FINAL
 CLEANUP ACTION PLAN FOR PETROLEUM-IMPACTED SOIL AND GROUNDWATER

at

2737 West Commodore Way Seattle, Washington

Prepared for
Time Oil Company

May 2003

Prepared by
FOSTER WHEELER FOSTER WHEELER ENVIRONMENTAL CORPORATION

12100 NE 195th, Suite 200
Bothell, WA 98011

CONTENTS

1. INTRODUCTION 1-1
1.1 CLEANUP ACTION PLAN OBJECTIVE 1-1
1.2 CLEANUP ACTION PLAN ORGANIZATION 1-1
2. PROPERTY DESCRIPTION AND PREVIOUS INVESTIGATIONS 2-1
2.1 PROPERTY DESCRIPTION 2-1
2.2 PROPERTY OPERATION 2-1
2.3 PREVIOUS INVESTIGATIONS 2-1
2.3.1 1991 UST Removal 2-2
2.3.2 1999 UST Investigation 2-2
2.3.3 2000 Phase I Environmental Site Assessment 2-3
2.3.4 2001 Phase II Investigation 2-4
2.3.4.1 Former LUST Area Investigation 2-4
2.3.4.2 Lower Tank Yard Investigation 2-5
2.3.5 2001 Phase III Environmental Site Assessment 2-6
2.3.5.1 Former LUST Area Investigation 2-6
2.3.5.2 Lower Tank Yard Investigation 2-7
2.3.6 2002 Former PCP/Diesel Mixing Area Soil Removal 2-7
2.3.7 2002 Lower Tank Yard Investigation 2-8
2.3.8 Quarterly Groundwater Sampling 2-9
3. REMEDIAL TECHNOLOGY ALTERNATIVES 3-1
3.1 REMEDIAL ALTERNATIVES EVALUATED FOR CONTAMINATED SOIL AND GROUNDWATER 3-1
3.1.1 Bioventing 3-1
3.1.2 Free-phase Hydrocarbon Recovery 3-2
3.1.3 Air Sparging and Soil Vapor Extraction 3-3
3.1.4 Dual Phase Extraction 3-4
3.2 SELECTED REMEDIAL ALTERNATIVE FOR CONTAMINATED SOIL AND GROUNDWATER 3-5
3.3 REMEDIAL ALTERNATIVES EVALUATED FOR CONTAMINATED OVERLAYING SILT LAYER 3-6
4. DUAL PHASE EXTRACTION PILOT TEST 4-1
4.1 OBJECTIVES AND SCOPE 4-1
4.2 PRE-PILOT TEST SAMPLING RESULTS 4-2
4.3 TEST EQUIPMENT AND SYSTEM CONFIGURATION 4-2
4.4 TEST PROCEDURES 4-3
4.4.1 Baildown and Recovery Test 4-3

CONTENTS (CONTINUED)

4.4.2 Pre-test Baseline Monitoring 4-3
4.4.3 Step Test 4-4
4.5 PILOT TEST RESULTS 4-5
4.5.1 Step Test 4-5
4.5.2 Radius of Influence 4-6
4.5.3 Radius of Depression 4-6
4.5.4 Water and Product Recharge 4-7
4.5.5 Extracted Vapor Analysis 4-7
4.5.5.1 Tedlar ${ }^{\circledR}$ Bag Samples 4-8
4.5.5.2 Summa Canister Samples 4-8
4.5.5.3 PSCAA Requirements 4-9
4.6 POST-PILOT TEST GROUNDWATER SAMPLING RESULTS 4-10
4.7 PILOT TEST CONCLUSIONS 4-10
5. SITE CONCEPTUAL MODEL AND CLEANUP LEVELS 5-1
5.1 SITE CONCEPTUAL MODEL 5-1
5.1.1 Site Geology and Hydrology 5-1
5.1.2 Extent of Contamination 5-3
5.1.3 Potential Exposure Pathways and Receptors 5-3
5.1.3.1 Potential Exposure Pathways 5-3
5.1.3.2 Potential Receptors 5-4
5.2 CLEANUP STANDARDS 5-5
6. PROJECT REQUIREMENTS 6-1
6.1 INSTITUTIONAL CONTROLS 6-1
6.2 APPLICABLE STATE AND FEDERAL LAWS 6-1
6.2.1 Cleanup Standards 6-1
6.2.2 Waste Management and Disposal 6-2
6.2.3 Air Quality Regulations 6-2
6.2.4 Water Quality Protection Regulations 6-3
6.2.5 General Environmental Protection Regulations 6-4
6.3 OPERATIONS AND MAINTENANCE 6-4
7. RECOMMENDED CLEANUP ALTERNATIVE 7-1
7.1 PROPOSED EXTRACTION SYSTEM 7-1
7.1.1 Extraction Wells 7-1
7.1.2 Monitoring Wells 7-2
7.1.3 Extraction System Components 7-2
7.1.3.1 Extraction Pump 7-2

CONTENTS (CONTINUED)

7.1.3.2 Liquid/Vapor and Oil/Water Separators
 7-2

7.1.3.3 Groundwater Treatment System 7-2
7.1.3.4 Vapor Treatment System 7-3
8. SCHEDULE 8-1
9. REFERENCES 9-1

APPENDIX A BORING LOGS
APPENDIX B LABORATORY ANALYTICAL RESULTS
APPENDIX C PLLOT TEST PHOTOGRAPHS
APPENDIX D NOAA SCREENING QUICK REFERENCE TABLES

FIGURES

Figure 1-1. Location of Property at 2737 West Commodore Way, Seattle, Washington
Figure 2-1. Layout of Property at 2737 West Commodore Way, Seattle, Washington
Figure 2-2. 1991 Sampling Locations at 2737 West Commodore Way
Figure 2-3. 1999 Sampling Locations at 2737 West Commodore Way
Figure 2-4. 2001 Phase II Sampling Locations at 2737 West Commodore Way
Figure 2-5. 2001 Phase III Sampling Locations at 2737 West Commodore Way
Figure 2-6. 2002 Lower Tank Yard Investigation Sampling Locations at 2737 West Commodore Way
Figure 2-7. Benzene-Impacted Groundwater, October 2002
Figure 2-8. Gasoline-Impacted Groundwater, October 2002
Figure 2-9. Diesel-Impacted Groundwater, October 2002
Figure 3-1. Typical Single-Tube DPE System
Figure 3-2. Typical Single-Tube DPE Extraction Well
Figure 4-1. Locations of DPE Pilot Test Extraction and Monitoring Wells
Figure 4-2. Cross Section Beneath DPE Pilot Test Area
Figure 5-1. Potentiometric Surface, Measured October 2002
Figure 5-2. Geologic Cross Section Locations
Figure 5-3. Cross Section Beneath Former LUST Area
Figure 5-4. Cross Section Through Western Portion of Lower Tank Yard and Former Loading Rack
Figure 5-5. Cross Sections North and West of Lower Tank Yard
Figure 5-6. Fence Diagram Beneath Former Loading Rack
Figure 7-1. Proposed Full-Scale DPE System Configuration

TABLES

Table 2-1. Analytical Results from 1999 Soil Samples Above Cleanup Levels
Table 2-2. Analytical Results from 1999 Groundwater and Boring Water Samples
Table 2-3. Well Construction Details
Table 2-4. Analytical Results from 2001 Phase II Soil Samples Above Cleanup Levels
Table 2-5. Analytical Results from 2001 Phase II Groundwater Samples Above Cleanup Levels

Petroleum-Impacted Soil and Groundwater
2737 West Commodore Way

TABLES (CONTINUED)

Table 2-6. Analytical Results from 2001 Phase III Soil Samples Above Cleanup Levels
Table 2-7. Analytical Results from 2001 Phase III Groundwater Samples Above Cleanup Levels
Table 2-8. Analytical Results from 2002 Lower Tank Yard Investigation Soil Samples Above Cleanup Levels - MTBE, BTEX, Napthalene, and Hexane
Table 2-9. Analytical Results from 2002 Lower Tank Yard Investigation Soil Samples Above Cleanup Levels - Fuel, BTEX, and Lead
Table 2-10. PAH Analytical Results from 2002 Lower Tank Yard Investigation Soil Samples
Table 2-11. VPH and EPH Analytical Results from 2002 Lower Tank Yard Investigation Soil Samples
Table 2-12. Summary of Quarterly Groundwater Monitoring Analytical Results Above Cleanup Levels
Table 4-1. Analytical Results from Pre-DPE Pilot Test Soil Samples Above Cleanup Levels
Table 4-2. Analytical Results from Pre-DPE Pilot Test Groundwater Samples Above Cleanup Levels
Table 4-3. Analytical Results from DPE Pilot Test Air Samples
Table 4-4. Analytical Results from Post-DPE Pilot Test Groundwater Samples Above Cleanup Levels

ACRONYMS AND ABBREVIATIONS

ARAR	applicable or relevant and appropriate requirements
AS/SVE	air sparging and soil vapor extraction
AST	aboveground storage tank
ASTM	American Society for Testing and Materials
bgs	below ground surface
BINMIC	Ballard Interbay Northend Manufacturing and Industrial Center
BMPs	Best Management Practices
CAA	Clean Air Act
CAP	Cleanup Action Plan
CCC	criteria continuous concentration
cfm	cubic feet per minute
CFR	Code of Federal Regulations
CGI	combustible gas indicator
CL	clay
CMC	criteria maximum concentration
cPAH	carcinogenic polyaromatic hydrocarbon
CWA	Clean Water Act
DPE	dual phase extraction
Ecology	Washington State Department of Ecology
ESA	Environmental Site Assessment
Foster Wheeler Environmental	Foster Wheeler Environmental Corporation
FR	Federal Register
GAC	granular activated carbon
gph	gallons per hour
IT	IT Corporation
LNAPL	layer of light, non-aqueous phase liquid
LUST	leaking underground storage tank
$\mu \mathrm{g} / \mathrm{kg}$	micrograms per kilogram
$\mathrm{mg} / \mathrm{kg}$	milligrams per kilogram

ACRONYMS AND ABBREVIATIONS (CONTINUED)

mg/L	milligrams per liter
ML	silty material
MTCA	Model Toxics Control Act
NESHAPS	National Emission Standards Hazardous Air Pollutants
NOC	Notice of Construction
NOI	Notice of Intent
NPDES	National Pollutant Discharge Elimination System
NWTPH	Northwest Total Petroleum Hydrocarbons
ORNL	Oak Ridge National Laboratory
PAH	polyaromatic hydrocarbon
PCP	pentachlorophenol
ppm	parts per million
Property	2737 West Commodore Way
PSCAA	Puget Sound Clean Air Agency
RCRA	Resource Conservation and Recovery Act
RCW	Revised Code of Washington
SEPA	State Environmental Policy Act
SM	silty sand
SQuiRT	Screening Quick Reference Tables
SVE	soil vapor extraction
SW	sandy aquifer
SWPPP	Stormwater Pollution Prevention Plan
TOC	Time Oil Company
UST	underground storage tank
WAC	Washington Administrative Code

1. INTRODUCTION

This Cleanup Action Plan (CAP) describes the independent remedial action that will be performed at the Time Oil Company (TOC) parcel (Property) located at 2737 West Commodore Way, Seattle, Washington (Figure 1-1). The independent remedial action is designed to address subsurface soil and groundwater contamination at the Property. This CAP was prepared in general accordance with the Washington State Model Toxics Control Act (MTCA) WAC 173-340-380.

1.1 CLEANUP ACTION PLAN OBJECTIVE

The purpose of this CAP is to present a concise history of previous investigations conducted at the Property, a description of impacted media, proposed remedial actions, and a rationale for such actions. The CAP addresses proposed remedial actions for two areas of the Property, the Former Leaking Underground Storage Tank (LUST) Area and the Lower Tank Yard, and focuses solely on petroleum-impacted soil and groundwater.

1.2 CLEANUP ACTION PLAN ORGANIZATION

The CAP is organized into the following sections:

- Section 1 - Introduction
- Section 2 - Description and summary of previous investigations
- Section 3 - Remedial technology alternatives considered for the Property
- Section 4 - Description of the dual phase extraction (DPE) pilot test
- Section 5 - Conceptual model of the Property and cleanup levels
- Section 6 - Project requirements, such as institutional controls, applicable or relevant and appropriate requirements (ARARs), and maintenance requirements
- Section 7 - Description of the proposed remedial action
- Section 8 - Schedule for implementation
- Section 9 - References
- Appendix A - Boring Logs
- Appendix B - Laboratory Analytical Results
- Appendix C - Pilot Test Photographs
- Appendix D - NOAA Screening Quick Reference Tables (SQuiRT)

2. PROPERTY DESCRIPTION AND PREVIOUS INVESTIGATIONS

The following sections describe the Property and typical operations and summarize previously conducted investigations.

2.1 PROPERTY DESCRIPTION

The Property runs from West Commodore Way south to the Burlington Northern rail line (Figure 2-1). Most of the Property is paved, except for the area of the former rail lines behind the warehouse and the tank yard located on the east side of the Property. A twostory office building is located in the center of the Property adjacent to West Commodore Way. The tank yard is divided into two sections: the Lower Tank Yard and the Upper Tank Yard. The Lower Tank Yard contains six aboveground storage tanks (ASTs), while the Upper Tank Yard contains eight ASTs that are larger in volume than those in the Lower Tank Yard. The surfaces of both tank yards consist of unpaved gravel with patches of grass.

2.2 PROPERTY OPERATION

Operation of the TOC Property as a petroleum storage and transfer facility was discontinued in October 2001. The ASTs and pipelines have been purged of petroleum products, appropriately cleaned, and are currently empty. At this time, the Property is used for TOC administrative offices, and there are no plans to use the facility for petroleum storage and/or transfer again.

2.3 PREVIOUS INVESTIGATIONS

The Former LUST Area, located north of the office building, has been the focus of several investigations. In this area, historical releases from underground storage tanks (USTs) used to store petroleum products have impacted subsurface soil and groundwater. In addition, several ASTs located on the east side of the Property in the Lower Tank Yard have had minor leaks along their lower perimeters over the years. Figure 2-1 shows a layout of the facility, including the locations of the Former LUST Area, the Former Loading Rack Area, and the Lower Tank Yard. The following sections describe the results of previous investigations conducted in these areas.

2.3.1 1991 UST Removal

In September 1991, three USTs were removed from the Property, including a 4,000-gallon unleaded gasoline tank, a 2,500-gallon diesel fuel tank, and a 1,500-gallon regular (leaded) gasoline tank (TOC 1991). Figure 2-2 shows the locations of the former USTs and soil sampling locations.

The 2,500-gallon diesel fuel and 1,500-gallon leaded gasoline tanks were part of a baffled system (one 4,000-gallon tank) that was installed in 1980. Following removal of the USTs, a new 4,000-gallon UST was installed at the same location. This new tank is baffled to provide two compartments (one 3,000-gallon compartment and one 1,000-gallon compartment) and is therefore registered with Washington State Department of Ecology (Ecology) as two tanks. Two new fuel dispensers were also installed.

The TOC report from 1991 indicates that the soil in the excavation appeared discolored and that a hydrocarbon odor was evident. In addition, water with a hydrocarbon sheen was encountered at a depth of 18 feet below ground surface (bgs). Efforts to excavate the petroleum-impacted soil were impeded by the proximity of the TOC building to the excavation and the presence of groundwater in the excavation space. Water samples were not collected, but soil samples indicated that the highest concentration [12,000 parts per million (ppm)] of hydrocarbons was present in surface soils beneath the former fuel dispensers (east side of the building).

2.3.2 1999 UST Investigation

Additional site assessment activities were conducted in 1999, including the drilling of nine soil borings and installation of five groundwater monitoring wells (IT [IT Corporation] 2000). The locations of the 1999 borings are shown in Figure 2-3. Soil boring logs included in the IT report indicate that soil composition beneath the Property from the surface to approximately 20 to 25 feet bgs consists of sands and silts, with varying amounts of clay and gravel. Very dense, dry clay underlies this sand/silt unit and acts as an aquitard.

Table 2-1 presents a summary of the analytical results for soil samples with petroleum hydrocarbon concentrations above the MTCA Method A cleanup levels for unrestricted land use (Ecology 2001). Several soil samples contained gasoline and diesel at concentrations above the cleanup levels. The elevated concentrations of gasoline ranged from 381 milligrams per kilogram ($\mathrm{mg} / \mathrm{kg}$) to $755,000 \mathrm{mg} / \mathrm{kg}$. Concentrations of benzene in soil samples above the cleanup level of $0.03 \mathrm{mg} / \mathrm{kg}$ ranged from $2.12 \mathrm{mg} / \mathrm{kg}$ to $5,590 \mathrm{mg} / \mathrm{kg}$.

Several soil samples also exceeded the cleanup levels for toluene, ethylbenzene, and total xylenes.

Groundwater was encountered in eight of the nine borings and in all of the monitoring wells. Depth to groundwater ranged from 14 to 17 feet bgs. When water was sampled from the borings and wells in September 1999, only one well (01MW-01) did not contain detectable concentrations of hydrocarbons.

Table 2-2 provides a summary of the analytical results from the groundwater monitoring well and boring water samples collected in 1999. In September 1999, well 01MW-05 contained floating product with an apparent thickness of 0.78 feet; consequently, this well was not sampled. The concentrations of gasoline in wells $01 \mathrm{MW}-01,01 \mathrm{MW}-02$, 01MW-03, and 01MW-04 ranged from non-detect (01MW-01) to 27,200 micrograms per liter ($\mu \mathrm{g} / \mathrm{L}$) ($01 \mathrm{MW}-03$), and diesel ranged from non-detect ($01 \mathrm{MW}-01$) to $1,320 \mu \mathrm{~g} / \mathrm{L}$ (01MW-04). Heavy oil was not detected in any of the monitoring wells. Benzene concentrations ranged from non-detect ($01 \mathrm{MW}-01$) to $11,300 \mu \mathrm{~g} / \mathrm{L}$ ($01 \mathrm{MW}-03$). Toluene was detected above the MTCA Method A cleanup level in well 01MW-04, and wells $01 \mathrm{MW}-02,01 \mathrm{MW}-03$, and $01 \mathrm{MW}-04$ contained concentrations of xylenes above the MTCA Method A cleanup levels. Total lead exceeded the cleanup level in every well except 01MW-01, with the highest concentration $(130 \mu \mathrm{~g} / \mathrm{L})$ detected in 01MW-04. Most of the elevated concentrations were located near the northeast corner of the office building. The IT report recommended additional site characterization.

2.3.3 2000 Phase I Environmental Site Assessment

In the summer of 2000, Foster Wheeler Environmental completed Phase I Environmental Site Assessments (ESAs) of seven properties owned by TOC, one of which was 2737 West Commodore Way. The purpose of these investigations was to identify the possible presence of hazardous substances or petroleum products under conditions that indicate a past, existing, or future threat of release into structures, ground, groundwater, or surface water around each property. Investigational results and a records review are presented in the Environmental Site Assessment: Phase I at 2737 West Commodore Way (Foster Wheeler Environmental 2000). Following the Phase I ESA, the conclusion was reached that several past operations on the Property may have resulted in a "recognized environmental condition," as defined by the American Society for Testing and Materials (ASTM) Method E 1527-00.

2.3.4 2001 Phase II Investigation

Following Phase I ESA activities at the Property, further investigation activities were conducted to evaluate subsurface conditions in certain areas, including the Former LUST Area and the Lower Tank Yard (Foster Wheeler Environmental 2001a). Phase II field activities completed throughout the Property in November and December of 2000 consisted of soil borings, hand auger screening borings, well installation, soil and groundwater sampling, and surveying. Figure 2-4 shows the sampling locations at the Property and Table 2-3 describes well construction information. Summaries of petroleum-impacted soil and groundwater samples above cleanup levels are presented in Tables 2-4 and 2-5, respectively. Findings of the Former LUST Area and the Lower Tank Yard are discussed below.

2.3.4.1 Former LUST Area Investigation

During this phase of investigation, two soil borings (SB-35 and SB-36) were drilled in the Former LUST Area and two monitoring wells ($01 \mathrm{MW}-08$ and 01MW-09) were installed at the same locations. Well 01MW-08 (SB-35) is located west of the Former LUST Area, while 01MW-09 (SB-36) is to the south. Both borings were advanced to a depth of 25 feet, and groundwater was encountered at approximately 20 feet bgs. Both wells were screened across the water table within the shallow water-bearing zone, with the bottoms of the wells above a dry, impermeable clay/silt layer.

During sampling of soil boring SB-35, gasoline was detected above the MTCA Method A cleanup level for unrestricted soil at a depth of 5 feet and a concentration of $192 \mathrm{mg} / \mathrm{kg}$. Gasoline and diesel were detected above cleanup levels at a depth of 15 feet bgs and concentrations of $1,640 \mathrm{mg} / \mathrm{kg}$ and $9,440 \mathrm{mg} / \mathrm{kg}$, respectively. In soil boring SB-36, gasoline, ethylbenzene, xylenes, and diesel exceeded their respective cleanup levels at a depth of 15 feet bgs. Lead was not detected above the MTCA Method A cleanup level.

Gasoline and BTEX were detected during groundwater sampling above the MTCA Method A cleanup levels in monitoring wells $01 \mathrm{MW}-02,01 \mathrm{MW}-03,01 \mathrm{MW}-04$, and $01 \mathrm{MW}-09$. Diesel concentrations exceeded the MTCA Method A cleanup level in 01MW-01 through 01MW-04 and 01MW-09. Groundwater samples were not collected from 01MW-05 at this time because more than 5 feet of free-phase floating fuel was present in the well. Lead was not detected above the method reporting limits.

Following sampling, it was concluded that petroleum-impacted soil in SB-35, which is present at depths ranging from 5 to 15 feet, is related to the historic use of the underground
barrel transfer system, which transferred barrels of fuel from the Property to the dock across the street in the 1940s. The petroleum-impacted soil in SB-35 is not related, however, to the nearby UST. The soil contamination throughout the Former LUST Area is believed to be a result of contaminated groundwater, because (with the exception of SB-35) the samples showing elevated concentrations occurred below 15 feet bgs and the soil exceedances were at the water table.

The highest concentration of petroleum-impacted groundwater beneath the Former LUST Area during the Phase II ESA was found in 01MW-02, which is located near the fuel loading facility where a tanker truck accidentally released over 1,000 gallons of gasoline. This historical release, in combination with the former LUSTs, may represent the primary source of contaminated groundwater beneath this area.

2.3.4.2 Lower Tank Yard Investigation

During the Phase II ESA for the Property, nine soil borings (SB-01 through SB-05, SB-18 through SB-20, and SB-24) were drilled in the Lower Tank Yard and one monitoring well (01MW-12) was installed at boring SB-24. Five of the nine borings were screening borings drilled using a hand auger in the vicinity of the Former Pentachlorophenol (PCP)/Diesel Mixing Area in the southwest corner of the Lower Tank Yard, and the remaining four were drilled around the ASTs in the Lower Tank Yard. The borings were advanced to depths of between 4 and 35 feet, and groundwater was encountered between 3 and 15 feet bgs. Well 01MW-12 was screened across the water table within the shallow water-bearing zone, with the bottom of the well above a dry, impermeable clay/silt layer.

Of the four soil borings drilled among the ASTs within the Lower Tank Yard, gasoline was detected at concentrations above the MTCA Method A cleanup level in the top 5 feet of SB-19 and at a depth of 10 feet in SB-24. Diesel was detected at concentrations above cleanup level at a depth of 2 feet in both SB-19 and SB-24. Lead was not detected above the cleanup level in any of the samples.

Of the five hand auger screening borings collected near the Former PCP/Diesel Mixing Area, diesel- and oil-impacted soil was present in SB-03 at depths of 0.6 feet and 2 feet, and in SB-04 at a depth of 2 feet. Gasoline was also detected above the MTCA Method A cleanup level in the 2-feet-deep samples collected from SB-02, SB-03, and SB-04. The total carcinogenic polyaromatic hydrocarbons (cPAHs) in SB-03 and SB-04 exceeded the MTCA Method A cleanup level of $1 \mathrm{mg} / \mathrm{kg}$ at depths of 0 to 2 feet and 0 to 5 feet, respectively.

One surface sample (SS-04) also exceeded the cleanup level for cPAHs. The field notes did not document the presence of materials indicating a petroleum release.

The groundwater sample collected from $01 \mathrm{MW}-12$ contained concentrations of benzene $(98.4 \mu \mathrm{~g} / \mathrm{L})$ above the MTCA Method A cleanup level for groundwater. Diesel and gasoline were also detected above the cleanup levels at concentrations of $1.07 \mathrm{mg} / \mathrm{L}$ and $802 \mu \mathrm{~g} / \mathrm{L}$, respectively.

2.3.5 2001 Phase III Environmental Site Assessment

The Phase III ESA (Foster Wheeler Environmental 2001d) was conducted in July 2001 to further evaluate subsurface conditions in specific areas identified during the Phase II ESA. Field activities completed at 2737 West Commodore Way for Phase III included soil borings, near-subsurface soil sampling, well installation, soil sampling, groundwater sampling, fuel characterization, and surveying in five different areas on the Property, including the Former PCP/Diesel Mixing Area in the Lower Tank Yard and the Former LUST Area. Figure 2-5 shows the sampling locations at the Property and Table 2-3 describes well construction information. Summaries of petroleum-impacted soil and groundwater concentrations above cleanup levels are presented in Tables 2-6 and 2-7, respectively. Findings of the Former LUST Area and the Lower Tank Yard are discussed below.

2.3.5.1 Former LUST Area Investigation

During this phase of investigation, one soil boring (SB-60) was drilled east of the Former LUST Area and monitoring well 01MW-16 was then installed at the same location. The boring was advanced to a depth of 22.5 feet. Groundwater was encountered at a depth of approximately 18 feet bgs.

Following sampling of soil from SB-60, gasoline ($1,240 \mathrm{mg} / \mathrm{kg}$), benzene $(1.68 \mathrm{mg} / \mathrm{kg})$, xylenes ($10.2 \mathrm{mg} / \mathrm{kg}$), and diesel ($11,400 \mathrm{mg} / \mathrm{kg}$) were detected above the MTCA Method A cleanup levels for unrestricted soil at a depth of 15 feet. The sample from the 20 -foot depth did not show concentrations of analytes above the reporting limits. Lead was not detected above the MTCA Method A level. Because the soil contamination was found near the water table, the contamination may be the result of groundwater influence rather than contaminated soil.

Following sampling of groundwater from $01 \mathrm{MW}-16$, gasoline $(11,000 \mu \mathrm{~g} / \mathrm{L})$ and diesel ($11.1 \mathrm{mg} / \mathrm{L}$) were detected at concentrations above cleanup levels.

2.3.5.2 Lower Tank Yard Investigation

During the Phase III ESA for the Property, six soil borings (SB-52 through SB-57) were drilled in the Former PCP/Diesel Mixing Area of the Lower Tank Yard and one monitoring well (01MW-14) was installed. With the exception of SB-57, the borings were advanced to depths of between 12 and 15 feet, and groundwater was encountered between 8 and 11.5 feet bgs. SB-57 was a shallow subsurface sample, collected after removal of the upper 18 inches of overburden. The 1-inch-diameter well ($01 \mathrm{MW}-14$) was screened across the water table within the shallow water-bearing zone, with the bottom of the well above a dry, impermeable clay/silt layer.

Diesel- and gasoline-impacted soil was identified near the Former PCP/Diesel Mixing Area in SB-52, SB-55, and SB-56 at depths ranging from 2.5 to 6 feet. The samples collected from a depth of 10 feet in each boring did not show concentrations of petroleum contaminants above MTCA levels for unrestricted soil.

When sampled, well 01MW-14 was found to contain approximately 6.7 feet of product with no measurable groundwater present. A product sample was collected for fuel characterization. The lab concluded that the majority of the material present in the sample is indicative of a middle distillate such as diesel fuel \#2 or heating oil. The report also concluded that low-level degraded gasoline may have impacted the sample. Carcinogenic PAHs exceeded the cleanup level ($1 \mathrm{mg} / \mathrm{kg}$) in SB-56 at a depth of 2.5 feet. Based on the findings presented above and previous investigations, it appears that petroleum-impacted soil is generally limited to the upper 5 feet in the Lower Tank Yard.

2.3.6 2002 Former PCP/Diesel Mixing Area Soil Removal

In mid-September 2002, approximately 70 cubic yards of soil were removed from the Former PCP/Diesel Mixing Area. The purpose of the removal action was to excavate PCPimpacted soil from the area. The result was an excavated area approximately 60 feet by 24 feet in size that ranged in depth from approximately 6 to 18 inches and up to 5 to 7 feet in two locations. During this time, monitoring well 01MW-14 was removed, as its location coincided with one of the two areas requiring an excavation depth of 5 feet. Confirmation samples were collected at the conclusion of the excavation activities to document the successful removal. The soil removal action succeeded in eliminating surface
contamination of PCP-impacted soil and soil affected by petroleum products identified in previous investigations. Ecology issued a determination of "No Further Action" for PCP-impacted surface soils in January 2003 (Ecology 2003)

2.3.7 2002 Lower Tank Yard Investigation

In support of this CAP, nine additional 4-inch wells were installed in and around the Lower Tank Yard. Five wells were installed in the Lower Tank Yard. Two wells were installed on the west side of the former manifold area, one well was installed just north of the former manifold area outside of the Lower Tank Yard, and three wells were installed between the office building and the Lower Tank Yard. Seven soil borings were also drilled near the Former Loading Rack Area just north of the Lower Tank Yard. The locations of the wells and borings are shown in Figure 2-6. Well construction details are presented in Table 2-3 and boring logs are located in Appendix A.

Analytical results for fuel analyses conducted on the soil samples collected in December 2002 are presented in Tables 2-8 through 2-11. For the initial evaluation, the analytical results were compared to the MTCA Method A soil cleanup levels for unrestricted land use. The results are summarized below:

- Gasoline was detected above the cleanup level in every boring except $01 \mathrm{MW}-21$ and 01MW-22. Thirty-one of the 62 samples collected exceeded the cleanup level. None of the samples collected at depths greater than 15 feet, with the exception of the borings in the Former Loading Rack Area, showed concentrations of gasoline above the cleanup level.
- Benzene was detected above the cleanup level in every boring except 01MW-21, 01MW-22, and LR06. Twenty-eight of the 62 samples exceeded the cleanup level. With the exception of the borings in the Former Loading Rack Area, only two borings (01MW24 and 01MW-29) showed concentrations of benzene above the cleanup level at a depth of 20 feet bgs.
- Toluene was detected above the cleanup level in borings $01 \mathrm{MW}-26,01 \mathrm{MW}-27$, 01MW-28, LR02, LR03, and LR05. Nine of the 62 samples exceeded the cleanup level. None of the samples collected at the bottoms of the borings, with the exception of the borings in the Former Loading Rack Area, showed concentrations of toluene above the cleanup level.
- Ethylbenzene was detected above the cleanup level in borings 01MW-24,01MW26, 01MW-27, and 01MW-28, and in every "LR" boring except LR06. Fourteen of the 62 samples collected exceeded the cleanup level. None of the samples collected at the bottoms of the borings, with the exception of the borings in the Former Loading Rack Area, showed concentrations of ethylbenzene above the cleanup level.
- Total xylenes were detected above the cleanup level in borings $01 \mathrm{MW}-24,01 \mathrm{MW}$ 26, 01MW-27, and 01MW-28, and every "LR" boring except LR06. Sixteen of the 62 samples exceeded the cleanup level. None of the samples collected at depth, with the exception of the borings in the Former Loading Rack Area, showed concentrations of total xylenes above the cleanup level.
- Diesel was detected above the cleanup level in borings 01MW-24, 01MW-26, 01MW-27, and 01MW-28, and every "LR" boring except LR06 and LR07. Twentyone of the 62 samples exceeded the cleanup level. None of the samples collected at depth, with the exception of the borings in the Former Loading Rack Area, showed concentrations of diesel above the cleanup level.
- Oil was not detected above the cleanup level in any of the soil borings.

While drilling the borings and wells for this investigation, a shallow silt layer was found above the water table in an area covering a large portion of the Lower Tank Yard and north of the Lower Tank Yard. Visual observations and sampling and analysis of the layer revealed that the layer is highly contaminated with petroleum hydrocarbons. Further details of the results of this investigation are discussed in Section 5.1.

2.3.8 Quarterly Groundwater Sampling

Groundwater samples are collected at the Property on a quarterly basis (January, April, July, and October). The first quarterly sampling event occurred in July 2001 (Foster Wheeler Environmental 2001d). Figures 2-7 through 2-9 show the extent of impacted groundwater beneath the Property as measured during the most recent sampling event in October 2002. In general, groundwater concentrations are consistent over time. There appear to be two distinct sources of petroleum hydrocarbon-impacted groundwater beneath the site. One source may be near the Former LUST Area, where gasoline and benzene concentrations are the highest, and another distinct source appears to originate in the tank yard and extend to the north and through the Lower Tank Yard to the Former Loading Rack Area (Figure 2-1).

Floating product is commonly found in wells $01 \mathrm{MW}-05,01 \mathrm{MW}-10$, and $01 \mathrm{MW}-16$. The fuel thicknesses vary depending on the quarter, but have been measured as thick as 5.13 feet (01MW-05, January 2002). Trace levels of fuel are often seen in wells 01MW-09, 01MW-18, 01MW-23, 01MW-25, 01MW-28, and 01MW-29.

A summary of analytical results from all of the quarterly groundwater sampling events conducted through October 2002 is presented in Table 2-12.

3. REMEDIAL TECHNOLOGY ALTERNATIVES

A number of technologies can be implemented to remediate of petroleum hydrocarboncontaminated soil and groundwater, depending on the goals and requirements specified for the cleanup. The following sections discuss possible soil and groundwater remedial alternatives and their applicability for the Property.

3.1 REMEDIAL ALTERNATIVES EVALUATED FOR CONTAMINATED SOIL AND GROUNDWATER

Remedial technologies evaluated include bioventing, free-phase hydrocarbon recovery, air sparging combined with soil vapor extraction, and dual phase extraction (DPE). The strengths and weaknesses of each technology are discussed in the following sections.

3.1.1 Bioventing

Bioventing refers to the process of in situ biodegradation of contaminants in soil, enhanced by soil venting via air injection or air extraction. In bioventing, the intent is to use air movement to provide oxygen for aerobic degradation of the contaminants using either indigenous or introduced microorganisms and, if necessary, nutrients. The bioventing technology has been used particularly for in situ treatment of petroleum distillate fuel hydrocarbons, such as jet fuel, gasoline, and diesel. In examining the basic premise of bioventing, the applicability of the technology to the site must consider how biodegradable the soil contaminants are and if the site environmental and/or physical conditions are favorable. The environmental conditions, such as the nutrient level, moisture, and pH , control the microbial activity level in the soil. If these conditions are favorable, the biodegradation process will be accomplished effectively. The physical conditions are evaluated by the ability to move air through the soil matrix. This is a function of the permeability, homogeneity, and water saturation of the soil.

This technology is applicable to the Former LUST Area and the Lower Tank Yard in that a majority of the petroleum hydrocarbon constituents found in the soil is sufficiently biodegradable. In addition, the vadose zone is adequate in depth to support microbial activity. If the depth to groundwater is less than 10 feet, groundwater upwelling can occur within bioventing wells under vacuum pressure, which can potentially occlude screens and reduce or eliminate vacuum-induced soil vapor flow (and therefore the oxygen needed for
aerobic degradation). Also, as shown in boring logs, the stratigraphy in the Former LUST Area should be sufficient in terms of permeability to convey air through the unsaturated zone. In the Lower Tank Yard near wells 01MW-21 through 01MW-23 and just north of the Lower Tank Yard near the Former Loading Rack Area, however, a shallow silt layer has been found above the water table (Sections 2.3.7 and 5.1). A denser clay layer has also been observed on the west side of the Former Loading Rack Area in borings LR02 through LR04. Due to the fine-grained nature of the soils in these layers, the effectiveness of bioventing may be reduced in that air may not be able to travel between the vadose zone above and below the less-permeable layers.

While bioventing may assist in remediating the vadose zone of the Former LUST Area and possibly portions of the Lower Tank Yard, it would not have any effect on the groundwater contamination or free product present. As the groundwater level fluctuates in the unsaturated zone, the free product may even create a highly concentrated "smear" that may eliminate any microorganisms that exist or are added to the soil. Previous analytical results from some sampling locations in the area have shown concentrations of contaminants in the soil that are high enough (petroleum constituent concentrations greater than $25,000 \mathrm{ppm}$) to be toxic or inhibit the growth and reproduction of the bacteria responsible for biodegradation.

In addition, the air flow rates used in bioventing must be relatively low to provide only enough oxygen to sustain microbial activity. Therefore, because volatile compounds are biodegraded as vapors move slowly through biologically active soil and because the contaminant concentrations are so high, remediation of the vadose zone would occur slowly.

3.1.2 Free-phase Hydrocarbon Recovery

Free-phase hydrocarbon recovery can be accomplished using a variety of equipment, including skimmer units and vacuum-enhanced recovery pumps. Skimmer units are commonly used to remove a relatively thin, but persistent, layer of light, non-aqueous phase liquid (LNAPL) from wells or open trench systems. The design of most skimmer units allows for the intake line to be set at the product/water interface. Accordingly, when the intake line is properly adjusted (either manually or automatically), the skimmers will remove free product accumulated in the wells while minimizing groundwater extraction. The vacuum-enhanced free-hydrocarbon recovery systems utilize a common pumping technique used in construction dewatering projects, where the vacuum is exerted through a "drop tube" lowered to within the product zone in a sealed well casing. According to

Battelle (1995), application of vacuum in such a well increases the product recovery rates by increasing the hydraulic gradient and the aquifer transmissivity. The hydraulic gradient is increased as a result of developing a cone of reduced pressure around the well, thus promoting a horizontal flow of fluids across the pressure-induced gradient. The increase in transmissivity is caused by an increase of flow along the more permeable horizontal flow lines and by the decrease in the local pressure above the aquifer that causes an increase in the saturated thickness of the aquifer.

Although vacuum-enhanced recovery systems improve the product recovery rates over that of the skimmer units, they also result in proportionally more groundwater extraction. Therefore, the choice between vacuum-enhanced versus skimmer systems usually depends on the site-specific conditions that control the effectiveness of each of these technologies and the costs.

Advantages of free-phase hydrocarbon recovery technology include the lack of air or water treatment equipment required following removal of free product from the subsurface; no discharge permits are required; removal of free product may allow remediation by natural attenuation to occur (via biodegradation, dilution, etc.); and a relatively low capital cost.

In the Former LUST Area and the Lower Tank Yard, free-phase hydrocarbon recovery would likely be successful at recovering the free product LNAPL that exists above the groundwater. This technology would achieve removal of the source of contamination relatively quickly, but it would be limited to the recovery rate of the groundwater contamination. However, this technology alone would have no direct impact on the vadose zone or groundwater. The application of vacuum-enhanced recovery would lower the water table and thus increase the "smear" area.

3.1.3 Air Sparging and Soil Vapor Extraction

Air sparging is an in situ remedial technology in which air is injected into the aquifer. The injected air traverses both horizontally and vertically in pores through the soil column and removes contaminants adsorbed to soils and dissolved in groundwater by volatilization. The injected air enables a phase transfer of volatile contaminants to the vapor phase so that the contaminant is vented into the unsaturated zone. Air sparging is most often implemented in conjunction with a vapor extraction system. Soil vapor extraction (SVE) wells use vacuum to create a negative pressure in the unsaturated zone, which induces the controlled flow of air and thus the migration and removal of volatile and some semivolatile contaminants from
the soil. The combined technology of air sparging and soil vapor extraction (AS/SVE) is designed to operate at high flow rates to maximize stripping of volatile contaminants.

For the TOC site, the overall effectiveness of an AS/SVE system would be limited due to the presence of free product. While the petroleum hydrocarbons would volatilize with the addition of air, air sparging is not meant for highly concentrated masses of hydrocarbons, such as an LNAPL. Air injected into the groundwater would have to travel through the free product, which would likely induce migration and spread contaminants further into the vadose zone and make little progress in remediating the source of the contamination.

An SVE system alone, however, would aid in the remediation of the Former LUST Area and the Lower Tank Yard due to the volatile nature of the contaminants present. While SVE would most likely be successful at recovering the contaminants adsorbed to soil in the vadose zone, this technology alone would have a limited effect on the contaminant concentrations in groundwater or the free product present.

3.1.4 Dual Phase Extraction

DPE, also referred to as multi-phase extraction, vacuum-enhanced extraction, or sometimes bioslurping, uses a high vacuum system to remove combinations of contaminated groundwater, separate-phase petroleum product, and hydrocarbon vapors from the subsurface. Extracted phases are collected and treated for disposal, or re-injected to the subsurface (where permissible under applicable state laws). The recovery rates for liquids and soil gas vary throughout the DPE process depending on the characteristics of on-site soil and contaminants. In general, the slurping action removes a large portion of free hydrocarbons floating over the groundwater table during the initial stage of pumping. The soil gas vacuum gradient developed around the extraction wells results in an increased accumulation of product around the wells; however, as the volume of the floating product decreases, the roles of SVE and bioventing in remediating the vadose zone soil improve.

Overall, DPE is most suitable for shallow aquifers (less than 25 feet below surface) to accommodate the suction lift of an average pump and is more effective in aquifers with moderate to high permeability. Both of these conditions exist in the Former LUST Area and the Lower Tank Yard on the Property.

There are two possible DPE applications: single-tube DPE, which extracts both vapor and liquid through a single tube at a high vacuum; or double-tube DPE, which extracts vapor by high vacuum but removes liquid via a downwell pump (either submerged or skimmer,
depending on project requirements and site conditions). Both DPE applications offer the advantage of enhanced well inflow by application of high vacuum, but they also require significant aboveground handling and treatment equipment for the vapor and liquid flows. Benefits and drawbacks of the two types of DPE technologies are as follows:

Technology	Pros
Single-tube 1. Extracts two phases simultaneously DPE 2. Treats smear zone (via vapor extraction and bioventing)	
	3. Effective in

Double-tube DPE

1. No liquid/vapor separator, some reduction in footprint of aboveground treatment equipment
2. Treats smear zone (via vapor extraction and bioventing)
3. Effective for fluctuating water tables or wide-ranging soil permeability

Cons

1. Significant aboveground treatment equipment investment and footprint
2. Air and water discharge permits required
3. Operationally demanding
4. Pilot testing and site data required for design
5. Additional cost for skimmer pumps
6. More equipment to operate and maintain
7. Air and water discharge permits required
8. Pilot testing and site data required for design

3.2 SELECTED REMEDIAL ALTERNATIVE FOR CONTAMINATED SOIL AND GROUNDWATER

To achieve the goal of remediating the maximum amount of contamination in the soil and groundwater beneath the Former LUST Area and the Lower Tank Yard in the most efficient manner possible, DPE is the most effective alternative. DPE combines the advantages of skimming, including relatively fast removal of free product to prevent further migration of contaminants in the saturated and unsaturated zones, with the vapor extraction technique of SVE to remediate the vadose zone soil. In addition, by using a high-vacuum system to remove free product, the water table will be lowered, which will expose more media to SVE. Provided the conditions in the vadose zone are supportive of microbial activity, DPE may also allow biodegradation to occur in the unsaturated zone in a manner similar to bioventing, only with higher vacuum. Also, while DPE does not target groundwater for remediation, a vacuum-enhanced recovery system will cause some groundwater to be removed and, when treated with aboveground equipment, remediated along with the free product and vapors. Removal of the LNAPL and remediation of the vadose zone, with the

AST demolition activities, will result in source removal and also aid in the restoration of groundwater.

Of the two possible DPE applications, single-tube DPE would be the more appropriate for the site. Double-tube DPE can be more expensive because additional equipment is required and can be more effective for sites with a wide range of conditions. The Former LUST Area has such a slow aquifer recharge rate that the additional expense for varying conditions is not necessary. A typical single-tube DPE system and a typical single-tube DPE well are shown in Figures 3-1 and 3-2, respectively.

The following sections of this Cleanup Action Plan are based on the selection of single-tube DPE as the preferred technology for remediation of the Former LUST Area and the Lower Tank Yard and present pilot-scale test results and plans for implementation of a full-scale DPE system.

3.3 REMEDIAL ALTERNATIVES EVALUATED FOR CONTAMINATED OVERLAYING SILT LAYER

As discussed in Section 2.3.7, a silt layer exists above the water table throughout most of the Lower Tank Yard and north of the Lower Tank Yard. Due to the less permeable properties of this portion of the subsurface, the remedial technologies discussed previously will not function effectively. Therefore, additional action must be taken in this area. Soil impacted above the cleanup levels in this area will be excavated and thermally treated.

4. DUAL PHASE EXTRACTION PILOT TEST

A DPE pilot test was conducted in the Former LUST Area of the Property in general accordance with the pilot test work plan (Foster Wheeler Environmental 2001b) and the proposal for field activities (Foster Wheeler Environmental 2001c). Field activities specific to the DPE step test commenced on July 8, 2002, and final demobilization was complete on July 18,2002 . The following sections describe the objectives of the pilot test, the results of the fieldwork, and the evaluations completed following analysis of the test results.

4.1 OBJECTIVES AND SCOPE

The primary objective of the DPE pilot test was to evaluate the effectiveness of the DPE technology as a corrective action alternative for petroleum-impacted soil and groundwater. The secondary objective of the pilot test was to gather and analyze data to further define subsurface conditions, determine potential extraction flow rates, and ascertain effluent vapor stream compositions in order to optimize the equipment design and operating conditions for a full-scale DPE system.

The scope of work for the DPE pilot test consisted of the following activities:

- Soil borings and well installation-Three monitoring wells were installed in the vicinity of $01 \mathrm{MW}-05$. Wells $01 \mathrm{MW}-18,01 \mathrm{MW}-19$, and $01 \mathrm{MW}-20$ were installed on March 11, 2002, specifically for the DPE pilot test. Well 01MW-18 was installed as the pilot test extraction well and wells $01 \mathrm{MW}-19$ and $01 \mathrm{MW}-20$ were installed for potential future use as DPE extraction points and as monitoring points during the pilot test. All three wells are 4 inches in diameter and screened across the water table from 25 to 5 feet bgs within the shallow, water-bearing zone.
- Baildown and recovery test-A baildown test was performed prior to DPE testing on well 01MW-05 to remove all free product from the well and to measure the rate of recovery of product back into the well. This test provided an estimate of the natural rate of recovery, free from vacuum enhancement, as well as an estimate of the lower bound of the rate of product flow into $01 \mathrm{MW}-05$.
- Baseline monitoring-Prior to any DPE testing, water and product levels were measured in all of the site wells to gather baseline data.
- DPE step test-The DPE step test was performed to measure vacuum-enhanced recovery at two different drop tube depths within the DPE well. The goal of the short-term operation (first step, drop tube set at 20 feet bgs in well 01MW-18) was to evaluate vacuum and groundwater level responses in nearby monitoring wells. The long-term operation (second step) was run at the maximum vacuum and flow setting and with the drop tube at its maximum depth of 23 feet bgs. Following the DPE test, groundwater recovery was monitored in wells $01 \mathrm{MW}-18$ and $01 \mathrm{MW}-20$.

4.2 PRE-PILOT TEST SAMPLING RESULTS

As discussed above, three monitoring wells were installed north of the office building prior to performing the DPE pilot test. Table 4-1 includes a summary of analytical results from soil boring samples taken during well installation. The data show that the soil was not widely impacted by petroleum products. The exceedances at depths of 15 and 20 feet bgs are most likely related to groundwater interferences. Following installation and development of these wells, groundwater samples were collected from eight monitoring wells located between the office building and West Commodore Way. A summary of groundwater analytical results is presented in Table 4-2. The data show the extent of dieseland gasoline-impacted groundwater above MTCA cleanup levels.

Laboratory reports of analytical results for soil boring and groundwater samples taken prior to the pilot test are included in Appendix B.

4.3 TEST EQUIPMENT AND SYSTEM CONFIGURATION

The treatment area was located north of the Lower Tank Yard in the vicinity of the overhead fuel loading rack. The equipment used during the DPE pilot test consisted of the DPE equipment train (provided by $\mathrm{H}_{2} \mathrm{Oil}$), a trailer-mounted generator, and a 21,000 -gallon storage tank for groundwater extracted from the Former LUST Area. The DPE equipment train included a drop tube that was inserted into the DPE extraction well and a hose that connected the drop tube to the treatment system. Once extracted and conveyed to the treatment area, the liquid/vapor mixture was collected in a separator, where the product and groundwater were accumulated prior to being pumped to the storage tank. While the pilot test system did not include an oil/water separator, the configuration of the level sensors in the liquid/vapor separator allowed extracted product to be accumulated and removed following the test. Vapors from the liquid/vapor separator were routed through two 55-gallon granular activated carbon (GAC) vessels for treatment.

To remove any volatile contaminants from the groundwater that had been pumped into the storage tank, the groundwater in the tank was air sparged. A vacuum pump was then used to withdraw the air containing volatilized contaminants from the tank and pump it to a vapor phase GAC unit separate from the one used for effluent vapors from the DPE liquid/vapor separator. The sparged liquid in the storage tank was pumped through two liquid phase GAC units to remove any contaminants not volatilized during air sparging.

Appendix C includes photographs taken of the DPE system and the aboveground equipment required for remediation of the various phases withdrawn from the subsurface of the Former LUST Area. Figure 4-1 displays the DPE extraction well (01MW-18) and the wells that were monitored during the pilot test.

4.4 TEST PROCEDURES

4.4.1 Baildown and Recovery Test

The baildown and recovery test was performed prior to DPE testing on June 3 and 4, 2002, using well 01MW-05 under static conditions. The test consisted of withdrawing all free product from the well with a peristaltic pump, transporting the petroleum hydrocarbon product to a 5-gallon bucket for disposal, and measuring the timed rate of LNAPL recovery back into the well. Product thickness measurements were taken with an oil/water interface probe. Prior to withdrawal, the initial product thickness was measured to be 5.64 feet. Following withdrawal of all product from $01 \mathrm{MW}-05,0.71$ feet of product came back into the well within approximately 23 hours.

This test provided an estimate of the natural rate of product recovery, free from vacuum enhancement, as well as an estimate of the lower bound of the rate of product flow into 01MW-05. This represents the lower bound because, in addition to using vacuum to withdraw product, a DPE system creates a cone of depression; therefore, product will flow via gravity into the extraction wells used for the DPE system. With a baildown test, however, there is no gravitational or vacuum influence.

4.4.2 Pre-test Baseline Monitoring

Prior to commencement of the DPE step test on July 8, 2002, water and product levels were measured for 15 of the wells shown in Figure 4-1 using an oil/water interface probe. This was done to document site hydrologic conditions surrounding the Former LUST Area prior
to application of vacuum to the subsurface, as well as to compare pre-test and post-test LNAPL thicknesses.

Product was encountered in five of the fifteen measured wells including wells $01 \mathrm{MW}-05$, $01 \mathrm{MW}-09,01 \mathrm{MW}-10,01 \mathrm{MW}-16$, and $01 \mathrm{MW}-18$. The product thickness was greatest in 01MW-05 at 2.77 feet, followed by well 01MW-16 at 1.36 feet. Measured product thicknesses are included in Figure 4-1, and a cross-section parallel to West Commodore Way displaying the measured static water levels is included as Figure 4-2.

4.4.3 Step Test

The DPE step test was performed on well $01 \mathrm{MW}-18$ and consisted of two steps: one with the drop tube set at 20 feet below the top of the well casing and the second with the drop tube set at 23 feet below the top of the well casing. The first step was conducted on July 8 , 2002, for approximately 15 hours at the maximum flow rate and vacuum possible. During the first 4 hours of the test, vacuum measurements were taken with a magnehelic gauge every 15 minutes from each of six monitoring wells ($01 \mathrm{MW}-03,01 \mathrm{MW}-04,01 \mathrm{MW}-05$, $01 \mathrm{MW}-19,01 \mathrm{MW}-09$, and $01 \mathrm{MW}-20$) that were located in the vicinity of $01 \mathrm{MW}-18$. Once vacuum steady state was reached within the six wells, vacuum measurements were stopped. For the duration of the test, water and product levels were measured via an interface probe and recorded every 30 minutes. These data were used to determine whether steady-state DPE operation had been reached and the radius of influence of extraction well 01MW-18 at a drop tube depth of 20 feet.

Throughout the entire test, hourly DPE system measurements of the system flow rate, the vacuum in well $01 \mathrm{MW}-18$, the system vacuum, the reading from a water flow totalizer, and the vapor contaminant concentrations at both the entrance and the exit to the GAC vapor' treatment unit were recorded. In addition, two vapor samples were withdrawn from the extraction treatment system prior to entrance into the GAC units to evaluate vapor contaminant concentrations in support of full-scale system design.

The second step of the step test, with the drop tube set at 23 feet below the top of the casing for well 01MW-18, was conducted for almost 47 hours, beginning on July 9, 2002. As with the first step, vacuum measurements were taken every 15 to 30 minutes from each of six monitoring wells during the first 5 hours of the test. Once vacuum steady state was reached within the six wells, vacuum measurements were stopped and then water and product levels were measured via an interface probe and recorded every 30 minutes and eventually every 2
hours. These data were used to determine at what point steady state DPE operation had been reached and the radius of influence of the extraction well at a drop tube depth of 23 feet.

During the second step, the same system flow and vacuum conditions were recorded on an hourly basis. Throughout this portion of the test, two vapor samples were withdrawn from the extraction treatment system prior to entrance into the GAC units.

Following the step test, water recovery was monitored on a short-term basis and product recovery was monitored on a long-term basis. To determine the length of time it took the groundwater to recover back to steady state, water levels were measured in wells 01 MW - 18 and 01MW-20 every 30 seconds to 15 minutes for almost 3 hours. Product levels were measured in all of the wells on the Property following the DPE step test and continue to be measured in all of the wells every quarter concurrent with quarterly groundwater monitoring.

4.5 PILOT TEST RESULTS

The following sections describe the results from the DPE pilot test. Laboratory reports of analytical results for samples taken prior to and during the pilot test are included in Appendix B. Tables 4-1, 4-2, and 4-3 include summaries of soil, groundwater, and vapor analytical results, respectively.

4.5.1 Step Test

The first step of the step test, performed with the DPE drop tube set at 20 feet below the top of the casing for well $01 \mathrm{MW}-18$, was conducted at an average liquid flow rate of 40 gallons per hour (gph) and an average vapor flow rate of 26 cubic feet per minute (cfm). The total volume of hydrocarbons and water recovered during the first step of the test was approximately 1,000 gallons. Typical extraction well and system vacuums were 11 and 21 inches of mercury, respectively.

The second step of the step test, performed with the DPE drop tube set at 23 feet below the top of the extraction well casing, was conducted at an average liquid flow rate of 41 gph and an average vapor flow rate of 14 cfm . The vapor flow rate during the second step was lower than the first due to an adjustment made to the system's relief valve, which terminated the inflow of ambient air to the treatment system. The total volume of water and product recovered during the second step test was approximately 2,800 gallons. During this step,
typical extraction well and system vacuums were approximately 15 and 26 inches of mercury, respectively.

4.5.2 Radius of Influence

The radius of vacuum influence was measured in the vadose zone using monitoring wells 01MW-03, 01MW-04, 01MW-05, 01MW-09, 01MW-19, and 01MW-20. These are the six wells that surround $01 \mathrm{MW}-18$. Vacuum monitoring was performed during both steps of the step test from the start of each test until a vacuum steady state was reached. Typically, the estimated limit of vacuum influence to induce air flow is set at 0.1 inches of water negative pressure. To be conservative, a second limit of vacuum influence at 0.5 inches of water was considered to account for the site heterogeneity.

Between the first and second step test, the radius of vacuum influence increased only slightly. However, with a limit of either 0.1 or 0.5 inches of water, the radius of influence for both tests expanded beyond the wells that were monitored, with the exception of 01MW-04. The vacuum measured in well 01MW-04 was zero, which is assumed to be because the subsurface in the area where the well is situated consists of backfill, used following the removal of two USTs located north of the office building. The backfill material is more permeable than the natural subsurface materials in the area; therefore, a vacuum applied to the subsurface will preferentially withdraw vapors through the backfill material and not the well. In addition, well 01MW-20 showed an unusually high vacuum, most likely due to a very low permeability at that location. Excluding wells 01MW-04 and 01MW-20, the radius of vacuum influence, determined by graphing the steady state vacuum data and applying an exponential trendline to the graph, is approximately 50 feet with a limit of 0.5 inches of water negative pressure and a drop tube depth of 23 feet bgs.

4.5.3 Radius of Depression

The radius of depression of the water table was determined via steady state fluid level measurements in 14 wells during both steps of the step test. Figure 4-2 includes a cross section parallel to West Commodore Way showing the static water levels, steady state water levels with the drop tube at 20 feet bgs, and steady state water levels with the drop tube at 23 feet bgs in 6 of the 14 wells monitored. Based on water levels measured with an interface probe and taking into account the average water level fluctuations due to weather (e.g., changes in barometric pressure, rainfall) and subsurface heterogeneity, the radius of depression is approximately 45 feet around $01 \mathrm{MW}-18$ for a limit of 0.5 feet in depth.

4.5.4 Water and Product Recharge

Following the step test, water levels were measured in wells $01 \mathrm{MW}-18$ and $01 \mathrm{MW}-20$ for almost 3 hours. In this time, the water level in 01MW-18 increased by almost 4.5 feet and the level in 01MW-20 increased by approximately 0.9 feet. However, the water levels did not return to the levels measured prior to the DPE step test in this time period. Although the differences in pre-test and post-test levels may be influenced by changing weather and subsurface conditions, $01 \mathrm{MW}-18$ and $01 \mathrm{MW}-20$ water levels were approximately 0.8 and 0.6 feet below initial fluid levels, respectively, at the cessation of the monitoring activities.

Due to water table fluctuations with time and varied subsurface geology, product recovery rates were much more difficult, if not impossible, to determine. Prior to the step test, product was measured in wells $01 \mathrm{MW}-05,01 \mathrm{MW}-09,01 \mathrm{MW}-10,01 \mathrm{MW}-16$, and 01 MW 18. Only two of these wells, $01 \mathrm{MW}-05$ and $01 \mathrm{MW}-09$, were located within the radius of depression of 10MW-18 (45 feet). The product thickness measurements collected from 01MW-05 and 01MW-09 during the pilot test did not indicate a discernible pattern in product thickness reduction. This may be attributed to a slow rate of product transfer between the wells or continuous recharge of product in the vicinity of $01 \mathrm{MW}-05$ during the test.

Following the step test, product was extracted directly from wells $01 \mathrm{MW}-05,01 \mathrm{MW}-09$, $01 \mathrm{MW}-10$, and $01 \mathrm{MW}-16$. A week after product extraction from the wells, product had flowed back into 01MW-05, -10 , and -16 , although the product thicknesses in 01MW-05 and 01MW-16 prior to product extraction were many times greater than those measured following product extraction. The product thickness measured in $01 \mathrm{MW}-10$ was close to pre-extraction thicknesses. Well $01 \mathrm{MW}-09$ had only trace amounts of product a week and a half after product was extracted from the well. When monitoring was performed on the well 3 months later (October 21, 2002), however, the product level in 01MW-09 was almost 6 times the product thickness measured prior to the DPE pilot test. When wells 01MW-05 and 01MW-10 were measured in October 2002, the product thicknesses in 01MW-05 and 01MW-16 had increased to over half of their pre-pilot test levels, while the thickness in 01MW-10 decreased significantly.

4.5.5 Extracted Vapor Analysis

Throughout the DPE step test, vapor contaminant concentrations were measured on an hourly basis using a combustible gas indicator (CGI) at both the entrance and the exit to the

GAC treatment units. At the entrance to the treatment units, gas concentrations were initially monitored by disconnecting the tubing leading to the GAC units and measuring concentrations in the moving vapor stream. Because this method yielded lower than expected vapor concentrations, the method was modified during the second step of the step test. At this time, the moving vapor stream was collected in a Tedlar ${ }^{\circledR}$ bag, which was then measured via the CGI. This method eliminated the need to measure directly from a moving vapor stream and also yielded results that were higher and likely more accurate than previously measured values (e.g., the peak values observed during the first and second steps were 4.7 ppm versus 385 ppm , respectively).

The CGI was used for continuous monitoring so that qualitative information could be obtained about the GAC unit influent stream and to ensure that the GAC unit effluent stream was suitable for release into the atmosphere. The data collected from the CGI showed that the GAC unit was successful in remediating measurable concentrations of vapors; however, quantitative vapor concentration data was needed to evaluate treatment options for the full-scale system design. Therefore, seven pre-treatment vapor samples were also collected during the DPE pilot test and analyzed. Three samples were collected in Tedlar ${ }^{\circledR}$ bags and analyzed by North Creek Analytical, Inc. for gasoline-range hydrocarbons and BTEX per modified method Northwest Total Petroleum Hydrocarbons (NWTPH). The remaining four samples were collected in Summa canisters and analyzed by Performance Analytical, Inc. for total gaseous non-methane organics as methane per modified EPA Method $25 \mathrm{C}, \mathrm{C}_{2}-\mathrm{C}_{10}$ hydrocarbons per modified EPA Method TO-3, and BTEX per EPA Method TO-15.

4.5.5.1 Tedlar ${ }^{\text {® }}$ Bag Samples

All Tedlar ${ }^{\circledR}$ bag samples were collected during extraction from well $01 \mathrm{MW}-18$. One sample was collected following system start-up, one sample was collected prior to lowering the DPE drop tube from 20 to 23 feet, and the last sample was collected during the second step of the DPE step test once steady state was reached for the wellhead vacuum measurements. Laboratory analytical results are summarized in Table 4-3.

4.5.5.2 Summa Canister Samples

These four samples were collected during extraction from wells $01 \mathrm{MW}-18,01 \mathrm{MW}-09$, $01 \mathrm{MW}-10$, and 01MW-05 prior to system shutdown, allowing an evaluation of extracted vapor representative of a full-scale extraction system. Because the extraction from wells

01MW-09, 01MW-10, and 01MW-05 were of short duration (non-steady state), the sample results presented in Table 4-3 are likely lower than results expected at steady state flow. This is due to the cone of depression that allows soil vapor flow to desiccate previously saturated and partially saturated soils in the smear zone, resulting in volatilization and removal by the extraction system.

4.5.5.3 PSCAA Requirements

The Puget Sound Clean Air Agency (PSCAA) regulates air emission sources in the Puget Sound area. Regulation 1, Article 6, Section 6.03 (c) states that a Notice of Construction (NOC) application and an Order of Approval are not required for the following sources, provided that sufficient records are kept to document the exemption:
(94) Soil and groundwater remediation projects involving <15 pounds per year of benzene or vinyl chloride, <500 pounds per year of perchloroethylene, and $<1,000$ pounds per year of toxic air contaminants.

Based on calculations using vapor contaminant concentrations prior to entrance into the GAC treatment unit (Table 4-3), the total quantity of benzene extracted during the step test and during product extraction from four additional wells was approximately 0.3 pound. This value is significantly below the 15 pound per year threshold.

Additional toxic air contaminants that fall under PSCAA regulations were detected in the vapor samples taken during product extraction from the DPE well and wells $01 \mathrm{MW}-05$, 01MW-09, 01MW-10, and 01MW-16. Following is a list of each PSCAA-regulated toxic air contaminant detected and an estimate of the total quantities extracted:

- Toluene -0.23 pounds
- Ethylbenzene - 0.05 pounds
- Xylenes -0.20 pounds
- Butane -2.0 pounds
- Pentane - 3.3 pounds
- Hexane - 2.6 pounds
- Heptane - 2.3 pounds
- Octane - 1.2 pounds
- Nonane -0.52 pounds

The PSCAA requirement for the above contaminants is that the sum of the above quantities does not exceed 1,000 pounds per year. The sum of the quantities above is approximately 12.5 pounds. Therefore, because the benzene and toxic air contaminant totals are lower than the discharge requirements set by PSCAA, an NOC application was not needed for this pilot test. In addition, note that the vapor samples were collected prior to treatment of the vapor stream with a vapor-phase GAC system arranged in series. It is expected that vapor samples collected from the GAC unit effluent stream would have resulted in concentrations below the method detection limits for all organic constituents.

4.6 POST-PILOT TEST GROUNDWATER SAMPLING RESULTS

Following completion of the DPE pilot test, water samples were collected and analyzed as part of the July quarterly groundwater monitoring. Results from this monitoring event are included in Foster Wheeler Environmental 2002 and summarized in Table 4-4. During the July monitoring event, wells $01 \mathrm{MW}-05,01 \mathrm{MW}-09$, and $01 \mathrm{MW}-18$ (among others) were not monitored because floating product was present in the wells at the time of sampling. In general, the wells showed little differences between pre- and post-test sampling. Well 01MW-04 was an exception in that the concentrations of gasoline and benzene increased.

4.7 PILOT TEST CONCLUSIONS

Conclusions reached following the DPE pilot test are summarized as follows:

- The average vapor extraction rate from well $01 \mathrm{MW}-18$ during the long-term test was approximately 13 cfm .
- The average extraction rate of groundwater/product during the long-term test was 41 gallons per hour.
- The vacuum radius of influence for the long-term test was approximately 50 feet (based on a limit of 0.5 inches of water negative pressure).
- The groundwater extraction radius of depression for the long-term test was approximately 45 feet.
- No vacuum influence was measured in well 01MW-04 at any time during the pilot test, even though the well is located within the estimated vacuum radius of influence. The backfill placed during former UST removal actions likely creates a short circuit for air flow in this area. However, groundwater was influenced by the DPE system in this area.

5. SITE CONCEPTUAL MODEL AND CLEANUP LEVELS

Washington Administrative Code (WAC) 173-340-700 requires the development of a site conceptual model to describe the subsurface conditions, fate and transport of potential contaminants, and identification of potential exposure pathways and receptors. The following sections present the site conceptual model for the Property and proposed cleanup levels.

5.1 SITE CONCEPTUAL MODEL

The site conceptual model is based on the current understanding of the site geology and hydrology, the extent of contamination, and potential exposure pathways and receptors.

5.1.1 Site Geology and Hydrology

The Puget Sound Basin is a convex-eastward basin lying between the Cascade Range and the Olympic Mountains (coastal range). The basin is open to the north and connects to the Pacific Ocean via the Strait of Juan de Fuca. The Puget Sound Basin was inundated with continental ice during the Pliestocene. At least five major advances and several lesser advances are recorded (Galster and Laparde 1991). The result of these advances was the deposition of several glacial and nonglacial accumulations. The most common unit, and the one most applicable to the Property, is the Vashon Drift. The Vashon Drift is divided into the Lawton Clay, Esperance Sand, Vashon Till, and Recessional deposits. The Lawton Clay, characterized by laminated dark gray clay and light gray silt, forms the basal unit and represents the deposition of sediments in a lake that formed as the Puget lobe advanced south and blocked the northern part of the Puget Sound Basin. The upper contact of the Lawton is generally transitional with the Esperance Sand, which represents the advance outwash of the Vashon glacier. It is commonly a fine to medium sand, with silt beds and lenticular channel deposits of gravel (Galster and Laparde 1991). The Vashon Till is a basal lodgement till that mantles much of Seattle and generally ranges from gravely, sandy silt to silty sand with varied amounts of clay and scattered cobbles and boulders.

In general, the upper 10 to 15 feet of the Property consists of silty, fine-grained sand with occasional minor gravel (possibly Vashon Till). The material is dry, dense, tan to gray, and odorless. From a depth of 15 to 25 feet, the Property consists of well-sorted, fine-grained sand (possibly Esperance Sand). The color changes from brown to gray, with a slight
increase in grain size at the water table. A fine-grained silt/clay (possibly Lawton Clay or transition zone) was encountered at depths ranging from 20 to 25 feet in nearly every boring at the site.

Groundwater at the Property flows toward the north, as shown in Figure 5-1. The gradient across the Property is approximately 0.03 feet per foot. Over the last 2 years, the water levels have not shown any significant changes in elevations. The unpaved tank yard area has groundwater elevations that are approximately 10 feet higher than the surrounding paved areas; therefore, the tank yard may serve as a recharge area.

Cross sections of the site are provided in the report documenting Phase II field activities (Foster Wheeler Environmental 2001a). Additional cross sections have been created based on the most recent field activities. Figure 5-2 provides a key showing the locations of the cross sections, which are presented in Figures 5-3 through 5-6.

Figure 5-3 includes a cross section parallel to West Commodore Way using the perimeter wells. In general, the borings show well-sorted sand to silty sand overlain by a thin layer of gravel in places. Impermeable silt was found in most of the deeper borings at a depth of about 25 feet. The silt layer encountered in boring SB-38 was unusual in its thickness (20 to 35 feet bgs).

Figure 5-4 shows a south to north cross section across the Lower Tank Yard (01MW-21) toward the Former Loading Rack Area and West Commodore Way (LR05). In general, the upper 8 feet of each boring consists of a silty material (ML). Near the Former Loading Rack Area, the upper silt layer is replaced by silty sand (SM) or clay (CL). The sandy aquifer (SW) is fairly consistent but shows a decrease in elevation to the north of the Lower Tank Yard. The underlying clay aquitard was encountered at depths of 19 to 22 feet in every boring drilled to those depths. The overlying fine-grained silty material throughout the area appears to limit vertical migration.

Figure 5-5 displays a south to north cross section to the west of the Lower Tank Yard (01MW-26) toward the Former Loading Rack Area. The stratigraphy here is similar to the Lower Tank Yard, with the exception of a thinner sandy aquifer and a thicker upper finegrained sequence (silt and silty sand). Also evident is a clay layer in the upper 3 to 8 feet of the subsurface (borings 01MW-28 and LR03). The clay aquitard is visible at a depth of approximately 19 feet in borings $01 \mathrm{MW}-26$ through $01 \mathrm{MW}-28$.

Figure 5-6 shows a fence diagram based on the borings that surround the Former Loading Rack Area. Most of these borings were completed when groundwater was encountered at approximately 15 feet. The upper 10 feet of almost every boring consists of fine-grained materials (silty sand, silt, or clay). A thin layer of gravel was encountered in the upper 4 feet of borings LR02 and LR03. A sand aquifer was contacted at a depth of 10 feet in almost every boring. LR02 and LR03 showed silty sand from 10 feet bgs to 15 feet bgs. The diagram also indicates a 5 -foot-thick layer of clay in LR02, LR03, and LR04. One boring (LR01) was drilled to a depth of 20 feet to confirm the presence of the impermeable clay (aquitard material). This clay is assumed to be present at a similar depth throughout an area consisting of the Lower Tank Yard and north of the Lower Tank Yard.

5.1.2 Extent of Contamination

Based on soil borings completed during site investigation activities discussed in Section 2.3, the soil contamination in the Former LUST Area and the Lower Tank Yard appears to be limited to the upper 10 to 15 feet of the soil column, residing mostly in silt or silty sand materials. The soil within the aquifer does not appear to be impacted nor does the underlying impermeable clay (aquitard).

Based on the October 2002 groundwater sampling results, groundwater with gasoline concentrations above MTCA Method A cleanup levels extends from the Lower Tank Yard across the Former Loading Rack Area and northwest towards the Former LUST Area (Figure 2-8). Benzene- and diesel-impacted groundwater appears to be limited to the Former LUST Area just south of West Commodore Way (Figures 2-7 and 2-9, respectively).

5.1.3 Potential Exposure Pathways and Receptors

The following sections describe potential exposure pathways and receptors at the site. The exposure pathways and receptors help define the site conceptual model and provide vital information for developing acceptable cleanup levels.

5.1.3.1 Potential Exposure Pathways

The primary exposure pathways for soil are through dermal contact, ingestion, and vapor inhalation. Most of the Property is paved, which prohibits site workers from coming into contact with the subsurface soil. Therefore, based on current conditions of the Property, dermal contact, ingestion, and soil vapor exposure are expected to be minimal. The surface of the Lower Tank Yard is not paved; however, with the exception of the upper 5 feet of soil
in boring 01MW-23, the soil does not appear to be impacted by petroleum products. The other two borings in the Lower Tank Yard, 01MW-24 and 01MW-25, are located in the concrete-lined area that previously contained the manifold system.

Groundwater flowing from the Lower Tank Yard and the Former Loading Rack Area discharges to surface water in the Lake Washington Ship Canal. There are no known intervening seeps, springs, or marshy areas that could lead to exposure to human or terrestrial receptors. In addition, the groundwater beneath the site is not used as a potable source. Therefore, direct human exposure to groundwater at the Property is highly unlikely for the following reasons:

- The groundwater does not serve as a current source of drinking water (WAC 173-340-720(2)(a)).
- The groundwater is not considered a potential future source of drinking water because it does not meet the state standards for a sustainable yield of 0.5 gallons per minute (WAC 173-340-720(2)(b)(i)).
- Due to the proximity of the Property to nearby surface waters, it is not suitable as a domestic water supply (WAC 173-340-720(2)(d)).

5.1.3.2 Potential Receptors

The Lake Washington Ship Canal is a freshwater system connected to the Puget Sound (saltwater) via the Ballard Locks. The primary ecological receptors of concern are aquatic organisms associated with surface waters in the Lake Washington Ship Canal. Aquatic organisms are treated as primary receptors because they could have an immediate, direct, and continuous exposure by way of a primary uptake route (i.e., direct contact). Higher trophic level organisms (birds and mammals) could be exposed to chemicals discharged to surface waters by dermal contact, ingestion of water, and ingestion of secondarily contaminated media such as food or sediments. In general, risks to higher trophic level organisms are negligible by dermal contact or ingestion of water. Rather, these organisms are primarily affected by chemical accumulation in food or sediments.

Chemicals in groundwater discharged into the Lake Washington Ship Canal could affect aquatic organisms through direct exposure and uptake. To assess this possibility, risk-based ecological screening values for aquatic receptors were compiled from the SQuiRT (Buchman 1999) and Oak Ridge National Laboratory's (ORNL) screening benchmarks for aquatic receptors (Suter and Tsao 1996; Sample et al. 1996; Efromyson et al. 1997). The

SQuiRT values (provided in Appendix D) were developed by the Coastal Protection and Restoration Division of NOAA to identify potential impacts to coastal resources and habitats that could be affected by hazardous waste sites. For surface waters, the SQuiRT values are based on acute and chronic values for both freshwater and saltwater. Acute refers to the highest level for a 1-hour average exposure, not to be exceeded more than once every 3 years, and is also known as a criteria maximum concentration (CMC). Chronic refers to the highest level for a 4-day average exposure, not to be exceeded more than once every 3 years, and is also known as a criteria continuous concentration (CCC).

The SQuiRT values are intended for preliminary screening purposes only; they do not represent official NOAA policy and do not constitute criteria or cleanup levels. SQuiRT values for trace elements are based on filtered samples (dissolved concentrations). NOAA also uses these tables to screen groundwater concentrations; however, for comparisons with groundwater concentrations, NOAA uses 10 times the applicable screening value or, if available, suitable site-specific dilution factors to account for the dilution expected during migration and upon discharge of groundwater to surface water (Buchman 1999).

5.2 CLEANUP STANDARDS

TOC proposes to use MTCA Method A cleanup levels for unrestricted soil use (WAC 173-340-900, Table 740-1) for initial site activities. These levels may be conservative based on the current zoning of the property (industrial), but will also provide TOC with more options in regards to future land development without land use restrictions. Groundwater cleanup levels are based on applicable regulations, guidance, and the site conceptual model. NOAA SQuiRT values will be used for benzene, toluene, and ethylbenzene. In the absence of a NOAA SQuiRT value, the default MTCA Method A Cleanup Level for Groundwater (WAC 173-340-900, Table 720-1) will be used. The MTCA Method A values for groundwater are conservative in that they are designed for the protection of drinking water. Because the aquifer is not used for that purpose, nor is it likely to be used as such in the future, these values may not be applicable. After the full-scale DPE system has been installed, new cleanup levels for soil and groundwater may be proposed that are more site-specific and risk-based.

6. PROJECT REQUIREMENTS

6.1 INSTITUTIONAL CONTROLS

MTCA requires the identification of institutional controls associated with the Cleanup Action Plan (WAC 173-340-380(1)(a)(vi)). Institutional controls are defined as measures undertaken to limit or prohibit activities that may interfere with the integrity of an interim or cleanup action or that may result in exposure to hazardous substances on site (WAC 173-340-440). For the proposed remedial actions, the following institutional controls will be applied at the Property:

- The treatment system will be kept in a secured area behind a fence with a locked gate. Access will be restricted to authorized personnel.
- The Property is currently zoned as industrial and is located in the Ballard Interbay Northend Manufacturing and Industrial Center (BINMIC) corridor. The BINMIC planning committee is working with the city to help properties in the area retain their industrial zoning.
- The proposed system will require periodic maintenance, also identified as a form of institutional control.

6.2 APPLICABLE STATE AND FEDERAL LAWS

Applicable local, state, and federal laws and regulations for the proposed cleanup action are summarized below. These regulations are identified based on the information known at the current step in the cleanup process (this does not preclude subsequent identification of applicable local, state, and federal laws). The regulations have been grouped in similar protection standards for ease in tracking and implementation.

6.2.1 Cleanup Standards

Model Toxics Control Act (WAC 173-340). MTCA is Washington State's contaminated site cleanup law. Through MTCA, Ecology established cleanup standards and regulations to protect citizens and the environment. This statute and implementing regulations are applied to the selection of cleanup actions, the institutional controls, and the cleanup standards for the chemical contamination. This CAP has been prepared in accordance with MTCA requirements, including the cleanup levels presented therein.

Washington State Surface Water Quality Standards (WAC 173-201A). These standards establish the maximum concentration levels for constituents in surface waters of the state. These standards are to be considered in conjunction with MTCA cleanup levels for cleanup projects.

Washington State Ground Water Quality Standards (WAC 173-200). These standards establish the maximum concentration levels for constituents in groundwater of the state. These standards are to be considered in conjunction with MTCA cleanup levels for cleanup projects.

6.2.2 Waste Management and Disposal

State Hazardous Waste Management Act (RCW 70.105A), Dangerous Waste Regulations (WAC 173-303), and the Resource Conservation and Recovery Act (RCRA) Regulations (40 CFR 261-268). These regulations establish the requirements for hazardous waste identification, accumulation, manifesting, transport, storage, and disposal. These requirements are applicable if hazardous or dangerous waste is generated.

Washington State Solid Waste Minimal Functional Standards (WAC 173-304) and King

 County Solid Waste Regulations (Title 10). These regulations cover the handling, management, and disposal of solid wastes in Washington and King County. The minimum standards that need to be met for solid wastes are established in these regulations.U.S. Department of Transportation Hazardous Materials Regulations (49 CFR 100-185). These regulations establish the requirements for handling, packaging, labeling, marking, and recordkeeping for transportation of hazardous materials, which include hazardous substances and hazardous waste.

6.2.3 Air Quality Regulations

Federal Clean Air Act (CAA) (40 CFR 50-99) and Washington State CAA (RCW 70.94; WAC 173-400-491). These regulations establish the ambient air quality standards and emissions standards for air pollutants in Washington, including the National Emission Standards Hazardous Air Pollutants (NESHAPS, CAA).

PSCAA Regulations I and III. PSCAA implements requirements for the Federal CAA and the Washington State CAA throughout the Puget Sound air basin, which includes King County. Regulations I and III establish the regulatory requirements for new source
permitting and operating permits, emissions standards and monitoring, ambient air quality standards, toxic air sources and NESHAPs, source specific emission standards, asbestos standards, and demolition requirements.

6.2.4 Water Quality Protection Regulations

Clean Water Act (CWA), Stormwater National Pollutant Discharge Elimination System

 (NPDES) Regulations (40 CFR 122.28; 64 FR 68720). In March 2003, the Stormwater Phase II regulations under the CWA become effective. These regulations require construction activities that are an acre or more in size to obtain coverage under the Stormwater General NPDES Permit for Construction Activities. At this time, project activities are not anticipated to cover an acre or more in area; however, in the event project activities do meet this trigger, coverage under this permit will be obtained via a Notice of Intent (NOI) filed with Ecology. In addition, a Stormwater Pollution Prevention Plan (SWPPP) will be prepared and implemented. If the project site remains less than an acre, Best Management Practices (BMPs) will be implemented to minimize any potential impact and pollution runoff to stormwater.
King County Wastewater Discharge Permit (RCW 90.48; WAC 173-216; King County

 Code 28.84.060 Ordinance No. 11034). Wastewater Discharge Permit 7689-01 governs the discharge of wastewater from the TOC Property into the sanitary sewer system located on the site. If wastewater is proposed for discharge into the sanitary sewer system as part of this project, all applicable requirements of the discharge permit will be implemented, including monitoring and recordkeeping.Minimum Standards for Construction and Maintenance of Wells (WAC 173-160). These standards establish the minimum requirements for the construction and decommissioning of all wells in Washington. Any wells constructed and installed or decommissioned as part of this project will meet these regulatory requirements, including the filing of an NOI and construction requirements.

Rules and Regulations Governing the Regulation and Licensing of Well Contractors and

 Operators (WAC 173-162). A well operator license is required for all operators engaged in constructing or decommissioning water wells. Only current licensed drillers will be used in the event of installation of any wells, including resource protection wells.
6.2.5 General Environmental Protection Regulations

State Environmental Policy Act (SEPA) (WAC 197-11). As required by WAC 197-11250(c), independent remedial actions are subject to the requirements of SEPA, including preparation of a SEPA checklist, identification of environmental impacts, and an environmental review.

6.3 OPERATIONS AND MAINTENANCE

Prior to implementation of a full-scale DPE system, an Operation and Maintenance plan will be prepared in accordance with the requirements of WAC 173-340-400(4)(c). The plan will assure effective operations of the system under both normal and emergency conditions.

7. RECOMMENDED CLEANUP ALTERNATIVE

Based on an evaluation of available treatment technologies and the results of the DPE pilot scale test, the recommended cleanup alternative for the Former LUST Area and the Lower Tank Yard on the Property is a full-scale DPE system. Installation of the system will follow site preparation activities, which will likely include excavation and treatment of petroleumcontaminated soil from the vadose zone in heavily contaminated, fine-grained areas of the site.

Detailed plans for implementation of the remedial action as required by WAC 173-340-400 will be completed at a later date. The detailed plans will be included in an engineering design report that contains system plans and specifications and operation and maintenance requirements.

7.1 PROPOSED EXTRACTION SYSTEM

The proposed full-scale DPE system will utilize existing and new wells as extraction points. Extraction wells will be manifolded to a common trunk line and connected to a system that includes an extraction pump, water/vapor separator, transfer pump, equalization tank, oil/water separator, water treatment system, and vapor treatment system. A conceptual layout of the full-scale system is shown in Figure 7-1.

7.1.1 Extraction Wells

Based on historical groundwater sampling data and the extraction radius of influence from the pilot scale test, it is estimated that at least 7 to 10 extraction wells will be required for the full-scale system (Figure 7-1). Extraction well locations will be based on the presence of free-phase product in wells and the concentration of contaminants in groundwater. The drop tube for each well will be height-adjustable, which will allow for each well's extraction rate to be optimized based on depth to groundwater, the presence of free-phase product, and the rate of groundwater extraction. All wells will be connected to a common collection pipe for delivery of the extracted liquid and vapor to the treatment system. Each extraction well will be fitted with a manual valve, allowing control of the overall extraction rate and therefore the radius of influence.

7.1.2 Monitoring Wells

Existing groundwater monitoring wells not used as extraction wells will be used as system monitoring points. This will allow for measurement of groundwater levels and subsurface vacuums, as well as for the collection of groundwater samples for evaluation of contaminant concentrations.

7.1.3 Extraction System Components

A general description of the treatment system components is presented below. Final system configuration and sizing will be completed prior to implementation of the full-scale system, and will be included in the engineering plans and specifications.

7.1.3.1 Extraction Pump

The extraction pump will be sized based on the total number of extraction wells and estimated flow rates. Potential pump types include oil sealed liquid ring or rotary lobe blowers. The final pump selection will be based on the expected system vacuum, operation and maintenance considerations, and the possibility of emulsification of free product.

7.1.3.2 Liquid/Vapor and Oil/Water Separators

A liquid/vapor separator will accumulate groundwater and free-phase product. When liquid levels trigger the high-level switch on the separator, a liquid transfer pump will transfer accumulated liquid to a coalescing plate oil/water separator. Separated free-phase product will be stored in a small tank connected to the oil/water separator, which will be monitored and pumped out as necessary for disposal or recycling. The separators and transfer pump will be sized based on anticipated liquid recovery rates.

7.1.3.3 Groundwater Treatment System

Water from the oil/water separator will be transferred by gravity to a batch tank for storage prior to treatment. Water will be treated using a counter-current tray stripper. Sizing of the tray stripper will be based on an evaluation of allowable effluent concentrations in the treated water and the removal efficiency of the oil/water separator. The discharge location will be evaluated during the design phase, but may include delivery to a nearby sanitary sewer under permit with King County Metro.

7.1.3.4 Vapor Treatment System

Vapor from the initial liquid/vapor separator and the tray stripper will be treated prior to discharge into the atmosphere. The initial treatment unit will likely include an oxidizer, but the treatment method may transition to vapor-phase GAC and/or direct discharge when vapor concentrations decrease to appropriate levels. The vapor treatment system(s) will be selected and sized based on anticipated vapor extraction rates.

8. SCHEDULE

CAP implementation is currently scheduled for the fall of 2003. The schedule may change due to weather or conflicting subcontractor schedules. A detailed schedule will be provided when the engineering design report is complete.

9. REFERENCES

Battelle. 1995. Draft Best Practical Manual for Bioslurping. Columbus, Ohio.
Buchman, M.F. 1999. NOAA Screening Quick Reference Tables NOAA HAZMAT Report 99-1, Seattle, Washington. Coastal Protection and Restoration Division, National Oceanic and Atmospheric Administration. 12 pp.

Ecology (Washington State Department of Ecology). 2001. Chapter 173-340 WAC, Model Toxics Control Act Cleanup Regulation. Ecology Publication No. 94-06. Amended February 12, 2001.

Ecology. 2003. Technical Correspondence from Jerome B. Cruz of Washington State Department of Ecology to Bryan S. Graham of Foster Wheeler Environmental Corporation. January 15, 2003.

Efromyson, R.A., G.W. Suter, B.E. Sample, and D.S. Jones. 1997. Preliminary Remediation Goals for Ecological Endpoints. U.S. Department of Energy, Office of Environmental Management, Risk Assessment Program, Health Sciences Research Division, Oak Ridge, Tennessee.

EPA (United States Environmental Protection Agency). 1995. How to Evaluate Alternative Cleanup Technologies for Underground Storage Tank Sites. A Guide for Corrective Action Plan Reviewers. EPA 510-B-95-007. Office of Solid Waste and Emergency Response 5403W. May 1995.

Foster Wheeler Environmental. 2000. Environmental Site Assessment: Phase I at 2737 West Commodore Way, Seattle, Washington. Prepared for Time Oil Company. August 25, 2000.

Foster Wheeler Environmental. 2001a. Final Environmental Site Assessment: Phase II at 2737 West Commodore Way, Seattle, Washington. Prepared for Time Oil Company. April 6, 2001.

Foster Wheeler Environmental. 2001b. Proposed Pilot Testing Activities at 2737 West Commodore Way, Seattle, Washington. Prepared for Time Oil Company. October 16, 2001.

Foster Wheeler Environmental. 2001c. Letter from Bryan S. Graham (Foster Wheeler Environmental) to Scott B. Sloan (Time Oil Company). Subject: Proposal to Conduct Dual Phase Extraction Pilot Testing Activities for Time Oil Company at 2737 West Commodore Way, Seattle, Washington. October 25, 2001.

Foster Wheeler Environmental. 2001d. Final Phase III Environmental Site Assessment and Quarterly Groundwater Sampling at 2737 West Commodore Way and 2750 West Commodore Way, Seattle, Washington. Prepared for Time Oil Company. December 28, 2001.

Foster Wheeler Environmental. 2002. Quarterly Sampling Report for July 2002 at 2737 • West Commodore Way and 2750 West Commodore Way, Seattle, Washington. Prepared for Time Oil Company. October 2002.

Galster, R.W. and W.T. Laprade. 1991. Geology of Seattle, Washington, United States of America. Bulletin of the Association of Engineering Geologists. 28(3): 235-302.

IT (IT Corporation). 2000. Site Assessment Report, Time Oil Co. Site 2737, 2750 West Commodore Way, Seattle, Washington. March 8, 2000.

Sample, B.E., D.M. Opresko, and G.W. Suter. 1996. Toxicological Benchmarks for Wildlife: 1996 Revision. U.S. Department of Energy, Office of Environmental Management, Risk Assessment Program, Health Sciences Research Division, Oak Ridge, Tennessee.

Suter, G.W., and C.L. Tsao. 1996. Toxicological Benchmarks for Screening Potential Contaminants of Concern for Effects on Aquatic Biota: 1996 Revision. U.S. Department of Energy, Office of Environmental Management, Risk Assessment Program, Health Sciences Research Division, Oak Ridge, Tennessee.

TOC (Time Oil Company). 1991. Underground Storage Tank Site Check/Site Assessment at Seattle Terminal, 2737 West Commodore Way, Seattle, Washington - Property No. 01-228. December 30, 1991.

Time Oil Company
Cleanup Action Plan for
Petroleum-Impacted Soil and Groundwater 2737 West Commodore Way

FIGURES

LEGEND

NOTE
Source: EPA 1995
IMProjects\23063312\dwg\ETIOFG49.dwg 01/22/2003 0109123 PM PST
Vacuum Extracted
Water and/or
Floating Product

LEGEND

FOSTER WHEELER ENVIRONMENTAL CORPORATION

LEGEND

Mo - - poorly sorted gravel	
ETIA a - inaganic car	Embist
Su-surim Sano	-3. SP - Poorly sorteo Sand

Time Oil Company
Cleanup Action Plan for
Petroleum-Impacted Soil and Groundwater 2737 West Commodore Way

TABLES

Petroleum-Impacted Soil and Groundwater 2737 West Commodore Way

Table 2-1. Analytical Results from 1999 Soil Samples Above Cleanup Levels

| | $\begin{array}{c}\text { Depth } \\ (\text { feet })\end{array}$ | $\begin{array}{c}\text { Gasoline } \\ (\mathrm{mg} / \mathrm{kg})\end{array}$ | | $\begin{array}{c}\text { Diesel } \\ (\mathrm{mg} / \mathrm{kg})\end{array}$ | $\begin{array}{c}\text { Oil } \\ (\mathrm{mg} / \mathrm{kg})\end{array}$ | $\begin{array}{c}\text { Benzene } \\ (\mathrm{mg} / \mathrm{kg})\end{array}$ | $\begin{array}{c}\text { Toluene } \\ (\mathrm{mg} / \mathrm{kg})\end{array}$ | $\begin{array}{c}\text { Ethyl- } \\ \text { benzene } \\ (\mathrm{mg} / \mathrm{kg})\end{array}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | \(\left.\begin{array}{c}Total

Xylene

(\mathrm{mg} / \mathrm{kg})\end{array}\right]\)

Notes:

Detections above cleanup levels are indicated in bold italics.
1/ MTCA Method A cleanup levels for unrestricted land use
2/ All other gasoline mixtures
3/ Gasoline mixtures without benzene and the total of ethylbenzene, toluene, and xylene $<1 \%$ of the gasoline mixture
< symbol indicates result is less than method reporting limit
$\mathrm{mg} / \mathrm{kg}=$ milligrams per kilogram

Table 2-2. Analytical Results from 1999 Groundwater and Boring Water Samples

	Date	Total lead $(\mu \mathrm{g} / \mathrm{L})$	Gasoline $(\mu \mathrm{g} / \mathrm{L})$	Diesel $(\mu \mathrm{g} / \mathrm{L})$	Oil $(\mu \mathrm{g} / \mathrm{L})$	Benzene $(\mu \mathrm{g} / \mathrm{L})$	Toluene $(\mu \mathrm{g} / \mathrm{L})$	Ethyl- benzene $(\mu \mathrm{g} / \mathrm{L})$	Total Xylene $(\mu \mathrm{g} / \mathrm{L})$
MTCA $^{1 /}$		$\mathbf{1 5}$	$\mathbf{8 0 0 ^ { 2 / }}$	$\mathbf{1 , 0 0 0}$					

[^0]Time Oil Company
Cleanup Action Plan for
May 2003
Petroleum-Impacted Soil and Groundwater
2737 West Commodore Way

Table 2-3. Well Construction Details

Well	Coordinates		Top of Casing Elevation (Feet msl)	Ground Elevation (Feet msl)	$\begin{array}{\|c} \text { Total Depth } \\ \text { of Boring } \\ \text { (Feet bgs) } \end{array}$	Total Depth of Well (Feet bgs)	Depth of Screen Interval (Feet bgs)	Elevation of Screen Interval (Feet msl)
	Northing (Feet)	Easting (Feet)						
01MW-01	245454.6	1256198.2	46.48	46.76	25.00	25.25	10-25	36.76-21.76
01MW-02	245585.0	1256198.5	44.78	45.15	25.00	24.91	10-25	35.15-20.15
01MW-03	245597.6	1256160.5	44.35	44.75	25.20	25.15	10-25	34.75-19.75
01MW-04	245563.1	1256163.1	45.08	45.56	25.00	24.90	10-25	35.56-20.56
01MW-05	245569.3	1256114.0	45.40	45.77	25.00	24.88	10-25	35.77-20.77
01MW-06	245452.7	1256064.6	47.74	48.23	25	25.10	10-25	38.23-23.23
01MW-07	245570.7	1255975.9	45.17	45.53	30	28.17	15-30	30.53-15.53
01MW-08	245570.5	1256071.0	45.21	45.63	25	24.93	10-25	35.63-20.63
01MW-09	245602.1	1256103.0	43.91	44.37	25	24.70	10-25	34.37-19.37
01MW-10	245580.4	1256247.0	45.02	45.35	25	24.90	10-25	35.35-20.35
01MW-11	245545.1	1256368.9	46.10	46.45	30	29.90	15-30	31.45-16.45
01MW-12	245444.9	1256316.1	45.84	46.29	20	20.00	5-20	40.84-25.84
01MW-13	245317.3	1256313.3	46.36	46.81	20	19.88	15-20	31.81-26.81
01MW-14	245441.7	1256252.4	46.15	46.15	15	15.00	5-15	41.15-31.15
01MW-15	245441.3	1255996.4	50.89	50.89	302	30.00	10-30	40.89-20.89
01MW-16	245582.7	1256220.0	44.95	44.95	22.5	20.00	10-20	34.95-24.95
01MW-17	245166.9	1256477.5	59.42	59.42	30	30.00	15-30	44.42-29.42
01MW-18	245577.3	1256114.2	45.18	45.68	26.5	25.00	5-20	40.68-25.68
01MW-19	245572.5	1256100.6	45.35	45.85	31.5	25.00	5-20	40.85-25.78
01MW-20	245547.0	1256107.1	46.27	46.77	26.5	25.00	5-20	41.77-26.77
01MW-21	245382.3	1256257.4	46.21	46.52	23.5	22.92	5-22	41.21-23.79
01MW-22	245422.2	1256251.7	46.11	46.47	25	24.70	5-24	41.11-21.91
01MW-23	245451.9	1256257.4	45.81	46.11	20.5	19.45	5-19	40.81-26.86
01MW-24	245494.0	1256245.7	N/A	44.59	21	19.40	5-19	39.59-25.69
01MW-25	245469.4	1256246.5	N/A	44.61	20.5	17.32	5-16	39.61-28.29
01MW-26	245451.1	1256215.0	46.24	46.71	20.5	19.85	5-19	41.24-27.39
01MW-27	245479.0	1256213.5	46.33	46.70	21.5	19.65	5-19	41.33-27.68
01MW-28	245513.8	1256214.2	45.54	46.30	25.5	24.61	5-24	40.54-21.93
01MW-29	245522.2	1256244.6	45.57	45.92	20.5	19.75	5-19	40.57-26.82

Notes:

Horizontal datum = Washington State Plane Coordinate System (North Zone), NAD 83/91
Vertical datum $=$ NAVD 88
$\mathrm{N} / \mathrm{A}=$ top of casing data not measured due to presence of surface water

Table 2-4. Analytical Results from 2001 Phase II Soil Samples Above Cleanup Levels (Page 1 of 2)
$\left.\begin{array}{l|c|c|c|c|c|c|c|c}\hline \text { Sample } & \begin{array}{c}\text { Gasoline } \\ (\mathrm{mg} / \mathrm{kg})\end{array} & \begin{array}{c}\text { Benzene } \\ (\mathrm{mg} / \mathrm{kg})\end{array} & \begin{array}{c}\text { Ethylbenzene } \\ (\mathrm{mg} / \mathrm{kg})\end{array} & \begin{array}{c}\text { Xylene } \\ (\mathrm{mg} / \mathrm{kg})\end{array} & \begin{array}{c}\text { PCP } \\ (\mathrm{mg} / \mathrm{kg})\end{array} & \begin{array}{c}\text { Diesel } \\ (\mathrm{mg} / \mathrm{kg})\end{array} & \begin{array}{c}\text { Oil } \\ (\mathrm{mg} / \mathrm{kg})\end{array} & \begin{array}{c}\text { CPAHs } \\ (\mathrm{mg} / \mathrm{kg})\end{array} \\ \hline \text { MTCA }^{1 /} & 30^{2 /} & 100^{3} & 0.03 & 6 & 9 & 8.33^{4 /} & 2,000 & 2,000\end{array}\right] \mathbf{1}$.

Upper Rail Line Spur								
SB-22-5	266	<0.250	<0.250	<0.500	na	19.4	<25.0	na
SB-22-10	293	<0.250	<0.250	<0.500	na	6,490	<525	na

Upper Tank Yard

SB-13-2	9,340	14.3	54.8	<75.0	na	10,600	1,500	na
SB-15-2	902	<0.500	<3.00	<6.00	na	2,910	265	na

Lower Tank Yard

SB-19-2	1,500	<1.00	<1.70	<8.00	na	4,070	<275	na
SB-19-5	960	<0.500	<0.500	<6.00	na	1,340	<75.0	na
SB-24-2	58.4	<0.0500	<0.0643	<0.164	na	2,610	<1030	na
SB-24-10	252	<0.236	<0.910	<1.34	na	366	60.9	na

PCP/Diesel Mixing Area (Lower Tank Yard)

SB-02-2	217	<0.200	<0.200	<0.400	<0.250	1,400	158	0.23
SB-03-0.6	<5.00	<0.0500	<0.0500	<0.100	202	2,010	4,780	1.08
SB03A (2 ft)	1,670	<1.00	<7.00	<16.2	<0.500	14,700	6,350	4.53
SB-04-0.6	na	na	na	na	803	na	na	2.67
SB-04-2	513	<0.250	<0.470	<0.875	1.26	5,670	2,320	1.70
SB-04-5	8.42	<0.0500	<0.0500	<0.100	20.9	217	260	8.09
SS-01	na	na	na	na	3.87	na	na	1.75
SS-03	na	na	na	na	<2.50	na	na	1.75
SS-04	na	na	na	na	<0.500	na	na	9.26

Former Rail Line Spur Behind Warehouse

SB-07-5	$\mathbf{1 , 2 4 0}$	2.17	$\mathbf{7 . 6}$	$\mathbf{1 8 . 2}$	<0.250	1,190	783	na
Former Barrel Shed								
SB-27-5	121	<0.100	<0.100	<0.314	na	1,190	<525	0.35
SB-29-2	536	<0.500	<0.500	<1.83	na	3,220	1,160	1.75
SB-29-5	393	<0.200	<0.560	<1.12	na	1,930	488	0.7
SB-30-2	5,120	<1.00	<9.12	<33.0	na	832	<275	0.18
SB-31-2	577	<0.512	<0.824	<2.52	na	11,400	7,730	na

Table 2-4. Analytical Results from 2001 Phase II Soil Samples Above Cleanup Levels (Page 2 of 2)

Sample	Gasoline $(\mathrm{mg} / \mathrm{kg})$	Benzene $(\mathrm{mg} / \mathrm{kg})$	Ethylbenzene $(\mathrm{mg} / \mathrm{kg})$	Xylene $(\mathrm{mg} / \mathrm{kg})$	PCP $(\mathrm{mg} / \mathrm{kg})$	Diesel $(\mathrm{mg} / \mathrm{kg})$	Oil $(\mathrm{mg} / \mathrm{kg})$	cPAHs $(\mathrm{mg} / \mathrm{kg})$
MTCA $^{1 /}$	$\mathbf{3 0}^{\mathbf{2}}$	$\mathbf{1 0 0}^{31}$	$\mathbf{0 . 0 3}$	$\mathbf{6}$	$\mathbf{9}$	$\mathbf{8 . 3 3 ^ { 4 / }}$	$\mathbf{2 , 0 0 0}$	$\mathbf{2 , 0 0 0}$
Former AST Area								
SB-32-5	216	<0.200	<0.200	<0.508	na	15.7	<25.0	na
SB-45-2	3,940	<2.50	<25.0	<85.0	na	2,500	2,800	na
SB-45-5	557	<0.500	<0.500	<1.30	na	2,200	<75.0	na
Former LUST Area								
SB-35-5	$\mathbf{1 9 2}$	<0.100	<0.780	<1.72	na	1,190	631	na
SB-35-15	1,640	<1.00	<2.38	<11.0	na	9,440	1,160	na
SB-36-15	4,340	<7.70	33.8	171	na	$\mathbf{1 1 , 3 0 0}$	<275	na

West Commodore Way Perimeter								
SB-37-10	$\mathbf{1 , 0 8 0}$	<1.00	<2.40	<2.10	na	5,770	<275	na
SB-37-15	<5.00	<0.0500	<0.0500	<0.100	na	9,130	<275	na
SB-39-2	34.8	<0.0500	0.167	0.567	na	$\mathbf{2 , 4 4 0}$	460	na
SB-39-5	605	<0.280	<1.68	<3.24	na	1,300	157	na

Notes:

Detections above cleanup levels are indicated in bold italics.
1/ MTCA Method A cleanup levels for unrestricted land use
2/ All other gasoline mixtures
3/ Gasoline mixtures without benzene and the total of ethylbenzene, toluene, and xylene $<1 \%$ of the gasoline mixture
4/ MTCA Method B carcinogenic cleanup level
< symbol indicates result is less than method reporting limit
$\mathrm{na}=\mathrm{No}$ analysis requested
$\mathrm{mg} / \mathrm{kg}=$ milligrams per kilogram

Petroleum-Impacted Soil and Groundwater
2737 West Commodore Way

Table 2-5. Analytical Results from 2001 Phase II Groundwater Samples Above Cleanup Levels

Sample	Date	$\begin{array}{\|c} \hline \mathbf{P C P} \\ (\mu \mathrm{g} / \mathrm{L}) \end{array}$	$\begin{gathered} \hline \text { Lead } \\ (\mu \mathrm{g} / \mathrm{L}) \end{gathered}$	Gasoline $(\mu \mathrm{g} / \mathrm{L})$	$\begin{aligned} & \text { Diesel } \\ & (\mathrm{mg} / \mathrm{L}) \end{aligned}$	$\begin{gathered} \hline \text { Oil } \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$	Benzene ($\mu \mathrm{g} / \mathrm{L}$)	Toluene ($\mu \mathrm{g} / \mathrm{L}$)	Ethylbenzene ($\mu \mathrm{g} / \mathrm{L}$)	Xylene ($\mu \mathrm{g} / \mathrm{L}$)
MTCA $^{1 /}$		15^{21}	15	800^{3}	0.500	0.500	5	1,000	700	1,000
Former LUST Area										
01MW-01	11/16/00	na	<0.00100	75.2	1.65	<0.500	0.924	1.46	<0.500	193
01MW-02	11/16/00	na	<0.00100	12,700	5.00	<0.500	3,300	1,010	331	1,510
01MW-03	11/16/00	na	<0.00100	3,620	1.65	<0.500	1,020	26.9	63.6	210
01MW-04	11/16/00	na	<0.00100	7,930	1.86	<0.500	71.2	402	570	2,840
01MW-08	12/1/00	na	<0.00100	< 50.0	0.404	<0.500	< 5.00	<0.500	<0.500	<1.00
01MW-09	12/1/00	na	<0.00100	2,210	1.07	<0.500	302	143	65.2	333

Former Barrel Shed Area

$01 \mathrm{MW}-06$	$11 / 30 / 00$	1.80	<0.00100	87.4	<0.250	<0.500	<1.08	<0.500	<0.500	<1.00

Former AST Area

Former AST Area										
$01 \mathrm{MW}-07$	$12 / 1 / 00$	na	<0.00100	<50.0	<0.250	<0.500	<5.00	<0.500	<0.500	<1.00

West Commodore Way Perimeter										
$01 \mathrm{MW}-11$	$12 / 1 / 00$	na	<0.00100	<50.0	0.504	<0.500	<0.500	<0.500	<0.500	<1.00

Lower Tank Yard Area

Lower Tank Yard Area										
01MW-12	12/5/00	na	<0.00100	802	1.07	<0.500	98.4	11.0	17.4	24.6
Upper Tank Yard Area										
01MW-13	12/5/00	na	<0.00100	254	3.94	0.513	<0.500	0.694	<0.817	<1.23

Notes:

Detections above cleanup levels are indicated in bold italics.
1/ MTCA Method A cleanup levels for groundwater, unless otherwise noted
$2 /$ NOAA SQuirT value for freshwater continuous concentrations
3/ Benzene present in groundwater
< symbol indicates result is less than method reporting limit
na $=$ No analysis requested
$\mu \mathrm{g} / \mathrm{L}=$ micrograms per liter
$\mathrm{mg} / \mathrm{L}=$ milligrams per liter

Table 2-6. Analytical Results from 2001 Phase III Soil Samples Above Cleanup Levels

Sample	PCP $(\mathrm{mg} / \mathrm{kg})$	Diesel $(\mathrm{mg} / \mathrm{kg})$	Gas $(\mathrm{mg} / \mathrm{kg})$	Benzene $(\mathrm{mg} / \mathrm{kg})$	Ethylbenzene $(\mathrm{mg} / \mathrm{kg})$	Xylenes $(\mathrm{mg} / \mathrm{kg})$	cPAHs $(\mathrm{mg} / \mathrm{kg})$
MTCA $^{1 /}$	$8.33^{2 /}$	2,000	$30^{3 /}$	$100^{4 /}$	0.03	6	9
\mathbf{l}							

Former PCP/Diesel Mixing Area (Lower Tank Yard Area)

SB-52-2.5	<0.0500	$\mathbf{4 , 1 8 0}$	$\mathbf{1 , 4 1 0}$	<1.00	1.42	2.18	0.1187
SB-55-6	0.174	370	$\mathbf{1 8 5}$	<0.200	0.811	3.06	0.0572
SB-56-2.5	<0.500	28,300	5,100	$\mathbf{1 0 . 2}$	29.3	75.6	2.624
SB-56-5	8.88	2,040	4,060	9.36	22.3	$\mathbf{6 0 . 5}$	0.736
SB-57-1.5	<0.0500	3,970	2,590	$\mathbf{0 . 3 8 7}$	$\mathbf{1 8 . 2}$	8.85	0.189

Former Barrel Shed Area

SB-59-5	<0.500	4,950	799	<1.00	1.94	<2.00	na
West Commodore Way Perimeter Area							
SB-60-15	na	11,400	1,240	1.68	4.04	10.2	0.0000

Notes:

[^1]Table 2-7. Analytical Results from 2001 Phase III Groundwater Samples Above Cleanup Levels

| Sample | Diesel $(\mathrm{mg} / \mathrm{L})$ | Gas $(\mu \mathrm{g} / \mathrm{L})$ | Benzene $(\mu \mathrm{g} / \mathrm{L})$ | Xylenes $(\mu \mathrm{g} / \mathrm{L})$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| MTCA $^{1 /}$ | 0.5 | $800^{2 /}$ | $\mathbf{1 , 0 0 0}$ | |

Former LUST Area

$01 \mathrm{MW}-01$	1.11	<50.0	<0.500	<1.00
$01 \mathrm{MW}-02$	5.01	14,800	6,900	1,110
$01 \mathrm{MW}-03$	2.84	24,500	$\mathbf{1 1 , 9 0 0}$	515
$01 \mathrm{MW}-04$	1.79	6,460	1,210	1,470
$01 \mathrm{MW}-07$	1.45	<50.0	<0.500	<1.00
$01 \mathrm{MW}-08$	0.662	<50.0	<0.500	<1.00
$01 \mathrm{MW}-09$	5.72	$\mathbf{1 , 8 3 0}$	213	230

West Commodore Way Perimeter Area

$01 \mathrm{MW}-11$	1.53	<50.0	<0.500	<1.00
$01 \mathrm{MW}-16 \mathrm{~A}$	11.1	11,000	3,910	891
$01 \mathrm{MW}-16 \mathrm{~B}$	9.62	9,390	3,700	745

Lower Tank Yard Area

$01 \mathrm{MW}-12$	$\mathbf{6 . 5 5}$	$\mathbf{1 , 3 5 0}$	482	26.4

Upper Tank Yard Area

$01 \mathrm{MW}-13$	3.90	221	1.26	2.31
Former Barrel Shed Area				
$01 \mathrm{MW}-06$	$\mathbf{0 . 7 1 8}$	<50.0	<0.500	<1.00

New Barrel Shed Area

$01 \mathrm{MW}-15$	0.484	<50.0	<0.500	<1.00

Upper Rail Line Spur Area

$01 \mathrm{MW}-17$	0.884	<50.0	<0.500	<1.00

Notes:

Detections above cleanup levels are indicated in bold italics.
1/ MTCA Method A cleanup level, unless otherwise noted
2/ Gasoline range with benzene present
3/ Gasoline range without benzene present
4/ NOAA SQuiRT value for freshwater maximum concentration
< symbol indicates that result is less than method reporting limit
$\mathrm{na}=\mathrm{No}$ analysis requested
$\mu \mathrm{g} / \mathrm{L}=$ micrograms per liter
$\mathrm{mg} / \mathrm{L}=$ milligrams per liter

Table 2-8. Analytical Results from 2002 Lower Tank Yard Investigation Soil Samples Above Cleanup Levels - MTBE, BTEX, Napthalene, and Hexane

Sample	MTBE $(\mathrm{mg} / \mathrm{kg})$	Benzene $(\mathrm{mg} / \mathrm{kg})$	Toluene $(\mathrm{mg} / \mathrm{kg})$	Ethylbenzene $(\mathrm{mg} / \mathrm{kg})$	m,p-Xylene $(\mathrm{mg} / \mathrm{kg})$	o-Xylene $(\mathrm{mg} / \mathrm{kg})$	Napthalene $(\mathrm{mg} / \mathrm{kg})$	n -Hexane $(\mathrm{mg} / \mathrm{kg})$
MTCA $^{1 /}$	0.1	0.03	7	6	9	9	5	

Lower Tank Yard

01MW-21-5	<0.100	<0.0100	<0.0100	<0.0100	<0.0200	<0.0100	<0.0100	<0.0200
O1MW-23-5	<0.100	0.314	<0.0100	0.705	0.872	0.290	3.67	0.91
01MW-24-5	<0.100	0.495	0.0358	1.95	2.84	2.22	1.86	3.37
01MW-29-5	<0.100	<0.0100	<0.0100	0.398	<0.0200	<0.0100	0.104	0.105

Former Loading Rack

LR01-5	<0.100	0.390	<0.0100	<0.0100	<0.0200	<0.0100	<0.0100	3.39
LR03-5	<0.100	<0.0100	<0.0100	<0.0100	<0.0200	<0.0100	<0.0100	0.0642
LR05-5	<0.100	0.542	<0.0100	0.732	0.0870	<0.0100	<0.0100	1.45
LR07-5	<0.100	<0.0100	<0.0100	0.540	0.639	<0.0100	1.80	1.59

Notes:
Detections above cleanup levels are indicated in bold italics.
1/ MTCA Method A cleanup level for unrestricted land use
<symbol indicates that result is less than method reporting limit
$\mathrm{mg} / \mathrm{kg}=$ milligrams per kilogram

Time Oil Company
Cleanup Action Plan for
Petroleum-Impacted Soil and Groundwater 2737 West Commodore Way

Table 2-9. Analytical Results from 2002 Lower Tank Yard Investigation Soil Samples Above Cleanup Levels - Fuel, BTEX, and Lead (Page 1 of 2)

| Sample |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | Gas |
| :---: |
| $(\mathrm{mg} / \mathrm{kg})$ | | Benzene |
| :---: |
| $(\mathrm{mg} / \mathrm{kg})$ | | Toluene |
| :---: |
| $(\mathrm{mg} / \mathrm{kg})$ | | Ethylbenzene |
| :---: |
| $(\mathrm{mg} / \mathrm{kg})$ | | Xylene |
| :---: |
| $(\mathrm{mg} / \mathrm{kg})$ | | Diesel |
| :---: |
| $(\mathrm{mg} / \mathrm{kg})$ | | Oil |
| :---: |
| $(\mathrm{mg} / \mathrm{kg})$ | | Lead |
| :---: |
| $(\mathrm{mg} / \mathrm{kg})$ |

Lower Tank Yard

01MW-21-5	<5.00	<0.0300	<0.0500	<0.0500	<0.100	14.0	<25.0	7.17
01MW-21-10	<5.00	<0.0300	<0.0500	<0.0500	<0.100	<10.0	<25.0	2.39
01MW-21-15	<5.00	<0.0300	<0.0500	<0.0500	<0.100	<10.0	<25.0	2.08
01MW-21-20	<5.00	<0.0300	<0.0500	<0.0500	<0.100	21.5	<25.0	2.29
01MW-21-23	<5.00	<0.0300	<0.0500	<0.0500	<0.100	<10.0	<25.0	5.08
01MW-22-5	<5.00	<0.0300	<0.0500	<0.0500	<0.100	<10.0	<25.0	3.98
01MW-22-10	<5.00	<0.0300	<0.0500	<0.0500	<0.100	<10.0	<25.0	2.29
01MW-22-15	<5.00	0.219	<0.0500	<0.0500	<0.100	<10.0	<25.0	2.10
01MW-22-20	<5.00	0.210	<0.0500	<0.0500	< 0.100	<10.0	<25.0	1.88
01MW-22-25	<5.00	<0.0300	<0.0500	<0.0500	<0.100	< 10.0	<25.0	4.19
01MW-23-5	732	0.817	<0.200	2.90	6.03	681	114	5.29
01MW-23-10	<5.00	<0.0300	<0.0500	<0.0500	<0.100	32.5	<25.0	2.52
01MW-23-15	5.71	<0.0300	<0.0500	<0.0500	<0.100	<10.0	<25.0	2.11
01MW-23-20	<5.00	<0.0300	<0.0500	<0.0500	<0.100	<10.0	<25.0	5.15
01MW-24-5	2,200	4.35	<1.00	14.7	41.3	3,000	149^{2}	13.9
01MW-24-10	$28.4{ }^{3 /}$	<0.0300	<0.0500	<0.0500	<0.100	419	<25.0	3.44
01MW-24-15	<5.00	0.103	<0.0500	<0.0500	<0.100	11.8	<25.0	2.82
01MW-24-20	<5.00	0.0454	<0.0500	<0.0500	<0.100	<10.0	<25.0	5.36
01MW-25-5	<5.00	0.0491	<0.0500	<0.0500	<0.100	< 10.0	<25.0	2.98
01MW-25-10	$176{ }^{3 /}$	0.0658	<0.0500	0.272	0.740	< 10.0	<25.0	5.89
01MW-25-15	<5.00	<0.0300	<0.0500	<0.0500	<0.100	<10.0	<25.0	1.92
01MW-25-18	<5.00	<0.0300	<0.0500	<0.0500	< 0.100	< 10.0	<25.0	5.60
01MW-26-5	681	<0.300	<0.500	3.63	6.50	<10.0	<25.0	10.30
01MW-26-10	$3,990^{3 /}$	4.29	9.69	28.2	112	14,100	<2500	7.66
01MW-26-15	1,430	<0.600	1.15	8.68	37.4	7,000	< 500	278
01MW-26-20	<5.00	<0.0300	<0.0500	<0.0500	<0.100	<10.0	<25.0	5.54
01MW-27-5	5,510	182	37.7	36.4	168	7,410	<500	30.6
01MW-27-10	2,370 ${ }^{3 /}$	8.21	16.0	15.0	51.0	11,100	651	11.40
01MW-27-15	177	0.265	<0.200	0.316	0.402	3,810	< 500	3.03
01MW-27-20	<5.00	<0.0300	<0.0500	<0.0500	<0.100	< 10.0	<25.0	4.71
01MW-28-5	46.5	<0.0300	<0.0500	0.0516	0.101	1,840	<250	9.33
01MW-28-10	1,170 ${ }^{3 /}$	<0.300	5.92	13.2	73.9	19,300	<2500	3.13
01MW-28-15	2,870	9.82	18.2	24.9	111	2,810	< 500	2.71
01MW-28-20	<5.00	<0.0300	<0.0500	<0.0500	<0.100	<10.0	<25.0	1.96
01MW-28-25	<5.00	<0.0300	<0.0500	<0.0500	<0.100	<10.0	<25.0	4.30
01MW-29-5	$127^{3 /}$	<0.0300	<0.0500	0.339	0.405	50.0	<25.0	6.62

Time Oil Company
Cleanup Action Plan for
Petroleum-Impacted Soil and Groundwater
2737 West Commodore Way

Table 2-9. Analytical Results from 2002 Lower Tank Yard Investigation Soil Samples above Cleanup Levels - Fuel, BTEX, and Lead (Page 2 of 2)

Sample	$\begin{gathered} \text { Gas } \\ (\mathrm{mg} / \mathrm{kg}) \end{gathered}$		Benzene ($\mathrm{mg} / \mathrm{kg}$)	Toluene (mg/kg)	Ethylbenzene ($\mathrm{mg} / \mathrm{kg}$)	Xylene ($\mathrm{mg} / \mathrm{kg}$)	Diesel ($\mathrm{mg} / \mathrm{kg}$)	Oil $(\mathrm{mg} / \mathrm{kg})$	Lead ($\mathrm{mg} / \mathrm{kg}$)
MTCA ${ }^{\text {/ }}$	30	100	0.03	7	6	9	2,000	2,000	250
01MW-29-10			<0.0300	<0.0500	0.310	$1.10^{4 /}$	75.2	<25.0	2.30
01MW-29-15		$7^{3 /}$	0.109	0.114	1.19	2.01	312.0	<25.0	2.43
01MW-29-20		. 00	0.289	<0.0500	<0.0500	<0.100	< 10.0	<25.0	5.65

Former Loading Rack								
LR01-5	$251^{3 /}$	0.129	<0.200	0.545	0.502	7,440	<250	3.52
LR01-10	$178^{3 /}$	<0.0300	<0.0500	0.742	$1.44^{4 /}$	2,670	<250	2.30
LR01-15	$\mathbf{1 , 4 2 0 ^ { 3 / }}$	0.885	5.80	6.91	21.9	13,500	<2500	6.93
LR01-20	5.01	1.40	0.0509	0.0837	<0.100	<10.0	<25.0	4.81
LR02-5	<5.00	<0.0300	<0.0500	<0.0500	<0.100	280	<25.0	7.04
LR02-10	1,140	0.831	8.46	6.20	19.9	11,700	<2500	2.34
LR02-15	1,320	1.10	8.56	7.42	23.5	19,500	<2500	2.27
LR02-20	51.9	0.0871	0.171	0.265	0.728	<10.0	<25.0	1.79
LR03-5	59.7	<0.0600	<0.100	<0.100	<0.200	219	<25.0	6.14
LR03-10	1,460	1.51	12.4	11.5	24.2	18,800	<2500	3.07
LR03-15	1,860	6.70	24.5	12.3	53.5	17,500	<2500	2.29
LR04-5	<5.00	<0.0300	<0.0500	<0.0500	<0.100	7,970	<500	2.45
LR04-10	827	0.320	0.615	4.26	6.57	7,060	<1000	2.44
LR04-15	2,850	4.87	4.96	13.2	50.1	27,700	<5000	3.57
LR05-5	663	<0.300	<0.500	2.43	2.82	2,990	<500	4.33
LR05-10	1,320	2.23	7.44	9.51	33.9	14,600	<2500	2.58
LR05-15	935	<0.600	1.91	4.82	20.5	5,780	<500	3.69
LR06-5	38.1	<0.0300	<0.0500	0.130	0.191	17.6	<500	4.05
LR06-10	<5.00	<0.0300	<0.0500	<0.0500	<0.100	317	<1000	5.32
LR06-15	5.71	<0.0300	<0.0500	<0.0500	0.127	10.3	<1000	4.19
LR07-5	1,490	1.13	<0.500	4.02	2.30	4,230	<25.0	5.03
LR07-10	534	<0.300	0.550	2.80	6.64	5,840	<25.0	2.32
LR07-15	1,370	2.52	3.48	6.67	29.1	11,400	<25.0	9.03

Notes:

Detections above cleanup levels are indicated in bold italics.
1/ MTCA Method A cleanup level for unrestricted land use
2/ Heavy oil range organics present are due to hydrocarbons eluting primarily in the diesel range
3/ Results reported for the gas range are primarily due to overlap from diesel range hydrocarbons
4/ The anlayte concentration may be artificially elevated due to coeluting compounds or components
< symbol indicates that result is less than method reporting limit
$\mathrm{mg} / \mathrm{kg}=$ milligrams per kilogram

Cleanup Action Plan for
Petroleum-Impacted Soil and Groundwater
2737 West Commodore Way

Table 2-10. PAH Analytical Results from 2002 Lower Tank Yard Investigation Soil
Samples

	$\mathbf{0 1 M W - 2 3 - 5}$ $(\mathbf{m g} / \mathbf{k g})$	$\mathbf{0 1 M W} \mathbf{- 2 4 - 5}$ $(\mathbf{m g} / \mathbf{k g})$	$\mathbf{L R 0 3 - 5}$ $(\mathbf{m g} / \mathrm{kg})$	$\mathbf{L R 0 7 - 5}$ $(\mathbf{m g} / \mathbf{k g})$
MTCA $^{\mathbf{/ I}}$	$\mathbf{1 . 0}$	$\mathbf{1 . 0}$	$\mathbf{1 . 0}$	$\mathbf{1 . 0}$
Acenaphthene	<0.0500	<0.0100	0.172	5.23
Acenphthylene	<0.0500	<0.0100	<0.0100	3.07
Antrhacene	0.384	0.243	0.056	<0.0100
Benzo(a)anthracene	<0.0500	0.0123	0.0123	<0.0100
Benzo(a)pyrene	<0.0500	<0.0100	<0.0100	<0.0100
Benzo(b)fluoranthene	<0.0500	<0.0100	<0.0100	<0.0100
Benzo(g,h,i)perylene	<0.0500	<0.0100	<0.0100	<0.0100
Benzo(k)fluoranthene	<0.0500	<0.0100	<0.0100	<0.0100
Chrysene	0.108	0.0336	0.0351	<0.0100
Dibenz(a,h)anthracene	<0.0500	<0.0100	<0.0100	<0.0100
Fluoranthene	0.072	0.0312	0.0312	<0.0100
Fluorene	<0.0500	0.522	0.0937	4.15
Indeno(1,2,3-cd)pyrene	<0.0500	<0.0100	<0.0100	<0.0100
1-Methylnaphthalene	5.08	5.78	0.78	
2-Methylnaphthalene	8.51	10.4	1.39	72.9
Naphthalene	1.84	2.79	0.0619	4.48
Phenanthrene	1.28	0.847	0.227	8.21
Pyrene	0.352	0.107	0.0167	<0.0100
Total cPAHs	$\mathbf{0 . 1 0 8}$	$\mathbf{0 . 0 4 5 9}$	$\mathbf{0 . 0 4 7 4}$	$\mathbf{0 . 0 3 5 0}$

Notes:
cPAHs are italicized.
Total cPAHs include sum of detections. Half of reporting limit used for non-detects.
1/ Total cPAHs MTCA Method A cleanup level
<symbol indicates that result is less than method reporting limit
$\mathrm{mg} / \mathrm{kg}=$ milligrams per kilogram

Table 2-11. VPH and EPH Analytical Results from 2002 Lower Tank Yard Investigation Soil Samples

| | 01MW-21-5
 $(\mathrm{mg} / \mathrm{kg})$ | 01MW-23-5
 $(\mathrm{mg} / \mathrm{kg})$ | 01MW-24-5
 $(\mathrm{mg} / \mathrm{kg})$ | 01MW-29-5
 $(\mathrm{mg} / \mathrm{kg})$ | LR01-5
 $(\mathrm{mg} / \mathrm{kg})$ | LR03-5
 $(\mathrm{mg} / \mathrm{kg})$ | LR05-5
 $(\mathrm{mg} / \mathrm{kg})$ | LR07-5
 $(\mathrm{mg} / \mathrm{kg})$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C5-C6 Aliphatics | <5.00 | <20.0 | <25.0 | <5.00 | <50.0 | <5.00 | <50.0 | <50.0 |
| C6-C8 Aliphatics | <5.00 | 43.1 | 46.1 | <5.00 | 94.9 | <5.00 | <50.0 | <50.0 |
| C8-C10 Aliphatics | <5.00 | 89.9 | 97.7 | <5.00 | 145 | <5.00 | 61.7 | <50.0 |
| C10-C12 Aliphatics | <5.00 | 141 | 138 | 7.99 | 258 | 11.3 | 104 | 162 |
| C8-C10 Aromatics | <5.00 | 87.6 | 85.9 | <5.00 | 123 | <5.00 | 68.4 | <50.0 |
| C10-C12 Aromatics | <5.00 | 230 | 157 | 9.35 | 490 | 23.4 | 237 | 275 |
| C12-C13 Aromatics | <5.00 | 289 | 217 | 15.5 | 939 | 63.4 | 558 | 487 |
| Total VPH | <5.00 | 880 | 742 | 32.9 | 2050 | 98.1 | 968 | 924 |

Extractable Petroleum Hydrocarbons

C8-C10 Aliphatics	<5.00	42.9	60.0	7.55	105	8.49	42.0	22.6
C10-C12 Aliphatics	<5.00	149	168	22.3	400	42.3	151	201
C12-C16 Aliphatics	<5.00	484	512	49.8	1460	204	669	563
C16-C21 Aliphatics	<5.00	330	284	24.3	924	134	480	262
C21-C34 Aliphatics	<5.00	112	63.9	<5.00	<50.0	8.98	44.1	47.4
C10-C12 Aromatics	<5.00	42.9	42.3	5.87	165	12.2	35.9	41.7
C12-C16 Aromatics	<5.00	163	153	26.4	1140	127	224	185
C16-C21 Aromatics	<5.00	260	178	23.1	1540	139	452	214
C21-C34 Aromatics	<5.00	93.5	20.6	<5.00	<50.0	<50.0	36.3	29.4
EPH	<5.00	1680	1480	159	5730	677	2130	1570

Notes:
< symbol indicates that result is less than method reporting limit
$\mathrm{mg} / \mathrm{kg}=$ milligrams per kilogram
$\mathrm{VPH}=$ volatile petroleum hydrocarbons
EPH = extractable petroleum hydrocarbons

Time Oil Company
Cleanup Action Plan for
Petroleum-Impacted Soil and Groundwater
2737 West Commodore Way

Table 2-12. Summary of Quarterly Groundwater Monitoring Analytical Results Above Cleanup Levels (Page 1 of 3)

Sample	Date	$\begin{gathered} \text { PCP } \\ (\mu \mathrm{g} / \mathrm{L}) \end{gathered}$	Diesel (mg/L)	$\begin{gathered} \text { Oil } \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$	$\begin{gathered} \text { Gas } \\ (\mu \mathrm{g} / \mathrm{L}) \end{gathered}$	Benzene ($\mu \mathrm{g} / \mathrm{L}$)	Toluene ($\mu \mathrm{g} / \mathrm{L}$)	$\begin{gathered} \text { Ethylbenzene } \\ (\mu \mathrm{g} / \mathrm{L}) \\ \hline \end{gathered}$	Xylene $(\mu \mathrm{g} / \mathrm{L})$	Total Lead ($\mu \mathrm{g} / \mathrm{L}$)	$\begin{array}{\|c} \hline \text { Dissolved } \\ \text { Lead } \\ (\mu \mathrm{g} / \mathrm{L}) \\ \hline \end{array}$
MTCA $^{\text {I/ }}$		15^{2}	0.5	0.5	$800^{3 / 1,0004}$	5,300 ${ }^{5 /}$	17,500 ${ }^{51}$	$32,000^{5 /}$	1,000	15	15
01MW-01	Jul-01	3.94	1.11	<0.500	< 50.0	<0.500	<0.500	<0.500	<1.00	<1.00	na
01MW-01	Oct-01	3.55	<0.250	<0.500	< 50.0	<0.500	<0.500	<0.500	<1.00	<1.00	<1.00
01MW-01	Jan-02	2.02	<0.250	<0.500	51.5	<0.500	< 0.500	<0.500	<1.00	< 1.00	<1.00
01MW-01	Apr-02	2.84	<0.250	<0.500	< 50.0	<0.500	<0.500	<0.500	<1.00	<1.00	<1.00
01MW-01	Jul-02	6.84	<0.250	<0.500	< 50.0	<0.500	<0.500	< 0.500	<1.00	<1.00	<1.00
01MW-01A	Oct-02	6.37	<0.250	<0.500	< 50.0	<0.500	<0.500	< 0.500	<1.00	na	na
01MW-01B	Oct-02	7.13	<0.250	<0.500	< 50.0	<0.500	<0.500	<0.500	<1.00	na	na
01MW-02	Jul-01	na	5.01	<1.50	14,800	6,900	162	262	1,110	<1.00	na
01MW-02	Oct-01	<0.500	0.264	<0.500	10,100	4,290	71.2	159	741	<1.00	<1.00
01MW-02	Jan-02	<0.500	0.330	<0.500	13,000	3,280	645	373	1,610	<1.00	<1.00
01MW-02	Apr-02	<0.500	0.479	<0.500	27,500	11,200	658	340	1,390	<1.00	<1.00
01MW-02A	Jul-02	<0.500	0.377	<0.500	17,500	7,060	250	230	970	<1.00	<1.00
01MW-02B	Jul-02	<0.500	0.294	<0.500	17,600	6,380	230	212	892	<1.00	< 1.00
01MW-02	Oct-02	na	0.412	<0.500	10,700	2,780	888	303	1,580	na	na
01MW-03	Jul-01	na	2.84	<1.50	24,500	11,900	238	414	515	<1.00	na
01MW-03A	Oct-01	<0.500	0.491	<0.500	18,500	11,700	82.1	237	138	<1.00	<1.00
01MW-03B	Oct-01	2.24	0.379	<0.500	9,200	4,330	39.9	114	66.3	<1.00	<1.00
01MW-03A	Jan-02	<0.500	0.443	<0.500	1,070	98.8	4.56	7.94	9.53	<1.00	<1.00
01MW-03B	Jan-02	<0.500	0.440	<0.500	1,070	98.3	4.45	8.28	9.36	<1.00	<1.00
01MW-03A	Apr-02	< 0.500	0.427	<0.500	753	50.8	3.68	9.85	9.23	<1.00	<1.00
01MW-03B	Apr-02	<0.500	0.463	<0.500	751	62.7	4.65	12.2	11.1	1.17	<1.00
01MW-03	Jul-02	<0.500	0.512	<0.500	21,000	8,990	416	324	588	<1.00	<1.00
01MW-03	Oct-02	na	0.897	<0.500	18,000	8,350	97.5	244	671	na	na
01MW-04	Jul-01	na	1.79	<1.50	6,460	1,210	204	134	1,470	<1.00	na
01MW-04	Oct-01	<0.500	0.398	<0.500	4,020	68.1	82.3	261	1,130	<1.00	<1.00
01MW-04	Jan-02	<0.500	<0.250	<0.500	5,920	<25.0	123	486	2,030	<1.00	<1.00
01MW-04	Apr-02	<0.500	<0.250	<0.500	840	<1.25	10.7	76	342	<1.00	<1.00
01MW-04	Jul-02	<0.500	<0.250	<0.500	17,300	4,130	1,360	309	1,470	<1.00	<1.00
01MW-04	Oct-02	na									
01MW-06	Jul-01	2.17	0.718	<0.500	<50.0	<0.500	<0.500	<0.500	<1.00	<1.00	na
01MW-06	Oct-01	<0.500	<0.250	<0.500	<50.0	<0.500	<0.500	<0.500	<1.00	<1.00	<1.00
01MW-06	Jan-02	<0.500	<0.250	<0.500	<50.0	<0.500	<0.500	<0.500	<1.00	<1.00	<1.00
01MW-06	Apr-02	<0.500	<0.250	<0.500	< 50.0	<0.500	<0.500	<0.500	<1.00	<1.00	<1.00
01MW-06	Jul-02	<0.500	<0.250	<0.500	< 50.0	<0.500	<0.500	<0.500	<1.00	<1.00	< 1.00
01MW-06	Oct-02	na									

Petroleum-Impacted Soil and Groundwater
2737 West Commodore Way

Table 2-12. Summary of Quarterly Groundwater Monitoring Analytical Results Above Cleanup Levels (Page 2 of 3)

Table 2-12. Summary of Quarterly Groundwater Monitoring Analytical Results Above Cleanup Levels (Page 3 of 3)

Notes:

Detections above cleanup levels are indicated in bold italics.
1/ MTCA Method A cleanup level, unless otherwise noted
2/ NOAA SQuiRT value for freshwater continuous concentration
3/ MTCA Method A gasoline range with benzene present
4/ MTCA Method A gasoline range without benzene present
5/ NOAA SQuiRT value for freshwater maximum concentration
< symbol indicates result is less than method reporting limit
na $=$ No analysis requested
$\mathrm{mg} / \mathrm{L}=$ milligrams per liter
$\mu \mathrm{g} / \mathrm{L}=$ micrograms per liter

Petroleum-Impacted Soil and Groundwater
2737 West Commodore Way

Table 4-1. Analytical Results from Pre-DPE Pilot Test Soil Samples Above Cleanup Levels

Sample	$\begin{gathered} \text { Diesel } \\ (\mathrm{mg} / \mathrm{kg}) \end{gathered}$	$\begin{gathered} \text { Oil } \\ (\mathrm{mg} / \mathrm{kg}) \end{gathered}$	$\begin{gathered} \text { Gas } \\ (\mathrm{mg} / \mathrm{kg}) \end{gathered}$	Benzene ($\mathrm{mg} / \mathrm{kg}$)	Toluene ($\mathrm{mg} / \mathrm{kg}$)	Ethylbenzene ($\mathrm{mg} / \mathrm{kg}$)	$\begin{aligned} & \text { Xylenes } \\ & (\mathrm{mg} / \mathrm{kg}) \end{aligned}$	$\begin{gathered} \text { Lead } \\ (\mathrm{mg} / \mathrm{kg}) \end{gathered}$
MTCA ${ }^{1 /}$	2,000	2,000	$30 \quad 100$	0.03	7	6	9	250
			58,				χ^{3} 5.	
SB-65-5	<10.0	<25.0	<5.00	<0.0300	<0.0500	<0.0500	<0.100	4.17
SB-65-10	< 10.0	<25.0	<5.00	<0.0300	<0.0500	<0.0500	<0.100	4.96
SB-65-15	676	<25.0	278	<0.0300	0.519	1.74	6.47	4.35
SB-65-20	<10.0	<25.0	220	0.317	0.703	1.53	6.37	2.08
SB-65-25	<10.0	<25.0	<5.00	<0.0300	<0.0500	<0.0500	<0.100	5.94
SB-65-30	<10.0	<25.0	<5.00	<0.0300	<0.0500	<0.0500	<0.100	4.02
								-
SB-66-5	42.9	70.1	<5.00	<0.0300	<0.0500	<0.0500	<0.100	55.50
SB-66-10	17.9	29.3	<5.00	<0.0300	<0.0500	<0.0500	<0.100	18.90
SB-66-15	<10.0	<25.0	11.2	0.292	<0.0500	0.118	2.52	2.53
SB-66-20	<10.0	<25.0	<5.00	<0.0300	<0.0500	<0.0500	0.136	2.44
SB-66-25	< 10.0	<25.0	<5.00	<0.0300	<0.0500	<0.0500	<0.100	6.14
		,						
SB-67-5	112	75.2	<5.00	<0.0300	<0.0500	<0.0500	<0.100	21.1
SB-67-10	<10.0	<25.0	<5.00	<0.0300	<0.0500	<0.0500	<0.100	5.18
SB-67-15	<10.0	<25.0	7.23	<0.0300	0.230	0.149	0.843	2.47
SB-67-20	<10.0	<25.0	<5.00	<0.0300	<0.0500	<0.0500	<0.100	2.34
SB-67-25	<10.0	<25.0	<5.00	<0.0300	<0.0500	<0.0500	<0.100	5.58

Notes:
Detections above cleanup levels are indicated in bold italics.
SB-65 completed as well $01 \mathrm{MW}-18$
SB-66 completed as well 01MW-19
SB-67 completed as well 01MW-20
1/ MTCA Method A cleanup level for unrestricted land use
< symbol indicates result is less than method reporting limit
$\mathrm{mg} / \mathrm{kg}=$ milligram per kilogram

Petroleum-Impacted Soil and Groundwater 2737 West Commodore Way

Table 4-2. Analytical Results from Pre-DPE Pilot Test Groundwater Samples Above Cleanup Levels

Sample	$\begin{gathered} \mathbf{P C P} \\ (\mu \mathrm{g} / \mathrm{L}) \end{gathered}$	$\begin{gathered} \text { Diesel } \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$	$\begin{gathered} \text { Oil } \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$	Gasoline ($\mu \mathrm{g} / \mathrm{L}$)	Benzene $(\mu \mathrm{g} / \mathrm{L})$	Toluene (mg / L)	Ethylbenzene $(\mu \mathrm{g} / \mathrm{L})$	Xylenes (mg/L)	$\begin{array}{\|c\|} \hline \text { Total } \\ \text { Lead } \\ (\mu \mathrm{g} / \mathrm{L}) \\ \hline \end{array}$	Dissolved Lead $(\mu \mathrm{g} / \mathrm{L})$
MTCA $^{\text {/ }}$	15^{21}	0.5	5,300 ${ }^{5 /}$	$800^{3 /} 1,000^{4 /}$	5,300 ${ }^{5 /}$	$17,500{ }^{5 /}$	$32,000^{5 /}$	1,000	15	15
01MW-02	<0.500	3.81	0.560	21,600	6,620	528	310	1,380	< 1.00	< 1.00
01MW-03	<0.500	1.75	<0.500	14,300	5,270	72.7	134	207	< 1.00	< 1.00
01MW-04	<0.500	0.655	<0.500	6,630	22.8	78.0	341	1,440	< 1.00	<1.00
01MW-05	<0.500	2.71	<0.500	16,500	1,670	1,390	417	2,080	< 1.00	< 1.00
01MW-09	<0.500	1.75	<0.500	8,080	985	465	223	1,050	1.19	<1.00
01MW-18	< 0.500	2.12	<0.500	22,300	3,000	1,360	593	3,180	1.97	1.26
01MW-19	<0.500	0.597	<0.500	341	2.94	24.4	14.0	58.2	<1.00	< 1.00
01MW-20	<0.500	2.25	< 0.500	31,500	3,910	2,880	768	4,500	1.36	<1.00

Notes:
Detections above cleanup levels are indicated in bold italics.
1/ MTCA Method A cleanup level, unless otherwise noted
2/ NOAA SQuiRT value for freshwater continuous concentrations
3/ MTCA Method A gasoline range with benzene present
4/ Gasoline range without benzene present
5/ NOAA SQuiRT value for freshwater maximum concentration
<symbol indicates that result is less than method reporting limit
$\mu \mathrm{g} / \mathrm{L}=$ micrograms per liter
$\mathrm{mg} / \mathrm{L}=$ milligrams per liter

Table 4-3. Analytical Results from DPE Pilot Test Air Samples

Table 4-4. Analytical Results from Post-DPE Pilot Test Groundwater Samples Above Cleanup Levels

Sample	PCP $(\mu \mathrm{g} / \mathrm{L})$	Diesel $(\mathrm{mg} / \mathrm{L})$	Oil $(\mathrm{mg} / \mathrm{L})$	Gasoline $(\mu \mathrm{g} / \mathrm{L})$	Benzen $(\mu \mathrm{g} / \mathrm{L})$	Toluene $(\mathrm{mg} / \mathrm{L})$	Ethyl- benzene $(\mu \mathrm{g} / \mathrm{L})$	Xylenes $(\mathrm{mg} / \mathrm{L})$	Total $(\mu \mathrm{g} / \mathrm{L})$	Dissolved $(\mu \mathrm{g} / \mathrm{L})$
MTCA $^{\mathbf{L}}$	$\mathbf{1 5}^{\mathbf{2}}$	$\mathbf{0 . 5}$	$\mathbf{0 . 5}$	$\mathbf{8 0 0}^{3 /}$	$\mathbf{1 , 0 0 0 ^ { 4 / }}$	$\mathbf{5 , 3 0 0 ^ { 5 / }}$	$\mathbf{1 7 , 5 0 0 ^ { 5 / }}$	$\mathbf{3 2 , 0 0 0 ^ { 5 / }}$	$\mathbf{1 , 0 0 0}$	$\mathbf{1 5}$
$01 \mathrm{MW}-02$	<0.500	0.377	<0.500	$\mathbf{1 7 , 5 0 0}$	7,060	250	230	970	<1.00	<1.00
$01 \mathrm{MW}-03$	<0.500	0.512	<0.500	21,000	8,990	416	324	588	<1.00	<1.00
$01 \mathrm{MW}-04$	<0.500	0.461	<0.500	$\mathbf{1 7 , 3 0 0}$	4,130	1,360	309	$\mathbf{1 , 4 7 0}$	<1.00	<1.00
$01 \mathrm{MW}-19$	<0.500	<0.250	<0.500	<50.0	<0.500	<0.500	<0.500	<1.00	2.88	<1.00
$01 \mathrm{MW}-20$	<0.500	0.378	<0.500	$\mathbf{1 6 , 7 0 0}$	1,640	1,390	468	2,840	3.45	<1.00

Notes:

Detections above cleanup levels are indicated in bold italics.
Wells $01 \mathrm{MW}-05,-09$, and -18 were not sampled at this time due to the presence of product.
1/ MTCA Method A cleanup level, unless otherwise noted
2/ NOAA SQuiRT value for freshwater continuous concentrations
3/ MTCA Method A gasoline range with benzene present
4/ Gasoline range without benzene present
5/ NOAA SQuiRT value for freshwater maximum concentration
< symbol indicates that result is less than method reporting limit
$\mu \mathrm{g} / \mathrm{L}=$ micrograms per liter
$\mathrm{mg} / \mathrm{L}=$ milligrams per liter

APPENDIX A

BORING LOGS

FOSTER WHEELER ENVIRONMENTAL

PROJECT NAME: CAP Well Installation
BORING NUMBER: 01MW-21
LOCATION: 2737 West Commodore Way
AREA: Lower Tank Yard
CLIENT: Time Oil Company SITE MANAGER: Scott Sloan, RG

DRILLING METHOD: 4-inch HSA
DRILLING CONTRACTOR: Cascade Drilling
DATE/TIME STARTED: $12 / 02 / 020845$
DATE/TIME COMPLETED: $12 / 02 / 021000$
TOTAL DEPTH: 23 ft
WATER DEPTH: 7 ft

FOSTER WHEELER ENVIRONMENTAL

PROJECT NAME: CAP Well Installation
BORING NUMBER: 01MW-22
LOCATION: 2737 West Commodore Way
AREA: Lower Tank Yard
CLIENT: Time Oil Company
SITE MANAGER: Scott Sloan, RG

DRILLING METHOD: 4-inch HSA
DRILLING CONTRACTOR: Cascade Drilling
DATE/TIME STARTED: 12/02/02 1120
DATE/TIME COMPLETED: $12 / 02 / 021230$
TOTAL DEPTH: 25 ft
WATER DEPTH: 7 ft

FOSTER WHEELER ENVIRONMENTAL

PROJECT NAME: CAP Well Installation
BORING NUMBER: 01MW-23
LOCATION: 2737 West Commodore Way
AREA: Lower Tank Yard
CLIENT: Time Oil Company
SITE MANAGER: Scott Sloan, RG

DRILLING METHOD: 4-inch HSA
DRILLING CONTRACTOR: Cascade Drilling
DATE/TIME STARTED: 12/02/02 1440
DATE/TIME COMPLETED: 12/02/02 1600
TOTAL DEPTH: 20 ft
WATER DEPTH: 9 ft

PROJECT NAME: CAP Well Installation
BORING NUMBER: 01MW-24
LOCATION: 2737 West Commodore Way
AREA: Lower Tank Yard - Former Manifold Area CLIENT: Time Oil Company
SITE MANAGER: Scott Sloan, RG

DRILLING METHOD: 4-inch HSA
DRILLING CONTRACTOR: Cascade Drilling
DATE/TIME STARTED: 12/03/02 0810
DATE/TIME COMPLETED: 12/03/02 0915
TOTAL DEPTH: 20 ft
WATER DEPTH: 9 ft

FOSTER WHEELER ENVIRONMENTAL

PROJECT NAME: CAP Well Installation
BORING NUMBER: 01MW-25
LOCATION: 2737 West Commodore Way
AREA: Lower Tank Yard - Former Manifold Area
CLIENT: Time Oil Company
SITE MANAGER: Scott Sloan, RG

PROJECT NAME: CAP Well Instlation

LOCATION: 2737 West Commodore Way
DRILLING CONTRACTOR: Cascade Drilling
DATE/TIME STARTED: 12/03/02 1020
DATE/TIME COMPLETED: $12 / 03 / 021140$
TOTAL DEPTH: 18 f
WATER DEPTH: 9 ft

PROJECT NAME: CAP Well Installation BORING NUMBER: 01MW-26
LOCATION: 2737 West Commodore Way
AREA: West of Lower Tank Yard
CLIENT: Time Oil Company SITE MANAGER: Scott Sloan, RG

DRILLING METHOD: 4-inch HSA
DRILLING CONTRACTOR: Cascade Drilling
DATE/TIME STARTED: 12/04/02 0815
DATE/TIME COMPLETED: 12/04/02 0940
TOTAL DEPTH: 20 ft
WATER DEPTH: 15 ft

FOSTER WHEELER ENVIRONMENTAL

PROJECT NAME: CAP Well Installation	DRILLING METHOD: 4-inch HSA
BORING NUMBER: $01 \mathrm{MW}-27$	DRILLING CONTRACTOR: Cascade Drilling
LOCATION: 2737 West Commodore Way	DATE/TIME STARTED: $12 / 04 / 02$ I020
AREA: West of Lower Tank Yard	DATE/TIME COMPLETED: $12 / 04 / 021120$
CLIENT: Time Oil Company	TOTAL DEPTH: 20 ft
SITE MANAGER: Scott Sloan, RG	WATER DEPTH: 12 ft

PROJECT NAME: CAP Well Installation BORING NUMBER: 01MW-28
LOCATION: 2737 West Commodore Way
AREA: West of Lower Tank Yard
CLIENT: Time Oil Company
SITE MANAGER: Scott Sloan, RG

DRILLING METHOD: 4-inch HSA
DRILLING CONTRACTOR: Cascade Drilling
DATE/TIME STARTED: 12/05/02 1415
DATE/TIME COMPLETED: $12 / 05 / 021530$
TOTAL DEPTH: 25 ft
WATER DEPTH: 14 ft

FOSTER WHEELER ENVIRONMENTAL

PROJECT NAME: CAP Well Installation
BORING NUMBER: 01MW-29
LOCATION: 2737 West Commodore Way
AREA: West of Lower Tank Yard
CLIENT: Time Oil Company
SITE MANAGER: Scott Sloan, RG

DRILLING METHOD: 4-inch HSA DRILLING CONTRACTOR: Cascade Drilling
DATE/TIME STARTED: $12 / 05 / 021415$
DATE/TIME COMPLETED: 12/05/02 1530
TOTAL DEPTH: 25 ft
WATER DEPTH: 14 ft

APPENDIX B

LABORATORY ANALYTICAL RESULTS

DPE Pilot Test Well Analytical Results - March 2002
Pre-DPE Pilot Test Groundwater Sample Analytical Results - July 2002
DPE Pilot Test Air Sample Analytical Results - July 2002
CAP Well Analytical Results - December 2002

Petroleum-Impacted Soil and Groundwater 2737 West Commodore Way

DPE PILOT TEST WELL ANALYTICAL RESULTS

MARCH 2002

Seattle

12 July 2002

Bryan Graham
Foster Wheeler Environmental Corporation

12100 NE 195th St

Bothell, WA/USA 98011
RE: DPE Pilot Test

Enclosed are the results of analyses for samples received by the laboratory on 07/09/02 11:05. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Amar Gill
Project Manager
www.ncalabs.com 509.924 .9200 fax 509.924 .9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906 .9200 tax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383 .9310 fax 541.382.7588
Foster Wheeler Environmental Corporation

Project:	DPE Pilot Test
Project Number:	Not Provided
Project Manager:	Bryan Graham

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
01MW18SVO1	B2G0143-01	Air	$07 / 08 / 02$ 17:30	$07 / 09 / 02$ 11:05
01MW18SVO2	B2G0143-02	Air	$07 / 09 / 0208: 15$	$07 / 09 / 02$ 11:05

- th Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.
Foster Wheeler Environmental Corporation
12100 NE 195 th St

Project:	DPE Pilot Test
Project Number:	Not Provided
Project Manager:	Bryan Graham

Gasoline Hydrocarbons (Benzene to Napthalene) and BTEX in Air by NWTPH-G and EPA 8021B North Creek Analytical - Bothell

| Analyte | Result | Reporting
 Limit | Units | Dilution | Batch | Prepared | Analyzed | Method | Notes |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

01MW18SVO1 (B2G0143-01) Air Sampled: 07/08/02 17:30 Received: 07/09/02 11:05

Gasoline Range Hydrocarbons	3290	50.0	$\mathrm{mg} / \mathrm{m}^{3}$ Air	5	2G11005	07/11/02	07/11/02	NWTPH Modified	
Benzene	17.1	0.500	"	"	"	"	"	"	
Toluene	12.8	0.500	"	"	"	"	"	"	
Ethylbenzene	15.1	0.500	"	"	"	"	"	"	
Xylenes (total)	57.0	1.00	"	"	"	"	"	"	
Surrogate: 4-BFB (FID)	186\%	58-131			"	"	"	"	S-04
Surrogate: 4-BFB (PID)	102 \%	63-129			"	"	"	"	
Gasoline Range Hydrocarbons (v/v)	776	11.8	ppmv	5	"	"	"	"	
Benzene (v/v)	5.27	0.154	"	"	"	"	"	"	
Toluene (v / v)	3.33	0.130	"	"	"	"	"	"	
Ethylbenzene (v/v)	3.43	0.114	"	"	"	"	"	"	
Xylenes, total (v/v)	12.9	0.227	"	"	"	"	"	"	

01MW18SVO2 (B2G0143-02) Air Sampled: 07/09/02 08:15 Received: 07/09/02 11:05

Gasoline Range Hydrocarbons	2050	50.0	$\mathrm{mg} / \mathrm{m}^{3}$ Air	5	2G11005	07/11/02	07/11/02	NWTPH Modified	
Benzene	15.9	0.500	"	"	"	${ }^{\circ}$	\cdots	"	
Toluene	12.9	0.500	"	"	"	"	"	*	
Ethylbenzene	8.14	0.500	"	"	"	"	"	"	
Xylenes (total)	29.7	1.00	"	"	"	"	"	"	
Surrogate: 4-BFB (FID)	145\%	58-131			"	"	"	"	S-04
Surrogate: 4-BFB (PID)	97.0\%	63-129			"	"	"	"	
Gasoline Range Hydrocarbons (v / v)	482	11.8	ppmv	5	"	"	"	"	
Benzene (\mathbf{v} / \mathbf{v})	4.90	0.154	"	"	"	"	"	"	
Toluene (v/v)	3.38	0.130	"	"	"	"	"	"	
Ethylbenzene (v/v)	1.85	0.114	"	"	"	"	"	"	
Xylenes, total (v / v)	6.74	0.227	"	"	"	"	"	"	

Seattle 11720 North Greek Pkwy N, Suite 400, Botheil. WA 98011-8244 425.420 .9200 fax 425.420 .9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383 .9310 fax 541.382 .7588
Foster Wheeler Environmental Corporation
12100 NE 195th St
Bothell WA/USA, 98011

Project:	DPE Pilot Test
Project Number:	Not Provided
Project Manager:	Bryan Graham

Gasoline Hydrocarbons (Benzene to Napthalene) and BTEX in Air by NWTPH-G and EPA 8021B - Quality Control
 North Creek Analytical - Bothell

	Reporting			Spike	Source		\%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	\%REC	Limits	RPD	Limit	Notes

Batch 2G11005: Prepared 07/11/02 Using EPA 5030B (P/T)

Blank (2G11005-BLK1)								
Gasoline Range Hydrocarbons	ND	10.0	$\mathrm{mg} / \mathrm{m}^{3} \mathrm{Air}$					
Gasoline Range Hydrocarbons (v/v)	ND	2.36	ppmv					
Benzene	ND	0.100	$\mathrm{mg} / \mathrm{m}^{3}$ A ir					
Benzene (v/v)	ND	0.0308	ppmv					
Toluene	ND	0.100	$\mathrm{mg} / \mathrm{m}^{3}$ Air					
Toluene (v/v)	ND	0.0261	ppmv					
Ethylbenzene	ND	0.100	$\mathrm{mg} / \mathrm{m}^{3} \mathrm{Air}$					
Ethylbenzene (v/v)	ND	0.0227	ppmv					
Xylenes (total)	ND	0.200	$\mathrm{mg} / \mathrm{m}^{3}$ Air					
Xylenes, total (v/v)	ND	0.0454	ppmy					
ate: 4-BFB (FID)	9.27		$m g / m^{3}$ Air	9.60	96.6	58-131		
Suriogate: 4-BFB (PID)	9.63		"	9.60	100	$63-129$		
LCS (2G11005-BS1)								
Gasoline Range Hydrocarbons	64.0	10.0	$\mathrm{mg} / \mathrm{m}^{3}$ Air	100	64.0	50-150		
Surrogate: 4-BFB (FID)	8.77		"	9.60	91.4	58-131		
LCS (2G11005-BS2)								
Benzene	1.80	0.100	$\mathrm{mg} / \mathrm{m}^{3}$ Air	2.00	90.0	50-150		
Toluene	1.78	0.100	"	2.00	89.0	50-150		
Ethylbenzene	1.72	0.100	"	2.00	86.0	50-150		
Xylenes (total)	5.40	0.200	"	6.00	90.0	50-150		
Surrogate: 4-BFB (PID)	9.99		"	9.60	104	63-129		
LCS Dup (2G11005-BSD1)								
Gasoline Range Hydrocarbons	52.4	10.0	$\mathrm{mg} / \mathrm{m}^{3}$ Air	100	52.4	50-150	19.9	50
Surrogate: 4-BFB (FID)	7.73		"	9.60	80.5	58-131		

The results in this report apply to the samples analyzed in accordance with the chain of
custody document. This analytical report must be reproduced in is entirety.

Seattle
Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924 .9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR $97008-7132$ 503.906 .9200 fax 503.906.9210

Project:	DPE Pilot Test
Project Number:	Not Provided
Project Manager:	Bryan Graham

Gasoline Hydrocarbons (Benzene to Napthalene) and BTEX in Air by NWTPH-G and EPA 8021B - Quality Control
North Creek Analytical - Bothell

	Reporting			Spike	Source		\%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	\%REC	Limits	RPD	Limit	Notes

Batch 2G11005: Prepared 07/11/02 Using EPA 5030B (P/T)

LCS Dup (2G11005-BSD2)								
Benzene	1.71	0.100	$\mathrm{mg} / \mathrm{m}^{3} \mathrm{Air}$	2.00	85.5	50-150	5.13	50
Toluene	1.65	0.100	"	2.00	82.5	50-150	7.58	50
Ethylbenzene	1.62	0.100	"	2.00	81.0	50-150	5.99	50
Xylenes (total)	5.13	0.200	"	6.00	85.5	50-150	5.13	50
Surrogate: 4-BFB (PID)	11.1		"	9.60	116	63-129		
Duplicate (2G11005-DUP1)	Source: B2G0143-01							
Gasoline Range Hydrocarbons	2950	1000	$\mathrm{mg} / \mathrm{m}^{3}$ Air				10.9	30
Surrogate: 4-BFB (FID)	10.2		"	9.60	106	58-131		

Amar Gill, Project Manager
\(\left.$$
\begin{array}{ll}\begin{array}{l}\text { Foster Wheeler Environmental Corporation } \\
12100 \text { NE 195th St } \\
\text { Bothell WA/USA, 98011 }\end{array} & \begin{array}{r}\text { Project: DPE Pilot Test } \\
\text { Project Number: }\end{array}
$$

Pot Provided\end{array}\right]\)| Notes and Definitions |
| :--- |

15 July 2002

Bryan Graham

Foster Wheeler Environmental Corporation

12100 NE 195th St

Bothell, WA/USA 98011
RE: DPE Pilot Test

Enclosed are the results of analyses for samples received by the laboratory on 07/10/02 10:40. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Amar Gill
Project Manager

[^2]Foster Wheeler Environmental Corporation 12100 NE 195th St
Bothell WA/USA, 98011

Project: DPE Pilot Test
Project Number: Not Provided
Project Manager: Bryan Graham

Reported:
07/15/02 13:40

ANALYTICAL REPORT FOR SAMPLES

$\left.\begin{array}{|lllcc|}\hline \text { Sample ID } & \text { Laboratory ID } & \text { Matrix } & \text { Date Sampled } & \text { Date Received } \\ \hline \text { 01MW18SV03 } & \text { B2G0173-01 } & \text { Air } & 07 / 09 / 02 & 16: 30\end{array}\right)$ 07/10/02 10:40

11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420 .9200 fax 425.420 .9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906 .9200 fax 503.906 .9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383 .9310 fax 541.382 .7588

Foster Wheeler Environmental Corporation	Project: DPE Pilot Test	
12100 NE 195th St	Project Number:	Not Provided
Bothell WA/USA, 98011	Project Manager:	Bryan Graham

Gasoline Hydrocarbons (Benzene to Napthalene) and BTEX in Air by NWTPH-G and EPA 8021B North Creek Analytical - Bothell

Reporting									
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
01MW18SV03 (B2G0173-01) Air Sampled: 07/09/02 16:30 Received: 07/10/02 10:40									
Gasoline Range Hydrocarbons	6690	50.0	$\mathrm{mg} / \mathrm{m}^{3}$ Air	5	2G11005	07/11/02	07/11/02	NWTPH Modified	
Benzene	40.0	0.500	"	"	"	"	"	"	
Toluene	40.6	0.500	"	"	"	"	"	"	
Ethylbenzene	25.2	0.500	"	"	"	"	"	"	
Xylenes (total)	91.3	1.00	"	"	"	"	"	"	
Surrogate: 4-BFB (FID)	\%	58-131			"	"	"	"	S-02
Surrogate: 4-BFB (PID)	107%	63-129			"	"	"	"	
Gasoline Range Hydrocarbons (v/v)	1580	11.8	ppmy	5	"	"	"	"	
Benzene (v/v)	12.3	0.154	"	"	"	"	"	"	
Toluene (v / v)	10.6	0.130	"	"	"	"	"	"	
Ethylbenzene (v/v)	5.72	0.114	"	"	"	"	"	"	
Xylenes, total (v / v)	20.7	0.227	"	"	"	"	"	"	

Gasoline Hydrocarbons (Benzene to Napthalene) and BTEX in Air by NWTPH-G and EPA 8021B - Quality Control
 North Creek Analytical - Bothell

	Reporting			Spike	Source		\%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	\%REC	Limits	RPD	Limit	Notes

Batch 2G11005: Prepared 07/11/02 Using EPA 5030B (P/T)
Blank (2G11005-BLK1)

Gasoline Range Hydrocarbons	ND	10.0	$\mathrm{mg} / \mathrm{m}^{3} \mathrm{Air}$					
Gasoline Range Hydrocarbons (v/v)	ND	2.36	ppmy					
Benzene	ND	0.100	$\mathrm{mg} / \mathrm{m}^{3}$ Air					
Benzene (v / v)	ND	0.0308	ppmv					
Toluene	ND	0.100	$\mathrm{mg} / \mathrm{m}^{3} \mathrm{Air}$					
Toluene (v / v)	ND	0.0261	ppmv					
Ethylbenzene	ND	0.100	$\mathrm{mg} / \mathrm{m}^{3}$ Air					
Ethylbenzene (v / v)	ND	0.0227	ppmy					
Xylenes (total)	ND	0.200	$\mathrm{mg} / \mathrm{m}^{3} \mathrm{Air}$					
Xvienes, total (v/v)	ND	0.0454	ppmv					
ate: 4-BFB (FID)	9.27		$m g / m^{3}$ Air	9.60	96.6	58-131		
Surrogate: 4-BFB (PID)	9.63		"	9.60	100	$63-129$		
LCS (2G11005-BS1)								
Gasoline Range Hydrocarbons	64.0	10.0	$\mathrm{mg} / \mathrm{m}^{3}$ Air	100	64.0	50-150		
Surrogate: 4-BFB (FID)	8.77		"	9.60	91.4	58-131		
LCS (2G11005-BS2)								
Benzene	1.80	0.100	$\mathrm{mg} / \mathrm{m}^{3} \mathrm{Air}$	2.00	90.0	50-150		
Toluene	1.78	0.100	n	2.00	89.0	50-150		
Ethylbenzene	1.72	0.100	"	2.00	86.0	50-150		
Xylenes (total)	5.40	0.200	"	6.00	90.0	50-150		
Surrogate: 4-BFB (PID)	9.99		"	9.60	104	63-129		
LCS Dup (2G11005-BSD1)								
Gasoline Range Hydrocarbons	52.4	10.0	$\mathrm{mg} / \mathrm{m}^{3}$ Air	100	52.4	50-150	19.9	50
Surrogate: 4-BFB (FID)	7.73		"	9.60	80.5	58-131		

मCreek Analytical - Bothell | The results in this report apply to the samples analyzed in accordance with the chain of |
| :--- |
| custody document. This analytical report must be reproduced in its entirety. |

 custody document. This analytical report must be reproduced in its entirety.

Seattle
11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420 .9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924 .9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503,906.9200 fax 503.906 .9210
Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383 .9310 fax 541.382 .7588

Foster Wheeler Environmental Corporation 12100 NE 195th St Bothell WA/USA, 98011

Project: DPE Pilot Test
Project Number: Not Provided
Reported:
Project Manager: Bryan Graham

07/15/02 13:40

Gasoline Hydrocarbons (Benzene to Napthalene) and BTEX in Air by NWTPH-G and EPA 8021B - Quality Control

North Creek Analytical - Bothell

Analyte	Result	orting Limit	Units	Spike Level	Source Result	\%REC	$\begin{aligned} & \hline \text { \%REC } \\ & \text { Limits } \end{aligned}$	RPD	RPD Limit	Notes
Batch 2G11005: Prepared 07/11/02	Using EPA 5030B (P/T)									
LCS Dup (2G11005-BSD2)										
Benzene	1.71	0.100	$\mathrm{mg} / \mathrm{m}^{3}$ Air	2.00		85.5	50-150	5.13	50	
Toluene	1.65	0.100	T	2.00		82.5	50-150	7.58	50	
Ethylbenzene	1.62	0.100	"	2.00		81.0	50-150	5.99	50	
Xylenes (total)	5.13	0.200	"	6.00		85.5	50-150	5.13	50	
Surrogate: 4-BFB (PID)	11.1		"	9.60		116	63-129			
Duplicate (2G11005-DUP1)	Source: B2G0143-01									
Gasoline Range Hydrocarbons	2950	1000	$\mathrm{mg} / \mathrm{m}^{3}$ Air		3290			10.9	30	
Surrogate: 4-BFB (FID)	10.2		"	9.60		106	58-131			

Foster Wheeler Environmental Corporation
12100 NE 195th St
Bothell WA/USA, 98011

Project: DPE Pilot Test
Project Number: Not Provided
Reported:
Project Manager: Bryan Graham

Notes and Definitions

S-02 The surrogate recovery for this sample cannot be accurately quantified due to interference from coeluting organic compounds present in the sample.
Analyte DETECTED
ND Analyte NOT DETECTED at or above the reporting limit
NR Not Reported
dry Sample results reported on a dry weight basis
RPD Relative Percent Difference

Performance Analytical Inc.

Air Quality Laboratory
A Division of Columbia Analytical Services, Inc. An Employee Owned Company:

LABORATORY REPORT

Client:
Address:
TIME OIL COMPANY
2737 W. Commodore Way
Seattle, WA 98199-1233
Contact: Mr, Scott Sloan

Date of Report: 08/01/02
Date Received: 07/16/02
PAI Project No: P2201336

Client Project ID: Seattle Terminal DPE Test/01-600

Four (4) Stainless Steel Summa Canisters labeled:
"MW-18" "MW-9" "MW-10" "MW-5"

The samples were received at the laboratory under chain of custody on July 16,2002 . The samples were received intact. Please refer to the sample acceptance check form for additional information. The results reported herein are applicable only to the condition of the samples at the time that they were received at the laboratory.

Total Gaseous Non-Methane Organics Analysis

The samples were analyzed for total gaseous non-methane organics according to modified EPA Method 25 C . The analyses included a single sample injection (method modification) analyzed by gas chromatography using flame ionization detection/total combustion analysis.

Hydrocarbon Analysis

The samples were also analyzed for C_{2} through C_{10} hydrocarbons per modified EPA Method TO-3 using a gas chromatograph equipped with a flame ionization detector (FID).

Reviewed and Approved:

Wade Menton
Senior Chemist

Reviewed and Approved:

Page 1 of
17

Performance Analytical Inc.

Air Quality Laboratory
A Division of Columbia Analytical Services, Inc.
An Employee Owned Company

BTEX Analysis

The samples were also analyzed by combined gas chromatography/mass spectrometry (GC/MS) for benzene, toluene, ethylbenzene and total xylenes. The analyses were performed according to the methodology outlined in EPA Method TO-15. The analyses were performed by gas chromatography/mass spectrometry, utilizing a direct cryogenic trapping technique. The analytical system used was comprised of a Hewlett Packard Model 5973 GC/MS/DS interfaced to a Tekmar AutoCan Elite whole air inlet system/cryogenic concentrator. A 100\% Dimethylpolysiloxane capillary column $\left(\mathrm{RT}_{\mathrm{x}}-1\right.$, Restek Corporation, Bellefonte, PA$)$ was used to achieve chromatographic separation.

The results of analyses are given on the attached data sheets.

Performance Analytical Inc.

Air Quality Laboratory
A Division of Columbia Analytical Services, Inc.
An Employee Owned Company
RESULTS OF ANALYSIS
Page 1 of 1

Client:	Time Oil Company	PAI Project ID: P2201336
Client Project ID:	Seattle Terminal DPE Test/01-600	

Total Gaseous Non-Methane Organics as Methane

Test Code:
Instrument ID:
Analyst:
Sampling Media:
Test Notes:

Modified EPA Method 25C
HP5890A/FID/TCA
Annie Calvagna
Summa Canister (s)

Dates) Collected: 7/11-7/12/02
Date Received: 7/16/02
Date Analyzed: 7/19/02
Volume (s) Analyzed: 0.50 ml
0.0585 ml

$\mathrm{ND}=$ Compound was analyzed for, but not detected above the laboratory reporting limit.
MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.
\qquad Date: $7 / 30102$

Performance Analytical Inc.

Air Quality Laboratory

$\mathrm{ND}=$ Compound was analyzed for, but not detected above the laboratory reporting limit.
MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.
\qquad s Date:

Performance Analytical Inc.

$\left.\begin{array}{lllll}\text { Client: } & \text { Time Oil Company } \\ \text { Client Sample ID: } \\ \text { MW-9 } \\ \text { Client Project ID: } \\ \text { Seattle Terminal DPE Test/01-600 }\end{array}\right)$

$\mathrm{ND}=$ Compound was analyzed for, but not detected above the laboratory reporting limit.
MRI $=$ Method Reporting Limit - The minimum quantity of a target analyse that can be confidently determined by the referenced method.
\qquad Date: \qquad

Performance Analytical Inc.

Air Quality Laboratory
A Division of Columbia Analytical Services. Inc.
An Employee Owned Company

RESULTS OF ANALYSIS

Page 1 of 1

Client:

Client Sample ID:
Client Project ID:

Time Oil Company

MW-10
Seattle Terminal DPE Test/01-600

PAI Project ID: P2201336
PAI Sample ID: P2201336-003

Date Collected: 7/11/02

Date Received: 7/16/02
Date Analyzed: 7/23/02
Volume (s) Analyzed: $\quad 0.10 \mathrm{ml}$

Pi $1=\quad-0.8 \quad$ Pf $1=\quad 3.5$

$$
\text { D.F. }=1.31
$$

$\mathrm{ND}=$ Compound was analyzed for, but not detected above the laboratory reporting limit.
MRI $=$ Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.
\qquad G \qquad Date: \qquad 130102

Performance Analytical Inc.

Air Quality Laboratory
RESULTS OF ANALYSIS
Page 1 of 1

Client:	Time Oil Company					
Client Sample ID:	MW-10				roject ID:	201336
Client Project ID:	Seattle Terminal DPE Test/01-600				mple ID:	201336-003DUP
Test Code:	Modified EPA Method TO-3				Collected:	7/11/02
Instrument ID:	HP GC 6890A/FID \#7				Received:	7/16/02
Analyst:	Michelle Sakamoto				Analyzed:	7/23/02
Sampling Media:	Summa Canister			Volum	Analyzed:	0.10 ml
Test Notes:						
Container ID:	SC00071	Pi $1=$	-0.8	Pf $1=$	3.5	

Compound	Result	MRL
C_{2} as Ethane	$\mathbf{p p b V}$	Data
C_{3} as Propane	$\mathbf{8 4 , 0 0 0}$	25,000
4 as n-Butane	$\mathbf{7 3 , 0 0 0}$	25,000
C_{5} as n-Pentane	$\mathbf{2 , 5 0 0 , 0 0 0}$	25,000
C_{6} as n -Hexane	$\mathbf{1 , 7 0 0 , 0 0 0}$	25,000
C_{7} as n -Heptane	$\mathbf{1 , 2 0 0 , 0 0 0}$	25,000
C_{8} as n -Octane	$\mathbf{1 , 1 0 0 , 0 0 0}$	25,000
C_{9} as n-Nonane	$\mathbf{6 9 0 , 0 0 0}$	50,000
C_{10} as n -Decane	$\mathbf{3 2 0 , 0 0 0}$	50,000

$\mathrm{ND}=$ Compound was analyzed for, but not detected above the laboratory reporting limit.
$M R L=$ Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.
\qquad Date: $7 / 30102$

Performance Analytical Inc.

Air Quality Laboratory

Client:

Client Sample ID:

Client Project ID:

Time Oil Company

MW-5
Seattle Terminal DPE Test/01-600

Modified EPA Method TO-3
HP GC 6890A/FID \#7
Michelle Sakamoto
Summa Canister

Test Code:	Modified EPA Method TO-3		Date Collected:
Instrument ID:	HP GC 6890A/FID \#7	Date Received:	$7 / 16 / 02$
Analyst:	Michelle Sakamoto		Date Analyzed:
Sampling Media:	Summa Canister		$7 / 23 / 02$
Test Notes:			Volume (s) Analyzed:
Container ID:	SC00194		
		0.0	Pf $1=$

$\mathrm{ND}=$ Compound was analyzed for, but not detected above the laboratory reporting limit.
MRL = Method Reporting Limit - The minimum quantity of a target analyse that can be confidently determined by the referenced method.

Verified By: $R G$ \qquad Date: $\frac{7 / 30 / 02}{\text { Page No: }}$

Performance Analytical Inc.

Air Quality Laboratory
A Division of Columbia Analytical Services, Inc. An Employee Owned Company

RESULTS OF ANALYSIS

Page 1 of 1

Client:

Client Sample ID:
Client Project ID:

Time Oil Company

Method Blank

Seattle Terminal DPE Test/01-600

Modified EPA Method TO-3
HP GC 6890A/FID \#7
Michelle Sakamoto
Summa Canister

PAI Project ID: P2201336
PAI Sample ID: P020723-MB

Date Collected:	NA
Date Received:	NA
Date Analyzed:	$7 / 23 / 02$
Volume(s) Analyzed:	250.0 ml

NA
7/23/02
250.0 ml

Test Code:
Instrument ID:
Analyst:
Sampling Media:
Test Notes:

$$
\text { D.F. }=1.00
$$

Compound	Result ppbV	MRL ppbV	Data Qualifier
C_{2} as Ethane	ND	10	
- C3 as Propane	ND	10	
4 as n-Butane	ND	10	
C_{5} as n-Pentane	ND	10	
C_{6} as n-Hexane	ND	10	
C_{7} as n-Heptane	ND	10	
C_{8} as n-Octane	ND	20	
C9 as n-Nonane	ND	20	
C_{10} as n-Decane	ND	20	

$\mathrm{ND}=$ Compound was analyzed for, but not detected above the laboratory reporting limit.
MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.
\qquad $R G$ \qquad Date: \qquad 130 102

Performance Analytical Inc.
Air Quality Laboratory
A Division of Columbia Analytical Services, Inc.
An Employee Owned Company

RESULTS OF ANALYSIS

Page 1 of 1

Client: Time Oil Company

Client Sample ID: MW-18
PAI Project ID: P2201336
PAI Sample ID: P2201336-001

Test Code:	EPA TO-15
Instrument ID:	HP5973/Tekmar AUTOCan Elite
Analyst:	Svetlana Walsh/Wade Henton
Sampling Media:	Summa Canister
Test Notes:	
Container ID:	SC00416

$$
\text { D.F. }=1.24
$$

CAS\#	Compound	Result $\mathbf{m g} / \mathbf{m}^{\mathbf{3}}$	MRL $\mathrm{mg} / \mathrm{m}^{3}$	Result $\mathbf{p p m V}$	MRI ppmV	Data Qualifier
$71-43-2$	Benzene	$\mathbf{1 8 0}$	5.0	$\mathbf{5 5}$	1.6	
$108-88-3$	Toluene	$\mathbf{1 8 0}$	5.0	$\mathbf{4 7}$	1.3	
$100-41-4$	Ethylbenzene	$\mathbf{4 2}$	5.0	$\mathbf{9 . 6}$	1.2	
$136777-61-2$	m, p-Xylenes	$\mathbf{1 5 0}$	5.0	$\mathbf{3 3}$	1.2	
$95-47-6$	o-Xylene	$\mathbf{3 5}$	5.0	$\mathbf{8 . 2}$	1.2	

$\mathrm{ND}=$ Compound was analyzed for, but not detected above the laboratory reporting limit.
MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.
\qquad Date: \qquad

Performance Analytical Inc.

RESULTS OF ANALYSIS

Page 1 of 1

Client: Time Oil Company
Client Sample ID: MW-9
Client Project ID: Seattle Terminal DPE Test/01-600

PAI Project ID; P2201336
PAI Sample ID: P2201336-002

Test Code:	EPA TO-15
Instrument ID:	HP5973/Tekmar AUTOCan Elite
Analyst:	Svetlana Walsh/Wade Henton
Sampling Media:	Summa Canister
Test Notes:	
Container ID:	SC00101

$$
\text { Pi } 1=\quad-0.4 \quad \text { Pf } 1=3.5
$$

$$
\text { D.F. }=1.27
$$

$\mathrm{ND}=$ Compound was analyzed for, but not detected above the laboratory reporting limit.
$M R L=$ Method Reporting Limit - The minimum quantity of a target analyse that can be confidently determined by the referenced method.
\qquad Date:

Performance Analytical Inc.

Air Quality Laboratory
A Division of Columbia Analytical Services, Inc.
An Employee Owned Company

RESULTS OF ANALYSIS

Page 1 of 1

Client:	Time Oil Company
Client Sample ID:	MW-10
Client Project ID:	Seattle Terminal DPE Test/01-600
Test Code:	EPA TO-15
Instrument ID:	HP5973/Tekmar AUTOCan Elite
Analyst:	Svetlana Walsh/Wade Henton
Sampling Media:	Summa Canister
Test Notes:	
Container ID:	SC00071

PAI Project ID: P2201336
PAI Sample ID: P2201336-003

Date Collected: 7/11/02
Date Received: 7/16/02
Dates) Analyzed: 7/20/02
Volume (s) Analyzed: $\quad 0.10 \mathrm{ml}(\mathrm{s})$

$$
\operatorname{Pi} 1=-0.8 \quad \text { Pf } 1=3.5
$$

$$
\text { D.F. }=1.31
$$

CAS \#	Compound	Result $\mathbf{m g} / \mathbf{m}^{3}$	MRI $\mathrm{mg} / \mathrm{m}^{3}$	Result $\mathbf{p p m V}$	MRI ppm
$\mathbf{7 1 - 4 3 - 2}$	Benzene	$\mathbf{3 0 0}$	10	$\mathbf{9 3}$	3.1
$108-88-3$	Toluene	$\mathbf{1 3 0}$	10	$\mathbf{3 5}$	2.7
$100-41-4$	Ethylbenzene	$\mathbf{6 1}$	10	$\mathbf{1 4}$	2.3
$136777-61-2$	m, p-Xylenes	$\mathbf{1 8 0}$	10	$\mathbf{4 1}$	2.3
$95-47-6$	o-Xylene	$\mathbf{6 3}$	10	$\mathbf{1 4}$	2.3

$\mathrm{ND}=$ Compound was analyzed for, but not detected above the laboratory reporting limit.
$M R L=$ Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.
\qquad R LL \qquad
\qquad
\qquad \cdots Date: \qquad

RESULTS OF ANALYSIS

Page 1 of 1

Client: Time Oil Company

Client Sample ID: MW-5

Client Project ID: Seattle Terminal DPE Test/01-600
PAI Project ID: P2201336
PAI Sample ID: P2201336-004

Test Code:
Instrument ID:
Analyst:
Sampling Media:
Test Notes:
Container ID:

EPA TO-15
HP5973/Tekmar AUTOCan Elite
Svetlana Walsh/Wade Menton
Summa Canister

SC00194

Date Collected: 7/12/02
Date Received: 7/16/02
Dates) Analyzed: 7/22/02
Volume (s) Analyzed: $\quad 0.40 \mathrm{ml}(\mathrm{s})$
$\operatorname{Pi} 1=\quad 0.0 \quad$ Pf $1=3.5$
D.F. $=1.24$

CAP \#	Compound	Result $\mathrm{mg} / \mathrm{m}^{3}$	MRI $\mathrm{mg} / \mathrm{m}^{3}$	Result ppm	MRI ppm
$71-43-2$	Benzene	$\mathbf{3 3}$	2.5	$\mathbf{1 0}$	0.78
$108-88-3$	Toluene	41	2.5	$\mathbf{1 1}$	0.66
$100-41-4$	Ethylbenzene	$\mathbf{5 . 9}$	2.5	$\mathbf{1 . 3}$	0.58
$6777-61-2$	$m, p-$ Xylenes	$\mathbf{1 9}$	2.5	$\mathbf{4 . 3}$	0.58
$95-47-6$	o-Xylene	$\mathbf{5 . 4}$	2.5	$\mathbf{1 . 2}$	0.58

$\mathrm{ND}=$ Compound was analyzed for, but not detected above the laboratory reporting limit.
MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.
\qquad Date \qquad

Performance Analytical Inc.
Air Quality Laboratory
A Division of Columbia Analytical Services, Inc.
An Employee Owned Company

RESULTS OF ANALYSIS

Page 1 of 1

Client:

Client Sample ID:
Time Oil Company

Client Project ID: Seattle Terminal DPE Test/01-600
PAI Project ID: P2201336
PAI Sample ID: P020719-MB

Test Code:
EPA TO-15
Instrument ID
Analyst:
Sampling Media:
HP5973/Tekmar AUTOCan Elite
Svetlana Walsh/Wade Menton
Summa Canister
Test Notes:

$$
\text { D.F. }=1.00
$$

$\mathrm{ND}=$ Compound was analyzed for, but not detected above the laboratory reporting limit.
MRI $=$ Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Performance Analytical Inc.

Air Quality Laboratory
A Division of Columbia Analytical Services. Inc.
An Employee Owned Company

RESULTS OF ANALYSIS

Page 1 of 1

Client: Time Oil Company

Client Sample ID: Method Blank
Client Project ID: Seattle Terminal DPE Test/01-600
PAI Project ID: P2201336
PAI Sample ID: P020722-MB

Test Code:
Instrument ID:
Analyst:
Sampling Media:
Test Notes:

EPA TO-15
HP5973/Tekmar AUTOCan Elite
Svetlana Walsh/Wade Menton
Summa Canister

Date Collected: NA
Date Received: NA
Dates) Analyzed: 7/22/02
Volume (s) Analyzed: $\quad 1.00$ Liters)

$$
\text { D.F. }=1.00
$$

$\mathrm{ND}=$ Compound was analyzed for, but not detected above the laboratory reporting limit.
MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.
\qquad Date: \qquad

Performance Analytical Inc. Sample Acceptance Check Form

Tlient: Time Oil Company

Work order:
jject: Seattle Terminal DPE Test / 01-600
Sample(s) received on: 7/16/02 Date opened: 7/16/02 by LC
Note: This form is used for all samples received by PAI. The use of this form for custody seals is strictly meant to indicate presence/absence and not as an indication of compliance or nonconformity. Thermal preservation and pH will only be evaluated either at the request of the client or as required by the method/SOP.

lain any discrepancies: (include lab sample ID numbers):
2665 Park Center Drive, Suite D
 Phone (805) 526-7161 Fax (805) 526-7270
PAI Project No.

Date:	Time:	$\begin{array}{l}\text { Additional Comments } \\ 7 /(6102\end{array}$
Date:	Time:	$\begin{array}{l}\text { Please Fi4x } \\ \text { results to } \\ \text { Date: }\end{array}$
Time:	(206) $285-7833$	

PRE-DPE PILOT TEST GROUNDWATER SAMPLE ANALYTICAL RESULTS

JULY 2002

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-824

17 July 2002

Bryan Graham

Foster Wheeler Environmental Corporation
12100 NE 195th St
Bothell, WA/USA 98011
RE: Dre Pre-Sampling

Enclosed are the results of analyses for samples received by the laboratory on 07/02/02 17:10. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Amar Gill
Project Manager

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503,906.9200 fax 503.906.9210
Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383 .9310 fax 541.3827588

Foster Wheeler Environmental Corporation 12100 NE 195th St
Bothell WA/USA, 98011

Project: Dre Pre-Sampling
Project Number: 2306.3312.0002.00003 Reported: Project Manager: Bryan Graham

07/17/02 10:32

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
01MWTB	B2G0050-01	Water	07/02/02 08:00	07/02/02 17:10
01MW02	B2G0050-02	Water	07/02/02 09:00	07/02/02 17:10
01MW03	B2G0050-03	Water	07/02/02 09:30	07/02/02 17:10
01MW09	B2G0050-04	Water	07/02/02 10:00	07/02/02 17:10
01MW04	B2G0050-05	Water	07/02/02 10:30	07/02/02 17:10
01 MW 19	B2G0050-06	Water	07/02/02 13:30	07/02/02 17:10
01MW20	B2G0050-07	Water	07/02/02 14:15	07/02/02 17:10

Amar Gill, Project Manager
Foster Wheeler Environmental Corporation
12100 NE 195th St
Bothell WA/USA, 98011

Project: Dre Pre-Sampling
Project Number: 2306.3312.0002.00003 Reported:
Project Manager: Bryan Graham
07/17/02 10:32

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
01MWTB (B2G0050-01) Water	Sampled: 07/02/02 08:00 Received: 07/02/02 17:10								
Gasoline Range Hydrocarbons	ND	50.0	ug/1	1	2G12004	07/12/02	07/12/02	NWTPH-Gx/8021B	
Benzene	ND	0.500	"	"	"	"	"	"	
Toluene	ND	0.500	"	"	"	"	"	"	
Ethylbenzene	ND	0.500	"	"	"	"	"	"	
Xylenes (total)	ND	1.00	"	"	"	"	"	"	
Surrogate: 4-BFB (FID)	87.9\%	57-125			"	"	"	"	
Surrogate: 4-BFB (PID)	86.0%	62-120			"	"	"	"	
01MW02 (B2G0050-02) Water	Sampled: 07/02/02 09:00 Received: 07/02/02 17:10								
Gasoline Range Hydrocarbons	21600	250	ug/1	5	2G12004	07/12/02	07/12/02	NWTPH-Gx/8021B	
Benzene	6620	50.0	"	100	"	"	07/12/02	"	
Toluene	528	50.0	"	"	"	"	"	"	
Ethylbenzene	310	2.50	"	5	"	"	07/12/02	"	
Xylenes (total)	1380	5.00	\cdots	"	"	"	"	"	
Surrogate: 4-BFB (FID)	101%	57-125			"	"	"	"	
Surrogate: 4-BFB (PID)	84.2 \%	62-120			"	"	"	"	
01 MW 03 (B2G0050-03) Water	Sampled: 07/02/02 09:30 Received: 07/02/02 17:10								
Gasoline Range Hydrocarbons	14300	5000	ug/1	100	$2 \mathrm{G12004}$	07/12/02	07/12/02	NWTPH-Gx/8021B	
Benzene	5270	50.0	"	"	"	"	"		
Toluene	72.7	50.0	"	"	"	"	"	"	
Ethylbenzene	134	50.0	"	"	"	- "	"	"	
Xylenes (total)	207	100	"	"	"	"	"	"	
Surrogate: 4-BFB (FID)	90.4\%	57-125			"	"	"	"	
Surrogate: 4-BFB (PID)	84.8\%	62-120			"	"	"	"	

Amar Gill, Project Manager
Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA $98011-824$ 25.420 .9200 fax 425.420.9210
Spokane (1) Spokane, WA 996-4776 509.924.9200 fax 509.924.9290
Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906 .9200 fax 503.906.9210
Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588
Foster Wheeler Environmental Corporation
12100 NE 195th St
Bothell WA/USA, 98011

Project:	Dre Pre-Sampling
Project Number:	2306.3312 .0002 .00003
Project Manager:	Bryan Graham

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B North Creek Analytical - Bothell

Reporting									
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
01MW09 (B2G0050-04) Water Sampled: 07/02/02 10:00 Received: 07/02/02 17:10									
Gasoline Range Hydrocarbons	8080	5000	ug/1	100	2G12004	07/12/02	07/12/02	NWTPH-Gx/8021B	
Benzene	985	50.0	"	"	"	"	"	"	
Toluene	465	50.0	"	"	"	"	"	"	
Ethylbenzene	223	50.0	"	"	"	"	"	"	
Xylenes (total)	1050	100	"	"	"	"	"	"	
Surrogate: 4-BFB (FID)	89.6\%	57-125			"	"	"	"	
Surrogate: 4-BFB (PID)	86.5 \%	62-120			"	"	"	"	

01MW04 (B2G0050-05) Water Sampled: 07/02/02 10:30 Received: 07/02/02 17:10

Gasoline Range Hydrocarbons	6630	50.0	ug/l	1	2G12004	07/12/02	07/12/02	NWTPH-Gx/8021B	
Benzene	22.8	0.500	"	"	"	"	"	"	
Toluene	78.0	0.500	"	"	"	"	"	"	
F*** vlbenzene	341	10.0	"	20	"	"	07/12/02	"	
ses (total)	1440	20.0	"	*	"	"	"	"	
Surrogate: 4-BFB (FID)	158%	125			"	"	07/12/02	"	S-04
Surrogate: 4-BFB (PID)	119\%	120							

01MW19 (B2G0050-06) Water Sampled: 07/02/02 13:30 Received: 07/02/02 17:10

Gasoline Range Hydrocarbons	341	50.0	ug/1	1	2G12004	07/12/02	07/12/02	NWTPH-Gx/8021B
Benzene	2.94	0.500	"	"	"	"	"	"
Toluene	24.4	0.500	"	"	"	"	"	"
Ethylbenzene	14.0	0.500	"	"	"	"	"	"
Xylenes (total)	58.2	1.00	"	"	"	"	"	"
Surrogate: 4-BFB (FID)	92.1\%	57-125			"	"	"	n
Surrogate: 4-BFB (PID)	92.5\%	62-120			"	"	"	"

T Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of
custody document. This analytical report must be reproduced in its entirety.

11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420 .9200 fax 425.420 .9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906 .9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR $97701-5711$ 541.383 .9310 fax 541.382 .7588

Foster Wheeler Environmental Corporation	Project:	Dre Pre-Sampling
12100 NE 195th St	Project Number:	2306.3312 .0002 .00003
Bothell WA/USA, 98011	Project Manager:	Bryan Graham

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B North Creek Analytical - Bothell

| Analyte | Reporting | Limit | Units | Dilution Batch Prepared Analyzed | Method |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |

01MW20 (B2G0050-07) Water Sampled: 07/02/02 14:15 Received: 07/02/02 17:10

Gasoline Range Hydrocarbons	31500	2500	ug/1	50	2G12004	07/12/02	07/12/02	NWTPH-Gx/8021B
Benzene	3910	25.0	"	n	"	"	"	"
Toluene	2880	25.0	"	"	"	"	"	"
Ethylbenzene	768	25.0	"	"	"	"	"	"
Xylenes (total)	4500	50.0	"	"	"	"	"	n
Surrogate: 4-BFB (FID)	93.8\%	57-125			"	"	"	"
Surrogate: 4-BFB (PID)	87.7%	62-120			"	"	"	"

Foster Wheeler Environmental Corporation	Project: Dre Pre-Sampling	
12100 NE 195th St	Project Number: 2306.3312 .0002 .00003	Reported:
Bothell WA/USA, 98011	Project Manager:	Bryan Graham

Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up) North Creek Analytical - Bothell

| Analyte | Result | Reporting
 Limit | Units | Dilution | Batch | Prepared | Analyzed | Method |
| :--- | :--- | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

01MW02 (B2G0050-02) Water Sampled: 07/02/02 09:00 Received: 07/02/02 17:10

Diesel Range Hydrocarbons	3.81	0.250	mg / l	1	2G06005	07/06/02	07/10/02	NWTPH-Dx	D-06
Lube Oil Range Hydrocarbons	0.560	0.500	"	"	"	"	"	"	
Surrogate: 2-FBP	95.7%	52-126			"	"	"	*	
Surrogate: Octacosane	83.6%	53-122			"	"	"	"	

01MW03 (B2G0050-03) Water Sampled: 07/02/02 09:30 Received: 07/02/02 17:10

Diesel Range Hydrocarbons	1.75	0.250	mg/l	1	2G06005	07/06/02	07/10/02	NWTPH-Dx	D-06
Lube Oil Range Hydrocarbons	ND	0.500	"	"	"	"	"	"	
Surrogate: 2-FBP	82.3\%	52-126			"	"	"	"	
Surrogate: Octacosane	78.7%	53-122			"	"	"	"	

01MW09 (B2G0050-04) Water Sampled: 07/02/02 10:00 Received: 07/02/02 17:10

Diesel Range Hydrocarbons	1.75	0.250	mg/l	1	2G06005	07/06/02	07/10/02	NWTPH-Dx	D-06
Oil Range Hydrocarbons	ND	0.500	"	"	"	"	"	"	
Su, ogate: 2-FBP	80.3\%	52-126			"	"	"	"	
Surrogate: Octacosane	81.3\%	53-122			"	"	"	"	

01MW04 (B2G0050-05) Water Sampled: 07/02/02 10:30 Received: 07/02/02 17:10

Diesel Range Hydrocarbons	0.655	0.250	mg / l	1	2G06005	07/06/02	07/10/02	NWTPH-Dx	D-08
Lube Oil Range Hydrocarbons	ND	0.500	"	"	"	"	"	"	
Surrogate: 2-FBP	76.4\%	52-126			"	"	"	"	
Surrogate: Octacosane	78.0 \%	53-122			"	"	"	"	

01MW19 (B2G0050-06) Water Sampled: 07/02/02 13:30 Received: 07/02/02 17:10

Diesel Range Hydrocarbons	0.597	0.250	$\mathrm{mg} / 1$	1	2G06005	07/06/02	07/10/02	NWTPH-Dx	D-06
Lube Oil Range Hydrocarbons	ND	0.500	"	"	"	"	*	"	
Surrogate: 2-FBP	80.3\%	52-126			"	"	"	"	
Surrogate: Octacosane	80.7\%	53-122			"	"	"	"	

Foster Wheeler Environmental Corporation 12100 NE 195th St
Bothell WA/USA, 98011

Project: Dre Pre-Sampling
Project Number: 2306.3312.0002.00003 Reported:
Project Manager: Bryan Graham
07/17/02 10:32

Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up)

North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Aralyzed	Method	Notes
01MW20 (B2G0050-07) Water	Sampled: 07/02/02 14:15 Received: 07/02/02 17:10								
Diesel Range Hydrocarbons	2.25	0.250	mg / l	1	2G06005	07/06/02	07/10/02	NWTPH-Dx	D-06
Lube Oil Range Hydrocarbons	ND	0.500	"	"	"	"	"	"	
Surrogate: 2-FBP	82.6\%	52-126			"	"	"	"	
Surrogate: Octacosane	80.7 \%	53-122			"	"	"	"	

Foster Wheeler Environmental Corporation
12100 NE 195th St
Bothell WA/USA, 98011

Project:	Dre Pre-Sampling	
Project Number:	2306.3312 .0002 .00003	Reported:
Proect		$07 / 17 / 0210: 32$

07/17/02 10:32
Total Metals by EPA 6000/7000 Series Methods
North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
01MW02 (B2G0050-02) Water	Sampled: 07/02/02 09:00 Received: 07/02/02 17:10								
Lead	ND	0.00100	$\mathrm{mg} / 1$	1	2G03006	07/03/02	07/08/02	EPA 6020	
01MW03 (B2G0050-03) Water	Sampled: 07/02/02 09:30 Received: 07/02/02 17:10								
Lead	ND	0.00100	mg / l	1	2G03006	07/03/02	07/08/02	EPA 6020	
01MW09 (B2G0050-04) Water	Sampled: 07/02/02 10:00 Received: 07/02/02 17:10								
Lead	0.00119	0.00100	mg / l	1	2G03006	07/03/02	07/08/02	EPA 6020	
01MW04 (B2G0050-05) Water	Sampled: 07/02/02 10:30 Received: 07/02/02 17:10								
Lead	ND	0.00100	mg / l	1	2G03006	07/03/02	07/08/02	EPA 6020	
01MW19 (B2G0050-06) Water	Sampled: 07/02/02 13:30 Received: 07/02/02 17:10								
Lead	ND	0.00100	mg/1	1	2G03006	07/03/02	07/08/02	EPA 6020	
01MW20 (B2G0050-07) Water	Sampled: 07/02/02 14:15 Received: 07/02/02 17:10								
	0.00136	0.00100	mg/	1	2G03006	07/03/02	07/08/02	EPA 6020	

Seattle
11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420 .9200 fax 425.420 .9210

Spokane East1115 Montgomery, Suite B

```
Foster Wheeler Environmental Corporation 12100 NE 195th St
Bothell WA/USA, 98011
```

Project: Dre Pre-Sampling
Project Number: 2306.3312.0002.00003 Reported:
Project Manager: Bryan Graham

07/17/02 10:32

Dissolved Metals by EPA 6000/7000 Series Methods
 North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
01MW02 (B2G0050-02) Water	Sampled: 07/02/02	9:00 Rec	ed: 07/	17:10					
Lead	ND	0.00100	mg/l	1	2G03023	07/03/02	07/03/02	EPA 6020	
01 MW 03 (B2G0050-03) Water	Sampled: 07/02/02	19:30 Rec	ed: $07 /$	17:10					
Lead	ND	0.00100	mg/l	1	2G03023	07/03/02	07/03/02	EPA 6020	
01MW09 (B2G0050-04) Water	Sampled: 07/02/02	$0: 00 \mathrm{Re}$	ed: 07	17:10					
Lead	ND	0.00100	mg/l	1	2G03023	07/03/02	07/03/02	EPA 6020	
01MW04 (B2G0050-05) Water	Sampled: 07/02/02	$10: 30 \mathrm{Re}$	ed: 0	2 17:10					
Lead	ND	0.00100	mg/l	1	2G03023	07/03/02	07/03/02	EPA 6020	
01MW19 (B2G0050-06) Water	Sampled: 07/02/02	13:30 Rec	ed: 07/	2 17:10					
Lead	ND	0.00100	mg/l	1	2G03023	07/03/02	07/03/02	EPA 6020	
01MW20 (B2G0050-07) Water	Sampled: 07/02/02	4:15 Rec	ed: 07	2 17:10					
Lead	ND	0.00100	mg/l	1	2G03023	07/03/02	07/03/02	EPA 6020	

Foster Wheeler Environmental Corporation
12100 NE 195th St
Bothell WA/USA, 98011

Project:	Dre Pre-Sampling
Project Number:	2306.3312 .0002 .00003
Project Manager:	Bryan Graham

Pentachlorophenol by GC/MS with Selected Ion Monitoring
 North Creek Analytical - Bothell

| Analyte | Result | Reporting
 Limit | Units | Dilution | Batch | Prepared | Analyzed | Method | Notes |
| :--- | :--- | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

01MW02 (B2G0050-02) Water Sampled: 07/02/02 09:00 Received: 07/02/02 17:10

Pentachlorophenol	ND	0.500	ug/1	1	2G08004	07/08/02	07/16/02	EPA 8270 Mod
Surrogate: $2,4,6-T B P$	112\%	22-162			"	"	"	"
01MW03 (B2G0050-03) Water	Sampled: 07/02/02 09:30 Received: 07/02/02 17:10							
Pentachlorophenol	ND	0.500	ug/1	1	2G08004	07/08/02	07/11/02	EPA 8270 Mod
Surrogate: $2,4,6-T B P$	98.5\%	22-162			"	"	"	"
01MW09 (B2G0050-04) Water	Sampled: 07/02/02 10:00 Received: 07/02/02 17:10							
Pentachlorophenol	ND	0.500	ug/l	1	2G08004	07/08/02	07/11/02	EPA 8270 Mod
Surrogate: $2,4,6-T B P$	104%	22-162			"	"	"	"

01MW04 (B2G0050-05) Water Sampled: 07/02/02 10:30 Received: 07/02/02 17:10

Pentachlorophenol	ND	0.500	ug/l	1	2 G 08004	$07 / 08 / 02$	$07 / 11 / 02$	EPA 8270 Mod
gate: $2,4,6-$ TBP	102%	$22-162$			$"$	$"$	$"$	$"$

Pentachlorophenol	ND	0.500	ug/1	1	2G08004	07/08/02	07/11/02	EPA 8270 Mod
Surrogate: $2,4,6-T B P$	100\%	22-162			"	"	"	"

01MW20 (B2G0050-07) Water Sampled: 07/02/02 14:15 Received: 07/02/02 17:10

| Pentachlorophenol | ND | 0.500 | ug $/ 1$ | 1 | 2 G08004 | $07 / 08 / 02$ | $07 / 11 / 02$ | EPA 8270 Mod |
| :--- | ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Surrogate: $2,4,6-T B P$ | 101% | $22-162$ | | | $"$ | $"$ | n | n |

[^3]Foster Wheeler Environmental Corporation 12100 NE 195th St
Bothell WA/USA, 98011

Project: Dre Pre-Sampling
Project Number: 2306.3312.0002.00003
Project Manager: Bryan Graham

Reported:
07/17/02 10:32

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B - Quality Control North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units		Spike Level	Source Result	\%REC		\%REC Limits	RPD	Limit	Notes

Batch 2G12004: Prepared 07/12/02 Using EPA 5030B (P/T)

Blank (2G12004-BLK1)									
Gasoline Range Hydrocarbons	ND	50.0	ug/1						
Benzene	ND	0.500	"						
Toluene	ND	0.500	"						
Ethylbenzene	ND	0.500	"						
Xylenes (total)	ND	1.00	"						
Surrogate: 4-BFB (FID)	39.9		"	48.0		83.1	57-125		
Surrogate: $4-B F B$ (PID)	41.1		"	48.0		85.6	62-120		
LCS (2G12004-BS1)									
Gasoline Range Hydrocarbons	416	50.0	ug/1	502		82.9	80-120		
Benzene	6.77	0.500	"	6.20		109	$80-120$		
Toluene	32.4	0.500	"	37.4		86.6	80-120		
Ethylbenzene	8.54	0.500	"	8.94		95.5	$80-120$		
Xylenes (total)	41.2	1.00	"	43.7		94.3	80-120		
Surrogate: 4-BFB (FID)	40.0		"	48.0		83.3	57-125		
Surrogate: $4-B F B$ (PID)	40.4		"	48.0		84.2	62-120		
LCS Dup (2G12004-BSD1)									
Gasoline Range Hydrocarbons	434	50.0	ug/l	502		86.5	80-120	4.24	25
Benzene	6.77	0.500	"	6.20		109	80-120	0.00	40
Toluene	32.4	0.500	"	37.4		86.6	80-120	0.00	40
Ethylbenzene	8.54	0.500	"	8.94		95.5	80-120	0.00	40
Xylenes (total)	41.2	1.00	"	43.7		94.3	80-120	0.00	40
Surrogate: 4-BFB (FID)	41.7		"	48.0		86.9	57-125		
Surrogate: 4-BFB (PID)	40.6		"	48.0		84.6	62-120		
Matrix Spike (2G12004-MS1)	Source: B2G0001-01								
Gasoline Range Hydrocarbons	460	50.0	ug/1	502	ND	91.6	70-130		
Benzene	7.32	0.500	"	6.20	ND	118	80-120		
Toluene	33.7	0.500	"	37.4	ND	90.1	68-114		
Ethylbenzene	8.86	0.500	"	8.94	ND	98.0	80-120		
Xylenes (total)	42.5	1.00	"	43.7	ND	96.4	80-120		
Surrogate: 4-BFB (FID)	41.8		"	48.0		87.1	57-125		
Surrogate: 4-BFB (PID)	40.0		"	48.0		83.3	$62-120$		

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of
custody document. This analytical report must be reproduced in its entirety.

Foster Wheeler Environmental Corporation
12100 NE 195th St
Bothell WA/USA, 98011

Project:	Dre Pre-Sampling
Project Number:	2306.3312 .0002 .00003
Project Manager:	Bryan Graham

07/17/02 10:32

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B - Quality Control
 North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units		Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD	Limit	Notes

Batch 2G12004: Prepared 07/12/02 Using EPA 5030B (P/T)

Matrix Spike Dup (2G12004-MSD1)		Source: B2G0001-01							
Gasoline Range Hydrocarbons	429	50.0	ug/l	502	ND	85.5	70-130	6.97	25
Benzene	6.74	0.500	"	6.20	ND	109	80-120	8.25	40
Toluene	31.2	0.500	"	37.4	ND	83.4	68-114	7.70	40
Ethylbenzene	8.17	0.500	"	8.94	ND	90.3	80-120	8.10	40
Xylenes (total)	39.2	1.00	"	43.7	ND	88.8	80-120	8.08	40
Surrogate: 4-BFB (FID) Surrogate: 4-BFB (PID)	43.1 40.1		"	48.0 48.0		89.8 83.5	$57-125$ $62-120$		

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420 .9200 fax 425.420 .9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924 .9200 fax 509.924 .9290

Portand 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, 0R 97701-5711 541.383 .9310 fax 541.382.7588

Foster Wheeler Environmental Corporation 12100 NE 195th St
Bothell WA/USA, 98011

Project: Dre Pre-Sampling
Project Number: 2306.3312.0002.00003 Reported:
Project Manager: Bryan Graham

07/17/02 10:32

Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up) - Quality Control North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	$\begin{aligned} & \hline \text { RPD } \\ & \text { Limit } \end{aligned}$	Notes
Batch 2G06005: Prepared 07/06/02	Using EPA 3520C									
Blank (2G06005-BLK1)										
Diesel Range Hydrocarbons	ND	0.250	mg/l							
Lube Oil Range Hydrocarbons	ND	0.500	"							
Surrogate: 2-FBP	0.268		"	0.320		83.8	52-126			
Surrogate: Octacosane	0.272		"	0.320		85.0	53-122			
LCS (2G06005-BS1)										
Diesel Range Hydrocarbons	1.81	0.250	mg/1	2.00		90.5	60-122			
Surrogate: 2-FBP	0.277		"	0.320		86.6	52-126			
LCS Dup (2G06005-BSD1)										
Diesel Range Hydrocarbons	1.84	0.250	mg/l	2.00		92.0	60-122	1.64	40	
Surrogate: 2-FBP	0.280		"	0.320		87.5	52-126			

Seattle 11720 North Creek Pkwy N. Suite 400, Bothell, WA 98011 -8244 425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924 .9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906 .9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383 .9310 fax 541.382 .7588

Foster Wheeler Environmental Corporation 12100 NE 195th St
Bothell WA/USA, 98011

Project: Dre Pre-Sampling
Project Number: 2306.3312.0002.00003
Project Manager: Bryan Graham

Reported:
07/17/02 10:32

Total Metals by EPA 6000/7000 Series Methods - Quality Control
 North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Notes
Batch 2G03006: Prepared 07/03/02	Using EPA 3020A									
Blank (2G03006-BLK1)										
Lead	ND	0.00100	mg / l							
LCS (2G03006-BS1)										
Lead	0.0780	0.00100	$\mathrm{mg} / 1$	0.0800		97.5	80-120			
LCS Dup (2G03006-BSD1)										
Lead	0.0805	0.00100	mg/l	0.0800		101	80-120	3.15	20	
Matrix Spike (2G03006-MS1)				Source: B2G0023-01						
Lead	0.0840	0.00100	$\mathrm{mg} / 1$	0.0800	0.00440	99.5	75-125			
Matrix Spike Dup (2G03006-MSD1)		Source: B2G0023-01								
Lead	0.0831	0.00100	mg / l	0.0800	0.00440	98.4	75-125	1.08	20	
Spike (2G03006-PS1)	Source: B2G0023-01									
Lead	0.215	0.00100	mg/l	0.200	0.00440	105	80-120			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924 .9200 fax 509.924 .9290

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383 .9310 fax 541.382.7588

Foster Wheeler Environmental Corporation
12100 NE 195th St
Bothell WA/USA, 98011

Project: Dre Pre-Sampling
Project Number: 2306.3312.0002.00003 Reported: Project Manager: Bryan Graham 07/17/02 10:32

Dissolved Metals by EPA 6000/7000 Series Methods - Quality Control
 North Creek Analytical - Bothell

Analyte	Result	$\begin{aligned} & \hline \text { Reporting } \\ & \text { Limit } \end{aligned}$	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Notes
Batch 2G03023: Prepared 07/03/02	Using EPA 3005A									
Blank (2G03023-BLK1)										
Lead	ND	0.00100	mg / l							
LCS (2G03023-BS1)										
Lead	0.197	0.00100	mg / l	0.200		98.5	80-120			
LCS Dup (2G03023-BSD1)										
Lead	0.198	0.00100	mg/l	0.200		99.0	80-120	0.506	20	
Matrix Spike (2G03023-MS1)	Source: B2G0050-02									
Lead	0.211	0.00100	mg/l	0.200	ND	106	75-125			
Matrix Spike Dup (2G03023-MSD1)	Source: B2G0050-02									
Lead	0.212	0.00100	mg / l	0.200	ND	106	75-125	0.473	20	
Post Spike (2G03023-PS1)	Source: B2G0050-02									
Lead	0.210	0.00100	mg/1	0.200	ND	105	75-125			

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-824 425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924 .9200 fax 509.924 .9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906 .9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383 .9310 fax 541.382 .7588
Foster Wheeler Environmental Corporation
12100 NE 195th St
Bothell WA/USA, 98011

Project:	Dre Pre-Sampling
Project Number:	2306.3312 .0002 .00003
Project Manager:	Bryan Graham

Pentachlorophenol by GC/MS with Selected Ion Monitoring - Quality Control
 North Creek Analytical - Bothell

	Reporting			Spike	Source		\%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	\%REC	Limits	RPD	Limit	Notes

Batch 2G08004: Prepared 07/08/02 Using EPA 3520C

Blank (2G08004-BLK1)						
Pentachlorophenol	ND	0.500	ug/l			
Surrogate: $2,4,6-T B P$	44.9		$"$	50.0	89.8	$22-162$

LCS (2G08004-BS1)						
Pentachlorophenol	9.78	0.500	ug/	20.0	48.9	$20-128$
Surrogate: $2,4,6-$ TBP	40.0		$"$	50.0	80.0	$22-162$

LCS Dup (2G08004-BSD1)								
Pentachlorophenol	9.16	0.500	ug/1	20.0	45.8	$20-128$	6.55	50
Surrogate: $2,4,6-T B P$	34.7		$"$	50.0	69.4	$22-162$		

Foster Wheeler Environmental Corporation
12100 NE 195th St
Bothell WA/USA, 98011

Project:	Dre Pre-Sampling
Project Number:	2306.3312 .0002 .00003
Project Manager:	Bryan Graham

Notes and Definitions

ND Analyte NOT DETECTED at or above the reporting limit
NR Not Reported
dry Sample results reported on a dry weight basis
RPD Relative Percent Difference
Analyte DETECTED

Relative Percent Difference

The sample chromatographic pattern does not resemble the fuel standard used for quantitation.
Results in the diesel organies range are primarily due to overlap from a gasoline range product.
The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.

16 July 2002

Bryan Graham

Foster Wheeler Environmental Corporation
12100 NE 195th St
Bothell, WA/USA 98011

RE: Dre Pre-Sampling

Enclosed are the results of analyses for samples received by the laboratory on 07/03/02 12:00. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Amar Gill
Project Manager

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420 .9200 fax 425.420 .9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383 .9310 fax 541.382.7588
Foster Wheeler Environmental Corporation
12100 NE 195th St
Bothell WA/USA, 98011

Project: Dre Pre-Sampling
Project Number: 2306.3312.0002.00003 Reported:
Project Manager: Bryan Graham
07/16/02 17:00

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
01MWTB2	B2G0100-01	Water	$07 / 03 / 02$	$08: 10$
01MW18	B2G0100-02	Water	$07 / 03 / 02$ 12:00	
01MW05	B2G0100-03	Water	$07 / 0208: 30$	$07 / 03 / 02$

Foster Wheeler Environmental Corporation
12100 NE 195th St
Bothell WA/USA, 98011

Project:	Dre Pre-Sampling
Project Number:	2306.3312 .0002 .00003
Project Manager:	Bryan Graham

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B
 North Creek Analytical - Bothell

North Creek Analytical - Bothell
The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Seattle
Spokane 425.420 .9200 fax 425.420 .9210 1115 Montgomery, Suite 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906 .9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR $97701-5711$ 541.383 .9310 fax 541.382.7588

Foster Wheeler Environmental Corporation

 12100 NE 195th StBothell WA/USA, 98011

Project: Dre Pre-Sampling
Project Number: 2306.3312.0002.00003
Project Manager: Bryan Graham

Reported:
07/16/02 17:00

Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up)
 North Creek Analytical - Bothell

Analyte	Result	Reporting	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
01MW18 (B2G0100-02) Water	Sampled: 07/03/02 08:30 Received: 07/03/02 12:00								
Diesel Range Hydrocarbons	2.12	0.250	$\mathrm{mg} / 1$	1	2G06005	07/06/02	07/10/02	NWTPH-Dx	D-06
Lube Oil Range Hydrocarbons	ND	0.500	n	"	"	"	"	"	
Surrogate: 2-FBP	82.0%	52-126			"	"	"	"	
Surrogate: Octacosane	77.0 \%	53-122			"	"	"	"	
01MW05 (B2G0100-03) Water	Sampled: 07/03/02 08:45 Received: 07/03/02 12:00								
Diesel Range Hydrocarbons	2.71	0.250	$\mathrm{mg} / 1$	1	2G06005	07/06/02	07/10/02	NWTPH-Dx	D-06
Lube Oil Range Hydrocarbons	ND	0.500	"	"	"	"	${ }^{\prime}$	"	
Surrogate: 2-FBP	86.9 \%	52-126			"	"	"	"	
Surrogate: Octacosane	84.9 \%	53-122			"	"	"	"	

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-824 425.420 .9200 fax 425.420 .9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383 .9310 fax 541.382 .7588

Foster Wheeler Environmental Corporation 12100 NE 195th St
Bothell WA/USA, 98011

Project:	Dre Pre-Sampling
Project Number:	2306.3312 .0002 .00003
Project Manager:	Bryan Graham

Total Metals by EPA 6000/7000 Series Methods
North Creek Analytical - Bothell

Reporting									
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
01MW18 (B2G0100-02) Water	Sampled: 07/03/02 08:30 Received: 07/03/02 12:00								
Lead	0.00197	0.00100	$\mathrm{mg} / 1$	1	2G08026	07/08/02	07/09/02	EPA 6020	
01MW05 (B2G0100-03) Water	Sampled: 07/03/02 08:45 Received: 07/03/02 12:00								
Lead	ND	0.00100	mg / l	1	2G08026	07/08/02	07/09/02	EPA 6020	

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420 .9200 fax 425.420 .9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906 .9200 fax 503.906 .9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383 .9310 fax 541.3827588
Foster Wheeler Environmental Corporation
12100 NE 195th St
Bothell WA/USA, 98011

Project:	Dre Pre-Sampling
Project Number:	2306.3312 .0002 .00003
Project Manager:	Bryan Graham

Dissolved Metals by EPA 6000/7000 Series Methods North Creek Analytical - Bothell

Reporting									
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
01MW18 (B2G0100-02) Water	Sampled: 07/03/02 08:30 Received: 07/03/02 12:00								
Lead	0.00126	0.00100	mg/l	1	2G09009	07/09/02	07/09/02	EPA 6020	
01MW05 (B2G0100-03) Water	Sampled: 07/03/02 08:45 Received: 07/03/02 12:00								
Lead	ND	0.00100	$\mathrm{mg} / 1$	1	2G09009	07/09/02	07/09/02	EPA 6020	

Foster Wheeler Environmental Corporation	Project:	Dre Pre-Sampling
12100 NE 195th St	Project Number:	2306.3312 .0002 .00003
Bothell WA/USA, 98011	Project Manager:	Bryan Graham

Pentachlorophenol by GC/MS with Selected Ion Monitoring North Creek Analytical - Bothell

| Analyte | Result | Reporting
 Limit | Units | Dilution | Batch | Prepared Analyzed | Method | Notes |
| :--- | :--- | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

01MW18 (B2G0100-02) Water Sampled: 07/03/02 08:30 Received: 07/03/02 12:00

| | | | | | | | | | |
| :--- | ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Pentachlorophenol | ND | 0.500 | ug/1 | 1 | 2 G 08004 | $07 / 08 / 02$ | $07 / 11 / 02$ | EPA 8270 Mod | |
| Surrogate: $2,4,6-T B P$ | 95.4% | $22-162$ | | | $"$ | $"$ | $"$ | $"$ | $"$ |

01MW05 (B2G0100-03) Water Sampled: 07/03/02 08:45 Received: 07/03/02 12:00

Pentachlorophenol	ND	0.500	ug/1	1	2 G08004	$07 / 08 / 02$	$07 / 11 / 02$	EPA 8270 Mod
Surrogate: $2,4,6-T B P$	107%	$22-162$			n	$"$	$"$	$" /$

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420 .9200 fax 425.420 .9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 tax 503.906.9210

Foster Wheeler Environmental Corporation 12100 NE 195th St
Bothell WA/USA, 98011

Project: Dre Pre-Sampling
Project Number: 2306.3312.0002.00003
Project Manager: Bryan Graham

Reported: 07/16/02 17:00

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B - Quality Control North Creek Analytical - Bothell

	Reporting			Spike	Source		\%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	\%REC	Limits	RPD	Limit	Notes

Batch 2G11004: Prepared 07/11/02 Using EPA 5030B (P/T)

Blank (2G11004-BLK1)

Gasoline Range Hydrocarbons	ND	50.0	ug/l			
Benzene	ND	0.500	"			
Toluene	ND	0.500	"			
Ethylbenzene	ND	0.500	"			
Xylenes (total)	ND	1.00	"			
Surrogate: 4-BFB (FID)	36.2		"	48.0	75.4	57-125
Surrogate: 4-BFB (PID)	41.3		"	48.0	86.0	$62-120$
LCS (2G11004-BS1)						
Gasoline Range Hydrocarbons	425	50.0	ug/l	502	84.7	80-120
Benzene	6.89	0.500	"	6.20	111	80-120
T- ${ }^{\text {- }}$ ne	32.8	0.500	"	37.4	87.7	80-120
Jenzene	8.59	0.500	"	8.94	96.1	80-120
Xylenes (total)	41.4	1.00	"	43.7	94.7	80-120
Surrogate: 4-BFB (FID)	40.9		"	48.0	85.2	57-125
Surrogate: 4-BFB (PID)	40.2		"	48.0	83.8	62-120

LCS Dup (2G11004-BSD1)								
Gasoline Range Hydrocarbons	441	50.0	ug/l	502	87.8	$80-120$	3.70	25
Benzene	6.34	0.500	$"$	6.20	102	$80-120$	8.31	40
Toluene	30.4	0.500	$"$	37.4	81.3	$80-120$	7.59	40
Ethylbenzene	7.96	0.500	$"$	8.94	89.0	$80-120$	7.61	40
Xylenes (total)	38.3	1.00	$"$	43.7	87.6	$80-120$	7.78	40
Surrogate: $4-B F B$ (FID)	45.5		$"$	48.0	94.8	$57-125$		
Surrogate: $4-$ BFB (PID)	40.3		$"$	48.0	84.0	$62-120$		

Matrix Spike (2G11004-MS1)	Source: B2F0750-10						
Gasoline Range Hydrocarbons	497	50.0	ug/1	502	ND	99.0	70-130
Benzene	6.89	0.500	"	6.20	ND	111	80-120
Toluene	31.8	0.500	"	37.4	ND	84.6	68-114
Ethylbenzene	8.40	0.500	"	8.94	ND	94.0	80-120
Xylenes (total)	40.5	1.00	"	43.7	ND	92.7	80-120
Surrogate: 4-BFB (FID)	45.8		"	48.0		95.4	57-125
Surrogate: 4-BFB (PID)	39.9		"	48.0		83.1	62-120

[^4]Foster Wheeler Environmental Corporation 12100 NE 195th St
Bothell WA/USA, 98011

Project: Dre Pre-Sampling
Project Number: 2306.3312.0002.00003
Project Manager: Bryan Graham

Reported: 07/16/02 17:00

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B - Quality Control North Creek Analytical - Bothell

	Reporting			Spike	Source		\%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	\%REC	Limits	RPD	Limit	Notes

Batch 2G11004: Prepared 07/11/02 Using EPA 5030B (P/T)

Matrix Spike Dup (2G11004-MSD1)			Source: B2F0750-10						
Gasoline Range Hydrocarbons	467	50.0	$\mathrm{ug} / 1$	502	ND	93.0	$70-130$	6.22	25
Benzene	6.43	0.500	$"$	6.20	ND	104	$80-120$	6.91	40
Toluene	32.5	0.500	$"$	37.4	ND	86.5	$68-114$	2.18	40
Ethylbenzene	8.48	0.500	$"$	8.94	ND	94.9	$80-120$	0.948	40
Xylenes (total)	41.1	1.00	$"$	43.7	ND	94.1	$80-120$	1.47	40
Surrogate: $4-$ BFB (FID)	43.9		n	48.0		91.5	$57-125$		
Surrogate: $4-B F B$ (PID)	40.0		n	48.0		83.3	$62-120$		

Batch 2G12006: Prepared 07/12/02 Using EPA 5030B (P/T)

Gasoline Range Hydrocarbons	ND	50.0	ug/l			
Benzene	ND	0.500	"			
Toluene	ND	0.500	n			
Ethylbenzene	ND	0.500	"			
Xylenes (total)	ND	1.00	"			
Surrogate: 4-BFB (FID)	40.4		"	48.0	84.2	57-125
Surrogate: 4-BFB (PID)	44.6		"	48.0	92.9	$62-120$
LCS (2G12006-BS1)						
Gasoline Range Hydrocarbons	449	50.0	ug/1	502	89.4	80-120
Benzene	6.76	0.500	"	6.20	109	80-120
Toluene	35.1	0.500	"	37.4	93.9	80-120
Ethylbenzene	8.97	0.500	"	8.94	100	80-120
Xylenes (total)	42.7	1.00	"	43.7	97.7	80-120
Surrogate: 4-BFB (FID)	44.7		"	48.0	93.1	57-125
Surrogate: 4-BFB (PID)	42.9		"	48.0	89.4	62-120

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Foster Wheeler Environmental Corporation 12100 NE 195th St
Bothell WA/USA, 98011

Project: Dre Pre-Sampling
Project Number: 2306.3312.0002.00003
Reported:
Project Manager: Bryan Graham

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B - Quality Control North Creek Analytical - Bothell

	Reporting			Spike	Source		\%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	\%REC	Limits	RPD	Limit	Notes

Batch 2G12006: Prepared 07/12/02 Using EPA 5030B (P/T)

LCS Dup (2G12006-BSD1)								
Gasoline Range Hydrocarbons	605	50.0	ug/l	502	101	$80-120$	11.7	25
Benzene	6.70	0.500	$"$	6.20	108	$80-120$	0.892	40
Toluene	33.9	0.500	$"$	37.4	90.6	$80-120$	3.48	40
Ethylbenzene	8.78	0.500	$"$	8.94	98.2	$80-120$	2.14	40
Xylenes (total)	41.6	1.00	$"$	43.7	95.2	$80-120$	2.61	40
Surrogate: 4 -BFB (FID)	47.4		$"$	48.0	98.8	$57-125$		
Surrogate: 4 -BFB (PID)	42.5		$"$	48.0	88.5	$62-120$		

Matrix Spike (2G12006-MS1)				Source: B2G0029-03			
Gasoline Range Hydrocarbons	490	50.0	ug/1	502	ND	97.6	70-130
Benzene	7.06	0.500	"	6.20	ND	114	80-120
Tri, rene	35.6	0.500	"	37.4	ND	95.2	68-114
renzene	9.05	0.500	"	8.94	ND	101	80-120
Xylenes (total)	43.1	1.00	"	43.7	ND	98.6	80-120
Surrogate: 4-BFB (FID)	46.6		"	48.0		97.1	57-125
Surrogate: 4-BFB (PID)	42.0		"	48.0		87.5	$62-120$

Matrix Spike Dup (2G12006-MSD1)	Source: B2G0029-03								
Gasoline Range Hydrocarbons	455	50.0	ug/1	502	ND	90.6	70-130	7.41	25
Benzene	6.77	0.500	"	6.20	ND	109	80-120	4.19	40
Toluene	34.4	0.500	"	37.4	ND	92.0	68-114	3.43	40
Ethylbenzene	8.64	0.500	"	8.94	ND	96.6	80-120	4.64	40
Xylenes (total)	41.4	1.00	"	43.7	ND	94.7	80-120	4.02	40
Surrogate: 4-BFB (FID) Surrogate: 4-BFB (PID)	47.4 42.4		"	48.0 48.0		98.8 88.3	$57-125$ $62-120$		

Foster Wheeler Environmental Corporation 12100 NE 195th St
Bothell WA/USA, 98011

Project: Dre Pre-Sampling
Project Number: 2306.3312.0002.00003 Reported: Project Manager: Bryan Graham 07/16/02 17:00

Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up) - Quality Control North Creek Analytical - Bothell

| Analyte | Result | Reporting
 Limit | Units | | Spike
 Level | Source
 Result | \%REC | \%REC
 Limits | RPD | Limit | Notes |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Batch 2G06005: Prepared 07/06/02 Using EPA 3520C

Blank (2G06005-BLK1)								
Diesel Range Hydrocarbons	ND	0.250	mg / l					
Lube Oil Range Hydrocarbons	ND	0.500	"					
Surrogate: 2-FBP	0.268		"	0.320	83.8	52-126		
Surrogate: Octacosane	0.272		"	0.320	85.0	53-122		
LCS (2G06005-BS1)								
Diesel Range Hydrocarbons	1.81	0.250	$\mathrm{mg} / 1$	2.00	90.5	60-122		
Surrogate: 2-FBP	0.277		"	0.320	86.6	52-126		
LCS Dup (2G06005-BSD1)								
Diesel Range Hydrocarbons	1.84	0.250	mg / l	2.00	92.0	60-122	1.64	40
Surrogate: 2-FBP	0.280		"	0.320	87.5	52-126		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Foster Wheeler Environmental Corporation 12100 NE 195th St
Bothell WA/USA, 98011

Project: Dre Pre-Sampling
Project Number: 2306.3312.0002.00003 Reported:
Project Manager: Bryan Graham

07/16/02 17:00

Total Metals by EPA 6000/7000 Series Methods - Quality Control

North Creek Analytical - Bothell

	Reporting			Spike	Source		\%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	\%REC	Limits	RPD	Limit	Notes

Batch 2G08026: Prepared 07/08/02 Using EPA 3020A

Lead	ND	0.00100	mg / l								
LCS (2G08026-BS1)											
Lead			0.0773	0.00100	mg/l	0.0800		96.6	80-120		
LCS Dup (2G08026-BSD1)											
Lead	0.0792	0.00100	mg / l	0.0800		99.0	80-120	2.43	20		
Matrix Spike (2G08026-MS1)		Source: B2G0058-15									
Lead	0.0761	0.00100	$\mathrm{mg} / 1$	0.0800	ND	94.7	75-125				
Matrix Spike Dup (2G08026-MSD1)		Source: B2G0058-15									
Lead	0.0799	0.00100	mg / l	0.0800	ND	99.5	75-125	4.87	20		
		Source: B2G0058-15									
	0.207	0.00100	$\mathrm{mg} / 1$	0.200	ND	103	80-120			custody document. This analytical report must be reproduced in its entirety.	

Amar Gill, Project Manager

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420 .9200 fax 425.420 .9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portand 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906 .9200 fax 503.906 .9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588
Foster Wheeler Environmental Corporation
12100 NE 195th St
Bothell WA/USA, 98011

Project: Dre Pre-Sampling
Project Number: 2306.3312.0002.00003 Reported:
Project Manager: Bryan Graham 07/16/02 17:00

Dissolved Metals by EPA 6000/7000 Series Methods - Quality Control
 North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	\%REC	$\begin{aligned} & \text { \%REC } \\ & \text { Limits } \end{aligned}$	RPD	$\begin{aligned} & \text { RPD } \\ & \text { Limit } \end{aligned}$	Notes
Batch 2G09009: Prepared 07/09/02	Using EPA 3005A									
Blank (2G09009-BLK1)										
Lead	ND	0.00100	mg/l							
LCS (2G09009-BS1)										
Lead	0.191	0.00100	mg / l	0.200		95.5	80-120			
LCS Dup (2G09009-BSD1)										
Lead	0.191	0.00100	mg / l	0.200		95.5	80-120	0.00	20	
Matrix Spike (2G09009-MS1)	Source: B2G0100-02									
Lead	0.197	0.00100	mg/l	0.200	0.00126	97.9	75-125			
Matrix Spike Dup (2G09009-MSD1)	Source: B2G0100-02									
Lead	0.197	0.00100	mg/l	0.200	0.00126	97.9	75-125	0.00	20	
Post Spike (2G09009-PS1)	Source: B2G0100-02									
Lead	0.196	0.00100	mg/l	0.200	0.00126	97.4	75-125			

11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR $97701-5711$ 541.383.9310 fax 541.382 .7588

Batch 2G08004: Prepared 07/08/02 Using EPA 3520C

Blank (2G08004-BLK1)								
Pentachlorophenol	ND	0.500	ug/l					
Surrogate: 2,4,6-TBP	44.9		"	50.0	89.8	22-162		
LCS (2G08004-BS1)								
Pentachlorophenol	9.78	0.500	ug/1	20.0	48.9	20-128		
Surrogate: 2,4,6-TBP	40.0		"	50.0	80.0	22-162		
LCS Dup (2G08004-BSD1)								
Pentachlorophenol	9.16	0.500	ug/1	20.0	45.8	20-128	6.55	50
Surrogate: 2,4,6-TBP	34.7		"	50.0	69.4	22-162		

[^5]
www.ncalabs.com

Project: Dre Pre-Sampling
Project Number: 2306.3312.0002.00003
Reported:
Project Manager: Bryan Graham
07/16/02 17:00

Notes and Definitions

D-06 The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference

(541) 383-9310
B2G0100 F: $B 2 G O 100$
TURNAROUND REQUEST in Business Days*

Turnaround Requests less than standard may incur Rush Charges. | CA WO |
| :---: |
| ID |
| -01 |
| -2 |
| -03 |

$\sum_{\sum_{0}^{n}}^{\sum_{0}^{n}}$

DPE PILOT TEST AIR SAMPLE
 ANALYTICAL RESULTS

JULY 2002

19 March 2002

Bryan Graham
Foster Wheeler Environmental Corporation
12100 NE 195th St
Bothell, WA/USA 98011
RE: DPE

Enclosed are the results of analyses for samples received by the laboratory on 03/12/02 09:00. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Amar Gill
Project Manager

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-824 425.420.9200 fax 425.420.9210

Spokane
Foster Wheeler Environmental Corporation
12100 NE 195th St
Bothell WA/USA, 98011

Project: DPE
Project Number: 2306.3312.0004.00001
Project Manager: Bryan Graham

Reported:
03/19/02 13:39

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SB_65_5	B2C0219-01	Soil	03/11/02 09:25	03/12/02 09:00
SB_65_10	B2C0219-02	Soil	03/11/02 09:50	03/12/02 09:00
SB_65_15	B2C0219-03	Soil	03/11/02 10:15	03/12/02 09:00
SB_65_20	B2C0219-04	Soil	03/11/02 10:35	03/12/02 09:00
SB_65_25	B2C0219-05	Soil	03/11/02 10:50	03/12/02 09:00
SB_65_30	B2C0219-06	Soil	03/11/02 11:20	03/12/02 09:00
SB_66_5	B2C0219-07	Soil	03/11/02 13:05	03/12/02 09:00
SB_66_10	B2C0219-08	Soil	03/11/02 13:15	03/12/02 09:00
SB_66_15	B2C0219-09	Soil	03/11/02 13:30	03/12/02 09:00
SB_66_20	B2C0219-10	Soil	03/11/02 13:40	03/12/02 09:00
SB_66_25	B2C0219-11	Soil	03/11/02 13:50	03/12/02 09:00
SR 67_5	B2C0219-12	Soil	03/11/02 15:10	03/12/02 09:00
37_10	B2C0219-13	Soil	03/11/02 15:30	03/12/02 09:00
SB_67_15	B2C0219-14	Soil	03/11/02 15:45	03/12/02 09:00
SB_67_20	B2C0219-15	Soil	03/11/02 16:00	03/12/02 09:00
SB_67_25	B2C0219-16	Soil	03/11/02 16:15	03/12/02 09:00

[^6]Seattle 11720 North Creek Pkwy N, Surte 400, Bothell, WA 98011-8244 425.420 .9200 fax 425.420.9210

Spokane East 11115 Mantgomery, Suite B, Spokane, WA 99206-4776 509.924 .9200 fax 509.924 .9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383 .9310 fax 541.382 .7588

Foster Wheeler Environmental Corporation 12100 NE 195th St Bothell WA/USA, 98011

Project: DPE
Project Number: 2306.3312.0004.00001 Reported:
Project Manager: Bryan Graham
03/19/02 13:39

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B North Creek Analytical - Bothell

| Analyte | Result | Reporting
 Limit | Units | Dilution | Batch | Prepared | Analyzed | Method | Notes |
| :--- | :--- | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Received: 03/12/02 09:00								
Gasoline Range Hydrocarbons	ND	5.00	$\mathrm{mg} / \mathrm{kg}$ dry	1	2C15018	03/15/02	03/16/02	NWTPH-Gx/8021B
Benzene	ND	0.0300	"	"	"	"	"	"
Toluene	ND	0.0500	"	"	"	"	"	"
Ethylbenzene	ND	0.0500	"	"	"	"	"	"
Xylenes (total)	ND	0.100	"	"	"	"	"	"
Surrogate: 4-BFB (FID)	89.0\%	50-147			"	"	"	"
Surrogate: 4-BFB (PID)	96.4 \%	54-123			"	"	"	"

SB_65_10 (B2C0219-02) Soil Sampled: 03/11/02 09:50 Received: 03/12/02 09:00

Gasoline Range Hydrocarbons	ND	5.00	$\mathrm{mg} / \mathrm{kg}$ dry	1	2C15018	03/15/02	03/16/02	NWTPH-Gx/8021B	
Benzene	ND	0.0300	"	"	"	"	"	"	
Toluene	ND	0.0500	"	"	"	"	"	"	
Ethylbenzene	ND	0.0500	"		"	"	"	"	
Xylenes (total)	ND	0.100	"	"	"	"	"	"	
Surrogate: 4-BFB (FID)	88.1 \%	50-147			"	"	"	"	
Surrogate: 4-BFB (PID)	98.2 \%	54-123			"	"	"	"	
SB_65_15 (B2C0219-03) Soil	Sampled: 03/11/02	:15 Recei	ed: 03/12/0						
Gasoline Range Hydrocarbons	278	20.0	$\mathrm{mg} / \mathrm{kg}$ dry	4	2C15018	03/15/02	03/17/02	NWTPH-Gx/8021B	
Benzene	ND	0.120	"	"	"	"	"	"	
Toluene	0.519	0.200	"	"	"	"	"	"	
Ethylbenzene	1.74	0.200	"	"	"	"	"	"	
Xylenes (total)	6.47	0.400	"	"	"	"	"	"	
Surrogate: 4-BFB (FID)	\%	50-147			"	"	"	"	S-02
Surrogate: 4-BFB (PID)	150%	54-123			"	"	"	"	S-04

```
Foster Wheeler Environmental Corporation
12100 NE 195th St
Bothell WA/USA, 98011
```

Project: DPE
Project Number: 2306.3312.0004.00001
Reported:
Project Manager: Bryan Graham
03/19/02 13:39

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B North Creek Analytical - Bothell

| Analyte | Result | Reporting
 Limit | Units | Dilution | Batch | Prepared | Analyzed | Method | Notes |
| :--- | :--- | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

SB_65_20 (B2C0219-04) Soil	Sampled: 03/11/02 10:35	35 Receiv	ed: 03/12/02						
Gasoline Range Hydrocarbons	220	5.00	$\mathrm{mg} / \mathrm{kg}$ dry	1	2 Cl 5018	03/15/02	03/16/02	NWTPH-Gx/8021B	
Benzene	0.317	0.0300	"	"	"	"	"	"	
Toluene	0.703	0.0500	"	"	"	"	"	"	
Ethylbenzene	1.53	0.0500	"	"	"	"	"	"	
Xylenes (total)	6.37	0.100	"	"	"	"	"	"	
Surrogate: 4-BFB (FID)	\% 50	50-147			"	"	"	\cdots	S-02
Surrogate: 4-BFB (PID)	$127 \% \quad 5$	54-123			"	"	"	"	S-04
SB_65_25 (B2C0219-05) Soil	Sampled: 03/11/02 10:5	50 Receiv	ed: 03/12/0						Q-34
Gasoline Range Hydrocarbons	ND	5.00	$\mathrm{mg} / \mathrm{kg}$ dry	1	2 C 15018	03/15/02	03/16/02	NWTPH-Gx/8021B	
Benzene	ND	0.0300	"	"	"	"	"	"	
Toluene	ND	0.0500	"	"	"	"	"	"	
Ethylbenzene	ND	0.0500	"	"	"	"	"	"	
es (total)	ND	0.100	"	"	"	"	"	"	
Surrogate: 4-BFB (FID)	89.7 \% 5	50-147			"	"	"	"	
Surrogate: 4-BFB (PID)	$102 \% \quad 5$	54-123			"	"	"	"	

Received: 03/12/02 09:00								
Gasoline Range Hydrocarbons	ND	5.00	$\mathrm{mg} / \mathrm{kg}$ dry	1	2C15018	03/15/02	03/16/02	NWTPH-Gx/8021B
Benzene	ND	0.0300	"	"	"	"	"	"
Toluene	ND	0.0500	"	"	"	"	"	"
Ethylbenzene	ND	0.0500	"	"	"	"	"	"
Xylenes (total)	ND	0.100	"	"	"	"	"	"
Surrogate: 4-BFB (FID)	81.5 \%	50-147			"	"	"	"
Surrogate: 4-BFB (PID)	98.0\%	54-123			"	"	"	"

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Amar Gill, Project Manager

Seattle
11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906 .9200 fax 503.906 .9210

Bend 20332 Empire Avenus, Suite F-1, Bend, OR 97701-5711 541.383 .9310 fax 541.382.7588

Foster Wheeler Environmental Corporation 12100 NE 195th St Bothell WA/USA, 98011

Project: DPE
Project Number: 2306.3312.0004.00001
Reported:
03/19/02 13:39

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B North Creek Analytical - Bothell

Reporting									
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB_66_5 (B2C0219-07) Soil	Sampled: 03/11/02 13:05	5 Receiv	: 03/12/02						Q-34
Gasoline Range Hydrocarbons	ND	5.00	$\mathrm{mg} / \mathrm{kg}$ dry	1	2 C 15018	03/15/02	03/16/02	NWTPH-Gx/8021B	
Benzene	ND	0.0300	"	"	"	"	"	"	
Toluene	ND	0.0500	"	"	"	"	"	"	
Ethylbenzene	ND	0.0500	"	"	"	"	"	"	
Xylenes (total)	ND	0.100	"	"	"	"	"	"	
Surrogate: 4-BFB (FID)	$86.2 \% \quad 50$	50-147			"	"	"	"	
Surrogate: 4-BFB (PID)	95.2\% 5	54-123			"	"	"	"	

SB_66_15 (B2C0219-09) Soil Sampled: 03/11/02 13:30 Received: 03/12/02 09:00

Gasoline Range Hydrocarbons	$\mathbf{1 1 . 2}$	5.00	$\mathrm{mg} / \mathrm{kg}$ dry	1	2 C 15018	$03 / 15 / 02$	$03 / 16 / 02$	NWTPH-Gx/8021B
Benzene	$\mathbf{0 . 2 9 2}$	0.0300	$"$	$"$	$"$	$"$	$"$	$"$
Toluene	ND	0.0500	$"$	$"$	$"$	$"$	$"$	$"$
Ethylbenzene	$\mathbf{0 . 1 1 8}$	0.0500	$"$	$"$	$"$	$"$	$"$	$"$
Xylenes (total)	$\mathbf{2 . 5 2}$	0.100	$"$	$"$	$"$	$"$	$"$	$"$
Surrogate: $4-$ BFB (FID)	89.7%	$50-147$			$"$	$"$	$"$	$"$
Surrogate: $4-B F B$ (PID)	97.5%	$54-123$			$"$	$"$	$"$	$"$

North Creek Analytical - Bothell
The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project:	DPE	
Project Number:	2306.3312 .0004 .00001	Reported:
Project Manager:	Bryan Graham	$03 / 19 / 02 \quad 13: 39$

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B North Creek Analytical - Bothell

| Analyte | Result | Reporting
 Limit | Units | Dilution | Batch | Prepared | Analyzed | Method |
| :--- | :--- | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

SB_66_20 (B2C0219-10) Soil Sampled: 03/11/02 13:40 Received: 03/12/02 09:00

Gasoline Range Hydrocarbons	ND	5.00	$\mathrm{mg} / \mathrm{kg}$ dry	1	2 C 15018	$03 / 15 / 02$	$03 / 17 / 02$	NWTPH-Gx/8021B
Benzene	ND	0.0300	$"$	$"$	$"$	$"$	$"$	$"$
Toluene	ND	0.0500	$"$	$"$	$"$	$"$	$"$	$"$
Ethylbenzene	ND	0.0500	$"$	$"$	$"$	$"$	$"$	$"$
Xylenes (total)	0.136	0.100	$"$	$"$	$"$	$"$	$"$	$"$
Surrogate: $4-B F B$ (FID)	84.7%	$50-147$			$"$	$"$	$"$	$"$
Surrogate: $4-B F B(P I D)$	96.5%	$54-123$			n	$"$	$"$	$"$

SB_66_25 (B2C0219-11) Soil Sampled: 03/11/02 13:50 Received: 03/12/02 09:00

Gasoline Range Hydrocarbons	ND	5.00	$\mathrm{mg} / \mathrm{kg}$ dry	1	2C15018	03/15/02	03/17/02	NWTPH-Gx/8021B
Benzene	ND	0.0300	"	"	"	"	"	"
Toluene	ND	0.0500	"	"	"	"	"	"
Ethulbenzene	ND	0.0500	"	"	"	"	"	"
es (total)	ND	0.100	"	"	"	"	"	"
Surrogate: 4-BFB (FID)	83.7\%	50-147			"	"	"	"
Surrogate: 4-BFB (PID)	92.9\%	54-123			"	"	"	"

SB_67_5 (B2C0219-12) Soil Sampled: 03/11/02 15:10 Received: 03/12/02 09:00

Gasoline Range Hydrocarbons	ND	5.00	$\mathrm{mg} / \mathrm{kg}$ dry	1	2 C 15018	$03 / 15 / 02$	$03 / 17 / 02$	NWTPH-Gx/8021B
Benzene	ND	0.0300	$"$	$"$	$"$	$"$	$"$	$"$
Toluene	ND	0.0500	$"$	$"$	$"$	$"$	$"$	$"$
Ethylbenzene	ND	0.0500	$"$	$"$	$"$	$"$	$"$	$"$
Xylenes (total)	ND	0.100	$"$	$"$	$"$	$"$	$"$	$"$
Surrogate: $4-B F B$ (FID)	87.4%	$50-147$			$"$	$"$	$"$	$"$
Surrogate: $4-B F B$ (PID)	91.6%	$54-123$			$"$	$"$	$"$	$"$

[^7]Foster Wheeler Environmental Corporation 12100 NE 195th St Bothell WA/USA, 98011

Project: DPE
Project Number: 2306.3312.0004.00001 Reported:
Project Manager: Bryan Graham
03/19/02 13:39

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B

 North Creek Analytical - Bothell| Analyte | Result | Reporting
 Limit | Units | Dilution | Batch | Prepared | Analyzed | Method | Notes |
| :--- | :--- | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

SB_67_15 (B2C0219-14) Soil Sampled: 03/11/02 15:45 Received: 03/12/02 09:00

Gasoline Range Hydrocarbons	7.23	5.00	$\mathrm{mg} / \mathrm{kg}$ dry	1	2 C 15018	$03 / 15 / 02$	$03 / 17 / 02$	NWTPH-Gx/8021B
Benzene	ND	0.0300	$"$	$"$	$"$	$"$	$"$	$"$
Toluene	$\mathbf{0 . 2 3 0}$	0.0500	$"$	$"$	$"$	$"$	$"$	$"$
Ethylbenzene	$\mathbf{0 . 1 4 9}$	0.0500	$"$	$"$	$"$	$"$	$"$	$"$
Xylenes (total)	$\mathbf{0 . 8 4 3}$	0.100	$"$	$"$	$"$	$"$	$"$	$"$
Surrogate: $4-B F B$ (FID)	89.6%	$50-147$			$"$	$"$	$"$	$"$
Surrogate: $4-B F B$ (PID)	96.5%	$54-123$			$"$	$"$	$"$	$"$

SB_67_20 (B2C0219-15) Soil Sampled: 03/11/02 16:00 Received: 03/12/02 09:00

Gasoline Range Hydrocarbons	ND	5.00	$\mathrm{mg} / \mathrm{kg}$ dry	1	2 C 15018	03/15/02	03/17/02	NWTPH-Gx/8021B
Benzene	ND	0.0300	"	"	"	"	"	"
Toluene	ND	0.0500	"	"	"	"	"	"
Ethylbenzene	ND	0.0500	"	"	"	"	"	"
Xylenes (total)	ND	0.100	"	"	"	"	"	"
Surrogate: 4-BFB (FID)	83.6\%	50-147			"	$"$	"	"
Surrogate: 4-BFB (PID)	92.9\%	54-123			"	"	"	"

The results in this report apply to the samples analyzed in accordance with the chain of
custody document. This analytical report must be reproduced in its entirety.

Seattle

Foster Wheeler Environmental Corporation 12100 NE 195th St Bothell WA/USA, 98011	$\begin{aligned} & \text { Project: DPE } \\ & \text { Project Number: } 2306.3312 .0004 .00001 \\ & \text { Project Manager: Bryan Graham } \end{aligned}$						$\begin{aligned} & \text { Reported: } \\ & \text { 03/19/02 13:39 } \end{aligned}$	
Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B North Creek Analytical - Bothell								
Analyte	ResultReporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

3/11/02 16:15 Received: 03/12/02 09:00								
Gasoline Range Hydrocarbons	ND	5.00	$\mathrm{mg} / \mathrm{kg}$ dry	1	2 C 15018	03/15/02	03/17/02	NWTPH-Gx/8021B
Benzene	ND	0.0300	"	"	"	"	"	"
Toluene	ND	0.0500	"	"	"	"	"	"
Ethylbenzene	ND	0.0500	"	"	"	"	"	"
Xylenes (total)	ND	0.100	"	"	"	"	"	"
Surrogate: 4-BFB (FID)	86.1 \%	50-147			"	"	"	"
Surrogate: 4-BFB (PID)	90.9\%	54-123			"	"	"	"

[^8]www.ncalabs.com

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420 .9200 fax 425.420.9210
Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924 .9200 fax 509.924 .9290
Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906 .9200 fax 503.906.9210
Bend 20332 Empire Avenue, Suite F-1, Bend, OR $97701-5711$ 541.383.9310 fax 541.382.7588

Foster Wheeler Environmental Corporation 12100 NE 195th St
Bothell WA/USA, 98011

Project: DPE
Project Number: 2306.3312.0004.00001
Reported:
Project Manager: Bryan Graham
03/19/02 13:39

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up North Creek Analytical - Bothell

| Analyte | Result | Reporting
 Limit | Units | Dilution | Batch | Prepared | Analyzed | Method | Notes |
| :--- | :--- | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

SB_65_10 (B2C0219-02) Soil Sampled: 03/11/02 09:50 Received: 03/12/02 09:00

Diesel Range Hydrocarbons	ND	10.0	$\mathrm{mg} / \mathrm{kg}$ dry	1	2 Cl 3027	03/13/02	03/15/02	NWTPH-Dx
Lube Oil Range Hydrocarbons	ND	25.0	"	"	"	,	"	"
Surrogate: 2-FBP	65.3%	50-150			"	"	"	"
Surrogate: Octacosane	66.3%	50-150			"	"	"	"

SB_65_15 (B2C0219-03) Soil Sampled: 03/11/02 10:15 Received: 03/12/02 09:00

Diesel Range Hydrocarbons	676	10.0	$\mathrm{mg} / \mathrm{kg}$ dry	1	2 C 13027	03/13/02	03/15/02	NWTPH-Dx
Lube Oil Range Hydrocarbons	ND	25.0	"	"	"	"	"	"
Surrogate: 2-FBP	113\%	50-150			"	"	"	"
Surrogate: Octacosane	106%	50-150			"	"	"	"

SB_65_20 (B2C0219-04) Soil Sampled: 03/11/02 10:35 Received: 03/12/02 09:00

Diesel Range Hydrocarbons	ND	10.0	$\mathrm{mg} / \mathrm{kg}$ dry	1	2 Cl 3027	03/13/02	03/15/02	NWTPH-Dx
Lube Oil Range Hydrocarbons	ND	25.0	"	"	"	"	"	"
Surrogate: 2-FBP	94.6\%	50-150			"	"	"	"
Surrogate: Octacosane	94.6\%	50-150			"	"	"	"
SB_65_25 (B2C0219-05) Soil	Sampled: 03/11/02 10:50 Received: 03/12/02 09:00							
Diesel Range Hydrocarbons	ND	10.0	$\mathrm{mg} / \mathrm{kg}$ dry	1	2 Cl 3027	03/13/02	03/15/02	NWTPH-Dx
Lube Oil Range Hydrocarbons	ND	25.0	"	"	"	${ }^{\prime \prime}$	"	"
Surrogate: 2-FBP	67.9\%	50-150			"	"	"	"
Surrogate: Octacosane	68.1 \%	50-150			"	"	"	"

North Creek Analytical - Bothell | The results in this report apply to the samples analyzed in accordance with the chain of |
| :--- |
| custody document. This analytical report must be reproduced in its entirety. |

```
Foster Wheeler Environmental Corporation
12100 NE 195th St
Bothell WA/USA, }9801
```


Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up North Creek Analytical - Bothell

Reporting									
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB_65_30 (B2C0219-06) Soil Sampled: 03/11/02 11:20 Received: 03/12/02 09:00									
Diesel Range Hydrocarbons	ND	10.0	mg/kg dry	1	2 C 13027	03/13/02	03/15/02	NWTPH-Dx	
Lube Oil Range Hydrocarbons	ND	25.0	"	"	"	"	"	"	
Surrogate: 2-FBP	71.2%	50-150			"	"	"	"	
Surrogate: Octacosane	74.8 \%	50-150			"	"	"	"	
SB_66_5 (B2C0219-07) Soil Sampled: 03/11/02 13:05 Received: 03/12/02 09:00									
Diesel Range Hydrocarbons	42.9	10.0	$\mathrm{mg} / \mathrm{kg}$ dry	1	$2 \mathrm{C13027}$	03/13/02	03/15/02	NWTPH-Dx	
Lube Oil Range Hydrocarbons	s 70.1	25.0	"	"	"	"	"	"	
Surrogate: 2-FBP	101\%	50-150			"	"	"	"	
Surrogate: Octacosane	104\%	50-150			"	"	"	"	
SB_66_10 (B2C0219-08) Soil Sampled: 03/11/02 13:15 Received: 03/12/02 09:00									
Diesel Range Hydrocarbons	17.9	10.0	$\mathrm{mg} / \mathrm{kg}$ dry	1	2 Cl 3027	03/13/02	03/15/02	NWTPH-Dx	
r Oil Range Hydrocarbons	s 29.3	25.0	"	"	"	"	"	"	
Su. ogate; 2-FBP	73.0 \%	50-150			"	"	"	"	
Surrogate: Octacosane	74.5%	50-150			"	"	"	"	
SB_66_15 (B2C0219-09) Soil Sampled: 03/11/02 13:30 Received: 03/12/02 09:00									
Diesel Range Hydrocarbons	ND	10.0	$\mathrm{mg} / \mathrm{kg}$ dry	1	2 Cl 3027	03/13/02	03/15/02	NWTPH-Dx	
Lube Oil Range Hydrocarbons	ND	25.0	"	"	"	"	"	"	
Surrogate: 2-FBP	77.7 \%	50-150			"	"	"		
Surrogate: Octacosane	80.8\%	50-150			"	"	"	"	

- ל Creek Analytical - Bothell

Amar Gill, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.
Foster Wheeler Environmental Corporation
12100 NE 195th St
Bothell WA/USA, 98011

Project:	DPE	
Project Number:	2306.3312 .0004 .00001	Reported:
Project Manager:	Bryan Graham	$03 / 19 / 0213: 39$

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up
 North Creek Analytical - Bothell

Reporting									
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB_66_25 (B2C0219-11) Soil Sampled: 03/11/02 13:50		Received: 03/12/02 09:00							
Diesel Range Hydrocarbons	ND	10.0	$\mathrm{mg} / \mathrm{kg}$ dry	1	2 C 13027	03/13/02	03/15/02	NWTPH-Dx	
Lube Oil Range Hydrocarbons	ND	25.0	"	"	"	"	"	"	
Surrogate: 2-FBP	70.8\%	50-150			"	"	"	"	
Surrogate: Octacosane	65.9%	50-150			"	"	"	"	
SB_67_5 (B2C0219-12) Soil	Sampled: 03/11/02 15	10 Receive	d: 03/12/02						
Diesel Range Hydrocarbons	112	10.0	$\mathrm{mg} / \mathrm{kg}$ dry	1	2 C 13027	03/13/02	03/15/02	NWTPH-Dx	
Lube Oil Range Hydrocarbons	S 75.2	25.0	"	"	"	"	"	"	
Surrogate: 2-FBP	82.7 \%	50-150			"	"	"	"	
Surrogate: Octacosane	82.7 \%	50-150			"	"	"	"	

SB_67_15 (B2C0219-14) Soil Sampled: 03/11/02 15:45 Received: 03/12/02 09:00

Diesel Range Hydrocarbons	ND	10.0	$\mathrm{mg} / \mathrm{kg}$ dry	1	2 C 13027	03/13/02	03/15/02	NWTPH-Dx
Lube Oil Range Hydrocarbons	ND	25.0	"	"	"	"	"	"
Surrogate: 2-FBP	94.5\%	50-150			"	"	"	"
Surrogate: Octacosane	97.6\%	50-150			"	"	"	"
SB_67_20 (B2C0219-15) Soil	Sampled: 03/11/02 16:00 Received: 03/12/02 09:00							
Diesel Range Hydrocarbons	ND	10.0	$\mathrm{mg} / \mathrm{kg}$ dry	1	2 Cl 3027	03/13/02	03/15/02	NWTPH-Dx
Lube Oil Range Hydrocarbons	ND	25.0	"	"	"	"	"	"
Surrogate: 2-FBP	81.8\%	50-150			"	"	"	"
Surrogate: Octacosane	84.8\%	50-150			"	"	"	"

Seattle

SB_67_25 (B2C0219-16RE1) Soil Sampled: 03/11/02 16:15 Received: 03/12/02 09:00

Diesel Range Hydrocarbons	ND	10.0	$\mathrm{mg} / \mathrm{kg}$ dry	1	2 Cl 5024	03/15/02	03/18/02	NWTPH-Dx
Lube Oil Range Hydrocarbons	ND	25.0	"	"	"	"	"	"
Surrogate: 2-FBP	81.5\%	50-150			"	"	"	"
Surrogate: Octacosane	84.4\%	50-150			"	"	"	"

F Creek Analytical - Bothell | The results in this report apply to the samples analyzed in accordance with the chain of |
| :--- |
| custody document. This analytical report must be reproduced in its entirety. |

Foster Wheeler Environmental Corporation	Project:	DPE
12100 NE 195th St	Project Number:	2306.3312 .0004 .00001
Bothell WA/USA, 98011	Project Manager:	Bryan Graham

Total Metals by EPA 6000/7000 Series Methods
 North Creek Analytical - Bothell

Reporting									
SB_65_5 (B2C0219-01) Soil	Sampled: 03/11/02 09:25	Receive	d: 03/12/02	9:00					
Lead	4.17	0.360	$\mathrm{mg} / \mathrm{kg}$ dry	1	2 C 15010	03/15/02	03/18/02	EPA 6020	
SB_65_10 (B2C0219-02) Soil	Sampled: 03/11/02 09:50	Receiv	ed: 03/12/02	09:00					
Lead	4.96	0.350	$\mathrm{mg} / \mathrm{kg}$ dry	1	2 Cl 15010	03/15/02	03/18/02	EPA 6020	
SB_65_15 (B2C0219-03) Soil	Sampled: 03/11/02 10:15	Receiv	ed: 03/12/0	09:00					
Lead	4.35	0.269	$\mathrm{mg} / \mathrm{kg}$ dry	1	2 C 15010	03/15/02	03/18/02	EPA 6020	
SB_65_20 (B2C0219-04) Soil	Sampled: 03/11/02 10:35	Receiv	ed: 03/12/0	09:00					
Lead	2.08	0.307	$\mathrm{mg} / \mathrm{kg}$ dry	1	2 C 15010	03/15/02	03/18/02	EPA 6020	
SB_65_25 (B2C0219-05) Soil	Sampled: 03/11/02 10:50	Receiv	ed: 03/12/0						
Lead	5.94	0.357	mg/kg dry	1	2 C 15010	03/15/02	03/18/02	EPA 6020	
SB_65_30 (B2C0219-06) Soil	Sampled: 03/11/02 11:20	Receiv	ed: 03/12/0						
Lead	4.02	0.391	$\mathrm{mg} / \mathrm{kg}$ dry	1	2C15010	03/15/02	03/18/02	EPA 6020	
SB_66_5 (B2C0219-07) Soil	Sampled: 03/11/02 13:05	Receive	d: 03/12/02						
Lead	55.5	0.272	$\mathrm{mg} / \mathrm{kg}$ dry	1	2 C 15010	03/15/02	03/18/02	EPA 6020	
SB_66_10(B2C0219-08) Soil	Sampled: 03/11/02 13:15	Receiv	ed: 03/12/0	09:00					
Lead	18.9	0.388	$\mathrm{mg} / \mathrm{kg}$ dry	1	2 Cl 5010	03/15/02	03/18/02	EPA 6020	
SB_66_15 (B2C0219-09) Soil	Sampled: 03/11/02 13:30	Receiv	ed: 03/12/0	09:00					
Lead	2.53	0.301	mg/kg dry	1	2 C 15010	03/15/02	03/18/02	EPA 6020	

North Creek Analytical - Bothell The results in this report apply to the samples analyzed in accordance with the chain of

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420 .9200 Fax 425420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206 -4776 509.924 .9200 fax 509.924 .9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383 .9310 fax 541.382 .7588
Foster Wheeler Environmental Corporation
12100 NE 195th St
Bothell WA/USA, 98011

Project: DPE
Project Number: 2306.3312.0004.00001 Reported: Project Manager: Bryan Graham 03/19/02 13:39

Total Metals by EPA 6000/7000 Series Methods
North Creek Analytical - Bothell

Reporting									
SB_66_20 (B2C0219-10) Soil	Sampled: 03/11/02 13:40	Receiv	d: 03/12/0	09:00					
Lead	2.44	0.307	$\mathrm{mg} / \mathrm{kg}$ dry	1	2C15010	03/15/02	03/18/02	EPA 6020	
SB_66_25 (B2C0219-11) Soil	Sampled: 03/11/02 13:50	Receiv	d: 03/12/0	09:00					
Lead	6.14	0.333	$\mathrm{mg} / \mathrm{kg}$ dry	1	2C15010	03/15/02	03/18/02	EPA 6020	
SB_67_5 (B2C0219-12) Soil	Sampled: 03/11/02 15:10	Receive	: 03/12/02						
Lead	21.1	0.336	$\mathrm{mg} / \mathrm{kg}$ dry	1	2 Cl 5010	03/15/02	03/18/02	EPA 6020	
SB_67_10(B2C0219-13) Soil	Sampled: 03/11/02 15:30	Receiv	d: 03/12/0	09:00					
Lead	5.18	0.279	$\mathrm{mg} / \mathrm{kg}$ dry	1	2 C 15010	03/15/02	03/18/02	EPA 6020	
SB_67_15 (B2C0219-14) Soil	Sampled: 03/11/02 15:45	Receiv	ed: 03/12/0	09:00					
Lead	2.47	0.260	$\mathrm{mg} / \mathrm{kg}$ dry	1	2C15010	03/15/02	03/18/02	EPA 6020	
SB_67_20(B2C0219-15) Soil	Sampled: 03/11/02 16:00	Receiv	ed: 03/12/0	09:00					
「	2.34	0.376	$\mathrm{mg} / \mathrm{kg}$ dry	1	2C15010	03/15/02	03/18/02	EPA 6020	
Sb_67_25 (B2C0219-16) Soil	Sampled: 03/11/02 16:15	Receiv	ed: 03/12/0	09:00					
Lead	5.58	0.327	$\mathrm{mg} / \mathrm{kg}$ dry	1	2C15010	03/15/02	03/18/02	EPA 6020	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210
 Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924 .9200 fax 509.924 .9290
 Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906 .9200 fax 503.906.9210
 Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Foster Wheeler Environmental Corporation 12100 NE 195th St Bothell WA/USA, 98011	Project: DPE Project Number: 2306.3312.0004.00001 Project Manager: Bryan Graham	
Physical Parameters by APHA/ASTM/EPA Methods		
North Creek Analytical - Bothell		

Reporting									
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB_65_5 (B2C0219-01) Soil	Sampled: 03/11/02 09:25 Received: 03/12/02 09:00								
Dry Weight	89.6	1.00	\%	1	2 C 13015	03/13/02	03/14/02	BSOPSPL003R07	
SB_65_10 (B2C0219-02) Soil	Sampled: 03/11/02 09:50	Received: 03/12/02 09:00							
Dry Weight	80.8	1.00	\%	1	2 C 13015	03/13/02	03/14/02	BSOPSPL003R07	
SB_65_15 (B2C0219-03) Soil	Sampled: 03/11/02 10:15	Received: 03/12/02 09:00							
Dry Weight	85.1	1.00	\%	1	2C13015	03/13/02	03/14/02	BSOPSPL003R07	
SB_65_20 (B2C0219-04) Soil	Sampled: 03/11/02 10:35	Received: 03/12/02 09:00							
Dry Weight	83.0	1.00	\%	1	2C13015	03/13/02	03/14/02	BSOPSPL003R07	
SB_65_25 (B2C0219-05) Soil	Sampled: 03/11/02 10:50	Received: 03/12/02 09:00							
Dry Weight	82.1	1.00	\%	1	2 Cl 3015	03/13/02	03/14/02	BSOPSPL003R07	
SB_65_30 (B2C0219-06) Soil	Sampled: 03/11/02 11:20	Received: 03/12/02 09:00							
Dry Weight	78.6	1.00	\%	1	2 Cl 3015	03/13/02	03/14/02	BSOPSPL003R07	
SB_66_5 (B2C0219-07) Soil	Sampled: 03/11/02 13:05	Received: 03/12/02 09:00							
Dry Weight	83.7	1.00	\%	1	2C13015	03/13/02	03/14/02	BSOPSPL003R07	
SB_66_10 (B2C0219-08) Soil	Sampled: 03/11/02 13:15	Received: 03/12/02 09:00							
Dry Weight	80.9	1.00	\%	1	2C13015	03/13/02	03/14/02	BSOPSPL003R07	
SB_66_15 (B2C0219-09) Soil	Sampled: 03/11/02 13:30	Recei	d: 03/1	09:00					
Dry Weight	82.3	1.00	\%	1	2C13015	03/13/02	03/14/02	BSOPSPL003R07	

North Creek Analytical - Bothell | The results in this report apply to the samples analyzed in accordance with the chain of |
| :--- |
| custody document. This analytical report must be reproduced in its entirety. |

* Creek Analytical - Bothell - -

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210

Foster Wheeler Environmental Corporation 12100 NE 195th St
Bothell WA/USA, 98011

Project: DPE
Project Number: 2306.3312 .0004 .00001
Reported:
Project Manager: Bryan Graham
03/19/02 13:39

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B - Quality Control North Creek Analytical - Bothell

	Reporting			Spike	Source		\%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	\%REC	Limits	RPD	Limit	Notes

Batch 2C15018: Prepared 03/15/02 Using EPA 5030B (P/T)

Blank (2C15018-BLK1)									
Gasoline Range Hydrocarbons	ND	5.00	$\mathrm{mg} / \mathrm{kg}$						
Benzene	ND	0.0300	"						
Toluene	ND	0.0500	"						
Ethylbenzene	ND	0.0500	"						
Xylenes (total)	ND	0.100	"						
Surrogate: 4-BFB (FID)	3.87		"	4.00		96.8	50-147		
Surrogate: 4-BFB (PID)	3.95		"	4.00		98.8	54-123		
LCS (2C15018-BS1)									
Gasoline Range Hydrocarbons	27.6	5.00	$\mathrm{mg} / \mathrm{kg}$	27.5		100	80-120		
Benzene	0.351	0.0300	"	0.330		106	80-120		
Toluene	1.78	0.0500	"	1.96		90.8	80-120		
Ethylbenzene	0.484	0.0500	"	0.460		105	80-120		
Xylenes (total)	2.24	0.100	"	2.28		98.2	80-120		
Surrogate: 4-BFB (FID)	4.31		"	4.00		108	50-147		
Surrogate: 4-BFB (PID)	3.87		"	4.00		96.8	54-123		
LCS Dup (2C15018-BSD1)									
Gasoline Range Hydrocarbons	28.2	5.00	$\mathrm{mg} / \mathrm{kg}$	27.5		103	80-120	2.15	40
Benzene	0.383	0.0300	"	0.330		116	80-120	8.72	40
Toluene	1.95	0.0500	"	1.96		99.5	80-120	9.12	40
Ethylbenzene	0.528	0.0500	"	0.460		115	80-120	8.70	40
Xylenes (total)	2.46	0.100	"	2.28		108	80-120	9.36	40
Surrogate: 4-BFB (FID)	4.38		"	4.00		110	50-147		
Surrogate: 4-BFB (PID)	4.20		"	4.00		105	54-123		
Matrix Spike (2C15018-MS1)	Source: B2C0219-01								
Gasoline Range Hydrocarbons	28.7	5.00	$\mathrm{mg} / \mathrm{kg}$ dry	30.7	ND	90.1	53-120		
Benzene	0.380	0.0300	"	0.368	ND	103	64-130		
Toluene	1.95	0.0500	"	2.19	ND	89.0	66-130		
Ethylbenzene	0.533	0.0500	"	0.514	ND	104	72-130		
Xylenes (total)	2.47	0.100	"	2.54	ND	96.4	73-130		
Surrogate: 4-BFB (FID)	4.28		"	4.47		95.7	50-147		
Surrogate: 4-BFB (PID)	4.07		"	4.47		91.1	54-123		

North Creek Analytical - Bothell
The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906 .9200 fax 503.906 .9210

Bend 20332 Empire Avenue, Suite F-1, Bend, 08 97701-5711 541.383.9310 fax 541.382.7588

Foster Wheeler Environmental Corporation 12100 NE 195th St
Bothell WA/USA, 98011

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B - Quality Control North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD	Limit	Notes

Batch 2C15018: Prepared 03/15/02 Using EPA 5030B (P/T)

Matrix Spike Dup (2C15018-MSD1)		Source: B2C0219-01							
Gasoline Range Hydrocarbons	28.1	5.00	$\mathrm{mg} / \mathrm{kg}$ dry	30.7	ND	88.1	53-120	2.11	40
Benzene	0.381	0.0300	"	0.368	ND	104	64-130	0.263	40
Toluene	1,95	0.0500	"	2.19	ND	89.0	66-130	0.00	40
Ethylbenzene	0.530	0.0500	"	0.514	ND	103	72-130	0.564	40
Xylenes (total)	2.46	0.100	"	2.54	ND	96.0	73-130	0.406	40
Surrogate: 4-BFB (FID)	4.31		"	4.47		96.4	50-147		
Surrogate: 4-BFB (PID)	4.11		"	4.47		91.9	54-123		

[^9]Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210
Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924 .9200 fax 509.924 .9290
Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906 .9200 fax 503.906 .9210
Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711
541.383 .9310 fax 541.382.7588

Batch 2C13027: Prepared 03/13/02 Using EPA 3550B

Batch 2C15024: Prepared 03/15/02 Using EPA 3550B

Blank (2C15024-BLK1)					
Diesel Range Hydrocarbons	ND	10.0	$\mathrm{mg} / \mathrm{kg}$		
Lube Oil Range Hydrocarbons	ND	25.0	$\mathrm{\prime} \mathrm{\prime}$		
Surrogate: 2 -FBP	9.44		$"$	10.7	88.2
Surrogate: Octacosane	9.63		$"$	10.7	$50-150$

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Foster Wheeler Environmental Corporation 12100 NE 195th St Bothell WA/USA, 98011

Project: DPE
Project Number. 2306.3312.0004.00001
Reported:
Project Manager: Bryan Graham 03/19/02 13:39

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up - Quality Control North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD	Limit	Notes

Batch 2C15024: Prepared 03/15/02 Using EPA 3550B

LCS (2C15024-BS1)

Diesel Range Hydrocarbons	59.3	10.0	$\mathrm{mg} / \mathrm{kg}$	66.7	88.9	$50-150$
Surrogate: 2-FBP	10.6		$"$	10.7	99.1	$50-150$

LCS Dup (2C15024-BSD1)

Diesel Range Hydrocarbons	56.6	10.0	$\mathrm{mg} / \mathrm{kg}$	66.7	84.9	$50-150$	4.66	50
Surrogate: $2-F B P$	10.9		$"$	10.7	102	$50-150$		

Duplicate (2C15024-DUP1)	Source: B2C0301-06								
Diesel Range Hydrocarbons	ND	10.0	$\mathrm{mg} / \mathrm{kg}$ dry		ND				50
Lube Oil Range Hydrocarbons	ND	25.0	"		ND			2.29	50
Surrogate: 2-FBP	11.5		"	12.6		91.3	50-150		
Surrogate; Octacosane	11.9		"	12.6		94.4	50-150		

Foster Wheeler Environmental Corporation	Project:	DPE
12100 NE 195th St	Project Number:	2306.3312 .0004 .00001
Bothell WA/USA, 98011	Project Manager:	Bryan Graham

Total Metals by EPA 6000/7000 Series Methods - Quality Control
 North Creek Analytical - Bothell

	Reporting			Spike	Source		\%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	\%REC	Limits	RPD	Limit	Notes

Batch 2C15010: Prepared 03/15/02 Using EPA 3050B

Blank (2C15010-BLK1)												
Lead	ND	0.500	$\mathrm{mg} / \mathrm{kg}$									
LCS (2C15010-BS1)												
Lead				40.3	0.500	$\mathrm{mg} / \mathrm{kg}$	39.6		102	80-120		
LCS Dup (2C15010-BSD1)												
Lead	38.8	0.500	$\mathrm{mg} / \mathrm{kg}$	37.7		103	80-120	3.79	20			
Matrix Spike (2C15010-MS1)	Source: B2C0282-01											
Lead	38.7	0.410	$\mathrm{mg} / \mathrm{kg}$ dry	36.1	2.53	100	70-130					
Matrix Spike Dup (2C15010-MSD1)	Source: B2C0282-01											
	34.3	0.352	$\mathrm{mg} / \mathrm{kg}$ dry	31.0	2.53	102	70-130	12.1	20			

North Creek Analytical - Bothell | The results in this report apply to the samples analyzed in accordance with the chain of |
| :--- |
| custody document. This analytical report must be reproduced in its entirety. |

Foster Wheeler Environmental Corporation	Project:	DPE
12100 NE 195th St	Project Number:	2306.3312 .0004 .00001
Bothell WA/USA, 98011	Project Manager:	Bryan Graham

Notes and Definitions

Q-34 The sample container submitted for volatile analysis had either headspace or air bubbles greater than $1 / 4$ inch in diameter.
S-02 The surrogate recovery for this sample cannot be accurately quantified due to interference from coeluting organic compounds present in the sample.

DET Analyte DETECTED
ND Analyte NOT DETECTED at or above the reporting limit
NR Not Reported
dry Sample results reported on a dry weight basis
RPD Relative Percent Difference

Spokane East 1115 Montgomery Suite 509.924.9200 fax 509.924.9290
 Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210
 Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Foster Wheeler Environmental Corporation 12100 NE 195th St
Bothell WA/USA, 98011

Project: DPE
Project Number: 2306.3312.0004.00001 Reported:
Project Manager: Bryan Graham

03/19/02 13:39

Physical Parameters by APHA/ASTM/EPA Methods - Quality Control
 North Creek Analytical - Bothell

Analyte	Result	Reporting	Limit	Units		Spike Level	Source Result	\%REC	\%REC Limits	RPD

Batch 2C13015: Prepared 03/13/02 Using Dry Weight

Blank (2C13015-BLK1)			
Dry Weight	100	1.00	$\%$

h Creek Analytical - Bothell | The results in this report apply to the samples analyzed in accordance with the chain of |
| :--- |
| custody document. This analytical report must be reproduced in its entirety. |

Quantitation Report

```
Data File : C:\HPCHEM\4\DATA.SEC\C15017.D
ACq On : 3-15-02 10:47:15 AM
Sample : b2c0219-01
Vial: 11
Operator: EDL
Inst : GC #7
Multip7r: 1.00
Misc: 1x nw-dx sg s
IntFile : SURR.E
Quant Time: Mar 15 11:02 2002 Quant Results File: 07002!7B.RES
Quant Method : C:\HPCHEM\4\METHODS\07002!7B.M (Chemstation Integrator)
Tit7e: TPH-D Front
Last Update : Tue Mar 12 08:22:48 2002
Response via : Multiple Level Calibration
DataAcq Meth : 07002!7A.M
```

Volume Inj.
Signal Phase
Signal Info
Response Info :-

Quant Method : C: \HPCHEM\4\METHODS $\backslash 07002!7 A . M$ (Chemstation Integrator)
Title : TPH-D Front
Last Update: Tue Mar 12 07:42:52 2002
Response via : Multiple Level Calibration
DataAcq Meth : 07002!7A.M
Volume Inj.
Signal Phase :
Signal Info :
Response . C15018.DIFID1A

Data File : C: \HPCHEM\4\DATA.SEC\C15019.D
Acq on: 3-15-02 11:09:42 AM
Sample : b2c0219-03
Misc : 1x nw-dx sg s
IntFile : SURR.E
Quant Time: Mar is 12:41 2002 Quant Results File: 07002!7B.RES
Quant Method : C: \HPCHEM\4\METHODS $\backslash 07002!7 B . M$ (Chemstation Integrator)
Title : TPH-D Front
Last Update: Tue Mar 12 08:22:48 2002
Response via : Multiple Level Calibration
DataAcq Meth : 07002!7A.M
Volume Inj.
Signal Phase
signal Info

Volume Inj.
Signal Phase
Signal Info

Data File : C: \HPCHEM\4\DATA.SEC\C15021.D
Acq on : 3-15-02 11:32:04 AM
Sample : b2c0219-05.
Misc: $\quad 1 x \mathrm{nw}-\mathrm{dx}$ sg s
IntFile : SURR.E
Quant Time: Mar 15 11:47 2002 Quant Results File: 07002!7B.RES
Quant Method : C: \HPCHEM $\backslash 4 \backslash$ METHODS $\backslash 07002$!7B.M (Chemstation Integrator)
Title : TPH-D Front
Last Update : Tue Mar 12 08:22:48 2002
Response via : Multiple Level Calibration
DataAcq Meth : 07002!7A.M
Volume Inj.
Signal Phase
Signal Info
vial: 15
operator: EDL
Inst : GC \#7
Multiplr: 1.00

$$
\vdots
$$

:

Response

C: \HPCHEM 4 \DATA \C15022.D
Acq On : 3-15-02 11:32:04 AM
Misc : $1 \times \mathrm{nw}-\mathrm{dx}$ sg 5
Quant Time: Mar 15 11:47 2002 Quant Results File: 07002!7A.RES
Quant Method : C: \HPCHEM \4\METHODS $\backslash 07002!7 A . M$ (Chemstation Integrator)
Title : TPH-D Front
Last Update : Tue Mar 12 07:42:52 2002
Response via : Mu7tiple Level Calibration
DataAcq Meth : 07002!7A.M


```
Data FiTe : C:\HPCHEM\4\DATA.SEC\C15023.D
Acq on : 3-15-02 11:54:04 AM
Sample : b2c0219-07
Misc: Ix nw-dx sg s
IntFile : SURR.E
Quant Time: Mar 15 12:09 2002 Quant Results File: 07002!7B.RES
Quant Method : C:\HPCHEM\4\METHODS\07002!7B.M (Chemstation Integrator)
Title : TPH-D Front
Last Update : Tue Mar 12 08:22:48 2002
Response via : Multip7e Level Calibration
DataAcq Meth : 07002!7A.M
Volume Inj. :
Response
```

Data File	C: \HPCHEM \4\DATA\C15024.D	Vial: 18
Acq On	3-15-02 11:54:04 AM	Operator: EDL
Sample	b2c0219-08	Inst : GC \#7
Misc	1x nw-dx sg s	Mu7tiplr: 1.00

Quant Time: Mar 15 12:09 2002 Quant Results File: 07002!7A.RES
Quant Method : C: \HPCHEM 4 \METHODS $\backslash 07002!7 A . M$ (Chemstation Integrator)
Title : TPH-D Front
Last Update: Tue Mar 12 07:42:52 2002
Response via : Multiple Level Calibration DataAcq Meth : 07002!7A.M

Volume Inj. :
Signal Phase:
signal Info :
Response C15024.DIFID1A

Time

Quantitation Report

Response
4500000

Data File : C: \HPCHEM\4\DATA\C15026.D
Acq On : 3-15-02 12:16:04 PM
Sample : b2c0219-10
Misc : 1x nw-dx sg s
IntFile : SURR.E
Quant Time: Mar 15 12:31 2002 Quant Results File: 07002!7A.RES
Quant Method : C: \HPCHEM $\backslash 4 \backslash$ METHODS $\backslash 07002!7 A . M$ (Chemstation Integrator)
Title : TPH-D Front
Last Update: Tue Mar 12 07:42:52 2002
Response via : Mu7tiple Level Calibration
DataAcq Meth : 07002!7A.M
Volume Inj. :
Signal Phase :
signal Info :
Response Info -

Vial: 20
operator: EDL
Inst : GC \#7
Mu7tiplr: 1.00
$\left[\begin{array}{c}\text { Response } \\ 4500000 \\ \\ 4000000\end{array}\right]$
4000000
3500000
T
30000
2500

2000000

Data File : C: \HPCHEM 4 \DATA.SEC CC15027.D
ACq on
Sample
Misc: : 1x nw-dx sg s
IntFile : SURR.E
Quant Time: Mar is 12:53 2002 Quant Results File: 07002!7B.RES
Quant Method : C: \HPCHEM $\backslash 4 \backslash$ METHODS $\backslash 07002!7 \mathrm{~B}$. M (Chemstation Integrator)
Title : TPH-D Front
Last Update : Tue Mar 12 08:22:48 2002
Response via : Multiple Level Calibration
DataAcq Meth : 07002!7A.M
Volume Inj. \quad :
Signal Phase
signal Info :

Vial: 21
operator: EDL
Inst : GC \#7
Multiplr: 1.00

Response
C15027.DIFID2B

4000000 ${ }_{3 \text { spoon }}$ ${ }_{30000}$

$\begin{array}{ll}\text { Volume Inj. } \\ \text { signal phase } \\ \text { signal } & \text { Info }\end{array}$

Volume Inj.
Signal Phase
Signal Info
Response

File : C:\HPCHEM 4 \DATA $031502 \backslash C 15036 . D$
Operator Acquired EDL

Instrument : GC \#
Sample Name: b2c0219-14
Misc Info : 1x nw-dx sg s
Via1 Number: 24


```
File : C:\HPCHEM\4\DATA\031502\C15037.D
Operator : EDL N-02 2:28:57 PM using AcqMethod 07002!7A.M
Tnstrument : GC #7
jample Name: b2c0219-15
Misc Info : 1x nw-dx sg s
via7 Number: 25
```


File : C:\HPCHEM 4 \DATA \031502\C15038.D
Operator : EDL
Acquired : 3-15-02 2:28:57 PM using AcqMethod 07002!7A.M
Instrument : GC \#7
Sample Name: b2c0219-16
Misc Info : 1x nw-dx sg s
Vial Number: 26


```
File : C:\HPCHEM\4\DATA\C18014.D
Operator : EDL
Acquired : 3-18-02 8:56:43 AM using AcqMethod 07002!7A.M
Instrument : GC #7
jamp7e Name: b2c0219-16re1
misc Info : 1x nw-dx sg s
Vial Number: 8
```


Signal \#1 : D: \HPCHEM\3\DATA\031602\C16018.D\FID1A.CH Vial: 18
Signal \#2 : D: \HPCHEM\3\DATA\031602\C16018.D\FID2B.CH
Acq On : 16 Mar 2002 17:05 Operator: bd Sample : B2C0219-01 Inst : GC \#6 Misc : 1x 100uL
IntFile Signal \#1: SURR.E
IntFile Signal \#2: SURR2.E
Quant Time: Mar 16 17:27 2002 Quant Results File: TEST0202.RES
Quant Method : D: \HPCHEM\3\METHODS\TEST0202.M (Chemstation Integrator)
Title : TPH-G Method
Last Update : Sat Mar 16 08:42:32 2002
Response via : Multiple Level Calibration
DataAcq Meth : TEST0202.M
Volume Inj. :
Signal \#1 Phase : Signal \#2 Phase:
Signal \#1 Info : Signal \#2 Info :


```
Signal #1 : D:\HPCHEM\3\DATA\031602\C16019.D\FID1A.CH Vial: 19
Signal #2 : D:\HPCHEM\3\DATA\031602\C16019.D\FID2B.CH
Acq On : 16 Mar 2002 17:34 Operator: bd
Sample : B2C0219-02 Inst : GC #6
Misc : 1x 100uL Multiplr: 1.00
IntFile Signal #1: SURR.E IntFile Signal #2: SURR2.E
Quant Time: Mar 16 17:56 2002 Quant Results File: TEST0202.RES
Quant Method : D:\HPCHEM\3\METHODS\TEST0202.M (Chemstation Integrator)
Title : TPH-G Method
Last Update : Sat Mar 16 08:42:32 2002
Response via : Multiple Level Calibration
DataAcq Meth : TEST0202.M
```

Volume Inj. :
Signal \#1 Phase : Signal \#2 Phase:
Signal \#1 Info : Signal \#2 Info :


```
Signal #1 : D:\HPCHEM\3\DATA\031702\C17004.D\FID1A.CH Vial: 4
Signal #2 : D:\HPCHEM\3\DATA\031702\C17004.D\FID2B.CH
Acq On : 17 Mar 2002 8:25 Operator: bd
Sample : B2C0219-03 r1 Inst : GC #6
Misc : 4x 25uL
IntFile Signal #1: SURR.E IntFile Signal #2: SURR2.E
Quant Time: Mar 17 8:48 2002 Quant Results File: TEST0202.RES
Quant Method : D:\HPCHEM\3\METHODS\TEST0202.M (Chemstation Integrator)
Title : TPH-G Method
Last Update : Sat Mar 16 08:42:32 2002
Response via : Multiple Level Calibration
DataAcq Meth : TEST0202.M
```

Volume Inj. :
Signal \#2 Phase:
Signal \#1 Info :
Signal \#2 Info :
Response
C17004.DIFID1A


```
Signal #1 : D:\HPCHEM\3\DATA\031602\C16021.D\FID1A.CH Vial: 21
Signal #2 : D:\HPCHEM\3\DATA\031602\C16021.D\FID2B.CH
Acq On : 16 Mar 2002 18:31
                                    Operator: bd
                                    Inst : GC #6
                                    Multiplr: 1.00
Misc: : 1x lo0uL
```

IntFile Signal \#1: SURR.E
Quant Time: Mar 16 18:54 2002 Quant Results File: TEST0202.RES
Quant Method : D: \HPCHEM\3\METHODS $\backslash T E S T 0202 . M$ (Chemstation Integrator)
Title : TPH-G Method
Last Update : Sat Mar 16 08:42:32 2002
Response via : Multiple Level Calibration
DataAcq Meth : TEST0202.M
Volume Inj. :
Signal \#1 Phase : Signal \#2 Phase:
Signal \#1 Info :
Signal \#2 Info :
Response,

Response
C16021.DIFID2B

```
Signal #1 : D:\HPCHEM\3\DATA\031602\C16022.D\FID1A.CH Vial: 22
Signal #2 : D:\HPCHEM\3\DATA\031602\C16022.D\FID2B.CH
Acq On : 16 Mar 2002 19:00 Operator: bd
Sample : B2C0219-05 Inst : GC #6
Misc : 1x 100uL Multiplr: 1.00
IntFile Signal #1: SURR.E IntFile Signal #2: SURR2.E
Quant Time: Mar 16 19:23 2002 Quant Results File: TEST0202.RES
Quant Method : D:\HPCHEM\3\METHODS\TEST0202.M (Chemstation Integrator)
Title : TPH-G Method
Last Update : Sat Mar 16 08:42:32 2002
Response via : Multiple Level Calibration
DataAcq Meth : TEST0202.M
```

$\begin{array}{ll}\text { Volume Inj. : } & \text { Signal \#2 Phase: } \\ \text { Signal \#1 Phase : } & \text { Signal \#2 Info : }\end{array}$

Signal \#1 : D: \HPCHEM\3\DATA\031602\C16023.D\FID1A.CH
Vial: 23
Signal \#2 : D:\HPCHEM\3\DATA\031602\C16023.D\FID2B.CH
Acq On : 16 Mar 2002 19:29 Operator: bd Sample : B2C0219-06 Inst : GC \#6 Misc : 1x 100uL Multiplr: 1.00
IntFile Signal \#1: SURR.E IntFile Signal \#2: SURR2.E
Quant Time: Mar 16 19:52 2002 Quant Results File: TEST0202.RES
Quant Method : D: \HPCHEM $\backslash 3 \backslash M E T H O D S \backslash T E S T 0202 . M$ (Chemstation Integrator)
Title : TPH-G Method
Last Update: Sat Mar 16 08:42:32 2002
Response via : Multiple Level Calibration
DataAcq Meth : TEST0202.M
Volume Inj. :
Signal \#1 Phase : Signal \#2 Phase:
Signal \#1 Info : Signal \#2 Info :

Signal \#1 : D: \HPCHEM $\backslash 3 \backslash$ DATA $031602 \backslash C 16024 . D \backslash F I D 1 A . C H$
Vial: 24
Signal \#2 : D:\HPCHEM\3\DATA\031602\C16024.D\FID2B.CH
Acq On : 16 Mar 2002 19:58
Operator: bd Sample : B2C0219-07 Inst : GC \#6 Misc : 1x 100uL IntFile Signal \#1: SURR.E Quant Time: Mar 16 20:20 2002

IntFile Signal \#2: SURR2.E
Quant Results File: TEST0202.RES
Quant Method : D: \HPCHEM $\backslash 3 \backslash$ METHODS $\backslash T E S T 0202 . M$ (Chemstation Integrator)
Title : TPH-G Method
Last Update : Sat Mar 16 08:42:32 2002
Response via : Multiple Level Calibration
DataAcq Meth : TEST0202.M
Volume Inj. :
Signal \#1 Phase : Signal \#2 Phase: Signal \#1 Info : Signal \#2 Info :
Response
C16024.DIFID1A

Signal \#1 : D: \HPCHEM\3\DATA\031602\C16025.D\FID1A.CH Vial: 25 Signal \#2 : D: \HPCHEM\3\DATA\031602\C16025.D\FID2B.CH
Acq On : 16 Mar 2002 20:26 Operator: bd
Sample : B2C0219-08 Inst : GC \#6

Misc : 1x 100uL
IntFile Signal \#1: SURR.E
Quant Time: Mar 16 20:49 2002 Quant Results File: TEST0202.RES
Quant Method : D: \HPCHEM $\backslash 3 \backslash$ METHODS $\backslash T E S T 0202 . M$ (Chemstation Integrator)
Title : TPH-G Method
Last Update : Sat Mar 16 08:42:32 2002
Response via : Multiple Level Calibration
DataAcq Meth : TEST0202.M

Volume Inj. :	
Signal \#1 Phase :	Signal \#2 Phase:
Signal \#1 Info :	Signal \#2 Info :

Response C16025.DIFID1A


```
Signal #1 : D:\HPCHEM\3\DATA\031602\C16026.D\FID1A.CH Vial: 26
Signal #2 : D:\HPCHEM\3\DATA\031602\C16026.D\FID2B.CH
Acq On : 16 Mar 2002 20:55 Operator: bd
Sample : B2C0219-09 Inst : GC #6
Misc : 1x 100uL Multiplr: 1.00
IntFile Signal #1: SURR.E IntFile Signal #2: SURR2.E
Quant Time: Mar 16 21:18 2002 Quant Results File: TEST0202.RES
Quant Method : D:\HPCHEM\3\METHODS\TEST0202.M (Chemstation Integrator)
Title : TPH-G Method
Last Update : Sat Mar 16 08:42:32 2002
Response via : Multiple Level Calibration
DataAcq Meth : TEST0202.M
```

Volume Inj. :
Signal \#1 Phase : Signal \#2 Phase:
Signal \#1 Info : Signal \#2 Info :
Respons
180
160
140
120
100
80
60
40
20

C16026.DIFID1A

Signal \#1 : D:\HPCHEM\3\DATA\031702\C17007.D\FID1A.CH Vial: 7 Signal \#2 : D: \HPCHEM\3\DATA\031702\C17007.D\FID2B.CH
Acq On : 17 Mar 2002 9:51 Operator: bd Sample : B2C0219-11 Inst: GC \#6 Misc : 1x 100uL IntFile Signal \#1: SURR.E IntFile Signal \#2: SURR2.E
Quant Time: Mar 17 10:14 2002 Quant Results File: TEST0202.RES
Quant Method : D: \HPCHEM $\backslash 3 \backslash$ METHODS $\backslash T E S T 0202 . M$ (Chemstation Integrator)
Title : TPH-G Method
Last Update : Sat Mar 16 08:42:32 2002
Response via : Multiple Level Calibration
DataAcq Meth : TEST0202.M

Signal \#1 : D: \HPCHEM\3\DATA\031702\C17008.D\FID1A.CH Vial: 8 Signal \#2 : D: \HPCHEM\3\DATA\031702\C17008.D\FID2B.CH Acq On : 17 Mar 2002 10:20 Operator: bd Sample : B2C0219-12 Inst : GC \#6 Misc : 1x loouL Multiplr: 1.00
IntFile Signal \#1: SURR.E IntFile Signal \#2: SURR2.E
Quant Time: Mar 17 10:43 2002 Quant Results File: TEST0202.RES
Quant Method : D: \HPCHEM $\backslash 3 \backslash$ METHODS $\backslash T E S T 0202 . M$ (Chemstation Integrator)
Title : TPH-G Method
Last Update : Sat Mar 16 08:42:32 2002
Response via : Multiple Level Calibration
DataAcq Meth : TEST0202.M
Volume Inj. :
Signal \#1 Phase : Signal \#2 Phase:
Signal \#1 Info : Signal \#2 Info :

Signal \#1 : D: \HPCHEM\3\DATA\031702\C17009.D\FID1A.CH Vial: 9
Signal \#2 : D: \HPCHEM\3\DATA \031702\C17009.D\FID2B.CH
Acq On : 17 Mar 2002 10:49 Operator: bd
Sample : B2C0219-13 Inst : GC \#6
Misc : 1x 100uL
Multiplr: 1.00
IntFile Signal \#1: SURR.E IntFile Signal \#2: SURR2.E Quant Time: Mar 17 11:12 2002 Quant Results File: TEST0202.RES

Quant Method : D: \HPCHEM $\backslash 3 \backslash$ METHODS $\backslash T E S T 0202 . M$ (Chemstation Integrator)
Title : TPH-G Method
Last Update : Sat Mar 16 08:42:32 2002
Response via : Multiple Level Calibration
DataAcq Meth : TEST0202.M
Volume Inj. :
Signal \#1 Phase : Signal \#2 Phase:
Signal \#1 Info : Signal \#2 Info :

Signal \#1 : D: \HPCHEM\3\DATA\031702\C17010.D\FID1A.CH Vial: 10 Signal \#2 : D: \HPCHEM\3\DATA\031702\C17010.D\FID2B.CH Acq On : 17 Mar 2002 11:18 Operator: bd Sample : B2C0219-14 Misc : 1x 100uL IntFile Signal \#1: SURR.E

IntFile Signal \#2: SURR2.E Quant Time: Mar 17 11:41 2002 Quant Results File: TEST0202.RES

Quant Method : D: \HPCHEM $\backslash 3 \backslash$ METHODS $\backslash T E S T 0202 . M$ (Chemstation Integrator)
Title : TPH-G Method
Last Update : Sat Mar 16 08:42:32 2002
Response via : Multiple Level Calibration
DataAcq Meth : TEST0202.M
Volume Inj. :
Signal \#1 Phase : Signal \#2 Phase:
Signal \#1 Info : Signal \#2 Info :

Signal \#1 : D: \HPCHEM\3\DATA\031702\C17011.D\FID1A.CH Vial: 11
Signal \#2 : D: \HPCHEM\3\DATA\031702\C17011.D\FID2B.CH
Acq On : 17 Mar 2002 11:47 Operator: bd
Sample : B2C0219-15 Inst : GC \#6
Misc : 1x 100uL Multiplr: 1.00
IntFile Signal \#1: SURR.E IntFile Signal \#2: SURR2.E
Quant Time: Mar 17 12:09 2002 Quant Results File: TEST0202.RES
Quant Method : D: \HPCHEM\3\METHODS $\backslash T E S T 0202 . M$ (Chemstation Integrator)
Title : TPH-G Method
Last Update : Sat Mar 16 08:42:32 2002
Response via : Multiple Level Calibration
DataAcq Meth : TEST0202.M
Volume Inj. :
Signal \#1 Phase : Signal \#2 Phase:
Signal \#1 Info : Signal \#2 Info :

Signal \#1 : D: \HPCHEM\3\DATA\031702\C17012.D\FID1A.CH
Vial: 12
Signal \#2 : D: \HPCHEM $\backslash 3 \backslash$ DATA \031702\C17012.D\FID2B.CH
Acq on : 17 Mar 2002 12:15
Operator: bd
Sample : B2C0219-16
Misc : 1x 100uL
Inst : GC \#6
Multiplr: 1.00
IntFile Signal \#1: SURR.E IntFile Signal \#2: SURR2.E
Quant Time: Mar 17 12:38 2002 Quant Results File: TEST0202.RES
Quant Method : D: \HPCHEM $\backslash 3 \backslash$ METHODS $\backslash T E S T 0202 . M$ (Chemstation Integrator)
Title : TPH-G Method
Last Update : Sat Mar 16 08:42:32 2002
Response via : Multiple Level Calibration
DataAcq Meth : TEST0202.M

Volume Inj. :	
Signal \#1 Phase :	Signal \#2 Phase:
Signal \#1 Info :	Signal \#2 Info :

- CHAIN OF CUSTODY REPORT

(341) 383-9.
Work Order \#: B2CO219

$$
\begin{aligned}
& \text { TURNAROUND REQUEST in Business Days* } \\
& \text { OTrganic \& Inorganic Analyses } \\
& \text { *Turnaround Requests less than standard may incur Rush Charges. } \\
& \hline \text { STD. }
\end{aligned}
$$

MATRIX (W, S, O)	\# OF CONT.	COMMENTS	$\begin{gathered} \text { NCA WO } \\ \mathrm{ID} \\ \hline \end{gathered}$
5	2	32 COZ 19	16
\cdots			
			11

CAP WELL ANALYTICAL RESULTS

 DECEMBER 200217 December 2002

Bryan Graham

Foster Wheeler Environmental Corporation
12100 NE 195th St

Bothell, WA/USA 98011

RE: DPE Extraction Well Construction

Enclosed are the results of analyses for samples received by the laboratory on 12/02/02 18:00. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Amar Gill
Project Manager

Seattic 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Anchorage 3209 Denali Street, Anchorage, AK 99503 0073349238 far 9073249329

Foster Wheeler Environmental Corporation	Project:	DPE Extraction Well Construction
12100 NE 195th St	Project Number:	Not Provided
Bothell WA/USA, 98011	Project Manager:	Bryan Graham

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
01MW21-5	B2L0025-01	Soil	12/02/02 08:50	12/02/02 18:00
01MW21-10	B2L0025-02	Soil	12/02/02 09:05	12/02/02 18:00
01MW21-15	B2L0025-03	Soil	12/02/02 09:15	12/02/02 18:00
01MW21-20	B2L0025-04	Soil	12/02/02 09:30	12/02/02 18:00
01MW21-23	B2L0025-05	Soil	12/02/02 09:45	12/02/02 18:00
01MW22-5	B2L0025-06	Soil	12/02/02 11:30	12/02/02 18:00
01MW22-10	B2L0025-07	Soil	12/02/02 11:45	12/02/02 18:00
01MW22-15	B2L0025-08	Soil	12/02/02 12:05	12/02/02 18:00
01MW22-20	B2L0025-09	Soil	12/02/02 12:15	12/02/02 18:00
01MW22-25	B2L0025-10	Soil	12/02/02 12:25	12/02/02 18:00
01MW23-5	B2L0025-11	Soil	12/02/02 15:05	12/02/02 18:00
1W23-10	B2L0025-12	Soil	12/02/02 15:15	12/02/02 18:00
U1MW23-15	B2L0025-13	Soil	12/02/02 15:30	12/02/02 18:00
01MW23-20	B2L0025-14	Soil	12/02/02 15:45	12/02/02 18:00

The results in this report apply to the samples analyzed in accordance with the chain of - Bothell
custody document. This analytical report must be reproduced in its entirety.
Nage 1 of 31

Seattie 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420 .9200 fax 425.420 .9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383 .9310 fax 541.382 .7588

Anchorage 3209 Denali Street, Anchorage, AK 99503 907.334.9338 fax 907.334.9339
Foster Wheeler Environmental Corporation
12100 NE 195th St
Bothell WA/USA, 98011

Project:	DPE Extraction Well Construction
Project Number:	Not Provided

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B North Creek Analytical - Bothell

| Analyte | Result | Reporting
 Limit | Units | Dilution | Batch | Prepared | Analyzed | Method | Notes |
| :--- | :--- | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

01MW21-5 (B2L0025-01) Soil Sampled: 12/02/02 08:50 Received: 12/02/02 18:00

Gasoline Range Hydrocarbons	ND	5.00	$\mathrm{mg} / \mathrm{kg}$ dry	1	2 L 06030	$12 / 06 / 02$	$12 / 09 / 02$	NWTPH-Gx/8021B	
Benzene	ND	0.0300	$"$	$"$	$"$	$"$	$"$	$"$	$"$
Toluene	ND	0.0500	$"$	$"$	$"$	$"$	$"$	$"$	
Ethylbenzene	ND	0.0500	$"$	$"$	$"$	$"$	$"$	$"$	
Xylenes (total)	ND	0.100	$"$	$"$	$"$	$"$	$"$	$"$	
Surrogate: $4-B F B$ (FID)	76.2%	$59-125$			$"$	$"$	$"$	$"$	
Surrogate: $4-B F B$ (PID)	91.4%	$64-125$			$"$	$"$	$"$	$"$	$"$

01MW21-10 (B2L0025-02) Soil Sampled: 12/02/02 09:05 Received: 12/02/02 18:00

| Gasoline Range Hydrocarbons | ND | 5.00 | $\mathrm{mg} / \mathrm{kg}$ dry | 1 | 2L06030 | $12 / 06 / 02$ | $12 / 09 / 02$ | NWTPH-Gx/8021B |
| :--- | ---: | ---: | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Benzene | ND | 0.0300 | $"$ | $"$ | $"$ | $"$ | $"$ | $"$ |
| Toluene | ND | 0.0500 | $"$ | $"$ | $"$ | $"$ | $"$ | $"$ |
| Ethylbenzene | ND | 0.0500 | $"$ | $"$ | $"$ | $"$ | $"$ | $"$ |
| Xylenes (total) | ND | 0.100 | $"$ | $"$ | $"$ | $"$ | $"$ | $"$ |
| Surrogate: $4-B F B$ (FID) | 75.4% | $59-125$ | | | $"$ | $"$ | $"$ | $"$ |
| Surrogate: $4-B F B$ (PID) | 82.0% | $64-125$ | | | $"$ | $"$ | $"$ | $"$ |

01MW21-15 (B2L0025-03) Soil Sampled: 12/02/02 09:15 Received: 12/02/02 18:00

Gasoline Range Hydrocarbons	ND	5.00	$\mathrm{mg} / \mathrm{kg}$ dry	1	2 L06030	$12 / 06 / 02$	$12 / 09 / 02$	NWTPH-Gx/8021B
Benzene	ND	0.0300	$"$	$"$	$"$	$"$	$"$	$"$
Toluene	ND	0.0500	$"$	$"$	$"$	$"$	$"$	$"$
Ethylbenzene	ND	0.0500	$"$	$"$	$"$	$"$	$"$	$"$
Xylenes (total)	ND	0.100	$"$	$"$	$"$	$"$	$"$	$"$
Surrogate: $4-B F B$ (FID)	71.2%	$59-125$			$"$	$"$	$"$	$"$
Surrogate: $4-B F B$ (PID)	79.6%	$64-125$			$"$	$"$	$"$	$"$

North Creek Analytical - Bothell
The results in this report apply to the samples analyzed in accordance with the chain of. custody document. This analytical report must be reproduced in its entirety.

Amar Gill, Project Manager

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suile B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portiand 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Anchorage 3209 Denali Street, Anchorage, AK 99503 907.334.9338 fax 907.334.9339
oster Wheeler Environmental Corporation 2100 NE 195th St othell WA/USA, 98011

Project: DPE Extraction Well Construction
Project Number: Not Provided
Project Manager: Bryan Graham

Reported:
12/17/02 12:54

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B North Creek Analytical - Bothell

asoline Range Hydrocarbons	ND	5.00	$\mathrm{mg} / \mathrm{kg}$ dry	1	2L06030	12/06/02	12/09/02	NWTPH-Gx/8021B
snzene	ND	0.0300		"	"	"	"	"
sluene	ND	0.0500	"	"	"	"	"	"
hylbenzene	ND	0.0500	"	"	"	"	"	"
ylenes (total)	ND	0.100	"	"	"	"	"	"
ırrogate: 4-BFB (FID)	72.7 \%	59-125			"	"	"	"
trrogate: 4-BFB (PID)	81.0\%	64-125.			"	"	"	"

th Creek Analytical - Bothell
The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Anchorage 3209 Denali Street, Anchorage, AK 99503 907.334.9338 fax 907.334.9339
$\left.\begin{array}{lrc}\text { Foster Wheeler Environmental Corporation } & \text { Project: } & \text { DPE Extraction Well Construction } \\ 12100 \text { NE 195th St } & \text { Project Number: } & \text { Not Provided }\end{array}\right]$ Reported:

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B
 North Creek Analytical - Bothell

| nalyte | Result | Reporting
 Limit | Units | Dilution | Batch | Prepared | Analyzed | Method | Notes |
| :--- | :--- | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

asoline Range Hydrocarbons	5.71	5.00	$\mathrm{mg} / \mathrm{kg}$ dry	1	2L06030	12/06/02	12/09/02	NWTPH-Gx/8021B
enzene	ND	0.0300	"	"	"	"	"	"
oluene	ND	0.0500	"	"	"	"	"	"
thylbenzene	ND	0.0500	"	"	"	"	"	"
ylenes (total)	ND	0.100	"	"	"	"	"	"
urrogate: 4-BFB (FID)	83.6\%	59-125			"	"	"	"
urrogate: 4-BFB (PID)	85.4 \%	64-125			"	"	"	"

1MW23-20 (B2L0025-14) Soil Sampled: 12/02/02 15:45 Received: 12/02/02 18:00

asoline Range Hydrocarbons	ND	5.00	$\mathrm{mg} / \mathrm{kg}$ dry	1	2 L06030	$12 / 06 / 02$	$12 / 09 / 02$	NWTPH-Gx/8021B
enzene	ND	0.0300	$"$	$"$	$"$	$"$	$"$	$"$
oluene	ND	0.0500	$"$	$"$	$"$	$"$	$"$	$"$
thylbenzene	ND	0.0500	$"$	$"$	$"$	$"$	$"$	$"$
ylenes (total)	ND	0.100	$"$	$"$	$"$	$"$	$"$	$"$
urrogate: $4-B F B(F I D)$	74.0%	$59-125$			$"$	$"$	$"$	$"$
urrogate: $4-B F B(P I D)$	87.1%	$64-125$			$"$	$"$	$"$	$"$

Jorth Creek Analytical - Bothell	The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420 .9200 fax 425.420 .9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Anchorage 3209 Denali Street, Anchorage, AK 99503 907.334.9338 fax 907.334.9339

Foster Wheeler Environmental Corporation	Project: DPE Extraction Well Construction	
12100 NE 195th St	Project Number: Not Provided	Reported:
Bothell WA/USA, 98011	Project Manager:	Bryan Graham

Volatile Petroleum Hydrocarbons by WDOE TPH Policy Method North Creek Analytical - Bothell

Reporting									
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
01MW21-5 (B2L0025-01) Soil Sampled: 12/02/02 08:50 R			Received: 12/02/02 18:00						
C5-C6 Aliphatics	ND	5.00	$\mathrm{mg} / \mathrm{kg}$ dry	1	2L12002	12/12/02	12/12/02	WA MTCA-VPH	
C6-C8 Aliphatics	ND	5.00	"	"	"	"	"	"	
C8-C10 Aliphatics	ND	5.00	"	"	"	"	"	"	
C10-C12 Aliphatics	ND	5.00	"	"	"	"	"	"	
C8-C10 Aromatics	ND	5.00	"	"	"	"	"	"	
C10-C12 Aromatics	ND	5.00	"	"	"	"	"	"	
C12-C13 Aromatics	ND	5.00	"	"	"	"	"	"	
Total VPH (TVPH)	ND	5.00	"	"	"	"	"	"	
Surrogate: 4-BFB (FID)	98.2 \%	60-140	.		"	"	"	"	
Surrogate: 4-BFB (PID)	90.4\%	60-140			"	"	"	"	

Project: DPE Extraction Well Construction Project Number: Not Provided

Reported: Project Manager: Bryan Graham

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up
 North Creek Analytical - Bothell

Reporting									
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
01MW21-5 (B2L0025-01) Soil Sampled: 12/02/02 08:50 Received: 12/02/02 18:00									
Diesel Range Hydrocarbons	14.0	10.0	$\mathrm{mg} / \mathrm{kg}$ dry	1	2L05037	12/05/02	12/06/02	NWTPH-Dx	
Lube Oil Range Hydrocarbons	ND	25.0		"	"	"	,	"	
Surrogate: 2-FBP	71.6\%	42-110			"	"	"	"	
Surrogate: Octacosane	78.4 \%	57-123			"	"	"	"	
01MW21-10 (B2L0025-02) Soil Sampled: 12/02/02 09:05 Received: 12/02/02 18:00									
Diesel Range Hydrocarbons	ND	10.0	$\mathrm{mg} / \mathrm{kg}$ dry	1	2L05037	12/05/02	12/06/02	NWTPH-Dx	
Lube Oil Range Hydrocarbons	ND	25.0	"	"	"	"	"	"	
Surrogate: 2-FBP	67.8\%	42-110			"	"	"	"	
Surrogate: Octacosane	73.9 \%	57-123			"	"	"	"	
01MW21-15 (B2L0025-03) Soil Sampled: 12/02/02 09:15 Received: 12/02/02 18:00									
Diesel Range Hydrocarbons	ND	10.0	$\mathrm{mg} / \mathrm{kg}$ dry	1	2L05037	12/05/02	12/06/02	NWTPH-Dx	
Lube Oil Range Hydrocarbons	ND	25.0	"	"	"	"	"	"	
Surrogate: 2-FBP	64.7\%	42-110			"	"	"	"	
Surrogate: Octacosane	76.2 \%	57-123			"	"	"	"	
01MW21-20 (B2L0025-04) Soil Sampled: 12/02/02 09:30 Received: 12/02/02 18:00									
Diesel Range Hydrocarbons	21.5	10.0	$\mathrm{mg} / \mathrm{kg}$ dry	1	2L05037	12/05/02	12/06/02	NWTPH-Dx	
Lube Oil Range Hydrocarbons	ND	25.0	"	"	"	"	"	"	
Surrogate: 2-FBP	69.6\%	42-110			"	"	"	"	
Surrogate: Octacosane	76.3 \%	57-123			"	"	"	"	
01MW21-23 (B2L0025-05) Soil Sampled: 12/02/02 09:45 Received: 12/02/02 18:00									
Diesel Range Hydrocarbons	ND	10.0	$\mathrm{mg} / \mathrm{kg}$ dry	1	2L05037	12/05/02	12/06/02	NWTPH-Dx	
Lube Oil Range Hydrocarbons	ND	25.0	"	"	"	"	"	"	
Surrogate: 2-FBP	62.5 \%	42-110			"	"	"	"	
Surrogate: Octacosane	66.2 \%	57-123			"	"	"	"	

North Creek Analytical - Bothell
The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.
www.ncalabs.com

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420 .9200 fax 425.420 .9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383 .9310 fax 541.382 .7588

Anchorage 3209 Denali Street, Anchorage, AK 99503 907.334.9338 fax 907.334.9339

Project: DPE Extraction Well Construction Project Number: Not Provided Project Manager: Bryan Graham

Reported:
12/17/02 12:54

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
01MW22-5 (B2L0025-06) Soil	Sampled: 12/02/02 11:30 Received: 12/02/02 18:00								
Diesel Range Hydrocarbons	ND	10.0	$\mathrm{mg} / \mathrm{kg}$ dry	1	2L05037	12/05/02	12/06/02	NWTPH-Dx	
Lube Oil Range Hydrocarbons	ND	25.0	"	"	"	"	"	"	
Surrogate: 2-FBP	69.2 \%	42-110			"	"	"	"	
Surrogate: Octacosane	76.3 \%	57-123			"	"	"	"	
01MW22-10 (B2L0025-07) Soil	Sampled: 12/02/02 11:45 Received: 12/02/02 18:00								
Diesel Range Hydrocarbons	ND	10.0	mg/kg dry	1	2L05037	12/05/02	12/06/02	NWTPH-Dx	
Lube Oil Range Hydrocarbons	ND	25.0	"	"	"	"	"	"	
Surrogate: 2-FBP	58.3 \%	42-110			"	"	"	"	
Surrogate: Octacosane	65.7 \%	57-123			"	"	"	"	
01MW22-15 (B2L0025-08) Soil	Sampled: 12/02/02 12:05 Received: 12/02/02 18:00								
\cdots-el Range Hydrocarbons	ND	10.0	$\mathrm{mg} / \mathrm{kg}$ dry	1	2L05037	12/05/02	12/06/02	NWTPH-Dx	
: Oil Range Hydrocarbons	ND	25.0	"	-."	"	"	"	"	
Surrogate: 2-FBP	63.1\%	42-110			"	"	"	"	
Surrogate: Octacosane	70.2 \%	57-123			"	"	"	"	
01MW22-20 (B2L0025-09) Soil	Sampled: 12/02/02 12:15 Received: 12/02/02 18:00								
Diesel Range Hydrocarbons	ND	10.0	$\mathrm{mg} / \mathrm{kg}$ dry	1	2L05037	12/05/02	12/06/02	NWTPH-Dx	
Lube Oil Range Hydrocarbons	ND	25.0	"	"	"	"	"	"	
Surrogate: 2-FBP	64.4 \%	42-110			"	"	"	"	
Surrogate: Octacosane	73.8\%	57-123			"	"	"	"	
01MW22-25 (B2L0025-10) Soil	Sampled: 12/02/02 12:25 Received: 12/02/02 18:00								
Diesel Range Hydrocarbons	ND	10.0	$\mathrm{mg} / \mathrm{kg}$ dry	1	2L05037	12/05/02	12/06/02	NWTPH-Dx	
Lube Oil Range Hydrocarbons	ND	25.0	"	"	"	"	"	"	
Surrogate: 2-FBP	62.8 \%	42-110			"	"	"	"	
Surrogate: Octacosane	74.2 \%	57-123			"	"	"	"	

-th Creek Analytical - Bothell

Amar Gill, Project Manager

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420 .9200 fax 425.420 .9210
Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290
Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210
Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383 .9310 fax 541.382 .7588
Anchorage 3209 Denali Street, Anchorage, AK 99503 907.334.9338 fax 907.334.9339

Foster Wheeler Environmental Corporation	Project: DPE Extraction Well Construction	Reported:
12100 NE 195th St	Project Number: Not Provided	$12 / 17 / 0212: 54$

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up North Creek Analytical - Bothell

| Analyte | Result | Reporting
 Limit | Units | Dilution | Batch | Prepared | Analyzed | Method | Notes |
| :--- | :--- | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

01MW23-10 (B2L0025-12) Soil Sampled: 12/02/02 15:15 Received: 12/02/02 18:00

Diesel Range Hydrocarbons	32.5	10.0	$\mathrm{mg} / \mathrm{kg}$ dry	1	2L05037	12/05/02	12/06/02	NWTPH-Dx
Lube Oil Range Hydrocarbons	ND	25.0	"	"	"	"	"	"
Surrogate: 2-FBP	75.3 \%	42-110			"	"	"	"
Surrogate: Octacosane	77.5 \%	57-123			"	"	"	"

01MW23-15 (B2L0025-13) Soil Sampled: 12/02/02 15:30 Received: 12/02/02 18:00

Diesel Range Hydrocarbons	ND	10.0	$\mathrm{mg} / \mathrm{kg}$ dry	1	2L05037	12/05/02	12/06/02	NWTPH-Dx
Lube Oil Range Hydrocarbons	ND	25.0	"	"	"	"	"	"
Surrogate: 2-FBP	67.9\%	42-110			"	"	"	"
Surrogate: Octacosane	77.3 \%	57-123			"	"	"	"

01MW23-20 (B2L0025-14) Soil Sampled: 12/02/02 15:45 Received: 12/02/02 18:00

Diesel Range Hydrocarbons	ND	10.0	$\mathrm{mg} / \mathrm{kg}$ dry	1	2L05037	12/05/02	12/06/02	NWTPH-Dx
Lube Oil Range Hydrocarbons	ND	25.0	"	"	"	"	"	"
Surrogate: 2-FBP	66.2 \%	42-110			"	"	"	"
Surrogate: Octacosane	74.5 \%	57-123			"	"	"	"

North Creek Analytical - Bothell
The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924 .9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR $97701-5711$ 541.383.9310 fax 541.382.7588

Anchorage 3209 Denali Street, Anchorage, AK 99503 907.334.9338 fax 907.334.9339

Foster Wheeler Environmental Corporation 12100 NE 195th St
Bothell WA/USA, 98011

Project: DPE Extraction Well Construction
Project Number: Not Provided Reported:
Project Manager: Bryan Graham

12/17/02 12:54

Extractable Petroleum Hydrocarbons by WDOE TPH Policy Method North Creek Analytical - Bothell

01MW23-5 (B2L0025-11) Soil Sampled: 12/02/02 15:05 Received: 12/02/02 18:00

C8-C10 Aliphatics	42.9	5.00	$\mathrm{mg} / \mathrm{kg}$ dry	1	2L10030	12/10/02	12/12/02	WA MTCA-EPH
C10-C12 Aliphatics	149	5.00	"	"	"	"	"	"
C12-C16 Aliphatics	484	5.00	"	"	"	"	"	"
C16-C21 Aliphatics	330	5.00	"	"	"	"	"	"
C21-C34 Aliphatics	112	5.00	"	"	"	"	"	"
C10-C12 Aromatics	42.9	5.00	"	"	"	"	12/12/02	"
C12-C16 Aromatics	163	5.00	"	"	"	"	"	"
C16-C21 Aromatics	260	5.00	"	"	"	"	"	"
C21-C34 Aromatics	93.5	5.00	"	"	"	"	"	"
Extractable Petroleum Hydrocarbons	1680	5.00	"	"	"	"	12/12/02	"
Surrogate: 2-FBP	101%	50-150			"	"	12/12/02	$"$
Surrogate: Octacosane	87.0\%	50-150			"	"	12/12/02	"
Surrogate: Undecane	129 \%	30-150			"	"	"	"

th Creek Analytical - Bothell
The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420 .9200 fax 425.420 .9210
Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290
Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210
Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383 .9310 fax 541.382 .7588
Anchorage 3209 Denali Street, Anchorage, AK 99503 907.334.9338 fax 907.334.9339

Foster Wheeler Environmental Corporation	Project:	DPE Extraction Well Construction
12100 NE 195th St	Project Number: Not Provided	Reported:
Bothell WA/USA, 98011	Project Manager: Bryan Graham	$12 / 17 / 0212: 54$

Polynuclear Aromatic Hydrocarbons by GC/MS-SIM

North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
01MW23-5 (B2L0025-11) Soil	Sampled: 12/02/02	5:05 Rece	ved: 12/02	18:00					
Acenaphthene	ND	0.0500	$\mathrm{mg} / \mathrm{kg}$ dry	5	2L10030	12/10/02	12/12/02	8270-SIM	
Acenaphthylene	ND	0.0500	"	"	"	"	"	"	
Anthracene	0.384	0.0500	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.0500	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.0500	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.0500	"	"	"	"	"	"	
Benzo (ghi) perylene	ND	0.0500	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.0500	"	"	"	"	"	"	
Chrysene	0.108	0.0500	"	"	"	"	"	"	
Dibenz (a, h) anthracene	ND	0.0500	"	"	"	"	"	"	
Fluoranthene	0.0720	0.0500	"	"	"	"	"	"	
Fluorene	ND	0.0500	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	ND	0.0500	"	"	"	"	"	"	
1-Methylnaphthalene	5.08	0.0500	"	"	"	"	"	"	
2-Methylnaphthalene	8.51	0.200	"	20	"	"	12/16/02	"	
Naphthalene	1.84	0.0500	"	5	"	"	12/12/02	"	
Phenanthrene	1.28	0.0500	"	"	"	"	"	"	
Pyrene	0.352	0.0500	"	"	"	"	"	"	
Surrogate: p-Terphenyl-d14	90.0\%	42-141			"	"	"	"	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.
www.ncalabs.com

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420 .9200 fax 425.420 .9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beavertion, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383 .9310 fax 541.382 .7588

Anchorage 3209 Denali Street, Anchorage, AK 99503 907.334.9338 fax 907.334.9339

Project: DPE Extraction Well Construction
Project Number: Not Provided
Reported:
Project Manager: Bryan Graham

Total Metals by EPA 6000/7000 Series Methods
North Creek Analytical - Bothell

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

$$
\begin{aligned}
\text { Seattie } & 11720 \text { North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 } \\
& 425.420 .9200 \text { fax } 425.420 .9210 \\
\text { Spokane } & \text { East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 } \\
& 509.924 .9200 \text { fax 509.924.9290 } \\
\text { Portland } & 9405 \text { SW Nimbus Avenue, Beaverton, OR 97008-7132 } \\
& 503.906 .9200 \text { fax 503.906.9210 } \\
\text { Bend } & \text { 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 } \\
& 541.383 .9310 \text { fax 541.382.7588 } \\
\text { Anchorage } & \text { 3209 Denali Street, Anchorage, AK 99503 } \\
& 907.334 .9338 \text { fax } 907.334 .9339
\end{aligned}
$$

Foster Wheeler Environmental Corporation	Project: DPE Extraction Well Construction	
12100 NE 195th St	Project Number: Not Provided	Reported:
Bothell WA/USA, 98011	Project Manager: Bryan Graham	$12 / 17 / 0212: 54$

BTEX, MTBE, Naphthalene, and n-Hexane by WA VPH
 North Creek Analytical - Bothell

| Analyte | Result | Reporting
 Limit | Units | Dilution | Batch | Prepared | Analyzed | Method | Notes |
| :--- | :--- | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

W23-5 (B2L0025-11) Soil Sampled: 12/02/02 15:05 Received: 12/02/02 18:00

1...unyl tert-butyl ether	ND	0.100	$\mathrm{mg} / \mathrm{kg}$ dry	1	2L05020	12/05/02	12/06/02	EPA 8260B
Benzene	0.314	0.0100	"	"	"	"	"	"
Toluene	ND	0.0100	"	"	"	"	"	"
Ethylbenzene	0.705	0.0100	"	"	"	"	"	"
m,p-Xylene	0.872	0.0200	"	"	"	"	"	"
o-Xylene	0.290	0.0100	"	"	"	"	"	"
Naphthalene	3.67	0.0100	"	"	"	"	"	"
n-Hexane	0.906	0.0200	"	"	"	"	"	"
Surrogate: 1,2-DCA-d4	95.2\%	57-139			"	"	"	"
Surrogate: Toluene-d8	87.3\%	66-122			"	"	"	"
Surrogate: 4-BFB	85.2 \%	62-121			"	"	"	"

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

 509.924.9200 fax 509.924.9290Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Anchorage 3209 Denali Street, Anchorage, AK 99503 907.334 .9338 far 907.3349339

Foster Wheeler Environmental Corporation 12100 NE 195th St Bothell WA/USA, 98011

Project: DPE Extraction Well Construction
Project Number: Not Provided Project Manager: Bryan Graham

Reported: 12/17/02 12:54

Physical Parameters by APHA/ASTM/EPA Methods
 North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of
custody document. This analytical report must be reproduced in its entirety.

$\begin{aligned} \text { - } \mathrm{h} \text { Creek Analytical - Bothell } & \begin{array}{l}\text { The results in this report apply to the samples analyzed in accordance with the chain of } \\ \text { custody document. This analytical report must be reproduced in its entirety. }\end{array}\end{aligned}$

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382 .7588

Anchorage 3209 Denali Street, Anchorage, AK 99503 907.334.9338 fax 907.334.9339

Foster Wheeler Environmental Corporation 12100 NE 195th St Bothell WA/USA, 98011

Project: DPE Extraction Well Construction
Project Number: Not Provided
Project Manager: Bryan Graham

Reported: 12/17/02 12:54

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B - Quality Control North Creek Analytical - Bothell

Analyte	Reporting			Spike Source			\%REC		RPD	
	Result	Limit	Units	Level	Result	\%REC	Limits	RPD	Limit	Notes
Batch 2L06030: Prepared 12/06/02	Using EPA 5030B (P/T)									
Blank (2L06030-BLK1)										
Gasoline Range Hydrocarbons	ND	5.00	$\mathrm{mg} / \mathrm{kg}$							
Benzene	ND	0.0300	"							
Toluene	ND	0.0500	"							
Ethylbenzene	ND	0.0500	"							
Xylenes (total)	ND	0.100	"							
Surrogate: 4-BFB (FID)	3.28		"	4.00		82.0	59-125			
Surrogate: 4-BFB (PID)	3.70		"	4.00		92.5	64-125			
LCS (2L06030-BS1)										
Gasoline Range Hydrocarbons	24.7	5.00	$\mathrm{mg} / \mathrm{kg}$	27.5		89.8	80-120			
Benzene	0.365	0.0300	"	0.340		107	80-120			
Toluene	1.90	0.0500	"	2.08		91.3	80-120			
Ethylbenzene	0.491	0.0500	"	0.490		100	80-120			
Xylenes (total)	2.44	0.100	"	2.41		101	80-120			
Surrogate: 4-BFB (FID)	3.90		"	4.00		97.5	59-125			
Surrogate: 4-BFB (PID)	3.56		"	4.00		89.0	64-125			
LCS Dup (2L06030-BSD1)										
Gasoline Range Hydrocarbons	25.6	5.00	$\mathrm{mg} / \mathrm{kg}$	27.5		93.1	80-120	3.58	40	
Benzene	0.367	0.0300	"	0.340		108	80-120	0.546	40	
Toluene	1.90	0.0500	"	2.08		91.3	80-120	0.00	40	
Ethylbenzene	0.490	0.0500	"	0.490		100	80-120	0.204	40	
Xylenes (total)	2.44	0.100	"	2.41		101	80-120	0.00	40	
Surrogate: 4-BFB (FID)	3.97		"	4.00		99.2	59-125			
Surrogate: 4-BFB (PID)	3.56		"	4.00		89.0	64-125			
Matrix Spike (2L06030-MS1)					Source:	2L0025				
Gasoline Range Hydrocarbons	24.9	5.00	$\mathrm{mg} / \mathrm{kg}$ dry	33.2	0.615	73.1	53-120			
Benzene	0.388	0.0300	"	0.411	0.00889	92.2	71-119			
Toluene	1.98	0.0500	"	2.52	0.0153	78.0	57-108			
Ethylbenzene	0.499	0.0500	"	0.592	ND	84.3	72-114			
Xylenes (total)	2.50	0.100	"	2.91	ND	85.9	68-112			
Surrogate: 4-BFB (FID)	3.90		"	4.83		80.7	$59-125$			
Surrogate: 4-BFB (PID)	3.76		"	4.83		77.8	64-125			

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.
Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210
Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290
Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210
Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383 .9310 fax 541.382.7588
Anchorage 3209 Denali Street, Anchorage, AK 99503 907.334 .9338 fax 907.334 .9339

Foster Wheeler Environmental Corporation 12100 NE 195th St
Bothell WA/USA, 98011

Project: DPE Extraction Well Construction
Project Number: Not Provided
Project Manager: Bryan Graham

Reported:
12/17/02 12:54

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B - Quality Control North Creek Analytical - Bothell

| | | Reporting | | | Spike | Source | | \%REC | | RPD | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | Result | Limit | Units | | Level | Result | \%REC | Limits | RPD | Limit | Notes |

Batch 2L06030: Prepared 12/06/02 Using EPA 5030B (P/T)

Matrix Spike Dup (2L06030-MSD1)			Source: B2L0025-02						
Gasoline Range Hydrocarbons	23.9	5.00	$\mathrm{mg} / \mathrm{kg}$ dry	33.2	0.615	70.1	$53-120$	4.10	40
Benzene	0.383	0.0300	$"$	0.411	0.00889	91.0	$71-119$	1.30	40
Toluene	1.96	0.050	$"$	2.52	0.0153	77.2	$57-108$	1.02	40
Ethylbenzene	0.493	0.0500	$"$	0.592	ND	83.3	$72-114$	1.21	40
Xylenes (total)	2.46	0.100	$"$	2.91	ND	84.5	$68-112$	1.61	40
Surrogate: $4-$-BFB (FID)	3.77		$"$	4.83		78.1	$59-125$		
Surrogate: 4 -BFB (PID)	3.62		$"$	4.83		74.9	$64-125$		

The results in this report apply to the samples analyzed in accordance with the chain of
custody document. This analytical report must be reproduced in its entirety.

North Creek Analytical - Bothell
The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Foster Wheeler Environmental Corporation

 12100 NE 195th StBothell WA/USA, 98011

Project: DPE Extraction Well Construction
Project Number: Not Provided
Reported: Project Manager: Bryan Graham

12/17/02 12:54

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up - Quality Control North Creek Analytical - Bothell

	Reporting			Spike	Source		\%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	\%REC	Limits	RPD	Limit	Notes

Batch 2L05037: Prepared 12/05/02 Using EPA 3550B

th Creek Analytical - Bothell

Amar Gill, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project:	DPE Extraction Well Construction
Project Number:	Not Provided

12100 NE 195th St
Bothell WA/USA, 98011
Project Manager: Bryan Graham
12/17/02 12:54

Extractable Petroleum Hydrocarbons by WDOE TPH Policy Method - Quality Control North Creek Analytical - Bothell

	Reporting			Spike	Source		\%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	\%REC	Limits	RPD	Limit	Notes

Batch 2L10030: Prepared 12/10/02 Using EPA 3545

Blank (2L10030-BLK1)									
C8-C10 Aliphatics	ND	5.00	$\mathrm{mg} / \mathrm{kg}$						
C10-C12 Aliphatics	ND	5.00	"						
C12-C16 Aliphatics	ND	5.00	"						
C16-C21 Aliphatics	ND	5.00	"						
C21-C34 Aliphatics	ND	5.00	"						
C10-C12 Aromatics	ND	5.00	"						
C12-C16 Aromatics	ND	5.00	"						
C16-C21 Aromatics	ND	5.00	"						
C21-C34 Aromatics	ND	5.00	"						
Extractable Petroleum Hydrocarbons	ND	5.00	"						
Surrogate: 2-FBP	10.7		"	13.4		79.9	50-150		
Surrogate: Octacosane	11.9		"	13.4		88.8	50-150		
Surrogate: Undecane	7.87		"	13.8		57.0	30-150		
LCS (2L10030-BS1)									
Extractable Petroleum Hydrocarbons	111	5.00	$\mathrm{mg} / \mathrm{kg}$	167		66.5	30-120		
Surrogate: 2-FBP	10.7		"	13.4		79.9	50-150		
Surrogate: Octacosane	12.0		"	13.4		89.6	50-150		
Surrogate: Undecane	8.55		"	13.8		62.0	30-150		
LCS Dup (2L10030-BSD1)									
Extractable Petroleum Hydrocarbons	115	5.00	$\mathrm{mg} / \mathrm{kg}$	167		68.9	30-120	3.54	40
Surrogate: 2-FBP	10.9		"	13.4		81.3	50-150		
Surrogate: Octacosane	12.7		"	13.4		94.8	50-150		
Surrogate: Undecane	8.78		"	13.8		63.6	30-150		
Matrix Spike (2L10030-MS1)	Source: B2L0025-01								
Extractable Petroleum Hydrocarbons	132	5.00	$\mathrm{mg} / \mathrm{kg}$ dry	208	0.00	63.5	30-120		
Surrogate: 2-FBP	11.4		"	16.7		68.3	50-150		
Surrogate: Octacosane	14.3		"	16.7		85.6	50-150		
Surrogate: Undecane	10.0		"	17.2		58.1	30-150		

North Creek Analytical - Bothell
The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Foster Wheeler Environmental Corporation 12100 NE 195th St
Bothell WA/USA, 98011

Project: DPE Extraction Well Construction
Project Number: Not Provided
Reported:
Project Manager: Bryan Graham

Extractable Petroleum Hydrocarbons by WDOE TPH Policy Method - Quality Control North Creek Analytical - Bothell

	Reporting			Spike	Source		\%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	\%REC	Limits	RPD	Limit	Notes

Batch 2L10030: Prepared 12/10/02 Using EPA 3545

Matrix Spike Dup (2L10030-MSD1)	Source: B2L0025-01								
Extractable Petroleum Hydrocarbons	105	5.00	$\mathrm{mg} / \mathrm{kg}$ dry	208	0.00	50.5	30-120	22.8	40
Surrogate: 2-FBP	11.1		"	16.7		66.5	50-150		
Surrogate: Octacosane	12.8		,	16.7		76.6	50-150		
Surrogate: Undecane	9.22		"	17.2		53.6	30-150		

th Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420 .9200 fax 425.420.9210
 Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290
 Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210
 Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588
 Anchorage 3209 Denali Street, Anchorage, AK 99503 907.334.9338 fax 907.334.9339

Foster Wheeler Environmental Corporation 12100 NE 195th St Bothell WA/USA, 98011	Project Number: Not Provided Project Manager: Bryan Graham							$\begin{aligned} & \text { Reported: } \\ & \text { 12/17/02 12:54 } \end{aligned}$		
Polynuclear Aromatic Hydrocarbons by GC/MS-SIM - Quality Control North Creek Analytical - Bothell										
Analyte	Result	eporting Limit	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	${ }_{\text {RPD }}^{\text {Limit }}$	Notes

Batch 2L10030: Prepared 12/10/02 Using EPA 3545

Blank (2L10030-BLK1)

Acenaphthene	ND	0.0100	$\mathrm{mg} / \mathrm{kg}$			
Acenaphthylene	ND	0.0100	"			
Anthracene	ND	0.0100	"			
Benzo (a) anthracene	ND	0.0100	"			
Benzo (a) pyrene	ND	0.0100	"			
Benzo (b) fluoranthene	ND	0.0100	"			
Benzo (ghi) perylene	ND	0.0100	"			
Benzo (k) fluoranthene	ND	0.0100	"			
Chrysene	ND	0.0100	"			
Dibenz (a, h) anthracene	ND	0.0100	"			
Fluoranthene	ND	0.0100	"			
Fluorene	ND	0.0100	"			
Indeno (1,2,3-cd) pyrene	ND	0.0100	"			
1-Methylnaphthalene	ND	0.0100	"			
2-Methylnaphthalene	ND	0.0100	"			
Naphthalene	ND	0.0100	"			
Phenanthrene	ND	0.0100	"			
Pyrene	ND	0.0100	"			
Surrogate: p-Terphenyl-d14	0.255		"	0.267	95.5	42-141
LCS (2L10030-BS1)						
Acenaphthene	0.242	0.0100	$\mathrm{mg} / \mathrm{kg}$	0.333	72.7	50-150
Acenaphthylene	0.301	0.0100	"	0.333	90.4	50-150
Anthracene	0.256	0.0100	"	0.333	76.9	$50-150$
Benzo (a) anthracene	0.253	0.0100	"	0.333	76.0	50-150
Benzo (a) pyrene	0.244	0.0100	"	0.333	73.3	50-150
Benzo (b) fluoranthene	0.232	0.0100	"	0.333	69.7	50-150
Benzo (ghi) perylene	0.236	0.0100	"	0.333	70.9	50-150
Benzo (k) fluoranthene	0.241	0.0100	"	0.333	72.4	50-150
Chrysene	0.289	0.0100	"	0.333	86.8	54-112
Dibenz (a, h) anthracene	0.218	0.0100	"	0.333	65.5	50-150
Fluoranthene	0.277	0.0100	"	0.333	83.2	50-150
Fluorene	0.259	0.0100	"	0.333	77.8	51-107
Indeno (1,2,3-cd) pyrene	0.238	0.0100	"	0.333	71.5	42-112

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244

Foster Wheeler Environmental Corporation
12100 NE 195th St
Bothell WA/USA, 98011

Polynuclear Aromatic Hydrocarbons by GC/MS-SIM - Quality Control North Creek Analytical - Bothell

	Reporting			Spike	Source		\%REC		RPD	
nalyte	Result	Limit	Units	Level	Result	\%REC	Limits	RPD	Limit	Notes

Batch 2L10030: Prepared 12/10/02 Using EPA 3545

LCS (2L10030-BS1)									
Naphthalene	0.241	0.0100	$\mathrm{mg} / \mathrm{kg}$	0.333	72.4	50-150			
Phenanthrene	0.263	0.0100	"	0.333	79.0	50-150			
Pyrene	0.254	0.0100	"	0.333	76.3	50-150			
Surrogate: p-Terphenyl-d14	0.237		"	0.267	88.8	42-141			
LCS Dup (2L10030-BSD1)									
Acenaphthene	0.240	0.0100	$\mathrm{mg} / \mathrm{kg}$	0.333	72.1	50-150		25	
Acenaphthylene	0.293	0.0100	"	0.333	88.0	50-150	2.69	25	
Anthracene	0.268	0.0100	"	0.333	80.5	50-150	4.58	25	
Benzo (a) anthracene	0.276	0.0100	"	0.333	82.9	50-150	8.70	25	
Benzo (a) pyrene	0.256	0.0100	"	0.333	76.9	50-150	4.80	25	
((b) fluoranthene	0.197	0.0100	"	0.333	59.2	50-150	16.3	25	
Benzo (ghi) perylene	0.288	0.0100	"	0.333	86.5	50-150	19.8	25	
Benzo (k) fluoranthene	0.313	0.0100	"	0.333	94.0	50-150	26.0	5	Q-07
Chrysene	0.294	0.0100	"	0.333	88.3	54-112	1.72	37	
Dibenz (a,h) anthracene	0.267	0.0100	"	0.333	80.2	50-150	20.2	25	
Fluoranthene	0.330	0.0100	"	0.333	99.1	50-150	17.5	25	
Fluorene	0.259	0.0100	"	0.333	77.8	51-107	0.00	43	
Indeno (1,2,3-cd) pyrene	0.291	0.0100	"	0.333	87.4	42-112	20.0	32	
Naphthalene	0.249	0.0100	"	0.333	74.8	50-150	3.27	25	
Phenanthrene	0.295	0.0100	"	0.333	88.6	50-150	11.5	25	
Pyrene	0.322	0.0100	"	0.333	96.7	50-150	23.6	25	
Surrogate: p-Terphenyl-d14	0.250		"	0.267	93.6	42-141			

Matrix Spike (2L10030-MS1)	Source: B2L0025-01						
Acenaphthene	0.270	0.0100	$\mathrm{mg} / \mathrm{kg}$ dry	0.416	ND	64.9	$50-150$
Acenaphthylene	0.330	0.0100	$"$	0.416	ND	79.3	$50-150$
Anthracene	0.290	0.0100	$"$	0.416	ND	69.7	$50-150$
Benzo (a) anthracene	0.273	0.0100	$"$	0.416	0.00166	65.2	$50-150$
Benzo (a) pyrene	0.234	0.0100	$"$	0.416	ND	56.2	$50-150$
Benzo (b) fluoranthene	0.182	0.0100	$"$	0.416	ND	43.8	$50-150$
Benzo (ghi) perylene	0.262	0.0100	$"$	0.416	ND	63.0	$50-150$
Benzo (k) fluoranthene	0.219	0.0100	$"$	0.416	ND	52.6	$50-150$
Chrysene	0.280	0.0100	$"$	0.416	ND	67.3	$29-143$

Seattie 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420 .9200 fax 425.420 .9210
 Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924 .9200 fax 509.924.9290
 Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210
 Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383 .9310 fax 541.382 .7588
 Anchorage 3209 Denali Street, Anchorage, AK 99503 907.334.9338 fax 907.334.9339

Foster Wheeler Environmental Corporation
12100 NE 195th St
Bothell WA/USA, 98011

Project: DPE Extraction Well Construction
Project Number: Not Provided Reported: Project Manager: Bryan Graham

12/17/02 12:54

Polynuclear Aromatic Hydrocarbons by GC/MS-SIM - Quality Control North Creek Analytical - Bothell

	Reporting			Spike	Source		\%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	\%REC	Limits	RPD	Limit	Notes

Batch 2L10030: Prepared 12/10/02 Using EPA 3545

Matrix Spike (2L10030-MS1)			Source: B2L0025-01				
Dibenz (a,h) anthracene	0.263	0.0100	$\mathrm{mg} / \mathrm{kg}$ dry	0.416	ND	63.2	$50-150$
Fluoranthene	0.286	0.0100	$"$	0.416	ND	68.8	$50-150$
Fluorene	0.287	0.0100	$"$	0.416	ND	69.0	$36-134$
Indeno (1,2,3-cd) pyrene	0.275	0.0100	$"$	0.416	ND	66.1	$19-138$
Naphthalene	0.285	0.0100	$"$	0.416	0.00416	67.5	$50-150$
Phenanthrene	0.303	0.0100	$"$	0.416	0.00416	71.8	$50-150$
Pyrene	0.267	0.0100	$"$	0.416	ND	64.2	$50-150$
Surrogate: p-Terphenyl-d14	0.269		$"$	0.333	80.8	$42-141$	

Matrix Spike Dup (2L10030-MSD1)	Source: B2L0025-01								
Acenaphthene	0.235	0.0100	$\mathrm{mg} / \mathrm{kg}$ dry	0.416	ND	56.5	$50-150$	13.9	25
Acenaphthylene	0.298	0.0100	$"$	0.416	ND	71.6	$50-150$	10.2	25
Anthracene	0.254	0.0100	$"$	0.416	ND	61.1	$50-150$	13.2	25
Benzo (a) anthracene	0.250	0.0100	$"$	0.416	0.00166	59.7	$50-150$	8.80	25
Benzo (a) pyrene	0.220	0.0100	$"$	0.416	ND	52.9	$50-150$	6.17	25
Benzo (b) fluoranthene	0.174	0.0100	$"$	0.416	ND	41.8	$50-150$	4.49	25
Benzo (ghi) perylene	0.227	0.0100	$"$	0.416	ND	54.6	$50-150$	14.3	25
Benzo (k) fluoranthene	0.264	0.0100	$"$	0.416	ND	63.5	$50-150$	18.6	25
Chrysene	0.255	0.0100	$"$	0.416	ND	61.3	$29-143$	9.35	44
Dibenz (a,h) anthracene	0.226	0.0100	$"$	0.416	ND	54.3	$50-150$	15.1	25
Fluoranthene	0.255	0.0100	$"$	0.416	ND	61.3	$50-150$	11.5	25
Fluorene	0.259	0.0100	$"$	0.416	ND	62.3	$36-134$	10.3	52
Indeno (1,2,3-cd) pyrene	0.240	0.0100	$"$	0.416	ND	57.7	$19-138$	13.6	43
Naphthalene	0.253	0.0100	$"$	0.416	0.00416	59.8	$50-150$	11.9	25
Phenanthrene	0.266	0.0100	$"$	0.416	0.00416	62.9	$50-150$	13.0	25
Pyrene	0.250	0.0100	$"$	0.416	ND	60.1	$50-150$	6.58	25
Surrogate: p-Terphenyl-d14	0.245		$"$	0.333		73.6	$42-141$		

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420 .9200 fax 425.420 .9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portiand 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383 .9310 fax 541.382 .7588

Anchorage 3209 Denali Street, Anchorage, AK 99503

Project: DPE Extraction Well Construction
Project Number: Not Provided
Reported:
Project Manager: Bryan Graham
12/17/02 12:54

Total Metals by EPA 6000/7000 Series Methods - Quality Control

North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	\%REC \%REC	RPD Limits	RPD Limit	Notes

th Creek Analytical - Bothell
The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Foster Wheeler Environmental Corporation 12100 NE 195th St
Bothell WA/USA, 98011

Project: DPE Extraction Well Construction
Project Number: Not Provided Project Manager: Bryan Graham

Reported:
12/17/02 12:54

BTEX, MTBE, Naphthalene, and n-Hexane by WA VPH - Quality Control
 North Creek Analytical - Bothell

	Reporting		Units	Spike	Source		\%REC	RPD		
Analyte	Result	Limit		Level	Result	\%REC	Limits	RPD	Limit	Notes

Batch 2L05020: Prepared 12/05/02 Using EPA 5030B [MeOH]

LCS Dup (2L05020-BSD1)								
Benzene	1.04	0.0100	$\mathrm{mg} / \mathrm{kg}$	1.00	104	$73-133$	0.957	20
Toluene	0.983	0.0100	$"$	1.00	98.3	$68-130$	0.305	20
Surrogate: $1,2-D C A-d 4$	4.63		$"$	4.00	116	$57-139$		
Surrogate: Toluene-d8	3.90		$"$	4.00	97.5	$66-122$		
Surrogate: $4-B F B$	3.49		$"$	4.00	87.2	$62-121$		

Matrix Spike (2L05020-MS1)	Source: B2L0068-06						
Benzene	1.07	0.0100	$\mathrm{mg} / \mathrm{kg}$ dry	1.25	ND	85.6	$62-138$
Toluene	1.10	0.0100	$"$	1.25	ND	88.0	$44-133$
Surrogate: $1,2-D C A-d 4$	4.93		$"$	4.99		98.8	$57-139$
Surrogate: Toluene-d8	4.34		$"$	4.99	87.0	$66-122$	
\quad gate: $4-$ BFB	3.92		$"$	4.99	78.6	$62-121$	

Matrix Spike Dup (2L05020-MSD1)	Source: B2L0068-06								
Benzene	1.00	0.0100	$\mathrm{mg} / \mathrm{kg}$ dry	1.25	ND	80.0	62-138	6.76	25
Toluene	0.997	0.0100	"	1.25	ND	79.8	44-133	9.82	25
Surrogate: 1,2-DCA-d4	4.84		"	4.99		97.0	57-139	-	
Surrogate: Toluene-d8	4.09		"	4.99		82.0	66-122		
Surrogate: 4-BFB	3.77		"	4.99		75.6	62-121		

[^10]Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420 .9200 fax 425.420 .9210

Spokane East 11115 Montgomery. Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Anchorage 3209 Denali Street, Anchorage, AK 99503 9073349338 fax 9073349339

Batch 2L06044: Prepared 12/06/02 Using Dry Weight
Blank (2L06044-BLK1)

Dry Weight	99.8	1.00	$\%$

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420 .9200 fax 425.420 .9210
Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290
Portland 9405 SW Nimbus Avenue, Beaverion, OR 97008-7132 503.906.9200 fax 503.906.9210
Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711
541.383.9310 fax 541.382.7588
Anchorage 3209 Denali Street, Anchorage, AK 99503 907.334.9338 fax 907.334.9339

Foster Wheeler Environmental Corporation	Project: DPE Extraction Well Construction	
12100 NE 195th St	Project Number: Not Provided	Reported:
Bothell WA/USA, 98011	Project Manager: Bryan Graham	$12 / 17 / 0212: 54$

Notes and Definitions

Q-01 The spike recovery for this QC sample is outside of established control limits. Review of associated batch QC indicates the recovery for this analyte does not represent an out-of-control condition for the batch.

S-02 The surrogate recovery for this sample cannot be accurately quantified due to interference from coeluting organic compounds present in the sample.

The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.
DET Analyte DETECTED
ND Analyte NOT DETECTED at or above the reporting limit
NR Not Reported
dry Sample results reported on a dry weight basis
von Relative Percent Difference
\% Creek Analytical - Bothell

Amar Gill, Project Manager

17 December 2002

Bryan Graham

Foster Wheeler Environmental Corporation
12100 NE 195th St
Bothell, WA/USA 98011
RE: DPE Extraction Well Construction

Enclosed are the results of analyses for samples received by the laboratory on 12/03/02 17:52. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Amar Gill

Project Manager

North Creek Analytical, Inc.

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420 .9200 fax 425.420 .9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290
 Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210
 Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588
 Anchorage 3209 Denali Street, Anchorage, AK 99503 907.334.9338 fax 907.334.9339

Foster Wheeler Environmental Corporation	Project:	DPE Extraction Well Construction
12100 NE 195th St	Project Number:	Not Provided

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
01 MW 24-5	B2L0046-01	Soil	12/03/02 08:30	12/03/02 17:52
01 MW 24-10	B2L0046-02	Soil	12/03/02 08:40	12/03/02 17:52
01 MW 24-15	B2L0046-03	Soil	12/03/02 08:50	12/03/02 17:52
01 MW 24-20	B2L0046-04	Soil	12/03/02 09:05	12/03/02 17:52
01 MW 25-5	B2L0046-05	Soil	12/03/02 10:55	12/03/02 17:52
01 MW 25-10	B2L0046-06	Soil	12/03/02 11:05	12/03/02 17:52
01 MW 25-15	B2L0046-07	Soil	12/03/02 11:20	12/03/02 17:52
01 MW 25-18	B2L0046-08	Soil	12/03/02 11:30	12/03/02 17:52
01 MW 29-5	B2L0046-09	Soil	12/03/02 13:30	12/03/02 17:52
01 MW 29-10	B2L0046-10	Soil	12/03/02 13:40	12/03/02 17:52
01 MW 29-15	B2L0046-11	Soil	12/03/02 13:50	12/03/02 17:52
MW 29-20	B2L0046-12	Soil	12/03/02 14:00	12/03/02 17:52
LR01-5	B2L0046-13	Soil	12/03/02 15:10	12/03/02 17:52
LR01-10	B2L0046-14	Soil	12/03/02 15:15	12/03/02 17:52
LR01-15	B2L0046-15	Soil	12/03/02 15:30	12/03/02 17:52
LR01-20	B2L0046-16	Soil	12/03/02 15:40	12/03/02 17:52

The results in this report apply to the samples analyzed in accordance with the chain of
custody document. This analytical report must be reproduced in its entirety.

Foster Wheeler Environmental Corporation	Project: DPE Extraction Well Construction	
12100 NE 195th St	Project Number: Not Provided	Reported:
Bothell WA/USA, 98011	Project Manager: Bryan Graham	$12 / 17 / 0213: 03$

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B North Creek Analytical - Bothell

| Analyte | Result | Reporting
 Limit | Units | Dilution | Batch | Prepared | Analyzed | Method | Notes |
| :--- | :--- | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Gasoline Range Hydrocarbons	2200	100	$\mathrm{mg} / \mathrm{kg}$ dry	20	2L09029	12/09/02	12/09/02	NWTPH-Gx/8021B
Benzene	4.35	0.600	"	"	"	"	"	"
Toluene	ND	1.00	"	"	"	"	"	"
Ethylbenzene	14.7	1.00	"	"	"	"	"	"
Xylenes (total)	41.3	2.00	"	"	"	"	"	"
Surrogate: 4-BFB (FID)	\%	59-125			"	"	"	"
Surrogate: 4-BFB (PID)	\%	64-125			"	"	"	"

01 MW 24-10 (B2L0046-02) Soil Sampled: 12/03/02 08:40 Received: 12/03/02 17:52

Gasoline Range Hydrocarbons	$\mathbf{2 8 . 4}$	5.00	$\mathrm{mg} / \mathrm{kg}$ dry	1	2 L09029	$12 / 09 / 02$	$12 / 09 / 02$	NWTPH-Gx/8021B	G-01
Benzene	ND	0.0300	$"$	$"$	$"$	$"$	$"$	$"$	$"$
Toluene	ND	0.0500	$"$	$"$	$"$	$"$	$"$	$"$	
Ethylbenzene	ND	0.0500	$"$	$"$	$"$	$"$	$"$	$"$	
Xylenes (total)	ND	0.100	$"$	$"$	$"$	$"$	$"$	$"$	
Surrogate: $4-B F B$ (FID)	101%	$59-125$			$"$	$"$	$"$	$"$	
Surrogate: $4-B F B$ (PID)	96.6%	$64-125$			$"$	$"$	$"$	$"$	

01 MW 24-15 (B2L0046-03) Soil Sampled: 12/03/02 08:50 Received: 12/03/02 17:52

Gasoline Range Hydrocarbons	ND	5.00	$\mathrm{mg} / \mathrm{kg}$ dry	1	2 L09029	$12 / 09 / 02$	$12 / 10 / 02$	NWTPH-Gx/8021B
Benzene	0.103	0.0300	$"$	$"$	$"$	$"$	$"$	$"$
Toluene	ND	0.0500	$"$	$"$	$"$	$"$	$"$	$"$
Ethylbenzene	ND	0.0500	$"$	$"$	$"$	$"$	$"$	$"$
Xylenes (total)	ND	0.100	$"$	$"$	$"$	$"$	$"$	$"$
Surrogate: $4-B F B(F I D)$	77.9%	$59-125$			$"$	$"$	$"$	$"$
Surrogate: $4-B F B(P I D)$	83.7%	$64-125$			$"$	$"$	$"$	$"$

North Creek Analytical - Bothell | The results in this report apply to the samples analyzed in accord ince with the chain of |
| :--- |
| custody document. This analytical report must be reproduced in its entirety. |

North Creek Analytical, Inc.
Environmental Laboratory Network

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420 .9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Anchorage 3209 Denali Street, Anchorage, AK 99503 907.334 .9338 fax 907.334 .9339

Project:	DPE Extraction Well Construction
Project Number:	
Project Provided Manager:	Bryan Graham

12/17/02 13:03
Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B
North Creek Analytical - Bothell

| Analyte | Result | Reporting
 Limit | Units | Dilution | Batch | Prepared | Analyzed | Method | Notes |
| :--- | :--- | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

01 MW 24-20 (B2L0046-04) Soil Sampled: 12/03/02 09:05 Received: 12/03/02 17:52

Gasoline Range Hydrocarbons	ND	5.00	$\mathrm{mg} / \mathrm{kg}$ dry	1	2L09029	12/09/02	12/10/02	NWTPH-Gx/8021B
Benzene	0.0454	0.0300	"	"	"	"	"	"
Toluene	ND	0.0500	"	"	"	"	n	"
Ethylbenzene	ND	0.0500	"	"	"	"	"	"
Xylenes (total)	ND	0.100	"	n	"	"	"	"
Surrogate: 4-BFB (FID)	76.1 \%	59-125			"	"	"	"
Surrogate: 4-BFB (PID)	83.3 \%	64-125			"	"	"	"

01 MW 25-5 (B2L0046-05) Soil Sampled: 12/03/02 10:55 Received: 12/03/02 17:52

Gasoline Range Hydrocarbons	ND	5.00	$\mathrm{mg} / \mathrm{kg}$ dry	1	2L09029	12/09/02	12/10/02	NWTPH-Gx/8021B
Benzene	0.0491	0.0300	"	"	"	"	"	"
Toluene	ND	0.0500	"	"	"	"	"	"
${ }^{1}$ benzene	ND	0.0500	"	"	"	"	"	"
\therefore. nnes (total)	ND	0.100	"	"	"	"	"	"
Surrogate: 4-BFB (FID)	79.7 \%	59-125			"	"	"	"
Surrogate: 4-BFB (PID)	91.1 \%	64-125			"	"	"	"

01 MW 25-10 (B2L0046-06) Soil Sampled: 12/03/02 11:05 Received: 12/03/02 17:52

Gasoline Range Hydrocarbons	176	5.00	$\mathrm{mg} / \mathrm{kg}$ dry	1	2L09029	12/09/02	12/10/02	NWTPH-Gx/8021B	G-01
Benzene	0.0658	0.0300	"	"	"	"	"	"	
Toluene	ND	0.0500	"	"	"	"	"	"	
Ethylbenzene	0.272	0.0500	"	"	"	"	"	"	
Xylenes (total)	0.740	0.100	"	"	"	"	"	"	
Surrogate: 4-BFB (FID)	181%	59-125			"	"	"	"	S-04
Surrogate: 4-BFB (PID)	108\%	64-125			"	"	"	"	

th Creek Analytical - Bothell

Foster Wheeler Environmental Corporation
12100 NE 195th St
Project: DPE Extraction Well Construction

Bothell WA/USA, 98011
Project Number: Not Provided
Reported:
Project Manager: Bryan Graham
12/17/02 13:03

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

01 MW 25-15 (B2L0046-07) Soil Sampled: 12/03/02 11:20 Received: 12/03/02 17:52

Gasoline Range Hydrocarbons	ND	5.00	$\mathrm{mg} / \mathrm{kg}$ dry	1	2 L09029	$12 / 09 / 02$	$12 / 10 / 02$	NWTPH-Gx/8021B
Benzene	ND	0.0300	$"$	$"$	$"$	$"$	$"$	$"$
Toluene	ND	0.0500	$"$	$"$	$"$	$"$	$"$	$"$
Ethylbenzene	ND	0.0500	$"$	$"$	$"$	$"$	$"$	$"$
Xylenes (total)	ND	0.100	$"$	$"$	$"$	$"$	$"$	$"$
Surrogate: $4-B F B$ (FID)	73.6%	$59-125$			$"$	$"$	$"$	$"$
Surrogate: $4-B F B$ (PID)	79.2%	$64-125$			$"$	$"$	$"$	$"$

01 MW 25-18 (B2L0046-08) Soil Sampled: 12/03/02 11:30 Received: 12/03/02 17:52

Gasoline Range Hydrocarbons	ND	5.00	$\mathrm{mg} / \mathrm{kg}$ dry	1	2 L09029	$12 / 09 / 02$	$12 / 10 / 02$	NWTPH-Gx/8021B
Benzene	ND	0.0300	$"$	$"$	$"$	$"$	$"$	$"$
Toluene	ND	0.0500	$"$	$"$	$"$	$"$	$"$	$"$
Ethylbenzene	ND	0.0500	$"$	$"$	$"$	$"$	$"$	$"$
Xylenes (total)	ND	0.100	$"$	$"$	$"$	$"$	$"$	$"$
Surrogate: $4-B F B(F I D)$	83.2%	$59-125$			$"$	$"$	$"$	$"$
Surrogate: $4-B F B ~(P I D)$	96.0%	$64-125$			$"$	$"$	$"$	$"$

01 MW 29-5 (B2L0046-09) Soil Sampled: 12/03/02 13:30 Received: 12/03/02 17:52

Gasoline Range Hydrocarbons	127	5.00	$\mathrm{mg} / \mathrm{kg}$ dry	1	2L09029	12/09/02	12/10/02	NWTPH-Gx/8021B	G-01
Benzene	ND	0.0300	"	"	"	"	"	"	
Toluene	ND	0.0500	"	"	"	"	"	"	
Ethylbenzene	0.339	0.0500	"	"	"	"	"	"	
Xylenes (total)	0.405	0.100	"	"	"	"	"	"	
Surrogate: 4-BFB (FID)	\%	59-125			"	"	"	"	S-02
Surrogate: 4-BFB (PID)	120%	64-125			"	"	"	"	

North Creek Analytical - Bothell	The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in is entirety.

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420 .9200 fax 425.420 .9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383 .9310 fax 541.382 .7588

Anchorage 3209 Denali Street, Anchorage, AK 99503 907334.9338 fax 907334.9339

Foster Wheeler Environmental Corporation 12100 NE 195th St Bothell WA/USA, 98011

Project: DPE Extraction Well Construction
Project Number: Not Provided Reported: Project Manager: Bryan Graham

12/17/02 13:03

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B
 North Creek Analytical - Bothell

| Analyte | Result | Reporting
 Limit | Units | Dilution | Batch | Prepared | Analyzed | Method |
| :--- | :--- | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

01 MW 29-10 (B2L0046-10) Soil Sampled: 12/03/02 13:40 Received: 12/03/02 17:52

Gasoline Range Hydrocarbons	122	5.00	$\mathrm{mg} / \mathrm{kg}$ dry	1	2L09029	12/09/02	12/10/02	NWTPH-Gx/8021B	G-01
Benzene	ND	0.0300	"	"	"	"	"	"	
Toluene	ND	0.0500	"	"	"	"	"	"	
Ethylbenzene	0.310	0.0500	"	"	"	"	"	"	
Xylenes (total)	1.10	0.100	"	"	"	"	"	"	1-06
Surrogate: 4-BFB (FID)	178%	59-125			"	"	"	"	S-04
Surrogate: 4-BFB (PID)	126\%	64-125				"	"	"	S-04

01 MW 29-15 (B2L0046-11) Soil Sampled: 12/03/02 13:50 Received: 12/03/02 17:52

Gasoline Range Hydrocarbons	297	5.00	$\mathrm{mg} / \mathrm{kg}$ dry	1	2L09029	12/09/02	12/10/02	NWTPH-Gx/8021B	G-01
Benzene	0.109	0.0300	"	"	"	"	"	"	
Toluene	0.114	0.0500	"	"	"	"	"	"	1-06
'benzene	1.19	0.0500	"	"	"	"	"	"	
\wedge_{j}.enes (total)	2.01	0.100	"	"	"	"	"	"	I-06
Surrogate: 4-BFB (FID)	\%	59-125			"	"	"	"	S-02
Surrogate: 4-BFB (PID)	129\%	64-125			"	"	"	"	S-04

01 MW 29-20 (B2L0046-12) Soil Sampled: 12/03/02 14:00 Received: 12/03/02 17:52

Gasoline Range Hydrocarbons	ND	5.00	$\mathrm{mg} / \mathrm{kg}$ dry	1	2 LL09029	$12 / 09 / 02$	$12 / 10 / 02$	NWTPH-Gx/8021B
Benzene	0.289	0.0300	$"$	$"$	$"$	$"$	$"$	$"$
Toluene	ND	0.0500	$"$	$"$	$"$	$"$	$"$	$"$
Ethylbenzene	ND	0.0500	$"$	$"$	$"$	$"$	$"$	$"$
Xylenes (total)	ND	0.100	$"$	$"$	$"$	$"$	$"$	$"$
Surrogate: $4-B F B$ (FID)	86.7%	$59-125$			$"$	$"$	$"$	$"$
Surrogate: $4-B F B$ (PID)	97.0%	$64-125$			$"$	$"$	$"$	$"$

The results in this report apply to the samples analyzed in accordance with the chain of
custody document. This analytical report must be reproduced in its entirety.

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B North Creek Analytical - Bothell

| Analyte | Result | Reporting
 Limit | Units | Dilution | Batch | Prepared | Analyzed | Method | Notes |
| :--- | :--- | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

LR01-5 (B2L0046-13) Soil Sampled: 12/03/02 15:10 Received: 12/03/02 17:52

Gasoline Range Hydrocarbons	251	20.0	$\mathrm{mg} / \mathrm{kg}$ dry	4	2L09029	12/09/02	12/10/02	NWTPH-Gx/8021B	G-01
Benzene	0.129	0.120	"	"	"	"	"	"	
Toluene	ND	0.200	"		"	"	"	"	
Ethylbenzene	0.545	0.200	"		"	"	"	"	
Xylenes (total)	0.502	0.400	"	"	"	"	"	"	
Surrogate: 4-BFB (FID)	\%	59-125			"	"	"	"	S-02
Surrogate: 4-BFB (PID)	140%	64-125			"	"	"	"	S-04

LR01-10 (B2L0046-14) Soil Sampled: 12/03/02 15:15 Received: 12/03/02 17:52

Gasoline Range Hydrocarbons	178	5.00	$\mathrm{mg} / \mathrm{kg}$ dry	1	2L09029	12/09/02	12/10/02	NWTPH-Gx/8021B	G-01
Benzene	ND	0.0300	"	"	"	"	"	"	
Toluene	ND	0.0500	$"$	"	" .	"	"	"	
Ethylbenzene	0.742	0.0500	"	"	"	"	"	"	
Xylenes (total)	1.44	0.100	"	"	"	"	"	"	1-0
Surrogate: 4-BFB (FID)	192 \%	59-125			"	"	"	"	S-04
Surrogate: 4-BFB (PID)	121 \%	64-125			"	"	"	"	
LR01-15 (B2L0046-15) Soil Sampled: 12/03/02 15:30 Received: 12/03/02 17:52									
Gasoline Range Hydrocarbons	1420	50.0	$\mathrm{mg} / \mathrm{kg}$ dry	10	2L09029	12/09/02	12/10/02	NWTPH-Gx/8021B	G-01
Benzene	0.885	0.300	"	"	"	"	"	"	
Toluene	5.80	0.500	"	"	"	"	"	"	
Ethylbenzene	6.91	0.500	"	"	"	"	"	"	
Xylenes (total)	21.9	1.00	"	"	"	"	"	"	
Surrogate: 4-BFB (FID)	\%	59-125			"	"	"	"	S-01
Surrogate: 4-BFB (PID)	\%	64-125			"	"	"	"	S-01

Seattie 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420 .9200 fax 425.420 .9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Anchorage 3209 Denali Street, Anchorage, AK 99503
007.3340338 fov 007.334 .9339
Foster Wheeler Environmental Corporation
12100 NE 195th St
Bothell WA/USA, 98011

Project: DPE Extraction Well Construction
Project Number: Not Provided Reported:
Project Manager: Bryan Graham 12/17/02 13:03

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B North Creek Analytical - Bothell

| Analyte | Result | Reporting
 Limit | Units | Dilution | Batch | Prepared | Analyzed | Method | Notes |
| :--- | :--- | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Gasoline Range Hydrocarbons	5.01	5.00	mg/kg dry	1	2L09029	12/09/02	12/10/02	NWTPH-Gx/8021B
Benzene	1.40	0.0300	"	"	"	"	"	"
Toluene	0.0509	0.0500	"	"	"	"	"	"
Ethylbenzene	0.0837	0.0500	"	"	"	"	"	"
Xylenes (total)	ND	0.100	"	"	"	"	"	"
Surrogate: 4-BFB (FID)	85.2\%	59-125			"	"	"	"
Surrogate: 4-BFB (PID)	91.4 \%	64-125			"	"	"	"

th Creek Analytical - Bothell The results in this report apply to the samples analyzed in accordance with the chain of

www.ncal	bs.com				Seattle 11 42 Spokane Ea 50 Portland 94 50 Bend 20 54 nchorage 32	20 North Creek 420.9200 fax 11115 Montgo 924.9200 fax 5 SW Nimbus 906.9200 fax 32 Empire Ave 383.9310 fax 9 Denali Stree	Pkwy N, Suite 425.420.9210 mery, Suite B, 509.924.9290 venue, Beavert 03.906.9210 ue, Suite F-1, 541.382 .7588 Anchorage, AK	00, Bothell, WA 98011-8244 pokane, WA 99206-4776 n, OR 97008-7132 end, OR 97701-5711	
Foster Wheeler Environmental 12100 NE 195th St Bothell WA/USA, 98011	poration	Project Project	Project: DP Number: No Manager: Bry	Extractio Provided an Graham	Well	struction		$\begin{gathered} \text { Reported: } \\ \text { 12/17/02 13:03 } \end{gathered}$	
Volatile Petroleum Hydrocarbons by WDOE TPH Policy Method									
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
01 MW 24-5 (B2L0046-01) Soil Sampled: 12/03/02 08:30 Received: 12/03/02 17:52									
C5-C6 Aliphatics	ND	25.0	$\mathrm{mg} / \mathrm{kg}$ dry	5	2L12002	12/12/02	12/12/02	WA MTCA-VPH	
C6-C8 Aliphatics	46.1	25.0	"	"	"	"	"	"	
C8-C10 Aliphatics	97.7	25.0	"	"	"	"	"	"	
C10-C12 Aliphatics	138	25.0	"	"	"	"	"	"	
C8-C10 Aromatics	85.9	25.0	"	"	"	"	"	"	
C10-C12 Aromatics	157	25.0	"	"	"	"	"	"	
C12-C13 Aromatics	217	25.0	"	"	"	"	"	"	
Total VPH (TVPH)	742	25.0	"	"	"	"	"	"	
Surrogate: 4-BFB (FID)	\%	60-140			"	"	"	"	S-02
Surrogate: 4-BFB (PID)	134%	60-140			"	"	"	"	
01 MW 29-5 (B2L0046-09) Soil	Sampled: 12/03/02	13:30 Re	ived: 12/0	2 17;52					
C5-C6 Aliphatics	ND	5.00	$\mathrm{mg} / \mathrm{kg}$ dry	1	2L12002	12/12/02	12/12/02	WA MTCA-VPH	
C6-C8 Aliphatics	ND	5.00	"	"	"	"	"	"	
C8-C10 Aliphatics	ND	5.00	"	"	"	"	"	"	
C10-C12 Aliphatics	7.99	5.00	"	"	"	"	"	-	
C8-C10 Aromatics	ND	5.00	"	"	"	"	"	"	
C10-C12 Aromatics	9.35	5.00	"	"	"	"	"	"	
C12-C13 Aromatics	15.5	5.00	"	"	"	"	"	"	
Total VPH (TVPH)	32.9	5.00	"	"	"	"	"	"	
Surrogate: 4-BFB (FID)	113%	60-140			"	"	"	"	
Surrogate: 4-BFB (PID)	88.4 \%	$60-140$			"	"	"	"	
LR01-5 (B2L0046-13) Soil Sam	pled: 12/03/02 15	0 Received	12/03/02 1	:52					
C5-C6 Aliphatics	ND	50.0	$\mathrm{mg} / \mathrm{kg}$ dry	10	2L12002	12/12/02	12/12/02	WA MTCA-VPH	
C6-C8 Aliphatics	94.9	50.0	"	"	"	"	"	"	
C8-C10 Aliphatics	145	50.0	"	"	"	"	"	"	
C10-C12 Aliphatics	258	50.0	"	"	"	"	"	"	
C8-C10 Aromatics	123	50.0	"	"	"	"	"	"	
C10-C12 Aromatics	490	50.0	"	"	"	"	"	"	
C12-C13 Aromatics	939	50.0	"	"	"	"	"	"	
Total VPH (TVPH)	2050	50.0	"	"	"	"	"	"	
Surrogate: 4-BFB (FID)	\%	$60-140$			"	"	"	"	S-01
Surrogate: 4-BFB (PID)	\%	60-140			- "	"	"	"	S-01

North Creek Analytical - Bothell

Foster Wheeler Environmental Corporation 12100 NE 195th St

Project: DPE Extraction Well Construction
Project Number: Not Provided
Reported:
Bothell WA/USA, 98011
Project Manager: Bryan Graham
12/17/02 13:03

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
01 MW 24-5 (B2L0046-01) Soil	Sampled: 12/03/02 08:30 Received: 12/03/02 17:52								
Diesel Range Hydrocarbons	3000	100	$\mathrm{mg} / \mathrm{kg}$ dry	10	2L05037	12/05/02	12/07/02	NWTPH-Dx	
Lube Oil Range Hydrocarbons	149	25.0	"	1	"	"	12/06/02	"	D-10
Surrogate: 2-FBP	85.5 \%	42-110			"	"	12/07/02	"	
Surrogate: Octacosane	68.9 \%	57-123			"	"	12/06/02	"	
01 MW 24-10 (B2L0046-02) Soil	Sampled: 12/03/02 08:40 Received: 12/03/02 17:52								
Diesel Range Hydrocarbons	419	20.0	$\mathrm{mg} / \mathrm{kg}$ dry	2	2L05037	12/05/02	12/07/02	NWTPH-Dx	
Lube Oil Range Hydrocarbons	ND	25.0	"	1	"	"	12/07/02	"	
Surrogate: 2-FBP	84.8\%	42-110			"	"	12/07/02	"	
Surrogate: Octacosane	81.8\%	57-123			"	"	12/07/02	"	
01 MW 24-15 (B2L0046-03) Soil	Sampled: 12/03/02 08:50 Received: 12/03/02 17:52								
Pinsel Range Hydrocarbons	11.8	10.0	$\mathrm{mg} / \mathrm{kg}$ dry	1	2L05037	12/05/02	12/07/02	NWTPH-Dx	
Oil Range Hydrocarbons	ND	25.0	"	"	"	"	"	"	
Surrogate: 2-FBP	64.5 \%	42-110			"	"	"	"	
Surrogate: Octacosane	75.0 \%	57-123			"	"	"	"	
01 MW 24-20 (B2L0046-04) Soil	Sampled: 12/03/02 09:05 Received: 12/03/02 17:52								
Diesel Range Hydrocarbons	ND	10.0	$\mathrm{mg} / \mathrm{kg}$ dry	1	2L06029	12/06/02	12/09/02	NWTPH-Dx	
Lube Oil Range Hydrocarbons	ND	25.0	"	"	"	"	"	"	
Surrogate: 2-FBP	54.3 \%	42-110			"	"	"	"	
Surrogate: Octacosane	64.2 \%	57-123			"	"	"	"	
01 MW 25-5 (B2L0046-05) Soil	Sampled: 12/03/02 10:55 Received: 12/03/02 17:52								
Diesel Range Hydrocarbons	ND	10.0	$\mathrm{mg} / \mathrm{kg}$ dry	1	2L06029	12/06/02	12/09/02	NWTPH-Dx	
Lube Oil Range Hydrocarbons	ND	25.0	"	"	"	"	"	"	
Surrogate: 2-FBP	64.7 \%	42-110			"	"	"	"	
Surrogate: Octacosane	75.3 \%	57-123			"	"	"	"	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Anchorage 3209 Denali Street, Anchorage, AK 99503 097.334 .0338 fax -007.334 .8330

Foster Wheeler Environmental Corporation 12100 NE 195th St

Project: DPE Extraction Well Construction
Project Number: Not Provided
Reported:
Project Manager: Bryan Graham
12/17/02 13:03

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up North Creek Analytical - Bothell

Reporting									
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
01 MW 25-10 (B2L0046-06) Soil Sampled: 12/03/02 11:05 Received: 12/03/02 17:52									
Diesel Range Hydrocarbons	ND	10.0	$\mathrm{mg} / \mathrm{kg}$ dry	1	2L06029	12/06/02	12/09/02	NWTPH-Dx	
Lube Oil Range Hydrocarbons	ND	25.0	"	"	"	"	"	"	
Surrogate: 2-FBP	56.7 \%	42-110			"	"	"	"	
Surrogate: Octacosane	67.7 \%	57-123			"	"	"	"	
01 MW 25-15 (B2L0046-07) Soil	Sampled: 12/03/02 11:20 Received: 12/03/02 17:52								
Diesel Range Hydrocarbons	ND	10.0	$\mathrm{mg} / \mathrm{kg}$ dry	1	2L06029	12/06/02	12/09/02	NWTPH-Dx	
Lube Oil Range Hydrocarbons	ND	25.0	. "	"	".	"	"	"	
Surrogate: 2-FBP	76.9 \%	42-110			"	"	"	"	
Surrogate: Octacosane	86.6\%	57-123			"	"	"	"	
01 MW 25-18 (B2L0046-08) Soil	Sampled: 12/03/02 11:30 Received: 12/03/02 17:52								
Diesel Range Hydrocarbons	ND	10.0	mg/kg dry	1	2L06029	12/06/02	12/09/02	NWTPH-Dx	
Lube Oil Range Hydrocarbons	ND	25.0	"	"	"	"	"	"	
Surrogate: 2-FBP	58.9\%	42-110			"	"	"	"	
Surrogate: Octacosane	68.2 \%	57-123			"	"	"	"	

01 MW 29-5 (B2L0046-09) Soil Sampled: 12/03/02 13:30 Received: 12/03/02 17:52

Diesel Range Hydrocarbons	50.0	10.0	$\mathrm{mg} / \mathrm{kg}$ dry	1	2L06029	12/06/02	12/09/02	NWTPH-Dx
Lube Oil Range Hydrocarbons	ND	25.0	"	"	"	"	"	"
Surrogate: 2-FBP	57.3 \%	42-110			"	"	"	"
Surrogate: Octacosane	62.3 \%	57-123			"	"	"	"

01 MW 29-10 (B2L0046-10) Soil Sampled: 12/03/02 13:40 Received: 12/03/02 17:52

Diesel Range Hydrocarbons	75.2	10.0	$\mathrm{mg} / \mathrm{kg}$ dry	1	2L06029	12/06/02	12/09/02	NWTPH-Dx
Lube Oil Range Hydrocarbons	ND	25.0	"	"	"	"	"	"
Surrogate: 2-FBP	55.3 \%	42-110			"	"	"	"
Surrogate: Octacosane	60.9 \%	57-123			"	"	"	"

North Creek Analytical - Bothell
The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Amar Gill, Project Manager

	Seattic Spokane Portiand Bend Anchorage	11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420 .9200 fax 425.420 .9210 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383 .9310 fax 541.382 .7588 3209 Denali Street, Anchorage, AK 99503 807.334.0338-fax-007.3340339
Foster Wheeler Environmental Corporation	Project: DPE Extraction Well Construction	
12100 NE 195th St	Project Number: Not Provided	Reported:
Bothell WA/USA, 98011	Project Manager: Bryan Graham	12/17/02 13:03

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up North Creek Analytical - Bothell

| Analyte | Result | Reporting
 Limit | Units | Dilution | Batch | Prepared | Analyzed | Method | Notes |
| :--- | :--- | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

01 MW 29-15 (B2L0046-11) Soil Sampled: 12/03/02 13:50 Received: 12/03/02 17:52

Diesel Range Hydrocarbons	312	10.0	$\mathrm{mg} / \mathrm{kg}$ dry	1	2L06029	12/06/02	12/09/02	NWTPH-Dx
Lube Oil Range Hydrocarbons	ND	25.0	"	"	"	"	"	"
Surrogate: 2-FBP	85.0%	42-110			"	"	"	"
Surrogate: Octacosane	73.3 \%	57-123			"	"	"	"

01 MW 29-20 (B2L0046-12) Soil Sampled: 12/03/02 14:00 Received: 12/03/02 17:52

Diesel Range Hydrocarbons	ND	10.0	$\mathrm{mg} / \mathrm{kg}$ dry	1	2L06029	12/06/02	12/09/02	NWTPH-Dx
Lube Oil Range Hydrocarbons	ND	25.0	"	"	"	"	"	"
Surrogate: 2-FBP	68.0%	42-110			"	"	"	"
Surrogate: Octacosane	76.3 \%	57-123			"	"	"	"

LR01-5 (B2L0046-13) Soil Sampled: 12/03/02 15:10 Received: 12/03/02 17:52

\boldsymbol{r} : zel Range Hydrocarbons	7440	400	$\mathrm{mg} / \mathrm{kg}$ dry	40	2L06029	12/06/02	12/09/02	NWTPH-Dx	
Oil Range Hydrocarbons	ND	1000	"	"	"	"	"	"	
Surrogate: 2-FBP	\%	42-110			"	"	"	"	S-01
Surrogate: Octacosane	78.8%	57-123			"	"	"	"	

LR01-10 (B2L0046-14) Soil Sampled: 12/03/02 15:15 Received: 12/03/02 17:52

Diesel Range Hydrocarbons	2670	100	$\mathrm{mg} / \mathrm{kg}$ dry	10	2L06029	12/06/02	12/09/02	NWTPH-Dx	
Lube Oil Range Hydrocarbons	ND	250	"	"	"	"	"	"	
Surrogate: 2-FBP	\%	42-110			"	"	"	"	S-01
Surrogate: Octacosane	79.4 \%	57-123			"	"	"	"	
LR01-15 (B2L0046-15) Soil	Sampled: 12/03/02 15	30 Receiv	d: 12/03/02		*				
Diesel Range Hydrocarbons	13500	1000	$\mathrm{mg} / \mathrm{kg}$ dry	100	2L06029	12/06/02	12/09/02	NWTPH-Dx	
Lube Oil Range Hydrocarbons	ND	2500	"	"	"	"	"	"	
Surrogate: 2-FBP	\%	42-110			"	"	"	"	S-01
Surrogate: Octacosane	\%	57-123			"	"	"	"	S-01

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420 .9200 fax 425.420 .9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverion, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383 .9310 fax 541.382 .7588

Anchorage 3209 Denali Street, Anchorage, AK 99503 907.334.9338 fax 907.334 .9339

Foster Wheeler Environmental Corporation	Project: DPE Extraction Well Construction	
12100 NE 195th St	Project Number: Not Provided	Reported:
Bothell WA/USA, 98011	Project Manager:	Bryan Graham

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up North Creek Analytical - Bothell

| Analyte | Result | Reporting
 Limit | Units | Dilution | Batch | Prepared Analyzed | Method | Notes |
| :--- | :--- | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Received: 12/03/02 17:52								
Diesel Range Hydrocarbons	ND	10.0	mg/kg dry	1	2L06029	12/06/02	12/09/02	NWTPH-Dx
Lube Oil Range Hydrocarbons	ND	25.0	"	"	"	"	"	"
Surrogate: 2-FBP	54.4\%	42-110			"	"	"	"
Surrogate: Octacosane	58.8\%	57-123			"	"	"	"

WWW.icalabs.com	Anchorage	541.383.9310 fax 541.382.7588 3209 Denali Street, Anchorage, AK 99503 90733493338 fax 9073349339
Foster Wheeler Environmental Corporation	Project: DPE Extraction Well Construction	
12100 NE 195th St	Project Number: Not Provided	Reported:
Bothell WA/USA, 98011	Project Manager: Bryan Graham	12/17/02 13:03

Extractable Petroleum Hydrocarbons by WDOE TPH Policy Method
 North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
01 MW 24-5 (B2L0046-01) Soil	Sampled: 12/03/02 08:30 Received: 12/03/02 17:52								
C8-C10 Aliphatics	60.0	5.00	$\mathrm{mg} / \mathrm{kg}$ dry	1	2L10030	12/10/02	12/12/02	WA MTCA-EPH	
C10-C12 Aliphatics	168	5.00	"	"	"	"	"	"	
C12-C16 Aliphatics	512	5.00	"	"	"	"	"	"	
C16-C21 Aliphatics	284	5.00	"	"	"	"	"	"	
C21-C34 Aliphatics	63.9	5.00	"	"	"	"	"	"	
C10-C12 Aromatics	42.3	5.00	"	"	"	"	12/13/02	"	
C12-C16 Aromatics	153	5.00	"	"	"	"	"	"	
C16-C21 Aromatics	178	5.00	"	"	"	"	"	"	
C21-C34 Aromatics	20.6	5.00	- "	"	"	"	"	"	
Extractable Petroleum Hydrocarbons	1480	5.00	"	"	"	"	12/12/02	"	
Surrogate: 2-FBP	97.6\%	50-150			"	"	12/13/02	"	
gate: Octacosane	92.7 \%	50-150			"	"	12/12/02	"	
Surrogate: Undecane	141 \%	30-150			"	"	"	"	
01 MW 29-5 (B2L0046-09) Soil	Sampled: 12/03/02 13:30 Received: 12/03/02 17:52								
C8-C10 Aliphatics	7.55	5.00	$\mathrm{mg} / \mathrm{kg}$ dry	1	2L10030	12/10/02	12/13/02	WA MTCA-EPH	
C10-C12 Aliphatics	22.3	5.00	,	"	"	"	"	"	
C12-C16 Aliphatics	49.8	5.00	"	"	"	"	"	"	
C16-C21 Aliphatics	24.3	5.00	"	"	"	"	"	"	
C21-C34 Aliphatics	ND	5.00	"	"	"	"	"	"	
C10-C12 Aromatics	5.87	5.00	"	"	"	"	12/13/02	"	
C12-C16 Aromatics	26.4	5.00	"	"	"	"	"	"	
C16-C21 Aromatics	23.1	5.00	"	"	"	"	"	"	
C21-C34 Aromatics	ND	5.00	"	"	"	"	"	"	
Extractable Petroleum Hydrocarbons	159	5.00	"	"	"	"	12/13/02	"	
Surrogate: 2-FBP	78.4 \%	50-150			"	"	12/13/02	"	
Surrogate: Octacosane	90.4\%	50-150			"	"	12/13/02	"	
Surrogate: Undecane	64.5 \%	30-150			"	"	"	"	

[^11]Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420 .9200 fax 425.420 .9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Anchorage 3209 Denali Street, Anchorage, AK 99503 9073349338 fax 9073349339

Foster Wheeler Environmental Corporation 12100 NE 195th St
Bothell WA/USA, 98011

Project: DPE Extraction Well Construction
Project Number: Not Provided
Reported:
Project Manager: Bryan Graham

12/17/02 13:03

Extractable Petroleum Hydrocarbons by WDOE TPH Policy Method

North Creek Analytical - Bothell

| Analyte | Result | Reporting
 Limit | Units | Dilution | Batch | Prepared Analyzed | Method | Notes |
| :--- | :--- | :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

LR01-5 (B2L0046-13) Soil Sampled: 12/03/02 15:10 Received: 12/03/02 17:52

C8-C10 Aliphatics	105	50.0	$\mathrm{mg} / \mathrm{kg}$ dry	10	2L10030	12/10/02	12/13/02	WA MTCA-EPH
C10-C12 Aliphatics	400	50.0	"	"	"	"	"	"
C12-C16 Aliphatics	1460	50.0	"	"	"	"	"	"
C16-C21 Aliphatics	924	50.0	"	"	"	"	"	"
C21-C34 Aliphatics	ND	50.0	"	"	"	"	"	"
C10-C12 Aromatics	165	50.0	"	"	"	"	12/15/02	"
C12-C16 Aromatics	1140	50.0	"	"	"	"	"	"
C16-C21 Aromatics	1540	50.0	"	"	"	"	"	"
C21-C34 Aromatics	ND	50.0	"	"	"	"	"	"
Extractable Petroleum Hydrocarbons	5730	50.0	"	"	"	"	12/13/02	"
Surrogate: 2-FBP	106\%	50-150			"	"	12/15/02	"
Surrogate: Octacosane	73.2 \%	50-150			"	"	12/13/02	"
Surrogate: Undecane	\%	30-150			"	"	"	"

www.ncalabs.com

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Anchorage 3209 Denali Street, Anchorage, AK 99503 907.334 .9338 fax 907.334 .9339

Foster Wheeler Environmental Corporation	Project: DPE Extraction Well Construction	
12100 NE 195th St	Project Number: Not Provided	Reported:
Bothell WA/USA, 98011	Project Manager: Bryan Graham	$12 / 17 / 0213: 03$

Polynuclear Aromatic Hydrocarbons by GC/MS-SIM

North Creek Analytical - Bothell

| Analyte | Result | Reporting
 Limit | Units | Dilution | Batch | Prepared | Analyzed | Method | Notes |
| :--- | :--- | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

01 MW 24-5 (B2L0046-01) Soil Sampled: 12/03/02 08:30 Received: 12/03/02 17:52

Acenaphthene	ND	0.0100	$\mathrm{mg} / \mathrm{kg}$ dry	1	2L10030	12/10/02	12/12/02	8270-SIM
Acenaphthylene	ND	0.0100	"	"	"	"	"	"
Anthracene	0.243	0.0100	"	"	"	"	"	"
Benzo (a) anthracene	0.0123	0.0100	"	"	"	"	"	"
Benzo (a) pyrene	ND	0.0100	"	"	"	"	"	"
Benzo (b) fluoranthene	ND	0.0100	"	"	"	"	"	"
Benzo (ghi) perylene	ND	0.0100	"	"	"	"	"	"
Benzo (k) fluoranthene	ND	0.0100	"	"	"	"	"	"
Chrysene	0.0336	0.0100	"	"	"	"	"	"
Dibenz (a, h) anthracene	ND	0.0100	"	"	"	"	"	"
Fluoranthene	0.0312	0.0100	"	"	"	"	"	"
F-*orene	0.522	0.0100	"	"	"	"	"	"
،o (1,2,3-cd) pyrene	ND	0.0100	"	"	"	"	"	"
1-Methylnaphthalene	5.78	0.200	"	20	"	"	12/16/02	"
2-Methylnaphthalene	10.4	0.200	"	"	"	"	"	"
Naphthalene	2.79	0.200	"	"	"	"	"	"
Phenanthrene	0.847	0.0100	"	1	"	"	12/12/02	"
Pyrene	0.107	0.0100	"	"	"	"	"	"
Surrogate: p-Terphenyl-d14	96.6\%	42-141			"	"	"	"

www.ncala	abs.com				Seattle 117 425 Spokane Eas 509 Portland 9405 503. Bend 2033 54 Anchorage 3209	20 North Creek 420.9200 tax 11115 Montgo 924.9200 fax SW Nimbus A 906.9200 fax 32 Empire Aven 383.9310 fax Denali Street,	Pkwy N, Suite 25.420 .9210 nery, Suite B, 09.924.9290 venue, Beaver 03.906.9210 ue, Suite F-1, 41.382.7588 Anchorage, AK	Bothell, WA 980 ne, WA 99206 R 97008-7132 OR 97701-571 3	
Foster Wheeler Environmental Co 12100 NE 195th St Bothell WA/USA, 98011	orporation	Project Project	Project: DP umber: No anager: Br	Extractio Provided n Graham	Well Co	struction			
Total Metals by EPA 6000/7000 Series Methods									
Analyte	Result	porting Limit	Reporting						
01 MW 24-5 (B2L0046-01) Soil Sampled: 12/03/02 08:30 Received: 12/03/02 17:52									
Lead	13.9	0.500	$\mathrm{mg} / \mathrm{kg}$ dry	1	2L06020	12/06/02	12/09/02	EPA 6020	
01 MW 24-10 (B2L0046-02) Soil Sampled: 12/03/02 08:40 Received: 12/03/02 17:52									
Lead	3.44	0.500	mg/kg dry	1	2L06020	12/06/02	12/09/02	EPA 6020	
01 MW 24-15 (B2L0046-03) Soil Sampled: 12/03/02 08:50 Received: 12/03/02 17:52									
Lead	2.82	0.500	$\mathrm{mg} / \mathrm{kg}$ dry	1	2L06020	12/06/02	12/09/02	EPA 6020	
01 MW 24-20 (B2L0046-04) Soil Sampled: 12/03/02 09:05 Received: 12/03/02 17:52									
Lead	5.36	0.500	$\mathrm{mg} / \mathrm{kg}$ dry	1	2L06020	12/06/02	12/09/02	EPA 6020	
01 MW 25-5 (B2L0046-05) Soil Sampled: 12/03/02 10:55 Received: 12/03/02 17:52									
Lead	2.98	0.500	$\mathrm{mg} / \mathrm{kg}$ dry	1	2L06020	12/06/02	12/09/02	EPA 6020	
01 MW 25-10 (B2L0046-06) Soil Sampled: 12/03/02 11:05 Received: 12/03/02 17:52									
Lead	5.89	0.500	$\mathrm{mg} / \mathrm{kg}$ dry	1	2L06020	12/06/02	12/09/02	EPA 6020	
01 MW 25-15 (B2L0046-07) Soil Sampled: 12/03/02 11:20 Received: 12/03/02 17:52									
Lead	1.92	0.500	$\mathrm{mg} / \mathrm{kg}$ dry	1	2L06020	12/06/02	12/09/02	EPA 6020	
01 MW 25-18 (B2L0046-08) Soil Sampled: 12/03/02 11:30 Received: 12/03/02 17:52									
Lead	5.60	0.500	$\mathrm{mg} / \mathrm{kg}$ dry	1	2L06020	12/06/02	12/09/02	EPA 6020	
01 MW 29-5 (B2L0046-09) Soil Sampled: 12/03/02 13:30 Received: 12/03/02 17:52									
Lead	6.62	0.500	$\mathrm{mg} / \mathrm{kg}$ dry	1	2L06020	12/06/02	12/09/02	EPA 6020	

North Creek Analytical - Bothell
The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Seattic 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-824 425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beavertion, OR 97008-7132 503.906.9200 fax 503.906.9210

Foster Wheeler Environmenta 12100 NE 195th St Bothell WA/USA, 98011	al Corporation	Project: DPE Extraction Project Number: Not Provided Project Manager: Bryan Graham						$\begin{gathered} \text { Reported: } \\ \text { 12/17/02 13:03 } \end{gathered}$	
Total Metals by EPA 6000/7000 Series Methods North Creek Analytical - Bothell									
Analyte	Result ${ }^{\text {R }}$	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
01 MW 29-10 (B2L0046-10) Soil Sampled: 12/03/02 13:40 Received: 12/03/02 17:52									
Lead	2.30	0.500	$\mathrm{mg} / \mathrm{kg}$ dry	1	2L06020	12/06/02	12/09/02	EPA 6020	
01 MW 29-15 (B2L0046-11) Soil Sampled: 12/03/02 13:50 Received: 12/03/02 17:52									
Lead	2.43	0.500	$\mathrm{mg} / \mathrm{kg}$ dry	1	2L06020	12/06/02	12/10/02	EPA 6020	
01 MW 29-20 (B2L0046-12) Soil Sampled: 12/03/02 14:00 Received: 12/03/02 17:52									
Lead	5.65	0.556	$\mathrm{mg} / \mathrm{kg}$ dry	1	2L06020	12/06/02	12/10/02	EPA 6020	
LR01-5 (B2L0046-13) Soil	Sampled: 12/03/02 15:10	Received	12/03/02 1						
Lead	3.52	0.500	$\mathrm{mg} / \mathrm{kg}$ dry	1	2L06020	12/06/02	12/10/02	EPA 6020	
LR01-10 (B2L0046-14) Soil	Sampled: 12/03/02 15:15	Receiv	: 12/03/02	7:52					
Lead	2.30	0.500	$\mathrm{mg} / \mathrm{kg}$ dry	1	2L06020	12/06/02	12/10/02	EPA 6020	
$1^{\sim n 1-15}$ (B2L0046-15) Soil	Sampled: 12/03/02 15:30	Receiv	: 12/03/02	7:52					
	6.93	0.500	$\mathrm{mg} / \mathrm{kg}$ dry	1	2L06020	12/06/02	12/10/02	EPA 6020	
LR01-20 (B2L0046-16) Soil	Sampled: 12/03/02 15:40	Receiv	: 12/03/02	7:52					
Lead	4.81	0.500	$\mathrm{mg} / \mathrm{kg}$ dry	1	2L06020	12/06/02	12/10/02	EPA 6020	

π th Creek Analytical - Bothell
The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

	Anchorage 3209 Denali Street, Anchorage, AK 99503	
Foster Wheeler Environmental Corporation	Project: DPE Extraction Well	
12100 NE 195th St	Project Number: Not Provided	Reported:
Bothell WA/USA, 98011	Project Manager: Bryan Graham	12/17/02 13:03

BTEX, MTBE, Naphthalene, and n-Hexane by WA VPH North Creek Analytical - Bothell

| Analyte | Result | Reporting
 Limit | Units | Dilution | Batch | Prepared Analyzed | Method | Notes |
| :--- | :--- | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

01 MW 24-5 (B2L0046-01) Soil Sampled: 12/03/02 08:30 Received: 12/03/02 17:52

Methyl tert-butyl ether	ND	0.100	$\mathrm{mg} / \mathrm{kg}$ dry	1	2L05020	12/05/02	12/06/02	EPA 8260B
Benzene	0.495	0.0100	"	"	"	"	"	"
Toluene	0.0358	0.0100	"	"	"	"	"	"
Ethylbenzene	1.95	0.0100	"	"	"	"	"	"
m,p-Xylene	2.84	0.0200	"	"	"	"	"	"
o-Xylene	2.22	0.0100	"	"	"	"	"	"
Naphthalene	1.86	0.0100	"	"	"	"	"	"
n-Hexane	3.37	0.0200	"	"	"	"	n	"
Surrogate: 1,2-DCA-d4	96.7 \%	57-139			"	"	"	"
Surrogate: Toluene-d8	86.6%	66-122			"	"	"	"
Surrogate: 4-BFB	85.8 \%	62-121			"	"	"	"

01 MW 29-5 (B2L0046-09) Soil Sampled: 12/03/02 13:30 Received: 12/03/02 17:52

Methyl tert-butyl ether	ND	0.100	$\mathrm{mg} / \mathrm{kg}$ dry	1	2L05020	12/05/02	12/06/02	EPA 8260B
Benzene	ND	0.0100	"	"	"	"	"	"
Toluene	ND	0.0100	"	"	"	"	"	"
Ethylbenzene	0.398	0.0100	"	"	"	"	"	"
m,p-Xylene	ND	0.0200	"	"	"	"	"	"
o-Xylene	ND	0.0100	"	"	"	"	"	"
Naphthalene	0.104	0.0100	"	"	"	"	"	"
n-Hexane	0.105	0.0200	"	"	"	"	"	"
Surrogate: 1,2-DCA-d4	95.8\%	57-139			"	"	"	"
Surrogate: Toluene-d8	86.2 \%	66-122			"	"	"	"
Surrogate: 4-BFB	82.2 \%	62-121			"	"	"	"

www.ncalabs.com

Seattle
11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 tax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Anchorage 3209 Denali Street, Anchorage, AK 99503 $907.3344 .0338-$ - $0 \times-007.334 .0339$

Project:	DPE Extraction Well Construction
Project Number:	Not Provided
Project Manager:	Bryan Graham

BTEX, MTBE, Naphthalene, and n-Hexane by WA VPH
North Creek Analytical - Bothell

| Analyte | Result | Reporting
 Limit | Units | Dilution | Batch | Prepared | Analyzed | Method | Notes |
| :--- | :--- | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

LR01-5 (B2L0046-13) Soil	Sampled: 12/03/02 15:10	Received	12/03/02					
Methyl tert-butyl ether	ND	0.100	$\mathrm{mg} / \mathrm{kg}$ dry	1	2L05020	12/05/02	12/06/02	EPA 8260B
Benzene	0.390	0.0100	"	"	"	"	"	"
Toluene	ND	0.0100	"	"	"	"	"	"
Ethylbenzene	ND	0.0100	"	"	"	"	"	"
m,p-Xylene	ND	0.0200	"	"	"	"	"	"
o-Xylene	ND	0.0100	"	"	"	"	"	"
Naphthalene	ND	0.0100	"	"	"	"	"	"
n-Hexane	3.39	0.0200	"	"	"	"	"	"
Surrogate: 1,2-DCA-d4	98.4\%	57-139			"	"	"	"
Surrogate: Toluene-d8	86.3 \%	66-122			"	"	"	"
Surrogate: 4-BFB	85.9 \%	62-121			"	"	"	"

th Creek Analytical - Bothell | The results in this report apply to the samples analyzed in accordance with the chain of |
| :--- |
| custody document. This analytical report must be reproduced in its entirety. |

www.ncalab					Seatle 11 Spokane 42 50 Portiand 94 50 Bend 20 54 anchorage 32 	20 North Creek 420.9200 fax 11115 Montgo 924.9200 fax SW Nimbus 906.9200 fax 32 Empire Ave 383.9310 fax Denali Street 334.9338 fax	Pkwy N, Suite 25.420 .9210 mery, Suite B, 09.924.9290 venue, Beaver 03.906.9210 ue, Suite F-1, 541.382 .7588 Anchorage, AK 07.334.9339	400, Bothell, WA 98011-8244 pokane, WA 99206-4776 n, OR 97008-7132 end, OR 97701-5711 99503	
Foster Wheeler Environmental Cor 12100 NE 195th St Bothell WA/USA, 98011	rporation	Project Number: Not Provided Project Manager: Bryan Graham					$\begin{gathered} \text { Reported: } \\ \text { 12/17/02 13:03 } \end{gathered}$		
Physical Parameters by APHA/ASTM/EPA Methods									
Reporting									Notes
01 MW 24-5 (B2L0046-01) Soil Sampled: 12/03/02 08:30 Received: 12/03/02 17:52									
Dry Weight	81.2	1.00	\%	1	2L09021	12/09/02	12/10/02	BSOPSPL003R07	
01 MW 24-10 (B2L0046-02) Soil Sampled: 12/03/02 08:40 Received: 12/03/02 17:52									
Dry Weight	80.4	1.00	\%	1	2L09021	12/09/02	12/10/02	BSOPSPL003R07	
01 MW 24-15 (B2L0046-03) Soil Sampled: 12/03/02 08:50 Received: 12/03/02 17:52									
Dry Weight	82.6	1.00	\%	1	2L09021	12/09/02	12/10/02	BSOPSPL003R07	
01 MW 24-20 (B2L0046-04) Soil	Sampled: 12/03	5 R	ved:	02 17:52					
Dry Weight	81.6	1.00	\%	1.	2L09021	12/09/02	12/10/02	BSOPSPL003R07	
01 MW 25-5 (B2L0046-05) Soil Sampled: 12/03/02 10:55 Received: 12/03/02 17:52									
Dry Weight	80.4	1.00	\%	1	2L09021	12/09/02	12/10/02	BSOPSPL003R07	
01 MW 25-10 (B2L0046-06) Soil Sampled: 12/03/02 11:05 Received: 12/03/02 17:52									
Dry Weight	81.4	1.00	\%	1	2L09021	12/09/02	12/10/02	BSOPSPL003R07.	
01 MW 25-15 (B2L0046-07) Soil Sampled: 12/03/02 11:20 Received: 12/03/02 17:52									
Dry Weight	79.3	1.00	\%	1	2L09021	12/09/02	12/10/02	BSOPSPL003R07	
01 MW 25-18 (B2L0046-08) Soil Sampled: 12/03/02 11:30 Received: 12/03/02 17:52									
Dry Weight	80.7	1.00	\%	1	2L09021	12/09/02	12/10/02	BSOPSPL003R07	
01 MW 29-5 (B2L0046-09) Soil	Sampled: 12/03/02 13:30 Received: 12/03/02 17:52								
Dry Weight	80.2	1.00	\%	1	2L09021	12/09/02	12/10/02	BSOPSPL003R07	

[^12]Foster Wheeler Environmental Corporation 12100 NE 195th St Bothell WA/USA, 98011

Project: DPE Extraction Well Construction
Project Number: Not Provided
Reported: Project Manager: Bryan Graham

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B - Quality Control North Creek Analytical - Bothell

Analyte	Result	porting Limit	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	$\begin{aligned} & \text { RPD } \\ & \text { Limit } \end{aligned}$	Notes
Batch 2L09029: Prepared 12/09/02	Using EPA 5030B (P/T)									
Blank (2L09029-BLK1)										
Gasoline Range Hydrocarbons	ND	5.00	$\mathrm{mg} / \mathrm{kg}$							
Benzene	ND	0.0300	"							
Toluene	ND	0.0500	"							
Ethylbenzene	ND	0.0500	"							
Xylenes (total)	ND	0.100	"							
Surrogate: 4-BFB (FID)	3.81	.	"	4.00		95.2	59-125			
Surrogate: 4-BFB (PID)	4.17		"	4.00		104	64-125			
LCS (2L09029-BS1)										
Gasoline Range Hydrocarbons	27.6	5.00	$\mathrm{mg} / \mathrm{kg}$	27.5		100	80-120			
Benzene	0.386	0.0300	"	0.340		114	$80-120$			
Toluene	2.01	0.0500	"	2.08		96.6	80-120			
Ethylbenzene	0.511	0.0500	"	0.490		104	$80-120$			
Xylenes (total)	2.52	0.100	"	2.41		105	80-120			
Surrogate: 4-BFB (FID)	3.98		"	4.00		99.5	59-125			
Surrogate: 4-BFB (PID)	3.91		"	4.00		97.8	64-125			
LCS Dup (2L09029-BSD1)										
Gasoline Range Hydrocarbons	27.7	5.00	$\mathrm{mg} / \mathrm{kg}$	27.5		101	80-120	0.362	40	
Benzene	0.387	0.0300	"	0.340		114	80-120	0.259	40	
Toluene	2.01	0.0500	"	2.08		96.6	80-120	0.00	40	
Ethylbenzene	0.512	0.0500	"	0.490		104	80-120	0.196	40	
Xylenes (total)	2.52	0.100	"	2.41	.	105	80-120	0.00	40	
Surrogate: 4-BFB (FID)	4.05		"	4.00		101	59-125			
Surrogate: 4-BFB (PID)	3.94		"	4.00		98.5	64-125			
Matrix Spike (2L09029-MS1)					Source:	2L0046				
Gasoline Range Hydrocarbons	257	5.00	$\mathrm{mg} / \mathrm{kg}$ dry	30.0	122	450	53-120			Q-02
Benzene	0.454	0.0300	"	0.371	0.0197	117	71-119			
Toluene	2.11	0.0500	"	2.28	0.0201	91.7	57-108			
Ethylbenzene	1.19	0.0500	"	0.535	0.310	164	72-114			Q-02
Xylenes (total)	4.84	0.100	"	2.63	1.10	142	68-112			Q-02
Surrogate: 4-BFB (FID)	ND		"	4.37			59-125			S-02
Surrogate: 4-BFB (PID)	5.81		"	4.37		133	64-125			S-04

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420 .9200 fax 425.420 .9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Anchorage 3209 Denali Street, Anchorage, AK 99503
Foster Wheeler Environmental Corporation
12100 NE 195th St

Project:	DPE Extraction Well Construction
Project Number:	Not Provided
Project Manager:	Bryan Graham

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B - Quality Control
 North Creek Analytical - Bothell

	Reporting			Spike	Source		\%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	\%REC	Limits	RPD	Limit	Notes

Batch 2L09029: Prepared 12/09/02 Using EPA 5030B (P/T)

Matrix Spike Dup (2L09029-MSD1)	Source: B2L0046-10									
Gasoline Range Hydrocarbons	179	5.00	$\mathrm{mg} / \mathrm{kg}$ dry	30.0	122	190	53-120	35.8	40	Q-02
Benzene	0.399	0.0300	"	0.371	0.0197	102	71-119	12.9	40	
Toluene	2.05	0.0500	"	2.28	0.0201	89.0	57-108	2.88	40	
Ethylbenzene	0.936	0.0500	"	0.535	0.310	117	72-114	23.9	40	Q-02
Xylenes (total)	3.95	0.100	"	2.63	1.10	108	68-112	20.3	40	
Surrogate: 4-BFB (FID)	8.37		"	4.37		192	59-125			S-04
Surrogate: 4-BFB (PID)	5.41		"	4.37		124	64-125			

The results in this report apply to the samples analyzed in accordance with the chain of
custody document. This analytical report must be reproduced in its entirety.

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery. Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Batch 2L12002: Prepared 12/12/02 Using EPA 5030B (P/T)

Blank (2L12002-BLK1)

C5-C6 Aliphatics	ND	5.00	$\mathrm{mg} / \mathrm{kg}$							
C6-C8 Aliphatics	ND	5.00	"							
C8-C10 Aliphatics	ND	5.00	"							
C10-C12 Aliphatics	ND	5.00	"							
C8-C10 Aromatics	ND	5.00	"							
C10-C12 Aromatics	ND	5.00	"							
C12-C13 Aromatics	ND	5.00	"							
Total VPH (TVPH)	ND	5.00	"							
Surrogate: 4-BFB (FID)	4.24		"	4.00		106	60-140			
Surrogate: 4-BFB (PID)	3.70		"	4.00		92.5	60-140			
LCS (2L12002-BS1)										
Total VPH (TVPH)	11.3	5.00	$\mathrm{mg} / \mathrm{kg}$	10.0		113	70-130			
Surrogate: 4-BFB (FID)	4.86		"	4.00		122	60-140			
Surrogate: 4-BFB (PID)	3.93		"	4.00		98.2	60-140			
LCS Dup (2L12002-BSD1)										
Total VPH (TVPH)	11.0	5.00	$\mathrm{mg} / \mathrm{kg}$	10.0		110	70-130	2.69	25	
Surrogate: 4-BFB (FID)	3.33		"	4.00		83.2	60-140			
Surrogate: 4-BFB (PID)	3.02		"	4.00		75.5	60-140			
Matrix Spike (2L12002-MS1)					ource:	015				
Total VPH (TVPH)	17.9	5.00	$\mathrm{mg} / \mathrm{kg}$ dry	13.4	0.00	134	70-130			Q-01
Surrogate: 4-BFB (FID)	5.26		"	5.36		98.1	60-140			
Surrogate: 4-BFB (PID)	4.88		"	5.36		91.0	60-140			
Matrix Spike Dup (2L12002-MSD1)					ource:	015				
Total VPH (TVPH)	14.7	. 5.00	$\mathrm{mg} / \mathrm{kg}$ dry	13.4	0.00	110	70-130	19.6	25	
Surrogate: 4-BFB (FID)	5.13		"	5.36		95.7	60-140			
Surrogate: 4-BFB (PID)	5.01		"	5.36		93.5	60-140			

North Creek Analytical - Bothell
The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project: DPE Extraction Well Construction $\begin{array}{lc}\text { Project Number: Not Provided } & \text { Reported: } \\ \text { Project Manager: Bryan Graham } & 12 / 17 / 02 \text { 13:03 }\end{array}$

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA $98011-8244$ 425.420.9200 fax 425.420.9210
Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290
Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132
ortland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906 .9200 fax 503.906 .9210
Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383 .9310 fax 541.382 .7588
Anchorage 3209 Denali Street, Anchorage, AK 99503 007.3340 .0338 -fax- 007.234 .0330

Foster Wheeler Environmental Corporation 12100 NE 195th St
Bothell WA/USA, 98011

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up - Quality Control North Creek Analytical - Bothell

	Reporting			Spike	Source		\%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	\%REC	Limits	RPD	Limit	Notes

Batch 2L05037: Prepared 12/05/02 Using EPA 3550B

Batch 2L06029: Prepared 12/06/02 Using EPA 3550B
Blank (2L06029-BLK1)

Diesel Range Hydrocarbons	ND	10.0	$\mathrm{mg} / \mathrm{kg}$				
Lube Oil Range Hydrocarbons	ND	25.0	$"$				
Surrogate: 2-FBP	6.70		$"$	10.7	62.6	$42-110$	
Surrogate: Octacosane	8.19		$"$	10.7	76.5	$57-123$	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell. WA 98011-8244 425.420 .9200 fax 425.420 .9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924 .9200 fax 509.924 .9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383 .9310 fax 541.382 .7588

Anchorage 3209 Denali Street, Anchorage, AK 99503 007.334 .0338 fav. 907.334 .9338

Foster Wheeler Environmental Corporation 12100 NE 195th St
Bothell WA/USA, 98011

Project: DPE Extraction Well Construction
Project Number: Not Provided
Reported: Project Manager: Bryan Graham

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up - Quality Control North Creek Analytical - Bothell

	Reporting			Spike	Source		\%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	\%REC	Limits	RPD	Limit	Notes

Batch 2L06029: Prepared 12/06/02 Using EPA 3550B

LCS (2L06029-BS1)

Diesel Range Hydrocarbons	48.0	10.0	$\mathrm{mg} / \mathrm{kg}$	66.7	72.0	$59-109$		
Surrogate: 2-FBP	8.24		$"$	10.7	77.0	$42-110$		
LCS Dup (2L06029-BSD1)								
Diesel Range Hydrocarbons	43.0	10.0	$\mathrm{mg} / \mathrm{kg}$	66.7	64.5	$59-109$	11.0	50
Surrogate: 2-FBP	7.00		$"$	10.7	65.4	$42-110$		

Duplicate (2L06029-DUP1)	Source: B2L0046-04								
Diesel Range Hydrocarbons	ND	10.0	$\mathrm{mg} / \mathrm{kg}$ dry		ND			NA	50
Lube Oil Range Hydrocarbons	ND	25.0	"		ND			NA	50
Surrogate: 2-FBP	8.01		"	12.9		62.1	42-110		
Surrogate: Octacosane	8.90		"	12.9		69.0	57-123		

th Creek Analytical - Bothell

Amar Gill, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

North Creek Analytical, Inc.

Seattie 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420 .9200 fax 425.420 .9210

Spokane East 11115 Monigomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382 .7588

Anchorage 3209 Denali Street, Anchorage, AK 99503

Foster Wheeler Environmental Corporation 12100 NE 195th St
Bothell WA/USA, 98011

Project: DPE Extraction Well Construction
Project Number: Not Provided
Reported:
Project Manager: Bryan Graham
12/17/02 13:03

Extractable Petroleum Hydrocarbons by WDOE TPH Policy Method - Quality Control North Creek Analytical - Bothell

	Reporting			Spike	Source		\%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	\%REC	Limits	RPD	Limit	Notes

Batch 2L10030: Prepared 12/10/02 Using EPA 3545

Matrix Spike Dup (2L10030-MSD1)				Source: B2L0025-01					
Extractable Petroleum Hydrocarbons	105	5.00	$\mathrm{mg} / \mathrm{kg}$ dry	208	0.00	50.5	$30-120$	22.8	40
Surrogate: 2-FBP	11.1		$"$	16.7		66.5	$50-150$		
Surrogate: Octacosane	12.8		$"$	16.7	76.6	$50-150$			
Surrogate: Undecane	9.22		$"$	17.2		53.6	$30-150$		

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420 .9200 fax 425.420 .9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Anchorage 3209 Denali Street, Anchorage, AK 99503 9073349338 far 9073349339

Foster Wheeler Environmental Corporation 12100 NE 195th St Bothell WA/USA, 98011

Project: DPE Extraction Well Construction
Project Number: Not Provided
Project Manager: Bryan Graham

Reported:
12/17/02 13:03

Polynuclear Aromatic Hydrocarbons by GC/MS-SIM - Quality Control
 North Creek Analytical - Bothell

	Reporting			Spike	Source		\%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	\%REC	Limits	RPD	Limit	Notes

Batch 2L10030: Prepared 12/10/02 Using EPA 3545

Blank (2L10030-BLK1)						
Acenaphthene	ND	0.0100	$\mathrm{mg} / \mathrm{kg}$			
Acenaphthylene	ND	0.0100	"			
Anthracene	ND	0.0100	"			
Benzo (a) anthracene	ND	0.0100	"			
Benzo (a) pyrene	ND	0.0100	"			
Benzo (b) fluoranthene	ND	0.0100	"			
Benzo (ghi) perylene	ND	0.0100	"			
Benzo (k) fluoranthene	ND	0.0100	"			
Chrysene	ND	0.0100	"			
Dibenz (a, h) anthracene	ND	0.0100	"			
- - ranthene	ND	0.0100	"			
ene	ND	. 0.0100	"			
Indeno (1,2,3-cd) pyrene	ND	0.0100	"			
1-Methylnaphthalene	ND	0.0100	"			
2-Methylnaphthalene	ND	0.0100	"			
Naphthalene	ND	0.0100	"			
Phenanthrene	ND	0.0100	"			
Pyrene	ND	0.0100	"			
Surrogate: p-Terphenyl-d14	0.255		"	0.267	95.5	42-141
LCS (2L10030-BS1)						
Acenaphthene	0.242	0.0100	$\mathrm{mg} / \mathrm{kg}$	0.333	72.7	50-150
Acenaphthylene	0.301	0.0100	"	0.333	90.4	50-150
Anthracene	0.256	0.0100	"	0.333	76.9	50-150
Benzo (a) anthracene	0.253	0.0100	"	0.333	76.0	50-150
Benzo (a) pyrene	0.244	0.0100	"	0.333	73.3	50-150
Benzo (b) fluoranthene	0.232	0.0100	"	0.333	69.7	50-150
Benzo (ghi) perylene	0.236	0.0100	"	0.333	70.9	50-150
Benzo (k) fluoranthene	0.241	0.0100	"	0.333	72.4	50-150
Chrysene	0.289	0.0100	"	0.333	86.8	54-112
Dibenz (a, h) anthracene	0.218	0.0100	"	0.333	65.5	50-150
Fluoranthene	0.277	0.0100	"	0.333	83.2	50-150
Fluorene	0.259	0.0100	"	0.333	77.8	51-107
Indeno (1,2,3-cd) pyrene	0.238	0.0100	"	0.333	71.5	42-112

th Creek Analytical - Bothell
The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beavertion, OR 97008-7132 503.906 .9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR $97701-5711$
541.383 .9310 fax 541.382 .7588

Anchorage 3209 Denali Street, Anchorage, AK 99503 0073349338 fax 9073349339

Foster Wheeler Environmental Corporation 12100 NE 195th St Bothell WA/USA, 98011

Project: DPE Extraction Well Construction Project Number: Not Provided Project Manager: Bryan Graham
 Polynuclear Aromatic Hydrocarbons by GC/MS-SIM - Quality Control North Creek Analytical - Bothell

Reported
12/17/02 13;03

North Creek Analytical - Bothell										
	Result	Reporting	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Notes
Analyte	Resuit									

Batch 2L10030: Prepared 12/10/02 Using EPA 3545

LCS (2L10030-BS1)				0.333	72.4	50-150			
Naphthalene	0.241	0.0100	$\mathrm{mg} / \mathrm{kg}$	0.33	79.0	50-150			
Phenanthrene	0.263	0.0100	"	33	76.3	50-150			
Pyrene	0.254	0.0100	\cdots	0.333					
	0.237		"	0.267	88	42-1			
Surrogate: p-Terphenyl-d14	0.237								
LCS Dup (2L10030-BSD1)				0.333	72.1	50-150	0.830	25	
Acenaphthene	0.240	0.0100	mg/kg	0.333 0.333	88.0	50-150	2.69	25	
Acenaphthylene	0.293	0.0100	"	0.333 0.333	80.5	50-150	4.58	25	
Anthracene	0.268	0.0100	"	. 333	82.9	50-150	8.70	25	
Benzo (a) anthracene	0.276	0.0100	"	0.333	76.9	50-150	4.80	25	
Benzo (a) pyrene	0.256	0.0100	"	0.333	59.2	50-150	16.3	25	
Benzo (b) fluoranthene	0.197	0.0100	"	0.333 $0: 333$	86.5	50-150	19.8	25	
Benzo (ghi) perylene	0.288	0.0100	"	0.333	94.0	50-150	26.0	25	Q-07
Benzo (k) fluoranthene	0.313	0.0100	"	0.333 0.333	88.3	54-112	1.72	37	
Chrysene	0.294	0.0100	"	0.333	80.2	50-150	20.2	25	
Dibenz (a, h) anthracene	0.267	0.0100	"	. 333	99.1	50-150	17.5	25	
Fluoranthene	0.330	0.0100	"	0.333	77.8	51-107	0.00	43	
Fluorene	0.259	0.0100	"	0.333	87.4	42-112	20.0	32	
Indeno (1,2,3-cd) pyrene	0.291	0.0100	"	0.333	74.8	50-150	3.27	25	
Naphthalene	0.249	0.0100	"	0.333	88.6	50-150	11.5	25	
Phenanthrene	0.295	0.0100		0.333	96.7	50-150	23.6	25	
Pyrene	0.322	0.0100							
Surrogate: p-Terphenyl-d14	0.250		"	0.267					

 The results in this report apply to the samples and be reproduced in its entirety. 509.924 .9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383 .9310 fax 541.382 .7588

Anchorage 3209 Denali Street, Anchorage, AK 99503 907.334 .9338 fax 907.334 .9339

Foster Wheeler Environmental Corporation 12100 NE 195th St
Bothell WA/USA, 98011

Project: DPE Extraction Well Construction
Project Number: Not Provided
Project Manager: Bryan Graham

Reported: 12/17/02 13:03

Polynuclear Aromatic Hydrocarbons by GC/MS-SIM - Quality Control
 North Creek Analytical - Bothell

	Reporting			Spike	Source		\%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	\%REC	Limits	RPD	Limit	Notes

Batch 2L10030: Prepared 12/10/02 Using EPA 3545

Matrix Spike (2L10030-MS1)	Source: B2L0025-01									
Dibenz (a, h) anthracene	0.263	0.0100	$\mathrm{mg} / \mathrm{kg}$ dry	0.416	ND	63.2	50-150			
Fluoranthene	0.286	0.0100	"	0.416	ND	68.8	50-150			
Fluorene	0.287	0.0100	"	0.416	ND	69.0	36-134			
Indeno (1,2,3-cd) pyrene	0.275	0.0100	"	0.416	ND	66.1	19-138			
Naphthalene	0.285	0.0100	"	0.416	0.00416	67.5	50-150			
Phenanthrene	0.303	0.0100	"	0.416	0.00416	71.8	50-150			
Pyrene	0.267	0.0100	"	0.416	ND	64.2	50-150			
Surrogate: p-Terphenyl-d14	0.269		"	0.333		80.8	42-141			
Matrix Spike Dup (2L10030-MSD1)	Source: B2L0025-01									
Acenaphthene	0.235	0.0100	$\mathrm{mg} / \mathrm{kg}$ dry	0.416	ND	56.5	50-150	13.9	25	
phthylene	0.298	0.0100	"	0.416	ND	71.6	50-150	10.2	25	
Aıuracene	0.254	0.0100	"	0.416	ND	61.1	50-150	13.2	25	
Benzo (a) anthracene	0.250	0.0100	"	0.416	0.00166	59.7	50-150	8.80	25	
Benzo (a) pyrene	0.220	0.0100	"	0.416	ND	52.9	50-150	6.17	25	
Benzo (b) fluoranthene	0.174	0.0100	"	0.416	ND	41.8	50-150	4.49	25	Q-02
Benzo (ghi) perylene	0.227	0.0100	"	0.416	ND	54.6	50-150	14.3	25	
Benzo (k) fluoranthene	0.264	0.0100	"	0.416	ND	63.5	50-150	18.6	25	
Chrysene	0.255	0.0100	"	0.416	ND	61.3	29-143	9.35	44	
Dibenz (a, h) anthracene	0.226	0.0100	"	0.416	ND	54.3	50-150	15.1	25	
Fluoranthene	0.255	0.0100	"	0.416	ND	61.3	50-150	11.5	25	
Fluorene	0.259	0.0100	"	0.416	ND	62.3	36-134	10.3	52	
Indeno (1,2,3-cd) pyrene	0.240	0.0100	"	0.416	ND	57.7	19-138	13.6	43	
Naphthalene	0.253	0.0100	"	0.416	0.00416	59.8	50-150	11.9	25	
Phenanthrene	0.266	0.0100	"	0.416	0.00416	62.9	50-150	13.0	25	
Pyrene	0.250	0.0100	"	0.416	ND	60.1	50-150	6.58	25	
Surrogate: p-Terphenyl-d14	0.245		"	0.333		73.6	42-141			

The results in this report apply to the samples analyzed in accordance with the chain of
custody document. This analytical report must be reproduced in its entirety.

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420 .9200 fax 425.420 .9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Anchorage 541.383 .9310 fax 541.382 .758 3209 Denali Street, Anchorage, AK 99503 9073349338 far 9073349339
Project: DPE Extraction Well Construction
Project Number: Not Provided
Reported: 12100 NE 195th St

Project Manager: Bryan Graham

Total Metals by EPA 6000/7000 Series Methods - Quality Control
 North Creek Analytical - Bothell

Analyte	Result	orting Limit	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	$\begin{aligned} & \hline \text { RPD } \\ & \text { Limit } \end{aligned}$	Notes
Batch 2L06020: Prepared 12/06/02	Using EPA 3050B									
Blank (2L06020-BLK1)										
Lead	ND	0.556	$\mathrm{mg} / \mathrm{kg}$							
LCS (2L06020-BS1)										
Lead	37.1	0.500	$\mathrm{mg} / \mathrm{kg}$	38.5		96.4	80-120			
LCS Dup (2L06020-BSD1)				.						
Lead	39.4	0.500	$\mathrm{mg} / \mathrm{kg}$	40.4		97.5	80-120	6.01	20	
Matrix Spike (2L06020-MS1)	Source: B2L0046-01									
Lead	58.0	0.500	$\mathrm{mg} / \mathrm{kg}$ dry	52.4	13.9	84.2	62-137			
Matrix Spike Dup (2L06020-MSD1)	Source: B2L0046-01									
Lead	58.9	0.500	$\mathrm{mg} / \mathrm{kg}$ dry	49.7	13.9	90.5	62-137	1.54	30	
Post Spike (2L06020-PS1)	Source: B2L0046-01									
Lead	73.7	0.500	$\mathrm{mg} / \mathrm{kg}$ dry	64.8	13.9	92.3	75-125			

Seattie 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420 .9210

Spokane East 11115 Monlgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portiand 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Anchorage 3209 Denali Street, Anchorage, AK 99503 907.334 .9338 fax 907.334 .9339

Foster Wheeler Environmental Corporation 12100 NE 195th St Bothell WA/USA, 98011

Project: DPE Extraction Well Construction
Project Number: Not Provided Project Manager: Bryan Graham

Reported:
12/17/02 13:03

BTEX, MTBE, Naphthalene, and n-Hexane by WA VPH - Quality Control North Creek Analytical - Bothell

	Reporting			Spike	Source		\%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	\%REC	Limits	RPD	Limit	Notes

Batch 2L05020: Prepared 12/05/02 Using EPA 5030B [MeOH]

Blank (2L05020-BLK1)						
Methyl tert-butyl ether	ND	0.100	$\mathrm{mg} / \mathrm{kg}$			
Benzene	ND	0.0100	"			
Toluene	ND	0.0100	"			
Ethylbenzene	ND	0.0100	"			
m,p-Xylene	ND	0.0200	"			
o-Xylene	ND	0.0100	"			
Naphthalene	ND	0.0100	"			
n-Hexane	ND	0.0200	"			
Surrogate: 1,2-DCA-d4	3.94		"	4.00	98.5	57-139
Surrogate: Toluene-d8	3.53		"	4.00	88.2	66-122
- 7gate: 4-BFB	3.26		"	4.00	81.5	62-121
\&....1k (2L05020-BLK2)						
Methyl tert-butyl ether	ND	0.100	$\mathrm{mg} / \mathrm{kg}$			
Benzene	ND	0.0100	"			
Toluene	ND	0.0100	"			
Ethylbenzene	ND	0.0100	"			
m,p-Xylene	ND	0.0200	"			
o-Xylene	ND	0.0100	"			
Naphthalene	ND	0.0100	"			
n-Hexane	ND	0.0200	"			
Surrogate: 1,2-DCA-d4	4.16		"	4.00	104	57-139
Surrogate: Toluene-d8	3.73		"	4.00	93.2	66-122
Surrogate: 4-BFB	3.26		"	4.00	81.5	$62-121$
LCS (2L05020-BS1)						
Benzene	1.05	0.0100	$\mathrm{mg} / \mathrm{kg}$	1.00	105	73-133
Toluene	0.986	0.0100	"	1.00	98.6	68-130
Surrogate: 1,2-DCA-d4	4.62		"	4.00	116	57-139
Surrogate: Toluene-d8	3.92		"	4.00	98.0	66-122
Surrogate: 4-BFB	3.41		"	4.00	85.2	$62-121$

The results in this report apply to the samples analyzed in accordance with the chain of
custody document. This analytical report must be reproduced in its entirety.
www.ncalabs.com

Seattle
11720 North Creak Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420 .9200 fax 425.420 .9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906 .9200 fax 503.906 .9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383 .9310 fax 541.382 .7588

Anchorage 3209 Denali Street, Anchorage, AK 99503 907334.9338 far 9073349339

Project: DPE Extraction Well Construction
Project Number: Not Provided
Reported: Bothell WA/USA, 98011

Project Manager: Bryan Graham

BTEX, MTBE, Naphthalene, and n-Hexane by WA VPH - Quality Control
 North Creek Analytical - Bothell

	Reporting			Spike	Source		\%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	\%REC	Limits	RPD	Limit	Notes

Batch 2L05020: Prepared 12/05/02 Using EPA 5030B [MeOH]

LCS Dup (2L05020-BSD1)									
Benzene	1.04	0.0100	mg/kg	1.00		104	73-133	0.957	20
Toluene	0.983	0.0100	"	1.00		98.3	68-130	0.305	20
Surrogate: 1,2-DCA-d4	4.63		"	4.00		116	57-139		
Surrogate: Toluene-d8	3.90		"	4.00		97.5	66-122		
Surrogate: 4-BFB	3.49		"	4.00		87.2	62-121		
Matrix Spike (2L05020-MS1)	Source: B2L0068-06								
Benzene	1.07	0.0100	$\mathrm{mg} / \mathrm{kg}$ dry	1.25	ND	85.6	62-138		
Toluene	1.10	0.0100	"	1.25	ND	88.0	44-133		
Surrogate: 1,2-DCA-d4	4.93		"	4.99		98.8	57-139		
Surrogate: Toluene-d8	4.34		"	4.99		87.0	66-122		
Surrogate: 4-BFB	3.92		"	4.99		78.6	62-121		

Matrix Spike Dup (2L05020-MSD1)	Source: B2L0068-06								
Benzene	1.00	0.0100	$\mathrm{mg} / \mathrm{kg}$ dry	1.25	ND	80.0	62-138	6.76	25
Toluene	0.997	0.0100	"	1.25	ND	79.8	44-133	9.82	25
Surrogate: 1,2-DCA-d4	4.84		"	4.99		97.0	57-139		
Surrogate: Toluene-d8	4.09		"	4.99		82.0	66-122		
Surrogate: 4-BFB	3.77		"	4.99		75.6	62-121		

Foster Wheeler Environmental Corporation
12100 NE 195th St
Bothell WA/USA, 98011

Project: DPE Extraction Well Construction
Project Number: Not Provided Reported:
Project Manager: Bryan Graham 12/17/02 13:03

Physical Parameters by APHA/ASTM/EPA Methods - Quality Control North Creek Analytical - Bothell

Batch 2L09021: Prepared 12/09/02 Using Dry Weight

Blank (2L09021-BLK1)			
Dry Weight	99.9	1.00	$\%$

Batch 2L09022: Prepared 12/09/02 Using Dry Weight

Blank (2L09022-BLK1)			
Dry Weight	100	1.00	$\%$

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210
Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290
Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906 .9200 fax 503.906 .9210
Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588
Anchorage 3209 Denali Street, Anchorage, AK 99503 907.3349338 far 9073349339

Foster Wheeler Environmental Corporation
12100 NE 195th St
Bothell WA/USA, 98011

Project: DPE Extraction Well Construction
Project Number: Not Provided
Project Manager: Bryan Graham

Reported: 12/17/02 13:03

Notes and Definitions

D-10 The heavy oil range organics present are due to hydrocarbons eluting primarily in the diesel range.
G-01 Results reported for the gas range are primarily due to overlap from diesel range hydrocarbons.
I-06 The analyte concentration may be artificially elevated due to coeluting compounds or components.
Q-01 The spike recovery for this QC sample is outside of established control limits. Review of associated batch QC indicates the recovery for this analyte does not represent an out-of-control condition for the batch.
Q-02 The spike recovery for this QC sample is outside of NCA established control limits due to sample matrix interference.
Q-07 The RPD value for this QC sample is above the established control limit. Review of associated QC indicates the high RPD does not represent an out-of-control condition for the batch.
S-01 The surrogate recovery for this sample is not available due to sample dilution required from high analyte concentration and/or matrix interferences.
The surrogate recovery for this sample cannot be accurately quantified due to interference from coeluting organic compounds present in the sample.
The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.

Analyte DETECTED

Analyte NOT DETECTED at or above the reporting limit
Not Reported
Sample results reported on a dry weight basis
dry
Relative Percent Difference

Bryan Graham

Foster Wheeler Environmental Corporation

12100 NE 195th St
Bothell, WA/USA 98011
RE: DPE Extraction Well Construction

Enclosed are the results of analyses for samples received by the laboratory on 12/04/02 18:48. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Amar Gill

Project Manager

wWw.ncalabs.com

Foster Wheeler Environmental Corporation 12100 NE 195th St
Bothell WA/USA, 98011

Project: DPE Extraction Well Construction
Project Number: Not Provided
Project Manager: Bryan Graham

Amended Report Issued: 01/07/03 08:11

ANALYTICAL REPORT FOR SAMPLES - Amended

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
LR02-5	B2L0108-01	Soil	12/04/02 13:40	12/04/02 18:48
LR02-10	B2L0108-02	Soil	12/04/02 13:50	12/04/02 18:48
LR02-15	B2L0108-03	Soil	12/04/02 14:00	12/04/02 18:48
LR02-20	B2L0108-04	Soil	12/04/02 14:10	12/04/02 18:48
LR03-5	B2L0108-05	Soil	12/04/02 14:50	12/04/02 18:48
LR03-10	B2L0108-06	Soil	12/04/02 15:00	12/04/02 18:48
LR03-15	B2L0108-07	Soil	12/04/02 15:05	12/04/02 18:48
LR04-5	B2L0108-08	Soil	12/04/02 15:35	12/04/02 18:48
LR04-10	B2L0108-09	Soil	12/04/02 15:45	12/04/02 18:48
LR04-15	B2L0108-10	Soil	12/04/02 15:55	12/04/02 18:48
LR05-5	B2L0108-11	Soil	12/04/02 16:35	12/04/02 18:48
25-10	B2L0108-12	Soil	12/04/02 16:45	12/04/02 18:48
~ $005-15$	B2L0108-13	Soil	12/04/02 16:55	12/04/02 18:48
01MW26-5	B2L0108-14	Soil	12/04/02 08:30	12/04/02 18:48
01MW26-10	B2L0108-15	Soil	12/04/02 08:45	12/04/02 18:48
01MW26-15	B2L0108-16	Soil	12/04/02 08:55	12/04/02 18:48
01MW26-20	B2L0108-17	Soil	12/04/02 09:10	12/04/02 18:48
01MW27-5	B2L0108-18	Soil	12/04/02 10:35	12/04/02 18:48
01MW27-10	B2L0108-19	Soil	12/04/02 10:45	12/04/02 18:48
01MW27-15	B2L0108-20	Soil	12/04/02 11:00	12/04/02 18:48
01MW27-20	B2L0108-21	Soil	12/04/02 11:10	12/04/02 18:48

Th Creek Analytical - Bothell
The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210
Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290
Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210
Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588
Anchorage 3209 Denali Street, Anchorage, AK 99503 907.334.9338 fax 907.334.9339

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B North Creek Analytical - Bothell

| Analyte | Result | Reporting
 Limit | Units | Dilution | Batch | Prepared | Analyzed | Method | Notes |
| :--- | :--- | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

LR02-5 (B2L0108-01) Soil Sampled: 12/04/02 13:40 Received: 12/04/02 18:48

| | | | | | | | | |
| :--- | :---: | ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Gasoline Range Hydrocarbons | ND | 5.00 | $\mathrm{mg} / \mathrm{kg}$ dry | 1 | 2 L 11002 | $12 / 11 / 02$ | $12 / 11 / 02$ | NWTPH-Gx/8021B |
| Benzene | ND | 0.0300 | $"$ | $"$ | $"$ | $"$ | $"$ | $"$ |
| Toluene | ND | 0.0500 | $"$ | $"$ | $"$ | $"$ | $"$ | $"$ |
| Ethylbenzene | ND | 0.0500 | $"$ | $"$ | $"$ | $"$ | $"$ | $"$ |
| Xylenes (total) | ND | 0.100 | $"$ | $"$ | $"$ | $"$ | $"$ | $"$ |
| Surrogate: $4-B F B$ (FID) | 97.2% | $59-125$ | | | $"$ | $"$ | $"$ | $"$ |
| Surrogate: $4-B F B$ (PID) | 107% | $64-125$ | | | $"$ | $"$ | $"$ | $"$ |

LR02-10 (B2L0108-02) Soil Sampled: 12/04/02 13:50 Received: 12/04/02 18:48

Gasoline Range Hydrocarbons	s 1140	50.0	$\mathrm{mg} / \mathrm{kg}$ dry	10	2L11002	12/11/02	12/11/02	NWTPH-Gx/8021B	G-01
Benzene	0.831	0.300	"	"	"	"	"	"	
Toluene	8.46	0.500	"	"	"	"	"	"	
Ethylbenzene	6.20	0.500	"	"	"	"	"	"	
Xylenes (total)	19.9	1.00	"	"	"	"	"	"	1-0c
Surrogate: 4-BFB (FID)	\%	59-125			"	"	"	"	S-OI
Surrogate: 4-BFB (PID)	\%	64-125			"	"	"	"	S-01
LR02-15 (B2L0108-03) Soil S	Sampled: 12/04/02 14	00 Receiv	1: 12/04/02						Q-34
Gasoline Range Hydrocarbons	S 1320	50.0	$\mathrm{mg} / \mathrm{kg}$ dry	10	2L11002	12/11/02	12/11/02	NWTPH-Gx/8021B	G-01
Benzene	- 1.10	0.300	硣	"	"	"	"	"	
Toluene	8.56	0.500	"	"	"	"	"	"	
Ethylbenzene	7.42	0.500	"	"	"	"	"	"	
Xylenes (total)	23.5	1.00	"	"	"	"	"	"	
Surrogate: 4-BFB (FID)	\%	59-125			"	"	"	"	S-01
Surrogate: 4-BFB (PID)	\%	64-125			"	"	"	- "	S-01

North Creek Analytical - Bothell
The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420 .9200 fax 425.420 .9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portiand 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Anchorage 3209 Denali Street, Anchorage, AK 99503 907.334.9338 fax 907.334.9339

Foster Wheeler Environmental Corporation	Project: DPE Extraction Well Construction			
12100 NE 195th St	Project Number:	Not Provided		
Bothell WA/USA, 98011	Project Manager:	Bryan Graham	Amended Report \quad Issued: 01/07/03 08:11	
:---				

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B North Creek Analytical - Bothell

| Analyte | Result | Reporting
 Limit | Units | Dilution | Batch | Prepared | Analyzed | Method | Notes |
| :--- | :--- | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

LR02-20 (B2L0108-04) Soil Sampled: 12/04/02 14:10 Received: 12/04/02 18:48

Gasoline Range Hydrocarbons	51.9	5.00	$\mathrm{mg} / \mathrm{kg}$ dry	1	2 L 11002	$12 / 11 / 02$	$12 / 11 / 02$	NWTPH-Gx/8021B	G-01
Benzene	0.0871	0.0300	$"$	$"$	$"$	$"$	$"$	$"$	$"$
Toluene	0.171	0.0500	$"$	$"$	$"$	$"$	$"$	$"$	
Ethylbenzene	0.265	0.0500	$"$	$"$	$"$	$"$	$"$	$"$	
Xylenes (total)	0.728	0.100	$"$	$"$	$"$	$"$	$"$	$"$	
Surrogate: $4-B F B$ (FID)	111%	$59-125$			$"$	$"$	$"$	$"$	
Surrogate: $4-B F B$ (PID)	99.0%	$64-125$			$"$	$"$	$"$	$"$	

LR03-5 (B2L0108-05) Soil Sampled: 12/04/02 14:50 Received: 12/04/02 18:48

Gasoline Range Hydrocarbons	59.7	10.0	$\mathrm{mg} / \mathrm{kg}$ dry	2	2L11002	12/11/02	12/12/02	NWTPH-Gx/8021B	G-01
Benzene	ND	0.0600	"	"	"	"	"	"	
Toluene	ND	0.100	"	"	"	"	"	"	
'benzene	0.152	0.100	"	"	"	"	"	"	
A, renes (total)	ND	0.200	"	"	"	"	"	"	
Surrogate: 4-BFB (FID)	127 \%	59-125			"	"	"	"	S-04
Surrogate: 4-BFB (PID)	108%	64-125			"	"	"	"	
LR03-10 (B2L0108-06) Soil Sampled: 12/04/02 15:00 Received: 12/04/02 18:48									
Gasoline Range Hydrocarbons	S 1460	100	$\mathrm{mg} / \mathrm{kg}$ dry	20	2L11002	12/11/02	12/11/02	NWTPH-Gx/8021B	G-01
Benzene	1.51	0.600	-	"	"	"	"	"	
Toluene	12.4	1.00	"	"	"	"	"	"	
Ethylbenzene	11.5	1.00	"	"	"	"	"	"	
Xylenes (total)	24.2	2.00	"	"	"	"	"	"	1-06
Surrogate: 4-BFB (FID)	\%	59-125			"	"	"	"	S-01
Surrogate: 4-BFB (PID)	\%	64-125			"	"	"	"	S-01

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420 .9200 fax 425.420 .9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924 .9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverion, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383 .9310 fax 541.382 .7588

Anchorage 3209 Denali Street, Anchorage, AK 99503 907.334.9338 fax 907.334.9339

Project: DPE Extraction Well Construction
Project Number: Not Provided Amended Report
Project Manager: Bryan Graham

Issued: 01/07/03 08:11

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
LR03-15 (B2L0108-07) Soil Sampled: 12/04/02 15:05 Received: 12/04/02 18:48									
Gasoline Range Hydrocarbons	1860	100	$\mathrm{mg} / \mathrm{kg}$ dry	20	2L11002	12/11/02	12/11/02	NWTPH-Gx/8021B	G-01
Benzene	6.70	0.600	"	"	"	"	"	"	
Toluene	24.5	1.00	"	"	"	"	"	"	
Ethylbenzene	12.3	1.00	"	"	"	"	"	"	
Xylenes (total)	53.5	2.00	"	"	"	"	"	"	
Surrogate: 4-BFB (FID)		59-125			"	"	"	"	S-01
Surrogate: 4-BFB (PID)	\%	64-125			"	"	"	"	S-01
LR04-5 (B2L0108-08) Soil Sampled: 12/04/02 15:35 Received: 12/04/02 18:48									
Gasoline Range Hydrocarbons	ND	5.00	$\mathrm{mg} / \mathrm{kg}$ dry	1	2L11002	12/11/02	12/11/02	NWTPH-Gx/8021B	
Benzene	ND	0.0300		"	"	"	"	"	
Toluene	ND	0.0500	"	"	"	"	"	"	
Ethylbenzene	ND	0.0500	"	"	"	"	"	"	
Xylenes (total)	ND	0.100	"	"	"	"	"	"	
Surrogate: 4-BFB (FID)	96.4\%	59-125			"	"	"	"	
Surrogate: 4-BFB (PID)	103%	64-125			"	"	"	"	
LR04-10 (B2L0108-09) Soil Sampled: 12/04/02 15:45 Received: 12/04/02 18:48									
Gasoline Range Hydrocarbons	827	50.0	mg/kg dry	10	2L11002	12/11/02	12/11/02	NWTPH-Gx/8021B	G-01
Benzene	0.320	0.300		"	"	"	"	"	
Toluene	0.615	0.500	"	"	"	"	"	"	
Ethylbenzene	4.26	0.500	"	"	"	"	"	"	
Xylenes (total)	6.57	1.00	"	"	"	"	"	"	I-06
Surrogate: 4-BFB (FID)	197 \%	59-125			"	"	"	"	S-06
Surrogate: 4-BFB (PID)	168 \%	64-125			"	"	"	"	S-06

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portiand 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383 .9310 fax 541.382.7588

Anchorage 3209 Denali Street, Anchorage, AK 99503 907.334.9338 fax 907.334.9339

Foster Wheeler Environmental Corporation 12100 NE 195th St Bothell WA/USA, 98011

Project: DPE Extraction Well Construction
Project Number: Not Provided
Project Manager: Bryan Graham

Amended Report Issued: 01/07/03 08:11

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B
 North Creek Analytical - Bothell

Gasoline Range Hydrocarbons	S 2850	50.0	$\mathrm{mg} / \mathrm{kg}$ dry	10	2L11002	12/11/02	12/11/02	NWTPH-Gx/8021B	
Benzene	4.87	0.300	"	"	"	"	"	"	
Toluene	4.96	0.500	"	"	"	"	"	"	
Ethylbenzene	13.2	0.500	"	"	"	"	"	"	
Xylenes (total)	50.1	1.00	"	"	"	"	"	"	
Surrogate: 4-BFB (FID)	\%	59-125			"	"	"	"	S-01
Surrogate: 4-BFB (PID)	\%	64-125			"	"	"	"	S-01
LR05-5 (B2L0108-11) Soil S	Sampled: 12/04/02 16:35	Received	12/04/02						Q-34
Gasoline Range Hydrocarbons	s 663	50.0	$\mathrm{mg} / \mathrm{kg}$ dry	10	2L11002	12/11/02	12/11/02	NWTPH-Gx/8021B	G-01
Benzene	ND	0.300	"	"	"	"	"	"	
Toluene	ND	0.500	"	"	"	"	"	"	
${ }^{\prime}$ benzene	2.43	0.500	"	"	"	"	"	"	
$\lambda_{\text {j }}$ denes (total)	2.82	1.00	"	"	"	"	"	"	1-06
Surrogate: 4-BFB (FID)	\%	59-125			"	"	"	"	S-01
Surrogate: 4-BFB (PID)	163 \%	64-125			"	"	"	"	S-06

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011 -8244 425.420.9200 fax 425.420 .9210
Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290
Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210
Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383 .9310 fax 541.382 .7588
Anchorage 3209 Denali Street, Anchorage, AK 99503 907.334 .9338 fax 907.334 .9339

Foster Wheeler Environmental Corporation	Project: DPE Extraction Well Construction	
12100 NE 195th St	Project Number: Not Provided	Amended Report
Bothell WA/USA, 98011	Project Manager:	Bryan Graham

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B North Creek Analytical - Bothell

| Analyte | Result | Reporting
 Limit | Units | Dilution | Batch | Prepared | Analyzed | Method | Notes |
| :--- | :--- | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Gasoline Range Hydrocarbons	935	100	$\mathrm{mg} / \mathrm{kg}$ dry	20	2L11002	12/11/02	12/11/02	NWTPH-Gx/8021B	G-01
Benzene	ND	0.600	"	"	"	"	"	"	
Toluene	1.91	1.00	"	"	"	"	"	"	
Ethylbenzene	4.82	1.00	"	"	"	"	"	"	
Xylenes (total)	20.5	2.00	"	"	"	"	"	"	
Surrogate: 4-BFB (FID)	\%	59-125			"	"	"	"	S-01
Surrogate: 4-BFB (PID)	\%	64-125			"	"	"	"	S-01

01MW26-5 (B2L0108-14) Soil Sampled: 12/04/02 08:30 Received: 12/04/02 18:48

Gasoline Range Hydrocarbons	681	50.0	$\mathrm{mg} / \mathrm{kg}$ dry	10	2L11002	12/11/02	12/12/02	NWTPH-Gx/8021B	
Benzene	ND	0.300	"	"	"	"	"	"	
Toluene	ND	0.500	"	"	"	"	"	"	
Ethylbenzene	3.63	0.500	"	"	"	"	"	"	:
Xylenes (total)	6.50	1.00	"	"	"	"	"	"	I-0.
Surrogate: 4-BFB (FID)	\%	59-125			"	"	"	"	S-01
Surrogate: 4-BFB (PID)	154%	64-125			"	"	"	"	S-06

Gasoline Range Hydrocarbons	3990	100	$\mathrm{mg} / \mathrm{kg}$ dry	20	2L11002	12/11/02	12/12/02	NWTPH-Gx/8021B	
Benzene	4.29	0.600	"	"	"	"	"	"	
Toluene	9.69	1.00	"	"	"	"	"	"	
Ethylbenzene	28.2	1.00	"	"	"	"	"	"	
Xylenes (total)	112	2.00	"	"	"	"	"	"	
Surrogate: 4-BFB (FID)	\%	59-125			"	"	"	"	S-01
Surrogate: 4-BFB (PID)	\%	64-125			"	"	"	"	S-01

North Creek Analytical - Bothell
The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420 .9200 fax 425.420 .9210

Spokane East 11115 Monigomery, Suite B, Spokane, WA 99206-4776 509.924 .9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383 .9310 fax 541.382.7588

Anchorage 3209 Denali Street, Anchorage, AK 99503 907.334.9338 fax 907.334.9339

Foster Wheeler Environmental Corporation 12100 NE 195th St Bothell WA/USA, 98011

Project: DPE Extraction Well Construction
Project Number: Not Provided Project Manager: Bryan Graham

Amended Report Issued: 01/07/03 08:11

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B

North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
01MW26-15 (B2L0108-16) Soil	Sampled: 12/04/02 08:55 Received: 12/04/02 18:48								
Gasoline Range Hydrocarbons	1430	100	$\mathrm{mg} / \mathrm{kg}$ dry	20	2L11002	12/11/02	12/12/02	NWTPH-Gx/8021B	G-01
Benzene	ND	0.600	"	"	"	"	"	"	
Toluene	1.15	1.00	"	"	"	"	"	"	
Ethylbenzene	8.68	1.00	"	"	"	"	"	"	
Xylenes (total)	37.4	2.00	"	"	"	"	"	"	
Surrogate: 4-BFB (FID)	\%	59-125			"	"	"	"	S-01
Surrogate: 4-BFB (PID)	\%	64-125			"	"	"	"	S-01
01MW26-20 (B2L0108-17) Soil	Sampled: 12/04/02 09:10 Received: 12/04/02 18:48								
Gasoline Range Hydrocarbons	ND	5.00	$\mathrm{mg} / \mathrm{kg}$ dry	1	2L11002	12/11/02	12/12/02	NWTPH-Gx/8021B	
Benzene	ND	0.0300	"	"	"	"	"	"	
Toluene	ND	0.0500	"	"	"	"	"	"	
'benzene	ND	0.0500	"	"	"	"	"	"	
_. . .nes (total)	ND	0.100	"	"	"	"	"	"	
Surrogate; 4-BFB (FID)	88.8\%	59-125			"	"	"	"	
Surrogate: 4-BFB (PID)	96.3 \%	64-125			"	"	"	"	
01MW27-5 (B2L0108-18) Soil	Sampled: 12/04/02 10:35 Received: 12/04/02 18:48								
Gasoline Range Hydrocarbons	5510	100	$\mathrm{mg} / \mathrm{kg}$ dry	20	2L11002	12/11/02	12/12/02	NWTPH-Gx/8021B	
Benzene	182	1.50	"	50	"	"	12/12/02	"	
Toluene	37.7	1.00	"	20	"	"	12/12/02	"	
Ethylbenzene	36.4	1.00	"	"	"	"	"	"	
Xylenes (total)	168	2.00	"	"	"	"	"	"	
Surrogate: 4-BFB (FID)	\%	59-125			"	"	"	"	S-01
Surrogate: 4-BFB (PID)	\%	64-125			"	"	"	"	S-01

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244
Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beavertion, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383 .9310 fax 541.382 .7588

Anchorage 3209 Denali Street, Anchorage, AK 99503 907.334.9338 fax 907.334.9339

Foster Wheeler Environmental Corporation	Project: DPE Extraction Well Construction	
12100 NE 195th St	Project Number: Not Provided	Amended Report
Bothell WA/USA, 98011	Project Manager: Bryan Graham	Issued: $01 / 07 / 0308: 11$

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B North Creek Analytical - Bothell

| Analyte | Result | Reporting
 Limit | Units | Dilution | Batch | Prepared | Analyzed | Method | Notes |
| :--- | :--- | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

01MW27-10 (B2L0108-19) Soil Sampled: 12/04/02 10:45 Received: 12/04/02 18:48

Gasoline Range Hydrocarbons	$\mathbf{2 3 7 0}$	100	$\mathrm{mg} / \mathrm{kg}$ dry	20	$2 \mathrm{LL11002}$	$12 / 11 / 02$	$12 / 12 / 02$	NWTPH-Gx/8021B
Benzene	8.21	0.600	$"$	$"$	$"$	$"$	$"$	$"$
Toluene	$\mathbf{1 6 . 0}$	1.00	$"$	$"$	$"$	$"$	$"$	$"$
Ethylbenzene	$\mathbf{1 5 . 0}$	1.00	$"$	$"$	$"$	$"$	$"$	$"$
Xylenes (total)	$\mathbf{5 1 . 0}$	2.00	$"$	$"$	$"$	$"$	$"$	$"$
Surrogate: $4-$ BFB (FID)	$\%$	$59-125$			$"$	$"$	$"$	$"$
Surrogate: $4-B F B$ (PID)	$\%$	$64-125$			$"$	$"$	$"$	$"$

01MW27-15 (B2L0108-20) Soil Sampled: 12/04/02 11:00 Received: 12/04/02 18:48

Gasoline Range Hydrocarbons	177	20.0	$\mathrm{mg} / \mathrm{kg}$ dry	4	2L11002	12/11/02	12/12/02	NWTPH-Gx/8021B	G-01
Benzene	0.265	0.120	"	"	"	"	"	"	
Toluene	ND	0.200	"	"	"	"	"	"	
Ethylbenzene	0.316	0.200	"	"	"	"	"	"	
Xylenes (total)	0.402	0.400	"	"	"	"	"	- "	
Surrogate: 4-BFB (FID)	165 \%	59-125			"	"	"	"	S-04
Surrogate: 4-BFB (PID)	106%	64-125			"	"	"	"	

/02 11:10 Received: 12/04/02 18:48								
Gasoline Range Hydrocarbons	ND	5.00	$\mathrm{mg} / \mathrm{kg}$ dry	1	2L11009	12/11/02	12/11/02	NWTPH-Gx/8021B
Benzene	ND	0.0300	"	"	"	"	"	"
Toluene	ND	0.0500	"	"	"	"	"	"
Ethylbenzene	ND	0.0500	"	"	"	"	"	"
Xylenes (total)	ND	0.100	"	"	"	"	"	"
Surrogate: 4-BFB (FID)	80.0\%	59-125			"	"	"	"
Surrogate: 4-BFB (PID)	86.6\%	64-125			"	"	"	"

North Creek Analytical - Bothell
The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420 .9210

Spokane East 11115 Montgomery, Suile B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906 .9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Anchorage 3209 Denali Street, Anchorage, AK 99503 907.334.9338 fax 907.334.9339

Foster Wheeler Environmental Corporation 12100 NE 195th St Bothell WA/USA, 98011

Project: DPE Extraction Well Construction
Project Number: Not Provided
Project Manager: Bryan Graham

Amended Report Issued: 01/07/03 08:11

Volatile Petroleum Hydrocarbons by WDOE TPH Policy Method North Creek Analytical - Bothell

Reporting									
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

LR03-5 (B2L0108-05) Soil	Sampled: 12/04/02 14:50	Received	12/04/02					
C5-C6 Aliphatics	ND	5.00	$\mathrm{mg} / \mathrm{kg}$ dry	1	2L12002	12/12/02	12/12/02	WA MTCA-VPH
C6-C8 Aliphatics	ND	5.00	"	"	"	"	"	"
C8-C10 Aliphatics	ND	5.00	"	"	"	"	"	"
C10-C12 Aliphatics	11.3	5.00	"	"	" .	"	"	"
C8-C10 Aromatics	ND	5.00	"	"	"	"	"	"
C10-C12 Aromatics	23.4	5.00	"	"	"	"	"	"
C12-C13 Aromatics	63.4	5.00	"	"	"	"	"	"
Total VPH (TVPH)	98.1	5.00	"	"	"	"	"	"
Surrogate: 4-BFB (FID)	119%	60-140			"	"	"	"
Surrogate: 4-BFB (PID)	98.6\%	60-140			"	"	"	"

LR05-5 (B2L0108-11) Soil Sampled: 12/04/02 16:35 Received: 12/04/02 18:48

'6 Aliphatics	ND	50.0	$\mathrm{mg} / \mathrm{kg}$ dry	10	2L12002	12/12/02	12/12/02	WA MTCA-VPH	
- 8 Aliphatics	ND	50.0	"	"	"	"	"	"	
C8-C10 Aliphatics	61.7	50.0	"	"	"	"	"	"	
C10-C12 Aliphatics	104	50.0	"	"	"	"	"	"	
C8-C10 Aromatics	68.4	50.0	"	"	"	"	"	"	
C10-C12 Aromatics	237	50.0	"	"	"	"	"	"	
C12-C13 Aromatics	558	50.0	"	"	"	"	"	"	
Total VPH (TVPH)	968	50.0	"	"	"	"	"	"	
Surrogate: 4-BFB (FID)	\%	60-140			"	"	"	"	S-01
Surrogate: 4-BFB (PID)	170%	60-140			"	"	"	"	S-06

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210
Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290
Portiand 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210
Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382 .7588
Anchorage 3209 Denali Street, Anchorage, AK 99503 907.334 .9338 fax 907.334.9339

Foster Wheeler Environmental Corporation	Project: DPE Extractio	
12100 NE 195th St	Project Number: Not Provided	Amended Report
Bothell WA/USA, 98011	Project Manager: Bryan Graham	Issued: 01/07/03 08:11

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
LR02-5 (B2L0108-01) Soil Sampled: 12/04/02 13:40 Received: 12/04/02 18:48									
Diesel Range Hydrocarbons	280	10.0	mg/kg dry	1	2L07002	12/07/02	12/10/02	NWTPH-Dx	
Lube Oil Range Hydrocarbons	ND	25.0	"	"	"	"	"	"	
Surrogate: 2-FBP	65.4 \%	42-110			"	"	"	"	
Surrogate: Octacosane	57.8 \%	57-123			"	"	"	"	
LR02-10 (B2L0108-02) Soil Sampled: 12/04/02 13:50 Received: 12/04/02 18:48									
Diesel Range Hydrocarbons	11700	1000	$\mathrm{mg} / \mathrm{kg}$ dry	100	2L07002	12/07/02	12/10/02	NWTPH-Dx	
Lube Oil Range Hydrocarbons	ND	2500	"	"	"	"	"	"	
Surrogate: 2-FBP	\%	42-110			"	"	"	"	S-01
Surrogate: Octacosane	\%	57-123			"	"	"	"	S-01
LR02-15 (B2L0108-03) Soil Sampled: 12/04/02 14:00 Received: 12/04/02 18:48									
Diesel Range Hydrocarbons	19500	1000	$\mathrm{mg} / \mathrm{kg}$ dry	100	2L07002	12/07/02	12/10/02	NWTPH-Dx	
Lube Oil Range Hydrocarbons	ND	2500	"	"	"	"	"	"	
Surrogate: 2-FBP	\%	42-110			"	"	"	"	S-01
Surrogate: Octacosane	\%	57-123			"	"	"	"	S-01
LR02-20 (B2L0108-04) Soil Sampled: 12/04/02 14:10 Received: 12/04/02 18:48									
Diesel Range Hydrocarbons	ND	10.0	$\mathrm{mg} / \mathrm{kg}$ dry	1	2L10028	12/10/02	12/11/02	NWTPH-Dx	
Lube Oil Range Hydrocarbons	ND	25.0	"	"	"	"	"	"	
Surrogate; 2-FBP	70.8 \%	42-110			"	"	"	"	
Surrogate: Octacosane	80.8\%	57-123			"	"	"	"	
LR03-5 (B2L0108-05) Soil Sampled: 12/04/02 14:50 Received: 12/04/02 18:48									
Diesel Range Hydrocarbons	219	10.0	$\mathrm{mg} / \mathrm{kg}$ dry	1	2L10028	12/10/02	12/11/02	NWTPH-Dx	
Lube Oil Range Hydrocarbons	, ND	25.0	"	"	"	"	"	"	
Surrogate: 2-FBP	74.2 \%	42-110			"	"	"	"	
Surrogate: Octacosane	79.9 \%	57-123			"	"	"	"	

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Anchorage 3209 Denali Street, Anchorage, AK 99503 $907,334,9338$ fax 907.334 .9339

Project: DPE Extraction Well Construction
Project Number: Not Provided Project Manager: Bryan Graham

Amended Report
Issued: 01/07/03 08:11

12100 NE 195th St
Bothell WA/USA, 98011

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up
 North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
LR03-10 (B2L0108-06) Soil	Sampled: 12/04/02 15:00	Received: 12/04/02 18:48							
Diesel Range Hydrocarbons	18800	1000	$\mathrm{mg} / \mathrm{kg}$ dry	100	2L10028	12/10/02	12/11/02	NWTPH-Dx	
Lube Oil Range Hydrocarbons	ND	2500	"	"	"	"	"	"	
Surrogate: 2-FBP	\%	42-110			"	"	"	"	S-01
Surrogate: Octacosane	\%	57-123			"	"	"	"	S-01

LR03-15 (B2L0108-07) Soil Sampled: 12/04/02 15:05 Received: 12/04/02 18:48

Diesel Range Hydrocarbons	17500	1000	$\mathrm{mg} / \mathrm{kg}$ dry	100	2L10028	12/10/02	12/11/02	NWTPH-Dx	
Lube Oil Range Hydrocarbons	ND	2500	"	"	"	"	"	"	
Surrogate: 2-FBP	\%	42-110			"	"	"	"	S-01
Surrogate: Octacosane	83.6 \%	57-123			"	"	"	"	

LR04-5 (B2L0108-08) Soil Sampled: 12/04/02 15:35 Received: 12/04/02 18:48

r I Range Hydrocarbons	7970	200	$\mathrm{mg} / \mathrm{kg}$ dry	20	2L10028	12/10/02	12/11/02	NWTPH-Dx	
Oil Range Hydrocarbons	ND	500	"	"	"	"	"	"	
Surrogate: 2-FBP	\%	42-110			"	"	"	"	S-01
Surrogate: Octacosane	91.4\%	57-123			"	"	"	"	
LR04-10 (B2L0108-09) Soil	Sampled: 12/04/02 15	45 Receiv	d: 12/04/02						
Diesel Range Hydrocarbons	7060	400	$\mathrm{mg} / \mathrm{kg}$ dry	40	2L10028	12/10/02	12/11/02	NWTPH-Dx	
Lube Oil Range Hydrocarbons	ND	1000	"	"	"	"	"	"	
Surrogate: 2-FBP	\%	42-110			"	"	"	"	S-01
Surrogate: Octacosane	\%	57-123			"	"	"	"	S-01

LR04-15 (B2L0108-10) Soil Sampled: 12/04/02 15:55 Received: 12/04/02 18:48

Diesel Range Hydrocarbons	27700	2000	$\mathrm{mg} / \mathrm{kg}$ dry	200	2L10028	12/10/02	12/11/02	NWTPH-Dx	
Lube Oil Range Hydrocarbons	ND	5000	"	"	n	"	"	"	
Surrogate: 2-FBP	\%	42-110			"	"	"	"	S-01
Surrogate: Octacosane	\%	57-123			"	"	"	"	S-01

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420 .9200 fax 425.420 .9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

-	Anchorage	541.383 .9310 fax 541.382.7588 3209 Denali Street, Anchorage, AK 99503 907.334.9338 fax 907.334.9339
Foster Wheeler Environmental Corporation	Project: DPE Extraction Well Construction	
12100 NE 195th St	Project Number: Not Provided	Amended Report
Bothell WA/USA, 98011	Project Manager: Bryan Graham	Issued: 01/07/03 08:11

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up North Creek Analytical - Bothell

North Creek Analytical - Bothell
The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Anchorage 3209 Denali Street, Anchorage, AK 99503 907.334.9338 fax 907.334.9339

Foster Wheeler Environmental Corporation
12100 NE 195th St
Bothell WA/USA, 98011

Project: DPE Extraction Well Construction	
Project Number: Not Provided	Amended Report
Project Manager: Bryan Graham	Issued: 01/07/03 08:11

Amended Report Issued: 01/07/03 08:11

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up North Creek Analytical - Bothell

Analyte	Result	$\begin{array}{r} \text { Reporting } \\ \text { Limit } \end{array}$	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
01MW26-15 (B2L0108-16) Soil	Sampled: 12/04/02 08:55 Received: 12/04/02 18:48								
Diesel Range Hydrocarbons	7000	200	$\mathrm{mg} / \mathrm{kg}$ dry	20	2 L 10028	12/10/02	12/11/02	NWTPH-Dx	
Lube Oil Range Hydrocarbons	ND	500	"	"	"	"	"	"	
Surrogate: 2-FBP	\%	42-110			"	"	"	"	S-01
Surrogate: Octacosane	84.8\%	57-123			"	"	"	"	
01MW26-20 (B2L0108-17) Soil	Sampled: 12/04/02 09:10 Received: 12/04/02 18:48								
Diesel Range Hydrocarbons	ND	10.0	mg/kg dry	1	2L10028	12/10/02	12/11/02	NWTPH-Dx	
Lube Oil Range Hydrocarbons	ND	25.0	"	"	"	"	"	"	
Surrogate: 2-FBP	62.2 \%	42-110			"	"	"	"	
Surrogate: Octacosane	72.4 \%	57-123			"	"	"	"	
01MW27-5 (B2L0108-18) Soil	Sampled: 12/04/02 10:35 Received: 12/04/02 18:48								
\bar{F} ol Range Hydrocarbons	7410	200	$\mathrm{mg} / \mathrm{kg}$ dry	20	2L10028	12/10/02	12/11/02	NWTPH-Dx	
Oil Range Hydrocarbons	ND	500	"	"	"	"	"	"	
Surrogate: 2-FBP		$42-110$			"	"	"	"	S-01
Surrogate: Octacosane	77.3 \%	57-123			"	"	"	"	
01MW27-10 (B2L0108-19) Soil	Sampled: 12/04/02 10:45 Received: 12/04/02 18:48								
Diesel Range Hydrocarbons	11100	200	$\mathrm{mg} / \mathrm{kg}$ dry	20	2L10028	12/10/02	12/11/02	NWTPH-Dx	
Lube Oil Range Hydrocarbons	651	500	,	"	"	"	"	"	
Surrogate: 2-FBP	\%	42-110			"	"	"	"	S-01
Surrogate: Octacosane	100%	57-123			"	"	"	"	
01MW27-15 (B2L0108-20) Soil	Sampled: 12/04/02 11:00 Received: 12/04/02 18:48								
Diesel Range Hydrocarbons	3810	200	$\mathrm{mg} / \mathrm{kg}$ dry	20	2L10028	12/10/02	12/11/02	NWTPH-Dx	
Lube Oil Range Hydrocarbons	ND	500	"	"	"	${ }^{\prime}$	"	"	
Surrogate: 2-FBP	\%	42-110			"	"	"	"	S-01
Surrogate: Octacosane	91.3 \%	57-123			"	"	"	"	

- b Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420 .9200 fax 425.420 .9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beavertion, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383 .9310 fax 541.382 .7588

Anchorage 3209 Denali Street, Anchorage, AK 99503 907.334 .9338 fax 907 .334.9339

Foster Wheeler Environmental Corporation 12100 NE 195th St
Bothell WA/USA, 98011

Project: DPE Extraction Well Construction
Project Number: Not Provided Amended Report
Project Manager: Bryan Graham

Issued: 01/07/03 08:11

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up

North Creek Analytical - Bothell

| Analyte | Result | Reporting
 Limit | Units | Dilution | Batch | Prepared | Analyzed | Method | Notes |
| :--- | :--- | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

01MW27-20 (B2L0108-21) Soil Sampled: 12/04/02 11:10 Received: 12/04/02 18:48

Diesel Range Hydrocarbons	ND	10.0	$\mathrm{mg} / \mathrm{kg}$ dry	1	2L10028	12/10/02	12/11/02	NWTPH-Dx
Lube Oil Range Hydrocarbons	ND	25.0	"	"	"	"	"	"
Surrogate: 2-FBP	59.8\%	42-110			"	"	"	"
Surrogate: Octacosane	71.9%	57-123			"	"	"	"

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420 .9200 tax 425.420 .9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383 .9310 fax 541.382 .7588

Anchorage 3209 Denali Street, Anchorage, AK 99503 907.334.9338 fax 907.334.9339

Foster Wheeler Environmental Corporation
12100 NE 195th St
Bothell WA/USA, 98011
Extractable Petroleum Hydrocarbons by WDOE TPH Policy Method North Creek Analytical - Bothell

| Analyte | Result | Reporting
 Limit | Units | Dilution | Batch | Prepared | Analyzed | Method | Notes |
| :--- | :--- | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

LR03-5 (B2L0108-05) Soil Sampled: 12/04/02 14:50 Received: 12/04/02 18:48

C8-C10 Aliphatics	8.49	5.00	$\mathrm{mg} / \mathrm{kg}$ dry	1	2L10030	12/10/02	12/13/02	WA MTCA-EPH
C10-C12 Aliphatics	42.3	5.00	"	"	"	"	"	"
C12-C16 Aliphatics	204	5.00	"	"	"	"	"	"
C16-C21 Aliphatics	134	5.00	"	"	"	"	"	"
C21-C34 Aliphatics	8.98	5.00	"	"	"	"	"	"
C10-C12 Aromatics	12.2	5.00	"	"	"	"	12/13/02	"
C12-C16 Aromatics	127	5.00	"	"	"	"	"	"
C16-C21 Aromatics	139	5.00	"	"	"	"	"	"
C21-C34 Aromatics	ND	5.00	"	"	"	"	"	"
Extractable Petroleum Hydrocarbons	677	5.00	"	"	"	"	12/13/02	"
s ogate: $2-F B P$	83.9 \%	50-150			"	"	12/13/02	"
gate: Octacosane	87.5%	50-150			"	"	12/13/02	"
Surrogate: Undecane	80.9%	30-150			"	"	"	"

LR05-5 (B2L0108-11) Soil Sampled: 12/04/02 16:35 Received: 12/04/02 18:48

C8-C10 Aliphatics	42.0	5.00	$\mathrm{mg} / \mathrm{kg}$ dry	1	2L10030	12/10/02	12/13/02	WA MTCA-EPH
C10-C12 Aliphatics	151	5.00	"	"	"	"	"	"
C12-C16 Aliphatics	669	5.00	"	"	"	"	"	"
C16-C21 Aliphatics	480	5.00	"	"	"	"	"	"
C21-C34 Aliphatics	44.1	5.00	"	"	"	"	"	"
C10-C12 Aromatics	35.9	5.00	"	"	"	"	12/15/02	"
C12-C16 Aromatics	224	5.00	"	"	"	"	"	"
C16-C21 Aromatics	452	5.00	"	"	"	"	"	"
C21-C34 Aromatics	36.3	5.00	"	"	"	"	"	"
Extractable Petroleum Hydrocarbons	2130	5.00	"	"	"	"	12/13/02	"
Surrogate: 2-FBP	119\%	50-150			"	"	12/15/02	"
Surrogate: Octacosane	85.5 \%	50-150			"	"	12/13/02	"
Surrogate: Undecane	76.5 \%	30-150			"	"	"	"

Foster Wheeler Environmental Corporation 12100 NE 195th St

Project: DPE Extraction Well Construction
Project Number: Not Provided
Amended Report
Project Manager: Bryan Graham

Polynuclear Aromatic Hydrocarbons by GC/MS-SIM

North Creek Analytical - Bothell

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420 .9200 fax 425.420 .9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Anchorage 3209 Denali Street, Anchorage, AK 99503 907.334.9338 fax 907.334.9339

Foster Wheeler Environmental Corporation 12100 NE 195th St Bothell WA/USA, 98011		Project: DPE Extraction Well Construction Project Number: Not Provided Project Manager: Bryan Graham						Amended Report Issued: 01/07/03 08:11	
Total Metals by EPA 6000/7000 Series Methods North Creek Analytical - Bothell									
Analyte	Result ${ }^{\text {Re}}$	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
LR02-5 (B2L0108-01) Soil Sampled: 12/04/02 13:40 Received: 12/04/02 18:48									
Lead	7.04	0.500	$\mathrm{mg} / \mathrm{kg}$ dry	1	2L13036	12/13/02	12/16/02	EPA 6020	
LR02-10 (B2L0108-02) Soil	Sampled: 12/04/02 13:50	Receive	: 12/04/02						
Lead	2.34	0.500	$\mathrm{mg} / \mathrm{kg}$ dry	1	2L13036	12/13/02	12/16/02	EPA 6020	
LR02-15 (B2L0108-03) Soil	Sampled: 12/04/02 14:00	Receive	: 12/04/02						
Lead	2.27	0.500	$\mathrm{mg} / \mathrm{kg}$ dry	1	2L13036	12/13/02	12/16/02	EPA 6020	
LR02-20 (B2L0108-04) Soil	Sampled: 12/04/02 14:10	Receive	d: 12/04/02						
Lead	1.79	0.500	$\mathrm{mg} / \mathrm{kg}$ dry	1	2L13036	12/13/02	12/16/02	EPA 6020	
LR03-5 (B2L0108-05) Soil	Sampled: 12/04/02 14:50	Received	12/04/02 1						
Lead	6.14	0.500	$\mathrm{mg} / \mathrm{kg}$ dry	1	2L13036	12/13/02	12/16/02	EPA 6020	
$\text { r- } 3 \text { 3-10 (B2L0108-06) Soil }$	Sampled: 12/04/02 15:00 Received: 12/04/02 18:48								
	3.07	0.500	$\mathrm{mg} / \mathrm{kg}$ dry	1	2L13036	12/13/02	12/16/02	EPA 6020	
LR03-15 (B2L0108-07) Soil	Sampled: 12/04/02 15:05	Received: 12/04/02 18:48							
Lead	2.29	0.500	$\mathrm{mg} / \mathrm{kg}$ dry	1	2L13036	12/13/02	12/16/02	EPA 6020	
LR04-5 (B2L0108-08) Soil	Sampled: 12/04/02 15:35	Received	12/04/02 1						
Lead	2.45	0.500	$\mathrm{mg} / \mathrm{kg}$ dry	1	2L13036	12/13/02	12/16/02	EPA 6020	
LR04-10 (B2L0108-09) Soil	Sampled: 12/04/02 15:45	5 Receive	d: 12/04/02	8:48					
Lead	2.44	0.500	mg/kg dry	1	2L13036	12/13/02	12/16/02	EPA 6020	

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420 .9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383 .9310 fax 541.382 .7588

Anchorage 3209 Denali Street, Anchorage, AK 99503 907.334.9338 fax 907.334.9339

Foster Wheeler Environmental Corporation 12100 NE 195th St Bothell WA/USA, 98011

Project: DPE Extraction Well Construction
Project Number: Not Provided
Project Manager: Bryan Graham

Amended Report Issued: 01/07/03 08:11

Total Metals by EPA 6000/7000 Series Methods
 North Creek Analytical - Bothell

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.
Foster Wheeler Environmental Corporation
12100 NE 195th St
Bothell WA/USA, 98011

Project: DPE Extraction Well Construction
Project Number: Not Provided
Amended Report
Project Manager: Bryan Graham
Issued: 01/07/03 08:11

Total Metals by EPA 6000/7000 Series Methods
 North Creek Analytical - Bothell

Reporting									
01MW27-5 (B2L0108-18) Soil	Sampled: 12/04/02 10:35 Received: 12/04/02 18:48								
Lead	30.6	0.500	$\mathrm{mg} / \mathrm{kg}$ dry	1	2L13036	12/13/02	12/16/02	EPA 6020	
01MW27-10 (B2L0108-19) Soil	Sampled: 12/04/02 10:45 Received: 12/04/02 18:48								
Lead	11.4	0.500	$\mathrm{mg} / \mathrm{kg}$ dry	1	2L13036	12/13/02	12/16/02	EPA 6020	
01MW27-15 (B2L0108-20) Soil	Sampled: 12/04/02 11:00 Received: 12/04/02 18:48								
Lead	3.03	0.500	$\mathrm{mg} / \mathrm{kg}$ dry	1	2L13036	12/13/02	12/16/02	EPA 6020	
01MW27-20 (B2L0108-21) Soil	Sampled: 12/04/02 11:10 Received: 12/04/02 18:48								
Lead	4.71	0.500	$\mathrm{mg} / \mathrm{kg}$ dry	1	2L12040	12/12/02	12/13/02	EPA 6020	

[^13]Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420 .9200 fax 425.420 .9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portiand 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383 .9310 fax 541.382 .7588

Anchorage 3209 Denali Street, Anchorage, AK 99503 907.334.9338 fax 907.334.9339

Foster Wheeler Environmental Corporation	Project: DPE Extraction Well Construction	
12100 NE 195th St	Project Number:	Not Provided

BTEX, MTBE, Naphthalene, and n-Hexane by WA VPH
 North Creek Analytical - Bothell

| Analyte | Result | Reporting
 Limit | Units | Dilution | Batch | Prepared | Analyzed | Method | Notes |
| :--- | :--- | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

LR03-5 (B2L0108-05) Soil	Sampled: 12/04/02 14:50	Received	12/04/02 1					
Methyl tert-butyl ether	ND	0.100	$\mathrm{mg} / \mathrm{kg}$ dry	1	2L05020	12/05/02	12/06/02	EPA 8260B
Benzene	ND	0.0100	"	"	"	"	"	"
Toluene	ND	0.0100	"	"	"	"	"	"
Ethylbenzene	ND	0.0100	"	"	"	"	"	"
m,p-Xylene	ND	0.0200	"	"	"	"	"	"
o-Xylene	ND	0.0100	"	"	"	"	"	"
Naphthalene	ND	0.0100	"	"	"	"	"	"
n-Hexane	0.0642	0.0200	"	"	"	"	"	"
Surrogate: 1,2-DCA-d4	98.4\%	57-139			"	"	"	"
Surrogate: Toluene-d8	88.6\%	66-122			"	"	"	"
Surrogate: 4-BFB	84.7 \%	62-121			"	"	"	"

LR05-5 (B2L0108-11) Soil Sampled: 12/04/02 16:35 Received: 12/04/02 18:48

Methyl tert-butyl ether	ND	0.100	$\mathrm{mg} / \mathrm{kg}$ dry	1	2L05020	12/05/02	12/06/02	EPA 8260B
Benzene	0.542	0.0100	"	"	"	"	"	"
Toluene	ND	0.0100	"	"	"	"	"	"
Ethylbenzene	0.732	0.0100	"	"	"	"	"	"
m,p-Xylene	0.0870	0.0200	"	"	"	"	"	"
o-Xylene	ND	0.0100	"	"	"	"	"	"
Naphthalene	ND	0.0100	"	"	"	"	"	"
n-Hexane	1.45	0.0200	"	"	"	"	"	"
Surrogate: 1,2-DCA-d4	94.1 \%	57-139			"	"	"	"
Surrogate: Toluene-d8	84.6\%	66-122			"	"	"	"
Surrogate: 4-BFB	84.2\%	62-121			"	"	"	"

					Seattle 117 425 Spokane Eas 509 Portland 940 503 Bend 203 541 Anchorage 320 907	20 North Creek 420.9200 fax 11115 Montgo 924.9200 fax SW Nimbus 906.9200 fax 32 Empire Ave 383.9310 fax Denali Street 334.9338 fax	Pkwy N, Suite 25.420 .9210 nery, Suite B. 09.924.9290 venue, Beaver 03.906.9210 ue, Suite F-1, 41.382.7588 Anchorage, AK 07.334.9339	200, Bothell, WA 98011-8244 pokane, WA 99206-4776 n, OR 97008-7132 end, OR 97701-5711 99503
Foster Wheeler Environmental Corporation 12100 NE 195th St Bothell WA/USA, 98011		Project: DPE Extraction Well Construction Number: Not Provided Manager: Bryan Graham						Amended Report Issued: 01/07/03 08:11
Physical Parameters by APHA/ASTM/EPA Methods North Creek Analytical - Bothell								
Reporting								Method Notes
LR02-5 (B2L0108-01) Soil Sampled: 12/04/02 13:40 Received: 12/04/02 18:48								
Dry Weight	79.8	1.00	\%	1	2L10020	12/10/02	12/11/02	BSOPSPL003R07
LR02-10 (B2L0108-02) Soil Sampled: 12/04/02 13:50 Received: 12/04/02 18:48								
Dry Weight	91.4	1.00	\%	1	2L10020	12/10/02	12/11/02	BSOPSPL003R07
LR02-15 (B2L0108-03) Soil Sampled: 12/04/02 14:00 Received: 12/04/02 18:48								
Dry Weight	82.8	1.00	\%	1	2L10020	12/10/02	12/11/02	BSOPSPL003R07
LR02-20 (B2L0108-04) Soil Sampled: 12/04/02 14:10 Received: 12/04/02 18:48								
Dry Weight	81.6	1.00	\%	1	2L10020	12/10/02	12/11/02	BSOPSPL003R07
LR03-5 (B2L0108-05) Soil Sampled: 12/04/02 14:50 Received: 12/04/02 18:48								
Dry Weight	79.7	1.00	\%	1	2L10020	12/10/02	12/11/02	BSOPSPL003R07
F -10 (B2L0108-06) Soil	Sampled: 12/04/02 15:00	Receive	12/04/					
1. Neight	89.0	1.00	\%	1	2L10020	12/10/02	12/11/02	BSOPSPL003R07
LR03-15 (B2L0108-07) Soil Sampled: 12/04/02 15:05 Received: 12/04/02 18:48								
Dry Weight	83.0	1.00	\%	1	2L10020	12/10/02	12/11/02	BSOPSPL003R07
LR04-5 (B2L0108-08) Soil Sampled: 12/04/02 15:35 Received: 12/04/02 18:48								
Dry Weight	84.4	1.00	\%	1	2L10020	12/10/02	12/11/02	BSOPSPL003R07
LR04-10 (B2L0108-09) Soil Sampled: 12/04/02 15:45 Received: 12/04/02 18:48								
Dry Weight	90.6	1.00	\%	1	2L10020	12/10/02	12/11/02	BSOPSPL003R07

North Creek Analytical - Bothell
The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Foster Wheeler Environmental Corporation 12100 NE 195th St
Bothell WA/USA, 98011

Project: DPE Extraction Well Construction
Project Number: Not Provided
Project Manager: Bryan Graham

Amended Report
Issued: 01/07/03 08:11

Physical Parameters by APHA/ASTM/EPA Methods
 North Creek Analytical - Bothell

Reporting									
01MW27-10 (B2L0108-19) Soil	Sampled: 12/04/02 10:45 Received: 12/04/02 18:48								
Dry Weight	89.6	1.00	\%	1	2L10021	12/10/02	12/11/02	BSOPSPL003R07	
01MW27-15 (B2L0108-20) Soil	Sampled: 12/04/02 11:00 Received: 12/04/02 18:48								
Dry Weight	84.7	1.00	\%	1	2L10021	12/10/02	12/11/02	BSOPSPL003R07	
01MW27-20 (B2L0108-21) Soil	Sampled: 12/04/02 11:10 Received: 12/04/02 18:48								
Dry Weight	79.8	1.00	\%	1	2L10021	12/10/02	12/11/02	BSOPSPL003R07	

[^14]Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420 .9200 fax 425.420 .9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR $97701-5711$
541.383.9310 fax 541.382.7588

Anchorage 3209 Denali Street, Anchorage, AK 99503 907.334.9338 fax 907.334.9339
Foster Wheeler Environmental Corporation
12100 NE 195th St
Bothell WA/USA, 98011

Project: DPE Extraction Well Construction
Project Number: Not Provided
Project Manager: Bryan Graham

Amended Report
Issued: 01/07/03 08:11

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B - Quality Control North Creek Analytical - Bothell

	Reporting			Spike	Source		\%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	\%REC	Limits	RPD	Limit	Notes

Batch 2L11002: Prepared 12/11/02 Using EPA 5030B (P/T)

Blank (2L11002-BLK1)

Gasoline Range Hydrocarbons	ND .	5.00	$\mathrm{mg} / \mathrm{kg}$							
Benzene	ND	0.0300	"							
Toluene	ND	0.0500	"							
Ethylbenzene	ND	0.0500	"							
Xylenes (total)	ND	0.100	"							
Surrogate: 4-BFB (FID)	4.15		"	4.00		104	59-125			
Surrogate: 4-BFB (PID)	4.25		"	4.00		106	64-125			
LCS (2L11002-BS1)										
Gasoline Range Hydrocarbons	26.9	5.00	$\mathrm{mg} / \mathrm{kg}$	27.5		97.8	80-120			
Benzene	0.350	0.0300	"	0.340		103	80-120			
Toluene	1.73	0.0500	"	2.08		83.2	80-120			
Ethylbenzene	0.465	0.0500	"	0.490		94.9	80-120			
Xylenes (total)	2.16	0.100	"	2.41		89.6	80-120			
Surrogate: 4-BFB (FID)	4.16		"	4.00		104	59-125			
Surrogate: 4-BFB (PID)	3.97		"	4.00		99.2	64-125			
LCS Dup (2L11002-BSD1)										
Gasoline Range Hydrocarbons	29.8	5.00	$\mathrm{mg} / \mathrm{kg}$	27.5		108	80-120	10.2	40	
Benzene	0.373	0.0300	"	0.340		110	80-120	6.36	40	
Toluene	1.85	0.0500	"	2.08		88.9	80-120	6.70	40	
Ethylbenzene	0.494	0.0500	"	0.490		101	$80-120$	6.05	40	
Xylenes (total)	2.30	0.100	"	2.41		95.4	80-120	6.28	40	
Surrogate: 4-BFB (FID)	4.40		"	4.00		110	59-125			
Surrogate: 4-BFB (PID)	3.98		"	4.00		99.5	64-125			
Matrix Spike (2L11002-MS1)					ource:	L0108				
Gasoline Range Hydrocarbons	31.5	5.00	$\mathrm{mg} / \mathrm{kg}$ dry	32.6	1.11	93.2	53-120			
Benzene	0.342	0.0300	"	0.403	ND	84.9	71-119			
Toluene	1.77	0.0500	"	2.47	0.0142	71.1	57-108			
Ethylbenzene	0.462	0.0500	"	0.580	ND	79.7	72-114			
Xylenes (total)	2.27	0.100	"	2.85	ND	79.6	68-112			
Surrogate: 4-BFB (FID)	4.26	.	"	4.74		89.9	59-125			
Surrogate: 4-BFB (PID)	3.31		"	4.74		69.8	64-125			

North Creek Analytical - Bothell The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Seattie 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420 .9200 fax 425.420 .9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Anchorage 3209 Denali Street, Anchorage, AK 99503
907.334.9338 fax 907.334.9339

Project: DPE Extraction Well Construction
Project Number: Not Provided
Project Manager: Bryan Graham

Amended Report
Issued: 01/07/03 08:11

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B - Quality Control North Creek Analytical - Bothell

	Reporting			Spike	Source		\%REC		RPD	
Analyte	Result	Limit	Units	Level		\%REC		RPD	imit	Notes

Batch 2L11002: Prepared 12/11/02 Using EPA 5030B (P/T)

Matrix Spike Dup (2L11002-MSD1)			Source: B2L0108-08						
Gasoline Range Hydrocarbons	28.6	5.00	$\mathrm{mg} / \mathrm{kg}$ dry	32.6	1.11	84.3	$53-120$	9.65	40
Benzene	0.340	0.0300	$"$	0.403	ND	84.4	$71-119$	0.587	40
Toluene	1.86	0.0500	$"$	2.47	0.0142	74.7	$57-108$	4.96	40
Ethylbenzene	0.477	0.0500	$"$	0.580	ND	82.2	$72-114$	3.19	40
Xylenes (total)	2.37	0.100	$"$	2.85	ND	83.2	$68-112$	4.31	40
Surrogate: $4-$ BFB (FID)	4.13		$"$	4.74		87.1	$59-125$		
Surrogate: $4-$ BFB (PID)	3.40		$"$	4.74		71.7	$64-125$		

Batch 2L11009: Prepared 12/11/02 Using EPA 5030B (P/T)

Blank (2L11009-BLK1)						
$\bigcirc \quad$ 'ine Range Hydrocarbons	ND	5.00	$\mathrm{mg} / \mathrm{kg}$			
+ ne	ND	0.0300	"			
Toluene	ND	0.0500	"			
Ethylbenzene	ND	0.0500	"			
Xylenes (total)	ND	0.100	"			
Surrogate: 4-BFB (FID)	3.41		"	4.00	85.2	59-125
Surrogate: 4-BFB (PID)	3.99		"	4.00	99.8	64-125
LCS (2L11009-BS1)						
Gasoline Range Hydrocarbons	26.0	5.00	$\mathrm{mg} / \mathrm{kg}$	27.5	94.5	80-120
Benzene	0.365	0.0300	"	0.340	107	80-120
Toluene	1.89	0.0500	"	2.08	90.9	80-120
Ethylbenzene	0.490	0.0500	"	0.490	100	80-120
Xylenes (total)	2.40	0.100	"	2.41	99.6	80-120
Surrogate: 4-BFB (FID)	4.10		"	4.00	102	59-125
Surrogate: 4-BFB (PID)	3.74		"	4.00	93.5	64-125

फ Creek Analytical - Bothell | The results in this report apply to the samples analyzed in accordance with the chain of |
| :--- |
| custody document. This analytical report must be reproduced in its entirety. |

www.ncalabs.com

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420 .9200 fax 425.420 .9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR $97701-5711$ 541.383.9310 fax 541.382.7588

Anchorage 3209 Denali Street, Anchorage, AK 99503 907.334.9338 fax 907.334.9339

Project: DPE Extraction Well Construction
Project Number: Not Provided
Project Manager: Bryan Graham

Amended Report
Issued: 01/07/03 08:11

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B - Quality Control North Creek Analytical - Bothell

	Reporting			Spike	Source		\%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	\%REC	Limits	RPD	Limit	Notes

Batch 2L11009: Prepared 12/11/02 Using EPA 5030B (P/T)

LCS Dup (2L11009-BSD1)								
Gasoline Range Hydrocarbons	26.1	5.00	$\mathrm{mg} / \mathrm{kg}$	27.5	94.9	$80-120$	0.384	40
Benzene	0.375	0.0300	$"$	0.340	110	$80-120$	2.70	40
Toluene	1.95	0.0500	$"$	2.08	93.8	$80-120$	3.13	40
Ethylbenzene	0.502	0.0500	$"$	0.490	102	$80-120$	2.42	40
Xylenes (total)	2.50	0.100	$"$	2.41	104	$80-120$	4.08	40
Surrogate: $4-$ BFB (FID)	4.05		$"$	4.00	101	$59-125$		
Surrogate: $4-$ BFB (PID)	3.70		$"$	4.00	92.5	$64-125$		

Matrix Spike (2L11009-MS1)					Source: B	0132	
Gasoline Range Hydrocarbons	24.4	5.00	$\mathrm{mg} / \mathrm{kg}$ dry	33.7	0.616	70.6	53-120
Benzene	0.380	0.0300	- "	0.416	0.00717	89.6	71-119
Toluene	2.00	0.0500	"	2.55	0.00766	78.1	57-108
Ethylbenzene	0.523	0.0500	"	0.600	ND	87.2	72-114
Xylenes (total)	2.57	0.100	"	2.95	ND	87.1	68-112
Surrogate: 4-BFB (FID)	3.98		"	4.90		81.2	59-125
Surrogate: 4-BFB (PID)	3.95		"	4.90		80.6	64-125

Matrix Spike Dup (2L11009-MSD1)	Source: B2L0132-10								
Gasoline Range Hydrocarbons	25.8	5.00	$\mathrm{mg} / \mathrm{kg}$ dry	33.7	0.616	74.7	$53-120$	5.58	40
Benzene	0.389	0.0300	$"$	0.416	0.00717	91.8	$71-119$	2.34	40
Toluene	2.06	0.0500	$"$	2.55	0.00766	80.5	$57-108$	2.96	40
Ethylbenzene	0.525	0.0500	$"$	0.600	ND	87.5	$72-114$	0.382	40
Xylenes (total)	2.65	0.100	$"$	2.95	ND	89.8	$68-112$	3.07	40
Surrogate: 4 -BFB (FID)	4.16		$"$	4.90	84.9	$59-125$			
Surrogate: 4 -BFB (PID)	4.13		$"$	4.90	84.3	$64-125$			

North Creek Analytical - Bothell
The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 $425.420 .9200 \operatorname{tax} 425.420 .9210$
Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924 .9200 fax 509.924.9290
Portiand 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210
Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383 .9310 fax 541.382.7588
Anchorage 3209 Denali Street, Anchorage, AK 99503 907.334.9338 fax 907.334.9339

Foster Wheeler Environmental Corporation 12100 NE 195th St
Bothell WA/USA, 98011

Project: DPE Extraction Well Construction
Project Number: Not Provided Project Manager: Bryan Graham

Amended Report
Issued: 01/07/03 08:11

Volatile Petroleum Hydrocarbons by WDOE TPH Policy Method - Quality Control North Creek Analytical - Bothell

	Reporting		Units	Spike Source		\%REC		RPD		
Analyte	Result	Limit		Level	Result	\%REC	Limits	RPD	Limit	Notes

Batch 2L12002: Prepared 12/12/02 Using EPA 5030B (P/T)
Blank (2L12002-BLK1)

C5-C6 Aliphatics	ND	5.00	$\mathrm{mg} / \mathrm{kg}$			
C6-C8 Aliphatics	ND	5.00	"			
C8-C10 Aliphatics	ND	5.00	"			
C10-C12 Aliphatics	ND	5.00	"			
C8-C10 Aromatics	ND	5.00	"			
C10-C12 Aromatics	ND	5.00	"			
C12-C13 Aromatics	ND	5.00	"			
Total VPH (TVPH)	ND	5.00	"			
Surrogate: 4-BFB (FID)	4.24		"	4.00	106	60-140
Surrogate: 4-BFB (PID)	3.70		"	4.00	92.5	60-140

Tual VPH (TVPH)	11.3	5.00	$\mathrm{mg} / \mathrm{kg}$	10.0	113	70-130
Surrogate: 4-BFB (FID)	4.86		"	4.00	122	60-140
Surrogate: 4-BFB (PID)	3.93		"	4.00	98.2	60-140

LCS Dup (2L12002-BSD1)							
Total VPH (TVPH)	11.0	5.00	$\mathrm{mg} / \mathrm{kg}$	10.0	110	$70-130$	2.69
Surrogate: $4-B F B(F I D)$	3.33		$"$	4.00	85		
Surrogate: $4-B F B(P I D)$	3.02		$\prime \prime$	4.00	$60-140$		

Matrix Spike (2L12002-MS1)	Source: B2L0158-09									
Total VPH (TVPH)	17.9	5.00	$\mathrm{mg} / \mathrm{kg}$ dry	13.4	0.00	134	70-130			Q-01
Surrogate: 4-BFB (FID)	5.26		"	5.36		98.1	60-140			
Surrogate: 4-BFB (PID)	4.88		"	5.36		91.0	60-140			
Matrix Spike Dup (2L12002-MSD1)					urce:	0158				
Total VPH (TVPH)	14.7	5.00	$\mathrm{mg} / \mathrm{kg}$ dry	13.4	0.00	110	70-130	19.6	25	
Surrogate: 4-BFB (FID)	5.13		"	5.36		95.7	$60-140$			
Surrogate: 4-BFB (PID)	5.01		"	5.36		93.5	60-140			

- फु Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Amar Gill, Project Manager

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420 .9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portiand 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383 .9310 fax 541.382 .7588

Anchorage 3209 Denali Street, Anchorage, AK 99503 907.334 .9338 fax 907.334 .9339

Foster Wheeler Environmental Corporation 12100 NE 195th St
Bothell WA/USA, 98011

Project: DPE Extraction Well Construction
Project Number: Not Provided
Project Manager: Bryan Graham

Amended Report Issued: 01/07/03 08:11

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up - Quality Control North Creek Analytical - Bothell

	Reporting			Spike	Source		\%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	\%REC	Limits	RPD	Limit	Notes

Batch 2L07002: Prepared 12/07/02 Using EPA 3550B

Blank (2L07002-BLK1)

Diesel Range Hydrocarbons	ND	10.0	$\mathrm{mg} / \mathrm{kg}$						
Lube Oil Range Hydrocarbons	ND	25.0	$"$						
Surrogate: 2-FBP	5.95		$"$	10.7	55.6	$42-110$			
Surrogate: Octacosane	6.83		$"$	10.7	63.8	$57-123$			
LCS (2L07002-BS1)									
Diesel Range Hydrocarbons	44.3	10.0	$\mathrm{mg} / \mathrm{kg}$	66.7	66.4	$59-109$			
Surrogate: 2-FBP	6.44		$"$	10.7	60.2	$42-110$			
LCS Dup (2L07002-BSD1)									
Diesel Range Hydrocarbons	52.5	10.0	$\mathrm{mg} / \mathrm{kg}$	66.7	78.7	$59-109$	16.9	50	
Surrogate: 2-FBP	7.48		$"$	10.7	69.9	$42-110$			

Duplicate (2L07002-DUP1)	Source: B2L0149-05							
Diesel Range Hydrocarbons	183	50.0	$\mathrm{mg} / \mathrm{kg}$ dry		194	5.84	50	
Lube Oil Range Hydrocarbons	967	125	$"$		1080		11.0	50
Surrogate: 2 -FBP	8.58		$"$	13.7		62.6	$42-110$	
Surrogate: Octacosane	10.2		$"$	13.7		74.5	$57-123$	

Batch 2L10028: Prepared 12/10/02 Using EPA 3550B

Blank (2L10028-BLK1)						
Diesel Range Hydrocarbons	ND	10.0	$\mathrm{mg} / \mathrm{kg}$			
Lube Oil Range Hydrocarbons	ND	25.0	$"$			
Surrogate: 2-FBP	7.80		$"$	10.7	72.9	$42-110$
Surrogate: Octacosane	8.60		$"$	10.7	80.4	$57-123$

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420 .9200 fax 425.420 .9210
Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290
Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210
Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588
Anchorage 3209 Denali Street, Anchorage, AK 99503

Foster Wheeler Environmental Corporation
12100 NE 195th St
Bothell WA/USA, 98011

Project: DPE Extraction Well Construction
Project Number: Not Provided
Amended Report
Project Manager: Bryan Graham
Issued: 01/07/03 08:11

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up - Quality Control North Creek Analytical - Bothell

[^15]Foster Wheeler Environmental Corporation 12100 NE 195th St
Bothell WA/USA, 98011
Project: DPE Extraction Well Construction
Project Number: Not Provided
Project Manager: Bryan Graham

Amended Report

Issued: 01/07/03 08:11

Polynuclear Aromatic Hydrocarbons by GC/MS-SIM - Quality Control North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units		Spike Level	Source Result	\%REC		\%REC Limits	RPD	Limit	Notes

Batch 2L10030: Prepared 12/10/02 Using EPA 3545

Blank (2L10030-BLK1)						
Acenaphthene	ND	0.0100	$\mathrm{mg} / \mathrm{kg}$			
Acenaphthylene	ND	0.0100	"			
Anthracene	ND	0.0100	"			
Benzo (a) anthracene	ND	0.0100	"			
Benzo (a) pyrene	ND	0.0100	"			
Benzo (b) fluoranthene	ND	0.0100	"			
Benzo (ghi) perylene	ND	0.0100	"			
Benzo (k) fluoranthene	ND	0.0100	"			
Chrysene	ND	0.0100	"			
Dibenz (a, h) anthracene	ND	0.0100	"			
Fluoranthene	ND	0.0100	"			
Fluorene	ND	0.0100	"			
Indeno (1,2,3-cd) pyrene	ND	0.0100	"			
1-Methylnaphthalene	ND	0.0100	"			
2-Methylnaphthalene	ND	0.0100	"			
Naphthalene	ND	0.0100	"			
Phenanthrene	ND	0.0100	"			
Pyrene	ND	0.0100	"			
Surrogate: p-Terphenyl-d14	0.255		"	0.267	95.5	42-141
LCS (2L10030-BS1)						
Acenaphthene	0.242	0.0100	$\mathrm{mg} / \mathrm{kg}$	0.333	72.7	50-150
Acenaphthylene	0.301	0.0100	"	0.333	90.4	50-150
Anthracene	0.256	0.0100	"	0.333	76.9	50-150
Benzo (a) anthracene	0.253	0.0100	"	0.333	76.0	50-150
Benzo (a) pyrene	0.244	0.0100	"	0.333	73.3	50-150
Benzo (b) fluoranthene	0.232	0.0100	"	0.333	69.7	50-150
Benzo (ghi) perylene	0.236	0.0100	"	0.333	70.9	50-150
Benzo (k) fluoranthene	0.241	0.0100	"	0.333	72.4	50-150
Chrysene	0.289	0.0100	"	0.333	86.8	54-112
Dibenz (a, h) anthracene	0.218	0.0100	"	0.333	65.5	50-150
Fluoranthene	0.277	0.0100	"	0.333	83.2	50-150
Fluorene	0.259	0.0100	"	0.333	77.8	51-107
Indeno ($1,2,3-\mathrm{cd}$) pyrene	0.238	0.0100	"	0.333	71.5	42-112

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011 - 8244 425.420 .9200 fax 425.420 .9210

Spokane East 11115 Monigomery, Suite B, Spokane, WA 99206-4776 509.924 .9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Anchorage 3209 Denali Street, Anchorage, AK 99503 907.334.9338 fax 907.334.9339

Foster Wheeler Environmental Corporation 12100 NE 195th St
Bothell WA/USA, 98011

Polynuclear Aromatic Hydrocarbons by GC/MS-SIM - Quality Control North Creek Analytical - Bothell

	Reporting			Spike	Source		\%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	\%REC	Limits	RPD	Limit	Notes

Batch 2L10030: Prepared 12/10/02 Using EPA 3545

LCS (2L10030-BS1)										
Naphthalene	0.241	0.0100	$\mathrm{mg} / \mathrm{kg}$	0.333		72.4	50-150			
Phenanthrene	0.263	0.0100	"	0.333		79.0	50-150			
Pyrene	0.254	0.0100	"	0.333		76.3	50-150			
Surrogate: p-Terphenyl-d14	0.237		"	0.267		88.8	42-141			
LCS Dup (2L10030-BSD1)										
Acenaphthene	0.240	0.0100	$\mathrm{mg} / \mathrm{kg}$	0.333		72.1	50-150	0.830	25	
Acenaphthylene	0.293	0.0100	"	0.333		88.0	50-150	2.69	25	
Anthracene	0.268	0.0100	"	0.333		80.5	50-150	4.58	25	
Benzo (a) anthracene	0.276	0.0100	"	0.333		82.9	50-150	8.70	25	
Benzo (a) pyrene	0.256	0.0100	"	0.333		76.9	$50-150$	4.80	25	
(b) fluoranthene	0.197	0.0100	"	0.333		59.2	50-150	16.3	25	
buizo (ghi) perylene	0.288	0.0100	"	0.333		86.5	50-150	19.8	25	
Benzo (k) fluoranthene	0.313	0.0100	"	0.333		94.0	50-150	26.0	25	Q-07
Chrysene	0.294	0.0100	"	0.333		88.3	54-112	1.72	37	
Dibenz (a, h) anthracene	0.267	0.0100	"	0.333		80.2	50-150	20.2	25	
Fluoranthene	0.330	0.0100	"	0.333		99.1	50-150	17.5	25	
Fluorene	0.259	0.0100	"	0.333		77.8	51-107	0.00	43	
Indeno (1,2,3-cd) pyrene	0.291	0.0100	"	0.333		87.4	42-112	20.0	32	
Naphthalene	0.249	0.0100	"	0.333		74.8	50-150	3.27	25	
Phenanthrene	0.295	0.0100	"	0.333		88.6	50-150	11.5	25	
Pyrene	0.322	0.0100	"	0.333		96.7	50-150	23.6	25	
Surrogate: p-Terphenyl-d14	0.250		"	0.267		93.6	42-141			
Matrix Spike (2L10030-MS1)	Source: B2L0025-01									
Acenaphthene	0.270	0.0100	$\mathrm{mg} / \mathrm{kg}$ dry	0.416	ND	64.9	50-150			
Acenaphthylene	0.330	0.0100	"	0.416	ND	79.3	50-150			
Anthracene	0.290	0.0100	"	0.416	ND	69.7	50-150			
Benzo (a) anthracene	0.273	0.0100	"	0.416	0.00166	65.2	50-150			
Benzo (a) pyrene	0.234	0.0100	"	0.416	ND	56.2	50-150			
Benzo (b) fluoranthene	0.182	0.0100	"	0.416	ND	43.8	50-150			Q-02
Benzo (ghi) perylene	0.262	0.0100	"	0.416	ND	63.0	50-150			
Benzo (k) fluoranthene	0.219	0.0100	"	0.416	ND	52.6	50-150			
Chrysene	0.280	0.0100	"	0.416	ND	67.3	29-143			

th Creek Analytical - Bothell

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420 .9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR $97008-7132$ 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383 .9310 fax 541.382 .7588

Anchorage 3209 Denali Street, Anchorage, AK 99503 907.334.9338 fax 907.334.9339

Foster Wheeler Environmental Corporation	Project:	DPE Extraction Well Construction
12100 NE 195th St	Project Number:	Not Provided

Polynuclear Aromatic Hydrocarbons by GC/MS-SIM - Quality Control
 North Creek Analytical - Bothell

	Reporting			Spike	Source		\%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	\%REC	Limits	RPD	Limit	Notes

Batch 2L10030: Prepared 12/10/02 Using EPA 3545

Matrix Spike (2L10030-MS1)		Source: B2L0025-01								
Dibenz (a, h) anthracene	0.263	0.0100	$\mathrm{mg} / \mathrm{kg}$ dry	0.416	ND	63.2	50-150			
Fluoranthene	0.286	0.0100	"	0.416	ND	68.8	50-150			
Fluorene	0.287	0.0100	"	0.416	ND	69.0	36-134			
Indeno (1,2,3-cd) pyrene	0.275	0.0100	"	0.416	ND	66.1	19-138			
Naphthalene	0.285	0.0100	"	0.416	0.00416	67.5	50-150			
Phenanthrene	0.303	0.0100	"	0.416	0.00416	71.8	50-150			
Pyrene	0.267	0.0100	"	0.416	ND	64.2	50-150			
Surrogate: p-Terphenyl-d14	0.269		"	0.333		80.8	42-141			
Matrix Spike Dup (2L10030-MSD1)	Source: B2L0025-01									
Acenaphthene	0.235	0.0100	$\mathrm{mg} / \mathrm{kg}$ dry	0.416	ND	56.5	50-150	13.9	25	
Acenaphthylene	0.298	0.0100	"	0.416	ND	71.6	50-150	10.2	25	
Anthracene	0.254	0.0100	"	0.416	ND	61.1	50-150	13.2	25	
Benzo (a) anthracene	0.250	0.0100	"	0.416	0.00166	59.7	50-150	8.80	25	
Benzo (a) pyrene	0.220	0.0100	"	0.416	ND	52.9	50-150	6.17	25	
Benzo (b) fluoranthene	0.174	0.0100	"	0.416	ND	41.8	50-150	4.49	25	Q-02
Benzo (ghi) perylene	0.227	0.0100	"	0.416	ND	54.6	50-150	14.3	25	
Benzo (k) fluoranthene	0.264	0.0100	"	0.416	ND	63.5	50-150	18.6	25	
Chrysene	0.255	0.0100	"	0.416	ND	61.3	29-143	9.35	44	
Dibenz (a, h) anthracene	0.226	0.0100	"	0.416	ND	54.3	50-150	15.1	25	
Fluoranthene	0.255	0.0100	"	0.416	ND	61.3	50-150	11.5	25	
Fluorene	0.259	0.0100	"	0.416	ND	62.3	36-134	10.3	52	
Indeno (1,2,3-cd) pyrene	0.240	0.0100	"	0.416	ND	57.7	19-138	13.6	43	
Naphthalene	0.253	0.0100	"	0.416	0.00416	59.8	50-150	11.9	25	
Phenanthrene	- 0.266	0.0100	"	0.416	0.00416	62.9	50-150	13.0	25	
Pyrene	0.250	0.0100	"	0.416	ND	60.1	50-150	6.58	25	
Surrogate: p-Terphenyl-d 14	0.245		"	0.333		73.6	42-141			

North Creek Analytical - Bothell	The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210
Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290
Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210
Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383 .9310 fax 541.382 .7588
Anchorage 3209 Denali Street, Anchorage, AK 99503
907.334.9338 fax 907.334.9339

Foster Wheeler Environmental Corporation 12100 NE 195th St
Bothell WA/USA, 98011

Project: DPE Extraction Well Construction
Project Number: Not Provided
Project Manager: Bryan Graham

Amended Report Issued: 01/07/03 08:11

Total Metals by EPA 6000/7000 Series Methods - Quality Control
 North Creek Analytical - Bothell

Analyte	Result	Reporting	Limit	Units		Spike	Source			\%REC
			Result		Limits	RPD	RPD	Limit	Notes	

Batch 2L12040: Prepared 12/12/02 Using EPA 3050B

Blank (2L12040-BLK1)							
Lead	ND	0.500	$\mathrm{mg} / \mathrm{kg}$				
LCS (2L12040-BS1)							
Lead	41.3	0.500	$\mathrm{mg} / \mathrm{kg}$	40.4	102	$80-120$	
LCS Dup (2L12040-BSD1)							
Lead	42.0	0.500	$\mathrm{mg} / \mathrm{kg}$	40.8	103	$80-120$	1.68

Matrix Spike (2L12040-MS1)				Source: B2L0225-01			
Lead	45.7	0.500	$\mathrm{mg} / \mathrm{kg}$ dry	42.9	1.49	103	$62-137$

Matrix Spike Dup (2L12040-MSD1)		Source: B2L0225-01							
J 4	45.3	0.500	$\mathrm{mg} / \mathrm{kg}$ dry	42.5	1.49	103	62-137	0.879	30
1... Spike (2L12040-PS1)					urce	0225			
Lead	55.3	0.500	$\mathrm{mg} / \mathrm{kg}$ dry	52.6	1.49	102	75-125		

Batch 2L13036: Prepared 12/13/02 Using EPA 3050B

Blank (2L13036-BLK1)							
Lead	ND	0.500	$\mathrm{mg} / \mathrm{kg}$				
LCS (2L13036-BS1)							
Lead	41.9	0.500	$\mathrm{mg} / \mathrm{kg}$	41.7	100	$80-120$	
LCS Dup (2L13036-BSD1)							
Lead	42.6	0.500	$\mathrm{mg} / \mathrm{kg}$	41.7	102	$80-120$	1.66

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Anchorage 3209 Denali Street, Anchorage, AK 99503 907.334.9338 fax 907.334.9339

Batch 2L13036: Prepared 12/13/02 Using EPA 3050B

Batch 2L23028: Prepared 12/20/02 Using EPA 3050B
Blank (2L23028-BLK1)

Amar Gill, Project Manager

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420 .9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Anchorage 3209 Denali Street, Anchorage, AK 99503 907.334 .9338 fax 907.334 .9339

Foster Wheeler Environmental Corporation 12100 NE 195th St
Bothell WA/USA, 98011

Project: DPE Extraction Well Construction
Project Number: Not Provided
Project Manager: Bryan Graham

Amended Report Issued: 01/07/03 08:11

BTEX, MTBE, Naphthalene, and n-Hexane by WA VPH - Quality Control North Creek Analytical - Bothell

	Reporting			Spike	Source		\%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	\%REC	Limits	RPD	Limit	Notes

Batch 2L05020: Prepared 12/05/02 Using EPA 5030B [MeOH]

Blank (2L05020-BLK1)						
Methyl tert-butyl ether	ND	0.100	$\mathrm{mg} / \mathrm{kg}$			
Benzene	ND	0.0100	"			
Toluene	ND	0.0100	"			
Ethylbenzene	ND	0.0100	"			
m,p-Xylene	ND	0.0200	"			
o-Xylene	ND	0.0100	"			
Naphthalene	ND	0.0100	"			
n-Hexane	ND	0.0200	"			
Surrogate: 1,2-DCA-d4	3.94		"	4.00	98.5	57-139
Surrogate: Toluene-d8	3.53		"	4.00	88.2	66-122
3ate: 4-BFB	3.26		"	4.00	81.5	62-121

blank (2L05020-BLK2)

Methyl tert-butyl ether	ND	0.100	$\mathrm{mg} / \mathrm{kg}$			
Benzene	ND	0.0100	"			
Toluene	ND	0.0100	"			
Ethylbenzene	ND	0.0100	"			
m,p-Xylene	ND	0.0200	"			
o-Xylene	ND	0.0100	"			
Naphthalene	ND	0.0100	"			
n -Hexane	ND	0.0200	"			
Surrogate: 1,2-DCA-d4	4.16		"	4.00	104	57-139
Surrogate: Toluene-d8	3.73		"	4.00	93.2	66-122
Surrogate: 4-BFB	3.26		"	4.00	81.5	62-121
LCS (2L05020-BS1)						
Benzene	1.05	0.0100	$\mathrm{mg} / \mathrm{kg}$	1.00	105	73-133
Toluene	0.986	0.0100	"	1.00	98.6	68-130
Surrogate: 1,2-DCA-d4	4.62		"	4.00	116	57-139
Surrogate: Toluene-d8	3.92		"	4.00	98.0	66-122
Surrogate: 4-BFB	3.41		"	4.00	85.2	62-121

 custody document. This analytical report must be reproduced in its entirety.

Foster Wheeler Environmental Corporation 12100 NE 195th St Bothell WA/USA, 98011

Project: DPE Extraction Well Construction
Project Number: Not Provided Project Manager: Bryan Graham

Amended Report Issued: 01/07/03 08:11

BTEX, MTBE, Naphthalene, and n-Hexane by WA VPH - Quality Control North Creek Analytical - Bothell

Analyte	Reporting			Spike	Source		\%REC		RPD	
	Result	Limit	Units	Level	Result	\%REC	Limits	RPD	Limit	Notes
Batch 2L05020: Prepared 12/05/02	Using EPA 5030B [MeOH]									
LCS Dup (2L05020-BSD1)										
Benzene	1.04	0.0100	$\mathrm{mg} / \mathrm{kg}$	1.00		104	73-133	0.957	20	
Toluene	0.983	0.0100	"	1.00		98.3	68-130	0.305	20	
Surrogate: 1,2-DCA-d4	4.63		"	4.00		116	57-139			
Surrogate: Toluene-d8	3.90		"	4.00		97.5	66-122			
Surrogate: 4-BFB	3.49		"	4.00		87.2	62-121			
Matrix Spike (2L05020-MS1)	Source: B2L0068-06									
Benzene	1.07	0.0100	$\mathrm{mg} / \mathrm{kg}$ dry	1.25	ND	85.6	62-138			
Toluene	1.10	0.0100	"	1.25	ND	88.0	44-133			
Surrogate: 1,2-DCA-d4	4.93		"	4.99		98.8	57-139			
Surrogate: Toluene-d8	4.34		"	4.99		87.0	66-122			
Surrogate: 4-BFB	3.92		"	4.99		78.6	62-121			
Matrix Spike Dup (2L05020-MSD1)					ource:	L0068-				
Benzene	1.00	0.0100	$\mathrm{mg} / \mathrm{kg}$ dry	1.25	ND	80.0	62-138	6.76	25	
Toluene	0.997	0.0100	"	1.25	ND	79.8	44-133	9.82	25	
Surrogate: 1,2-DCA-d4	4.84		"	4.99		97.0	57-139			
Surrogate: Toluene-d8	4.09		"	4.99		82.0	66-122			
Surrogate: 4-BFB	3.77		"	4.99		75.6	62-121			

North Creek Analytical - Bothell

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA $98011-8244$ 425.420.9200 fax 425.420.9210
Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290
Portiand 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210
Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588
Anchorage 3209 Denali Street, Anchorage, AK 99503 907334.9338 fax 907.334.9339

Foster Wheeler Environmental Corporation	Project: DPE Extraction Well Construction	
12100 NE 195th St	Project Number: Not Provided	Amended Report
Bothell WA/USA, 98011	Project Manager: Bryan Graham	Issued: $01 / 07 / 0308: 11$

Physical Parameters by APHA/ASTM/EPA Methods - Quality Control North Creek Analytical - Bothell

	Reporting			Spike	Source		\%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	\%REC	Limits	RPD	Limit	Notes

Batch 2L10020: Prepared 12/10/02 Using Dry Weight
Blank (2L10020-BLK1)

Dry Weight	100	1.00	$\%$

Batch 2L10021: Prepared 12/10/02 Using Dry Weight
Blank (2L10021-BLK1)

Dry Weight	99.8	1.00	$\%$

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420 .9200 fax 425.420 .9210
Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290
Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210
Bend 20332 Empire Avenue. Suite F-1, Bend, OR 97701-5711 541.383 .9310 fax 541.382 .7588
Anchorage 3209 Denali Street, Anchorage, AK 99503 907.334.9338 fax 907.334.9339

Foster Wheeler Environmental Corporation	Project: DPE Extraction Well Construction	
12100 NE 195th St	Project Number: Not Provided	Amended Report
Bothell WA/USA, 98011	Project Manager: Bryan Graham	Issued: 01/07/03 08:11

Notes and Definitions

G-01 Results reported for the gas range are primarily due to overlap from diesel range hydrocarbons.
I-06 The analyte concentration may be artificially elevated due to coeluting compounds or components.
Q-01 The spike recovery for this QC sample is outside of established control limits. Review of associated batch QC indicates the recovery for this analyte does not represent an out-of-control condition for the batch.
The spike recovery for this QC sample is outside of NCA established control limits due to sample matrix interference.
The RPD value for this QC sample is above the established control limit. Review of associated QC indicates the high RPD does not represent an out-of-control condition for the batch.
Q-34 The sample container submitted for volatile analysis had either headspace or air bubbles greater than $1 / 4$ inch in diameter.
S-01 The surrogate recovery for this sample is not available due to sample dilution required from high analyte concentration and/or matrix interferences.

The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.
The recovery of this surrogate is outside control limits due to sample dilution required from high analyte concentration and/or matrix interferences.

DET Analyte DETECTED
ND Analyte NOT DETECTED at or above the reporting limit
NR Not Reported
dry Sample results reported on a dry weight basis
RPD Relative Percent Difference

APPENDIX C

PILOT TEST PHOTOGRAPHS

C. 1 DPE WELL 01MW-18 WITH STINGER EXTRACTION POINT SET AT 20 FEET BELOW TOP OF CASING
C. 2 DPE WELL 01MW-18 WITH STINGER EXTRACTION POINT SET AT 23 FEET BELOW TOP OF CASING
C. 3 DPE EFFLUENT STREAM TREATMENT SYSTEM OIL/WATER SEPARATOR AND ACTIVATED CARBON UNITS
C. 4 HOLDING TANK FOR EFFLUENT WATER STREAM FROM OIL/WATER SEPARATOR

Photograph C. 1 DPE Well 01MW-18 with Stinger Extraction Point Set at 20 feet below Top of Casing

Photograph C. 2 DPE Well 01MW-18 with Stinger Extraction Point Set at 23 feet below Top of Casing

Photograph C. 3 DPE Effluent Stream Treatment System - Oil/Water Separator and Activated Carbon Units

Time Oil Company
Cleanup Action Plan January 2003
2737 West Commodore Way

Photograph C. 4 Holding Tank for Effluent Water Stream from Oil/Water Separator

APPENDIX D

NOAA SCREENING QUICK REFERENCE TABLES

Guidelines for Sample Collection \＆Storage

soluebio dof spou 12 W ןoj！ 1 Kןeuy

soluebioul dof spou72W leग！ 1 Кןeu \forall

 SP！los Pue лә7eM u！sगuebio
：su0！72as Gu！MO\｜Of 247 07U！paZ！uebio s！ 725 pues 山પ！！ios 241
 the SQuiRT cards are strongly encouraged to review supporting

Further guidance on the recommended application of various significant figures they were originally reported with． other purposes．Screening levels are reported with the number of criteria or clean－up levels．NOAA does not endorse their use for any they do not represent official NOAA policy and do not constitute These tables are intended for preliminary screening purposes only： environmental concentrations are compared to these screening levels． substances which may threaten resources of concern to NOAA， to be affected by hazardous waste sites．To initially identify identifies potential impacts to coastal resources and habitats likely Protection \＆Restoration Division（CPR）of NOAA．The CPR Division The SQuiRT cards were developed for internal use by the Coastal are also included． sample preservation and options for laboratory analytical techniques

e．g．，trace mietal levels reported to represent non－anthropogenically biological effects．This spectrum ranges from presumably non－toxic which have been associated with various probabilities of adverse
 Multiple sediment screening values have been included in the NOAA potential contaminant sources to aquatic habitats of concern． estimate which contaminants may be elevated and thus represent aquatic exposures．NOAA screens soil concentrations only to to provide perspective．Soil values are not used by NOAA to estimate standards．Soil standards for different land use categories are listed compounds in soil are screened against risk－based Canadian soil concentrations found in natural soils of the United States．Organic inorganic contaminant levels in soils are compared to the average for contaminated soils or sediments．For screening purposes， Promulgated criteria similar to the AWQC are generally not available
applicable to groundwater，are also provided on the SQuiRT cards． （MCLs），applicable to drinking water sources and secondary MCLs specific dilution factors are used．Maximum Contaminant Levels times the applicable AWQC for screening．If available，suitable site－ and upon discharge of groundwater to surface water，CPRD uses 10 against AWQC．However，given the dilution expected during migration hardness－dependent．Groundwater concentrations are also screened formulae to calculate exact criteria for elements whose criteria are been updated to show values for just filtered samples，as well as the AWQC，when available．SQuiRTs for trace element AWQCs have and long－term，concentrations are compared directly with the chronic Because releases from hazardous waste sites are often continuous Quality Criteria（AWQC）for the protection of aquatic organisms． contaminant concentrations to their applicable，EPA Ambient Water For surface water samples，the CPR Division compares measured es

（d）S S SOH OHSOHd

 （uw）ヨSヨNVONVW LEAD（Pb） $\operatorname{IRON}\left(F_{B}\right)$ CHROMIUM，total
COPPER（Cu） CHROMIUM（Cr
CHROMIUM，total
 （pJ）wniwa $\vee 0$ BERYLLIUM（ $B e$ ） BARIUM（ Ba ） ARSENIC，total ARSENIC（ $A \theta^{+5}$ ）
 z
c
c
z
z
c
z
\vdots
\vdots
\vdots -1
π
$>$
0
m
m
r
m
3
m
2
-1

GROUND
WATER

[^16]

	HARDNESS CALCULATIONS		UNFILTERED TO FILTERED CALCULATIONS		
TRACE	FOR FILTEREED FRESHWATER CRITERIA		CONVERSION FACTORS		
ELEMENT	CMC	CCC	Fresh CMC	Fresh CCC	Marine CMCICCC
ARSENIC (AS)			$C F=1:$	$C F=1$	$C F=1$
CADMIUM (Cd)	$C M C=e^{1.128[\ln (\text { hardness })]-3.6867}$	$\mathrm{CCC}=e^{0.7852[\ln (\text { hardness })] \cdot 2.715}$	$\begin{aligned} C F= & 1.136672 \\ & 0.041838[\ln \text { (hardness) }] \end{aligned}$	$\begin{aligned} C F= & 1.101672- \\ & 0.041838[\ln (\text { hardness })] \end{aligned}$	$C F=0.994$
CHROMIUM III (CR ${ }^{+3}$)	$C M C=\theta^{0.819[\ln \text { (hardness) }]+3.7256}$	CCC $=e^{0.819[\ln \text { (hardness) }]+0.6848}$	$C F=0.316$	$\mathrm{CF}=0.860$	
CHROMIUM VI (Cr ${ }^{+6}$)			$C F=0.982$	$C F=0.962$	$\mathrm{CF}=0.993$
COPPER (Cu)	$C M C=e^{0.9422[\ln \text { (hardness) }] \cdot 1.7}$	$C C C=e^{0.8545[\ln (\text { hardness })] \cdot 1.702}$	$C F=0.960$	$C F=0.960$	$C F=0.83$
LEAD (Pb)	$C M C=e^{1.273[\ln (\text { hardness) }]-1.46}$	$C C C=e^{1.273[\ln \text { (hardness)] } 4.705}$	$\begin{aligned} C F= & 1.46203 \\ & 0.145712[\ln (\text { hardness })] \end{aligned}$	SAME AS CMC	$C F=0.951$
MERCURY (Hg_{g})			$C F=0.85$	$C F=0.85$	$C F=0.85$
NICKEL (NI)	$C M C=e^{0.846[\ln (\text { hardness })]+2.255}$	$C C C=e^{0.846[\ln (\text { hardness })]+0.0584}$	$C F=0.998$	$C F=0.997$	$C \mathrm{~F}=0.990$
SELENIUM (Se)			The freshwater criteria are expr a CF of 0.922 may be used.	ssed as total recoverable:	$\mathrm{CF}=0.998$
SILYER (Ag)	$C M C=e^{1.72[\ln (\text { hardness })] \cdot 6.52}$	CCC - No criteria	$C F=0.85$		$C F=0.85$
ZINC (Zn)	$C M C=e^{0.8473[\ln (\text { hardness })]+0.884}$	$C C C=e^{0.8473[\ln \text { (hardness) }+0.884}$	$C F=0.978$	$C F=0.986$	$C F=0.946$

 werem.
1-66 LyOdヨy IVWZVH

STyロ
F

	 $0 十 89 \cdot 92 G \cdot 90 Z: \mid 21$ OLOO－GII86 ио76и｜ияEM＇ə177e2S 	IVWZVH／VVON wemyong 1084ग！	 	：HOS zurmipes ： 1978 M
8	： 7 эequoう ио！7eudoful	12JOW 10		：Soodnos

[^17]| $181 \angle O 1$ | allyllino Thyov |
| ---: | ---: |
| ezOLO： | NIBloyov | SATIHLIN＇STTILF＇IOA aalyo THO aNヨal7גNIA

 TETRACHLOROETHANE PROPYLENE DICHLORIDE
STYRENE

 ETHYL BENZENE
 DICHLOROETHYLENE 1,2 －tran

1.66 Lل잉․

	9989．9Z9．90Z： Ke」 $_{1}$ Oち\＆9•9ZG•90Z：｜ 1 ＇ 3 ＇N NBM 7ulod pues OO9L	IVWZYH／YYON ивuyong ןeypiw	
6	$: \perp \supset V \perp$ NOJ NOI $1 \forall W \downarrow O \pm N I$	घyOW yO」	：Soodnos

NICKEL（NI）
POTASSIUM（K）
SELENIUM（SE）
SILVER（AG）
SODIUM（Na）
STRONTIUM（Sr）
THALLIUM（TI）
TIN（SH）
VANADIUM（V）
ZINC（ZH）
CYANIDE（HCN）
COBALT（CO）
COPPER（CU）
IRON（Fe）
LEAD（Pb）
MAGNESIUM（MG）
$M A N G A N E S E ~(M n) ~$
$M E R C U R Y(H g)$

\gg

\＆ $106-80106$
$0089(08) 0029$
00890029
$(98) 0029$
00890029
$0089(0 \varepsilon) 0029$

00890029
ε ZฤLL $\begin{gathered}\text { VL৮LL } 00890029 \\ 00890029\end{gathered}$ 18
38
88
8%
80
88
88
80
 6800
$6200(240)$
 $6200(330)$
$6200(85) 6800$

10
8
0
0
88
88
88
8

$\varepsilon \forall 190 L$ ع90L（09）00
$0089(99) 00 Z 9$
0089

These tables were developed for internal use for screening purposes only：they do not represent official NOAA policy and do not constitute criteria or clean－up levels．
All attempts havé been made to ensure accuracy；however，NOAA is not liable for errors．Values are subject to changes as new data become avallable．

C

SOURCES：	FOR MORE INFORMATION CONTACT：	10
All method numbers refer to EPA SW－846，Update III，with changes as proposed in Update IV． Options shown are generally for chemical classes；more detailed information may be available for specific compounds GC／MS methods allow for scanning a broad range of volatile and semi－volatile compounds，but suffer from interference and higher detection limits．Specific determination methods and HPLC methods allow for more precise determinations of specific compounds of interest．	Michael 7600 Sand Point Way N．E． Buchman Seattle，Washington 98115－0070 Tel： $206 \cdot 526 \cdot 6340$ NOAA／HAZMAT Fax：206•526•6865 Internet：MFB＠HAZMATNOAA．GOV	

（xO1）SヨaITVH गIN VOyO TV」O1 SJIN VoyO ヨาILVาOA－IW3S sヨ」VivH」Hd

0
n
0
0
ORGANOPHOSPHATES
PAHS SヨNIVOTHJONVQヌO NON－HALOGENATED VOLATILES SヨNIWVSO\＆IIN
（sशASO｜dxヨ）SOILVWOXVOZLIN SヨNOLヨX pue SJILVWOXVOXLIN Sヨalw pue sallylin HALOETHERS SaIO $\forall \lambda X O N \exists H d ~ Q \exists \perp \forall N I \mathbb{O 7 H O}$

n
0
3
0
0
6
2
0
0

80978	
00228	
$00 \angle Z 8$	
Q0LZ8	
200278	
002Z8	（madd \downarrow ） $980 \downarrow$
z00LZ8	
200278	
80978	
00LZ8	
	（midd） 1 ） 9 98 190t （wdd goo OSOt
00L28	
80928	
$00 \angle 28$	
$\begin{gathered} 200 \angle Z 8 \\ 00 \angle Z 8 \end{gathered}$	（mdd L＇0）Stot
80978	
$\begin{gathered} \text { QOHLヨW } \\ \text { SWIOO } \end{gathered}$	\&SOOHLヨW व1ヨI』

EXTRACTION METHODS		CLEANUP
Water	Soil／Sediment	METHOD
5021 5030B 5032	502150325035	
83188321 B	83188321 B	8318
8280B 8290A	8280B 8290A 3545A	8280 B 8290 A
3510 C 3520 C 3535 A	3540 C 3550B	3620B 3640A
8151A 8321B 3535A	8321B 8151A 3545 A	8151A 3620B
3510 C 3520 C	3540 C 354535508	3620B 3640A
$\begin{gathered} 5030 B-50328031 \\ 8032 A 8316 \end{gathered}$	5031.50325035	8032A
3510 C 3520 C ． 3535 A	$3540 C 3545$ 3550B	3620 B 3640 A
8330A－8332	8330A－8332	8330A－83323620B
3510C 3520C 8070A 5030B－5032	3540 C 35453550 B 8070A 5021503150325035	3610B 3620B 3640A 8070A
3510 C 3520 C 3535 A	3540 C 3545 A 3550 B 3562	3620 B 3630 C 3640A 3660
3510 C 3520 C 3535 A	3540 C 3545 A 3550 B	3620B
3510 C 3520 C	$3540 C 3545$／3550B 3561	3610 B 3630 3640A 3650B
3510 C 3520 C 3535 A	3540C 3545A 3550B 3665A 3562	$\begin{gathered} 3620 \mathrm{~B} 3630 \mathrm{C} 3640 \mathrm{~A} 3660 \\ 3665 \mathrm{~A} . \end{gathered}$
3510 C 3520 C	3540 C 3545 3550B	3630 3640A 3650B 8041
3510 C 3520 C 3535 A	3540 C 3545.3550 B	3610B 3620B 3640A
3510 C 3520 C 3535 A	3540 C 3545 A 3550 B	3640 A 3650B 3660
9020B 9022		－
5030B－5032	5021503150325035	

8LZ08 99108

89108
ट206 90Z06
$\forall 1908$
1508
Ұ9LZ8 VZ808
$\forall S L Z B 0018$
タเヤ18
8081B 8275A
葡 $\forall 0208$
1608
६モO8 $\forall Z E 08$ เह08 1118 $\stackrel{\infty}{\stackrel{\infty}{\square}}$
1Z18
$\forall 06 Z 8808 Z 8$
8021B

Water Soil／Sediment
$09988099 \varepsilon \forall 0 t 9 \varepsilon$

．

9029E $2988-\forall 0 \wp ร 8$

$\forall 0+9880298$
$70+9890798$
8029ε VISI 8 $\forall 0628$ g08
dกNVヨ10

1．66 LyOdヨy IVWZVH

$7{ }^{\sim} 00$	sKep か）	$\varepsilon^{0.1} 1000$	$\forall O N$	SNOgyVJOTVH 3าgV39xind
7 Cu	skep of	と＇こ）${ }^{\text {¢ }} 1000$	$\forall O N$	SNOQyV
7u 09ฉ7\％0001		Yıep өul u！enols عОot＇ 1000	071	SNOgrvjoralh JILVWorv avaijnnkiod
7u0001		O．t＇1000	971	sajısa 3ıvาVHLHd
－7w 000		$\varepsilon^{\text {O．t＇1000 }}$	071	STON3Hd
ך 09\％／7w 0001		＇0．71000	טי 071	sadiollsad
		0.71000	971	9 gJd
7 m 00 s	sKEp 82	て，	פר＇	$120610206{ }^{\circ}$ Ои pourow रa S3CITVH JINVOYO TVIO1
7 moOr	skep $8 乙$		פ＇d	O906＇ou pourou र4．＇NOgYV JINVOVO TV101
7 m 000 l	skep 82	て30\％＇100	5	asvayo pue 710
7 m 0001		ع0．t＇1000	271＇	SヨNOL彐X गlา
7w0001		$\varepsilon^{0.7}{ }^{1000}$	勺勺	Saniwrsorill
	\cdots－SKEptl	عう．t＇100	97\％	Sヨulyln
7 Lu 000 L		ع0．＇100	971	S\＆3HLBOTVH
7 m 000 L		ع0．t＇1000	ט＇ 071	SNYAn』 ONV SNIXOIG
$\text { ך } 0001$	 	$\begin{aligned} & \varepsilon^{0 . b^{\prime} 1000} \\ & 0 . b^{\prime} 1000 \end{aligned}$	$\text { פ׳' פר } 37$	
				SJINVO\＆O
$\begin{aligned} & 7 \mathrm{~m} 000 \mathrm{l} \\ & 7 \mathrm{w} 000 \mathrm{l} \end{aligned}$	sypuow 9 8Кер $\dagger 1$	Z＞ $\mathrm{Hd}_{\text {ol }} \varepsilon_{\mathrm{ONH}}$ 0106 pounem өes $\mathrm{ZL}<\mathrm{H}^{\prime}$＇Oっ力 1000	פ＇d פ＇d	NOIIVIavy wniavy anv＇VIヨg＇VHdTV OLO6＇Oи роцдәuka ヨOINVス） GH pue $9+\mathfrak{J}$ 7dәoxə＇STV 1 W
60027 m 009	supuour 9	$\tau>\mathrm{Hd} \text { of " } \varepsilon_{\mathrm{ONH}}$	9＇d	
6 00zनu 00\％	sरep 82	$z>\mathrm{Hd} \text { of " } \varepsilon_{\mathrm{ONH}}$	9 d 9＇d	$(9+43) ~ a+$ WกIWOXHO
－00\％7u00v				SJINVのلONI
$\exists Z 1 S$ J1dWVS	\exists WIL 9NIC7OH WnWIXVW	NOILVAd 3 S ${ }_{\text {d }}$	，dヨNIV1NO3	$7 \vee 1$ a

PEL, as the geometric mean of the 50% of impacted; toxic samples below which adverse effects are expected to occur only rarely. The

 begin to be observed in sensitive species. The ERM is simply the the studies compiled, it represents the value at which toxicity may at the low end of a range of levels at which effects were observed in
 which has been screened for only those samples which were identified $10^{\text {th }}$ percentile concentration of the available sediment toxicity data
 Effects Levels (PELS) are based upon a similar data compilations, plus the marine Threshold Effects Levels (TELS) and Probable

 footnoted as such. Separate values are provided for either berichmarks are available only on a TOC normalized basis, and are are screened against published sediment quality benchmarks. Some For sediment-associated contaminants, dry weight concentrations development, their performance, and their limitations. they be applied without a reasonable understanding of their for varying predictive goals. They are not interchangeable. Nor should Sediment quality benchmarks have been derived in a variety of ways compounds which are more probably elevated to toxic levels. necessarily predict toxicity. Upper thresholds(e.g., PELs) identify consideration pose no potential threat. Conversely, it does not confidence, that any contaminant sources eliminated from future lower-threshold values (e.g., TELs) ensures, with a high degree of

[^0]: Notes:
 Detections above cleanup levels are indicated in bold italics.
 1/ MTCA Method A cleanup levels, unless otherwise noted
 2/Benzene present in groundwater
 3/ No detectable benzene in groundwater
 4/ NOAA SQuiRT value for freshwater maximum concentrations
 < symbol indicates result is less than method reporting limit
 $\mu \mathrm{g} / \mathrm{L}=$ micrograms per liter
 $\mathrm{mg} / \mathrm{L}=$ milligrams per liter

[^1]: Detections above cleanup levels are indicated in bold italics.
 1/ MTCA Method A level for unrestricted land use
 2/ MTCA Method B carcinogenic level
 $3 /$ All other gasoline mixtures
 4/ Gasoline mixtures without benzene and the total of ethylbenzene, toluene, and xylene $<1 \%$ of the gasoline mixture.
 < symbol indicates that result is less than method reporting limit
 na $=$ No analysis requested
 $\mathrm{mg} / \mathrm{kg}=$ milligrams per kilogram

[^2]: Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420 .9200 fax 425.420 .9210

 Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

 Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 9405 SW Nimbus Avenue, Bea
 503.906 .9200 fax 503.906.9210
 Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383 .9310 fax 541.382.7588

[^3]: Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210

 Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924 .9200 fax 509.924.9290

 Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

 Bend 20332 Empire Avenue, Suite F-1, Bend, OR $97701-5711$
 541.383 .9310 fax 541.382 .7588

[^4]: - خCreek Analytical - Bothell

 The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

 Amar Gill, Project Manager

[^5]: - कh Creek Analytical - Bothell
 custodyd document. This analyicical report must be erporoduced in is entirea.

[^6]: * Creek Analytical - Bothell

 The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

 Amar Gill, Project Manager

[^7]: * Creek Analytical - Bothell

 The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

[^8]: 5 Creek Analytical - Bothell
 The results in this report apply to the samples analyzed in accordance with the chain of
 custody document. This analytical report must be reproduced in its entirety.
 rn

[^9]: | - Creek Analytical - Bothell | The results in this report apply to the samples analyzed in accordance with the chain of
 custody document. This analytical report must be reproduced in its entirety. |
 | ---: | :--- |

[^10]: - th Creek Analytical - Bothell

 The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

[^11]: The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

[^12]: -h Creek Analytical - Bothell
 The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

[^13]: The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

[^14]: - फ Creek Analytical - Bothell

 The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

[^15]: - Th Creek Analytical - Bothell

 The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

[^16]: These tables were developed for internal use for screening purposes only：they do not represent official NOAA policy and do not constltute criteria or clean－up levels．
 All attempts have been made to ensure accuracy；however，NOAA is not liable for errors．Yalues are subject to changes as new data become avallable．

[^17]:

