

TIME OIL CO.

2737 WEST COMMODORE WAY P.O. BOX 24447 SEATTLE, WA 98199-1233 SEATTLE, WA 98124-0447

December 30, 1991

Washington State Department of Ecology Attention: Joe Hickey 3190 160th Ave. S.E. Bellevue, Wa 98008-5452

RE: Underground Storage Tank Site Check/Site Assessment at Seattle Terminal, 2737 West Commodore Way, Seattle, Wa - Property No. 01-228.

Dear Mr. Hickey:

This letter report is submitted to provide initial information on the removal of underground storage tanks at the above referenced site. The property is located at the north end of the community of Magnolia on the south shore of Salmon Bay in Seattle, Washington (Figure 1). The site is the location of Time Oil Co.'s Seattle Terminal which consists of a two-story office structure, warehouses and above ground storage tanks. Properties surrounding the site are light to heavy marine/industrial.

On September 16, 1991 four tanks were removed by Lee Morse Construction as part of a facility upgrade. They were 4,000, 2,500, 1,500 and 300 gallon capacity tanks that had contained unleaded gasoline, diesel fuel, regular leaded gasoline, and used oil, respectively. See Figures 2 and 3 for tank locations.

The removal of the tanks resulted in two excavations. The gasoline and diesel fuel tanks were removed from excavation #1 and the used oil tank was removed from excavation #2 (Figures 2 and 3).

One 4,000 gallon tank was installed in excavation #1, replacing the former gasoline and diesel fuel tank system. This tank is baffled to provide two compartments of 3,000 and 1,000 gallon capacities and is, therefore, registered as two tanks. The tanks contain regular unleaded gasoline and diesel fuel, respectively. Two new fuel dispensers were also installed replacing the old dispensers.

The following discusses tank removal and sample collection activities, and analytical results.

FIELD INVESTIGATION

The removal of contaminated soil and sample collection was based on organic vapor analysis readings. Soil samples were collected and placed in Zip-lock bags for headspace analysis using a Micro-tip organic vapor analyzer. When head space readings were below 50 parts per million or contaminated soil removal was not feasible, samples were collected.

Samples were collected from the excavation using a backhoe bucket. Each sample was taken from near the teeth of the backhoe after approximately 6 inches of soil was removed, then transferred to a 4 ounce jar and placed in an ice chest for delivery to Friedman and Bruya analytical laboratory. Sample equipment consisted of disposable latex gloves and a stainless steel spoon which was triple washed between each sampling.

Excavation #1

The 4,000, 2,500 and 1,500 gallon tanks were removed from excavation #1. The 2,500 and 1,500 gallon tanks were part of a 4,000 gallon baffled tank system that was installed in 1980. They were registered as individual tanks with the Department of Ecology. It is unknown when the 4,000 gallon unleaded gasoline tank was installed. The 4,000 gallon tank and the 2,500 and 1,500 gallon compartments of the baffled tank were tightness tested annually using the Petro-Tite testing system. They were last tested in September 1990 and found to be tight.

Areas of slight rusting and pitting were observed on the 4,000 gallon tank and the baffled tank system but no holes were noted. As the tanks were removed gasoline contamination was observed in the surrounding soil. This contamination is consistent with the nature of contamination found from years of tank overfills and spillage.

Soil encountered at the site consisted of artificial fill and natural material. Artificial fill was encountered from the surface to a depth of approximately 7 feet in the excavation and consisted of brown and grey sandy silt with gravel. Decaying organic material such as wood and grass, and metal debris was observed in the fill.

Natural soils were observed underlying the fill to a minimum depth of approximately 18 feet and was composed of brown sandy silt with gravel that graded to gray silty fine to medium sand with depth. Backfill material for the tank excavation generally consisted of imported sand and soil similar to the surrounding artificial fill. The soil appeared discolored and a hydrocarbon odor was encountered in the excavation during tank removal. Groundwater with a heavy hydrocarbon sheen was encountered at a depth of 18 feet below the ground surface in the excavation.

After the two 4,000 gallon tanks and associated backfill soils were removed, an attempt was made to assess the extent of contamination and remove it. Because of these efforts the excavation was extended to the north, east and west. However, due to high head space readings near the groundwater in the excavation and the proximity of the excavation to the Time Oil office building, excavating was abandoned and soil samples were collected. Approximately 140 cubic yards of soil was removed from the excavation and stockpiled on site.

A total of eight soil samples were collected from the sidewalls and floor within excavation #1 and the former location of the fuel dispensers (Figure 2 - Provides the location and depth of sampling points). A groundwater sample was not collected at the time of tank removal due to the presence of a heavy hydrocarbon sheen. The soil samples were submitted to the analytical laboratory for chemical

testing for total petroleum hydrocarbons as gasoline (TPH-g) and diesel (TPH-d), benzene, toluene, ethylbenzene, xylenes (BTEX), and total lead using EPA methods 8015 (modified), 8020 and 7421, respectively.

Analytical results for these soil samples indicated TPH-g concentrations ranging from less than 2 parts per million (ppm) to 12,000 ppm. The highest TPH concentration of 12,000 ppm was encountered in the sample collected from the area of the fuel dispensers. TPH-d concentrations ranged from less than 50 ppm to 220 ppm. Table 1 provides a summary of soil samples and analytical results for excavation #1 soil samples. See the attached laboratory report for further information.

Excavation #2

The 300 gallon tank was removed from excavation #2. It is not known when the tank was installed. However, the tank was used for storing used oil collected during servicing of Time 0il fleet vehicles.

Areas of rusting and pitting were present on the tank and a pin-sized hole was observed after corrosion had been removed indicating that the tank may not have leaked under normal circumstances. As the tank was removed hydrocarbon contamination was observed in the surrounding soil. As in excavation #1, this contamination is also consistent with the nature of contamination found from years of tank overfills and spillage.

Artificial fill and natural soil was encountered in this excavation. The fill ranged in depth from the surface to 4.5 feet at the south end of the excavation and 1 foot at the north end. Natural soil consisting of brown and gray silty fine to medium sand was observed underlying the fill and extending to a minimum depth of groundwater. The soil appeared discolored and a hydrocarbon odor was encountered in the excavation during tank removal.

The depth to groundwater varied from 6 feet to 2 feet below the ground surface as the property sloped down to Salmon Bay to the north. A heavy sheen was observed on the groundwater.

After the 300 gallon tank and associated backfill were removed, an attempt was made to assess the extent of contamination and remove it. Because of these efforts the excavation was extended to the north toward Salmon Bay. When contamination was observed to be extensive, excavating was abandoned and soil samples were collected. A total of approximately 100 cubic yards of soil was removed from the excavation and stockpiled on site.

A total of four soil samples were collected from the sidewalls and floor within the excavation. Soil samples were not collected from the north end of the excavation because very strong hydrocarbon odors and gray discoloration was observed in that area. Instead, a test pit was dug between the excavation and the shoreline (Figure 3) to assess the horizontal extent of contamination. One sample was collected from that test pit. A groundwater sample was not collected at the time of tank removal due to the presence of a heavy hydrocarbon sheen.

The excavation and test pit samples were submitted for chemical analysis for total petroleum hydrocarbons as diesel (TPH-d) and motor oil (TPH-m) using EPA method 8015 (modified). Analytical results for excavation #2 and test pit samples indicated TPH-d concentrations ranging from less than 10 ppm to 310 ppm. TPH-m concentrations ranged from less than 10 ppm to 410 ppm.

Four soil samples were collected from stockpiled soil and combined to form one stockpile composite sample. The composite sample was tested for TCLP lead, halogenated volatile organic compounds using EPA method 8010, PCBs, TPH-d and TPH-m using EPA methods 8015 (modified) and 418.1, respectively. Chemical test results for the stockpile composite sample indicated TPH-d and TPH-m concentrations of 78 ppm and 1700 ppm, respectively.

Table 2 provides a summary of TPH analytical results for excavation #2, test pit and composite soil samples. See the attached laboratory report for the remaining chemical test results.

Time Oil is currently in the process of sending Request for Proposals for further site assessment to environmental consultants in the area. The next stage of work will address the contaminated soil stockpile, the extent of subsurface soil contamination at both excavations, the impact, if any, to the shallow ground water, and provide recommendations for cleanup, if necessary.

If there are any further questions regarding this site please contact me at (206) 286-4490.

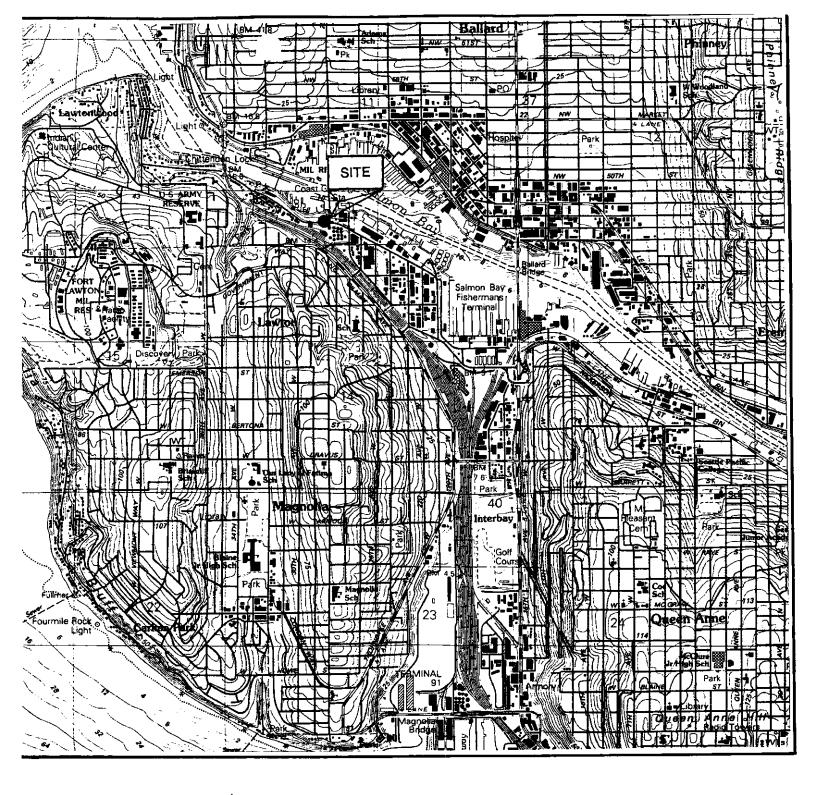
Sincerely

TISH J. Kus

Attachments:

Table 1
Table 2
Figure 1
Figure 2
Figure 3

Analytical Report


TABLE 1
SUMMARY OF SOIL SAMPLES
AND ANALYTICAL RESULTS
(Excavation #1)

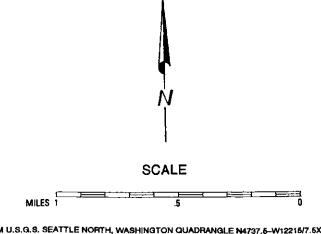

Sample I.D.	TPH g/d (ppm)	Benzene (ppm)	Toluene (ppm)	Ethylben (ppm)	xylenes (ppm)
1617-PI1	12,000/220	330	370	390	1600
1617-PI2	1,300/66	27	21	26	64
1500-N1	<2/17	0.003	0.003	<0.002	<0.006
0829-S1	19/76	<0.22	0.38	0.099	0.056
0834-E1	180/<50	<0.22	2.5	5.0	7.2
0839-W1	<2/<50	0.013	0.060	0.023	0.065
0845-Floor	120/200	1.1	.1.3	3.2	12
0926-NW1	<2/<50	0.005	0.049	0.015	0.062

TABLE 2 SUMMARY OF SOIL SAMPLES AND ANALYTICAL RESULTS

(Excavation #2, Test Pit and Stockpile)

Sample <u>I.D.</u>	TPH-d(8015) (ppm)	TPH-m(8015) _(ppm)	TPH-m(418.1) <u>(ppm)</u>
TPI-3	310	410	
TI-N-4	<10	<10	
TI-E-4	<10	<10	
TI-F-6	<10	200	
TI-W-4	<10	<10	
Pile Composi	te 78	•	1700

TIME OIL CO. 2737 West Commodore Way

SEATTLE TERMINAL 2737 WEST COMMODORE WAY, SEATTLE, WA VICINITY MAP

FROM U.S.G.S. SEATTLE NORTH, WASHINGTON QUADRANGLE N4737.6-W12215/7.5X15, 1983

WEST COMMODORE WAY

EXPLANATION

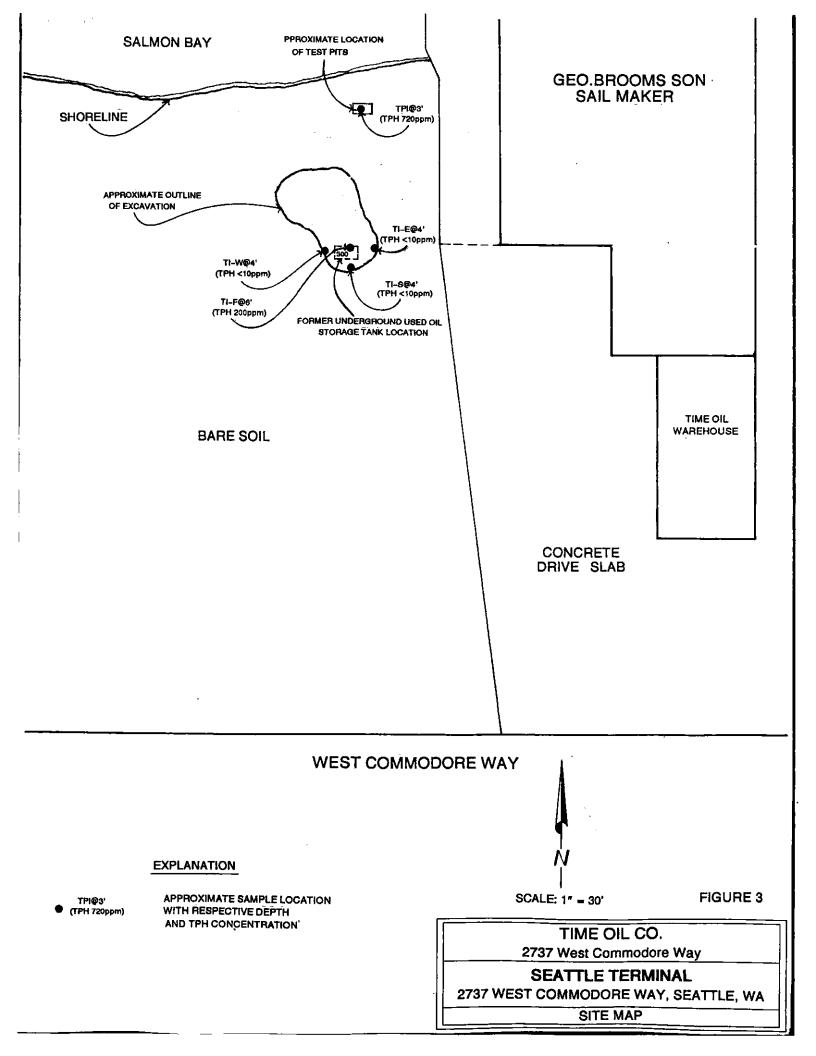

N1@12' (TPH 17ppm) APPROXIMATE SAMPLE LOCATION WITH RESPECTIVE DEPTH AND TPH CONCENTRATION

FIGURE 2

TIME OIL CO.
2737 West Commodore Way

SEATTLE TERMINAL 2737 WEST COMMODORE WAY, SEATTLE, WA

SITE MAP

ENVIRONMENTAL CHEMISTS

Andrew John Friedman James E. Bruya, Ph.D. (206) 285-8282 3008-B 16th Avenue West Seattle, WA 98119 FAX: (206) 283-5044

October 9, 1991

Anne Duarte, Environmental Specialist Time Oil Company 2737 West Commodore Way Seattle, WA 98199

Dear Ms Duarte:

Enclosed are the results of the analyses of the samples submitted on October 3, 1991 from Project 01-228 Seattle Terminal, PO #19693.

We appreciate this opportunity to be of service to you on this project. If you have any questions regarding this material, or if you just want to discuss any aspect of your projects, please do not hesitate to contact me.

Sincerely,

Elaine Zuma

Elaine K. Zamora, Chemist

EKZ/dp

Enclosures

ENVIRONMENTAL CHEMISTS

Date of Report: October 9, 1991
Date Submitted: October 3, 1991
Project: 01-228 Seattle Terminal, PO #19693

RESULTS OF ANALYSES OF THE SOIL SAMPLES FOR NONHALOGENATED ORGANICS BY EPA METHOD 8015 (DIESEL AND MOTOR OIL) Results Reported as µg/g (ppm)

Sample #	Diesel (ppm)	Motor Oil (ppm)
1228-1003-TPI-3	310	410
1228-1003-TI-N-4	<10	<10
1228-1003-TI-E-4	<10	<10
1228-1003-TI-F-6	<10	200
1228-1003-TI-W-4	<10	<10
Quality Assurance		
Method Blank	<10	<10
1228-1003-TI-W-4 (Duplicate)	<10	<10
1228-1003-TI-W-4 (Matrix Spike) Percent Recovery	98%	100%
1228-1003-TI-W-4 (Matrix Spike Duplicate) Percent Recovery	110%	97%
Spike Blank	_ = • •	<i>311</i> 6
Percent Recovery	97%	89%
Spike Level	500	, 500

			IMF OIL C	;O. S	SAMP	<u>LE i</u>	l 7G		
	Site Name:	Souttle.	Terminal	Prop	No: (1)-2		Address:	2027	1.0
	Sampler:	Anne C	Diente		ite: 10/03			2737 b Swattle, W	J Commoday A 98/99
	Purpose:	waste sil	tank clean un		od: Grab		S.Spoon	Bailer [Pump
	Lab Name:	Fridma	and Bruya	 Preserv		Ď	Acid	None [
	Lab Address	• •			Phone:	 285-	لنبيا	PO No.:	101.03
	Sample #	Lacati				<u> </u>	0000	PO NO.:	19693
	1225 - 1003	LOCATIO	on/Description	Type*		Analys	is Instructions		EPA Method
•	1228-1003	- 1P1-3 - T1-N://	23625	SWP	TPH COS	die	el & moto	6U	8015
		- TI- E-4	23624	SWP		 			
		-TI-F-6	23635	SW P		<u> </u>			
1	1228-1003		23626	SW P		 			
•		-	23/25	SWP		<u> </u>			4
7				SWP					·
•				SWP					
•		_	· · · · · · · · · · · · · · · · · · ·	SWP					
10				SWP					<u> </u>
"	-			SWP					 -
12				SWP					
13				SWP					
۱۰				SWP					<u> </u>
18				SWP					
•• -				SWP					
"				SWP					
•⊦				SWP			<u> </u>		
•}				SWP					
•⊢				SWP				···	
'├				SWP					
` -	that last well			SWP					
۲	ther Instruction	ons:							
s	ample Count	-5							
ت	ample odding	- 	k sample jar count again				·s	Soll W - Wate	r P = Product
_		C	HAIN OF C	UST	ODY I	REC	CORD		
R	elinquished By:	Ame Dearl	Received By:	Cerchen	- Ph 3	neid	- Det	e & Time /e	••••
Re	elinquished By:	· 	Received For L		- 				-3-9/ 3:00°
		GE	NERAL L	AB IN	ISTRI	ICI		e & Time:	
P	lease pro	vide the red	quested inform	ation			10149		
•	Amushia Halli	nais gasidhed b	OV Lab: ? * / * -			_			
2.	Person perfo	elevisna gnimi	by Lab: 23623		<u>*</u> 0.	436	지수 Dat	e Analyzed <u>:</u>	<i>6/4/91</i>
3.	Scheduled si	ample disposal	K. McMullan date: 11-3-	E. 20v	Da Da	IIA, Hev	lewer: <u>A.</u> G	TENY	
4.	Provide copie	BS Of ALL chrom	natograms, including	91	NC	TIFY 1	TIME OIL CO.	BEFORE D	ISPOSAL
M	PORTANT	DI EAST S	arvyrains, including	UA/QC N	ne				
Αt	in: Environ	mente! M-	ETURN A COPY (OF THIS	FORM W	TH Y	OUR REPO	ORT TO TI	ME OII CO
	CITYII OIN	TOTILLE MANAGE	jer, PO Box 2444	7 Termin	al Sta., S	eattle	. WA 98124	(206) 28	5-2400

ENVIRONMENTAL CHEMISTS

Andrew John Friedman James E. Bruya, Ph.D. (206) 285-8282

3008-B 16th Avenue West Seattle, WA 98119 FAX: (206) 283-5044

October 3, 1991

Anne Duarte, Environmental Specialist Time Oil Company 2737 West Commodore Way Seattle, WA 98199

Dear Ms. Duarte:

Enclosed are the results of the analyses of the samples submitted on September 27, 1991 from Project 01-228 Seattle Terminal, PO #19691.

We appreciate this opportunity to be of service to you on this project. If you have any questions regarding this material, or if you just want to discuss any aspect of your projects, please do not hesitate to contact me.

Sincerely,

Staine SnurElaine K. Zamora, Chemist

EKZ/dp

Enclosures

ENVIRONMENTAL CHEMISTS

Date of Report: October 3, 1991
Date Submitted: September 27, 1991

Project: 01-228 Seattle Terminal, PO #19691

RESULTS OF ANALYSES OF THE SOIL SAMPLES FOR TCLP METALS IN ACCORDANCE WITH 40 CFR PART 261 Results Reported as mg/L (ppm)

Sample #	<u>Lead</u> (ppm)
Composite: 1228-0927-S1 1228-0927-S2 1228-0927-S3 1228-0927-S4	<0.5
Quality Assurance	
Method Blank	<0.5
Composite: 1228-0927-s1 1228-0927-s2 1228-0927-s3 1228-0927-s4	•
(Duplicate) Composite (Matrix Spike)	<0.5
Percent Recovery	10% ^{lr}
Spike Blank Percent Recovery	101%
Regulatory Level	5.0

¹r - The low recovery reported is common following the TCLP procedure.

ENVIRONMENTAL CHEMISTS

Date of Report: October 3, 1991
Date Submitted: September 27, 1991

Project: 01-228 Seattle Terminal, PO #19691

RESULTS OF ANALYSES OF THE SOIL SAMPLES FOR VOLATILE HALOGENATED ORGANIC COMPOUNDS USING EPA METHODS 5020 AND 8010 Results Reported as ng/g (ppb)

Sample #	S1, S2, S3, S4 Composite
Analyte:	1
1,1-Dichloroethyle	ene <1
Methylene Chloride	e <3
t-Dichloroethylene	e <3
1,1-Dichloroethane	€ <30
Chloroform	<1
1,1,1-Trichloroeth	nane <1
Carbon Tetrachlori	lde <1
Trichloroethylene	<1
Tetrachloroethyler	ne <1

ENVIRONMENTAL CHEMISTS

Date of Report: October 3, 1991
Date Submitted: September 27, 1991

Project: 01-228 Seattle Terminal, PO #19691

RESULTS OF ANALYSES OF THE SOIL SAMPLES FOR VOLATILE HALOGENATED ORGANIC COMPOUNDS USING EPA METHODS 5020 AND 8010 Results Reported as ng/g (ppb) Quality Assurance

Sample #	Method Blank	S1, S2, S3, S4 Composite (Duplicate)
Analyte:		
1,1-Dichloroethylene	<1	<1
Methylene Chloride	<1	<3
t-Dichloroethylene	<1	<3
1,1-Dichloroethane	<30	<30
Chloroform	<1	<1
1,1,1-Trichloroethane	<1	<1
Carbon Tetrachloride	<1	<1
Trichloroethylene	<1	<1
Tetrachloroethylene	<1	<1

ENVIRONMENTAL CHEMISTS

Date of Report: October 3, 1991
Date Submitted: September 27, 1991

Project: 01-228 Seattle Terminal, PO #19691

RESULTS OF ANALYSES OF THE SOIL SAMPLES FOR VOLATILE HALOGENATED ORGANIC COMPOUNDS USING EPA METHODS 5020 AND 8010 Results Reported as ng/g (ppb) Ouality Assurance

Sample #	S1, S2, S3, S4 Composite Matrix Spike	S1, S2, S3, S4 Composite Matrix Spike Duplicate	Spike Level
Analyte:	% Recovery	% Recovery	(dqq)
1,1-Dichloroethyle	ene 110%	120%	1,000
Methylene Chloride	e 110%	120%	1,000
t-Dichloroethylene	≥ 100%	110%	1,000
1,1-Dichloroethane	98%	100%	1,000
Chloroform	120%	130%	1,000
1,1,1-Trichloroeth	nane 80%	85%	1,000
Carbon Tetrachlori	de 110%	120%	1,000
Trichloroethylene	48%	52%	1,000
Tetrachloroethylen	ne 92%	98%	1,000

ENVIRONMENTAL CHEMISTS

Date of Report: October 3, 1991
Date Submitted: September 27, 1991
Project: 01-228 Seattle Terminal, PO #19691

RESULTS OF ANALYSES OF THE SOIL SAMPLES FOR PCB AS AROCHLOR 1254 BY GC/ECD Results Reported as µg/g (ppm)

Sample #	PCB (ppm)
Composite: 1228-0927-S1 1228-0927-S2 1228-0927-S3 1228-0927-S4	<1
Quality Assurance	
Method Blank	<1
Composite: 1228-0927-S1 1228-0927-S2 1228-0927-S3 1228-0927-S4 (Duplicate)	<1
Composite	~_
(Matrix Spike) Percent Recovery	150%
Composite (Matrix Spike Duplicate) Percent Recovery	150%
Spike Blank Percent Recovery	100%
Spike Level	5

ENVIRONMENTAL CHEMISTS

Date of Report: October 3, 1991

Date Submitted: September 27, 1991 Project: 01-228 Seattle Terminal, PO #19691

RESULTS OF ANALYSES OF THE SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL BY GC/FID (MODIFIED 8015) Results Reported as µg/g (ppm)

Sample #	Diesel (ppm)
Composite: 1228-0927-S1 1228-0927-S2 1228-0927-S3	
1228-0927-s4	₇₈ id
Quality Assurance	
Method Blank	<50
Composite: 1228-0927-S1 1228-0927-S2 1228-0927-S3	
1228-0927-\$4 (Duplicate)	₁₃₀ id
Composite (Matrix Spike) Percent Recovery	81%
Composite (Matrix Spike Duplicate)	
Percent Recovery	81%
Spike Level	500

id - The material present appears to be indicative of a small amount of diesel and a much larger amount of Motor OIL

ENVIRONMENTAL CHEMISTS

Date of Report: October 3, 1991
Date Submitted: September 27, 1991
Project: 01-228 Seattle Terminal, PO #19691

RESULTS OF ANALYSES OF THE SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS BY IR (EPA METHOD 418.1) Results Reported as µg/g (ppm)

Sample #	Total Petroleum <u>Hydrocarbons</u> (ppm)
Composite: 1228-0927-S1 1228-0927-S2 1228-0927-S3 1228-0927-S4	1,700
Quality Assurance	
Method Blank	<10
Composite: 1228-0927-S1 1228-0927-S2 1228-0927-S3 1228-0927-S4 (Duplicate)	1,800
Composite (Matrix Spike) Percent Recovery	ai
Composite (Matrix Spike Duplicate) Percent Recovery	ai
Spike Blank Percent Recovery	70%
Spike Level	250

ai - The amount spiked was insufficient to give meaningful recovery data.

/-	Seattle Anne [Termina		No: <u>01-228</u>	Address:	2737 W	
_se:		1 Charac	kecization Met			Bailer 🗍	Pump
ے Name:	Friedman	a Bruy	Presei		Acid	None	-unip
Lab Address:		Ü		Phone: 2	_	اسط آ	9691
Sample #	Loca	tion/Descript	ion Type*	An	alysis Instruction:		EPA Metho
1228-0927-	· 51		SW F				CLY Metito
1224 0127-	52	Com 10 51	LE SWI	MICIP	land	23297	13/1
1228-0927-	· 53	ω	SW F	@PCB	4	23298	8080
122% - 0927 -	. 41		SW F	3) Vola-	Kili Organia		Wallan 80
	· · · · · · · · · · · · · · · · · · ·		SWF	(A) TPH	-D		8015
	<u> </u>		S W F	(TPH	-00	ı	4/8.1
			SWF				
	· · · · · · · · · · · · · · · · · · ·	·	SWF				
			SWF		•		
	, <u> </u>		S W F	ļ			
			SWF				
	·		SWP				
	· · · · · · · · · · · · · · · · · · ·		SWF				n .
			SWF				
			SWF				
			SWP	 			
	<u> </u>		SWF				
		*.	S W P				
	· _		S W P				
<u>_</u>			SWP				
	 		SWP				
Other Instructi	ons: (\	cek Tim	(MATA)	<u> </u>			
		at Im	www				
Sample Count	= 4 0	heck sample ja	r count against Logi		·s.	Soil W = Water	P = Product
		CHAIN	OF CUS	TODY R			
Relinquished By:	Ann ?	Durate A	eceived By:			Pate & Time	
Relinquished By:		R	eceived For Lab B	2 m.a. D	FEB,I ANFORD D	late & Time: Co-	22-01
	(RAL LAB			Pate & Time: 9-	<u> </u>
Please pro	vide the	requeste	d information			-	
. Sample nun	nbers assign	ed by Lab: 2	3296		23299 0	lata Anak-nad-	ماممام -
. Person perf	orming analy		2, A. Fredman, M	Dest A & Date	- Devious -	ate Analyzed:	7124141 9
Scheduled a	sample dispo	بههرس.ن sai date:	Jan 2 a	THE H. H. THE	u noviewer: <u>5, 7</u> TIEV THE OU O	amora, J. S	heldon, K
				NO	TIFY TIME OIL C	U. BEFORE D	ISPOSAL

ENVIRONMENTAL CHEMISTS

Andrew John Friedman James E. Bruya, Ph.D. (206) 285-8282 3008-B 16th Avenue West Seattle, WA 98119 FAX: (206) 283-5044

October 4, 1991

Anne Duarte, Environmental Specialist Time Oil Company 2737 West Commodore Way Seattle, WA 98199

Dear Ms. Duarte:

Enclosed are the results of the analyses of the sample submitted on October 3, 1991 from Project 01-228, Seattle Terminal, PO#19000.

We appreciate this opportunity to be of service to you on this project. If you have any questions regarding this material, or if you just want to discuss any aspect of your projects, please do not hesitate to contact me.

Sincerely,

Elame Zamo

Elaine K. Zamora, Chemist

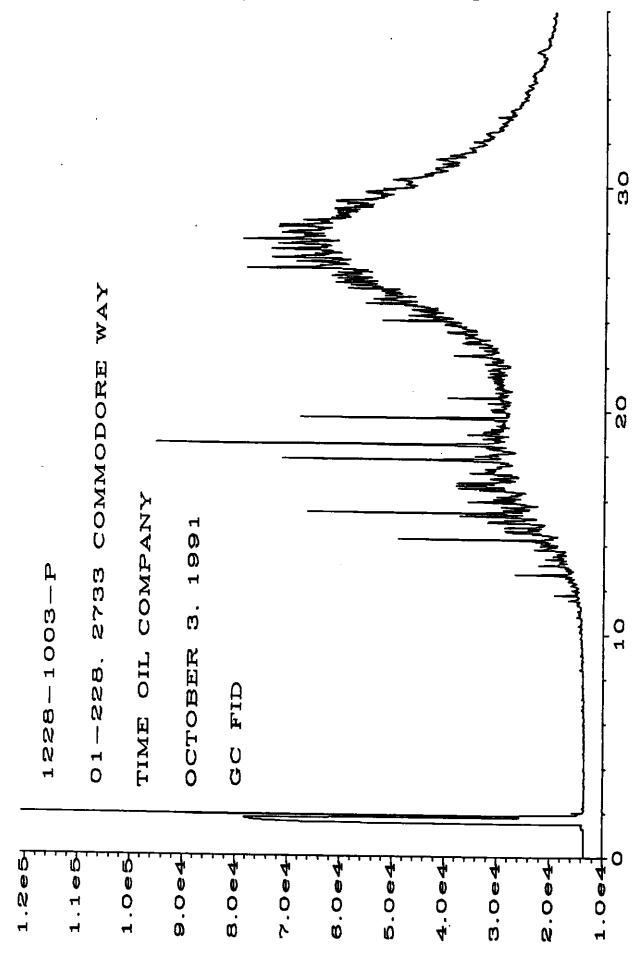
EKZ/dp

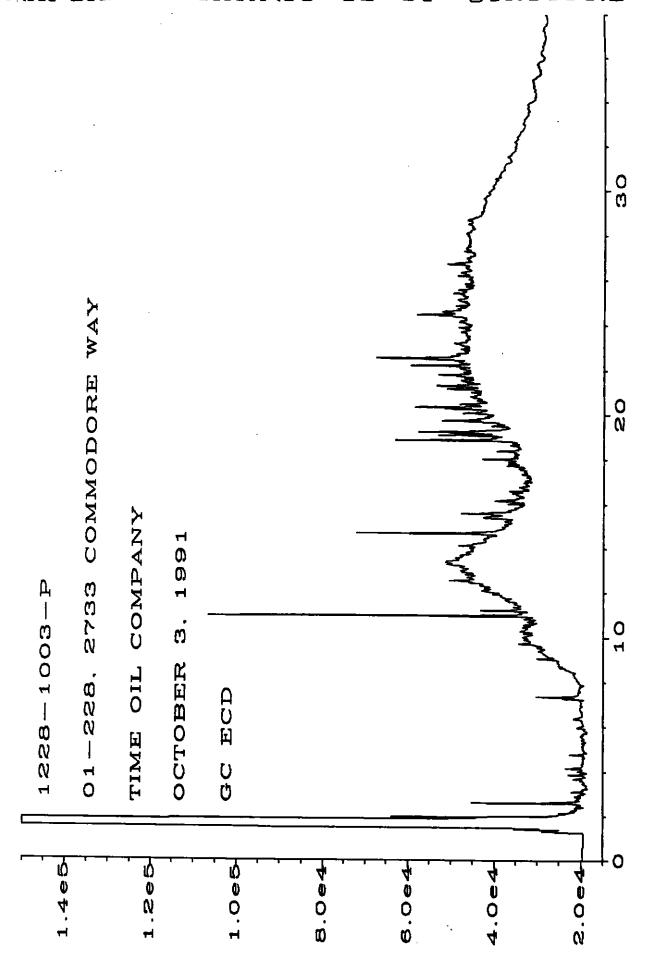
Enclosures

ENVIRONMENTAL CHEMISTS

Date of Report: October 4, 1991
Date Submitted: October 3, 1991

Project: 01-228, Seattle Terminal, PO#19000


RESULTS OF ANALYSES OF THE PRODUCT SAMPLE FOR FINGERPRINT CHARACTERIZATION BY CAPILLARY GAS CHROMATOGRAPHY


Sample #

1228-1003-P

GC Characterization

The gas chromatographic trace showed the presence of medium and high boiling compounds, such as those found in waste oil with a diesel input. This characterization is based on the presence of a relatively smooth envelope of peaks present from ca n-C12 to n-C20 with a maximum near n-C17, as well as a second envelope of peaks ca n-C20 to greater than n-C30 with a maximum near n-C27. The ECD trace indicated material is present which may be oxygenated.

			E OIL C	,U. SA	MHLF	LOG	Rush_	
	Site Name:	Scattle -	Terminal	Prop. No:	01-228	Address:	2737 W C	-menoba- II
	Sampler:		cke	Date:			Seattle WA	98119
	Purpose:	Mask a	Timb Co. um			S.Spoon i	Bailer I	Pump (
	Lab Name:	Fredma	- & Bryg	Preserved		Acid (None	
	Lab Address:				Phone: 28.	<u>-</u>	PO No.:	19000
	Sample #	Locano	n/Description					
3514		- 1003-PR		Type* I		ivas instructi		EPA Meth
, , ,		-		IS W PI	GC front	ict Charci	excitation	<u> </u>
,		-		SWPI	-			<u> </u>
		-		SWPI		<u> </u>		<u> </u>
1		-		SWP				<u> </u>
•		-		SWP				<u> </u>
1	-	-		SWP		_		<u> </u>
				ISWPI				1
		-		ISWPI				<u> </u>
•	· <u> </u>	-		SWPI		-		<u></u>
*	· <u> </u>	-		SWPI				`
1	· ————	-		ISWP				-
1	3			SWP		<u> </u>	····	
1	*	<u>- </u>		SWP				
	*			SWP				
	•			ISWP				1
	"	-		SWP				
	"	-		SWP				
	"			SWP				
	n			SWPI				
	" 			SWPI				
	Other instr	licznae:		IS W PI				
	Outer made	deuciis.						
	Sample Co	unt = (Check sample lar coun	I adams I oni				
					CDV		S-Sall W-W	eler P = Produ
			CHAIN O		ODY	HECOI	<u> עא</u>	
	Relinauisne	Br. Jame	Duante pecon	a Br. //	Mllus	Must '	Date & Time	10/3/11
	Relinouishe	a Br. Mull	Marke / Recon	ed For Lab By:	aNE	. /	<u> </u>	1-1-1-
			GENERA			LICTIC	Date & Time:	1013/1/ 10
	Please	Denido the	<u>ALIALIA</u>	F LVD	HICK	<u>UCTIO</u>	<u> </u>	
	TIBESU	provide the	requested in	nformation	•	•		
		numbers assig		3514	1	27574	Date Analyz	red: /6-7-4
		performing and		ciedman ;	EZam	Reviewe	. J. Bruy	
		ded sample dist	oosai cate:	11/2/0) / /		OIL CO. BEFOR	
	4. Provid	B copies of ALL	chrometograms, in	ctuding QA/QC	TURS.			-
	IMPORT	ANTT PLEAS	SERETURN A C	OPY OFTE	iid. EUBM.	WITH YOU	R-BEBOBT T	OTMEN
	Attn: En	<u>vironmental</u> A	Aanager; PO Bo	x 24447 Ten	minal Sto	Westernames 2	1-08404-4006	7 00510404
				1 31		··· - Derrie · · AA	n 50124 (2U0	7 COUTEHUL

ENVIRONMENTAL CHEMISTS

Andrew John Friedman James E. Bruya, Ph.D. (206) 285-8282

3008-B 16th Avenue West Seattle, WA 98119 FAX: (206) 283-5044

September 19, 1991

Liam Russell, Environmental Specialist Time Oil Company 2737 West Commodore Way Seattle, WA 98199

Dear Mr. Russell:

Enclosed are the results of the analyses of the sample submitted on September 16, 1991 from Project 01-228, Seattle Terminal, PO #19685.

We appreciate this opportunity to be of service to you on this project. If you have any questions regarding this material, or if you just want to discuss any aspect of your projects, please do not hesitate to contact me.

Sincerely,

Elaine Zama

Elaine K. Zamora, Chemist

EKZ/sao

Enclosures

ENVIRONMENTAL CHEMISTS

Date of Report: September 19, 1991
Date Submitted: September 16, 1991
Project: 01-228, Seattle Terminal, PO #19685

RESULTS OF ANALYSES OF THE SOIL SAMPLE FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND GASOLINE USING EPA METHODS 5030 COUPLED TO 8020 and 8015 Results Reported as mg/kg (ppm)

Sample #	Benzene	Toluene	Et-Benzene	Xylenes	Gasoline
01228-0991-1500-N1	0.003	0.003	<0.002	<0.006	<2
Quality Assurance					
Method Blank	<0.002	<0.002	<0.002	<0.006	<2
01228-0991-1500-N1 (Duplicate)	0.018	0.010	0.003	<0.006	<2
01228-0991-1500-N1 (Matrix Spike) Percent Recovery	86%	88%	92%	90%	88%
01228-0991-1500-N1 (Matrix Spike Dupl Percent Recovery	icate) 90%	93%	95%	94%	
Spike Blank Percent Recovery					110%
Spike Level	1	1	1	3	100

ENVIRONMENTAL CHEMISTS

Date of Report: September 19, 1991
Date Submitted: September 16, 1991
Project: 01-228, Seattle Terminal, PO #19685

RESULTS OF ANALYSES OF THE SOIL SAMPLE FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL BY GC/FID (MODIFIED 8015) Results Reported as µg/g (ppm)

Sample #	Diesel (ppm)
01228-0991-1500-N1	17
Quality Assurance	
Method Blank	<10
01228-0991-1500-N1 (Duplicate)	<10
01228-0991-1500-N1 (Matrix Spike) Percent Recovery	110%
01228-0991-1500-N1 (Matrix Spike Duplicate) Percent Recovery	
-	110%
Spike Level	500

	TIME OIL C	O. S	AMPLE	LOG		
.ne: <u>5</u> =	ATTLE TERM	Prop. N	la: 11 22 %	Address	1777 1	
pier:	tampussell	Da	te: 9-16-4/			J. COMMODOL F, WA 9819
vurpose: US	T REMAVAL S.A.		od: Grab 🔀	S.Spoon	SEATTLE Bailer F	Pump
Lab Name:F	RIEDMAN + BRUYA	 Preserve		Acid	None [
Lab Address:		_	Phone: 235	<u></u>	PO No.:	101 21
Sample #	Location			041-	10 110	19685
1 01228-0991 - 150	Location/Description	Type*		sis instruction	18	EPA Method
2	00-N 22778-22779		<u> 1649 - 6 / 6</u>		(HED.	8015/8020
3		SWP	TCLP	LEAD (H	OLD)	
-		SWP	<u> </u>			
•		SWP				
•		SWP	80			
,		SWP		}		
-		SWP				
-		SWP		- 1		+
•		SWP				
· -		SWP				
·		SWP			<u> </u>	
·		SWP	\sim			
·		SWP				
· 		SWP		P.		
<u>-</u>		SWP	Q	7		
ļ		SWP		16		
 		SWP	18	6		
		SWP		200		
<u> </u>		SWP		- 1)		
		SWP				
Other Instructions:		SWP				
Other instructions:						<u> </u>
Sample Count =	Chack sample ins assure					
	Check sample jar count again:			· s	Soil W = Wat	er P = Product
<u> </u>	CHAIN OF C	<u>UST(</u>	ODY RE	CORD		
Relinquished By:	Received By:				Pate & Time	
Relinquished By:	Ankus M Received For L	ab By	ma	FEB, 1		
	GENERAL LA		ICTOLIC	TIONS	ate & Time: 9	-16-91
Please provid	e the requested into	10 III	BIRDU	SKIOLI	<u> </u>	
1. Sample numbers	e the requested inform	ation				
2. Person performir	s assigned by Lab: 2277 §	<u>/</u>	to_27	779 D	ate Analyzed	9/16/91,9/0/9
3. Scheduled same	ng analysis: J. shellon, K. Ficht	in E. Es	moon Data Re	eviewer: <u>A.</u>	Gray	
•		71		TIME OIL C	O. BEFORE L	DISPOSAL
	f ALL chromatograms, including	QA/QC ru	ns.			i
MPUHIANTI P	LEASE RETURN A COPY C	OF THIS	FORM WITH	YOUR RE	ORT TO T	IME OU CO
Aun: Environmer	ntal Manager, PO Box 2444	7 Termin	al Sta., Seatt	le, WA 981	24 (206) 28	15-2400

ENVIRONMENTAL CHEMISTS

Andrew John Friedman James E. Bruya, Ph.D. (206) 285-8282 3008-B 16th Avenue West Seattle, WA 98119 FAX: (206) 283-5044

•

October 9, 1991

Liam Russell, Environmental Specialist Time Oil Company 2737 West Commodore Way Seattle, WA 98199

Dear Mr. Russell:

Enclosed are the results of the analyses of the samples submitted on September 20, 1991 from Project 01-228 Seattle Terminal, PO #19687.

The values reported for the diesel analysis represent material that appears to be the late eluting fraction of gasoline. The results for the BTEX and Gasoline analysis are reported on two pages. Each page has its own quality assurance and represents analyses run on different days. The samples were diluted after the initial analysis and rerun. Interferences were present in sample 01228-0991-1617-PII so the original results are reported.

We appreciate this opportunity to be of service to you on this project. If you have any questions regarding this material, or if you just want to discuss any aspect of your projects, please do not hesitate to contact me.

Sincerely,

Elaine Samona, Chemist

EKZ/dp

Enclosures

ENVIRONMENTAL CHEMISTS

Date of Report: October 9, 1991
Date Submitted: September 20, 1991

Project: 01-228 Seattle Terminal, PO #19687

RESULTS OF ANALYSES OF THE SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND GASOLINE USING EPA METHODS 5030 COUPLED TO 8020 and 8015 Results Reported as mg/kg (ppm)

Sample #	Benzene	<u>Toluene</u>	Et-Benzene	Xylenes	Gasoline
01228-0991 -1617-PI1	330	370	390	1,600	12,000
01228-0991 -1620-PI2	<19 ^{ip}	<13 ^{ip}	<20 ¹ P	<78 iP	3,100
Quality Assurance					
Method Blank	<0.02	0.26	<0.02	<0.06	<2
01228-0991-1620-PI2 (Matrix Spike) Percent Recovery	96%	104%	106%	60%	ai
01228-0991-1620-PI2 (Matrix Spike Dupl: Percent Recovery	icate) 104%	113%	114%	65%	ai
Spike Blank Percent Recovery					92%
Spike Level	150	150	150	450	2,500

ip - Interferences were present which prevented the identification and quantitation of the analyte at the established detection limit.

ai ~ The amount spiked was insufficient to give meaningful recovery data.

ENVIRONMENTAL CHEMISTS

Date of Report: October 9, 1991 Date Submitted: September 20, 1991

Project: 01-228 Seattle Terminal, PO #19687

RESULTS OF ANALYSES OF THE SOIL SAMPLES
FOR BENZENE, TOLUENE, ETHYLBENZENE,
XYLENES AND GASOLINE
USING EPA METHODS 5030 COUPLED TO 8020 and 8015
Results Reported as mg/kg (ppm)

Sample #	<u>Benzene</u>	Toluene	Et-Benzene	Xylenes	<u>Gasoline</u>
01228-0991 -1620-PI2	27	21	26	64	1,300
Quality Assurance					
Method Blank	<0.02	<0.02	<0.02	<0.06	<2
Spike Blank Percent Recovery	103%	106%	109%	100%	96%
Spike Level	1	1	1	3	100

ENVIRONMENTAL CHEMISTS

Date of Report: October 9, 1991
Date Submitted: September 20, 1991
Project: 01-228 Seattle Terminal, PO #19687

RESULTS OF ANALYSES OF THE DIESEL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL BY GC/FID (MODIFIED 8015) Results Reported as µg/g (ppm)

Sample #	Diesel (ppm)
01228-0991-1617-PI1	220
01228-0991-1620-PI2	66
Quality Assurance	
Method Blank	<50
01228-0991-1620-PI2 (Duplicate)	86
01228-0991-1620-PI2 (Matrix Spike) Percent Recovery	90%
01228-0991-1620-PI2 (Matrix Spike Duplicate) Percent Recovery	96%
Spike Level	500

ENVIRONMENTAL CHEMISTS

Date of Report: October 9, 1991
Date Submitted: September 20, 1991

Project: 01-228 Seattle Terminal, PO #19687

RESULTS OF ANALYSES OF THE SOIL SAMPLES FOR TOTAL LEAD BY ICP (6010) Results Reported as $\mu g/g$ (ppm)

Sample #	Total Lead (ppm)
01228-0991-1617-PI1	36
Quality Assurance	
Method Blank	<0.5
01228-0991-1617-PI1 (Duplicate)	38
01228-0991-1617-PI1 (Matrix Spike) Percent Recovery	80%
01228-0991-1617-PI1 (Matrix Spike Duplicate) Percent Recovery	
	78%
Spike Level	50

آ مياه هوي. الر	TIME OIL CO	0, S/	AMPLE	LOG	9-EK	z -B	
1/10	Lambussell		01-228 9-20-	Address:	2737 h		da
<i>∫.</i>	UST Removal S.A.		: Grab 🔀	S.Spoon	Bailer	Pump [51
_ab Name:	Fridman & Benna	_ _Preserve		Acid	None _	֓֞֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֡֡֓֓֓֡֡֓֓֡֡֡֓֡֡֡֡	_
	s: 3008-B 16th Ave W Seatt	6 Wa.	Phone: 285	- 8289	PO No.:	19687	74
						.,	_
Sample #	Location/Description	Type*		lysis Instruction	18	EPA Metho	_
	-1617-PII 22954/22458 -1620-PIZ 22959/22960	SWP	TPHQ 40	-/BTEX		805/8020	긕
1 0.5000 UTT	-1620-PIA 22957/22960	SWP		<u>-</u>		 	긕
,	-	SWP	.			 	괵
	-	SWP			-	 	
•	-	SWP					ᅱ
7	•	SWP					ᅱ
•	-	SWP	 	-		 -	ᅥ
•	•	SWP	_			 	\dashv
10		SWP		- · · · ·			
11	-	SWP					ᅱ
12	-	SWP					ヿ
13		SWP					ヿ
14		SWP			-		┪
16	_	SWP					ヿ
16		SWP			Ÿ.		ヿ
17	-	SWP				·	ヿ
18	-	SWP					刁
10	-	SWP	-				\neg
20		SWP					\Box
21	-	SWP					
2		SWP		·			
Other Instru	ictions: Total Fend on S	emple	will he	ghest TA	HA resu	vt.	
Sample Cou	int — Observe de la constitución	· · · · · · · · · · · · · · · · · · ·					
Sample Cou					= Soll W = Wat	er P = Product	
	CHAIN OF C	UST	ODY R	ECORE)	-14-	_
Relinquished I	By: Received By:				Date & Time		ı
Relinquished	Tr. Fian Rusel Received For	Lab By: (d	OFuch		Date & Time: ? -	20-71 2:30	
	GENERAL L		STRU		_		
Please p	rovide the requested inforn	nation					\Box
1. Sample n	numbers assigned by Lab: 22954		to 2	22954	Date Analyzed	1:9/25 9/27	
	erforming analysis:	M. Peri	Data	Reviewer: 2	. Zamera	10/2 1	孙
	ed sample disposal date:lo- 2	0-91	NOT	TIFY TIME OIL		DISPOSAL	-
4. Provide o	copies of ALL chromatograms, including	QA/QC r	uns.		= : = = : • : • :		
IMPORTA	NTI PLEASE RETURN A COPY	OF THIS	FORM W				
Attn: Envir	onmental Manager, PO Box 2444	47 Termi	nal Sta., Se	ettle, WA 98	124 (206) 2	35-2400	
			•				

ENVIRONMENTAL CHEMISTS

Andrew John Friedman James E. Bruya, Ph.D. (206) 285-8282

3008-B 16th Avenue West Seattle, WA 98119 FAX: (206) 283-5044

September 24, 1991

Liam Russell, Environmental Specialist Time Oil Company 2737 West Commodore Way Seattle, WA 98199

Dear Mr. Russell:

Enclosed are the results of the analyses of the samples submitted on September 17, 1991 from Project 01-228, Seattle Term, PO #19685.

We appreciate this opportunity to be of service to you on this project. If you have any questions regarding this material, or if you just want to discuss any aspect of your projects, please do not hesitate to contact me.

Sincerely,

Slame Saure Elaine K. Zamora, Chemist

EKZ/sao

Enclosures

ENVIRONMENTAL CHEMISTS

Date of Report: September 24, 1991
Date Submitted: September 17, 1991
Project: 01-228, Seattle Term, PO #19685

RESULTS OF ANALYSES OF THE SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL BY GC/FID (MODIFIED 8015) Results Reported as µg/g (ppm)

Sample #	Diesel (ppm)
01228-0991-0829-\$1	76
01228-0991-0834-E1	<50
01228-0991-0839-W1	<50
01228-0991-0845-Floor	200
01228-0991-0926-NW1	<50
Quality Assurance	
Method Blank	<50
01228-0991-0926-NW1 (Duplicate)	<50
01228-0991-0926-NW1 (Matrix Spike) Percent Recovery	150%
01228-0991-0926-NW1 (Matrix Spike Duplicate) Percent Recovery	150%
Spike Blank Percent Recovery	99%
Spike Level	500

ENVIRONMENTAL CHEMISTS

Date of Report: September 24, 1991 Date Submitted: September 17, 1991

Project: 01-228, Seattle Term, PO #19685

RESULTS OF ANALYSES OF THE SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND GASOLINE USING EPA METHODS 5030 COUPLED TO 8020 and 8015 Results Reported as mg/kg (ppm)

Sample #	Benzene	Toluene	Et-Benzene	<u>Xylenes</u>	Gasoline
01228-0991-0829-81	<0.22 ^{ip}	0.38	0.099	0.056	19
01228-0991-0834-E1	<0.22 ^{ip}	2.5	5.0	7.2	180
01228-0991-0839- W 1	0.013	0.060	0.023	0.065	<2
01228-0991-0845-Floo	r 1.1	1.3	3.2	12	120
01228-0991-0926-NW1	0.005	0.049	0.015	0.062	<2
		, -			•
Quality Assurance		·		•	
Method Blank	<0.002	<0.002	<0.002	<0.006	<2
01228-0991-0926-NW1 (Duplicate)	0.004	0.024	0.008	0.047	<2
01228-0991-0926-NW1 (Matrix Spike) Percent Recovery	100%	110%	110%	110%	120%
01228-0991-0926-NW1 (Matrix Spike Dupli	cate)				
-	100%	110%	110%	110%	120%
Spike Level	1	1	1	3	25

ip - Interferences were present which prevented the identification and quantitation of the analyte at the established detection limit.

ENVIRONMENTAL CHEMISTS

Date of Report: September 24, 1991
Date Submitted: September 17, 1991
Project: 01-228, Seattle Term, PO #19685

RESULTS OF ANALYSES OF THE SOIL SAMPLE FOR TOTAL LEAD BY ICP (6010) Results Reported as µg/g (ppm)

Sample #	Total Lead (ppm)
01228-0991-0834-E1	2.5
Quality Assurance	
Method Blank	<0.5
01228-0991-0834-E1 (Duplicate)	3.5
01228-0991-0834-E1 (Matrix Spike) Percent Recovery	90%
01228-0991-0834-E1 (Matrix Spike Duplicate) Percent Recovery	87%
Spike Level	50

TIME OIL CO. SAMPLE LOG Y-EKZ-B Site Name: SEATTLE 7 ECM Prop. No: 01-228 Address: 2737 W. (OMKUDAR Sampler: Date: 9-17-91 SEATTLE Purpose: Method: Grab 🔀 S.Spoon Bailer Pump Lab Name: Feltoman + Reuya Preserved: ice Acid None Lab Address: Phone: 385 - 8282 PO No.: 196 83 EB/# Sample # Location/Description Type* **Analysis Instructions** EPA Method 01228-0991-0829-31 (3) WP 92789-90 - 08 34- E1 3 W P *2*2791-92 <u>-0839-wi</u> TPHG-D/BTEX B)WP - 0845. FLOOR 3)WP - 0924 - NWI B)WP 22797 - 98 SWP Other Instructions: END THE Sample Count = Check sample jar count against Logi 'S = Soll W = Water P = Product CHAIN OF CUSTODY RECORD Relinquished-By Date & Time 9-17-91 Relinquished By: Received For Lab By: Date & Time: **GENERAL LAB INSTRUCTIONS** Please provide the requested information 1. Sample numbers assigned by Lab: 22789 to 22798 Date Analyzed: 9/17/91, 9/6/91 2. Person performing analysis: A. Gray, E. Zamon, ** Art Data Reviewer: k. Mc Mullen 3. Scheduled sample disposal date: NOTIFY TIME OIL CO. BEFORE DISPOSAL 10-17-91 4. Provide copies of ALL chromatograms, including QA/QC runs. IMPORTANT! PLEASE RETURN A COPY OF THIS FORM WITH YOUR REPORT TO TIME OIL CO. Attn: Environmental Manager, PO Box 24447 Terminal Sta., Seattle, WA 98124 (206) 285-2400

UNDERGROUND STORAGE TANK

Site Check/Site Assessment Checklist

The purpose of this form is to certify the proper investigation of an UST site for the presence of a release. These activities shall be conducted in accordance with Chapter 173.360 WAC. A description of the various situations requiring a site check or site assessment is provided in the guidance document for UST site checks and site assessments.

This Site Check/Site Assessment Checklist shall be completed and signed by a person registered with the Department of Ecology to perform site assessments.

Two copies of the results of the site check or site assessment should be included with this checklist according to the reporting requirements in the guidance document for UST site checks and site assessments.

For further information about completing this form, please contact the Department of Ecology UST Program.

The completed checklist should be mailed to the following address:

Underground Storage Tank Section Department of Ecology Mail Stop PV-11 Olympia, WA 98504-8711

1. UST SYSTEM OW	NER AND LOCATION
UST Owner/Operator:	TIME OIL CO.
Owners Address:	2737 WEST COMMODORE WY.
Telephone:	SEATTLE, WA 98199 (206) 285-2400
Site ID Number (on invo	ce or available from Ecology if tank is registered):
Site/Business Name:	TIME OIL
Site Address:	2737 W. COMMODORE WAY KING
	SEATTLE WA 98199
	City State ZIP-Code
2. SITE CHECK/SITE	ASSESSMENT CONDUCTED BY:
Registered Person:	LIAM J. RUSSELL
Address:	2737 W. COMMODORF WAY
	SEATTLE WA (8199)
Telephone:	£06) 286-4490

3.	TANK INFORMATION			
1	. Tank ID Number (as registered with Ecology): X25	2. Year installed: UNKN	JOWN_	
	i. Tank capacity in gallons: 4000	4. Last substance stored: UNL		
	. Tarix capacity in galloris		ور پی ۱۰٫۱۰	
4.	REASON FOR CONDUCTING SITE CHECK/SITE A	SSESSMENT	Example 1	÷
C	Check one:			
	Investigate suspected release due to on-site envi	ronmental contamination		
	Investigate suspected release due to off-site envi	ronmental contamination		
	Extend temporary closure of UST system for mor	e than 12 months		
	UST system undergoing change-in-service			
	UST system permanently closed-in-place			
	UST system permanently closed with tank remov	ed		
	Required by Ecology or delegated agency for US	T system closed before December 22, 1988		
	Other (describe):		 -	
				
5.	CHECKLIST	CONTRACTOR OF THE PROPERTY OF THE PARTY OF T		
	Each item of the following checklist shall be initialed by	the person registered with the Department of I	Ecology who	
	signature appears below.			SC .
			Yes	No
1.	Has the site check/site assessment been conducted according to the check/site assessment guidance issued by the Departm			
1.	Has the site check/site assessment been conducted accordi			
ļ 	Has the site check/site assessment been conducted accordi		Yes	
ļ 	Has the site check/site assessment been conducted according site check/site assessment guidance issued by the Departm	ent of Ecology?		
2.	Has the site check/site assessment been conducted according site check/site assessment guidance issued by the Department of the UST system been confirmed? NOTE: Owners/operators must report all confirmed releases to the hours. Are the results of the site check/site assessment enclosed we	Department of Ecology or delegated agency within 24 ith this checklist?	Yes X	
2.	Has the site check/site assessment been conducted according site check/site assessment guidance issued by the Department of the Lagrangian strength of the L	Department of Ecology or delegated agency within 24 ith this checklist? be submitted to the Department of Ecology according to	Yes X	
2.	Has the site check/site assessment been conducted according site check/site assessment guidance issued by the Department Check/site assessment guidance issued by the Department Has a release from the UST system been confirmed? NOTE: Owners/operators must report all confirmed releases to the hours. Are the results of the site check/site assessment enclosed we NOTE: Two copies of the site check/site assessment results must be	ent of Ecology? Department of Ecology or delegated agency within 24 ith this checklist? Description of Ecology according to the description of the properties of the proper	Yes Free Free Free Free Free Free Free Fr	
2.	Has the site check/site assessment been conducted according site check/site assessment guidance issued by the Department Check/site assessment guidance issued by the Department Has a release from the UST system been confirmed? NOTE: Owners/operators must report all confirmed releases to the hours. Are the results of the site check/site assessment enclosed we NOTE: Two copies of the site check/site assessment results must be reporting requirements specified in the UST site check/site assessment. I hereby certify that I have been in responsible charge of performance of the site check in the UST site check/site assessment.	ent of Ecology? Department of Ecology or delegated agency within 24 ith this checklist? Description of Ecology according to the description of the properties of the proper	Yes Free Free Free Free Free Free Free Fr	
3.	Has the site check/site assessment been conducted according site check/site assessment guidance issued by the Department Check/site assessment guidance issued by the Department Has a release from the UST system been confirmed? NOTE: Owners/operators must report all confirmed releases to the hours. Are the results of the site check/site assessment enclosed we NOTE: Two copies of the site check/site assessment results must be reporting requirements specified in the UST site check/site assessment. I hereby certify that I have been in responsible charge of performance of the site check in the UST site check/site assessment.	Department of Ecology or delegated agency within 24 ith this checklist? The submitted to the Department of Ecology according to ment guidance. In the site check/site assessment described as under Chapter 173.360 WAC.	Yes Free Free Free Free Free Free Free Fr	

3	TANK INFORMATION			
	. Tank ID Number (as registered with Ecology):	824	2. Year installed:	NKHOWH
;	. Tank capacity in gallons: 2500		4. Last substance stored:	DIESEL
	REASON FOR CONDUCTING SITE CHEC	CK/SITE ASSES	SMENT	Carlo de Carlos
	Investigate suspected release due to Investigate suspected release due to Extend temporary closure of UST system undergoing change-in-set UST system permanently closed-in-pit UST system permanently closed with Required by Ecology or delegated ago Other (describe):	off-site environmentem for more than ervice lace tank removed	ntal contamination 12 months	1988
5.	CHECKLIST Each item of the following checklist shall be it signature appears below.		rson registered with the Depar	
1.	Has the site check/site assessment been conductive check/site assessment guidance issued by the	ted according to a ne Department of I	applicable procedures specified li Ecology?	Yes No
2.	Has a release from the UST system been confirm NOTE: Owners/operators must report all confirmed relations.		nent of Ecology or delegated agency	within 24
3.	Are the results of the site check/site assessment of NOTE: Two copies of the site check/site assessment reporting requirements specified in the UST site check/	esults must be aubm	itted to the Department of Ecology at	ecording to the
	I hereby certify that I have been in responsible ch Persons submitting false information are subject			described above.
	12-27-91	Tras	not ussell	
_	Date Sign	sibre of Person Registered	with Edology	
6.	Date Signature	alter of Person Registered	with Erlotoly	

3	TANK INFORMATION		
	. Tank ID Number (as registered with Ecology): 734 2. Year installed: UNKNOW	J	
l			
3.	Tank capacity in gallons:		
4.	REASON FOR CONDUCTING SITE CHECK/SITE ASSESSMENT		
С	Check one:		
	Investigate suspected release due to on-site environmental contamination		
	Investigate suspected release due to off-site environmental contamination		
	Extend temporary closure of UST system for more than 12 months		
	UST system undergoing change-in-service		
	UST system permanently closed-in-place		
	UST system permanently closed with tank removed		
	Required by Ecology or delegated agency for UST system closed before December 22, 1988		
	Other (describe):		
•			
5.	CHECKLIST	A COMPANY	gar de s se
	Each item of the following checklist shall be initialed by the person registered with the Department of Eco	logy who	SC
	signature appears below.		
<u> </u>		Yes	No
1.	Has the site check/site assessment been conducted according to applicable procedures specified in the UST site check/site assessment guidance issued by the Department of Ecology?	1 1	
	are checkrane easesathern colonice espied by the Dodern for a Checkrane of Colonice		
	and checkane assessment guidence assess by the population of coolegy:	R	
2.		R	
2.	Has a release from the UST system been confirmed? NOTE: Owners/operators must report all confirmed releases to the Department of Ecology or delegated agency within 24	**************************************	
	Has a release from the UST system been confirmed? NOTE: Owners/operators must report all confirmed releases to the Department of Ecology or delegated agency within 24 hours.	多条	
	Has a release from the UST system been confirmed? NOTE: Owners/operators must report all confirmed releases to the Department of Ecology or delegated agency within 24 hours. Are the results of the site check/site assessment enclosed with this checklist? NOTE: Two copies of the site check/site assessment results must be submitted to the Department of Ecology according to the	张 张	
	Has a release from the UST system been confirmed? NOTE: Owners/operators must report all confirmed releases to the Department of Ecology or delegated agency within 24 hours. Are the results of the site check/site assessment enclosed with this checklist?	多多条	`
	Has a release from the UST system been confirmed? NOTE: Owners/operators must report all confirmed releases to the Department of Ecology or delegated agency within 24 hours. Are the results of the site check/site assessment enclosed with this checklist? NOTE: Two copies of the site check/site assessment results must be submitted to the Department of Ecology according to the reporting requirements specified in the UST site check/site assessment guidance.	THE SEE	`
	Has a release from the UST system been confirmed? NOTE: Owners/operators must report all confirmed releases to the Department of Ecology or delegated agency within 24 hours. Are the results of the site check/site assessment enclosed with this checklist? NOTE: Two copies of the site check/site assessment results must be submitted to the Department of Ecology according to the	H H H	`
	Has a release from the UST system been confirmed? NOTE: Owners/operators must report all confirmed releases to the Department of Ecology or delegated agency within 24 hours. Are the results of the site check/site assessment enclosed with this checklist? NOTE: Two copies of the site check/site assessment results must be submitted to the Department of Ecology according to the reporting requirements specified in the UST site check/site assessment guidance. I hereby certify that I have been in responsible charge of performing the site check/site assessment described ab	H H H	
	Has a release from the UST system been confirmed? NOTE: Owners/operators must report all confirmed releases to the Department of Ecology or delegated agency within 24 hours. Are the results of the site check/site assessment enclosed with this checklist? NOTE: Two copies of the site check/site assessment results must be submitted to the Department of Ecology according to the reporting requirements specified in the UST site check/site assessment guidance. I hereby certify that I have been in responsible charge of performing the site check/site assessment described ab	H H F	`
	Has a release from the UST system been confirmed? NOTE: Owners/operators must report all confirmed releases to the Department of Ecology or delegated agency within 24 hours. Are the results of the site check/site assessment enclosed with this checklist? NOTE: Two copies of the site check/site assessment results must be submitted to the Department of Ecology according to the reporting requirements specified in the UST site check/site assessment guidance. I hereby certify that I have been in responsible charge of performing the site check/site assessment described ab	H H W	·
	Has a release from the UST system been confirmed? NOTE: Owners/operators must report all confirmed releases to the Department of Ecology or delegated agency within 24 hours. Are the results of the site check/site assessment enclosed with this checklist? NOTE: Two copies of the site check/site assessment results must be submitted to the Department of Ecology according to the reporting requirements specified in the UST site check/site assessment guidance. I hereby certify that I have been in responsible charge of performing the site check/site assessment described ab	H H F	
3.	Has a release from the UST system been confirmed? NOTE: Owners/operators must report all confirmed releases to the Department of Ecology or delegated agency within 24 hours. Are the results of the site check/site assessment enclosed with this checklist? NOTE: Two copies of the site check/site assessment results must be submitted to the Department of Ecology according to the reporting requirements specified in the UST site check/site assessment guidance. I hereby certify that I have been in responsible charge of performing the site check/site assessment described ab	H H F	Control of the Contro
3.	Has a release from the UST system been confirmed? NOTE: Owners/operators must report all confirmed releases to the Department of Ecology or delegated agency within 24 hours. Are the results of the site check/site assessment enclosed with this checklist? NOTE: Two copies of the site check/site assessment results must be submitted to the Department of Ecology according to the reporting requirements specified in the UST site check/site assessment guidance. I hereby certify that I have been in responsible charge of performing the site check/site assessment described ab Persons submitting false information are subject to penalties under Chapter 173.360 WAC. Sheaton of Person Registered with Ecology	H H F	
3.	Has a release from the UST system been confirmed? NOTE: Owners/operators must report all confirmed releases to the Department of Ecology or delegated agency within 24 hours. Are the results of the site check/site assessment enclosed with this checklist? NOTE: Two copies of the site check/site assessment results must be submitted to the Department of Ecology according to the reporting requirements specified in the UST site check/site assessment guidance. I hereby certify that I have been in responsible charge of performing the site check/site assessment described ab Persons submitting false information are subject to penalties under Chapter 173.360 WAC. Sheaton of Person Registered with Ecology	H H S	

3.	TANK INFORMATION					
Г	. Tank ID Number (as registered with Ecology)	: 202	2. Year installed:	UNFROW	N	
	. Tank capacity in gallons: 300	 -	4. Last substance stored:	USED	۸ <i>۱</i> ۱ـ	
	Talk dapacky il gallovio.					
4.	REASON FOR CONDUCTING SITE CH	ECK/SITE ASSES	SMENT	A Company of the Comp	erek - 194	
Γ,	Check one:				· •	-
`	AIRCA GIIG.					
	investigate suspected release due	to on-site environme	ntal contamination			
	Investigate suspected release due	to off-site environme	ntal contamination			
	Extend temporary closure of UST	system for more than	12 months			
	UST system undergoing change-in	n-service .				·
	UST system permanently closed-in	n-place				
	UST system permanently closed w	vith tank removed				
	Required by Ecology or delegated	agency for UST syst	em closed before December 22,	1988		
	Other (describe):					
5.	CHECKLIST		The first of the second of the second being			State December 1981
	Each item of the following checklist shall be	e initialed by the p	erson registered with the Depar	rtment of Ecol	logy who	ose
	cumpture appears balow					
	signature appears below.					
	signature appears octow.				Yes	No
1.	Has the site check/site assessment been con-	ducted according to	applicable procedures specified i	in the UST	Yes	No
1.		ducted according to by the Department of	applicable procedures specified i Ecology?	in the UST	Yes	No
	Has the site check/site assessment been consite check/site assessment guidance issued by	by the Department of	applicable procedures specified i Ecology?	in the UST	Yes	No
	Has the site check/site assessment been consite check/site assessment guidance issued to the check/site assessment been considered to the check/site assessment been considered to the check/site assessment been considered to the check/site assessment guidance issued to the check guidance is a check guidance guidance is a check guidance guidance guidance is a check guidance guida	by the Department of	Ecology?		VOS.	No
2.	Has the site check/site assessment been consite check/site assessment guidance issued to the check/site assessment been consite check/site assessment been consite check/site assessment been consite check/site assessment guidance issued to the check guidance issued to the check guidance issued to the check guidance is a check guidance guidance is a check guidance	by the Department of his order of the Department	Ecology? ment of Ecology or delegated agency		R R	No
2.	Has the site check/site assessment been consite check/site assessment guidance issued to the check/site assessment guidance issued to the site check/site assessment guidance is site check/site assessment guidance guid	oy the Department of infirmed? If releases to the Department enclosed with this	ment of Ecology or delegated agency checklist?	y within 24	THE REPORT	No
2.	Has the site check/site assessment been consite check/site assessment guidance issued to the check/site assessment been consite check/site assessment been consite check/site assessment been consite check/site assessment guidance issued to the check guidance issued to the check guidance issued to the check guidance is a check guidance guidance is a check guidance	oy the Department of infirmed? If releases to the Department enclosed with this ant results must be subm	ment of Ecology or delegated agency checklist? hitted to the Department of Ecology a	y within 24	THE RE	No
2.	Has the site check/site assessment been consite check/site assessment guidance issued to the check/site assessment guidance issued to the site check/site assessment guidance issued to the site check/site assessment guidance issued to the site check/site assessment specified in the UST site check/site assessment reporting requirements apecified in the UST site check	oy the Department of infirmed? If releases to the Department enclosed with this out results must be submeck/site assessment gu	Ecology? ment of Ecology or delegated agency checklist? nitted to the Department of Ecology a idence.	y within 24 according to the	BB B	No
2.	Has the site check/site assessment been consite check/site assessment guidance issued to the check/site assessment guidance issued to the site check/site assessment and the results of the site check/site assessment apacitied in the UST site check/site assessment guidance issued to the site check/site assessment guidance issued guidance issued to the site check/site assessment guidance issued guidance guidance guidance guidance guidance guidance guidance	oy the Department of infirmed? If releases to the Department enclosed with this ent results must be submeck/site assessment guide charge of performi	Ecology? ment of Ecology or delegated agency checklist? nitted to the Department of Ecology a idance. ng the site check/site assessment	y within 24 according to the	BB B	No
2.	Has the site check/site assessment been consite check/site assessment guidance issued to the check/site assessment guidance issued to the site check/site assessment guidance issued to the site check/site assessment guidance issued to the site check/site assessment specified in the UST site check/site assessment reporting requirements apecified in the UST site check	oy the Department of infirmed? If releases to the Department enclosed with this ent results must be submeck/site assessment guide charge of performi	Ecology? ment of Ecology or delegated agency checklist? nitted to the Department of Ecology a idance. ng the site check/site assessment	y within 24 according to the	BB B	No
2.	Has the site check/site assessment been consite check/site assessment guidance issued to the check/site assessment guidance issued to the site check/site assessment and the results of the site check/site assessment apacitied in the UST site check/site assessment guidance issued to the site check/site assessment guidance issued guidance issued to the site check/site assessment guidance issued guidance guidance guidance guidance guidance guidance guidance	oy the Department of infirmed? If releases to the Department enclosed with this ent results must be submeck/site assessment guide charge of performi	Ecology? ment of Ecology or delegated agency checklist? nitted to the Department of Ecology a idance. ng the site check/site assessment	y within 24 according to the	BB B	No
2.	Has the site check/site assessment been consite check/site assessment guidance issued to the check/site assessment guidance issued to the site check/site assessment and the results of the site check/site assessment apacitied in the UST site check/site assessment guidance issued to the site check/site assessment guidance issued guidance issued to the site check/site assessment guidance issued guidance guidance guidance guidance guidance guidance guidance	oy the Department of infirmed? If releases to the Department enclosed with this ent results must be submeck/site assessment guide charge of performi	Ecology? ment of Ecology or delegated agency checklist? nitted to the Department of Ecology a idance. ng the site check/site assessment	y within 24 according to the	BB B	No
2.	Has the site check/site assessment been consite check/site assessment guidance issued to the check/site assessment guidance issued to the site check/site assessment and the results of the site check/site assessment apacitied in the UST site check/site assessment guidance issued to the site check/site assessment guidance issued guidance issued to the site check/site assessment guidance issued guidance guidance guidance guidance guidance guidance guidance	oy the Department of infirmed? If releases to the Department enclosed with this ent results must be submeck/site assessment guide charge of performi	Ecology? ment of Ecology or delegated agency checklist? nitted to the Department of Ecology a idance. ng the site check/site assessment	y within 24 according to the	BB B	No
3.	Has the site check/site assessment been consite check/site assessment guidance issued to the check/site assessment guidance issued to the site check site assessment hours. Are the results of the site check/site assessment hours. Two copies of the site check/site assessment reporting requirements apacified in the UST site check site assessment specified in the UST site check site assessment provided in the UST site check site assessment specified in the UST site check specified in the UST	oy the Department of infirmed? If releases to the Department enclosed with this ent results must be submeck/site assessment guide charge of performi	Ecology? ment of Ecology or delegated agency checklist? nitted to the Department of Ecology a idance. ng the site check/site assessment	y within 24 according to the	BB B	No
3.	Has the site check/site assessment been consite check/site assessment guidance issued to the check/site assessment guidance issued to the site check/site assessment and the results of the site check/site assessment apacitied in the UST site check/site assessment guidance issued to the site check/site assessment guidance issued guidance issued to the site check/site assessment guidance issued guidance guidance guidance guidance guidance guidance guidance	oy the Department of infirmed? If releases to the Department enclosed with this ent results must be submeck/site assessment guide charge of performi	Ecology? ment of Ecology or delegated agency checklist? nitted to the Department of Ecology a idance. ng the site check/site assessment	y within 24 according to the	BB B	No
3.	Has the site check/site assessment been consite check/site assessment guidance issued to the check/site assessment guidance issued to the site check site assessment hours. Are the results of the site check/site assessment hours. Two copies of the site check/site assessment reporting requirements apacified in the UST site check site assessment specified in the UST site check site assessment provided in the UST site check site assessment specified in the UST site check specified in the UST	oy the Department of infirmed? If releases to the Department enclosed with this ent results must be submeck/site assessment guide charge of performi	ment of Ecology or delegated agency checklist? nitted to the Department of Ecology a idance. Ing the site check/site assessment for Chapter 173.360 WAC.	y within 24 according to the	BB B	No

SEATTLE TACOMA PORTLAND STOCKTON RENO RICHMOND LOS ANGELES

TIME OIL CO.

2737 WEST COMMODORE WAY P.O. BOX 24447

SEATTLE, WA 98199-1233 SEATTLE, WA 98124-0447

September 22, 1992

Washington State Department of Ecology Northwest Region 3190 160th SE Bellevue, Washington 98008-5452 Attention: Mr. Joe Hickey

SUBJECT:

Excavating Activities Conducted at Former Waste Oil Tank Location

Former Time Oil Co. Vehicle Maintenance Facility

2750 Commodore Way; Seattle, Washington

Dear Mr. Hickey,

This letter is to inform you of the findings of additional assessment activities conducted at the above referenced site. On July 28th and 29th, 1992 additional excavation was conducted in the former location of a waste oil tank which was removed in September 1991. Hydrocarbon contamination was discovered during removal of the tank; thus, this additional phase of excavation was undertaken in an attempt to remove remaining soil contamination.

A small amount of groundwater had pooled in the initial excavation associated with tank removal; therefore, lateral excavation was conducted in an attempt to define the limits of the contaminated area. Previous excavating activities had documented that soils located on the southern and western edges of the excavation did not contain hydrocarbons exceeding MTCA Method A Cleanup Levels; thus, the excavation was expanded primarily to the north and east.

After approximately 150 cubic yards of contaminated soil had been removed, excavating activities were terminated because field observations suggested that contaminant severity increased in an easterly direction, and excavation of the full extent of soil contamination did not appear to be feasible. The excavation was backfilled by placing crushed rock below the groundwater surface, installing a layer of 10-mil visqueen upon the crushed rock to reduce settling and surface water infiltration, and backfilling the remaining excavation with fine sand.

Six soil samples were collected from the limits of the northern and eastern sides of the excavation, directly above the groundwater surface, to assess remaining contaminant levels and evaluate the potential for a groundwater impact (See Figure 1 - Site Map for sample locations). The six samples were submitted to a State certified laboratory for hydrocarbon identification (WHCID) analysis to identify the hydrocarbons present. Hydrocarbons identified as gasoline, diesel, and mineral spirits were identified in samples A-1 (08', A-2 (09', and A-6 (03'). Motor oil was also detected in sample A-6 (03'). Additional analysis was conducted on the three samples in which hydrocarbons

were detected to quantify levels of TPH and BTEX by the WTPH Method and EPA Method 8020. These three samples were found to contain levels of TPH-gasoline ranging from 60 to 290 parts per million (ppm), TPH-diesel ranging from 90 to 1,600 ppm, TPH-mineral spirits between 50 and 210 ppm, and 2,300 ppm TPH-motor oil was detected in sample A-6 @3' (See Table 1 - Analytical Results). Laboratory reports are attached.

Two additional soil samples were recovered from the vicinity of an area of visibly impacted soil located near the ground surface on the south side of the excavation. Sample WO-WC was recovered from material believed to represent "worst case" conditions in order to conduct disposal profiling. Sample WO @5' was collected from the same area at a depth of 5 feet below grade to verify removal of the impacted soil once field observations indicated that the visibly impacted area had been fully excavated. WHCID analysis on these two samples detected the presence of diesel fuel in Sample WO-WC and did not detect petroleum hydrocarbons in sample WO @5'. WTPH analysis conducted on Sample WO-WC detected 2,800 ppm TPH-diesel. Laboratory reports are attached.

These analytical results, in combination with field observations, indicate that petroleum hydrocarbon contamination remains beneath the site, and that an impact upon groundwater may have occurred. Time Oil Co. is in the process of submitting a request for proposals to environmental consultants for further assessment of this area. This next phase of assessment will include the installation of soil borings and groundwater monitoring wells to assess the extent of remaining soil contamination and the potential for an impact upon groundwater.

The excavated soil is currently stockpiled upon an adjacent property also owned by Time Oil Co. Samples of this material have been submitted for disposal profiling. Arrangements to recycle the soil will be made once analytical results are received.

If you have any questions regarding this site, please contact either myself at (206) 286-6457 or Liam Russell at (206) 286-4490. If we are not available, Kevin Murphy may be able to answer your questions.

Sincerely,

Scott B. Sloan Geologist

Enclosures:
Table 1 - Analytical Results
Figure 1 - Site Map
Analytical Reports

TABLE 1

Soil Analytical Results

Time Oil Co. Property No. 01-228

2750 Commodore Way; Seattle, Washington

Sample Number	Depth	ТРН	Benzene	Toluene	Ethyl- benzene	Total Xylenes		
Samples Collected 10/3/91								
TI-F	6'	200	NT	NT	NT	NT		
TI-E	4'	ND	NT	NT	NT	NT		
TI-S	4'	ND	NT	NT	NT	NT		
TI-W	4'	ND	NT	NT	NT	NT		
TP1	3'	720	NT	NT	NT	NT		
Samples (Collected 12	2/10/91						
SS1	6.5'	12	NT	NT	NT	NT		
NS2	2'	840	NT	NT	NT	NT		
ES4	5'	25,000	NT	NT	NT	NT		
TP3	2'	15	NT	NT	NT	NT		
Samples (Collected 7/	29/92						
A1	8'	60-g	ND	ND	ND	ND		
	_	50-m				140		
		90-d						
A2	9'	290-g	ND	ND	ND	ND		
		200-m						
		330-d						
A3	6'	ND*	NT	NT	NT	NT		
A4	3,	ND*	NT	NT	NT	NT		
A5	3'	ND*	NT	NT	NT	NT		
A6	3'	110-g	0.16	0.14	2.6	4.9		
		210-m						
		1,600-d						
WO-WC		2,300-0			1 30 mm			
NO. 11 12578 1	2' 5'	2,800-d	NT	NT	NT	NT		
WO @ 5'	5'	ND*	NT	NT	NT	NT		

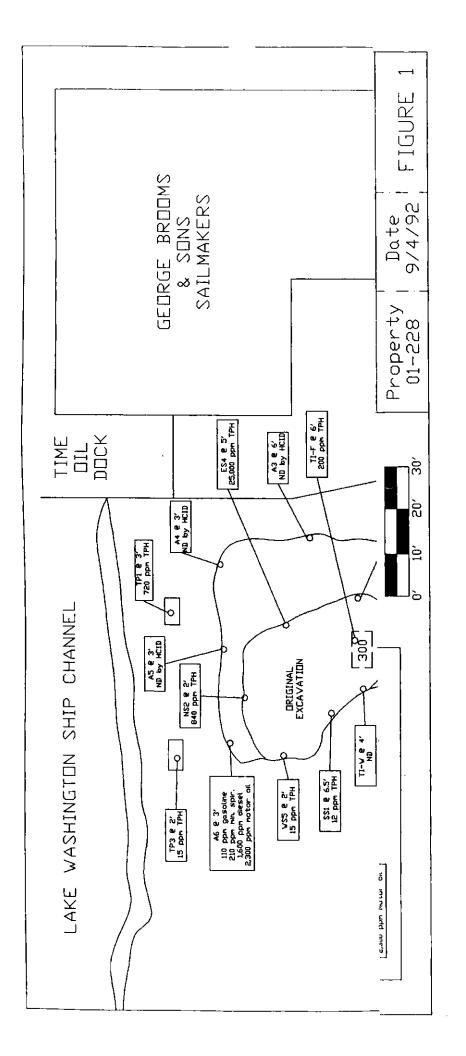
NOTES:

Results reported in milligrams per kilogram (mg/kg) of parts per million (ppm).

g = TPH as gasoline, d = TPH as diesel,

m = TPH as mineral spirits, o = TPH as motor oil.

Detection limit for benzene, toluene, and ethylbenzene = 0.02 ppm


Detection limit for total xylenes = 0.04 ppm.

Shading denotes sample with at least one constituent exceeding Method A Cleanup Standards.

NT = Sample not tested for this constituent.

ND = Not detected.

^{* =} TPH analysis by HCID.

ENVIRONMENTAL CHEMISTS

Andrew John Friedman James E. Bruya, Ph.D. (206) 285-8282 3008-B 16th Avenue West Seattle, WA 98119 FAX: (206) 283-5044

August 5, 1992.

Scott Sloan, Environmental Specialist Time Oil Company 2737 West Commodore Way Seattle, WA 98199

Dear Mr. Sloan:

Enclosed are the results of the analyses of the samples submitted on July 30, 1992 from Project 01-228, Seattle Terminal Dockside.

We appreciate this opportunity to be of service to you on this project. If you have any questions regarding this material, or if you just want to discuss any aspect of your projects, please do not hesitate to contact me.

Sincerely,

Amy M. Gray

any bray

Chemist

AMG/dp

Enclosures

ENVIRONMENTAL CHEMISTS

Date of Report: August 5, 1992 Date Submitted: July 30, 1992

Project: 01-228, Seattle Terminal Dockside

RESULTS OF ANALYSES OF THE SOIL SAMPLES
FOR FINGERPRINT CHARACTERIZATION
BY CAPILLARY GAS CHROMATOGRAPHY
USING FLAME IONIZATION DETECTION (FID)
AND ELECTRON CAPTURE DETECTION (ECD)

Sample

GC Characterization

A-108' - SE Corner in Cap . Fringe

The gas chromatographic trace showed the presence of low and medium boiling compounds, such as those found in gasoline, mineral spirits and diesel. This characterization is based on material eluting in the gasoline range and with a gasoline pattern, as well as the presence of a relatively ragged envelope of peaks present from ca $n-C_8$ to $n-C_{12}$ with a maximum near $n-C_{10}$, as well as a second continuing envelope of peaks from ca n-C18 to $n-C_{22}$ with a maximum near $n-C_{17}$. Augmented levels of benzene, toluene, ethylbenzene and the xylenes were seen which is common to most gasolines. lower boiling material appeared to be slightly weathered most likely by evaporation as evident in the relative lessening of earlier peaks. The medium boiling material appeared to be mostly weathered by biodegradation evident in the loss of n-alkane peaks. The ECD trace showed the possible presence of halogenated solvents. The large peak eluting at approximately 24 minutes represents our internal standard.

ENVIRONMENTAL CHEMISTS

Date of Report: August 5, 1992 Date Submitted: July 30, 1992

Project: 01-228, Seattle Terminal Dockside

RESULTS OF ANALYSES OF THE SOIL SAMPLES
FOR FINGERPRINT CHARACTERIZATION
BY CAPILLARY GAS CHROMATOGRAPHY
USING FLAME IONIZATION DETECTION (FID)
AND ELECTRON CAPTURE DETECTION (ECD)

Sample

GC Characterization

A-209' - SE Corner, 1' Lower

The gas chromatographic trace showed the presence of low and medium boiling compounds, such as those found in gasoline, mineral spirits and diesel. This characterization is based on material eluting in the gasoline range and with a gasoline pattern, as well as the presence of a relatively ragged envelope of peaks present from ca n- C_8 to n- C_{12} with a maximum near $n-C_{10}$, as well as a second continuing envelope of peaks from ca n-C18 to $n-C_{22}$ with a maximum near $n-C_{17}$. Augmented levels of benzene, toluene, ethylbenzene and the xylenes were seen which is common to most gasolines. lower boiling material appeared to be slightly weathered most likely by evaporation as evident in the relative lessening of earlier peaks. The medium boiling material appeared to be mostly weathered by biodegradation evident in the loss of n-alkane peaks. The ECD trace showed the possible presence of halogenated solvents. The large peak eluting at approximately 24 minutes represents our internal standard.

A-306' - E Side in Cap. Fringe

Both gas chromatographic traces show the absence of significant levels of volatile or semi-volatile compounds. The large peak eluting at approximately 24 minutes represents our internal standard.

ENVIRONMENTAL CHEMISTS

Date of Report: August 5, 1992 Date Submitted: July 30, 1992

Project: 01-228, Seattle Terminal Dockside

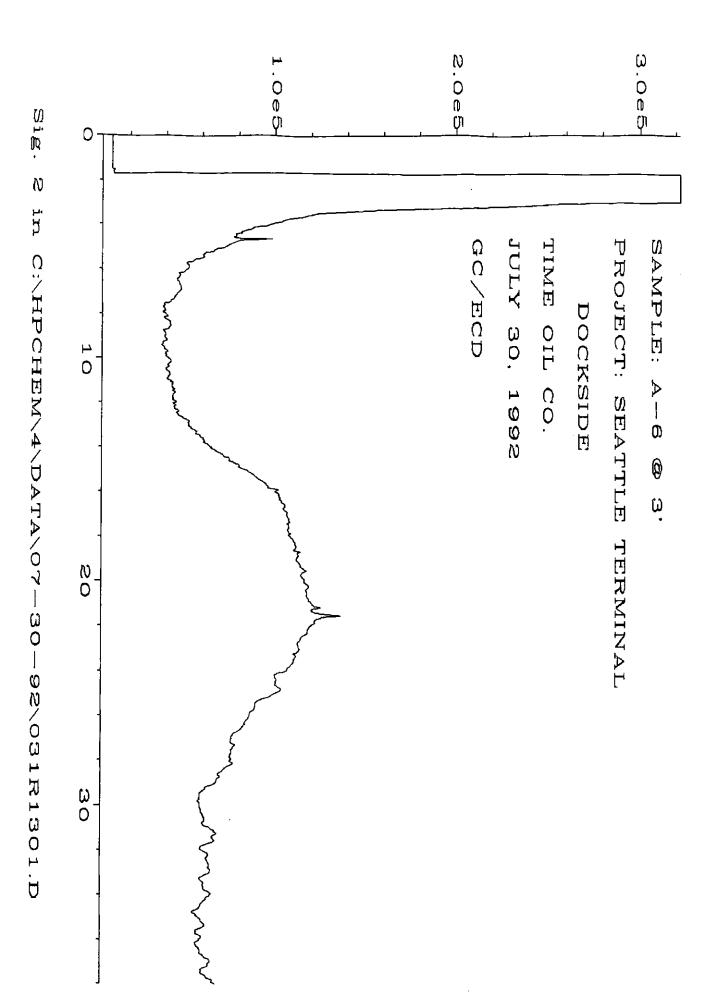
RESULTS OF ANALYSES OF THE SOIL SAMPLES
FOR FINGERPRINT CHARACTERIZATION
BY CAPILLARY GAS CHROMATOGRAPHY
USING FLAME IONIZATION DETECTION (FID)
AND ELECTRON CAPTURE DETECTION (ECD)

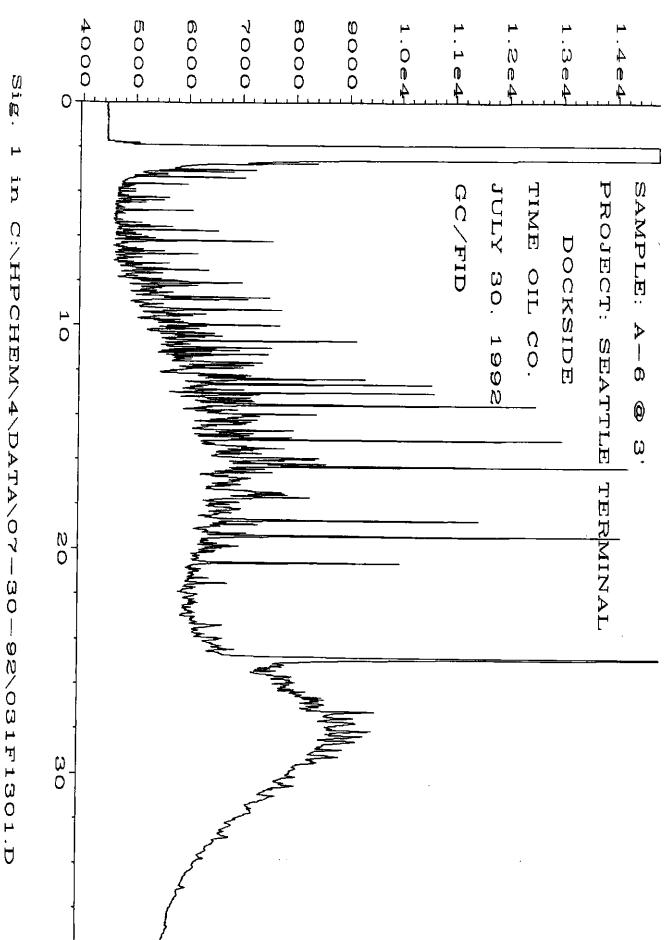
Sample

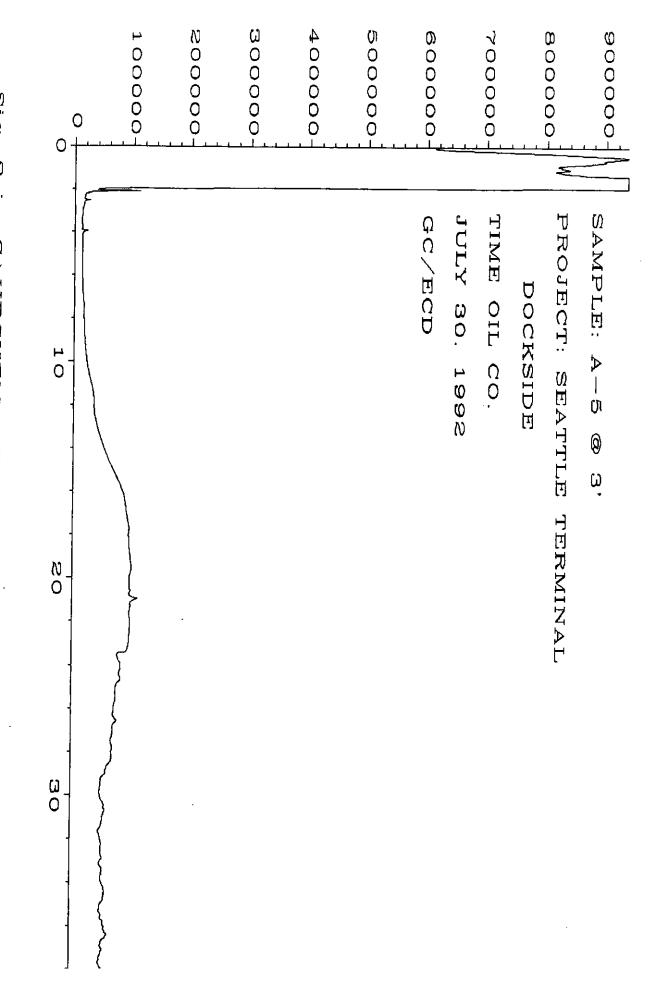
GC Characterization

A-403' - N in Cap. Fringe

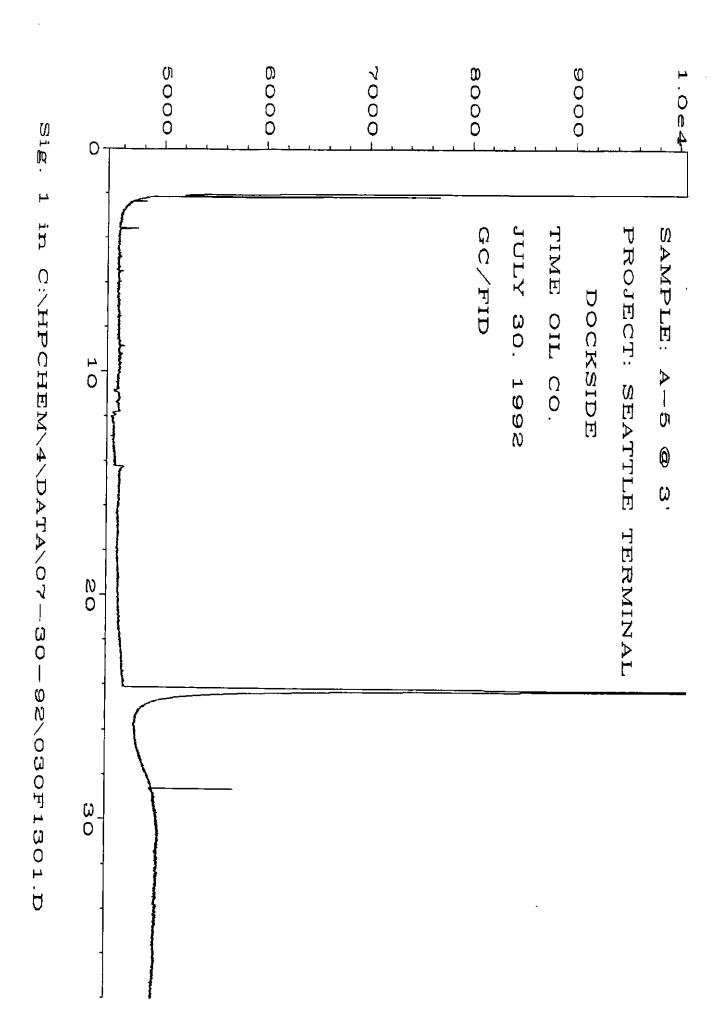
Both gas chromatographic traces show the absence of significant levels of volatile or semi-volatile compounds. The large peak eluting at approximately 24 minutes represents our internal standard.


A-503' - NE Corner in Cap. Fringe

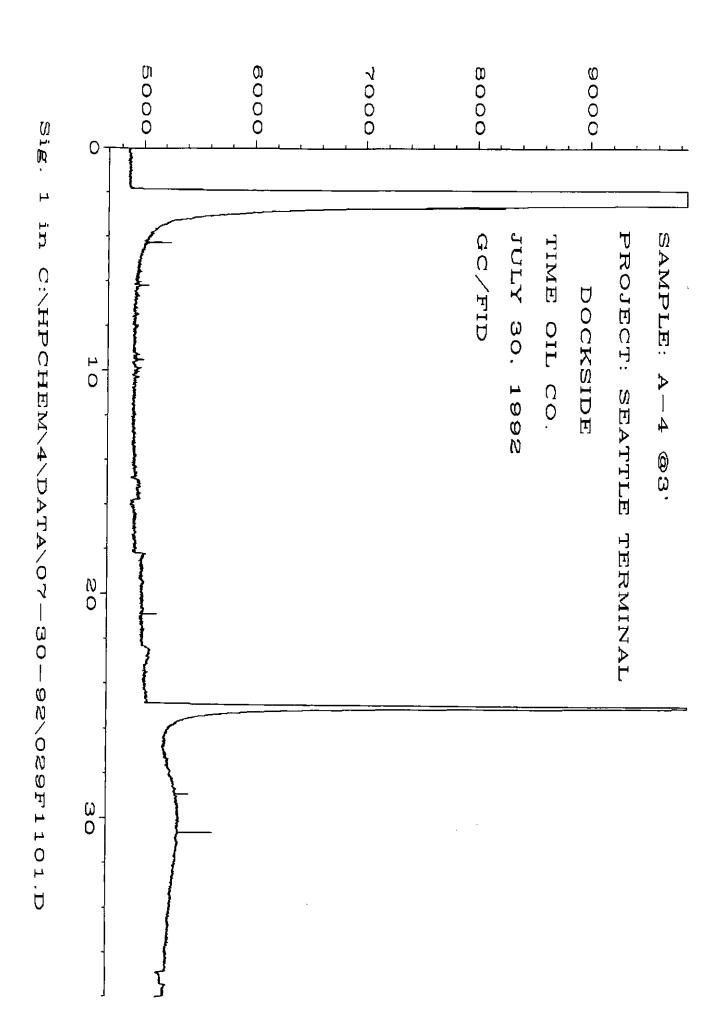

Both gas chromatographic traces show the absence of significant levels of volatile or semi-volatile compounds. The large peak eluting at approximately 24 minutes represents our internal standard.

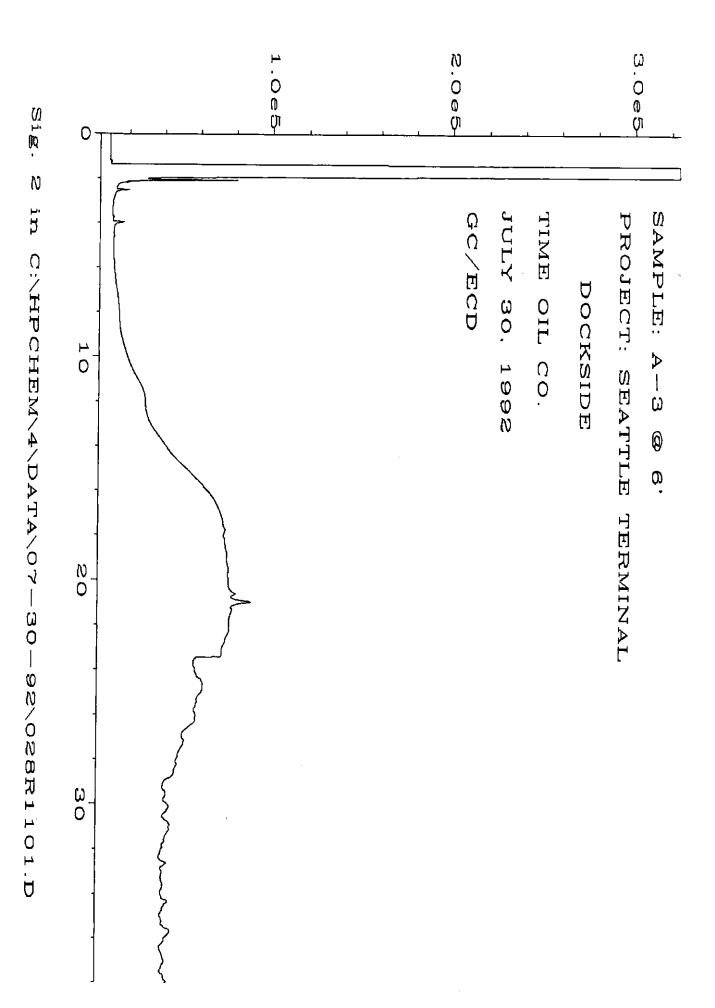

A-603' - New Corner in Cap. Fringe

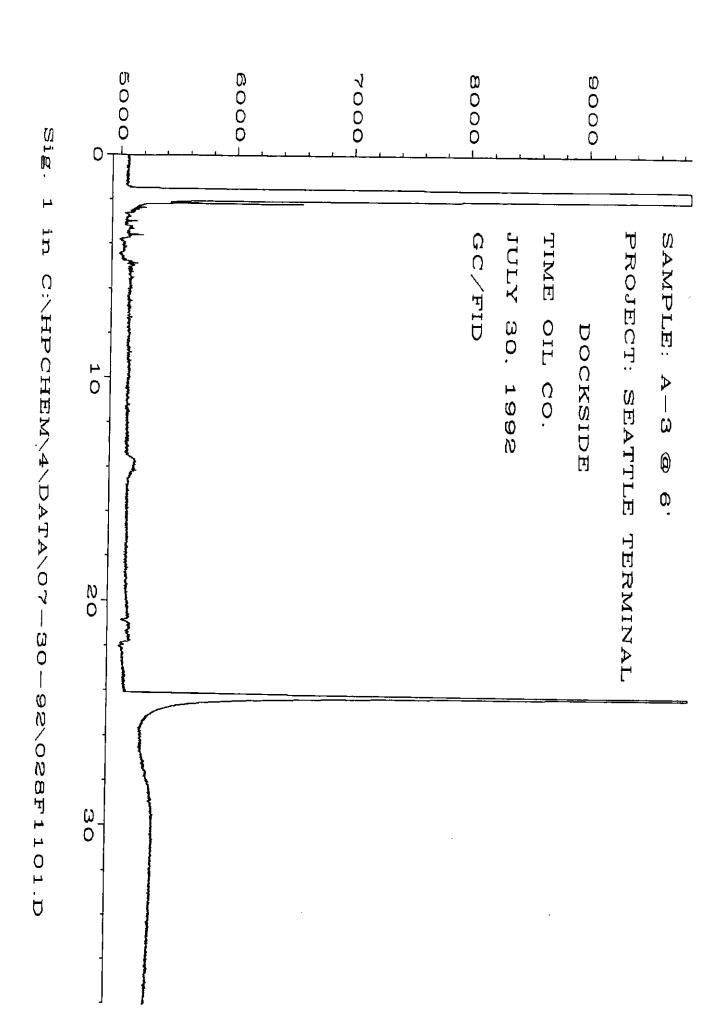
The gas chromatographic trace showed the presence of low, medium and high boiling compounds, such as those found in gasoline, mineral spirits, diesel, and motor oil with the most prominent material being diesel. This characterization is based on the presence of an envelope of peaks eluting in the gasoline range and with a gasoline-like pattern, a second envelope of peaks present from ca $n-C_8$ to $n\text{-}\mathrm{C}_{12}$ with a maximum near $n\text{-}\mathrm{C}_{10}$, a third continuing envelope of peaks from ca $n\text{-}\mathrm{C}_{10}$ to beyond $n-C_{22}$ with a maximum near $n-C_{17}$ and a fourth envelope of peaks present from ca $n-C_{22}$ to beyond ca $n-C_{34}$, with a maximum near C28. Augmented levels of benzene, toluene, ethylbenzene and the xylenes were seen which is common to most gasolines. The ECD trace showed the possible presence of halogenated solvents. The large peak eluting at approximately 24 minutes represents our internal standard.

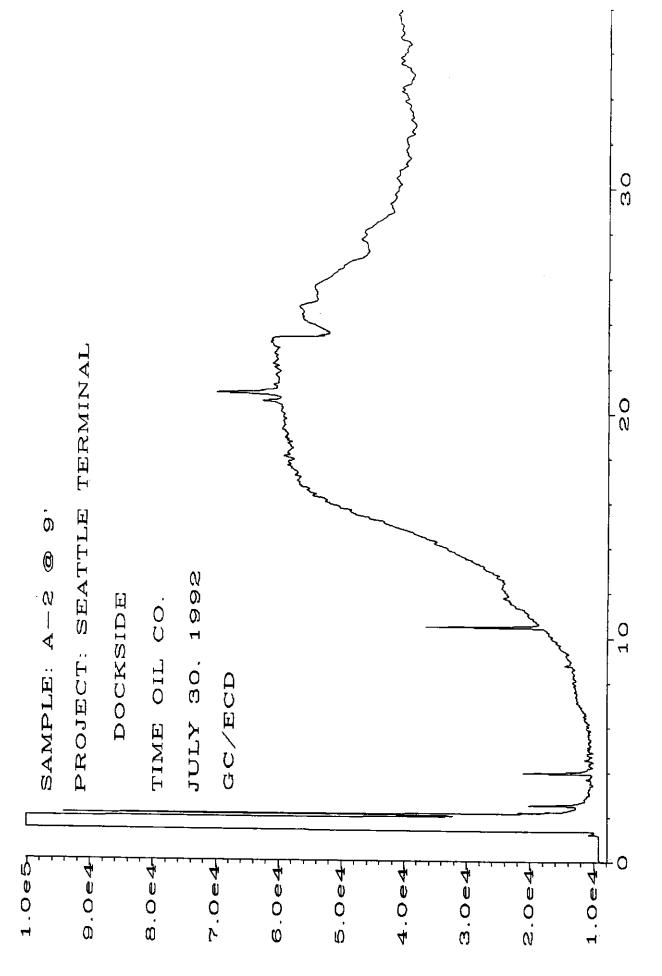

TIME (IL CO. SAMPLE LC) Seattle Terminal Docksize Prop. No: 01-228 Address: 2737 W. Commendove Site Name: Sampler: Date: 7/30/92 Purpose: Method: Grab Bailer Pump S.Spoon Lab Name: ice 🔀 Preserved: None Acid PO No.: Lab Address: Phone: **Analysis Instructions** Sample # Location/Description **EPA Method** Type* SWP WIPH - HCIO A-108' -SE Councy in Cap Triune SWP 1' lower (\$) W P 31875 YS W P BWP SWP SWP SWP SWP SWP SWP SWP SWP 13 SWP SWP SWP SWP SWP SWP SWP SWP SWP Other Instructions & Hole pacsible Sample Count = Check sample lar count against Log! * S = Soil W = Water P = Product CHAIN OF CUSTODY RECORD 7-30-62 Relinquished By: Received By: Date & Time Relinquished By: Received For Lab By: Date & Time: GENERAL LAB INSTRUCTIONS Please provide the requested information Sample numbers assigned by Lab: 31873 to 31878 Date Analyzed: 7-39-92 2. Person performing analysis: andrew Friedman, any Gray Pata Reviewer: andrew Friedman 3. Scheduled sample disposal date: 8-30-92 NOTIFY TIME OIL CO. BEFORE DISPOSAL 4. Provide copies of ALL chromatograms, including QA/QC runs. IMPORTANTI PLEASE RETURN A COPY OF THIS FORM WITH YOUR REPORT TO TIME OIL CO. Attn: Environmental Manager. PO Box 24447 Terminal Sta., Seattle, WA 98124 (206) 285-2400

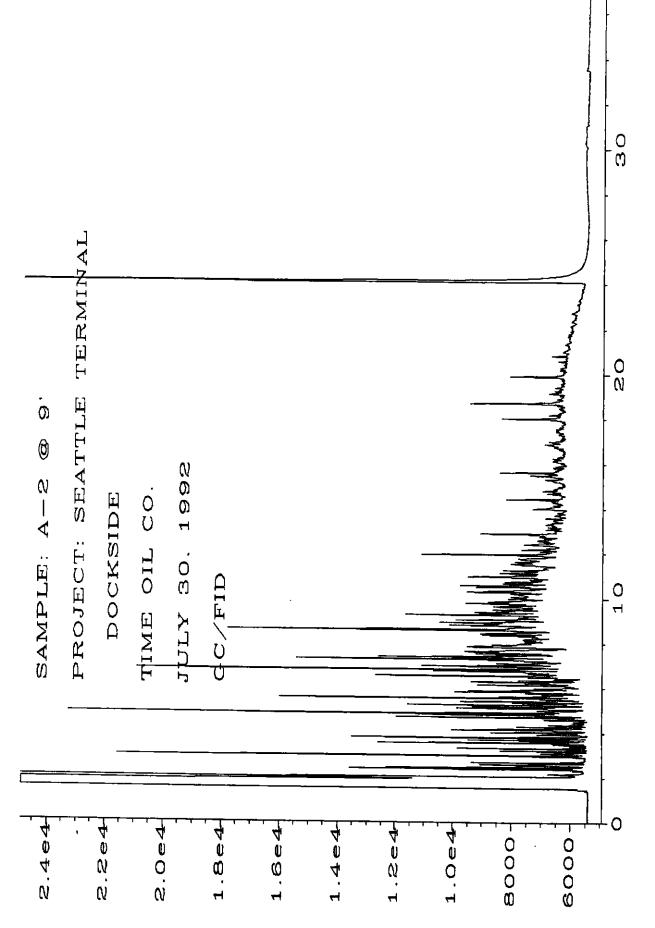


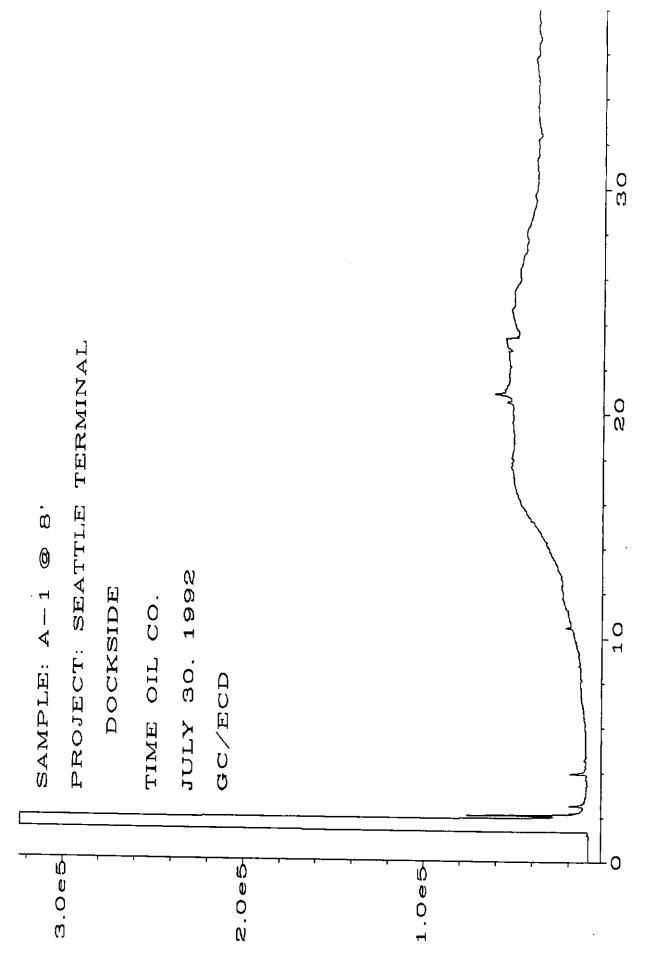


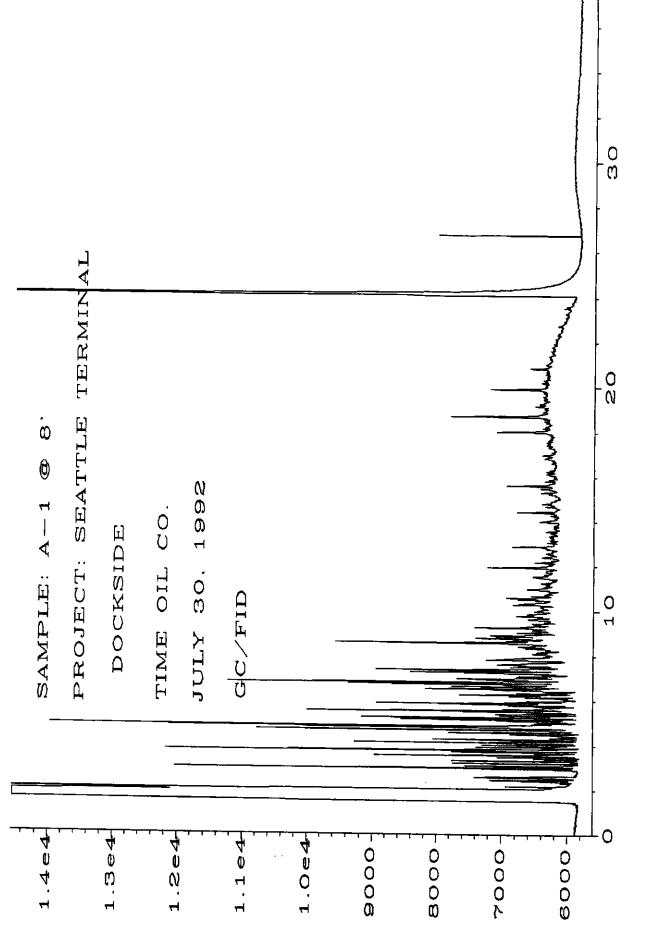


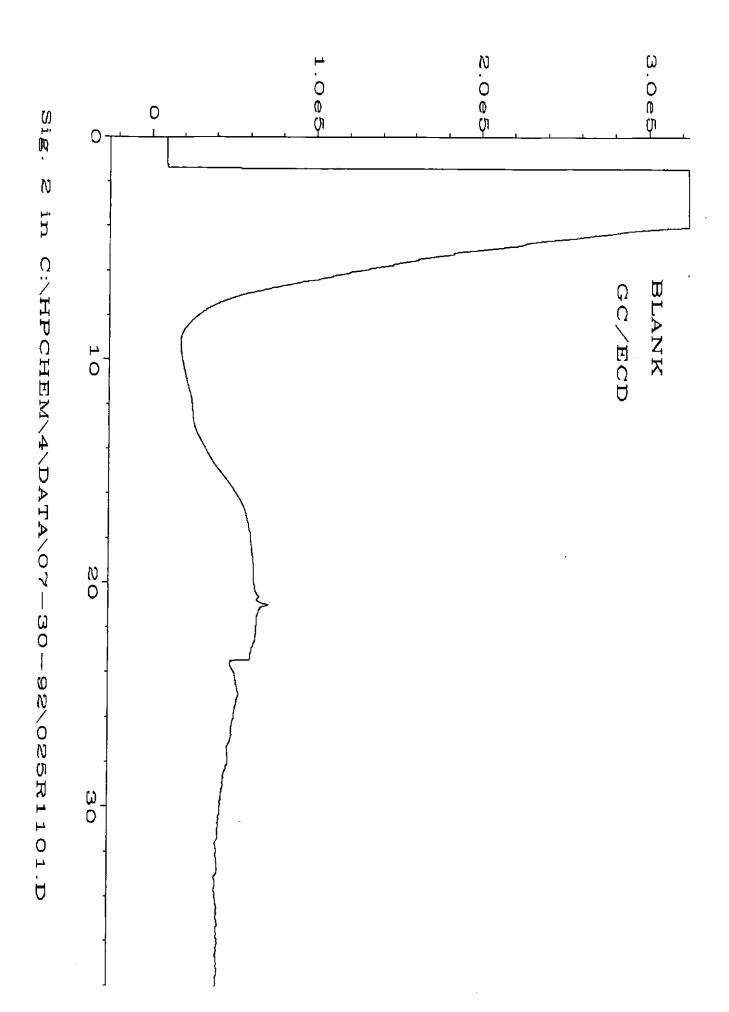

Sig. N in C:\HPCHEM\4\DATA\07-30-92\030R1301.D








Sig. 2 in C:\HPCHEM\4\DATA\07-30-92\027R1101.D


C:\HPCHEM\4\DATA\0?-30-92\027F1101.D tri Н Sig.

Sig. 2 in C:\HPCHEM\4\DATA\07-30-92\026R1101.D

in C:\HPCHEM\4\DATA\0?-30-92\026F1101.D Sig. 1

ENVIRONMENTAL CHEMISTS

Andrew John Friedman James E. Bruya, Ph.D. (206) 285-8282

3008-B 16th Avenue West Seattle, WA 98119 FAX: (206) 283-5044

August 10, 1992

Scott Sloan, Environmental Specialist Time Oil Company 2737 West Commodore Way Seattle, WA 98199

Dear Mr. Sloan:

Enclosed are the results of the analyses of the samples submitted on August 3, 1992 from Project 01-228, Commodore Way Dockside.

We appreciate this opportunity to be of service to you on this project. If you have any questions regarding this material, or if you just want to discuss any aspect of your projects, please do not hesitate to contact me.

Sincerely,

Amy M. Gray

Chemist

AMG/dp

Enclosures

ENVIRONMENTAL CHEMISTS

Date of Report: August 10, 1992 Date Submitted: August 3, 1992 Project: 01-228, Commodore Way Dockside

RESULTS OF ANALYSES OF THE SOIL SAMPLE FOR SELECTED METALS BY ICP (6010) Results Reported as µg/g (ppm)

Sample #	Lead
WO-WC - Per Plan	18
Ouality Assurance	
Method Blank	<0.5
WO-WC - Per Plan (Duplicate)	22
WO-WC - Per Plan (Matrix Spike) Percent Recovery	80%
WO-WC - Per Plan (Matrix Spike Duplicate) Percent Recovery	111%
Spike Blank Percent Recovery	107%
Spike Level	10

FRIEDMAN & BRUYA, INC. ENVIRONMENTAL CHEMISTS

Date of Report: August 10, 1992 Date Submitted: August 3, 1992

Project: 01-228, Commodore Way Dockside

RESULTS OF ANALYSES OF THE SOIL SAMPLE FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL BY GC/FID (MODIFIED 8015) Results Reported as $\mu g/g$ (ppm)

Sample #	Diesel (ppm)	<pre>Internal Standard (% Recovery)</pre>
WO-WC - Per Plan	2,800	132%
Ouality Assurance		
Method Blank	<10	100%
WO-WC - Per Plan (Duplicate)	4,070	125%
WO-WC - Per Plan (Matrix Spike) Percent Recovery	ai	134%
WO-WC - Per Plan (Matrix Spike Duplicate) Percent Recovery	ai	133%
Spike Blank Percent Recovery	100%	106%
Spike Level	500	

ai - The amount spiked was insufficient to give meaningful recovery data.

ENVIRONMENTAL CHEMISTS

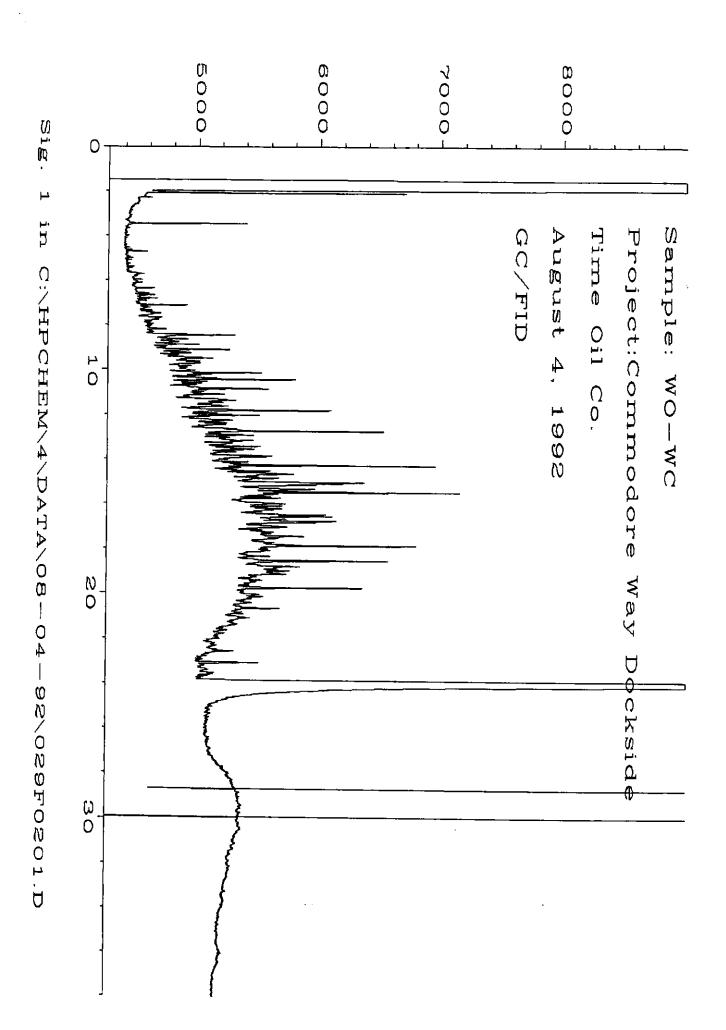
Date of Report: August 10, 1992 Date Submitted: August 3, 1992

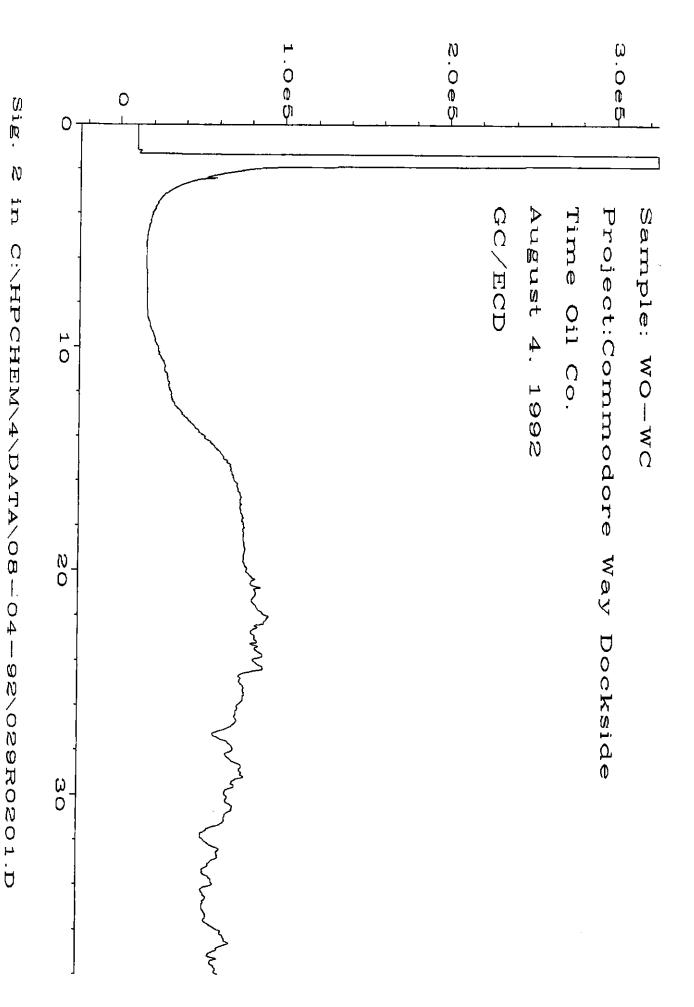
Project: 01-228, Commodore Way Dockside

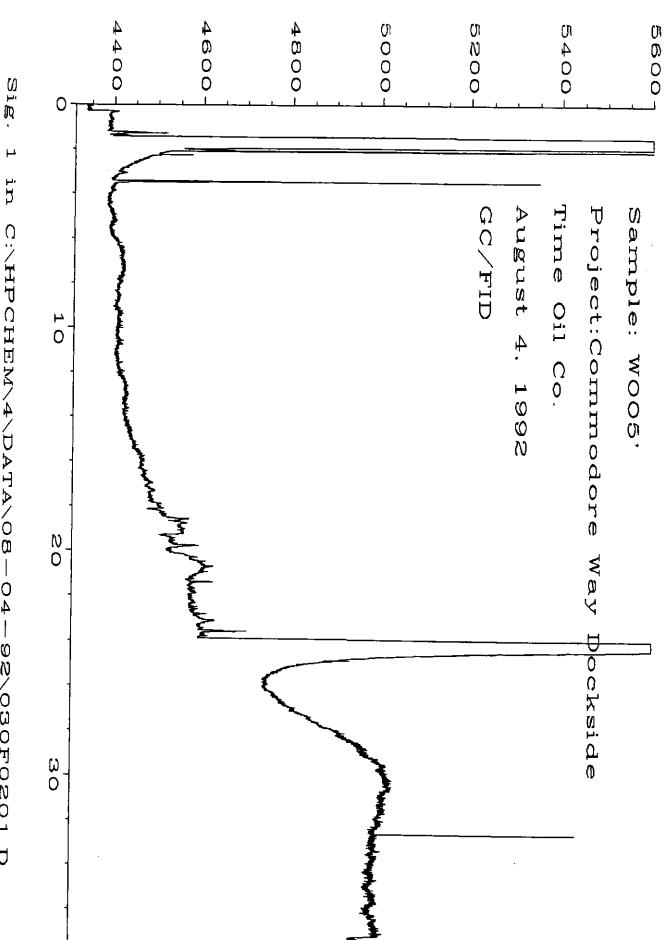
RESULTS OF ANALYSES OF THE SOIL SAMPLES
FOR FINGERPRINT CHARACTERIZATION
BY CAPILLARY GAS CHROMATOGRAPHY
USING FLAME IONIZATION DETECTION (FID)
AND ELECTRON CAPTURE DETECTION (ECD)

Sample

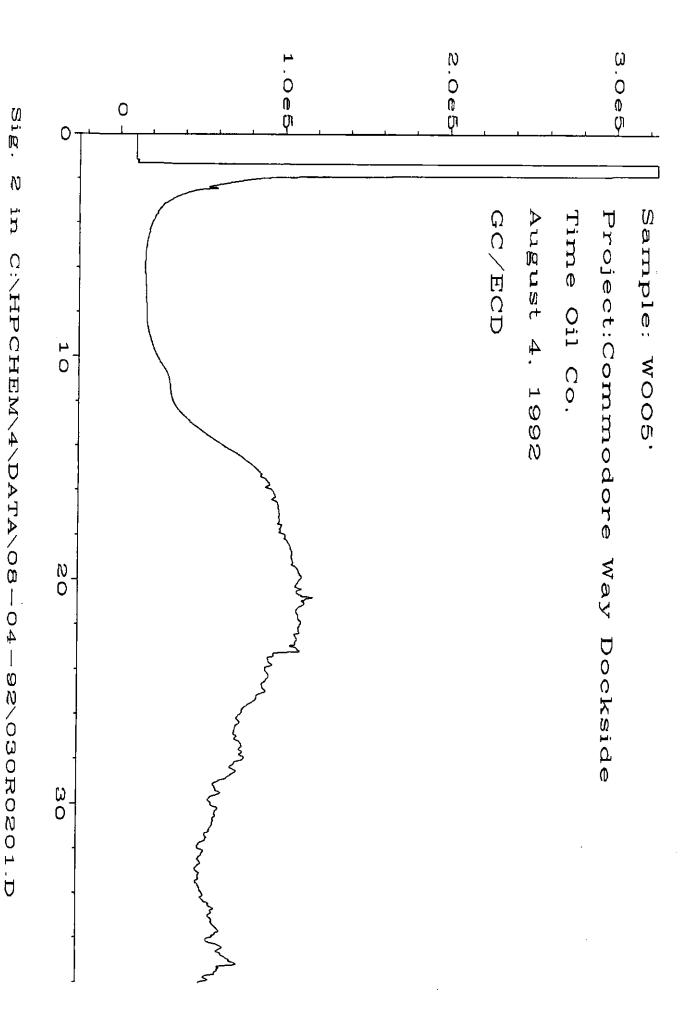
GC Characterization


WO-WC - Per Plan


The gas chromatographic trace showed the presence of medium boiling compounds, such as those found in diesel. This characterization is based on the presence of a relatively smooth envelope of peaks present from ca $n\text{-}\mathrm{C}_{10}$ to $n\text{-}\mathrm{C}_{22}$ with a maximum near $n\text{-}\mathrm{C}_{17}$ The material appeared to be slightly weathered due to the ragged nature of the envelope. A peak eluting at approximately 4 minutes is most likely not due to contamination from the soil. The ECD trace showed the absence of significant levels of halogenated materials. The large peak eluting at approximately 24 minutes represents our internal standard.


WOO5' - Per Plan

The gas chromatographic trace showed an absence of significant levels of volatile or semi-volatile compounds. The large peak eluting at approximately 24 minutes represents our internal standard.


TIME (L CO. SAMPLE LO) 1310 ommodore Way Dockside Prop. No: 01-228 Address: 2737 W. Commodore Site Name: Sampler: Seattle w) Method: Grab 🔀 Purpose: S.Spoon Bailer Pump Preserved: Ice 🔀 Lab Name: Acid None Lab Address: Phone: PO No.: FB工脉 Sample # Location/Description **EPA** Method Type* Analysis Instructions WD-WC Der Plan SWP WIPH- HCIO / Total /end 31936 WOO5 ⁄\$)₩ P | WIPH - ITCIN 31932 SWP Other Instructions: MOSSI 610 Sample Count = Check sample jar count against Log! * S = Soil W = Water P = Product Date & Time 8-3-92 12:35 Relinquished By: Received By: Relinquished By: Received For Lab By: Date & Time: GENERAL LAB INSTRUCTIONS Please provide the requested information 1. Sample numbers assigned by Lab: 3/936 to 31937 Date Analyzed: 08-06-92 2. Person performing analysis: Melanie Kirol Greg Monten Data Reviewer: Mark Perin any Gray, Brook 3. Scheduled sample disposal date: 9-3-92 NOTIFY TIME OIL CO. BEFORE DISPOSALShort 4. Provide copies of ALL chromatograms, including QA/QC runs. IMPORTANTI PLEASE RETURN A COPY OF THIS FORM WITH YOUR REPORT TO TIME OIL CO. Attn: Environmental Manager, PO Box 24447 Terminal Sta., Seattle, WA 98124 (206) 285-2400

in C:\HPCHEM\4\DATA\O8-04-92\O3OFO2O1.D

ENVIRONMENTAL CHEMISTS

Andrew John Friedman James E. Bruya, Ph.D. (206) 285-8282 3008-B 16th Avenue West Seattle, WA 98119 FAX: (206) 283-5044

August 18, 1992

Scott Sloan, Environmental Specialist Time Oil Company 2737 West Commodore Way Seattle, WA 98199

Dear Mr. Sloan:

Enclosed are the results of the analyses of the samples submitted on July 30, 1992 from Project 01-228, Seattle Terminal Dockside, PO #27608.

We appreciate this opportunity to be of service to you on this project. If you have any questions regarding this material, or if you just want to discuss any aspect of your projects, please do not hesitate to contact me.

Sincerely,

Kathy McMullen

Kathy Mc Mullan

Chemist

KMC/dp

Enclosures

ENVIRONMENTAL CHEMISTS

August 18, 1992 Date of Report:

Date Submitted: July 30, 1992 Project: 01-228, Seattle Terminal Dockside, PO #27608

RESULTS OF ANALYSES OF THE SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND GASOLINE USING EPA METHODS 5030 COUPLED TO 8020 and 8015 Results Reported as mg/kg (ppm)

Sample #	A-108'	A-2@9'	<u>A-603</u>
Analyte:			
Benzene	<0.02	<0.02	0.16
Toluene	<0.02	<0.02	0.14
Ethylbenzene	<0.02	<0.02	2.6
Total Xylenes	<0.04	<0.04	4.9
Gasoline	60	290	110
Internal Standard (% Recovery)	87%	ai,ip	76%

ai - The amount spiked was insufficient to give meaningful recovery data.

ip - Interferences were present which prevented the identification and quantitation of the analyte at the established detection limit.

ENVIRONMENTAL CHEMISTS

Date of Report: August 18, 1992 Date Submitted: July 30, 1992

Project: 01-228, Seattle Terminal Dockside, PO #27608

RESULTS OF ANALYSES OF THE SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND GASOLINE USING EPA METHODS 5030 COUPLED TO 8020 and 8015 Results Reported as mg/kg (ppm) Ouality Assurance

Sample_#	Method Blank	A-603' (<u>Duplicate</u>)
Analyte:		
Benzene	<0.02	0.31
Toluene	<0.02	0.22
Ethylbenzene	<0.02	5.0
Total Xylenes	<0.04	9.5
Gasoline	<2	190
<pre>Internal Standard (% Recovery)</pre>	78%	91%

ENVIRONMENTAL CHEMISTS

Date of Report: August 18, 1992

Date Submitted: July 30, 1992 Project: 01-228, Seattle Terminal Dockside, PO #27608 RESULTS OF ANALYSES OF THE SOIL SAMPLES

FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND GASOLINE

USING EPA METHODS 5030 COUPLED TO 8020 and 8015

Results Reported as mg/kg (ppm) **Ouality Assurance**

Sample #	A-603' Matrix Spike % Recovery	A-603' <u>Matrix Spike Duplicate</u> % Recovery	Spike <u>Level</u>
Analyte:		o necovery	
Benzene	83%	888	1
Toluene	73%	81%	1
Ethylbenzene	ai	ai	1
Total Xylenes	ai	ai	2
Internal Standard			
(% Recovery)	88%	102%	
Gasoline	50%	89%	100
Internal Standard (% Recovery)	88%	101%	

ai - The amount spiked was insufficient to give meaningful recovery data.

ENVIRONMENTAL CHEMISTS

Date of Report: August 18, 1992 Date Submitted: July 30, 1992

Project: 01-228, Seattle Terminal Dockside, PO #27608

RESULTS OF ANALYSES OF THE SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND GASOLINE USING EPA METHODS 5030 COUPLED TO 8020 and 8015 Results Reported as mg/kg (ppm) Ouality Assurance

Sample #	Spike Blank	Spike <u>Level</u>
Analyte:	% Recovery	
Benzene	103%	1
Toluene	99%	1
Ethylbenzene	112%	1
Total Xylenes	118%	2
<pre>Internal Standard (% Recovery)</pre>	113%	
Gasoline	95%	100
Internal Standard (% Recovery)	130%	

ENVIRONMENTAL CHEMISTS

Date of Report: August 18, 1992 Date Submitted: July 30, 1992

Project: 01-228, Seattle Terminal Dockside, PO #27608

RESULTS OF ANALYSES OF THE SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MINERAL SPIRITS BY GC/FID (MODIFIED 8015) Results Reported as μg/g (ppm)

Sample #	Mineral <u>Spirits</u> (ppm)	<u>Diesel</u> (ppm)
A-108'	50	90
A-2@9'	200	330
A-6@3'	210 a	1,600
Ouality Assurance		
Method Blank	<10	<10
A-108' (Duplicate)	20	40
A-108' (Matrix Spike) Percent Recovery	99%	111%
A-108' (Matrix Spike Duplicate) Percent Recovery	91%	115%
Spike Blank Percent Recovery	84%	107%
Spike Level	1,000	1,000

a - The material present may be indicative of diesel.

ENVIRONMENTAL CHEMISTS

Date of Report: August 18, 1992

Date Submitted: July 30, 1992 Project: 01-228, Seattle Terminal Dockside, PO #27608

RESULTS OF ANALYSES OF THE SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS MOTOR OIL BY GC/FID (MODIFIED 8015) Results Reported as $\mu g/g$ (ppm)

Sample #	Motor Oil (ppm)
A-108'	<100
A-209'	<100
A-603'	2,300
<u>Ouality Assurance</u>	
Method Blank	<100
A-1@8' (Duplicate)	<100
A-108' (Matrix Spike) Percent Recovery	110%
A-1@8' (Matrix Spike Duplicate) Percent Recovery	111%
Spike Blank Percent Recovery	122%
Spike Level	1,000

ENVIRONMENTAL CHEMISTS

Date of Report: August 18, 1992 Date Submitted: July 30, 1992

Project: 01-228, Seattle Terminal Dockside, PO #27608

RESULTS OF ANALYSES OF THE SOIL SAMPLES
FOR FINGERPRINT CHARACTERIZATION
BY INDUCTIVELY COUPLED PLASMA (ICP)
EMISSION SPECTROSCOPY

Sample

ICP Characterization

A-108'

The ICP emission spectroscopy trace showed the presence of the following metals at the approximate level indicated.

Aluminum (25,000 ppm)
Antimony (<1 ppm)
Arsenic (<1 ppm)
Barium (150 ppm)
Berylium <10 ppm)
Boron (<10 ppm)
Cadmium (<10 ppm)
Calcium (2,000 ppm)
Chromium (25 ppm)
Cobalt (10 ppm)
Copper (10 ppm)
Gold (<1 ppm)

Copper (10 ppm)
Gold (<1 ppm)
Iron (10,000 ppm)
Lead (<1 ppm)

Lithium (50 ppm)
Magnesium (1,500 ppm)
Manganese (200 ppm)

Mercury (<1 ppm)
Molybdenum (<1 ppm)
Nickel (25 ppm)

Palladium (<1 ppm)
Phosphorous (<1 ppm)

Platinum (<1 ppm)
Potassium (1,500 ppm)

Rhenium (<1 ppm)
Selenium (<1 ppm)
Silver (<1 ppm)

Sodium (2,500 ppm) Strontium (1,000 ppm)

Thallium (<1 ppm)

Tin (<1 ppm)

Titanium (2,000 ppm)

Uranium (<1 ppm) Vanadium (1 ppm)

Yttrium (50 ppm)

Zinc (50 ppm)

Zirconium (100 ppm)

ENVIRONMENTAL CHEMISTS

Date of Report: August 18, 1992 Date Submitted: July 30, 1992

Project: 01-228, Seattle Terminal Dockside, PO #27608

RESULTS OF ANALYSES OF THE SOIL SAMPLES
FOR FINGERPRINT CHARACTERIZATION
BY INDUCTIVELY COUPLED PLASMA (ICP)
EMISSION SPECTROSCOPY

<u>Sample #</u> A-2@9'

ICP Characterization

The ICP emission spectroscopy trace showed the presence of the following metals at the approximate level indicated.

Aluminum (25,000 ppm) Antimony (<1 ppm) Arsenic (<1 ppm) Barium (150 ppm) Berylium (<1 ppm)</pre> Boron (<1 ppm) Cadmium (<1 ppm)</pre> Calcium (<1 ppm) Chromium (25 ppm) Cobalt (10 ppm) Copper (10 ppm) Gold (<1 ppm) Iron (10,000 ppm) Lead (<1 ppm) Lithium (50 ppm) Magnesium (1,500 ppm) Manganese (200 ppm) Mercury (<1 ppm) Molybdenum (<1 ppm) Nickel (25 ppm) Palladium (<1 ppm) Phosphorous (<1 ppm) Platinum (<1 ppm) Potassium (1,500 ppm) Rhenium (<1 ppm) Selenium (<1 ppm) Silver (<1 ppm) Sodium (2,500 ppm) Strontium (1,000 ppm) Thallium (<1 ppm) Tin (<1 ppm) Titanium (2,000 ppm) Uranium (<1 ppm) Vanadium (1 ppm) Yttrium (50 ppm) Zinc (50 ppm) Zirconium (100 ppm)

ENVIRONMENTAL CHEMISTS

Date of Report: August 18, 1992 Date Submitted: July 30, 1992

Project: 01-228, Seattle Terminal Dockside, PO #27608

RESULTS OF ANALYSES OF THE SOIL SAMPLES
FOR FINGERPRINT CHARACTERIZATION
BY INDUCTIVELY COUPLED PLASMA (ICP)
EMISSION SPECTROSCOPY


Sample # A-603'

ICP Characterization

The ICP emission spectroscopy trace showed the presence of the following metals at the approximate level indicated.

Aluminum (25,000 ppm) Antimony (<1 ppm) Arsenic (<1 ppm) Barium (150 ppm) Berylium (<10 ppm) Boron (<1 ppm) Cadmium (<1 ppm) Calcium (<1 ppm) Chromium (25 ppm) Cobalt (10 ppm) Copper (10 ppm) Gold (<1 ppm) Iron (10,000 ppm) Lead (<1 ppm) Lithium (50 ppm) Magnesium (1,000 ppm) Manganese (200 ppm) Mercury (<1 ppm) Molybdenum (<1 ppm) Nickel (25 ppm) Palladium (<1 ppm) Phosphorous (<1 ppm) Platinum (<1 ppm) Potassium (1,500 ppm) Rhenium (<1 ppm) Selenium (<1 ppm) Silver (<1 ppm) Sodium (2,500 ppm) Strontium (1,000 ppm) Thallium (<1 ppm) Tin (<1 ppm) Titanium (2,000 ppm) Uranium (<1 ppm) Vanadium (1 ppm) Yttrium (50 ppm) Zinc (50 ppm) Zirconium (100 ppm)

to company	TIME C . C)* S	AMP	LE LO			AMERA
Site Name: Scattle	Terminal Dakside	S. D.		W-1-10			30-45-(3,16
Sampler: Scott	Slean	Militob' t	VO: <u>0/- 7</u>	7 2 40		734-00	miredove
·	vation Aussment		ite: <u>7/3</u>			eather we	A
	Iman & Bruya	Meth	od: Grab			Ballet	Pump 🔲
Lap Address:	4 oroga	Preserv		X ,		None M	· · · · · · · · · · · · · · · · · · ·
			Phone:	# 27608		PO No.:	
Sample #	Location/Description	Type	العد		a displace	-	
	Corner in Cap. Fringe	SWP	LITAN	Analysis In			EPA Method
A-609'-	11 , 1' lower	SWP	50 1 7 17	-HCIO			7
4-306' - E S	ide in Cap. fringe	SWP			3187	U.B. Tales	A referin
1-403' - N	in Cars. Evines				PARSON		
4-503' - NE	Corner in Cus. Tringe		· · · · · · · · · · · · · · · · · · ·			740	
4-603' - NW	Corner in Pap. Fringe	SWP	•			7	
-		SWP		9 %	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4	
•	A Company	SWP	9.5	(2.00)	A SALVA		the state of the state of
	566	SWP		-	THE STATE OF		Company of the second
		SWP		.38			2.00
		SWP		1			
<u> </u>		SWP	WTPH	anale	10	quested	
		SWP	in ac	edition	The same parties	Stock	
		SWP	Sloan			w. ara	1.00
		SWP				- motor o	ilman
		SWP	on A	+/A-2.		4 12 1	wage
		SWP		08-06-9		OGENA UNI	400
	,	SWP	And i	oral A	SCC	US COM	
		SWP	र र	Strain	¢6-0€-	Carried Street	n Sign
		SWP				46	11.000
*		SWP				of a drivery	
Other Instructions &		SWP		-0.00	100	1	
TO TO TO TO	ell samples for	accible	add	tional	testiv	7. 3.	
Sample Count =	Check semple to accomp				*	Year I Was	
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	Check sample jar count agains	si Logi		1100	www.8-5	COLLEW WHO	P - Product
	CHAIN OF C	<u>UST</u>	ODY	REC	RD		an later
Relinquished By:	Received By:	(6.0	in The	J.	Dai	100.7	0-82
Relinaulshed By:	Received For L	•		***	0.5		2.5
	GENERAL LA		VICTO	LICE	Dat	e & Time:	
Please provide t	he requested inform	25:07	VOIN	UU	<u>ארכ</u>		
. Sample numbers as				1	ر. الله الله		
. Person performing a	/ ////////////////////////////////////		·	0 3 187	رم Da	e Analyzed:	7-39-92
Scheduled sample of	the second of	inan c	iny Gray	ata Review	er: and	new Fried	emas
Provide copies of Ar		9 7		OTIFY	E OIL CO	BEFORE DIS	SPOSAL
MPORTANTI DI P	L chromatograms, including	QAQC r	1186	400,000	02 F	S. 1996 State	
tin' Environment PLE	ASE RETURN A COPY O	OF THIS	FORM V	VITH YOU	iR REPO	DRTTO TIM	E'OB : Cr
Chyllonmental	Manager, PO Box 2444	7 Termi	nal Sta	Seattle	A 9812	(208)2000	・ニ ひにしし ごろ400
					20.	(200)*205-	-2400

Chemical Contaminants in Salmon Bay Sediments

Results of Phase II Sampling

November 1996

Publication No. 96-343

printed on recycled paper

The Department of Ecology is an equal opportunity agency and does not discriminate on the basis of race, creed, color, disability, age, religion, national origin, sex, marital status, disabled veteran's status, Vietnam Era veteran's status or sexual orientation.

If you have special accommodation needs or require this document in alternative format, please contact the Environmental Investigations and Laboratory Services Program,

Toxics Investigations Section,

Joan LeTourneau at (360) 407-6764 (voice).

Ecology's telecommunications device for the deaf (TDD) number at Ecology Headquarters is (360) 407-6006.

For additional copies of this publication, please contact:

Department of Ecology Publications Distributions Office P. O. Box 47600 Olympia, Washington 98504-7600 (360) 407-7472

Refer to Publication Number 96-343

Chemical Contaminants in Salmon Bay Sediments

Results of Phase II Sampling

by Dave Serdar and James Cubbage

Environmental Investigations and Laboratory Services Program Olympia, Washington 98504-7710

November 1996

Water Body No. WA-08-9340

Publication No. 96-343 printed on recycled paper

Table of Contents

	<u>Page</u>
List of Figures	iii
List of Tables	iv
Abstract	V
Summary of Findings	vi
Recommendations	ix
Credits	x
Introduction Background Objectives	1
Methods Sampling Strategy Sampling Methods Chemical Analysis Data Quality	5 5
Results and Discussion Conventional Characteristics of Sediments Chemical Concentrations in Sediments Metals Semivolatile Organics PCBs Butyltins Areal Distribution of Contaminants Relationship to Sources Comparison to Criteria Metals, Semivolatile Organics, and PCBs TBT Comparison to Earlier Surveys Metals Organics	11 11 20 20 23 27 29 29 31 34
Conclusions	39
References	41
Appendices	

List of Figures

	<u>Pa</u>	ge
Figure 1.	Study area and vicinity	2
Figure 2.	Sample stations and sample zones	6
Figure 3.	Relative grain size composition of Salmon Bay sediments	13
Figure 4.	Arsenic concentrations at sample stations	14
Figure 5.	Mercury concentrations at sample stations	14
Figure 6.	Lead concentrations at sample stations	15
Figure 7.	Nickel concentrations at sample stations	15
Figure 8.	Cadmium concentrations at sample stations	16
Figure 9.	Chromium concentrations at sample stations	16
Figure 10.	Copper concentrations at sample stations	17
Figure 11.	Zinc concentrations at sample stations	17
Figure 12.	Frequency of detection for organic compounds in sediment	21
Figure 13.	HPAH concentrations at sample stations	22
Figure 14.	LPAH concentrations at sample stations	22
Figure 15.	PCB concentrations at sample stations	24
Figure 16.	TBT concentrations at sample stations	24
Figure 17.	Comparison among metals concentrations at all sites	25
Figure 18.	Comparison among groups of organics concentrations at all sites	26
Figure 19.	Stations that exceed either severe effects levels for freshwater sediments or minor adverse effects levels for marine sediments	32
Figure 20.	Comparison among sites of number of chemicals that exceed either severe effects levels for freshwater sediments or minor adverse effects levels for marine sediments	33

List of Tables

		<u>Page</u>
Table 1.	Functional quality assurance elements	9
Table 2.	Conventional characteristics of Salmon Bay sediments	12
Table 3.	Correlations between major parameters in Salmon Bay sediments	18
Table 4.	Stations ranked according to metals concentrations	19
Table 5.	Freshwater guidelines and marine standards for sediment quality	30
Table 6.	Comparison of metals concentrations in sediments	35
Table 7.	Comparison of PAH and PCB concentrations in sediments	36

Abstract

During 1995, the Washington State Department of Ecology conducted a survey of chemical contaminants in bottom sediments from 29 areas throughout Salmon Bay. Sediments were analyzed for metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel, and zinc), semivolatile organics, PCBs, and butyltins. Chemical data were compared to earlier studies in the basin and areal distributions were evaluated. Data were also compared to criteria to assess potential effects on aquatic organisms. Recommendations for further actions are included

The survey was the second phase in a study of Salmon Bay: Phase I study evaluated the potential for contamination based on visual observation of sediments; Phase III will likely include both intensive chemistry and bioassay testing in contaminated areas. The overall objectives of the Salmon Bay study are to delineate areas of contaminated sediments, evaluate their toxicity, identify the contaminants contributing to sediment toxicity, and if possible, identify likely historical and current sources of contaminants to the problem areas.

Summary of Findings

Salmon Bay is a narrow body of water in Seattle, Washington located between Lake Union to the east and Puget Sound to the west. The numerous industries located along the shores of Salmon Bay, in addition to marinas, dock facilities, and combined sewer overflows (CSOs), have all contributed to contamination of Salmon Bay sediments. However, little was known about the nature and extent of this contamination. The Salmon Bay Phase II study was designed to fill that void.

Objectives of the Salmon Bay study were to:

- Identify areas of contaminated sediment in Salmon Bay
- Evaluate the toxicity of these problem areas
- Identify the contaminants contributing to sediment toxicity
- To the extent possible, identify likely historical and current sources of contaminants to these problem areas

Phase II of the Salmon Bay study consisted of sampling bottom sediments from 29 areas throughout Salmon Bay. Sediments were analyzed for metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel, and zinc), semivolatile organics, PCBs, and butyltins.

The eight metals analyzed were detected at all sample stations except for cadmium, which was below detectable levels at five stations. Median concentrations of metals in Salmon Bay were similar to those previously reported for the Ship Canal area, but arsenic, mercury, lead, cadmium, and zinc were 2 to 4 times higher in Lake Union sediments. Metals in Salmon Bay sediments were found at the following dry weight concentrations:

	<u>Median</u>	Range
Arsenic	20 mg/Kg	1.6 - 210 mg/Kg
Cadmium	0.6 mg/Kg	< 0.3 - 3.2 mg/Kg
Chromium	60 mg/Kg	14 - 380 mg/Kg
Copper	319 mg/Kg	7.7 - 2,200 mg/Kg
Lead	151 mg/Kg	3.5 - 530 mg/Kg
Mercury	0.8 mg/Kg	0.01 - 5.0 mg/Kg
Nickel	48 mg/Kg	21 - 480 mg/Kg
Zinc	319 mg/Kg	27 - 2,000 mg/Kg

Less than half of the 74 semivolatile organic compounds analyzed were detected. With few exceptions, however, all ten high molecular weight polycyclic aromatic

hydrocarbons (PAHs) and seven low molecular weight PAHs were detected at all sample stations. Median PAH concentrations in the present study are higher than those previously reported for either the Ship Canal or Lake Union (outside of the Gas Works Park area). Other semivolatile organics frequently detected include dibenzofuran, retene, 4-methylphenol, 3β -coprostanol, and butylbenzylphthalate. All other semivolatile organics were detected at fewer than 60% of the stations, and at concentrations generally less than $1,000 \mu g/Kg$.

PCBs were detected at 26 of the 29 sample stations. Median PCB concentrations were similar to those in Ship Canal and Lake Union sediments. Tributyltin (TBT), once a principal component of anti-fouling paints, was found at all but one station. The major classes of organic compounds were detected at the following organic carbon-normalized (PAH and PCB) or dry weight (TBT) concentrations:

	<u>Median</u>	<u>Range</u>
Total PAH	490 mg/Kg OC	107 - 2,300 mg/Kg OC
Total PCB	4.8 mg/Kg OC	nd - 150 mg/Kg OC
TBT	$326 \mu g/Kg$	nd – $6,500 \mu g/Kg$

Results of the study indicate there are no clear areal gradients throughout Salmon Bay for any of the chemicals analyzed. Instead, contaminant concentrations tend to show a "patchy" distribution which suggests that local conditions are the major determinant of concentration. With one possible exception, there is also a lack of gradation or geographical pattern with respect to clean sediments. However, the cleanest area appears to be at the terminus of the Ship Canal in the easternmost section of Salmon Bay.

Of the 29 stations sampled, 21 were located adjacent to marinas, boat repair facilities, marine terminals (including Fisherman's Terminal), shipyards, or other vessel-related facilities. Proximity to these facilities alone did not appear to dictate concentrations of TBT. Two of the six stations with TBT levels greater than 1,000 μ g/Kg were not adjacent to these facilities while seven of eight sites with TBT less than 100 μ g/Kg were located adjacent to areas with marinas, etc. Stations located near vessel-related facilities were, however, more likely to have high metals concentrations. There is also mixed evidence that CSO discharges account for a substantial portion of the contamination in Salmon Bay.

The biological significance of chemical concentrations in Salmon Bay sediments was evaluated by comparing them to guidelines for freshwater sediment quality, Ecology's Marine Sediment Management Standards, and Puget Sound Dredged Disposal Analysis (PSDDA) screening level. Based on these comparisons, sediments in most areas of Salmon Bay can be expected to have some degree of adverse impact on benthic organisms.

Tributyltin may pose the most serious threat to aquatic life in Salmon Bay due to its toxicity and high concentrations in sediments. All but five stations exceeded the PSDDA sediment screening level (SL) for TBT (73 $\mu g/kg$), and 30% of the stations had TBT concentrations elevated one to two orders of magnitude above the SL. However, recent work by the PSDDA agencies indicates that sediment concentrations are poor predictors of TBT bioavailability and toxicity to aquatic life. Therefore, additional studies may be needed in Phase III to assess the actual toxicity of TBT in Salmon Bay.

Chemicals other than TBT likely to harm aquatic life at one or more stations include copper, mercury, arsenic, lead, nickel, zinc, chromium, benzyl alcohol, 4-methylphenol, bis(2-ethylhexyl)phthalate, benzo(g,h,i)perylene, indeno(1,2,3-c,d)pyrene, 1,4-dichlorobenzene, and PCB-1260.

Recommendations for the near term include conducting further investigations of chemical concentrations in the vicinity of the most contaminated stations, as well as identifying and prioritizing the needs for aquatic life protection in Salmon Bay in order to select appropriate biological tests to confirm predicted adverse impacts. It is also recommended that, for the long term, the translocation of sediments within Salmon Bay should be studied especially in areas considered for cleanup actions where on-site or off-site movement of sediments may be an important factor in selection of cleanup alternatives.

Recommendations

- Results of the Phase II study indicate that distribution of contaminants throughout Salmon Bay is spotty, although some highly contaminated locations have been identified. This raises questions about the areal extent of the contamination around the sample locations. Do nearby sediments contain similar contaminant levels? Do the sediments adjacent to the Phase II stations exhibit areal concentration gradients? If so, does the gradient suggest a particular contaminant source? The answer to these questions is an immediate concern to parties involved in efforts to cleanup or control contamination sources to Salmon Bay. With these considerations in mind, a near-term recommendation is for Ecology to conduct or oversee further investigations of chemical concentrations in the vicinity of the most contaminated stations. At least one relatively clean area should also be examined in such a manner.
- The Phase II study provides a fairly thorough characterization of chemical concentrations in sediments throughout Salmon Bay. However, essentially nothing is known about the toxicity of Salmon Bay sediments to aquatic organisms. Toxicity is difficult to predict based on available literature or criteria because of 1) the combination of chemicals present, and 2) the influence of saltwater in Salmon Bay. The toxicity, bioavailability, or bioaccumulation potential of tributyltin may be especially difficult to surmise because of the possibility that at least some of the tributyltin is in paint-chip form. Given the complex nature of these issues, a toxicity bioassessment of Salmon Bay sediments would require a large expenditure of time and money. Therefore it is recommended that the focus of toxicity testing be narrowed considerably. This can be achieved by first identifying and prioritizing the needs for aquatic life protection in Salmon Bay. Toxicity testing can then be designed to match the need for ecological resource protection. Agencies and tribes responsible for protecting or otherwise managing aquatic biota in Salmon Bay should be asked for input. Any information they can share about aquatic life implications based on Phase II results would be useful.
- Once contaminated areas are better characterized with respect to chemical concentrations and toxicity, it will be useful to understand the extent to which sediments are translocated within Salmon Bay. This is especially important in areas considered for cleanup actions where on-site or off-site movement of sediments may be an important factor in selection of cleanup alternatives. Therefore, a recommendation for the long term is to study the translocation of sediments within Salmon Bay. Sediment traps have been used successfully in Puget Sound to assess the transport of sediment-bound contaminants. Chemical and radionuclide examination of sediment cores may be a useful means to determine sedimentation rates.

Credits

- ♦ Project Officer James Cubbage
- ♦ Field Sampling James Cubbage, Dale Norton, Rick Huey, and Joanne Polayse-Wien
- ♦ Sample Handling and Tracking Will White and Pam Covey
- ♦ Lab Contracts Karin Feddersen
- ♦ Lab Analyses Randy Knox, Jim Ross, Myrna McIntosh, Dickey Huntamer, Roy Araki (EPA), and Bob Reick (EPA)
- ♦ Data Quality Reviews Stew Lombard, Pam Covey, Karin Feddersen, Myrna McIntosh, Bill Kammin, and Dickey Huntamer
- ♦ Report Preparation Dave Serdar and James Cubbage
- ♦ Report Review Dale Norton, Larry Goldstein, Teresa Michelsen, and Dan Cargill
- ♦ Report Proofreading and Formatting Joan LeTourneau

Introduction

Background

Salmon Bay and the Lake Washington Ship Canal comprise a narrow body of water in Seattle, Washington connecting Lake Union to the east with Puget Sound to the west, through the Hiram Chittenden Locks (Figure 1). Salmon Bay was originally a salt water bay which was inundated with freshwater in 1914 when the locks were constructed to the west of Salmon Bay and connected to Lake Union through the Lake Washington Ship Canal. The Ship Canal is a narrow channel with some shallow embayments on the southern shoreline near the west end of the canal.

Numerous industries have been located along the shores of Salmon Bay and the Ship Canal, including shipyards, marinas, bulk fuel plants, fish processing, wood treating, lumber mills and plywood plants, bulk materials handling facilities, a large steel manufacturing plant, and an asphalt plant. In addition, stormwater from urbanized areas including the Ballard Bridge, Fremont Bridge, and combined sewer overflows (CSOs) discharge into Salmon Bay and the Ship Canal. These various sources have contributed to contamination in Salmon Bay and the west end of the Ship Canal, but the nature and extent and specific sources of contamination are not well defined. This lack of information has hampered attempts at source control and associated improvements in sediment quality.

Detailed studies of nearby Lake Union, including both chemistry and bioassays, have been conducted in the past by the Environmental Investigations and Laboratory Services (EILS) Program at Ecology, Municipality of Metropolitan Seattle (METRO), the City of Seattle, and others. These studies are summarized in *Survey of Contaminants in Sediments in Lake Union and Adjoining Waters* (Cubbage, 1992). However, few samples have been collected in Salmon Bay or the Ship Canal. In addition, the presence or absence of butyltins has not been evaluated in previous studies, and could be a significant source of toxicity in sediments given the ubiquitous presence of vessel traffic, shipyards, and marinas.

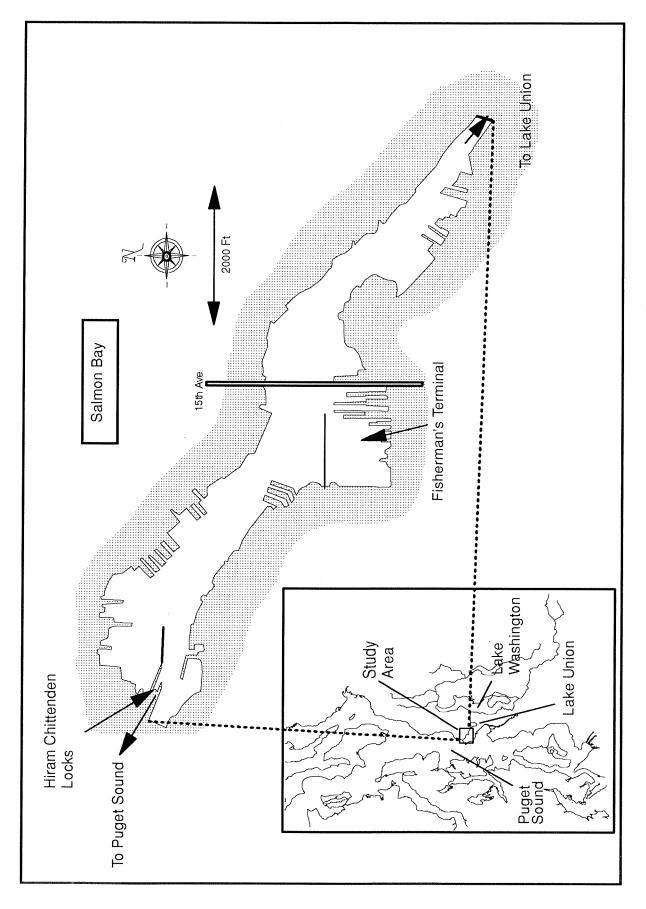


Figure 1. Study area and vicinity.

Objectives

The overall objectives of the Salmon Bay study are:

- Identify areas of contaminated sediment in Salmon Bay and nearshore areas of the Ship Canal.
- Evaluate the toxicity of these problem areas to determine whether they exceed the narrative cleanup screening levels (minor adverse effect on aquatic marine life) of the Sediment Management Standards (SMS; WAC 173-204) or freshwater sediment quality guidelines.
- Identify the contaminants contributing to sediment toxicity in the problem areas, including an evaluation of butyltins to determine whether this class of contaminant should be included in routine (e.g. NPDES) sediment analyses for Lake Union, Salmon Bay, and the Ship Canal.
- To the extent possible, identify likely historical and current sources of contaminants to these problem areas.

The study will provide the following benefits to the cleanup and source control programs:

- Identify areas that require cleanup and provide some indication of their relative priority. In addition, identify chemicals of concern to better focus source control efforts.
- Streamline dredging, construction, and NPDES permit processing for areas that are identified as clean. Provide justification for discharge and baseline sediment monitoring as part of the NPDES permitting program for areas that are identified as contaminated.
- Begin identifying areas that require additional stormwater or CSO control to prevent recontamination of areas targeted for dredging or cleanup.
- Contribute synoptic chemistry and bioassay data to help evaluate the toxicity of butyltin compounds.

These objectives are being addressed in three phases:

- 1. Phase I reconnaissance sampling was completed during April 1995, and consisted of visual examination of sediments from 81 stations evenly distributed throughout Salmon Bay and the Ship Canal. Samples were inspected for grain size (sand, silt, clay, etc.), evidence of contamination (oil, wood debris, paint chips), and biological organisms. Results (shown in Appendix A) were used to identify the more contaminated areas.
- 2. Detailed chemical analyses of potentially contaminated areas were conducted during Phase II, and are the subject of the present report.
- 3. Phase III will likely include both chemistry and biological testing to evaluate the toxicity of areas identified as contaminated during Phase II.

Methods

Sampling Strategy

The study area extends from the locks on the west to the western end of the Ship Canal. Results of the reconnaissance (Phase I) study indicated that most sediments in the vicinity of the eastern Ship Canal are coarse-grained which suggests little deposition of fine material. Little visible oil or other evidence of contamination was seen in this area as well. Based on these observations, this area was excluded from further investigation during Phase II.

Phase II focused on areas where visual contamination or depositional areas were observed during the reconnaissance study. Because the SMS requires at least three stations for any regulatory decisions, three or more stations were grouped in each major zone of concern and/or natural geographical feature (Figure 2). Sample stations were generally placed nearshore to CSOs, marinas, and shipyards. One sample zone was placed in the center channel to provide a sense of the ambient chemical concentrations in sediments. A description of each sampling station is included in Appendix B.

Sampling Methods

Sampling methods were consistent with the Puget Sound Estuary Program (PSEP) protocols (EPA, 1986a) as modified by the SMS (Ecology, 1991) and sampling methods used in previous Lake Union and Lake Washington studies conducted by EILS. However, to support evaluation of historical contamination and the cleanup program, the top 10 cm of sediment was sampled. This layer includes most of the biologically active zone in fresh water.

Samples were collected from Ecology's 20-foot skiff equipped with a 0.1 m² stainless steel Van Veen grab sampler. Stations were recorded using a Magellan® GPS (Global Positioning System) receiver with differential correction as well as from sightings on nearby landmarks. A grab was considered adequate if it was filled with sediment and both the grab as well as access doors on top of the grab were closed tightly (see PSEP protocols for full description). For each grab, the overlying water was siphoned off and the top 10 cm of sediment not touching the walls of the grab was scooped out of the top doors and placed in a stainless steel beaker.

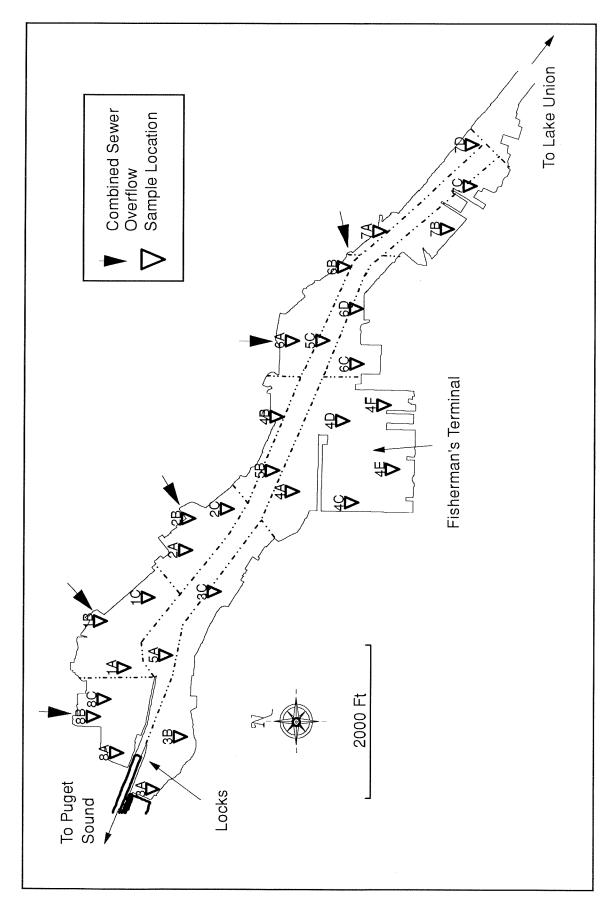


Figure 2. Sample stations and sample zones.

Prior to sampling, all stainless steel tools (grab, beakers, and spoons) were decontaminated with the following procedure:

- wash in hot water and Liquinox® detergent
- rinse in tap water
- rinse in 10% nitric acid
- rinse with deionized water
- rinse with pesticide analysis grade acetone
- air dry
- wrap in aluminum foil

The beaker contents were homogenized, and subsamples for metals and organics analysis were dispensed into separate 8-oz priority pollutant-clean jars capped with teflon lid liners. Samples for organic carbon analysis were placed in 4-oz jars. Grain size samples were placed in Whirl-Pak® bags. If oil was visible in the sample, the sampler was washed with detergent and the sample was disposed into a drum onboard. Between samples, the grab sampler was thoroughly brushed and rinsed with on-site water.

Chemical Analysis

Samples were analyzed for the following parameters:

- Grain size
- Total Organic Carbon (TOC)
- Percent Solids
- Metals, including mercury
- Semivolatile Organics (targeting PAHs, phthalates, and phenols)
- PCBs
- Butyltins

Grain size analysis was done by Soil Technology, Inc. on Bainbridge Island, WA. TOC analysis was done by Weyerhaeuser Analytical and Testing Services, Tacoma, WA. Analysis for metals, organics, and percent solids was conducted at the Ecology/EPA Manchester Environmental Laboratory in Manchester, WA. Analytical methods and target detection limits are shown in Appendix C.

Care was taken to achieve the SMS detection limits for "difficult" chemicals such as methylated phenols, since these are common constituents of plywood manufacturing facilities, and waste piles of glue are known to be present along the shoreline in some areas.

Data Quality

Quality of the data was determined by the analysis of laboratory QA/QC samples. Bias was evaluated through the analysis of check standards (metals), certified reference materials (PAHs and PCBs), uncertified reference sediment (butyltins), and matrix spikes. Precision was assessed through blind field splits, as well as duplicate analysis of reference materials and laboratory spikes. Method blanks were also analyzed to determine the effects of laboratory contamination. Appendix D includes complete results of these analyses as well as narrative quality assurance reviews by Manchester staff.

Table 1 shows a summary of the data quality for the project. Quality assurance results are compared to the data quality objectives outlined in the project plan (Cubbage and Michelsen, 1995). These quality requirements (termed QA1) are to be met in order for the data to be validated for use in sediment management decisions based on Puget Sound Dredged Disposal Analysis (PSDDA) conventions (Ecology, 1991), and are in most cases consistent with EPA Contract Laboratory Program (CLP) requirements.

Overall, quality of the data obtained for this project could be characterized as good. Quality of the metals data was generally better than the organics data, with a few exceptions. Spike recoveries for some of the lead and chromium results were slightly lower than acceptance limits, and were therefore given "N" qualifiers. Results for mercury are considered estimates ("J") because of poor spike recoveries. However, check standard recoveries for all metals averaged 92%, indicating a low level of bias for sample analysis.

Analysis of standard reference materials for PAHs and PCBs gave the best measure of bias for analysis of these compounds. Only slightly more than half of the compounds in NRCC HS6 (PAH in marine sediment) were within certified values. Aside from acenaphthylene, however, most compounds were not substantially outside of the certified ranges. The average recovery for acenaphthylene was approximately 300%.

Matrix spike recoveries for semivolatile organics analysis also indicated low bias overall. Only 5% of the spiked samples were outside of the 50-150% recovery window, although the average spike recovery was somewhat low (83%). For PCBs, recoveries for both the standard reference material (NRCC HS2, PCBs in marine sediment) and matrix spikes were very good.

It was somewhat difficult to assess bias of the butyltin data. Analysis of a reference material (Sequim Bay sediment) yielded poor recoveries for tributyltin (average of 39%). However, no value or range of values has been established for tributyltin concentration in this material. Matrix spike recovery data did not contribute much to determining bias since one of the spiked samples contained high native concentrations of butyltins. Fortunately, an additional spiked sample yielded good recovery data.

Table 1. Functional quality assurance elements required for QA1 review and acceptance under Sediment Management Standards¹.

	Convent	ntionals	Metals		Organics: semivolat	Organics: semivolatiles, PCBs, butyltins
Parameter	Target	% Achieved	Target	% Achieved	Target	% Achieved
Matrix Spikes (5% of samples)	ΥN	ĄΖ	75-125% recovery	75%	50-150% recovery	SVOs - 95% PCBs - 100% Butyltins - 58%
Certified Reference Materials (<i>CRM; 2/ study</i>)	NA	NA	80-120% recovery	%88	95% confidence interval	PAHs - 62% Other SVOs - NA PCBs - 100% Butyltins - NA
Surrogate Spikes ² (<i>added to</i> each sample)	AN	NA	NA	ΝΑ	>50% recovery; PCBs >60%	SVOs - >99% PCBs - 14% Butyltins - 84%³
Analytical Replicates (5% of samples; spike duplicates for conventionals, CRMs for others)	20% RPD	100%	20% RPD	100%	35% RPD or Coefficient of Variation	PAHs - 100% Other SVOs - NA PCBs - 100% Butyltins - 100%
Blanks (1/extraction batch or in a 12 hour period)	ν	Ψ.Z.	< detection limit	62%	Phthalates: 5 µg, others 2.5 µg or <5% of analyte concentration	Phthalates -100% Other SVOs->99%; PCBs - 100%; Butyttins - 97%
Holding Times (<i>until extraction</i>)	TOC 14 days @ 4°C	%0	6 months @ 4°C	100%	14 days @ 4°C Butyltins - freeze within 24 hrs of collection	SVOs - 0% PCBs - 0% Butyltins - 100%

¹ Source: Ecology, 1995

² EPA (SW 846; EPA, 1986b) control limit criteria are considered acceptable where reported.

 $^{\rm 3}$ Only 68% of surrogate spikes had recoveries between 50% and 200%.

RPD=Relative Percent Difference

NA=Not Analyzed

Duplicate analysis of matrix spikes and reference materials yielded results which indicated fairly good precision for the lab work. In addition, two samples were split in the field to assess overall precision, a measure of sampling plus laboratory precision. Overall precision for all but butyltin data was generally less than 30% relative percent difference.

Precision for butyltins was poor and it is impossible to determine the source(s) of error with the available data. If paint chips were present, the sample would likely have been non-homogeneous which could account for poor agreement between split samples. However, since the factors affecting butyltin precision are not known, the butyltin data should be viewed with caution.

As for laboratory contamination, copper and zinc were detected at low levels (0.6-1.3 mg/Kg) in blank samples. Since these levels were less than 20% of sample results in all cases (and <1% in most cases), they do not compromise the reported values. Phthalates were the most common class of organic compounds detected in laboratory blanks, as is commonly the case due to their use as plasticizers. Butyltins were also frequently detected in lab blanks at levels generally <5% of associated sample results. However, none of the sample results were void due to blank contamination.

None of the samples for TOC, semivolatiles, or PCB analysis met the holding time requirement of 14 days from collection until extraction. Samples designated for TOC analysis were held unfrozen for 42 days which may have resulted in the loss of some components. TOC data and TOC-normalized data were therefore flagged with an "H" for holding time exceedance. Semivolatile organics and PCBs were extracted 21 days after collection. Considering the relatively stable nature of these compounds, exceeding the holding time requirements probably did not affect the results. Butyltins were kept frozen following PSEP guidelines and extracted seven weeks after collection.

Results and Discussion

Conventional Characteristics of Sediments

The general characteristics of Salmon Bay sediments (TOC, solids, and grain size) are presented in Table 2. TOC, which has been known to correlate well with non-polar organic compounds, ranged from 0.1% to 13.9%. Grain size analysis showed that sediments from all stations were made up of mostly sand or silt (Figure 3). Sediments from Stations 5B and 2B were the sandiest with 93% and 90% sand, respectively. Clay-sized particles were found at substantial proportion at one station only (7B with 46%). Percent fines, the fraction of sediment less than 63 µm (i.e., silt + clay) varied from 0% to 88%. Contaminant concentrations in sediments are often correlated with percent fines since fine material provides more surface area for binding. Eighty percent of the stations had 5% or less gravel, and only one station had more than 10% gravel (Station 3A).

Chemical Concentrations in Sediments

Metals

Concentrations of metals are presented in Figures 4 through 11, and in Appendix E. The eight metals analyzed were detected at all sample stations, except for cadmium which was below detectable levels at five stations. Median concentrations of copper and zinc were highest among metals, followed in decreasing order by lead, chromium, nickel, arsenic, mercury, and cadmium. The correlation matrix shown in Table 3 indicates a pattern of significant positive correlations among all metals except nickel and chromium. A strong correlation exists between nickel and chromium concentrations, and both have a moderately strong correlation with copper. Copper is significantly correlated with every other metal except mercury and lead. All metals demonstrated a weak positive link to percent fines and a weak negative relationship to percent sand.

Stations were ranked according to metals concentrations in order to determine which areas were most contaminated (Table 4). Station 1B, where arsenic, mercury, lead, cadmium, and zinc were all found at the highest concentrations, had the greatest overall metals contamination. The second most metals-contaminated station was 4F where all but nickel and chromium concentrations were high. Nickel, chromium, and copper were the highest in sediments from Station 6B, yet this station was only ranked tenth overall due to relatively low concentrations of mercury, lead, and zinc.

Table 2. Conventional characteristics of Salmon Bay sediments.

				Grain Si	ize		
	% TOC		% Gravel	% Sand	% Silt	 % Clay	Total % Fines
Site:	(dry)	% Solids	(>2000µm)	(2000-63µm)	(62-4µm)	(<4µm)	(<63µm)
1A	8.4 H	32.2	2	36	44	18	62
1B	6.7 H	26.8	0	40	54	5	59
1C	5.8 H	23.0	0	24	61	15	76
2A	5.8 H	32.7	0	60	36	4	40
2B	1.1 H	75.8	8	90	2	0	2
2C	6.2 H	30.6	9	42	35	14	49
3A	1.9 H	51.6	12	75	9	4	13
3B	6.0 H	30.8	4	30	4 7	19	66
3C	5.4 H	26.5	0	17	75	8	83
4A	4.8 H	17.5	0	12	76	12	88
4B	7.0 H	28.0	0	24	65	11	76
4C	1.6 H	58.3	1	74	19	6	25
4D	5.3 H	38.6	1	53	37	9	46
4E	5.9 H	23.1	1	32	52	15	67
4F	6.7 H	29.2	1	49	42	8	50
5A	3.4 H	42.3	0	46	47	7	54
5B	0.1 H	80.3	7	93	0	0	0
5C	13.7 H	29.2	4	50	37	9	46
6A	13.9 H	26.8	7	53	33	7	40
6B	2.3 H	51.8	0	67	31	2	33
6C	8.6 H	27.8	2	36	51	11	62
6D	10.8 H	23.1	5	47	39	9	48
7A	5.2 H	37.6	1	67	29	3	32
7B	1.2 H	73.2	1	13	40	46	86
7C	0.7 H	65.1	3	71	17	9	26
7D	0.8 H	68.5	3	87	8	2	10
8A	3.9 H	40.0	0	44	46	10	56
8B	1.3 H	49.8	6	78	12	4	16
8C	6.6 H	26.0	1	19	62	18	80

H=Result may be biased due to excessive holding time prior to analysis.

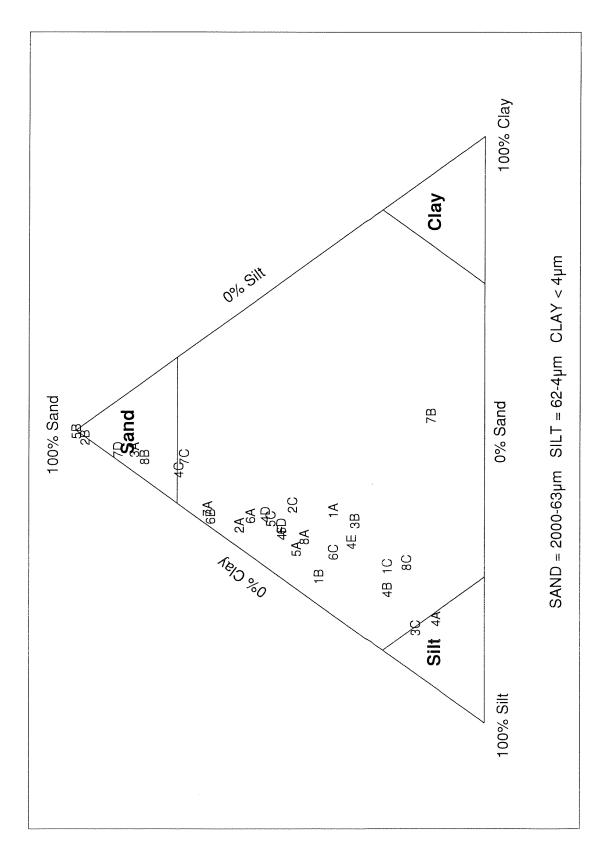


Figure 3. Relative grain size composition of Salmon Bay sediments.

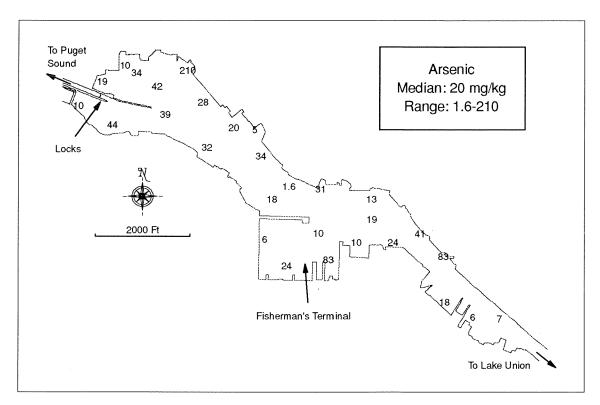


Figure 4. Arsenic concentrations at sample stations. All values mg/kg dry weight.

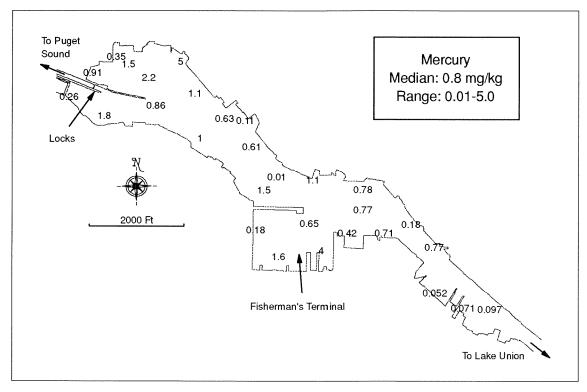


Figure 5. Mercury concentrations at sample stations. All values mg/kg dry weight.

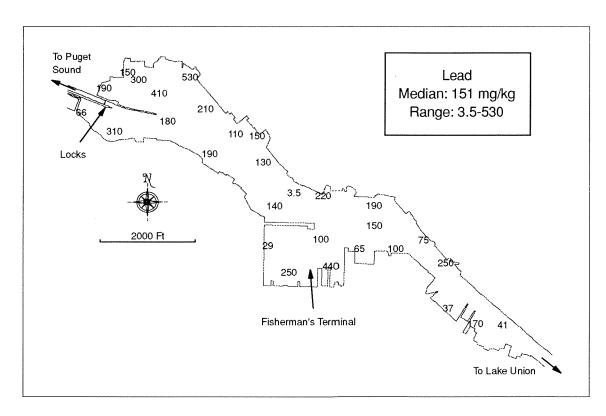


Figure 6. Lead concentrations at sample stations. All values mg/kg dry weight.

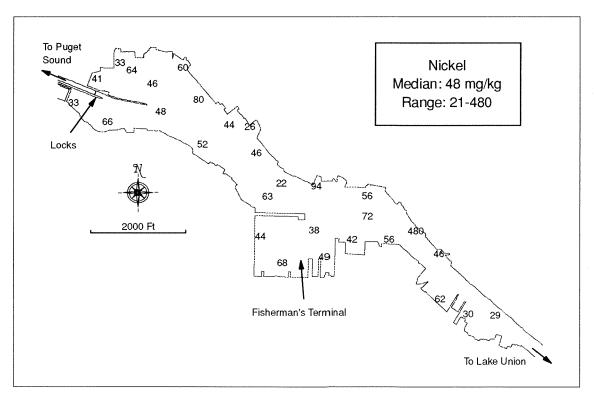


Figure 7. Nickel concentrations at sample stations. All values mg/kg dry weight.

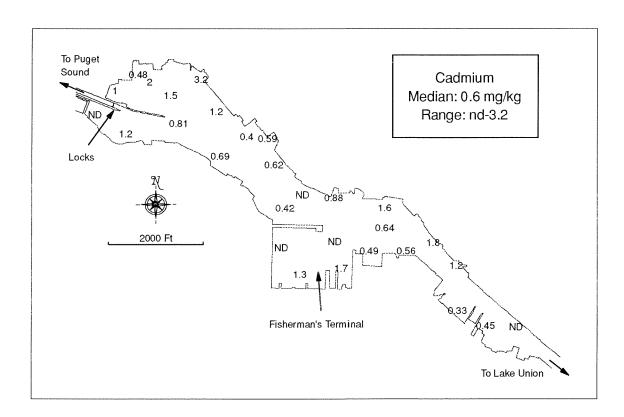


Figure 8. Cadmium concentrations at sample stations. All values mg/kg dry weight.

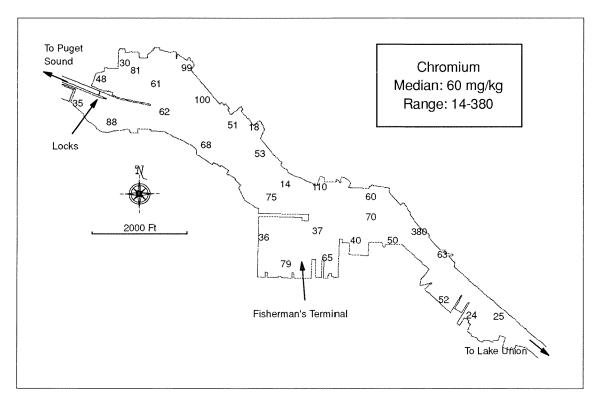


Figure 9. Chromium concentrations at sample stations. All values mg/kg dry weight.

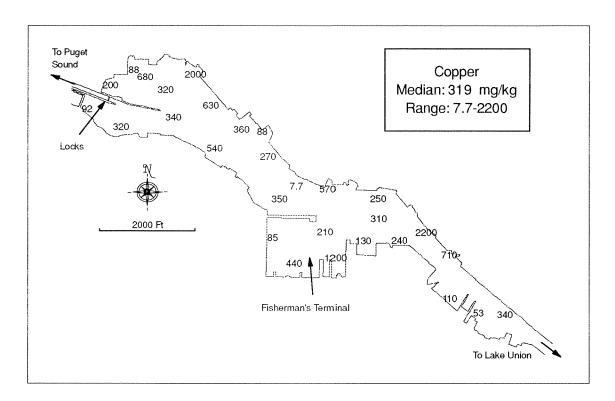


Figure 10. Copper concentrations at sample stations. All values mg/kg dry weight.

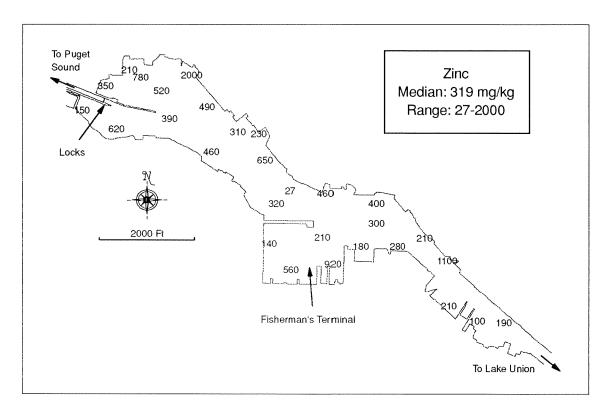


Figure 11. Zinc concentrations at sample stations. All values mg/kg dry weight.

Table 3. Correlations between major parameters in Salmon Bay sediments (Pearson correlation coefficient, n=29).

% Sand	-0.43
% Fines	0.41
totBT	0.29
totPCB	0.19 0.02 0.01
totPAH	0.27 0.70 0.43 -0.42 0.54
Zn	0.73 0.83 0.30 0.29
Cu	0.63 0.46 0.26 0.07 0.09
Ç	0.78 0.07 0.03 0.11 0.19 -0.16
PO	0.48 0.77 0.30 0.30 0.36 -0.35 0.38
Z	0.33 0.97 0.09 -0.09 -0.04 0.04 -0.01
Pb	0.83 0.85 0.85 0.85 0.34 0.38 0.36
Hg	0.91 0.77 0.77 0.84 0.87 0.82 0.82 0.82 0.39
As	0.25 0.77 0.25 0.25 0.24 0.23 -0.21 0.84
	Hg Pb Ni Cd Cr Cu Zn totPAH totPCB totBT % Fines % Sand TOC

Significant at p<0.01 (Bonferroni probability)

| Significant at p<0.05 (Bonferroni probability)

Table 4. Stations ranked according to metals concentrations (lower rank = higher concentration).

Rank	As	Hg	Pb	Ni	Cd	Cr	Cu	Zn	Overall Rank
1	1B	1B	1B	6B	1B	6B	6B	1B	1B
2	4F	4F	4F	4B	8C	4B	1B	7A	4F
3	7A	1A	1A	1C	6B	1C	4F	4F	8C
4	3B	3B	3B	5C	4F	1B	7A	8C	3B
5	1A	4E	8C	4E	6A	3B	8C	2C	1C
6	6B	4 A	7A	3B	1A	8C	1C	3B	4E
7	5A	8C	4E	8C	4E	4E	4B	4E	4B
8	2C	1C	4B	4 A	1C	4 A	3C	1A	7A
9	8C	4B	1C	7B	3B	5C	4E	1C	1A
10	3C	3C	3C	1B	7A	3C	2A	3C	6B
11	4B	5A	6A	6D	8A	4F	4 A	4B	3C
12	1C	A8	8A	6A	4B	7A	5A	6A	5A
13	4E	6A	5A	3C	5A	5 A	7D	5A	6A
14	6D	5C	7C	4F	3C	1 A	1A	8A	5C
15	2A	7A	2B	5A	5C	6A	3B	4 A	4 A
16	5C	4D	5C	2C	2C	2C	5C	2A	2C
17	A8	6D	8B	1A	2B	7B	2C	5C	8A
18	7B	2A	4 A	7A	6D	2A	6A	6D	6D
19	4 A	2C	2C	4C	6C	6D	6D	2B	2A
20	6A	6C	2A	2A	8B	8A	4D	7B	7B
21	4D	3A	6D	6C	7C	6C	8A	6B	4D
22	6C	8B	4D	A8	4A	4D	6C	4D	6C
23	8B	4C	6B	4D	2A	4C	7B	8B	8B
24	3A	6B	3A	8B	7B	3A	3A	7D	2B
25	7D	2B	6C	3A	3A	8B	2B	6C	7D
26	7C	7B	7D	7C	4C	7D	8B	3A	3A
27	4C	7C	7B	7D	4D	7C	4C	4C	7C
28	2B	7D	4C	2B	5B	2B	7C	7C	4C
29	5B	5B	5B	5B	7D	5B	5B	5B	5B

Semivolatile Organics

Sediments were analyzed for 74 semivolatile organic compounds of which less than half were detected (Appendix E). Polycyclic aromatic hydrocarbons (PAHs) were the most frequently detected class of semivolatiles. Figure 12 depicts the detection frequency for all organic compounds found. With few exceptions, all ten high molecular weight PAHs (HPAHs) and seven low molecular weight PAHs (LPAHs) were detected at all stations. Incomplete combustion of fossil fuels is probably the major source of environmental PAHs, yet some of these compounds, especially LPAHs, may be present in uncombusted petroleum products (PTI Environmental Services, 1991).

Total dry weight PAH concentrations (Appendix E; the sum of HPAH and LPAH), were greatest at Station 4F (84,200 μ g/Kg), followed in decreasing order by Stations 1B (77,700 μ g/Kg) and 1A (56,900 μ g/Kg). Total PAHs were lowest at Stations 5B (100 μ g/Kg), 7C (2,800 μ g/Kg), and 3A (3,400 μ g/Kg).

PAHs have a high affinity to carbon-containing sediments (Callahan *et al.*, 1979), although concentrations of HPAH were not significantly correlated with TOC. To examine factors influencing PAH levels other than sediment TOC, HPAH and LPAH concentrations were normalized to organic carbon (Figures 13 and 14). Station 2B had the highest organic carbon-normalized concentration of total PAH in sediment (2,280 mg PAH/Kg OC), followed by Station 7B (1,930 mg PAH/Kg OC). Station 5B had the lowest OC-normalized PAH level (107 mg PAH/Kg OC) despite its low TOC content (0.1%).

In addition to PAHs, dibenzofuran and retene were detected at all stations, followed in frequency by 4-methylphenol, 3β -coprostanol, and butylbenzylphthalate. All other semivolatile organics were detected at fewer than 60% of stations, and at dry weight concentrations generally less than $1,000~\mu g/Kg$.

PCBs

PCB concentrations normalized to organic carbon are shown in Figure 15. PCBs were detected at 26 of the 29 sample stations. Of the seven PCB mixtures analyzed, only PCB-1242,-1254, and -1260 were detected; PCB-1242 was detected at one station only (Appendix E). Other PCB mixtures were not detected at quantitation limits of $48-160 \mu g/Kg$.

Total PCBs, the sum of all PCB mixtures, ranged from non-detectable levels at Stations 3A, 5B, and 7C to a dry weight concentration of 7,600 μ g/Kg at Station 7A. The median total PCB concentration was comparatively low on both a dry weight (260 μ g/Kg) and organic carbon basis (4.8 mg PCB/Kg OC).

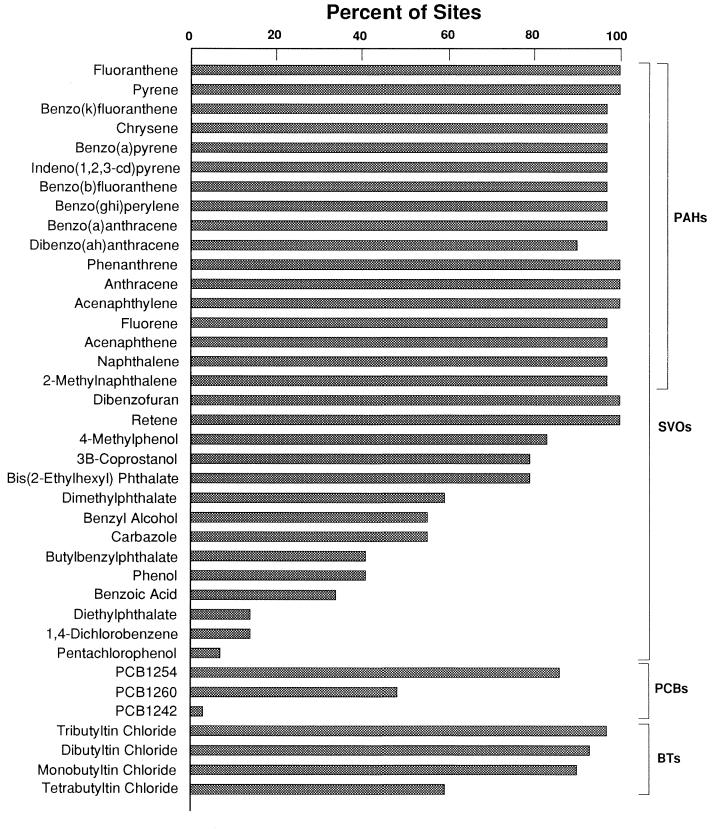


Figure 12. Frequency of detection for organic compounds in sediment.

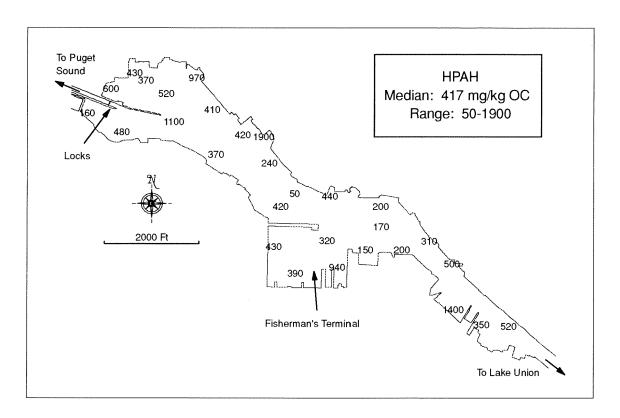


Figure 13. HPAH concentrations at sample stations. All values mg/kg organic carbon.

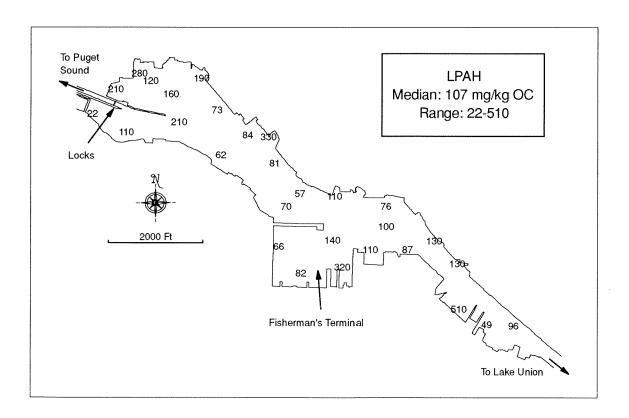


Figure 14. LPAH concentrations at sample stations. All values mg/kg organic carbon.

Butyltins

Butyltin chlorides were detected at all stations except 5B, ranging in concentration from less than 6 μ g/Kg to more than 9,000 μ g/Kg total butyltins chlorides at Station 1B (Appendix E). Tributyltin chloride (TBT-Cl) was the most frequently detected butyltin congener and accounted for 63% of overall butyltin chloride concentrations on average. The median concentrations of total butyltin chlorides and TBT-Cl were 671 and 366 μ g/Kg, respectively. As mentioned previously, the butyltin data should be viewed with caution due to a low degree of precision.

Butyltin chloride concentrations were significantly correlated to PAH concentrations and, like PAHs, they were also significantly correlated to arsenic, mercury, lead, cadmium, and zinc. They were generally associated with fine-grained organic carbon containing sediments, although less so than PAHs. Butyltins were also positively correlated to copper concentrations, although this correlation was not strong.

Figure 16 shows TBT concentrations throughout the study area. These concentrations are expressed as the TBT ion rather than TBT-Cl to maintain consistency with current PSDDA and SMS reporting conventions. TBT is an active ingredient in anti-fouling paint applied to boat and ship hulls. Although the use of TBT for most pleasure boat and ship applications was outlawed in the U.S. in 1988, it may yet be present on hulls with aged paint, on foreign-flagged vessels, and still has limited legal uses in the U.S. (on aluminum hulls for instance). TBT is by far the most toxic among the four congeners analyzed. Mono- and dibutyltin are metabolites formed during the progressive debutylation of TBT to inorganic tin, while tetrabutyltin may be an impurity during TBT manufacturing or possibly formed photolytically or microbially from lesser butylated congeners.

Areal Distribution of Contaminants

Figures 4 through 11 and 13 through 16 indicate there are no clear areal gradients for any of the chemicals analyzed. This is to be somewhat expected since the study area contains numerous potential sources of contamination rather than one or two large sources.

Figures 17 and 18 show how metals and organics co-occur, respectively. The stations most contaminated with arsenic, mercury, lead, cadmium, zinc, and TBT can be found at Station 1B in the northernmost section of the study area, and at Station 4F located in the eastern portion of Fisherman's Terminal. Station 6B stands out as the most contaminated with nickel, chromium, and copper. Station 7A, which is near 6B, also has relatively high concentrations of metals, although the pattern of contamination is different suggesting two distinct sources of metals.

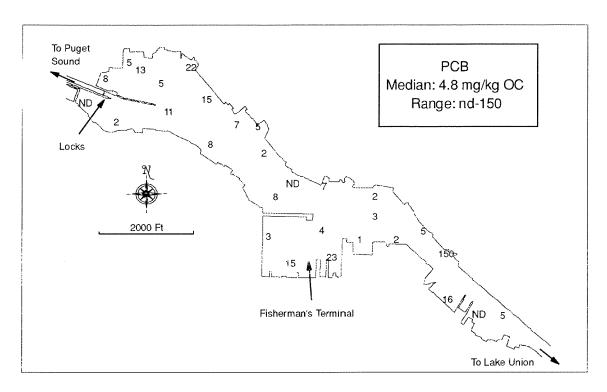


Figure 15. PCB concentrations at sample stations. All values mg/kg organic carbon.

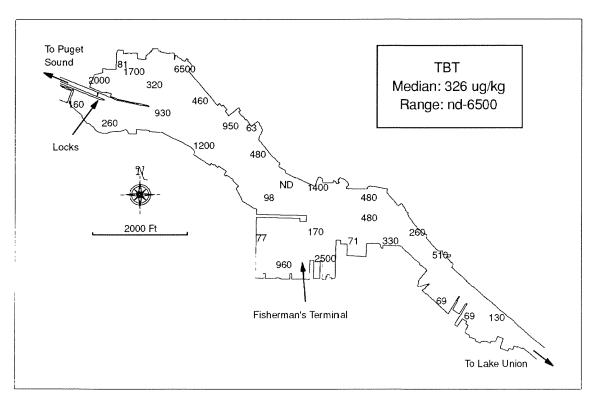


Figure 16. TBT concentrations at sample stations. All values ug/kg dry weight.

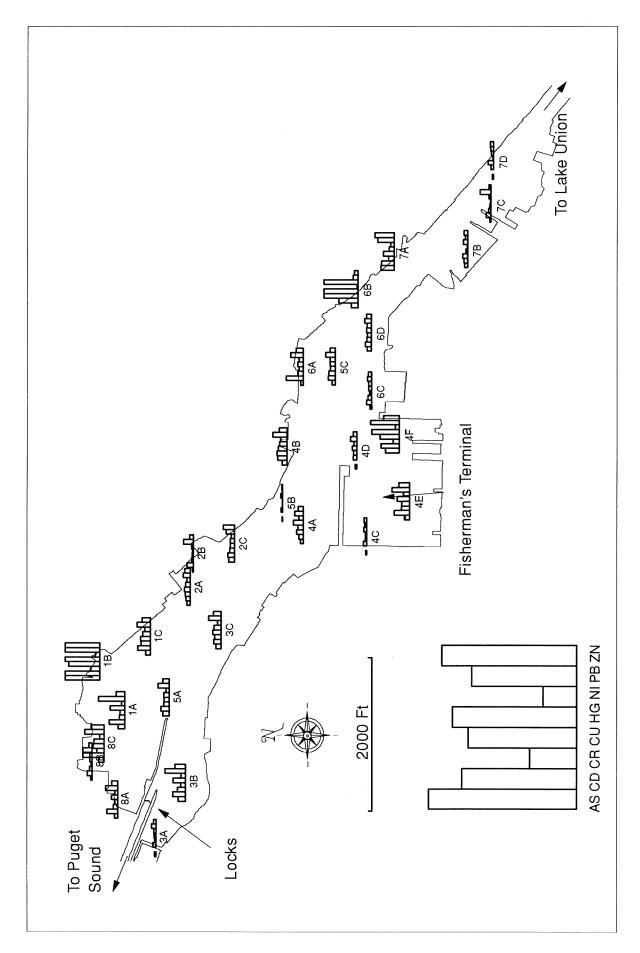


Figure 17. Comparison among metals concentrations at all sites. Concentrations of metals are standardized as a percent of the highest concentration for each metal.

Figure 18. Comparison among groups of organics concentrations at all sites. Concentrations of organics are standardized as a percent of the highest concentration for each group. HPAH, LPAH, and PCBs are on organic carbon basis. TBT is on dry weight basis.

With one possible exception, there is also a lack of gradation or geographical pattern with respect to clean sediments. The cleanest area appears to be at the terminus of the Ship Canal in the easternmost section of Salmon Bay. Station 5B, located near the longitudinal center of the study area, has the lowest overall contamination.

Aside from the northernmost area of Salmon Bay, PAH concentrations normalized to organic carbon tend to show a "patchy" distribution, suggesting localized sources. Three of the four stations with the highest PAH concentrations -- 2B, 7B, and 4F -- have neighboring stations with relatively low PAH levels.

This independent nature of station-to-station contaminant distribution appears to hold true for all chemicals analyzed. It is perhaps best illustrated for PCBs, where a very high concentration at Station 7A apparently has no effect on concentrations at nearby stations. Sediments at 7A were collected just off of the Union Bay Ship Building and Salmon Bay Steel plants. Another example is in sample zone 8 where sediments from Station 8C, found to have some of the worst overall contamination, were collected within 300 feet of one of the cleanest sample stations (8B).

As mentioned under the description of sampling strategy, stations were grouped in each major area of concern and/or natural geographical feature. These zones were chosen to represent groups of industries and combined sewer overflows (CSOs) or areas that were thought to possibly have similar contaminant levels.

Because of the areal variability of contaminant levels, stations within each zone were rarely uniform. To test for differences among zones, chemical concentrations (including OC-normalized organics) in each zone were compared using the Kruskal-Wallis one-way analysis of variance (p < 0.05). This is a non-parametric test that compares the sum of ranks and assumes the test statistic approximates a chi-square distribution. There was no difference among zones for any of the metals, total PAH, total PCB, or TBT.

Relationship to Sources

The contaminant data were considered in context of their possible sources, *i.e.* potential sources in close proximity to the sample stations. Since the study area is heavily industrialized, not every source was considered. Instead, major groups such as marinas and CSOs were considered.

PAHs, phthalates, lead, and copper are among the most prevalent chemicals in stormwater and CSO discharges (METRO, 1988). In some cases, their concentrations in receiving waters may be useful in estimating the extent to which stormwater and CSO discharges contribute to contamination of a specific area.

In Salmon Bay there is mixed evidence that CSO discharges account for a substantial portion of the contamination. Of the six stations adjacent to CSO outfalls -- 1B, 2B, 6A, 6B, 8B, and 8C -- two stations (1B and 8C) had high overall concentrations of metals, including lead. Station 6B had high concentrations of copper, as did Stations 1B and 8C, yet other stations located near the CSO outfalls had relatively low-to-moderate metals levels. Sediments from Station 2B had the highest organic carbon-normalized PAH concentrations, and Stations 1B, 6A, and 8C had the three highest concentrations of bis(2-ethylhexyl)phthalate. However, organic carbon-normalized PAHs from three stations -- 8C, 6B, and 6A -- were at or below the median PAH concentration. All six stations near CSOs tended to have relatively high levels of 3β-coprostanol, a compound found in the feces of humans and carnivorous animals (Merck, 1976) and therefore a likely indicator of CSO discharge.

Although Stations 1B and 8C had elevated levels of lead, copper, and bis(2-ethylhexyl)phthalate, and were located near CSO outfalls, there remains some question as to the source of these chemicals. Sediments from these stations had elevated TBT levels when compared to other sites, yet CSOs are an unlikely delivery mechanism for TBT unless they receive drainage from upland boatyards. These stations also had some of the highest PCB concentrations. Since high concentrations of TBT and PCBs are not normally associated with CSO discharge, Stations 1B and 8C probably receive contamination from one or more additional source.

Perhaps the best indicators of remarkable PAH and/or PCB contamination were observations made during sample collection. Sediments with a moderate-to-heavy oil sheen, a petroleum odor, or both, were twice as likely to have PAH levels in the top quartile than the middle two quartiles, and were four times less likely to be in the bottom quartile. The same pattern was even more pronounced with regard to PCB concentrations, but oil sheen/odor did not yield a good indication of high TBT or metals concentrations.

Of the 29 stations sampled, 21 were located adjacent to marinas, boat repair facilities, marine terminals (including Fisherman's Terminal), shipyards, or vessel-related facilities. Two of the six stations (8A and 4B) with TBT levels greater than 1,000 µg/Kg were not adjacent to these facilities, while seven of eight sites with TBT less than 100 µg/Kg were adjacent to areas with marinas, etc. Proximity to these facilities alone did not appear to dictate concentrations of TBT. Instead, high TBT concentrations in sediments can probably be traced to individual facilities which do a poor job of containing paints, scrapings, and sand-blast grit on-site. For instance, the station with the highest TBT concentration (Station 1B) is located just offshore of Alaska Pacific Fisheries and Pacific Fisherman, Inc., both with a history of poor "housekeeping." Station 4F, with the second highest TBT concentration, is adjacent to a facility operated by Fishing Vessel Owners Marine Ways. Containment of sand-blast grit from this facility has allegedly been so bad in the past that grit deposition has caused shallowing of the vessel slip, and clouds of airborne particles have drawn

complaints from motorists (Dan Cargill, Washington State Department of Ecology Toxics Cleanup Program, personal communication). Stations located near vessel-related facilities were, however, more likely to have high metals concentrations.

Comparison to Criteria

Metals, Semivolatile Organics, and PCBs

To evaluate the biological significance of chemicals in Salmon Bay sediments, concentrations were compared to guidelines for freshwater sediment quality and Ecology's Marine Sediment Management Standards (SMS; Ch. 173-204 WAC) shown in Table 5.

Ecology is currently developing criteria for freshwater sediments. In the interim, Batts and Cubbage (1995) have reviewed guidelines proposed by various government agencies in the U.S. and Canada. These guidelines vary a great deal because of 1) the scientific approaches used to develop them, and 2) their proposed regulatory applications.

The Ontario guidelines were developed using a screening level approach wherein *in situ* impacts are measured along with contaminant concentrations in sediment. The Ontario "severe effects levels" are contaminant concentrations which are tolerated by only 5% of the benthic infaunal species examined (10% for PCBs).

The Environment Canada (EC) guidelines have been proposed as a tool for screening sediments throughout Canada and, by design, are somewhat conservative. EC guidelines were derived using existing studies from a variety of sources and using different scientific approaches. "No effects" and "effects" data sets were subsequently used to derive the intermediate EC "probable effects levels" (see Batts and Cubbage, 1995 for more details concerning the EC approach). As implied, adverse biological effects are expected to occur above the probable effects levels.

Table 5 contains two sets of chemical criteria from the SMS. The "no adverse effects levels" are the marine sediment quality standards — chemical concentrations that have no adverse impacts on biological resources and no significant health risks to humans. The "minor adverse effects levels" correspond to the cleanup screening levels and the minimum cleanup levels. These are chemical concentrations used to identify "station clusters" of potential concern (Ch. 173-204-510 WAC defines a station cluster as "any number of stations … that are determined to be spatially and chemically similar"). Stations clusters which are found to be of potential concern may subsequently undergo a hazard assessment to determine whether they should be listed on the contaminated sediment site list and to develop the site rank.

Table 5. Freshwater guidelines and marine standards for sediment quality.

		HWATER	MARINE			
	Ontario Provincial	Environment	Ecology SMS	Ecology SMS		
	Guidelines Severe	Canada Probable	No Adverse Effect	Minor Adverse Effect		
	Effect Levels	Effect Levels	Levels ¹	Levels ²		
METALS	mg/Kg, dry	mg/Kg, dry	mg/Kg, dry	mg/Kg, dry		
Arsenic	33	17.0	57	93		
Mercury	2	0.486	0.41	0.59		
Lead	250	91.3	450	530		
Nickel	75	35.9	ne	ne		
Cadmium	10	3.53	5.1	6.7		
Chromium	110	90.0	260	270		
Copper	110	196.6	390	390		
Zinc	820	314.8	410	960		
PAHs	mg/Kg OC ³	μg/Kg, dry	mg/Kg OC	mg/Kg OC		
Anthracene	370	ne	220	1200		
Acenaphthylene	ne	ne	66	66		
Acenaphthene	ne		16	57		
Phenanthrene	950	ne 514.9	100			
Fluorene Fluorene				480		
-iuorene Naphthalene	160	ne	23	79		
,	ne	ne	99	170		
?-Methylnaphthalene ₋ PAH ⁴	ne	ne	38	64		
	ne	ne	370	780		
Pyrene	850	875.0	1,000	1400		
Benzo(g,h,i)perylene	320	ne	31	78		
ndeno(1,2,3-c,d)pyrene	320	ne	34	88		
Benzo(b)fluoranthene	ne	ne	ne	ne		
Benzo(k)fluoranthene	1,340	ne	ne	ne		
Benzofluoranthene(s)	ne	ne	230	450		
Fluoranthene	1,020	2354.9	160	1200		
Chrysene	460	861.7	110	460		
Benzo(a)pyrene	1,440	782.0	99	210		
Dibenzo(a,h)anthracene	130	ne	12	33		
3enzo(a)anthracene	1,480	384.7	110	270		
-IPAH ⁵	ne	ne	960	5300		
PAH (Total)	10,000	ne	ne	ne		
PHTHALATES AND OTHER						
SEMIVOLATILE ORGANICS			mg/Kg OC	mg/Kg OC		
Bis(2-Ethylhexyl) phthalate	ne	ne	47	78		
Dimethylphthalate	ne	ne	53	53		
Diethylphthalate	ne	ne	61	110		
Butylbenzylphthalate	ne	ne	4.9	64		
,4-Dichlorobenzene	ne	ne	3.1	9		
Dibenzofuran	ne	ne	15	58		
			μg/Kg, dry	μg/Kg, dry		
Benzyl Alcohol	ne	ne	57	73		
-Methylphenol	ne	ne	670	670		
Phenol	ne	ne	420	1200		
Benzoic Acid	ne	ne	650	650		
Pentachlorophenol	ne	ne	360	690		
PCBs	mg/Kg OC³	μg/Kg, dr y	mg/Kg OC	mg/Kg OC		
CB-1254	34	ne	ne	ne		
CB-1260	24	ne	ne	ne		
CBs (total)	530	277.2	12	65		

ne=not established

¹These levels are also the SMS marine sediment quality standards

²These levels are also the SMS cleanup screening levels and minimum cleanup levels

³To a maximum of 10% OC

⁴Represents the sum of Anthracene, Acenaphylene, Acenaphthene, Phenanthrene, Fluorene, and Naphthalene. The LPAH criterion is not the sum of the criterion values for the individual LPAH as listed.

⁵Represents the sum of Pyrene, Benzo(g,h,i)perylene, Indeno(1,2,3-c,d)pyrene, Benzofluoranthene(s), Fluoranthene, Chrysene, Benzo(a)pyrene, Dibenzo(a,h)anthracene, and Benzo(a)anthracene. The HPAH criterion is not the sum of the criterion values for the individual HPAH as listed.

The reader should be aware that the marine standards described above are not directly applicable to Salmon Bay sediments. Chapter 173-204-510 WAC defines marine sediments as those which have pore water salinity greater than 25 parts per thousand (ppt). Freshwater sediments are defined as having less than 0.5 ppt salinity. "Low salinity" sediments, for which standards have also not been established, are those with pore water salinity between 0.5 and 25 ppt. Benthic salinity at the Ballard (15th Ave.) Bridge is less than 0.5 ppt approximately 62% of the time and exceeds 5 ppt only about one day per year (Marian Valentine, U.S. Army Corps of Engineers, written communication).

All 29 stations had at least one chemical exceeding criteria listed in Table 5. Seventy-two percent of the stations had one or more contaminants at concentrations expected to have pronounced effects on benthic organisms based on a comparison to the Ontario severe effects levels. Eighty-six percent of the stations would be expected to have at least minor adverse effects on benthic organisms in a marine environment.

Figure 19 shows stations that exceed either the freshwater severe effects levels or the minor adverse effects levels for marine sediments. Figure 20 compares stations based on the number of chemicals exceeding these criteria. These comparisons suggest that sediments in most areas of Salmon Bay can be expected to have some degree of adverse impact on benthic organisms. Only three stations -- 5B, 7C, and 8B -- are not shown on this list because they do not exceed any of these levels.

Of the chemicals listed in Table 5, copper poses the most serious threat to aquatic life in Salmon Bay. Other chemicals likely to harm aquatic life at a substantial number of stations (i.e. more than 25%) include mercury, benzyl alcohol, 4-methylphenol, arsenic, and bis(2-ethylhexyl)phthalate.

TBT

No TBT criteria were included in the freshwater guidelines reviewed by Batts and Cubbage (1995), nor have numerical criteria been promulgated under Ecology's marine standards. However, the high degree of toxicity associated with TBT is well regarded and it is recognized as a chemical of special concern under the PSDDA program. In 1988, an interim PSDDA screening level (SL) of 73 µg/Kg (as TBT, dry) was developed using an equilibrium partitioning approach which predicts the TBT concentrations of interstitial water based upon sediment concentrations.

The PSDDA agencies have recently conducted a review of several TBT-related issues, including the appropriateness of the interim SL for sediments (Michelsen et al., 1996). Although the interim SL for sediments is not unreasonable based on an equilibrium partitioning approach, it has become apparent that this approach does not accurately predict partitioning between TBT in sediments and overlying water. TBT is introduced into the environment in many different forms with differing degrees of bioavailability.

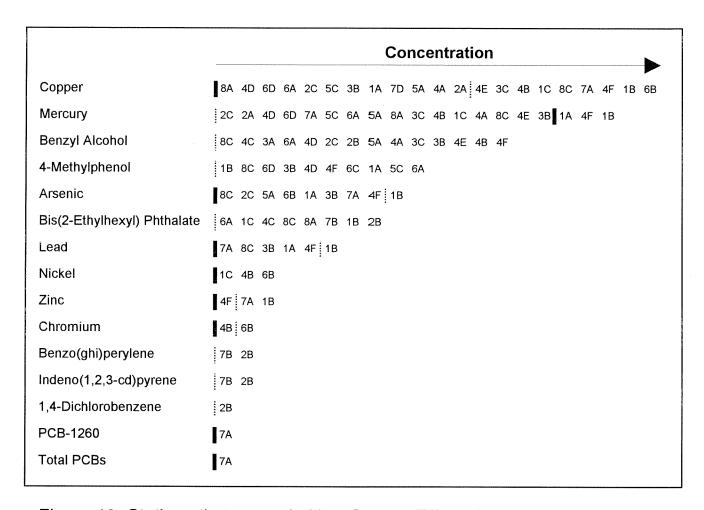


Figure 19. Stations that exceed either Severe Effects Levels for Freshwater Sediments (bold line) or Minor Adverse Effects Levels for Marine Sediments (dotted line). See Table 5 for numerical criteria.

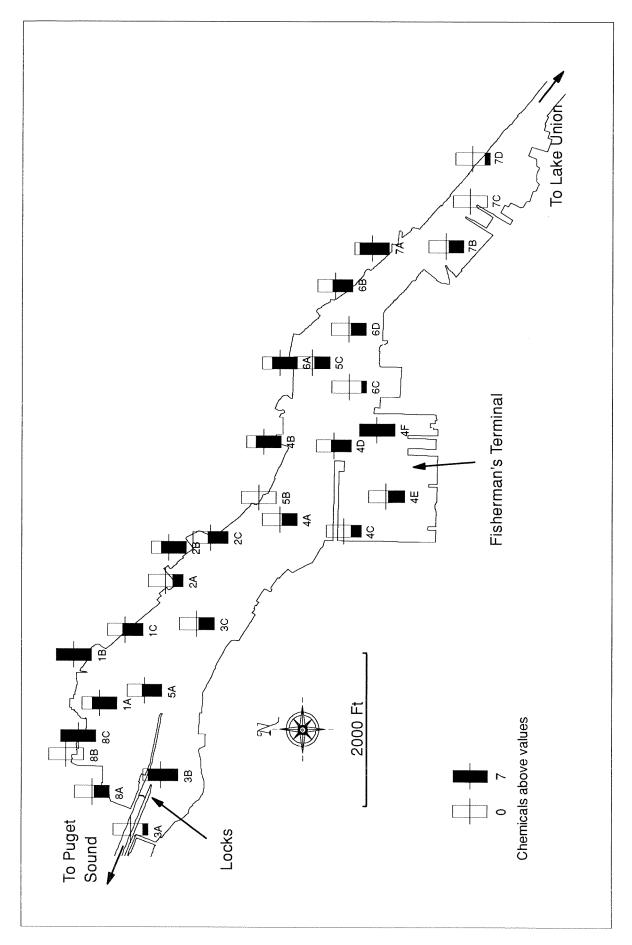


Figure 20. Comparison among sites of number of chemicals that exceed either Severe Effects Levels for Freshwater Sediments or minor Adverse Effects Levels for Marine Sediments.

Its partitioning is also very complex, and is strongly affected by factors such as pH, salinity, and chemical form. The PSDDA agencies have determined that an SL based on concentrations in interstitial water is more appropriate than a sediment SL for use in regulatory decision-making.

No interstitial water or tissue data currently exist for TBT in Salmon Bay. For this report, the sediments SL will be used for comparison. However, Phase III data should include collection of TBT in interstitial water or tissues, to provide a better indication of actual toxicity due to TBT in sediments. In Salmon Bay, all but five stations -- 2B, 5B, 6B, 7B, and 7C -- exceeded the SL. Thirty percent of the stations had TBT concentrations elevated one-to-two orders of magnitude above the SL, with TBT in sediments from 1B the highest by far $(6,460 \,\mu\text{g/Kg})$. Median TBT concentrations $(326 \,\mu\text{g/Kg})$ were four and one-half times the SL.

Of all chemicals analyzed for the present study, only TBT is elevated to the same degree above one or more associated criteria. This suggests that overall TBT could have a greater impact on aquatic organisms, but this should be confirmed with a more direct measure of toxicity. Consideration should also be given to the variability among criteria due to differing assumptions and approaches used in their development, and the different effects levels at which they are set.

Comparison to Earlier Surveys

Little effort had previously been committed to studying chemicals in Salmon Bay and Lake Washington Ship Canal sediments and, as a result, there are few available data. Cubbage (1992) analyzed metals, PAHs, and PCBs in sediments from 22 locations well-distributed throughout Lake Union and adjoining waters, including five from the Ship Canal. These data are summarized in Tables 6 and 7. Data from the main body of Lake Union are also shown for comparison.

Metals

Median concentrations of all metals in Salmon Bay sediments from the present study are similar to those reported by Cubbage (1992), although the range is greater, probably due to the larger sample size. In contrast, median concentrations of arsenic, mercury, lead, cadmium, and zinc were 2 to 4 times higher in Lake Union sediments. Lead levels were especially high in Lake Union sediments where median concentrations were elevated above all Salmon Bay/Ship Canal samples. The same pattern can be seen to a lesser degree in data reported by Hileman *et al.* (1984), although their sampling was focused primarily in the vicinity of Gas Works Park and therefore less representative of the entire lake.

Table 6. Comparison of metals concentrations in sediments from Salmon Bay/Ship Canal and Lake Union (mg/Kg, dry).

	As	Hg	Pb	Ni	Cd	Cr	Cu	Zn
			SALM	MON BAY A	ND SHIP CA	NAL		
This Study (n=29)								
Range	1.6 - 210	0.01 - 5.0	3.5 - 534	22 - 484	<0.3 - 3.2	14 - 376	7.7 - 2210	27 - 2020
85th Percentile	42	1.6	289	68	1.6	86	671	641
75th Percentile	34	1.1	219	62	1.2	75	516	516
Median	20	0.8	151	48	0.6	60	319	319
<u>Cubbage, 1992 (n=</u>	<u>=5)</u>							
Range	<20 - 52	0.1 - 1.9	33 - 366	45 - 91	<0.5	48 - 124	51 - 638	87 - 685
Median	29	1.4	163	47	<0.5	66	275	368
				LAKE	UNION			
Cubbage, 1992 (n=	:13)*							
Range	<20 - 1150	0.5 - 2.9	124 - 831	37 - 133	<0.5 - 2.3	19 - 113	68 - 599	250 - 904
Median	61	1.7	641	57	1.4	58	310	533
Hileman et al., 198	4 (n=33)**							
Range	0 - 284	0.03 - 4.3	28 - 962	47 - 291	0.1 - 2.4	14 - 87	23 - 587	51 - 1058
Median	28	1.1	319	92	1.5	54	168	382

^{*}Does not include four sites in Portage Bay area

^{**}Most samples (24 of 33) were collected within 500 feet of Gas Works Park

Table 7. Comparison of PAH and PCB concentrations in sediments from Salmon Bay/Ship Canal and Lake Union.

	Total PAHs	anni anni anni anni anni anni anni anni	Total PCBs	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	(µg/Kg, dry)	mg PAH/Kg OC	(µg/Kg, dry)	mg PCBs/Kg OC
This Study (n=29)		SALMON BAY AN	ID SHIP CANAL	
	407 04000	407 0000	- d 7000	
Range	107 - 84200	107 - 2280	nd - 7600	nd - 146
85th Percentile 75th Percentile	38600	1090 677	868 420	14.8 10.6
75th Percentile Median	35200 278 00	489	420 260	4,8
Median	21600	409	200	4,0
Cubbage, 1992 (n=5)				
	_	67 597		nd [1
Range	540 - 24300	67 - 587	nd - 240	nd - 5.1
Median	11700	238	210	4.5
		LAKE U	INION	
Cubbage, 1992 (n=10	ofor PAH, 8 for PCE	<u>3)*</u>		
Range	13600 - 135000	138 - 1120	200 - 640	3.8 - 11.2
Median	22800	353	360	5.4

Hileman et al., 1984 ((n=8)**			
Range	nd - 198000	nr	nr	nr
Median	8660	nr	nr	nr

OC=Organic Carbon

nr=not reported

^{*}Does not include four sites in Portage Bay area and samples collected within 500 feet of Gas Works Park

^{**}Does not include samples collected within 500 feet of Gas Works Park nd=not detected

Organics

Previous studies of Lake Union sediments (Hileman et al., 1984; Cubbage, 1992) have centered around Gas Works Park, the site of a former coal gasification plant which has caused extreme PAH contamination of nearby sediments. Data from sediments collected within 500 feet of Gas Works Park were therefore not included in the comparison of organic compounds shown in Table 7.

Median PAH concentrations in the present study are higher than those previously reported for either the Ship Canal or Lake Union. The relative differences remain consistent when PAHs are compared on an organic carbon-normalized basis, suggesting that differences are not solely due to carbon content of the sediments. Median PCB concentrations show more similarities between studies and waterbodies, although the range of PCB concentrations was much broader than those reported by Cubbage (1992).

Elevated concentrations of butyltins in sediments have been reported in several studies of Puget Sound marinas, including portions of Elliott Bay and Fisherman's Terminal in Salmon Bay. Krone *et al.* (1989a) analyzed sediments from seven areas in Puget Sound for the PSDDA Program and found levels to vary widely based on the proximity to boat maintenance and repair facilities. For instance, sediments collected from an area within the Shilshole Bay Marina moorage area had TBT concentrations of $16 \mu g/Kg$ (dry) while sediments from the repair area of the same marina had an average concentration of $8,000 \mu g/Kg$. Fisherman's Terminal was an exception to this contamination pattern with concentrations of TBT in the moorage area higher than those in the boat repair area $(1,440 \nu s. 1,200 \mu g/Kg$, respectively). A non-urban reference area had no measurable level of butyltins ($<1 \mu g/Kg$).

Keithly et al. (1995) conducted long-term monitoring of TBT in four regions of the country, including Puget Sound. They compared TBT concentrations in sediments representing four site types: commercial harbors, shipyards/drydocks, marinas, and ecologically significant areas. Sample size for each site type ranged from 14 to 18 samples. In Puget Sound, they found shipyard/drydock areas to have the highest mean TBT concentrations in sediments (1,200 μ g/Kg, dry), followed by commercial harbors (620 μ g/Kg) and marinas (410 μ g/Kg). Ecologically significant areas, which were not adjacent to any vessel-related facilities but were within several miles of marinas, had a mean TBT concentration in sediments of 0.4 μ g/Kg. These results support the findings of Krone et al. (1989a) with respect to TBT levels in relation to the type of activity or facility.

Krone et al. (1991) reported a summary of TBT concentrations in fish livers and sediments collected during 1986-1990 as part of the National Benthic Surveillance Project (NBSP), a component of NOAA's National Status and Trends Program. Most of the NBSP samples were collected from urban embayments. Sediments from Elliott

Bay (exact location not specified) had wet weight TBT concentrations of 700 μ g/Kg in 1986, declining to 300 μ g/Kg in 1990. These were the highest TBT concentrations found in any of the 23 NBSP sample locations nationwide, although the reporting of these concentrations on a wet weight basis limits their comparability among NBSP stations. Wet weight TBT concentrations in the present study ranged from non-detectable levels to 1,730 μ g/Kg, with a median value of 106 μ g/Kg. Krone *et al.* (1991) also found TBT to be the predominant butyltin, accounting for more than 50% of the total butyltin concentration in most areas. This pattern was also observed by Krone *et al.* (1989) and Keithly *et al.* (1995), and is consistent with the findings reported here.

Conclusions


- Results of this study indicate there are no clear areal gradients throughout Salmon Bay for any of the chemicals analyzed. Instead, local conditions and sources appeared to be the major determinant with respect to chemical concentrations.
- The most contaminated stations were 1B and 8C, located in the northernmost portion of Salmon Bay, and 4F in the Fisherman's Terminal area. Arsenic, mercury, lead, cadmium, zinc, and tributyltin (TBT) concentrations in sediments from these stations were the highest or among the highest of all 29 stations sampled.
- The cleanest stations were 5B, 7C, and 8B, located in the central, eastern, and western portions of the study area, respectively. With one possible exception, there is also a lack of gradation or geographical pattern with respect to clean sediments. However, the cleanest area appears to be at the terminus of the Ship Canal in the easternmost section of Salmon Bay.
- Dividing the study area into zones based on major areas of concern and/or natural geographical features did not generally yield within-zone samples with similar contaminant concentrations. There was no statistically significant difference among zones for metals, total PAH, total PCB, or TBT concentrations.
- Based on comparisons to freshwater sediment quality guidelines and marine sediment quality standards, contaminated sediments from all but three sample stations in Salmon Bay can be expected to have some degree of adverse impact on benthic organisms. Of the 29 stations sampled, 23 have two or more chemicals expected to cause adverse impacts, and 21 stations have three or more chemicals expected to cause adverse impacts.
- Tributyltin probably poses the most serious threat to aquatic life in Salmon Bay due to its toxicity and high concentrations in sediments. All but five sample stations exceeded the Puget Sound Dredged Disposal Analysis Program sediment screening level (SL) for TBT. Median TBT concentrations (326 μg/Kg) were four and one-half times the SL, and 30% of the sample stations had TBT concentrations elevated one-to-two orders of magnitude above the SL.
- Chemicals other than TBT likely to harm aquatic life at one or more stations include copper, mercury, arsenic, lead, nickel, zinc, chromium, benzyl alcohol, 4-methylphenol, bis(2-ethylhexyl)phthalate, benzo(g,h,i)perylene, indeno(1,2,3-c,d)pyrene, 1,4-dichlorobenzene, and PCB-1260.

- In Salmon Bay there is mixed evidence that combined sewer overflow (CSO) discharges account for a substantial portion of the contamination. Half of the stations adjacent to the five CSO outfalls had high concentrations of metals, PAHs, and bis(2-ethylhexyl)phthalate normally found in stormwater and CSO discharges, yet other stations located near the CSO outfalls had relatively low-to-moderate levels of these compounds.
- Proximity of sample stations to marinas, boat repair facilities, marine terminals (including Fisherman's Terminal), shipyards, or vessel-related facilities alone did not appear to dictate concentrations of TBT. Instead, high TBT concentrations in sediments can probably be traced to individual facilities which do a poor job of containing paints, scrapings, and sand-blast grit on-site. Stations 1B and 4F appear to be two examples. Sediments from these stations had the highest TBT concentrations and the history of nearby facilities indicate they have poor "housekeeping" and containment practices. Stations located near vessel-related facilities were, however, more likely to have high metals concentrations.
- Observations made during sample collection, especially of heavy oil sheen and petroleum odor, may provide the best indicators of noteworthy PAH and/or PCB contamination in sediments.

References

- Batts, D. and J. Cubbage. 1995. Summary of Guidelines for Contaminated Freshwater Sediments. Washington State Department of Ecology report #95-308, Olympia, WA.
- Callahan, M.A., M.W. Slimak, N.W. Gabel, I.P May, C.F. Fowler, J.R. Freed,
 P. Jennings, R.L. Durfree, F.C. Whitmore, B. Maestri, R.W. Mabey,
 B.R. Holt, and C. Gould. 1979. Water-related Environmental Fate of 129
 Priority Pollutants. Prepared for U.S. Environmental Protection Agency,
 Office of Water Planning and Standards and Office of Water and Waste
 Management, Washington, D.C.
- Cubbage, J. 1992. Survey of Contaminants in Sediments in Lake Union and Adjoining Waters. Washington State Department of Ecology, Olympia, WA.
- Cubbage, J. and T. Michelsen. 1995. Concentrations of Chemical Contaminants in Salmon Bay and Lake Washington Ship Canal Quality Assurance Project Plan for Phase II Sampling. Washington State Department of Ecology, Olympia, WA.
- Ecology. 1991. Sediment Management Standards. Washington Administrative Code (WAC) Chapter 173-204 (Amended December 1995).
- Ecology. 1995. Policy for the Quality Assurance of Sediment Data. Sediment Management Unit, Washington State Department of Ecology, Olympia, WA (includes references to Puget Sound Dredged Disposal Analysis program requirements).
- EPA. 1986a. Puget Sound Estuary Program (PSEP): Recommended Protocols for Measuring Selected Environmental Variables in Puget Sound. Final Report.
 U.S. Environmental Protection Agency Region 10, Office of Puget Sound, Seattle, WA.
- EPA. 1986b. Test Methods for Evaluating Solid Waste. U.S. Environmental Protection Agency, Environmental Monitoring and Support Laboratory, Cincinnati, OH
- Hileman, J., J. Yearsley, and J. Anderson. 1984. Lake Union Sediment Investigation. U.S. Environmental Protection Agency Region 10, Seattle, WA.

- Keithly, J., P. Stolz, M. Spence, J. Bennett, and M.S. Brancato. 1995. Long-term National Monitoring Program for Tributyltin and its Primary Intermediates: Year 3, 1994-1995. Prepared *for* Consortium of Tributyltin Manufacturers *by* Parametrix, Inc.
- Krone, C.A., D.W. Brown, D.G. Burrows, S-L. Chan, and U. Varanasi. 1989a. Butyltins in Sediment from Marinas and Waterways in Puget Sound, Washington State, USA. Marine Pollution Bulletin 20(10):528-531.
- Krone, C.A., D.W. Brown, D.G. Burrows, S-L. Chan, and U. Varanasi. 1989b. A Method for Analysis of Butyltin Species and Measurement of Butyltins in Sediment and English Sole Livers from Puget Sound. Marine Environmental Research 27:1-18.
- Krone, C.A., S-L. Chan, and U. Varanasi. 1991. Butyltins in Sediments and Benthic Fish Tissues from the East, Gulf, and Pacific Coasts of the United States.Oceans '91 Conference proceedings Vol. 2., pp. 1054-1059. IEEE, New York, NY.
- Merck. 1976. Merck Index, 9th Ed. Merck & Co., Rahway, NJ.
- METRO. 1988. Toxicants in Urban Stormwater Runoff and Combined Sewer Overflows. Prepared by R.E. Stewart and R.D. Cardwell, Envirosphere Company, and S.F. Munger, Municipality of Metropolitan Seattle (METRO) for METRO, Seattle, WA.
- Michelsen, T., T.C. Shaw, and S. Stirling. 1996. Testing, Reporting, and Evaluation of Tributyltin Data in PSDDA and SMS Programs. PSDDA Issue Paper/SMS Technical Information Memorandum.
- PTI Environmental Services. 1991. Pollutants of Concern in Puget Sound. Prepared for U.S. Environmental Protection Agency Region 10, Office of Puget Sound, Seattle, WA.

APPENDIX A RESULTS OF PHASE I STUDY

state of washington DEPARTMENT OF ECOLOGY

Northwest Regional Office, 3190 - 160th Ave S.E. • Bellevue, Washington 98008-5452 • (206) 649-7000

July 14, 1995

To Interested Persons:

Provided with this letter are the results from Phase I sampling of Salmon Bay and the Ship Canal area by Ecology in April, 1995. Included is a map of stations, a table of station locations, and station logs describing landmarks, water depth, sediment type, evidence of contamination, and any aquatic life present in the sediments.

These station descriptions were used in narrowing down the study area and in selecting stations for Phase II sampling and laboratory analysis. Phase II sampling was completed during the last week of June, and samples have been sent to the Ecology laboratory. Due to the time required to analyze the samples, perform quality assurance, and write up the results, results from Phase II sampling may not be available until December of 1995. You have been placed on a mailing list for the data and will automatically receive this report once it is available. Phase II results will be used to select stations for Phase III sampling and biological testing to determine the toxicity of sediments. This work will likely take place sometime next spring.

When reviewing the station logs, keep in mind that not all contamination is visible, and only what could be seen was recorded. Metals contamination, in particular, is hard to identify by visual inspection. This is one reason that these areas are being resampled for chemical analysis. However, the presence of paint chips and metal debris is one indicator that metals contamination may be present.

Oily contamination of the samples was recorded as high/heavy, medium/moderate, light/low, and very light. Very light oil means that very small droplets of oil could be seen. Most sediment from urban areas would meet this description. Light oil means that larger droplets were present, mainly on the surface of the sample. Medium oil means that oil patches were present throughout the sample and that a sheen could be seen on water from the sample. Heavy oil means the the sample was thoroughly contaminated with oil or free product was present. A notation that "organic matter" was present may be an indication that sewage or other organic wastes are present, but it is usually not possible to identify specifically without analysis.

In general, areas along the shorelines were more heavily contaminated than areas in the center channel. Areas west of Ballard Bridge were typically more contaminated than areas east of Ballard Bridge, with some exceptions. The southern shoreline near the locks appeared relatively clean, as did areas east of Ballard Bridge along the main channel of the Ship Canal. Sediments high in silt and organic matter generally also had the most oil.

Thank you for your interest in the Salmon Bay Study. If you have any questions on the information provided, please contact me at 649-7257.

Sincerely,

Dr. Teresa Michelsen

Sediment Cleanup Specialist

STATION LOCATIONS

Station	Water Depth (feet)	<u>Latitude</u>	Longitude
	(ICCI)	(degrees/minutes)	(degrees/minutes)
0	25	47° 39 510	122° 22.596
l	24	47° 40 014	122° 23.357
2	18	47° 39.959	122° 23.601
3	18	47° 39,991	122° 23 448
4	24	47° 39.958	122° 23.379
5	21	47° 39 985	122° 23.239
6	19	47° 39.910	122° 23.698
7	52	47° 39.899	122° 23.559
8	30	47° 39.910	122° 23.483
9	31	47° 39.897	122° 23.361
10	26	47° 39.891	122° 23.250
11	19	47° 39.909	122° 23.137
12	18	47° 39.843	122° 23.568
13	16	47° 39.858	122° 23.359
14	44	47° 39.827	122° 23.242
15	35	47° 39.831	122° 23.144
16	15	47° 39.825	122° 23.036
17	35	47° 39.739	122° 23.122
18	41	47° 39.766	122° 23.029
19	36	47° 39.753	122° 22.898
20	26	47° 39.685	122° 22.913
21	20	47° 39.714	122° 22.807
22	33	47° 39.604	122° 22.810
23	29	47° 39.621	122° 22.657
24	28	47° 39.637	122° 22.588
25	10	47° 39.632	122° 22.451
26	17	47° 39.622	122° 22.367
27	19	47° 39.601	122° 22.257
28	31	47° 39.542	122° 22.812
29	26	47° 39,565	122° 22.701
30	17	47° 39.557	122° 22.570
31	14	47° 39.546	122° 22.481
32	30	47° 39,551	122° 22.323
33	30	47° 39.546	122° 22.251
34	17	47° 39.534	122° 22.138
35	21	47° 39 468	122° 22.807
36	16	47° 39.455	122° 22.689
37	24	47° 39. 4 60	122° 22.528
38	23	47° 39 473	122° 22.353
39	32	47° 39 476	122° 22.145

Station	Water Depth	Latitude	Longitude
	(feet)	(degrees/minutes)	(degrees/minutes)
40	17	47° 39 448	122° 22.003
41	15	47° 39 389	122° 22.809
42	15	47° 39 372	122° 22.683
43	16	47° 39.375	122° 22.565
44	29	47° 39,435	122° 22.005
45	6	47° 39.372	122° 22.121
46	16	47° 39.365	122° 22.012
47	33	47° 39.352	122° 21.899
48	22	47° 39 281	122° 21.806
49	26	47° 39.247	122° 21.700
50	9.5	47° 39.216	122° 21.835
51	12	47° 39.187	122° 21.656
52	30	47° 39.210	122° 21.618
53	33	47° 39.123	122° 21.463
54	36	47° 39.028	122° 21.266
55	36	47° 38.967	122° 21.154
56	36	47° 38.908	122° 21.007
57	38	47° 38.841	122° 20.858
58A	24	47° 39.284	122° 21.844
58B	24	47° 39.278	122° 21.861
59	25	47° 39.310	122° 22.007
60	23	47° 39.289	122° 21.958
61	22	47° 39.364	122° 21.868
62	10	47° 39.427	122° 21.940
63	20	47° 39.456	122° 22.423
64	16	47° 39.363	122° 22.532
65	44 44 40 40 40	****	** ** ** ** **
66	16	47° 39.664	122° 22.574
67	20	47° 39.572	122° 22.847
68	8	47° 39.673	122° 22.962
69	36	47° 39.727	122° 23.046
70	15	47° 39.809	122° 22.874
71	13	47° 39.879	122° 22.955
72	17	47° 39.881	122° 23.050
73	16	47° 39.798	122° 23.270
74	18	47° 39.843	122° 23.465
75	******		
76	16	47° 40.042	122° 23,293
77	8	47° 40.025	122° 23.505
78	18	47° 39.963	122° 23.653
79	8.5	47° 39 835	122° 23.648
80	14	47° 39.436	122° 22.869

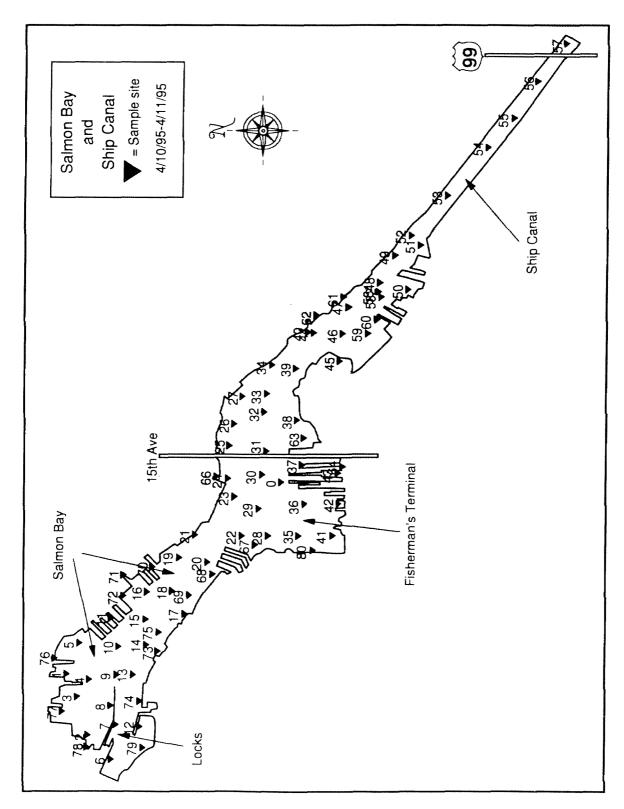


Figure 1. Sample sites for preliminary examination of sediments.

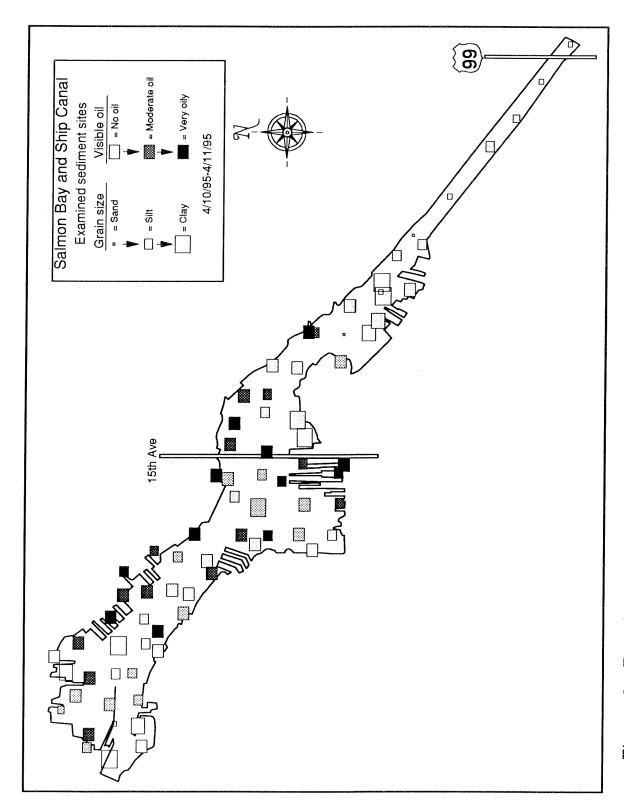


Figure 2. Results of visual inspection of sediment condition during Phase I

STATION LOG - SALMON BAY STUDY, PHASE I

STATION 0

Landmarks Near end of fuel dock at Fisherman's Terminal

Water Depth (feet) 25

Sediment Description 2 cm brown silty sand over black oily silt

Evidence of Contamination Moderate/high oil, some paint chips

Aquatic life. Tubeworms

STATION 1

Landmarks: At end of Mobile fuel dock

Water Depth: 24

Sediment Description: Thin oxidized layer on grey sandy clay

Evidence of Contamination: Metal and wood debris, no visible oil

STATION 2

Landmarks: N of locks, near west shore

Water Depth: 18

Sediment Description: Grey/black silt over grey clay

Evidence of Contamination: Moderate oil

STATION 3

Landmarks: In marina north of barge (5320 28th NW)

Water Depth: 18

Sediment Description. Brown silt over black silt

Evidence of Contamination Low/medium oil, slight petroleum odor

Landmarks W end of Pacific Fishermen

Water Depth 24

Sediment Description Brown/green silt over black sandy silt

Evidence of Contamination Moderate oil

STATION 5

Landmarks: Just S of 24th Ave landing dock near Yankee Diner

Water Depth 21

Sediment Description. Brown silt over black sandy silt

Evidence of Contamination Moderate oil, slight petroleum odor

STATION 6

Landmarks: Near yellow end of concrete wall at locks

Water Depth: 19

Sediment Description: Grey-brown clay

Evidence of Contamination: None

STATION 7

Landmarks: S of locks wing wall, E of blue sign

Water Depth: 52

Sediment Description: Brown sand

Evidence of Contamination None

Aquatic Life Large clumps of saltwater mussels, aquatic plants

Landmarks N of Army Corps barges at lock wall

Water Depth 30

Sediment Description Brown silt over black silt

Evidence of Contamination. Rocks, wood

STATION 9

Landmarks: NE of end of lock wall

Water Depth. 31

Sediment Description Grey/brown silty sand

Evidence of Contamination: Wood chips

STATION 10

Landmarks: S of Stimson Marina

Water Depth: 26

Sediment Description: Grey clay

Evidence of Contamination: None

STATION 11

Landmarks: Stimson Marina between rows C&D, halfway in

Water Depth: 19

Sediment Description: Brown sandy silt over black sandy silt

Evidence of Contamination: Low/moderate oil

Landmarks Inside Time Oil dock near manifold

Water Depth 18

Sediment Description Brown clavev silt

Evidence of Contamination. Very little oil

STATION 13

Landmarks: E of Maritime Industrial Center, nearshore

Water Depth 16

Sediment Description Brown silt over black silty sand

Evidence of Contamination Low/moderate oil, lots of paint chips, wood

STATION 14

Landmarks: Between Anderson dry dock and Stimson Marina

Water Depth: 44

Sediment Description: Brown silt over black silty sand, some gravel

Evidence of Contamination: Low oil

STATION 15

Landmarks: Between Maney Seafoods (?) and Stimson Marina, mid-channel

Water Depth: 35

Sediment Description: Brown silt over black sandy silt

Evidence of Contamination: Low oil, wood chunks

Aquatic Life: Tube worms

Landmarks Just E of gravel dock

Water Depth 15

Sediment Description Thin brown laver over black silt

Evidence of Contamination Moderate oil, paint flecks, organic matter

STATION 17

Landmarks. W of Marco along shoreline

Water Depth: 35

Sediment Description: Brown silt over black sandy silt

Evidence of Contamination: low/moderate oil, plastic, algae

STATION 18

Landmarks: Mid-channel between Marco and Canal Marina

Water Depth: 41

Sediment Description: Brown silt over black sandy silt

Evidence of Contamination: Droplets of oil, organic matter

STATION 19

Landmarks: Just W of Seaview Marina, center of large moored ships

Water Depth: 36

Sediment Description: Green/black silty sand

Evidence of Contamination: Low/moderate oil, lots of wood debris, paint chips

Landmarks Just N of Salmon Bav Marina

Water Depth 26

Sediment Description Brown silt over black silt

Evidence of Contamination: Low oil

STATION 21

Landmarks: Seaview Marina entrance

Water Depth: 20

Sediment Description: Brown silt over black sandy silt

Evidence of Contamination Moderate oil, paint chips, wood fragments, rocks

STATION 22

Landmarks: Between NWII North Pier and leased dock, halfway in

Water Depth: 33

Sediment Description: Thin brown silt over black silt

Evidence of Contamination: Moderate oil

STATION 23

Landmarks: S of pallet storage, center channel

Water Depth: 29

Sediment Description: Brown layer over black silty sand

Evidence of Contamination: Low oil, wood debris

Aquatic Life: Tube worms

Landmarks Northshore north of E end of Fisherman's Terminal

Water Depth 28

Sediment Description Brown silt over black silt

Evidence of Contamination. Low/moderate oil, organic debris

STATION 25

Landmarks: S of Maritime Training Center, E of Ballard Bridge

Water Depth: 10

Sediment Description. Grey/black silt

Evidence of Contamination: Moderate oil, lots of wood debris, high organic content

STATION 26

Landmarks: S of Community College

Water Depth: 17

Sediment Description: Grey-green silt

Evidence of Contamination: Low/moderate oil, lots of organic matter, wood

STATION 27

Landmarks: S of Duncan Engine Co.

Water Depth: 19

Sediment Description: Grey/brown silt over dark grey silt

Evidence of Contamination: Medium oil, organic matter

Landmarks. Just S of E/W Pier, Fisherman's Terminal

Water Depth 31

Sediment Description Brown sand over black silty sand

Evidence of Contamination: Medium/high oil, metals debris

STATION 29

Landmarks: N of 325' marker on E/W Pier, Fisherman's Terminal

Water Depth: 26

Sediment Description: Light grey clay

Evidence of Contamination: Low/moderate sheen

STATION 30

Landmarks: Mid-channel W of Ballard Bridge

Water Depth: 17

Sediment Description: Brown silty sand over grey clay

Evidence of Contamination: Low oil, wood debris

STATION 31

Landmarks: E of Ballard Bridge near S shore

Water Depth: 14

Sediment Description: Brownish-black silty sand

Evidence of Contamination: Medium oil

Landmarks Mid-channel N of Salmon Bay Terminal

Water Depth 30

Sediment Description Black/brown silty sand

Evidence of Contamination Light oil, lots of wood debris, organic matter

STATION 33

Landmarks: S of Canal Boatyard in channel

Water Depth: 30

Sediment Description Black/brown sandy silt

Evidence of Contamination: Light/medium oil

STATION 34

Landmarks: E end of Canal Boatyard

Water Depth: 17

Sediment Description: Green-black silt

Evidence of Contamination: Light oil, paint chips, wood chunks

STATION 35

Landmarks: Between end of Piers 9&10 Fisherman's Terminal

Water Depth: 21

Sediment Description: Brown silt over black silt, some brown clay

Evidence of Contamination: Light/moderate oil, metal debris, organic matter, wood

Landmarks At ends of docks 7&8, Fisherman's Terminal

Water Depth 16

Sediment Description Brown sandy silt over black sandy silt

Evidence of Contamination. Light/moderate oil

STATION 37

Landmarks Fisherman's Terminal E side

Water Depth 24

Sediment Description Brown/grey silt

Evidence of Contamination: Moderate oil, organic matter

STATION 38

Landmarks: E end of Salmon Bay Terminal

Water Depth: 23

Sediment Description: Brown clay

Evidence of Contamination: Light oil, wood debris

STATION 39

Landmarks: N of WA Fish & Oyster

Water Depth: 32

Sediment Description: Brown sandy silt over black sandy silt

Evidence of Contamination: Light oil, wood chips, organic matter

Landmarks Off Union Bay Shipbuilding pier

Water Depth 17

Sediment Description Grey/black silt

Evidence of Contamination Heavy oil, organic matter

STATION 41

Landmarks: Nearshore between Piers 9&10, Fisherman's Terminal

Water Depth: 15

Sediment Description: Brown silty sand

Evidence of Contamination: Light oil, some organic matter

STATION 42

Landmarks: Between docks 7&8 nearshore

Water Depth: 15

Sediment Description: Brown sandy silt over black silt and grey clay

Evidence of Contamination: Moderate oil

STATION 43

Landmarks: Fishing Vessel Owner's Marine Ways Inc, near bulkhead

Water Depth: 16

Sediment Description: Grey/black silt, some brown clay

Evidence of Contamination: Heavy oil, paint chips

Landmarks S of Union Bay Shipbuilding in channel

Water Depth 29

Sediment Description Light brown sand over organic black silt

Evidence of Contamination Medium oil, wood debris

STATION 45

Landmarks Just E of LeClerq Marina near shoreline

Water Depth 6

Sediment Description: Brownish black silt

Evidence of Contamination: Medium oil, hydrogen sulfide odor, lots of organic matter

STATION 46

Landmarks: S of Trident, NW of Foss, near dolphins

Water Depth: 16

Sediment Description: Gravel

Evidence of Contamination: Wood chips

STATION 47

Landmarks: S of Trident, N of Foss

Water Depth: 33

Sediment Description: Gravel over silty black sand w/light grey clay

Evidence of Contamination: Light oil

Landmarks: Between Foss Tug and Empire Alaska Seafoods

Water Depth 22

Sediment Description Light grey clay

Evidence of Contamination None

STATION 49

Landmarks: S of Flohr Metal Fabricators

Water Depth 26

Sediment Description Brown sand and gravel over black silty sand

Evidence of Contamination: Light oil

STATION 50

Landmarks: Foss near S shoreline

Water Depth: 9.5

Sediment Description: Brown silty sand over black silt

Evidence of Contamination: Light oil

STATION 51

Landmarks: Just inside marina

Water Depth: 12

Sediment Description: Brown sand over black sandy silt

Evidence of Contamination: Light oil

Landmarks: S of gravel plant, N of W end of Metro lab

Water Depth: 30

Sediment Description Gravel

Evidence of Contamination. None

STATION 53

Landmarks: S of Prolab, N of E end of park

Water Depth: 33

Sediment Description: Brown sand, shell, gravel

Evidence of Contamination: None

STATION 54

Landmarks: S of grey building, N of office buildings

Water Depth: 36

Sediment Description: Brown sand over black silt

Evidence of Contamination: Very light oil

STATION 55

Landmarks: Between electric towers near Red Hook Brewery

Water Depth: 36

Sediment Description: Brown sand over grey silt

Evidence of Contamination: very light oil, some wood debris

Aquatic Life Small freshwater mussels and clams

Landmarks: S of center of brown warehouse, N of cinderblock wall

Water Depth 36

Sediment Description Brown and grey sand w/pebbles

Evidence of Contamination Very light oil

STATION 57

Landmarks Just E of Fremont bridge, center channel

Water Depth: 38

Sediment Description Brown and grey sand, some gravel

Evidence of Contamination: Very light oil

STATION 58A

Landmarks: E of Foss drydocks nearshore

Water Depth: 24

Sediment Description: Grey and brown sand and gravel

Evidence of Contamination: Paint chips and metal debris

STATION 58B

Landmarks: Offshore of 58A near moored tugs

Water Depth: 24

Sediment Description: grey and brown gravel over light grey clay

Evidence of Contamination: Paint chips and metal debris

Landmarks Between Foss drydocks 1&2

Water Depth 25

Sediment Description Medium grey clay w/gravel

Evidence of Contamination: None

STATION 60

Landmarks W of Foss drydocks near shoreline

Water Depth 23

Sediment Description. Brown sand over light grey clav

Evidence of Contamination Very light oil

STATION 61

Landmarks: Just off Trident Seafoods, W end of grey bulkhead

Water Depth: 22

Sediment Description: Gravel and cobble

Evidence of Contamination: Wood and metal debris

STATION 62

Landmarks: Just W of Trident along shoreline

Water Depth: 10

Sediment Description: Riprap and gravel

Evidence of Contamination: Couldn't get a sample

Landmarks: Salmon Bay Terminal near center of bulkhead

Water Depth: 20

Sediment Description: Grey clay, shells

Evidence of Contamination: Blackened wood

STATION 64

Landmarks: Under Ballard Bridge near S shore

Water Depth: 16

Sediment Description: Brown/black silty clay

Evidence of Contamination: High oil, organic matter

STATION 65

Not Collected

STATION 66

Landmarks: W end of Ballard Bridge near marina on N shore

Water Depth: 16

Sediment Description: Brown/black silt

Evidence of Contamination: Heavy oil

STATION 67

Landmarks: Salmon Bay Boatyard just N of E/W Pier

Water Depth: 20

Sediment Description: Brown silt over black silt

Evidence of Contamination: Light oil

Landmarks E end of Marco

Water Depth 8

Sediment Description Brown silt over black sandy silt

Evidence of Contamination Moderate oil, organic matter

Aquatic Life. Aquatic plants

STATION 69

Landmarks: Just E of Marco drydocks

Water Depth: 36

Sediment Description Brown silt over black silt

Evidence of Contamination. Light oil

STATION 70

Landmarks: E end of Canal Marina near shoreline

Water Depth: 15

Sediment Description: Brown silt over black sandy silt

Evidence of Contamination: Moderate oil

STATION 71

Landmarks: Near Standard Marina

Water Depth: 13

Sediment Description: Black silty sand

Evidence of Contamination Moderate/high oil, rope, debris, plastic, wood

Landmarks W of gravel dock near shoreline, Stimson Marina

Water Depth 17

Sediment Description Brown silt over black silt

Evidence of Contamination: Moderate oil

STATION 73

Landmarks: W of Anderson drydock nearshore

Water Depth: 16

Sediment Description: Brown/black sandy silt

Evidence of Contamination: Light oil

STATION 74

Landmarks: Offshore of Time Oil, Maple Bay Boat Co.

Water Depth: 18

Sediment Description: Grey silty sand

Evidence of Contamination: Light/moderate oil, wood debris, paint chips

STATION 75

Not Collected

STATION 76

Landmarks: Just E of Yankee Diner at shoreline

Water Depth: 16

Sediment Description: Black silt

Evidence of Contamination: Moderate/heavy oil, petroleum odor, wood chunks, plastic

Landmarks. Sea & Shore Construction (5355 28th NW)

Water Depth: 8

Sediment Description Black sand

Evidence of Contamination: Light/moderate oil, lots of paint chips

STATION 78

Landmarks: Near Corps carpenter shop at locks

Water Depth: 18

Sediment Description: Black sandy silt

Evidence of Contamination: Light/moderate oil, wood chips, rocks

STATION 79

Landmarks: Lockhaven Marina E side

Water Depth: 8.5

Sediment Description: Thin brown silt over black sandy silt

Evidence of Contamination: Light oil

Aquatic Life: Aquatic plants

STATION 80

Landmarks: W bulkhead of Fisherman's Terminal near 175' mark

Water Depth: 14

Sediment Description: Green sandy silt

Evidence of Contamination: light oil, chunks of wood fibers

APPENDIX B DESCRIPTION OF SAMPLE STATIONS

Table B-1. Description of sample stations for Phase II.

				Latitude	Longitude	
Station:	Station: Sample No.	Date and Time	Depth (ft)	(47-)	(122-)	Remarks
1 4	8230	6/26/96 14:25	18	39.958	23.367	
1 B	8231	6/26/96 14:47	20	40.010	23.225	west side of Ballard dock near CSO 152
5	8232	6/26/96 15:11	19	39.911	23.148	between boathouse C&D
ZA	8233	6/26/96 15:31	29	39.835	23.000	off Chevron dock
2B	8234	6/26/96 16:08	24	39.830	22.901	off CSO
2C	8235	6/26/96 16:22	20	39.749	22.869	
3A	8236	6/26/96 12:08	16	39.892	23.740	
3B	8237	6/26/96 12:20	17	39.836	23.576	Time Oil dock
၁င္တ	8238	6/26/96 12:40	36	39.772	23.125	
4 4	8239	6/26/96 16:37	33	39.614	22.811	east of first main dock
4B	8240	6/27/96 10:25	13	39.649	22.580	
4C	8241	6/27/96 9:14	21	39.489	22.841	
4D	8242	6/27/96 10:00	21	39.512	22.588	off fuel dock
4E	8243	6/27/96 9:41	14	39.408	22.735	4th slip from west-halfway down
4F	8244	6/27/96 10:12	24	39.429	22.538	
5A	8245	6/26/96 11:56	45	39.871	23.326	
5B	8246	6/26/96 11:40	28	39.656	22.747	
5C	8247	6/26/96 11:29	30	39.558	22.342	
6A	8248	6/27/96 11:06	14	39.621	22.345	
9B	8249	6/27/96 12:34	16	39.516	22.113	
90	8250	6/27/96 10:44	18	39.485	22.412	
9	8251	6/27/96 10:22	20	39.488	22.241	Ocean Beaty Seafoods
7A	8252	6/27/96 13:15	17	39.446	22.001	Union Bay Shipbuilders
7B	8253	6/27/96 13:40	22	39.305	21.990	west side of Foss
7C	8254	6/27/96 14:48	23	39.260	21.855	
7D	8255	6/27/96 14:40	33	39.257	21.728	
8A	8256	6/26/96 13:29	18	39.969	23.630	
8B	8257	6/26/96 13:43	48	40.021	23.520	
8C	8258	6/26/96 14:02	18	39.998	23.466	

APPENDIX C ANALYTICAL METHODS

Table C-1. Analytical methods used for Phase II.

			Target Detection
Analysis	Method	Reference	Limit
Total organic carbon (TOC)	PSEP Method	EPA, 1986a	
Grain size	ASTM D-422		
% Solids	Gravimetric - EPA Method 160.3	EPA, 1986b	
Arsenic	GFAA - EPA Method 206.2	EPA, 1986b	1 mg/Kg
Cadmium	ICAP - EPA Method 200.7	EPA, 1986b	1 mg/Kg
Chromium	ICAP - EPA Method 200.7	EPA, 1986b	1 mg/Kg
Copper	ICAP - EPA Method 200.7	EPA, 1986b	1 mg/Kg
Mercury	CVAA - EPA Method 245.5	EPA, 1986b	0.1 mg/Kg
Lead	ICAP - EPA Method 200.7	EPA, 1986b	1 mg/Kg
Nickel	ICAP - EPA Method 200.7	EPA, 1986b	1 mg/Kg
Zinc	ICAP - EPA Method 200.7	EPA, 1986b	1 mg/Kg
Semivolatile organics	GC/MS - EPA Method 8270	EPA, 1986b	100 μg/Kg
PCBs	GC/EC - EPA Method 8080	EPA, 1986b	50 μg/Kg
Butyltins	GC/MS - NOAA Method	Krone et al., 1989b	20 μg/Kg

APPENDIX D QA/QC RESULTS

DEPARTMENT OF ECOLOGY

July 18, 1996

TO:

Stewart Lombard, QA Section

FROM:

Dave Serdar, Toxics Section

SUBJECT:

Review of Salmon Bay Data

Stew, thanks for agreeing to take a look at the Salmon Bay data. I've enclosed the entire data package for the project as well as a copy of our draft report. The draft report has a digestion of the QA results in Appendix D and a discussion of data quality on pages 11-13. There is also a comparison to acceptance limits for QA1 review in Table 1.

The major concerns about the data quality are as follows:

- The holding time requirements for TOC were exceeded by 28 days. Semivolatiles and PCBs were extracted seven days after the holding time limit of 14 days. Butyltins were not extracted until seven weeks after collection, although they were held frozen during that time.
- There were some problems with the butyltin analysis. The low precision resulting from analysis of field splits may have been due to the presence of paint chips which would yield non-homogeneous samples (see Table D-3 of the draft report). Recovery of TBT in the Sequim Bay Reference material and matrix spikes were also poor (see Tables D-1 and D-2 in draft report and the Manchester case narrative for butyltins).
- About one-third of the PAH reference material analyses were outside the acceptable recovery windows (see Table D-2).
- Matrix spike recoveries for mercury, lead, and chromium were outside the acceptance windows (see Table D-1 and Manchester case narrative).
- I'm also wondering if the data should have additional flags or qualifiers.

As I mentioned during our phone conversation, I'd like to shoot for a turnaround time of no longer than one month. I know that time has become especially valuable these days so again, I appreciate your help. Let me know if you have any questions. My number is 407-6772.

DEPARTMENT OF ECOLOGY

ENVIRONMENTAL INVESTIGATIONS AND LABORATORY SERVICES PROGRAM

August 30, 1996

TO: Dave Serdar

Toxics Investigations Section

THROUGH: Cliff Kirchmer

QA Section Manager

FROM: Stewart Lombard

QA Section

SUBJECT: Salmon Bay Sediments Data QC

I have reviewed your report and the analytical data reports and case narratives for the Salmon Bay sediments study. I have attempted to address below the concerns which you expressed in your cover memo.

Failure to meet sample preservation and holding time specifications compromises the representativeness, comparability and accuracy of the analytical results. Organic compounds in sediment samples are subject to volatilization, oxidation and biodegredation during storage.

The samples for TOC analysis were not preserved according to the PESP protocol. There is no way to determine whether the results are actually affected by the sample storage procedures. The analytical procedure includes drying the samples at 70°C and treating them with acid. Obviously, the results are not intended to include volatile compounds or those susceptible to acid hydrolysis.

I recommend qualifying the organic carbon and carbon-normalized results because of the non-standard storage procedure. However, I think that the TOC results are suitable for the purpose of comparing carbon-normalized results for organic contaminants to sediment criteria. Obviously, when the results are close to the criteria, you can not determine from these data whether the criteria have been exceeded.

I agree with the conclusion in the report that PCBs and PAHs are among the more stable organic contaminants and the results for these compounds are probably not affected significantly by the extended holding times.

Dave Serdar August 30, 1996 Page 2

The analytical quality control results for the PAH analyses reflect the inherent variability in this determination. The recoveries for the D10-pyrene surrogate for the 31 samples ranged from 63 to 92% with a mean of 82% and standard deviation of 6.5%. The D10-pyrene surrogate is not included in Method 8270, so there are no specified recovery limits for it. To the extent that this surrogate is representative of the 16 PAH compounds, these data suggest that the analytical system was in good control.

The median values of the matrix spike recoveries for the 16 PAH compounds were 88% (Range = 69% to 120%) and 90.5% (Range = 74% to 130%) for the two spiked samples, respectively. These are good results for organic matrix spikes.

Relative to the certified values, the median value of the "recoveries" for 15 of the 16 PAHs in the reference sediment (calculated from the means of the duplicate results) is 100% with a range of 72% to 155%. These results also suggest that the analytical system was in good control. The results for acenaphthylene are a problem. You may wish to discuss them with the analyst. I hesitate to recommend qualifying any results for the project sediment samples on the basis of this single apparent anomaly in the results for the reference sediment.

The Relative Standard Deviations (RSD) for the PAH results for the two pairs of field split samples range from 0 to 40% with a median value of 7.4%. I consider that to be good precision. I wonder how much variability true field replicates would have exhibited.

The situation with the mercury results is unfortunate. Since the second matrix spike/matrix spike duplicate pair did not produce useable results, we are left with just one pair of spike results, one of which is very high. The other QC results for the mercury analyses indicate that the system was in good control. The recoveries for the laboratory control samples (LCS) are 92% and 93%, the method blanks produced no measurable response and the agreement between the field split results for the two duplicate pairs is excellent, 1.3% and 4.5% RSD, respectively. I do not recommend qualifying your mercury results on the basis of a single matrix spike recovery. The method specifies that, if any results are to be qualified solely on the basis of MS/MSD recoveries, only the results for the sample used for the MS/MSD ought to be qualified.

The QC data for chromium and lead do indicate a negative bias, but there is not sufficient data to quantify that bias. The recoveries for the two laboratory control samples (LCS) are 79% and 81% for chromium and both are 85% for lead. The recoveries for the two MS/MSD pairs for chromium are 79% and 85%, 69% and 74%. The recoveries for lead were not calculated for the first pair and were 65% and 66% for the second. The two method blank results showed no measurable levels of either chromium or lead and the results for the two pairs of field split samples showed good agreement (all less than 10% RSD).

Dave Serdar August 30, 1996 Page 3

These QC data indicate good precision for chromium and lead results and the possibility of a negative bias of, perhaps, 20% to 40%.

The organo-tin results are certainly of concern. There is a preponderance of evidence that organo-tin compounds are present at significant levels in most of the sediment samples. Your conclusion that organo-tin compounds are the major contaminant of concern in Salmon Bay sediments is justified. However, the QC results indicate that the analytical system was not in good control with these samples and these results should not be used as the basis for any comparisons to criteria or to other data.

I am concerned about some of the entries in Table 1 of your report. The table indicates that the surrogate recovery target of >50% was achieved for 96% of the butyltin results. By my calculations, surrogate recoveries for the original extracts of 21 of the 31 samples were between 50% and 200%. The case narrative states that surrogate recoveries over 200% were due to chromatographic interference. I think it is deceptive to indicate that surrogate recoveries were satisfactory for 96% of the butyltin results.

The PSEP protocols recommend freezing samples for organo-tin analyses within 24 hours of collection and does not specify a holding time. Therefore, I don't think it is justified to indicate in Table 1 that 0% of the butyltin samples met holding time requirements.

I hope these comments are helpful to you. Let me know if you have any questions. I would be happy to discuss any specific issues with these data in more detail.

SML:sml

cc: Larry Goldstein Bill Kammin

State of Washington Department of Ecology Manchester Environmental Laboratory 7411 Beach Dr. East Port Orchard WA. 98366

July 261995

Project:

Salmon Bay

Samples:

26-8230-8258, 26-8260-61

Laboratory:

Soil Technology

By:

Pam Covey

Case Summary

The Sound Reffining samples required thrirty one (31) Grain Size analyses on sediment using ASTM D-422 modified with wet preparation.

These samples were received at the Manchester Environmental Laboratory on June 28, 1995 and transported to Soil Technology on June 29, 1995 for Grain Size analyses. These analyses were reviewed for qualitative and quantitative accuracy, validity and usefullness.

The results are acceptable for use as reported.

State of Washington Department of Ecology Manchester Environmental Laboratory 7411 Beach Dr. East Port Orchard WA. 98366 August 8, 1995

Project: Salmon Bay/Ship Canal

Samples: 268230 through 268261

Laboratory: Weyerhaeuser Analytical and Testing Services 18303

By: Karin Feddersen χ ≤

These samples were received at the Manchester Environmental Laboratory (MEL) on June 27, 1995, and were sent to Weyerhaeuser Analytical and Testing Services on June 28, 1995, for TOC analysis using PSEP.

HOLDING TIMES

The holding time for frozen sediments is six (6) months. There have been no studies performed to indicate the effect of holding time on samples that have not been stored frozen prior to analysis. Therefore an evaluation of the results with regard to holding time is not feasible. All samples were stored in the proper containers at 4 degrees C until analysis. All analyses were performed within forty-two (42) days of collection.

PROCEDURAL BLANKS

The procedural blanks associated with these samples demonstrated that the processes were free from contamination. For consistency, all non-detect results have been qualified with a "U" to conform to the Manchester Laboratory reporting format.

INITIAL CALIBRATION

The % Relative Standard Deviations (%RSD) were within QC limits of 20%.

CHECK STANDARDS

All Check Standard recoveries are reasonable, acceptable, and within QC limits of 90% to 110% of the expected result.

TRIPLICATE

Sample 268230 was analyzed in triplicate on July 18. The carbon peak areas were higher than that of the highest concentration standard. The triplicate analysis was repeated on July 26. The Relative Percent Difference (RPD) of the triplicate analyses to the original analyses are within QC limits of 10% for both days.

SUMMARY

All non-detect results have been qualified with a "U" (not detected at or above the reporting limit) for consistency with MEL's reporting format. This data is acceptable for use as amended.

STATE OF WASHINGTON

DEPARTMENT OF ECOLOGY

MANCHESTER ENVIRONMENTAL LABORATORY

7411 Beach Drive East • Port Orchard, Washington 98366-8204 • (360) 871-8860 • FAX (360) 871-8850

August 22, 1995

To:

Jim Cubbage, Project Officer

From:

Myrna McIntosh, Metals Chemist 222

Subject:

Metals Quality Assurance Memo for the Salmon Bay, sediment samples

Sample Numbers: 95268230 - 95268261

QUALITY ASSURANCE SUMMARY

Data quality for this project is generally very good.

The mercury results are qualified with "J" because of negative spike recoveries. This is usually the case when mercury is not homogeneously distributed throughout the subsamples.

The other metal analytes were digested in two batches. The recoveries of lead and chromium in the second digestion batch are low. All lead and chromium results from this digestion are qualified with "N". These low recoveries are probably unique to the sample chosen rather than the whole batch. Although it is lab policy to qualify on the basis of one set of spikes per batch, since the recoveries are in the 60 % - 70 % range the results need not be estimated.

SAMPLE INFORMATION

The samples from the Salmon Bay project were received by the Manchester Laboratory on 6/28/95 in good condition.

HOLDING TIMES

All analysis were performed within the USEPA Contract Laboratory Program (CLP) holding times for metals analysis (28 days for mercury, 180 days for all other metals).

INSTRUMENT CALIBRATION

Instrument calibration was performed before each analytical run and checked by initial calibration verification standards and blanks. Continuing calibration standards and blanks were analyzed at a frequency of 10% during the run and again at the end of the analytical run. All initial and continuing calibration verification standards are within the relevant USEPA (CLP) control limits. AA calibration gave a correlation coefficient (r) of 0.995 or greater, also meeting CLP calibration requirements.

PROCEDURAL BLANKS

The procedural blanks associated with these samples show no significant amounts of contamination

SPIKED SAMPLE ANALYSIS

Spiked sample analysis were performed on this data set. All spike recoveries, except mercury (all), lead and chromium (digestion batch #2) are within the CLP acceptance limits of +/- 25 %. All lead and chromium results in digestion batch #2 are qualified with "N". All mercury results are qualified with "J".

PRECISION DATA

All precision results except for mercury were within the CLP limits of +/- 20% RSD.

LABORATORY CONTROL SAMPLE (LCS) ANALYSIS

LCS analysis are within the windows established for each parameter.

Please call Bill Kammin at SCAN 360-871-8801 to further discuss this project.

MMM:mmm

MANCHESTER ENVIRONMENTAL LABORATORY

7411 Beach Drive E, Port Orchard Washington 98366

CASE NARRATIVE

October 11, 1995

Subject:

Salmon Bay

Samples:

95 - 268230 to -268258, -268260 and -268261

Case No.

1961-95

Officer:

Jim Cubbage

By:

Dickey D. Huntamer

Organics Analysis Unit

SEMIVOLATILE ORGANICS

ANALYTICAL METHODS:

The semivolatile soil samples were extracted with acetone following the Manchester modification of the EPA CLP and SW 846 8270 procedure with capillary GC/MS analysis of the sample extracts. Normal QA/QC procedures were performed with the analyses except that only one matrix spike was analyzed with each extraction batch.

HOLDING TIMES:

All sample and extraction holding times were within the recommended limits.

BLANKS:

Low levels of some target compounds were detected in the laboratory blanks. The EPA five times rule was applied to all target compounds which were found in the blank. Compounds that were found in the sample and in the blank were considered real and not the result of contamination if the levels in the sample are greater than or equal to five times the amount of compounds in the associated method blank.

SURROGATES:

The normal Manchester Laboratory surrogates were added to the sample prior to extraction. All surrogate recoveries were within acceptable limits except for nitrobenzene-d5 in samples -268231 and -268238 and -268249. Samples -268231 and -269238 less than 3% low whereas sample -268249 had less than 10% recovery. Since all of the other surrogates in these samples were acceptable no additional qualifiers were added to the data.

MATRIX SPIKE AND MATRIX SPIKE DUPLICATE:

At the project officers request only one matrix spike (LMX1) was analyzed with each batch of samples extracted. Consequently no duplicate spikes and Relative Percent Differences (RPD) data is available.

Matrix spike recoveries were low for 1,3-dichlorobenzene, N-nitrosodinpropylamine, hexchloroethane, 4-chloroaniline, 3-nitroaniline in sample -268246 (LMX1). For the other matrix spike sample, -268234 (LMX1) hexchloroethane, 2-nitrophenol, 3- and 4-nitroanilines had low recoveries. The "J" qualifier was added to the results for these compounds. Hexachlorocylcopentadiene and 4-chloroaniline recoveries were less than 10% in sample, -268234 (LMX1) and the data for these compounds were rejected, "REJ" in the matrix spike source sample. In sample, -268246 (LMX1) only hexachlorocylcopentadiene was less than 10% and data for this compound was also rejected.

ANALYTICAL COMMENTS:

No special analytical problems were encountered in the semivolatile analyses. The data is acceptable for use as qualified.

One Canadian reference material sample, HS-6, for polynuclear aromatic hydrocarbons was prepared and analyzed with each batch of samples. These are identified as HS652431 and HS652485.

DATA QUALIFIER CODES:

U	-	The analyte was not detected at or above the reported value.
J	-	The analyte was positively identified. The associated numerical value is an <u>estimate</u> .
UJ	-	The analyte was not detected at or above the reported estimated result.
REJ	-	The data are unusable for all purposes.
EXP		The result is equal to the number before EXP times 10 to the power of the number after EXP. As an example $3EXP6$ equals 3×10^6 .
NAF	-	Not analyzed for.
N	-	For organic analytes there is evidence the analyte is present in this sample.
NJ	-	There is evidence that the analyte is present. The associated numerical result is an estimate.
Е	- .	This qualifier is used when the concentration of the associated value exceeds the known calibration range.
bold	.	The analyte was present in the sample. (Visual Aid to locate detected

compound on report sheet.)

CN_SALM1.DOC

Manchester Environmental Laboratory

7411 Beach Dr E Port Orchard Washington 98366 September 19, 1995

Project:

Salmon Bay

Samples:

95268230 through 268261

By:

Karin Feddersen K

These samples were analyzed by EPA Method 8080 for Polychlorinated Biphenyls (PCBs) employing the dual column confirmation technique.

Holding Times:

These samples were extracted six days past the method holding time of fourteen days. PCBs are extremely stable. Therefore, extraction beyond the holding time should not affect the results. The samples were analyzed within the method holding time of forty days from extraction.

Method Blanks:

No analytes of interest were detected in the method blanks.

Initial Calibration:

The % Relative Standard Deviations were within the maximum of 30% for all target analytes.

Continuing Calibration:

The Percent Differences between the initial and continuing calibrations were within the maximum of 25% for all target analytes.

Surrogates:

Four surrogates were added to each sample. The recommended range for surrogate recovery is between 60% and 150%. Dibutylchlorendate (DBC) recoveries were low in almost all samples. An acid cleanup was performed on these samples. DBC is very susceptible to degradation by acid. Since PCBs are not susceptible to acid degradation, and because the other surrogates demonstrated acceptable recoveries, qualification of the results is not required. Recoveries were acceptable for three of the surrogates in all samples except the 1:100 dilution of sample 268252. The surrogates were most likely not detected as a result of the dilution performed. Non-detected surrogates have been qualified with "REJ". However, the associated sample results do not need qualification.

Matrix Spikes (MS/MSD):

All matrix spike recoveries were between 75% and 100%. These recoveries are reasonable and acceptable.

Sample Results:

When the RPD between the two columns was greater than 30% for an analyte, the result was qualified with a "J".

The PCB - 1254 and -1260 results for sample 268252 exceeded the calibration curve. Therefore, two dilutions were required. Use the results from the first dilution (DIL1) for PCB - 1260. Use the results from the second dilution (DIL2) for PCB - 1254. Use the undiluted sample results for all non-detects.

This data is acceptable for use with the qualifications mentioned.

DATA QUALIFIER CODES:

- U The analyte was not detected at or above the reported value.
- J The analyte was positively identified. The associated numerical value is an estimate.
- UJ The analyte was not detected at or above the reported estimated result.
- NJ There is evidence that the analyte is present. The associated numerical result is an estimate.
- NAF Not analyzed for.
- REJ The data are unusable for all purposes.

MANCHESTER ENVIRONMENTAL LABORATORY

7411 Beach Drive E, Port Orchard Washington 98366

CASE NARRATIVE

December 18, 1995

Subject:

Salmon Bay

Samples:

95 - 268230 to -268258, -268260 and -268261

Case No.

1961 -95

Officer:

Jim Cubbage

By:

Dickey D. Huntamer

Organics Analysis Unit

TRIBUTYL TINS

ANALYTICAL METHODS:

The samples were extracted following the methods given in Puget Sound Estuary Program (PSEP) "Recommended Guidelines for Measuring Organic Compounds in Puget Sound Sediment and Tissue Samples" Recommended Methods for Organotin Compounds. The samples were Soxhlet extracted with acetone and tropolone, 0.2% by weight, solvent exchanged to hexane and dried using sodium sulfate. The organotin compounds were hexylated using the Grignard reaction given in Krone et al (1989) including the silica gel/alumina cleanup. Analysis was done by capillary Gas Chromatography using Single Ion Monitoring (SIM) mode GC/MS. All samples are reported on a dry weight basis.

HOLDING TIMES:

The samples were stored frozen following PSEP Guidelines until extraction. After extraction all samples were analyzed within the recommended 40 day extract time.

BLANKS:

Some low levels of organo tin compounds were detected in the laboratory blanks. The EPA five times rule was applied to all target compounds which were found in the blank. Compounds that were found in the sample and in the blank were considered real and not the result of contamination if the levels in the sample are greater than or equal to five times the amount of compounds in the associated method blank.

SURROGATES:

Recovery of the surrogate spike, tripropyltin, ranged from 30% to 125% for most of the samples. Two sample dilutions, -268239 DIL1 and -268249 DIL1 had recoveries less than 20%. Since the surrogate recoveries in the undiluted samples were 48% and 76% respectively no qualifiers were added. Several other samples had recoveries greater than 200% due to chromatographic interference with the tripropyltin quantitation ion. No surrogate recovery QC limits have been established for this method and no qualifiers were added due to high surrogate recoveries.

MATRIX SPIKE AND MATRIX SPIKE:

At the request of the project officer only one matrix spike was run with each extraction batch. Consequently no matrix spike duplicate analysis are available. The sample choice for the first matrix spike, -268231, was unfortunate since this sample was very high in native organotin compounds. Consequently no useful recovery information could be obtained even after correction for the native amounts except for the tetrabutyltin recovery of 67%.

Reprocessing the sample as a duplicate sample instead of a matrix spike gives tetrabutyltin, 221 ug/Kg, tributyltin, 7620 ug/kg, dibutyltin 1680 ug/kg and monobutyltin, 143 ug/kg which is comparable to the results for sample -268231.

The second matrix spike sample, -268246, had lower native amounts and recoveries ranged from 75% to 98%. Chromatographic interference with the monobutyltin peak in the matrix spike sample prevented recovery calculation for the monobutyltin and the data was rejected, "REJ". The interference is also the reason for the higher quantitation limit for monobutyltin in sample -268246.

ANALYTICAL COMMENTS:

Some samples had chromatographic interference's with the organotin peaks, particularly monobutyltin.

Nearly all of the samples required dilution to bring the samples within the linear calibration range of the GC/MS. The sample results which are outside the calibration range are flagged "E". The results for the dilution are also reported and are indicated by "DIL1" or "DIL2" after the sample number. The results for the undiluted analysis should be reported except where the "E" flag is used. The result for the corresponding compound in the diluted sample should then be used in place of the "E" flagged compound result.

Two additional samples were analyzed with the sediment samples. This was a Sequim Bay Reference Sediment which presumably was spiked with 100 ng/gm (100 ug/Kg) wet weight of tributyltin. No value for tributyltin has been established for the Sequim Bay Reference Sediment so the accuracy of the analysis cannot be determined. The amounts reported below, although within the observed range for Sequim Bay Reference Sediments for organo tin, are on the low side of the range. These samples are identified as SBR52794 and SBR53642.

SBR52794	35	ug/Kg (wet weight)	Tributyltin	% solids 66.4
SBR53642	43	ug/Kg (wet weight)	Tributyltin	% solids 61.6

Note that the data sheets report these values as dry weight.

DATA QUALIFIER CODES:

U	-	The analyte was not detected at or above the reported value.
J	-	The analyte was positively identified. The associated numerical value is an estimate.
UJ	-	The analyte was not detected at or above the reported estimated result.
REJ	-	The data are unusable for all purposes.
EXP	-	The result is equal to the number before EXP times 10 to the power of the number after EXP. As an example 3EXP6 equals 3 X 10 ⁶ .
NAF	-	Not analyzed for.
N	-	For organic analytes there is evidence the analyte is present in this sample.
NJ	-	There is evidence that the analyte is present. The associated numerical result is an estimate.
E	-	This qualifier is used when the concentration of the associated value exceeds the known calibration range.
bold	-	The analyte was present in the sample. (Visual Aid to locate detected compound on report sheet.)

CN_SALMT.DOC

Table D-1. Results of spiked sample analysis (% recovery).

1. Metals

	Sample No.: 8233 8233 RPD	8244 8244 RPD	8261 8261 RPD
Mercury	84 175 -70%	N/A N/A	N/A N/A
Arsenic	N/A N/A	NC N/A	NC N/A
Lead	N/A N/A	NC NC	65 66 -2%
Nickel	N/A N/A	89 88 1%	79 81 -3%
Cadmium	N/A N/A	107 85 23%	95 81 16%
Chromium	N/A N/A	76 77 -1%	69 74 -7%
Copper	N/A N/A	NC NC	NC NC
Zinc	N/A N/A	NC NC	NC NC

2. Semivolatile Organics

S	ample No.	: 8234	8246
4-Nitroaniline		37	7 52
4-Nitrophenol		99	- 99
Benzyl Alcohol		73	79
4-Bromophenyl-Phenyl	ether	98	90
2,4-Dimethylphenol		96	86
4-Methylphenol		84	83
1.4-Dichlorobenzene		67	55
4-Chloroaniline		REJ	21
Phenol		84	82
Pyridine		N/A	N/A
Bis(2-Chloroethyl)Ethe	r	76	79
Bis(2-Chloroethoxy)Me		80	79
Bis(2-Ethylhexyl) Phtha	alate	75	77
Di-N-Octyl Phthalate		130	120
Hexachlorobenzene		92	87
Anthracene		88	88
1.2.4-Trichlorobenzene)	73	69
2,4-Dichlorophenol		81	80
2,4-Dinitrotoluene		74	85
Hydrazine, 1.2-Dipheny	/l-	N/A	N/A
Pyrene	,.	81	81
Dimethylphthalate		96	92
Dibenzofuran		100	92
Benzo(ghi)perylene		70	110
Indeno(1,2,3-cd)pyrene	•	100	120
Benzo(b)fluoranthene		69	120
Fluoranthene		88	93
Benzo(k)fluoranthene		110	130
Acenaphthylene		91	87
Chrysene		79	81
3B-Coprostanol		N/A	N/A
Bis(2-Chloroisopropyl)	Ether	79	78
Retene		N/A	N/A
Benzo(a)pyrene		74	120
2,4-Dinitrophenol		51	69
4,6-Dinitro-2-Methylphe	enol	54	75
Dibenzo(a,h)anthracen		120	120
1,3-Dichlorobenzene		63	48
Benzo(a)anthracene		84	85
Caffeine		N/A	N/A
4-Chloro-3-Methylphen	ol	82	79
2,6-Dinitrotoluene		79	87
N-Nitroso-Di-N-Propyla	ımine	91	250

Sample No.:	8234	8246
Sample No	0234	0240
Aniline	N/A	N/A
N-Nitrosodimethylamine	N/A	N/A
Benzoic Acid	60	58
Hexachloroethane	26	22
4-Chlorophenyl-Phenylether	97	88
Hexachlorocyclopentadiene	REJ	REJ
Isophorone	76	75
Acenaphthene	97	90
Diethylphthalate	95	87
Di-N-Butylphthalate	96	91
Phenanthrene	87	89
Butylbenzylphthalate	80	81
N-Nitrosodiphenylamine	92	87
Fluorene	96	91
Carbazole	N/A	N/A
Hexachlorobutadiene	73	59
Pentachlorophenol	78	78 .
2,4,6-Trichlorophenol	98	90
2-Nitroaniline	93	89
2-Nitrophenol	50	73
Naphthalene	76	74
2-Methylnaphthalene	80	75
2-Chloronaphthalene	96	86
3,3'-Dichlorobenzidine	N/A	N/A
Benzidine	N/A	N/A
2-Methylphenol	84	83
1,2-Dichlorobenzene	60	50
2-Chlorophenol	84	84
2,4,5-Trichlorophenol	95	90
Nitrobenzene	68	74
3-Nitroaniline	20	43
Semivolatile Organic Surrogate	Recover	ies (%)
D14-Terphenyl	94	77
D10-Pyrene	95	79
1,2-Dichlorobenzene-D4	68	50
2-Fluorobiphenyl	100	87
2-Fluorophenol	80	79
D5-Nitrobenzene	73	73
D5-Phenol	87	82
D4-2-Chlorophenol	84	80

Table D-1 (Cont'd). Results of spiked sample analysis (% recovery).

3. PCBs

	Sample No.:	8234	8246
PCB - 1260 PCB - 1254 PCB - 1221 PCB - 1232 PCB - 1248 PCB - 1016 PCB - 1242		89 N/A N/A N/A N/A N/A	91 N/A N/A N/A N/A N/A
PCB Surrogate Reco	overies (%)		
4,4-Dibromooctafluor Dibutylchlorendate Decachlorobiphenyl Tetrachloro-m-xylene	, ,	102 56 90 100	80 64 90 85

4. Butyltins

Sample No.:	8231	8246
Monobutyltin Chloride Tributyltin Chloride Tetrabutyltin Chloride	231 595 67.3	REJ 75.8 75.7
Dibutyltin Chloride	538	97.5
Butyltin Surrogate Recoveries (%)		
Tripopropyltin Chloride	NC	87

RPD=Relative Percent Difference of duplicate analysis

N/A=Not Analyzed NC=Not Calculated

REJ=Rejected, data are unusable

Outside of acceptable recovery window

Table D-2. Results of check standard and reference material analysis.

1. Metals (% Recovery of Check Standards)

	Sample No.:	27052400	27052401	RPD	ERA52387	ERA52389	RPD
Mercury		92	93	-1%	N/A	N/A	
Arsenic		N/A	N/A		122	109	11%
Lead		N/A	N/A		85	85	0%
Nickel		N/A	N/A		91	93	-2%
Cadmium		N/A	N/A		93	93	0%
Chromium		N/A	N/A		81	79	3%
Copper		N/A	N/A		92	91	1%
Zinc		N/A	N/A		85	85	0%

2. Semivolatile Organics (PAH Standard Reference Material NRCC HS-6; µg/Kg, dry)

Sample No.:	HS652431	HS652485	RPD	NRCC HS-6 Certified Values
Anthracene	1000	1100	-10%	1100 ± 400
Pyrene	2300	2400	-4%	3000 ± 600
Benzo(ghi)perylene	2100	2200	-5%	1780 ± 720
Indeno(1,2,3-cd)pyrene	2400	2500	-4%	1950 ± 580
Benzo(b)fluoranthene	4100	4600	-11%	2800 ± 600
Fluoranthene	3400	3600	-6%	3540 ± 650
Benzo(k)fluoranthene	1900	1900	0%	1430 ± 150
Acenaphthylene	550	580	-5%	190 ± 50
Chrysene	2000	2100	-5%	2000 ± 300
Benzo(a)pyrene	2100	2200	-5%	2200 ± 400
Dibenzo(a,h)anthracene	650	J 660 J	-2%	490 ± 160
Benzo(a)anthracene	1400	1400	0%	1800 ± 300
Acenaphthene	160	J 170 J	-6%	230 ± 70
Phenanthrene	3000	3200	-6%	3000 ± 600
Fluorene	470	460	2%	470 ± 120
Naphthalene	3400	3600	-6%	4100 ± 1100
Semivolatile Surrogate Recoveries (%)				
D14-Terphenyl	83	80	4%	
D10-Pyrene	82	83	-1%	
1,2-Dichlorobenzene-D4	68	64	6%	
2-Fluorobiphenyl	93	97	-4%	
2-Fluorophenol	82	87	-6%	
D5-Nitrobenzene	75	80	-6%	
D5-Phenol	85	90	-6%	
D4-2-Chlorophenol	83	87	-5%	

3. PCBs (Standard Reference Material NRCC HS-2; $\mu g/Kg$, dry)

Sam	npie No.:	HS252430	HS252484	RPD	NRCC HS-6 Certified Values
PCB - 1254		110	113	-3%	111.8 ± 2.5
PCB Surrogate recoveries ((%)				
4,4-Dibromooctafluorobiphe	enyl	123	105	16%	
Dibutylchlorendate	•	44	70	-46%	
Decachlorobiphenyl		129	101	24%	
Tetrachloro-m-xylene		102	100	2%	

4. Butyltins (Sequim Bay Reference Sediment [SBRS]; μg/Kg, wet)

	Sample No.:	SBR52794	SBR53642	RPD	SBRS Reported Value*	
Tributyltin Chloride		35	43	-21%	100	
Butyltin Surrogate Re	coveries (%)					
Tripropyltin Chloride		152	62	84%		

RPD=Relative Percent Difference of duplicate analysis

N/A=Not Analyzed

J=Estimated concentration

Outside certified range of values
*No value for tributyltin has been established for this material

Table D-3. Analytical results of split field samples.

S	Station:	1	<u> </u>		80		
S	Sample No.:	8230	8260	RPD	8258	8261	RPD
1. Conventionals							
% TOC (dry)		8.1	8.7	-7%	6.7	6.4	5%
% Solids		31.6	32.8	-4%	28.5	23.6	19%
% Gravei (>2000µm)		1	2	-67%	2	0	200%
% Sand (2000-63μm)		34	37	-8%	19	19	0%
% Silt (62-4µm)		45	44	2%	60	63	-5%
% Clay (<4μm)		20	17	16%	19	18	5%
2. Metals (mg/Kg, dry)							
Arsenic		38.5	44.9	-15%	34.5	33.2	4%
Mercury		2.3 J	2.2 J	2%	1.3 J	1.7 J	-25%
Lead		441	385 N	14%	298 N	297 N	0%
Nickei		44.6	46.6	-4%	64.8	63.5	2%
Cadmium		1.3 P	1.7 P	-27%	2.2 P	1.7 P	26%
Chromium		60.7	61.8 N	-2%	80.8 N	80.4 N	0%
Copper		317	330	-4%	702	663	6%
Zinc		530	501	6%	778	776	0%
3. Semivolatile Organics (p	µg/Kg, dry)						
4-Methylphenoi		1700	1800	-6%	820	930	-13%
Phenol		250 UJ		-31%	270	240 J	12%
Bis(2-Ethylhexyl) Phthalate		340 UJ			6700	6800	-1%
Anthracene		1200	1400	-15%	1100	990	11%
Pyrene		9100	11000	-19%	4200	4300	-2%
Dimethylphthalate		190 U	200 U	2001	170 J	190 J	-11%
Dibenzofuran		570	720	-23%	400	590	-38%
Benzo(ghi)perylene		3400	3300	3%	1900	2100	-10%
Indeno(1,2,3-cd)pyrene		2800	2700	4%	1800	1900	-5%
Benzo(b)fluoranthene		4700	4500	4%	3300	3500	-6%
Fluoranthene		11000	13000	-17%	5400	5600	-4% 7%
Benzo(k)fluoranthene		1600	1800	-12%	1400	1300	
Acenaphthylene		740	850	-14% -7%	270 2200	330 2200	-20%
Chrysene		2700	2900		11000 J	12000 J	0% -9%
3B-Coprostanol		3700 UJ 1100			960	960	0%
Retene			1500 3800	-31% -3%	2200	2300	-4%
Benzo(a)pyrene		3700 550 J	520 J	-3% 6%	450 J	420 J	7%
Dibenzo(a,h)anthracene Benzo(a)anthracene		2000	2100	-5%	1400	1400	0%
Benzoic Acid		3700 UJ		-5 <i>N</i>	480 J	600 j	-22%
Acenaphthene		1200	1700	-34%	510	580	-13%
Phenanthrene		4800	6400	-29%	3600	4600	-24%
Butylbenzylphthalate		930 U	990 U	-23 /6	190 J	330 J	-54%
Fluorene		1200	1600	-29%	690	910	-28%
Carbazole		190 U	200 U	-2070	340	250 U	31%
Naphthalene		2500	3000	-18%	620	1100	-56%
2-Methylnaphthalene		650	890	-31%	300	450	-40%
Semivolatile Surrogate Reco	veries (%)						
D14-Terphenyl		72 77	79	-9%	75 76	78	-4%
D10-Pyrene		77 50	80	-4%	76	80	-5%
1.2-Dichlorobenzene-D4		53	61	-14%	39	59	-41%
2-Fluorobiphenyl		94	100	-6%	88	95 70	-8%
2-Fluorophenol		86	81	6%	77	79 25	-3%
D5-Nitrobenzene		54	58	-7%	32	35	-9%
D5-Phenol		90	82	9%	81	82	-1%
D4-2-Chlorophenol		88	83	6%	81	85	-5%

Table D-3 (Cont'd). Analytical results of split field samples.

Station:	1.	A		8C		
Sample No.:	8230	8260	RPD	8258	8261	RPD
4. PCBs (μg/Kg, dry)						
PCB - 1260	200	300	-40%	420	370	13%
PCB - 1254	250	250	0%	480	500	-4%
PCB Surrogate Recoveries (%)						
4,4-Dibromooctafluorobiphenyl	95	107	-12%	123	124	-1%
Dibutylchlorendate	65	53	20%	35	34	3%
Decachlorobiphenyl	112	119	-6%	123	127	-3%
Tetrachloro-m-xylene	94	105	-11%	124	124	0%
5. Butyltins (μg/Kg, dry)						
Monobutyltin Chloride	9 U	168	-180%	2030	1040	64%
Tributyltin Chloride	324	404	-22%	656	3130	-131%
Tetrabutyltin Chloride	9.4 U	9.3 L	J	15 U	46	-102%
Dibutyltin Chloride	9.1 U	20	-75%	77	827	-166%
Butyltin Surrogate Recoveries (%)						
Tripropyltin Chloride	56	89	-46%	248	101	84%

RPD=Relative Percent Difference

J=Estimated concentration

N=Low matrix spike recoveries associated with this result

P=The analyte was detected below the minimum quantitation limit

U=The analyte was not detected at or above the value shown

Table D-4. Results of laboratory blank analysis.

1. Metals (mg/Kg, dry)

	Sample No.:	BLN52402	BLN52403	BLN52386	BLN52388
Mercury		0.005	0.005	N/A	N/A
Arsenic		N/A	N/A	0.3 U	0.3 U
Lead		N/A	N/A	2 U	2 U
Nickel		N/A	N/A	1 U	1 U
Cadmium		N/A	N/A	0.3 U	0.3 U
Chromium		N/A	N/A	0.5 U	0.5 U
Copper		N/A	N/A	0.62 P	1.3 P
Zinc		N/A	N/A	0.66 P	0.49 P

2. Semivolatile Organics (µg/Kg, dry)

	Sample No.:	BLN52428	BLN52429	BLN52482	BLN52483
4-Nitroaniline		840 U	840 U	840 U	840 U
4-Nitrophenol		840 U	840 U	840 U	840 U
Benzyi Alcohoi		170 U	170 U	170 U	170 U
4-Bromophenyl-Phenylether		170 U	170 U	170 U	170 U
2,4-Dimethylphenol		170 U	170 U	170 U	170 U
4-Methylphenol		170 U	170 U	170 U	170 U
1,4-Dichlorobenzene		170 U	170 U	170 U	170 U
4-Chioroaniline		170 U	170 U	170 U	170 U
Phenol		100 J	82 J	170 U	170 U
Pyridine		840 U	840 U	840 U	840 U
Bis(2-Chloroethyl)Ether		170 U	170 U	170 U	170 U
Bis(2-Chloroethoxy)Methane		170 U	170 U	170 U	170 U
Bis(2-Ethylhexyl) Phthalate		63 J	140 J	59 J	40 J
Di-N-Octyl Phthalate		840 U	840 U	840 U	840 U
Hexachlorobenzene		170 U	170 U	170 U	170 U
Anthracene		170 U	170 U	170 U	170 U
1,2,4-Trichlorobenzene		170 U	170 U	170 U	170 U
2,4-Dichlorophenol		170 U	170 U	170 U	170 U
2,4-Dinitrotoluene		840 U	840 U	840 U	840 U
Hydrazine, 1,2-Diphenyl-		170 U	170 U	170 U	170 U
Pyrene		170 U	170 U	170 U	170 U
Dimethylphthalate		170 U	170 U	170 U	170 U
Dibenzofuran		170 U	170 U	170 U	170 U
Benzo(ghi)perylene		170 U	170 U	170 U	170 U
Indeno(1,2,3-cd)pyrene		170 U	170 U	170 U	170 U
Benzo(b)fluoranthene		170 U	170 U	170 U	170 U
Fluoranthene		170 U	170 U	170 U	170 U
Benzo(k)fluoranthene		170 U	170 U	170 U	170 U
Acenaphthylene		170 U	170 U	170 U	170 U
Chrysene		170 U	170 U	170 U	170 U
3B-Coprostanol		3400 UJ	3400 UJ	3400 UJ	3400 UJ
Bis(2-Chloroisopropyl)Ether		170 U	170 U	170 U	170 U
Retene		170 U	170 U	170 U	170 U
Benzo(a)pyrene		170 U	170 U	170 U	170 U
2,4-Dinitrophenol		6700 UJ	670 0 UJ	6700 UJ	6700 UJ
4,6-Dinitro-2-Methylphenol		3400 U	3400 U	3400 U	3400 U
Dibenzo(a,h)anthracene		170 UJ	170 UJ	170 UJ	170 UJ
1,3-Dichlorobenzene		170 U	170 U	170 U	170 U
Benzo(a)anthracene		170 U	170 U	170 U	170 U
Caffeine		170 U	170 U	170 U	170 U
4-Chloro-3-Methylphenol		170 U	170 U	170 U	170 U
2,6-Dinitrotoluene		840 U	840 U	840 U	840 U
N-Nitroso-Di-N-Propylamine		170 U	170 U	170 U	170 U
Aniline		170 U	170 U	170 U	170 U
N-Nitrosodimethylamine		840 UJ	840 UJ	840 UJ	840 UJ
Benzoic Acid		120 J	3400 UJ	3400 UJ	3400 UJ
Hexachloroethane		170 U	170 U	170 U	170 U
4-Chlorophenyl-Phenylether		170 U	170 U	170 U	170 U
Hexachlorocyclopentadiene		3400 UJ	3400 UJ	3400 UJ	3400 UJ
Isophorone		170 U	170 U	170 U	170 U
Acenaphthene		170 U	170 U	170 U	170 U
Diethylphthalate		140 J	42 J	170 U	170 U
Di-N-Butylphthalate		1200	160 J	87 J	170 U

2. Semivolatile Organics (µg/Kg, dry)

Sample No.:	BLN52428	BLN52429	BLN52482	BLN52483
Phenanthrene	170 U	170 U	170 U	170 U
Butylbenzylphthaiate	840 U	840 U	840 U	840 U
N-Nitrosodiphenylamine	170 U	1 70 U	170 U	170 U
Fluorene	170 U	170 U	170 U	170 U
Carbazole	170 U	170 U	170 U	170 U
Hexachlorobutadiene	170 U	170 U	170 U	170 U
Pentachlorophenol	840 U	840 U	840 U	840 U
2,4,6-Trichlorophenol	340 U	340 U	340 U	340 U
2-Nitroaniline	340 U	340 U	340 U	340 U
2-Nitrophenol	170 U	170 U	170 U	170 U
Naphthalene	170 U	170 U	170 U	170 U
2-Methylnaphthaiene	170 U	170 U	170 U	170 U
2-Chloronaphthalene	170 U	1 70 U	170 U	170 U
3,3'-Dichlorobenzidine	340 U	340 U	340 U	340 U
Benzidine	340 UJ	340 UJ	340 UJ	340 UJ
2-Methylphenol	170 U	170 U	170 U	170 U
1,2-Dichlorobenzene	170 U	170 U	170 U	170 U
2-Chlorophenol	170 U	170 U	170 U	170 U
2,4,5-Trichlorophenol	170 U	170 U	170 U	170 U
Nitrobenzene	170 U	170 U	170 U	170 U
3-Nitroaniline	840 U	840 U	840 U	840 U
Semivolatile Organic Surrogate Recoveries (%)				
D14-Terphenyl	82	80	80	82
D10-Pyrene	79	77	78	81
1,2-Dichlorobenzene-D4	70	73	71	73
2-Fluorobiphenyl	95	94	93	98
2-Fluorophenol	74	78	80	88
D5-Nitrobenzene	69	65	72	74
D5-Phenol	86	87	87	93
D4-2-Chlorophenol	81	82	85	92

3. PCBs (µg/Kg, dry)

	Sample No.:	BLN52428	BLN52429	BLN52482	BLN52483
PCB - 1260		34 U	34 U	34 U	34 U
PCB - 1254		34 U	34 U	34 U	34 U
PCB - 1221		34 U	34 U	34 U	34 U
PCB - 1232		34 U	34 U	34 U	34 U
PCB - 1248		34 U	34 U	34 U	34 U
PCB - 1016		34 U	34 U	34 U	34 U
PCB - 1242		34 U	34 U	34 U	34 U
PCB Surrogate Recoveries (%)					
4,4-Dibromooctafluorobiphenyl		91	92	85	97
Dibutylchlorendate		55	54	52	62
Decachlorobiphenyl		107	101	102	106
Tetrachloro-m-xylene		95	92	85	95

4. Butyltins (µg/Kg, dry)

	Sample No.:	BLN52792	BLN52793	BLN53640	BLN53641	BLN54110
Monobutyltin Chloride Tributyltin Chloride Tetrabutyltin Chloride Dibutyltin Chloride		7 U 2.9 J 7.4 U	7 U 7.6 U 7.4 U	0.4 J 2.4 J 7.4 U	7 U 1.6 J 7.4 U	0.7 J 2.2 J 7.4 U
Butyltin Chloride Butyltin Surrogate Recoveries (% Tripropyltin Chloride)	7.1 U 36	7.1 U 50	0.49 J 56	7.1 U 60	0.98 J 53

Analyte was detected in laboratory blank

N/A=Not Analyzed
U=The analyte was not detected at or above the value shown
P=Analyte was detected below the numerical quantitation limit

J=Estimated concentration

APPENDIX E CHEMICAL CONCENTRATIONS IN SEDIMENTS

Table E-1. Concentration of metals in sediments (mg/Kg, dry).

Station	As	Hg	Pb	Ni	Cd	Cr	Cu	Zn
1A	42	2.2 J	413 N	46	1.5 P	61 N	324	516
1B	210	5.0 J	534	60	3.2	99	2000	2020
1C	28	1.1 J	208	80	1.2 P	101	629	492
2A	20	0.63 J	107	44	0.40 P	51	358	311
2B	5.0	0.11 J	151	26	0.59 P	18	88	225
2C	34	0.61 J	131	46	0.62 P	53	268	646
3A	9.5	0.26 J	66	33	0 .30 U	35	92	147
3B	44	1.8 J	314	66	1.2 P	88	318	619
3C	32	1.0 J	193	52	0.69 P	68	539	462
4A	18	1.5 J	137	63	0.42 P	75	354	319
4B	31	1.1 J	219	94	0.88 P	114	565	459
4C	5.7	0.18 J	29	44	0.30 U	36	85	136
4D	10	0.65 J	100	38	0.30 U	37	207	206
4E	24	1.6 J	250	68	1.3 P	79	436	562
4F	83	4.0 J	444	49	1.7 P	65	1230	921
5A	39	0.86 J	175 N	48	0.81 P	62 N	340	388
5B	1.6	0.01 J	3.5 J	22	0.30 U	14 N	7.7	27
5C	19	0.77 J	147 N	72	0.64 P	70 N	310	302
6A	13	0.78 J	190 N	56	1.6 P	60 N	246	403
6B	41	0.18 J	75 N	484	1.8 P	376 N	2210	207
6C	10	0.42 J	65 N	42	0.49 P	40 N	128	183
6D	24	0.71 J	101 N	56	0.56 P	50 N	244	283
7A	83	0.77 J	254 N	46	1.2 P	63 N	709	1140
7B	18	0.052 J	37 N	62	0.33 P	52 N	107	210
7C	6.2	0.071 J	169 N	30	0.45 P	24 N	53	100
7D	6.8	0.097 J	41 N	29	0.30 U	25 N	335	185
8A	19	0.91 J	186 N	41	1.0 P	48 N	197	350
8B	9.8	0.35 J	146 N	33	0.48 P	30 N	88	205
8C	34	1.5 J	298 N	64	2.0 P	81 N	682	777

J=Estimated concentration

N=Low matrix spike recoveries associated with this result

P=The analyte was detected below the minimum quantitation limit

U=The analyte was not detected at or above the value shown

Table E-2. Semivolatile organics not detected in sediments.

Compound	Quantitation Limits (µg/Kg)
4-Nitroaniline	490 - 1600
4-Nitrophenol	490 - 1600
4-Bromophenyl-Phenylether	97 - 320
2,4-Dimethylphenol	97 - 320
4-Chloroaniline	97 - 320
Pyridine	490 - 1600
Bis(2-Chloroethyl)Ether	97 - 320
Bis(2-Chloroethoxy)Methane	97 - 320
Di-N-Octyl Phthalate	97 - 1600
Hexachlorobenzene	97 - 320
1,2,4-Trichlorobenzene	97 - 320
2,4-Dichlorophenol	97 - 320
2,4-Dinitrotoluene	490 - 1600
Hydrazine, 1,2-Diphenyl-	97 - 320
Bis(2-Chloroisopropyl)Ether	97 - 320
2,4-Dinitrophenol	3900 - 13000
4,6-Dinitro-2-Methylphenol	1900 - 6400
1,3-Dichlorobenzene	97 - 320
Caffeine	97 - 320
4-Chloro-3-Methylphenoi	97 - 320
2,6-Dinitrotoluene	490 - 1600
N-Nitroso-Di-N-Propylamine	97 - 320
Aniline	97 - 320
N-Nitrosodimethylamine	490 - 1600
Hexachloroethane	97 - 320
4-Chlorophenyl-Phenylether	97 - 320
Hexachlorocyclopentadiene	2100 - 6400
Isophorone	97 - 320
Di-N-Butylphthalate	97 - 1200
N-Nitrosodiphenylamine	97 - 320
Hexachlorobutadiene	97 - 320
2,4,6-Trichlorophenol	190 - 640
2-Nitroaniline	190 - 640
2-Nitrophenol	97 - 320
2-Chloronaphthalene	97 - 320
3,3'-Dichlorobenzidine	190 - 640
Benzidine	190 - 640
2-Methylphenol	97 - 320
1,2-Dichlorobenzene	97 - 320
2-Chlorophenol	97 - 320
2,4,5-Trichlorophenol	97 - 320
Nitrobenzene	97 - 320
3-Nitroaniline	490 - 1600

Table E-3. Concentration of PAHs and other semivolatile organics detected in sediments (µg/Kg, dry).

	1 3	\supset	\supset	:5			1			Ξ						:	$\overline{}$	\supset	-	\supset	\supset	\supset	:⊃	\supset	$\overline{}$	\supset	:5			1
Benzyl Alcohol	190	240	240	180	300	240	130	420	420	410	680	120	180	470	1000	410	24	250	150	130	210	300	180	120	110	110	170	50	110	
2-Methylnaphthalene	770	650	260	350	64)	310	25 J	370	170 J	240	510	55 J	760	340	1800	390	97 U	1600	1200	180	1000	800	270	150	22 J	56 J	470	280	375	
Naphthalene	2750	880	740	810	_		7					130					>								_	_				
Fluorene	1400	1300	94	560	280	540	40 J	510	290	320	870	170	740	200	2700	560	97 U	1400	950	390	1000	1300	650	900	31	75 J	1200	270	800	
Рћепапthrепе	5600	7200	1800	1900	2500	2200	170	2600	1500	1300	3600	430	3000	1800	9300	3700	39	4800	4600	1600	3500	3700	3700	4200	160	330	2700	1600	4100	
Acenaphthene	1450	1000	280	560	190	320	24 J	320	220 J	240	510	92 J	540	300	2000	490	97 U	1300	700	290	1000	1000	520	460	26 J	80	800	099	545	
Acenaphthylene	795	300	320	270	4 J	330	44 J	710	240	280	420	56 J	460	430	1100	300	9.6	1000	620	110 J	200	440	180	39 3	26 J	50 J	320	120	300	
Anthracene	1300	2100	650	760	900	099	77 J	006	009	610	1100	180	780	860	3100	770	8.1	1300	1100	340	820	970	066	720	64)	140	1100	290	1045	
Benzo(a)anthracene	2050	4800	1300	1700	1500	830	170	1900	1300	1200	2100	490	970	1300	4500	2700	26	1900	1600	470	099	1600	2000	1200	210	320	1700	370	1400	
Dibenzo(a,h)anthracene	535 J	1100	490 J	350 J	350 J	250 J	71 J	540	350 J	400 J	430 J	ا 29	200 J	460 J	1000	640 J	97 U	250 U	370 J	130 U	91	270 J	370 J	230 J	54 J	65 J	290	64 Ј	435 J	
Benzo(a)pyrene	3750	6200	2700	2300	2300	1500	390	3500	2300	2400	2800	490	1600	2600	6300	3800	97 U	1800	2500	630	1100	2100	2700	1700	320	470	2000	420	2250	
Сһтуѕепе	2800	2900	1900	1700	1900	1200	220	2400	1700	1500	3600	550	1300	2000	5800	3300	97 U	2000	2800	720	1100	2000	2600	1500	250	390	2200	490	2200	
Benzo(k) liuoranthene	1700	3700	1300	1100	1200	750	190	1400	1100	1100	1400	270	750	1400	3000	2500	97 U	800	1300	290	460	1100	1500	900	130	220	1100	250	1350	
Fluoranthene	12000	14000	3800	0009	4300	3000	360	4600	3200	3100	0069	2200	4000	3700	13000	8600	25 J	0009	6500	1600	3500	4900	5700	4300	390	820	6100	1600	5500	
Benzo(b)fluoranthene	4600	8900	3700	3200	3200	2000	510	4400	3400	3000	4200	740	1900	3500	8800	5700	97 U	2400	3700	830	1300	2800	3400	2200	360	560	3000	610	3400	
Indeno(1.2,3-cd)pyrene	2750	4800	2300	1600	1700	1200	330	2600	1800	2100	2000	310	1000	2200 J	4600 J	2500 J	97 U	1000	1700	420 J	640	1200 J	1600 J	1100	190	300 J	1300 J	270	1850	
Benzo(ghi)perylene	3350	4500	2600	1600	1500	1300	370	2800	1900	2400	2000	320	1200	2500	4900	2500	97 U	1200	2000	510	870	1400	1600	086	180	330	1500	300	2000	ion
Ругеле	10050	11000	3500	4700	3400	2600	370	4600	2800	2800	2300	1500	3800	3400	11000	6700	25 J	5600	2600	1500	3200	3900	4500	2800	320	670	4400	1200	4250	l concentrati
Station	1A	1 B	10	2 A	2B	2C	3A	38	သွ	4 A	48	40	4	#	4	5A	2B	50	6A	89	၁၅	9	7A	78	7C	5	8A	8B	80	J=Estimated concentration

U=The analyte was not detected at or above the value shown

Table E-3 (Cont'd). Concentration of PAHs and other semivolatile organics detected in sediments (µg/Kg, dry).

Pentachlorophenol	930 U	1200 U	1200 U	910 U	500 U	1000 U	540 U	1200 U	1100 U	1100 U	340)	550 U	980 U	1600 U	N 096	850 U	490 U	1200 U	1400 U	630 U	1100 U	1500 U	O 006	590 U	530 U	530 U	840 U	550 U	220 J
Carbazole	190 U	620	180 J	170 J	320	120 J	110 U	240 U	220 U	220 U	230 U	110 U	130 J	320 U	510	420	97 U	250	400	130 U	210 U	170 J	280	400	110 U	110 U	180	62 J	232 J
Butylbenzylphthalate	930 U	390	180 J	910 U	290 J	1000 U	540 U	1200 U	1100 U	1100 U	170 J	550 U	880 U	1600 U	160 J	76 J	490 U	1200 U	620 J	130 J	1100 U	1500 U	D 006	590 U	530 U	130 J	f 66	35 J	260 J
Diethylphthalate	190 U	240 U		180 U	100 UJ		110 U	240 U	220 U	220 U	230 U	110 U	176 UJ	320 U		170 U	7 9e	250 U	280 U	130 U	210 U	300 U	77 J	44 J	110 U	110 U	170 U	ر 40 ر	240 U
Benzoic Acid	410 J	1220 UJ	1200 UJ	913 UJ	500 UJ	000 nJ	:			120 UJ	1150 UJ	2200 UJ	500 UJ	1590 UJ		846 UJ	26 J	380 J	450 J	500 UJ	190 J	300	170 J	68 J	2100 U	100 J	220 J	2200 UJ	540 J
Refene	1300	•	9700				63 J								5400		7				_			7	۵.	7		320 2	
3B-Coprostanol	3700 UJ	51000 J	r 0009	3300 J	5700 J	5100 J	1100 J	3	7	_	8700 J	っ		_	2900	_	>	7			~	 >	_	2400 U	>	\supset	1900 J	2900 J	1500 J
Dibenzofuran	645	840 5		480		370	7					7			1400		7								_	41 J	710	390	
Dimethylphthalate	190 U	240 U	280	230	71 J	160 J	110 U	160 J	190	210 J	230	42)	C 09	340	310	85 J	97 U	190 J	280 U	130 U	210 U	140	140 J	120 U	110 U	110 U	170 U	110 U	180 J
Bis(2-EH) Phthalate	340 UJ	14000	5100	2700	3300	2100		1200 UJ	3200	3200	5100	1600	1200 UJ	4100	3500	2100	97 UJ	1800	2000	1700	1400	2000	2100	1300	210 UJ	430 J	4100	730	6750
Phenol	232 J	3	240 UJ	182 UJ	100 UJ	200 UJ	108 UJ	241 UJ	219 UJ	224 UJ	231 UJ	109 UJ	210 UJ	319 UJ	200 UJ	169 UJ	_	290	•	110 J	180 J	220 J	210	200	110 U	55 J	130 J	79 J	240 J
eneznedoroldoid-4,1 المحالة	150 J	420	16 J	180 U	110	200 U	110 U	240 U	220 U	220 U	230 U	110 U	180 U	320 U	190 U	170 U		250 U		130 U	210 U	300 N	180 U	120 U	110 U	110 U	170 U	110 U	240 U
- Меthylphenol	1750	830	340	580	93)	330	110 U	006	200 J	190 J	260	ل 41	930	310 J	1100	510	97 U	2600	2700	300	1600	006	220	120 U		110 U	360	430	875
Station	1A	2	ರ	2A	2B	5C	34	3B	၁င	4A	4B	4C	4	4E	4F	5A	5B	50	6A	6B	9	60	7A	7B	7C	70	8A	8B	8C

J=Estimated concentration

U=The analyte was not detected at or above the value shown

Table E-4. Concentration of PAHs in sediments.

	Total HPAH ¹		Total LPAH ²		TOTAL PAHs ³	
Station	(µg/Kg, dry)	mg HPAH/Kg OC	(µg/Kg, dry)	mg LPAH/Kg OC	(µg/Kg, dry)	mg TOTAL PAH/Kg OC
1A	43585 J	519 JH	13295	158	56880 J	677 JH
1B	64900 J	969 JH	12780	191	77680 J	1159 JH
1C	23590 J	407 JH	4230	73	27820 J	480 JH
2A	24250 J	418 JH	4860	84	29110 J	502 JH
2B	21350 J	1941 JH	3678 J	334 JH	25028 J	2275 JH
2C	14630 J	236 JH	5050	81	19680 J	317 JH
3A	2981 J	157 JH	427 J	22 JH	3408 J	179 JH
3B	28740 J	479 JH	6440	107	35180 J	586 JH
3C	19850 J	368 JH	3360 J	62 JH	23210 J	430 JH
4A	20000 J	417 JH	3340	70	23340 J	486 JH
4B	30730 J	439 JH	7700	110	38430 J	549 JH
4C	6937 J	434 JH	1058 J	66 JH	7995 J	500 JH
4D	16720 J	315 JH	7320	138	24040 J	454 JH
4E	23060 J	391 JH	4840 J	82 JH	27900 J	473 JH
4F	62900 J	939 JH	21300	318	84200 J	1257 JH
5A	38940 J	1145 JH	7020	206	45960 J	1352 JH
5B	50 J	50 JH	57 J	57 JH	107 J	107 JH
5C	22700 J	166 JH	13700	100	36400 J	266 JH
6A	28070 J	202 JH	10570	76	38640 J	278 JH
6B	6970 J	303 JH	3050 J	133 JH	10020 J	436 JH
6C	12921 J	150 JH	9420	110	22341 J	260 JH
6D	21270 J	197 JH	9410	87	30680 J	284 JH
7A	25970 J	499 JH	6630	128	32600 J	627 JH
7B	16980 J	1415 JH	6159 J	513 JH	23139 J	1928 JH
7C	2434 J	348 JH	346 J	49 JH	2780 J	397 JH
7D	4145 J	518 JH	768 J	96 JH	4913 J	614 JH
8A	23590 J	605 JH	8320	213	31910 J	818 JH
8B	5574 J	429 JH	3660	282	9234 J	710 JH
8C	24635 J	373 JH	7650	116	32285 J	489 JH

¹Sum of Pyrene, Benzo(g,h,i)perylene, Indeno(1,2,3-c,d)pyrene, Benzo(b)fluoranthene,

 $\label{eq:charge_encoder} Fluoranthene, Benzo(a) pyrene, Dibenzo(a,h) anthracene, and Benzo(a) anthracene$

OC=Organic Carbon

J=Estimated concentration

H=Result may be biased due to excessive holding time for TOC

²Sum of Anthracene, Acenaphthylene, Acenaphthene, Phenanthrene, Fluorene, and Naphthalene

³Sum of HPAH and LPAH

Table E-5. Concentration of PCBs in sediments (µg/Kg, dry).

	PCB-	PCB-	PCB-	PCB-	PCB-	PCB-	PCB-	TOTAL	
Station	1016	1221	1232	1242	1248	1254	1260	PCBs	mg TOTAL PCB/Kg OC
1A	93 U	250	150	400	4.8 H				
1B	120 U	120 U	120 U	160	120 U	800	500	1460	22 H
1C	120 U	410 J	450	860 J	15 JH				
2A	91 U	200	190 J	390 J	6.7 JH				
2B	50 U	52	50 U	52	4.7 H				
2C	100 U	140	100 U	140	2.3 H				
3A	54 U	54 U	nd	nd					
3B	120 U	110 J	120 U	110 J	1.8 JH				
3C	110 ∪	110 U	110 U	110 U	110 U	240	180	420	7.8 H
4A	110 U	210	150	360	7.5 H				
4B	115 U	280	220 J	500 J	7.1 JH				
4C	55 U	52 J	55 U	52 J	3.3 JH				
4D	88 U	130	100	230	4.3 H				
4E	160 U	490	380	870	15 H				
4F	96 U	630	920	1550	23 H				
5A	85 U	210	150	360	11 H				
5B	48 U	48 U	nd	nd					
5C	120 U	350	120 U	350	2.6 H				
6A	140 U	260 J	140 U	260 J	1.9 JH				
6B	63 U	110	63 U	110	4.8 H				
6C	60 U	120	60 U	120	1.4 H				
6D	150 U	200	150 U	200	1.9 H				
7A	90 U	9000 U	7600	7600	146 H				
7B	59 U	190	59 U	190	16 H				
7C	53 U	53 U	nd	nd					
7D	53 U	36 J	53 U	36 J	4.5 JH				
8A	84 U	180	130	310	7.9 H				
8B	55 U	62	55 U	62	4.8 H				
8C	120 U	490	395	885	13 H				

OC=Organic Carbon

U=The analyte was not detected at or above the value shown

H=Result may be biased due to excessive holding time for TOC

J=Estimated concentration

nd=not detected

Table E-6. Concentration of butyltins in sediments (µg/Kg, dry).

Station	Monobutyltin Chloride	Dibutyltin Chloride	Tributyltin Chloride	Tetrabutyltin Chloride	TOTAL BUTYLTIN CHLORIDES	Tributyltin Chloride as Sn	Tributyltin Chloride as TBT⁺
1A	86 J	12 J	364	9.3 U	462 J	133	324
1B	199 J	1380	7260	185 J	9024 J	2648	6461
1C	26	163	516	22	727	188	459
2A	158	455	1070	25	1708	390	952
2B	4.7 U	2.6 J	71	5 U	74 J	26	63
2C	60	225	537	17	839	196	478
3A	166	82	179	1.6 J	429 J	65	159
3B	83	72	295	17	467	108	263
3C	32	283	1390	32	1737	507	1237
4A	19	41	110	20	190	40	98
4B	30	450	1520	37	2037	554	1353
4C	9.5	27	87	7.9 U	124	32	77
4D	24	59	195	9.2 U	278	71	174
4E	428	387	1080	17	1912	394	961
4F	57	1170	2830	71	4128	1032	2519
5A	562	178	1040	9 J	1789 J	379	926
5B	540 UJ	5.7 U	6.1 UJ	5.9 U	nd	nd	nd
5C	57	261	535	23	876	195	476
6A	1180 UJ	250	540	7.2 J	797 J	197	481
6B	31	75	287	8.2 U	393	105	255
6C	69	24	80	13 U	173	29	71
6D	131	174	366	20 U	671	134	326
7A	135	130	577	9.8 J	852 J	210	514
7B	50	7 U	78	7.3 U	128	28	69
7C	17	58	78	6.5 U	153	28	69
7D	285	65	141	6.9 U	491	51	125
8A	734	456	2260	11	3461	824	2011
8B	86	22	91	12	211	33	81
8C	1535	452	1893	27 J	3907 J	690	1685

J=Estimated concentration

U=The analyte was not detected at or above the value shown nd=not detected

SITE ASSESSMENT REPORT TIME OIL CO. SITE 2750 2750 WEST COMMODORE WAY SEATTLE, WASHINGTON

Project 783336

March 8, 2000

Prepared for:

Mr. Scott B. Sloan Time Oil Co. 2737 West Commodore Way Seattle, Washington 98199

Submitted by: IT Corporation

Chris Storey

Associate Engineer

Approved by: IT Corporation

Gerald Harris

Project Manager

EXECUTIVE SUMMARY

IT Corporation conducted a subsurface investigation at the Time Oil Co. property located at 2750 West Commodore Way in Seattle, Washington. The investigation area included the former location of an underground storage tank (UST) removed from the site in September of 1991. The UST was reported to have been used to store waste oil. The purpose of the investigation was to assess soil and groundwater for substances regulated by the current Washington State Model Toxics Control Act¹ (MTCA) Method A Compliance Cleanup Levels (Jan. 1996 revision). Tasks performed during the assessment included: 1) locating underground utilities; 2) drilling nine soil borings to a maximum depth of 26.5 feet below grade (bg) at strategic locations; 3) drilling and installing five groundwater monitoring wells; 4) collecting twenty-eight soil samples from the soil borings (continuously in soil boring 02SB-01 and at approximate 5-foot intervals in remaining borings and fifteen soil sample from the monitoring wells; 5) collecting eight soil boring water samples (one each from borings 02SB-02 through 02SB-09); 6) developing the wells and sampling the groundwater in each; 7) performing quantitative chemical analyses on the soil and water samples collected; 8) interpreting the information obtained; and 9) compiling and arranging the data for this report.

Observations and findings:

- Sediments observed underlying the site include orange brown to gray green sands and silts with varying amounts of clay and gravel predominating the site from the surface to a depth of approximately ten to fifteen feet below grade (bg). A very dense, dry gray clay underlies the sand/silt unit. This unit acts as an apparent aquitard at the site. Existing data show that the hydraulic conductivity of the clay is 1.7 x 10⁻⁸ cm/s (IT Corp., 2000).
- Two soil samples (02SB-01 at 3.5 ft below grade [bg] and 02SB-01 at 6 ft bg) contained TPH-D and TPH-O at concentrations that exceeded the 200 mg/kg MTCA CCL(a) for TPH as diesel and heavier oils. A third sample (02SB-08 at 3.5 feet below grade) contained TPH-O at a concentration of 426 mg/kg. This level exceeds the MTCA (CCL[a]. No other soil samples contained regulated substances in concentrations that exceeded the MTCA CCL(a)s.
- Soil sample 02SB-08 collected at a depth of 3.5 feet bg was also analyzed for total metals, organochlorine pesticides and PCBs, and volatile organic compounds due to its location down gradient of the former used oil tank. All regulated compounds were reported to be either not detected at the method reporting limit, or below their respective MTCA method A or method B guidelines.

¹ Washington Department of Ecology (WAC 173-340), revised Jan. 1996

- Groundwater was encountered in eight of the nine borings and all of the groundwater monitoring wells. Groundwater was reported during drilling at depths of two to 23 feet bg. Boring 02SB-01 was discontinued before water was reached. The stabilized depth to groundwater in the monitoring wells ranged from 6.09 to 17.85 feet bg. Groundwater flow is to the north at a gradient of 0.007 feet per foot.
- Soil Boring Water Samples Total petroleum hydrocarbons as gasoline (TPH-G) were reported to be above the CCL(a) in water samples 02SB-02H2O and 02SB-09H2O at concentrations of 8.26 milligrams per liter (mg/L) and 1.36 mg/L, respectively. TPH-D was reported to be above the CCL(a) in samples 02SB-02H2O, 02SB-03H2O, and 02SB-07H2O at concentrations ranging from 1.07 to 3.12 mg/l. Benzene was reported to be above the CCL(a) in samples 02SB-02H2O through 02SB-05H2O, and 02SB-09H2O at concentrations ranging from 6.64 micrograms per liter (ug/L) to 639 ug/L. Dissolved lead in the soil boring water samples was either not present or present below the CCL(a).
- Groundwater Monitoring Well Water Samples The monitoring wells were sampled September 28, 1999. The TPH-G concentrations in the monitoring wells were similar to the concentrations found in the soil boring water samples: Two wells did not contain detectable TPH-G (02MW-02 and 02MW-05), two wells had TPH-G concentrations below the CCL(a), and remaining well (02MW-04) had a TPH-G concentration of 3.7 mg/l. Neither TPH-D nor TPH-O was detected in any of the wells. Benzene was not detected in wells 02MW-02 and 02MW-04 but was present in wells 02MW-01 and 02MW-03 at concentrations of 72.9 and 56.7 ug/l, respectively. These levels exceed the CCL(a) for benzene. Total lead exceeded the CCL(a) in unfiltered water samples collected from all wells except 02MW-03 (<1.00 ug/l). The highest total lead concentration was detected in 02MW-02 (133 ug/l).

CONTENTS

1.0	INTRODUCTION/BACKGROUND	1
	1.1Work Scope	1
	1.2Background	
2.0	GEOLOGY/HYDROGEOLOGY	
3.0	ASSESSMENT ACTIVITY	
4.0	RESULTS	4
	4.1 Gauging Results	
	4.2Soil	4
	4.3 Water	
5.0	CONCLUSIONS	5
6.0	RECOMMENDATIONS	
7.0	REFERENCES	

Figures

4	CHA I	location	Man
1.	Site	Location	IVIAL

- 2. Vicinity Map Time Oil Co. Site 2750
- 3. Historical Sample Locations
- 4. 1999 Sample Locations
- 5. Groundwater Contour Map
- 6. Gasoline in Groundwater
- 7. Benzene in Groundwater
- 8. Lead in Groundwater
- 9. Cross Section Location Map
- 10. Cross Section 2A
- 11. Cross Section 2B

Tables

- 1a. Drilling Summary for Soil Borings
- 1b. Drilling Summary for Groundwater Monitoring Wells
- 2. Monitoring Well Gauging Results
- 3. Soil Sample Analytical Results NWTPH/BTEX/Lead
- 4. Soil Sample Analytical Results VOCs
- 5. Soil Sample Analytical Results PEST/PCBs
- 6. Soil Sample Analytical Results RCRA Metals
- 7. Groundwater Sample Analytical Results

Appendices

- A Previous Reports
- B Drill Logs
- C Standard Operating Procedures
- D Laboratory Analytical Reports

1.0 INTRODUCTION/BACKGROUND

This report presents the work steps and results associated with subsurface investigation work conducted by IT Corporation at the Time Oil Co. property located at 2750 West Commodore Way in Seattle, Washington (Figure 1, Site Location Map). The work was conducted to assess the subsurface extent and concentration of substances regulated under the Washington Department of Ecology (WDOE) Model Toxics Control Act (MTCA; revised Jan. 1996). IT Corporation conducted this investigation at the request of the Time Oil Co.

1.1 Work Scope

The following outline summarizes the specific work conducted during the investigation:

- Reviewed the results of the previous investigation of the subject property.
- Located subsurface utilities.
- Drilled and sampled nine soil borings.
- Drilled, installed and developed five groundwater monitoring wells.
- Analyzed forty-three soil samples for petroleum compounds.
- Gauged, sampled and analyzed eight soil boring water samples and five groundwater monitoring well water samples for petroleum hydrocarbons and lead.
- Performed total metals, organochlorine pesticides and PCBs, and volatile organic compounds analysis on one soil sample.
- Evaluated, summarized and presented the information obtained in report form.

1.2 Background

The subject property (Figure 2) was the former site of a 300-gallon underground storage tank (UST). The UST location is shown in Figure 3. The UST stored used oil. This UST tank was removed from the site on September 16, 1991. Discolored soil and a petroleum odor were noted during the UST removal. An attempt was made to over-excavate hydrocarbon-affected soils after the UST was removed. Over-excavation activities were discontinued after approximately 100 cubic yards of affected soil had been removed. The resulting excavation measured approximately 35 feet by 20 feet and varied in depth from 2 to 6 feet. The northern boundary of the excavation appeared most heavily impacted and a hydrocarbon sheen was observed upon groundwater pooled in the excavation. A test pit was excavated approximately 20 feet north of the excavation in an effort to assess the lateral limits of the hydrocarbon impacts.

During the 1991 UST removal five soil samples were collected from the limits of the excavation and the test pit. The north sidewall of the excavation was not sampled due to the presence of visible hydrocarbon impacts. The soil samples were analyzed for TPH-diesel and TPH-motor oil. TPH-motor oil and/or diesel results in two of the five samples were equal to or exceeded the MTCA Soil Cleanup Levels were reported by the analytical laboratory (Appendix A, Table 2). Additional soil samples were collected from the limits of the excavation on December 10, 1991. The samples collected from the east and north sidewalls contained TPH concentrations exceeding MTCA Method A Soil Cleanup

Levels. TPH concentrations exceeding the CCL(a) ranged from 200 mg/kg to 25,000 mg/kg in soil samples 02-TIF, 02-TP1, 02-NS2, and 02-ES4 (Figure 3).

Additional excavation activities were conducted on July 28 and 29, 1992 in an effort to define and remove hydrocarbon-affected soils. Excavating activities were terminated on July 29, 1992 because observed impacts appeared to be increasing in severity to the east and excavation of the full extent of affected soils did not appear feasible. Approximately 150 cubic yards of soil were removed during the additional excavating activities. The excavation was backfilled by placing crushed rock from the bottom of the excavation to the top of the saturated zone. The crushed rock was then covered with a layer of 10-mil visqueen. The remaining excavation was backfilled with clean, imported fill sand.

During the 1992 excavation activities, eight soil samples were recovered from the limits of the expanded excavation (Figure 3). HCID analyses determined that TPH chromatogram patterns typical of gasoline, diesel, motor oil and mineral spirits were present in four of the soil samples. Follow-up analysis determined that BTEX concentrations appeared minimal but that TPH impacts (as gasoline, diesel, motor oil and mineral spirits) in excess of MTCA Soil Cleanup Levels were present in three samples (02-A2, 02-A6, and 02-WOWC). Concentrations ranged from 110 mg/kg to 2,800 mg/kg.

Details of work conducted in association with the UST removal conducted in September 1991, and the additional excavating activities conducted in July 1992, are presented respectively in Time Oil Co. reports dated December 30, 1991 and September 22, 1992 (Appendix A). Tank removal work conducted at the 2750 W. Commodore Way property is referenced as Excavation #2 in the December 1991 report. Since fuel service USTs were removed from 2737 W. Commodore Way on the same day, results of that UST removal are discussed as Excavation #1 in the same report. Work referenced as Excavation #1 is not applicable to the 2750 W. Commodore Way site.

2.0 GEOLOGY/HYDROGEOLOGY

The site is located on the south shore of Salmon Bay abutting the bay. The site topography slopes to the north from Commodore Way to the shoreline. The site has approximately 15 feet of relief from the southern high at Commodore Way to the shoreline. Sediments observed underlying the site include brown to gray green sands and silts with varying amounts of clay and gravel predominating the site from the surface to depths of approximately ten to thirty-five ft below grade (bg) depending upon location relative to the shoreline. A very dense, dry gray clay of unknown thickness underlies the site beginning at approximately 15 feet MSL (10-30 ft bg, depending on proximity to the shoreline). This unit is an apparent aguitard for the water table aguifer in this area.

Groundwater was encountered in eight of the nine the borings during drilling, excluding 02SB-01. The depth to groundwater was generally between 2 and 23 feet below grade. The stabilized depth to water in the groundwater monitoring wells ranged from 6.09 to 17.85 feet below grade. Groundwater flows to the north at a gradient of 0.007 feet per foot as measured on September 28, 1999 (Figure 5).

3.0 ASSESSMENT ACTIVITY

IT Corporation developed a work plan to install nine soil borings and five groundwater monitoring wells at strategic locations to assess subsurface conditions with respect to petroleum hydrocarbons (Figure 4). The locations of these borings were based on the findings of the underground storage tank (UST) decommissioning and excavation activities conducted by Time Oil Co. (Appendix A) and on site

access considerations (underground utilities, fences, etc.). The monitoring wells were sited based upon the results of the soil boring phase of work.

Prior to the initiation of drilling activities, IT contracted Applied Professional Services (APS) to clear the proposed drilling area for underground utilities. In addition, IT contracted Apollo Geophysics to conduct an electromagnetic resonance and ground penetrating radar survey of the site to define any subsurface utilities noted during the APS work and to better define the area containing the terminals underground product lines. The product lines run northwesterly along the eastern edge of the site driveway (Figure 2).

3.1 Soil Borings

Nine soil borings were drilled on June 7 and June 11, 1999 by Cascade Drilling Inc. (Cascade) of Woodinville, Washington. The borings were advanced by hollow stem auger to depths ranging from 9 to 26.5 feet bg. A complete description of the exploration depths for each soil boring is shown in Table 1a, Drilling Summary. Boring locations are shown on Figure 4. Each boring was sampled using a 2-inch inside diameter, split-spoon sampler. An IT Corporation engineer supervised the drilling and maintained a log of the materials encountered in accordance with the Unified Soil Classification System (Appendix B, Drill Logs).

Soil samples were collected continuously in soil boring 02SB-01 and at approximate five-foot intervals in soil borings 02SB-02 through 02SB-09. Each soil sample was screened in the field for volatile hydrocarbons using a photo-ionization detector (PID). PID results are noted on the drill logs. Twenty-eight soil samples collected from the nine borings were submitted for laboratory analysis. Analytical methods and procedures are discussed in the following section. The drilling and soil sampling activities were conducted in accordance with the Standard Operating Procedures (SOP) presented in Appendix C.

Soil encountered in borings 02SB-01 through 02SB-09 were orange brown to gray green sands and silts with varying amounts of clay and gravel predominating the site from the surface to a depth of approximately ten to fifteen feet bg. A very dense, dry gray clay underlies the sand/silt unit. Cross sections of the site detailing the stratigraphy are shown in Figures 9 through 11.

Water was observed in all soil borings except 02SB-01. Depth to water ranged from approximately 2 to 20 feet bg.

3.2 Groundwater Monitoring Wells

Five groundwater monitoring wells were drilled and installed on September 13, 1999 by Cascade Drilling Inc. (Cascade) of Woodinville, Washington. The borings were advanced by hollow stem auger to a maximum depth of 35 feet bg. All of the wells were terminated near the upper boundary of the dense clay that underlies the site at a depth of 10-35 feet bg depending upon location. A description of the construction details for each well is shown in Table 1b. Well locations are shown on Figure 4. Wells 02-MW01, 02MW-04 and 02MW-05 were sampled at five-foot intervals using a 2-inch inside diameter, split-spoon sampler. Two wells (02MW-02, and -03) were drilled without sampling due to their proximity to the recently drilled soil borings. An IT Corporation engineer supervised the drilling and well installation. A log of the materials encountered and well as-built data is included in Appendix B, Drill Logs).

Soil samples were screened in the field for volatile hydrocarbons using a photo-ionization detector (PID). Fifteen soil samples collected from wells 02MW-01, 02MW-04, and 01MW-05 were submitted for laboratory analysis. Analytical methods and procedures are discussed in the following section.

The drilling and soil sampling activities were conducted in accordance with the Standard Operating Procedures (SOP) presented in Appendix C.

Soils encountered during the drilling of the monitoring wells were similar to those observed in the soil borings. In wells 02MW-01, -04 and -05 the dense, dry clay was encountered at 19, 19.5, and 35 ft bg, respectively.

Water was encountered in all five wells. The stabilized depth to water ranged from 6.09 to 17.85 feet bg. The direction of groundwater flow at the site was to the north at a gradient of 0.007 feet per foot between wells 02MW-02 and 02MW-05.

4.0 RESULTS

Soil and groundwater samples were collected during the drilling of the nine boreholes and five monitoring wells. These samples were collected using standard IT sampling protocols. The samples were stored on ice under chain of custody protocols for shipment to the project laboratory (North Creek Analytical). North Creek Analytical (NCA) is a Washington State certified laboratory. The results of the sampling effort are discussed below. Laboratory analytical results are referenced against the current MTCA Method A Compliance Cleanup Levels (Jan. 1996 revision).

4.1 Gauging Results

The wells were installed on September 11, 1999. After well development and prior to sampling, the wells were gauged for depth to water and apparent product thickness on September 28, 1999. The gauging results are summarized in Table 2. The depth to groundwater was generally between 14 and 19 feet below grade.

The stabilized depth to water in the groundwater monitoring wells ranged from 6.09 to 17.85 feet below grade. Groundwater flows to the north at a gradient of 0.007 feet per foot as measured on September 28, 1999 (Figure 5).

4.2 Soil

A total of 43 soil samples (28 from the soil borings, 15 from the monitoring wells) were selected for laboratory analysis during the project. The soil samples were analyzed by North Creek Analytical of Bothell, WA. Samples were analyzed for BTEX by EPA method 8021B, TPH-G by Method NWTPH-Gx, TPH-D and TPH-O by Method NWTPH-Dx and total lead by EPA Method 6000/7000. One soil sample was also analyzed for VOCs (EPA 8260B), pesticides/PCBs (EPA8081/8082), and RCRA metals (EPA 6000/7000 series methods).

4.2.1 Soil Boring Soil Samples

Two soil samples (02SB-01 at 3.5 ft below grade [bg] and 02SB-01 at 6 ft bg) contained TPH-D and TPH-O at concentrations that exceeded the 200 mg/kg MTCA CCL(a) for TPH as diesel and heavier oils. A third sample (02SB-08 at 3.5 feet below grade) contained TPH-O at a concentration of 426 mg/kg. This level exceeds the MTCA (CCL[a]. All other analyte concentrations, including the VOCs, PEST/PCBs, and RCRA metals in sample 02SB-08 were reported to be either below the CCL(a)/CCL(b) or reported as not detected at the method reporting limit. The additional analyses (VOCs, PEST/PCBs/RCRA metals) were run on sample 02SB-08 only due to the samples' TPH-O concentration and the borings' location down gradient of the former used oil tank. Chemical analytical results and CCL(a)s for soil are summarized in Tables 3 through 6. Complete laboratory reports for soil samples are contained in Appendix D.

4.2.2 Monitoring Well Soil Samples

None of the monitoring well soil samples contained TPH or BTEX concentrations that exceeded the CCL(a)s. Complete laboratory reports for soil samples are contained in Appendix D.

4.3 Water

Water samples were analyzed North Creek Analytical of Bothell, Washington. Eight soil boring water samples and five groundwater monitoring well water samples were analyzed for BTEX by EPA Method 8020, TPH-G by Method NWTPH-Gx, TPH-D and TPH-O by Method NWTPH-Dx, and total/dissolved lead by EPA 6020.

The water samples collected from the soil borings were collected using a stainless steel screen set in the open borehole. The results of the soil boring water samples were used to site the monitoring wells. Soil boring water samples are not considered to be representative of groundwater conditions. Water samples collected from the monitoring wells were collected according to standard IT Corporation procedures. These samples are considered to be representative of water quality at the site.

4.3.1 Soil Boring Water Samples

Total petroleum hydrocarbons as gasoline (TPH-G) were reported to be above the CCL(a) in water samples 02SB-02H2O and 02SB-09H2O at concentrations of 8.26 milligrams per liter (mg/L) and 1.36 mg/L, respectively. TPH-D was reported to be above the CCL(a) in samples 02SB-02H2O, 02SB-03H2O, and 02SB-07H2O at concentrations ranging from 1.07 to 3.12 mg/l. Benzene was reported to be above the CCL(a) in samples 02SB-02H2O through 02SB-05H2O, and 02SB-09H2O at concentrations ranging from 6.64 micrograms per liter (ug/L) to 639 ug/L. Dissolved lead in the soil boring water samples was either not present or present below the CCL(a). A summary of the water sample analytical results can be found in Table 7. Laboratory reports of the water analyses are contained in Appendix D.

4.3.2 Groundwater Monitoring Well Water Samples

The monitoring wells were sampled September 28, 1999. The TPH-G concentrations in the monitoring wells were similar to the concentrations found in the soil boring water samples: Two wells did not contain detectable TPH-G (02MW-02 and 02MW-05), two wells had TPH-G concentrations below the CCL(a), and remaining well (02MW-04) had a TPH-G concentration of 3.7 mg/l (Figure 6). Neither TPH-D nor TPH-O was detected in any of the wells. Benzene was not detected in wells 02MW-02 and 02MW-04 but was present in wells 02MW-01 and 02MW-03 at concentrations of 72.9 and 56.7 ug/l, respectively (Figure 7). These levels exceed the CCL(a) for benzene. Well 02MW-05 contained benzene at a concentration that was below the CCL(a). Total lead exceeded the CCL(a) in unfiltered samples collected from all wells except 02MW-03 (<1.00 ug/l; Figure 8). The highest total lead concentration was detected in 02MW-02 (133 ug/l). Dissolved lead samples were not collected from the monitoring wells. A summary of the analytical results can be found in Table 7. Laboratory reports of the water analyses are contained in Appendix D.

5.0 CONCLUSIONS

Nine soil borings and five groundwater monitoring wells were drilled in strategic locations to assess the subsurface conditions at Time Oil Co. Seattle Terminal Site 2750. The work was conducted during June and September, 1999.

Groundwater was encountered at depths of two to 23 feet bg during drilling. Static water levels at the site ranged from 6.02 to 17.85 feet bg in the groundwater monitoring wells.

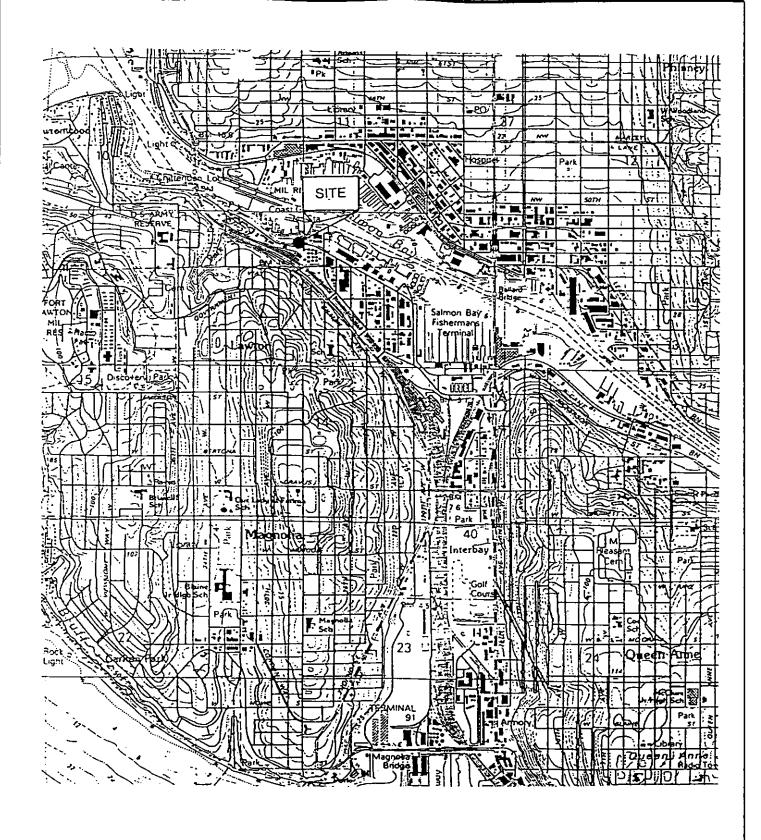
With the exception of one soil sample from boring 02SB-08 and two samples from 02SB-01, the site soils are in compliance with the MTCA CCL(a)s for all site contaminants of concern. The three samples cited above all contained non-compliant levels of TPH-D or TPH-O only.

Site groundwater is impacted with gasoline range hydrocarbons, and benzene. The impacts appear to be restricted to the site wells located in the middle and upgradient of the site relative to the original site work performed in 1991-2. Total lead in the groundwater exceed the CCL(a), however, dissolved lead samples collected from soil boring water samples indicates that the lead at the site is due to suspended sediments.

6.0 RECOMMENDATIONS

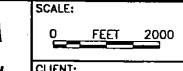
IT recommends additional assessment of the groundwater conditions at the site. This includes monitoring of the newly installed wells and the installation of additional borings/wells to define the extent of the groundwater impacts to the south, east, and west of the study area.

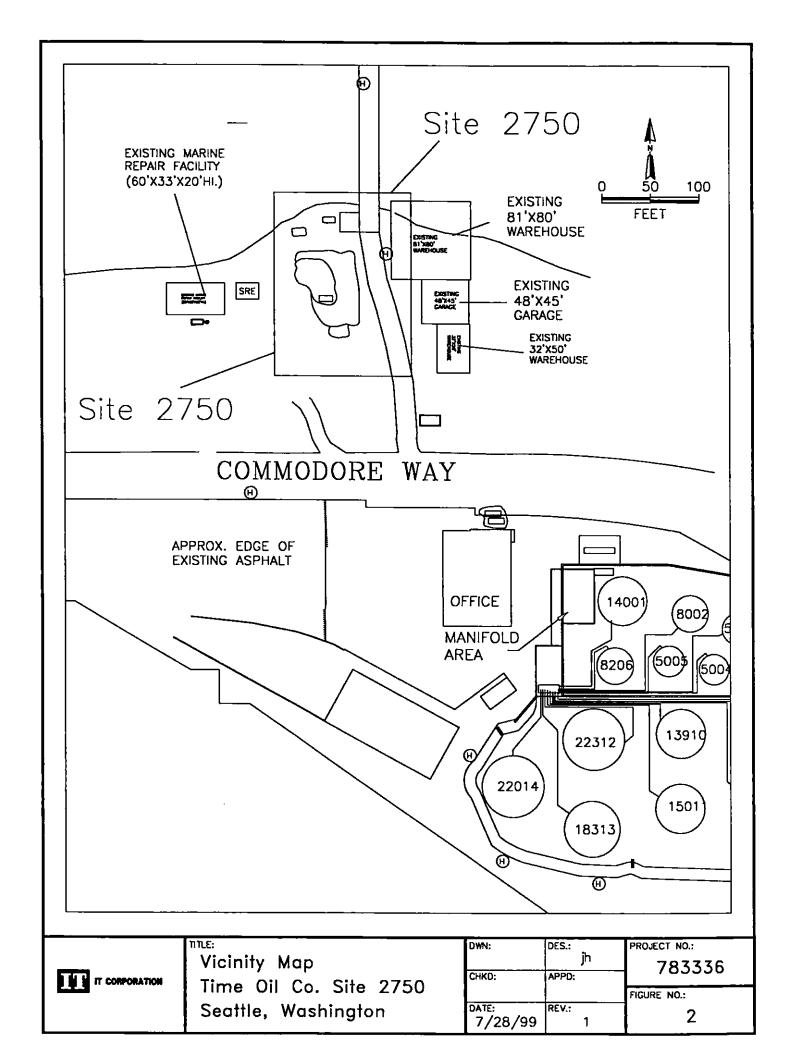
7.0 REFERENCES

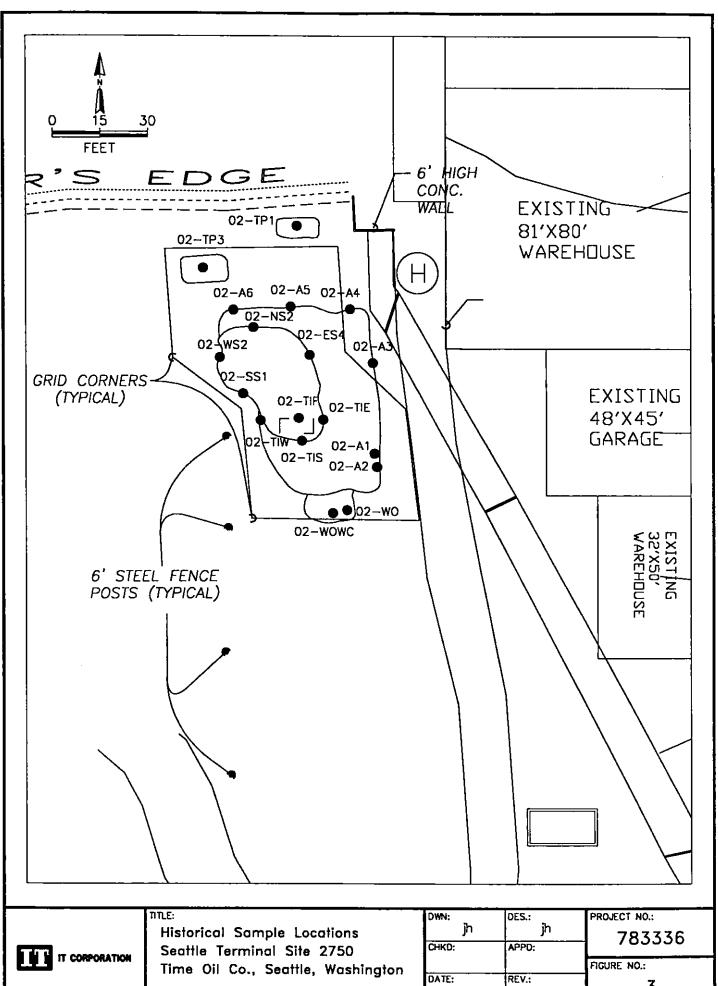

IT Corp., 2000. Site Assessment Report – Time Oil Co. Site 2737, 2737 West Commodore Way, Seattle, Washington. January 26, 2000.

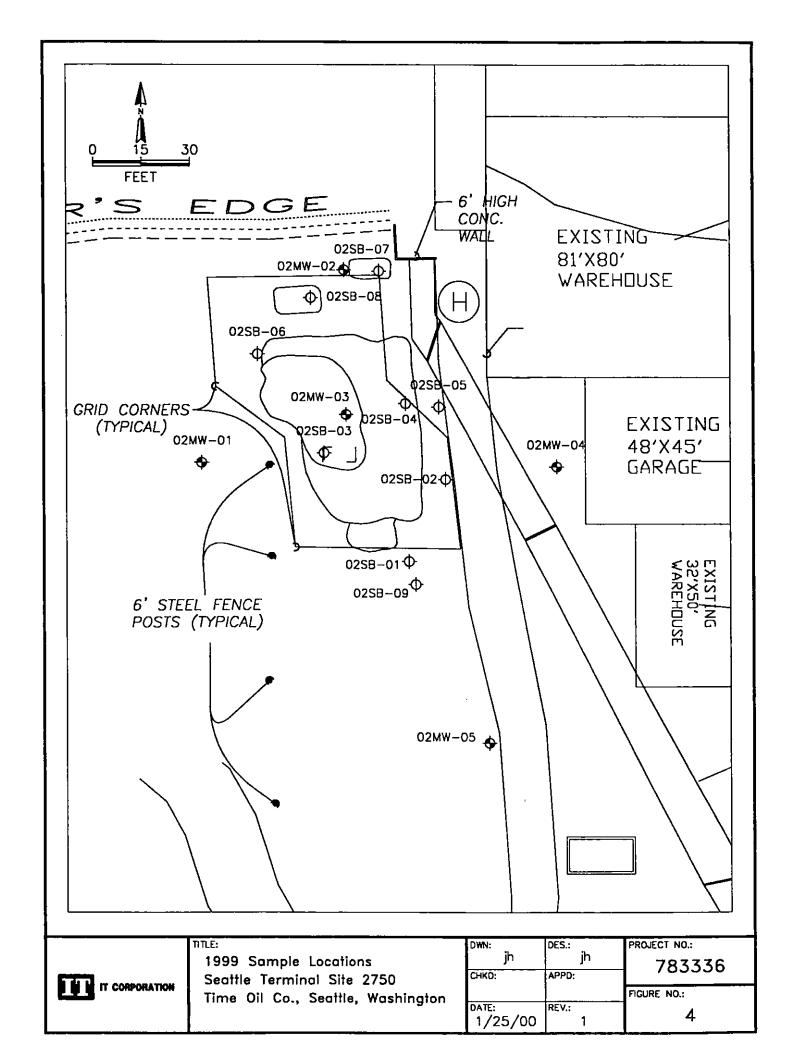
Sloan, Scott B., 1991. Letter report "Underground Storage Tank Site Check/Site Assessment as Seattle Terminal", Time Oil Co. Company. December 30, 1991.

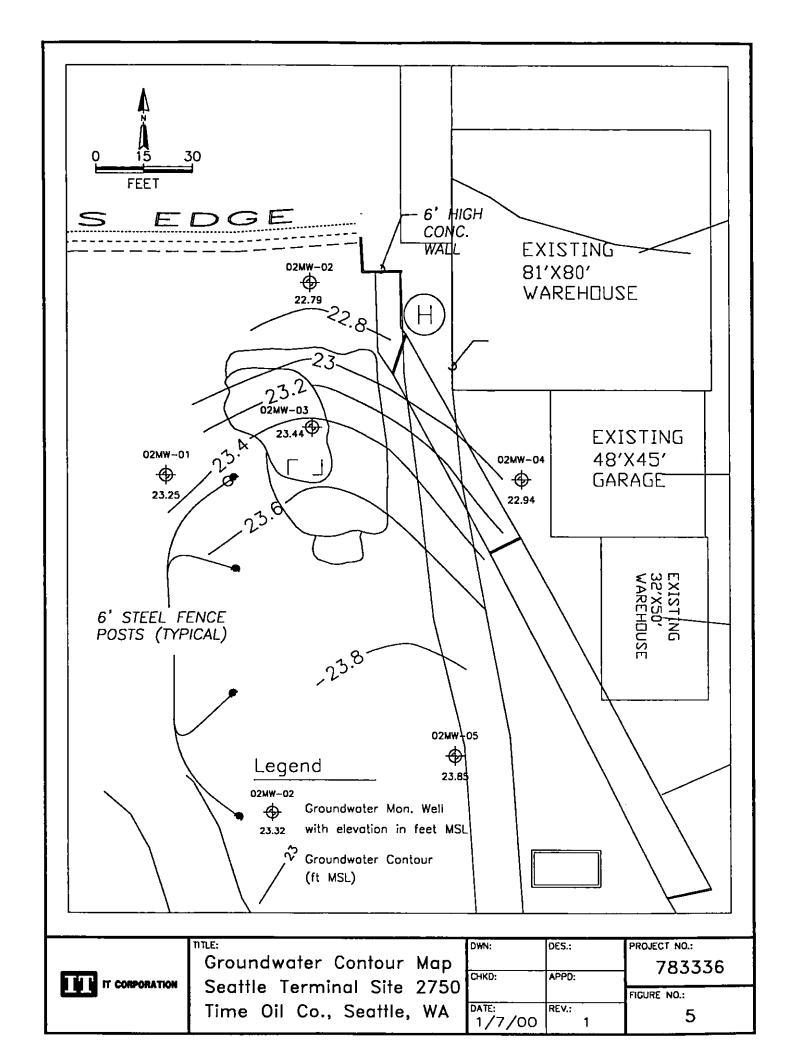
Sloan, Scott B., 1992. Letter report "Excavating Activities Conducted at Former Waste Oil Tank Location Former Time Oil Co. Maintenance Facility", Time Oil Co. Company. September 22, 1992.

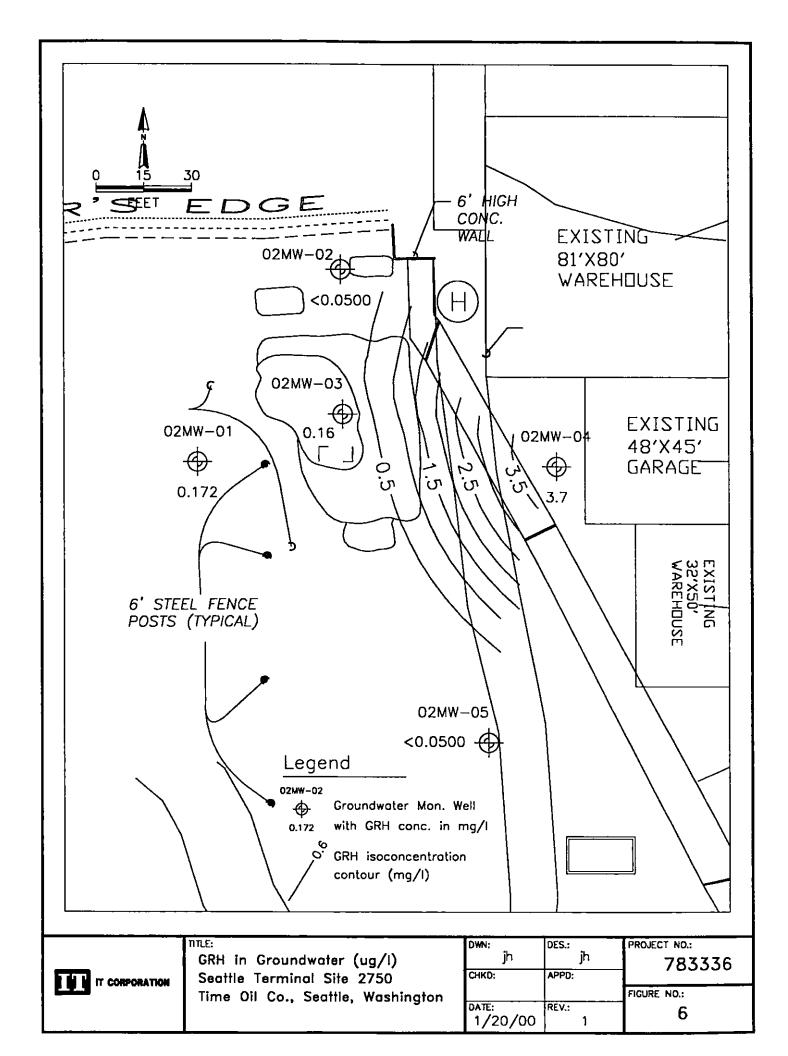

Washington State Department of Ecology. Model Toxics Control Act, WAC 173-340. Revised Jan. 1996.

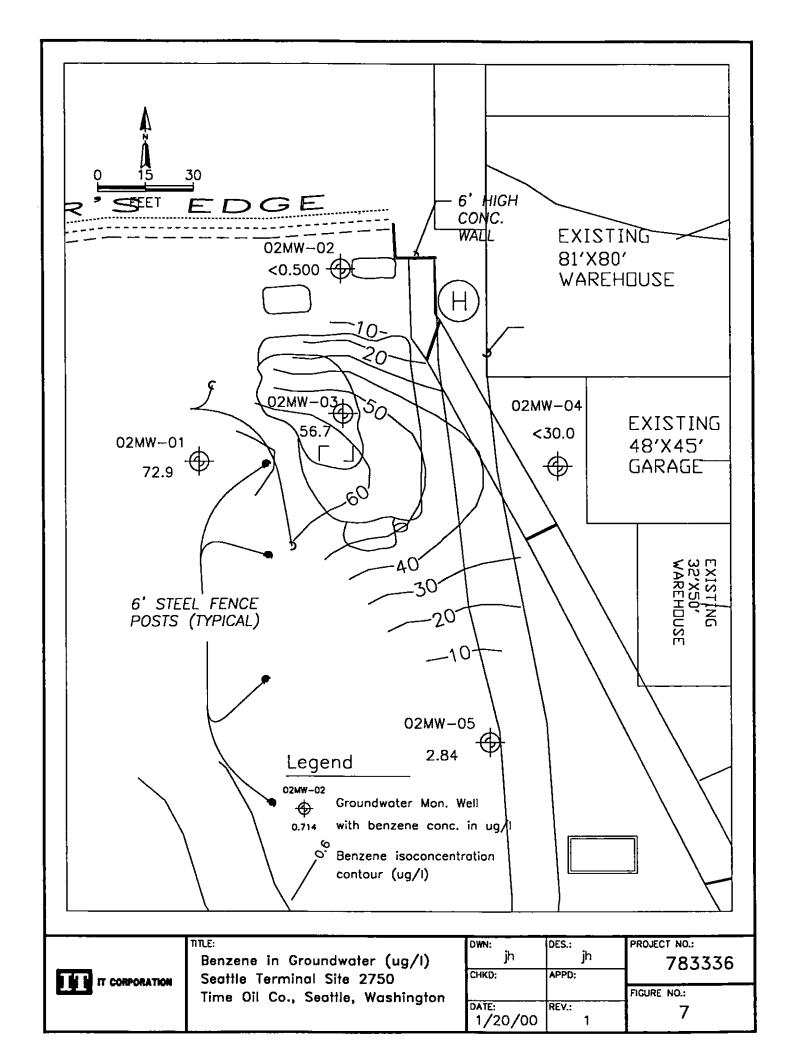


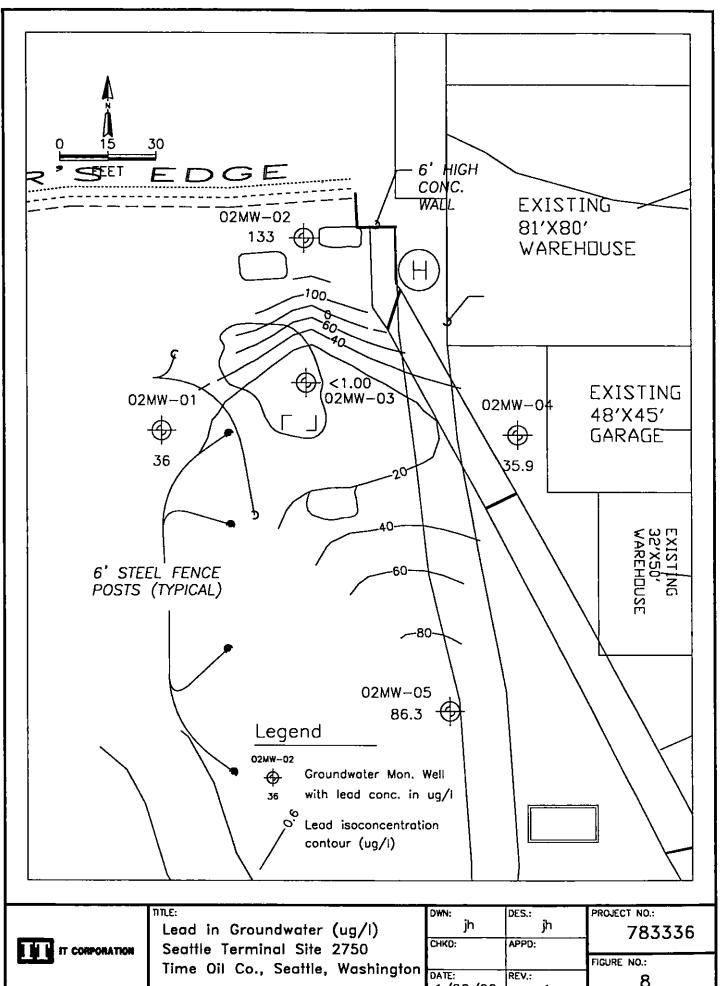

SOURCE: U.S.G.S. 7.5' QUAD SHEET Seattle North, Washington Photorevised 1983

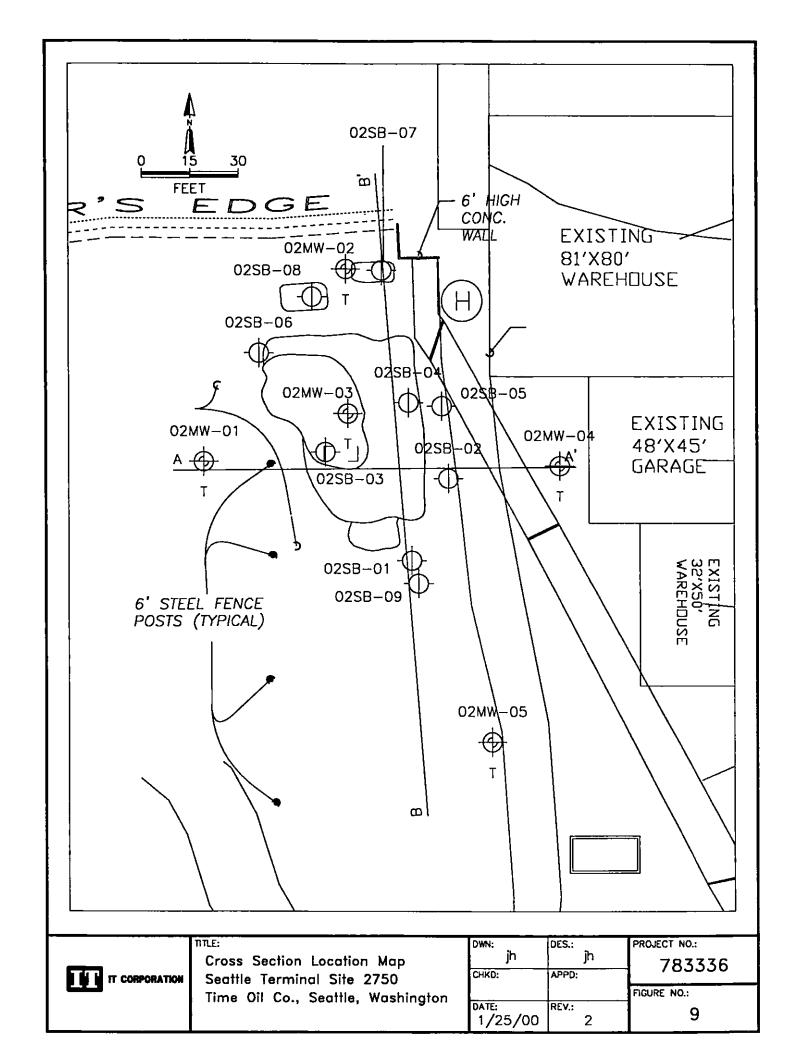

SITE LOCATION MAP

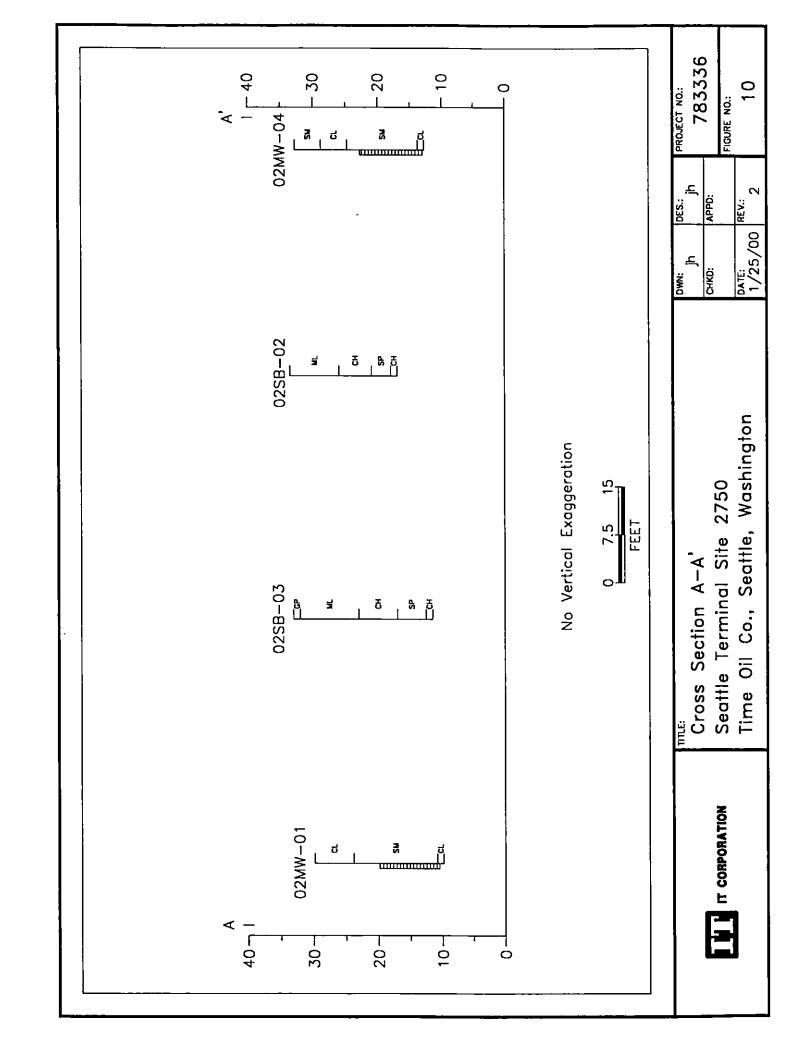

CLIENT: Time Oil Co.	DATE: 7/28/99
LOCATION: 2737—3031 West Commodore Way Seattle, Washington	FIGURE:

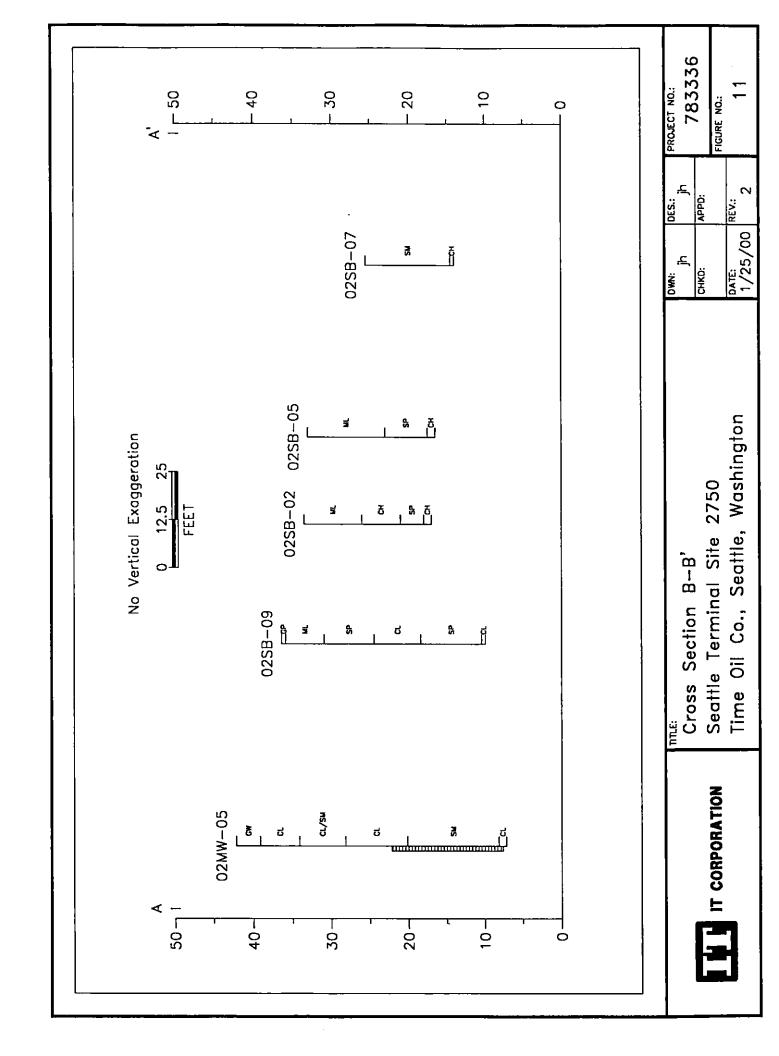





own: jh	DES.: jh	PROJECT NO.:
CHKD:	APPO:	783336
		FIGURE NO.:
DATE: 1/25/00	REV.: 2	3







8 1/20/00

TABLES

Page: 1 of 1 Date: 01/24/00

Table 1a.

Drilling Summary for Soil Borings
Time Oil Co. Site 2750
2750 West Commodore Way, Seattle, WA

SITE	SURVEY CC	OORDINATES Y	BORE DEPTH TOTAL	DATE	DRILLING METHOD	DRILLER	CONSULTANT
			(feet bgs)	5)			
02SB-01	4176.5	5448.0 0.	0.00 14.00	l	em Auger		
02SB-02	4187.8	5473.7 0.	0.00 16.50) 06/07/99 Hollow Stem Auger	am Auger	CASCADE	
02SB-03	4149.8		0.00 21.50		em Auger	CASCADE	
	4175.5	5497.3 0.	0,00 16,50) 06/07/99 Hollow Stem Auger	am Auger	CASCADE	
02SB-05	4185.8		0.00 16.50	06/07/99 Hollow Stem Auger	em Auger	CASCADE	
02SB-06	4129.2	5512.7 0.	0.00 11.50	06/07/99 Hollaw Stem Auger	əm Auger	CASCADE	
	4167.2				sm Auger	CASCADE	
02SB-08	4145.7	5530.2 0.	00.6 00.0		am Auger	CASCADE	
	4178.6	5440.8 0.	0.00 26.50) 06/11/99 Hollow Stem Auger	əm Auger	CASCADE. IT	

Page: 1 of 1 Date: 01/24/00

Table 1b.

Drilling Summary for Monitoring Wells
Time Oil Co. Site 2750
2750 West Commodore Way, Seattle, Washington

STRE	WELL	TOTAL	GROUND SURFACE ELEVATION	MP	CASING	w -	SCREENS (feet bgs)		ANNULAR FILLS (feet bgs)	
	(feet bgs)	(feet bgs) (feet bgs)	(feet)	(feet)	(inchas)	INTERVAL	DESCRIPTION		INTERVAL	TYPE
02MW-01	19.33	20.00	0.00	29.34	2.00	10.0-19.3	Slotted PVC			
02MW-02	9.82	10.00	00'0	25.20	2.00	5.0-9.8	Slotted			
02MW-03	19.80	20.00	0.00	33.02	4.00	10.0-19.8	Slotted			
02MW-04	19.80	20.00	00:0	32.31	2.00	10.0-19.8	Slotted	-		
02MW-05	34.54	35.00	0.00	41.70	2.00	20.0-34.5	Slotted			
							PVC			

Table 2
Monitoring Well Gauging Results
Time Oil Co. Site 2750
2750 West Commodore Way, Seattle, Washington

DATE	SITE	MP ELEVATION TIME	TIME	DEPTH TO WATER	FLOATING PRODUCT THICKNESS	WATER ELEV.	CHANGE IN WATER ELEV.	EQUIV. FRESH WATER HEAD
9/28/99 02MW-	02MW-01	29.34	10:05	60'9	0	23.25 NA	NA	23.25
9/28/99 02MW-(02MW-02	25.20	9:55	2.41	0	22.79 NA	NA	22.79
9/28/99 02MW-(02MW-03	33.02	10:00	9.58	0	23.44 NA	NA	23.44
9/28/99 02MW-(02MW-04	32.31	9:50	9.37	0	22.94 NA	NA	22.94
9/28/99 02MW-(02MW-05	41.70	9.45	17.85	0	23.85 NA	NA	23.85

All Measurements in Feet Based on Mean Sea Level

Page: 1A of 2B Date: 03/07/00

Table 3
Soil Sample Analytical Results - NWTPH/BTEX/Lead
Time Oil Co. Site 2750
2750 West Commodore Way, Seattle, WA

				Oferel Punte	Manual Bassas				
SITE	DATE	DEPTH (ft)	Hydrocarbons	Hydrocarbons	Hydrocarbons	Benzene	Toluene	Ethylbenzene	Xylenes (total)
			(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
MTCA/A/U			100	200	200	0.5	40	20	20
02MW-01	09/13/99	5.00	<5.00	<10.0	<25.0	<0.0500	<0.0500	<0.0500	<0.100
02MW-01	09/13/99	10.00	<5.00	<10.0	<25.0	<0.0500	<0.0500	< 0.0500	<0.100
02MW-01	09/13/99	15.00	<5.00	10.5	27.7	<0.0500	<0.0500	<0.0500	<0,100
02MW-01	09/13/99	19.00	<5.00	<10.0	<25.0	<0.0500	<0.0500	< 0.0500	<0.100
02MW-04	09/13/99	2:00	<5,00	<10.0	<25.0	<0.0500	<0.0500	<0.0500	<0.100
02MW-04	09/13/99	5.00	6.88	<10.0	<25.0	< 0.0500	< 0.0500	< 0.0500	<0.100
02MW-04	09/13/99	10.00	<5.00	<10.0	<25.0	<0,0500	<0.0500	<0,0500	<0,100
02MW-04	09/13/99	15.00	<5.00	<10.0	<25.0	<0.0500	<0.0500	< 0.0500	<0.100
02MW-04	09/13/99	19.00	<5.00	<10.0	<25.0	<0.0500	<0.0500	<0.0500	<0,100
02MW-05	09/13/99	5.00	<5.00	<10.0	<25.0	<0.0500	<0.0500	<0.0500	<0.100
02MW-05	09/13/99	10.00	<5.00	<10.0	<25.0	<0.0500	<0.0500	<0.0500	<0.100
02MW-05	09/13/99	15.00	< 5.00	10.3	37.0	<0.0500	< 0.0500	<0.0500	<0.100
02MW-05	09/13/99	20.00	<5.00	<10,0	<25.0	<0,0500	<0.0500	<0.0500	<0.100
02MW-05	09/13/99	25.00	<5.00	<10.0	<25.0	0.222	<0.0500	< 0.0500	<0.100
02MW-05	09/13/99	30,00	<5.00	<10.0	<25.0	<0.0500	<0.0500	<0.0500	<0.100
02MW-05	09/13/99	34.00	<5.00	< 10.0	<25.0	<0,0500	<0.0500	<0.0500	<0.100
02SB-01	66/0/90	3,50	<5.00	540	1320	<0.0500	<0.0500	<0.0500	<0.100
02SB-01	06/04/99	6.00	<5.00	285	712	<0,0500	<0.0500	< 0.0500	<0.100
0258-01	66/20/90	8.00	<5,00	<10.0	<25.0	<0.0500	<0.0500	<0.0500	<0,100
02SB-01	66/0/90	10.50	< 5.00	<10.0	31.2	<0.0500	<0.0500	<0.0500	<0.100
02SB-01	66/20/90	12.50	<5,00	<10,0	<25.0	<0.0500	0.0598	<0.0500	<0.100
02SB-02	66/20/90	3.50	<5.00	14	42.7	<0,0500	<0.0500	< 0.0500	<0.100
0258-02	66/01/90	8.50	<5.00	<10.0	<25.0	<0.0500	<0,0500	<0.0500	<0.100
02SB-02	06/02/99	13.50	<5.00	<10.0	<25.0	< 0.0500	<0.0500	<0.0500	<0.100
02SB-02	96/0/90	15.00	<5.00	<10.0	<25.0	<0.0500	<0.0500	<0.0500	<0.100
02SB-03	66/20/90	5.50	<5.00	<10.0	<25.0	<0,0500	<0.0500	<0.0500	<0.100
Values represent total concentrations unless noted	otal concentrat	ions unless not		< = Not detected at indicated reporting limit	ig limit=Not analyzed	pezi			
Limit 2 is used for results comparison	results compai	- 1	For RCL REPT_01S	MTCA/	MTCA/A/U = MTCA Method A Cleanup Levels (revised 1/96)	d A Cleanup Level	s (revised 1/96)		

Page: 1B of 2B Date: 03/07/00

Table 3
Soil Sample Analytical Results - NWTPH/BTEX/Lead
Time Oil Co. Site 2750
2750 West Commodore Way, Seattle, WA

MTCA/A/U = MTCA Method A Cleanup Levels (revised 1/96)	ison For RCL REPT_01S	Limit 2 is used for results comparison
Not detected at indicated reporting limit = Not analyzed		Values represent total concentrations unless noted
	5.50 4.49	02SB-03 06/07/99
	15.00 2.29	02SB-02 06/07/99
	13.50 2.79	02SB-02 06/07/99
	8.50	02SB-02 06/07/99
	3.50 22.8	02SB-02 06/07/99
	12.50 6,18	02SB-01 06/07/99
	10.50 6.03	02SB-01 06/07/99
	8.00 2.8	02SB-01 06/07/99
	6.00 15.1	02SB-01 06/07/99
	3,50	02SB:01 06/07/99
	34.00 3.46	O2MW-05 09/13/99
	30.00	02MW-05 09/13/99
	25.00 1.69	02MW-05 09/13/99
	20.00 3.97	O2MW-05 09/13/99
	15.00 6.92	02MW-05 09/13/99
	10.00 2.82	02MW-05 09/13/99
	5.00 6.91	02MW-05 09/13/99
	19.00 6.77	02MW-04 09/13/99
	15.00 2.26	02MW-04 09/13/99
	10.00	O2KW-04 09/13/99
	5.00 7.15	02MW-04 09/13/99
	2.00 5.04	O2MW-04 09/13/99
	19.00 6.46	09/13/99
	15,00	O2MW-01 09/13/99
	10.00 3.59	02MW-01 09/13/99
	5,00	02MW-01 09/13/99
	250	MTCA/A/U
	DEPTH (ft) Lead (mg/kg)	SITE DATE

of 2B Date: 03/07/00 Page: 2A

Soil Sample Analytical Results - NWTPH/BTEX/Lead 2750 West Commodore Way, Seattle, WA Time Oil Co. Site 2750 Table 3

STE	DATE	ОЕРТН (М	Gasoline Range Hydrocarbons (mg/kg)	Diesel Range Hydrocarbons (mg/kg)	Heavy Oil Range Hydrocarbons (mg/kg)	Benzene (mg/kg)	Toluene (mg/kg)	Ethylbenzene (mg/kgl)	Xyfenes (total) (mg/kg)
MTCA/A/U			100	200	200	0.5	40	20	20
02SB-03	66/20/90	11.00	<5.00	<10.0	<25.0	<0.0500	<0.0500	<0.0500	<0.100
02SB-03	66/20/90	16.00	<5.00	<10.0	<25.0	< 0.0500	<0.0500	< 0.0500	<0.100
02SB-03	66/20/90	20.00	<5.00	11,3	38.8	<0.0500	<0.0500	<0.0500	<0,100
02SB-04	66/20/90	10.50	<5.00	<10.0	<25.0	<0.0500	<0.0500	<0.0500	<0.100
02SB-04	66/20/90	15,00	<5,00	15.2	62.5	<0.0500	<0.0500	<0,0500	<0,100
02SB-05	66/20/90	6.00	<5.00	17.6	64.5	< 0.0500	<0.0500	<0.0500	<0.100
02SB-05	66/20/90	11.00	<5.00	<10.0	<25.0	<0.0500	<0.0500	<0.050.0	<0,100
02SB-05	66/20/90	15.50	<5.00	<10.0	<25.0	<0.0500	<0.0500	<0.0500	<0.100
02SB-06	66/20/90	5.50	<5.00	<10.0	<25.0	<0.0500	<0.0500	<0.0500	<0.100
02SB-06	66/20/90	10.50	<5.00	< 10.0	<25.0	<0.0500	<0.0500	<0.0500	<0.100
0258-07	66/20/90	5.50	<5.00	61.8	53.1	<0.0500	<0.0500	<0,0500	0.134
02SB-07	66/20/90	10.50	< 5.00	<10.0	<25.0	<0.0500	<0.0500	<0.0500	<0.100
02SB-08	66/20/90	3.50	72.6	127	428	<0.0500	<0.0500	<0.0800	<0.570
02SB-08	66/20/90	8.50	<5.00	<10.0	38.1	<0.0500	<0.0500	<0.0500	<0.100
02SB-09	06/11/90	6.00	<5.00	<10.0	<25.0	<0.0500	<0.0500	<0.0500	<0.100
02SB-09	06/11/90	10.00	<5.00	<10.0	<25.0	<0.0500	0.0699	<0.0500	<0.100
02SB-09	06/11/90	15.50	<5.00	<10.0	<25.0	<0.0500	<0.0500	<0.0500	<0.100
02SB-09	06/11/99	20.50	<5.00	11	<25.0	<0.0500	<0.0500	<0.0500	<0.100

Values represent total concentrations unless noted <=Not detected at indicated reporting limit ---=Not analyzed

"godelbedt"

Limit 2 is used for results comparison For RCL REPT_01\$

MTCA/A/U = MTCA Method A Cleanup Levels (revised 1/96)

Page: 2B of 2B Date: 03/07/00

Table 3
Soil Sample Analytical Results - NWTPH/BTEX/Lead
Time Oil Co. Site 2750
2750 West Commodore Way, Seattle, WA

	000000000000000000000000000000000000000										:				_		_				
			A. 100 000 000 000 000 000 000 000 000 00																		
					:																
									-												
				99999																	
																				200	
			-																		
Lead (mg/kg)	250	6.16	2.99	3.5	2.57	2.97	18	3.72	4.23	2.78	2.2	7.85	2.4	10.6	3.02	•	į	1	ļ		
ДЕРТН (14)		11,00	16.00	20.00	10.50	15.00	6.00	11,00	15.50	5.50	10.50	5.50	10.50	3.50	8.50	6.00	10.00	15.50	20.50	gen in the constant of the person of the constant of the const	
									·	ACTO: 6:00:00 10:00:00 10:00:00 10:00:00 10:00:00											
DATE		66/20/90	06/01/99	06/02/93	06/01/99	66/0/90	06/01/99	66/20/90	06/02/99	66/20/90	06/0/90	06/0/99	66/0/90	66/20/90	66/0/90	06/11/99	06/11/99	08/11/99	06/11/99		
SITE	MTCA/A/U	¥03	3-03	3-03	3-04	3.04	3-05	3-05	3-05	€00	3-06	₹07	3-07	€08	3-08	3-09	80.8	£09	3-09		
	MTC	02SB-03	02SB-03	02SB-03	02SB-04	02SB-04	0258-05	0258-05	02SB-05	02SB-06	02SB-06	0258-07	02SB-07	02SB-08	02SB-08	02SB-09	02SB-09	02SB-09	02SB-09	1 200	

Values represent total concentrations unless noted <= Not detected at indicated reporting limit ---= Not analyzed

Limit 2 is used for results comparison For RCL REPT_01S

MTCA/A/U = MTCA Method A Cleanup Levels (revised 1/96)

Page: 1A of 2A Date: 03/07/00

Table 4 Soil Sample Analytical Results - VOCs Time Oil Co. Site 2750 2750 West Commodore Way, Seattle, WA

CONSTITUENT (Units in mg/kg)	SITE SAMPLE ID	02SB-08 02SB-08A
CONTROL CONTROL	DATE	06/07/99
	DEPTH (ft)	3.50
Carbon tetrachloride	· · · · · · · · · · · · · · · · · · ·	<0.100
Acetone		<2.00
Chloroform		<0.100
Benzene		
1,1,1-Trichloroethane		<0.100
Bromomethane		<0.100
Chloromethane		<0.500
Dibromomethane		<0.100
Bromochloromethane		<0.100
Chloroethane		<0.100
Vinyl chloride		<0.100
Methylene chloride		<1.00
Carbon disulfide		<0.100
Bromoform		<0.100
Bromodichloromethane		<0.100
1,1-Dichloroethane		<0.100
1,1-Dichloroethene	and the second s	<0.100
Trichlorofluoromethane		<0.100
Dichlorodifluoromethane		<0.100
1,2-Dichloropropane		<0.100
2-Butanone	:: 955.65797970c 975.6765.659555	<1.00
1,1,2-Trichloroethane Trichloroethene		<0.100
		<0.100
1,1,2,2-Tetrachloroethane		<0.100
1,2,3-Trichlorobenzene Hexachlorobutadiene		<0.100 <0.100
Naphthalene		<0.100
\$45 <u>000000000000000000000000000000000000</u>		A CONTROL OF THE CONT
o-Xylene 2-Chlorotoluene		<0.100 <0.100
		<0.100 <0.100
1,2,4-Trimethylbenzene		0.102
1,2-Dibromo-3-chloropropane		<0.500
1,2,3-Trichloropropane	ার জনসভূতভূতে নর সংগ্রন্থকারী কৃতি। -	<0.100

Limit 2 is used for results comparison For RCL 8260BNCAB

Page: 2A of 2A Date: 03/07/00

Table 4 Soil Sample Analytical Results - VOCs Time Oil Co. Site 2750 2750 West Commodore Way, Seattle, WA

CONSTITUENT	(Units in mg/kg)	SITE SAMPLE ID DATE DEPTH (ft)	02SB-0 02SB-0 06/07/9 3.50	ABC				
tert-Butylbenzene			<0.10)0	The test part separate	<u> </u>	**************************************	<u> </u>
Isopropylbenzene			<0.10	ю				
p-Isopropyltoluene			<0.10	00				
4-Nitroaniline			<0.20	O.				
Ethylbenzene								
Styrene			<0,10					
n-Propylbenzene		· · · · · · · · · · · · · · · · · · ·	<0.10					
n-Butylbenzene			<0,10	003000000 10110 800000000000000000000000				
4-Chlorotoluene	namenten metalogis, mma suas againar		<0.10		111 de 2000 de la 1956, 50			nannosta, japaggg
1,4-Dichlorobenzen	the stabonic on the same		<0.10	Mediend in a management product participation for	03030000000000000000000000000000000000			
1,2-Dibromoethane		Sandariana, 1889, 1889	<0.10		Aumentonia juga	deline Massagorde (Lotte, 1998)		0.0.0000000000000000000000000000000000
1,2-Dichloroethane	Address Strangers and Control of the Control		<0.10 <1.00					
4-Methyl-2-pentano 1,3,5-Trimethylben			<1.00 <0.10					
Bromobenzene	Zene		<0.10 <0.10	estrantin en era en en abandaden ibideaka				
Toluene			7 -		40732000 - 547			
Chlorobenzene	10 000000 00000000000000000000000000000		<0.10)O				25500000
1,2,4-Trichlorobenz	zene		<0.10					
Dibromochlorometh	propriedu Berrael valueses in the contraction of the	No. 1807 See Million State Consultation	<0.10	wiscon recorded has known approximately a	Balance and the second	A. 31000000000 toecoro. (Aug. 1971) 2. 1	(2001.65.) 3000.000.0000.0000	/35000Mc200.0550.
Tetrachloroethene			< 0.10	OC				
sec-Butylbenzene			<0.10	ю				
1,3-Dichloropropan cis-1,2-Dichloroeth	at the product of the		<0.10 <0.10	person in the invitation to be become tubed				
trans-1,2-Dichloroe	thene		<0.10	סכ				
1,3-Dichlorobenzen	iė		<0.10)0	e a 190 presprende	ye (000s/00000sesses) ye is	**************************************	and other seasons
1,1-Dichloropropen	64 (1909) 290 (2014) 4 (17)		<0.10	WW 90000000000000000000000000000000000				
2,2-Dichloropropan	6 200	e e e e e e e e e e e e e e e e e e e	<0.10				A	
2-Нехапопе			<1.00	and a contract of the contract				
1,1,1,2-Tetrachlord		to a secondary	<0.10)0		t to see a conjugation		
Methyl tert-butyl er	The second of th							
cis-1,3-Dichloropro		William Colonia Colonia	<0.10		the second control of	er er Seter i de 1900e.	the second control of the second	12 86 1961 GA
trans-1,3-Dichlorop	ropene		<0.10) 0				

Limit 2 is used for results comparison For RCL 8260BNCAB

Page: 1A of 1A Date: 01/25/00

Table 5 Soil Sample Analytical Results - PEST/PCBs Time Oil Co. Site 2750 2750 West Commodore Way, Seattle, WA

CONSTITUENT	(Units in ug/kg)	SITE SAMPLE ID DATE	02SB-08 02SB-08A 06/07/99
· 44 DDT		DEPTH (ft)	3,50
1,4'-DDT CHLORDANE			<1.00 <1.00
gamma-BHC (Lin	dane)		<1.00 <1.00
DIELDRIN	odiio,		<2.00
ENDRIN		1666: 1756: 1866: 1867: 1864: 1786: 1867: 1866: 186	<2.00
Methoxychlor			<4.00
1,4'-DDD	os antinuo il oni oi le luo mendacendenno de	er i sveture ressessume av det keast skielitede tak	<1.00
1,4'-DDE			<1.00
HEPTACHLOR			<1.00
ALDRIN			<1.00
alpha-BHC			<0.500
oeta-BHC			<0.900
delta-BHC			<0.600
Endosulf an I			<1.00
Heptachlor epoxi	de		<1.00
Endosulfan sulfat	te		<1.00
alpha-Chlordane			<0.800
gamma-Chlordan	ė		<0.700
Endrin aldehyde	en sensueenseelk ennembronistisme	6505016950359566001635950555557146664.co	<2.00
Toxaphene			<50.0
Aroclor 1260	ie ir klastopastoja (1826), Status (1826)		<50.0
Aroclor 1254			<50.0
Aroclor 1268 Aroclor 1221		1,654,008,000,000,000,000,000,000	<50.0
Aroclor 1221 Aroclor 1232			<50.0 <50.0
Aroclor 1232 Aroclor 1248			<50.0 <50.0
Aroclor 1246 Aroclor 1016			<50.0
Endosülfan II			<2.00
Aroclor 1262			<50.0
Aroclor 1242			<50.0
satiri TinkTsWin J			

Values represent total concentrations unless noted <= Not detected at indicated reporting limit --- = Not analyzed

Limit 2 is used for results comparison For RCL 8081A/8082

Page: 1A of 1A Date: 01/25/00

Table 6 Soil Sample Analytical Results - RCRA Metals Time Oil Co. Site 2750 2750 West Commodore Way, Seattle, WA

CONSTITUENT (Units in mg/kg)	SITE SAMPLE ID DATE DEPTH (ft)	02SB-08 02SB-08A 06/07/99 3,50	02SB-08 02SB-08B 06/07/99 8.50
Arsenic		4.78	
Barium Cadmium		86.3 <0.500	
Chromium		33,1	
Lead		10.6	3.02
Mercury Selenium		 <0.500	2 1.
Silver		<0.500	
Values represent total concentrations	unless noted <=	Not detected at india	cated reporting limit= Not analyzed
Limit 2 is used for results comparise			

of 1B Date: 03/07/00 Page: 1A

2750 West Commodore Way, Seattle, WA Groundwater Sample Analytical Results Time Oil Co. Site 2750 Table 7

	9.66	1:31	1.89	639	<0.500	0,617	1,36	06/11/99	02SB-09
•	2.78	<0.500	1.25	1.59	<0.500	0.668	0.128	66/0/90	02SB-08
	<1.00	<0.500	<0.500	<0.500	0.626	1.07	<0.0500	06/02/99	02SB-07
•	4.03	0.585	1,11	<0.500	<0.500	0.456	0.103	66/0/90	02SB-06
	20.2	19.9	4.18	19.9	<0.500	0.865	0.685	06/07/99	02SB-05
•	8.18	1.62	2.28	59.8	0.503	0.867	0.0556	06/01/99	02SB-04
	1.93	0.617	1.36	6,64	<0.500	1,07	<0,0500	66/20/90	02SB-03
1	1110	459	155	214	<0.500	3.12	8.26	66/0/90	02SB-02
86.3	<1.00	<0.500	<0.500	2.84	<0.500	<0,250	<0,0500	09/28/99	02MW-05
35.9	473	226	185	<30.0	<0.500	<0.250	3.7	09/28/99	02MW-04
<1.00	414	<0.500	1.13	56.7	<0.500	<0.250	0,16	09/28/99 0,16	02MW-03
133	<1.00	<0.500	<0.500	<0.500	< 0.500	<0.250	<0.0500	09/28/99	02MW-02
36	<1.00	<0.500	0.811	72.9	<0.500	<0.250	0.172	09/28/99 0.172	02MW-01
5.0	20.0	30.0	40.0	5.0	1.0000	1.0000	1.0000		MTCA/A/U
	(l/gn)	(//Bn)	(l/gn)	(//Bn)	(Wg/J)	(mg/l)	(mg/l)		
pen -	Xylenes (total)	Ethylbenzene	Toluene	B Benzene	neavy ou hang Hydrocarbons	Ureset Kange Hydrocarbons	Gasoline kange Hydrocarbons	DATE	SITE
Total				ď	Heavy Oil Rance	Dissal Banna	Gasoline Rande		
								gedeel hid day libeda.cap.or	

Values represent total concentrations unless noted <=Not detected at indicated reporting limit ---=Not analyzed

Limit 2 is used for results comparison For RCL REPT_02W

MTCA/A/U = MTCA Method A Cleanup Levels (revised 1/96)

of 1B Date: 03/07/00 Page: 1B

> 2750 West Commodore Way, Seattle, WA Groundwater Sample Analytical Results Time Oil Co. Site 2750 Table 7

						1303	
		93943 13843 13843		20000 20000 20000 20000	32.1 8537 : 1008		
	2000 2000 2000 2000 2000	6000			30000 30000 30000		2000 2000 2000 2000
						5.00 (5.00 (5.00 (5.00 (5.00 (5.00 (5.00)	
					#61.1 285.1 10.383		9 34 9 34 8 36 8
	2000 2000 2000 2000 2000						
			60000 60000 90000		- 8		
						- 10000 - 10000 - 10000 - 10000 - 10000 - 10000	\$26600 03000 03000 03000 03000 03000
				90000 90000 90000 90000			
					180000 180000 180000 180000		
					96356 96366 96366		
							20.30 (5 90.00 (5 20.00 (7) 90.00 (7) 90.00 (8) 90.00 (8)
							0.0000 0.0000 0.0000 0.0000 0.0000
							00000 00000 00000 00000 00000
					alt (0 1 1) 0 20 2 3 3	600 600 600 600	2000 B
	600000 00000 00000 00000 00000						
						8.33.° 8.33.° 8.33.°	\$-338 3333 9336 9336
			1888		636k 835k 835k	9131 233	5.63.6 3.53.6 3.63.6 5.63.6
	8000 6000 9000 9000 9000	2000 2000 0 0 0 0 0 0 0 0 0 0 0 0			00.187) 970. 80.00		
	2000 2000 2000 2000 2000 2000					10000 10000 10000 10000 10000	
				2000 2000 2000 2000			
				92000 9 100 6000 8000			
					100	0000 • 0000 • 0000 • 0000 •	600
	2005. 2005. 2006.				2 117 2007 8 3 4 6 8 1 5 6		
			90000 90000 90000 90000 90000 90000				
3				0	0	00	0
Dissolved Lead (ug/l)	5,0	1 1		: V	<1.0 1.29	^ <u>^</u>	×1.00
<u>ш</u>	3/99	8/99 3/99	09/28/99 09/28/99	06/07/99 06/07/99 <1.00	06/07/99 <1.00 06/07/99 1.29	06/07/99 <1.00 06/07/99 <1.00	> 66/07/90 66/11/90
DATE	09/28/99	09/28/99	09/28/99 09/28/99	96/0/90	0/90	0/90	06/0
SITE	⊋ +	ପ୍ର ଜ	4 ro			₩. 	
	MTCA/A/U 02MW-01	02MW-02 02MW-03	02MW-04 02MW-05	02SB-02 02SB-03	02SB-04 02SB-05	02SB-06 02SB-07	02SB-08 02SB-09
	∑ %	8 6	8 8	8 6	8 8	8 8	8 8

Values represent total concentrations unless noted <=Not detected at indicated reporting limit ---=Not analyzed

Limit 2 is used for results comparison For RCL REPT_02W

MTCA/A/U = MTCA Method A Cleanup Levels (revised 1/96)

APPENDIX A PREVIOUS REPORTS

PHONE 285-2400 CABLE ADDRESS: TIMOIL (FAX) 206-283-8036

SEATTLE TACOMA PORTLAND STOCKTON RENO RICHMOND LOS ANGELES

TIME OIL CO.

2737 WEST COMMODORE WAY P.O. BOX 24447

SEATTLE, WA 98199-1233 SEATTLE, WA 98124-0447

December 30, 1991

Washington State Department of Ecology Attention: Joe Hickey 3190 160th Ave. S.E. Bellevue, Wa 98008-5452

RE: Underground Storage Tank Site Check/Site Assessment at Seattle Terminal, 2737 West Commodore Way, Seattle, Wa - Property No. 01-228.

Dear Mr. Hickey:

This letter report is submitted to provide initial information on the removal of underground storage tanks at the above referenced site. The property is located at the north end of the community of Magnolia on the south shore of Salmon Bay in Seattle, Washington (Figure 1). The site is the location of Time Oil Co.'s Seattle Terminal which consists of a two-story office structure, warehouses and above ground storage tanks. Properties surrounding the site are light to heavy marine/industrial.

On September 16, 1991 four tanks were removed by Lee Morse Construction as part of a facility upgrade. They were 4,000, 2,500, 1,500 and 300 gallon capacity tanks that had contained unleaded gasoline, diesel fuel, regular leaded gasoline, and used oil, respectively. See Figures 2 and 3 for tank locations.

The removal of the tanks resulted in two excavations. The gasoline and diesel fuel tanks were removed from excavation #1 and the used oil tank was removed from excavation #2 (Figures 2 and 3).

One 4,000 gallon tank was installed in excavation #1, replacing the former gasoline and diesel fuel tank system. This tank is baffled to provide two compartments of 3,000 and 1,000 gallon capacities and is, therefore, registered as two tanks. The tanks contain regular unleaded gasoline and diesel fuel, respectively. Two new fuel dispensers were also installed replacing the old dispensers.

The following discusses tank removal and sample collection activities, and analytical results.

FIELD INVESTIGATION

The removal of contaminated soil and sample collection was based on organic vapor analysis readings. Soil samples were collected and placed in Zip-lock bags for headspace analysis using a Micro-tip organic vapor analyzer. When head space readings were below 50 parts per million or contaminated soil removal was not feasible, samples were collected.

Samples were collected from the excavation using a backhoe bucket. Each sample was taken from near the teeth of the backhoe after approximately 6 inches of soil was removed, then transferred to a 4 ounce jar and placed in an ice chest for delivery to Friedman and Bruya analytical laboratory. Sample equipment consisted of disposable latex gloves and a stainless steel spoon which was triple washed between each sampling.

Excavation #1

The 4,000, 2,500 and 1,500 gallon tanks were removed from excavation #1. The 2,500 and 1,500 gallon tanks were part of a 4,000 gallon baffled tank system that was installed in 1980. They were registered as individual tanks with the Department of Ecology. It is unknown when the 4,000 gallon unleaded gasoline tank was installed. The 4,000 gallon tank and the 2,500 and 1,500 gallon compartments of the baffled tank were tightness tested annually using the Petro-Tite testing system. They were last tested in September 1990 and found to be tight.

Areas of slight rusting and pitting were observed on the 4,000 gallon tank and the baffled tank system but no holes were noted. As the tanks were removed gasoline contamination was observed in the surrounding soil. This contamination is consistent with the nature of contamination found from years of tank overfills and spillage.

Soil encountered at the site consisted of artificial fill and natural material. Artificial fill was encountered from the surface to a depth of approximately 7 feet in the excavation and consisted of brown and grey sandy silt with gravel. Decaying organic material such as wood and grass, and metal debris was observed in the fill.

Natural soils were observed underlying the fill to a minimum depth of approximately 18 feet and was composed of brown sandy silt with gravel that graded to gray silty fine to medium sand with depth. Backfill material for the tank excavation generally consisted of imported sand and soil similar to the surrounding artificial fill. The soil appeared discolored and a hydrocarbon odor was encountered in the excavation during tank removal. Groundwater with a heavy hydrocarbon sheen was encountered at a depth of 18 feet below the ground surface in the excavation.

After the two 4,000 gallon tanks and associated backfill soils were removed, an attempt was made to assess the extent of contamination and remove it. Because of these efforts the excavation was extended to the north, east and west. However, due to high head space readings near the groundwater in the excavation and the proximity of the excavation to the Time Oil office building, excavating was abandoned and soil samples were collected. Approximately 140 cubic yards of soil was removed from the excavation and stockpiled on site.

A total of eight soil samples were collected from the sidewalls and floor within excavation #1 and the former location of the fuel dispensers (Figure 2 - Provides the location and depth of sampling points). A groundwater sample was not collected at the time of tank removal due to the presence of a heavy hydrocarbon sheen. The soil samples were submitted to the analytical laboratory for chemical

testing for total petroleum hydrocarbons as gasoline (TPH-g) and diesel (TPH-d), benzene, toluene, ethylbenzene, xylenes (BTEX), and total lead using EPA methods 8015 (modified), 8020 and 7421, respectively.

Analytical results for these soil samples indicated TPH-g concentrations ranging from less than 2 parts per million (ppm) to 12,000 ppm. The highest TPH concentration of 12,000 ppm was encountered in the sample collected from the area of the fuel dispensers. TPH-d concentrations ranged from less than 50 ppm to 220 ppm. Table 1 provides a summary of soil samples and analytical results for excavation #1 soil samples. See the attached laboratory report for further information.

Excavation #2

The 300 gallon tank was removed from excavation #2. It is not known when the tank was installed. However, the tank was used for storing used oil collected during servicing of Time Oil fleet vehicles.

Areas of rusting and pitting were present on the tank and a pin-sized hole was observed after corrosion had been removed indicating that the tank may not have leaked under normal circumstances. As the tank was removed hydrocarbon contamination was observed in the surrounding soil. As in excavation #1, this contamination is also consistent with the nature of contamination found from years of tank overfills and spillage.

Artificial fill and natural soil was encountered in this excavation. The fill ranged in depth from the surface to 4.5 feet at the south end of the excavation and 1 foot at the north end. Natural soil consisting of brown and gray silty fine to medium sand was observed underlying the fill and extending to a minimum depth of groundwater. The soil appeared discolored and a hydrocarbon odor was encountered in the excavation during tank removal.

The depth to groundwater varied from 6 feet to 2 feet below the ground surface as the property sloped down to Salmon Bay to the north. A heavy sheen was observed on the groundwater.

After the 300 gallon tank and associated backfill were removed, an attempt was made to assess the extent of contamination and remove it. Because of these efforts the excavation was extended to the north toward Salmon Bay. When contamination was observed to be extensive, excavating was abandoned and soil samples were collected. A total of approximately 100 cubic yards of soil was removed from the excavation and stockpiled on site.

A total of four soil samples were collected from the sidewalls and floor within the excavation. Soil samples were not collected from the north end of the excavation because very strong hydrocarbon odors and gray discoloration was observed in that area. Instead, a test pit was dug between the excavation and the shoreline (Figure 3) to assess the horizontal extent of contamination. One sample was collected from that test pit. A groundwater sample was not collected at the time of tank removal due to the presence of a heavy hydrocarbon sheen.

The excavation and test pit samples were submitted for chemical analysis for total petroleum hydrocarbons as diesel (TPH-d) and motor oil (TPH-m) using EPA method 8015 (modified). Analytical results for excavation #2 and test pit samples indicated TPH-d concentrations ranging from less than 10 ppm to 310 ppm. TPH-m concentrations ranged from less than 10 ppm to 410 ppm.

Four soil samples were collected from stockpiled soil and combined to form one stockpile composite sample. The composite sample was tested for TCLP lead, halogenated volatile organic compounds using EPA method 8010, PCBs, TPH-d and TPH-m using EPA methods 8015 (modified) and 418.1, respectively. Chemical test results for the stockpile composite sample indicated TPH-d and TPH-m concentrations of 78 ppm and 1700 ppm, respectively.

Table 2 provides a summary of TPH analytical results for excavation #2, test pit and composite soil samples. See the attached laboratory report for the remaining chemical test results.

Time Oil is currently in the process of sending Request for Proposals for further site assessment to environmental consultants in the area. The next stage of work will address the contaminated soil stockpile, the extent of subsurface soil contamination at both excavations, the impact, if any, to the shallow ground water, and provide recommendations for cleanup, if necessary.

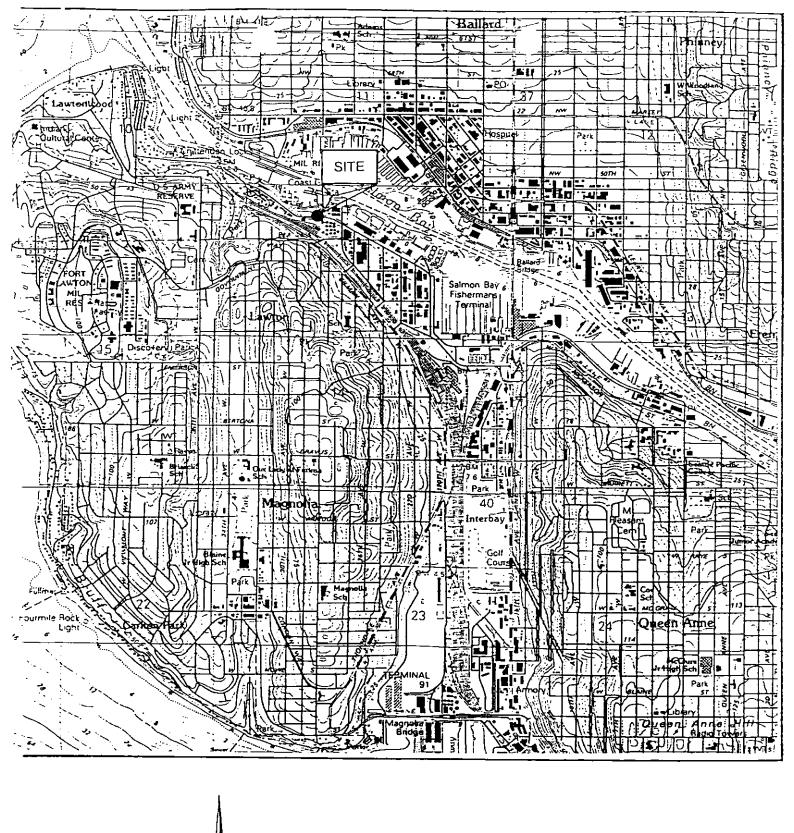
If there are any further questions regarding this site please contact me at (206) 286-4490.

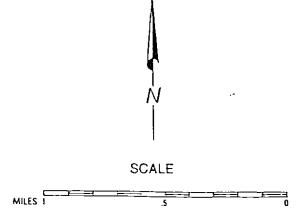
Singerely

Liam J. Ru

Attachments:

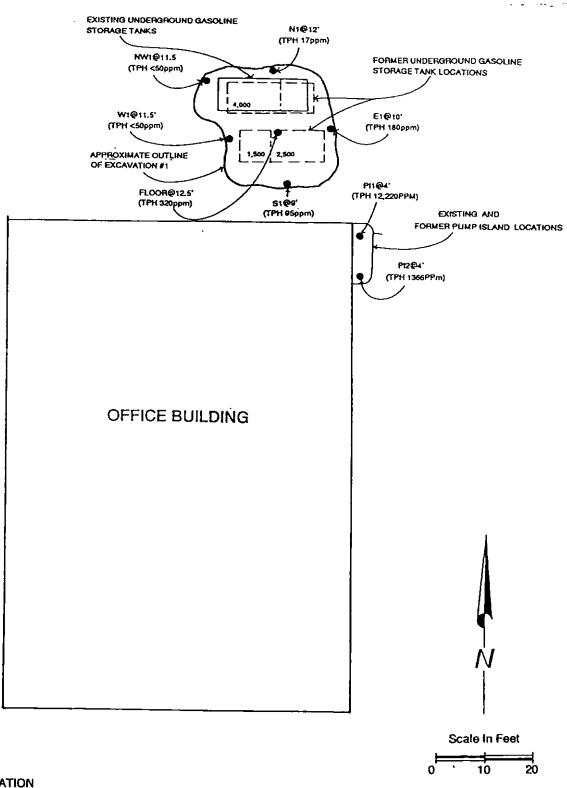
Table 1
Table 2
Figure 1
Figure 2
Figure 3


Analytical Report


TABLE 1
SUMMARY OF SOIL SAMPLES
AND ANALYTICAL RESULTS
(Excavation #1)

Sample I.D.	TPH g/d (ppm)	Benzene (ppm)	Toluene _(ppm)_	Ethylben (ppm)	xylenes (ppm)
1617-PI1	12,000/220	330	370	390	1600
1617-PI2	1,300/66	27	21	26	64
1500-N1	<2/17	0.003	0.003	<0.002	<0.006
0829-S1	19/76	<0.22	0.38	0.099	0.056
0834-E1	180/<50	<0.22	2.5	5.0	7.2
0839-W1	<2/<50	0.013	0.060	0.023	0.065
0845-Floor	120/200	1.1	.1.3	3.2	12
0926-NW1	<2/<50	0.005	0.049	0.015	0.062

TABLE 2 SUMMARY OF SOIL SAMPLES AND ANALYTICAL RESULTS (Excavation #2, Test Pit and Stockpile)


Sample <u>I.D.</u>	TPH-d(8015) (ppm)	TPH-m(8015)	TPH-m(418.1) (ppm)
TPI-3	310	410	
TI-N-4	<10	<10	
TI-E-4	<10	<10	
TI-F-6	<10	200	
TI-W-4	<10	<10	
Pile Composit	te 78	·	1700

TIME OIL CO.
2737 West Commodore Way
SEATTLE TERMINAL

WEST COMMODORE WAY


EXPLANATION

● N1@12' (TPH 17ppm) APPROXIMATE SAMPLE LOCATION WITH RESPECTIVE DEPTH AND TPH CONCENTRATION

FIGURE 2

TIME OIL CO. 2737 West Commodore Way

SEATTLE TERMINAL

PHONE 253-2400 CABLE ADDRESS TIMOR (FAX) 206-283-8036

SEATTLE TACOMA PORTLAND STOCKTON RENO RICHMOND LOS ANGELES

TIME OIL CO.

2737 WEST COMMODORE WAY P.O. BOX 24447

SEATTLE, WA 98199-1233 SEATTLE, WA 98124-0447

September 22, 1992

Washington State Department of Ecology Northwest Region 3190 160th SE Bellevue, Washington 98008-5452 Attention: Mr. Joe Hickey

SUBJECT:

Excavating Activities Conducted at Former Waste Oil Tank Location

Former Time Oil Co. Vehicle Maintenance Facility

2750 Commodore Way; Seattle, Washington

Dear Mr. Hickey,

This letter is to inform you of the findings of additional assessment activities conducted at the above referenced site. On July 28th and 29th, 1992 additional excavation was conducted in the former location of a waste oil tank which was removed in September 1991. Hydrocarbon contamination was discovered during removal of the tank; thus, this additional phase of excavation was undertaken in an attempt to remove remaining soil contamination.

A small amount of groundwater had pooled in the initial excavation associated with tank removal; therefore, lateral excavation was conducted in an attempt to define the limits of the contaminated area. Previous excavating activities had documented that soils located on the southern and western edges of the excavation did not contain hydrocarbons exceeding MTCA Method A Cleanup Levels; thus, the excavation was expanded primarily to the north and east.

After approximately 150 cubic yards of contaminated soil had been removed, excavating activities were terminated because field observations suggested that contaminant severity increased in an easterly direction, and excavation of the full extent of soil contamination did not appear to be feasible. The excavation was backfilled by placing crushed rock below the groundwater surface, installing a layer of 10-mil visqueen upon the crushed rock to reduce settling and surface water infiltration, and backfilling the remaining excavation with fine sand.

Six soil samples were collected from the limits of the northern and eastern sides of the excavation, directly above the groundwater surface, to assess remaining contaminant levels and evaluate the potential for a groundwater impact (See Figure 1 - Site Map for sample locations). The six samples were submitted to a State certified laboratory for hydrocarbon identification (WHCID) analysis to identify the hydrocarbons present. Hydrocarbons identified as gasoline, diesel, and mineral spirits were identified in samples A-1 @8', A-2 @9', and A-6 @3'. Motor oil was also detected in sample A-6 @3'. Additional analysis was conducted on the three samples in which hydrocarbons

were detected to quantify levels of TPH and BTEX by the WTPH Method and EPA Method 8020. These three samples were found to contain levels of TPH-gasoline ranging from 60 to 290 parts per million (ppm), TPH-diesel ranging from 90 to 1,600 ppm, TPH-mineral spirits between 50 and 210 ppm, and 2,300 ppm TPH-motor oil was detected in sample A-6 @3' (See Table 1 - Analytical Results). Laboratory reports are attached.

Two additional soil samples were recovered from the vicinity of an area of visibly impacted soil located near the ground surface on the south side of the excavation. Sample WO-WC was recovered from material believed to represent "worst case" conditions in order to conduct disposal profiling. Sample WO @5' was collected from the same area at a depth of 5 feet below grade to verify removal of the impacted soil once field observations indicated that the visibly impacted area had been fully excavated. WHCID analysis on these two samples detected the presence of diesel fuel in Sample WO-WC and did not detect petroleum hydrocarbons in sample WO @5'. WTPH analysis conducted on Sample WO-WC detected 2,800 ppm TPH-diesel. Laboratory reports are attached.

These analytical results, in combination with field observations, indicate that petroleum hydrocarbon contamination remains beneath the site, and that an impact upon groundwater may have occurred. Time Oil Co. is in the process of submitting a request for proposals to environmental consultants for further assessment of this area. This next phase of assessment will include the installation of soil borings and groundwater monitoring wells to assess the extent of remaining soil contamination and the potential for an impact upon groundwater.

The excavated soil is currently stockpiled upon an adjacent property also owned by Time Oil Co. Samples of this material have been submitted for disposal profiling. Arrangements to recycle the soil will be made once analytical results are received.

If you have any questions regarding this site, please contact either myself at (206) 286-6457 or Liam Russell at (206) 286-4490. If we are not available, Kevin Murphy may be able to answer your questions.

Sincerely,

Scott B. Sloan Geologist

Enclosures:
Table 1 - Analytical Results
Figure 1 - Site Map
Analytical Reports

TABLE 1

Soil Analytical Results

Time Oil Co. Property No. 01–228

2750 Commodore Way; Seattle, Washington

Sample	Donth	TOU	D	~	Ethyl-	Total
Number	Depth	TPH	Benzene	Toluene	benzene	Xylenes
Samples (Collected 1	0/3/91				
TI-F	6'	200	NT	NT	NT	NT
TI-E	4'	ND	NT	NT	NT	ТИ
TI-S	4'	ND	NT	NT	NT	NT
TI-W	4'	ND	NT [*]	NT	NT	NT
TP1	3'	720	TN	NT	NT	NT
Samples (Collected 1	2/10/91		•		
SS1	6.5'	12	NT	NT	NT	NT
NS2	2'	840	NT	NT	NT	NT
ES4	5 '	25,000	NT	NT	NT	NT
TP3	2'	15	NT	NT	NT	NT
Samples (Collected 7	(20/02				
A1	8'		ND	AID.	AID	410
A1	b	60–g 50–m	NU	ND	ND	ND
		90-d				
A2	. gʻ.	290-g	ND	ND	ND	ND
		200-m		ND:	NO NO	· ND
	904 - 900 m	330 –d	· · · · · · · · · · · · · · · · · · ·			
A3	6'	ND*	NT	NT	NT	NT
A4	3'	ND*	NT	NT	NT	NT
A5	3'	ND*	·NT	NT	NT	NT
A6	୍3'	110–g	0.16	0.14	2.6	4.9
		210-m			.	
		1,600-d		om en en 1968 en 1969. General de 1969 en 19		
		2,300 –o				
WO-WC	.2'	2,800 –d	NT	NT	NT NT	NT
WO @ 5'	5'	ND*	NT	NT	NT	NT

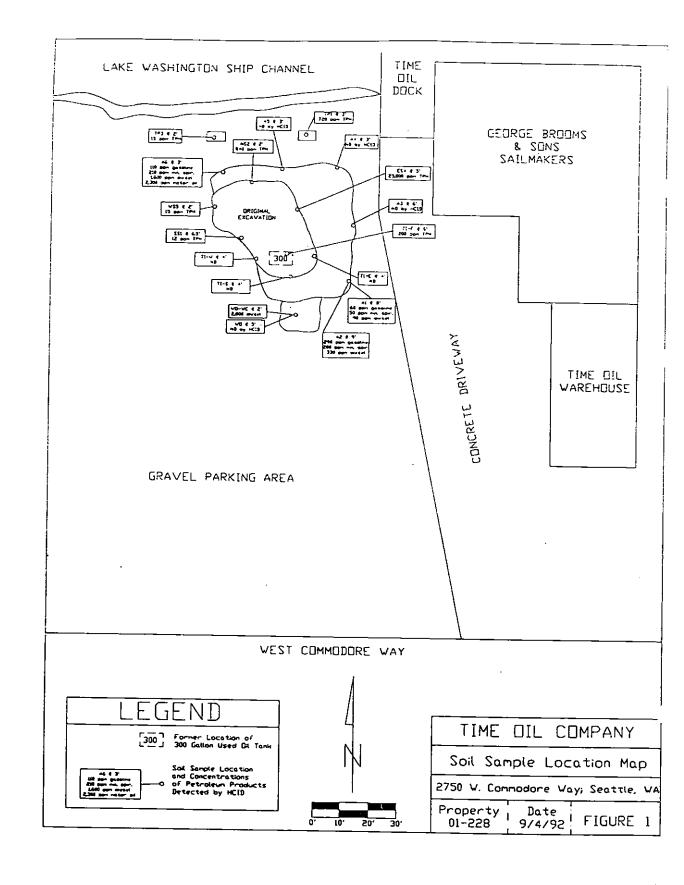
NOTES:

Results reported in milligrams per kilogram (mg/kg) of parts per million (ppm).

g = TPH as gasoline, d = TPH as diesel,

m = TPH as mineral spirits, o = TPH as motor oil.

Detection limit for benzene, toluene, and ethylbenzene = 0.02 ppm


Detection limit for total xylenes = 0.04 ppm.

Shading denotes sample with at least one constituent exceeding Method A Cleanup Standards.

NT = Sample not tested for this constituent.

ND = Not detected.

^{* =} TPH analysis by HCID.

APPENDIX B DRILL LOGS

IT CORPORA	ATION		Drilling Log	Sile ID: 02MW-01		
	to: 10.00°	Project Nur Fotal Hole Top of Cos Static Wate Annular Filt Type:	Project Number: Total Hole Depth; 20.00' Top of Cosing: 29.34' Static Water Level: Annular Filk: type: fm; to:			
treens: type: Stotted size: 0.020in dio: 2.00in Drilling Company: agged By: necked By:		type: i3' type:	fm: to: fm: to: low Stem Auger			
Well Completion FID Sample ID	Recovery Graphic Log	USCS Code Water Level	Descri	iption		
1- 2- 3- 4- 5- 6- 7- 8- 9- 10- 1- 12- 3- 14- 5- 6- 17- 3- 19- 21- 2- 23- 1- 25- 3- 27-		CL SM	Gravel base/fill Brown soft clay with gray fine Gray fine grained sand with li Grades to coarse grained san Dry, gray hard clay, no odor.	d, wet.		

ı		п	CORPORATI	ION				Orilling Log	Site ID: 02MW-02	
Projec .ocolic		e Oil Co. S	ieattle Terminal				ect Nu	mber:	See Site Map For Boring Location	
Surfac	on: e Elevation: ole Diometer					Top	Total Hole Depth: 10.00' Top of Casing: 25.20' Comments:			
	Casing:	dia: 2.00in	fm: 0.0° to: 5	5.00°			lor Filt	r Level: : fm; to:		
icreen	is: Bolted		dio: 2,00in fm:		to: 9.82°	type: type:		fm: to: fm: to:		
.oggeo						Date	Storte	low Slem Auger d: //		
hecke	ed By:		_			Perm	it j :	· . <u>-</u> .		
1	.5							Descr	iption	
Depth (ft)	Well Completion	'	Sample 10	rery	Graphic Log	USCS Code	Woter Level			
Cept	3	E	S dim S	Recovery	Graph	SSS	Water			
1-								Gravel base/fill		
2-								Hole not sampled - see log	for 02SB-07 for stratigraphy#	
4-								WATER		
5-										
6-										
7-										
9-										
10-										
11-										
12-										
114-										
5-										
6-										
17-										
8- 19-										
:0-										
21-		<u> </u>								
2-										
23-										
4- 25-										
6-						<u> </u>				
-7-										
		<u> </u>	L	<u> </u>		<u> </u>	<u> </u>	<u> </u>	Page 1 of 3	

IT CORPORATION		Drilling Log Site ID: 02MW-03			
Project Name: Time Oil Co. Seattle Terminal reation: Lurface Elevation: 0.00°	Total Ha	t Number: See Site Map For Boring Location Hole Depth: 20.00' Cosing: 33.02' Comments:			
Borehole Diameter: 12.00in Tonk Cosing: pe: PVC dio: 4.00in fm: 0.0' to: 10.00' reens: type: Slotted size: 0.020in dio: 4.00in fm: 10.00 Drilling Company: gged By: :ecked By:	Static W Annular type: type: to: 19.80° type: Method:	Woter Level: or Fill: fm:			
Well Completion FID Somple ID	Graphic Log USCS Code	Description			
1- 2- 3- 10- 1- 12- 3- 14- 5- 16- 17- 3- 19- 19- 1- 21- 2- 23- 1- 25- 3- 2/-		Gravel base/fill Hole not sampled — see log for 02SB-03 for stratigraphy# WATER			

L

!		П	CORPORA	TION				Drilling Log	Site ID: 02MW-04
orojec ocali		e Dil Co. S	eattle Terminol				ct Nur	nber:	See Site Map For Boring Location
Jurfoc	e Elevation:					Тор с	of Cos	Depth: 20.00' ing: 32.31'	Comments:
1	ole Diameter Casing: 2VC	: 8.00in dia: 2.00in	fm: 0 P° 4	o: 10.00°		Annul	ar Filt		
cree	15:		1711, 0.0 ti 1 dia: 2.00in fr		to: 19.80	type: type: type:		fm: to: fm: to: fm: to:	
	Company: d By:							ow Stem Auger d: //	
	ed By:					Permi			
	Ę							Descr	ription
ε	Well Completion		9	2	tog:	Code	[exe		*****
Ueptn (ft)	ک ¥eا	22	Sample ID	Recovery	Graphic Log	USCS Code	Water		
1						SM		Concrete	
2-								Hand dig/hand auger to 5 ft.	
3-									
4-						CL		i	
5-								Orange to blue gray clay, moist with g	ray fine grained sand stringers. No odor. Damp.
6- 7-									
_B -						SM			
, g-						SIVI			
10-								Gray to brown, med. grained sand. M	oist to wet, no odor.
: 1-									
12-									
3- 14-									
5-								Gray sand, wet.	
 16~									
17-									
8-									
19-					17/1/	CL			
0- 					7.7.7.			Dry, gray hard clay, with sand/silt stri	ngers, no odor.#
21- 2-									
23-									
 4-									
25-									
6-									
<u> </u> 27-									
' —	<u> </u>	1				لــــا		<u> </u>	Page 1 of 1

		П п	CORPORAT	rion			[Drilling Log	Site ID: 02MW-05
^o roject ocatio		ne Oệ Co. Se	sattle Terminal				ect Nu	mber:	See Site Map For Baring Location
Luriace Elevation: 0.00								Depth: 35.00' ing: 41.70'	Comments:
Boreho Plank (e Diamete Casina:	r: 8.00in					c Wole dor Fill:	r Level:	
pe: P	/C	dia: 2.00in	fm: 0.0° to:	20.00*		lype	:	fm: to: fm: to:	
type: SI			dia: 2.00in fm	: 20.00'	lo: 34.5	lype	:	fm: to:	
agged	By:					Dote	Storte	d: / /	
necke	d By:	1			<u> </u>	Pern	rit f :	-	
	_						1	Denne	
	Well Completion			1	8		-	Descr	ription
Uepin (R)			Somple 10	Recovery	Graphic Log	S S S S S	er Level		
3	_ <u>₹</u>	2	<u> </u>	- A		CW SSS	Woter		
1-				ļ		1		Gravel	
2-					0 0	1		Hand dig/hand auger to 5 ft.	
3-		ļ			<i>४-</i> ४-४ ०००				
4-						1 "			
5-						1		Orange to blue gray clay, moist with gray	fine grained sand stringers. No odor. Damp.
6-						1			
7-						1			
8-						ra Jos			
9-						a/s/		Grades to brown clay, gray sand stringers.	. Damp, no odor. Black, thick fluid adhering to soil.
10-									•
1-									
12-									
3-									
14-					XL.	α			
5-] "		Soft gray clay, dry, no odor.	
16-						}			
.7-									
3-									
19-						1			
0-									
21-						1			
2-									
- 1						SM			
23-									
4-								Gray, med. to coarse grained sand. Wet,	no odor
25-								viey, mea, to course granica suma. Het,	no ooo.
5-]		
<u> </u>									
		<u> </u>				*	•		Page 1 of 1

Projec	t Name: nm		CORPORAT		ser:		[Drilling Log Site ID: 02MW-05
Deput (11)	Well Completion	O.A.	Somple 10	Recovery	Graphic Log	USCS Code	Water Level	Description
9- 30- 1-								Gray wet sand, no odor.
35- 6-						α		Dry, gray hard clay, no odor.∦
8- 39- 0- 41-						,	!	
3- 44- 5- 46-								
7- 48- 9- 50-								
-2- 53- 4- 55-								
6- 57- 59-								
D-1-								Page 2 of 2

	IT	CORPORATION
--	----	-------------

Site ID: 02SB-01

Page 1 of 1

Project Nome: Time Oil Co. Seattle Terminal

Location:

Surface Elevation: 0.00°

Borehole Diameter: 6.00in

Drilling Company: CASCADE Logged By: CNS

Checked By:

Project Number:

Total Hale Depth: 14.00

Static Water Level:

Method: Hollow Stern Auger

Date Started: 06/07/99

See Site Map Far Boring Location

Chec	ked By:				,	y 	Permit #:
Depth (ft)	F10	Somple 10	Recovery	Graphic Log	USCS Code	Woter Level	Description
		_		• •	GP		Surface of annual and a surface of a surface o
1-					ML		Surficial covering of gravel and sand. Hand dug to 24"
2-							Brown Silt, some clay, dry, slight odor
3-							
4-							Grades lighter brown, moist to dry
5-	i l						Grades lighter brown, moist to dry
6- 7-)						Brown orange medium grain Sand, very damp to wet, slight odor
8-	i i				SP		Source Stating Control Stating Country to week, shight oddr
9-							
10-							Soft gray Clay, dry, no to slight odor
11-					СН		
12-						모	Water level at 11.50 feet IP
13-	1						Grades hard, dry—moist, no odor
14-					-		End borehole
15-							
16-							
17-							
18-							
19-	`						
20-							
21-	{				1		
22-							
23-							
24~							
25-	1						
26-							
27-	}						
\vdash	<u> </u>	L					

E	Ų	1	IT	CORPORATION
---	---	---	----	-------------

Site ID: 02SB-02

Project Name: Time OR Co. Seattle Terminal

Location:

Surface Elevation: 0,00 Borehole Diameter: 6.00in

Drilling Company: CASCADE

Logged By: CHS

Project Number:

Total Hale Depth: 16.50

Static Water Level:

Method: Hollow Stern Auger

Date Storled: 06/07/99

See Site Map For Baring Location

C	hecked By:						Permit #:
Cash (ta)	OLS professor	Sample 10	Recovery	Graphic Log	USCS Code	Woler Level	Description
10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1- 2- 3- 4- 5- 6- 7- 8- 9- 0- 1- 2- 3-	Sompl	Recov	Graphi	SSS CH SP CH	Δ	Hand dug to 24" Dark brown Silt and sand, some gravel up to 1/2", dry, no odor Grades brownish gray, bits of brick, moist to damp Blueish gray and orange soft Clay, some silt, damp, slight odor Gray medium grain Sand, wet. Water level at ~12.50 feet IP Grades slight odor
17 18 19 20 2 22 23 24 25 26 27	3- 3- 1- 2- 3- 4-						End borehole

F	Ú	T	IT	CORPORATION
---	---	---	----	-------------

Site ID: 02SB-03

Page 1 of 1

Project Name: Time Oil Co. Seattle Terminal

Location:

Surface Elevation: 0.00°

Barehole Diameter: 6.00in

Drilling Company: CASCADE

Logged By: CKS

Project Number:

Total Hale Depth: 21.50

Static Water Level:

Method: Hollow Stam Auger

Date Started: 06/07/99

See Site Map For Boring Location

1	ed by: CRS						Oale Started: 06/07/99
Checi	ked By:					·	Permit f:
Depth (11)	FID	Somple 10	Recovery	Graphic Log	USCS Code	Woter Level	Description
1-					GP ML		Surficial covering of brown Gravel and sand. Hand dug to 24"
2-							
3-							
4-							
5-						!	Light brown Silt, some sand, damp to moist, no odor
6-			ļ				
7							
8-							
9-							
10-					СН		Light brown and blue Clay, dry no odor
11-							
12-							
13- 14-							
15-							
16-							Gray Sand, wet, no odor
17-					SP		
18-							
19-							Water level at ∼19.50 feet IP
20-	:					호	
21-					СН	_	Gray Clay, very wet
22-				/ /.			End borehole
23-							
24-							
25-							
26-							
27-							

	IT	CORPORATION
--	----	-------------

Site ID: 02SB-04

Project Name: Time Oil Co. Seattle Terminal

Location:

Surface Elevation: 0.00

Borehole Diameter: 6.00in

Drilling Company: CASCADE

Logged By: CHS

Project Number:

Total Hole Depth: 16,50

Static Water Level:

Method: Hollow Stam Auger

Oate Storted: 06/07/99

See Site Map For Boring Location

Comments:

Page 1 of 1

	oo oy. ana						odie States: 00/01/39	
Checi	ked By:		1				Permit #:	
Depth (ft)	FIO	Somple 10	Recovery	Graphic Log	USCS Code	Woter Level	Description	
1- 2- 3-					SP		Light brown Gravel and sand. Hand dug to 24"	
4- 5- 6-								
7- 8- 9- 10-					ML	幸	Plastic sheet from bottom of former tank pit dis Gray Silt, wet, no odor. Water level at ~10.00	
11- 12- 13- 14-								
15- 16- 17-							Driller reported contact with Clay. Clay not foun	d in sampler
18- 19- 20-								
21- 22- 23-								
24- 25- 26- 27-								

M	П	CORPORATION
---	---	-------------

Site ID: 02SB-05

Project Name: Time Oil Co. Seattle Terminal

Location:

Surface Elevation: 0.00

Borehole Diameter: 6.00in

Drilling Company: CASCADE

Logged By: CHS

Project Number:

Total Hole Depth: 16.50°

Static Water Level:

Method: Hollow Stem Auger

Date Started: 08/07/99

See Site Map For Boring Location

Comments:

Page 1 of 1

Chec	iked By:						Permit #:
	·					!	
				8	يو ا	ن <u>و</u>	Description
Depth (ft)	æ	Somple 10	Recovery	Graphic Log	USCS Code	Woter Level	
P	<u> </u>	- 	œ	- ⁵	ML	*	
1-							Surficial covering of Gravel and sand. Hand dug to 24"
2-							Light brown Silt, some sand, little gravel, dry, no odor
3-							
4-							
5-							Grades dark gray, no gravel, damp, slight odor
6-							
7-							
8-							
9-							Come South and the A
10-				!	SP		Gray Sand, moist to damp, odor
11-							
12-							Water level at ∼13.50 feet IP
14-						立	Mater level of 3-13.35 feet ii
15-						=	Grades orange, wet, slight odor
16-					СН		Gray Clay, damp, no odor
17-				//	$ \cdot $		End borehole
18~							
19-							
20-						1	
21-							
22-							
23-							
24-	.						
25-							
26-							
27-							

IT IT	CORPORATION
-------	-------------

Site ID: 02SB-06

Project Name: Time Oil Co. Seattle Terminal

Location:

Surface Elevation: 0.00' Borehole Diameter: 6.00in

Drilling Company: CASCADE

Logged By: CNS

Project Number:

Total Hale Depth; 11.50

Static Water Level:

Method: Hollow Stern Auger

Date Storted: 06/07/99

See Site Map For Boring Location

Comments:

	ed By: CNS						Dote Storted: 06/07/99
Chec	ked By:			,			Permit #:
Depth (ft)	FID	Sample 10	Recovery	Graphic Log	USCS Code	Water Level	Description
1-					SM		Surficial covering of sand and gravel. Hand dug to 24"
3-		:				고	Water level at ∼3.00 feet IP
5-					<u> </u> 		Orange brown Sand, little silt, wet, no odor
6- 7-		,					
8-							
10-							Cray Clay trace erays, do to maint as ada
11-					СН		Gray Clay, trace gravel, dry to moist, no odor End borehole
13- 14-							
15- 16-							
17-							
18-							
20-					:		
22-				!	 		
23- 24-							•
25- 26-							
27-							

		ΙŢ	CORPORATION
--	--	----	-------------

Site ID: 02SB-07

Page 1 of 1

Project Name: Time Oil Co. Scottle Terminal

Location:

Surface Elevation: 0.00° Barehole Diameter: 6.00in

Drilling Company: CASCADE

Logged By: CNS

Project Number:

Total Hole Depth: 11.50

Static Water Level:

Method: Hollow Stern Auger

Date Started: 06/07/99

See Site Map For Boring Location

Description Was lessonery Water Level Wat	Chec	ked By:			,			Permit #:
SM SM	Depth (It)	FID	Sample 10	Recovery	Graphic Lag	USCS Code	Water Level	Description
2- 3- 4-	1- 2- 3- 4- 5- 6- 7- 8- 9- 10- 11- 12- 13- 14- 15- 16- 17- 18- 20- 21- 22- 24- 25- 26-		5			SM	후	Grades gray green and brown, fine to medium grain, little silt, wet, no ador Grades no silt Gray Clay, damp, no ador End borehole

T I	T CORPORATION
-----	---------------

Site ID: 02SB-08

Project Name: Time Oli Co. Seattle Terminal

Location:

Surface Elevation: 0.00'

Borehole Diameter: 6,00in Drilling Company: CASCADE

Located But CMS

Project Number:

Total Hale Depth: 9,00°

Static Water Level:

Method: Hollow Starn Auger

See Site Map For Boring Location

	ed By: CHS						Date Started: 06/07/99
Chec	ked By:	,		, . _			Permit #:
Oepth (ft)	FID	Somple 10	Recovery	Graphic Log	USCS Code	Water Level	Description
1- 2- 3- 4- 5- 6- 7- 8- 9- 10- 11- 12- 13- 14- 15- 16- 17- 18- 20- 21- 22- 24- 25- 26- 27-					SM	₹_	Hand dug to 24" Light brown Sand and silt, some gravel, dry, no odor Grades moist to damp, odor Water level at ~4.00 feet IP Gray brown medium grain Sand, little silt, wet, no odor End borehole

	ΙΤ	CORPORATION
--	----	-------------

Site ID: 02SB-09

Project Name: Time Oil Co. Scottle Terminal

Location:

Surface Elevation: 0.00

Borehole Diameter: 6.00in

Drilling Company: CASCADE

Logged By: JH

Project Number:

Total Hole Depth: 26.50°

Static Water Level:

Method: Hollow Stern Auger

Date Storted: 06/11/99

See Site Map For Boring Location

Checi	ked By:		1 -	1			Permit #:
Depth (II)	FID	Somple 10	Recovery	Grophic Log	USCS Code	Woter Level	Description
1-					GP ML		Surficial covering of gray Gravel 6". Hand dug to 24"
2-							Brown Silt and gravel, dry
3-							
4-						:	
5-							Tan to brown very fine groin Sand, very little silt, no gravel, dry, no odor
6-					SP	į	
7-							
8-							
9-							
10-	-						Grades gray, little fines, wet, odor
1 1-							
12-				111	CL		
13-							
14-							
15-							Gray soft Clay and silt, moderately dense, no ador
16-							
17-							
18-				_\	SP		
19-							
20-							Gray fine to medium grain Sand, little fines, no odor
21-							
22-	,						
23-							
24-							
25-	!						
26-				77.7	CL		Gray hard Clay
27-	i						End borehole
				L	I		Page 1 of 1

1.0 DRILLING

- 1.1 The principle reason for requiring on-site drilling supervision is to acquire reliable information.
- 1.2 While supervising a test boring or well installation, the geologist should always make certain that the driller is making accurate depth measurements by ruler and not by visually "eyeballing" the measurements (five foot auger lengths or drill rods may vary in length by +/- .75 feet.
- 1.3 Discrepancies between the driller's statements of depth and the geologist's should be immediately clarified by remeasurement so that the driller and geologist are in agreement.
- 1.4 Note lithologic changes that occur between sampling depths. Lithologic changes can be estimated by: noting changes in the rate of penetration of the drilling tools; noting color and/or soil-type changes in the drill cuttings; and, noting the soil on the auger flights.
- 1.5 Samples obtained by split-spoon sampler should follow the standard penetration test procedure (see Section 2.0).
- 1.6 For each soil sample taken, the following information must be recorded on the well/boring log:
 - sample depth
 - sample number
 - sampling method: split-spoon (SS), wash sample, auger flight sample, drill cutting sample.
 - blow counts for every 6 inches penetration of the split-spoon sampler
 - sample description should follow the Unified Soil Classification System.
- 1.7 The sample brass tubes must be labeled with the following information
 - job number
 - date and time
 - well/boring number
 - sample number
 - sample depth
 - name of sampler
- 1.8 Insure that samples are sealed in brass tubes as nearly intact and undisturbed as possible. Soil structure can be an important feature in interpreting the subsurface geology.
- 1.9 Seal the ends of the brass tubes with aluminum foil or teflon tape prior to placing on the air tight cap. Place the sealed and labeled tube on ice in a cooler for shipment to the lab along with a chain-of-custody.
- 1.10 Seal the contents of a second brass tube in a plastic sample bag for vapor level measurements.
- 1.11 Measure vapor levels with a photoionization detector (PID) when the samples reach room temperature (70 degrees F). Otherwise keep the samples cool until an instrument is available. Bring the samples to room temperature prior to measuring the vapor levels.
- 1.12 Attempt to determine the depth to groundwater as drilling progresses. After a well has been installed, measure the initial groundwater level. If no well has been installed,

- measure the water level in the boring prior to removing all of the auger flights or casing and backfilling the borehole.
- 1.13 When drilling in soils such as loose sands and silts, which tend to run up into the borehole, whether it is stabilized with casing or augers or not, the driller should maintain a positive head of water in the borehole (that is above the water table) at ALL times.
- 1.14 All pertinent data concerning drilling method, groundwater, penetration resistance, soil description, etc. should be entered onto the well/boring log.
- 1.15 Locate each well/boring location by taping the distances to at least three permanent physical features at the site. These may include any feature that is shown on the site plan provided, such as building corners, pump island, light standards, fences, planters, etc. DO NOT measure to another well/boring as one of the three measurements unless it is absolutely necessary. DO include measurements between well/borings as additional location information. This information, entered onto the well/boring log, will be used in conjunction with survey data to complete the site map and to generate groundwater contour and petroleum distribution maps.
- 1.16 At the completion of drilling, arrange to survey the well/boring locations and elevations.
- 1.17 Groundwater Technology does not assume the responsibility of directing the operations of independent contractors or insuring the safety of their workmen. Inform the contractor of the project requirements. Do not drive contractor trucks or operate or borrow his equipment.
- 1.18 Comply with all applicable articles of the Occupational Safety and Health Act of 1970, (OSHA).

•

2.0 STANDARD PENETRATION TEST

- 2.1 The standard split-spoon sampler consists of a 2-inch O.D. by 1-3/8-inch I.D., 18-inch minimum length, heat treated, case hardened, steel head, split-spoon and shoe assembly.
- 2.2 The head is vented to prevent pressure buildup during sampling and must be kept clean. A ball check valve is located in the head to prevent downward water pressure during sampling and sample retrieval. Removal of the water check valve often results in sample loss.
- 2.3 The drive rods which connect the split-spoon must have a stiffness equal or greater than an A-rod. In order to reduce rod deflection, especially in deep holes, it may be preferable to use larger diameter rods. The size of the drive rods must be consistent throughout a specific exploration as the energy absorbed will vary with the size and the weight of the rods used. The type of drive rod should be noted on the well/boring log.
- 2.4 The drive head consists of a guide rod to give the drop hammer a free fall in order to strike the anvil attached to the lower end of the assembly. The rod must be a minimum of 3-1/2 feet in length to insure the correct 30-inch hammer drop.
- 2.5 The drop hammer must weigh 140 pounds and have a 2-1/2-inch diameter hole through the center for the passage of the drive head rod.
- 2.6 The hammer is raised with a rope activated by the drill rig cathead. No more than two turns of rope should be allowed on the cathead.
- 2.7 A 30-inch free hammer drop is mandatory and extreme care should be exercised to insure consistent results.
- 2.8 Automatic trip hammers are available which insure a 30-inch, free-fall drop. These are recommended when retaining soil-structure data is critical, such as in liquefaction studies.
- 2.9 Attach the split-spoon sampler to the drill rods and lower the assembly to the bottom of the hole. Measure the drill rod stickup to determine if the bottom of the sampler is resting on the bottom of the hole. If the sampler is not on the bottom (ex. blow-up of the stratum being sampled), remove the assembly and clean out the hole to the appropriate sampling depth.
- 2.10 Note any penetration of the sampler/rod assembly due to the weight of the rods. Do not drop the assembly to the bottom of the hole.
- 2.11 Raise the 140-pound hammer 30 inches above the drivehead anvil and then allow it to drop, free-fall, and strike the anvil. This procedure is repeated until the sampler has been driven 18 inches into the stratum at the bottom of the hole (a 24-inch sampler may be driven 24 inches).
- 2.12 The number of blows of the hammer required for each 6 inches of penetration of the sampler is counted and recorded.
- 2.13 A penetration rate of 100 blows per foot is normally considered refusal; however, this criterion may be varied depending on the nature of the project and the desired information.

- 2.14 The penetration resistance, density, is calculated by adding together the second and the third resistance blowcounts. (Ex: for blow counts 2-6-6, density = 12.)
- 2.15 The sampler is then withdrawn form the borehole, preferably by pulling the rope rather than by bumping it out using the cathead and hammer in reverse.
- 2.16 Keeping the casing/augers/borehole full of water when removing the sampler will enhance sample recovery. however, this practice may not be appropriate when drilling at contamination sites.
- 2.17 When sampling soils where recovery is poor, lining the sampler with a flexible material such as plastic wrap or placing a sand catch in the shoe will often increase sample recovery.
- 2.18 Careful measurement of all drilling tools, samplers, casing, etc. must be exercised throughout all phases of the test boring operation.
- 2.19 Carefully open the sampler and describe the contents, noting soil structure, color, characteristics, etc. following the Unified Soils Classification System.
- 2.20 All pertinent data concerning sampling activities including sampling, interval, blow counts and sample recovery should be entered on the well/boring log.

3.0 WATER QUALITY SAMPLING

- 3.1 Water samples should not be taken from the stagnant water in the well.
- 3.2 Water samples should be taken in triplicate.
- 3.3 Remove 3 to 5 volumes of water in the well prior to sampling. The water may be removed by bailing, submersible pump, or purge system. Wells with a slow recovery period should be bailed dry and then sampled within 1 hour or when recovered to 80%. Monitor pH, temperature and specific conductivity with each well volume to insure water quality stabilization has occurred. However, this is not necessary at every well or in all circumstances.
- Use only Teflon, stainless steel, or glass bailers to obtain the sample. Use Teflon only for sampling water containing chlorinated compounds and also for bacteriological samples.
 PVC bailers can be used for one-time sampling for other than EPA 624 analysis. Using a bailer for a one-time sampling reduces the possibility for cross-contamination.
- When sampling, avoid stirring up any sediments in the well and agitating the water to reduce volitization of any dissolved compounds that may be present.
- 3.6 All sampling equipment must be cleaned following the appropriate procedure to avoid cross contamination from site to site and sample to sample. The sampling equipment should be cleaned before each well sampling, between each sampling, and at the end of each sampling round.
- 3.7 Monitoring wells should be gauged prior to sampling.
- 3.8 If possible, the monitoring wells should be sampled starting with the cleanest well and ending with the most contaminated well.
- 3.9 Wells containing free-phase contaminants should not be sampled.
- 3.10 When filling out the chain of custody form:
 - enter the samples in the order in which they were collected;
 - make a note as to the cleaning fluid used to clean the sampling equipment;
 - attempt to identify which samples are the most contaminated;
 - complete all other requested information.
- 3.11 The laboratory sample identification label should be filled out with a waterproof pen and firmly affixed to each sample container. Typically, identification labels require that the following information be supplied:
 - job name
 - job number
 - sampler's name
 - sample identification
 - date sampled and time
 - analysis requested
- 3.12 Acidification is required for samples that will be analyzed by the EPA 624 method. (see Acidification Procedure in this section)
- 3.13 Acidification is recommended for EPA method 601 and 602 samples to preserve them and increase their holding life. (see Acidification Procedure in this section)

- 3.14 Field blanks should be taken as part of each sampling round. A field blank consists of a sample of distilled water which has been collected by putting the distilled water into a sampling bailer after the bailer has been cleaned following the procedure used to clean that bailer during the sampling round. The field blank is stored with the samples. It is not analyzed unless requested by the Project Manager. The field blank should not be identified as such to the laboratory.
- 3.15 Handling of decontaminated equipment:
 - Always use "pristine" gloves (latex, solvex, etc.).
 - Place decontaminated bailers on clean surface (plastic).
 - Do not wipe down bailer with paper towels or cloth.
 - Follow decontamination procedure.
- 3.16 Sample accuracy can be adversely affected by the entrainment of sediment in wells which have not been properly developed. Contaminants adhering to the sediments can be released when samples are acidified for preservation. Therefore, if sediments are present, field filtering of the samples is recommended.
- 3.17 Chemical changes can take place because the sample was oxidized during sampling. It is critical to avoid oxidation of samples when sampling for volatile organic compounds (VOC). Therefore, take care to insure minimal agitation occurs during sampling.
- 3.18 All samples should be properly and promptly preserved.
- 3.19 All samples should be analyzed quickly; arrangements should be made with the testing laboratory to insure prompt analysis is performed within the allowable times for the specific analyses to be done.
- 3.20 Bailer strings that have contacted water or contaminants should be replaced between each well to avoid contamination from a bailer string which has absorbed contamination. A good practice is to replace the string between wells. <u>Caution</u>: some bailer strings are treated with a fungicide which may be detected in priority pollutant analysis.
- 3.21 Notify laboratory that samples are being shipped in advance of sampling to insure proper delivery and turnaround.
- 3.22 On the chain of custody, note what type of decontamination or preservation fluids, chemicals were used.

- 4.0 ACIDIFICATION PROCEDURE (EPA Methods 601,602, and 624)
 - 4.1 At the start of each sampling round, the amount of acid required to lower a sampling container of water to be sampled to a pH of less than 2 should be determined.
 - 4.2 After removing 3 to 5 well volumes from the first well to be sampled, put 5-10 drops of 50% HCL into a 40 ml sample vial (larger sampling container will require more acid) and fill the vial with water form the well; determine the pH of water in the vial with pH paper; if the pH is too high, repeat the procedure using 15-20 drops of acid in the vial; repeat until the pH of the water in the sample vial is a pH of less than 2 on the pH paper. Note the amount of acid required to lower the pH of the volume of water in the sampling vial. (pH paper should not be placed into sampling container. Pour sample onto pH paper to check for proper pH.)
 - 4.3 Discard the practice acidified sample.
 - 4.4 Once the amount of acid required to reach a pH of <2 is known, the acid can be routinely added to each sample container directly; the water to be analyzed is added to vial or container containing the appropriate amount of acid.
 - 4.5 Note that the amount of acid required is site specific and should be noted on the Chain of Custody form.
 - 4.6 The procedure should be repeated for each site at the start of each sampling round.
 - 4.7 Equipment
 - Bailer or other means to remove 3 to 5 well volumes
 - Sampling bailer
 - Polyethylene squirt bottle of 50% hydrochloric (HCL) acid
 - Narrow range pH paper (1.0 2.5 pH range)
 - Paper towels
 - Waterproof pen
 - Laboratory sample identification labels
 - Cooler with ice
 - Chain of custody forms
 - Sample containers (usually 40 ml glass vials with teflon faced septums)
 - Alconox solution and/or methanol
 - Distilled water
 - Safety equipment (gloves, etc.)
 - Dissolved oxygen meter (sometimes used in limited biorec projects in conjunction with bacteriological testing)

5.0 SURVEYING

5.1 Equipment Handling

- The level/transit is a sensitive, expensive instrument, handle it accordingly. Keep it dry and clean as possible. Never carry the instrument in the back of the truck.
- Never leave the instrument on the tripod without securely attaching it.
- Make sure that the tripod is stable at all times.
- Always setup the tripod and instrument so that it is easily seen.
- Never leave a tripod and instrument unattended when surveying in an area with vehicular traffic. Place protective cones around the survey station.
- Keep an eye on the equipment at all times.
- Keep the survey rod free of dirt and grit.

5.2 Leveling the Instrument

- Center the level and screw it into the tripod.
- Firmly plant the tripod legs.
- Use foot screw to level the instrument. The bubble must be within the setting circle in order for the instrument the be level.
- Rotate the level 360 degrees, checking to be sure that the bubble remains inside the circle at every point.

5.3 Focusing the Cross Hairs and Siting

- To focus the cross hairs, look through the instrument and turn the ring around the eyepiece until the hairs come into focus.
- Relax your eye while looking through the eyepiece.
- Use a sun shade.

5.4 Rod

- Be careful when using a rod around overhead power and utility lines.
- The rod is graduated into hundredths of a foot. The bottom of each black line is an odd hundredth; the top of each black line is an even hundredth.
- When surveying to the rod, the rod should be slowly rocked forward and back to determine the lowest, and most accurate, reading.

5.5 Stadia Surveys

- Readings should be taken at the intersection of the vertical cross hair with the three horizontal cross hairs. (A level survey requires reading only the center cross hair.)
- Distance (D) calculation:

```
D = (High Stadia - Low Stadia) x 100
ex:
High Stadia = 8.87 D = (8.87 - 8.29) x 100
Low Stadia = 8.29 D = 58.0
```

- Check the accuracy of your readings as you survey. An acceptable error is .01 feet difference between calculations per siting.
- Check Readings: high mid = mid low

5.6 Bench Marks

- Clearly note the location and type of the bench mark used for each survey. The location should be marked permanently in the field so that it may be reused.
- If an existing bench mark with a known elevation is within a reasonable distance of the site, the surveyors should attempt to use it as the bench mark for the survey. possible existing bench marks are sewer manhole rims, storm drains, USGS (from topo map)
- If there is no known bench mark in the area, a bench mark must be created arbitrarily.
- Use the following guidelines for establishing an arbitrary bench mark:
 - a) use permanent physical features such as the corner of a pump island, a cement floor slab, manhole or sewer <u>rim.</u>
 - b) assign an elevation to the bench mark; if the nearest 10-foot contour is known, use it as the BM elevation; if the contour elevation is not known, assign an arbitrary elevation.
 - c) clearly note the location and elevation of the BM in the field and on all site plans.
 - d) <u>DO NOT USE MONITORING OR RECOVERY WELLS AS BENCH MARKS.</u>

5.7 Level Surveys

- When surveying wells, make certain to choose a survey point that can be used when gauging the well; if the top of the PVC casing is greater than 6 inches below the ground surface, do not use it as the survey point, instead use the lip or rim of the protective casing. Clearly note the survey point of each well in the survey notes.
- Obtain the following for each monitoring well survey location:
 - a) the elevation of the top of the well casing (T.O.C.);
 - b) the elevation of the lip or rim of the protective casing (T.O.R.)
- Permanently mark the survey point with paint or permanent marker.

- Place the rod on the survey point and hold it vertical; move it backwards and forwards to determine the most accurate reading.
- Calculate the elevation from the middle cross hair reading.
- Limit the number of times the instrument must be moved.
- After completing level readings at each set up, shoot back to two or more wells to close the level run.
- In a multiple-station survey, always shoot at least two known points for each station.
- Where there is a significant topographic change across a site, additional survey information will be required in order to document the ground surface elevation differences; this information is critical when drawing cross-sections and in planning trenching and infiltration gallery installations.
- Calculate elevations before moving instrument to determine if there are any irregularities or errors.

5.8 Turning Points

- A TP (turning point) is used when all of the survey points cannot be seen form one instrument position and the instrument must be moved.
- The TP essentially establishes a new bench mark from which a new height of instrument is calculated.
- A TP can be a permanent structure, a PK, the original BM or a well. (A PK is a surveyor's nail driven into the ground/asphalt to create a hub for the rod to rest upon.)
- Complete the following steps to create a TP:
 - a) take a FS (foresight) on the TP and record the measurement under the FS column in the field book;
 - b) the FS is subtracted from the HI (height of instrument) for the current instrument location to determine the elevation of the TP;
 - c) the instrument is then moved to a new location and leveled;
 - d) a BS (backsight) reading is taken to the TP and entered in the BS column in the field book:
 - e) the BS is added to the TP to determine the new HI elevation:
 - f) NOTE: the TP entry in the survey data in the field book will always have <u>4</u> entries: BS, FS, HI, and elevation.

5.9 Taping locations

- Use a tape to verify distances that were surveyed with the instrument.
- Obtain three measurements for each location.
- Pull the tape tightly between points being measured.
- Measure dimensions of buildings on site to confirm base maps.

7.0 EXCAVATION AND TRENCH SOIL SAMPLING

7.1 Purpose

Underground Storage Tank (UST) decommissioning requires documentation of soil conditions. If tank closure is accomplished by excavation, removal and destruction of the tanks and lines, collection of representative samples for subsequent analysis is imperative. Utilizing the following procedures enables Groundwater Technology to secure the best possible retrieval of observations and samples.

7.2 Equipment

- Field Book, standard Surveyor's, waterproof, 5" x 7"
- Pencils
- Clipboard
- 6' folding ruler
- 50' cloth or fiberglass tape with weight
- Interface probe
- PID or other organic vapor screening device
- Sampling jars with air-tight Teflon lids, brass liners, 2" dia. x 6" long
- Aluminum foil or Teflon tape
- Bailer
- Rags probe wipers
- Alconox solution, distilled water, and H₂O
- Contract Documents, site plan, site sampling plan (QAPP), Site Safety Plan
- Lumber crayon or waterproof marking pen
- Safety equipment such as hard hat, appropriate footwear, respirator, goggles, ear plugs, gloves
- Copies of maps such as topographic or site vicinity
- Pocket knife
- Camera

7.3 Procedure

There are a number of preparations to be made by the Geologist/ Environmental Scientist before a site investigation begins. Attending to these preparations can increase the efficiency and quality of the work to be accomplished.

Before going into the field, each Geologist/Environmental Scientist should be completely familiar with the long and short term project objectives. He or she should review all of the available information about a site including site geology and the nature of the project. He or she should be familiar with all installation and sampling procedures that will be required.

It is the responsibility of the Project Manager to clearly describe the nature of each project and the amount of and type of work to be performed at a site. It is the responsibility of the Geologist/Environmental Scientist to make certain they understand what they are being asked to find out or do and, if they do not understand, then to ASK QUESTIONS.

The importance of communication <u>and</u> documentation cannot be stressed enough. What is not written down is often lost. What is written down and not pointed out may be inadvertently overlooked.

- 7.3.1 The principle reason for requiring excavation supervision is to acquire reliable information.
- 7.3.2 While supervising a tank or piping excavation, the Geologist should always make certain that accurate depth measurements are made by ruler and not by visually "eyeballing" the measurements.
- 7.3.3 Discrepancies between the excavator's statements of depth and the Geologist's should be immediately clarified by remeasurement so that the operator and the Geologist are in agreement.
- 7.3.4 Note strata changes that occur during excavation. Strata changes can be estimated by observing changes in color, soil-type, or the ease of excavation.
- 7.3.5 Photographic records of site conditions are an important tool for filling in narrative discussion. Do not hesitate to take pictures of all site activities before, during, and after. Label and record each photograph in your field notes according to procedures similar to section 7.4.1 (b).

7.4 Sample Collection Methods

- 7.4.1 The following information must be kept during the sampling events:
 - (a) A sketch of the site must be made which clearly shows all of the sample locations and identifies each location with a unique sample identification code.
 - (b) Each soil and water sample must be clearly labeled with its sample identification code. A written record must be maintained which includes, but is not limited to: the date, time and location of the sample collection; the name of the person collecting the sample; how the sample was collected; and any unusual or unexpected problems encountered during the sample collection which may have affected the sample integrity.
 - (c) Formal chain-of-custody records must be maintained for each sample.
- 7.4.2 If soil samples cannot be safely collected from the excavation, a backhoe may be used to remove a bucket of native soil from each of the sample areas. The soil is to be brought rapidly to the surface where samples are to be immediately taken from the soil in the bucket.
- 7.4.3 The following procedures must be used for the collection of soil samples from open pits or trenches:
 - (a) Just prior to collecting each soil sample, approximately three inches of soil must be rapidly scraped away from the surface of the sample location.
 - (b) To minimize the loss of volatile materials, it is recommended that samples be taken using a driven-tube type sampler. A clean brass or stainless steel tube of at least one inch in diameter and three inches in length may be used for this purpose. The tube should be driven into the soil with a suitable instrument such as a wooden mallet or hammer.
 - (c) The ends of the sample-filled tube must be immediately covered with clean aluminum foil or Teflon^R tape. The foil must be held in place by plastic end caps which are then sealed onto the tube with a suitable tape.

.

- (d) Alternatively, samples may be taken with a minimum amount of disturbance and packed in a clean wide-mouth glass jar leaving as little headspace as possible. The jar must then be immediately sealed with a teflon-lined screw cap.
- (e) After the samples are properly sealed, they are to be immediately placed on ice and maintained at a temperature of no greater than 4°C (39°F) until being prepared for analysis by the laboratory. All samples must be analyzed within 14 days of collection.

_

APPENDIX D LABORATORY ANALYTICAL REPORTS

Seattle 18939 120th Avenue NE, Suite 101, Botheil, WA 98011-9508 425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

509.924.9200 fax 509.924.9290 9405 SW Nimbus Avenue, Beaverton, 0R 97008-7132 503.906.9200 fax 503.906.9210

20354 Empire Avenue, Suite E-9, Bend, OR 97708-1883 541,383,9310 | fax 541,382,7588

IT Corporation - Renton

555 South Renton Village Place, Ste 700

Renton, WA 98055

Project:

Time Oil #2750

Project Number: 783336

Project Manager: Jerry Harris

Sampled: 6/7/99

Received: 6/8/99

Reported: 6/25/99 11:31

ANALYTICAL REPORT FOR SAMPLES:

		<u> </u>	
Sample Description	Laboratory Sample Number	Sample Matrix	Date Sampled
02SB-07A	B906234-01	Soil	6/7/99
02SB-07B	B906234-02	Soil	6/7/99
02SB-08A	B906234-03	Soil	6/7/99
02SB-08B	B906234-04	Soil	6/7/99
02SB-06A	B906234-05	Soil	6/7/99
02SB-06B	B906234-06	Soil	6/7/99
02SB-01A	B906234-07	Soil	6/7/99
02SB-01B	B906234-08	Soil	6/7/99
02SB-01C	B906234-09	Soil	6/7/99
02SB-01D	B906234-10	Soil	6/7/99
02SB-01E	B906234-11	Soil	6/7/99
02SB-02A	B906234-12	Soil	6/7/99
02SB-02B	B906234-13	Soil	6/7/99
02SB-02C	B906234-14	Soit	6/7/99
02SB-02D	B906234-15	Soil	6/7/99
02SB-05A	B906234-16	Soil	6/7/99
02SB-05B	B906234-17	Soil	6/7/99
02SB-05C	B906234-18	Soil	6/7/99
02SB-04B	B906234-19	Soil	6/7/99
025B-04C RECEIVED JUH 3 0 1999	B906234-20	Soil	6/7/99

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

 Seattle
 18939 120th Avenue N.L. Suite 101, Bothell, WA 98011-9508 425 420 9200 1ax 425 420 9210

 Spokane
 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 1ax 509.924 9290

Portland

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210 20354 Empire Avenue, Suite £-9, Bend, OR 97708-1883 541.383.9310 fax 541.382 7588

IT Corporation - Renton

555 South Renton Village Place, Ste 700

Renton, WA 98055

Project: Time Oil #2750

Project Number: 783336

Project Manager: Jerry Harris Sampled: 6/7/99

Received: 6/8/99

Reported: 6/25/99 11:31

ANALYTICAL REPORT FOR SAMPLES:

Sample Description	Laboratory Sample Number	Sample Matrix	Date Sampled
02SB-03A	B906234-21	Soil	6/7/99
02SB-03B	B906234-22	Soil	6/7/99
02SB-03C	B906234-23	Soil	6/7/99
02SB-03D	B906234-24	Soil	6/7/99
02SB-08H2O	B906234-25	Water	6/7/99
02SB-07H2O	B906234-26	Water	6/7/99
02SB-06H2O	B906234-27	Water	6/7/99
02SB-02H2O	B906234-28	Water	6/7/99
02SB-05H2O	B906234-29	Water	6/7/99
02SB-04H2O	B906234-30	Water	6/7/99
02SB-03H2O	B906234-31	Water	6/7/99

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

425.420.9200 fax 425.420.9210 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290 Spokane

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

20354 Empire Avenue, Suite E-9, Bend, OR 97708-1883 541.383.9310 fax 541.382.7588

IT Corporation - Renton

555 South Renton Village Place, Ste 700

Project Number: 783336

Project: Time Oil #2750

Sampled: 6/7/99 6/8/99

Renton, WA 98055

Project Manager: Jerry Harris

Received:

Reported: 6/25/99 11:31

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B North Creek Analytical - Bothell

	Batch	Date	Date	Surrogate	Reporting			
Analyte	Number	Prepared	Analyzed	Limits	Limit	Result	Units	Notes*
02SB-07A			B9062;	3.4A1			Soil	
Gasoline Range Hydrocarbons	0690370	6/11/99	6/21/99	24-01	5.00	ND	mg/kg dry	
Benzene	"	"	"		0.0500	ND	ing/kg diy	
Toluene	**	**			0.0500	ND ND	н	
Ethylbenzene	tr	н	71		0.0500	ND	#	
Xylenes (total)	н	#	**		0.100	0.134	**	
Surrogate: 4-BFB (FID)	,	"		50.0-150	0.100	92.5	%	
Surrogate: 4-BFB (PID)	n	"	n	50.0-150		94.9	/0 !/	
02SB-07B			B90623	34-02			<u>Soil</u>	
Gasoline Range Hydrocarbons	0690370	6/11/99	6/21/99		5.00	ND	mg/kg dry	
Benzene	61	44	11		0.0500	ND	mg/kg dry	
Toluene	Ħ	••	11		0.0500	ND	**	
Ethylbenzene	н	н	••		0.0500	ND	н	
Xylenes (total)	11	**	•		0.100	ND	et	
Surrogate: 4-BFB (FID)	**	si	H	50.0-150		85.4	%	
Surrogate: 4-BFB (PID)	"	"	**	50.0-150		88.5	u	
02SB-08A			B90623	<u>34-03</u>			Soil	
Gasoline Range Hydrocarbons	0690370	6/11/99	6/21/99		5.00	72.6	mg/kg dry	1
Benzene	II .	n	**		0.0500	ND	11	
Toluene	*	H	**		0.0500	ND	11	
Ethylbenzene	н	H	•		0.0800	ND	ŧŧ	2
Xylenes (total)		#	•		0.570	ND	н	2
Surrogate: 4-BFB (F1D)	,,	n	н	50.0-150		126	%	
Surrogate: 4-BFB (PID)	**	H	H	50.0-150		98.5	"	
02SB-08B			B90623	34-04			Soil	3
Gasoline Range Hydrocarbons	0690523	6/16/99	6/23/99		5.00	ND	mg/kg dry	
Benzene	#	n	**		0.0500	ND	" " "	
Toluene	**	Ħ	••		0.0500	ND	"	
Ethylbenzene	*	**	#		0.0500	ND	н	
Xylenes (total)	н	H	н		0.100	ND	**	
Surrogate: 4-BFB (FID)	#	"	"	50.0-150		75.8	%	
Surrogate: 4-BFB (PID)	*	W	*	50.0-150		92.0	н	
02SB-06A			B90623	<u>34-05</u>			Soil	3
Gasoline Range Hydrocarbons	0690523	6/16/99	6/23/99		5.00	ND	mg/kg dry	•
Benzene	17	m*			0.0500	ND	"	

North Creek Analytical - Bothell

*Refer to end of report for text of notes and definitions.

425.420.9200 Tax 425.420.9210
East 11115 Montgomery, Suite B, Spokane, WA 99205-4776
509.924.9200 Tax 509.924.9290
9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 Spokane

Portland 503 906.9200 Tax 503.906 9210 20354 Empire Avenue, Suite E-9, Bend, OR 97708-1883 541.383.9310 Tax 541.382.7588

IT Corporation - Renton Project: Time Oil #2750 Sampled: 6/7/99 555 South Renton Village Place, Ste 700 Project Number: 783336 Received: 6/8/99

Project Manager: Jerry Harris Renton, WA 98055 Reported: 6/25/99 11:31

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B North Creek Analytical - Bothell

	Batch	Date	Date	Surrogate	Reporting			
Analyte	Number	Prepared	Analyzed	Limits	Limit	Result	Units	Notes
02SB-06A (continued)			B9062	3 <u>4-05</u>			Soil	<u>3</u>
Toluene	0690523	6/16/99	6/23/99	_	0.0500	ND	mg/kg dry	_
Ethylbenzene	•	ч	11		0.0500	ND	"	
Xylenes (total)	*	ч	N		0.100	ND	H	
Surrogate: 4-BFB (FID)	· ;;		н	50.0-150		83.8		
Surrogate: 4-BFB (PID)	#	"	"	50.0-150		<i>88.2</i>	n	
02SB-06B			B9062.	34-06			Soil	3
Gasoline Range Hydrocarbons	0690523	6/16/99	6/23/99		5.00	ND	mg/kg dry	
Benzene	ti	11	**		0.0500	ND	11	
Toluene	**	rr .	п		0.0500	ND		
Ethylbenzene	*	rt.	H		0.0500	ND	**	
Xylenes (total)	"	*			0.100	ND		
Surrogate: 4-BFB (FID)	"	"	"	50.0-150		78.8	%	
Surrogate: 4-BFB (PID)	tt	**	"	50.0-150		85.6	"	
02SB-01A			B9062	3 <u>4-07</u>			<u>Soil</u>	3
Gasoline Range Hydrocarbons	0690523	6/16/99	6/23/99		5.00	ND	mg/kg dry	
Benzene	11	н	н		0.0500	ND	н	
Toluene	41	Ħ	н		0.0500	ND	ft.	
Ethylbenzene	H	11	н		0.0500	ND	**	
Xylenes (total)	**	e e	u		0.100	ND	н	
Surrogate: 4-BFB (FID)	,,	σ.	rr .	50.0-150		85.0	%	
Surrogate: 4-BFB (PID)	"	H	**	50.0-150		90.7	**	
02SB-01B			B9062	<u>34-08</u>			Soil	3
Gasoline Range Hydrocarbons	0690523	6/16/99	6/23/99		5.00	ND	mg/kg dry	
Benzene	n	**	**		0.0500	ND	н	
Toluene	H	n	Ħ		0.0500	ND	u	
Ethylbenzene	•	м	**		0.0500	ND	n	
Xylenes (total)		"	"		0.100	ND	**	
Surrogate: 4-BFB (FID)	н	- "	· · · · · · · · · · · · · · · · · · ·	50.0-150		84.6	%	
Surrogate: 4-BFB (PID)	n	н	77	50.0-150		92.3	"	
02SB-01C			B9062	<u>34-09</u>			<u>Soil</u>	3
Gasoline Range Hydrocarbons	0690523	6/16/99	6/23/99		5.00	ND	mg/kg dry	
Benzene	11	**	H		0.0500	ND	"	
Toluene	•	н	71		0.0500	ND	11	
Ethylbenzene	n	п	**		0.0500	ND	и	

North Creek Analytical - Bothell

425.420.9200 fax 425.420.9210

Spokane

 Spokane
 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200

 Portland
 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132
 503.906.9200 fax 503.906.9210 20354 Empire Avenue, Suite E-9, Bend, OR 97708-1883

IT Corporation - Renton Project: Time Oil #2750 Sampled: 6/7/99 555 South Renton Village Place, Ste 700 Project Number: 783336 Received: 6/8/99

Renton, WA 98055 Project Manager: Jerry Harris Reported: 6/25/99 11:31

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B North Creek Analytical - Bothell

-	Batch	Date	Date	Surrogate	Reporting			
Analyte	Number	Prepared	Analyzed	Limits	Limit	Result	Units	Notes*
02SB-01C (continued)			B9062.	34-09			Soil	3
Xylenes (total)	0690523	6/16/99	6/23/99		0.100	ND	mg/kg dry	
Surrogate: 4-BFB (FID)	"	"	"	50.0-150		83.3	%	
Surrogate: 4-BFB (PID)	n	"	"	50.0-150		94.8	*	
02SB-01D			B9062.	<u>34-10</u>			<u>Soil</u>	<u>3</u>
Gasoline Range Hydrocarbons	0690523	6/16/99	6/23/99		5.00	ND	mg/kg dry	
Benzene	•	н	a a		0.0500	ND	"	
Toluene	fI	61	**		0.0500	ND	н	
Ethylbenzene	**	н	4		0.0500	ND	"	
Xylenes (total)	++	u	17		0.100	ND	"	
Surrogate: 4-BFB (FID)	#	и	n	50.0-150		88.6	%	
Surrogate: 4-BFB (PID)	**	#	н	50.0-150		102	"	
02SB-01E			B9062:	34-11			Soil	3
Gasoline Range Hydrocarbons	0690523	6/16/99	6/23/99		5.00	ND	mg/kg dry	
Benzene	**	#	,,		0.0500	ND	n	
Toluene	N	tr	11		0.0500	0.0596	Ħ	
Ethylbenzene	н	**	н		0.0500	ND	#	
Xylenes (total)	Ħ	+1	н		0.100	ND	H	
Surrogate: 4-BFB (FID)	и	"	, ,	50.0-150		89.4	%	
Surrogate: 4-BFB (PID)	н	"	H	50.0-150		101	Ħ	
02SB-02A			B9062.	3 <u>4-12</u>			Soil	<u>3</u>
Gasoline Range Hydrocarbons	0690523	6/16/99	6/23/99		5.00	ND	mg/kg dry	
Benzene	H	и	**		0.0500	ND	"	
Toluene	н	4	**		0.0500	ND		
Ethylbenzene	н	**	**		0.0500	ND		
Xylenes (total)	н	H	**		0.100	ND	tı	
Surrogate: 4-BFB (FID)	н	11	"	50.0-150		79.7	%	
Surrogate: 4-BFB (PID)	"	"	"	50.0-150		91.4	n	
02SB-02B			B9062	34- <u>13</u>			Soil	3
Gasoline Range Hydrocarbons	0690523	6/16/99	6/23/99	- 	5.00	ND	mg/kg dry	_
Benzene	**	Ħ	u		0.0500	ND	n .	
Toluene	*	#1	н		0.0500	ND	Ħ	
Ethylbenzene	n	**	**		0.0500	ND	#	
Xylenes (total)	**	11	**		0.100	ND	**	
Surrogate: 4-BFB (FID)	н	rt	т —	50.0-150		80.4	%	

North Creek Analytical - Bothell

| 1939 | 120th Avenue N.L., Sinte 101, Buthen, WA 99411-19306 | 425.420.9200 | fax 425.420 9210 | East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 | 509.924.9200 | fax 509.924.9290 | Portland | 9405 SW Nimbus Avenue, Beaverton, DR 97008-7132 | Consequence 10 | Fax 1940 | Fax 1940

503.906.9200 fax 503.906.9210 20354 Empire Avenue, Suite E-9, Bend, OR 97708-1883 541,383,9310 fax 541,382,7588

IT Corporation - Renton

555 South Renton Village Place, Ste 700

Project: Time Oil #2750

Sampled: 6/7/99

Project Number: 783336

Received: 6/8/99

Renton, WA 98055

Project Manager: Jerry Harris

Reported: 6/25/99 11:31

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B North Creek Analytical - Bothell

Number Prepared Analyzed Limits Limit Result	Units Soil	Note
Surrogate: 4-BFB (PID) 0690523 6/16/99 6/23/99 50.0-150 96.5		
Surrogate: 4-BFB (PID) 0690523 6/16/99 6/23/99 50.0-150 96.5		<u>3</u>
Gasoline Range Hydrocarbons 0690523 6/16/99 6/22/99 5.00 ND Benzene " " " " 0.0500 ND Toluene " " " " 0.0500 ND Ethylbenzene " " " " 0.0500 ND Xylenes (total) " " " 50.0-150 79.3 Surrogate: 4-BFB (FID) " " " 50.0-150 86.2 B906234-15 Gasoline Range Hydrocarbons 0690523 6/16/99 6/23/99 5.00 ND Benzene " " " " 0.0500 ND Toluene " " " " 0.0500 ND Ethylbenzene " " " 0.0500 ND Xylenes (total) " " " 50.0-150 83.2	%	
Gasoline Range Hydrocarbons 0690523 6/16/99 6/22/99 5.00 ND Benzene " " " 0.0500 ND Toluene " " " 0.0500 ND Ethylbenzene " " " 0.0500 ND Xylenes (total) " " 50.0-150 ND Surrogate: 4-BFB (FID) " " 50.0-150 86.2 02SB-02D B906234-15 Gasoline Range Hydrocarbons 0690523 6/16/99 6/23/99 5.00 ND Benzene " " " 0.0500 ND Toluene " " " 0.0500 ND Ethylbenzene " " " 0.0500 ND Xylenes (total) " " " 50.0-150 83.2	Soil	<u>3</u>
Benzene " " " " 0.0500 ND Toluene " " " 0.0500 ND Ethylbenzene " " " 0.0500 ND Xylenes (total) " " " 50.0-150 79.3 Surrogate: 4-BFB (FID) " " " 50.0-150 86.2 D2SB-02D B906234-15 Gasoline Range Hydrocarbons 0690523 6/16/99 6/23/99 5.00 ND Benzene " " 0.0500 ND Toluene " " 0.0500 ND Ethylbenzene " " 0.0500 ND Ethylbenzene " " 0.0500 ND Xylenes (total) " " 50.0-150 ND Xylenes (total) " " 50.0-150 ND	mg/kg dry	_
Toluene " " " " 0.0500 ND Ethylbenzene " " " 0.0500 ND Xylenes (total) " " " 0.100 ND Surrogate: 4-BFB (FID) " " 50.0-150 79.3 Surrogate: 4-BFB (PID) " " 50.0-150 86.2 D2SB-02D Gasoline Range Hydrocarbons 0690523 6/16/99 6/23/99 5.00 ND Benzene " " 0.0500 ND Toluene " " 0.0500 ND Ethylbenzene " " 0.0500 ND Ethylbenzene " " 0.0500 ND Xylenes (total) " " 50.0-150 83.2	"	
Ethylbenzene " " " " 0.0500 ND Xylenes (total) " " " 50.0-150 79.3 Surrogate: 4-BFB (FID) " " 50.0-150 86.2 02SB-02D Gasoline Range Hydrocarbons 0690523 6/16/99 6/23/99 5.00 ND Benzene " " 0.0500 ND Toluene " " 0.0500 ND Ethylbenzene " " 0.0500 ND Ethylbenzene " " 0.0500 ND Xylenes (total) " " 50.0-150 83.2		
Xylenes (total) " " " 50.0-150 ND Surrogate: 4-BFB (FID) " " 50.0-150 79.3 Surrogate: 4-BFB (PID) " " 50.0-150 86.2 D2SB-02D B906234-15 Gasoline Range Hydrocarbons 0690523 6/16/99 6/23/99 5.00 ND Benzene " " " 0.0500 ND Toluene " " " 0.0500 ND Ethylbenzene " " " 0.0500 ND Xylenes (total) " " 50.0-150 83.2	11	
Surrogate: 4-BFB (FID) " " 50.0-150 79.3 Surrogate: 4-BFB (PID) " " 50.0-150 86.2 B906234-15 Gasoline Range Hydrocarbons 0690523 6/16/99 6/23/99 5.00 ND Benzene " " 0.0500 ND Toluene " " 0.0500 ND Ethylbenzene " " 0.0500 ND Xylenes (total) " " 50.0-150 83.2	и	
Surrogate: 4-BFB (PID) " " 50.0-150 86.2 B906234-15 Gasoline Range Hydrocarbons 0690523 6/16/99 6/23/99 5.00 ND Benzene " " " 0.0500 ND Toluene " " " 0.0500 ND Ethylbenzene " " " 0.0500 ND Xylenes (total) " " 50.0-150 83.2	%	
Gasoline Range Hydrocarbons 0690523 6/16/99 6/23/99 5.00 ND Benzene " " 0.0500 ND Toluene " " 0.0500 ND Ethylbenzene " " 0.0500 ND Xylenes (total) " " 0.100 ND Surrogate: 4-BFB (FID) " 50.0-150 83.2	r)	
Gasoline Range Hydrocarbons 0690523 6/16/99 6/23/99 5.00 ND Benzene " " 0.0500 ND Toluene " " 0.0500 ND Ethylbenzene " " 0.0500 ND Xylenes (total) " " 0.100 ND Surrogate: 4-BFB (FID) " " 50.0-150 83.2	Soil	3
Benzene " " " 0.0500 ND Toluene " " 0.0500 ND Ethylbenzene " " 0.0500 ND Xylenes (total) " " 0.0500 ND Surrogate: 4-BFB (FID) " " 50.0-150 83.2	mg/kg dry	-
Toluene " " " 0.0500 ND Ethylbenzene " " 0.0500 ND Xylenes (total) " " 0.0500 ND Surrogate: 4-BFB (FID) " " 50.0-150 83.2	"	
Ethylbenzene " " " 0.0500 ND Xylenes (total) " " 0.100 ND Surrogate: 4-BFB (FID) " 50.0-150 83.2	11	
Xylenes (total) " " " 0.100 ND Surrogate: 4-BFB (FID) " " 50.0-150 83.2		
Surrogate: 4-BFB (FID) " " " 50.0-150 83.2		
	%	
	,	
02SB-05A B906234-16	Soil	<u>3</u>
Gasoline Range Hydrocarbons 0690523 6/16/99 6/23/99 5.00 ND	mg/kg dry	_
Benzene " " " 0.0500 ND	"	
Toluene " " " 0.0500 ND	Ħ	
Ethylbenzene " " " 0.0500 ND	н	
Xylenes (total) " " " 0.100 ND	**	
Surrogate: 4-BFB (FID) " " " 50.0-150 85.1	%	
Surrogate: 4-BFB (PID) " " 50.0-150 92.7	н	
02SB-05B B906234-17	Soil	3
Gasoline Range Hydrocarbons 0690523 6/16/99 6/22/99 5.00 ND	mg/kg dry	-
Benzene " " " 0.0500 ND	n grag ory	
Toluene " " " 0.0500 ND	n	
Ethylbenzene " " " 0.0500 ND	#1	
Xylenes (total) " " " 0.100 · ND	н	
Surrogate: 4-BFB (FID) " " 50.0-150 80.0	%	
Surrogate: 4-BFB (PID) " " " 50.0-150 89.2		

North Creek Analytical - Bothell

425 420 9200 fax 425 420 9210 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290 Spokane

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 Tax 503.906.9210 Bend 20354 Empire Avenue, Suite E-9, Bend, OR 97708-1883 541 383 9310 fax 541 382 7588

IT Corporation - Renton

Renton, WA 98055

555 South Renton Village Place, Ste 700

Project Number: 783336

Project: Time Oil #2750

Sampled: 6/7/99

Project Manager: Jerry Harris

Received: 6/8/99 Reported: 6/25/99 11:31

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B North Creek Analytical - Bothell

	Batch	Date	Date	Surrogate	Reporting	·		
Analyte	Number	Prepared	Analyzed	Limits	Limit	Result	Units	Notes*
02SB-03B (continued)			B9062.	<u>34-22</u>			Soil	3
Toluene	0690523	6/16/99	6/23/99		0.0500	ND	mg/kg dry	_
Ethylbenzene	t+	**	11		0.0500	ND		
Xylenes (total)	н	**	н		0.100	ND		
Surrogate: 4-BFB (FID)	n	"	**	50.0-150		74.7	%	
Surrogate: 4-BFB (PID)	"	"	"	50.0-150		99.2	#	
02SB-03C			B9062.	34-23			Soil	3
Gasoline Range Hydrocarbons	0690523	6/16/99	6/23/99		5.00	ND	mg/kg dry	
Benzene	#	**			0.0500	ND	"	
Toluene	*	•	n		0.0500	ND	11	
Ethylbenzene	*1	•	H		0.0500	ND	н	
Xylenes (total)	Ħ	0	11		0.100	ND	**	
Surrogate: 4-BFB (FID)	н	- "	"	50.0-150		78.6	%	
Surrogate: 4-BFB (PID)	п	"	"	50.0-150		92 .7	"	
02SB-03D			B9062	34-24			<u>Soil</u>	
Gasoline Range Hydrocarbons	0690565	6/17/99	6/24/99		5.00	ND	mg/kg dry	
Benzene		**	H		0.0500	ND	N	
Toluene	ti	**	"		0.0500	ND	н	
Ethylbenzene	n	•	н		0.0500	ND	*	
Xylenes (total)	**	"	н		0.100	ND	,,	
Surrogate: 4-BFB (FID)	н	"		50.0-150		85.1	%	
Surrogate: 4-BFB (PID)	"	**	**	50.0-150		91.6	**	
- · ·								

North Creek Analytical - Bothell

| 1933 | 120th Avenue NC, Solite Id., Bothlett, WA 3001113308 | 425 420.9200 | fax 425.420.9210 | East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 | 509.924.9200 | fax 509.924.9290 | Portland | 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 |

503.906.9200 fax 503.906.9210

Bend 20354 Empire Avenue, Suite E-9, Bend, OR 97708-1883 541.383.9310 fax 541.382,7588

IT Corporation - Renton Project: Time Oil #2750 Sampled: 6/7/99 555 South Renton Village Place, Ste 700 Project Number: 783336 Received: 6/8/99 Renton, WA 98055 Project Manager: Jerry Harris Reported: 6/25/99 11:31

Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up) North Creek Analytical - Bothell

	Batch	Date	Date	Surrogate	Reporting			
Analyte	Number	Prepared	Analyzed	Limits	Limit	Result	Units	Note
02SB-07A			B9062	34-01			Soil	
Diesel Range Hydrocarbons	0690406	6/11/99	6/13/99	<u> </u>	10.0	61.8	mg/kg dry	
Lube Oil Range Hydrocarbons	н	"	н		25.0	53.1	"	
Surrogate: 2-FBP	,,		"	50.0-150		110	%	
02SB-07B			B9062	34-0 <u>2</u>			Soil	
Diesel Range Hydrocarbons	0690406	6/11/99	6/13/99		10.0	ND	mg/kg dry	
Lube Oil Range Hydrocarbons		"	u		25.0	ND	4	
Surrogate: 2-FBP	<i>H</i>	- "	11	50.0-150		64.0	%	
02SB-08A			B9062	3 <u>4-03</u>			<u>Soil</u>	
Diesel Range Hydrocarbons	0690406	6/11/99	6/13/99		10.0	127	mg/kg dry	
Lube Oil Range Hydrocarbons	н	•	u		25.0	428		
Surrogate: 2-FBP	n	#	"	50.0-150		107	%	
02SB-08B			B9062	<u>34-04</u>			Soil	
Diesel Range Hydrocarbons	0690536	6/16/99	6/17/99		10.0	ND	mg/kg dry	
Lube Oil Range Hydrocarbons	**	**	•		25.0	38.1		
Surrogate: 2-FBP	и	и	"	50.0-150		69.0	%	
02SB-06A			B9062	<u>34-05</u>			<u>Soil</u>	
Diesel Range Hydrocarbons	0690536	6/11/99	6/17/99		10.0	ND	mg/kg dry	
Lube Oil Range Hydrocarbons	**	*	11		25.0	ND	**	
Surrogate: 2-FBP	"	"	"	50.0-150	·	83.7	%	
02SB-06B			B9062	<u>34-06</u>			<u>Soil</u>	
Diesel Range Hydrocarbons	0690536	6/11/99	6/17/99		10.0	ND	mg/kg dry	
Lube Oil Range Hydrocarbons	п	и	11		25.0	ND	4	
Surrogate: 2-FBP	н	"	"	50.0-150		69.1	%	
02SB-01A			B9062	3 <u>4-07</u>			Soil	
Diesel Range Hydrocarbons	0690536	6/11/99	6/18/99		30.0	540	mg/kg dry	4
Lube Oil Range Hydrocarbons	Ħ	н	**		75.0	1320		
Surrogate: 2-FBP	"	"	"	50.0-150		93.7	%	_
02SB-01B			B9062	34-08			Soil	
Diesel Range Hydrocarbons	0690536	6/11/99	6/18/99		30.0	285	mg/kg dry	4
Lube Oil Range Hydrocarbons	*	et .	**		75.0	712	"	
Surrogate: 2-FBP	11	er	n	50.0-150		82.9	%	

North Creek Analytical - Bothell

Seattle 18939 120th Avenue NE, Suite 101, Bothell, WA 98011-9508 425.420.9200 fax 425.420.9210

East 1115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290 Spokane

903-34-3200 1ax 503-34-3290 9405 SW Nimbus Avenue, Beaverton, DR 97008-7132 503-906-9200 1ax 503-906-9210 20354 Empire Avenue, Suite E-9, Bend, OR 97708-1883 541-383-9310 1ax 541-387-7588

1T Corporation - Renton Time Oil #2750 Project: 555 South Renton Village Place, Ste 700 Project Number: 783336 Renton, WA 98055

Received: 6/8/99

Sampled: 6/7/99

Project Manager: Jerry Harris Reported: 6/25/99 11:31

Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up) North Creek Analytical - Bothell

	Batch	Date	Date	Surrogate	Reporting			
Analyte	Number	Prepared	Analyzed	Limits	Limit	Result	Units	Notes*
02SB-01C			B9062.	24.00			<u>Soil</u>	
Diesel Range Hydrocarbons	0690536	6/11/99	6/17/99	24-02	10.0	ND	mg/kg dry	
Lube Oil Range Hydrocarbons	"	0/11/99	0/1 <i>1199</i> "		25.0	ND ND	mg/kg dry	
Surrogate: 2-FBP				50.0-150	23.0	78.5	%	
Surrogaie. 2-FDF				30.0-130		70.3	70	
02SB-01D			B9062.	<u>34-10</u>			<u>Soil</u>	
Diesel Range Hydrocarbons	0690536	6/11/99	6/18/99		10.0	ND	mg/kg dry	
Lube Oil Range Hydrocarbons	n	n	•		25.0	31.2	10	
Surrogate: 2-FBP	и	d	и	50.0-150		104	%	
02SB-01E			B9062	34-11			Soil	
Diesel Range Hydrocarbons	0690536	6/11/99	6/17/99		10.0	ND	mg/kg dry	
Lube Oil Range Hydrocarbons	11	0	"		25.0	ND	"	
Surrogate: 2-FBP	u	"	"	50.0-150		78.2	%	
04CB 04 4			D00.00	• • • •			0.11	
02SB-02A	0.000.00		<u>B9062.</u>	<u> 54-12</u>			Soil	
Diesel Range Hydrocarbons	0690536	6/11/99	6/17/99		10.0	14.0	mg/kg dry	4
Lube Oil Range Hydrocarbons	ta ta	<u>"</u>			25.0	42.7		
Surrogate: 2-FBP	,	"	,,	50.0-150		75.2	%	
02SB-02B			B9062	<u>34-13</u>			Soil	
Diesel Range Hydrocarbons	0690536	6/11/99	6/17/99		10.0	ND	mg/kg dry	
Lube Oil Range Hydrocarbons	*	"	11		25.0	ND	**	
Surrogate: 2-FBP	"	14	"	50.0-150		90.0	%	
02SB-02C			B9062	34_14			Soil	
Diesel Range Hydrocarbons	0690536	6/11/99	6/17/99	21 4.1	10.0	ND	mg/kg dry	
Lube Oil Range Hydrocarbons	"		11		25.0	ND	"	
Surrogate: 2-FBP	<i>n</i>	W	Ħ	50.0-150		59.4	%	
02SB-02D			DONES	34 15			Soil	
Diesel Range Hydrocarbons	0690536	6/11/99	<u>B9062</u> 6/17/99	34-13	10.0	ND	mg/kg dry	
- -	# 0\$CO\$CO	0/11/ 9 9	0/1 <i>//99</i>		25.0	ND ND	mg/kg dry	
Lube Oil Range Hydrocarbons Surrogate: 2-FBP		"	"	50.0-150	23.0	89.4	%	
-								
02SB-05A			<u>B9062</u>	<u>34-16</u>			Soil	_
Diesel Range Hydrocarbons	0690536	6/11/99	6/17/99		10.0	17.6	mg/kg dry	4
Lube Oil Range Hydrocarbons		···	···		25.0	64.5		
Surrogate: 2-FBP	м	N	w	50.0-150		67.9	%	

North Creek Analytical - Bothell

*Refer to end of report for text of notes and definitions.

Seante 18939 120th Avenue NE, Sinte 101, Bothell, WA 98011 9508 425.420.9200 fax 425.420.9210 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20354 Empire Avenue, Suite E-9, Bend, OR 97708-1883 541.383.9310 fax 541.382.7588

IT Corporation - Renton Project: Time Oil #2750 Sampled: 6/7/99 555 South Renton Village Place, Ste 700 Project Number: 783336 Received: 6/8/99 Renton, WA 98055 Project Manager: Jerry Harris Reported: 6/25/99 11:31

Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up) North Creek Analytical - Bothell

	Batch	Date	Date	Surrogate	Reporting			
Analyte	Number	Prepared	Analyzed	Limits	Limit	Result	Units	Notes*
02SB-05B			B9062:	34-17			<u>Soil</u>	
Diesel Range Hydrocarbons	0690536	6/11/99	6/17/99		10.0	ND	mg/kg dry	
Lube Oil Range Hydrocarbons	tt	a a	er e		25.0	ND	"	
Surrogate: 2-FBP	"	"	"	50.0-150	······································	94.1	%	
02SB-05C			B9062	3 <u>4-18</u>			<u>Soil</u>	
Diesel Range Hydrocarbons	0690536	6/11/99	6/17/99		10.0	ND	mg/kg dry	
Lube Oil Range Hydrocarbons	,,	"	"		25.0	ND	4	
Surrogate: 2-FBP	n	ii —	н	50.0-150		68.6	%	
02SB-04B			B9062:	3 <u>4-19</u>			Soil	
Diesel Range Hydrocarbons	0690536	6/16/99	6/17/99		10.0	ND	mg/kg dry	
Lube Oil Range Hydrocarbons	11	Pt	Ħ		25.0	ND	н	
Surrogate: 2-FBP	"	н	и	50.0-150		90.4	%	-
02SB-04C			B9062	<u>34-20</u>			Soil	
Diesel Range Hydrocarbons	0690536	6/16/99	6/17/99		10.0	15.2	mg/kg dry	4
Lube Oil Range Hydrocarbons	н	н	**		25.0	62.5	"	
Surrogate: 2-FBP	"	н	н	50.0-150		76.4	%	
02SB-03A			B9062:	34-21			<u>Soil</u>	
Diesel Range Hydrocarbons	0690536	6/16/99	6/17/99		10.0	ND	mg/kg dry	
Lube Oil Range Hydrocarbons	Ħ	**	tt		25.0	ND	н	
Surrogate: 2-FBP	"	н	Ħ	50.0-150		84.6	%	
02SB-03B			B9062.	34-22			Soil	
Diesel Range Hydrocarbons	0690536	6/16/99	6/17/99		10.0	ND	mg/kg dry	
Lube Oil Range Hydrocarbons	**	4	n		25.0	ND		
Surrogate: 2-FBP	н	н	н	50.0-150		68.9	%	-
02SB-03C			B9062:	<u>34-23</u>			<u>Soil</u>	
Diesel Range Hydrocarbons	0690536	6/16/99	6/17/99		10.0	ND	mg/kg dry	
Lube Oil Range Hydrocarbons	*	11	н		25.0	ND	н	
Surrogate: 2-FBP	- "	"	"	50.0-150		92.0	%	
02SB-03D			B9062.	<u>34-24</u>			<u>Soil</u>	
Diesel Range Hydrocarbons	0690555	6/17/99	6/19/99		10.0	11.3	mg/kg dry	4
Lube Oil Range Hydrocarbons	**	41	**		25.0	38.8	"	
Surrogate: 2-FBP	"	н	п	50.0-150		71.8	%	-

North Creek Analytical - Bothell

*Refer to end of report for text of notes and definitions.

425 420 9200 Tax 425 420 9210 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924 9200 Tax 509.924 9290 Spokane

Portland 9405 SW Numbus Avenue, Beaverton, OR 97008-7132

503 906 9200 1ax 503.906 9210 20354 Empire Avenue, Suite E-9, Bend, OR 97708-1883 541.383 9310 1ax 541.382 7588

IT Corporation - Renton

555 South Renton Village Place, Ste 700

Project Number: 783336

Project: Time Oil #2750

Sampled: 6/7/99

Renton, WA 98055

Received: 6/8/99

Project Manager: Jerry Harris

Reported: 6/25/99 11:31

Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up) North Creek Analytical - Bothell

	Batch	Date	Date	Surrogate	Reporting			
Analyte	Number	Prepared	Analyzed	Limits	Limit	Result	Units	Notes*
02SB-08H2O			B90623	R4_25			Water	
Diesel Range Hydrocarbons	0690369	6/11/99	6/14/99	94-23	0.250	0.668	mg/l	
Lube Oil Range Hydrocarbons	"	11	U/14/77		0.500	ND		
Surrogate: 2-FBP	н		· r	50.0-150		71.6	%	<u>-</u>
02SB-07H2O			B90623	<u>34-26</u>			Water	
Diesel Range Hydrocarbons	0690369	6/11/99	6/14/99		0.250	1.07	mg/l	
Lube Oil Range Hydrocarbons	н	H	H .		0.500	0.626	н	
Surrogate: 2-FBP	H	n	"	50.0-150		108	%	
02SB-06H2O			B9062.	<u>34-27</u>			Water	
Diesel Range Hydrocarbons	0690369	6/11/99	6/14/99		0.250	0.456	mg/l	
Lube Oil Range Hydrocarbons	**	н	**		0.500	ND	••	
Surrogate: 2-FBP	н	#	<i>H</i>	50.0-150		72.8	%	
02SB-02H2O			B9062.	<u>34-28</u>			<u>Water</u>	
Diesel Range Hydrocarbons	0690369	6/11/99	6/14/99		0.250	3.12	mg/l	
Lube Oil Range Hydrocarbons	11	11	*		0.500	ND	**	
Surrogate: 2-FBP	**	н	н	50.0-150		117	%	
02SB-05H2O			B9062;	<u>34-29</u>			Water	
Diesel Range Hydrocarbons	0690369	6/11/99	6/14/99		0.250	0.865	mg/I	
Lube Oil Range Hydrocarbons	ti .	н	ff		0.500	ND	**	
Surrogate: 2-FBP	"	.,,	н	50.0-150		69.9	%	
02SB-04H2O			B9062.	<u>34-30</u>			Water	
Diesel Range Hydrocarbons	0690369	6/11/99	6/14/99		0.250	0.867	mg/l	
Lube Oil Range Hydrocarbons	ff.	H	m		0.500	0.503	"	
Surrogate: 2-FBP	"	н	н	50.0-150		109	%	
02SB-03H2O			B9062:	34-31			Water	
Diesel Range Hydrocarbons	0690419	6/12/99	6/14/99		0.250	1.07	mg/l	5
Lube Oil Range Hydrocarbons	н	"	н		0.500	ND	"	
Surrogate: 2-FBP	"	.,,	H	50.0-150		87.7	%	_

North Creek Analytical - Bothell

425.420.9200 fax 425.420.9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290 9405 SW Nimbus Avenue, Beaverton, DR 97008-7132 Portland 503.906.9200 fax 503.906.9210

20354 Empire Avenue, Suite E-9, Bend, DR 97708-1883 541.383.9310 fax 541.382.7588

IT Corporation - Renton 555 South Renton Village Place, Stc 700 Renton, WA 98055

Project: Time Oil #2750 Project Number: 783336 Project Manager: Jerry Harris

Sampled: 6/7/99 Received: 6/8/99

Reported: 6/25/99 11:31

Total Metals by EPA 6000/7000 Series Methods North Creek Analytical - Bothell

A 1	Batch	Date	Date	Specific	Reporting	.		.,
Analyte	Number	Prepared	Analyzed	Method	Limit	Result	Units	Notes*
02SB-07A			B90623	§4-01			<u>Soil</u>	
Lead	0690627	6/19/99	6/21/99	EPA 6020	0.500	7.85	mg/kg dry	
02SB-07B			B90623	34-02			<u>Soil</u>	
Lead	0690627	6/19/99	6/21/99	EPA 6020	0.500	2.40	mg/kg dry	
02SB-08A			B90623	<u>34-03</u>			<u>Soil</u>	
Lead	0690627	6/19/99	6/21/99	EPA 6020	0.500	10.6	mg/kg dry	
02SB-08B			B90623	<u> 14-04</u>			<u>Soil</u>	
Lead	0690627	6/19/99	6/22/99	EPA 6020	0.500	3.02	mg/kg dry	
02SB-06A			B90623	<u>34-05</u>			<u>Soil</u>	
Lead	0690627	6/19/99	6/22/99	EPA 6020	0.500	2.78	mg/kg dry	
02SB-06B			B90623	<u> 34-06</u>			Soil	
Lead	0690627	6/19/99	6/22/99	EPA 6020	0.500	2.20	mg/kg dry	
02SB-01A			B90623				Soil	
Lead	0690627	6/19/99	6/22/99	EPA 6020	0.500	11.1	mg/kg dry	
02SB-01B			B90623	<u>}4-08</u>			Soil	
Lead	0690627	6/19/9 9	6/22/99	EPA 6020	0.500	15.1	mg/kg dry	
02SB-01C			B90623	<u>34-09</u>			<u>Soil</u>	
Lead	0690627	6/19/99	6/22/99	EPA 6020	0.500	2.80	mg/kg dry	
02SB-01D			B90623	<u>34-10</u>			Soil	
Lead	0690627	6/19/99	6/22/99	EPA 6020	0.500	6.03	mg/kg dry	
02SB-01E			B90623	<u>34-11</u>			<u>Soil</u>	
Lead	0690627	6/19/99	6/22/99	EPA 6020	0.500	6.18	mg/kg dry	
02SB-02A			B90623	<u>34-12</u>			Soil	
Lead	0690627	6/19/99	6/22/99	EPA 6020	0.500	22.8	mg/kg dry	
02SB-02B			B90623	3 <u>4-13</u>			<u>Soil</u>	
Lead	0690627	6/19/99	6/22/99	EPA 6020	0.500	5.00	mg/kg dry	

North Creek Analytical - Bothell

 Seattle
 18939 120th Avenue NE, Suite 101, Bothell, WA 98011-9508 425,420,9200 fax 425,420,9210

 Spokane
 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509,924,9200 fax 509,924,9200

 Portland
 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503,906,9200 fax 503,906,9210

 Bend
 20354 Empire Avenue, Suite E-9, Bend, OR 97708-1883 43,923,007, fax 541,927,7589
 Portland

541.383.9310 fax 541.382.7588

IT Corporation - Renton

555 South Renton Village Place, Ste 700

Project: Time Oil #2750

Sampled: 6/7/99

Renton, WA 98055

Project Number: 783336

Received: 6/8/99

Project Manager: Jerry Harris

Reported: 6/25/99 11:31

Total Metals by EPA 6000/7000 Series Methods North Creek Analytical - Bothell

	Batch	Date	Date	Specific	Reporting		_	
Analyte	Number	Prepared	Analyzed	Method	Limit	Result	Units	Notes*
02SB-02C Lead	0690627	6/19/99	B9062 ; 6/22/99	3 4-14 EPA 6020	0.500	2.79	<u>Soil</u> mg/kg dry	
<u>02SB-02D</u> Lead	0690627	6/19/99	<u>B9062.</u> 6/22/99	34-15 EPA 6020	0.500	2.29	Soil mg/kg dry	
<u>02SB-05A</u> Lead	0690627	6/19/99	<u>B9062:</u> 6/22/99	34-16 EPA 6020	0.500	18.0	<u>Soil</u> mg/kg dry	
<u>02SB-05B</u> Lead	0690627	6/19/99	<u>B9062:</u> 6/22/99	34-17 EPA 6020	0.500	3.72	<u>Soil</u> mg/kg dry	
<u>02SB-05C</u> Lead	0690627	6/19/99	B9062 6/22/99	34-18 EPA 6020	0.500	4.23	Soil mg/kg dry	
02SB-04B Lead	0690627	6/19/99	<u>B9062:</u> 6/22/99	34-19 EPA 6020	0.500	2.57	Soil mg/kg dry	
02SB-04C Lead	0690627	6/19/99	<u>B9062;</u> 6/22/99	34-20 EPA 6020	0.500	2.97	Soil mg/kg dry	
<u>02SB-03A</u> Lead	0690627	6/19/99	<u>B9062:</u> 6/22/99	34-21 EPA 6020	0.500	4.49	Soil mg/kg dry	
<u>02SB-03B</u> Lead	0690627	6/19/99	<u>B9062.</u> 6/21/99	34-22 EPA 6020	0.500	6.16	<u>Soil</u> mg/kg dry	
<u>02SB-03C</u> Lead	0690627	6/19/99	<u>B9062</u> 6/21/99	34-23 EPA 6020	0.500	2.99	<u>Soil</u> mg/kg dry	
02SB-03D Lead	0690627	6/19/99	<u>B9062.</u> 6/22/99	3 <u>4-24</u> EPA 6020	0.500	3.50	<u>Soil</u> mg/kg dry	

North Creek Analytical - Bothell

Seattle 18939 120th Avenure N.E., Suite 101, Bothell, WA 98011-9508 425-420.9200 fax 425-420.9210
Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509-924-9200 fax 509-924-9290
Portland 9405 SW Niinbus Avenue, Beaverton, OR 97008-7132 503-906-9200 fax 503-906-9210
Bend 20354 Empire Avenue, Suite E-9, Bend, OR 97708-1883 541-381-3910, fax-541-323-7582 Portland

541.383.9310 fax 541.382 7588

IT Corporation - Renton

555 South Renton Village Place, Ste 700

Renton, WA 98055

Project: Time Oil #2750

Project Number: 783336

Project Manager: Jerry Harris

Sampled: 6/7/99

Received: 6/8/99

Reported: 6/25/99 11:31

Dissolved Metals by EPA 6000/7000 Series Methods North Creek Analytical - Bothell

	Batch	Date	Date	Specific	Reporting			
Analyte	Number	Prepared	Analyzed	Method	Limit	Result	Units	Notes*
02SB-08H2O			B9062;	34-25			<u>Water</u>	
Lead	0690388	6/11/99	6/15/99	EPA 6020	0.00100	ND	mg/l	
02SB-07H2O			B9062.	<u>34-26</u>			Water	
Lead	0690388	6/11/99	6/15/99	EPA 6020	0.00100	ND	mg/l	
02SB-06H2O			B9062.	<u>34-27</u>			Water	
Lead	0690388	6/11/99	6/15/99	EPA 6020	0.00100	ND	mg/l	
02SB-05H2O			B9062	<u>34-29</u>			<u>Water</u>	
Lead	0690388	6/11/99	6/15/99	EPA 6020	0.00100	0.00129	mg/l	
02SB-04H2O			B9062.	<u>34-30</u>			<u>Water</u>	
Lead	0690388	6/11/99	6/15/99	EPA 6020	0.00100	ND	mg/i	
02SB-03H2O			B9062.	<u>34-31</u>			<u>Water</u>	
Lead	0690388	6/11/99	6/15/99	EPA 6020	0.00100	ND	mg/l	

Seattle 18939-120th Avenue NE, Suite 101, Bothell, WA 98011-9508 425.420-9200 | fax 425.420.9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

20354 Empire Avenue, Suite E-9, Bend, OR 97708-1883 541.383.9310 | lax 541.382 7588

IT Corporation - Renton Project: Time Oil #2750 Sampled: 6/7/99 555 South Renton Village Place, Ste 700 Project Number: 783336 Received: 6/8/99 Renton, WA 98055 Project Manager: Jerry Harris Reported: 6/25/99 11:31

Gasoline Hydrocarbons per NWTPH-Gx Method and BTEX per EPA Method 8020A North Creek Analytical - Spokane

	Batch	Date	Date	Surrogate	Reporting			
Analyte	Number	Prepared	Analyzed	Limits	Limit	Result	Units	Notes*
ASSE ANTIGO								
02SB-08H2O	2.5222.52		<u>B9062.</u>	<u>34-25</u>			<u>Water</u>	
Benzene	0690058	6/17/99	6/18/99		0.500	1.59	ug/i	
Toluene		н	**		0.500	1.25	н	
Ethylbenzene	71	н	10		0.500	ND	"	
Xylenes (total)	"	H	D		1.00	2.78	#	
Gasoline Range Hydrocarbons	t1	Pf	11		50.0	128	11	
Surrogate: 4-BFB (FID)	n	и	"	50.0-150		98.0	%	
Surrogate: 4-BFB (PID)	n	**	**	<i>53.0-142</i>		74.8	"	
02SB-07H2O			B9062.	34-26			<u>Water</u>	
Benzene	0690058	6/17/99	6/18/99		0.500	ND	ug/l	
Toluene	#	"	0		0.500	ND	"	
Ethylbenzene	o	н	н		0.500	ND	•	
Xylenes (total)	**	11	**		1.00	ND	tr	
Gasoline Range Hydrocarbons	**		**		50.0	ND		
Surrogate: 4-BFB (FID)	**	**	"	50.0-150		87.2	 %	_
Surrogate: 4-BFB (PID)	н	*	"	53.0-142		86.0	"	
02SB-06H2O			B9062	34-27			Water	
Benzene	0690058	6/17/99	6/18/99		0.500	ND	ug/l	
Toluene	•	11	11		0.500	1.11	"	
Ethylbenzene			н		0.500	0.585	41	
Xylenes (total)	*	**	**		1.00	4.03	11	
Gasoline Range Hydrocarbons	IT	#	**		50.0	103	P	
Surrogate: 4-BFB (FID)	*	n	"	50.0-150		95.2		
Surrogate: 4-BFB (PID)	#	"	"	53.0-142		68.8	н	
02SB-02H2O			B9062	34-28			<u>Water</u>	
Benzene	0690058	6/17/99	6/18/99		50.0	214	ug/l	
Toluene	*	H	н		50.0	155	п п	
Ethylbenzene	11	•			50.0	459	11	
Xylenes (total)	rt .				100	1110	10	
Gasoline Range Hydrocarbons	н	Ħ	н		5000	8260	rŧ	
Surrogate: 4-BFB (FID)		- n	- ,,	50.0-150	2000	104	%	
Surrogate: 4-BFB (PID)	n	"	,,	53.0-142		85.6	70 "	
ATCD ASUSA			****	34.00			***	
02SB-05H2O	0/000	<i>(1)</i> = (0.0	<u>B9062</u> ;	<u> </u>			<u>Water</u>	
Benzene	0690058	6/17/99	6/18/99		0.500	19.9	ug/l	
Toluene	4	**	н		0.500	4.18	**	

North Creek Analytical - Bothell

 Seattle
 18939 120th Avenue Nt. Store 101, Bothell, WA 98011-9508

 425-420-9200
 Tax 425-420-9210

 Spokane
 East 11115 Montgomery, Store 8, Spokane, WA 99206-4776

509 924 9200 fax 509 924 9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503-906-9200 fax 503-906-9210

Bend 20354 Empire Avenue, Suite E-9, Bend, OR 97708-1883 541-383-9310 fax 541-382-7588

1T Corporation - Renton Project: Time Oil #2750 Sampled: 6/7/99 555 South Renton Village Place, Ste 700 Project Number: 783336 Received: 6/8/99 Renton, WA 98055 Project Manager: Jerry Harris Reported: 6/25/99 11:31

Gasoline Hydrocarbons per NWTPH-Gx Method and BTEX per EPA Method 8020A North Creek Analytical - Spokane

	Batch	Date	Date	Surrogate	Reporting			
Analyte	Number	Prepared	Analyzed	Limits	Limit	Result	Units	Notes*
02SB-05H2O (continued)			B90623	34-29			<u>Water</u>	
Ethylbenzene	0690058	6/17/99	6/18/99		0.500	19.9	ug/l	
Xylenes (total)	"	"	"		1.00	20.2	ug/t	
Gasoline Range Hydrocarbons	н	н	и		50.0	685	5 1	
Surrogate: 4-BFB (FID)	"	#		50.0-150	30.0	NR	%	6
Surrogate: 4-BFB (PID)	*	"	"	53.0-142		122	"	3
02SB-04H2O			<u>B9062</u> 3	34-30			Water	
Benzene	0690058	6/17/99	6/18/99	_	0.500	59.8	ug/l	
Toluene	"	a			0.500	2.28	"	
Ethylbenzene	H	н	lt .		0.500	1.62	91	
Xylenes (total)	**	*	н		1.00	8.18	**	
Gasoline Range Hydrocarbons	#	н	#		50.0	55.6	11	
Surrogate: 4-BFB (FID)	Ħ	н	"	50.0-150		79.2	%	
Surrogate: 4-BFB (PID)	Ħ	#	н	53.0-142		67.6	"	
02SB-03H2Q			B90623	3 <u>4-31</u>			<u>Water</u>	
Benzene	0690058	6/17/99	6/18/99	_	0.500	6.64	ug/l	
Toluene		47	11		0.500	1.36	- 	
Ethylbenzene		"	0		0.500	0.617	B†	
Xylenes (total)	и	ŧ	n		1.00	1.93		
Gasoline Range Hydrocarbons	n	•	II .		50.0	ND	•	
Surrogate: 4-BFB (FID)	- #	"	"	50.0-150		81.2	%	-
Surrogate: 4-BFB (PID)	"	*	н	53.0-142		66.4	n	

North Creek Analytical - Bothell

425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776
509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Boaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

20354 Empire Avenue, Suite E-9, Bend, OR 97708-1883 541.383.9310 fax 541.382.7588

IT Corporation - Renton

555 South Renton Village Place, Ste 700

Renton, WA 98055

Project: Time Oil #2750

Project Number: 783336

Project Manager: Jerry Harris

Sampled: 6/7/99

Received: 6/8/99

Reported: 6/25/99 11:31

Dry Weight Determination North Creek Analytical - Bothell

Lab ID	Matrix	Result	Units
B906234-01	Soil	78.7	%
B906234-02	Soil	76.6	%
B906234-03	Soil	83.4	%
B906234-04	Soil	79.8	%
B906234-05	Soil	80.1	%
B906234-06	Soil	80.0	%
B906234-07	Soil	84.5	%
B906234-08	Soil	88.2	%
B906234-09	Soil	83.5	%
B906234-10	Soil	82.9	%
B906234-11	Soil	81.6	%
B906234-12	Soil	81.9	%
B906234-13	Soil	83.4	%
B906234-14	Soil	78.9	%
B906234-15	Soil	81.9	%
В906234-16	Soil	78.5	%
B906234-17	Soil	80.2	%
B906234-18	Soil	81.7	%
B906234-19	Soil	79.6	%
	B906234-01 B906234-02 B906234-03 B906234-04 B906234-05 B906234-06 B906234-07 B906234-09 B906234-10 B906234-11 B906234-12 B906234-15 B906234-16 B906234-17 B906234-17	B906234-01 Soil B906234-02 Soil B906234-03 Soil B906234-04 Soil B906234-05 Soil B906234-06 Soil B906234-07 Soil B906234-08 Soil B906234-09 Soil B906234-10 Soil B906234-11 Soil B906234-12 Soil B906234-13 Soil B906234-14 Soil B906234-15 Soil B906234-16 Soil B906234-16 Soil B906234-17 Soil	B906234-01 Soil 78.7 B906234-02 Soil 76.6 B906234-03 Soil 83.4 B906234-04 Soil 79.8 B906234-05 Soil 80.1 B906234-06 Soil 80.0 B906234-07 Soil 84.5 B906234-08 Soil 88.2 B906234-09 Soil 83.5 B906234-10 Soil 82.9 B906234-11 Soil 81.6 B906234-12 Soil 81.9 B906234-13 Soil 83.4 B906234-15 Soil 81.9 B906234-15 Soil 81.9 B906234-16 Soil 78.5 B906234-17 Soil 80.2 B906234-18 Soil 81.7

North Creek Analytical - Bothell

425.420.9200 fax 425 420.9210

 Spokane
 East 11115 Montgomery, Suite B, Spukane, WA 99206-4776

 509.924 9200 fax 509.924.9290

 Portland
 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

Bend 20354 Empire Avenue, Suite E-9, Bend, OR 97708-1883 541.383.9310 fax 541 382.7588

IT Corporation - Renton 555 South Renton Village Place, Ste 700

Project: Time Oil #2750

Sampled: 6/7/99

Renton, WA 98055

Project Number: 783336

Received: 6/8/99

Project Manager: Jerry Harris Reported: 6/25/99 11:31

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B North Creek Analytical - Bothell

	Batch	Date	Date	Surrogate	Reporting			
Analyte	Number	Prepared	Analyzed	Limits	Limit	Result	Units	Notes
02SB-05C			B9062	34-18			Soil	3
Gasoline Range Hydrocarbons	0690523	6/16/99	6/23/99		5.00	ND	mg/kg dry	_
Benzene	n	**	tr		0.0500	ND	H	
Toluene	**	**	н		0.0500	ND	11	
Ethylbenzene	n	н	н		0.0500	ND	n .	
Xylenes (total)	n	n	**		0.100	ND	п	
Surrogate: 4-BFB (FID)	"	"	**	50.0-150		81.8	%	
Surrogate: 4-BFB (PID)	u	*	"	50.0-150		96.5	"	
02SB-04B			B9062	34-19			<u>Soil</u>	3
Gasoline Range Hydrocarbons	0690523	6/16/99	6/23/99		5.00	ND	mg/kg dry	•
Benzene	H	n	11		0.0500	ND	"	
Toluene	#	m .	**		0.0500	ND	tf .	
Ethylbenzene	*	11	**		0.0500	ND	**	
Xylenes (total)	*	11	••		0.100	ND	**	
Surrogate: 4-BFB (FID)	"	н		50.0-150		75.1	%	
Surrogate: 4-BFB (PID)	"	*	"	50.0-150		91.1	"	
02SB-04C			B9062	<u>34-20</u>			Soil	<u>3</u>
Gasoline Range Hydrocarbons	0690523	6/16/99	6/23/99		5.00	ND	mg/kg dry	
Benzene	#	H	**		0.0500	ND		
Toluene	41	11	н		0.0500	ND	#	
Ethylbenzene	11	н	н		0.0500	ND	Ħ	
Xylenes (total)	11	н	**		0.100	ND	н	
Surrogate: 4-BFB (FID)	"	*	#	50.0-150		70.2	%	
Surrogate: 4-BFB (PID)	н	H	"	50.0-150		84.7	#	
02SB-03A			B9062	34-21			Soil	3
Gasoline Range Hydrocarbons	0690523	6/16/99	6/23/99		5.00	ND	mg/kg dry	
Benzene	11	H	Ħ		0.0500	ND	11	
Toluene	н	*	**		0.0500	ND	"	
Ethylbenzene	н	#	"		0.0500	ND	n	
Xylenes (total)		Ħ	*		0.100	ND	m .	
Surrogate: 4-BFB (FID)	"	n	"	50.0-150		74.0	%	
Surrogate: 4-BFB (PID)	n	"	"	50.0-150		91.9	ee	
02SB-03B			B9062	34-22			Soil	3
Gasoline Range Hydrocarbons	0690523	6/16/99	6/23/99		5.00	ND	mg/kg dry	
Benzene	H	*	ш		0.0500	ND	н	

North Creek Analytical - Bothell

^{*}Refer to end of report for text of notes and definitions.

503.906.9200 fax 503.906.9210

Bend 20354 Empire Avenue, Suite E-9, Bend, OR 97708-1883
541.383.9310 fax 541.382.7588

IT Corporation - Renton Project: Time Oil #2750 Sampled: 6/7/99 555 South Renton Village Place, Ste 700 Project Number: 783336 Received: 6/8/99

Renton, WA 98055 Project Manager: Jerry Harris Reported: 6/25/99 11:31

Dry Weight Determination North Creek Analytical - Bothell

Sample Name	Lab ID	Matrix	Result	Units
02SB-04C	B906234-20	Soil	77.6	%
02SB-03A	B906234-21	Soil	83.2	%
02SB-03B	B906234-22	Soil	81.5	9,0
02SB-03C	B906234-23	Soil	78.4	9.6
02SB-03D	B906234-24	Soil	76.2	96

North Creek Analytical - Bothell

Bend 20354 Empire Avenue, Suite E-9, Bend, OR 97708-1883 541.383.9310 fax 541.382.7588

IT Corporation - Renton

Project: Time Oil #2750

Sampled: 6/7/99

555 South Renton Village Place, Ste 700 Renton, WA 98055

Project Number: 783336 Project Manager: Jerry Harris Received: 6/8/99

Reported: 6/25/99 11:31

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B/Quality Control

North Creek Analytical - Bothell

Batch: .0690370 Date Prepared: 6/11/99 Extraction Method: EPA 5030B (MeOH)		Date	Spike	Sample	QC	R	eporting Limit	Recov.	RPD	RPD
Blank	Analyte	Analyzed	Level	Result	Result	Units	Recov. Limits	%	Limit	% Notes*
Blank	Ratch: 0600370	Data Propo	rad: 6/11	<i>1</i> 00		Fretra atio	aa Mashada ED	A EASAB	(MaOU)	
Gasoline Range Hydrocarbons G20/99 ND mg/kg dry 5.00				133		Extraction	on Method: Er	A SUSUB	IMEOU	Į.
Benzene	——————————————————————————————————————		<u>LKI</u>		NID		. 500			
Toluene " ND " 0.0500 Ethylbenzene " ND " 0.0500 Ethylbenzene " ND " 0.0500 Surrogate: 4BFB (FID) " 4.00 4.06 " 50.0-150 10/ Surrogate: 4BFB (FID) " 4.00 4.21 " 50.0-150 10/ Surrogate: 4BFB (FID) " 4.00 4.21 " 50.0-150 10/ Surrogate: 4BFB (FID) " 4.00 4.21 " 50.0-150 10/ Surrogate: 4BFB (FID) " 4.00 4.21 " 50.0-150 10/ Surrogate: 4BFB (FID) " 4.00 4.21 " 50.0-150 10/ Surrogate: 4BFB (FID) " 4.00 4.20 " 50.0-150 10/ Surrogate: 4BFB (FID) " 4.00 4.20 " 50.0-150 10/ Surrogate: 4BFB (FID) " 4.00 4.20 " 50.0-150 10/ Surrogate: 4BFB (FID) " 4.00 50.0-150 10/ Surrogate: 4BFB (FID) " 4.92 4.15 " 50.0-150 84.3 Duplicate 0690370-DUP2 B906191-08 Gasoline Range Hydrocarbons 6/22/99 5.39 ND mg/kg dry 50.0-150 84.4 Matrix Spike 0690370-MS1 B906191-07 Benzene 6/22/99 0.612 ND 0.499 mg/kg dry 60.0-140 81.5 Toluene " 0.612 ND 0.497 " 60.0-140 81.2 Ethylbenzene " 0.612 ND 0.497 " 60.0-140 82.6 Surrogate: 4BFB (FID) " 4.90 4.29 " 50.0-150 87.6 Matrix Spike Dup 0690370-MS1 B906191-07 Benzene 6/22/99 0.612 ND 0.521 " 60.0-140 82.6 Surrogate: 4BFB (FID) " 4.90 0.513 mg/kg dry 60.0-140 83.8 20.0 2.78 Matrix Spike Dup 0690370-MSD1 B906191-07 Benzene 6/22/99 0.612 ND 0.513 mg/kg dry 60.0-140 83.5 Surrogate: 4BFB (FID) " 4.90 0.499 " 60.0-140 83.5 Surrogate: 4BFB (FID) " 4.90 0.499 " 60.0-140 83.2 20.0 0.369 Ethylbenzene 9.0.612 ND 0.513 mg/kg dry 60.0-140 83.8 20.0 2.78 Batch: 0690523 Date Prepared: 6/16/99	• •						-			
Ethylbenzene Xylenes (total) "										
ND	- +	11								
Surrogate: 4-BFB (FID)	•	11								
Comparison of the Image			4.00	·· · -						
Casoline Range Hydrocarbons 6/20/99 25.0 23.8 mg/kg dry 70.0-130 95.2		**								
Gasoline Range Hydrocarbons 6/20/99 25.0 23.8 mg/kg dry 70.0-130 95.2	Surrogate. 4-bi b (11b)		4.00		4.21		30.0-130	103		
Duplicate O690370-DUP1 B906191-01 B906191-01 B906191-01 B906191-01 B906191-01 B906191-01 B906191-01 B906191-01 B906191-01 B906191-02 B906191-02 B906191-02 B906191-03 B906191-07 B9	LCS	0690370-B	<u>S1</u>							
Duplicate O690370-DUP1 B906191-01 Surrogate: 4-BFB (FID)	Gasoline Range Hydrocarbons	6/20/99	25.0		23.8	mg/kg dr	y 70.0-130	95.2		
Sasoline Range Hydrocarbons 6/21/99 5.14 ND mg/kg dry 50.0	Surrogate: 4-BFB (FID)	n	4.00		4.20	"	50.0-150	105		
Sasoline Range Hydrocarbons 6/21/99 5.14 ND mg/kg dry 50.0	Duplicate	0690370-D	UPI F	3906191-01						
Surrogate: 4-BFB (FID)	Gasoline Range Hydrocarbons	•			ND	me/ke dr	v		50.0	
Sasoline Range Hydrocarbons 6/22/99 5.39 ND mg/kg dry 50.0	Surrogate: 4-BFB (FID)	"	4.92			"		84.3		
Sasoline Range Hydrocarbons 6/22/99 5.39 ND mg/kg dry 50.0	Duplicate	0690370-D	UP2 F	3906191-08						
Matrix Spike 0690370-MS1 B906191-07 Benzene 6/22/99 0.612 ND 0.499 mg/kg dry 60.0-140 81.5 Toluene " 0.612 ND 0.497 " 60.0-140 81.2 Ethylbenzene " 0.612 ND 0.521 " 60.0-140 85.1 Xylenes (total) " 1.84 ND 1.52 " 60.0-140 82.6 Surrogate: 4-BFB (PID) " 4.90 4.29 " 50.0-150 87.6 Matrix Spike Dup 0690370-MSD1 B906191-07 Benzene 6/22/99 0.612 ND 0.513 mg/kg dry 60.0-140 83.8 20.0 2.78 Toluene " 0.612 ND 0.499 " 60.0-140 81.5 20.0 0.369 Ethylbenzene " 0.612 ND 0.516 " 60.0-140 81.5 20.0 0.369 Ethylbenzene " 0.612 ND 0.516 " 60.0-140 83.2 20.0 0.724 Surrogate: 4-BFB (PID) " 4.90 4.20	— 				ND	me/ke dr	v		50.0	
Benzene 6/22/99 0.612 ND 0.499 mg/kg dry 60.0-140 81.5 Toluene " 0.612 ND 0.497 " 60.0-140 81.2 Ethylbenzene " 0.612 ND 0.521 " 60.0-140 85.1 Xylenes (total) " 1.84 ND 1.52 " 60.0-140 82.6 Surrogate: 4-BFB (PID) " 4.90 4.29 " 50.0-150 87.6 Matrix Spike Dup Benzene 6/22/99 0.612 ND 0.513 mg/kg dry 60.0-140 83.8 20.0 2.78 Toluene " 0.612 ND 0.499 " 60.0-140 81.5 20.0 0.369 Ethylbenzene " 0.612 ND 0.516 " 60.0-140 84.3 20.0 0.945 Xylenes (total) " 1.84 ND 1.53 " 60.0-140 83.2 20.0 0.724 Surrogate: 4-BFB (PID) " 4.90 4.20 " 50.0-150 85.7 Batch: 0690523 Date Prepared: 6/16/99 Extraction Method: EPA 5030B (MeOH) Blank	Surrogate: 4-BFB (FID)		4.84			"		81.4		
Benzene 6/22/99 0.612 ND 0.499 mg/kg dry 60.0-140 81.5 Toluene " 0.612 ND 0.497 " 60.0-140 81.2 Ethylbenzene " 0.612 ND 0.521 " 60.0-140 85.1 Xylenes (total) " 1.84 ND 1.52 " 60.0-140 82.6 Surrogate: 4-BFB (PID) " 4.90 4.29 " 50.0-150 87.6 Matrix Spike Dup Benzene 6/22/99 0.612 ND 0.513 mg/kg dry 60.0-140 83.8 20.0 2.78 Toluene " 0.612 ND 0.499 " 60.0-140 81.5 20.0 0.369 Ethylbenzene " 0.612 ND 0.516 " 60.0-140 84.3 20.0 0.945 Xylenes (total) " 1.84 ND 1.53 " 60.0-140 83.2 20.0 0.724 Surrogate: 4-BFB (PID) " 4.90 4.20 " 50.0-150 85.7 Batch: 0690523 Date Prepared: 6/16/99 Extraction Method: EPA 5030B (MeOH) Blank	Matrix Spike	0690370-M	IS1 E	3906191-07						
Toluene " 0.612 ND 0.497 " 60.0-140 81.2 Ethylbenzene " 0.612 ND 0.521 " 60.0-140 85.1 Xylenes (total) " 1.84 ND 1.52 " 60.0-140 82.6 Surrogate: 4-BFB (PID) " 4.90 4.29 " 50.0-150 87.6 Matrix Spike Dup 0690370-MSD1 B906191-07 Benzene 6/22/99 0.612 ND 0.513 mg/kg dry 60.0-140 83.8 20.0 2.78 Toluene " 0.612 ND 0.499 " 60.0-140 81.5 20.0 0.369 Ethylbenzene " 0.612 ND 0.516 " 60.0-140 84.3 20.0 0.945 Xylenes (total) " 1.84 ND 1.53 " 60.0-140 83.2 20.0 0.724 Surrogate: 4-BFB (PID) " 4.90 4.20 " 50.0-150 85.7 Batch: 0690523 Date Prepared: 6/16/99 Blank 0690523-BLK1	Benzene				0.499	mg/kg dr	y 60.0-140	81.5		
Ethylbenzene " 0.612 ND 0.521 " 60.0-140 85.1 Xylenes (total) " 1.84 ND 1.52 " 60.0-140 82.6 Surrogate: 4-BFB (PID) " 4.90 4.29 " 50.0-150 87.6 Matrix Spike Dup 0690370-MSD1 B906191-07 Benzene 6/22/99 0.612 ND 0.513 mg/kg dry 60.0-140 83.8 20.0 2.78 Toluene " 0.612 ND 0.499 " 60.0-140 81.5 20.0 0.369 Ethylbenzene " 0.612 ND 0.516 " 60.0-140 84.3 20.0 0.945 Xylenes (total) " 1.84 ND 1.53 " 60.0-140 83.2 20.0 0.724 Surrogate: 4-BFB (PID) " 4.90 4.20 " 50.0-150 85.7 Batch: 0690523 Date Prepared: 6/16/99 Extraction Method: EPA 5030B (MeOH) Blank	Toluene						•			
No. 1.84 ND 1.52	Ethylbenzene	**	0.612	ND		и				
Matrix Spike Dup 0690370-MSD1 B906191-07 Benzene 6/22/99 0.612 ND 0.513 mg/kg dry 60.0-140 83.8 20.0 2.78 Toluene " 0.612 ND 0.499 " 60.0-140 81.5 20.0 0.369 Ethylbenzene " 0.612 ND 0.516 " 60.0-140 84.3 20.0 0.945 Xylenes (total) " 1.84 ND 1.53 " 60.0-140 83.2 20.0 0.724 Surrogate: 4-BFB (PID) " 4.90 4.20 " 50.0-150 85.7 Batch: 0690523 Date Prepared: 6/16/99 Extraction Method: EPA 5030B (MeOH) Blank 0690523-BLK1	Xylenes (total)	71	1.84	ND	1.52	11	60.0-140			
Benzene 6/22/99 0.612 ND 0.513 mg/kg dry 60.0-140 83.8 20.0 2.78 Toluene " 0.612 ND 0.499 " 60.0-140 81.5 20.0 0.369 Ethylbenzene " 0.612 ND 0.516 " 60.0-140 84.3 20.0 0.945 Xylenes (total) " 1.84 ND 1.53 " 60.0-140 83.2 20.0 0.724 Surrogate: 4-BFB (PID) " 4.90 4.20 " 50.0-150 85.7 Batch: 0690523 Date Prepared: 6/16/99 Blank 0690523-BLK1	Surrogate: 4-BFB (PID)	н	4.90		4.29	п				_
Benzene 6/22/99 0.612 ND 0.513 mg/kg dry 60.0-140 83.8 20.0 2.78 Toluene " 0.612 ND 0.499 " 60.0-140 81.5 20.0 0.369 Ethylbenzene " 0.612 ND 0.516 " 60.0-140 84.3 20.0 0.945 Xylenes (total) " 1.84 ND 1.53 " 60.0-140 83.2 20.0 0.724 Surrogate: 4-BFB (PID) " 4.90 4.20 " 50.0-150 85.7 Batch: 0690523 Date Prepared: 6/16/99 Blank 0690523-BLK1	Matrix Spike Dup	0690370-M	SD1 E	906191-07						
Toluene " 0.612 ND 0.499 " 60.0-140 81.5 20.0 0.369 Ethylbenzene " 0.612 ND 0.516 " 60.0-140 84.3 20.0 0.945 Xylenes (total) " 1.84 ND 1.53 " 60.0-140 83.2 20.0 0.724 Surrogate: 4-BFB (PID) " 4.90 4.20 " 50.0-150 85.7 Batch: 0690523 Date Prepared: 6/16/99 Blank 0690523-BLK1	Benzene	6/22/99			0.513	mg/kg dr	v 60.0-140	83.8	20.0	2.78
Ethylbenzene " 0.612 ND 0.516 " 60.0-140 84.3 20.0 0.945 Xylenes (total) " 1.84 ND 1.53 " 60.0-140 83.2 20.0 0.724 Surrogate: 4-BFB (PID) " 4.90 4.20 " 50.0-150 85.7 Batch: 0690523 Date Prepared: 6/16/99 Extraction Method: EPA 5030B (MeOH) Blank 0690523-BLK1	Toluene	н	0.612							
Xylenes (total) " 1.84 ND 1.53 " 60.0-140 83.2 20.0 0.724 Surrogate: 4-BFB (PID) " 4.90 4.20 " 50.0-150 85.7 Batch: 0690523 Date Prepared: 6/16/99 Extraction Method: EPA 5030B (MeOH) Blank 0690523-BLK1	Ethylbenzene	n	0.612			н				
Surrogate: 4-BFB (PID) " 4.90 4.20 " 50.0-150 85.7 Batch: 0690523 Date Prepared: 6/16/99 Extraction Method: EPA 5030B (MeOH) Blank 0690523-BLK1	Xylenes (total)	Ħ	1.84			**				0.724
Blank 0690523-BLK1	Surrogate: 4-BFB (PID)	#		<u> </u>		"				
Blank 0690523-BLK1	Batch: 0690523	Date Prena	red: 6/16	/99		Extraction	on Method: EP	A 5030B	(MeOH)
	Blank	-								-
	Gasoline Range Hydrocarbons				ND	mg/kg dr	y 5.00			- -

North Creek Analytical - Botheil

*Refer to end of report for text of notes and definitions.

Seattle 18939-120th Avenue Nt., State 101, Bothell, WA 98011-9508 425,420,9200 - fax 425,420,9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210 20354 Empire Avenue, Suite E-9, Bend, OR 97708-1883

541.383 9310 fax 541 382.7588

IT Corporation - Renton

Project: Time Oil #2750

Sampled: 6/7/99

555 South Renton Village Place, Ste 700

Project Number: 783336

Received: 6/8/99

Renton, WA 98055

Project Manager: Jerry Harris

Reported: 6/25/99 11:31

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B/Quality Control North Creek Analytical - Bothell

	Date	Spike	Sample	QC	R	eporting Limit	Recov.	RPD	RPD
Analyte	Analyzed	Level	Result	Result	Units	Recov. Limits	%	Limit	% Notes
Blank (continued)	0690523-B	LK1							
Benzene	6/23/99			ND	mg/kg dry	0.0500			
Toluene	R			ND	"	0.0500			
Ethylbenzene	11			ND		0.0500			
Xylenes (total)	**			ND	11	0.100			
Surrogate: 4-BFB (FID)	"	4.00		3.43	"	50.0-150	85.8	_	
Surrogate: 4-BFB (PID)	"	4.00		4.02	et .	50.0-150	100		
LCS	0690523-B	S1							
Gasoline Range Hydrocarbons	6/23/99	25.0		19.7	mg/kg dry	70.0-130	78.8		
Surrogate: 4-BFB (FID)	п	4.00		3.82	"	50.0-150	95.5		
Duplicate	0690523-D	UP1 B	906234-17						
Gasoline Range Hydrocarbons	6/23/99		ND	ND	mg/kg dry	,		50.0	
Surrogate: 4-BFB (FID)	"	4.99		3.88	"	50.0-150	77.8		
<u>Duplicate</u>	0690523-D	UP2 B	906234-14						
Gasoline Range Hydrocarbons	6/23/99		ND	ND	mg/kg dry	,		50.0	
Surrogate: 4-BFB (FID)	11	5.07		3.76	"	50.0-150	74.2		
Matrix Spike	0690523-M	S1 B	906234-04						
Benzene	6/23/99	0.626	ND	0.522	mg/kg dry	60.0-140	83.4		
Toluene	*	0.626	ND	0.560	"	60.0-140	89.5		
Ethylbenzene		0.626	ND	0.567	Ħ	60.0-140	90.6		
Xylenes (total)	*	1.88	ND	1.69	n	60.0-140	89.9		
Surrogate: 4-BFB (PID)	n	5.01		4.56	rt .	50.0-150	91.0		
Matrix Spike Dup	<u>0690523-M</u>	SD1 B	906234-04						
Benzene	6/23/99	0.626	ND	0.512	mg/kg dry	60.0-140	81.8	20.0	1.94
Toluene		0.626	ND	0.542	"	60.0-140	86.6	20.0	3.29
Ethylbenzene	m	0.626	ND	0.549	Ħ	60.0-140	87.7	20.0	3.25
Xylenes (total)	"	1.88	ND	1.63		60.0-140	86.7	20.0	3.62
Surrogate: 4-BFB (PID)	<u> </u>	5.01		4.36	н	50.0-150	87.0		
Batch: 0690565 Blank	<u>Date Prepa</u> 0690565-B1		<u>99</u>		Extractio	n Method: EP.	A 5030B	(MeOH)	Į.

ND

ND

ND

mg/kg dry

North Creek Analytical - Bothell

Gasoline Range Hydrocarbons

Benzene

Toluene

*Refer to end of report for text of notes and definitions.

6/23/99

5.00

0.0500

0.0500

| Seattle | 18939 120th Avenue NE, Suite 101, Bothell, WA 98011-9508 | 425.420.9200 | fax 425.420.9210 | East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 | 509.924.9200 | fax 509.924.9290 | Portland | 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 | 503.906.9200 | fax 503.906.9210 | Care State Of the Paris of Paris OR 9708-1883

Bend 20354 Empire Avenue, Suite E-9, Bond, OR 97708-1883 541.383.9310 Tax 541.382.7588

IT Corporation - Renton

Project: Time Oil #2750

Project Manager: Jerry Harris

Sampled: 6/7/99

555 South Renton Village Place, Ste 700 Renton, WA 98055

Project Number: 783336

Received: 6/8/99

Reported: 6/25/99 11:31

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B/Quality Control

North Creek Analytical - Bothell

	Date	Spike	Sample	QC	R	eporting Limit	Recov.	RPD	RPD
Analyte	Analyzed	Level	Result	Result	Units	Recov. Limits	%	Limit	% Notes
Blank (continued)	<u>0690565-BI</u>	<u>Ж</u> 1							
Ethylbenzene	6/23/99			ND	mg/kg dr	y 0.0500			
Xylenes (total)	Ħ			ND	"	0.100			
Surrogate: 4-BFB (FID)	H	4.00		3.85	и	50.0-150	96.2		
Surrogate: 4-BFB (PID)	"	4.00		4.12	"	50.0-150	103		
LCS	0690565-BS	<u>51</u>							
Gasoline Range Hydrocarbons	6/21/99	25.0		20.5	mg/kg dr	y 70.0-130	82.0		
Surrogate: 4-BFB (FID)	"	4.00		4.00	"	50.0-150	100		
<u>Duplicate</u>	0690565-D1	JP1	B906371-01						
Gasoline Range Hydrocarbons	6/21/99		ND	ND	mg/kg dr	y		50.0	
Surrogate: 4-BFB (FID)	n	4.45		4.03	11	50.0-150	90.6		
Matrix Spike	0690565-M	<u>S1</u>	B906302-05						
Benzene	6/21/99	0.568	ND	0.443	mg/kg dr	y 60.0-140	78.0		
Toluene	н	0.568	ND	0.471	н	60.0-140	82.9		
Ethylbenzene	"	0.568	0.0532	0.481	н	60.0-140	75.3		
Xylenes (total)	**	1.70	ND	1.43	#	60.0-140	84.1		
Surrogate: 4-BFB (PID)	"	4.54		4.17	"	50.0-150	91.9		
Matrix Spike Dup	0690565-M	SD1	B906302-05						
Benzene	6/22/99	0.568	ND	0.451	mg/kg dr	y 60.0-140	79.4	20.0	1.78
Toluene	er	0.568	ND	0.477		60.0-140	84.0	20.0	1.32
Ethylbenzene	n	0.568	0.0532	0.477	II .	60.0-140	74.6	20.0	0.934
Xylenes (total)	"	1.70	ND	1.41	н	60.0-140	82.9	20.0	1.44
Surrogate: 4-BFB (PID)	"	4.54		4.08	#	50.0-150	89.9		

North Creek Analytical - Bothell

18939 120th Avenue NE, Spite 101, Botheil, WA 98011-9508 425.420.9200 fax 425.420.9210 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290 Seattle

Spokane

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

20354 Empire Avenue, Suite E-9, Bend, OR 97708-1883 541 383 9310 fax 541 382.7588

1T Corporation - Renton

Time Oil #2750 Project:

Sampled: 6/7/99

555 South Renton Village Place, Ste 700

Project Number: 783336

Received: 6/8/99

Renton, WA 98055

Project Manager: Jerry Harris

Reported: 6/25/99 11:31

Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up)/Quality Control North Creek Analytical - Bothell

	Date	Spike	Sample	QC	R	Reporting Limit	Recov.	RPD	RPD	
Analyte	Analyzed	Level	Result	Result	Units	Recov. Limits	%	Limit	9/0	Notes*
Batch: 0690369	Date Prepa	red: 6/11/	99		Extraction	on Method: EP.	A 3520C	/600 Seri	<u>es</u>	
Blank	0690369-BI									
Diesel Range Hydrocarbons	6/14/99			ND	mg/l	0.250				
Lube Oil Range Hydrocarbons	"			ND		0.500				
Surrogate: 2-FBP		0.325		0.388	11	50.0-150	119			
LCS	0690369-BS	<u>S1</u>								
Diesel Range Hydrocarbons	6/13/99	2.00		1.78	mg/l	60.0-140	89.0			
Surrogate: 2-FBP	п	0.325		0.249	- 4	50.0-150	76.6			
LCS Dup	0690369-B	SD1								
Diesel Range Hydrocarbons	6/14/99	2.00		1.80	mg/l	60.0-140	90.0	40.0	1.12	
Surrogate: 2-FBP	"	0.325		0.342	u	50.0-150	105			
Batch: 0690406	Date Prepa	red: 6/11/	<u> 199</u>		Extracti	on Method: EP	A 3550B			
<u>Blank</u>	0690406-B	<u>LKI</u>								
Diesel Range Hydrocarbons	6/13/99			ND	mg/kg dr	y 10.0				
Lube Oil Range Hydrocarbons	**			ND	4	25.0				<u>-</u>
Surrogate: 2-FBP	и	10.7	•	11.8	н	50.0-150	110			
LCS	<u>0690406-B</u>	<u>\$1</u>								
Diesel Range Hydrocarbons	6/13/99	66.7		56.6	mg/kg dr		84.9			
Surrogate: 2-FBP	"	10.7		7.49	**	50.0-150	70.0			
<u>Duplicate</u>	0690406-D	UP1 E	3906279-01							
Diesel Range Hydrocarbons	6/13/99		740	507	mg/kg di	ry		50.0	37.4	
Lube Oil Range Hydrocarbons	**		2730	1520	**			50.0	56.9	7
Surrogate: 2-FBP	н	11.4		6.64	"	50.0-150	<i>58.2</i>			
<u>Duplicate</u>	0690406-D	UP2 E	3906235-04							
Diesel Range Hydrocarbons	6/13/99		17.0	13.4	mg/kg di	ry		50.0	23.7	
Lube Oil Range Hydrocarbons	tf		37.0	ND	H			50.0		
Surrogate: 2-FBP	r	13.5		9.41	tz	50.0-150	69.7			
Batch: 0690419	Date Prepa		<u>/99</u>		Extracti	on Method: Ef	A 3520C	:/600 Ser	ies	
<u>Blank</u>	0690419-B	LKi								
Diesel Range Hydrocarbons	6/14/99			ND	mg/l	0.250				
Lube Oil Range Hydrocarbons	н			ND		0.500				
Surrogate: 2-FBP	н	0.325		0.244	- "	50.0-150	75. Ĭ			

North Creek Analytical - Bothell

*Refer to end of report for text of notes and definitions.

Seattle 18939 120th Avenue NE, Sinte 101, Bothell, WA 98011-9508 425.420.9200 fax 425.420.9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 Spokane

509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906 9200 1ax 503.906.9210 Bend 20354 Empire Avenue, Suite E.9, Bend, OR 97708-1883

541.383.9310 fax 541.382 7588

IT Corporation - Renton 555 South Renton Village Place, Ste 700

Renton, WA 98055

7.3 2752

Project: Time Oil #2750 Project Number: 783336

Project Manager: Jerry Harris

Sampled: 6/7/99

Received: 6/8/99

Reported: 6/25/99 11:31

Christy septem

a-(jr8.2xc - r - x

Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up)/Quality Control North Creek Analytical - Bothell

	Date	Spike	Sample	QC	P	teporting Limit	Recov.	RPD	RPD	
Analyte	Analyzed	Level	Result	Result	Units	Recov. Limits	%	Limit	%	Notes*
LCS	0690419-BS	\$1								
Diesel Range Hydrocarbons	6/14/99	2.00		1.66	mg/l	60.0-140	83.0			
Surrogate: 2-FBP		0.325		0.334	<u>"</u>	50.0-150	103			
LCS Dup	0690419-B	SD1								
Diesel Range Hydrocarbons	6/14/99	2.00		1.69	mg/l	60.0-140	84.5	40.0	1.79	
Surrogate: 2-FBP	· · · · · · · · · · · · · · · · · · ·	0.325		0.257	"	50.0-150	79.1			
Batch: 0690536	Date Prepa	red: 6/16/	99		Extracti	on Method: EP	A 3550B			
Blank	0690536-B									
Diesel Range Hydrocarbons	6/17/99			ND	mg/kg di	ry 10.0				
Lube Oil Range Hydrocarbons	H			ND	H	25.0				
Surrogate: 2-FBP		10.8	*	6.86	n	50.0-150	63.5			
LCS	0690536-B	S1								
Diesel Range Hydrocarbons	6/17/99	66.7		55.2	mg/kg di	ry 60.0-140	82.8			
Surrogate: 2-FBP	"	10.8		9.58	"	50.0-150	88.7			•
<u>Duplicate</u>	0690536-D	UP1 B	906234-23							
Diesel Range Hydrocarbons	6/17/99		ND	12.4	mg/kg di	ry		50.0		8
Lube Oil Range Hydrocarbons	11		ND	29.0	**			50.0		8
Surrogate: 2-FBP	н	13.8		8.96	H .	50.0-150	64.9			
<u>Duplicate</u>	0690536-D	UP2 B	906234-05							
Diesel Range Hydrocarbons	6/17/99		ND	ND	mg/kg d	ry		50.0		
Lube Oil Range Hydrocarbons	**		ND	ND				50.0		
Surrogate: 2-FBP	"	13.5		12.6	"	50.0-150	93.3			
Batch: 0690555	Date Prena	red: 6/17/	29		Extracti	ion Method: EF	A 3550E	<u>.</u>		
Blank	0690555-B	LK1								
Diesel Range Hydrocarbons	6/18/99			ND	mg/kg d	гу 10.0				
Lube Oil Range Hydrocarbons	н			ND	14	25.0	l			
Surrogate: 2-FBP	н	10.8		6.84	"	50.0-150	63.3			
LCS	0690555-B	<u>S1</u>								
Diesel Range Hydrocarbons	6/18/99	66.7		55.0	mg/kg d	гу 60.0-140	82.5			
Surrogate: 2-FBP	,,	10.8	-	9.21	**	50.0-150	85.3			

North Creek Analytical - Bothell

425 420.9200 fax 425 420 9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924,9200 (ax 509.924.9290 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503 906.9200 fax 503 906 9210 20354 Empire Avenue, Suite E-9, Bend, OR 97708-1883

541 383 9310 fax 541.382 7588

IT Corporation - Renton

Project: Time Oil #2750

Sampled: 6/7/99

555 South Renton Village Place, Ste 700

Project Number: 783336

Received: 6/8/99

Renton, WA 98055

Project Manager: Jerry Harris

Reported: 6/25/99 11:31

Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up)/Quality Control North Greek Analytical - Bothell

	Date	Spike	Sample	QC		Reporting Limit	Recov.	RPD	RPD	
Analyte	Analyzed	Level	Result	Result	Units	Recov. Limits	%_	Limit	%	Notes*
<u>Duplicate</u>	0690555-D	UP1 I	3906373 <u>-01</u>							
Diesel Range Hydrocarbons	6/18/99		ND	ND	mg/kg d	lry		50.0		
Lube Oil Range Hydrocarbons	11		36.9	ND	44			50.0		
Surrogate: 2-FBP	"	13.6		7.64	"	50.0-150	56.2	•		~

18939 120th Avenue NE, Suite 101, Bothell, WA 98011-9508

425.420.9200 tax 425.420.9210

Spokane

425.420.9200 fax 425.420.9210
East 11115 Montgomery, Suite B. Spokane, WA 99206-4776
599.924.9200 fax 509.924.9290
9405 SW Nimbus Avenue, Beaverton, OR 97008-7132
503.906.9200 fax 503.906.9210 Portland

20354 Empire Avenue, Suite E-9, Bend, OR 97708-1883 Bend

541.383.9310 fax 541.382 7588

IT Corporation - Renton

555 South Renton Village Place, Ste 700

Project: Time Oil #2750

Sampled: 6/7/99

Project Number: 783336

Received: 6/8/99

Renton, WA 98055

Project Manager: Jerry Harris

Reported: 6/25/99 11:31

Total Metals by EPA 6000/7000 Series Methods/Quality Control North Creek Analytical - Bothell

	Date	Spike	Sample	QC	R	Reporting Limit	Recov.	RPD	RPD	
Analyte	Analyzed	Level	Result	Result	Units	Recov. Limits	%	Limit	%	Notes*
Batch: 0690627	Date Prepa		<u>99</u>		Extraction	on Method: EP	A 3050B			
<u>Blank</u>	<u>0690627-BI</u>	<u>.K1</u>								
Lead	6/21/99			ND	mg/kg dr	y 0.500				
<u>Blank</u>	0690627-BI	<u>_K2</u>								
Lead	6/21/99			ND	mg/kg dr	y 0.500				
Blank	0690627-BI	.K3								
Lead	6/22/99			ND	mg/kg dr	y 0.500				
1.00	0.000.27 86	14								
LCS Lead	<u>0690627-BS</u> 6/22/99	25.0		19.9	mg/kg dr	y 80.0-120	79.6			9
						•				
LCS	<u>0690627-BS</u> 6/22/99	<u>32</u> 25.0		20.0	ma/ka da	y 80.0-120	80.0			
Lead	0/22/99	23.0		20.0	mg/kg di	y 80.0-120	80.0			
Matrix Spike	<u>0690627-M</u>		906234-11							
Lead	6/21/99	29.7	6.18	29.2	mg/kg di	y 70.0-130	77.5			
Matrix Spike	0690627-M	S2 B	906234-15							
Lead	6/22/99	25.0	2.29	22.1	mg/kg di	ry 70.0-130	79.2			
Matrix Spike Dup	0690627-M	SD1 B	906234-11							
Lead	6/22/99	25.3	6.18	35.6	mg/kg di	ry 70.0-130	116	20.0	39.8	7
Matrix Spike Dup	0690627-M	SD2 R	906234-1 <u>5</u>							
Lead	6/22/99	26.8	2.29	21.8	mg/kg di	ry 70.0-130	72.8	20.0	8.42	

North Creek Analytical - Bothell

425.420.9200 fax 425.420.9210

425.420.9200 1ax 425.420.9210 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 1ax 509.924.9290 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

Portland 503.906.9200 fax 503.906.9210

20354 Empire Avenue, Suite E-9, Bend, OR 97708-1883 541.383.9310 fax 541.382.7588

IT Corporation - Renton

555 South Renton Village Place, Ste 700

Project: Time Oil #2750

Sampled: 6/7/99

Project Number: 783336

Received: 6/8/99

Renton, WA 98055

Project Manager: Jerry Harris

Reported: 6/25/99 11:31

Dissolved Metals by EPA 6000/7000 Series Methods/Quality Control North Creek Analytical - Bothell

	Date	Spike	Sample	QC		Reporting Limit	Recov.	RPD	RPD
Analyte	Analyzed	Level	Result	Result	Units	Recov. Limits	%	Limit	% Notes*
<u>Batch: 0690388</u> <u>Blank</u>	<u>Date Prepare</u> 0690388-BL		!		Extract	tion Method: EPA	3005A		
Lead	6/14/99	<u> </u>		ND	mg/l	0.00100			
<u>LCS</u> Lead	<u>0690388-BS1</u> 6/14/99	0.200		0.196	mg/l	80.0-120	98.0		
<u>Matrix Spike</u> Lead	<u>0690388-MS</u> 6/14/99	1 <u>B90</u> 0.200	06257-01 ND	0.199	mg/l	75.0-125	99.5		
Matrix Spike Dup Lead	<u>0690388-MS</u> 6/14/99	D1 B90 0.200	06257-01 ND	0.196	mg/l	75.0-125	98.0	20.0	1.52

North Creek Analytical - Bothell

Spokane 1833 12001 Avenue NC, Suite 101, Burnell, WA 99017-9306 425,420,9210 124,240,9210 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509,924,9200 fax 509,924 9290 Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503,906,9200 fax 503,906,9210

IT Corporation - Renton 555 South Renton Village Place, Ste 700 Renton, WA 98055

Project: Project Number: 783336 Project Manager: Jerry Harris

Time Oil #2750

Sampled: 6/7/99 Received: 6/8/99

Reported: 6/25/99 11:31

Gasoline Hydrocarbons per NWTPH-Gx Method and BTEX per EPA Method 8020A/Quality Control North Creek Analytical = Spokane

	Date	Spike	Sample	QC		Reporting Limit		RPD	RPD	
Analyte	Analyzed	Level	Result	Result	Units	Recov. Limits	%	Limit	%	Notes*
Batch: 0690058	Date Prepa	red: 6/17/	<u>99</u>		Extract	tion Method: GC	Volatile	à		
<u>Blank</u>	<u>0690058-B</u> 1	LKI								
Benzene	6/18/99			ND	ug/l	0.500				
Toluene	11			ND	**	0.500				
Ethylbenzene	"			ND	•	0.500				
Xylenes (total)	41			ND	••	1.00				
Gasoline Range Hydrocarbons	9			ND	**	50.0				
Surrogate: 4-BFB (FID)		25.0		27.1	#	50.0-150	108			
Surrogate: 4-BFB (PID)	,,	<i>25.0</i>		22.9	"	53.0-142	91.6			
LCS	0690058-BS	<u>S1</u>								
Gasoline Range Hydrocarbons	6/18/99	1000		829	ug/l	70.0-150	82.9			
Surrogate: 4-BFB (FID)	11	25.0		32.9	**	50.0-150	132			
LCS	0690058-B	<u>52</u>								
Benzene	6/18/99	10.0		8.96	ug/l	80.0-120	89.6			
Toluene	H	10.0		10.2	H	80.0-120	102			
Ethylbenzene	ч	10.0		8.71	и	80.0-120	87.1			
Xylenes (total)	**	30.0		26.7	n	80.0-120	89.0			
Surrogate: 4-BFB (PID)	"	25.0		22.2	**	53.0-142	88.8	-		
<u>Duplicate</u>	0690058-D	UP1 B	906234-27							
Gasoline Range Hydrocarbons	6/18/99		103	82.2	ug/l			60.0	22.5	
Surrogate: 4-BFB (FID)	H	25.0		24.4	"	50.0-150	97.6			
Surrogate: 4-BFB (PID)	**	25.0		18.1	11	53.0-142	72.4			
Duplicate	0690058-D	UP2 S	906060-04							
Gasoline Range Hydrocarbons	6/18/99		ND	ND	ug/l			60.0		
Surrogate: 4-BFB (FID)	"	25.0		22.5	н	50.0-150	90.0			
Surrogate: 4-BFB (PID)	н	25.0		18.8	"	53.0-142	<i>75.2</i>			
Matrix Spike	0690058-M	<u>IS1 S</u>	906060-04							
Gasoline Range Hydrocarbons	6/18/99	1000	ND	451	ug/l	70.0-130	45.1			10
Surrogate: 4-BFB (FID)	"	25.0		14.2	"	50.0-150	56.8			
Matrix Spike	0690058-M	<u> </u>	906060-04							
Benzene	6/18/99	10.0	ND	7.96	ug/l	54.0-143	79.6			
					-					
Toluene	ri .	10.0	ND	8.77	н	48.0-145	87.7			

North Creek Analytical - Bothell

Seattle 18939 120th Avenue NE, Suite 101, Bothell, WA 98011-9508 425-420-9200 fax 425-420-9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 tax 509.924.9290 Spokane

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 | fax 503.906.9210 Portland

20354 Empire Avenue, Suite E-9, Bend, OR 97708-1883 Bend

IT Corporation - Renton 555 South Renton Village Place, Ste 700 Project: Time Oil #2750

Sampled: 6/7/99

Project Number: 783336

Received: 6/8/99

Renton, WA 98055

Project Manager: Jerry Harris

Reported: 6/25/99 11:31

Gasoline Hydrocarbons per NWTPH-Gx Method and BTEX per EPA Method 8020A/Quality Control North Creek Analytical - Spokane

	Date	Spike	Sample	QC		Reporting Limit	Recov.	RPD	RPD	
Analyte	Analyzed	Level	Result	Result	Units	Recov. Limits	%	Limit	%	Notes*
Matrix Spike (continued)	<u>0690058-M</u>	<u>S2</u> <u>S9</u>	906060-04							
Matrix Spike (continued) Xylenes (total)	<u>0690058-M</u> 6/18/99	<u>S2</u> <u>S9</u> 30.0	2.05	21.9	ug/t	55.0-140	66.2			

Joy B Chang, Broject Manager

541.383.9310 fax 541 382.7588

IT Corporation - Renton 555 South Renton Village Place, Ste 700

Project: Time Oil #2750

Sampled: 6/7/99

Renton, WA 98055

Project Number: 783336

Received: 6/8/99

Project Manager: Jerry Harris

Reported: 6/25/99 11:31

Notes and Definitions

#	Note
1	The chromatogram for this sample does not resemble a typical gasoline pattern.
2	The reporting limit for this analyte has been raised to account for interference from coeluting organic compounds present in the sample.
3	Samples were extracted within hold time, but due to an extraction anomaly no surrogate was added. Samples were re-extracted outside of hold time and analyzed. The samples were similar for both extracts.
4	Results in the diesel organics range are primarily due to overlap from a heavy oil range product.
5	The sample chromatographic pattern does not resemble the fuel standard used for quantitation.
6	The surrogate recovery for this sample cannot be accurately quantified due to interference from coeluting organic compounds present in the sample.
7	The RPD value for this QC sample is above the established control limit. Review of associated QC indicates the high RPD does not represent an out-of-control condition for the batch.
8	Analyses are not controlled on RPD values from sample concentrations less than 10 times the reporting limit.
9	The spike recovery for this QC sample is outside of established control limits. Review of associated batch QC indicates the recovery for this analyte does not represent an out-of-control condition for the batch.
10	The spike recovery for this QC sample is outside of NCA established control limits. Alternate sources of QC have been used to validate the batch.
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
Recov.	Recovery
RPD	Relative Percent Difference

North Creek Analytical - Bothell

East 11115 Montgomery, Suite B, Spokane, WA 98206-4776 9405 S.W. Nimbus Avenue, Beaverton, OR 97008-7132 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 دا: ک اد 10 10 Z and

Work Order #:

FAX 906-9210 FAX 382-7588 FAX 924-9290 (541) 383-9310 (509) 924-9200 (503) 906-9200 (425

6266234 11-95

CHAIN OF CUSTODY REPORT

NCA WO <1 9 TURNAROUND REQUEST in Business Days* * Turnamend Requests less than standard may incur Rush Charges DATE:6/ TIME: / TIME:/ NW Merhod 5 4 3 2 COMMENTS 2 Please Specify Organic & Inorganic Analyses 60 OTHER FIRM: NGA CONT. # OF MATRIX (W, S, O) 02 ار ار ار م 0 Q Sza 1 ~ 0 タアナウタ RECEIVED BY: $\mathcal{O}/\mathcal{I}/\mathcal{K}$ REQUESTED ANALYSES PRINT NAME: RECEIVED BY INVOICE TO: COAAI'E TIME: 15,20 TIME: 9:20 FAX: \$15-228-979 P.O. NUMBER: 1. Dento Village Place #700 FIRM: IT COLD [11:13 11:29 12.37 12:40 1,45 85:11 1:39 11:50 2,55 7:84 1:56 7.63 3:50 3:6/ 3:12 275B DATE/TIME SAMPLING Renton, WA 48055 Corporation 36/1/9 5496-8-2-5-4 ROJECT NUMBER: 78336 PROJECT NAME: TIME 0: CHS Jesty CLIENT SAMPLE IDENTIFICATION Ø15B-Ø7A \$158-67 B 0280-020 625B-48 B Ø25B-Ø6 A Ø1513-460 028-92 A \$150-02 B \$250-\$2 C 618-61B 9 10-Bect V10-0520 \$ 150 DIC \$250-01 E 20000 ELINQUISHED BY: ELINQUISHED BY: SAMPLED BY: RINT NAME: EPORT TO: RINT NAME: DDRESS: LIENT

DUITIONAL REMARKS:

120th e.N.E 101, 1, WA -9508
East 11115 Montgomery, Suite B, Spokane, WA 98206-4776 9405 S.W. Nimbus Avenue, Beaverton, OR 97008-7132 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

(509) 924-9200 (503) 906-9200

FAX 906-9210 FAX 382-7588 FAX 924-9290 20-02 (541) 383-9310

Work Order #: CHAIN OF CUSTODY REPORT

- F- ##	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				OT BUILDING		2. 1. 7	5			TURN	IAROUND	TURNAROUND REOUEST in Business Days*	Business Days	
LIENT T COLPOTATION	ray lor				INVOICE		CONDIC DOINGL	10 CM	Į		¦ '	Organic	Organic & Inorganic Analyses	, Ases	
EPORTTO: Jerry Garch.	rch von Villese Place	* 70¢	ø				*	ン			N N		4 3	-	Ş
RENTON W	4 98,055		L L								sre.	ے ۔۔۔	- 50 - 50 - 50 - 50	nlyses	-
HONE: 425- 278-9	10N.97 EPT-228-979 P.O. NUI	22-3	168	66	P.O. NUM	MBER:					.c	4	3 2	 	
ROJECT NAME: TA O.	2756					EQUES	REQUESTED ANALYSES				sro	L	Please Specify	dis Vilo	
ROJECT NUMBER: 789336		ξ	Z									OTHER			
AMPLED BY: CA/S		9-	Ya C	Ł.)						•Тигиол	nund Requests h	Turnamund Requests less than standard may incur Rush Charges.	incur Rush Charge	ri Fi
CLIENT SAMPLE	SAMPLING	H	<i>I-H</i>][∈	Ob.						MATRIX	# OF	. -	<u>z</u>	NCA WO
IDENTIFICATION	DATE/TIME	<u> </u>	11	Q	27						(W, S, O)	CONT.	COMMENTS	YTS	<u>Q</u>
D150-05A	A41E 35/4/9	X	X	X	ンメ		670%	23	4-16		50;		NW Medhod	ods.	
928-851¢	15:6		-						41-				•		
\$15B-65C	3;28	_							5/1						
51 40-85 13	96%								-19						
orsof c	4:43								2 /		_	_			
Ø288-63A	506								12-		<u> </u>			,	
pub-03 B	2).6								22 -	7	-				
\$150-43 C	5:20		_				-	_	- 5	<u> </u>		_			
0 Ep-9no	5:30	~	>	>	>				12-	7	->	\rightarrow			
\$16-48H10.	72,21	R	×	×	×		_		<u>ئ</u> ا	_	Wt cr	7	Plax F.	1461 1600	
0254-07120	17.48								3	ه ا	-	4	lices T.	end	
056-06 H20	1:1					_			7	4			Picase Fr	£8	
028- Or H.O	3.48								- 28	مح			t est	Pag-	
Or436-4540	4:37				×				52 1	0-		3	please Fr	Tel Led	
0284-64 H2Q	41.05:16	\rightarrow	>	<u>-</u>				2	- 30		\rightarrow	-	please r.	Lead	
ELINQUISHED BY:	A		ٔ		DATE: 6/	64/6	RECEIVED BY		(Asset)	1120	i	1/0		DATE: 6	10/0/2
RINT NAME: CACLS A	7 Szore FIRM: 4 C		die		TIME: 7	07.90	PRINT NAME:	TKGIN	d . 10	7/2/	-1KM:	ダノハノ		DATE	740
RINT NAME:	T FIRM:	۵			TIME 15,20	20	PRINT NAME:				FIRM:			TIME.	
DINTIONAL REMARKS:			_<	_	C		ı						TEMP	6	7
			_	<u>-</u>]	١							_	PAGE P	

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 9405 S.W. Nimbus Avenue, Beaverton, OR 97008-7132 East 11115 Montgomery, Suite B, Spokane, WA 98206-4776 1-95 iell, V ie 10 nue N 9)2

FAX 906-9210 FAX 924-9290 FAX 382-7588 (425 200 (509) 924-9200 (503) 906-9200 (541) 383-9310

Work Order #: CHAIN OF CUSTODY REPORT

CLIENT: Z7 Col Pol	Corporation			Z	INVOICE TO:	CONNIE	12/	No FMer		TUR	NAROUN	TURNAROUND REQUEST in Business Days*	ısiness Dayı	*.	
o Tern	<i>5</i> ,1,					3		·		_		nganic Ana	ء آ		
ADDRESS: 555 5. Kon.	to V.Nox 12 # 700	オ	ø			_						4		-	
	18/055		(•			ļ	STD.	_	Petroleum Hydrocarbon Analyses	_		
PHONE: 425-228 - 96	45 FAX: 45-228-9793	822	46	% P.O. 1	톍					ª 	_	7 7	V		
PROJECT NAME: PA O;	2750	ŀ	ł	ŀ	REQUE	REQUESTED ANALYSES				<u>~</u>	srv.	Please Specify	Š	_	
PROJECT NUMBER: 783336			,2x,								OTHER				
SAMPLED BY: CA/S		9	? ()-	Ľ.						* Turna	mund Requests	* Turnaround Requests less than standard may incur Rush Charges.	rue Rush Charge		
CLIENT SAMPLE	SAMPLING	HO	Ho	<u> </u>	7b2					MATRIX	# OF		Z	NCA WO	
IDENTIFICATION	DATE/TIME	11	17	a	7			-		(W, S, O)	CONT	COMMENTS	rs	CI	
\$25B-\$3HO 61	L5:5 66/4/9	<u> </u>	✓	X		189010334	34-	/ (M/GHT	4	MW Methods	Spa	_	
		,						-			- 	please F.	Just 1		
		ļ								 		Lead			
				-									_		
										ļ 					
														Ţ	
				<u> </u>									-		
				-											
			<u> </u>	-											
		ļ		-		-									
				-											
بى															
4.			-	-											
0	10%	_													
LELINQUISHED BY: CAPA) //	poor!			DATE	re: <i>6/18/1</i> 99	RECEIVED BY.	17/19	7		NCA			DATE	888	
RINT NAME: CACIS W. S.	POPEY (FIRM: I	5	9	Ē	TIME: 4:24	PRINT NAME:				FIRM:			TIME: /6	3	
RELINQUISHED BY CITY	200	F	•	Δ	ie 6 / 0 /	_	۰۰.						DATE:	_	
RINT NAME:	FIRM:		Ì	Ē	TIME: /5120	PRINT NAME:				FIRM		-	HWIF	7	
ADDITIONAL REMARKS:							7	<u>.</u>	()	/		TEMP:	ر د	۲	
TAY BITC MAD							7	<i>=</i>		۷			PAGE 7	\ E	

ANALYTICAL Environmental Laboratory Services NORTH CREEK

ighter adational

18939 120th Avenue N.E., Suite 101, Bothell, WA 98011-9508

(509) 924-9200

FAX 420-9210 (425) 420-9200 (503) 906-9200

East 11115 Montgomery, Suite B, Spokane, WA 99206-4779

FAX 924-9290 FAX 906-9210 9405 S.W. Nimbus Avenue, Beaverton, OK 97008-7132 CHAIN OF CUSTODY REPORT () IN ALLY & OSSCESSIAN OF CUSTODY REPORT () WOT

AST APPROACHING jā * Tirmpround Requests fest than standard may incur Ruch Charges. TURNAROUND REQUEST In Business Days * Flue & Hydrocarbon Analyses ال 14 DATE Ë HME: Organic & Inorganic Analyses CONTAINGRS OTHER Specify E 10 Work Order # ADDITIONAL REWARD IN VOICE Sepandof of profix: 0158-tx on oreinvoice; 0258-tx on secon); 0358-tx on this (W. S. A. O) MATRIX ph/Jeywygowy 3 \leq 3 HUA FERRIMITA ADDRESS: 2737 W. COMMOSONE Way Hospely longed in frac RECEIVED BY (Separate) ECENED BY ASSUME INVOICE TO: THE DITCO A PRINT NAME: PRINT NAME 7 NXXX P.O. NUMBER Ë DATE terpest: 1010 1896 1235-06 WE FIRM IN 1 CONSO 18/10/23/T-0 6/4/94 1/20 18906235-10 1040 B906235-09 7 MCA SAMPLE ID IT Corp. 5555, Partin Unlar Acc. 5/2 700 6/6/1 // 54 + 4/9 1-3 Ebt 522 505 2493 17-1619+ B900P 1029 B) 0/ 6/9/9 MOISCINAME TIME GIOC SCOTTLE TOMING C7189 1140 SAMPLING Genelolm. Havis Crapp 46/47 64845 14/10 Curty WA Pross MONE 475 228 9845 REPORT TO, JEMY HOWIS CLIENT SAMPLE 035B-08 1h.0 035B-09 Nz 0 **CORPUTE CATION** 035B-07 160 035B-07B 035B-09A RELINQUISHED BY (Appear 015B-09B 880-8810x RELINQUISHED BY ASSESSMENT 02.58-08A PROJECT NUMBER: SAMPLED BY: ATTENTION ADDRESS: PRINT NAME: PRINT NAME

PAGE OF

(2) Total Matels togst 1xt is arranic barium, colonium, chamium, lead, mercum, soliculum, silver

503.906 9200 fax 503.906 9210 20354 Empire Avenue, Suite E-9, Bend, OR 97708-1883 541.383.9310 fax 541 382.7588

IT Corporation - Renton

555 South Renton Village Place, Ste 700

Renton, WA 98055

Project:

Time Oil #2750

Project Number: 783336

Project Manager: Jerry Harris Sampled: 6/7/99

Received: 6/8/99

Reported: 6/30/99 09:27

ANALYTICAL REPORT FOR SAMPLES:

Sample Description	Laboratory Sample Number	Sample Matrix	Date Sampled
02SB-08A	B906234-03	Soil	6/7/99

RECEIVED 1

1999

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

18939 120th Avenne NL, State 101, Bothell, WA 98011 9508 425,420 9200 1ax 425,420 9210 East 11115 Montgomery, State B, Spokane, WA 99206-4776 509.924.9200 1ax 509.924.9290

Spokane

9405 SW Nimbus Avenue, Beaverton, DR 97008-7132

503.906.9200 fax 503.906.9210

20354 Empire Avenue, Suite E-9, Bend, DR 97708-1883 541.383.9310 Tax 541.382 7588

IT Corporation - Renton

Project: Time Oil #2750

Sampled: 6/7/99

1555 South Renton Village Place, Ste 700 Renton, WA 98055

Project Number: 783336 Project Manager: Jerry Harris Received: 6/8/99 Reported: 6/30/99 09:27

Total Metals by EPA 6000/7000 Series Methods North Creek Analytical - Bothell

 	Batch	Date	Date	Specific	Reporting			
Analyte	Number	Prepared	Analyzed	Method	Limit	Result	Units	Notes*
02SB-08A			B9062.	34-03			<u>Soil</u>	
Arsenic	0690738	6/23/99	6/24/99	EPA 6020	0.500	4.78	mg/kg dry	
Barium	44	**	н	EPA 6020	5.00	86.3	tt -	
Cadmium	e e	**		EPA 6020	0.500	ND	II.	
Chromium	tt .	**	н	EPA 6020	0.500	33.1	**	
Lead	0690627	6/19/99	6/21/99	EPA 6020	0.500	10.6	и	
Selenium	0690738	6/23/99	6/24/99	EPA 6020	0.500	ND	ti .	
Silver	et		••	EPA 6020	0.500	ND		
Mercury	0690817	6/24/99	6/25/99	EPA 7471A	0.100	ND	w	

North Creek Analytical - Bothell

Seamle 18938 120th Avenue NE, Suite 101, Bothell, WA 98011-9508 425.420.9200 fax 425.420.9210

425.420.9200 1ax 425.420.9210 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 1ax 509.924.9290 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210 20354 Empire Avenue, Suite E-9, Bend, OR 97708-1883 Portland

541.383.9310 fax 541.382.7588

IT Corporation - Renton Project: Time Oil #2750 Sampled: 6/7/99 555 South Renton Village Place, Ste 700 Project Number: 783336 Received: 6/8/99

Renton, WA 98055 Project Manager: Jerry Harris Reported: 6/30/99 09:27

Organochlorine Pesticides and PCBs by EPA Method 8081A and 8082 North Creek Analytical - Bothell

	Batch	Date	Date	Surrogate	Reporting			
Analyte	Number	_Prepared	Analyzed	Limits	Limit	Result	Units	Notes*
02SB-08A			B9062;	<u>34-03</u>			Soil	
Aldrin	0690668	6/21/99	6/24/99		1.00	ND	ug/kg dry	
alpha-BHC	**	**	0		0.500	ND	н	
beta-BHC	n	11	n		0.900	ND	H	
delta-BHC	**	**	**		0.600	ND	•	
gamma-BHC (Lindane)	н	**	**		1.00	ND		
Chlordane (tech)		п	н		1.00	ND	**	
alpha-Chlordane		"	**		0.800	ND	**	
gamma-Chlordane	*	н	н		0.700	ND	"	
4,4'-DDD	b		**		1.00	ND	11	
4,4'-DDE	п		н		1.00	ND	ft	
4,4'-DDT	н	•	**		1.00	ND		
Dieldrin	н		н		2.00	ND		
Endosulfan I	н	н	Ħ		1.00	ND	ш	
Endosulfan II		"	11		2.00	ND	и	
Endosulfan sulfate		#	н		1.00	ND	41	
Endrin	tr	н	н		2.00	ND	41	
Endrin aldehyde	H	•	н		2.00	ND	17	
Heptachlor		*	**		1.00	ND	,	
Heptachlor epoxide	н	#	**		1.00	ND	4	
Methoxychlor	н	"	**		4.00	ND		
Toxaphene	н	n	Ħ		50.0	ND	•	
Aroclor 1016	*	**	6/25/99		50.0	ND	**	
Aroclor 1221	*	4	11		50.0	ND	н	
Aroclor 1232	н		**		50.0	ND	н	
Aroclor 1242	4	*	n		50.0	ND		
Aroclor 1248	*		p		50.0	ND	н	
Aroclor 1254	•	er	Ħ		50.0	ND	**	
Aroclor 1260		**	н		50.0	ND	**	
Aroclor 1262	Ħ	**	н		50.0	ND	**	
Aroclor 1268	n	*	**		50.0	ND	н	
Surrogate: TCX	#	"	6/24/99	40.0-130		48.1	%	

North Creek Analytical - Bothell

Scattle 18939 120th Avenue NE, Sinte 101, Bothell, WA 98011-95% 425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Spokane

Portland

20354 Empire Avenue, Suite E-9, Bend, OR 97708-1883 541.383.9310 fax 541.382.7588

IT Corporation - Renton 1555 South Renton Village Place, Ste 700

Project: Time Oil #2750 Project Number: 783336

Sampled: 6/7/99 Received: 6/8/99

Renton, WA 98055

Project Manager: Jerry Harris

6/30/99 09:27 Reported:

Volatile Organic Compounds by EPA Method 8260B North Creek Analytical - Bothell

	Batch	Date	Date	Surrogate	Reporting			
Analyte	Number	Prepared	Analyzed	Limits	Limit	Result	Units	Notes*
02SB-08A			B9062.	<u>34-03</u>			<u>Seil</u>	
Acetone	0690688	6/21/99	6/21/99		2.00	ND	mg/kg dry	
Benzene	ıı .	tt	#		0.100	ND	н	
Bromobenzene		tt	11		0.100	ND	**	
Bromochloromethane		Ħ	n		0.100	ND	71	
Bromodichloromethane	н	**	#		0.100	ND	н	
Bromoform	**	**	ш		0.100	ND	н	
Bromomethane		#	#		0.100	ND	U	
2-Butanone	н	e	н		1.00	ND	tr	
n-Butylbenzene			"		0.100	ND	W	
sec-Butylbenzene	••	•	н		0.100	ND	"	
tert-Butylbenzene	•	н			0.100	ND	n	
Carbon disulfide	•	н	н		0.100	ND	#1	
Carbon tetrachloride	н		**		0.100	ND	н	
Chlorobenzene	H	#	•		0.100	ND	I f	
Chloroethane	и	н	*		0.100	ND	н	
Chloroform	н	*	•		0.100	ND	*1	
Chloromethane	10	**	++		0.500	ND	**	
2-Chlorotoluene	н	**	•		0.100	ND	11	
4-Chlorotoluene	H	**	•		0.100	ND	п	
Dibromochloromethane	**	H			0.100	ND	61	
1,2-Dibromo-3-chloropropane	n	н	н		0.500	ND	H	
1,2-Dibromoethane	н	н	п		0.100	ND	н	
Dibromomethane	**				0.100	ND	н	
1,2-Dichlorobenzene		"	н		0.100	ND		
1,3-Dichlorobenzene	**	н	#		0.100	ND	н	
1,4-Dichlorobenzene	**	н			0.100	ND	н	
Dichlorodifluoromethane	n	#			0.100	ND	•	
1,1-Dichloroethane	#	H	P		0.100	ND	**	
1,2-Dichloroethane	••	n	**		0.100	ND	**	
1,1-Dichloroethene	n	n	**		0.100	ND	**	
cis-1,2-Dichloroethene	n	n	**		0.100	ND	M	
trans-1,2-Dichloroethene	*	*			0.100	ND	и	
1,2-Dichloropropane	•	**	**		0.100	ND	11	
1,3-Dichloropropane	n	*	н		0.100	ND	**	
2,2-Dichloropropane	н	77	н		0.100	ND	п	
1,1-Dichloropropene	II.	**			0.100	ND	я	
cis-1,3-Dichloropropene	11	**	н		0.100	ND	40	
trans-1,3-Dichloropropene	n *	**			0.100	ND	#	

North Creek Analytical - Bothell

*Refer to end of report for text of notes and definitions.

North Creek Analytical, Inc. **Environmental Laboratory Network**

| Seattle | 18939-120th Avenue NE, State 101, Bothell, WA 98011-9505 | 425-420-9200 | fax 425-420-9210 | Spokane | East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

509.924.9200 (ax 509.974.9290

503.906 9200 fax 503.906.9210 9405 SVV Ninbus Avenue, Beaverton, OR 97008-7132 503.906 9200 fax 503.906.9210 20354 Empire Avenue, Suite E-9, Bend, OR 97708-1883 541 383 9310 fax 541 382 7588

IT Corporation - Renton

555 South Renton Village Place, Ste 700 Renton, WA 98055

Project: Time Oil #2750

Project Number: 783336 Project Manager: Jerry Harris Sampled: 6/7/99

Received: 6/8/99

6/30/99 09:27 Reported:

Volatile Organic Compounds by EPA Method 8260B North Creek Analytical - Bothell

	Batch	Date	Date	Surrogate	Reporting		<u> </u>	
Analyte	Number	Prepared	Analyzed	Limits	Limit	Result	Units	Notes*
02SB-08A (continued)			B90623	<u>34-03</u>			<u>Şoil</u>	
Ethylbenzene	0690688	6/21/99	6/21/99		0.100	ND	mg/kg dry	
Hexachlorobutadiene	**	17	u		0.100	ND	и	
2-Hexanone	н	H	n		1.00	ND	н	
Isopropylbenzene	н	n	**		0.100	ND	11	
p-Isopropyltoluene	n	17	17		0.100	ND	••	
Methylene chloride	н	n	tr.		1.00	ND	10	
4-Methyl-2-pentanone	н	Ħ	n		1.00	ND	н	
Naphthalene	н	**	N		0.100	ND		
n-Propylbenzene	11	н	11		0.100	ND	n	
Styrene	н	11	н		0.100	ND	**	
1,1,1,2-Tetrachloroethane	н	#	и		0.100	ND	**	
1,1,2,2-Tetrachloroethane	tr	#	н		0.100	ND	•	
Tetrachloroethene	Ħ	#	н		0.100	ND	н	
Toluene	#	Ħ	н		0.100	ND	11	
1,2,3-Trichlorobenzene	#		19		0.100	ND	**	
1,2,4-Trichlorobenzene	n	n			0.100	ND	D	
1,1,1-Trichloroethane		н	#		0.100	ND	er	
1,1,2-Trichloroethane	**		**		0.100	ND	"	
Trichloroethene	H	н	11		0.100	ND	#	
Trichlorofluoromethane	и	н	н		0.100	ND	н	
1,2,3-Trichloropropane	**	**	н		0.100	ND	*1	
1,2,4-Trimethylbenzene	#	**	н		0.100	0.102	tr	
1,3,5-Trimethylbenzene	н	4	II .		0.100	ND	O	
Vinyl chloride	н	#			0.100	ND	**	
m,p-Xylene	н	Ħ	**		0.200	ND	N	
o-Xylene	*	st	H		0.100	ND	н	
Surrogate: 2-Bromopropene	N	n	"	70.0-130		86.2	%	
Surrogate: 1,2-DCA-d4	*	**	"	70.0-130		77.9	n	
Surrogate: Toluene-d8	*	н	"	70.0-130		83.3	"	
Surrogate: 4-BFB	ĸ	"	"	70.0-130		82.5	"	

North Creek Analytical - Bothell

 Seattle
 18939-120th Avinue Nt., Suite 101, Bothell, WA 98011-9508-425,420,9200

 Spokane
 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776-509,924,9200

 Factorial States of Spokane (Spokane)
 Spokane (Spokane)

Spokane

Portland 9405 SW Nimbus Avenue, Beaverton, 0R 97008-7132 503.906.9200 fax 503.906.9210 Bend 20354 Empire Avenue, Suite E-9, Bend, 0R 97708-1883 541.383.9310 fax 541.382.7588

IT Corporation - Renton

Project: Time Oil #2750

Sampled: 6/7/99

555 South Renton Village Place, Ste 700

Project Number: 783336

Received: 6/8/99

Renton, WA 98055

Project Manager: Jerry Harris

Reported: 6/30/99 09:27

Dry Weight Determination North Creek Analytical - Bothell

Sample Name	Lab ID	Matrix	Result	Units
02SB-08A	B906234-03	Soil	83.4	%

North Creek Analytical - Bothell

Scattle 18939 120th Avenue NE, State 101, Bothell, WA 98011-9508

425.420.9200 fax 425.420.9210
East 11115 Montgomery, Suite B, Spokane, WA 99206-4776
509.924.9200 fax 509.924.9290
9405 SW Nimbus Avenue Beaverton, OR 97008-7132
503.906.9200 fax 503.906.9210 20354 Empire Avenue, Suite E-9, Bend, OR 97708-1883 541.383.9310 fax 541.382.7588

IT Corporation - Renton

555 South Renton Village Place, Ste 700

Project: Time Oil #2750

Sampled: 6/7/99

Project Number: 783336

Received: 6/8/99

Renton, WA 98055

Project Manager: Jerry Harris

Reported: 6/30/99 09:27

Total Metals by EPA 6000/7000 Series Methods/Quality Control North Greek Analytical - Bothell

	Date	Spike	Sample	QC	Re	porting Limit	Recov.	RPD	RPD	
Analyte	Analyzed	Level	Result	Result		Recov. Limits	%	Limit	%	Notes*
Batch: 0690627	Date Prepa		<u>99</u>		Extraction	Method: EP	<u>A 3050B</u>			
<u>Blank</u>	0690627-BI	<u>LKI</u>								
Lead	6/21/99			ND	mg/kg dry	0.500				
Blank	0690627-BJ	LK2								
Lead	6/21/99			ND	mg/kg dry	0.500				
Blank	0690627-BI	LK3								
Lead	6/22/99			ND	mg/kg dry	0.500				
LCS	0690627-BS	S1								
Lead	6/22/99	25.0		19.9	mg/kg dry	80.0-120	79.6			1
LCS	0690627-BS	S2								
Lead	6/22/99	25.0		20.0	mg/kg dry	80.0-120	80.0			
Matrix Spike	<u>0690627-M</u>	isi R	906234-11							
Lead	6/21/99	29.7	6.18	29.2	mg/kg dry	70.0-130	77.5			
Matrix Spike	0690627-M	S2 B	906234-15							
Lead	6/22/99	25.0	2.29	22.1	mg/kg dry	70.0-130	79.2			
Matrix Spike Dup	0690627-M	SDI B	906234-11							
Lead	6/22/99	25.3	6.18	35.6	mg/kg dry	70.0-130	116	20.0	39.8	2
Matrix Spike Dup	<u>0690627-M</u>	ISD2 B	906234-15							
Lead	6/22/99	26.8	2.29	21.8	mg/kg dry	70.0-130	72.8	20.0	8.4	
Batch: 0690738	Date Prepa	red: 6/23/	<u>99</u>		Extraction	n Method: EP	<u>A 3050B</u>			
<u>Biank</u>	0690738-B	LK1								
Arsenic	6/23/99			ND	mg/kg dry	0.500				
Barium	"			ND	н	5.00				
Cadmium	и			ND	H	0.500				
Chromium	#			ND	Ħ	0.500				
Selenium	··			ND	11	0.500				
Silver	и			ND	Ħ	0.500				
LCS	0690738-B	<u>Si</u>								
Arsenic	6/23/99	25.0		27.4	mg/kg dry	⁻ 70.0-130	110			

North Creek Analytical - Bothell

Scattle 18939 120th Avenue NL, Sinte 101, Bothell, WA 98011-9508

425 420,9200 Tax 425 420 9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776
509,924,9200 Tax 509,924,9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 lax 503.906.9210

Bend 20354 Empire Avenue, Suite E-9, Bend, OR 97708-1883 541.383.9310 lax 541.382.7588

IT Corporation - Renton

555 South Renton Village Place, Ste 700

Project: Time Oil #2750

Sampled: 6/7/99

Project Number: 783336

Received: 6/8/99

Renton, WA 98055

Project Manager: Jerry Harris

Reported: 6/30/99 09:27

Total Metals by EPA 6000/7000 Series Methods/Quality Control North Greek Analytical - Bothell

	ate	Spike	Sample	QC		porting Limit		RPD	RPD	
Analyte A	nalyzed	Level	Result	Result	Units	Recov. Limits	%	Limit	%	Notes*
LCS (continued)	690738-BS1									
	/23/99	25.0		27.5	mg/kg dry	80.0-120	110			
Cadmium "		25.0		26.6	17	70.0-130	106			
Chromium "		25.0		27.7	**	80.0-120	111			
Selenium "		25.0		27.5	**	70.0-130	110			
Silver "		25.0		27.0	H	80.0-120	108			
Matrix Spike 0	690738-MS1	J	B906434-02							
	/23/99	20.1	3.29	24.2	mg/kg dry	70.0-130	104			
Barium "		20.1	13.3	34.3	н .	70.0-130	104	•		
Cadmium "		20.1	ND	19.8	11	70.0-130	98.5			
Chromium "		20.1	5.83	25.2		70.0-130				
Selenium "		20.1	ND	20.0		70.0-130	99.5			
Silver "		20.1	ND	20.0	н	70.0-130	99.5			
Matrix Spike Dup 0	690738-MSE	21]	B906434-02							
Arsenic 6	24/99	20.1	3.29	21.8	mg/kg dry	70.0-130	92.1	20.0	12.1	
Barium "		20.1	13.3	36.2	н	70.0-130	114	20.0	9.17	
Cadmium "		20.1	ND	21.4	tt	70.0-130	106	20.0	7.33	
Chromium "		20.1	5.83	31.0	er .	70.0-130	125	20.0	25.8	2
Selenium "		20.1	ND	20.8	**	70.0-130	103	20.0	3.46	
Silver "		20.1	ND	21.0	**	70.0-130	104	20.0	4.42	
Batch: 0690817	ate Prepare	d: 6/24	<u>/99</u>		Extraction	n Method: EP	<u>A 7471A</u>			
Blank 0	690817-BL <u>K</u>	1								
Mercury 6	/25/99			ND	mg/kg dry	0.100				
LCS Q	690817-BS1									
Mercury 6	/25/99	1.75		1.47	mg/kg dry	80.0-120	84.0			
Matrix Spike 0	690817-MS1	.]	B906434-02							
Mercury 6	/25/99	0.611	ND	0.625	mg/kg dry	80.0-120	102			
Matrix Spike Dup 0	690817-MSD	<u>)</u>	B906434-02							
Mercury 6	/25/99	0.636	ND	0.652	mg/kg dry	80.0-120	103	20.0	0.976	

North Creek Analytical - Bothell

Seattle 18939 120th Avenue NE, Sorte 101, Brithell, WA 98011-9508 425,420 9200 | fax 425 420 9210

425,420 9200 143 925 420 9270 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924 9200 143 509.924 9280 9405 SW Nimbus Avenue, Beaverton, 0R 97008-7132 503,906 9200 143 503,906 9210

Portland

20354 Empire Avenue, Suite E-9, Bend, OR 97708-1883

541.383 9310 fax 541.382.7588

IT Corporation - Renton

Project:

Time Oil #2750

Sampled: 6/7/99

555 South Renton Village Place, Ste 700

Project Number: 783336 Received: 6/8/99

Renton, WA 98055

Project Manager: Jerry Harris Reported: 6/30/99 09:27

Organochlorine Pesticides and PCBs by EPA Method 8081A and 8082/Quality Control North Creek Analytical - Bothell

	Date	Spike	Sample	QC		eporting Limit		RPD	RPD	
Analyte	Analyzed	Level	Result	Result	Units	Recov. Limits	<u>%</u>	Limit	<u>%</u>	Notes*
Batch: 0690668	Date Prepa	red: 6/23/9	<u>19</u>		Extraction	on Method: EPA	<u> 3550B</u>			
<u>Blank</u>	0690668-BI									
Aldrin	6/24/99			ND	ug/kg dry	1.00				
alpha-BHC	н			ND	"	0.500				
beta-BHC	H			ND		0.900				
delta-BHC	**			ND		0.600				
gamma-BHC (Lindane)	н			ND	13	1.00				
Chlordane (tech)	**			ND	**	1.00				
alpha-Chlordane	*1			ND	n	0.800				
gamma-Chlordane	**			ND	41	0.700				
4,4'-DDD	se			ND	11	1.00				
4,4'-DDE	67			ND	**	1.00				
4,4'-DDT	85			ND	**	1.00				
Dieldrin	11			ND	н	2.00				
Endosulfan I	65			ND	п	1.00				
Endosulfan II	12			ND	н	2.00				
Endosulfan sulfate	19			ND	п	1.00				
Endrin	47			ND	н	2.00				
Endrin aldehyde	0			ND	н	2.00				
Heptachlor	**			ND	*	1.00				
Heptachlor epoxide	0			ND	**	1.00				
Methoxychlor	**			ND	"	4.00				
Toxaphene	**			ND	17	50.0				
Aroclor 1016	6/25/99			ND	11	50.0				
Aroclor 1221	**			ND	и	50.0				
Aroclor 1232	11			ND	**	50.0				
Aroclor 1242	11			ND	"	50.0				
Aroclor 1248	11			ND	н	50.0				
Aroclor 1254	н			ND	н	50.0				
Aroclor 1260	11			ND	ч	50.0				
Aroclor 1262	91			ND	•	50.0				
Aroclor 1268	н			ND	**	50.0				
Surrogate: TCX	"	6.67		5.56	п	40.0-130	83.4			
LCS	0690668-BS	32								
Aldrin	6/24/99	 8.33		9.03	ug/kg dry	y 35.0-138	108			
gamma-BHC (Lindane)	"	8.33		8.14	"	44.0-137	97.7			
Heptachlor	H	8.33		7.37		40.0-146	88.5			
•										

North Creek Analytical - Bothell

Seattle 18939 120th Avenue NE, Suite 101 Bothell, WA 98011-9508

425.420.9200 fax 425.420.9210 East 11115 Montgomery, Suite B, Spokune, WA 99206-4776 509.924.9200 fax 509.924.9290

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 Portland

503,906.9200 fax 503.906.9210 20354 Empire Avenue, Suite E-9, Bend, OR 97708-1883 541.383.9310 Tax 541.382.7588

IT Corporation - Renton

Time Oil #2750 Project:

Sampled: 6/7/99

555 South Renton Village Place, Ste 700

Project Number: 783336 Received: 6/8/99

Renton, WA 98055

Project Manager: Jerry Harris

Reported: 6/30/99 09:27

Organochlorine Pesticides and PCBs by EPA Method 8081A and 8082/Quality Control North Creek Analytical - Bothell

	Date	Spike	Sample	QC	R	eporting Limit	Recov.	RPD	RPD
Analyte	Analyzed	Level	Result	Result	Units	Recov. Limits	%	Limit	% Notes
LCS (continued)	0690668-B	<u>52</u>							
Surrogate: TCX	6/25/99	6.67		6 .75	ug/kg dry	40.0-130	101		_
Matrix Spike	<u>0690668-M</u>	<u>S2</u> <u>B</u>	906500-0 <u>5</u>						
Aldrin	6/24/99	8.68	ND	7.71	ug/kg dry	35.0-138	88.8		
gamma-BHC (Lindane)	n	8.68	ND	6.93	**	44.0-137	79.8		
Heptachlor	u u	8.68	ND	7.01	н	40.0-146	80.8		
Aroclor 1260	6/25/99	347	ND	357	"	44.0-123	103		
Surrogate: TCX		6.94		5.92	"	40.0-130	85.3		
Matrix Spike Dup	0690668-M	SD2 B	906500-05						
Aldrin	6/24/99	8.68	ND	7.90	ug/kg dry	35.0-138	91.0	33.0	2.45
gamma-BHC (Lindane)	**	8.68	ND	7.30	H	44.0-137	84.1	35.0	5.25
Heptachlor	n	8.68	ND	7.24	n	40.0-146	83.4	32.0	3.17
Aroclor 1260	6/25/99	347	ND	381	**	44.0-123	110	23.0	6.57
Surrogate: TCX	tt	6.94		6.04	re	40.0-130	87.0	-	

North Creek Analytical - Bothell

Seattle 18939 120th Avenue NE, Suite 101, Bothell, WA 98011-9508

425.420.9200 fax 425 420 9210

20354 Empire Avenue, Suite E-9, Bend, OR 97708-1883 541,383,9310 fax 541,382,7588

IT Corporation - Renton

Renton, WA 98055

555 South Renton Village Place, Ste 700

Project: Project Number: 783336

Project Manager: Jerry Harris

Time Oil #2750

Sampled: 6/7/99

Received: 6/8/99

Reported: 6/30/99 09:27

Volatile Organic Compounds by EPA Method 8260B/Quality Control North Creek Analytical - Bothell

	Date	Spike	Sample	QC		Reporting Limit	Recov.	RPD	RPD
Analyte	Analyzed	Level	Result	Result	Units	Recov. Limits	%	Limit	% Notes
D-4-L-000000						tion Method: EP.			
Batch: 0690688	Date Prepa		<u>99</u>						
Blank	0690688-BI	<u> </u>		***		,			
Acetone	6/21/99			ND	mg/kg o				
Benzene	,,			ND		0.100			
Bromobenzene				ND	ŧr.	0.100			
Bromochloromethane	.,			ND	11	0.100			
Bromodichloromethane				ND	**	0.100			
Bromoform	"			ND	**	0.100			
Bromomethane				ND	"	0.100			
2-Butanone	п			ND	n	00.1			
n-Butylbenzene	41			ND	tr	0.100			
sec-Butylbenzene	**			ND	**	0.100			
tert-Butylbenzene	H			ND	n	0.100			
Carbon disulfide	11			ND	n	0.100			
Carbon tetrachloride	11			ND	**	0.100			
Chlorobenzene	н			ND		0.100			
Chloroethane	н			ND	n	0.100			
Chloroform	"			ND		0.100			
Chloromethane	н			ND	**	0.500			
2-Chlorotoluene	Ħ			ND	0	0.100			
4-Chlorotoluene	н			ND	0	0.100			
Dibromochloromethane	te			ND	**	0.100			
1,2-Dibromo-3-chloropropane				ND		0.500			
1,2-Dibromoethane				ND	*	0.100			
Dibromomethane				ND		0.100			
1,2-Dichlorobenzene	n			ND		0.100			
1,3-Dichlorobenzene	н			ND	n	0.100			
1,4-Dichlorobenzene	n			ND	*	0.100			
Dichlorodifluoromethane	11			ND	**	0.100			
1,1-Dichloroethane	4			ND		0.100			
1,2-Dichloroethane	н			ND	**				
1,1-Dichloroethene	**				11	0.100			
•	14			ND		0.100			
cis-1,2-Dichloroethene	**			ND	**	0.100			
trans-1,2-Dichloroethene	**			ND		0.100			
1,2-Dichloropropane				ND	**	0.100			
1,3-Dichloropropane				ND	**	0.100			
2,2-Dichloropropane	11			ND	11	0.100			
1,1-Dichloropropene	Ħ			ND	*1	0.100			
cis-1,3-Dichloropropene	**			ND	41	0.100			

North Creek Analytical - Bothell

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

Bend 20354 Enipire Avenue, Suite E-9, Bend, OR 97708-1883
541.383.9310 fax 541.382.7588

IT Corporation - Renton 555 South Renton Village Place, Ste 700 Project: Time Oil #2750

Sampled: 6/7/99

Renton, WA 98055

Project Number: 783336 Project Manager: Jerry Harris Received: 6/8/99

Reported: 6/30/99 09:27

Volatile Organic Compounds by EPA Method 8260B/Quality Control

	Date	Spike	Sample	QC		eporting Limit		RPD	RPD
Analyte	Analyzed	Level	Result	Result	Units	Recov. Limits	%	Limit	% Notes*
Blank (continued)	0690688-B	LK1							
trans-1,3-Dichloropropene	6/21/99			ND	mg/kg dry	9 0.100			
Ethylbenzene	a			ND	н .	0.100			
Hexachlorobutadiene	10			ND	11	0.100			
2-Hexanone	**			ND	11	1.00			
lsopropylbenzene	**			ND	11	0.100			
p-Isopropyltoluene	н			ND	11	0.100			
Methylene chloride	11			ND	11	1.00			
4-Methyl-2-pentanone				ND	TP.	1.00			
Naphthalene	ø			ND	11	0.100			
n-Propylbenzene	п			ND	••	0.100			
Styrene	"			ND	#	0.100			
1,1,1,2-Tetrachloroethane	н			ND	н	001.0			
1,1,2,2-Tetrachloroethane	If			ND	11	0.100			
Tetrachloroethene	и			ND	10	0.100			
Toluene				ND	**	0.100			
1,2,3-Trichlorobenzene	н			ND	н	0.100			
1,2,4-Trichlorobenzene	н			ND	11	0.100			
1,1,1-Trichloroethane	н			ND	н	0.100			
1,1,2-Trichloroethane	н			ND	•	0.100			
Trichloroethene	н			ND		0.100			
Trichlorofluoromethane	н			ND	11	0.100			
1,2,3-Trichloropropane	"			ND	11	0.100			
1,2,4-Trimethylbenzene	н			ND	н	0.100			
1,3,5-Trimethylbenzene	11			ND	**	0.100			
Vinyl chloride	н			ND	п	0.100			
m,p-Xylene	#			ND	#1	0.200			
o-Xylene	11			ND	н	0.100			
Surrogate: 2-Bromopropene	"	2.00		2.14	"	70.0-130	107		
Surrogate: 1,2-DCA-d4	n	2.00		1.81	"	70.0-130	90.5		
Surrogate: Toluene-d8	"	2.00		2.01	"	70.0-130	100		
Surrogate: 4-BFB	"	2.00		1.83	n	70.0-130	91.5		
LCS	0690688-B	<u>S1</u>							
Benzene	6/21/99	1.00		0.987	mg/kg dry	y 70.0-130	98.7		
Chlorobenzene	н	1.00		1.00		70.0-130	100		
1,1-Dichloroethene	н	1.00		0.903	+	70.0-130	90.3		
Toluene	*	1.00		0.963	**	70.0-130	96.3		
Trichloroethene	#	1.00		1.09		70.0-130	109		

North Creek Analytical - Bothell

*Refer to end of report for text of notes and definitions.

Joy B Chang, Project Manager

ניני: יי

PRINT NAME:

Seattle 18939 120th Avenue NE, Suite 101, Bothell, WA 98011-9508

425.420.9200 1ax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

509.924.9200 1ax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

Bend 20354 Empire Avenue, Suite E-9, Bend, OR 97708-1883 541.383.9310 fax 541.382.7588

IT Corporation - Renton 555 South Renton Village Place, Ste 700 Renton, WA 98055

Project:

Time Oil #2750

Project Number: 783336

Sampled: 6/11/99 Received: 6/14/99

Project Manager:

Jerry Harris

6/25/99 13:22 Reported:

ANALYTICAL REPORT FOR SAMPLES:

			
Sample Description	Laboratory Sample Number	Sample Matrix	Date Sampled
02SB-09@6-6.5	B906371-01	Soil	6/11/99
02SB-09@20.5-21	B906371-02	Soil	6/11/99
02SB-09@15.5-16	B906371-03	Soil	6/11/99
02SB-09@10-10.5	B906371-04	Soil	6/11/99
02SB-09	B906371-05	Water	6/11/99

RECEIVED JUN 3 0 1999

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

> North Creek Analytical, Inc. **Environmental Laboratory Network**

 Seattle
 18939 120th Avenue NE, Suite 101, Bothell, WA 98011-9508 425-420-9200

 Spakane
 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200

Spokane

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20354 Empire Avenue, Suite E-9, Bend, OR 97708-1883 541.383.9310 tax 541.382.7588

IT Corporation - Renton Project: Time Oil #2750 Sampled: 6/11/99 555 South Renton Village Place, Ste 700 Project Number: 783336 Renton, WA 98055 Project Manager: Jerry Harris

Received: 6/14/99 Reported: 6/25/99 13:22

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B North Creek Analytical - Bothell

	Batch	Date	Date	Surrogate	Reporting			
Analyte	Number	Prepared	Analyzed	Limits	Limit	Result	Units	Notes*
02SB-09@6-6.5			B9063'	71-01			<u>Soil</u>	
Gasoline Range Hydrocarbons	0690565	6/17/99	6/21/99		5.00	ND	mg/kg dry	
Benzene	•	**	81		0.0500	ND	"	
Toluene			41		0.0500	ND		
Ethylbenzene	**	•	17		0.0500	ND	**	
Xylenes (total)			11		0.100	ND	n	
Surrogate: 4-BFB (FID)	"	,	**	50.0-150		94.6	%	···-
Surrogate: 4-BFB (PID)	n	"	"	50.0-150		98.0	H	
02SB-09@20.5-21			B9063	71-02			Soil	
Gasoline Range Hydrocarbons	0690565	6/17/99	6/24/99		5.00	ND	mg/kg dry	
Benzene	н	11	и		0.0500	ND	1	
Toluene	н	и	H		0.0500	ND	u	
Ethylbenzene		**			0.0500	ND	10	
Xylenes (total)	ut	"	at .		0.100	ND	н	
Surrogate: 4-BFB (FID)	a a	н		50.0-150		84.2	%	
Surrogate: 4-BFB (PID)	n	"	18	50.0-150		86.5	"	
02SB-09@15.5-16			B9063	<u>71-03</u>			<u>Soil</u>	
Gasoline Range Hydrocarbons	0690565	6/17/99	6/24/99		5.00	ND	mg/kg dry	
Benzene	**	**	**		0.0500	ND	4	
Toluene	**	*	**		0.0500	ND	#	
Ethylbenzene	n	н	11		0.0500	ND	**	
Xylenes (total)	**		**		0.100	ND		
Surrogate: 4-BFB (FID)	#	**	"	50.0-150		91.4	%	
Surrogate: 4-BFB (PID)	**	"	n	50.0-150		96 .7	a	
02SB-09@10-10.5			B9063	71-04			<u>Soil</u>	
Gasoline Range Hydrocarbons	0690565	6/17/99	6/24/99		5.00	ND	mg/kg dry	
Benzene	If .	w ·	**		0.0500	ND	"	
Toluene	H	**	n		0.0500	0.0699		
Ethylbenzene		**	n		0.0500	ND	41	
Xylenes (total)	•	tt .	н		0.100	ND	n	
Surrogate: 4-BFB (FID)	11	N	"	50.0-150	<u>-</u>	86.0	%	
Surrogate: 4-BFB (PID)	u	"	*	50.0-150		91.5	"	
02SB-09			B9063	71-0 <u>5</u>			<u>Water</u>	
Gasoline Range Hydrocarbons	0690659	6/21/99	6/21/99		50.0	1360	ug/l	
Benzene	#	*	н		5.00	639	-#-	

North Creek Analytical - Bothell

Seattle 18939 120th Avenue NE, Suite 101, Borhell, WA 98011-9508 425 420 9200 1ax 425 420.9210

425 420 9200 18X 425 420.9710 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509 924 9200 18X 509 924 9290 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503 906.9200 18X 503.906.9210 20354 Empire Avenue, Suite E-9, Bend, OR 97708-1883

Portland

541.383.9310 Tax 541.382.7588

IT Corporation - Renton 555 South Renton Village Place, Ste 700

Project: Time Oil #2750 Project Number: 783336

Sampled: 6/11/99

Renton, WA 98055

Project Manager: Jerry Harris

Received: 6/14/99 Reported: 6/25/99 13:22

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B North Creek Analytical - Bothell

	Batch	Date	Date	Surrogate	Reporting			_
Analyte	Number Prepared Analyzed		Limits	Limit	Result	Units	Notes*	
02SB-09 (continued)			B9063	71-0 <u>5</u>			Water	
Toluene	0690659	6/21/99	6/21/99		0.500	1.89	ug/i	
Ethylbenzene	и	**	•		0.500	1.31	**	
Xylenes (total)	*	e			1.00	9.66	es	
Surrogate: 4-BFB (FID)	**	***		50.0-150		99.0	%	
Surrogate: 4-BFB (PID)	"	**	*	50.0-150		<i>85.2</i>	"	

North Creek Analytical - Bothell

Seattle 18939-120th Avenue NE, Soite 301, Bothell, WA 98011-9508 425.420.9200 - fax 425.420.9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290 Spokane

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 Portland 503.906.9200 Tax 503.906.9210 20354 Empire Avenue, Suite E-9, Bend, OR 97708-1883 541.383.9310 Tax 541.382.7588

IT Corporation - Renton Project: Time Oil #2750 Sampled: 6/11/99 555 South Renton Village Place, Ste 700 Project Number: 783336 Received: 6/14/99

Renton, WA 98055 Project Manager: Jerry Harris Reported: 6/25/99 13:22

Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up) North Creek Analytical - Bothell

	Batch	Date	Date	Surrogate	Reporting			
Analyte	Number	Prepared	Analyzed	Limits	Limit	Result	Units	Notes
02SB-09@6-6.5			B9063	71-01			<u>Soil</u>	
Diesel Range Hydrocarbons	0690555	6/17/99	6/19/99		10.0	ND	mg/kg dry	
Lube Oil Range Hydrocarbons	II .	10	41		25.0	ND		
Surrogate: 2-FBP	" -		n	50.0-150		59.8	%	
02\$B-09@20.5-21			B9063	<u>71-02</u>			Soil	
Diesel Range Hydrocarbons	0690555	6/17/99	6/19/99		10.0	11.0	mg/kg dry	l
Lube Oil Range Hydrocarbons	74	**	•		25.0	ND	n	
Surrogate: 2-FBP	"	H	n	50.0-150		61.7	%	
02SB-09@15.5-16			B9063	71-0 <u>3</u>			<u>Soil</u>	
Diesel Range Hydrocarbons	0690555	6/17/99	6/19/99		10.0	ND	mg/kg dry	
Lube Oil Range Hydrocarbons	Ħ	O	Tr.		25.0	ND	n	
Surrogate: 2-FBP	"	"	"	50.0-150		53.0	%	•
02SB-09@10-10.5			B9063	71-04			Soil	
Diesel Range Hydrocarbons	0690555	6/17/99	6/19/99		10.0	ND	mg/kg dry	
Lube Oil Range Hydrocarbons	•	•	•		25.0	ND		
Surrogate: 2-FBP	" "		h	50.0-150		71.8	%	
02SB-09			B9063	71-05			<u>Water</u>	
Diesel Range Hydrocarbons	0690596	6/18/99	6/19/99		0.250	0.617	mg/i	2
Lube Oil Range Hydrocarbons	Ħ	11			0.500	ND	"	
Surrogate: 2-FBP	n	"	н	50.0-150		71.0	%	

| Seattle | 18939 120th Avenue NE, Suite 101, Bothell, WA 98011-9508 | 425 420,9200 | fax 425,420 9210 | Spokane | East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 | 509,924,9200 | fax 509,924,9290 | 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 | Focus on East 11115 | Focus on

503.906.9200 fax 503.906.9210

20354 Empire Avenue, Suite E-9, Bend, OR 97708-1883 541.383.9310 fax 541.382.7588

IT Corporation - Renton 555 South Renton Village Place, Ste 700

Project: Time Oil #2750

Sampled: 6/11/99

Renton, WA 98055

Project Number: 783336 Project Manager: Jerry Harris

Received: 6/14/99 Reported: 6/25/99 13:22

Dry Weight Determination North Creek Analytical - Bothell

<u> </u>				
Sample Name	Lab ID	Matrix	Result	Units
02SB-09@6-6.5	B906371-01	Soil	89.8	%
02SB-09@20.5-21	B906371-02	Soil	81.9	%
02SB-09@15.5-16	B906371-03	Soil	81.9	%
02SB-09@10-10.5	B906371-04	Soil	82.6	%

North Creek Analytical - Bothell

Seattle 18939 120th Avenue NE, Sinte 101, Bothell, WA 98011-9508

425.420.9200 fax 425.420.9210

| Spokane | East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 | 509.924.9200 | fax 509.924.9290 | Portland | 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

20354 Empire Avenue, Suite E-9, Bend, OR 97708-1883 541.383.9310 fax 541.382.7588

IT Corporation - Renton

Project: Time Oil #2750

Sampled: 6/11/99

555 South Renton Village Place, Ste 700

Project Number: 783336

Received: 6/14/99

Renton, WA 98055

Project Manager: Jerry Harris

Reported: 6/25/99 13:22

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B/Quality Control North Creek Analytical - Bothell

	Date	Spike	Sample	QC	R	eporting Limit	Recov.	RPD	RPD		
Analyte	Analyzed	Level	Result	Result	Units	Recov. Limits	%	Limit	% Note		
Batch: 0690565	Date Prepa	ared: 6/17/	99		Extraction Method: EPA 5030B (MeQH)						
Blank	0690565-B	LK1							•		
Gasoline Range Hydrocarbons	6/23/99			ND	mg/kg dry	5.00					
Benzene				ND	,, ,	0.0500					
Toluene	н			ND	**	0.0500					
Ethyl benz ene	**			ND	н	0.0500					
Xylenes (total)	**			ND	**	0.100					
Surrogate: 4-BFB (FID)		4.00		3.85		50.0-150	96.2				
Surrogate: 4-BFB (PID)	н	4.00		4.12	W	50.0-150	103				
LCS	0690565-B	S1									
Gasoline Range Hydrocarbons	6/21/99	25.0		20.5	mg/kg dry	70.0-130	82.0				
Surrogate: 4-BFB (FID)	"	4.00		4.00	*	50.0-150	100				
<u>Duplicate</u>	0690565-D	UPI B	906371-01								
Gasoline Range Hydrocarbons	6/21/99		ND	ND	mg/kg dry	,		50.0			
Surrogate: 4-BFB (FID)	ĸ	4.45	_	4.03	"	50.0-150	90.6		,		
Matrix Spike	0690565-M	1S1 B	906302-05								
Benzene	6/21/99	0.568	ND	0.443	mg/kg dry	60.0-140	78.0				
Toluene	н	0.568	ND	0.471	n	60.0-140	82.9				
Ethylbenzene	It*	0.568	0.0532	0.481	*1	60.0-140	75.3				
Xylenes (total)	н	1.70	ND	1.43	н	60.0-140	84.1				
Surrogate: 4-BFB (PID)	"	4.54		4.17	"	50.0-150	91.9				
Matrix Spike Dup	0690565-M	1SD1 B	906302-05								
Benzene	6/22/99	0.568	ND	0.451	mg/kg dr	y 60.0-140	79.4	20.0	1.78		
Toluene		0.568	ND	0.477	н	60.0-140	84.0	20.0	1.32		
Ethylbenzene	H	0.568	0.0532	0.477	I†	60.0-140	74.6	20.0	0.934		
Xylenes (total)	"	1.70	ND	1.41	**	60.0-140	82.9	20.0	1.44		
Surrogate: 4-BFB (PID)	H	4.54		4.08	**	50.0-150	89.9				
Batch: 0690659	Date Prepa	ared: 6/21/	99		Extraction	n Method: EP	A 5030B	(MeOH	1		
<u>Blank</u>	0690659-B		-								
Methyl tert-butyl ether	6/21/99			ND	ug/l	1.00					
Gasoline Range Hydrocarbons	•	•		ND	н	50.0					
Benzene	*			ND	11	0.500					
Talaana	-				_						

ND

ND

North Creek Analytical - Bothell

Toluene

Ethylbenzene

*Refer to end of report for text of notes and definitions.

North Creek Analytical, Inc. **Environmental Laboratory Network**

0.500

0.500

503,906,9200 fax 503,906,9210 20354 Empire Avenue, Suite E-9, Bend, OR 97708-1883 541,383,9310 fax 541,382,7598

IT Corporation - Renton

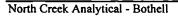
555 South Renton Village Place, Ste 700

Renton, WA 98055

Project: Time Oil #2750

Project Number: 783336

Project Manager: Jerry Harris


Sampled: 6/7/99

Received: 6/8/99

Reported: 6/30/99 09:27

Volatile Organic Compounds by EPA Method 8260B/Quality Control North Creek Analytical - Bothell

	Date	Spike	Sample	QC	R	eporting Limit	Recov.	RPD	RPD	
Analyte	Analyzed	Level	Result	Result	Units	Recov. Limits	%	Limit	<u>%</u>	Notes*
LCS (continued)	0690688-BS1									
Surrogate: 2-Bromopropene	6/21/99	2.00		2.13	mg/kg dry	70.0-130	107			
Surrogate: 1,2-DCA-d4	n	2.00		1.76	rt	70,0-130	88.0			
Surrogate: Toluene-d8	a	2.00		1.93	"	70.0-130	96.5			
Surrogate: 4-BFB	н	2.00		1.80	"	70.0-130	90.0			
Matrix Spike	0690688-MS	L B	906434-05							
Benzene	6/21/99	1.06	ND	0.975	mg/kg dry	70.0-130	92.0			
Chlorobenzene	#	1.06	ND	1.05	**	70.0-130	99.1			
1,1-Dichloroethene	н	1.06	ND	0.805	**	70.0-130	75.9			
Toluene	11	1.06	ND	1.00	ri .	70.0-130	94.3			
Trichloroethene	H	1.06	ND	1.04	"	70.0-130	98.1			
Surrogate: 2-Bromopropene	"	2.11		2.03	11	70.0-130	96.2			
Surrogate: 1,2-DCA-d4	*	2.11		1.77	u	70.0-130	83.9			
Surrogate: Toluene-d8	n	2.11		2.03	11	70.0-130	96.2			
Surrogate: 4-BFB	"	2 .11		1.93	**	70.0-130	91.5			
Matrix Spike Dup	0690688-MS	<u>D1</u> <u>B</u>	906434-05							
Benzene	6/21/99	1.06	ND	0.977	mg/kg dr	70.0-130	92.2	15.0	0.217	
Chlorobenzene	n	1.06	ND	0.995		70.0-130	93.9	15.0	5.39	
1,1-Dichloroethene	ti	1.06	ND	0.781	H	70.0-130	73.7	15.0	2.94	
Toluene	*	1.06	ND	0.972	17	70.0-130	91.7	15.0	2.80	
Trichloroethene	п	1.06	ND	1.02	O	70.0-130	96.2	15.0	1.96	
Surrogate: 2-Bromopropene	rr rr	2.11		1.93	н	70.0-130	91.5			
Surrogate: 1,2-DCA-d4	"	2.11		1.70	**	70.0-130	80.6			
Surrogate: Toluene-d8	"	2.11		2.01	"	70.0-130	95.3			
Surrogate: 4-BFB	*	2.11		1.94	"	70.0-130	91.9			

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20354 Empire Avenue, Suite E-9, Bend, OR 97708-1883 541.383.9310 fax 541.382.7588

IT Corporation - Renton 555 South Renton Village Place, Ste 700

Project: Time Oil #2750

Sampled: 6/7/99 Received: 6/8/99

Renton, WA 98055

Project Number: 783336 Project Manager: Jerry Harris

Reported: 6/30/99 09:27

Notes and Definitions

#	Note
1	The spike recovery for this QC sample is outside of established control limits. Review of associated batch QC indicates the recovery for this analyte does not represent an out-of-control condition for the batch.
2	The RPD value for this QC sample is above the established control limit. Review of associated QC indicates the high RPD does not represent an out-of-control condition for the batch.
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
Recov.	Recovery
RPD	Relative Percent Difference

North Creek Analytical - Bothell

Seattle 18939 120th Avenue Ni., Sorte 101, Bothell, WA 98011-9508

425,420,9200 Fax 425,470,9710

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776
509,924,9200 Fax 509,924,9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503 906 9210 Bend 20354 Empire Avenue, Suite E-9, Bend, OR 97708-1883 541.383.9310 fax 541.382.7588

IT Corporation - Renton

Project: Time Oil #2750

Sampled: 6/11/99

555 South Renton Village Place, Ste 700

Project Number: 783336

Received: 6/14/99

Renton, WA 98055

Project Manager: Jerry Harris

Reported: 6/25/99 13:22

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B/Quality Control North Creek Analytical - Bothell

	Date	Spike	Sample	QC		Reporting Limit	Recov.	RPD	RPD	
Analyte	Analyzed	Level	Result	Result	Units	Recov. Limits	%	Limit	%	Notes*
Blank (continued)	0690659-BI	<u>.K1</u>								
Xylenes (total)	6/21/99			ND	ug/l	1.00				
Surrogate: 4-BFB (FID)	**	48.0		42.9	"	50.0-150	89.4			
Surrogate: 4-BFB (PID)	tt.	48.0		46.3	H	50.0-150	96.5			
LCS	0690659-BS	<u> </u>								
Gasoline Range Hydrocarbons	6/21/99	500		502	ug/l	70.0-130	100			
Surrogate: 4-BFB (FID)	#	48.0		45.3		50.0-150	94.4			
<u>Duplicate</u>	0690659-DU	JPI B	906347-01							
Gasoline Range Hydrocarbons	6/22/99		ND	ND	ug/l			25.0		
Surrogate: 4-BFB (FID)	#	48.0		43.5	16	50.0-150	90.6		•	
<u>Duplicate</u>	0690659-DU	<u>JP2 B</u>	906373-05							
Gasoline Range Hydrocarbons	6/22/99		ND	ND	ug/l			25.0		
Surrogate: 4-BFB (FID)	"	48.0		43.3	"	50.0-150	90.2			
Matrix Spike	0690659-M	<u>S1 B</u>	906373-04							
Methyl tert-butyl ether	6/22/99	10.0	ND	14.4	ug/l	70.0-130	144			3
Benzene		10.0	0.971	10.4	•	70.0-130	94.3			
Toluene	и	10.0	ND	9.58	**	70.0-130	95.8			
Ethylbenzene	"	10.0	ИD	9.83	"	70.0-130	98.3			
Xylenes (total)	**	30.0	ND	29.2	**	70.0-130	97.3			
Surrogate: 4-BFB (PID)	"	48.0		47.4	"	50.0-150	98.8			
Matrix Spike Dup	0690659-M	SDI <u>B</u>	906373-04							
Methyl tert-butyl ether	6/22/99	10.0	ND	16.0	ug/l	70.0-130	160	15.0	10.5	3
Benzene	H	10.0	0.971	11.1	n	70.0-130	101	15.0	6.86	
Toluene	н	10.0	ND	10.2	n	70.0-130	102	15.0	6.27	
Ethylbenzene .	"	10.0	ND	10.5	11	70.0-130	105	15.0	6.59	
Xylenes (total)	н	30.0	ND	31.3	н	70.0-130	104	15.0	6.66	
Surrogate: 4-BFB (PID)	"	48.0		48.2	u	50.0-150	100	_		

North Creek Analytical - Bothell

18939 120th Avenue NE, Suite 101, Buthell, WA 98011-9508 425,420,9200 fax 425 420,9210 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509,924,9200 fax 509,924,9290

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503,906 9200 fax 503,906,9210

20354 Empire Avenue, Suite E-9, Bend, OR 97708-1883 541.383.9310 fax 541.382.7588

IT Corporation - Renton 555 South Renton Village Place, Ste 700 Project: Time Oil #2750 Sampled: 6/11/99

Project Number: 783336 Received: 6/14/99

Renton, WA 98055 Project Manager: Jerry Harris

Reported: 6/25/99 13:22

Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up)/Quality Control North Creek Analytical - Bothell

	Date	Spike	Sample	QC	R	eporting Limit	Recov.	RPD	RPD
Analyte	Analyzed	Level	Result	Result	Units	Recov. Limits	%	Limit	% Notes*
Batch: 0690555	Date Prepa	red: 6/17/	99		Extractio	n Method; EP.	A 3550B		
Blank	0690555-B								
Diesel Range Hydrocarbons	6/18/99	_		ND	mg/kg dry	10.0			
Lube Oil Range Hydrocarbons	#1			ND	н	25.0			
Surrogate: 2-FBP	"	10.8		6.84		50.0-150	63.3	·-	- ··
LCS	0690555-B	<u>\$1</u>							
Diesel Range Hydrocarbons	6/18/99	66.7		55.0	mg/kg dry	60.0-140	82.5		
Surrogate: 2-FBP	11	10.8	_	9.21	11	50.0-150	85.3		
<u>Duplicate</u>	0690555-D	UP1 B	906373-01						
Diesel Range Hydrocarbons	6/18/99		ND	ND	mg/kg dry	/		50.0	
Lube Oil Range Hydrocarbons	14		36.9	ND	ti .			50.0	
Surrogate: 2-FBP	н	13.6		7.64	tt	50.0-150	56.2	·	
Batch: 0690596	Date Prepa	red: 6/18/5	99		Extractio	n Method: EP	A 3520C	/600 Seri	es
Blank	0690596-B	LK1							
Diesel Range Hydrocarbons	6/19/99			ND	mg/l	0.250			
Lube Oil Range Hydrocarbons	**			ND	a a	0.500			
Surrogate: 2-FBP	"	0.325		0.241	11	50.0-150	74.2		
LCS	0690596-B	<u>\$1</u>							
Diesel Range Hydrocarbons	6/19/99	2.00		1.73	mg/l	60.0-140	86.5		
Surrogate: 2-FBP	· ·	0.325		0.240	"	50.0-150	73.8		
LCS Dup	0690596-B	SD1							
Diesel Range Hydrocarbons	6/19/99	2.00		1.78	mg/l	60.0-140	89.0	40.0	2.85
Surrogate: 2-FBP	,,	0.325	·	0.240	"	50.0-150	73.8		

Seattle 18939 120th Avenue NE, Sinte 101, Builhell, WA 98011-9508 425,420,9200 fax 425,420,9210 Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509,924,9200 fax 509,924,9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210 8end 20354 Empire Avenue, Suite E-9, Bend, OR 97708-1883 541.383.9310 fax 541.382.7588

IT Corporation - Renton 555 South Renton Village Place, Ste 700

Project: Project Number: 783336

Time Oil #2750

Sampled: 6/11/99 Received: 6/14/99

Renton, WA 98055

Project Manager: Jerry Harris

6/25/99 13:22 Reported:

Notes and Definitions

#	Note
1	Results in the diesel organics range are primarily due to overlap from a heavy oil range product.
2	The sample chromatographic pattern does not resemble the fuel standard used for quantitation.
3	The spike recovery for this QC sample is outside of established control limits. Review of associated batch QC indicates the recovery for this analyte does not represent an out-of-control condition for the batch.
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
Recov.	Recovery
RPD	Relative Percent Difference

North Creek Analytical - Bothell

East 11115 Montgomery, Suite B, Spokane, WA 98206-4776 9405 S.W. Nimbus Avenue, Beaverton, OR 97008-7132 hell, 1. 311-9; 20332 Empire Avenue, Suite F-1, Bend, OR 97701-57 LI lite It anne Ì 39 12

FAX 906-9210 FAX 382-7588 FAX 924-9290 420 (421, __ 9200 (509) 924-9200 (541) 383-9310 (503) 906-9200

CHAIN OF CUSTODY REPORT

90% Work Order #:

TURNAROUND REQUEST in Business Days*	Organic & Inorganic Analyses 10 7 5 4 3 2 1 < 1	STD. Petroleum Hydrocarbon Analyses $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	STD. Please Specify	отнек	*Turnamund Requests less than standard may incur Rush Charges.	MATRIX # OF	(W, S, O) CONT. COMMENTS ID	S Notedatestable) (S	7 5	\ \ \	N 3 +						· P	5.00	-	Ç	FIRM: COR TIME: 15.45	FIRM: NCA TIME: 1646	TEMP: PAGE OF
INVOICETO: TIMO, I CO Mth Soft Slown	Scottle War		1 1					10-14-04-34-11-01			701	\$0-1 \\	>								16/14/9	PRINT NAME:	DATE: RECEIVED BY A LONG TIME: PRINT NAME: PAP.NU TBNTY	Sample is too could s
CLIENT: //me Oil G	ADDRESS: 555 B. Renton VIllagenflaw Ste 700	PHONE: 425-728-9649 FAX:425 228-9793	FNAME: 2750	PROJECT NUMBER:	SAMPLED BY:	CLIENT SAMPLE SAMPLING	IDENTIFICATION DATE/TIME & & &	0258-09eb45 4/11/99 821 XX	XXX X 835 1 12-3.02.903820		\$253-09 0 10.5 \\ \X\X\\	XXX 342/ 1 10820		٠	0.	1	2.	3.	4.	5.	DBY: MA I	'RINT NAME.	PRINT NAME: CRUCK ALL STATE FIRMS STATE SALE	ADDITIONAL REMARKS: MAR CARETUM LOR

Seattle 18939 120th Avenue RL Soite 101 Bottleif WA 98011-9508 425 420 9200 fax 425 470 9210

Spokane East 11115 Montgomery Soite B, Spokane WA 99206-4776

509.924 9200 fax 509 924 9290

Portfand 9405 SW Nimbus Avenue, Beliverton, OR 97008-7132

503 906.9200 fax 503 906 9216

Bend 20332 Empire Avenue Sond F. 1. Brind, OR 97701-5711

541 383 9310 fax 541 382 7588

IT Corporation - Renton

Project: Time Oil #2750

Sampled: 9/13/99

555 South Renton Village Place, Ste 700

Project Number: 783336

Received: 9/14/99

Renton, WA 98055 Project Manager: Jerry Harris Reported: 9/22/99 10:45

ANALYTICAL REPORT FOR SAMPLES:

Sample Description	Laboratory Sample Number	Sample Matrix	Date Sampled
02MW-1A	B909253-01	Soil	9/13/99
02MW-1B	B909253-02	Soil	9/13/99
02MW-1C	B909253-03	Soil	9/13/99
02MW-1D	B909253-04	Soil	9/13/99
02MW-4A	B909253-05	Soil	9/13/99
02MW-4B	B909253-06	Soil	9/13/99
02MW-4C	B909253-07	Soil	9/13/99
02MW-4D	B909253-08	Soil	9/13/99
02MW-4E	B909253-09	Soil	9/13/99
02MW-5A	B909253-10	Soil	9/13/99
02MW-5B	B909253-11	Soil	9/13/99
02MW-5C	B909253-12	Soil	9/13/99
02MW-5D	B909253-13	Soil	9/13/99
02MW-5E	B909253-14	Soil	9/13/99
02MW-5F	B909253-15	Soil	9/13/99
02MW-5G	B909253-16	Soil	9/13/99

TECEIVED SEP 2 4 1999

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

North Creek Analytical, Inc. **Environmental Laboratory Network**

Done Lof 14

Seattle 18939 12000 Avenue NE, Sinte 101 Rothett WA 98011-9508

425,420 9200 tax 425 420 9210

East 11115 Montgomery, Suite B. Spokane, WA 93206-4776 Spokane 509 924.9200 Tax 509 924 9290

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 Portland

503 906.9200 Tax 503 906.9210 20332 Empire Avenue, Suite F-1, Bend, OR 97701, 5711, 541, 383, 9310, Jan 541, 382, 7588 Bend

IT Corporation - Renton Project: Time Oil #2750 Sampled: 9/13/99 555 South Renton Village Place, Ste 700 Project Number: 783336 Received: 9/14/99 9/22/99 10:45 Renton, WA 98055 Project Manager: Reported: Jerry Harris

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B North Creek Analytical - Bothell

· · · · · · · · · · · · · · · · · · ·	Batch	Date	Date	Surrogate	Reporting			-
Analyte	Number	Prepared	Analyzed	Limits	Limit	Result	Units	Notes*
			_					
02MW-1A			B9092	53-01			<u>Soil</u>	
Gasoline Range Hydrocarbons	0990425	9/14/99	9/15/99		5.00	ND	mg/kg dry	
Benzene	•	**	•		0.0500	ND	•	
Toluene		tı	11		0.0500	ND	ti	
Ethylbenzene	ıı .	n	**		0.0500	ND	**	
Xylenes (total)	n	••	Ħ		0.100	ND	н	
Surrogate: 4-BFB (FID)	"	"	"	50.0-150		82.0	%	
Surrogate: 4-BFB (PID)	**	#	**	50.0-150		92.4	H	
02MW-1B			B9092:	53-02			Soil	
Gasoline Range Hydrocarbons	0990425	9/14/99	9/15/99		5.00	ND	mg/kg dry	
Benzene	н	n	11		0.0500	ND	n	
Toluene		**	**		0.0500	ND	•	
Ethylbenzene	н	41	o		0.0500	ND	P	
Xylenes (total)	н	M	**		0.100	ND	#	
Surrogate: 4-BFB (FID)	"	#	"	50.0-150		67.6	%	
Surrogate: 4-BFB (PID)	*	"	•	50.0-150		80.5	**	
02MW-1C			B9092	<u>53-03</u>			<u>Soil</u>	
Gasoline Range Hydrocarbons	0990425	9/14/99	9/14/99		5.00	ND	mg/kg dry	
Benzene	it	11	14		0.0500	ND	Ħ	
Toluene	•	•	•		0.0500	ND	II .	
Ethylbenzene	"		•		0.0500	ND	D	
Xylenes (total)	•	41	*		0.100	ND		
Surrogate: 4-BFB (FID)		Ħ	**	50.0-150		79.4	%	
Surrogate: 4-BFB (PID)	**	•	*	50.0-150		92.2	"	
02MW-1D			B9092:	<u>53-04</u>			Soil	
Gasoline Range Hydrocarbons	0990425	9/14/99	9/15/99		5.00	ND	mg/kg dry	
Benzene	•	•	H		0.0500	ND	**	
Toluene	•	×	11		0.0500	ND	10	
Ethylbenzene		PI	и		0.0500	ND	br .	
Xylenes (total)	•		**		0.100	ND	**	
Surrogate: 4-BFB (FID)	#	н	н	50.0-150		80.1	%	
Surrogate: 4-BFB (PID)	•	"	"	50.0-150		91.8	er .	
02MW-4A			B9092	<u>53-05</u>			Soil	
Gasoline Range Hydrocarbons	0990425	9/14/99	9/15/99		5.00	ND	mg/kg dry	
Benzene	•	*			0.0500	ND	*	

North Creek Analytical - Bothell

*Refer to end of report for text of notes and definitions.

North Creek Analytical, Inc. **Environmental Laboratory Network**

Scattle 18939 120th Avenue NE, Saite 101 Bothell, WA 98011-9508

425 420 9200 Tax 425 420 9210

Spokane East 11115 Montgomery, Suite B. Spokane, WA 99206-4776

509 924.9200 tax 509.924.9290 Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503 906.9200 tax 503.906.9210 20332 Empire Avenue, Suito F-1, Bond, OR 97701-5711 541,383,9310 Tax 541,382,7588

IT Corporation - Renton 555 South Renton Village Place, Ste 700 Renton, WA 98055

Project: Project Number:

Time Oil #2750 783336 Project Manager: Jerry Harris

Sampled: 9/13/99 Received: 9/14/99

Reported: 9/22/99 10:45

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B North Creek Analytical - Bothell

	Batch	Date	Date	Surrogate	Reporting			
Analyte	Number	Prepared	Analyzed	Limits	Limit	Result	Units	Notes*
02MW-4A (continued)			B90925	53-05			Soil .	
Toluene	0990425	9/14/99	9/15/99		0.0500	ND	mg/kg dry	
Ethylbenzene	n				0.0500	ND	"	
Xylenes (total)	н	м	н		0.100	ND	21	
Surrogate: 4-BFB (FID)	"	"	**	50.0-150		84.5	%	
Surrogate: 4-BFB (PID)	*	"	"	50.0-150		95.1	"	
02MW-4B			B9092;	<u>53-06</u>			<u>Soil</u>	
Gasoline Range Hydrocarbons	0990425	9/14/99	9/15/99		5.00	6.88	mg/kg dry	
Benzene	•	•			0.0500	ND	**	
Toluene	*	II.	•		0.0500	ND	**	
Ethylbenzene	*				0.0500	ND	н	
Xylenes (total)	*		49		0.100	ND	**	
Surrogate: 4-BFB (FID)	n	"	PF	50.0-150		82.6	%	
Surrogate: 4-BFB (PID)	"	••	#	50.0-150		104	#	
)2MW-4C			B9092	53-07			Soil	
Gasoline Range Hydrocarbons	0990425	9/14/99	9/15/99		5.00	ИĎ	mg/kg dry	
Benzene	n	**	**		0.0500	ND	1+	
Toluene	н	•	•		0.0500	ND	17	
Ethylbenzene	н	**	**		0.0500	ND	**	
Xylenes (total)	**		•		0.100	ND	**	
Surrogate: 4-BFB (FID)	**	W		50.0-150		77.0	%	_ _
Surrogate: 4-BFB (PID)	n	**	er	50.0-150		91.6	**	
)2MW-4D			B9092	53-08			<u>Soil</u>	
Gasoline Range Hydrocarbons	0990425	9/14/99	9/15/99		5.00	ND	mg/kg dry	
Benzene	*				0.0500	ND	п	
Toluene	•	••			0.0500	ND	**	
Ethylbenzene		**	н		0.0500	ND	*	
Xylenes (total)			m		0.100	ND	**	
Surrogate: 4-BFB (FID)	**	"	"	50.0-150		78.2	%	
Surrogate: 4-BFB (PID)	*	"	*	50.0-150		87.8	*	
02MW-4E			B9092	53 <u>-09</u>			Soil	
Gasoline Range Hydrocarbons	0990425	9/14/99	9/15/99		5.00	ND	mg/kg dry	
Benzene	*		11		0.0500	ND	*	
Toluene	••		*		0.0500	ND	m	
Ethylbenzene	. •				0.0500	ND	. .	

North Creek Analytical - Bothell

Seattle 18939 120th Avenue NE, Suite 101, Bothell, WA 98011-9508

425 420.9200 tax 425.420.9210

Spokane East 11115 Montgomery, Suite B. Spokane, WA 99205-4776

509.924 9200 tax 509.924 9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.936.9200 lax 503.906.9210
Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711
541.383.9310 lax 541.382.7588

IT Corporation - Renton Project: Time Oil #2750 Sampled: 9/13/99
555 South Renton Village Place, Ste 700 Project Number: 783336 Received: 9/14/99

Renton, WA 98055 Project Manager: Jerry Harris Reported: 9/22/99 10:45

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B North Creek Analytical - Bothell

	Batch	Date	Date	Surrogate	Reporting			
Analyte	Number	Prepared	Analyzed	Limits	Limit	Result	Units	Notes*
02MW-4E (continued)			B9092	<u>53-09</u>			<u>Soil</u>	
Xylenes (total)	0990425	9/14/99	9/15/99		0.100	ND	mg/kg dry	
Surrogate: 4-BFB (FID)	**	н	"	50.0-150		77.3	%	
Surrogate: 4-BFB (PID)	"	**	"	50.0-150		86.6	#	
02MW-5A			B9092	53-10			Soil	
Gasoline Range Hydrocarbons	0990425	9/14/99	9/15/99		5.00	ND	mg/kg dry	
Benzene	**	**		•	0.0500	ND	u "	
Toluene	*		**		0.0500	ND	*	
Ethylbenzene	•				0.0500	ND	**	
Xylenes (total)	er	•	н		0.100	ND	Ħ	
Surrogate: 4-BFB (FID)	· · · · · · · · · · · · · · · · · · ·	"	11	50.0-150	<u></u>	81.2	%	-
Surrogate: 4-BFB (PID)	"	#	"	50.0-150		93.1	*	
02MW-5B			B9092:	53_11			Soil	
Gasoline Range Hydrocarbons	0990425	9/14/99	9/15/99	منيح المالي	5.00	ND	mg/kg dry	
Benzene	#	9/1 /1 /99	9/13/77		0.0500	ND	"	
Toluene	**	#	*		0.0500	ND	şı.	
Ethylbenzene	11	**	**		0.0500	ND	•	
Xylenes (total)	71	*	**		0.100	ND	**	
		*	н	50.0-150	0.100	82.7	%	
Surrogate: 4-BFB (FID)	"	,,		50.0-150		94.6	#	
Surrogate: 4-BFB (PID)				30.0-130		94.0		
02MW-5C			B9092	53-12			Soil	
Gasoline Range Hydrocarbons	0990425	9/14/99	9/15/99		5.00	ИD	mg/kg dry	
Benzene	н		н		0.0500	ND	P	
Toluene	R	*	н		0.0500	ND	H	
Ethylbenzene	н				0.0500	ND	n	
Xylenes (total)					0.100	ND		
Surrogate: 4-BFB (FID)	#	Ħ		50.0-150		81.1	%	
Surrogate: 4-BFB (PID)	Ħ	*	**	50.0-150		94.0	н	
02MW-5D			B9092	53-13			Soil	
Gasoline Range Hydrocarbons	0990425	9/14/99	9/14/99		5.00	ND	mg/kg dry	
Benzene	#	*	#		0.0500	ND	н	
Toluene			er		0.0500	ND	•	
Ethylbenzene	•	*	Ħ		0.0500	ND	н	
Xylenes (total)	#	•			0.100	ND	**	
Surrogate: 4-BFB (FID)	. w	.#		50.0-150				

North Creek Analytical - Bothell

*Refer to end of report for text of notes and definitions.

Joy B Chang, Project Manager

Seattle: 18939-120th Avenue NE, State 101: Epithell: V/A-98011-9508

425 420 9200 fax 425 420 9210

 Spokane
 East 1115 Montgomery Suite B. Spokane, WA 99205-4776

 509.924.9200 tax 509.924.0290

Portland 9405 SW Nimbus Avenue, Beaventon OR 97008-7132 503 906,9200 fax 503 906 9210

Bend 20332 Empire Avenue, Suite F-1, Bend OR 97701-5711 541.383 9310 fax 541 382 7588

IT Corporation - Renton

Project:

Time Oil #2750

Sampled: 9/13/99

55 South Renton Village Place, Ste 700

Project Number: 783336

Received: 9/14/99

tenton, WA 98055

Project Manager:

Jerry Harris

Reported: 9/22/99 10:45

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B North Creek Analytical - Bothell

	Batch	Date	Date	Surrogate	Reporting			
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Number	Prepared	Analyzed	Limits	Limit	Result	Units	Notes*
02MW-5D (continued)			B9092	53-13			<u>Soil</u>	
Surrogate: 4-BFB (PID)	0990425	9/14/99	9/14/99	50.0-150		94.5	%	
<u>u2MW-5E</u>			B9092	<u>53-14</u>			Şoil	
Gasoline Range Hydrocarbons	0990425	9/14/99	9/15/99		5.00	ND	mg/kg dry	
Benzene	#	**	*		0.0500	0.222	*	
. oluene	III		**		0.0500	ND	н	
Ethylbenzene	**	**	**		0.0500	ND	11	
(ylenes (total)	н	•	n		0.100	ND	*	
urrogate: 4-BFB (FID)	"	н	н	50.0-150		82.6	%	
Surrogate: 4-BFB (PID)	n	n	"	50.0-150		90.3	u	
12MW-5F			B9092	53-15			Soil	
Gasoline Range Hydrocarbons	0990425	9/14/99	9/15/99		5.00	ND	mg/kg dry	
Benzene	я	**	*		0.0500	ND	#	
'oluene	Ħ		**		0.0500	ND	"	
Ethylbenzene		**	н		0.0500	ND	*1	
Xylenes (total)	10	••	**		0.100	ND	н	
Surrogate: 4-BFB (FID)	н —	"	<u>"</u>	50.0-150		73.0	%	
Surrogate: 4-BFB (PID)	н	•	~	50.0-150		81.8	u	
02MW-5G			B9092	53 <u>-16</u>			Soil	
Jasoline Range Hydrocarbons	0990425	9/14/99	9/15/99		5.00	ND	mg/kg dry	
Jenzene .	н	Ħ	4		0.0500	ND	74	
Toluene	#	n	Ħ		0.0500	ND	н	
Ethylbenzene	н	*	**		0.0500	ND	н	
(ylenes (total)	Ħ	Ħ			0.100	ND	H	
Surrogate: 4-BFB (FID)	"		pt .	50.0-150		78.4	%	
Surrogate: 4-BFB (PID)	**	"	"	50.0-150		88.2	"	

North Creek Analytical - Bothell

*Refer to end of report for text of notes and definitions.

Joy B Chang, Project Manager

Seattle 18939 120th Avenue NE, Suite 101, Bothell, WA 98011-9506

425 420.9200 Tax 425 420.9210

Spokane - East 11115 Montgomery, State B. Spokane, WA 99206-4776

509 924.9200 fax 509.924.9290 Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210 Bend 20332 Empire Avenue Suite F-1, Bend, OR 97701-5711 541 383,9310 fax 541,382 7588

IT Corporation - Renton 555 South Renton Village Place, Ste 700 Project:

Time Oil #2750

Jerry Harris

Sampled: 9/13/99

:Renton, WA 98055

Project Number: 783336 Project Manager:

Received:

Reported: 9/22/99 10:45

9/14/99

Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up) North Creek Analytical - Bothell

	Batch	Date	Date	Surrogate	Reporting			
Analyte	Number	Prepared	Analyzed	Limits	Limit	Result	Units	Notes*
02MW-1A			B90925	53-01			Soil	
Diesel Range Hydrocarbons	0990504	9/16/99	9/17/99		10.0	ND	mg/kg dry	
Lube Oil Range Hydrocarbons	**	*	**		25.0	ND	n	
Surrogate: 2-FBP	"	**	*	50.0-150		65.6	%	
02MW-1B			B9092	5 <u>3-02</u>			<u>Soil</u>	
Diesel Range Hydrocarbons	0990504	9/16/99	9/17/99		10.0	ND	mg/kg dry	
Lube Oil Range Hydrocarbons	**	н	н		25.0	ND	н	
Surrogate: 2-FBP	71	"	N	50.0-150		67.5	%	
02MW-1C			B9092	53-03			Soil	
Diesel Range Hydrocarbons	0990504	9/16/99	9/17/99		10.0	10.5	mg/kg dry	
Lube Oil Range Hydrocarbons	**	*	••		25.0	27.7	41	
Surrogate: 2-FBP	"	#	"	50.0-150		62.5	%	
02MW-1D			B9092	53-04			Soil	
Diesel Range Hydrocarbons	0990504	9/16/99	9/17/99		10.0	ND	mg/kg dry	
Lube Oil Range Hydrocarbons	**		*		25.0	ND	н	
Surrogate: 2-FBP	**	**	"	50.0-150		61.8	%	
02MW-4A			B9092	53-05			Soil	
Diesel Range Hydrocarbons	0990504	9/16/99	9/17/99		10.0	ND	mg/kg dry	
Lube Oil Range Hydrocarbons	Ħ	II	F		25.0	ND	н	
Surrogate: 2-FBP	н	tt .	n	50.0-150		71.3	%	
02MW-4B			B9092	53-06			<u>Soil</u>	
Diesel Range Hydrocarbons	0990504	9/16/99	9/17/99		10.0	ND	mg/kg dry	
Lube Oil Range Hydrocarbons	•	n			25.0	ND	rf	
Surrogate: 2-FBP	<i>"</i>	"	,,	50.0-150		76.5	%	
02MW-4C			B9092	53-07			Soil	
Diesel Range Hydrocarbons	0990504	9/16/99	9/17/99		10.0	ND	mg/kg dry	
Lube Oil Range Hydrocarbons	*	н	•		25.0	ND		
Surrogate: 2-FBP	*	*	#	50.0-150		61.4	%	
02MW-4D			B9092	53-08			Soil	
Diesel Range Hydrocarbons	0990504	9/16/99	9/17/99		10.0	ND	mg/kg dry	
Lube Oil Range Hydrocarbons	#	•	*		25.0	ND	er	. <u> </u>
	· · · · · · · · · · · · · · · · · · ·	"	*	50.0-150		72.3	%	

North Creek Analytical - Bothell

Seattle 18939 120th Avenue MF Suite 101 Bothell WA 98011-9508

425 420 9200 tax 405 420 9210

East 11115 Montgomery, Spite B, Spokane, WA 99205-4776 509 924 9200 fax 509 924 9290 Spokane

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 Tax 503.906.9210

541 383 9310 fax 541 382 7588

IT Corporation - Renton 555 South Renton Village Place, Ste 700

Project: Time Oil #2750 Project Number: 783336

Sampled: 9/13/99 Received: 9/14/99

Renton, WA 98055

Project Manager: Jerry Harris

Reported: 9/22/99 10:45

Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up) North Creek Analytical - Bothell

	Batch	Date	Date	Surrogate	Reporting			
Analyte	Number	Prepared	Analyzed	Limits	Limit	Result	Units	Notes*
			D0003	F2 00			Soil	
02MW-4E	0000504	0/1//00	B90925	<u>53-09</u>	10.0	ND	5011 mg/kg dry	
Diesel Range Hydrocarbons	0990504	9/16/99	9/17/ 99		25.0	ND	mg/kg dry	
Lube Oil Range Hydrocarbons				50.0-150	25.0	66.8	%	
Surrogate: 2-FBP				30.0-130		00.8	70	
02MW-5A			B9092	53-10			Soil	
Diesel Range Hydrocarbons	0990504	9/16/99	9/17/99		10.0	ND	mg/kg dry	
Lube Oil Range Hydrocarbons	0	•			25.0	ND	4	
Surrogate: 2-FBP	"	"	**	50.0-150		80.5	%	<u>, , , , , , , , , , , , , , , , , , , </u>
02MW-5B			B9092	53-11			Soil	
Diesel Range Hydrocarbons	0990504	9/16/99	9/17/99		10.0	ND	mg/kg dry	
Lube Oil Range Hydrocarbons	n	н	tt		25.0	ND	"	
Surrogate: 2-FBP	n	**	**	50.0-150		66.2	%	
							6-7	
02MW-5C			B9092	<u>53-12</u>		10.7	<u>Soil</u>	
Diesel Range Hydrocarbons	0990504	9/16/99	9/17/99 "		10.0	10.3	mg/kg dry "	
Lube Oil Range Hydrocarbons	"	n	"	50.0.150	25.0	37.0 60.2	%	
Surrogate: 2-FBP	"	~		50.0-150		OU.2	70	
02MW-5D			B9092	53-13			Soil	
Diesel Range Hydrocarbons	0990504	9/16/99	9/17/99		10.0	ND	mg/kg dry	
Lube Oil Range Hydrocarbons	N	*	•		25.0	ND		
Surrogate: 2-FBP	,,	"	"	50.0-150	-	80.3	%	
02MW-5E			B9092	53-14			Soil	
Diesel Range Hydrocarbons	0990504	9/16/99	9/17/99		10.0	ND	mg/kg dry	
Lube Oil Range Hydrocarbons	H	н	H		25.0	ND	,	
Surrogate: 2-FBP	н	"	"	50.0-150		70.6	%	
02MW-5F			B9092	53-15			Soil	
Diesel Range Hydrocarbons	0990504	9/16/99	9/17/99	<u>~~</u>	10.0	ND	mg/kg dry	
Lube Oil Range Hydrocarbons	#	7/ LU/ 7 7	9/1 //97 H		25.0	ND	*	
Surrogate: 2-FBP	<i>n</i>	74	"	50.0-150		65.7	%	
•							C+:I	
02MW-5G		04600	<u>B9092</u>	53-16	• • • •	\ IT>	<u>Soil</u>	
Diesel Range Hydrocarbons	0990504	9/16/99	9/17/99		10.0	ND	mg/kg dry	
Lube Oil Range Hydrocarbons					25.0	ND ND		
Surrogate: 2-FBP	_ '	, #	*	50.0-150		66.2	%	•

North Creek Analytical - Bothell

Seattle 18939 120th Avenue NE, Sinte 101, Bethell, WA 98011-9508 425 420 9200 dax 425 429 9210

| Spokane | Cast 11115 Montgomery, Smile B Spokane WA 99206-4776 | 509.924.9200 tax 509.924.9290 | Pertiand | 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 |

503.906.9200 fax 503 906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend OR 97701-5711 541,383 9310 Tax 541 382 7588

IT Corporation - Renton 555 South Renton Village Place, Ste 700

Time Oil #2750 Project: Project Number: 783336

Sampled: 9/13/99

Renton, WA 98055

Project Manager: Jerry Harris Received: 9/14/99

Reported: 9/22/99 10:45

i otai iv	letals by EPA 6000//000 Series Methods
	North Creek Analytical - Bothell

	Batch	Date	Date	Specific	Reporting			
Analyte	Number	Prepared	Analyzed	Method	Limit	Result	Units	Notes*
			POSC -	F2 01			Call	
02MW-1A	0990509	9/16/99	<u>B9092;</u> 9/21/99	53-01 EPA 6020	0.500	3.86	<u>Soil</u> mg/kg dry	
Lead	0330303	3/10/33	9/21/99	ErA 6020	0.500	3.00	mg/kg ury	
02MW-1B			B9092	53-02			<u>Soil</u>	
Lead	0990509	9/16/99	9/21/99	EPA 6020	0.500	3.59	mg/kg dry	
02MW-1C			B9092	-			<u>Soil</u>	
Lead	0990509	9/16/99	9/21/99	EPA 6020	0.500	1.81	mg/kg dry	
021477 10			Poons	F2 0 <i>4</i>			Soil	
02MW-1D Lead	0990509	9/16/99	<u>B9092:</u> 9/21/99	53-04 EPA 6020	0.500	6.46	mg/kg dry	
Lead	U390303	2/10/22	7121177	LI A 0020	0.500	0.40	ing kg diy	
02MW-4A			B9092	53 <u>-05</u>			Soil	
Lead	0990509	9/16/99	9/21/99	EPA 6020	0.500	5.04	mg/kg dry	
02MW-4B			B9092				<u>Soil</u>	
Lead	0990509	9/16/99	9/21/99	EPA 6020	0.500	7.15	mg/kg dry	
028634/40			B9092	53.07			Soil	
02MW-4C Lead	0990509	9/16/99	9/21/99	EPA 6020	0.500	2.47	mg/kg dry	
1.230	0770307	7/10/77	7121177	Li A 0020	0.500	2007	ing kg on	
02MW-4D			B9092	53-08			<u>Soil</u>	
Lead	0990509	9/16/99	9/21/99	EPA 6020	0.500	2.26	mg/kg dry	
02MW-4E			B9092				Soil	
Lead	0990509	9/16/99	9/21/99	EPA 6020	0.500	6.77	mg/kg dry	
020504 54			DOARS	E2 10			Soil	
02MW-5A Lead	0990509	9/16/99	<u>B9092</u> 9/21/99	53-10 EPA 6020	0.500	6.91	<u>ಎಂ॥</u> mg/kg dry	
LCau	V77UJU7)11G())	712477	DI 11 0020	0.500	0.71		
02MW-5B			B9092	53-11			Soil	
Lead	0990509	9/16/99	9/21/99	EPA 6020	0.500	2.82	mg/kg dry	
<u>02MW-5C</u>			B9092				Soil	
Lead	0990509	9/16/99	9/21/99	EPA 6020	0.500	6.92	mg/kg dry	
021-01/-50			ተላሳሰዊ	E2 12			Soil	
02MW-5D Lead	0990509	9/16/99	<u>B9092</u> 9/21/99	EPA 6020	0.500	3.97	<u>ञ्जा।</u> mg/kg dry	
L/GRU	0770307	JI 10133	ガムロフラ	L: 13 0020	0.500	3.71	E. v.P)	

North Creek Analytical - Bothell

*Refer to end of report for text of notes and definitions.

Joy B Chang/Project Manager

Seattle 18939 120th Avenue NE, Serte 101 Bothell, WA 98011-9508

425 420 9200 Tax 425 420 9210

Spokane East 11115 Montgomery, State B. Spokane, WA 99206-4776

509 924 9200 Tax 509.924 9290

Portland 9405 5W Nimbus Avenue, Beaverton, OR 97008-7132

503 906 9200 (ax 503 906 9210 Bend 20332 Empire Avenue, Suite F-1, Bend OR 97701-5711 541 383 9310 (ax 541 382 7588

IT Corporation - Renton
555 South Renton Village Place, Ste 700

Project: Time Oil #2750

Sampled: 9/13/99

Renton, WA 98055

Project Number: 783336
Project Manager: Jerry Harris

Received: 9/14/99 Reported: 9/22/99 10:45

Total Metals by EPA 6000/7000 Series Methods North Creek Analytical - Bothell

Analyte	Batch Number	Date Prepared	Date Analyzed	Specific Method	Reporting Limit	Result	Units	Notes*
02MW-5E	0990509	9/16/99	<u>B9092</u> ; 9/21/99	53-14 EPA 6020	0.500	1.69	Soil mg/kg dry	
<u>02MW-5F</u>	0990509	9/16/99	<u>B9092:</u> 9/21/99	53-15 EPA 6020	0.500	3.37	Soil	
Lead 02MW-5G	0990309	9/10/99	B9092:		0.500	3.37	mg/kg dry Soil	
Lead	0990509	9/16/99	9/21/99	EPA 6020	0.500	3.46	mg/kg dry	

North Creek Analytical - Bothell

*Refer to end of report for text of notes and definitions.

North Creek Analytical, Inc. Fovironmental Laboratory Network

Spokane

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906 9200 fax 503.906.9210

20332 Empire Avenue, Suite F-1, Bend OR 97701-5711 541 383 9310 1ax 541.382,7588

Project: Time Oil #2750 Sampled: 9/13/99 IT Corporation - Renton Received: 9/14/99 555 South Renton Village Place, Ste 700 Project Number: 783336

Renton, WA 98055 Project Manager: Jerry Harris Reported: 9/22/99 10:45

Dry Weight Determination North Creek Analytical - Bothell

Sample Name	Lab ID	Matrix	Result	Units
02MW-1A	В909253-01	Soil	85.0	%
02MW-1B	B909253-02	Soil	82.2	%
02MW-1C	B909253-03	Soil	84.7	%
02MW-1D	B909253-04	Soil	77.9	%
02MW-4A	B909253-05	Soil	82.5	%
02MW-4B	B909253-06	Soil	82.7	%
02MW-4C	B909253-07	Soil	82.3	%
02MW-4D	B909253-08	Soil	83.8	%
02MW-4E	B909253-09	Soil	77.7	%
02MW-5A	B909253-10	Soil	83.6	%
02MW-5B	B909253-11	Soil	79.6	%
02MW-5C	B909253-12	Soil	80.3	%
02MW-5D	B909253-13	Soil	81.2	%
02MW-5E	B909253-14	Soil	81.2	%
02MW-5F	B909253-15	Soil	72.0	%
02MW-5G	B909253-16	Soil	80.2	%

North Creek Analytical - Bothell

Seattle 18939-120th Avenue NE Suite 101, Bothell, WA 98011-9508

425 420 9200 fax 425,420 9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

509.924.9200 lax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 lax 503 966 9210

Bend 20332 Empire Avenue Suite F-1, Bend, OR 97701-5711 541.383.9310 lax 541.382.7588

Deporting Limit Decou

IT Corporation - Renton

Project:

Time Oil #2750

 $\overline{\alpha}$

Sampled: 9/13/99

555 South Renton Village Place, Ste 700

Project Number: 783336

Cailea

Received: 9/14/99

Renton, WA 98055

Project Manager: Jerry Harris

Reported: 9/22/99 10:45

מממ

DDD

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B/Quality Control 2015 North Creek Analytical Bothell 1989

Comple

	Date	Spike	Sample	QC	Re	porting Limit	Recov.	RPD	RPD
Analyte	Analyzed	Level	Result	Result	Units	Recov. Limits	%	Limit	% Notes
Batch: 0990425	Date Prepa	red: 9/14/9	99		Extraction	Method: EP	A 5030R	(MeOH)	
Blank	0990425-BI				***************************************		××××××		•
Gasoline Range Hydrocarbons	9/14/99			ND	mg/kg dry	5.00			
Benzene	u			ND	"	0.0500			
Toluene	·		-	ND	**	0.0500			
Ethylbenzene	н			ND	•	0.0500			
Xylenes (total)	41			ND	**	0.100			
Surrogate: 4-BFB (FID)		4.00		3.70	H	50.0-150	92.5		
Surrogate: 4-BFB (P1D)	**	4.00		4.31	**	50.0-150	108		
LCS	0990425-BS	<u> </u>							
Gasoline Range Hydrocarbons	9/14/99	25.0		22.7	mg/kg dry	70.0-130	90.8		
Surrogate: 4-BFB (FID)	"	4.00		3.78	"	50.0-150	94.5		
Duplicate	0990425-D1	UP1 B	909253-03			•			
Gasoline Range Hydrocarbons	9/15/99		ND	ND	mg/kg dry			50.0	
Surrogate: 4-BFB (FID)	N -	4.72		3.57	11	50.0-150	75.6		
Duplicate	0990425-DI	UP2 B	909253-13						
Gasoline Range Hydrocarbons	9/15/99		ND	ND	mg/kg dry			50.0	
Surrogate: 4-BFB (FID)	n	4.92		3.87	Ħ	50.0-150	78.7		
Matrix Spike	0990425-M		909253-15						
Benzene	9/15/99	0.695	ND	0.545	mg/kg dry	60.0-140	78.4		
Toluene	#	0.695	ND	0.572	•	60.0-140	82.3		
Ethylbenzene	N	0.695	ND	0.599	•	60.0-140	86.2		
Xylenes (total)	И	2.08	ND	1.82	**	60.0-140			
Surrogate: 4-BFB (PID)	N	5.56		4.85	H	50.0-150	87.2		
Matrix Spike Dup	0990425-M	SD1 B	9092 <u>53-15</u>						
Benzene	9/15/99	0.695	ND	0.539	mg/kg dry	60.0-140	77.6	20.0	1.03
Toluene	н	0.695	ND	0.573	**	60.0-140	82.4	20.0	0.121
Ethylbenzene	и	0.695	ND	0.639	**	60.0-140	91.9	20.0	6.40
Xylenes (total)	*	2.08	ND	1.80	**	60.0-140	86.5	20.0	1.15
Surrogate: 4-BFB (PID)	N	5.56		4.66	H	50.0-150	83.8		

North Creek Analytical - Bothell

*Refer to end of report for text of notes and definitions.

Joy B Chang, Project Manager

Seattle 18939 120th Avegue NE, Sinte 101, Bothell, WA 98011-9508

425 420 9200 fax 425 420.9210

Spokane East 11115 Montgomery, Suite B. Spokane, WA 99205-4776

509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210 Bend 20332 Empire Avenue, Suite F-1, Bend OR 97701-5711 541.383.9310 Tax 541.382.7588

IT Corporation - Renton

Project: Time Oil #2750 Sampled: 9/13/99

555 South Renton Village Place, Ste 700

Project Number: 783336

Renton, WA 98055

Received: 9/14/99

Project Manager: Jerry Harris

9/22/99 10:45 Reported:

Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel: Clean-up)/Quality Control (page 1)

	Date	Spike	Sample	QC	R	eporting Limit	Recov.	RPD	RPD	
Analyte	Analyzed	Level	Result	Result	Units	Recov. Limits	%	Limit	%	Notes*
					.	14 · · · · · · · · · · · · · · · · · · ·				
Batch: 0990504	Date Prepar		199		Extraction	n Method: EP	V SOOR			
<u>Blank</u>	0990504-BL	<u>K1</u>								
Diesel Range Hydrocarbons	9/17/99			ND	mg/kg dr	y 10.0				
Lube Oil Range Hydrocarbons				ND	H	25.0				
Surrogate: 2-FBP	u	10.7		6.81	"	50.0-150	63.6			
LCS	0990504-BS	1								
Diesel Range Hydrocarbons	9/17/99	66.7		46.5	mg/kg dr	y 60.0-140	69.7			
Surrogate: 2-FBP	*r	10.7		6.91	n	50.0-150	64.6			
Duplicate	0990504-DU	Pi l	B909296-02							
Diesel Range Hydrocarbons	9/17/99		18.9	18.3	mg/kg dr	у		50.0	3.23	
Lube Oil Range Hydrocarbons	11		ND	ND	*			50.0		
Surrogate: 2-FBP	rr .	11.4		8.07	#	50.0-150	70.8			
<u>Duplicate</u>	0990504-DU	<u> P2</u>	B909253-07							
Diesel Range Hydrocarbons	9/17/99		ND	ND	mg/kg dr	у		50.0		
Lube Oil Range Hydrocarbons	•		ND	ND	"	•		50.0		
Surrogate: 2-FBP	**	13.0		9.26	n	50.0-150	71.2			_

North Creek Analytical - Bothell

*Refer to end of report for text of notes and definitions.

Joy B Chang, Project Manager

Seattle 18939 120th Avonue NE Suite 101 Bothell, WA 98011-9508

425.420.9200 (ax 425.420.9210

Spokane - Last 11115 Montgomery Sorte B. Spokane: WA 99206-4776

509.924.9200 tax 509.924 9290

Portland 9405 SW Nimitus Avenue Beaverton OR 97008-7132

503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue Suite F-1 Bend OR 97701-5711

541.383.9310 fax 541.382.7588

IT Corporation - Renton

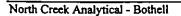
Project: Time Oil #2750

Sampled: 9/13/99

555 South Renton Village Place, Ste 700

Project Number: 783336

Received: 9/14/99


Renton, WA 98055

Project Manager: Jerry Harris

Reported: 9/22/99 10:45

Total/Metals by EPA 6000/7000 Series Methods/Quality Control North Creek Analytical - Bothell

	Date	Spike	Sample	QC	Rej	orting Limit	Recov.	RPD	RPD	
Analyte	Analyzed	Level	Result	Result	Units	Recov. Limits	%	Limit	%	Notes*
Batch: 0990509	Date Prepa	red: 9/16/9) 9		Extraction	Method: EPA	3050B			
Blank	<u>0990509-BI</u>	∡K1								
Lead	9/21/99			ND	mg/kg dry	0.500				
LCS	0990509-BS	31								
Lead	9/21/99	25.0		27.2	mg/kg dry	80.0-120	109			
Matrix Spike	0990509-M	S1 B9	09264-01							
Lead	9/21/99	17.5	6.27	29.8	mg/kg dry	70.0-130	134			
Matrix Spike	0990509-M	S2 B9	909264-01							
Lead	9/21/99	179	6.27	201	mg/kg dry	70.0-130	109			1
Matrix Spike Dup	0990509-M	SDI B	009264-01							
Lead	9/21/99	17.7	6.27	22.4	mg/kg dry	70.0-130	91.1	20.0	38.1	2

Seattle 18939 120th Avenue NE, Soite 101 Bothell WA 98011-9505

425 420 9200 tay 425 420 9210

Spokane East 11115 Munigomery, Sude B, Spokane, WA 99206-4776

509.924 9200 fax 509.924 9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend OR 97701-5711
541.383.9310 fax 541.382.7588

IT Corporation - Renton 555 South Renton Village Place, Ste 700 Project: Time Oil #2750

Sampled: 9/13/99

Renton, WA 98055

Project Number: 783336 Project Manager: Jerry Harris Received: 9/14/99 Reported: 9/22/99 10:45

Notes and Definitions

<u>#</u>	Note
1	Post-digestion Matrix Spike.
2	Visual examination indicates the RPD and/or matrix spike recovery is outside the control limit due to a non-homogeneous sample matrix.
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
Recov.	Recovery
RPD	Relative Percent Difference

North Creek Analytical - Bothell

East 11115 Montgomery, Suite B, Spokane, WA 98206-4776 9405 S.W. Nimbus Avenue, Beaverton, OR 97008-7132 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 uje – cone ' 39 12

FAX 906-9210 FAX 924-9290 FAX 382-7588)Z† X .92(X) (509) 924-9200 (541) 383-9310 (503) 906-9200

Work Order #: 16909253

CHAIN OF CUSTODY REPORT

NCA WO g 62 10 60 DATE OF 14ō 80 6 질 8 9 DATE TIM TURNAROUND REQUEST In Business Days* 土 * Turnament Requests less than standard may incur Rush Charge WO TEMPS TO PARTY TIME TIME: / B909253 10 7 5 4 3 2 OTHER Please Specify COMMENTS CONT. # OF FIRMS N P MATRIX (14, S, O) FIRM 2,7 Hotmon PRINT NAMIE: Connie PRINT NAME A REQUESTED ANALYSES DATE: 9/14/99 RECEIVED BY RECTEIVED BYS 1) 1/1/4 TINITE: 12,54 6 INVOICE TO: FAX: 425-228-9793 P.O. NUMBER. TIME: 9:41 Villago 12. #700 FIRM: IT COLD 9:34 7:50 7.54 8:4 67.6 かんぶ 86:41 14:26 18:23 10:37 10:4B DATECTIME SAMPLING 4/13/46 IAMPLED BY: CUS**CLIENT SAMPLE IDENTIFICATION** DITIONAL REMARKS: ROJECT NUMBER: CINOCUSIIEI (P.) 02MW-1C / - 40 OS-NW-CD (- 4D BLUM-5E ADDRESS: 575 0+1 - MMG IT MARCH V-S-MIKP わるがたって GLAW-5 F OLAN-OB PROJECT NAME: INQUISITED BY: CZMW-- MW-CO 110NE: #25 REPORT TO: INT NAME: NINANIE MUTO CLIENT

9405 S.W. Nimbus Avenue, Beaverton, OR 97008-7132 East 11115 Montgomery, Suite B, Spokane, WA 98206-4776 only 120th tonne N of the 10th of the 19th of the 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

(509) 924-9200 (503) 906-9200 (425° ACE +2500)

FAX 906-9210 IAX 924-9290 FAX 382-7588 מינטי074 איז (541) 383-9310

12000UN

Work Order #: CHAIN OF CUSTODY REPORT

NCA WO 9 TURNAROUND REQUEST in Business Days* *Turnamunal Requests less than standard may incur Rush Charges DATES 18909253 Please Specify
OTHER COMMENTS 7 5 4 " CONT. ₩ OF KUNITED PLANE (W, S, O) MATRIX INVOICE TO: CONNIP HOFMAN RECEIVED BY REQUESTED ANALYSES DATE: 9/14/99 P.O. NUMBER: FAX: 415-228- 9793 Reg 70 741/40 PL #76 DATE/TIME SAMPLING 86/61/6 CLIENT SAMPLE IDENTIFICATION HONE: 425-128 D5-MW-20 EPORT TO: $\mathcal{Fer}_{\mathcal{F}}$ ROJECT NUMBER: .ddress: 55,5 LINQUISITED BY: ROJECT NAME: AMPLED BY: LIENT

TIME

DATE: TIME

FIRM

RECEIVED BY: PRINT NAME

тин: 9.4/499 рате: 9/1/499

PRINT NANIE:

TIME, S. 45

DOLLIONAL REMARKS:

K. R[.V. 1409

RINT NANE:

I.INQUISHED BY: $\mathcal K$

INT NANIE C

Seattle 18939-120th Avenue NE State 101, Bothell, WA 98011-9508

425 420.9200 Tax 425 420 9210

Spokane East 1115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906 9200 1ax 503.906 9210 8end 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 1ax 541.382.7588

IT Corporation - Renton 555 South Renton Village Place, Ste 700 Renton, WA 98055

Project: Time Oil #2750

Sampled: 9/28/99

Project Number: 783336

Received: 9/29/99

Project Manager: Jerry Harris

Reported: 10/6/99 15:57

ANALYTICAL REPORT FOR SAMPLES:

Sample Description	Laboratory Sample Number	Sample Matrix	Date Sampled
02-MW-1	B909648-01	Water	9/28/99
02-MW-2	B909648-02	Water	9/28/99
02-MW-3	B909648-03	Water	9/28/99
02-MW-4	B909648-04	Water	9/28/99
02-MW-5	B909648-05	Water	9/28/99

RECEIVED OCT 8 1999

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

> North Creek Analytical, Inc. Environmental Laboratory Network

Seattle 18939 120th Avenue NE State 101 Bothell, WA 98011-9506

425.420.9200 tax 425.420.9210

Spokane East 11115 Montgomery, Suite B. Spokane, WA 99206-4776

509 924 9200 fax 509.924 9290

Portland 9405 SW Nimbus Avenue, Beaventon, OR 97008-7132 503.906.9200 tax 503.906 9210

Bend 20332 Empire Avenue Suite F-1, Bend, OR 97701-5711 541 383 9310 1ax 541,382,7588

IT Corporation - Renton

555 South Renton Village Place, Ste 700

Renton, WA 98055

Project: Time Oil #2750

Project Number: 783336

Sampled: 9/28/99 Received:

9/29/99

Project Manager: Jerry Harris

Reported: 10/6/99 15:57

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B North Creek Analytical - Bothell

	Batch	Date	Date	Surrogate	Reporting			
Analyte	Number	Prepared	Analyzed	Limits	Limit	Result	Units	Notes*
02-MW-1			B9096	48-01			<u>Water</u>	
Gasoline Range Hydrocarbons	1090003	10/1/99	10/1/99	<u> </u>	50.0	172	ug/l	
Benzene	•	11			0.500	72.9	# "	
Toluene		**			0.500	0.811	tr .	
Ethylbenzene	**	N	er e		0.500	ND	u	
Xylenes (total)	n	**			1.00	ND	"	
Surrogate: 4-BFB (FID)	**	"	"	50.0-150		91.7	%	
Surrogate: 4-BFB (PID)	H	tt	n	50.0-150		83.8	11	
02-MW-2			B90964	18-02			Water	
Gasoline Range Hydrocarbons	1090003	10/1/99	10/1/99		50.0	ND	ug/l	
Benzene	ti	Ħ	#		0.500	ND	- <u>-</u> -	
Toluene	**	•	•		0.500	ND	**	
Ethylbenzene	#	н	H		0.500	ND	•	
Xylenes (total)	**	tr	н		1.00	ND	N	
Surrogate: 4-BFB (FID)	11	**	"	50.0-150		82.9	%	
Surrogate: 4-BFB (PID)	"	"	"	50.0-150		85.8	"	
02-MW-3			B90964	<u> </u>			Water	
Gasoline Range Hydrocarbons	1090003	10/1/99	10/2/99		50.0	160	ug/l	
Benzene	41	*			0.500	56.7	#	
Toluene	**	**	.,		0.500	1.13	**	
Ethylbenzene	n		**		0.500	ND		
Xylenes (total)	**	n	•		1.00	1.14	11	
Surrogate: 4-BFB (FID)	н	#	H	50.0-150	-	91.2	%	
Surrogate: 4-BFB (PID)	"	"	*	50.0-150		81.7	"	
02-MW-4			B90964	<u>18-04</u>			Water	
Gasoline Range Hydrocarbons	1090003	10/1/99	10/2/99		250	3700	ug/l	
Benzene	**	**	*		30.0	ND	н	1
Toluene		Ħ	*		2.50	185	h	
Ethylbenzene	H	н	n		2.50	226	н	
Xylenes (total)	Ħ	**	н		5.00	473	н	
Surrogate: 4-BFB (FID)	, <u> </u>	*	#	50.0-150	<u>-</u>	99.6	%	
Surrogate: 4-BFB (PID)	PF	"	н	50.0-150		94.6	#	
02-MW-5			B90964	18-0 <u>5</u>			Water	
Gasoline Range Hydrocarbons	1090003	10/1/99	10/2/99		50.0	ND	ug/l	
Benzene	н	••	n	.•	0.500	2.84	#	

North Creek Analytical - Bothell

*Refer to end of report for text of notes and definitions.

North Creek Analytical, Inc. **Environmental Laboratory Network**

Seattle 18939 120th Avenue NE, Suite 101 (Bothell, WA 98011-950)

425 420 9200 Tax 425 420 9210

Spokane East 11115 Montgomery, Suite B. Spokane, WA 99206-4-76

509.924.9200 (ax 509.924.9290 Portland 9405 SW Nimbus Avenue, Beaverton OR 97008-7132

503.906.9200 tax 503.906.9210

Bend 20332 Empire Avenue. Suite F-1, Bend OR 97701-5711 541 383 9310 fax 541.382.7588

IT Corporation - Renton 555 South Renton Village Place, Ste 700 Project: Time Oil #2750

Sampled: 9/28/99 Received: 9/29/99

Renton, WA 98055

Project Number: 783336
Project Manager: Jerry Harris

Reported: 10/6/99 15:57

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B North Creek Analytical - Bothell

	Batch	Date	Date	Surrogate	Reporting			
Analyte	Number	Prepared	Analyzed	Limits	Limit	Result	Units	Notes*
02-MW-5 (continued)			B90964	<u> 18-05</u>			<u>Water</u>	
Toluene	1090003	10/1/99	10/2/99		0.500	ND	ug/l	
Ethylbenzene	•	**	ŧi		0.500	ND	11	
Xylenes (total)	••	•	41		1.00	ND	**	
Surrogate: 4-BFB (FID)	"	"	"	50.0-150		100	%	
Surrogate: 4-BFB (PID)	"	**	**	50.0-150		90.8	**	

North Creek Analytical - Bothell

*Refer to end of report for text of notes and definitions.

Joy B Chang, Project Manager

Renton, WA 98055

Seattle 18939 170th Avenue NE, Suite 101, Bothell, WA 98011-9503 425,420 9200 13x 425 420 9210

Spokane East 11115 Montgomery, Suite B. Spokane, WA 99206-4776 509.924.9200 Tax 509.974.9290

Portland 9405 SW Numbus Avenue, Beaverton OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383 9310 fax 541 382 7588

IT Corporation - Renton Project: Time Oil #2750 Sampled: 9/28/99

555 South Renton Village Place, Ste 700 Project Number: 783336 Received: 9/29/99

> Project Manager: Jerry Harris Reported: 10/6/99 15:57

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up North Creek Analytical - Bothell

	Batch	Date	Date	Surrogate	Reporting			
Analyte	Number	Prepared	Analyzed	Limits	Limit	Result	Units	Notes*
02-MW-1			B9096	<u>48-01</u>			<u>Water</u>	
Diesel Range Hydrocarbons	1090047	10/2/99	10/4/99		0.250	ND	mg/l	
Lube Oil Range Hydrocarbons	er	H	n		0.500	ND	#	
Surrogate: 2-FBP	se		"	50.0-150		52.8	%	
02-MW-2			B9096	<u>48-02</u>			<u>Water</u>	
Diesel Range Hydrocarbons	1090047	10/2/99	10/4/99		0.250	ND	mg/l	
Lube Oil Range Hydrocarbons	•	•	0		0.500	ND	**	
Surrogate: 2-FBP	п	п	n	50.0-150		51.8	%	
02-MW-3			<u>B9096</u>	<u>48-03</u>			Water	
Diesel Range Hydrocarbons	1090047	10/2/99	10/4/99		0.250	ND	mg/l	
Lube Oil Range Hydrocarbons	e	+1	H		0.500	ND	Ħ	
Surrogate: 2-FBP	"	ıı .	**	50.0-150	· · · · · · · · · · · · · · · · · · ·	57.9	%	
02-MW-4			B90964	<u>48-04</u>			Water	
Diesel Range Hydrocarbons	1090047	10/2/99	10/4/99		0.250	ND	mg/l	
Lube Oil Range Hydrocarbons	**	**			0.500	ND		
Surrogate: 2-FBP	n	N	- "	50.0-150	<u> </u>	53.9	%	_
02-MW-5			B90964	48-0 <u>5</u>			<u>Water</u>	
Diesel Range Hydrocarbons	1090047	10/2/99	10/4/99		0.250	ND	mg/l	
Lube Oil Range Hydrocarbons	**	ft	11		0.500	ND	н	
Surrogate: 2-FBP	н	"	"	50.0-150		33.2	%	2

North Creek Analytical - Bothell

Scattle 18939 129th Avenue VE. Suite 101. Bothell WA 98011-9505 425 420 9200. faz 425.420 9210

East 11115 Montgomery, Suite B. Spokane, WA 99206-4176 509.924 9206 fax 509.924 9290 Spokane

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541 383,9310 fax 541,382 7588

IT Corporation - Renton 555 South Renton Village Place, Ste 700

Project: Time Oil #2750

Sampled: 9/28/99 Received: 9/29/99

Renton, WA 98055

Project Number: 783336 Project Manager: Jerry Harris

Reported: 10/6/99 15:57

Total Metals by EPA 6000/7000 Series Methods North Creek Analytical - Bothell

	Batch	Date	Date	Specific	Reporting			
Analyte	Number	Prepared	Analyzed	Method	Limit	Result	Units	Notes*
02-MW-1			B9096	<u> 48-01</u>			<u>Water</u>	
Lead	1090064	10/3/99	10/4/99	EPA 6020	0.00100	0.0360	mg/l	
02-MW-2			B90964	<u>18-02</u>			<u>Water</u>	
Lead	1090064	10/3/99	10/4/99	EPA 6020	0.00100	0.133	mg/l	
02-MW-3			B90964	18-03			Water	
Lead	1090064	10/3/99	10/4/99	EPA 6020	0.00100	ND	mg/l	
02-MW-4			B90964	18-04			Water	
Lead	1090064	10/3/99	10/4/99	EPA 6020	0.00100	0.0359	mg/l	
02-MW-5			B90964	<u>18-05</u>			Water	
Lead	1090064	10/3/99	10/4/99	EPA 6020	0.00100	0.0863	mg/l	

North Creek Analytical - Bothell

Seattle: 18909-120th Avenue NE State 301 Francett WA 98011 9508

425 420 9200 fax 425 420 9210

Spokane East 11115 Montgomery Suite 8 Spokane WA 99206-4776 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue Suite F-1 Bend OR 97701-5711 541 383 9310 Jax 541 382 7588

IT Corporation - Renton

Project: Time Oil #2750

Sampled: 9/28/99

555 South Renton Village Place, Ste 700

Project Number: 783336

Received: 9/29/99

Renton, WA 98055

Project Manager: Jerry Harris

Reported: 10/6/99 15:57

Wolafile Retroleum Products and BJEFX (by NWIPPHEG vand EPA)8021B/Quality.Control

	Date	Spike	Sample	QC		Reporting Limit	Recov.	RPD	RPD
Analyte	Analyzed	Level	Result	Result	Units	Recov. Limits	%	Limit	% Notes*
Batch: 1090003	Date Prepa	red: 10/1/	99		Extrac	tion Method: EP.	A 5030R	(P/T)	
Blank	1090003-B		~		241.44			71.11	
Gasoline Range Hydrocarbons	10/1/99			ND	ug/l	50.0			
Benzene	II.			ND		0.500			
Toluene	**			ND	41	0.500			
Ethylbenzene	If .			ND	44	0.500			
Xylenes (total)	10			ND		1.00			
Surrogate: 4-BFB (FID)	,,	48.0		41.5		50.0-150	86.5		
Surrogate: 4-BFB (PID)	"	48.0		41.2	#1	50.0-150	85.8		
<u>Blank</u>	<u>1090003-B</u> 1	LK2							
Gasoline Range Hydrocarbons	10/2/99			ND	ug/l	50.0			
Benzene	11			ND	"	0.500			
Toluene	11			ND		0.500			
Ethylbenzene	**			ND	11	0.500			
Xylenes (total)	•1			ND	"	1.00	·		
Surrogate: 4-BFB (FID)	"	48.0		<i>43</i> .8	"	50.0-150	91.2		
Surrogate: 4-BFB (PID)	"	48.0		41.2	**	50.0-150	85.8		
LCS	1090003-BS	81							
Gasoline Range Hydrocarbons	10/1/99	500		456	ug/l	70.0-130	91.2		
Surrogate: 4-BFB (FID)	#1	48.0		45.9	4	50.0-150	95.6		
<u>Duplicate</u>	1090003-D1	UP1 B	909613-02						
Gasoline Range Hydrocarbons	10/2/99		158000	160000	ug/l			25.0	1.26
Surrogate: 4-BFB (FID)	n '	48.0		44.3	Ħ	50.0-150	92.3		·
<u>Duplicate</u>	1090003-D1	UP2 B	909613-04						
Gasoline Range Hydrocarbons	10/4/99		244000	242000	ug/l			25.0	0.823
Surrogate: 4-BFB (FID)	"	48.0		44.1	**	50.0-150	91.9		
Matrix Spike	1090003-M		909613-07						
Benzene	10/4/99	10.0	ND	8.84	ոճ\յ	70.0-130	88.4		
Foluene	**	10.0	ND	9.09		70.0-130	90.9		
Ethylbenzene	**	10.0	ND	9.22		70.0-130	92.2		
Xylenes (total)	H	30.0	ND	27.8	H	70.0-130	92.7		
Surrogate: 4-BFB (PID)	"	48.0	<u>-</u>	42.6	*	50.0-150	88.7		

North Creek Analytical - Bothell

Seattle 18939 120th Avenue NE Suite 101 Bother, WA 98/111-9508

425 420 9200 Iai 425 420 9210

Spokane East 11115 Montgomery Suite B. Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue Beaverton, OR 97008-7132 503.906.9200 fax 503 906 9210

Bend 20332 Empire Avenue, Suite F-1, Bend, DR 97701-5711 541,383 9310 (fax 541 382 7586)

IT Corporation - Renton

555 South Renton Village Place, Ste 700

Project: Time Oil #2750

Sampled: 9/28/99

Project Number: 783336

Received: 9/29/99

Renton, WA 98055

Project Manager: Jerry Harris

Reported: 10/6/99 15:57

Wolatile Petroleum Products and BTEX by NWTPH-Greand/EPA 8021B/Quality Control 3.28. North Creek Analytical - Bothell

**	Date	Spike	Sample	QC		Reporting Limit	Recov.	RPD	RPD	
Analyte	Analyzed	Level	Result	Result	Units	Recov. Limits	%	Limit	%	Notes*
Matrix Spike Dup	1090003-M	SD1 B	909613-07							
Benzene	10/4/99	10.0	ND	8.51	ug/l	70.0-130	85.1	15.0	3.80	
Toluene	н	10.0	ND	8.50	**	70.0-130	85.0	15.0	6.71	
Ethylbenzene	*1	10.0	ND	8.60	**	70.0-130	86.0	15.0	6.96	
Xylenes (total)	н	30.0	ND	25.8	**	70.0-130	86.0	15.0	7.50	
Surrogate: 4-BFB (PID)	rf	48.0		41.6	n	50.0-150	86.7			_

Seattle 18939 120th Avenue NE, Suite 101 Bothelt WA 98011-9508 425 420 9200 Tax 425 420 9210

Spokane East 11115 Montgomery, Suite B. Spokane, WA 99206-4776 509 924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503 906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541,383,9310 1ax 541 382 7588

IT Corporation - Renton

Project: Time Oil #2750

Sampled: 9/28/99

555 South Renton Village Place, Ste 700

Project Number: 783336

Received: 9/29/99

Renton, WA 98055

Project Manager: Jerry Harris

Reported: 10/6/99 15:57

Samivolatile Petroleum Productaby NAV 1121 e Drawith Aveta/Silice Ved Keltzneup/Quality/Control* (24) North Greek Amalytical (Bothell)

	Date	Spike	Sample	QC		Reporting Limit	Recov.	RPD	RPD	
Analyte	Analyzed	Level	Result	Result	Units	Recov. Limits	%	Limit	%	Notes*
Batch: 1090047	Date Prepa	red: 10/2/	<u>99</u>		Extra	ction Method: EP	A 3520C	/600 Seri	<u>es</u>	
<u>Blank</u>	1090047-B	<u>LKI</u>								
Diesel Range Hydrocarbons	10/4/99			ND	mg/l	0.250				
Lube Oil Range Hydrocarbons	•			ND	**	0.500				
Surrogate: 2-FBP	- #	0.320		0.202	"	50.0-150	63.1			
LCS	1090047-B	<u>S1</u>								
Diesel Range Hydrocarbons	10/4/99	2.00		1.15	mg/l	50.0-150	57.5			
Surrogate: 2-FBP	,,	0.320		0.169	"	50.0-150	52.8	_		
LCS Dup	1090047-B	SD1								
Diesel Range Hydrocarbons	10/4/99	2.00		0.996	mg/l	50.0-150	49.8	50.0	14.4	3
Surrogate: 2-FBP	,,	0.320		0.176	"	50.0-150	55.0			

Seattle 18939 120th Avenue NE, Sinte 101, Bottiett, WA 98011-9508

425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 tax 509.924.9290

Puriland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906 9200 1ax 503.906 9210 Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 1ax 541 382.7588

IT Corporation - Renton

Project: Time Oil #2750

Sampled: 9/28/99

555 South Renton Village Place, Ste 700

Project Number: 783336

Received: 9/29/99

Renton, WA 98055

Project Manager: Jerry Harris

10/6/99 15:57 Reported:

TOTELL COLUMN SELECTION OF COLUMN SELECTION OF

	Date	Spike	Sample	QC		Reporting Limit	Recov.	RPD	RPD	
Analyte	Analyzed	Level	Result	Result	Units	Recov. Limits	%	Limit	%	Notes*
Batch: 1090064	Date Prepa	red: 10/3/9	99		Extrac	tion Method: EP.	A 3020A			
<u>Blank</u>	1090064-BI	<u>.K1</u>								
Lead	10/4/99			ND	mg/l	0.00100				
<u>Blank</u>	1090064-BI	LK2								
Lead	10/4/99			ND	mg/l	0.00100				
LCS	1090064-BS	S1								
Lead	10/4/99	0.200		0.191	mg/l	80.0-120	95.5			
1.65	10000C4 DC	·a								
LCS	1090064-BS	_		0.000		20.0.100				
Lead	10/4/99	0.200		0.209	mg/l	80.0-120	105			
Matrix Spike	1090064-M	S1 B	909586-06							
Lead	10/4/99	0.200	ND	0.211	mg/l	75.0-125	105			
Matrix Spike	1090064-M	S2 B9	909648-03							
Lead	10/4/99	0.200	ND	0.213	mg/l	75.0-125	106			
Matrix Spike Dup	1090064-M	SD1 B9	909586-06							
Lead	10/4/99	0.200	ND	0.213	mg/l	75.0-125	106	20.0	0.948	
Matrix Calles Day	1000074 74	cna n	200/40 02							
Matrix Spike Dup	1090064-M		<u>909648-03</u>				405			
_ead	10/4/99	0.200	ND	0.209	mg/l	75.0-125	105	20.0	0.948	

North Creek Analytical - Bothell

Seattle 18939 120th Avenue NE, State 101 Bothell WA 98011-9508

425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B. Spokane, WA 99206-4776

509.924.9200 lax 509.924.9290

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383 9310 1ax 541.382.7588

IT Corporation - Renton 555 South Renton Village Place, Ste 700

Project: Time Oil #2750 Project Number: 783336

Sampled: 9/28/99 Received: 9/29/99

Renton, WA 98055 Project Manager: Jerry Harris

Reported: 10/6/99 15:57

Notes and Definitions

#	Note
1	The reporting limit for this analyte has been raised to account for interference from coeluting organic compounds present in the sample.
2	Surrogate recovery is below the established control limit, result may be biased low. There was no sample left to perform re-extraction and analysis for confirmation.
3	The spike recovery for this QC sample is outside of established control limits. Review of associated batch QC indicates the recovery for this analyte does not represent an out-of-control condition for the batch.
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
Recov.	Recovery
RPD	Relative Percent Difference

North Creek Analytical - Bothell

East 11115 Montgomery, Suite B. Spokane, WA 98206-4776 9405 S.W. Nimbus Avenue, Beaverton, OR 97008-7132 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 :unc } 39.12

(509) 924-9200 (503) 906-9200 (541) 383-9310 .6-II |c||, iic K

FAX 924-9290 FAX 906-9210 FAX 382-7588 (420 3200

TURNAROUND REQUEST in Business Days* Petroleum Hydrocarbon Analyses - Please Specify Organic & Inorganic Analyses ۳, S77. Work Order #: ST. RENTON VICEAGE PC. 98605-3296 CORREGATION Ste. 700 do REQUESTED ANALYSES CHAIN OF CUSTODY REPORT P.O. NUMBER: 783336 550 INVOICE TO: IT FAX: 420-228-9493 sre. 444 (PM- SERRY HARRIS 98406-3295 reeminan PROJECT NAME TIME OR SEGITLE Stocky ADDRESS: 666 6. RENTS RENTON , WA Ó REPORT TO: CARIS CLIENT: TOME

DATE:			RECEIVED BY:	DATE:			HELINQUISHED BY:
TIME: 1.35	FIRM: NCA	hy Authols	PRINT NAME: (UZ	TIME	FIRM: EMCON/IT	2055	YAN
DATE: 1/24/71		116/16/11	RECEIVED BY: (X/14/)	DATE: 9-29-95		A	<u> </u>
		1.1					\$.
							7
							4.
		_			-		2.
							0.
				_			
				_			
						•	
50+	7				9.	9-28.99/ 1656	do-mw.s
70 - / (1	W. 4					9.38.99/1116	40 - MN-4
6	ا ال					9-88-49/1215	60.mm-3
) \	W 4				6	9.08-99/ 1135	68-MM-8
710961B-01	J / P				dod and	1-08-99/1200	42-MN-1
COMMENTS	(W, S, O) CONT.			101	ক্ষ ক্ষ	DATE/TIME	IDENTIFICATION
NCA WO	MATRIX # OF			187 76	, , ' 5-1	SAMPLING	CLIENT SAMPLE
Turnoround Requests less than standard may incur Rush Charges.	*Turnaround Requests less than			137 VI -	1 9 8	2065	SAMPLED BY: RYAN ROSS
(Hands alma)	ОТИЕК					336	PROJECT NUMBER: 785336

G & Page 1 or 1

PRINT NAME:

GXTENDED

J-HOLL TIME

ある

CLEAN - UP

لا ن

SKICA

NUMITIONAL REMARKS: USE

THE RIVIAM

RINT NAME:

FIRM

Seattle 18939 120th Avenue NE Sinte 101 Borbell, WA 98011-9508

425 420.9200 fax 425 420 9210

Spokane Last 11115 Montgomery, Suite B. Spokane, WA 99206-4776 509.924.9200 lax 509.924 9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906 9200 fax 503.906 9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541 383.9310 Tax 541.382 7588

IT Corporation - Renton

555 South Renton Village Place, Ste 700

Renton, WA 98055

Project: Time Oil #2750

Project Number: 783336

Project Manager: Jerry Harris

Sampled: 9/28/99 Received: 9/29/99

Reported: 10/6/99 15:57

ANALYTICAL REPORT FOR SAMPLES:

Sample Description	Laboratory Sample Number	Sample Matrix	Date Sampled
02-MW-1	B909648-01	Water	9/28/99
02-MW-2	B909648-02	Water	9/28/99
02-MW-3	B909648-03	Water	9/28/99
02-MW-4	B909648-04	Water	9/28/99
02-MW-5	B909648-05	Water	9/28/99

RECEIVED OCT 8 1999

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

> North Creek Analytical, Inc. Environmental Laboratory Network

Seattle 18939-120th Avenue NE, Suite 101 Bothell, WA 98011-95/18

425,420,9200 fax 425 420 9210

Spokane East 11115 Montgomery, Suite B. Spokane, WA 99206-4776

509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541 383 9310 fax 541.382 7588

IT Corporation - Renton Project: Time Oil #2750 Sampled: 9/28/99
555 South Renton Village Place, Ste 700 Project Number: 783336 Received: 9/29/99
Renton, WA 98055 Project Manager: Jerry Harris Reported: 10/6/99 15:57

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B North Creek Analytical - Bothell

	Batch	Date	Date	Surrogate	Reporting			
Analyte	Number	Prepared	Analyzed	Limits	Limit	Result	Units	Notes*
<u>02-MW-1</u>			B9096	<u>48-01</u>			<u>Water</u>	
Gasoline Range Hydrocarbons	1090003	10/1/99	10/1/99		50.0	172	ug/l	
Benzene	et .	и	**		0.500	72.9	н	
Toluene	**		"		0.500	0.811		
Ethylbenzene	11		47		0.500	ND	"	
Xylenes (total)	**	н	н		1.00	ИD	Ħ	
Surrogate: 4-BFB (FID)	"	"	,,	50.0-150		91.7	%	
Surrogate: 4-BFB (PID)	"	"	*	50.0-150		83.8	н	
<u>02-MW-2</u>			B90964	<u> 18-02</u>			Water	
Gasoline Range Hydrocarbons	1090003	10/1/99	10/1/99		50.0	ND	ug/l	
Benzene	**		41		0.500	ND	μ	
Toluene	**	ft	п		0.500	ND	н	
Ethylbenzene	•	n	*		0.500	ND	**	
Xylenes (total)	0	Ħ	tr		1.00	ND	11	
Surrogate: 4-BFB (FID)		**	"	50.0-150		82.9	%	
Surrogate: 4-BFB (PID)	#	"	~	50.0-150		85.8	"	
02-MW-3			B90964	£8 <u>-03</u>			Water	
Gasoline Range Hydrocarbons	1090003	10/1/99	10/2/99		50.0	160	ug/l	
Benzene	*	••	н		0.500	56.7	"	
Toluene	in		**		0.500	1.13	**	
Ethylbenzene	11	н	•		0.500	ND	n	
Xylenes (total)	**	•	**		1.00	1.14	#	
Surrogate: 4-BFB (FID)	#	н	tt	50.0-150		91.2	%	-
Surrogate: 4-BFB (PID)	11	#	"	50.0-150		81.7	"	
02-MW-4			B90964	18-04			<u>Water</u>	
Gasoline Range Hydrocarbons	1090003	10/1/99	10/2/99		250	3700	ug/l	
Benzene	er	•	It		30.0	ND	"	I
Toluene	*	*	H		2.50	185	**	
Ethylbenzene	**	**	u		2.50	226	Ħ	
Xylenes (total)	n		н		5.00	473	#1	
Surrogate: 4-BFB (FID)		*	"	50.0-150		99.6	%	
Surrogate: 4-BFB (PID)	n	н	et	50.0-150		94.6	/0 H	
02-MW-5			B90964	IR05			<u>Water</u>	
Gasoline Range Hydrocarbons	1090003	10/1/99	10/2/99	IS VS	50.0	ND	ug/l	
Benzene	1090003	10/1/99	10/2/99		0.500	2.84	# ug∕ı	
P-UZCHE				.*	0.500	2.54		

North Creek Analytical - Bothell

*Refer to end of report for text of notes and definitions.

Joy B Chang, Project Manager

North Creek Analytical, Inc. Environmental Laboratory Network

Seattle 18939 120th Avenue NE, Suite 101 Bothelt VIA 98011-9501 425 420,9200 fax 425 420,9210

Bend 20332 Empire Avenue, Suite F-1, Bend OR 97701-5711 541,383 9310 Tax 541,382,7588

IT Corporation - Renton 555 South Renton Village Place, Ste 700

Project: Time Oil #2750

Sampled: 9/28/99

Project Number: 783336

Received: 9/29/99

Renton, WA 98055

Project Manager: Jerry Harris

Reported: 10/6/99 15:57

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B North Creek Analytical - Bothell

	Batch	Date	Date	Surrogate	Reporting			
Analyte	Number	Prepared	Analyzed	Limits	Limit	Result	Units	Notes*
02-MW-5 (continued)			B9096	18-05			<u>Water</u>	
Toluene	1090003	10/1/99	10/2/99		0.500	ND	ug/l	
Ethylbenzene	#	•	•		0.500	ND	u u	
Xylenes (total)	*	••	**		1.00	ND		
Surrogate: 4-BFB (FID)	-	**	"	50.0-150		100	%	
Surrogate: 4-BFB (PID)	u	a	H	50.0-150		90.8	,,	

North Creek Analytical - Bothell

Seattle 18939 120th Avenue NE, Suite 101, Bothell, WA 98011-9508

425,420 9200 fax 425 420 9210

Spokane East 11115 Montgomery, Suite B. Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton OR 97008-7132 503.906.9200 tax 503.906 9210 Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541 383.9310 fax 541 382 7588

IT Corporation - Renton

555 South Renton Village Place, Ste 700

Project: Time Oil #2750

Sampled: 9/28/99

Project Number: 783336

Received: 9/29/99

Renton, WA 98055

Project Manager: Jerry Harris

Reported: 10/6/99 15:57

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up North Creek Analytical - Bothell

	Batch	Date	Date	Surrogate	Reporting			
Analyte	Number	Prepared	Analyzed	Limits	Limit	Result	Units	Notes'
<u>02-MW-1</u>			B9096	<u>48-01</u>			Water	
Diesel Range Hydrocarbons	1090047	10/2/99	10/4/99		0.250	ND	mg/l	
Lube Oil Range Hydrocarbons	n	•	"		0.500	ND	**	
Surrogate: 2-FBP	"	tı .	"	50.0-150		52.8	%	
02-MW-2			B9096-	<u>48-02</u>			Water	
Diesel Range Hydrocarbons	1090047	10/2/99	10/4/99		0.250	ND	mg/l	
Lube Oil Range Hydrocarbons	н	н	**		0.500	ND	71	
Surrogate: 2-FBP	0,	11	"	50.0-150	_	51.8	%	_
<u>02-MW-3</u>			B90964	<u>48-03</u>			Water	
Diesel Range Hydrocarbons	1090047	10/2/99	10/4/99		0.250	ND	mg/l	
Lube Oil Range Hydrocarbons	*	H	н		0.500	ND	11	
Surrogate: 2-FBP	H	#	н	50.0-150		57.9	%	
02-MW-4			B90964	<u>48-04</u>			Water	
Diesel Range Hydrocarbons	1090047	10/2/99	10/4/99		0.250	ND	mg/l	
Lube Oil Range Hydrocarbons	71	•	•		0.500	ND	' н	
Surrogate: 2-FBP	n	"	"	50.0-150		53.9	%	
02-MW-5			B90964	48-0 <u>5</u>			Water	
Diesel Range Hydrocarbons	1090047	10/2/99	10/4/99		0.250	ND	mg/l	
Lube Oil Range Hydrocarbons	H	n	**		0.500	ND	н	
Surrogate: 2-FBP	"	"	,	50.0-150	-	33.2	%	2

North Creek Analytical - Bothell

Seattle 18939 120th Avenue NE Suite 101 Enthell WA 98011-9505

425 420 9200 tax 425 420 9210

Spokane East 11115 Montgomery, Suite B. Spokane, WA 99206-4776 509 924 9200 tax 509 924 9290

Portland 9405 SW Nimbus Avenue, Boaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, State F-1, Bend, OR 97701-5711

541 383 9310 Tax 541.382 7588

IT Corporation - Renton 555 South Renton Village Place, Ste 700

Project:

Time Oil #2750

Sampled: 9/28/99

Project Number: 783336

Received: 9/29/99

Renton, WA 98055

Project Manager: Jerry Harris

Reported: 10/6/99 15:57

Total Metals by EPA 6000/7000 Series Methods North Creek Analytical - Bothell

Analyte	Batch Number	Date Prepared	Date Analyzed	Specific Method	Reporting Limit	Result	Units	Notes*
02-MW-1 Lead	1090064	10/3/99	<u>B9096</u> 10/4/99	48-01 EPA 6020	0.00100	0.0360	<u>Water</u> mg/l	
<u>02-MW-2</u> Lead	1090064	10/3/99	B9096 4 10/4/99	48-02 EPA 6020	0.00100	0.133	<u>Water</u> mg/l	
02-MW-3 Lead	1090064	10/3/99	<u>B9096</u> 4 10/4/99	18-03 EPA 6020	0.00100	ND	<u>Water</u> mg/l	
<u>02-MW-4</u> Lead	1090064	10/3/99	B909 64 10/4/99	<u>18-04</u> EPA 6020	0.00100	0.0359	<u>Water</u> mg/l	
<u>02-MW-5</u> Lead	1090064	10/3/99	<u>B90964</u> 10/4/99	<u>18-05</u> EPA 6020	0.00100	0.0863	<u>Water</u> mg/l	

North Creek Analytical - Bothell

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue Suite F-1 Bend OR 97701-5711

541 383 9310 Tax 541 382 7588

IT Corporation - Renton

555 South Renton Village Place, Ste 700

Renton, WA 98055

Project: Time Oil #2750

Project Number: 783336

Project Manager: Jerry Harris

Sampled: 9/28/99 Received: 9/29/99

Reported: 10/6/99 15:57

Volatile Petroleum Products and BUEX by NWTPH-Grand-EPA 8021B/Quality. Control to 15.

	Date	Spike	Sample	QC		Reporting Limit	Recov.	RPD	RPD
Analyte	Analyzed	Level	Result	Result	Units	Recov. Limits	%	Limit	% Notes*
Batch: 1090003	Date Prepa	ead- 10/1:	/QQ		E	tion Mathed: ED	4 CA2AP	(D/CC)	
Blank	1090003-BI		22		Extrac	tion Method: EP.	a 2030B	(P/1)	
Gasoline Range Hydrocarbons	10/1/99	ΣIXI.		ND	ug/l	50.0			
Benzene	"			ND ND	" ug/i	0,500			
Toluene	**			ND	#	0.500			
Ethylbenzene	10			ND	н	0.500			
Xylenes (total)	**			ND		1.00			
Surrogate: 4-BFB (FID)		48.0		41.5		50.0-150	86.5		
Surrogate: 4-BFB (PID)	"	48.0		41.2	"	50.0-150	85.8		
Blank	1090003-B1	.K2							
Gasoline Range Hydrocarbons	10/2/99			ND	ug/l	50.0			
Benzene	•			ND	*1	0.500			
Toluene	**			ND	•	0.500			
Ethylbenzene	н			ND	•	0.500			
Xylenes (total)	14			ND	н	1.00	•		
Surrogate: 4-BFB (FID)	"	48.0		43.8	"	50.0-150	91.2		
Surrogate: 4-BFB (PID)	"	48.0		41.2	,,	50.0-150	85.8		
LCS	1090003-BS	:1							
Gasoline Range Hydrocarbons	10/1/99	500		456	ug/l	70.0-130	91.2		
Surrogate: 4-BFB (FID)	и	48.0		45.9	" -	50.0-150	95.6	-	
Duplicate	1090003-DU	JP1 B	909613-02						
Gasoline Range Hydrocarbons	10/2/99		158000	160000	սջ/l			25.0	1.26
Surrogate: 4-BFB (FID)	er	48.0		44.3	n	50.0-150	92.3		
<u>Duplicate</u>	1090003-DL	IP2 R	909613-04						
Gasoline Range Hydrocarbons	10/4/99	C.C. F	244000	242000	ug/l			25.0	0.823
Surrogate: 4-BFB (FID)	"	48.0		44.1	"	50.0-150	91.9		
Matrix Spike	1090003-MS	S1 B	909613-07						
Benzene	10/4/99	10.0	ND	8.84	ug/l	70.0-130	88.4		
Foluene	11	10.0	ND	9.09	4 ·	70.0-130	90.9		
Ethylbenzene	н	10.0	ND	9.22	н	70.0-130	92.2		
Xylenes (total)	н	30.0	ND	27.8	н	70.0-130	92.7		
Surrogate: 4-BFB (PID)	"	48.0		42.6	"	50.0-150	88.7		
-0		70.0		72.0		30.0-130	00.7		

North Creek Analytical - Bothell

Seattle 18939 120th Avenue NE, Suite 101 Bothell, WA 98011-9503

425,420,9200 fax 425,420,9210

Spokane East 11115 Montgomery Suite B. Spokane, WA 99206-4776

509.924.9200 1ax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503,906,9200 fax 503,906,9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541,383 9310 fax 541,382 7588

IT Corporation - Renton

Project: Time Oil #2750

Sampled: 9/28/99

555 South Renton Village Place, Ste 700

Project Number: 783336

Received: 9/29/99

Renton, WA 98055

Project Manager: Jerry Harris

Reported: 10/6/99 15:57

VolatilePetroleum@roducts and BREX(by NWTRH=Grand)®PA8020B(Quality Control North Greek Analytical Enothell

	Date	Spike	Sample	QC		Reporting Limit	Recov.	RPD	RPD
Analyte	Analyzed	Level	Result	Result	Units	Recov. Limits	%	Limit	% Notes*
Matrix Spike Dup	1090003-M	SD1 B	909613-07						
Benzene	10/4/99	10.0	ND	8.51	ug/i	70.0-130	85.1	15.0	3.80
Toluene	h	10.0	ND	8.50		70.0-130	85.0	15.0	6.71
Ethylbenzene	H	10.0	ND	8.60	**	70.0-130	86.0	15.0	6.96
Xylenes (total)	"	30.0	ND	25.8	**	70.0-130	86.0	15.0	7.50
Surrogate: 4-BFB (PID)	"	48.0	-	41.6	**	50.0-150	86.7		

Joy B Chang Project Manager

Seattle 18939-120th Avonne NE, Suite 101, Bothell, WA 98011-9508

425 420 9200 tax 425 420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541 383.9310 fax 541.382.7588

IT Corporation - Renton

555 South Renton Village Place, Ste 700

Renton, WA 98055

Project: Time Oil #2750

Project Number: 783336

Project Manager: Jerry Harris

Sampled: 9/28/99

Received: 9/29/99

Reported: 10/6/99 15:57

Semivolatile? Petroleum? roducts by NAVIPHED xavith Acid/Silico (Selveneup/Quelity Controles ::::::: North Greek Analytical ≈ Bothell

	Date	Spike	Sample	QC		Reporting Limit	Recov.	RPD	RPD	
Analyte	Analyzed	Level	Result	Result	Units	Recov. Limits	%	Limit	%	Notes*
Batch: 1090047	Date Prepa	red: 10/2/9	99		Extrac	tion Method: EP	A 3520C	/600 Seri	<u>es</u>	
<u>Blank</u>	1090047-B	LK1								
Diesel Range Hydrocarbons	10/4/99			ND	mg/l	0.250				
Lube Oil Range Hydrocarbons	41			ND	11	0.500				
Surrogate: 2-FBP	п	0.320		0.202	r r	50.0-150	63.1			
LCS	1090047-B	<u>S1</u>								
Diesel Range Hydrocarbons	10/4/99	2.00		1.15	mg/i	50.0-150	57.5			
Surrogate: 2-FBP	n	0.320		0.169	**	50.0-150	52.8	-		-
LCS Dup	1090047-B	SD1								
Diesel Range Hydrocarbons	10/4/99	2.00		0.996	mg/l	50.0-150	49.8	50.0	14.4	3
Surrogate: 2-FBP	н	0.320	-	0.176	"	50.0-150	55.0			

Seattle 18939 120th Avenue NE, Sinte 101, Bothell, WA 98011-9508

425.420 9200 lax 425.420 9210

East 11115 Montgomery, Suite B, Spokane, WA 9920G-4776 Spokane

509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503,906 9200 fax 503.906 9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541 383,9310 tax 541,382 7588

IT Corporation - Renton

Project: Time Oil #2750

Sampled: 9/28/99

555 South Renton Village Place, Ste 700

Project Number: 783336

Received: 9/29/99

Renton, WA 98055

Project Manager: Jerry Harris

Reported: 10/6/99 15:57

Total Memb by 94A 6000/7000 Series Methods/Quality Control ... North Greek Analytical Abothell

	Date	Spike	Sample	QC		Reporting Limit	Recov.	RPD	RPD	
Analyte	Analyzed	Level	Result	Result	Units	Recov. Limits	%	Limit	%	Notes*
Batch: 1090064	Date Prepa	red: 10/3/9	99		Extra	ction Method: EP	A 3020A			
<u>Blank</u>	<u> 1090064-BI</u>	K1								
Lead	10/4/99			ND	mg/l	0.00100				
Blank	1090064-BI	<u>.K2</u>								
Lead	10/4/99			ND	mg/l	0.00100				
LCS	1090064-BS	:1								
Lead	10/4/99	0.200		0.191	mg/l	80.0-120	95.5			
1.00	1000054 WG									
LCS	1090064-BS	_								
Lead	10/4/99	0.200		0.209	mg/l	80.0-120	105			
Matrix Spike	1090064-M	S1 B9	<u>909586-06</u>							
Lead	10/4/99	0.200	ND	0.211	mg/l	75.0-125	105			
Matrix Spike	1090064-M	S2 B9	09648-03							
Lead	10/4/99	0.200	ND	0.213	mg/l	75.0-125	106			
Matrix Spike Dup	1090064-M	SD1 RG	09586-06							
Lead	10/4/99	0.200	ND	0.213	mg/I	75.0-125	106	20.0	0.948	
					J					
Matrix Spike Dup	1090064-M		<u>009648-03</u>							
Lead	10/4/99	0.200	ND	0.209	mg/l	75.0-125	105	20.0	0.948	

North Creek Analytical - Bothell

555 South Renton Village Place, Ste 700

Seattle 18939 120th Avenue NE, Suite 104, Bottleff, WA 98011-9508 425.420.9200 fax 425 420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

509.924.9200 fax 509.924 9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382 7588

IT Corporation - Renton

Project: Time Oil #2750

Sampled: 9/28/99 Received: 9/29/99

Renton, WA 98055

Project Number: 783336

Project Manager: Jerry Harris

Reported: 10/6/99 15:57

Notes and Definitions

6	
#	Note
1	The reporting limit for this analyte has been raised to account for interference from coeluting organic compounds present in the sample.
2	Surrogate recovery is below the established control limit, result may be biased low. There was no sample left to perform re-extraction and analysis for confirmation.
3	The spike recovery for this QC sample is outside of established control limits. Review of associated batch QC indicates the recovery for this analyte does not represent an out-of-control condition for the batch.
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
Recov.	Recovery
RPD	Relative Percent Difference

Jorth Creek Analytical - Bothell

FAX 924-9290 FAX 906-9210 FAX 382-7588 X 42! -9200 (509) 924-9200 (541) 383-9310 (503) 906-9200 9405 S.W. Nimbus Avenue, Beaverton, OR 97008-7132 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 East 11115 Montgomery, Suite B. Spokane, WA 98206-4776 5-110 Work Order #: tici; Tuife I **enuc** 939.1 CHAIN OF CUSTODY REPORT

		1				27727
CLIENT: TIME OIC			INVOICE TO: IT	" CORPORATION	TURNAROUND REQ	TURNAROUND REQUEST in Business Days*
REPORT TO: CHAIS STOK	STOREY (FM. JERRY	HARRIS)		6 S. RENTON VICLAGE PC.	_	Organic & Inorganic Analyses
AUDRESS. 666 6. RENTON VICERGE P.	no diege R.	sre. 400	- STR	SEE. THE JO 9805-3295	7 5 4	3 2 1
in a constant in the control of the	21-70-00-00-10-10-10-10-10-10-10-10-10-10-10	7		0000	ے کے سم	S A
Sport Store of the Sport of the	Į,	FAX: 42/6-22/8-9445	P.O. NUMIBER: 7	143536		<u> </u>
TRADIC INVALE: FAR ON SECTOR	EARTLE IEEMINAL		REQUEST	REQUESTED ANALYSES	STD.	Please Specify
PROJECT NUMBER: 783336	. h	عد			OTHER	
SAMPLED BY: RYAN ROSS	5	198	437 - (T -		Turnamund Requests less than	Turnamund Requests less than standard may incur Rush Charges.
CLIENT SAMPLE	SAMPLING	190	ਜਨ। 76		MATRIX # OF	NCA WO
IDENTIFICATION	DATE/TIME	क्र	ુ હો		(W, S, O) CONT.	COMMENTS
42-MN-1	1-08-99/1200	(新) (新)			2 2	0
68-MN-8	9.88-99/ 1135				2	7
68.mm-3	9-88-99/1215				2	6,
B - MN-4	9.38.94/1115				3	70 1
DR-MW-S 9.0					2	20+
	•					
0.						
2.		-			7	
,						
ELINQUISHED BY:			DATE: 9-29-95	RECEIVED BY: (X/ly///////.b.)		DATE: 4/24/71
RINT NAME: EYAN 2055		FIRM: EMCON/IT	TIME	PRINT NAME: (11/11/11/1/1/1/	FIRM: MA	TIME: 7.35
FLINQUISHED BY:			DATE:	RECEIVED BY:		DATE:
	FIRM		TIME:	PRINT NAME:	FIRM:	TIME:
DITTIONAL REMARKS: USE	SICICA GEL CLES	CLEAN-UP FOR	OFUL GXTENDED	1060		

IR RUV WA

ENVIRONMENTAL SITE ASSESSMENT: PHASE I

at

2750 West Commodore Way Seattle, Washington

Prepared for

Time Oil Company

August 25, 2000

Prepared by

FOSTER WHEELER FOSTER WHEELER ENVIRONMENTAL CORPORATION

12100 NE 195th, Suite 200 Bothell, WA 98011

CONTENTS

1.	INTRODUC	CTION	1
	1.1 PURP	OSE	1
	1.2 LIMIT	ING CONDITIONS AND METHODOLOGY USED	1
2.	PROPERTY	LOCATION AND DESCRIPTION	3
	2.1 PROP	ERTY LOCATION AND LEGAL DESCRIPTION	3
	2.2 PROP	ERTY DESCRIPTION	3
	2.3 ADJO	INING PROPERTIES	5
	2.4 PROP	ERTY OPERATIONS	5
		ERTY HISTORY	5
3.	RESULTS (OF INVESTIGATION AND RECORDS REVIEW	11
	3.1 PROP	ERTY INSPECTION OBSERVATIONS	11
	3.2 RECO	RDS REVIEW	11
	3.2.1	EPA National Priorities List (NPL)	12
		EPA Comprehensive Environmental Response, Compensation,	
		and Liability Information System (CERCLIS)	12
	3.2.3	EPA Resource Conservation and Recovery Act (RCRA)	
		Corrective Action Reports (CORRACTS)	12
	3.2.4	EPA RCRA non-CORRACTS Treatment, Storage, and Disposal	
		Facilities Facilities	12
	3.2.5	EPA RCRA Generators List	13
		Federal Emergency Response Notification System (ERNS) List	13
		State Hazardous Waste List	13
		EPA Leaking Underground Storage Tank (LUST) Sites	14
		EPA Underground Storage Tank (UST) Sites	15
		Solid Waste/Landfill Facilities	15
4.	CONCLUSI	ONS AND RECOMMENDATIONS	15
		ATIONS	16
5.	REFERENC	CES	17
AP	PENDIX A	PROPERTY PHOTOGRAPHS	
AP	PENDIX B	HISTORICAL PHOTOGRAPHS	

FIGURES

2

9

Figure 1. Property Location

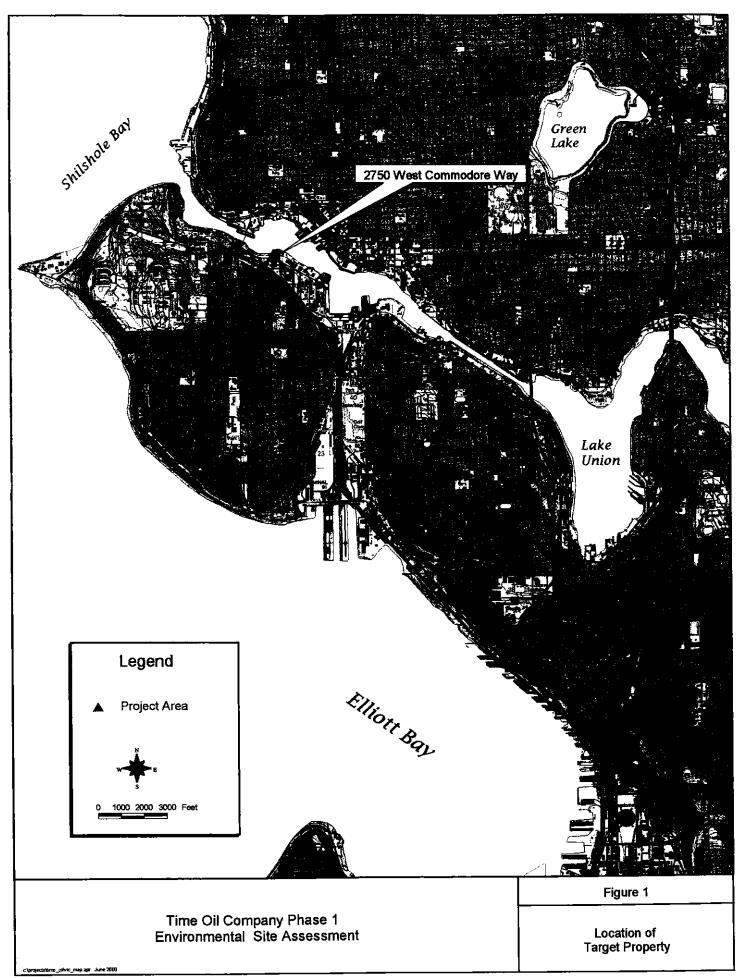
Cleanup Levels

Figure 2.	Layout of Property	4
Figure 3.	1991 Sampling Locations	7
Figure 4.	1992 Sampling Locations	8
Figure 5.	1999 Sampling Locations	10
	TABLES	
Table 1.	Results from 1999 Groundwater and Boring Water	r Samples Exceeding

1. INTRODUCTION

Foster Wheeler Environmental Corporation (Foster Wheeler Environmental) has been retained by the Time Oil Company (TOC) to conduct Phase I Environmental Site Assessments (ESAs) at seven properties located on West Commodore Way. The properties are all owned by TOC and are located within a ¼-mile radius.

This report presents the results of the Phase I ESA of the property located at 2750 West Commodore Way, Seattle, Washington (the Property), shown on Figure 1. This report was prepared by Foster Wheeler Environmental for the sole use of TOC and with the express limitations detailed in Section 1.2. The format of this report is generally consistent with the recommended format in "Standard Practice for Environmental Site Assessment: Phase I," issued by the American Society for Testing Materials (ASTM) Standard E 1527-97.


1.1 PURPOSE

Pursuant to the scope of work, the purpose of this ESA was to identify recognized environmental conditions in connection with the property. As defined in the Standard E 1527-97, "recognized environmental conditions" means the presence or likely presence of any hazardous substances or petroleum products on a property under conditions that indicate an existing release, a past release, or a material threat of a release of any hazardous substances or petroleum products into structures on the property or into the ground, groundwater, or surface water of the property.

1.2 LIMITING CONDITIONS AND METHODOLOGY USED

The ESA was performed by Bryan S. Graham, RG, of Foster Wheeler Environmental. The scope of services for this project was limited to the following tasks:

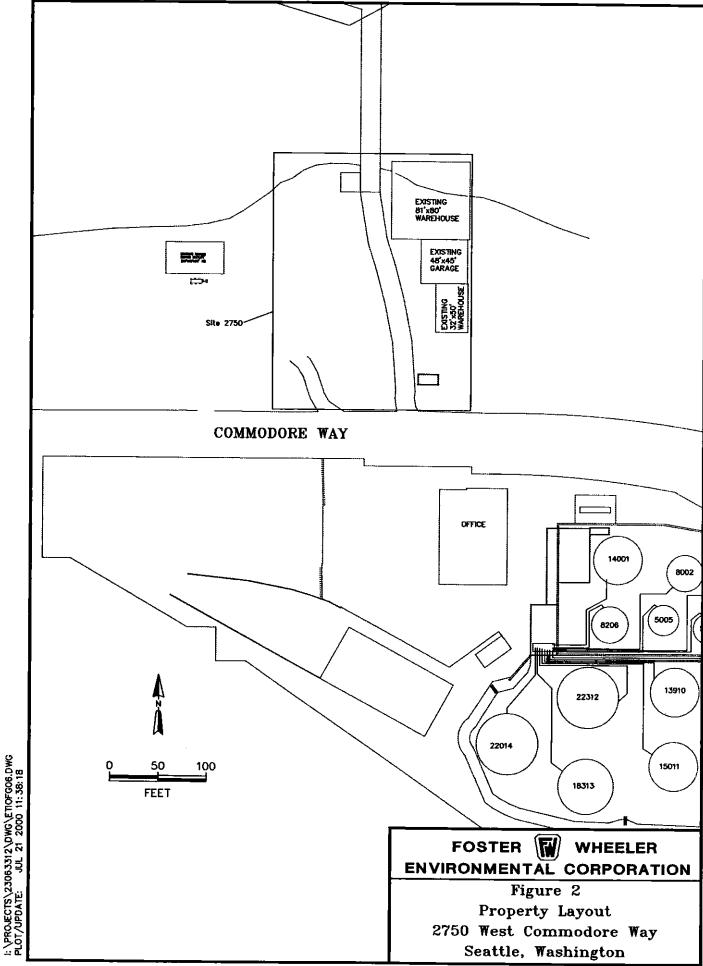
- Task 1–Property Reconnaissance
- Task 2-Interview of Land Owner(s), current lessees, and Tenants
- Task 3–Regulatory Agency Database Search
- Task 4—Data Analysis and Report Preparation.

2750 West Commodore Way

Historical photographs were purchased from Walker & Associates. Available records and files were reviewed from:

- Seattle Department of Design, Construction, and Land Use
- Washington State Department of Ecology (Ecology)
- King County Tax Assessors Office
- Puget Sound Regional Archives

The above tasks were accomplished in accordance with ASTM Standard E 1527-97. The ESA did not include wetlands evaluation; testing for or surveying of asbestos and radon, lead in tap water, or lead paint; or soil or groundwater sampling.


2. PROPERTY LOCATION AND DESCRIPTION

2.1 PROPERTY LOCATION AND LEGAL DESCRIPTION

TOC owns the Property located at 2750 West Commodore Way, Seattle, Washington. The Property is currently leased to George Broom's Sons, Inc. The Property is within section 11, township 25 north, range 3 east, Lawton Park, tax lots 5 through 9 and the eastern portion of tax lot 50.

2.2 PROPERTY DESCRIPTION

Figure 2 shows the layout of the Property. The Property is bounded on the south by West Commodore Way and to the north by the Lake Union Ship Canal. The Property includes a terminal dock area owned and operated by TOC. The Property slopes gently upward toward the south to West Commodore Way. Three structures are located on the Property. The main structure is a wood building (identified as "George Broom's Sons, Inc. Warehouse" on Figure 3) constructed between 1936 and 1946. The warehouse is used to construct marine supplies including tarps, lines, and spool cable. A dock, originally constructed in the late 1930s (Seattle Department of Design, Construction, and Land Use records), extends northward approximately 100 feet from the shoreline into the ship canal and angles westward approximately 150 feet. Immediately south of the Broom's Sons Warehouse is a covered area (identified as a "Garage" on Figure 2) used to store materials. The covered area connects the Broom's Sons Warehouse and a third structure, the TOC warehouse. Fuel lines which connect the dock facility with TOC above ground storage tank farm located south of West Commodore Way are exposed for a short distance as they extend from the

2750 West Commodore Way

dock area. The fuel lines then run at an angle from the west side of the dock, under a wooden driveway, and are exposed on the surface until they pass under West Commodore Way. The western portion of the Property is a gravel parking lot and driveway that leads to West Commodore Way.

According to TOC personnel, a heating oil underground storage tank (UST) may be located near the southwest corner of the TOC warehouse. According to interviews with TOC personnel, the UST is no longer in service. Appendix A contains several photographs taken at the Property.

2.3 ADJOINING PROPERTIES

The area surrounding the Property generally consists of light industrial business, condominiums, and the ship canal. The Property is bounded on the west by the former Icicle Seafoods building (now used by ASKO); to the south by West Commodore Way; to the east by a U.S. Coast Guard facility; and to the north by the ship canal.

2.4 PROPERTY OPERATIONS

George Broom's Sons, Inc. makes canvas tarps and slings, and wire spools for commercial sailing vessels. According to an interview conducted with Mr. George Broom, he does not use any hazardous chemicals on the Property, nor is he familiar with any such products stored in any of the buildings on the Property.

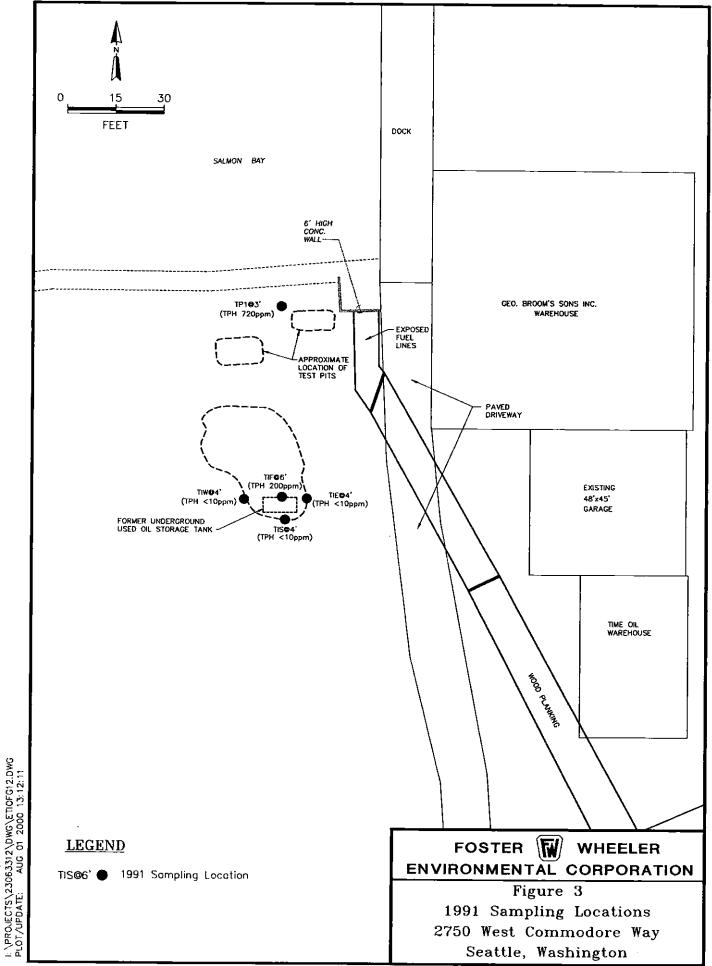
2.5 PROPERTY HISTORY

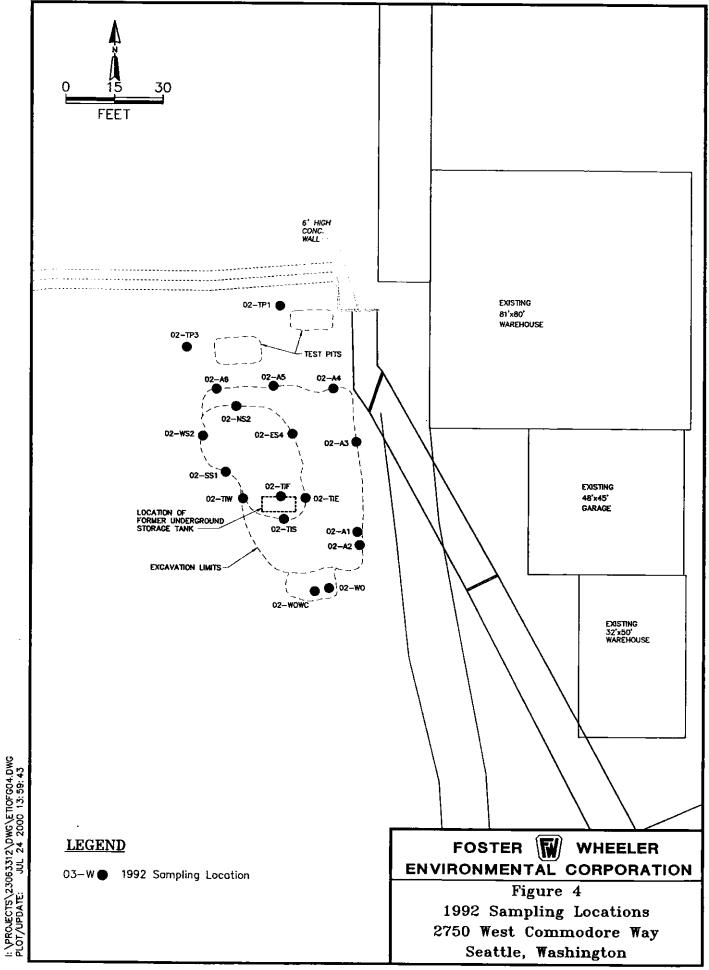
Information about the history of the Property was derived from a review of available documents, historical photographs, and regulatory records. Former and current employees of TOC were also interviewed

The Property was acquired by the Time Oil Company in early 1941. Historical photographs (Appendix B) demonstrate a number of changes have taken place at the Property since 1936. Prior to 1936 the Property was the location of a saw mill and kiln. The Rattan Furniture factory was located on the adjacent property to the east. By 1946 the Property had been acquired by TOC and several changes were made including:

- The saw mill and kiln were removed.
- A portion of the Rattan Furniture factory building (81 feet by 80 feet) was moved to the Property (presently occupied by George Broom's Sons). This information was

confirmed in the permit files at the King County Department of Design, Construction, and Land Use.


- A vehicle maintenance building was constructed (now a warehouse used by TOC).
- A barrel incline from the TOC facility across the street was added, extending to the end of the dock.
- A series of pipelines connecting the dock to the fuel storage tanks across West Commodore Way was constructed.


By 1960, the barrel incline had been removed and the area between the vehicle maintenance building and the new warehouse was covered. Interviews conducted with TOC personnel confirmed that the barrel incline ran under West Commodore Way and along the western edge of the Property. The photographs from 1974 and 1997 show no discernable change at the Property.

In 1991, a 300-gallon waste oil UST was removed from the Property (TOC, 1991). The installation date of the UST is not known. However, according to TOC interviewees, the UST was used to collect used oil during servicing of Time Oil vehicles. The UST was rusted, pitted, and showed evidence of corrosion. The depth to groundwater within the UST excavation varied from 2 feet to 6 feet below ground surface (bgs).

Hydrocarbon contamination was observed on the walls of the excavation and on the groundwater surface at the time of removal. A test pit was dug between the excavation and the shoreline to assess the lateral extent of contamination. The analytical results from the test pit showed concentrations of diesel and petroleum hydrocarbons at 310 ppm and 410 ppm, respectively. Figure 3 shows the locations of UST excavation and the test pit.

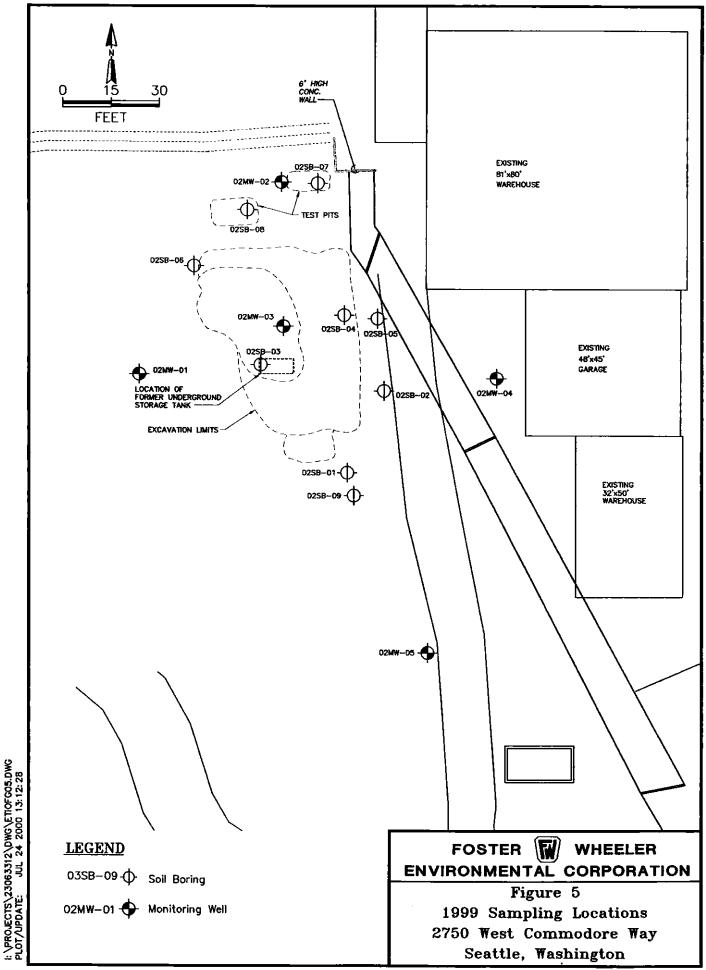
In 1992, a report was submitted to Ecology documenting additional excavation activities associated with the 1991 removal of a 300-gallon waste oil tank (TOC, 1992). As stated above, when the oil tank was originally removed, contaminated soil was observed in the excavation. Soils on the northern and eastern edges of the excavation contained concentrations of petroleum above the Model Toxics Control Act (MTCA) Cleanup Levels. Approximately 150 cubic yards of soil were removed before excavation activities were terminated. In 1992, additional soil excavation activities were implemented in the area of the former UST. The 1992 report concluded that soil containing elevated concentrations of petroleum hydrocarbon remain at the Property and that the groundwater may be impacted. Future assessment was planned at the former UST location. Figure 4 shows the 1992 sampling locations.

2750 West Commodore Way

In 1999, additional site assessment activities were conducted at the former UST location including soil borings and groundwater monitoring well installation (IT, 2000). The locations of the 1999 soil borings and groundwater monitoring wells are shown in Figure 5. Soil boring logs included in the IT report indicate that soil in the area of the former UST from the surface to 15 feet bgs is composed of sand and silt layers with varying amounts of clay and gravel. Gravel is present to approximately 10 to 15 feet bgs. Very dense dry clay underlies the sand/silt unit and acts as an aquitard. Two soil samples (02SB-01 at a depth of 3.5 feet bgs and 02SB-01 at 6 feet bgs) contained diesel and heavy oil at concentrations above the MTCA Method A Cleanup Level. A third sample (02SB-08 at 3.5 feet bgs) contained heavy oil above the MTCA Method A Cleanup Level. One sample (02SB-08) down-gradient of the waste oil tank was analyzed for metals, pesticides, PCBs, and volatile organic compounds. No analytes were detected above the method reporting limit or their respective MTCA Method A or Method B guidelines. Groundwater was detected in eight of the nine borings at depths ranging from 6 to 18 feet bgs. Groundwater samples collected from Wells 02MW-01, 02MW-03, and 02MW-04 contained petroleum constituents above the MTCA Method A Cleanup Levels.

Table 1 contains the analytical results of the 1999 groundwater samples and boring water samples that exceeded the cleanup levels. The IT report concluded that the groundwater beneath the Property had been impacted by gasoline (including BTEX). The lateral extent of elevated concentrations of petroleum hydrocarbons has not been defined in the western and eastern directions. The groundwater monitoring well nearest the shoreline (02MW-02) did not contain concentrations of petroleum constituents above the MTCA Method A Cleanup Level.

Table 1. Results from 1999 Groundwater and Boring Water Samples Exceeding Cleanup Levels


	Date	Gasoline (mg/L)	Diesel (mg/L)	Oil (mg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethyl benzene (µg/L)	Total Xylene (µg/L)	Total Lead (µg/L)
MTCA ¹		1.0	1.0	1.0	5.0	40.0	30.0	20.0	5.0
02MW-01	9/28/99	0.172	ND (0.25)	ND (0.5)	72.9	0.811	ND (0.5)	ND (1.0)	36
02MW-02	9/28/99	ND (0.05)	ND (0.25)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (1.0)	133
02MW-03	9/28/99	0.16	ND (0.25)	ND (0.5)	56.7	1.13	ND (0.5)	1.14	ND (1.0)
02MW-04	9/28/99	3.7	ND (0.25)	ND (0.5)	ND (30.0)	185	226	473	35.9
02MW-05	9/28/99	ND (0.05)	ND (0.25)	ND (0.5)	2.84	ND (0.5)	ND (0.5)	ND (1.0)	86.3
02SB-02	6/7/99	8.26	3.12	ND (0.5)	214	155	459	1110	
02SB-03	6/7/99	ND (0.05)	1.07	ND (0.5)	6.64	1.36	0.617	1.93	
02SB-04	6/7/99	0.0556	0.867	0.503	59.8	2.28	1.62	8.18	
02SB-05	6/7/99	0.685	0.865	ND (0.5)	19.9	4.18	19.9	20.2	
02SB-07	6/7/99	ND (0.05)	1.07	0.626	ND (0.5)	ND (0.5)	ND (0.5)	ND (1.0)	
02SB-09	6/11/99	1.36	0.617	ND (0.5)	639	1.89	1.31	9.66	**

MTCA Cleanup Levels in 1999

Results exceeding cleanup levels are bolded

ND – not detected above method reporting limit (reporting limit in parentheses)

-- no analysis conducted

2750 West Commodore Way

In May 2000, TOC submitted a letter (TOC, 2000) to Mr. Joe Hickey of Ecology's UST division summarizing previous field activities. In the letter, TOC also indicated that future assessment of the extent of contamination beneath the Property would be conducted.

3. RESULTS OF INVESTIGATION AND RECORDS REVIEW

3.1 PROPERTY INSPECTION OBSERVATIONS

On June 6, 2000, Foster Wheeler Environmental conducted a reconnaissance of the Property. The purpose of the visit was to obtain information relating to recognized environmental conditions, if any, associated with the Property.

In general, the facility was well kept. The inside of the buildings were clean, and no chemicals or potential contaminants of concern were observed. As noted above, Mr. George Broom stated that there are no chemicals and/or solvents used in the building he leases from TOC. The area surrounding the buildings was clear of debris and also well kept. Wire, spools, and hose are stored under the George Broom's Sons warehouse on the ground surface.

3.2 RECORDS REVIEW

Because all of the properties for which Phase I ESAs were conducted are within close proximity to one another, one central point (the TOC property at 2737 West Commodore Way) was used for the database search. The Phase I database search was performed by EDR, Inc. EDR searched readily available state, federal, regional, and local agency database listings. The results of the database search are presented in the following subsections. The entire EDR report is presented in the ESA for 2737 West Commodore Way (Foster Wheeler Environmental, 2000). As specified in ASTM Standard E 1527-97, the following government records were reviewed:

- EPA National Priorities List (NPL) within 1.0 mile
- EPA Comprehensive Environmental Response, Compensation, and Liability Information System (CERCLIS) within ½ mile
- EPA Resource Conservation and Recovery Act (RCRA) Corrective Action Reports (CORRACTS) within 1.0 mile
- EPA RCRA non-CORRACTS Treatment, Storage, and Dispoal Facilities within ½ mile
- EPA RCRA generators list on the Property and adjoining properties

2750 West Commodore Way

- Federal Emergency Response Notification System (ERNS) list on the Property
- State Hazardous Waste Site List within 1.0 mile
- Leaking Underground Storage Tanks (LUST) list within ½ mile
- State Registered UST list on the Property and adjoining properties
- Solid Waste/Landfills within ½ mile.

3.2.1 EPA National Priorities List (NPL)

The NPL identifies federal Superfund Sites with the highest priority for cleanup. ASTM Standards require the identification of NPL sites within 1 mile of the subject property. There were no NPL sites identified within a 1-mile radius of the Property.

3.2.2 EPA Comprehensive Environmental Response, Compensation, and Liability Information System (CERCLIS)

The CERCLIS list identifies sites that the EPA has investigated or is in the process of investigating for potential hazardous substance contamination. A CERCLIS site may or may not become an NPL site. ASTM Standards require the identification of CERCLIS sites within ½ mile of the subject property. The EDR report did not identify any CERCLIS sites within a ½ mile radius of the Property.

3.2.3 EPA Resource Conservation and Recovery Act (RCRA) Corrective Action Reports (CORRACTS)

RCRA tracks the status and filing of any corrective actions that have taken place at a facility. The ASTM Standards require the identification of RCRA CORRACTS facilities within 1 mile of the subject property. The EDR report did not identify any such facilities within a 1-mile radius of the Property.

3.2.4 EPA RCRA non-CORRACTS Treatment, Storage, and Disposal Facilities

RCRA non-CORRACTS Treatment, Storage, and Disposal (TSD) Facilities are those facilities on which treatment, storage, and/or disposal of hazardous wastes takes place and at which corrective remedial action has not been required by EPA, as defined and regulated by RCRA. The ASTM Standards require the identification of RCRA non-CORRACTS TSD Facilities within ½ mile of the subject property. This information is listed in the EDR report under the heading of Resource Conservation and Recovery Information System (RCRIS)

TSD Facilities, which are substantively the same. The EDR report did not identify any such facilities within ½ mile of the Property.

3.2.5 EPA RCRA Generators List

The ASTM Standards require the identification of RCRA generators on or adjacent to the subject property. RCRIS includes information on facilities that generate, transport, store, treat and/or dispose of hazardous wastes as defined and regulated by RCRA, and as listed in the EDR report. The EDR report showed 11 RCRIS small quantity generators (SQGs) within ½ mile of the site. The SQGs include:

Aickinstrut Incorporated	2901 West Commodore Way
 ASKO Hydraulic Repair 	2805 West Commodore Way
 Icicle Seafoods, Inc. (no longer in operation) 	2752 West Commodore Way (also listed as 2770 West Commodore Way)
 Northwest Awning Fabric, Inc. 	2600 West Commodore Way
 Tosco Corp. Seattle Terminal 	2740 West Commodore Way
 Seattle Port Maritime Industries 	2700 West Commodore Way
 U.S. DOT CG Support Center 	2700 West Commodore Way
 Sea Coast Towing, Inc. 	2700 West Commodore Way
 Rapp Hydema U.S., Inc. 	4433 27th Avenue West
 Abella Woodworking, Inc. 	2600 West Commodore Way
 Gilman Pl Waste Pain 	4439 Gilman PL W

3.2.6 Federal Emergency Response Notification System (ERNS) List

The ERNS list records and stores information on reported releases of oil and hazardous substances. The ASTM Standards require the identification of ERNS on the subject property. The EDR report did not identify the Property as appearing on the ERNS List.

3.2.7 State Hazardous Waste List

The State of Washington lists potential or confirmed hazardous substance release properties on Ecology's Confirmed and Suspected Contaminated Sites List (CSCSL) Database. The ASTM Standard requires the identification of these sites within 1 mile of the subject property. There were 20 sites on the CSCSL identified within 1 mile of the Property. The sites listed on the EDR report are:

•	Springer Dave	4459 26th Avenue West
•	Washington Marine Engine Co.	4403 24th Avenue West (listed twice on database)

2750 West Commodore Way

• U.S. Army Corps of Engineers	3015 NW 54th Street
 Dyno Battery Co. 	4248 23rd Avenue West
 NW Market Street Site 	2801 NW Market Street
Salmon Bay Center	5301-5309 Shilshole Avenue
Weiman Property	5332 Ballard Avenue NW
Thordarson Property	2200 West Emerson Place
• Chevron 60090968	2021 NW Market Street
 Ballard Auto Wrecking 	1515 NW Leary Way
Ballard Recycling	1509 NW 49th Street
Interbay Prints	1809 West Emerson
 Discovery Park Old Maint Yd. 	Discovery Park 40th West
• The Tux Shop	5409 15th Avenue NW
Mamco MFG Bldg.	1415/1427 NW 49th Street (listed twice on database)
 General Disposal Corp. 	1415 NW Ballard Way
Bardahl	1400 NW 52nd Street
Anderson Marine Repair	2360 West Commodore Way

August 2000

3.2.8 EPA Leaking Underground Storage Tank (LUST) Sites

The LUST list shows the sites containing one or more underground storage tanks that have been identified as having leaked or as potentially leaking their contents into the ground or groundwater. The ASTM Standards require the identification of LUST sites within ½ mile of the subject property. There are eight LUST Sites within ½ mile of the Property. The sites listed in the EDR report are:

•	Time Oil Co.	2754 West Commodore Way
•	Time Oil Co.	2750 West Commodore Way
•	USCG Support Center	2700 West Commodore Way
•	Time Oil Co.	3031 West Commodore Way
•	Ric's Automotive and Texaco	3317 West Government Way
•	Hiram Chittenden Locks	3015 Northwest 54th Street
•	Northwest Market Street	2801 NW Market Street
•	Sabroe Refrigeration, Inc.	4401 23rd Avenue West

The UST shown at 2754 West Commodore Way is the same UST as the UST at 2752 West Commodore Way (the Property). An administrative error has listed the UST with two

2750 West Commodore Way

addresses. This LUST site and the 2750 Property will continue to appear on this list until Ecology reviews the Property and closes the case.

3.2.9 EPA Underground Storage Tank (UST) Sites

The UST list shows the sites containing one or more underground storage tanks that have been identified as being located on the subject property. The ASTM Standards require the identification of USTs on the subject property and adjoining properties. There are five USTs within ¼ mile of the Property. The sites listed in the EDR report are:

• Time Oil Co.	2754 West Commodore Way
• Time Oil Co.	2752 West Commodore Way
 USCG Support Center 	2700 West Commodore Way
• Time Oil Co.	3031 West Commodore Way
• Northwest Instrument Co.	2525 West Commodore Way

The UST shown at 2754 West Commodore Way is the same UST as the former UST at 2752 West Commodore Way (the Property). An administrative error has listed the UST with two addresses. The UST will continue to appear on this list until Ecology reviews the Property and closes the case.

3.2.10 Solid Waste/Landfill Facilities

Solid waste/landfill facilities are those sites that currently accept, or have accepted in the past, waste of any kind for disposal on site. The ASTM Standards require the identification of solid waste/landfill sites within ½ mile of the subject property. The EDR report did not list any such sites within ½ mile of the Property.

4. CONCLUSIONS AND RECOMMENDATIONS

Foster Wheeler Environmental conducted a Phase I ESA of the Property at 2750 West Commodore Way, Seattle, Washington. The purpose of this Phase I ESA was to identify, to the extent feasible pursuant to the processes described herein, recognized environmental conditions, if any, associated with the Property. Our findings are summarized below.

According to the current tenant and TOC, the Property has been used for light industrial activities (canvas tarp and sling preparation) since 1974. Remedial actions were conducted in 1991 (UST removal), 1992 (soil excavation), and 1999 (additional site characterization).

Environmental Site Assessment: Phase I 2750 West Commodore Way

The results of these investigations indicate that petroleum-impacted soil and groundwater are present beneath the Property and that additional site assessment activities may be necessary to determine the full lateral and vertical extent of elevated concentrations of petroleum hydrocarbons is soil and groundwater.

Foster Wheeler Environmental recommends that additional site investigation activities be conducted in the vicinity of the former waste oil UST. Based on the previous reports, the eastern and western extent of petroleum impacted soil and groundwater has not been fully defined. Foster Wheeler Environmental recommends the following activities be conducted:

Groundwater Sampling of Existing Groundwater Monitoring Wells

- Obtain groundwater samples from each of the five existing groundwater monitoring wells
- Submit groundwater samples for laboratory analysis for the following parameters:
 - Total petroleum hydrocarbons—gasoline
 - Total petroleum hydrocarbons—diesel and residual range organics (heavy oils)
 - Volatile organic compounds
 - Total dissolved lead

Based on the results of this sampling, the need for additional groundwater monitoring well installation should be evaluated.

4.1 LIMITATIONS

This report is prepared for the sole use of TOC, pursuant to their contract with Foster Wheeler Environmental. The scope of work and the findings should not be considered suitable for other potential users, and any use by other parties shall be at their sole risk.

This report is based on the review of limited data, as described herein, in accordance with generally accepted professional practices, applicable to work of similar nature and complexity in similar localities, at the time the services were performed. No warranty, expressed or implied, is made. The scope of this report is limited in nature and intended to provide a preliminary evaluation of the current conspicuous environmental conditions at the Property at the time of the report. It does not constitute definitive or in-depth review of all the potential environmental impairments and situations. Foster Wheeler Environmental assumes no responsibility for conditions of which it is unaware and/or as to which there was no opportunity or request for review.

Environmental Site Assessment: Phas 2750 West Commodore Way

It is important to recognize that even the most comprehensive scope of services may not detect all the environmental liabilities at a particular Property. Therefore, nothing herein shall be construed as a representation or certification that the Property is either fully characterized or is free of environmental impairments and/or contamination.

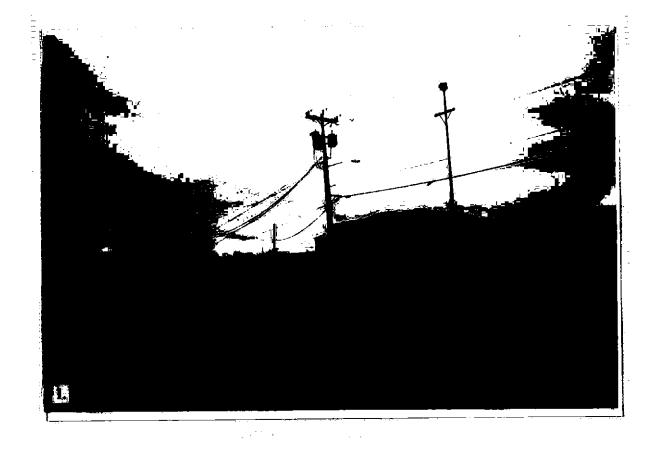
In order to conduct the investigation for this report, Foster Wheeler Environmental relied upon readily available information, as discussed in the report and, unless explicitly included in our scope, included no verification of the accuracy or completeness of documentation or data or possible withholding of information by the interviewees, agencies, or other parties. [Please also refer to the EDR Disclaimer.]

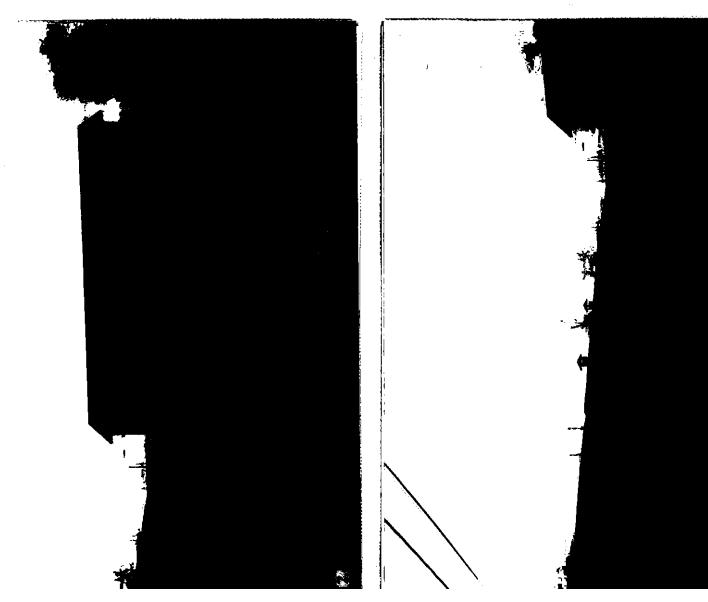
5. REFERENCES

- EDR (Environmental Data Resources). 2000. The EDR-Radius Map with GeoCheck[®], prepared for Time Oil Company. Inquiry Number 502304.1s. June 2, 2000.
- EPA (U.S. Environmental Protection Agency). 2000. CERCLIS, RODS, & Archive (NFRAP) Information Database. Downloaded June 19, 2000. www.epa.gov/superfund/sites/cursites/index.htm.
- Foster Wheeler Environmental. 2000. Environmental Site Assessment: Phase I for Time Oil Company, 2737 West Commodore Way, Seattle, Washington. August 4, 2000.
- IT (IT Corporation). 2000. Site Assessment Report, Time Oil Co. Site 2750, 2750 West Commodore Way, Seattle, Washington. March 8, 2000.
- National Priorities List (NPL) Sites in Washington. Downloaded June 19, 2000. www.epa.gov/superfund/sites/npl/wa.htm.
- TOC (Time Oil Company). 1991. Underground Storage Tank Site Check/Site Assessment at Seattle Terminal, 2737 West Commodore Way; Seattle, Washington, Property No. 01-228. December 30, 1991.
- TOC. 1992. Excavating Activities Conducted at Former Waste Oil Tank Location, Former Time Oil Co. Vehicle Maintenance Facility, 2750 West Commodore Way; Seattle, Washington. September 22, 1992.
- TOC. 2000. Transmittal of Site Assessment Report, Time Oil Co. Property No. 01-425; Former Used Motor Oil UST, 2750 West Commodore Way; Seattle, Washington. May 30, 2000.

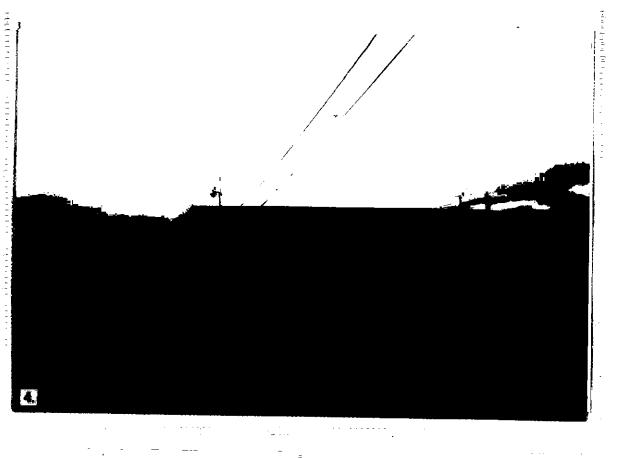
Washington State Department of Ecology Web Site. Downloaded on May 12, 2000. Facility/Site Identification System. www.wa.gov/ecology/iss/fsweb/fshelp.html.

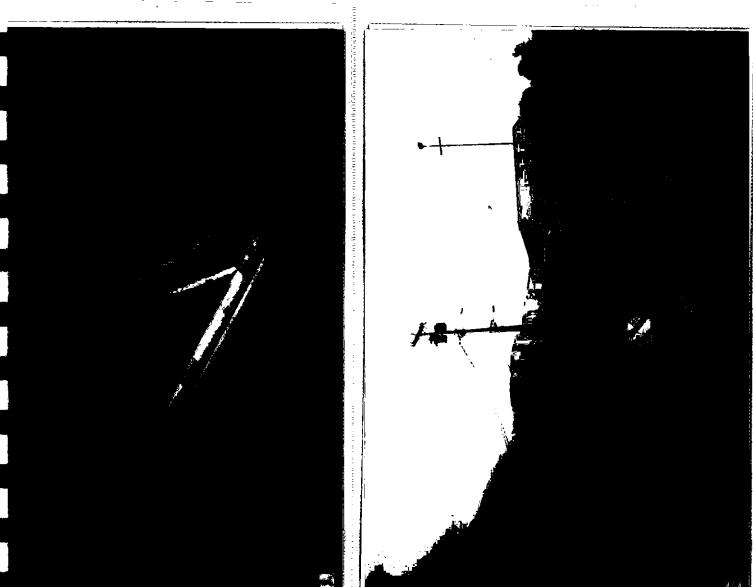
APPENDIX A


PROPERTY PHOTOGRAPHS


Environmental Site Assessment: Phase I 2750 West Commodore Way

Property Photographs: 2750 West Commodore Way


1. Looking southeast at former TOC laboratory, tank farm, and office building.


- 2. Looking east at roof of former vehicle maintenance facility. Coast Guard building in background.
- 3. Looking northeast, covered area between buildings.
- 4. Looking north at George Broom's Sons building.
- 5. Looking north at TOC pipeline leading onto TOC dock.
- 6. Looking southeast at TOC pipeline on 2750 West Commodore Way.

•

APPENDIX B

HISTORICAL PHOTOGRAPHS

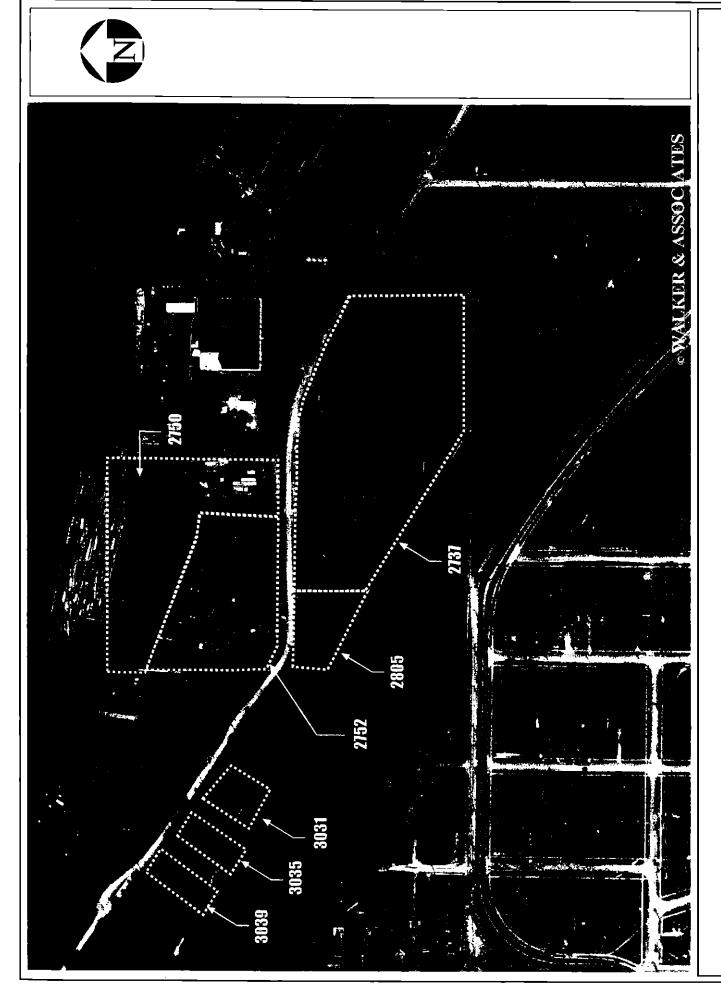


Figure B-1 Aerial Photo of West Commodore Way (1936)

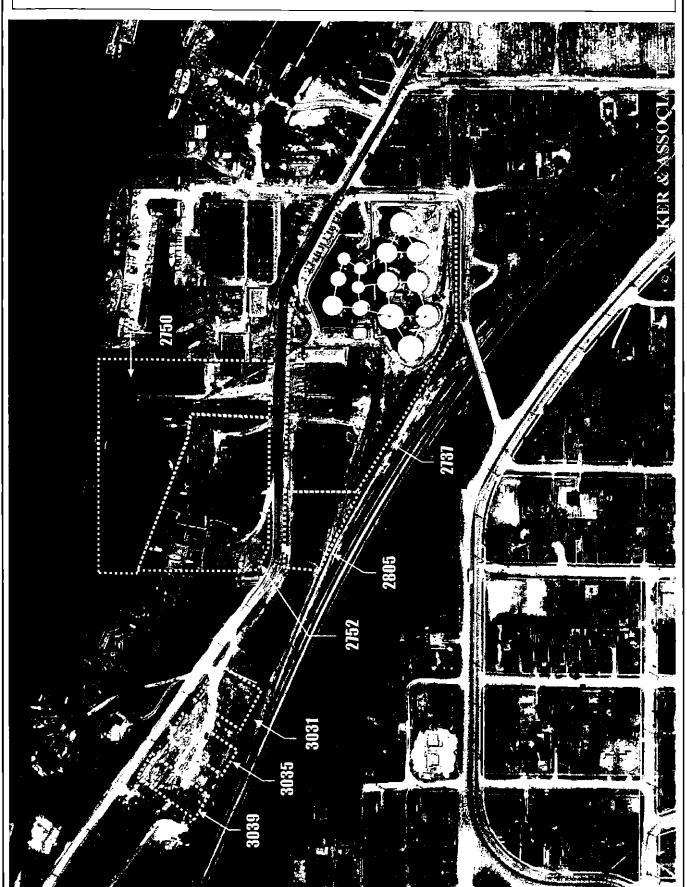


Figure B-2 Aerial Photo of West Commodore Way (1946)

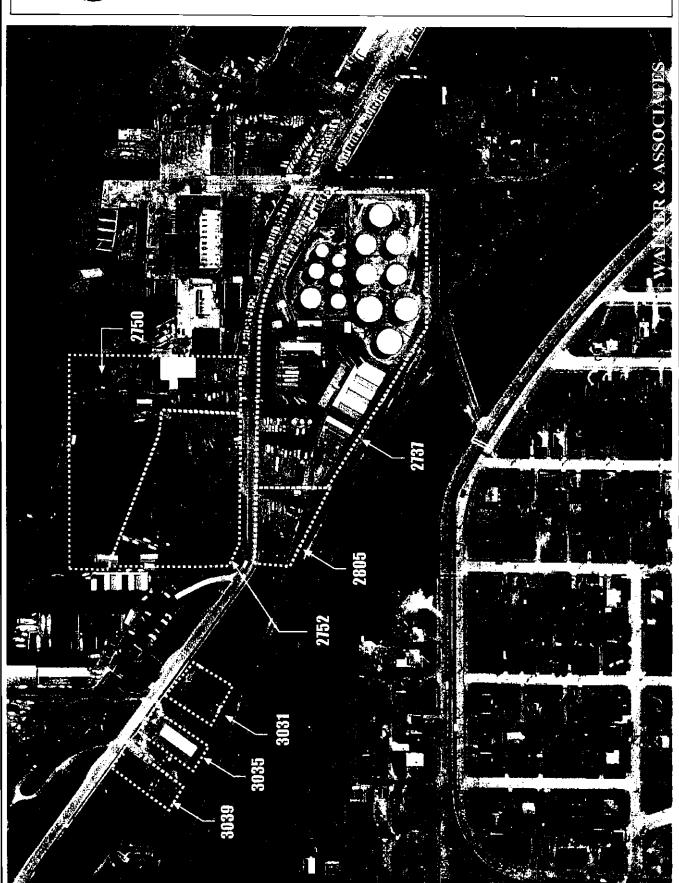


Figure B-3 Aerial Photo of West Commodore Way (1960)

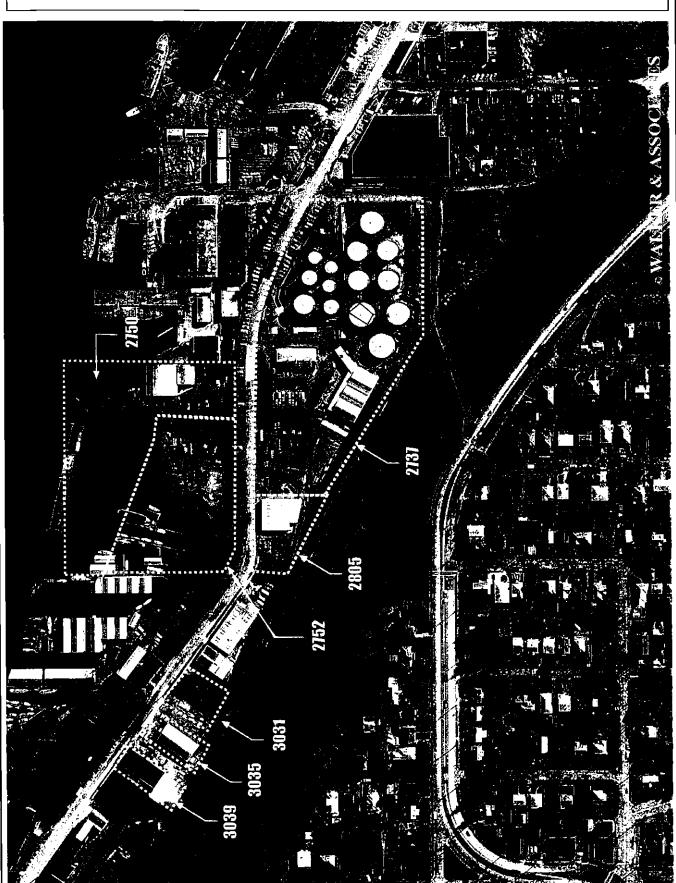


Figure B-4 Aerial Photo of West Commodore Way (1974)

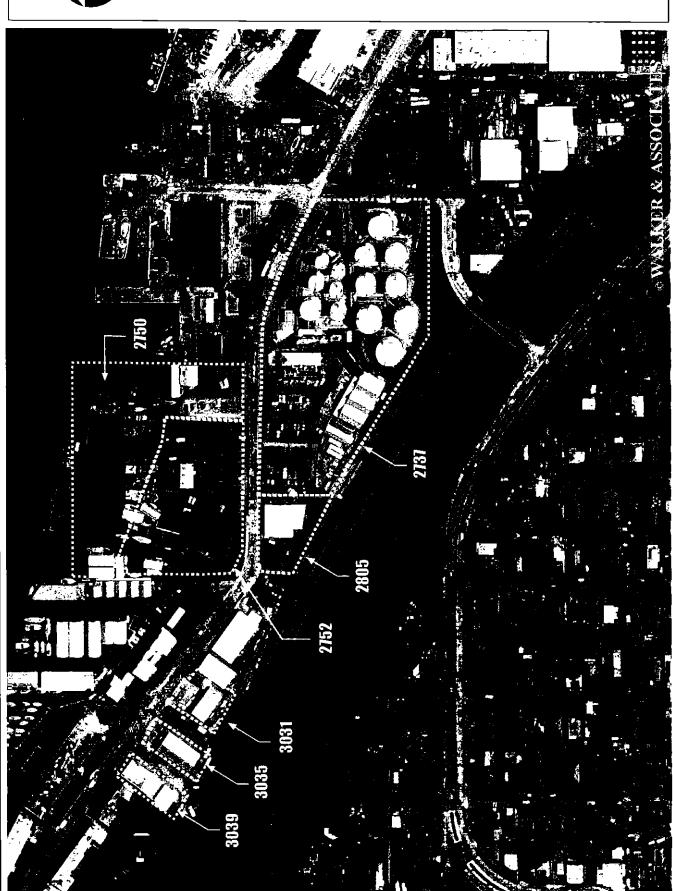


Figure B-5 Aerial Photo of West Commodore Way (1997)

Concentrations of Chemical Contaminants and Bioassay Response to Sediments in Salmon Bay, Seattle

Results of Phase III Sampling

December 2000

Publication No. 00-03-053 printed on recycled paper

This report is available on the Department of Ecology home page on the World Wide Web at http://www.ecy.wa.gov/biblio/0003053.html

For additional copies of this publication, please contact:

Department of Ecology Publications Distributions Office

Address: PO Box 47600, Olympia WA 98504-7600

E-mail: ecypub@ecy.wa.gov

Phone: (360) 407-7472

Refer to Publication Number 00-03-053

The Department of Ecology is an equal opportunity agency and does not discriminate on the basis of race, creed, color, disability, age, religion, national origin, sex, marital status, disabled veteran's status, Vietnam era veteran's status, or sexual orientation.

If you have special accommodation needs or require this document in alternative format, please contact Joan LeTourneau, Environmental Assessment Program, at (360)-407-6764 (voice). Ecology's telecommunications device for the deaf (TDD) number at Ecology Headquarters is (360) 407-6006.

Concentrations of Chemical Contaminants and Bioassay Response to Sediments in Salmon Bay, Seattle

Results of Phase III Sampling

by Dave Serdar, James Cubbage, and Dave Rogowski

Environmental Assessment Program Olympia, Washington 98504-7710

December 2000

Waterbody No. WA-08-9340

Publication No. 00-03-053 printed on recycled paper

This page is purposely blank for duplex printing

Table of Contents

<u>Page</u>	
List of Figures and Tables iii	
Abstractiii	
Acknowledgements iv	,
Introduction	
Methods5Sampling Strategy5Sampling Methods5Chemical Analysis and Data Quality7Bioassay Procedures9Data Analysis9	
Results11Field Observations11Conventional Characteristics of Sediments11Chemical Concentrations in Sediments13Sediment Bioassays21	
Discussion	
Summary and Conclusions29	1
Recommendations	
References	
Appendices	
 A. Station Descriptions and Field Observations B. Quality Assurance Data C. Complete Results of Semivolatile Organics Analyses and Spearman Correlation Matrix for Chemistry Data D. Bioassay Results 	

List of Figures and Tables

	<u>Page</u>
Figures	
Figure 1. Salmon Bay and Vicinity	3
Figure 2. Station Locations and Sample Zones for Phase III Sampling	6
Figure 3. Frequency of Detection and Exceedance of Freshwater Sediment Quality Values (FSQVs) for Semivolatile Organics in Phase III Sediments	18
Figure 4. Station Locations for Phase II and Phase III.	24
Figure 5. Summary of Bioassay Hits in Phase III Sediments	28
Tables	
Table 1. Methods for Analysis of Sediments.	8
Table 2. Freshwater Sediment Quality Values for Metals and Organics in Washington State	
Table 3. Organic Carbon, Solids, and Grain Size Composition of Salmon Bay Phase Sediments and Lake Washington Reference Sediments	
Table 4. Concentrations of Metals in Salmon Bay Phase III Sediments and Lake Washington Reference Sediments	14
Table 5. Salmon Bay Phase III and Lake Washington Reference Stations Ranked According to Metals Concentrations	15
Table 6. Median, Minimum, and Maximum Detected Concentrations of Semivolatil Organic Compounds in Salmon Bay Phase III Sediments	
Table 7. Concentrations of Butyltins in Salmon Bay Phase III Sediments and Lake Washington Reference Sediments	20
Table 8. PCB Concentrations in Selected Salmon Bay Phase III Sediments	21
Table 9. Summary of Bioassay Test Results on Selected Salmon Bay Phase III Sediments	22
Table 10. Instances Where Phase III Samples Confirmed Phase II Results	23
Table 11. Summary of Chemicals Exceeding Freshwater Sediment Quality Values and Bioassay Hits in Salmon Bay Phase III Sediments	27
Table 12. Summary of Major Contaminant Concentrations in Salmon Bay Phase III Sediments	

Abstract

Ecology's Environmental Assessment Program has conducted a multi-phase study of Salmon Bay sediments to facilitate cleanup efforts by Ecology's Toxics Cleanup Program. Phase I and Phase II examined physical characteristics and toxic contaminants of Salmon Bay sediments on a broad geographical scale. Objectives of this Phase III study were to assess toxicity of sediments, delineate boundaries of highly contaminated areas, and confirm sediment contamination found during the Phase II study.

Bottom sediments were collected from 27 locations throughout Salmon Bay and two reference locations in Lake Washington. Samples were analyzed for conventional parameters, metals, semivolatile organics, and butyltins. Polychlorinated biphenyls (PCBs) were sampled in areas of known contamination. Toxicity was assessed through *Hyalella azteca* survival, *Chironomus tentans* growth and survival, and Microtox®. Potential toxicity of the sediments was assessed by comparing chemistry to Freshwater Sediment Quality Values (FSQVs) and the Puget Sound Dredge Disposal Analysis screening level (SL) for tributyltin (TBT).

Results confirmed widespread chemical contamination in Salmon Bay found during the Phase II study. TBT, mercury, bis(2-ethylhexyl)phthalate, indeno(1,2,3-cd)pyrene, and carbazole appear to be the most pervasive problem chemicals based on comparisons to the SL and FSQVs. Zinc, copper, arsenic, lead, chromium, and polycyclic aromatic hydrocarbons also exceeded FSQVs. At least one chemical was detected above FSQVs in 23 of the 27 samples. TBT concentrations were above the SL in 26 of the 27 Salmon Bay sediments.

Ninety percent of the Salmon Bay samples were toxic to at least one bioassay organism. The *Chironomus* growth test was the most sensitive bioassay, followed by Microtox®, *Hyalella* survival, and *Chironomus* survival. Results suggest that the number of organic chemicals exceeding FSQVs was more closely related to toxicity than to the degree of metals contamination.

The distribution of contaminants in Salmon Bay could be characterized by "hot-spots" generally occurring near shore, with cleaner sediments toward the channel center. In most cases, hot-spots detected during Phase II were verified by this survey. However, the sample coverage was too thin to delineate hot-spot boundaries. Therefore, it is recommended that future sampling be designed to delineate hot-spots by focusing on the most contaminated Phase III stations individually.

Acknowledgements

The authors would like to thank the following people for their contributions to this study:

- ♦ Rick Huey and Joanne Polayse-Wien for help with field sampling.
- Will White and Pam Covey for sample handling and tracking.
- A Randy Knox, Jim Ross, Myrna McIntosh, Dickey Huntamer, Roy Araki (EPA), and Bob Reick (EPA) for laboratory analysis.
- ♦ Stew Lombard, Pam Covey, Karin Feddersen, Myrna McIntosh, Bill Kammin, and Dickey Huntamer for data quality reviews.
- ♦ Dale Norton and Nigel Blakely for reviewing the report.
- ♦ Joan LeTourneau for final report formatting and editing.

Introduction

Background

Salmon Bay and the Lake Washington Ship Canal comprise a narrow body of water in Seattle, Washington, connecting Lake Union to the east with Puget Sound to the west through the Hiram Chittenden Locks (Figure 1). Salmon Bay was originally a saltwater bay, but was inundated with freshwater in 1914 when the locks were constructed to the west of Salmon Bay and connected the bay to Lake Union through the Lake Union Ship Canal. The Ship Canal is a narrow channel with some shallow embayments on the southern shoreline near the west end of the canal.

Numerous industries have been located along the shores of Salmon Bay and the Ship Canal, including shipyards, marinas, bulk fuel plants, fish processing, wood treating, lumber mills and plywood plants, bulk materials handling facilities, a large steel manufacturing plant, and an asphalt plant. In addition, stormwater from urban areas, the Ballard and Fremont bridges, and combined sewer overflows (CSOs) discharge into the Ship Canal and Salmon Bay. These various sources have contributed to sediment contamination in Salmon Bay and the west end of the Ship Canal, but the nature, extent, and sources of contamination are not well defined. This lack of information has hampered attempts at source control and sediment cleanup in this area.

Recently, contamination of Salmon Bay sediments has been addressed in a three-phase study conducted by Ecology's Environmental Assessment Program (formerly Environmental Investigations and Laboratory Services Program).

- 1. Phase I reconnaissance sampling was completed during 1995 and consisted of visual examination of sediments from 81 stations evenly distributed throughout Salmon Bay and the Ship Canal (Michelsen, 1995). Samples were inspected for grain size (e.g., sand, silt, clay), evidence of contamination (oil, wood debris, paint chips), and biological organisms. Results were used to differentiate areas with probable contamination and those unlikely to contain high levels of contaminants.
- 2. Phase II, also conducted during 1995, included chemical analyses from 29 stations distributed throughout Salmon Bay based on Phase I results (Serdar and Cubbage, 1996). Chemicals analyzed included metals, semivolatile organics, PCBs, and butyltins. Most of the 29 stations sampled during the Phase II study had at least one chemical above criteria recommended for the protection of aquatic life, with several stations exceeding criteria for multiple chemicals. Problem chemicals included copper, mercury, lead, arsenic, zinc, chromium, benzyl alcohol, 4-methylphenol, bis(2-ethylhexyl)phthalate, PAHs, and PCB-1260. Tributyltin (TBT) was judged to be a significant concern at many stations due to its exceedence of the Puget Sound Dredge Disposal Analysis screening level.

Although a number of stations showed significant sediment contamination during the Phase II study, cleanup decisions remain difficult because Ecology has not yet formally

- adopted chemical standards for freshwater sediment. In the absence of chemical standards, biological toxicity testing may be used to determine the need for cleanup and/or source control.
- 3. Phase III study of Salmon Bay was conducted to assess the toxicity of sediments and delineate potential contaminated areas using sediment bioassays and chemical analyses in order to facilitate cleanup and source control efforts. Results of the Phase III study are the focus of this report.

Objectives of the Phase III Study

The primary objectives of the present study are as follows:

- Confirm and delineate areas of clean and contaminated sediment in Salmon Bay and nearshore areas of the Ship Canal found during the Phase II study.
- Evaluate the toxicity of these problem areas with sediment bioassays and assess the potential for sediments to be toxic, by comparison to chemical criteria recommended to protect aquatic life.
- To the extent possible, identify the contaminants contributing to sediment toxicity in the problem areas, including an evaluation of butyltins to determine whether this class of contaminants should be included in routine (e.g., National Pollutant Discharge Elimination System, NPDES) sediment analyses for Lake Union and the Ship Canal.
- To the extent possible, identify likely historical and current sources of contaminants to these problem areas.

The Salmon Bay study benefits cleanup and source control programs by:

- Identifying areas that require remediation, with recommendations and some indication of their relative priority. In addition, the data may provide adequate evidence to allow cleanup of some offshore areas within existing Model Toxics Control Act (MTCA) and Resource Conservation and Recovery Act (RCRA) actions at related upland facilities.
- Streamlining dredging, construction, and NPDES permit processing for areas that are identified as "clean". The results may also provide justification for discharge and baseline sediment monitoring as part of the NPDES permitting program for areas that are identified as contaminated.
- Beginning to identify areas that require additional stormwater or CSO control to prevent recontamination of areas targeted for dredging or cleanup.
- Contributing synoptic chemistry and bioassay data to help evaluate the toxicity of butyltin compounds, with the eventual goal of establishing apparent effects thresholds (AETs) for these compounds.

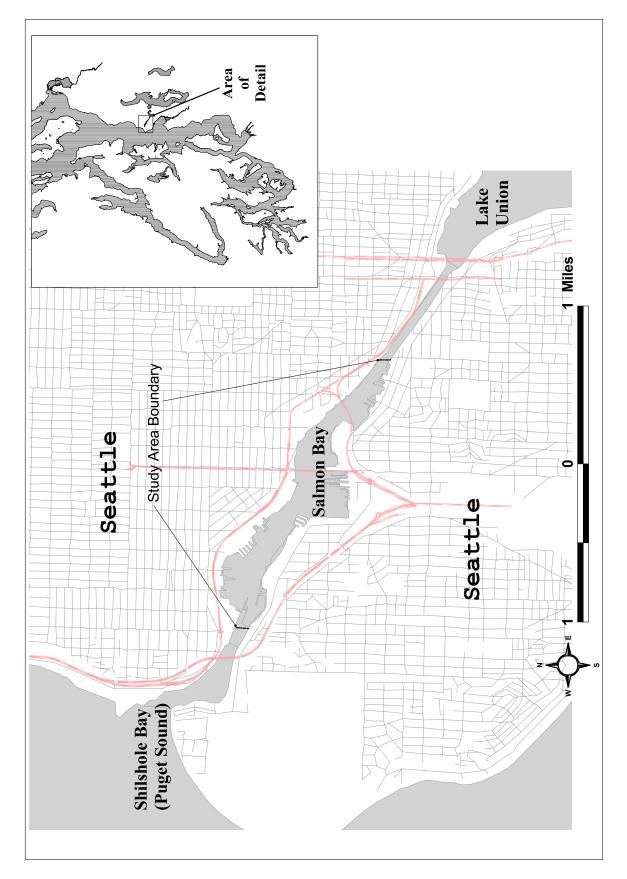


Figure 1. Salmon Bay and Vicinity.

	This page is purposely blank for duplex printing	
.		

Methods

Sampling Strategy

Chemical analyses was performed on bottom sediments from 27 locations throughout Salmon Bay and two reference locations in Lake Washington; bioassays were performed on a subset of 20 Salmon Bay sediments and the reference samples. The study area extends from the locks (on the west) to the western end of the Ship Canal (on the east).

Results of the reconnaissance (Phase I) study indicated that most sediments in the vicinity of the eastern Ship Canal are coarse-grained which suggests little deposition of fine material. Little visible oil or other evidence of contamination was seen in this area as well. Based on these observations, this area was excluded from further investigation during Phases II and III.

Phase II revealed several highly contaminated areas in Salmon Bay. Because the Sediment Management Standards (SMS; Ecology, 1991) require at least three stations for any regulatory decisions, three or more stations were grouped in each major area of concern or natural geographical feature for Phase III (Figure 2). These zones were chosen to represent groups of industries and CSOs or areas that may have similar contaminant levels (e.g., the central channel). A description of each sampling station is in Appendix A.

Sampling Methods

Sampling methods were consistent with the Puget Sound Estuary Program (PSEP) protocols (EPA, 1986a) as modified by the SMS and sampling methods used during Phase II and previous Lake Union and Lake Washington studies conducted by Ecology. However, to support evaluation of historical contamination and the cleanup program, the top 10 cm of sediment was sampled. This layer includes most of the biologically active zone in freshwater.

Samples were collected from Ecology's 20-foot skiff equipped with a 0.1 m² stainless steel Van Veen grab sampler. Stations were recorded using a Magellan® GPS (Global Positioning System) receiver with differential correction as well as from sightings on nearby landmarks. Datasheets were used at grab stations to log samples (number of grabs, observations, samples collected) and at the helm to log position with reference to landmarks. A grab was considered adequate if it was filled with sediment and both the grab and access doors on top of the grab were closed tightly (see PSEP protocols for full description). For each grab, the overlying water was siphoned off and the top 10 cm of sediment not touching the walls of the grab was scooped out of the top doors and placed in a stainless steel beaker.

To prevent contamination from boat engine exhaust, the boat was maneuvered so the stern was downwind of sampling gear. To prevent sample cross-contamination, sites were sampled in a gradient from lowest suspected concentration of contaminants to highest.

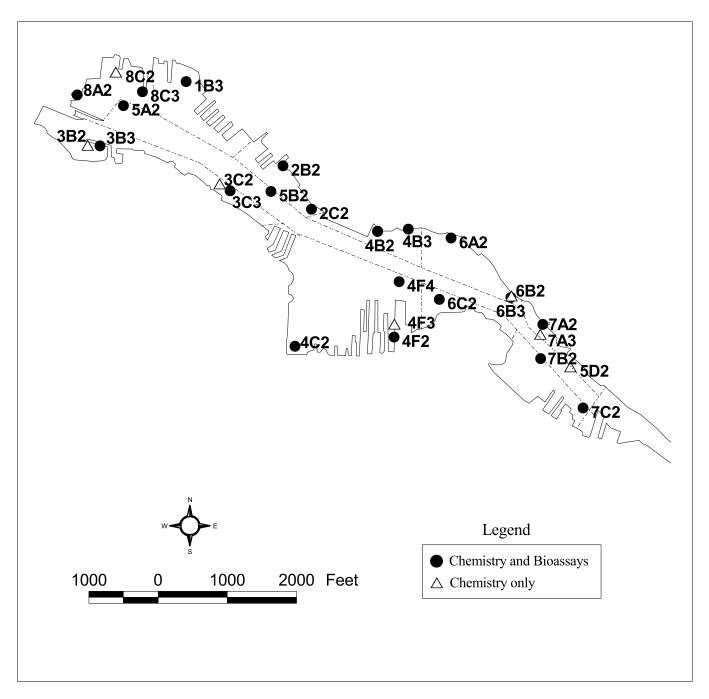


Figure 2. Station Locations and Sample Zones for Salmon Bay Phase III Sampling. Zone 5 Occupies the Channel Center and Zones 4,6, and 7 are on Both Sides of the Channel.

Prior to sampling, all stainless steel tools (grab, beakers, spoons) were decontaminated with the following procedure:

- wash in hot water and Liquinox® detergent
- rinse in tap water
- rinse in 10% nitric acid
- rinse with deionized water
- rinse with pesticide analysis grade acetone
- air dry
- wrap in aluminum foil

The beaker contents were homogenized, and subsamples for metals and organics analysis were dispensed into separate 8-oz priority pollutant-clean jars capped with teflon lid liners. Samples for organic carbon analysis were placed in 4-oz jars. Grain size samples were placed in Whirl-Pak® bags. If oil was visible in the sample, the sampler was washed with detergent and the sample was disposed into a drum onboard. Between samples, the grab sampler was thoroughly brushed and rinsed with on-site water. Samples for bioassays were placed into 1-gal jars.

Quality assurance samples collected in the field included homogenized sediments from two stations sent to the lab under different labels to represent blind field splits. Split samples are primarily used to measure laboratory precision, but results may also be influenced by homogenization and packaging in the field. Sampling was also replicated at one station to measure overall (environmental + sampling + laboratory) precision.

Chemical Analysis and Data Quality

All samples were analyzed for the chemical parameters in Table 1, except PCBs which were analyzed at six sites only. Grain size analysis was done by Rosa Environmental & Geotechnical Laboratory, Seattle, WA. All other analyses were performed at the Ecology/EPA Manchester Environmental Laboratory in Manchester, WA.

Data quality was assessed through analysis of field splits, field replicates, laboratory replicates, matrix spikes, laboratory control samples (metals only), and surrogate spikes (organics only). Holding times and adherence to EPA CLP quality control limits was assessed. Procedural blanks were analyzed to assess laboratory contamination. Quality assurance results are in Appendix B.

Quality of the conventional sediment data (solids, grain size, TOC) was excellent at all levels. Results of field splits, field replicates, and laboratory replicate suggest that environmental or sampling variability accounted for roughly equal loss of precision compared to the laboratory analyses. Some of the percent solids analyses were performed one day past holding times and are flagged (H).

Table 1. Methods for Analysis of Sediments.

Analysis	Method	Reference	Target Detection Limit
Total organic carbon (TOC)	PSEP Method	EPA, 1986a	0.1%, dw
Grain size	PSEP Method	EPA, 1986a	
% Solids	Gravimetric - EPA Method 160.3	EPA, 1986b	0.1%
Arsenic	ICP - EPA Method 200.7 or ICP/MS - EPA Method 200.8	EPA, 1986b	1 ug/g, dw
Cadmium	ICP - EPA Method 200.7	EPA, 1986b	1 ug/g, dw
Chromium	ICP - EPA Method 200.7	EPA, 1986b	1 ug/g, dw
Copper	ICP - EPA Method 200.7	EPA, 1986b	1 ug/g, dw
Mercury	CVAA - EPA Method 245.5	EPA, 1986b	0.1 ug/g, dw
Lead	ICP - EPA Method 200.7	EPA, 1986b	1 ug/g, dw
Nickel	ICP - EPA Method 200.7	EPA, 1986b	1 ug/g, dw
Zinc	ICP - EPA Method 200.7	EPA, 1986b	1 ug/g, dw
Semivolatile organics	GC/MS - modified EPA Method 8270	EPA, 1986b	100 ug/Kg, dw
PCBs	GC/ECD - EPA Method 8080	EPA, 1986b	50 ug/Kg, dw
Butyltins	SIM mode GC/MS - PSEP/NOAA Methods	EPA, 1986a Krone et al., 1989	20 ug/Kg, dw

Precision and accuracy of the metals data were good. Arsenic analysis was hampered by high iron, >50,000 ug/g in some samples, requiring qualification (J). Samples with lower arsenic concentrations (<100 ug/g) were analyzed using ICP/MS EPA Method 200.8 due to the iron interference. The only other qualification (J) for the metals data was the cadmium result for the sample from 6B2 due to a relatively high standard deviation of results.

Quality of the semivolatile organics analysis was mixed. Practical quantitation limits were generally much higher than anticipated due in part to the high water content of the samples. In many cases, however, analytes were detected at concentrations much lower than the quantitation limits and are qualified as estimates (J). Matrix spike and surrogate recoveries were low for most analytes, possibly indicating the data were systematically biased low. Poor precision of the matrix spike duplicates suggests that laboratory analysis accounted for much of the data variability. Analysis of a certified reference material (National Research Council of Canada HS-6 - PAHs in Nova Scotia marine harbor sediments) yielded 75% of results within certified values, no evident systematic bias, and high precision. These results support the conclusion that data quality problems with the semivolatile analyses were due primarily to matrix effects.

Overall quality of the butyltin data was poor, also probably due in large part to matrix effects. Environmental variability of samples also appeared to result in poor precision, thought to be due to the presence of hull paint particles which contain highly concentrated tributyltin (see Case Narrative in Appendix B). Similar problems were encountered in the Salmon Bay Phase II study (Serdar and Cubbage, 1996). Accuracy of the data was difficult to assess due to degradation of

the PACS-1 reference material (National Research Council of Canada PACS-1 – British Columbia marine harbor sediments). Analysis of a newer reference material, PACS-2, produced better data but results remained outside certified ranges.

The PCB data should be used with caution due to a number of factors making their accuracy questionable. Calibration curves for Aroclors 1242 and 1260 were outside control limits. In some cases surrogate recoveries were poor, although matrix spike recoveries were generally good and results from matrix spike duplicates were precise. Analysis of the reference material HS-2 (National Research Council of Canada HS-2 – PCBs in Nova Scotia marine harbor sediments) yielded results slightly below certified values for Aroclor 1254.

Bioassay Procedures

Bioassay tests included 10-day *Hyalella azteca* survival, 10-day *Chironomus tentans* growth and survival, and 15-minute *Vibrio fischeri* luminescence (i.e., Microtox®). *Hyalella* and *Chironomus* tests were performed by EVS Environment Consultants (North Vancouver, B.C.) through SAIC (Poulsbo, WA). Microtox testing was done by CH2M Hill in Corvallis, OR. A discussion of the highlights and data for each test replicate are in Appendix D.

There were few problems associated with testing the bioassay organisms. Negative control survival rates for *Hyalella* and *Chironomus* were 96% and 100%, respectively.

Data Analysis

Chemical data were compared to Ecology recommended freshwater sediment quality values (FSQVs; Table 2) (Cubbage et al., 1997). FSQVs were derived by analyzing freshwater bioassay and chemistry data sets collected in Washington, and by reviewing freshwater and marine sediment criteria developed in Canada and the U.S., including Washington standards for marine waters. The authors concluded that, when applied to freshwater, the existing Sediment Management Standards (SMS; Ch. 173-204 WAC) for marine waters provided the best mix of sensitivity and efficiency in predicting effects to the bioassay organism *Hyalella azteca* and miscellaneous effects related to metals. Numerical criteria promulgated in the SMS are essentially minimum chemical concentrations expected to cause adverse effects on biological resources. For organics, FSQVs are based on Microtox® probable apparent effects thresholds derived from a variety of bioassay and chemistry data sets from freshwater sediments in Washington. Like FSQVs for metals, the FSQVs for organics are not codified standards. However, creators of the FSQVs conclude they predict biological effects better than other sets of values, including sediment quality criteria and guidelines developed by other regulatory agencies.

Table 2. Freshwater Sediment Quality Values (FSQVs)* for Metals and Organics in Washington State.

Chemical	FSQV
Metals (ug/g, dw)	
Arsenic	57
Cadmium	5.1
Chromium	260
Copper	390
Nickel	na
Lead	450
Zinc	410
Mercury	0.41
PAHs(ug/kg, dw)	
Naphthalene	37,000
Acenaphthylene	1,900
Acenaphthene	3,500
Fluorene	3,600
Phenanthrene	5,700
Anthracene	2,100
LPAH ^a	27,000
Fluoranthene	11,000
Pyrene	9,600
Benzo(a)anthracene	5,000
Chrysene	7,400
Total Benzofluoranthenes	11,000
Benzo(a)pyrene	7,000
Benzo(a)pyrene Indeno(1,2,3-cd)pyrene	730
Dibenzo(a,h)anthracene	230
Benzo(ghi)perylene	1,200
HPAH	36,000
Total PAH ^c	60,000
Other Semivolatile Organics(ug/	/kg, dw)
Bis(2-Ethylhexyl)phthalate	640
Carbazole	140
Chlorinated Organics(ug/kg, dw)
PCB-1248	21
PCB-1254	7.3
Total PCB	21

^{*} FSQVs derived by Cubbage et al. (1997).

na= not available

^a Represents the sum of Anthracene, Acenaphylene, Acenaphthene, Phenanthrene, Fluorene, and Naphthalene. The LPAH criterion is not the sum of the criterion values for individual LPAH as listed above.

b Represents the sum of Pyrene, Benzo(g,h,i)perylene, Indeno(1,2,3-c,d)pyrene, Benzofluoranthene(s), Fluoranthene, Chrysene, Benzo(a)pyrene, Dibenzo(a,h)anthracene, and Benzo(a)anthracene. The HPAH criterion is not the sum of the criterion values for individual HPAH as listed above.

^C Total PAH = LPAH + HPAH

Results

Field Observations

Sediments were observed for characteristics of color, odor, grain composition, oil sheen, and content. Complete results of field observations are in Appendix A.

Most of the sediments were brown or dark brown in color and appeared in the field to be composed mainly of silt or sand, with some "muck" or clay. Approximately two-thirds of the sediments had an oil sheen, with the heaviest sheen in sediment from Station 6B2. Sediments from some stations had a petroleum odor, although this did not always correspond to an observable oil sheen (e.g., Stations 3B2 and 8A2). Only one station (5B2) appeared to have noticeably anoxic sediments based on its rotten egg odor.

Contents of the sediments varied from station to station. Samples from Stations 1B3, 2B2, 3B3, 4B3, 6A2, 7A2, and 7A3 contained partially decomposed organic debris. Paint particles were observed in sediments from Stations 4F2, 5D2, 6A2, 7A2, 7A3, and 8C3. Clams from the Lake Washington reference stations (10A2 and 10B2) were the only recorded observations of macroinvertebrates in sediments.

Conventional Characteristics of Sediments

Conventional parameters measured in Salmon Bay sediments (solids, grain size, TOC) are presented in Table 3. TOC70 is determined at 70°C whereas TOC104 is determined at 104°C. On average, TOC104 results were 4% higher than TOC70. TOC, which has been known to correlate well with non-polar organic compounds, ranged from 0.8% at Station 7C2 to 21.3% at 7B2. Sediment from Station 7B2 was described by the grain size analyst as fibrous and mostly peat (see Case Narrative in Appendix B).

Grain size analysis showed that sediments from all stations were made up of mostly sand or silt, generally followed by clay and gravel. Sediments from 5D2, 7C2, and 4C2 had sand and gravel making up 70% or more of the sample dry weight, as did sediment from reference station 10B2. The characterization of sediment from 7B2 as mostly sand and gravel is not entirely accurate since, as mentioned previously, this sample was mostly peat.

Samples from Stations 3C3, 3C2, 6C2, 4B2, and 8C3 were composed of 80% or more fine material (i.e., \leq 62 um) by weight, mostly silt for all sediments except 7A3 which contained 41% clay. Contaminant concentrations in sediments are often positively correlated with percent fines since more surface area is available for binding.

Table 3. Organic Carbon, Solids, and Grain Size Composition of Salmon Bay Phase III Sediments and Lake Washington Reference Sediments.

				Grain Size Composition (%)				
	TOC70	TOC104	Solids	Gravel	Sand	Silt	Clay	
Station	(%)	(%)	(%)	(>2,000 um)	(62-2,000 um)	(3.9-62 um)	(<3.9 um)	
1B3	6.5	6.8	26.1	0	34	54	12	
2B2	11.5	12.2	23.2	4	51	37	8	
2C2	7.7	7.9	25.9	6	37	44	13	
3B2	5.1	5.1	28.5	0	24	56	20	
3B3	4.5	4.6	34.2	0	45	39	16	
3C2	5.9	6.1	24.3	0	16	76	8	
3C3	6.0	6.3	24.4	0	15	77	8	
4B2	6.2	6.4	26.9	0	18	68	14	
4B3	10.5	10.6	26.0	1	38	54	7	
4C2	4.7	5.0	38.2 H	1	69	22	8	
4F2	14.9	15.8	16.3 H	13	48	32	7	
4F3	7.4	7.8	26.4 H	0	25	56	19	
4F4	11.7	12.1	27.3	3	45	43	9	
5A2	4.8	5.2	25.3	0	26	57	17	
5B2	5.0	4.9	26.3	0	27	55	18	
5D2	3.2	3.0	55.9 H	14	66	13	7	
6A2	9.2	9.7	33.4	2	43	44	11	
6B2	2.4	2.5	42.7	0	51	44	5	
6B3	3.3	3.4	36.3	0	26	64	10	
6C2	5.4	5.7	45.8	2	15	51	32	
7A2	2.6	2.8	42.8	2	62	28	8	
7A3	1.6	1.6	54.1 H	2	26	31	41	
7B2	18.7	21.3	15.3 H	14	56	18	12	
7C2	0.78	0.82	66.1 H	0	73	21	6	
8A2	2.8	3.0	48.9	2	63	29	6	
8C2	4.3	4.5	43.4	0	60	32	9	
8C3	5.5	5.6	38.8	2	17	56	24	
10A2 (ref.)	3.4	3.6	38.2 H	0	26	62	11	
10B2 (ref.)	1.2	1.2	58.9 H	1	75	20	4	

TOC70= Total organic carbon determination at 70°C

TOC104= Total organic carbon determination at 104°C

H= Exceeds sample holding time

^{*}Results may be biased due to the fibrous nature of this sample. See Case Narrative in Appendix B for more detail.

Chemical Concentrations in Sediments

Metals

Concentrations of metals in sediments are shown in Table 4. Extremely high levels were found at some stations. The range of dry weight concentrations (ug/g, parts per million) for individual metals were as follows: arsenic 5 - 210, mercury 0.1 - 43, cadmium 0.3 - 5, chromium 24 - 620, copper 48 - 10,800, lead 12 - 1,300, nickel 30 - 640, and zinc 84 - 4,200. Station 4F2 had the highest concentrations of mercury, cadmium, copper, lead, and zinc. Arsenic was found at the highest concentration at 1B3. Chromium and nickel concentrations were highest in sediments from 6B2. Metals in reference sediments were at concentrations near the low end of the Salmon Bay range.

Higher metals concentrations were positively correlated with sites that had higher proportions of fine sediments (Appendix C). Conversely, sites with more sand tended to have lower metals concentrations. All metals were positively correlated except nickel-arsenic and nickel-lead. The strongest links were cadmium-chromium, cadmium-copper, chromium-copper, chromium-nickel, and mercury-zinc.

Table 5 ranks the stations according to concentrations of each metal. Stations 1B3, 4F2, and 3B3 had the highest overall rank. The Lake Washington reference stations (10A2 and 10B2) and Salmon Bay stations 7C2, 6C2, and 7B2 tended to have the least metals, the latter showing little or no metals enrichment above reference conditions.

Concentrations of all metals except cadmium exceed freshwater sediment quality values (FSQVs) at two or more stations. Fully three-quarters of the stations exceed the FSQV for mercury, including one of the Lake Washington reference stations (10B2). Nearly half the stations exceed FSQVs for copper or zinc, five exceed the arsenic FSQV, and two stations each exceed chromium and lead FSQVs. The cadmium FSQV was not exceeded by any samples. No FSQV has been derived for nickel.

Stations 1B3 and 4F2 each exceed FSQVs for five metals; 3B3 and 7A2 each exceed FSQVs for four metals. Only six stations – 5D2, 6C2, 10A2, 7A3, 7B2, and 7C2 – did not surpass the FSQVs for any of the metals analyzed.

Table 4. Concentrations of Metals in Salmon Bay Phase III Sediments and Lake Washington Reference Sediments (ug/g, dw).

Station	Arsenic	Mercury	Cadmium	Chromium	Copper	Lead	Nickel	Zinc
1B3	209 *	3.7	3.6	102	2,010	525	62	2,010
2B2	16	0.66	2.7	62	651	431	44	754
2C2	17	0.84	1.4	100	508	177	77	407
3B2	25	2.1	1.8	66	314	311	53	497
3B3	175 *	2.7	3.0	81	651	436	48	1,770
3C2	28	1.0	1.3	64	856	199	48	490
3C3	31	0.99	1.4	67	627	194	49	567
4B2	13	1.0	2.0	121	536	187	102	453
4B3	13	0.66	1.3	77	327	150	64	368
4C2	20	0.44	1.1	45	142	99	39	391
4F2	152 J*	43	5.0	96	10,800	1,310	58	4,150
4F3	23	1.6	1.7	77	632	305	61	614
4F4	13	0.62	1.0	56	210	114	54	269
5A2	31	2.0	1.6	80	571	249	62	550
5B2	22	0.80	1.2	57	363	152	45	377
5D2	25	0.36	0.61	44	145	408	34	246
6A2	13	0.75	1.6	81	315	150	71	354
6B2	17 J	0.27	3.5 J	621	2,220	74	644	259
6B3	20 J	0.56	2.9	348	1,460	133	355	406
6C2	6	0.16	(0.3) U	54	48	12	60	86
7A2	123 *	3.0	1.3	63	829	230	49	1,080
7A3	16	0.10	0.65	53	73	321	54	165
7B2	31	0.10	(0.3) U	24	50	27	46	84
7C2	5	0.10	0.31	25	74	27	30	98
8A2	14	1.2	1.0	45	158	258	38	423
8C2	12	1.2	1.3	45	206	194	39	419
8C3	111 *	2.2	2.0	68	371	299	53	675
10A2 (ref.)	7	0.14	0.45	43	28	59	39	90
10B2 (ref.)	4	0.54	0.69	27	24	90	26	131

^{*}Analyzed using EPA 200.7. All other Arsenic results using EPA 200.8.

J= Estimated concentration

U= Undetected at concentration in parentheses

Table 5. Salmon Bay Phase III and Lake Washington Reference Stations Ranked According to Metals Concentrations (lower rank = higher concentration).

Rank	Arsenic	Mercury	Cadmium	Chromium	Copper	Lead	Nickel	Zinc	Overall Rank
1	1B3	4F2	4F2	6B2	4F2	4F2	6B2	4F2	1B3
2	3B3	1B3	1B3	6B3	6B2	1B3	6B3	1B3	4F2
3	4F2	7A2	6B2	4B2	1B3	3B3	4B2	3B3	3B3
4	7A2	3B3	3B3	1B3	6B3	2B2	2C2	7A2	8C3
5	8C3	8C3	6B3	2C2	3C2	5D2	6A2	2B2	4F3
6	7B2	3B2	2B2	4F2	7A2	7A3	4B3	8C3	5A2
7	3C3	5A2	4B2	3B3	2B2	3B2	1B3	4F3	7A2
8	5A2	4F3	8C3	6A2	3B3	4F3	5A2	3C3	6B3
9	3C2	8A2	3B2	5A2	4F3	8C3	4F3	5A2	4B2
10	5D2	8C2	4F3	4F3	3C3	8A2	6C2	3B2	3B2
11	3B2	3C2	5A2	4B3	5A2	5A2	4F2	3C2	3C3
12	4F3	3C3	6A2	8C3	4B2	7A2	7A3	4B2	6B2
13	5B2	4B2	2C2	3C3	2C2	3C2	4F4	8A2	2C2
14	4C2	2C2	3C3	3B2	8C3	3C3	3B2	8C2	2B2
15	6B3	5B2	3C2	3C2	5B2	8C2	8C3	2C2	3C2
16	2C2	6A2	4B3	7A2	4B3	4B2	3C3	6B3	6A2
17	6B2	4B3	7A2	2B2	6A2	2C2	7A2	4C2	4B3
18	2B2	2B2	8C2	5B2	3B2	5B2	3B3	5B2	5B2
19	7A3	4F4	5B2	4F4	4F4	4B3	3C2	4B3	8A2
20	8A2	6B3	4C2	6C2	8C2	6A2	7B2	6A2	8C2
21	4B2	10B2	4F4	7A3	8A2	6B3	5B2	4F4	7A3
22	6A2	4C2	8A2	8A2	5D2	4F4	2B2	6B2	4F4
23	4B3	5D2	10B2	4C2	4C2	4C2	4C2	5D2	5D2
24	4F4	6B2	7A3	8C2	7C2	10B2	10A2	7A3	4C2
25	8C2	6C2	5D2	5D2	7A3	6B2	8C2	10B2	7B2
26	10A2	10A2	10A2	10A2	7B2	10A2	8A2	7C2	6C2
27	6C2	7A3	7C2	10B2	6C2	7C2	5D2	10A2	10B2
28	7C2	7B2	6C2	7C2	10A2	7B2	7C2	6C2	10A2
29	10B2	7C2	7B2	7B2	10B2	6C2	10B2	7B2	7C2

Exceeds Freshwater Sediment Quality Values (Cubbage et al., 1997). No FSQV has been derived for Nickel.

Semivolatile Organics

Table 6 summarizes the median and concentration range of each semivolatile organic compound detected in sediments. Complete results of semivolatile organic analyses are in Appendix C.

Slightly more than half (39 of 75) of the semivolatiles analyzed were detected, with "priority pollutant" PAHs the most frequently detected group (Figure 3). Total PAH concentrations ranged from 1,100 ug/kg at Station 7B2 to over 300,000 ug/kg at 4F2, which translates to 0.03% of the dry sample weight. High levels of total PAHs were also found at 2C2 (96,000 ug/kg), 8A2 (79,000 ug/kg), and 2B2 (64,000 ug/kg). Concentrations at most stations were between 10,000 and 50,000 ug/kg, with a median of 18,000 ug/kg. Total PAHs at Stations 10A2 and 10B2 were low: 700 ug/kg and 3,000 ug/kg, respectively.

Eighteen of the 27 Salmon Bay sediment samples had one or more PAH at concentrations above FSQVs. Station 4F2 had 13 individual PAHs as well as total PAH concentrations above FSQVs. Stations 2B2, 2C2, and 8A2 also had total PAHs as well as several individual PAHs above FSQVs.

Phenol and alkyl-substituted phenols were detected in more than half the samples, with the highest concentration in sediment from Station 4B3. Pentachlorophenol was detected at several sites at concentrations from 300 - 700 ug/kg, but was highest at 7A2 (1,240 ug/kg). Other semivolatile organics, when detected, were generally in the 100 - 1,000 ug/kg range, and like phenols have no associated FSQV. Bis(2-ethylhexyl)phthalate was an exception with concentrations both high and in exceedence of the FSQV in about three-quarters of the samples. Carbazole was above the FSQV in more than half the samples, although concentrations were not particularly high.

Total PAH showed a moderately strong positive correlation with TOC (Appendix C). Other semivolatile compounds such as bis(2-ethylhexyl)phthalate, 4-methylphenol, and carbazole were even more strongly correlated with TOC. There appears to be no relationship between stations with visible oil or petroleum odor in samples and high levels of PAH. For instance, an oil sheen was visible in sediment from 4F2 but was not observed at 2C2 where total PAH was 100,000 ug/kg. Conversely, some sites with oily sediments had relatively low PAH (e.g., 6B2, 6C2, 7A3, 1B3).

Table 6. Median, Minimum, and Maximum Detected Concentrations of Semivolatile Organic Compounds in Salmon Bay Phase III Sediments (ug/kg, dw).

Chemical	Median	Min.	Station	Max.	Station
Priority Pollutant PAHS					
Naphthalene	640	37	7C2	5,600	4F2
Acenaphthylene	260	12	7C2	1,300	4B3
Acenaphthene	350	33	7C2	7,400	4F2
Fluorene	480	39	7C2	7,000	4F2
Phenanthrene	2,000	71	7B2	41,000	4F2
Anthracene	590	67	7C2	16,000	4F2
Total LPAH	4,400	71	7B2	78,000	4F2
Fluoranthene	3,400	120	7B2	46,000	4F2
Pyrene	3,500	120	7B2	56,000	4F2
Benzo(a)anthracene	1,200	150	6C2	26,000	4F2
Chrysene	1,500	59	7B2	28,000	4F2
Benzo(b+k)fluoranthenes	2,300	67	7B2	42,000	4F2
Benzo(a)pyrene	1,400	180	7B2	24,000	4F2
Indeno(1,2,3-cd)pyrene	990	91	7A3	14,000	4F2
Dibenzo(a,h)anthracene	250	34	7C2	3,100	4F2
Benzo(ghi)perylene	1,000	87	7B2	12,000	4F2
Total HPAH	15,000	1,000	7B2	250,000	4F2
Total PAH	18,000	1,100	7B2	329,000	4F2
		1,100	102	323,000	71 2
Phenols and non-Priority Pollutar		00	ED0	770	400
Phenol	120	36	5D2	770	4B3
2-Methylphenol	90	72	8C2	300	4B3
4-Methylphenol	510	52	5D2	6,300	4B3
2,4-Dimethylphenol	140	140	4B3	140	4B3
Pentachlorophenol	470	290	4C2	1,200	7A2
Retene	1,100	94	7C2	76,000	4F4
2-Methylnaphthalene	220	28	7C2	3,500	4F2
1-Methylnaphthalene	110	14	7C2	1,800	4F2
Phthalates					
Dimethylphthalate	150	15	7C2	580	6A2
Diethylphthalate	90	32	4F3	180	3C3
Di-N-Butylphthalate	420	69	4F3	1,700	3C3
Butylbenzylphthalate	190	28	7C2	1,500	2B2
Bis(2-Ethylhexyl)phthalate	2,800	280	6C2	23,000	4F3
Di-N-Octyl Phthalate	300	200	4C2	400	4B3
Miscellaneous Semivolatiles					
1,4-Dichlorobenzene	50	27	4B2	94	8C2
1,2-Dichlorobenzene	110	73	4F2	120	2B2
Benzyl Alcohol	80	14	7C2	330	2B2
Isophorone	51	51	4B3	51	4B3
Benzoic Acid	2,500	1,000	6B2	4,200	4B3
Dibenzofuran	240	24	7C2	3,800	4F2
Caffeine	34	34	6C2	34	6C2
Carbazole	180	24	7C2	2,900	4F2
3β-Coprostanol	2,100	1,400	4C2	32,000	4B2
υμ-συμισειατίσι	۷, ۱۰۰	1,700	702	32,000	TUL

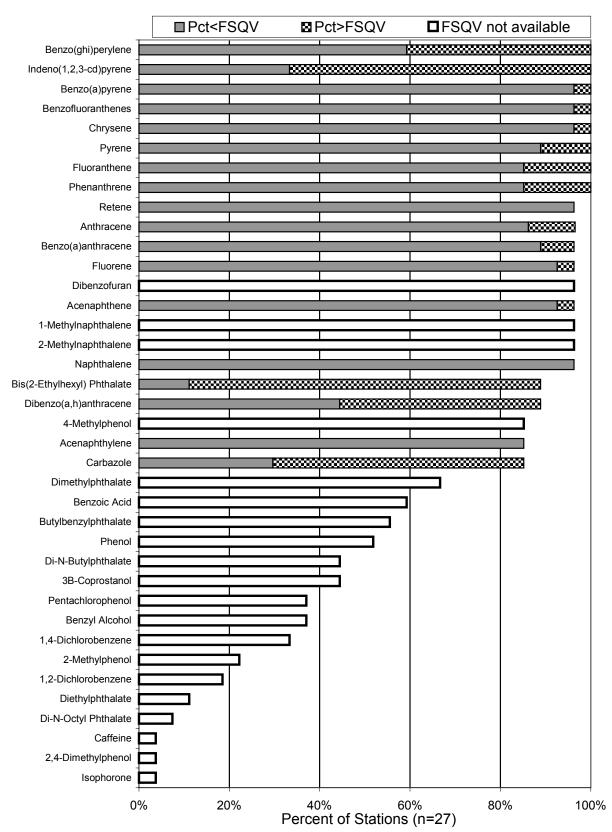


Figure 3. Frequency of Detection and Exceedence of Freshwater Sediment Quality Values (FSQVs) for Semivolatile Organics in Salmon Bay Phase III Sediments.

Butyltins

Butyltin concentrations are shown in Table 7. Tributyl-chlorotin (TBTCl) was detected in all samples, with concentrations ranging from 45 to 72,000 ug/kg. Ion-equivalent tributyltin (TBT⁺) concentrations ranged from 40 ug/kg to 64,000 ug/kg. Monobutyl-chlorotin (MBTCl), dibutyl chlorotin (DBTCl), and tetrabutyltin (TeBT) were detected in most samples.

TBT is an organometallic compound with biocidal properties. Its presence in the aquatic environment is mainly due to its use in anti-fouling paint for vessel hulls, although in 1988 its use in the U.S. was severely restricted for most applications. MBT and DBT are metabolites formed during the progressive debutylation of TBT. Substituted-MBTs and -DBTs are also used as PVC stabilizers, and as catalysts in the manufacture of polyurethane foam and silicone elastomers (EPA, 1996). TeBT may be an impurity produced during TBT manufacturing or possibly formed photolytically or microbially from lesser butylated congeners.

On average, TBTCl made up 70% of the butyltin concentrations in the Phase III samples. Concentrations of all butyltins were extremely high in the sample from 4F2, with total butyltin concentrations making up 0.01% of the dry sample weight. It should be noted that the accuracy of these data is suspect due to the poor precision encountered during analysis, probably as a result of matrix effects such as the presence of paint particles.

Red paint chips were observed in the sample from 4F2 which most likely contributed to the high level of TBT, and probably copper as well as zinc, in this sample. However, visual observations are probably a poor indicator of contaminant levels among sites since most samples with high TBT, copper, and zinc concentrations had no observable paint chips. Of the four additional stations where paint chips were observed (5D2, 6A2, 7A2, 8C3), only 7A2 had concentrations of TBT⁺, copper, and zinc above median values. Nevertheless, there is evidence that hull paint is associated with high copper and zinc concentrations in sediments. Rank order data for copper and zinc is highly correlated to TBT (Spearman correlation coefficients of 0.76 and 0.72, respectively; Appendix C), signifying that sites with high TBT tend to have high copper and zinc. Conversely, sites with low TBT concentrations tended toward lower copper and zinc concentrations.

The presence of paint particles adds to the complexity of determining the bioavailability and toxicity of TBT in sediment. Other factors include organic carbon, pH, salinity, clay content, and the presence of inorganic constituents such as iron oxides (EPA, 1996). Due to its complex behavior in the aquatic environment, no sediment quality criteria have been adopted for TBT in marine sediments. In 1988, the PSDDA agencies developed an interim screening level (73 ug TBT⁺/kg) for use in marine areas, based on best available knowledge of the chemical and its properties. There is currently much uncertainty surrounding the use of a bulk sediment screening level for TBT due to unresolved questions about environmental partitioning, bioavailability, and methods to determine toxicity (Michelsen et al., 1996). Although site-specific screening levels for TBT have been recommended at Superfund Sites in Puget Sound (EPA, 1996), numerical criteria have not been established to replace the 1988 PSDDA screening level concentrations for bulk sediments. There are also no available sediment quality criteria for TBT in freshwater.

Table 7. Concentrations of Butyltins in Salmon Bay Phase III Sediments and Lake Washington Reference Sediments (ug/kg, dw).

Station	Monobutyl- trichlorotin	Dibutyl- dichlorotin	Tributyl- chlorotin	Tetrabutyltin	TBT ⁺ (ion equiv.)
1B3	4,110 J	2,515 J	17,600	451	15,664
2B2	736	182	1,920	35 J	1,709
2C2	636	202	2,470	30 J	2,198
3B2	307	262	973	60	866
3B3	267	139	782	70	696
3C2	840	393	4,030	59 J	3,587
3C3	608	663	7,460	68	6,639
4B2	534 J	260	1,214	20 J	1,080
4B3	428	171	1,050	(36) U	935
4C2	340	376	811	, 7 J	722
4F2	7,785 J	22,150 J	72,450	771	64,481
4F3	537	1,980	3,180	96 J	2,830
4F4	95	91	671	(28) U	597
5A2	737	862	2,840	51 J	2,528
5B2	610 J	642 J	1,580	45 J	1,406
5D2	60	24	142	(18) U	126
6A2	355 J	69 J	909	24 J	809
6B2	186 J	246	1,360	51	1,210
6B3	312 J	419	1,360	(23) U	1,210
6C2	38 J	(24) U	70	(24) U	62
7A2	248 J	346	2,490	36	2,216
7A3	32 J	37	150	(15) U	134
7B2	61 J	(62) U	127	(61) U	113
7C2	87	100	222	(14) U	198
8A2	500	304	2,800	Ì12 J	2,492
8C2	389 J	288	1,155	16 J	1,028
8C3	65 J	(30) U	925	148	823
10A2 (ref.)	41 J	22 J	87	(28) U	77
10B2 (ref.)	36 J	16 J	45	(17) U	40

U= Undetected at associated concentration

Exceeds PSDDA Screening Level

Concentrations of TBT in Phase III sediment samples generally exceeded the PSDDA screening level (SL) by an order of magnitude. Samples from 1B3 and 3C3 had TBT levels two orders of magnitude above the SL, and TBT was 900 times the SL in sediment from Station 4F2. Several stations had TBT near or below the SL, including the reference stations.

J= Estimated concentration

PCBs

PCBs were analyzed at six stations in the vicinities of stations where substantial concentrations (~1,000 ug/kg or greater) were detected during Phase II sampling. Five of the six stations analyzed had detectable PCB concentrations (Table 8). Total PCBs were highest at 4F2 (2,100 ug/kg) and 1B3 (1,500 ug/kg). The lowest concentrations were at 7A2 (140 ug/kg) and at 7A3 which had no detectable PCBs at quantitation limits of 66 ug/kg.

Table 8. PCB Concentrations in Selected Salmon Bay Phase III Sediments (ug/kg, dw).

Station	PCB - 1016	PCB - 1221	PCB - 1232	PCB - 1242	PCB - 1248	PCB - 1254	PCB - 1260	Total PCBs
1B3	140 HUJ	960 H	500 H	1,460 H				
4C2	79 UJ	230 J	74 J	304 J				
4F2	180 HUJ	180 HUJ	180 HUJ	570 H	180 HUJ	1,060 H	460 H	2,090 H
4F3	130 HUJ	570 H	210 H	780 H				
7A2	82 U	140	82 U	140				
7A3	66 U							

Detected compounds in **bold**

U= Undetected at associated concentration

UJ= Undetected at associated estimated concentration

J= Estimated concentration

H= Exceeded holding time

In general, it appeared that concentrations were similar to those detected in nearby sites from Phase II. The exceptions were at Stations 7A2 and 7A3 whose "root" station (7A from Phase II) had the highest total PCB concentrations in sediments (7,600 ug/kg).

Sediment Bioassays

Bioassay results for *Hyalella* survival, *Chironomus* growth and survival, and Microtox® response are summarized in Table 9. Complete test results are in Appendix D.

Each station was compared to one reference site using a one-sided upper tail student's T-test. Alpha was set at 0.05 except for the *Chironomus* growth bioassay where alpha was 0.10 as recommended by SMS/PSDDA, since larval bioassays tend to have large variance (Michelsen and Shaw, 1996).

Reference station 10A2 was used for all comparisons except *Chironomus* survival, since grain size and TOC content of reference station 10A2 were closer to those of test stations than reference station 10B2. Average survival in the *Chironomus* survival bioassay was 50% in reference sediment 10A2. This is below the SMS performance standard of greater than 70% survival for reference sediments (WAC 173-204-315); as a result, station 10B2 was used for *Chironomus* survival comparisons.

Table 9. Summary of Bioassay Test Results on Selected Salmon Bay Phase III Sediments.

	•	Survival %)		mus Survival (%)		nus Growth g, dw)	(% lig	rotox ght red. control)
Station	mean	p	mean	p	mean	р	mean	р
1B3	90	0.055	66	0.24	1.40	<0.00025	12	<0.00025
2B2	90	0.16	54	0.013	2.08	<0.00025	8.7	0.0005
2C2	82	0.002	80	1.0	1.68	<0.00025	48	<0.00025
3B3	78	0.001	74	0.15	1.50	<0.00025	11	<0.00025
3C3	98	0.19	88	0.005*	2.91	0.014	-1.5	#
4B2	92	0.19	96	0.001*	2.56	0.008	44	<0.00025
4B3	70	0.002	68	0.006	3.08	0.011	57	<0.00025
4C2	98	0.19	76	0.24	2.71	0.0005	59	<0.00025
4F2	86	0.049	60	0.011	1.40	<0.00025	37	<0.00025
4F4	62	0.0005	82	0.40	3.22	0.040	19	<0.00025
5A2	88	0.17	86	0.15	2.32	0.0005	18	<0.00025
5B2	84	0.13	78	0.31	2.93	0.0005	-6.1	#
6A2	80	0.028	82	0.35	3.09	0.021	45	<0.00025
6B3	92	0.19	72	0.05	1.51	<0.00025	7.8	0.099
6C2	94	0.23	82	0.37	3.22	0.21	-13	#
7A2	70	0.093	82	0.40	3.54	0.43	-8.9	#
7B2	64	0.007	72	0.17	2.93	0.010	1.6	0.004**
7C2	80	0.039	64	0.098	3.09	0.014	19	<0.00025
8A2	68	0.008	54	0.083	1.31	0.0005	19	<0.00025
8C3	78	0.004	28	<.00025	0.40	<0.00025	8.4	<0.00025
10A2 (ref.)	98		50		3.60		4.2	
10B2 (ref.)	96		80		3.46		17	

P values of a one tailed T-test of sample (n = 4-5 replicates) against one reference site (n=5). Station 10A2 used as reference site for *Hyalella* survival, *Chironomus* growth, and Microtox. Station 10B2 used as reference site for *Chironomus* survival.

All percentile results were arcsin-square root transformed prior to data analysis (*Hyalella*, *Chironomus* survival, and Microtox).

All stations except 6C2 and 7A2 had significant bioassay responses for one or more tests. Stations 4B3, 4F2, 7C2, 8A2, and 8C3 showed hits in all four bioassays; five other stations had hits in three tests (2B2, 2C2, 3B3, 4F4, and 6A2). *Chironomus* growth was the most sensitive (i.e., significant difference from reference site) of the bioassay tests, followed by the Microtox test. In contrast, only seven stations had hits for *Chironomus* survival due mainly to low survival rates at the reference station 10A2. Results of the *Chironomus* growth bioassays were correlated with *Chironomus* survival (r = 0.328, p = 0.020), and Microtox (r = 0.301, p = 0.045).

[&]quot;Hits" are in **bold**. A hit is p<0.05 for all but *Chironomus* survival (p<0.1, per SMS/PSDDA guidance).

^{*}Survival in sample was significantly higher than in reference

^{**}Light reduction in sample was significantly *lower* than in reference

^{# =} no difference: there was no reduction in the light emission compared to the laboratory controls. As a result, these replicate samples had a negative decreased illumination. The arcsin transformation will not work on negative values.

Discussion

Confirmation of Phase II Results

The distribution of contaminants in Salmon Bay could be characterized by "hot-spots" interspersed among a field of sediments with more moderate concentrations. These areas of high contamination tend to be closer to shore, with decreasing concentrations toward the channel center. This is consistent with findings of the Phase II study, and generally indicates shoreside point sources of contamination, although these sources may extend outward from shore in the case of piers and moored vessels. A more detailed discussion of contaminants related to possible sources in Salmon Bay is discussed in the Phase II report (Serdar and Cubbage, 1996). Shoreside businesses or activities located near each station are included in the table of station descriptions (Appendix A)

One of the objectives of the Phase III study was to confirm and delineate areas of clean and contaminated sediment found during Phase II. For the most part, this survey was successful in confirming areas of highly contaminated sediments. Table 10 lists instances where chemical concentrations at Phase III stations agreed well with either high or low degrees of contamination at their associated Phase II stations. Figure 4 shows locations of both Phase II and Phase III stations.

Table 10. Instances Where Phase III Samples Confirmed Phase II Results*.

Phase II	Associated Phase III	
Station	Station	Similarities Between Phase II and Phase III
1B	1B3	High As, Hg, Pb, Cd, Cu, Zn, PCB, and TBT Low HPAH
3B	3B2, 3B3	High Hg
3C	3C2, 3C3	High TBT
4B	4B2	High TBT
4F	4F2, 4F3	High Pb, Cd, Cu, Zn, HPAH, LPAH, PCB, and TBT
6A	6A2	High Cd
6B	6B2, 6B3	High Ni, Cd, Cr, and Cu Low Hg
7A	7A2	High Cu and Zn
7C	7C2	Low As, Hg, Pb, Cd, Cu, Zn, HPAH, LPAH, and TBT
8A	8A2	High TBT
8B	8C2	High Hg Low HPAH
8C	8C3	High Hg, Pb, and Cd Low HPAH

^{*}Serdar and Cubbage, 1996

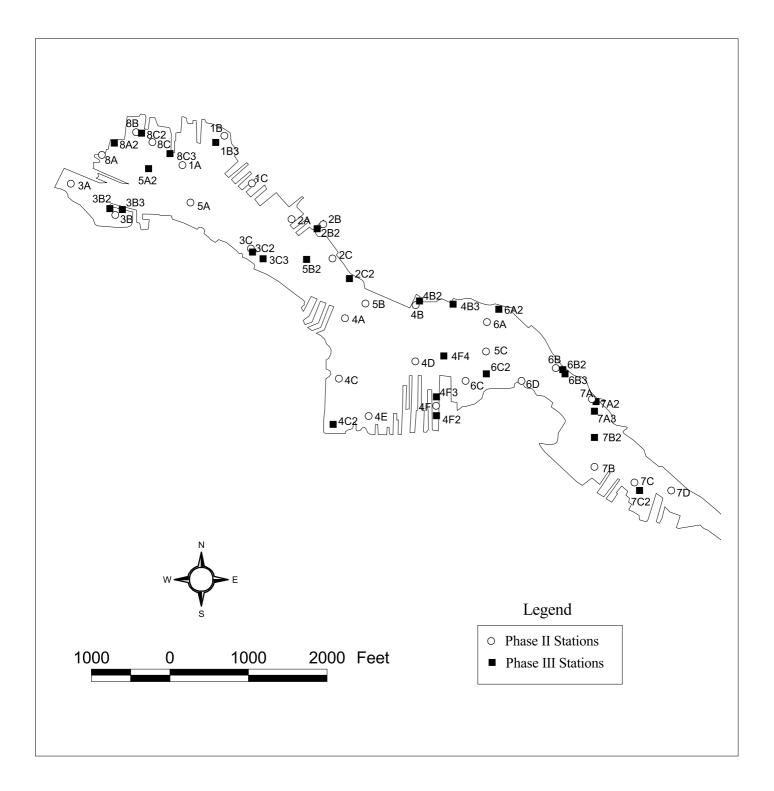


Figure 4. Salmon Bay Station Locations for Phase II and Phase III.

Moderate contaminant levels were generally confirmed during Phase III sampling, although these comparisons are subject to the extreme range of concentrations for many chemicals. There were few confirmations of "clean" areas, due mainly to the lack of Phase III samples designed for this purpose. For instance, further sampling of the relatively clean and sandy central channel region was not considered warranted for Phase III.

Due to the variability of sample results, the sampling coverage used for this project was unable to delineate hot-spots. Delineation and resolution of hot-spots will require more intensive sampling in a small area together with extremely accurate determinations of sampling locations. However, in some cases Phase III samples failed to confirm high contaminant levels found at associated Phase II stations, thereby yielding clues about the directional boundaries of these hot-spots. For instance, Station 7A2 had concentrations of copper and zinc almost identical to Phase II Station 7A, yet copper and zinc concentrations decreased by an order of magnitude 150 feet offshore at Station 7A3. The 7A/7A2 hot-spot southern boundary therefore extends no farther than Station 7A3. It is noteworthy that PCB concentrations at these stations did not follow the same pattern as copper and zinc. Total PCBs were high at 7A2 (7,600 ug/kg), one-fiftieth of that concentration at 7A2, and undetectable at Station 7A3.

The southeast portion of the Fisherman's Terminal embayment represents another hot-spot area. The extreme southeast corner appears to have the most overall contaminated sediments from both phases of sampling (Stations 4F and 4F2). Other samples in Fisherman's Terminal southwest corner (4C2) and to the north (4F3 and 4F4) indicate that: 1) contaminant concentrations are inversely related to distance from 4F2, and 2) the western and northern portions of Fisherman's Terminal have low-to-moderate contamination.

Phase III sampling may have revealed a new hot-spot in the case of Station 2B2. This station was sampled to confirm clean sediments 170 feet from Phase II Station 2B. However, Station 2B2 had much higher contaminant levels than 2B, especially copper and TBT. Although differences between Stations 2B and 2B2 are probably related to sediment grain size (90% sand vs. 51% sand, respectively), this example suggests that other hot-spots may have been missed with the existing sample coverage.

Toxicity of Sediments

Samples analyzed during Phase III represent some of the most contaminated freshwater sediments Ecology has found in Washington. For instance, the highest copper concentration found during the present survey (11,000 mg/kg) surpassed all 332 detectable results listed in the SEDQUAL database. Maximum Phase III concentrations of mercury and nickel also exceeded all SEDQUAL results for these metals (265 and 234 results, respectively). Given the number of highly concentrated chemicals in many samples, a high degree of toxicity seems likely. Of the 80 bioassay tests performed on 20 samples, 49 showed significant toxicity compared to controls. However, none of the samples appeared to be extremely toxic to test organisms. Median survival for *Hyalella* and *Chironomus* were 83% and 75%, respectively (compared to an average *Chironomus* survival of 65% in reference sediments). Only one sample (8C3) had survival less than 50%. *Chironomus* growth was the most sensitive test in terms of response relative to reference sediments.

The number of chemicals in sediments, the limited sampling coverage for bioassays, and the varying degrees of contamination and bioassay response make it difficult to assess the toxic effects of individual chemicals. Likewise, the predictive and protective powers of the FSQVs are impossible to determine without more rigorous analysis of the results and are beyond the scope of this report. More general observations about sediment toxicity related to chemical concentrations suggest that sediments having the most chemicals above FSQVs also demonstrated the most toxicity to test organisms (Table 11). Sixty-one percent of the bioassay hits occurred at the ten most contaminated stations. About one-half of the bioassay hits and one-half of the total FSOV exceedences occurred at the seven most contaminated stations. Therefore, it appears there is a positive correlation between the number of contaminants above FSQVs and toxicity in a sample. Exceptions to this are samples from Stations 7A2, with seven chemicals above FSOVs and no toxic response, and 7C2 where only TBT exceeded (the PSDDA SL), yet there was significant toxicity in all four bioassays. Station 6C2 did not have chemicals above FSQVs or bioassay hits. Like the "hot-spots" of chemical concentrations in Salmon Bay, toxicity appeared to be distributed irregularly throughout Salmon Bay. Figure 5 summarizes bioassay hits for the four tests performed on the 20 Salmon Bay sediments.

Most chemicals exceeding FSQVs are organic compounds. When stations were sorted according to the number of organics above FSQVs, the pattern of bioassay hits remains the same (61% of hits occurred at the ten most contaminated stations). The ten sediments most contaminated with PAH (LPAH, HPAH, or total PAH) had 65% of the bioassay hits, the most of any chemical or group of chemicals analyzed. Carbazole appeared to be the second most toxic constituent, followed by chromium and bis(2-ethylhexyl)phthalate.

Stations sorted according to their overall metals concentrations (as in Table 5) had only 47% of the bioassay hits in the ten highest ranked samples. The least toxic metals among the ten most contaminated stations appeared to be arsenic (47% of hits), followed by nickel and lead (51% each). Even fewer hits (45%) were associated with samples having the top ten TBT concentrations. Using this approach, TBT appears to have relatively low toxicity.

Table 11. Summary of Chemicals Exceeding Freshwater Sediment Quality Values and Bioassay Hits in Salmon Bay Phase III Sediments.

Chebatolity
X X X X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X X X X
No.
No. No.
X
Complement Com
High planting composition X
Proper P
Henrie X X X X X X X X X X X X X X X X X X X
Hence X X X X X X X X X X X X X X X X X X X
Hone
X
X
X
X
X X
X X
X X
X X <td< td=""></td<>
X X X X
X X
X X X X X X X X X X X X X X X X X X X
Hene X
X
Vs 24 15 15 12 9 8 8 8 8 8 8 8 8 8 8 8 8 8 1
X X
X X
X X X X X N
X X X X X Na
X X X X X Na na na x na na x na
4 4 3 3 2 4 4 3 2 1 - 3 - 0 2 - 2 3 - 1 - 2 - 4 2

*PSDDA Screening Level (No FSQV developed for tributyltin) na=not analyzed

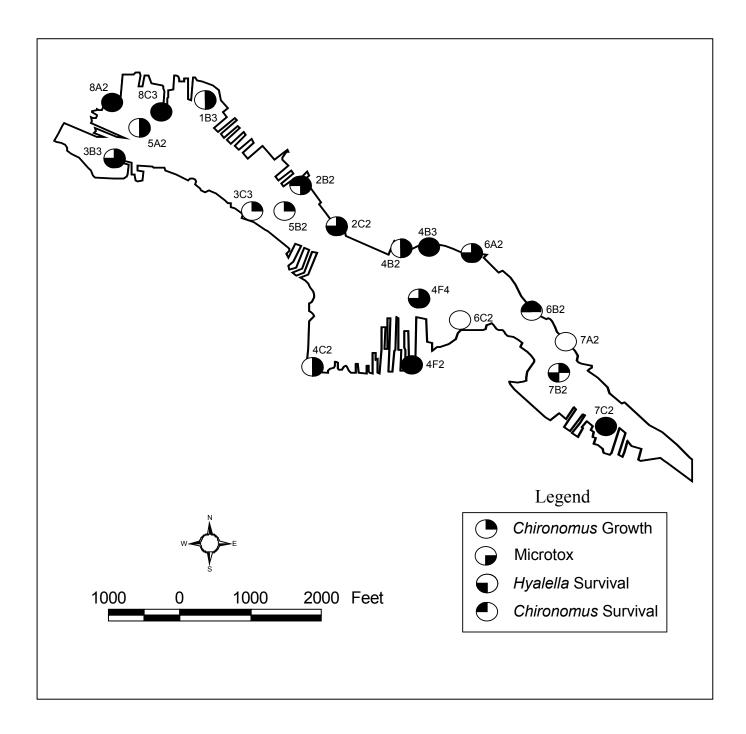


Figure 5. Summary of Bioassay Hits in Salmon Bay Phase III Sediments.

Summary and Conclusions

There is widespread chemical contamination in Salmon Bay, based on results of 27 Phase III sediment samples analyzed for metals and organics. Table 12 summarizes concentrations of the major chemical contaminants in Salmon Bay sediments. Tributyltin, mercury, bis(2-ethylhexyl)-phthalate, indeno(1,2,3-cd)pyrene, and carbazole were found at elevated concentrations in most stations. These appear to be the most pervasive problem chemicals, based on comparisons to FSQVs and the PSDDA SL.

Table 12. Summary of Major Contaminant Concentrations in Salmon Bay Phase III Sediments.

Chemical	Maximum	Minimum	Median
Metals (ug/g, dw)			
Arsenic	210	5	20
Mercury	43	0.1	0.8
Cadmium	5	< 0.3	1.4
Chromium	620	24	66
Copper	11,000	48	370
Lead	1,300	12	190
Nickel	640	30	53
Zinc	4,200	84	420
Organics (ug/kg, dw)			
Low Molecular Weight PAHs (LPAH)	78,000	70	4,400
High Molecular Weight PAHs (HPAH)	250,000	1,200	15,000
Total PAH	330,000	1,300	18,000
Bis(2-ethylhexyl)phthalate	23,000	<140	2,500
Carbazole	2,900	24	170
Tributyltin (ion equivalent)	64,000	62	1,100

In some cases, chemicals were found at extremely high concentrations. The tributyltin (TBT) concentration at Station 4F2, located in the furthest southeast corner of Fisherman's Terminal, was 64,000 ug/kg TBT. This station also had extremely high concentrations of mercury (43 ug/g), copper (11,000 ug/g), lead (1,300 ug/g), zinc (4,200 ug/g), PAHs (total = 330,000 ug/kg), bis(2-ethylhexyl)phthalate (23,000 ug/kg), and carbazole (2,900 ug/kg). Other chemicals in 4F2 sediment were also found in high concentrations, making it by far the most contaminated of any station examined.

The distribution of contaminants in Salmon Bay could be characterized by "hot-spots" interspersed among a field of more moderate concentrations. These hot-spots generally occur near shore; cleaner sediments tend to be found toward the channel center. In most cases, hot-spots detected during Phase II sampling were verified by the Phase III survey. Some areas of cleaner sediments were also verified. Although Phase III sampling generally succeeded in

verifying hot-spots, sample coverage was too thin to delineate the hot-spot boundaries. The thin coverage, along with the failure to verify all of the "clean" Phase II stations, suggests that additional hot-spots may have gone undetected by the two rounds of sampling conducted to date.

Most of the sediments analyzed in Phase III probably have an adverse effect on benthic organisms. This conclusion is based on: 1) comparisons to Freshwater Sediment Quality Values (FSQVs) which attempt to strike a balance between protecting aquatic organisms and predicting minimum adverse biological effects, and 2) four bioassay toxicity tests conducted on 20 of the 27 Salmon Bay sediment samples.

At least one chemical was detected above FSQVs in 23 of the 27 samples. Tributyltin concentrations were above the SL in 26 of the 27 Salmon Bay sediments. One of the reference samples (10B2) had mercury above the FSQV, and the other reference sample (10A2) had TBT above the SL. Most samples had multiple chemicals above FSQVs/SL, with seven as the median number of exceedences at each station. Only one station (6C2, located east of Fisherman's Terminal) had no chemicals above FSQVs or the SL.

Eighteen of the 20 Salmon Bay sediments were toxic to at least one bioassay organism. One-half of the samples showed a toxic response in three or more toxicity tests. The *Chironomus* growth test was the most sensitive bioassay, followed by Microtox, *Hyalella* survival, and *Chironomus* survival. Toxicity of sediments appeared to be positively correlated to the number of chemicals above FSQVs/SL, although this pattern is somewhat inconsistent. It appears that the number of organic chemicals exceeding FSQVs is more closely related to toxicity than to the degree of metals contamination in samples. A coarse analysis of the relationship between individual chemicals or chemical groups suggests that PAHs (LPAH, HPAH, or total PAH) are the most toxic, followed by carbazole, chromium, and bis(2-ethylhexyl)phthalate. Arsenic appeared to have the least toxicity among metals. TBT appeared to be the least toxic chemical analyzed in terms of relationships between relative concentration and toxic response. Like the "hot-spots" of chemical concentrations, toxicity exhibited an irregular distribution in Salmon Bay.

Recommendations

Focus sampling around highly contaminated areas (hot-spots) to better resolve and define the boundaries of contamination. Sampling should be designed to:

- 1. Determine concentration gradients with confidence.
- 2. Delineate a boundary with statistically significant differences in chemical concentration across the boundary.

The best candidates for focused sampling appear to be the areas around Stations 4F2, 8A2, and 2C2.

This page is purposely blank for duplex printing

References

- Cubbage, J., D. Batts, and S. Breidenbach, 1997. <u>Creation and Analysis of Freshwater Sediment Quality Values in Washington State</u>. Pub. No. 97-323a. Environmental Investigations and Laboratory Services Program, Washington State Department of Ecology, Olympia, WA.
- Ecology, 1991. <u>Sediment Management Standards</u>. Washington Administrative Code (WAC) Chapter 173-204.
- EPA, 1986a. <u>Puget Sound Estuary Program (PSEP)</u>: Recommended Protocols for Measuring <u>Selected Environmental Variables in Puget Sound</u>. U.S. Environmental Protection Agency Region 10, Office of Puget Sound, Seattle, WA.
- EPA, 1986b. <u>Test Methods for Evaluating Solid Waste</u>. U.S. Environmental Protection Agency, Environmental Monitoring and Support Laboratory, Cincinnati, OH.
- EPA, 1996. Recommendations for Screening Values for Tributyltin in Sediments at Superfund Sites in Puget Sound, Washington. Prepared *for* U. S. Environmental Protection Agency Region 10 Superfund Program *by* Roy F. Weston, Inc., Seattle, WA.
- Krone, C.A., D.W. Brown, D.G. Burrows, S-L. Chan, and U. Varanasi, 1989. A Method for Analysis of Butyltin Species and Measurement of Butyltins in Sediment and English Sole Livers from Puget Sound. <u>Marine Environmental Research</u> 27:1-18.
- Michelsen, T., 1995. Letter dated July 14, 1995 reporting results of Phase I sampling of Salmon Bay and the Ship Canal by Ecology in April, 1995. Washington State Department of Ecology, Northwest Regional Office, Bellevue, WA.
- Michelsen, T., T.C. Shaw, and S. Stirling, 1996. <u>Testing, Reporting, and Evaluation of Tributyltin Data in PSDDA and SMS Programs</u>. PSDDA Issue Paper/SMS Technical Information Memorandum.
- Michelsen, T. and T.C. Shaw, 1996. <u>Statistical Evaluation of Bioassay Results</u>. PSDDA Clarification Paper/SMS Technical Information Memorandum.
- Serdar, D. and J. Cubbage, 1996. <u>Chemical Contaminants in Salmon Bay Sediments</u>. Pub. No. 96-343. Environmental Investigations and Laboratory Services Program, Washington State Department of Ecology, Olympia, WA.

This page is purposely blank for duplex printing

Appendices

This page is purposely blank for duplex printing

Appendix A

Station Descriptions

Field Observations

This page is purposely blank for duplex printing

Table A-1. Salmon Bay Phase III Station Descriptions.

 -																															
Location Description	Off Pacific Fishermen, Inc.	Off 20th Ave NW	Off Ballard Mill Properties	Off Time Oil inside pier near end	Off Time Oil inside pier east of 3B2	Off float on west side of Marco Shipyard	Off NW corner of Marco Shipyard drydock	Off Lake Union Boat Center	Off Seattle Maritime Education	West End of Fishermen's Terminal	East End of Fishermen's Terminal	Under 15th Ave. bridge	Off Bakketun & Thomas Boat Refitters	North of breakwater for locks	Mid-channel off 20th Ave. NW	Mid-channel off Foss dock	Off Commercial Marine Center by 14th Ave.	Off Seattle Steel	Off small cove by Seattle Steel	Off unknown property	By docks at Union Bay Shipbuilding	Off Union Bay Shipbuilding	Off west side of Foss	Off Always Ready Bldg.	By Army Corps Bldg. At locks	Off Seaborn Marine Terminal	Off end of pier at Seattle Shop Bldg.	Reference - Sheridan Beach in Lake Washington	Reference - Wolf Beach in Lake Washington	Reference - Wolf Beach in Lake Washington	Reference - Wolf Beach in Lake Washington
(sec)	15.30	54.48	48.24	35.76	32.94	07.74	05.46	34.14	27.72	51.00	30.18	28.86	29.40	28.44	56.88	52.86	18.66	05.64	05.70	20.82	58.86	59.34	59.16	49.98	38.70	30.18	24.48	25.86	50.46	49.68	51.06
Long (deg) Long (min)	23	22	22	22	23	23	23	22	22	22	22	22	22	23	22	21	22	22	22	22	21	21	21	21	23	23	23	16	15	15	15
	122	122	122	122	122	122	122	122	122	122	122	122	122	122	122	122	122	122	122	122	122	122	122	122	122	122	122	122	122	122	122
Lat (min) Lat (sec)	90.00	49.38	42.30	50.64	50.82	45.60	44.64	39.36	39.78	22.68	24.36	25.80	32.28	56.40	44.70	20.70	38.64	30.60	30.36	29.88	26.64	25.26	21.78	14.88	59.04	01.14	59.46	49.26	48.60	48.48	49.68
	40	39	39	39	39	39	39	39	39	39	39	39	39	39	39	39	39	39	39	39	39	39	39	39	39	40	39	44	39	39	39
Lat (deg)	47	47	47	47	47	47	47	47	47	47	47	47	47	47	47	47	47	47	47	47	47	47	47	47	47	47	47	47	47	47	47
Depth (ft)	15	30	20	18	17	36	36	15	2	7	7	19	15	27	37	32	16	12	17	16	13	22	21	18	15	∞	21	22	56	56	26
Date and Time Depth (ft) Lat (deg)	5/21/97 12:30	5/20/97 16:12	5/20/97 13:23	5/20/97 19:23	5/20/97 18:50	5/20/97 17:10	5/20/97 16:46	5/20/97 12:25	5/20/97 12:00	5/19/97 18:41	5/19/97 19:55	5/19/97 19:30	5/20/97 9:05	5/21/97 8:44	5/20/97 15:49	5/19/97 15:19	5/20/97 8:41	5/20/97 15:06	5/20/97 15:29	5/20/97 9:41	5/20/97 17:42	5/19/97 16:59	5/19/97 16:25	5/19/97 15:51	5/21/97 9:17	5/21/97 10:13	5/21/97 10:42	5/19/97 11:30	5/19/97 13:30	5/19/97 13:55	5/19/97 14:15
Sample No.	8281	8282	8283	8284	8285	8286	8287	(8288/8308)/8312	8289	8290	8291	8292	8293	8294	8295	8296	8297	8298	8299	8300	8301	8302	8303	8304	8305	8306/8309	8307	8310	8311	8311	8311
Station	1B3	2B2	2C2	3B2	3B3	3C2	3C3	4B2 (4B3	4C2	4F2	4F3	4F4	5A2	5B2	5D2	6A2	6B2	6B3	6C2	7A2	7A3	7B2	7C2	8A2	8C2	8C3	10A2	10B2a	10B2b	10B2c

Table A-2. Field Observations Made During Phase III Sampling.

Station Color	Color	Odor	Oil Sheen?	Oil Sheen? Composition	Comments
1B3	dark brown	slight petroleum	slight	± <u>:</u>	
3					Had terrible time obtaining sample. Moved station after 10-12 attempts. Much large debrts. This is the station where they had run the boat prop with boat against dock?
2B2	dark brown	oil	yes	silty, mucky	Leaves & twigs
2C2	dark brown	none	ou	silty	Chunks of organic debris
3B2	medium brown	slight petroleum	no	silty and fine	
3B3	brown	petroleum	yes	sand & silt	Chunks of debris and clay
3C2	dark brown	muddy	spots	silty muck	
3C3	dark brown	muddy	spots	muck	Tarps over dry dock opening doing poor job of containment.
4B2	very dark brown	slight muddy	slight	silty	
4B3	dark brown	sedimenty	slight	silt	A little organic debris
4C2	black/brown	none	yes	fine mucky silt	Composite of 2 grabs
4F2	brownish black		yes		Red paint chips
4F3	brownish		yes	silty sand	
4F4	greyish brown	oily, muddy	slight	silty	Large organic debris
5A2	medium brown	none	ou	silt	
5B2	dark brown	rotten eggs	ou	very silty, mucky	
5D2	grey		slight	sandy	2 grabs, broken glass, rusty metal, paint chips
6A2	dark brown	none	slight	silty	A few red paint chips, a little organic debris
6B2	dark brownish grey	oily, muddy	yes	silty, mucky	Large oil sheen came up with sample
6B3	dark brown	none	slight	mucky, silty	
6C2	grey		light	clay	Moved from original site which had a lot of wood debris.
7A2	medium brown		yes	silty, clay clumps	Composite of 2 grabs, large chunks of organic debris, red paint chips
7A3	grey		spots	silt & sand, chunks of clay	Wood debris, one blue paint chip
7B2	brown	none	no	sand & chunks	
7C2	grey/brown			silt & sand, chunks of clay	
8A2	brown	mild oil		silt	Composite of 3 grabs
8C2	dark brown	none	spots	lumpy silt with sand	
8C3	dark brown	none	no	silt/clay	Composite of 2 grabs. Boats were anchored at planned station. Bits of rusted metal debris, some red paint chins
10A2	chocolate	none	ou	fines & silt	Big clam in grab
10B2					
10B2a	grey	none	no	silts sand	First of 3 grabs, clams.
10B2b	grey	none	ou	silts sand	Second of 3 grabs, clams.
10B2c	grey	none	no	silts sand	Third of 3 grabs, clams.

Appendix B

Quality Assurance Data

This page is purposely blank for duplex printing

State of Washington Department of Ecology Manchester Environmental Laboratory 7411 Beach Dr. East Port Orchard WA. 98366

July 15; 1997

Project: Salmon Bay Sediments

Samples: 21-8281-8312

Laboratory: Rosa Environmental

By: Pam Covey

Case Summary

These samples required thirty-two (32) Grain Size analyses on sediment using Puget Sound EstuaryProtocol (PSEP) method.

The samples were received at the Manchester Environmental Laboratory on May 22, 1997 and transported to Rosa Entironmental on May 29, 1997 for Grain Size analyses.

The analyses were reviewed for qualitative and quantitative accuracy, validity and usefulness.

The results are acceptable for use as reported.

ROSA ENVIRONMENTAL & GEOTECHNICAL LABORATORY, LLC.

Washington State Department of Ecology
Manchester Laboratory
Salmon Bay Project
Narrative

The following notes were taken during the analyses.

- 1. The samples were analyzed for grain size distribution following the Puget Sound Estuary Protocol. The samples were not treated for organics, and are thus reported as "apparent" grain size distributions. There were not any significant deviations from the procedure, nor were there any significant anomalies in the sediment samples, except as noted below.
- 2. Sample 21-8291 did not contain enough fines to get the required 5 grams for the pipette portion of the analysis. This small sample size may have biased the data.
- 3. Sample 21-8296 had a large rock, which was excluded from the analysis (it was approximately 1.5" x 1").
- 4. Samples 21-8298 and 21-8299 had an oily sheen during the washing and pipetteing portions of the analysis.
- 5. Sample 21-8303 was mostly peat, with some coarse sand. After washing the minus #230 material, the sample was oven dried at 90° C. During the oven drying, the peat formed a thick mass that resisted breaking up for the sieve portion of the analysis. Every effort was made to separate the fibers without compromising the grain size, but the chunks of peat would not break up into individual particles. The sieve data reported indicates a sample that is much more coarse that it actually was, and the data should be evaluated carefully. Also, because the sample was mostly organic and water (472% water on a dry weight basis), there was not enough fines (3.68 g.) to meet the required 5 gram minimum.
- 6. The triplicate run on sample 21-8307 needs to be evaluated carefully. The second sample in the triplicate had a large piece of rusted iron retained on both the #4 and #10 sieves. There were no pieces of iron visible in the other samples of the set. The presence of metal fragments may have skewed the entire analysis, if the finer fractions also contained significant amounts of metal, as the specific gravity of the sediment in the pipette portion of the analysis would be higher than accounted for by the procedure.
- 7. Sample 21-8309 had what appeared to be a green seguin retained on the #10 sieve.
- 8. Sample 21-8312 had an oily sheen on it during washing and pipetteing.

Washington State Department of Ecology Manchester Laboratory

July 11, 1997

TO: Jim Cubbage

FROM: Aileen Richmond, Technician

THROUGH: Becky Bogaczyk, Chemist

SUBJECT: General Chemistry Quality Assurance memo: Salmon Bay, week 21.

SUMMARY

The data generated by the analysis of these samples is acceptable for use. Some samples have a holding time issue.

SAMPLE INFORMATION

These samples were received by Manchester Laboratory on 5/22/97 in good condition.

HOLDING TIMES

The samples were analyzed within the EPA holding times for total organic carbon and total solids with the exception of those samples collected on 5/19/97. Total solids (percent solids) samples # 97-218290, 91, 92, 96, and 97-218302, 3, 4, 10, and 11 were analyzed one day past the holding due to several things. The memorial day weekend, transit time, and the visit of Dan Silver to the lab were the main interferences with timely analysis.

ANALYSIS PERFORMANCE

Instrument Calibration

Where applicable, instrument calibration was performed before each analytical run and checked by initial calibration verification standards and blanks. All initial and continuing calibration verification standards were within the relevant USEPA (CLP) control limit. A correlation coefficient of 0.995 or greater was met as stated in CLP calibration requirements. The turbidimeter is standardized quarterly and calibrated with known check standards before each analytical run. All balances are calibrated yearly with calibration verification occurring monthly. Oven temperatures are recorded before and after analyses to ensure control.

Laboratory Control Sample

The laboratory controls were within acceptance windows.

Precision Data

Results from duplicate analysis were used to evaluate precision. All were within the acceptance window of \pm 20 % Relative Percent Difference(RPD).

Procedural Blanks

Procedural blanks associated with these samples showed no analytically significant levels of analytes.

Other Quality Assurance Measures and Issues

The percent solid results for samples # 97-218290, 91, 92, 96, and 97-218302, 3, 4, 10, and 11 are qualified as estimates because they were analyzed one day past the holding time.

Total organic carbon samples # 97-218292, 95, and 97-218308 do not have replicate results for the 104°C analysis because the analyst running the 104°C determination did not duplicate the same samples as the analyst running the total organic carbon and 70°C percent solids determination.

Please call Aileen Richmond at 360-871-8823, or Becky Bogaczyk if you have any questions.

cc: Bill Kammin
Project file

Table B-1. Precision of Field Sampling and Laboratory Analysis for Grain Size Composition.

<1 um	5	1	3	133%	ď	, w	3	%0	2	0	_	200%	∞	7	7	7	8%	_	_	1	1	%0
1-2 um <1	2	8	9	50% 1	ď	0	က	185%	ო	4	4	25% 2	6	7	7	8	14%	က	2	2	2	29%
2-3.9 um 1-	7	7	7	%0	^	. ∞	80	13%	2	2	4	75%	∞	6	10	6	11%	7	6	8	8	13%
	10	12	11	18%	-	. 4	14	20%	ა	∞	9	20%	4	4	4	14	%0	13	4	13	13	4%
.6 um 3.9-7	17	18	18	%9	ά	. 8	18	3%	9	80	7	29%	19	19	20	19	3%	14	15	17	15	10%
500-1000 um 200-500 um 125-200 um 62-125 um 31-62 um 15.6-31 um 7.8-15.6 um 3.9-7.8 um	20	21	20	2%	00	16	18	22%	თ	80	8	13%	17	17	16	17	3%	22	21	18	20	10%
um 15.6-3	15	15	15	%0	7	50	18	29%	10	10	10	%0	9	2	80	9	25%	12	13	15	13	12%
5 um 31-62	10	10	10	%0	0	12	11	18%	15	4	14	%2	4	4	4	4	%0	19	17	17	18	%9
um 62-125	7	2	9	33%	v.	, e	4	75%	33	28	30	10%	က	ო	က	3	%0	œ	7	7	7	%8
n 125-200	3	2	2	20%	0	ı -	2	. %29	13	11	12	17%	ဗ	4	က	3	19%	_	_	2	1	28%
00-500 ur				20				22				17					19					28
1000 um 2	1	0	1	200%	-	-	-	%29	ო	က	က	%0	4	4	4	4	%0	0	0	0	0	
2000 um 500-	0	1	1	200%	+	. 0	0	200%	-	_	-	%0	4	2	4	3	38%	0	0	0	0	
50 um 1000-:	0	0	0		C	0	0		0	0	0		-	2	0	-	100%	0	0	0	0	
<4750 um 2000-4750 um 1000-2000 um	0	0	0		c	0	0		0	0	0		0	ဇ	0	-	173%	0	0	0	0	
<475	%	%	mean=	RPD=	%	: %	mean=	RPD=	%	%	mean=	RPD=	%	%	%	mean=	RSD=	%	%	%	mean=	RSD=
QA type	split	split			fld	fld rep			split				lab rep	lab rep	lab rep			lab rep	lab rep	lab rep		
Station	4B2	9A2			4R2/9A2	9C2			8C2	9B2			8C3	8C3	803			10A2	10A2	10A2		
Sample No.	97218288	97218308			97218288/97218308 4R2/942	97218312			97218306	97218309			97218307	97218307	97218307			97218310	97218310	97218310		

Table B-2. Precision of Field Sampling and Laboratory Analysis for Organic Carbon and Solids Composition.

Sample No.	Station	QA type		TOC70	TOC10	04 9	Solids	
97218288	4B2	split	%		6.5	6.4		26.6
97218308	9A2	split	%		6.0	6.2		26.5
			mean=		6.2	6.3		26.6
			RPD=	8	3.1%	3.2%		0.4%
97218288/972		fld rep	%		6.2	6.3		26.6
97218312	9C2	fld rep	%		5.9	6.5		27.2
			mean=		6.2	6.4		26.9
			RPD=	4	.8%	3.1%		2.4%
97218306	8C2	split	%		4.2	4.4		44.2
97218309	9B2	split	%		4.4	4.6		42.7
			mean=		4.3	4.5		43.4
			RPD=	4	.7%	4.4%		3.5%
97218292	4F3	lab rep	%		7.6			
97218292	4F3	lab rep	%		7.4			
97218292	4F3	lab rep	%		7.1			
			mean =		7.4			
			RSD=	3	3.4%			
97218295	5B2	lab rep	%		4.9			
97218295	5B2	lab rep	%		5.2			
37210233	JDZ	автер	mean =		5.0			
			RPD=	C	5.0%			
97218308	9A2	lab rep	%		6.0			
97218308	9A2	lab rep	%		5.9			
97218308	9A2	lab rep	%		6.1			
			mean =		6.0			
			RSD=	1	.7%			
07219200	4C2	lab rep	%					38.1 H
97218290 97218290	4C2 4C2	-	%					38.2 H
97210290	402	lab rep				-		
			mean=					38.2
			RPD=					0.3%
97218300	6C2	lab rep	%					45.6
97218300	6C2	lab rep	%					45.9
			mean =			_		45.8
			RPD=					0.7%
07040040	4040	lah	0/					20.2.11
97218310	10A2	lab rep	%					38.2 H
97218310	10A2	lab rep	%			_		38.3 H
			mean =					38.2
			RPD=					0.3%
97218312	9C2	lab rep	%					27.0
97218312	9C2	lab rep	%					27.4
		-	mean =			_		27.2
			RPD=					1.5%

H=Exceeds recommended holding time

July 3, 1997

To: Jim Cubbage 78/

From: Randy Knox, Metals Chemist

Subject: Salmon Bay Project Sediment

QUALITY ASSURANCE SUMMARY

Data quality for this project is generally good. High iron levels in some samples interfered with arsenic. Samples 97218298 and 97218299 had extremely high iron levels. Cadmium on 97218298 showed poor replicate precision. No other significant quality assurance issues are noted with the data.

SAMPLE INFORMATION

The samples from the Salmon Bay Project were received by the Manchester Laboratory on 5/22/97 in good condition.

HOLDING TIMES

All analyses were performed within the USEPA Contract Laboratory Program (CLP) holding times for metals analysis (28 days for mercury, 180 days for all other metals).

INSTRUMENT CALIBRATION

Instrument calibration was performed before each analytical run and checked by initial calibration verification standards and blanks. Continuing calibration standards and blanks were analyzed at a frequency of 10% during the run and again at the end of the analytical run. All initial and continuing calibration verification standards were within the relevant USEPA (CLP) control limits. AA calibration gave a correlation coefficient (r) of 0.995 or greater, also meeting CLP calibration requirements. Internal standard used for ICP-MS analysis of arsenic was outside allowed limits for the high iron sample, 97218298 and 97218299. Arsenic data for these samples is qualified J, as estimated.

PROCEDURAL BLANKS

The procedural blanks associated with these samples show no analytically significant levels of analyte.

SPIKED SAMPLES ANALYSIS

Spiked and duplicate spiked sample analysis were performed on this data set. All spike recoveries are within the CLP acceptance limits of +/- 25%.

PRECISION DATA

The results of the spiked and duplicate spiked samples are used to evaluate precision on this sample set. The relative percent difference (RPD) for all analytes is within the 20% CLP acceptance window for duplicate analysis. One spiked sample pair in the mercury analysis showed a relative percent difference of 21. Since we also ran a duplicate of this sample with the RPD within the allowed 20%, data was not qualified based on this result. ICP data showed a high relative standard deviation of results for cadmium on sample 97218298. Cadmium data, for this sample only, is qualified J as estimated.

SERIAL DILUTION

A five times serially diluted portion of several samples was analyzed by ICP and the analytical results, corrected for dilution were compared to the original sample analyses as a test for interference. The RPD (relative % difference) for all analytes at levels greater than 50 times the detection level was within the allowed 10%. Arsenic levels less than 200 mg/Kg, determined by ICP, on samples with iron greater than 50000 mg/Kg are qualified J. Interference was noted to be significant for lower level arsenic samples for this iron level.

LABORATORY CONTROL SAMPLE (LCS) ANALYSIS

LCS analyses are within the windows established for each parameter.

Please call Randy Knox at SCAN 360-871-8811 or Jim Ross at SCAN 360-871-8808 to further discuss this project.

RLK:rlk

STATE OF WASHINGTON

DEPARTMENT OF ECOLOGY

MANCHESTER ENVIRONMENTAL LABORATORY

7411 Beach Drive East * Port Orchard, Washington 98366-8204 * (360) 871-8860 *

August 14, 1997

TO:

Jim Cubbage

EILS

THROUGH: Bill Kammin

Laboratory Direct

FROM:

Susan Davis

Mercury Analyst

SUBJECT:

Replacement of Mercury Analysis Report

Please replace your current Mercury Analysis Report for Salmon Bay with this version. This new report has been corrected to an actual Dry Weight unit value. It was the policy of the Manchester Laboratory, prior to August 1 of this year, to report Mercury in sediment on a wet-weight, or as-received, basis. At the request of our clients we will discontinue this practice. All future sediments analyzed for Mercury will reflect a Dry Weight value.

Thank you for your patience with this cross-over, and please let us know if you have other suggestions or questions where we might be of help to you.

SD

Attachment

Table B-3. Precision and Accuracy of Metals Data.

			As	As							
Sample No.	QA Type	Field ID	EPA 200.8	EPA 200.7	Hg	Cd	Cr	Cu	Pb	Ni	Zn
8288	Field Splits	4B2	14.3	na	0.8	2.1	133	619	204	113	527
8308	(ug/g, dry)	9A2	13.5	na	0.972	1.8	107	484	177	94.7	418
	•	mean=	13.9		0.9	2.0	120	552	191	104	473
		RPD=	6%		19%	15%	22%	24%	14%	18%	23%
8306	Field Splits	8C2	12.1	na	1.1	1.2	44.7	207	196	40.4	416
8309	(ug/g, dry)	9B2	11.6	na	1.3	1.4	44.9	204	192	37	422
	•	mean=	11.9		1.2	1.3	44.8	205.5	194	39	419
		RPD=	4%		17%	15%	0.4%	1%	2%	9%	1%
8288/8308	Field Replicates	4B2/9A2	13.9	na	0.9	2.0	120	552	191	104	473
8312	(ug/g, dry)	9C2	13	na	1.03	1.5 U	122	520	184	101	433
	•	mean=	13		1.0		121	536	187	102	453
		RPD=	7%		15%		2%	6%	3%	3%	9%
8285	Lab Duplicates	3B3	na	na	2.48	na	na	na	na	na	na
8285	(ug/g, dry)	3B3	na	na	3	na	na	na	na	na	na
	•	mean=			2.7						
		RPD=			19%						
8303	Lab Duplicates	7B2	na	na	0.075	na	na	na	na	na	na
8303	(ug/g, dry)	7B2	na	na	0.119	na	na	na	na	na	na
0000	•	mean=	i i i	iid.	0.097	i i u	Πα	Πα	Πα	Πα	na
		RPD=			45%						
	Matrix Cailes (0)										
8281	Matrix Spikes (% recov.)	1B3	100	95	na	90	88	NC	82	84	NC
8281	10004.)	1B3	100	89	na	94	82	NC	82	85	NC
		mean=	100	92		92	85		82	85	
		RPD=	0%	7%		4%	7%		0%	1%	
8312	Matrix Spikes (%	9C2	86	91	na	104	80	NC	112	84	104
8312	recov.)	9C2	79	89	na	108	103	NC	106	95	103
	•	mean=	83	90		106	92		109	90	104
		RPD=	8%	2%		4%	25%		6%	12%	1%
8303	Matrix Spikes (%	700	20	20	107			20	20		
8303	recov.)	7B2 7B2	na na	na	107 107	na	na	na	na	na	na
0303	•	mean=	- IIa	na	107	na	na	na	na	na	na
		RPD=			0%						
LCS71269	Lab Control	M7155SL1	94	94	no	98	96	98	107	100	94
LCS71209 LCS71270	Samples (%	M7155SL1	90	88	na na	93	90	90	107	93	88
LOOI 1210	recov.)	mean=	90	91	ıια	96	93	95	105	97	91
		RPD=	92 4%	7%		5%	93 6%	95 7%	5%	7%	7%
27071264	Lab Control Samples (% recov.)	M7154SG	na	na	99	na	na	na	na	na	na
BLN71267	Lab Blanks	M7155SB1	3 L	J 0.3 U	na	0.3 U	0.5 U	1 U	2 U	1 U	2 L
BLN71268	(ug/g, dry)	M7155SB2			na	0.3 U	0.5 U	1 U	2 U	1 U	2 U
BLN71263		M7154SH	na	na	0.005 U	na	na	na	na	na	na
	d at concentration	10 1011	iiu	iiu .	2.200	114	114	i i d	114	114	114

U=Undetected at concentration shown

na=not analyzed

NC=Not Calculated

MANCHESTER ENVIRONMENTAL LABORATORY

7411 Beach Drive E, Port Orchard Washington 98366

CASE NARRATIVE

September 19, 1997

Subject: Salmon Bay

Samples: 97218281 to 97218312

Case No. 1259-97

Officer: Jim Cubbage

By: Dickey D. Huntamer Organics Analysis Unit

SEMIVOLATILE ORGANICS

ANALYTICAL METHODS:

The semivolatile soil samples were extracted with acetone following the Manchester modification of the EPA CLP and SW 846 8270 procedure with capillary GC/MS analysis of the sample extracts. Normal QA/QC procedures were performed with the analyses. Most of the samples had a high water content and low percent, solids. Consequently a solvent back extraction of the water layer remaining after the Soxhlet extraction was used in addition to sodium sulfate to dry the extracts.

HOLDING TIMES:

All sample and extraction holding times were within the recommended limits.

BLANKS:

Low levels of some target compounds were detected in the laboratory blanks. The EPA five times rule was applied to all target compounds which were found in the blank. Compounds that were found in the sample and in the blank were considered real and not the result of contamination if the levels in the sample are greater than or equal to five times the amount of compounds in the associated method blank.

SURROGATES:

The normal Manchester Laboratory surrogates were added to the sample prior to extraction. Generally surrogate recoveries were within acceptable limits except for sample 97218281 which had 4% to 13% recoveries of all analytes. The data, for 97218281 was "J" qualified. A few other samples 97-218299, 972182886, 972182887, 972182895 and 97218309 had one surrogate below the recommended guidelines but all other surrogates were acceptable and no qualifiers were added to the data.

Sample 97218289 had six of eight surrogates which were higher than the guidelines which was probably due to the low internal standard areas. Those compound results in sample 97218289 affected by the internal standard areas were "J" qualified.

MATRIX SPIKE AND MATRIX SPIKE DUPLICATE:'

Matrix spike recoveries were low (<40%) for pyridine, aniline, 2,2'oxybis(1-chloropropane), hexchloroethane, nitrobenzene, hexachlorocylcopentadiene, 3 and 4-nitroanilines, and 4-chloroaniline. High native concentrations caused low calculated recoveries for pyrene, chrysene, bis-(2-ethylhexyl)phthalate and benzo(b)fluoranthene. The "J" qualifier was added to the results for these compounds in the matrix source sample 97218294. Hexachlorocyclopentadiene was not recovered and the data in the source sample was flagged as rejected "REJ".

ANALYTICAL COMMENTS:

No special analytical problems were encountered in the semivolatile analyses other one sample with low surrogates and another with low internal standard area counts. One other analytical problem was the high water content which in some samples exceeded 70%. This resulted in higher quantitation limits for some samples.

Quantitation limits were reported not detection limits. Detection limits were generally three or four times lower than the quantitation limits. An example is sample 97218311 where the quantitation limit for naphthalene and the methylnaphthalenes is 63U but the analytes were detected at 18J, 16J and 8J respectively. The data is acceptable for use as qualified.

DATA QUALIFIER CODES:

U - The analyte was not detected at or above the reported v	alue.
---	-------

J - The analyte was positively identified. The associated numerical value is an <u>estimate</u>.

UJ - The analyte was not detected at or above the reported estimated result.

REJ - The data are unusable for all purposes.

EXP - The result is equal to the number before EXP times 10 to the power of the number after EXP. As an example 3EXP6 equals 3 X 10⁶.

NAF - Not analyzed for.

N - For organic analytes there is evidence the analyte is present in this sample.

NJ - There is evidence that the analyte is present. The associated numerical result is an estimate.

E - This qualifier is used when the concentration of the associated value exceeds the known calibration range.

bold - The analyte was present in the sample. (Visual Aid to locate detected compound on report sheet.)

CN SBBNA.DOC

Table B-4. Precision and Accuracy of Semivolatile Organics Data.

		٦	¬ I	٦	
S-Methylphenol	67 51 27%	93 J 246 U 93 JFSU	93 JFSU 96 J 93 J 3%	144 U 72 J 72 JFSU	133 U 133 U 133 U
Benzyl Alcohol	75 58 26%	130 J 211 170 J 48%	170 J 127 U 170 JFRU	72 U 31 J 31 JFSU	267 U 267 U 267 U
ensznedorold:2,۲ عبالا	50 46 8%	264 U 246 U 246 U	246 U 254 U 246 U	144 U 176 U 144 U	267 U 267 U 267 U
eneznedo1oldɔid-4, ۲	47 45 4%	264 U 246 U 246 U	246 U 27 J 27 JFRU	111 J 76 J 94 J 37%	267 U 267 U 267 U
9neznedorold:d-£, f	46 42 9%	132 U 123 U 123 U	123 U 127 U 123 U	72 U 88 U 72 U	267 U 267 U 267 U
S-Chlorophenol	64 51 23%	132 U 123 U 123 U	123 U 127 U 123 U	72 U 88 U 72 U	267 U 267 U 267 U
Bis(2-Chloroethyl)Ether	49 40 20%	132 U 123 U 123 U	123 U 127 U 123 U	72 U 88 U 72 U	267 U 267 U 267 U
Рhenol	66 52 24%	172 171 172 1%	172 181 176 5%	63 J 102 82 J 48%	133 U 133 U 133 U
ənilinA	3 4 29%	659 U 616 U 616 U	616 U 635 U 616 U	360 U 441 U 360 U	267 U 267 U 267 U
ənibiny¶	NAF	659 UJ 616 UJ 616 UJ	616 UJ 254 UJ 254 UJ	360 UJ 441 UJ 360 UJ	267 U 267 U 1850
9-Witrosodimethylamine	47 40 16%	659 U 616 U 616 U	616 U 635 U 616 U	360 U 441 U 360 U	267 U 267 U 267 U
Units	% %	ng/Kg ng/Kg ng/Kg	ng/kg ng/kg ng/kg	ug/Kg ug/Kg ug/Kg	ug/Kg ug/Kg ug/Kg
ОА туре	LMX1 LMX2 RPD=	split split mean RPD=	fld rep fld rep mean RPD=	split split mean RPD=	BLNK BLNK BLNK
Station	5A2 5A2	4B2 9A2	4B2/9A2 9C2	8C2 9B2	OBS7148B1 OBS7148B2 OBS7153A
Sample No.	97218294 97218294	97218288 97218308	97218288/97218308 97218312	97218306 97218309	BLN72138 BLN72139 BLN72140

Table B-4. Precision and Accuracy of Semivolatile Organics Data.

eneznedoroldzirT-4,2,1	68	U 132 U	U 123 U	U 72 U
	56	U 123 U	U 127 U	U 88 U
	19%	U 123 U	U 123 U	U 72 U
lonəhqoroldəid-4,2	86	132 U	123 U	72 U
	66	123 U	N 127 U	88 U
	26%	123 U	FRU 123 U	72 U
Benzoic Acid	124 100 21%	2910 J 2950 J 2930 J 1%	2930 J 2540 UJ 2930 JFRU	1650 J 1830 J 1740 J
Bis(2-Chloroethoxy)Methane	73	132 U	123 U	72 U
	56	123 U	127 U	88 U
	26%	123 U	123 U	72 U
lonərlqlyhtəmid-4,2	67	132 U	123 U	72 U
	52	123 U	127 U	88 U
	25%	123 U	123 U	72 U
lonəhqortiM-S	56	659 U	616 U	360 U
	41	616 U	635 U	441 U
	31%	616 U	616 U	360 U
lsophorone	66	132 U	526 U	72 U
	51	526 U	127 U	88 U
	26%	526 U	127 U	72 U
Mitrobenzene	52	659 U	616 U	360 U
	36	616 U	635 U	441 U
	36%	616 U	616 U	360 U
Hexachloroethane	6	264 U	246 U	144 U
	5	246 U	254 U	176 U
	18%	246 U	246 U	144 U
-Меthylphenol	71 50 35%	476 497 486 4%	486 538 512 10%	591 631 611 7%
9nimslyqor9-N-iQ-oeortiN-N	58	264 U	246 U	144 U
	46	246 U	254 U	176 U
	23%	246 U	246 U	144 U
[=nsqo1qo1old>-1]eidyxO-'2,2	NAF	264 U 246 U 246 U	246 U 254 U 246 U	144 U 176 U 144 U
Units	% %	gy/kg ug/kg	ug/Kg ug/Kg ug/Kg	ug/Kg ug/Kg ug/Kg
QA type	LMX1 LMX2 RPD=	split split mean RPD=	fld rep fld rep mean RPD=	split split mean RPD=
Station	5A2	4B2	4B2/9A2	8C2
	5A2	9A2	9C2	9B2
Sample No.	97218294	97218308	97218288/97218308	97218306
	97218294	97218308	97218312	97218309

Table B-4. Precision and Accuracy of Semivolatile Organics Data.

Sample No.	Station	QA type	Units	Naphthalene	9-Chloroaniline	Hexachlorobutadiene	4-Chloro-3-Methylphenol	S-Methylnaphthalene	9-Methylnaphthalene	Hexachlorocyclopentadiene	lonəhqoroldəirT-8,4,2	lonəhqorolhcirT-Z,4,2	2-Chloronaphthalene	9-Witroaniline	Dimethylphthalate
97218294 97218294	5A2 5A2		% %	65 46	0 B	25	76 55	79	N A N	REJ	98 67	89 65	74	75 53	75
		RPD=	I	34%	40%	12%	32%	76%			25%		28%	34%	31%
97218288 97218308	4B2 9A2	split split	ug/Kg ug/Kg	3220 1420	659 U 616 U	132 U 123 U	264 U 246 U	555 598	192 303	659 UJ 616 UJ	264 U 246 U	264 U 246 U	132 U 123 U	659 U 616 U	311
		mean RPD=	ug/Kg	2320 78%	616 UJ	246 U	246 U	576 7%	248 45%	616 UJ	246 U	246 U	123 U	616 U	306 3%
97218288/97218308 97218312	4B2/9A2 9C2	fld rep fld rep	ug/Kg ug/Kg	2320 1080	616 UJ 635 U	246 U 127 U	246 U 254 U	576 471	248 240	616 UJ 635 UJ	246 U 254 U	246 U 254 U	123 U 127 U	616 U 635 U	306 253
		mean RPD=	ug/Kg	1700 73%	616 UJ	127 U	246 U	471 22%	244 3%	616 UJ	246 U	246 U	123 U	616 U	280 19%
97218306 97218309	8C2 9B2	split split mean	ug/Kg ug/Kg ug/Kg		360 U 441 U 360 U	72 U 88 U 72 U	144 U 176 U 144 U	227 213 220	102 99 100	360 UJ 441 UJ 360 UJ	144 U 176 U 144 U	144 U 176 U 144 U	72 U 88 U 72 U	360 U 441 U 360 U	52 J 43 J 48 J
BLN72138 BLN72139 BLN72140	OBS7148B1 OBS7148B2 OBS7153A	RPD= BLNK BLNK BLNK	ug/Kg ug/Kg ug/Kg	11% 133 U 133 U	133 U 133 U 133 U	133 U 133 U 133 U	133 U 133 U 133 U	6% 133 U 133 U 5.5 J	3% 133 U 133 U 3.3 J	1330 UJ 1330 UJ 1330 UJ	267 U 267 U 267 U	267 U 267 U 267 U	133 U 133 U 133 U	U 799 U 799 U 799	19% 267 U 267 U 267 U

Table B-4. Precision and Accuracy of Semivolatile Organics Data.

Sample No.	Station	QA type	Units	9nəulototiinid-8,2	Асепарhthylene	9-Nitroaniline	Acenaphthene	lonəhqortinid-4,2	lonəhqortil-4	Dibenzofuran	-P.C initrotoluene	etsladthqlyhteiQ	Fluorene	4-Chlorophenyl-Phenylether
97218294 97218294	5A2 5A2	LMX1 LMX2 RPD=	% %	62 45 32%	71 53 29%	14 12 15%	68 51 29%	73 60 20%	67 48 33%	73 59 21%	62 47 28%	75 56 29%	70 54 26%	77 58 28%
97218288 97218308	4B2 9A2	split split mean	ug/Kg ug/Kg ug/Kg	659 U 616 U 616 U	314 394 354	659 U 616 U 616 U	316 407 362	1320 UJ 1230 UJ 1230 UJ	659 U 616 U 616 U	443 384 414	1320 U 1230 U 1230 U	132 U 123 UJ 123 UJ	507 609 558	132 U 123 U 123 U
97218288/97218308 97218312	4B2/9A2 9C2	RPD= fld rep fld rep mean	ug/Kg ug/Kg ug/Kg	616 U 635 U 616 U	23% 354 331 342	616 U 635 U 616 U	25% 362 378 370	1230 UJ 1270 UJ 1230 UJ	616 U 635 U 616 U	14% 414 359 386	1230 U 1270 U 1230 U	123 UJ 127 U 123 UJ	18% 558 557 558	123 U 127 U 123 U
97218306 97218309	8C2 9B2	split split mean RPD=	ug/Kg ug/Kg ug/Kg	360 U 441 U 360 U	7% 112 112 0%	360 U 441 U 360 U	4% 216 272 244 23%	720 U 883 UJ 720 U	360 U 441 U 360 U	.14% 205 228 216 11%	720 U 883 U 720 U	72 U 88 J 88 JFSU	0% 328 322 325 2%	72 U 88 U 72 U
BLN72138 BLN72139 BLN72140	OBS7148B1 OBS7148B2 OBS7153A	BLNK BLNK BLNK	ug/Kg ug/Kg ug/Kg	267 U 267 U 267 U	133 U 6.7 J 6.6 J	267 U 267 U 267 U	133 U 133 U 16 J	2670 UJ 2670 UJ 2670 UJ	0 299 0 299 0 299	133 U 133 U 8.1 J	U 799 U 799 U 799	26 J 22 J 16 J	133 U 133 U 13 J	133 U 133 U 133 U

Table B-4. Precision and Accuracy of Semivolatile Organics Data.

Sample No.	Station	QA type	Units	ənilinsottiV-₽	lonədqlүdtəM-S-ottiniG-∂,₽	enimslynehqibosoritiV-V	9nizsıbyllynehqid-2, f	4-Bromophenyl-Phenylether	Hexachlorobenzene	Pentachlorophenol	Phenanthrene	ənəssidinA	enieß	Sarbazole
97218294 97218294	5A2 5A2	LMX1 LMX2 RPD=	% %	32 15 72%	62 47 28%	55 44 22%	60 45 29%	84 64 27%	81 61 28%	61 46 28%	60 47 24%	73 55 28%	NAF	NAF
97218288 97218308	4B2 9A2	split split mean RPD=	ug/Kg ug/Kg ug/Kg	264 U 246 U 246 U	1320 U 1230 U 1230 U	132 U 123 U 123 U	132 U 123 U 123 U	132 U 123 U 123 U	132 U 123 U 123 U	706 836 771 17%	2080 2670 2375 25%	660 880 770 29%	132 U 123 U 123 U	124 J 236 180 J 62%
97218288/97218308 97218312	4B2/9A2 9C2	fld rep fld rep mean RPD=	ng/Kg ng/Kg ng/Kg	246 U 254 U 246 U	1230 U 1270 U 1230 U	123 U 127 U 123 U	123 U 127 U 123 U	123 U 127 U 123 U	123 U 127 U 123 U	771 652 712 17%	2375 2370 2372 0%	770 744 757 3%	123 U 127 U 123 U	180 J 178 179 J 1%
97218306 97218309	8C2 9B2	split split mean RPD=	ng/Kg ng/Kg ng/Kg	144 U 176 U 144 U	720 U 883 U 720 U	72 U 88 U 72 U	72 U 88 U 72 U	72 U 88 U 72 U	72 U 88 U 72 U	269 J 329 J 299 J 20%	1600 1830 1715 13%	358 360 359 1%	72 U 88 U 72 U	139 182 160 27%
BLN72138 BLN72139 BLN72140	OBS7148B1 OBS7148B2 OBS7153A	BLNK BLNK BLNK	ug/Kg ug/Kg ug/Kg	1330 U 1330 U 1330 U	1330 U 1330 U 1330 U	133 U 133 U 133 U	133 U 133 U 133 U	133 U 133 U 133 U	133 U 133 U 133 U	1330 U 1330 U 1330 U	133 U 133 U 76 J	133 U 133 U 22 J	133 U 133 U 133 U	133 U 133 U 12 J

U= Undetected at concentration shown
J= Estimated concentration
NAF= Not analyzed for
FSU= Field split undetected
FRU= Field rep undetected

Table B-4. Precision and Accuracy of Semivolatile Organics Data.

					777
Bis(2-Ethylhexyl) Phthalate	36 36	4330 4170 4250 4%	4250 4240 4245 0%	3090 2780 2935 11%	34 J 36 J 26 J
Сһгуѕепе	65 39 50%	1710 2110 1910 21%	1910 1970 1940 3%	973 1180 1076 19%	133 U 133 U 20 J
3,3'-Dichlorobenzidine	NAF	264 U 246 U 246 U	246 U 254 U 246 U	144 U 176 U 144 U	2670 U 2670 U 2670 U
Benzo(a)anthracene	68 48 34%	1180 1550 1365 27%	1365 1390 1378 2%	722 881 802 20%	133 U 133 U 133 U
Butylbenzylphthalate	74 56 28%	274 246 U 274 FSU	274 FSU 286 280 4%	223 159 J 191 J 34%	133 U 133 U 133 U
Retene	NAF	5400 3290 4345 49%	4345 3160 3752 32%	1080 1030 1055 5%	133 U 133 U 133 U
Pyrene	44 22 67%	3540 3600 3570 2%	3570 3760 3665 5%	2070 2300 2185 11%	133 U 133 U 52 J
9nibizn98	NAF	264 U 246 U 246 U	246 U 254 U 246 U	144 U 176 U 144 U	267 U 267 U 267 U
Fluoranthene	71 56 24%	3370 4050 3710 18%	3710 3720 3715 0%	2530 2800 2665 10%	133 U 133 U 49 J
Di-N-Butylphthalate	73 59 21%	805 597 701 30%	701 261 481 91%	132 J 175 J 154 J 28%	48 J 123 J 47 J
Units	% %	ug/Kg ug/Kg ug/Kg	ug/Kg ug/Kg ug/Kg	ug/Kg ug/Kg ug/Kg	ug/Kg ug/Kg ug/Kg
ОА туре	LMX1 LMX2 RPD=	split split mean RPD=	fld rep fld rep mean RPD=	split split mean RPD=	BLNK BLNK BLNK
Station	5A2 5A2	4B2 9A2	4B2/9A2 9C2	8C2 9B2	OBS7148B1 OBS7148B2 OBS7153A
Sample No.	97218294 97218294	97218308 97218308	97218288/97218308 97218312	97218306 97218309	BLN72138 BLN72139 BLN72140

Table B-4. Precision and Accuracy of Semivolatile Organics Data.

Benzo(ghi)perylene	72 46	44%	1520		%9	0.7	1620 1595	%	4	32	268	%	33 U	133 U	33 U
	1- 1	44	15,	15	9	15	16,	n	ζì	26	2(∞	¥	¥	¥
Dibenzo(a,h)anthracene	79	32%	294	312	11%	312	332	%9	159	184	172	15%	133 U	133 U	133 U
Indeno(1,2,3-cd)pyrene	76 53	36%	1350	1430	11%	1430	1460	2%	586	657	622	11%	267 U	267 U	267 U
3B-Coprostanol	N N A N		2820	2795	2%	2795	3590 31922	2%	4780	3890	4335	21%	1330 U	1330 U	1330 U
Benzo(a)pyrene	67 44	41%	1620	1745	14%	1745	1800	3%	689	822	226	18%	133 U	133 U	6.9 ∫
Benzo(k)fluoranthene	75 57	27%	751	816	16%	816	806	1%	406	492	449	19%	133 U	133 U	€.9
Benzo(b)fluoranthene	59 36	48%	2080	2310	20%	2310	2510 2410	8%	1130	1280	1205	12%	133 U	133 U	10 ∫
Di-N-Octyl Phthalate	60 49	20%	659 U	616 U		616 U	635 U 616 U		360 U	441 U	360 U		1330 U	1330 U	1330 U
S) වූ ල	1		<u> </u> ඉ.ඉ)	ō	g	g g		ō	g	ćg
Units	% %		ug/Kg	ugu A/gu)	ug/k	ug/Kg ua/Ka)	ug/k	ug/k	ug/Kg		ug/k	ug/Kg	ug/k
QA type	LMX1 LMX2	RPD=	split	mean	RPD=	fld rep	fld rep mean	RPD=	split	split	mean	RPD=	BLNK	BLNK	BLNK
Station	5A2 5A2		4B2	246		4B2/9A2	9C2		8C2	9B2			OBS7148B1	OBS7148B2	OBS7153A
Sample No.	97218294 97218294		97218288	00001716		97218288/97218308	97218312		97218306	97218309			BLN72138	BLN72139	BLN72140

Table B-5. Results of PAH Standard Reference Material Analysis (NRCC HS-6; µg/Kg, dry).

				NRCC HS-6
	HS672141	HS672142	RPD	Certified Values
Anthracene	965	956	1%	1100 ± 400
Pyrene	2470	2610	6%	3000 ± 600
Benzo(ghi)perylene	1570	1630	4%	1780 ± 720
Indeno(1,2,3-cd)pyrene	1910	1970	3%	1950 ± 580
Benzo(b)fluoranthene	3370	3710	10%	2800 ± 600
Fluoranthene	3400	3500	3%	3540 ± 650
Benzo(k)fluoranthene	1450	1440	1%	1430 ± 150
Acenaphthylene	450	470	4%	190 ± 50
Chrysene	2110	2180	3%	2000 ± 300
Benzo(a)pyrene	1640	1600	2%	2200 ± 400
Dibenzo(a,h)anthracene	503	503	0%	490 ± 160
Benzo(a)anthracene	1390	1520	9%	1800 ± 300
Acenaphthene	162 J	148 J	9%	230 ± 70
Phenanthrene	3000	3050	2%	3000 ± 600
Fluorene	402	413	3%	470 ± 120
Naphthalene	3790	3540	7%	4100 ± 1100

J = estimated concentration

⁼ outside range of certified values

MANCHESTER ENVIRONMENTAL LABORATORY

7411 Beach Drive E, Port Orchard Washington 98366

CASE NARRATIVE

September 19, 1997

Subject: Salmon Bay

Samples: 97218281 to 97218312

Case No. 1259-97

Officer: Jim Cubbage

By: Dickey D. Huntamer

Organics Analysis Unit

TRIBUTYL TINS

ANALYTICAL METHODS:

The samples were extracted following the methods given in Puget Sound Estuary Program (PSEP) "Recommended Guidelines for Measuring Organic Compounds in Puget Sound Sediment and Tissue Samples" Recommended Methods for Organotin Compounds. The samples were extracted by tumbling with sodium sulfate and methylene chloride/10% methanol and 0.1% by weight tropolone. After extraction the samples were solvent exchanged to hexane. The organotin compounds were hexylated using the Grignard reaction given in Krone et al (1989) including the silica gel/alumina cleanup. Analysis was done by capillary Gas Chromatography using Single Ion Monitoring (SIM) mode GC/MS. All samples are reported on a dry weight basis.

HOLDING TIMES:

The samples were stored frozen following PSEP Guidelines until extraction. After extraction all samples were analyzed within the recommended 40 day extract time.

BLANKS:

No target analytes were detected in the laboratory blanks.

SURROGATES:

Recovery of the surrogate spike, Tripropyltin, ranged from 6% to 115%. Recoveries of the tripentyl tin ranged from 18% to 141%. No surrogate recovery QC limits have been established for this method. Although several samples had one surrogate with less than 20% recovery none of the samples had <20% recovery for both surrogates. Consequently no data qualifiers were added to the results based on surrogate recoveries.

MATRIX SPIKE AND MATRIX SPIKE DUPLICATE:

No spike recovery or RPD QC limits have been established for organotins at this time. Two and one-half pairs of matrix spikes were analyzed with the samples. Source samples were 91218297 and -218302 and 97218310. Sample 97218297 had significant levels of organotin compounds native to the sample. These may have affected the recoveries which ranged from 2% to 204%. Tetrabutyltin which was not detected in the sample had 63% and 64% recovery. Matrix spike recoveries for 97218302 which was a high clay content sample ranged from 50% to 85%. Recoveries for 97218310 ranged from 10% to 73%.

The relative percent differences ranged from 1.4% to 193% for 97218297 and from 0.7% to 63% for 97218310.

ANALYTICAL COMMENTS:

Two additional samples were analyzed with the sediment samples. These were Sequim Bay Reference Sediments which presumably was spiked with 100 ng/gm (100 ug/Kg) wet weight of tributyltin. No value for tributyltin has been established for the Sequim Bay Reference Sediment so the accuracy of the analysis cannot be determined. These samples are identified as -SBR72041 (SRMI) and SBR72042 (SRM2).

SRM1	70.6	ug/Kg (wet weight)	Tributyltin
SRM2	75.6	ug/Kg (wet weight)	Tributyltin

Note that the data sheets report these values as dry weight. The percent solids is 56% for these samples.

Two reference materials, PACS-1 (PAC72043 and PAC72044) and PACS-2 (PAC72045) was also analyzed with the samples. PACS-2 is a new material and has not been certified as to it's value for organotins. PACS-1 provided anomalous results with lower concentrations of the tributyltin and higher concentrations relative to tributyltin for the dibutyl- and monobutyltins. Results for tributyltin were roughly one-third the certified value. Since the concentrations of the less substituted tin species increased it may be that the sample is deteriorating over time. A phone conversation with Eric Crecilius at Battelle Sequim laboratory confirmed that PACS-1 was not stable and the concentrations had been changing over time. Consequently data reported for PACS-1 should not be used and previous data reported for PACS-1 may be compromised.

Table B-6. Precision and Accuracy of Butyltin Data.

Sample No.	Field ID	QA Type	Monobutyltin Chloride	Dibutyltin Chloride	Tributyltin Chloride	Tetrabutyltin Chloride
8297	6A2	Matrix Spikes	29	2	144	63
8297	6A2	(% recov.)	64	86	205	64
	mean=		47	44	175	64
	RPD=		75%	191%	35%	2%
8302	7A3	Matrix Spikes (% recov.)	57	30	85	62
8310	10A2	Matrix Spikes	14	73	10	43
8310	10A2	(% recov.)	14	38	12	30
	mean=		14	56	11	37
	RPD=		0%	63%	18%	36%
8288	4B2	Field splits	816	434	2090	32 J
8308	9A2	(ug/kg, dry)	906	355	1830	<u>25</u> J
	mean=		861	395	1960	28 J
	RPD=		10%	20%	13%	23%
8288/8308	4B2/9A2	Field reps.	861	395	1960	28 J
8312	9C2	(ug/kg, dry)	206 J	126	468	<u>11</u> J
	mean=		534 J	260	1214	20 J
	RPD=		123%	103%	123%	88%
97218306	8C2	Field splits	386 J	209	1190	17 J
97218309	9B2	(ug/kg, dry)	391	368	1120	14 J
	mean=		389 J	288	1155	16 J
	RPD=		1%	55%	6%	19%
BLN72033	OBS7153A3	Lab Blanks	33 J	21 U	44	20 U
BLN72034	OBS7153A4	(ug/kg, dry)	24 J	21 U	36 J	20 U
BLN72035	OBS7154A2		12 J	23 U	31 J	22_U
BLN72040	OBS7154A3		22 J	23 U	20 J	22 U
				T .		
PAC72043	OCS7154A3	Certified	1120 J	188 J	380 J	500 U
PAC72044	OCS7154A4	Reference	920 J	100 J	292 J	440 U
	mean=	Material NRCC		144 J	336 J	
	RPD=	PACS-1, ug/kg as Sn, dry)	20%	61%	26%	
PACS-1certif	ied values	45 Oii, 4iy)	280 +/-170	1160 +/-180	1270+/-220	
PAC72045	OCS7154A5		640 J	400 J	820 J	620 U
PACS-2 certi	fied values		450+/-50	1090 +/-150	980+/ -130	

U=Undetected at concentration shown J=estimated concentration

= outside certified range of values

State of Washington Department of Ecology Manchester Environmental Laboratory 7411 Beach Dr. East Port Orchard WA. 98366

PCB Data Review September 19, 1997

Project: Salmon Bay

Samples: 218281 218291 218292 218301 218302

By: Stuart Magoon - M

Case Summary for Polychlorinated Biphenyl's (PCB)

Data from these analyses were reviewed for qualitative and quantitative accuracy, validity, and usefulness. These samples were prepared and analyzed according to EPA method SW-846 8080.

The results are reported in micrograms per kilogram (ug/Kg); parts per billion dry weight.

PCB Analysis

Holding times:

Sample no.	Collect date	Extraction date	Analysis date
218281	5/21/97	6/2/97	7/1/97
218281 re-extract	5/21/97	7/21/97	7/30/97
218291	5/19/97	5/28/97	7/1/97
218292	5/19/97	5/28/97	7/1/97
218301	5/20/97	6/2/97	7/1/97
218302	5/19/97	5/28/97	7/1/97

^{*} data from this sample has been rejected, and was not included in the final report.

All samples were extracted within fourteen (14) days of collection, with one exception. The re-extract of sample 218281 occurred sixty one (61) days after the sample was collected. It is unlikely given the environmentally persistent nature of PCB's that

exceeding the recommended holding time by 47 days has had a measurable effect on the results. However, positive results 1254 and 1260 for sample 218281 have been qualified as estimates ("J"), and all the non-detects have been qualified with "UJ".

All sample extracts were analyzed within forty (40) days of extraction.

Method Blank:

No target analytes were detected in any of the method blanks.

Calibration:

The calibration standards were within 20% relative standard deviations (RSD) for all the PCB aroclors except 1242 and 1260 on July 1, 1997. As a consequence aroclors 1242 and 1260 detected in samples 218291 and 218292 have been reported as estimated values ("J" qualified).

Surrogate Recoveries:

Sample 218281 was re-extracted due to poor surrogate recoveries. Surrogate recoveries for the re-extraction of 218281 and the other samples, blanks, and reference material demonstrate the extraction and analysis are within control. The surrogate recoveries for one of the blanks (BLN71686) were extremely poor. This blank was evaporated to dryness during the final concentration procedure; the results have been rejected ("REJ") due to the poor surrogate recoveries. Since the second blank (BLN71687) extracted and analyzed along with this data set displayed acceptable recoveries, no qualification of the sample data was warranted.

Certified Reference Material HS2:

The certified sediment reference material (SRM) from NRCC, HS2, was analyzed in duplicate along with this sample set. HS2 is certified for aroclor 1254 at 111.8 ug/Kg +/-2.5. There is also some 1260 aroclor present in this SRM sample, but the values are not certified. Aroclor 1254 was reported at 98 and 106 ug/Kg which corresponds to 87.7% and 94.8% of the certified value with an RPD of 7.8%.

Matrix Spikes:

Sample 218290 was used for the matrix spikes. PCB analysis was not requested for sample 218290, however, due to a mistake during the extraction process (BNA's were extracted along with the PCB's) this sample was chosen. There were no pesticide surrogates added to the unspiked aliquot of sample 218290, however the extract was also analyzed for BNA compounds and the surrogate recoveries for the BNA analysis were well within control limits. Sample 218290 was re-extracted with PCB surrogates added. Results from the re-extraction were quite different from the original:

	218290	218290 re-ext
Aroclor 1254	230 ug/Kg	2500 ug/kg
Aroclor 1260	74 ug/Kg	460 ug/Kg

Since there were no PCB surrogate recoveries on the original extract, but the BNA recoveries were within control, it is not clear why there is such are large discrepancy for the two analyses. Some of the analyte may have been lost during the florisil treatment, or the sample may not have been homogenous.

Inconsistent native determinations for sample 218290 combined with the poor calibration curve for aroclors 1242 and 1260 render the matrix spike data unreliable. Matrix spike recoveries for aroclor 1260 have been rejected ("REJ") and aroclor 1242 recoveries should be considered estimates. This matrix spike data should not be used to assess overall recovery, precision or accuracy for this project.

Summary:

The original analysis of sample 218281 has not been included because surrogate recoveries for all three surrogates were less than 15%, and the PCB results were rejected. The results from the re-extraction of this sample have been reportd. I recommend that samples 218291 and 218292 be re-extracted and re-analyzed in order to quantitate the PCB aroclors 1242 and 1260 with a valid calibration curve.

This page is purposely blank for duplex printing

Manchester Environmental Laboratory

7411 Beach Dr E Port Orchard Washington 98366 December 10, 1997

Project: Salmon Bay

Parameter: PCB re-extracts

Samples: 97218281, 97218291, 97218292

By: Karin Feddersen KF

These samples were analyzed by EPA Method 8080 for PCB's, employing the dual column confirmation technique.

Holding Times:

These samples were extracted and analyzed after the method-specified holding times. PCB's are normally very persistent in the environment. Exceeding the holding time probably has had little significant effect on the results. However, the results for these samples have been qualified as estimates; positive results with "J", and non-detects with "UJ".

Method Blanks:

No analytes of interest were detected in the method blanks.

Surrogates:

All recoveries were within the recommended range of between 50% and 150%.

Matrix Spikes

Sample 97218281 was chosen for matrix spike/spike duplicate analysis. These samples can be used to assess accuracy and precision. Instead of spiking the sample with one of the PCB aroclors, it was spiked with 18 different PCB congeners. PCB aroclors are a complex mixture of the 209 PCB congeners. PCB aroclors are identified by pattern recognition and quantitated on 4-8 distinct peaks which represent one or more congeners. The percent recovery of an aroclor is actually the average percent recovery of the peaks used for quantitation. The average recovery of the 18 congeners for each of the spikes are 79% and 83%, and the relative percent difference (RPD) is 4%.

Sample Results:

This data is acceptable for use with the qualifications mentioned.

Table B-7. Precision and Accuracy of PCB Data.

				PCB	PCB	PCB	PCB	PCB		PCB	PCB	PCB	PCB	PCB	
Sample No.	Field ID	QA Type	Decacrilorobi phenyl	songener 8	congener 18	congener 28	congener 44	congener 52	99 99	congener 101	congener 105	congener 118	congener 128	congener 138	
8281	1B3 1B3	Matrix Spikes	102	106	98	96	88 0	74	75	48	99	49	83	4 4 9	
0	mean=	(,,0,16,00)	103	112	100	101	91	92	2 12	51	29	53	82	47	
	HUH HUH H		1%	10%	3%	3%	%9	4%	%9	10%	3%	13%	4%	11%	
			PCB	PCB	PCB	PCB	PCB	PCB							
			congener 153	congener 170	congener 180	congener 187	congener 195	congener 206							
8281	1B3	Matrix Spikes	58	86	77	80	86	66							
8281	1B3	(% recov.)	63	87	77	88	96	96							
	mean=		61	87	77	84	26	86							
	RPD=		%8	1%	%0	10%	2%	3%							
					PCB -		PCB -		PCB -		PCB -			PC	PCB -
			PCB - 1260	-	1254	1	1221	,	1232	1	1248	Ь	PCB - 1016	12	1242
8290	4C2	Matrix Spikes	REJ	_	NAF	~	NAF	_	NAF	~	NAF	Z	NAF		110
8290	4C2	(% recov.)	REJ	_	NAF	~	NAF	_	AAF	2	NAF	z	NAF		98
	mean=														86
	RPD=														24%
					PCB -	<u>a</u>	PCB -		PCB -		PCB -			PC	PCB -
			PCB - 1260	7	1254	1	1221	•	1232	1	1248	Ъ	PCB - 1016	12	1242
BLN71686	OBS7148B1		REJ	ı	REJ	Ľ	REJ		REJ	Ľ.	REJ	2	REJ	RE	REJ
BLN71687	OBS7148B2	Lab Blanks	20 U	ר	20 U	_	20 U	_	20 U	_	20 U		20 U	_	20 U
BLN71704	OBS7153A1	(ug/kg, dry)	20 U	Ĺ	20 U	J	20 U	J	20 U	J	20 U		20 U	J	20 U
BLN71705	OBS7153A2		20 U	J	20 U	_	20 U	_	20 U	_	20 U		20 U	ſ	20 U
BLN73455	OBS7302A1		130 U	ת	130 U	_	130 U	_	130 U	_	130 U		130 U		130 U
BLN73456	OBS7302A2		130 U	ח	130 U	_	130 U	_	130 U	_	130 U		130 U		130 U
					PCB -		PCB -		PCB -		PCB -			PC	PCB -
			PCB - 1260	1		1	1221	•	1232	1	1248	Р	PCB - 1016	12	1242
HS272467	OCS7148A1	Reference	20		86		20 U	ſ	20 U	ſ	20 U		20 U	ſ	20 U
HS272468	OCS7148A2	Material NRCC			106		20 U	ſ	20 U	ſ	20 U		20 U	ſ	20 U
	mean=	HS-2, ug/kg,			102										
	RPD=	dry)	41%		8%										
U=Undetecte	U=Undetected at Concentration Shown	tion Shown													1

U=Undetected at Concentration Shown
REJ=Sample result rejected, data are unusable
NAF=Not Analyzed For

= Outside of certified range of values. HS-2 is certified for PCB-1254 at 111.8 +/- 2.5 ug/kg, dry. It is not certified for other PCBs.

Appendix C

Complete Results of Semivolatile Organics Analyses

Spearman Correlation Matrix for Chemistry Data

This page is purposely blank for duplex printing

Table C-1. Priority Pollutant Low Molecular Weight PAHs (LPAH) Detected in Salmon

Bay Phase III Sediments (μg/kg, dw).

		eaiments (µ	.g/.t.g, a.t./.				
Station	Naphthalene	Acenaphthylene	Acenaphthene	Fluorene	Phenanthrene	Anthracene	Total LPAH
1B3	110 J	(276) UJ	162 J	167 J	1,130 J	233 J	1,800
2B2	650	265	523	666	5,470	1,230	8,800
2C2	4,890	642	2,460	3.400	14,200	2,920	28,500
3B2	751	294	434	539	2,130	799	4,900
3B3	627	209	177	274	1,070	406	2,800
3C2	427	174	172	230	1,100	465	2,600
3C3	424	171	252	270	1,480	552	3,100
4B2	1,700	342	370	558	2,372	757	6,100
4B3	4,870 J	1,260 J	1,250 J	1,720 J	6,190 J	1,580 J	16,900
4C2	471	136	310	465	1,200	465	3,000
4F2	5,630	1,020	7,420	6.970	41,100	16,200	78,300
4F3	3,060	323	938	1.020	4,020	1,070	10,400
4F4	4,970	697	1,320	1.540	4,440	1,110	14,100
5A2	913	279	332	498	1,990	717	4,700
5B2	501	148	156	185	778	320	2,100
5D2	304	95	1,680	542	2,640	528	5,800
6A2	2,280	594	792	932	3,620	915	9,100
6B2	366	(77) U	196	262	1,040 J	294 J	2,200
6B3	466	110	203	251	1,300	373	2,700
6C2	1,030	265	130	126	569	124	2,200
7A2	291	42 J	360	400	2,660	630	4,400
7A3	73 J	(132) UJ	74 J	95 J	384	95 J	720
7B2	(201) U	(201) U	(201) U	(201) U	71 J	(201) U	70
7C2	37 J	12 J	33 J	39 J	234	67	420
8A2	1,360	362	2,460	3,240	8,420	2,860	18,700
8C2	446	112	244	325	1,715	359	3,200
8C3	1,310	640	1,060	1,070	3,990	1,130	9,200
10A2	(100) U	(100) U	(100) U	(100) U	39 J	14 J	50
10B2	18 J	(63) UJ	18 J	25 J	244	53 J	360

U=Undetected at concentration in parentheses

Exceeds Freshwater Sediment Quality Values (Cubbage et al, 1997).

UJ=Undetected at estimated concentration in parentheses

J=Estimated concentration

Table C-2. Priority Pollutant High Molecular Weight PAHs (HPAH) Detected in Salmon

Bay Phase III Sediments (μg/kg, dw).

Бау	i ilasc i	ili Sedim	σπιο (μυ	j/kg, uw	/).					
Station	Fluoranthene	Pyrene	Benzo(a)anthracene	Chrysene	Benzo(b+k)fluoranthenes	Benzo(a)pyrene	Indeno(1,2,3-cd)pyrene	Dibenzo(a,h)anthracene	Benzo(ghi)perylene	Total HPAH
1B3	1,690 J	1,630 J	600 J	816 J	1,151 J	615 J	363 J	82 J	424	7,400
2B2	11,100	8,790	4,260	5,940	10,990	4,810	4,120	839	4,020	54,900
2C2	29,200	15,900	3,750	5,880	6,590	2,750	1,750	437	1,720	68,000
3B2	5,350	6,880	2,430	2,780	4,560	3,000	1,880	412	2,140	29,400
3B3	2,340	2,530	958	1,300	2,315	1,530	1,180	217	1,330	13,700
3C2	2,690	2,250	1,030	1,340	2,095	1,180	993	287	944	12,800
3C3	3,140	2,710	1,220	1,540	2,451	1,420	1,160	292	1,150	15,100
4B2	3,715	3,665	1,378	1,940	3,221	1,772	1,445	322	1,595	19,100
4B3	7,730 J	7,540	2,380	3,430	4,440	2,220	1,450	327	1,660	31,200
4C2	3,450	2,960	1,060	1,440	2,022	890	643	214	613	13,300
4F2	46,100	55,600	25,600	28,100	41,800	24,300	13,900	3,070	12,100	250,000
4F3	3,480	4,610	1,240	1,780	2,444	1,430	917	212	1,020	17,100
4F4	4,700	4,700	1,100	1,130	2,002	1,070	740	200 J	827	16,500
5A2	3,210	4,410 J	1,580	2,170 J	3,620	1,890	1,340	332	1,410	20,000
5B2	1,640	1,590	523	755	1,376	783	773	216 J	791	8,400
5D2	3,800	5,190	1,430	1,890	3,139	1,850	1,170	205	1,180	19,900
6A2	4,780	5,120	1,720	2,210	3,396	1,840	1,220	342	1,350	22,000
6B2	1,380 J	2,000 J	631 J	893 J	1,234 J	715 J	431 J	(77) UJ	438 J	7,700
6B3	1,780	2,340	917	1,260	1,955	1,080	763	116	821	11,000
6C2	646	679	148	193	283 J	206	180	157 U	187	2,500
7A2	3,360	3,460	1,270	1,560	1,778	915	518	132 J	497	13,500
7A3	478	536	192	240	307 J	176	91 J	(130) U	110 J	2,100
7B2	123 J	118 J	(201) U	59 J	67 J	176 J	198 J	176 J	87 J	1,200
7C2	359	488	181	263	421	226	133	34 J	146	2,300
8A2	21,100	14,500	5,430	5,730	7,110	2,960	1,500	424	1,350	60,100
8C2	2,665	2,185	802	1,076	1,654	756	622	172	568	10,500
8C3	7,710	7,150	2,620	3,700	5,530	3,340	2,340	490	2,510	35,400
10A2	97 J	150	(100) U	91 J	127 J	37 J	59 J	(100) U	68 J	630
10B2	428	523	199	320	496	248	199	(63) U	216	2,600

U=Undetected at concentration in parentheses

Exceeds Freshwater Sediment Quality Values (Cubbage et al, 1997).

UJ=Undetected at estimated concentration in parentheses

J=Estimated concentration

Table C-3. Total Priority Pollutant PAHs Detected in Salmon Bay Phase III Sediments (μg/kg, dw).

Station	Total LPAH	Total HPAH	Total PAH
1B3	1,800_	7,400	9,200
2B2	8,800	54,900	63,700
2C2	28,500	68,000	96,500
3B2	4,900	29,400	34,300
3B3	2,800	13,700	16,500
3C2	2,600	12,800	15,400
3C3	3,100	15,100	18,200
4B2	6,100	19,100	25,200
4B3	16,900	31,200	48,100
4C2	3,000	13,300	16,300
4F2	78,300	250,000	328,300
4F3	10,400	17,100	27,500
4F4	14,100	16,500	30,600
5A2	4,700	20,000	24,700
5B2	2,100	8,400	10,500
5D2	5,800	19,900	25,700
6A2	9,100	22,000	31,100
6B2	2,200	7,700	9,900
6B3	2,700	11,000	13,700
6C2	2,200	2,500	4,700
7A2	4,400	13,500	17,900
7A3	720	2,100	2,820
7B2	70	1,200	1,270
7C2	420_	2,300	2,720
8A2	18,700	60,100	78,800
8C2	3,200	10,500	13,700
8C3	9,200	35,400	44,600
10A2	50	630	680
10B2	360	2,600	2,960

Exceeds Freshwater Sediment Quality Values (Cubbage et al,1997).

Table C-4. Phenols and Non-Priority Pollutant PAHs Detected in Salmon Bay Phase III

Sediments (µg/kg, dw).

	ienis (μg/	ng, aw).						
Station	Phenol	2-Methylphenol	4-Methylphenol	2,4-Dimethylphenol	Pentachlorophenol	Retene	2-Methylnaphthalene	1-Methylnaphthalene
1B3	276 UJ	276 UJ	276 UJ	276 UJ	2,760 UJ	352	62 J	58 J
2B2	247	238 U	1,210	119 U	524 J	2,170	469	232
2C2	187	257 U	699	129 U	472 J	4,230	2,310	1,220
3B2	112 U	112 U	192	112 U	1,120 U	542	239	124
3B3	58 J	187 U	215	94 U	468 U	202	188	94 J
3C2	66 J	83 J	189 J	134 U	457 J	726	172	81 J
3C3	121 J	93 J	239 J	138 U	692 U	782	170	96 J
4B2	176	93 J	512	123 U	712	3,752	471	244
4B3	767 J	295 J	6,310 J	140 J	1,230 UJ	19,200	1,770 J	1,050 J
4C2	79 U	158 U	159	79 U	288 J	289	214	102
4F2	371 U	371 U	2,360	371 U	3,710 U	54,500	3,470	1,810
4F3	119 U	119 U	581	119 U	1,190 U	35,600	1,060	523
4F4	115 U	230 U	2,030	115 U	576 U	73,600	1,720	922
5A2	135 U	135 U	512	135 U	1,350 U	1,170	353	171
5B2	50 J	88 J	188 J	142 U	626 J	564	180	93 J
5D2	36 J	70 U	52 J	70 U	704 U	291	90	65 J
6A2	193	191 U	1,730	96 U	459 J	11,200	982	629
6B2	77 U	77 U	195	77 U	773 UJ	908	162	101
6B3	86 U	86 U	150	86 U	863 U	1,470	180	93
6C2	52 J	157 U	551	79 U	393 U	6,020	160	109
7A2	212	164 U	77 J	164 U	1,240 J	553	141 J	103 J
7A3	132 U	132 U	132 U	132 U	1,320 U	132	53 J	35 J
7B2	201 U	401 U	401 U	201 U	1,000 U	401	201 U	201 U
7C2	50 U	50 U	50 U	50 U	500 U	94	28 J	14 J
8A2	72 J	150 U	382	75 U	375 U	1,050	877	438
8C2	82 J	72 JFSU	611	72 U	299 J	1,055	220	100
8C3	235	200 U	1,560	100 U	500 U	1,900	443	265
10A2	100 U	100 U	100 U	100 U	1,000 U	201	100 U	100 U
10B2	63 U	63 U	16 J	63 U	484 J	75	16 J	8 J

detected compounds in **bold**

U=Undetected at associated concentration

UJ=Undetected at associated estimated concentration

Exceeds Freshwater Sediment Quality Values (Cubbage et al,1997).

J=Estimated concentration

FSU=field split undetected

Table C-5. Phthalates Detected in Salmon Bay Phase III Sediments (µg/kg, dw).

	0111111111	atoo Botooto	in cannon	Day Fliase III	Coamionto (agring, arry.
Station	Dimethylphthalate	Diethylphthalate	Di-N-Butylphthalate	Butylbenzylphthalate	Bis(2-Ethylhexyl) Phthalate	Di-N-Octyl Phthalate
1B3	54 J	276 UJ	276 UJ	131 J	3,010 J	2,760 UJ
2B2	436	119 U	690	1,520	2,800	² 594 U
2C2	362	129 U	257 U	198 J	2,800	644 U
3B2	225 U	112 U	225 U	112 U	2,500	1,120 U
3B3	94 U	94 U	187 U	187 U	727	468 U
3C2	105 J	134 U	269 UJ	193 J	1,970	672 U
3C3	172	179	1,740	222 J	2,520	692 U
4B2	280	123 UJ	481	280	4,245	616 U
4B3	270 J	123 UJ	350 J	366	6,360	399 J
4C2	158	79 U	158 U	158 U	6,380	201 J
4F2	314 J	371 UJ	742 U	371 U	10,500	3,710 U
4F3	82 J	32 J	69 J	119 U	22,600	1,190 U
4F4	115 U	115 UJ	254	230 U	5,120	576 U
5A2	147 J	135 U	270 U	165	4,970 J	1,350 U
5B2	108 J	142 U	306	182 J	1,970	711 U
5D2	141 U	70 U	141 UJ	70 U	141 UJ	704 U
6A2	576	96 U	893	258	3,970	478 U
6B2	131 J	77 U	77 UJ	77 UJ	2,220 J	773 UJ
6B3	156 J	86 U	1,180	53 J	2,140	863 U
6C2	79 U	79 UJ	158	163	275	393 U
7A2	31 J	164 UJ	164 UJ	164 U	1,090	1,640 U
7A3	263 U	132 UJ	263 UJ	130 U	658 UJ	1,320 U
7B2	201 U	201 U	201 UJ	401 U	401 UJ	1,000 U
7C2	15 J	50 UJ	481	28 J	520	500 U
8A2	75 U	75 U	150 U	150 U	3,420	375 U
8C2	48 J	88 JFSU	154 J	191 J	2,935	360 U
8C3	100 U	100 U	200 U	200 U	501	500 U
10A2	200 U	100 UJ	100 UJ	100 U	500 UJ	1,000 U
10B2	126 U	63 UJ	841	48 J	444	629 U

detected compounds in **bold**

U=Undetected at associated concentration

Exceeds Freshwater Sediment Quality Values (Cubbage et al, 1997).

UJ=Undetected at associated estimated concentration

J=Estimated concentration

FSU=field split undetected

Table C-6. Miscellaneous Semivolatile Organics Detected in Salmon Bay Phase III

Sediments (µg/kg, dw).

	ichts (µg/	ng, uw).							1
Station	1,4-Dichlorobenzene	1,2-Dichlorobenzene	Benzyl Alcohol	Isophorone	Benzoic Acid	Dibenzofuran	Caffeine	Carbazole	3β-Coprostanol
1B3	552 UJ	552 UJ	552 UJ	276 UJ	5,520 UJ	116 J	276 UJ	276 UJ	2,010 J
2B2	94 J	119 J	329	119 U	3,790 J	384	119 U	923	6,730
2C2	91 J	129 U	129 U	129 U	2,840 J	2,260	129 U	825	1,290 U
3B2	31 J	225 U	225 U	112 U	2,250 U	282	112 U	176	1,120 U
3B3	34 J	106 J	94 U	94 U	2,020 J	166	94 U	85 J	935 U
3C2	269 U	269 U	70 J	134 U	2,790 J	168	134 U	128 J	1,640
3C3	277 U	277 U	86 J	138 U	2,770 UJ	180	138 U	172	2,310
4B2	27 JFRU	246 U	170 JFRU	127 U	2,930 JFRU	386	123 U	179 J	31,922
4B3	53 J	116 J	184 J	51 J	4,200 J	928 J	123 UJ	389 J	3,890
4C2	79 U	158 U	79 U	79 U	1,650 J	244	79 U	117	1,450
4F2	742 U	73 J	742 U	371 U	7,420 U	3,810	371 U	2,920	3,710 U
4F3	239 U	239 U	239 U	119 U	2,390 UJ	743	119 U	196	1,190 U
4F4	36 J	230 U	115 U	115 U	2,640 J	1,010	115 U	238	1,930
5A2	270 U	270 U	270 U	135 U	2,700 UJ	372	135 U	194	2,180
5B2	284 U	284 U	53 J	142 U	2,830 J	138 J	142 U	71 J	1,680
5D2	141 U	141 U	141 U	70 U	1,410 UJ	119	70 U	91	704 U
6A2	57 J	106 J	95 J	96 U	2,170	460	96 U	274	2,100
6B2	155 U	155 U	155 U	77 U	1,020 J	167	77 UJ	116 J	773 UJ
6B3	173 U	173 U	173 U	86 U	1,730 UJ	168	86 U	94	863 U
6C2	157 U	157 U	79 U	79 U	1,570 UJ	90	34 J	79 UJ	786 U
7A2	329 U	329 U	53 J	164 U	2,070 J	234	164 U	229	1,640 U
7A3	263 U	263 U	263 U	132 U	2,630 UJ	51 J	132 U	132 U	1,320 U
7B2	401 U	401 U	201 U	201 U	4,110 J	201 U	201 U	201 U	2,010 U
7C2	100 U	100 U	14 J	50 U	1,000 UJ	24 J	50 U	24 J	500 U
8A2	48 J	75 U	75 U	75 U	1,540 J	1,750	75 U	437	750 U
8C2	94 J	144 U	31 JFSU	72 U	1,740 J	216	72 U	160	4,335
8C3	100 UJ	200 U	100 U	100 U	2,430 J	399	100 U	234	1,000 U
10A2	200 U	200 U	200 U	100 U	2,000 UJ	100 U	100 U	100 U	1,000 U
10B2	126 U	126 U	126 U	63 U	813 J	14 J	63 U	63 U	629 U

detected compounds in **bold**U=Undetected at associated concentration

UJ=Undetected at associated estimated concentration

Exceeds Freshwater Sediment Quality Values (Cubbage et al, 1997).

J=Estimated concentration

FSU=field split undetected

FRU=field rep undetected

Table C-7. Semivolatile Organic Compounds Below Detectable Concentrations in Salmon Bay Phase III Sediments (Practical Quantitation Limits in ug/kg, dw).

	-			_	_	_	_	_		_	_	_	_	_		_		_	_		_	_		_	_	_	_	_	_
3,3'-Dichlorobenzidine	5520	238	257	2250	187	269	277	246	246	158	7420	2390	230	2700	284	1410	19	1550	1730	157	3290	2630	401	1000	150	144	200	2000	1260
Benzidine	552	238	257	225	187	269	277	246	246	158	742	239	230	270	284	141	191	155	173	157	329	263	401	100	150	144	200	200	126
Hexachlorobenzene	276	119	129	112	94	134	138	123	123	79	371	119	115	135	142	20	96	11	88	79	164	132	201	20	75	72	100	100	63
4-Bromophenyl-Phenylether	276	119	129	112	94	134	138	123	123	79	371	119	115	135	142	70	96	77	86	79	164	132	201	20	75	72	100	100	63
9-S-Diphenylhydrazine	276	119	129	112	94	134	138	123	123	79	371	119	115	135	142	20	96	77	86	79	164	132	201	20	75	72	100	100	63
M-Mitrosodiphenylamine																													
lonədqlүdəM-S-ontinid-8,₽	2760	1190	1290	1120	932	1340	1380	1230	1230	790	3710	1190	1150	1350	1420	704	926	773	863	786	1640	1320	2010	200	750	720	1000	1000	629
9-Nitroaniline	2760	238	257	1120	187	269	277	246	246	158	3710	1190	230	1350	284	704	191	773	863	157	1640	1320	401	200	150	1 4	200	1000	629
4-Chlorophenyl-Phenylether	276	119	129	112	94	134	138	123	123	79	371	119	115	135	142	20	96	11	86	79	164	132	201	20	72	72	100	100	63
9n-Junitrotoluene	1380	1190	1290	295	932	1340	1380	1230	1230	790	1850	262	1150	9/9	1420	352	926	386	432	786	823	658	2010	250	750	720	1000	201	314
lonəhqoriiN- N																													
lonəhqortinid-4,2	ľ										•												•						
3-Nitroaniline		•		•		•	•		•			•	•	•	•	•		•			٠,	•	•	•				•	·
eneulotortinid-8,S																							•						
2-Nitroaniline																							•						
2-Chloronaphthalene	١,										•												•						
lonehlorophenol																													
lonehlorophenol																													
Hexachlorocyclopentadiene	2760	594	644	1120	468	672	692	616	919	395	3710	1190	929		711	704	478	773	863	393	1640	1320	1000	200	375	360	200	1000	629
4-Chloro-3-Methylphenol																													
Hexachlorobutadiene	276	119	129	112	94	134	138	127	123	79	371	119	115	135	142	2	96	77	86	79	164	132	201	20	75	72	100	100	63
9-Chloroaniline	276	594	644	112	468	672	692	616	616	395	371	119	929	135	711	20	478	77	86	393	164	132	1000	20	375	360	200	100	63
4.2,4-Trichlorobenzene	276	119	129	112	94	134	138	123	123	79	371	119	115	135	142	20	96	77	86	79	164	132	201	20	75	72	100	100	63
lonehlorophenol	276	119	129	112	94	134	138	123	123	26	371	119	115	135	142	2	96	11	86	79	164	132	201	20	75	72	100	100	63
Bis(2-Chloroethoxy)Methane	276	119	129	112	94	134	138	123	123	79	371	119	115	135	142	2	96	77	86	79	164	132	201	20	75	72	100	100	63
S-Mitrophenol	552	594	644	225	468	672	692	616	616	395	742	239	979	270	711	141	478	155	173	393	329	263	1000	100	375	360	200	200	126
Nitrobenzene	276	594	644	112	468	672	692	616	616	395	371	119	976	135	711	20	478	77	86	393	164	132	1000	20	375	360	200	100	63
Hexachloroethane	552	238	257	225	187	269	277	246	246	158	742	239	230	270	284	141	191	155	173	157	329	263	401	100	150	1 4	200	200	126
9nimslyqor-N-iQ-osortiN-N	552	238	257	225	187	269	277	246	246	158	742	239	230	270	284	141	191	155	173	157	329	263	401	100	150	144	200	200	126
2,2'-Oxybis[1-chloropropane]	276	238	257	112	187	269	277	246	246	158	371	119	230	135	284	20	191	11	88	157	164	132	401	20	150	144	200	100	63
1,3-Dichlorobenzene																													
2-Chlorophenol	552	119	129	225	94	134	138	123	123	79	742	239	115	270	142	141	96	155	173	79	329	263	201	100	75	72	100	200	126
Bis(2-Chloroethyl)Ether																													
ənilinA	552	594	644	225	468	672	692	616	616	395	742	239	216	270	711	141	478	155	173	393	329	263	1000	100	375	360	200	200	126
Pyridine	552	594	644	262	468	672	692	254	616	395	742	239	929	270	711	141	478	155	173	393	329	263	1000	100	379	360	200	200	126
N-Nitrosodimethylamine	552	594	644	225	468	672	692	616	616	395	742	239	9/9	270	711	141	478	155	173	393	329	263	1000	100	375	360	200	200	126
ation	33	Ŋ	5	Ŋ	ည	5	દ્ધ	22	ည	5	2	က	4	Ŋ	22	20	Ŋ	Ŋ	ည	5	Ŋ	6	22	5	Ŋ	5	8C3	A2	B2
Str	1 B	2B	20	3E	3E	ဗ္ဗ	ဗ္ဗ	4E	4B	4	4	4	4	5A	2E	2E	6A	6E	6E	ე <u>9</u>	7	7 A	7B	7	8 8	8	8	10	10

Table C-8. Spearman Rank-Order Correlation Coefficients for Salmon Bay Phase III Conventional, Metals, and Selected Organics Data.

	TOC																			
Gravel	0.36	Gravel																		
Sand	-0.24	0.35	Sand																	
Silt	0.23	-0.59	-0.87	Silt																
Clay	0.11	-0.13	-0.64	0.38	Clay															
Fines	0.18	-0.48	-0.98	0.92	09.0	Fines														
Arsenic	0.11	-0.01	-0.13	0.12	0.13		Arsenic													
Mercury	0.16	-0.22	-0.22	0.33	0.15		09.0	Mercury												
Cadmium	0.20	-0.33	-0.24	0.46	0.04		0.43	09.0	Cadmium	틸										
Chromium	0.22	-0.33	-0.43	0.62	0.11		0.27	0.43	0.85	Chromium	<u>"</u>									
Copper	0.15	-0.32	-0.21	0.46	-0.18		0.53	0.58	0.85	0.78	Copper									
Lead	0.02	0.04	-0.08	0.03	0.13		0.56	29.0	0.48	0.19	0.41	Lead								
Nickel	0.28	-0.16	-0.50	0.55	0.27		-0.02	0.10	0.52	0.84	0.44	-0.12	Nickel							
Zinc	0.20	-0.22	-0.20	0.33	90.0		0.63	06.0	0.72	0.47	0.72	0.73	90.0	Zinc						
LPAH	0.42	0.37	0.02	0.09	-0.15		-0.07	0.42	0.26	0.26	0.16	0.30	0.18	0.36	LPAH					
НРАН	0.39	0.32	-0.03	0.15	-0.14		60.0	0.48	0.37	0.30	0.24	0.43	0.12	0.47	0.93	HPAH				
Total PAH	0.43	0.36	-0.02	0.12	-0.15	0.01	0.05	0.46	0.34	0.28	0.23	0.40	0.12	0.45	96.0	. 66.0	TotalPAH			
Bis(2-EH)Phthal.	0.45	-0.14	0.02	0.23	-0.18		-0.13	0.36	0.37	0.37	0.29	0.09	0.32	0.36	09.0	0.49	0.52	Bis(2-EH)Phthal.	Phthal.	
4-MePhenol	0.70	0.28	-0.20	0.23	90.0		-0.21	0.24	0.25	0.27	0.10	0.00	0.32	0.19	0.72		99.0	0.54 4	4-MePhenol	lor I
Carbazole	0.58	0.36	0.03	0.11	-0.20		0.05	0.49	0.37	0.32	0.33	0.30	0.23	0.49	0.87	0.84 (0.88	0.65	0.73	Carbazole
TBT	0.20	-0.30	-0.22	0.46	-0.20		0.42	99.0	0.56	0.51	0.76	0.42	0.22	0.72	0.30	0.36	0.34	0.51 C	0.14 (0.50

Appendix D

Bioassay Results

This page is purposely blank for duplex printing

Our File #:

9/771-01

Work Order #:

9700432, 9700433

June 13, 1997

Dave Goodwin SAIC 18960 State Highway 305 NE Suite 200 Poulsbo, WA 98370-7400

Dear Mr. Goodwin:

Re: Results of Sediment Toxicity Testing using Hyalella azteca, Chironomus tentans and Vibrio fischeri

EVS Environment Consultants performed toxicity testing on 22 freshwater sediment samples using *Hyalella azteca*, *Chironomus tentans* and *Vibrio fischeri*. Testing of *H. azteca* and *C. tentans* involved exposures for 10 days and followed procedures outlined in ASTM (1994). Testing of *V. fischeri* involved the Saline Extract Microtox test method as outlined by Microbics Corporation, EPA (1991). Microtox testing was performed by the CH2M Hill Laboratory in Corvallis, OR. All tests were performed following procedures described in PESP (1995) as applicable.

Copies of all raw bench sheets and calculations of means (\pm SD) are attached. Below are some points that we have highlighted for your convenience.

General Notes:

- Chain-of-Custody (C-O-C) forms were not received with the samples, they were faxed later. Please refer to the EVS C-O-C for sample receipt and integrity information.

10-d *H. azteca* Survival Test:

- Low dissolved oxygen levels were reported in some of the vessels designated for water quality measurements due to a stoppage in aeration overnight, aeration was reinitiated. Aeration was checked in additional replicates and confirmed to within appropriate levels. This appeared not to affected the results.
- Due to a buildup of food on the sediment surface on Day 6, tetramin slurry was not fed on this day (only algae was fed). The feeding schedule was resumed after this.

 195 Pemberton Avenue North Vancouver, B.C. Canada V7P 2R4

Tel: (604) 986-4331 Tel: (206) 217-9337 Fax: (604) 662-8548 Fax: (206) 217-9343 evs_consultants@mindlink.bc.ca

200 West Mercer Street Suite 403 Seattle, WA 98119 Tel: (206) 217-9337 Fax: (206) 217-9343

Dave Goodwin
Page 2
June 13, 1997

- Negative control survival (96%) met the required criterion (80%).
- Sample 7A2 (EVS 4805) had one replicate (D) which may have been missed in seeding, when compared to the other replicate results. Mean (\pm SD) survival calculations have been provided including this replicate (5 replicates total), removing it as an outlier would result in a mean (\pm SD) of 87.5 \pm 12.6% (4 replicates).
- Reference toxicant value is within the established range.

10-d C tentans Survival and Growth Test:

- Low dissolved oxygen levels were reported in some of the vessels designated for water quality measurements due to a stoppage in aeration overnight, aeration was reinitiated. Aeration was checked in additional replicates and confirmed to within appropriate levels. This appeared not to affected the results.
- Sample 1B3 (EVS 4840) had one replicate (C) which may have been missed in seeding; when compared to the other replicate results. Mean (\pm SD) survival calculations have been provided including this replicate (5 replicates total), removing it as an outlier would result in a mean (\pm SD) of 82.5 \pm 17.1% (4 replicates).
- Sample 8A2 (EVS 4829) had one replicate (E) which may have been missed in seeding, when compared to the other replicate results. Mean (\pm SD) survival calculations have been provided including this replicate (5 replicates total), removing it as an outlier would result in a mean (\pm SD) of 67.5 \pm 18.9% (4 replicates).
- Negative control survival (100%) met the required criterion (70%).
- Reference toxicant value is within the established range.

Saline Extract Microtox Test:

- Data enclosed is a faxed version, when the official final report has been received we will forward it to you.
- The highest dilution tested was 54 56%, approximately 58%

Dave Goodwin Page 3 June 13, 1997

If you have any questions or need further information, please do not hesitate to call me at (604) 986-4331.

Yours truly,

EVS-ENVIRONMENT CONSULTANTS

Chnifer V. Stewart, B.Sc.

Supervisor, Toxicology Testing

JVS/js

Table D-1. Test Results for Each Bioassay Replicate.

						Microtox
			Hyalella	Chironomus	Chironomus	Light
Sample No.	Station	Rep	Survival	Survival	Growth (mg)	Reduction
8310	10A2	1	10	3	4.40	5.00
8310	10A2	2	9	5	3.16	6.00
8310	10A2	3	10	6	4.17	3.60
8310	10A2	4	10	4	3.05	3.90
8310	10A2	5	10	7	3.20	2.50
8311	10B2	1	10	9	2.48	16.70
8311	10B2	2	10	8	3.14	15.60
8311	10B2	3	9	7	3.16	19.40
8311	10B2	4	10	9	4.92	16.10
8311	10B2	5	9	7	3.59	18.40
8281	1B3	1	8	10	1.32	13.40
8281	1B3	2	10	6	1.33	12.70
8281	1B3	3	9	0		11.30
8281	1B3	4	9	8	1.59	10.60
8281	1B3	5	9	9	1.38	11.90
8282	2B2	1	9	5	1.98	9.20
8282	2B2	2	8	7	1.84	8.70
8282	2B2	3	8	7	2.29	7.50
8282	2B2	4	10	5	1.84	7.50
8282	2B2	5	10	3	2.47	10.40
8283	2C2	1	8	4	1.18	46.80
8283	2C2	2	9	9	2.08	48.70
8283	2C2	3	7	9	1.84	48.00
8283	2C2	4	8	9	1.60	48.60
8283	2C2	5	9	9	1.72	47.40
8285	3B3	1	7	8	1.69	9.50
8285	3B3	2	8	6	1.30	11.20
8285	3B3	3	9	7	1.90	9.50
8285	3B3	4	8	7	1.06	11.80
8285	3B3	5	7	9	1.54	10.40
8287	3C3	1	9	8	3.35	-1.90
8287	3C3	2	10	10	2.64	-0.60
8287	3C3	3	10	9	2.31	-0.90
8287	3C3	4	10	8	3.38	-0.90
8287	3C3	5	10	9	2.86	-3.10
8288	4B2	1	9	9	2.57	41.90
8288	4B2	2	8	10	1.98	46.00
8288	4B2	3	10	10	3.50	42.70
8288	4B2	4	10	9	2.22	43.80
8288	4B2	5	9	10	2.54	44.20

Table D-1. Test Results for Each Bioassay Replicate.

Sample No. Station 8289 4B3 8289 4B3 8289 4B3 8289 4B3 8289 4B3 8290 4C2 8290 4C2	on Rep 1 2 3 4 5	Hyalella Survival 8 6 6 9 6	Chironomus Survival 5 6 7 8	Chironomus Growth (mg) 3.48 3.08 3.27 2.65	Light Reduction 57.40 53.40 57.90 57.10
8289 4B3 8289 4B3 8289 4B3 8289 4B3 8289 4B3 8289 4C2 8290 4C2 8290 4C2 8290 4C2	1 2 3 4 5	8 6 6 9 6	5 6 7 8	3.48 3.08 3.27 2.65	57.40 53.40 57.90
8289 4B3 8289 4B3 8289 4B3 8289 4B3 8290 4C2 8290 4C2 8290 4C2 8290 4C2	2 3 4 5	6 6 9 6	6 7 8	3.08 3.27 2.65	53.40 57.90
8289 4B3 8289 4B3 8289 4B3 8290 4C2 8290 4C2 8290 4C2 8290 4C2	3 4 5	6 9 6	7 8	3.27 2.65	57.90
8289 4B3 8289 4B3 8290 4C2 8290 4C2 8290 4C2 8290 4C2	4 5	9 6	8	2.65	
8289 4B3 8290 4C2 8290 4C2 8290 4C2 8290 4C2	5 1	6			57 10l
8290 4C2 8290 4C2 8290 4C2 8290 4C2	1		8	0.00	
8290 4C2 8290 4C2 8290 4C2		40		2.93	58.40
8290 4C2 8290 4C2	2	10	7	2.41	59.90
8290 4C2		9	6	2.65	57.80
	3	10	8	2.59	61.00
8290 4C2	4	10	8	2.88	55.90
	5	10	9	3.04	58.40
8291 4F2	1	9	4	0.93	37.50
8291 4F2	2	8	6	1.48	36.20
8291 4F2	3	10	7	1.61	35.90
8291 4F2	4	9	6	1.65	38.50
8291 4F2	5	7	7	1.33	37.20
8293 4F4	1	7	9	3.07	17.60
8293 4F4	2	5	7	3.37	18.60
8293 4F4	3	5	6	3.75	20.40
8293 4F4	4	6	9	2.79	19.50
8293 4F4	5	8	10	3.14	17.10
8294 5A2	1	10	7	2.40	18.00
8294 5A2	2	9	9	2.00	17.60
8294 5A2	3	6	8	1.91	17.90
8294 5A2	4	9	9	2.74	18.00
8294 5A2	5	10	10	2.54	20.70
8295 5B2	1	6	7	3.06	-5.40
8295 5B2	2	9	8	2.66	-5.30
8295 5B2	3	10	8	2.84	-7.80
8295 5B2	4	7	9	3.06	-6.70
8295 5B2	5	10	7	3.04	-5.40
8297 6A2	1	8	8	2.51	46.60
8297 6A2	2	10	8	3.56	43.10
8297 6A2	3	8	8	3.00	45.20
8297 6A2	4	7	7	3.26	44.50
8297 6A2	5	7	10	3.12	45.10
8299 6B3	1	10	7	1.01	10.30
8299 6B3	2	9	7	1.23	8.50
8299 6B3	3	9	8	1.36	0.98
8299 6B3	4	8	8	2.03	9.10
8299 6B3	5	10	6	1.93	10.20

Table D-1. Test Results for Each Bioassay Replicate.

						Microtox
			Hyalella	Chironomus	Chironomus	Light
Sample No.	Station	Rep	Survival	Survival	Growth (mg)	Reduction
8300	6C2	1	9	9	4.41	-9.00
8300	6C2	2	9	9	1.80	-12.80
8300	6C2	3	10	9	2.98	-15.10
8300	6C2	4	10	8	3.50	-12.60
8300	6C2	5	9	6	3.42	-13.00
8301	7A2	1	7	10	3.34	-9.00
8301	7A2	2	9	7	3.54	-7.80
8301	7A2	3	10	9	2.68	-9.00
8301	7A2	4	0	9	3.52	-10.40
8301	7A2	5	9	6	4.63	-8.40
8303	7B2	1	7	8	3.13	3.10
8303	7B2	2	2	5	3.50	1.90
8303	7B2	3	8	6	2.47	0.90
8303	7B2	4	8	8	2.86	0.80
8303	7B2	5	7	9	2.71	1.30
8304	7C2	1	8	8	2.36	21.10
8304	7C2	2	10	4	4.40	19.50
8304	7C2	3	7	9	2.22	18.70
8304	7C2	4	9	7	3.57	19.90
8304	7C2	5	6	4	2.88	16.40
8305	8A2	1	8	8	1.68	19.50
8305	8A2	2	3	8	1.24	17.00
8305	8A2	3	9	4	1.38	18.60
8305	8A2	4	7	7	0.97	20.30
8305	8A2	5	7	0	•	18.60
8307	8C3	1	9	3	0.33	7.60
8307	8C3	2	8	4	1.03	9.00
8307	8C3	3	9	3	0.13	8.20
8307	8C3	4	6	1	0.30	8.50
8307	8C3	5	7	3	0.20	8.50
1111	Control	1	10	10	3.48	
1111	Control	2	10	10	2.18	
1111	Control	3	10	10	2.11	
1111	Control	4	10	10	2.47	
1111	Control	5	8	10	2.27	

PHASE III

Environmental Site Assessment

2737 and 2750 West Commodore Way Properties Seattle, Washington

TIME OIL COMPANY

December 2001

prepared by:

FOSTER WHEELER ENVIRONMENTAL CORPORATION

CONTENTS

1.	INT	RODUC	CTION	1-1
	1.1	PURP	OSE AND ORGANIZATION	1-1
	1.2	PROJI	ECT OBJECTIVES	1-2
2.	PRO	OPERTY	HISTORY AND PREVIOUS INVESTIGATIONS	2-1
	2.1	PROP.	ERTY DESCRIPTION	2-1
	2.2	PROP:	ERTY OPERATION	2-1
	2.3	PROP:	ERTY HISTORY	2-2
	2.4	PREV	IOUS INVESTIGATIONS	2-5
3.	FIE	LD ACT	TVITIES	3-1
	3.1	SOIL	BORINGS	3-1
		3.1.1	Soil Boring Locations	3-1
		3.1.2	Soil Boring Methods	3-2
		3.1.3	Soil Sampling Methods	3-3
			Product Sampling	3-4
	3.2	MONI	TORING WELL INSTALLATION	3-4
		3.2.1	Monitoring Well Locations	3-4
		3.2.2	Well Installation Methods	3-5
		3.2.3	Installation Materials	3-5
		3.2.4	Well Development	3-5
	3.3	SURV	EYING	3-5
	3.4	WATE	ER LEVEL MEASUREMENTS	3-6
	3.5	GROU	NDWATER SAMPLING AND ANALYSIS	3-6
	3.6	INVES	STIGATION DERIVED WASTE	3-7
4.	ANA	ALYTIC	AL RESULTS	4-1
	4.1	PHASI	E III ACTIVITIES	4-2
		4.1.1	Upper Rail Line Spur Area	4-2
		4.1.2	Former PCP/Diesel Mixing Area	4-2
		4.1.3	Former Barrel Shed Area	4-3
		4.1.4	New Barrel Shed Area	4-4
		4.1.5	West Commodore Way Perimeter Area	4-4
	4.2	QUAR	TERLY GROUNDWATER SAMPLING	4-4
		4.2.1	Quarterly Groundwater Sampling at 2737 West Commodore Way	4-5
		4.2.2	Quarterly Groundwater Sampling at 2750 West Commodore Way	4-5
5.	CON	CLUSI	ONS AND RECOMMENDATIONS	5-1
	5.1	NATU.	RE AND EXTENT OF CONTAMINATION	5-1
		5.1.1	Upper Rail Line Spur Area	5-1

CONTENTS

		5.1.2	Former PCP/Diesel Mixing Area	5-1
		5.1.3	Former Barrel Shed Area	5-2
		5.1.4	New Barrel Shed Area	5-2
		5.1.5	West Commodore Way Perimeter Area	5-2
	5.2	QUAR	TERLY GROUNDWATER MONITORING	5-2
		5.2.1	2737 West Commodore Way	5-2
		5.2.2	2750 West Commodore Way	5-3
	5.3	RECO!	MMENDATIONS FOR FUTURE ACTIONS	5-3
		5.3.1	Upper Rail Line Spur Area	5-4
		5.3.2	Former PCP/Diesel Mixing Area	5-5
		5.3.3	Former Barrel Shed Area	5-6
		5.3.4	New Barrel Shed Area	5-6
		5.3.5	West Commodore Way Perimeter Area	5-6
		5.3.6	Quarterly Groundwater Sampling	5-7
6.	REF	FERENC	CES	6-1
ΔD	DENIT	OLX V	SOIL BORING LOGS	

APPENDIX A	SOIL BORING LOGS
APPENDIX B	SURVEYOR'S REPORT
APPENDIX C	LABORATORY DATA PACKAGES

CONTENTS

Figure 1-1.	Locations of 2737 and 2750 West Commodore Way
Figure 1-2.	Location of 2737 and 2750 West Commodore Way
Figure 1-3.	Layout of Property and Investigation Areas at 2737 West Commodore Way
Figure 2-1.	1991 Sampling Locations, 2737 West Commodore Way
Figure 2-2.	1999 Sampling Locations, 2737 West Commodore Way
Figure 3-1.	Locations of Phase III Soil Borings at 2737 West Commodore Way
Figure 3-2.	Locations of Wells at 2737 West Commodore Way
Figure 3-3.	Potentiometric Surface, July 24, 2001, 2737 West Commodore Way
E: 2 4	I and a of Manitoria Wills and Detection this Confer Manual

- Figure 3-4. Location of Monitoring Wells and Potentiometric Surface, Measured July 24, 2001, 2750 West Commodore Way
- Figure 5-1. Diesel-Impacted Groundwater, July 2001, 2737 West Commodore Way
- **Figure 5-2.** Gasoline-Impacted Groundwater, July 2001, 2737 West Commodore Way
- **Figure 5-3**. Benzene-Impacted Groundwater, July 2001, 2737 West Commodore Way

TABLES

FIGURES

- **Table 2-1.** Analytical Results from 1999 Soil Samples above Cleanup Levels (mg/kg).
- Table 2-2.
 Analytical Results from 1999 Groundwater and Boring Water Samples
- Table 3-1.
 Well Construction Details
- Table 3-2. Well Development and Sampling Parameters, July 2001
- **Table 3-3.** Water Levels Measured at 2737 and 2750 West Commodore Way, July 24, 2001
- **Table 4-1.** Analytical Results for TPH, Lead, and PCP in Soil at 2737 West Commodore Way, July 2001
- **Table 4-2.** Analytical Results for PAHs in Soil at 2737 West Commodore Way, July 2001
- **Table 4-3**. Analytical Results for Groundwater Samples from 2737 West Commodore Way, July 2001

CONTENTS

Table 4-4.	Analytical Results for PAHs in Groundwater at 2737 West Commodore Way, July 2001
Table 4-5.	Analytical Results for Groundwater at 2750 West Commodore Way, July 2001
Table 5-1.	Phase III Soil Sample Results Exceeding MTCA Method A Levels for Unrestricted Soil at 2737 West Commodore Way
Table 5-2.	Groundwater Samples Exceeding Cleanup Levels at 2737 West Commodore Way, July 2001
Table 5-3.	Groundwater Samples Exceeding Cleanup Levels at 2750 West Commodore Way, July 2001
Table 5-4 .	Cumulative Groundwater Samples, 2737 West Commodore Way
Table 5-5.	Cumulative Groundwater Results, 2750 West Commodore Way

ACRONYMS AND ABBREVIATIONS

 μ g/L micrograms per liter

AST above-ground storage tank

bgs below ground surface

BTEX benzene, toluene, ethylbenzene, and xylene

cPAH carcinogenic polyaromatic hydrocarbon

DPE dual-phase extraction EC equivalent carbon

EPA U.S. Environmental Protection Agency

ESA Environmental Site Assessment

Foster Wheeler

Environmental Foster Wheeler Environmental Corporation

HDPE high-density polyethylene

ID inner diameter
IT IT Corporation

LUST leaking underground storage tank

MCL maximum contaminant level

mg/kg milligrams per kilogram

mg/L milligrams per liter

MNA monitored natural attenuation mS/cm millisiemens per centimeter MTCA Model Toxics Control Act

NAD North America Datum

NAVD National America Vertical Datum

NOAA National Oceanic Atmospheric Administration

NTU nephelometric turbidity unit

NWTPH-D_x Northwest total petroleum hydrocarbon-diesel extended

NWTPH-G_x Northwest total petroleum hydrocarbon-gasoline OSWER Office of Solid Waste and Emergency Response

PAH polyaromatic hydrocarbons

PCP pentachlorophenol

PID photoionization detector

ppb parts per billion

ACRONYMS AND ABBREVIATIONS

ppm

parts per million

Property

2737 West Commodore Way

PVC

polyvinyl chloride

RBCA

Risk Based Corrective Action

SQuiRT

Screening Quick Reference Table

TOC

Time Oil Company

TPH

total petroleum hydrocarbon

UST

underground storage tank

1. INTRODUCTION

In August 2000, Foster Wheeler Environmental Corporation (Foster Wheeler Environmental) completed Phase I Environmental Site Assessments (ESAs) at seven properties owned by the Time Oil Company (TOC) that are located along West Commodore Way in Seattle, Washington. The results of the Phase I ESA activity were documented in Phase I ESA reports prepared for each of the seven properties (Foster Wheeler Environmental 2000).

The Phase I ESA report prepared for the property located at 2737 West Commodore Way (Property) concluded that additional investigation was required to better understand subsurface conditions. Phase II ESA activities were subsequently conducted at the Property in November and December 2000, and results are documented in Phase II's Final ESA (Foster Wheeler Environmental 2001a). The Phase II report recommended additional subsurface sampling at 2737 West Commodore Way and quarterly groundwater sampling at 2737 and 2750 West Commodore Way; consequently, investigation activities and quarterly sampling were conducted in July 2001.

Figure 1-1 depicts the general location of the project area. Figure 1-2 illustrates the locations of 2737 and 2750 West Commodore Way.

1.1 PURPOSE AND ORGANIZATION

The purpose of Phase III field activities was to evaluate subsurface conditions at 2737 West Commodore Way in specific areas identified during the Phase II ESA. This report includes the results from the subsurface investigation and from quarterly groundwater sampling at 2737 and 2750 West Commodore Way.

This report is organized into six sections and three appendices:

- Section 1 Introduction
- Section 2 Property History and Previous Investigations
- Section 3 Field Activities
- Section 4 Analytical Results
- Section 5 Conclusions and Recommendations

- Section 6 References
- Appendix A Soil Boring Logs
- Appendix B Surveyor's Report
- Appendix C Laboratory Data Packages

1.2 PROJECT OBJECTIVES

The results of the Phase II ESA conducted at 2737 West Commodore Way suggested that additional investigation activities be conducted at five areas to further evaluate subsurface conditions and to conduct quarterly groundwater sampling at both properties (i.e., 2737 and 2750 West Commodore Way). A layout of the property at 2737 West Commodore Way and the areas investigated is provided in Figure 1-3. The areas and the justification for additional investigation are as follows:

- 1. Upper Rail Line Spur Area Historical photographs show stained soil along the former rail line spur on the south side of the Upper Tank Yard Area. Previous investigations did not show extensive petroleum-impacted soil. Petroleum-impacted groundwater was detected beneath the tank yards north of the Upper Rail Line Spur Area. A monitoring well was planned in the area to evaluate up-gradient (background) groundwater conditions.
- 2. Former PCP/Diesel Mixing Area The Former PCP/Diesel Mixing Area is a sub-area of the Lower Tank Yard Area. An above-ground storage tank (AST) was used in the Lower Tank Yard Area to mix pentachlorophenol (PCP) and diesel during a short period of time in the late 1960s. Soil borings, near subsurface sampling, and a monitoring well were planned to evaluate the potential for petroleum-impacted and PCP-impacted soil and groundwater.
- 3. Former Barrel Shed Area The Former Barrel Shed Area was between the warehouse and the office building. The pipeline from the PCP/diesel mixing tank also ran underground in this area. During the Phase II activities (December 2000), several borings and a monitoring well were installed in this area. Soil samples were not analyzed for PCP but the groundwater sample from the monitoring well (01MW-06) did contain low levels of PCP. A soil boring was planned near 01MW-06 to evaluate the potential for petroleum-impacted and PCP-impacted soil from the former structure.
- 4. New Barrel Shed Area The New Barrel Shed Area is west of the warehouse. The area was used for a short time during the late 1960s to fill 55-gallon barrels with the

PCP/diesel mixture through an overhead distribution system. The pipeline ran from the Former PCP/Diesel Mixing Area, beneath the Former Barrel Shed Area, and into the New Barrel Shed Area. A soil boring was drilled on the north end of the New Barrel Shed Area near the pipeline, and a well was installed. Samples were analyzed for petroleum products, lead, and PCP.

5. West Commodore Way Perimeter Area – Historical releases from a leaking underground storage tank (LUST) used to store petroleum products have affected the subsurface soil and groundwater in this area. A soil boring and monitoring well were planned to evaluate the extent of petroleum-impacted soil and groundwater in the area.

2. PROPERTY HISTORY AND PREVIOUS INVESTIGATIONS

The following sections describe the history of the Property and summarize previously conducted investigations.

2.1 PROPERTY DESCRIPTION

The Property runs from West Commodore Way south to the Burlington Northern rail line. Except for the area of the former rail lines behind the warehouse, and the Upper and Lower Tank Yard Areas on the east side of the Property, the Property has been paved. A two-story office building is located in the center of the Property toward West Commodore Way. A three-section warehouse is located behind the office building, and a former boiler room is connected to the east side of the warehouse via a covered loading dock. An open-air barrel shed is located to the northwest of the warehouse. The Tank Yard is divided into two sections, the Lower Tank Yard Area and the Upper Tank Yard Area, each constructed at a different time. The Lower Tank Yard Area contains six ASTs. The Upper Tank Yard Area contains eight ASTs that are larger in volume than those in the Lower Tank Yard Area. The south side of the Upper Tank Yard Area, banks steeply upward to the fence line and former rail line spur. The surface of the Tank Yards is unpaved gravel with patches of grass. Immediately to the west of the Tank Yards are a pump shed and foamite shed (used for fire suppression).

According to available regulatory records and interviews with TOC personnel, there are several underground storage tanks (USTs) on the Property. Two USTs are located on the north side of the office building: an unused heating oil tank is located on the east side of the office building adjacent to the former furnace room, and a gasoline vapor knock-out tank is located along the north side of the Lower Tank Yard Area. The knock-out tank is associated with the overhead fuel loading racks located just north of the Lower Tank Yard Area of the tank farm. There are no known drinking water wells on the Property, but several monitoring wells from previous site investigations are installed within the shallow water-bearing zone beneath the Property.

2.2 PROPERTY OPERATION

The Property is used by TOC for a variety of purposes: it is the site of the TOC administrative offices; it previously served as a tank farm for petroleum products; and

portions are used to store equipment and supplies for service stations, such as fuel dispensers, fascia, signs, and miscellaneous supplies (most of these materials are kept near the New Barrel Shed Area or in part of the warehouse). The ASTs range in size from approximately 5,225 barrels to 23,000 barrels. Fuel distribution lines connect the ASTs to an extensive manifold system that is connected to the truck loading rack and a waterfront dock located in the ship canal across West Commodore Way. When the tank farm was operating, fuel was off-loaded from barges and tankers in the ship canal and transferred to the ASTs. From there, the fuel was transferred to tanker trucks via the overhead loading rack outside of, and just north of, the Lower Tank Yard Area.

Operation of the TOC Seattle Terminal as a petroleum storage and transfer facility was discontinued in October 2001. The ASTs and pipelines have been purged of petroleum products, appropriately cleaned, and are currently empty. Although the terminal improvements remain in place, there are currently no plans to use the facility for petroleum storage and/or transfer again; thus, the potential for additional hydrocarbon releases is believed to be very low.

2.3 PROPERTY HISTORY

Information about the history of the Property was derived from a review of available documents, historical photographs, and regulatory records. Former and current employees of TOC were also interviewed.

The Property was acquired by TOC around 1941. Before 1936, the Property appears to have been used for agricultural purposes. Historical aerial photographs and fire insurance maps presented in the Phase I reports (Foster Wheeler Environmental 2000) show the Rattan Furniture factory, a sawmill, dry kiln, and a U.S. Coast Guard facility located across West Commodore Way.

A 1946 photograph shows the original office building, the Lower and Upper Tank Yard Areas of the tank farm, the pump shed and foamite building, a former barrel shed located immediately west of the office building, and overhead fuel loading racks. The unpaved surface of the Lower Tank Yard Area is noticeably dark, and it is unclear whether this darkness is an artifact of the photograph or is indicative of site operations. Numerous rows of empty 55-gallon drums are located to the west of the Property, which, according to interviews with TOC employees, were filled with petroleum products in the Former Barrel Shed Area, rolled under West Commodore Way via a barrel incline and tunnel to the TOC

dock in the ship canal, and loaded onto ships. This operation was conducted primarily to support World War II efforts. According to the interviewees, laborers were hired to fill the barrels and load them onto ships. The filling apparatus was controlled by pulling a line to dispense fuel into a drum. One pull of the line would automatically dispense 50 gallons of fuel into the 55-gallon drums via an overhead nozzle at a very high rate and if the line was pulled twice, then twice as much fuel would be dispensed (and so on). The interviewees stated they had heard of many times when drums were overfilled and fuel spilled on the ground.

In 1946, a large volume of fuel arrived at the Property via rail cars. There were four rail spurs off the main Burlington Northern line leading onto the TOC property: one spur ran behind the Former Barrel Shed Area and the other lines led toward the southwest end of the tank farm's Upper Tank Yard Area. One of these lines ran all the way behind the Upper Tank Yard Area toward 27th Avenue West. Fuel was transferred from tanker cars via hoses to a subsurface line, from which it was pumped into the ASTs. Careful examination of the historical photograph from 1946 shows what appear to be equally spaced dark patches of soil on the rail spur on the south side of the tank farm's Upper Tank Yard Area. According to the interviewees, the tank cars were off-loaded with hoses; therefore, these dark patches may be related to petroleum leaks and spills that occurred during off-loading operations. After the lines were disconnected, it was not uncommon for residual fuel to drain from the lines and onto the ground.

The historical photograph from 1960 depicts the Property largely as it is today. A warehouse building, built in the late 1940s according to information in the Puget Sound Regional Archives, is located south of the office building parallel to the rail spurs (several of the rail spurs were deactivated by the time of this photograph). A new barrel shed, built in 1952 according to the Puget Sound Regional Archive files, is located just northwest of the warehouse; the boiler house was added in 1950 (Puget Sound Regional Archive files). The barrel shed seen in the 1946 photograph is no longer on the Property in the 1960 photograph.

According to interviewees, TOC operated a fleet of fuel delivery service trucks that were serviced across the street at the vehicle maintenance facility at 2750 West Commodore Way. Historical photographs show three ASTs located north of the New Barrel Shed Area. According to TOC employees, these ASTs were used to store used motor oil. The immediate area surrounding the ASTs was unpaved, but an outer area was paved. The

interviewees also indicated that this area had been affected by several small spills and leaks related to used motor oil transfer and storage activities.

By 1974 a new vehicle maintenance facility was added on the adjacent property (2800 block) immediately west of the Property. After TOC terminated its fuel truck distribution service, this building was leased to Precision Engineering Specialists (a marine and engine repair facility) in 1976.

According to TOC employees, pentachlorophenol (PCP) was mixed in a small AST near the west wall of the tank farm's Lower Tank Yard Area. The PCP was transferred via underground lines to the new barrel shed where 55-gallon drums and 5-gallon drums were filled, rolled onto a loading dock between the warehouse and the barrel shed, and loaded onto rail cars. This operation reportedly ran for 3 to 4 months during 1967 as part of a military contract. A few of the interviewees also stated that the parking lot on the Property had subsided in the vicinity where the former barrel incline ducked under West Commodore Way; the area was leveled and patched with new asphalt. The 1997 photograph shows the Property as it exists today.

Several of the interviewees mentioned that TOC had wanted to demolish the existing office building to construct a new office building; however, there was concern about excavating to the west of the existing office building because of the potential presence of petroleumimpacted soil. A couple of the interviewees also mentioned that many of the ASTs had small weeps or leaks near the bases. While there were no reports of large releases, numerous small leaks could have had a cumulative impact. Some of the interviewees also indicated that the fuel line between the rail spurs was an area where there had been releases in the past. Other statements by the interviewees noted a release of gasoline near the northern (outer) overhead fuel-loading rack. During one incident, the driver of a tanker truck is reported to have struck a portion of the loading facilities, resulting in a spill of over 1,000 gallons of gasoline; most of the fuel was reportedly recovered. The overhead loading racks initially had a center island surrounded by sand with only the driveways paved. The southern (inside) rack was replaced in the mid-1980s, and the entire area surrounding both loading racks was paved. Interviewees identified the pipeline leading to the dock across the street as an area where petroleum releases may have occurred. The pipeline consists of several pipes encased in an outer conduit. The speculation was that the older 8-inch pipes had failed and newer 6-inch pipes were placed within the older pipes.

2.4 PREVIOUS INVESTIGATIONS

In September 1991 (TOC 1991), three USTs were removed from the Property, including a 4,000-gallon unleaded gasoline tank, a 2,500-gallon diesel fuel tank, and a 1,500-gallon regular leaded gasoline tank. Figure 2-1 shows the locations of the former USTs and soil sampling locations.

The diesel fuel and leaded gasoline tanks were part of a baffled system (one 4,000-gallon tank) that was installed in 1980. Following removal of the USTs, a new 4,000-gallon UST was installed at the same location. This new tank is baffled to provide two compartments (one 3,000-gallon compartment and one 1,000-gallon compartment) and is therefore registered with Washington State Department of Ecology (Ecology) as two tanks. Two new fuel dispensers were also installed. The TOC report from 1991 indicated that the soil in the excavation appeared discolored and a hydrocarbon odor was evident. In addition, water with a hydrocarbon sheen was encountered at a depth of 18 feet below ground surface (bgs).

Efforts to excavate the petroleum-impacted soil were impeded by the proximity of the TOC building to the excavation and the presence of groundwater in the excavation space. Water samples were not collected, but soil samples indicated that the highest concentration (12,000 parts per million [ppm]) of hydrocarbons was present in surficial soils beneath the former fuel dispensers (east side of the building).

Additional site assessment activities were conducted in 1999, including the installation of nine soil borings and five groundwater monitoring wells (IT Corporation [IT] 2000). The locations of the 1999 borings are shown in Figure 2-2. Soil boring logs included in the IT report indicate that soil composition beneath the Property from the surface to approximately 20 to 25 feet bgs consists of sands and silts, with varying amounts of clay and gravel. Very dense dry clay underlies this sand/silt unit and acts as an aquitard. Several soil samples contained diesel and gasoline at concentrations above the historic Model Toxics Control Act (MTCA) Method A level. The concentrations ranged from 381 ppm to 755,000 ppm. One soil sample (01SB-09 at 2.5 feet bgs) contained heavy oil above the historic MTCA Method A level and, although the analytical results for heavy oil on several other samples were below limits of detection, the detection limits exceed the historic MTCA cleanup level. Benzene was reported above the soil cleanup level in samples collected from borings 01SB-08, 01SB-09, and 01MW-05.

Table 2-1 presents the analytical results for soil samples with petroleum concentrations above the cleanup levels. Concentrations of benzene in soil samples ranged from 2.12 ppm to 5,590 ppm. Several soil samples also exceeded the cleanup level for toluene, ethylbenzene, and xylene.

Groundwater was encountered in eight of the nine borings and all of the monitoring wells. Depth to groundwater ranged from 14 to 17 feet bgs. The wells were sampled in September 1999; only one well (01MW-01) did not contain detectable concentrations of hydrocarbons.

Table 2-2 lists the analytical results from the groundwater monitoring well and boring water samples collected in 1999. Well 01MW-05 contained floating product with an apparent thickness of 0.78 feet; consequently, this well was not sampled. The concentrations of gasoline in wells 01MW-01 through 01MW-04 ranged from 12.2 milligrams per liter (mg/L) to 27.2 mg/L, and concentrations of diesel ranged from 0.7 mg/L to 1.32 mg/L. Heavy oil was not detected in any of the wells. Benzene ranged from 3,880 mg/L to 11,300 mg/L. Wells 01MW-02 through 01MW-04 contained concentrations of toluene, ethylbenzene, and xylene above the MTCA Method A level. Total lead exceeded the cleanup level in every well except 01MW-01, with the highest concentration (130 parts per billion [ppb]) detected in 01MW-04. Most of the elevated concentrations appear to be located near the northeast corner of the office building. The IT report recommended additional site characterization.

In May 2000, TOC submitted a letter (TOC 2000) to Mr. Joe Hickey of the UST division of Ecology that summarizes previous field activities. In the letter, TOC indicated that the extent of contamination beneath the Property would be assessed.

During November and December 2000, Foster Wheeler Environmental conducted additional investigation activities at 2805, 2750, and 2737 West Commodore Way. The findings of these investigations are documented in the Environmental Site Assessment (Foster Wheeler Environmental 2001a). The report concluded that additional subsurface investigations were not necessary at 2805 or 2750 West Commodore Way. Groundwater monitoring was recommended for 2737 and 2750 West Commodore Way.

The investigation at 2737 West Commodore Way focused on several distinct areas and recommended additional work in five areas:

- Upper Rail Line Spur Area
- Former PCP/Diesel Mixing Area

- Former Barrel Shed Area
- New Barrel Shed Area
- West Commodore Way Perimeter Area

.)

3. FIELD ACTIVITIES

Field activities at 2737 West Commodore Way included soil borings, near subsurface soil sampling, well installation, soil sampling, quarterly groundwater sampling, fuel characterization, and surveying. The following sections describe the methodology used to complete the field activities.

3.1 SOIL BORINGS

3.1.1 Soil Boring Locations

Nine soil borings were drilled at 2737 West Commodore Way, as shown on Figure 3-1. The total depth of each soil boring and the depth groundwater encountered at each location is described below:

Upper Rail Line Spur Area:

SB-61 was located between SB-21 and SB-22 and advanced to a depth of 32 feet.
 Groundwater was encountered at a depth of approximately 22 feet bgs during drilling. Monitoring well 01MW-17 was installed at this location as an up-gradient well.

Former PCP/Diesel Mixing Area (Lower Tank Yard Area):

- SB-52 was located south of the Former PCP/Diesel Mixing Area (near SB-01). The boring was advanced to a depth of 14 feet. Groundwater was encountered at a depth of approximately 11 feet bgs.
- SB-53 was located east of the Former PCP/Diesel Mixing Area (near SB-02). The boring was advanced to a depth of 12 feet. Groundwater was encountered at a depth of approximately 11 feet bgs.
- SB-54 was located west of the Former PCP/Diesel Mixing Area (near SB-04). The boring was advanced to a depth of 12 feet. Groundwater was encountered at a depth of approximately 10.5 feet bgs.

- SB-55 was located northeast of the Former PCP/Diesel Mixing Area. The boring
 was advanced to a depth of 12 feet. Groundwater was encountered at a depth of
 approximately 11.5 feet bgs.
- SB-56 was located north of the Former PCP/Diesel Mixing Area. The boring was advanced to a depth of 15 feet. Groundwater was encountered at a depth of approximately 8 feet bgs. Monitoring well 01MW-14 was completed in this location.
- SB-57 was located southeast of the Former PCP/Diesel Mixing Area. This sampling location was not a soil boring, because of restricted access and the presence of utilities. A near sub-surface sample was collected by removing the upper 18 inches of overburden with a clean shovel. A decontaminated stainless steel spoon was then used to collect a soil sample.

Former Barrel Shed Area:

SB-59 was located on the west end of the Former Barrel Shed Area near 01MW-06.
 The boring was advanced to a depth of 20 feet. Groundwater was not encountered during drilling.

New Barrel Shed Area:

• SB-58 was located in the parking lot near the subsurface pipes as they enter the foundation of the New Barrel Shed Area. The boring was advanced to a depth of 30 feet. Groundwater was encountered at a depth of 22 feet bgs during drilling. Monitoring well 01MW-15 was completed at this location.

West Commodore Way Perimeter Area:

• SB-60 was located east of the LUST area, between 01MW-02 and 01MW-10. The boring was advanced to a depth of 22.5 feet. Groundwater was encountered at a depth of approximately 18 feet bgs. Monitoring well 01MW-16 was installed at this location.

3.1.2 Soil Boring Methods

Soil borings in the Former PCP/Diesel Mixing Area were drilled with an Acker Soil Mechanic operated by BoreTec. The Acker Soil Mechanic is a portable drilling machine that can be broken down into smaller pieces to allow for access into restricted areas. The machine uses 2-inch inner

diameter (ID) hollow-stem augers. Split-spoon samples were driven every 5 feet. The spoons were 12 inches long, 1 inch ID, and driven with a 140-pound hammer.

The remaining borings were drilled with a CME 75 High Torque drill rig operated by Cascade Drilling. The augers used on the drill rig were 4.25-ID hollow stem. Split-spoon samples were driven every 5 feet to describe lithologies and collect soil samples. In most borings, an extra split-spoon sample was driven at the 2-foot-depth interval. Split-spoon samples were 12 inches long (not including the shoe), 2-inch ID, and driven by a 300-pound down-hole jar hammer. Appendix A contains the soil boring logs for the Property.

3.1.3 Soil Sampling Methods

Soil samples were collected directly from the split spoon and placed in the appropriate laboratory-supplied sample container. The analyses requested for each sample depended on the location. In general, the samples were analyzed for:

- Gasoline using Ecology's Northwest total petroleum hydrocarbon-gasoline (NWTPH-Gx) method
- Benzene, toluene, ethylbenzene, and xylene (BTEX) using U.S. Environmental Protection Agency (EPA) 8021B
- Diesel and oil using Ecology's Northwest total petroleum hydrocarbon-diesel extended (NWTPH-Dx) method
- PCP using EPA Method 8270-sim (selected ion monitoring)
- Carcinogenic polyaromatic hydrocarbons (cPAHs) using EPA Method 8270-sim
- Total lead using EPA 6000/7000 series

The gasoline/BTEX samples were collected first out of each spoon. The sample containers were placed in sealed baggies and placed directly into a chilled cooler for transport to the laboratory. Soil samples were labeled according to their soil boring location and depth collected (i.e., SB-52-2 = soil boring 52, sample depth 2 feet). North Creek Analytical (Bothell, Washington) received the samples at the end of each day in the field.

The split spoons were decontaminated by thoroughly washing them in soapy water, rinsing with water, rinsing with methanol, and finally rinsing with deionized water supplied by the analytical laboratory.

3.1.4 Product Sampling

Product samples were collected from three wells: 01MW-05, 01MW-10, and 01MW-14. The samples were collected using capillary tubes and submitted to Friedman & Bruya, Inc. for characterization of product and PCP analysis.

3.2 MONITORING WELL INSTALLATION

Four new monitoring wells were installed and developed during the Phase III investigation activities. The locations of the new monitoring wells as well as the existing wells are shown on Figure 3-2. Table 3-1 presents the available well construction information for wells at 2737 West Commodore Way.

3.2.1 Monitoring Well Locations

Each of the wells installed was designed and located with a specific purpose in mind. The rationale behind each well location is as follows:

- 01MW-14 (SB-56) was located south of the Former PCP/Diesel Mixing Area. The
 well is screened within the shallow water-bearing zone. The purpose of this well is
 to evaluate the potential impacts of fuel and PCP from the Former PCP/Diesel
 Mixing Area.
- 01MW-15 (SB-58) was located downgradient and north of the New Barrel Shed Area to evaluate potential groundwater impacts. The well is screened within the shallow water-bearing zone with the bottom of the well above a dry, impermeable clay/silt layer.
- 01MW-16 (SB-60) was located just east of the office building near the Former LUST Area, between 01MW-02 and 01MW-10, to evaluate the extent of petroleum-impacted groundwater. The well is screened within the shallow water-bearing zone with the bottom of the well above a dry, impermeable clay/silt layer.
- 01MW-17 (SB-61) was located upgradient of the Upper Tank Yard Area to evaluate background groundwater conditions. The well is screened within the shallow water-bearing zone with the bottom of the well above a dry, impermeable clay/silt layer.

3.2.2 Well Installation Methods

The monitoring wells were drilled as described in Section 3.1.2.

3.2.3 Installation Materials

Most of wells were installed with flush-threaded, 2-inch ID polyvinyl chloride (PVC) casing with variable screen lengths of 0.010-inch slots. The sand pack consists of a 20-40 Colorado silica sand around the screen to 2 feet (typically) above the top of the screen. The sand pack is overlain by a bentonite seal of at least 1 foot (typically). Concrete and flush-mount monuments were used to complete the wells. Heavy-duty well monuments were used for wells in areas with high levels of vehicular traffic.

Monitoring well 01MW-14 was installed with the Acker Soil Mechanic. Because of the smaller boring diameter, this well features a 1-inch ID casing. The annular materials are identical to those of the 2-inch ID wells.

3.2.4 Well Development

The wells were developed following installation. For development, the wells were surged frequently with a double-stage purge pump. At least three well volumes of water were pumped from the wells using the double-stage purge pump. Before a different well was pumped, the tubing was changed on the pump, and the pump was decontaminated by washing it with soapy (Liquinox) water, pumping soapy water through it, and rinsing it with deionized water supplied by the analytical laboratory.

Visual observations and measurement of physical parameters provided monitoring of development progress. Measurements during development and well sampling were made for pH, temperature, conductivity, and turbidity using a Hydrolab Data Sonde. The meter was calibrated before each use using standards supplied by the instrument provider. Table 3-2 provides the final parameters measured during the sampling and development of the wells.

3.3 SURVEYING

The soil boring locations were surveyed by Inca Engineering, Inc. Horizontal control was specified to 0.1 foot, based on Washington State Plane Coordinate System, North America Datum (NAD) 83/91 City of Seattle. Vertical control was specified to 0.01 foot, based on

the National America Vertical Datum (NAVD) 88 City of Seattle. A summary of the survey results is presented in Table 3-1, and the complete data are provided in Appendix B.

3.4 WATER LEVEL MEASUREMENTS

Water level measurements were made from all available wells. Depth to groundwater measurements were subtracted from surveyed measuring point elevations to determine the water level elevations (potentiometric head), as shown in Table 3-3. The potentiometric surface maps for 2737 and 2750 West Commodore Way are shown in Figures 3-3 and 3-4, respectively.

3.5 GROUNDWATER SAMPLING AND ANALYSIS

Groundwater samples were collected from July 25 through July 27, 2001. Water samples were collected in laboratory-supplied glassware and delivered to the laboratory each evening after sampling.

Samples were collected using a peristaltic pump, disposable high-density polyethylene (HDPE) tubing, and silicone tubing. At each well the HDPE tubing was inserted into the water at approximately the center of the well screen. A piece of disposable silicon tubing was connected to the HDPE tubing and run through the pump. Both pieces of tubing were discarded after each use, and new tubing was used for the next well.

The analyses performed on each groundwater sample depended on the location. In general, the water samples were analyzed for the following potential contaminants:

- Gasoline, using Ecology's NWTPH-Gx Method
- BTEX, using EPA Method 8021B
- Diesel and oil, using Ecology's NWTPH-Dx Method
- cPAHs, using EPA Method 8270-sim
- PCP, using EPA Method 8270-sim
- Total lead, using EPA 6000/7000 series

3.6 INVESTIGATION DERIVED WASTE

Soil cuttings from the Property were transferred to the stock piles on the Property for disposal by TOC. Decontamination water was collected by the drilling company in 55-gallon type 1A drums, transferred to TOC.

.

4. ANALYTICAL RESULTS

Soil samples and groundwater were analyzed by North Creek Analytical Labs in Bothell, Washington. Product characterization samples were analyzed by Friedman & Bruya, Inc., in Seattle, Washington. Where applicable, results were compared to Ecology's new Method A soil levels for unrestricted land use. Ecology's new rule does not differentiate between industrial property and unrestricted land use. The new soil levels for diesel and oil are higher than the previous MTCA Method A levels, with the new soil levels for gasoline divided into two categories: gasoline without benzene and less than 20 percent aromatics between equivalent carbon (EC) 8 and EC16 (proposed soil cleanup level of 100 milligrams per kilogram [mg/kg]); and all other gasoline mixtures (proposed soil cleanup level of 30 mg/kg). The new BTEX levels for soil are lower than previous levels. For PCP, the soil results were compared to the MTCA Method B carcinogenic levels for residential soils. Groundwater concentrations were compared to the National Oceanic Atmospheric Administration (NOAA) Screening Quick Reference Tables (SQuiRT) values. The SQuiRT values provide screening levels for acute and chronic exposures to both freshwater and saltwater. Because the groundwater beneath the site is not used for drinking water and the ultimate point of exposure is the Ship Canal (a fishwater body), it is appropriate to compare the groundwater concentrations to the NOAA SQuiRT values for fishwater. Groundwater concentrations were compared to the MTCA Method A levels for groundwater for analytes that did not have applicable NOAA SQuiRT values. The analytical results are presented in Tables 4-1 through 4-5. The footnotes at the bottom of each table identify the applicable action levels.

Appendix C contains the laboratory data packages for the samples collected at the Property. The data packages are presented in their entirety to allow the reader to evaluate the data relative to the quality control data associated with the environmental samples.

The following sections present the analytical results. The results for Phase III soil samples and the new monitoring wells are presented in Section 4.1. Quarterly groundwater results are presented in Section 4.2.

4.1 PHASE III ACTIVITIES

4.1.1 Upper Rail Line Spur Area

Soil

One soil boring (SB-61) was located near the Upper Rail Line Spur Area on the south side of the Upper Tank Yard Area. Four soil samples were collected from the boring and analyzed for gasoline, diesel, and oil. Diesel and oil were detected at low concentrations in the sample collected from a depth of 2 feet bgs. None of the soil samples showed concentrations of petroleum analytes above the reporting limit.

Groundwater

The groundwater sample collected from 01MW-17 contained concentrations of diesel (0.884 mg/L) above the MTCA Method A level (0.500 mg/L). None of the other petroleum analytes were detected above the reporting limits.

4.1.2 Former PCP/Diesel Mixing Area

Soil

Five soil borings (SB-52 through SB-56) were installed in the Former PCP/Diesel Mixing Area. Gasoline (1,410 mg/kg) and diesel (4,180 mg/kg) were detected above the MTCA Method A level for unrestricted soil in SB-52 at a depth of 2.5 feet bgs. None of the samples collected from the 6-foot or 10-foot depth showed concentrations above the MTCA Method A level for unrestricted soil.

None of the soil samples from SB-53 or SB-54 showed concentrations above the MTCA Method A levels for unrestricted soil. Gasoline, diesel, and oil were detected in SB-54 at a depth of 2 feet bgs.

Gasoline (185 mg/kg) was detected above the MTCA Method A level in SB-55 at a depth of 6 feet bgs. None of the petroleum analytes were detected above the reporting limit in SB-55. None of the petroleum analytes exceeded the MTCA Method A levels for unrestricted soil in the sample collected from the 10-foot depth in SB-55. PCP was not detected above the MTCA cleanup level.

Gasoline, benzene, ethylbenzene, xylene, and diesel were detected above the MTCA Method A level for unrestricted soil in SB-56 at depths of 2.5 feet bgs and 5 feet bgs. PCP was detected (8.88 mg/kg) above the MTCA Method B level (8.33 mg/kg) for soil. None of the analytes exceeded the MTCA Method A levels for unrestricted soil in the sample collected from the 10-foot depth. The concentration of cPAHs (2.6240 mg/kg) exceeded the MTCA Method A level of 1.0 mg/kg in SB-56 at a depth of 2.5 feet bgs.

A near subsurface sample was collected at SB-57 from a depth of 1.5 feet. Gasoline (2,590 mg/kg), ethylbenzene (18.2 mg/kg), and diesel (3,970 mg/kg) were detected above the MTCA Method A level for unrestricted soil. PCP was not detected above the laboratory reporting limit.

Groundwater

A monitoring well (01MW-14) was installed in SB-55. The well contained approximately 6.7 feet of product with no discernable groundwater present. A product sample was collected for fuel characterization and PCP analysis. The lab concluded that the majority of the material present in the sample is indicative of a middle distillate such as diesel fuel #2 or heating oil. The report also concluded that low-level degraded gasoline may have impacted the sample. PCP was detected in the sample at a concentration of $140 \mu g/g$ (ppm).

4.1.3 Former Barrel Shed Area

Soil

One soil boring (SB-59) was installed near the Former Barrel Shed Area. Gasoline (799 mg/kg) and diesel (4,950 mg/kg) were detected above the MTCA Method A levels for unrestricted soil at a depth of 5 feet. Samples from the 15-foot and 20-foot-depth interval in SB-27 did not contain concentrations of petroleum-impacted soil above the method reporting limit.

Lead, PCP, and cPAHs were not detected above the MTCA Method A levels in SB-59.

4.1.4 New Barrel Shed Area

Soil

One boring (SB-58) was installed just north of the loading dock directly north of the New Barrel Shed Area. None of the samples had concentrations of analytes above the MTCA Method A level for unrestricted soil.

Groundwater

A monitoring well (01MW-15) was installed in boring SB-58. None of the analytes exceeded the MTCA Method A levels or the NOAA SQuiRT values.

4.1.5 West Commodore Way Perimeter Area

Soil

One boring (SB-60) was located along West Commodore Way and north of the Lower Tank Yard Area. Gasoline (1,240 mg/kg), benzene (1.68 mg/kg), xylenes (10.2 mg/kg), and diesel (11,400 mg/kg) were detected above the MTCA Method A level for unrestricted soil at a depth of 15 feet. The sample from the 20-foot depth did not show concentrations of analytes above the reporting limits.

Lead was not detected above the MTCA Method A levels.

Groundwater

A monitoring well (01MW-16) was installed in boring SB-60. Gasoline (11,000 μ g/L) and diesel (11.1 mg/L) were detected at concentrations above the MTCA levels.

4.2 QUARTERLY GROUNDWATER SAMPLING

Groundwater samples are collected on a quarterly basis (January, April, July, and October) at 2737 and 2750 West Commodore Way. The first quarterly sampling event occurred during the third quarter of the 2001 calendar year. The specific analyses depend on the sample location. The following sections present the results for each property.

4.2.1 Quarterly Groundwater Sampling at 2737 West Commodore Way

Diesel exceeded the MTCA Method A level in every groundwater sample except the sample from well 01MW-15. Gasoline exceeded the MTCA Method A level in 01MW-02, 01MW-03, 01MW-04, 01MW-09, 01MW-12, and 01MW-16. Benzene exceeded the NOAA SQuiRT value in 01MW-02, and 01MW-03. Total xylene exceeded the cleanup level in 01MW-02 and 01MW-04. PCP did not exceed the NOAA SQuiRT values in any of the samples.

4.2.2 Quarterly Groundwater Sampling at 2750 West Commodore Way

Diesel exceeded the MTCA Method A level in every well except 02MW-07. Gasoline $(4,270 \mu g/L)$ exceeded the MTCA Method A level in 02MW-04. None of the other analytes were detected above the applicable regulatory levels.

5. CONCLUSIONS AND RECOMMENDATIONS

The following sections describe the nature and extent of contamination as well as recommendations for future actions.

5.1 NATURE AND EXTENT OF CONTAMINATION

The following subsections describe the nature and extent of contamination within each area. A summary table (Table 5-1) shows the soil samples exceeding the MTCA Method A levels for unrestricted soil. Tables 5-2 and 5-3 show the groundwater samples exceeding action levels at 2737 and 2750 West Commodore Way, respectively.

5.1.1 Upper Rail Line Spur Area

None of the samples collected from the new boring (SB 61) exceeded the MTCA levels for unrestricted soil. The groundwater sample from 01MW-17 showed concentrations of diesel (0.884 mg/L) above the MTCA cleanup level (0.500 mg/L). The potentiometric surface for the site also showed that 01MW-17 is downgradient from the site, possibly owing to a localized recharge area beneath the Tank Yards. Figure 5-1 shows the extent of dieselimpacted groundwater beneath the site.

5.1.2 Former PCP/Diesel Mixing Area

Diesel- and gasoline-impacted soil appears to be present near the Former PCP/Diesel Mixing Area in SB-52, SB-55, and SB-56 at depths ranging from 2.5 feet to 6 feet. The samples collected from the 10-foot depth in each boring did not show concentrations of petroleum contaminants above the MTCA level for unrestricted soil. PCP was detected (8.88 mg/kg) at a level just above the cleanup level (8.33 mg/kg) in SB-56 at a depth of 5 feet. A well (01MW-14) was installed in boring SB-56. The well was found to contain more than 6 feet of product, with no measurable groundwater present. When the product was sampled, PCP was detected at a concentration of 140 μ g/g. Carcinogenic PAHs exceeded the cleanup level (1 mg/kg) in SB-56 at a depth of 2.5 feet. Based on the recent findings and previous investigations, it appears that petroleum-impacted soil is generally limited to the upper 5 feet.

5.1.3 Former Barrel Shed Area

Petroleum-impacted soil was evident in SB-59 at a depth of 5 feet. This result is consistent with the findings from previous investigations. PCP was not detected in soil above the MTCA levels. Analytes were not detected above applicable regulatory levels in groundwater. PCP was detected at low levels and may be a result of historic operations or related to wood preservatives used on former buildings or railroad ties.

5.1.4 New Barrel Shed Area

None of the soil samples from SB-58, located north of the New Barrel Shed Area, exceeded the MTCA Method A levels.

The groundwater samples from 01MW-15 did not show concentrations above the regulatory levels. PCP was detected at low levels and may be a result of historic operations or related to wood preservatives used on former buildings or railroad ties.

5.1.5 West Commodore Way Perimeter Area

Petroleum-impacted soil was found in SB-60 at a depth of 15 feet. The soil contamination was found near the water table and may be the result of groundwater influence rather than contaminated soil. A well (01MW-16) was installed in this location. The groundwater sample showed concentrations of gas and diesel above the MTCA levels. It is not clear whether groundwater contamination is due solely to activities at the Former PCP/Diesel Mixing Area to the south, the loading rack immediately to the south, the Former LUST Area to the west, or a combination of these areas. Figures 5-2 and 5-3 show the extent of gasoline- and benzene-impacted groundwater beneath the site, respectively.

5.2 QUARTERLY GROUNDWATER MONITORING

5.2.1 2737 West Commodore Way

Figures 5-1 through 5-3 show the extent of impacted groundwater beneath 2737 West Commodore Way. In general, groundwater concentrations are consistent with those measured in December 2000.

There appear to be two distinct sources of petroleum hydrocarbon-impacted groundwater beneath the site. One source of hydrocarbon-impacted groundwater may be near the Former LUST Area where gasoline and benzene concentrations are the highest. Another distinct source of hydrocarbon-impacted groundwater appears to originate in the Tank Yards and extend to the north through the tank farm valve manifold to the truck loading rack area. Although the groundwater impact originating in the Tank Yards consists primarily of petroleum hydrocarbon compounds, a low concentration of PCP was detected in a free product sample collected immediately adjacent to the Former PCP/Diesel Mixing Area.

Although results of the Phase III assessment indicate that groundwater that is impacted with PCP is likely present near the Former PCP/Diesel Mixing Area, the source of low-level PCP impacts in other areas of the site is undetermined. It is possible that the low-level PCP groundwater impacts in areas distant from the Former PCP/Diesel Mixing Area could be related to historical PCP handling at the site. It is also possible that the low-level PCP impacts could be the result of wood treatment chemicals used on former site structures or railroad ties. Additional groundwater sampling and analysis for PCP is necessary to more accurately evaluate potential sources of the low-level PCP impacts to groundwater. None of the PCP concentrations detected in the groundwater samples exceeded the corresponding NOAA SquiRT value.

5.2.2 2750 West Commodore Way

Table 5-3 shows the detections of analytes above the MTCA levels for groundwater. Gasoline and diesel were the only analytes detected above the applicable regulatory levels. The petroleum-impacted groundwater appears to be centered around 02MW-04 near the former garage area. Elevated concentrations in up-gradient well 02MW-05 indicate that it is possible that the petroleum-impacted groundwater is entering the property from the LUST area at 2737 West Commodore Way. Table 5-5 shows the cumulative results of groundwater samples collected at the site.

5.3 RECOMMENDATIONS FOR FUTURE ACTIONS

Based on the conclusions above, Foster Wheeler Environmental recommends future actions for the Property, as described in the sections below. The suggestions below include source removal, installation of a dual-phase extraction (DPE) system, and groundwater monitoring.

In addition to typical fuel-related analytes in groundwater, other parameters may be analyzed to evaluate the natural attenuation process at the site. These parameters include iron, nitrate,

sulfate, and dissolved oxygen. Monitored natural attenuation (MNA) is a useful tool to demonstrate compliance with regulatory cleanup levels.

According to a directive from EPA's Office of Solid Waste and Emergency Response titled Use of Monitored Natural Attenuation at Superfund RCRA Correction and UST Sites (April 1999), MNA is most appropriate when used in conjunction with other remedial actions or as a follow-up remediation measure. At this particular site, source removal activities have been conducted and additional activities are recommended depending on the area. Bioremediation and MNA, in conjunction with the quarterly monitoring of groundwater movement and petroleum and BTEX concentrations, will provide useful information to evaluate groundwater movement and monitor the effectiveness of the source removal and bioremediation activities, coupled with the natural attenuation of contaminants as they undergo degradation. Risk Based Corrective Action (RBCA) evaluations are currently being conducted to ensure that soil and groundwater impacts proposed to be addressed by MNA do not present unacceptable threats to the environment or to the current or future inhabitants of the property.

5.3.1 Upper Rail Line Spur Area

The purpose of installing 01MW-17 was to establish an up-gradient (background) well for the site. Based on the potentiometric surface for July 24, 2001, it appears that the groundwater is mounded beneath the Tank Yards; consequently, groundwater flows in a southwesterly direction from the site toward 01MW-17. The groundwater flow direction to the south from the Tank Yards may provide an explanation for the elevated diesel concentration in the groundwater sample collected from 01MW-17. Continued groundwater monitoring will be useful in evaluating the extent of impacted groundwater.

In order to address the need for a background well, Foster Wheeler Environmental recommends that two additional wells be installed at the site. Possible locations and the rationale for the wells are as follows:

01MW-21 (new well) – to be located on the east side of the 2737 West Commodore
Way property. The well would be screened in the shallow aquifer and is intended to
determine the extent of groundwater mounding beneath the Tank Yards and to
provide a potential background well.

• 01MW-22 (new well) – to be located south of the warehouse. The area south of the warehouse was identified as the Former Lower Rail Line Spur Area in the Phase I ESA. Sampling activities conducted during Phase II did not indicate any contaminated soil in this area. Consequently, this area may be a good location to install a background well and further define the potentiometric surface at the site.

5.3.2 Former PCP/Diesel Mixing Area

Petroleum- and PCP-impacted soil has been identified in the upper 2 feet to 5 feet in many of the soil borings in the Former PCP/Diesel Mixing Area. The samples showing the elevated concentrations are from locations surrounding the former PCP/diesel mixing tank. One sample from the 5 foot depth showed elevated concentrations of PCP and cPAHs. Product was detected in the monitoring well (01MW-14) installed north of the former PCP/diesel mixing tank. The thickness of the fuel was estimated to be more than 6 feet. Foster Wheeler Environmental recommends several additional activities in the Former PCP/Diesel Mixing Area, including well installation, groundwater monitoring, surface soil removal, and fuel recovery.

Additional wells, screened in the shallow aquifer, are recommended within the Lower Tank Yard Area near the Former PCP/Diesel Mixing Area, to delineate the lateral extent of the floating product phase. In order to install the new monitoring wells, some surface piping may need to be removed to allow a drill rig to maneuver. If surface piping cannot be removed, a limited access drill rig may be lifted via a crane and lowered into selected areas. Four-inch diameter wells are recommended so they can be used for fuel recovery, should that become necessary.

It is recommended that quarterly groundwater monitoring continue in order to evaluate groundwater concentrations. In addition, water levels will be measured quarterly to develop potentiometric surface maps. Quarterly samples will be analyzed for fuel-related compounds (gasoline, diesel, oil, BTEX) and PCP.

The removal of affected surface soil is also recommended. PCP pellets are visible on the surface due to historical practices of mixing PCP and diesel fuel. Removal of the surface soil, with possible excavation to a depth of 2 feet to 5 feet, may remove source material that could be contributing to the groundwater impacts.

The pipelines that were formerly used to transfer wood-treating solutions from the Former PCP/Diesel Mixing Area to the New Barrel Shed Area have been purged, cleaned, and either decommissioned or converted to stormwater conveyance lines. Because PCP was not detected in soil samples collected from a boring immediately adjacent to the former conveyance lines, and the conveyance lines are no longer used to transfer hydrocarbons or wood treating solutions, it is unlikely that these lines or the soils surrounding them could serve as an ongoing source of hydrocarbon or PCP impacts.

5.3.3 Former Barrel Shed Area

Soil boring SB-59 was installed in the Former Barrel Shed Area to determine whether the operation of the PCP/diesel pipeline had resulted in PCP-impacted soil. The soil samples collected from the boring did not indicate the presence of PCP-impacted soil; however, groundwater beneath the area did show elevated concentrations of PCP. Continued groundwater monitoring is recommended in the area to evaluate PCP-impacted groundwater trends.

5.3.4 New Barrel Shed Area

Soil boring SB-58 was installed in the New Barrel Shed Area to determine whether the operation of the PCP/diesel pipeline and New Barrel Shed Area resulted in PCP-impacted soil. The soil samples collected from the boring did not indicate the presence of PCP-impacted soil; however, groundwater beneath the area did show detectable concentrations of PCP below the regulatory level. Continued groundwater monitoring is recommended in the area to evaluate PCP-impacted groundwater trends.

5.3.5 West Commodore Way Perimeter Area

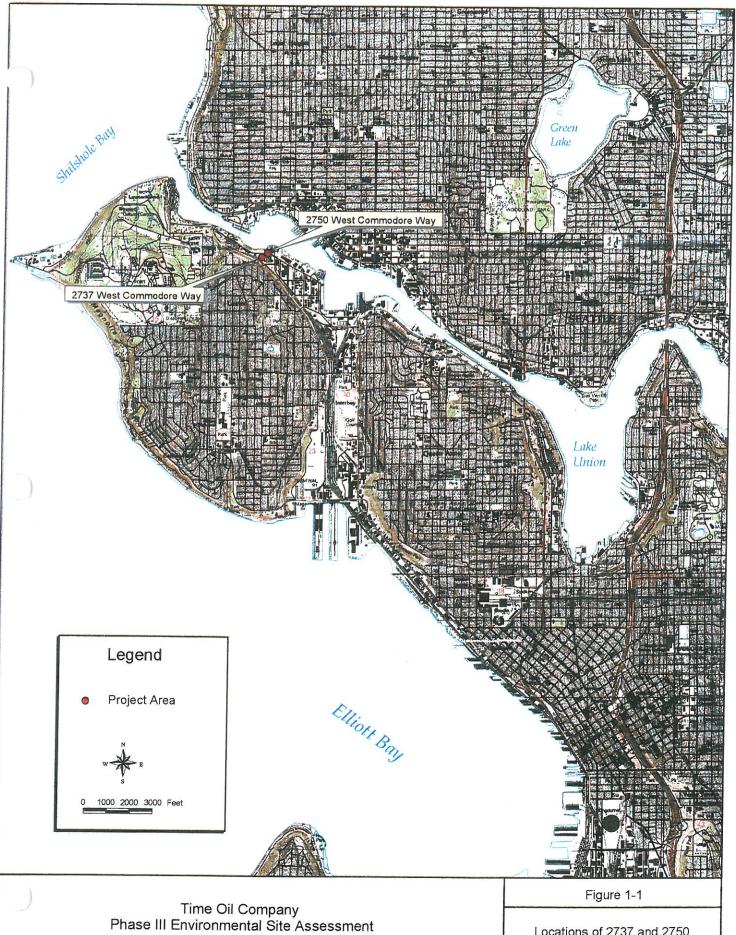
Petroleum-impacted soil was detected in soil boring SB-60 at a depth of 15 feet below ground surface. Monitoring well 01MW-16 was installed in this location. Groundwater at this location was found to be affected by diesel, gasoline, benzene, and PCP. Because groundwater was found at a depth of approximately 18 feet during drilling, it is possible that the elevated petroleum contamination in soil is a result of groundwater impacts and not due to historic operations affecting the soil directly. During the July quarterly sampling event, product was discovered in nearby well 01MW-10, which was dry during the last sampling episode (December 2000). With the elevated concentrations in 01MW-16, the proximity of

the Former LUST Area, and the newly detected product in 01MW-10, it is recommended that an additional well be installed, groundwater monitoring continue, and pilot-testing activities (Foster Wheeler Environmental 2001c) be conducted.

An additional well located to the south near the truck-loading rack would be useful for many reasons. It is important to determine the extent of product discovered in the Former PCP/Diesel Mixing Area and whether it is related to the product discovered in 01MW-01. In addition, the loading rack may be a potential source area.

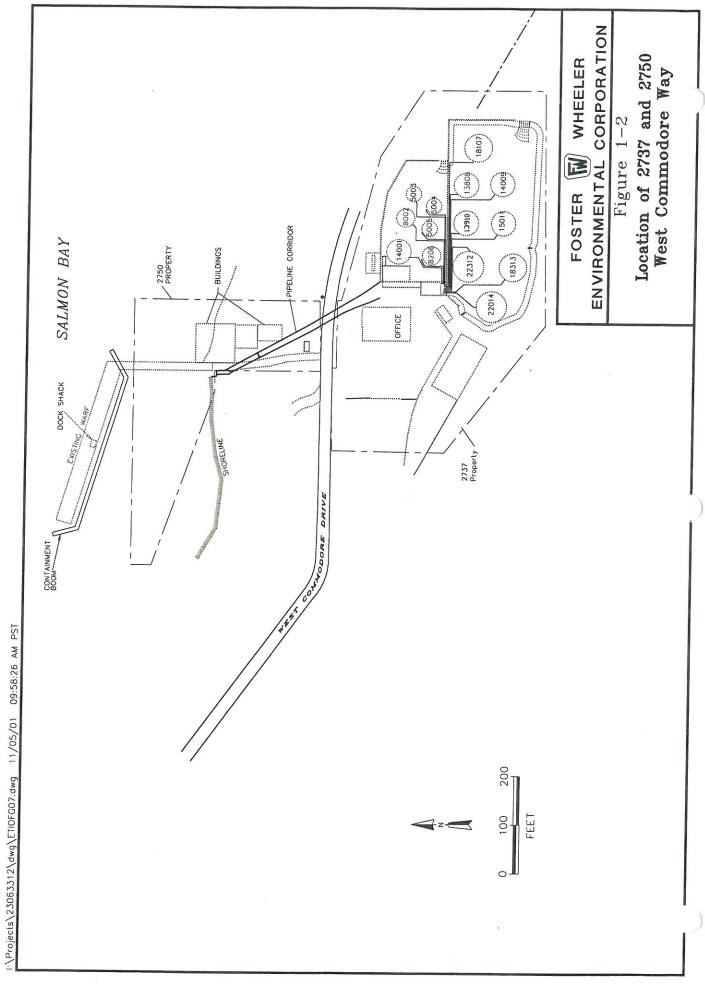
Continued quarterly groundwater monitoring is recommended, as mentioned in the previous subsections. Groundwater samples should be analyzed for petroleum products and PCP.

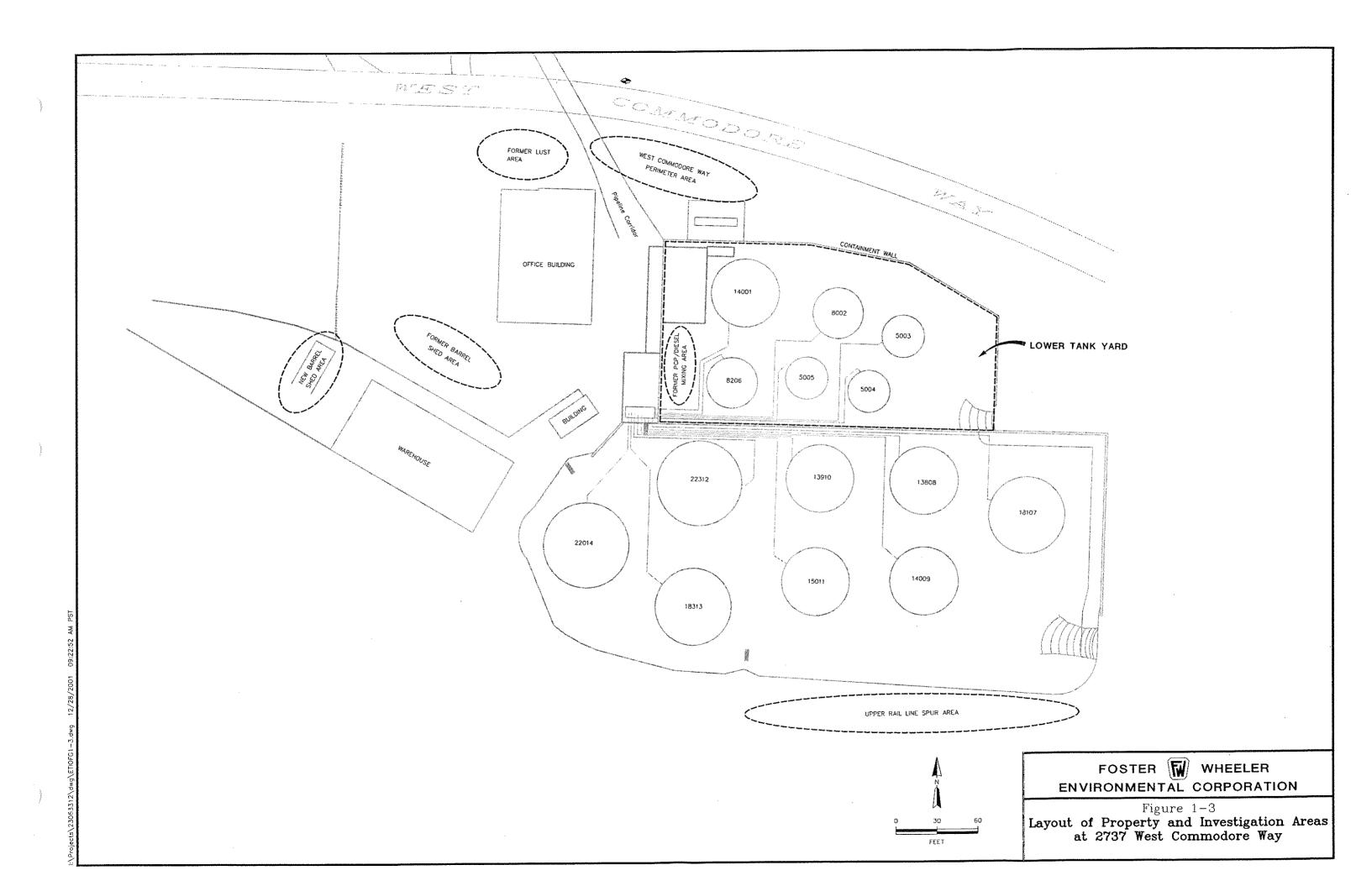
The document *Proposed Product Pilot Testing Activities*, published in October 2001 (Foster Wheeler Environmental 2001c), outlined several steps necessary to design a fuel-recovery system for the Former LUST Area. Implementation of this plan and the ensuing fuel recovery system will aid in the removal of a portion of the contaminant source that appears to be affecting the groundwater beneath the site.

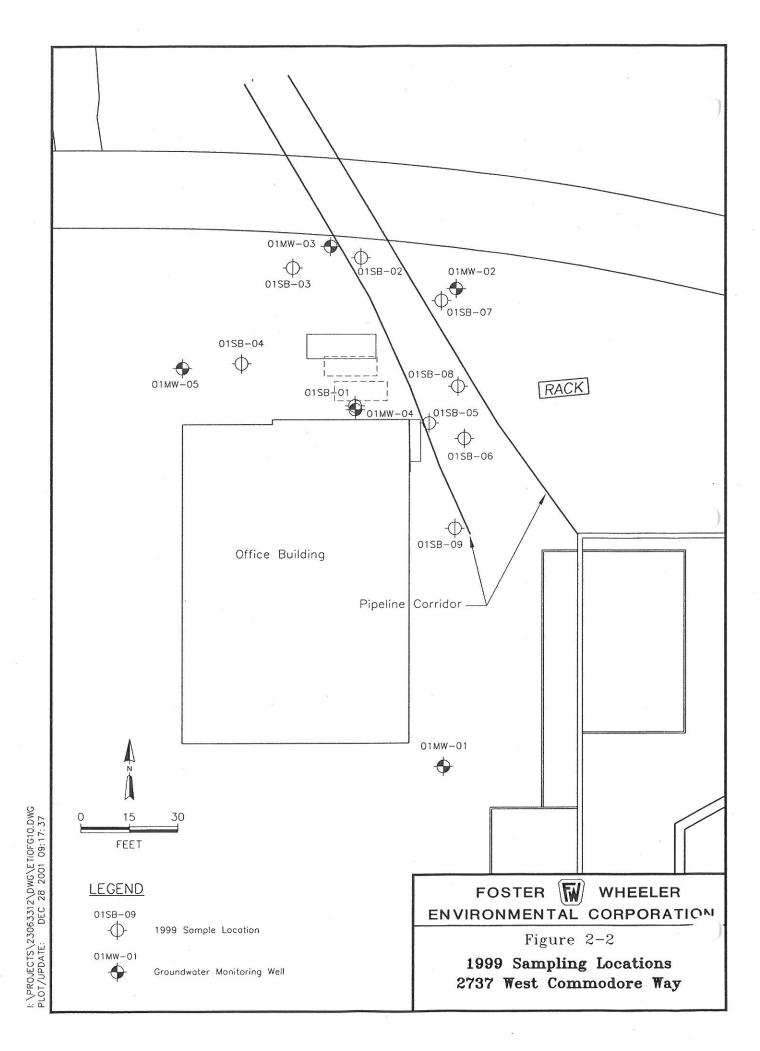

5.3.6 Quarterly Groundwater Sampling

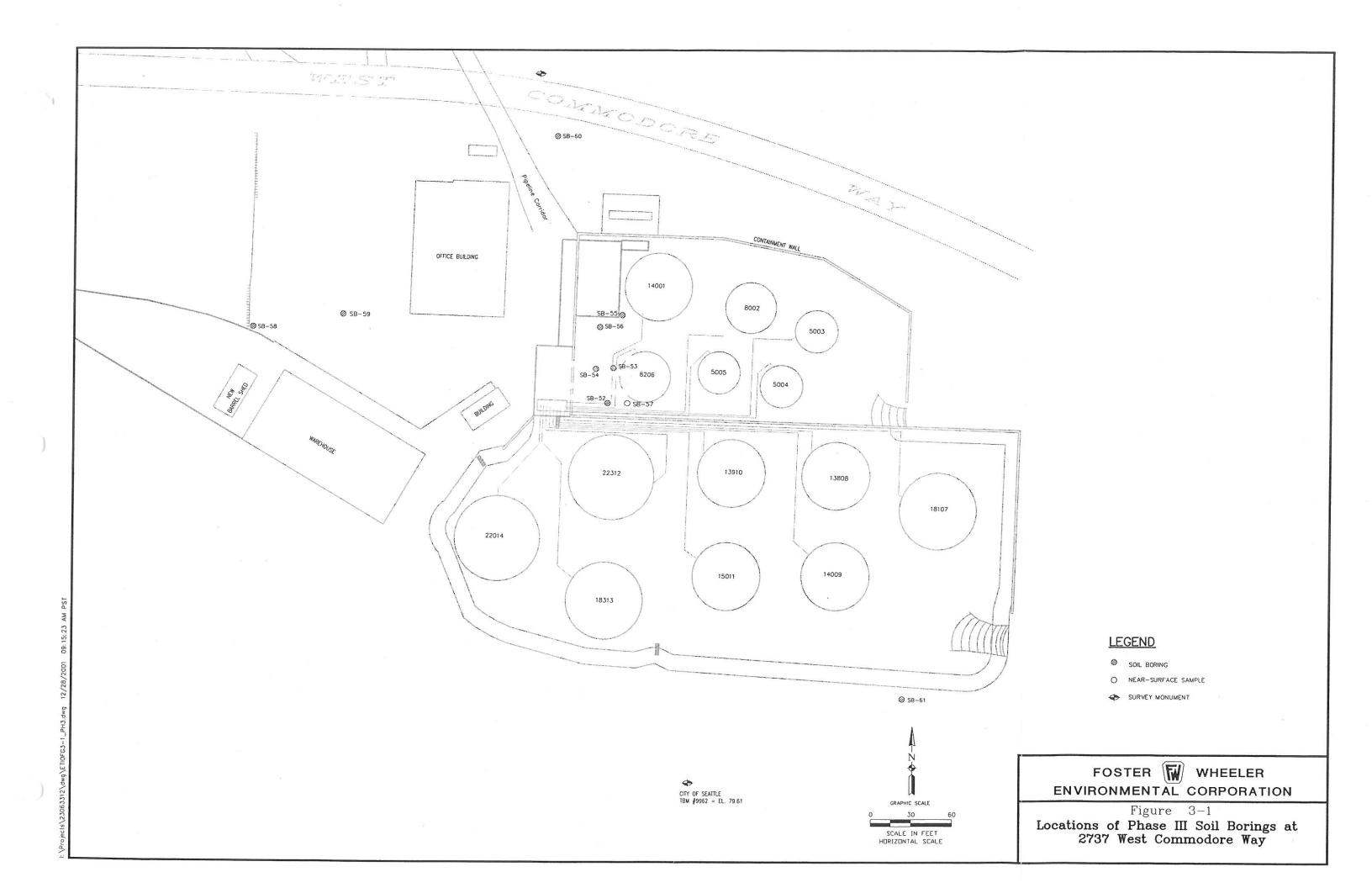
Groundwater samples are collected on a quarterly basis at 2737 and 2750 West Commodore Way. In the past, analyses for PCP have been limited to a few wells. It is recommended that PCP be added to the analyses for wells at both properties. This information will be useful in evaluating the extent of PCP-impacted groundwater, as well as understanding whether the different service areas are mixing or extending across the street from 2737 West Commodore Way to 2750 West Commodore Way. In addition, silica gel cleanup of groundwater samples collected may remove naturally occurring compounds that could be yielding false positive detection of diesel.

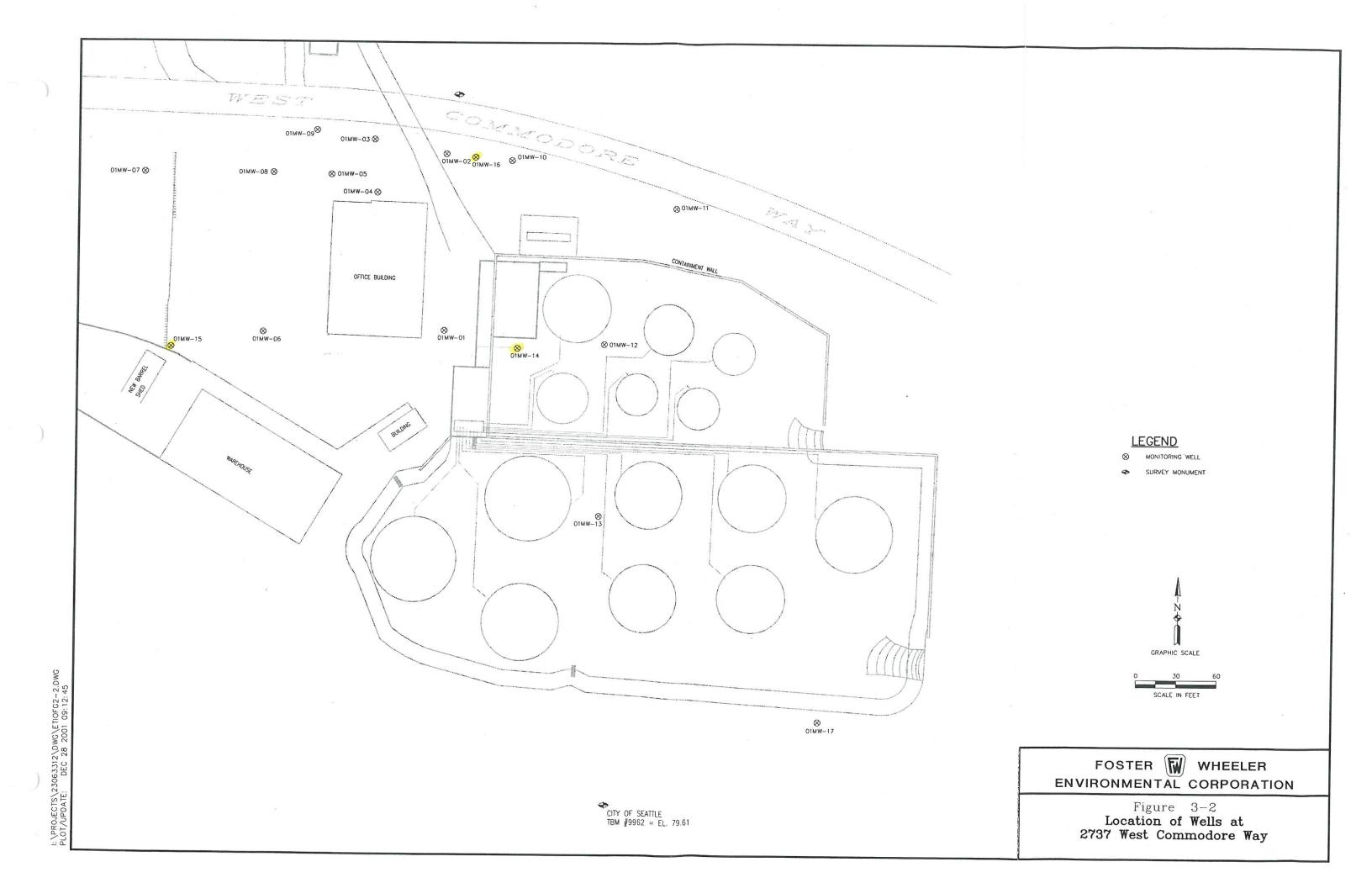
6. REFERENCES

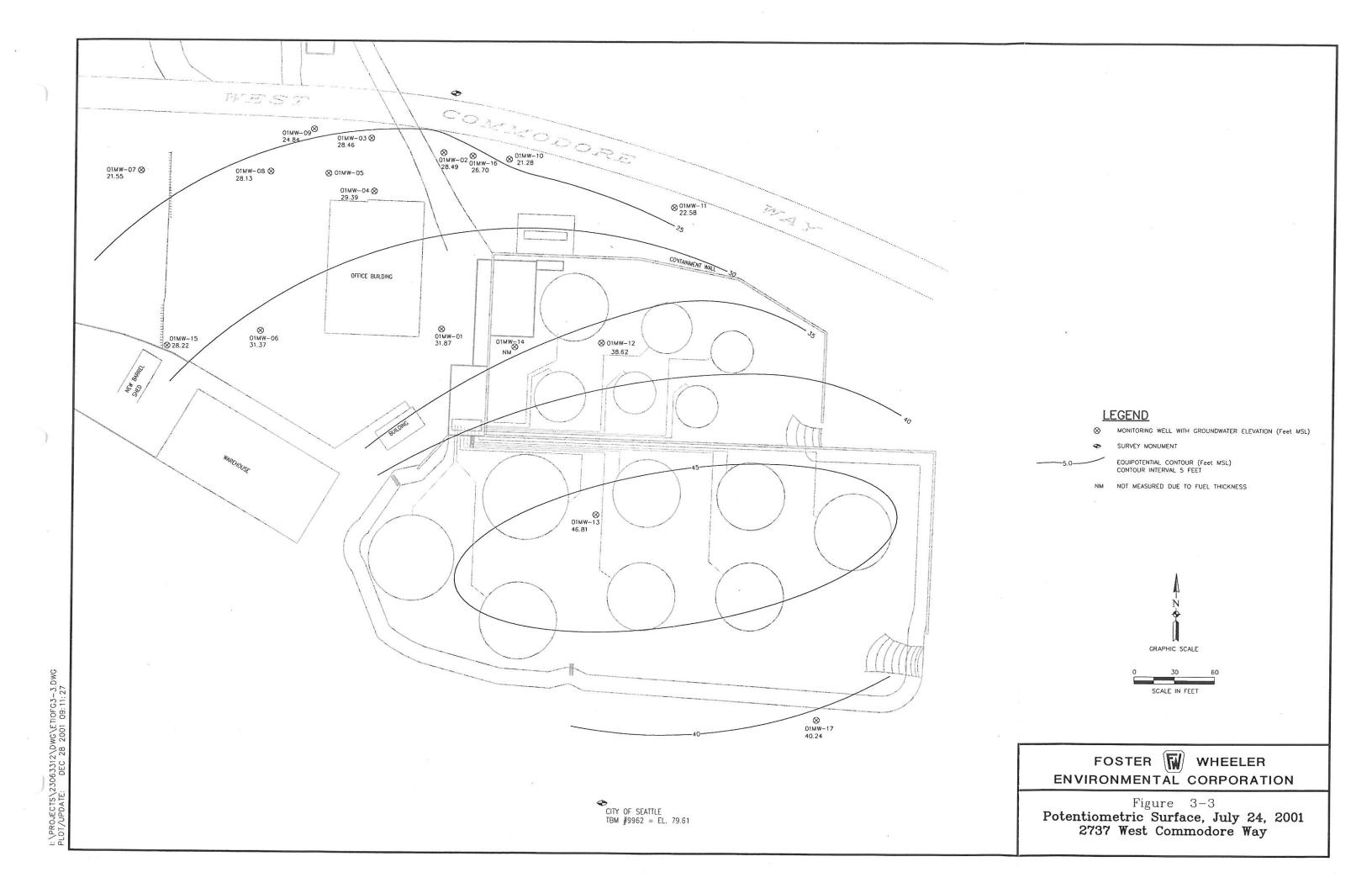

- Foster Wheeler Environmental (Foster Wheeler Environmental Corporation). 2000.

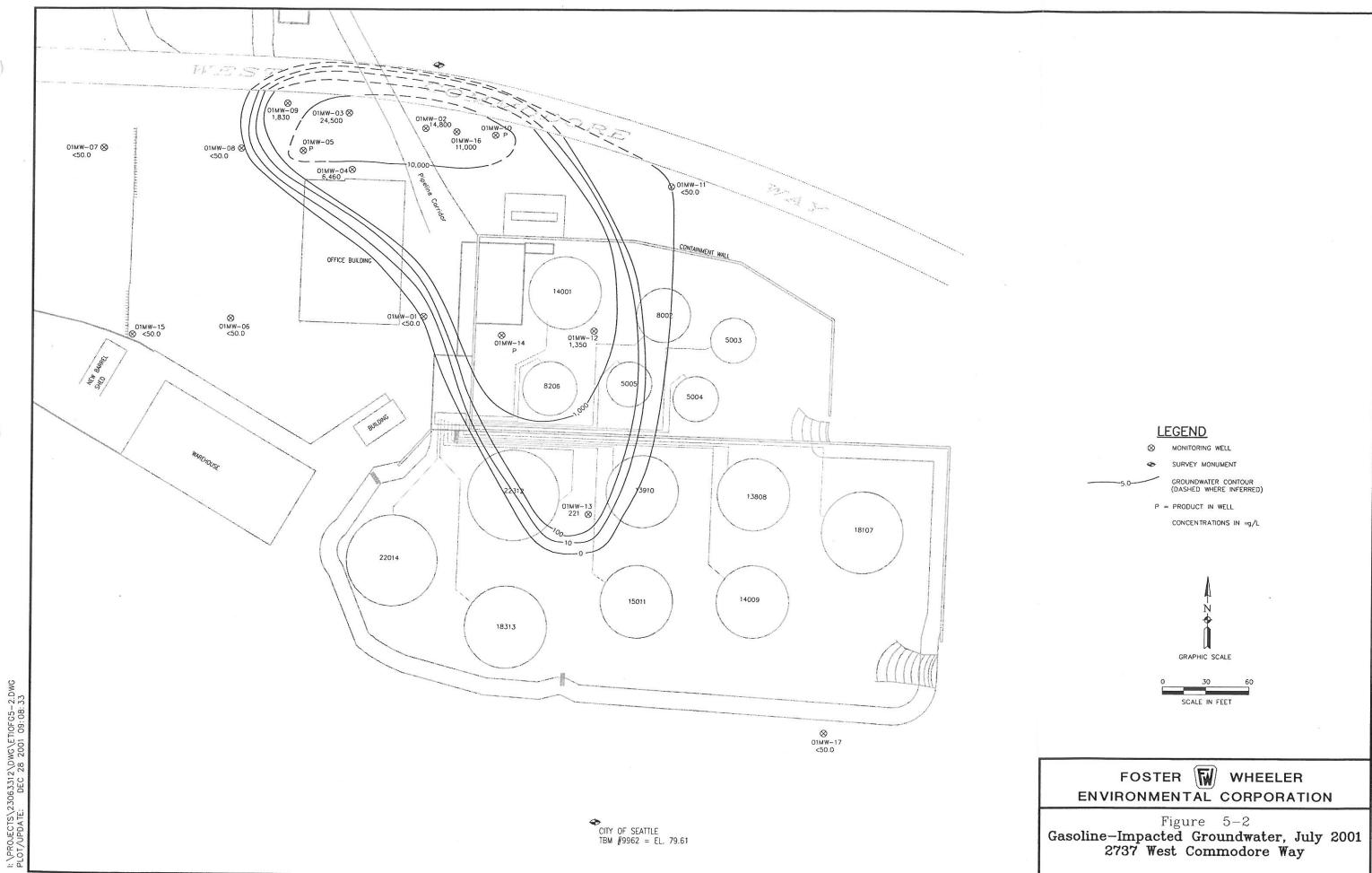

 Environmental Site Assessment: Phase I for Time Oil Company, 2737 West
 Commodore Way, Seattle, Washington. Prepared for Time Oil Company by Foster
 Wheeler Environmental Corporation, Bothell, Washington. August 25, 2000.
- Foster Wheeler Environmental. 2001a. Environmental Site Assessment: Phase II at 2737 West Commodore Way, Seattle, Washington. Prepared for Time Oil Company by Foster Wheeler Environmental Corporation, Bothell, Washington. April 2001.
- Foster Wheeler Environmental. 2001b. Final Environmental Site Assessment: Phase II, PCP/Diesel Mixing Areas at 2737 West Commodore Way, Seattle, Washington. Prepared for Time Oil Company by Foster Wheeler Environmental Corporation, Bothell, Washington. April 30, 2001.
- Foster Wheeler Environmental. 2001c. Proposed Pilot Testing Activities at 2737 West Commodore Way, Seattle, Washington. Prepared for Time Oil Company by Foster Wheeler Environmental Corporation, Bothell, Washington. October 16, 2001.
- IT (IT Corporation). 2000. Site Assessment Report, Time Oil Company, Site 2737, 2750 West Commodore Way, Seattle, Washington. March 8, 2000.
- TOC (Time Oil Company). 1991. Underground Storage Tank Site Check/Site Assessment at Seattle Terminal, 2737 West Commodore Way, Seattle, Washington Property No. 01-228. December 30, 1991.
- TOC. 2000. Transmittal of Site Assessment Report, Time Oil Company Property No. 01-600; Seattle Terminal Service USTs, 2737 West Commodore Way, Seattle, Washington. May 25, 2000.

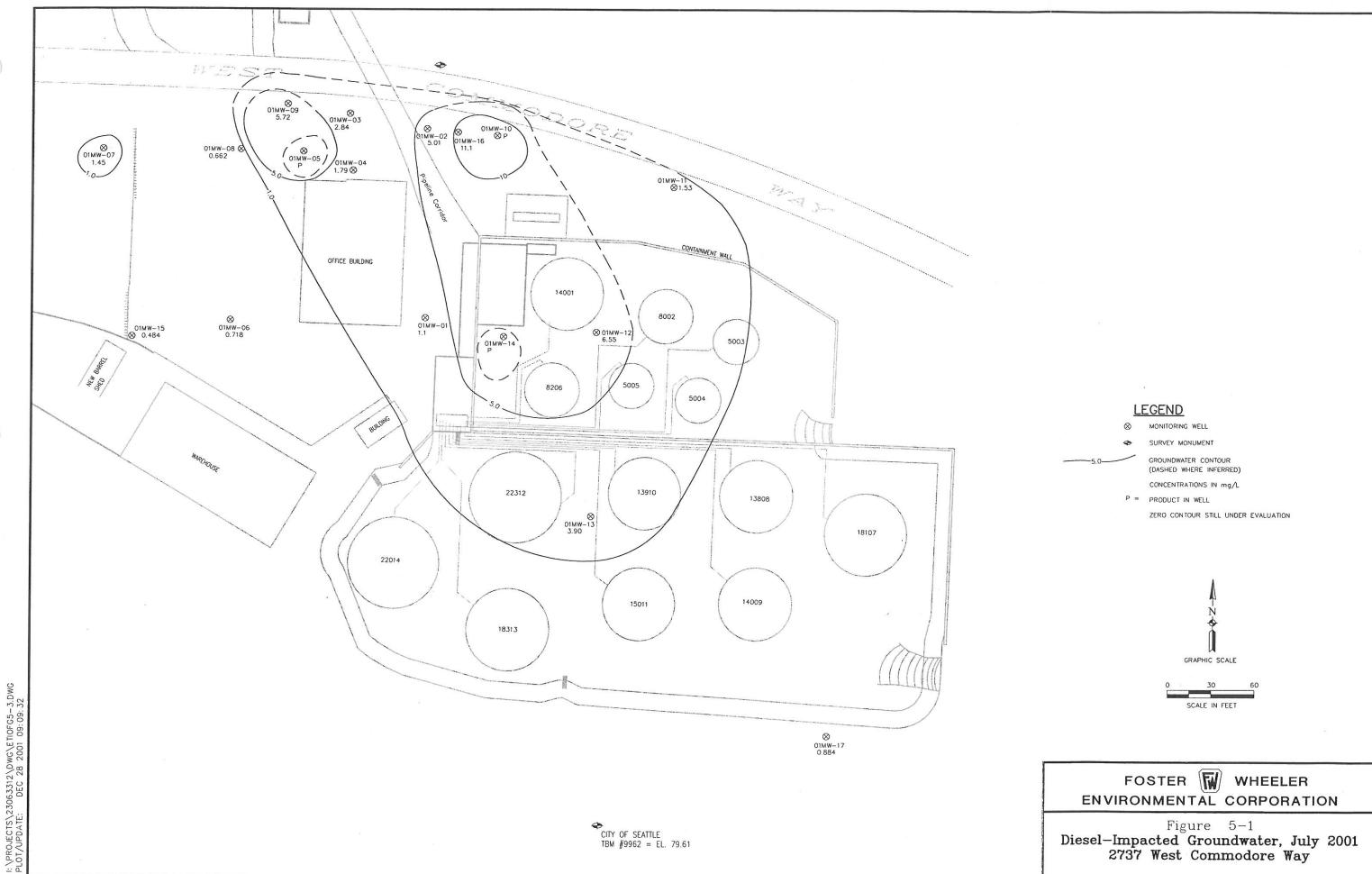

and Quarterly Groundwater Sampling


Locations of 2737 and 2750 West Commodore Way






I:\Projects\23063312\dwg\ETIOFG11.dwg 12/28/2001 09:19:35 AM PST



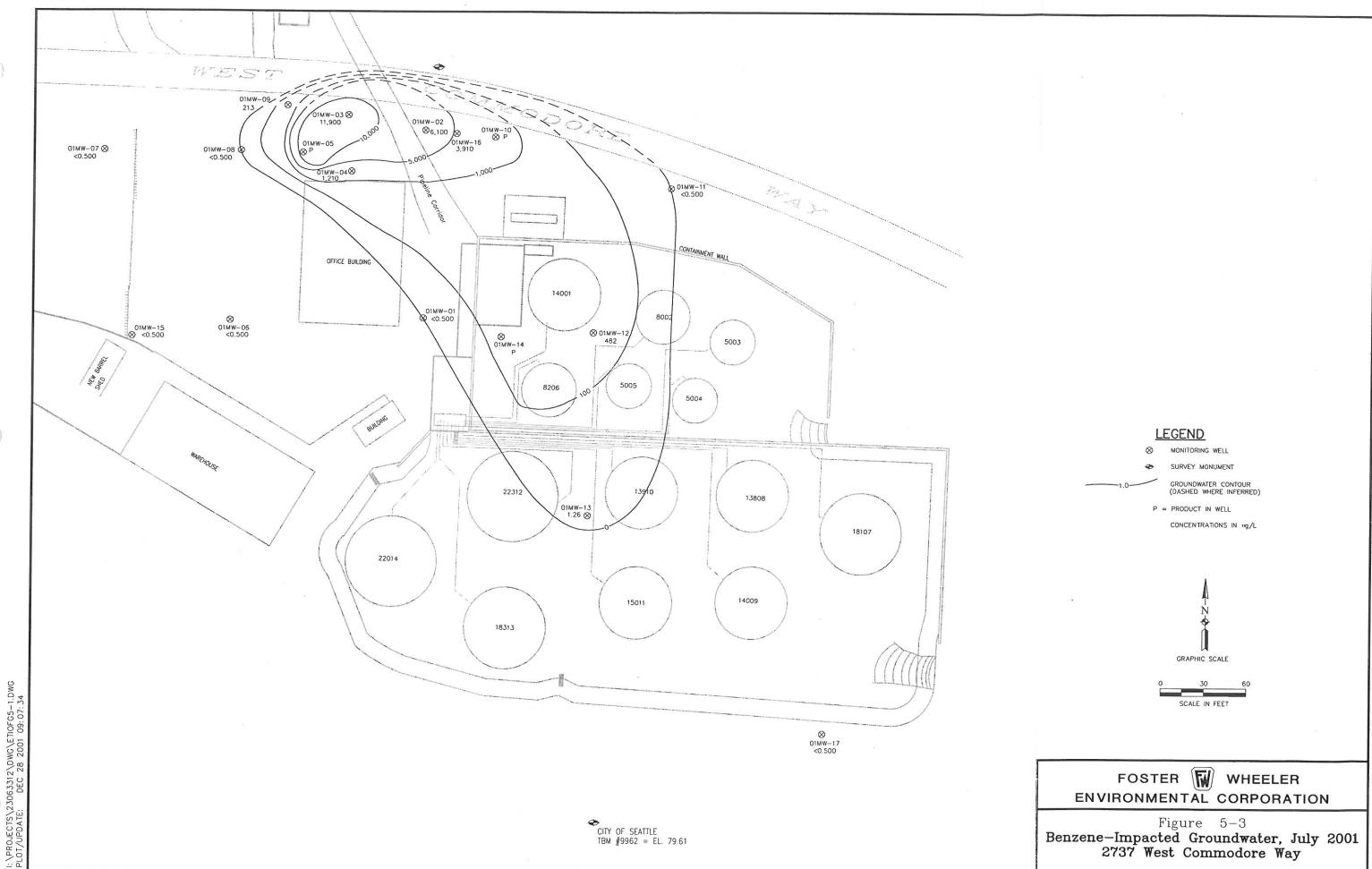


Table 2-1. Analytical Results from 1999 Soil Samples above Cleanup Levels (mg/kg)

	Depth (Feet)	Gasoline	Diesel	Oil	Benzene	Toluene	Ethyl benzene	Total xylene
MTCA		100	200	200	0.5	40	20	20
01SB-05	10	2,360	2,450	<126	<2.5	33.5	31	190
01SB-08	12.5	3,650	33,900	<1,030	9.96	<5.0	20.9	73.4
01SB-09	2.5	381	1,780	514	2.12	<0.2	<1.4	<1.2
01SB-09	7.0	2,360	24,800	<525	3.45	8.11	11.9	32.1
01SB-09	12.5	755,000	15,000	<525	5,590	26,200	9,500	55,800
01SB-09	18	3,970	5,870	<525	5.26	10.5	13.7	61.5

Notes: Detections above historic MTCA Method A levels are shown in bold italic type.

Source: IT Corporation 2000

Table 2-2. Analytical Results from 1999 Groundwater and Boring Water Samples

	Date	Total lead (μg/L)	Gasoline (mg/L)	Diesel (mg/L)	Oil (mg/L)	Benzene (μg/L)	Toluene (μg/L)	Ethyl benzene (μg/L)	Total xylene (µg/L)
MTCA		5.0	1.0	1.0	1.0	5.0	40.0	30.0	20.0
01MW-01	9/28/99	4.15	< 0.0500	< 0.0500	<1.0	< 0.500	<0.500	<0.500	<1.00
01MW-02	9/28/99	84.9	12.2	0.714	<0.5	3,880	525	230	1,100
01MW-03	9/28/99	87	27.2	0.944	<0.5	11,300	405	398	1,590
01MW-04	9/28/99	130	18.9	1.32	<0.5	4,370	1,150	606	2,780
01SB-01	6/6/99		9	7.56	<0.5	2,280	579	106	483
01SB-02	6/6/99		1.12	0.965	<0.5	25.1	13.5	19.8	43.6
01SB-03	6/6/99		0.881	< 0.25	<0.5	147	5.58	24.6	68
01SB-04	6/6/99		11	7.12	<0.5	547	847	358	1,630
01SB-05	6/6/99		42.9	8.71	1.01	9,580	6,600	657	3,050
01SB-07	6/6/99		5.36	4.18	0.577	1,360	270	139	586
01SB-08	6/6/99		3.41	9.55	<2.5	1,160	93.3	60.5	218
01SB-09	6/6/99		54.8	12.8	1.06	11,000	7,510	840	4,570

Notes: Detections above historic MTCA Method A levels are shown in bold italic type.

-- = No data.

 μ g/L = micrograms per liter mg/L = milligrams per liter

Source: IT Corporation 2000

Table 3-1. Well Construction Details

	Coordinates (WA	A State Plane)	Top of Casing	Ground	Total Depth			Elevation of Screen
Wall	Nauthing (East)	Easting		Elevation (Feet msl)	of Boring (Feet bgs)	of Well (Feet bgs)	Interval (Feet bgs)	Interval (Feet msl)
Well	Northing (Feet)	(Feet)	1	t Commod		(Feet bgs)	(Feet bgs)	(Feet IIIsi)
01MW-01	245454.603	1256198.248	46.48	46.76	25.00	25.25	10 - 25	36.76 - 21.76
01MW-02	245585.027	1256198.518	44.78	45.15	25.00	24.91	10 - 25	35.15 - 20.15
01MW-03	245597.585	1256160.493	44.35	44.75	25.20	25.15	10 - 25	34.75 - 19.75
01MW-04	245563.117	1256163.148	45.08	45.56	25.00	24.90	10 - 25	35.56 - 20.56
01MW-05	245569.311	1256114.025	45.40	45.77	25.00	24.88	10 - 25	35.77 - 20.77
01MW-06	245452.677	1256064.638	47.74	48.23	25	25.10	10 - 25	38.23 -23.23
01MW-07	245570.711	1255975.885	45.17	45.53	30	28.17	15 - 30	30.53 - 15.53
01MW-08	245570.471	1256070.985	45.21	45.63	25	24.93	10 - 25	35.63 - 20.63
01MW-09	245602.062	1256103.039	43.91	44.37	25	24.70	10 - 25	34.37 - 19.37
01MW-10	245580.377	1256246.968	45.02	45.35	25	24.90	10 - 25	35.35 - 20.35
01MW-11	245545.081	1256368.92	46.10	46.45	30	29.90	15 - 30	31.45 - 16.45
01MW-12	245444.877	1256316.069	45.84	46.29	20	20.00	5 - 20	40.84 - 25.84
01MW-13	245317.347	1256313.287	46.36	46.81	20	19.88	15 - 20	31.81 - 26.81
01MW-14	245441.662	1256252.373	46.15	46.15	15	15.00	5 - 15	41.15 - 31.15
01MW-15	245441.314	1255996.388	50.89	50.89	30.12	30.00	10 - 30	40.89 - 20.89
01MW-16	245582.687	1256220.015	44.95	44.95	22.5	20.00	10 - 20	34.95 - 24.95
01MW-17	245166.941	1256477.520	59.42	59.42	30	30.00	15 - 30	44.42 - 29.42
			2750 Wes	st Commod	ore Way			
02MW-01	245789.704	1255985.066	24.19	24.72	20	19.60	20 - 10	15.22 - 5.22
02MW-02	245848.029	1256019.016	20.06	20.57	10	9.90	10 - 5	16.07 - 11.07
02MW-03	245801.020	1256026.193	27.86	28.41	20	19.75	20 - 10	18.91 - 8.91
02MW-04	245795.225	1256092.088	27.17	27.59	20	20.05	20 - 10	18.09 - 8.09
02MW-05	245706.854	1256069.207	36.59	37.05	35	33.85	35 - 20	17.55 - 2.55
02MW-06	245803.277	1256129.549	26.54	27.00	20	19.97	20 - 10	17.50 - 7.50
02MW-07	245828.584	1255960.724	20.85	21.39	12	12.20	12 - 2	19.89 - 9.89

Notes: bgs = below ground surface

msl = mean sea level

Phase III Environmental Site Assessment and Quarterly Groundwater Sampling 2737 and 2750 West Commodore Way Time Oil Company

Well Development and Sampling Parameters, July 2001 **Table 3-2.**

		1 ;						
Well	Date	Gallons Purged	pH	1 emperature (Celsius)	Dissolved O ₂ (mg/L)	(mS/cm)	Turbidity (NTU)	Notes
				273	2737 West Commodore Way	odore Way		
01MW-01	7/24/01	48	7.14	13.98	0.31	0.733	25.8	None
01MW-02	7/26/01	30	6.9	15.1	2.1	1.159	96	Purges dry, recharges in ~5 minutes
01MW-03	7/26/01	28	92.9	14.6	2.6	0.682	62.1	Fuel odor, purges dry after 10 gallons
01MW-04	7/26/01	38	68.9	15.02	2.59	0.754	35.2	None
01MW-06	7/24/01	24	7.25	14.01	0.42	0.961	58.4	None
01MW-07	7/24/01	24	98.9	17.61	0.49	1.052	20.3	None
01MW-08	7/24/01	24	6.97	14.70	0.26	1.152	57.6	None
01MW-09	7/24/01	36	96.9	15.87	0.14	0.849	12.3	None
01MW-10			Not der	Not developed due to product in well	oduct in well			
01MW-11	7/24/01	25	7.14	14.38	0.28	0.844	2.9	None
01MW-12	7/26/01	24	92.9	12.29	2.46	1.199	104.2	None
01MW-13	7/26/01	45	6.75	12.02	0.38	1.030	52.7	None
01MW-14			Not der	veloped due to product in well	oduct in well			
01MW-15	7/26/01	47	7.31	12.65	1.32	1.046	62.9	Slight H ₂ S odor
01MW-16			I	Insufficient water to sample	to sample			***************************************
01MW-17	7/26/01	30	7.26	12.56	0.39	0.801	44.2	None
				27.	2750 West Commodore Way	odore Way		
02MW-01	7/23/01		I	Instrument failure	6			
02MW-02	7/26/01	70	6.67	14.06	2.64	0.775	10.9	None
02MW-03	7/26/01	85	6.58	12.36	0.19	1.219	995	None
02MW-04	7/26/01	25	6.81	12.83	1.24	0.971.	120.5	None
02MW-05	7/24/01	20	6.70	13.50	2.61	1.040	>1,000	None
02MW-06	7/26/01	20	6.81	11.60	0.36	0.846	30.2	None
Notes: mg/L = milligrams per liter	= milligrams	per liter						

mg/L = minigrams per mer mS/cm = millisiemens per centimeter NTU = nephelometric turbidity unit H₂S = hydrogen sulfide

Table 4-1. Analytical Results for TPH, Lead, and PCP in Soil at 2737 West Commodore Way, July 2001

Page 2 of 2

Sample	PCP (mg/kg)	Diesel (mg/kg)	Oil (mg/kg)	Ga (mg/	550	Benzene (mg/kg)	Toluene (mg/kg)	Ethylbenzene (mg/kg)	Xylenes (mg/kg)	Lead (mg/kg)
MTCA ^{1/}	8.332/	2,000	2,000	303/	1004/	0.03	7	6	9	250
		4 1	=	New B	arrel !	Shed Area				
SB-58-2	<0.500	116	180	<5.0	00	< 0.0500	<0.0500	<0.0500	< 0.100	4.49
SB-58-5	<0.0500	21.4	29.6	<5.0	00	<0.0500	<0.0500	<0.0500	< 0.100	5.12
SB-58-10	<0.0500	<10.0	<25.0	<5.0	00	< 0.0500	<0.0500	<0.0500	< 0.100	2.49
SB-58-15	0.159	<10.0	<25.0	<5.0	00	<0.0500	<0.0500	<0.0500	< 0.100	3.98
SB-58-25	<0.0500	<10.0	<25.0	<5.0	00	< 0.0500	<0.0500	<0.0500	< 0.100	2.27
			F	ormer]	Barre	l Shed Area	l			
SB-59-2	<0.0500	528	470	65.	6	<0.0500	<0.0500	0.0733	0.126	5.24
SB-59-5	<0.500	4,950	1,170	79	9	<1.00	<1.00	1.94	<2.00	8.14
SB-59-10	<0.0500	<10.0	<25.0	<5.0	00	< 0.0500	<0.0500	<0.0500	< 0.100	5.10
SB-59-15	<0.0500	<10.0	<25.0	<5.0	00	< 0.0500	< 0.0500	< 0.0500	< 0.100	2.67
SB-59-20	0.148	<10.0	<25.0	<5.0	00	< 0.0500	< 0.0500	<0.0500	< 0.100	2.00
	-		West Co	mmodo	re W	ay Perimete	er Area			
SB-60-2	Na	58.7	79.8	22.	8	< 0.0500	< 0.0500	< 0.0500	< 0.100	4.53
SB-60-5	Na	<10.0	<25.0	<5.0	00	< 0.0500	< 0.0500	<0.0500	< 0.100	8.64
SB-60-10	Na	<10.0	<25.0	<5.0	00	< 0.0500	< 0.0500	< 0.0500	< 0.100	8.20
SB-60-15	Na	11,400	<2,520	1,24	10	1.68	<1.00	4.04	10.2	2.29
SB-60-20	Na	<10.0	<25.0	<5.0	00	0.0500	<0.0500	<0.500	< 0.100	2.09

Notes: 1/ Results above MTCA Method A level for unrestricted land uses are in bold italic type.

^{2/} Results above MTCA Method B carcinogenic level are in bold italic type.

^{3/} All other gasoline mixtures.

^{4/} Without benzene and <20% aromatic hydrocarbons between EC8 and EC16.

< symbol indicates that result is less than reporting limit.

na = No analysis requested.

TPH = total petroleum hydrocarbon

PCP = pentachlorophenol

mg/kg = milligrams per kilogram

MTCA = Model Toxics Control Act

Table 4-2. Analytical Results for PAHs in Soil at 2737 West Commodore Way, July

200)1							Page 1 of 2
Sampl	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Chrysene	Dibenz(a,h)anthracene	Indeno(1,2,3-cd)pyrene	Total cPAHs
	For	mer PCP/I	Diesel Mixin	g Area (Lo	wer Tank Y	ard Area)		
SB-52-2.5	0.0252	0.0187	0.0138	<0.0100	0.0301	<0.0100	0.0309	0.1187
SB-52-6	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	0.0000
SB-52-10	<0.0100	<0.0100	< 0.0100	<0.0100	<0.0100	<0.0100	<0.0100	0.0000
SB-53-2	<0.0100	0.0109	< 0.0100	< 0.0100	<0.0100	< 0.0100	< 0.0100	0.0109
SB-53-5	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	0.0000
SB-53-10	< 0.0100	< 0.0100	< 0.0100	<0.0100	< 0.0100	< 0.0100	<0.0100	0.0000
SB-54-2	0.159	0.111	< 0.0200	<0.0200	0.204	< 0.0200	0.0896	0.5636
SB-54-5	< 0.0100	< 0.0100	< 0.0100	<0.0100	< 0.0100	< 0.0100	< 0.0100	0.0000
SB-54-10	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	0.000
SB-55-2.5	< 0.0100	0.0133	< 0.0100	<0.0100	< 0.0100	< 0.0100	0.0289	0.0422
SB-55-6	< 0.0100	0.0143	< 0.0100	<0.0100	0.0143	<0.0100	0.0286	0.0572
SB-55-10	<0.0100	< 0.0100	< 0.0100	<0.0100	< 0.0100	< 0.0100	<0.0100	0.0000
SB-56-2.5	0.717	0.757	<0.500	<0.500	1.15	<0.500	<0.500	2.6240
SB-56-5	<0.500	0.736	<0.500	<0.500	< 0.500	<0.500	<0.500	0.7360
SB-56-10	<0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	0.0112	0.0279	0.0391
SB-57-1.5	<0.100	<0.100	<0.100	<0.100	0.189	<0.100	<0.100	0.189
			Former B	arrel Shed	Area			
SB-59-2	<0.0100	< 0.0100	< 0.0100	<0.0100	< 0.0100	< 0.0100	<0.0100	0.0000
SB-59-5	<0.100	<0.100	<0.100	< 0.100	<0.100	< 0.100	<0.100	0.000
SB-59-10	< 0.0100	0.111	< 0.0100	< 0.0100	< 0.0100	< 0.0100	<0.0100	0.1110
SB-59-15	< 0.0100	< 0.0100	< 0.0100	<0.0100	< 0.0100	<0.0100	<0.0100	0.0000
SB-59-20	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	0.0000

and Quarterly Groundwater Sampling 2737 and 2750 West Commodore Way

Analytical Results for PAHs in Soil at 2737 West Commodore Way, July **Table 4-2**. Page 2 of 2

200)1					Page	2 of 2	
Sample	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Chrysene	Dibenz(a,h)anthracene	Indeno(1,2,3-cd)pyrene	Total cPAHs
3 1022 A 12300000 W 35100			New Barre	l Shed Area				
SB-58-2	0.221	<0.100	<0.100	<0.100	0.122	<0.100	<0.100	0.343
SB-58-5	< 0.0100	<0.0100	< 0.0100	< 0.0100	<0.0100	< 0.0100	< 0.0100	0.0000
SB-58-10	< 0.0100	< 0.0100	<0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	0.0000
SB-58-15	< 0.0100	0.102	<0.0100	<0.0100	<0.0100	< 0.0100	<0.0100	0.1020
SB-58-20	<0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	<0.0100	0.0000
SB-58-25	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	0.0000
		West C	Commodore \	Way Perimet	er Area		21	
SB-60-2	< 0.0100	< 0.0100	< 0.0100	< 0.0100	0.0209	<0.0100	< 0.0100	0.0209
SB-60-5	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	0.0000
SB-60-10	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	0.0000
SB-60-15	< 0.0100	< 0.0100	< 0.0100	< 0.0100	<0.0100	< 0.0100	<0.0100	0.0000
SB-60-20	< 0.0100	< 0.0100	< 0.0100	< 0.0100	<0.0100	<0.0100	< 0.0100	0.0000
		Ţ	Jpper Rail L	ine Spur Are	ea			
SB-61-2	< 0.0100	0.0327	0.0295	< 0.0100	<0.0100	< 0.0100	0.0463	0.1085
SB-61-5	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	<0.0100	< 0.0100	0.0000
SB-61-10	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	<0.0100	0.0000
SB-61-15	< 0.0100	< 0.0100	< 0.0100	< 0.0100	<0.0100	< 0.0100	< 0.0100	0.0000

Total cPAHs include sum of detections. Half of reporting limit used for non-detects. Notes:

All values in milligrams per kilogram (mg/kg).

Total cPAHs that exceed MTCA Method A level of 1 mg/kg are in bold italic type.

cPAHs = carcinogenic polyaromatic hydrocarbons

Table 4-3. Analytical Results for Groundwater Samples from 2737 West Commodore Way, July 2001

Sample	PCP (μg/L)	Diesel (mg/L)	Oil (mg/L)	Gas (μg/L)	Benzene (μg/L)	Toluene (μg/L)	Ethylbenzene (μg/L)	Xylenes (μg/L)	Lead (μg/L)			
MTCA ^{1/}	15 ^{2/}	0.5	0.5	800 ^{3/} 1,000 ^{4/}	5,300 ^{5/}	17,5005/	32,000 ^{5/}	1,000	15			
			T		UST Area							
01MW-01	3.94	1.11	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500		< 1.00			
01MW-02	na	5.01	<1.50	14,800	6,900	162	262		< 1.00			
01MW-03	na	2.84	<1.50	24,500	11,900	238	414	515	< 1.00			
01MW-04	na	1.79	<1.50	6,460	1,210	204	134	1,470	< 1.00			
01MW-07	na	1.45	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00	< 1.00			
01MW-08	na	0.662	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00	< 1.00			
01MW-09	na	5.72	< 0.500	1,830	213	114	48.1	230	< 1.00			
			West	Commodore V	Way Perime	ter Area						
01MW-10	na	na	na	na	na	na	na	na	na			
01MW-11	na	1.53	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00	< 1.00			
01MW-16A	2.54	11.1	< 2.50	11,000	3,910	123	261	891	< 1.00			
01MW-16B	2.09	9.62	< 2.50	9,390	3,700	122	209	745	< 1.00			
Relative Percent Difference	19%	14%	nc	16%	6%	1%	22%	18%	nc			
				Lower Tanl	k Yard Area	1						
01MW-12	na	6.55	< 1.50	1,350	482	8.84	14.0	26.4	< 1.00			
***************************************		il		Upper Tanl	Yard Area	ı						
01MW-13	na	3.90	< 1.50	221	1.26	< 0.500	< 0.500	2.31	< 1.00			
		Forme	r PCP/D	iesel Mixing A	rea (Lower	Tank Yar	d Area)	<1.00 <1 1,110 <1 515 <1 1,470 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1.00 <1 <1 <1.00 <1 <1.00 <1 <1 <1.00 <1 <1 <1.00 <1 <1 <1.00 <1 <1 <1.00 <1 <1 <1.00 <1 <1 <1.00 <1 <1 <1 <1 <1 <1 <1				
01MW-14	na	na	na	na	na	na	na	na	na			
270			•	Former Barn	el Shed Are	ea		· ·				
01MW-06	2.17	0.718	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00	< 1.00			
		<u> </u>		New Barre	Shed Area							
01MW-15	1.66	0.484	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00	< 1.00			
•		118800000000		Upper Rail L	ine Spur Ar	ea						
01MW-17	< 0.500	0.884	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00	< 1.00			

Notes: 1/ Results above MTCA Method A level are in bold italic type.

- 2/ NOAA SQuiRT value for freshwater continuous concentration.
- 3/ Gasoline range with benzene present.
- 4/ Gasoline range without benzene present.
- 5/ NOAA SQuiRT value for freshwater maximum concentration.
- na = No analysis requested.
- nc = Not able to calculate.
- μ g/L = micrograms per liter
- mg/L = milligrams per liter
- < symbol indicates that result is less than reporting limit.

Table 3-3. Water Levels Measured at 2737 and 2750 West Commodore Way, July 24, 2001

	2001						A.
Well	Top of Casing Elevation (Feet msl)	Ground Elevation (Feet msl)	Total Depth of Well (Feet bgs)	Depth of Fuel (Feet bgs)	Depth of Water (Feet bgs)	Fuel Thickness (Feet)	Water Elevation (Feet msl)
		27	37 West Comm	odore Way	· · · · · · · · · · · · · · · · · · ·		
01MW-01	46.48	46.76	25.25	0.00	14.61	0.00	31.87
01MW-02	44.78	45.15	24.91	0.00	16.29	0.00	28.49
01MW-03	44.35	44.75	25.15	0.00	15.89	0.00	28.46
01MW-04	45.08	45.56	24.90	0.00	15.69	0.00	29.39
01MW-05	45.40	45.77	24.88	15.82	21.77	5.95	28.39
01MW-06	47.74	48.23	25.10	0.00	16.37	0.00	31.37
01MW-07	45.17	45.53	28.17	0.00	23.62	0.00	21.55
01MW-08	45.21	45.63	24.93	0.00	17.08	0.00	28.13
01MW-09	43.91	44.37	24.70	0.00	19.07	0.00	24.84
01MW-10	45.02	45.35	24.90	23.74	24.47	0.73	21.28
01MW-11	46.10	46.45	29.90	0.00	23.52	0.00	22.58
01MW-12	45.84	46.29	20.00	0.00	7.22	0.00	38.62
01MW-13	46.36	46.81	19.88	0.00	6.47	0.00	46.81
01MW-14	46.15	46.15	15.00	8.30	na	6.70	na
01MW-15	50.89	50.89	30.00	0.00	22.67	0.00	28.22
01MW-16	44.95	44.95	20.00	0.00	18.25	0.00	26.70
01MW-17	59.42	59.42	30.00	0.00	19.18	0.00	40.24
		27	50 West Comm	odore Way			
02MW-01	24.19	24.72	19.60	0.00	5.71	0.00	18.48
02MW-02	20.06	20.57	9.90	0.00	1.62	0.00	18.44
02MW-03	27.86	28.41	19.75	0.00	9.10	0.00	18.76
02MW-04	27.17	27.59	20.05	0.00	8.69	0.00	18.48
02MW-05	36.59	37.05	33.85	0.00	17.85	0.00	18.74
02MW-06	26.54	27.00	19.97	0.00	8.17	0.00	18.37
02MW-07	20.85	21.39	12.20	0.00	2.34	0.00	18.51

Notes: na = Water level was not determined because product was present.

msl = mean sea level

bgs = below ground surface

Table 4-1. Analytical Results for TPH, Lead, and PCP in Soil at 2737 West Commodore Way, July 2001

Page 1 of 2

	2131	West Collin	modele (ray, July 2	7001			I ag	C 1 01 Z
Sample	PCP (mg/kg)	Diesel (mg/kg)	Oil (mg/kg)	Gas (mg/kg)	Benzene (mg/kg)	Toluene (mg/kg)	Ethylbenzene (mg/kg)	Xylenes (mg/kg)	Lead (mg/kg)
MTCA ^{1/}	8.332/	2,000	2,000	303/ 1004/	0.03	7	6	9	250
			\mathbf{U}_{J}	pper Rail Li	ne Spur Ar	ea			
SB-61-2	na	20.1	88.0	<5.00	< 0.0500	<0.0500	<0.0500	< 0.100	5.14
SB-61-5	na	<10.0	<25.0	<5.00	< 0.0500	<0.0500	< 0.0500	< 0.100	7.43
SB-61-10	na	<10.0	<25.0	<5.00	< 0.0500	<0.0500	<0.0500	< 0.100	2.86
SB-61-15	na	<10.0	<25.0	<5.00	< 0.0500	< 0.0500	<0.0500	< 0.100	4.17
		Former	PCP/Dies	el Mixing A	rea (Lower	Tank Yard	l Area)		
SB-52-2.5	<0.0500	4,180	<1,020	1,410	<1.00	<1.00	1.42	2.18	5.02
SB-52-6	<0.0500	34.4	<25.0	<5.00	< 0.0500	<0.0500	<0.0500	< 0.100	7.45
SB-52-10	0.129	10.3	<25.0	<5.00	< 0.0500	< 0.0500	<0.0500	< 0.100	2.39
SB-53-2	0.0916	<10.0	<25.0	<5.00	< 0.0500	< 0.0500	<0.0500	< 0.100	2.67
SB-53-5	< 0.0500	<10.0	<25.0	<5.00	< 0.0500	< 0.0500	<0.0500	< 0.100	5.83
SB-53-10	<0.0500	15.7	<25.0	<5.00	< 0.0500	<0.0500	<0.0500	< 0.100	2.54
SB-54-2	0.181	1,500	1,230	86.2	< 0.100	<0.100	<0.100	< 0.200	3.24
SB-54-5	<0.0500	<10.0	<25.0	<5.00	< 0.0500	<0.0500	<0.0500	< 0.100	4.08
SB-54-10	0.0780	<10.0	<25.0	<5.00	< 0.0500	<0.0500	< 0.0500	< 0.100	2.37
SB-55-2.5	< 0.0500	<10.0	<25.0	<5.00	< 0.0500	<0.0500	<0.0500	< 0.100	4.98
SB-55-6	0.174	370	<75.0	185	< 0.200	<0.200	0.811	3.06	7.56
SB-55-10	0.0770	13.4	<25.0	<5.00	< 0.0500	<0.0500	< 0.0500	< 0.100	2.58
SB-56-2.5	<0.500	28,300	<5,020	5,100	10.2	6.24	29.3	75.6	10.9
SB-56-5	8.88	2,040	<525	4,060	9.36	<1.00	22.3	60.5	6.85
SB-56-10	0.0765	<10.0	<25.0	<5.00	< 0.0500	<0.0500	<0.0500	< 0.100	2.59
SB-57-1.5	< 0.0500	3,970	881	2,590	0.387	1.94	18.2	8.85	13.2

Table 4-4. Analytical Results for PAHs in Groundwater at 2737 West Commodore Way, July 2001

Sample	Benzo(a)anthracene	Вепzо(а)ругепе	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Chrysene	Dibenz(a,h)anthracene	Indeno(1,2,3-cd)pyrene	Total cPAHs
		Forme	r Barrel Sh	ed Area		17		
01MW-06	< 0.100	< 0.100	< 0.100	< 0.100	<0.100	< 0.100	<0.100	< 0.100
		New	Barrel Shed	l Area				
01MW-15	<0.100	<0.100	< 0.100	<0.100	< 0.100	< 0.100	<0.100	< 0.100
-	W	est Commo	dore Way F	erimeter A	rea			
01MW-16A	<0.100	<0.100	< 0.100	< 0.100	<0.100	< 0.100	<0.100	<0.100
01MW-16B	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	<0.100	< 0.100
Relative Percent Difference	nc	nc	nc	nc	nc	nc	nc	nc
		Upper 1	Rail Line Sp	our Area			•	
01MW-17	<0.100	<0.100	< 0.100	< 0.100	<0.100	<0.100	<0.100	<0.100

Notes: Total cPAHs include sum of detections. Half of reporting limit used for non-detects.

All values in micrograms per liter (µg/L).

nc = Not able to calculate.

cPAHs = carcinogenic polyaromatic hydrocarbons

Phase III Environmental Site Assessment 2737 and 2750 West Commodore Way and Quarterly Groundwater Sampling Time Oil Company

Analytical Results for Groundwater at 2750 West Commodore Way, July 2001 Table 4-5.

	Gas	Diesel	Oil	Benzene	Toluene	Ethylbenzene	Xylenes	Lead
Sample	(µg/L)	(mg/L)	(mg/L)	$(\mu g/L)$	$(\mu g/L)$	(µg/L)	$(\mu g/L)$	$(\mu g/L)$
MTCA	$800^{1/}$ $1,000^{2/}$	0.5	0.5	5,3003/	1,000	$32,000^{3/}$	1,000	15
02MW-01	119	0.500	< 0.500	44.4	0.662	< 0.500	1.15	< 1.00
02MW-02	< 50.0	0.679	< 0.500	< 0.500	< 0.500	< 0.500	< 1.00	< 1.00
02MW-03	90.4	0.619	< 0.500	38.6	0.664	< 0.500	< 1.00	< 1.00
02MW-04	4,270	1.41	< 0.500	23.9	231	165	484	4.68
02MW-05	51.8	0.997	< 0.500	< 0.500	< 0.500	< 0.500	< 1.00	< 1.00
02MW06A	< 50.0	0.923	< 0.500	< 0.500	< 0.500	< 0.500	< 1.00	< 1.00
02MW06B	< 50.0	0.897	< 0.500	< 0.500	< 0.500	< 0.500	< 1.00	< 1.00
Relative Percent Difference	пс	3%	nc	эu	ou .	ис	nc	ис
02MW-07	244	0.417	< 0.500	< 0.500	< 0.500	< 0.500	2.79	< 1.00
Notes: Detections above MTCA Method A are in bold italic type.	ethod A are in bold it	alic type.						

1/ Gasoline range with benzene present.

2/ Gasoline range without benzene present.

3/ NOAA SQuiRT values for freshwater continuous concentration.

na = Not applicable.

nc = Not able to calculate.

μg/L = micrograms per liter

mg/L = milligrams per liter

Table 5-1. Phase III Soil Sample Results Exceeding MTCA Method A Levels for Unrestricted Soil at 2737 West Commodore Way

Sample	PCP (mg/kg)	Diesel (mg/kg)	Gas (mg/kg)	Benzene (mg/kg)	Ethylbenzene (mg/kg)	Xylenes (mg/kg)	cPAHs (mg/kg)
MTCA ^{1/}	8.332/	2,000	30 ^{3/} 100 ^{4/}	0.03	6	9	1.0
	Forn	ner PCP/Di	esel Mixing	Area (Low	er Tank Yard	Area)	
SB-52-2.5	<0.0500	4,180	1,410	<1.00	1.42	2.18	0.1187
SB-55-6	0.174	370	185	< 0.200	0.811	3.06	0.0572
SB-56-2.5	<0.500	28,300	5,100	10.2	29.3	75.6	2.624
SB-56-5	8.88	2,040	4,060	9.36	22.3	60.5	0.736
SB-57-1.5	< 0.0500	3,970	2,590	0.387	18.2	8.85	0.189
			Former Bai	rel Shed A	rea	8	
SB-59-5	<0.500	4,950	799	<1.00	1.94	<2.00	na
1/80 - 5893 0 0 0 0		West	Commodore	Way Perin	neter Area		
SB-60-15	na	11,400	1,240	1.68	4.04	10.2	0.0000

Notes

- 1/ Results above MTCA Method A level for unrestricted land uses are in **bold italic** type.
- 2/ Results above MTCA Method B carcinogenic level are in bold italic type.
- 3/ All other gasoline mixtures
- 4/ Without benzene and <20% aromatic hydrocarbons between EC8 and EC16
- < symbol indicates that result is less than reporting limit.
- na = No analysis requested.
- MTCA = Model Toxics Control Act
- PCP = pentachlorophenol
- cPAHs = carcinogenic polyaromatic hydrocarbons
- mg/kg = milligrams per kilogram

Table 5-2. Groundwater Samples Exceeding Cleanup Levels at 2737 West Commodore Way, July 2001

Sample	PCP (μg/L)	Diesel (mg/L)	Gas (Benzene (μg/L)	Xylenes (μg/L)
MTCA ^{1/}	15 ² /	0.5	8003/	1,0004/	5,3005/	1,000
		Form	er LUST	Area		
01MW-01	3.94	1.11	< 50	0.0	< 0.500	< 1.00
01MW-02	na	5.01	14,8	800	6,900	1,110
01MW-03	na	2.84	24,5	500	11,900	515
01MW-04	na	1.79	6,4	60	1,210	1,470
01MW-07	na	1.45	< 50	0.0	< 0.500	< 1.00
01MW-08	na	0.662	< 50	0.0	< 0.500	< 1.00
01MW-09	na	5.72	1,8	30	213	230
	1	West Commodo	ore Way l	Perimete	r Area	
01MW-11	na	1.53	< 50	0.0	< 0.500	< 1.00
01MW-16A	2.54	11.1	11,0	000	3,910	891
01MW-16B	2.09	9.62	9,3	90	3,700	745
		Lower '	Tank Yar	d Area		
01MW-12	na	6.55	1,3	50	482	26.4
	-	Upper 7	Tank Yar	d Area		
01MW-13	na	3.90	22	1	1.26	2.31
		Former	Barrel Sh	ed Area		
01MW-06	2.17	0.718	< 50	0.0	< 0.500	< 1.00
		New B	arrel She	d Area		
01MW-15	1.66	0.484	<50	0.0	< 0.500	<1.00
		Upper Ra	ail Line S	pur Area	ı	
01MW-17	< 0.500	0.884	<50	0.0	< 0.500	<1.00

Notes: 1/ Results above MTCA Method A level are in bold italic type.

na = No analysis requested.

μg/L = micrograms per liter

mg/L = milligrams per liter

^{2/} NOAA SQuiRT value for freshwater continuous concentrations.

^{3/} Gasoline range with benzene present.

^{4/} Gasoline range without benzene present.

^{5/} NOAA SQuiRT value for freshwater maximum concentration.

< symbol indicates that result is less than reporting limit.

Table 5-3. Groundwater Samples Exceeding Cleanup Levels at 2750 West Commodore Way, July 2001

Sample	Diesel (mg/L)		as g/L)
MTCA	0.5	8001/	1,0002
02MW-01	0.500	1	19
02MW-02	0.679	< 5	50.0
02MW-03	0.619	90).4
02MW-04	1.41	4,2	270
02MW-05	0.997	51	1.8
02MW-06A	0.923	< 5	0.0
02MW-06B	0.897	< 5	0.0
02MW-07	0.417	24	44

Notes:

Detections above MTCA Method A are in bold italic type.

- 1/ Gasoline range with benzene present.
- 2/ Gasoline range without benzene present.

mg/L = milligrams per liter

 μ g/L = micrograms per liter

Cumulative Groundwater Samples, 2737 West Commodore Way **Table 5-4**.

Sample	Date	PCP (μg/L)	Diesel (mg/L)	Oil (mg/L)	Gas (μg/L)	Benzene (µg/L)	Toluene (μg/L)	Ethylbenzene (µg/L)	Xylenes (μg/L)
MTCA ^{1/}		15 ^{2/}	0.5	0.5	800 ^{3/} 1,000 ^{4/}	5,300 ^{5/}	17,500 ^{5/}	32,0005/	1,000
				For	mer LUST Area				
01MW-01	Sep-99	na	< 50.0	< 1.0	< 50.0	< 0.500	< 0.500	< 0.500	1.93
01MW-01	Dec-00	na	1.65	< 0.500	75.2	0.924	1.46	< 0.500	1.93
01MW-01	Jul-01	3.94	1.11	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00
01MW-02	Sep-99	na	0.714	< 0.500	12,200	3,880	525	230	1,100
01MW-02	Dec-00	na	5.00	< 0.500	12,700	3,300	1010	331	1,510
01MW-02	Jul-01	na	5.01	<1.50	14,800	6,900	162	262	1,110
01MW-03	Sep-99	na	0.944	< 0.500	27,200	11,300	405	398	1,590
01MW-03	Dec-00	na	1.65	< 0.500	3,620	1,020	26.9	63.6	210
01MW-03	Jul-01	na	2.84	<1.50	24,500	11,900	238	414	515
01MW-04	Sep-99	na	1.32	< 0.500	18,900	4,370	1,150	606	2,780
01MW-04	Dec-00	na	1.86	< 0.500	7,930	71.2	402	570	2,840
01MW-04	Jul-01	na	1.79	<1.50	6,460	1,210	204	134	1,470
01MW-07	Dec-00	na	< 0.250	< 0.500	< 50.0	< 1.08	< 0.500	< 0.500	< 1.00
01MW-07	Jul-01	na	1.45	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00
01MW-08	Dec-00	na	0.404	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00
01MW-08	Jul-01	na	0.662	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00
01MW-09	Dec-00	na	1.07	< 0.500	2,210	302	143	65.2	333
01MW-09	Jul-01	na	5.72	< 0.500	1,830	213	114	48.1	230
			W	est Commo	dore Way Perim	eter Area		,	
01MW-10	Jul-01	na	na	na	na	na	na	na	na
01MW-11	Dec-00	na	0.504	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00
01MW-11	Jul-01	na	1.53	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00
01MW-16A	Jul-01	2.54	11.1	<2.50	11,000	3,910	123	261	891
01MW-16B	Jul-01	2.09	9.62	<2.50	9,390	3,700	122	209	745
					r Tank Yard Are			,	
01MW-13	Dec-00	na	3.94	0.513	254	< 0.500	0.694	< 0.817	< 1.23
01MW-13	Jul-01	na	3.90	<1.50	221	1.26	< 0.500	< 0.500	2.31
					r Tank Yard Are				
01MW-12	Dec-00	na	1.07	< 0.500	802	98.4	11.0	17.4	24.6
01MW-12	Jul-01	na	6.55	<1.50	1,350	482	8.84	14.0	26.4
	T = 2 = 1				CP/Diesel Mixing	1		T	
01MW-14	Jul-01	na	na	na	na	na	na	na	na
041 671 04	T 5 00	1.00	0.050		r Barrel Shed Ai		.0.500	10.500	.1.00
01MW-06	Dec-00	1.80	< 0.250	< 0.500	87.4	< 0.500	< 0.500	< 0.500	< 1.00
01MW-06	Jul-01	2.17	0.718	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00
011/01/15	Iv1.01	1 66	0.494		Barrel Shed Are	a <0.500	<0.500	<0.500	<1.00
01MW-15	Jul-01	1.66	0.484	<0.500	< 50.0 Rail Line Spur A		<0.500		1.00
01MW-17	Jul-01	<0.500	0.884	<0.500	< 50.0	<0.500	< 0.500	<0.500	<1.00
					are in hold italic t		\0.500	10.500	1.00

Notes: 1/ Results above MTCA Method A cleanup level are in bold italic type.

^{2/} NOAA SQuiRT value for freshwater continuous concentrations.

^{3/} Gasoline range with benzene present.

^{4/} Gasoline range without benzene present.5/ NOAA SQuiRT value for freshwater maximum concentration.

PCP = pentachlorophenol na = No analysis requested.

 $[\]mu$ g/L = micrograms per liter

mg/L = milligrams per liter

< symbol indicates that result is less than method reporting limit.

Table 5-5. Cumulative Groundwater Results, 2750 West Commodore Way

Sample	Date	Diesel (mg/L)	Oil (mg/L)	Gas (µg/L)	Benzene (µg/L)	Toluene (μg/L)	Ethylbenzene (μg/L)	Xylenes (μg/L)	Lead (μg/L)
MTCA		0.500	0.500	800 ^{1/} 1,000 ^{2/}	5,3003/	17,500 ^{3/}	32,0003/	1,000	15
02MW-01	9/28/99	< 250	< 500	172	72.9	0.811	< 0.5	< 1.0	36
02MW-01	11/16/00	0.488	< 0.500	79.0	19.6	1.04	< 0.500	2.35	< 1.00
02MW-01	7/25/01	0.500	< 0.500	119.0	44.4	0.662	< 0.500	1.15	< 1.00
02MW-02	9/28/99	< 250	< 500	< 50	< 0.5	< 0.5	< 0.5	< 1.0	133
02MW-02	11/16/00	0.666	< 0.500	55.0	< 0.580	1.63	0.598	3.28	< 1.00
02MW-02	7/25/01	0.679	< 0.500	< 50	< 0.500	< 0.500	< 0.500	< 1.00	< 1.00
02MW-03	9/28/99	< 250	< 500	160	56.7	1.13	< 0.5	1.14	< 1.00
02MW-03	11/16/00	0.534	< 0.500	241	118	2.05	< 1.25	< 2.50	< 1.00
02MW-03	7/25/01	0.619	< 0.500	90.4	38.6	0.664	< 0.500	< 1.00	< 1.00
02MW-04	9/28/99	< 250	< 500	3700	< 30.0	185	226	473	< 1.00
02MW-04	11/16/00	1.07	< 0.500	9020	< 12.5	972	617	1,840	4.66
02MW-04A	11/16/00	1.23	< 0.500	9650	< 25.0	996	627	1,850	5.12
02MW-04	7/25/01	1.41	< 0.500	4270	23.9	231	165	484	4.68
02MW-05	9/28/99	< 250	< 500	< 50	2.84	< 0.5	< 0.5	< 1.0	86.3
02MW-05	11/16/00	0.536	< 0.500	64.0	< 0.500	< 0.500	< 0.500	1.17	< 0.00100
02MW-05	7/25/01	0.997	< 0.500	51.8	< 0.500	< 0.500	< 0.500	< 1.00	< 0.00100
02MW-06	11/30/00	1.00	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00	< 0.00100
02MW-06A	7/25/01	0.923	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00	< 0.00100
02MW-06B	7/25/01	0.897	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00	< 0.00100
02MW-07	12/1/00	0.299	< 0.500	356	< 0.500	< 0.820	< 3.55	< 9.83	< 0.00100
02MW-07	7/25/01	0.417	< 0.500	244	< 0.500	< 0.500	< 0.500	2.79	< 0.00100
Trip Blank (11/30)	12/1/00	na	na	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00	na

Notes: Detections are in bold italic type.

 μ g/L = micrograms per liter

mg/L = milligrams per liter

na = No analysis requested.

^{1/} Gasoline range with benzene present.

^{2/} Gasoline range without benzene present.

^{3/} NOAA SQuiRT value for freshwater maximum concentration.

APPENDIX A SOIL BORING LOGS

PROJECT NAME: Phase III Site Assessment

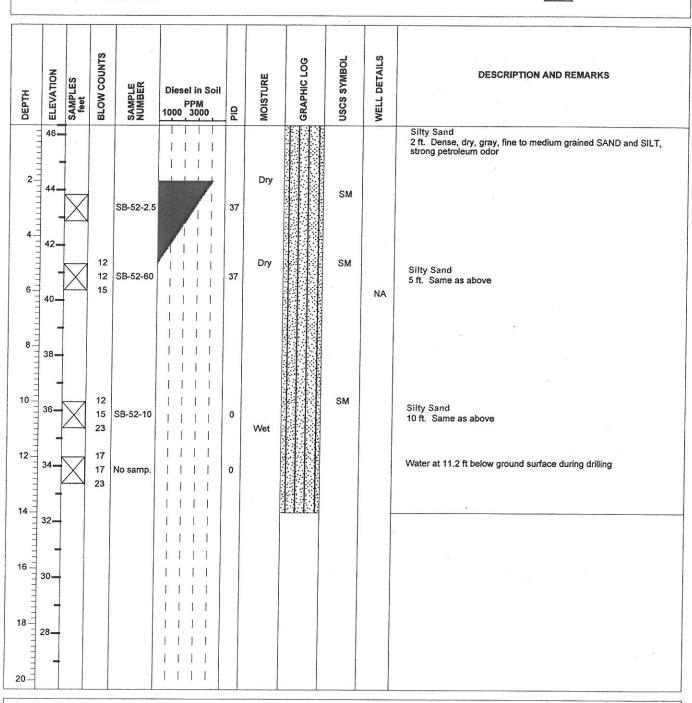
BORING NUMBER: SB-52

LOCATION: 2737 West Commodore Way

AREA: Former PCP/Diesel Mixing Area

CLIENT: <u>Time Oil Company</u>
SITE MANAGER: <u>Scott Sloan</u>

DRILLING METHOD: 2-inch Acker Soil Mechanic


DRILLING CONTRACTOR: BoreTec

DATE/TIME STARTED: 7/16/01 0830

DATE/TIME COMPLETED: 7/16/01 0930

TOTAL DEPTH: 14 feet

WATER DEPTH: 11 feet

PROJECT NAME: Phase III Site Assessment

BORING NUMBER: SB-53

LOCATION: 2737 West Commodore Way

AREA: Former PCP/Diesel Mixing Area

CLIENT: <u>Time Oil Company</u> SITE MANAGER: <u>Scott Sloan</u> DRILLING METHOD: 2-inch Acker Soil Mechanic

DRILLING CONTRACTOR: BoreTec

DATE/TIME STARTED: 7/16/01 1030

DATE/TIME COMPLETED: 7/16/01 1130

TOTAL DEPTH: 12 feet

WATER DEPTH: 11 feet

DEРТН .	ELEVATION	SAMPLES feet	BLOW COUNTS	SAMPLE	Diesel in Soil PPM 20 30 40	PID	MOISTURE	GRAPHIC LOG	USCS SYMBOL	WELL DETAILS	DESCRIPTION AND REMARKS
2	46—	X	12 16	SB-53-2		7.3	Dry	S S S S S S S S S S S S S S S S S S S	SM		Silty Sand 0 to 2 ft. Medium dense, dry, gray, fine to medium grained SILTY SAND, petroleum odor, some oxidized layers in upper 2 feet Gravel 2 ft. Dense, dry, gray to brown, GRAVEL Silty Sand 3 ft. medium dense, dry, gray, fine to medium grained SILTY SAND, petroleum odor
6	40-		17 13 14	SB-53-5		5.1	Dry		SM ML SM	NA	Silt 6 ft. Silt lenses Silty Sand 7 ft. Silty Sand as above
12	36		12 13 15	SB-53-10		0	Wet		sw		Sand 10 ft. Medium dense, wet, gray, fine to medium grained SAND, no odor
14-	32—							ŭ.			
18	28-										

PROJECT NAME: Phase III Site Assessment

BORING NUMBER: SB-54

LOCATION: <u>2737 West Commodore Way</u>

AREA: <u>Former PCP/Diesel Mixing Area</u>

CLIENT: <u>Time Oil Company</u>
SITE MANAGER: <u>Scott Sloan</u>

DRILLING METHOD: 2-inch Acker Soil Mechanic

DRILLING CONTRACTOR: Foster Wheeler

DATE/TIME STARTED: 7/16/01 1245

DATE/TIME COMPLETED: 7/16/01 1320

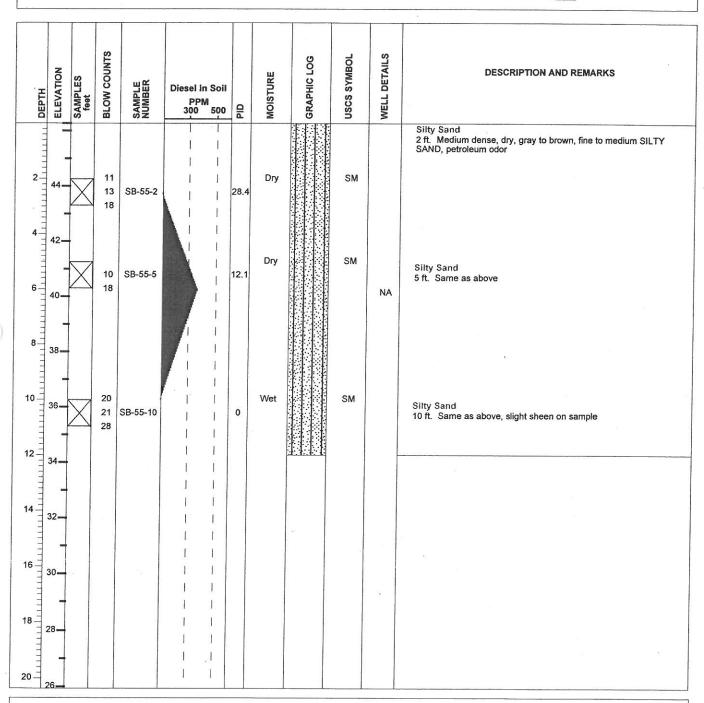
TOTAL DEPTH: 12 feet
WATER DEPTH: 10.5 ft

	T	Γ		T	Ι	1					
DEРТН	ELEVATION	SAMPLES feet	BLOW COUNTS	SAMPLE	Diesel in Soil PPM 1000 2000	PID	MOISTURE	GRAPHIC LOG	USCS SYMBOL	WELL DETAILS	DESCRIPTION AND REMARKS
4_	44-		13 24 10 13 14	SB-54-2 SB-54-5		na	Dry		SM	NA	Silty Sand 2 ft. Medium dense, dry, grey to light brown, fine to medium grained SILTY SAND, petroleum odor Silty Sand 5 ft. Same as above
10	36—	\times	16 17 19	SB-54-10		na	Wet		sw		Sand 10 ft. Medium dense, wet, gray, fine to medium grained SAND, water at 10.45 ft below ground surface during drilling
18	28-										

PROJECT NAME: Phase III Site Assessment

BORING NUMBER: SB-55

LOCATION: 2737 West Commodore Way


AREA: Former PCP/Diesel Mixing Area

CLIENT: <u>Time Oil Company</u>
SITE MANAGER: <u>Scott Sloan</u>

DRILLING METHOD: 2-inch Acker Soil Mechanic

DATE/TIME STARTED: 7/16/01 1410
DATE/TIME COMPLETED: 7/16/01 1500

TOTAL DEPTH: 12 feet
WATER DEPTH: 10.5 ft

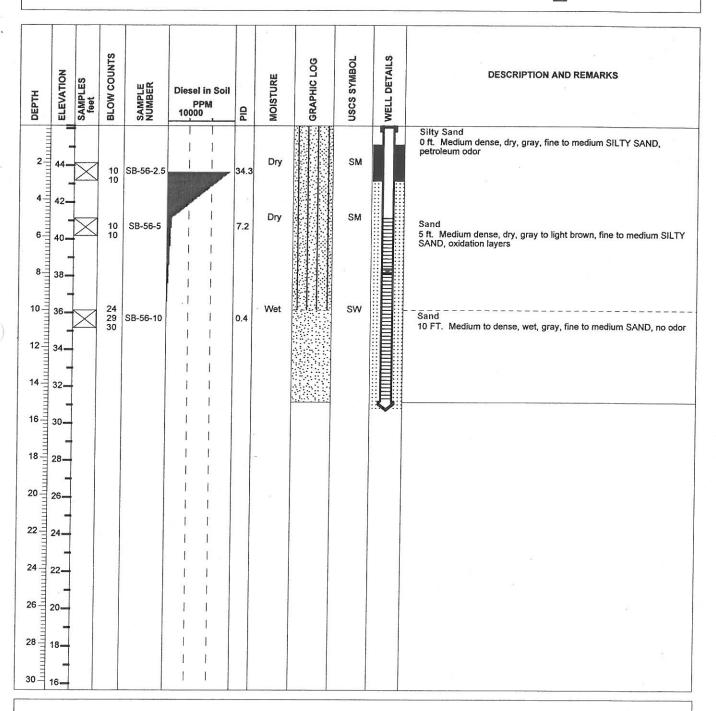
PROJECT NAME: Phase III Site Assessment

BORING NUMBER: SB-56 (01MW-14)

LOCATION: 2737 West Commodore Way

AREA: Former PCP/Diesel Mixing Area

CLIENT: <u>Time Oil Company</u>
SITE MANAGER: <u>Scott Sloan</u>


DRILLING METHOD: 2-inch Acker Soil Mechanic

DRILLING CONTRACTOR: BoreTec

DATE/TIME STARTED: 7/17/01 0715

DATE/TIME COMPLETED: 7/17/01 1047

TOTAL DEPTH: 15 ft WATER DEPTH: 8 ft

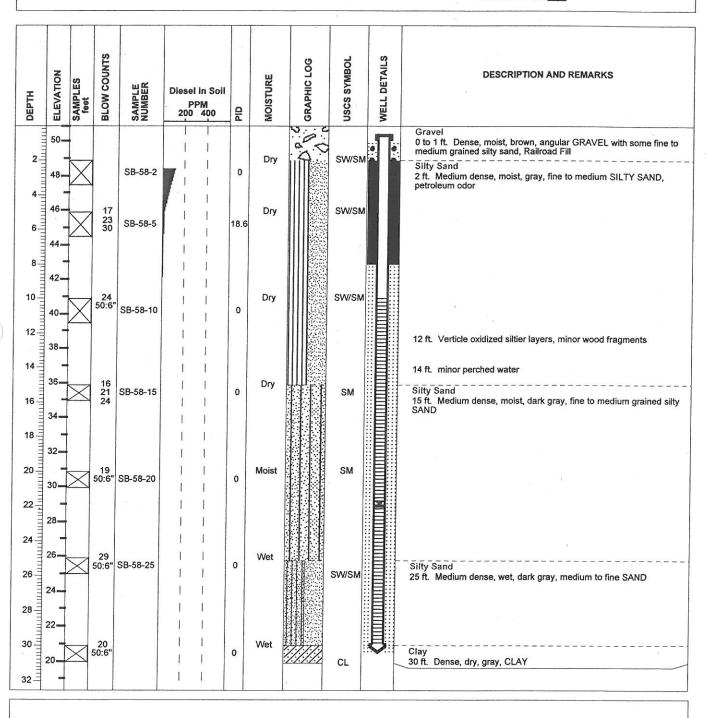
PROJECT NAME: Phase III Site Assessment

BORING NUMBER: SB-58 (01MW-15)
LOCATION: 2737 West Commodore Way

AREA: New Barrel Shed

CLIENT: Time Oil Company

SITE MANAGER: Scott Sloan


DRILLING METHOD: 4-inch HSA

DRILLING CONTRACTOR: Cascade

DATE/TIME STARTED: 7/19/01 0750

DATE/TIME COMPLETED: 7/19/01 1015

TOTAL DEPTH: 30 ft WATER DEPTH: 22 ft

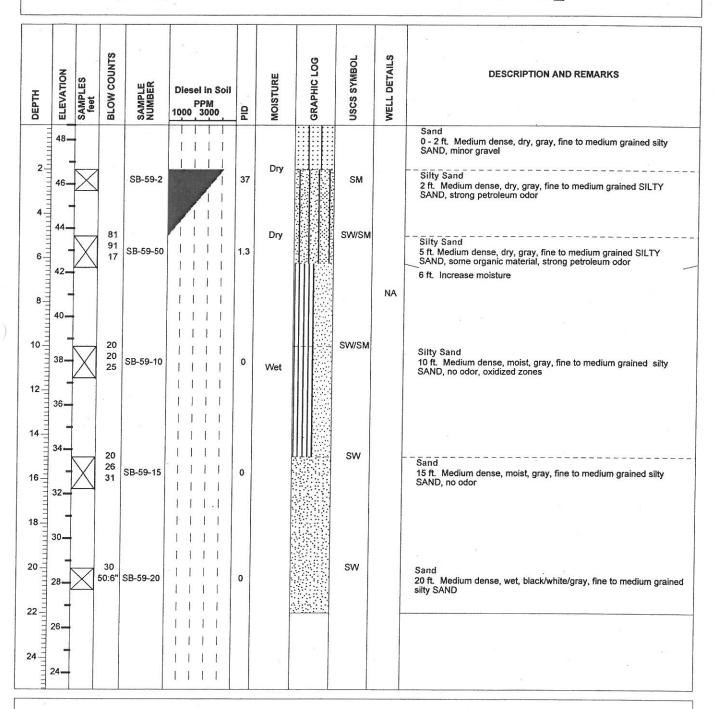
PROJECT NAME: Phase III Site Assessment

BORING NUMBER: SB-59

LOCATION: 2737 West Commodore Way

AREA: Old Barrel Shed
CLIENT: Time Oil Company
SITE MANAGER: Scott Sloan

DRILLING METHOD: 4-inch HSA


DRILLING CONTRACTOR: Cascade

DATE/TIME STARTED: 7/19/01 1030

DATE/TIME COMPLETED: 7/19/01 1125

TOTAL DEPTH: 20 feet

WATER DEPTH: na

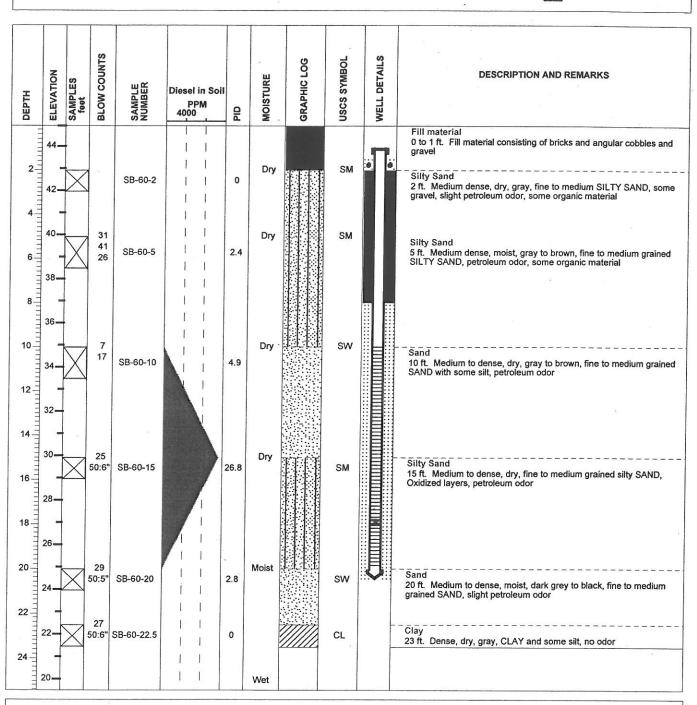
PROJECT NAME: Phase III Site Assessment

BORING NUMBER: SB-60 (01MW-16)
LOCATION: 2737 West Commodore Way

AREA: West Commodore Way Perimeter

CLIENT: <u>Time Oil Company</u>
SITE MANAGER: <u>Scott Sloan</u>

DRILLING METHOD: 4-inch HSA


DRILLING CONTRACTOR: Cascade

DATE/TIME STARTED: 7/19/01 1255

DATE/TIME COMPLETED: 7/19/01 1415

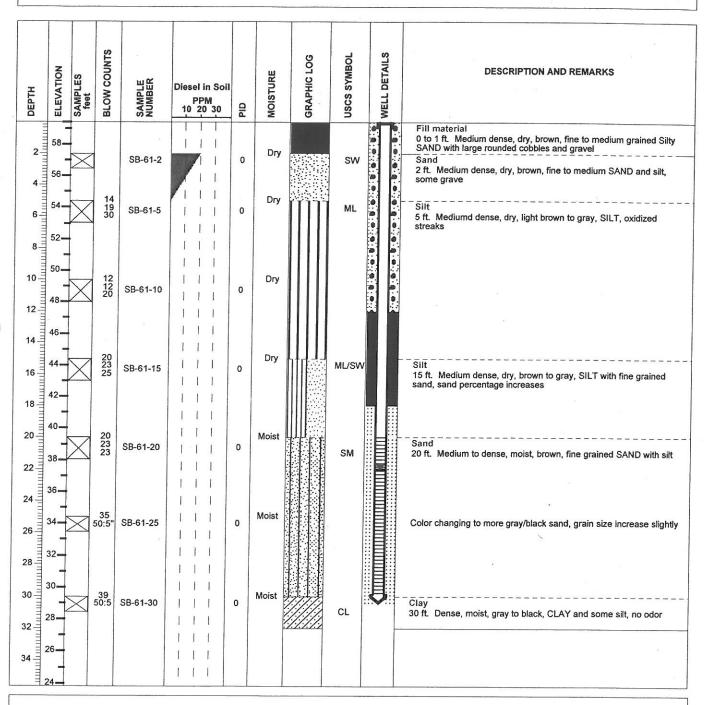
TOTAL DEPTH: 22.5 ft

WATER DEPTH: 18 ft

PROJECT NAME: Phase III Site Assessment

BORING NUMBER: <u>SB-61 (01MW-17)</u>
LOCATION: <u>2737 West Commodore Way</u>

AREA: <u>Upper Railroad Spur</u> CLIENT: <u>Time Oil Company</u> SITE MANAGER: <u>Scott Sloan</u> DRILLING METHOD: 4-inch HSA


DRILLING CONTRACTOR: Cascade

DATE/TIME STARTED: 7/19/01 1438

DATE/TIME COMPLETED: 7/19/01 1745

TOTAL DEPTH: 32 ft

WATER DEPTH: 22 ft

DEVELOPMENT OF FRESHWATER SEDIMENT QUALITY VALUES FOR USE IN WASHINGTON STATE

Phase II Report: Development and Recommendation of SQVs for Freshwater Sediments in Washington State

September, 2003

Publication Number 03-09-088

Prepared for

Washington Department of Ecology Toxics Cleanup Program Sediment Management Unit

Ву

Teresa Michelsen, Ph.D Avocet Consulting Kenmore, WA

under contract to

Science Applications International Corporation Bothell, WA

DEVELOPMENT OF FRESHWATER SEDIMENT QUALITY VALUES FOR USE IN WASHINGTON STATE

Phase II Report:

Development and Recommendation of SQVs for Freshwater Sediments in Washington State

September, 2003

TABLE OF CONTENTS	Page
Executive Summary	ES-1
1.0 Introduction	1
2.0 Methods.	3
2.1 Data Preparation.2.2 Sediment Quality Value Calculations.2.3 Reliability Analysis.	8 14
2.4 Sensitivity Analysis	
3.1 Final Data Set 3.2 2003 Apparent Effects Thresholds. 3.3 Optimal Percentiles 3.4 Floating Percentile SQVs 3.5 Sensitivity Analysis.	
4.0 Conclusions and Recommendations	27
5.0 References.	30
Appendix A. List of Surveys.	A-1
Appendix B. 2003 Apparent Effects Thresholds Chemical Distributions.	B-1
Appendix C. Optimal Percentile Results	C-1
Appendix D. Floating Percentile Results	D-1

LIST OF FIGURES

Figure 2-1. Calculation of Apparent Effects Thresholds (AETs)	9
Figure 2-2. Floating Percentile Method.	11
LIST OF TABLES	
Table 2-1. Qualifier Definitions for Screened-Out Data.	4
Table 2-2. SQS and CSL Endpoints for Biological Tests.	6
Table 3-1. Bioassays and Endpoints in Final Data Set.	16
Table 3-2. Biological Hits at Each Effects Level	16
Table 3-3. 2003 Apparent Effects Thresholds.	17
Table 3-4. Reliability of 2003 Apparent Effects Thresholds.	19
Table 3-5. Optimal Percentiles for Statistical Significance Only Effects Level	21
Table 3-6. Optimal Percentiles for SQS Effects Level	21
Table 3-7. Optimal Percentiles for CSL Effects Level	21
Table 3-8. Floating Percentile Results for Statistical Significance Only Effects Level	22
Table 3-9. Floating Percentile Results for SQS Effects Level.	22
Table 3-10. Floating Percentile Results for CSL Effects Level	23
Table 3-11. Example SQS and CSL Values Based on Floating Percentile Approach	23

LIST OF ACRONYMS

2LAET – second lowest Apparent Effects Threshold

AET – Apparent Effects Threshold

ASTM – American Society for Testing and Materials

C-control

CF – control final

CI – control initial

CSL – Cleanup Screening Level

DDD – dichlorodiphenyldichloroethane

DDE-dichlorodiphenyl dichloroethylene

DDT-dichlorodiphenyl trichloroethane

DMEF – Dredged Material Evaluation Framework

DMMP – Dredged Material Management Programs

EPA – Environmental Protection Agency

ERL - Effects Range Low

HPAH – high molecular weight polynuclear aromatic hydrocarbon

LAET – lowest Apparent Effects Threshold

LPAH – low molecular weight polynuclear aromatic hydrocarbon

MCUL – Minimum Cleanup Level

ML – Maximum Level

NOAA – National Oceanic and Atmospheric Administration

PAET – Probable Apparent Effects Threshold

PAH – polynuclear aromatic hydrocarbon

PCB – polychlorinated biphenyl

PSDDA – Puget Sound Dredged Disposal Analysis

PSEP – Puget Sound Estuary Program

QA – quality assurance

QA/QC – quality assurance/quality control

R – reference

RF – reference final

SAIC – Science Applications International Corporation

SEDQUAL – Sediment Quality Information System

SOS - Sediment Quality Standard

SQV – sediment quality value

T-test

TBT – tributyltin

TEL - Threshold Effects Level

TEQ – toxic equivalent

TOC – total organic carbon

EXECUTIVE SUMMARY

In early 2002, the Washington State Department of Ecology (Ecology) embarked on a project to identify, update, and ultimately select freshwater sediment quality values (SQVs) for use in Ecology's sediment management programs. The first phase of this effort was completed in December 2002 (SAIC and Avocet, 2002), and included compilation of existing freshwater SQVs in North America, and an assessment of their reliability in predicting effects in Washington State. The results of this work indicated that additional Phase II work was needed to update existing freshwater Apparent Effects Thresholds (AETs) and calculate more reliable SQVs for Washington State, as none of the existing guidelines were adequately predictive of toxicity in the Washington State data set.

The goals of the Phase II work described in this report are:

- Update Ecology's freshwater AETs (Ecology 1997), including additional tests and endpoints if possible
- Investigate additional methods of calculating SQVs, including the optimal percentile and floating percentile approaches described in Section 2.0
- Conduct reliability testing to identify which SQVs are most predictive of toxicity in the Washington State data set, and make recommendations regarding their use in accordance with the Sediment Management Standards.

As part of the process of deriving SQVs, additional development work was completed that will be beneficial to Ecology's programs:

- The freshwater sediment database was substantially updated and both the chemistry and bioassay data were subjected to detailed review to ensure accuracy and quality
- Interpretation guidelines for freshwater biological tests were developed
- The SEDQUAL freshwater bioassay interpretation tool, including statistical analysis and comparison of bioassay data to interpretation guidelines, was completed and thoroughly tested

Results of the Phase II SQV development work include the following:

- The freshwater data set is considerably stronger than it was in 1997, and has been improved from a quality assurance standpoint. The current database allows for the calculation of two additional AETs, for a total of four acute and subchronic endpoints. The 2003 AETs are more consistent with one another, and encompass a broader range of analytes than the 1997 AETs. Unfortunately, no benthic or chronic freshwater tests have enough data to allow calculation of AETs.
- There is still a lack of data for a variety of pesticides, herbicides and biocides, among other chemicals. These chemicals may be important in areas of the state that have not been widely sampled, particularly in central and eastern Washington. At sites or locations in which these chemicals are likely to be present, the AETs and other SQVs derived in this report may not provide adequate protectiveness, and bioassay testing should be undertaken on a site-specific

basis. In addition, it is possible that lack of these analytes in the existing data set reduced the sensitivity of the AETs as well as the other SQVs calculated, if they contributed to observed toxicity in the bioassays.

- The freshwater AETs are not as sensitive as the marine AETs are in Puget Sound, most likely due to variations in metals bioavailability from one area to the next. The two mortality bioassays exhibit the lowest sensitivity and reliability. Because these AETs are less protective than the marine AETs, they may not meet the narrative goals of the SQS and the CSL in the Sediment Management Standards.
- Use of lower percentiles of the no-hit distribution improves sensitivity, and shows a reasonable balance between protectiveness and efficiency in the 75-80% sensitivity range, with a corresponding efficiency of 60-80%. This approach is similar to the Probable Apparent Effects Threshold proposed in Ecology (1997), but has been modified to allow any optimal percentile to be chosen, rather than only the 95th percentile.
- Use of the floating percentile method (described in Section 2.0) further improves the sensitivity and efficiency, resulting in SQVs with a sensitivity of 85% and efficiency of 75%, and an overall reliability of better than 80%. Other choices of sensitivity and efficiency are possible, and a range of potential guideline values was calculated to illustrate the trade-offs involved.
- Metals, certain phthalates, PCBs, and PAHs acting in an additive manner are most closely associated with toxicity in the data set. There is a significant degree of covariance among many of the metals and among the PAHs, which complicates calculation of the SQVs.

The following recommendations to Ecology are provided, based on the conclusions above and supporting analyses:

- AETs, calculated in the standard way, are not recommended for setting freshwater SQS and CSL values at this time, because of their relatively low sensitivity. The freshwater AETs are nevertheless useful for other purposes within the sediment management programs, because they are highly efficient. Above these levels, it is nearly certain that adverse effects will be observed. Therefore, they would be appropriate as MLs in the dredging programs, and as hotspot and early action levels in the cleanup programs.
- As an alternative to AETs, the Floating Percentile method is recommended over the optimal percentile approach, because it is more reliable and provides SQVs that better predict toxicity in the Washington State data set. Using this method, it is possible to develop an optimized SQV set for any choice of false negative rate and any definition of adverse effects determined to be appropriate to a given program. The method is also capable of providing customized SQVs for a given region of the state, should it be considered appropriate to stratify the freshwater data set into ecoregions, watersheds, or political boundaries.
- Within the range of adverse effects levels evaluated in this report, it is recommended that Ecology retain use of the biological SQS and CSL levels, as defined in the Phase I report

- (subject to agency and peer review), rather than using a statistical significance only comparison. The SQS and CSL biological effects levels are more consistent with the existing rules and marine programs.
- Based on the evaluations conducted for the Phase I report, it is recommended that Ecology use a comparison to control rather than a comparison to reference for calculating SQVs. Once freshwater reference areas have been identified and their performance validated over time, the decision of whether to use reference or control comparisons can be made on a programmatic basis. However, the Phase I reliability analysis indicated that if a decision is made to use reference comparisons, they must be used consistently on all projects and not mixed with comparisons to control, or the reliability of the decision process will substantially decline.
- It is recommended that PCB criteria be set only for total PCBs, rather than individual Aroclors, based on the sensitivity analysis. The manner in which total PCBs should be calculated when congener data are available was outside the scope of this study (since congener data were not present in the data set); however, this will be important to address in the future.
- It is also recommended that LPAH and HPAH measures not be used, based on the sensitivity analysis. For PAHs, two alternative approaches could be used, which seem to provide roughly the same sensitivity and reliability. A single SQV can be set using a molar sum of PAHs, consistent with narcosis theory. Alternatively, SQVs for individual PAHs can be set using the freshwater AETs.
- It is recommended that areas of the state susceptible to contamination by pesticides, herbicides, and other chemicals not well-represented in the existing data set be further sampled, using synoptic chemistry and bioassay testing. This will allow additional SQVs to be calculated that will provide greater protection in these areas.

1.0 INTRODUCTION

In 1997, the Washington State Department of Ecology (Ecology) released its first set of freshwater AETs for Washington State (Ecology 1997), based on data that had been collected through 1994. At that time, there were enough data to calculate AETs for two endpoints – the 10-day *Hyalella azteca* mortality bioassay, and the Microtox® luminescence bioassay. A relatively small database existed, and some of the data were collected prior to standardization of freshwater bioassay protocols. Because of these factors, these AETs were not intended for regulatory use. Since then, quite a bit of additional data have been collected, new tests have been introduced, protocols have been standardized, and interest in having updated regional freshwater sediment quality values (SQVs) has grown. Recent data are now available from the Duwamish River, the Spokane River, the Columbia River, the Willamette River, and various large lakes on both the east and west side of the Cascades.

Consequently, in early 2002, Ecology embarked on a project to identify, update, and recalculate freshwater SQVs for use in Washington State sediment management programs. Ideally, two levels of SQVs would be developed, to correspond to the narrative Sediment Quality Standard (SQS) and Cleanup Screening Level/Minimum Cleanup Level (CSL/MCUL). Phase I of the project was completed in December 2002 (SAIC and Avocet 2002), and included:

- A compilation of existing freshwater SQV sets in North America
- An evaluation of the appropriateness of these guidelines for Ecology's programs, using narrative criteria, resulting in the selection of eight SQV sets for further evaluation
- An update of the regional freshwater sediment database, including gathering additional synoptic data sets, and conducting quality assurance reviews of both new and old data sets
- Adding new freshwater bioassay evaluation tools to the SEDQUAL information system, allowing the development of custom bioassay hit/no-hit definitions and comparison of bioassay data to these definitions to identify stations with hits
- A reliability analysis of the eight chosen SQV sets against the newly updated freshwater data set, to evaluate their ability to correctly predict biological hits and no-hits
- An evaluation of the use of marine AETs as freshwater dredged material disposal guidelines, and recommended updates to the Columbia River DMEF manual (DMEF 1998).

The results of these analyses indicated that the existing freshwater SQV sets were not able to correctly predict both hits and no-hits with an acceptable degree of reliability, and further work was therefore needed in Phase II to update the 1997 freshwater AETs and/or calculate new freshwater guidelines.

This report provides the results of Phase II, and includes the following:

- Calculation of updated freshwater AETs for four bioassay endpoints
- Calculation of alternative freshwater SQVs, including use of a lower no-hit percentile for the AETs and entirely new SQVs based on iterative error rate minimization techniques

- A reliability analysis of the AETs and alternative SQVs based on the updated regional freshwater data set
- Recommendations for how these values could be used in Ecology's programs.

Section 2 of this report describes the methods used to finalize the data set, calculate the SQVs, and conduct the reliability assessment. Section 3 presents the updated freshwater AETs and alternative SQVs and the associated reliability analyses, and Section 4 provides additional discussion of technical and policy issues. Section 5 summarizes conclusions and recommendations, and Section 6 provides the references for the report.

It should be emphasized that this report provides initial recommendations to Ecology, which will make the final decision on how any SQVs presented in this report, or any modifications to the SQVs presented here, will actually be used in Ecology's sediment management programs. Among the results presented here are a wide variety of options for setting final SQS and CSL-equivalent values. Additionally, the SQVs presented in this report were guided and based on initial policy and technical decisions made by Ecology, described in Section 2. Any potential future modifications to these underlying choices and conditions could significantly change the associated values.

2.0 METHODS

2.1 Data Preparation

Data Collection. Most of the data collection and data entry was conducted under Phase I; the Phase I report provides details of the data sets obtained and the process that was used to screen them. One additional data set for Lake Sammamish was added which came in at the very end of Phase I. The final Phase II data file used for the development of SQVs (a subset of the publicly available SEDQUAL data set) is available from Ecology by request.

Data Screening. Two early data sets for McCormick & Baxter Creosoting Company (MBCREOS1 and MBCREOS2) were deleted when it was determined that the logistic regression models using the *Hyalella azteca* results for these data sets were significantly different from the rest of the *H. azteca* data sets. These studies were conducted in the 1990-1991 timeframe, and unlike more recent studies, the *H. azteca* organisms were collected locally and may have had a different sensitivity to contaminants. Although for some time there has been a general sense that the early McCormick & Baxter results were unusual, this was recently confirmed in a more rigorous manner by both NOAA (Field et al. 2003) and the Oregon Department of Environmental Quality (Brunelle et al., 2003).

In addition, some surveys and individual stations were screened out because of a low number of replicates in bioassays, below what is considered a minimum standard in modern freshwater protocols (ASTM 2000). Surveys or stations with less than five replicates were screened out, including:

- LAKROO92 (all 18 stations) 7-day Hyalella, 3 replicates.
- LSAMM99 (all 16 stations) Microtox®, 2 replicates
- MARCO90 (1 station) 10-day Hyalella, 3 replicates.
- **QUEBAX2** (all 4 stations) 14-day Hyalella, 4 replicates.
- **SIMILK00** (all 4 stations) 10-day Hyalella, 4 replicates.
- **TRISTAR** (all 3 stations) Microtox®, 3 replicates.
- **UNIMAR2** (all 9 stations) 14-day Hyalella, 3 replicates.

Although conducting a power analysis was discussed, it was decided against at this time. The purpose of a power analysis is to determine the minimum difference between two samples that can be detected with a given confidence (alpha level), or conversely whether or not there is sufficient power to detect a specified minimum detectable difference. Conducting a power analysis requires identification of a minimum detectable difference and/or a confidence level that is considered appropriate, and these variables have not been defined or selected by Ecology. The Phase II analysis uses statistical difference from control only, rather than a specified threshold that could serve as a target for a minimum detectable difference.

The freshwater ASTM protocols recommend 8 replicates and require a minimum of 4 replicates in order to provide appropriate power under most circumstances. The minimum of 4 is mainly considered appropriate for less rigorous applications, such as trend analysis between years, and is

fewer than the PSDDA marine bioassay standard of 5 replicates. The data sets remaining in the database after the above screening meet or exceed both of these minimum guidelines.

Surveys and stations were also screened out if they had an insufficient analyte list. Although it would be ideal for all stations to have the same analyte list when developing SQVs, that is not possible when using historical data sets. A minimum of PAHs and metals was selected as a general guideline for including a survey or station, consistent with other national criteria development efforts. Metals and PAHs both contribute significantly to toxicity in most contaminated sediment data sets, and if these minimum analytes were not available, toxicity would frequently occur in samples without adequate chemistry to explain it. This would lead to an unrealistically high number of false negatives in the reliability analysis, based solely on the analyte list and not on the accuracy of the SQVs.

For some surveys, different stations had varying analyte lists. In these surveys, only those stations with adequate analyte lists were retained. The surveys and stations deleted included:

- **COLALU94** (all 6 stations) Only conventionals.
- LKROOS92 (2, 8, 10, 11, 15, 17, 19, 61, 71) 6 metals and TOC.
- **LKROOS01** (all 10 stations) 6 metals plus conventionals.
- **SIMILK00** (all 4 stations) metals and conventionals, no organics.
- STEILLK2 (all 4 stations) metals and conventionals, no organics.
- QUEBAX2 (all 4 stations) PAHs and conventionals, no metals.

Finally, individual chemical data were screened out based on qualifiers assigned during the quality assurance process by the original authors. Data qualified as H, N, Q, X, or R (defined in Table 2-1 below) were not included in the analysis. Undetected data were also not included, as these data do not provide useful information for the purposes of developing SQVs.

Table 2-1. Qualifier Definitions for Screened-Out Data

Qualifier	Definition
Н	Holding time exceeded (conventionals)
N	Estimate based on presumptive evidence analyte is present in sample
Q	Questionable value
X	Less than 10% recovery
R	Rejected – failure to meet QA guidelines

For AET recalculations only, outliers were also removed using the 3x rule (if the highest no-hit value is more than three times the next-highest value, the highest value is considered an outlier). Statistical outlier approaches such as Rosner's test and Dixon's test are also available; however, there is some evidence that these statistical approaches do not work well with distributions that are patchy in their upper ranges, such as the freshwater data set (Gilbert 1987, Sokal and Rohlf 1981). They are also not consistent with the approach approved by the EPA Science Advisory Board. Therefore, the standard 3x rule was used for Phase II update of freshwater AETs.

Selection of Bioassay Tests and Endpoints. In Phase I it was determined that there is currently insufficient data to calculate SQVs for the chronic tests. Four tests have sufficient data to

calculate SQVs: *Hyalella azteca* 10-day mortality, *Chironomus* 10-day mortality, *Chironomus* 10-day growth, and Microtox® 15-minute luminescence bioassays. These endpoints were used for Phase II update of the AETs and development of alternative SQVs.

The Microtox® protocol has recently undergone revision and finalization. In particular, the handling of "overluminescence," or values greater than 100% of the initial control luminescence, was finalized during this project. Phase II interpretation guidelines were revised in accordance with the final 2003 protocol, as follows:

- A certain amount of luminescence greater than 100% is considered normal variation and within the acceptable range. A 10% threshold was set, to be consistent with the level below which mortality and reduction in luminescence is not considered significant. Therefore, mean values of the normalized control, reference, or test sample between 100% and 110% are considered normal. Mean values greater than 110% will be considered a QA failure in the case of a control or reference sample, and uninterpretable in the case of a test sample.
- Similarly, values of Test/Reference (T/R) or Test/Control (T/C) between 100% and 110% will be treated as a no-hit result. Values of T/R or T/C greater than 110% will be considered uninterpretable. Enhancement in luminescence greater than 110% could theoretically be considered a hit or adverse effect, but no consensus has yet been reached on this issue.

The revisions to the Microtox® interpretation and quality assurance guidelines had not yet been programmed into the SEDQUAL bioassay statistical analysis tool at the time Phase II was being conducted, so these interpretations were performed by inspecting the results for each sample and making necessary corrections to the hit/no-hit interpretations in an Excel spreadsheet.

Comparison to Control vs. Reference. Based on the results of Phase I, there appears to be no reliability advantage to using a comparison to reference rather than a comparison to control, for this freshwater data set. Freshwater reference areas have not yet been standardized, and the variability of reference stations in the historical data set appears to overwhelm any theoretical advantage they may provide. In addition, many test stations do not have valid reference stations and would have to be excluded from the analysis if comparison to reference were used. Consequently, a comparison to control provides a much larger and more consistent data set to work with in calculating SQVs. Finally, all of the other national SQV sets that have been developed for freshwater have used a comparison to control. Therefore, it was decided to use comparison to control for Phase II derivation of SQVs.

This decision does not limit how individual regulatory programs may choose to interpret and use their bioassay data. It is expected that freshwater reference areas may be developed over time and standardized, and once this process is completed it may be possible to use a comparison to reference for future updates of the SQVs. However, it is likely that the process may be more difficult than in the marine environment because of the more heterogeneous nature of freshwater environments, and that there may not be valid reference areas for all freshwater sites.

Selection of Hit/No-Hit Criteria. For development of AETs, a sample was considered to be a hit if it was statistically different from the control. One minor exception to this interpretation

guideline was introduced for mortality and luminescence bioassays, because many of these bioassays have become relatively well-controlled and show only minor variance in the control replicates. Thus, even very small differences can be statistically significant. For these bioassays, an observed effect was required to be both statistically significant and at least a 10% different from the control to be considered a hit. "Statistically significant" means a statistical difference from a control sample at an alpha level of 0.05. Data transformations, selection of null hypotheses, and statistical testing procedures are identical to those currently in use by Ecology and DMMP programs for marine sediment data (Michelsen and Shaw 1996, Fox et al. 1998).

The alternative approaches for calculating SQVs (optimal percentiles and floating percentiles) used the same three levels of effects evaluated in Phase I – statistical significance only (including the above modification), a level equivalent to the SQS, and a level equivalent to the CSL. For a detailed discussion of the derivation of these hit/no-hit interpretation guidelines, please see the Phase I report (SAIC and Avocet, 2002). Changes were made to the Microtox QA/QC interpretation guidelines, as described above and shown in Table 2-2 below. As noted above, when using the SEDQUAL Bioassay Statistical Analysis tool, the reference for all stations was set to the control.

Table 2-2. SQS and CSL Endpoints for Biological Tests

Test	QA Control	QA Reference	SQS	CSL
Hyalella azteca			T D 100/	T D 050/
10-day mortality	C ≤ 20%	R ≤ 25%	T – R > 10%	T – R > 25%
Chironomus tentans				
10-day mortality	C ≤ 30%	$R \leq 30\%$	T – R > 10%	T – R > 25%
Chironomus tentans				
10-day growth	CF ≥ 0.48 mg/ind	$RF/CF \ge 0.8$	T/R < 0.8	T/R < 0.7
Microtox® decrease	CF/CI ≥ 0.72,	RF/CF ≥ 0.8,		
in luminescence	CF/CI ≤ 1.1	RF/CF ≤ 1.1	T/R < 0.85	T/R < 0.75

C = Control, CI = Control Initial, CF = Control Final

R = Reference, RF = Reference Final

T = Test Sample

AETs are developed for individual bioassays, and the lowest and second-lowest AETs can be used to set lower and upper regulatory levels. The alternative approaches work in a somewhat different manner, starting directly with the biological definitions of these various regulatory levels. This requires all bioassays at a station to be assessed in a combined, or "pooled," approach at each of the effects levels for which SQVs need to be derived. The SQS and CSL effects levels defined in Phase I were applied to the individual bioassay results for a station, and if any one bioassay at a station showed an observed effect, the station as a whole was considered to be a hit.

Selection of Final Analyte List. In Phase I, any detected chemical that was on one of the SQV lists was included in the reliability analysis. However, for development of SQVs, a minimum number of data points is required. To be as inclusive as possible, a minimum of 30 detected values was chosen as the lower limit for inclusion on the analyte list. For AETs, the list of chemicals with 30 detected values varies, because some test endpoints have more data than others. For calculation of alternative endpoints, chemicals were included if there was enough data for at least three of the four bioassays.

Analytes were also screened out for other reasons. Some analytes, such as iron, aluminum, and magnesium, were screened out because they are crustal elements and are naturally present in high concentrations. Certain conventional analytes, such as grain size parameters and acid-volatile sulfides, were screened out because they likewise are not considered contaminants. Others were derived quantities, such as dioxin TEQs. Finally, several chemicals and conventional parameters were screened out because the hit and no-hit distributions were statistically indistinguishable and the highest no-hit value was higher than the highest hit value (known as a "greater than" value in AET terminology). These included TOC, ammonia, sulfides, and phosphorus, as well as some chemicals that had not enough data for some bioassays and "greater than" values for others, such as beryllium, mono- and dibutyltin, DDE and DDD, di-n-butyl phthalate, benzoic acid, and carbazole.

Chemicals with not enough detected data to calculate SQVs include DDT and derivatives, along with essentially all other pesticides, herbicides, and biocides except TBT, PCB Aroclors other than 1254 and 1260, PCB congeners, dioxins/furans, and chlorinated phenols and benzenes. The lack of data for these chemicals is likely a combination of factors, including the possibility that many of these chemicals are simply not widespread in the areas surveyed so far, the lack of surveys in agricultural areas of the state, and a limited list of analytes in many older surveys. For areas of the state where these chemicals are important, their absence in this data set could result in a lack of sensitivity of the derived AETs and alternative SQVs, and site-specific bioassay testing is recommended.

The final list of chemicals for which a full set of SQVs were derived includes:

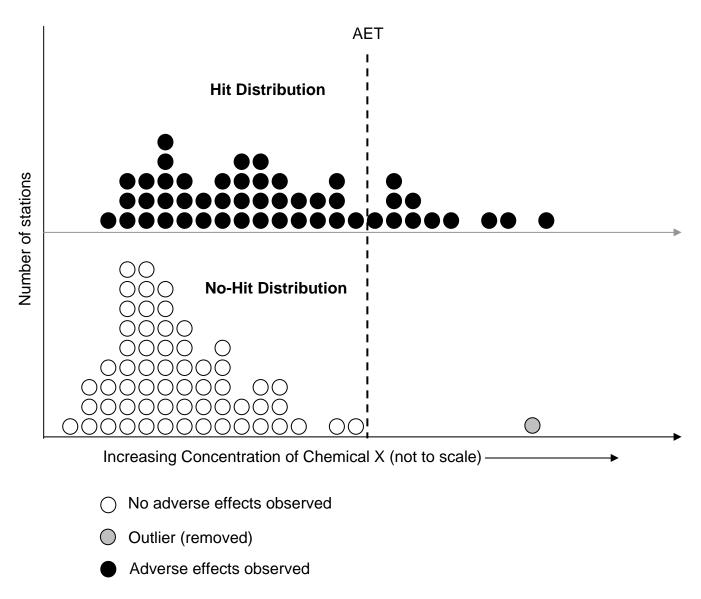
- **Metals:** Antimony, arsenic, cadmium, chromium, copper, lead, mercury, nickel, silver, zinc, and tributyltin
- **PAHs:** 2-Methylnaphthalene, acenaphthene, acenaphthylene, anthracene, benz(a)anthracene, benzo(a)pyrene, benzo(ghi)perylene, chrysene, dibenz(ah)anthracene, fluoranthene, fluorene, indeno(1,2,3-cd)pyrene, naphthalene, phenanthrene, pyrene, total benzofluoranthenes, LPAHs, HPAHs, and the molar sum of PAHs
- Other Organic Chemicals: Aroclor 1254, Aroclor 1260, total PCBs, bis(2-ethylhexyl) phthalate, butylbenzyl phthalate, dimethyl phthalate, di-n-octyl phthalate, and dibenzofuran

AETs were calculated for additional chemicals for some bioassay endpoints with sufficient data, including DDT and derivatives, 4-methylphenol, benzoic acid, beryllium, carbazole, monobutyltin, dibutyltin, di-n-butyl phthalate, phosphorus, retene, TOC, and sulfides. These chemicals were not retained for other SQVs because there were only enough data for some bioassays, and because some of these chemicals had "greater than" AETs and did not appear to be associated with toxicity in the data set.

Normalization and Summing. To date, evaluations of the reliability of dry weight-normalized SQVs vs. organic carbon-normalized SQVs has shown that the dry weight values have equal or better reliability than the organic carbon-normalized values (PSEP 1988, Ecology 1997). In

addition, organic carbon normalization has created some confusion and difficulty in implementation that would be eliminated if dry weight SQVs were used. Therefore, it was decided to calculate Phase II SQVs on a dry weight normalized basis.

In the past, marine AETs have been available both for individual PAHs and for summed dry weight values such as LPAHs and HPAHs. In recent years, there has been a trend toward using summed values of PAHs in the development of SQVs, as this may better reflect their mode of action and additive toxicity (Swartz et al., 1995; EPA 2000). However, dry weight sums are not necessarily appropriate, as narcosis-based toxicity is additive on a molar basis. Dividing the dry weight concentrations by the molecular weight provides molar concentrations that can be summed to predict narcosis-based toxicity (Hermens et al., 1984; Hermens et al., 1985a,b; Deneer et al., 1988). Based on the potential for this approach to better reflect PAH toxicity, it was decided to calculated two sets of SQVs for each method, one using the existing approach of individual PAHs plus dry weight sums, and one using only the molar sum of PAHs. In the SQV set that used the molar sum of PAHs, the individual Aroclors were also summed into a single Total PCBs value.


2.2 Sediment Quality Value Calculations

Apparent Effects Thresholds. The derivation of AETs is described in detail in PSEP (1988), and the same general steps were followed in Phase II for each of the four bioassay endpoints, as described below and shown in Figure 2-1.

- **1. Data Query.** The project database was queried to retrieve all the chemistry and bioassay data for stations at which that bioassay was conducted.
- 2. Bioassay Statistical Analysis. Using SEDQUAL's bioassay statistical analysis tool, the bioassay results for each station were compared to the quality assurance and hit/no-hit criteria listed above, and each station was designated as a hit, no-hit, or failed quality assurance. Those stations that failed quality assurance criteria were removed from the data set. In the case of the Microtox® bioassay, some quality assurance evaluations were conducted by hand subsequent to the BSA analysis, as discussed above.
- 3. Chemical Screening. Analytes with less than 30 data points were screened out.
- **4. Creation of Hit and No-Hit Distributions.** The chemistry data for each remaining analyte were then divided into hit and no-hit distributions, and ranked in order of increasing concentration for each of the distributions.
- **5. Removal of Outliers.** The highest no-hit concentration was compared with the second highest no-hit concentration, and if it was more than three times higher, it was designated as an outlier and removed from the no-hit distribution. This could be done more than once; however, only in a few cases were two data points removed through this process, and never more than two.

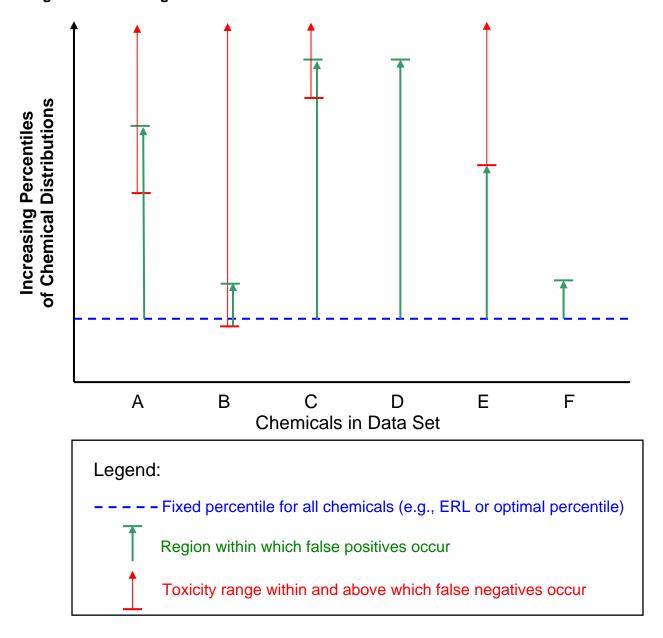
6. Identification of AET. The highest remaining no-hit concentration was designated as the AET. If the highest remaining no-hit concentration for an analyte was higher than the highest hit concentration, then a greater than sign (>) was placed before the AET value to indicate that the actual AET may be higher than that value, or an AET may not exist for that chemical.

Figure 2-1. Calculation of Apparent Effects Thresholds (AETs)

Optimal Percentiles. In Ecology (1997), an alternative AET called the Probable Apparent Effects Threshold (PAET) was proposed, which was the 95th percentile of the no-hit distribution, without outliers removed. This approach was suggested as a possible alternative to removal of outliers. As part of Phase II, this idea was further explored by evaluating all possible percentiles of the hit and no-hit distribution, to see which ones provided the best reliability with this data set. The procedure used was as follows:

9

- Creation of Hit and No-Hit Distributions. Hit and no-hit distributions were created for
 each analyte following the same procedures outlined above. Outliers were not removed
 from the distributions.
- Calculation of Percentiles. Percentiles of the hit and the no-hit distributions were calculated for each analyte in an Excel spreadsheet, ranging from one to one hundred, in increments of one. The results were arranged with analytes in columns and percentiles in rows. This resulted in 200 possible percentiles and associated chemical concentrations that could be selected as candidate SOV sets.
- **Reliability Analysis.** Each percentile row was then treated as if it were a set of SQVs, and all six reliability parameters were calculated for each row, as described in Section 2.3.
- Identification of Optimal Percentiles. An Excel macro was used to search the reliability results for the best-performing percentiles, corresponding to various false negative rates that the agency might choose. Target false negative rates were chosen from 5% to 25%, in increments of 5%. For each target false negative rate, the macro searched the percentile rows for the one that had a false negative rate closest to the target and the lowest false positive rate, giving the greatest overall reliability. Using this method, Ecology can select any target false negative rate, and find the percentile choice that provides the most efficient set of SQVs that meet that target. Selecting multiple false negative rates and comparing the results allows examination of the trade-offs in efficiency and overall reliability that occur as the false negative rate is varied.


This approach allows for the possibility that percentiles of either the hit or the no-hit distribution may have the best combination of error rates, and does not distinguish between the two on theoretical grounds. However, for this data set, percentiles of the no-hit distribution were as good or better than the hit distribution (within a percentage or two). Use of the no-hit distribution is more consistent with how AETs have been developed, as well as previous alternatives to AETs suggested by Ecology (1997), such as PAETs. Therefore, only the no-hit distribution was used in the final analysis.

Error Rate Minimization Techniques. A significant percentage of the error in the methods described above and in currently available SQV sets is related to the use of a single percentile of the distribution to set the criterion for all chemicals (Michelsen 1999). Because all chemicals do not contribute equally to toxicity in a data set, this oversimplification results in substantial mathematical error.

To improve on these approaches, a new method of calculating SQVs was developed that does not require the SQVs to be based on the same percentile of the hit or no-hit distribution for all chemicals. This method, known as the Floating Percentile method, substantially improves false negative and false positive error rates for the freshwater data set over existing approaches, and results in guidelines that are reasonably protective without being over-conservative.

The basic concept behind the Floating Percentile method (Figure 2-2) is to select an optimal percentile of the data set that provides a low false negative rate (as described above), then adjust individual chemical concentrations upward until false positive rates are decreased to their lowest possible level while retaining the same false negative rate. The Y axis in Figure 2-2 is the percentile of each chemical's overall distribution and is not linearly related to toxicity. The green bar shows the concentration range within which toxicity does not occur, and the red bar shows the range within which toxicity occurs. These ranges may overlap due to site-specific or sample-specific variations in bioavailability or toxicity.

First, a constant percentile of the distribution that results in a low false negative rate (similar to an ERL) is initially selected for all chemicals, represented by the blue dashed line. The difference between this constant percentile and the lower end of the toxicity range for each chemical is the area between the blue line and the red bar, and this is the source of most of the false positive errors.

The second step is to determine which chemicals are associated with false positive errors in the data set and adjust those SQVs upward until the lower end of their toxicity ranges are reached (red bar). Above this point, false negatives will begin to increase. Above the red bar, both false negatives and false positives may occur, as is shown for Chemicals A, B, and C. This region is the range of concentrations over which site-specific bioavailability plays an important role in toxicity, and therefore hit and no-hit samples are mixed together, causing both types of errors.

In Figure 2-2, Chemical B's concentration cannot be raised at all, because it is already within its toxic concentration range. In any data set, a few chemicals will already be at a toxic level, giving rise to the low percentage of false negatives that the blue line represents. Some chemicals may show a sharper toxicity threshold, such as Chemical E. Others may not appear to be related to toxicity in the data set at all, as shown by Chemicals D and F. These chemical concentrations can be raised to their maximum percentile without any observed increase in toxicity. However, it may be safer in practice to raise them only to the point where false positives no longer occur (represented by the green bar) or to a similar endpoint such as AETs.

Once each chemical has been individually adjusted upward to the lower end of its toxicity range, the false positives will have been significantly reduced while retaining the same low false negative rate. Most chemicals should be at or near their actual toxicity range, rather than a level arbitrarily assigned by a fixed percentile. In this manner, optimized criteria sets can be developed for a number of different target false negative rates, allowing the trade-offs between false negatives and false positive to be evaluated and a final set of SQVs to be selected.

In summary, the steps required to calculate SQVs using this approach include:

- Select toxicity tests and endpoints
- Compile synoptic chemistry/bioassay data
- Assign hit/no-hit status
- Screen data and develop chemical distributions
- Select a range of target false negative rates and identify associated optimal percentile values
- Adjust percentiles for individual chemicals upward to reduce false positives

Optimization of chemical concentrations occurs in two steps, an iterative automated step using Excel macros, and a hand-optimization step to address covariance and other issues that cannot be satisfactorily resolved by the macros alone. The Excel macro uses the following approach to conduct the initial optimization:

- 1. An appropriate incremental increase for testing is calculated for each analyte based on that analyte's complete concentration range (e.g., 1/10 of the difference between the highest and lowest concentration).
- 2. The number of false positives contributed by each individual analyte is calculated, and the chemical contributing the most false positives is selected to begin the optimization procedure.
- 3. The concentration for that analyte is increased by the chosen increment.
- 4. After each incremental increase, false negative and false positive rates are recalculated for the entire SQV set.
- 5. If the false negative rate increases, the chemical concentration is adjusted back down to its previous level and that chemical is "locked in" at that level.
- 6. If the false positive rate is reduced to zero, the chemical concentration is locked in at that level.
- 7. If either of the above two conditions is met, that chemical is completed and the macro moves on to the chemical with the next highest number of false positives. If neither criterion is met, the macro raises the concentration by another increment and repeats steps 4-7.
- 8. Incremental increases and recalculations continue until every chemical has reached its toxicity threshold or a level at which it has no more false positives.

Through this process, it is possible to identify those analytes having the greatest influence on toxicity in the data set (those whose concentrations cannot be increased without increasing false negatives), and those chemicals having little or no influence on toxicity in the data set (those that can be increased to their highest concentrations with no effect on error rates).

Inspection of the results of the automated process, particularly when various starting percentiles are chosen, also indicates analytes (often metals) with a high covariance in the data set. It may also become apparent that other chemicals, such as PAHs, have relatively little effect individually, but may act in an additive manner to cause toxicity. Because the automated process treats each chemical as acting independently in the data set, this can cause variation in the results depending on the starting values that are chosen, if covariance or additive effects are pronounced in the data set, as was true for this freshwater data set. This effect must be addressed through a final optimization step, requiring judgment on the part of the SQV developer to select the most appropriate values.

The spreadsheets used to develop the SQVs provide a test area, where candidate SQV sets may be adjusted and finalized, and the results of each change tested with respect to all the reliability parameters (this area also allows the operator to enter any criteria set of their choice and test its reliability against the regional data set). The following guidelines were followed in finalizing the criteria sets:

- The resulting SQV sets should be internally consistent within the same hit/no-hit definition. Specifically, chemical concentrations should increase or stay the same as the false negative rate increases and the false positive rate decreases. Developing candidate SQV sets for multiple increasing false negative rates (e.g., 5-25%, in increments of 5%) allows this criterion to be used most effectively.
- The resulting SQV sets should be consistent across different hit/no-hit definitions. Specifically, chemical concentrations should increase as the adverse effects level increases. Using more than two hit/no-hit definitions allows this criterion to be used most effectively.
- The resulting SQV sets should be consistent with toxicological information. For example, metals concentrations should be within the range shown to be toxic in national literature. PAH values should be consistent with narcosis theory. Relative concentrations within chemical classes should be similar to those observed in other data sets and in toxicological literature. Concentrations should not be below regional background concentrations.
- The resulting SQV sets should have equal or better reliability than those produced by the automated macros and all other available methods.

Following each of these guidelines ensures that any anomalies produced by covariance or other interactions between chemicals in the data set are removed and addressed in a scientifically defensible manner.

2.3 Reliability Analysis

Reliability analysis was conducted following the derivation of the AETs, to evaluate their predictive accuracy when used with the regional data set. In addition, reliability analysis was used to select optimal percentiles that could be used as an alternative to AETs, and is an integral part of the iterative process used to calculate the Floating Percentile SQVs. In all three cases, the same measures of reliability were used, listed below. These same measures were used in Phase I to evaluate the reliability of existing SQV sets in North America (SAIC and Avocet, 2002).

- False Negatives: hits predicted as no-hits/total number of hits
- False Positives: no-hits predicted as hits/total number of no-hits
- **Sensitivity:** hits correctly predicted/total number of hits (100% % false negatives)
- **2002 Efficiency:** no-hits correctly predicted/total number of no-hits (100% % false positives)
- 1988 Efficiency: correctly predicted hits/total predicted hits
- Reliability: correct predictions/total stations

False positives and false negatives are the primary measure of predictive errors in the reliability assessment. Each of the other reliability values is related to them in some way. Most of these values can be compared across data sets and SQV types. However, because the denominator of the 1988 efficiency measure varies by SQV set and is not constant with respect to the data set,

this measure cannot be compared across SQV sets, or against the results of 1997 freshwater AETs.

2.4 Sensitivity Analysis

The processes described above, especially the automated and hand-optimized iterative processes, provide a great deal of insight into the sensitivity of the results to variations in approaches, initial assumptions and starting conditions, and relationships between analytes in the data set. Additional sensitivity analysis was conducted by comparing side-by-side spreadsheets for individual PAHs and Aroclors vs. summed PAHs and Aroclors, to evaluate the effect of summing certain chemical classes on reliability. In addition, the relative importance of each individual analyte was assessed by dropping out that analyte and noting any changes to reliability of the SQV set. This allows an evaluation of which analytes are critical to include in the SQV set, which are of lesser importance, and which may not be needed at all.

3.0 RESULTS

3.1 Final Data Set

The number and types of bioassay endpoints in the final data set is shown in Table 3-1, comprising 901 distinct sample/test combinations. Tables 3-1 and 3-2 do not include samples that failed quality assurance requirements.

Table 3-1. Bioassays and Endpoints in Final Data Set

Test	No. of Samples
Hyalella azteca	
10-day mortality	381
Chironomus tentans	
10-day mortality	238
Chironomus tentans	
10-day growth	179
Microtox® decrease	
in luminescence	103

These samples are associated with 319 stations having various combinations of bioassays at each station. Table 3-2 shows the number and percentage of stations associated with biological hits for each effects level.

Table 3-2. Biological Hits at Each Effects Level

Effects Level	Biological Hits Number (Percent)			
Statistical significance				
Comparison to control	204 (64%)			
SQS ^a				
Comparison to control	192 (60%)			
CSL ^a				
Comparison to control	129 (40%)			

^aSee Table 2-2 for SQS and CSL definitions

From Table 3-2, it can be seen that there is not a great deal of difference between the statistical significance-only and the SQS comparison. This may be because the SQS levels were chosen based on power analyses reported in ASTM (2000), and are close to the minimum detectable differences that would be expected in these bioassays. Also, there is a good balance between hits and no-hits, so that the data set and reliability measures are not skewed or dominated by one or the other. When developing SQVs, it is helpful to have a balanced data set between toxic and non-toxic samples, so that the distributions are more likely to contain the actual toxicity thresholds and the thresholds are less likely to be located within the tails of the distributions.

3.2 2003 Apparent Effects Thresholds

2003 Apparent Effects Thresholds for four bioassay endpoints are listed in Table 3-3, along with a comparison to the 1997 AETs. Lowest AETs (LAETs) and second-lowest AETs (2LAETs) are

also shown, since in the marine program, these have been used as the SQS and CSL standards, respectively. The chemical distributions used in calculating the 2003 AETs are provided in Appendix B.

Table 3-3. 2003 Apparent Effects Thresholds

	Hyalella	Chironomus	Chironomus	Microtox®	2003	2003	1997 AET	1997 AET
Analyte	Mortality	Growth	Mortality	Lumin.	LAET	2LAET	Microtox®	Hyalella
Antimony	4.4	0.6	1.9	> 5.1	0.6	1.9	3	64
Arsenic	200	31.4	50.9	123	31.4	50.9	40	150
Beryllium	> 2		0.46		0.46			
Cadmium	9.1	> 5.6	2.39	2.9	2.39	2.9	7.6	12
Chromium	> 348	133	133	95	95	133		280
Copper	2010	829	619	1460	619	829		840
Lead	> 1310	1160	335	431	335	431	260	720
Mercury	3.74	3.04	0.8	3.04	0.8	3.04	0.56	2.7
Nickel	113	113	113	53.1	53.1	113	46	
Silver	3.5	> 3.3	> 3.3	0.545	0.545	3.5		4.5
Zinc	> 4150	1080	683	1130	683	1080	520	3200
Monobutyltin	> 4850		98	459	98	459		
Dibutyltin	> 1930		96		96			
Tributyltin	> 15700	6650	260		260	6650		
2-Methylnaphthalene	710	1770	555	469	469	555		
Acenaphthene	7420	1320	6290	1060	1060	1320	4100	100000
Acenaphthylene	1020	1260	470	640	470	640	2200	2600
Anthracene	16200	1580	1900	1230	1230	1580	2800	41000
Benz(a)anthracene	44000	11000	5800	4260	4260	5800	7700	33000
Benzo(a)pyrene	55000	14000	3300	4810	3300	4810	11000	25000
Benzo(bk)fluoranthenes	79000	19900	13800	11000	11000	13800	16000	34000
Benzo(ghi)perylene	12100	11000	5200	4020	4020	5200	1400	21000
Chrysene	46000	11000	6400	5940	5940	6400	11000	39000
Dibenz(ah)anthracene	3070	2600	800	839	800	839	230	3500
Fluoranthene	46100	15000	16700	11100	11100	15000	21000	130000
Fluorene	6970	3850	3890	1070	1070	3850	4200	96000
Indeno(123-cd)pyrene	18000	18000	5300	4120	4120	5300	760	15000
Naphthalene	5630	4970	529	1310	529	1310	46000	140000
Phenanthrene	41100	7570	8950	6100	6100	7570	15000	210000
Pyrene	68000	16000	18000	8790	8790	16000	23000	85000
LPAHs	78300	41970	6590	9200	6590	9200	74000	440000
HPAHs	471000	120500	31640	54800	31640	54800	91000	310000
4-Methylphenol	2360		760		760	2360		
Benzoic Acid	3790		2910		2910	3790		
Bis(2- ethylhexyl)phthalate	22300	6380	7590	2520	2520	6380	750	

	Hyalella	Chironomus	Chironomus	Microtox®	2003	2003	1997 AET	1997 AET
Analyte	Mortality	Growth	Mortality	Lumin.	LAET	2LAET	Microtox®	Hyalella
Butylbenzyl phthalate	> 1520	366	980	260	260	366		
Dimethyl phthalate	436	> 576	311	436	311	436		
Di-n-butyl phthalate	> 1740	> 1740	103	> 1740	103			43
Di-n-octyl phthalate	201	399	256	11	11	201		
Carbazole	923				923		140	1800
Dibenzofuran	660	1010	443	399	399	443		32000
Retene	6020				6020			
4,4-DDD	96		> 96		96			
4,4-DDE	21		> 20		21			
4,4-DDT	19				19			
Aroclor 1254	> 1060	294	340	230	230	294	7.3	350
Aroclor 1260	500	138	184	140	138	140		
Total PCBs	2090	394	354	62	62	354	21	820
Phosphorus	> 3290		> 3290					
Sulfides	941		702		702	941	130	920
Total Organic Carbon	> 25	> 21.3	9.82	> 21.3	9.82		14	25

Units: Metals and nutrients in mg/kg, organics in µg/kg, butyltins in µg/kg ion, TOC in percent

Bold: High-confidence AETs **Non-Bold:** Lower-confidence AETs

One thing to note is that not all AETs have the same degree of confidence. An AET was considered a lower-confidence AET if any of the conditions below apply:

- The AET is a "greater than" value
- The AET has only one or two hit values above it
- The AET was developed from a no-hit distribution of less than three values

In the table above, PAHs have an average of three high-confidence AETs, the highest percentage of any chemical class. Metals averaged two high-confidence AETs and two lower-confidence AETs. Organic chemicals other than PAHs tended to have fewer AETs overall and closer to 75% low-confidence AETs. The number of AETs is an indication of how often that chemical was analyzed for and/or detected in the surveys, while the percentage of high-confidence AETs tends to be a measure of natural variability in the data with respect to bioavailability, as well as the possible lack of toxicity thresholds for some chemicals within their concentration distributions.

The 2003 AETs as a whole are a clear improvement over the 1997 AETs in several ways. First, two additional endpoints have been added for *Chironomus*. These AETs are generally between the *Hyalella* and Microtox® AETs in sensitivity, providing a more complete distribution of bioassay sensitivities. Also, the *Hyalella* and Microtox® AETs have been strengthened by removal of the anomalous MBCREOS1 and MBCREOS2 surveys, as well as a number of other older data sets with very few replicates and out-of-date protocols. The addition of many newer

surveys to these biological data sets has allowed calculation of more robust AET values. It is interesting to note that the result in most cases is to decrease many of the *Hyalella* AETs and increase some of the Microtox® AETs, which together with the *Chironomus* AETs, creates a more consistent set of AETs for each chemical.

The reliability of the 2003 AETs is shown in Table 3-4. The reliability of each of the bioassay-specific AETs was assessed only against that bioassay's data set, while the reliability of the LAET was assessed against the pooled data set at the SQS effects level, and the reliability of the 2LAET was assessed against the pooled data set at the CSL effects level. In each case, the reliability of the AETs was assessed as a complete set of AETs, rather than by individual chemical.

Measure of Reliability (%)	Hyalella Mortality	Chironomus Growth	Chironomus Mortality	Microtox® Lumin.	2003 LAET	2003 2LAET
	Wiortanty	Growth	Wiortanty	Lullilli.	LALI	ZLALI
False Negatives	78	33	60	19	35	57
False Positives	2	4	2	14	11	6
Sensitivity	22	67	40	81	65	43
2003 Efficiency	98	96	98	86	89	94
1988 Efficiency	88	83	93	94	93	87
Overall Reliability	67	91	75	83	73	69

The first four columns represent the reliability of each set of AETs in representing the bioassay data from which they were derived. In other words, how well do the chemical criteria actually do in predicting hits within their own data set? Here it can be seen that the AETs for the two mortality tests are the least accurate at predicting hits and the least sensitive, while the error rates for the subchronic endpoints are lower and more sensitive. The Microtox® AETs are the best at predicting hits in the data set from which they were derived, and have both low false negative and low false positive rates. This could be because variations in bioavailability are relatively well controlled in the Microtox® test – the pH, oxygenation, alkalinity, and salinity of the water in which the test is conducted is carefully controlled. This could tend to buffer natural variations in bioavailability, especially in metals, much as is the case in marine water and sediments. As can be seen from a close inspection of the Microtox® data, the variability among replicates for this test is far lower than for any of the other bioassays.

The relatively poor performance of the AETs for mortality endpoints is difficult to explain, unless it is related to the fact that these are older tests, and the existing historical database may contain surveys run under varying conditions, with organisms from varying sources. The variation among replicates in these tests is typically not very high, especially compared to a growth test, and there are typically no significant quality assurance problems with these tests. Therefore, the relative inability of the highest no-hit value to accurately predict hits within the mortality data sets must be related either to greater susceptibility of this endpoint to natural variations in bioavailability, or to laboratory variations within the historical data set.

The LAET has a reasonably low error rate compared to the individual bioassay AETs or the 2LAET. AETs are meant to be used in a pooled manner, with the LAET as a regulatory

threshold, so these reliability values are more relevant than those for the individual bioassays. However, SQS is narratively defined as a level below which adverse effects are not observed, and the false negative error rates associated with the LAET (35%) may not meet that narrative goal. In addition, the errors tend to be weighted toward more false negatives than false positives, which may not be appropriate for a lower screening level.

Similarly, the 2LAET may have more false negatives than would be desirable at that level. The CSL is intended as a level below which only minor adverse effects would occur, and above which more significant adverse effects are expected. Keeping in mind that the reliability calculations for the 2LAET were conducted against a biological CSL definition, the 2LAET failed to identify 57% of the hit stations even at this higher level of adverse effects. On the other hand, the 2LAET has very high efficiency, and above this level, one could be nearly certain that adverse effects would occur and there would be little value in conducting biological testing. Therefore, it could be useful as an ML in the dredging program, or a hot spot or early action level in the cleanup program.

The sensitivities of the LAET and the 2LAET are surprisingly low, considering the proven success and protectiveness of these levels when used as the SQS and CSL in marine sediment programs. This is very likely due to the greater heterogeneity of freshwater environments, and the variation in bioavailability of metals (in particular) in these environments. In marine systems, water and sediments are fairly well buffered, and one would expect metals toxicity thresholds to be roughly the same in most areas. However, toxicity thresholds for metals may vary greatly in freshwater, resulting in some no-hit values that are higher than toxicity thresholds for the same metal in other areas. It is possible that this approach would have more success if the freshwater data set were stratified by ecoregion or geochemical environment, and AETs calculated for each region.

For state-wide SQVs, the highest no-hit value may not be protective of all areas of the state, whereas the same would not be expected in the marine environment. This conclusion is supported by the Floating Percentile calculations (see Section 3.4), which indicate that the AETs for PAHs are appropriate, but the AETs for many metals are too high. Lowering certain metals' SQVs improves the sensitivity without a loss of efficiency.

3.3 Optimal Percentiles

As an alternative to AETs, the hit and no-hit distributions were evaluated to identify percentiles with a higher sensitivity, with efficiency also as high as possible. False negative rates of 5, 10, 15, 20, and 25% (sensitivity of 75-95%) were chosen as the target levels. Tables 3-5, 3-6, and 3-7 show the optimal percentiles and their associated reliability for each of these target levels, and for each of the adverse effects definitions being evaluated (statistical significance only, SQS, and CSL).

Although percentiles of the hit distribution were evaluated, in each case they were equal to or less reliable than percentiles of the no-hit distribution, within \pm one percent. Therefore, in each case, the optimal percentile is that percentile of the no-hit distribution that comes closest to (without exceeding) the target false negative rate, and has the lowest false positive rate of the

percentiles that meet the target false negative rate. Appendix C provides tables of the chemical concentrations associated with the 15 sets of optimal percentiles.

In the tables below, the first number in each pair is from the spreadsheets in which individual PAHs and Aroclors were retained, and the second number is from the spreadsheets in which individual PAHs and Aroclors were summed.

Table 3-5. Optimal Percentiles for Statistical Significance Only Effects Level

Measure of	95%	90%	85%	80%	75%
Reliability (%)	Sensitivity	Sensitivity	Sensitivity	Sensitivity	Sensitivity
Optimal Percentile	51 st / 51 st	66 th / 66 th	77 th / 71 st	83 rd / 81 st	90 th / 88 th
False Negatives	5/5	10 / 10	15 / 14	19 / 19	25 / 25
False Positives	70 / 68	54 / 50	42 / 43	37 / 34	26 / 22
Sensitivity	95 / 95	90 / 90	85 / 86	81 / 81	75 / 75
2003 Efficiency	30 / 32	46 / 50	58 / 57	63 / 66	74 / 78
1988 Efficiency	78 / 79	82 / 83	84 / 84	85 / 86	89 / 90
Overall Reliability	77 / 78	78 / 79	78 / 78	76 / 77	75 / 76

Table 3-6. Optimal Percentiles for the SQS Effects Level

Table 6 of optimal 1 of continue for the Gae Encode Ector						
Measure of	95%	90%	85%	80%	75%	
Reliability (%)	Sensitivity	Sensitivity	Sensitivity	Sensitivity	Sensitivity	
Optimal Percentile	52 nd / 52 nd	67 th / 66 th	78 th / 71 st	83 rd / 81 st	91 st / 88 th	
False Negatives	5/5	10 / 10	15 / 15	20 / 20	24 / 25	
False Positives	69 / 68	51 / 51	42 / 44	35 / 32	24 / 24	
Sensitivity	95 / 95	90 / 90	85 / 85	80 / 80	76 / 75	
2003 Efficiency	31 / 32	49 / 49	58 / 56	65 / 68	76 / 76	
1988 Efficiency	76 / 76	80 / 80	82 / 82	84 / 85	88 / 88	
Overall Reliability	76 / 76	78 / 78	77 / 77	76 / 76	76 / 75	

Table 3-7. Optimal Percentiles for the CSL Effects Level

Table 5 7: Optimal 1 creentiles for the OOL Effects Level						
Measure of	95%	90%	85%	80%	75%	
Reliability (%)	Sensitivity	Sensitivity	Sensitivity	Sensitivity	Sensitivity	
Optimal Percentile	63 rd / 63 rd	65 th / 65 th	72 nd /72 nd	77 th / 76 th	82 nd / 80 th	
False Negatives	5/5	9 / 10	13 / 15	20 / 19	25 / 25	
False Positives	59 / 57	57 / 54	50 / 48	43 / 43	37 / 38	
Sensitivity	95 / 95	91 / 90	87 / 85	80 / 81	75 / 25	
2003 Efficiency	41 / 43	43 / 46	50 / 52	57 / 57	63 / 62	
1988 Efficiency	62 / 62	62 / 62	63 / 64	65 / 65	67 / 66	
Overall Reliability	68 / 69	67 / 68	68 / 69	68 / 69	69 / 69	

It is important to keep in mind when reviewing these numbers that the hit and no-hit distributions are not the same for each effects level. Each hit and no-hit distribution is created by applying a different level of biological effects to the overall data set. Nevertheless, the results for the statistical significance only and the SQS adverse effects levels are quite similar, as are the distributions created by these two biological effects definitions, for the reasons discussed in Section 3.2.

From these tables, it can be seen that the optimal percentiles for reasonably sensitive SQVs would be somewhere in the range of the 50th to the 90th percentile of the no-hit distribution, or for the CSL level, a somewhat smaller range of the 60th to the 80th percentile. The individual and summed versions perform almost identically, suggesting that the summed distributions are reasonably representative and could be used in place of the individual distributions for PAHs and PCBs.

False positive error rates are still quite high until the 80% and 75% sensitivity levels are reached, at which point there begins to be more balance. Ideally, a set of SQVs could be developed in the higher sensitivity ranges with lower false positive rates. To develop such SQVs, these optimal percentiles were used as starting points for the Floating Percentile optimization process, discussed in Section 3.4 below.

3.4 Floating Percentile SQVs

Using the process described in Section 2.2, SQV sets were derived with optimized sensitivity and efficiency, shown in Tables 3-8 through 3-10 below. As in the previous section, these tables show results for five different choices of false negative rates, at three different effects levels – statistical difference from control, an effects level equivalent to the SQS, and an effects level equivalent to the CSL (see Table 2-2 for details of these biological effects levels).

In the tables below, the first number of each pair provides results for the SQV sets with individual PAHs and Aroclors, and the second number shows results for the SQV sets with summed PAHs and Aroclors.

Table 3-8. Floating Percentile Results for Statistical Significance Only Effects Level

Measure of	95%	90%	85%	80%	75%
Reliability (%)	Sensitivity	Sensitivity	Sensitivity	Sensitivity	Sensitivity
False Negatives	4/5	10 / 10	15 / 15	20 / 20	25 / 25
False Positives	55 / 57	39 / 42	26 / 33	20 / 28	16 / 24
Sensitivity	96 / 95	90 / 90	85 / 85	80 / 80	75 / 75
2003 Efficiency	45 / 43	61 / 58	74 / 67	80 / 72	84 / 76
1988 Efficiency	82 / 82	86 / 85	89 / 85	92 / 89	93 / 89
Overall Reliability	82 / 81	82 / 81	82 / 81	81 / 78	78 / 75

Table 3-9. Floating Percentile Results for the SQS Effects Level

able of the leading is decenting recounted for the older mineral action						
Measure of	95%	90%	85%	80%	75%	
Reliability (%)	Sensitivity	Sensitivity	Sensitivity	Sensitivity	Sensitivity	
False Negatives	5/5	10 / 10	15 / 15	20 / 20	25 / 25	
False Positives	57 / 55	44 / 45	26 / 33	20 / 26	15 / 23	
Sensitivity	95 / 95	90 / 90	85 / 85	80 / 80	75 / 75	
2003 Efficiency	43 / 45	56 / 55	74 / 67	80 / 74	85 / 77	
1988 Efficiency	79 / 80	82 / 82	88 / 85	90 / 87	92 / 88	
Overall Reliability	80 / 80	80 / 80	82 / 80	80 / 78	78 / 76	

Table 3-10. Floating Percentile Results for the CSL Effects Level

Measure of	95%	90%	85%	80%	75%
Reliability (%)	Sensitivity	Sensitivity	Sensitivity	Sensitivity	Sensitivity
False Negatives	5/5	10 / 10	15 / 15	20 / 20	25 / 25
False Positives	50 / 50	37 / 44	26 / 24	23 / 17	21 / 16
Sensitivity	95 / 95	90 / 90	85 / 85	80 / 80	75 / 75
2003 Efficiency	50 / 50	63 / 56	74 / 76	77 / 83	79 / 84
1988 Efficiency	66 / 65	71 / 67	76 / 78	77 / 82	78 / 83
Overall Reliability	73 / 72	77 / 73	80 / 81	79 / 82	78 / 80

This process results in an overall lowering of the false positive rates associated with each level of sensitivity, which in turn allows selection of SQVs with higher sensitivity, in the 90-80% range (for example). Comparison of the unsummed values with the summed values indicates that summing the PAHs and Aroclors gives mixed results. At lower effects levels, this approach tends to result in slightly less reliable SQVs, while at higher effects levels the balance shifts toward slightly greater reliability in the 85% to 75% sensitivity range.

This approach provides a range of options for Ecology to choose among in setting SQS and CSL-equivalent levels for use in Ecology's sediment management programs, depending on the level of protectiveness desired, the level of errors that are considered acceptable, and whether or not a summing approach is utilized. Tables showing chemical concentrations associated with each of the 30 options explored above are included in Appendix D. One example of a set of SQS and CSL guidelines that could be selected is shown in Table 3-11 below, using SQS and CSL effects levels, the mid-point of the sensitivity options above (85%), and individual PAHs. This example is associated with 15% false negatives, approximately 25% false positives, and better than 80% overall accuracy. This example is provided for discussion purposes only – final SQVs will be selected by Ecology and may differ from the values shown.

Table 3-11. Example SQS and CLS Values Based on Floating Percentile Approach

Analyte	SQS	CSL
Antimony	0.4	0.6
Arsenic	20	51
Cadmium	0.6	1.0
Chromium	95	100
Copper	80	830
Lead	335	430
Mercury	0.50	0.75
Nickel	60	70
Silver	2.0	2.5
Zinc	140	160
Tributyltin	75	75
2-Methylnaphthalene	470	560
Acenaphthene	1060	1320
Acenaphthylene	470	640

Analyte	SQS	CSL		
Anthracene	1200	1580		
Benz(a)anthracene	4260	5800		
Benzo(a)pyrene	3300	4810		
Benzo(bk)fluoranthenes	11000	14000		
Benzo(ghi)perylene	4020	5200		
Chrysene	5940	6400		
Dibenz(ah)anthracene	800	840		
Fluoranthene	11000	15000		
Fluorene	1000	3000		
Indeno(123-cd)pyrene	4120	5300		
Naphthalene	500	1310		
Phenanthrene	6100	7600		
Pyrene	8800	16000		
LPAHs	6600	9200		
HPAHs	31000	54800		
Bis(2-ethylhexyl)phthalate	230	320		
Butylbenzyl phthalate	260	370		
Dimethyl phthalate	46	440		
Di-n-octyl phthalate	26	45		
Dibenzofuran	400	440		
Total PCBs	60	120		

Units: Metals in mg/kg, organics in µg/kg, butyltins in µg/kg ion

One immediately apparent attribute of this set of SQVs is that the metals are relatively low, while the PAHs are relatively high. Some of the metals concentrations fall as low as those of other North American SQV sets, such as TELs, while most of the PAH concentrations are much higher, similar to AETs in concentration. For the most part, the metals values shown here could not be raised at all without increases (in some cases dramatic) in the false negative rates, indicating that metals are toxic at these low levels in freshwater environments, at least in some forms and environments where they are more bioavailable. There may also be sites where metals are not toxic at these levels, indicating natural variability in substrate and environment, as well as variability in the form of the metal (e.g., grit particles vs. more soluble forms).

The individual PAH values did not affect toxicity in this data set to any great degree, and each one could be raised to its highest concentration (or eliminated from the data set altogether) without any impact on any of the reliability measures. This is a result of the PAHs all covarying to a strong degree. In order to address this issue and provide a measure of safety, PAH and other organic chemicals' SQVs were not allowed to rise above the LAET for SQS values or the 2LAET for CSL values.

3.5 Sensitivity Analysis

Once all of the above steps had been completed, individual chemicals (and groups of chemicals) were dropped out of the spreadsheets to identify those that had a strong influence on toxicity and error rates in the data set, and those that do not appear to affect the predictiveness of the SQVs. Chemicals were classified as follows:

- **Strong Influence:** In every version of the SQVs, these chemicals affected the reliability of the SQVs if removed from the data set: Antimony, zinc, bis(2-ethylhexyl) phthalate, total PCBs, individual PAHs (when removed as a group), and the molar sum of PAHs.
- Lesser Influence: In some SQV sets but not others, removal of these chemicals affected the reliability of the SQVs: Arsenic, cadmium, copper, mercury, tributyltin, and di-n-octyl phthalate.
- Little or No Influence: In no case did removal of these chemicals or chemical groups affect the reliability of the SQVs: Chromium, lead, nickel, silver, individual PAHs (removed one at a time), LPAH, HPAH, dibenzofuran, individual Aroclors (removed singly or as a group), butyl benzyl phthalate, and dimethyl phthalate.

These results may reflect one or both of the following phenomena. First, the list may indicate decreasing contributions to toxicity in the data set from the top to the bottom categories. Second, covariance may play a strong role for some chemicals. Chemicals in the "Strong Influence" list are almost certainly associated with adverse effects and act largely independently of other chemicals – or act as a good surrogate for other chemicals that are important to toxicity. Chemicals in the "Lesser Influence" list also have some toxicity, and most likely have strong covariances with other chemicals on the list, so that at times their influence is obscured. Chemicals in the "Little or No Influence" list either are not very toxic at the concentrations in the data set, or covary so strongly with other chemicals that their individual influence cannot be observed. Some, such as the metals, may be somewhat toxic on their own, but nearly always occur with more toxic or higher-concentration metals.

Other chemical groups, such as the PAHs and PCBs, may exert their toxicity primarily in an additive manner. The results of the sensitivity analysis showed that the LPAH and HPAH measures are not particularly useful as additive measures of PAH toxicity. When the individual PAHs were removed, these two measures by themselves were not able to produce good reliability. Use of either SQVs for individual PAHs capped at the AETs (without LPAH and HPAH) or a summed molar PAH concentration was more reliable. The sensitivity analysis also showed that only the total PCB measure affected the reliability of the SQVs; it is not necessary to have additional guidelines for individual Aroclors.

It should be noted that these SQVs are optimized to this data set and were derived from it. Future data sets may have different combinations of chemicals that could vary the results above somewhat. While it is not likely that "strong influence" chemicals would become "no influence" chemicals or vice versa, it may not be appropriate to immediately drop all chemicals in the "no influence" list from the SQVs. A more protective approach would be to set the SQVs for these

chemicals at their AET or the level above which no false positives occur, to ensure that there are some minimal criteria for these chemicals in case they are unusually important at certain sites.

4.0 CONCLUSIONS AND RECOMMENDATIONS

In summary, the following observations and conclusions can be drawn:

- The freshwater data set is considerably stronger than it was in 1994, and has been improved from a quality assurance standpoint. The current database allows for the calculation of two additional AETs, for a total of four acute and subchronic endpoints. Unfortunately, no benthic or chronic freshwater tests have enough data to allow calculation of AETs.
- There is still a lack of data for a variety of pesticides, herbicides and biocides, among other chemicals. These chemicals may be important in areas of the state that have not been widely sampled, particularly in central and eastern Washington. At sites or locations in which these chemicals are likely to be present, the AETs and other SQVs derived in this report may not provide adequate protectiveness, and bioassay testing should be undertaken on a site-specific basis. In addition, it is possible that lack of these analytes in the existing data set reduced the sensitivity of the AETs as well as the other SQVs calculated, if they contributed to observed toxicity in the bioassays.
- The 2003 AETs are more consistent with one another, and encompass a broader range of analytes. Due to the removal of older data not meeting current protocols, the four AETs fall within a narrower range for most chemicals than did the two previously calculated 1997 AETs. In general, the *Hyalella azteca* AETs were the least sensitive, the two *Chironomus* AETs were in the middle, and the Microtox® AET was the most sensitive.
- The freshwater AETs are not as sensitive as the marine AETs are in Puget Sound, most likely due to variations in metals bioavailability from one area to the next. Pooled sensitivity ranges from 45-65%, while efficiency is much higher, ranging from 87-93%. Overall reliability is about 70%. The two mortality bioassays exhibit the lowest sensitivity and reliability.
- Use of optimal percentiles of the no-hit distribution improves sensitivity, and shows a reasonable balance in the 75-80% sensitivity range, with a corresponding efficiency of 60-80%.
- Use of the floating percentile method further improves the sensitivity and efficiency, resulting in SQVs with a sensitivity of 85% and efficiency of 75%, and an overall reliability of better than 80%. Other choices of sensitivity and efficiency are possible, and a range of potential guideline values was calculated to illustrate the trade-offs involved.
- Metals, certain phthalates, PCBs, and PAHs acting in an additive manner are most closely associated with toxicity in the data set. There is a significant degree of covariance among many of the metals and among the PAHs, which complicates calculation of the SQVs.

The following recommendations are provided, based on the conclusions above and supporting analyses:

- Standard AETs are not recommended for setting freshwater SQS and CSL values at this time, because of their relatively low sensitivity. The freshwater AETs are nevertheless useful for other purposes within the sediment management programs, because they are highly efficient. Above these levels, it is nearly certain that adverse effects will be observed. Therefore, they would be appropriate as MLs in the dredging programs, and as hotspot and early action levels in the cleanup programs. In addition, for those chemicals that covary sufficiently that individual toxicity thresholds cannot be identified using iterative methods, the AETs serve as an appropriate method for setting SQVs, providing an upper limit and a measure of safety against future data sets that may not covary in the same ways.
- As an alternative to AETs, the Floating Percentile method is recommended over the optimal percentile approach, because it allows SQVs to be developed that improve both sensitivity and efficiency over fixed-percentile methods. Using this method, it is possible to develop an optimized SQV set for any choice of false negative rate and any definition of adverse effects determined to be appropriate to a given program. The method is also capable of providing customized SQVs for a given region, should it be considered appropriate to stratify the freshwater data set into ecoregions, watersheds, or political boundaries.
- Within the range of adverse effects levels evaluated in this report, it is recommended that Ecology retain use of the biological SQS and CSL levels, as defined in the Phase I report (subject to agency and peer review), rather than using a statistical significance only comparison. The SQS and CSL biological effects levels are more consistent with the existing rules and marine programs. The results of this analysis indicate that the statistical significance only level is not very different from the SQS level in any case, most likely because the SQS thresholds were selected based on minimum detectable differences observed in recent round robin studies.
- Based on the evaluations conducted for the Phase I report, it is recommended that Ecology
 use a comparison to control rather than a comparison to reference for calculating SQVs.
 Once freshwater reference areas have been identified and their performance validated over
 time, the decision of whether to use reference or control comparisons can be made on a
 programmatic basis. However, the Phase I reliability analysis indicated that if a decision is
 made to use reference comparisons, they must be used consistently on all projects and not
 mixed with comparisons to control, or the reliability of the decision process will substantially
 decline.
- Within the range of false negative rates for which example SQV sets were developed (5-25%), it is recommended that a level be chosen that balances false negative and false positive rates, but with more weight given to reducing false negative errors. For both the SQS and CSL effects definitions, this level is around 15% false negatives, corresponding to 25% false positives and an overall 80+% reliability. However, other choices may also be appropriate depending on programmatic needs.

It is important to keep in mind when considering this factor that the error rate is not the same as the degree of protectiveness, although there is a relationship. In other words, a 5% false negative rate is not equivalent to protecting 95% of the species, or a 5% effects level. The adverse effects level and hence the protectiveness of the SQVs is set by the hit/no-hit definition; the error rate shows how accurately the chemical SQVs predict the chosen biological effects level for the existing data set.

- It is recommended that PCB criteria be set only for total PCBs, rather than individual Aroclors, based on the sensitivity analysis. The manner in which total PCBs should be calculated when congener data are available was outside the scope of this study (since congener data were not present in the data set); however, this will be important to address in the future.
- It is also recommended that LPAH and HPAH measures not be used, based on the sensitivity analysis. For PAHs, two alternative approaches could be used, which seem to provide roughly the same sensitivity and reliability. A single SQV can be set using a molar sum of PAHs, consistent with narcosis theory. Alternatively, SQVs for individual PAHs can be set using the freshwater AETs.
- It is recommended that areas of the state susceptible to contamination by pesticides, herbicides, and other chemicals not well-represented in the existing data set be further sampled, using synoptic chemistry and bioassay testing. This will allow additional SQVs to be calculated that will provide greater protection in these areas.

5.0 REFERENCES

ASTM. 2000. Test Method for Measuring the Toxicity of Sediment-Associated Contaminants with Freshwater Invertebrates. ASTM E1706-00. American Society for Testing and Materials, West Conshohocken, PA.

Brunelle, H, C Mach, K Parrett. 2003. Evaluating Polycyclic Aromatic Hydrocarbons Ecological Threshold Concentrations for Sediment Using Logistic Regression Modeling. Poster presentation at Pacific NW SETAC conference, April 17-19, 2003, Fort Worden, WA. Prepared by Ecology and Environment for Oregon Department of Environmental Quality, Portland OR.

Deneer, JW, TL Sinnege, W Seinen, and JLM Hermens. 1988. The joint acute toxicity to *Daphnia magna* of industrial organic chemicals at low concentrations. *Aquat. Toxicol.* 12:33-38.

DMEF. 1998. Dredged Material Evaluation Framework Lower Columbia River Management Area. U.S. Army Corps of Engineers, Portland and Seattle Districts; EPA Region 10, Seattle, WA; Washington Department of Ecology, Olympia, WA; Oregon Department of Environmental Quality, Portland, OR; Washington Department of Natural Resources, Olympia, WA.

Ecology. 1997. Creation and Analysis of Freshwater Sediment Quality Values in Washington State. Washington Department of Ecology, Environmental Investigations and Laboratory Services Program, Olympia WA.

EPA. 2000. Equilibrium Partitioning Sediment Guidelines (ESGs) for the Protection of Benthic Organisms: PAH Mixtures. U.S. Environmental Protection Agency, Office of Science and Technology and Office of Research and Development.

Field, LJ, SB Norton, DD MacDonald, CG Severn, CG Ingersoll. 2003. Predicting Toxicity from Sediment Chemistry using Logistic Regression Models: Regional and Site-Specific Applications. Presentation at Pacific NW SETAC conference, April 17-19, 2003, Fort Worden, WA. National Oceanic and Atmospheric Administration, Coastal Protection and Restoration Division, Seattle, WA.

Fox, D.F., D.A. Gustafson, and T.C. Shaw. 1998. Biostat Software for the Analysis of DMMP/SMS Bioassay Data. DMMP Clarification Paper, SMS Technical Information Memorandum. Seattle District Corps of Engineers, Seattle, WA.

Gilbert, R.O. 1987. Statistical Methods for Environmental Pollution Monitoring. Van Nostrand Reinhold, New York, NY.

Hermens, J, H Canton, P Janssen, R de Jong. 1984. Quantitative structure-activity relationships and toxicity studies of mixtures of chemicals with anaesthetic potency: Acute lethal and sublethal toxicity to *Daphnia magna*. *Aquat*. *Toxicol*. 5:143-154.

Hermens, J, E Brockhuyzen, H Canton, R Wegman. 1985a. Quantitative structure activity relationships and mixture toxicity studies of alcohols and chlorohydrocarbons: Effects on growth of *Daphnia magna*. *Environ. Toxicol. Chem.* 4:273-279.

Hermens, J, P Leeuwangh, A Musch. 1985b. Joint toxicity of mixtures of groups of organic aquatic pollutants to the guppy (*Poecilia reticulata*). *Ecotox. Environ. Safety* 9:321-326.

Michelsen, T.C. 1999. Error rate minimization techniques for calculating sediment quality guidelines. Presentation at SETAC North America conference, 2003, Philadelphia, PA. Avocet Consulting, Kenmore, WA.

Michelsen, T.C. and T.C. Shaw. 1996. Statistical Evaluation of Bioassay Results. PSDDA Clarification Paper, SMS Technical Information Memorandum. Washington Department of Ecology, Olympia, WA, and Seattle District Corps of Engineers, Seattle, WA.

PSEP. 1988. 1988 Update and Evaluation of Puget Sound AET. U.S. Environmental Protection Agency, Puget Sound Estuary Program, Seattle, WA.

SAIC and Avocet Consulting. 2002. Development of Freshwater Sediment Quality Values in Washington State, Phase I Final Report. Prepared by SAIC, Bothell, WA and Avocet Consulting, Kenmore, WA for the Washington Department of Ecology, Olympia, WA.

Sokal, R.R., and F.J. Rohlf. 1981. Biometry. Second Edition. W.H. Freeman and Company, San Francisco, CA.

Swartz, RC, DW Schults, RJ Ozretich, JO Lamberson, FA Cole, TH DeWitt, MS Redmond, and SP Ferraro. 1995. ∑PAH: A model to predict the toxicity of polynuclear aromatic hydrocarbon mixtures in field-collected sediments. *Environmental Toxicology and Chemistry* 14(11):1977-1987.

June 2003

APPENDIX A. LIST OF SURVEYS

Survey	Chironomus	Hyalella	Microtox®	Description
BOISECAS	0	4	0	Class II Inspection of the Boise Cascade Pulp and Paper Mill Wallula Washington, WA Dept. of Ecology EILS, 1993
CARGIL01	3	3	0	Cargill Irving Elevator Terminal, Cargill Irving, 2001
CBSLOUGH	0	20	0	Columbia Slough Sediment Analyses and Remediation Project, Phase 1 Report, Dames & Moore for City of Portland, 1991
CEDARIV	0	5	5	Sediment Sampling and Analysis Report Cedar River Delta Sediments, Golder Assts. for City of Renton, 1992
LCBWRS93	0	15	0	Lower Columbia River Backwater Reconnaissance Survey, TetraTech for Lower Columbia River Bi-State Program, 1994
LKUNDRDK	0	4	0	Sediment Monitoring Program Results Lake Union Drydock Company, Hart Crowser, 1992
LKUNION	0	9	0	Survey of Contaminants in Lake Union and Adjoining Waters, WA Dept. of Ecology EILS, 1989
LKWA00	28	28	27	Lake Washington Baseline Sediment Study, King County, 2000
LSAMM99	16	16	0	Lake Sammamish Baseline Sediment Study, King County, 1999
LUUCSO00	6	6	6	Lake Union University Regulator CSO Post Separation Study, King County, 2000
MBCREOS3	43	43	0	McCormick & Baxter RD Phase I Sediment Survey, Oregon DEQ, 2002
MBCREOS4	18	18	0	McCormick & Baxter RD Phase II Sediment Survey, Oregon DEQ, 2002
PPTLDT24	4	4	0	Sediment Characterization Study, Marine Terminal 2 Berths 203-206 and Marine Terminal 4 Berth 416, Hart Crowser for Port of Portland, 1999
PSYD&M97	0	3	0	Portland Shipyard Environmental Audit, Dames & Moore for Cascade General, 1998
PSYSEA98	55	55	55	Portland Shipyard Sediment Investigation Data Report, Striplin Env. Assts. for Port of Portland, 1998 Distribution and Significance of Polycyclic Aromatic Hydrocarbons in Lake Washington Sediments Adjacent to Quendall Terminals,
QUEBAX1	0	4	0	WA Dept. of Ecology EILS, 1991
QUEBAX3	0	3	0	Results of Sediment Sampling in the JH Baxter Cove Lake Washington, WA Dept. of Ecology EILS, 1992
ROSSIS99	11	11	0	Ross Island Facility Site Investigation, Hart Crowser for Port of Portland, 2000
SALIII97	22	22	22	Salmon Bay Results of Phase III Sampling, WA Dept of Ecology EAP, 2000
SEACOM94	0	3	3	Sediment Sampling Report Seattle Commons Parcel C Seattle, Washington, 1994
SPOK2000	0	0	8	Chemical Analysis and Toxicity Testing of Spokane River Sediments Collected in October 2000, WA Dept. of Ecology EAP, 2001
SPOKNR94	0	3	3	Spokane River PCB Study, WA Dept of Ecology EILS, 1994
TOSCO99	2	2	0	TOSCO Portland Terminal, 1999 Sediment Sampling Results, Portland District Corps of Engineers, 1999
TRI-STAR	0	3	0	Tri-Star Marine NPDES Sediment Monitoring, Beak Consultants, 1997
VALCOA93	0	4	0	Aluminum Company of America; Vancouver Works Baseline Sediment Characterization, ENSR for WA Dept. of Ecology, 1994
WEYLONG	0	3	0	Class II Inspection of Weyerhaeuser Longview Pulp and Paper Mill, WA Dept. of Ecology EILS, 1991
WILREF02	3	3	0	Willamette Reference Survey, Hart Crowser for the Portland District Corps of Engineers, 2002
WLRPT498	18	18	0	Terminal 4 Slip 3 Sediment Investigation, Hart Crowser for Port of Portland, 1998
WRD&M98	0	2	0	Portland Shipyard Environmental Audit, Dames & Moore for Cascade General, 1998
TOTAL	229	314	129	

- Chironomus column includes both mortality and growth endpoints
 Totals may not match text, as some samples failed quality assurance review during the analysis

APPENDIX B. 2003 APPARENT EFFECTS THRESHOLDS CHEMICAL DISTRIBUTIONS

Chemical distributions for the AETs reported in Section 3 are presented in this appendix. Each chemical has a no-hit (no adverse effects observed) distribution and a hit (adverse effects observed) distribution. Prior to identifying AETs, outliers are removed from the no-hit distribution, and any such outliers that have been removed are shaded in yellow. The AET is set at the highest remaining no-hit concentration. AETs are shaded dark blue if they are high confidence and light blue if they are lower confidence. The next highest concentration in the hit distribution above the AET is shaded green. The concentration gap between the blue AET and the green next highest concentration shows the magnitude of the uncertainty in the AET.

YALELLA MORTALITY 2-Methylnaphthalene	2-Methylnaphthalene	4,4'-DDD	4,4'-DDD	4,4'-DDE	4,4'-DDE	4,4'-DDT	4,4'-DDT	4-Methylphenol	4-Methylphenol
2-Methylnaphthalene No-Hit	2-Methylnaphthalene Hit	No-Hit	4,4'-DDD Hit	No-Hit	4,4'-DDE Hit	4,4'-DD1 No-Hit	4,4'-DD1 Hit	4-Methylphenol No-Hit	4-Methylphenol Hit
0.7	0.95	0.6	0.8	0.5	0.8			7.3	3
0.76	1.5	0.7	5	0.76	2	1.4	2	11	4
1.1	1.9	0.7	7	8.0	4	3	3	16	4
1.2	2.2	0.77	8	0.8	5		5	16	5
1.3	11	0.9	8	0.9	5		6.1	24	6
1.6 1.7	12	0.99	8.9	1.2	6		7 7 0	24	11
2.2	13 13	1.3	11 14	2	6.5 6.7	10 13	7.9 10	50 77	19 21
2.7	13	1.6	20	2	6.8	13	10	130	38
3.2	14	2	22	3	8	19	12	150	69
4.2	15	3	27	3	8	100	19	150	71
5.1	15	3	30	3	8		23	159	76
10	16	3.4	49	3.2	8.6		24	180	156
11.7	18	4.7	59	3.8	11		26	188	173
12 15	20 24	5.6 6.5	310	4.6	11 20		39 140	239 476	203
16	28	7		6.9 7.3	20		140	512	359 631
18	28	7.5		7.4	44		140	551	031
35	30	8.3		7.8				599	
62	35	9.2		8.3				1210	
141	36	12		8.9				2360	
160	52	16		9					
170	54	22		9.6					
180	56	24		11			AFT L	. 6. 1	
180 214	64 65	33 45		14 18			AET - low co AET - high c	onfidence	
353	87	50		19			next highest	hit value	
469	94	52		20			outlier	•	
555	120	70		20					
710	143	96		21					
3470	188								
	189								
	443 877								
	982								
	1720								
	1770								
	2300								
	2310								
	4700								
	40000								
	42000								
	110000								
	460000 1600000								
	1600000								
_								_	

HYALELLA MORT	TAI ITV										
Acenaphthene	Acenaphthene		Acenaphthylene	Acenaphthylene	Anthracene	Anthracene		Antimony	Antimony	Aroclor 1254	Aroclor 1254
No-Hit	Hit	Hit (Cont.) 2940	No-Hit	Hit	No-Hit	Hit	Hit (Cont.) 1130	No-Hit 0.05	Hit	No-Hit	Hit
0.72 1.2	1.3 2.2	5700	1.1	1.7 2.2	1.2	1.9 2.7	1400	0.05	0.1	7.3 11	11 16
1.3	3	6290	1.2	9.93	1.9	3.2	1520	0.1	0.1	12	18
1.6 1.7	11 11	7390 20000	1.3 2.5	11 12	2.1	4.9 10	1580 1700	0.1 0.13	0.2	17 25	24 37
1.7	12		2.5	12	2.6	11	1900	0.13	0.2	35	47
1.8	12		3.2	12	3.1	11.7	1900	0.2		57	51
2.7 3.4	14 14		3.3 3.5	13 14	4.9 5	12 14	2860 2920	0.2	0.2 0.2	70 71	52 54
4.1	14.2	31000	4.5	14	5.6	18	3640	0.47	0.2	74	54
6.1	15 17	86200	5.4	15	12 12	20	5700	0.6	0.2	81	54 54 54 57
10	17.3		8.5 11	17 18.8	12	21.5 22	6140 6600	2.7 2.9	0.3	90 95	54 57
11	18		13	20	12	22	6900	3.5	0.3	110	58
12	18		13	25	13	23	7900	4.4	0.4	120	62 70
14 18	20 23		14 15.7	34 34	13 14			64	0.4	120 140	70
18	23		16	62	15		35000		0.41	140	70 78
19	25.3		19	72	16				0.45	150	78
20 23	32 33		20.8	88 96	16 17	28 29	680000 890000		0.5 0.5	160 180	81 97
23	37		23	110	20.5	32	030000		0.5	200	100
24	37		30	120	22	37			0.5	230	140
36 39	37 45		35.8 36.8	140 200	23 25	40.9 41			0.54	350 960	156 160
43	52		42	209	27	42			0.61	1060	163
51	53		44	233	29	48.1			0.61	> 1060	168
56 73	59 60		71 94	296 362	38.6 40	52 53			0.62 0.66		170 170
82	65		110	460	40.1	57			0.00		170
88	72		136	470	46	63			0.8		189
91.9 99	75 77		140 148	480 594	46 53	65 67			1.1		202
107	90		148	640	72.5	70			1.1		209 227
120	92		200	642	75.1	74			1.8		230
130 148	100 110		265 265	697 730	95 101	85 99			1.9		256 290
156	112		279	840	124	110			31.3		294
162	130		314	1260	126	115			62.3		297
170 170	134 177		990 1020	3500 3600	155 220	150 170			311		340 520
203	210		1020	6100	233	170					770
209	220			11000	250	177					870
230	260			11000	280	210					
240 252	272 280				320 320	220 220					
260	310				343	260					
310	400				350	355					
316 332	410 470				353 370	356 362					
360	560				373	370					
520	560				465	380					
523 920	630 792				510 552	406 410					
940	830				600	420					
990	1060				630	429					
2350 2700	1100 1250				660 717	510 560					
2790	1320				1190	580					
6100	2460				1230	690					
7420	2460				1500 1700	774 814					
					1700	915					
					2000	965					
					5900 16200	980 1110					
						0					
	·			-	_					,	
					_	_					
	·										

HYALELLA MOR	RTALITY								
Aroclor 1260	Aroclor 1260	Arsenic		Arsenic		Benzo(a)anthracene		Benzo(a)anthracene	
No-Hit 18	Hit 15	No-Hit 0.48	No-Hit (Cont.)	Hit 1.7	Hit (Cont.)	No-Hit 4.8	No-Hit (Cont.) 167	Hit 5.6	Hit (Cont.) 3190
24	15	0.58	5	2.1	8	5.3	170	10	3200
26	20		5	2.4	8	8.1	186	12	3300
27 38	24 29		5.02 5.1	2.5 2.6	8 8.18	8.7 9	190 190	13 16	3340 3500
40	37	1.9	5.22	2.6	8.7	9.1	199	17	3750
43 57	37 38	2	5.3 5.43	2.7	9	11	235 240	18.7 19	4000 5430
74	40	2.1	5.57	3	9	11	259	20	5800
130	42	2.1	5.6	3	9.14	13	271	20	7930
130 460	42 46	2.3	5.7 5.7	3.1 3.5	9.32 9.7	13 14	280 280	22 24	8600 9000
460	46	2.7	5.81	3.5	10.7	14	310	29	13000
500	48 53	2.9	5.9 6	3.68	11.1 11.7	15 15	350 354	30 30	19000 37000
	57	3	6	3.9	12.2	16	470	32	43000
	57	3	6.1	3.9	12.7	16.9	523	32	49000
	62 64		6.16	3.97	12.8 13	17	598 600	37 38	58000 63000
	64	3	6.26	4	13	18	700	41	77000
	69	3.2	6.58	4	13.1	18	724	41	280000
	70.1 77	3.3	6.75 6.92	4		18 19	740 917	41.4	890000
	83	3.3	7	4	15	19	1060	49	
	85 98		7	4.2	15 17	20 20	1180 1200	67 78	
	98	3.5	7.08	4.2	17	20	1220	79	
	116		7.08	4.3	17.2	20	1270	89	
	122 138	3.6	7.11 7.38	4.36 4.4	18 26.6	22 23	1330 1470	93	
	140	3.7	7.7	4.4	31.4	24.4	1500	93	
	150 180	3.7 3.75	7.8 8	4.5 4.54	32 38.7	25 26	1580 1800	94 102	
	184	3.75	8.03	4.6	49	27	2300	103	
	280	3.9	8.1	4.7	61	27	2700	105	
	310 310	3.9 3.94	8.6 8.62	4.7 4.8	63 71.1	28 29	4260 6200	105 106	
	330	4	8.64	4.9	103	29	10000	112	
	340 2500	4	8.88 8.89	5 5	111 147	29 30	11000 11000	112 113	
	2500	4	9	5		31	12000	115	
		4	9	5	639	32	25600	130	
		4	9.46 9.7	5		32	44000	136 150	
		4	10.6	5		35		154	
		4	11	5		35		168	
		4	11 11.7	5 5		36 37		170 179	
		4	13	5		37		181	
		4	13.1 13.6	5.17 5.23		38		188 220	
		4	14.3	5.36		40		240	
		4.09 4.1	15	5.59		50		268 288	
		4.1	16.5 17.8	5.6 5.8		51 52		321	
		4.24	19	6		52.7		342	
		4.3	19 19	6		55 56		350 353	
		4.3	20	6		59		373	
		4.3	20	6		62		411 441	
		4.3	21.7 23	6		64		441	
		4.33	23.9	6		70		516	
		4.4 4.5	26.8 28	6		71 71		530 539	
		4.5	30.6	6		73		561	
		4.6 4.6	31.3 44.9	6.1		73 75		570 590	
		4.7	49.3	6.24		77.8		740	
		4.7	50.7	6.43		78		750 760	
		4.7	50.9 122	7		79 82		760 870	
		4.74	123	7		95		958	
		4.85 4.9	149 152	7.18		97 99		1080 1100	
		5	200	7.69		100		1100	
		5				109		1100	
		5 5				110 116		1100 1300	
						120		1300	
						130 140		1480 1600	
						140		1700	
						148 150		1720 2380	
						162		2620	
						163		2640	
	-	_		-	-	-			
								·	
,									

enzo(a)pyrene	LITY	Benzo(a)pyrene		Benzo(g,h,i)perylene		Benzo(g,h,i)perylen
No-Hit	No-Hit (Cont.)	Hit	Hit (Cont.)	No-Hit	No-Hit (Cont.)	Hit
4.2	298	8.8	2960	8.4	490	
4.8	310	12	3100	9.6	497	
8.6	310	14	3340	11	510	
8.8	360 360	15 16	4000 4600	11	580	
9.3	430	19	4900	11 11	613 680	
10	454	19	9600	12	791	
11	490	21	11000	13	821	
11	570	21	11000	13	965	1
12	615	23.1	13000	13.5	1150	
12	690	26	15000	14	1200	
13	750	26	39000	14	1410	
13	783	29	51000	15	1520	
13 14	880 890	32 34	62000 63000	15 16	1900 2500	
15	910	35	86000	16.8	2500	
16	915	36	100000	17	4020	
16	990	38	140000	17	5400	
16	1080	38	250000	17	8900	
16	1420	40		17	9400	
18	1620	43		18	11000	
18	1650	44.4		18	12000	
18.6 19	1800 1890	48		19 19	12100 38000	
19	2700	68		19	36000	
19	2800	73		20		
20	3300	85		20		
21	4810	87		20.9		
23	6700	92.8		21		Ī
24	12000	93		21		
25	13000 13000	114 116		22 22		
25 25	13000	116		22		
27	24300	120		23		
27	55000	120		23		
27.4		120		23.2		
28		124		29		
28		131		30		
29		133		30		
31 32		135 160		30		
32		176		32 32		
33		176		36		
34		176		40		
35.9		189		41		
36		195		42		
37		195		43		
40		213		44		
40		216		45		
43 45		223 226		48 50		
49		240		51		
51		256		51		
56		270		57		
58		280		65		
61		333		67		
66		334		68		
67 76		343 351		71 73.3		
80		358		73.4		
81		382		73.4		
85		387		77		
88		390		84		
91		451		85		
92	·	660		90	-	
100		710		100		
102		720		102		
128 128		740 820		110 115		
130		840		121		
131		1000		140		
145		1070		150		1
150		1100		150		1
153		1100		175		1
153		1110		187		
170		1180		190		
171 180		1400 1500		200 200		1
195		1530		210		1
206		1630		210		1
210		1840		216		1
210		2100		220		2
230		2100		246		2
231		2210		280		3
248		2220		310		5
256		2500		350		7
280		2750		424		7
						11
						22 27
						48
						49
						55
		l				93
						170
						170 310
						170 310
						170 310

HYALELLA MOR	RTALITY						
Benzoic acid	Benzoic acid	Beryllium	Beryllium	Bis(2-ethylhexyl) phthalate	Bis(2-ethylhexyl) phthalate	Butyl benzyl phthalate	Butyl benzyl phthalate
No-Hit	Hit	No-Hit	Hit	No-Hit	Hit	No-Hit	Hit
35 50	140 170	0.071 0.0883	0.147 0.16	18 18	17	10 21	11
64	250	0.102	0.162	18	23	24	18
73	270	0.135	0.19	25	23	25	18.8
82	300	0.147	0.42	30	24	25	23.1
110 110	300 330	0.151 0.153	0.427 0.477	32 32	26 30		24
250	800	0.153	0.62	40	78	34	25
250	1300	0.162	0.82	49	140	36	28
360	1500		0.9	50	220	37	32
650 660	1540 2020		0.91	50 51	230 250	41	35 40
720	2170		2	55	307	48	43
740	2430	0.249	2	62	310	50	47
813	2640			62	370	52	47
900 900	2840 4110			70 100	370 370	53 55	50
1650	4200			110		56	53 55
2070		0.286		110		56	57
2380 2910		0.308 0.317		110 120	440 452	63 110	57 62
3790		0.317		120	460	131	64
		0.327		120	460	160	64
		0.348		160	470	163	66
		0.358		160	490	165	66.4
		0.361 0.385		170 170	501 510	182 222	69.6
		0.387		170	519	274	73
		0.417		170	520	470	86
		0.444 0.463		180 190	546 547	870 1100	90
		0.463		200	547		105 119
		0.5		220	713	> 1520	121
		0.5		230	727		122
		0.64 0.66		240 260	772 774		138 140
		0.68		275	774		140
		0.7		285	867		170
		0.76		290	900		180
		0.8		300 320	913 1020		184 198
		0.8		322	1050		230
		0.84		330	1110		258
		0.87		330			260
		0.96		337 350	1380 1390		280 366
		1.2		350	1400		407
		2		350	1440		409
		> 2		360	1600		430
				360 390	1600 1680		540 763
				420	1740		980
				420	1800		
				444	1800		
				450 480	1810 1900		
				500	1900		
				540	1900		
				550 577	1920 1930		
				580	2000		
				660	2000		
				660	2140		
				720 778	2200 2220		
				800	2400		
				940	2400		
				1000			
				1090 1100			
				1200	3000		
				1400	3100		
				1700			
				1970 2000			
				2140	3970		
				2520	4100		
	i e			2900 3010	5120 5700		
				4330	6360		
	<u> </u>			4970	7590		
	-			6380	33300		
				10000 10500			
				18000			
	·			22300			
				-		-	

HYALELLA	MORTALITY	l						1				
Cadmium		Cadmium	II: (0)	Carbazole	Carbazole	Chromium	No US (Octob)	Chromium	Chrysene	No US (Octob)	Chrysene	112 (0 1)
No-Hit 0.052	No-Hit (Cont.) 1.2	Hit 0.04	Hit (Cont.) 1.6	No-Hit 62.27758007	Hit 24	No-Hit 7	No-Hit (Cont.) 44.9	Hit 9.4	No-Hit 5.1	No-Hit (Cont.) 161	Hit 9.1	Hit (Cont.) 3430
0.053	1.23	0.04	1.8	67	85	9.58	45.4	10.5	6.5	170	17	3620
0.07 0.074	1.3 1.3	0.04 0.05	1.9 1.9	71 94	130 230	10.1 10.1	46.2 46.3	12 13	8.1 9.5	170 179	19 22	3700 3800
0.074	1.3	0.03	2	117	234	10.1	46.5		9.5	180	24	3800
0.1	1.3	0.07	2.2	124	238	11.1	47	14.8	12	187	24	4800
0.1	1.3 1.39	0.1	2.3 2.3	130 172	240 274	12 12.2	48.5 49.6	15 17	13 13	193 210	25 27	5730 5880
0.1	1.4	0.1	2.5	194	389	14.3	50.2	17.4	13	221	28	6400
0.11	1.4	0.1	2.6	229	420	15.1	50.7	18.6	13		28.6	7240
0.12 0.13	1.44 1.6	0.12	2.6 3.01	374 923	437 460	15.2 15.7	50.9 52.1	21.5 22	14 15		29 30	7800 8900
0.13	1.69	0.2	3.2	2920	825	16.5	52.3	23	15	281	32	11000
0.14	1.7	0.2	3.2		850	16.7	52.8	23.1	15	290	34	18000
0.159 0.16	1.7 1.8	0.2			1000 450000	16.8 17.6	53.9 54.6		17 17	314 320	36 48	38000 49000
0.161	1.9	0.2			480000	18.3	55.6	23.8	17.9	320	50	60000
0.17	1.9					18.4	57.3		19		51	75000
0.17 0.173	2	0.2				18.5 18.6	58 58.2		19 21	390 393	51 51	96000 110000
0.18	2.07	0.2				18.9	60.8	24.6	22	400	55	300000
0.18 0.186	2.1 2.15	0.22 0.27				19.1 19.3	61 62	25 25.4	23 23	430 490	59 60.8	950000
0.186	2.15	0.27				20	63.1	25.4	23		61	
0.19	2.5	0.3				20.1	63.4	26	24	570	70	
0.2	2.7 2.9	0.3				20.1 20.2	66.7 79	26 26	24.6 25	601	73 104	
0.2	3.67	0.3				20.2	80.1	26.2	25	657 690	1104	
0.2	3.91	0.3				20.5	89	26.2	26	730	110	-
0.2	5 5.6					20.6 20.8	95 96.2	27 27	26 27	755 816	117 126	
0.2	5.6 9.07	0.4				20.8	96.2		27	816 819	126 128	
0.2	2.01	0.4				21.5	133	28.7	28	930	129	
0.2		0.4				21.8 22	348 > 348		28.1 30	1260 1440	140 144	
0.2		0.472				22.1	> 340	29.2	31	1500	157	
0.2		0.5				23		29.3	32	1500	160	
0.2		0.5 0.5				23.3 24		29.4 29.8	33 33	1540 1560	161 172	
0.2		0.5				25		30	33	1670	177	
0.21		0.5				25.1		31	35	1710	180	
0.24		0.55				25.4 25.8		31	35 35.9	2170 2200	190	
0.26 0.267		0.6				25.6		31 31	36	2320	202 209	
0.29		0.6				26		31.5	36	3000	211	
0.292		0.6 0.61				26.1 26.2		31.8 32	36.6 38	3700 5940	220 263	
0.3		0.651				26.4		32	39	7000	266	
0.3		0.7				27		32	39	10000	280	
0.3		0.7				27 27.3		32.1 33	40	11000 11000	318 385	
0.357		0.7				28		34	43	11000	390	
0.361		0.75				28		35	45	28100	412	
0.377 0.391		0.75 0.78				29 29		36 36	46 47	46000	425 430	
0.331		0.78				29		36.3	50		482	
0.45		0.8				29		36.5			489	
0.49 0.506		0.875				29 29.4		36.7 37	52 55		507 508	
0.52		0.963				29.8		37	57		510	
0.6		0.968				31		37.7	57.3		541	
0.6 0.607		0.98				31 31.1		38 38.2	58 59		562 620	
0.63		1				31.2		39	61		670	
0.69		1				31.9		39	70		707	
0.7 0.791		1				31.9 32		39.7 40	70.4 71		850 1000	
0.8		1.08				33.4		40	73		1100	
0.811	-	1.1			_	33.7	-	40.5	76		1130	
0.82 0.834		1.1 1.15				34 34.2		41 42	78 91		1140 1200	
0.9		1.16				34.9		42.1	93		1200	
0.913		1.17				36.4		43 43	95 95		1300	
0.973		1.2 1.26				36.5 37.8		43.9	95		1300 1300	
1		1.3				38.2		45	100		1400	-
1		1.3			-	38.8		45.3	100		1500	
1.1		1.3 1.3				39 39		45.5 46	105 110		1600 1800	
1.1		1.3				40		48	110		1800	
1.1		1.36				40.5	-	53.9	111		2100	
1.1		1.4 1.5				40.5 41		55.9 61.3			2140 2210	
1.13		1.51				42.8		67	130		2460	
1.2	-	1.53			_	43.3	-	68.3	140		3000	
1.2 1.2		1.55 1.58				43.5 44.3		69.2 75.6	147 152		3200 3370	
2		1.50						76	.52		33.0	
	-						-	77.1				
								79.9 80.7				
								80.7				
							-	81.9				
								84.4 99.5				
								112				
								208				
								-				
								—				

HYALELL	A MORTALITY								
Copper		Copper		Dibenz(a,h)anthracene	Dibenz(a,h)anthracene	Dibenzofuran	Dibenzofuran	Dibutyltin	Dibutyltin
No-Hit 3.8	No-Hit (Cont.) 45.6	Hit 7.4	Hit (Cont.) 213	No-Hit 1.5	Hit 2.5	No-Hit 0.81	Hit 1.1	No-Hit 3.5	Hit 43
4.69	48.1	11	229	2.8	4.9	0.86	1.5	5.5	53
5.15	49.9	11	267	3.7	10	1.3	1.9	6.9	70
8.5 8.5		14.8 16		3.7 4.8	10.9 12	1.5 1.7	10 10	7.6 9.2	77 79.2
9.5		16		7.9	12	3.7	12		92
9.7	54.5	16		8.5	13	4.3	12	12	96
10.7 10.7	57.6 59.3	17 17		13 14	14 14	4.9 9.2	13 13	12 16	107 131
10.7	61	17	397	14	14	9.4	14	17	155
11	61.8	18	399	17	16	12	14	19	233
15.2 15.4	62 62.9			18 19.3	16 18	14 16	15 16	20 25	259 277
15.6		19		21	18	30	18		211
16	65	20.3	622	26	18	31	19	85	
16.5 16.7	65.2 66	20.4 23.4		34.1 50	22 24	52 90	24 26		
16.7				55.9	28	98	26		
17.2				58	28.5		33		
18 18.1	71.2 84.5	24.8 25.9		82 97	29 30	138 160	38 41	321 333	
19.3	94.4	28.6		116	31	168	46		
20		30.1		120	34	170	62		
20.2	113 136	31.7 32		132 214	36 37	180 200	64 68		
20.4	142	32.4		216	37.3	234	75	17000	
20.7	146	32.9		251	38	244	83	> 1930	
20.9 21.1	187 363	33.8 35		280 292	43 45	372 384	94 110		
21.1		35.9		292	45.3	443	140		
21.7	526	36		320	49	660	160		
22.5 22.6	571 619	36.2 38.5		332 350	56 66	3810	160 166		
22.9	627	41		540	72		170		
23.6	651	41.4		780	91		194		
24.2 24.3		43.1 43.4		839 1200	99 125		204 310		
24.4		44		1700	176		399		
24.4		44.1		2200	200		460		
25.3 25.5		44.6 46		2600 3070	217 230		928 1010		
26		46.9		11000	240		1750		
26		47.7			260		2260		
26.5 26.6		48.6 50			300 327		7800 7900		
26.7		50.4			342		8300		
26.8		52.2			390		10000		
27.9 28		53.2 53.4			424 437		19000 580000		
28.2		53.4			490		2200000		
28.3		57.3			630				
28.7 29.5		62 62.7			720 730				
30		63.8			800				
30		68			800				
30.7 30.9		69.4 71.1			1200 1700				
30.9		71.1			3000				
31.2		74.5			4700				
31.6 32.2		76.7			33000				
32.5		77 77.9			39000 710000				
33		81.2							
33.8 34		82.3 86							
34		90.1							
34.1		90.9							
34.2 35		94.3 96.6							
35		96.6							
35.4		100							
35.5 36.5		106 109							
36.5		119							
36.8		119							
38 38.3		122 125							
38.3		125							
40.1		140							
40.6 40.7		146 154							
40.7		154							
41.9		163							
42.7 42.9		188 209							
42.9		210							
43.8		212							
-									
				-	-		-		

HYALELLA MORTALIT	v				
Dimethyl phthalate	Dimethyl phthalate	Di-n-butyl phthalate	Di-n-butyl phthalate	Di-n-octyl phthalate	Di-n-octyl phthalate
No-Hit	Hit	Di-n-butyl phthalate No-Hit	Hit	Di-n-octyl phthalate No-Hit	Di-n-octyl phthalate Hit
5.4	11	6.5	11	12	10 11
31 46	11 12	8.1 9	11 14	13 17	11 12
54	13	10	15	25	13
108	13	11	15	32	13 13 15 17 17 18 21 21 22 23 26
147	14	12	16	34	15
156 158	15 16	12 13	17 17	46 47	17
172	16	15	19	48	21
311	19	17	20	49	21
314 436	21 37	19 21	22 24	52 54	22
430	42	21	26	55	23
	54	23	26	58	26
	58	24	26.3	66	26 27
	71 93	30 37	27 31	100	30 30
	110	158	34	201	34
	112	306	37		34 37
	160	690	40		37
	171 190	805 841	41		39 40
	270	1180	41		44
	362	1740	41.7		45 54 67
	576	> 1740	44		54
			47 61		67 74
			67		90
			68		110
			71		115
<u> </u>			90 99.9		115 256 399
			101		413
			103		1420
			108		1520
			116 136		3400 4290
			254		
			350		
			350 481		
			893		
			-		-
<u> </u>					
<u> </u>					
<u> </u>					
				-	
			-		-
			·		
			•		

HYALELLA MOR Fluoranthene	CIALII T	Fluoranthene		Fluorene	Fluorene	High Molecular Weight PAH	High Molecular Weight PAH
No-Hit	No-Hit (Cont.)	Hit	Hit (Cont.)	No-Hit	Hit	No-Hit	Hit
5.6 8.1	160 170	13 18	4950 6100	0.85 0.86	0.78 1.8	47.3 54	75
8.5	190	28	7400	1.5	2.5	55	110
14	192	30	7710	1.5	2.7	56	14
15 15	200 210	32 36	7730 7900	2.2	12 13	86.9 88.1	270 300
16	210	38.6	15000	3	14	89	33
16 16	230 230	39 41	15000 16100	4.7 5.9	15 15.3	96.6 99	51 79
16	240	43	16700	6	17	107.1	100
17 18	240 240	47 54	18000 19200	9.2 11	17 18	116 131.2	160 208
19	268	58	20100	12	18.3	131.2	225
19	270	67.6	24200	13 13	19 19	136	329
21 22	276 310	68 70	26000 35000	18	23	157 193.7	360 485
23	319	80	37000	19	23	223.6	674
23 23	320 363	81.5 96	43000 47700	22 22.3	24 28.2	255.8 290	680 1027
23.5	380	97	86000	25	30	309	1369
24 26.9	383 428	116 120	100000 120000	29 30	33 37	412.4 441	1560 1646
27	452	123	120000	33	39	470	1800
27.2	455	124	1600000	36	43	524.5	1980
28 34	460 460	130 130	5200000	36.2 38.1	44 47	612 629	2197 2782
35	500	143		42	50	711	3117
36 36	520 580	157 158		49 57	60 73	1376 2068	3539 3803
38	646	206		62	79	2522	4450
39	690	206		67.4	88	2629	5700
39 40	710 731	280 280		75 85	104 107	3370 3457	6290 9533
40.9	770	288		91	120	4280	11180
41	940 1100	291 291		100 120	124 140	4660 6270	13430 16150
44	1220	300		124	160	7370	42770
44 44.7	1260 1400	301		126 140	171 174	8440 9000	51100 62700
44.7	1500	324 334		160	180	10410	76500
46	1620	342		167	190	11020	85250
53 54	1640 1690	344 356		181 185	200 201	13290 13480	355600 1285800
55	1780	359		220	230	15080	
58 61	2000 2000	380 390		251 270	250 274	16780 17410	
63	2300	410		390	285	19960	
64	2660 3100	419		400 420	310	25180 28550	
65 65	3140	437 445		465	330 465	31640	
66	3210	450		498	470	54800	
67 69	3360 3370	453 455		590 666	490 570	72000 120500	
70	3450	502		730	620	120900	
70.2 70.7	4040 5000	540 674		2080 2350	660 670	121500 122700	
70.7	6500	695		2500	932	250500	
71	6600	699 720		6970	1070	471000	
71.5 72	9340 9800	740			1200 1540		
75	11100	766			1720		
76 76	15000 15000	798 833			1900 3240		
77	21000	939			3400		
77 79	46100 180000	950 1100			3850 3890		
87	180000	1300			6740		
91	-	1300 1400			14000 14000	-	
91 93		1400 1500			14000 15800		
93		1600			17000		
97 110		1900 2000			18300 34000		
110		2140			56400		
110 112		2340 2450			930000 3200000		
116		2600			5255550		
129 130		2600 2800					
130		2800 3190					
130		3200					
138 144		3300 3600					
150		4200					
153 160		4500 4700					
160		4780					
	-						

HYALELLA MORTALITY								
Indeno(1,2,3-c,d)pyrene	No Uit (Cont.)	Indeno(1,2,3-c,d)pyrene	Lead	No His (Comt.)	Lead	Hit (Camt)	Low Molecular Weight PAH	Low Molecular Weight PAH
No-Hit 8	No-Hit (Cont.) 643	Hit 9	No-Hit 0.62	No-Hit (Cont.) 56.2	Hit 5.6	Hit (Cont.) 154	No-Hit 8.9	Hit 9.5
8.1		10		58.7	6.19	177	10	18
8.2 10		13 14		58.8 64	6.8	180 185	10 10.4	18
11	800	16	4.27	65	7	203	10.8	25
<u>11</u>		16 17		68.4 73.5	7.6 7.8	210 223	17.1 18	29.4 31
12	1340	17.8	5.24	79.7	9.9	232	21.1	59 71
12 13		18 21	5.99 6.69	79.9 80.7	10.7	234 246	23.3 24.7	71
14	2300	22	7.1	81	11.8	258	28.6	247
14 14		23 24		82.9 89.6	11.9 12.2	272 283	32.2 40	247 422
15		27		91	12.5	284	51	553
15	10000	28	7.3	95.2	12.7	294	52	651
16 16		30 30		99.4 102	13.3 13.4	295 299	53 71.1	850 1000
17	14000	30	10.5	105	13.8	323	95	1310
17.7 18		33 35		115 122	14 14.8	436 470	103.8 147	1470 2010
19	60000	36	11.2	133	15.1	495	181	2108
20 20		36 44		152 171	15.2 15.2	542 678	233 351	2760 2890
20		44		172	15.7	719	358	3000
22 22		59 61		184 189	15.9 16	739 1180	363 420	3110 4672
22		64.2	12.2	194	16.1	1100	750	8130
22.8		73	12.6	204	16.2		1225	8980
24 24		76 80	12.7 12.7	210 211	16.9 17.6		1763 1800	9130 9200
25		81	12.7	230	17.9		1900	10270
27 27		83 88		249 293	18.1 19.8		2088 2186	14070 16870
28		88	13.1	322	20.2		2240	18700
29 29		93.9 97	13.2 13.2	335 357	20.8		2498 2700	28500 29010
30		100	13.3	371	21.1		3040	49000
31		100		431	25.6		3140	128580
34 40		106 120	13.5 13.7	461 510	25.9 26		3200 4380	154100 171000
41		124	14.4	525	26.6		4720	175180
43		130 130		715 1160	27.3 27.4		6259 6590	3453500 19801000
43		133	14.7	1310	27.4		8255	10001000
45 45		134 144	14.7 14.9	> 1310	27.5 29		8800 9380	
52		155			30.2		9520	
53		170			31		12990	
53 59		178 198			33.6 36		41971 78300	
60		207	15.6		36.2			
65.6 67		208 210			38.9			
68		222	15.9		39			
68 69		244 255	16.4 16.5		41.5 41.9			
70		260	16.6		44.8			
74 81		260 269	17.3 17.3		47.6 48.8			
82		294	17.4		49.9			
90 95		330 330	17.9 18.6		50 50.2			
97.2		330			52.2			
101		342	18.9		53.5			
110 110		450 460	21 22.4		54.4 56			
116		580	23.5		60.8			
120 134		720 730			62.5 64.3			
141		740	26.1		68.1			
150 160		810 889			78.5 79.1			
160		920	31		80.8			
180		960	32.4		87.6			
199 200		1180 1200			89 93			
210		1220	37.8		94.6			
220 270		1450 1500			96.6 111			
280		1600	42.3		114			
283		1600 1750			118 124			
310 340		1800	48.2		125			
363		2000	48.3		125			
370 470		2340 5100	51.1 51.7		131 150			
518		5300	54		150			
	1	6000 6500						
		10000						
		13000 19000						
		29000						
		41000						
	1	43000 43000						
		46000						
		84000 88000						
		110000						

	MORTALITY		Manager 10	Managhar Ra	No. I di alam	Name of the state of	NP -1 -1		NO.1.1	DI		Bi	
Mercury No-Hit	No-Hit (Cont.)	Mercury Hit	Monobutyltin No-Hit	Monobutyltin Hit	Naphthalene No-Hit	Naphthalene Hit	Nickel No-Hit	No-Hit (Cont.)	Nickel Hit	Phenanthrene No-Hit	No-Hit (Cont.)	Phenanthrene Hit	Hit (Cont.)
0.006	0.433 0.435	0.01 0.01	1.3	3.2 4.19	1 1.3	1.3 2.2		35.7 36	9.1 12.7	4.3 6.6	384 388	5.6 14	
0.01	0.445	0.01	1.7	11.3	1.5	3.6	8	38.9	13	6.7	420	14	1300
0.013	0.461 0.478	0.024	3.97 4.2	12.4 21.5	1.9 2.2	3.9 6.81	8.4 8.7	39 39.4	14 14.7	6.8 8.8	569 587	14 16	
0.03 0.038	0.48 0.53	0.033 0.036	4.3 4.4	26.9 37	2.5 2.8	6.83 11		39.9 40.7	15.3 16	10 10		18 18	
0.039	0.54	0.04	4.8	38	3.1	12.1	10.9	41	16	11	730	19	1800
0.04	0.545 0.552	0.044	5.2	40 50	3.3 4.9	13 13		41.4 43.5	16 16.5	11 12	750 778	19 21	
0.04	0.558	0.05	5.3	54	6.1	14	12.9	43.7	17	13	1000	22	2900
0.04	0.659 0.796	0.05 0.053	6.4 6.91	56 59	7.8 8.1	14.4 15		44.2 45	17.4 18	14 14		22 24	
0.042	0.8	0.056	7.1	64 76	9.7	15	14.6	45	18.4	14 16		25 26	4370
0.05 0.05	0.993	0.06 0.06	7.13 9.3	97.7	9.8 10	15 16		45.2 45.6	20.8 21	17	1400	33	4700
0.05 0.05	2.01 2.07	0.06 0.06	9.5 10	166 221	10 10	19 19		46.8 47	21 21	17 17		33	
0.05	3.04	0.06	11	267	13	19	15.5	47.3	22	19	1600	41	6100
0.05 0.05	3.74 43	0.07 0.07	11 11.2	312 396	18 18	22 24	15.8 15.8	48.1 48.7	22 22	19 19		42.9 44	
0.052 0.057		0.07 0.08	12.1 13.6		20 20	27 27	16	48.9 49.4	22 22.6	19 19.3	1900 1990	49 54	7570
0.0583		0.08	15.0		20	27		51	22.7	20	2080	59	8950
0.06		0.08	17 18.8		22.2 23.4	30 31		53.9 54.9	23 23	21 22	2660 4230	60 71	
0.06		0.08	19		24	32	17.9	55.3	23	23	4700	80	21700
0.06		0.0853 0.0885	20.3		26.6 30	33 33.6		57.6 58.2	23 23	23 25		86 86	
0.06 0.06		0.09	22 22		30 31.5	34	18.5	59.6 60	23 23.6	26	5700	96 102	44000
0.06		0.09	24		33	37 48	18.8	61.5	23.9	26 26	6100	109	50000
0.06 0.06		0.09	24.9 26		35.6 40	55 61		62.4 63.9	24 24	28 29	8240 26000	110 128	
0.07		0.096	26		42	64	19.4	113	25	31.2	41100	129	100000
0.07 0.07		0.1 0.1	26 27		49 54	65 100		355	25 25	32 33		133 136	
0.07 0.0776		0.1 0.1	29 30		58 64	100 110			25 25	34 35		142 143	
0.08		0.12	38		70	120	20.3		25.7	35		160	
0.08		0.13 0.13	38 40		86 92	126 148			26 26	36 36		160 161	
0.08		0.13	41		100	161	21		27	37		180	
0.08		0.13 0.13	43 46		100 110	165 225			27 27	39 43		186 190	
0.08		0.13 0.131	60 98		160 250	235 350	22		27 27	45 52		196 234	
0.0844		0.14	154		291	380	22		27.8	53		234	
0.0877		0.14 0.15	194 212		424 466	400 440			28 28	54 55		240 282	
0.0998		0.15	379		471	450	22		28	56.7		290	
0.1		0.16 0.16	380 459		501 650	510 529	22		28 28	60 60		333 354	
0.104		0.16 0.17	459 508		913 1030	540 627	23 23		28 28	62 63		384 393	
0.11		0.18	2560		1300	1270	23		28.9	65		394	
0.11 0.114		0.18 0.186	4850 >4850		1400 1600	1310 1360			29 29	65 65		440 469	
0.119 0.12		0.2 0.2			3220 5630	2200 2280	24		29.5 29.6	71 73		472 566	
0.12		0.21			3630	3630	24		29.7	80		570	
0.13 0.13		0.21 0.215				4870 4890			29.8 30	81 87		620 629	
0.14		0.23				4970	26		30	93		680	
0.14 0.141		0.25 0.251				12000 21000			30.6	93 93		848 880	
0.149 0.15		0.253 0.259				40600 67000	26		30.6 30.8	93 93.1		1000 1000	
0.157		0.26				92000	27		31	95		1000	
0.16 0.16		0.27 0.27				600000 2300000	27 27		31 31	95 97		1040 1070	
0.165 0.17		0.286 0.343					27.2 27.3		32 33.7	110 120			
0.18		0.36					28		36	130			
0.19 0.206		0.46 0.52					28.2 28.7		37 37.9	150 150			
0.21		0.546					28.8		38.8	160			
0.21 0.232		0.56 0.604					29 29.1		39.1 39.2	180 190			
0.28 0.284		0.62 0.662					29.3 30.4	-	39.3 39.6	190 210			
0.284		0.673					31		43.4	231			
0.297 0.335		0.69 0.711					32.9 33.6		45.1 46	240 244			
0.359		0.749					34.2		48.4	260			
0.37 0.389		0.8 0.844					34.3 34.4		52.3 53.1	278 332			
\vdash		1.25 1.3							54 56				
		1.41							56.8				
		1.5 1.72							58.4 61.9				
		2							63				
		2.22 2.7							64 70.6				
\vdash		2.7 2.9							77.4 88				
		2.93							105				
\vdash		3.3 9.5							133 594				
		0.0							554				1

No-Hit	Dhaanhama	RTALITY	Dumana		D		Datana	Datana	Cilver	Cilver
128	Phosphorus No-Hit	Phosphorus Hit	Pyrene No-Hit	No-Hit (Cont.)	Pyrene Hit	Hit (Cont.)	Retene No-Hit	Retene Hit	Silver No-Hit	Silver
396	128	459	7	160	14	4400	75	94	0.06	0.09
349 025 13 200 29 5300 201 1900 0.1 332 657 14 210 34 7750 382 6200 0.1 333 1310 14 210 34 7750 382 6200 0.1 440 2770 77 240 387 7750 583 8700 0.1 4425 17 250 46 8100 782 16000 0.1 4428 17 250 46 8100 782 16000 0.1 4486 18 254 47 11200 1300 27000 0.1 553 18 261 53 13300 1470 35000 0.1 561 19 220 66 18000 540 36000 0.1 561 19 220 66 18000 540 36000 0.1 561 19 220 66 18000 540 36000 0.1 561 19 220 66 18000 540 36000 0.1 563 21 22 350 82 25000 0.1 661 22 350 82 25000 0.1 661 22 350 82 25000 0.1 661 25 375 381 40000 0.1 661 25 375 381 40000 0.1 674 37 37 92 65000 0.1 684 37 37 92 65000 0.1 684 37 37 59 68000 0.1 684 37 37 59 68000 0.1 684 37 37 59 68000 0.1 685 38 33 560 120 1100000 0.0 686 33 560 120 1100000 0.2 686 33 560 120 1100000 0.2 687 598 33 560 120 1100000 0.2 688 33 560 120 1100000 0.2 689 33 560 120 1100000 0.2 680 33 560 120 1100000 0.2 680 33 560 120 1100000 0.2 680 34 57 58 53 58 53 68 53 680 33 560 120 1100000 0.2 680 34 57 58 53 58 53 680 35 58 53 58 53 58 53 680 37 560 144 30000 0.0 698 38 38 560 120 1100000 0.2 698 38 38 560 120 1100000 0.0 698 38 560 120 1100000 0.0 699 690										0.09
939								1900		0.03
402 2770 17 240 36 7500 533 8700 0.1 41 410 2770 177 240 37 7540 5641 11200 0.1 425 177 250 46.5 8100 782 16000 0.1 425 177 250 46.5 9130 1170 18200 0.1 428 177 250 46.6 9130 1170 18200 0.1 4868 16.6 284 47 111200 1300 27000 0.1 650 79 19 270 64.1 13500 27000 0.1 650 79 19 270 64.1 13500 27000 0.1 650 79 19 270 64.1 13500 27000 0.1 650 79 19 270 64.1 13500 2770 64.0 11 1500 1300 27000 0.1 650 79 19 19 220 66.1 15000 5400 380000 0.1 19 531 200 280 71 1 18000 6800 0.1 10 10 10 10 10 10 10 10 10 10 10 10 10										0.
410 17 240 37 7540 564 11200 0.1 425 172 250 45.5 8100 782 1600 0.1 425 172 250 45.5 8100 782 1600 0.1 425 172 250 46 9130 1170 19200 0.1 560 31 180 270 54 47 11200 1300 2700 0.1 560 31 180 270 54 13800 2170 6640 0.1 567 19 9 270 54 13800 2170 6640 0.1 1920 1.2 19										0.
428		20								0.1
486										0.1
503										0.1
S16								35000		0.19
S31										0.3
S38								360000		0.:
615										0.3
624							810000			0.:
691 25 375 88.1 40000 0.144 694 27 379 92 65000 1.015 (710 710 27 380 96 68000 0.016 (710 725 30 30 387 97 98000 1.017 (711 31 31 430 110 100000 0.019 824 4 32.2 450 110 110000 0.0.2 880 33 523 118 130000 0.0.2 880 33 523 118 130000 0.0.2 1100 110000 0.0.2 1100 110000 0.0.2 1100 1100										0.:
710										0.:
725									0.15	0.21
741 31 430 110 100000 0.19 824 324 32.2 450 110 110000 0.2 880 33 523 118 130000 0.2 100000 0.2 1100 0.37 580 120 110000 0.2 1100 0.37 580 130 0.2 11100 0.37 580 130 0.2 1110 0.38 581 133 0.2 1110 0.38 581 133 0.2 1110 0.38 581 133 0.2 1110 0.39 679 175 0.2 1150 0.39 679 175 0.2 1200 0.4 2 0.2 1200 0.4 2 0.2 1200 0.4 2 0.2 1200 0.4 2 0.2 1200 0.4 2 0.2 1200 0.4 2 0.2 1200 0.4 2 0.2 1200 0.4 2 0.2 120 0.										0.2
824										0.
908						110000			0.2	0.
1040										0.
1150										0.
1180	1150		37	580	130				0.2	0.
1540										0.
1590										0.32
2060 42 927 260 0.2 2680 43 950 300 0.2 2790 45 970 304 0.2 3290 46 987 308 0.2 \$3290 48 1100 320 0.2 \$50 1320 332 0.2 \$51.6 1350 332 0.21 \$54 1500 333 0.22 \$55 1590 352 0.23 \$55 1630 356 0.25 \$56 1900 359 0.26 \$63 2100 380 0.25 \$63 2100 380 0.27 \$64 2340 404 0.28 \$65.6 2700 410 0.3 \$66 2710 429 0.3 \$67 2870 431 0.3 \$67 2860 452 0.3 \$68 3540			41							0.3
2790	2060			927	260				0.2	0.
3290										0
48.5 1250 320 0.2 50 1320 332 0.219 51.6 1350 332 0.219 54 1500 333 0.22 55 1590 352 0.23 55 1590 352 0.23 55 1630 356 0.25 57 2000 370 0.26 68 1900 359 0.26 69 60 270 40 40 60 271 429 0.3 66 270 410 0.3 67 2870 431 0.3 67 2960 452 0.3 67 3460 455 0.3 68 3500 465 0.3 68 3500 466 0.3 70 4410 488 0.3559 72 4 500 510 0.38 73 5700 536 0.4 74 8790 634 0.4 75 1000 700 0.43 80 21000 715 0.45 80 21000 750 0.53 89 55600 629 0.77 91 100 110 1.8 100 171 120 0.3 117 2300 0.26 0.4 117 2300 2.2 117 2300 2.2 120 2300 3.5 120 2300 3.5 120 2300 3.5 120 2300 3.5 120 2300 3.5 130 3000 3.5 140 3850 3850 3.5 140 3650 3.5 140 3650 3.5 150 4280 3650 3.5										0
50										0.44
51.6 1350 332 0.219 54 1500 333 0.22 55 1590 352 0.23 55 1630 356 0.26 56 1900 359 0.26 63 2100 380 0.27 64 2340 404 0.28 65.6 2700 410 0.3 66 2710 429 0.3 66 2710 429 0.3 67 2260 452 0.3 67 2260 452 0.3 67 2260 452 0.3 67 2360 452 0.3 67 2360 452 0.3 67 2360 452 0.3 67 2360 452 0.3 68 3500 465 0.3 68 3540 477 0.35 72.4 5000 510										0.
54 1500 333 0.22 55 1590 352 0.23 55 1630 356 0.25 56 1900 359 0.26 57 2000 370 0.26 63 2100 380 0.27 64 2340 404 0.28 65.6 2700 410 0.3 66 2710 429 0.3 67 2870 431 0.3 67 2870 431 0.3 67 2860 452 0.3 67 2860 452 0.3 67 3460 455 0.3 68 3500 465 0.3 68 3500 465 0.3 70 4410 488 0.359 72.4 5000 510 0.38 73 5700 536 0.4 74 8790 634										0.
55 1630 356 0.26 56 1900 359 0.26 57 2000 370 0.26 63 2100 380 0.27 64 2340 404 0.28 65.6 2700 410 0.3 66 2710 429 0.3 67 2870 431 0.3 67 2870 431 0.3 67 2860 455 0.3 67 3460 455 0.3 68 3500 465 0.3 68 3540 477 0.35 70 4410 488 0.359 72.4 5000 510 0.38 73 5700 536 0.4 74 8800 626 0.4 74 8790 634 0.4 75 10000 685 0.43 77 16000 70										0.
56 1900 359 0.26 0 57 2000 370 0.26 0 63 2100 380 0.27 64 2340 404 0.28 65.6 2700 410 0.3 66 2710 429 0.3 67 2860 452 0.3 67 2960 452 0.3 67 3460 455 0.3 68 3500 465 0.3 68 3540 477 0.35 70 4410 488 0.359 72.4 5000 510 0.38 73 5700 536 0.4 74 6800 626 0.4 74 8790 634 0.4 77 1600 700 0.43 80 21000 715 0.45 82 22000 730 0.45 83										0.
57 2000 370 0.26 63 2100 380 0.27 64 2340 404 0.28 65.6 2700 410 0.3 66 2710 429 0.3 67 2870 431 0.3 67 2960 452 0.3 67 3460 455 0.3 68 3500 465 0.3 68 3540 477 0.35 70 4410 488 0.359 72.4 5000 510 0.38 73 5700 536 0.4 74 6800 626 0.4 74 8790 634 0.4 77 16000 685 0.43 80 21000 715 0.45 82 22000 730 0.46 83 26000 750 0.53 89 55600 770<										0.54
63 2100 380 0.27 64 2340 404 0.28 65.6 2700 410 0.3 66 2710 429 0.3 67 2870 431 0.3 67 2960 452 0.3 67 3460 455 0.3 68 3500 465 0.3 68 3500 465 0.3 68 3540 477 0.36 70 4410 488 0.359 72.4 5000 510 0.38 73 5700 536 0.4 74 6800 626 0.4 74 8800 626 0.4 75 10000 685 0.43 77 16000 700 0.43 80 21000 715 0.46 82 22000 730 0.45 83 2600 770 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.54</td>										0.54
65.6 2700 410 0.3 66 2710 429 0.3 67 2870 431 0.3 67 2960 452 0.3 67 2960 455 0.3 68 3500 465 0.3 68 3540 477 0.35 70 4410 488 0.359 72.4 5000 510 0.38 73 5700 536 0.4 74 6800 626 0.4 74 8790 634 0.4 75 10000 685 0.43 77 16000 700 0.43 80 21000 715 0.46 82 22000 730 0.45 83 26000 750 0.53 89 55600 770 0.7 90 68000 829 0.77 91 1200 0.8 92 1320 0.9 92 14000 1.1 93 1500 1.4 99 1600 1.1 100 1710 1.8 107 1820 1.9 110 2200 2 120 2300 3.5 121 2530 140 140 33650 140 150 4280 150 4280										0.
66										0.
67 2870 431 0.3 67 2960 452 0.3 67 3460 455 0.3 68 3500 465 0.3 68 3500 465 0.3 70 4410 488 0.359 72.4 5000 510 0.38 73 5700 536 0.4 74 6800 626 0.4 74 8790 634 0.4 75 10000 685 0.43 77 16000 700 0.43 80 21000 715 0.45 82 22000 730 0.45 83 26000 750 0.53 89 55600 770 0.7 90 68000 829 0.77 91 1200 0.8 92 1400 1.1 93 1500 0.8 92 1400 1.1 93 1500 1.1 93 1500 1.1 93 1500 1.1 93 1500 1.1 100 1710 1.8 100 1710 1.8 110 2200 1.2 110 2300 1.3 120 2300 3.5 130 3000 1.1 140 3200 1.1 150 4280										0.6
67 3460 455 0.3 68			67	2870	431				0.3	0.
68 3500 465 0.3 68 3540 477 0.35 70 4410 488 0.359 72.4 5000 510 0.38 73 5700 536 0.4 74 6800 626 0.4 74 8790 634 0.4 75 10000 685 0.43 77 16000 700 0.43 80 21000 715 0.46 82 22000 730 0.45 83 26000 750 0.53 89 55600 770 0.7 90 68000 829 0.77 91 1200 0.8 92 1320 0.9 92 1320 0.9 93 1500 1.4 99 1600 1.6 100 1710 1.8 101 1710 1.8 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.7</td></tr<>										0.7
68 3540 477 0.35 70 4410 488 0.359 72.4 5000 510 0.38 73 5700 536 0.4 74 6800 626 0.4 74 8790 634 0.4 75 10000 685 0.43 80 21000 715 0.45 82 22000 730 0.45 83 26000 750 0.53 89 55600 770 0.7 90 6800 829 0.77 91 1200 0.8 92 1320 0.9 92 1400 1.1 19 1600 1.4 99 1600 1.4 100 1710 1.8 100 1710 1.8 107 1820 1.9 108 2190 1.9 108 2190 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.</td>										0.
72.4 5000 510 0.38 73 5700 536 0.4 74 6800 626 0.4 74 8790 634 0.4 75 10000 685 0.43 80 21000 700 0.43 80 21000 715 0.45 82 22000 730 0.45 83 26000 750 0.53 89 55600 770 0.7 90 68000 829 0.77 91 1200 0.8 92 1320 0.9 92 1400 1.1 93 1500 1.4 99 1600 1.6 100 1710 1.8 107 1820 1.9 110 2200 2 111 2300 2.2 111 2200 2 120 2300 3.5										0.
73 5700 536 0.4 74 6800 626 0.4 74 8790 634 0.4 75 10000 685 0.43 77 16000 700 0.43 80 21000 715 0.45 82 22000 730 0.45 83 26000 750 0.53 89 55600 770 0.77 90 68000 829 0.77 91 1200 0.8 92 1320 0.9 92 14400 1.1 93 1500 1.4 99 16000 1.6 100 1710 1.8 107 1820 1.9 110 2200 2.2 117 2300 2.2 120 2300 3.1 120 2500 3.5 130 3000 140 3650 140 3650 140 150 4280 150										0.
74 6800 626 0.4 74 8790 634 0.4 75 10000 685 0.43 77 16000 700 0.43 80 21000 715 0.46 82 22000 730 0.46 83 26000 750 0.53 89 55600 770 0.7 90 68000 829 0.77 91 1200 0.8 92 1320 0.9 92 1400 1.1 93 1500 1.4 99 1600 1.6 100 1710 1.8 100 1710 1.8 107 1820 1.9 110 2200 2 2110 2300 3.1 120 2300 3.1 120 2300 3.1 120 2300 3.5 121										0.8
75 10000 685 0.43 77 16000 700 0.43 80 21000 715 0.45 82 22000 730 0.45 83 26000 750 0.53 89 55800 770 0.7 90 68000 829 0.77 91 1200 0.8 92 1320 0.9 92 1400 1.1 93 1500 1.4 99 1600 1.6 100 1710 1.8 107 1820 1.9 110 2200 2 117 2300 2.2 117 2300 2.2 120 2300 3.1 120 2300 3.5 121 2530 3.5 130 3000 3.5 140 3350 3.5 140 3650 4200 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1.</td>										1.
77										1.
80 21000 715 0.46 82 22000 730 0.45 83 26000 750 0.53 89 55600 770 0.7 90 68000 829 0.77 91 1200 0.8 92 1320 0.9 92 14400 1.1 93 1500 1.4 99 1600 1.6 100 1710 1.8 107 1820 1.9 108 2190 1.9 110 2200 2 117 2300 2.2 117 2300 3.1 120 2500 3.5 121 2530 3.5 130 3000 140 3650 140 4100 150 4280										1.3
82 22000 730 0.45 83 26000 750 0.53 89 55600 770 0.7 90 68000 829 0.77 91 1200 0.8 92 1320 0.9 93 1500 1.4 99 1600 1.6 100 1710 1.8 107 1820 1.9 110 2200 1.9 110 2200 2 117 2300 2.2 120 2300 3.1 120 2300 3.1 120 2500 3.5 121 2530 3.5 130 3000 3.5 140 3650 4200 140 4100 4200 150 4280 4280										2.
89 55600 770 0.77 90 68000 829 0.77 91 1200 0.8 92 1320 0.9 92 14400 1.1 93 1500 1.4 99 1600 1.6 100 1710 1.8 107 1820 1.9 108 2190 1.9 110 2200 2 117 2300 2.2 120 2300 3.1 120 2500 3.5 121 2530 3.5 130 3000 400 140 3850 4200 150 4280 4200			82		730				0.45	2
90 68000 829 0.77 91 1200 0.8 92 1320 0.9 92 1400 1.1 93 1500 1.4 99 1600 1.14 99 1600 1.16 100 1770 1.820 1.9 108 2190 1.9 110 2200 2 117 2300 2.2 117 2300 2.2 1120 2300 3.5 121 2530 3.5 121 2530 3.5										3.
91 1200 0.8 92 1320 0.9 92 1400 1.1 93 1500 1.1 99 1600 1.6 100 17710 1.8 107 1820 1.9 108 2190 1.9 110 2200 2 117 2300 2.2 117 2300 2.2 120 2300 3.1 120 2500 3.5 121 2530 3.5 121 2530 3.5										4
92 1400 1.1 93 1500 1.1 93 1500 1.1 99 1600 1.6 100 1710 1.8 107 1820 1.9 108 2190 1.9 110 2200 2.9 1117 2300 2.2 120 2300 3.1 120 2300 3.1 121 2530 3.6 121 2530 3.6 140 3200 3200 3.6 140 3200 3200 3.6 140 3650 4200 5.6			91		1200				0.8	
93 1500 1.4 99 1600 1.6 100 1710 1.8 107 1820 1.9 108 2190 1.9 110 2200 2 1117 2300 2.2 1120 2300 3.1 120 2500 3.5 121 2530 3.5 121 2530 3.5 140 3360 3000 140 3360 3000 140 3360 3650 140 4100 150 4280										
99 1600 1.6 100 1710 1820 1.9 107 1820 1.9 108 2190 1.9 110 2200 2 1177 2300 2.2 117 2300 2.2 120 2500 3.1 120 2500 3.5 121 2530 3.6 140 3200 3000 3000 314 140 3650 140 3650 150 4200 150 4200 150 4200 150 4200 150 4200 150 4200 150 4200 150 4200 150 4200 150 4200 150 4200 150 4200 150 170 170 170 170 170 170 170 170 170 17										
107			99		1600				1.6	
108										
110										
120			110		2200				2	
120		_		·						
121 2530 130 3000 140 3200 140 3650 140 4100 150 4200 150 4280										
130 3000 140 3200 140 3200 140 3650 140 4100 150 4200 150 4280									0.0	
140 3650 140 4100 150 4200 150 4280			130	·	3000					
140 4100 150 4200 150 4280										
150 4280										
4500										
			156		4300					
		•								
										_
				-						

HYALELLA MORTALITY Total benzofluoranthenes (b+k (+j))		Total benzofluoranthenes (b+k (+j))	
No-Hit	No-Hit (Cont.)	Hit	Hit (Cont.)
	350 414	16 16	540 553
13	480	23	560
15	496	27	659
15 15.1	501 560	29 29	700 711
15.4	600	41	890
17	630	41	1350
19.2 20	630 630	42 44	1380 1460
20	770	48	2210
21	799	49	2500
21 22	890 906	50 54	4700 8500
25	1040	62	10100
25	1100	67	14400
26 26	1151 1280	70 76	16300 20000
26	1340	77	28000
27	1370	82	56000
32 36	1380 1780	83 91	
36.9	1923	91	
38	1960	102	
39 39	2020 2100	103 117	
41	2450	119	
41	2800	120	
43	2830	143	
43	3170 3400	148 175	
44	3620	178	
45 46.4	4800	198	
46.4 50	5300 11000	234 245	
50	12000	290	
50	17900	293	
52 53	18400 19900	300 311	
53	20100	312	
54	41800	313	
55 57	79000	316 320	
59		335	
59		348	
60		363 379	
66.9		412	
68		421	
69 72		445 541	
76		552	
76.6		579	
		617 643	
87		657	
93		680	
102 110		686 774	
110		823	
116		853	
118 120		855 881	
124		890	
127		1028	
140 141		1200 1390	
142		1410	
149	_	1410	
150 176		1600 1700	
180		1850	
186		1860	
187 188		2000 2100	
190		2270	
191		2320	
220 248		2620 2750	
248		3200	
255		3200	
283 297		3400 3700	
310		3810	
338		4300	
339 339		4440 5180	
339		5180	

tal organic carbon		Total organic carbon		Total Polychlorinated Biphenyls	Total Polychlorinated Biphenyls
No-Hit 0.05	No-Hit (Cont.)	Hit 0.05	Hit (Cont.)	No-Hit	Hit
0.08	2.51 2.52	0.05	3.8 3.95	12	
0.13	2.54	0.22	4.13	17	
0.14	2.57	0.25	4.19		
0.14 0.21	2.61 2.61	0.25	4.25 4.49	43	
0.22	2.69	0.4	4.56	73	
0.23	2.71	0.4	4.6	108	7.
0.23 0.26	2.74 2.8	0.56 0.6	4.9 5.1	130 217	7
0.35	2.87	0.67	5.6		
0.38	3.1	0.76	5.7	460	
0.38	3.12	0.8			
0.4 0.42	3.3 3.31	0.82 0.83	5.9 6.27	2090	
0.6	3.4	0.89			
0.61	3.42	0.9	7.35		
0.65 0.67	3.48	0.91 0.95	7.4		
0.69	3.6	0.97	7.9		
0.72	3.61	1.01	8.3		
0.72	3.71	1.1	8.9		
0.74 0.78	3.89 4.01	1.12 1.19	9.7		
0.81	4.01	1.2			
0.88	4.05	1.3	10		
0.9	4.14	1.45	10.6		
0.94 0.97	4.31 4.65	1.46 1.46	12 12.1		
0.996	4.74	1.48	13		
1.03	4.74	1.52	18		
1.16	4.9 4.92	1.56 1.61	19 21.3		
1.2 1.24	4.92	1.62	21.3		
1.26	5.02	1.65			1
1.27	5.13	1.67			
1.28 1.28	5.2 5.7	1.73 1.75			2
1.3	6.3	1.77			
1.3	6.4	1.8			
1.3	6.4	1.83			
1.3 1.32	6.8 7.35	1.83 1.89			
1.37	12	1.9			
1.39	12	1.96			
1.4	12.2	1.97 1.97			
1.42 1.44	15.8 25	1.98			
1.44	> 25	2.01			
1.5		2.03			
1.5 1.5		2.1 2.11			
1.52		2.11			
1.57		2.13			
1.59 1.6		2.14 2.15			
1.68		2.16			
1.72		2.18			
1.77		2.21			
1.8 1.8		2.25 2.25			
1.82		2.26			
1.83		2.27			
1.85 1.87		2.3 2.34			
1.87		2.34			
1.91		2.41			
1.93		2.44			
1.96 1.98		2.46 2.47			
2.06		2.5			
2.07		2.61			
2.09 2.1		2.66 2.7			
2.13		2.74			
2.15		2.74			
2.16		3			
2.17 2.18		3.03			
2.21		3.13			
2.27		3.48			-
2.3 2.31		3.52 3.58			
2.35		3.56			
2.42		3.68			
2.45	·	3.69			
2.48		3.7			

HYALELLA MORT	Total Sulfides	Tributyltin	Tributyltin	Zinc		Zinc
No-Hit	Hit	No-Hit	Hit	No-Hit	No-Hit (Cont.)	Hit
0.17	0.21	0.503	1.28	13.6	152	40
0.9 2.3	0.21 0.31	0.87	1.95	14.8 17.2	158	45.4
2.69	1.8	1.16	2.27	17.2	161 167	43.4
2.9	2.9	2	52	18.6	173	54
3.3	6	2.4	60	24.4	188	55
3.4	6.6	2.51	110	30.7	193	55
3.8 5.8	9.9 17.4	2.88 3.6	113 160	34.8 47.5	203 211	58 60
6.2	17.5	4.3	198	48	215	60.6
6.2	20	4.3	250	49.7	243	61.5
7	20.8	4.4	260	51.3	249	62.2
7.8	21	4.7	370	55	377	68.3
9.2	21	5.7 6.4	590 598	55.9 58.1	391 397	73.7
10	21.7 22	7.6	697	58.2	399	77
10.8	23	8.5	810	61.3	406	79.8
11.4	24	9	824	65	435	84.3
12.6	31	9.3	936	65.6	520	85
13.4 15.8	42.4 44.2	9.5 11	965.2 1700	65.6 66	527 550	86
16.0	44.6	12	1700	69.9	567	90
18.4	48	13	1959	70.3	623	93.2
18.4	48.1	13	2200	70.8	684	96
19.3	62	18	2490	70.8	754	97.6
22.6	65.8	19	2750	71.1	849	98.8
24.7 34	80.1 96.3	22 25		71.6 72.7	904 1020	10°
35.6	130	27		72.7	1080	110
47.4	133.9	30		73	1180	11
60.6	149	32		73.5	2010	118
64	150	35		74	4150	120
65.5 74.1	161 181	37 40		76 76.4	> 4150	120
83.8	202	62		76.8		130
87	223	78		76.9		130
92.4	230	100		77.3		133
97.3	249	200		79.3		136
110 146	341 450	210 220		79.3 81.5		137
231	590	247		82		145
247	703	300		83		155
321	920	723		83		164
360	2330	1210		84		169
493	7700	1410		84		190
514 702		1710 1860		84 84.4		193
900		2220		85		210
941		2530		85.3		212
		6650		85.7		220
		15700		85.9		225
		64600 > 15700		86 87		227
		> 13700		87		242
				89.3		254
				89.4		262
				89.6		264
				90 90.5		269
				91.8		27
				94.4		279
				95.9		28
				96.8		284
				97.3 98		286
				101		306
				104		314
				106	-	333
				106		337
				107 113		354
				114		368
				117		369
-				119		37
				119 122		37
				122		37
				124		38
				126		39
				128		40
				131 136		423
				136		44
				142		450
				145		45
				148		470
						494
						562 582
						59:
						66
						67:
-						675
						683
						1070
						1090
	l l					
						1770

IRONOMUS GROWTH	2-Mothylpophtholors	Aconarhthora	Acenaphthene	Acananhthulass	Aconanhthulare	Anthracene	Anthracen
2-Methylnaphthalene	2-Methylnaphthalene	Acenaphthene		Acenaphthylene	Acenaphthylene		
No-Hit	Hit	No-Hit	Hit	No-Hit	Hit	No-Hit	Hit
11	13	10	20	3.2	4.5	5	1
12	13	10	23		12	10	5
13	52	11	59		13	11	5
14	54	11	60		17	12	7
15	62	11	88		23	12	11
15	64	12	92		35.8	12	12
15	180	12	162	13	44	12	15
16	188	12	177	14	94	13	17
16	189	14	203	14	110	14	23
20	443	14	260		110	14	3
24	877	15	272	15	200	15	3
28	2310	17	310		209	16	4
28	3470	18	410		362	16	5
30		18	560	20.8	460	17	7
36		18	630		480	18	8
141		18			640	20	11
160		19	990		642	22	11
170		23	1060		1020	22	14
180		23	1100	36.8	3600	23	15
214		24		42		25	17
353		32				25	17
469		33	2460	88		27	17
555		36	2790	120		27	19
982		37	2940	136		28	28
1720		37	5700	140		28	29
1770		39		148		29	57
		43	20800	171		29	61
	AET - low confidence	45	29600	265		32	66
	AET - high confidence	52		265		37	162
	next highest hit value	72		279		38.6	
	outlier	73		314		40	
		75		594		40.1	
		82		697		41	
		90		1260		42	
		91.9				46	
		99				53	
		107				65	
		112				67	
		120				70	
		130				72.5	
		148				85	
		156				95	
		209				99	
		240				101	
		252				115	
		260				124	
		310				177	
		316				220	
		332				320	
		360				343	
		520				350	
		523				356	
		792				429	
		920				465	
		1250				510	
		1320				552	
		6100				600	
		6290				630	
						660	
						717	
						915	
						965	
						1110	
						1230	
						1500	
·						1580	
·						5900	
	l .		1	1	l .		

Antimony	MUS GROWTI Antimony	Aroclor 1254	Aroclor 1254	Aroclor 1260	Aroclor 1260	Arsenic		Arsenic	Benzo(a)anthracene		Benzo(a)anthracene
No-Hit	Hit	No-Hit	Hit	No-Hit	Hit	No-Hit	No-Hit (Cont.)	Hit	No-Hit	No-Hit (Cont.)	Hit
0.05	0.06	11		15	42	1.4	5.17	3.5	4.8	99	8.
0.03	0.1	11		15	53	1.9		3.9		103	2
0.1	0.1	12		18	57	2	5.6	4	11	105	16
0.1	0.2	16	170	20	57	2	5.6	4.3	13	105	17
0.13		17		24	77	2.7	5.7	4.3	13	106	22
0.13		18		26	184	2.9		4.4	14	109	23
0.14	0.3	24		27	460	3		4.7	14	110	24
0.2		25		29	500	3		5		112	28
0.2		37		37	300	3			15	112	37
0.2		47		38		3				113	41
0.2		51		40		3				115	51
0.2		54		42		3				130	60
0.2		54		43		3				140	72
0.2		58		46		3.2	6			148	91
0.3		62		46		3.3	6			150	95
0.3		70		48		3.3				154	108
0.47		78		62		3.4	6.1	7	19	163	133
0.47		81		64		3.5		7.7	19	167	262
0.6		140		74		3.5	7	7.8	19	170	264
4.4		189		85		3.5	7	8		181	270
4.4		202		98		3.7		9	20 20	181	334
	-	202	1	116		3.9	7	13.7	20	186	375
		230		138		4		15.7		199	400
		230 256	-	2500		4			22	259	543
		256	<u> </u>	∠500		4			22	259	543 860
		294				4				321	9000
						4		111	25 26	342	1100
						4			29	353 441	12000
											13000
						4		200	29	523	2560
						4	9		29	539	3700
						4	11		30	561	77000
						4			30	598	
						4	11.7		31	1060	
						4			32	1100	
						4			32	1180	
						4			32	1220	
						4			32	1270	
						4			33	1480	
						4			35	1500	
						4	17		35	1580	
						4.09			35	1720	
						4.1	21.7		36	2300	
						4.2	30.6		37	2380	
						4.3	31.3		38	3200	
						4.3			41	4260	
						4.6	123		41	6200	
						4.6			43	11000	
						4.7			49	44000	
						4.7			51		
						4.7			52		
						4.8			56		
						4.9			62		
						5			64		
						5			67		
						5			70		
						5			71		
						5			73		
			1			5			73		
			1			5			77.8		
			1			5			79		
						5			79		
			1			5			82		
						5			89		
						5			93		
						5			93		
				l -		5		Ľ	94		

CHIRONOMUS GI	ROWTH						
Benzo(a)pyrene		Benzo(a)pyrene	Benzo(g,h,i)perylene		Benzo(g,h,i)perylene	Bis(2-ethylhexyl) phthalate	Bis(2-ethylhexyl) phthalate
No-Hit	No-Hit (Cont.)	Hit	No-Hit	No-Hit (Cont.)	Hit	No-Hit	Hit
10	102	8.8	11	73.3	9.6	50	120
12 12	114 116	11 20	11	73.4 77	18 84	62 62	300 310
13	117	153	11	77	99	110	370
13		160	12	78	102	110	420
13		176	13	82	104	120	450
14		195	13.5	87	121	140	460
14	124	213	14	94	127	160	501
15 15	128 128	216 223	14 14	99 108	134 164	180 200	540 727
16	133	298	15	110	170	240	1930
16	135	334	16	114	231	250	2140
16	145	358	16	115	308	260	2140
18	150	387	16.8	133	424	275	2800
18	170	570	17	146	821	290	3010
18.6	171	615	17	149	1330	307	3420
19 19		1080 1110	17	150 175	1350 1720	320 330	3510
19	180	1530	17	186	2500	330	7590 10500
21	189	2750	18	187	2510	337	33300
21	195	2960	18	216	3300	350	35555
21	206	3300	18	220	7100	350	
23	226	3340	19	221	7600	350	-
24	231	4900	19	223	8900	360	
25 25	248	9600	19 19	270 497	9400	360 370	
25	256 256	11000 13000	19	613	11000 12100	370	
27	270	13000	20	791	27000	390	
27	333	15000	20.9	827	55000	418	
27.4	351	24300	21	854		420	
28	382	39000	22	1150		420	
28	451	86000	22	1200		440	
29 31	783 890		22	1350 1410		444 452	
32	915		22	1520		460	
32	1070		23	1660		470	
32	1420		29	1900		480	
33	1620		29	2800		500	
34	1630		30	4020		510	
34	1800		30	5400		519	
36 36	1840 1890		30 31	11000 38000		520 546	
37	2220		32	38000		547	
38			32			550	
40			33			575	
40			35			660	
43			36			774	
43	14000		41 42			778 800	
43	55000		42			800	
48			43			913	
49			45			1000	
51			46			1020	
56			48	-		1050	
58			50			1090	
60			51			1110	
67 68			51 56			1370 1380	
73			56			1390	
76			57			1400	
85			57		_	1440	_
85			65			1740	
87			68			1800	
88 91			69 70			1920 1970	
91			70			1970 2220	
100	1		70			2520	
100			71			3970	
						4330	
			_			4970	
						5120	
						6360	
						6380	
			l .			22300	

CHIRONOMUS GROWTH													
Butyl benzyl phthalate		Cadmium			Chromium		Chromium			Chrysene			Copper
No-Hit	Hit	No-Hit	- 1 1	Hit	No-Hit	No-Hit (Cont.)	Hit	No-Hit	No-Hit (Cont)	Hit		No-Hit (Cont.)	Hit
10		0.07 0.1	1.1	0.18	10.1	42 42.8	21.1 23	5.1 12	110 110	9.5 11		106 119	35.4 41.4
18		0.1	1.3	0.6	12	44.9	23.1	13	117	13		130	
18		0.1	1.3		12	46	23.6	14	126	61	15.6	136	
21	55	0.1	1.4	0.7	13	53.9	29.2	15	126	161	17.2	140	44.6
24	86	0.1	1.6	1	14.3	55.9	29.4	15	128	280	18.3	142	46
24		0.1	1.6		15	57.3	31	17	130	318		146	
25 25	145 198	0.1 0.1	2.1	1.1 1.2	15.2 15.7	62 63.4	31.2 31.9	17 17.9	140 144	393 412	20.4	154 163	
25	407	0.11	2.7		16.7	66.7	36	17.9	147	430	21.7	187	57.3 62
28		0.13	5.6		16.8	77.1	39		157	507		209	
31		0.14	> 5.6		17	80.1	40.5	22	160			210	
32		0.17		1.9	18.3	80.7	41	23	161	562	23.6	267	
32		0.2		2	19.1	133	43	23	170	816		314	
34		0.2		2	22		43	24	172	819		315	
35		0.2		2.2	22		45.3	24	177	1140	24.3	327	
37 40		0.2		2.3 2.6	23 23.3		68.3 80.7	24 24.6	179 180	1260 1300	26 26.6	363 397	188 371
41		0.2		2.0	23.3		96.2	25	187	2320	26.8	571	
42		0.2		3.01	24		99.5	25	190	2460	27.9	619	
43		0.2		3.67	24		102	25	193	3000	28.6		
47		0.2		5	24.1		348	26	202	3370	30	651	1460
48		0.2			24.6			27	211	3700	30.7	829	2010
50		0.2			25			27	221	3800			10800
52		0.2			25			28	249	5730	31.6		
53		0.2			25.4			28	263	5880	32		
56 56		0.2 0.2			25.4 26			28.1 30	281 314	7800 8900	32.4 32.9		
57		0.2			26			31	320	10000			
57		0.2			26			32	390	11000			
62		0.2			26			32	425	11000	35		
64		0.2			26			33	482	28100	35		
64		0.2			26			33	489	38000			
66		0.2			26.4			34	508	75000	35.9		
70		0.2			27			34	601		36.2		
73		0.2			27			35	657		36.5		
90		0.2			27			35	707		36.8		
119		0.3			27 27.3			35 36	755 1130		36.8 38		
160		0.3			27.3			38	1400		38.3		
163		0.3			28			39	1440		38.5		
165		0.3			28.4			43	1500		40.6		
170		0.3			29			45	1540		40.7		
182		0.3			29			46	1560		41.9		
184		0.3			29			47	1710		43.4		
222		0.31			29			48	2140		44		
258 274		0.4			29 29			51 51	2170		45.6		
274		0.4			29.4			51 51	2200 2210		46.9 48.1		
366		0.4			31			52	3200		50		
1520		0.4			31			55	3430		50.4		
		0.4			31			57	5940		53.2		
		0.45			31			58	7000		61		
		0.5			31			59	11000		61.8		
		0.5			32			61	46000		62.9		
		0.5			32			70			71.1		
		0.6 0.6			32 33			70 70.4			74.5 76.7		
		0.6			33			70.4			81.2		\vdash
		0.69			34			91			84.5		
		0.7			35			93			86		
		0.8			36			95			90.9		
-		0.9			37			95			94.3		
		0.9			37			98			94.4		
		0.9			38			100			96.6		
		1			40			104			96.7		
		1			41			105			100		

CHIRONOMUS GROWTH					
Dibenz(a,h)anthracene	Dibenz(a,h)anthracene	Dibenzofuran	Dibenzofuran	Dimethyl phthalate	Dimethyl phthalate
No-Hit	Hit	No-Hit	Hit	No-Hit	Hit
10	17	10	14	11	11
12	22	10	15	12	16
12	24	12	33	13	37
13	30	12	38	13	42
13		13	46	14	54
14		13	52	15	58
14	55.9	14	75	16	156
14	58	14	116	19	314
14	72	16	160	21	362
16	82	16	166	31	
16	116	18	168	108	
18	217	19	170	147	
18	424	24	200	158	
18	437	26	204	171	
18	490	26	399	172	
19.3	540	30	1750	270	
21	730	31	2260	311	
26	800	41	3810	436	
28	1200	62		576	
29	1200	64		> 576	
34	1700	90			
34.1	2200	138			
36	3070	160			
37	4700	170			
38		180			
49		234			
50		244			
56		372			
66		384			
125		443			
132		460			
176		660			
200		928			
214		1010			
216					
280					
292					
294					
327					
332					
342					
350					
630					
839					
1700					
2600					
11000					
	<u> </u>				1

CHIRONOMUS GROW		Di n cotul =545-1-1-	Di n cotul abstrator	Eluoro-th ar -		Eluoronthar
Di-n-butyl phthalate	Di-n-butyl phthalate	Di-n-octyl phthalate	Di-n-octyl phthalate	Fluoranthene	No Hit (Com)	Fluoranthene
No-Hit	Hit	No-Hit	Hit	No-Hit	No-Hit (Cont.) 190	Hit 14
6.5	9	11	54 115	5.6 16	190	15
11	61	12	256	16	206	18
11	71	12	413	19	210	44
11	108	13		19	210	276
12	350	13		21	240	453
12	1180	13		22	240	455
13		15		23	268	540
14		17		23	270	674
15		17		23.5	280	695
15		18		26.9	280	939
15		21		27	288	1400
16		21		28	291	1690
17		22		32	301	1780
17		23		34	320	2340
17		25		35	324	2450
19		26		36	334	2660
19		26		39	342	4950
20 21		27		40	356	650
		30		41	359	660
21		30		41	363	7400
22		32		44	380	771
23		34 34		44.7 45	383 390	934 1500
24		34		53	428	1500
26		37		54	437	1670
26		39		54	445	18000
27		40		58	450	1920
30		44		58	452	20100
31		45		61	455	24200
34		46		63	500	2600
37		47		63	502	4610
37		48		65	646	10000
40		49		65	699	12000
41		52		67	731	
41		54		68	740	
67		55		69	798	
68		58		70	833	
90		66		71	1260	
103		67		72	1400	
116		74		75	1620	
158		90		76	1640	
254		100		77	2140	
306		110		79	2300	
350		201		80	3140	
481		399		91	3190	
690				91	3210	
805				93	3360	
841				93	3370	
893				96	3450	
1740				97	3600	
> 1740				97 110	4700 4780	
				110	4780 5000	
				112	6100	
				112	7730	
				116	9800	
				123	11100	
				123	15000	
				130	180000	
				138	.00000	
				143		
				144		
				153		
				157		
				158		
				160		
				-		
·						
						· · · · · · · · · · · · · · · · · · ·

CHIRONOMUS GROWTH									
Fluorene	Fluorene	High Molecular Weight PAH		Indeno(1,2,3-c,d)pyrene		Indeno(1,2,3-c,d)pyrene	Lead		Lead
No-Hit	Hit	No-Hit	Hit	No-Hit	No-Hit (Cont.)	Hit	No-Hit		Hit
11 12	30 33	54 107.1	56 96.6	8	88 88	8.2 18	4.7 5.24	44.8 47.6	12.6 13.5
12	42	116		10	95	68	7.1	48.8	16.5
13		131.2	11020	11	97	100	7.3	52.2	29
13		134	13690	11	97.2	116	9.21	56	41.5
13		136	31640	12	100	130	10.2	58.7	50.2
14	167	470	35390	12	106	134	10.5	62.5	54.4
15		629	44500	12	110	134		68.4	
17		711	57000	13	110	155	11.2	79.1	80.7
17		799	62900	14	120	170	11.6	87.6	94.6
18		1004	95330	14	124	207	12	89.6	118
19		1376		14	133	208	12.2	96.6	
19		2068		15	141	342	12.5	99.4	
19		2080	122700	16	144	363	12.7	114	
22 22.3		2251 2522	134300	16 16	160 178	763	12.7 12.7	150	210 258
22.3	730	2629	250500 427700	16	180	1180 1500	12.7	150 152	272
23		8440	765000	17	198	1750	12.7	194	294
24		13290	703000	17.7	199	2340	13.1	204	
25		13480		18	222	4600	13.1	230	
33		15080		19	255	6000	13.2	249	
36		16460		20	260	10000	13.3	431	436
36.2		16780		20	269	13000	13.3	1160	
37		17410		21	340	13900	13.4]	1310
38.1	3890	19960		22	518	14000	13.7		.5.5
39		21970		22	643	17000	13.8		
44		28550		22	740	19000	14.4		
47		31170		23	773	41000	14.4		
49		38030		24	889	110000	14.7		
50		54800		24	1160		14.8		
57		72000		25	1220		14.9		
60		120500		27	1340		15.1		
62		471000		27	1350		15.2		
73				28	1450		15.2		
75				29	2300		15.2		
79				30	3400		15.3		
85				30	4120		15.7		
91				30	5100		15.9		
100				30	10000		16.2		├
107 124				31 34	18000 60000		17.3 17.9		\vdash
124				36	60000		17.9		\vdash
171				36			18.1		
181				40			18.6		
185				43			18.8		
200				43			20.8		
270				44			21		
390				44			21.1		
400				45			22.4		
420				45	-		23.5		
465				52			23.5		
498				53			23.6		
666				53			25.6		lacksquare
932				59			25.9		
1540				59			26.1		
1720 2500				61			26.6 27.3		-
2500 3850				65.6 67			27.3		-
3850				68			27.4		
				69			30.1		
				73			30.1		
				74			33.6		
				76			36		
				80			36.2		
				81			38.9		
				81			39		
				83			41.9		
				-					
		1	1	· · · · · · · · · · · · · · · · · · ·					1 7

CHIRONOMUS GROWTH											
Low Molecular Weight PAH	Low Molecular Weight PAH	Mercury	Mercury	Naphthalene	Naphthalene	Nickel		Nickel	Phenanthrene		Phenanthrene
No-Hit	Hit	No-Hit	Hit	No-Hit	Hit	No-Hit	No-Hit (Cont.)	Hit	No-Hit	No-Hit (Cont.)	Hit
10.8	23.3	0.02	0.05	3.3	7.8	8		18.5	4.3	133	11
28.6	1800 2498	0.04	0.06	6.1	27 27	10	28 28	21	11	136	13
53 71	2498	0.04	0.08	10 10			28	22 22	14 14	142 150	231 234
95	2760	0.05	0.09	11	30		28	22	14	160	282
160	3110	0.05	0.03	13	35.6		28	23	14	160	566
233	8130	0.05	0.13	13	48		29.5	24.1	16	160	570
358	8980	0.05	0.13	13	64	16	29.7	25	17	161	617
422	9200	0.05	0.14	14				25	17	180	629
1225	9380	0.05	0.15	15				27	19	186	848
1763	9520	0.05	0.16	15				27 27	19	190	1070
2088 2240	10270 18700		0.17 0.21	15 16			39 39.4	28	19 19	234 240	1130 1300
2890	28500	0.06	0.25	18				28	19	244	1600
3040		0.06	0.558	18				35.7	19.3	278	1900
3140		0.06	0.844	19	400	18	46	36	20	332	3990
4380	78300	0.06	1.25	19	440	18.5	48.9	37.9	21	333	4230
4720		0.06	2.22	19			49.4	48.4	21	384	4370
6259		0.06	2.7	20				53.1	22	384 388	4700 4900
6590 8255		0.06	3.74 43	20 22			59.6 61.5	58.2 62.4	23	388	5700
8800		0.06	43	22.2	1310			77.4	24	469	6100
9130		0.07		23.4		21		355	25	472	6400
14070		0.07		24	2200	21	113	594	25	569	8240
16870		0.07		24					26	587	8420
41970		0.07		27					26	730	8950
		0.07		30	40600				26	778	14200
		0.08		31 31.5		21.2			28 29	1000 1040	15000 36200
		0.08		31.3		22			31.2	1200	39200
		0.09		33		22			32	1480	41100
		0.09		33		22			33	1700	49000
		0.096		34		22			33	1720	
		0.1		37		22			35	1730	
		0.1		40		22			35	1990 2080	
		0.1 0.1		42 49		22 22.7			36 36	2660	
		0.11		54		23			37	3620	
		0.11		55		23			38	4440	
		0.12		58		23			39	4700	
		0.12		61		23			41	5300	
		0.12 0.13		92 100		23 23			44 49	5470 6190	
		0.13		100		23			54	7570	
		0.13		225		23			54	26000	
		0.13		291		23			60	20000	
		0.14		424		23.7			60		
		0.141		471		23.9			60		
		0.15		501		24			62		
<u> </u>		0.157 0.16		650 913	 	24 24			71 71		
		0.16		1030	 	24			80		
		0.16		1400	1	25			80		
		0.2		2280		25			81		
		0.23		3220		25			86	-	
		0.435		4870		26			86		
ļ		0.54	ļ	4970		26			87		
1		0.545 0.62			 	26 26			93 93		
		0.659			 	26			93		
		0.662			1	26			93.1		
		0.749				27			95		
		0.796				27			96		
		0.8			1	27			102		
1		0.8			 	27 27			109 128		
1		2.01			 	21			120		
		3.04			1						
					 						
					 						
	I .		1		1				l		

Hit (Cont.) 150 150 158 168 160 175 210 240 2544 260 261 270 300 304 308 319 320 332 333 352 356 361 370 379 380 387 404 429 431 452 427 488 523 581 626 634 679 775	Pyrene Hit 14 17 19 37 56 6375 455 510 536 626 700 829 1320 1350 1350 1350 7150 7150 7500 7150 7500 7150 7500 12000 21000 21000 21000 21000 21000 25000 98000 110000	No-Hit N	0.1 0.2 0.2 0.3 0.3 0.3 0.3 0.5 0.6 0.7 0.7 0.8 0.8	Total benzofluoranthenes (b+k (+j)) No-Hit 11.7 15 15 15.1 17 19.2 23 25 26 26 26 27 36 36.9 39 41 41 41 41 41 41 41 42 43 43 444 444	248 248 248 255 283 290 293 297 311 312 316 335 339 348 363 379 414 421 445 501 630 657 686 7744 823	Total benzofluoranthenes (b+k (+j)) Hit 15 15 16 17 18 18 18 19 19 100 11 11 12 19 19 23 23 23 266 48 48 556 659 700 71 135 146 184 201 1440 201 4140
150 1588 1690 175 2100 240 260 261 270 280 300 304 308 319 320 332 332 333 352 361 370 380 387 404 429 431 452 477 488 523 581 626 634 679 715	177 199 377 56 455 510 536 626 700 8299 1320 1350 1350 1630 2530 3650 5700 7750 11200 13300 21000 21000 21000 255000 55600 98000	0.1.1 0.1.1 0.1.1 0.1.1 0.1.1 0.1.1 0.1.1 0.1.1 0.1.1 0.1.1 0.1.1 0.1.2 0.2.2 0.	0.1 0.2 0.2 0.3 0.3 0.3 0.3 0.5 0.6 0.7 0.7 0.8 0.8	15 15 15 15 15 15 15 15 15 15 15 15 17 19.2 23 25 25 26 26 26 26 27 36 36.9 39 41 41 41 41 42 43 43 43 43 43 43 43 43 44 44 44 45 50 50 50 50 50 50 55 57	143 148 149 149 175 176 178 186 191 234 245 248 248 228 290 293 3297 311 312 316 3355 338 339 348 46 363 379 414 421 445 496 501 630 657 686 7744 823	11. 3.3 3.3 3.3 3.5 5.5 5.5 6.6 8.8 8.8 9.9 10.0 11.1 12.1 12.1 19.2 23.3 23.3 26.6 4.8 4.8 5.55.5 6.55 6.55 6.55 6.55 6.55 6.55
158 160 160 175 210 240 240 261 270 280 300 304 319 320 332 333 352 2356 361 370 379 380 380 387 404 429 431 452 477 488 581 626 634 679 775	177 199 377 56 455 510 536 626 700 8299 1320 1350 1350 1630 2530 3650 5700 7750 11200 13300 21000 21000 21000 255000 55600 98000	0.1.1 0.1.1 0.1.1 0.1.1 0.1.1 0.1.1 0.1.1 0.1.1 0.1.1 0.1.2 0.2.2 0.	0.22 0.33 0.33 0.33 0.35 0.65 0.66 0.77 0.88 0.88	15 15 15 15 15 15 15 15 15 15 15 15 17 19.2 23 25 25 26 26 26 26 27 36 36.9 39 41 41 41 41 42 43 43 43 43 43 43 43 43 44 44 44 45 50 50 50 50 50 50 55 57	149 175 176 178 186 191 234 245 248 248 255 283 290 293 327 3111 312 316 335 338 339 348 363 379 414 421 445 496 501 630 657 686 686 7744 823	11. 3.3 3.3 3.3 3.5 5.5 5.5 6.6 8.8 8.8 9.9 10.0 11.1 12.1 12.1 19.2 23.3 23.3 26.6 4.8 4.8 5.55.5 6.55 6.55 6.55 6.55 6.55 6.55
175 210 240 254 260 261 270 280 300 304 308 319 320 332 356 361 370 380 380 380 387 404 429 431 452 477 488 523 581 626 634 679 715	37 566 3755 4455 5100 8299 13200 14300 25300 5700 77500 77500 11200 13300 21000 21000 21000 22000 25000 55000 55000	0.1.1 0.1 1.1 0.1 1.1 0.1 1.1 0.1 1.1 0.1 1.1 0.1 1.1 0.1 1.1 0.1 1.1 0.1 1.1 0.1 1.1 0.1 1.1 0.1 1.1 0.1 1.1 0.1 1.1 0.1 0	0.22 0.3 0.3 0.3 0.3 0.5 0.6 0.6 0.7 0.8 0.8	15.1 177 19.2 23 25 25 26 26 26 26 36.9 39 39 41 41 41 41 42 43 43 44 44 44 44 44 44 45 46.4 88 50 50 50 50 50 55 57	175 176 178 186 191 234 245 248 248 255 283 290 293 311 312 316 335 339 348 363 339 414 421 445 496 501 630 657 686 774	11 13 13 13 13 13 13 13 15 15 15 15 16 16 18 18 18 19 10 11 11 12 12 19 19 19 23 23 23 26 65 55 65 70 70 71 135 146 184 184 20 11 22 11 41 418
210 240 254 260 261 270 280 300 304 319 320 332 353 353 361 370 370 380 380 387 404 429 427 477 488 523 581 664 679 775	566 375 510 536 536 626 700 1320 1320 1320 1320 1350 1630 2340 2340 2340 2350 5700 5700 11200 13800 13800 21000 21000 21000 25000 55600	0.1.1 0.1.1 0.1.1 0.1.1 0.1.1 0.1.1 0.1.1 0.1.2 0.2.2 0.	0.3 0.3 0.3 0.3 0.3 0.5 0.6 0.6 0.7 0.8 0.8 0.8	17 19.2 23 23 25 25 25 26 26 26 26 27 36 38 39 39 41 41 41 41 41 42 43 43 43 43 44 44 44 45 50 50 50 50 50 55 57	1766 1788 1866 1911 2344 245 245 2488 2488 2900 2933 2907 3111 3112 316 3335 3388 3488 3633 379 4114 445 496 501 6300 6577 686 67744 823	1: 33 33: 35 55 56 66 88: 88: 89 90 100: 1111 122 123 233 266 48: 555 65: 65: 700 711 1355 146: 1844 2011 2211 4418
240 254 260 261 270 280 300 304 308 319 320 332 333 352 356 361 370 380 380 387 404 429 431 457 468 563 563 674 679 775	375 455 510 536 626 700 829 1320 1350 14820 2340 25300 11200 11200 21000 21000 21000 25000 255000	0.1.1 0.1.1 0.1.1 0.1.1 0.1.1 0.1.1 0.1.2 0.1.2 0.2.2 0.	0.3 0.3 0.3 0.5 0.6 0.7 0.8 0.8	19.2 23 25 25 26 26 26 26 27 36.9 39 39 41 41 41 41 41 42 42 43 43 44 44 44 45 46.4 48 50 50 50 50 50 555 57	178 186 191 234 245 248 248 255 283 290 293 3297 3111 312 316 335 338 339 348 4421 445 496 501 630 657 686 7744 823	33 33 33 35 55 55 66 83 88 89 90 100 1111 121 122 123 233 266 488 488 555 657 700 71 1356 1466 1844 2011 2211 4181
254 2600 2611 270 2800 3004 3088 3199 320 332 3333 352 356 361 370 380 380 380 387 404 429 431 452 477 488 523 581 626 634 679 715	455 510 536 626 700 829 1320 1350 1630 1850 2530 3650 7500 7500 11200 21000 21000 25000 55600 98000	0.1.1 0.1.1 0.1.1 0.1.1 0.1.1 0.1.2 0.2.2 0.	0.3 0.3 0.3 0.5 0.6 0.6 0.7 0.8 0.8 0.8	23 25 26 26 26 26 26 36.9 36.9 39 39 41 41 41 41 41 42 43 43 43 44 44 44 55 60 50 50 50 50 55 57	186 1911 234 245 248 248 248 255 283 290 293 311 312 316 335 338 339 348 462 414 445 496 501 630 657 686 7744 823	3. 5- 5- 5- 6- 8- 8- 8- 8- 9- 100 110 111 121 199 23 23 23 266 484 485 555 655 700 71 1355 1466 1844 2011 2211 4418
260 261 270 280 300 304 308 319 320 332 356 361 370 379 380 380 387 404 429 431 452 477 488 563 664 679 775	510 536 626 700 1320 1320 1320 1420 2340 5500 5700 7150 1320 1320 2400 21000 21000 21000 22000 22000 22000 22000 25000 2	0.1.1 0.11 0.11 0.11 0.11 0.11 0.11 0.1	0.3 0.3 0.5 0.6 0.7 0.8 0.8 0.8	25 25 26 26 27 36 36.9 39 41 41 42 43 43 43 44 44 45 46.4 48 50 50 50 50 51 52 55 57	191 234 248 248 248 255 283 290 293 297 311 312 316 335 338 348 363 379 411 445 496 501 630 657 686	5 5 5 5 5 5 5 6 6 8 8 8 8 9 9 9 10 10 10 10 11 11 11 12 12 12 12 12 12 13 12 13 12 13 12 13 13 14 14 14 14 14 14 14 14 14 14 14 14 14
261 270 280 289 300 304 319 320 332 356 361 370 380 380 387 404 429 431 452 477 488 626 634 679 715	536 626 700 829 1320 1350 1630 1630 5700 5700 7500 11200 13600 21000 21000 21000 25000 55600 98000	0.1.1 0.11 0.11 0.11 0.11 0.11 0.11 0.1	0.3 0.5 0.6 0.7 0.8 0.8 0.8	25 26 26 27 36.9 39 39 41 41 41 41 42 42 43 43 44 44 44 45 50 50 50 50 50 50 50 50 50 50 50 50 50	234 245 248 248 255 283 290 293 297 311 312 316 335 338 339 348 441 421 445 496 501 630 657 686 7744 823	5.5 5.6 8.8 8.8 9.9 10.0 111.1 122.1 132.3 233.2 236.2 266.5 700.7 71.1 1355.1 146.1 1844.2 2011.1 4184.4 470.0
270 280 300 300 308 319 320 332 352 356 361 370 380 380 387 44 429 431 452 477 488 523 581 664 679 775	626 700 829 1320 1350 1850 1850 2530 3650 5700 7150 11200 13800 21000 21000 22000 25000 55600 98000	0.1.1 0.1.1	0.5 0.6 0.7 0.8 0.8 0.8 0.8	26 26 26 27 36 36.9 39 39 41 41 41 42 42 43 43 43 44 44 44 55 50 50 50 50 50 50 55 57	245 248 248 255 283 290 293 311 312 316 335 338 339 444 421 445 496 501 630 657 686 7744 823	5 6 8 8 8 8 9 9 9 10 10 10 10 11 11 12 12 12 12 12 14 14 18 47 18 18 18 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19
280 289 300 304 308 319 320 332 356 361 370 380 380 387 404 429 431 452 477 488 523 551 664 679 775	700 829 1320 1350 1350 14820 2340 2530 3650 5000 11200 13300 15900 20000 21000 21000 25000 25000 55600	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.6 0.7 0.8 0.8 0.8 0.8	26 27 36.9 36.9 39 39 41 41 41 42 43 43 44 44 44 45 45 50 50 50 50 50 50 50 50 50 50 50 50 50	248 248 248 255 283 290 293 297 311 312 316 335 339 348 363 379 414 421 445 501 630 657 686 7744 823	6 6 8 8 8 8 9 9 9 100 100 100 100 100 100 100 100 1
289 300 304 308 319 320 333 352 356 361 361 370 380 380 380 442 477 488 523 563 664 679 775	829 1320 1350 1630 1630 1620 2340 2530 5000 5700 11200 13600 21000 21000 25000 25000 55600 98000	0.1 0.14 0.15 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	0.7 0.8 0.8 0.8 0.8	27 366 36.9 39 39 41 41 41 41 42 42 43 43 444 44 45 46.4 50 50 50 50 50 50 50 50 55 57	248 255 283 290 293 311 312 316 335 338 339 348 46 45 496 501 630 657 686	8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9
300 304 308 319 320 332 355 361 370 379 380 387 404 429 431 452 477 488 583 581 626 634 679 775	1320 1350 1830 1820 2340 2530 5500 5700 7750 11200 13800 21000 21000 22000 25000 55600 98000	0.14 0.15 0.15 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	0.8 0.8 0.8 0.8	36 36.9 39 411 411 421 424 434 444 445 46.4 48 50 50 50 50 50 50 50 50 50 50	255 283 290 293 297 311 312 316 335 338 338 348 363 379 411 445 496 501 630 657 686 7744 823	8 8 9 9 100 110 111 122 121 1418 470 110 110 110 110 110 110 110 110 110 1
304 308 319 320 332 333 352 356 361 370 380 380 387 404 429 431 452 477 477 488 626 634 679 775	1350 1630 1820 2340 2530 3650 5700 7750 13200 13800 21000 21000 22000 25000 55600 98000	0.14 0.15 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	0.8	36.9 39 39 41 41 41 41 42 42 43 43 44 44 55 50 50 50 50 50 50 50 50 50 50 50 50	283 290 293 297 311 312 316 335 338 339 348 444 421 445 496 501 630 657 686 774 823	9 10 11 11 12 12 19 19 23 23 23 26 48 48 55 65 70 71 11 135 146 201 221 418
319 320 332 333 352 356 361 370 380 380 387 404 429 431 452 477 488 523 581 626 634 679 715	1630 1820 2340 2530 3650 5000 5700 7150 13300 13600 15900 20000 21000 22000 25000 55600	0.15 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	0.8	39 39 39 41 41 41 41 42 43 43 444 44 44 56 50 50 50 50 50 50 50 50 50 50 50 50 50	293 297 311 312 316 335 338 348 363 379 414 421 445 496 501 630 657 686 774 823	10 11 12 19 19 19 23 23 26 48 55 55 70 71 11 135 146 184 201 221 418
320 332 333 352 356 361 370 380 380 387 404 429 431 452 477 488 523 581 626 634 679 715	1820 2340 2530 3650 5000 7150 11200 13300 2000 21000 22000 25000 5560 98000	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2		41 41 41 42 43 43 44 44 45 46.4 48 50 50 50 50 50 50 50 50 50 50 50 50 50	297 3111 312 316 335 338 339 348 363 379 414 421 445 496 501 630 657 686 7744 823	111 12 19 19 19 233 26 48 48 55 55 65 70 71 133 146 184 201 221 418
332 333 352 356 361 370 380 380 387 404 429 431 452 477 488 626 634 679 775	2530 3650 5000 7150 7500 11200 13300 13600 2000 21000 21000 22000 25000 55600 98000	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2		41 41 42 43 43 44 44 45 46.4 48 50 50 50 50 50 50 50 50 50 50 50 50 50	311 312 316 335 338 339 348 363 379 411 445 496 501 630 657 686	19 19 23 23 26 48 48 55 65 70 71 135 146 184 201 221
333 352 356 361 370 370 380 380 387 404 429 431 452 477 488 523 581 626 634 679 775	3650 5000 5700 7150 7500 11200 13300 13600 20000 21000 21000 22000 25000 98000	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2		41 42 43 43 44 44 45 46.4 48 50 50 50 50 50 50 50 50 50 50 50 50 50	312 316 335 338 338 348 363 379 414 421 445 496 501 630 657 686 774 823	19 23 23 26 48 48 55 65 70 71 135 146 201 221 418
352 356 361 370 379 380 380 387 404 429 431 452 477 488 523 581 626 634 679 775	5000 5700 71500 11200 13300 13600 15900 20000 21000 22000 25000 98000	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2		42 43 43 44 44 45 46.4 50 50 50 50 50 50 50 50 50 50 50 50 50	316 335 338 339 348 363 379 414 421 445 496 501 630 657 686 774 823	23 26 48 48 55 66 77 71 135 146 200 221 418
356 361 370 379 380 380 387 404 429 431 452 477 488 523 581 626 634 679 775	5700 7150 7500 11200 13300 13600 20000 21000 21000 22000 25000 98000	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2		43 43 44 44 45 46.4 48 50 50 50 50 50 53 53 54 54 55 55	335 338 339 348 363 379 4114 421 445 496 501 630 657 686 7744 823	25 26 44 55 55 77 71 133 146 184 200 221 418
361 370 379 380 380 387 404 429 477 477 477 581 626 626 634 679 715	7150 7500 11200 13300 13600 15900 20000 21000 21000 25000 55600 98000	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2		43 44 44 45 46.4 48 50 50 50 50 53 53 54 54 55 55	338 339 348 363 379 414 421 445 496 501 630 657 686 774 823	26 44 55 66 77 71 138 144 200 221 418
370 379 380 380 387 404 429 431 452 452 523 581 626 634 679 715	7500 11200 13300 13600 15900 20000 21000 21000 22000 25000 55600 98000	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2		44 44 45 46.4 50 50 50 50 50 53 54 54 54 55 55	339 348 363 379 414 421 445 496 501 630 657 686 774 823	48 55 66 77 71 133 144 149 200 221 418
379 380 387 404 429 431 452 477 488 523 581 626 634 679 715 770	11200 13300 13600 15900 20000 21000 21000 22000 25000 55600 98000	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2		44 45 46.4 48 50 50 50 53 53 54 54 55 57	348 363 379 414 421 445 496 501 630 657 686 774	55 66 77 7 133 144 18 20 22: 411
380 380 387 404 429 431 452 477 488 523 581 626 634 679 715 770	13300 13600 15900 20000 21000 21000 22000 25000 55600 98000	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2		45. 46.4 48. 50 50 50 53 53 54 54 55 57	363 379 414 421 445 496 501 630 657 686 774	66 77 77 138 144 188 200 22: 418 477
380 387 404 429 431 452 477 488 523 581 626 634 679 715 770	13600 15900 20000 21000 21000 22000 25000 55600 98000	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2		46.4 48 50 50 50 50 50 53 53 54 54 55 57	379 414 421 445 496 501 630 657 686 774 823	77 71 133 144 184 200 22: 418 477
387 404 429 431 452 477 488 523 581 626 634 679 715	15900 20000 21000 21000 22000 25000 55600 98000	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2		48 50 50 50 53 54 54 55 55 57	414 421 445 496 501 630 657 686 774 823	7' 138 144 18 20' 22' 411
404 429 431 452 477 488 523 581 626 634 679 715	20000 21000 21000 22000 25000 55600 98000	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2		50 50 50 53 53 54 54 55 55	421 445 496 501 630 657 686 774 823	138 144 188 20' 22' 418 47(
429 431 452 477 488 523 581 626 634 679 715	21000 21000 22000 25000 55600 98000	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2		50 50 53 54 54 55 57 59	445 496 501 630 657 686 774 823	146 18- 20' 22' 411 47(
431 452 477 488 523 581 626 634 679 715	21000 22000 25000 55600 98000	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2		50 53 54 54 55 55 57 59	496 501 630 657 686 774 823	184 201 221 418 470
452 477 488 523 581 626 634 679 715	22000 25000 55600 98000	0.2 0.2 0.2 0.2 0.2 0.2 0.2		53 54 54 55 55 57 59	501 630 657 686 774 823	20° 22° 418 470
477 488 523 581 626 634 679 715	25000 55600 98000	0.2 0.2 0.2 0.2 0.2 0.2		54 54 55 57 57	630 657 686 774 823	22° 418 470
488 523 581 626 634 679 715	55600 98000	0.2 0.2 0.2 0.2 0.26		54 55 57 59	657 686 774 823	418 470
523 581 626 634 679 715	98000	0.2 0.2 0.2 0.26		55 57 59	686 774 823	470
581 626 634 679 715 770		0.2 0.2 0.26		57 59	774 823	
626 634 679 715 770		0.26		59	823	
634 679 715 770		0.26				
679 715 770				59	853	
770		0.26		59	1380	
		0.28		60		
		0.3		62	1780	
927		0.3		63	2000	
1250		0.3		66.9	2020	
1320		0.3		67	2270	
1590		0.3		68	2450	
1710		0.3		69		
2190		0.3		70		
2060						
4410		0.4		87		
4700		0.5		91	19900	
5120		0.5		102	79000	
6800		0.5		103		
7000		0.5		110		
7540		0.6		117		<u> </u>
		0.6		118		
68000						
			-			
				141		
		> 3.3		142		
	4700 5120 6800 7000	2710 2960 3460 3540 4280 4410 4700 5120 6800 7000 7540 8790 10000	2710 0.4 2960 0.4 3460 0.4 3540 0.4 4280 0.4 4410 0.4 4700 0.5 5120 0.5 6800 0.5 7000 0.5 7540 0.6 8790 0.6 8790 0.6 8800 0.7 16000 0.8	2710	2710 0.4 76 2960 0.4 76 3460 0.4 77 3540 0.4 82 4280 0.4 83 4410 0.4 87 4700 0.5 91 5120 0.5 102 6800 0.5 103 7000 0.5 110 7540 0.6 117 8790 0.6 118 10000 0.7 119 16000 0.8 120 68000 1 124 1.1 127 1.9 140 3.3 141	2710 0.4 76 3400 2960 0.4 76 3620 3460 0.4 77 4440 3540 0.4 82 5600 4280 0.4 83 11000 4700 0.5 91 19900 5120 0.5 102 79000 6800 0.5 103 7000 7540 0.6 117 8790 0.6 118 10000 0.7 119 140 120 68000 1 124 1.1 127 1.1 1.2 1.1 127 1.1 140 3.3 141 141 141 141

ONOMUS GROWTH		Total organic carbon	Total Polychlorinated Biphenyls	Total Polychlorinated Biphenyls	Zinc		Zinc
otal organic carbon	No Uit (Cont.)					No Uit (Cont.)	
No-Hit	No-Hit (Cont.)	Hit	No-Hit	Hit		No-Hit (Cont.)	Hit
0.21	2.35	1.28	11	112	49.7	238	70.3
0.23	2.41 2.42	1.3	11	129	51.3	254	89.3
0.38 0.42	2.42	1.44 1.46	12 16	209 284	55 55.9	262 264	96.8
							164
0.56	2.45	1.67	17	354	58.1		167
0.61	2.48	1.77	29	1460	62.2		225
0.67	2.51	1.89	40	2090	65	281	279
0.69		2.03	43		65.6	296	306
0.72	2.57	2.16	43		65.6		333
0.74		2.5	53		66		337
0.78	2.8	2.61	57		71.1	359	38
0.82	3.03	2.66	62		72.7	368	39
0.88	3.6	2.71	69		73	374	39
0.89	4.9	2.74	82		74	375	40
0.95		2.74	88		75		40
0.97	5.2	3	108		76		42
1.03	5.7	3	108		76.4		43
1.19		3.4	116		76.9	443	45
1.2	6.4	3.52	116		77	527	59
1.24	9.7	3.69	116		82	550	67
1.26		4.6	116		83		68
1.28	12.1	5.6	130		83	754	177
1.3	12.2	6.8	253		84	1020	201
1.3	21.3	7.9	257		84.3	1080	415
1.37	> 21.3	15.8	300		85		
1.39			304		85		
1.44			379		85.7		
1.45			394		85.9		
1.46			2500		86		
1.56					86		
1.59					87		
1.61					87		
1.65					87		
1.68					89.6		
1.72					90		
1.73					90		
1.77					96		
1.83					97.6		
1.87					98		
1.87					101		
1.91					101		
1.93					104		
1.96					106		
1.96					111		
1.97					113		
1.98					122		
1.98					122		
2.01					124		
2.06					130		
2.07					130		
2.11					131		
2.11					133		
2.13					137		
2.15					142		
2.16					142		
2.18					144		
2.21					145		
2.21					145		
2.25					158		
2.25					161		
2.26					173		
2.27					190		
2.3					203		
2.3					212		
2.3					220		
2.34					227		
2.34					221		

HIRONOMUS MORTA -Methylnaphthalene	2-Methylnaphthalene	4,4'-DDD	4,4'-DDD	4,4'-DDE	4,4'-DDE	4-Methylphenol	4-Methylpheno
No-Hit	Hit	No-Hit	Hit	No-Hit	Hit	No-Hit	Hit
11	5.1	0.77	1	0.76	2	7.3	1
12	10	0.99	3	0.8	2	11	2
12	13	3	7	2	3	16	4
13	15	3.4	8	2	3.2	117	5
13	16	4.7	8	3	3.8	476	6
14	16	5	8.3	3	5	760	7
15	28	5.6	11	4	5		13
15	28	7.5	12	4.6	6		15
20	30	8.9	16	6.7	6.8		15
24	52	9.2	20	7.8	8		18
36	54	14	22	8.3	8		18
189	62	22	27	8.9	8		21
555	64	24	45	11	8.6		23
	141	30		11	11		38
	160	33		18			51
	170	49		19			55
	180	50		20			69
	180	52		20			71
	188	59		20			121
	214	70		> 20			156
	353	96					173
	443	> 96					203
	469						236
	877						631
	982						
	1720						
	1770						
	2310						
	3470						
	AET - low confidence						
	AET - high confidence						
	next highest hit value						
	outlier						

CHIRONOMUS I Acenaphthene		Acenaphthylene	Acenaphthylene	Anthracene		Anthracene	Antimony	Antimo
No-Hit	Hit	No-Hit		No-Hit	No-Hit (Cont.)		No-Hit	Hit
6.1	10	3.2	Hit 2.5	NO-FIX 5	115	Hit 12	0.05	0.1
10	11	3.5	8.5	10	126	14	0.05	0.1
11	12	4.5	11	11	150	16	0.00	0.13
11	14	4.5	12	12	155	20	0.1	0.13
12	14	12	12	12	177	22	0.1	0.14
12	18	13	14	12	210	23	0.1	0.2
14		13	17	13	220	28	0.2	0.2
15	19	13	23	13	220	28	0.2	0.2
17	20	14	25	14	343	32	0.2	0.2
18	24	14	30	15	353	37	0.2	0.3
18	33	15	42	16	370	40	0.4	0.3
20	37	15.7	71	17	380	46	0.47	0.3
23		19	110	18	429	53	0.5	0.3
23	60	20.8	110	22	510	67	0.6	0.4
23	73	23	120	22	660	110	0.66	0.4
32	90	34	136	23	774	124	1	0.5
36	92	35.8	140	25	965	170	1.6	0.54
37	120	36.8	148	25	1190	220	1.8	0.6
39	130	44	171	27	1520	233	1.9	3.0
43	156	88	200	27	1900		1	1.1
45	162	94	209	29	5700			4.4
51	177	314	265	29		350		
52	203	470	265	38.6		356		
56	252		279	40.1		373		
72	260		362	41		406		
75			460	42		420		
77	310		480	46		465		
82	310		594	48.1		510		
88	332		640	52		552		
91.9	360		642	53		560		
99	410		697	65		600		
100	520		1020	70		630		
107	523		1260	72.5		717		
110	560		3600	74		814		
112	560			75.1		915		
130	630			85		980		
148	792			95		1110		
170	920			99		1130		
209	940			101		1230		
240	990					1400		
260	1060					1500		
272	1100					1580		
316	1250					1700		
830	1320					1700		
2350						1700		
2790	2460					1900		
2940						2860		
5700						2920		
6290						5900		
29600	86200					6140		
						6600		
						16200		
						16600		

roclor 1254	Aroclor 1254	Aroclor 1260	Aroclor 1260	Arsenic		Arsenic	
No-Hit	Hit	No-Hit	Hit		No-Hit (Cont.)	Hit	Hit (Cont.
12	11	15	15	1.8	5.6	1.4	The (Oone.
17	11	18	24	2	5.6	1.9	
24	16	20	26	2.7	5.7	2	7.0
25	18	24	27	2.7	5.7	2.1	7.0
37	35	29	38	2.9	5.9	2.3	7.3
51	47	37	40	2.9	5.9	2.3	7.3
52	62	38	40	3			
	70	40	42		6	3	8.6
54				3	6	3	8.
54	70	46	43	3.1	6	3	8.8
57	81	48	46	3.2	6	4	
58	140	53	57	3.3	6	4	
70	160	62	57	3.3	6	4	
78	170	64	74	3.3	6.1	4	
97	227	64		3.4	6.16	4	
100	230	69		3.5	6.58	4	9.1
120	256	77		3.5	7	4	1
120	294	98	460	3.5	7	4	1
140	960	130		3.55	7	4	12
150	1060	130	2500	3.6	7	4	12
156		140		3.7	7.7	4	13
170		150		3.75	7.8	4.09	13
170		184		3.8	8	4.1	13
180				3.9	8	4.5	16
189				3.9	8	4.7	1
200				3.94	8.03	5	17
202				4	8.1	5	2
209				4	8.18	5	2
230				4	8.62	5	21
340				4	9.32	5	21
340				4	9.46	5	23
				4			
				4	9.7	5	30
					10.6	5	31
				4	11.7	5	31
				4	11.7	5	3
				4	12.2	5	11
				4.2	13	5	12
				4.2	14.3	5	15
				4.3	14.7	5.17	17
				4.3	15	5.81	20
				4.3	15	6	
				4.3	15	6	
				4.3	17	6	
				4.36	17.8	6	
				4.4	19	6	
				4.6	26.6	6	
				4.6	26.8	6	
				4.7	28	6.1	
				4.7	44.9	6.92	
				4.7	49.3		
				4.7	50.7		
				4.74	50.9		
				4.74	30.9		
				4.0			
				5			
				5			
				5			
				5			
				5			
				5.1			
				5.3			

o(a)anthracene		Benzo(a)anthracene		Benzo(a)pyrene		Benzo(a)pyrene	
No-Hit	No-Hit (Cont.)	Hit	Hit (Cont.)	No-Hit	No-Hit (Cont.)	Hit	Hit (Cont
4.8	103	11	561	8.8	128	12	35
8.1	105	13	600	10	131	14	43
11	109	14	917	11	133	15	45
13	112	16	958	12	135	16	61
14	112	19	1060	13	145	19	78
15	113	19	1100	13	150	19	89
15	115	22	1220	13	153	21	91
16.9	116	24	1270	14	171	21	10
17	130	25	1500	15	176	24	10
17	140	26	1580	16	176	25	11
18	140	29	1700	16	180	26	142
18	150	30	1720	18	189	31	15
18	154	30		18	195	32	180
19	162	32	2380	18.6	195	34	184
20	163	33	2620	19	210	36	189
20	167	35	3200	20	210	36	22
20	170	35	3340	21	213	37	22
22	170	36	3500	23	216	38	250
24.4	179	38	3750	25	223	43	270
27	186	41	4000	27	231	43	27
28	188	50	4260	27	240	48	29
29	190	51	5430	27.4	256	51	334
29	235	56		28	256	56	40
29	240	70		28	280	66	46
31	240	73	8600	29	298	67	48
32	259	75	9000	32	310	73	49
32	268	79	11000	32	333	81	67
32	271	79	11000	33	343	85	96
35	280	93	12000	34	351	87	110
37	288	93	13000	40	360	91	1300
37	321	94	25600	40	360	100	1300
38	342	95	37000	40	382	116	140
39	353	97	44000	43	387	117	150
41	354	99	77000	45	454	120	243
43	441	105		49	570	120	390
49 52	470 516	106 110		58	710	130	550 860
				60	720	153	860
55	539	120		68	750	160	
59	590	130		76	820	170 176	
62	598	148		80	1000		
64	724	150		85	1400	206	
67 68	740 750	181 190		88 92	1620 1630	226 230	
71	760	190		92	1650	230	
71	1080						
71	1180	220 310		102 114	3300 11000	270 334	
77.8	1300	373		120	11000	334	
77.8	1330	411		120			
82	1470	523		128			
89	1470	523		128			
93	2640						
100	2700						
100	5800						-
	5800						-
							-
							-
							-
							-
	1		1		l l		li .

CHIRONOMUS MORTA Benzo(g,h,i)perylene No-Hit	No-Hit (Cont.)	Benzo(g,h,i)perylene Hit	Hit (Cont.)	Benzoic acid No-Hit	Benzoic acid Hit	Beryllium No-Hit	Beryllium Hit
9.6	73.3	11	613	35	82	0.071	0.135
11	73.4	11	791	64	110	0.0883	0.147
11	78	14	821	73	110	0.102	0.153
12	84	15	827	250	250	0.147	0.188
13	85	17	840	300	270	0.151	0.249
13.5		17	1150	300	813	0.154	0.256
14		18	1200	360	880	0.16	0.317
14		18	1330	650	900	0.162	0.385
16		19	1350	660	1540	0.162	0.444
16		19	1350	720	1650	0.19	0.47
16.8		22	1410	740	2020	0.202	0.9
17	110	22	1500	800	2070	0.214	
17	114	23	1660	1300	2170	0.252	
17	115	29	1720	1500	2380	0.261	
18		30	1900	2910		0.262	
18		32	2510		2640	0.286	
		32 36	2800 3300		2840	0.308	
20		42			3790 4110	0.325 0.327	
20		50			4200	0.348	
20.9		51	7100		4200	0.358	
21	186	56				0.361	
22		56	8900			0.387	
22		57	9400			0.417	
22		57	11000			0.427	
29		65	11000			0.463	
30		68	12100				
30		70	27000				
31		70	38000				
33	221	77	55000				
35		77					
36		77					
41	280	82					
43		87					
44		99					
45		100					
46		110					
48		140					
51	570	146 150					
65 67	854 965	150				l	
69		170					
71		181					
/1	5200	187					
	3200	216					
		223					
		231					
		270					
		308					
		350					
·		424					
		497					
			1				

CHIRONOMUS MORTALITY Bis(2-ethylhexyl) phthalate	Bis(2-ethylhexyl) phthalate		Butyl benzyl phthalate	Butyl benzyl phthalate
No-Hit	Hit	Hit (Cont.)	No-Hit	Hit
30	55	1090	10	18
32	62	1370	11	24
32	62	1400	18	24
50	110	1920	21	24
62 70	120 120	1970 2140	25 31	25
100	140	2140	47	28
110	160	2220	50	32
110	200	2520	50	32
120	220	2800	52	3
160	240	3010	55	3
170	250	3420	56	3
170	260	3970	57	3'
170 170	275 290	4970 5120	62 63	4
180	310	6360	64	4:
190	320	6380	64	4:
220	330		66	4
230	350		70	4
285	350	33300	110	5
300	360		119	5
307	370		121	5
322	370		140	56
330	370		145	5° 7°
337 350	390 420		180 184	8
360	420		230	9
418	444		274	13
420	450		407	16
440	452		409	160
470	460		430	16
480	460		470	17
519	500		540	183
577	501		980	19
713 772	510 520			22: 25i
774	540			26
778	546			28
913	547			36
1000	550			76
1020	575			152
1050	580			
1110	660			
1200	727			
1380 1390	800 867			
1400	807			
1440				
1600				
1740				
1800				
1800				
1930				
2000				
2800				
3400 3510				
4330				
7590				
7 3 3 0				

CHIRONON	IUS MORTALIT	Υ									
Cadmium		Cadmium		Chromium		Chromium		Chrysene		Chrysene	
	No-Hit (Cont.)	Hit	Hit (Cont.)	No-Hit	No-Hit (Cont.)	Hit	Hit (Cont.)	No-Hit	No-Hit (Cont.)	Hit	Hit (Cont.)
0.07	0.7	0.074	0.9	10.8	40	7	32	5.1	147	15	1540
0.093	0.8	0.1	0.9	12	40.5	10.1	33	9.5	152	19	1560
0.1	0.834	0.1	0.968	12.2	40.5	12	33.4	11	160	21	2170
0.1	0.875	0.1	0.973	15	41	13	34	12	161	23	2200
0.1	0.913	0.1	1	15.1	43	14.3	35	13	170	24	2210
0.11	0.963	0.1	1	15.2	43.9	15.7	36	13	172	25	3000
0.12	1.13	0.12	1	16.5	45.4	16.7	38	14	179	27	3200
0.13	1.17	0.13	1	16.8	45.5	18.3	38.8	15	180	28	3370
0.159	1.2	0.14	1.1	17	46.3	18.5	39	17 17	180	31	3430
0.16	1.39 1.44	0.17	1.1	17.4	46.5 48.5	19.1 20.2	39 41		187	32 34	3700 3800
0.161 0.17	1.55	0.2	1.2 1.23	17.6 18.4	49.6	21.5	41	17.9 22	202 211	34	4800
0.173	1.58	0.2	1.23	20.3	50.2	22	42.1	23	220	35	5730
0.18	1.69	0.2	1.3	20.5	50.9	23	42.8	24	221	35	5880
0.18	2.07	0.2	1.3	20.6	52.1	23.1	43	24	230	35	5940
0.187	2.1	0.2	1.3	21.1	52.3	23.3	43.3	24.6	249	39	7000
0.19	2.15	0.2	1.4	22	52.8	23.6	43.5	25	260	43	7240
0.2	2.3	0.2	1.4	23	53.9	24	44.9	25	281	43	7800
0.2	2.39	0.2	1.5	24	58.2	24	45.3	26	290	48	8900
0.2		0.2	1.6	25	60.8	24.1	46	26	314	51	10000
0.2		0.2	1.6	25	61	24.6	53.9	27	318	52	11000
0.2		0.2	1.9	26	133	25.1	55.9	28	340	58	11000
0.2		0.2	2	26		25.4	57.3	28.1	385	59	11000
0.2		0.2	2	26.2		25.4	58	30 32	390 390	61	28100
0.2 0.2		0.2 0.21	2.2 2.5	28.9 29		26 26	62 63.4	32	390	71 91	38000 46000
0.22		0.21	2.6	29		26	66.7	33	412	95	75000
0.24		0.267	2.7	29		26	68.3	35.9	425	95	73000
0.27		0.292	2.9	29		26.2	77.1	36	430	98	
0.3		0.3	3.01	29.4		26.4	80.1	36.6	482	100	
0.3		0.3	3.67	31		27	80.7	38	489	100	
0.3		0.3	5	31		27	80.7	45	490	104	
0.3		0.3	5.6	31		27	96.2	46	498	110	
0.357		0.3		31		27	99.5	47	507	111	
0.361		0.31		31.8		27.3	102	50	508	130	
0.377		0.4		31.9		28	348	50	601	140	
0.391		0.4		32		28		51	657	140	
0.4		0.45		32		28.4		51	690	157	
0.4		0.52		32.1 34		28.7 29		55 57	707 819	161 170	
0.4		0.6		34.2		29		57	1000	170	
0.472		0.607		34.2		29.2		61	1100	190	
0.472		0.69		36.5		29.4		70	1140	193	
0.5		0.7		37		29.8		70	1200	210	
0.5		0.75		37		31		70.4	1300	263	
0.506		0.791		37.7		31		73	1670	280	
0.6		0.8		38.2		31.2		76	1710	320	
0.6		0.811		38.2		31.9		78	1800	320	
0.6		0.9		39		32		93	2140	400	
0.651								105	2320	541	
								110	2460	562	
								110	3000	755	
								110 117	6400	816 1130	
								126		1260	
								126		1300	
								128		1400	
								130		1440	
							l	144		1500	
	I.										

	OMUS MORTAL								
Copper		Copper		Dibenz(a,h)anthracene	Dibenz(a,h)anthracene	Dibenzofuran	Dibenzofuran		
	No-Hit (Cont.)	Hit	Hit (Cont.)	No-Hit	Hit	No-Hit	Hit	No-Hit	Hit
3.8	71.2	8.5	76.7	7.9	12	9.4	9.2	6.9	7.6
4.69	77.9	10.7	81.2	10	14	10	12	16	9.2
5.15 11	82.3 90.9	17.2 18.1	84.5 86	12 13	14 14	10 13	12 12	20 26	12
	94.3		96.7		14	14		85	17
15.2 15.4	94.3	20.2	140	13 14	18	14	13 14	96	19
15.4	96.6	20.2	140	16	18	15	16	333	43
16.5	100	21.4	146	16	30	16	24	333	53
16.7	106	21.7	154	17	34	18	30		70
16.8	119	22.5	158	18	43	19	31		77
18	119	22.9	187	18	66	26	33		92
18.3	125	23.6	210	19.3	72	26	38		107
18.4	130	23.6	267	21	82	41	46		131
20.4	136	24.4	315	22	97	52	62		140
20.9	163	26	327	24	116	204	64		155
22.6	188	26.6	363	26	132	443	75		233
24.2	209	26.7	371	28	176		90		265
24.3	212	27.9	397	29	200		116		288
24.4	229	28.6	508	31	214		138		32
25.9	314	28.7	571	34.1	216		140		492
26.5	619	32.9	627	36	217		160		509
26.8		33	651	37	240		160		661
28.2		34	651	38	280		166		1930
28.3		34.2	655	49	292		168		17000
29.5		35	829	50	327		170		
30		35.5	1460	55.9	332		170		
30.7		35.9	2010	56	342		180		
30.9		36.8	10800	58	350		200		
31.2		36.8		125	390		234		
31.6		38		251	424		244		
32 32.4		40.6 40.7		294 540	437 490		310 372		
34.1		41.4		800	630		384		
34.1		41.4		800	730		399		
35.4		42.7			800		460		
36.2		43.4			839		660		
36.5		44			1200		928		
36.5		44.1			1200		1010		
38.3		44.6			1700		1750		
38.5		45.6			1700		2260		
39.1		46			2200		3810		
42.9		46.9			2600				
43.1		47.7			3070				
43.7		48.1			4700				
43.8		50			11000				
48.6		50.4							
50.9		51.4		-	•	•			
50.9		52.2							
54		53.2							
57.6		53.4							
59.3		54.5							
61		57.3							
62		61.8							
65		62.7							
65.2		62.9							
66		64							
66.9		70.4							
69.4		71.1 74.5							
71.1									

CHIRONOMUS MORT	ALIIT								
Dimethyl phthalate	Dimethyl phthalate	Di-n-butyl phthalate			Di-n-octyl phthalate			Fluoranthene	
No-Hit	Hit	No-Hit	Hit	No-Hit	Hit	No-Hit	No-Hit (Cont.)		Hit (Cont.)
12	5.4	6.5	11	10	11	5.6		19	3140
13	11	8.1	11	12	12			23	3210
14	11	9	12	13	13	15	190	27	3360
16	13	10	13	15	13	16		28	3450
21	15		15		17	16		32	4500
37	16		15	26	18			46	4700
42	19		15		21	19		54	4780
46	31	17	16		21	21	230	58	5000
54	54	17	17	30	22	22	268	58	6100
58	108	19	19	32	23	23	270		6600
71	147	22	20		25		276	63	7400
110	156	23	21	34	30	26.9		65	771
160	158	24	21	37	34		291	68	773
171	172	26	24	45	39			70	790
190	270		27	48	40	36		76	9800
311	314	34	30		44	36		79	11100
	362	37	31	54	46	39		87	1500
	436	37	40	55	47	39		91	1500
	576	41	67	66	49			93	15000
		41	90	74	52	40.9		96	18000
		44	108	110	58	41	437	97	1920
		61	116		67	41	445	97	2010
		68	158	256	90			110	24200
		71	254		100	44		123	26000
		103	306		201	44.7	455	129	46100
		805	350		399			130	47700
			350		413	53	500	143	100000
			481			54	502	158	120000
			690			61	520	160	180000
			841			64	674	160	
			893			65	695	170	
			1180			67	699	210	
			1740			67.6	710	210	
						69	731	240	
						70			
						70.2	766	240	
						70.7	798	280	
						71	833	280	
						71	1220	301	
						72		310	
						75		320	
						77	1300	334	
						77	1400		
						80		380	
						91	1900	390	
						93	2000	428	
						110			
						110	2450	455	
						112	2660	540	
						116	3190	580	
						116	3200	646	
						124	3370	939	
						130		1400	
						130	4040	1640	
						130		1690	
						138	6500	1780	
						144	9340	2140	
						150	15000	2300	
						153	16700	2340	
		1		l	l	l	1	1	

CHIRONOI	MUS MOR	TALITY					
Fluorene			High Molecular Weight PAH	Indeno(1,2,3-c,d)pyrene		Indeno(1,2,3-c,d)pyrene	
No-Hit	Hit	No-Hit	Hit	No-Hit	No-Hit (Cont.)	Hit	Hit (Cont.)
9.2	12	54	116	8	97.2	10	
11	12	56	470	8.2	100	10	
13	17	96.6	612	11	100	16	518
13	18	107.1	629	11	101	18	643
13	19	131.2	1004	12	106	20	740
14 15	23 23	134 136	1376 2080	12 12	116 124	22	763 773
17	25	441	2080	13	130	23	960
18	29	711	2522	14	134	24	1160
19	33	799	2629	14	134	25	1180
19	39	2068	3457	14	141	27	1220
22	50	17410	7370	15	144	27	1340
22.3	85	31640	8440	16	155	28	
24	88		11020	16	160	30	1500
30	100		13290	16	178	34	1600
33	126		13480	17	200	36	1750
36	160		13690	17.7	210	43	2300
36.2	167		15080	18	210	43	2340
37	171		16460	19	220	45	
38.1	185		16780	20	222	52	4120
42	200		19960	21	244	59	5100
44	201		21970	22	255	59	6000
47	230		28550	24	260	60	
49	251		31170	29	270	67	10000
57	270		35390	29	280	70	
60	274		38030	30	283	73	
62	310		44500	30	330	80	14000
67.4	390		54800	30	330	81	17000
73	400		57000	31	340	81	18000
75	420		62900	36	460	88	19000
79	465		72000	40	470	90 95	41000
91	498		95330	44 44	720		60000
107 120	570 590		111800 120500	45	889 1150	110 110	110000
120	620		121500	53	1350	110	
124	660		122700	53	4600	120	
124	666		134300	61	5300	120	
140	670		250500	65.6		133	
160	730		427700	68		150	
180	932		471000	68		160	
181	1070		765000	69		170	
190	1200			74		180	
285	1540			76		198	
470	1720			82		199	
1900	2500			83		207	
2080	3240			88		208	
2350	3400			97		260	
3850	6970					269	
3890	15800					342	
18300	56400						
							-
							-
					l		

	NOMUS MORTA			Law Malaania W. Lat. B	Law Malassia - W. Cat. P. C.	Manara	Manara	
Lead	No Uit (Court)	Lead	Hit (Can) \	Low Molecular Weight PAH	Low Molecular Weight PAH	Mercury	Mercury	11:4 (0
	No-Hit (Cont.)	Hit	Hit (Cont.)	No-Hit	Hit	No-Hit	Hit	Hit (Cont
3.02	41.5	4.7	68.1	10.8	53	0.02	0.03	0.34
4.27	41.9 44.8	5.01	68.4	23.3	71	0.038	0.04	0.35
5.24 6.19	44.8 45.9	5.99	73.5 79.1	28.6 147	95 160	0.039	0.04	0.43
	45.9 47.6	7.3	79.1	233		0.04	0.05	0.54
6.69	47.6		79.7		181	0.042	0.05	
7.1 7.17	48.2	11.6 12	80.8	2498 6590	351 358	0.042	0.05	0.65
7.17	48.8	12.2	87.6	6590	422	0.05	0.05	0.66
9.21	50	12.5	89.6		1225	0.05	0.05	0.74
10.2	50.2	12.7	94.6		1763	0.052	0.05	0.79
10.2	51.1	12.7	99.4		1800	0.052	0.05	0.78
11.2	52.2	13.2	102		2088	0.0583	0.06	0.84
11.4	54.4	13.2	102		2240	0.0565	0.06	0.02
11.8	64	13.3	114		2700	0.06	0.06	1.2
12.6	80.7	13.3	118		2760	0.06	0.06	2.0
12.7	95.2	13.7	125		2890	0.06	0.06	2.2
12.7	96.6	14.4	133		3040	0.06	0.06	2.2
12.7	111	14.7	150		3110	0.00	0.08	3.0
13.1	122	14.8	150		3140	0.0844	0.07	3.7
13.4	125	14.9	152		4380	0.0853	0.07	3.7
13.5	171	15	154		4720	0.0877	0.07	-
13.8	172	15.1	177		6259	0.0077	0.0776	
14.4	184	15.2	194		8130	0.0998	0.0770	
14.7	185	15.3	210		8255	0.0330	0.08	
15.2	189	15.7	230		8800	0.1	0.08	
15.2	204	15.7	234		8980	0.11	0.08	
15.5	210	15.9	249		9130	0.114	0.08	
15.9	283	16.6	258		9200	0.119	0.0838	
16	284	17.3	272		9380	0.13	0.088	
16.2	295	17.9	294		9520	0.13	0.09	
16.5	335	18.1	299		10270	0.13	0.09	
16.9]	20.8	322		14070	0.14	0.096	
17.3		21	357		16870	0.149	0.1	
17.9		23.5	431		18700	0.15	0.1	
18.6		23.5	436		28500	0.15	0.1	
18.8		23.6	525		29010	0.16	0.104	
18.9		25.9	1160		41971	0.16	0.11	
21		26.1	1310		49000	0.165	0.12	
21.1		27.3			78300	0.17	0.12	
22.4		27.4				0.186	0.12	
25.6		29				0.23	0.13	
26.6		30.1				0.232	0.13	
27.5		30.2				0.284	0.13	
33.6		32.4				0.286	0.14	
35		36				0.297	0.141	
36.2		39				0.389	0.157	
37.8		56				0.433	0.16	
38.9		58.7				0.445	0.16	
39.2		62.5				0.461	0.2	
						0.478	0.206	
						0.54	0.21	
						0.546	0.21	
						0.552	0.25	
						0.604	0.253	
						0.673	0.259	
						0.711	0.284	
						0.8	0.335	

CHIRONOMUS	MORTALITY										
Monobutyltin	Monobutyltin	Naphthalene	Naphthalene	Nickel		Nickel		Phenanthrene		Phenanthrene	
No-Hit	Hit	No-Hit	Hit		No-Hit (Cont.)		Hit (Cont.)	No-Hit	No-Hit (Cont.)	Hit	Hit (Cont.)
1.7	1	3.3	8.1	7.79	34.4	8	30.4	4.3	180	14	1990
3.97	1.3	6.1	10		35.7	10	31	11	180	14	2600
4.19	9.5	7.8	13		37	12.9	31	11	190	14	2660
4.3	11 11.2	10 10	16 18		38.8 38.9	13 14.7	33.6 36	13 14	190 231	17 19	3620 3990
4.4	11.2	11	19		39.1	15.5	37.9	14		19	
5.2	19	13	22	16	39.3	15.8	37.9	17	278	22	4700
6.4	21	13	24		39.6	16	39.4	19	282	23	4700
6.91	22	14	24		40.7	16	39.9	19	332	24	4900
7.1	24	15	30		44.2	17	41.4	19	333	25	5300
7.13	24.9	15	37	18	45.1	19.9	43.4	19.3	354	25	5470
10	26	15	40		45.6	20.8	43.5	20	384	26	
11	26	18	48	18.5	46.8	21	43.7	21	384	26	6100
11.3	26	19	49		47.3	21	45	21	388	33	
12.1	26.9	19	65		48.1	21	45.2	23	393	36	
12.4	38	20	92	19.3	48.7	21	46	26	469	37	6400
13.6	40	20	100	19.7	53.9	21	48.4	28	472	38	8420
17 18.8	54 59	20 22.2	100 110	20.1	54.9 55.3	22 22	48.9 49.4	29 31.2	566 587	39 49	14200 15000
	64					22				49 54	26000
20.3	76	23.4 27	110 161	20.3	57.6 58.4	22	53.1 54	32 33	617 680	63	39200
27	154	27	250	21	60	22	58.2	35	719	65	41100
29	166	27	291	21.2	113		59.6	35	880	71	49000
30	194	30	400	22]	22	61.5	36	1000	73	
38	212	30	424	22		22	62.4	41	1000	93	
38	221	31	440	22		22	64	43	1500	93	
40	267	31.5	450	23		22.7	70.6	44	1600	93	
41	312	32	466	23		23	77.4	45	1720	93	
43	379	33	471	23		23	355	53	1730	95	
46	380	33	501	23		23	594	54	1730	96	
56	396	34	627	23		23		55	1800	97	
98	459	35.6	650			23		60	2080	128	
508	459	42 54	913 1030	23.7 24		23.9		60	4230 4370	136 160	
	2560 4850	55	1310	24		24 24		60 62	4370	160	
	4850	58	1360	24.1		25		65	7570	160	
		61	1400			25		65	8240	186	
		64	2200	25		25.7		71	8950	234	
		86	2280	25		26		80	36200	240	
		126	3630	26		26		80		240	
		148	4870	27		26		81		244	
		225	4890	27		26		86		260	
		510	4970			26		86		569	
		529	5630			27		87		570	
		3220		27.3		27		93.1		629	
		40600		28		27		95		730	
				28		27		102		778	
				28 28		27 28		109 110		848 1000	
				28		28		110		1000	
				28.7		28.2		120		1040	
				29.3		28.8		130		1130	
				30.6		28.9		133		1200	
				30.8		29.1		142		1300	
				32.9		29.5		150		1480	
				34.2		29.7		150		1700	
				34.3		30		161		1900	

nosphorus	Phosphorus	Pyrene			Pyrene		Silver		Silver
No-Hit	Hit	No-Hit	No-Hit (Cont.)	No-Hit (Cont.)	Hit	Hit (Cont.)		No-Hit (Cont.)	Hit
128	410	10	130	477	19	2340	0.094	0.8	0.1
282	486	14	140	536	27	2530	0.1	0.8	0.1
306	507	14	140	560	30	2700	0.1	1	0.1
349	538	17	158	580	31	2710	0.1	1.1	0.1
352	590	17	160	581	36	2960	0.1	1.32	0.1
393	625	17	160	626	39	3460	0.1	1.4	0.1
402	710	19	175	626	53	4200	0.1	1.6	0.1
425	725	21	200	634	54	4410	0.11	1.8	0.1
428	824	21.1	240	685	57	4700	0.12	1.9	0.1
459	1160	22	250	700	66	5120	0.12	2	0.11
475	1310	24	250	715	67	6800	0.144	2.2	0.14
503	1590	30	254	770	68	7000	0.15	3.3	0.14
516	2770	32.2	260	927	68	7150	0.17	> 3.3	0.16
531		33	289	987	70	7500	0.19		0.2
563		33	304	1250	71	7540	0.199		0.2
615		37	319	1320	74	8100	0.2		0.2
624		37	320	1350	82	8790	0.2		0.2
657		37	332	1400	83	10000	0.2		0.2
691		38	333	1500	88.1	13300	0.2		0.2
694		39	356	1600	91	13600	0.2		0.2
741		41	361	1820	92	15900	0.2		0.2
880		42	375	2100	96	16000	0.2		0.2
908		45	379	2190	100	20000	0.2		0.2
1040		46	380	2300	118	21000	0.2		0.2
1150		48	380	2500	120	21000	0.217		0.2
1180		48.5	387	2870	130	22000	0.22		0.2
1540		50	430	3540	133	25000	0.23		0.2
2060		51.6	431	3650	140	32200	0.23		0.2
2660		54	452	4280	144	55600	0.25		0.2
2790		55	455	5000	150	68000	0.26		0.219
3290		56		5700	150	98000	0.26		0.3
> 3290		63		11200	162	110000	0.27		0.3
		64		18000	210		0.28		0.3
		65.6			210		0.3		0.0
		66			240		0.3		0.0
		67 68			261 270		0.3		0.3
		71.2			280		0.3		0.3
		71.2			280		0.322		0.3
		73			300		0.322		0.35
		75			308		0.36		0.359
		77			320		0.4		0.33
		80			350		0.4		0.39
		82			352		0.4		0.3
		89			370		0.4		0.43
		92			404		0.4		0.4
		97			429		0.43		0.4
		99			450		0.444		0.5
		107			488		0.45		0.5
		108			510		0.5		0.53
		110			523		0.5		0.
-		110			679		0.545		0.7
		117			829		0.6		0.8
-		120			1320		0.6		0.0
-		120			1590		0.6		0.0
		121			1630		0.63		1.1
		124			1710		0.77		1.9

CHIRONOMUS MORTALITY							
Total benzofluoranthenes (b+k (+j))		Total benzofluoranthenes (b+k (+j))		Total organic carbon		Total organic carbon	
No-Hit	No-Hit (Cont.)	Hit	Hit (Cont.)	No-Hit	No-Hit (Cont.)	Hit	Hit (Cont.)
11.7 15	311 320	15 23		0.22 0.23	3.12 3.42	0.21 0.35	
15.1	335	36	2800		3.48	0.38	
15.4	338	39	3400	0.26	3.52	0.56	
17	339	41	3400	0.42	3.58	0.6	
19.2	339	41	3620		3.61	0.67	
20	348	44		0.69	3.71	0.67	
25 25	350 363	48 50		0.72 0.72	3.89 3.95	0.74 0.78	
26	379	54		0.72	4.01	0.76	
26	414	55			4.01	0.89	
27	445	59	6590	0.97	4.56	1.19	4.05
36.9	501	59			4.65	1.2	
39	541	62			4.74	1.24	
41	552	67	8900		4.92	1.28	
41 42	579 600	69 72		1.28 1.3	5.02 5.81	1.3 1.37	
43	617	72			6.4	1.39	
43	630	77		1.32	7.07	1.46	
44	630	83	18400	1.4	7.35	1.46	5.2
45	630	91	19900		7.35	1.57	
46.4	643	102	20100	1.44	8.9	1.59	5.7
50	657	116			9.82	1.67	
50 53	686 774	117 120	41800 47000			1.72 1.77	
53	774	120				1.82	9.7
57	823	127	144000	1.61		1.83	
59	853	140		1.65		1.87	
60	890	141		1.68		1.89	
63	906	142		1.73		1.93	
66.9	1028	175		1.77		1.96	21.3
68 70	1040 1200	176 180		1.83 1.87		1.97 1.98	
76	1390	186		1.91		2.06	
79	1410	190		1.96		2.07	
82	1850	220		1.98		2.11	
87	1860	245		2.01		2.16	
93	1923	283		2.03		2.16	
103 110	2270 2750	290 293		2.11 2.13		2.18 2.21	
118	2830	300		2.13		2.21	
119	3170	312		2.14		2.25	
124	4800	316		2.15		2.27	
143	13800	421		2.17		2.3	
148		480		2.25		2.3	
149		496		2.26		2.3	
150 178		770 855		2.31 2.34		2.35 2.42	
187		881		2.34		2.44	
188		1151		2.41		2.5	
191		1380		2.45		2.52	
234		1410		2.48		2.57	
248		1780		2.51		2.61	
248 255		1960 2000		2.54 2.61		2.69 2.71	
255		2000		2.61 2.66		2.71	
310		2320		3.1		2.74	
0.0		2020		0.1		2	
				_			
-							

otal Polychlorinated Biphenyls No-Hit	Total Polychlorinated Biphenyls Hit	Total Sulfides No-Hit	Total Sulfides Hit	Tributyltin No-Hit	Tributyltin Hit		No-Hit (Cont.)	Zinc	Hit (Con
12	11	2.9	0.9	0.503	1.16	13.6	211	47.5	3
17	11	12.6	2.3	0.87	2	17.2	212		3
40	16		2.9	1	2.27	18.6	215	55	3
43	29		3.3	1.28	4.4	30.7	249		3
53	43	44.2	3.8	1.95	7.6		254		3
57	48		3.8	2.4	9.5		262	65	3
69	62		6.2	2.51	13		264		- 3
82	73	60.6	6.6	2.88	18	51.3	270		3
88	108		7	4.7	40	58.2	271	72.7	-
116	108		7.8	8.5	60	61.3	281	73	
116	112	80.1	9	9	62	62.2	296	75	-
116	116	83.8	9.2	9.3	78	65.6	333	77	-
129	284	87	9.9	11	113	65.6	337	81.5	-
130	304	110	10	13	160	66	359	84	-
130	379	146	10.8	19	198	69.9	370	84.3	-
209	394	149	17.5	22	200	70.3	375	85	
253	1460	150	65.5	25	210	70.8	527	85.7	
257	2090	161	65.8	27	598		683		
300	2500	202	92.4	32	697	72.7		86	-
354		231	96.3	35	723	73.5		86	
		247	97.3	37	810	73.7		87	1
		321	181	100	824	74		87	1
		341	223	220	936	76		89.6	1
		360	249	260	1210	76.4		90	2
		514	493	1860	1410	76.8		96	4
		702		Ì	1710	76.9		97.6	
			941		2200	79.3		101	
			2330		2220	79.3		101	
					2490	82		104	
					2530	83		106	
					6650	83		106	
					15700	85		110	
					64600	85.3		113	
						87		114	
						89.3		122	
						90		122	
						90.5		124	
						96.8		124	
						98		130	
						107		131	
						111		137	
						115		142	
						120		142	
						120		144	
						126		145	
						130		158	
						133		161	
						139		164	
-						145		203	
						152		220	
						167		225	
						173		227	
-						188		238	
						190		269	
						193		279	
						210		306	
						210		314	

MICROTOX					
	2-Methylnaphthalene	Acenaphthene	Acenaphthene	Acenaphthylene	Acenaphthylene
No-Hit	Hit	No-Hit	Hit	No-Hit	Hit
2.2		77	10	42	
8.8			10	110	
					10
141 170	13 13	203 252	11 11	148 171	12 12
180			11		12
180		360	12	640	13
443			12	040	15
469	15	560	14		17
403	15	1060			88
	16	1000	18		136
	16		18		140
	20		18		209
	24		19		279
	28		20		314
	36		23		362
	52		23		470
	54		32		594
	62		33		642
	120		45		697
	188		52		1020
	189		52		1260
	214		60		1200
	353		72		
	555		75		
	877		100		
	982		110		
	1720		130		
	1770		162		
	2310		170		
	3470		177		
	0470		210		
			272		
			310		
			316		
			332		
			792		
			830		
			1250		
			1320		
			2460		
			2460		
			7420		
	l	i .		l .	i .

MICROTOX									
Anthracene	Anthracene	Antimony	Antimony	Aroclor 1254	Aroclor 1254	Aroclor 1260	Aroclor 1260	Arsenic	Arsenic
No-Hit	Hit	No-Hit	Hit	No-Hit	Hit	No-Hit	Hit	No-Hit	Hit
4.8	11	0.54	0.1	7.3	11	15	15		2
14	12	0.61	0.1	47	16	140	18	2.5	2.8
82	12	0.61	0.1	100	18		20	2.6	3
210	12	0.62	0.1	140			24		3
280	14	0.72	0.2	160	25		27	3.9	3
320	15	1.9	0.2	170			29		3
373	16		0.2	230			37	4	4
420	20	2.9	0.2		52		38	4.2	4
552	22	5.1	0.2		54		40		4
630	22	> 5.1	0.2		54		42	4.8	4
980 1130	23 25		0.3		57 58		43 46		4
1230	27		0.41		62		46	7.08	4
1230	28		0.45		70		48		4
	28		0.5		70		53	8.5	4
	29		0.5		78		57	8.7	4
	32		0.6		78		62	8.89	4
	40		0.66		81		64	9.14	4
	41		1		95		64		4.09
	52		1.1		97		69		4.36
	53		1.6		150		74		5
	53		1.8		156		77	19	5
	67 70		3.5		170 170		98	19 20	5 5
	70		4		170		138 150		5
	85				202		184		5
	99				209		460	31.4	5
	115				227		500		5
	170				230		2500	123	5
	220				256				5
	220				960				5
	233				1060				5
	320								5.17
	380 406								5.8 6
	429								6
	465								6
	580								6
	660								6
	717								6 6
	814								6
	915								6
	1110								7
	1580 1900								7
	2860								7
	2920								8
	16200								8
									8
									8
		_	_						8.18
									9
									9
-									11
-									12.2 12.7
									12.7
									13
									13
									13
									13.1
									13.7
									14.3
									15
									15
									17 17
-									17.2
									20
									23.9
									26.6
									30.6
									152
									175
1	Ì	l	I			Ì	Ì	l	200

OTOX (a)anthracene No-Hit	Benzo(a)anthracene Hit	Benzo(a)pyrene No-Hit	Benzo(a)pyrene Hit	Benzo(g,h,i)perylene No-Hit	Benzo(g,h,i)perylene Hit
8.6	14		13	15	1
13	14		15	30	1
17	15	16	16	68	1
27	17	25	18	77	1
59 75	18 19		19 19	87 100	1
120	19	153	21	140	1
170	22	176	21	220	1
190	24	230	24	400	1
523	25		25	497	1
750	26		26	791	1
917 1220	29 29		27 28	821 840	1
1270	29		31	1150	1
1700	30		32	1500	2
2620	30		34	2510	2
3500	30		34	4020	2
4260	32		36		2
	32		36		2
	33 35		38 40		3
	36		43		3
	38		48		3
	41		51		3
	41		58		3
	49		67		3
	56		76		2
	64 67		85 87		2
	70		91		5
	71		93		5
	79		114		6
	93		116		6
	99		117		7
	103		120 120		7
	105		124		8
	106		133		9
	112		135		10
	113		176		11
	115		189		11
	130 154		195 213		12
	179		223		13
	181		226		14
	188		248		14
	199		333		16
	240		334		17
	280 288		351 358		18
	321		360		22
	342		382		23
	353		615		24
	373		720		28
	411		820		28
	600 740		890 910		42 57
	740		1070		6
	760		1400		68
	958		1530		82
	1060		1620		8
	1100		1630		133
	1180		1840		135
	1300 1480		1890 2100		13: 14
	1580		2220		15
	1600		2750		15
	1720		2960		16
	2380		11000		17.
	3750		24300		52
	5430				121
	5800				
	25600				
		L	l .	1	L

MICROTOX Bis(2-ethylhexyl) phthalate No-Hit	Bis(2-ethylhexyl) phthalate Hit	Butyl benzyl phthalate No-Hit	Butyl benzyl phthalate Hit	Cadmium No-Hit	Cadmium Hit
23		25	10	0.04	0.07
23	30	53	11	0.04	0.07
32		55	18	0.04	0.1
55		140	18		0.1
78		182	21	0.1	0.1
220 433		222 260	24 24		0.1 0.1
501		1520	25	0.161	0.1
580			25		0.1
1090			25	0.292	0.2
1600			28	0.3	0.2
1970	337		31	0.391	0.2
2140			32	0.45	0.2
2520			32	0.5	0.2
22300	370 390		34 35	0.52 0.607	0.2
	418		40	0.963	0.2
	420		42	0.968	0.2
	440		43	1.17	0.2
	444		47	1.2	0.2
	452		48	1.3	0.2
	460		50	1.3	0.2
	470		52	1.4	0.2
	480 510		53 55	2.7	0.2 0.2
	510		56		
	520		56	11	0.2
	546		57		0.2
	547		57		0.2
	550		62		0.2
	575		64		0.3
	660		64		0.3
	727		66		0.3
	774 778		70 73		0.3
	800		86		0.31
	867		119		0.4
	913		121		0.4
	1000		131		0.4
	1020		145		0.4
	1050		160		0.4
	1110 1370		165 170		0.472
	1380		180		0.5
	1390		184		0.5
	1400		198		0.6
	1440		230		0.6
	1740		258		0.6
	1800		274		0.651
	1800		280		0.69
	1930 2000		366 407		0.7 0.7
	2140		430		0.7
	2220		763		0.811
	2800		980		0.875
	2800				1
	3010				1
	3400				1
	3420				1.1
	3510 3970				1.1
	4330				1.3
	4970				1.4
	5120				1.44
	6360				1.55
	6380				1.6
	7590				1.6
	10500				2.1
	33300				2.3
					3.01 3.67
	 				3.67
	-				

MICROTOX									1
	Chromium	Chrysene	Chrysene	Conner	Conner	Dibenz(a,h)anthracene	Dibenz(a,h)anthracene	Dibenzofuran	Dibenzofuran
No-Hit	Hit	No-Hit	Hit	No-Hit	Hit	No-Hit	Hit	No-Hit	Hit
4.4	12	17	17	4.69	15.6	116			
7	13	24	17	7	17	132			
12	15	25	21	7.2	19	176			
14	17	36	23	8.5	20.3	216			
15.1	17.4	43	24	11	23.6	240	14	180	
20.3	22	59	27	16	26.6	292	16		
23	22	76	27	16	30	390			
24.1	23	91	28	16.7	31.2	490			14
25.1	24	100	30	17	32	839			
26.2	24 24	210 220	31 32	17	32.4		22 24		16 16
26.2 28.7	24.6	320	33	18.1 21.4	32.9 33		28		18
29.8	25	755	34	23	35		29		19
38.8	25	1200	34	24.4	35		31		24
39	26	1260	35	27.9	35.9		34		26
40.5	26	1540	36	28.6	36.2		36		26
42.8	26	1560	36	34	36.5		38		33
45.5	26	3000	38	40.1	38.3		43		38
57.3	26	3700	39	41	38.5		49		41
62	27	4800	43	47.7	40.6		56		110
63.4	27	5940	48	50	41.9		72		116
66.7 68.3	27 27		51 51	54 62.7	43.4 45.6		82 120		166 204
89	28		51	125	46.9		120		204
95			58	363	48.6		200		372
348	29		61	371	51.4		214		443
	29		70	627	53.2		217		460
	29		70	651	61		230		928
	29		93	829	61.8		294		1010
	29		95	1460	65.2		327		1750
	29		98		71.1		332		2260
	31		104		71.1		342		3810
	31 31		126 128		74.5 76.7		424 437		
	31		140		77.9		800		
	31		157		81.2		3070		
	32		160		82.3		0070		
	32		161		84.5				
	32.1		172		86				
	33		177		90.1				
	34		180		90.9				
	34		202		94.3				
	35		211		94.4				
	36 36		263 318		96.6 96.7				
	37		320		100				
	37		390		101				
	38		412		106				
	38.2		425		119				
	39		430		119				
	39		482		130				
	40		489		136				
	41		490		140				
	41 42		541 562		142 146				
	42		816		146				
-	43		930		154				
	44.9		1000		163				
	45.3		1100		187				
	46		1130		188				
	48.5		1300		209				
	53.9		1440		210				
	55.9		1710		212				
<u> </u>	76		1800		229				
	77.1 79		2100 2140		314 315				
-	80.1		2170		315				
-	80.7		2210		397				1
	80.7		3430		508				
	96.2		5730		571				
	99.5		5880		619				
	102		6400		651				
	133		28100		655				
					2010				
					10800				

MICROTOX Dimethyl phthalate No-Hit	Dimethyl phthalate Hit	Di-n-butyl phthalate No-Hit	Di-n-butyl phthalate Hit	Di-n-octyl phthalate No-Hit	Di-n-octyl phthalate Hit
31	11	15	10	11	10
71	11	134	11		12
108	12	306	11		12
156	13	690	11		13
172	13	1180	12		13
436	14	1710	12		13
	15	1740	13		15
	16	> 1740	14		17
	16		15		17
	19 21		15 16		18 21
	37		17		21
	42		17		22
	54		17		23
	54		19		25
	58		19		26
	110		20		26
	147		21		27
	158		21		30
	160		22		30
	171		23		32
	190		24		34
	270		24		34
	311		26		37
	314		26		39
	362		27		40
	576		30		44
			31		45
			34		46
			37 37		47 48
			40		49
			41		52
			41		54
			41		54
			44		55
			61		58
			67		66
			68		74
			71		90
			103		110
			108		115
			116		201
			254		256
			350		399
			350		413
			481 805		
			841		
			893		
			000		

MICROTOX				T	
Fluoranthene	Fluoranthene	Fluorene	Fluorene	High Molecular Weight PAH	High Molecular Weight PAH
No-Hit	Hit	No-Hit	Hit	No-Hit	Hit
5.9	27	24	12		300
15	34		12		2251
28	36	185	13	118	2629
39	45	251	13	254	7370
41			14		9000
43					13290
46			17	1004	13690
55	58		19		16460 17410
97 110	65 65		19 23		18000
123	68		23		19960
170	70		24		21970
300	72		25		31170
310	76		30		57000
580	77		33		62900
1300			33		250500
1640	91		37		
1780	91		39		
3140	96 97		44 47		
3360 4500	110		73		
7710			73		
7900	120		88		
11100			124		
	130		140		
	143		140		
	158		167		
	160		180		
	190		190		
	206		201		
	240 270		250 274		
	288		285		
	301		465		
	320		470		
	324		498		
	334		932		
	342		1540		
	356		1720		
	359		3240		
	380		3400		
	390 428		6970		
	437				
	445				
	450				
	453				
	455				
	502				
	674				
	695				
	699				
	710 740				
	833				
	939				
	1400				
	1690				
	1900				
	2000				
	2000				
	2340				
	2800				
	3200				
	3210 3370				
-	3450				
	3600				
	4700				
	4780				
	7730				
	15000				
	19200				
	24200				
	46100				

MICROTOX Indeno(1,2,3-c,d)pyrene	Indeno(1,2,3-c,d)pyrene	Lead	Lead	Low Molecular Weight PAH	Low Molecular Weight PAH	Mercury	Mercury
No-Hit	Hit	No-Hit	Hit	No-Hit	Hit	No-Hit	Hit
10		4.7	7.8	17	18	0.014	0.024
28	12	6.3	10.2	18	59	0.03	0.044
59 70		6.8	10.5	24 52	358	0.033 0.033	0.05
110		7.24	11 11.1	52	422 1800	0.033	0.05 0.05
120	18	7.6	12.2	71	1900	0.042	0.05
198	19	14.8	12.5	98	2760	0.053	0.05
210	20	15.9	12.7	109	3000	0.0583	0.05
460 518	21	16.6 17.3	12.7 12.7	2088 2700	3040 4720	0.06 0.0776	0.05 0.06
763	22	27.3	12.9	3140	6590	0.0776	0.06
773	23	32.4	13.1	4380	9130	0.087	0.06
960		48.2	13.2	8800	14070	0.104	0.06
1160 1600		58.7 79.9	13.3 13.3	9200	16870 18700	0.114 0.141	0.06 0.06
2340		84	13.4		28500	0.141	0.00
4120	27	125	13.7		78300	0.253	0.07
	28	133	14.4			0.286	0.07
	29 30	152 154	14.7 14.9			0.343 0.558	0.08 0.0853
	30	185	15.2			0.604	0.0033
	30	194	15.2			0.659	0.09
	34	230	15.3			0.796	0.096
	36 36	234 299	15.7 16.2			0.993 2.22	0.1
	44		17.9			3.04	0.1
	45		18.1			0.0 .	0.1
	45		18.6				0.11
	52 59		20.8 21.1				0.11
	61		22.4				0.12 0.13
	68		23.6				0.13
	73		25.6				0.13
	76 80		25.9				0.14
	81		26.1 26.6				0.14 0.15
	81		27.4				0.15
	97		27.5				0.16
	100		30.2				0.16
	106 120		33.6 36.2				0.16 0.17
	124		38.9				0.186
	130		41.5				0.19
	133 134		41.9 44.8				0.21 0.23
	144		47.6				0.23
	155		48.8				0.435
	178		50				0.54
	199 207		50.2 52.2				0.545 0.552
	207		54.4				0.552
	222		56				0.662
	255		62.5				0.673
	260 270		68.1 79.7				0.69 0.711
	330		89.6				0.711
	363		94.6				0.8
	643		96.6				0.844
	720 740		99.4 111				1.25 2.01
	740		114				2.01
	889		150				3.74
	1180		150			-	43
	1220 1340		177 184				
	1340		204				
	1450		249				
	1500		258			_	
	1750 1800		284 295				
	5300		436				
	13900		525				
			1310				_

MICROTOX Monobutyltin						Phenanthrene			Pyrene
No-Hit	Hit	No-Hit	Hit	No-Hit	Hit	No-Hit	Hit	No-Hit	Hit
4.8 5.2	22			6.5 7.79				11 14	29 31
	26							34	37
9.5 10	50 54		13 14	8.1	16 18		18 19	36	42
11	59		15	14		30		39	48
15	60		15	16		33		46	53
19	98		15	25.7	21	39		55	54
26	166		16			52		78	57
38	212			28				92	64
40	221		19			65		118	66
64	267 312		19 19			71 93	23	130	67 70
76 154	396		24			110		150 280	71
194			24		23		25	320	74
379			27	29.3			26	450	74
380			27	30				1400	77
459	4850		27	30.4	23	1300	29	1590	82
			31	33.6			32	2340	82
			32		23		33	2710	91
			33				36	3460	92
			34 37	43.5 45			37 38	4200 7150	92 96
			48		23.6			8100	110
			65				49	8790	120
			110	46			54	,	124
			148	47	24		54		133
			160				59		140
			350				60		144
			471				60		160
			510				86		175
			627 913		25 25		87 93		240 254
			1360		26		96		261
			2280		26		102		304
			3220		26		109		308
			4870		26		128		320
			4890		26		133		332
			4970		26		136		333
			5630		27 27		142 160		352 356
					27		160		380
					27		161		404
					28		180		429
					28		180		431
					28		186		452
					28		234		455
					28		234		477
					28 28		244		488
					29.5		282 384		523 536
					29.7		393		580
					30		469		634
					31		472		700
					31		566		715
					31		629		770
					31		848		829
					37 37.9		1000 1000		1320 1500
					38.8		1070		1600
					39.4		1130		1630
					40.7		1200		1900
					41.4		1200		2500
					48.4		1500		2530
					51		1720		2960
					54 56		1800 1990		3000 3540
					58.2		2080		4280
					58.4		3620		4410
					61.5		4440		4700
					62.4		4700		5120
					64		6190		7540
					70.6		8420		13300
					77.4		14200		15900
					113		41100		18000
					594				55600

MICRO							
	Silver	Total benzofluoranthenes (b+k (+j))	Total benzofluoranthenes (b+k (+j))	Total organic carbon	Total organic carbon		
No-Hit 0.06		No-Hit	Hit 25	No-Hit 0.21	Hit 0.23		
0.08	0.094	16	27	0.21	0.25		
0.094	0.1	41	27	0.23	0.67		
0.1	0.1	53	36	0.3	0.82		
0.11	0.1	67	39				
0.14 0.16	0.1	120 127	41	0.76 0.996	0.97 1.16		
0.16	0.1	135	43	1.32	1.19		
0.2	0.1	220	44	1.42	1.2		
0.2	0.1	320	48		1.28		
0.3	0.1	480 1380	50 54	1.82 2.3	1.39 1.44		
0.39	0.199		55		1.45		
0.444	0.2	1860	57	2.8	1.46		
0.53	0.2	1960	59		1.46		
0.545			60				
2.5	0.2		62 69	3.8			
	0.2	8900	72		1.73		
	0.2	11000	76	4.9	1.8		
	0.2		76		1.83		
\vdash	0.2		77	5.13	1.87		
	0.2		82 91	5.6 6.3			
	0.2		102	7.35	1.96		
	0.2		103	8.9	1.97		
	0.2		117	12.2			
	0.2 0.217		124 141	21.3 > 21.3			
	0.217		148		2.03		
	0.3		175		2.06		
	0.3		186		2.07		
	0.3		191		2.11		
	0.3		234 245		2.11 2.13		
	0.322		293		2.15		
	0.35		311		2.16		
	0.4		312		2.18		
	0.4		316 335		2.21 2.25		
	0.4		333		2.25		
	0.4		363		2.26		
	0.4		421		2.27		
	0.5 0.5		445 496		2.3 2.34		
	0.5		552		2.41		
	0.5		579		2.42		
	0.5		617		2.44		
	0.53		686		2.45		
	0.6 0.6		774 823		2.48 2.51		
	0.6		853		2.52		
	0.7		855		2.57		
	0.8		881		2.61		
	0.8		890 1151		2.66 2.74		
	1.1		1280		3		
	1.1		1390		3.03		
	1.32		1850		3.52		
	1.4		2000		3.58 4.14		
	3.3		2020 2270		4.14		
			2320		5		
			2750		5.2		
			2830		5.81		
			3200 3400		6.4		
			3620		7.07		
			4440		7.35		
			6590		7.9		
			7110 13800		9.7 9.82		
			41800		10.6		
			41000		12.1		
					15.8		

Total Polychlorinated Biphenyls No-Hit 62		Zinc	Zinc
62	al Polychlorinated Biphenyls Hit	No-Hit	Hit
	11	30.7	58
	16	47	60
	29	49	66
	40	54	73
	43	55	74
	<u>43</u> 53	55 55	76 77
	57	56	83
	69	70.8	83
	82	81.5	85
	88	84.3	85
	108	89.6	86
	108 112	101 119	86
	116	119	87
	116	120	87
	116	270	90
	129	377	90
	209	406	96
	253 257	567 675	97.6 98
	284	754	101
	300	1080	106
	304	1130	111
	354		113
	394		114
	1460 2090		120
	2500		130
	2000		130
			131
			133
			137
			145 145
			158
			161
			173
			190
			203
			210
			210
			227
			238
			243
			254
			262
			264 269
			271
			281
			296
			333
			337
			354 359
			368
			369
			370
			374
			375
			391 407
			407
			435
			443
			440
			527 550
			527 550 593
			527 550 593 683
			527 550 593 683 1770
			527 550 593 683

APPENDIX C. OPTIMAL PERCENTILE RESULTS

The results of the optimal percentile analysis presented in Section 3 are provided in this appendix. For each level of effects (statistical significance only, SQS, and CSL) there are two sets of results provided – the one above is for the data set containing individual PAHs and Aroclors, and the one below is for the same data set containing only summed PAHs and PCBs. In this lower data set, blank spaces indicate individual PAHs and Aroclors that are not present in that data set.

Five sets of percentiles are shown for each of the two data sets. These correspond to different levels of false negatives that Ecology could select to base their SQVs on, and range from 5-25% false negatives, in increments of 5%. The first page shows the reliability results for each of these sets of percentiles for all six reliability parameters. The remaining pages show the chemical concentrations associated with the optimal percentiles of the no-hit distribution corresponding to the selected false negative rates. The false negative and false positive rates are repeated on each page for reference.

STATISTICAL SIGNIFICANCE ONLY:					
UNSUMMED PAHs and PCBs	% False		2003%	1988%	
% False Negatives	Positives	% Sensitivity	Efficiency	Efficiency	% Reliability
5	70	95	30	78	77
10	54	90	46	82	78
15	42	85	58	84	78
19	37	81	63	85	76
25	26	75	74	89	75
STATISTICAL SIGNIFICANCE ONLY:					
SUMMED PAHs and PCBs	% False		2003%	1988%	
% False Negatives	Positives	% Sensitivity	Efficiency	Efficiency	% Reliability
5	68	95	32	79	78
10	50	90	50	83	79
14	43	86	57	84	78
19	34	81	66	86	77
25	22	75	78	90	76

STATISTICAL SIGNIFICANCE ONLY:						
UNSUMMED PAHs and PCBs	% False					
% False Negatives	Positives	2-Methylnaphthalene	Acenaphthene	Acenaphthylene	Anthracene	Antimony
5	70	12	60	14	39	1.50
10	54	12	95	16	64	2.4
15	42	12	120	19	92	2.7
19	37	12	154	20	101	2.7
25	26	12	186	24	345	2.7
STATISTICAL SIGNIFICANCE ONLY:						
SUMMED PAHs and PCBs	% False					
% False Negatives	Positives					Antimony
5	68					1.5
10	50					2.4
14	43					2.7
19	34					2.7
25	22					2.7

STATISTICAL SIGNIFICANCE ONLY:							
UNSUMMED PAHs and PCBs	% False	Aroclor	Aroclor				
% False Negatives	Positives	1254	1260	Arsenic	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(g,h,i)perylene
5	70	120	130	4.9	62	49	46
10	54	131	130	6.1	101	128	73
15	42	156	130	9.5	154	183	179
19	37	172	130	13.6	175	224	205
25	26	186	130	21.4	257	301	225
STATISTICAL SIGNIFICANCE ONLY:							
SUMMED PAHs and PCBs	% False						
% False Negatives	Positives			Arsenic			
5	68			4.9			
10	50			6.1			
14	43			7.5			
19	34			10.8			
25	22			19.0			

STATISTICAL SIGNIFICANCE ONLY:							
UNSUMMED PAHs and PCBs	% False		Butyl				
% False Negatives	Positives	Bis(2-ethylhexyl) phthalate	benzyl phthalate	Cadmium	Chromium	Chrysene	Copper
5	70	170 88 0.24 36		72	28		
10	54	216	108	0.39	47	137	34
15	42	327	222	0.83	52	222	42
19	37	380	286	1.13	52	270	49
25	26	561	362	1.69	61	360	61
STATISTICAL SIGNIFICANCE ONLY:							
SUMMED PAHs and PCBs	% False		Butyl				
% False Negatives	Positives	Bis(2-ethylhexyl) phthalate	benzyl phthalate	Cadmium	Chromium		Copper
5	68	170	88	0.24	36		28
10	50	216	108	0.39	47		34
14	43	280	157	0.80	50		39
19	34	351	265	0.91	52		44
25	22	462	330	1.39	58		58

STATISTICAL SIGNIFICANCE ONLY:					
UNSUMMED PAHs and PCBs	% False			Dimethyl	
% False Negatives	Positives	Dibenz(a,h)anthracene	Dibenzofuran	phthalate	Di-n-octyl phthalate
5	70	20	9	46	0
10	54	25	9	46	26
15	42	33	9	46	26
19	37	42	9	46	26
25	26	70	9	46	26
STATISTICAL SIGNIFICANCE ONLY:					
SUMMED PAHs and PCBs	% False			Dimethyl	
% False Negatives	Positives			phthalate	Di-n-octyl phthalate
5	68			46	0
10	50			46	26
14	43	·		46	26
19	34			46	26
25	22			46	26

STATISTICAL SIGNIFICANCE ONLY:					
UNSUMMED PAHs and PCBs	% False			High Molecular	
% False Negatives	Positives	Fluoranthene	Fluorene	Weight PAH	Indeno(1,2,3-c,d)pyrene
5	70	87	45	150	53
10	54	146	62	335	84
15	42	258	76	484	167
19	37	415	94	614	212
25	26	689	121	982	282
STATISTICAL SIGNIFICANCE ONLY:					
SUMMED PAHs and PCBs	% False				
% False Negatives	Positives				
5	68				
10	50				
14	43				
19	34				
25	22			· · · · · · · · · · · · · · · · · · ·	

STATISTICAL SIGNIFICANCE ONLY:								
UNSUMMED PAHs and PCBs	% False		Low Molecular					
% False Negatives	Positives	Lead	Weight PAH	Mercury	Naphthalene	Nickel	Phenanthrene	Pyrene
5	70	19	56	0.10	21	30	65	91
10	54	39	109	0.15	29	39	109	140
15	42	51	154	0.28	33	47	190	279
19	37	97	175	0.30	37	48	315	379
25	26	172	199	0.43	48	54	527	577
STATISTICAL SIGNIFICANCE ONLY:								
SUMMED PAHs and PCBs	% False							
% False Negatives	Positives	Lead		Mercury		Nickel		
5	68	19		0.10		30		
10	50	39		0.15		39		
14	43	48		0.23		45		
19	34	75		0.30		47		
25	22	144		0.39		50		

STATISTICAL SIGNIFICANCE ONLY:						
UNSUMMED PAHs and PCBs	% False		Total	Total		
% False Negatives	Positives	Silver	benzofluoranthenes (b+k (+j))	Polychlorinated Biphenyls	Tributyltin	Zinc
5	70	0.26	87	19	11	77
10	54	0.30	248	51	20	86
15	42	0.43	339	78	26	120
19	37	0.45	444	92	31	142
25	26	1.80	630	107	35	191
STATISTICAL SIGNIFICANCE ONLY:						
SUMMED PAHs and PCBs	% False			Total		
% False Negatives	Positives	Silver	PAHs (molar)	Polychlorinated Biphenyls	Tributyltin	Zinc
5	68	0.26	1.9	19	11	77
10	50	0.30	2.9	51	20	86
14	43	0.38	6.4	64	23	109
19	34	0.45	10.0	87	29	133
25	22	1.60	12.8	101	34	173

SQS:					
UNSUMMED PAHs and PCBs	% False		2003%	1988%	
% False Negatives	Positives	% Sensitivity	Efficiency	Efficiency	% Reliability
5	69	95	31	76	76
10	51	90	49	80	78
15	42	85	58	82	77
20	35	80	65	84	76
24	24	76	76	88	76
SQS:					
SUMMED PAHs and PCBs	% False		2003%	1988%	
% False Negatives	Positives	% Sensitivity	Efficiency	Efficiency	% Reliability
5	68	95	32	76	76
10	51	90	49	80	78
15	44	85	56	82	77
20	32	80	68	85	76
25	24	75	76	88	75

SQS:								
UNSUMMED PAHs and PCBs	% False						Aroclor	Aroclor
% False Negatives	Positives	2-Methylnaphthalene	Acenaphthene	Acenaphthylene	Anthracene	Antimony	1254	1260
5	69	12	65	14	46	1.7	120	130
10	51	12	99	18	83	2.7	134	130
15	42	12	149	21	269	2.7	158	130
20	35	12	165	24	334	3.1	170	130
24	24	12	221	40	406	4.0	187	130
SQS:								
SUMMED PAHs and PCBs	% False							
% False Negatives	Positives					Antimony		
5	68					1.7		
10	51					2.4		
15	44					2.7		
20	32					3.0		
25	24					3.7		

SQS:						
UNSUMMED PAHs and PCBs	% False					
% False Negatives	Positives	Arsenic	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(g,h,i)perylene	Bis(2-ethylhexyl) phthalate
5	69	4.9	74	84	57	180
10	51	6.2	132	149	94	324
15	42	9.3	177	230	201	403
20	35	10.6	190	260	210	527
24	24	22.4	343	378	307	1120
SQS:						
SUMMED PAHs and PCBs	% False					
% False Negatives	Positives	Arsenic				Bis(2-ethylhexyl) phthalate
5	68	4.9				180
10	51	6.1				224
15	44	7.5				280
20	32	10.6				489
25	24	19.0				771

SQS:								
UNSUMMED PAHs and PCBs	% False							
% False Negatives	Positives	Butyl benzyl phthalate	Cadmium	Chromium	Chrysene	Copper	Dibenz(a,h)anthracene	Dibenzofuran
5	69	124	0.30	38	83	30	22	348
10	51	232	0.61	46	175	38	32	446
15	42	312	0.91	51	268	46	47	517
20	35	340	1.13	52	310	51	90	543
24	24	405	2.07	61	541	63	1330	602
SQS:								
SUMMED PAHs and PCBs	% False							
% False Negatives	Positives	Butyl benzyl phthalate	Cadmium	Chromium		Copper		
5	68	124	0.30	38		30		
10	51	109	0.39	48		35		
15	44	157	0.80	50		39	·	
20	32	333	1.00	52		51		
25	24	384	1.69	57		61		

SQS:							
UNSUMMED PAHs and PCBs	% False					High Molecular	
% False Negatives	Positives	Dimethyl phthalate	Di-n-octyl phthalate	Fluoranthene	Fluorene	Weight PAH	Indeno(1,2,3-c,d)pyrene
5	69	46	0	112	48	178	63
10	51	46	0	190	66	452	100
15	42	46	0	401	88	1200	202
20	35	46	0	498	108	1850	218
24	24	46	0	1210	141	4630	306
SQS:							
SUMMED PAHs and PCBs	% False						
% False Negatives	Positives	Dimethyl phthalate	Di-n-octyl phthalate				
5	68	46	0				
10	51	46	0				
15	44	46	0			·	
20	32	46	0				
25	24	46	0			·	

SQS:									
UNSUMMED PAHs and PCBs	% False		Low Molecular						
% False Negatives	Positives	Lead	Weight PAH	Mercury	Naphthalene	Nickel	Phenanthrene	Pyrene	Silver
5	69	18	113	0.10	21	29	75	107	0.25
10	51	46	206	0.17	30	37	147	182	0.30
15	42	76	517	0.28	33	46	290	379	0.43
20	35	107	690	0.30	40	47	359	420	0.45
24	24	194	16100	0.44	56	54	665	980	1.80
SQS:									
SUMMED PAHs and PCBs	% False								
% False Negatives	Positives	Lead		Mercury		Nickel			Silver
5	68	18		0.10		29			0.25
10	51	41		0.15		41			0.30
15	44	48		0.23		45			0.38
20	32	96		0.30		47			0.43
25	24	172		0.43		49			1.60

SQS:					
UNSUMMED PAHs and PCBs	% False	Total	Total		
% False Negatives	Positives	benzofluoranthenes (b+k (+j))	Polychlorinated Biphenyls	Tributyltin	Zinc
5	69	121	22	9	77
10	51	290	55	20	96
15	42	451	80	27	129
20	35	564	89	30	149
24	24	693	110	36	200
SQS:					
SUMMED PAHs and PCBs	% False		Total		
% False Negatives	Positives	PAHs (molar)	Polychlorinated Biphenyls	Tributyltin	Zinc
5	68	2.2	22	9	77
10	51	2.9	53	21	88
15	44	6.4	64	24	109
20	32	10.8	87	29	144
25	24	17.8	103	34	193

CSL:					
UNSUMMED PAHs and PCBs	% False		2003%	1988%	
% False Negatives	Positives	% Sensitivity	Efficiency	Efficiency	% Reliability
5	59	95	41	62	68
9	57	91	43	62	67
13	50	87	50	63	68
20	43	80	57	65	68
25	37	75	63	67	69
CSL:					
SUMMED PAHs and PCBs	% False		2003%	1988%	
% False Negatives	Positives	% Sensitivity	Efficiency	Efficiency	% Reliability
5	58	95	42	62	69
10	54	90	46	62	68
15	48	85	52	64	69
19	43	81	57	65	69
25	38	75	62	66	69

CSL:								
UNSUMMED PAHs and PCBs	% False						Aroclor	Aroclor
% False Negatives	Positives	2-Methylnaphthalene	Acenaphthene	Acenaphthylene	Anthracene	Antimony	1254	1260
5	59	147	110	31	155	0.4	134	65
9	57	151	115	34	177	0.5	140	68
13	50	162	147	50	300	0.5	142	80
20	43	170	201	124	353	2.3	168	103
25	37	172	225	134	355	2.7	178	110
CSL:								
SUMMED PAHs and PCBs	% False							
% False Negatives	Positives					Antimony		
5	58					0.4		
10	54					0.5		
15	48	·				0.5		
19	43					1.6		
25	38					2.3		

CSL:						
UNSUMMED PAHs and PCBs	% False					
% False Negatives	Positives	Arsenic	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(g,h,i)perylene	Bis(2-ethylhexyl) phthalate
5	59	6.1	130	171	177	336
9	57	6.6	140	197	186	355
13	50	8.6	174	251	216	420
20	43	11.7	276	360	280	580
25	37	13.3	329	439	295	713
CSL:						
SUMMED PAHs and PCBs	% False					
% False Negatives	Positives	Arsenic				Bis(2-ethylhexyl) phthalate
5	58	6.0				322
10	54	6.6				355
15	48	8.6				420
19	43	9.5				539
25	38	11.7				580

CSL:								
UNSUMMED PAHs and PCBs	% False							
% False Negatives	Positives	Butyl benzyl phthalate	Cadmium	Chromium	Chrysene	Copper	Dibenz(a,h)anthracene	Dibenzofuran
5	59	164	0.69	39	177	41	142	112
9	57	166	0.79	41	185	41	182	126
13	50	192	0.90	44	255	44	259	164
20	43	227	1.13	50	394	52	300	180
25	37	230	1.20	52	493	54	319	196
CSL:								
SUMMED PAHs and PCBs	% False							
% False Negatives	Positives	Butyl benzyl phthalate	Cadmium	Chromium		Copper		
5	58	164	0.69	39		40		
10	54	166	0.80	41		41		
15	48	192	0.90	44		44		
19	43	223	0.96	48		50		
25	38	227	1.13	50		52	·	

CSL:						
UNSUMMED PAHs and PCBs	% False					
% False Negatives	Positives	Dimethyl phthalate	Di-n-octyl phthalate	Fluoranthene	Fluorene	High Molecular Weight PAH
5	59	96	66	218	105	2940
9	57	103	66	236	112	3370
13	50	120	67	364	126	12100
20	43	139	67	684	179	16400
25	37	144	70	757	183	17800
CSL:						
SUMMED PAHs and PCBs	% False					
% False Negatives	Positives	Dimethyl phthalate	Di-n-octyl phthalate			
5	58	93	66			
10	54	103	66			
15	48	120	67			
19	43	132	67			
25	38	139	67			

CSL:								
UNSUMMED PAHs and PCBs	% False			Low Molecular				
% False Negatives	Positives	Indeno(1,2,3-c,d)pyrene	Lead	Weight PAH	Mercury	Naphthalene	Nickel	Phenanthrene
5	59	160	46	1080	0.17	51	34	162
9	57	176	48	2140	0.21	54	34	190
13	50	218	75	2680	0.28	60	40	310
20	43	311	94	3390	0.36	100	45	587
25	37	330	103	3860	0.39	111	45	726
CSL:								
SUMMED PAHs and PCBs	% False							
% False Negatives	Positives		Lead		Mercury		Nickel	
5	58		41		0.17		34	
10	54		48		0.21		34	
15	48		75		0.28		40	
19	43		83		0.30		43	
25	38		94		0.36		45	

CSL:							
UNSUMMED PAHs and PCBs	% False			Total	Total		
% False Negatives	Positives	Pyrene	Silver	benzofluoranthenes (b+k (+j))	Polychlorinated Biphenyls	Tributyltin	Zinc
5	59	230	0.30	291	67	26	114
9	57	250	0.30	313	68	29	117
13	50	334	0.36	497	75	37	123
20	43	580	0.43	657	107	120	142
25	37	646	0.44	790	115	198	147
CSL:							
SUMMED PAHs and PCBs	% False				Total		
% False Negatives	Positives		Silver	PAHs (molar)	Polychlorinated Biphenyls	Tributyltin	Zinc
5	58		0.30	5.9	66	25	110
10	54		0.30	6.8	68	29	117
15	48		0.36	10.0	75	37	123
19	43		0.40	13.4	95	63	135
25	38		0.43	17.7	107	120	142

APPENDIX D. FLOATING PERCENTILE RESULTS

The results of the floating percentile analysis presented in Section 3 are provided in this appendix. For each level of effects (statistical significance only, SQS, and CSL) there are two sets of results provided – the one above is for the data set containing individual PAHs and Aroclors, and the one below is for the same data set containing only summed PAHs and PCBs. In this lower data set, blank spaces indicate individual PAHs and Aroclors that are not present in that data set.

Five sets of percentiles are shown for each of the two data sets. These correspond to different levels of false negatives that Ecology could select to base their SQVs on, and range from 5-25% false negatives, in increments of 5%. The first page shows the reliability results for each of these sets of percentiles for all six reliability parameters. The remaining pages show the chemical concentrations derived by the floating percentile method corresponding to the selected false negative rates. The false negative and false positive rates are repeated on each page for reference.

STATISTICAL SIGNIFICANCE ONLY:					
UNSUMMED PAHs and PCBs	% False		2003%	1988%	
% False Negatives	Positives	% Sensitivity	Efficiency	Efficiency	% Reliability
4	55	96	45	82	82
10	39	90	61	86	82
15	26	85	74	89	82
20	20	80	80	92	81
25	16	75	84	93	78
STATISTICAL SIGNIFICANCE ONLY:					
SUMMED PAHs and PCBs	% False		2003%	1988%	
% False Negatives	Positives	% Sensitivity	Efficiency	Efficiency	% Reliability
5	57	95	43	82	81
10	42	90	58	85	81
15	33	85	67	87	80
20	28	80	72	89	78
25	24	75	76	89	75

STATISTICAL SIGNIFICANCE ONLY:						
UNSUMMED PAHs and PCBs	% False					
% False Negatives	Positives	2-Methylnaphthalene	Acenaphthene	Acenaphthylene	Anthracene	Antimony
4	55	470	1060	470	600	0.4
10	39	470	1060	470	600	0.4
15	26	470	1060	470	600	0.4
20	20	470	1060	470	600	0.6
25	16	470	1060	470	600	0.6
STATISTICAL SIGNIFICANCE ONLY:						
SUMMED PAHs and PCBs	% False					
% False Negatives	Positives					Antimony
5	57					0.4
10	42					0.4
15	33					0.4
20	28					0.4
25	24					0.4

STATISTICAL SIGNIFICANCE ONLY:						
UNSUMMED PAHs and PCBs	% False	Aroclor	Aroclor			
% False Negatives	Positives	1254	1260	Arsenic	Benzo(a)anthracene	Benzo(a)pyrene
4	55	230	140	4.6	4260	3300
10	39	230	140	7.5	4260	3300
15	26	230	140	20.0	4260	3300
20	20	230	140	31.0	4260	3300
25	16	230	140	31.0	4260	3300
STATISTICAL SIGNIFICANCE ONLY:						
SUMMED PAHs and PCBs	% False					
% False Negatives	Positives			Arsenic		
5	57			4.6		
10	42			7.0		
15	33			8.5		
20	28			31.0		
25	24			55.0		

STATISTICAL SIGNIFICANCE ONLY:					
UNSUMMED PAHs and PCBs	% False				
% False Negatives	Positives	Benzo(g,h,i)perylene	Bis(2-ethylhexyl) phthalate	Butyl benzyl phthalate	Cadmium
4	55	4020	220	260	0.3
10	39	4020	220	260	0.3
15	26	4020	230	260	0.6
20	20	4020	330	260	0.7
25	16	4020	550	260	0.9
STATISTICAL SIGNIFICANCE ONLY:					
SUMMED PAHs and PCBs	% False				
% False Negatives	Positives		Bis(2-ethylhexyl) phthalate	Butyl benzyl phthalate	Cadmium
5	57		220	480	0.6
10	42		220	480	0.6
15	33		220	480	1.0
20	28		220	480	1.0
25	24		230	480	1.0

STATISTICAL SIGNIFICANCE ONLY:					_	
UNSUMMED PAHs and PCBs	% False					
% False Negatives	Positives	Chromium	Chrysene	Copper	Dibenz(a,h)anthracene	Dibenzofuran
4	55	95	5940	35	300	400
10	39	95	5940	35	300	400
15	26	95	5940	50	300	400
20	20	95	5940	50	300	400
25	16	95	5940	80	300	400
STATISTICAL SIGNIFICANCE ONLY:						
SUMMED PAHs and PCBs	% False					
% False Negatives	Positives	Chromium		Copper		
5	57	100		35		
10	42	100		35		
15	33	100		42		
20	28	100		48		
25	24	100		75		

STATISTICAL SIGNIFICANCE ONLY:						
UNSUMMED PAHs and PCBs	% False					High Molecular
% False Negatives	Positives	Dimethyl phthalate	Di-n-octyl phthalate	Fluoranthene	Fluorene	Weight PAH
4	55	46	26	2000	200	3000
10	39	46	26	5000	200	3000
15	26	46	26	5000	200	3000
20	20	46	26	5000	200	3000
25	16	46	26	5000	200	3000
STATISTICAL SIGNIFICANCE ONLY:						
SUMMED PAHs and PCBs	% False					
% False Negatives	Positives	Dimethyl phthalate	Di-n-octyl phthalate			
5	57	46	26			
10	42	46	26			
15	33	46	26			
20	28	46	26			
25	24	46	26			

STATISTICAL SIGNIFICANCE ONLY:							
UNSUMMED PAHs and PCBs	% False			Low Molecular			
% False Negatives	Positives	Indeno(1,2,3-c,d)pyrene	Lead	Weight PAH	Mercury	Naphthalene	Nickel
4	55	4120	335	500	0.30	100	53
10	39	4120	335	500	0.30	100	53
15	26	4120	335	500	0.50	100	55
20	20	4120	335	500	0.50	100	53
25	16	4120	335	500	0.50	100	53
STATISTICAL SIGNIFICANCE ONLY:							
SUMMED PAHs and PCBs	% False						
% False Negatives	Positives		Lead		Mercury		Nickel
5	57		350		0.20		39
10	42		350		0.20		39
15	33		350		0.20		60
20	28		350		0.20		60
25	24		350		0.50		60

STATISTICAL SIGNIFICANCE ONLY:					
UNSUMMED PAHs and PCBs	% False				Total
% False Negatives	Positives	Phenanthrene	Pyrene	Silver	benzofluoranthenes (b+k (+j))
4	55	6100	3000	0.55	140
10	39	6100	3000	0.55	300
15	26	6100	3000	0.55	450
20	20	6100	3000	0.55	650
25	16	6100	3000	0.55	650
STATISTICAL SIGNIFICANCE ONLY:					
SUMMED PAHs and PCBs	% False				
% False Negatives	% raise Positives			Silver	PAHs (molar)
5	57			2.20	6
10	42			2.20	7
15	33			2.20	14
20	28			2.20	15
25	24			2.20	20

STATISTICAL SIGNIFICANCE ONLY:				
UNSUMMED PAHs and PCBs	% False	Total		
% False Negatives	Positives	Polychlorinated Biphenyls	Tributyltin	Zinc
4	55	50	75	120
10	39	60	75	120
15	26	60	75	140
20	20	60	75	250
25	16	60	75	250
STATISTICAL SIGNIFICANCE ONLY:				
SUMMED PAHs and PCBs	% False	Total		
% False Negatives	Positives	Polychlorinated Biphenyls	Tributyltin	Zinc
5	57	120	200	100
10	42	120	200	100
15	33	120	200	100
20	28	120	200	250
25	24	120	200	250

SQS:					
UNSUMMED PAHs and PCBs	% False		2003%	1988%	
% False Negatives	Positives	% Sensitivity	Efficiency	Efficiency	% Reliability
5	57	95	43	79	80
10	44	90	56	82	80
15	26	85	74	88	82
20	20	80	80	90	80
25	15	75	85	92	78
SQS:					
SUMMMED PAHs and PCBs	% False		2003%	1988%	
% False Negatives	Positives	% Sensitivity	Efficiency	Efficiency	% Reliability
5	55	95	45	80	80
10	45	90	55	82	80
15	33	85	67	85	80
20	26	80	74	87	78
25	23	75	77	88	76

SQS:							
UNSUMMED PAHs and PCBs	% False						Aroclor
% False Negatives	Positives	2-Methylnaphthalene	Acenaphthene	Acenaphthylene	Anthracene	Antimony	1254
5	57	470	1060	470	1200	0.4	230
10	44	470	1060	470	1200	0.4	230
15	26	470	1060	470	1200	0.4	230
20	20	470	1060	470	1200	0.6	230
25	15	470	1060	470	1200	0.6	230
SQS:							
SUMMMED PAHs and PCBs	% False						
% False Negatives	Positives					Antimony	
5	55					0.4	
10	45					0.4	
15	33					0.4	
20	26					32.0	
25	23					32.0	

SQS:						
UNSUMMED PAHs and PCBs	% False	Aroclor				
% False Negatives	Positives	1260	Arsenic	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(g,h,i)perylene
5	57	140	4.6	4260	3300	4020
10	44	140	6.0	4260	3300	4020
15	26	140	20	4260	3300	4020
20	20	140	31	4260	3300	4020
25	15	140	31	4260	3300	4020
SQS:						
SUMMMED PAHs and PCBs	% False					
% False Negatives	Positives		Arsenic			
5	55		6.2			
10	45		6.2			
15	33		8.5			
20	26		30			
25	23		30			

SQS:							
UNSUMMED PAHs and PCBs	% False						
% False Negatives	Positives	Bis(2-ethylhexyl) phthalate	Butyl benzyl phthalate	Cadmium	Chromium	Chrysene	Copper
5	57	220	260	0.27	95	5940	80
10	44	220	260	0.29	95	5940	80
15	26	230	260	0.60	95	5940	80
20	20	330	260	0.78	95	5940	80
25	15	550	260	0.97	95	5940	80
SQS:							
SUMMMED PAHs and PCBs	% False						
% False Negatives	Positives	Bis(2-ethylhexyl) phthalate	Butyl benzyl phthalate	Cadmium	Chromium		Copper
5	55	240	480	1.0	100		80
10	45	240	480	1.0	100		80
15	33	240	480	1.0	100		80
20	26	240	480	1.0	100		80
25	23	300	480	6.0	100		80

SQS:					
UNSUMMED PAHs and PCBs	% False				
% False Negatives	Positives	Dibenz(a,h)anthracene	Dibenzofuran	Dimethyl phthalate	Di-n-octyl phthalate
5	57	800	400	46	26
10	44	800	400	46	26
15	26	800	400	46	26
20	20	800	400	46	26
25	15	800	400	46	26
SQS:					
SUMMMED PAHs and PCBs	% False				
% False Negatives	Positives			Dimethyl phthalate	Di-n-octyl phthalate
5	55			46	45
10	45			46	45
15	33			46	45
20	26			46	45
25	23			46	45

SQS:						
UNSUMMED PAHs and PCBs	% False			High Molecular		
% False Negatives	Positives	Fluoranthene	Fluorene	Weight PAH	Indeno(1,2,3-c,d)pyrene	Lead
5	57	11000	1000	31000	4120	335
10	44	11000	1000	31000	4120	335
15	26	11000	1000	31000	4120	335
20	20	11000	1000	31000	4120	335
25	15	11000	1000	31000	4120	335
SQS:						
SUMMMED PAHs and PCBs	% False					
% False Negatives	Positives					Lead
5	55					350
10	45					350
15	33					350
20	26					1200
25	23					1200

SQS:								
UNSUMMED PAHs and PCBs	% False	Low Molecular						
% False Negatives	Positives	Weight PAH	Mercury	Naphthalene	Nickel	Phenanthrene	Pyrene	Silver
5	57	6600	0.50	500	60	6100	8800	2.0
10	44	6600	0.50	500	60	6100	8800	2.0
15	26	6600	0.50	500	60	6100	8800	2.0
20	20	6600	0.50	500	60	6100	8800	2.0
25	15	6600	0.50	500	60	6100	8800	2.0
SQS:								
SUMMMED PAHs and PCBs	% False							
% False Negatives	Positives		Mercury		Nickel			Silver
5	55		0.17		28			2.2
10	45		0.20		60			2.2
15	33		0.30		60			2.2
20	26		0.30		60			2.2
25	23		0.30		60			2.2

SQS:					
UNSUMMED PAHs and PCBs	% False	Total	Total		
% False Negatives	Positives	benzofluoranthenes (b+k (+j))	Polychlorinated Biphenyls	Tributyltin	Zinc
5	57	140	60	75	120
10	44	300	60	75	120
15	26	11000	60	75	140
20	20	11000	60	75	250
25	15	11000	60	75	250
SQS:					
SUMMMED PAHs and PCBs	% False		Total		
% False Negatives	Positives	PAHs (molar)	Polychlorinated Biphenyls	Tributyltin	Zinc
5	55	2.7	120	200	80
10	45	9.5	120	200	80
15	33	15	120	200	100
20	26	15	150	220	100
25	23	21	150	220	140

CSL:			
UNSUMMED PAHs and PCBs	% False		2003%
% False Negatives	Positives	% Sensitivity	Efficiency
5	50	95	50
10	37	90	63
15	26	85	74
20	23	80	77
25	21	75	79
CSL:			
SUMMED PAHs and PCBs	% False		2003%
% False Negatives	Positives	% Sensitivity	Efficiency
5	50	95	50
10	44	90	56
15	24	85	76
20	17	80	83
25	16	75	84

CSL:							
UNSUMMED PAHs and PCBs	% False						Aroclor
% False Negatives	Positives	2-Methylnaphthalene	Acenaphthene	Acenaphthylene	Anthracene	Antimony	1254
5	50	555	1320	640	1580	0.4	340
10	37	555	1320	640	1580	0.6	340
15	26	555	1320	640	1580	0.6	340
20	23	555	1320	640	1580	0.6	340
25	21	555	1320	640	1580	0.6	340
CSL:							
SUMMED PAHs and PCBs	% False						
% False Negatives	Positives					Antimony	
5	50					0.6	
10	44					0.6	
15	24					0.6	
20	17					0.6	
25	16					0.6	

CSL:						
UNSUMMED PAHs and PCBs	% False	Aroclor				
% False Negatives	Positives	1260	Arsenic	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(g,h,i)perylene
5	50	140	7.7	5800	4810	5200
10	37	140	51	5800	4810	5200
15	26	140	51	5800	4810	5200
20	23	140	51	5800	4810	5200
25	21	140	51	5800	4810	5200
CSL:						
SUMMED PAHs and PCBs	% False					
% False Negatives	Positives		Arsenic			
5	50		7.6			
10	44		8			
15	24		51			
20	17		51			
25	16		51			

CSL:						
UNSUMMED PAHs and PCBs	% False					
% False Negatives	Positives	Bis(2-ethylhexyl) phthalate	Butyl benzyl phthalate	Cadmium	Chromium	Chrysene
5	50	320	370	1	100	6400
10	37	320	370	1	100	6400
15	26	320	370	1	100	6400
20	23	400	370	1.5	100	6400
25	21	500	370	1.5	100	6400
CSL:						
SUMMED PAHs and PCBs	% False					
% False Negatives	Positives	Bis(2-ethylhexyl) phthalate	Butyl benzyl phthalate	Cadmium	Chromium	
5	50	300	600	6	100	
10	44	300	600	6	100	
15	24	300	600	6	100	
20	17	345	600	6	100	
25	16	410	600	6	100	

CSL:						
UNSUMMED PAHs and PCBs	% False					
% False Negatives	Positives	Copper	Dibenz(a,h)anthracene	Dibenzofuran	Dimethyl phthalate	Di-n-octyl phthalate
5	50	830	840	440	440	45
10	37	830	840	440	440	45
15	26	830	840	440	440	45
20	23	830	840	440	440	45
25	21	830	840	440	440	45
CSL:						
SUMMED PAHs and PCBs	% False					
% False Negatives	Positives	Copper			Dimethyl phthalate	Di-n-octyl phthalate
5	50	44			180	100
10	44	44			180	100
15	24	450			180	100
20	17	450			180	100
25	16	450			180	100

CSL:						
UNSUMMED PAHs and PCBs	% False			High Molecular		
% False Negatives	Positives	Fluoranthene	Fluorene	Weight PAH	Indeno(1,2,3-c,d)pyrene	Lead
5	50	230	3000	54800	5300	430
10	37	400	3000	54800	5300	430
15	26	15000	3000	54800	5300	430
20	23	15000	3000	54800	5300	430
25	21	15000	3000	54800	5300	430
CSL:						
SUMMED PAHs and PCBs	% False					
% False Negatives	Positives					Lead
5	50					430
10	44					430
15	24					430
20	17					430
25	16					430

CSL:								
UNSUMMED PAHs and PCBs	% False	Low Molecular						
% False Negatives	Positives	Weight PAH	Mercury	Naphthalene	Nickel	Phenanthrene	Pyrene	Silver
5	50	9200	0.5	1310	70	7600	16000	2.5
10	37	9200	0.5	1310	70	7600	16000	2.5
15	26	9200	0.75	1310	70	7600	16000	2.5
20	23	9200	0.75	1310	70	7600	16000	2.5
25	21	9200	0.75	1310	70	7600	16000	2.5
CSL:								
SUMMED PAHs and PCBs	% False							
% False Negatives	Positives		Mercury		Nickel			Silver
5	50		0.5		30			3
10	44		0.5		38			3
15	24		0.5		70			3
20	17		3		70			3
25	16		3		70			3

CSL:					
UNSUMMED PAHs and PCBs	% False	Total	Total		
% False Negatives	Positives	benzofluoranthenes (b+k (+j))	Polychlorinated Biphenyls	Tributyltin	Zinc
5	50	13800	120	60	125
10	37	13800	120	75	125
15	26	13800	120	75	160
20	23	13800	120	75	160
25	21	13800	120	75	250
CSL:					
SUMMED PAHs and PCBs	% False		Total		
% False Negatives	Positives	PAHs (molar)	Polychlorinated Biphenyls	Tributyltin	Zinc
5	50	9	120	6600	125
10	44	14	120	6600	125
15	24	50	120	6600	150
20	17	88	120	6600	450
25	16	90	120	6600	450

FINAL QUARTERLY GROUNDWATER SAMPLING REPORT FOR JULY 2004

at

2737 West Commodore Way and 2750 West Commodore Way Seattle, Washington

Prepared for

Time Oil Company 2737 West Commodore Way Seattle, WA 98199 (206) 285-2400

November 2004

Prepared by

TETRATECH FW, INC.

12100 NE 195th, Suite 200 Bothell, WA 98011 (425) 482-7600

CONTENTS

1.	INTRODUCTION	1
2.	METHODS AND PROCEDURES 2.1 GROUNDWATER ELEVATION SURVEY 2.2 GROUNDWATER SAMPLING 2.3 GROUNDWATER ANALYSES	2 2 2 3
3.	GROUNDWATER LEVEL DATA 3.1 2737 WEST COMMODORE WAY 3.2 2750 WEST COMMODORE WAY	5 5
4.	ANALYTICAL RESULTS 4.1 QUARTERLY GROUNDWATER SAMPLING AT 2737 WEST COMMODORE WAY	7
	4.2 QUARTERLY GROUNDWATER SAMPLING AT 2750 WEST COMMODORE WAY	8
5.	CONCLUSIONS AND RECOMMENDATIONS 5.1 2737 WEST COMMODORE WAY 5.2 2750 WEST COMMODORE WAY	9 9 11

APPENDIX A LABORATORY DATA PACKAGES

CONTENTS

FIGURES

- Figure 1-1. Locations of 2737 and 2750 West Commodore Way
- Figure 1-2. Layout of 2737 and 2750 West Commodore Way
- Figure 3-1. Hydrograph for Monitoring Wells at 2737 West Commodore Way
- Figure 3-2. Location of Wells and Potentiometric Surface at 2737 West Commodore Way, July 12, 2004
- Figure 3-3. Hydrograph for Monitoring Wells at 2750 West Commodore Way
- Figure 3-4. Location of Wells and Potentiometric Surface at 2750 West Commodore Way, July 12, 2004
- Figure 5-1. Diesel-Impacted Groundwater at 2737 West Commodore Way, July 2004
- Figure 5-2. Gasoline-Impacted Groundwater at 2737 West Commodore Way, July 2004
- Figure 5-3. Benzene-Impacted Groundwater at 2737 West Commodore Way, July 2004

TABLES

- Table 2-1. July 2004 Sampling Matrix
- Table 3-1. Well Construction Details at West Commodore Way Properties
- Table 3-2. Water Levels Measured at West Commodore Way Properties on July 12, 2004
- Table 3-3. Cumulative Groundwater Elevations, October 2003 July 2004
- Table 4-1. Well Sampling Parameters, July 2004
- Table 4-2. Groundwater Results from 2737 West Commodore Way, July 2004
- Table 4-3. Groundwater Results from 2750 West Commodore Way, July 2004
- Table 5-1. Cumulative Groundwater Results, July 2001 July 2004, 2737 West Commodore Way
- Table 5-2. Cumulative Groundwater Results, July 2001 July 2004, 2750 West Commodore Way

ACRONYMS AND ABBREVIATIONS

bgs below ground surface

BTEX benzene, toluene, ethylbenzene, and xylene

°C degrees Celsius

Ecology Washington State Department of Ecology
EPA U.S. Environmental Protection Agency

HDPE high-density polyethylene

mg/L milligrams per liter
mL/min milliliters per minute

mS/cm millisiemens per centimeter

msl mean sea level

 μ g/L micrograms per liter

MTCA Model Toxics Control Act

NOAA National Oceanic and Atmospheric Administration

NTU nephelometric turbidity unit

NWTPH-Dx Northwest total petroleum hydrocarbon-diesel range hydrocarbons
NWTPH-Gx Northwest total petroleum hydrocarbon-gasoline range hydrocarbons

ORP oxidation reduction potential

PCP pentachlorophenol

sim selective ion monitoring

SQuiRT[™] Screening Quick Reference Tables

TOC Time Oil Company

VOC volatile organic compound

1. INTRODUCTION

Investigations to assess groundwater levels and specific chemical concentrations were conducted at two Time Oil Company (TOC) properties located at 2737 West Commodore Way and 2750 West Commodore Way, Seattle, Washington (Figure 1-1). TOC retained Tetra Tech FW, Inc. (TtFW) to conduct quarterly groundwater monitoring at these properties as part of an independent cleanup action.

Monitoring wells at the properties are sampled on a quarterly basis, which began in July 2001. This quarterly report presents the results of the July 2004 groundwater sampling activities at 2737 and 2750 West Commodore Way. The document also serves as an annual report summarizing trends in data collected over the last year of sampling (October 2003 through July 2004). Figure 1-2 provides a plan view of the properties relative to one another. The report is organized as follows:

- Section 1 briefly describes the purpose and organization of the report.
- Section 2 describes the field methods used to measure water levels and to collect samples.
- Section 3 presents the groundwater level data.
- Section 4 presents the analytical results.
- Section 5 describes the conclusions and provides recommendations for future actions.
- Appendix A provides the data packages from the analytical laboratory for July 2004.

2. METHODS AND PROCEDURES

Field activities for July 2004 at the two TOC properties included water level measurement and quarterly groundwater sampling. This section presents a brief description of the specific methods and procedures used for quarterly monitoring.

2.1 GROUNDWATER ELEVATION SURVEY

Groundwater elevations are determined each quarter by measuring the depth to water in 28 wells at 2737 West Commodore Way and 7 wells at 2750 West Commodore Way. The depth to water measurements are collected on a single day and subtracted from the survey level at the top of the well casing to calculate the potentiometric surface (water table elevation).

Before measuring the depth to groundwater in the first well, the water level indicator is calibrated by visually comparing the markings on the tape to the markings on a measurement tape. After removing the well cap and allowing the well to stabilize, the probe is lowered into the well until the sound alarm is activated, indicating that the probe has touched the water surface. The static depth to water is read directly from the tape by holding the tape to the permanent mark on the well casing or cap. The probe is then raised and lowered to confirm the reading. An oil/water interface probe is then used in a similar manner in wells where floating product is suspected to be present.

2.2 GROUNDWATER SAMPLING

Groundwater samples are collected each quarter using a low-flow micro-purging technique in accordance with U.S. Environmental Protection Agency (EPA) guidelines (EPA 1996, EPA/540/S-95/504). Each monitoring well is micro-purged (300 to 500 milliliters per minute [mL/min]) using a peristaltic pump with disposable high-density polyethylene (HDPE) tubing. A small section of thick-walled silicon is used around the head of the peristaltic pump to achieve the pressures necessary to draw the groundwater up the well. Groundwater samples are collected in laboratory-supplied glassware and hand delivered to the laboratory each evening after sampling.

Groundwater sampling was conducted in July 2004 in accordance with the following sampling procedures:

- 1. Calibrate field instruments in accordance with the manufacturer's directions. Record all calibration data in the field log book.
- 2. Confirm well identification using site map.
- 3. Measure the depth to water at each well. Record the depth to water. Decontaminate the water level meter before each measurement.
- 4. Carefully lower the HDPE tubing into the well with as little disturbance to the groundwater as possible. Place the intake at the middle of the screen interval. Set pump rate to ensure the water column in the well does not drop more than 0.2 feet below the initial water level reading.
- 5. Purge the well at a flow rate of 300 to 500 mL/min. Monitor water level to ensure minimal drawdown. Monitor water quality parameters every 3 to 5 minutes during purging (turbidity, pH, temperature, conductivity, oxidation reduction potential [ORP], and dissolved oxygen) using in-line monitoring equipment. Stabilization is achieved if three successive readings are within ±0.1 pH units, ±1 degree Celsius (°C) for temperature, ±10 percent for conductivity, ±10 percent for dissolved oxygen, and ± 10 millivolts for ORP.
- 6. When water quality parameters are stable for three consecutive readings, turn off the pump and remove the tubing from the well or leave the tubing in place securing it at the surface within the well head. Place the tubing in a sealed, labeled plastic bag. Replace the well cap and seal the monument.
- 7. Return within 24 hours and insert the appropriate HDPE tubing into the well. Connect the pump and adjust the pump flow to a rate of approximately 200 mL/min. Collect samples for volatile organic compounds (VOC) and gasoline analyses first. Fill the containers so that no headspace exists.
- 8. Increase the flow rate to approximately 300 to 500 mL/min while maintaining minimal to no drawdown and collect the remaining samples.

2.3 GROUNDWATER ANALYSES

Groundwater samples were collected on July 13 through July 20, 2004, using laboratory-supplied glassware. The groundwater samples were delivered to the laboratory

each evening after sampling and, depending on the specific data needs, were analyzed for all or some of the following contaminants:

- Gasoline range hydrocarbons, using Washington State Department of Ecology's (Ecology's) Northwest total petroleum hydrocarbon-gasoline (NWTPH-Gx) method;
- Benzene, toluene, ethylbenzene, xylene (BTEX) using EPA Method 8021B;
- Diesel and Lube oil range hydrocarbons, using Ecology's Northwest total petroleum hydrocarbon-diesel extended (NWTPH-Dx) method; and
- Pentachlorophenol (PCP), using EPA Method 8270-sim (selective ion monitoring).

The groundwater samples analyzed for diesel and oil underwent a silica gel cleanup before analysis. This cleanup was done to remove naturally occurring organic material that may interfere with the analysis. Groundwater samples were analyzed by North Creek Analytical Laboratories, Inc., in Bothell, Washington.

The sampling during July 2004 was an annual sampling event; therefore, additional modifications to the sampling list were made. Table 2-1 shows the wells sampled in July 2004 and the respective analyses. Many of the wells that are not routinely sampled (i.e., 01MW-06, 01MW-15,) were added to see if conditions had changed since the wells were removed from the sampling program. PCP analysis was added to some wells to ensure that the extent of PCP-impacted groundwater was defined.

3. GROUNDWATER LEVEL DATA

Field activities conducted at the TOC properties included the quarterly collection of water level measurements. This section describes the collection of July 2004 water level measurements and summarizes groundwater flow directions beneath 2737 and 2750 West Commodore Way.

Measurements for depth to water were made using an electronic measuring tape with markings every 0.01 foot. All water levels were measured on a single day. Measurements were subtracted from surveyed measuring point elevations to produce the water level elevations. Where present, the thickness and specific gravity (0.8) of free phase product fuel on the water table was considered when calculating the elevation of the water table.

3.1 2737 WEST COMMODORE WAY

Water level measurements were collected from 28 wells at 2737 West Commodore Way on July 12, 2004. Table 3-1 provides the well construction information, and Table 3-2 shows the groundwater elevations in feet above mean sea level (msl). Table 3-3 shows the groundwater elevations and fuel thickness for the last four quarters. In general, the water levels have decreased slightly relative to April 2004, possibly due to seasonal variation. The groundwater elevations during the four quarter period are generally consistent showing a slight seasonal increase in January and April. Figure 3-2 shows the locations of the wells at 2737 West Commodore Way and the water table elevation (potentiometric space). The hydrograph shown in Figure 3-1 demonstrates the general consistency of the groundwater elevations. Groundwater flows to the north toward the Ship Canal. The groundwater flow direction north of the Lower Tank Yard appears to be bifurcated, possibly by the fiber-grained material in the vicinity of Wells 01MW-16 and 01MW-10. The groundwater gradient at the site differs in the tank yards relative to the rest of the site. The gradient across the tank yards (Wells 01MW-17 to 01MW-23) is approximately 0.006 feet per foot and steepens towards the north wall of the Lower Tank Yard. The unpaved surface of the tank yards allows for greater infiltration, resulting in higher groundwater elevations and mounding. The gradient outside the tank yards (Well 01MW-01 to Well MW-09) is approximately 0.028 feet per foot.

3.2 2750 WEST COMMODORE WAY

Water level measurements were collected from seven wells at 2750 West Commodore Way on July 12, 2004. In general, the water levels at 2750 West Commodore Way have decreased slightly, relative to April 2004, possibly due to seasonal variation. The wells on the east side of the property (Wells 02MW-04, 02MW-05, and 02MW-06) show a slight increase in the elevation of the potentiometric surface. The slight increases in these wells are not consistent with historical data or with trends seen in other wells on the property. The groundwater elevations over the four quarter period are generally consistent and show an increase in water elevations in January. Figure 3-3 shows the groundwater elevation trends, including the seasonal increase in April 2004. Figure 3-4 shows the locations of the wells and potentiometric surface at 2750 West Commodore Way. Groundwater flows to the north toward the Ship Canal. The groundwater gradient from Wells 02MW-05 to Well 02MW-02 is approximately 0.010 feet per foot toward the north based on the potentiometric surface map.

4. ANALYTICAL RESULTS

The MTCA Method A Cleanup Levels for groundwater are intended to provide conservative cleanup levels for drinking water beneficial uses at sites undergoing routine cleanup actions or those sites with relatively few hazardous substances. Because the groundwater beneath the TOC sites is not used as a source of drinking water or for municipal supply, comparison of groundwater concentrations to the MTCA Method A Cleanup Levels is not technically appropriate. The primary point of exposure to groundwater beneath the sites is through the discharge of groundwater to the nearby Ship Canal, a freshwater body on the north side of 2750 West Commodore Way. Based on this exposure scenario (no groundwater use but discharge to a water body), groundwater concentrations were compared to the National Oceanic and Atmospheric Administration (NOAA) Screening Quick Reference Tables (SQuiRT^m) values. These values provide screening levels for acute and chronic exposures to both freshwater and saltwater.

The SQuiRT™ values are non-promulgated values developed by the Coastal Protection and Restoration Division of NOAA to protect aquatic habitats that may be affected by hazardous waste sites. They are applicable for use at these TOC sites based on the site-specific groundwater use. Because the SQuiRT™ values are non-promulgated values, concentrations above the SQuiRT™ values do not indicate a regulatory exceedance. It is important to remember that between the various wells and the point of exposure, various chemical, physical, and biological processes occur that are likely to reduce the contaminant concentrations. Therefore, a concentration in a well is most likely not the same concentration at the point of exposure. If SQuiRT™ values were not available for a particular analyte, then the MTCA Method A default values were used.

Table 4-1 presents the groundwater parameters measured during sampling. The turbidity sensor on the water quality meter was not functioning properly during the July 2004 sampling event; therefore, suspect values are not reported in Table 4-1. Tables 4-2 and 4-3 show analytical results for the groundwater samples collected in July 2004 at 2737 and 2750 West Commodore Way, respectively. The footnotes at the bottom of each table identify the applicable action levels.

Appendix A contains the laboratory data packages for the samples collected. The data packages are presented in their entirety to allow the reader to evaluate the data relative to the quality control data associated with the environmental samples.

4.1 QUARTERLY GROUNDWATER SAMPLING AT 2737 WEST COMMODORE WAY

The following analytes were detected above the applicable action levels (Table 4-2):

- PCP was detected above the NOAA SQuiRT[™] value (15 micrograms per liter [μg/L]) in Wells 01MW-22, 01MW-23, 01MW-26, and 01MW-27 at concentrations ranging from 40.5 (01MW-26) to 350 μg/L (01MW-23).
- Diesel range hydrocarbons were detected above the MTCA Method A Cleanup Level (0.5 milligrams per liter [mg/L]) in Wells 01MW-03, 01MW-09, 01MW-18, 01MW-19, 01MW-22, 01MW-23, 01MW-24, 01MW-28, and 01MW-29 at concentrations ranging from 0.540 mg/L (01MW-23) to 19.2 mg/L (01MW-09).
- Lube Oil range hydrocarbons were detected above the MTCA Method A Cleanup Level in Well 01MW-03 at a concentration of 0.938 mg/L.
- Gasoline range hydrocarbons were detected above the MTCA Method A Cleanup Level (800 μg/L with benzene present) in Wells 01MW-02, 01MW-03, 01MW-04, 01MW-09, 01MW-12, 01MW-18, 01MW-19, 01MW-21, 01MW-22, 01MW-23, 01MW-24, 01MW-27, 01MW-28, and 01MW-29. The concentrations in these wells ranged from 986 μg/L (Well 01MW-21) to 19,900 μg/L (Well 01MW-19).
- Benzene was detected above the NOAA SQuiRT[™] value (5,300 μg/L) in Wells 01MW-24, 01MW-27, and 01MW-29 at concentrations of 6,750 μg/L, 6,220 μg/L, and 5,410 μg/L, respectively.
- Total xylenes were detected above the MTCA Method A Cleanup Level
 (1,000 μg/L) in Wells 01MW-18, 01MW-19, and 01MW-28 at concentrations of
 1,360 μg/L, 3,190 μg/L, and 1,250 μg/L (1,230 μg/L in the duplicate sample),
 respectively.

4.2 QUARTERLY GROUNDWATER SAMPLING AT 2750 WEST COMMODORE WAY

The following analyte was detected above the applicable action level (Table 4-3):

• Gasoline was detected above the MTCA Method A Cleanup Level (800 μ g/L with benzene present) in Well 01MW-04 at a concentration of 4,800 μ g/L (4,800 μ g/L in the duplicate sample).

5. CONCLUSIONS AND RECOMMENDATIONS

The following subsections describe the extent of impacted groundwater beneath the two properties and annual trends, if any. Figures 5-1 through 5-3 show concentration contour maps for diesel, gasoline, and benzene, respectively.

5.1 2737 WEST COMMODORE WAY

The following discussion summarizes the annual data for each analyte monitored. Table 5-1 shows the data collected from July 2001 through July 2004 at 2737 West Commodore Way.

PCP

PCP concentrations exceeded the NOAA SQuiRTTM level in 4 of the 15 wells sampled in July 2004. The concentrations of PCP detected in July 2004 were similar to those detected in previous quarters. Well 01MW-01 is the only well routinely sampled for PCP, due to its proximity to the former fuel line from the former PCP/Diesel Mixing Area. PCP is consistently below the NOAA SQuiRTTM value in this well. Other wells were sampled for PCP in July during the annual event. The concentration (40.5 μ g/L) in Well 01MW-26 is higher than the previous year by an order of magnitude, while the concentration in 01MW-27 is consistent. This may indicate a change in conditions west of the Lower Tank Yard. The concentrations detected in the wells in the Lower Tank Yard (01MW-21, 01MW-22, and 01MW-23) were similar to previous results.

The PCP-impacted groundwater plume appears to be centered around the Lower Tank Yard and the Former PCP/Diesel Mixing Area.

<u>Diesel Range Hydrocarbon</u>

Diesel range hydrocarbon concentrations exceeded the MTCA Method A Cleanup Level in 9 of the 24 wells sampled in July 2004. The concentrations in July 2004 were similar to those measured in April 2004 with a few exceptions. In general, the data from wells with concentrations above the reporting limit do not indicate any discernable trends with the exception of 01MW-28.

The diesel plume appears to be centralized beneath the Former Manifold Area (01MW-23, 01MW-24, and 01MW-25) and the Former PCP/Diesel Mixing Area (01MW-22) in the Lower Tank Yard. The diesel plume is interpreted to extend towards the north due to the

presence of free phase product in Wells 01MW-10 and 01MW-16 north of the Loading Rack.

The analytical data indicate that diesel concentrations are present above the MTCA Method A Cleanup Level in Wells 01MW-03, 01MW-18, 01MW-19, and 01MW-09. A review of the chromatograms for the samples relative to the standards supplied by the laboratory indicate that gasoline is present in all of the wells. However, diesel is present only in 01MW-09. The plume north of the Office Building on Figure 5-1 (diesel-impacted groundwater) is based on the analytical results and may be more representative of gasoline-impacted groundwater.

In addition, the chromatograms for Wells 01MW-28 and 01MW-29 indicate that diesel range hydrocarbons are primarily present. The elevated gasoline range hydrocarbon concentrations may be due to the high concentration of diesel and/or co-eluting peaks.

Lube Oil Range Hydrocarbons

Lube oil range hydrocarbon concentrations exceeded the MTCA Method A Cleanup Level in 1 of 24 (01MW-03) wells sampled in July 2004. This well is sampled quarterly with no detections above the method reporting limit during the previous quarter. The detection in July 2004 is not consistent with the previous data.

Gasoline Range Hydrocarbons

Gasoline range hydrocarbon concentrations exceeded the MTCA Method A Cleanup Level for gasoline with benzene present in 14 of the 24 wells sampled in July 2004. The concentrations in July 2004 were similar to those measured in April 2004, with a few exceptions, and were also consistent with the previous quarters through the four quarter period. The concentration of gasoline in 01MW-02 and 01MW-09 were an order of magnitude lower than April 2004. The change in 01MW-02 is not consistent with historical data. The change in 01MW-09 may be due to the passive skimmer installed in the well and other nearby wells. The concentration of gasoline in other wells is fairly consistent.

The gasoline plume appears to be centralized beneath the Former Manifold Area (01MW-24 and 01MW-25) and the Former PCP/Diesel Mixing Area (01MW-21 and 01MW-22) in the Lower Tank Yard. The gasoline plume is interpreted to extend towards the north due to the presence of free phase product in Wells 01MW-10 and 01MW-16 north of the Loading Rack.

Gasoline concentrations exceed the MTCA Method A Cleanup Level in several wells in front of the Office Building. It is not clear whether the gasoline-impacted groundwater in front of the Office Building is associated with a separate source (possibly the former or current UST), or associated with the source near the Lower Tank Yard.

Benzene

Benzene was detected above the NOAA SQuiRTTM level (5,300 μ g/L) in 3 of the 24 wells sampled in July 2004. In general, the concentrations of benzene are consistent with historical detections.

Toluene

Toluene was not detected above the NOAA SQuiRT[™] value in any of the wells, nor has it since quarterly sampling began in July 2001.

Ethylbenzene

Ethylbenzene was not detected above the NOAA SQuiRT™ value in any of the wells, nor has it since quarterly sampling began in July 2001.

<u>Xylene</u>

Total xylenes (m, p, and o-isomers combined) were detected above the MTCA Method A Cleanup Level in 3 of the 24 wells sampled in July 2004. The concentrations detected in Wells 01MW-18, 01MW-19, and 01MW-28 are consistent with the results from the previous quarter (August 2003).

5.2 2750 WEST COMMODORE WAY

The following discussion summarizes the annual data for each analyte monitored. Table 5-2 shows the data collected from July 2001 through July 2004 at 2750 West Commodore Way.

Diesel Range Hydrocarbons

Diesel range hydrocarbons have not been detected above the method reporting limit in any wells from October 2003 to July 2004.

Lube Oil Range Hydrocarbons

Lube oil range hydrocarbons were not detected above the method reporting limit in any of the wells from October 2003 through July 2004.

Gasoline Range Hydrocarbons

Gasoline range hydrocarbon concentrations exceeded the MTCA Method A Cleanup Level for gasoline with benzene present in one of the seven wells (Well 02MW-04). The concentrations in Well 02MW-04 were consistent for all four quarters with the exception of April where the concentrations increased one order of magnitude (12,200 μ g/L). In July the concentrations were decreased (4,800 μ g/L).

Benzene

Benzene was detected in two of the seven wells sampled (Wells 02MW-03 and 02MW-04). None of the concentrations detected were above the NOAA SQuiRTTM value and the data are relatively consistent from quarter to quarter.

<u>Toluene</u>

Toluene was detected in one of the seven wells sampled (Well 02MW-04). None of the concentrations were above the NOAA SQuiRTTM value.

Ethylbenzene

Ethylbenzene was consistently detected above the method reporting limit in Well 02MW-04. The concentrations have been relatively consistent since July 2001.

Xylene

Xylene was detected in Wells 02MW-01, 02MW-03, 02MW-04, and 02MW-07. None of the concentrations were above the MTCA Method A Cleanup Level. The detections in Wells 02MW-01 and 02MW-03 were limited to October 2003 and the detections in Wells 02MW-04 and 02MW-07 were consistent.

Time Oil Company Quarterly Groundwater Sampling Report for August 2003 2737 and 2750 West Commodore Way

FIGURES

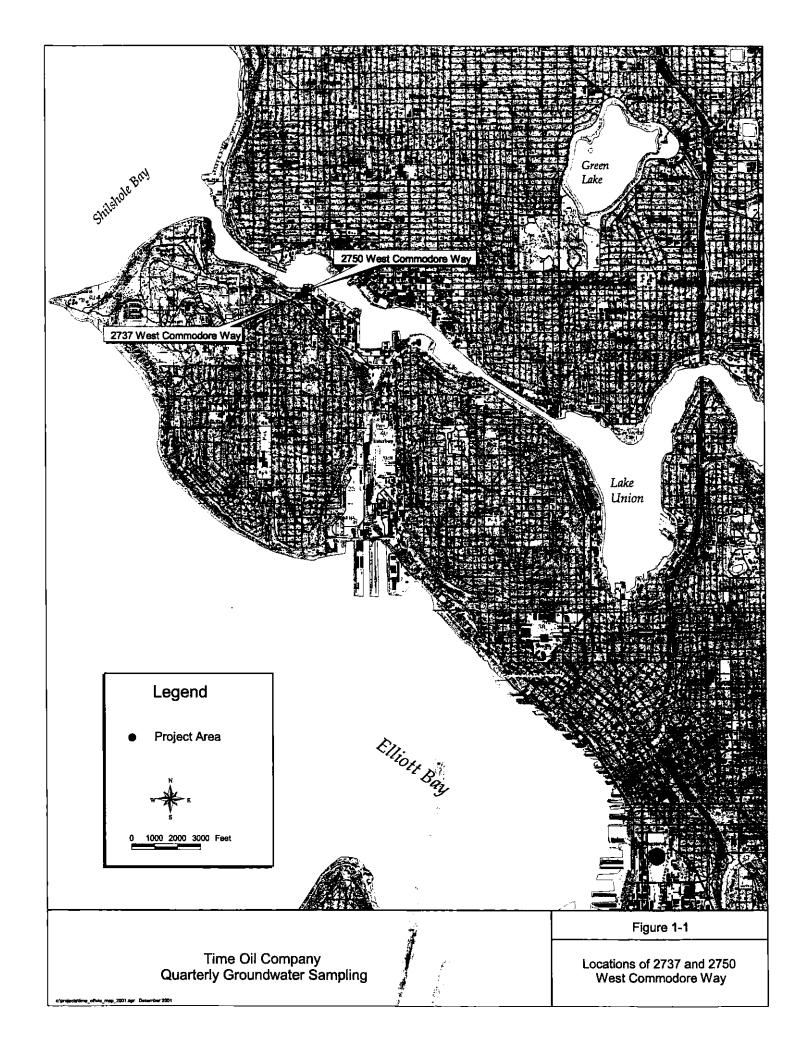


Figure 3-1. Hydrograph for Monitoring Wells at 2737 West Commodore Way

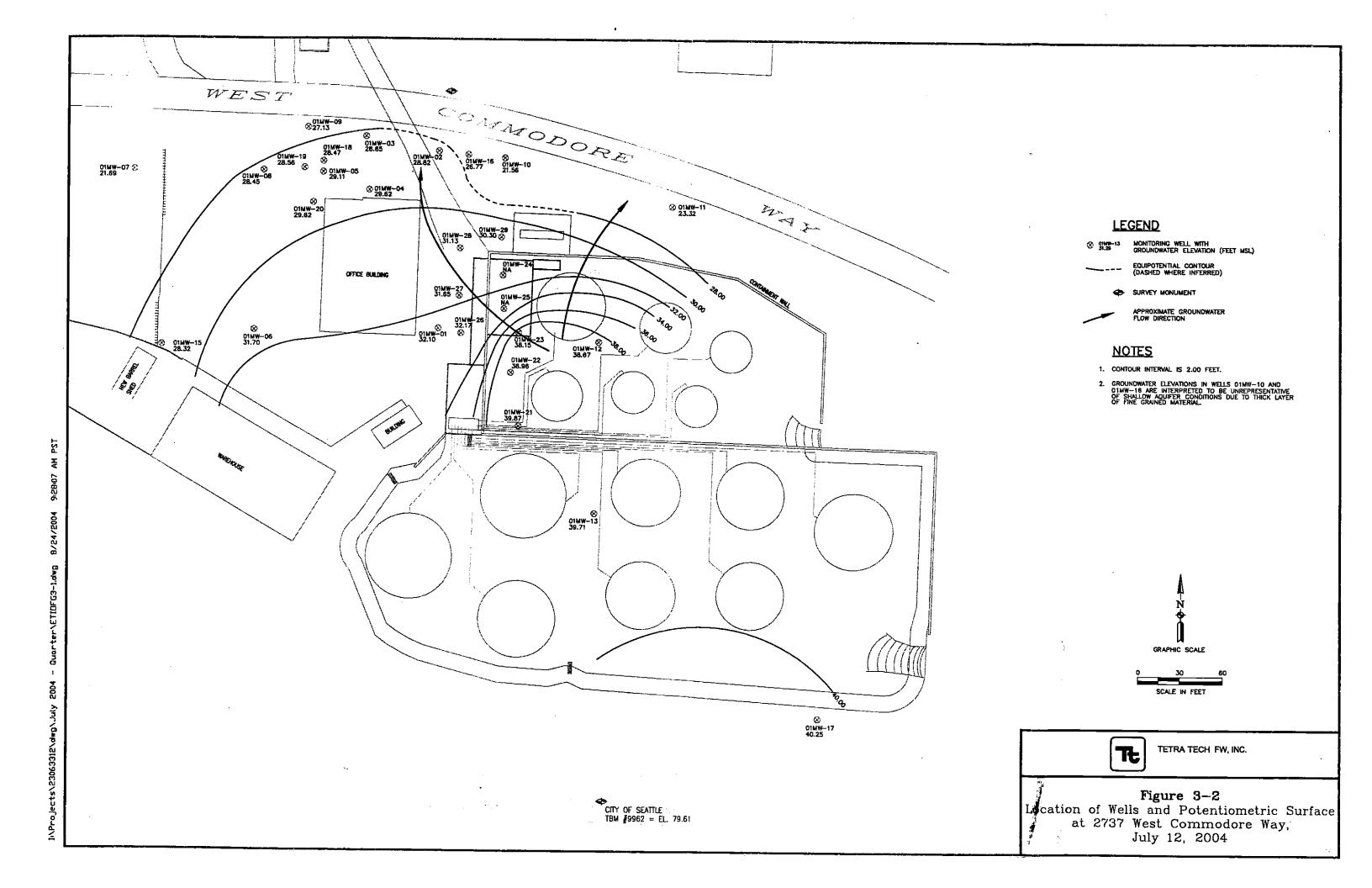
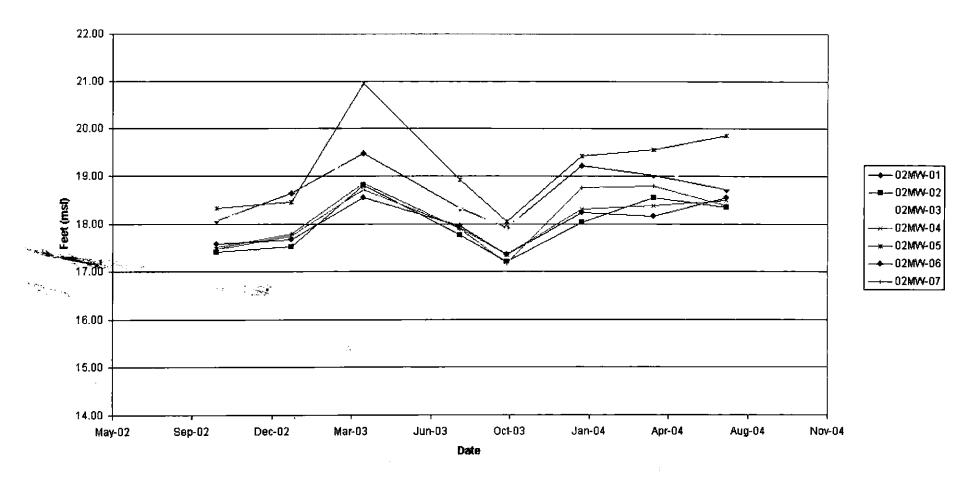
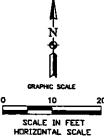
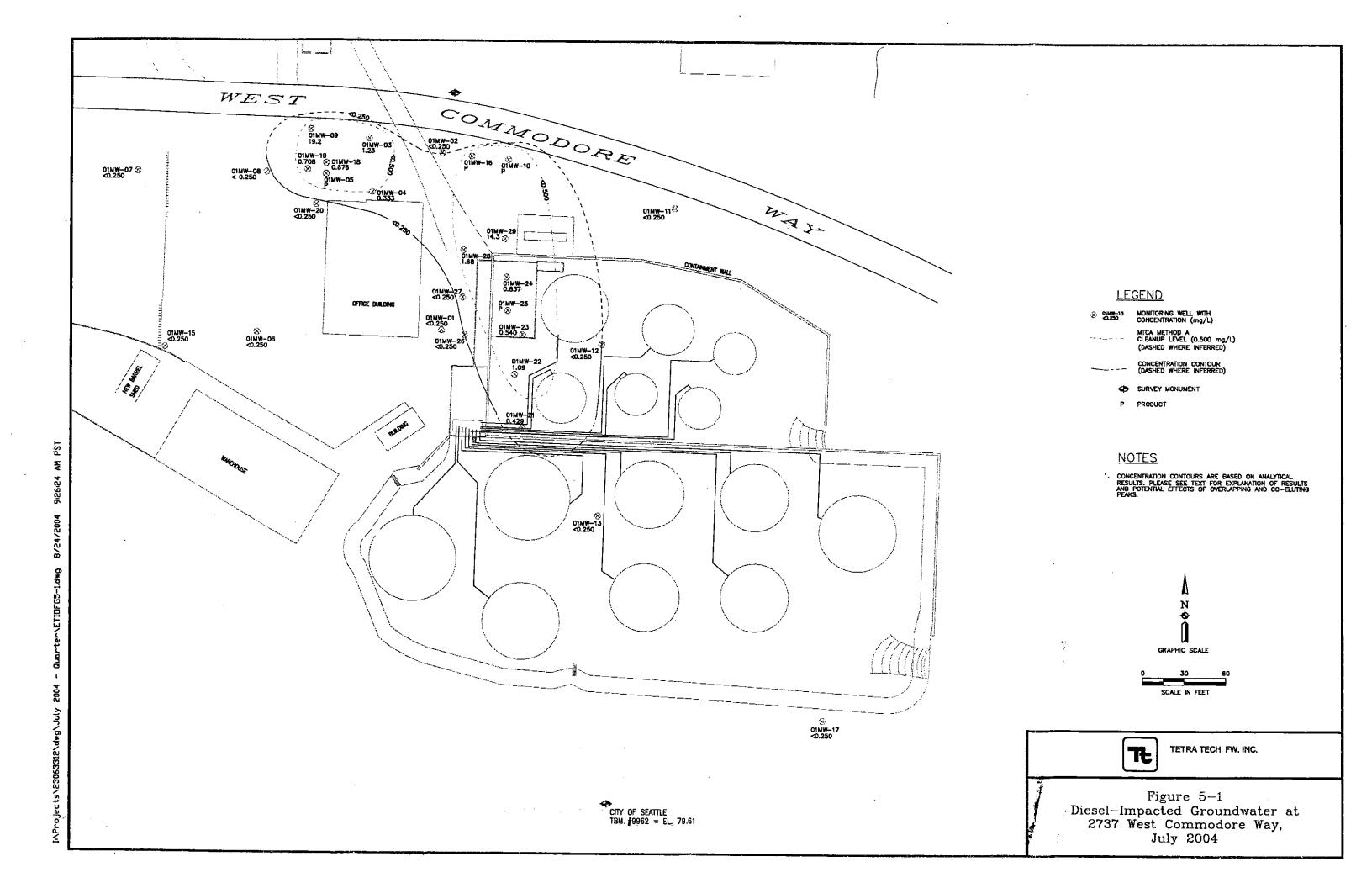




Figure 3-3. Hydrograph for Monitoring Wells at 2750 West Commodore Way

EQUIPOTENTIAL CONTOUR (FEET MSL) (DASHED WHERE INFERRED)



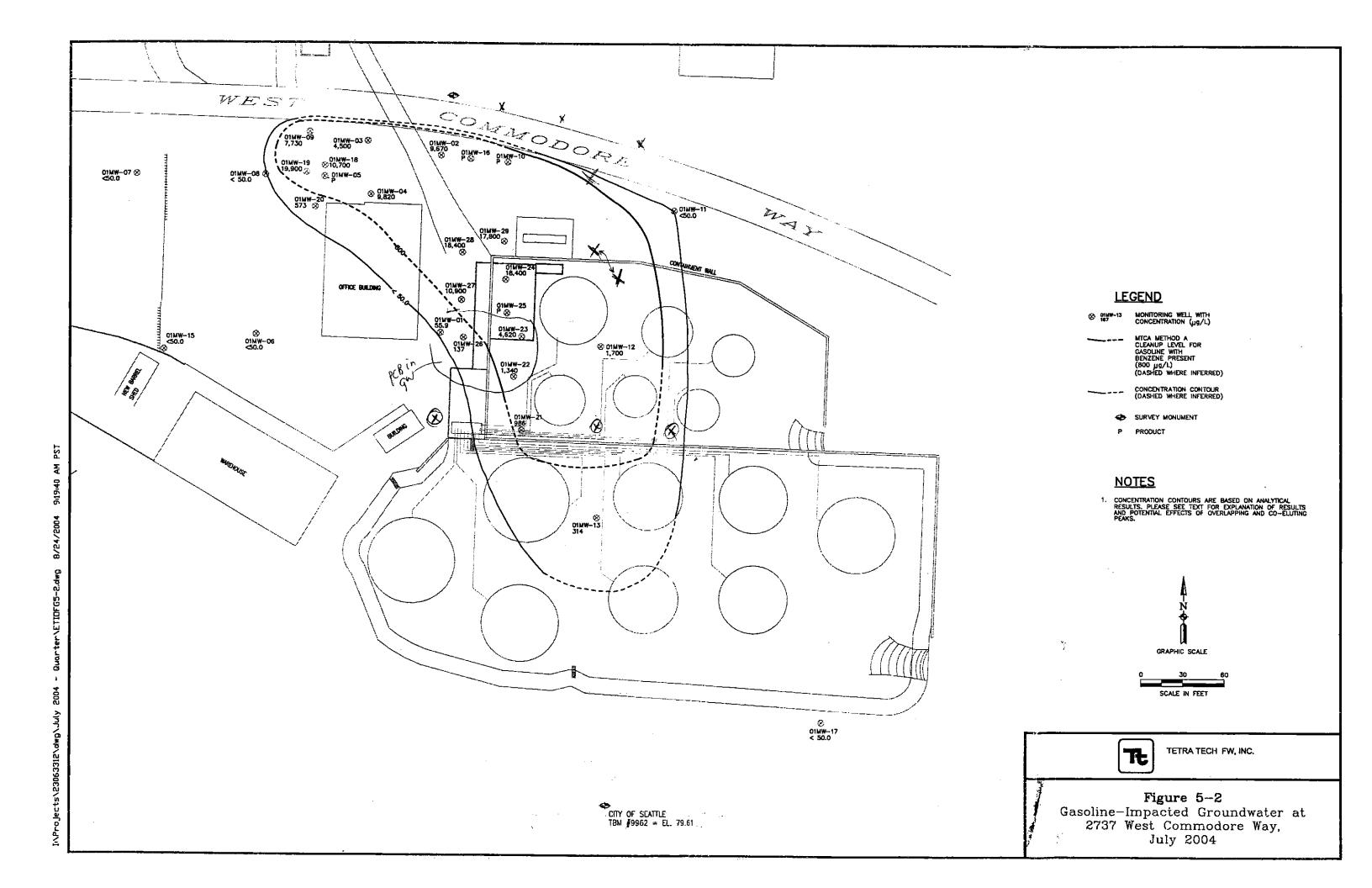

TETRA TECH FW, INC.

Figure 3-4
Location of Wells

and Potentiometric Surface at 2750 West Commodore Way, July 12, 2004

I: \PROJECTS\23063312\DWG\"IULY 2004 - QUARTER\ETIOFG3-4_7-04.DWG PLOT/UPDATE: SEP 02 2004 14: 06: 30

Time Oil Company Quarterly Groundwater Sampling Report for July 2004 2737 and 2750 West Commodore Way

TABLES

Table 2-1. July 2004 Sampling Matrix

1 able 2-1.	July 2004 Sam	pung Matrix		
Well	NWTPH- Gx/BTEX	NWTPH-Dx	PCP	Sample Type
	2737	West Commod	lore Way	
01MW-01	1	1	1	Environmental
01MW-02	1	1	na	Environmental
01MW-03	1	1	na	Environmental
01MW-04	1	1	na	Environmental
01MW-05	Sample not of	collected due to	presence	of free-phase product
01MW-06	1	1	1	Environmental
01MW-07	1	1	na	Environmental
01MW-08	1	1	na	Environmental
01MW-09	1	1	1	Environmental
01MW-10	Sampled r	not collected du	e to insuf	ficient groundwater
01MW-11	1	1	na	Environmental
01MW-12	1	1	na	Environmental
01MW-13	1	1	na	Environmental
01MW-15	1	1	1	Environmental
01 MW-16	Sampled r	not collected du	e to insuf	ficient groundwater
01MW-17	1	1	па	Environmental
01MW-18	1	1	1	Environmental
01MW-19	1	1	1	Environmental
01MW-20	1	1	1	Environmental
01MW-21	1	1	1	Environmental
01MW-22	1	1	1	Environmental
01MW-23	1	1	1	Environmental
01MW-24	1	1	1	Environmental
01MW-25	Sample not o	collected due to	presence	of free-phase product
01MW-26	1	1	1	Environmental
01MW-27	1	1	1	Environmental
01MW-28	1	1	1	Environmental
01MW-28	1	1	1	Field Duplicate
01MW-29	1	1	1	Environmental
	2750	West Commod	ore Way	
02MW-01	1	1	na	Environmental
02MW-02	. 1	1	na	Environmental
02MW-03	1	1	na	Environmental
02MW-04	1	1	na	Environmental
02MW-04	1	1	na	Field Duplicate
02MW-05	1	1	na	Environmental
02MW-06	1	1	na	Environmental
02MW-07	1	1	na .	Environmental
				<u> </u>

BTEX - benzene, toluene, ethylbenzene, xylene

Dx - diesel range hydrocarbons

Gx - gasoline range hydrocarbons

na - not included in analytical suite

NWTPH - northwest total petroleum hydrocarbon

PCP - pentachlorophenol

Table 3-1. Well Construction Details at West Commodore Way Properties

-		rdinate	Top of	Cround	Total Donth	Total Depth	Depth of Screen	Elevation of
		ate Plane)	Casing Elevation	Ground Clevation	of Boring	of Well	Screen Interval	Screen Interval
Well	Northing (Feet)	Easting (Feet)	(Feet msl)	(Feet msl)	(Feet bgs)	(Feet bgs)	(Feet bgs)	(Feet msl)
	(1 665)	(2000)		est Commodo		<u> </u>	,	
01MW-01	245454.603	1256198.248	46.48	46.76	25.00	25.25	10 – 25	36.76 – 21.76
01MW-02	245585.027	1256198.518	44.78	45.15	25.00	24.91	10 – 25	35.15 – 20.15
01MW-03	245597.585	1256160.493	44.35	44.75	25.20	25.15	10-25	34.75 – 19.75
01MW-04	245563.117	1256163.148	45.08	45.56	25.00	24.90	10-25	35.56 - 20.56
01MW-05	245569.311	1256114.025	45.40	45.77	25.00	24.88	10-25	35.77 – 20.77
01MW-06	245452.677	1256064.638	47.74	48.23	25.00	25.10	10-25	38.23 - 23.23
01MW-07	245570.711	1255975.885	45.17	45.53	30.00	28.17	15 – 30	30.53 - 15.53
01MW-08	245570.471	1256070.985	45.21	45.63	25.00	24.93	10-25	35.63 – 20.63
01MW-09	245602.062	1256103.039	43.91	44.37	25.00	24.70	10 – 25	34.37 – 19.37
01MW-10	245580.377	1256246.968	45.02	45.35	25.00	24.90	10 – 25	35.35 – 20.35
01MW-11	245545.081	1256368.920	46.10	46.45	30.00	29.90	15 – 30	31.45 – 16.45
01MW-12	245444.877	1256316.069	45.84	46.29	20.00	20.00	5-20	40.84 – 25.84
01MW-13	245317.347	1256313.287	46.36	46.81	20.00	19.88	15 20	31.81 – 26.81
01MW-15	245441.314	1255996.388	50.89	50.89	30.12	30.00	10 - 30	40.89 – 20.89
01MW-16	245582.687	1256220.015	44.95	44.95	22.50	20.00	10-20	34.95 - 24.95
01MW-17	245166.941	1256477.520	59.42	59.42	30.00	30.00	15 – 30	44.42 – 29.42
01MW-18	245577.28	1256114.23	45.18	45.68	26.50	25.00	5 – 20	40.68 ~ 25.68
01MW-19	245572.45	1256100.62	45.35	45.85	31.50	25.00	5 – 20	40.85 - 25.78
01MW-20	245546.99	1256107.08	46.27	46.77	26.50	25.00	5-20	41.77 – 26.77
01MW-21	245382.3	1256257.4	46.21	46.52	23.50	22.92	5 – 22	41.21 - 23.79
01MW-22	245422.2	1256251.7	46.11	46.47	25.00	24.70	5 – 24	41.11 – 21.92
01MW-23	245451.9	1256257.4	45.81	46.11	20.50	19.45	5 – 19	40.81 – 26.86
01MW-24	245494.0	1256245.7	na	44.59	21.00	19.40	5 – 19_	39.59 – 25.69
01MW-25	245469.4	1256246.5	na	44.61	20,50	17.32	5 – 16	39.61 – 28.29
01MW-26	245451.1	1256215.0	46.24	46.71	20.50	19.85	5 – 19	41.24 – 27.39
01MW-27	245479.0	.1256213.5	46.33	46.70	21.50	19.65	5 – 19	41.33 – 27.68
01MW-28	245513.8	1256214.2	45.54	46.30	25.50	24.61	5 – 24	40.54 – 21.93
01MW-29	245522.2	1256244.6	45.57	45.92	20.50	19.75	5 – 19	40.57 – 26.82
			2750 We	st Commodo	re Way			
02MW-01	245789.704	1255985.066	24.19	24.72	20.00	19.60	10 – 20	15.22 – 5.22
02MW-02	245848.029	1256019.016	20.06	20.57	10.00	9.90	5 – 10	16.07 11.07
02MW-03	245801.020	1256026.193	27.86	28.41	20.00	19.75	10 – 20	18.91 – 8.91
02MW-04	245795.225	1256092.088	27.17	27.59	20.00	20.05	10 – 20	18.09 - 8.09
02MW-05	245706.854	1256069.207	36.59	37.05	35.00	33.85	20 –35	17.55 – 2.55
02MW-06	245803.277	1256129.549	26.54	27.00	20.00	19.97	10 - 20	17.50 – 7.50
02MW-07	245828.584	1255960.724	20.85	21.39	12.00	12.20	2 – 12	19.89 – 9.89

bgs - below ground surface

msl - mean sea level

na – no data available

WA - Washington

Table 3-2. Water Levels Measured at West Commodore Way Properties on July 12, 2004

	Top of Casing Elevation	Ground Elevation	Total Depth of Well	Depth to Product	Depth to Water	Product Thickness	Water Elevation
Well	(Feet msl)	(Feet msl)	(Feet bgs)	(Feet bgs)	(Feet bgs)	(Feet)	(Feet msl)
			7 West Commo	dore Way			
01MW-01	46.48	46.76	25.25	np	14.38	0.00	32.10
01MW-02	44.78	45.15	24.91	np	15.96	0.00	28.82
01MW-03	44.35	44.75	25.15	np	15.50	0.00	28.85
01MW-04	45.08	45.56	24.90	np	15.46	0.00	29.62
01MW-05 ¹⁷	45.40	45.77	24.88	15.47	19.57	4.10	29.11
01MW-06	47.74	48.23	25.10	np	16.04	0.00	31.70
01MW-07	45.17	45.53	28.17	np	23.48	0.00	21.69
01MW-08	45.21	45.63	24.93	np	16.76	0.00	28.45
01MW-09 ¹⁷	43.91	44.37	24.70	na	16.78	na	27.13
01MW-10	45.02	45.35	24.90	23.32	24.03	0.71	21.56
01MW-11	46.10	46.45	29.90	np	22.78	0.00	23.32
01MW-12	45.84	46.29	20.00	np	7.17	0.00	38.67
01MW-13	46.36	46.81	19.88	np	6.65	0.00	39.71
01MW-15	50.89	50.89	30.00	np	22.57	0.00	28.32
01MW-16	44.95	44.95	20.00	17.93	19.20	1.27	26.77
01MW-17	59.42	59.42	30.00	np	19.17	0.00	40.25
01MW-18	45.18	45.68	25.00	np	16.71	0.00	28.47
01MW-19	45.35	45.85	25.00	пр	16.79	0.00	28.56
01MW-20	46.27	46.77	25.00	np	16.65	0.00	29.62
01MW-21	46.21	46.52	25.00	np	6.34	0.00	39.87
01MW-22	46.11	46.47	25.00	7.15	7.17	0.02	38.96
01MW-23 ¹ /	45.81	46.11	25.00	7.64	7.74	0.10	38.15
01MW-24	na	44.59	25.00	7.85	8.15	0.30	na
01MW-25	na	44.61	25.00	6.83	9.24	2.41	na
01MW-26	46.24	46.71	25.00	np	14.07	0.00	32.17
01MW-27	46.33	46.7	25.00	np	14.68	0.00	31.65
01MW-28	45.54	46.3	25.00	14.13	15.51	1.38	31.13
01MW-29 ^{1/}	45.57	45.92	25.00	15.26	15.32	0.06	30.30
		275	0 West Commo	dore Way	·	-	<u> </u>
02MW-01	24.19	24.72	19.60	np	5.47	0.00	18.72
02MW-02	20.06	20.57	9.90	np	1.71	0.00	18.35
02MW-03	27.86	28.41	19.75	np	9.06	0.00	18.80
02MW-04	27.17	27.59	20.05	np	8.67	0.00	18.50
02MW-05	36.59	37.05	33.85	np	16.73	0.00	19.86
02MW-06	26.54	27.00	19.97	np	7.99	0.00	18.55

bgs - below ground surface

msl – mean sea level

na - water level was not determined due to presence of product

np - no product detected

Notes:

Water elevation may be influenced by passive product skimmer isstalled in the well.

Table 3-3. Cumulative Groundwater Elevations, October 2003 – July 2004

	Octobe	er 2003	Januar	y 2004	Apri	2004	July	2004
337-11	Fuel Thickness	Water Elevation	Fuel Thickness	Water Elevation	Fuel Thickness	Water Elevation	Fuel Thickness	Water Elevation
Well	(Feet)	(Feet msl)	(Feet)	(Feet msl)	(Feet)	(Feet msl)	(Feet)	(Feet msl)
01MW-01	0.00	31.56	0.00	32.69	0.00	32.55	0.00	32.10
01MW-02	0.00	28.23	0.00	30.78	0.00	29.29	0.00	28.82
01MW-02	0.00	28.32	0.00	31.27	0.00	29.32	0.00	28.85
01MW-04	0.00	29.04	0.00	32.30	0.00	30.16	0.00	29.62
01MW-05 ^{1/}	1.90	27.79	na	na na	4.10	29.11	4.10	29.11
01MW-06	0.00	31.11	0.00	32.24	0.00	32.08	0.00	31.70
01MW-07	0.00	21.72	0.00	21.67	0.00	21.68	0.00	21.69
01MW-08	0.00	27.97	0.00	29.66	0.00	28.81	0.00	28.45
01MW-09 ¹ /	na	26.09	na	na	0.00	27.13	na	27.13
01MW-10	0.49	20.91	1.65	22.84	0.90	21.76	0.71	21.56
01MW-11	0.00	23.07	0.00	23.50	0.00	23.38	0.00	23.32
01MW-12	0.00	37.33	0.00	40.69	0.00	40.32	0.00	38.67
01MW-13	0.00	38.78	0.00	40.64	0.00	41.18	0.00	39.71
01MW-15	0.00	28.28	0.00	28.16	0.00	28.16	0.00	28.32
01MW-16	1.36	26.30	2.43	27.73	2.24	27.10	1.27	26.77
01MW-17	0.00	39.55	0.00	41.02	0.00	41.78	0.00	40.25
01MW-18	0.00	28.03	0.00	29.69	0.00	28.88	0.00	28.47
01MW-19	0.00	28.07	0.00	30.02	0.00	28.97	0.00	28.56
01MW-20	0.00	29.05	0.00	31.19	0.00	30.13	0.00	29.62
01MW-21	0.00	38.52	0.00	39.70	0.00	39 .99	0.00	39.87
01MW-22	0.08	37.74	0.20	39.41	0.50	40.13	0.02	38.96
01MW-23 ¹⁷	na	na	na	na	0.05	40.04	0.10	38.15
01MW-24	0.11	na	0.39	na	0.15	па	0.30	na
01MW-25	na	na	na	na	na	na	2.41	na
01MW-26	0.00	31.54	0.00	32.73	0.00	32.03	0.00	32.17
01MW-27	0.00	30.96	0.00	32.43	0.00	32.70	0.00	31.65
01MW-28	0.29	30.66	0.93	32.20	1.08	31.62	1.38	31.13
01MW-29 ¹⁷	0.01	29.57	па	na	0.03	31.29	0.06	30.30
		 		t Commo r lo				
02MW-01	0.00	17.91	0.00	19.22	0.00	19.01	0.00	18.72
02MW-02	0.00	17.21	0.00	18.03	0.00	18.55	0.00	18.35
02MW-03	0.00	17.90	0.00	19.37	0.00	19.10	0.00	18.80
02MW-04	0.00	17.35	0.00	18.31	0.00	18.39	0.00	18.50
02MW-05	0.00	18.05	0.00	19.43	0.00	19.55	0.00	19.86
02MW-06	0.00	17.35	0.00	18.23	0.00	18.15	0.00	18.55
02MW-07	0.00	17.17	0.00	18.75	0.00	18.79	0.00	18.38

Notes:

msl – mean sea level

na - water level was not determined due to presence of product

Water elevation may be influenced by passive product skimmer installed in the well.

Table 4-1. Well Sampling Parameters, July 2004

			Temperature	Dissolved O ₂	Conductivity	Thomas also
		(mv)	(Celsius)	(mg/L)	(mS/cm)	Turbidity (NTU)
011/03/ 01			737 West Com		<u> </u>	(2122)
01MW-01 6	.79 -	13.6	15.24	0.10	443	na
01MW-02 6	.74 -	124.5	15.91	1.07	570	na
01MW-03 6	.61 -	95.6	15.52	0.84	297	na
01MW-04 6	.37 -	54.7	15.66	0.44	291	na
01MW-06 7	.22 -	119.6	15.19	0.12	785	na
01MW-07 6	.79 -	62.1	16.02	0.38	703	4.1
01MW-08 7	.01 -	109.8	16.01	0.65	757	0.2
01MW-09 6	.80 -	121.3	16.58	0.93	407	13.3
01MW-11 7	'.12 -	145.2	14.91	1.66	552	na
01MW-12 6	.57 -	72.4	14.99	0.01	701	na
01MW-13 6	.61	39.9	15.13	na	619	1.1
01MW-15 7	.12 -	118.9	13.59	0.16	630	na
01MW-17 7	.28 2	261.5	13.87	na .	761	2.2
01MW-18 6	.59	-105 17.32		1.01	534	na
01MW-19 6	.67 -	124.6	17.09	0.71	481	0.3
01MW-20 6	5.53	70.8	16.83	0.19	232	7.4
01MW-21 6	5.57 -	102.4	14.44	0.02	437	na
01MW-22 6	5.76 -	55.4	13.67	0.01	369	na
01MW-23 6	.63 -	133.6	14.72	0.04	512	na
01MW-24 6	5.56 ·	83.8	15.72	0.01	659	na
01MW-26 6	5.78 -	73.6	14.26	0.08	465	na
01MW-27 6	5.72 -	99.8	14.56	0.07	663	na
01MW-28 6	.73 -	119.9	15.53	0.02	656	3.0
01MW-29 6	5.66	93.5	15.02	0.01	874	83.2
		2:	750 West Com	modore Way		
02MW-01 6	5.42 -	-45.6	14.48	0.81	482	17.6
	5.59	79.8	16.08	0.31	475	0.0
02MW-03	5.47	-17.0	14.19	71.41	792	na
02MW-04 6	5.58	-57.6	14.64	1.80	640	na
02MW-05	5.47 -	103.0	14.96	1.22	662	1.8
02MW-06 6	.45 -	153.6	12.96	1.03	361	na
02MW-07	5.52	-84.4	18	0.29	468	3.6

mg/L – milligrams per liter mS/cm – millisiemens per centimeter

mv – millivolts

na - value not recorded due to meter malfunction

NTU - nephelometric turbidity unit

Table 4-2. Groundwater Results from 2737 West Commodore Way, July 2004

	PCP	Diesel	Oil	Gas	Benzene	Toluene	Ethylbenzene	Xylene
Sample	(μg/L)	(mg/L)	(mg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)
Action Level	151/	0.52/	0.5 ^{2/}	800 ^{3/} 1,000 ^{4/}	5,300 ^s /	17,500 ^{5/}	32,0005/	1,000 ^{2/}
01MW-01	8.94	< 0.250	< 0.500	55.9	3.66	0.766	< 0.500	1.80
01MW-02	na	< 0.250	< 0.500	9,670	3,230	97.0	146	441
01MW-03	na	1.23	0.938	4,500	1,130	60.8	41.4	82.5
01MW-04	na	0.333	< 0.500	9,820	2,380	570	236	828
01MW-06	< 0.500	< 0.250	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00
01MW-07	na	< 0.250	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00
01MW-08	na	< 0.250	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00
01MW-09	< 0.500	19.2	< 0.500	7,730	1,050	48.0	232	942
01MW-11	na	< 0.250	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00
01MW-12	na	< 0.250	< 0.500	1,700	485	5.90	11.3	15.8
01MW-13	na	< 0.250	< 0.500	314	1.41	< 0.500	< 0.500	2.54
01MW-15	< 0.500	< 0.250	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00
01MW-17	na	< 0.250	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00
01MW-18	< 0.500	0.676	< 0.500	10,700	1,570	124	283	1,360
01MW-19	1.32	0.708	< 0.500	19,900	2,610	945	522	3,190
01MW-20	< 0.500	< 0.250	< 0.500	573	13.2	3.86	21.9	29.5
01MW-21	3.51	0.429	< 0.500	986	0.858	< 0.500	10.6	1.32
01MW-22	191	1.09	< 0.500	1,340	73.5	0.943	4.71	10.2
01MW-23	350	0.540	< 0.500	4,620	917	10.0	61.4	139
01MW-24	< 0.500	0.837	< 0.500	18,400	6,750	35.0	261	816
01MW-26	40.5	< 0.250	< 0.500	137	9.69	0.706	3.56	4.92
01MW-27	50.7	< 0.250	< 0.500	10,900	6,220	43.9	70.4	50.0
01MW-28A	2.44	1.44	< 0.500	17,900	5,060	1,910	343	1,230
01MW-28B	2.28	1.68	< 0.500	18,400	5,030	1,810	355	1,250
RPD	7%	15%	nc	3%	1%	5%	3%	2%
01MW-29	9.11	14.3	< 0.500	17,800	5,410	167	256	718

mg/L - milligram per liter

μg/L - microgram per liter

MTCA - Model Toxics Control Act

NOAA - National Oceanic and Atmospheric Administration

na – no analysis requested

nc - not calculated

RPD - relative percent difference

SQuiRT™ - Screening Quick Reference Table

< symbol indicates result is less than reporting limit (in parenths)

Notes:

Results above action levels in bold and italics

¹/NOAA SQuiRTTM value for freshwater continuous concentration

2'MTCA Method A

WMTCA Method A gasoline range with benzene present

44 MTCA Method A gasoline range without benzene present

⁵/ NOAA SQuiRT™ value for freshwater maximum concentration

Table 4-3. Groundwater Results from 2750 West Commodore Way, July 2004

Sample	Diesel (mg/L)	Oil (mg/L)	Gas (μg/L)	Benzene (µg/L)	Toluene (μg/L)	Ethylbenzene (μg/L)	Xylenes (μg/L)
Action Level	0.52/	0.521	800 ³ / 1,000 ⁴ /	5,30051	17,500 ^{5/}	32,000 ^{5/}	1,000 ² /
02MW-01	< 0.250	< 0.500	< 50.0	< 0.791	< 0.500	< 0.500	< 1.00
02MW-02	< 0.250	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00
02MW-03	< 0.250	< 0.500	< 50.0	< 0.718	< 0.500	< 0.500	< 1.00
02MW-04A	< 0.250	< 0.500	4,800	35.9	54.5	308	584
02MW-04B	< 0.250	< 0.500	4,800	34.2	54.5	305	570
RPD	nc	nc	0%	5%	0%	1%	2%
02MW-05	< 0.250	< 0.500	209	< 0.500	< 0.500	< 0.500	< 1.00
02MW-06	< 0.250	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00
02MW-07	< 0.250	< 0.500	131	< 0.500	< 0.500	< 0.500	1.52

mg/L - milligram per liter

 μ g/L – microgram per liter

MTCA - Model Toxics Control Act

NOAA - National Oceanic and Atmospheric Administration

nc - not calculated

RPD - relative percent difference

SQuiRTTM - Screening Quick Reference Table

< symbol indicates result is less than reporting limit (in parenths)

Notes:

Results above action levels in bold and italics

^{1/}NOAA SQuiRTTM value for freshwater continuous concentration

2/MTCA Method A

^{3'} MTCA Method A gasoline range with benzene present

44 MTCA Method A gasoline range without benzene present

54 NOAA SQuiRT™ value for freshwater maximum concentration

		РСР	Diesel	Oil	Gas	Benzene		Ethylbenzene	Xylene	мтве	Total Lead	Dissolved Lead
Sample	Date	(μg/L)	(mg/L)	(mg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(µg/L)
Action Level		151/	· 0.5 ^{2/}	0.5 ^{2/}	800 ^{3/} 1,000 ^{4/}	5,3005/	17,5005/	32,000 ^{5/}	1,0002	202/	1527	15 ² /
01MW-01	Jul-01	3.94	1.11	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00	na	< 1.00	na
01MW-01	Oct-01	3.55	< 0.250	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00	na	< 1.00	< 1.00
01MW-01	- Jan-02	2.02	< 0.250	< 0.500	51.5	< 0.500	< 0.500	< 0.500	< 1.00	na	< 1.00	< 1.00
01MW-01	Apr-02	2.84	< 0.250	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00	na	< 1.00	< 1.00
01MW-01	Jul-02	6.84	< 0.250	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00	na	< 1.00	< 1.00
01MW-01A	Oct-02	6.37	< 0.250	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00	na	na	na
01MW-01B	Oct-02	7.13	< 0.250	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00	na	па	na
01MW-01A	Jan-03	7.33	< 0.250	< 0.500	< 50.0	< 1.00	< 1.00	< 1.00	< 3.00	< 5.00	na	na
01MW-01B	Jan-03	6.06	< 0.250	< 0.500	< 50.0	< 1.00.	< 1.00	< 1.00	< 3.00	< 5.00	na	na
01MW-01A	Apr-03	5.57	0.429	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00	na	na	па
01MW-01B	Apr-03	8.04	0.454	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00	. na	na	na
01MW-01	Aug-03	6.06	< 0.250	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00	na	na	na
01MW-01	Jan-04	11.2	< 0.250	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00	па	na	na
ATO MINOR	Apr-04	< 0.500	< 0.250	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00	na	na	na
01MW-01B	Apr-04	< 0.500	< 0.250	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00	na	па	na
01MW-01	Jul-04	8.94	¥ < 0.250	< 0.500	55.9	3.66	0.766	< 0.500	1.80	na	na	na
i de la composition della comp	nger all seem on the see	mina a serial de la companya de la c	en de la companya de La companya de la co		e single bases d	Production in the state of	FZ - GETTER WARRY				Commence State	
01MW-02	Jul-01	na	5.01	<1.50	14,800	6,900	162	262	1,110	na	< 1.00	na
01MW-02	Oct-01	< 0.500	0.264	< 0.500	10,100	4,290	71.2	159	741	na	< 1.00	< 1.00
01MW-02	Jan-02	< 0.500	0.330	<'0.500	13,000	3,280	645	373	1,610	na	< 1.00	< 1.00
01MW-02	Apr-02	< 0.500	0.479	< 0.500	27,500	11,200	658	340	1,390	na	< 1.00	< 1.00
01MW-02A	Jul-02	< 0.500	0.377	< 0.500	17,500	7,060	250	230	970	na	< 1.00	< 1.00
01MW-02B	Jul-02	< 0.500	0.294	< 0.500	17,600	6,380	230	212	892	па	< 1.00	< 1.00
01MW-02	Oct-02	na	0.412	< 0.500	10,700	2,780	888	303	1,580	na	na	na
01MW-02	Jan-03	na	0.502	< 0.500	31,100	9,860	988	278	1,570	< 500	na	na
01MW-02	Арг-03	Dâ.	0.817	< 0.500	11,600	4,630	218	229	561	na	na	na
01MW-02	Aug-03	na	1.62	< 0.500	14,800	5,540	133	200	713	na	па	na
01MW-02	Jan-04	па	< 0.250	< 0.500	9,820	3,900	295	312	1,030	па	na	na
01MW-02	Jan-04	na	< 0.250	< 0.500	10,500	3,950	307	300	1,050	na	na	па
01MW-02	Apr-04	па	0.428	< 0.500	21,800	8,680	213	310	857	na	na .	na
01MW-02	Jul-04	na	< 0.250	< 0.500	9,670	3,230	97.0	146	441	na	па	na

											,	Dissolved
		PCP	Diesel	· Oil	Gas	Benzene	Toluene	Ethylbenzene	Xylene	MTBE	Total Lead	Lead
Sample	Date	(μg/L)	(mg/L)	(mg/L)	(μg/L)	(μg/L)	(µg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)
Action Level		151/	0.52/	0.529	800 ^{3/} 1,000 ^{4/}	5,300 ^{5/}	17,500 ^{3/}	32,000 ^{5/}	1,000 ²⁷	202/	15 ²⁷	152/
01MW-03	Jul-01	па	2.84	<1.50	24,500	11,900	238	414	515	na	< 1.00	na
01MW-03A	Oct-01	< 0.500	0.491	< 0.500	18,500	11,700	82.1	237	138	na	< 1.00	< 1.00
01MW-03B	Oct-01	2.24	0.379	< 0.500	9,200	4,330	39.9	114	66.3	na	< 1.00	< 1.00
01MW-03A	Jan-02	< 0.500	0.443	< 0.500	1,070	98.8	4.56	7.94	9.53	na	< 1.00	< 1.00
01MW-03B	Jan-02	< 0.500	0.440	< 0.500	1,070	98.3	4.45	8.28	9.36	na	< 1.00	< 1.00
01MW-03A	Apr-02	< 0.500	0.427	< 0.500	753	50.8	3.68	9.85	9.23	па	< 1.00	< 1.00
01MW-03B	Apr-02	< 0.500	0.463	< 0.500	751	62.7	4.65	12.2	11.1	na	1.17	< 1.00
01MW-03	Jul-02	< 0.500	0.512	< 0.500	21,000	8,990	416	324	588	па	< 1.00	< 1.00
01MW-03	Oct-02	na	0.897	< 0.500	18,000	8,350	97.5	244	671	па	na	na
01MW-03	Jan-03	na	< 0.250	< 0.500	618	170	< 5.00	< 5.00	< 15.0	< 25.0	na	na
01MW-03	Apr-03	па	0.879	< 0.500	1,070	135	7.12	< 2.50	12.7	na	na	na
01MW-03	Aug-03	na	2.09	< 0.500	31,500	13,900	232	355	449	na	na	na
CO-MANNE	_ Jan-04	na	0.404	< 0.500	1,040	302	10.1	7.09	17.3	D2	na	па
01MW-03	Apr-84	na	0.508	< 0.500	1,060	83.5	4.64	2.56	12.1	na	na	па
01MW-03	Jul-04	na 🔭	3 1.23	0.938	4,500	1,130	60.8	.41.4	82.5	na	na	na
	A Paragraphy		ere works over								agademissa makeeri (2005) sada	harrier de de la companya de la comp
01MW-04	Jul-01	na	1.79	<1.50	6,460	1,210	204	134	1,470	na	< 1.00	na
01MW-04	Oct-01	< 0.500	0.398	< 0.500	4,020	68.1	82.3	261	1,130	na	< 1.00	< 1.00
01MW-04	Jan-02	< 0.500	< 0.250	< 0.500	5,920	< 25.0	123	486	2,030	na	< 1.00	. < 1.00
01MW-04	Apr-02	< 0.500	< 0.250	< 0.500	840	< 1.25	10.7	76	342	na	< 1.00	< 1.00
01MW-04	Jul-02	< 0.500	< 0.250	< 0.500	17,300	4,130	1,360	309	1,470	na	< 1.00	< 1.00
01MW-04	Oct-02	na	na	na	na	na	na	na	na ·	na	na	na
01MW-04	Aug-03	< 0.500	1.90	< 0.500	1,840	1,190	155	51.7	141	na	< 1.00	< 1.00
01MW-04	Jul-04	na	0.333	< 0.500	9,820	2,380	570	236	828	na	< 1.00	< 1.00
Literatura di Seri	-5.14 July 1		and the second of the second o	g (1, 500) % (1,	y said the said	77 W 460		April 1995				
01MW-06	Jul-01	2.17	0.718	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00	na	< 1.00	na
01MW-06	Oct-01	< 0.500	< 0.250	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00	na	< 1.00	< 1.00
01MW-06	Jan-02	< 0.500	< 0.250	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00	na	< 1.00	< 1.00
01MW-06	Apr-02	< 0.500	< 0.250	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00	na	< 1.00	< 1.00
01MW-06	Jul-02	< 0.500	< 0.250	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00	па	< 1.00	< 1.00

Table 5-1	l Cum	T	l	7 11000110	, July 2001 –		, _ , _ ,		<u> </u>			Dissolved
Sample	Date	PCP (μg/L)	Diesel (mg/L)	Oil (mg/L)	Gas (μg/L)	Benzene (μg/L)	Toluene (μg/L)	Ethylbenzene (μg/L)	Xylene (μg/L)	MTBE (μg/L)	Total Lead (μg/L)	Lead (µg/L)
Action Level		150	0.52/	0.52	800 ^{3/} 1,000 ^{4/}	5,300 ⁵ /.	17,500 ^{5/}	32,0005/	1,0002/	202/	15 ²	1521
01MW-06	Oct-02	na	na	na	na	na	na	na	na	na	na	na
01MW-06	Aug-03	< 0.500	< 0.250	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00	na	na	na
01MW-06	Jul-04	< 0.500	< 0.250	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00	na	na	na
1971 19 74 1975		a transfer of	entre of the	A STATE OF THE STA	and the state of t	A surviving response		Land Section of States			to the second se	
01MW-07	Jul-01	na	1.45	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00	na	< 1.00	па
01MW-07	Oct-01	< 0.500	< 0.250	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00	na	1.11	< 1.00
01MW-07	Jan-02	< 0.500	< 0.250	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00	na	< 1.00	< 1.00
01MW-07	Apr-02	< 0.500	< 0.250	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00	na	< 1.00	< 1.00
01MW-07	Jul-02	< 0.500	< 0.250	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00	na	< 1.00	< 1.00
01MW-07	Oct-02	na	na	na	па	na	na	na	na	na	na	na
01MW-07	Aug-03	na	< 0.250	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00	na	na	na
01MW-07	Jul-04	na	< 0.250	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00	na	na	na
ergrand in	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	order of some large large and an	2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		en de la company		Transmission - Transmission		1,116	1 11 W 1		
01MW-08	Jul-01	na	0.662	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00	na	< 1.00	na
01MW-08	Oct-01	< 0.500	< 0.250	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00	na	< 1.00	< 1.00
01MW-08	Jan-02	< 0.500	< 0.250	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00	na	< 1.00	< 1.00
01MW-08	Apr-02	< 0.500	< 0.250	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00	na	< 1.00	< 1.00
01MW-08	Jul-02	< 0.500	< 0.250	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00	na	< 1.00	< 1.00
80-WM10	Oct-02	na	< 0.250	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00	Dā	na	na
01MW-08	Jan-03	na	< 0.250	< 0.500	< 50.0	< 1.00	< 1.00	< 1.00	< 3.00	< 5.00	na	na
01MW-08	Apr-03	na	< 0.250	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00	na	па	Dâ.
01MW-08	Aug-03	na	< 0.250	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00	па	na	na
01MW-08	Jan-04	na	< 0.250	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00	Da	na	na
01MW-08	Арг-04	· na	< 0.250	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00	na	na	na
01MW-08	Jui-04	na	< 0.250	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00	па	na	па
A Bayer of the Comment of the Commen	ter transfer to the second	o de distante			14 × 84 × 64 × 64 × 64 × 64 × 64 × 64 × 6			A HARAND TO ME AND THE STATE OF	And the second	area con		A
01MW-09	Jul-01	na	5.72	< 0.500	1,830	213	114	48.1	230	па	< 1.00	< 1.00
01MW-09	Oct-01	< 0.500	0.336	< 0.500	6,940	1,030	422	247	1,250	na	1.16	< 1.00
01MW-09	Jan-02	< 0.500	< 0.250	< 0.500	480	67.2	32,4	17.6	81.1	na	1.01	3.58
01MW-09	Арт-02	< 0.500	< 0.250	< 0.500	860	134	37	25.0	106	na	1.16	< 1.00

Table 5-1.					, July 2001 –	[,	1	Dissolved
,		PCP	Diesel	Oil	Gas	Benzene	Toluene	Ethylbenzene	Xylene	MTBE	Total Lead	Lead
Sample	Date	(μg/L)	(mg/L)	(mg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)
Action Level		151/	0.52/	0.52	800 ³⁷ 1,000 ⁴⁷	5,300 ^{5/}	17,500 ^{5/}	32,000 ^{5/}	1,0002/	20 ² /	15 ^{2/}	1527
01MW-09	Jul-02					No Sampl	c Collected D	ue to Product				
01MW-09	Oct-02		-			No Sampl	e Collected D	ue to Product				
01MW-09	Арг-03	na	1.13	< 0.500	8,370	1,140	690	221	1,070	na	na	na
01MW-09	Aug-03	na	8.63	< 0.500	11,400	1,370	. 335	314	1,500	na	na	na
01MW-09	Jan-04	na	0.451	< 0.500	937	340	10.4	12.2	47.6	na	na	na
01MW-09	Apr-04	na	3.92	< 0.500	16,200	3,310	183	573	2,580	. na	na	na
01MW-09	Jul-04	< 0.500	19.2	< 0.500	7,730	1,050	48.0	232	942	na	na	па
All Control of the Co	1	in the second se	21. 1 SANSON 11. 1 S	eric i yezhoù ensekt		saa ahaada a	is a second description.	e de la companya de l	3 5 7 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6			gan yaya ya
01MW-11	Jul-01	na	1.53	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00	na	< 1.00	па
01MW-11	Oct-01	< 0.500	< 0.250	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00	na	< 1.00	< 1.00
01MW-11	Jan-02	< 0.500	< 0.250	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00	na	< 1.00	< 1.00
01MW-11	Apr-02	< 0.500	< 0.250	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00	na	< 1.00	< 1.00
OF MANY -1.1	Jul-02	< 0.500	< 0.250	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00	na	< 1.00	< 1.00
01MW-11	Oct-02	па	< 0.250	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00	na	na	na
01MW-11	Jan-03	na	< 0.250	< 0.500	< 50.0	< 1.00	< 1.00	< 1.00	< 3.00	< 5.00	na	na
01MW-11	Apr-03	na	< 0.250	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00	na	па	na
01MW-11	Aug-03	na	0.294	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00	па	na	na
01MW-11	Jan-04	na	< 0.250	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00	na	па	na
01MW-11	Apr-04	па	< 0.250	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00	na	na	na
01MW-11	Jul-04	na	< 0.250	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00	Qã.	na	na
Topodes with	and the property of								n'i san peraké	A SALT SHOW AND A SALE	Villaga Dan Bara Pin Talah Bara Sal	7 7 7 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8
01MW-12	Jul-01	па	6.55	<1.50	1,350	482	8.84	14.0	26.4	na	< 1.00	tia
01MW-12	Oct-01	1.68	0.731	< 0.500	1,300	385	9.22	14.0	24.8	па	< 1.00	< 1.00
01MW-12	Jan-02	< 0.500	< 0.250	< 0.500	1,130	360	8.11	11.7	22,1	na	< 1.00	< 1.00
01MW-12	Apr-02	< 0.500	< 0.250	< 0.500	1,600	545	7.37	11.9	21.7	na	< 1.00	< 1.00
01MW-12	Jul-02	< 0.500	< 0.250	< 0.500	1,720	671	9.65	15.8	24.9	na	< 1.00	< 1.00
01MW-12	Oct-02	DĄ	< 0.250	< 0.500	1,710	619	7.70	9.31	18.0	na	na	na
01MW-12	Jan-03	na	< 0.250	< 0.500	1,410	295	< 10.0	11.8	< 30.0	< 50.0	na	na
01MW-12	Apr-03	na	4.22	< 0.500	1,480	417	5.89	10.3	17.1	na	na	na
01MW-12	Aug-03	na	4.09	< 0.500	1,430	583	6.68	11.7	17.4	па	na	na

Sample	Date	PCP (µg/L)	Diesel (mg/L)	Oil (mg/L)	Gas (µg/L)	Benzene (μg/L)	Toluene (μg/L)	Ethylbenzene (µg/L)	Xylene (μg/L)	MTBE (μg/L)	Total Lead (µg/L)	Dissolved Lead (μg/L)
Action Level		1511	0.52/	0.52/	800 ^{3/} 1,000 ^{4/}	5,3005/	17,500 ⁵	32,0005/	1,0002/	202/	1521	1521
01MW-12	Jan-04	na	< 0.250	< 0.500	1,130	336	6.10	12.0	17.2	na	na	na
01MW-12	Apr-04	na	0.471	< 0.500	1,330	441	6.24	9.62	14.6	na	na	na
01MW-12	Jul-04	na	< 0.250	< 0.500	1,700	485	5.90	11.3	15.8	na	na	па
	741 01		40,550								at a company of the Section of the S	7
01MW-13	Jul-01	na	3.90	<1.50	221	1.26	< 0.500	< 0.500	2.31	na	< 1.00	na
01MW-13	Oct-01	2.73	1.29	< 0.500	207	1.28	< 0.500	< 0.500	2.06	na	< 1.00	< 1.00
01MW-13	Jan-02	< 0.500	< 0.250	< 0.500	160	< 0.500	< 0.500	< 0.500	1.62	na	< 1.00	< 1.00
01MW-13	Арг-02	< 0.500	< 0.250	< 0.500	204	0.978	< 0.500	0.533	2.00	na	< 1.00	< 1.00
01MW-13	Jul-02	< 0.500	< 0.250	< 0.500	304	1.19	< 0.500	< 0.500	2.86	na	< 1.00	< 1.00
01MW-13	Oct-02	па	< 0.250	< 0.500	149	< 0.500	< 0.500	< 0.500	1.55	na	na	na
01MW-13	Jan-03	na	< 0.250	< 0.500	246	< 1.00	< 1.00	< 1.00	< 3.00	< 5.00	па	na
01MW-13	Арт-03	na	0.688	< 0.500	199	0.771	< 0.500	< 0.500	1.95	na	na	nà
CRAW-13	Aug-03	na	2.60	< 0.500	137	0.520	< 0.500	< 0.500	1.77	na	па	na
01MW-13	Jan-04	na	< 0.250	< 0.500	167	0.775	< 0.500	< 0.500	1.85	na	na	na
01MW-13	Apr-04	na	0.257	< 0.500	325	2.23	0.730	2.14	3.28	na	na	na
01MW-13	Jul-04	na	< 0.250	< 0.500	314	1.41	< 0.500	< 0.500	2.54	na	na	na
dal			en de la companya de La companya de la co		and the second s	Mark Strategy and Mark 1997	. < **3,811.5		en in de la company de la La company de la company d	or o	r Salas en 1972	and speciments to
01MW-15	Jul-01	1.66	0.484	<0 .500	< 50.0	< 0.500	< 0.500	< 0.500	<1.00	na	< 1.00	na
01MW-15	Oct-01	< 0.500	< 0.250	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00	na	< 1.00	< 1.00
01MW-15	Jan-02	< 0.500	< 0.250	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00	na	< 1.00	< 1.00
01MW-15	Apr-02	< 0.500	< 0.250	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00	па	< 1.00	< 1.00
01MW-15	Jul-02	< 0.500	< 0.250	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00	na	< 1.00	< 1.00
01MW-15	Oct-02	na	na	na	na	na	па	na	na	na	na	па
01MW-15	Aug-03	< 0.500	< 0.250	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00	na	na	na
01MW-15	Jul-04	< 0.500	< 0.250	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00	na	na	na
						्राप्ता । स्थापना । स्थापना । स्थापना । स्थापना स्थापना । स	koje i inglatinga i landa Kolonia inglatina na ka	Province of the second			entropy of the second	
01MW-16A	Jul-01	2.54	11.1	<2.50	11,000	3,910	123	261	891	na	< 1.00	na
01MW-16B	Jul-01	2.09	9.62	<2.50	9,390	3,700	122	209	745	na	< 1.00	< 1.00
01MW-16	Oct-01	< 0.500	0.448	< 0.500	11,500	3,670	113	274	984	na	< 1.00	< 1.00
01MW-16	Jan-02	< 0.500	0.674	< 0.500	13,400	5,300	116	250	906	na	< 1.00	< 1.00

		PCP	Diesel	Oil	Gas	Benzene	Toluene	Ethylbenzene	Xylene	мтве	Total Lead	Dissolved Lead
Sample	Date	(µg/L)	(mg/L)	(mg/L)	(μg/L)	(µg/L)	(μg/L)	(μg/L)	(μg/L)	(µg/L)	(μg/L)	(μg/L)
Action Level		151/	0.52/	0.52/	800 ³⁷ 1,000 ⁴⁷	5,300 ^{5/}	17,500 ^{5/}	32,000 ⁵⁾	1,00020	202/	15 ²	15 ²⁰
01MW-16	Apr-02					No Sampl	e Collected D	ue to Product				
01MW-16	Jul-02					No Sampl	e Collected D	ue to Product				
01MW-16	Oct-02				-	No Sampl	e Collected D	ue to Product				
01MW-16	Apr-03	< 1,010	3.83	< 0.926	13,300	4,100	75.5	227	754	na	na	na
01MW-16	Jul-04	ĺ				No Sampi	e Collected D	ue to Product	•		-	•
regis to proper to the contract of the contrac	the control of the second	egi egi elikus sek girak sasabasa atau eksali	North Marian American	on the second of the second			The same of the sa	the second of th	in System of the control	Paris and Missississississississississississississ	in how discrete way	A Section 1 Sect
01MW-17	Jul-01	<0.500	0.884	<0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00	na	< 1.00	na
01MW-17	Oct-01	1.65	< 0.250	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00	na	< 1.00	< 1.00
01MW-17	Jan-02	< 0.500	< 0.250	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1,00	na	< 1.00	< 1.00
01MW-17	Apr-02	< 0.500	< 0.250	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00	na	< 1.00	< 1.00
01MW-17	Jul-02	< 0.500	< 0.250	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00	па	< 1.00	< 1.00
01MW-17	Oct-02	na	< 0.250	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00	na	na	na
-01MW-17	Jan-03	na	< 0.250	< 0.500	< 50.0	< 1.00	< 1.00	< 1.00	< 3.00	< 5.00	na	na
01MW-17	Apr-03	na	0.273	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00	na	na	па
01MW-17	Aug-03	па	[©] 0.327	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00	na	na	na
01MW-17	Jan-04	na	< 0.250	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00	na	na	na
01MW-17	Apr-04	na ?	< 0.250	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00	na	na	na
01MW-17	Jul-04	na	< 0.250	< 0,500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00	na	112	na
MENTAL INC.	was applied that		ign Domaio belokstvik, jet to kir			Section 1985		tanika.	heriotz Apata je jie			ेताक लुक्तु शंकारी स्वाहरू इंद्राप्तिक लाग्ने
01MW-18	Aug-03	< 0.500	1.12	< 0.500	7,160	1,410	276	272	1,010	na	na	na
01MW-18	Jul-04	< 0.500	0.676	< 0.500	10,700	1,570	124	283	1,360	na	па	na
A STATE OF THE STA	The Williams	association and publica-			e veze saven de distribuir e		on the property of the	a ga baggaran, daran iran Rija, dalah iran		G. Carp Barrier	kristi ku yilingi . Lina <u>Mas</u> a Sassis	eli i jaka keri je spal skar
01MW-19	Jul-02	< 0.500	< 0.250	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00	ná	2.88	< 1.00
01MW-19	Aug-03	< 0.500	1.46	< 0.500	15,800	3,070	1,390	562	3,160	na	na	na
01MW-19	Jul-04	1.32	0.708	< 0.500	19,900	2,610	945	522	3,190	na	na	na
THE RESIDENCE OF THE	1000	Gordon Control		e manager en	Brahaman ang Palaman Tanggaran ang Palaman	And the second s	oor in the transfer of the tr		* 1	4.		Section 1
01MW-20	Jul-02	< 0.500	< 0.250	< 0.500	16,700	1,640	1,390	468	2,840	na	3.45	< 1.00
01MW-20	Aug-03	< 0.500	< 0.250	< 0.500	132	4.74	1.08	6.67	6.85	na	na	na
01MW-20	Jul-04	< 0.500	< 0.250	< 0.500	573	13.2	3.86	21.9	29.5	na	na	na

Table 5-1	<u>-</u> .	PCP	Diesel	Oil	, July 2001 – Gas	Benzene		Ethylbenzene	Xylene	мтве	Total Lead	Dissolved Lead
Sample	Date	(μg/L)	(mg/L)	(mg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)
Action Level		1517	0.52	0.527	800 ³⁷ 1,000 ⁴⁷	5,300 ^{5/}	17,500 ^{5/}	32,0005/	1,0002/	20 ^{2/}	15 ^{2/}	15 ^{2/}
01MW-21	Jan-03	24.2	1.64	< 0.500	743	< 1.00	< 1.00	7.26	10.3	< 5.00	na	na
01MW-21	Apr-03	26.8	4.47	< 0.500	930	1.03	< 0.500	22.1	1.66	na	na	na
01MW-21	Aug-03	30.4	3.21	< 0.500	592	0.828	< 0.500	11.1	1.34	na	na	na
01MW-21	Jul-04	3.51	0.429	< 0.500	986	0.858	< 0.500	10.6	1.32	na	па	na
alid Milliander in the con-	· · · · · · · · · · · · · · · · · · ·	GREET STORESTEE	e-University	e pies i iliga contentino. Pies i piesti piesti e piesti	rent op i kan sta llend eren an en en en		ericania de la composito de la	in the second of the second	real to 1 To 10 to		en e despuis and alle	ed School Conflicted in a Production
01MW-22	Jan-03	400	1.57	< 0.500	294	11	< 1.00	< 1.00	< 3.00	< 5.00	na	na
01MW-22	Aug-03	160	5.08	1.32	892	73.2	1.77	8.44	12	na	na	na
01MW-22	Jul-04	191	1.09	< 0.500	1,340	73.5	0.943	4.71	10.2	na	na	na
100 - 100 -	ori i modificio della cie Li casa i i i i i i i i i		arsa i arrani ya ayadigari		The audit of The The part of the State of th		Service American	and the second s	i ka paragai na Pala		er i de entress	Principles &
01MW-23	Apr-03	198 ^K	na	na	na	na	па	па	na	na	na	na
01MW-23	Jul-04	350	0.540	< 0.500	4,620	917	10.0	61.4	139	∙ na	na	na
			e sedenizent	State of the state of the				and control of the second	e de la companya de l	A CONTRACTOR		
**************************************	Jan-03	222	6.13	< 0.500	19,800	5,400	< 50.0	211	827	< 5.00	na	na
01MW-24	Jul-04	< 0.500	0.837	< 0.500	18,400	6,750	35.0	261	816	na	na	na
01) (1) (2)		75.0		<u> </u>		De stadoe			The Medical Conference			
01MW-25	Apr-03	< 75.0 %	na	na	Dâ	na	na < 50.0	278	738	na	na	na
01MW-25	Aug-03	181	13.0	1.67	15,700	6,670			/36	Da	na	na
01MW-25	Jul-04	.	1 Harry W. W.	MIR OF STREET			Barrier Commen	ue to Product				0.0 380 PS 307
01MW-26	Jan-03	33.2	1.38	< 0.500	4,180	352	87.4	45.3	413	< 5.00	na	na
01MW-26	Apr-03	4.08	0.967	< 0.500	228	35.1	11.5	5.54	20.2	na	na na	na
01MW-26	Aug-03	2.34	1.40	< 0.500	119	5.70	1.17	3.39	6.12	na	na	na
01MW-26	Jul-04	40.5	< 0.250	< 0.500	137	9.69	0.706	3.56	4.92	na	na	па
01WW-20	JUI-04	40.5	₹ 0. Δ.)0	₹0.300	137	2.07	0.700	5.20 567 4 AV - BV - CV - CV - CV - CV - CV - CV - C	7.72	114	ALC:	And the second second
01MW-27	Jan-03	46.4	0.330	< 0.500	11,300	4,230	211	68.0	158	< 5.00	na	na
01MW-27	Apr-03	56.9	1.98	< 0.500	15,500	6,090	227	88.1	197	na	na	na
01MW-27	Aug-03	79.4	3.17	< 0.500	14,800	6,180	53.0	73.5	< 100	па	na	na na
	riug-UJ	1/17	U-47	~ 0.000	4 T,000	V2 A U U	20.0		7 - 00	****		

Time Oil Company Quarterly Groundwater Sampling Report for July 2004 2737 and 2750 West Commodore Way

Table 5-1. Cumulative Groundwater Results, July 2001 – July 2004, 2737 West Commodore Way (continued)

Sample	Date	PCP (μg/L)	Diesel (mg/L)	Oil (mg/L)	Gas (µg/L)	Benzene (μg/L)	Toluene (μg/L)	Ethylbenzene (µg/L)	Xylene (μg/L)	MTBE (μg/L)	Total Lead (μg/L)	Dissolved Lead (µg/L)
Action Level		151/	0.52	0.52	800 ³⁷ 1,000 ⁴⁷	5,300 ^{5/}	17,500 ^{5/}	32,0005/	1,00021	20 ^{2/}	· 15 ²⁰	15 ^{2/}
·01MW-28	Apr-03	24.6	5.02	< 0.500	28,400	6,390	2,870	, 401	2,250	na	па	na
01MW-28A	Aug-03	21.7	4.63	< 0.500	199,000	3,670	1,410	448	1,520	na	na	na
01MW-28B	Aug-03	22.0	4.12	< 0.500	210,000	3,580	1,380	478	1,680	na	na	na
01MW-28A	Jul-04	2.44	1.44	< 0.500	17,900	5,060	1,910	343	1,230	na	па	na
01MW-28B	Jul-04	2.28	1.68	< 0.500	18,400	5,030	1,810	355	1,250	na	na	na
1.50				eriotic year				10 1 20 1 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1			era era	at the state of th
01MW-29	Apr-03	< 50	9.51	0.689	18,600	6,160	171	285	632	na	na	na
01MW-29	Jul-04	9.11	14.3	< 0.500	17,800	5,410	167	256	718	na	na	na

Abbreviations and acronyms:

mg/L - milligram per liter μg/L - microgram per liter

MTCA - Model Toxics Control Act

NOAA - National Oceanic and Atmospheric Administration

no analysis requested
SQuiRT - Screening Quick Reference Table

< symbol indicates result is less than reporting limit (in parenths)

Notes:

Results above action levels in bold and italics

¹⁷NOAA SQuiRTTM value for freshwater continuous concentration

²MTCA Method A

3 MTCA Method A gasoline range with benzene present

"MTCA Method A gasoline range without benzene present

5 NOAA SQuiRT™ value for freshwater maximum concentration

Table 5-2.	<u> </u>	PCP	Diesel	Oil	Results, July Gas			Ethylbenzene			
Cample	Data					Benzene		· -		1	
Sample	Date	(μg/L)	(mg/L)	(mg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	Lead (µg/L)
Action Level		151/	0.5 ²⁾	0.52	800 ³⁷ 1,000 ⁴⁷	5,300 ^{3/}	17,500 ^{s/}	32,000 ^{5/}	1,0002	1521	152
02MW-01	Jul-01	na	0.500	< 0.500	119	44.4	0.662	< 0.500	1.15	< 1.00	DB
02MW-01	Oct-01	< 0.500	< 0.250	< 0.500	235	81.3	1.41	< 0.500	2.84	< 1.00	< 1.00
02MW-01	Jan-02	< 0.500	< 0.250	< 0.500	< 50.0	4.67	< 0.500	< 0.500	< 1.00	< 1.00	< 1.00
02MW-01	Apr-02	< 0.500	< 0.250	< 0.500	< 50.0	4.24	< 0.500	< 0.500	< 1.00	< 1.00	< 1.00
02MW-01	Jul-02	< 0.500	< 0.250	< 0.500	182	67.5	1.20	< 0.500	2.39	< 1.00	< 1.00
02MW-01	Oct-02	na	< 0.250	< 0.500	327	82.0	2.37	< 0.500	7.62	na_	na
02MW-01	Jan-03	па	< 0.250	< 0.500	134	28.9	< 1.00	< 1.00	< 3.00	na .	na
02MW-01	Apr-03	na	< 0.250	< 0.500	5.55	< 0.500	< 0.500	< 0.500	< 1.00	11.8	na
02MW-01	Aug-03	na	< 0.250	< 0.500	158	37.8	0.869	< 0.500	< 1.00	11.2	na
02MW-01	Oct-03	1128	< 0.250	< 0.500	201	64.4	2.41	< 0.500	6.92	Dâ	na
02MW-01	Jan-04	11.8	< 0.250	< 0.500	< 50.0	1.32	< 0.500	< 0.500	< 1.00	na	na
02MW-01	Арт-04	na	< 0.250	< 0.500	< 50.0	2.54	< 0.500	< 0.500	< 1,00	na_	na
02MW-01	Jul-04	na	< 0.250	< 0.500	< 50.0	7.91	< 0.500	< 0.500	< 1.00	na	· na
		i gyrraid	ale de	et 14 terstáði.							
02MW-02	Jul-01	na	0.679	< 0.500	< 50	< 0.500			< 1.00	< 1.00	na
02MW-02	Oct-01	2.21	< 0.250	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00	< 1.00	< 1.00
02MW-02	Jan-02	< 0.500	< 0.250	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00	< 1.00	< 1.00
02MW-02	Apr-02	< 0.500	< 0.250	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00	< 1.00	< 1.00
02MW-02	Jul-02	< 0.500	< 0.250	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00	< 1.00	< 1.00
02MW-02	Oct-02	na	< 0.250	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00	na	na
02MW-02	Jan-03	na	< 0.250	< 0.500	< 50.0	< 1.00	< 1.00	< 1.00	< 3.00	Dâ	na
02MW-02	Apr-03	na	< 0.250	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00	na	na
02MW-02	Aug-03	na	< 0.250	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00	па	na
02MW-02	Oct-03	na	< 0.250	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00	na	па
02MW-02	Jan-04	na	< 0.250	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00	па	па
02MW-02	Apr-04	na	< 0.250	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00	na	na
02MW-02	Jul-04	na	< 0.250	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00	na	na
			t -van Karanas rabba.								
02MW-03	Jul-01	na	0.619	< 0.500	90.4	38.6	0.664	< 0.500	< 1.00	< 1.00	10.2
02MW-03	Oct-01	< 0.500	< 0.250	< 0.500	109	46.6	1.16	< 0.500	< 1.00	< 1.00	< 1.00
02MW-03	Jan-02	< 0.500	< 0.250	< 0.500	< 50.0	7.84	< 0.500	< 0.500	< 1.00	< 1.00	< 1.00
02MW-03	Apr-02	< 0.500	< 0.250	< 0.500	< 50.0	7.21	< 0.500	< 0.500	< 1.00	< 1.00	< 1.00
02MW-03	Jul-02	< 0.500	< 0.250	< 0.500	143	63.4	2.)7	< 0.500	< 1.00	< 1.00	< 1.00
02MW-03	Oct-02	na	< 0.250	< 0.500	122	37.0	0.572	< 0.500	1.70	na na	na
02MW-03	Jan-03	na na	< 0.250	< 0.500	56.7	17.7	< 1.00	< 1.00	< 3.00	na	na
02MW-03	Apr-03	па	1	< 0.500	10.5	< 0.500	< 0.500	< 0.500	< 1.00	па	na
02MW-03	Aug-03	na	< 0.250	< 0.500	< 50.0	3.42	< 0.500	< 0.500	< 1.00	na	. Da
02MW-03	Oct-03	na	< 0.250	< 0.500	261	123	1.59	< 0.500	2.72	na	na
02MW-03	Jan-04	na na	< 0.250	< 0.500	< 50.0	0.987	< 0.500	< 0.500	< 1.00	na	na na
02MW-03	Арт-04	na	< 0.250	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00	na	na
02MW-03	Jul-04	na	< 0.250	< 0.500	< 50.0	0.718	< 0.500	< 0.500	< 1.00	па	na
			<u> </u>								
02MW-04	Jul-01	na - 0.500	1.41	< 0.500	4,270	,23.9	231	165	484	4.68	tia coc
02MW-04A	Oct-01	< 0.500	< 0.250	< 0.500	4,070	21.4	262	285	594	6.50	6.06
02MW-04B	Oct-01	< 0.500	< 0.250	< 0.500	3,890	21.7	257	291	590	6.68	4.01
02MW-04A	Jan-02	< 0.500	< 0.250	< 0.500	4,070	21.4	262	285	594	4.35	3.24
02MW-04B	Jan-02	< 0.500	< 0.250	< 0.500	3,890	21.7	257	291	590	5.27	< 1.00
02MW-04A	Apr-02	< 0.500	< 0.250	< 0.500	3,280	19.1	172	255	525	5.34	2.88
02MW-04B	Apr-02	< 0.500	< 0.250	< 0.500	3,440	21.0	193	288	591	4.86	3.42
02MW-04A	Jul-02	< 0.500	< 0.250	< 0.500	4,640	23.8	165	330	558	5.54	3.68

	(\$5.	ntinueo	1						<u> </u>		Total	
		PCP	Diesel	Oil	Gas		Benzene	Tolyono	Ethylbenzene	Xylenes	Lead	Dissolved
Commis	Data			(mg/L)	(μg/I				_	Ayrenes (μg/L)	μg/L)	Lead (µg/L)
Sample	Date	(μ g/L)	(mg/L) 0.5 ^{2/}	0.5 ²⁰		1,000 ⁴⁷	(μg/L) 5,300 ^{5/}	(μg/L)	(μg/L) 32,000 ⁵⁰	1,000 ²⁷	15 ²⁾	15 ²⁷
Action Level								17,5003/		_		
02MW-04B	Jul-02	< 0.500	< 0.250	< 0.500	4,77		21.3	178	362	612	5.32	2.91
02MW-04A	Oct-02	na	< 0.250	< 0.500	3,20		24.6	47.5	284	225	D.B.	na
02MW-04B	Oct-02	na	< 0.250	< 0.500	3,02	_	24.6	45.9	288	226	na	na
02MW-04A	Jan-03	DB.	< 0.250	< 0.500	4,72		16.4	162	304	502	DA .	na
02MW-04B	Jan-03	na.	< 0.250	< 0.500	4,72		15.0	170	294	542	DA	112
02MW-04A	Apr-03	na	0.555	< 0.500	7,13		24.6	796	363	735	1128	na
02MW-04B	Apr-03	DA	0.462	< 0.500	6,64		21.7	187	351	710	DB.	na
02MW-04A	Aug-03	Da	0.483	< 0.500	4,61	_	32.6	92.7	333	605	na na	na
02MW-04B	Aug-03	na	0.416	< 0.500	4,17		29.0	81.3	299	526	na na	DA
02MW-04A	Oct-03	па	< 0.250	< 0.500	2,72		31.7	29.0	333	162	na	na
02MW-04B	Oct-03	па	< 0.250	< 0.500	2,58		33.6	28.6	316	163	DA	D2
02MW-04A	Jan-04	па	< 0.250	< 0.500	4,19		27.0	115	276	572	Da	na
02MW-04B	Jan-04	na	< 0.250	< 0.500	3,64		23.9	105	253	522	na	na _
02MW-04A	Apr-04	מם	< 0.250	< 0.500	12,20	00	30.6	286	878	2,030	D8	na
02MW-04B	Apr-04	Da	< 0.250	< 0.500	10,70	90	17.5	265	741	1,880	na	na
02MW-04A	Jul-04	na	< 0.250	< 0.500	4,80	0	35.9	54.5	308	584	na	па
02MW-04B	Jul-04	na	< 0.250	< 0.500	4,800	0	34.2	54.5	305	570	na	ра
					100							
02MW-05	Jul-01	na	0.997	< 0.500	51.8	3	< 0.500	< 0.500	< 0.500	< 1.00	< 1.00	na
02MW-05	Oct-01	< 0.500	< 0.250	< 0.500	< 50.	.0	< 0.500	< 0.500	< 0.500	< 1.00	< 1.00	< 1.00
02MW-05	Jan-02	< 0.500	< 0.250	< 0.500	< 50.	0	< 0.500	< 0.500	< 0.500	< 1.00	< 1.00	< 1.00
02MW-05	Apr-02	< 0.500	< 0.250	< 0.500	295		1.20	< 0.500	< 0.500	< 1.00	< 1.00	< 1.00
02MW-05	Jul-02	< 0.500	< 0.250	< 0.500	102	,	< 0.500	< 0.500	< 0.500	< 1.00	< 1.00	< 1.00
02MW-05	Oct-02	na	< 0.250	< 0.500	61.6	,	< 0.500	< 0.500	< 0.500	< 1.00	па	na
02MW-05	Jan-03	na -	< 0.250	< 0.500	191		< 1.00	< 1.00	1.42	< 3.00	па	na
02MW-05	Apr-03	na	0.280	< 0.500	608		1.71	< 0.500	19.1	< 1.00	na	138
02MW-05	Aug-03	DA DA	0.271	< 0.500	63.8	<u> </u>	< 0.500	< 0.500	< 0.500	< 1.00	Da	na
02MW-05	Oct-03	112	< 0.250	< 0.500	< 50.	0	< 0.500	< 0.500	< 0.500	< 1.00	na	na
02MW-05	Jan-04	па	< 0.250	< 0.500	326		< 0.500	< 0.500	1.03	< 1.00	na	na
02MW-05	Apr-04	na	< 0.250	< 0.500	364		< 0.500	< 0.500	< 0.500	< 1.00	11.8	na
02MW-05	Jui-04	na	< 0.250	< 0.500	209		< 0.500	< 0.500	< 0.500	< 1.00	112	132
02MW06A	Jul-01	17.2	0.923	< 0.500	< 50.	0	< 0.500	< 0.500	< 0.500	< 1.00	< 1.00	na
02MW06B	Jul-01	па	0.897	< 0.500	< 50.	0	< 0.500	< 0.500	< 0.500	< 1.00	< 1.00	na
02MW-06	Oct-01	< 0.500	< 0.250	< 0.500	< 50.	0	< 0.500	< 0.500	< 0.500	< 1.00	< 1.00	< 1.00
02MW-06	Jan-02	0.991	< 0.250	< 0.500	< 50.	0	< 0.500	< 0.500	< 0.500	< 1.00	< 1.00	< 1.00
02MW-06	Арт-02	< 0.500	< 0.250	< 0.500	< 50.	0	< 0.300	< 0.500	< 0.500	< 1.00	< 1.00	< 1.00
02MW-06	Jul-02	< 0.500	< 0.250	< 0.500	< 50.	0	< 0.500	< 0.500	< 0.500	< 1.00	< 1.00	< 1.00
02MW-06	Oct-02	па	< 0.250	< 0.500	< 50.	0	< 0.500	< 0.500	< 0.500	< 1.00	na	na
02MW-06	Jan-03	na	< 0.250	< 0.500	< 50.		< 1.00	< 1.00	< 1.00	< 3.00	na	na
02MW-06	Apr-03	na	< 0.250	< 0.500	< 50.	_	< 0.500	< 0.500	< 0.500	< 1.00	na	na
02MW-06	Aug-03	na	< 0.250	< 0.500	< 50.		< 0.500	< 0.500	< 0.500	< 1.00	na	na
02MW-06	Oct-03	na	< 0.250	< 0.500	< 50.		< 0.500	< 0.500	< 0.500	< 1.00	na	na
02MW-06	Jan-04	na	< 0.250	< 0.500	< 50.6		< 0.500	< 0.500	< 0.500	< 1.00	na	na
02MW-06	Apr-04	па	< 0.250	< 0.500	< 50.0		< 0.500	< 0.500	< 0.500	< 1.00	па	na
02MW-06	Jul-04	na	< 0.250	< 0.500	< 50.0		< 0.500	< 0.500	< 0.500	< 1.00	na	na
	72,-07		V 0.250	2000			1		77-7-5-7-6-9:			

Time Oil Company Quarterly Groundwater Sampling Report for July 2004 2737 and 2750 West Commodore Way

Table 5-2. Cumulative Groundwater Results, July 2001 – July 2004, 2750 West Commodore Way (continued)

Sample	Date	PCP (μg/L)	Diesel (mg/L)	Oil (mg/L)	Gas (μg/L)	Benzene (μg/L)	Toluene (μg/L)	Ethylbenzene (µg/L)	Xylenes (μg/L)	Total Lead (μg/L)	Dissolved Lead (µg/L)
Action Level		151/	0.52/	0.52	800 ³ / 1,000 ⁴ /	5,300 ^{5/}	17,500 ^{5/}	32,000 ^{5/}	1,0002/	15 ^{2/}	152
02MW-07	Jul-01	na	0.417	< 0.500	244	< 0.500	< 0.500	< 0.500	2.79	< 1.00	na
02MW-07	Oct-01	2.15	< 0.250	< 0.500	69.7	< 0.500	< 0.500	< 0.500	< 1.00	< 1.00	< 1.00
02MW-07	Jan-02	1.64	< 0.250	< 0.500	92.5	< 0.500	< 0.500	< 0.500	1.47	< 1.00	< 1.00
02MW-07	Арт-02	< 0.500	< 0.250	< 0.500	251	< 0.500	< 0.500	0.655	6.96	< 1.00	< 1.00
02MW-07	Jul-02	< 0.500	< 0.250	< 0.500	242	< 0.500	< 0.500	< 0.500	2.71	< 1.00	< 1.00
02MW-07	Oct-02	na	< 0.250	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00	11,2	na
02MW-07	Jan-03	na	< 0.250	< 0.500	146	< 1.00	< 1.00	< 1.00	< 3.00	D2	na
02MW-07	Apr-03	na	< 0.250	< 0.500	177	< 0.500	< 0.500	< 0.500	< 1.00	11.2	na
02MW-07	Aug-03	na	< 0.250	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00	Da	па
02MW-07	Oct-03	na	< 0.250	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00	na	na
02MW-07	Jan-04	na	< 0.250	< 0.500	182	< 0.500	< 0.500	< 0.500	2.09	ná	na
02MW-07	Apr-04	na	< 0.250	< 0.500	143	< 0.500	< 0.500	< 0.500	1.38	па	na
02MW-07	Jul-04	na	< 0.250	< 0.500	131	< 0.500	< 0.500	< 0.500	1.52	na	na

Abbreviations and acronyms:

mg/L - milligram per liter

μg/L - microgram per liter

MTCA - Model Toxics Control Act

NOAA - National Oceanic and Atmospheric Administration

na - no analysis requested

RPD - relative percent difference

SQuiRT™ - Screening Quick Reference Table

< symbol indicates result is less than reporting limit (in parenths)

Notes:

Results above action levels in bold and italics

¹NOAA SQuiRTTM value for freshwater continuous concentration

²⁰MTCA Method A

MTCA Method A gasoline range with benzene present

"MTCA Method A gasoline range without benzene present

S NOAA SQuiRT™ value for freshwater maximum concentration

APPENDIX A LABORATORY DATA PACKAGES

425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9290 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588 Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

907.563.9200 fax 907.563.9210

27 July 2004

Bryan Graham

Tetra Tech FW, Inc. - Bothell
12100 NE 195th St

Bothell, WA/USA 98011

.₹E: Time Oil-West Commodore Way

inclosed are the results of analyses for samples received by the laboratory on 07/14/04 16:24. If you have any questions concerning this report, please feel free to contact me.

incerely,

A

mar Gill Project Manager

425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR:97008-7132

503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

107.563.0200 fax 867.663.0248

Tetra Tech FW, Inc. - Bothell

12100 NE 195th St Bothell, WA/USA 98011 Project: Time Oil-West Commodore Way

Project Number: 2306

Project Manager: Bryan Graham

Reported:

07/27/04 13:09

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
01MW-07	B4G0357-01	Water	07/14/04 08:15	07/14/04 16:24
01MW-TB1	B4G0357-02	Water	07/14/04 08:00	07/14/04 16:24
02MW-02	B4G0357-03	Water	07/14/04 08:50	07/14/04 16:24
02MW-07	B4G0357-04	Water	07/14/04 09:10	07/14/04 16:24
02MW-01	B4G0357-05	Water	07/14/04 09:20	07/14/04 16:24
02MW-03	B4G0357-06	Water	07/14/04 09:35	07/14/04 16:24
02MW-05	B4G0357-07	Water	07/14/04 09:50	07/14/04 16:24
02MW-04A	B4G0357-08	Water	07/14/04 10:10	07/14/04 16:24
02MW-04B	B4G0357-09	Water	07/14/04 10:20	07/14/04 16:24
02MW-06	B4G0357-10	Water	07/14/04 10:30	07/14/04 16:24

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

107.563.0200 fax 007.663.0210

Tetra Tech FW, Inc. - Bothell

Project: Time Oil-West Commodore Way

12100 NE 195th St

Project Number: 2306

Reported:

Bothell, WA/USA 98011

Project Manager: Bryan Graham

07/27/04 13:09

Gasoline Hydrocarbons (Benzene to Naphthalene) and BTEX by NWTPH-G and EPA 8021B North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
01MW-07 (B4G0357-01) Water S	sampled: 07/14/0	4 08:15 Rec	eived: 07/1	4/04 16:24					
Gasoline Range Hydrocarbons	ND	50.0	ug/l	1	4G20003	07/20/04	07/20/04	NWTPH-Gx/8021B	
Benzene	ND	0.500	Ħ		Ħ	*	Ħ		
Toluene	ND	0.500	n	H	•	#	77	••	
Ethylbenzene	ND	0.500	**	*	Ħ	#	*		
Xylenes (total)	ND	1.00	*	н	•	H	*		
Surrogate: 4-BFB (FID)	101 %	58-144	-		"	n	*	"	
Surrogate: 4-BFB (PID)	94.2 %	68-140			#		Ħ	W	
01MW-TB1 (B4G0357-02) Water	Sampled: 07/14/	/04 08:00 R	eceived: 07	/14/04 16:2	4			<u></u>	
Gasoline Range Hydrocarbons	ND	50.0	ug/l	1	4G20003	07/20/04	07/20/04	NWTPH-Gx/8021B	
Benzene	ND	0.500	n	. #		Ħ	*	*	
Toluene	ND	0.500	**	н	n	n	*	*	
Ethylbenzene	ND	0.500	H	n	tt	Ħ	**	•	
Xylenes (total)	ND	1.00	н		#		*	Ħ	
Surrogate: 4-BFB (FID)	98.5 %	58-144			**	n	Ħ	*	
Surrogate: 4-BFB (PID)	90.2 %	<i>68-140</i>			n	*	*	#	
02MW-02 (B4G0357-03) Water S	ampled: 07/14/04	1 08:50 Rec	eived: 07/1	4/04 16:24			•		
Gasoline Range Hydrocarbons	ND	50.0	ug/l	1	4G20003	07/20/04	07/20/04	NWTPH-Gx/8021B	
Benzene	ND	0.500	ıı	II	Ħ	"	41	•	
Toluene	ND	0.500	н	**	11	•	#	•	
Ethylbenzene	ND	0.500	*	#	H .,	Ħ	Ħ	n	
Xylenes (total)	ND	1.00		#		**	*	b	
Surrogate: 4-BFB (FID)	100 %	58-144			#	"	π	*	
Surrogate: 4-BFB (PID)	91.0 %	68-140			"	,,,	•	*	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody ocument. This analytical report must be reproduced in its entirety.

A.

Page 2 of 11

425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

07.563.0200 fox 007.563.0310

Tetra Tech FW, Inc. - Bothell

12100 NE 195th St Bothell, WA/USA 98011 Project: Time Oil-West Commodore Way

Project Number: 2306

Project Manager: Bryan Graham

Reported:

07/27/04 13:09

Gasoline Hydrocarbons (Benzene to Naphthalene) and BTEX by NWTPH-G and EPA 8021B North Creek Analytical - Bothell

		Reporting	-					<u> </u>	
Апаlyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
2MW-07 (B4G0357-04) Water	Sampled: 07/14/04	4 09;10 Reco	eived: 07/1	4/04 16:24					
Gasoline Range Hydrocarbons	131	50.0	ug/l	1	4G20003	07/20/04	07/20/04	NWTPH-Gx/8021B	
Benzene	ND	0.500	**	•		*	n	n	
'oluene	ND	0.500		n		*	п	•	
Ethylbenzene	ND	0.500	*		*	•	n	•	
Xylenes (total)	1.52	1.00	**	•	•	•	٠.	*	1-00
urrogate: 4-BFB (FID)	106 %	58-144			"	я		n	
Surrogate: 4-BFB (PID)	91.2 %	68-140			-	n	*		
02MW-01 (B4G0357-05) Water	Sampled: 07/14/0-	4 09:20 Rece	eived: 07/1	4/04 16:24			•		
tasoline Range Hydrocarbons	ND	50.0	ug/l	1	4G20003	07/20/04	07/20/04	NWTPH-Gx/8021B	
denzene	7.91	0.500	**	'n	*	*	11	m	
Toluene	ND	0.500	*	n	n	Ħ	11	•	
thylbenzene	ND	0.500	**		н	π	Ħ	я	
(ylenes (total)	ND	1.00	*	u	**	π	n	*	
Surrogate: 4-BFB (FID)	100 %	58-144			н	-	"	n	
urrogate: 4-BFB (PID)	90.2 %	68-140			#	•	**	"	
J2MW-03 (B4G0357-06) Water	Sampled: 07/14/04	4 09:35 Rece	eived: 07/1	4/04 16:24					
Gasoline Range Hydrocarbons	ND	50.0	ug/l	1	4G20003	07/20/04	07/20/04	NWTPH-Gx/8021B	
Benzene	0.718	0.500	*	*	Ħ	Ħ	**	н	
Coluene	ND	0.500	**	**	•		**	n	
Ethylbenzene	ND	0.500	٠. 🖷		π,	*	n	•	
lylenes (total)	ND	1.00	Ħ	*	m ^{Lig}	#	#	•	
Surrogate: 4-BFB (FID)	98.8 %	58-144			"	н	#	n	
Surrogate: 4-BFB (PID)	91.5 %	68-140			*	*	•	n	

North Creek Analytical - Bothell

.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

425,420,9200 fax 425,420,9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

007.563.0200 fox 007.563.0210

Tetra Tech FW, Inc. - Bothell

12100 NE 195th St

Bothell, WA/USA 98011

Project: Time Oil-West Commodore Way

Project Number: 2306

Reported:

Project Manager: Bryan Graham

07/27/04 13:09

Gasoline Hydrocarbons (Benzene to Naphthalene) and BTEX by NWTPH-G and EPA 8021B North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
02MW-05 (B4G0357-07) Water	Sampled: 07/14/0	4 09:50 Rec	eived: 07/1	4/04 16:24					
Gasoline Range Hydrocarbons	209	50.0	ug/l	1	4G20003	07/20/04	07/20/04	NWTPH-Gx/8021B	G-02
Benzene	ND	0.500	Ħ	n		*	n	Ħ	
Toluene	ND	0.500	n	n	n	Ħ	*	•	
Ethylbenzene	ND	0.500	**	*	*	H	•	*	
Xylenes (total)	ND	1.00	n	n	#	n	•	•	
Surrogate: 4-BFB (FID)	95.2 %	58-144		-	н	,,	**	"	
Surrogate: 4-BFB (PID)	92.1 %	68-140			*	#	,,,	*	
02MW-04A (B4G0357-08) Water	Sampled: 07/14	/04 10:10 Re	ceived: 07/	14/04 16:2	4				
Gasoline Range Hydrocarbons	4800	500	ug/l	10	4G20003	07/20/04	07/21/04	NWTPH-Gx/8021B	
Benzene	35.9	5.00	ħ	*	н	n	17	N	
Toluene	54.5	5.00			n	Ħ	н	n	
Ethylbenzene	308	5.00		н	n		, "	n	
Xylenes (total)	584	10.0	#	b)	ч	H	**	*	
Surrogate: 4-BFB (FID)	107 %	58-144	<u> </u>		n.	н	, , , , , , , , , , , , , , , , , , ,	"	•
Surrogate: 4-BFB (PID)	96.2 %	68-140			"	*	r	#	
02MW-04B (B4G0357-09) Water	Sampled: 07/14/	04 10:20 Re	ceived: 07/	14/04 1 <u>6</u> :24	4				
Gasoline Range Hydrocarbons	4800	250	ug/l	5	4G20003	07/20/04	07/20/04	NWTPH-Gx/8021B	
Benzene	34.2	2.50	н		•	۳,	н	₩	
Toluenc	54.5	2,50	*	n	*	*	n	м	
Ethylbenzene	305	2.50	**		,	Ħ	**	•	
Xylenes (total)	570	5.00	n		ĸ	*	#	•	
Surrogate: 4-BFB (FID)	124 %	58-144			*				
Surrogate: 4-BFB (PID)	99.2 %	68-140			*	*		•	

North Creek Analytical - Bothell

The result in this report apply to the samples analyzed in accordance with the chain of custody accument. This analytical report must be reproduced in its entirety.

Page 4 of 11

425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite 8, Spokane, WA 99206-4776

509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

Tetra Tech FW, Inc. - Bothell

Project: Time Oil-West Commodore Way

12100 NE 195th St Bothell, WA/USA 98011 Project Number: 2306

Reported:

Project Manager: Bryan Graham

07/27/04 13:09

Gasoline Hydrocarbons (Benzene to Naphthalene) and BTEX by NWTPH-G and EPA 8021B North Creek Analytical - Bothell

	<u> </u>	Reporting			= .		-		
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
2MW-06 (B4G0357-10) Water	Sampled: 07/14/04	110:30 Rece	ived: 07/1	4/04 16:24					
dasoline Range Hydrocarbons	ND	50.0	ug/l	1	4G20003	07/20/04	07/20/04	NWTPH-Gx/8021B	
Benzene	ND	0.500	#	. 41			77	•	
Oluene	ND	0.500	**	n	n	**	₩		
\$thylbenzene	· ND	0.500		Ħ	n	**	U		
Xylenes (total)	ND	1.00	**	н	. "	**		•	
urrogate: 4-BFB (FID)	98,8 %	58-144		-	<i>n</i>	*	"	m	
'urrogate: 4-BFB (PID)	91.5 %	68-140			"	-		π	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custod document. This analytical report must be reproduced in its entirety.

 I^{V}

mar Gill, Project Manager

North Creek Analytical, Inc. Environmental Laboratory Network Page 5 of 11

425.420.9200 fax 425.420,9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

Tetra Tech FW, Inc. - Bothell

Project: Time Oil-West Commodore Way

12100 NE 195th St

Project Number: 2306

Reported:

Bothell, WA/USA 98011

Project Manager: Bryan Graham

07/27/04 13:09

Gasoline Hydrocarbons (Benzene to Naphthalene) and BTEX by NWTPH-G and EPA 8021B - Quality Control

North Creek Analytical - Bothell

			Reporting		Spike	Source	-	%REC	*** .** **	RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 4G20003:	Prepared 07/20/04	Using El	PA 5030B	(P/T)	···						
Blank (4G20003-BL)	K1)										
Gasoline Range Hydroca	rbons	ND	50.0	ug/l	· ·				٠		
Benzene		ND	0.500	*							
Toluene		ND	0.500								
Ethylbenzene	•	ND	0.500	m							
Xylenes (total)		ND	1.00	•							
Surrogate: 4-BFB (FID)		46.4		"	48.0		96.7	58-144			
Surrogate: 4-BFB (PID)		43.4		#	48.0		90.4	68-140			
LCS (4G20003-BS1)											
Gasoline Range Hydroca	rbons	515	50.0	ug/l	502		103	80-120			
Benzene		6.75	0.500		6.21		109	80-120			
Toluene -		35.3	0.500	W	34.9		101	80-120			
Ethylbenzene		8.74	0.500	*	8.38		104	80-120			
Xylenes (total)		42.9	1.00	n	40.6		106	80-120			
Surrogate: 4-BFB (FID)		50.5		n	48.0		105	58-144			
Surrogate: 4-BFB (PID)		42.8		n	48.0		89.2	68-140			
LCS Dup (4G20003-I	SSD1)										
Gasoline Range Hydrocar	bons	479	50.0	ug/l	502		95.4	80-120	7.24	25	
Benzene		6.55	0.500	*	6.21	٠,	105	80-120	3.01	25	
l'oluene		34.2	0.500	*	34.9	1	98.0	80-120	3.17	25	
Ethylbenzene		8.40	0.500	*	8.38		100	80-120	3.97	25	
Xylenes (total)		40.8	1.00		40.6		100	80-120	5.02	25	
Surrogate: 4-BFB (FID)		47.6		"	48.0		99.2	58-144			
Surrogate: 4-BFB (PID)		43.0		" .	48.Q		89.6	68-140			
Matrix Spike (4G200	03-MS1)					Source: B	4G0357-0	1			
Gasoline Range Hydrocar	bons	518	50.0	ug/l	502	44.6	94.3	58-129			
Benzene		7.28	0.500	•	6.21	ND	117	46-130			
l'oiuene		34.5	0.500		34.9	0.133	98.5	60-124			
Ethylbenzene		8.64	0.500		8:38	ND	103	56-141			
Kylenes (total)		41.9	1.00	*	40.6	ND	103	66-132			
Surrogate: 4-BFB (FID)		50.8			· 48.0		106	58-144			
Surrogate: 4-BFB (PID)		43.4		*	48.0		90.4	68-140			

North Creek Analytical - Bothell

The result in this report apply to the samples analyzed in accordance with the chain of custody apcument. This analytical report must be reproduced in its entirety.

Amar Gill, Project Manager

North Creek Analytical, Inc. **Environmental Laboratory Network** Page 8 of 11

425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

509.924.9200 fax 509.924.9290 Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119 207-563-0200 4ax 007-563-0210

Tetra Tech FW, Inc. - Bothell

12100 NE 195th St Bothell, WA/USA 98011 Project: Time Oil-West Commodore Way

Project Number: 2306

Reported:

Project Manager: Bryan Graham

07/27/04 13:09

Gasoline Hydrocarbons (Benzene to Naphthalene) and BTEX by NWTPH-G and EPA 8021B - Quality Control

North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 4G20003: Prepared 07/20/04	Using I	EPA 5030B	(P/T)							
Matrix Spike Dup (4G20003-MSD1)					Source: E	34G0357-	Ó1	<u>-</u>		
Jasoline Range Hydrocarbons	494	50.0	ug/l	502	44.6	89.5	58-129	4.74	25	
Benzene	6.86	0.500	• •	6.21	ND	110	46-130	5.94	40	
Toluene	32.9	0.500		34.9	0.133	93. 9	60-124	4.75	40	
Ethylbenzene	8.08	0.500	•	8.38	ND	96.4	56-141	6.70	40	
Aylenes (total)	39.6	1.00	•	40.6	ND	97.5	66-132	5.64	40	
Surrogate: 4-BFB (FID)	52.6		n	48.0		110	58-144			
'urrogate: 4-BFB (PID)	43.7		*	48.0		91.0	68-140			

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of ocument. This analytical report must be reproduced in its entirety.

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210 Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

0/DEC

541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

007.563.0200 fov 007.563.0210

Tetra Tech FW, Inc. - Bothell

12100 NE 195th St Bothell, WA/USA 98011 Project: Time Oil-West Commodore Way

Project Number: 2306

Reported:

07/27/04 13:09

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up - Quality Control North Creek Analytical - Bothell

Project Manager: Bryan Graham

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 4G17007: Prepared 07/17/04	Using E	PA 3510C								
Blank (4G17007-BLK1)								<u>. </u>		
Diesel Range Hydrocarbons	ND	0.250	mg/l					•		
Lube Oil Range Hydrocarbons	ND	0.500	П					••		
Surrogate: 2-FBP	0.272		"	0.270		101	50-150			
Surrogate: Octacosane	0.179		#	0.195		91.8	50-1 50			
LCS (4G17007-BS1)										
Diesel Range Hydrocarbons	1.47	0.250	mg/l	2.00		73.5	45-105			
Surrogate: 2-FBP	0.266		p	0.270		98.5	50-150			
LCS Dup (4G17007-BSD1)										
Diesel Range Hydrocarbons	1.62	0.250	mg/l	2.00		81.0	45-105	9.71	50	
Surrogate: 2-FBP	0.264		n	0.270		97.8	50-150			
Batch 4G23014: Prepared 07/23/04	Using El	PA 3520C								
Blank (4G23014-BLK1)										
Diesel Range Hydrocarbons	ND	0.250	mg/l							
Lube Oil Range Hydrocarbons	ND	0.500							•	
Surrogate: 2-FBP	0.203	_	rr	0.270		75.2	50-150	-	-	
Surrogate; Octacosane	0.161		"	0.195		82.6	50 -150			
LCS (4G23014-BS1)										
Diesel Range Hydrocarbons	1.30	0.250	mg/l	2.00	7.5	65.0	45-105			
Surrogate: 2-FBP	0.218		"	0.270		80.7	50-150			
LCS Dup (4G23014-BSD1)										
Diesel Range Hydrocarbons	0.998	0.250	mg/l	2.00	·	49.9	45-105	26.3	50	
Surrogate: 2-FBP	0.150		,,	0.230		55.6	50-150	•		
				* •						

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of ocument. This analytical report must be reproduced in its entirety.

425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588 Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

107 569 0000 for 007 569 0040

Tetra Tech FW, Inc. - Bothell 12100 NE 195th St Bothell, WA/USA 98011

Project: Time Oil-West Commodore Way

Project Number: 2306

Reported: 07/27/04 13:09

Project Manager: Bryan Graham

Notes and Definitions

G-02 The chromatogram for this sample does not resemble a typical gasoline pattern. Please refer to the sample chromatogram.

I-06 The analyte concentration may be artificially elevated due to coeluting compounds or components.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

North Creek Analytical - Bothell

1

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Amar Gill, Project Manager

North Creek Ar

Page 11 of 11

11720 North Creek Pkwy N Suite 400, Bothell, WA 98011-9508 11115 E Montgomery Suite B, Spokane, WA 99206-4776 9405 SW Nimbus Ave, Beaverton, OR 97008-7132 20332 Empire Ave Suite F-1, Bend, OR 99701-5711 3209 Denali St, Anchorage, AK 99503-4030 425-420-9200 FAX 420-9210 509-924-9200 FAX 924-9290 503-906-9200 FAX 906-9210 541-383-9310 FAX 382-7588 907-334-9200 FAX 334-9210

CHAIN OF CUSTODY REPORT Work Order #: TURNAROUND REQUEST INVOICE TO: Time Campani CLIENT: Same as left in Business Days * REPORT TO: Scott Sloan (cc BGraham @Hfmi) ADDRESS: 2737 W Commodore Way Scattle WA 98199 Organic & Inorganic Analyses Petroleum Hydrocarbon Analyses P.O. NUMBER: PHONE: 206 286 6457 FAX: PROJECT NAME: Quarterly Groundwater 3 2 **PRESERVATIVE** PROJECT NUMBER: Monitoring July04 HCI HCI REQUESTED ANALYSES OTHER Specify: SAMPLED BY: ETOBEY & R. Weingarz * Turnaround Requests less than standard may incur Rush Charges. MATRIX #OF LOCATION / NCA SAMPLING CLIENT SAMPLE WO ID CONT. COMMENTS (W, S, O) DATE/TIME IDENTIFICATION \mathcal{O} 1 W OIMW-07 104 0815 W W W 7 F)8 W W DATE: 7 RECEIVED BY: wample TFWI FIRM: MA TIME: PRINT NAME: FIRM: TIME: PRINT NAME: 🔼 RECEIVED BY: DATE: DATE: RELEASED BY: FIRM: TIME: PRINT NAME: PRINT NAME: ADDITIONAL REMARKS: Silica gel cleanup on diesel samples TEMP: PAGE OF

425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

907.563.9200 fax 907.563.9210

02 August 2004

Bryan Graham
Fetra Tech FW, Inc. - Bothell
12100 NE 195th St
3othell, WA/USA 98011

RE: Time Oil-West Commodore Way

Enclosed are the results of analyses for samples received by the laboratory on 07/15/04 16:51. If you have any questions concerning this report, please feel free to contact me.

3incerely,

A

Amar Gill Project Manager

425.420.9200 fax 425.420.9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210 Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588 Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119 907 563 9200 fex 907 563 9210

Tetra Tech FW, Inc. - Bothell

12100 NE 195th St Bothell, WA/USA 98011 Project: Time Oil-West Commodore Way

Project Number: 2306.3312.0012.0004 Project Manager: Bryan Graham

Reported:

08/02/04 13:31

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
01MW-TB2	B4G0407-01	Water	07/15/04 07:30	07/15/04 16:51
01MW-02	B4G0407-02	Water	07/15/04 07:50	07/15/04 16:51
01MW-03	B4G0407-03	Water	07/15/04 08:10	07/15/04 16:51
01MW-09	B4G0407-04	Water	07/15/04 08:35	07/15/04 16:51
01MW-08	B4G0407-05	Water	07/15/04 09:05	07/15/04 16:51
01MW-19	B4G0407-06	Water	07/15/04 09:25	07/15/04 16:51
01MW-18	B4G0407-07	Water	07/15/04 09:50	07/15/04 16:51
01MW-04	B4G0407-08	Water	07/15/04 10:10	07/15/04 16:51

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Seattle 11720 North Creek Pkwy N, Sulle 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 .

541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

907.563.9200 fax 907.563.9210

Tetra Tech FW, Inc. - Bothell

12100 NE 195th St Bothell, WA/USA 98011 Project: Time Oil-West Commodore Way

Project Number: 2306.3312.0012.0004 Project Manager: Bryan Graham

Reported:

08/02/04 13:31

Gasoline Hydrocarbons (Benzene to Naphthalene) and BTEX by NWTPH-G and EPA 8021B North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
<u> </u>				1145164465	••				_
01MW-TB2 (B4G0407-01) Water	Sampled: 07/15		_	/15/04 10:5					
Gasoline Range Hydrocarbons	ND	50.0	ug/l	1	4G20005	07/21/04		NWTPH-Gx/8021B	
Benzene	ND	0.500	m	**	•	Ħ	#	*	
Toluene	ND	0.500	n	n	91	**	Ħ	**	
Ethylbenzene	ND	0.500	Ħ	n	*	*	*	Ħ	
Xylenes (total)	ND	1.00	m	71	**	#		*	
Surrogate: 4-BFB (FID)	96.7 %	58-144			"	- "	•		
Surrogate: 4-BFB (PID)	89.8 %	68-140			"	#	"	•	
01MW-02 (B4G0407-02) Water S	ampled: 07/15/0	4 07:50 Rec	eived: 07/1	5/04 16: <u>51</u>				·	
Gasoline Range Hydrocarbons	9670	2500	ug/l	50	4G20005	07/21/04	07/21/04	NWTPH-Gx/8021B	
Benzene	3230	25.0	н	11	**	#	77		
Toluene	97.0	25.0	Ħ	11	Ħ	n	**	*	
Ethylbenzene	146	25.0	r	Ħ	**	n	. #	Ħ	
Xylenes (total)	441	50.0	H	11	**	н	**	R	
Surrogate: 4-BFB (FID)	100 %	58-144			n	n	*	n	
Surrogate: 4-BFB (PID)	92.3 %	68-140			#	93	"	n	
01MW-03 (B4G0407-03) Water S	ampled: 07/15/0	4 08:10 Rec	eived: 07/1	5/04 16:51					
Gasoline Range Hydrocarbons	4500	1000	ug/l	20	4G20005	07/21/04	07/21/04	NWTPH-Gx/8021B	
Benzene	1130	10.0	n	n	Ħ	Ħ	Ħ	n	
Toluene	60.8	10.0	n	п	*	#	Ħ	n	
Ethylbenzene	41.4	10.0	11	n	٠.,	TÍ	n	₩	
Xylenes (total)	82.5	20.0	#	*	H	π.	н _	#	
Surrogate: 4-BFB (FID)	102 %	58-144			17	F	"	Ħ	
Surrogate: 4-BFB (PID)	91.2 %	68-140			#		*	*	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody; ocument. This analytical report must be reproduced in its entirety.

425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

907 563 9200 fay 907 563 9210

Tetra Tech FW, Inc. - Bothell

12100 NE 195th St Bothell, WA/USA 98011 Project: Time Oil-West Commodore Way

Project Number: 2306.3312.0012.0004 Project Manager: Bryan Graham Reported:

08/02/04 13:31

Gasoline Hydrocarbons (Benzene to Naphthalene) and BTEX by NWTPH-G and EPA 8021B North Creek Analytical - Bothell

		Reporting	 •.	73. ft !		<u> </u>			
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
1MW-09 (B4G0407-04) Water	Sampled: 07/15/04	4 08:35 Rece	ived: 07/1	5/04 16:51					
Gasoline Range Hydrocarbons	7730	2500	ug/l	50	4G20005	07/21/04	07/21/04	NWTPH-Gx/8021B	
Renzene	1050	25.0		**	n	•	n	•	
oluen e	48.0	25.0	•	Ħ	₩	H	**	· •	
r.thylbenzene	232	25.0	11	M		11	**	•	
Xylenes (total)	942	50.0	Ħ		*	Ħ	Ħ	Ħ	
ırrogate: 4-BFB (FID)	97.9 %	58-144			H	п	er	n	
surrogate: 4-BFB (PID)	91.7 %	68-140			*	#	"	н	
01MW-08 (B4G0407-05) Water	Sampled: 07/15/04	4 09:05 Reco	eived: 07/1	5/04 16:51					
asoline Range Hydrocarbons	ND	50.0	u g/ i	1	4G20005	07/21/04	07/21/04	NWTPH-Gx/8021B	
Benzene	ND	0.500	н	π	77	Ħ	71	n	
Toluene	ND	0.500	н	m	n	**	Ħ	u	
thylbenzene	ND	0.500	n	77	н	я		H	
Aylenes (total)	ND	1.00		77	и	п	• н	*	
Surrogate: 4-BFB (FID)	93.3 %	58-144		_	n	**	"	"	
ırrogate: 4-BFB (PID)	90.6 %	68-140			**	**	"	n	
01MW-19 (B4G0407-06) Water	_Sampled: 07/15/0	4 09:25 Reco	eived: 07/1	5/04 16:51					
Casoline Range Hydrocarbons	19900	5000	ug/l	100	4G20005	07/21/04	07/21/04	NWTPH-Gx/8021B	
enzene	2610	50.0	**	*	#	Ħ	н	П	
i oluene	945	50.0	n	n	19	Ħ	n	N	
Ethylbenzene	522	50.0	11		# `.·	Ħ	n	н	
ylenes (total)	3190	100	n	*	11		и		
Surrogate: 4-BFB (FID)	99.6 %	58-144			#	n		**	
Surrogate: 4-BFB (PID)	92.7 %	68-1 40			77	*	77	"	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody dicument. This analytical report must be reproduced in its entirety.

mar Gill, Project Manager

425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

509.924.9200 fax 509.924.9290 Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

907 563 9200 fax 907 563 9210

Tetra Tech FW, Inc. - Bothell

12100 NE 195th St Bothell, WA/USA 98011 Project: Time Oil-West Commodore Way

Project Number: 2306.3312.0012.0004

Reported:

Project Manager: Bryan Graham

08/02/04 13:31

Gasoline Hydrocarbons (Benzene to Naphthalene) and BTEX by NWTPH-G and EPA 8021B North Creek Analytical - Bothell

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
01MW-18 (B4G0407-07) Water	Sampled: 07/15/0	4 09:50 Rece	eived: 07/1	5/04 16:51					
Gasoline Range Hydrocarbons	10700	2500	ug/l	50	4G20005	07/21/04	07/21/04	NWTPH-Gx/8021B	
Benzene	1570	25.0	n	4	*	H	n	•	
Toluene	124	25.0	n	H	**		, н	#	
Ethylbenzene	283	25.0	n		97	*	*	•	
Xylenes (total)	1360	50.0	#					*	
Surrogate: 4-BFB (FID)	102 %	58-144			"		"	*	-
Surrogate: 4-BFB (PID)	92.9 %	68-140			n	#	n	*	
01MW-04 (B4G0407-08) Water	Sampled: 07/15/04	4 10:10 Reco	ived: 07/1	5/04 16:51				<u> </u>	
Gasoline Range Hydrocarbons	9820	5000	ug/l	100	4G20005	07/21/04	07/21/04	NWTPH-Gx/8021B	
Benzene	2380	50.0	Ħ	•	n	Ħ		•	
Toluen e	570	50.0	u	ŧI	*		H	₩ .	-
Ethylbenzen e	236	50.0	Ħ	π	*	Ħ	n		•
Xylenes (total)	828	100		#	н	11	. *		
Surrogate: 4-BFB (FID)	96.0 %	58-144			"	n	н	n .	
Surrogate: 4-BFB (PID)	90.6 %	68-140			*	*	*	n	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custod document. This analytical report must be reproduced in its entirety.

R

425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119 907-563 9200 fav 907-563 9210

Tetra Tech FW, Inc. - Bothell 12100 NE 195th St Bothell, WA/USA 98011

Project: Time Oil-West Commodore Way

Project Number: 2306.3312.0012.0004 Project Manager: Bryan Graham

Reported: 08/02/04 13:31

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up North Creek Analytical - Bothell

	n	Reporting	TT-14-	25.75					
Analyte	Result	Limit	Units	Dilution —	Batch	Prepared	Analyzed	Method	Notes
)1MW-02 (B4G0407-02) Water	Sampled: 07/15/04	107:50 Rece	eived: 07/1	5/04 16:51					
Diesel Range Hydrocarbons	ND	0.250	mg/l	1	4G20014	07/20/04	07/21/04	NWTPH-Dx	
Lube Oil Range Hydrocarbons	ND	0.500	**	n	**	*	*		
surrogate: 2-FBP	111 %	50-150			"	**	n	"	
Surrogate: Octacosane	95.3 %	50-150			H	#	n	#	
01MW-03 (B4G0407-03) Water	Sampled: 07/15/04	4 08:10 Rece	eived: 07/1	5/04 16:51					
Diesel Range Hydrocarbons	1.23	0.250	mg/l	1	4G20014	07/20/04	07/21/04	NWTPH-Dx	D-08
Lube Oil Range Hydrocarbons	0.938	0.500			*		n	w	•
Surrogate: 2-FBP	105 %	50-150			"	н		m .	
surrogate: Octacosane	. 93.5 %	50-150			"	**		*	
01MW-09 (B4G0407-04) Water	Sampled: 07/15/04	4 08:35 Reco	eived: 07/1	5/04 16:51			_		
Diesel Range Hydrocarbons	19.2	2.50	mg/l	10	4G20014	07/20/04	07/22/04	NWTPH-Dx	
.ube Oil Range Hydrocarbons	ND	0.500	н	1	n	n	07/21/04	77	
Surrogate: 2-FBP	98.1 %	50-150			"	π	07/22/04	rt -	
Surrogate: Octacosane	106 %	50-150			"	7	07/21/04	n	
)1MW-08 (B4G0407-05) Water	Sampled: 07/15/04	4 09:05 Reco	eived: 07/1	5/04 16:51					
Diesel Range Hydrocarbons	ND	0.250	mg/l	1	4G20014	07/20/04	07/21/04	NWTPH-Dx	
.ube Oil Range Hydrocarbons	ND	0.500	₩	н	n	н	*		
Surrogate: 2-FBP	108 %	50-150			"	7		*	
Surrogate: Octacosane	98.9 %	50-150			и.,	*	•	H	
1MW-19 (B4G0407-06) Water	Sampled: 07/15/04	4 09:25 Rece	eived: 07/1	5/04 16:51	·÷				
Diesel Range Hydrocarbons	0.708	0.250	mg/i	1	4G20014	07/20/04	07/21/04	NWTPH-Dx	D-08
Lube Oil Range Hydrocarbons	ND	0.500	**	n	Ħ	*	•	•	
Surrogate: 2-FBP	110 %	50-150				"	"		
Surrogate: Octacosane	96.2 %	50-150		禁	•	*	•	**	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509,924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503,906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119 907 563 9200 5ex 907 563 9210

Tetra Tech FW, Inc. - Bothell

12100 NE 195th St Bothell, WA/USA 98011 Project: Time Oil-West Commodore Way

Project Number: 2306.3312.0012.0004 Project Manager: Bryan Graham

Reported:

08/02/04 13:31

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up North Creek Analytical - Bothell

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
01MW-18 (B4G0407-07) Water	Sampled: 07/15/0-	4 09:50 Reco	ived: 07/1	5/04 16:51					
Diesel Range Hydrocarbons	0.676	0.250	mg/l	1	4G20014	07/20/04	07/21/04	NWTPH-Dx	D-08
Lube Oil Range Hydrocarbons	ND	0.500		*		*	*	•	
Surrogate: 2-FBP	114 %	50-150			"	,,	a	*	
Surrogate: Octacosane	104 %	50-150			*	*	. 4	"	
01MW-04 (B4G0407-08) Water	Sampled: 07/15/0	4 10:10 Rece	ived: 07/1	5/04 16:51					_
Diesel Range Hydrocarbons	0.333	0.250	mg/l	1	4G20014	07/20/04	07/21/04	NWTPH-Dx	D-08
Lube Oil Range Hydrocarbons	ND	0.500	н	#	# ,	W	W	<u> </u>	
Surrogate: 2-FBP	114 %	50-150		_	*	"	. "	n	
Surrogate: Octacosane	95.2 %	<i>50-150</i>			n	. #	n	,,	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210 Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

907 563 9200 fax 907 563 9210

Tetra Tech FW, Inc. - Bothell 12100 NE 195th St

Bothell, WA/USA 98011

Project: Time Oil-West Commodore Way

Project Number: 2306.3312.0012.0004

Reported:

08/02/04 13:31

Pentachlorophenol by GC/MS with Selected Ion Monitoring North Creek Analytical - Bothell

Project Manager: Bryan Graham

_		Reporting			•		·		
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
1MW-09 (B4G0407-04) Water	Sampled: 07/15/0-	4 08:35 Rece	ived: 07/1	5/04 16:51					
Pentachlorophenol	ND	0.500	ug/l	1	4G22015	07/22/04	07/30/04	EPA 8270 Mod	
Surrogate: 2,4,6-TBP	78.2 %	22-162			*	н	er	W	
11MW-19 (B4G0407-06) Water	Sampled: 07/15/0-	4 09:25 Rece	eived: 07/1	5/04 16:51	_				
Pentachlorophenol	1.32	0.500	ug/I	1	4G22015	07/22/04	07/30/04	EPA 8270 Mod	
Surrogate: 2,4,6-TBP	91.6 %	22-162			<i>π</i>	,,	"	"	
J1MW-18 (B4G0407-07) Water	Sampled: 07/15/0	4 09:50 Reco	eived: 07/1	5/04 16:51					
Pentachlorophenol	ND	0.500	ug/l	1	4G22015	07/22/04	07/30/04	EPA 8270 Mod	
iurrogate: 2,4,6-TBP	87.6%	22-162			*		n	Ħ	

North Creek Analytical - Bothell

D

The results in this report apply to the samples analyzed in accordance with the chain of custody locument. This analytical report must be reproduced in its entirety.

425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

907 563 9200 fav 907 563 9210

Tetra Tech FW, Inc. - Bothell

12100 NE 195th St Bothell, WA/USA 98011 Project: Time Oil-West Commodore Way

Project Number: 2306.3312.0012.0004 Project Manager: Bryan Graham Reported:

08/02/04 13:31

Gasoline Hydrocarbons (Benzene to Naphthalene) and BTEX by NWTPH-G and EPA 8021B - Quality Control

North Creek Analytical - Bothell

		Reporting		Spike	Source	, ,	%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 4G20005: Prepared 07/21/04	Using E	PA 5030B	(P/T)							
Blank (4G20005-BLK1)					_					
Gasoline Range Hydrocarbons	ND	50.0	ug/l		•	•		 		
Benzene	ND	0.500	R						•	
Toluene	ND	0.500	*							
Ethylbenzene	ND	0.500	#							
Xylenes (total)	ND	1.00								
Surrogate: 4-BFB (FID)	46.6		**	48.0		97.1	58-144			
Surrogate: 4-BFB (PID)	42.8		n	48.0		89.2	68-140			
LCS (4G20005-BS1)										
Gasoline Range Hydrocarbons	464	50.0	ug/l	502		92.4	80-120			
Benzene	5.97	0.500	#	6.21		96.1	80-120			
Toluene	31.2	0.500	н	34.9		89.4	80-120			
Ethylbenzene	7.71	0.500	н	8.38		92.0	80-120			
Xylenes (total)	37.9	1.00	н	40.6		93.3	80-120			
Surrogate: 4-BFB (FID)	51.5		re	48.0	-	107	58-144			
Surrogate: 4-BFB (PID)	43.5		"	48.0		90.6	68-1 40			
LCS Dup (4G20005-BSD1)										
Gasoline Range Hydrocarbons	495	50.0	ug/I	502		98.6	80-120	6.47	25	
Benzene	6.51	0.500	n	6.21	1	105	80-120	8.65	25	
Toluene	34.0	0.500	*	34.9		97.4	80-120	8.59	25	
Ethylbenzene	8.41	0.500	*	8.38		100	80-120	8.68	25	
Xylenes (total)	41.1	1.00		40.6		101	80-120	8.10	25	
Surrogate: 4-BFB (FID)	52.7		"	48.0		110	58-144	_		
Surrogate: 4-BFB (PID)	43.2		•	#8 .0		90.0	68-140			
Matrix Spike (4G20005-MS1)				કર્યું 	Source: B	4G0374-0)8			
Gasoline Range Hydrocarbons	515	50.0	ug/l	502	27.1	97.2	58-129			
Benzene	6.53	0.500	11	6.21	ND	105	46-130			
Toluene	33.9	0.500		34.9	ND	97.1	60-124			
Ethylbenzene	8.34	0.500	ri	8.38	ND	99.5	56-141			
Xylenes (total)	41.0	1.00	#	40.6	ND	101	66-132			
Surrogate: 4-BFB (FID)	52.7		r	48.0		110	58-144			
Surrogate: 4-BFB (PID)	43.8		*	48.0		91.2	68-140			

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of customy document. This analytical report must be reproduced in its entirety.

D

425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

%REC

509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

541.383.9310 fax 541.382.7588 Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

907.563.9200 fax 907.563.9210

Tetra Tech FW, Inc. - Bothell

12100 NE 195th St Bothell, WA/USA 98011 Project: Time Oil-West Commodore Way

Spike

Project Number: 2306.3312.0012.0004

Reported:

RPD

Project Manager: Bryan Graham

08/02/04 13:31

Gasoline Hydrocarbons (Benzene to Naphthalene) and BTEX by NWTPH-G and EPA 8021B - Quality Control

North Creek Analytical - Bothell

'Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
3atch 4G20005: Prepared 07/21/04	Using El	PA 5030B	(P/T)							
Matrix Spike Dup (4G20005-MSD1)					Source: I	34G0374-	08			
rasoline Range Hydrocarbons	488	50.0	ug/I	502	27.1	91.8	58-129	5.38	25	
Benzene	6.69	0.500	*	·· 6.21	ND	108	46-130	2.42	40	
Toluene	35.0	0.500		34.9	ND	100	60-124	3.19	40	
Ethylbenzene	8.56	0.500	•	8.38	ND	102	56-141	2.60	40	
. (ylenes (total)	42.1	1.00		40.6	ND	104	66-132	2.65	40	
Surrogate: 4-BFB (FID)	49.0		77	48.0	-	102	58-144			•
'urrogate: 4-BFB (PID)	43.7		M	48.0		91.0	68-140			

North Creek Analytical - Bothell

A L

The results in this report apply to the samples analyzed in accordance with the chain of custody locument. This analytical report must be reproduced in its entirety.

North Creek Analytical, Inc. Environmental Laboratory Network Page 9 of 12

425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119 907.563.9200 fax 907.563.9210

Tetra Tech FW, Inc. - Bothell

12100 NE 195th St Bothell, WA/USA 98011 Project: Time Oil-West Commodore Way

Project Number: 2306.3312.0012.0004

Reported:

08/02/04 13:31

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up - Quality Control North Creek Analytical - Bothell

Project Manager: Bryan Graham

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit —-	Notes
Batch 4G20014: Prepared 07/20/04	Using E	PA 3520C								
Blank (4G20014-BLK1)										
Diesel Range Hydrocarbons	ND	0.250	m g/l							•
Lube Oil Range Hydrocarbons	ND	0.500	n							
Surrogate: 2-FBP	0.226	-	*	0.270		83.7	50-150		<u> </u>	
Surrogate: Octacosane	0.187		*	0.195		95.9	50-1 50			
LCS (4G20014-BS1)									<u>. </u>	
Diesel Range Hydrocarbons	1.26	0.250	mg/l	2.00		63.0	45-105			
Surrogate: 2-FBP	0.181		n '	0.270		67.0	50-150			
LCS Dup (4G20014-BSD1)										
Diesel Range Hydrocarbons	1.64	0.250	mg/l	2.00		82.0	45-105	26.2	50	
Surrogate: 2-FBP	0.308		*	0.270		114	50-150	· <u>-</u>		

North Creek Analytical - Bothell

A C

The results in this report apply to the samples analyzed in accordance with the chain of custody socument. This analytical report must be reproduced in its entirety.

North Creek Analytical, Inc. Page 10 of 12 Environmental Laboratory Network

425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210 Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588 Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119 907 563 9200 fax 907 563 9210

Tetra Tech FW, Inc. - Bothell

12100 NE 195th St Bothell, WA/USA 98011 Project: Time Oil-West Commodore Way

Project Number: 2306.3312.0012.0004

Project Manager: Bryan Graham

Reported:

08/02/04 13:31

Pentachlorophenol by GC/MS with Selected Ion Monitoring - Quality Control North Creek Analytical - Bothell

	Reporting		Spike	Source		%REC		RPD	
Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
/04 Using El	PA 3520C								
ND	0.500	ug/l							
37.0		п	50.0		74.0	22-162	**		-
9.48	0.500	ug/l	20.0	_	47.4	20-128	_		-
37.9		п	50.0		75.8	22-162			-
14.0	0.500	ug/l	20.0		70.0	20-128	38.5	50	
42.4		"	50.0		84.8	22-162			
	Result /04 Using E1 ND 37.0 9.48 37.9	Result Limit /04 Using EPA 3520C ND 0.500 37.0 9.48 0.500 37.9 14.0 0.500	Result Limit Units	Result Limit Units Level	Result Limit Units Level Result	Result Limit Units Level Result %REC /04 Using EPA 3520C	Result Limit Units Level Result %REC Limits	Result Limit Units Level Result %REC Limits RPD /04 Using EPA 3520C ND 0.500 ug/l 37.0 " 50.0 74.0 22-162 9.48 0.500 ug/l 20.0 47.4 20-128 37.9 " 50.0 75.8 22-162 14.0 0.500 ug/l 20.0 70.0 20-128 38.5	Result Limit Units Level Result %REC Limits RPD Limit

North Creek Analytical - Bothell

in this report apply to the samples analyzed in accordance with the chain of The resul custody cument. This analytical report must be reproduced in its entirety.

425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210 Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Tetra Tech FW, Inc. - Bothell

Project: Time Oil-West Commodore Way

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

907 563 9200 fax 907 563 9210

12100 NE 195th St

Project Number: 2306.3312.0012.0004

Reported:

Bothell, WA/USA 98011

Project Manager: Bryan Graham

08/02/04 13:31

Notes and Definitions

Results in the diesel organics range are primarily due to overlap from a gasoline range product. D-08

DET Analyte DETECTED

Analyte NOT DETECTED at or above the reporting limit ND

NR Not Reported

Sample results reported on a dry weight basis đгу

RPD Relative Percent Difference

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Amar Gill, Project Manager

North Creek Analytical, Inc. **Environmental Laboratory Network** Page 12 of 12

11720 North Creek Pkwy N Suite 400, Bothell, WA 98011-9508
 11115 E Montgomery Suite B, Spokane, WA 99206-4776
 9405 SW Nimbus Ave, Beaverton, OR 97008-7132
 20332 Empire Ave Suite F-1, Bend, OR 99701-5711
 3209 Denali St, Anchorage, AK 99503-4030

425-420-9200 FAX 420-9210 509-924-9200 FAX 924-9290 503-906-9200 FAX 906-9210 541-383-9310 FAX 382-7588 907-334-9200 FAX 334-9210

CHAIN OF CUSTODY REPORT Work Order #: INVOICE TO: TURNAROUND REQUEST COMBON CLIENT: Same as left Scott Sloan (cc B Craham @TTAWI in Business Days * REPORT TO: 2737 W. Commodore Way Scattle WA 98199 Organic & Inorganic Analyses ADDRESS: PHONE: 206 286645) FAX: P.O. NUMBER: Petroleum Hydrocarbon Analyses PROJECT NAME: Quarterly Croundwater
Monitoring July On PRESERVATIVE 2 PROJECT NUMBER: 2306, 3312, 0012.0004 REQUESTED ANALYSES OTHER Specify: SAMPLED BY: ETOBEY PHEINGARZ * Turnground Requests less than standard may incur Rush Charges. #OF LOCATION / MATRIX NCA CLIENT SAMPLE SAMPLING (W, S, O) CONT. COMMENTS WO ID IDENTIFICATION DATE/TIME 0 W OIMW-TB2 112 W OLWW-O 03 W W 14 W 105 00 W DIMW-01MW-18 ÚÝ) OIMW- OY DATE: 7/15/04 RECEIVED BY: DATE: FWI TIME: FIRM: TIME: PRINT NAME: PRINT NAME: 17 11 DATE: RECEIVED BY: RELEASED BY: DATE: TIME: PRINT NAME: TIME: PRINT NAME: FIRM: FIRM: ADDITIONAL REMARKS: TEMP: 3.22 PAGE Diesel Samples 3cmkrs COC REV 1/03

425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588 Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

907.563.9200 fax 907.563.9210

3 August 2004

3ryan Graham
Tetra Tech FW, Inc. - Bothell
12100 NE 195th St
3othell, WA/USA 98011

₹E: Time Oil-West Commodore Way

inclosed are the results of analyses for samples received by the laboratory on 07/16/04 15:20. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

\mar Gill

Project Manager

425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588 Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

907 563 9200 fex 907 563 9210

Tetra Tech FW, Inc. - Bothell

12100 NE 195th St Bothell, WA/USA 98011 Project: Time Oil-West Commodore Way

Project Number: 2306.3312.0012.0004 Project Manager: Bryan Graham Reported: 08/03/04 09:42

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
01MW-TB03	B4G0420-01	Water	07/16/04 07:40	07/16/04 15:20
01MW-11	B4G0420-02	Water	07/16/04 07:50	07/16/04 15:20
01MW-06	B4G0420-03	Water	07/16/04 08:15	07/16/04 15:20
01MW-26	B4G0420-04	Water	07/16/04 08:45	07/16/04 15:20
01MW-27	B4G0420-05	Water	07/16/04 09:10	07/16/04 15:20
01MW-01	B4G0420-06	Water	07/16/04 09:40	07/16/04 15:20
01MW-15	B4G0420-07	Water	07/16/04 10:05	07/16/04 15:20
01MW-20	B4G0420-08	Water	07/16/04 10:40	07/16/04 15:20

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody accument. This analytical report must be reproduced in its entirety.

Amar Gill, Project Manager

North Creek Analytical, Inc. Environmental Laboratory Network Page 1 of 13

425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119 907 563 9200 fax 907.563 9210

Tetra Tech FW, Inc. - Bothell

12100 NE 195th St

Project: Time Oil-West Commodore Way

Project Number: 2306.3312.0012.0004

Reported:

Bothell, WA/USA 98011

Project Manager: Bryan Graham

08/03/04 09:42

Gasoline Hydrocarbons (Benzene to Naphthalene) and BTEX by NWTPH-G and EPA 8021B North Creek Analytical - Bothell

		Reporting			_				
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
01MW-TB03 (B4G0420-01) Water	Sampled: 07/1	6/04 07:40 R	teceived: (7/16/04 15:	20				
Benzene	ND	0.500	ug/I	1	4G21008	07/21/04	07/22/04	NWTPH-Gx/8021B	
Toluene	ND	0.500	#	H		n	n	W.	
Ethylbenzene	ND	0.500	•	n	Ħ	n	*	#	
Xylenes (total)	ND	1.00	Ħ		•	11	₩	7	
Surrogate: 4-BFB (PID)	100 %	68-140			,	,,	**	п	
01MW-TB03 (B4G0420-01RE1) Wa	ter Sampled:	07/16/04 07:4	0 Receiv	ed: 07/16/04	4 15:20				÷
Gasoline Range Hydrocarbons	ND	50.0	ug/l	1	4G22070	07/22/04	07/23/04	NWTPH-Gx/8021B	
Surrogate: 4-BFB (FID)	86.5 %	58-144			97	-		er .	•
01MW-11 (B4G0420-02) Water Sa	mpled: 07/16/0	4 07:50 Rece	ived: 07/1	6/04 15:20					
Gasoline Range Hydrocarbons	ND	50.0	ug/l	1	4G21008	07/21/04	07/21/04	NWTPH-Gx/8021B	
Benzene	ND	0.500	#	TÎ	#	Ħ	Ħ	Ħ	
Toluene	ND	0.500			н	n	н	Ħ	
Ethylbenzene	ND	0.500	п.	н	Ħ	· n	н	*	
Xylenes (total)	ND	1.00	н	н	н		r.	и	
Surrogate: 4-BFB (FID)	107 %	58-144			,,	n	π	m	
Surrogate: 4-BFB (PID)	101 %	68-140			•	Ħ	Ħ	#	
01MW-06 (B4G0420-03) Water Sax	mpled: 07/16/0-	4 08:15 Rece	ived: 07/1	6/04 15:20					
Gasoline Range Hydrocarbons	ND	50.0	ug/l	1	4G21008	07/21/04	07/21/04	NWTPH-Gx/8021B	
Benzene	ND	0.500	n		н	*	₩.		
Toluene	ND	0.500	*	π	*	п	n		
Ethylbenzene	ND	0.500	•	•	# c		•		
Xylenes (total)	ND	1.00	Ħ	Ħ		п	#	#	
Surrogate: 4-BFB (FID)	97.3 %	58-144			- "	*	Ħ	"	
Surrogate: 4-BFB (PID)	102 %	68-140			*	*	"	W	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custod document. This analytical report must be reproduced in its entirety.

Amar Gill, Project Manager

North Creek Analytical, Inc. **Environmental Laboratory Network** Page 2 of 13

425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210 Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

907 563 9200 fay 907 563 9210

Tetra Tech FW, Inc. - Bothell

12100 NE 195th St Bothell, WA/USA 98011 Project: Time Oil-West Commodore Way

Project Number: 2306.3312.0012.0004 Project Manager: Bryan Graham

Reported: 08/03/04 09:42

Gasoline Hydrocarbons (Benzene to Naphthalene) and BTEX by NWTPH-G and EPA 8021B North Creek Analytical - Bothell

	·	Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
1MW-26 (B4G0420-04) Water	Sampled: 07/16/0	4 08:45 Re	ceived: 07/1	6/04 15:20					- <u>-</u> '
Gasoline Range Hydrocarbons	137	50.0	ug/l	1	4G21008	07/21/04	07/21/04	NWTPH-Gx/8021B	
Benzene	9.69	0.500				*	**	n	
oluene	0.706	0.500	Ħ	11	77	n	11		
Lthylbenzene	3.56	0.500	•		. 4	*	11		
Xylenes (total)	4.92	1.00	H	tr	•	10	n	•	
urrogate: 4-BFB (FID)	97.3 %	58-144			,,	-	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,	
_urrogate: 4-BFB (PID)	95.0 %	68-140				*	*	•	
01MW-27 (B4G0420-05) Water	Sampled: 07/16/0	4 09:10 Re	ceived: 07/1	6/04 15:20					
asoline Range Hydrocarbons	10900	500	ug/l	10	4G21008	07/21/04	07/21/04	NWTPH-Gx/8021B	
Benzene	6220	50.0	•	100	•	**	07/22/04	•	
Toluene	43.9	5.00		10	*	11	07/21/04	n	
thylbenzene	70.4	5.00	n	Ħ	n	**	n	n	
_ylenes (total)	50.0	10.0	*	7	**	rt	ti	n '	
Surrogate: 4-BFB (FID)	96.9 %	58-144			<u>"</u>			#	
urrogate: 4-BFB (PID)	100 %	68-14 0			"	77	n	**	
v1MW-01 (B4G0420-06) Water	Sampled: 07/16/0	4 09:40 Re	ceived: 07/1	6/04 15:20					
Benzene	3.66	0.500	ug/l	1	4G21008	07/21/04	07/22/04	NWTPH-Gx/8021B	
'oluen e	0.766	0.500	"	н	Ħ	n		N	
Lthylbenzene	ND	0.500	**	ti	#	H	н	-	
Xylenes (total)	1.80	1.00	4	н	n	11		W	
urrogate: 4-BFB (PID)	98.8 %	68-140	·		n .:	**		*	
01MW-01 (B4G0420-06RE1) Wa	ter Sampled: 07/	16/04 09:40	Received:	07/16/04 15	5:20				
Gasoline Range Hydrocarbons	55.9	50.0	ug/l	1	4G22070	07/22/04	07/23/04	NWTPH-Gx/8021B	
urrogate: 4-BFB (FID)	80.2 %	58-144			"		,,	H	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody discument. This analytical report must be reproduced in its entirety.

mar Gill, Project Manager

North Creek Analytical, Inc. Environmental Laboratory Network Page 3 of 13

425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119 907 563 9200 fax 907 563 9210

Tetra Tech FW, Inc. - Bothell

12100 NE 195th St Bothell, WA/USA 98011

Project: Time Oil-West Commodore Way

Project Number: 2306.3312.0012.0004 Project Manager: Bryan Graham

Reported:

08/03/04 09:42

Gasoline Hydrocarbons (Benzene to Naphthalene) and BTEX by NWTPH-G and EPA 8021B North Creek Analytical - Bothell

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
01MW-15 (B4G0420-07) Water S	ampled: 07/16/0	4 10:05 Re	ceived: 07/1	6/04 15:20		. <u>-</u>	_		
Benzene	ND	0.500	ug/l	1	4G21008	07/21/04	07/22/04	NWTPH-Gx/8021B	
Toluene	ND	0.500	n	n	n	Ħ	H	•	
Ethylbenzene	ND	0.500	n		**	11	n	•	
Xylenes (total)	ND	1.00		n	÷	**	,		
Surrogate: 4-BFB (PID)	102 %	68-140			n	"	н	N	
01MW-15 (B4G0420-07RE1) Water	Sampled: 07/	16/04 10:05	Received:	07/16/04 15	5:20				
Gasoline Range Hydrocarbons	ND	50.0	ug/l	1	4G22070	07/22/04	07/23/04	NWTPH-Gx/8021B	
Surrogate: 4-BFB (FID)	80.4 %	58-144			"	n	· ·	. "	
01MW-20 (B4G0420-08) Water Sa	mpled: 07/16/0	4 10:40 Rec	ceived: 07/1	6/04 15:20					
Benzene	13.2	0.500	ug/l	1	4G21008	07/21/04	07/22/04	NWTPH-Gx/8021B	
Toluene	3.86	0.500	n	**		#	77		
Ethylbenzen e	21.9	0.500	n	π	*	**	n	9	
Xylenes (total)	29.5	1.00	Ħ	Ħ	W	Ħ	н	₩.	
Surrogate: 4-BFB (PID)	107 %	68-140			"	н	, ,	*	
01MW-20 (B4G0420-08RE1) Water	Sampled: 07/	16/04 10:40	Received:	07/16/04 15	:20				
Gasoline Range Hydrocarbons	573	50.0	ug/l	1	4G22070	07/22/04	07/23/04	NWTPH-Gx/8021B	
Surrogate: 4-BFB (FID)	110 %	58-144			,,	п	"	"	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119
907.563.9200, (2) 907.563.9210

Tetra Tech FW, Inc. - Bothell 12100 NE 195th St

Bothell, WA/USA 98011

Project: Time Oil-West Commodore Way

Project Number: 2306.3312.0012.0004 Project Manager: Bryan Graham Reported: 08/03/04 09:42

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
1MW-11 (B4G0420-02) Water	Sampled: 07/16/04	4 07:50 Rece	eived: 07/1	6/04 15: 20					
Diesel Range Hydrocarbons	ND	0.250	mg/l	1	4G20014	07/20/04	07/21/04	NWTPH-Dx	·
Lube Oil Range Hydrocarbons	ND	0.500	ч	-	**	**	*		
'urrogate: 2-FBP	107 %	50-150			"	77		*	
Surrogate: Octacosane	101 %	50-150			**	"		•	
<u>1MW-06 (B4G0420-03) Water</u>	Sampled: 07/16/04	4 08:15 Rece	eived: 07/1	6/04 15:20				•	
iesel Range Hydrocarbons	ND	0.250	mg/l	1	4G20014	07/20/04	07/21/04	NWTPH-Dx	
Lube Oil Range Hydrocarbons	ND	0.500	н	-	Ħ	и.	#		
"urrogate: 2-FBP	96.5 %	50-150			"	п	*	"	
urrogate: Octacosane	84.0 %	50-150			"	n	#	*	
01MW-26 (B4G0420-04) Water	Sampled: 07/16/04	4 08:45 Rece	eived: 07/1	6/04 15:20					
liesel Range Hydrocarbons	ND	0.250	mg/l	1	4G20014	07/20/04	07/21/04	NWTPH-Dx	
ube Oil Range Hydrocarbons	ND	0.500	н	n	Ħ	н	₩	•	
Surrogate: 2-FBP	100 %	50-150			17	н	"	н	
urrogate: Octacosane	97.9 %	50-150			•	#	*	*	
1MW-27 (B4G0420-05) Water	Sampled: 07/16/04	4 09:10 Rece	eived: 07/1	6/04 15:20					
Diesel Range Hydrocarbons	ND	0.250	mg/l	1	4G20014	07/20/04	07/21/04	NWTPH-Dx	
ube Oil Range Hydrocarbons	ND	0.500	**	*		n	n	n	
_urrogate: 2-FBP	100 %	50-150	`		"	н	,		
Surrogate: Octacosane	83.3 %	50-150			"		-		
1MW-01 (B4G0420-06) Water	Sampled: 07/16/04	1 09:40 Rece	eived: 07/1	6/04 15:20	k				
Diesel Range Hydrocarbons	ND	0.250	mg/l	1	4G20014	07/20/04	07/21/04	NWTPH-Dx	_
Lube Oil Range Hydrocarbons	ND	0.500	#	Ħ	*	11	*	N	
urrogate: 2-FBP	93.2 %	50-150							_
Lurrogate: Octacosane	87.4 %	50-150		-SPA	"	N	Ħ	•	

North Creek Analytical - Bothell

amar Gill, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

North Creek Analytical, Inc. Environmental Laboratory Network Page 5 of 13

425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

509,924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210 Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

907 563 9200 fox 907 563 9210

Tetra Tech FW, Inc. - Bothell

12100 NE 195th St Bothell, WA/USA 98011 Project: Time Oil-West Commodore Way

Project Number: 2306.3312.0012.0004 Project Manager: Bryan Graham Reported: 08/03/04 09:42

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
01MW-15 (B4G0420-07) Water	Sampled: 07/16/0	4 10:05 Rec	eived: 07/ <u>1</u>	6/04 15:20					<u> </u>
Diesel Range Hydrocarbons	ND	0.250	mg/l	1	4G20014	07/20/04	07/21/04	NWTPH-Dx	•
Lube Oil Range Hydrocarbons	ND	0.500	,	71	Ħ		n		
Surrogate: 2-FBP	83.7 %	50-150			п	,	n		
Surrogate: Octacosane	76.3 %	50-150			•	•	"	"	
01MW-20 (B4G0420-08) Water	Sampled: 07/16/0	4 10:40 Rec	eived: 07/1	6/04 15:20					
Diesel Range Hydrocarbons	ND	0.250	mg/l	1	4G20014	07/20/04	07/21/04	NWTPH-Dx	
Lube Oil Range Hydrocarbons	ND	0.500	n	н	H	п	Ħ	•	
Surrogate: 2-FBP	93.8 %	50-150			"	"	"	"	
Surrogate: Octacosane	88.7 %	50-150			•	Ħ	*	•	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody accument. This analytical report must be reproduced in its entirety.

Amar Gill, Project Manager

North Creek Analytical, Inc. Environmental Laboratory Network Page 6 of 13

425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588 Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

907 563 9200 fax 907 563 9210

Tetra Tech FW, Inc. - Bothell 12100 NE 195th St

Bothell, WA/USA 98011

Project: Time Oil-West Commodore Way

Project Number: 2306.3312.0012.0004

Project Manager: Bryan Graham

Reported:

08/03/04 09:42

Pentachlorophenol by GC/MS with Selected Ion Monitoring North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
11MW-06 (B4G0420-03) Water	Sampled: 07/16/04	4 08:15 Rece	eived: 07/1	6/04 15:20				-	<u> </u>
.'entachlorophenol	ND	0.500	ug/l	1	4G22015	07/22/04	07/30/04	EPA 8270 Mod	
Surrogate: 2,4,6-TBP	91.1 %	22-162			н	"	.#		
11MW-26 (B4G0420-04) Water	Sampled: 07/16/0	4 08:45 Reco	eived: 07/1	6/04 15:20	_				
Pentachlorophenoi	40.5	0.500	ug/l	1	4G22015	07/22/04	07/30/04	EPA 8270 Mod	
Surrogate: 2,4,6-TBP	94.0 %	22-162			н		"	W	
11MW-27 (B4G0420-05) Water	Sampled: 07/16/0-	4 09:10 Reco	eived: 07/1	6/04 15:20					
Pentachlorophenol	50.7	0.500	ug/l	1	4G22015	07/22/04	07/30/04	EPA 8270 Mod	
Surrogate: 2,4,6-TBP	95.8 %	22-162			н	"	#	*	
J1MW-01 (B4G0420-06) Water	Sampled: 07/16/0	4 09:40 Rece	eived: 07/1	6/04 15:20					
Pentachlorophenol	8.94	0.500	ug/l	1	4G22015	07/22/04	07/30/04	EPA 8270 Mod	
urrogate: 2,4,6-TBP	93.2 %	22-162			,		н	,,	
01MW-15 (B4G0420-07) Water	Sampled: 07/16/04	4 10:05 Rece	eived: 07/1	6/04 15:20					
Pentachlorophenol	ND	0.500	ug/l	1	4G22015	07/22/04	07/30/04	EPA 8270 Mod	
Turrogate: 2,4,6-TBP	85.5 %	22-162	·		п	*		*	
01MW-20 (B4G0420-08) Water	Sampled: 07/16/04	4 10:40 Rece	eived: 07/1	6/04 15:20					
'entachlorophenol	ND	0.500	ug/l	1	4G22015	07/22/04	07/30/04	EPA 8270 Mod	
Surrogate: 2,4,6-TBP	81.5 %	22-162			"	,,	"	"	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody cument. This analytical report must be reproduced in its entirety.

425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9290 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

907 563 9200 fax 907 563 9210

Tetra Tech FW, Inc. - Bothell

12100 NE 195th St Bothell, WA/USA 98011 Project: Time Oil-West Commodore Way

Project Number: 2306.3312.0012.0004 Project Manager: Bryan Graham Reported: 08/03/04 09:42

Gasoline Hydrocarbons (Benzene to Naphthalene) and BTEX by NWTPH-G and EPA 8021B - Quality

Control North Creek Analytical - Bothell

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 4G21008: Prepared 07/21/04	Using I	EPA 5030B	(P/T)							
Blank (4G21008-BLK1)			•		٠					
Gasoline Range Hydrocarbons	ND	50.0	ug/l				<u>-</u>			
Benzene	ND	0.500	*							
Toluene	ND	0.500	•							
Ethylbenzene	ND	0.500								
Xylenes (total)	ND	1.00								
Surrogate: 4-BFB (FID)	42.7		*	48.0		89.0	58-144			
Surrogate: 4-BFB (PID)	48.7		Ħ	48.0		101	68-14 0			
LCS (4G21008-BS1)		_								
Gasoline Range Hydrocarbons	490	50.0	υg/l	500		98.0	80-120			
Benzene	6.17	0.500	n	6.20		99.5	80-120			
Toluene	32.9	0.500		34.8		94.5	80-120			
Ethylbenzene	8.08	0.500	Я	8.35		96.8	80-120			
Xylenes (total)	39.3	1.00	**	40.5		97.0	80-120			
Surrogate: 4-BFB (FID)	52.4		'n	48.0		109	58-144	•		
Surrogate: 4-BFB (PID)	48.5		n	48.0		101	68-14 0			
LCS Dup (4G21008-BSD1)										
Gasoline Range Hydrocarbons	507	50.0	ug/l	500		101	80-120	3.41	25	
Benzene	6.19	0.500	₹	6.20	':	99.8	80-120	0.324	25	
Toluene	32.7	0.500	"	34.8		94.0	80-120	0.610	25	
Ethylbenzene	8.20	0.500		8.35		98.2	80-120	1.47	25	
Xylenes (total)	40.0	1.00	n	40.5		98.8	80-120	1.77	25	
Surrogate: 4-BFB (FID)	54.7		,,	48.0		114	58-144			
Surrogate: 4-BFB (PID)	47.8		Ħ	139. 0		99.6	68-140			
Matrix Spike (4G21008-MS1)					Source: B	4G0428-0)1			
Gasoline Range Hydrocarbons	513	50.0	ug/l	500	19.7	98.7	58-129			
Benzene	5.25	0.500	7	6.20	ND	84.7	46-130			
Toluene	28.9	0.500		34.8	0.111	82.7	60-124			
Ethylbenzene	6.93	0.500	*	8.35	ND	83.0	56-141			
Xylenes (total)	33.3	1.00	•	40.5	ND	82.2	66-132			
Surrogate: 4-BFB (FID)	47.2	<u> </u>	"	48.0	_	98.3	58-144			
Surrogate: 4-BFB (PID)	35.2		#	48.0		<i>73.3</i>	68-140			

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

D

425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9290 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

907 563 9200 fax 907 563 9210

Tetra Tech FW, Inc. - Bothell

12100 NE 195th St Bothell, WA/USA 98011 Project: Time Oil-West Commodore Way

Project Number: 2306.3312.0012.0004

Reported: 08/03/04 09:42

Gasoline Hydrocarbons (Benzene to Naphthalene) and BTEX by NWTPH-G and EPA 8021B - Quality Control

Project Manager: Bryan Graham

North Creek Analytical - Bothell

1			Reporting		Spike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Jatch 4G21008:	Prepared 07/21/04	Using El	PA 5030B	(P/T)							
Matrix Spike Dup (4G21008-MSD1)					Source: E	34G0428-	01			
asoline Range Hydrod	carbons	469	50.0	ug/l	500	19.7	89.9	58-129	8.96	25	
Benzene		5.22	0.500	•	6.20	ND	84.2	46-130	0.573	40	
Toluene		29.3	0.500	*	34.8	0.111	83.9	60-124	1.37	40	
thylbenzene		6.81	0.500	*	8.35	ND	81.6	56-141	1.75	40	
Lylenes (total)		33.2	1.00	*	40.5	ND	82.0	66-132	0.301	40	
Surrogate: 4-BFB (FIL))	44.6		,	48.0		92.9	58-144			
urrogate: 4-BFB (PIL)	35.3		n	48.0		73.5	68-1 40			
Batch 4G22070:	Prepared 07/22/04	Using El	PA 5030B	(P/T)							
lank (4G22070-BI	LK1)	_	_				-				
asoline Range Hydro	carbons	ND	50.0	ug/l							-
Benzene		ND	0.500	н							
Toluene		ND	0.500	н							
thylbenzene		ND	0.500	•							
Xylenes (total)		ND	1.00	*							
"urrogate: 4-BFB (FIL	D)	37.3		"	48.0		77.7	58-144		•	
urrogate: 4-BFB (PIL	D)	39.3		#	48.0		81.9	68-140			
LCS (4G22070-BS1	1)					•					
Gasoline Range Hydro	carbons	588	50.0	ug/I	502	9	117	80-120			
enzene		5.31	0.500		6.21		85.5	80-120			
Toluene		29.1	0.500	•	34.9		83.4	80-120			
Ethylbenzene		6.92	0.500	•	8.38		82.6	80-120			
lylenes (total)		33.7	1.00	• .	40.6		83.0	80-120			
Surrogate: 4-BFB (FIL	0)	47.7		*	40,6 48.0		99.4	58-144			
Surrogate: 4-BFB (PIL	D)	34.1		•	48.0		71.0	68-140			

North Creek Analytical - Bothell

R

The results in this report apply to the samples analyzed in accordance with the chain of custody accument. This analytical report must be reproduced in its entirety.

425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

907.563.0200 fex 907.563.0210

Tetra Tech FW, Inc. - Bothell

12100 NE 195th St Bothell, WA/USA 98011 Project: Time Oil-West Commodore Way

Project Number: 2306.3312.0012.0004
Project Manager: Bryan Graham

Reported:

08/03/04 09:42

Gasoline Hydrocarbons (Benzene to Naphthalene) and BTEX by NWTPH-G and EPA 8021B - Quality Control

North Creek Analytical - Bothell

			Reporting		Spike	Source		%REC	<u>-</u>	RPD	•
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 4G22070:	Prepared 07/22/04	Using El	PA 5030B	(P/T)							
LCS Dup (4G22070-	BSD1)									4	
Gasoline Range Hydroca	arbons	563	50.0	ug/l	502	<u> </u>	112	80-120	4.34	25	•
Benz ene		5.52	0.500	•	6.21		88.9	80-120	3.88	25	
Tolu ene		30.5	0.500	₩	34.9		87.4	80-120	4.70	25	
Ethylbenzene		7.25	0.500	*	8.38		86.5	80-120	4.66	. 25	
Xylenes (total)		35.1	1.00	n	40.6		86.5	80-120	4.07	25	
Surrogate: 4-BFB (FID)		44.5	-	Ħ	48.0		92.7	58-144			
Surrogate: 4-BFB (PID)	•	34.4		,,	48.0	•	71.7	68-14 0			
Matrix Spike (4G220)70-MS1)					Source: B	4G0433-	13		_	_
Gasoline Range Hydroca	rbons	464	50.0	ug/l	502	17.0	89.0	58-129	-	<u> </u>	
Benzen e		5.56	0.500	n	6.21	ND	89.5	46-130			
Toluen e		31.0	0.500	R	34.9	0.536	87.3	60-124			
Ethylbenzene		7.23	0.500	*	8.38	ND	86.3	56-141			
Xylenes (total)		35.3	1.00	#	40.6	ND	86.9	66-132		•	
Surrogate: 4-BFB (FID)	_ 	39.0		н	48.0		81.2	58-144	•		
Surrogate: 4-BFB (PID)		34.5		"	48.0		71.9	68-140			
Matrix Spike Dup (4	G22070-MSD1)					Source: B	4G0433-:	13			
Gasoline Range Hydroca	rbons	485	50.0	ug/l	502	17.0	93.2	58-129	4.43	25	
Benzene		5.20	0.500	•	6.21	ND	83.7	46-130	6.69	40	
Toluene		29.2	0.500	n	34.9	0.536	82.1	60-124	5.98	40	
Ethylbenzene		6.80	0.500	•	8.38	ND	81.1	56-141	6.13	40	
Xylenes (total)		33.2	1.00	*	40.6	ND	81.8	66-132	6.13	40	
Surrogate: 4-BFB (FID)		49.0		n	48.0		102	58-144			
Surrogate: 4-BFB (PID)		36.0		•	48.0		75.0	68-140			

North Creek Analytical - Bothell

1

The results in this report apply to the samples analyzed in accordance with the chain of custody focument. This analytical report must be reproduced in its entirety.

Page 10 of 13

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119 907 563 9200 fax 907 563 9210

Tetra Tech FW, Inc. - Bothell

12100 NE 195th St Bothell, WA/USA 98011 Project: Time Oil-West Commodore Way

Project Number: 2306.3312.0012.0004

Reported: Project Manager: Bryan Graham 08/03/04 09:42

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up - Quality Control North Creek Analytical - Bothell

		Reporting			Spike	Source		%REC		RPD	
Analyte		Result Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	
3atch 4G20014:	Prepared 07/20/04	Using El	PA 3520C								
ദിank (4G20014-BI	LK1)		_								
Diesel Range Hydrocarbons		ND	0.250	mg/l		•••					•
.ube Oil Range Hydrocarbons		ND	0.500	n							
Surrogate: 2-FBP		0.226		*	0.270		83.7	50-15 0		_	
Surrogate: Octacosane		0.187		#	0.195		95.9	50-150			
CS (4G20014-BS1		_									
Diesel Range Hydrocarbons		1.26	0.250	mg/l	2.00		63.0	45-105			
Surrogate: 2-FBP		0.181		**	0.270		67.0	50-150	_		
_CS Dup (4G20014	I-BSD1)										
Diesel Range Hydrocar	bons	1.64	0.250	mg/i	2.00		82.0	45-105	26.2	50	
'urrogate: 2-FBP		0.308		"	0.270	<u>-</u>	114	50-150			

North Creek Analytical - Bothell

The resigns in this report apply to the samples analyzed in accordance with the chain of custody pocument. This analytical report must be reproduced in its entirety.

425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119 907 563 9200 fav 907 563 9210

Tetra Tech FW, Inc. - Bothell Project: Time Oil-West Commodore Way

12100 NE 195th St Bothell, WA/USA 98011 Project Number: 2306.3312.0012.0004

Project Manager: Bryan Graham

Reported:

08/03/04 09:42

Pentachlorophenol by GC/MS with Selected Ion Monitoring - Quality Control North Creek Analytical - Bothell

		Reporting	Spike	Source	Source			RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 4G22015: Prepared 07/22/04	Using El	PA 3520C								
Blank (4G22015-BLK1)			_							
Pentachlorophenol	ND	0.500	ug/l							
Surrogate: 2,4,6-TBP	37.0		n	50.0		74.0	22-162			
LCS (4G22015-BS1)										
Pentachlorophenol	9.48	0.500	ug/l	20.0		47.4	20-128			
Surrogate: 2,4,6-TBP	37.9		*	50.0	•	75.8	22-162			_
LCS Dup (4G22015-BSD1)										*
Pentachlorophenol	14.0	0.500	ug/l	20.0		70.0	20-128	38.5	50	
Surrogate: 2,4,6-TBP	42.4		#	50.0		84.8	22-162			

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody focument. This analytical report must be reproduced in its entirety.

Amar Gill, Project Manager

North Creek Analytical, Inc. Environmental Laboratory Network Page 12 of 13

425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210 Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119 907.563.9200 fax 907.563.9210

Tetra Tech FW, Inc. - Bothell

12100 NE 195th St Bothell, WA/USA 98011 Project: Time Oil-West Commodore Way

Project Number: 2306.3312.0012.0004 Project Manager: Bryan Graham

Reported:

08/03/04 09:42

Notes and Definitions

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Amar Gill, Project Manager

North Creek Analytical, Inc. **Environmental Laboratory Network** Page 13 of 13

11720 North Creek Pkwy N Suite 400, Bothell, WA 98011-9508
11115 E Montgomery Suite B, Spokane, WA 99206-4776
9405 SW Nimbus Ave, Beaverton, OR 97008-7132
20332 Empire Ave Suite F-1, Bend, OR 99701-5711
425-420-9200
509-924-9200
FAX 924-9290
FAX 906-9210
503-906-9200
FAX 906-9210
FAX 382-9310
FAX 382-7588

907-334-9200 FAX 334-9210 3209 Denali St, Anchorage, AK 99503-4030 Work Order #: BAGO 420 **CHAIN OF CUSTODY REPORT** INVOICE TO: TURNAROUND REQUEST CLIENT: Company in Business Days * REPORT TO: Scott Sloan (cc BGraham @ TTFWI) Same as Left ADDRESS: 2737 W. Commodore Way
Scattle WA 98199
PHONE: 206 286 4457 FAX: Organic & Inorganic Analyses 3 <1 Petreleum Hydrocarbon Analyses P.O. NUMBER: **PRESERVATIVE** PROJECT NAME: Querterly Groundwater PROJECT NUMBER: 2306. 3317.0012.0004 Nacil Hot REQUESTED ANALYSES Specify: SAMPLED BY: E Tobes RWEINGARZ * Turnaround Requests less than standard may incur Rush Charges. MATRIX #OF LOCATION / NCA **CLIENT SAMPLE** SAMPLING (W, S, O) CONT. COMMENTS WO ID **IDENTIFICATION** DATE/TIME W 7/16/04 0740 DIMW-TB03 OIMW - I \bigcirc 03 W Samples were not @ 2-08 yeon receipt! W 05 06 08 DATE: 7/16/04 RELEASED BY: RECEIVED BY: DATE: FIRM: NCA FIRM: TIME: /520 TIME: PRINT NAME: PRINT NAME: RELEASED BY: RECEIVED BY: DATE: DATE: PRINT NAME: FIRM: TIME: PRINT NAME: FIRM: TIME: ADDITIONAL REMARKS: Gel Clean up on Piesel Samples PAGE OF COC REV 1/03

425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

509.924.9200 fax 509.924.9290 Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

907.563.9200 fax 907.563.9210

17 August 2004

Bryan Graham Tetra Tech FW, Inc. - Bothell 12100 NE 195th St Sothell, WA/USA 98011

RE: Time Oil-West Commodore Way

Enclosed are the results of analyses for samples received by the laboratory on 07/19/04 16:34. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Amar Gill

Project Manager

425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99208-4776 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

907.563.9200 fax 907.563.9210

CASE NARRATIVE for B4G0467

Client: Tetra Tech FW, Inc. Project Manager: Bryan Graham

Project Name: Time Oil West Commodore Way

Project Number: 2306.3312.0012.0004

1.0 DESCRIPTION OF CASE

Four (4) water samples were submitted for the analysis of:

- Gasoline Hydrocarbons and BTEX by NWTPH-G and 8021B
- Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up
- Pentachlorophenol by GC/MS with Selective Ion Monitoring

2.0 COMMENTS ON SAMPLE RECEIPT

The sample was received 19th July 2004 at a temperature of 5.3°C and logged in 20th July 2004.

3.0 PREPARATION AND ANALYSIS

Gasoline Hydrocarbons and BTEX by NWTPH-G and 8021B

No additional anomalies or discrepancies were associated with this analysis other than those already qualified in the data.

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up

The samples were initially extracted into analytical batch, 4G21010. During preparation a portion of the Blank Spike Duplicate (BSD) extract was lost. Upon analysis low spike and surrogate recoveries were observed in the BSD along with a high Relative Percent Difference (RPD) from the batch Blank Spike (BS). Since the BSD was the only indicator for batch extraction precision re-extraction was recommended.

The samples were re-extracted within method established hold times in analytical batch 4G27027. Both surrogates in the analytical batch Blank were below the method established control limits. The Relative Percent Difference (RPD) for the Diesel Range Hydrocarbon spikes was above the method established control limit. The project sample surrogates were within control limits but due to the other analytical batch specific issues the samples were re-extracted. The samples were re-extracted into analytical batch 4H03067 outside the method established hold time. All batch

Amar Gill Project Manager North Creek Analytical

1 of 2

425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

nd 20332 Empire Avenue, Suite F-1, 541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

907.563.9200 fax 907.563.9210

CASE NARRATIVE for B4G0467

QC surrogate and spike recoveries were within control limits in analytical batch 4H03067. Both the original and re-extracted sample results were reported for client review. No additional anomalies or discrepancies were associated with this analysis other than those already qualified in the data.

Pentachlorophenol by GC/MS with Selective Ion Monitoring

No additional anomalies or discrepancies were associated with this analysis other than those already qualified in the data.

Amar Gill Project Manager North Creek Analytical

2 0 2

425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaventon, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

997.563.9299 fax 997.563.9219

Tetra Tech FW, Inc. - Bothell

12100 NE 195th St Bothell, WA/USA 98011 Project: Time Oil-West Commodore Way

Project Number: 23063312.0012.0004 Project Manager: Bryan Graham

Reported: 08/17/04 16:11

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
01MW-TB04	B4G0467-01	Water	07/19/04 08:00	07/19/04 16:34
01MW-29	B4G0467-02	Water	07/19/04 08:35	- 07/19/04 16:34
01MW-28A	B4G0467-03	Water	07/19/04 08:55	07/19/04 16:34
01MW-28B	B4G0467-04	Water	07/19/04 09:05	07/19/04 16:34

North Creek Analytical - Bothell

mar Gill, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody accument. This analytical report must be reproduced in its entirety.

North Creek Analytical, Inc. Environmental Laboratory Network Page 1 of 13

425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588 Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

967.569.9200 fax 907.568.9210

Tetra Tech FW, Inc. - Bothell

Project: Time Oil-West Commodore Way

12100 NE 195th St Bothell, WA/USA 98011 Project Number: 23063312.0012.0004 Project Manager: Bryan Graham Reported: 08/17/04 16:11

Gasoline Hydrocarbons (Benzene to Naphthalene) and BTEX by NWTPH-G and EPA 8021B North Creek Analytical - Bothell

		Reporting							
Analyte	Result	Limit		Dilution	Batch	Prepared	Analyzed	Method	Note
01MW-TB04 (B4G0467-01) Water	Sampled: 07/1	9/04 08:00	Received: 0	7/19/04 16:	34				
Gasoline Range Hydrocarbons	ND	50.0	ug/i	1	4G25003	07/25/04	07/25/04	NWTPH-Gx/8021B	
Benzene	ND	0.500	n	Ħ	n	н	Ħ	W	
Toluene	ND	0.500	Ħ	#	Ħ	n	*		
Ethylbenzene	ND	0.500	Ħ	**	•	u	h	н	
Xylenes (total)	ND	1.00	₩.	Ħ		n	11	n	
Surrogate: 4-BFB (FID)	94.2 %	58-144	-		H	"	"	n	
Surrogate: 4-BFB (PID)	97.9 %	68-140			,,	п	,,	n	
01MW-29 (B4G0467-02) Water Sa	mpled: 07/19/0	4 08:35 Re	ceived: 07/1	9/04 16:34					
Gasoline Range Hydrocarbons	17800	5000	ug/l	100	4G25003	07/25/04	07/25/04	NWTPH-Gx/8021B	
Benzene	5410	50.0	41	II.		ri	11	•	
Toluene	167	50.0	P	n	U	11	n	#	
Ethylbenzene	256	50.0	**	**	Ħ	π	n	•	
Xylenes (total)	718	100	Ħ	Ħ	π	Ħ	п	•	
Surrogate: 4-BFB (FID)	100 %	58-144			"	*	n	*	•
Surrogate: 4-BFB (PID)	99.8 %	68-140			Ħ	"	**	•	
01MW-28A (B4G0467-03) Water S	Sampled: 07/19/	04 08:55 R	leceived: 07	/19/04 16:3	4				
Gasoline Range Hydrocarbons	17900	1000	ug/l	20	4G25003	07/25/04	07/25/04	NWTPH-Gx/8021B	
Велгене	5060	50.0	n	100	*	ħ	07/25/04	n	
Toluene	1910	10.0	Ħ	20	a	u	07/25/04	m	
Ethylbenzene	343	10.0	Ħ	Ħ	n	n	. #	Ħ	
Xylenes (total)	1230	20.0		ii .	Ħ,	#	н	N	
Surrogate: 4-BFB (FID)	104 %	58-144			п	"	"		
Surrogate: 4-BFB (PID)	107 %	<i>68-140</i>			*	77	n	•	

North Creek Analytical - Bothell

The residts in this report apply to the samples analyzed in accordance with the chain of custodic locument. This analytical report must be reproduced in its entirety.

Amar Gill, Project Manager

North Creek Analytical, Inc. Environmental Laboratory Network Page 2 of 13

425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

907:509:9200 fax 907:509:9210

Tetra Tech FW, Inc. - Bothell

12100 NE 195th St Bothell, WA/USA 98011 Project: Time Oil-West Commodore Way

Project Number: 23063312.0012.0004

Project Manager: Bryan Graham

Reported:

08/17/04 16:11

Gasoline Hydrocarbons (Benzene to Naphthalene) and BTEX by NWTPH-G and EPA 8021B North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	T7_14_	D7.4'-	77-4-7				
	Vezitit		Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
1MW-28B (B4G0467-04) Water	Sampled: 07/19/	04 09:05 Re	ceived: 07	/19/04 16:3	4				
Gasoline Range Hydrocarbons	18400	500	ug/l	10	4G25003	07/25/04	07/25/04	NWTPH-Gx/8021B	
Benzene	5030	50.0	**	100	Ħ	Ħ	07/25/04		
'oluene	1810	50.0	Ħ	Ħ		n	n	•	
Ithylbenzene	355	5.00	**	10	•	•	07/25/04		
Xylenes (total)	1250	10.0	11	•	n	n	п	W	
urrogate: 4-BFB (FID)	99.8 %	58-144			"	*	,	#	
urrogate: 4-BFB (PID)	111 %	68-14 0			*	n	*	*	

North Creek Analytical - Bothell

R

The results in this report apply to the samples analyzed in accordance with the chain of custody comment. This analytical report must be reproduced in its entirety.

425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverlon, OR 97008-7132

503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

007.563.9206 fox 907.563.021(

Tetra Tech FW, Inc. - Bothell

12100 NE 195th St Bothell, WA/USA 98011 Project: Time Oil-West Commodore Way

Project Number: 23063312.0012.0004 Project Manager: Bryan Graham Reported: 08/17/04 16:11

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
01MW-29 (B4G0467-02) Water Sam	pled: 07/19/0	4 08:35 Rec	eived; 07/1	9/04 16:34					x
Diesel Range Hydrocarbons	11.1	2.50	mg/l	10	4G21010	07/21/04	07/23/04	NWTPH-Dx	
Lube Oil Range Hydrocarbons	ND	0.500	•	1	*	n	07/22/04	*	
Surrogate: 2-FBP	%	50-150			н		07/23/04	н	S-02
Surrogate: Octacosane	90.8 %	50-15 0			*	*	07/22/04	*	
01MW-29 (B4G0467-02RE1) Water	Sampled: 07/	19/04 08:35	Received:	07/19/04 10	5:34				X
Diesel Range Hydrocarbons	14.3	2.50	mg/l	10	4G27027	07/27/04	07/31/04	NWTPH-Dx	
Lube Oil Range Hydrocarbons	ND	5.00	n	n		Ħ	н		
Surrogate: 2-FBP	135 %	50-150		-	*	n	,,	m	
Surrogate: Octacosane	76.4 %	50-150			π	77	Ħ	tr .	
01MW-29 (B4G0467-02RE2) Water	Sampled: 07/	19/04 08:35	Received:	07/19/04 16	5:34				Х
Diesel Range Hydrocarbons	11.3	2.50	mg/l	10	4H03067	08/03/04	08/10/04	NWTPH-Dx	
Lube Oil Range Hydrocarbons	ND	5.00	#	. 11	Ħ		n	#	
Surrogate: 2-FBP	92.5 %	50-150			"	n	"	n	
Surrogate: Octacosane	93.5 %	50-150		•	**	n	n	н	
01MW-28A (B4G0467-03) Water Sa	mpled: 07/19/	04 08:55 R	eceived: 07/	19/04 16:3	4				Х
Diesel Range Hydrocarbons	0.763	0.250	mg/I	1	4G21010	07/21/04	07/22/04	NWTPH-Dx	A-01
Lube Oil Range Hydrocarbons	ND	0.500	H	н	•	•	N		
Surrogate: 2-FBP	88.6 %	50-150			п	*	"	**	
Surrogate: Octacosane	91.3 %	50-150			"	Ħ	n	n	
01MW-28A (B4G0467-03RE1) Water	Sampled: 07	7 <u>/19/04 08:55</u>	Received	: 07/19/04	16:34		_		х
Diesel Range Hydrocarbons	1.43	0.250	mg/l	1	4G27027	07/27/04	07/29/04	NWTPH-Dx	A-01
Lube Oil Range Hydrocarbons	ND	0.500	ŧ		н	*	*		
Surrogate: 2-FBP	102 %	50-150			H	n	"	H	
Surrogate: Octacosane	84.8 %	50-150		<u> </u>	*	n	#	n	

North Creek Analytical - Bothell

R

The results in this report apply to the samples analyzed in accordance with the chain of custod document, This analytical report must be reproduced in its entirety.

425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588 Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

563.9290 fax 397.563.9240

Tetra Tech FW, Inc. - Bothell

12100 NE 195th St Bothell, WA/USA 98011 Project: Time Oil-West Commodore Way

Project Number: 23063312.0012.0004 Project Manager: Bryan Graham

Reported: 08/17/04 16:11

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up North Creek Analytical - Bothell

		Reporting					-		-
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
01MW-28A (B4G0467-03RE2) Water	Sampled: 0	7/19/04 08:55	Received	1: 07/19/04	16:34				х
Diesel Rauge Hydrocarbons	1.44	0.250	mg/l	1	4H03067	08/03/04	08/10/04	NWTPH-Dx	A-01
Lube Oil Range Hydrocarbons	ND	0.500	n	*		,	#	-	
Surrogate: 2-FBP	110 %	50-150				-	*	*	
Surrogate: Octacosane	108 %	50-150			n	,,	W 1975	,	
01MW-28B (B4G0467-04) Water Sai	mpled: 07/19/	04 09:05 Red	eived: 07	/19/04 16:3	1				x
Diesel Range Hydrocarbons	0.402	0.250	mg/l	1	4G21010	07/21/04	07/22/04	NWTPH-Dx	A-01
Lube Oil Range Hydrocarbons	ND	0.500	н	n	Ħ	**	Ħ		
Surrogate: 2-FBP	58.4 %	50-150			*	"	"	п	
Surrogate: Octacosane	76.1 %	50-150			n	Ef	•	•	
01MW-28B (B4G0467-04RE1) Water	Sampled: 0	7/19/04 09:05	Received	1: 07/19/04	16:34				х
Diesel Range Hydrocarbons	1.68	0.250	mg/l	1	4G27027	07/27/04	08/01/04	NWTPH-Dx	A-01
Lube Oil Range Hydrocarbons	ND	0.500	н	•	H	n	**	Ħ	_
Surrogate: 2-FBP	161 %	50-150			rt .	"	"	•	
Surrogate: Octacosane	123 %	50-150			•	"	*	,,,	
01MW-28B (B4G0467-04RE2) Water	Sampled: 0	7/19/04 09:05	Received	i: 07/19/04	16:34				х
Diesel Range Hydrocarbons	0.888	0.250	mg/l	1	4H03067	08/03/04	08/10/04	NWTPH-Dx	A-01
Lube Oil Range Hydrocarbons	ND	0.500	ŧī	Ħ	"	M	**		
Surrogate: 2-FBP	105 %	50-150			"	#		"	
Surrogate: Octacosane	98.4 %	50-150			*	,,	•		

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

1

425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

Tetra Tech FW, Inc. - Bothell

12100 NE 195th St Bothell, WA/USA 98011 Project: Time Oil-West Commodore Way

Project Number: 23063312.0012.0004 Project Manager: Bryan Graham

Reported: 08/17/04 16:11

Pentachlorophenol by GC/MS with Selected Ion Monitoring North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
01MW-29 (B4G0467-02) Water	Sampled: 07/19/0-	4 08:35 Rece	eived: 07/1	9/04 16:34					
Pentachiorophenol	9.11	2.50	ug/l	5	4G22015	07/22/04	07/30/04	EPA 8270 Mod	
Surrogate: 2,4,6-TBP	94.1 %	22-162			Ħ	#		п	
01MW-28A (B4G0467-03) Water	Sampled: 07/19/	04 08:55 Re	ceived: 07	/19/04 16:3	4			<u> </u>	
Pentachlorophenol	2.44	0.500	ug/l	1	4G22015	07/22/04	07/30/04	EPA 8270 Mod	
Surrogate: 2,4,6-TBP	78.0 %	22-162	<u>-</u>		,,	,	"		
01MW-28B (B4G0467-04) Water	Sampled: 07/19/	04 09:05 Re	ceived: 07/	/19/04 16:3	4				
Pentachlorophenol	2.28	0.500	ug/l	1	4G22015	07/22/04	07/30/04	EPA 8270 Mod	
Surrogate: 2,4,6-TBP	82.2 %	22-162			"	*	n	*	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custod document. This analytical report must be reproduced in its entirety.

Amar Gill, Project Manager

North Creek Analytical, Inc. **Environmental Laboratory Network** Page 6 of 13

425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Sulte F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

Tetra Tech FW, Inc. - Bothell

12100 NE 195th St Bothell, WA/USA 98011 Project: Time Oil-West Commodore Way

Project Number: 23063312.0012.0004 Project Manager: Bryan Graham

Reported: 08/17/04 16:11

Gasoline Hydrocarbons (Benzene to Naphthalene) and BTEX by NWTPH-G and EPA 8021B - Quality Control

North Creek Analytical - Bothell

•		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 4G25003: Prepared 07/25/0	4 Using l	EPA 5030B	(P/T)							
Blank (4G25003-BLK1)								-		
Gasoline Range Hydrocarbons	ND	50.0	ug/l			•				
Benzene	ND	0.500	•							
Toluene	ND	0.500	*							
Sthylbenzene	ND	0.500	•							
Xylenes (total)	ND	1.00	n							
Surrogate: 4-BFB (FID)	37.5			48.0		78.1	58-144			
Surrogate: 4-BFB (PID)	47.4		"	48.0		98.8	68-140			
LCS (4G25003-BS1)										
Gasoline Range Hydrocarbons	597	50.0	ug/l	500		119	80-120			
3enzene	6.36	0.500	n	6.20		103	80-120			
Foluene	33.3	0.500	Ħ	34.8		95.7	80-120			
Ethylbenzene	8.43	0.500	*	8.35		101	80-120			
Xylenes (total)	39.9	1.00	*	40.5		98.5	80-120			
Surrogate: 4-BFB (FID)	51.1		n	48.0		106	58-144			
Surrogate: 4-BFB (PID)	45.9		n	48.0		95.6	68-140			
CS Dup (4G25003-BSD1)		_								
Gasoline Range Hydrocarbons	567	50.0	ug/l	500		113	80-120	5.15	25	•
Benzene	6.46	0.500	H	6.20	•	104	80-120	1.56	25	
l'oluene	33.6	0.500		34.8		96.6	80-120	0.897	25	
Ethylbenzene	8.44	0.500	Ħ	8.35		101	80-120	0.119	25	
Xylenes (total)	40.2	1.00	n	40.5		99.3	80-120	0.749	25	
Surrogate: 4-BFB (FID)	52.1		•	48.0		109	58-144			
Surrogate: 4-BFB (PID)	47.1		"	480		98.I	68-140			
Matrix Spike (4G25003-MS1)	•			••	Source: 1	34G0367-	03			
Fasoline Range Hydrocarbons	512	50.0	ug/l	500	39.0	94.6	58-129			
Benzene	6.57	0.500		6.20	ND	106	46-130			
Toluene	33.6	0.500	47	34.8	0.262	95.8	60-124			
3thylbenzene	8.46	0.500		8.35	0.167	99.3	56-141			
Xylenes (total)	40.5	1.00	n	40.5	ND	100	66-132			
Surrogate: 4-BFB (FID)	46.8			: 48.0		97.5	58-144		· · · -	
Surrogate: 4-BFB (PID)	47.3		•	48.0		98.5	68-140			

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custod elocument. This analytical report must be reproduced in its entirety.

425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

%REC

541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

007.563.9200 fax 907.563.9210

Tetra Tech FW, Inc. - Bothell

12100 NE 195th St

Bothell, WA/USA 98011

Project: Time Oil-West Commodore Way

Spike

Source

Project Number: 23063312.0012.0004

Reported:

RPD

Project Manager: Bryan Graham

08/17/04 16:11

Gasoline Hydrocarbons (Benzene to Naphthalene) and BTEX by NWTPH-G and EPA 8021B - Quality Control

North Creek Analytical - Bothell

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 4G25003: Prepared 07/25/04	Using El	PA 5030B	(P/T)							
Matrix Spike Dup (4G25003-MSD1)					Source: H	4G0367-	03	_		
Gasoline Range Hydrocarbons	510	50.0	ug/l	500	39.0	94.2	58-129	0.391	25	
Benzene	6.48	0.500	#	6.20	ND	105	46-130	1.38	40	
Toluene	33.5	0.500	•	34.8	0.262	95.5	60-124	0.298	40	
Ethylbenzene	8.37	0.500	•	8.35	0.167	98.2	56-141	1.07	40	
Xylenes (total)	39.9	1.00	n	40.5	ND	98.5	66-132	1.49	40	
Surrogate: 4-BFB (FID)	48.9		n	48.0	-	102	58-144			
Surrogate: 4-BFB (PID)	46.0		"	48.0		95.8	6 8-140		•	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custods document. This analytical report must be reproduced in its entirety.

Amar Gill, Project Manager

North Creek Analytical, Inc. Environmental Laboratory Network Page 8 of 13

425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

Tetra Tech FW, Inc. - Bothell

12100 NE 195th St Bothell, WA/USA 98011 Project: Time Oil-West Commodore Way

Project Number: 23063312.0012.0004 Project Manager: Bryan Graham Reported: 08/17/04 16:11

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up - Quality Control North Creek Analytical - Bothell

_			Reporting		Spike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 4G21010:	Prepared 07/21/04	Using El	PA 3520C				- · ·	·		_	,
Blank (4G21010-BI	LK1)										
Diesel Range Hydrocar	rbons	ND	0.250	mg/l						_	
.ube Oil Range Hydro	carbons	ND	0.500	W							
Surrogate: 2-FBP	·	0.228	-	- "	0.270		84.4	50-150			
Surrogate: Octacosane	?	0.171		"	0.195		87.7	50-150			
LCS (4G21010-BS1	1)										
Diesel Range Hydrocan	rbons	1.35	0.250	mg/l	2.00		67.5	45-105			
Surrogate: 2-FBP	<u>" </u>	0.218		"	0.270		80.7	50-15 0			·
LCS Dup (4G21010	D-BSD1)					•					2
Diesel Range Hydroca		0.554	0.250	mg/I	2.00		27.7	45-105	83.6	50	
Surrogate: 2-FBP		0.0840		**	0.270		31.1	50-150			
Batch 4G27027:	Prepared 07/27/04	Using E	PA 3520C								
Blank (4G27027-B)	LK1)										
Diesel Range Hydroca	rbons	ND	0.250	mg/l							
Lube Oil Range Hydro	carbons	ND	0.500	*							
Surrogate: 2-FBP		0.0950		N	0.270		35.2	50-150			``
Surrogate: Octacosan	e	0.0803		#	0.195		41.2	50-150			
LCS (4G27027-BS	1) ·										2
Diesel Range Hydroca	· · · · · · · · · · · · · · · · · · ·	1.54	0.250	mg/l	2.00	·.	77.0	45-105			-
Surrogate: 2-FBP	·	0.235		n	0.270	<u> </u>	87.0	50-150			
LCS (4G27027-BS	2)										
.ube Oil Range Hydro	·*.	1.55	0.500	mg/l	2.00		77.5	50-150			
Surrogate: Octacosan	e	0.153		"	0.195	_	78.5	50-150			

North Creek Analytical - Bothell

A

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119 907.563.9206 fax 997.563.9210

Tetra Tech FW, Inc. - Bothell

Project: Time Oil-West Commodore Way

12100 NE 195th St

Project Number: 23063312.0012.0004

Reported:

Project Manager: Bryan Graham Bothell, WA/USA 98011

08/17/04 16:11

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up - Quality Control North Creek Analytical - Bothell

		Reporting		Spike	Source		%REC		RPD	•
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 4G27027: Prepared 07/27/04	Using E	PA 3520C								0
LCS Dup (4G27027-BSD1)								_		,
Diesel Range Hydrocarbons	0.923	0.250	mg/l	2.00		46.2	45-105	50.1	50	
Surrogate: 2-FBP	0.145		"	0.270		53.7	50-150			
Surrogate: Octacosane	0.09 98		Ħ	0.19 5		51.2	50-150	••		
LCS Dup (4G27027-BSD2)										
Lube Oil Range Hydrocarbons	1.58	0.500	mg/l	2.00	·	79.0	60-140	1.92	40	
Surrogate: Octacosane	0.197	_	"	0.195		101	50-150		-	
Matrix Spike (4G27027-MS1)					Source: B	4G0359-	D5			. ,
Diesel Range Hydrocarbons	1.61	0.250	m g/l	1.89	0.0439	82.9	37-126			
Surrogate: 2-FBP	0.239		N	0.255		93.7	50-150	-		
Matrix Spike Dup (4G27027-MSD1)					Source: B	4G0359-	05			3
Diesel Range Hydrocarbons	1.41	0.250	mg/l	1.89	0.0439	72.3	50-150	13.2	50	
Surrogate: 2-FBP	0.198		н	0.255		77.6	50-150			
Batch 4H03067: Prepared 08/03/04	Using E	PA 3520C								
Blank (4H03067-BLK1)				-						
Diesel Range Hydrocarbons	ND	0.250	mg/l							
Lube Oil Range Hydrocarbons	ND	0.500	П							
Surrogate: 2-FBP	0.264		n	0.270		97.8	50-150			
Surrogate: Octacosane	0.187		*	0.195	24	95. 9	50-15 0			•
LCS (4H03067-BS1)										
Diesel Range Hydrocarbons	1.53	0.250	mg/l	2.00		76.5	45-105			

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Amar Gill, Project Manager

North Creek Analytical, Inc. Environmental Laboratory Network-

425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

007.563.9200 fax 007.563.0210

Tetra Tech FW, Inc. - Bothell

12100 NE 195th St Bothell, WA/USA 98011 Project: Time Oil-West Commodore Way

Project Number: 23063312.0012.0004

Project Manager: Bryan Graham

Reported:

08/17/04 16:11

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up - Quality Control North Creek Analytical - Bothell

ě.	Reporting	Spike	Source		%REC		RPD		
Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Using El	PA 3520C		<u>.</u> .						
1.30	0.250	mg/l	2.00		65.0	45-105	16.3	50	
0.191		N	0.270		70.7	50-150	**		
	Result Using El	Using EPA 3520C	Result Limit Units Using EPA 3520C 1.30 0.250 mg/l	Result Limit Units Level Using EPA 3520C 1.30 0.250 mg/l 2.00	Result Limit Units Level Result Using EPA 3520C 1.30 0.250 mg/l 2.00	Result Limit Units Level Result %REC Using EPA 3520C 1.30 0.250 mg/l 2.00 65.0	Result Limit Units Level Result %REC Limits Using EPA 3520C 1.30 0.250 mg/l 2.00 65.0 45-105	Result Limit Units Level Result %REC Limits RPD Using EPA 3520C 1.30 0.250 mg/l 2.00 65.0 45-105 16.3	Result Limit Units Level Result %REC Limits RPD Limit Using EPA 3520C 1.30 0.250 mg/l 2.00 65.0 45-105 16.3 50

North Creek Analytical - Bothell

2

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588 Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

307.563.9200 fbx 967.563.9210

Tetra Tech FW, Inc. - Bothell

12100 NE 195th St Bothell, WA/USA 98011 Project: Time Oil-West Commodore Way

Project Number: 23063312.0012.0004 Project Manager: Bryan Graham Reported:

08/17/04 16:11

Pentachlorophenol by GC/MS with Selected Ion Monitoring - Quality Control North Creek Analytical - Bothell

			Reporting		Spike	ce Source		%REC		RPD	
Analyte	<u>-</u>	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 4G22015:	Prepared 07/22/04	Using El	PA 3520C								
Blank (4G22015-BL	K1)										
Pentachlorophenol	-	ND	0.500	ug/l							
Surrogate: 2,4,6-TBP	· · · <u>-</u>	37.0		W	50.0		74.0	22-162	**		
LCS (4G22015-BS1)	1								<u>.</u>	<u>.</u>	
Pentachlorophenol		9.48	0.500	ug/l	20.0		47.4	20-128			
Surrogate: 2,4,6-TBP		37.9	·	n	50.0		75.8	22-162			
LCS Dup (4G22015-	BSD1)										
Pentachlorophenol		14.0	0.500	ug/l	20.0		70.0	20-128	38.5	50	
Surrogate: 2,4,6-TBP		42.4		"	50.0		84.8	22-162			

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custodydocument. This analytical report must be reproduced in its entirety.

Page 12 of 13

425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210 Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588 Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

997.563.9290 fax 907.563.0210

Tetra Tech FW, Inc. - Bothell

12100 NE 195th St

Bothell, WA/USA 98011

Project: Time Oil-West Commodore Way Project Number: 23063312.0012.0004

Project Manager: Bryan Graham

Reported: 08/17/04 16:11

Notes and Definitions

A-01 There is gasoline range products contributing to the diesel result.

S-02 The surrogate recovery for this sample cannot be accurately quantified due to interference from coeluting organic compounds

present in the sample.

X See case narrative.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

Sample results reported on a dry weight basis dry

RPD Relative Percent Difference

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody focument. This analytical report must be reproduced in its entirety.

mar Gill, Project Manager

North Creek Analytical, Inc. Environmental Laboratory Network Page 13 of 13

11720 North Creek Pkwy N Suite 400, Bothell, WA 98011-9508 11115 E Montgomery Suite B, Spokane, WA 99206-4776 9405 SW Nimbus Ave, Beaverton, OR 97008-7132 20332 Empire Ave Suite F-1, Bend, OR 99701-5711 3209 Denali St, Anchorage, AK 99503-4030 425-420-9200 FAX 420-9210 509-924-9200 FAX 924-9290 503-906-9200 FAX 906-9210 541-383-9310 FAX 382-7588 907-334-9200 FAX 334-9210

CHAIN OF CUSTODY REPORT Work Order #: INVOICE TO: TURNAROUND REQUEST CLIENT: REPORT TO: Sim Sims (cc B. Groham@ Hfwi) Same as left in Business Days * ADDRESS: 2737 W Commodore Way Organic & Inorganic Analyses PHONE: 206 2866457 FAX: P.O. NUMBER: Petroleum Hydrocarbon Analyses PROJECT NAME: Quarterly Groundwater
Monitoring July of
PROJECT NUMBER: 2306.3312.0012.0004 **PRESERVATIVE** 2 HU THU REQUESTED ANALYSES OTHER Specify: Celbte NN TOH DX PCP EPASITO SAMPLED BY: E Tobey * Turnaround Requests less than standard may incur Rush Charges. MATRIX #OF LOCATION / **CLIENT SAMPLE** SAMPLING NCA (W, S, O) CONT. COMMENTS WOID DATE/TIME IDENTIFICATION -01 w w -02 -03 -04 DATE: 7 19 104 RECEIVED BY: 1 000-RELEASED BY: DATE: FIRM: NCA FIRM: TTFWI Blankinskin TIME: 16.34 PRINT NAME: TIME: PRINT NAME: RECEIVED BY: DATE: RELEASED BY: TIME: PRINT NAME: FIRM: PRINT NAME: TEMP: ADDITIONAL REMARKS: 5.32 PAGEL OF 2 cooles COC REV 1/03

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588 Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

907.563.9200 fax 907.563.9210

17 August 2004

Bryan Graham Tetra Tech FW, Inc. - Bothell 12100 NE 195th St Sothell, WA/USA 98011

RE: Time Oil-West Commodore Way

Enclosed are the results of analyses for samples received by the laboratory on 07/20/04 15:01. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Amar Gill

Project Manager

425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588 Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

907.563.9200 fax 907.563.9210

CASE NARRATIVE for B4G0577

Client: Tetra Tech FW, Inc. Project Manager: Bryan Graham

Project Name: Time Oil West Commodore Way

Project Number: 2306.3312.0012.0004

1.0 DESCRIPTION OF CASE

Eight (8) water samples were submitted for the analysis of:

- Gasoline Hydrocarbons and BTEX by NWTPH-G and 8021B
- Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up
- Pentachlorophenol by GC/MS with Selective Ion Monitoring

2.0 COMMENTS ON SAMPLE RECEIPT

The sample was received 20th July 2004 at a temperature of 3.1°C and logged in 22nd July 2004.

3.0 PREPARATION AND ANALYSIS

Gasoline Hydrocarbons and BTEX by NWTPH-G and 8021B

No additional anomalies or discrepancies were associated with this analysis other than those already qualified in the data.

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up

The surrogate recoveries for project samples, 01MW-21 and 01MW-22 were below the method control limits in analytical batch 4G25001. Since additional sample volume was provided the samples were reextracted and re-analyzed as part of analytical batch 4G03011. The surrogate recoveries and batch spike recoveries were all within control limits for the re-extracted project samples and quality control samples in analytical batch 4G03011. Both the original and re-extracted results were provided for project samples 01MW-21 and 01MW-22. No additional anomalies or discrepancies were associated with this analysis other than those already qualified in the data.

Pentachlorophenol by GC/MS with Selective Ion Monitoring?

No additional anomalies or discrepancies were associated with this analysis other than those already qualified in the data.

Amar Gill Project Manager North Creek Analytical 1 of 1

425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210 Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

907 563.0200 fcx 907.563.0240

Tetra Tech FW, Inc. - Bothell

12100 NE 195th St Bothell, WA/USA 98011 Project: Time Oil-West Commodore Way

Project Number: 2306.3312.0012.0004

Project Manager: Bryan Graham

Reported:

08/17/04 10:30

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
01MW-TB05	B4G0577-01	Water	07/20/04 07:50	07/20/04 15:01
01MW-17	B4G0577-02	Water	07/20/04 08:05	07/20/04 15:01
01MW-13	B4G0577-03	Water	07/20/04 08:25	07/20/04 15:01
01MW-12	B4G0577-04	Water	07/20/04 08:55	07/20/04 15:01
01MW-21	B4G0577-05	Water	07/20/04 09:15	07/20/04 15:01
01MW-22	B4G0577-06	Water	07/20/04 09:45	07/20/04 15:01
01MW-23	B4G0577-07	Water	07/20/04 10:16	07/20/04 15:01
01MW-24	B4G0577-08	Water	07/20/04 11:00	07/20/04 15:01

North Creek Analytical - Bothell

Amar Gill, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of document. This analytical report must be reproduced in its entirety.

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

907.563.9288 -fax 907.563.9218

Tetra Tech FW, Inc. - Bothell

12100 NE 195th St Bothell, WA/USA 98011 Project: Time Oil-West Commodore Way

Project Number: 2306.3312.0012.0004 Project Manager: Bryan Graham

Reported: 08/17/04 10:30

Gasoline Hydrocarbons (Benzene to Naphthalene) and BTEX by NWTPH-G and EPA 8021B North Creek Analytical - Bothell

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
01MW-TB05 (B4G0577-01) Water	Sampled: 07/2	0/04 07:50	Received: 0	7/20/04 15:	:01				
Gasoline Range Hydrocarbons	ND	50.0	ug/l	1	4G26007	07/26/04	07/26/04	NWTPH-Gx/8021B	
Benzene	ND	0.500	н	*	n	Ħ	*	•	
Toluene	ND	0.500	H	**	*	*	•	•	
Ethylbenzene	ND	0.500	n	π	Ħ	Ħ	*	•	
Xylenes (total)	ND	1.00	n	*		Ħ	n		
Surrogate: 4-BFB (FID)	104 %	58-144			н	н	#	"	
Surrogate: 4-BFB (PID)	93.5 %	68-140			n	**	#	*	
01MW-17 (B4G0577-02) Water Sa	mpled: 07/20/0	4 08:05 Re	ceived: 07/2	0/04 15:01					
Gasoline Range Hydrocarbons	ND	50.0	ug/l	1	4G26007	07/26/04	07/26/04	NWTPH-Gx/8021B	
Benzen e	ND	0.500	n	f f	"	n	11	W	
Toluene	ND	0.500	n	'n		11	n		,
Ethylbenzene	ND	0.500	II .	**	H	H	n	,	
Xylenes (total)	ND	1.00	n	# ·	Ħ	Ħ	1)		
Surrogate: 4-BFB (FID)	100 %	58-144			n	"	n	m	
Surrogate: 4-BFB (PID)	90.6 %	68-140			n	*	Ħ	# .	
01MW-13 (B4G0577-03) Water Sa	mpled: 07/20/0	4 08:25 Re	ceived: 07/2	0/04 15:01		 .			
Gasoline Range Hydrocarbons	314	50.0	u g/l	1	4G26007	07/26/04	07/26/04	NWTPH-Gx/8021B	
Benzene	1.41	0.500	#	n	*	н	н	W	
Toluene	ND	0.500	н	**	н	ч	•	*	
Ethylbenzene	ND	0.500		#			н	*	
Xylenes (total)	2.54	1.00	ħ	<u>+</u>	# É	п	. 11	71	J-0
Surrogate: 4-BFB (FID)	104 %	58-144			"	*	*	н	
Surrogate: 4-BFB (PID)	94.2 %	68-140			*	*	n	•	

North Creek Analytical - Bothell

Amar Gill, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custod document. This analytical report must be reproduced in its entirety.

425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

509.924.9200 fax 509.924.9290 Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210 Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

Tetra Tech FW, Inc. - Bothell

12100 NE 195th St

Bothell, WA/USA 98011

Project: Time Oil-West Commodore Way

Project Number: 2306.3312.0012.0004 Project Manager: Bryan Graham

Reported: 08/17/04 10:30

Gasoline Hydrocarbons (Benzene to Naphthalene) and BTEX by NWTPH-G and EPA 8021B North Creek Analytical - Bothell

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
01MW-12 (B4G0577-04) Water	Sampled: 07/20/04	08:55 Rece	ived: 07/2	0/04 15:01					
Gasoline Range Hydrocarbons	1700	250	ug/l	5	4G26007	07/26/04	07/26/04	NWTPH-Gx/8021B	
Benzene	485	2.50	**	11	Ħ	4	*	•	
Toluene	5.90	2.50	Ħ	11	Ħ	Ħ	*	W	
Ethylbenzene	11.3	2.50	n	Ħ	*	n	n ···	•	
Xylenes (total)	15.8	5.00	Ħ	*	•	n		n	
Surrogate: 4-BFB (FID)	108 %	58-144			77	н	*	н	
Surrogate: 4-BFB (PID)	94.0 %	68-140			#	"	Ħ	æ	
01MW-21 (B4G0577-05) Water	Sampled: 07/20/04	109:15 Rece	eived: 07/2	0/04 15:01			•		
Gasoline Range Hydrocarbons	986	50.0	ug/l	1	4G26007	07/26/04	07/26/04	NWTPH-Gx/8021B	G-02
Benzene	0.858	0.500	n	•	*	Ħ	*	n	
Toluene	ND	0.500	n	n		H	н	W	
Ethylbenzene	10.6	0.500	н	n	u	n	#		
Xylenes (total)	1.32	1.00	н	**	н	п	#	н	1-00
Surrogate: 4-BFB (FID)	144 %	58-144			ei ei	n		n	
Surrogate: 4-BFB (PID)	108 %	68-1 40			*	n	*	n	
01MW-22 (B4G0577-06) Water	Sampled: 07/20/0	4 09:45 Reco	eived: 07/2	0/04 15:01					
Gasoline Range Hydrocarbons	1340	50.0	ug/i	1	4G26007	07/26/04	07/26/04	NWTPH-Gx/8021B	G-02
Benzene	7 3.5	0.500	*	Ħ	Ħ	11	н	n	
Toluene	0.943	0.500	*	n	,	n	n	n	
Ethylbenzene	4.71	0.500	11	Ħ	n	н	Ħ	N	
Xylenes (total)	10.2	1.00	#	n	#¹, <u>`</u>	н •	**	•	
Surrogate: 4-BFB (FID)	138 %	58-144	_		Ħ	n	*	7	
Surrogate: 4-BFB (PID)	104 %	68-140			#	n	*	F	

North Creek Analytical - Bothell

The regults in this report apply to the samples analyzed in accordance with the chain of custod document. This analytical report must be reproduced in its entirety.

Amar Gill, Project Manager

North Creek Analytical, Inc. Environmental Laboratory Network Page 3 of 13

425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119 907.503.9200 Tax 907.503.9210

Tetra Tech FW, Inc. - Bothell

12100 NE 195th St

Bothell, WA/USA 98011

Project: Time Oil-West Commodore Way

Project Number: 2306.3312.0012.0004

Project Manager: Bryan Graham

Reported:

08/17/04 10:30

Gasoline Hydrocarbons (Benzene to Naphthalene) and BTEX by NWTPH-G and EPA 8021B North Creek Analytical - Bothell

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
01MW-23 (B4G0577-07) Water	Sampled: 07/20/0-	4 10:16 Rec	eived: 07/2	0/04 15:01			_		
Gasoline Range Hydrocarbons	4620	500	ug/l	10	4G26007	07/26/04	07/26/04	NWTPH-Gx/8021B	
Benzene	917	5.00	*	11	н	**		n	
Toluene	10.0	5.00	*	#1	Ħ	₩		*	
Ethylbenzene	61.4	5.00	n	ħ	н	W	n ,	*	
Xylenes (total)	139	10.0	"	•		•			
Surrogate: 4-BFB (FID)	110 %	58-144			"	н	n		
Surrogate: 4-BFB (PID)	94.8 %	68-140			Ħ	"	**	"	
01MW-24 (B4G0577-08) Water	Sampled: 07/20/0-	4 11:00 Rec	eived: 07/2	0/04 15:01			_		
Gasoline Range Hydrocarbons	18400	2500	ug/l	50	4G26007	07/26/04	07/26/04	NWTPH-Gx/8021B	
Benzene	6750	50.0	Ħ	100	#	н	07/26/04	n	
Toluene	35.0	25.0	#	50	ч	, "	07/26/04	N	
Ethylbenzen e	261	25.0	π	п	•	ii .	ů	*	
Xylenes (total)	816	50.0	**	**	ч	H	н	*	I-06
Surrogate: 4-BFB (FID)	103 %	58-144			*		"	п	
Surrogate: 4-BFB (PID)	93.8 %	68-140			n	W	*	n	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custod document. This analytical report must be reproduced in its entirety.

Amar Gill, Project Manager

North Creek Analytical, Inc. **Environmental Laboratory Network** Page 4 of 13

425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210 Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588 Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

997.563.0209 fax 007.563.0210

Tetra Tech FW, Inc. - Bothell

12100 NE 195th St Bothell, WA/USA 98011 Project: Time Oil-West Commodore Way

Project Number: 2306.3312.0012.0004 Project Manager: Bryan Graham

Reported: 08/17/04 10:30

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
01MW-17 (B4G0577-02) Water	Sampled: 07/20/04	1 08:05 Rec	eived: 07/2	0/04 15:01					
Diesel Range Hydrocarbons	ND	0.250	mg/l	1	4G25001	07/25/04	07/31/04	NWTPH-Dx	
Lube Oil Range Hydrocarbons	ND	0.500	Ħ	**	77	#	n	•	
Surrogate: 2-FBP	88.6 %	50-150			,	*	.	77	
Surrogate: Octacosane	84.8 %	50-150			•	,,	n	•	
01MW-13 (B4G0577-03) Water	Sampled: 07/20/04	1 08:25 Rec	eived: 07/2	0/04 15:01					
Diesel Range Hydrocarbons	ND	0.250	mg/l	1	4G25001	07/25/04	08/01/04	NWTPH-Dx	
Lube Oil Range Hydrocarbons	ND	0.500	Ħ	я			π		
Surrogate: 2-FBP	92.9 %	50-150			,	#		*	_
Surrogate: Octacosane	104 %	50-150			#	#	n	*	
01MW-12 (B4G0577-04) Water	Sampled: 07/20/04	4 08:55 Rec	ceived: 07/2	0/04 15:01					
Diesel Range Hydrocarbons	ND	0.250	mg/l	1	4G25001	07/25/04	07/31/04	NWTPH-Dx	
Lube Oil Range Hydrocarbons	ND	0.500	Ħ	Ħ	n	n	n	n	
Surrogate: 2-FBP	80.4 %	50-150	_		17	#	n ••	н -	-#UTLE
Surrogate: Octacosane	90.2 %	50-150			•	**	•	*	
)1MW-21 (B4G0577-05) Water	Sampled: 07/20/04	4 09:15 Rec	ceived: 07/2	0/04 15:01					X
Diesel Range Hydrocarbons	ND	0.250	mg/l	1	4G25001	07/25/04	08/01/04	NWTPH-Dx	
Lube Oil Range Hydrocarbons	· ND	0.500	n	Ħ	n	*	n	#	
Surrogate: 2-FBP	43.9 %	50-150			#	n -	н	π	
Surrogate: Octacosane	40.9 %	50-150			**	77	,,	Ħ	
91MW-21 (B4G0577-05RE1) W	ater Sampled: 07/	20/04 09:15	Received:	07/20/04 1	5:01				х
Diesel Range Hydrocarbons	0.429	0.250	mg/l	1	4H03011	08/03/04	08/04/04	NWTPH-Dx	
Lube Oil Range Hydrocarbons	ND	0.500	**	п	H	#	n	n	
Surrogate: 2-FBP	60.8 %	50-150			#	,,	*	**	
Surrogate: Octacosane	66.8 %	50-150		8	*	*	*		•

North Creek Analytical - Bothell

Amar Gill, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custod document. This analytical report must be reproduced in its entirety.

425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210 Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588 Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

007.563.0200 fox 007.563.0210

Tetra Tech FW, Inc. - Bothell

12100 NE 195th St Bothell, WA/USA 98011 Project: Time Oil-West Commodore Way

Project Number: 2306.3312.0012.0004 Project Manager: Bryan Graham

Reported: 08/17/04 10:30

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up North Creek Analytical - Bothell

·		Reporting					<u> </u>	÷ -	,
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
01MW-22 (B4G0577-06) Water 5	Sampled: 07/20/0	4 09:45 Rec	ceived: 07/2	0/04 15:01					Х
Diesel Range Hydrocarbons	ND	0.250	mg/l	1	4G25001	07/25/04	07/31/04	NWTPH-Dx	
Lube Oil Range Hydrocarbons	ND	0.500	P	#	n	'n	n	•	
Surrogate: 2-FBP	32.6 %	50-150			н	77	" .	**	
Surrogate: Octacosane	33.5 %	50-150			н	er.	n	"	
01MW-22 (B4G0577-06RE1) Wate	er Sampled: 07/	20/04 09:45	Received:	07/20/04 15	5:01				х
Diesel Range Hydrocarbons	1.09	0.250	mg/l	1	4H03011	08/03/04	08/04/04	NWTPH-Dx	
Lube Oil Range Hydrocarbons	ND	0.500	н	,	. #	•	. #	•	
Surrogate: 2-FBP	76.5 %	50-150			"	"	"	"	
Surrogate: Octacosane	78.8 %	<i>50-150</i>			**	•	**	•	
01MW-23 (B4G0577-07) Water S	Sampled: 07/20/0	4 10:16 Rec	eived: 07/2	0/04 15:01					
Diesel Range Hydrocarbons	0.540	0.250	mg/l	1	4G25001	07/25/04	08/01/04	NWTPH-Dx	D-08
Lube Oil Range Hydrocarbons	ND	0.500	77	11	n	tr	# .	•	
Surrogate: 2-FBP	74.5 %	50-150			н	e	п	n	
Surrogate: Octacosane	85.3 %	50-150			•	**	"	Ħ	-
01MW-24 (B4G0577-08) Water S	Sampled: 07/20/0	4 11:00 Rec	eived: 07/2	0/04 15:01					
Diesel Range Hydrocarbons	0.837	0.250	mg/l	- 1	4G25001	07/25/04	08/01/04	NWTPH-Dx	D-08
Lube Oil Range Hydrocarbons	ND	0.500	#	•1		Ħ			
Surrogate: 2-FBP	85.1 %	50-150			"	,,,	"	"	
Surrogate: Octacosane	77.2 %	50-150			•	#	n	**	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custoffy document. This analytical report must be reproduced in its entirety.

Amar Gill, Project Manager

North Creek Analytical, Inc. Environmental Laboratory Network Page 6 of 13

425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906,9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

Tetra Tech FW, Inc. - Bothell

12100 NE 195th St Bothell, WA/USA 98011 Project: Time Oil-West Commodore Way

Project Number: 2306.3312.0012.0004 Project Manager: Bryan Graham

Reported: 08/17/04 10:30

Pentachlorophenol by GC/MS with Selected Ion Monitoring

North Creek Analytical - Bothell

·		Reporting						•	
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
01MW-21 (B4G0577-05) Water	Sampled: 07/20/0	4 09:15 Rece	eived: 07/2	0/04 15:01			•		
Pentachlorophenol	3.51	0.500	ug/l	1	4G27009	07/27/04	07/31/04	EPA 8270 Mod	
Surrogate: 2,4,6-TBP	71.4 %	22-162				-	"	,,	
01MW-22 (B4G0577-06) Water	Sampled: 07/20/0	4 09:45 Rece	eived: 07/2	0/04 15:01					
Pentachlorophenol	191	2.50	u g/I	5	4G27009	07/27/04	07/31/04	EPA 8270 Mod	
Surrogate: 2,4,6-TBP	93.2 %	22-162			T T	"	и .	Ħ	
01MW-23 (B4G0577-07) Water	Sampled: 07/20/0-	4 10:16 Rece	eived: 07/2	0/04 15:01					
Pentachlorophenol	350	2.50	ug/l	5	4G27009	. 07/27/04	07/31/04	EPA 8270 Mod	
Surrogate: 2,4,6-TBP	88.3 %	22-162			#	п	7	н	
01MW-24 (B4G0577-08) Water	Sampled: 07/20/0	4_11:00 Reco	eived: 07/2	0/04 15:01					Q-28
Pentachlorophenol	ND	2.50	ug/l	5	4G27009	07/27/04	07/31/04	EPA 8270 Mod	
Surrogate: 2,4,6-TBP	93.6 %	22-162			н	,,	**	er	

North Creek Analytical - Bothell

Amar Gill, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210 Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588 Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

07:569.9200 fax 907.500.9210

Tetra Tech FW, Inc. - Bothell

12100 NE 195th St Bothell, WA/USA 98011 Project: Time Oil-West Commodore Way

Project Number: 2306.3312.0012.0004

Project Manager: Bryan Graham

Reported: 08/17/04 10:30

Gasoline Hydrocarbons (Benzene to Naphthalene) and BTEX by NWTPH-G and EPA 8021B - Quality Control

North Creek Analytical - Bothell

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limiț	Notes
Batch 4G26007: Prepared (07/26/04 Using E	PA 5030B	(МеОН)							
Blank (4G26007-BLK1)			_							
Gasoline Range Hydrocarbons	, ND	50.0	ug/l							
Benzene	ND	0.500	*							
Toluene	ND	0.500	•							
Ethylbenzene	ND	0.500								
Xylenes (total)	ND	1.00	n							
Surrogate: 4-BFB (FID)	46.0		n	48.0		95.8	58-144			
Surrogate: 4-BFB (PID)	42.7		n	48.0		89. 0	68-140			
LCS (4G26007-BS1)	•									
Gasoline Range Hydrocarbons	486	50.0	ug/l	502		96.8	80-120			
Benzene	6.48	0.500	**	6.21		104	80-120			
Toluene	33.7	0.500	m	34.9		96.6	80-120			
Ethylbenzene	8.40	0.500	n	8.38		100	80-12 0			
Xylenes (total)	41.1	1.00	n ·	40.6		101	80-120			
Surrogate: 4-BFB (FID)	49.2	,	"	48.0	•	102	58-144			
Surrogate: 4-BFB (PID)	43.0		**	48.0		89.6	68-14 0			
LCS Dup (4G26007-BSD1)										
Gasoline Range Hydrocarbons	515	50.0	ug/l	502		103	80-120	5.79	25	
Benzene	6.62	0.500	n	6.21		107	80-120	2.14	25	
Toluene	34.4	0.500	n	34.9	·:	98.6	80-120	2.06	25	
Ethylbenzene	8.51	0.500	n	8.38		102	80-1 20	1.30	25	
Xylenes (total)	41.6	1.00	n	40.6		102	80-120	1.21	25	
Surrogate: 4-BFB (FID)	52.8		"	48.0		110	58-144	_		
Surrogate: 4-BFB (PID)	43.5		#	48.0		90.6	68-1 40			
Matrix Spike (4G26007-MS1)				48.0	Source: E	34G0544-	01 .			_
Gasoline Range Hydrocarbons	558	50.0	ug/l	502	72.3	96.8	58-129			
Веплене	6.44	0.500	tr	6.21	0.189	101	46-130			
Toluene	33.4	0.500	H	34.9	0.156	95.3	60-124			
Ethylbenz ene	8.18	0.500		8.38	ND	97.6	56-141			
Xylenes (total)	40.0	1.00	**	40.6	0.547	97.2	66-132			
Surrogate: 4-BFB (FID)	52.3		"	48.0		109	58-144			
Surrogate: 4-BFB (PID)	43.0		" :	48.0		89.6	68-140			

North Creek Analytical - Bothell

The regults in this report apply to the samples analyzed in accordance with the chain of custow document. This analytical report must be reproduced in its entirety.

Amar Gill, Project Manager

North Creek Analytical, Inc. **Environmental Laboratory Network** Page 8 of 13

425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

%REC

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

Tetra Tech FW, Inc. - Bothell

12100 NE 195th St

Project: Time Oil-West Commodore Way

Source

Project Number: 2306.3312.0012.0004

Reported: 08/17/04 10:30

RPD

Bothell, WA/USA 98011

Project Manager: Bryan Graham

Gasoline Hydrocarbons (Benzene to Naphthalene) and BTEX by NWTPH-G and EPA 8021B - Quality **Control**

North Creek Analytical - Bothell

Reporting

Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Using El	PA 5030B	(MeOH)						<u> </u>	
				Source: I	34G0544-	01			
547	50.0	ug/l	502	72.3	94.6	58-129	1.99	25	<u> </u>
6.22	0.500	**	6.21	0.189	97.1	46-130	3.48	40	
32.6	0.500		34.9	0.156	93.0	60-124	2.42	40	
7.95	0.500	₩	8.38	ND	94.9	56-141	2.85	40	
38.9	1.00		40.6	0.547	94.5	66-132	2.79	40	
52.5		n	48.0		109	58-144			
43.1		n	48.0		89.8	68-140			
	547 6.22 32.6 7.95 38.9 52.5	547 50.0 6.22 0.500 32.6 0.500 7.95 0.500 38.9 1.00	547 50.0 ug/l 6.22 0.500 " 32.6 0.500 " 7.95 0.500 " 38.9 1.00 "	547 50.0 ug/l 502 6.22 0.500 " 6.21 32.6 0.500 " 34.9 7.95 0.500 " 8.38 38.9 1.00 " 40.6 52.5 " 48.0	Using EPA 5030B (MeOH)	Source: B4G0544- 547 50.0 ug/l 502 72.3 94.6 6.22 0.500 " 6.21 0.189 97.1 32.6 0.500 " 34.9 0.156 93.0 7.95 0.500 " 8.38 ND 94.9 38.9 1.00 " 40.6 0.547 94.5 52.5 " 48.0 109	Using EPA 5030B (MeOH)	Source: B4G0544-01	Using EPA 5030B (MeOH) Source: B4G0544-01 547 50.0 ug/l 502 72.3 94.6 58-129 1.99 25 6.22 0.500 " 6.21 0.189 97.1 46-130 3.48 40 32.6 0.500 " 34.9 0.156 93.0 60-124 2.42 40 7.95 0.500 " 8.38 ND 94.9 56-141 2.85 40 38.9 1.00 " 40.6 0.547 94.5 66-132 2.79 40 52.5 " 48.0 109 58-144

North Creek Analytical - Bothell

bults in this report apply to the samples analyzed in accordance with the chain of y document. This analytical report must be reproduced in its entirety.

425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

507.503.9200 fax 907.505.9210

Tetra Tech FW, Inc. - Bothell

Project: Tim

Project: Time Oil-West Commodore Way

12100 NE 195th St Bothell, WA/USA 98011 Project Number: 2306.3312.0012.0004 Project Manager: Bryan Graham Reported:

08/17/04 10:30

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up - Quality Control North Creek Analytical - Bothell

· · ·		Reporting		Spike	Source		%REC	<u> </u>	RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 4G25001: Prepared 07/25/04	Using E	PA 3520C								
Blank (4G25001-BLK1)										
Diesel Range Hydrocarbons	ND	0.250	mg/l							
Lube Oil Range Hydrocarbons	ND	0.500	*							
Surrogate: 2-FBP	0.219		н	0.270		81.1	50-150	<u> </u>		
Surrogate: Octacosa ne	0.158		#	0.195		81.0	50- 150			
LCS (4G25001-BS1)										
Diesel Range Hydrocarbons	1.31	0.250	mg/l	2.00		65.5	45-105			
Surrogate: 2-FBP	0.243		# .	0.270		90.0	50-150	·		
LCS (4G25001-BS2)				•						
Lube Oil Range Hydrocarbons	1.26	0.500	mg/l	2.00		63.0	50-150			_
Surrogate: 2-FBP	0.242		н	0.270		89.6	50-150			•
Surrogate: Octacosane	0.217		*	0.195		111	50-15 0			
LCS Dup (4G25001-BSD1)										
Diesel Range Hydrocarbons	0.962	0.250	mg/l	2.00		48.1	45-105	30.6	50	
Surrogate: 2-FBP	0.146		н	0.270		54.1	50-150			
LCS Dup (4G25001-BSD2)										
Lube Oil Range Hydrocarbons	1.35	0.500	mg/l	2.00		67.5	50-150	6.90	50	
Surrogate: Octacosane	0.182		H	0.195		93.3	50-150			
Batch 4H03011: Prepared 08/03/04	Using E	PA 3520C			Ìş.					
Blank (4H03011-BLK1)										
Diesel Range Hydrocarbons	ND	0.250	mg/l							
Lube Oil Range Hydrocarbons	ND	0.500	D .							
Surrogate: 2-FBP	0.139		н	0.470		51.5	50-150		•	
Surrogate: Octacosane	0.127		n	0.195		65.I	50-150			

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custods document. This analytical report must be reproduced in its entirety.

Amar Gill, Project Manager

North Creek Analytical, Inc. Environmental Laboratory Network

Page 10 of 13

425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

0/DEC

509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

Tetra Tech FW, Inc. - Bothell

12100 NE 195th St Bothell, WA/USA 98011 Project: Time Oil-West Commodore Way

Project Number: 2306.3312.0012.0004

Project Manager: Bryan Graham

Reported:

08/17/04 10:30

מממ

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up - Quality Control North Creek Analytical - Bothell

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 4H03011: Prepared 08/03/04	Using E	PA 3520C								
LCS (4H03011-BS1)										
Diesel Range Hydrocarbons	1.45	0.250	mg/l	2.00		72.5	45-105			
Surrogate: 2-FBP	0.207	-	n	0.270		76.7	50-150			
LCS Dup (4H03011-BSD1)										
Diesel Range Hydrocarbons	0.931	0.250	mg/l	2.00	<u>.</u>	46.6	45-105	43.6	50	_
Surrogate: 2-FBP	0.147	-	н	0.270	_	54.4	50-150		-	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custodidocument. This analytical report must be reproduced in its entirety.

Amar Gill, Project Manager

North Creek Analytical, Inc. Environmental Laboratory Network Page 11 of 13

425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588 Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

997.563.9299 fax 997.563.9219

Tetra Tech FW, Inc. - Bothell

12100 NE 195th St

Bothell, WA/USA 98011

Project: Time Oil-West Commodore Way

Project Number: 2306.3312.0012.0004 Project Manager: Bryan Graham

Reported:

08/17/04 10:30

Pentachlorophenol by GC/MS with Selected Ion Monitoring - Quality Control North Creek Analytical - Bothell

			Reporting		Spike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 4G27009:	Prepared 07/27/04	Using El	PA 3520C								
Blank (4G27009-BL	.K1)										
Pentachlorophenol		ND	0.500	ug/l						_	<u> </u>
Surrogate: 2,4,6-TBP		33.6		н	50.0		67.2	45-135			
LCS (4G27009-BS1											
Pentachlorophenol		10.1	0.500	ug/l	20.0		50.5	45-135			
Surrogate: 2,4,6-TBP		35.1	· · · · ·	*	50.0		70.2	45-135			
LCS Dup (4G27009	-BSD1)				-i						
Pentachlorophenol	<u> </u>	10.5	0.500	ug/I	20.0		52.5	45-135	3.88	50	
Surrogate: 2,4,6-TBP		34.6		"	50.0		69.2	45-135			
Matrix Spike (4G27	/009-MS1)					Source: E	4G0619 <u>-</u>	02			
Pentachlorophenol		13.8	0.500	ug/l	18.9	ND	73.0	20-130			_
Surrogate: 2-FP		ND		н	47.2			60-120			
Surrogate: 2,4,6-TBP		<i>30.7</i>		n	47.2		65.0	22-162			
Surrogate: 2-FBP		27.1		B	47.2		57.4	<i>30-150</i>			
Matrix Spike Dup (4	4G27009-MSD1)				_	Source: E	4G0619-	02			
Pentachlorophenol		14.3	0.500	ug/l	19.2	ND	74.5	20-130	3.56	50	
Surrogate: 2-FP		ND		"	48.1		- 	60-120			
Surrogate: 2,4,6-TBP		30.2		*	48.1		62.8	22-162			
Surrogate: 2-FBP		29.2		ri	48.1		60.7	30-150			

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custod document. This analytical report must be reproduced in its entirety.

Page 12 of 13

425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588 Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

007.563.0200 fex 007.563.0210

Tetra Tech FW, Inc. - Bothell

12100 NE 195th St Bothell, WA/USA 98011 Project: Time Oil-West Commodore Way

Project Number: 2306.3312.0012.0004

Reported:

Project Manager: Bryan Graham

08/17/04 10:30

Notes and Definitions

D-08 Results in the diesel organics range are primarily due to overlap from a gasoline range product.

G-02 The chromatogram for this sample does not resemble a typical gasoline pattern. Please refer to the sample chromatogram.

I-06 The analyte concentration may be artificially elevated due to coeluting compounds or components.

Q-28 This sample was re-analyzed at a dilution due to matrix related internal standard failure at the initial final volume.

X See case narrative.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Amar Gill, Project Manager

North Creek Analytical, Inc. Environmental Laboratory Network Page 13 of 13

11720 North Creek Pkwy N Suite 400, Bothell, WA 98011-9508
11115 E Montgomery Suite B, Spokane, WA 99206-4776
9405 SW Nimbus Ave, Beaverton, OR 97008-7132
20332 Empire Ave Suite F-1, Bend, OR 99701-5711
3209 Denali St. Anchorage, AK 99503-4030
5425-420-9200
FAX 420-9210
FAX 924-9290
FAX 906-9210
FAX 382-7588
907-334-9200
FAX 334-9210

CHAIN OF CUSTODY REPORT									Work Order #: PHG 0577						
CLIENT: imc Oi	INVOICE TO:										TURNAROUND REQUEST				
												in Business Days *			
REPORT TO: JIMSims (CCB Graham @tffwi) Same as Left												Organic & Inorganic Analyses			
7 157 W Commodore vony												7 5 4 3 2 1 <1			
PHONE 206 28664	P.O. NUMBER:										STD. Petroleum Hydrocarbon Analyses 5 4 3 2 1 <1				
PROJECT NAME: Quar	PRESERVATIVE														
Q lide 1	Critic Cround water	HCI HCI	 1	T		T					\dashv	STD.	الناا	ے ت ت ت	J
PROJECT NUMBER: Mon.	, REQUESTED ANALYSES									OTHER Specify					
SAMPLED BY: E POBEN	A REQUESTED AVALISES							Ť	* Turnaround Requests less than stan						
			8270±	1 1					İ		ł		1	······	
- CLIENT SAMPLE IDENTIFICATION	SAMPLING DATE/TIME	2 23 × 6	%				†					MATRIX	# OF CONT.	LOCATION / COMMENTS	NCA WOID
DENTIFICATION	DATE/TIME	Z Z Z Z Z	120	<u> </u>	_	<u> </u>						(W, S, O)	CON1.	COMMENTS	WOD
OIMW-TB05	7/20/040750	$X \cup I$										W	1	L	101
201MW-17	7/20104 0805	X X										W	5		12
DIMW 13	7/20/04 0825	XX								$\overline{}$		W	5		13
101MW-12	7/20/04/0855	XX										W	5		94
01MW-21	7/20/04 09/5	XX	X T					$\overline{/}$				W	7		p5
6 OLMW- 22	7/20/04 0945	XX	XII									W	7		nu
	7/20/04/10/6	XX	$\langle $	1 1 -								W	7		07
801MW-24	7/20/04 1100	YX	Z								_	W	7		DP)
	1/20/07 1100		`												-777
			++		├─-	 			\dashv	7				<u> </u>	
10		1 1	11		ļ		1								
RELEASED BY:	Valu.		DATE	7/20/04	F	RECEI	VED BY	: C0	lett	2 W	lea	vei		DATE: 7/2	004
PRINT NAME:	Tober FIRM: T	TFWI	TIME			PRINT		Cole	yle'	We	iver	FIRM:	NCA	TIME: (4	šÓÍ I
ELEASED BY:			DATE	:	RECEIVED BY:						DATE:				
PRINT NAME:	FIRM:		TIME:	<u> </u>		PRINT	NAME:					FIRM:		TIME:	
ADDITIONAL REMARKS: COCREVING Silica C-el Clean up on Diesel Samples 3 Coolers gar At 3.10 page of 1										OF 1					
					7									Wlcs	

DRAFT QUARTERLY GROUNDWATER SAMPLING REPORT FOR NOVEMBER 2004

at

2737 West Commodore Way and 2750 West Commodore Way Seattle, Washington

Prepared for

Time Oil Company

March 2005

Prepared by

TETRATECH EC, INC.

12100 NE 195th, Suite 200 Bothell, WA 98011

DRAFT QUARTERLY GROUNDWATER SAMPLING REPORT FOR NOVEMBER 2004

at

2737 West Commodore Way and 2750 West Commodore Way Seattle, Washington

Prepared for

Time Oil Company 2737 West Commodore Way Seattle, WA 98199 (206) 285-2400

March 2005

Prepared by

TETRATECH EC, INC.

12100 NE 195th, Suite 200 Bothell, WA 98011 (425) 482-7600

CONTENTS

1.	INTRODUCTION	1
2.	METHODS AND PROCEDURES 2.1 GROUNDWATER ELEVATION SURVEY 2.2 GROUNDWATER SAMPLING 2.3 GROUNDWATER ANALYSES	2 2 2 3
3.	GROUNDWATER LEVEL DATA 3.1 2737 WEST COMMODORE WAY 3.2 2750 WEST COMMODORE WAY	5 5 5
1.	ANALYTICAL RESULTS 4.1 QUARTERLY GROUNDWATER SAMPLING AT 2737 WEST COMMODORE WAY 4.2 QUARTERLY GROUNDWATER SAMPLING AT 2750 WEST COMMODORE WAY	7 8 8
5.	CONCLUSIONS AND RECOMMENDATIONS 5.1 2737 WEST COMMODORE WAY 5.2 2750 WEST COMMODORE WAY	9

APPENDIX A LABORATORY DATA PACKAGES

ACRONYMS AND ABBREVIATIONS

bgs below ground surface

BTEX benzene, toluene, ethylbenzene, and xylene

°C degrees Celsius

Ecology Washington State Department of Ecology EPA U.S. Environmental Protection Agency

HDPE high-density polyethylene

mg/L milligrams per liter
mL/min milliliters per minute

mS/cm millisiemens per centimeter

msl mean sea level

 μ g/L micrograms per liter

MTCA Model Toxics Control Act

NOAA National Oceanic and Atmospheric Administration

NTU nephelometric turbidity unit

NWTPH-Dx Northwest total petroleum hydrocarbon-diesel range hydrocarbons

NWTPH-Gx Northwest total petroleum hydrocarbon-gasoline range hydrocarbons

ORP oxidation reduction potential

PCP pentachlorophenol

sim selective ion monitoring

SQuiRTTM Screening Quick Reference Tables

TOC Time Oil Company

VOC volatile organic compound

1. INTRODUCTION

Monitoring wells at the properties are sampled on a quarterly basis, which began in July 2001. This quarterly report presents the results of the November 2004 groundwater sampling activities at 2737 and 2750 West Commodore Way. Figure 1-2 provides a plan view of the properties relative to one another. The report is organized as follows:

- Section 1 briefly describes the purpose and organization of the report.
- Section 2 describes the field methods used to measure water levels and to collect samples.
- Section 3 presents the groundwater level data.
- Section 4 presents the analytical results.
- Section 5 describes the conclusions and provides recommendations for future actions.
- Appendix A provides the data packages from the analytical laboratory for November 2004.

2. METHODS AND PROCEDURES

Field activities for November 2004 at the two TOC properties included water level measurement and quarterly groundwater sampling. This section presents a brief description of the specific methods and procedures used for quarterly monitoring.

2.1 GROUNDWATER ELEVATION SURVEY

Groundwater elevations are determined each quarter by measuring the depth to water in 28 wells at 2737 West Commodore Way and 7 wells at 2750 West Commodore Way. The depth to water measurements are collected on a single day and subtracted from the survey level at the top of the well casing to calculate the potentiometric surface (water table elevation).

Before measuring the depth to groundwater in the first well, the water level indicator is calibrated by visually comparing the markings on the tape to the markings on a measurement tape. After removing the well cap and allowing the well to stabilize, the probe is lowered into the well until the sound alarm is activated, indicating that the probe has touched the water surface. The static depth to water is read directly from the tape by holding the tape to the permanent mark on the well casing or cap. The probe is then raised and lowered to confirm the reading. An oil/water interface probe is then used in a similar manner in wells where floating product is suspected to be present.

2.2 GROUNDWATER SAMPLING

Groundwater samples are collected each quarter using a low-flow micro-purging technique in accordance with U.S. Environmental Protection Agency (EPA) guidelines (EPA 1996, EPA/540/S-95/504). Each monitoring well is micro-purged (300 to 500 milliliters per minute [mL/min]) using a peristaltic pump with disposable high-density polyethylene (HDPE) tubing. A small section of thick-walled silicon is used around the head of the peristaltic pump to achieve the pressures necessary to draw the groundwater up the well. Groundwater samples are collected in laboratory-supplied glassware and hand delivered to the laboratory each evening after sampling.

Groundwater sampling was conducted in November 2004 in accordance with the following sampling procedures:

- 1. Calibrate field instruments in accordance with the manufacturer's directions. Record all calibration data in the field log book.
- 2. Confirm well identification using site map.
- 3. Measure the depth to water at each well. Record the depth to water. Decontaminate the water level meter before each measurement.
- 4. Carefully lower the HDPE tubing into the well with as little disturbance to the groundwater as possible. Place the intake at the middle of the screen interval. Set pump rate to ensure the water column in the well does not drop more than 0.2 feet below the initial water level reading.
- 5. Purge the well at a flow rate of 300 to 500 mL/min. Monitor water level to ensure minimal drawdown. Monitor water quality parameters every 3 to 5 minutes during purging (turbidity, pH, temperature, conductivity, oxidation reduction potential [ORP], and dissolved oxygen) using in-line monitoring equipment. Stabilization is achieved if three successive readings are within ±0.1 pH units, ±1 degree Celsius (°C) for temperature, ±10 percent for conductivity, ±10 percent for dissolved oxygen, and ± 10 millivolts for ORP.
- 6. When water quality parameters are stable for three consecutive readings, turn off the pump and remove the tubing from the well or leave the tubing in place securing it at the surface within the well head. Place the tubing in a sealed, labeled plastic bag. Replace the well cap and seal the monument.
- 7. Return within 24 hours and insert the appropriate HDPE tubing into the well. Connect the pump and adjust the pump flow to a rate of approximately 200 mL/min. Collect samples for volatile organic compounds (VOC) and gasoline analyses first. Fill the containers so that no headspace exists.
- 8. Increase the flow rate to approximately 300 to 500 mL/min while maintaining minimal to no drawdown and collect the remaining samples.

2.3 GROUNDWATER ANALYSES

Groundwater samples were collected on November 17 through November 19, 2004, using laboratory-supplied glassware. Table 2-1 shows the wells sampled in November 2004. The groundwater samples were delivered to the laboratory each evening after sampling and,

14004001000

Time Oil Company Quarterly Groundwater Sampling Report for November 2004 2737 and 2750 West Commodore Way

depending on the specific data needs, were analyzed for all or some of the following contaminants:

- Gasoline range hydrocarbons, using Washington State Department of Ecology's (Ecology's) Northwest total petroleum hydrocarbon-gasoline (NWTPH-Gx) method;
- Benzene, toluene, ethylbenzene, xylene (BTEX) using EPA Method 8021B;
- Diesel and Lube oil range hydrocarbons, using Ecology's Northwest total petroleum hydrocarbon-diesel extended (NWTPH-Dx) method; and
- Pentachlorophenol (PCP), using EPA Method 8270-sim (selective ion monitoring).

The groundwater samples analyzed for diesel and oil underwent a silica gel cleanup before analysis. This cleanup was done to remove naturally occurring organic material that may interfere with the analysis. Groundwater samples were analyzed by North Creek Analytical Laboratories, Inc., in Bothell, Washington.

3. GROUNDWATER LEVEL DATA

Field activities conducted at the TOC properties included the quarterly collection of water level measurements. This section describes the collection of November 2004 water level measurements and summarizes groundwater flow directions beneath 2737 and 2750 West Commodore Way.

Measurements for depth to water were made using an electronic measuring tape with markings every 0.01 foot. All water levels were measured on a single day. Measurements were subtracted from surveyed measuring point elevations to produce the water level elevations. Where present, the thickness and specific gravity (0.8) of free phase product fuel on the water table was considered when calculating the elevation of the water table.

3.1 2737 WEST COMMODORE WAY

Water level measurements were collected from 28 wells at 2737 West Commodore Way on November 17, 2004. Table 3-1 provides the well construction information, and Table 3-2 shows the groundwater elevations in feet above mean sea level (msl). In general, the water levels have increased slightly relative to July 2004, possibly due to seasonal variation. The groundwater elevations during the four quarter period are generally consistent showing a slight seasonal decrease (average 0.10 feet) relative to July 2004. Figure 3-1 shows the locations of the wells at 2737 West Commodore Way and the water table elevation (potentiometric space). Groundwater flows to the north toward the Ship Canal. The groundwater flow direction north of the Lower Tank Yard appears to be bifurcated, possibly by the fiber-grained material in the vicinity of Wells 01MW-16 and 01MW-10. The groundwater gradient at the site differs in the tank yards relative to the rest of the site. The gradient across the tank yards (Wells 01MW-17 to 01MW-23) is approximately 0.003 feet per foot and steepens towards the north wall of the Lower Tank Yard. The unpaved surface of the tank yards allows for greater infiltration, resulting in higher groundwater elevations and mounding. The gradient outside the tank yards (Well 01MW-01 to Well MW-09) is approximately 0.029 feet per foot.

3.2 2750 WEST COMMODORE WAY

Water level measurements were collected from seven wells at 2750 West Commodore Way on November 17, 2004. In general, the water levels at 2750 West Commodore Way

Time Oil Company Quarterly Groundwater Sampling Report for November 2004 2737 and 2750 West Commodore Way

have decreased (average 0.63 feet), relative to July 2004. The only exception is Well 02MW-05, which has shown an increase in groundwater elevation for the past year. Figure 3-2 shows the locations of the wells and potentiometric surface at 2750 West Commodore Way. Groundwater flows to the north toward the Ship Canal. The groundwater gradient from Wells 02MW-05 to Well 02MW-02 is approximately 0.017 feet per foot toward the north based on the potentiometric surface map.

4. ANALYTICAL RESULTS

The MTCA Method A Cleanup Levels for groundwater are intended to provide conservative cleanup levels for drinking water beneficial uses at sites undergoing routine cleanup actions or those sites with relatively few hazardous substances. Because the groundwater beneath the TOC sites is not used as a source of drinking water or for municipal supply, comparison of groundwater concentrations to the MTCA Method A Cleanup Levels is not technically appropriate. The primary point of exposure to groundwater beneath the sites is through the discharge of groundwater to the nearby Ship Canal, a freshwater body on the north side of 2750 West Commodore Way. Based on this exposure scenario (no groundwater use but discharge to a water body), groundwater concentrations were compared to the National Oceanic and Atmospheric Administration (NOAA) Screening Quick Reference Tables (SQuiRTTM) values. These values provide screening levels for acute and chronic exposures to both freshwater and saltwater.

The SQuiRT™ values are non-promulgated values developed by the Coastal Protection and Restoration Division of NOAA to protect aquatic habitats that may be affected by hazardous waste sites. They are applicable for use at these TOC sites based on the site-specific groundwater use. Because the SQuiRT™ values are non-promulgated values, concentrations above the SQuiRT™ values do not indicate a regulatory exceedance. It is important to remember that between the various wells and the point of exposure, various chemical, physical, and biological processes occur that are likely to reduce the contaminant concentrations. Therefore, a concentration in a well is most likely not the same concentration at the point of exposure. If SQuiRT™ values were not available for a particular analyte, then the MTCA Method A default values were used.

Table 4-1 presents the groundwater parameters measured during sampling. Tables 4-2 and 4-3 show analytical results for the groundwater samples collected in November 2004 at 2737 and 2750 West Commodore Way, respectively. The footnotes at the bottom of each table identify the applicable action levels.

Appendix A contains the laboratory data packages for the samples collected. The data packages are presented in their entirety to allow the reader to evaluate the data relative to the quality control data associated with the environmental samples.

Time Oil Company Quarterly Groundwater Sampling Report for November 2004 2737 and 2750 West Commodore Way

4.1 QUARTERLY GROUNDWATER SAMPLING AT 2737 WEST COMMODORE WAY

The following analytes were detected above the applicable action levels (Table 4-2):

- PCP was detected above the NOAA SQuiRT* value (15 micrograms per liter [μg/L])
 in Well 01MW-26 at a concentration of 20.3 μg/L (20.9 μg/L in duplicate sample).
- Diesel range hydrocarbons were detected above the MTCA Method A Cleanup Level (0.5 milligrams per liter [mg/L]) in Wells 01MW-03 and 01MW-09 at concentrations of 0.925 mg/L (01MW-03) and 0.736 mg/L (01MW-09).
- Gasoline range hydrocarbons were detected above the MTCA Method A Cleanup Level (800 μg/L with benzene present) in Wells 01MW-02, 01MW-03, 01MW-09, 01MW-12, and 01MW-26. The concentrations in these wells ranged from 1,130 μg/L (1,120 μg/L in duplicate sample) (Well 01MW-26) to 20,100 μg/L (Well 01MW-02).
- Benzene was detected above the NOAA SQuiRT* value (5,300 μg/L) in Well-01MW-02 at a concentration of 8,600 μg/L.

4.2 QUARTERLY GROUNDWATER SAMPLING AT 2750 WEST COMMODORE WAY

The following analyte was detected above the applicable action level (Table 4-3):

 Gasoline was detected above the MTCA Method A Cleanup Level (800 μg/L with benzene present) in Well 01MW-04 at a concentration of 3,340 μg/L (3,250 μg/L in the duplicate sample).

5. CONCLUSIONS AND RECOMMENDATIONS

The following subsections describe the extent of impacted groundwater beneath the two properties. Figures 5-1 through 5-3 show concentration contour maps for diesel, gasoline, and benzene, respectively.

5.1 2737 WEST COMMODORE WAY

The concentrations of diesel in groundwater are similar to those detected in July 2004. The diesel plume appears to be centralized beneath the former manifold area (01MW-24 and 01MW-25) and the former PCP/Diesel Mixing Area (01MW-21 and 01MW-22) in the Lower Tank Yard. The diesel plume is interpreted to extend towards the north due to the presence of product in Wells 01MW-16, 01MW-10, and 01MW-28.

In general the concentrations of gasoline have increased slightly in Wells 01MW-03 and 01MW-02 relative to those measured in July 2004. The concentrations in Well 01MW-09 are variable and may be influenced by the free-phase product present. The northern extent of the gasoline-impacted groundwater on the property is indicated above the MTCA Method A Cleanup Level by Well 01MW-02 north of the Former Loading Dock and Well 01MW-09 northwest of the office building.

5.2 2750 WEST COMMODORE WAY

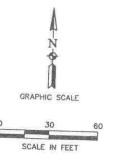
Gasoline was the only analyte detected above the MTCA Method A Cleanup Level in groundwater at the property. The exceedance of gasoline concentrations was limited to Well 02MW-04 at a concentration of 3,340 μ g/L (3,250 μ g/L in the duplicate sample). The gasoline-impacted groundwater does not appear to be migrating toward the Ship Canal based on the lack of detection in the well (01MW-02) near the shoreline.

Time Oil Company Quarterly Groundwater Sampling Report for August 2003 2737 and 2750 West Commodore Way

FIGURES

LEGEND

O 01MW-13 MONITORING WELL WITH GROUNDWATER ELEVATION (FEET MSL)

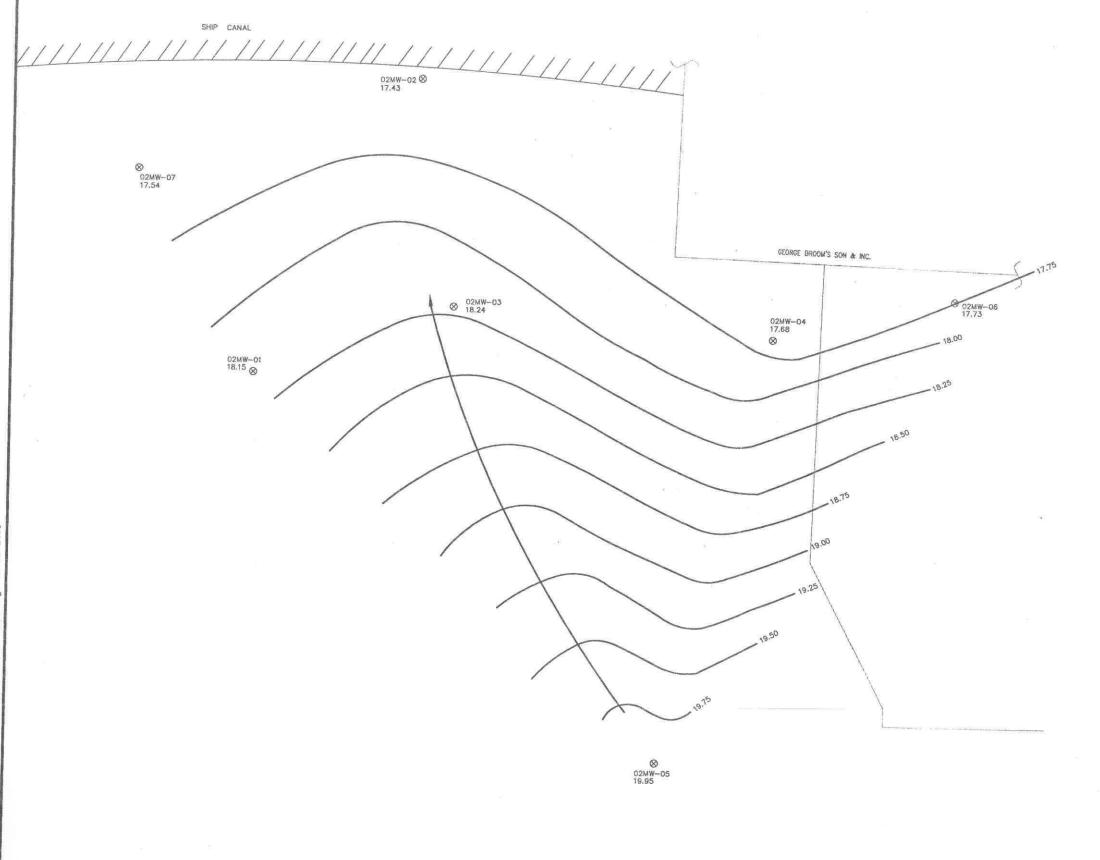

——— EQUIPOTENTIAL CONTOUR (DASHED WHERE INFERRED)

SURVEY MONUMENT

APPROXIMATE GROUNDWATER FLOW DIRECTION

NOTES

- 1. CONTOUR INTERVAL IS 2.00 FEET,
- GROUNDWATER ELEVATIONS IN WELLS 01MW-10 AND 01MW-16 ARE INTERPRETED TO BE UNREPRESENTATIVE OF SHALLOW AQUIFER CONDITIONS DUE TO THICK LAYER OF FINE GRAINED MATERIAL.



TETRA TECH FW, INC.

Figure 3-1

Location of Wells and Potentiometric Surface at 2737 West Commodore Way, November 17, 2004

CITY OF SEATTLE TBM #9962 = EL. 79.61

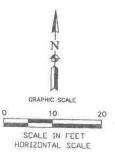
LEGEND

02MW-05⊗ 19.43 MONITORING WELL WITH GROUNDWATER ELEVATION (FEET MSL)

...

8

10.00


EQUIPOTENTIAL CONTOUR (FEET MSL) (DASHED WHERE INFERRED)

APPROXIMATE GROUNDWATER FLOW DIRECTION

NOTES

1. CONTOUR INTERVAL IS 0.25 FEET.

TETRA TECH FW, INC.

Figure 3-2
Location of Wells
and Potentiometric Surface at
2750 West Commodore Way,
November 17, 2004

Time Oil Company Quarterly Groundwater Sampling Report for November 2004 2737 and 2750 West Commodore Way

TABLES

Table 2-1. November 2004 Sampling Matrix

Well	NWTPH- Gx/BTEX	NWTPH-Dx	PCP	Sample Type
	273	7 West Commode	ore Way	6
01MW-02	1	1	na	Environmental
01MW-03	1	1	na	Environmental
01MW-08	1	1	na	Environmental
01MW-09	1	1	1	Environmental
01MW-11	1	1	na	Environmental
01MW-12	1	1	na	Environmental
01MW-13	1	1	na	Environmental
01MW-17	1	1	na	Environmental
01MW-26	1	1	1	Environmental
01MW-26	1	1	1	Field Duplicate
	275	0 West Commode	ore Way	
02MW-01	1	1	na	Environmental
02MW-02	1	1	na	Environmental
02MW-04	1	1	na	Environmental
02MW-04	1	1	na	Field Duplicate
02MW-05	1	1	na	Environmental
02MW-07	1	1	na	Environmental

Abbreviations and Acronyms:
BTEX – benzene, toluene, ethylbenzene, xylene

Dx – diesel range hydrocarbons

Gx – gasoline range hydrocarbons

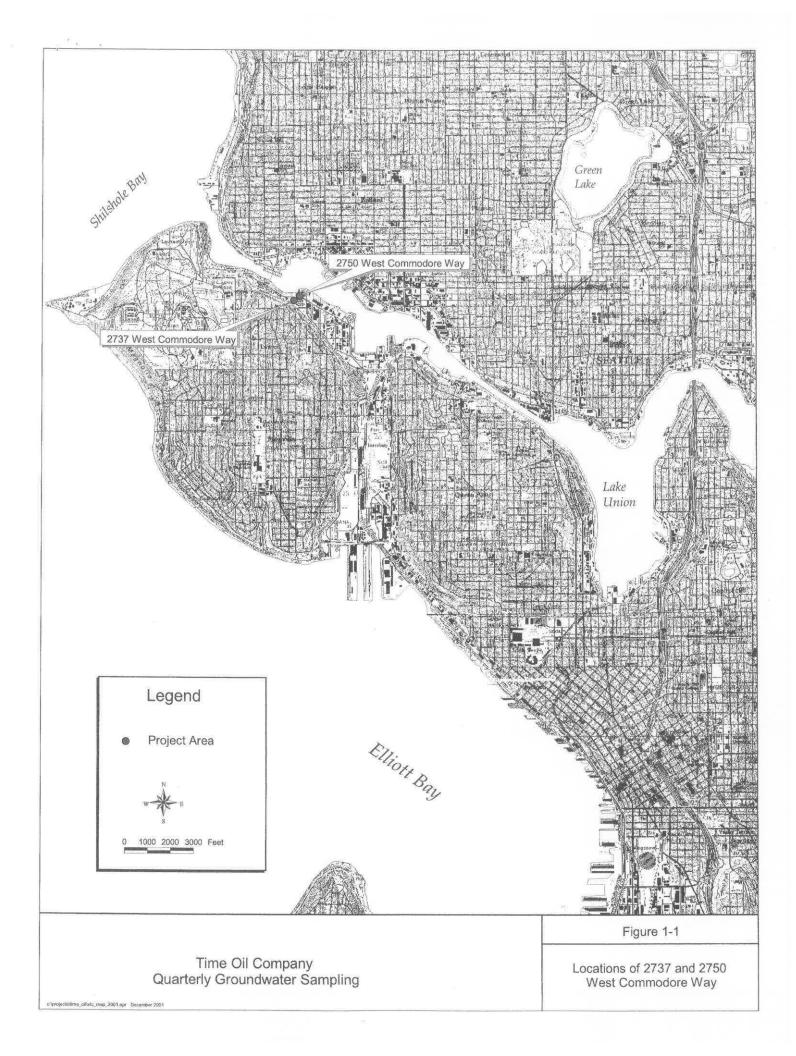
na - not included in analytical suite

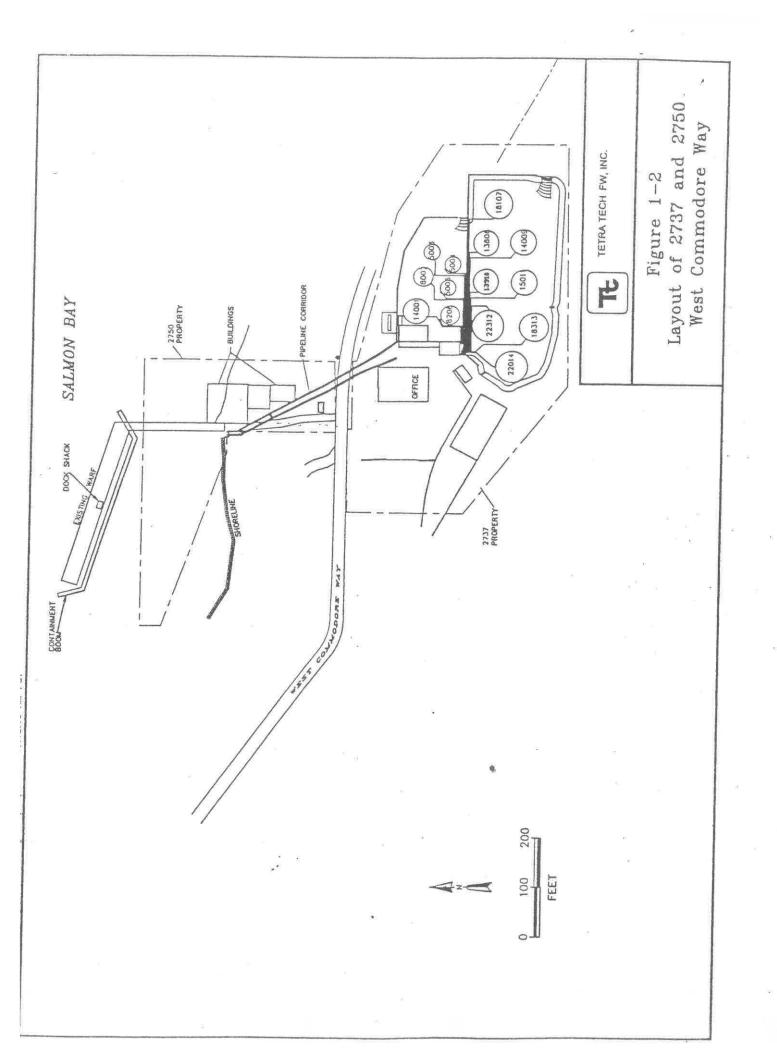
NWTPH - northwest total petroleum hydrocarbon

PCP - pentachlorophenol

Table 3-1. Well Construction Details at West Commodore Way Properties

H	(W. SCHEA	dinate ate Plane)	Top of Casing	Ground	Total Depth	Total Depth	Depth of Screen	Elevation of Screen
Well	Northing (Feet)	Easting (Feet)	Elevation (Feet msl)	Elevation (Feet msl)	of Boring (Feet bgs)	of Well (Feet bgs)	Interval (Feet bgs)	Interval (Feet msl)
			2737 W	est Commod	ore Way	L.		-two-sines-
01MW-01	245454.603	1256198.248	46.48	46.76	25.00	25.25	10 - 25	36.76 - 21.76
01MW-02	245585.027	1256198.518	44.78	45.15	25.00	24.91	10 – 25	35.15 - 20.15
01MW-03	245597.585	1256160.493	44.35	44.75	25.20	25.15	10 - 25	34.75 - 19.75
01MW-04	245563.117	1256163.148	45.08	45.56	25.00	24.90	10 - 25	35.56 - 20.56
01MW-05	245569.311	1256114.025	45.40	45.77	25.00	24.88	10 - 25	35.77 - 20.77
01MW-06	245452.677	1256064.638	47.74	48.23	25.00	25.10	10 - 25	38.23 - 23.23
01MW-07	245570.711	1255975.885	45.17	45.53	30.00	28.17	15 – 30	30.53 - 15.53
01MW-08	245570.471	1256070.985	45.21	45.63	25.00	24.93	10 - 25	35.63 - 20.63
01MW-09	245602.062	1256103.039	43.91	44.37	25.00	24.70	10 – 25	34.37 - 19.37
01MW-10	245580.377	1256246.968	45.02	45.35	25.00	24.90	10 - 25	35.35 - 20.35
01MW-11	245545.081	1256368.920	46.10	46.45	30.00	29.90	15 – 30	31.45 - 16.45
01MW-12	245444.877	1256316.069	45.84	46.29	20.00	20.00	5 – 20	40.84 - 25.84
01MW-13	245317.347	1256313.287	46.36	46.81	20.00	19.88	15 – 20	31.81 - 26.81
01MW-15	245441.314	1255996.388	50.89	50.89	30.12	30.00	10 – 30	40.89 - 20.89
01MW-16	245582.687	1256220.015	44.95	44.95	22.50	20.00	10 – 20	34.95 - 24.95
01MW-17	245166.941	1256477.520	59.42	59.42	30.00	30.00	15 – 30	44.42 - 29.42
01MW-18	245577.28	1256114.23	45.18	45.68	26.50	25.00	5 – 20	40.68 - 25.68
01MW-19	245572.45	1256100.62	45.35	45.85	31.50	25.00	5-20	40.85 - 25.78
01MW-20	245546.99	1256107.08	46.27	46.77	26.50	25.00	5 – 20	41.77 - 26.77
01MW-21	245382.3	1256257.4	46.21	46.52	23.50	22.92	5 – 22	41.21 - 23.79
01MW-22	245422.2	1256251.7	46.11	46.47	25.00	24.70	5 – 24	41.11 - 21.92
01MW-23	245451.9	1256257.4	45.81	46.11	20.50	19.45	5 – 19	40.81 - 26.86
01MW-24	245494.0	1256245.7	na	44.59	21.00	19.40	5 – 19	39.59 - 25.69
01MW-25	245469.4	1256246.5	na	44.61	20.50	17.32	5 – 16	39.61 - 28.29
01MW-26	245451.1	1256215.0	46.24	46.71	20.50	19.85	5 – 19	41.24 - 27.39
01MW-27	245479.0	1256213.5	46.33	46.70	21.50	19.65	5 – 19	41.33 - 27.68
01MW-28	245513.8	1256214.2	45.54	46.30	25.50	24.61	5 – 24	40.54 - 21.93
01MW-29	245522.2	1256244.6	45.57	45.92	20.50	19.75	5 - 19	40.57 - 26.82
	5)	1	2750 We	est Commod	ore Way			
02MW-01	245789.704	1255985.066	24.19	24.72	20.00	19.60	10 - 20	15.22 - 5.22
02MW-02	245848.029	1256019.016	20.06	20.57	10.00	9.90	5 – 10	16.07 - 11.07
02MW-03	245801.020	1256026.193	27.86	28.41	20.00	19.75	10 - 20	18.91 - 8.91
02MW-04	245795.225	1256092.088	27.17	27.59	20.00	20.05	10 - 20	18.09 - 8.09
02MW-05	245706.854	1256069.207	36.59	37.05	35.00	33.85	20 -35	17.55 - 2.55
02MW-06	245803.277	1256129.549	26.54	27.00	20.00	19.97	10 – 20	17.50 - 7.50
02MW-07	245828.584	1255960.724	20.85	21.39	12.00	12.20	2 – 12	19.89 - 9.89


Abbreviations and Acronyms:


bgs - below ground surface

msl – mean sea level

na - no data available

WA - Washington

Water Levels Measured at West Commodore Way Properties on November 17, 2004 Table 3-2.

Well	Top of Casing Elevation (Feet msl)	Ground Elevation (Feet msl)	Total Depth of Well (Feet bgs)	Depth to Product (Feet bgs)	Depth to Water (Feet bgs)	Product Thickness (Feet)	Water Elevation (Feet msl)
	4	273	7 West Commo	dore Way			
01MW-01	46.48	46.76	25.25	np	14.56	0.00	31.92
01MW-02	44.78	45.15	24.91	np	15.77	0.00	29.01
01MW-03	44.35	44.75	25.15	np	15.30	0.00	29.05
01MW-04	45.08	45.56	24.90	np	15.27	0.00	29.81
01MW-05 ¹⁷	45.40	45.77	24.88	16.25	18.65	2.40	28.67
01MW-06	47.74	48.23	25.10	np	16.28	0.00	31.46
01MW-07	45.17	45.53	28.17	np	23.55	0.00	21.62
01MW-08	45.21	45.63	24.93	np	16.68	0.00	28.53
01MW-09 ^{1/}	43.91	44.37	24.70	np	17.24	0.00	26.67
01MW-10	45.02	45.35	24.90	22.95	24.35	1.40	21.79
01MW-11	46.10	46.45	29.90	np	22.90	0.00	23.20
01MW-12	45.84	46.29	20.00	np	6.98	0.00	38.86
01MW-13	46.36	46.81	19.88	np	6.67	0.00	39.69
01MW-15	50.89	50.89	30.00	np	22.91	0.00	27.98
01MW-16	44.95	44.95	20.00	17.67	17.97	0.30	27.22
01MW-17	59.42	59.42	30.00	np	19.90	0.00	39.52
01MW-18	45.18	45.68	25.00	np	17.53	0.00	27.65
01MW-19	45.35	45.85	25.00	np	16.64	0.00	28.71
01MW-20	46.27	46.77	25.00	np	16.54	0.00	29.73
01MW-21	46.21	46.52	25.00	np	7.49	0.00	38.72
01MW-22	46.11	46.47	25.00	6.95	6.97	0.02	39.16
01MW-23 ^{1/}	45.81	46.11	25.00	7.37	7.48	0.11	38.42
01MW-24	na	44.59	25.00	na	na	na	na
01MW-25	na	44.61	25.00	na	na	na	na
01MW-26	46.24	46.71	25.00	np	14.28	0.00	31.96
01MW-27	46.33	46.7	25.00	np	14.70	0.00	31.63
01MW-28	45.54	46.3	25.00	14.03	15.58	1.55	31.20
01MW-29 ¹⁷	45.57	45.92	25.00	na	na	na	na
,	Ø.	275	50 West Commo	dore Way			
02MW-01	24.19	24.72	19.60	np	6.04	0.00	18.15
02MW-02	20.06	20.57	9.90	np	2.63	0.00	17.43
02MW-03	27.86	28.41	19.75	np	9.62	0.00	18.24
02MW-04	27.17	27.59	20.05	np	9.49	0.00	17.68
02MW-05	36.59	37.05	33.85	np	16.64	0.00	19.95
02MW-06	26.54	27.00	19.97	np	8.81	0.00	17.73
02MW-07	20.85	21.39	12.20	np	3.31	0.00	17.54

Abbreviations and Acronyms:

bgs - below ground surface

msl – mean sea level na – water level was not determined due to presence of product

np - no product detected

Notes:

1 Water elevation may be influenced by passive product skimmer installed in the well.

Table 4-1. Well Sampling Parameters, November 2004

Well	рН	Temperature (Celsius)	Conductivity (mS/cm)	Turbidity (NTU)
	27	37 West Commod	ore Way	
01MW-02	6.7	14.4	623	1.0
01MW-03	6.6	15.3	361	0.0
01MW-08	7.0	12.9	812	8.0
01MW-09	6.8	15.2	632	48.0
01MW-11	7.0	13.9	623	6.0
01MW-12	6.6	12.2	683	0.0
01MW-13	6.6	12.8	778	0.0
01MW-17	7.1	11.4	865	13.0
01MW-26	6.6	15.0	491	0.0
	27	750 West Commod	ore Way	
02MW-01	6.3	13.2	370	4.8
02MW-02	6.5	13.3	420	0.0
02MW-04	6.6	13.5	737	0.0
02MW-05	6.3	15.6	779	34.0
02MW-07	6.4	12.7	98	3.0

Abbreviations and Acronyms: mS/cm – millisiemens per centimeter NTU – nephelometreic turbidity unit

Time Oil Company Quarterly Groundwater Sampling Report for November 2004 2737 and 2750 West Commodore Way

Table 4-2. Groundwater Results from 2737 West Commodore Way, November 2004

Sample	PCP (μg/L)	Diesel (mg/L)	Oil (mg/L)	Gas (μg/L)	Benzene (μg/L)	Toluene (μg/L)	Ethylbenzene (μg/L)	Xylene (μg/L)
Action Level	1517	0.52/	0.52/	800 ^{3/} 1,000 ^{4/}	A STATE OF THE PERSON NAMED IN COLUMN 2 IS NOT THE PERSON NAMED IN	17,500 ^{5/}	32,0005/	$1,000^{2/}$
01MW-02	na	0.377	< 0.500	20,100	8,600	68.0	207	572
01MW-03	na	0.925	< 0.500	9,320	3,110	27.0	121	91.4
01MW-08	na	< 0.250	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00
01MW-09	na	0.736	< 0.500	5,620	808	25.9	205	559
01MW-11	na	< 0.250	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00
01MW-12	na	< 0.250	< 0.500	1,320	276	6.53	16.1	20.5
01MW-13	na	< 0.250	< 0.500	391	1.71	< 0.500	0.774	2.99
01MW-17	na	< 0.250	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00
01MW-26A	20.3	< 0.250	< 0.500	1,130	131	6.94	55.0	38.6
01MW-26B	20.9	< 0.250	< 0.500	1,210	143	7.83	60.2	38.4
RPD	3%	nc	nc	6.8%	9%	12%	9%	1%

Abbreviations and acronyms:

mg/L - milligram per liter

μg/L - microgram per liter

MTCA - Model Toxics Control Act

NOAA - National Oceanic and Atmospheric Administration

na - no analysis requested

nc - not calculated

RPD - relative percent difference

SQuiRTTM - Screening Quick Reference Table

% - percent

< symbol indicates result is less than reporting limit

Notes:

Results above action levels in bold and italics

¹⁷NOAA SQuiRT™ value for freshwater continuous concentration

2/MTCA Method A

3/ MTCA Method A gasoline range with benzene present

4/ MTCA Method A gasoline range without benzene present

5/ NOAA SQuiRTTM value for freshwater maximum concentration

Table 4-3. Groundwater Results from 2750 West Commodore Way, November 2004

Sample	Diesel (mg/L)	Oil (mg/L)	Gas (μg/L)		Benzene (µg/L)	Toluene (µg/L)	Ethylbenzene (µg/L)	Xylenes (μg/L)	
Action Level	0.52/	0.52/	8003/	1,0004/	5,300 ^{5/}	17,500 ^{5/}	32,0005/	$1,000^{2/}$	
02MW-01	< 0.250	< 0.500	188		48.4	1.24	0.682	4.46	
02MW-02	< 0.250	< 0.500	< 50.0		< 0.500	< 0.500	< 0.500	< 1.00	
02MW-04A	< 0.250	< 0.500	3,340		22.7	25.6	215	220	
02MW-04B	< 0.250	< 0.500	3,250		21.7	24.1	188	211	
RPD	nc	nc	3	3%		6%	13%	4%	
02MW-05	< 0.250	< 0.500	178		< 0.500	< 0.500	< 0.500	< 1.00	
02MW-07	< 0.250	< 0.500	80.4		< 0.500	< 0.500	< 0.500	1.27	

Abbreviations and acronyms:

mg/L - milligram per liter

μg/L - microgram per liter

MTCA - Model Toxics Control Act

NOAA - National Oceanic and Atmospheric Administration

nc - not calculated

RPD - relative percent difference

SQuiRT™ - Screening Quick Reference Table

% - percent

< symbol indicates result is less than reporting limit

Notes:

Results above action levels in bold and italics

¹/NOAA SQuiRTTM value for freshwater continuous concentration

²/MTCA Method A

3/ MTCA Method A gasoline range with benzene present

4/ MTCA Method A gasoline range without benzene present

5/ NOAA SQuiRTTM value for freshwater maximum concentration

Annual Event/Fourth Quarter 2005 Groundwater Monitoring Event Site #01-600 Seattle, Washington

December 20, 2005

Prepared for

Time Oil Co. 2737 West Commodore Way Seattle, Washington

TABLE OF CONTENTS

			Page			
1.0	INTI	INTRODUCTION				
2.0	SITE	BACKGROUND	2-1			
3.0	GRC 3.1 3.2 3.3	OUNDWATER MONITORING GROUNDWATER ELEVATIONS GROUNDWATER SAMPLING METHODOLOGY PRELIMINARY GROUNDWATER SCREENING LEVELS	3-1 3-1 3-1 3-2			
4.0	4.1 4.2	OUNDWATER ANALYTICAL RESULTS 2737 WEST COMMODORE WAY (MAIN PROPERTY) 2750 WEST COMMODORE WAY (ADJACENT TO SHIP CANAL) PRODUCT SAMPLING	4-1 4-1 4-2 4-3			
5.0	SUM	IMARY AND CONCLUSIONS	5-1			
6.0	0 USE OF THIS REPORT					
7.0	REF	ERENCES	7-1			
		LIST OF FIGURES				
Figu	ıre	<u>Title</u>				
1 2 3 4 5 6 7 8		Vicinity Map Site Plan and Monitoring Well Locations Groundwater Elevation Contours – October 2005 Groundwater Analytical Results – October 2005 Gasoline-Range Petroleum Hydrocarbons in Groundwater – October 2005 Dissolved-Phase Benzene in Groundwater – October 2005 Diesel-Range Petroleum Hydrocarbons in Groundwater – October 2005 Dissolved-Phase PCP in Groundwater – October 2005				
		LIST OF TABLES				
<u>Tab</u>	<u>le</u>	<u>Title</u>				
1 2 3 4		Groundwater Elevations Groundwater Analytical Data Cumulative Groundwater Analytical Results Product Analytical Data				

LIST OF APPENDICES

Appendix Title

A Laboratory Analytical Report

1.0 INTRODUCTION

This report presents the results of the annual groundwater monitoring event conducted in fourth quarter 2005 (October 2005) by Landau Associates on behalf of Time Oil Co. (Time Oil) at the Time Oil Seattle Terminal, Site No. 01-600 (the site). The site is located at 2737 and 2750 West Commodore Way in Seattle, Washington (Figure 1). The two properties are adjacent to each other but on opposite sides of Commodore Way and, for the purposes of this report, will be discussed concurrently. These activities are being conducted by Time Oil as part of an independent cleanup action in progress under a Voluntary Cleanup Program agreement with the Washington State Department of Ecology (Ecology).

2.0 SITE BACKGROUND

The site is an inactive tank farm facility that was used to store gasoline, diesel, and various other liquid fuels and fuel additives. The site is surrounded by commercial and industrial properties to the east, south, and west and by the Lake Washington Ship Canal to the north. A site map showing the site topography, structures, and the locations of the groundwater monitoring wells is provided on Figure 2.

Time Oil has conducted investigations at the site since 1991, including underground storage tank (UST) removal, site assessments, monitoring well installation, and petroleum-impacted soil removal. Passive skimmer pumps were installed at five monitoring well locations beginning in 2001 and a dual-phase extraction (DPE) system was pilot-tested and permitted in 2003-04. Also, product vacuum extractions have been conducted on a periodic basis and monthly extractions are planned for the remainder of 2005. Additional future planned activities in 2005 include tank farm demolition, additional UST removal, and pipeline removal below the pier. Quarterly groundwater monitoring is expected to continue through at least 2008.

3.0 GROUNDWATER MONITORING

Quarterly groundwater monitoring activities began at the site in July 2001. Tetra Tech EC, Inc. conducted the groundwater monitoring activities through the first quarter of 2005. Landau Associates began groundwater monitoring and skimmer pump operation and maintenance during the second quarter of 2005. Landau Associates collected groundwater elevation data from 35 onsite monitoring wells, groundwater samples from 33 onsite monitoring wells (Figures 3, 4, 5, 6, 7, and 8), and product samples from 6 monitoring wells. Nineteen of these wells are sampled on an annual basis; the remainder of the wells are sampled on a quarterly basis. The results of the fourth quarter 2005 event are provided in the following sections.

3.1 GROUNDWATER ELEVATIONS

Groundwater elevation data and product thickness measurements, where observed, were collected on October 24, 2005; these data are shown in Table 1. The depth to water and/or product at each location ranged from 2.46 to 23.54 ft below the top of casing. The groundwater elevation data indicate an approximate groundwater flow direction to the north toward the Ship Canal, as shown on Figure 3. Product was observed in 9 of the 35 monitoring wells (01MW-05, 01MW-10, 01MW-16, 01MW-22 through 01MW-25, 01MW-28, and 01MW-29) at thicknesses ranging from 0.25 ft (01MW-22) to 3.07 ft (01MW-05). Product thickness and the specific gravity of the product (0.8, based on an average estimate of the specific gravity of gasoline and oils) were taken into account in the calculation of the groundwater elevations, as shown in Table 1.

3.2 GROUNDWATER SAMPLING METHODOLOGY

Groundwater samples were collected on October 24 through 26 from 33 onsite groundwater monitoring wells (Figure 3, Table 2). Prior to sampling, the depth to water in each well was measured using a decontaminated electronic oil/water interface probe. New polyethylene tubing was installed in wells (where no tubing was present from previous sampling events) and the wells were purged using a peristaltic pump and low-flow groundwater sampling techniques until the water quality parameters [turbidity, pH, temperature, conductivity, oxidation-reduction potential (ORP), and dissolved oxygen (DO)] were stable (concurrent readings within 10 percent). The groundwater samples were then collected and replicate water quality parameters were measured during sample collection to verify groundwater stability. Groundwater samples were collected directly into sample containers provided by North Creek Analytical Laboratories, Inc. (NCA), stored in a sample cooler on ice, and submitted with chain-of-custody documentation to NCA.

Groundwater samples collected from wells that contained measurable product were collected by inserting \%-inch back-pressured polyethylene tubing into the well and through the product layer. Smaller diameter tubing (\%-inch) was back-pressured and inserted into the \%-inch tubing to minimize introduction of product into the groundwater sample. Groundwater was collected using a peristaltic pump, as described above.

3.3 PRELIMINARY GROUNDWATER SCREENING LEVELS

To provide some context for evaluation of the analytical results from the quarterly monitoring event, the data were compared to available published regulatory values for preliminary screening purposes. The preliminary screening levels for detected analytes are referenced in Table 2.

Previous quarterly groundwater monitoring reports prepared by Tetra Tech (2005) used the National Oceanic and Atmospheric Administration (NOAA) Screening Quick Reference Table (SQuiRT) values. These values were taken from the National Ambient Water Quality Criteria for protection of aquatic organisms. The portion of the Lake Washington Ship Canal (Ship Canal) that is adjacent to the site has been designated as "Lake Class" in Chapter 173-201A-130 (58) of the Washington Administrative Code defining Water Quality Standards for Surface Waters of the State of Washington. The "Lake Class" designation specifically defines the current or potential future use for the Ship Canal as drinking water; fish/shellfish migration, rearing, spawning, or harvesting; wildlife habitat; recreation; and commerce and navigation.

Therefore, the appropriate preliminary screening levels for this site for assessment of groundwater concentrations that are protective of surface water in the Ship Canal are the Ecology Model Toxics Control Act (MTCA) Method B Fresh Surface Water criteria for the protection of groundwater as fresh surface water (Ecology 2001). For each analyte, the most conservative appropriate Method B value was used as the screening level. Typically, these values are analogous to the National Ambient Water Quality Criteria for protection of human health (water ingestion and fish consumption). Where no MTCA Method B values were available (e.g., diesel-range, gasoline-range, and lube oil-range petroleum hydrocarbons), MTCA Method A criteria for the protection of groundwater as drinking water were used.

4.0 GROUNDWATER ANALYTICAL RESULTS

Groundwater samples were analyzed for benzene, toluene, ethylbenzene, and xylenes (BTEX) using U.S. Environmental Protection Agency (EPA) Method 8021, and gasoline-range total petroleum hydrocarbons (TPH) using Ecology Method NWTPH-Gx. Selected samples were also analyzed for dieselrange TPH using Ecology Method NWTPH-Dx and pentachlorophenol (PCP) using EPA Method 8270-SIM. In addition to the 33 groundwater samples, two field duplicate samples, 01MW-59 and 02MW-25, were collected from 01MW-09 and 02MW-05, respectively. Both duplicate samples were analyzed for BTEX and gasoline-range TPH, for quality assurance/quality control purposes. Sample 01MW-59 was also analyzed for diesel-range TPH. The laboratory analytical data report and data validation memorandum are provided in Appendix A. The analytical results from the groundwater monitoring event completed on October 24 through 26, 2005 are included in Table 2. A comparison of the analytical results for each analyte throughout 2005 is summarized in Table 3. The laboratory analytical results for samples of product collected from six wells (01MW-16, 01MW-22, 01MW-23, 01MW-25, 01MW-28, and 01MW-29) are provided in Table 4. The analytical results for all analytes at each monitoring well are shown on Figure 4. Concentration contours for the gasoline-range petroleum hydrocarbon concentrations in groundwater for the October 2005 event are shown on Figure 5; the benzene concentrations are contoured on Figure 6, the diesel-range petroleum hydrocarbon concentrations are contoured on Figure 7, and the PCP concentrations are contoured on Figure 8. For Figures 5, 6, and 7, the minimum contour represents the preliminary groundwater screening level. A summary of the analytical results is provided below by property.

4.1 2737 WEST COMMODORE WAY (MAIN PROPERTY)

- Diesel-range petroleum hydrocarbons were detected in the groundwater samples from wells 01MW-02, 01MW-03, 01MW-09, 01MW-18, 01MW-19, and 01MW-21 at concentrations ranging from 0.256 to 1.44 milligrams per liter (mg/L); concentrations at four of the six samples contained concentrations greater than the MTCA Method A preliminary screening level of 0.5 mg/L.
- Lube oil-range petroleum hydrocarbons were not detected in any of the groundwater samples collected during fourth quarter 2005.
- Gasoline-range petroleum hydrocarbons were detected in the groundwater samples from wells 01MW-02, 01MW-03, 01MW-04, 01MW-09, 01MW-12, 01MW-13, 01MW-18, 01MW-19, 01MW-20, 01MW-21, 01MW-26, and 01MW-27 at concentrations ranging from 363 to 25,700 micrograms per liter (μg/L); concentrations at 10 of the 12 locations contained concentrations greater than the MTCA Method A preliminary screening level of 800 μg/L (when benzene is present).

- Benzene was detected in groundwater samples from wells 01MW-02, 01MW-03, 01MW-04, 01MW-09, 01MW-12, 01MW-13, 01MW-18, 01MW-19, 01MW-20, 01MW-21, 01MW-26, and 01MW-27 at concentrations ranging from 1.38 to 9,840 μg/L, with the maximum concentration observed at well 01MW-03. All of the detected benzene concentrations are greater than the MTCA Method B preliminary screening level of 1.2 μg/L.
- Toluene was detected in groundwater samples from wells 01MW-02, 01MW-03, 01MW-04, 01MW-09, 01MW-12, 01MW-18, 01MW-19, 01MW-20, 01MW-26, and 01MW-27 at concentrations ranging from 2.88 to 986 μg/L, which are all less than the MTCA Method B preliminary screening level of 1,000 μg/L.
- Ethylbenzene was detected in groundwater samples from wells 01MW-02, 01MW-03, 01MW-04, 01MW-09, 01MW-12, 01MW-18, 01MW-19, 01MW-20, 01MW-26, and 01MW-27 at concentrations ranging from 14.3 to 894 μ g/L. Only one sample (01MW-19 with a concentration of 894 μ g/L) was above the MTCA Method B preliminary screening level of 700 μ g/L.
- Total xylenes were detected in groundwater samples from wells 01MW-02, 01MW-03, 01MW-04, 01MW-09, 01MW-12, 01MW-13, 01MW-18, 01MW-19, 01MW-20, 01MW-21, 01MW-26, and 01MW-27 at concentrations ranging from 2.26 to 4,610 μg/L, which are all less than the MTCA Method B preliminary screening level of 10,000 μg/L.
- PCP was detected in the groundwater samples from 01MW-01, 01MW-22, 01MW-23, and 01MW-26 at concentrations of 6.79, 273, 19.8, and 9 μg/L, respectively. All detected concentrations are greater than the MTCA Method B preliminary screening level of 0.01 μg/L.

4.2 2750 WEST COMMODORE WAY (ADJACENT TO SHIP CANAL)

- Concentrations of all analyzed constituents (gasoline-range hydrocarbons and BTEX) were below laboratory reporting limits at the two wells closest to the Ship Canal, 02MW-02 and 02MW-07, and in well 02MW-06. Except as listed below, concentrations of analyzed constituents were also below laboratory reporting limits.
- Gasoline-range petroleum hydrocarbons were detected at a concentration greater than the MTCA Method A preliminary screening level of 800 μg/L (when benzene is present) in the groundwater sample from well 02MW-04, at an estimated concentration of 3,990 μg/L. Gasoline-range petroleum hydrocarbons were also detected at wells 02MW-01 and 02MW-05 at concentrations of 379 and 335 μg/L, respectively.
- Benzene was detected at concentrations greater than the MTCA Method B preliminary screening level of 1.2 μg/L in groundwater samples from wells 02MW-01 and 02MW-04 at concentrations of 52.2 and 29.2 μg/L, respectively. In addition, benzene was detected at well 02MW-03 at a concentration of 0.894 μg/L.
- Toluene was detected in the groundwater sample from well 02MW-04 at a concentration of 262 μg/L, which is less than the MTCA Method B preliminary screening level of 1,000 μg/L.

- Ethylbenzene was detected in groundwater samples from wells 02MW-01 and 02MW-04 at concentrations of 1.38 μg/L and 24.9 μg/L, respectively, which are less than the MTCA Method B preliminary screening level of 700 μg/L.
- Total xylenes were detected in groundwater samples from wells 02MW-01 and 02MW-04 at concentrations of 3.84 and 263 μg/L, respectively, which are less than the MTCA Method B preliminary cleanup level of 10,000 μg/L.

4.3 PRODUCT SAMPLING

Passive skimmer pumps are currently installed in monitoring wells 01MW-05, 01MW-09, 01MW-23, 01MW-25, and 01MW-29. Product (if present) was not removed from the passive skimmers during fourth quarter 2005. In an effort to determine whether the product on site contains PCP, product samples from wells 01MW-16, 01MW-22, 01MW-23, 01MW-25, 01MW-28, and 01MW-29 were collected and analyzed for PCP. The product results are provided in Table 4. The results indicate that the product in all the wells sampled consists predominantly of diesel- and lube oil-range petroleum constituents and does not contain PCP. This information will be used to identify appropriate disposal options for product removed from the passive skimmers and during planned monthly batch vacuum extractions of product from site wells.

5.0 SUMMARY AND CONCLUSIONS

Gasoline-range petroleum hydrocarbons and benzene were detected at concentrations exceeding MTCA screening levels in wells on both properties in areas including the northern portion of the tank farm and the office building toward Commodore Way and in isolated areas to the north of Commodore Way, as shown on Figures 3, 5, and 6. On the south side of Commodore Way, diesel-range petroleum hydrocarbons also exceeded MTCA screening levels, as shown on Figure 7, but in a less widespread area of the tank farm. PCP exceeded the MTCA screening level where analyzed, but only in the former PCP mixing area (Figure 8). The maximum concentrations of gasoline-range petroleum hydrocarbons and benzene constituents occur in areas north and east of the office building on the 2737 Commodore Way property. Overall, concentrations of the petroleum constituents exceeding the MTCA preliminary screening levels are greater on the 2737 Commodore Way property than on the 2750 Commodore Way property (adjacent to the Ship Canal) and appear to decrease between the two areas. However, this decrease could reflect the distribution of monitoring well locations between the two areas.

In general, detected analytes were found to have decreased from levels observed in the third quarter of 2005 (July) on both the 2737 and 2750 Commodore Way properties (Table 3), with the exception of monitoring wells 01MW-03, 01MW-12, and 02MW-01. During fourth quarter 2005, there were no detections of target analytes in wells 02MW-02 or 02MW-07, which are located adjacent to the Ship Canal and downgradient from the site (Figure 4).

Due to only a 1-liter capacity and quarterly maintenance, the passive skimmer pumps are not able to remove a quantity of product that will have a measurable impact on the groundwater quality. Monthly batch vacuum extractions of product from site wells should be more effective in removing the product. Due to potential concentrations of PCP in the product, the vacuum extractions are scheduled to begin following the determination of a proper disposal method and facility. Based on the lack of PCP in the product, it is anticipated that vacuum extractions will be conducted in the near future to remove the product in areas where there is not a potential for the extractions to influence the PCP distribution in groundwater.

6.0 USE OF THIS REPORT

This quarterly groundwater report has been prepared by Landau Associates for the exclusive use

of Time Oil for specific application to the Seattle Terminal No. 01-600 site. Services for this project were

conducted in accordance with the Environmental Services Contract between Time Oil Co. and Landau

Associates, Inc. Landau Associates has performed our services in accordance with generally accepted

engineering and consulting standards for environmental work in effect at the time and locality services

were performed. The reuse of information, conclusions, and recommendations provided herein by Time

Oil or others in connection with any site other than the Seattle Terminal without Landau Associates'

written permission shall be at the sole risk of Time Oil and without liability to Landau Associates.

This document has been prepared under the supervision and direction of the following key staff.

LANDAU ASSOCIATES, INC.

Evalyn I. Albright

Senior Staff Environmental Scientist

Rebekah Brooks, L.G. Associate Hydrogeologist

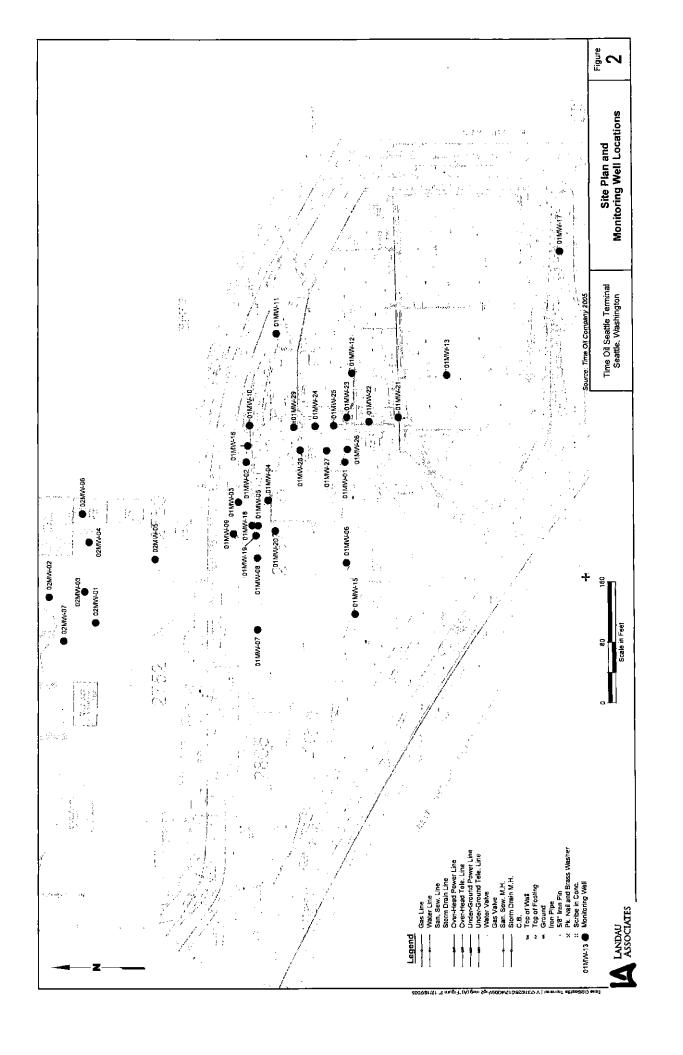
EIA/RB/ccy

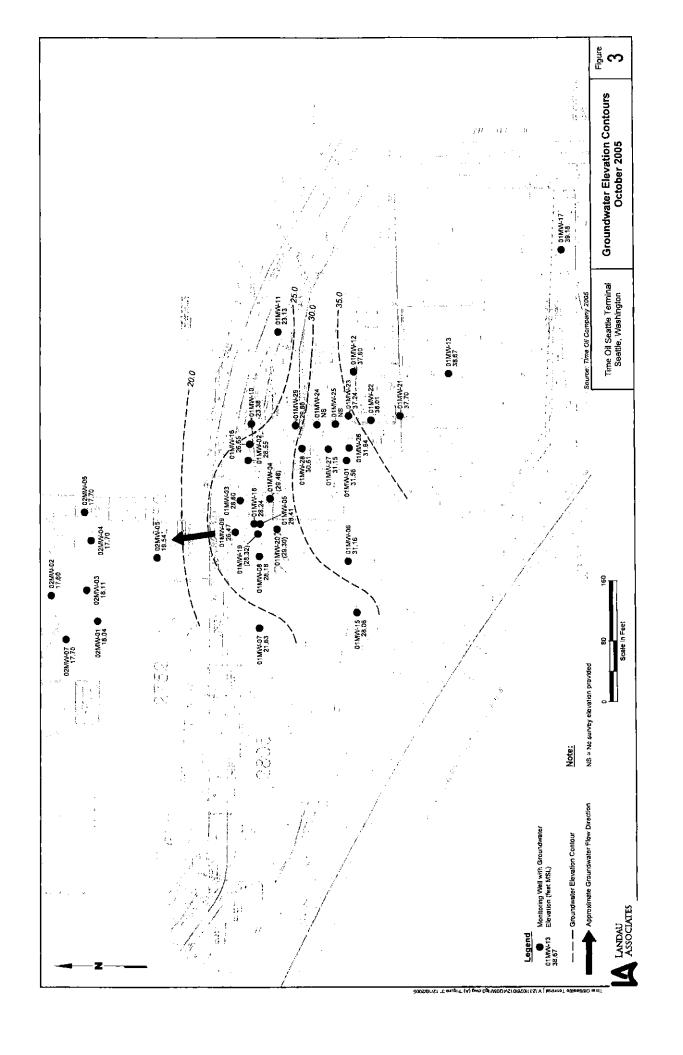
No. 231028.010.011

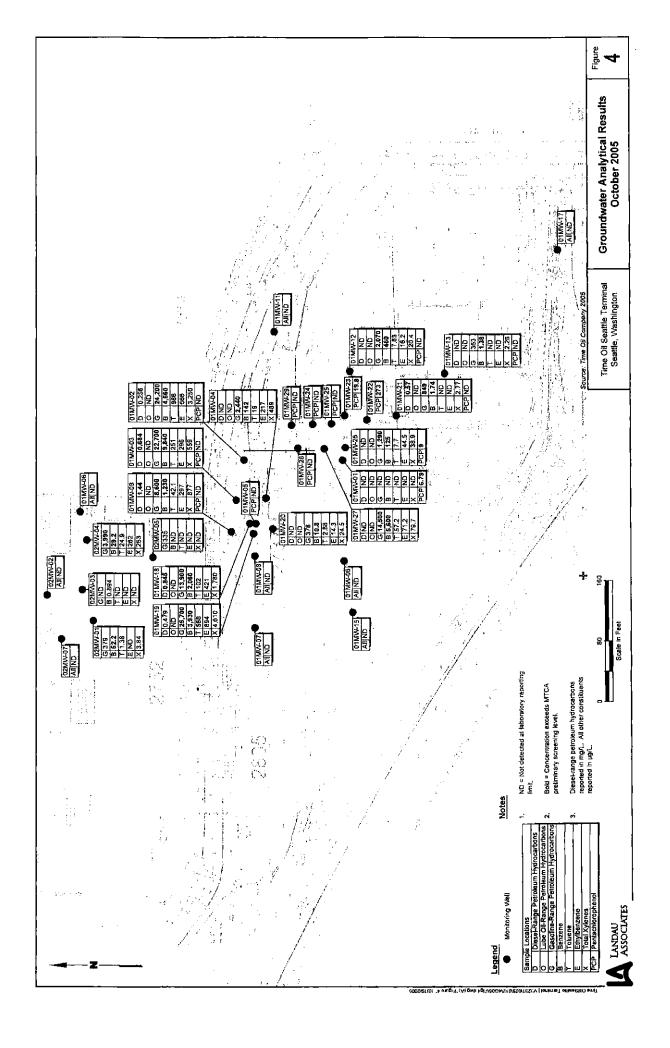
LANDAU ASSOCIATES

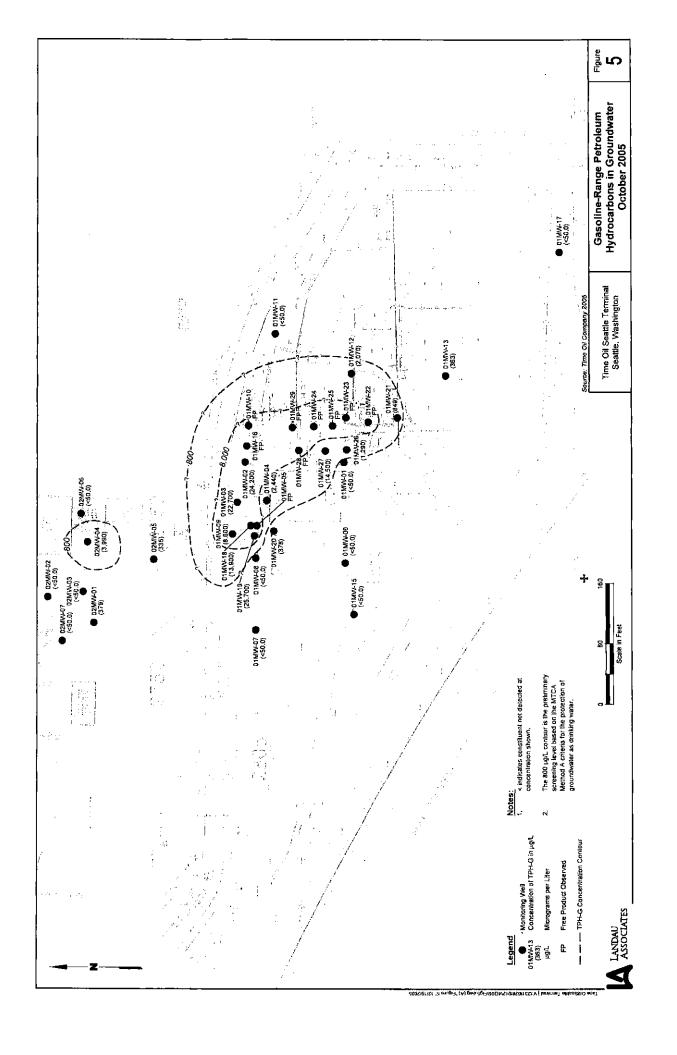
7.0 REFERENCES

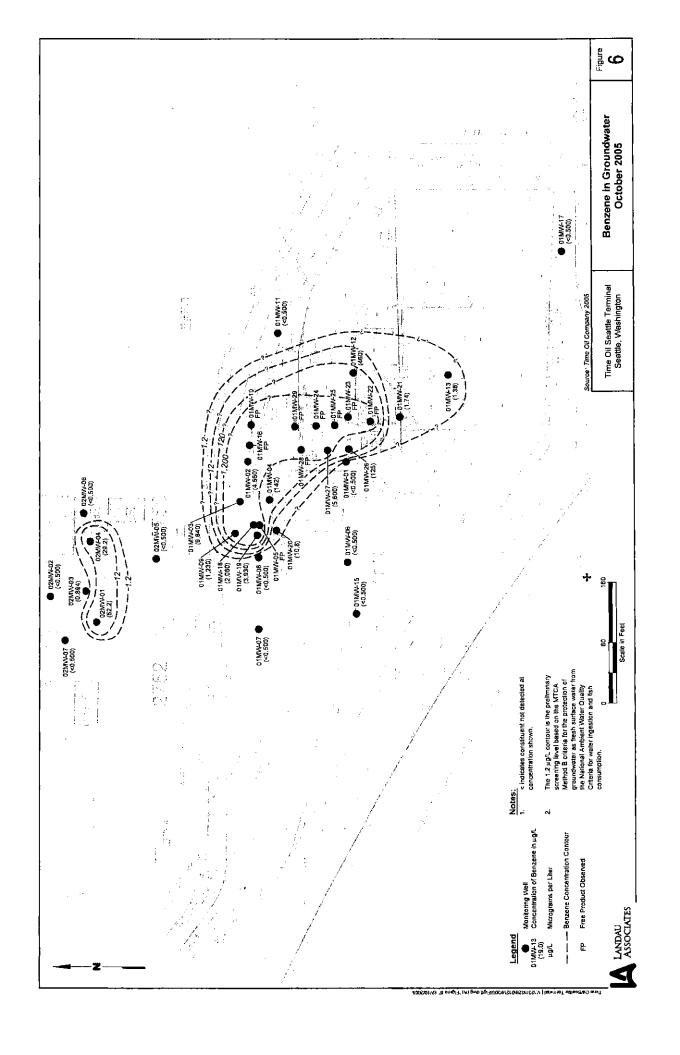
Ecology. 2001. *Model Toxics Control Act Cleanup Regulation, Chapter 173-340 WAC*. Publication No. 94-06. Washington State Department of Ecology, Toxics Cleanup Program. Amended February 12.

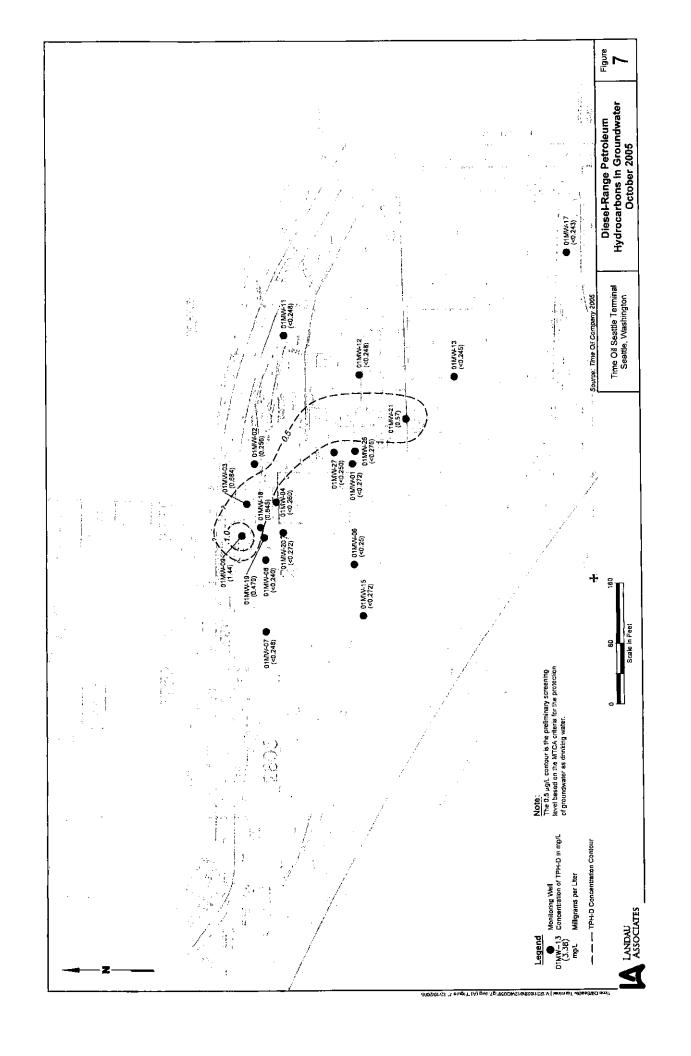

Lenhard, R.J. and J.C. Parker. 1990. "Estimation of Free Hydrocarbon Volume from Fluid Levels in Monitoring Wells." *Groundwater*. Vol. 28, No. 1, pp. 57-67.


Tetra Tech. 2005. Draft: Quarterly Groundwater Sampling Report for January 2005, 2737 West Commodore Way and 2750 West Commodore Way, Seattle, Washington. March.






Seattle, Washington



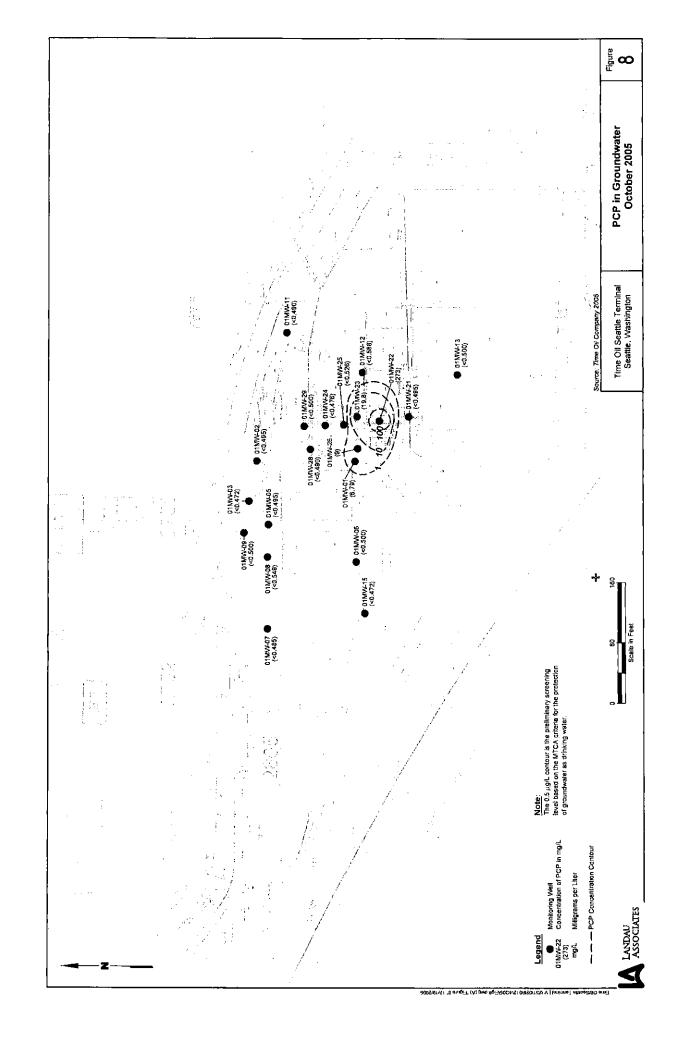


TABLE 1 GROUNDWATER ELEVATIONS TIME OIL SITE #01-600 - SEATTLE TERMINAL SEATTLE, WASHINGTON

Location	Well Casing Elevation	Time	Depth to Water	Depth to Product	Product Thickness	Groundwater Elevation	Comments
01MW-01	46.48	11:40	14.92	_		31.56	Product odor
01MW-02	44.78	12:20	16.23			28.55	Product odor
01MW-03	44.35	12:25	15.75			28.60	
01MW-04*	45.08	16:32	15.60			29.48	
01MW-05	45.40	12:45	19.45	16.38	3.07	28.41	Sheen, strong odor
01MW-06	47.74	9:39	16.58			31.16	Petroluem odor
01MW-07	45.17	9:52	23.54			21.63	
01MW-08	45.21	9:59	17.03			28.18	
01MW-09	43.91	10:05	17.44			26.47	Sheen, strong odor
01MW-10	45.02	11:55	23.47	21.18	2.29	23.38	Light colored product
01MW-11	46.10	10:10	22.97			23.13	Slight product odor
01MW-12	45.84	10:57	8.24			37.60	Strong product odor
01MW-13	46.36	9:32	7.69			38.67	
01MW-15	50.89	9:42	22.83			28.06	
01MW-16	44.95	12:10	19.40	18.03	1.37	26.65	Light colored product
01MW-17	59.42	9:27	20.24			39.18	
01MW-18	45.18	12:40	16.94			28.24	Strong product odor
01MW-19	45.35	12:30	17.03			28.32	Strong product odor
01MW-20	46.27	12:35	16.97			29.30	Strong product odor
01MW-21	46.21	10:20	8.51			37.70	Well under pressure; strong product odor
01MW-22	46.11	10:24	8.30	8.05	0.25	38.01	Dark black product
01MW-23	45.81	10:36	9.04	8.45	0.59	37.24	Dark black product
01MW-24	NS	11:05	9.37	9.10	0.27	***	Light colored product
01MW-25	NS	11:26	10.21	8.54	1.67		Dark black product
01MW-26	46.24	11:31	14.60			31.64	Product odor
01MW-27	46.33	11:43	15.18			31.15	Sheen on probe
01MW-28	45.54	11:48	16.50	14.54	1.96	30.61	Dark black product and light colored product
01MW-29	45.57	11:21	16.72	15.46	1.26	29.86	Light colored product
02MW-01	24.19	8:48	6.15			18.04	
02MW-02	20.06	8:28	2.46			17.60	
02MW-03	27.86	9:05	9.75			18.11	
02MW-04	27.17	9:01	9.47			17.70	
02MW-05	36.59	8:55	17. 0 5			19.54	
02MW-06	26.54	8:58	8.84			17.70	
02MW-07	20.85	8:45	3.15			17.70	

All units in feet, mean sea level.

Where light nonaqueous phase liquid (LNAPL) thickness was measured, groundwater elevation was adjusted to account for the presence of LNAPL in the well using the method described in Lenhard and Parker (1990).

Water levels collected on 10/24/2005.

^{*} Water level collected on 10/25/05.

NS - No survey elevation provided.

TABLE 2
GROUNDWATER ANALYTICAL DATA
TIME OIL SITE #01-600 - SEATTLE TERMINAL
SEATTLE, WASHINGTON

	-								
	Screening Criteria	01MW-01 B5J0554-12 10/25/2005	01MW-02 B5J0554-08 10/25/2005	01MW-03 B5J0554-15 10/25/2005	01MW-04 B5J0554-16 10/25/2005	01MVV-05 B5J0581-13 10/26/2005	01MW-06 B5J0554-09 10/25/2005	01MW-07 B5J0545-09 10/24/2005	01MVV-08 B5J0554-01 10/25/2005
DIESEL-RANGE HYDROCARBONS NWTPH-Dx (mg/L) Diesel Range Hydrocarbons Lube Oil Range Hydrocarbons	0.5 (a) 0.5 (a)	0.272 U 0.543 U	0.256 0.476 U	0.684 0.532 U	0.260 U 0.521 U	N N A A	0.25 U 0.500 U	0.248 U 0.495 U	0.240 U 0.481 U
GASOLINE AND BTEX NWTPH-Gx AND EPA METHOD 8021B (µg/L) Gasoline Range Hydrocarbons Renzene	800 (a)	50.0 U	24,200	22,700	2,440	N N	50.0 U 5.00 U 5.00	50.0 U 0.500 U 0.500	50.0 U
Toluene Ethylbenzene Xvienes (total)	1000 (b) 700 (b) 10,000 (b)	0.500 U 0.500 U 0.500 U	986 666 3,250	251 296 559	19 217 489	Z Z Z Z	0.500 U 0.500 U 1.00 U	0.500 U 0.500 U 0.500 U	0.500 U 0.500 U 0.500 U
PENTACHLOROPHENOL (PCP) EPA Method 8270-SIM (µg/L) Pentachlorophenol	0.01 (b)	6.79	0.495	0.472 U	g Z	0.495 U	0.500 U	0.485 U	0.549 ∪

Landau Associates

TABLE 2
GROUNDWATER ANALYTICAL DATA
TIME OIL SITE #01-600 - SEATTLE TERMINAL
SEATTLE, WASHINGTON

	Screening Criteria	01MW-09 85J0554-05 10/25/2005	Dup of 01 MW - 09 01MW-59 BSJ0554-06 10/25/2005	01MW-11 B5J0545-13 10/24/2005	01MW-12 85J0554-11 10/25/2005	01MW-13 B5J0545-12 10/24/2005	01MW-15 B5J0554-02 10/25/2005	01MW-17 B5J0545-11 10/24/2005	01MV4-18 B5J0554-07 10/25/2005
DIESEL-RANGE HYDROCARBONS NWTPH-Dx (mg/L,) Diesel Range Hydrocarbons Lube Oil Range Hydrocarbons	0.5 (a) 0.5 (a)	1,44 0.495 U	0.619 0.532 U	0.248 U 0,495 U	0.248 U 0.495 U	0.245 U 0.490 U	0.272 U 0.543 U	0.243 U 0.485 U	0.845 0.495 U
GASOLINE AND BTEX NWTPH-Gx AND EPA METHOD 8021B (µg/L) Gasoline Range Hydrocarbons Benzene Toluene Ethylbenzene	800 (a) 1.2 (b) 1000 (b) 700 (b)	8,600 1,230 42.1 297	9,480 1,440 36.9	50.0 U 0.500 U 0.500 U 0.500 U	2,070 460 7.83 16.2	363 1.38 0.500 U	50.0 U 0.500 U 0.500 U 0.500 U	0.000 0.000 0.000 0.000 0.000 0.000	13,900 2,060 102 421
Xylenes (total) PENTACHLOROPHENOL (PCP) EPA Method 8270-SIM (ug/L) Pentachlorophenol	10,000 (b)	778 U 005:0	725 0.485 U	1.06 U 0.490 U	20.4 0.588 U	2,26 0.500 U	0.472 U	NA A	9,'t

Page 3 of 5

	Screening Criteria	01MW-19 B5J0554-14 10/25/2005	01MVV-20 BSJ0554-13 10/25/2005	01MW-21 B\$J0554-10 10/25/2005	01MW-22 B\$J0\$45-11 10/26/2005	01MW-23 B5J0581-03 10/26/2005	01MW-24 B5J0581-07 10/26/2005	01MW-25 BSJ0581-05 10/26/2005
DIESEL-RANGE HYDROCARBONS NWTPH-Dx (mg/L) Diesel Range Hydrocarbons Lube Oil Range Hydrocarbons	0.5 (a) 0.5 (a)	0.479 0.500 U	0.272 U 0.543 U	0.57 0.481 U	₹ ₹ 2 2	A A A	∀ ∀ Z Z	N N A
GASOLINE AND BTEX NWTPH-GX AND EPA METHOD 8021B (µg/L) Gasoline Range Hydrocarbons Benzene Toluene Ethylbenzene Xylenes (total)	800 (a) 1.2 (b) 1000 (b) 700 (b) 10,000 (b)	25,700 3,930 568 894 4,610	378 10.8 2.88 14.3 24.5	849 1.74 0.500 U 0.500 U 2.77	¥	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	8 8 8 8 8 8 8 8 8 8 8	X
PENTACHLOROPHENOL (PCP) EPA Method 8270-SIN (µg/L) Pentachlorophenol	0.01 (b)	₹	ď Z	0.495 U	273	19.8	0.476 U	0.526 U

TABLE 2
GROUNDWATER ANALYTICAL DATA
TIME OIL SITE #01-600 - SEATTLE TERMINAL
SEATTLE, WASHINGTON

	Screening Criteria	01MV/26 B5J0554-03 10/25/2005	01MVV-27 B5J0554-04 10/25/2005	01MW-28 B5J0581-10 10/26/2005	01MVV-29 B\$J0581-08 10/26/2005	02MW-01 B5J0545-03 10/24/2005	02MW-02 85J0545-01 10/24/2005	02MW-03 B5J0545-06 10/24/2005
DIESEL-RANGE HYDROCARBONS NWTPH-Dx (mg/L) Diesel Range Hydrocarbons Lube Oil Range Hydrocarbons	0.5 (a) 0.5 (a)	0.275 U 0.549 U	0.256 U 0.506 U	N N A A	& & Z	Z Z Z	∀ ∀ Z Ż	N N N A A
GASOLINE AND BTEX NWTPH-Gx AND EPA METHOD 8021B (µg/L) Gasoline Range Hydrocarbons Benzene Toluene	800 (a) 1.2 (b) 1000 (b)	1250	14,500 5,600 57.2	A A A A A A A A A A A A A A A A A A A	¥ ¥ ¥ \$	379	50.0 U	50.0 U 0.894 0.500 U
Ethylbenzene Xylenes (total)	700 (b) 10,000 (b)	38.9 38.9	7.67	A X	Z Z	3.84 3.84	1.00 U	0.550 0.500 U
PENTACHLOROPHENOL (PCP) EPA Method 8270-SIM (µg/L) Pentachlorophenol	0.01 (b)	(a)	V V	0.490 U	0.500 U	Ϋ́	Y Y	4

TIME OIL SITE #01-600 - SEATTLE TERMINAL **GROUNDWATER ANALYTICAL DATA** SEATTLE, WASHINGTON **TABLE 2**

				Dup of 02MW-05		!	
	Screening Criteria	02MVV-04 B5J0545-08 10/24/2005	02MW-05 B5J0545-05 10/24/2005	02MW-25 B5J0545-04 10/24/2005	02MW-06 B5J0545-07 10/24/2005	02MVV-07 BSJ0545-02 10/24/2005	
DIESEL-RANGE HYDROCARBONS NWTPH-Dx (mg/L) Diesel Range Hydrocarbons Lube Oil Range Hydrocarbons	0.5 (a) 0.5 (a)	N N NA	N N	A A	Z Z Ą	N N A	
GASOLINE AND BTEX NWTPH-Gx AND EPA METHOD 8021B (µg/L) Gasoline Rance Hydrocarbons	800 (a)	3,990	335	316	50.0 U	50.0 U	
Benzene	1.2 (b)	29.2	0.500 U	U.500 U	0.500 U	0.500 U	
Toltrene	1000 (b)	24.9	0.500 U	0.500 U	0.500 ບ	0.500 U	
Ethylbenzene	700 (b)	262	0.500 U	0.500 U	0.500	0.500 U	
Xylenes (total)	10,000 (b)	263	1.00 U	1.00 U	1.00 U	1.00 U	
PENTACHLOROPHENOL (PCP) EPA Method 8270-SIM (µg/L.) Pentachlorophenol	0.01 (b)	¥ Z	X A	₹ Z	Y Y	ď Z	

Notes:

(a) Model Toxics Control Act (MTCA) Method A criteria for the protection of groundwater as drinking water

(b) Model Toxics Control Act (MTCA) Method B criteria for the protection of groundwater as fresh surface water.

Values based on ambient water quality oriting for the protection of human health

NA = Indicates the compound was not analyzed for this sample

Bold indicates the compound was detected above the laboratory reporting limit

Box indicates exceedance of screening criteria.

U= Indicates the compound was undefected at the reported concentration J= Indicates the analyte was positively identified; the associated numerical value is the approximate concentration

of the analyte in the sample.

TABLE 3
CUMULATIVE GROUNDWATER ANALYTICAL RESULTS
JANUARY 2005 TO PRESENT TIME OIL #01-600 SEATTLE TERMINAL

Xylene	(µg/L)	10,000 (a)	1,000	1,340	2,570	3,250	24.7	27.1	35.3	559	< 1.00	< 1.00	< 1.00	< 1.00	872	972	964	1,110	877	725	< 1.00	< 1.00	< 1.00	< 1.00	13	13.5	21.2	20.4
Ethylbenzene	(hg/L)	(9) 002	290	457	664	999	32.6	23.5	10.5	296	< 0.500	< 0.500	< 0.500	< 0.500	231	281	261	304	297	285	< 0.500	< 0.500	< 0.500	< 0.500	14.8	15.4	16.3	16.2
Toluene	(µg/L)	1000 (b)	218	355	735	986	17.1	13.4	13.4	251	< 0.500	< 0.500	< 0.500	< 0.500	45.7	63.4	41.9	47.1	42.1	36.9	< 0.500	< 0.500	< 0.500	< 0.500	5.48	4.36	6.87	7.83
Benzene	(µg/L)	1.2 (b)	12,600	16,100	10,400	4,660	729	2,550	957	9,840	0.582	< 0.500	< 0.500	< 0.500	1,130	1,200	900	1,160	1,230	1,440	< 0.500	< 0.500	< 0.500	< 0.500	195	372	419	460
Gas	(µ9/L)	800 (a)	31,300	33,400	27,600	24,200	2,720	5,690	4,200	22,700	< 50.0	< 50.0	< 50.0	< 50.0	6,300	7,620	9,450	9,840	8,600	9,480	< 50.0	< 50.0	< 50.0	< 50.0	1,090	1,650	1,800	2,070
Oil	(mg/L)	0.5 (a)	< 0.500	< 0.500	< 0.500	< 0.476	< 0.500	< 0.500	< 0.500	< 0.532	< 0.500	< 0.500	< 0.500	< 0.481	< 0.500	< 0.500	< 0.500	× 1.00	< 0.495	< 0.532	< 0.500	< 0.500	< 0.500	< 0.495	< 0.500	< 2.50	1.25	< 0.495
Diesel	(mg/L)	0.5 (a)	0.433	2.06	2.24	0.256	0.762	1.12	0.998	0.684	< 0.250	0.833	0.422	< 0.240	0.646	1.78	20.9	5.1	1.44	0.619	< 0.250	1.23	1.19	< 0.248	0.294	5.76	7.14	< 0.248
PCP	(hg/L)	0.01 (b)	A A	Ą	¥	< 0.495	¥	¥	¥	< 0.472	Ą	ž	¥	< 0.549	A A	¥	Ą	¥	< 0.500	< 0.485	Ą	ΑΝ	Ą	< 0.490	A A	Ą	Ą	< 0.588
	Date	evel	01/05/2005	04/25/2005	07/26/2005	10/25/2005	01/05/2005	04/25/2005	07/26/2005	10/25/2005	01/05/2005	04/25/2005	07/26/2005	10/25/2005	01/05/2005	04/25/2005	07/26/2005	07/26/2005	10/25/2005	10/25/2005	01/05/2005	04/25/2005	07/26/2005	10/24/2005	01/05/2005	04/25/2005	07/26/2005	10/25/2005
	Sample	MTCA Screening Level	01MW-02	01MW-02	01MW-02	01MW-02	01MW-03	01MVV-03	01MW-03	01MW-03	01MW-08	01MW-08	01MW-08	01MW-08	01MW-09	01MW-09	01MW-09	01MW-09 DUP	01MW-09	01MW-09 DUP	01MW-11	01MW-11	01MW-11	01MW-11	01MW-12	01MW-12	01MW-12	01MW-12

TABLE 3
CUMULATIVE GROUNDWATER ANALYTICAL RESULTS
JANUARY 2005 TO PRESENT TIME OIL #01-600 SEATTLE TERMINAL

1.2 (b) 1000 (b) 1.99 < 0.500 2.08 < 0.500 2.08 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.501 < 0.500 < 0.502 < 0.500 < 0.503 < 0.500 < 0.504 < 0.500 < 0.507 < 0.500 < 0.508 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500	Sample	Date	PCP (µg/L)	Dieset (mg/L)	Oil (mg/L)	Gas (µg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethylbenzene (µg/L)	Xylene (µg/L)
01/05/2005 NA < 0.250 < 0.500 376 1.99 < 0.500 04/25/2005 NA 4.7 1.23 522 2.08 < 0.500	3.4 Screening L	evel	0.01 (b)	0.5 (a)	0.5 (a)	800 (a)	1.2 (b)	1000 (b)	(q) 002	10,000 (a)
04/25/2005 NA 3.38 < 0.500 374 2.28 < 0.500 07/26/2005 NA 4.7 1.23 \$52 2.08 < 0.500	01MW-13	01/05/2005	Ą	< 0.250	< 0.500	376	1.99	< 0.500	1.03	1.24
07/26/2005 NA 4.7 1.23 522 2.08 < 0.500 10/24/2005 < 0.500	01MW-13	04/25/2005	Ϋ́	3.38	< 0.500	374	2.28	< 0.500	1.49	2.51
10724/2005 C.0500 C.0500 C.0500 C.0500 C.0500 04/28/2005 NA C.0250 C.0500 C.0500 C.0500 C.0500 04/28/2005 NA 0.472 C.0500 C.0500 C.0500 C.0500 07/28/2005 NA 0.243 C.0500 C.0500 C.0500 C.0500 01/05/2005 NA C.0260 C.0500 S.0 C.0500 C.0500 01/05/2005 16.9 1.38 C.0500 S.0 C.0500 C.0500 01/05/2005 16.9 1.38 C.0500 S.0 S.0 C.0500 01/05/2005 16.9 1.38 C.0500 S.0 S.0 C.0500 01/05/2005 NA NA NA A.050 C.0500 C.0500 01/05/2005 NA NA NA S.0 C.0500 C.0500 01/05/2005 NA NA NA C.0500 C.0500 C.0500 01/05/2005 NA <td>01MW-13</td> <td>07/26/2005</td> <td>ΝΑ</td> <td>4.7</td> <td>1.23</td> <td>522</td> <td>2.08</td> <td>< 0.500</td> <td>0.864</td> <td>3.69</td>	01MW-13	07/26/2005	ΝΑ	4.7	1.23	522	2.08	< 0.500	0.864	3.69
01/05/2005 NA < 0.250 < 0.500 < 0.500 < 0.500 04/25/2005 NA 0.472 < 0.500	01MVV-13	10/24/2005	< 0.500	< 0.245	< 0.490	363	1.38	< 0.500	< 0.500	2.26
04/25/2005 NA 0.472 < 6,600 < 6,500 < 6,500 < 6,500 07/26/2005 NA 0.49 < 6,600	01MW-17	01/05/2005	NA	< 0.250	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00
07/26/2005 NA 0.49 < 0.500 < 6.0.0 < 0.500 < 0.500 10/24/2005 NA < 0.243	01MW-17	04/25/2005	Ϋ́	0.472	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00
10124/2005 NA < 0.243 < 0.485 < 50.0 < 0.500 < 0.500 01/05/2005 21.3 0.296 < 0.500	01MW-17	07/26/2005	ΑN	0.49	< 0.500	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00
01/05/2005 21.3 0.296 < 0.500 1,050 98.6 6.14 04/25/2005 16.7 < 0.250	01MW-17	10/24/2005	Ϋ́	< 0.243	< 0.485	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00
01/05/2005 15.7 < 0.250 < 0.500 976 96.7 6.14 04/25/2005 16.9 1.88 < 0.500	01MW-26	01/05/2005	21.3	0.296	< 0.500	1,050	98.6	6.16	40.1	45.4
04/25/2005 16.9 1.88 < 0.500 827 74.5 5.51 07/26/2005 22.1 1.96 0.561 1,280 92.6 10.5 01/05/2005 NA < 0.275	01MW-26	01/05/2005	15.7	< 0.250	< 0.500	926	96.7	6.14	39.5	29.9
07/26/2005 22:1 1.96 0.56f 1,280 92.6 10.5 10/25/2005 NA < 0.275	01MW-26	04/25/2005	16.9	1.88	< 0.500	827	74.5	5.51	23.8	33.0
10/25/2005 NA < 0.575 < 0.549 1,290 125 7.7 01/05/2005 NA NA NA 188 36.2 1.01 04/25/2005 NA NA NA 48.9 1.04 07/26/2005 NA NA 205 48.9 1.04 01/05/2005 NA NA 50.0 < 0.500	01MW-26	07/26/2005	22.1	1.96	0.561	1,280	92.6	10.5	43.4	88.6
01/05/2005 NA < 0.250 < 0.500 172 51.5 1.01 04/25/2005 NA NA NA 188 36.2 0.863 07/26/2005 NA NA NA 48.9 1.04 10/24/2005 NA NA 50.0 48.9 1.04 01/05/2005 NA NA 50.0 < 0.500	01MW-26	10/25/2005	6	< 0.275	< 0.549	1,290	125	7.7	44.5	38.9
04/25/2005 NA NA NA 48.9 0.863 07/26/2005 NA NA NA 48.9 1.04 10/24/2005 NA NA A.50.0 48.9 1.04 10/24/2005 NA NA A.50.0 < 0.500	02MW-01	01/05/2005	Ą	< 0.250	< 0.500	172	51.5	1.01	< 0.500	2.53
07/26/2005 NA NA 205 48.9 1.04 10/24/2005 NA NA NA 52.2 1.38 01/05/2005 NA NA < 50.0	02MW-01	04/25/2005	ΑN	Ϋ́	Y X	188	36.2	0.863	< 0.500	1.86
10/24/2005 NA NA 379 52.2 1.38 01/05/2005 NA < 0.250	02MW-01	07/26/2005	AA	ΑN	ΝA	205	48.9	1.04	< 0.500	2.3
01/05/2005 NA < 0.250 NA < 0.500 < 0.500 < 0.500 04/25/2005 NA NA NA < 50.0	02MW-01	10/24/2005	Ą	Ϋ́	A A	379	52.2	1.38	< 0.500	3.84
04/25/2005 NA NA A SO.0 < 0.500 < 0.500 07/26/2005 NA NA A SO.0 < 0.500	02MW-02	01/05/2005	Ą	< 0.250	X A	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00
07/26/2005 NA NA NA < 50.0 < 0.500 < 0.500 10/24/2005 NA NA NA < 50.0	02MW-02	04/25/2005	Z A	Ą	ΑN	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00
10/24/2005 NA NA NA < 60.500 < 0.500 < 0.500 01/05/2005 NA < 0.250	02MW-02	07/26/2005	ΝΑ	Ą	A A	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00
01/05/2005 NA < 0.250 < 0.500 2,610 20.5 18.2 01/05/2005 NA < 0.250	02MVV-02	10/24/2005	Ą	Ą	∀	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00
01/05/2005 NA < 0.250 < 0.500 2,760 20.1 15.8 04/25/2005 NA NA NA 3,830 19.0 45.1 04/25/2005 NA NA NA 4,330 20.2 49.1 07/26/2005 NA NA NA NA 5,580 25.5 51 10/24/2005 NA NA NA NA 29.2 24.9	02MW-04	01/05/2005	Ą	< 0.250	< 0.500	2,610	20.5	18.2	190	139
04/25/2005 NA NA NA 3,830 19.0 45.1 04/25/2005 NA NA NA 6,580 25.5 51 07/26/2005 NA NA NA 6,580 25.5 51 10/24/2005 NA NA NA 3,990 29.2 24.9	MW-04 DUP	01/05/2005	Ą	< 0.250	< 0.500	2,760	20.1	15.8	179	124
04/25/2005 NA NA NA 6,580 20.2 49.1 07/26/2005 NA NA 6,580 25.5 51 10/24/2005 NA NA NA 3,990 29.2 24.9	02MW-04	04/25/2005	Ϋ́	Ν Α	A A	3,830	19.0	45.1	292	488
07/26/2005 NA NA 6,580 25.5 51 10/24/2005 NA NA NA 3,990 29.2 24.9	MW-04 DUP	04/25/2005	¥	¥	AN	4,330	20.2	49.1	337	465
10/24/2005 NA NA 3,990 29.2 24.9	02MW-04	07/26/2005	Ą Ą	Š	AA	6,580	25.5	51	411	801
	02MW-04	10/24/2005	A A	A A	¥ Y	3,990	29.2	24.9	262	263

TABLE 3
CUMULATIVE GROUNDWATER ANALYTICAL RESULTS
JANUARY 2005 TO PRESENT TIME OIL #01-600 SEATTLE TERMINAL

		b C b	Diesel	lio	Gas	Benzene	Toluene	Ethylbenzene	Xylene
Sample	Date	(µg/L)	(mg/L)	(mg/L)	(µg/L)	(µg/L)	(hg/L)	(µg/L)	(µg/L)
MTCA Screening Level	eve/	0.01 (b)	0.5 (a)	0.5 (a)	800 (a)	1.2 (b)	1000 (b)	(a) 007	10,000 (a)
02MW-05	01/05/2005	Ą	< 0.250	< 0.500	310	< 0.500	< 0.500	< 0.500	< 1.00
02MW-05	04/25/2005	NA	N A	Ä	575	0.922	< 0.500	< 0.500	< 1.00
02MW-05	07/26/2005	×	ΝΑ	Ą	503	0.781	< 0.500	0.54	1.08
02MW-05 DUP	07/26/2005	Ϋ́	A	Ν Α	505	0.727	< 0.500	< 0.500	< 1.00
02MW-05	10/24/2005	ΝĄ	N A	Ν	335	< 0.500	< 0.500	< 0.500	< 1.00
02MW-05 DUP	10/24/2005	A A	A	ΑN	316	< 0.500	< 0.500	< 0.500	< 1.00
02MW-07	01/05/2005	Ą	< 0.250	Ą	236	< 0.500	< 0.500	< 0.500	2.1
02MW-07	04/25/2005	ΑĀ	N	NA	319	< 0.500	< 0.500	0.662	3.42
02MW-07	07/26/2005	ΑN	Ą	ΑN	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00
02MW-07	10/24/2005	Ą	ΑĀ	ΑN	< 50.0	< 0.500	< 0.500	< 0.500	< 1.00

0000

NA = Indicates the compound was not analyzed for this sample.

< symbol indicates result is less than reporting limit.

(a) Model Toxics Control Act (MTCA) Method A criteria for the protection of groundwater as drinking water.

Bold indicates the compound was detected above the laboratory reporting limit.

Box indicates exceedance of screening criteria.

⁽b) Model Toxics Control Act (MTCA) Method B criteria for the protection of groundwater as fresh surface water. Values based on ambient water quality criteria for the protection of human health.

TIME OIL SITE #01-600 - SEATTLE TERMINAL PRODUCT ANALYTICAL DATA SEATTLE, WASHINGTON **TABLE 4**

	Screening	01MW-16	01MW-22 B5J0545-11 10/26/2005	01MVV-23 B5J0581-03 10/26/2005	01MW-25 B6JD581-05 10/26/2005	01MW4-28 B\$J0581-10 10/26/2005	01MW-29 B5J0581-08 10/26/2005
GROUNDWATER:				:			
PENTACHLOROPHENOL (PCP) EPA Method 8270-SIM (µg/l.) Pentachlorophenol	0.01 (b)	SZ	273	19.8	0.526 U	0.490 U	0.500 ∪
		01MW-16 PRODUCT B5J0581-12 10/26/2005	01MW-22 PRODUCT B5J0581-02 10/26/2005	01MW-23 PRODUCT B5J0581-04 10/26/2005	01MW-25 PRODUCT BSJ0581-06 10/26/2005	01MW-28 PRODUCT 85J0581-11 10/26/2005	01MW-29 PRODUCT BSJ0581-09 10/26/2005
PRODUCT:							
PENTACHLOROPHENOL (mg/kg) EPA 8270 Mod PCP		375 U	375 U	375 U	375 U	J 576	375 U
PETROLEUM HYDROCARBONS (mg/kg) NWTPH-HCID Diesel Range Hydrocarbons Gx Range Hydrocarbons Heavy Fuel Oil Range Hydrocarbons Insulating Oil Range Hydrocarbons Kerosene Range Hydrocarbons Lube Oil Range Hydrocarbons		DET 2000 U 10000 U 10000 U 5000 U	DET J 2000 U 10000 U 10000 U 5000 U 5000 U	DET 2000 U 10000 U 10000 U 5000 U 5000 U	DET 2000 U 10000 U 10000 U 5000 U DET	DET 2000 U 10000 U 10000 U 5000 U	DET 2000 U 10000 U 10000 U 5000 U 10000 U

Notes:

(a) Model Toxics Control Act (MTCA) Method A criteria for the protection of groundwater as drinking water

(b) Model Toxics Control Act (MTCA) Method B criteria for the protection of groundwater as fresh surface water.

Values based on ambient water quality criteria for the protection of human health

NA = Indicates the compound was not analyzed for this sample

NS = Not sampled.

Bold indicates the compound was detected above the laboratory reporting limit

Box indicates exceedance of screening criteria.

U = Indicates the compound was undetected at the reported concentration

J = Indicates the compound was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

DET indicates the compound was detected.

TECHNICAL MEMORANDUM

TO:

Mr. Christopher Maurer, PE

DATE: June 17, 2008

Site Manager, Washington State Department of

Ecology

FROM:

Mr. Thomas Cammarata, LG, LHG

Geochemist, Sound Environmental Strategies

SUBJECT:

Sediment Quality

TOC Holdings Co. Facility No. 01-427 and 01-600 2737, 2750, and 2805 West Commodore Way

Seattle, Washington

VCP No: NW 1705

Sound Environmental Strategies Corporation (SES) has prepared this Technical Memorandum on behalf of TOC Holdings Co. (TOC) to respond to the Washington State Department of Ecology's (Ecology) request that TOC conduct a sediment quality investigation off-shore of the TOC Facility #01-427 and #01-600 located at 2737, 2750, and 2805 West Commodore Way in Seattle, Washington (herein referred to as the Property) (Figures 1 and 2). The request for a sediment quality investigation was presented in an Opinion Letter dated May 7, 2007 prepared by Ecology after completing a review of reports documenting remedial investigations conducted at the Property by others between 1997 and 2004. In the Opinion Letter, Ecology requested that sediment samples be collected near the product pipeline on both sides and both ends and upstream of the Shipping Terminal Wharf dock (the dock) located off-shore of the Property (Figure 2).

The purposes of this Technical Memorandum is to present Ecology with a summary of chemistry and biological test results for sediments samples collected proximate to the dock by Ecology in 1995 and 1997 and to provide Ecology with a rationale as to why additional sediment

sampling is not warranted proximate to the dock and upstream of the dock. This Technical Memorandum includes a brief description and history of the Property and SES's current understanding of the sediment quality proximate to dock and in Salmon Bay.

PROPERTY DESCRIPTION

The Property includes a Former Bulk Terminal and Water Front Area that occupies upland and waterfront portions of Salmon Bay at 2737 and 2750 West Commodore Way (Figure 2). A pipeline utility corridor extends north from the lower tank yard of the Former Bulk Terminal beneath the West Commodore Way right-of-way (ROW) to the dock at the Water Front Area. A railroad loading dock associated with the Former Bulk Terminal extends across the west property boundary shared with ASKO Hydraulic at 2805 West Commodore Way (Figure 2). The pipeline utilidor and a former barrel inclines angle north across the Former Bulk Terminal, pass under the surface of West Commodore Way, and appears between the north embankment of the ROW and the dock at the shoreline of the Waterfront Area. The pipeline utilidor houses petroleum pipelines that delivered petroleum products to the Water Front Area. The former barrel inclines consisted of conveyance ramps that transported 55-gallon drums containing petroleum products to the Water Front Area. For a period of 3 months in 1967 the drums contained a mixture of diesel and pentachlorophenol (PCP) (Figure 2).

TOC leases aquatic land off-shore of the Water Front Area from the Washington State Department of Natural Resources (DNR). The DNR land is 26 feet under water and 195 feet from the shoreline and includes a portion of the dock (Figure 2).

PROPERTY HISTORY

TOC acquired the Waterfront Area and the Former Bulk Terminal in 1941. By 1944, TOC had developed a petroleum bulk storage plant at Former Bulk Terminal. The Former Bulk Terminal included a headquarters office building, a row of warehouses constructed on a railroad loading dock that extended west onto the ASKO Hydraulic property. Historical maps indicate that fourteen aboveground storage tanks (ASTs) containing petroleum products were located in the Former Tank Yard and at the Former Bulk Terminal (Figure 2).

Petroleum products were delivered to the Property via railroad and ship and stored in 14 bulk ASTs located in the Former Tank Yard. The approximate capacities of the bulk ASTs ranged

from 0.5 to 2.2 million gallons each. The Water Front Area was used for staging of 55-gallon drums containing petroleum prior to loading on to ships (Figure 2).

During TOCs tenure at the Property, petroleum products were routinely transporting off the Property. The methods used to transport petroleum products off the Property included:

- Piped overhead to the Loading Racks and into tanker trucks.
- Pumped from USTs into fleet vehicles.
- Piped through the pipeline utilidor to the dock to fuel ships.
- Drummed at the shed at the Former Bulk Terminal and conveyed down the barrel incline to the dock for shipping, empty drums were returned via a separate incline.

USTs were formerly located next to the north end of the headquarter office at Former Bulk Terminal for fueling TOC fleet vehicles. In 1991, two USTs with capacities of 4,000 gallons and containing gasoline and diesel were replaced with a combined 3,000-gallon capacity UST containing gasoline and a 1,000-gallon capacity UST containing diesel. All USTs were removed in 2006 including a 3,000-gallon capacity UST containing a mixture of ethanol and toluene that was also located at the north end of the Former Tank Yard.

In 1967, wood preservative was prepared at the Former Bulk Terminal by mixing PCP with diesel. The preservative was then drummed for shipment and use overseas. The PCP Mixing Area was located at the west end of the Lower Tank Yard (Figure 2).

TOC historically used sheds located in the Water Front Area for vehicle repair and equipment lube activities. A used oil UST associated with repair and lube activities was located beneath the driveway west of the sheds, and west of the pipeline utilidor.

The machine shop at ASKO Hydraulic property was constructed in the late 1960s for the purpose of fleet vehicle repairs. TOC occupied and utilized the machine shop for engine repairs until 1974, when the machine shop was leased to Precision Engineering Specialists. ASKO Hydraulic has leased the machine shop from TOC Holdings Co. since 1976 and uses it for machining aerospace parts.

ON-SHORE ENVIRONMENTAL CONDITIONS

Environmental investigations conducted at the Property between 1997 and 2004 by others included subsurface investigations of soil and groundwater quality at the ASKO Hydraulics, Waterfront Area, and the Former Bulk Terminal (Figure 2). A detailed discussion of on-shore environmental conditions is presented in the *Final Cleanup Action Plan for Petroleum-Impacted Soil and Groundwater 2737 West Commondore Way Seattle, Washington,* dated May 2004, prepared by Foster Wheeler Environmental Corporation and the *Supplemental Remedial Investigation Report Seattle Terminal Properties TOC Holding Co. Facility Nos. 01-427 and 01-600, 2737, 2750, and 2805 West Commodore Way, Seattle Washington* prepared by SES (in preparation).

SEDIMENT QUALITY - SALMON BAY

The Property is located on the south shore of Salmon Bay, a narrow body of water located between Lake Union to the east and the Puget Sound to the west (Figures 1 and 2). Numerous industries are located along the shores of Salmon Bay, including marinas, dock facilities, and combined sewer overflows. In 1995 and 1997 Ecology conducted sediment quality investigations in Salmon Bay to evaluate the toxicity of the sediments. During both of these investigations sediment samples were collected proximate to the dock off-shore of the Property (Figure 2). A summary of chemical and biological test results for Ecology sediment quality investigations in Salmon Bay and off-shore of the Property is presented below.

1995 SEDIMENT QUALITY INVESTIGATION

In 1995 Ecology collected sediment samples from 29 areas in Salmon Bay and analyzed the samples for metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel, and zinc) semi-volatile organic compounds (SVOCs), polychlorinated biphenyls (PCBs), and tributyltins (TBT). Sediment sample 3B was collected between the dock and shore of the Property (Figure 2). A detailed discussion of sediment quality results from the 1995 investigation is presented in Chemical Contaminants in Salmon Bay Sediments Results of Phase II Sampling, dated November 1996, prepared by Ecology. A summary of chemical test results for sediment sample collected by Ecology in 1995 are as follows:

 All eight metals were detected in sediment samples collected from Salmon Bay, with exception of cadmium which was not detected at concentrations above the laboratory reporting limit in five sediment samples. Sediment sample 3B, collected by Ecology, between the dock and the shore of the Property, ranked number 4 out of 29 in overall metals concentrations for all sediment samples collected (Figure 2). Concentrations of arsenic, lead, mercury, and copper in sediment sample 3B exceeded Freshwater Sediment Quality Values (FSQVs) guidelines presented in the *Phase II Report: Development and Recommendations for SQVs for Freshwater Sediments in Washington State*, dated September 2003, prepared by Ecology. Concentrations of remaining metals in sediment sample 3B were below applicable FSQVs;

- High molecular weight polyaromatic hydrocarbons (HPAHs) and low molecular weight
 polyaromatic hydrocarbons (LPAHs) were the most frequently detected SVOCs in sediment
 samples collected by Ecology in Salmon Bay. The concentrations of HPAHs and LPAHs in
 sediment sample 3B exceeded the median concentrations of HPAHs and LPAHs for all
 sediment samples collected but were below applicable FSQVs. Concentrations of all
 remaining SVOCs in sediment sample 3B were below applicable FSQVs;
- PCBs were detected in all sediment samples collected by Ecology in Salmon Bay. The
 concentration of PCBs in sediment sample 3B was less than the median PCB
 concentration of all sediment samples collected. The concentration of PCBs in sediment
 sample 3B was below the applicable FSQV; and
- TBT was detected in all sediment samples collected by Ecology in Salmon Bay, with the
 exception of the sediment sample 5B, collected upstream of the dock. The concentration of
 TBT in sediment sample 3B was less than the median TBT concentration for all sediment
 samples. There are no bulk sediment FSQV for TBT.

1997 Sediment Quality Investigation

In 1997 Ecology collected sediment samples from 27 areas in Salmon Bay and analyzed the samples for metals, SVOCs, and TBT. Bioassays were conducted on 20 sediment samples collected. Sediment sample 3B2, collected at the west end of the Shipping Terminal Wharf, was analyzed for metals, SVOCs, PCBs, and TBT only (Figure 2). Bioassays were performed on sediment 3B3, collected at the east end of the Terminal Wharf. Bioassay test included 10-day *Hyalella azteca* survial, 10-day *Chironomus tentans* growth and survival, and 15-minute *Vibrio fisheri* luminescence. Sediment sample 3B3 was also was analyzed for metals, SVOCs, and TBT. A detailed discussion

of sediment quality results from the 1997 investigation are presented in *Concentrations* of *Chemical Contaminants and Bioassay Response to Sediments in Salmon Bay,* Seattle – Results of Phase III Sampling, dated December 2000, prepared by Ecology. A summary of chemical and biological test results for all sediment samples collected by Ecology in 1997 were as follows:

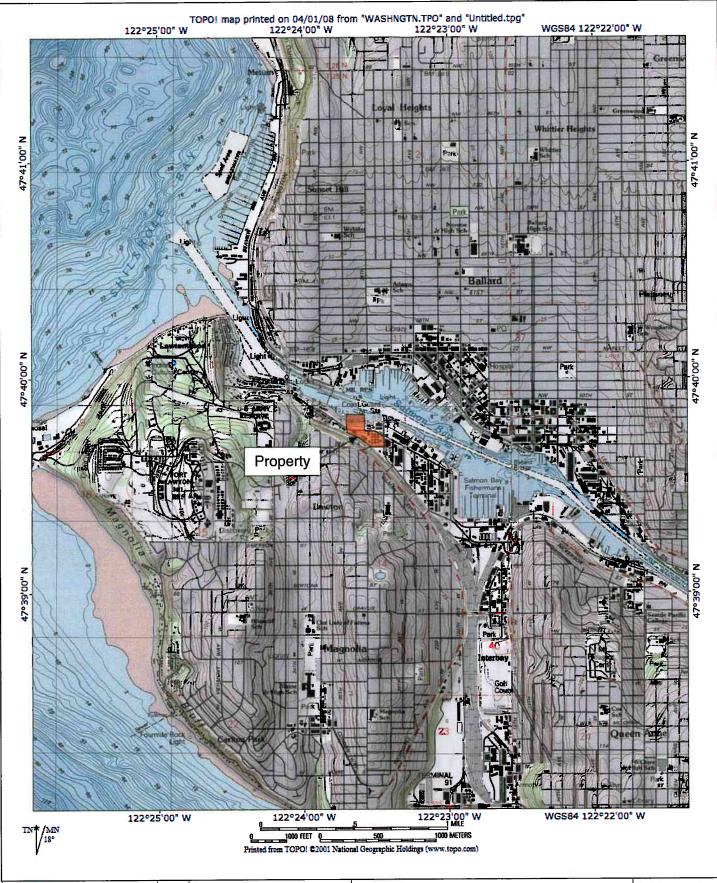
- All eight metals were detected in sediment samples collected from Salmon Bay, with exception of cadmium which was not detected at concentrations above the laboratory reporting limit in two sediment samples. Sediment sample 3B2 ranked 10 out of 27 in overall metals concentrations for all sediment samples collected (Figure 2). Sediment sample 3B3 ranked 3 out of 27 in overall metals concentrations for all sediment samples collected (Figure 2). Concentrations of arsenic, mercury, cadmium, copper, and zinc in sediment samples 3B2 and 3B3 exceeded applicable FSQVs. The concentration of lead in sediment sample 3B3 exceeded the FSQV. Concentrations of remaining metals in sediment samples 3B2 and 3B3 were below applicable FSQVs;
- HPAHs and LPAHs were the most frequently detected SVOCs in sediment samples collected. The concentrations of HPAHs and LPAHs in sediment sample 3B2 exceeded the median concentrations for HPAHs and LPAHs for all sediment samples collected. Concentration of HPAHs and LPAHs were below applicable FSQVs. The concentrations of HPAHs and LPAHs in sediment sample 3B3 were below the median concentrations for HPAHs and LPAHs for all sediment samples collected. Concentrations of HPAHs and LPAHs were below the applicable FSQVs. Concentrations of bis (2-ethylhexyl) phthalate, indeno (1,2,3-cd) pyrene, dibenzo (a,h) anthracene, and benzo (ghi) perylene in sediment sample 3B2 exceeded applicable FSQVs;
- Six sediment samples collected by Ecology in Salmon Bay were analyzed for PCBs.
 Samples 3B2 and 3B3 were not analyzed for PCBs. PCBs were detected in five of the six sediment samples analyzed;

 TBT was detected in all sediment samples collected. Concentrations of TBT in samples 3B2 and 3B3 were less than the median TBT value for all sediment samples. There are no bulk sediment FSQV for TBT; and

 All sediment samples for which bioassays were performed, had statistically significant bioassay responses for one or more tests relative to the reference sediment sample.
 Sediment sample 3B3 showed significant test results in three of four bioassays. Bioassays were not performed on sediment sample 3B2.

CONCLUSIONS

Three sediments samples were collected by Ecology proximate to the dock off-shore of the Property (Figure 2). The chemical and biological test results indicate that four sediment samples contained concentrations of select metals and PAHs that exceed applicable FSQVs. Bioassay results on one sediment sample collected proximate to the dock show statistically significant toxicity. These chemical and biological test results for the threesamples collected proximate the dock are similar to results for other sediment samples collected by Ecology in Salmon Bay during the 1995 and 1997 sediment investigation.

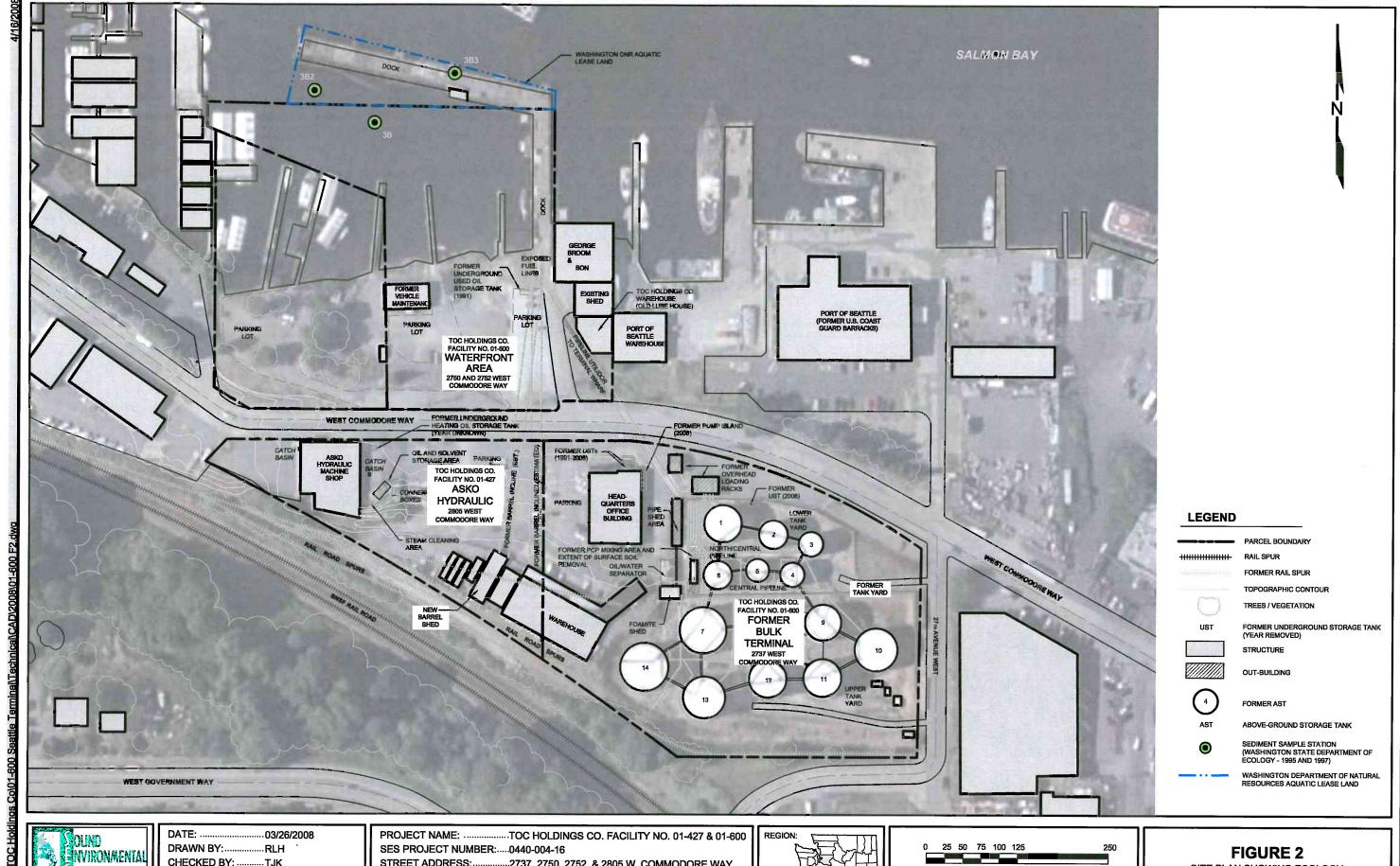

Based on the locations of sediment samples 3B, 3B2, and 3B3, proximate to the dock and location of sediment samples collected upstream of the dock, SES believes that the number and locations of sediment samples collected at the dock and up-stream of dock are sufficient to meet Ecology's request that TOC collect sediment samples proximate to the dock. Chemical and biological test results for sediments 3B, 3B2, and 3B3 also provide sufficient data to evaluate the impact of historical operation and on-shore contamination on sediment quality offshore of the Property. Therefore, SES requests that Ecology reconsider its request for sediment sampling at the dock and upstream of dock.

Attachments: Figure 1, Property Location Map

Figure 2, Site Plan Showing Ecology Sediment Sample Locations

cc: Mr. Mark Chandler, TOC Holdings Co.

TC:syh



Date: April 1, 2008 Drawn By: RLH Chk By: TJK

SES Project No.: 0440-004-16 File ID: 01-600 fig 1 vicinity map.doc TOC Holdings Co. Facility No. 01-600 & 01-427 Seattle Terminal Properties 2737, 2750, 2752, & 2805 West Commodore Way Seattle, Washington FIGURE 1

Property Location Map

CHECKED BY:TJK CAD FILE: ··01-600 F2

STREET ADDRESS: ..2737, 2750, 2752 & 2805 W. COMMODORE WAY CITY, STATE: ...SEATTLE, WASHINGTON

SITE PLAN SHOWING ECOLOGY SEDIMENT SAMPLE STATIONS