

Bridgeway & Belfar, Seattle 3173.6

Limited Phase II Investigation Report

Bridgeway and Belfor Properties 3876 Bridge Way North and 3826 Woodland Park Avenue North Seattle, Washington

Prepared For:

Union View Associates, LLC 2256 38th Place East Seattle, WA 98112

March 14, 2003

Prepared By:

Kane Environmental, Inc. 3831 Stone Way Ave. N. Seattle, WA 98103

John R. Kane, R.G. Principal

EXE	CUTI	VE SUMMARY
1.0	INTI	RODUCTION
	1.1	Site Background and Physical Setting5
	1.2	Well Survey Results6
	1.3	Site Waste Constituents
2.0	SAN	PLING METHODOLOGY7
2.0	UAI	
	2.1	Utility Locate7
	2.2	Health & Safety Briefing7
	2.3	Sample Collection Methods7
	2.4	Field Screening Methods8
	2.5	Analytical Methods9
3.0	PHY	SICAL CHARACTERISTICS
	3.1	Surface Features and Drainage10
	3.2	Geology and Hydrogeology10
	3.3	Groundwater Flow Direction
4.0	LIMI	ITED PHASE II INVESTIGATION RESULTS
	4.1	Soil Sampling Results
	4.2	Groundwater Sampling Results
5.0	CON	ICLUSIONS
Limi	tatior	ns and Exceptions

- Table 1 Permanent Well Soil Analytical Results
- Table 2 Geoprobe Soil Analytical Results
- Table 3 Geoprobe Groundwater Analytical Results
- Table 4 Permanent Well Groundwater Analytical Results
- Table 5 Groundwater Elevation Measurements
- Table 6 Groundwater Purge Parameters
- Figure 1 Vicinity Map
- Figure 2 Soil and Groundwater Analytical Results Petroleum Hydrocarbons
- Figure 3 Groundwater Elevation and Contour Map

Attachment A – Analytical Data Packages

Attachment B – Geoprobe and Groundwater Monitoring Well Logs

Attachment C – Field Notes and Underground Detection Service Letter

Attachment D - Photographs

EXECUTIVE SUMMARY

This Limited Phase II Investigation Report for the properties located at 3876 Bridge Way North and 3826 Woodland Park Avenue North located in Seattle, Washington is presented by Kane Environmental, Inc. on behalf of Union View Associates, LLC ("Union View").

The purpose of this Limited Phase II Investigation was to determine whether soil and groundwater on the subject properties are impacted by petroleum hydrocarbons and, if so, whether an on-site source of petroleum product, including but not limited to floating product, still exists on the subject properties. The scope of work for this Limited Phase II Investigation was not designed to determine the full nature and extent of petroleum contaminated soil and groundwater on the subject properties. The work was not intended to be a comprehensive Phase II investigation as to the entire subject properties and/or activities thereon, but was limited to assessing whether there are ongoing sources of contamination on or emanating from the subject properties to other properties. This work was performed in order to further assess impacts to soil and groundwater on the Union View Associates property located at 3831 and 3838 Stone Way Avenue North in Seattle, which is located to the south and east of the subject properties.

Soil analytical results confirm that imported soil in the northeastern portion of the Bridgeway property was not adversely impacted with petroleum hydrocarbons due to the apparent, but not confirmed, removal of the gasoline USTs and associated underground piping from northeastern portion of the Bridgeway property. Soil analytical results also indicate that the extent of the clean fill may have continued as far south as the former waste oil and heating oil USTs in the southern interior Bridgeway building storage area. Soil analytical results reveal that petroleum hydrocarbon contaminated soil is present in the area of the former northern gasoline dispenser island.

Significant concentrations of TPH-Gas above the MTCA Method A Groundwater Cleanup Level was found in the groundwater wells on the Bridgeway property, up-gradient from the Union View property. The elevated TPH-Gas concentrations were found in the area of the former gasoline dispenser islands (D-MW-2), the former gasoline underground storage tank area (D-MW-1), inside the Bridgeway building downgradient from the former gasoline UST locations (D-MW-4),

Kane Environmental, Inc.

and in the area of the former waste and fuel oil USTs located in the southern interior storage area (D-GEO-1 and D-GEO-3). Concentrations of Benzene above the MTCA Method A Groundwater Cleanup Levels were found in wells D-MW-2, D-MW-4, D-GEO-1 and D-GEO-3.

TPH-Gas and Benzene were not detected in groundwater south of the Belfor building at well D-MW-5 and geoprobe locations D-GEO-5 and D-GEO-6.

Elevated TPH-Diesel concentrations in groundwater were found at D-GEO-3 and D-GEO-6 south of the Belfor building.

At the time of this Limited Phase II Investigation, floating petroleum product was not encountered in any of the wells or geoprobe borings sampled on the subject properties.

Groundwater analytical results from wells D-MW-1 and D-MW-3 indicate that either the gasoline underground storage tanks were located further to the south than originally estimated and/or the source of the TPH-Gas is from the area of the former gasoline dispenser islands. In either case, downgradient well and geoprobe sampling on the Bridgeway property reveal that petroleum hydrocarbon-contaminated groundwater is migrating off-site onto the Union View property.

1.0 INTRODUCTION

This report describes Limited Phase II investigation activities performed at 3876 Bridge Way North and 3826 Woodland Park Avenue North located in Seattle, Washington (Figure 1). For the purposes of this report, the 3876 Bridge Way North property will be identified as the "Bridgeway" property and the 3826 Woodland Park Avenue North property will be identified as the "Belfor" property.

1.1 Site Background and Physical Setting

Both properties are located within the Fremont neighborhood of Seattle, Washington. According to the King County Assessor's Office, the Bridgeway property consists of 14,300 square feet and the Belfor property consists of 7,150 square feet with the attached vacant parcel consisting of 5,850 square feet.

The topography of the Bridgeway property is primarily flat with a slight downward grade to the south. The Belfor property is also primarily flat with a slight downward grade to the south, but with a steep downward grade leading to the southern vacant lot south of the Belfor building. The nearest surface water body is Lake Union located approximately 2,000 feet south of the properties.

The Bridgeway property contains one large building known as the Bridgeway building. The Bridgeway building foundation is at-grade. The tenants of the building include a supply warehouse for Belfor, Inc. on the first floor, with commercial office space on the second floor and third floor and a residence on the top floor. The Belfor property consists of a renovated residence currently used as an office for Belfor, Inc. The building has a basement and two floors of office space.

Portions of both properties where buildings are not located, are primarily covered with asphalt and concrete, except for some landscaping on the northern portion of the Bridgeway property and a gravel and vegetated parking/storage lot to the south of the Belfor building.

Adjacent properties include the following:

North: Bridge Way North (city-owned street)

East: Union View LLC property

South: Residences

West: Woodland Park Avenue North (city-owned street)

Figure 2 shows the relationship of the subject properties to the surrounding properties.

1.2 Well Survey Results

Kane Environmental retained the services of PACE Engineering of Seattle, WA to perform the groundwater well survey at the subject properties. Survey elevations are provided in Table 5. PACE had also previously conducted the survey of the groundwater monitoring wells for Union View, LLC adjacent property. Geoprobe drilling locations were surveyed and are shown on Figure 2. Figure 3 shows the groundwater flow direction on the properties.

1.3 Site Constituents

Due to the historic use of the Bridgeway and Belfor properties, soil and groundwater are impacted with total petroleum hydrocarbons (TPH). The TPH compounds found on the Bridgeway property are primarily in the gasoline and diesel range and originated from the former Chevron service station #5439 located at 3876 Bridge Way Avenue North. The concentration of TPH-Diesel found in soil and groundwater on the Belfor property may be due to the presence of a heating oil UST located at the residence west and adjacent to the southern parking/storage lot south of the Belfor building. Concentrations of TPH-Gas and TPH-Diesel are above MTCA Method A Soil and Groundwater Cleanup Levels on the properties.

Perimeter groundwater wells (MW-1, MW-2 and MW-3) were previously installed and sampled to the north and west of the Bridgeway and Belfor properties along Bridgeway Avenue N. and Woodland Park Avenue North by Kane Environmental (Figure 2). Groundwater sample analytical results revealed either non-detectable concentrations or concentrations of TPH-Gas/BTEX and TPH-Diesel/Oil below their respective MTCA Method A groundwater cleanup levels. The perimeter groundwater analytical results revealed that concentrations of petroleum products are not migrating onto the Bridgeway and Belfor properties from the north or west from any potential up-gradient sources.

Kane Environmental, Inc.

2.0 SAMPLING METHODOLOGY

Areas were selected for field investigation based on surface features, safe distance from underground utilities, and accessibility by the auger rig and Geoprobe sampling rig.

Field methods utilized, including sample collection, field screening, selected analysis and documentation procedures are briefly described in the following subsections. Sample collection and documentation were completed in accordance with Kane Environmental standard operating procedures.

2.1 Utility Locate

Kane Environmental contacted Locate Inc. prior to starting the fieldwork to conduct a general locating survey for telephone, gas, water, sewer and electric service for study areas at the Property. Areas identified as utility corridors by Locate Inc. were marked and no sampling occurred in these areas. An on-property locate survey was also performed by Underground Detection Services, Inc. (UDS) of Seattle, Washington. UDS also performed a limited ground penetrating radar survey inside the southern storage area inside the Bridgeway building to confirm the presence or absence of the waste/heating oil USTs shown on Chevron's 1961 site map. The UDS survey did not reveal any USTs located in the southern Bridgeway storage area (Attachment C).

2.2 Health & Safety Briefing

A health and safety briefing was conducted prior to sampling activities on February 8, 2003. Potential contaminants, hazardous activities and preventative measures were discussed. All field personnel from Kane Environmental and their drilling subcontractors, Cascade Drilling, Inc. and ESN, NW of Lacey, Washington were properly trained and licensed to perform the subsurface investigation work.

2.3 Sample Collection Methods

Soil samples were collected with a stainless steel split-spoon sampling device driven by the auger rig and the truck mounted Geoprobe rig. The split-spoon sampler was cleaned with

Kane Environmental, Inc.

alconox and double rinsed between each boring during both drilling activities. Each soil sample was logged by Kane Environmental personnel for physical properties such as grain size, color and moisture. After sample collection, a portion was placed into clean laboratory prepared glass jars with Teflon lids.

Geoprobe groundwater samples were collected through the drill rod using a "hydropunch" sampler and a low-flow peristaltic pump. Groundwater was pumped with the peristaltic pump until the groundwater was clear or contained a small amount of sediment. Groundwater samples were collected from permanent monitoring wells D-MW-1, D-MW-2, D-MW-3, D-MW-4, D-MW-5, and D-GEO-1 using the following procedures:

- A dedicated and disposable 1/4-inch polyethylene tube connected to a peristaltic pump was lowered into each monitoring well.
- Approximately three well volumes of water were removed from each well. Field parameters
 were measured periodically and included pH, temperature, conductivity and Total Dissolved
 Solids (TDS) using a Hanna HI 991300 meter. Prior to sampling activities, the meter was
 calibrated with standard solutions of pH, conductivity and TDS. The field parameter
 measurements are provided in Table 6.
- Groundwater was placed into appropriate laboratory-supplied cleaned and preserved containers for analysis. Samples were placed into small plastic bags to minimize the potential for cross-contamination, and then placed into an ice-filled cooler for subsequent delivery to OnSite Environmental laboratory in Redmond, Washington.

The soil and groundwater samples were immediately placed into an ice-filled cooler until transported to OnSite Environmental of Redmond, Washington under Kane Environmental chain-of-custody procedures. Analytical data packages are provided in Attachment A.

2.4 Field Screening Methods

Following soil collection, soil was inspected for any indication of contamination (discoloration and/or odor). Selected soil samples were also field screened using a photoionization detector (PID). The field inspection of the soil revealed petroleum odor in some of the samples collected

during the Limited Phase II Investigation as shown in the borehole logs and described in the field notes in Attachments B and C.

2.5 Analytical Methods

Selected soil and groundwater samples collected from the explorations were analyzed for:

- Gasoline, diesel and oil range petroleum hydrocarbons by Method NWTPH-Gx/BTEX, NWTPH-Dx;
- (2) Volatile Organic Compounds (VOCs), Halogenated Volatile Organic Compounds (HVOCs) and Methyl Tertiary-Butyl Ether (MTBE) by U.S. Environmental Protection Agency (EPA) Method 8260B;
- (3) Polynuclear Aromatic Hydrocarbons (PAHs) EPA Method 8270C/SIM;
- (4) Total Metals by EPA Method 6010B/7471A;
- (5) Dissolved Metals by EPA Method 200.8/7470A;
- (6) Total Lead by EPA Method 6010B;
- (7) Dissolved Lead by EPA Method 200.8; and
- (8) PCBs by EPA Method 8082.

OnSite Environmental of Redmond, Washington, in accordance with their in-house Quality Assurance/Quality Control Plan performed the analytical work. Sample analyses were performed in compliance with (EPA) analytical methods and Washington State Department of Ecology (Ecology) guidelines. All TPH-Diesel/Oil soil and groundwater samples extracts were treated with an acid wash/silica gel procedure in the laboratory. Samples were analyzed within specified holding times. The trip blank analysis resulted in non-detectable concentrations of VOCs. All detection limits were within method requirements and no factors appeared to adversely affect data quality.

3.0 PHYSICAL CHARACTERISTICS

3.1 Surface Features and Drainage

The properties are primarily covered with buildings and asphalt. The topography of the properties gently slopes to the south. One storm drain on the Bridgeway property collects rainwater and discharges to the sanitary sewer. A small landscaped area is located on the north end of the Property adjacent to Bridge Way North and a gravel parking/storage area is located south of the Belfor building.

3.2 Geology and Hydrogeology

On Friday, January 31, 2003, prior to the Limited Phase II Investigation sampling activity, Mr. Karl Daviscourt, owner of the Bridgeway property, showed John Kane of Kane Environmental a series of photographs from 1980/1981 of the northern portion of the Bridgeway property prior to the construction of the current Bridgeway building. These photographs showed that soil appeared to be removed approximately 5 to 10 feet below the current grade in the northern portion of the Bridgeway property. Based on a review of these photographs, the former gasoline USTs and their associated piping in the northeastern portion of the site were most likely removed at this time, along with associated petroleum-impacted soil. Mr. Daviscourt stated that clean fill was imported to the site and compacted to the present day final grade. The lateral and vertical extent of soil removal and clean fill replacement was not documented by the photographs, therefore it was not apparent from the photographs if the waste oil and heating oil tanks and their associated piping, the former gasoline dispenser underground piping, and potentially contaminated soil associated in both areas, had been removed in 1980/1981.

Soil samples collected during drilling on the Bridgeway property confirmed the presence of clean fill in the upper seven feet in the northeastern portion of the Bridgeway property. In general, subsurface soil in the northeastern portion of the Bridgeway property consisted brown sandy fill in the upper seven feet, underlain by light gray silty sand to approximately 10 feet below ground surface (bgs) and then a water-bearing gray silty sand to 20 feet bgs. Fill material was present in the borings inside the Bridgeway building from beneath the concrete floor to a depth of 8 feet bgs. Soil beneath this fill material consisted of silty clay and silty sand. Soil

south of the Belfor building appeared to be fill material to a depth of approximately 10 feet bgs on the eastern portion and 6 feet bgs on the western portion of the parking/storage area. Soil beneath this fill consisted of medium brown sand.

The water-bearing soils started to appear 8 feet to 10 feet bgs on the Bridgeway property and 12 feet bgs south and adjacent to the Belfor building.

3.3 Groundwater Flow Direction

Kane Environmental measured depth to groundwater in perimeter groundwater monitoring wells MW-1 through MW-4 and new wells D-MW-1, D-MW-3, D-MW-4, D-MW-5 and D-GEO-1 to determine the groundwater flow direction. Depth to groundwater from the surface ranged from 6.5 feet bgs at MW-1 to 12.75 feet bgs at D-GEO-1. The direction of groundwater flow on the properties is to the southeast (Figure 3).

4.0 LIMITED PHASE II INVESTIGATION RESULTS

Kane Environmental conducted a Limited Phase II Investigation on the Bridgeway and Belfor properties. The investigation was conducted in the northern parking area and inside the Bridgeway building, and in the southern driveway and gravel parking/storage area on the Belfor property. Kane Environmental retained the services of Cascade Drilling of Woodinville, Washington to perform the auger drilling operations and ESN, NW of Lacey, Washington to perform the Geoprobe and hand-held rotohammer drilling.

Four auger borings (D-MW-1, D-MW-2, D-MW-3, D-MW-4) were drilled on the Bridgeway property and one boring, (D-MW-5), was drilled on the Belfor property. Cascade installed four 2-inch groundwater monitoring wells at these locations, with one exception. One of the proposed auger wells (D-MW-4) had to be completed as a 1-inch diameter well using the Geoprobe drill rig because concrete was found at 8.5 feet and 12 feet bgs at this location inside the Bridgeway building. The auger rig was unable to break through the second layer of concrete, but the Geoprobe rig was able to drive through the concrete and a 1-inch diameter PVC well was subsequently installed.

4.1 Soil Sampling Results

Soil analytical results confirm that imported soil in the northeastern portion of the Bridgeway property is not adversely impacted with petroleum hydrocarbons due to the apparent, but not confirmed, removal of the gasoline USTs and associated underground piping from the northeastern portion of the Bridgeway property. Soil analytical results also indicate that the extent of the clean fill may have continued as far south as the former waste oil and heating oil USTs in the southern interior Bridgeway building storage area.

Concentrations of benzene and total xylenes were found above their MTCA Method A Soil Cleanup Level at D-MW-2: 5-6.5 ft.

Concentrations of TPH-Diesel above the MTCA Method A Soil Cleanup Levels was found at D-GEO-3: 8 ft and D-GEO-6: 10-10.5 ft. A concentration of total naphthalene was also found above the MTCA Method A Soil Cleanup Level at D-GEO-3: 8 ft.

Kane Environmental, Inc.

4.2 Groundwater Sampling Results

Kane Environmental conducted groundwater sampling from temporary geoprobe drilling locations on February 8, 2003. Depth-to-water measurements and groundwater sampling from the permanent wells was conducted on February 13 and 17, 2003. (No rainfall occurred between these two dates that would have impacted groundwater elevations). A table showing groundwater elevations is presented in Table 5. Measurements to determine the presence of floating product were conducted on February 11, 13 and 17, 2003. Floating product was not encountered in the permanent wells on any of these dates, and floating product was not encountered during the geoprobe sampling.

Permanent Groundwater Monitoring Wells

Groundwater analytical results revealed concentrations of TPH-Gas above the MTCA Method A groundwater cleanup levels in the area of the former gasoline underground storage tanks at D-MW-1, the northernmost gasoline dispenser at D-MW-2 and the down-gradient well location at D-MW-4 (Figure 2; Table 4). Benzene concentrations were above the MTCA Method A Groundwater Cleanup Level at D-MW-2 and D-MW-4. Toluene, Ethylbenzene and Total Xylenes concentrations were above their respective MTCA Method A Groundwater Cleanup Level at D-MW-2.

TPH-Gas/BTEX and TPH-Diesel/Oil were not detected in up-gradient well D-MW-3 or well D-MW-5 south of the Belfor building. MTBE was not detected in samples from any ofthe five permanent groundwater monitoring wells. (It should be noted that the detection limit for MTBE for the D-MW-4 groundwater sample was adjusted to above the cleanup level of 20 ppb, but no MTBE was detected in this well or in any of the other wells on the properties).

Additionally, it should be noted that the identification of the location of the former USTs and dispensers was based on a drawing provided by Chevron/Texaco to Kane Environmental. This drawing was labeled as a "Ground Plan" dated April 7, 1961. Since the drawing was not an "asbuilt" drawing, it is possible that the actual location of the former USTs may have been further to the south than shown on the Ground Plan drawing. This may account for the non-detectable

TPH-Gas concentration found at D-MW-3 and the high TPH-Gas concentrations detected at D-MW-1 and down-gradient well D-MW-4.

One concentration of dissolved arsenic above the MTCA Method A Groundwater Cleanup Level was detected at D-MW-4. All remaining dissolved metals were found either at non-detectable concentrations or concentrations below their respective MTCA Method A or B Groundwater Cleanup Levels.

Geoprobe Sampling Locations

Geoprobe sampling was conducted in the southern interior storage area of the Bridgeway building because access to this area was limited to a 3-foot wide doorway. ESN, NW mobilized a portable hydraulic hammer unit to advance the geoprobe borings in the southern storage area at locations D-GEO-1, D-GEO-2, D-GEO-3. A permanent 1-inch diameter PVC well was installed at location D-GEO-1.

Sampling location D-GEO-4 was drilled using a hand-held rotohammer, which could not be advanced any deeper than 5 feet bgs. Groundwater was not collected at D-GEO-4. (It should be noted that sampling location D-GEO-4 appeared to be located on the Union View LLC property based on the survey line established at the corner of North 39th Street and Bridge Way North).

Sampling locations D-GEO-5 and D-GEO-6 on the Belfor property were drilled using the ESN, NW truck-mounted geoprobe drill rig. D-GEO-5 was placed on the northeastern corner of the gravel parking/storage area. D-GEO-6 was drilled adjacent to a metal fence on the west side of the parking/storage area per a request from Mr. Karl Daviscourt at the time of the geoprobe drilling on Saturday, February 8, 2003. Mr. Daviscourt requested the placement of this geoprobe location because of a concern regarding the potential presence of TPH-Gas in the vicinity of the residence located to the west of the parking/storage area.

Groundwater analytical results revealed concentrations of TPH-Gas and Benzene above their respective MTCA Method A Groundwater Cleanup Levels at D-GEO-1 and D-GEO-3, downgradient from the location of the former gasoline underground storage tanks.

Kane Environmental, Inc.

Concentrations of Toluene and Total Xylenes above their respective MTCA Method A Groundwater Cleanup Levels were found at D-GEO-1 and total xylenes above the regulatory cleanup level was found at D-GEO-3.

The D-GEO-3 groundwater analyses also resulted in a concentration of TPH-Diesel above the MTCA Method A Groundwater Cleanup Level. TPH-Oil was not detected above the analytical detection limit at D-GEO-1, D-GEO-3, D-GEO-5 or D-GEO-6.

Groundwater was not collected at D-GEO-2. The subsurface soil was moist at 13 to 17 feet bgs at D-GEO-2. A one-inch PVC well was temporarily placed in the D-GEO-2 boring for over one hour, but the well did not produce a sufficient enough volume of groundwater for sampling.

One concentration of dissolved arsenic above the MTCA Method A Groundwater Cleanup Level was detected at D-GEO-1. All remaining dissolved metals were found either at non-detectable concentrations or concentrations below their respective MTCA Method A or B Groundwater Cleanup Levels.

Groundwater was analyzed for MTBE in all five Geoprobe locations resulting in non-detectable concentrations. Detected concentrations of VOCs, other than BTEX, were found below their respective MTCA Method A or B Groundwater Cleanup Levels.

5.0 CONCLUSIONS

Soil analytical results confirm that imported soil in the northeastern portion of the Bridgeway property was not adversely impacted with petroleum hydrocarbons due to the apparent, but not confirmed, removal of the gasoline USTs and associated underground piping from northeastern portion of the Bridgeway property. Soil analytical results also indicate that the extent of the clean fill may have continued as far south as the former location of the waste oil and heating oil USTs which is now the southern interior of the Bridgeway building storage area. Soil analytical results reveal that petroleum hydrocarbon contaminated soil is present in the area identified as the former location of the northern gasoline dispenser island.

At the time of this Limited Phase II Investigation, floating petroleum product was not encountered in any of the wells or geoprobe borings sampled on the subject properties.

Groundwater analytical results from wells D-MW-1 and D-MW-3 indicate that either the gasoline underground storage tanks were located further to the south than originally estimated and/or the source of the TPH-Gas is from the area of the former gasoline dispenser islands. In either case, downgradient wells and geoprobe sampling on the Bridgeway property reveal that petroleum hydrocarbon-contaminated groundwater is migrating off-site onto the Union View property.

Limitations and Exceptions

As applicable and available within the project schedule and budget, we have reviewed readily available documents and public records regarding the site, employing professional standards applicable in the industry today. We cannot guarantee that these reviews have yielded complete or usable information. In addition, we assume no risk for existing conditions on the site.

To the extent that these services have required judgment, there can be no assurance that fully definitive or desired results were obtained, or if any results were obtained, that they were supportive of any given course of action. The services have included the application of judgment to scientific principles; to that extent, certain results of this work have been based on subjective interpretation. We make no warranties, express or implied including without limitation, warranties as to merchantability or fitness for a particular purpose. The information provided in this report is not to be construed as legal advice.

The report was prepared for Union View Associates, LLC and the contents thereof may not be used or relied upon by any other person without the express written consent and authorization of Kane Environmental, Inc.

Tables

Table 1 Bridgeway Property Soil Sample Results (ppm) March 14, 2003

								MTCA
	D-MW-1	<u>D-MW-1</u>	D-MW-2	D-MW-3	D-MW-4	D-MW-5	D-MW-5	Method A
Sample Depth	5-6.5 ft	<u>8-9.5</u> ft	5-6.5 ft	5-6.5 ft	<u>5-6.5 ft</u>	5-6.5 ft	<u>9.5-11 ft</u>	Soil Cleanup Level
ТРН								
Gasoline	< 5.6	< 5.8	< 11	< 5.8	< 5.6	5.5	< 5.6	100
Diesel	< 28	< 29	770	< 29	< 28	< 28	< 28	2,000
Heavy Oil	< 56	< 58	< 56	76	< 56	110	< 56	2,000
BTEX							1	
Benzene	< 0.011	< 0.012	0.048	< 0.012	< 0.011	< 0.011	< 0.011	0.03
Toluene	< 0.056	< 0.058	0.12	< 0.058	< 0.056	< 0.055	< 0.056	7
Ethylbenzene	< 0.056	< 0.058	3.2	< 0.058	< 0.056	< 0.055	< 0.056	6
Total Xylenes	< 0.056	< 0.058	10.2	< 0.058	< 0.056	< 0.055	< 0.056	9
TOTAL METALS								
Lead	< 5.6	< 5.8	< 5.6	20	14	40	< 5.6	250

TPH = Total Petroleum Hydrocarbons

MTBE = Methyl Tert Butyl Ether

bold = concentration above the MTCA Method A Soil Cleanup Level

nd = not detected

-- = not analyzed

MTCA = Washington Department of Ecology Model Toxics Control Act

ppm = parts per million

Table 2 Bridgeway Property Soli Sample Results (ppm) March 14, 2003

	<u> </u>											MTCA
	D-GEO-1	D-GEO-1	D-GEO-2	D-GEO-2	D-GEO-3	D-GEO-3	D-GEO-4	D-GEO-5	D-GEO-6	D-GEO-6	D-GEO-6	Method /
								_				or B Soil
Sample Depth	4-8 ft	0.12.6										Cleanup
Sample_Deptn	<u>4-8 ft</u>	<u>8-12 ft</u>	4-8 ft	15-17 ft	4-7 ft	8 ft	<u>4-5 ft</u>	7-8 ft	10-10.5 ft	7-8 ft	<u>8 ft</u>	Level
Gasoline	< 5.7	< 10	< 5.5	< 12	< 5.3	< 11	< 5.8	< 6.2	< 11			100/20
Diesel	< 28	< 29	< 28	330	< 26	4,100	< 29	< 31	14.000	< 5.7 < 28	< 5.4	100/30
Heavy Oil	< 57	< 58	< 55	< 60	< 53	< 56	< 58	< 62	< 290	< 57	< 54	2,000 2,000
TBE/BTEX									<u> </u>	× 37		2,000
MTBE				< .0012		<.0011				•-		0.10
Benzene	< 0.011	< 0.021	< 0.011	<.0012	< 0.011	0.0014	< 0.012	< 0.012	< 0.023	< 0.011	< 0.011	0.03
Toluene	< 0.057	< 0.10	< 0.055	0.0049	< 0.053	0.0020	< 0.058	< 0.062	< 0.11	< 0.057	< 0.054	7
Ethylbenzene	< 0.057	< 0.10	< 0.055	0.013	< 0.053	0.37	< 0.058	< 0.062	1.2	< 0.057	< 0.054	6
Total Xylenes	< 0.057	< 0.10	< 0,055	0.057	< 0.053	0.5387	< 0.058	< 0.062	3.66	< 0.057	< 0.054	9
IVOCs		nd		nd		nd						
/OCs												
Acetone				< .0060		0.037						8,000*
2-Butanone				< .0060		0.014						nv
Isopropylbenzene				0.0026		0.26						nv
n-Propylbenzene				0.0087		0.77	 -					nv
1,3,5-Trimethylbenzene	<u> </u>			0.017		1.2						ny
tert-Butylbenzene				< .0012		0.058						ny
1,2,4-Trimethylbenzene				0.052		1.4						nv
sec-Butylbenzene				0.021		0.31						ny
p-lsopropyitoluene				0.0057		0.61						nv
Naphthalene				< .0012		0.93						nv
<u>fotal Metals</u>												
Arsenic						< 11						20
Barium						53						5,600*
Cadmium						< 0.56						2.0
Chromium				••		22						100
Lead	7.1	< 5.8	12	< 6.0	5.4	< 5.6		< 6.2	< 5.7	< 5.7	< 5.4	250
Mercury						< 0.28						1.0
Selenium						< 11						400*
Silver						< 0.56						400*
Carcinogenic PAHs	ļ											
Benzo(a)pyrene						< 0.0094						0.137
Chrysene						0.033						0.137
Dibenzo(a,h)anthracene						< 0.0094						0.137
Indeno(1,2,3-cd)pyrene						< 0.0094						0.137
Benzo(k)fluoranthene						< 0.0094						0.137
Benzo(a)anthracene						< 0.0094						0.137
Benzo(b)fluoranthene						< 0.0094						0.137
Other PAHs	<u> </u>	<u> </u>									1	
Naphthalene						2.1						
2-Methylnaphthalene						13						
1-Methylnaphthalene						8.9						
Total Naphthalenes	ļ			••		24						5.0
Acenaphthylene	<u> </u>					0.092						4,800
Acenaphthene						0.48						4,800
Fluorene	••					1.9						3,200
Phenanthrene						3						<u>3,200</u>
Anthracene						0.22						24,000
Fluoranthene						0.067						3,200
Pyrene						0.16						
Benzo(g,h,i)pervlene				•		< 0.0094						2,400 nv
CBs						< 0.056						1.0

MTBE = Methyl Tert Butyl Ether

bold = concentration above the MTCA Method A or B* Soil Cleanup Level nd = not detected nd/nd = sample/sample duplicate not detected

nv = no current published MTCA cleanup level

-- = not analyzed

HVOCs = Halogenated and Aromatic Hydrocarbons by EPA Method 8021B

MTCA = Washington Department of Ecology Model Toxics Control Act

ppm = parts per million

Soil cleanup level for TPH-Gas 100 ppm, unless benzene present & TEX >1% of mixture, then 30 ppm

Table 3 Bridgeway Property Water Sample Results (ppb) March 14, 2003

	D-GEO-1	D-GEO-3	D-GEO-5	D-GEO-6	MTCA Method A or B Groundwater Cleanup Level
ТРН	the set of the particular state of the sector				
Gasoline	24,000	28,000	<100	<100	1,000/800
Diesel	<250	5,600	<280	33,000	500
Heavy Oil	<410	<420	<450	<430	500
MTBE/BTEX/VOCs	and the second se				
MTBE	<20	-	-	-	20
Benzene	420	26	<0.20	<0.20	5
Toluene	2,100	630	<0.20	<0.20	1,000
Ethylbenzene	680	630	<0.20	5.6	700
Xylene	2,960	2810	<0.20	26.5	1,000
Isopropylbenzene	32	80	<0.20	3.9	nv
n-Propylbenzene	77	270	<0.20	5.5	nv
1,3,5-Trimethylbenzene	140	490	<0.20	15	nv
1,2,4-Trimethylbenzene	520	1600	<0.20	59	nv
p-lsopropyltoluene	<20	14	<0.20	3.5	nv
2-Butanone	<5	<250	5.3	<5.0	nv
sec-Butylbenzene	<20	<10	<0.20	2.8	nv
Naphthalene	<100	<50	<1.0	23	160
RCRA 8 Dissolved Metals					
Arsenic	13	<3	-		5
Barium	34	<25		-	560*
Cadmium	<4	<4	-		5.0
Chromium	<10	<10	-	-	50
Lead	1.5	<1.0	<1.0	<1.0	15
Mercury	<0.5	<0.5	-		2.0
Selenium	<5	<5	-		80*
Silver	<10	<10	-		80*

TPH = Total Petroleum Hydrocarbons

bold = concentration above the MTCA Method A or B^* Groundwater Cleanup Level

nd = not detected

nv = no current published MTCA cleanup level

-- = not analyzed

MTBE = Methyl Tert Butyl Ether

MTCA = Washington Department of Ecology Model Toxics Control Act

ppb = parts per billion

TPH-Gas Groundwater cleanup level 1,000 ppb unless benzene detected, then 800 ppb

Table 4 Bridgeway Property Water Sample Results (ppb) March 14, 2003

							MTCA
	D-MW-1	D-MW-2	D-MW-3	D-MW-4	D-MW-5	Trip Blank	Method A or B Groundwater Cleanup Level
ТРН							
Gasoline	1,800	6,200	<100	63,000	< 100	<100	1,000/800
Diesel	< 250	< 260	< 260	< 250	< 250		500
Heavy Oil	< 400	< 410	< 410	< 400	< 400		500
MTBE/BTEX/VOCs							
MTBE	< 0.20	< 4.0	< 0.20	< 40	< 0.20		20
Benzene	4.0	79	< 1.0	480	< 0.20	< 1.0	5
Toluene	< 1.0	570	< 1.0	5,100	< 0.20	< 1.0	1,000
Ethylbenzene	24	110	< 1.0	1,500	< 0.20	< 1.0	700
Total Xylenes	18.2	660	< 1.0	7,500	< 0.20	< 1.0	1,000
Isopropylbenzene				69		<0.20	nv
n-Propylbenzene				190		<0.20	nv
1,3,5-Trimethylbenzene				290		<0.20	nv
1,2,4-Trimethylbenzene				1,300		<0.20	nv
HVOCs	nd	nd	nd	nd	nd	nd	none detected
Chloroform	0.24	<4.0	<0.20	<40	<0.2	<.20	7.17*
Dissolved Metals							
Arsenic	-			31	< 3.0		5
Barium				39	< 25		560*
Cadmium				< 4.0	< 4.0		5.0
Chromium				< 10	< 10		100*
Lead	< 1.0	1.3	1.3	1.6	< 1.0		15
Mercury				< 0.5	< 0.5		2
Selenium				< 5.0	< 5.0		80*
Silver				< 10	< 10		80*

TPH = Total Petroleum Hydrocarbons

bold = concentration above the MTCA Method A or B* Groundwater Cleanup Level

nd = not detected

nv = no current published MTCA cleanup level

-- = not analyzed

MTBE = Methyl Tert Butyl Ether

HVOCs = Halogenated and Aromatic Hydrocarbons by EPA Method 8021B

MTCA = Washington Department of Ecology Model Toxics Control Act

ppb = parts per billion

TPH-Gas Groundwater cleanup level 1,000 ppb unless benzene detected, then 800 ppb

Table 5 Groundwater Elevation Measurements February 13 and 17, 2003

Monitoring Well	Total Depth (feet)	Casing Rim Elevation (feet)	Pipe Rim Elevation (feet)	Depth to Water (feet)	Water Elevation (feet msl)
MW-1	15	104.83	104.46	6.50	97.96
MW-2	20	109.01	108.64	6.25	102.39
MW-3	20	109.22	108.98	8.60	100.38
MW-4	30	109.76	109.59	9.67	99.92
D-MW-1	20	109.98	109.69	11.25	98.44
D-MW-2	20	109.59	109.17	8.13	101.04
D-MW-3	20	109.69	109.34	10.41	98.93
D-MW-4	16	110.10	109.72	12.15	97.57
D-MW-5	20	107.37	107.00	12.30	94.70
D-GEO-1	16	110.07	109.76	12.75	97.01

Table 6 Groundwater Purge Parameters February 13 and 17, 2003

Monitoring Well	Temperature (F)	рН	Conductivity	Total dissolved Solids
D-MW-1				ļ
1	54.5	6.58	1630	813
2	54.7	6.96	1084	538
3	54.9	7.01	1030	516
4	54.2	7.10	967	483
D-MW-2				
1	54.1	7.32	736	367
2	55.2	7.64	706	353
3	55.4	7.74	870	433
D-MW-3			-	
1	54	7.55	635	325
2	55.7	7.50	568	285
3	55.9	7.18	553	276
4	55.5	7.34	549	274
D-MW-4	54.5	6.89	512	253
D-MW-5	58.6	6.77	383	192
D-GEO-1	54.9	6.99	6.0*	322

Groundwater parameters collected from D-MW-4, D-MW-5 and D-GEO-1 after the 3rd volume

was removed from the well.

i.

ł

ł

Numbers 1,2,3,4 are purge volumes from each well.

* = Conductivity reading was low compared to other wells.

Figures

D-GEO-6	B = T = E = X = MTB TPH TPH TPH	FT SOIL (mg/kg) WATER (ug/L) <0.012 B = <0.20 <0.062 T = <0.20 <0.062 E = <0.20 <0.062 E = <0.20 <0.062 X = <0.40 E = NA MTBE = <0.20 -G = <6.2 TPH-G = <100 -D = <31 TPH-D = <280 -0 = <62 TPH-O = <450 I = <6.2 Lead = <1.0
$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $		D-GEO-6
KANE Environmental, Inc.	Bridgeway Property Limited Phase II Investigation Seattle, Washington	Figure 2 Soil and Groundwater Analytical Results - Petroleum Hydrocarbons - February 2003

WOODLAND PARK AV		LOT 4 D-GEO-5 Ø	
KANE	Bridgeway Property	Orauna durat	Figure 3
Environmental, Inc.	Limited Phase II Investigation	Groundwate	er Elevation and Contour Map February 2003
	Seattle, Washington		residary 2005

Attachment A

Analytical Data Packages

RECEIVED Date 2-27-03

February 26, 2003

John Kane Kane Environmental, Inc. 3831 Stone Way Avenue N Seattle, WA 98103

Re: Analytical Data for Project 02902 Laboratory Reference No. 0302-071

Dear John:

ř

Enclosed are the analytical results and associated quality control data for samples submitted on February 14, 2003.

The standard policy of OnSite Environmental Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Case Narrative

Samples were collected on February 13, 2003. Samples were maintained at the laboratory at 4°C and followed SW846 analysis and extraction methods.

NWTPH Gx/BTEX Analysis

Any QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

NWTPH Dx Analysis

Any QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

Halogenated Volatiles EPA 8260B Analysis

Any QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

Dissolved Lead EPA 200.8 Analysis

Any QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

NWTPH-Gx/BTEX

Date Extracted:	2-18&19-03
Date Analyzed:	2-18&19-03

Matrix: Water Units: ug/L (ppb)

Client ID:	D-MW-1	D-MW-2
Lab ID:	02-071-01	02-071-02

	Result	Flags	PQL	Result	Flags	PQL
Benzene	4.0		1.0	79		1.0
Toluene	ND		1.0	570		50
Ethyl Benzene	24		1.0	110		1.0
m,p-Xylene	17		1.0	420		50
o-Xylenė	1.2		1.0	240		50
TPH-Gas	1800		100	6200		100
Surrogate Recovery: Fluorobenzene	110%			93%		

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

	N	WTPH-Gx/BTEX
Date Extracted:	2-18-03	
Date Analyzed:	2-18-03	- ,

Matrix: Water Units: ug/L (ppb)

ľ

Client ID:	D-MW-3	Trip Blank
Lab ID:	02-071-03	02-071-04

	Result	Flags	PQL	Result	Flags	PQL
Benzene	ND		1.0	ND		1.0
Toluene	ND		1.0	ND		1.0
Ethyl Benzene	ND		1.0	ND		1.0
m,p-Xylene	ND		1.0	ND		1.0
o-Xylene	ND		1.0	ND		1.0
TPH-Gas	ND		100	ND		100
Surrogate Recovery: ·	106%			108%		

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

NWTPH-Gx/BTEX METHOD BLANK QUALITY CONTROL

Date Extracted:	2-18-03
Date Analyzed:	2-18-03

Matrix: Water Units: ug/L (ppb)

÷

Lab ID: MB0218W1

	Result	Flags	PQL
Benzene	ND		1.0
Toluene	ND		1.0
Ethyl Benzene	ND		1.0
m,p-Xylene	ND		1.0
o-Xylene	ND		1.0
TPH-Gas	ND		100

Surrogate Recovery: Fluorobenzene 109%

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

5

NWTPH-Gx/BTEX METHOD BLANK QUALITY CONTROL

Date Extracted:	2-19-	03
Date Analyzed:	2-19-	03

Matrix: Water Units: ug/L (ppb)

Lab ID: MB0219W1

	Result	Flags	PQL
Benzene	ND		1.0
Toluene	ND		1.0
Ethyl Benzene	ND		1.0
m,p-Xylene	ND		1.0
o-Xylene	ND		1.0
TPH-Gas	ND		100
Surrogate Recovery: Fluorobenzene	94%		

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

.

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.
NWTPH-Gx/BTEX DUPLICATE QUALITY CONTROL

7

Date Extracted:		2-18-03
Date Analyzed:		2-18-03

Matrix: Water

Units: ug/L (ppb)

Lab ID:	02-075-01 Original	02-075-01 Duplicate	RPD	Flags
Benzene	ND	ND	NA	
Toluene	ND	ND	NA	
Ethyl Benzene	ND	ND	NA	
m,p-Xylene	1.67	1.55	7.1	
o-Xylene	ND	ND	NA	
TPH-Gas	ND	ND	NA	
Surrogate Recovery:				
Fluorobenzene	105%	105%		

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Gx/BTEX MS/MSD QUALITY CONTROL

Date Extracted:	2-18-03
Date Analyzed:	2-18-03

Matrix: Water Units: ug/L (ppb)

ľ

3

Spike Level: 50.0 ppb

Lab ID:	02-075-01 MS	Percent Recovery	02-075-01 MSD	Percent Recovery	RPD	Flags
Benzene	48.2	96	48.6	97	0.74	
Toluene	48.9	98	49.4	99	0.92	
Ethyl Benzene	50.0	100	50.3	101	0.68	
m,p-Xylene	51.3	99	51.6	100	0.70	
o-Xylene	49.8	100	50.2	100	0.82	

Surrogate Recovery:

Fluorobenzene	106%	107%
---------------	------	------

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

'n.

τ—

NWTPH-Dx

Date Extracted:	2-20-03
Date Analyzed:	2-20&21-03

Matrix:	Water
Units:	mg/L (ppm)

Client ID: Lab ID:	D-MW-1 . 02-071-01	D-MW-2 02-071-02	D-MW-3 02-071-03
Diesel Range: PQL: Identification:	ND 0.25 	ND 0.26 	ND 0.26
Lube Oil Range: PQL: Identification:	ND 0.40	ND 0.41 	ND 0.41
Surrogate Recovery o-Terphenyl:	102%	106%	107%
Flags:	Y	Υ	Y

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Dx METHOD BLANK QUALITY CONTROL

Date Extracted:	2-20-03
Date Analyzed:	2-20-03

Matrix:	Water
Units:	mg/L (ppm)

Lab ID:	MB0220W1
Diesel Range:	ND
PQL:	0.25
Identification:	
Lube Oil Range:	ND
PQL:	0.40
Identification:	
Surrogate Recovery	
o-Terphenyl:	108%

Flags:

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Y

NWTPH-Dx DUPLICATE QUALITY CONTROL

Date Extracted:	2-20-03	
Date Analyzed:	2-20-03	

Matrix:	Water	
Units:	mg/L (ppm)	

02-110-01	02-110-01 DUP
ND 0.25	ND 0.26
N/A	
	ND 0.25 N/A

Surrogate Recovery o-Terphenyl:	74%	85%
Flags:	Y	Y

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

HALOGENATED VOLATILES by EPA 8260B Page 1 of 2

Date Extracted:	2-20-03
Date Analyzed:	2-20-03

Matrix:	Water
Units:	ug/L (ppb)

Lab ID:	02-071-01
Client ID:	D-MW-1

Compound	Results	Flags	PQL
Dichlorodifluoromethane	ND		0.20
Chloromethane	ND		0.20
Vinyl Chloride	ND		0.20
Bromomethane	ND		0.20
Chloroethane	ND		0.20
Trichlorofluoromethane	ND		0.20
1,1-Dichloroethene	ND		0.20
lodomethane	ND		1.0
Methylene Chloride	ND		1.0
Methyl t-Butyl Ether	ND		0.20
(trans) 1,2-Dichloroethene	ND		0.20
1,1-Dichloroethane	ND		0.20
2,2-Dichloropropane	ND		0.20
(cis) 1,2-Dichloroethene	ND		0.20
Bromochloromethane	ND		0.20
Chloroform	0.24		0.20
1,1,1-Trichloroethane	ND		0.20
Carbon Tetrachloride	ND		0.20
1,1-Dichloropropene	ND		0.20
1,2-Dichloroethane	ND		0.20
Trichloroethene	ND		0.20
1,2-Dichloropropane	ND		0.20
Dibromomethane	ND		0.20
Bromodichloromethane	ND		0.20
2-Chloroethyl Vinyl Ether	ND		1.0
(cis) 1,3-Dichloropropene	ND		0.20
(trans) 1,3-Dichloropropene	ND		0.20

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

1,4-Dichlorobenzene

1,2-Dichlorobenzene

1,2,4-Trichlorobenzene

1,2-Dibromo-3-chloropropane

HALOGENATED VOLATILES by EPA 8260B Page 2 of 2

ND

ND

ND ND

Lab ID: Client ID:	02-071-01 D-M <u>W-1</u>		
Compound		Results	Flags
1,1,2-Trichloroethane		ND	
Tetrachloroethene		ND	
1,3-Dichloropropane		ND	
Dibromochloromethane		ND	
1,2-Dibromoethane		ND	
Chlorobenzene		ND	
1,1,1,2-Tetrachloroethane		ND	
Bromoform		ND	
Bromobenzene		NÐ	
1,1,2,2-Tetrachloroethane		ND	
1,2,3-Trichloropropane		ND	
2-Chlorotoluene		ND	
4-Chlorotoluene		ND	
1,3-Dichlorobenzene		ND	

Hexachlorobutadiene	ND	0.20
1,2,3-Trichlorobenzene	ND	0.20
	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	82	71-133
Toluene, d8	94	80-151
4-Bromofluorobenzene	94	75-139

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

0.20

0.20

1.0

0.20

HALOGENATED VOLATILES by EPA 8260B Page 1 of 2

Date Extracted:	2-20-03
Date Analyzed:	2-20-03

Matrix:	Water
Units:	ug/L (ppb)

Lab ID:	02-071-02
Client ID:	D-MW-2

Compound	Results	Flags	PQL
Dichlorodifluoromethane	ND		4.0
Chloromethane	ND		4.0
Vinyl Chloride	ND		4.0
Bromomethane	ND		4.0
Chloroethane	ND		4.0
Trichlorofluoromethane	ND		4.0
1,1-Dichloroethene	ND		4.0
lodomethane	ND		20
Methylene Chloride	ND		20
(trans) 1,2-Dichloroethene	ND		4.0
Methyl t-Butyl Ether	ND		4.0
1,1-Dichloroethane	ND		4.0
2,2-Dichloropropane	ND		4.0
(cis) 1,2-Dichloroethene	ND		4.0
Bromochloromethane	ND		4.0
Chloroform '	ND		4.0
1,1,1-Trichloroethane	ND		4.0
Carbon Tetrachloride	ND		4.0
1,1-Dichloropropene	ND		4.0
1,2-Dichloroethane	ND		4.0
Trichloroethene	ND		4.0
1,2-Dichloropropane	ND		4.0
Dibromomethane	ND		4.0
Bromodichloromethane	ND		4.0
2-Chloroethyl Vinyl Ether	ND		20
(cis) 1,3-Dichloropropene	ND		4.0
(trans) 1,3-Dichloropropene	ND		4.0

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

HALOGENATED VOLATILES by EPA 8260B Page 2 of 2

Lab ID: Client ID:	02-071-02 D-MW-2			
onent ib.	Dinne			
Compound		Results	Flags	PQL
1,1,2-Trichloroethane		ND		4.0
Tetrachloroethene		ND		4.0
1,3-Dichloropropane		ND		4.0
Dibromochloromethane		ND		4.0
1,2-Dibromoethane		ND		4.0
Chlorobenzene		ND		4.0
1,1,1,2-Tetrachloroethane		ND		4.0
Bromoform		ND		20
Bromobenzene		ND		4.0
1,1,2,2-Tetrachloroethane		ND		4.0
1,2,3-Trichloropropane		ND		4.0
2-Chlorotoluene		ND		4.0
4-Chlorotoluene		ND		4.0
1,3-Dichlorobenzene		ND		4.0
1,4-Dichlorobenzene		ND		4.0
1,2-Dichlorobenzene		ND		4.0
1,2-Dibromo-3-chloropropane	9	ND		20
1,2,4-Trichlorobenzene		ND		4.0
Hexachlorobutadiene		ND		4.0
1,2,3-Trichlorobenzene		ND		4.0

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	79	71-133
Toluene, d8	91	80-151
4-Bromofluorobenzene	90	75-139

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

HALOGENATED VOLATILES by EPA 8260B Page 1 of 2

Date Extracted:	2-20-03
Date Analyzed:	2-20-03
Matrix:	Water
Units:	ug/L (ppb)
Lab ID:	02-071-03

Client ID: D-MW-3

Compound	Results	Flags	PQL
Dichlorodifluoromethane	ND	•	0.20
Chloromethane	ND		0.20
Vinyl Chloride	ND		0.20
Bromomethane	ND		0.20
Chloroethane	ND		0.20
Trichlorofluoromethane	ND		0.20
1,1-Dichloroethene	ND		0.20
lodomethane	ND		1.0
Methylene Chloride	ND		1.0
(trans) 1,2-Dichloroethene	ND		0.20
Methyl t-Butyl Ether	ND		0.20
1,1-Dichloroethane	ND		0.20
2,2-Dichloropropane	ND		0.20
(cis) 1,2-Dichloroethene	ND		0.20
Bromochloromethane	ND		0.20
Chloroform	ND		0.20
1,1,1-Trichloroethane	ND		0.20
Carbon Tetrachloride	ND		0.20
1,1-Dichloropropene	ND		0.20
1,2-Dichloroethane	ND		0.20
Trichloroethene	ND		0.20
1,2-Dichloropropane	ND		0.20
Dibromomethane	ND		0.20
Bromodichloromethane	ND		0.20
2-Chloroethyl Vinyl Ether	ND		1.0
(cis) 1,3-Dichloropropene	NÐ		0.20
(trans) 1,3-Dichloropropene	ND		0.20

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

T

÷

HALOGENATED VOLATILES by EPA 8260B Page 2 of 2

Lab ID:	02-071-03			
Client ID:	D-MW-3			-
Compound		Results	Flags	PQL
1,1,2-Trichloroethane		ND	Tuge	0.20
Tetrachloroethene		ND		0.20
		ND		0.20
1,3-Dichloropropane				
Dibromochloromethane		ND		0.20
1,2-Dibromoethane		ND		0.20
Chlorobenzene		ND		0.20
1,1,1,2-Tetrachloroethane		ND		0.20
Bromoform		ND		1.0
Bromobenzene		ND		0.20
1,1,2,2-Tetrachloroethane		ND		0.20
1,2,3-Trichloropropane		ND		0.20
2-Chlorotoluene		ND		0.20
4-Chlorotoluene		ND		0.20
1,3-Dichlorobenzene		ND		0.20
1,4-Dichlorobenzene		ND		0.20
1,2-Dichlorobenzene		ND		0.20
1,2-Dibromo-3-chloropropane		ND		1.0
1,2,4-Trichlorobenzene		ND		0.20
Hexachlorobutadiene		ND		0.20
1,2,3-Trichlorobenzene		ND		0.20

	Percent	Control	
Surrogate	Recovery	Limits	·
Dibromofluoromethane	84	71-133	
Toluene, d8	91	80-151	
4-Bromofluorobenzene	89	75-139	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

17

HALOGENATED VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL Page 1 of 2

Date Extracted:	
Date Analyzed:	

Matrix:	Water
Units:	ug/L (ppb)

Lab ID:

MB0220W1

2-20-03 2-20-03

Compound	Results	Flags	PQL
Dichlorodifiuoromethane	ND		0.20
Chloromethane	ND		0.20
Vinyl Chloride	ND		0.20
Bromomethane	ND		0.20
Chloroethane	ND		0.20
Trichlorofluoromethane	ND		0.20
1,1-Dichloroethene	ND		0.20
Iodomethane	ND		1.0
Methylene Chloride	ND		1.0
(trans) 1,2-Dichloroethene	ND		0.20
Methyl t-Butyl Ether	ND		0.20
1,1-Dichloroethane	ND		0.20
2,2-Dichloropropane	ND		0.20
(cis) 1,2-Dichloroethene	ND		0.20
Bromochloromethane	ND		0.20
Chloroform	ND		0.20
1,1,1-Trichloroethane	ND		0.20
Carbon Tetrachloride	ND		0.20
1,1-Dichloropropene	ND		0.20
1,2-Dichloroethane	ND		0.20
Trichloroethene	ND		0.20
1,2-Dichloropropane	ND		0.20
Dibromomethane	ND		0.20
Bromodichloromethane	ND		0.20
2-Chloroethyl Vinyl Ether	ND		1.0
(cis) 1,3-Dichloropropene	ND		0.20
(trans) 1,3-Dichloropropene	ND		0.20

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

HALOGENATED VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL Page 2 of 2

Lab ID:

MB0220W1

Results	Flags	PQL
ND		0.20
ND		1.0
ND		0.20
ND		1.0
. ND		0.20
ND		0.20
ND		0.20
	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ND ND ND ND ND ND ND ND ND ND ND ND N

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	89	71-133
Toluene, d8	91	80-151
4-Bromofluorobenzene	88	75-139

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

HALOGENATED VOLATILES by EPA 8260B SB/SBD QUALITY CONTROL

Date Extracted:	2-20-03
Date Analyzed:	2-20-03

Matrix:	·	Water
Units:		ug/L (ppb)

Lab ID: SB0220W1

Compound	Spike Amount	SB	Percent Recovery	SBD	Percent Recovery	Recovery Limits	Flags
1,1-Dichloroethene	10.0	9.61	96	10.1	101	69-113	
Benzene	10.0	9.36	94	9.91	99	71-128	
Trichloroethene	10.0	9.13	91	9.46	95	82-122	
Toluene	10.0	9.43	94	9.76	98	54-118	
Chlorobenzene	10.0	9.20	92	9.74	97	85-103	

		RPD	
	RPD	Limit	Flags
1,1-Dichloroethene	5.2	15	
Benzene	5.7	9.6	
Trichloroethene	3.5	12	
Toluene	3.4	15	
Chlorobenzene	5.8	5.8	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

1.

DISSOLVED LEAD EPA 200.8

Date Filtered: Date Analyzed:	2-14-03 2-19-03	
Matrix: Units:	Water ug/L (ppb)	• .

Client ID	Lab ID	Result	PQL
D-MW-1	02-071-01	ND	1.0
D-MW-2	02-071-02	1.3	1.0
D-MW-3	02-071-03	1.3	1.0

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

DISSOLVED LEAD EPA 200.8 METHOD BLANK QUALITY CONTROL

Date Filtered:	2-14-03
Date Analyzed:	2-19-03

Water
ug/L (ppb)

Lab ID: MB0214D1

Analyte	Method	Result	PQL
Lead	200.8	ND	1.0

22

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

DISSOLVED LEAD EPA 200.8 DUPLICATE QUALITY CONTROL

Date Filtered: 2-14-03 Date Analyzed: 2-19-03

Matrix: Water Units: ug/L (ppb)

Lab ID: 02-083-02

Analyte	Sample Result	Duplicate Result	RPD	PQL	Flags
Lead	ND	ND	NA	1.0	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

23

DISSOLVED LEAD EPA 200.8 MS/MSD QUALITY CONTROL

Date Filtered: 2-14-03 Date Analyzed: 2-19-03

Matrix: Water Units: ug/L (ppb)

Lab ID: 02-083-02

Analyte	Spike Level	MS	Percent Recovery	MSD	Percent Recovery	RPD	Flags
Lead	100	101	101	101	101	0	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Data Qualifiers and Abbreviations

A - Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.

B - The analyte indicated was also found in the blank sample.

C - The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.

D - Data from 1: _____ dilution.

E - The value reported exceeds the quantitation range, and is an estimate.

F - Surrogate recovery data is not available due to the high concentration of coeluting target compounds.

G - Insufficient sample quantity for duplicate analysis.

H - The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.

I - Compound recovery is outside of the control limits.

J - The value reported was below the practical quantitation limit. The value is an estimate.

K - Sample duplicate RPD is outside control limits due to sample inhomogeniety. The sample was re-extracted and re-analyzed with similar results.

L - The RPD is outside of the control limits.

M - Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.

O - Hydrocarbons outside the defined gasoline range are present in the sample.

P - The RPD of the detected concentrations between the two columns is greater than 40.

Q - Surrogate recovery is outside of the control limits.

S - Surrogate recovery data is not available due to the necessary dilution of the sample.

T - The sample chromatogram is not similar to a typical _____

U - The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

V - Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.

W - Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.

X - Sample extract treated with a silica gel cleanup procedure.

Y - Sample extract treated with an acid cleanup procedure.

Z -

1

ND - Not Detected at PQL

MRL - Method Reporting Limit

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

: D:\HPCHEM\2\DATA\1030221\0221C02.D File Operator : TK Acquired : 21 Feb 2003 10:09 using AcqMethod C1007.M Instrument : Isaac Sample Name: 02-071-01 ACU rr Misc Info : 3 Vial Number: 2

i

<u>, ,</u>

£

3

```
File : D:\HPCHEM\2\DATA\1030220\0220D09.D
Operator : TK
Acquired : 20 Feb 2003 19:24 using AcqMethod C1007.M
Instrument : Isaac
Sample Name: 02-071-02a ACU
Misc Info : 4
Vial Number: 59
```


Т

File : D:\HPCHEM\2\DATA\1030220\0220D10.D Operator : TK Acquired : 20 Feb 2003 20:06 using AcqMethod C1007.M Instrument : Isaac Sample Name: 02-071-03a ACU Misc Info : 4 Vial Number: 60

ı.

1

! -

ł

File : D:\ARCHON\DATA\H030218\0218010.D Operator : Acquired : 18 Feb 2003 17:37 using AcqMethod 0127BTEX.M Instrument : Archon Sample Name: 02-071-01dW Misc Info : Vial Number: 10

File : D:\ARCHON\DATA\H030218\0218011.D Operator : Acquired : 18 Feb 2003 18:12 using AcqMethod 0127BTEX.M Instrument : Archon Sample Name: 02-071-02dW Misc Info : Vial Number: 11

;

ł.

J

Į.

1-

OnSite					Ch	ai	n	of	Cı	IS'	tot	iy				Pa	age _	1	_ of	1
Environmental Inc. 14648 NE 95th Street • Redmond, WA 98052	Turnaround (in workin	Request	. La	abo	rato	ory	Nu	nbe	er:)2	-6	7	ļ							
Company: Kane Environments/	(Check	One)		İ						Rec	lues	ed A	naly	sis	1		,			
Project Number: 02902	Same Day	🗌 1 Da	у				260B										5			
Project Name: Bridge bigm	2 Day	🗌 3 Da	У				s by B	р С				Ê					Coc			
Project Manager. John Kano	Standard (7 wo	orking days)		TEX		560B	/olatile	by 827	с U		6081 8151A	etals (I					لمورا	LU		
Sampled by: John Kan-	 (oth	ier)		H-Gx/B	Ä	s by 82	nated \	latiles	y 8270		les by	CRA M	Aetals	/ 1664			1. 1/0 /1/	MT BE		ture
Lab ID Sample Identification S	Date Time ampled Sampled	# o Matrix Con	NWTPH-HCID	NWTPH-Gx/BTEX	NWTPH-Dx	Volatiles by 8260B	Halogenated Volatiles by 8260B	Semivolatiles by 8270C	PAHs by 8270C		Pesticides by 8081 Herhicides hv 8151A	Total RCRA Metals (8)	TCLP Metals	HEM by 1664	ЧН	EPH		2		% Moisture
1 D-MW-1 2	13.03 13:00	W E		\times			X				<u> </u>		-				X	Х		
2. D- MW-2	" 16:00	WE	}	X	X		X								-		X	X	-	+
3 D-MW-3	14:30	WB	_	X	X		Х										Х	X	+	
4 Trip Blank				X																
						 				_	_									
																			_	_
							<u> </u>						_							_
Signature	Company			Date			Time			Comm	ents/S	pecial	Instru	tions						
Relinquished by Ch. Kane</td <td></td> <td>e Env</td> <td></td> <td>þ./</td> <td></td> <td></td> <td></td> <td>: 0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>i(i.</td> <td></td> <td>We,</td> <td>ζ</td> <td></td>		e Env		þ./				: 0								i(i.		We,	ζ	
Received by	OSE		*		14-			45	5	ن م		΄(Τ	/	1	/ 	·				
Relinquished by				<u> </u>						C	11	1 1	r1-	L	/ X					
Received by									1											ſ
Relinquished by Received by																				
Reviewed by	Reviewed	by/Date					1			Chro	matog	 Irams	with	final	repo	п₽	<u> </u>	_		

· -

February 26, 2003

John Kane Kane Environmental, Inc. 3831 Stone Way Avenue N Seattle, WA 98103

Re: Analytical Data for Project 02902 Laboratory Reference No. 0302-089

Dear John:

Enclosed are the analytical results and associated quality control data for samples submitted on February 18, 2003.

The standard policy of OnSite Environmental Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

RECEIVED

Date.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Case Narrative

Samples were collected on February 17, 2003. Samples were maintained at the laboratory at 4°C and followed SW846 analysis and extraction methods.

NWTPH Gx Analysis

Any QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

NWTPH Dx Analysis

Any QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

Volatiles EPA 8260B Analysis

Any QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

Dissolved Metals by EPA 200.8/7470A Analysis

Any QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

NWTPH-Gx

3

Date Extracted:	2-20-03	
Date Analyzed:	2-20-03	

Matrix: Water Units: ug/L (ppb)

.

Client ID: Lab ID:	D-MW-5 02-089-01			D -MW-4 02-089-02		
	Result	Flags	PQL	Result	Flags	PQL
TPH-Gas	ND		100	63000		10000
Surrogate Recovery: Fluorobenzene	107%			111%		

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

•	
Date Extracted:	2-20-03
Date Analyzed:	2-20-03

Matrix: Water Units: ug/L (ppb)

Client ID:	D-Geo-1
Lab ID:	02-089-03

	Result	Flags	PQL
TPH-Gas	24000		5000

Surrogate Recovery: Fluorobenzene 110%

.

.

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Gx

. .

NWTPH-Gx METHOD BLANK QUALITY CONTROL

Date Extracted: Date Analyzed:	2-20-03 2-20-03				
Matrix: Water Units: ug/L (ppb)					
Lab ID:	MB0220W1				
,					
	Result	Flags	PQL		
TPH-Gas	ND		100	,	
Surrogate Recovery:					

Surrogate Recovery: Fluorobenzene 111%

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Gx DUPLICATE QUALITY CONTROL

Date Extracted:	2-20-03
Date Analyzed:	2-20-03

Matrix: Water Units: ug/L (ppb)

Lab ID:	02-089-01 Original	02-089-01 Duplicate	RPD	Flags
TPH-Gas	ND	ND	NA	
Surrogate Recovery:				
Fluorobenzene	107%	108%		

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

7

NWTPH-Dx

Date Extracted: Date Analyzed:	2-20-03 2-20-03		
Matrix: Units:	Water mg/L (ppm)		

Client ID:	D-MW-5	D-MW-4	D-Geo-1
Lab ID:	02-089-01	02-089-02	02-089-03
Diesel Range:	ND	ND	ND
PQL:	0.25	0.25	0.25
Identification:			
Lube Oil Range:	ND	ND	ND
PQL:	0.40	0.40	0.41
Identification:			
Surrogate Recovery o-Terphenyl:	113%	102%	63%
Flags:	Y	M,Y	M,Y

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Dx METHOD BLANK QUALITY CONTROL

8

	•		
Date Extracted:	2-20-03	x	
Date Analyzed:	2-20-03		

Matrix:	Water
Units:	mg/L (ppm)
•	

Flags:

Lab ID:	MB0220W1	
	ND	
Diesel Range:	ND	
PQL:	0.25	
Identification:		
Lube Oil Range:	ND	
PQL:	0.40	
Identification:		
Surrogate Recovery		
o-Terphenyl:	108%	

Y

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

.

NWTPH-Dx DUPLICATE QUALITY CONTROL

Date Extracted:	2-20-03
Date Analyzed:	2-20-03

Matrix: Units:	Water mg/L (ppm)		

Lab ID:	02-110-01	02-110-01 DUP
Diesel Range:	ND	ND
PQL:	0.25	0.26
RPD:	N/A	

Surrogate Recovery		
o-Terphenyl:	74%	85%
Flags:	Y	Y

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260B page 1 of 2

Date Extracted:	2-20-03
Date Analyzed:	2-20-03
Matrix:	Water
Units:	ug/L (ppb)

Lab ID:	02-089-01
Client ID:	D-MW-5

Compound Dichlorodifluoromethane Chloromethane Vinyl Chloride Bromomethane Chloroethane Trichlorofluoromethane	Results ND ND ND ND ND ND	Flags	PQL 0.20 0.20 0.20 0.20 0.20
1,1-Dichloroethene	ND		0.20 0.20
Acetone	ND		5.0
Iodomethane	ND		1.0
Carbon Disulfide	ND		0.20
Methylene Chloride	ND		1.0
(trans) 1,2-Dichloroethene	ND		0.20
Methyl t-Butyl Ether	ND		0.20
1,1-Dichloroethane	ND		0.20
Vinyl Acetate	ND		1.0
2,2-Dichloropropane	ND		0.20
(cis) 1,2-Dichloroethene 2-Butanone	ND		0.20
Bromochloromethane	ND		5.0
Chloroform	ND		0.20
1,1,1-Trichloroethane	ND		0.20
Carbon Tetrachloride	ND		0.20
1,1-Dichloropropene	ND		0.20
Benzene	ND		0.20
1,2-Dichloroethane	ND ND		0.20
Trichloroethene	ND		0.20
1,2-Dichloropropane	ND		0.20
Dibromomethane	ND		0.20
Bromodichloromethane	ND		0.20
2-Chloroethyl Vinyl Ether	ND		0.20
(cis) 1,3-Dichloropropene	ND		1.0
Methyl Isobutyl Ketone	ND		0.20
Toluene	ND		2.0
(trans) 1,3-Dichloropropene	ND		0.20 0.20

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

1

VOLATILES by EPA 8260B page 2 of 2

Lab ID: Client ID:	02-089-01 D-MW-5	,		
Compound		Results	Flags	PQL
1,1,2-Trichloroethane		ND	-	0.20
Tetrachloroethene		ND		0.20
1,3-Dichloropropane		ND		0.20
2-Hexanone		ND		2.0
Dibromochloromethane		ND		0.20
1,2-Dibromoethane		ND		0.20
Chlorobenzene		ND		0.20
1,1,1,2-Tetrachloroethane		ND		0.20
Ethylbenzene		ND		0.20
m,p-Xylene		ND		0.40
o-Xylene		ND		0.20
Styrene		ND		0.20
Bromoform		ND		1.0
lsopropylbenzene		ND		0.20
Bromobenzene		ND		0.20
1,1,2,2-Tetrachloroethane		ND		0.20
1,2,3-Trichloropropane		ND		0.20
n-Propylbenzene		ND		0.20
2-Chlorotoluene		ND		0.20
4-Chlorotoluene		ND		0.20
1,3,5-Trimethylbenzene		ND		0.20
tert-Butylbenzene		ND		0.20
1,2,4-Trimethylbenzene		ND		0.20
sec-Butylbenzene		ND		0.20
1,3-Dichlorobenzene		ND		0.20
p-lsopropyltoluene		ND		0.20
1,4-Dichlorobenzene		ND		0.20
1,2-Dichlorobenzene		ND		0.20
n-Butylbenzene		ND		0.20
1,2-Dibromo-3-chloropropane		ND		1.0
1,2,4-Trichlorobenzene		ND		0.20
Hexachlorobutadiene		ND		0.20
Naphthalene		ND		1.0
1,2,3-Trichlorobenzene		ND		0.20

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	87	71-133
Toluene, d8	91	80-151
4-Bromofluorobenzene	88	75-139

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881
VOLATILES by EPA 8260B page 1 of 2

Date Extracted:	2-20-03
Date Analyzed:	2-20-03
Matrix:	Water
Units:	ug/L (ppb)

Lab ID:	02-089-02
Client ID:	D-MW-4

ļ

1 1

1

Compound Dichlorodifluoromethane Chloromethane Vinyl Chloride Bromomethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethene Acetone Iodomethane	Results ND ND ND ND ND ND ND ND ND	Flags	PQL 40 40 40 40 40 40 40 1000 200
Carbon Disulfide	ND		40
Methylene Chloride	ND		200
(trans) 1,2-Dichloroethene	ND		40
Methyl t-Butyl Ether	ND		40
1,1-Dichloroethane Vinyl Acetate	ND ND		40 200
2,2-Dichloropropane	ND		200 40
(cis) 1,2-Dichloroethene	ND		40
2-Butanone	ND		1000
Bromochloromethane	ND		40
Chloroform	ND		40
1,1,1-Trichloroethane	ND		40
Carbon Tetrachloride	ND		40
1,1-Dichloropropene	ND		40
Benzene	480		40
1,2-Dichloroethane	ND		40
Trichloroethene	ND		40
1,2-Dichloropropane	ND		40
Dibromomethane	ND		40
Bromodichloromethane	ND		40
2-Chloroethyl Vinyl Ether	ND		200
(cis) 1,3-Dichloropropene	ND		40
Methyl Isobutyl Ketone	ND		400
Toluene	5100		40
(trans) 1,3-Dichloropropene	ND		40

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260B page 2 of 2

.

Lab ID:	02-089-02
Client ID:	D-MW-4

Compound	Results	Flags	PQL
1,1,2-Trichloroethane	ND	U	40
Tetrachloroethene	ND		40
1,3-Dichloropropane	ND		40
2-Hexanone	ND		400
Dibromochloromethane	ND		40
1,2-Dibromoethane	ND		40
Chlorobenzene	ND		40
1,1,1,2-Tetrachloroethane	ND		40
Ethylbenzene	1500		40
m,p-Xylene	5400		80
o-Xylene	2100		40
Styrene	ND		40
Bromoform	ND		200
lsopropylbenzene	69		40
Bromobenzene	ND		40
1,1,2,2-Tetrachloroethane	ND		40
1,2,3-Trichloropropane	ND		40
n-Propylbenzene	190		40
2-Chlorotoluene	ND		40
4-Chlorotoluene	ND		40
1,3,5-Trimethylbenzene	290		40
tert-Butylbenzene	ND		40
1,2,4-Trimethylbenzene	1300		40
sec-Butylbenzene	ND		40
1,3-Dichlorobenzene	ND		40
p-Isopropyltoluene	ND		40
1,4-Dichlorobenzene	ND		40
1,2-Dichlorobenzene	ND		40
n-Butylbenzene	ND		40
1,2-Dibromo-3-chloropropane	ND		200
1,2,4-Trichlorobenzene	ND		40
Hexachlorobutadiene	ND		40
Naphthalene	ND		200
1,2,3-Trichlorobenzene	ND		40

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	84	71-133
Toluene, d8	92	80-151
4-Bromofluorobenzene	93	75-139

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

13

VOLATILES by EPA 8260B page 1 of 2

Date Extracted: Date Analyzed:	2-20-03 2-20-03		,	
Matrix: Units:	Water ug/L (ppb)			
•	09/2 (ppb)			
Lab ID:	02-089-03			
Client ID:	D-Geo-1			
Compound		Results	Flogs	
Dichlorodifluoromethane		ND	Flags	PQ 20
Chloromethane		ND		20
Vinyl Chloride		ND		20
Bromomethane		ND		20
Chloroethane		ND		20
Trichlorofluoromethane		ND		20
1,1-Dichloroethene		ND		20
Acetone		ND		500
lodomethane		ND		100
Carbon Disulfide		ND		20
Methylene Chloride		ND		100
(trans) 1,2-Dichloroethene		ND		20
Methyl t-Butyl Ether		ND		20
1,1-Dichloroethane		ND .		20
Vinyl Acetate		ND		100
2,2-Dichloropropane		ND		20
(cis) 1,2-Dichloroethene		ND		20
2-Butanone		ND		500
Bromochloromethane		ND		20
Chloroform		ND		20
1,1,1-Trichloroethane		ND		20
Carbon Tetrachloride		ND		20
1,1-Dichloropropene Benzene		ND		20
1,2-Dichloroethane		420		20
Trichloroethene		ND		20
1,2-Dichloropropane		ND		20
Dibromomethane		ND		20
Bromodichloromethane		ND ND		20
2-Chloroethyl Vinyl Ether		ND		20
(cis) 1,3-Dichloropropene		ND		100
Methyl Icohutul Katana				20

Methyl Isobutyl Ketone ND Toluene (trans) 1,3-Dichloropropene ND

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

1

VOLATILES by EPA 8260B page 2 of 2

Lab ID:	02-089-03			
Client ID:	D-Geo-1			
Compound		Results	Flags	PQL
1,1,2-Trichloroethane		ND		20
Tetrachloroethene		ND		20
1,3-Dichloropropane		ND		20
2-Hexanone		ND		200
Dibromochloromethane		ND		20
1,2-Dibromoethane		ND		20
Chlorobenzene		ND		20
1,1,1,2-Tetrachloroethane		ND		20
Ethylbenzene		680		20
m,p-Xylene		2100		40
o-Xylene		860		20
Styrene		ND		20
Bromoform		ND		100
lsopropylbenzene		32		20
Bromobenzene		ND		20
1,1,2,2-Tetrachloroethane		ND		20
1,2,3-Trichloropropane		ND		20
n-Propylbenzene		77		20
2-Chlorotoluene		ND		20
4-Chlorotoluene		ND		20
1,3,5-Trimethylbenzene		140		20
tert-Butylbenzene		ND		20
1,2,4-Trimethylbenzene		520		20
sec-Butylbenzene		ND		20
1,3-Dichlorobenzene		ND		20
p-Isopropyitoluene		ND		20
1,4-Dichlorobenzene		ND		20
1,2-Dichlorobenzene		ND		20
n-Butylbenzene		ND		20
1,2-Dibromo-3-chloropropane	•	ND		100
1,2,4-Trichlorobenzene		ND		20
Hexachlorobutadiene		ND		20
Naphthalene		ND		100
1,2,3-Trichlorobenzene		ND		20

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	85	71-133
Toluene, d8	92	80-151
4-Bromofluorobenzene	93	75-139

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260B page 1 of 2

Date Extracted:	2-20-03
Date Analyzed:	2-20-03

.

Matrix:	Water
Units:	ug/L (ppb)

Lab ID:	02-089-04
Client ID:	Trip Blank

Compound	Results	Flags	PQL
Dichlorodifluoromethane	ND		0.20
Chloromethane	ND		0.20
Vinyl Chloride	ND		0.20
Bromomethane	ND		0.20
Chloroethane	ND		0.20
Trichlorofluoromethane	ND		0.20
1,1-Dichloroethene	ND		0.20
Acetone	ND		5.0
lodomethane	ND		1.0
Carbon Disulfide	ND		0.20
Methylene Chloride	ND		1.0
(trans) 1,2-Dichloroethene	ND		0.20
Methyl t-Butyl Ether	ND		0.20
1,1-Dichloroethane	ND		0.20
Vinyl Acetate	ND		1.0
2,2-Dichloropropane	ND		0.20
(cis) 1,2-Dichloroethene	ND		0.20
2-Butanone	' ND		5.0
Bromochloromethane	ND		0.20
Chloroform	ND		0.20
1,1,1-Trichloroethane	ND		0.20
Carbon Tetrachloride	ND		0.20
1,1-Dichloropropene	ND		0.20
Benzene	ND		0.20
1,2-Dichloroethane	ND		0.20
Trichloroethene	ND '		0.20
1,2-Dichloropropane	ND		0.20
Dibromomethane	ND		0.20
Bromodichloromethane	ND		0.20
2-Chloroethyl Vinyl Ether	ND		1.0
(cis) 1,3-Dichloropropene	ND		0.20
Methyl Isobutyl Ketone	ND		2.0
Toluene	ND		0.20
(trans) 1,3-Dichloropropene	ND		0.20

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

ł

VOLATILES by EPA 8260B page 2 of 2

Lab ID: Client ID:	02-089-04 Trip Blank			
Compound		Results	Flags	PQL
1,1,2-Trichloroethane		ND		0.20
Tetrachloroethene		ND		0.20
1,3-Dichloropropane		ND		0.20
2-Hexanone		ND		2.0
Dibromochloromethane		ND		0.20
1,2-Dibromoethane		ND		0.20
Chlorobenzene		ND		0.20
1,1,1,2-Tetrachloroethane		ND		0.20
Ethylbenzene		ND		0.20
m,p-Xylene		ND		0.40
o-Xylene		ND		0.20
Styrene		ND		0.20
Bromoform		ND		1.0
lsopropylbenzene		ND		0.20
Bromobenzene		ND		0.20
1,1,2,2-Tetrachloroethane		ND		0.20
1,2,3-Trichloropropane		ND		0.20
n-Propylbenzene		ND		0.20
2-Chlorotoluene		ND		0.20
4-Chlorotoluene		ND		0.20
1,3,5-Trimethylbenzene		ND		0.20
tert-Butylbenzene		ND		0.20
1,2,4-Trimethylbenzene		ND		0.20
sec-Butylbenzene		ND		0.20
1,3-Dichlorobenzene		ND		0.20
p-Isopropyltoluene		ND		0.20
1,4-Dichlorobenzene		ND		0.20
1,2-Dichlorobenzene		ND	•	0.20
n-Butylbenzene		ND		0.20
1,2-Dibromo-3-chloropropane		ND		1.0
1,2,4-Trichlorobenzene		ND		0.20
Hexachlorobutadiene		ND		0.20
Naphthalene		ND		1.0
1,2,3-Trichlorobenzene		ND		0.20

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	87	71-133
Toluene, d8	92	80-151
4-Bromofluorobenzene	89	75-139

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL page 1 of 2

Date	Extracted:	
Date	Analyzed:	

Matrix:	Water
Units:	ug/L (ppb)

Lab ID:

MB0220W1

2-20-03 2-20-03

O a sub sound	Depute	Flage	DOI
Compound	Results	Flags	PQL
Dichlorodifluoromethane	ND		0.20
Chloromethane	ND		0.20
Vinyl Chloride	ND		0.20
Bromomethane	ND		0.20
Chloroethane	ND		0.20
Trichlorofluoromethane	ND		0.20
1,1-Dichloroethene	ND		0.20
Acetone	ND		5.0
Iodomethane	ND		1.0
Carbon Disulfide	ND		0.20
Methylene Chloride	ND		1.0
(trans) 1,2-Dichloroethene	ND		0.20
Methyl t-Butyl Ether	ND		0.20
1,1-Dichloroethane	ND		0.20
Vinyl Acetate	ND		1.0
2,2-Dichloropropane	ND		0.20
(cis) 1,2-Dichloroethene	ND		0.20
2-Butanone	ND		5.0
Bromochloromethane	ND		0.20
Chloroform	ND		0.20
1,1,1-Trichloroethane	ND		0.20
Carbon Tetrachloride	ND		0.20
1,1-Dichloropropene	ND		0.20
Benzene	ND		0.20
1,2-Dichloroethane	ND		0.20
Trichloroethene	ND		0.20
1,2-Dichloropropane	ND		0.20
Dibromomethane	ND		0.20
Bromodichloromethane	ND		0.20
2-Chloroethyl Vinyl Ether	ND		1.0
(cis) 1,3-Dichloropropene	ND		0.20
Methyl Isobutyl Ketone	ND		2.0
Toluene	ND		0.20
(trans) 1,3-Dichloropropene	ND		0.20
			0.40

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

18

.

VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL page 2 of 2

Lab ID:

ł

1

ر ها

MB0220W1

.

Compound	Results	Flags	PQL
1,1,2-Trichloroethane	ND		0.20
Tetrachloroethene	ND		0.20
1,3-Dichloropropane	ND		0.20
2-Hexanone	ND		2.0
Dibromochloromethane	ND		0.20
1,2-Dibromoethane	ND		0.20
Chlorobenzene	ND		0.20
1,1,1,2-Tetrachloroethane	ND		0.20
Ethylbenzene	ND		0.20
m,p-Xylene	ND		0.40
o-Xylene	ND		0.20
Styrene	ND		0.20
Bromoform	ND		1.0
Isopropylbenzene	ND		0.20
Bromobenzene	ND		0.20
1,1,2,2-Tetrachloroethane	ND		0.20
1,2,3-Trichloropropane	ND		0.20
n-Propylbenzene	ND		0.20
2-Chlorotoluene	ND		0.20
4-Chlorotoluene	ND		0.20
1,3,5-Trimethylbenzene	ND		0.20
tert-Butylbenzene	ND		0.20
1,2,4-Trimethylbenzene	ND		0.20
sec-Butylbenzene	ND		0.20
1,3-Dichlorobenzene	ND		0.20
p-lsopropyltoluene	ND		0.20
1,4-Dichlorobenzene	ND		0.20
1,2-Dichlorobenzene	ND		0.20
n-Butylbenzene	ND		0.20
1,2-Dibromo-3-chloropropane	ND		1.0
1,2,4-Trichlorobenzene	ND		0.20
Hexachlorobutadiene	ND		0.20
Naphthalene	ND		1.0
1,2,3-Trichlorobenzene	ND		0.20

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	89	71-133
Toluene, d8	91	80-151
4-Bromofluorobenzene	88	75-139

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

٢

.

VOLATILES by EPA 8260B SB/SBD QUALITY CONTROL

Date Extracted:	2-20-03
Date Analyzed:	2-20-03

Matrix:		Water
Units:		ug/L (ppb)

Lab ID:

	Spike		Percent		Percent	Recovery	
Compound	Amount	SB	Recovery	SBD	Recovery	Limits	Flags
1,1-Dichloroethene	10.0	9.61	96	10.1	101	69-113	
Benzene	10.0	9.36	94	9.91	99	71-128	
Trichloroethene	10.0	9.13	91	9.46	95	82-122	
Toluene	10.0	9.43	94	9.76	98	54-118	
Chlorobenzene	10.0	9.20	92	9.74	97	85-103	

	RPD		
	RPD	Limit	Flags
1.1 Disblargathana	5.2	15	
1,1-Dichloroethene			
Benzene	5.7	9.6	
Trichloroethene	3.5	12	
Toluene	3.4	15	
Chlorobenzene	5.8	5.8	

SB0220W1

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

20

DISSOLVED METALS EPA 200.8/7470A

Date Filtered:	2-18-03
Date Analyzed:	2-20&21-03

Matrix: Water Units: ug/L (ppb)

Lab ID: 02-089-01 Client ID: D-MW-5

Analyte	Method	Result	PQL
Arsenic	200.8	ND	3.0
Barium	200.8	ND	25
Cadmium	200.8	ND	4.0
Chromium	200.8	ND	. 10
Lead	200.8	ND	1.0
Mercury	7470A	ND	.50
Selenium	200.8	ND	5.0
Silver	200.8	ND	10

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

DISSOLVED METALS EPA 200.8/7470A

Date Filtered:	2-18-03
Date Analyzed:	2-20&21-03

- Matrix: Water Units: ug/L (ppb)
- Lab ID: 02-089-02 Client ID: D-MW-4

Analyte	Method	Result	PQL
Arsenic	200.8	31	3.0
Barium	200.8	39	25
Cadmium	200.8	ND	4.0
Chromium	200.8	ND	10
Lead	200.8	1.6	1.0
Mercury	7470A	ND	.50
Selenium	200.8	ND	5.0
Silver	200.8	ND	10

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

DISSOLVED METALS EPA 200.8/7470A

23

Date Filtered:	2-18-03
Date Analyzed:	2-20&21-03

Matrix:	Water
Units:	ug/L (ppb)

Lab ID:	02-089-03
Client ID:	D-Geo-1

Analyte	Method	Result	PQL
Arsenic	200.8	13	3.0
Barium	200.8	34	25
Cadmium	200.8	ND	4.0
Chromium	200.8	ND	10
Lead	200.8	1.5	1.0
Mercury	7470A	ND	.50
Selenium	200.8	ND	5.0
Silver	200.8	ND	10

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

DISSOLVED METALS EPA 200.8 METHOD BLANK QUALITY CONTROL

Date Filtered:	2-18-03
Date Analyzed:	2-20&21-03
Matrix:	Water

Units: ug/L (ppb)

Lab ID: MB0218D1

Analyte	Method	Result	PQL
Arsenic	200.8	ND	3.0
Barium	200.8	ND	25
Cadmium	200.8	ND	4.0
Chromium	200.8	ND	10
Lead	200.8	ND	1.0
Selenium	200.8	ND	5.0
Silver	200.8	ND	10

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

DISSOLVED METALS EPA 7470A METHOD BLANK QUALITY CONTROL

Date Filtered:	2-18-03
Date Analyzed:	2-21-03
Matrix:	Water
Units:	ug/L (ppb)
Lab ID:	MB0221D1

Analyte	Method	Result	PQL
Mercury	7470A	ND	0.50

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

DISSOLVED METALS EPA 200.8 DUPLICATE QUALITY CONTROL

Date Filtered:	2-18-03
Date Analyzed:	2-20&21-03

Matrix: Water Units: ug/L (ppb)

Lab ID: 02-083-02

Analyte	Sample Result	Duplicate Result	RPD	PQL	Flags
Arsenic	ND	ND	NA	3.0	
Barium	41.6	41.5	0.14	25	
Cadmium	ND	ND	NA	4.0	
Chromium	ND	ND	NA	10	
Lead	ND	ND	NA	1.0	
Selenium	ND	ND	NA	5.0	
Silver	ND	ND	NA	10	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

DISSOLVED METALS EPA 7470A DUPLICATE QUALITY CONTROL

Date Filtered:	2-18-03
Date Analyzed:	2-21-03

Matrix:	Water
Units:	ug/L (ppb)

Lab ID: 02-089-01

Analyte	Sample Result	Duplicate Result	RPD	PQL	Flags
Mercury	ND	ND	NA	0.50	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

DISSOLVED METALS EPA 200.8 MS/MSD QUALITY CONTROL

Date Filtered:	2-18-03
Date Analyzed:	2-20&21-03
Matrix:	Water

Units: ug/L (ppb)

Lab ID: 02-083-02

Analyte	Spike Level	MS	Percent Recovery	MSD	Percent Recovery	RPD	Flags
Arsenic	100	98.8	99	101	101	2.1	
Barium	100	143	101	139	98	2.2	
Cadmium	100	100	100	99.4	99	0.70	·
Chromium	100	100	100	99.7	100	0.80	
Lead	100	106	106	104	104	2.1	
Selenium	100	97.2	97	102	102	4.9	
Silver	100	97.1	97	101	101	4.2	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

DISSOLVED METALS EPA 7470A MS/MSD QUALITY CONTROL

Date Filtered:	2-18-03
Date Analyzed:	2-21-03

Matrix: Water Units: ug/L (ppb)

Lab ID: 02-089-01

Analyte	Spike Level	MS	Percent Recovery	MSD	Percent Recovery	RPD	Flags
Mercury	5.0	4.63	93	4.76	95	2.8	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Data Qualifiers and Abbreviations

A - Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.

B - The analyte indicated was also found in the blank sample.

C - The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.

D - Data from 1:____ dilution.

E - The value reported exceeds the quantitation range, and is an estimate.

F - Surrogate recovery data is not available due to the high concentration of coeluting target compounds.

G - Insufficient sample quantity for duplicate analysis.

H - The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.

I - Compound recovery is outside of the control limits.

J - The value reported was below the practical quantitation limit. The value is an estimate.

K - Sample duplicate RPD is outside control limits due to sample inhomogeniety. The sample was re-extracted and re-analyzed with similar results.

L - The RPD is outside of the control limits.

M - Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.

O - Hydrocarbons outside the defined gasoline range are present in the sample.

P - The RPD of the detected concentrations between the two columns is greater than 40.

Q - Surrogate recovery is outside of the control limits.

S - Surrogate recovery data is not available due to the necessary dilution of the sample.

T - The sample chromatogram is not similar to a typical _____

U - The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a silica gel cleanup procedure.
- Y Sample extract treated with an acid cleanup procedure.

Ζ-

ND - Not Detected at PQL

MRL - Method Reporting Limit

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

File : D:\HPCHEM\2\DATA\1030220\0220D13.D Operator : TK Acquired : 20 Feb 2003 22:11 using AcqMethod C1007.M Instrument : Isaac Sample Name: 02-089-02a ACU Misc Info : 4 Vial Number: 63

File : D:\HPCHEM\2\DATA\1030220\0220D14.D Operator : TK Acquired : 20 Feb 2003 22:52 using AcqMethod C1007.M Instrument : Isaac Sample Name: 02-089-03a ACU Misc Info : 4 Vial Number: 64

File : D:\ARCHON\DATA\H030220\0220010.D Operator : Acquired : 20 Feb 2003 17:15 using AcqMethod 0127BTEX.M Instrument : Archon Sample Name: 02-089-02eW 1:100 Misc Info : Vial Number: 10

_

i

.

File : D:\ARCHON\DATA\H030220\0220009.D Operator : Acquired : 20 Feb 2003 16:39 using AcqMethod 0127BTEX.M Instrument : Archon Jample Name: 02-089-03eW 1:50 Misc Info : Vial Number: 9

T

OnSite		Chain of Cus	tody	Page of
Environmental Inc. 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • Fax: (425) 885-4603	Turnaround Request (in working days)	Laboratory Nümber:	2-087-02	2-089
Company: Kane Environmental Inc.	(Check One)		quested Analysis	47 77 77
02902	🗋 Same Day 🗌 1 Day			
Project Name:	2 Day 3 Day Standard (7 working days)	NWTPH-HCID NWTPH-Gx /BTEX مح NWTPH-Dx العلم المحال NWTPH-Dx العلم المحال NWTPH-Dx العلم المح Nutres by 8260B Semivolatiles by 8270C PAHs by 8270C PCB's by 8082	(B)	<u> </u>
John Kone		10 10 10 10 10 10 10 10 10 10	v 8081 v 8151 v 8151 v 8151 v 8151 v 8081	2 2 2
Sampled by: Im Young	(other)	NWTPH-HCID NWTPH-GXBTEX PE NWTPH-DX Jice Volatiles by 82608 Helegepateg Wysugs dy Semivolatiles by 8270C PAHs by 8270C PCB's by 8082 PCB's by 8082	Pesticides by 8081 Herbicides by 8151A Todal RCRA Metals (8) Do Scouv E (2) TCLP Metals HEM by 1664 VPH	EPH 11+1 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 11-11 1-
Lab ID Sample Identification San		NWT NWT NWT NWT NWT NWT POINT	Herbin HEM HEM VPH	
	1/03 12:107 W 8		_ X	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1:40p W 8 2:30 W 8			
y T BIL	1 2:30 W 8 V - W 1			
Irip Olme				
· · · · · ·				
Signature				
Relinquished by	Kome English to 1	Date Time Comm 2.18.03 12:00 pm	$O^{-}Added z/zolo3$	3 DS
Received by Wickleuken	- Kane Firinonn			
Relinquished by				
Received by Mon Man Man Man Man Man Man Man Man Man Ma	052	2-1803 2:45pm		
Received by				
Reviewed b.	Reviewed by/Date		omatograms with final report	t 🗋 🦌

DISTRIBUTION LEGEND While OnSite Come Vallow Report Cone Pick Clight Cone

 \mathbf{I}^{i}

RECEIVED Date 2-21.03

February 20, 2003

John Kane Kane Environmental, Inc. 3831 Stone Way Avenue N Seattle, WA 98103

Re: Analytical Data for Project 02902 Laboratory Reference No. 0302-039

Dear John:

Enclosed are the analytical results and associated quality control data for samples submitted on February 10, 2003.

The standard policy of OnSite Environmental Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Case Narrative

Page 1 of 2

Samples were collected on February 8, 2003. Samples were maintained at the laboratory at 4°C and followed SW846 analysis and extraction methods.

NWTPH Gx/BTEX Analysis

Any QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

NWTPH-Gx (Soil) Analysis

Any QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

NWTPH Gx (Water) Analysis

Any QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

NWTPH Dx (Soil) Analysis

The diesel fuel result for sample D-MW-2: 5-6.5ft is being impacted by the presence of gasoline range hydrocarbons.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

NWTPH_Dx (Water) Analysis

The diesel fuel result for sample D-Geo-3 is being impacted by the presence of gasoline range hydrocarbons.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

Volatiles (Soil) EPA 8260B Analysis

Any QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

Volatiles (Water) EPA 8260B Analysis

Any QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

Halogenated Volatiles EPA 8260B Analysis

Any QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

Case Narrative

Page 2 of 2

PAHs EPA 8270C/SIM Analysis

Spike blank and spike blank duplicate were used for quality control because of insufficient sample volume.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

PCBs EPA 8082 Analysis

Any QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

Total Metals EPA 6010B/7471A Analysis

Any QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

Total Lead EPA 6010B Analysis

Any QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

Dissolved Metals by EPA 200.8/7470A Analysis

Any QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

Dissolved Lead by EPA 200.8 Analysis

Any QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

NWTPH-Gx/BTEX

Date Extracted:	2-14-03
Date Analyzed:	2-14-03

Matrix: Soil Units: mg/kg (ppm)

Client ID:	D-Geo-1: 4-8 ft	D-Geo-1: 8-12 ft
Lab ID:	02-039-01	02-039-02

	Result	Flags	PQL	Result	Flags	PQL
Benzene	ND		0.011	ND		0.021
Toluene	ND	·	0.057	ND		0.10
Ethyl Benzene	ND		0.057	ND		0.10
m,p-Xylene	ND		0.057	ND		0.10
o-Xylene	ND		0.057	ND		0.10
TPH-Gas	ND		5.7	ND		10
Surrogate Recovery: Fluorobenzene	85%			85%		

NWTPH-Gx/BTEX

Date Extracted:	2-14-03
Date Analyzed:	2-14-03

Matrix: Soil Units: mg/kg (ppm)

 c^{-1}

Client ID:	D-Geo-2: 4-8 ft	D-Geo-2: 15-17 ft
Lab ID:	02-039-05	02-039-08

	Result	Flags	PQL	Result	Flags	PQL
Benzene	ND		0.011			
Toluene	ND		0.055			
Ethyl Benzene	ND		0.055			
m,p-Xylene	ND		0.055			
o-Xylene	ND		0.055			
TPH-Gas	ND		5.5	ND		12
Surrogate Recovery: Fluorobenzene	78%			82%		

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

۰.

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

.

NWTPH-Gx/BTEX

Date Extracted:	2-14-03
Date Analyzed:	2-14-03

Matrix: Soil Units: mg/kg (ppm)

Client ID:	D-Geo-3: 4-7 ft	D-Geo-3: 8 ft
Lab ID:	02-039-09	02-039-10

	Result	Flags	PQL	Result	Flags	PQL
Benzene	ND		0.011			
Toluene	ND		0.053	6-0		
Ethyl Benzene	ND		0.053			
m,p-Xylene	ND		0.053			
o-Xylene	ND		0.053			
TPH-Gas	ND		5.3	ND		11
Surrogate Recovery: Fluorobenzene	88%			86%		

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Gx/BTEX

Date Extracted:	2-14-03
Date Analyzed:	2-14-03

Matrix: Soil Units: mg/kg (ppm)

Client ID:	D-Geo-4: 4-5 ft	D-Geo-5: 7-8 ft
Lab ID:	02-039-13	02-039-14

	Result	Flags	PQL	Result	Flags	PQL
Benzene	ND		0.012	ND		0.012
Toluene	ND		0.058	ND		0.062
Ethyl Benzene	ND		0.058	ND		0.062
m,p-Xylene	ND		0.058	ND		0.062
o-Xylene	ND		0.058	ND		0.062
TPH-Gas	ND		5.8	ND		6.2
Surrogate Recovery: Fluorobenzene	80%			73%		

NWTPH-Gx/BTEX

Date	Extracted:
Date	Analyzed:

2₋14-03 2-14-03

Matrix: Soil Units: mg/kg (ppm)

Client ID:	D-Geo-6: 10-10.5 ft	D-Geo-6: 7-8 ft
Lab ID:	02-039-16	02-039-17

	Result	Flags	PQL	Result	Flags	PQL
Benzene	ND		0.023	ND		0.011
Toluene	ND		0.11	ND		0.057
Ethyl Benzene	1.2		0.11	ND		0.057
m,p-Xylene	2.8		0.11	ND		0.057
o-Xylene	0.86		0.11	ND		0.057
TPH-Gas	ND		11	ND		5.7
Surrogate Recovery: Fluorobenzene	85%			77%		

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Gx/BTEX

Date Extracted:	2-14-03
Date Analyzed:	2-14-03

Matrix: Soil Units: mg/kg (ppm)

Client ID:	D-Geo-6: 8 ft	D-MW-1: 5-6:5 ft
Lab ID:	02-039-19	02-039-20

	Result	Flags	PQL	Result	Flags	PQL
Benzene	ND		0:011	ND		0.011
Toluene	ND		0.054	ND		0.056
Ethyl Benzene	ND		0.054	ND		0.056
m,p-Xylene	ND		0.054	ND		0.056
o-Xylene	ND		0.054	ND		0.056
TPH-Gas	ND		5.4	ND		5.6
Surrogate Recovery: Fluorobenzene	82%			83%		

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Gx/BTEX

Date Extracted:	2-14-03
Date Analyzed:	2-14-03

Matrix: Soil Units: mg/kg (ppm)

Client ID:	D-MW-1: 8-9.5 ft	D-MW-2: 5-6.5 ft
Lab ID:	02-039-21	02-039-22

	Result	Flags	PQL	Result	Flags	PQL
Benzene	ND		0.012	0.048		0.022
Toluene	ND		0.058	0.12		0.11
Ethyl Benzene	ND		0.058	3.2		0.11
m,p-Xylene	ND		0.058	8.0		0.11
o-Xylene	ND		0.058	2.2		0.11
TPH-Gas	ND		5.8	ND		11
Surrogate Recovery: Fluorobenzene	77%			85%		

NWTPH-Gx/BTEX

Date Extracted:	2-14-03
Date Analyzed:	2-14-03

Matrix: Soil Units: mg/kg (ppm)

Client ID:	D-MW-3: 5-6.5 ft	D-MW-4: 5-6.5 ft
Lab ID:	02-039-23	02-039-24

	Result	Flags	PQL	Result	Flags	PQL
Benzene	ND		0.012	ND		0.011
Toluene	ND		0.058	ND		0.056
Ethyl Benzene	ND		0.058	ND		0.056
m,p-Xylene	ND		0.058	ND		0.056
o-Xylene	ND		0.058	ND		0.056
TPH-Gas	ND		5.8	ND		5.6
Surrogate Recovery: Fluorobenzene	71%			80%		

NWTPH-Gx/BTEX

Date Extracted:	2-14-03
Date Analyzed:	2-14-03

٠

Matrix: Soil Units: mg/kg (ppm)

Client ID:	D-MW-5: 5-6.5 ft	D-MW-5: 9.5-11 ft
Lab ID:	02-039-25	02-039-26

	Result	Flags	PQL	Result	Flags	PQL
Benzene	ND		0.011	ND		0.011
Toluene	ND		0.055	ND		0.056
Ethyl Benzene	ND		0.055	ND		0.056
m,p-Xylene	ND		0.055	ND		0.056
o-Xylene	ND		0.055	ND		0.056
TPH-Gas	ND		5.5	ND		5.6
Surrogate Recovery: Fluorobenzene	84%			82%		

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881
NWTPH-Gx/BTEX METHOD BLANK QUALITY CONTROL

Date Extracted:	2-14-03
Date Analyzed:	2-14-03
Matrix: Soil Units: mg/kg (ppm)	

Lab ID:

	Result	Flags	PQL
Benzene	ND		0.010
Toluene	ND		0.050
Ethyl Benzene	ND		0.050
m,p-Xylene	ND		0.050
o-Xylene	ND		0.050
TPH-Gas	ND		5.0
Surrogate Recovery: Fluorobenzene	87%		

MB0214S1

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Gx/BTEX METHOD BLANK QUALITY CONTROL

Date Extracted:	2-14-03
Date Analyzed:	2-14-03

Matrix: Soil Units: mg/kg (ppm)

Lab ID:

MB0214S2

	Result	Flags	PQL
Benzene	ND		0.010
Toluene	ND		0.050
Ethyl Benzene	ND		0.050
m,p-Xylene	ND		0.050
o-Xylene	ND		0.050
TPH-Gas	ND		5.0

Surrogate Recovery: Fluorobenzene 89%

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Gx/BTEX DUPLICATE QUALITY CONTROL

Date Extracted:	2-14-03
Date Analyzed:	2-14-03

Matrix: Soil Units: mg/kg (ppm)

Lab ID:	02-039-09 Original	02-039-09 Duplicate	RPD	Flags
Benzene	ND	ND	NA	
Toluene	ND	ND	NA	
Ethyl Benzene	ND	NĎ	NA	
m,p-Xylene	ND	ND .	NA	
o-Xylene	ND	ND	NA	
TPH-Gas	ND	ND	NA	
Surrogate Recovery: Fluorobenzene	88%	89%		

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

.

NWTPH-Gx/BTEX DUPLICATE QUALITY CONTROL

Date Extracted:	•	2-14-03
Date Analyzed:		2-14-03

Matrix: Soil Units: mg/kg (ppm)

Lab ID:	02-039-20 Original	02-039-20 Duplicate	RPD	Flags
Benzene	ND	ND	NA	
Toluene	ND	ND	NA	
Ethyl Benzene	ND	ND	NA	
m,p-Xylene	ND	ND	NA	
o-Xylene	ND	ND	NA	
TPH-Gas	ND	ND	NA	
Surrogate Recovery: Fluorobenzene	83%	83%		

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Gx/BTEX MS/MSD QUALITY CONTROL

Date Extracted:	2-14-03
Date Analyzed:	2-14-03

Matrix: Soil Units: mg/kg (ppm)

. . :

Spike Level: 1.00 ppm

02-039-09 MS	Percent Recovery	02-039-09 MSD	Percent Recovery	RPD	Flags
0.841	84	0.831	83	1.2	
0.860	86	0.847	85	1.6	
0.867	87	0.855	86	1.4	
0.869	87	0.855	86	1.7	
0.873	87	0.858	86	1.7	
	MS 0.841 0.860 0.867 0.869	MSRecovery0.841840.860860.867870.86987	MS Recovery MSD 0.841 84 0.831 0.860 86 0.847 0.867 87 0.855 0.869 87 0.855	MSRecoveryMSDRecovery0.841840.831830.860860.847850.867870.855860.869870.85586	MS Recovery MSD Recovery RPD 0.841 84 0.831 83 1.2 0.860 86 0.847 85 1.6 0.867 87 0.855 86 1.4 0.869 87 0.855 86 1.7

86%

Surrogate Recovery:	
Fluorobenzene	87%

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

17

••••

: -

NWTPH-Gx

Date Extracted: Date Analyzed:	2-11&12-03 2-11&12-03					
Matrix: Water Units: ug/L (ppb)						
Client ID: Lab ID:	D-Geo-3 02-039-12			D-Geo-5 02-039-15		
	Result	Flags	PQL	Result	Flags	PQL
TPH-Gas	28000		10000	ND		100
Surrogate Recovery: Fluorobenzene	109%			108%		

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Gx

Date Extracted: Date Analyzed:	2-11-03 2-11-03		
Matrix: Water Units: ug/L (ppb)			
Client ID: Lab ID:	D-Geo-6 02-039-18		
	Result	Flags	PQL
TPH-Gas	ND		100
Surrogate Recovery: Fluorobenzene	108%		

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Gx METHOD BLANK QUALITY CONTROL

Date Extracted: Date Analyzed:	2-11-03 2-11-03		
Matrix: Water Units: ug/L (ppb)			
Lab ID:	MB0211W1		
	Result	Flags	PQL
TPH-Gas	ND		100
Surrogate Recovery:			

Fluorobenzene 110%

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

.

NWTPH-Gx METHOD BLANK QUALITY CONTROL

Date Extracted: Date Analyzed:	2-12-03 2-12-03		
Matrix: Water Units: ug/L (ppb)			
Lab ID:	MB0212W1		
	Result	Flags	PQL
TPH-Gas	ND		100
Surrogate Recovery:			
Fluorobenzene	106%		

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Gx DUPLICATE QUALITY CONTROL

Date Extracted:	2-11-03
Date Analyzed:	2-11-03

Matrix: Water Units: ug/L (ppb)

Lab ID:	02-035-46 Original	02-035-46 Duplicate	RPD	Flags
Benzene	ND	ND	NA	
Toluene	ND	ND	NA	
Ethyl Benzene	ND	ND	NA	
m,p-Xylene	ND	ND	NA	
o-Xylene	ND	ND	NA	
TPH-Gas	ND	ND	NA	
Surrogate Recovery:				
Fluorobenzene	107%	108%		

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

:

NWTPH-Dx

Date Extracted:	2-13-03
Date Analyzed:	2-13-03

Matrix:	Soil
Units:	mg/Kg (ppm)

Client ID: Lab ID:	D-Geo-1: 4-8ft 02-039-01	D-Geo-1: 8-12ft 02-039-02	D-Geo-2: 4-8ft 02-039-05
Diesel Range:	ND	ND	ND
PQL: Identification:	28	29 	
Lube Oil Range:	ND	ND	ND
PQL: Identification:	57	58	55
Surrogate Recovery			
o-Terphenyl:	71%	79%	84%
Flags:	Y	Y	Y

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Dx

Date Extracted:	2-13-03
Date Analyzed:	2-13-03

Matrix:	Soil
Units:	mg/Kg (ppm)

Client ID: Lab ID:	D-Geo-2: 15-17ft 02-039-08	D-Geo-3: 4-7ft 02-039-09	D-Geo-3: 8ft 02-039-10
Diesel Range: PQL: Identification:	330 30 Diesel Fuel#2	ND 26 	4100 28 Diesel Fuel#2
Lube Oil Range: PQL: Identification:	ND 60	ND 53	ND 56
Surrogate Recovery o-Terphenyl:	85%	102%	97%
Flags:	Y	Y	Y [.]

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Dx

- Date Extracted:2-13-03Date Analyzed:2-13&14-03
- Matrix: Soil Units: mg/Kg (ppm)

Client ID: Lab ID:	D-Geo-4: 4-5ft 02-039-13	D-Geo-5: 7-8ft 02-039-14	D-Geo-6: 10-10.5ft 02-039-16
Diesel Range: PQL: Identification:	ND 29 	ND 31	14000 140 Diesel Fuel#2
Lube Oil Range:	ND	ND	ND
PQL: Identification:	58	62	290
Surrogate Recovery o-Terphenyl:	90%	88%	76%
Flags:	Y	Y	Y

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Dx

Date Extracted:	2-13-03
Date Analyzed:	2-13-03

Matrix:	Soil
Units:	mg/Kg (ppm)

Client ID: Lab ID:	D-Geo-6: 7-8ft 02-039-17	D-Geo-6: 8ft 02-039-19	D-MW-1: 5-6.5ft 02-039-20
Diesel Range:	ND	ND	ND
PQL:	28	27	28
Identification:			
Lube Oil Range:	ND	ND	ND
PQL:	57	54	56
Identification:			
Surrogate Recovery			
o-Terphenyl:	78%	102%	80%
Flags:	Y	Y	Y

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Dx

Date Extracted: Date Analyzed:	2-13-03 2-13-03		
Matrix: Units:	Soil mg/Kg (ppm)		
Client ID: Lab ID:	D-MW-1: 8-9.5ft 02-039-21	D-MW-2: 5-6.5ft 02-039-22	D-MW-3: 5-6.5ft 02-039-23
Diesel Range: PQL: Identification:	ND 29 	770 28 Diesel Fuel#2	ND 29
Lube Oil Range: PQL: Identification:	ND 58 	ND 56	76 58 Lube Oil
Surrogate Recovery o-Terphenyl:	. 84%	87%	85%
Flags:	Υ	Y,Z	Y

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Dx

Date Extracted:	2-13-03
Date Analyzed:	2-13-03

Matrix:	Soil
Units:	mg/Kg (ppm)

Client ID:	D-MW-4: 5-6.5ft	D-MW-5: 5-6.5ft	D-MW-5: 9.5-11ft
Lab ID:	02-039-24	02-039-25	02-039-26
Diesel Range:	ND	ND	ND
PQL:	28	28	28
Identification:			
Lube Oil Range:	ND	110	ND
PQL:	56	55	56
Identification:		Lube Oil	
Surrogate Recovery o-Terphenyl:	89%	81%	91%
Flags:	Y	Y	Y

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Dx METHOD BLANK QUALITY CONTROL

Date Extracted:	2-13-03
Date Analyzed:	2-13-03

Matrix:	Soil
Units:	mg/Kg (ppm)

Lab ID:	MB0213S1
Diesel Range:	ND
PQL:	25
Identification:	

Lube Oil Range:	ND
PQL:	50
Identification:	

Surrogate Recovery	
o-Terphenyl:	97%

Y

.

Flags:

1

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Dx DUPLICATE QUALITY CONTROL

Date Extracted:	2-13-03
Date Analyzed:	2-13-03

Matrix:	Soil
Units:	mg/Kg (ppm)

Lab ID:	02-039-25	02-039-25 DUP
Diesel Range: PQL:	ND 25	ND 25
RPD:	N/A	

Y

Surrogate Recovery o-Terphenyl: 81%

Flags:

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

91%

Y

NWTPH-Dx DUPLICATE QUALITY CONTROL

Date Extracted:	2-13-03
Date Analyzed:	2-13-03

Matrix:	Soil
Units:	mg/Kg (ppm)

Lab ID:	02-039-26	02-039-26 DUP
Diesel Range: PQL:	ND 25	ND 25
RPD:	N/A	

91%

Y

Surrogate Recovery o-Terphenyl:

Flags:

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

82%

Y

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

••

NWTPH-Dx

Date Extracted: Date Analyzed:	2-13-03 2-13-03		
Matrix: Units:	Water mg/L (ppm)		
Client ID: Lab ID:	D-Geo-3 02-039-12	D-Geo-5 02-039-15	D-Geo-6 02-039-18
Diesel Range: PQL: Identification:	5.6 0.26 Diesel Fuel#2	ND 0.28 	33 0.27 Diesel Fuel#2
Lube Oil Range: PQL: Identification:	ND 0.42 	ND 0.45 	ND 0.43
Surrogate Recovery o-Terphenyl:	98%	101%	114%
Flags:	M,Y,Z	Y	Y

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

.

NWTPH-Dx METHOD BLANK QUALITY CONTROL

Date Extracted:	2-13-03	
Date Analyzed:	2-14-03	
	ι,	
Matrix:	Water	
Units:	mg/L (ppm)	
•		

Lab ID:

ł

MB0213W1

Y

Diesel Range:	ND
PQL:	0.25
Identification:	

Lube Oil Range:	ND
PQL:	0.40
Identification:	

Surrogate Recovery	
o-Terphenyl:	81%

Flags:

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Dx DUPLICATE QUALITY CONTROL

Date Extracted:	2-13-03
Date Analyzed:	2-13-03

Matrix:	Water
Units:	mg/L (ppm)

Lab ID:	02-048-02	02-048-02 DUP
Diesel Range:	ND	ND
PQL:	0.28	0.25
RPD:	N/A	

Surrogate Recovery o-Terphenyl: 102% 97% Flags: Y Y

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881.

HALOGENATED VOLATILES by EPA 8260B Page 1 of 2

.

Date Extracted:	
Date Analyzed:	

Matrix: Units:

5 -

Soil mg/kg (ppm)

2-13-03

2-13-03

 Lab ID:
 02-039-02

 Client ID:
 D-Geo-1:8-12ft

Compound	Results	Flags	PQL
Dichlorodifluoromethane	ND		0.0012
Chloromethane	ND		0.0012
Vinyl Chloride	ND		0.0012
Bromomethane	ND		0.0012
Chloroethane	ND		0.0012
Trichlorofluoromethane	ND		0.0012
1,1-Dichloroethene	ND		0.0012
lodomethane	ND		0.0058
Methylene Chloride	ND		0.0058
(trans) 1,2-Dichloroethene	ND		0.0012
1,1-Dichloroethane	ND		0.0012
2,2-Dichloropropane	ND		0.0012
(cis) 1,2-Dichloroethene	ND		0.0012
Bromochloromethane	ND		0.0012
Chloroform	ND		0.0012
1,1,1-Trichloroethane	ND		0.0012
Carbon Tetrachloride	ND		0.0012
1,1-Dichloropropene	ND		0.0012
1,2-Dichloroethane	ND		0.0012
Trichloroethene	ND		0.0012
1,2-Dichloropropane	ND		0.0012
Dibromomethane	ND		0.0012
Bromodichloromethane	ND		0.0012
2-Chloroethyl Vinyl Ether	ND		0.0058
(cis) 1,3-Dichloropropene	ND		0.0012
(trans) 1,3-Dichloropropene	ND		0.0012

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

HALOGENATED VOLATILES by EPA 8260B Page 2 of 2

Lab ID:	02-039-02
Client ID:	D-Geo-1:8-12ft

Compound 1,1,2-Trichloroethane	Results ND	Flags	PQL 0.0012
Tetrachloroethene	ND		0.0012
1,3-Dichloropropane	ND		0.0012
Dibromochloromethane	ND		0.0012
1,2-Dibromoethane	ND		0.0012
Chlorobenzene	ND		0.0012
1,1,1,2-Tetrachloroethane	ND		0.0012
Bromoform	ND		0.0012
Bromobenzene	ND		0.0012
1,1,2,2-Tetrachloroethane	ND	· •	0.0012
1,2,3-Trichloropropane	ND		0.0012
2-Chlorotoluene	ND		0.0012
4-Chlorotoluene	ND		0.0012
1,3-Dichlorobenzene	ND		0.0012
1,4-Dichlorobenzene	ND		0.0012
1,2-Dichlorobenzene	ND		0.0012
1,2-Dibromo-3-chloropropane	ND		0.0058
1,2,4-Trichlorobenzene	ND		0.0012
Hexachlorobutadiene	ND		0.0058
1,2,3-Trichlorobenzene	ND		0.0012

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	75	65-125
Toluene, d8	91	. 77-116
4-Bromofluorobenzene	101	67-133

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260B Page 1 of 2

Date Extracted: Date Analyzed:

;

I

)

Matrix:	Soil
Units:	mg/kg (ppm)

 Lab ID:
 02-039-08

 Client ID:
 D-Geo-2:15-17ft

2-13-03

2-13-03

Compound	Results	Flags	PQL
Dichlorodifluoromethane	ND	5	0.0012
Chloromethane	ND		0.0012
Vinyl Chloride	ND		0.0012
Bromomethane	ND		0.0012
Chloroethane	ND		0.0012
Trichlorofluoromethane	ND		0.0012
1,1-Dichloroethene	ND		0.0012
Acetone	ND		0.0060
lodomethane	ND		0.0060
Carbon Disulfide	ND		0.0012
Methylene Chloride	ND		0.0060
(trans) 1,2-Dichloroethene	ND		0.0012
Methyl t-Butyl Ether	ND		0.0012
1,1-Dichloroethane	ND		0.0012
Vinyl Acetate	ND		0.0060
2,2-Dichloropropane	ND		0.0012
(cis) 1,2-Dichloroethene	ND ·		0.0012
2-Butanone	ND		0.0060
Bromochloromethane	ND		0.0012
Chloroform	ND		0.0012
1,1,1-Trichloroethane	ND		0.0012
Carbon Tetrachloride	ND		0.0012
1,1-Dichloropropene	ND		0.0012
Benzene	ND		0.0012
1,2-Dichloroethane	ND		0.0012
Trichloroethene	ND		0.0012
1,2-Dichloropropane	ND		0.0012
Dibromomethane	ND		0.0012
Bromodichloromethane	ND		0.0012
2-Chloroethyl Vinyl Ether	ND		0.0060
(cis) 1,3-Dichloropropene	ND		0.0012
Methyl Isobutyl Ketone	ND		0.0060
Toluene	0.0049		0.0012
(trans) 1,3-Dichloropropene	ND		0.0012

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

1-

VOLATILES by EPA 8260B Page 2 of 2

Lab ID: Client ID:	02-039-08 D-Geo-2:15-17ft		
Compound	Results	Flags	PQL
1,1,2-Trichloroethane	ND	-	0.0012
Tetrachloroethene	ND		0.0012
1,3-Dichloropropane	ND		0.0012
2-Hexanone	ND		0.0060
Dibromochloromethane	ND		0.0012
1,2-Dibromoethane	ND		0.0012
Chlorobenzene	ND		0.0012
1,1,1,2-Tetrachloroethane	ND		0.0012
Ethylbenzene	0.013		0.0012
m,p-Xylene	0.038		0.0024
o-Xylene	0.019		0.0012
Styrene	ND		0.0012
Bromoform	ND		0.0012
lsopropylbenzene	0.0026		0.0012
Bromobenzene	ND		0.0012
1,1,2,2-Tetrachloroethane	ND		0.0012
1,2,3-Trichloropropane	ND		0.0012
n-Propylbenzene	0.0087		0.0012
2-Chlorotoluene	ND		0.0012
4-Chlorotoluene	ND		0.0012
1,3,5-Trimethylbenzene	0.017		0.0012
tert-Butylbenzene	ND		0.0012
1,2,4-Trimethylbenzene	0.052		0.0012
sec-Butylbenzene	0.021		0.0012
1,3-Dichlorobenzene	ND		0.0012
p-Isopropyitoluene	0.0057		0.0012
1,4-Dichlorobenzene	ND		0.0012
1,2-Dichlorobenzene	ND		0.0012
n-Butylbenzene	ND		0.0012
1,2-Dibromo-3-chloropropane	ND		0.0060
1,2,4-Trichlorobenzene	ND		0.0012
Hexachlorobutadiene	ND		0.0060
Naphthalene	ND		0.0012
1,2,3-Trichlorobenzene	ND		0.0012

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	72	65-125
Toluene, d8	97	77-116
4-Bromofluorobenzene	108	67-133

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

38

VOLATILES by EPA 8260B

Page 1 of 2

8-03
\$

Matrix:	Soil
Units:	mg/kg (ppm)
	•
	02 020 40

...

Lab ID:	02-039-10
Client ID:	D-Geo-3:8ft

Compound	Results	Flags	PQL
Dichlorodifluoromethane	ND		0.0011
Chloromethane	ND		0.0011
Vinyl Chloride	ND		0.0011
Bromomethane	ND		0.0011
Chloroethane	ND		0.0011
Trichlorofluoromethane	ND		0.0011
1,1-Dichloroethene	ND		0.0011
Acetone	0.037		0.0056
lodomethane	ND		0.0056
Carbon Disulfide	ND		0.0011
Methylene Chloride	ND		0.0056
(trans) 1,2-Dichloroethene	ND		0.0011
Methyl t-Butyl Ether	ND		0.0011
1,1-Dichloroethane	ND		0.0011
Vinyl Acetate	ND		0.0056
2,2-Dichloropropane	ND		0.0011
(cis) 1,2-Dichloroethene	ND		0.0011
2-Butanone	0.014		0.0056
Bromochloromethane	ND		0.0011
Chloroform	ND		0.0011
1,1,1-Trichloroethane	ND		0.0011
Carbon Tetrachloride	ND		0.0011
1,1-Dichloropropene	ND		0.0011
Benzene	0.0014		0.0011
1,2-Dichloroethane	ND		0.0011
Trichloroethene	ND		0.0011
1,2-Dichloropropane	ND		0.0011
Dibromomethane	ND		0.0011
Bromodichloromethane	ND		0.0011
2-Chloroethyl Vinyl Ether	ND		0.0056
(cis) 1,3-Dichloropropene	ND		0.0011
Methyl Isobutyl Ketone	ND		0.0056
Toluene	0.0020		0.0011
(trans) 1,3-Dichloropropene	ND		0.0011

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260B Page 2 of 2

Lab ID: Client ID:	02-039-10 D-Geo-3:8ft			
Compound		Results	Flags	PQL
1,1,2-Trichloroethane		ND		0.0011
Tetrachloroethene		ND		0.0011
1,3-Dichloropropane		ND		0.0011
2-Hexanone		ND		0.0056
Dibromochloromethane		ND		0.0011
1,2-Dibromoethane		ND		0.0011
Chlorobenzene		ND		0.0011
1,1,1,2-Tetrachloroethane		ND		0.0011
Ethylbenzene		0.37		0.011
m,p-Xylene		0.53		0.022
o-Xylene		0.0087		0.0011
Styrene		ND		0.0011
Bromoform		ND		0.0011
Isopropylbenzene		0.26		0.011
Bromobenzene		ND		. 0.0011
1,1,2,2-Tetrachloroethane		ND		0.0011
1,2,3-Trichloropropane		ND		0.0011
n-Propylbenzene		0.77		0.011
2-Chlorotoluene		ND		0.0011
4-Chlorotoluene		ND		0.0011
1,3,5-Trimethylbenzene		1.2		0.11
tert-Butylbenzene		0.058		0.0011
1,2,4-Trimethylbenzene		1.4		0.11
sec-Butylbenzene		0.31		0.011
1,3-Dichlorobenzene		ND		0.0011
p-Isopropyltoluene		0.61		0.011
1,4-Dichlorobenzene		ND		0.0011
1,2-Dichlorobenzene		ND		0.0011
n-Butyibenzene		ND		0.0011
1,2-Dibromo-3-chloropropane		ND		0.0056
1,2,4-Trichlorobenzene		ND		0.0011
Hexachlorobutadiene		ND		0.0056
Naphthalene		0.93		0.11
1,2,3-Trichlorobenzene		ND		0.0011
		Percent		Control

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	65	65-125
Toluene, d8	93	77-116
4-Bromofluorobenzene	67	67-133

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL Page 1 of 2

Date Extracted: Date Analyzed: 2-13-03 2-13-03

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID:

· .

r

,

MB0213S1

Compound	Results	Flags	PQL
Dichlorodifluoromethane	ND		0.0010
Chloromethane	ND		0.0010
Vinyl Chloride	ND		0.0010
Bromomethane	ND		0.0010
Chloroethane	ND		0.0010
Trichlorofluoromethane	ND		0.0010
1,1-Dichloroethene	ND		0.0010
Acetone	ND		0.0050
lodomethane	ND		0.0050
Carbon Disulfide	ND		0.0010
Methylene Chloride	ND		0.0050
(trans) 1,2-Dichloroethene	ND		0.0010
Methyl t-Butyl Ether	ND		0.0010
1,1-Dichloroethane	ND		0.0010
Vinyl Acetate	ND		0.0050
2,2-Dichloropropane	ND		0.0010
(cis) 1,2-Dichloroethene	ND		0.0010
2-Butanone	ND		0.0050
Bromochloromethane	ND		0.0010
Chloroform	ND		0.0010
1,1,1-Trichloroethane	ND		0.0010
Carbon Tetrachloride	ND		0.0010
1,1-Dichloropropene	ND		0.0010
Benzene	ND		0.0010
1,2-Dichloroethane	ND		0.0010
Trichloroethene	ND		0.0010
1,2-Dichloropropane	ND		0.0010
Dibromomethane	ND		0.0010
Bromodichloromethane	ND		0.0010
2-Chloroethyl Vinyl Ether	ND		0.0050
(cis) 1,3-Dichloropropene	ND		0.0010
Methyl Isobutyl Ketone	ND		0.0050
Toluene	ND		0.0010
(trans) 1,3-Dichloropropene	ND		0.0010

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL Page 2 of 2

Lab ID:

MB0213S1

0 - market	Results	Flags	PQL
Compound	ND	riays	0.0010
1,1,2-Trichloroethane Tetrachloroethene	ND		0.0010
	ND		0.0010
1,3-Dichloropropane	ND		0.0050
2-Hexanone	ND		0.0010
Dibromochloromethane	ND		0.0010
1,2-Dibromoethane	ND		0.0010
Chlorobenzene	ND		0.0010
1,1,1,2-Tetrachloroethane	ND		0.0010
Ethylbenzene	ND		0.0010
m,p-Xylene	ND		0.0020
o-Xylene	ND		0.0010
Styrene			0.0010
Bromoform	ND		0.0010
Isopropylbenzene	ND		0.0010
Bromobenzene	ND		
1,1,2,2-Tetrachloroethane	ND		0.0010
1,2,3-Trichloropropane	ND		0.0010
n-Propylbenzene	ND		0.0010
2-Chlorotoluene	ND		0.0010
4-Chlorotoluene	ND		0.0010
1,3,5-Trimethylbenzene	ND		0.0010
tert-Butylbenzene	ND		0.0010
1,2,4-Trimethylbenzene	ND		0.0010
sec-Butylbenzene	ND		0.0010
1,3-Dichlorobenzene	ND		0.0010
p-lsopropyltoluene	ND		0.0010
1,4-Dichlorobenzene	ND		0.0010
1,2-Dichlorobenzene	ND		0.0010
n-Butylbenzene	ND		0.0010
1,2-Dibromo-3-chloropropane	ND		0.0050
1,2,4-Trichlorobenzene	ND		0.0010
Hexachlorobutadiene	ND		0.0050
Naphthalene	ND		0.0010
1,2,3-Trichlorobenzene	ND		0.0010

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	72	65-125
Toluene, d8	、 88	77-116
4-Bromofluorobenzene	105	67-133

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260B MS/MSD QUALITY CONTROL

Date Extracted:	2-13-03
Date Analyzed:	2-13-03

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID:

02-039-08

	Sample	Spike		Percent		Percent	Recovery	
Compound	Amount	Amount	MS	Recovery	MSD	Recovery	Limits	Flags
1,1-Dichloroethene	ND	0.0500	0.0234	47	0.0220	44	22-136	
Benzene	ND	0.0500	0.0361	72	0.0357	71	67-137	
Trichloroethene	ND	0.0500	0.0492	98	0.0510	102	48-149	
Toluene	0.00413	0.0500	0.0463	84	0.0454	83	48-143	
Chlorobenzene	ND	0.0500	0.0414	83	0.0460	92	69-135	

	RPD		
	RPD	Limit	Flags
1,1-Dichloroethene	6.2	23	
Benzene	1.2	15	
Trichloroethene	3.6	18	
Toluene	1.9	13	
Chlorobenzene	11	12	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260B Page 1 of 2

Date Extracted:	2-18-03
Date Analyzed:	2-18-03
Matrix:	Water

Units:

÷----

Lab ID:	02-039-12
Client ID:	D-Geo-3

ug/L (ppb)

Compound Dichlorodifluoromethane	Results ND	Flags	PQL 10
Chloromethane	ND		10
Vinyl Chloride	ND		10
Bromomethane	ND		10
Chloroethane	ND		10
Trichlorofluoromethane	ND		10
1,1-Dichloroethene	ND		10
Acetone	ND		250
lodomethane	ND		50
Carbon Disulfide	ND		10
Methylene Chloride	ND		50
(trans) 1,2-Dichloroethene	ND		10
Methyl t-Butyl Ether	ND		10
1,1-Dichloroethane	ND		10
Vinyl Acetate	ND		50
2,2-Dichloropropane	ND		10
(cis) 1,2-Dichloroethene	ND		10
2-Butanone	ND		250
Bromochloromethane	ND		10
Chloroform	ND		10
1,1,1-Trichloroethane	ND		10
Carbon Tetrachloride	ND		10
1,1-Dichloropropene	ND		10
Benzene	26		10
1,2-Dichloroethane	ND		10
Trichloroethene	ND		10
1,2-Dichloropropane	ND		10
Dibromomethane	ND		10
Bromodichloromethane	ND		10
2-Chloroethyl Vinyl Ether	ND		50
(cis) 1,3-Dichloropropene	ND		10
Methyl Isobutyl Ketone	ND		100
Toluene	630		10
(trans) 1,3-Dichloropropene	ND		10

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260B Page 2 of 2

Flags

Lab ID:	02-039-12	
Client ID:	D-Geo-3	
Compound		Results
Compound		
1,1,2-Trichloroethane		ND
Tetrachloroethene		ND
1,3-Dichloropropane		ND
2-Hexanone		ND
Dibromochloromethane		ND
1,2-Dibromoethane		ND
Chlorobenzene		ND
1,1,1,2-Tetrachloroethane		ND
Ethylbenzene		630
m,p-Xylene		2100
o-Xylene		710
Styrene		ND
Bromoform		ND
Isopropylbenzene		80
Bromobenzene		ND
1,1,2,2-Tetrachloroethane		ND
1,2,3-Trichloropropane		ND

e , c , c , c , c , c , c , c , c , c ,		
Styrene	ND	10
Bromoform	ND	50
Isopropylbenzene	80	10
Bromobenzene	ND	10
1,1,2,2-Tetrachloroethane	ND	10
1,2,3-Trichloropropane	ND	10
n-Propylbenzene	270	10
2-Chlorotoluene	ND	10
4-Chlorotoluene	ND	10
1,3,5-Trimethylbenzene	490	10
tert-Butylbenzene	ND	10
1,2,4-Trimethylbenzene	1600	10
sec-Butylbenzene	ND	10
1,3-Dichlorobenzene	ND	10
p-Isopropyltoluene	14	10
1,4-Dichlorobenzene	ND	10
1,2-Dichlorobenzene	ND	10
n-Butylbenzene	ND	10
1,2-Dibromo-3-chloropropane	ND	50
1,2,4-Trichlorobenzene	ND	10
Hexachlorobutadiene	ND	10
Naphthalene	ND	50
1,2,3-Trichlorobenzene	ND	10

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	76	71-133
Toluene, d8	91	80-151
4-Bromofluorobenzene	90	75-139

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260B

Page 1 of 2

Date Extracted:	2-18-03
Date Analyzed:	2-19-03
, Matrix: Units:	Water ug/L (ppb)

Lab ID:	02-039-15
Client ID:	D-Geo-5

Compound Dichlorodifluoromethane Chloromethane Vinyl Chloride Bromomethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethene Acetone Iodomethane Carbon Disulfide Methylene Chloride (trans) 1,2-Dichloroethene Methyl t-Butyl Ether 1,1-Dichloroethane Vinyl Acetate 2,2-Dichloropropane (cis) 1,2-Dichloroethene 2-Butanone Bromochloromethane Chloroform 1,1,1-Trichloroethane Carbon Tetrachloride 1,1-Dichloropropene	Results ND ND	Flags	PQL 0.20 0.20 0.20 0.20 0.20 0.20 5.0 1.0 0.20 1.0 0.20 0.20 0.20 0.20 0.20
Bromochloromethane	ND		0.20
1,1-Dichloropropene	ND		0.20
Benzene	ND		0.20
1,2-Dichloroethane	ND		0.20
Trichloroethene	ND		0.20
1,2-Dichloropropane	ND		0.20
Dibromomethane	ND		0.20
Bromodichloromethane	ND ND		0.20
2-Chloroethyl Vinyl Ether	ND		1.0 0.20
(cis) 1,3-Dichloropropene Methyl Isobutyl Ketone	ND		2.0
Toluene	ND		0.20
(trans) 1,3-Dichloropropene	ND		0.20

VOLATILES by EPA 8260B Page 2 of 2

Lab ID: Client ID:	02-039-15 D-Geo-5			
Compound		Results	Flags	PQL
1,1,2-Trichloroethane		ND		0.20
Tetrachloroethene		ND		0.20
1,3-Dichloropropane		ND		0.20
2-Hexanone		ND		2.0
Dibromochloromethane		ND		0.20
1,2-Dibromoethane		ND		0.20
Chlorobenzene	•	ND		0.20
1,1,1,2-Tetrachloroethane		ND		0.20
Ethylbenzene		ND		0.20
m,p-Xylene		ND		0.40
o-Xylene		ND		0.20
Styrene		ND		0.20
Bromoform		ND		1.0
Isopropylbenzene		ND		0.20
Bromobenzene		ND		0.20
1,1,2,2-Tetrachloroethane		ND		0.20
1,2,3-Trichloropropane		ND		0.20
n-Propylbenzene		ND		0.20
2-Chlorotoluene		ND		0.20
4-Chlorotoluene		ND		0.20
1,3,5-Trimethylbenzene		ND		0.20
tert-Butylbenzene		ND		0.20
1,2,4-Trimethylbenzene		ND		0.20
sec-Butylbenzene		ND		0.20
1,3-Dichlorobenzene		ND		0.20
p-Isopropyltoluene		ND		0.20
1,4-Dichlorobenzene		ND		0.20
1,2-Dichlorobenzene		ND		0.20
n-Butylbenzene		ND		0.20
1,2-Dibromo-3-chloropropane	Э	ND		1.0
1,2,4-Trichlorobenzene		ND		0.20
Hexachlorobutadiene		ND		0.20
Naphthalene		ND		1.0
1,2,3-Trichlorobenzene		ND		0.20

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	78	71-133
Toluene, d8	89	80-151
4-Bromofluorobenzene	84	75-139

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260B Page 1 of 2

.

Date Extracted:	2-18-03
Date Analyzed:	2-19-03
Matrix:	Water
Units:	ug/L (ppb)

Lab ID:	02-039-18		
Client ID:	D-Geo-6		

Compound	Results	Flags	PQL
Compound Dichlorodifluoromethane	ND	riago	0.20
Chloromethane	ND		0.20
Vinyl Chloride	ND		0.20
Bromomethane	ND		0.20
Chloroethane	ND		0.20
Trichlorofluoromethane	ND		0.20
1,1-Dichloroethene	ND		0.20
Acetone	ND		5.0
lodomethane	ND		1.0
Carbon Disulfide	ND		0.20
Methylene Chloride	ND		1.0
(trans) 1,2-Dichloroethene	ND		0.20
Methyl t-Butyl Ether	ND		0.20
1,1-Dichloroethane	ND		0.20
Vinyl Acetate	ND		1.0
2,2-Dichloropropane	ND		0.20
(cis) 1,2-Dichloroethene	ND		0.20
2-Butanone	ND		5.0
Bromochloromethane	ND		0.20
Chloroform	ND		0.20
1,1,1-Trichloroethane	ND		0.20
Carbon Tetrachloride	ND		0.20
1,1-Dichloropropene	ND		0.20
Benzene	ND		0.20
1,2-Dichloroethane	ND		0.20
Trichloroethene	ND		0.20
1,2-Dichloropropane	ND		0.20
Dibromomethane	ND		0.20
Bromodichloromethane	ND		0.20
2-Chloroethyl Vinyl Ether	ND		1.0
(cis) 1,3-Dichloropropene	ND		0.20
Methyl Isobutyl Ketone	ND		2.0
Toluene	ND		0.20
(trans) 1,3-Dichloropropene	ND		0.20

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

۰.
ł

. ,

ī

VOLATILES by EPA 8260B Page 2 of 2

Lab ID:	02-039-18
Client ID:	D-Geo-6

Compound	Results	Flags	PQL
1,1,2-Trichloroethane	ND	0	0.20
Tetrachloroethene	ND		0.20
1,3-Dichloropropane	ND		0.20
2-Hexanone	ND		2.0
Dibromochloromethane	ND		0.20
1,2-Dibromoethane	ND		0.20
Chlorobenzene	ND		0.20
1,1,1,2-Tetrachloroethane	ND		0.20
Ethylbenzene	5.6		0.20
m,p-Xylene	25		0.40
o-Xylene	1.5		0.20
Styrene	ND		0.20
Bromoform	ND		1.0
lsopropylbenzene	3.9		0.20
Bromobenzene	ND		0.20
1,1,2,2-Tetrachloroethane	ND		0.20
1,2,3-Trichloropropane	ND		0.20
n-Propylbenzene	5.5		0.20
2-Chlorotoluene	ND		0.20
4-Chlorotoluene	ND		0.20
1,3,5-Trimethylbenzene	15		0.20
tert-Butylbenzene	ND		0.20
1,2,4-Trimethylbenzene	59		2.0
sec-Butylbenzene	2.8		0.20
1,3-Dichlorobenzene	ND		0.20
p-Isopropyltoluene	3.5		0.20
1,4-Dichlorobenzene	ND		0.20
1,2-Dichlorobenzene	ND		0.20
n-Butylbenzene	ND		0.20
1,2-Dibromo-3-chloropropane	ND		1.0
1,2,4-Trichlorobenzene	ND		0.20
Hexachlorobutadiene	ND		0.20
Naphthalene	23		1.0
1,2,3-Trichlorobenzene	ND		0.20

8

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	74	71-133
Toluene, d8	92	80-151
4-Bromofluorobenzene	91	75-139

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL page 1 of 2

Date Extracted:	2-18-03
Date Analyzed:	2-18-03
Matrix:	Water

Matrix:	Water
Units:	ug/L (ppb)

Lab ID:

.

MB0218W1

Compound	Results	Flags	PQL
Dichlorodifluoromethane	ND		0.20
Chloromethane	ND		0.20
Vinyl Chloride	ND		0.20
Bromomethane	ND		0.20
Chloroethane	ND		0.20
Trichlorofluoromethane	ND		0.20
1,1-Dichloroethene	ND		0.20
Acetone	ND		5.0
lodomethane	ND		1.0
Carbon Disulfide	ND	•	0.20
Methylene Chloride	ND		1.0
(trans) 1,2-Dichloroethene	ND		0.20
Methyl t-Butyl Ether	ND		0.20
1,1-Dichloroethane	ND		0.20
Vinyl Acetate	ND		1.0
2,2-Dichloropropane	ND		0.20
(cis) 1,2-Dichloroethene	ND		0.20
2-Butanone	ND		5.0
Bromochloromethane	ND		0.20
Chloroform	ND		0.20
1,1,1-Trichloroethane	ND		0.20
Carbon Tetrachloride	ND		0.20
1,1-Dichloropropene	ND		0.20
Benzene	ND		0.20
1,2-Dichloroethane	ND		0.20
Trichloroethene	ND		0.20
1,2-Dichloropropane	ND		0.20
Dibromomethane	ND		0.20
Bromodichloromethane	ND		0.20
2-Chloroethyl Vinyl Ether	ND		1.0
(cis) 1,3-Dichloropropene	ND		0.20
Methyl Isobutyl Ketone	ND		2.0
Toluene	ND		0.20
(trans) 1,3-Dichloropropene	ND		0.20

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL page 2 of 2

Lab ID:

MB0218W1

0	D "	C 1	DOL
Compound	Results	Flags	PQL
1,1,2-Trichloroethane	ND		0.20
Tetrachloroethene	ND		0.20
1,3-Dichloropropane	ND		0.20
2-Hexanone	ND		2.0
Dibromochloromethane	ND		0.20
1,2-Dibromoethane	ND		0.20
Chlorobenzene	ND		0.20
1,1,1,2-Tetrachloroethane	ND		0.20
Ethylbenzene	ND		0.20
m,p-Xylene	ND		0.40
o-Xylene	ND		0.20
Styrene	ND		0.20
Bromoform	ND		1.0
lsopropylbenzene	ND		0.20
Bromobenzene	ND		0.20
1,1,2,2-Tetrachloroethane	ND		0.20
1,2,3-Trichloropropane	ND		0.20
n-Propylbenzene	ND		0.20
2-Chlorotoluene	ND		0.20
4-Chlorotoluene	ND		0.20
1,3,5-Trimethylbenzene	ND		0.20
tert-Butylbenzene	ND		0.20
1,2,4-Trimethylbenzene	ND		0.20
sec-Butylbenzene	ND		0.20
1,3-Dichlorobenzene	ND		0.20
p-lsopropyltoluene	ND		0.20
1,4-Dichlorobenzene	ND		0.20
1,2-Dichlorobenzene	ND		0.20
n-Butylbenzene	ND		0.20
1,2-Dibromo-3-chloropropane	ND		1.0
1,2,4-Trichlorobenzene	ND		0.20
Hexachlorobutadiene	ND		0.20
Naphthalene	ND		1.0
1,2,3-Trichlorobenzene	ND		0.20

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	79	71-133
Toluene, d8	90	80-151
4-Bromofluorobenzene	85	75-139

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260B MS/MSD QUALITY CONTROL

Date Extracted:	2-18-03
Date Analyzed:	2-18-03

Matrix:	Water
Units:	ug/L (ppb)

Lab ID:

	Sample	Spike		Percent		Percent	Recovery	
Compound	Amount	Amount	MS	Recovery	MSD	Recovery	Limits	Flags
1,1-Dichloroethene	ND	10.0	8.05	80	8.50	85	69-113	
Benzene	ND	10.0	7.96	80	8.31	83	71-128	
Trichloroethene	ND	10.0	9.04	90	9.53	95	82-122	
Toluene	ND	10.0	9.05	90	9.49	95	54-118	
Chlorobenzene	ND	10.0	8.55	85	8.94	89	85-103	
			e					

, ,	RPD		
	RPD	Limit	Flags
1,1-Dichloroethene	5.5	15	
Benzene	4.3	9.6	
Trichloroethene	5.3	12	
Toluene	4.8	15	
Chlorobenzene	4.6	5.8	

02-028-01

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

PAHs by EPA 8270C/SIM

Date Extracted:	
Date Analyzed:	

2-14-03 2-20-03

Matrix: Units: Soil mg/kg (ppm)

 Lab ID:
 02-039-10

 Client ID:
 D-Geo-3: 8 ft

Compound:	Results	Flags	PQL
Naphthalene	2.1		0.094
2-Methylnaphthalene	13		0.094
1-Methylnaphthalene	8.9		0.094
Acenaphthylene	0.092		0.0094
Acenaphthene	0.48		0.0094
Fluorene	1.9		0.094
Phenanthrene	3.0		0.094
Anthracene	0.22		0.0094
Fluoranthene	0.067		0.0094
Pyrene	0.16		0.0094
Benzo[a]anthracene	ND		0.0094
Chrysene	0.033		0.0094
Benzo[b]fluoranthene	ND		0.0094
Benzo[k]fluoranthene	ND		0.0094
Benzo[a]pyrene	ND		0.0094
Indeno[1,2,3-c,d]pyrene	ND		0.0094
Dibenz[a,h]anthracene	ND		0.0094
Benzo[g,h,i]perylene	ND		0.0094

Surrogate :		Percent	Control
		Recovery	Limits
Nitrobenzene-d5		87	10 - 110
2-Fluorobiphenyl		62	54 - 98
Terphenyl-d14	,	90	55 - 127

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

•<u>.</u> •

PAHs by EPA 8270C/SIM METHOD BLANK QUALITY CONTROL

Date Extracted:	2-14-03
Date Analyzed:	2-20-03
Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID:

MB0214S1

Compound:	Results	Flags	PQL
Naphthalene	ND		0.0083
2-Methylnaphthalene	ND		0.0083
1-Methylnaphthalene	ND		0.0083
Acenaphthylene	ND		0.0083
Acenaphthene	ND		0.0083
Fluorene	ND		0.0083
Phenanthrene	ND		0.0083
Anthracene	ND		0.0083
Fluoranthene	ND		0.0083
Pyrene	ND		0.0083
Benzo[a]anthracene	ND		0.0083
Chrysene	ND		0.0083
Benzo[b]fluoranthene	ND		0.0083
Benzo[k]fluoranthene	ND		0.0083
Benzo[a]pyrene	ND		0.0083
Indeno[1,2,3-c,d]pyrene	ND		0.0083
Dibenz[a,h]anthracene	ND		0.0083
Benzo[g,h,i]perylene	ND		0.0083

Surrogate :	Percent	Control
	Recovery	Limits
Nitrobenzene-d5	67	10 - 110
2-Fluorobiphenyl	66	54 - 98
Terphenyl-d14	90	55 - 127

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

PAHs by EPA 8270C/SIM SB/SBD QUALITY CONTROL

Date Extracted:	2-14-03							
Date Analyzed:	2-20-03							
-								
Matrix:	Soil							
Units:	mg/kg (ppr	n)						
Lab ID:	SB0214S1							
	MB	Spike		Percent		Percent	Recovery	
Compound:	Amount	Amount	SB	Recovery	SBD	Recovery	Limits	Flags
Naphthalene	ND	0.667	0.372	56	0.387	58	38-113	
Acenaphthylene	ND	0.667	0.388	58	0.402	60	35-126	
Acenaphthene	ND	0.667	0.390	59	0.401	60	31-121	
Fluorene	ND	0.667	0.421	63	0.430	64 [·]	42-125	
Phenanthrene	ND	0.667	0.443	66	0.444	67	38-122	
Anthracene	ND	0.667	0.450	67	0.465	70	46-135	
Fluoranthene	ND	0.667	0.483	72	0.495	74	50-132	
Pyrene	ND	0.667	0.471	71	0.506	76	53-126	
Benzo[a]anthracene	ND	0.667	0.459	69	0.464	70	42-139	
Chrysene	ND	0.667	0.478	72	0.485	73	46-136	
Benzo[b]fluoranthene	ND	0.667	0.465	70	0.477	72	48-137	
Benzo[k]fluoranthene	ND	0.667	0.492	74	0.477	71	45-144	
Benzo[a]pyrene	ND	0.667	0.460	69	0.463	69	51-139	
Indeno(1,2,3-c,d)pyrene	ND	0.667	0.452	68	0.470	71	32-153	
Dibenz[a,h]anthracene	ND	0.667	0.410	61	0.428	64	40-131	
Benzo[g,h,i]perylene	ND	0.667	0.452	68	0.462	69	30-138	
		RPD						•
	RPD	Limit	Flags					
Naphthalene	3.9	33						
Acenaphthylene	3.5	24						
Acenaphthene	2.7	27						
Fluorene	2.0	26						
Phenanthrene	0.12	32						
Anthracene	3.4	20						
Fluoranthene	2.4	43						
Pyrene	7.1	31						
Benzo[a]anthracene	1.2	22						
Chrysene	1.3	24						
Benzo[b]fluoranthene	2.5	23						
Benzo[k]fluoranthene	3.1	23						
Benzo[a]pyrene	0.57	24						
Indeno(1,2,3-c,d)pyrene	3.9	21						
Dibenz[a,h]anthracene	4.3	14						
Benzo[g,h,i]perylene	2.3	18						

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

PCBs by EPA 8082

Date Extracted:	2-14-03
Date Analyzed:	2-14-03

Matrix: Soil Units: mg/kg (ppm)

Lab ID:	02-039-10
Client ID:	D-Geo-3: 8 ft

	Result	PQL
Aroclor 1016:	ND	0.056
Aroclor 1221:	ND	0.056
Aroclor 1232:	ND	0.056
Aroclor 1242:	ND	0.056
Aroclor 1248:	ND	0.056
Aroclor 1254:	ND	0.056
Aroclor 1260:	ND	0.056

	Percent	Control
Surrogate	Recovery	Limits
Decachlorobiphenyl	69	41-128

Flags:

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

PCBs by EPA 8082 METHOD BLANK QUALITY CONTROL

57

Date Extracted:	2-14-03
Date Analyzed:	2-14-03

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID:

MB0214S1

	Result	PQL
Aroclor 1016:	ND	0.050
Aroclor 1221:	ND	0.050
Aroclor 1232:	ND	0.050
Aroclor 1242:	ND	0.050
Aroclor 1248:	ND	0.050
Aroclor 1254:	ND	0.050
Aroclor 1260:	ND	0.050

	Percent		Control
Surrogate	Recovery		Limits
Decachlorobiphenyl	85	•	41-128

Flags:

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

PCBs by EPA 8082 MS/MSD QUALITY CONTROL

Date Extracted:	2-14-03
Date Analyzed:	2-15-03

·. . ·

Matrix: Soil Units: mg/kg (ppm)

Lab ID: 02-047-03

Spike Level:

0.500

		Percent		Percent	
	MS	Recovery	MSD	Recovery	RPD
Aroclor 1260:	0.514	103	0.479	96	7.0
PQL	0.050		0.050		
	Percent		Percent	Control	
Surrogate	Recovery		Recovery	Limits	
Decachlorobiphenyl	88		84	41-128	

Flags:

PCBs by EPA 8082 SPIKE BLANK QUALITY CONTROL

Date Extracted:	2-14-03		
Date Analyzed:	2-14-03		
Matrix:	Soil		
Units:	mg/kg (ppm)		
Lab ID:	SB0214S1		
Spike Level:	0.500		
	Result	Percent Recovery	
Aroclor 1260:	0.435	87	
	Percent	Control	
Surrogate	Recovery	Limits	
Decachlorobiphenyl	89	41-128	

Flags:

TOTAL METALS EPA 6010B/7471A

60

Date Extracted:	2-14-03
Date Analyzed:	2-14&18-03

Matrix: Soil Units: mg/kg (ppm)

Lab ID:	02-039-10			
Client ID:	D-Geo-3:8ft			

Analyte	Method	Result	PQL
Arsenic	6010B	ND	11
Barium	6010B	53	2.8
Cadmium	6010B	ND	0.56
Chromium	6010B	22	0.56
Lead	6010B	ND	5.6
Mercury	7471A	ND	0.28
Selenium	6010B	ND	11
Silver	6010B	ND	0.56

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

.

TOTAL METALS EPA 6010B/7471A METHOD BLANK QUALITY CONTROL

Date Extracted:	2-14-03
Date Analyzed:	2-14&18-03

Matrix: Soil Units: mg/kg (ppm)

Lab ID: MB0214S1&MB0214S3

Analyte	Method	Result	PQL
Arsenic	6010B	ND	10
Barium	6010B	ND	2.5
Cadmium	6010B	ND	0.50
Chromium	6010B	ND	0.50
Lead	6010B	ND	5.0
Mercury	7471A	ND	0.25
Selenium	6010B	ND	10
Silver	6010B	ND	0.50

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL METALS EPA 6010B/7471A DUPLICATE QUALITY CONTROL

Date Extracted: 2-14-03 Date Analyzed: 2-14&18-03

٠.

Matrix: Soil Units: mg/kg (ppm)

Lab ID: 02-039-10

Analyte	Sample Result	Duplicate Result	RPD	PQL	Flags
Arsenic	ND	ND	NA	10	
Barium	47.2	52.9	. 11	2.5	
Cadmium	ND	ND	NA	0.50	
Chromium	19.3	20.1	4.3	0.50	
Lead	ND	ND	NA	5.0	
Lead	ND	ND	NA	0.25	
Selenium	ND	ND	NA	10	
Silver	ND	ND	NA	0.50	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL METALS EPA 6010B/7471A MS/MSD QUALITY CONTROL

Date Extracted:	2-14-03
Date Analyzed:	2-14&18-03

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID: 02-039-10

Analyte	Spike Level	MS	Percent Recovery	MSD	Percent Recovery	RPD	Flags
Arsenic	100	84.6	85	96.9	97	14	
Barium	100	156	109	152	105	2.4	
Cadmium	50	44.9	90	45.7	91	1.8	
Chromium	100	110	91	115	95	4.0	
Lead	250	225	90	226	90	0.48	
Mercury	1.0	0.890	89	0.902	90	1.3 ·	
Selenium	100	90.4	90	99.4	99	9.5	
Silver	50	46.2	92	46.7	93	0.94	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL LEAD EPA 6010B

Date Extracted: Date Analyzed:	2-14-03 2-18-03	· .	
Matrix: Units:	Soil mg/kg (ppm)		
Client ID	Lab ID	Result	PQL
D-Geo-1:4-8ft	02-039-01	7.1	5.7
D-Geo-1:8-12ft	02-039-02	ND	5.8
D-Geo-2:4-8ft	02-039-05	12	5.5
D-Geo-2:15-17ft	02-039-08	ND	6.0
D-Geo-3:4-7ft	02-039-09	5.4	5.3
D-Geo-5:7-8ft	02-039-14	ND	6.2
D-Geo-6:10-10.5ft	02-039-16	ND	5.7
D-Geo-6:7-8ft	02-039-17	ND	5.7
D-Geo-6:8ft	02-039-19	ND	5.4
D-MW-1:5-6.5ft	02-039-20	ND	5.6
D-MW-1:8-9.5ft	02-039-21	ND	5.8
D-MW-2:5-6.5ft	02-039-22	ND	5.6
D-MW-3:5-6.5ft	02-039-23	20	5.8
D-MW-4:5-6.5ft	02-039-24	14	5.6
D-MW-5:5-6.5ft	02-039-25	40	5.5
D-MW-5:9.5-11ft	02-039-26	ND	5.6

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

64

TOTAL LEAD EPA 6010B METHOD BLANK QUALITY CONTROL

Date Extracted:	2-14-03
Date Analyzed:	2-18-03

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID: MB0214S3

Analyte	Method	Result	PQL
Lead	6010B	ND	5.0

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL LEAD EPA 6010B DUPLICATE QUALITY CONTROL

Date Extracted:2-14-03Date Analyzed:2-18-03

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID: 02-039-10

Analyte	Sample Result	Duplicate Result	RPD	Flags	PQL
Lead	ND	ND	NA		5.0

TOTAL LEAD EPA 6010B MS/MSD QUALITY CONTROL

Date Extracted:	2-14-03
Date Analyzed:	2-18-03

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID: 02-039-10

Analyte	Spike Level	MS	Percent Recovery	MSD	Percent Recovery	RPD	Flags
Lead	250	225	90	226	90	0.48	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

67

DISSOLVED METALS EPA 200.8/7470A

Date Filtered:	2-11-03
Date Analyzed:	2-11&12-03
Matrix:	Water
Units:	ug/L (ppb)
Lab ID:	02-039-12

Client ID: D-Geo-3

Analyte	Method	Result	PQL
Arsenic	200.8	ND	3.0
Barium	200.8	ND	25
Cadmium	200.8	ND	4.0
Chromium	200.8	ND	10
Lead	200.8	ND	1.0
Mercury	7470A	ND	.50
Selenium	200.8	ND	5.0
Silver	200.8	ND	10

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

68

DISSOLVED METALS EPA 200.8/7470A METHOD BLANK QUALITY CONTROL

Date Filtered:	2-11-03
Date Analyzed:	2-11&12-03
Matrix:	Water
Units:	ug/L (ppb)

Lab ID: MB0211D1

Analyte	Method	Result	PQL
Arsenic	200.8	ND	3.0
Barium	200.8	ND	25
Cadmium	200.8	ND	4.0
Chromium	200.8	ND	10
Lead	200.8	ND	1.0
Mercury	7470A	ND	0.50
Selenium	200.8	ND	5.0
Silver	200.8	ND	10

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

DISSOLVED METALS EPA 200.8/7470A DUPLICATE QUALITY CONTROL

Date Filtered:	2-11-03
Date Analyzed:	2-11&12-03

Matrix:	Water
Units:	ug/L (ppb)

Lab ID: 02-039-12

Analyte	Sample Result	Duplicate Result	RPD	PQL	Flags
Arsenic	ND	ND	NA	3.0	
Barium	ND	ND	NA	25	
Cadmium	ND	ND	NA	4.0	
Chromium	ND	ND	NA	10	
Lead	ND	ND	NA	1.0	
Mercury	ND	ND	NA	0.50	
Selenium	ND	ND	NA	5.0	
Silver	ND	ND	NA	10	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

DISSOLVED METALS EPA 200.8/7470A MS/MSD QUALITY CONTROL

Date Filtered:	2-11-03
Date Analyzed:	2-11&12-03

Matrix:	Water
Units:	ug/L (ppb)

Lab ID: 02-039-12

Analyte	Spike Level	MS	Percent Recovery	MSD	Percent Recovery	RPD	Flags
Arsenic	100	102	102	101	101	0.44	
Barium	100	101	101	101	101	0	
Cadmium	100	102	102	101	101	0.30	
Chromium	100	103	103	103	103	0	
Lead	100	103	103	103	103	0	
Mercury	5.0	5.27	105	4.91	98	. 7.1	
Selenium	100	102	102	102	102	0	
·Silver	100	106	106	113	113	6.1	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

DISSOLVED LEAD EPA 200.8

Date Filtered:	2-11-03
Date Analyzed:	2-12-03

Matrix:	Water
Units:	ug/L (ppb)

Client ID	Lab ID	Result	PQL
D-Geo-5	02-039-15	ND	1.0
D-Geo-6	02-039-18	ND	[.] 1.0

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

DISSOLVED LEAD EPA 200.8 METHOD BLANK QUALITY CONTROL

Date Filtered: Date Analyzed:	2-11-03 2-12-03		
Matrix: Units:	Water ug/L (ppb)		

Lab ID: MB0211D1

AnalyteMethodResultPQLLead200.8ND1.0

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

DISSOLVED LEAD EPA 200.8 DUPLICATE QUALITY CONTROL

Date Filtered: 2-11-03 Date Analyzed: 2-12-03

Matrix: Water Units: ug/L (ppb)

Lab ID: 02-039-12

Analyte	Sample Result	Duplicate Result	RPD	PQL	Flags
Lead	ND	ND	NA	1.0	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

DISSOLVED LEAD EPA 200.8 MS/MSD QUALITY CONTROL

Date Filtered: 2-11-03 Date Analyzed: 2-12-03

. .

Matrix:	Water
Units:	ug/L (ppb)

Lab ID: 02-039-12

Analyte	Spike Level	MS	Percent Recovery	MSD	Percent Recovery	RPD	Flags
Lead	100	103	103	103	103	0	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

% MOISTURE

Date Analyzed: 2-13-03

Client ID	Lab ID	% Moisture
D-Geo-1:10.5-12ft	02-039-01	12
D-Geo-1:8-12ft	02-039-02	14
D-Geo-1:4-8ft	02-039-05	9.0
D-Geo-2:15-17ft	02-039-08	16
D-Geo-3:4-7ft	02-039-09	5.0
D-Geo-3:8ft	02-039-10	11
D-Geo-4:4-5ft	02-039-13	14
D-Geo-5:7-8ft	02-039-14	19
D-Geo-6:10-10.5ft	02-039-16	13
D-Geo-6:7-8ft	02-039-17	12
D-Geo-6:8ft	02-039-19	7.0
D-MW-1:5-6.5ft	02-039-20	10
D-MW-1:8-9.5ft	02-039-21	14
D-MW-2:5-6.5ft	02-039-22	11
D-MW-3:5-6.5ft	02-039-23	14
D-MW-4:5-6.5ft	02-039-24	11
D-MW-5: 5-6.5ft	02-039-25	9.0
D-MW-5:9.5-11ft	02-039-26	11

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Data Qualifiers and Abbreviations

A - Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.

B - The analyte indicated was also found in the blank sample.

C - The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.

D - Data from 1: ____ dilution.

E - The value reported exceeds the quantitation range, and is an estimate.

F - Surrogate recovery data is not available due to the high concentration of coeluting target compounds.

G - Insufficient sample quantity for duplicate analysis.

H - The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.

I - Compound recovery is outside of the control limits.

J - The value reported was below the practical quantitation limit. The value is an estimate.

K - Sample duplicate RPD is outside control limits due to sample inhomogeniety. The sample was re-extracted and re-analyzed with similar results.

L - The RPD is outside of the control limits.

M - Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.

O - Hydrocarbons outside the defined gasoline range are present in the sample.

P - The RPD of the detected concentrations between the two columns is greater than 40.

Q - Surrogate recovery is outside of the control limits.

S - Surrogate recovery data is not available due to the necessary dilution of the sample.

T - The sample chromatogram is not similar to a typical _____

U - The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

V - Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.

W - Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.

X - Sample extract treated with a silica gel cleanup procedure.

Y - Sample extract treated with an acid cleanup procedure.

Z – Diesel Fuel result is being impacted by the presence of Gasoline Range Hydrocarbons.

ND - Not Detected at PQL

MRL - Method Reporting Limit

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

```
File : D:\HPCHEM\2\DATA\1030213\0213C18.D
Operator : TK
Acquired : 13 Feb 2003 23:50 using AcqMethod C1007.M
Instrument : Isaac
Sample Name: 02-039-01 ACU
Misc Info : 3
Vial Number: 18
```


File :	D:\HPCHEM\2\DATA\1030213\0213C19.D
Operator :	TK
Acquired :	14 Feb 2003 00:31 using AcqMethod C1007.M
Instrument :	Isaac
Sample Name:	02-039-02 ACU
Misc Info :	3
Vial Number:	19

File : D:\HPCHEM\2\DATA\1030213\0213C20.D
Operator : TK
Acquired : 14 Feb 2003 1:13 using AcqMethod C1007.M
Instrument : Isaac
Sample Name: 02-039-05 ACU
Misc Info : 3
Vial Number: 20


```
File : D:\HPCHEM\2\DATA\1030213\0213C21.D
Operator : TK
Acquired : 14 Feb 2003 1:54 using AcqMethod C1007.M
Instrument : Isaac
Sample Name: 02-039-08 ACU
Misc Info : 3
Vial Number: 21
```


File :	D:\HPCHEM\2\DATA\I030213\0213D17.D
Operator :	ТК
Acquired :	13 Feb 2003 23:08 using AcqMethod C1007.M
Instrument :	Isaac
Sample Name:	02-039-09 ACU
Misc Info :	4
Vial Number:	67


```
File : D:\HPCHEM\2\DATA\1030213\0213D18.D
Operator : TK
Acquired : 13 Feb 2003 23:50 using AcqMethod C1007.M
Instrument : Isaac
Sample Name: 02-039-10 ACU
Misc Info : 4
Vial Number: 68
```


File : D:\BTEX\DATA\D030214\0214028.D Operator : Acquired : 15 Feb 2003 4:19 using AcqMethod 0130BTEX.M Instrument : BTEX Sample Name: 02-039-08 1:100 Aisc Info : Vial Number: 28

File : D:\BTEX\DATA\D030214\0214009.D
Operator :
Acquired : 14 Feb 2003 17:41 using AcqMethod 0130BTEX.M
Instrument : BTEX
Sample Name: 02-039-09
Misc Info :
Vial Number: 9

λ.

: D:\BTEX\DATA\D030214\0214029.D File Operator : Acquired : 15 Feb 2003 Instrument : BTEX using AcqMethod 0130BTEX.M 4:53 Sample Name: 02-039-10 1:100 Misc Info : Vial Number: 29

File : D:\BTEX\DATA\D030214\0214019.D Operator : Acquired : 14 Feb 2003 23:18 using AcqMethod 0130BTEX.M Instrument : BTEX Yample Name: 02-039-13 Aisc Info : Vial Number: 19

,

: D:\BTEX\DATA\D030214\0214020.D File Operator : Acquired : 14 Feb 2003 23:51 Instrument : BTEX Operator using AcqMethod 0130BTEX.M Sample Name: 02-039-14 Misc Info : Vial Number: 20

File : D:\BTEX\DATA\D030214\0214016.D Operator : Acquired : 14 Feb 2003 21:37 using AcqMethod 0130BTEX.M Instrument : BTEX Sample Name: 02-039-16 1:100 Misc Info : Vial Number: 16

۰ ...

File : D:\BTEX\DATA\D030214\0214021.D Operator : Acquired : 15 Feb 2003 00:25 using AcqMethod 0130BTEX.M Instrument : BTEX Sample Name: 02-039-17 Misc Info : Vial Number: 21

0214021.D\FID2B

: D:\BTEX\DATA\D030214\0214022.D File Operator : : 15 Feb 2003 00:58 using AcqMethod 0130BTEX.M Acquired Instrument : BTEX Sample Name: 02-039-19 Misc Info : Vial Number: 22

: D:\BTEX\DATA\D030214\0214014.D File Operator : : 14 Feb 2003 20:29 using AcqMethod 0130BTEX.M Acquired Instrument : BTEX Sample Name: 02-039-20 Misc Info : Vial Number: 14

: D:\BTEX\DATA\D030214\0214023.D File Operator : : 15_Feb 2003 Acquired 1:32 using AcqMethod 0130BTEX.M Instrument : BTEX Sample Name: 02-039-21 Misc Info : Vial Number: 23

2.-

File : D:\BTEX\DATA\D030214\0214030.D Operator : Acquired : 15 Feb 2003 5:26 using AcqMethod 0130BTEX.M Instrument : BTEX Jample Name: 02-039-22 1:100 Misc Info : Vial Number: 30

۴.,

×2.-

File : D:\BTEX\DATA\D030214\0214024.D
Operator :
Acquired : 15 Feb 2003 2:05 using AcqMethod 0130BTEX.M
Instrument : BTEX
Sample Name: 02-039-23
Misc Info :
Vial Number: 24

File : D:\BTEX\DATA\D030214\0214025.D Operator : Acquired : 15 Feb 2003 2:39 using AcqMethod 0130BTEX.M Instrument : BTEX Ample Name: 02-039-24 Misc Info : Vial Number: 25

	File :	D:\HPCHEM\2\DATA\I030213\0213D19.D
	Operator :	TK
)	Acquired :	14 Feb 2003 00:31 using AcqMethod C1007.M
	Instrument :	Isaac
	Sample Name:	02-039-13 ACU
	Misc Info :	4
	Vial Number:	69


```
File : D:\HPCHEM\2\DATA\I030213\0213D20.D
Operator : TK
Acquired : 14 Feb 2003 1:13 using AcqMethod C1007.M
Instrument : Isaac
Sample Name: 02-039-14 ACU
Misc Info : 4
Vial Number: 70
```


File : D:\HPCHEM\2\DATA\1030214\0214C08.D Operator : TK Acquired : 14 Feb 2003 16:31 using AcqMethod C1007.M Instrument : Isaac Sample Name: 02-039-16 (5X) ACU Misc Info : 3 Vial Number: 8

File : D:\ Operator : TK	HPCHEM\2\D	ATA\103021	13\02131	D23.D	
Acquired : 14 Instrument : I Sample Name: 02- Misc Info : 4 Vial Number: 73	saac		using A	AcqMethod	C1007.M


```
File : D:\HPCHEM\2\DATA\1030213\0213D24.D
Operator : TK
Acquired : 14 Feb 2003 3:58 using AcqMethod C1007.M
Instrument : Isaac
Sample Name: 02-039-19 ACU
Misc Info : 4
Vial Number: 74
```



```
File : D:\HPCHEM\2\DATA\1030213\0213D25.D
Operator : TK
Acquired : 14 Feb 2003 4:40 using AcqMethod C1007.M
Instrument : Isaac
Sample Name: 02-039-20 ACU
Misc Info : 4
Vial Number: 75
```


File : D:\HPCHEM\2\DATA\1030213\0213C23.D Operator : TK Acquired : 14 Feb 2003 3:17 using AcqMethod C1007.M Instrument : Isaac Sample Name: 02-039-21 ACU Misc Info : 3 Vial Number: 23

, -

File : D:\HPCHEM\2\DATA\I030213\0213C24.D
Operator : TK
Acquired : 14 Feb 2003 3:58 using AcqMethod C1007.M
Instrument : Isaac
Sample Name: 02-039-22 ACU
Misc Info : 3
Vial Number: 24


```
File : D:\HPCHEM\2\DATA\1030213\0213C25.D
Operator : TK
Acquired : 14 Feb 2003 4:40 using AcqMethod C1007.M
Instrument : Isaac
Sample Name: 02-039-23 ACU
Misc Info : 3
Vial Number: 25
```


File :	D:\HPCHEM\2\DATA\1030213\0213D26.D
Operator :	ТК
Acquired :	14 Feb 2003 5:21 using AcqMethod C1007.M
 Instrument :	
Sample Name:	02-039-24 ACU
Misc Info :	4
Vial Number:	76

File : D:\HPCHEM\2\DATA\I030213\0213C26.D
Operator : TK
Acquired : 14 Feb 2003 5:21 using AcqMethod Cl007.M
Instrument : Isaac
Sample Name: 02-039-25 ACU
Misc Info : 3
Vial Number: 26

File : D:\HPCHEM\2\DATA\I030213\0213D27.D
Operator : TK
Acquired : 14 Feb 2003 6:03 using AcqMethod C1007.M
Instrument : Isaac
Sample Name: 02-039-26 ACU
Misc Info : 4
Vial Number: 77

File: D:\ARCHON\DATA\H030212\0212004.DOperator:Acquired: 12 Feb 2003 13:33Instrument: Archonβample Name:02-039-12bWMisc Info:Vial Number:4

File : D:\ARCHON\DATA\H030211\0211023.D Operator : Acquired : 12 Feb 2003 1:01 using AcqMethod 0127BTEX.M Instrument : Archon Sample Name: 02-039-15cW Misc Info : Vial Number: 23

File : D:\ARCHON\DATA\H030211\0211026.D Operator : Acquired : 12 Feb 2003 2:45 using AcqMethod 0127BTEX.M Instrument : Archon Sample Name: 02-039-18aW Misc Info : Vial Number: 26

File : D:\HPCHEM\2\DATA\1030213\0213D09.D Operator : TK Acquired : 13 Feb 2003 17:36 using AcqMethod C1007.M Instrument : Isaac Sample Name: 02-039-12 ACU Misc Info : 4 Vial Number: 59

File :	D:\HPCHEM\2\DATA\1030213\0213D10.D
Operator :	TK
Acquired :	13 Feb 2003 18:17 using AcqMethod C1007.M
Instrument :	Isaac
Sample Name:	02-039-15 ACU
Misc Info :	
Vial Number:	60


```
File : D:\HPCHEM\2\DATA\1030213\0213D11.D
Operator : TK
Acquired : 13 Feb 2003 18:59 using AcqMethod C1007.M
Instrument : Isaac
Sample Name: 02-039-18 ACU
Misc Info : 4
Vial Number: 61
```


File : D:\BTEX\DATA\D030214\0214006.D Operator : Acquired : 14 Feb 2003 16:00 using AcqMethod 0130BTEX.M Instrument : BTEX Sample Name: 02-039-01 Aisc Info : Vial Number: 6

15

File : D:\BTEX\DATA\D030214\0214007.D Operator : Acquired : 14 Feb 2003 16:34 using AcqMethod 0130BTEX.M Instrument : BTEX Sample Name: 02-039-02 1:100 Misc Info : Vial Number: 7

File : D:\BTEX\DATA\D030214\0214008.D Operator : Acquired : 14 Feb 2003 17:08 using AcqMethod 0130BTEX.M instrument : BTEX sample Name: 02-039-05 Aisc Info : Vial Number: 8

Site					Ĵ.		Ch	ai	n	of	C	us	ste	d	y			-	Pa	^{ige} –		. of _	3	
Environmental Inc. 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • Fax: (425) 885-4603		Turnaround {in workin	l Reques Ig days)	st	La	bol	rato	ory	Nur	nbe	er:	0	2.	- 0	2	۵								
Company: Kane Environ wontil Im		(Check	: One)				Ī	ſ	Ĭ			Re	eque ∣	este	d Ar	naly:	sis	*				• •		
Project Number: $\bigcirc 2902$		Same Day		1 Day					8260B											~				
Project Name: John Bridgeway		2 Day		3 Day					δ	8270C					(8)					5	ά			
Project Manager: John Kone	- - - - -	Standard (7 w	orking d	ays)	0	BTEX		260B	Volatile	by 82	ပွ	N	8081	81514	Aetals ($\overline{}$	Ċ			
Sampled by: Ica Young & John Kone		(oth	ner)		H-HCID	NWTPH-Gx/BTEX	NWTPH-Dx	Volatiles by 8260B	Halogenated Volatiles	Semivolatiles by	PAHs by 8270C	PCB's by 8082	esticides by 8081	Herbicides by 8151A	Total RCRA Metals (8)	ICLP Metals	HEM by 1664			ta 1	Нd		sture	
Lab ID Sample Identification	Date Sampl		Matrix	# of Cont.	NWTP	IM	NWT	Volatil	Halog	Semiv	PAHs	PCB's	Pestic	Herbic	Total F	TCLP	HEW	HdV	ЕРН	5	po po		% Moisture	: : 2
1 D-GRO-1:4-81t	7.8.0	03 13:05	5	 		\times	×													\times				7
2 D. (Jes-1: 8-12 1.4		13:15	5	i 		×	×		×											X				
3 D-Ges-1 12 15 ft		13:30	5																	Ì				~
4 D. Ces- 2:0-4/ft	_	11:15	5	1																			-	-
5 D-Gara 4.81t		11. 20	5	!		×	×										1			×				-
6 J-Ces 2: 12 jt		11 30	5	1													-							
1 D. Geo 2 15 1t		11.50	5	1												-								
& D-Geo-2. 15 17 ft		12 10	5	1		K	X	X					T							X	X			
9 D. Gro- 3: 41-7 Ft		15:30	5	1		X	X					-								X				7
10 D-60.3: 8ft	\checkmark	15:35	5				×	X			X	X			X				9	1 Dec	\times			「
Signature Relinquished by		Company	<u> </u>		ſ	Date			Time			Con	nment	s/Spe	cial Ir	istruc I	tions:		- /					Ę
Received by		Kan ! Kawit	- ALIN	RALIN	H	$\frac{b'}{b}$	<u>/o:</u> [x]	<u>05</u> 02	76 (.		-	`	s út	أرد	~ C	<u>ן</u>	'/'	Gl.	1.61		<i>a</i>) i	- h		
Relinquished by		Kault		uuu	u.r			<u>05</u> (13)		<u> </u>	<u>~</u>	<i>c</i> 	;//.	1	PH	- 1) × (Ş6	mp	le >	هر .	1/	ζ	
Received by Sta Cha DILALL		OnSite					iv-v		1	<u></u> 17]	<u> </u>	1	jrou	h cl		Γr ,	J		,	1. [
Relinquished by			<u> </u>	·	28	0-1				<u></u> ۲		1	7	[+,	r h	,+, :	c	E	/.	د 2			•	
Received by									ļ	<u> </u>			£	• ••••	•	.}	•							
Reviewed by/Date		Reviewed	by/Date									Ch	<u>tom</u> a	utogr	amş	with	final	repo	ng	/-				-

DISTRIBUTION LEGEND: White - OnSite Copy Yellow - Pink - Client Copy

A LSite					e	(h	aiı		Df	Ci	lis	to	d	ÿ.				Pa	 .ge			3	
Environmental Inc. 14648 NE 95th Street - Redmond, WA 98052		Turnaround (in workin		st	La	bor	ato	ry I	Nur	nbe	er:	0	2	- ()3	ĝ					-			
Phone: (425) 883-3881 · Fax: (425) 885-4603 Company: Kahe Enywhhentel Juc Project Number:		(Check	One)					-	_			Re	que	ste	d An	naly:	sis					-42		
02902	Sa	me Day		1 Day					8260B													الأفط	5	til
Project Name: Bridge way				3 Day					~	70C				-	(8)			~		led.	5	RCTH	Lod	7
Project Manager: John Kana		andard (7 wo	orking d	ays)		BTEX		260B	Volatile	by 82:	ပ္ပ	22	8081	/ 8151/	Aetals -			tone	8 F	7	is a	1,0	`	
Sampled by: Ien Vouns & John Kane		(oth	ner)		WTPH-HCID	NWTPH-Gx/BTEX	хо-н	Volatiles by 8260B	Halogenated Volatiles by	Semivolatiles by 8270C	PAHs by 8270C	PCB's by 8082	Pesticides by 8081	Herbicides by 8151A	Total RCRA Metals	TCLP Metals	HEM by 1664	Ke tone	MT	761	11	1.5	-2	isture
Lab ID Sample Identification	Date Sampled	Time Sampled	Matrix	# of Cont.	NWTP	NWTP	NWTPH-Dx	Volatil	Haloge	Semiv	PAHs	PCB's	Pestic	Herbio	Total F	TCLP	HEM	HđA	Hdæ	$\mathcal{F}_{\mathbb{C}}$	1 del	Ē	5	%-W0
11 D-60-3: 10.5-1211	2.3.03	15.40	5	1																				
1) D- GPO-3		16:00	W	8			X	×										X	X		X	X		
13 D-Geo-4:4.56t		11, 30	د ا	!		×	<																	_
14 D-Geo S 7.8 14		9.15	5	1		×.	×				ļ									×				_
15 D-Geo-5		9:40	W/	7			X	X				<u> </u>	 					X	\times		×		Х	
16 D-Gro-6 10-105 it		10 00	5	1		X	X		_				-	`						\times				
17 D-6eo-6: 7.3 1t		10:05	5	1		X	X	 												X				-
18 D-6-0-6	\checkmark	10.30	W	8	-	X	X	X						ļ				X	X		X		Х	
19 D-600-6: 8 Ft			5	1		X	X									-				Х				Ľ
Signature Relinquished by		Company	Ĺ		1	Date		17	Time		o	Com	ment	s/Spe	ecial li	nstru j	ctions	* • • • •	1 k	161	L	13 h		
Received by Araf Purce		K AV 10	· · · · · · · · · · · · · · · · · · ·	WRA		-	<u>16</u> .		1 2	<u>, (</u>		1,) }	$\overline{\tau}$	ر دا ط	้า	<_``	. (0 19	n l	е.,	י ג	~ n1	.,	
Relinquished by		Kau				1				: <u>)</u>	Ś	- ⁻ -		; n. 1	we	. د [-	/)					
Received by Stacen Munica		An Sile			<u></u>	· •	-1 <u>0</u> - 1 <u>1)-0</u>			:07		1 /	'F	H	20	'n	.r.t.	1,	ē	10	1			
Relinquished by]		_		-								
Received by													_											
Reviewed by/Date			·									Chr	oma	togra	ams	with	final	repo	ort 🕑					

--- ,---

.

DISTRIBUTION LEGEND While OnSite Conv. Yellow . Report Conv. Pink . Client Conv.

	A		-		.	т. Б	- (h	air	<u>)</u> (ĵf (Cu	sti	d	ÿ				Pa	ige'	<u>ب</u> ر ا	?) >
	Environmental Inc. 14648 NE 95th Street • Redmond, WA 98052		Turnaround (in workin	Requés g days)	it 5 /	La	bor	ato	ry N	lun	nbei		02	- () 3	9	_						,
Compa	Rane Enviorment The	- □ Sa	(Check Ime Day		1 Day			•		g			Requ	este	d An	alys	sis						•
Project	Bridspway	21	Day		3 Day					es by 8260B	70C				(8)					eza			ļ
Sample	Project Manager: Juli- Kanc Sampled by: Jon Your, & Juli- Kanc		Standard (7 working days)				NWTPH-Gx/BTEX	ŏ	Volatiles by 8260B	Halogenated Volatiles by	Semivolatiles by 8270C	PCB's by 8082	Pesticides by 8081	Herbicides by 8151A	Total RCRA Metals (8)	etals	1664			41 L			nre
Lab ID		Date Sampled	Time	Matrix	# of Cont.	NWTPH-HCID	NWTPH	NWTPH-DX	Volatiles	Halogen	Semivolatiles by	PCB's by	Pesticide	Herbicid	Total RC	TCLP Metals	HEM by 1664	ИН	ЕРН	101			% Moisture
20	D-MW-1: 5-6.51+2.	<u> . u 3</u>	9:40	5	1		X	X												×			~
21	- D- MW-1: 8-9.51t		9.15	2			X	X										 		\star			-
22	D-MW-2:5.6.5 ft		11.45	5	1		×	×												X			-
23	D-MW-3:5.6.5 H		10:20	5		-	Υ.	×												\prec		<u> </u>	/
, M	D- MW-4: 5-65 H		3.20	5			X	×							<u> .</u>	 	ļ		••••••	Χ.		$\left \right $	-
35	D-MW-5 5-6.5 Ft	1	1:25	5			\times	X							-					X		+	1
26	D-MW-5: 95-11 [+	<u>V</u>	1 40				×	×					+	-				-	•	X			<u> </u>
	•				<u> </u>								_									+	
							-					-+		+	-				/				
Relir	Signature		Company		Date			Time //	: v	C	omme	nts/Sp	ecial I	nstruc	etions	» с с.							
, .	ived by here b		Kan Englowent				12	·// ·	D3	ζ	-:0	Ş	Silice gol/cal weit clockup in all TPH Dx sample, i suit i growthit										
∕ Řece	Received by Stacey Durge			ONSILE ENV.									ە ر	· ~ 1	• ; •	` ک	~ I)	איר	ا مزیا	Wr 41		
	eived by					<u> </u>						·											
Revi	ewed by/Date		Reviewed	by/Date	•••••				I			c	Chromatograms with final report										

DISTRIBUTION | EGEND White . OnSile Conv. Vollow . Banet Conv. Pink . Client Conv.
Attachment B

Geoprobe and Groundwater Monitoring Well Logs

×---

ب – ا

Ļ

Attachment C Field Notes and Underground Detection Service Letter

Saturday Feb 8, 2003 the have. Prove C 7:30 an Meet up driller, Carcade & ESKAW Heidh and Schet neutrig direvin potential for Macting gardie product and heed for tyux ad respirito, Makel dille, locotin, fu conent artig On-property locate of Kenp of Underground Detection Services Jan Youn a auger Ny John Kare a Gergrobe. Stat. gasgrobe in southen grand paking lot south of Belfor Africe bldg. Weather overcost, no rain. · · ·

Geographe D-Geo-5 start Pam. 0-4 /t. 25% recom grand surface, dk. Som med som silt, sand c 3.5 4-8 denser e 6.5' 100% rec. med born to & w/ inn sking it 7.5' no odor 8-12 grand @ 10.5' 100 boxec. 8.5° . Hzo c 9.5' grad it appears to ke fill grad ~ 2" Thick. Hoeq' • •

. . . .

18 19 D-(-ev-4 article "allegung" D.MW-3 north & D-MW-1 no Floating product 19.20 TD 0-2 Som lan 2-4' Anie - graine 502 10.41 Ho med son silly sand 752 TPS 15 2^H 7 some grout : no odo. SY 635 7.55 325 - 4-5' silty; fine - grainl sand und South no oder 55.7 7.50 568 285 7.18 55.9 553 276 rafuel e 5'67. 55.5 7.34 clar 549 27Y Thursday Februar 13, 2003 former N. dispenser D-MW-2 - 1 Bridgewy Supe -18.72 TS D-MW-1 - no Floching poduct 8.13 420 9.59 19.30 TD 12.22 Hzo T. us TPS PH 7.08 pH I ms TP) 7.32 -54.1 736 367 7.6Y 55.2 706 6.58 54.5 1630 - 813 < 1 gd. cloudy 353 7.74 55.4 870 433 slighty cloudy 6.96 54.7 1084 538 well went dy drag 7.01 54.9 1030 576 groundwate rayling; had to turn pump on E off. 7.10 54.2 967 493 cles

D-Gao-2 14:20 1/2" PVC placed in hole for over 1 hr. worthine

an bottom but inst enough to

well. 15-16' TD 1" PVC

010 slot scren 10-20 sand

lenter consite cap.

sayle groundwater.

D-(5-e)-1

16

D-Geo-3 15:10 ned Som silty sand w/ grovel. 80 % 4-3' fill to er silly sand c e' 802 v. strong petroleum odar 'dkgray. 8-12' silly same u/ gran med boar charge to med grag c 10.5. Collectel' sample 10.5 to 12' ston, volor at 10.5 to 12' no oder 8-10.5 12-16 silly sand at 12'-17'

12.16 silt sand et 12'-17' Let, ned grap silt sand stron, odar appears work med-grained (larger grained).t 14'to 16'. H20 e 12'

14 D-Geo-2 12-15 split spon sampled 0 15 (gres) appears to be a fende 1 Contrintel in / et 12-13' Der med-Soon fie sand up grand Aven 13-15 high same ober. lenge c 12-13' al 15' i) med son coler strong petrolour ode in gray Gray Soil dies not experie to be larger grained the ste voit 4 the Urplit spor D-6-2 14-17 Solo vecorer med gran at 15' to denker gran at dense fine to ned fraind strong pertroleum oda sweet inell at 15' ketones! This sample may be a saturatel sul sample.

D-Geo-1

0-4' fill; med boun silly sand up grand SD To rec. no adar.

4-8' All, briten grand, silty sand, mixed color med grag & med. boun 50 % vec ho odor

8-12 /00 % mixed dease silting clay hed gray some oder, hed broken silf sand v. slight oder. 12.15' split spon. Bolo rec. meil to de grap silly Sand; dans strong petroleun odar. 13.5 - 16.5 split spoun. appecs 75% strong odar saturtel, setting mini-nell botten

15

12 D-6e0-6 0-4 grave sitting gant fill fill more color dt. brown, med boom I" charcod c 3.5' 100 % rec. 4-8 Concrete fill 5-7' 7-8' sv/1-mod. 5row Sand. 10020 rec. 10' 5, galolife - contraited dk. grd 4. Snl v. strong odor Gollected Sample 10-10. s' fr PID Diesel / (54) ados less intense to 10.5 to 12 bit skill pronet. sand lence 10-10.5 grand olelying and underly is suit.

13 Diend/Gasoline contemintel sal is ned-gray - overlyig sil rod. Brow. 1420 29' Photo #100 - 0880 D-60-2 D-Geo-2 SE comer 2nd (southin) storage Using tractor - mountail geopole. 0-41 gravel fill up large brother (1.8") rock stone, no odor. 25% recom 4-9' fill, more clay 90% for 6-9' vec. hed bow silly sind lif grad 8-12' med brown foresand 9-10' 900 more day 10-11. 5 rec. rust staining C 11': distinct change to gray silly sand 11.5" strong odor

2/8/03 Bridgeway Proparty 8:00 Arrive on ote. Mut with Coscodo crow. 8:20 Toking -ell mansurements. MW. : 8.35 A to TOC 8:50 Bayinning drilling on DiMW-1. 9:20 By:ming construction of D-MW-1. 10:00 Moving onto D- MW. 3 10:30: Hard drilling . Sampler spoon broken ~ 8 ft. Shoe in hole. Drollars hoping to droll post. Simple she loft in hote. 11:35. Satting up on D.MW.2. 11:45. Noted darknow of shallow soil sutting , and PID cooling of 2.6 in ambient atmosphere e 5-6.5 17 4.3 mbiant PID ~ 870 in braged sample 12:15 p. Constructing D-MW-2 PID is andient ot mouphere of 20-3.0 st bachole 50.0-73.0 Advising contion to drill craw. D:50 Soting up on D-MW-5. - Crew, takes lunch brook. 1:20p. Rearing drilling on D-MW-5.

ØЦ 2/8/03 Catid 2:35, Setting op mobile rig in doors on D-TMW-4. 3:40p Rofusol on D-MW-4. 8.5 Ft kgs. Raising engers reveals concrete dust on bit. Probably mold slab. John ergs to keep trying to brook through. Craw says they will try, but will not risk bracking rig. 4:10p Encastaing what goin opposes to be concrete slab at D. 5 ft bys. Attompting to brook through as before. 4:30p HSA rig unoble to brook slob. Will sot up Goo Probe on D-MW-4 and see if we can brack it. It so, we will sot 2 "mini-well". 4:55p GaoProbe bagins hommering of approximately 5:00 p Progress Hommer odvaces. 5:30 Sotting woll 5:45, Voperting -ite

2/11/03 c 2:30p - 3:00p deaung Property - DTW mersuroments. 12.40'-odor 12:87' 1 -Geo-12:2/ MW-5 2/3/03 Bridgeway Property 9:50, Arrive en oite Open D-MW.1. DTW. messvroment. 10.102 Surging yell with briler 10: 5= Odor noted in D. MW-1, but no product detected by sight. 10:30. Bagin purging 10:35= Problem with trish pump. Retrieving a replacement. 10:50, Departing este without purging -Sampling. 2/17/08 11:45 Opm D. MW-5 11:50 Surging well with beller. 12:10 p Begin purging well. Rom day it all gol.

Well DTW Tomp US Turb pH D-MV-1 11.25' (Mesure mont to ken on 2/13/02 (Massement taken on 2/13/03 D-MW.5 D.30 58.6 383 192 (2/17/03) 7.0 6.77 D. MW-4 12.15 54.5 512 512 (2/17/03) 253 6.89 D-Geo.1 12.75' 54.9 6 32 6.99 2/17/03 (ct.d) 1:00p Maring to D-MW-4. 1:30 Begin purging with peristallic pump. Strong odor. Punge ~ 3gal. 1:40p Sampling D-MW.4. 2: Kp Moving to D. Geo. I. Strong o dor. 2:30p Sampling D. Goo. I of tor purging ~ 3 gol. 3:00p Existing MW DTW Marguromonts 3.05 MW-1: 6.50' 3:10 MW-2: 6.25' 3:15 MW-3: 8.60 3:20 MW-4: 9.67' 3:25 MW-5: 11.85

9

7	joh Lor Pro Dri Bor	cnt.Nat A/Site D gation gicct.Nu iller illing.M ring.Dia geed.hy	lıme ımber cthod meter	- 75 6	idg e , d e (A		⊋.:II	·~		nc 170 \$2 	• - - 	Urad A Date Sta Date Co Date Co Well De Ground Top.of C Screenes Depth to	mplered relopment Swetzee El Casing Elec Linteerral Dateerral Dateerral	2/4/1 2/4 Date (yiel cration	23 /03 D D D D D D D D D D D D D D D D D D D	Тога 	Drpr			· · · · · · · · · · · · · · · · · · ·	U1	/
D	Depth/Sumple Interval	Time	Sumple ID	PID/Odor		Well Construction	USC Class	Soil Type and Comments		ļ	· +	<u>، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، </u>	Color	Penetration Resistance/ Blow Countr	Moisture	Clay		Sand	Gravel 4	Plasticity	Eរបានsted Permeabដាក្	
	 	<u>8:59</u>			BINK	1. Bui contrate		5ng 51ly	ly Er		F.11	<u> </u>	Brin	-	Dry Ho:st		טו 10 35	60) 5-2	30 <u>f</u> - <u>e</u>		. <u>.</u> <u>H</u>	
5	X		D-MW-1- 5-6= D-MW-	0			5W 5M	152 dy 15:11,	, <i>F.</i> 11			· · · · · · · · · · · · · · · · · · ·	Berw Mollel Berry		Dry			90 90 60			4 1	
A.			,	0	1.010.11	- citer	<u>мі</u> 5М	5.1 5.1	<u>. 3:1</u> hy S.	1	h., c Z	<u></u>	Einhi Gray Reb Gray	22 P 20 19	Moist Wat	(ئ ل ل		3 0 60		3	М М	
15	•			0		~ .	SW.	Grzy	«//y «	5md			Brom Gray Gray		Wat Wat		5	55	2 3 K		 بر 14	
;0 ¹			 				· · ·		· ··	·····						-		90	е 	· · · · ·		ETAI
5 -																						O.ISPECIALTY FIGURESIBORING.SHEETA
,																			-			Q.ISPECIALTY

	(Ticnt Nao Joh/Site N Location Project Nu Dailer Dailing Me Boring Dia Logged by	ame mbcr sthod		.de I	2.11:1	¥	I7	د. ۱ ، ۲۰۰۰ ۲۰۰ ۲۰۰ ۲۰۰ ۲۰۰ ۲۰۰ ۲۰۰ ۲۰۰ ۲۰۰ ۲۰۰ ۲۰۰ ۲۰۰ ۲۰۰ ۲۰		Boring/W PE/RG Uand Aug Date Start Date Com Well Devel Ground Sa Top of Ca Sereened I Depth to y Depth to y Located	ried to red to pleted pleted toppment I utace Else sing Elera nterval	$h_n K$	2 3 03 0		Dspih		P2	£<1	
0	Depth/Sumple Interval	Sumple LD	PID/Odor	K Well Construction	Usc chi.	Soil Type and Comments	Concr Sondy 1	te to			Color Color Color	Penetration Resistance	Day	1 Clay	Silt	- m	No marcel	Plasécity	E Estimated Permeability
	۲ <u>۲</u>	р- МШ. 5.:6•?		VXVXXXX Bun	5.P. 5W	<u> </u>	Dight h	5 ¹ 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			Bize Bize Bize Bize Bize Bize Bize Bize	12 14 20 14 20 14	Dry Moist Dry Wet Wet	-	20 10 5	6 55 - 60 1 - 60 1 - 60 1 - 60 1	15 1-10		<u>₩</u> <u>-</u> <u>H</u> <u>H</u>
1014		· · · ·		CU/C#	5.W	0.	crsional cobbles	.<07730	J ? 7.4		D.II Gray	· · · · · · · · · · · · · · · · · · ·				95 ~~c			
20'	· · ·	·			· · · ·		· · · · · · · · · · · · · · · · · · ·	······································		· · · · · ·			····		•	·····		· · · · · · · · · · · · · · · · · · ·	
s												-					-		O.SPECIALTY FIGURES/BORING-

,	ы Гл Гл Д	icnt Na b/Site I gation_ oject N ciler ciles_M	umber		SA.	Váy Dr.Iliz			170 ×	 ↓ /ul>	-	llonng/W PE/RG Date Starts Date Com Well Derre Ground St Top of Ca Sercened L Depth to P	cied No col pleiced pleiced lopaneat utface Els sing Eler aterral	2/9/9/ 2/8 Date (rich ration	(03 (03)) (- 2)	-Total	Dsps1		20	ες Ι_ ,	st_ / 	-
		ning Di ggcd by		<u>. 9</u> Y								<u>Depth to w</u> Located	<u>nia (spi</u>	<u>b()</u>	<u></u>	<u> </u>			-	<u>.</u>		
		-1 <u></u>	-1								·				· · · · ·							
	Denth/Sample Internal	Time	Sample ID	PID/Odor	Well Construction	USC Class	Soil Type and Comments						Color	Penetration Resistance/ Blow Count	Moisture	Clay		couge	Gravel	Plasticity	Estimated Permeability	
٥		10:01		1-		2		-6	cncret	-106			. :		· · ~				·	<u> </u>	μ 	-
		-		·	1 2 1	57	57.	ly S	5,1ty 1 Besacoa	5.11 k E.11			B		$\overline{\mathcal{D}_{j}}$	· := '	35	60 F- ~	5		H	
			.	[10	<u>.</u>	•	·····					Die li Brou		רביים הבי	-	30	60			H	
2	2-				-	·	- [······	abble ;		,		Brou	<u></u>	Dry F	· ,		.f	Ľ.	- <u>-</u>	<u>~</u>	•
, ,		10:00	D-MW 5-6.	50		MI	5~		As phy IT	vite it e				7	Drog	ĪÓ	=0	10 F-1			м	-
יבי, ר	· · · · · ·			 		<u>.</u>	·			/ B.uka		'- sjoor	-	<u>50/6</u> ?	-						• • •	
n N N	<				100	ML	Smdy Grave	5.17	j				کنونی Grey	20 30 35	D-p Wat	10		40		-	M 	
		<u> </u>			<u>-</u> ,	<u>Sw</u>	5				•••••		Bran				.5	95	===_		_H_	ļ
						··· · · · · · · · · · · · · · · · · ·	· ·	• -	• ••••	· .					 						-	
الح				0	\mathbb{X}^{+}		52			· · · · · · · · · · · · · · · · · · ·						-	5				H	-
			· · · · · · · · · · · · · · · · · · ·		$\left \right\rangle$		~~~· · ·	· · · · · ·				•• • • • • •	G-99	· ··· ·	Wet			4				
			·																			
.ot	4				\mathbb{N}	·									·····							
																	. . .					-
				-				-									-				.	HEET.A
									• •										-			INC-SI
.5 -	$\left \right $																		-			SIBOR
2	1 -																			- -		DISPECIALTY FIGURESIBORING-SHEE
									•											ľ		
0 -									· .													O:\SPE(

1	لم الم الم الم الم الم الم	icnt Na b/Site J gation gicet N cilies ciliog M pring Di gged by	Vame winber lethod ameter			W D.	 بال:مو	Prob	e (Sca 12-14	170	•••••• ~ - 16)		PE/RG Hand Aug Date Star Date Com Well Deve	gered to npleted elopment wrface Eler laterral baterral	a hn -2/8 2/8 Date (rich station ation t encount ic)	/03 /A3 	Total				E <]]		
D	Depth/Sample Interval	11 3:00	Sample ID	PID/Odor	_	Concrata		Soil Type and Coguments	- 		17	 =;]		. color 		Moisture	Clay		fm	Gravel	Plasticity	L Estimated Permeability	
10		3: 25 3: 55	 		0/////	20	5W 5p	e 5:		to 2nd nely	rock ta -	- J. Concre		PK Bren	14 10 14 18 80 29	D.y. D.y.		5	3 - St Street 8			<u>Н</u> Н М	
15 -		<u>4:14</u>		6.7	1/1/1/1/	01#	512 1/1 L	5×	1 -	5; [.] 5; [.]	empec tw./ reto s		×	Bluit	30 \$ 20 39	Donp	-	10 55	40 40	50		++ 	
:0	· · · · · · · · · · · · · · · · · · ·	· · ·						· · · ·		·	· · ·	· · · · · · · · · · · · · · · · · · ·	<u>-</u> 		· · · ·				· · · · ·	-	< - 1 	······································	DRING-SHEET.AI
-5	- - -								· · ·	- -										-			O: SPECIALTY FIGURESIBORING-SHEE

CT-	nt Nam	-								170 è	•		liand. Date S	arte Suge		2/4	103		l Depi				
	Site No	к <u> </u>	Brig	laa	We.								Well D	<u>omp</u> carle	oleted opment [A A	<u>0.3</u>	•.					<u> </u>
	uioa			<u> </u>		,				_					tiace Elec		<u>oj</u> _			-			
	cci Nur	nbcı													ing Elcra								
Dal		\sim	** **	1 a]	2.1	Ting							Screens							• -			
	ling Mc		H.	5 <u>A</u> 5"		-9									ater (first		erca)	11.4	<u>-</u>				
	ng Diar		<u> </u>	5"						_					<u>atar (seni</u>	0							
	gcd_by_		Ţ,	Y							.		Located	<u> </u>		<u>.</u>	(c) 					_	
ntervul							mments			-						ance/	- 43.0		Per	 ccotag 		_	
Depth/Sample Interval		Ð	dor			11	Soil Type and Comments							Ŷ		Penetration Resistance/ Blow Counts	, Tr.						
Depth/	Time	Sample ID	PID/Odor	Well Conservation	e e	USC CLass	Soil Typ.		_		,		,,		Color	Penetrati Blow Co	Moisture	Clav	Sür	Sand	Gravel	Plasocity	
1	12:55		1		- 51				Çø	nere	ite ?	5-5			Jul Brown	; —							
	í				ð T	Sw/	 	522	<i>l</i> g <i>l</i>	E ,1] .					Brown		Deg		- 20	2.75		•	_ -
		·		$\frac{1}{2}$	3	•=		•• ••• •••				••••			· · • · · ·	• • •	·			.			-
	<u>م</u> ۲:	D-MW-5 5-6.5												n 1.									
	·	5-65	. Q.			5 M		_	5						Brown	۲ ۲ ۲	Dry Dry		35	67	1		
/	مجر ۱		0	\mathbb{N}		5W	5.	2- c)		traca	Fir-1	<u>or</u> - 10	1		Biorr	105 00	Dry	-	01	90	-	-	
×7	7:35	<u>D-<i>MW-</i>5</u> ዋ.ና- በ	0	$\overline{V}\overline{V}$	\sum	5₩		Thin	6-4,	a 61.		1		-	Donge To-	-18-	5		01	90		<i></i>	
	1. HO 1:HC		0	1014	, , ,	5W 5P	G	Tri Thin 2 ell	Lund 45	s:17.	heh ,	d	 		Ton .	21 25 21 50/6	Dm7 Wat	-	- - -	100	n	- -	
										·											 		-
											·						 		· ·			- -	
		· ··	······································				··· ·-									• •						·	
			1					•	•			•						-					
				2												• • •	···· ··						
- -									 .		-												
								•				•			-		•				 	• • • •	
		. 																				-	.
									-					ľ									

Underground Detection Services, Corp.

PO Box 5634 Bellevue, WA 98006

425/747-8804, tel 206/282-1866, tel 206/286-9889, fax

Feburary 15, 2003

John Kane Kane Environmental 3831 Stone Way Ave N Seattle, WA 98103-8005

Dear John:

This is a report on the equipment, procedures, and results of the geophysical survey performed at 3876 Bridgeway Avenue N. in Seattle, Washington. The survey was executed on Feburary 8, 2003.

The purpose of the survey was to determine if UST's existed on the site.

The equipment used for the survey included but was not limited to a Schonstedt GA-52 magnetic locator, GSSI Gem-300 multi-frequency electromagnetic (EM) profiler, a GSSI Sir System 2000 ground penetrating radar (GPR) with a 400 MHz antenna, and a MetroTech 810 pipe and cable locator.

The magnetic locator measures the magnetic field simultaneously from two separate elevations within the same piece of equipment. A high pitch sound is emitted from the equipment when in the proximity of ferrous material. The equipment is carried over the survey area and swung back and forth to cover as much area as possible in a reasonable time frame.

The EM produces a sinusoidal signal that is transmitted into the subsurface. This transmitted signal induces a flow of electrical current into the soil. These currents in turn induce a secondary electromagnetic field. The presence or absence of metallic objects and voids affects this secondary field. The secondary electromagnetic field is measured, collected, interpreted and stored for later processing.

The EM was initially set up to record 4 separate frequencies for the survey, from 330Hz to 19950Hz in the continuous survey mode. The multiple frequencies allow for variable depth measurements. The lower the frequency, 330Hz, the greater the depth penetration of the frequency. The higher the frequency, 19950Hz, the more shallow the depth penetration of the frequency. The continuous survey mode was set up to generate the frequencies every $\frac{1}{2}$ second.

Underground Detection Services, Corp.

PO Box 5634 Bellevue, WA 98006

425/747-8804, tel 206/282-1866, tel 206/286-9889, fax

Each frequency is made up of two components, in-phase (I) and quadrature (Q). The in-phase response is typically high with metallic conductors while the quadrature response is typically high with non-metallic conductors. The grid maps are color-coded for easy interpretation. The green areas represent neutral readings, while the red areas represent high readings and possible anomalies. The grid maps are set in feet.

The GPR utilizes high frequency radio waves to probe the subsurface. A radio wave is emitted from the antenna and travels through the soil, if there is an anomaly below the antenna; the radio wave is reflected back. The data that is collected is displayed in real-time through a color display. Printouts can be available after processing on a desktop computer.

The data that is produced is a cross section of the geology directly below the antenna. The top of the data represents the ground surface while the bottom of the page is a reading depth of the equipment. The data is collected and displayed from left to right, with left being the beginning and right being the end of the particular survey line. Anomalies typically appear white on a color screen.

The depth of the signal penetration is dependent upon geological factors beyond the control of the surveyor. Conductive soils, clays, and saturated soils, do not allow the GPR signal to penetrate as deeply as resistive soils, sandy soil.

The EM was not used on this site due to the work was to be performed inside the structure. The GPR was used on an area inside the building.

The grid set for the antenna of the GPR to pass over was 24' x 16'. The antenna was pulled both in an east and south direction. No anomalies were indicated during the survey.

A survey was also performed for any private utilities on the site. Lines were indicated. Inaccessibility to sewer and drains provided less than accurate locate

If you have any questions, please feel free to call.

Respectfully,

Kemp Garcia

Attachment D

Photographs

Photo 1. Bridgeway building looking south across Bridge Way North.

Photo 2. Auger rig drilling at D-MW-3 on the Bridgeway property.

Photo 3. Limited access auger rig drilling at D-MW-4 inside the Bridgeway building.

Photo 4. Limited access Geoprobe rig drilling at location D-GEO-2 inside the Bridgeway building.