Memorandum

То:	Mark Nelson, Nel/Son Distributing, Inc.
Copies:	Dianne K. Conway and Gordon Thomas, Honeywell LLP
From:	Kristin Anderson, Floyd Snider
Date:	April 26, 2021
Project No:	NelSon-Granite Falls
Re:	Data Summary for the Former NelSon Petroleum Property

This data summary memorandum was prepared on behalf of Nel/Son Distributing, Inc. (NelSon Distributing) doing business as Nelson Petroleum. It summarizes the data collected to date at NelSon Distributing's former bulk-fuel facility in Granite Falls, Washington (Property; also known as the former NelSon Petroleum Property). The Property is currently enrolled in the Washington State Department of Ecology (Ecology) Voluntary Cleanup Program (VCP) under site ID number NW2982. This memorandum contains all information necessary to support request of a No Further Action determination from Ecology for the Site.

PROPERTY HISTORY

The Property is located at 201 W Stanley Street in Granite Falls, Washington. The southern portion of the Property is the location of a former bulk-fuel facility that was operated and reconfigured under various ownership between 1938 and 2016 (SD&C 2008). The bulk-fuel facility was most recently operated by NelSon Distributing. A railroad spur of the Northern Pacific Railroad previously ran along the northern Property boundary, and a passenger depot was located on the north-adjacent property and extended onto the northwest corner of the Property (GFHS 2015). The railway was operational from approximately the mid-1890s to the early 1930s (Dorpat 2011).

An initial investigation of the Property was completed on behalf of a potential purchaser in 2003 (EAI 2003). Soil and reconnaissance groundwater samples collected during this investigation identified petroleum contamination consisting primarily of gasoline-range organics (GRO) and diesel-range organics (DRO) exceeding the applicable Model Toxics Control Act (MTCA) Method A cleanup levels (CULs) in soil in the vicinity of the bulk fuel facility. Petroleum was also detected at elevated concentrations in groundwater reconnaissance samples. The results of groundwater reconnaissance sampling were confirmed by permanent monitoring wells installed along the perimeter of the bulk-fuel facility in preparation for a remedial excavation (SD&C 2016a).

Petroleum-contaminated soil located on the Property was removed by excavation in 2016 (SD&C 2016b). Additional investigations completed on the Property following the remedial excavation have included groundwater monitoring to assess post-cleanup conditions, additional soil sampling to assess off-property petroleum impacts, and additional soil and groundwater sampling to characterize the northern portion of the Property. The results of the remedial excavation and subsequent investigations are summarized in this memorandum.

PROPERTY AND SURROUNDING LAND USE

The Property is located within the Central Business District (CBD) of the City of Granite Falls (City). Per the City's Comprehensive Plan (City of Granite Falls 2015), the CBD is the "primary commercial area" for the City. The Property is expected to remain commercial use for the foreseeable future in accordance with the City's Comprehensive Plan, which identifies the CBD as a primary source of economic development and target for increased commercial development. The Property is currently vacant and fenced on its east, west, and south sides. The southern portion of the Property is covered with crushed gravel surfacing and the northern portion is vegetated primarily with second-growth trees and other pioneering plants (grasses, Himalayan blackberry, etc.). A partial silt fence separates the crushed gravel surfaced area from the vegetated area.

The Property is bordered by additional properties designated as CBD to the east, west, and north; a Shell service station is located on the east-adjacent property, an appliance rental company is located on the west-adjacent property, and the north-adjacent property is clear-cut and undeveloped. The Property is bordered to the south by the City-owned W Stanley Street rightof-way (ROW) and beyond by a one-parcel City park on the south side of W Stanley Street.

Leaking underground storage tanks (LUSTs) containing petroleum in the immediate vicinity have been documented in Ecology's LUST database. Documented LUST sites include the former Stanley Street Market to the east of the Property at the current Shell service station and the former Bob & Carol's Deli Mart located to the southeast of the Property.

PROPERTY GEOLOGY AND HYDROGEOLOGY

The Property is located in Granite Falls in the western foothills of the Cascade mountain range. Overall topography in the vicinity slopes to the southwest, toward the Pilchuck River approximately 0.5 miles to the southwest.

Soils encountered typically consisted of topsoil underlain by a layer of peat and silt interbedded with silty sand and then water-bearing sand encountered at depths ranging from approximately 5.5 to 8.5 feet below ground surface (bgs). A consolidated unit of glacial till has been encountered at the Property at approximately 16 feet bgs (SD&C 2016a).

Groundwater at the Property is typically encountered in the water-bearing sand during soil boring and test pit investigation. In monitoring wells, measured depth to groundwater varies

seasonally and is typically between 1 and 4 feet. The observed direction of lateral groundwater flow on the Property is to the southwest, generally in the direction of the slope of surface topography and toward the Pilchuck River.

Where Property soils have been impacted by petroleum, these impacts are typically observed immediately above and within the water table interval, with lesser impacts in the saturated zone below approximately 9 feet bgs.

SUMMARY OF PREVIOUS INVESTIGATIONS

Previous investigations completed since preparations for remedial excavation in 2015 are summarized below. Earlier investigations completed before remediation, which are not representative of post-remediation conditions, are not discussed in this memorandum. Property features, including investigation locations, are shown on Figure 1.

Slotta Design and Construction 2015 Subsurface Investigation

At the request of Ecology, Slotta Design and Construction (SD&C) collected subsurface data in support of remedial-excavation planning. The scope of the investigation included collection of soil samples from seven direct-push borings within and surrounding the bulk-fuel facility. Five of the borings at the perimeter of the planned excavation were completed as monitoring wells with pre-packed well screens and designated MW-01 through MW-05 (refer to Figure 1). Initial groundwater samples from these wells indicated petroleum impacts primarily to the south and southwest of the bulk fuel facility and lesser impacts in groundwater to the east, west, and northwest. Detailed field observations and results from this investigation were reported to Ecology in SD&C's Subsurface Investigation Report prepared in January 2016 (SD&C 2016a). In situ soil and groundwater data from the investigation are included in the Property-wide soil and groundwater quality summaries presented in this memorandum. Boring logs for MW-01 through MW-05 are included in Attachment 1.

Slotta Design and Construction 2016 Remedial Excavation

SD&C oversaw excavation in June and July 2016 to remove the bulk-fuel-facility structures and the on-property extents of petroleum-contaminated soil associated with bulk fuel facility operations. Excavation was completed to depths between 7 and 9 feet bgs, extending as close as practicable to property lines to the east and south and beyond the property line up to the neighboring utility corridor to the southwest; the approximate final excavation extents are shown on Figure 1. A total of 2,685 tons of petroleum-contaminated soil was excavated and hauled offsite for disposal. Soil quality at the extents of the excavation was documented by confirmation samples, including 10 sidewall samples and 6 base samples (refer to Figure 1). Sidewall samples collected from the south and southwest portion of the excavation indicated that soil contamination likely extended off-property in these areas. The excavation also removed rail ballast-type fill material overlying a peat-rich material presumed to be the former ground surface at approximately 4 feet bgs to the northeast of the former bulk fuel facility. Detailed field

observations and results from the remedial excavation were reported to Ecology in SD&C's Site Demolition and Soil Excavation Report prepared in August 2016 (SD&C 2016b). In situ soil data from this investigation are included in the Property-wide soil quality summary presented in this memorandum.

Slotta Design and Construction 2016 Test Pit Exploration

After completion of the remedial excavation, SD&C oversaw excavation of 10 test pits in the northern portion of the property to characterize potential petroleum impacts from the former rail line. The test pits, designated TP-11 through TP-20 (refer to Figure 1) were advanced to 10 feet bgs and soil samples were collected from each test pit. Groundwater reconnaissance samples were also collected from temporary sample points within the test pits and contained elevated concentrations of oil-range organics (ORO) with poor matches to the chromatographic standard. These impacts were attributed to potential former rail operations in the report summarizing the investigation; however, groundwater grab samples are typically highly turbid, and, therefore, these samples are presumed impacted by abundant decaying organics and peat at depth in this portion of the Property. Soil samples collected from the test pits indicated that petroleum impacts due to the rail line were not likely present on the northern portion of the Property. Detailed field observations and results from the investigation were reported to Ecology in SD&C's Subsurface Soil and Groundwater Investigation Report prepared in December 2016 (SD&C 2017). Soil data from this investigation are included in the Property-wide soil quality summary presented in this memorandum. Test pit logs for TP-11 through TP-20 are included in Attachment 1.

Floyd | Snider 2019 Test Pit Investigation

Floyd | Snider oversaw excavation of three test pits in the W Stanley Street ROW south of the property to characterize petroleum impacts in off-property soil during sidewalk improvements conducted by the City in August 2019. The test pits, designated FSTP-05 through FSTP-07 (refer to Figure 1), were advanced to a depth of 5 feet bgs. Shallow fill soils consisting of sand and gravel with peat, debris, and organic odors indicating poor-quality fill were present in the ROW extending to approximately 3 feet bgs. The fill soil was underlain by a sand and gravel unit without debris. At test pits FSTP-05 and FSTP-06, strong petroleum odors, staining, and elevated headspace volatile organic compound (VOC) concentrations exceeding 100 parts per million by volume measured using a photoionization detector (PID) were encountered at 4 feet bgs, consistent with the previous observations on-property. At test pit FSTP-07, staining was not observed; however, soil with an oily appearance, elevated PID reading, and petroleum odor was encountered at 5 feet bgs. The test-pit exploration was stopped at FSTP-07 due to the change in field observations potentially indicating a separate or commingled source. Laboratory analytical data from the test-pit samples were consistent with field observations and indicated petroleum impacts at all test-pit locations. Soil data from this investigation are included in the Property-wide soil quality summary presented in this memorandum. Test pit logs for FSTP-05 through FSTP-07 are included in Attachment 1, and laboratory analytical reports are presented in Attachment 2.

Floyd | Snider 2020 Data Gaps Investigation

Floyd|Snider completed additional soil borings and installed monitoring wells in April 2020 to fulfill the remaining data gaps for the Property identified in coordination with Ecology. The scope of this investigation included the following:

- Installation of four direct-push borings, designated FS-01 through FS-03 and FS-13 (refer to Figure 1), on the adjacent property to west to delineate residual petroleum impacts
- Advancement of seven direct-push borings, designated FS-04 through FS-07 and FS-10 through FS-12 (refer to Figure 1), in the W Stanley Street ROW to delineate the lateral extent of petroleum impacts in off-property soil
- Installation two direct-push borings, designated FS-08 and FS-09 (refer to Figure 1), along the eastern property line to document attenuation of slightly elevated petroleum detections close to the CULs at the locations of prior excavation sidewall confirmation samples
- Advancement of five direct-push borings completed with prepacked monitoring wells, designated MW-06 through MW-10 (refer to Figure 1) in the northern portion of the Property to further assess soil and groundwater quality in the vicinity of the former rail line

Borings were advanced to a depth of 10 feet bgs. Soils encountered typically consisted of topsoil underlain by a layer of peat and silt interbedded with silty sand. In the northern portion of the Property, borings were situated in areas that were accessible between trees and other larger established vegetation; however, void spaces due to tree roots limited sample recovery in some locations. Rail ballast was not encountered above the peat layer at any location, suggesting that ballast associated with the rail line was removed along with the rail structure, and ballast observed elsewhere on the Property was likely placed for construction of the bulk fuel facility.

Poorly graded clean sand was encountered at depths ranging from 5.5 to 8.5 feet bgs. At the time of drilling, saturated soil was typically encountered in the poorly graded clean sand in the southern portion of the Property and in shallower interbeds of silty sand on the northern portion of the Property. A surface fill layer consisting of well-graded sand and gravel placed above the topsoil was observed in the driveway of the west-adjacent property and in the ROW south of the property line. A sandy gravel resembling gravel borrow and presumed to be excavation backfill was encountered at the surface of FS-08 and to a depth of 9.5 feet bgs at FS-09, both advanced along the approximate eastern edge of the remedial excavation. Historical materials, such as rail ballast, construction/demolition debris, or other artifacts

associated with the former rail line and depot, were not encountered in any samples. A thin layer of fine gravel was encountered below the topsoil at approximately 1 foot bgs at MW-08. The wooded portion of the Property appeared to be recently occupied by persons camping, and numerous small areas with evidence of dumping of trash and burning were observed interspersed with trees and vegetation.

Field indications of petroleum contamination including odors, staining, sheen, and elevated headspace VOC concentrations measured with a PID were encountered in borings to the west and south of the Property, including FS-01, FS-04 through FS-07, FS-10, and FS-11. The depth interval of observed soil impacts was thickest in the western portion of the ROW in the vicinity of FS-05 and FS-06, where impacts extended from approximately 3 to 7 feet bgs. The impacted interval thinned significantly to the east and northwest and was generally limited to the water table interval between approximately 5 and 6 feet bgs. Indications of contamination were observed to extend only a short distance—approximately 20 feet or less—onto the adjacent property to the west and were not encountered in borings along the eastern property line or the northern portion of the Property. Soil boring and monitoring well logs presenting detailed observations at each boring are included in Attachment 1.

Samples for laboratory analysis were collected from the most heavily impacted intervals determined on the basis of field observations and from the underlying intervals without field indications of contamination. At boring locations where field indications of petroleum were not observed, samples were collected between approximately 4.5 and 6 feet bgs, the interval where the greatest petroleum impacts have been observed at the Property. A surface sample was also collected from MW-06 to characterize shallow soil in the vicinity of the former rail depot, and the fine gravel encountered at MW-08 was also sampled for potential impacts from former rail operations. Laboratory analytical results were well-correlated with field observations and demonstrated petroleum impacts to soil to the west and south of the Property. Soil data from this investigation are discussed in further detail in the Property-wide soil quality summary presented in this memorandum. Laboratory analytical reports are included in Attachment 2.

Slotta Design and Construction and Floyd | Snider Groundwater Monitoring 2016 to 2020

Groundwater samples were collected by SD&C from MW-01 through MW-05 during 12 monitoring events, including one pre-excavation event and nine additional post-excavation events. Detailed observations and results from these monitoring events were reported in various reports to Ecology, including the January 2016 Subsurface Investigation Report (SD&C 2016a), December 2016 Subsurface Soil and Groundwater Investigation Report (SD&C 2017), and quarterly monitoring reports covering the monitoring period from December 2016 to September 2019.

Wells MW-01 through MW-05 were additionally sampled by Floyd | Snider in December 2018 and March/April 2019, and wells MW-01 through MW-10 were sampled during a final monitoring

event completed in May 2020. During all sampling events, field indications of contamination, such as odor or sheen, were not encountered in groundwater at any monitoring well location.

During the March/April 2019 and May 2020 monitoring events, samples with detections of petroleum compounds (primarily ORO), qualified by the laboratory as poor matches to the chromatographic standard, were additionally analyzed by silica gel cleanup to assess the presence of naturally occurring organics and/or fuel metabolites in groundwater.

Groundwater data are discussed in detail in the Property-wide groundwater summary presented in this memorandum. Laboratory analytical reports for the Floyd|Snider monitoring events are included in Attachment 2.

SUMMARY OF SOIL QUALITY

Analytical data for soil remaining at the Property are discussed in this section. Sample results are discussed relative to the MTCA Method A CULs for unrestricted property usage as a conservative measure; however, because the Property is zoned in the CBD, direct contact with Property soil by members of the public is unlikely. Analytical results for petroleum constituents including benzene, toluene, ethylbenzene, and xylenes (BTEX) compounds; GRO; DRO; and ORO are summarized in Table 1, and results for metals and semivolatile organic compounds (SVOCs) are summarized in Table 2.

Overall, soil data demonstrate that the 2016 remedial excavation removed the on-property extents of contamination associated with former bulk fuel facility operations. Remaining off-property soils surrounding the southwest corner of the Property are contaminated primarily by GRO and to a lesser extent by benzene and DRO; the remaining BTEX compounds and ORO did not exceed the applicable CULs in any in situ soil samples. All in situ soil sample results for benzene, GRO, and DRO collected between 2015 and 2020 are shown on Figures 2, 3, and 4, respectively.

Benzene exceeding the MTCA Method A CUL, as shown on Figure 2, is limited to the area immediately west of the Property where the 2016 remedial excavation was stopped due to the utility corridor. The excavation base sample A2F3 in this area and soil borings FS-01 and FS-05 suggest that benzene exceeding the CUL extends deeper to the west and is present from approximately 6.5 feet to at least 9 feet bgs, below the depth of other petroleum constituent impacts. In the ROW to the southwest at FS-04, however, benzene exceeding the CUL is limited to shallow soil above approximately 3 feet bgs (refer to Table 1). Benzene exceeding the CUL is delineated on the adjacent property to the west by non-detect results at FS-13, FS-02, and FS-03.

GRO exceeding the MTCA Method A CUL is the most widespread contaminant in the vicinity of the Property, as shown on Figure 3. Elevated GRO was detected in samples on the adjacent property to the west and in all samples collected in the ROW to the south of the Property. GRO exceeding the CUL is delineated on the west-adjacent property by results that are non-detect or

less than the CUL at FS-13, FS-02, and FS-03 and is estimated to extend only approximately 20 feet onto this property. At FS-12, collected farthest to the east in the ROW, the detected GRO concentration of 34 milligrams per kilogram (mg/kg) only slightly exceeded the CUL of 30 mg/kg, and GRO is assumed to be also be delineated in this direction. The depth of GRO exceeding the CUL in these areas is also well-delineated by results less than the CUL and limited to soil above approximately 7 feet bgs (refer to Table 1). The southern extent of GRO extending into W Stanley Street was not assessed due to potential commingled plumes and poor-quality fill underlying the roadway. Along the eastern property line, a single excavation confirmation sample (A1NW) that had a lower-level GRO exceedance of 61 mg/kg was found to be isolated and small in area, with no detectable GRO at adjacent boring FS-08.

DRO exceeding the MTCA Method A CUL is limited to the southern property line and ROW south of the Property, as shown on Figure 4. DRO did not exceed the CUL in any samples collected on the adjacent property to the west. In the test pits in the ROW, DRO was most elevated relative to GRO at the test pit farthest to the east (FSTP-07) where oily soil without sheen was observed. The chromatogram for this sample exhibited a wider peak than other Property samples, suggesting a different petroleum mixture or potential additional off-property source of DRO in the ROW vicinity of this sample. The depth of DRO exceeding the CUL in these areas is also well-delineated; all exceedances were limited to soils above approximately 7 feet bgs, with DRO concentrations less than the CUL or nondetect at 7 feet bgs and below.

A subset of samples collected from Property soil were also analyzed for metals and SVOCs, as summarized in Table 2. Results for these analytes were less than the applicable MTCA Method A CULs, except for a single shallow soil sample (0.5 to 1.5 feet bgs) at MW-06, which had an arsenic detection of 22 mg/kg slightly exceeding the CUL of 20 mg/kg and a carcinogenic polycyclic aromatic hydrocarbon (cPAH) toxic equivalent (TEQ) detection of 0.2 mg/kg exceeding the CUL of 0.1 mg/kg. The deeper sample collected from 3.5 to 5.5 feet bgs at MW-06, which was collected to target potential former rail ballast at approximately 4 feet bgs, was not impacted with arsenic or cPAHs, and shallow soil at MW-08 to the east along the northern property line was also not impacted. In the absence of widespread impacts along the property line or historical debris suggesting that this low-level arsenic and cPAH TEQ exceedance is associated with the former rail operations, it is presumed that very shallow arsenic may be related to recent dumping or burning in accessible areas within the vegetated portion of the Property.

SUMMARY OF GROUNDWATER QUALITY

Cumulative groundwater results, as summarized in Table 3, demonstrate that concentrations of petroleum constituents have decreased consistently since completion of the remedial excavation in 2016. During the first round of groundwater monitoring, petroleum consisting primarily of DRO exceeded the MTCA Method A CUL at all monitoring well locations. Following excavation, concentrations immediately attenuated to less than the CUL at MW-01 and MW-02 to the east and southeast. At MW-03 and MW-04, located to the south and southwest in the presumed downgradient direction from the former bulk fuel facility, concentrations attenuated to less than

the CUL within approximately 1 year of the remedial excavation. At MW-05 to the northwest of the former bulk fuel facility, concentrations of DRO and ORO at MW-05 have ranged between 140 and 670 micrograms per liter (μ g/L), periodically greater than the CUL of 500 μ g/L, since the second post-excavation monitoring event.

During Floyd | Snider monitoring events conducted in 2018 to 2020, DRO and ORO results from MW-05 were flagged by the laboratory as poor matches to the chromatographic standard. These samples were re-analyzed during the March/April 2019 and May 2020 events and did not contain detectable DRO or ORO after silica gel cleanup to remove polar organics such as naturally occurring organics and fuel metabolites. Petroleum constituents did not exceed the MTCA Method A CULs in any samples collected from MW-06 through MW-10 in the northern portion of the Property. Given the soil quality in the vicinity of MW-05, upgradient and downgradient groundwater results less than the CUL, and chromatogram flags indicating a poor match the standards, the low-level DRO and ORO detections at this location are presumed to be a residual halo of fuel metabolite or naturally occurring organics rather than an indication of ongoing petroleum contamination to groundwater.

TERRESTRIAL ECOLOGICAL EVALUATION

A Terrestrial Ecological Evaluation (TEE) was completed for the Property in accordance with MTCA using the soil data summarized in the previous sections.

The Property was first evaluated for TEE exclusion. Per WAC 173-340-7491(1)(a-d), none of the conditions for TEE exclusion apply to the Property. The Property was determined to qualify for a simplified TEE per WAC 173-340-7491(2)(a-c); the Property is not located on or directly adjacent to an area where management or land use plans will maintain or restore native or seminative vegetation, used by a threatened or endangered species (i.e., not designated as a priority habitat for endangered species by Washington Department of Fish and Wildlife; WDFW 2020), or within 500 feet of at least 10 acres of native vegetation.

The simplified TEE for the Property was completed using contaminant analysis in accordance with WAC 173-340-7492(2). The list of hazardous substances is provided in Table 749-2 (Priority Contaminants of Ecological Concern for Sites that Qualify for the Simplified Terrestrial Ecological Evaluation Procedure). Of the hazardous substances listed in Table 749-2, the compounds detected at the Property include arsenic, barium, chromium, lead, benzo(a)pyrene toxic equivalent (TEQ), GRO, and DRO. Maximum detected concentrations at the Property were compared to the generic screening levels for simplified TEE provided in Table 749-2.

Analyte	TEE Screening Level for Commercial Properties (mg/kg) ⁽¹⁾	Maximum Property Detected Concentration (mg/kg)
Arsenic	20	22
Barium	1,320	92
Chromium	135	40
Lead	220	66
Benzo(a)pyrene TEQ	300	0.20
Gasoline-range organics	12,000 (2)	1,900 ⁽²⁾
Diesel-range organics	15,000 ⁽²⁾	12,000 ⁽²⁾

Notes:

1 Screening levels for some analytes are reported to three significant figures in the TEE regulation and are presented as they appear in the regulation. Analytical data for the Property are reported to two significant figures.

² Table 749-2 also specifies that petroleum concentrations shall not exceed residual saturation at the soil surface. Surface soils at the Property are not impacted by petroleum, and the shallowest impacts at the Property were encountered below 2 feet bgs.

Per the TEE regulation, the simplified TEE can be ended if contaminants are not present at concentrations greater than the values provided in Table 749-2 or the affected area is less than 350 square feet. Detected soil concentrations at the Property do not exceed these values, except for a single arsenic result of 22 mg/kg slightly greater than the screening level of 20 mg/kg. Because the result is potentially attributable to recent activity in accessible areas of the wooded portion of the Property, the affected area is presumed to be small (i.e., less than 350 square feet); however, to be conservative, this result was further evaluated in accordance with the regulation for a site-specific TEE. Per WAC 173-340-7493(2)(a)(i), detected arsenic concentrations at the Property were compared with screening levels for wildlife appropriate for industrial/commercial land use. Because the dataset for the Property is limited, a direct comparison rather than a comparison of the 95% upper confidence limit of the data was performed. The arsenic screening level for wildlife is 132 mg/kg, greater than all available results; therefore, arsenic may be removed from further consideration and the TEE may be ended at this step with the determination that the Property does not pose an unacceptable risk to wildlife.

RECOMMENDATIONS

The soil data collected at the Property demonstrate that contaminated soils were removed to the maximum extent practicable during the remedial excavation completed in 2016. Groundwater data collected from Property monitoring wells have demonstrated that impacts due to petroleum in groundwater have attenuated to less than the applicable MTCA Method A CULs. Off-property impacts in soil due to former bulk fuel facility operations are limited on the

adjacent property to the west, extending approximately 20 feet onto this property. Petroleum impacts also extend to the south into the City-owned W Stanley Street ROW, where other potential sources of contaminants have been documented.

Soil and groundwater results from the northern portion of the Property demonstrate that former rail line operations in this area have not impacted soil and groundwater quality at concentrations greater than applicable CULs. This observation is consistent with the rail's historical use for passenger carriage and the presence of a former passenger terminal in the northwest corner of the Property. Evidence of historical materials associated with the railroad was not observed during soil investigations, suggesting that the rail structure has been removed in its entirety. A TEE completed for the Property also demonstrates that soils do not pose an unacceptable risk to wildlife.

At this time, the cleanup at the Property and subsequent data gaps investigation are considered complete, and the Property is eligible for a Property-specific No Further Action (NFA) determination from Ecology. A Property-specific NFA determination would require an environmental covenant or covenant equivalent to address residual soil contamination on the City-owned arterial roadway to the south of the Property. Residual soil contamination on the adjacent property to the west may be addressed by an environmental covenant or by additional contaminated soil removal, as determined by the adjacent property owner.

REFERENCES

City of Granite Falls. 2015. The City of Granite Falls 2015-2035 Comprehensive Plan. November.

- Dorpat, P. 2011. "Seattle Then & Now: The Granite Falls Station." *Seattle Now & Then.* < <u>https://pauldorpat.com/2011/08/14/seattle-then-now-the-granite-falls-station/</u> > Last accessed 17 September 2020.
- Environmental Associates, Inc. (EAI). 2003. *Preliminary Subsurface Exploration, Bulk Fuel Facility,* 201 West Stanley Street, Granite Falls, Washington. Letter from Don W. Spencer, Environmental Associates, Inc., to Mike Ongaro. 9 December.
- Granite Falls Historical Society (GFHS). 2015. So Where Was the Depot? <<u>http://www.gfhistory.org/Where%20was%20the%20depot.pdf</u> > Last accessed 17 September 2020.
- Slotta Design and Construction (SD&C). 2008. *Phase I and Phase II Environmental Site Assessment*. Letter from Timothy Slotta, Slotta Design and Construction, to Mark Nelson, Nelson Petroleum, Inc. 3 April.
- _____. SD&C 2016a. *Subsurface Investigation Report, 201 W. Stanley Street, Granite Falls, WA.* Letter from Timothy S. Slotta, Slotta Design and Construction, to Mark Nelson, Nelson Petroleum, Inc. 14 January.

- _____. SD&C 2016b. *Site Demolition and Soil Excavation Report, 201 W. Stanley Street, Granite Falls, WA.* Letter from Timothy S. Slotta, Slotta Design and Construction, to Mark Nelson, Nelson Petroleum, Inc. 28 August.
- _____. SD&C 2017. Voluntary Cleanup Program Request for Opinion Form. Prepared for Nel/Son Distributing, Inc. VCP Project No. NW2982. 20 November.
- Washington Department of Fish and Wildlife (WDFW). 2020. "Priority Habitats and Species: Maps." < <u>https://wdfw.wa.gov/species-habitats/at-risk/phs/maps</u> > Last accessed 17 September 2020.

LIST OF ATTACHMENTS

- Table 1 BTEX and Petroleum Results for Soil
- Table 2 Metals and SVOC Results for Soil
- Table 3 BTEX and Petroleum Results for Groundwater
- Figure 1 Property Features
- Figure 2 Benzene Concentrations in Soil
- Figure 3 Gasoline-Range Organics Concentrations in Soil
- Figure 4 Diesel-Range Organics Concentrations in Soil
- Attachment 1 Boring and Test Pit Logs
- Attachment 2 Laboratory Analytical Reports

Tables

Table 1	
BTEX and Petroleum Results for Soil	

		Analyte	Benzene	Ethylbenzene	Toluene	Xylene (total)	Gasoline-Range Organics	Diesel-Range Organics	Oil-Range Organics
М	TCA Method A Cl	eanup Level ⁽¹⁾	0.03	6.0	7.0	9.0	30	2,000	2,000
		Unit	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
		Depth Range							
ocation	Sample Date	(feet)					(2)	(2)	
A1EW	6/29/2016	6–6	0.030 U	0.050 U	0.050 U	0.20 U	21 (2)	1,800 ⁽³⁾	1,600 ⁽⁴⁾
\1F	6/21/2016	7–7	0.030 U	0.050 U	0.050 U	0.20 U	3.0 U	25 U	50 U
\1F2	6/21/2016	7–7	0.030 U	0.050 U	0.050 U	0.20 U	3.0 U	25 U	50 U
A1NW	6/29/2016	6–6	0.030 U	0.050 U	0.050 U	0.20 U	3.0 U	25 U	50 U
	6/21/2016	5–5	0.077 U	0.072 U	0.063 U	0.20 U	61 ⁽²⁾	460 (5)	590 ⁽⁶⁾
A1SW	6/21/2016	5–5	0.030 U	0.050 U	0.050 U	0.20 U	3.0 U	26 U	52 U
A2F	6/27/2016	9–9	0.030 U	0.050 U	0.050 U	0.20 U	3.0 U	25 U	50 U
2F2	6/29/2016	9–9	0.030 U	0.050 U	0.050 U	0.20 U	4.9 ⁽²⁾	25 U	50 U
A2F3	7/6/2016	9–9	0.49	0.061	0.12	0.31	14 (2,7)	25 U	50 U
A2NW	7/7/2016	6–6	0.030 U	0.050 U	0.050 U	0.20 U	3.0 U	25 U	50 U
A2SW	6/27/2016	6–6	0.60 U	3.3	1.0 U	4.0 U	770 ^(2,7)	11,000 ⁽³⁾	250 U
A2SWW	7/6/2016	6–6	0.36	0.47	0.10	0.52	150 ^(2,7)	390 ⁽³⁾	51 U
A2WW	7/7/2016	6–6	0.060 U	0.10 U	0.10 U	0.40 U	110 ^(2,7)	900 ⁽³⁾	110 (4,
\3F	6/29/2016	7–7	0.030 U	0.050 U	0.050 U	0.20 U	4.8 ⁽²⁾	25 U	50 U
3NW	7/7/2016	6–6	0.030 U	0.050 U	0.050 U	0.20 U	8.7 (2,7)	25 U	50 U
43SW	7/7/2016	6-6	0.030 U	0.050 U	0.050 U	0.20 U	23 (2,7)	140 (3)	50 U
	4/17/2010	0-0 5-6	0.030 U	0.030 0	0.030 U	0.20 0	110	640	250 U
S-01	4/17/2020	6.5–7.5	0.020 0	0.20 0.020 U	0.020 U	0.060 U	5.0 U	50 U	250 U
S-02	4/17/2020	4–5	0.020 U	0.020 U	0.020 U	0.060 U	5.0 U	50 U	250 U 250 U
S-02	4/17/2020	4.5-5	0.020 U	0.020 U	0.020 U	0.060 U	5.0 U	50 U	250 U 250 U
	4/17/2020	2–3	0.020 0	1.3	1.0	4.7	410	2,300	880 ⁽⁹⁾
S-04	4/17/2020	4.5-5	0.020 U	0.020 U	0.020 U	4.7 0.060 U	5.0 U	50 U	250 U
	4/17/2020	4.5-5 5-6	0.020 U	1.0	1.0	1.6	550 S	1,500	250 U 250 U
S-05	4/17/2020	5–0 7–8	0.20 0	0.045	0.086	0.060 U	15	50 U	250 U
	4/17/2020	4.5–5	0.020 UJ	1.2	0.080	3.4	950	3,400	250 U
S-06	4/17/2020	4.5 <u>-</u> 5 7 <u>-</u> 8	0.020 U	0.020 U	0.020 U	0.060 U	11	50 U	250 U
	4/17/2020	7 <i>-</i> 0 4-5	0.020 UJ	6.0	0.020 U	0.000 U	1,900	12,000	250 U
S-07	4/17/2020	6.5–7.5	0.020 U	0.020 U	0.020 U	0.060 U	5.0 U	50 U	250 U
S-08	4/16/2020	4.5-5.5	0.020 U	0.020 U	0.020 U	0.060 U	5.0 U	50 U	250 U
S-08	4/16/2020	4.3-3.3 7-8	0.020 U	0.020 U	0.020 U	0.060 U	5.0 U	50 U	250 U
	4/17/2020	5-6	0.020 UJ	0.62	0.10 U	0.95	440	1,400	250 U
S-10	4/17/2020	6.5–7.5	0.020 U	0.020 U	0.020 U	0.060 U	5.0 U	50 U	250 U
	4/17/2020	4-5	0.020 UJ	1.4	0.10 U	3.3	1,200	4,200	250 U
S-11	4/17/2020	6–7	0.020 U	0.020 U	0.020 U	0.060 U	5.0 U	50 U	250 U
S-12	4/17/2020	4–5	0.020 U	0.020 U	0.020 U	0.060 U	34	410	250 U
S-12 S-13	4/17/2020	4.5-5.5	0.020 U	0.020 U	0.020 U	0.060 U	14	170	250 U
J 15 //W-01	11/11/2015	3.5-3.5	0.030 U	0.020 U	0.050 U	0.20 U	3.0 U	25 U	50 U
/W-01	11/11/2015	3–3	0.030 U	0.050 U	0.050 U	0.20 U	3.0 U	25 U	50 U
MW-02	11/11/2015	3–3	0.030 U	0.50 U	0.50 U	2.0 U	480 ^(2,7)	840 (3)	50 U
/W-04	11/11/2015	3–3	0.15 U	0.25 U	0.25 U	1.0 U	120 ^(2,7)	870 ⁽³⁾	50 U
/W-04 //W-05	11/11/2015	3-3 3-3	0.13 U	0.25 U	0.25 U	0.20 U	3.0 U	25 U	50 U
	5/19/2020	5-5 0.5-1.5	0.030 U	0.030 U	0.030 U	0.20 U	5.0 U	50 U	250 U
/W-06	4/16/2020	3.5-5.5	0.020 U	0.020 U	0.020 U	0.060 U	5.0 U	50 U	250 U
/W-07	4/16/2020	4.5-5	0.020 U	0.020 U	0.020 U	0.060 U	5.0 U	50 U	250 U 250 U
	4/16/2020	4.5-5	0.020 U	0.020 U	0.020 U	0.060 U	5.0 U	50 U	250 U 250 U
/W-08	4/16/2020	4.5–5	0.020 U	0.020 U	0.020 U	0.000 U 0.12 U	10 U	100 U	500 U
/W-09	4/16/2020	4.5-5	0.020 U	0.040 U	0.040 U	0.12 0 0.060 U	5.0 U	50 U	250 U
/W-05 /W-10	4/16/2020	4.5-5	0.020 U	0.020 U	0.020 U	0.060 U	5.0 U	50 U	250 U
P-11	3/7/2017	4.5-5 5-5	0.020 U	0.020 U	0.020 U	0.000 U	3.0 U	25 U	230 U 50 U
P-11 P-12	3/7/2017	5-5	0.030 U	0.050 U	0.050 U	0.20 U	3.0 U	200 (5)	740 ⁽⁶⁾
P-12 P-13	3/7/2017	5-5 5-5	0.030 U	0.030 U	0.050 U	0.20 U	3.0 U	66 ^(5,10)	170 (4)
									50 ⁽⁴⁾
P-14	3/7/2017	5-5	0.030 U	0.050 U	0.050 U	0.20 U	3.0 U	25 ⁽¹¹⁾	
P-15	3/7/2017	5-5	0.030 U	0.050 U	0.050 U	0.20 U	3.0 U	25 U	50 U
P-16	3/7/2017	5-5	0.030 U	0.050 U	0.050 U	0.20 U	3.0 U	26 U	53 U
P-17	3/7/2017	5–5	0.030 U	0.050 U	0.050 U	0.20 U	3.0 U	25 U	50 U
P-18	3/7/2017	5–5	0.030 U	0.050 U	0.050 U	0.20 U	3.0 U	260 ⁽⁵⁾	370 (6)
P-19	3/7/2017	5–5	0.030 U	0.050 U	0.050 U	0.20 U	3.0 U	25 U	50 U
P-20	3/7/2017	5–5	0.030 U	0.050 U	0.050 U	0.20 U	3.0 U	25 U	50 U
STP-05	8/2/2019	4–4	0.020 U	0.56	0.098	1.2	170	3,400	250 U
STP-06	8/2/2019	5–5	0.020 UJ	0.57	0.10 U	1.0	300	3,100	250 U
STP-07	8/2/2019	5-5	0 0 2 0 1 11	1 8	0 10 11	3.0	640	8 400	340 (9)

FSTP-07	8/2/2019	5–5	0.020 UJ	1.8	0.10 U	3.0	640	8,400	340 ⁽⁹⁾
---------	----------	-----	----------	-----	--------	-----	-----	-------	--------------------

Notes:

RED BOLD Indicates a concentration that exceeds the applicable cleanup level.

1 MTCA cleanup levels listed are for unrestricted property use.

2 Per the laboratory, the chromatogram indicates that it is likely that sample contains highly weathered gasoline.

3 Per the laboratory, the chromatogram indicates that it is likely that sample contains weathered diesel.

4 Per the laboratory, the chromatogram indicates that it is likely that sample contains lube oil.

5 Per the laboratory, the chromatogram indicates that it is likely that sample contains unidentified diesel-range product.

6 Per the laboratory, the chromatogram indicates that it is likely that sample contains unidentified oil-range product.

7 Per the laboratory, the gasoline-range product results are biased high due to semivolatile-range product overlap.

8 Per the laboratory, the oil-range product results are biased high due to diesel-range product overlap.

9 Per the laboratory, the sample chromatographic pattern does not resemble the fuel standard used for quantitation.
10 Per the laboratory, the diesel-range product reporting limits were raised due to motor oil-range product overlap.

11 Per the laboratory, the chromatogram indicates that it is likely that sample contains light oil.

Abbreviations:

BTEX Benzene, toluene, ethylbenzene, and xylenes

mg/kg Milligrams per kilogram

MTCA Model Toxics Control Act

Qualifiers:

U Analyte was not detected at the given reporting limit.

UJ Analyte was not detected at the given reporting limit, which is considered to be an estimate.

Table 2Metals and SVOC Results for Soil

	MTCA	Location	A1F2	MM	/-06	MW-07	MW-08
	Method A	Sample ID	A1F2-7ft	MW-06-0.5-1.5 FT	MW-06-3.5-5.5 FT	MW-07-4.5-5 FT	MW-08-1-2 FT
	Cleanup	Sample Date	6/21/2016	5/19/2020	4/16/2020	4/16/2020	4/16/2020
	Level ⁽¹⁾	Depth Range (feet)	7–7	0.5-1.5	3.5-5.5	4.5–5	1–2
Analyte	(mg/kg)	Units					
Metals							
Arsenic	20	mg/kg	1.0 U	22	4.4	3.1	3.7
Barium		mg/kg	92				
Cadmium	2	mg/kg	0.50 U	1.0 U	1.0 U	1.0 U	1.0 U
Chromium	2,000	mg/kg	37	15	23	40	9.5
Lead	250	mg/kg	3.2	66	3.0	6.7	30
Mercury	2.0	mg/kg	0.020 U	1.0 U	1.0 U	1.0 U	1.0 U
Selenium		mg/kg	5.0 U				
Silver		mg/kg	0.50 U				
Semivolatile Organic Compounds	s (SVOCs)						
cPAH TEQ ⁽²⁾	0.10	mg/kg		0.20	0.0076 U	0.0076 U	0.031
Acenaphthene		mg/kg		0.010 U	0.010 U	0.010 U	0.010 U
Acenaphthylene		mg/kg		0.018	0.010 U	0.010 U	0.010 U
Anthracene		mg/kg		0.016	0.010 U	0.010 U	0.010 U
Benzo(a)anthracene		mg/kg		0.11	0.010 U	0.010 U	0.025
Benzo(a)pyrene		mg/kg		0.15	0.010 U	0.010 U	0.023
Benzo(b)fluoranthene		mg/kg		0.20	0.010 U	0.010 U	0.027
Benzo(g,h,i)perylene		mg/kg		0.074	0.010 U	0.010 U	0.014
Benzo(k)fluoranthene		mg/kg		0.063	0.010 U	0.010 U	0.010 U
Chrysene		mg/kg		0.13	0.010 U	0.010 U	0.034
Dibenzo(a,h)anthracene		mg/kg		0.050 U	0.010 U	0.010 U	0.010 U
Fluoranthene		mg/kg		0.13	0.010 U	0.010 U	0.025
Fluorene		mg/kg		0.010 U	0.010 U	0.010 U	0.010 U
Indeno(1,2,3-c,d)pyrene		mg/kg		0.081	0.010 U	0.010 U	0.013
Naphthalene	5.0	mg/kg		0.032	0.010 U	0.010 U	0.041
Phenanthrene		mg/kg		0.062	0.010 U	0.010 U	0.081
Pyrene		mg/kg		0.17	0.010 U	0.010 U	0.036
1,2-Dibromoethane	0.0050	mg/kg	0.0050 U				
1,2-Dichloroethane		mg/kg	0.010 U				

Notes:

-- Not analyzed or not established.

RED BOLD Indicates a concentration that exceeds the applicable cleanup level.

1 MTCA cleanup levels listed are for unrestricted property use.

 $2\;$ cPAH TEQs were calculated with non-detect results set to one-half the reporting limit.

Abbreviations:

cPAH Carcinogenic polycyclic aromatic hydrocarbon

mg/kg Milligrams per kilogram

MTCA Model Toxics Control Act

TEQ Toxic equivalent

Qualifier:

U Analyte was not detected at the given reporting limit.

Table 3BTEX and Petroleum Results for Groundwater

		I			Suits for Gro	1	Coordin	Discola	
		Analyte	Benzene	Ethylbenzene	Toluene	Total Xylenes	Gasoline-Range Organics	Diesel-Range Organics	Oil-Range Organics
	MTCA Meth	od A Cleanup Level	5	700	1,000	1,000	800/1,000 ⁽¹⁾	500	500
		Unit	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Well ID	Sampler	Date							
		11/11/2015	1.0 U	1.0 U	1.0 U	3.0 U	50 U	650	1,200 U
	·	9/9/2016 12/12/2016	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	3.0 U 3.0 U	50 U 50 U	130 U 130 U	300 250 U
		3/17/2017	1.0 U	1.0 U	1.0 U	3.0 U	50 U	130 U	250 U
	Slotta Design and	7/12/2017	1.0 U	1.0 U	1.0 U	3.0 U	50 U	130 U	250 U
	Construction ⁽²⁾	11/6/2017	1.0 U	1.0 U	1.0 U	3.0 U	50 U	130 U	250 U
MW-01		3/15/2018	1.0 U	1.0 U	1.0 U	3.0 U	50 U	130 U	250 U
		6/19/2018	1.0 U	1.0 U	1.0 U	3.0 U	50 U	130 U	250 U
		9/28/2018	1.0 U	1.0 U	1.0 U	3.0 U	50 U	130 U	250 U
		12/21/2018	1.0 U	1.0 U	1.0 U	3.0 U	100 U	50 U	250 U
	Floyd Snider ⁽³⁾	3/25/2019 5/19/2020	1.0 U	1.0 U 1.0 U	1.0 U	3.0 U	100 U 100 U	50 U	250 U 250 U
		11/11/2015	1.0 U 1.0 U	1.0 U	1.0 U 1.0 U	3.0 U 3.0 U	50 U	50 U 640	1,200 U
		9/9/2016	1.0 U	1.0 U	1.0 U	3.0 U	50 U	130 U	250 U
	·	12/12/2016	1.0 U	1.0 U	1.0 U	3.0 U	50 U	130 U	250 U
	Slotta Design and	3/17/2017	1.0 U	1.0 U	1.0 U	3.0 U	50 U	130 U	250 U
	Construction ⁽²⁾	7/12/2017	1.0 U	1.0 U	1.0 U	3.0 U	50 U	130 U	250 U
MW-02	construction	11/6/2017	1.0 U	1.0 U	1.0 U	3.0 U	50 U	130 U	250 U
		3/15/2018	1.0 U	1.0 U	1.0 U	3.0 U	50 U	130 U	250 U
		6/19/2018	1.0 U	1.0 U	1.0 U	3.0 U	50 U	130 U	250 U
		9/28/2018 12/21/2018	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	3.0 U 3.0 U	50 U 100 U	130 U 50 U	250 U 250 U
	Floyd Snider ⁽³⁾	4/04/2019	1.0 U	1.0 U	1.0 U	3.0 U	100 U	50 U	250 U
	rioyu januer	5/19/2020	1.0 U	1.0 U	1.0 U	3.0 U	100 U	50 U	250 U
		11/11/2015	1.0 U	1.0 U	1.0 U	3.0 U	83	1,600	1,200 U
		9/9/2016	1.0 U	1.0 U	1.0 U	3.0 U	110	1,100	530
		12/12/2016	1.0 U	1.0 U	1.0 U	3.0 U	67	620	310
	Slotta Design and	3/17/2017	1.0 U	1.0 U	1.0 U	3.0 U	100	420	250 U
	Construction ⁽²⁾	7/12/2017	1.0 U	1.0 U	1.0 U	3.0 U	63	170	250 U
		11/6/2017	1.0 U	1.0 U	1.0 U	3.0 U	50 U	230	250 U
		3/15/2018 6/19/2018	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	3.0 U 3.0 U	50 U 50 U	300 340	250 U 250 U
		9/28/2018	1.0 U	1.0 U	1.0 U	3.0 U	50 U	220	250 U
		12/21/2018	1.0 U	1.0 U	1.0 U	3.0 U	100 U	68 ⁽⁴⁾	250 U
	Floud Creider ⁽³⁾	3/25/2019	1.0 U	1.0 U	1.0 U	3.0 U	100 U	110 (4)	250 U
	Floyd Snider ⁽³⁾	3/25/2019 (5)						69 ⁽⁴⁾	250 U
		5/19/2020	1.0 U	1.0 U	1.0 U	3.0 U	100 U	69 ⁽⁴⁾	250 U
		11/11/2015	33	1.6	1.2	7.2	250	2,200	1,200 U
		9/9/2016	1.0 U	1.0 U	1.0 U	3.0 U	420	230	250 U
		12/12/2016	1.0 U	1.0 U	1.0 U	3.0 U	140	6,600	3,400
	Slotta Design and	3/17/2017 7/12/2017	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	3.0 U 3.0 U	130 80	300 140	250 U 250 U
	Construction ⁽²⁾	11/6/2017	1.0 U	1.0 U	1.0 U	3.0 U	78	2,000	1,200
MW-04		3/15/2018	1.0 U	1.0 U	1.0 U	3.0 U	70	290	250 U
		6/19/2018	1.0 U	1.0 U	1.0 U	3.0 U	50 U	370	250 U
		9/28/2018	1.0 U	1.0 U	1.0 U	3.0 U	56	320	250 U
		12/21/2018	1.0 U	1.0 U	1.0 U	3.0 U	100 U	160 (4)	250 U
	Floyd Snider ⁽³⁾	4/04/2019	1.0 U	1.0 U	1.0 U	3.0 U	100 U	290 (4)	250 U
		4/04/2019				-	-	110	250 U
	┼───┤	5/19/2020 11/11/2015	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	3.0 U 3.0 U	100 U 50 U	170 830	250 U 510 U
		9/9/2016	1.0 U	1.0 U	1.0 U	3.0 U	50 U	1,100	1,100
		12/12/2016	1.0 U	1.0 U	1.0 U	3.0 U	50 U	250	250 U
	Slotte Design	3/17/2017	1.0 U	1.0 U	1.0 U	3.0 U	50 U	290	260
	Slotta Design and Construction ⁽²⁾	7/12/2017	1.0 U	1.0 U	1.0 U	3.0 U	50 U	140	250 U
	construction ' '	11/6/2017	1.0 U	1.0 U	1.0 U	3.0 U	50 U	600	650
MW-05		3/15/2018	1.0 U	1.0 U	1.0 U	3.0 U	50 U	350	320
		6/19/2018	1.0 U	1.0 U	1.0 U	3.0 U	50 U	500	410
		9/23/2018	1.0 U	1.0 U	1.0 U	3.0 U	50 U	520	410
		12/21/2018 3/25/2019	1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	3.0 U 3.0 U	100 U 100 U	250 ⁽⁴⁾ 660 ⁽⁴⁾	250 U 670 ⁽⁴⁾
	Floyd Snider ⁽³⁾	3/25/2019	1.0 U 		1.0 0	3.0 0		50 U	250 U
	rioyujsilluer	5/19/2020	1.0 U	1.0 U	1.0 U	 3.0 U	 100 U	530 ⁽⁴⁾	380 (4)
		5/19/2020 ⁽⁵⁾					-	50 U	250 U
MW-06	Floyd Snider ⁽³⁾	5/19/2020	1.0 U	1.0 U	1.0 U	3.0 U	100 U	50 U	250 U
MW-07	Floyd Snider ⁽³⁾	5/19/2020	1.0 U	1.0 U	1.0 U	3.0 U	100 U	50 U	250 U
MW-08	Floyd Snider ⁽³⁾	5/19/2020	1.0 U	1.0 U	1.0 U	3.0 U	100 U	50 U	250 U
MW-09	Floyd Snider ⁽³⁾	5/19/2020	1.0 U	1.0 U	1.0 U	3.0 U	100 U	50 U	250 U
MW-10	Floyd Snider ⁽³⁾	5/19/2020	1.0 U	1.0 U	1.0 U	3.0 U	100 U	60 (4)	250 U

Notes:

-- Not analyzed.

RED BOLD Indicates a concentration that exceeds the applicable cleanup level.

Sample collected prior to excavation to remove contaminated soil at the Property.

1 Benzene present in groundwater/no detectable benzene in groundwater.

2 Samples collected by Slotta Design and Construction were analyzed by ALS in Everett, Washington.

3 Samples collected by Floyd | Snider were analyzed by Friedman & Bruya, Inc., in Seattle, Washington.

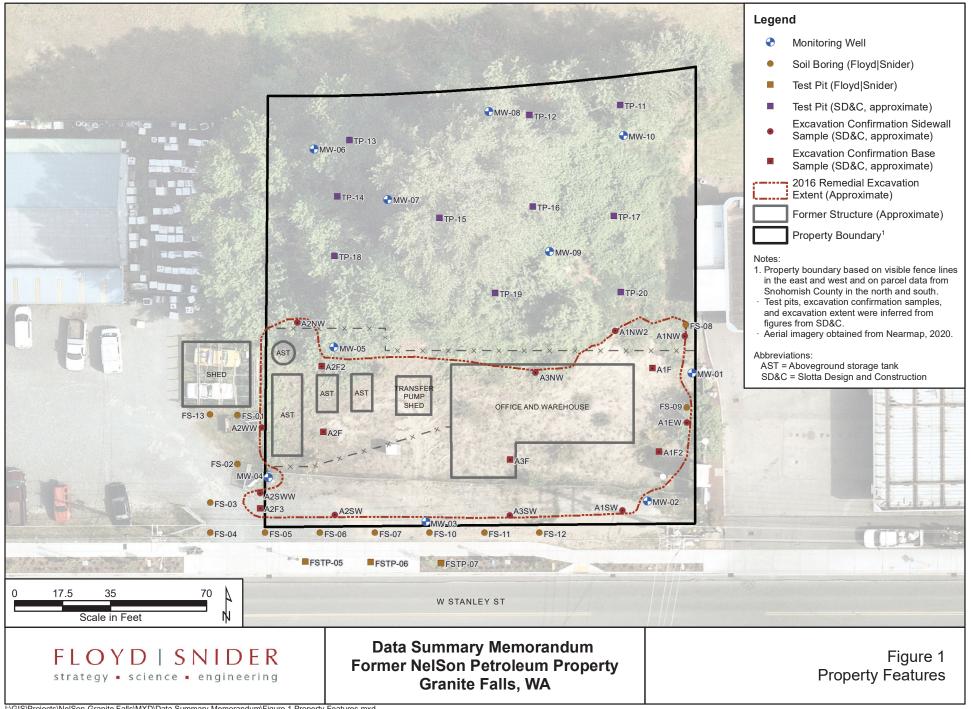
4 The laboratory noted that the sample chromatographic pattern does not resemble the fuel standard used for quantitation.

5 Samples were re-analyzed for diesel- and oil-range organics after performing a silica gel cleanup.

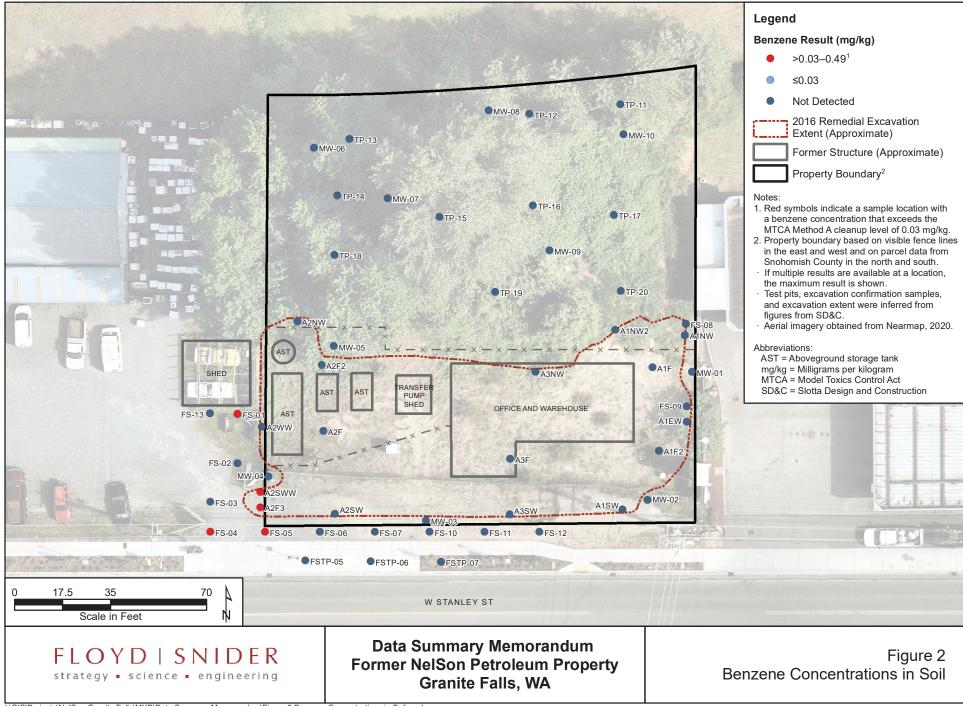
Abbreviations:

BTEX Benzene, toluene, ethylbenzene, and xylenes

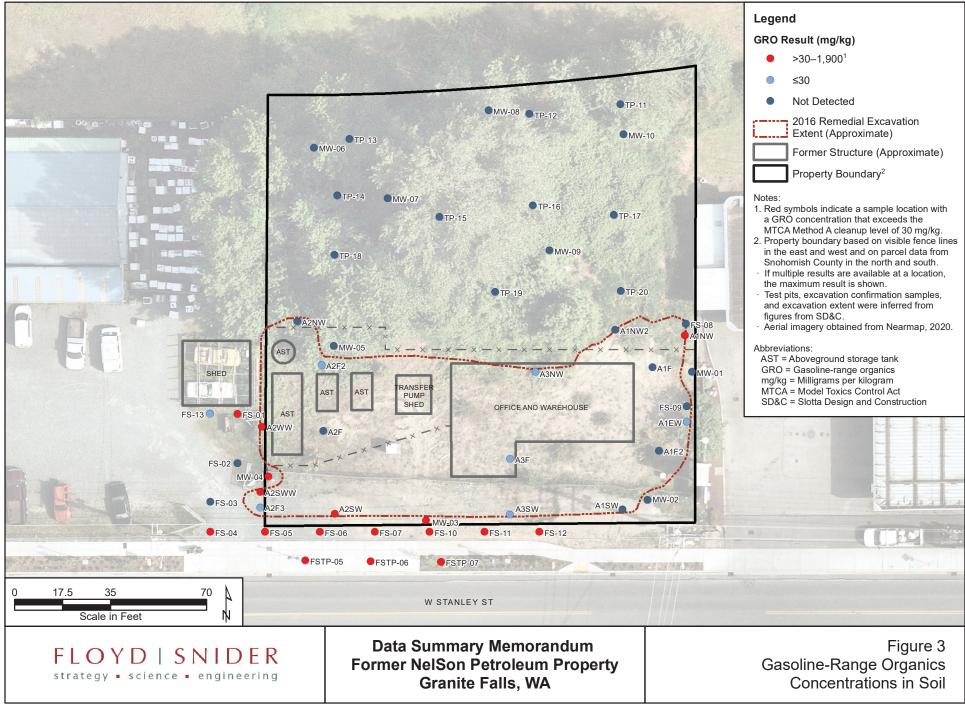
µg/L Micrograms per liter

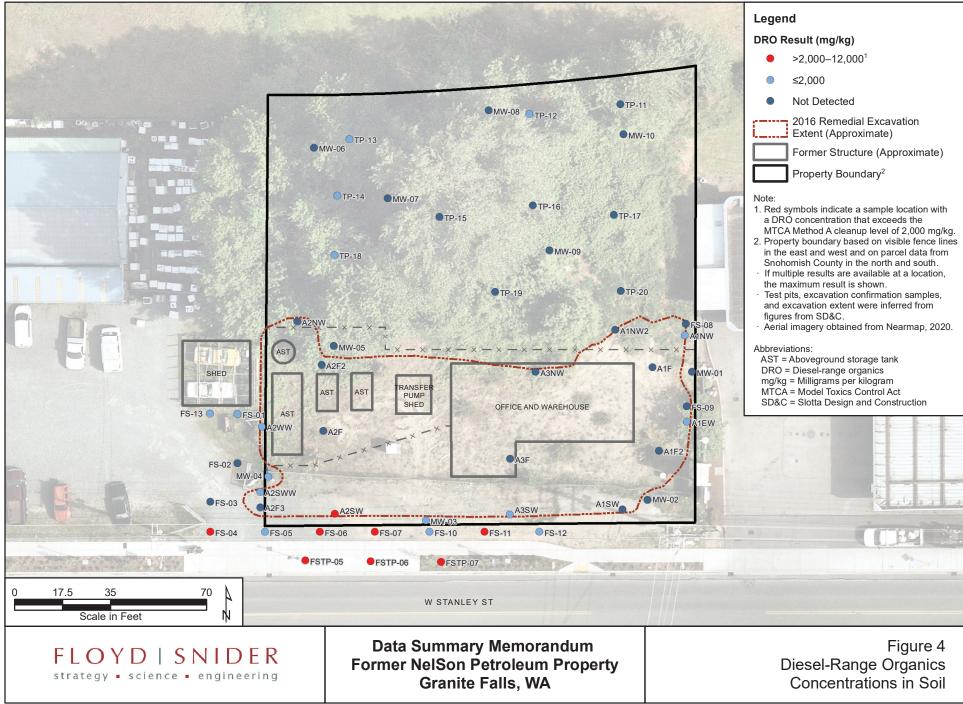

MTCA Model Toxics Control Act

Qualifier:


U Analyte was not detected at the given reporting limit.

Data Summary Memorandum Table 3


Figures


I:\GIS\Projects\NelSon-Granite Falls\MXD\Data Summary Memorandum\Figure 1 Property Features.mxd 9/25/2020

I\GIS\Projects\NelSon-Granite Falls\MXD\Data Summary Memorandum\Figure 2 Benzene Concentrations in Soil.mxd 9/25/2020

I\GIS\Projects\NelSon-Granite Falls\MXD\Data Summary Memorandum\Figure 3 Gasoline-Range Organics Concentrations in Soil.mxd 9/25/2020

I:\GIS\Projects\NelSon-Granite Falls\MXD\Data Summary Memorandum\Figure 4 Diesel-Range Organics concentrations in Soil.mxd 9/25/2020

Attachment 1 Boring and Text Pit Logs

Penetratio Results	n Sample Depth (feet)	PID (ppm)	Depth (feet)	Lithologic Description Soil Class	ification	
			0	MW-1 15' NE of Building Corner Fine to coarse silty SAND dark brown with fine-to coarse	Grass SM	
		None	1	-grained sand with roots and gravel (t <u>Damp Dense No odor.</u> Fine to Medium grained Sandy SILT	SM/ML	
			2	brown with decaying organics, Moist, Medium Dense No Hydrocarbon Odor.		
	MW-1@3	' None				
			4	Fine-to coarse-grained Silty SAND. Gray, Moist, Dense	SM	
			5	Oray, Moist, Dense		
		None	6	Interbeds of Fine-grained SILT and Fine-to-Coarse Grained SAND brow Saturated, Dense, No Odor	SM n	
			7			
		None	8			
			9			
C	Casing 10 slot 5 to	o 10'	10			
		None	11			
			12			
			13			
		None	14			
				END OF BORING	and a might so the source of	

SD&C

8.00

Boring Log

Boring: MW-1

Penetration Results	Sample Depth (feet)	PID (ppm)	Depth (feet)	Lithologic Description	Soil Classificati	on
			0	MW-2 5' W of Shell Sign on S. Fine to coarse silty SAND dark-grey to brown with fine-to	SN	ravel 1
		None	1	-grained sand with roots and graph Dense No odor.	avel (Topso	
			2	Fine to Medium grained Sandy brown with decaying organics, Moist, Medium Dense	SIL1 SI	M/MI
		21	2	No Hydrocarbon Odor.		
	MW-2@3'	None	3	Becomes Saturated – Groundw	ater @ 3.5'	
			4	Fine-to coarse-grained Silty SA	ND. SI	M
			-	Gray, Moist, Dense		
		None	5	x		
			6	Interbeds of Fine-grained SILT Fine-to-Coarse Grained SAND Saturated, Dense, No Odor		М
	Casing 10	slot 5 to 10'	7			
		None	8			
			9			
		None	10			
			10	END OF BORING		
SD8			n sjillen on / co-ou pole			

•

K. 1965

Penetration Results	Sample Depth (feet)	PID (ppm)	Depth	Lithologic Description (feet)	Soil Classification	
			0	MW-3 5' 15' SW of Pur Fine to coarse silty GRA dark-grey to brown with	AVEL	ohalt GW
		None	1	-grained sand (Road FII Dense No odor. Fine to Medium grained	LL) Damp,	SM/MI
			2	brown with decaying or Wet, Medium Dense Moderate Hydrocarbon	ganics,	
	MW-3@ 3'	100	3	Becomes Saturated – G with a sheen	roundwater @ 3	.5'
			4	Fine-to coarse-grained S Gray, Saturated, Dense	Silty SAND. , Moderate	SM
		120	5	Odor	,	
			6	Interbeds of Fine-grained Fine-to-Coarse Grained Saturated, Dense, No C	l SAND gray	SM/M
	Casing 10 s	lot 5 to 10'	7			
		None	8			
			9			
			10	END OF BOR	ING	<u></u>

SD&C

¥ 4

Boring: MW-3

- HIN 27 17 -		(ppm)		(feet) Classification	1
		None	0	MW-4 5' 5' SW of AST Compound Fine to coarse silty GRAVEL Dark-grey to brown with fine-to coar -grained sand (Road FILL) Damp,	Asphalt GW rse
		TTORE	2	Dense No odor. Fine to Medium grained Sandy SILT brown with decaying organics, Wet, Medium Dense	SM/MI
	MW-4@3'	98	3	Moderate Hydrocarbon Odor. Becomes Saturated – Groundwater (with a sheen	1) 3.5'
			4	Fine-to coarse-grained Silty SAND. Gray, Saturated, Dense, Moderate	SM
		130	5	Odor	CN (/) O
			6	Interbeds of Fine-grained SILT and Fine-to-Coarse Grained SAND gray Saturated, Dense, No Odor	SM/M
	Casing 10 slo	ot 5 to 10'	7		
		None	8		
			9		
			10	END OF BORING	

SD&C

•

Boring Log

Boring: MW-4

Penetration Results	Sample Depth (feet)	PID (ppm)	Depth	Lithologic Description Soil (feet) Classification	
		11	0	MW-5 5' NE of AST Compound Fine to coarse silty GRAVEL Dark-grey to brown with fine-to coarse -grained sand (FILL) Damp,	Grass GW
			1 2	-grained sand (FILL) Damp, <u>Dense No odor.</u> Fine to Medium grained Sandy SILT brown with decaying organics, (Peat) Wet, Medium Dense	SM/ML
	MW-5@ 3'	None	3	No Hydrocarbon Odor. Becomes Saturated – Groundwater @ 3	.5'
			4	Fine-to coarse-grained Silty SAND. Gray, Saturated, Dense,	SM
			5	No Odor Interbeds of Fine-grained SILT and	SM/MI
	Casing 10 sl	ot 3 to 8'	6	Fine-to-Coarse Grained SAND gray Saturated, Dense, No Odor	
	<i>cusing c c</i>		7		
			8	END OF BORING - Refusal	Jit Suge
				9.	
er av stand stand stands					
SD&	κ C	na zakranova stranstara 200	Bor	ing Log Borin	g: MW-

•

	PROJECT: NelSon - Granite	Falls	LOCATION: Granite Falls, WA	WELL ID: MW-06
FLOYD SNIDER strategy • science • engineering	LOGGED BY:		COORDINATE SYSTEM:	BORING LOCATION:
strategy • science • engineering	K. Anderson		NAVD88	Northern portion of Property
DRILLED BY:	ECOLOGY WELL ID:		NORTHING:	EASTING:
Brandon Pizzoto, Cascade Drilling	BLK-782		397391.348	1362296.13
DRILLING EQUIPMENT:	SCREENED INTERVAL:		GROUND SURFACE ELE	
Geoprobe LAR	5-10		399	Not surveyed
DRILLING METHOD:			TOTAL DEPTH (ft bgs):	DEPTH TO WATER (ft bgs):
Geoprobe SAMPLING METHOD:			10 BORING DIAMETER:	5 DRILL DATE:
2" x 5' Liner			2"	4/16/2020
Depth USCS Descript	ion	Drive/ Recovery	Sample ID	Well Construction
0 - Black-brown TOPSOIL with rootlets soft subsurface and void space. 0.5 - OL-OH 1.5 - Brown SILT. Moist. 2.5 - ML 3.5 - Gray, well graded SAND with silt ar or debris. 4.5 - SW-SM 5 - - 6.5 - SW 7 - - 8.5 - - 9.5 - - 10 Bottom of boring = 10 feet bgs.	nd gravel. Moist. No odor		MW-06-3.5-5.5 FT	Protective Cover Concrete Bentonite Chips 3/4" Sch. 40 PVC 10-20 Silica Sand 0.010" slotted prepack PVC screen
10.5				
ABBREVIATIONS: ft bgs = feet below ground surface USCS = Unified ppm = parts per million	Soil Classification System groundwater table	NOTES: Recover otherwis		ompressed for log/sample unless

FLOYD SNIDE	PROJECT: NelSon - Granite	Falls	LOCATION: Granite Falls, WA	WELL ID: MW-07	
strategy • science • engineer			COORDINATE SYSTEM:	BORING LOCATION:	
strategy - serence - engineer	K. Anderson		NAVD88	Northern portion of Property	
DRILLED BY:	ECOLOGY WELL ID:		NORTHING:	EASTING:	
Brandon Pizzoto, Cascade Drilling DRILLING EQUIPMENT:	BLK-781		397372.905 GROUND SURFACE ELE	1362323.04 V.: TOC ELEVATION:	
Geoprobe LAR	SCREENED INTERVAL		399	Not surveyed	
DRILLING METHOD:			TOTAL DEPTH (ft bgs):	DEPTH TO WATER (ft bgs):	
Geoprobe			10	4.5	
SAMPLING METHOD:			BORING DIAMETER:	DRILL DATE:	
2" x 5' Liner			2"	4/16/2020	
Depth USCS Des	cription	Drive/ Recovery	Sample ID	Well Construction	
5 - SW-SM 6 - Gray, poorly graded fine SAN 6 - - 7 - - 8 - - 9 - - At 7.75 feet, coarse SAND left - 9 - - Bottom of boring = 10 feet bg -	No odor or debris. silt and gravel. Moist to wet. No D with little silt. Wet. ss. SAND.		MW-07-4.5-5 FT	Protective Cover Concrete Bentonite Chips 3/4" Sch. 40 PVC 10-20 Silica Sand 0.010" slotted prepack PVC screen	
11 ABBREVIATIONS:		NOTES			
ABBREVIATIONS: ft bgs = feet below ground surface USCS = Unified Soil Classification System ppm = parts per million = denotes groundwater table = NOTES: Recovered intervals evenly decompressed for log/sample unless otherwise noted.					

ст	OV		PROJECT: NelSon - Granite	Falls	LOCATION: Granite Falls, WA	WELL ID: MW-08	
		D S N I D E R science • engineering	LOGGED BY:		COORDINATE SYSTEM:	BORING LOCATION:	
		K. Anderson		NAVD88	Northern portion of Property		
DRILLED BY: ECOLOGY WELL ID:		ECOLOGY WELL ID: BLK-780		NORTHING: 397404.912	EASTING:		
		zoto, Cascade Drilling	SCREENED INTERVAL:		GROUND SURFACE ELE	1362359.81 V.: TOC ELEVATION:	
	orobe LA		5-10		399	Not surveyed	
	NG METH	OD:	L		TOTAL DEPTH (ft bgs):	DEPTH TO WATER (ft bgs):	
		100			10 BORING DIAMETER:		
	LING METH 5' Liner	10D:			2"	DRILL DATE: 4/16/2020	
Depth (feet)	USCS Symbol	Descript		Drive/ Recovery			
0		Dark brown TOPSOIL with rootlets.	No odor or debris.			Protective Cover	
-	OL-OH					Concrete	
1 —	0.00	Fine GRAVEL with few fine woody f	ragments and fine black	-			
_	· · · · · · · · · · · · · · · · · · ·	vitreous particles. No odor or debris			MW-08-1-2 FT		
2 —	GP						
-	· • · • •					Bentonite Chips	
3 —	. 0. ₀ . 0.	Black-brown PEAT with rootlets. Mo	vist. No odor			3/4" Sch. 40 PVC	
		Black-brown PEAT with rootiets. With	NST. NO OUOL.				
-	OL-OH						
4 —		Brown SILT. Moist. No odor. Driller	reports multiple attempts				
-		at 5-10 foot interval with no recovery	aue to son/wet son.				
5 —					MW-08-4.5-5 FT		
-							
6 —							
-							
7 —	ML					10-20 Silica Sand	
, –						0.010" slotted prepack	
-						PVC screen	
8 —							
_							
9 —							
		Poorly graded SAND with silt and la	rge gravel. Wet. No odor.				
10 —	SP	Bottom of boring = 10 feet bgs.					
	EVIATIONS			NOTES:			
ft bgs ppm	s = feet bel = parts per	ow ground surface USCS = Unified S million = denotes	Soil Classification System groundwater table		red intervals evenly deco se noted.	ompressed for log/sample unless	

		PROJECT: NelSon - Granite	Falls	LOCATION: Granite Falls, WA	WELL ID: MW-09
	DISNIDER	LOGGED BY:		COORDINATE SYSTEM:	
strategy • science • engineering		K. Anderson		NAVD88	Northern portion of Property
DRILLED BY:		ECOLOGY WELL ID:		NORTHING:	EASTING:
	zoto, Cascade Drilling	BLK-783		397353.873	1362382.07
DRILLING EQUIP		SCREENED INTERVAL:		GROUND SURFACE ELE	
Geoprobe LA		5-10		399	Not surveyed
DRILLING METH				TOTAL DEPTH (ft bgs):	DEPTH TO WATER (ft bgs):
Geoprobe				10	5
SAMPLING METH	HOD:			BORING DIAMETER:	DRILL DATE:
2" x 5' Liner				2"	4/16/2020
Depth USCS (feet) Symbol	Descript	ion	Drive/ Recovery	Sample ID	Well Construction
0 - 1 - 2 - OL-OH 2 - OL-OH - - - - - - - - - - - - -	Black-brown TOPSOIL with rootlets Intermixed black-brown TOPSOIL a gravel. No odor. Black-brown PEAT. No odor. Brown SILT. Moist. Gray, well graded SAND with silt an At 5 feet, becomes wet. Gray-brown, poorly graded fine SAN odor. Brown SILT Dettem of bring Brown SILT	nd well graded SAND with		MW-09-4.5-5 FT	Protective Cover Concrete Bentonite Chips 3/4" Sch. 40 PVC 10-20 Silica Sand 0.010" slotted prepack PVC screen
_	Bottom of boring = 10 feet bgs.				
ABBREVIATIONS ft bgs = feet bel ppm = parts per	ow ground surface USCS = Unified	Soil Classification System groundwater table		red intervals evenly dec se noted.	ompressed for log/sample unless
			1		

ст	FLOYD SNIDER				LOCATION: Granite Falls, WA	WELL ID: MW-10
		D J D C S D C S S D C S S	LOGGED BY:		COORDINATE SYSTEM	: BORING LOCATION:
Stra	trategy - science - engineering		K. Anderson		NAVD88	Northern portion of Property
DRILLI	ED BY:		ECOLOGY WELL ID:		NORTHING:	EASTING:
		zoto, Cascade Drilling	BLK-779		397396.214	1362408.96
			SCREENED INTERVAL:		GROUND SURFACE ELI	
	DING METHO		4-9		399	Not surveyed
	oprobe	JD:			TOTAL DEPTH (ft bgs): 10	DEPTH TO WATER (ft bgs): 4.5
	LING METH	IOD.			BORING DIAMETER:	4.5 DRILL DATE:
	5' Liner				2"	4/16/2020
Depth (feet)	USCS Symbol	Descript	ion	Drive/ Recovery	Sample ID	Well Construction
0		TOPSOIL with rootlets. No odor. Pie surface.	ece of plastic at ground			Protective Cover
-		Dark brown PEAT with rootlets. No	odor.	-		
1 _						Concrete
-	OL-OH					
2 —						Bentonite Chips
						3/4" Sch. 40 PVC
-						
3 —		Brown SILT . Medium plasticity. Mois	st. No odor or debris	-		
		Brown SILT. Medium plasticity. Mol.				
-	- ML					
4 —		Gray, well graded SAND with grave	and little silt. Moist. No	-		
_		odor or debris.				
		At 4.5 feet, becomes wet.			MW-10-4.5-5 FT	
5 —						
-						
	SW					
6 —						10-20 Silica Sand
-						0.010" slotted prepack
_						
7 —						
-		Gray, poorly graded fine SAND with	little silt. Wet. No odor.			
8 —						
0		At 8 feet, becomes brown.				
9 —	SP					
-	-	At 9.5 feet, gravel larger than 2".				
10 —		Bottom of boring = 10 feet bgs.				
-	1					
11						
ft bg	EVIATIONS s = feet belo	ow ground surface USCS = Unified				compressed for log/sample unless
ppm = parts per million						

FLOYD SNIDER	PROJECT: NelSon - Granite Fall	LOCATION:Granite Falls,BORING ID:FallsWAFS			FS-01	
strategy • science • engineering	LOGGED BY: K. Anderson	BORING LOCATION: Adjacent property to west				
DRILLED BY:		NORTHING:	NORTHING: EASTING:			
Brandon Pizzoto, Cascade Drilling		397294.261		13622	68.31	
DRILLING EQUIPMENT: Geoprobe LAR		SURFACE ELEVATION:	401	COORDII NAVD	NATE SYSTEM: 88	
DRILLING METHOD:		TOTAL DEPTH (f	t bgs):	DEPTH T	O WATER (ft bgs):	
Direct Push		10		6		
SAMPLING METHOD/SAMPLER LENGTH: 2" x 5' Liner		BORING DIAMET	ER:	DRILL D 4/17/2		
(feet) Symbol (color, texture, moisture, MAJOR	scription and Observations R CONSTITUENT, odor, staining, she	een, debris, etc.)	Drive/ Recovery	PID (ppm)	Sample ID	
0 OL-OH TOPSOIL. Brown, well graded SAND w 3 feet bgs, slight odor. 1	vdrocarbon odor. and gravel. n odor	ragments. Dry. At		0.4 8.4 38.0 0.8	FS-01-5-6 FT FS-01-6.5-7.5 FT	
12	1					
ABBREVIATIONS: Image: Notest and the second surface ppm = parts per million USCS = Unified Soil Classification System of the second secon					mple unless otherwise	

FLOYD SN	PROJECT: NelSon - Granite F	alls	anite Falls, A	BORIN	^{G ID:} FS-02
strategy - science - en		BORING LOCATI			
DRILLED BY:	K. Anderson	Adjacent prop	Derty to west	EASTING	
Brandon Pizzoto, Cascade Di	rilling	397276.261			
DRILLING EQUIPMENT: Geoprobe LAR SURFACE ELEVATION: 401			401 COORDINATE SYSTEM :		
DRILLING METHOD:		TOTAL DEPTH (f	t bgs):		WATER (ft bgs):
Direct Push		10		8	
SAMPLING METHOD/SAMPLER LE	NGTH:	BORING DIAMET	ER:	DRILL DATE : 4/17/2020	
Depth USCS	Soil Description and Observations		Drive/	PID	Sample ID
0 Brown, well grader 1 SW-SM - At 1.5 feet, bed 2 Black-brown P 3 OL-OH 4 Brown SILT. S	re, moisture, MAJOR CONSTITUENT, odor, staining aded SAND with silt and gravel. Dry. comes black-brown. EAT. Moist. No odor. oft. No odor. comes gray and firm.		Recovery	(ppm) 0.0	Sample ID FS-02-4-5 FT
9 — SP 	fine SAND . Firm. Wet. No odor. ng = 10 feet bgs.			0.0	
		-			
ABBREVIATIONS: ft bgs = feet below ground surface ppm = parts per million	USCS = Unified Soil Classification System	NOTES: Recovered intervals evenly noted.	decompressed	for log/sam	ple unless otherwis

FLOYD SNIDER	PROJECT: NelSon - Granite F	alls		BORING ID: FS-03	
strategy • science • engineering	LOGGED BY: K. Anderson		BORING LOCATION: Adjacent property to west		
DRILLED BY:		NORTHING:	. ,	EASTING:	
Brandon Pizzoto, Cascade Drilling		397262.273		1362258.31	
DRILLING EQUIPMENT: Geoprobe LAR		SURFACE ELEVATION:		C OORDINATE SYSTEM : NAVD88	
DRILLING METHOD:		TOTAL DEPTH (ft bgs): D	DEPTH TO WATER (ft bgs):	
Direct Push		10		7.5	
SAMPLING METHOD/SAMPLER LENGTH: 2" x 5' Liner		BORING DIAME		RILL DATE: 4/17/2020	
(feet) Symbol (color, texture, moisture, MAJOF	scription and Observations R CONSTITUENT, odor, staining,	sheen, debris, etc.)	Drive/ Recovery	PID (ppm) Sample ID	
0 Image: Simple state stat	rown. Few wood fragmo odor. • • • • • • • • • • • • • • • • • • •	ents. No odor.		0.2 0.1 0.0 FS-03-4.5-5 FT 0.0	
ABBREVIATIONS: ft bgs = feet below ground surface USCS = Unified S		NOTES: Recovered intervals evenly noted.	/ decompressed fo	for log/sample unless otherwis	

FI (OYD SNIDER	PROJECT: NelSon - Granite Fa	LOCATION: Gr.		BORI	FS-04	
	egy • science • engineering	LOGGED BY: K. Anderson	BORING LOCATION: W Stanley Street ROW				
DRILLED BY: NORTHING:							
Brand	on Pizzoto, Cascade Drilling		397251.273		13622	58.31	
	G EQUIPMENT: obe LAR		SURFACE ELEVATION:	401	COORDII NAVD	NATE SYSTEM: 88	
DRILLIN	G METHOD:		TOTAL DEPTH (1	t bgs):	DEPTH T	O WATER (ft bgs):	
Direct	Push		10		7		
SAMPLI 2" x 5'	NG METHOD/SAMPLER LENGTH: Liner		BORING DIAMET	ER:	DRILL D 4/17/2		
Depth (feet)	USCS Soil De Symbol (color, texture, moisture, MAJO	scription and Observations R CONSTITUENT, odor, staining, s	heen, debris, etc.)	Drive/ Recovery	PID (ppm)	Sample ID	
0	• • • • • Brown, well graded GRAVE I	L with sand and some sill	t. Dry. No odor or				
	• • • • • • • • • • • • • • • • • • •						
1	ĠŴ						
	• • • • • •						
2 —	0.0.				-		
	Black-brown, well graded S	ND with gravel and silt.	Hydrcarbon odor.				
	SW-SM				26.5	FS-04-2-3 FT	
3 —					-		
-	OL-OH						
4 —	Brown SILT .				0.7		
	SW: Gray, well graded SAND wit	h silt and gravel. No odor			0.2	FS-04-4.5-5 FT	
5 —	Brown SILT. No odor.				0.2		
-	Gray sandy SILT .		-				
6 —							
-							
7 🔽	Croy, poorly graded yory fin	CAND Wat No odor			0.1		
	Gray, poorly graded very fine	e Sand. Wel. No odor.					
-							
8 —							
_	SP						
9 —					0.2		
_							
10 —	Bottom of boring = 10 feet by	gs.					
-	-		-				
11 —							
–							
12 —							
	/IATIONS:		OTES:				
ft bgs :	= feet below ground surface USCS = Unified		Recovered intervals evenly noted.	decompressed	for log/sa	mple unless otherwise	

	PROJECT: NelSon - Granite Fa	alls		BORING	^{ID:} FS-05
	LOGGED BY:	BORING LOCATI	-		
strategy • science • engineering	K. Anderson	W Stanley St			
DRILLED BY:		NORTHING:		EASTING:	
Brandon Pizzoto, Cascade Drilling		397251.273		1362278	.31
DRILLING EQUIPMENT:		SURFACE ELEVATION:			E SYSTEM:
Geoprobe LAR			401	NAVD88	
DRILLING METHOD:		TOTAL DEPTH (f	t bgs):		VATER (ft bgs):
		10		5	
SAMPLING METHOD/SAMPLER LENGTH: 2" x 5' Liner		BORING DIAMET		0 RILL DATE 4/17/2020	
(feet) Symbol (color, texture, moisture, MAJOR	cription and Observations CONSTITUENT , odor, staining,	sheen, debris, etc.)	Drive/ Recovery	PID (ppm)	Sample ID
$0 \qquad \qquad \mathbf{GRAVEL} \text{ surfacing. Dry.}$					
1 0 • 0 • 0					
Brown, well graded SAND wit	h silt and gravel. Dry to	o moist. Some wood			
2 —					
³ At 3 feet, hydrcarbon odor.		-		190.0	
–SW-SM					
⁴ At 4 feet, large wood piece.		-			
				104.0	
⁵ At 5 feet, becomes wet. Mode	erate to strong odor. Slip	ght rainbow sheen		184.0	
clings to soil.				348.0	FS-05-5-6 FT
Gray sandy SILT. Odor dissa	pates.				
7 $ $ $ $ $ $ $ $ $ $ At 7 feet, no odor.		-			
				1.0	FS-05-7-8 FT
				1.0	13-03-7-011
8 —					
	D Mot No ada				
Gray, poorly graded fine SAN	D. Wel. NO Odor.				
9 — [36] [37] [37] [37] [37] [37] [37] [37] [37					
10				0.2	
Bottom of boring = 10 feet bgs	S.			0.2	
		-			
11					
12					
ABBREVIATIONS:		IOTES:	docompressed		
ft bgs = feet below ground surface USCS = Unified S ppm = parts per million = denotes g		Recovered intervals evenly noted.	uecompressed t	or iog/sampl	e uniess otherwise

FLOYD SNIDER	PROJECT: NelSon - Granite Falls	LOCATION: Grani WA	te Falls,	BORING	^{ID:} FS-06
strategy • science • engineering	LOGGED BY: K. Anderson	BORING LOCATION			
DRILLED BY:	R. Anderson	NORTHING:		ASTING:	
Brandon Pizzoto, Cascade Drilling		397251.276		1362298	.31
DRILLING EQUIPMENT: Geoprobe LAR		SURFACE ELEVATION:		oordina NAVD88	TE SYSTEM:
DRILLING METHOD:		TOTAL DEPTH (ft be			WATER (ft bgs):
Direct Push		10		5	
SAMPLING METHOD/SAMPLER LENGTH: 2" x 5' Liner		BORING DIAMETER 2"		RILL DATE 4/17/202	
	scription and Observations R CONSTITUENT, odor, staining, sheen, d	ebris, etc.)	Drive/ Recovery	PID (ppm)	Sample ID
 debris. -SW-SM -SW-SM -SW-SM Black-brown PEAT. Hydrcart OL-OH Black-brown SILT. Soft. 	n silt and gravel. Moist. Strong ely and wet at 5 feet bgs. and no odor at 7 feet bgs.			0.0	FS-06-4.5-5 FT FS-06-7-8 FT
ABBREVIATIONS: ft bgs = feet below ground surface USCS = Unified S	Soil Classification System groundwater table NOTES:	ed intervals evenly de	compressed fo	or log/samp	le unless otherwise

FLOYI	DISNIDER	PROJECT: NelSon - Granite Fall		ranite Falls, /A	BORI	FS-07
	cience • engineering	LOGGED BY: K. Anderson	BORING LOCA			
ORILLED BY:		K. Anderson	W Stanley S	street ROW	EASTING	<u>.</u>
	to, Cascade Drilling		397251.276		13623	
DRILLING EQUIPM Geoprobe LAR			SURFACE ELEVATION:	401	coordii NAVD	NATE SYSTEM: 88
ORILLING METHO	D:		TOTAL DEPTH	(ft bgs):	DEPTH T	O WATER (ft bgs):
Direct Push			10		6	
AMPLING METHO 2" x 5' Liner	DD/SAMPLER LENGTH:		BORING DIAME	TER:	DRILL D 4/17/2	
			2	Drive /		020
Depth USCS (feet) Symbol	Soil Des (color, texture, moisture, MAJO I	scription and Observations R CONSTITUENT, odor, staining, she	een, debris, etc.)	Drive/ Recovery	PID (ppm)	Sample ID
4 5 6 7 7 8 8 ML 9 9	At 3.5 feet, becomes brown a At 5 feet, brick fragment with At 5.5 feet, becomes gray. <u>At 6 feet, becomes wet.</u> Gray sandy SILT . Few sandy	silt. y pockets. Moist. No odor.			242.0 103.0 0.2 0.4	FS-07-4-5 FT FS-07-6.5-7.5 FT
12						
16		NO	TES:			
ABBREVIATIONS:			ILJ.			

FLOYD SNIDER	PROJECT: NelSon - Granite Fall	S LOCATION: Gr		BORI	FS-08
strategy • science • engineering	LOGGED BY:	BORING LOCAT	ION:		
strategy - science - engineering	K. Anderson	Eastern Prop	erty line		
DRILLED BY:		NORTHING:		EASTIN	
Brandon Pizzoto, Cascade Drilling		397327.113		13624	
DRILLING EQUIPMENT: Geoprobe LAR		SURFACE ELEVATION:	401	NAVD	NATE SYSTEM: 88
DRILLING METHOD:		TOTAL DEPTH (ft bgs):	DEPTH T	O WATER (ft bgs):
Direct Push		10		5.5	
SAMPLING METHOD/SAMPLER LENGTH: 2" x 5' Liner		BORING DIAME	TER:	DRILL D 4/17/2	
Depth USCS Soil Det (feet) Symbol (color, texture, moisture, MAJO	scription and Observations R CONSTITUENT, odor, staining, she	een, debris, etc.)	Drive/ Recovery	PID (ppm)	Sample ID
⁰ Well graded SAND with silt a	and gravel.				
At 1.5 feet, becomes mixed v	with ORGANIC SOIL and	fine rootlets. No	-		
2 — SW-SM odor or debris.					
3 —					
		-			
At 3.5 feet, becomes brown.	No organic soil.				
4 3-inch PEAT lens followed b	y dark brown sandy SILT.		-		
				0.0	
5					FS-08-4.5-5.5 FT
Gray, well graded SAND with	5		-		
At 5.5 feet, becomes wet. No	odor.				
6 —				0.1	
-SW-SM					
8 -					
				0.1	
9 —					
10 Bottom of boring = 10 feet by] S.				
	-	-			
11 —					
12					
ABBREVIATIONS: ft bgs = feet below ground surface USCS = Unified		TES: covered intervals evenly	y decompressed	l for log/sa	mple unless otherwise
ppm = parts per million = denotes		ted.		5	

FLOY	DISNIDER	PROJECT: NelSon - Granite Falls	LOCATION: Gr	anite Falls, A	BORIN	^{G ID:} FS-09
	science • engineering	LOGGED BY: K. Anderson	BORING LOCATI Eastern Prop			
RILLED BY:		I	NORTHING:		EASTING	
	oto, Cascade Drilling		397296.993		136243	
Geoprobe LA	R		SURFACE ELEVATION:	401	NAVD8	
RILLING METH	OD:		TOTAL DEPTH (f 10	t bgs):	DEPTH TO) WATER (ft bgs):
	HOD/SAMPLER LENGTH:		BORING DIAMET	ED.	, DRILL DA	TE·
2" x 5' Liner			2"	ER.	4/17/20	
Depth USCS (feet) Symbol	Soil De	scription and Observations R CONSTITUENT, odor, staining, she	on dobris atc.)	Drive/ Recovery	PID (ppm)	Sample ID
0 1 2 3 4 4 5 - 6 - SW-SN 7 - 8 - 9 - 10 - SP - - - - - - - - - - - - -	At 3.5 feet, becomes moist. Brown, well graded SAND w At 7 feet, becomes gray and Gray, poorly graded fine SA Bottom of boring = 10 feet by	ith gravel and silt. Moist. N wet. No odor.	-		0.1 0.1 1.5 0.5	FS-09-7-8 FT
12 BBREVIATIONS ft bas = feet bel	S: ow ground surface USCS = Unified	Soil Classification System Rev	ES: covered intervals evenly		d for log/sam	nple unless otherwi

FLOYD SNIDER	рвојест: NelSon - Granite Fa	Ills LOCATION: Gr		BORI	^{NG ID:} FS-10
strategy • science • engineering	LOGGED BY: K. Anderson	BORING LOCATI W Stanley St			
DRILLED BY:	R. Anderson	NORTHING:		EASTING	
Brandon Pizzoto, Cascade Drilling		397251.276		13623	
DRILLING EQUIPMENT: Geoprobe LAR		SURFACE ELEVATION:	401	coordii NAVD	NATE SYSTEM:
DRILLING METHOD:		TOTAL DEPTH (1			O WATER (ft bgs):
Direct Push		10	(bys).	5	o maren (n 593).
SAMPLING METHOD/SAMPLER LENGTH: 2" x 5' Liner		BORING DIAMET	ER:	DRILL D 4/17/2	
Depth USCS Soil Des (feet) Symbol (color, texture, moisture, MAJO	scription and Observations R CONSTITUENT, odor, staining, s	sheen, debris, etc.)	Drive/ Recovery	PID (ppm)	Sample ID
⁰ Brown, well graded SAND w	ith silt and gravel. Dry. N	lo odor or debris.			
–SW-SM					
2					
³ Dark brown PEAT . Moist. Sli	ght odor.				
-OL-OH					
4					
ML Brown SILT with wood fragm	ents. Hydrocarbon odor				
Well graded SAND with silt a	and gravel. Hydrocarbon	odor.		13.9	
⁵ At 5 feet, becomes wet. Stro	ng odor.	-		·	
				39.0	FS-10-5-6 FT
6 — SW-SM					
7				0.6	FS-10-6.5-7.5 FT
Gray sandy SILT. No odor.					
8 —					
ML					
9					
				0.2	
Bottom of boring = 10 feet bo	js.				
		-			
11 —					
	Γ	0750			
ABBREVIATIONS: ft bgs = feet below ground surface USCS = Unified 3		OTES: Recovered intervals evenly	decompressed	for log/sa	mple unless otherwise
ppm = parts per million = denotes		noted.		~	

FLOYD SNIDER	PROJECT: NelSon - Granite Falls	LOCATION: Granit WA	e Falls,	BORIN	^{IG ID:} FS-11
strategy • science • engineering	LOGGED BY: K. Anderson	BORING LOCATION: W Stanley Street	ROW		
DRILLED BY: Brandon Pizzoto, Cascade Drilling		NORTHING: 397251.276		EASTING 136235	
DRILLING EQUIPMENT: Geoprobe LAR		SURFACE ELEVATION: 4	01	COORDIN	ATE SYSTEM:
DRILLING METHOD:		TOTAL DEPTH (ft bg	s):		D WATER (ft bgs):
Direct Push SAMPLING METHOD/SAMPLER LENGTH:		10 BORING DIAMETER:		5 DRILL DA	TE·
2" x 5' Liner		2"		4/17/20	
Depth USCS Soil Des (feet) Symbol (color, texture, moisture, MAJOR	cription and Observations CONSTITUENT, odor, staining, sheen,	debris, etc.)	Drive/ Recovery	PID (ppm)	Sample ID
 Brown, well graded SAND widecomposing wood debris. SW-SM SW-SM Dark brown silty PEAT. Sligh OL-OH Dark brown, well graded SAN 4.75 feet. At 5 feet, becomes wet. 	t hydrcarbon odor from 3.5 to	o 4.5 feet.		43.9 30.4 -	FS-11-4-5 FT
 At 6 feet, becomes gray. No SW-SM 	odor.			0.0	FS-11-6-7 FT
8					
10 Bottom of boring = 10 feet bg	JS.	-			
ABBREVIATIONS: ft bgs = feet below ground surface USCS = Unified S ppm = parts per million	Soil Classification System groundwater table	ered intervals evenly dec	ompressed	for log/san	nple unless otherwise

FLOYD SNIDE	R PROJECT: NelSon - Granite Falls	LOCATION: Gra	anite Falls,	BORIN	FS-12
strategy • science • engineerir		BORING LOCATION			
DRILLED BY:	K. Anderson	NORTHING:		EASTING	:
Brandon Pizzoto, Cascade Drilling		397251.276		13623	
DRILLING EQUIPMENT: Geoprobe LAR		SURFACE ELEVATION:	401	NAVD8	
DRILLING METHOD: Direct Push		TOTAL DEPTH (ft 10	bgs):	DEPTH TO 5	O WATER (ft bgs):
SAMPLING METHOD/SAMPLER LENGTH:		BORING DIAMET	ER:	DRILL DA	TE:
2" x 5' Liner		2"		4/17/20	020
Depth USCS Soi (feet) Symbol (color, texture, moisture, M.	Description and Observations AJOR CONSTITUENT, odor, staining, sheen	, debris, etc.)	Drive/ Recovery	PID (ppm)	Sample ID
1	SAND with silt and gravel. Mois			0.0	FS-12-4-5 FT
12					
ABBREVIATIONS: ft bgs = feet below ground surface USCS = Unit ppm = parts per million	ied Soil Classification System otes groundwater table	vered intervals evenly	decompresse	d for log/sar	nple unless otherwise

FLOYD SNIDER	PROJECT: NelSon - Granite Falls	LOCATION: Gr		BORI	FS-13
strategy • science • engineering	LOGGED BY:	BORING LOCAT	ON:		
strategy - science - engineering	K. Anderson	Adjacent pro	perty to west		
DRILLED BY:		NORTHING:		EASTING	
Brandon Pizzoto, Cascade Drilling		397294.425		13622	58.23
DRILLING EQUIPMENT: Geoprobe LAR		SURFACE ELEVATION:	401	COORDII NAVD	NATE SYSTEM:
DRILLING METHOD:		TOTAL DEPTH (O WATER (ft bgs):
Direct Push		10	(bys).	5.5	o minzik (it 290).
SAMPLING METHOD/SAMPLER LENGTH:		BORING DIAME	ER:	DRILL D	
2" x 5' Liner		2"		4/17/2	020
(feet) Symbol (color, texture, moisture, MAJC	escription and Observations OR CONSTITUENT, odor, staining, sheer	, debris, etc.)	Drive/ Recovery	PID (ppm)	Sample ID
⁰ Brown, well graded SAND v	vith silt and gravel.				
	own Fourwood from onto N	-			
At 1100t, becomes black-bi	own. Few wood fragments. N				
SW-SM					
2 —					
3 —					
Black-brown PEAT . Moist.					
4				1.5	
			-		
5 Gray, well graded SAND wi	th silt and gravel. Moist. No c	dor.		8.5	FS-13-4.5-5.5
	e eder	-		-	
At 5.5 feet, becomes wet. N	0 0001.				
7					
_SW-SM				1.1	
				1.1	
8					
				0.0	
10 Bottom of boring – 10 foot h					
Bottom of boring = 10 feet b	ys.				
		-			
11 —					
12					
ABBREVIATIONS:	NOTE	S:			
ft bgs = feet below ground surface USCS = Unified	Soil Classification System Reco	vered intervals evenly	/ decompressed	for log/sa	mple unless otherwise
ppm = parts per million e denote	s groundwater table noted				

Soil	Sample Depth	PID	Depth	Lithologic Description
Results	(feet)	(ppm)	(feet)	Classification
			0	5' S and 15'E of NE Property CornerGrassFine to coarse silty SANDSM
				dark brown with fine-to coarse
		NT	1	-grained sand with roots and gravel (topsoil)
		None	1	Damp Dense No odor. Buried metal
				debris including 1' dia. corrugated pipe and 4" dia. pvc pipe
		None	2	Tan Fine to Medium grained Sandy SM/M
				SILT brown with decaying organics, Moist, Medium Dense
			3	Becomes Saturated – Groundwater @ 2.5'
		None		Fine-to coarse-grained Silty SAND. SM
			4	Gray, Moist, Dense
		None		Interbeds of Fine-grained SILT and SM
	TD 11@57		~	Fine-to-Coarse Grained SAND brown
	TP-11@5'		5	Saturated, Dense, No Odor
			6	
			Ū	
			7	
			8	
			9	
			10	
			· · · · · · · · · · · · · · · · · · ·	

Soil Boring / Test Pit Log

Penetration Soil	Sample Depth	PID	Depth	Lithologic Description
Results	(feet)	(ppm)	(feet)	Classification
			0	5' S and 60'E of NE Property CornerGrassFine to coarse silty SANDSMdark brown with fine-to coarse
		None	1	-grained sand with roots and gravel (topsoil) Damp Dense No odor.
		None	2	Brown Fine to Medium grained Sandy SM/M SILT with gravel 1-2 inches subrounded brown with decaying organics, Moist, Medium Dense
			3	Becomes Saturated – Groundwater @ 2.5'
			4	
	TP-12@5'	None	5	Interbeds of Fine-grained SILT and SM Fine-to-Coarse Grained SAND brown Saturated, Dense, No Odor
			6	
			7	
			8	
			9	
			10	
				END OF BORING

Soil	Sample Depth	PID	Depth	Lithologic Description
Results	(feet)	(ppm)	(feet)	Classification
			0	10' S and 40'W of NW Property Corner GrassFine to coarse silty SANDSMdark brown with fine-to coarse-grained sand with roots and gravel (topsoil)
		None	1	Damp Dense No odor.
		None	2	Brown Fine to Medium grained Sandy SM/MI SILT with gravel 1-2 inches subrounded brown with decaying organics, Moist, Medium Dense
			3	Becomes Saturated – Groundwater @ 2.5'
			4	
	TP-13@5'	None	5	Interbeds of Fine-grained SILT and SM Fine-to-Coarse Grained SAND brown Saturated, Dense, No Odor
			6	
			7	
			8	
			9	
			10	
	····	F.M. 6	*********	END OF BORING

SD&C Soil Boring / Test Pit Log

Penetration Soil	Sample Depth	PID	Depth	Lithologic Description		
Results	(feet)	(ppm)	(feet)	Classification		
			0	40' S and 35'W of NW Property Corner GrassFine to coarse silty SANDSMdark brown with fine-to coarse-grained sand with roots and gravel (topsoil)		
		None	1	Damp Dense No odor.		
		None	2	Brown Fine to Medium grained Sandy SM/MI SILT with gravel 1-2 inches subrounded brown with decaying organics, Moist, Medium Dense		
			3	Becomes Saturated – Groundwater @ 2.5'		
			4			
	TP-14@5'	None	5	Interbeds of Fine-grained SILT and SM Fine-to-Coarse Grained SAND brown Saturated, Dense, No Odor		
			6			
			7			
			8			
			9			
			10			
	······		·······	END OF BORING		

Soil Boring / Test Pit Log

Penetration Soil	Sample Depth	PID	Depth	Lithologic Description		
Results	(feet)	(ppm)	(feet)	Classification		
			0	50' S and 80'W of NW Property Corner GrassFine to coarse silty SANDSMdark brown with fine-to coarsegrained cond with poots on the set of th		
		None	1	-grained sand with roots and gravel (topsoil) Damp Dense No odor.		
		None	2	Brown Fine to Medium grained Sandy SM/M SILT with gravel 1-2 inches subrounded brown with decaying organics, Moist, Medium Dense		
			3	Becomes Saturated – Groundwater @ 2.5'		
			4			
	TP-15@5'	None	5	Interbeds of Fine-grained SILT and SM Fine-to-Coarse Grained SAND brown Saturated, Dense, No Odor		
			6			
			7			
			8			
			9			
			10			
		······		END OF BORING		

Soil Boring / Test Pit Log

Penetration S Soil	ample Depth	PID	Depth	Lithologic Description
Results	(feet)	(ppm)	(feet)	Classification
			0	40' S and 55'W of NE Property Corner GrassFine to coarse silty SANDSMdark brown with fine-to coarse
		None	1	-grained sand with roots and gravel (topsoil) Damp Dense No odor.
		None	2	Brown Fine to Medium grained Sandy SM/M SILT with gravel 1-2 inches subrounded brown with decaying organics, Moist, Medium Dense
			3	Becomes Saturated – Groundwater @ 2.5'
			4	
	TP-16@5'	None	5	Interbeds of Fine-grained SILT and SM Fine-to-Coarse Grained SAND brown Saturated, Dense, No Odor
			6	
			7	
			8	
			9	
			10	
				END OF BORING

Soil Boring / Test Pit Log

	Sample Depth	PID	Depth	Lithologic Description
Soil Results	(feet)	(ppm)	(feet)	Classification
			0	40' S and 30'W of NE Property CornerGrassFine to coarse silty SANDSMdark brown with fine-to coarse
		None	1	-grained sand with roots and gravel (topsoil) Damp Dense No odor.
		None	2	Brown Fine to Medium grained Sandy SM/M SILT with gravel 1-2 inches subrounded brown with decaying organics, Moist, Medium Dense
			3	Becomes Saturated – Groundwater @ 2.5'
	None TP-17@5'		4	
		5	Interbeds of Fine-grained SILT and SM Fine-to-Coarse Grained SAND brown Saturated, Dense, No Odor	
			6	
			7	
			8	
			9	
			10	
			······	END OF BORING

Soil Boring / Test Pit Log

0 55' S and 20'E of NW Property Corner Gr Fine to coarse silty SAND SM dark brown with fine-to coarse -grained sand with roots and gravel (topsoil None 1 Damp Dense No odor. None 2 Brown Fine to Medium grained Sandy SM SILT with gravel 1-2 inches subrounded brown with decaying organics, Moist, Medium Dense Becomes Saturated – Groundwater @ 2.5' 3 4	Penetration Soil	Sample Depth	PID	Depth	Lithologic Description		
Fine to coarse silty SAND SM dark brown with fine-to coarse -grained sand with roots and gravel (topsoil None 1 Damp Dense No odor. None 2 Brown Fine to Medium grained Sandy SM SILT with gravel 1-2 inches subrounded brown with decaying organics, Moist, Medium Dense Becomes Saturated – Groundwater @ 2.5' 3 4 None 5 Interbeds of Fine-grained SILT and SM Fine-to-Coarse Grained SAND brown Saturated, Dense, No Odor 6 7 8	Results	(feet)	(ppm)	(feet)	Classification		
None 1 Damp Dense No odor. None 2 Brown Fine to Medium grained Sandy SM SILT with gravel 1-2 inches subrounded brown with decaying organics, Moist, Medium Dense Becomes Saturated – Groundwater @ 2.5' 3 4 4 4 None 5 1 Interbeds of Fine-grained SILT and Fine-to-Coarse Grained SAND brown Saturated, Dense, No Odor 6 7 8 8				0	dark brown with fine-to coarse		
SILT with gravel 1-2 inches subrounded brown with decaying organics, Moist, Medium Dense Becomes Saturated – Groundwater @ 2.5' 4 None 5 Interbeds of Fine-grained SILT and SM Fine-to-Coarse Grained SAND brown Saturated, Dense, No Odor 6 7 8			None	1	Damp Dense No odor.		
3 4 4 None 5 Interbeds of Fine-grained SILT and SM Fine-to-Coarse Grained SAND brown Saturated, Dense, No Odor 6 7 8			None	2	SILT with gravel 1-2 inches subrounded brown with decaying organics, Moist, Medium Dense		
None 5 Interbeds of Fine-grained SILT and Fine-to-Coarse Grained SAND brown Saturated, Dense, No Odor SM 6 6 7 8				3	Becomes Saturated – Groundwater (a) 2.5'		
TP-18@5' Fine-to-Coarse Grained SAND brown Saturated, Dense, No Odor 6 7 8				4			
7 8		TP-18@5'	None	5	Fine-to-Coarse Grained SAND brown		
8				6			
				7			
9				8			
				9			
10				10			

Soil Boring / Test Pit Log

SD&C

Penetration Soil	Sample Depth	PID	Depth	Lithologic Description		
Results	(feet)	(ppm)	(feet)	Classification		
			0	65' S and 70'E of NW Property Corner GrassFine to coarse silty SANDSMdark brown with fine-to coarse-grained sand with roots and gravel (topsoil)		
		None	1	Damp Dense No odor.		
		None	2	Brown Fine to Medium grained Sandy SM/ML SILT with gravel 1-2 inches subrounded brown with decaying organics, Moist, Medium Dense		
			3	Becomes Saturated – Groundwater @ 2.5'		
			4			
	TP-19@5'	None	5	Interbeds of Fine-grained SILT and SM Fine-to-Coarse Grained SAND brown Saturated, Dense, No Odor		
			6			
			7			
			8			
			9			
			10			
		······	·····	END OF BORING		

Soil Boring / Test Pit Log

SD&C

Penetration Soil	Sample Depth	PID	Depth	Lithologic Description			
Results	(feet)	(ppm)	(feet)	Classification			
			0	65' S and 25'E of NW Property Corner Grass Black Fine to coarse silty SAND SM fine-to coarse-grained sand with roots and gravel (topsoil)			
		None	1	Damp Dense No odor.			
		None	2	Brown Fine to Medium grained Sandy SM/MI SILT with gravel 1-2 inches subrounded brown with decaying organics, Moist, Medium Dense			
			3	Becomes Saturated – Groundwater @ 2.5'			
			4				
	TP-20@5'	None	5	Interbeds of Fine-grained SILT and SM Fine-to-Coarse Grained SAND brown Saturated, Dense, No Odor			
			6				
			7				
			8				
			9				
			10				
				END OF BORING			

Soil Boring / Test Pit Log

Test Pit Log

Site: Former NelSon Petroleum Property

Logged by: K. Anderson

Date: 08/02/2019

		FSTP-05		
Depth(feet)	USCS Symbol	Description	Sample Depth	Sample ID
0-3	SW-SM	Well graded SAND with gravel, silt, peat and debris (fill). Organic odor.		
3-5	SP	Dark gray poorly graded SAND with abundant gravel. No debris. Gray staining and strong petroleum odor. PID >100 ppmv	4 ft	FSTP-05-4FT

	FSTP-06							
Depth(feet)	USCS Symbol	Description	Sample Depth	Sample ID				
0-3	SW-SM	Well graded SAND with gravel, silt, peat and debris (fill). Organic odor.						
3-5	SP	Dark gray poorly graded SAND with abundant gravel. No debris. Gray staining and strong petroleum odor. PID >100 ppmv	5 ft	FSTP-06-5FT				

	FSTP-07							
Depth(feet)	USCS Symbol	Description	Sample Depth	Sample ID				
0-3	SW-SM	Well graded SAND with gravel, silt, peat and debris (fill). Organic odor.						
3-5	SP	Dark gray poorly graded SAND with abundant gravel. No debris. Oil appearance in soil and strong petroleum odor. Staining not present. PID >100 ppmv	5 ft	FSTP-07-5FT				

Attachment 2 Laboratory Analytical Reports

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

December 27, 2018

Scott Adamek, Project Manager Floyd-Snider Two Union Square, Suite 600 601 Union St Seattle, WA 98101

Dear Mr Adamek:

Included are the results from the testing of material submitted on December 21, 2018 from the Nelson-Granite Falls, F&BI 812336 project. There are 6 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Colo

Michael Erdahl Project Manager

Enclosures FDS1227R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on December 21, 2018 by Friedman & Bruya, Inc. from the Floyd-Snider Nelson-Granite Falls, F&BI 812336 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Floyd-Snider</u>
812336 -01	MW01-122118
812336 -02	MW02-122118
812336 -03	MW03-122118
812336 -04	MW04-122118
812336 -05	MW05-122118
812336 -06	trip blanks

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 12/27/18 Date Received: 12/21/18 Project: Nelson-Granite Falls, F&BI 812336 Date Extracted: 12/24/18 Date Analyzed: 12/24/18

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 52-124)
MW01-122118 812336-01	<1	<1	<1	<3	<100	82
MW02-122118 812336-02	<1	<1	<1	<3	<100	82
MW03-122118 812336-03	<1	<1	<1	<3	<100	83
MW04-122118 812336-04	<1	<1	<1	<3	<100	84
MW05-122118 812336-05	<1	<1	<1	<3	<100	83
trip blanks 812336-06	<1	<1	<1	<3	<100	82
Method Blank 08-2876 MB	<1	<1	<1	<3	<100	82

Results Reported as ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Date of Report: 12/27/18 Date Received: 12/21/18 Project: Nelson-Granite Falls, F&BI 812336 Date Extracted: 12/24/18 Date Analyzed: 12/24/18

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 41-152)
MW01-122118 812336-01	<50	<250	53
MW02-122118 812336-02	<50	<250	111
MW03-122118 812336-03	68 x	<250	113
MW04-122118 812336-04	160 x	<250	116
MW05-122118 812336-05	250 x	<250	100
Method Blank 08-2901 MB	<50	<250	101

ENVIRONMENTAL CHEMISTS

Date of Report: 12/27/18 Date Received: 12/21/18 Project: Nelson-Granite Falls, F&BI 812336

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 812336-01 (Duplicate)

Analyte	Reporting Units	Sample Result	Duplicate Result	RPD (Limit 20)
Analyte		Result	Result	(Lillit 20)
Benzene	ug/L (ppb)	<1	<1	nm
Toluene	ug/L (ppb)	<1	<1	nm
Ethylbenzene	ug/L (ppb)	<1	<1	nm
Xylenes	ug/L (ppb)	<3	<3	nm
Gasoline	ug/L (ppb)	<100	<100	nm

Laboratory Code: Laboratory Control Sample

		Percent								
	Reporting	Spike	Recovery	Acceptance						
Analyte	Units	Level	LCS	Criteria						
Benzene	ug/L (ppb)	50	100	65-118						
Toluene	ug/L (ppb)	50	95	72-122						
Ethylbenzene	ug/L (ppb)	50	90	73-126						
Xylenes	ug/L (ppb)	150	90	74-118						
Gasoline	ug/L (ppb)	1,000	74	69-134						

ENVIRONMENTAL CHEMISTS

Date of Report: 12/27/18 Date Received: 12/21/18 Project: Nelson-Granite Falls, F&BI 812336

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: Laboratory Control Sample

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	96	112	63-142	15

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

 ${\bf b}$ - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

 ${\rm d}$ - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

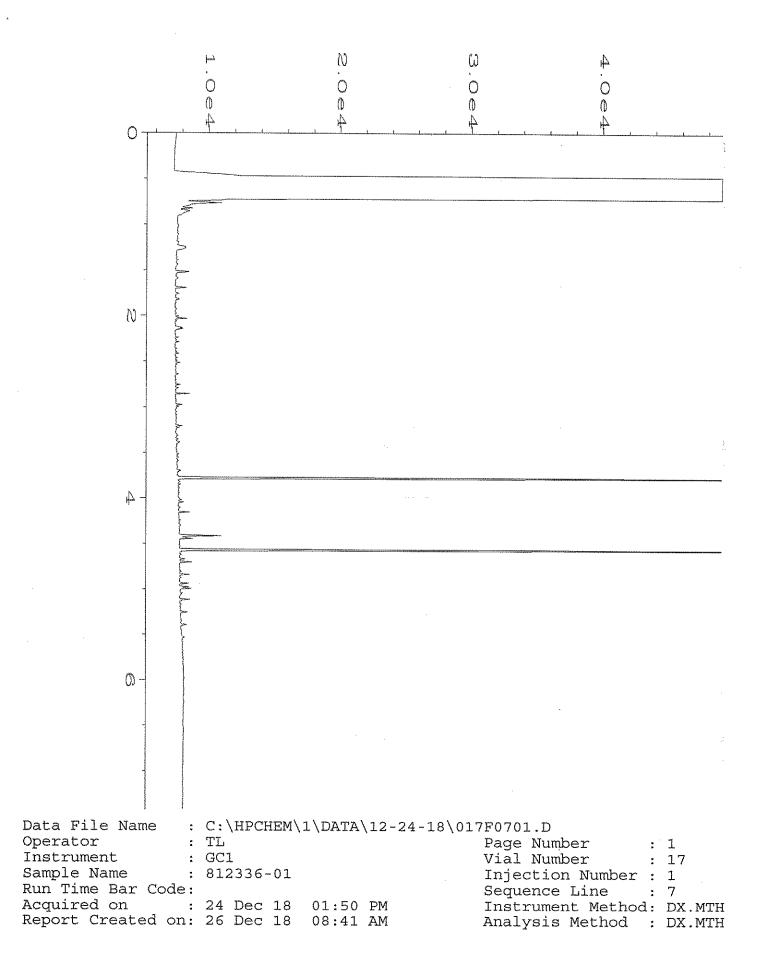
J - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

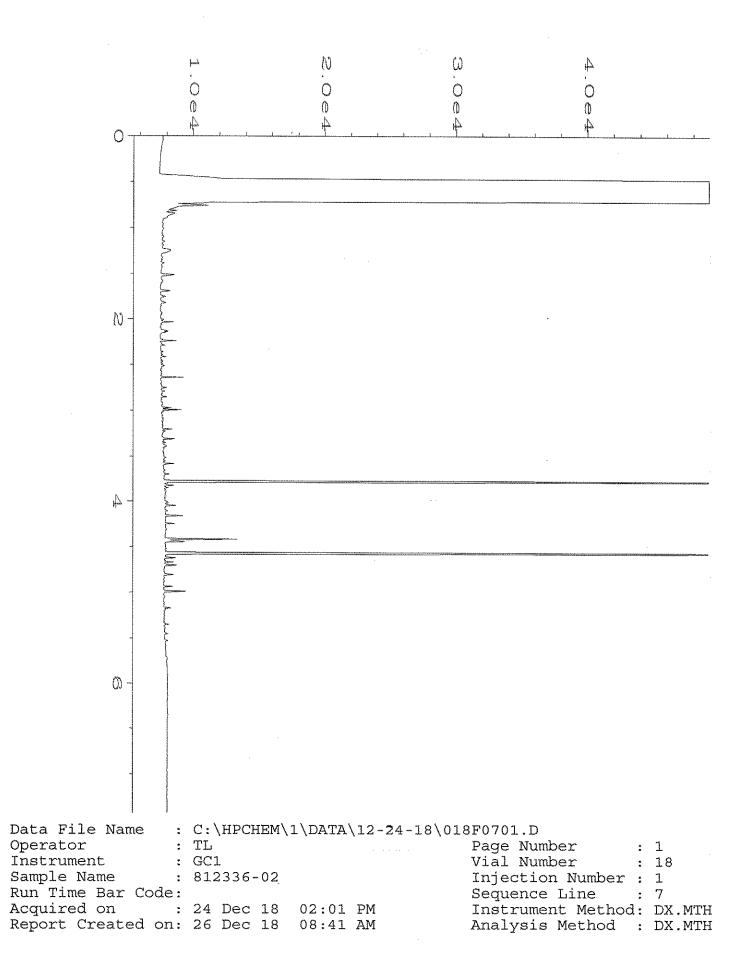
jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

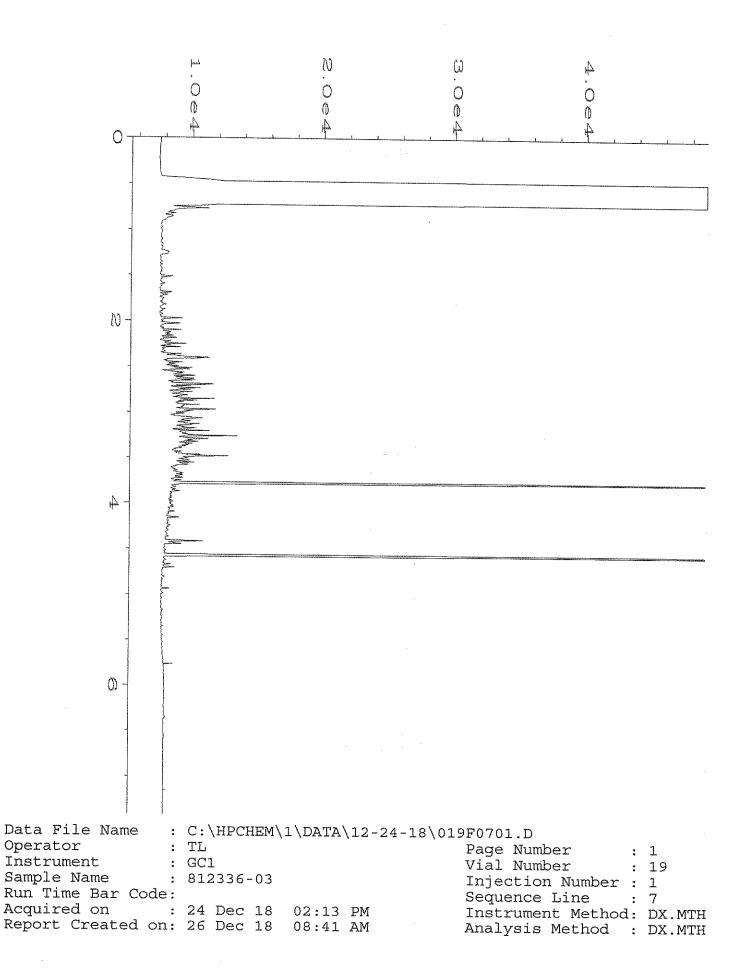
js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

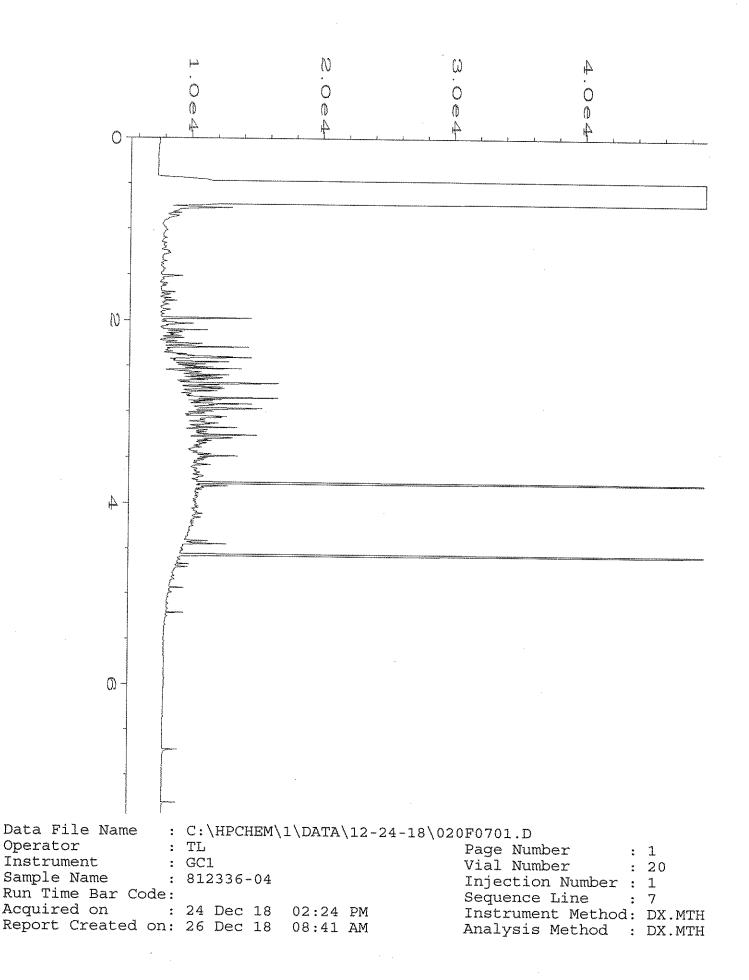
lc - The presence of the analyte is likely due to laboratory contamination.

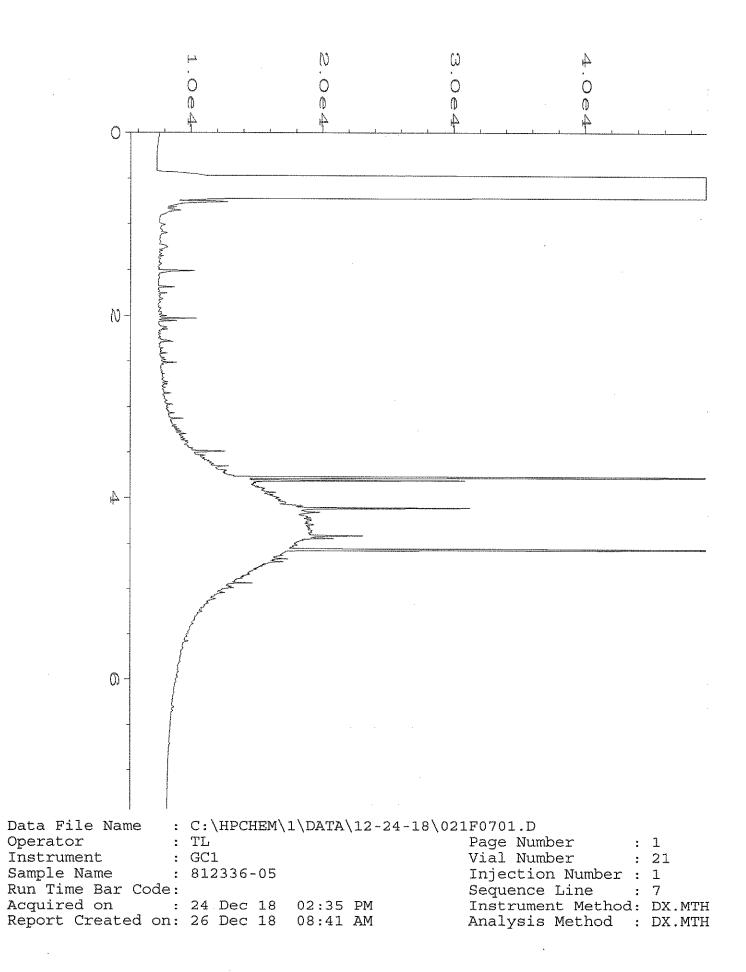
L - The reported concentration was generated from a library search.

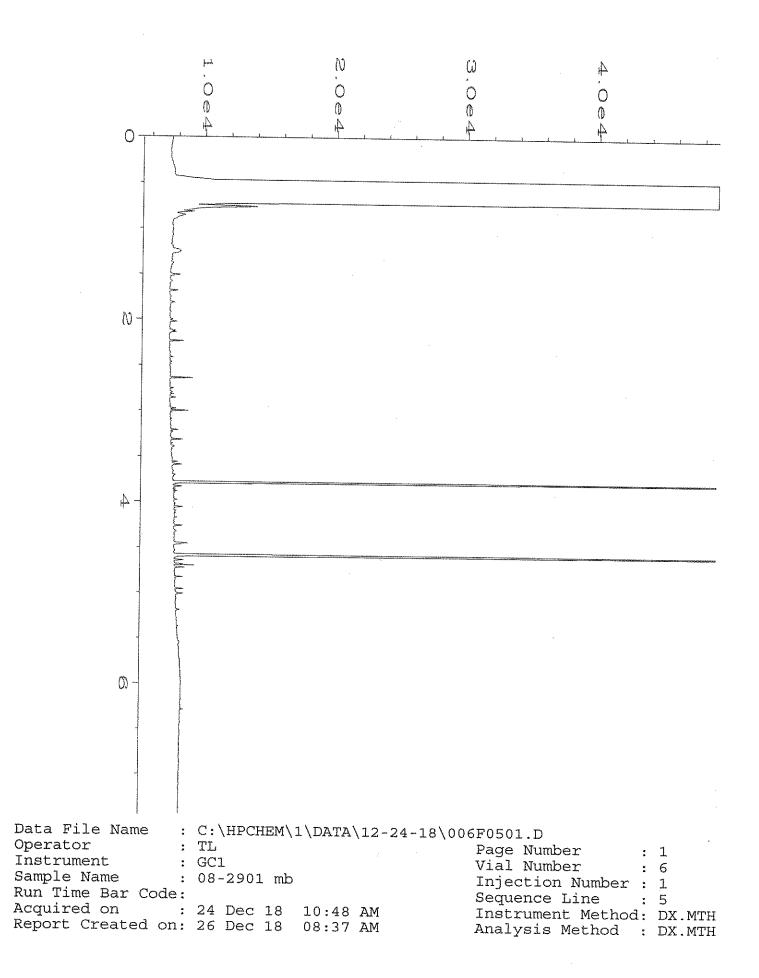

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

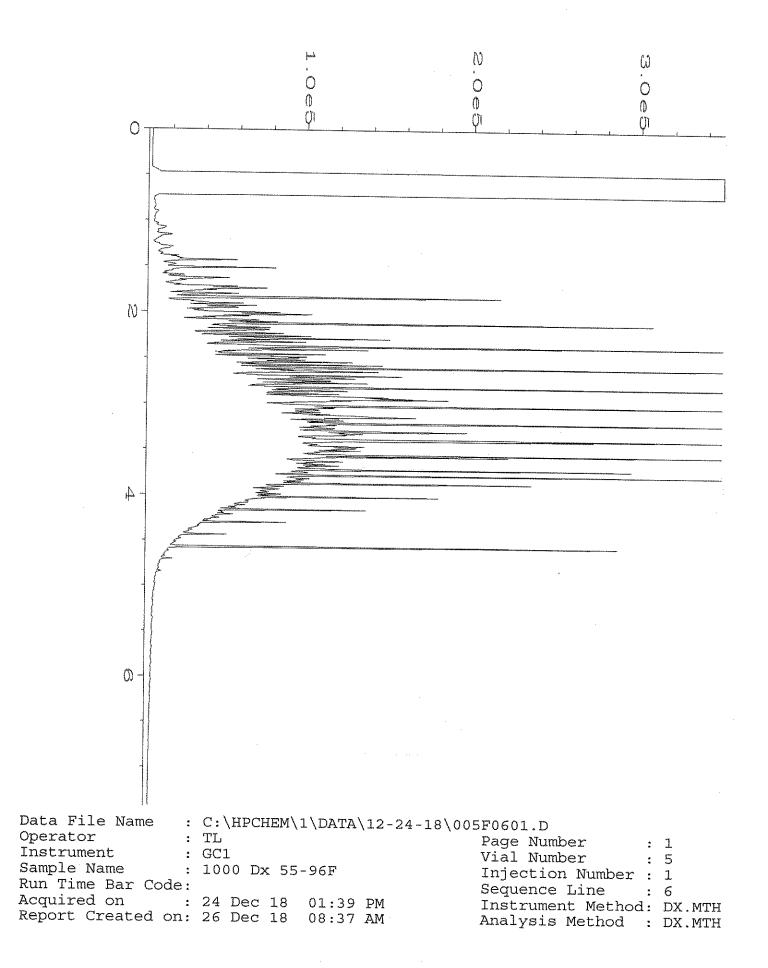

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.


ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.


vo - The value reported fell outside the control limits established for this analyte.


x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.





÷

. 16

Fn. (206) 285-8282	2029	2012 16 th Avenue West Re	<u> </u>		a series and series of the ser		brip blanks	NW05-122118	MWOH-122118	MW03-122118	SILEEI-EQMN	MW01-12218	Sample ID		Phone 2010 - 682-78 Ethail Soft. Adameted flyd snider, com	City, State, ZIP SUME, WA 98101	Address (000 Union Street Swite 600	Commany Floud Shider	Report To Just Adame K	812336 Q12326 Euros
Keceived by:	Relinquished by:	Received by	SIC				06 A-B	05	40	03	02 -	01 K-D	Lab ID		1 Swit. Adama	134 AM	reet Swite	Š	ek	
	2000	2	SIGNATURE					Y				12/21/18	Date Sampled		16 Augd str	01	600			
	N.						•	12:20	11:20	11:20	12:45	13:08	Time Sampled	-	der, com	REMARKS	Nels	PROJECT NAME	SAMPLE	SAMPLE CHAIN OF CUSTODY
		Knsyn						«				60	Sample Type			S	Nelson-Granite	T NAME	SAMPLERS (signature)	CHAIN
and in the second second second	24	K	PRINT NAME			·····	ł	<				4	# of Jars				ani		ture)	OF
		Inderson	TNA					$\overline{\times}$		×		×	TPH-HCID				te (CUS
		1Sar	ME		 		\times	$\overline{\times}$	×	$\overline{\times}$	X	$\frac{2}{2}$	TPH-Diesel TPH-Gasoline	$\left \right $			fails			IOD
							×	X	\times	×.	\times	×	BTEX by 8021B				5			Y
				 _	 					ļ			VOCs by 8260C	ANALYSES		IN				ME
													SVOCs by 8270D	YSES		INVOICE TO		PO#		12
	THO T	R	CON		 								PAHs 8270D SIM			E TO		#	- Constanting of the second	. (
			COMPANY	HE.										REQUESTED	L					21-
			R											TED		🗆 Dis	Rush	i Ci		3
				E.											hive S	SAM pose a	charg	Indard	Page # TURN	
	<i>t</i> 11	81/17/1	DATE	Samples veceived at			-	-							□ Archive Samples □ Other	SAMPLE DISPOSAL ose after 30 days	LI KUSH Rush charges authorized by:	□ Standard Turnaround	Page #	[7]
		811	B	lik	,								Notes		N N) ISPO; days	horize	around		F04
	441	ETHI	TIME	/ ' 									ŝ			SAL	d by:		IME	VW
L	L	<u> </u>	ß)	ר כ

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

April 1, 2019

Kristin Anderson, Project Manager Floyd-Snider Two Union Square, Suite 600 601 Union St Seattle, WA 98101

Dear Ms Anderson:

Included are the results from the testing of material submitted on March 26, 2019 from the Nelson-Granite Falls, F&BI 903495 project. There are 8 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures FDS0401R.doc

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on March 26, 2019 by Friedman & Bruya, Inc. from the Floyd-Snider Nelson-Granite Falls, F&BI 903495 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	<u>Floyd-Snider</u>
903495 -01	MW05-032519
903495 -02	MW03-032519
903495 -03	MW01-032519

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 04/01/19 Date Received: 03/26/19 Project: Nelson-Granite Falls, F&BI 903495 Date Extracted: 03/27/19 Date Analyzed: 03/27/19

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Gasoline Range	Surrogate (<u>% Recovery)</u> (Limit 51-134)
MW05-032519 903495-01	<100	103
MW03-032519 903495-02	<100	104
MW01-032519 903495-03	<100	101
Method Blank ^{09-508 MB}	<100	106

ENVIRONMENTAL CHEMISTS

Date of Report: 04/01/19 Date Received: 03/26/19 Project: Nelson-Granite Falls, F&BI 903495 Date Extracted: 03/27/19 Date Analyzed: 03/27/19

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	<u>Motor Oil Range</u> (C ₂₅ -C ₃₆)	Surrogate <u>(% Recovery)</u> (Limit 51-134)
MW05-032519 903495-01	660 x	670 x	88
MW03-032519 903495-02	110 x	<250	104
MW01-032519 903495-03	<50	<250	98
Method Blank ^{09-687 MB}	<50	<250	99

ENVIRONMENTAL CHEMISTS

Date of Report: 04/01/19 Date Received: 03/26/19 Project: Nelson-Granite Falls, F&BI 903495 Date Extracted: 03/27/19 Date Analyzed: 03/28/19

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx Sample Extracts Passed Through a Silica Gel Column Prior to Analysis Results Reported as ug/L (ppb)

Surrogate (% Recovery) Sample ID Diesel Range Motor Oil Range Laboratory ID $(C_{10}-C_{25})$ $(C_{25}-C_{36})$ (Limit 47-140) MW05-032519 <50 <250 95 903495-01 69 x <250 108 MW03-032519 903495-02 Method Blank <50 <250 87 09-687 MB

ENVIRONMENTAL CHEMISTS

Date of Report: 04/01/19 Date Received: 03/26/19 Project: Nelson-Granite Falls, F&BI 903495

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 903	496-06 (Duplic	ate)					
-	Reporting	Sampl	le Dup	olicate	RPD		
Analyte	Units	Resul	t Re	esult	(Limit 20)		
Gasoline	ug/L (ppb)	<100	<	100	nm		
Laboratory Code: Laboratory Control Sample Percent							
	Reporting	Spike	Recovery	Acceptance			
Analyte	Units	Level	LCS	Criteria	_		
Gasoline	ug/L (ppb)	1,000	93	69-134	-		

5

ENVIRONMENTAL CHEMISTS

Date of Report: 04/01/19 Date Received: 03/26/19 Project: Nelson-Granite Falls, F&BI 903495

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: Laboratory Control Sample

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	100	84	58-134	17

ENVIRONMENTAL CHEMISTS

Date of Report: 04/01/19 Date Received: 03/26/19 Project: Nelson-Granite Falls, F&BI 903495

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: Laboratory Control Sample Silica Gel								
-	-		Percent	Percent				
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD		
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)		
Diesel Extended	ug/L (ppb)	2,500	84	84	61-133	0		

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

 ${\bf b}$ - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

 ${\rm d}$ - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

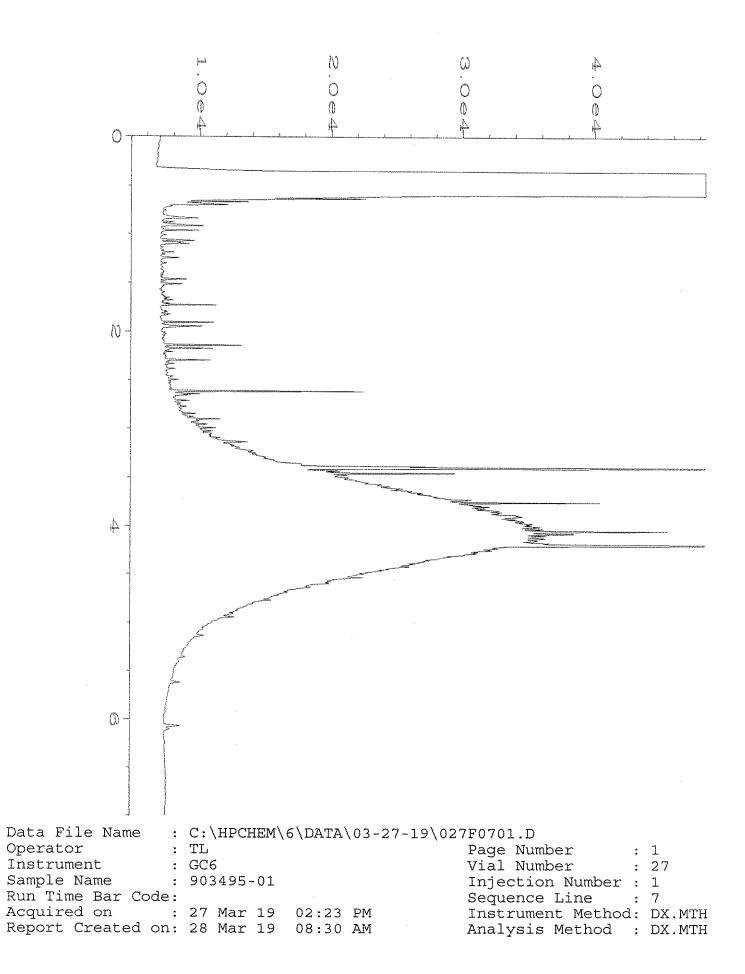
 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

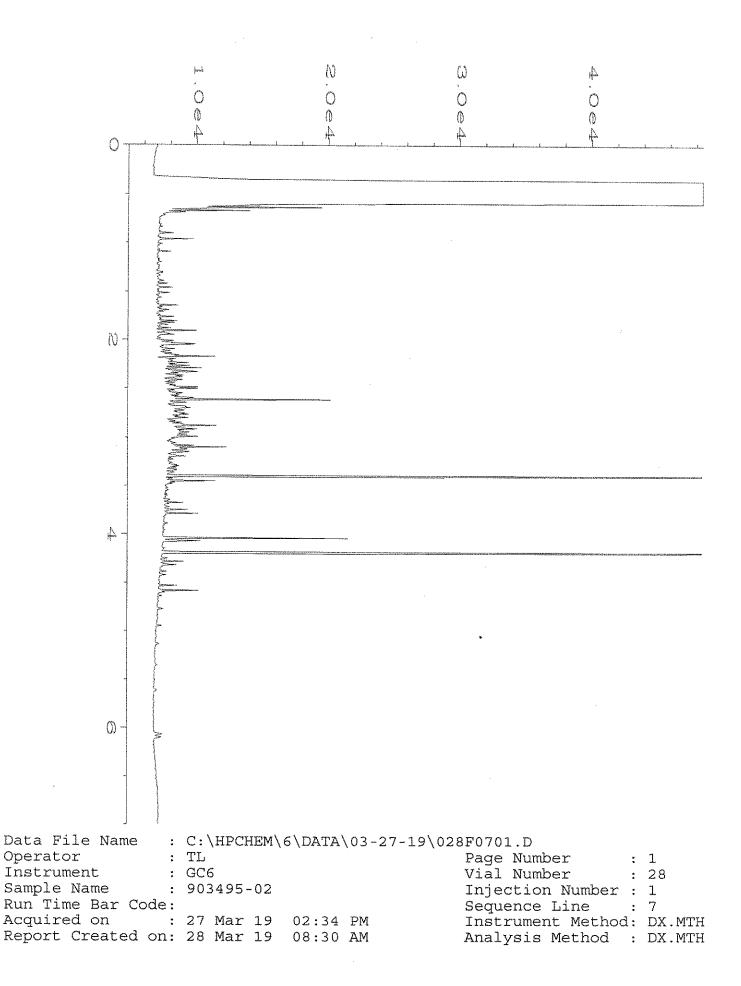
jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

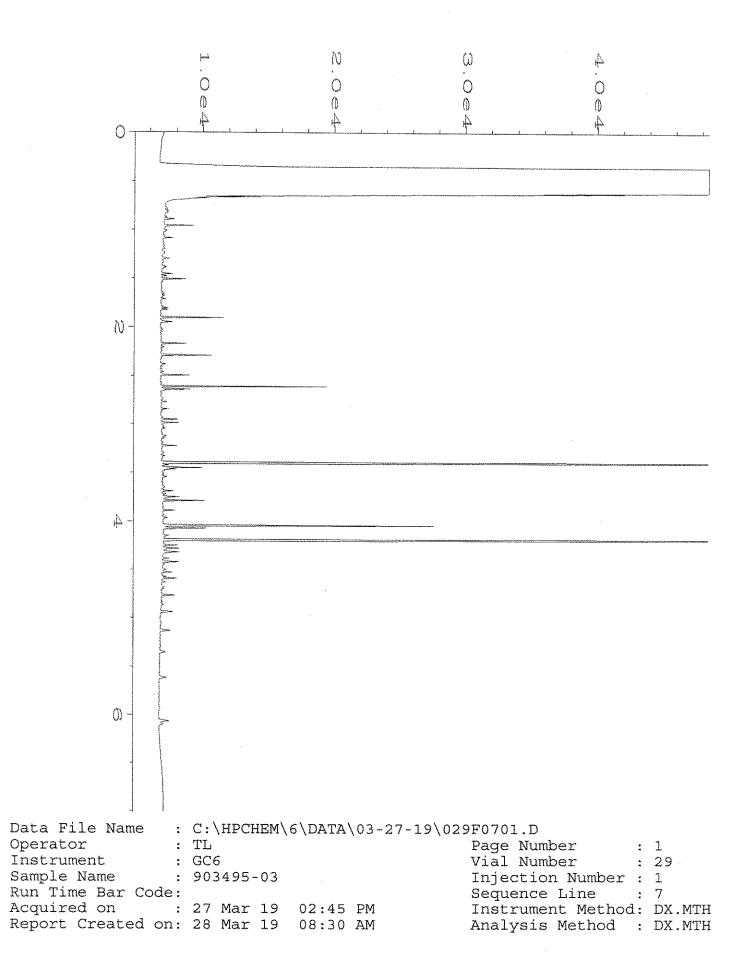
js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

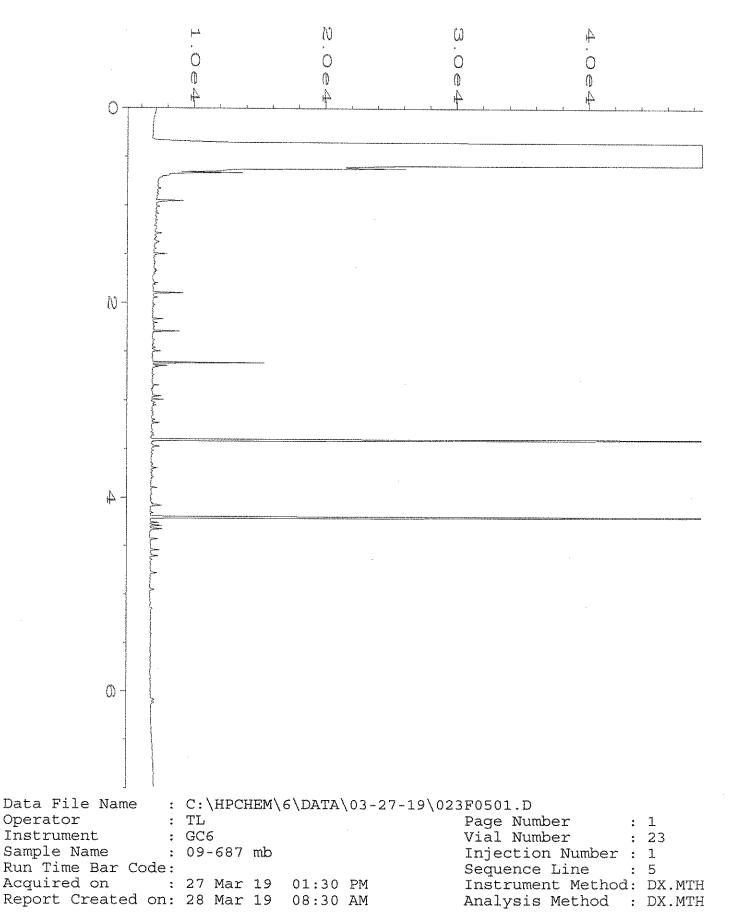
lc - The presence of the analyte is likely due to laboratory contamination.

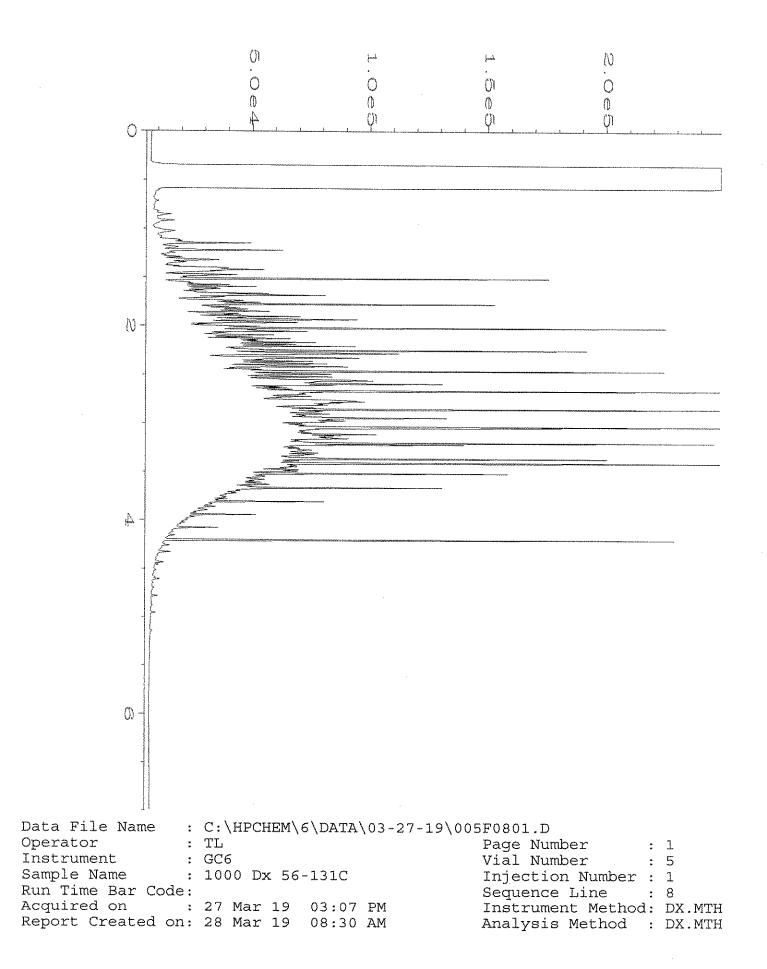
L - The reported concentration was generated from a library search.

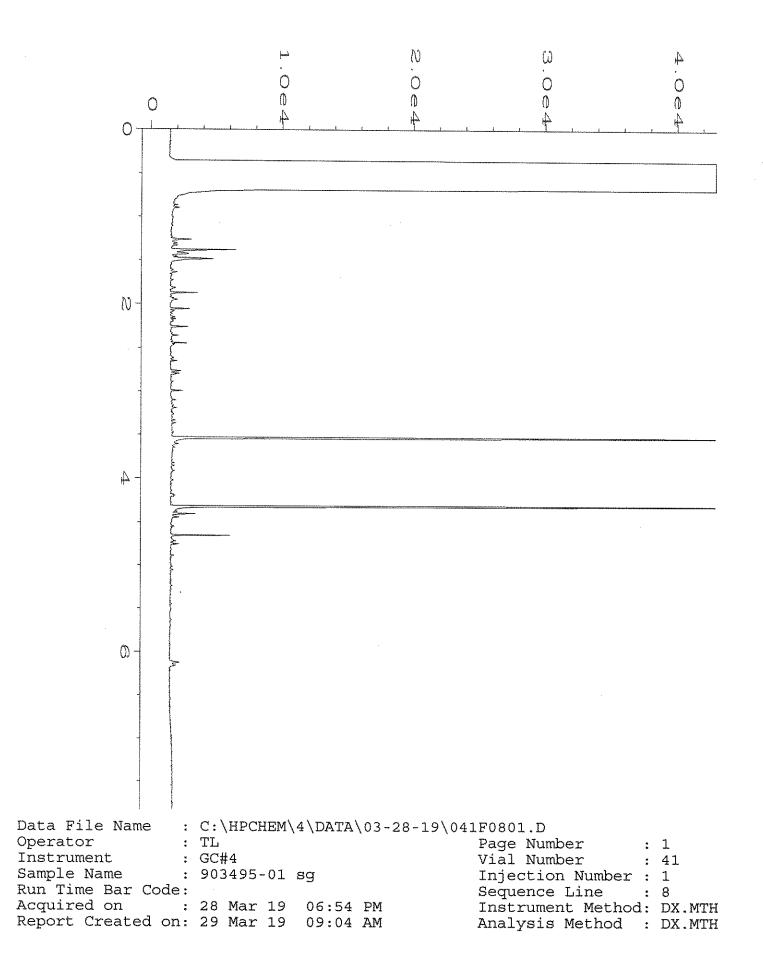

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

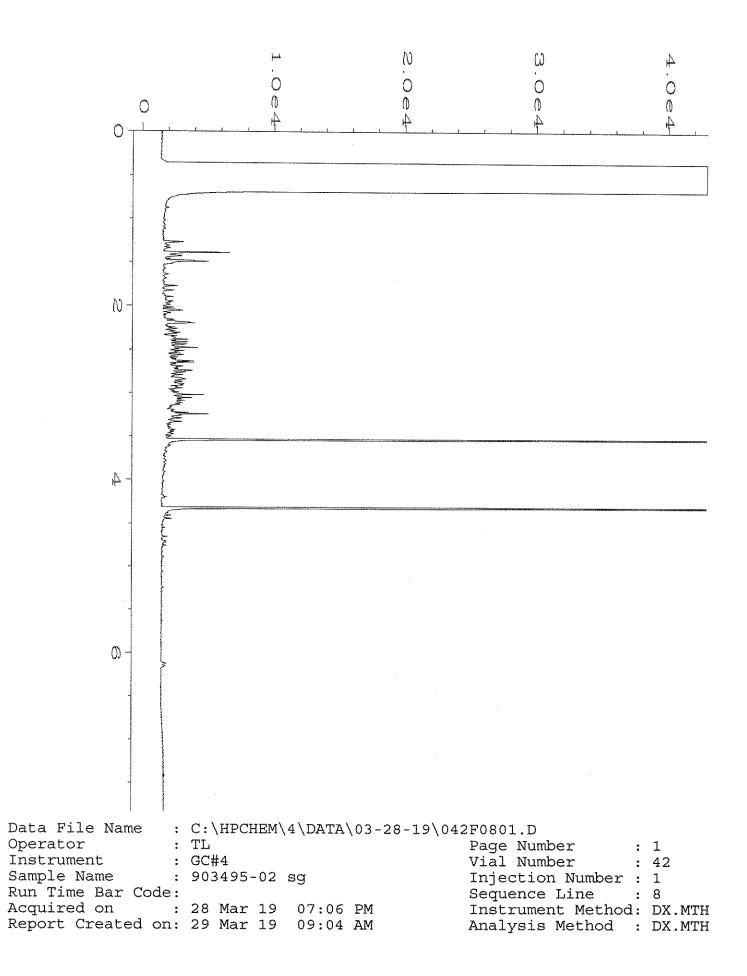

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

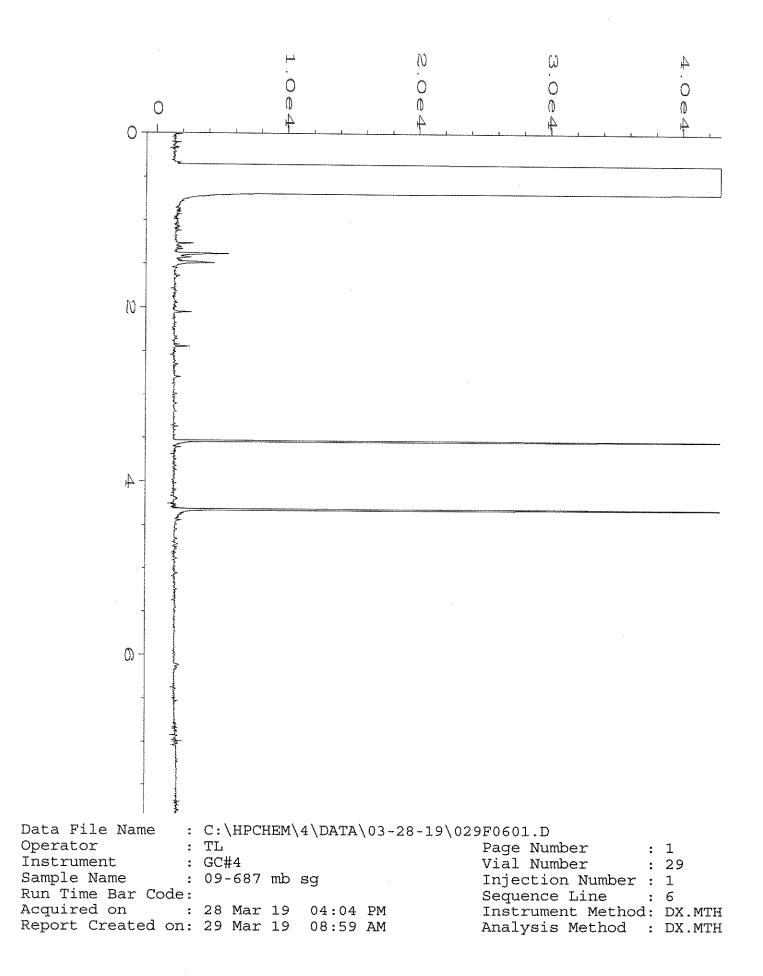

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

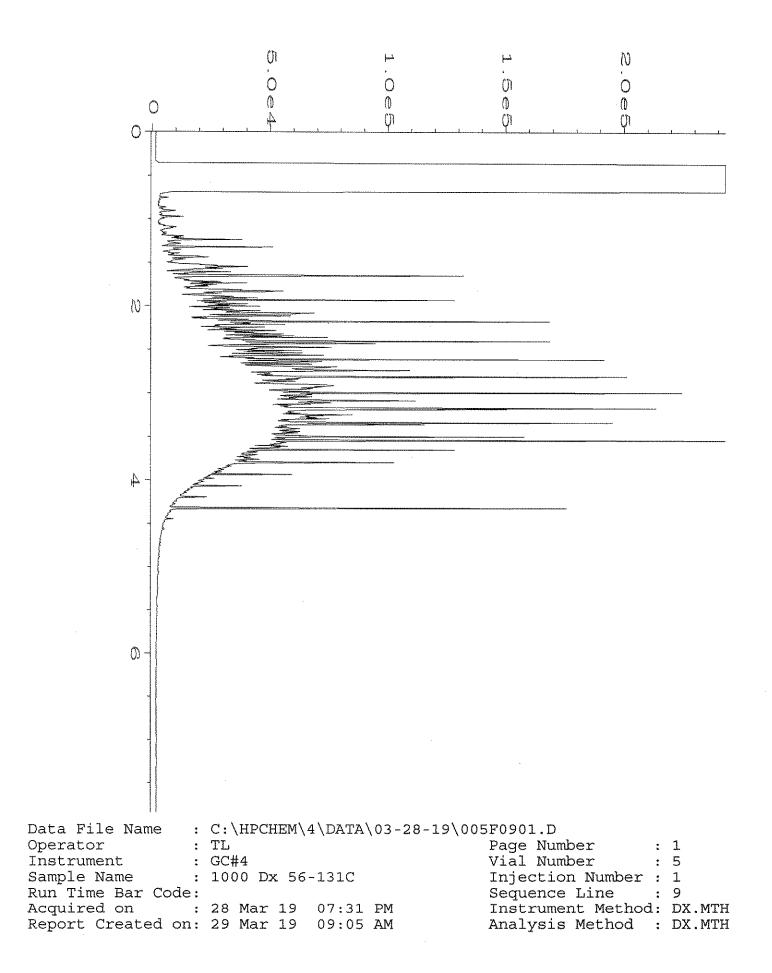

vo - The value reported fell outside the control limits established for this analyte.


x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.









Received by:	9 Relinguighed by: D. W. & Liz Maber - Dryg F?B1 3/24	Received by:	3			3/20		$\frac{1}{12}$	03250 VXX	- 052519	-032519 OLA-E 3/25/19 1135 W 5 XX X MOL	Sample ID Lab ID Sampled Date Sampled Time Sampled Sampled I Sampled Sampled Sampled I Sample I Samo I Samo I Samo I Sample I Samo I I Samo I Samo I Samo I I I I Samo I S I Samo I Samo I S I Samo I S I S I S I S I S I S I S I S I S I	The direct when a more to string	vally with raining REMARKS Bran, 72 Tailly Introtice the Rush	Elayd Snicler PROJECT NAME (100 / PO# 25tan	
		3/26/19 1500	DATE TIME			3/2.6/B1 MC	Der KA				hold ether by	Notes	ortive Lie, Dist'OSAL ose after 30 days nive Samples ar	rges authorized by:	UKNAROUND TIME dard Turnaround AOS H	

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

April 23, 2019

Kristin Anderson, Project Manager Floyd-Snider Two Union Square, Suite 600 601 Union St Seattle, WA 98101

Dear Ms Anderson:

Included are the additional results from the testing of material submitted on March 26, 2019 from the Nelson-Granite Falls, F&BI 903495 project. There are 4 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

ale

Michael Erdahl Project Manager

Enclosures FDS0423R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on March 26, 2019 by Friedman & Bruya, Inc. from the Floyd-Snider Nelson-Granite Falls, F&BI 903495 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Floyd-Snider</u>
903495 -01	MW05-032519
903495 -02	MW03-032519
903495 -03	MW01-032519

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 04/23/19 Date Received: 03/26/19 Project: Nelson-Granite Falls, F&BI 903495 Date Extracted: 03/27/19 Date Analyzed: 03/27/19

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, AND XYLENES USING METHOD 8021B

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Surrogate (<u>% Recovery</u>) Limit (52-124)
MW05-032519 ₉₀₃₄₉₅₋₀₁	<1	<1	<1	<3	85
$\underset{903495\cdot02}{\text{MW03-032519}}$	<1	<1	<1	<3	85
MW01-032519 903495-03	<1	<1	<1	<3	84
Method Blank ^{09-508 MB}	<1	<1	<1	<3	86

Results Reported as ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Date of Report: 04/23/19 Date Received: 03/26/19 Project: Nelson-Granite Falls, F&BI 903495

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, AND XYLENES USING EPA METHOD 8021B

Laboratory Code: 903496-06 (Duplicate)

-	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Benzene	ug/L (ppb)	<1	<1	nm
Toluene	ug/L (ppb)	<1	<1	nm
Ethylbenzene	ug/L (ppb)	<1	<1	nm
Xylenes	ug/L (ppb)	<3	<3	nm

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/L (ppb)	50	95	65-118
Toluene	ug/L (ppb)	50	99	72 - 122
Ethylbenzene	ug/L (ppb)	50	97	73-126
Xylenes	ug/L (ppb)	150	102	74-118

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

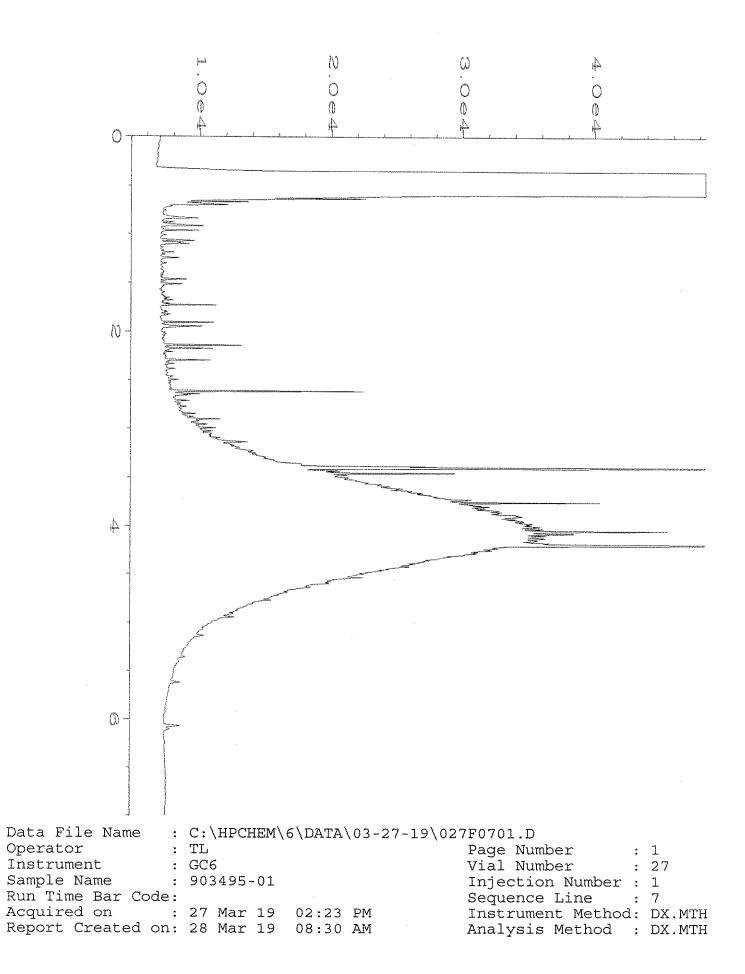
 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

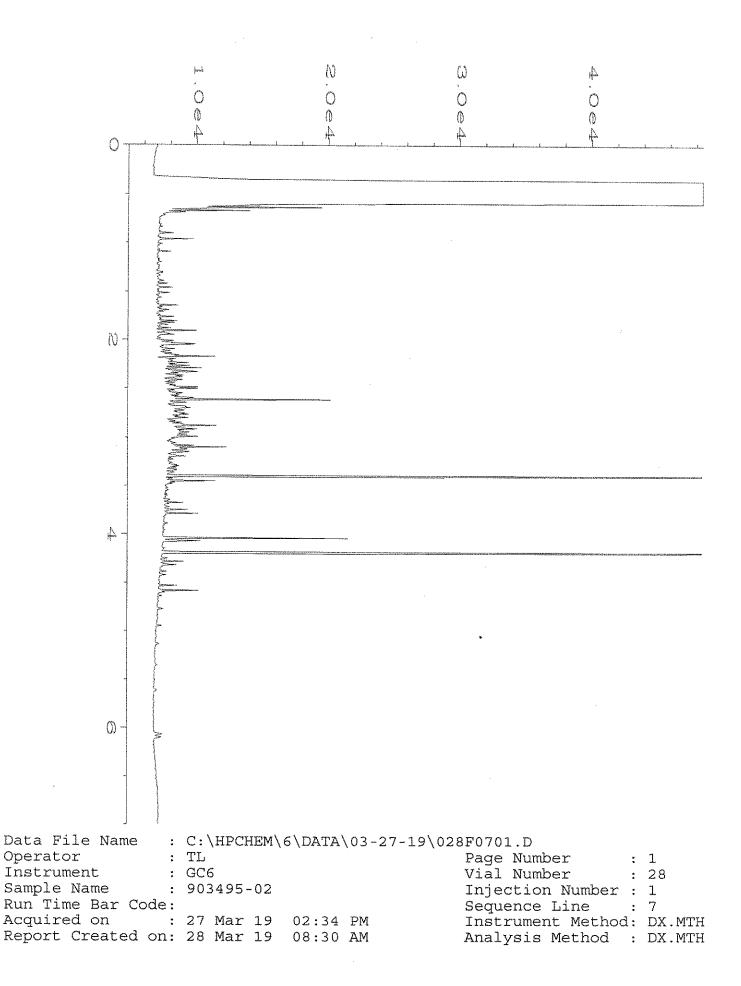
jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

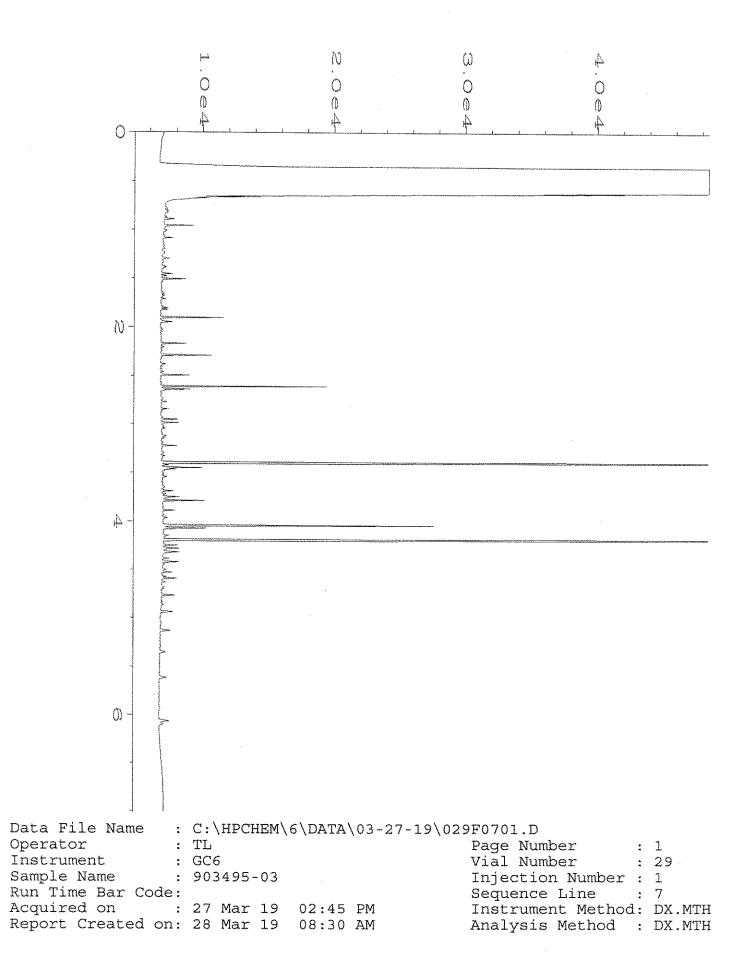
js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

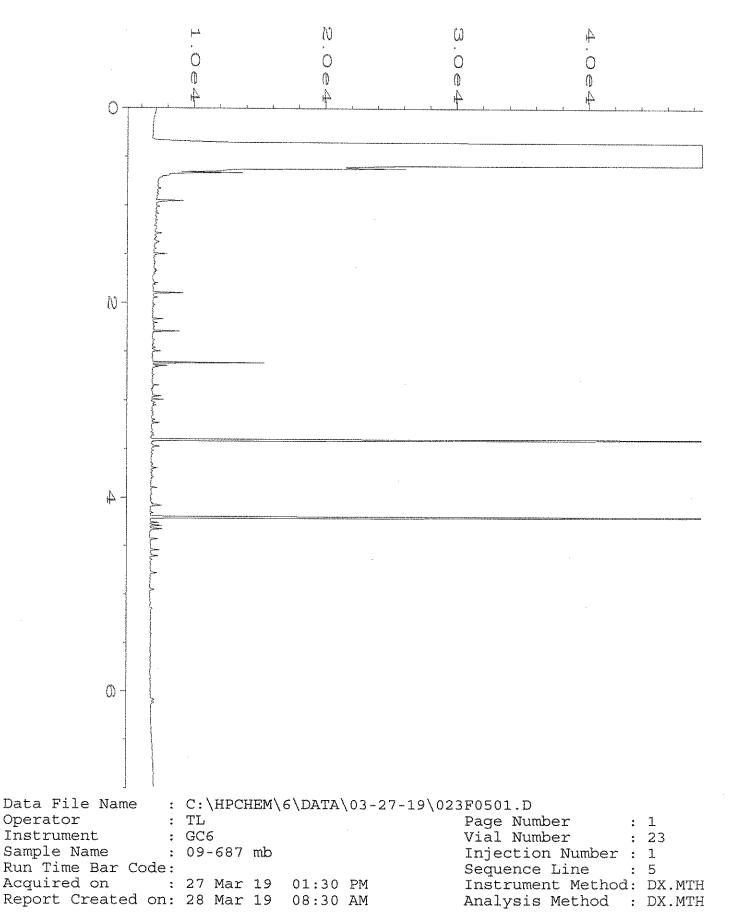
lc - The presence of the analyte is likely due to laboratory contamination.

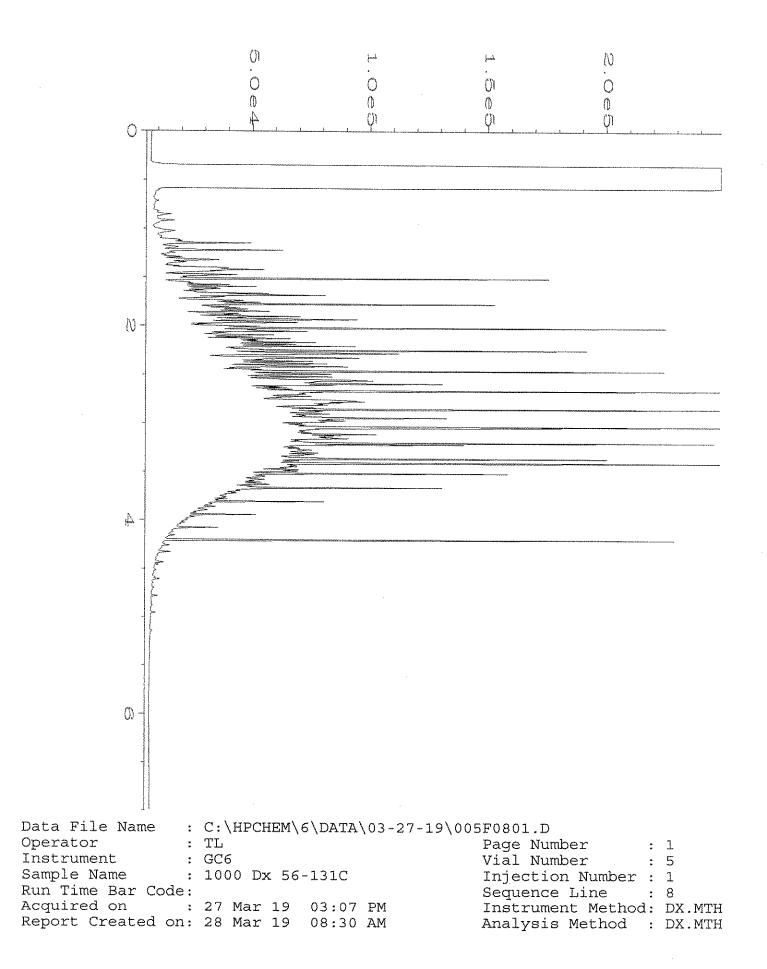
L - The reported concentration was generated from a library search.

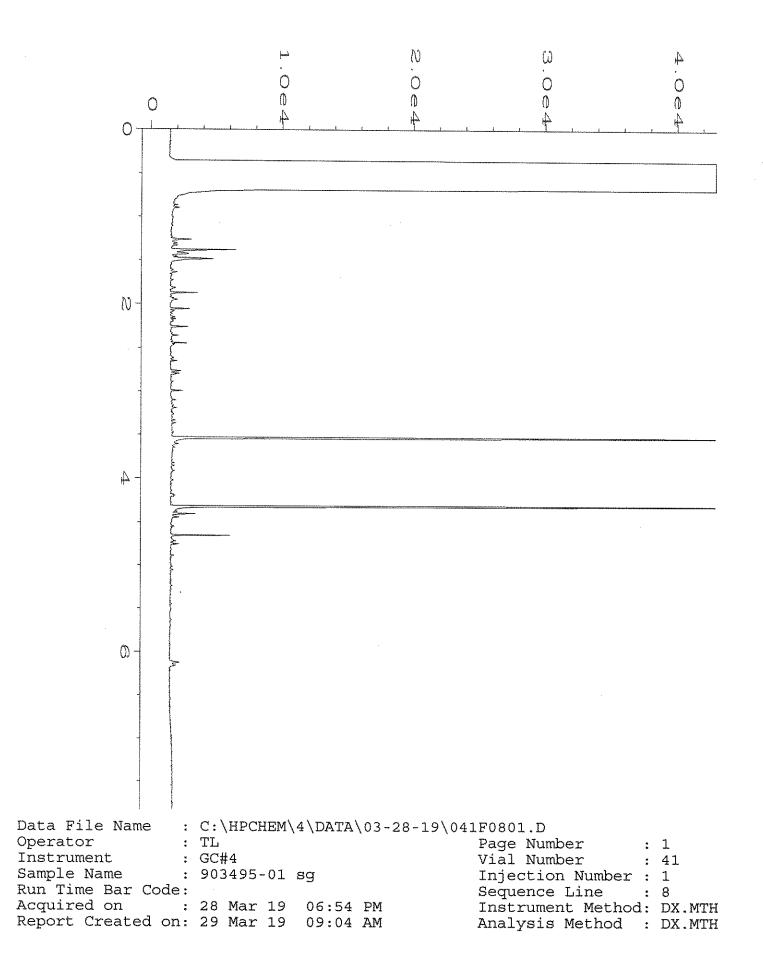

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

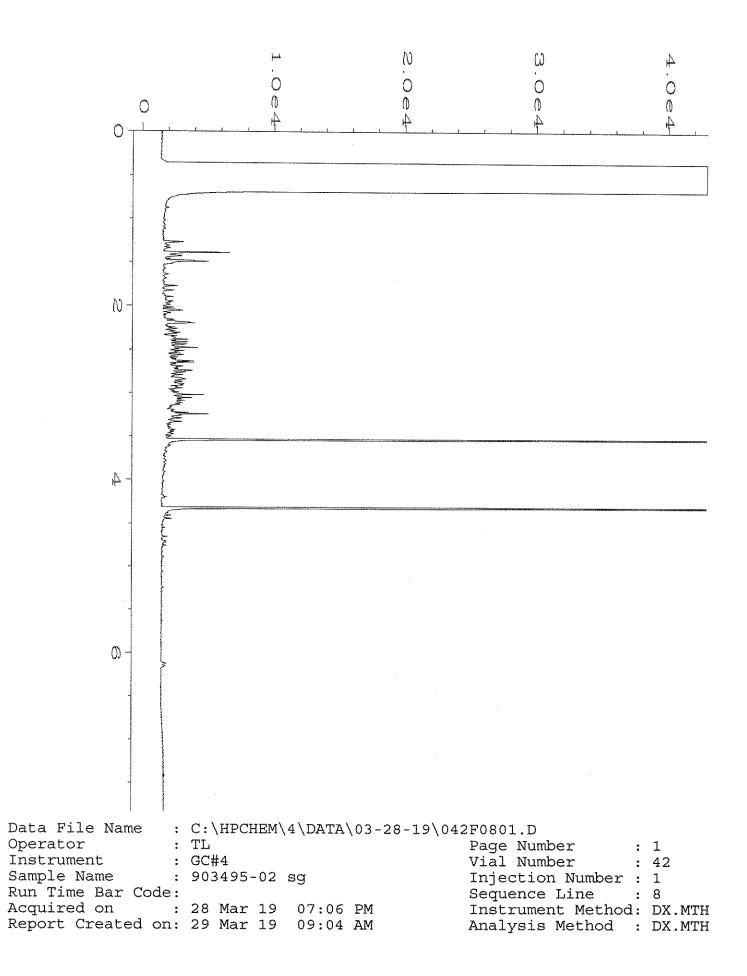

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

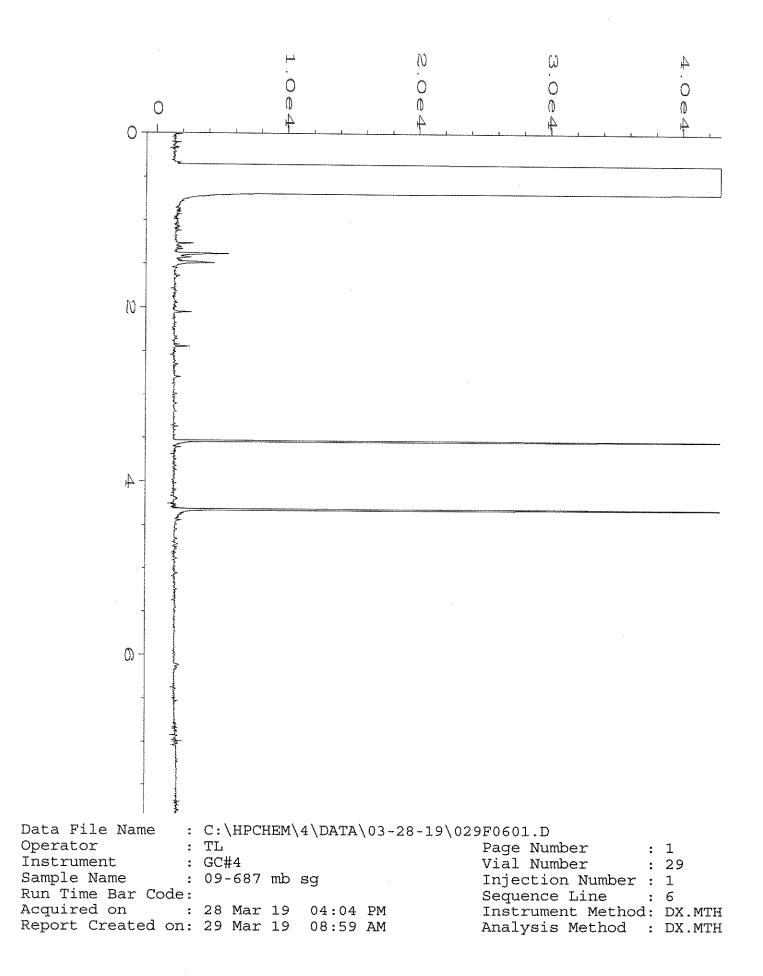

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

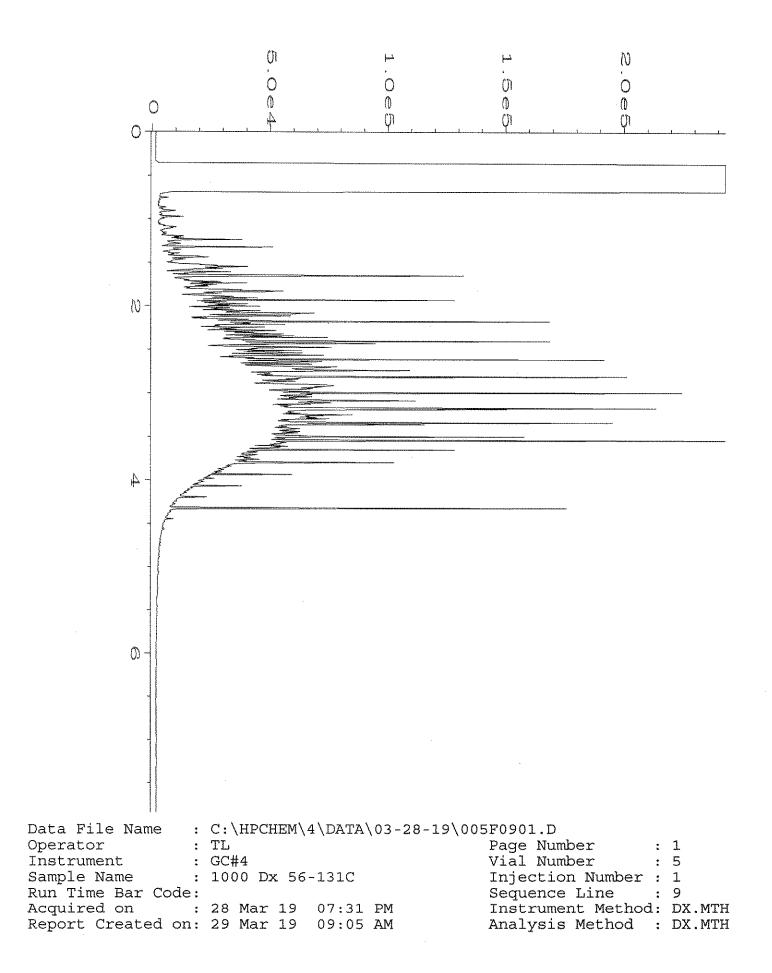

vo - The value reported fell outside the control limits established for this analyte.


x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.









Ph. (206) 285-8282 Seattle, WA 98119-2029 3012 16th Avenue West Friedman & Bruya, Inc. MW 01 -MW04-032519 MW02 - 032517 MW 03 - 032519 MW05 - 032519 Phone 205-292-2078 Email Known and san City, State, ZIP Southe, WA 9810) Address 601 Union St, Ste Company Flayd Snicler Report To_ Sample ID 032519 Krism Anderson SBAEOD Received by: Relinquished by: Relinquished by: Received by: 03 A-D Ę 20 OLA-E K Lab ID SIGNATURE Ŋ 3/25/19 80 Sampled D. Date MA. 3 1248 Time Sampled SAMPLE CHAIN OF CUSTODY たい REMARKS how exted dirset whine PROJECT NAME SAMPLERS (signatu Nelson - Granite Falls Siliter qc | deanup ٤ 3 Sample Type E E įγ. Knohn Anlerson 1 # of Jars V1 5 PRINT NAME S Nober - Dryg TPH-HCID Х **TPH-Diesel** Х X X **TPH-Gasoline** R R BTEX by 8021B Ş. ANALYSES REQUESTED VOCs by 8260C INVOICE TO SVOCs by 8270D PO # Samples received at 3 °C 2 E R L) & (L PAHs 8270D SIM COMPANY HOLD 03-26-19 11 Dx ~15G 0 Other Auispose after 30 days Archive Samples D RUSH Standard Turnaround Rush charges authorized by: ÷ SAMPLE DISPOSAL Page # **TURNAROUND TIME** 3/26/19 2/26/19/1542 hold extra by DATE × 200 KA 4/18/19 3/28/8 MC -per KA 2 -Notes 2 <u>6</u> 90 TIME Ξ Uw1/ 5

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

April 11, 2019

Kristin Anderson, Project Manager Floyd-Snider Two Union Square, Suite 600 601 Union St Seattle, WA 98101

Dear Ms Anderson:

Included are the results from the testing of material submitted on April 5, 2019 from the Nelson-Granite Falls, F&BI 904129 project. There are 8 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

ale Nelf

Michael Erdahl Project Manager

Enclosures FDS0411R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on April 5, 2019 by Friedman & Bruya, Inc. from the Floyd-Snider Nelson-Granite Falls, F&BI 904129 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Floyd-Snider</u>
904129 -01	MW04-040419
904129 -02	MW02-040419

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 04/11/19 Date Received: 04/05/19 Project: Nelson-Granite Falls, F&BI 904129 Date Extracted: 04/08/19 Date Analyzed: 04/08/19

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 52-124)
MW04-040419 904129-01	<1	<1	<1	<3	<100	76
MW02-040419 904129-02	<1	<1	<1	<3	<100	76
Method Blank ^{09-531 MB}	<1	<1	<1	<3	<100	77

Results Reported as ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Date of Report: 04/11/19 Date Received: 04/05/19 Project: Nelson-Granite Falls, F&BI 904129 Date Extracted: 04/05/19 Date Analyzed: 04/05/19

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx Sample Extracts Passed Through a Silica Gel Column Prior to Analysis Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	<u>Motor Oil Range</u> (C ₂₅ -C ₃₆)	Surrogate <u>(% Recovery)</u> (Limit 47-140)
MW04-040419 904129-01	110	<250	126
Method Blank ^{09-728 MB}	<50	<250	128

ENVIRONMENTAL CHEMISTS

Date of Report: 04/11/19 Date Received: 04/05/19 Project: Nelson-Granite Falls, F&BI 904129 Date Extracted: 04/05/19 Date Analyzed: 04/05/19

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND RESIDUAL RANGE USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	<u>Residual Range</u> (C ₂₅ -C ₃₆)	Surrogate <u>(% Recovery)</u> (Limit 51-134)
MW04-040419 904129-01	290 x	<250	122
MW02-040419 904129-02	<50	<250	108
Method Blank ^{09-728 MB}	<50	<250	122

ENVIRONMENTAL CHEMISTS

Date of Report: 04/11/19 Date Received: 04/05/19 Project: Nelson-Granite Falls, F&BI 904129

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 904135-09 (Duplicate)

U U	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Benzene	ug/L (ppb)	<1	<1	nm
Toluene	ug/L (ppb)	<1	<1	nm
Ethylbenzene	ug/L (ppb)	<1	<1	nm
Xylenes	ug/L (ppb)	<3	<3	nm
Gasoline	ug/L (ppb)	<100	<100	nm

Laboratory Code: Laboratory Control Sample

		Percent				
	Reporting	Spike	Recovery	Acceptance		
Analyte	Units	Level	LCS	Criteria		
Benzene	ug/L (ppb)	50	96	65-118		
Toluene	ug/L (ppb)	50	94	72 - 122		
Ethylbenzene	ug/L (ppb)	50	89	73-126		
Xylenes	ug/L (ppb)	150	94	74-118		
Gasoline	ug/L (ppb)	1,000	90	69-134		

ENVIRONMENTAL CHEMISTS

Date of Report: 04/11/19 Date Received: 04/05/19 Project: Nelson-Granite Falls, F&BI 904129

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: Laboratory Control Sample Silica Gel						
			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	92	100	61-133	8

ENVIRONMENTAL CHEMISTS

Date of Report: 04/11/19 Date Received: 04/05/19 Project: Nelson-Granite Falls, F&BI 904129

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: Laboratory Control Sample

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	100	100	58 - 134	0

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

 ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

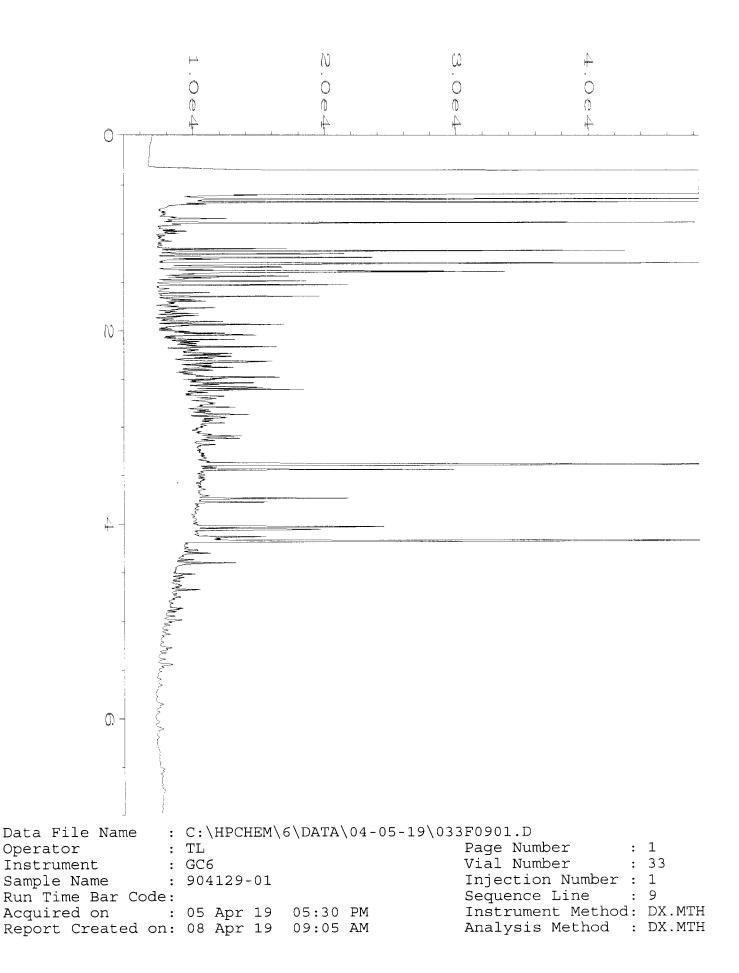
 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

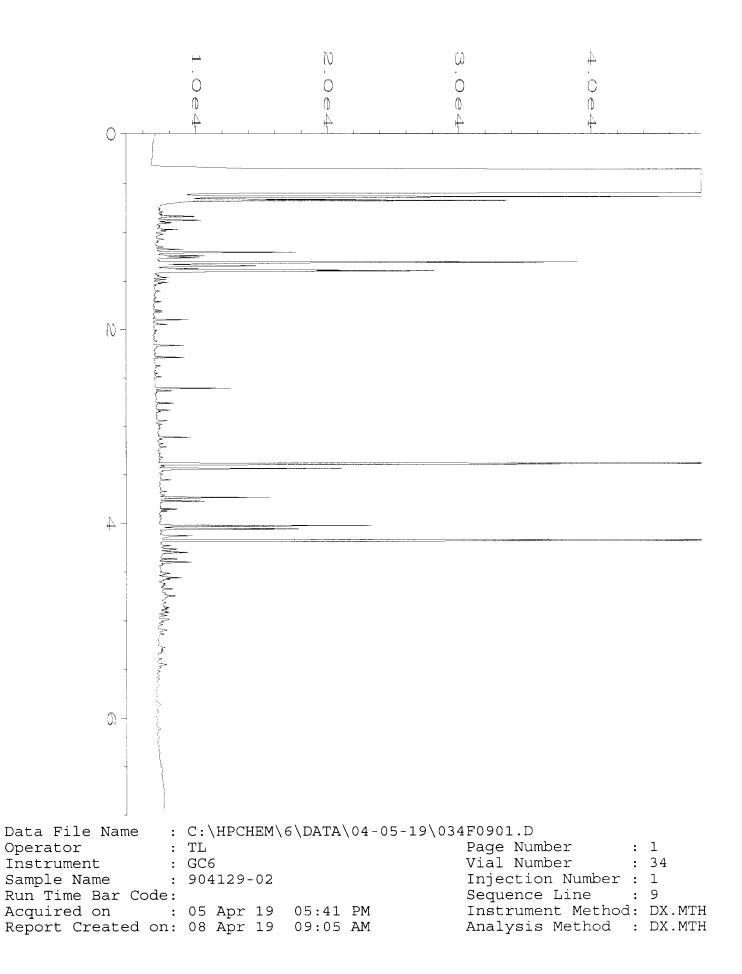
jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

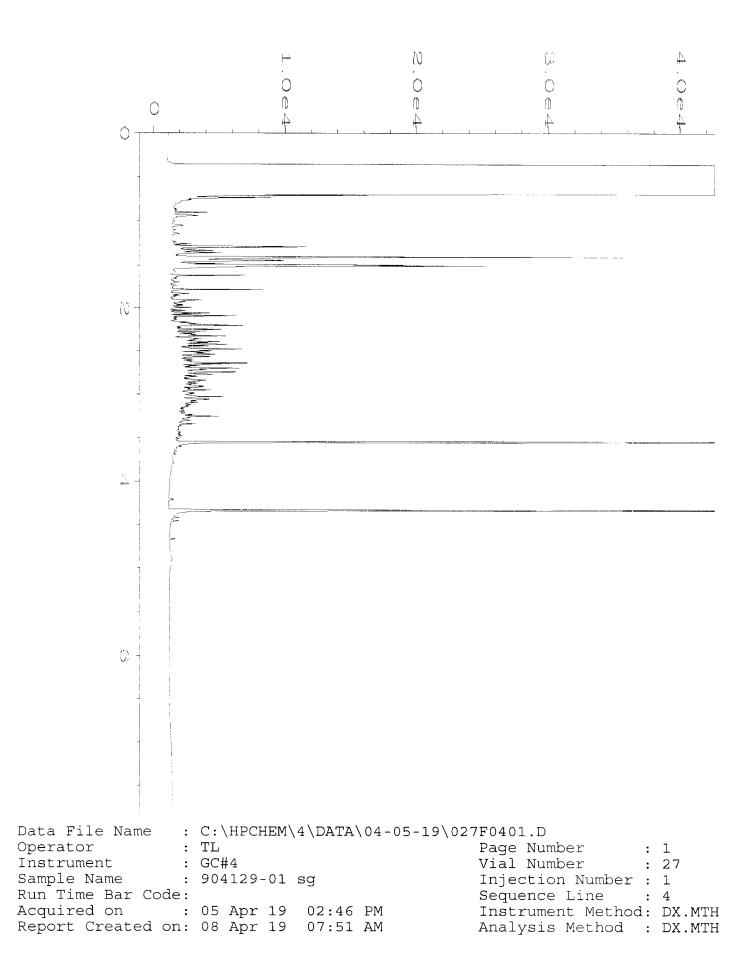
js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

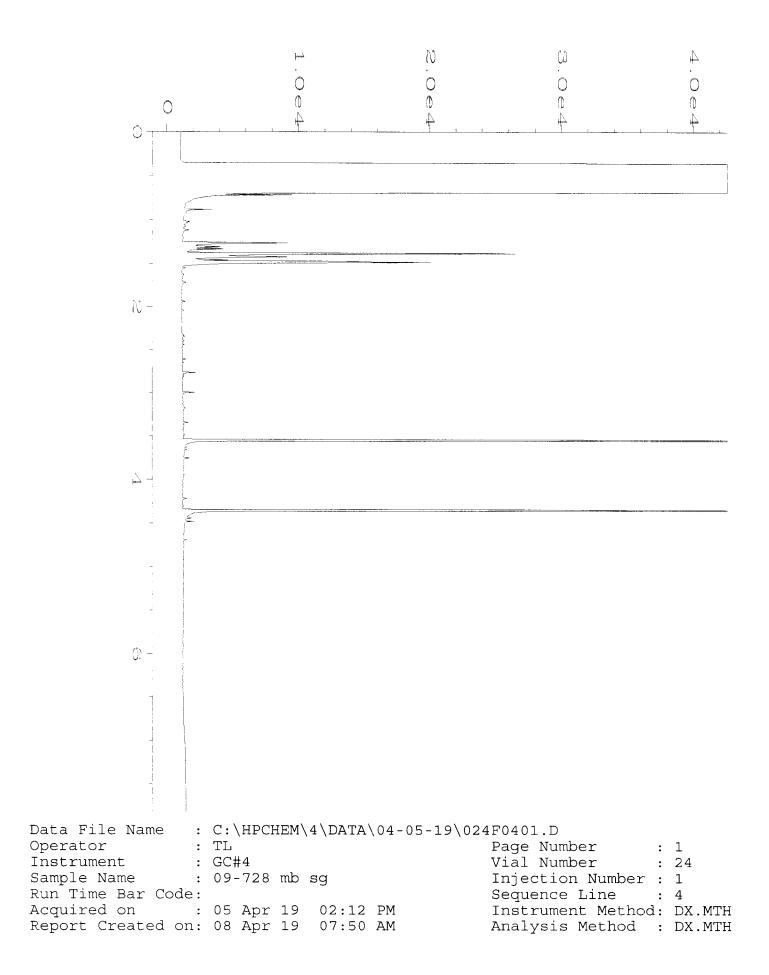
lc - The presence of the analyte is likely due to laboratory contamination.

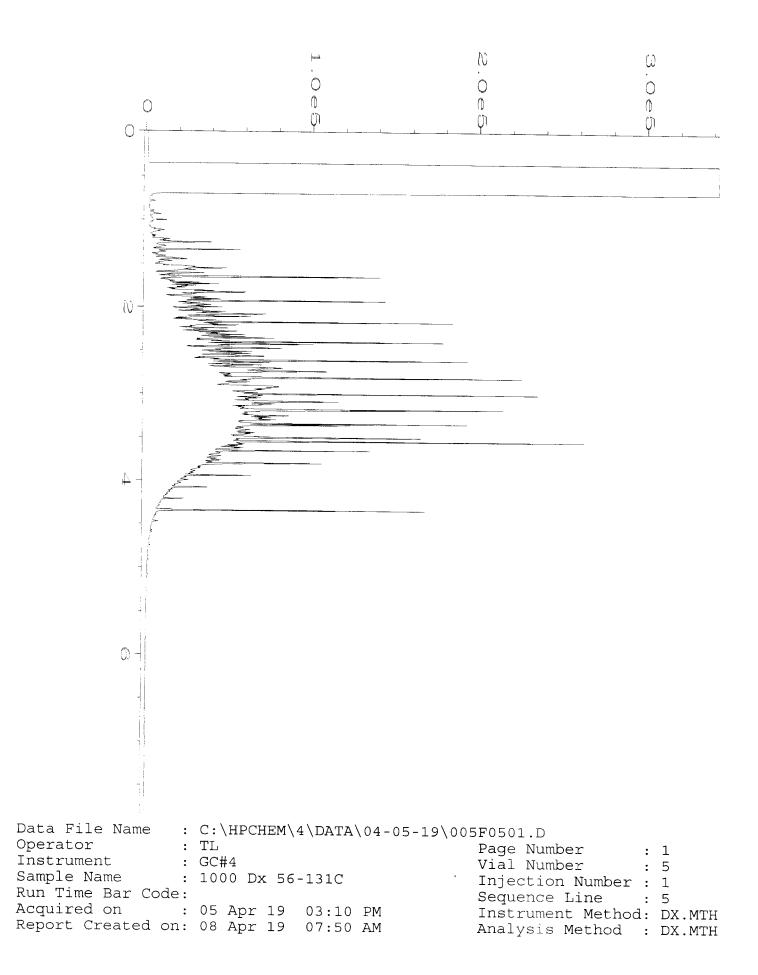
L - The reported concentration was generated from a library search.


nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.


pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.


ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.


vo - The value reported fell outside the control limits established for this analyte.


x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Friedm 3012 1t Seattle, Ph. (20	MW	901 Report To Company_ Address_ City, State Phone_20
Friedman & Bruya, Inc. 3012 16 th Avenue West Seattle, WA 98119-2029 Ph. (206) 285-8282	Sample ID S MW02-040419 MW02-040419	o Knz
Received by: Received by: Relinquished by: Received by:		Al Sniderson Union Sty Ste Variative, WA 18 Haydsmidder.com
SIGNATURE	b ID Date Sampled $A-E + 1/4/19$ A-D + 1/4/19	Ste 600 4 98101
	Time Sampled 344 400	SAMPLE C SAMPLER PROJECT NC(So REMARKS
UMAN	Sample Type Ja 4 4	S (sig NAM
PRINT NAME	Image: Line State Image: Line State Image: Line State	N OF CUSTODY nature) B B B B B B B B B B B B B B B B B B B
	BTEX by 8021B VOCs by 8260C SVOCs by 8270D PAHs 8270D SIM	PO
COMPANY FS TZBT Samples received at	PAHs 8270D SIM	65
d'at 3 oc	Z	Page # / /// Page # / of TURNAROUND TIME DStandard Turnaround RUSH Rush charges authorized by: SAMPLE DISPOSAL SAMPLE DISPOSAL Archive Samples Other
1/224	Notes	Jul BO2 of BO2) TIME nd nd zed by: oSAL 's

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

August 9, 2019

Kristin Anderson, Project Manager Floyd-Snider Two Union Square, Suite 600 601 Union St Seattle, WA 98101

Dear Ms Anderson:

Included are the results from the testing of material submitted on August 2, 2019 from the Nelson - Granite Falls, F&BI 908048 project. There are 6 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Nelf

Michael Erdahl Project Manager

Enclosures FDS0809R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on August 2, 2019 by Friedman & Bruya, Inc. from the Floyd-Snider Nelson - Granite Falls, F&BI 908048 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Floyd-Snider</u>
908048 -01	FS-05-4Ft
908048 -02	FS-06-4Ft
908048 -03	FS-09-5Ft

The 8021B benzene reporting limit in samples FS-06-4Ft and FS-09-5Ft were reported between the method detection limit and the reporting limit. The data were flagged accordingly.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 08/09/19 Date Received: 08/02/19 Project: Nelson - Granite Falls, F&BI 908048 Date Extracted: 08/05/19 Date Analyzed: 08/05/19

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery)</u> (Limit 50-150)
FS-05-4Ft 908048-01	< 0.02	0.098	0.56	1.2	170	128
FS-06-4Ft 908048-02 1/5	<0.02 j	<0.1	0.57	1.4	300	88
FS-09-5Ft 908048-03 1/5	<0.02 j	<0.1	1.8	3.0	640	91
Method Blank 09-1906 MB	< 0.02	< 0.02	< 0.02	<0.06	<5	80

ENVIRONMENTAL CHEMISTS

Date of Report: 08/09/19 Date Received: 08/02/19 Project: Nelson - Granite Falls, F&BI 908048 Date Extracted: 08/05/19 Date Analyzed: 08/05/19

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 56-165)
FS-05-4Ft 908048-01	3,400	<250	110
FS-06-4Ft 908048-02	3,100	<250	96
FS-09-5Ft 908048-03	8,400	380 x	102
Method Blank ^{09-1918 MB}	<50	<250	93

ENVIRONMENTAL CHEMISTS

Date of Report: 08/09/19 Date Received: 08/02/19 Project: Nelson - Granite Falls, F&BI 908048

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING METHOD 8021B AND NWTPH-Gx

Laboratory Code: 908048-01 (Duplicate)

Analyte	Reporting Units	Sample Result (Wet Wt)	Duplicate Result (Wet Wt)	RPD (Limit 20)
Benzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Toluene	mg/kg (ppm)	0.098	0.077	$24 \ hr$
Ethylbenzene	mg/kg (ppm)	0.56	0.49	14
Xylenes	mg/kg (ppm)	1.2	1.1	4
Gasoline	mg/kg (ppm)	170	180	9

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	mg/kg (ppm)	0.5	101	69-120
Toluene	mg/kg (ppm)	0.5	107	70-117
Ethylbenzene	mg/kg (ppm)	0.5	110	65 - 123
Xylenes	mg/kg (ppm)	1.5	110	66-120
Gasoline	mg/kg (ppm)	20	115	71 - 131

ENVIRONMENTAL CHEMISTS

Date of Report: 08/09/19 Date Received: 08/02/19 Project: Nelson - Granite Falls, F&BI 908048

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code:	908062-01 (Matri	ix Spike)					
Analyte	Reporting Units	Spike Level	Sample Result (Wet Wt)	Percent Recovery MS	Percent Recovery MSD	Acceptance Criteria	RPD (Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	<50	100	98	63-146	2
Laboratory Code:	Laboratory Contr	rol Samp	le Percent	5			
	Reporting	Spike	Recover	y Accep	tance		
Analyte	Units	Level	LCS	Crite	eria		
1 mai j vo							

 $\mathbf{5}$

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

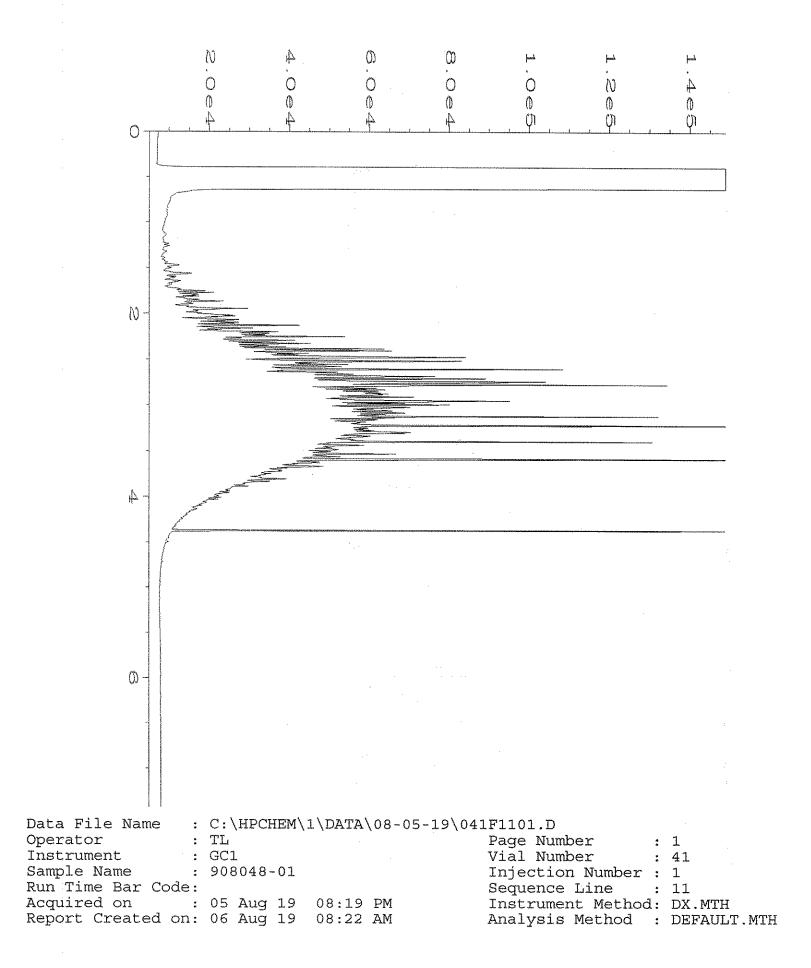
 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

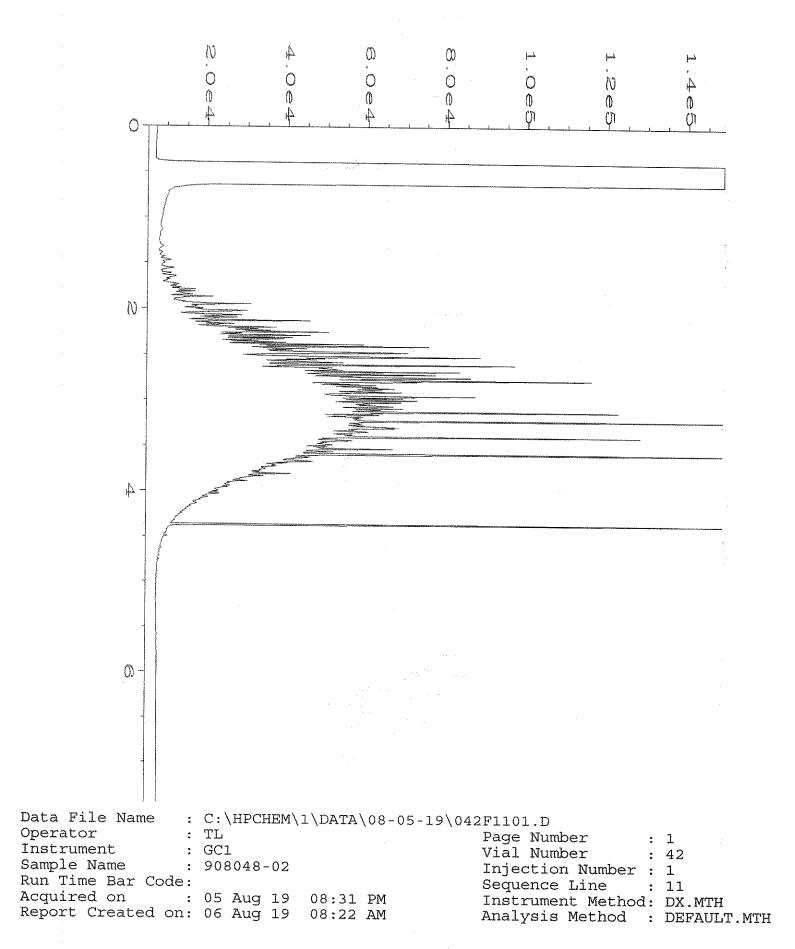
jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

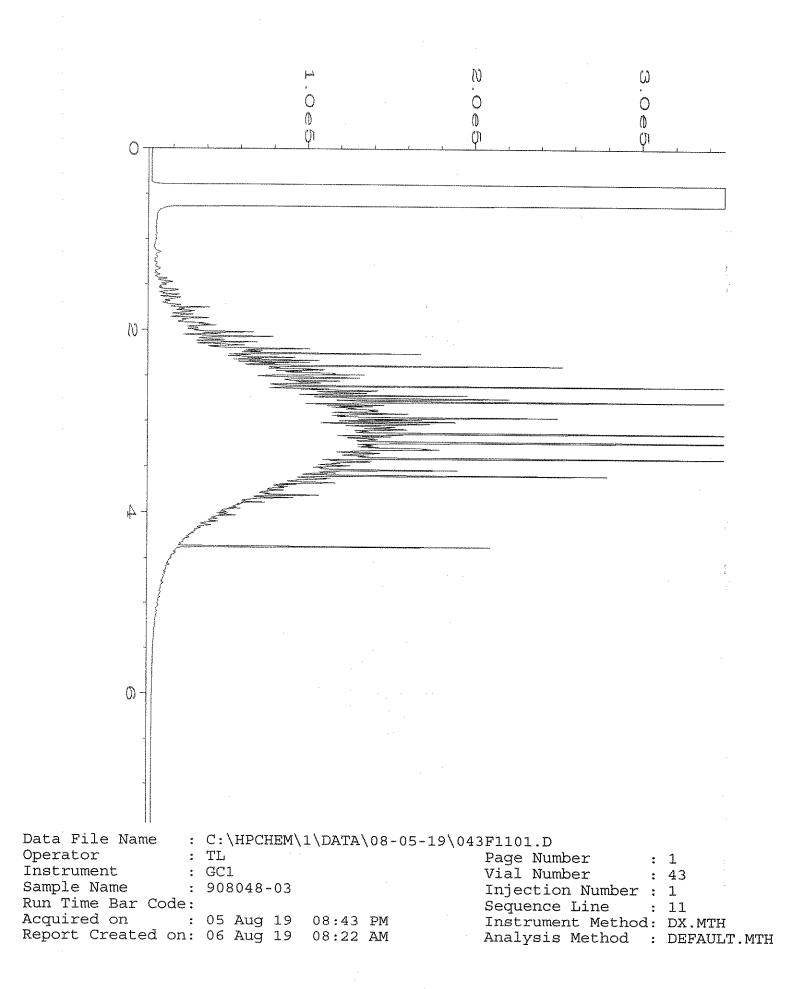
L - The reported concentration was generated from a library search.

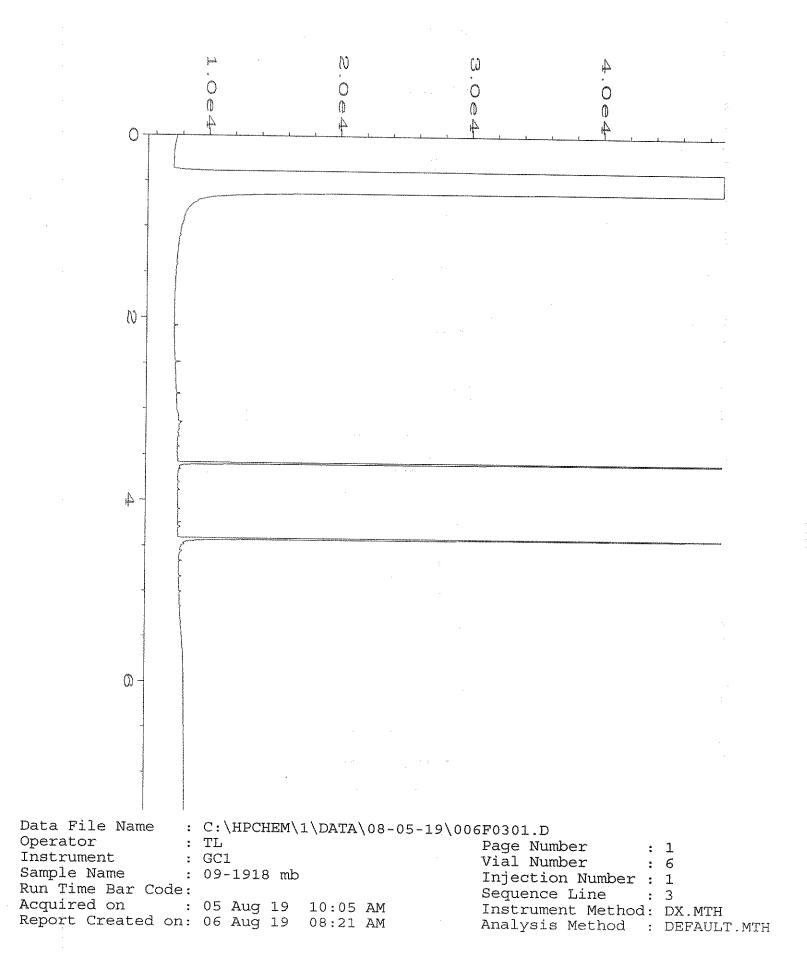

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

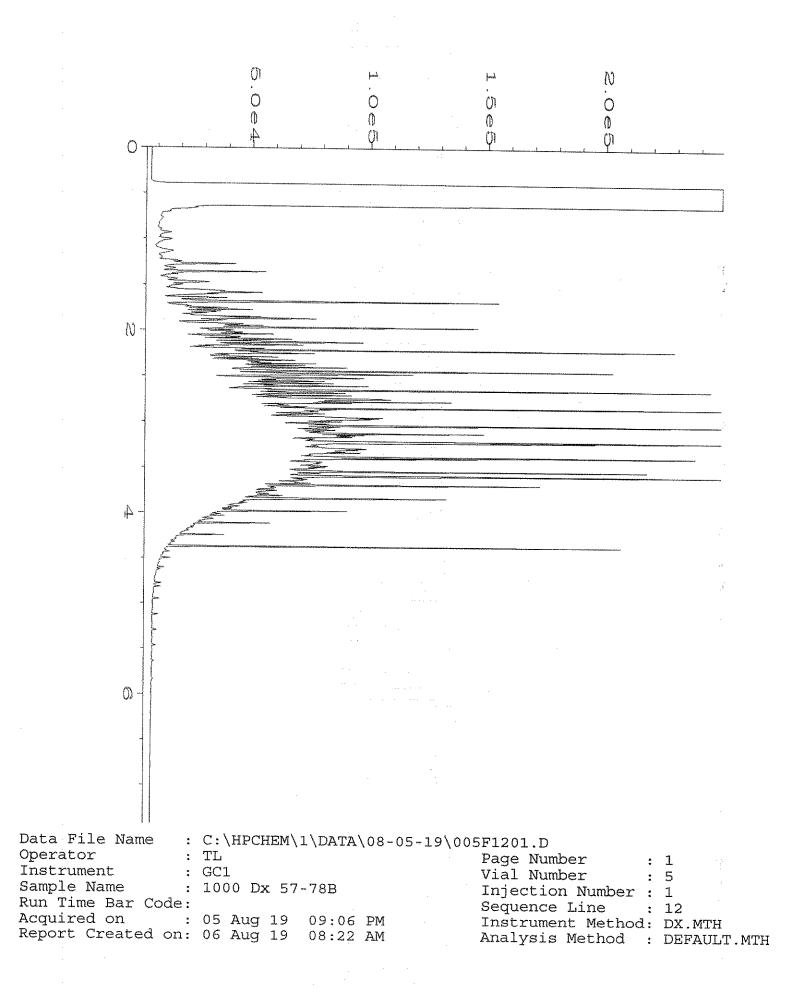

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.


x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.





. ...

. . .

Friedman & Bruya, Inc.SIG3012 16th Avenue WestReceived by:Seattle, WA 98119-2029Relinquisted by:Ph. (206) 285-8282Received by:			-	.]	FS-09-5 FT 03 (T 30-171 72-24	FS-05-4FT 01 A.E	Sample ID Lab ID		City, State, ZIP Zattle, WA 92101 Phone 266-92-2078 Email Knskn. av	,	Company Floyd Snider	908048 Report To Kristin Anderson
SIGNATURE					Ł		61/218	Date Sampled		anderson	Stc 600		
					1340	1330	1320	Time Sampled		all sum	Ne(sa-	PROJECT NAME	SAMPLE CHAIN OF CUST
500	×				<u>←</u>		1.05	Sample Type		all sumples likely to se	Nelson - Granite Falls	NAME	MPLE CHAIN OF SAMPLERS (signature)
print namt					G	U U	স	Jars of TPH-HCID		4 4	e Falls		OF CUS
					メズ	X X;	X	TPH-Diesel TPH-Gasoline		k hot l	-	·	TODY
A Anderson						× 	X	BTEX by 8021B VOCs by 8260C	ANAI				N.
						•		SVOCs by 8270D PAHs 8270D SIM	ANALYSES REQUESTED		INWOICE TO	PO #	ME08-02
COMPANY Cigl		Samp							UESTED	[1
nider 8		s rece	• •							SDispose after 30 days	sh charges	kandard T	19 Page #_ TURNA
DATE 8/2/19 8/2/19		ved at /	•					Notes		er 30 days mples	Rush charges authorized by:	Standard Turnaround	Page # of
1517 1517		l'oC						Ċ.			d by:		

~

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

April 29, 2020

Kristin Anderson, Project Manager Floyd-Snider Two Union Square, Suite 600 601 Union St Seattle, WA 98101

Dear Ms Anderson:

Included are the results from the testing of material submitted on April 12, 2020 from the Nelson-Granite Falls, F&BI 004197 project. There are 27 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Nelf

Michael Erdahl Project Manager

Enclosures FDS0429R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on April 12, 2020 by Friedman & Bruya, Inc. from the Floyd-Snider Nelson-Granite Falls, F&BI 004197 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Floyd-Snider</u>
004197 -01	MW-10-4.5-5 FT
004197 -02	MW-08-1-2 FT
004197 -03	MW-08-4.5-5 FT
004197 -04	MW-07-4.5-5 FT
004197 -05	MW-06-3.5-5.5 FT
004197 -06	FS-08-4.5-5.5 FT
004197 -07	FS-09-7-8 FT
004197 -08	MW-09-4.5-5 FT
004197 -09	FS-04-2-3 FT
004197 -10	FS-04-4.5-5 FT
004197 -11	FS-05-5-6 FT
004197 -12	FS-05-7-8 FT
004197 -13	FS-06-4.5-5 FT
004197 -14	FS-06-7-8 FT
004197 -15	FS-07-4-5 FT
004197 -16	FS-07-6.5-7.5 FT
004197 -17	FS-10-5-6 FT
004197 -18	FS-10-6.5-7.5 FT
004197 -19	FS-11-4-5 FT
004197 -20	FS-11-6-7 FT
004197 -21	FS-12-4-5 FT
004197 -22	FS-01-5-6 FT
004197 -23	FS-01-6.5-7.5 FT
004197 -24	FS-02-4-5 FT
004197 -25	FS-03-4.5-5 FT
004197 -26	FS-13-4.5-5.5 FT
004197 -27	IDW-Soil

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 04/29/20 Date Received: 04/12/20 Project: Nelson-Granite Falls, F&BI 004197 Date Extracted: 04/20/20 and 04/22/20 Date Analyzed: 04/20/20, 04/21/20, and 04/22/20

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery)</u> (Limit 50-150)
MW-10-4.5-5 FT 004197-01	< 0.02	< 0.02	< 0.02	<0.06	<5	95
MW-08-1-2 FT 004197-02	< 0.02	< 0.02	< 0.02	< 0.06	<5	94
$\underset{004197\cdot03}{\text{MW-08-4.5-5 FT}}$	< 0.04	< 0.04	< 0.04	< 0.12	<10	95
MW-07-4.5-5 FT 004197-04	< 0.02	< 0.02	< 0.02	< 0.06	<5	95
MW-06-3.5-5.5 FT 004197-05	< 0.02	< 0.02	< 0.02	< 0.06	<5	96
FS-08-4.5-5.5 FT 004197-06	< 0.02	< 0.02	< 0.02	< 0.06	<5	96
FS-09-7-8 FT 004197-07	< 0.02	< 0.02	< 0.02	< 0.06	<5	89
MW-09-4.5-5 FT 004197-08	< 0.02	< 0.02	< 0.02	< 0.06	<5	89
FS-04-2-3 FT 004197-09 1/5	0.44	1.0	1.3	4.7	410	96
FS-04-4.5-5 FT 004197-10	< 0.02	< 0.02	< 0.02	< 0.06	<5	96

ENVIRONMENTAL CHEMISTS

Date of Report: 04/29/20 Date Received: 04/12/20 Project: Nelson-Granite Falls, F&BI 004197 Date Extracted: 04/20/20 and 04/22/20 Date Analyzed: 04/20/20, 04/21/20, and 04/22/20

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery)</u> (Limit 50-150)
FS-05-5-6 FT 004197-11 1/10	< 0.2	1.0	1.0	1.6	550	100
FS-05-7-8 FT 004197-12	0.16	0.086	0.045	< 0.06	15	99
FS-06-4.5-5 FT 004197-13 1/5	<0.02 j	0.20	1.2	3.4	950	109
FS-06-7-8 FT 004197-14	< 0.02	< 0.02	< 0.02	< 0.06	11	98
FS-07-4-5 FT 004197-15 1/5	<0.02 j	<0.1	6.0	< 0.3	1,900	135
$\operatorname{FS-07-6.5-7.5}_{004197-16}\operatorname{FT}$	< 0.02	< 0.02	< 0.02	< 0.06	<5	90
FS-10-5-6 FT 004197-17 1/5	<0.02 j	<0.1	0.62	0.95	440	100
FS-10-6.5-7.5 FT 004197-18	< 0.02	< 0.02	< 0.02	< 0.06	<5	97
FS-11-4-5 FT 004197-19 1/5	<0.02 j	<0.1	1.4	3.3	1,200	101
FS-11-6-7 FT 004197-20	< 0.02	< 0.02	< 0.02	< 0.06	<5	97

ENVIRONMENTAL CHEMISTS

Date of Report: 04/29/20 Date Received: 04/12/20 Project: Nelson-Granite Falls, F&BI 004197 Date Extracted: 04/20/20 and 04/22/20 Date Analyzed: 04/20/20, 04/21/20, and 04/22/20

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery)</u> (Limit 50-150)
FS-12-4-5 FT 004197-21	< 0.02	< 0.02	< 0.02	< 0.06	34	90
FS-01-5-6 FT 004197-22	< 0.02	< 0.02	0.20	0.33	110	104
FS-01-6.5-7.5 FT 004197-23	0.18	< 0.02	< 0.02	< 0.06	<5	96
FS-02-4-5 FT 004197-24	< 0.02	< 0.02	< 0.02	< 0.06	<5	95
$\underset{004197\cdot25}{\text{FS-03-4.5-5 FT}}$	< 0.02	< 0.02	< 0.02	< 0.06	<5	96
FS-13-4.5-5.5 FT 004197-26	< 0.02	< 0.02	< 0.02	<0.06	14	89
Method Blank 00-853 MB	< 0.02	< 0.02	< 0.02	<0.06	<5	89
Method Blank ^{00-854 MB}	< 0.02	< 0.02	< 0.02	< 0.06	<5	96
Method Blank 00-856 MB2	< 0.02	< 0.02	< 0.02	< 0.06	<5	71

ENVIRONMENTAL CHEMISTS

Date of Report: 04/29/20 Date Received: 04/12/20 Project: Nelson-Granite Falls, F&BI 004197 Date Extracted: 04/20/20 and 04/22/20 Date Analyzed: 04/20/20 and 04/22/20

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sumorata

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	<u>Motor Oil Range</u> (C ₂₅ -C ₃₆)	Surrogate (<u>% Recovery</u>) (Limit 48-168)
MW-10-4.5-5 FT 004197-01	<50	<250	94
MW-08-1-2 FT 004197-02	<50	<250	101
MW-08-4.5-5 FT 004197-03	<100	<500	106
MW-07-4.5-5 FT 004197-04	<50	<250	94
MW-06-3.5-5.5 FT 004197-05	<50	<250	93
FS-08-4.5-5.5 FT 004197-06	<50	<250	104
FS-09-7-8 FT 004197-07	<50	<250	94
MW-09-4.5-5 FT 004197-08	<50	<250	103
FS-04-2-3 FT 004197-09	2,300	880 x	94
FS-04-4.5-5 FT 004197-10	<50	<250	93

ENVIRONMENTAL CHEMISTS

Date of Report: 04/29/20 Date Received: 04/12/20 Project: Nelson-Granite Falls, F&BI 004197 Date Extracted: 04/20/20 and 04/22/20 Date Analyzed: 04/20/20 and 04/22/20

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 48-168)
FS-05-5-6 FT 004197-11	1,500	<250	98
FS-05-7-8 FT 004197-12	<50	<250	101
FS-06-4.5-5 FT $_{004197-13}$	3,400	<250	91
FS-06-7-8 FT 004197-14	<50	<250	96
FS-07-4-5 FT 004197-15	12,000	<250	99
FS-07-6.5-7.5 FT 004197-16	<50	<250	95
FS-10-5-6 FT 004197-17	1,400	<250	93
FS-10-6.5-7.5 FT 004197-18	<50	<250	95
FS-11-4-5 FT 004197-19	4,200	<250	97
FS-11-6-7 FT 004197-20	<50	<250	104

ENVIRONMENTAL CHEMISTS

Date of Report: 04/29/20 Date Received: 04/12/20 Project: Nelson-Granite Falls, F&BI 004197 Date Extracted: 04/20/20 and 04/22/20 Date Analyzed: 04/20/20 and 04/22/20

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sumorato

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate (% Recovery) (Limit 48-168)
FS-12-4-5 FT 004197-21	410	<250	92
FS-01-5-6 FT 004197-22	640	<250	101
FS-01-6.5-7.5 FT 004197-23	<50	<250	93
FS-02-4-5 FT 004197-24	<50	<250	95
FS-03-4.5-5 FT $_{004197-25}$	<50	<250	92
$\operatorname{FS-13-4.5-5.5}_{004197-26}\operatorname{FT}$	170	<250	92
Method Blank 00-922 MB	<50	<250	87
Method Blank ^{00-923 MB}	<50	<250	103
Method Blank ^{00-934 MB}	<50	<250	94

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-08-1-2 FT 04/12/20 04/23/20 04/23/20 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Nelson-Granite Falls, F&BI 004197 004197-02 004197-02.058 ICPMS2 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic	3.66		
Cadmium	<1		
Chromium	9.50		
Lead	29.5		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-07-4.5-5 FT 04/12/20 04/23/20 04/23/20 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Nelson-Granite Falls, F&BI 004197 004197-04 004197-04.059 ICPMS2 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic	3.06		
Cadmium	<1		
Chromium	39.8		
Lead	6.74		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-06-3.5-5.5 FT 04/12/20 04/23/20 04/23/20 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Nelson-Granite Falls, F&BI 004197 004197-05 004197-05.060 ICPMS2 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic	4.39		
Cadmium	<1		
Chromium	22.6		
Lead	3.01		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	IDW-Soil 04/12/20 04/21/20 04/21/20 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Nelson-Granite Falls, F&BI 004197 004197-27 004197-27.110 ICPMS2 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic	4.85		
Barium	68.9		
Cadmium	<1		
Chromium	19.9		
Lead	10.7		
Mercury	<1		
Selenium	<1		
Silver	<1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank NA 04/23/20 04/23/20 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Nelson-Granite Falls, F&BI 004197 I0-230 mb2 I0-230 mb2.044 ICPMS2 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic	<1		
Cadmium	<1		
Chromium	<1		
Lead	<1		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank NA 04/21/20 04/21/20 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Nelson-Granite Falls, F&BI 004197 I0-226 mb2 I0-226 mb2.058 ICPMS2 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic	<1		
Barium	<1		
Cadmium	<1		
Chromium	<1		
Lead	<1		
Mercury	<1		
Selenium	<1		
Silver	<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-08-1-2 04/12/20 04/22/20 04/23/20 Soil mg/kg (ppm	FT) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Nelson-Granite Falls, F&BI 004197 004197-02 1/5 042308.D GCMS6 SP
Surrogates: Anthracene-d10 Benzo(a)anthracene	e-d12	% Recovery: 70 92	Lower Limit: 31 24	Upper Limit: 163 168
Compounds:		Concentration mg/kg (ppm)		
Naphthalene		0.041		
Acenaphthylene		< 0.01		
Acenaphthene		< 0.01		
Fluorene		< 0.01		
Phenanthrene		0.081		
Anthracene		< 0.01		
Fluoranthene		0.025		
Pyrene		0.036		
Benz(a)anthracene		0.025		
Chrysene		0.034		
Benzo(a)pyrene		0.023		
Benzo(b)fluoranthe	ne	0.027		
Benzo(k)fluoranthe	ene	< 0.01		
Indeno(1,2,3-cd)pyr	rene	0.013		
Dibenz(a,h)anthrac	ene	< 0.01		
Benzo(g,h,i)perylen	ie	0.014		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-07-4.5- 04/12/20 04/22/20 04/23/20 Soil mg/kg (ppm	5 FT) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Nelson-Granite Falls, F&BI 004197 004197-04 1/5 042311.D GCMS6 SP
Surrogates: Anthracene-d10 Benzo(a)anthracen	e-d12	% Recovery: 90 106	Lower Limit: 31 24	Upper Limit: 163 168
Compounds:		Concentration mg/kg (ppm)		
Naphthalene		< 0.01		
Acenaphthylene		< 0.01		
Acenaphthene		< 0.01		
Fluorene		< 0.01		
Phenanthrene		< 0.01		
Anthracene		< 0.01		
Fluoranthene		< 0.01		
Pyrene		< 0.01		
Benz(a)anthracene		< 0.01		
Chrysene		< 0.01		
Benzo(a)pyrene		< 0.01		
Benzo(b)fluoranthe	ne	< 0.01		
Benzo(k)fluoranthe	ene	< 0.01		
Indeno(1,2,3-cd)pyr		< 0.01		
Dibenz(a,h)anthrac		< 0.01		
Benzo(g,h,i)perylen	ie	< 0.01		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-06-3.5- 04/12/20 04/22/20 04/23/20 Soil mg/kg (ppm	5.5 FT) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Nelson-Granite Falls, F&BI 004197 004197-05 1/5 042312.D GCMS6 SP
Surrogates: Anthracene-d10 Benzo(a)anthracene	e-d12	% Recovery: 87 102	Lower Limit: 31 24	Upper Limit: 163 168
Compounds:		Concentration mg/kg (ppm)		
Naphthalene		< 0.01		
Acenaphthylene		< 0.01		
Acenaphthene		< 0.01		
Fluorene		< 0.01		
Phenanthrene		< 0.01		
Anthracene		< 0.01		
Fluoranthene		< 0.01		
Pyrene		< 0.01		
Benz(a)anthracene		< 0.01		
Chrysene		< 0.01		
Benzo(a)pyrene		< 0.01		
Benzo(b)fluoranthe	ne	< 0.01		
Benzo(k)fluoranthe	ene	< 0.01		
Indeno(1,2,3-cd)pyr	rene	< 0.01		
Dibenz(a,h)anthrac	ene	< 0.01		
Benzo(g,h,i)perylen	ie	< 0.01		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Bla Not Applica 04/21/20 04/22/20 Soil mg/kg (ppm		Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Nelson-Granite Falls, F&BI 004197 00-926 mb 1/5 042211.D GCMS6 SP
Surrogates: Anthracene-d10 Benzo(a)anthracen	e-d12	% Recovery: 84 101	Lower Limit: 31 24	Upper Limit: 163 168
Compounds:		Concentration mg/kg (ppm)		
Naphthalene		< 0.01		
Acenaphthylene		< 0.01		
Acenaphthene		< 0.01		
Fluorene		< 0.01		
Phenanthrene		< 0.01		
Anthracene		< 0.01		
Fluoranthene		< 0.01		
Pyrene		< 0.01		
Benz(a)anthracene		< 0.01		
Chrysene		< 0.01		
Benzo(a)pyrene		< 0.01		
Benzo(b)fluoranthe	ne	< 0.01		
Benzo(k)fluoranthe	ene	< 0.01		
Indeno(1,2,3-cd)pyr	rene	< 0.01		
Dibenz(a,h)anthrac	ene	< 0.01		
Benzo(g,h,i)perylen	e	< 0.01		

ENVIRONMENTAL CHEMISTS

Date of Report: 04/29/20 Date Received: 04/12/20 Project: Nelson-Granite Falls, F&BI 004197

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING METHOD 8021B AND NWTPH-Gx

Laboratory Code: 004197-01 (Duplicate)

Analyte	Reporting Units	Sample Result (Wet Wt)	Duplicate Result (Wet Wt)	RPD (Limit 20)
Benzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Toluene	mg/kg (ppm)	< 0.02	< 0.02	nm
Ethylbenzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Xylenes	mg/kg (ppm)	< 0.06	< 0.06	nm
Gasoline	mg/kg (ppm)	<5	<5	nm

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	mg/kg (ppm)	0.5	100	69-120
Toluene	mg/kg (ppm)	0.5	97	70-117
Ethylbenzene	mg/kg (ppm)	0.5	98	65 - 123
Xylenes	mg/kg (ppm)	1.5	102	66-120
Gasoline	mg/kg (ppm)	20	95	71 - 131

ENVIRONMENTAL CHEMISTS

Date of Report: 04/29/20 Date Received: 04/12/20 Project: Nelson-Granite Falls, F&BI 004197

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 004213-17 (Duplicate)

		Sample	Duplicate	
	Reporting	Result	Result	RPD
Analyte	Units	(Wet Wt)	(Wet Wt)	(Limit 20)
Benzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Toluene	mg/kg (ppm)	0.060	0.037	47 a
Ethylbenzene	mg/kg (ppm)	0.14	0.076	59 a
Xylenes	mg/kg (ppm)	0.19	0.10	63 a
Gasoline	mg/kg (ppm)	38	21	58 a

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	mg/kg (ppm)	0.5	94	69-120
Toluene	mg/kg (ppm)	0.5	94	70-117
Ethylbenzene	mg/kg (ppm)	0.5	92	65 - 123
Xylenes	mg/kg (ppm)	1.5	100	66-120
Gasoline	mg/kg (ppm)	20	90	71-131

ENVIRONMENTAL CHEMISTS

Date of Report: 04/29/20 Date Received: 04/12/20 Project: Nelson-Granite Falls, F&BI 004197

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 004197-23 (Duplicate)

Analyte	Reporting Units	Sample Result (Wet Wt)	Duplicate Result (Wet Wt)	RPD (Limit 20)
Benzene	mg/kg (ppm)	0.099	0.085	15
Toluene	mg/kg (ppm)	< 0.02	< 0.02	nm
Ethylbenzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Xylenes	mg/kg (ppm)	< 0.06	< 0.06	nm
Gasoline	mg/kg (ppm)	<5	<5	nm

п

		Percent					
	Reporting	Spike	Recovery	Acceptance			
Analyte	Units	Level	LCS	Criteria			
Benzene	mg/kg (ppm)	0.5	98	69-120			
Toluene	mg/kg (ppm)	0.5	97	70 - 117			
Ethylbenzene	mg/kg (ppm)	0.5	96	65 - 123			
Xylenes	mg/kg (ppm)	1.5	101	66 - 120			
Gasoline	mg/kg (ppm)	20	105	71 - 131			

ENVIRONMENTAL CHEMISTS

Date of Report: 04/29/20 Date Received: 04/12/20 Project: Nelson-Granite Falls, F&BI 004197

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code:	004200-01 (Matri	x Spike)					
			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	\mathbf{MS}	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	<50	102	106	64-133	4
Laboratory Code:	Laboratory Contr	rol Samp	le				
Laboratory Code:	Laboratory Contr	rol Samp	le Percent	5			
Laboratory Code:	Laboratory Contr Reporting	ol Samp Spike			tance		
Laboratory Code: Analyte	, e	-	Percent				

ENVIRONMENTAL CHEMISTS

Date of Report: 04/29/20 Date Received: 04/12/20 Project: Nelson-Granite Falls, F&BI 004197

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 004197-14 (Matrix Spike)									
			Sample	Percent	Percent				
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD		
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)		
Diesel Extended	mg/kg (ppm)	5,000	<50	94	88	73-135	7		
Laboratory Code: Laboratory	aboratory Contr	ol Sampl	e						
			Percent						
	Reporting	Spike	Recovery	Acceptan	ice				
Analyte	Units	Level	LCS	Criteria	a				
Diesel Extended	mg/kg (ppm)	5,000	88	74-139					

22

ENVIRONMENTAL CHEMISTS

Date of Report: 04/29/20 Date Received: 04/12/20 Project: Nelson-Granite Falls, F&BI 004197

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 004242-02 (Matrix Spike)									
	_	~	Sample	Percent	Percent				
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD		
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)		
Diesel Extended	mg/kg (ppm)	5,000	<50	90	90	73 - 135	0		
Laboratory Code: L	aboratory Contr	ol Sampl	le						
			Percent						
	Reporting	Spike	Recovery	Acceptan	nce				
Analyte	Units	Level	LCS	Criteria	a				
Diesel Extended	mg/kg (ppm)	5,000	90	74-139)				

ENVIRONMENTAL CHEMISTS

Date of Report: 04/29/20 Date Received: 04/12/20 Project: Nelson-Granite Falls, F&BI 004197

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 004231-08 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Arsenic	mg/kg (ppm)	10	2.38	75 b	72 b	75 - 125	4 b
Cadmium	mg/kg (ppm)	10	<1	101	95	75 - 125	6
Chromium	mg/kg (ppm)	50	8.13	86	78	75 - 125	10
Lead	mg/kg (ppm)	50	4.94	89	82	75 - 125	8
Mercury	mg/kg (ppm	5	<1	87	84	75 - 125	4

Laboratory Co	ue. Laboratory Com	ample	Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	mg/kg (ppm)	10	82	80-120
Cadmium	mg/kg (ppm)	10	104	80-120
Chromium	mg/kg (ppm)	50	94	80-120
Lead	mg/kg (ppm)	50	101	80-120
Mercury	mg/kg (ppm)	5	97	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 04/29/20 Date Received: 04/12/20 Project: Nelson-Granite Falls, F&BI 004197

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 004174-42 x5 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	${ m MS}$	MSD	Criteria	(Limit 20)
Arsenic	mg/kg (ppm)	10	<5	77	78	75 - 125	1
Barium	mg/kg (ppm)	50	113	112	113	75 - 125	1
Cadmium	mg/kg (ppm)	10	<5	104	103	75 - 125	1
Chromium	mg/kg (ppm)	50	7.60	94	90	75 - 125	4
Lead	mg/kg (ppm)	50	5.30	95	95	75 - 125	0
Mercury	mg/kg (ppm	5	<5	97	102	75 - 125	5
Selenium	mg/kg (ppm)	5	<5	93	91	75 - 125	2
Silver	mg/kg (ppm)	10	<5	90	93	75 - 125	3

Laboratory Code. Laboratory Control Sample								
			Percent					
	Reporting	Spike	Recovery	Acceptance				
Analyte	Units	Level	LCS	Criteria				
Arsenic	mg/kg (ppm)	10	86	80-120				
Barium	mg/kg (ppm)	50	108	80-120				
Cadmium	mg/kg (ppm)	10	110	80-120				
Chromium	mg/kg (ppm)	50	101	80-120				
Lead	mg/kg (ppm)	50	107	80-120				
Mercury	mg/kg (ppm)	5	110	80-120				
Selenium	mg/kg (ppm)	5	106	80-120				
Silver	mg/kg (ppm)	10	105	80-120				

ENVIRONMENTAL CHEMISTS

Date of Report: 04/29/20 Date Received: 04/12/20 Project: Nelson-Granite Falls, F&BI 004197

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR PAHS BY EPA METHOD 8270E SIM

Laboratory Code: 004208-02 1/5 (Matrix Spike)

	o _	1 /	Sample	Percent	
	Reporting	Spike	Result	Recovery	Acceptance
Analyte	Units	Level	(Wet wt)	MS	Criteria
Naphthalene	mg/kg (ppm)	0.17	0.011	72	44-129
Acenaphthylene	mg/kg (ppm)	0.17	< 0.01	79	52 - 121
Acenaphthene	mg/kg (ppm)	0.17	< 0.01	77	51 - 123
Fluorene	mg/kg (ppm)	0.17	< 0.01	82	37 - 137
Phenanthrene	mg/kg (ppm)	0.17	0.067	$52 \mathrm{b}$	34-141
Anthracene	mg/kg (ppm)	0.17	< 0.01	80	32 - 124
Fluoranthene	mg/kg (ppm)	0.17	0.093	$57 \mathrm{b}$	16-160
Pyrene	mg/kg (ppm)	0.17	0.10	$57 \mathrm{b}$	10-180
Benz(a)anthracene	mg/kg (ppm)	0.17	0.047	76 b	23 - 144
Chrysene	mg/kg (ppm)	0.17	0.053	70 b	32 - 149
Benzo(b)fluoranthene	mg/kg (ppm)	0.17	0.052	69 b	23 - 176
Benzo(k)fluoranthene	mg/kg (ppm)	0.17	0.016	75	42-139
Benzo(a)pyrene	mg/kg (ppm)	0.17	0.049	72 b	21 - 163
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.17	0.034	67	23 - 170
Dibenz(a,h)anthracene	mg/kg (ppm)	0.17	< 0.01	71	31 - 146
Benzo(g,h,i)perylene	mg/kg (ppm)	0.17	0.031	55	37-133

Laboratory Code: Laboratory Control Sample 1/5

Laboratory Coue. Labora	tory control San	ipie 1/0	Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Naphthalene	mg/kg (ppm)	0.17	80	80	58-121	0
Acenaphthylene	mg/kg (ppm)	0.17	82	88	54 - 121	7
Acenaphthene	mg/kg (ppm)	0.17	81	83	54 - 123	2
Fluorene	mg/kg (ppm)	0.17	87	89	56 - 127	2
Phenanthrene	mg/kg (ppm)	0.17	83	84	55 - 122	1
Anthracene	mg/kg (ppm)	0.17	82	84	50 - 120	2
Fluoranthene	mg/kg (ppm)	0.17	87	90	54 - 129	3
Pyrene	mg/kg (ppm)	0.17	93	96	53 - 127	3
Benz(a)anthracene	mg/kg (ppm)	0.17	89	89	51 - 115	0
Chrysene	mg/kg (ppm)	0.17	85	84	55 - 129	1
Benzo(b)fluoranthene	mg/kg (ppm)	0.17	87	88	56 - 123	1
Benzo(k)fluoranthene	mg/kg (ppm)	0.17	89	90	54 - 131	1
Benzo(a)pyrene	mg/kg (ppm)	0.17	76	78	51 - 118	3
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.17	64	68	49-148	6
Dibenz(a,h)anthracene	mg/kg (ppm)	0.17	64	68	50-141	6
Benzo(g,h,i)perylene	mg/kg (ppm)	0.17	59	64	52 - 131	8

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht - The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

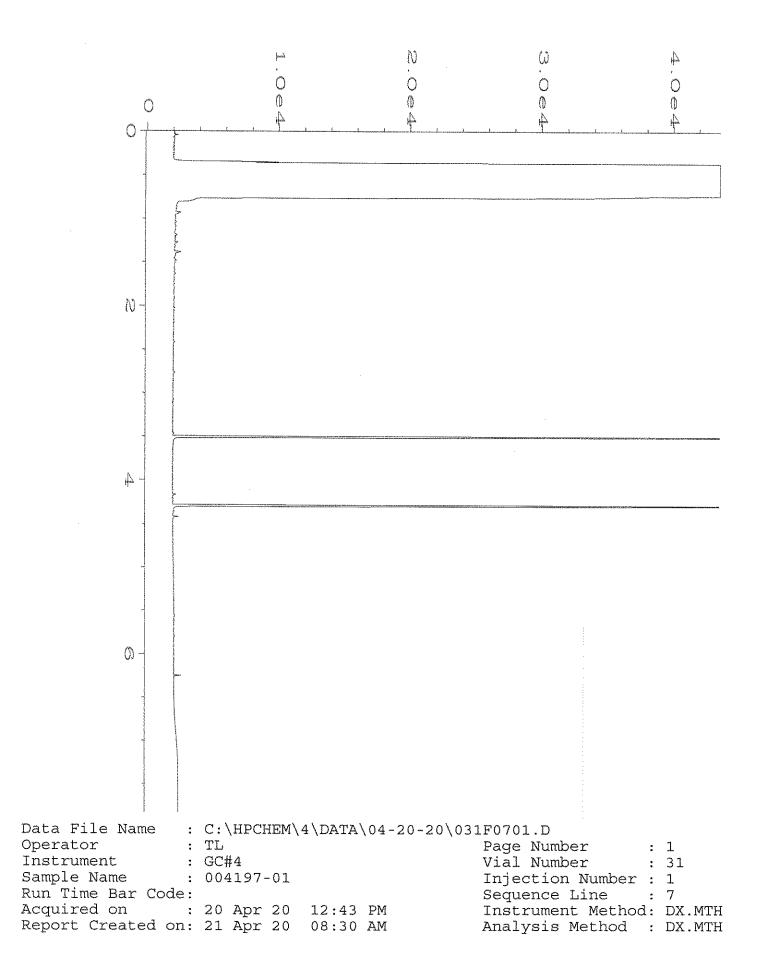
 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

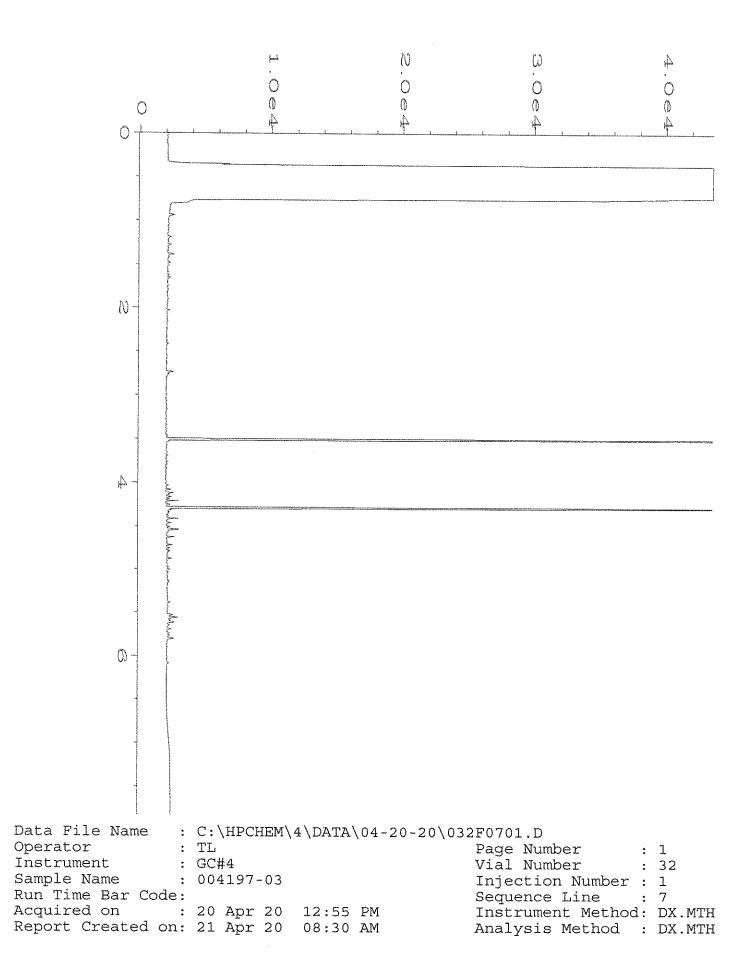
jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

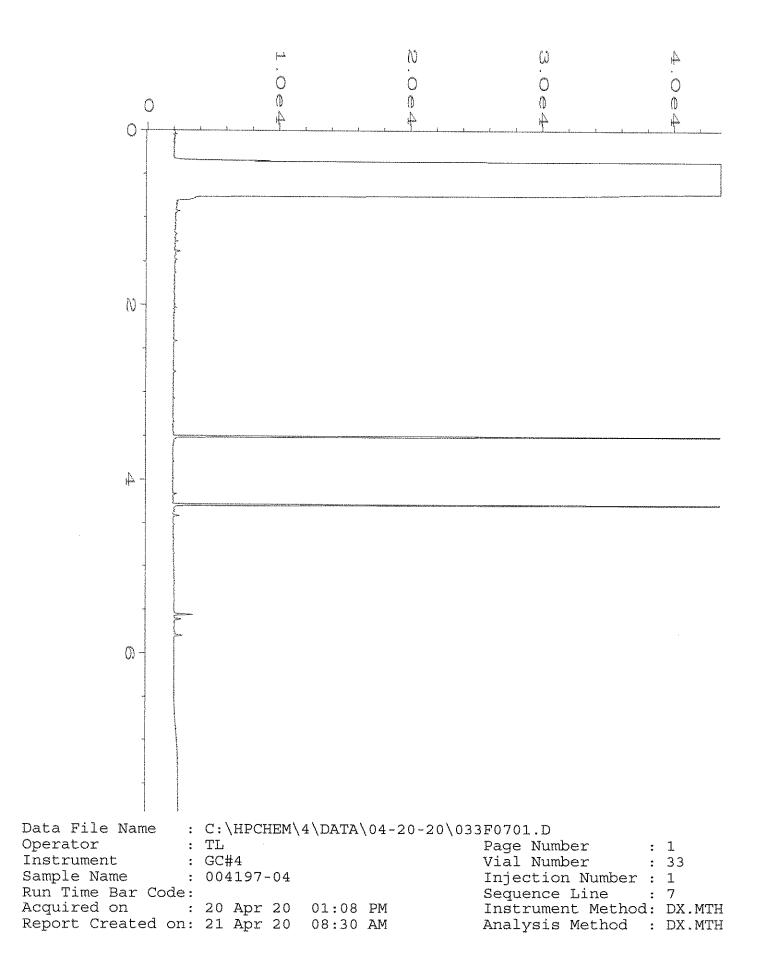
js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

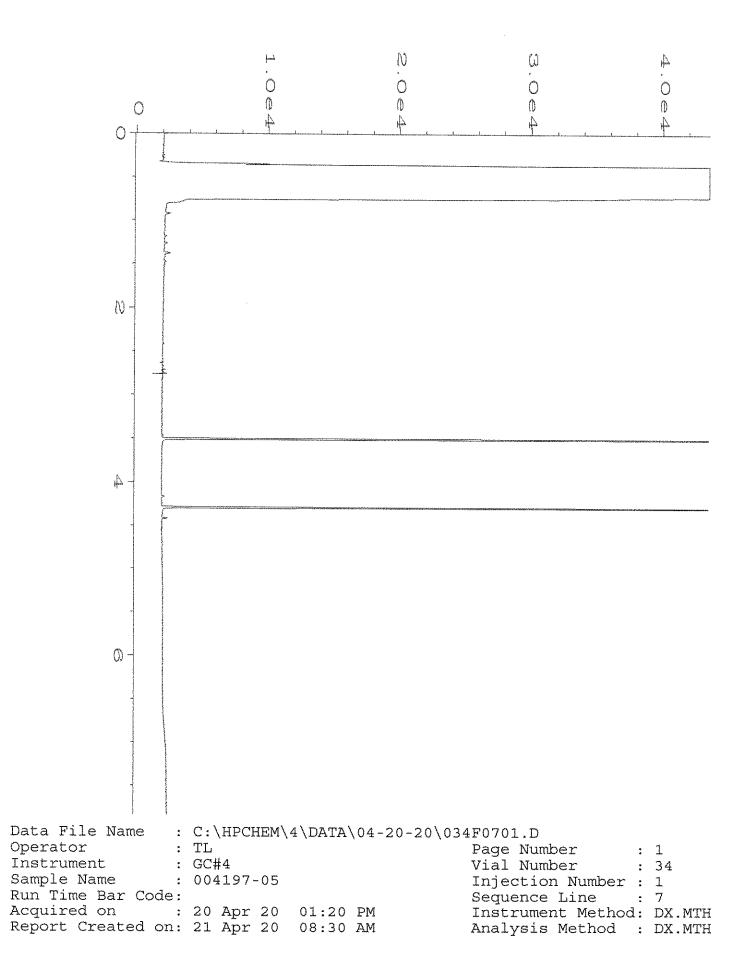
lc - The presence of the analyte is likely due to laboratory contamination.

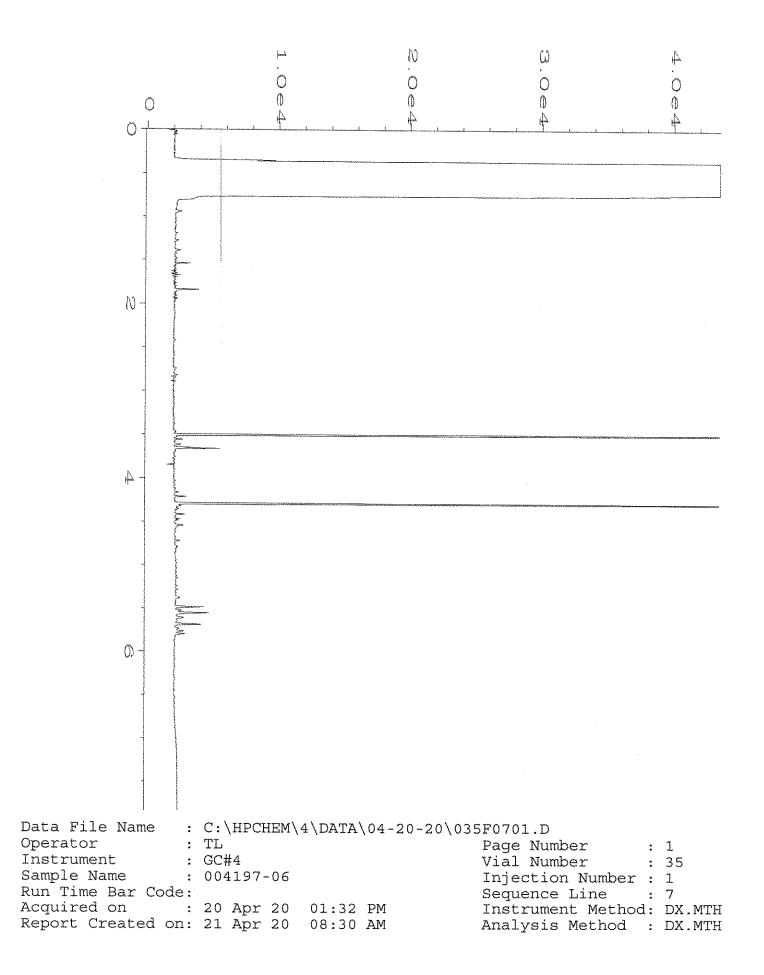
L - The reported concentration was generated from a library search.

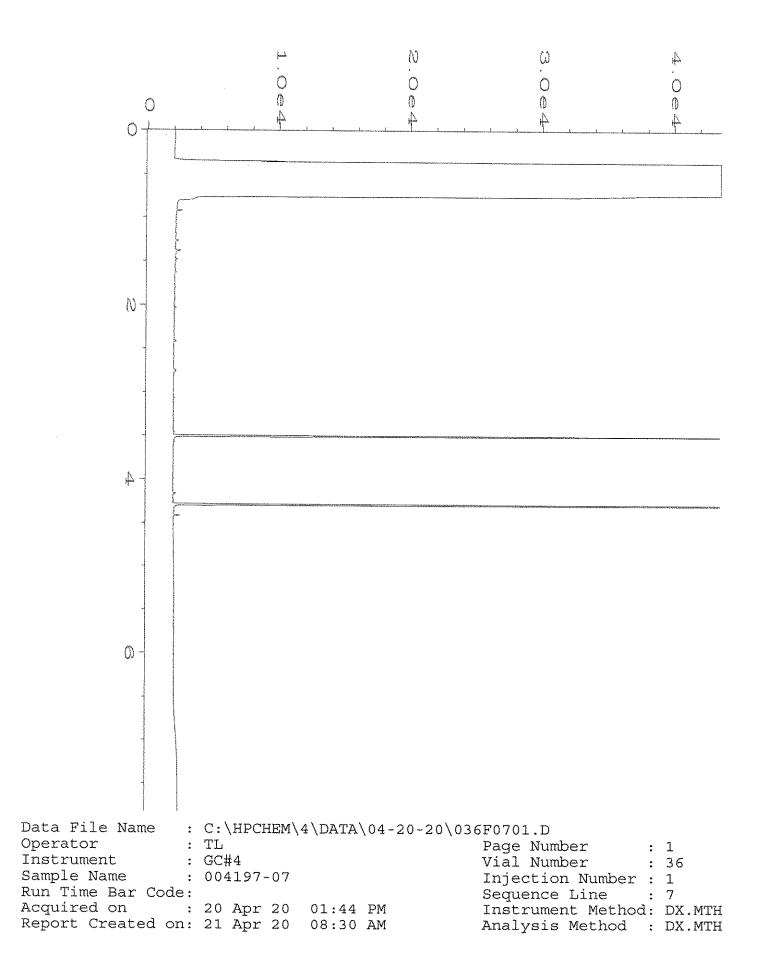

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

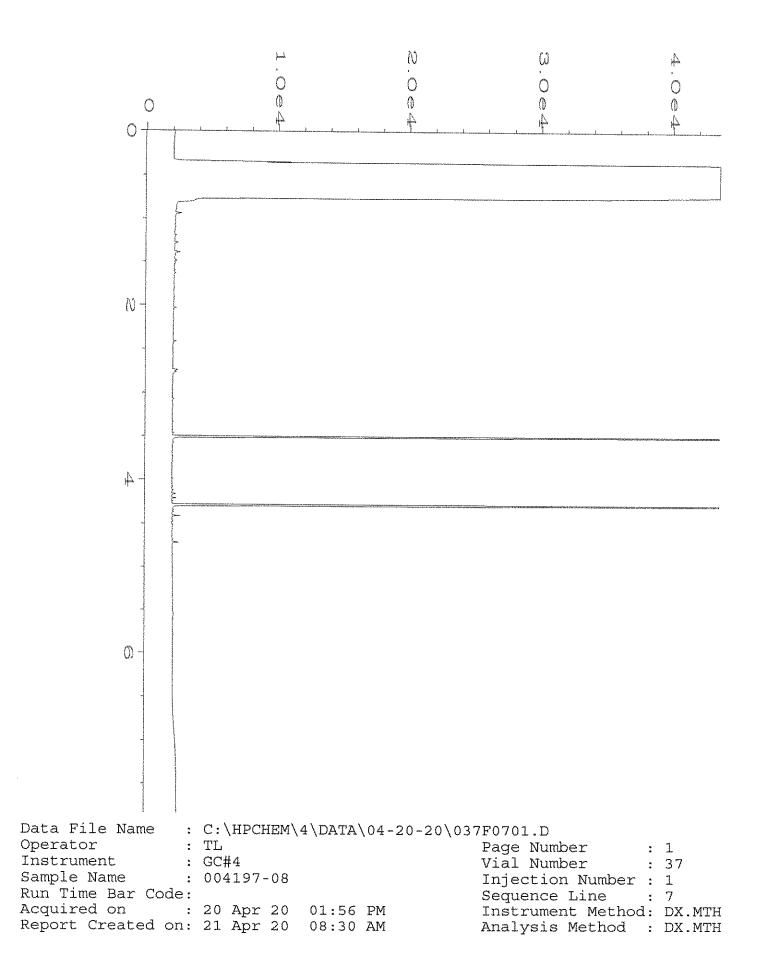

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

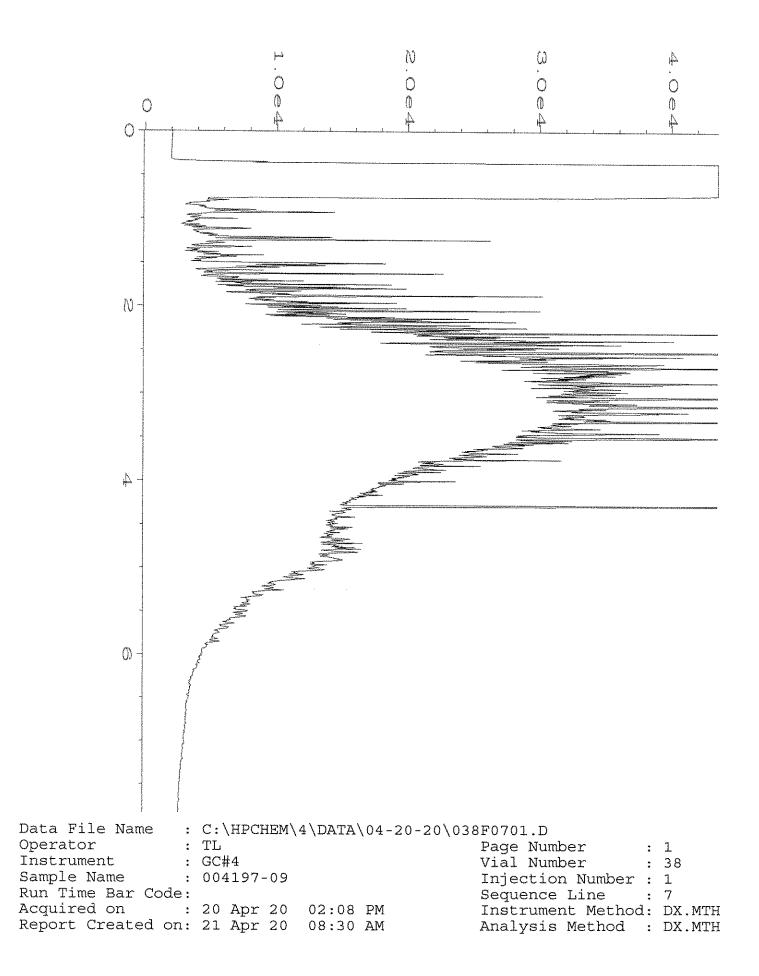

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

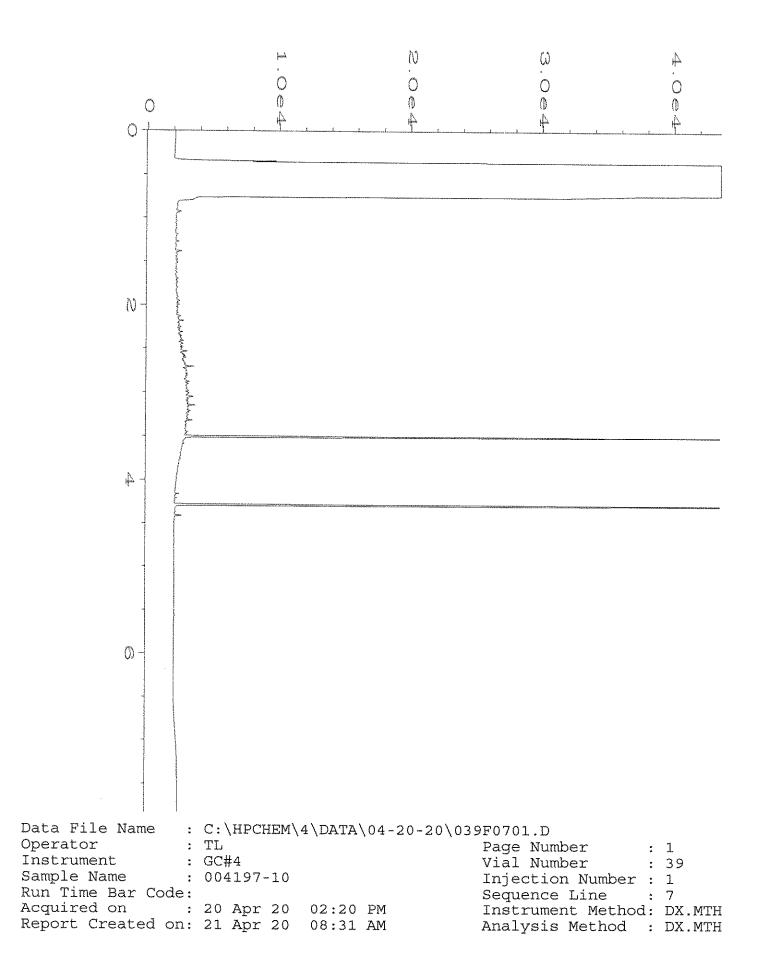

vo - The value reported fell outside the control limits established for this analyte.

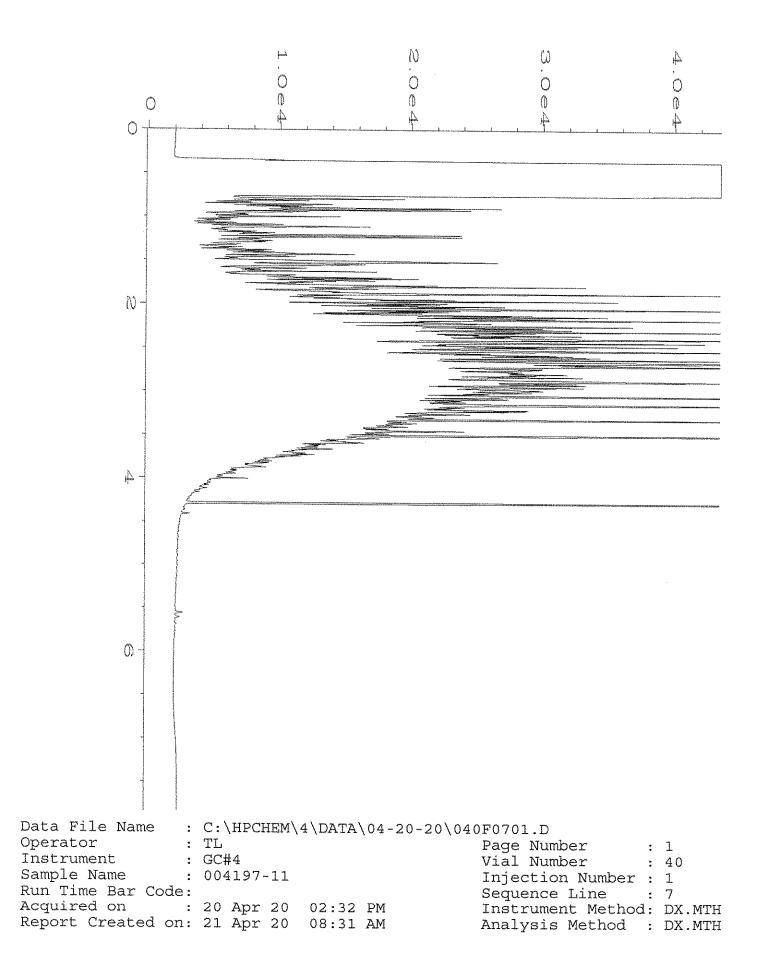

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

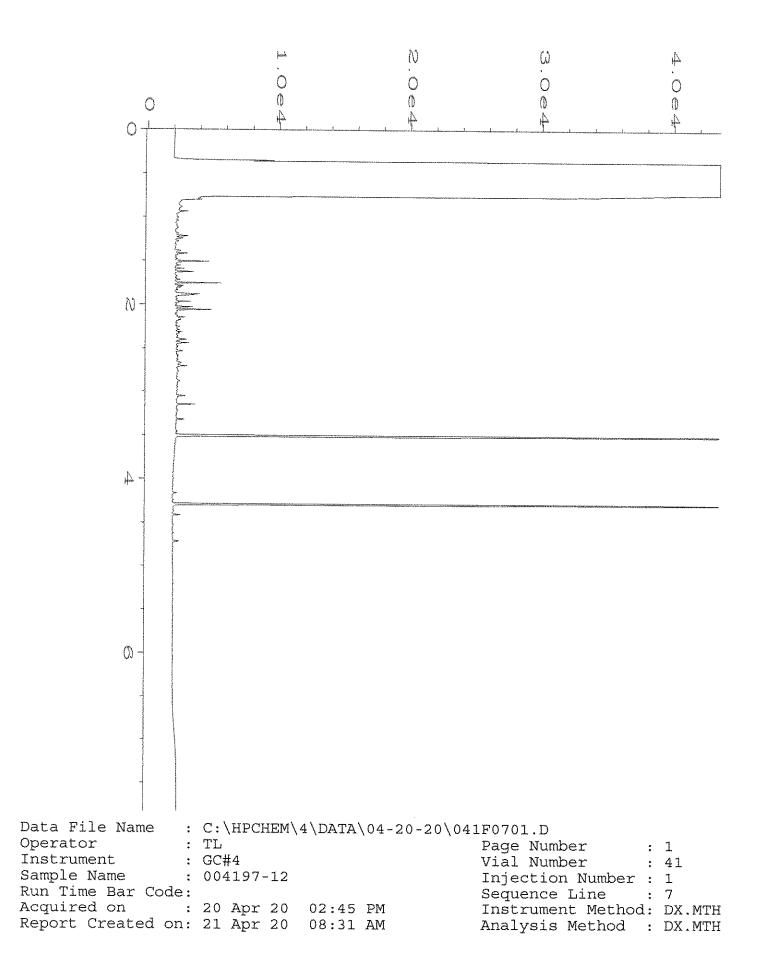


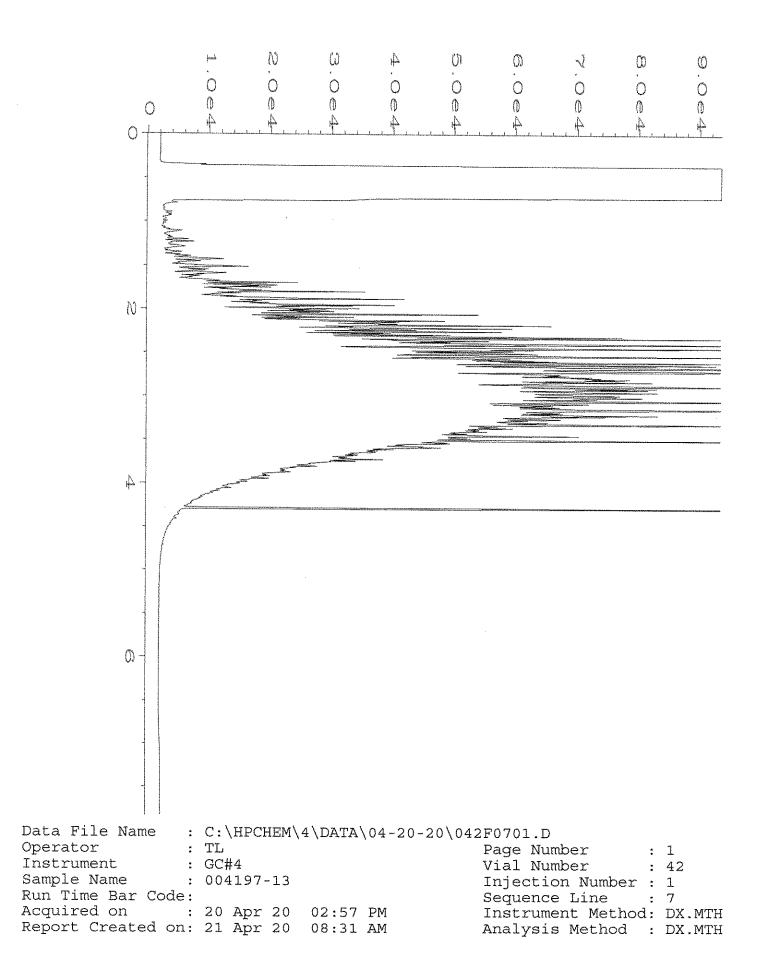


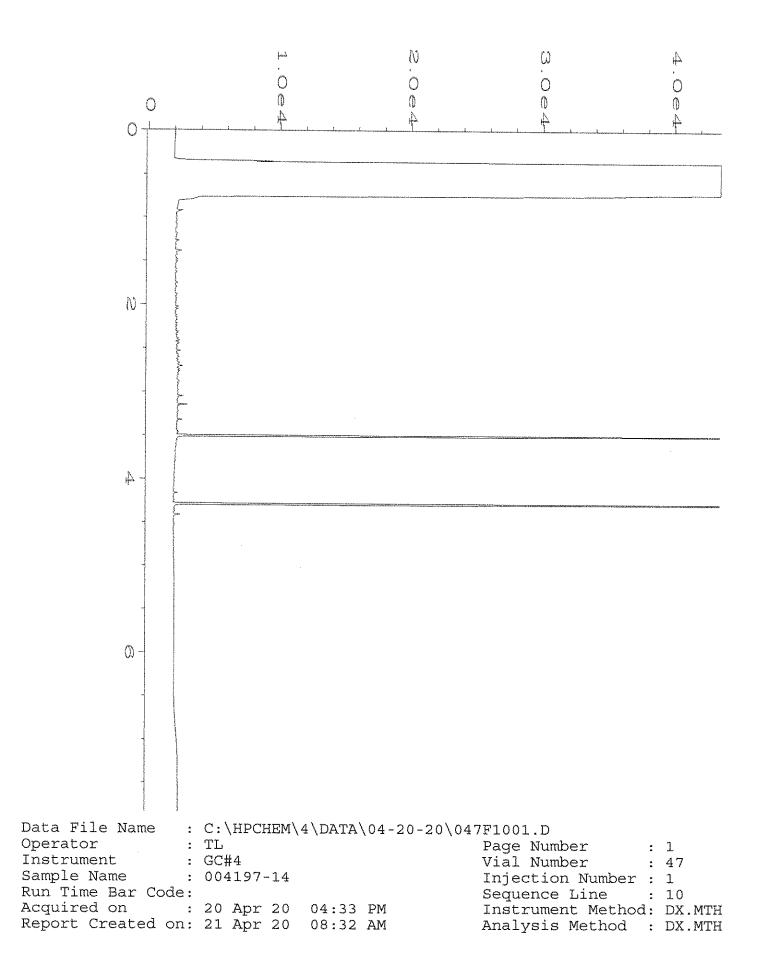


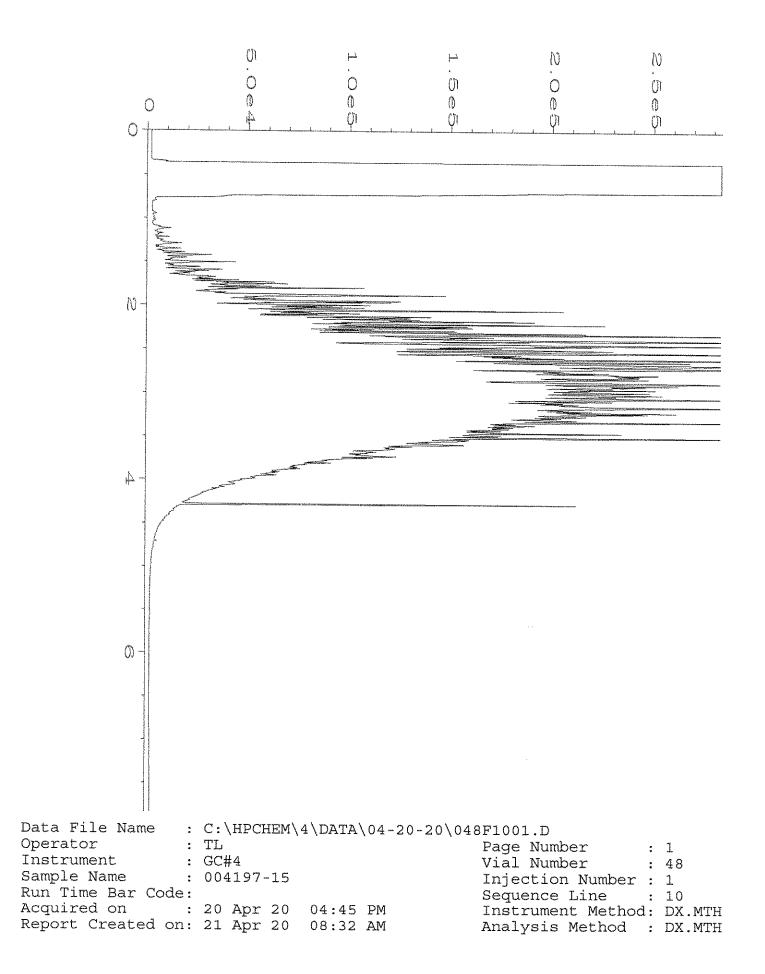


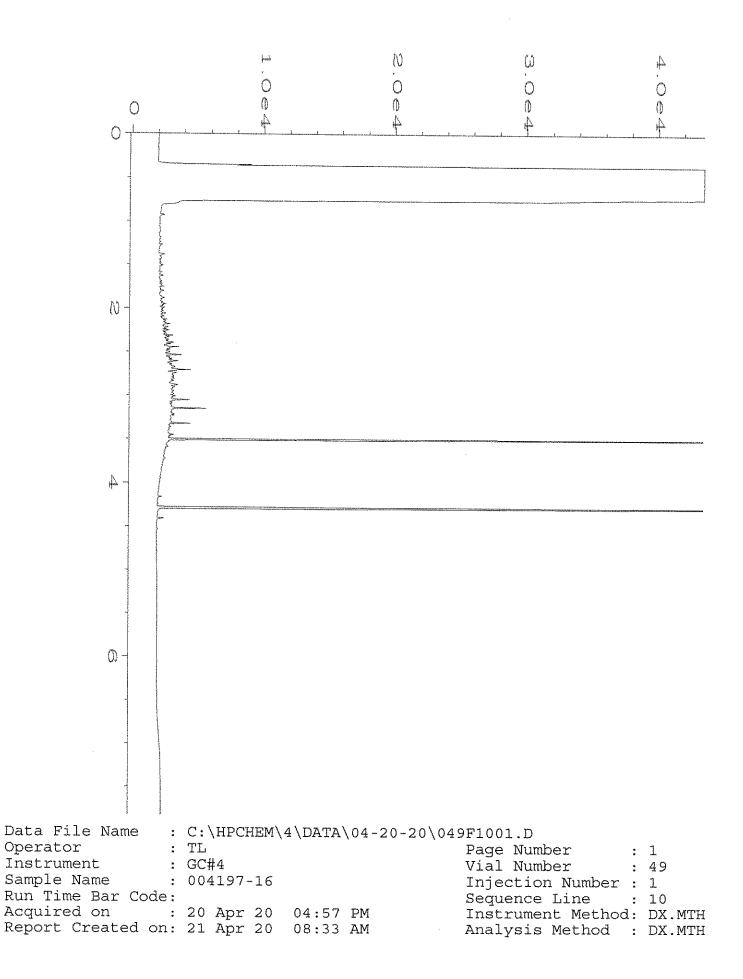


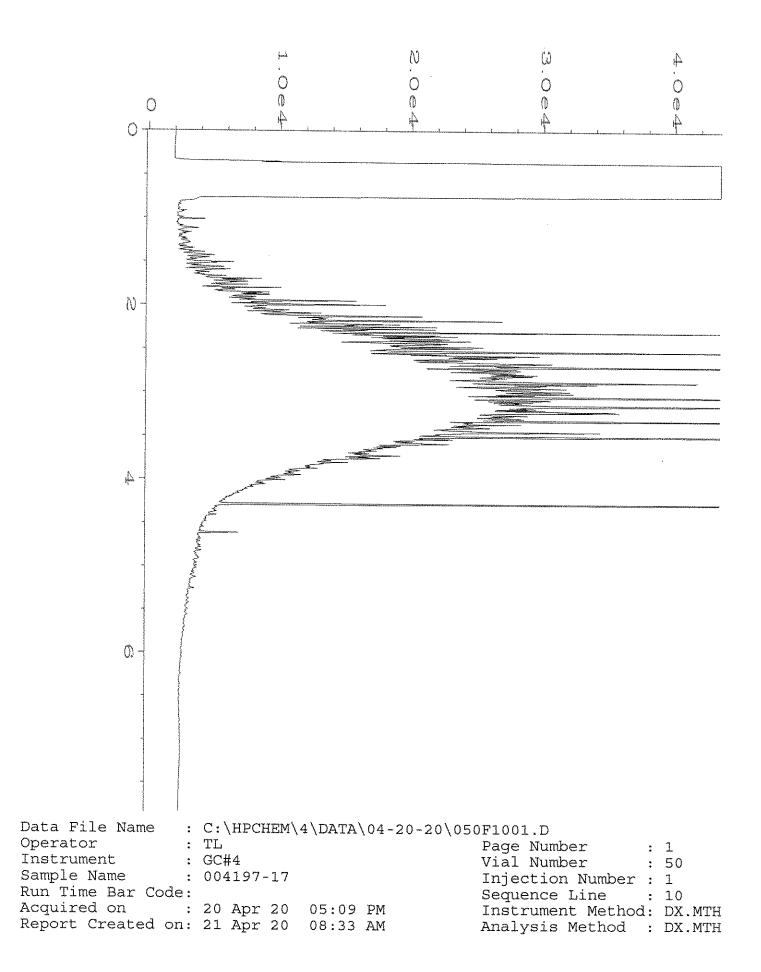


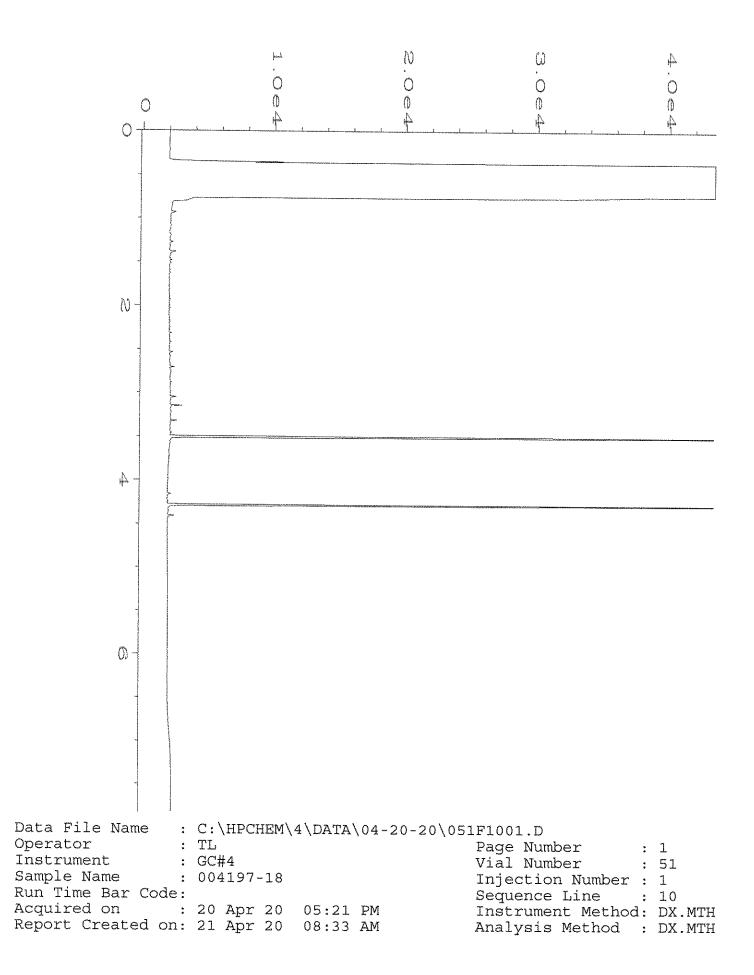


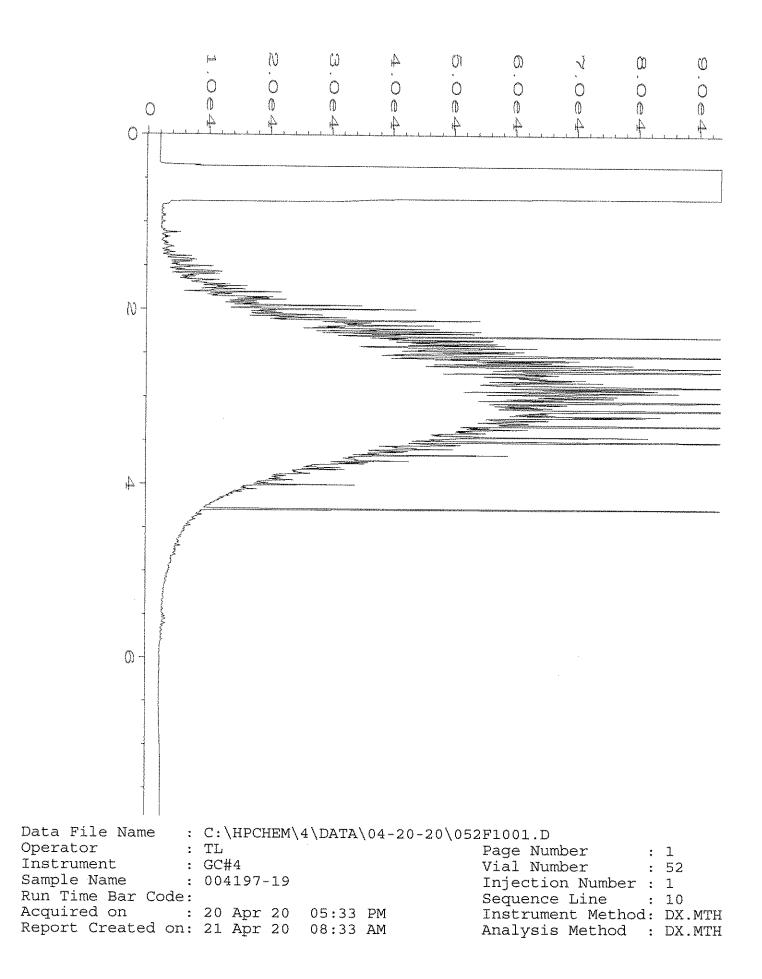


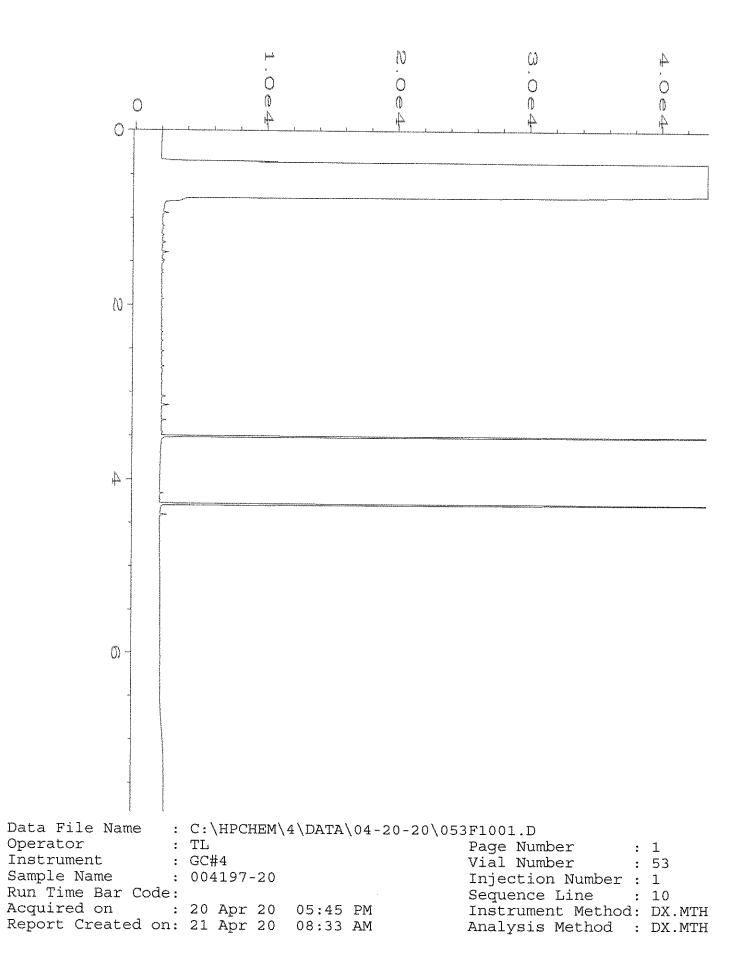


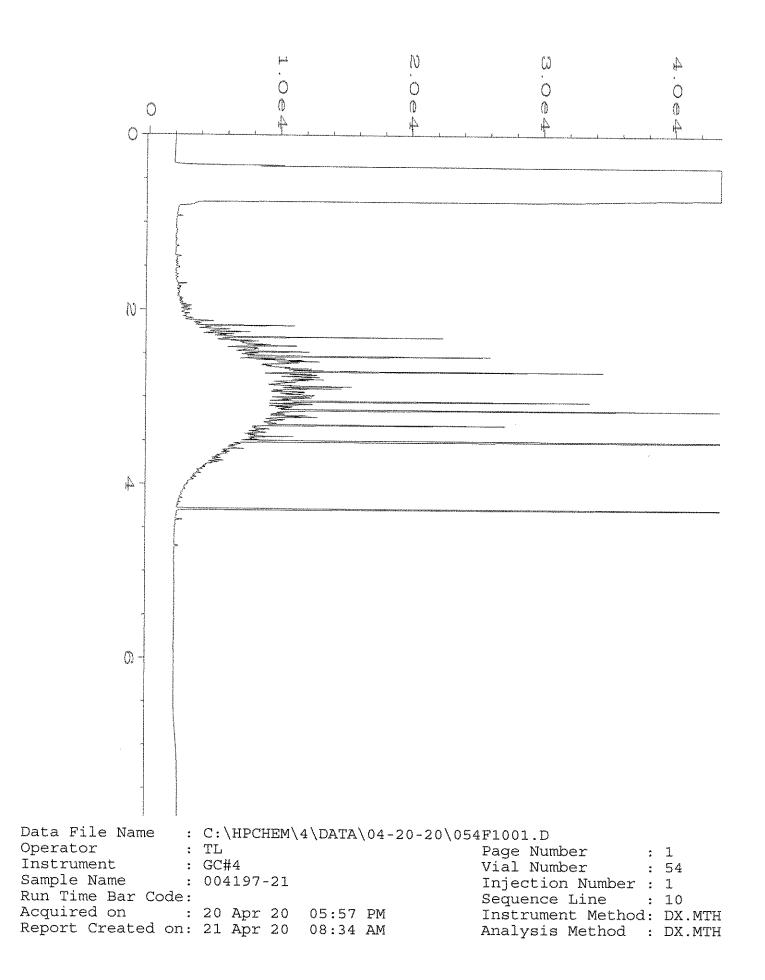


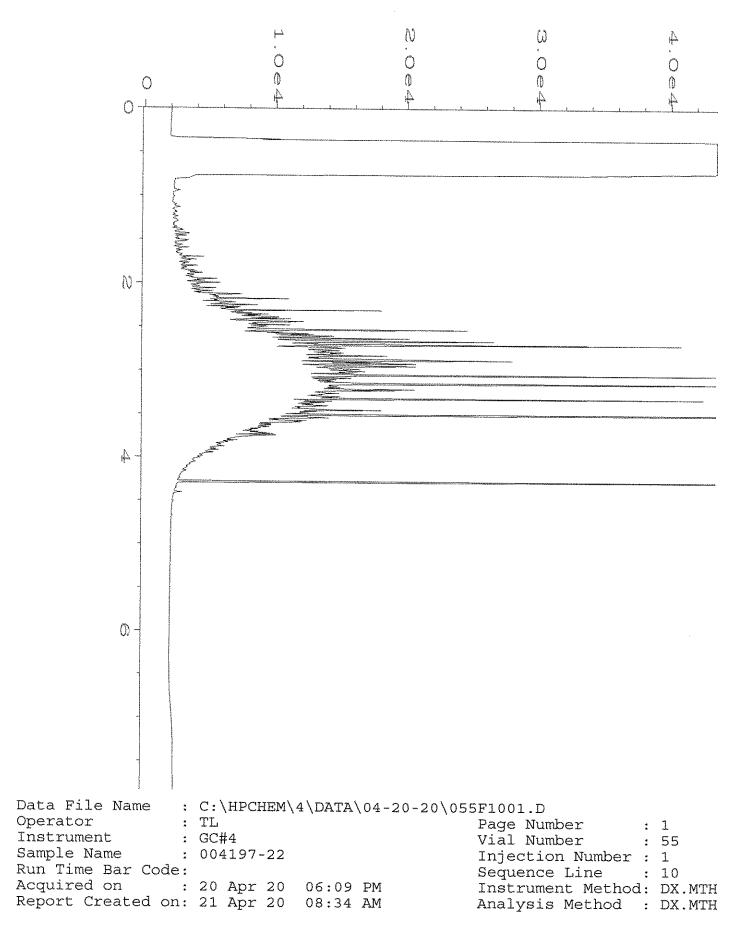


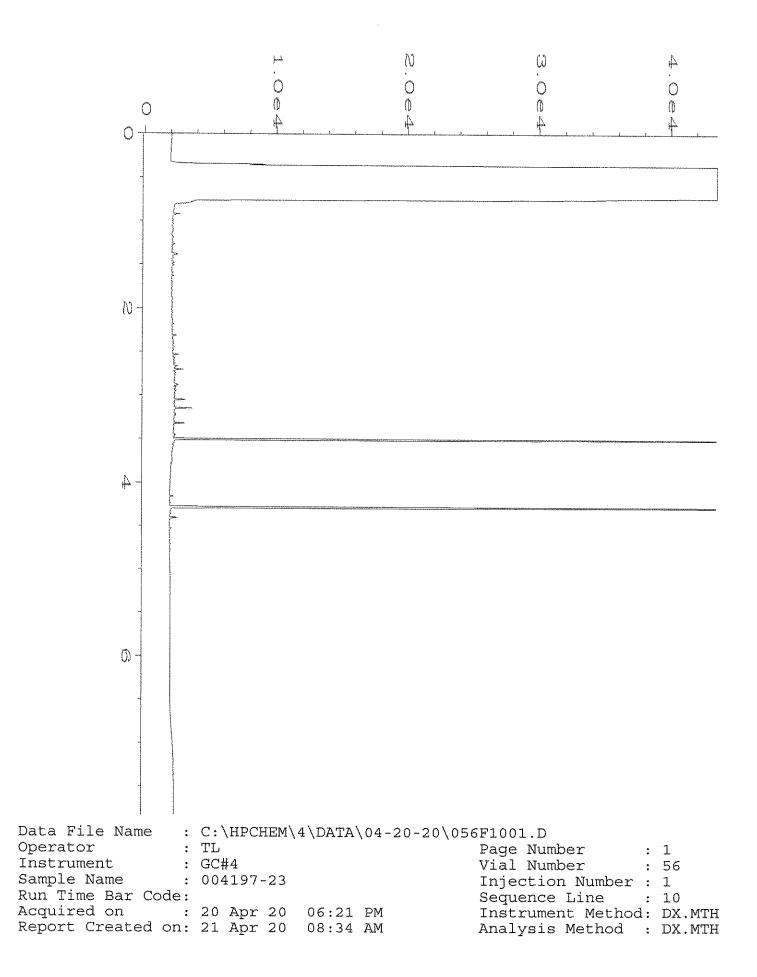


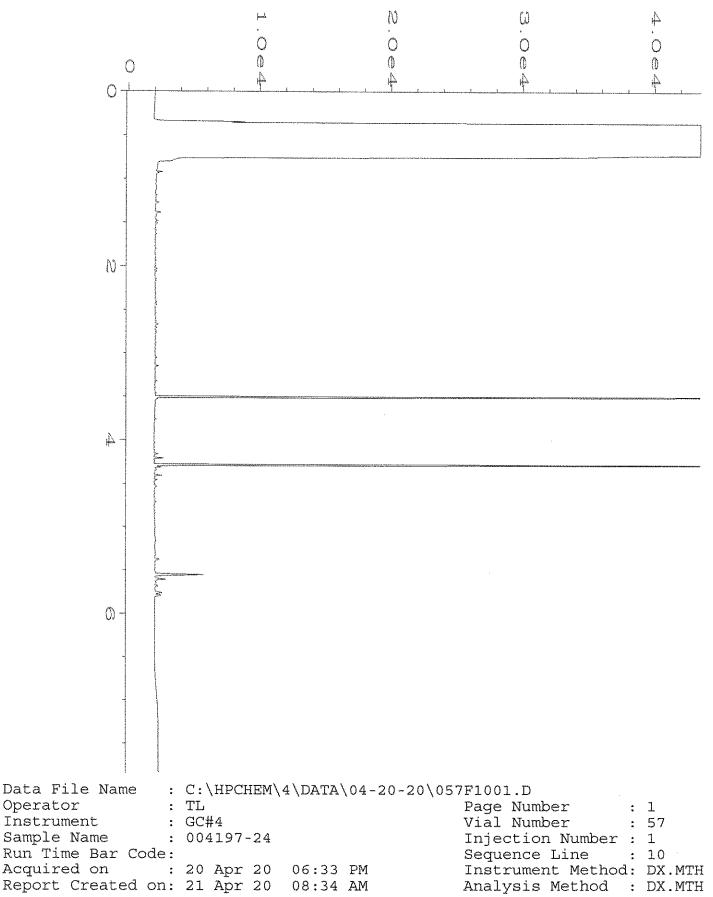


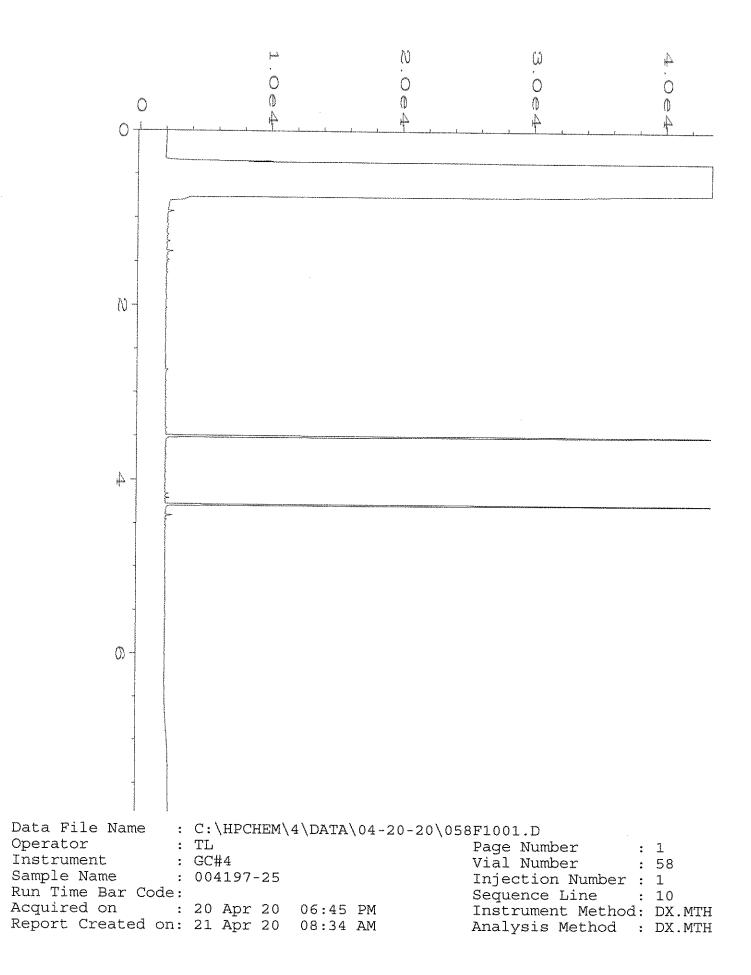


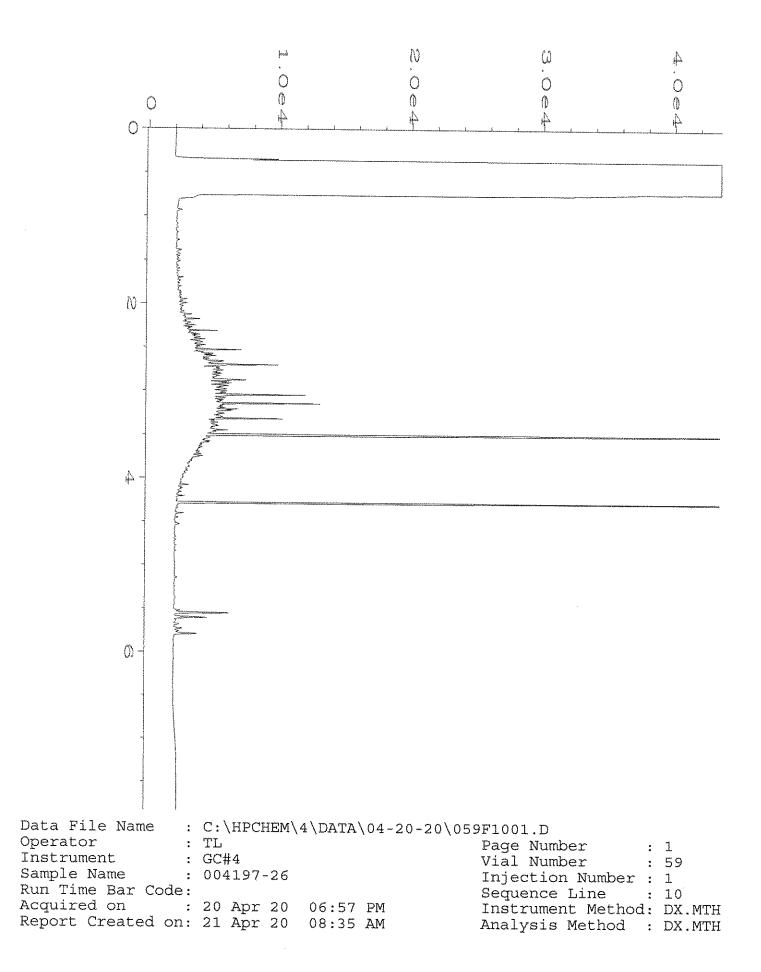


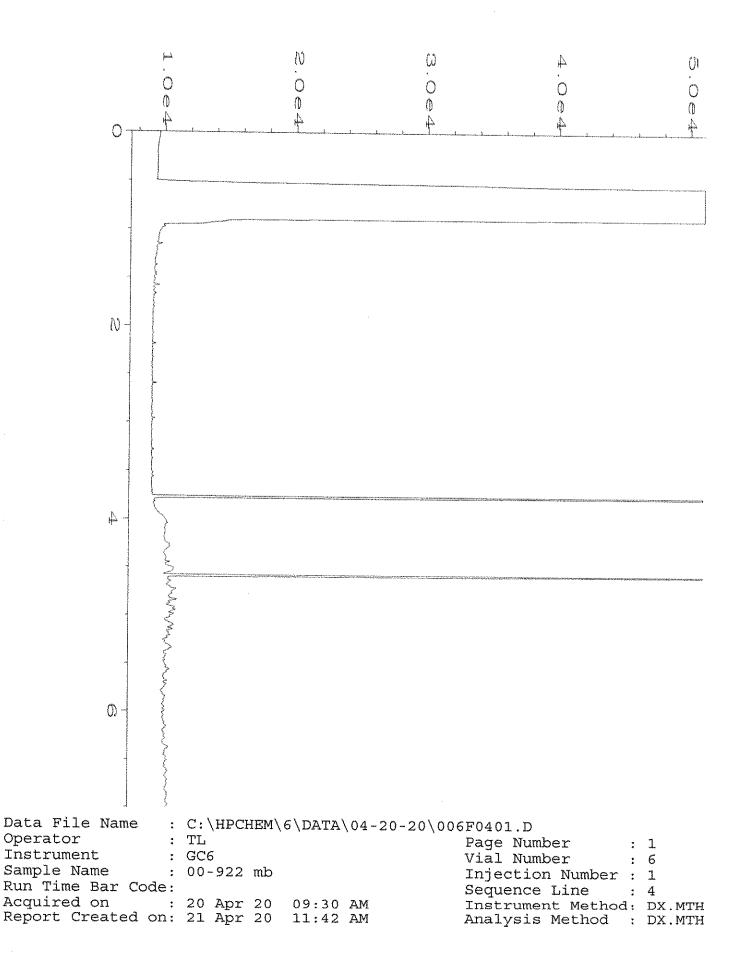


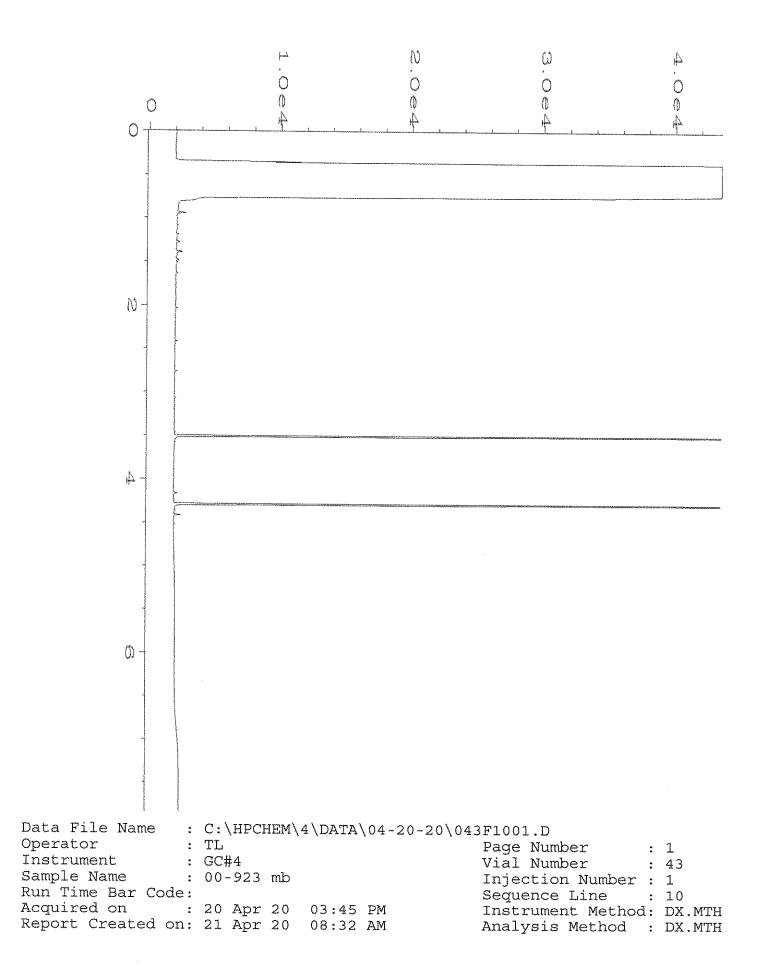


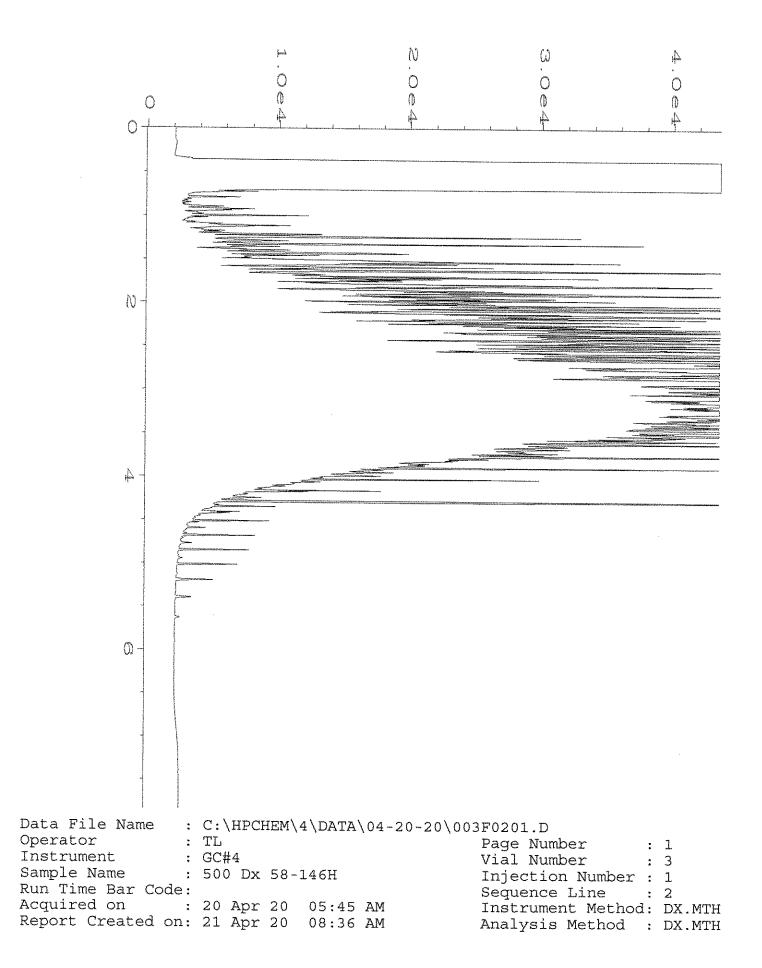


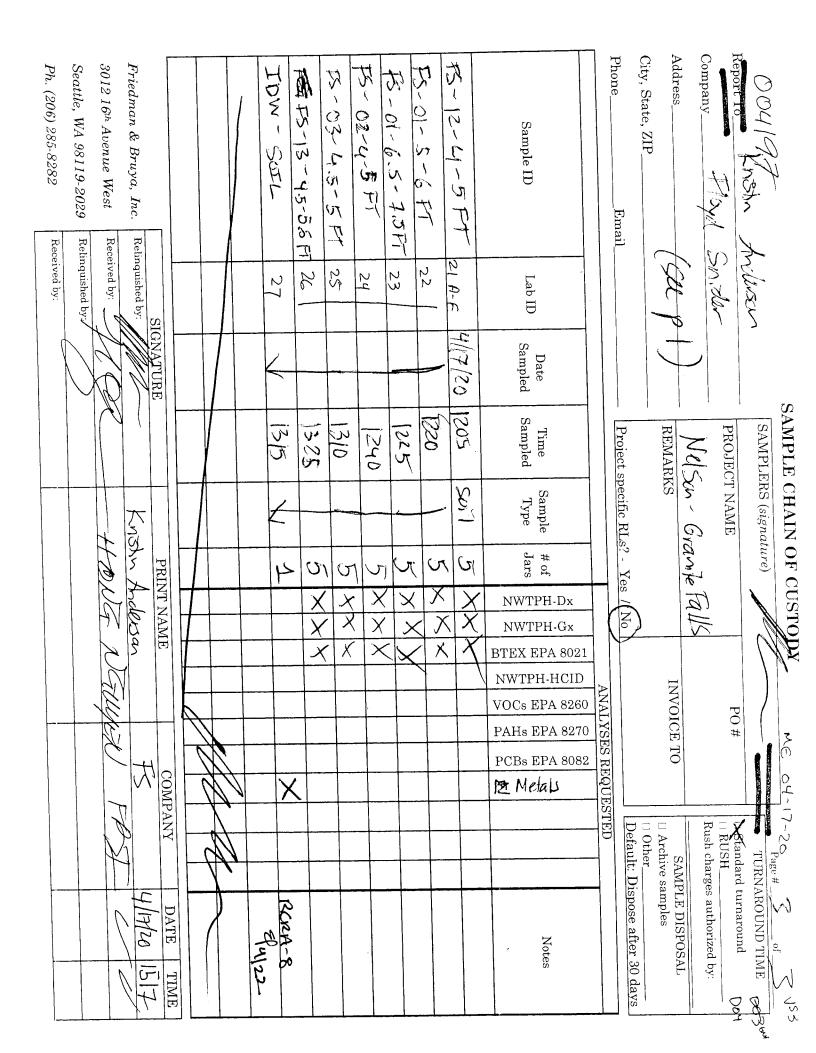





.







								Received by:	Ph. (206) 285-8282	Ph
Samples received at 4 of	Se							Relinquished by:	ی 	Sec
	Can 1	- MARY	2	5	40	100	MAR	Received by:		30
+10102/+11h		leson	A	うろか	K			Relinquished by:	Friedman & Bruya, Inc.	Fri
2 G	COMPANY		PRINT NAME	PRINT			SIGNATURE			
-			X	UT	Ł	0110	£	01	-04-6	-74
			X	10			02/41/12	09		7
			X X	51	4	5091	Ę		1 1 1 1 1 1	2
			X	S		545	_		ι '	81-
			X	5		1515		<u> </u>	K/m 11.5-5.5+	7/ -
	<		X			1410		50 J	MW - 16-35-5.5 FT	A I
		5				1255		\neg	1 4 .5.	MZ
						1125		53	MV-08-4-5-57	3
				ี ชา ร		35		02	MW 08-1-2FT	3
			X	1	Sail	0940	4/16/20	61A-E	-10-4.5-5 FT	MW-10
Notes Mr Notes	PCBs EPA 80 Hold eli MTCA-S	BTEX EPA 80 NWTPH-HCI VOCs EPA 82 PAHs EPA 82	NWTPH-Gx	NWTPH-Dx	Sample Type	Time Sampled	Date Sampled	Lab ID	Sample ID	
VIONOVIE	182 182 182 182 182 182 182 182 182 182	D ANAL						X	Man - work & Kar	Ð
Delaute Dispose areas of astro-			No	- Yes	Project specific RLs? -	, 	anderson	il junz-th.	Phone 255-292-2078 Email Icns th - In ilisan	Phor
Archive samples Other)		N.		101	10181 AM	City, State, ZIPScalle,	City,
SAMPLE DISPOSAL		INVOICE TO					6 000	Union St. Ste	60	Address
Rush charges authorized by:	Rush cha	PO #	Falls		PROJECT NAME	PROJEC			02	Com
TURNAROUND TIME Dog				re)	SAMPLERS (signature)	SAMPLI		Ades		
20 Page # of JS3	ME 04-17-20 Page	XX	STOD)F CU	SAMPLE CHAIN OF CUSTOD	SAMPLE				

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

May 29, 2020

Kristin Anderson, Project Manager Floyd-Snider Two Union Square, Suite 600 601 Union St Seattle, WA 98101

Dear Ms Anderson:

Included are the results from the testing of material submitted on May 20, 2020 from the Nelson-Granite Falls, F&BI 005255 project. There are 17 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

al Nelf

Michael Erdahl Project Manager

Enclosures FDS0529R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on May 20, 2020 by Friedman & Bruya, Inc. from the Floyd-Snider Nelson-Granite Falls, F&BI 005255 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Floyd-Snider</u>
005255 -01	MW-06-0.5-1.5FT
005255 -02	MW-09-051920
005255 -03	MW-10-051920
005255 -04	MW-08-051920
005255 -05	MW-06-051920
005255 -06	MW-07-051920
005255 -07	MW-01-051920
005255 -08	MW-02-051920
005255 -09	MW-03-051920
005255 -10	MW-04-051920
005255 - 11	MW-05-051920

An 8270E internal standard failed the acceptance criteria for sample MW-06-0.5-1.5FT. The sample was diluted and reanalyzed with acceptable results. Both data sets were reported.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 05/29/20 Date Received: 05/20/20 Project: Nelson-Granite Falls, F&BI 005255 Date Extracted: 05/21/20 Date Analyzed: 05/21/20

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 50-150)
MW-06-0.5-1.5FT 005255-01	< 0.02	< 0.02	< 0.02	<0.06	<5	89
Method Blank 00-1097 MB2	< 0.02	< 0.02	< 0.02	< 0.06	<5	92

ENVIRONMENTAL CHEMISTS

Date of Report: 05/29/20 Date Received: 05/20/20 Project: Nelson-Granite Falls, F&BI 005255 Date Extracted: 05/26/20 Date Analyzed: 05/26/20

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 52-124)
$\underset{005255\cdot02}{\text{MW-09-051920}}$	<1	<1	<1	<3	<100	94
$\underset{005255\cdot03}{\text{MW-10-051920}}$	<1	<1	<1	<3	<100	86
MW-08-051920 005255-04	<1	<1	<1	<3	<100	93
MW-06-051920 005255-05	<1	<1	<1	<3	<100	93
MW-07-051920 005255-06	<1	<1	<1	<3	<100	91
MW-01-051920 005255-07	<1	<1	<1	<3	<100	93
MW-02-051920 005255-08	<1	<1	<1	<3	<100	90
$\frac{\text{MW-03-051920}}{_{005255-09}}$	<1	<1	<1	<3	<100	91
MW-04-051920 005255-10	<1	<1	<1	<3	<100	89
$\underset{005255-11}{\text{MW-05-051920}}$	<1	<1	<1	<3	<100	93
Method Blank 00-1103 MB	<1	<1	<1	<3	<100	89

Results Reported as ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Date of Report: 05/29/20 Date Received: 05/20/20 Project: Nelson-Granite Falls, F&BI 005255 Date Extracted: 05/20/20 Date Analyzed: 05/20/20

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	<u>Motor Oil Range</u> (C ₂₅ -C ₃₆)	Surrogate <u>(% Recovery)</u> (Limit 48-168)
MW-06-0.5-1.5FT 005255-01	<50	<250	95
Method Blank ^{00-1147 MB}	<50	<250	100

ENVIRONMENTAL CHEMISTS

Date of Report: 05/29/20 Date Received: 05/20/20 Project: Nelson-Granite Falls, F&BI 005255 Date Extracted: 05/21/20 Date Analyzed: 05/21/20

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 41-152)
MW-09-051920 005255-02	<50	<250	100
$\underset{005255\cdot03}{\text{MW-10-051920}}$	60 x	<250	107
$\underset{005255\cdot04}{\text{MW-}08\text{-}051920}$	<50	<250	104
$\underset{005255\cdot05}{\text{MW-06-051920}}$	<50	<250	75
MW-07-051920 005255-06	<50	<250	99
$\underset{005255-07}{\text{MW-01-051920}}$	<50	<250	94
$\underset{005255\cdot08}{\text{MW-02-051920}}$	<50	<250	91
$\underset{005255-09}{\text{MW-}03-}051920$	69 x	<250	99
$\underset{005255-10}{\text{MW-04-051920}}$	170	<250	104
$\underset{005255-11}{\text{MW-05-051920}}$	530 x	380 x	68
Method Blank ^{00-1148 MB}	<50	<250	96

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-06-0.5-1.5FT 05/20/20 05/21/20 11:26 05/21/20 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Nelson-Granite Falls, F&BI 005255 005255-01 005255-01.098 ICPMS2 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic	21.5		
Cadmium	<1		
Chromium	15.1		
Lead	66.3		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank NA 05/21/20 11:26 05/21/20 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Nelson-Granite Falls, F&BI 005255 I0-295 mb I0-295 mb.089 ICPMS2 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic	<1		
Cadmium	<1		
Chromium	<1		
Lead	<1		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E SIM

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-06-0.5- 05/20/20 05/21/20 05/22/20 Soil mg/kg (ppm	1.5FT) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Nelson-Granite Falls, F&BI 005255 005255-01 1/5 052212.D GCMS6 VM
Surrogates: Anthracene-d10 Benzo(a)anthracen	e-d12	% Recovery: 64 80	Lower Limit: 31 24	Upper Limit: 163 168
Compounds:		Concentration mg/kg (ppm)		
Naphthalene		0.032		
Acenaphthylene		0.018		
Acenaphthene		< 0.01		
Fluorene		< 0.01		
Phenanthrene		0.062		
Anthracene		0.016		
Fluoranthene		0.12		
Pyrene		0.17		
Benz(a)anthracene		0.10		
Chrysene		0.12		
Benzo(a)pyrene		$0.16~\mathrm{J}$		
Benzo(b)fluoranthe	ne	$0.24~\mathrm{J}$		
Benzo(k)fluoranthe		$0.082~\mathrm{J}$		
Indeno(1,2,3-cd)pyr		$0.075~\mathrm{J}$		
Dibenz(a,h)anthrac	ene	$0.014~\mathrm{J}$		
Benzo(g,h,i)perylen	e	$0.072~\mathrm{J}$		

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E SIM

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-06-0.5- 05/20/20 05/21/20 05/22/20 Soil mg/kg (ppm	1.5FT) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Nelson-Granite Falls, 1 005255-01 1/25 052210.D GCMS6 VM	F&BI 005255
Surrogates: Anthracene-d10 Benzo(a)anthracene	e-d12	% Recovery: 81 d 83 d	Lower Limit: 31 24	Upper Limit: 163 168	
Compounds:		Concentration mg/kg (ppm)			
Naphthalene		< 0.05			
Acenaphthylene		< 0.05			
Acenaphthene		< 0.05			
Fluorene		< 0.05			
Phenanthrene		0.065			
Anthracene		< 0.05			
Fluoranthene		0.13			
Pyrene		0.16			
Benz(a)anthracene		0.11			
Chrysene		0.13			
Benzo(a)pyrene		0.15			
Benzo(b)fluoranthe		0.20			
Benzo(k)fluoranthe		0.063			
Indeno(1,2,3-cd)pyr		0.081			
Dibenz(a,h)anthrac		< 0.05			
Benzo(g,h,i)perylen	e	0.074			

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E SIM

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Bla: Not Applica 05/21/20 05/22/20 Soil mg/kg (ppm		Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Nelson-Granite Falls, F&BI 005255 00-1177 mb 1/5 052206.D GCMS6 VM
Surrogates: Anthracene-d10 Benzo(a)anthracene	e-d12	% Recovery: 75 104	Lower Limit: 31 24	Upper Limit: 163 168
Compounds:		Concentration mg/kg (ppm)		
Naphthalene		< 0.01		
Acenaphthylene		< 0.01		
Acenaphthene		< 0.01		
Fluorene		< 0.01		
Phenanthrene		< 0.01		
Anthracene		< 0.01		
Fluoranthene		< 0.01		
Pyrene		< 0.01		
Benz(a)anthracene		< 0.01		
Chrysene		< 0.01		
Benzo(a)pyrene		< 0.01		
Benzo(b)fluoranthe	ne	< 0.01		
Benzo(k)fluoranthe	ne	< 0.01		
Indeno(1,2,3-cd)pyr		< 0.01		
Dibenz(a,h)anthrac	ene	< 0.01		
Benzo(g,h,i)perylen	e	< 0.01		

ENVIRONMENTAL CHEMISTS

Date of Report: 05/29/20 Date Received: 05/20/20 Project: Nelson-Granite Falls, F&BI 005255

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 005236-03 (Duplicate)

	Reporting	Sample Result	Duplicate Result	RPD
Analyte	Units	(Wet Wt)	(Wet Wt)	(Limit 20)
Benzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Toluene	mg/kg (ppm)	< 0.02	< 0.02	nm
Ethylbenzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Xylenes	mg/kg (ppm)	< 0.06	< 0.06	nm
Gasoline	mg/kg (ppm)	<5	<5	nm

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	mg/kg (ppm)	0.5	93	66-121
Toluene	mg/kg (ppm)	0.5	92	72 - 128
Ethylbenzene	mg/kg (ppm)	0.5	90	69 - 132
Xylenes	mg/kg (ppm)	1.5	95	69-131
Gasoline	mg/kg (ppm)	20	95	61 - 153

ENVIRONMENTAL CHEMISTS

Date of Report: 05/29/20 Date Received: 05/20/20 Project: Nelson-Granite Falls, F&BI 005255

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 005255-09 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Benzene	ug/L (ppb)	50	<1	89	95	50 - 150	7
Toluene	ug/L (ppb)	50	<1	87	90	50 - 150	3
Ethylbenzene	ug/L (ppb)	50	<1	91	95	50 - 150	4
Xylenes	ug/L (ppb)	150	<3	89	93	50 - 150	4
Gasoline	ug/L (ppb)	1,000	<100	90	90	53 - 117	0

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/L (ppb)	50	93	65-118
Toluene	ug/L (ppb)	50	97	72 - 122
Ethylbenzene	ug/L (ppb)	50	103	73-126
Xylenes	ug/L (ppb)	150	102	74-118
Gasoline	ug/L (ppb)	1,000	99	69-134

ENVIRONMENTAL CHEMISTS

Date of Report: 05/29/20 Date Received: 05/20/20 Project: Nelson-Granite Falls, F&BI 005255

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 005257-01 (Matrix Spike)								
			Sample	Percent	Percent			
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD	
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)	
Diesel Extended	mg/kg (ppm)	5,000	110	88	97	73 - 135	10	
Laboratory Code: L	aboratory Contr	ol Sampl	le					
			Percent					
	Reporting	Spike	Recovery	Acceptar	nce			
Analyte	Units	Level	LCS	Criteria	a			
Diesel Extended	mg/kg (ppm)	5,000	98	74-139)			

ENVIRONMENTAL CHEMISTS

Date of Report: 05/29/20 Date Received: 05/20/20 Project: Nelson-Granite Falls, F&BI 005255

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 005255-09 (Matrix Spike) Percent Percent Reporting Sample Acceptance RPD Spike Recovery Recovery Analyte Units Result MSD Criteria (Limit 20) Level MSDiesel Extended <50 92 ug/L (ppb) 5,000 84 50-150 9 Laboratory Code: Laboratory Control Sample Percent Reporting Spike Recovery Acceptance Units Analyte Level LCS Criteria Diesel Extended 2,50063-142 ug/L (ppb) 92

14

ENVIRONMENTAL CHEMISTS

Date of Report: 05/29/20 Date Received: 05/20/20 Project: Nelson-Granite Falls, F&BI 005255

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 005245-01 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Arsenic	mg/kg (ppm)	10	1.45	85	90	75 - 125	6
Cadmium	mg/kg (ppm)	10	<1	97	98	75 - 125	1
Chromium	mg/kg (ppm)	50	18.8	89	87	75 - 125	2
Lead	mg/kg (ppm)	50	1.76	92	94	75 - 125	2
Mercury	mg/kg (ppm	5	<1	93	99	75 - 125	6

Laboratory Code: Laboratory Control Sample

Laboratory Co	de. Eaboratory Com	noi Sample	Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	mg/kg (ppm)	10	89	80-120
Cadmium	mg/kg (ppm)	10	100	80-120
Chromium	mg/kg (ppm)	50	99	80-120
Lead	mg/kg (ppm)	50	101	80-120
Mercury	mg/kg (ppm)	5	104	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 05/29/20 Date Received: 05/20/20 Project: Nelson-Granite Falls, F&BI 005255

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR PAHS BY EPA METHOD 8270E SIM

Laboratory Code: 005255-01 1/5 (Matrix Spike)

		1 /	Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Naphthalene	mg/kg (ppm)	0.17	0.022	62	65	44-129	5
Acenaphthylene	mg/kg (ppm)	0.17	0.013	62	68	52 - 121	9
Acenaphthene	mg/kg (ppm)	0.17	< 0.01	61	64	51 - 123	5
Fluorene	mg/kg (ppm)	0.17	< 0.01	61	63	37 - 137	3
Phenanthrene	mg/kg (ppm)	0.17	0.042	$57 \mathrm{b}$	63 b	34 - 141	10 b
Anthracene	mg/kg (ppm)	0.17	0.011	61	65	32 - 124	6
Fluoranthene	mg/kg (ppm)	0.17	0.080	46 b	61 b	16-160	$28 \mathrm{b}$
Pyrene	mg/kg (ppm)	0.17	0.12	69 b	122 b	10-180	$55 \mathrm{b}$
Benz(a)anthracene	mg/kg (ppm)	0.17	0.068	63 b	84 b	23 - 144	29 b
Chrysene	mg/kg (ppm)	0.17	0.082	$55 \mathrm{b}$	73 b	32 - 149	$28 \mathrm{b}$
Benzo(b)fluoranthene	mg/kg (ppm)	0.17	$0.17~\mathrm{J}$	66 b J	89 b J	23 - 176	30 b
Benzo(k)fluoranthene	mg/kg (ppm)	0.17	$0.056~\mathrm{J}$	59 b J	$77~{ m b}~{ m J}$	42 - 139	$26 \mathrm{b}$
Benzo(a)pyrene	mg/kg (ppm)	0.17	$0.11~\mathrm{J}$	44 b J	$72 \mathrm{ \ b} \mathrm{ \ J}$	21 - 163	48 b
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.17	$0.051~\mathrm{J}$	44 b J	60 b J	23 - 170	31 b
Dibenz(a,h)anthracene	mg/kg (ppm)	0.17	$0.0094 \; J$	$47 \mathrm{J}$	52 J	31 - 146	10
Benzo(g,h,i)perylene	mg/kg (ppm)	0.17	$0.049 \mathrm{~J}$	44 b J	63 b J	37 - 133	36 b

Laboratory Code: Laboratory Control Sample 1/5

Laboratory Couc. Laborat	ory control ban	ipic 1/0	Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Naphthalene	mg/kg (ppm)	0.17	77	58 - 121
Acenaphthylene	mg/kg (ppm)	0.17	70	54 - 121
Acenaphthene	mg/kg (ppm)	0.17	75	54 - 123
Fluorene	mg/kg (ppm)	0.17	73	56 - 127
Phenanthrene	mg/kg (ppm)	0.17	82	55 - 122
Anthracene	mg/kg (ppm)	0.17	78	50 - 120
Fluoranthene	mg/kg (ppm)	0.17	79	54 - 129
Pyrene	mg/kg (ppm)	0.17	82	53 - 127
Benz(a)anthracene	mg/kg (ppm)	0.17	84	51 - 115
Chrysene	mg/kg (ppm)	0.17	87	55 - 129
Benzo(b)fluoranthene	mg/kg (ppm)	0.17	75	56 - 123
Benzo(k)fluoranthene	mg/kg (ppm)	0.17	77	54 - 131
Benzo(a)pyrene	mg/kg (ppm)	0.17	67	51 - 118
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.17	71	49-148
Dibenz(a,h)anthracene	mg/kg (ppm)	0.17	78	50 - 141
Benzo(g,h,i)perylene	mg/kg (ppm)	0.17	74	52 - 131

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

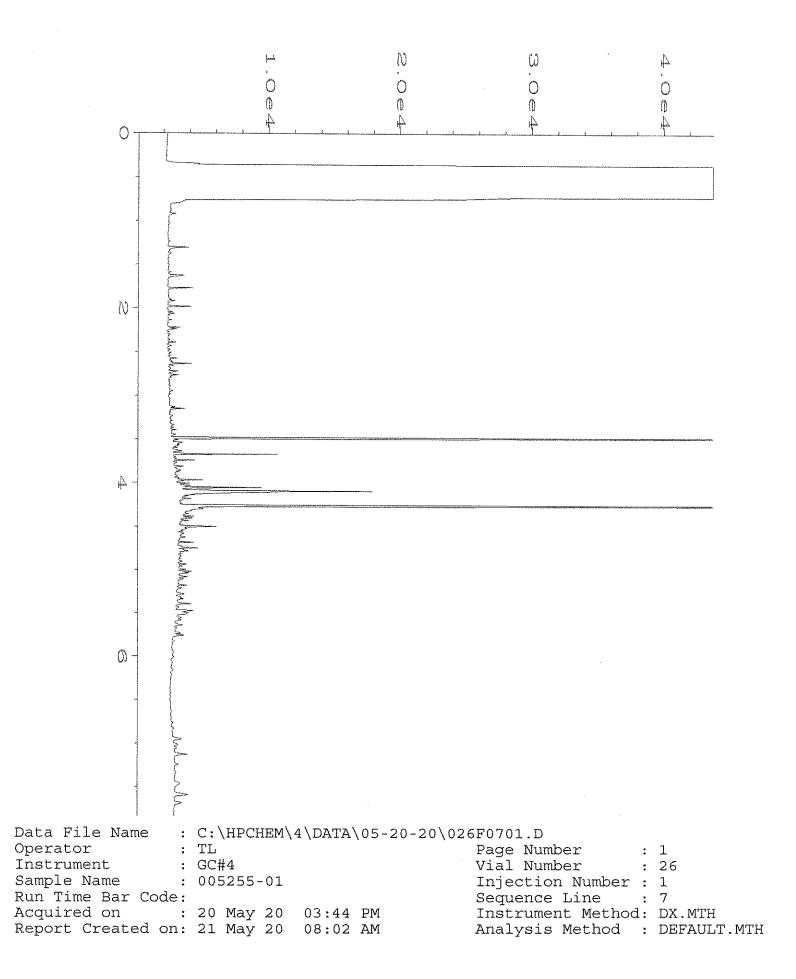
 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

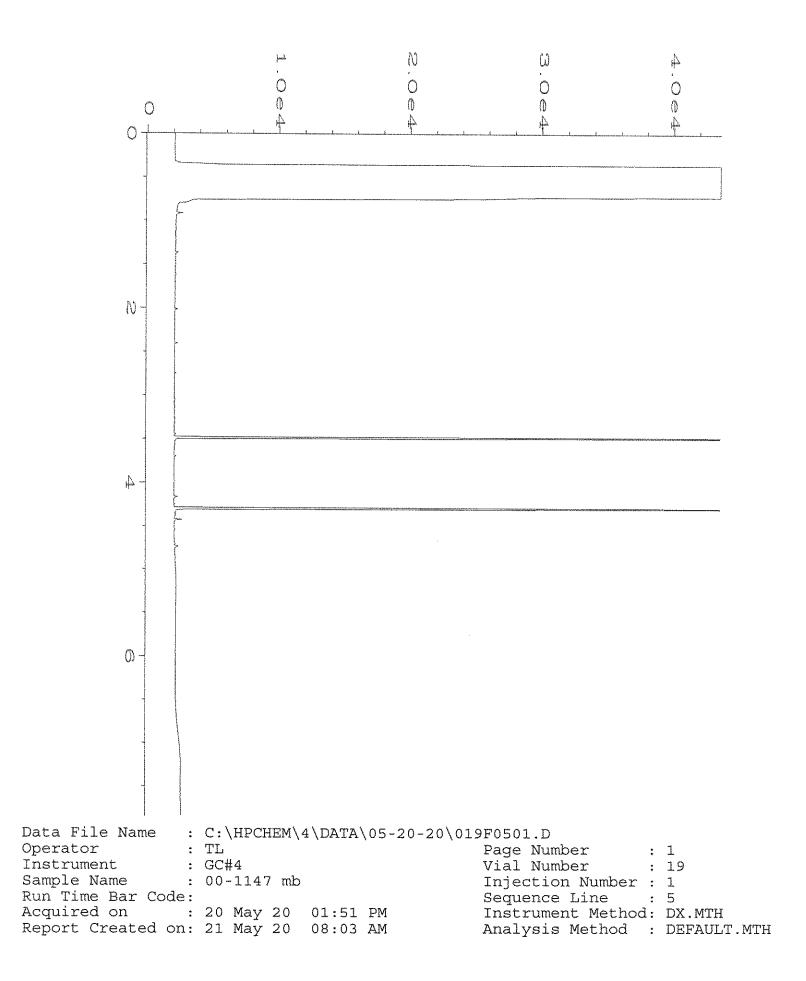
jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

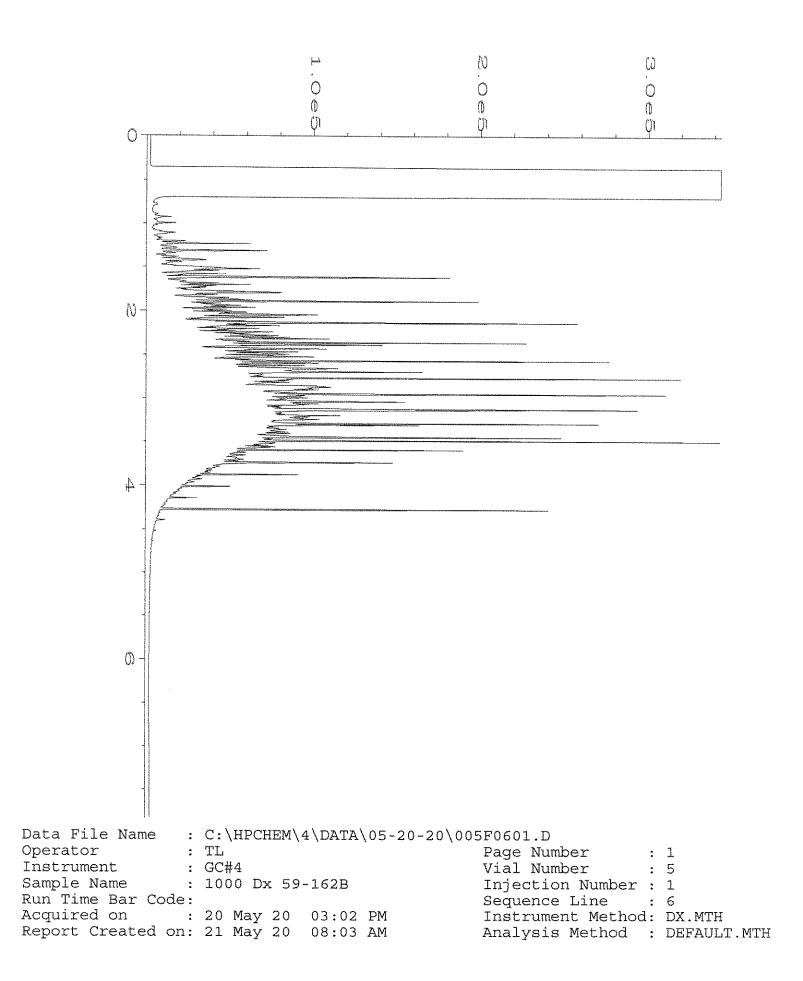
js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

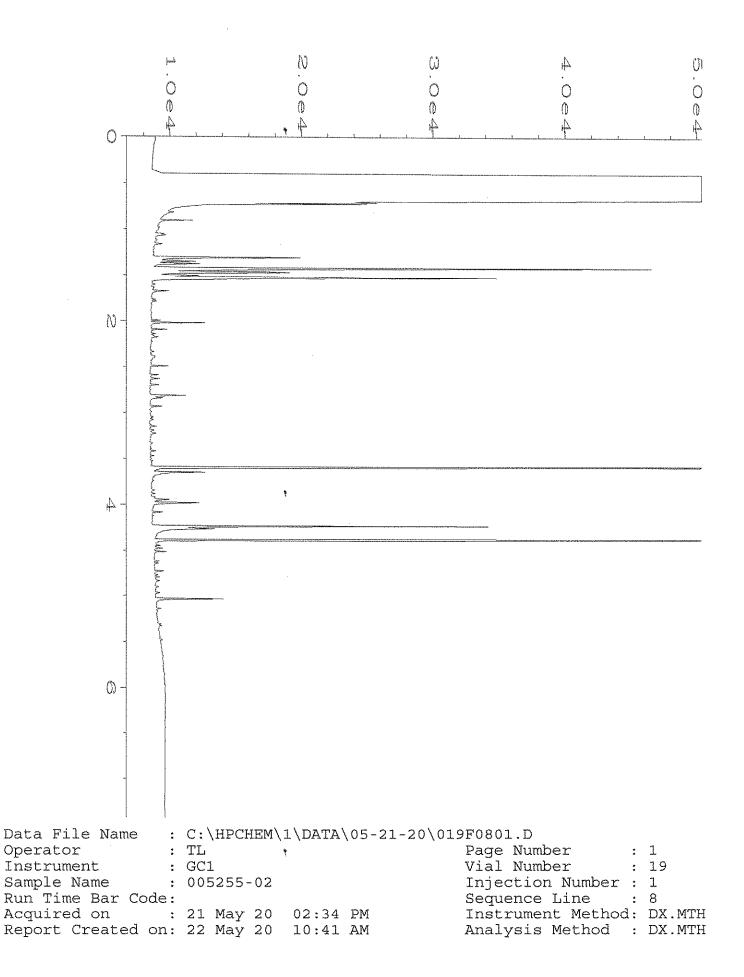
lc - The presence of the analyte is likely due to laboratory contamination.

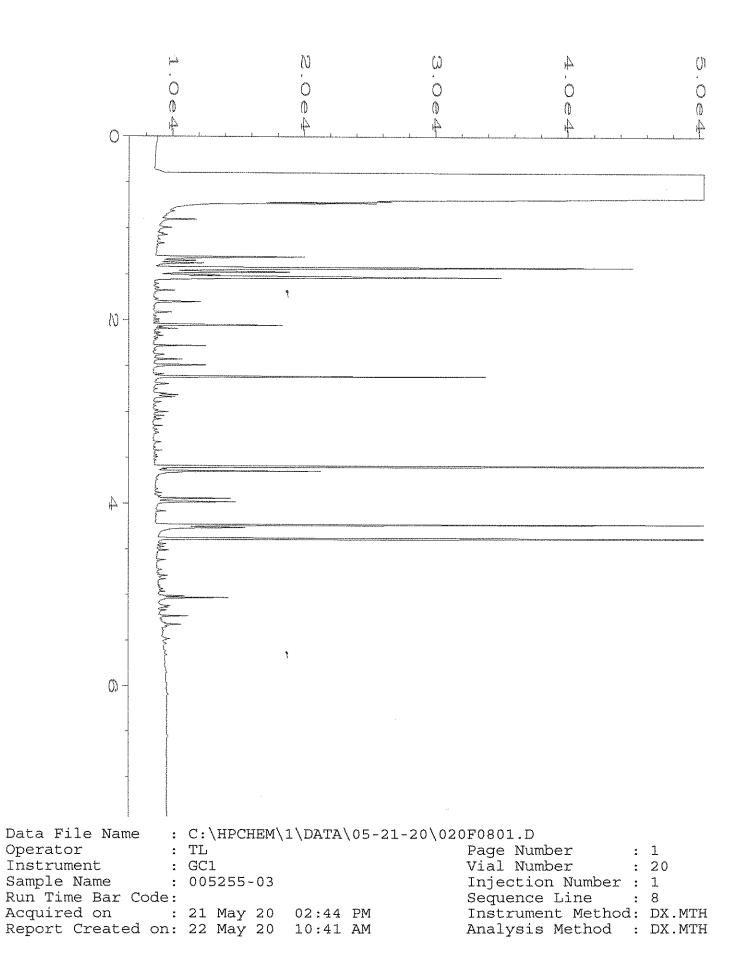
L - The reported concentration was generated from a library search.

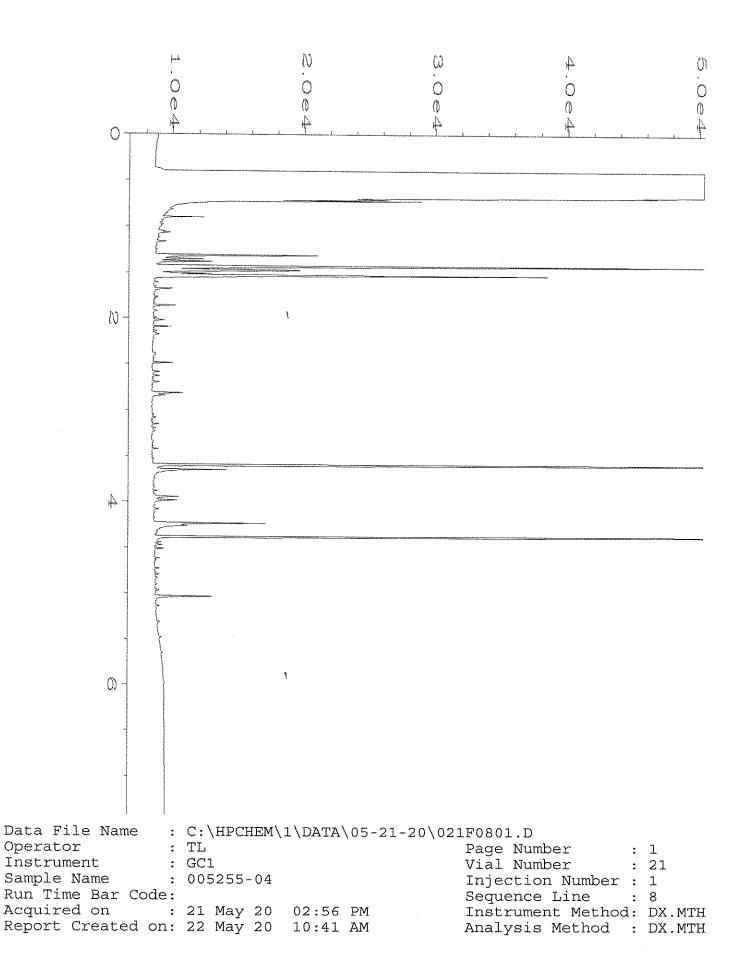

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

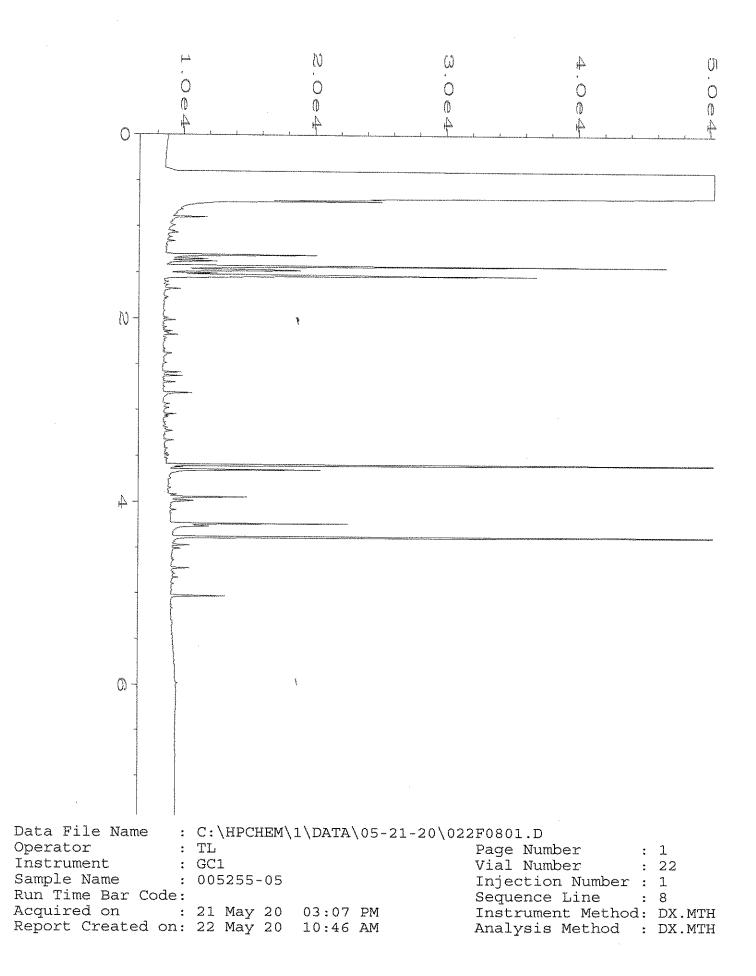

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

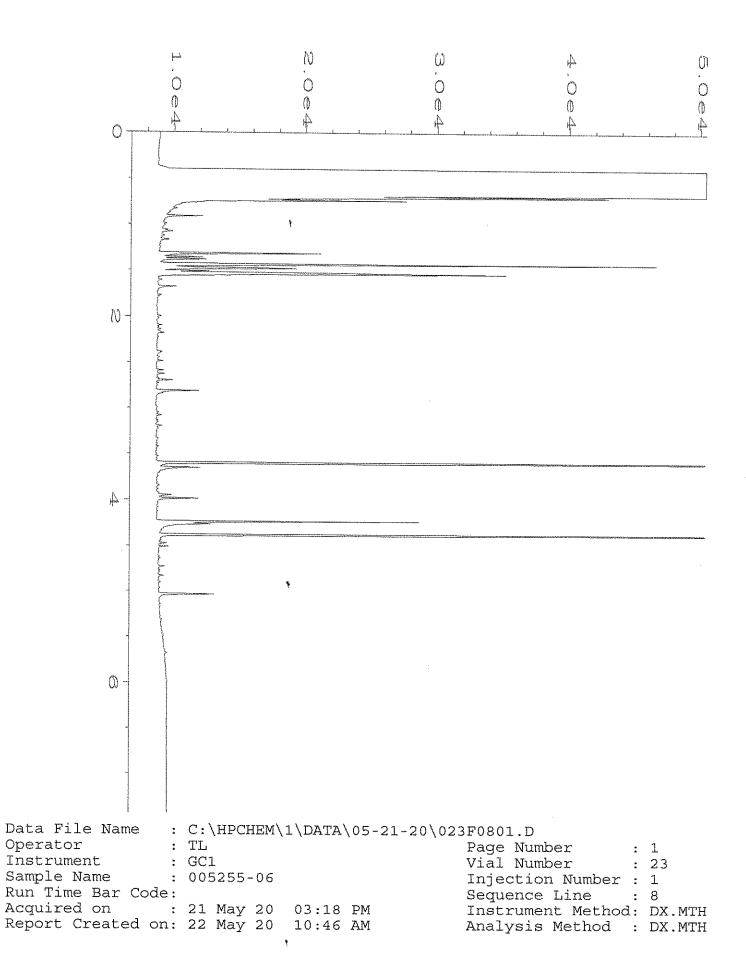

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

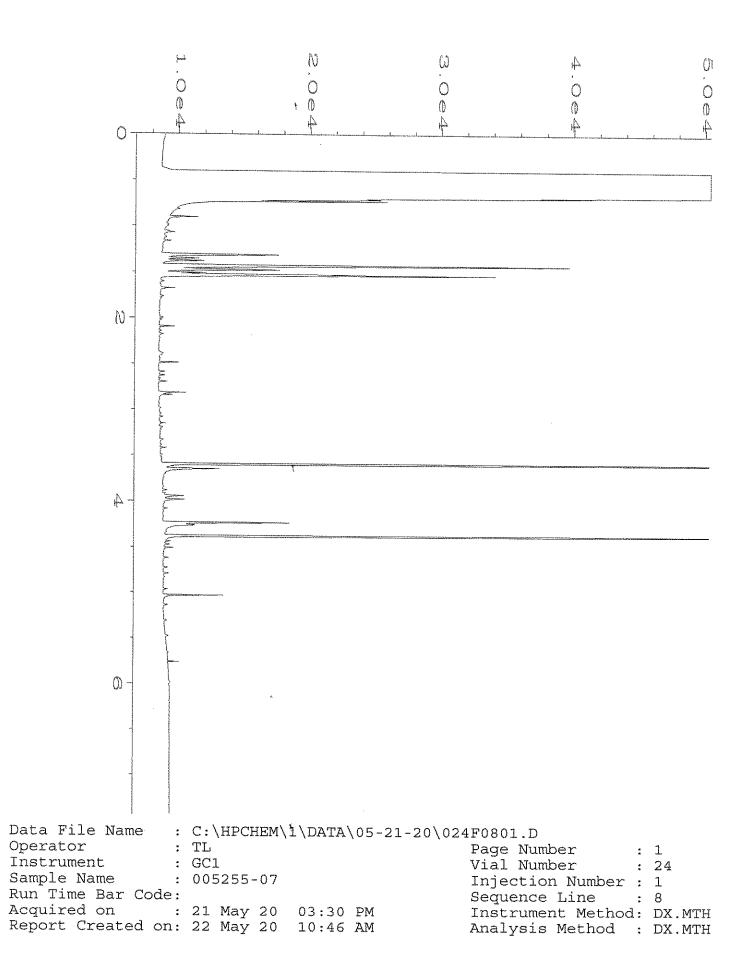

vo - The value reported fell outside the control limits established for this analyte.

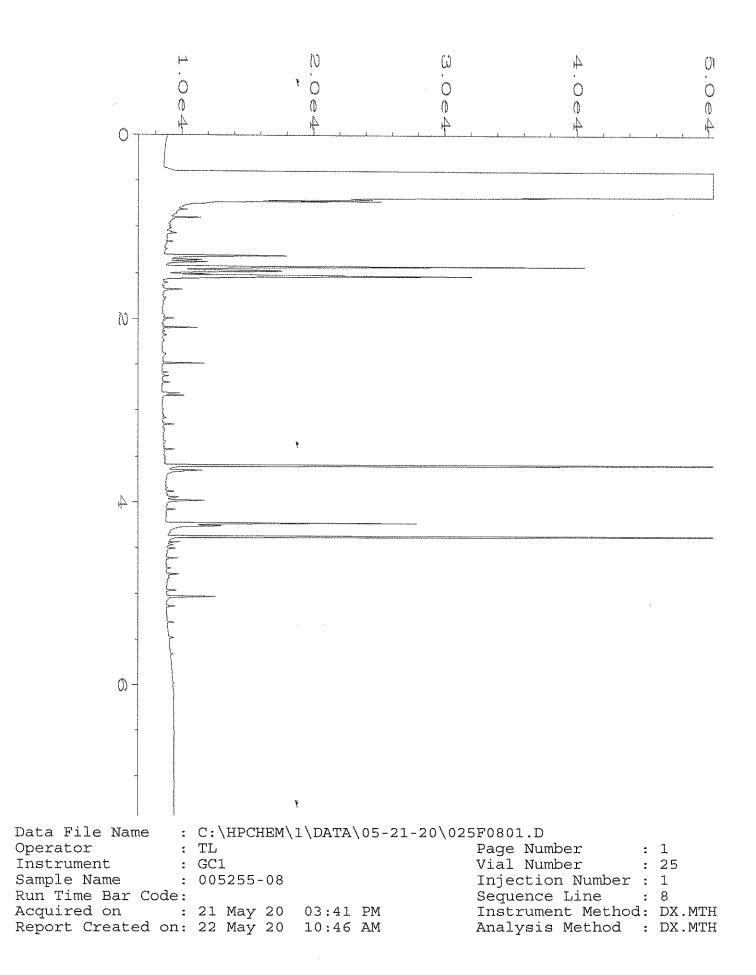

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

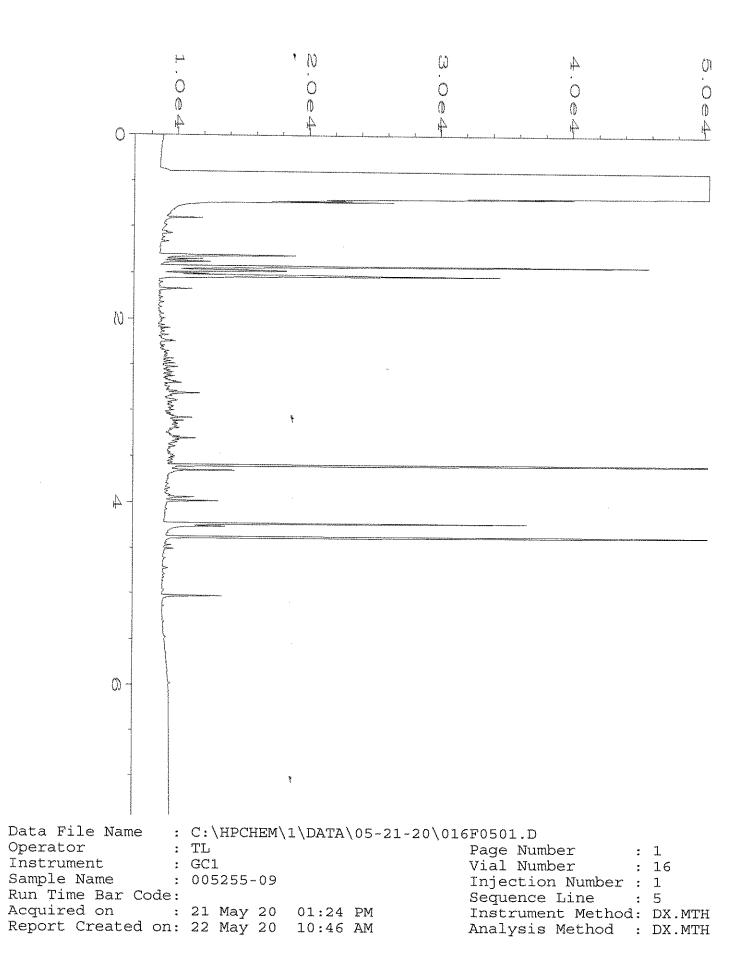


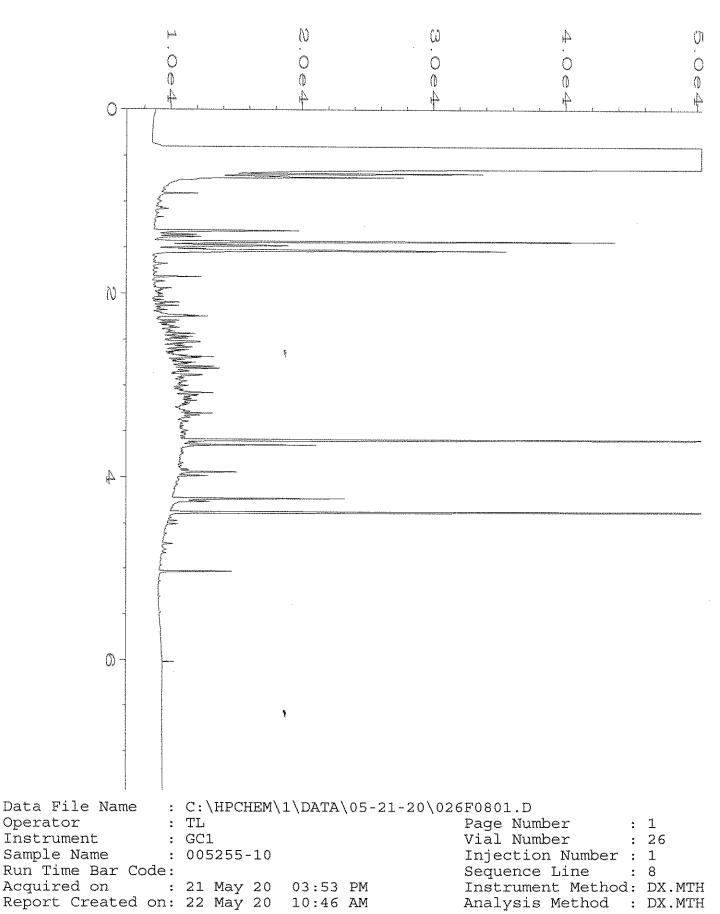


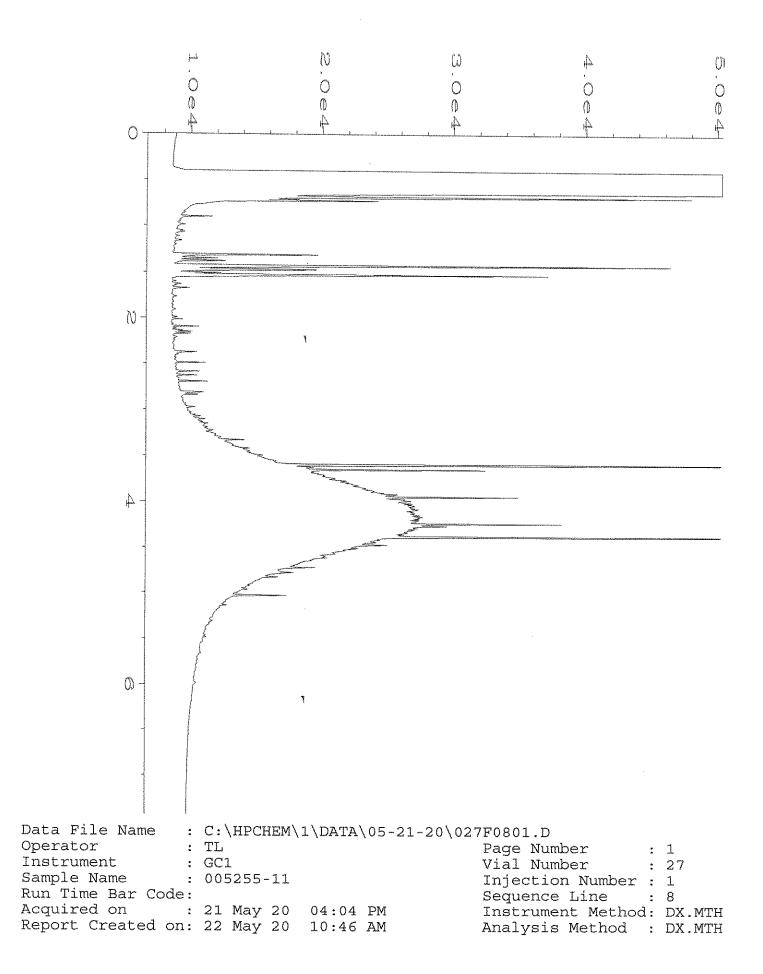


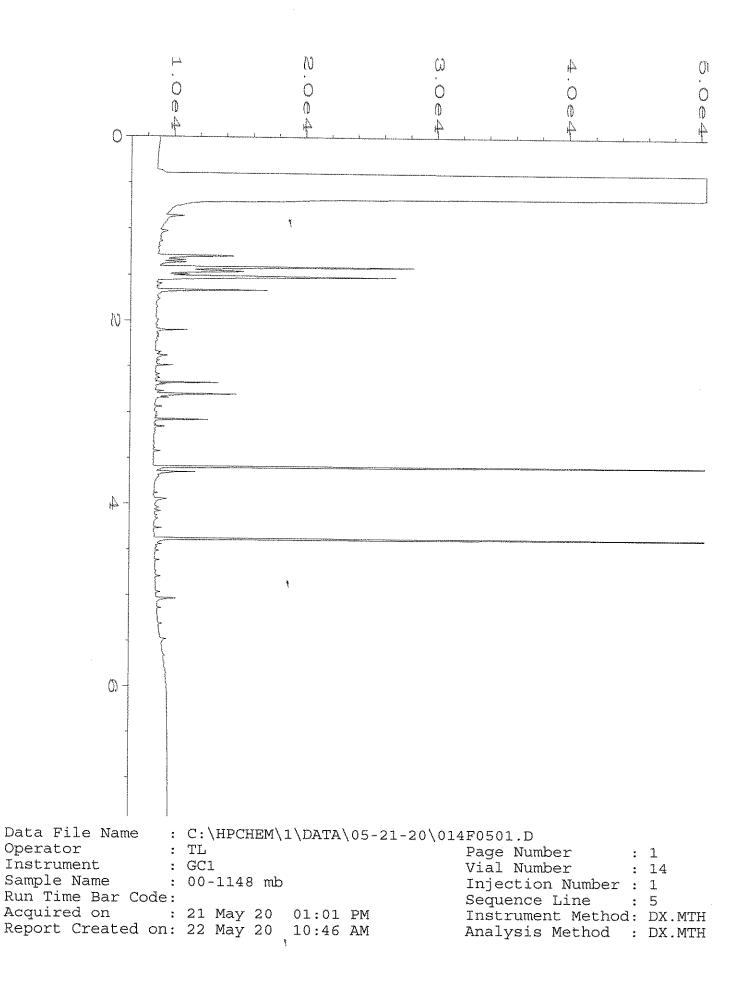


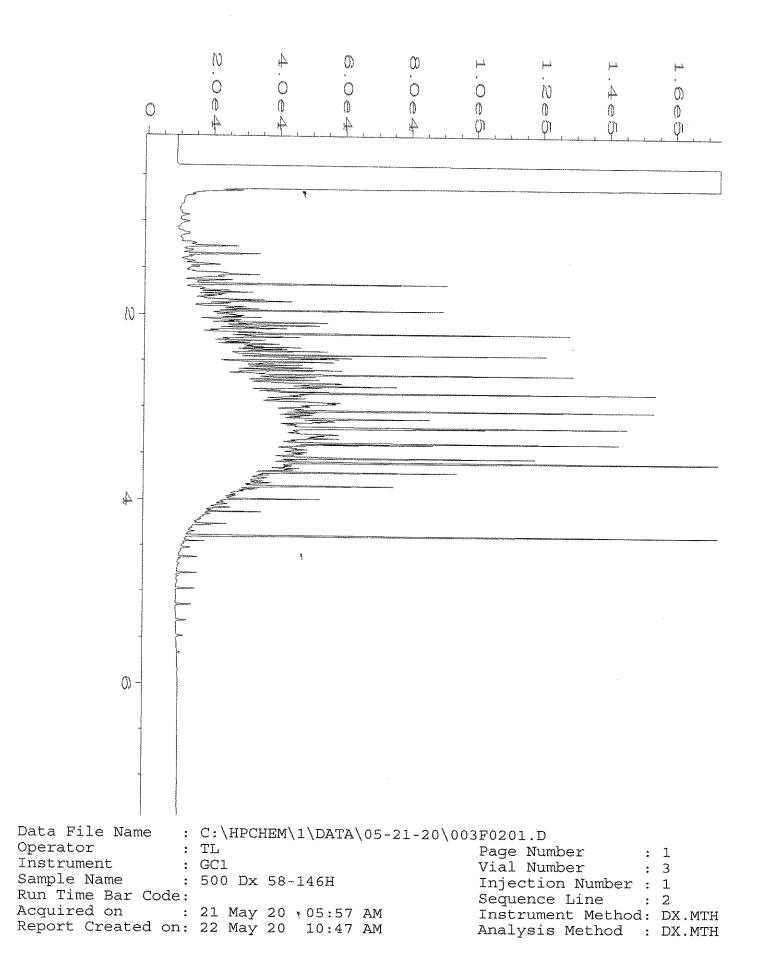

ŧ











Ť

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Krishn /	Floral	0 09	3	2	C Playda	Sample ID	MN -06-0-5-15-FJ	MW-09-05)920	MW-10-051920	MW -08-051920	726150-90-MW	026150-40-MM	MW -01-051920	MW-02-051920	MW-03 ~ 051920	MW-04-05/720	77	Friedman & Bruya, Inc.	3012 16th Avenue West Rece	Seattle, WA 98119-2029 Reli	Ph. (206) 285-8282
PROJECT NAME Nd/Sample Complete Sample Project specific RLs? Ves / M Project specific RLs?<	hill NSen	Ale	342 -48	wA				5/19/20	5/19/20	5/19/20		5/19/20	5	5/14	1 5/19	9-H-6	A-10 5	SIGNATURE		h D.	iquished by:	ived by:
Image: Start	SAMPLERS (signation)	\leq													<u> </u>				14			
A VOCs EPA 8260 NU VOCs EPA 8260 VOCs EPA 8270 VOCs EPA 8270 VOCs EPA 8270 VOCs EPA 8082 PCBs EPA 8082 PCBs EPA 8082 VOCs EPA 8082 PCBs EPA 8082 PCBs EPA 8082	College	-2	Calls.		Yes /	(NWTPH-Dx NWTPH-Gx BTEX EPA 8021	X	X	X X	X X	XXX P	XXX X	л Х Х Х		× X X	141XXX		les Scot	Webber -		
	INC CS	P0 #		INVOICE TO			VOCs EPA 8260 PAHs EPA 8270 PCBs EPA 8082	X										COMPA	F15	4 J		
STED STED STED SAMPLE DISPOSAL I Archive samples Default: Dispose after 30 days Notes STED SANY DATE TIME SAMY SIZE SIZE SIZE SIZE SIZE SIZE SIZE SIZE	TURNAROUND TIME	Rush RUSH	Rush charges authorized by:	SAMPLE DISPOSAL	Default: Dispose after 30 days	TED	Notes											DATE	:01 02/22/5		+	

3012 16th Avenue West Keceived by: Mr. D. W. A. Liz Webber - Broyg Fib Seattle, WA 98119-2029 Relinquished by: 0 Liz Webber - Broyg Fib Ph. (206) 285-8282 Received by: 0 Liz Webber - Broyg Fib	c. Relinquished by: A Tyler Scott	SIGNATURE PRINT NAME COMPANY					 11.1.0 - 051010 11.0.0 5/19/2014:07 W 4 XXX	Sample ID Lab ID Lab ID Sampled Time Sampled Sampled Jars Type Jars NWTPH-Dx NWTPH-Dx NWTPH-Gx BTEX EPA 8021 NWTPH-HCID VOCs EPA 8260 PAHs EPA 8270 PCBs EPA 8082		Email Project specific RLs? - Yes //No	Address REMARKS INVOICE TO	page 1) PROJECTI NAME For Nelson - Crowite Falls	
	2 T	COMP						VOCs EPA 8260 PAHs EPA 8270	ANALYSES REQUES		INVOICE TO	r	
1 h 01 selocire		DATE						Notes	TED	Default: Dispose after 30 days	SAMPLE DISPOSAL	RUSH VW 3 Rush charges authorized by: B 4	TURNAROUND TIME JS

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

June 5, 2020

Kristin Anderson, Project Manager Floyd-Snider Two Union Square, Suite 600 601 Union St Seattle, WA 98101

Dear Ms Anderson:

Included are the additional results from the testing of material submitted on May 20, 2020 from the Nelson-Granite Falls, F&BI 005255 project. There are 4 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

ale

Michael Erdahl Project Manager

Enclosures FDS0605R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on May 20, 2020 by Friedman & Bruya, Inc. from the Floyd-Snider Nelson-Granite Falls, F&BI 005255 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Floyd-Snider</u>
005255 -01	MW-06-0.5-1.5FT
005255 -02	MW-09-051920
005255 -03	MW-10-051920
005255 -04	MW-08-051920
005255 -05	MW-06-051920
005255 -06	MW-07-051920
005255 -07	MW-01-051920
005255 -08	MW-02-051920
005255 -09	MW-03-051920
005255 -10	MW-04-051920
005255 - 11	MW-05-051920

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 06/05/20 Date Received: 05/20/20 Project: Nelson-Granite Falls, F&BI 005255 Date Extracted: 05/21/20 Date Analyzed: 06/02/20

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx Sample Extracts Passed Through a Silica Gel Column Prior to Analysis Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Diesel Range (C ₁₀ -C ₂₅)	<u>Motor Oil Range</u> (C ₂₅ -C ₃₆)	Surrogate <u>(% Recovery)</u> (Limit 47-140)
$\underset{005255-11}{\text{MW-05-051920}}$	<50	<250	81
Method Blank ^{00-1148 MB}	<50	<250	109

ENVIRONMENTAL CHEMISTS

Date of Report: 06/05/20 Date Received: 05/20/20 Project: Nelson-Granite Falls, F&BI 005255

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 005255-09 (Matrix Spike) Silica Gel

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	\mathbf{MS}	MSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	<50	92	86	64-141	7
Laboratory Code: La	boratory Contr	ol Sampl					
			Percen	t			
	Reporting	Spike	Recover	y Accept	ance		
Analyte	Units	Level	LCS	Crite	ria		
Diesel Extended	ug/L (ppb)	2,500	96	61-13	33		

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

 ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

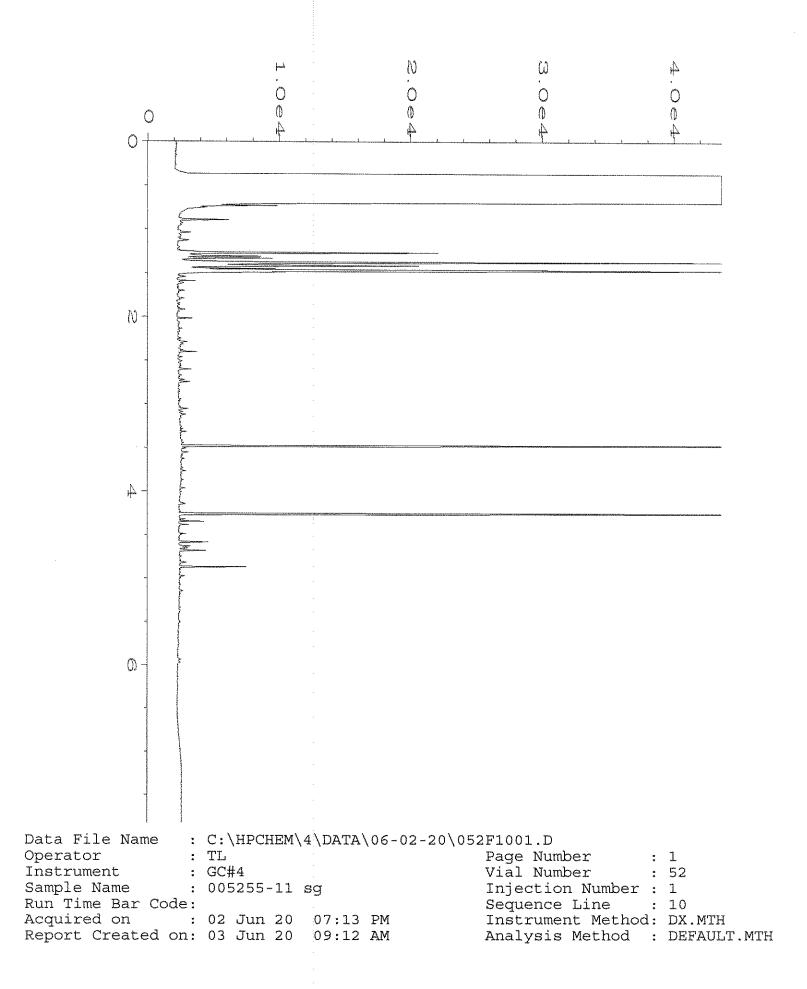
 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

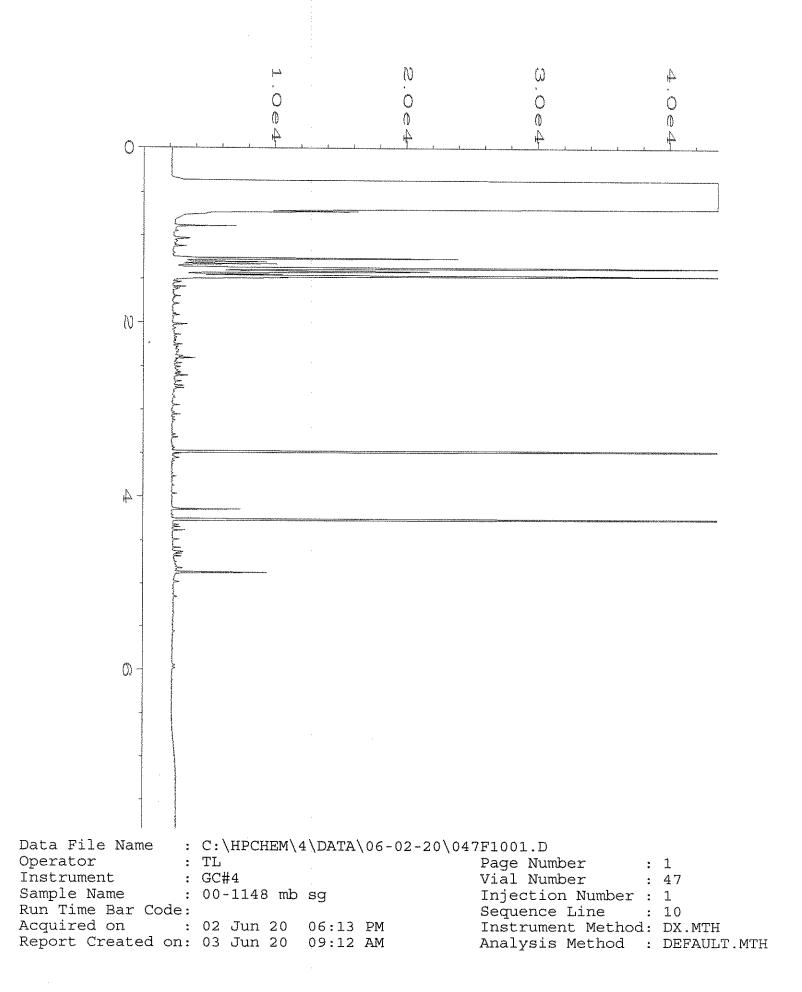
js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

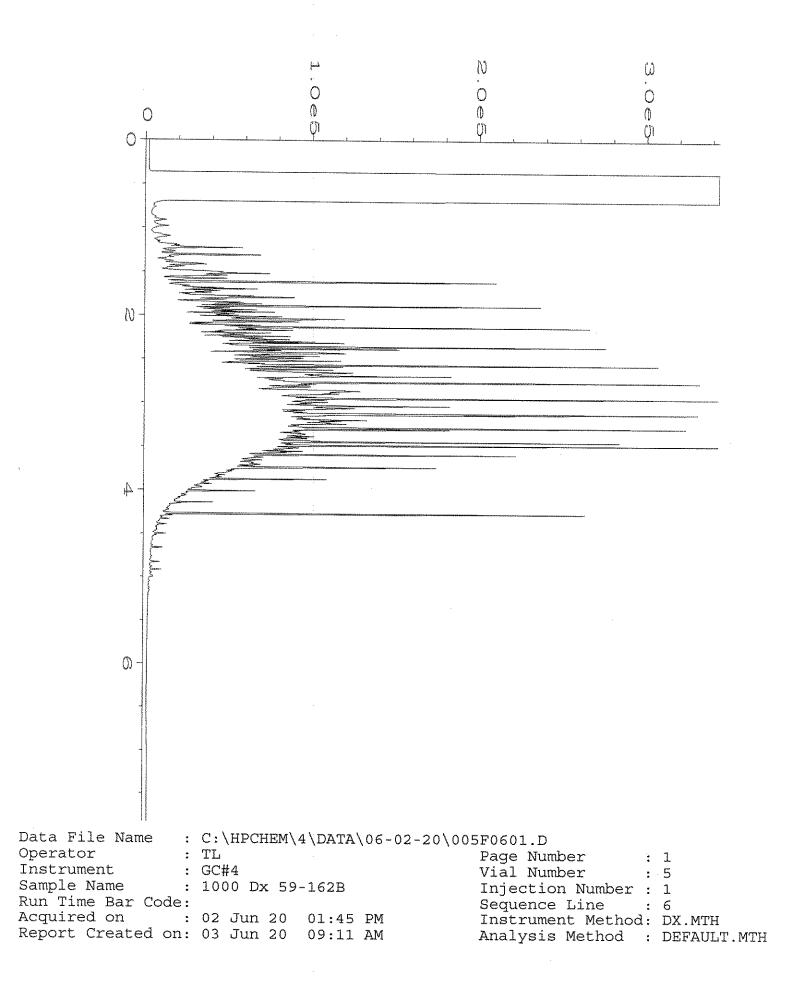
lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.


nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.


ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.


vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

.

MN - 06 - 0-3-15.PT City, State, ZIP Scattly wh 98/01 Company. Ph. (206) 285-8282 Seattle, WA 98119-2029 3012 16th Avenue West Friedman & Bruya, Inc. MW-09-05)920 Phone 205-292-2078 Email KNONN - and your Project specific RLs? - Yes / Address_ Report To MW-04-05/720 MW-03 - 05 120 MW-02-051920 MM-06-051920 MW -08-051920 MW -01-051920 026150-40-MW MW-10-051920 Sample ID Krishn Andersen Floyal Smaler 005255 601 Unitan St. Relinquished by: Received by: bydismitter. Corvi Relinquished by: Received by: 02 A-D OI A-E Lab ID 2 ŵ 6 3 б 09 A-H5/19/20 1533 80 5 A-D 5/19/20 Mr.D. M. SIGNATURE 5/19/20 5/19/20 000 24S 0211120 5/19/20 115 5/19/20 0945 5/14/20 1658 5/19/20 5/19/20 1640 Sampled Date LE S 535 050 SAMPLE CHAIN OF CUSTODY 1430 300 Sampled REMARKS SAMPLERS (signo Time PROJECT NAME Nd Son - Granide Sample Type E 3 8 E S E 3 E ε 2 Tyles 172 Jars Ľ # of 2 Ľ ſ 3 2 1 PRINT NAME 5 TO Webber - Bruya XX X X X $\frac{X}{X}$ NWTPH-Dx Scott X X NWTPH-Gx \overline{X} X BTEX EPA 8021 NWTPH-HCID INVOICE TO ANALYSES REQUESTED VOCs EPA 8260 PO # X PAHs EPA 8270 MC cS - 20 - 20 TURNAROUND TIME F? 81 PCBs EPA 8082 FLS COMPANY MTCH 5 metals Samples received at 3 || Archive samples Rush charges authorized by: Default: Dispose after 30 days H-RUSH : Other SAMPLE DISPOSAL 5/20/20 10:4 5/20/20 1047 DATE Notes TIME പ്പ х Х 498 £)II8

Ph. (206) 285-8282 Received by:	3012 16th Avenue West Received by: Mr D. W. Seattle, WA 98119-2029 Relinquished by:	Friedman & Bruya, Inc. Relinquished by:						 MW-05-051920 11A.D 5/19	Sample ID Lab ID . Date Sampled		Phone Email	Address City, State, ZIP	Company (Ser proje 1)	Romant To Kristin AnderSon	005255
	W-8 1/2	Ty		-				5/19/2014:07 W	te Time Sample pled Sampled Type		Project specific RLs? -	REMARKS	PROJECT NAME	SAMPLERS (signature)	SAMPLE CHAIN OF COSTORI
	z Werber - Bry	ler Scott	PRINT NAME	×		۰ ۱		4 XXX	ه پی پی پی پی پی پی پی پی پی پی		RLS? - Yes / No)		Nelson - Crimite Falls	Here)	
	ya Fig	FK	COMPANY					~	NWTPH-HCID VOCs EPA 8260 PAHs EPA 8270 PCBs EPA 8082 SILICA GEL	ANALYSES REQUESTED		INVOICE TO	PO #		NE
	5/20/20 10 47	5/20/20 10:47	ANY DATE TIME					 2 2/1/20	Notes	STED	Default: Dispose after 30 days	SAMPLE DISPOSAL	Rush charges authorized by: Boy	<u> </u>	Coston 20, 20, 20, 0 Coston