unkne	o or own If you answered " NO" or " UNKNOWN," then skip to Step 3C of this form.							
2.	Did you co	d you conduct a simplified evaluation?							
		es If you answered "YES," then answer Question 3 below.							
	🗌 N	o If you answered " NO, " then skip to Step 3C of this form.							
3.	Was furthe	er evaluation necessary?							
	Y	es If you answered "YES," then answer Question 4 below.							
	□ N	o If you answered " NO ," then answer Question 5 below.							
4.	If further e	valuation was necessary, what did you do?							
		Used the concentrations listed in Table 749-2 as cleanup levels. <i>If so, then skip to</i> Step 4 of this form.							
		Conducted a site-specific evaluation. If so, then skip to Step 3C of this form.							
5.	If no furthe to Step 4 or	er evaluation was necessary, what was the reason? Check all that apply. Then skip f this form.							
	Exposure A	Analysis: WAC 173-340-7492(2)(a)							
		Area of soil contamination at the Site is not more than 350 square feet.							
		Current or planned land use makes wildlife exposure unlikely. Used Table 749-1.							
	Pathway A	nalysis: WAC 173-340-7492(2)(b)							
		No potential exposure pathways from soil contamination to ecological receptors.							
	Contamina	nt Analysis: WAC 173-340-7492(2)(c)							
		No contaminant listed in Table 749-2 is, or will be, present in the upper 15 feet at concentrations that exceed the values listed in Table 749-2.							
		No contaminant listed in Table 749-2 is, or will be, present in the upper 6 feet (or alternative depth if approved by Ecology) at concentrations that exceed the values listed in Table 749-2, and institutional controls are used to manage remaining contamination.							
		No contaminant listed in Table 749-2 is, or will be, present in the upper 15 feet at concentrations likely to be toxic or have the potential to bioaccumulate as determined using Ecology-approved bioassays.							
		No contaminant listed in Table 749-2 is, or will be, present in the upper 6 feet (or alternative depth if approved by Ecology) at concentrations likely to be toxic or have the potential to bioaccumulate as determined using Ecology-approved bioassays, and institutional controls are used to manage remaining contamination.							

C. Site-specific evaluation. A site-specific evaluation process consists of two parts: (1) formulating the problem, and (2) selecting the methods for addressing the identified problem. Both steps require consultation with and approval by Ecology. See WAC 173-340-7493(1)(c). 1. Was there a problem? See WAC 173-340-7493(2). Yes If you answered "NO," then answer Question 2 below.		
Yes If you answered "YES," then answer Question 2 below. If you answered "NO," then identify the reason here and then skip to Question 5 below: No No issues were identified during the problem formulation step. While issues were identified during the problem formulation step. While issues were identified during the problem formulation step. While issues were identified during the problem formulation step. While issues were identified during the problem formulation step. Used the concentrations for protecting human health. Used on or resolve the problem? See WAC 173-340-7493(3). Used one or more of the methods listed in Table 749-3 as cleanup levels. If so, then skip to Question 5 below. Used one or more of the methods listed in WAC 173-340-7493(3) to evaluate and address the identified problem. If so, then answer Questions 3 and 4 below. 3. If you conducted further site-specific evaluations, what methods did you use? Check all that apply. See WAC 173-340-7493(3). Literature surveys. Soil bioassays. Wildlife exposure model. Biomarkers. Site-specific field studies. Weight of evidence. Other methods approved by Ecology. If so, please specify: 4. What was the result of those evaluations? Confirmed there was a problem and established site-specific cleanup l	C.	the problem, and (2) selecting the methods for addressing the identified problem. Both steps
No If you answered "NO," then identify the reason here and then skip to Question 5 below: No No issues were identified during the problem formulation step. While issues were identified, those issues were addressed by the cleanup actions for protecting human health. 2. What did you do to resolve the problem? See WAC 173-340-7493(3). Used the concentrations listed in Table 749-3 as cleanup levels. If so, then skip to Question 5 below. Used one or more of the methods listed in WAC 173-340-7493(3) to evaluate and address the identified problem. If so, then answer Questions 3 and 4 below. 3. If you conducted further site-specific evaluations, what methods did you use? Check all that apply. See WAC 173-340-7493(3). Literature surveys. Soil bioassays. Wildlife exposure model. Biomarkers. Site-specific field studies. Weight of evidence. Other methods approved by Ecology. If so, please specify: 4. What was the result of those evaluations? Confirmed there was no problem. Confirmed there was a problem and established site-specific cleanup levels. 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps? Yes If so, please identify the Ecology staff who approved those steps:	1.	Was there a problem? See WAC 173-340-7493(2).
No below: No issues were identified during the problem formulation step. While issues were identified, those issues were addressed by the cleanup actions for protecting human health. 2. What did you do to resolve the problem? See WAC 173-340-7493(3). Used the concentrations listed in Table 749-3 as cleanup levels. If so, then skip to Question 5 below. Used one or more of the methods listed in WAC 173-340-7493(3) to evaluate and address the identified problem. If so, then answer Questions 3 and 4 below. 3. If you conducted further site-specific evaluations, what methods did you use? Check all that apply. See WAC 173-340-7493(3). Literature surveys. Soil bioassays. Wildlife exposure model. Biomarkers. Site-specific field studies. Weight of evidence. Other methods approved by Ecology. If so, please specify: 4. What was the result of those evaluations? Confirmed there was a problem and established site-specific cleanup levels. 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps?		Yes If you answered " YES ," then answer Question 2 below.
While issues were identified, those issues were addressed by the cleanup actions for protecting human health. 2. What did you do to resolve the problem? See WAC 173-340-7493(3). Used the concentrations listed in Table 749-3 as cleanup levels. If so, then skip to Question 5 below. Used one or more of the methods listed in WAC 173-340-7493(3) to evaluate and address the identified problem. If so, then answer Questions 3 and 4 below. 3. If you conducted further site-specific evaluations, what methods did you use? Check all that apply. See WAC 173-340-7493(3). Literature surveys. Soil bioassays. Wildlife exposure model. Biomarkers. Site-specific field studies. Weight of evidence. Other methods approved by Ecology. If so, please specify: 4. What was the result of those evaluations? Confirmed there was no problem. Confirmed there was a problem and established site-specific cleanup levels. 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps? Yes If so, please identify the Ecology staff who approved those steps:		
cleanup actions for protecting human health. 2. What did you do to resolve the problem? See WAC 173-340-7493(3). Used the concentrations listed in Table 749-3 as cleanup levels. If so, then skip to Question 5 below. Used one or more of the methods listed in WAC 173-340-7493(3) to evaluate and address the identified problem. If so, then answer Questions 3 and 4 below. 3. If you conducted further site-specific evaluations, what methods did you use? Check all that apply. See WAC 173-340-7493(3). Literature surveys. Soil bioassays. Wildlife exposure model. Biomarkers. Site-specific field studies. Weight of evidence. Other methods approved by Ecology. If so, please specify: 4. What was the result of those evaluations? Confirmed there was no problem. Confirmed there was a problem and established site-specific cleanup levels. 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps? Yes If so, please identify the Ecology staff who approved those steps:		No issues were identified during the problem formulation step.
Used the concentrations listed in Table 749-3 as cleanup levels. If so, then skip to Question 5 below. Used one or more of the methods listed in WAC 173-340-7493(3) to evaluate and address the identified problem. If so, then answer Questions 3 and 4 below. 3. If you conducted further site-specific evaluations, what methods did you use? Check all that apply. See WAC 173-340-7493(3). Literature surveys. Soil bioassays. Wildlife exposure model. Biomarkers. Site-specific field studies. Weight of evidence. Other methods approved by Ecology. If so, please specify: 4. What was the result of those evaluations? Confirmed there was no problem. Confirmed there was a problem and established site-specific cleanup levels. 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps? Yes If so, please identify the Ecology staff who approved those steps:		-
Question 5 below. Used one or more of the methods listed in WAC 173-340-7493(3) to evaluate and address the identified problem. If so, then answer Questions 3 and 4 below. 3. If you conducted further site-specific evaluations, what methods did you use? Check all that apply. See WAC 173-340-7493(3). Literature surveys. Soil bioassays. Wildlife exposure model. Biomarkers. Site-specific field studies. Weight of evidence. Other methods approved by Ecology. If so, please specify: 4. What was the result of those evaluations? Confirmed there was no problem. Confirmed there was a problem and established site-specific cleanup levels. 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps? Yes If so, please identify the Ecology staff who approved those steps:	2.	What did you do to resolve the problem? See WAC 173-340-7493(3).
 address the identified problem. If so, then answer Questions 3 and 4 below. 3. If you conducted further site-specific evaluations, what methods did you use? Check all that apply. See WAC 173-340-7493(3). Literature surveys. Soil bioassays. Wildlife exposure model. Biomarkers. Site-specific field studies. Weight of evidence. Other methods approved by Ecology. If so, please specify: 4. What was the result of those evaluations? Confirmed there was no problem. Confirmed there was a problem and established site-specific cleanup levels. 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps? Yes If so, please identify the Ecology staff who approved those steps: 		
Check all that apply. See WAC 173-340-7493(3). Literature surveys. Soil bioassays. Wildlife exposure model. Biomarkers. Site-specific field studies. Weight of evidence. Other methods approved by Ecology. If so, please specify: What was the result of those evaluations? Confirmed there was no problem. Confirmed there was a problem and established site-specific cleanup levels. S. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps? Yes If so, please identify the Ecology staff who approved those steps:		
 Soil bioassays. Wildlife exposure model. Biomarkers. Site-specific field studies. Weight of evidence. Other methods approved by Ecology. If so, please specify: 4. What was the result of those evaluations? Confirmed there was no problem. Confirmed there was a problem and established site-specific cleanup levels. 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps? Yes If so, please identify the Ecology staff who approved those steps: 	3.	
 Wildlife exposure model. Biomarkers. Site-specific field studies. Weight of evidence. Other methods approved by Ecology. If so, please specify: 4. What was the result of those evaluations? Confirmed there was no problem. Confirmed there was a problem and established site-specific cleanup levels. 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps? Yes If so, please identify the Ecology staff who approved those steps: 		Literature surveys.
 Biomarkers. Site-specific field studies. Weight of evidence. Other methods approved by Ecology. If so, please specify: 4. What was the result of those evaluations? Confirmed there was no problem. Confirmed there was a problem and established site-specific cleanup levels. 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps? Yes If so, please identify the Ecology staff who approved those steps: 		Soil bioassays.
 Site-specific field studies. Weight of evidence. Other methods approved by Ecology. If so, please specify: 4. What was the result of those evaluations? Confirmed there was no problem. Confirmed there was a problem and established site-specific cleanup levels. 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps? Yes If so, please identify the Ecology staff who approved those steps: 		Wildlife exposure model.
 Weight of evidence. Other methods approved by Ecology. If so, please specify: 4. What was the result of those evaluations? Confirmed there was no problem. Confirmed there was a problem and established site-specific cleanup levels. 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps? Yes If so, please identify the Ecology staff who approved those steps: 		Biomarkers.
 Other methods approved by Ecology. If so, please specify: 4. What was the result of those evaluations? Confirmed there was no problem. Confirmed there was a problem and established site-specific cleanup levels. 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps? Yes If so, please identify the Ecology staff who approved those steps: 		Site-specific field studies.
 4. What was the result of those evaluations? Confirmed there was no problem. Confirmed there was a problem and established site-specific cleanup levels. 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps? Yes If so, please identify the Ecology staff who approved those steps: 		Weight of evidence.
 Confirmed there was no problem. Confirmed there was a problem and established site-specific cleanup levels. 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps? Yes If so, please identify the Ecology staff who approved those steps: 		Other methods approved by Ecology. If so, please specify:
 Confirmed there was a problem and established site-specific cleanup levels. 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps? Yes If so, please identify the Ecology staff who approved those steps: 	4.	What was the result of those evaluations?
 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps? Yes If so, please identify the Ecology staff who approved those steps: 		Confirmed there was no problem.
problem resolution steps? Yes If so, please identify the Ecology staff who approved those steps:		Confirmed there was a problem and established site-specific cleanup levels.
	5.	
□ No		Yes If so, please identify the Ecology staff who approved those steps:
		□ No

Step 4: SUBMITTAL

Please mail your completed form to the Ecology site manager assigned to your Site. If a site manager has not yet been assigned, please mail your completed form to the Ecology regional office for the County in which your Site is located.

If you need this publication in an alternate format, please call the Toxics Cleanup Program at 360-407-7170. Persons with hearing loss can call 711 for Washington Relay Service. Persons with a speech disability can call 877-833-6341.