
Former Hardel Mutual Plywood SiteRECEIVED 1210 West Bay Drive NW Olympia, Washington WA State Deportment of Ecology (SWRO)

Post - Construction Quarterly Groundwater Monitoring Report

June 3, 2011

Prepared For: Hardel Mutual Plywood Corporation

Prepared By:

GREYLOCK CONSULTING LLC

GC Project No. 0401.4

TABLE OF CONTENTS

1.0 INTRODUCTION	1
1.1 Site Description.	1
1.2 Project Background	
1.3 Purpose	
2.0 FIELD ACTIVITIES	2
2.1 Water Level Measurements	2
2.2 Groundwater Sampling	3
3.0 ANALYTICAL LABORATORY RESULTS	3
3.1 NWTPH-Dx Results	3
3.2 PAH Results	4
4.0 CONCLUSIONS.	4
5.0 LIMITATIONS	
6.0 REFERENCES	6

Attachments:

Figure 1 – Vicinity Map

Figure 2 – Inferred and Generalized Groundwater Contours

Table 1 - Groundwater Elevations: Hardel Mutual Plywood Site

Table 2 - Groundwater Analytical Results: Hardel Mutual Plywood Site

Appendix A- Analytical Report

Appendix B - Well Monitoring Data Sheets

1.0 INTRODUCTION

This report documents the results of the third round of quarterly compliance monitoring for groundwater at the former Hardel Mutual Plywood Site, located at 1210 West Bay Drive NW in Olympia, Washington (Figure 1).

The goal of the quarterly groundwater monitoring is to evaluate the long-term effectiveness of the Interim Action cleanup that was completed in October, 2010. Nine monitoring wells from within and down gradient of excavated areas were sampled, and groundwater flow direction and gradient were assessed.

1.1 Site Description

The Former Hardel Mutual Plywood Site (Site) is located at 1210 West Bay Drive NW in Olympia, Washington (Thurston County tax parcel numbers 72600200100 & 91013100000). The property is 17.8 acres in size, consisting of approximately 6.7 acres of uplands and 11.1 acres of tide lands. The upland portion of the property consists primarily of crushed concrete surfacing and asphalt pavement. The property is generally level. It is bordered to the north by Budd Inlet and the former Delson Lumber Site, to the south by the former Reliable Steel Site, to the west by West Bay Drive NW and residential/commercial properties, and to the east by Budd Inlet. The Site is presently vacant.

1.2 Project Background

An Interim Action cleanup which included the excavation of diesel/heavy oil-impacted soils at the Site, was conducted between June and October of 2010 (Greylock, 2010). Greylock staff observed the direct excavation by Wyser Construction of diesel/heavy oil-impacted soils from a total of three areas on the Site in July-September 2010.

Approximately 23,331 tons of diesel/heavy oil-impacted soil and debris was excavated and transported off-site by Envirocon Trucking and Rock-On Trucking to Weyerhauser's permitted landfill in Cowlitz County, Washington.

Treated water from the work area was discharged to the sanitary sewer system between July 9th and September 21st, 2010 in accordance with the LOTT "Discharge Authorization Letter".

The Interim Action report concluded that the removal of free product, the removal of contaminated groundwater, and the removal of diesel/heavy oil-impacted soil in the three

excavated areas was successful in achieving compliance with the Model Toxics Control Act (MTCA) target soil cleanup levels.

Six of the groundwater monitoring wells previously installed at the site by Greylock were decommissioned by ESN Northwest during the Interim Action to accommodate soil excavation activities. The decommissioned wells included MW-1, MW-4, MW-5, MW-7, MW-8, and MW-9. The previously installed monitoring wells MW-2, MW-3, and MW-6 remained intact at the Site. Five new compliance monitoring wells were installed at the site in November, 2010 for post-construction groundwater monitoring (MW-10, through MW-15). Approximate monitoring well locations are shown on Figure 2.

1.3 Purpose

The purpose of this assessment was to acquire groundwater samples from the nine wells for laboratory analyses using low flow purging techniques, to determine groundwater flow direction and gradient, and to determine if groundwater analytical results were in compliance with site cleanup standards. Groundwater samples were submitted to the ESN Northwest's laboratory for the following analyses:

- Total Petroleum Hydrocarbons as Diesel and Motor Oil using Method NWTPH-Dx and
- Polyaromatic Hydrocarbons (PAHs) using EPA Method 8270.

2.0 FIELD ACTIVITIES

2.1 Water Level Measurements

Water levels were measured using a well probe at all nine well locations on May 16, 2011. Water level measurements are provided in Table 1. Shallow groundwater at the site occurred at depths ranging from 0.65 to 3.16 ft below the top of casing (TOC) of monitoring wells.

All monuments were filled with surface water upon removing the monument's lids. Surface water was removed from the monument until the water level was below the top of the well casing prior to removing the well cap.

Figure 3 shows the groundwater flow direction across the site on May 16, 2011. In general, groundwater flow is from west to east/northeast across the site.

At the northern part of the site, groundwater flow is to the east-northeast with a gradient of approximately 0.18 ft per ft near MW-13. At the southern part of the site, groundwater flow is

to the east with a gradient of approximately 0.003 ft per ft near MW-2. The groundwater gradient is steepest along the western boundary of the site, and flattens out across the center of the site.

2.2 Groundwater Sampling

Groundwater samples were collected from nine onsite monitoring wells using a peristaltic pump. The wells were purged under low flow conditions until field parameters such as dissolved oxygen, turbidity, temperature, conductivity, and pH reached relatively constant values. Field parameters were measured with a YSI 6820 V2 Multi-meter fitted with a flow through cell. Once field parameters stabilized, the flow through cell was disconnected and the sample containers were filled directly from the tubing. New tubing was used for each groundwater sample.

All samples were collected in accordance with Greylock's standard operating and decontamination procedures. Samples were collected with gloved hands. New nitrile gloves were worn at each sample location. Samples were placed in preconditioned sterilized-containers provided by ESN Northwest, an Ecology accredited analytical laboratory. Samples were stored on ice in a sealed cooler and transported directly to ESN Northwest in Olympia, Washington in this condition.

No sediment was observed in any of the groundwater samples collected.

3.0 ANALYTICAL LABORATORY RESULTS

Groundwater samples were submitted to ESN Northwest for laboratory testing as outlined below.

- 1. Total Petroleum Hydrocarbons by Ecology Method NWTPHD-Dx, and
- 2. Polyaromatic Hydrocarbons by EPA Method 8270.

Analytical test reports are included in Appendix A. Table 2 compares the results against published Model Toxics Control Act (MTCA) Method A or Method B Cleanup Levels (CLARC, 2011). MTCA Method A cleanup levels were used for screening when available. MTCA Method B Cleanup Levels were used for screening when no Method A Levels were available.

3.1 NWTPH-Dx Results

The NWTPH-Dx Method provides analytical results for diesel and heavy oil range total petroleum hydrocarbons. All nine of the collected groundwater samples analyzed by this method revealed no detectable concentrations above the laboratory's lower reporting limits.

3.2 PAH Results

The EPA 8270 Method provides analytical results for polyaromatic hydrocarbons (PAHs). Groundwater samples from the wells indicated that five wells had no detectable concentrations above the laboratory's reporting limit of 0.1 ug/L. Napthalene was detected at MW-2 at 21 ug/L, MW-10 at 6.1 ug/L, MW-11 at 120 ug/L, and MW-15 at1.1 ug/L. This reported PAH concentration was below the published WDOE target Method B cleanup standard of 160 ug/L. At MW-10, 1-Methylnaphthalene was detected at 1.3 ug/L. Acenaphthylene and Phenanthrene were also detected at MW-10 at 2.2 ug/L and 5.7 ug/L.

No <u>carcinogenic</u> PAHs by test method 8270 were detected above the laboratory's lower reporting limit of 0.1 ppb for all nine of the analyzed groundwater samples.

4.0 CONCLUSIONS

Based on the results of laboratory testing, groundwater at the nine monitoring well locations sampled during the third quarterly "compliance monitoring" event is <u>compliant</u> with Ecology's target Method A or Method B groundwater cleanup levels for diesel/heavy oil-range total-petroleum hydrocarbons and polynuclear aromatic hydrocarbons (PAHs). No carcinogenic PAHs were detected in the nine lab tested groundwater samples collected in the course of this sampling event.

The low concentrations of <u>non-carcinogenic</u> PAHs detected in groundwater sampled from wells MW-2, MW-10, MW-11, and MW-15 may be attributable to the presence of remaining buried treated timber piling supports which were historically installed to provide building foundation and floor support for the former on-site plywood/lumber mill structures.

5.0 LIMITATIONS

We have prepared this report for the exclusive use of Hardel Mutual Plywood Corp. and their authorized agents and regulatory agencies as part of their evaluation of the environmental conditions of the site. This report is not intended for use by others, and the information contained herein is not applicable to other sites. No one except Hardel Mutual Plywood Corp. and their authorized agents should rely on this report without first conferring with Greylock.

Greylock personnel performed this study in accordance with generally accepted standards of care that existed in the state of Washington at the time of this study. We make no other warranty, either expressed or implied.

This report is based on conditions that existed at the time the study was completed. The findings of this report may be affected by the passage of time or events such as a change in property use or occupancy, or by natural events, such as floods, earthquakes, or groundwater fluctuations.

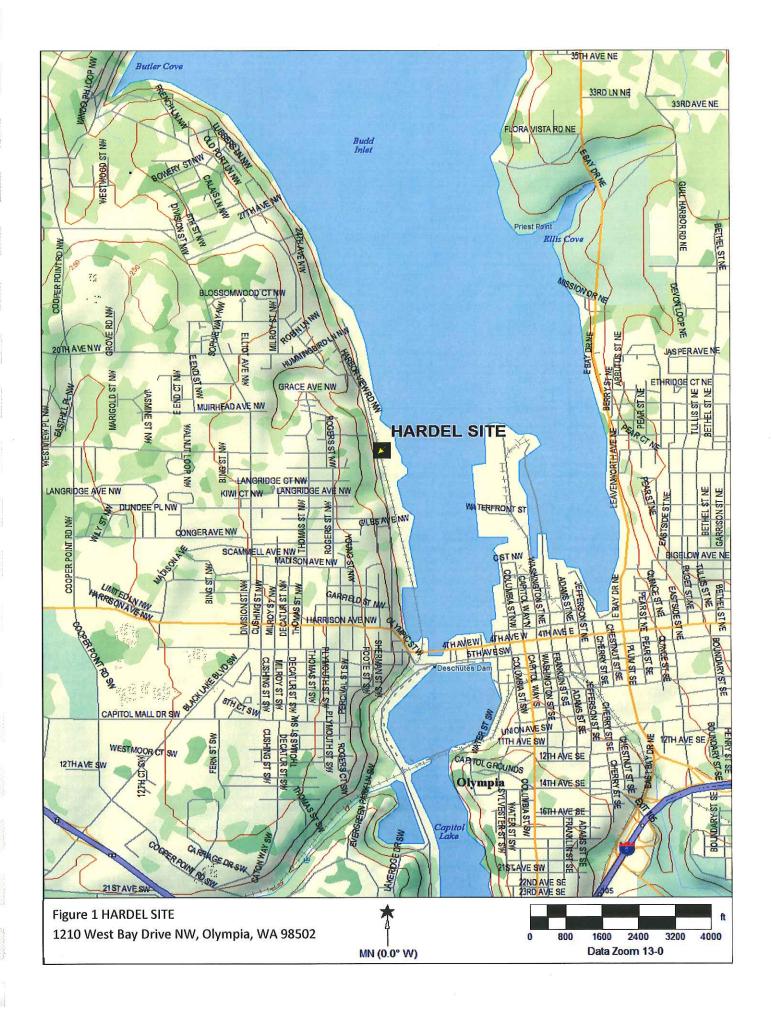
If you have any questions regarding this report, please call us at (253) 661-3520.

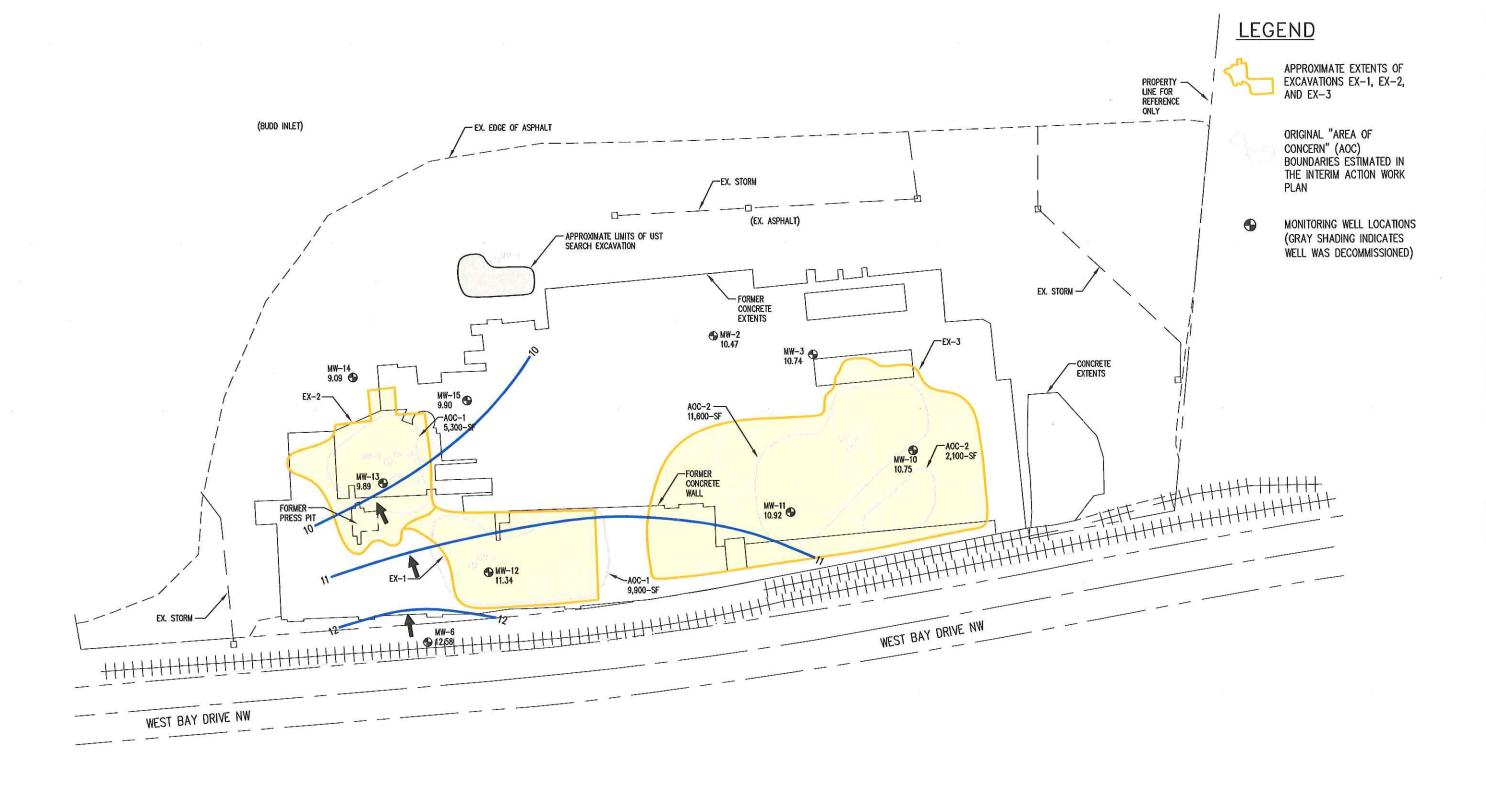
Suzanne Dudziak

Sincerely,

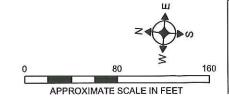
GREYLOCK CONSULTING LLC

Suzanne Dudziak, L.H.G


Principal Hydrogeologist


6.0 REFERENCES

CLARC, 2011. Cleanup Levels and Risk Calculations (CLARC) Washington State Department of Ecology.


Greylock, 2010. Interim Action Closure Report, Former Hardel Mutual Plywood Site, 1210 NW West Bay Drive, Olympia, Washington. December 2010.

FIGURES

Modified from KPFF Demolition and Site Plan, March 2010

FIGURE 2: INFERRED & GENERALIZED
GROUNDWATER CONTOUR MAY 16, 2011

Project : Hardel Mutual Plywood Site
Location : Olympia, Washington
Client : Hardel Mutual Plywood Corp.

Project No: 0401.2

TABLES

Table 1. Groundwater Elevations

Hardel Mutual Plywood Site: 1210 West Bay Drive NW, Olympia, WA

16-May-2011		Low Tide -2.69	ft MLLW @ 113	5 AM
Station	Time	MW	Depth to	Groundwater
		Elevation (ft)	Water (ft)	Elevation (ft)
MW-2	1059	11.68	1.21	10.47
MW-3	1050	11.40	0.66	10.74
MW-6	1132	15.74	3.16	12.58
MVV-10	1125	11.14	0.39	10.75
MW-11	1119	11.32	0.40	10.92
MW-12	1115	12.25	0.91	11.34
MW-13	1111	10.95	1.06	9.89
MW-14	1108	10.53	1.44	9.09
MW-15	1104	11.51	1.61	9.90

		For	Tab Former Hardel Mi Test I All res	Table 2: Groun May 16, lel Mutual Plywood est Methods: NW	Table 2: Groundwater Analytical Results May 16, 2011 Sampling Event Idel Mutual Plywood Site, 1210 West Bay Drive NW, Olympia, WA Test Methods: NWTPH-DX/DX Extended & EPA 8270 All results and limits in parts-per-billion (ppb) or ug/L	alytical Resuge Event st Bay Drive N tended & EPA pillion (ppb) or pillion (ppb) or	ilts W, Olympia, W 8270 ug/L	A			
Test Method NWTPH-DX Extended / EPA 8270	MTCA Method A or Method B Criteria ¹	Sample ID:	MW-2	MW-3	MW-6	MW-10	MW-11	MW-12	MW-13	MW-14	MW-15
	(ng/L)	Date Sampled:	05/16/11	05/16/11	05/16/11	05/16/11	05/16/11	05/16/11	05/16/11	05/16/11	05/16/11
Diesel Heavy Oil	500 500	Results (ug/L): Results (ug/L):	<250 <500	<250 <500	<250 <500	<250 <500	<250 <500	<250 <500	<250 <500	<250 <500	<250 <500
Acenapthene	096	Results (ua/L):	<0.1	0.1	<0.1	×0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	NP^2	Results (ug/L):	<0.1	<0.1	<0.1	2.2	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	4,800	Results (ug/L):	40.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	×0.1	6 0.1
Benzo(a)anthracene	Ą	Results (ug/L):	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	0.1	Results (ug/L):	<u><0.1</u>	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b)fluoranthene	Ą	Results (ug/L):	<u><0.1</u>	<0.1	<0.1	<0.1	√ 1.0 1.0	^ 0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	Ŗ	Results (ug/L):	<u>^0.1</u>	<0.1	40.1	<0.1	0.1	<0.1	^ 0.1	<0.1	4 0.1
Benzo(k)fluoranthene	Ŗ	Results (ug/L):	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	40.1	<0.1	<0.1
Chrysene	Ā	Results (ug/L):	6 0.1	۸ <u>0</u> .1	40.1	٥. د.	V.1.0 1.0	<u></u> 0.1	40.1	^ 0.1	6 0.1
Dibenzo(a,h)anthracene	P	Results (ng/L):	4 0.1	<0.1	<0.1	<0.1 1	^	<0.1	<0.1	<0.1	<0.1
Fluorene	040		~ 0.1	~ 0.1	٥٠.1 د0.1	6 0.1	0.1 1.	<0.1	4 0.1	^ 0.1	<0.1
Fluoranthene	040		6 0.1	<0.1	۸0.1 د	<u>^</u> 0.1	0.1 1.0	<0.1	40.1	6 0.1	<0.1
Indeno(1,2,3-cd)pyrene	B		6 0.1	6 0.1	4 0.1	, 40.1	0.1	×0.1	40.1	<0.1	<0.1
Napthalene	160	Results (ng/L):	27	<0.1 1	<0.1	6.1	120	×0.1	<0.1	<0.1	2
1-Methylnaphthalene	A P	Results (ug/L):	.0 1.0	0.1	۸0.1 د	. .	0.1	<u></u> 0.1	<0.1	<0.1	^ 0.1
2-Methylnaphthalene	32	Results (ug/L):	<0.1	<0.1	<0.1	۸0.1 د	1.0 1.0	<0.1	40.1 1.0	<0.1	<0.1
Phenanthrene	A P	Results (ug/L):	<u>^0.1</u>	۷°.1	40.1 1.0	5.7	1.0	6 0.1	<0.1	<0.1	<0.1 1
Pyrene	480	Results (ug/L):	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Notes:	1- Method	Method A soil cleanup level for un	el for unrestrict	ed land use as	restricted land use as published in the Model Toxics Control Act (MTCA), Chapter 173-340 WAC	e Model Toxics	Control Act (M	ГСА), Chapter	173-340 WA	ci.	
	c	MTCA Method B cleanup levels were used for screening when no method A were available.	cleanup levels	Were used for:	r levels were used for screening when no Method A were available. othod A or Mathod B standard formula value published in CI ARC database for the listed analyte	no ivietnoa A v	Pere available.	stabase for the	listed analytic	4	
	-7	ואף- ואטר דעטווטויקר	1. No ividuiou	ים מסווושואו ומ ל	Stational a louis	a Value publish		מומחמטב והו הוג	ମ ଧାଟଧ କା ଘାଟ୍ଟା ୨ ଜ	ıš	

APPENDIX A

Analytical Report

ESN NORTHWEST CHEMISTRY LABORATORY

Greylock Consulting HARDEL MUTUAL PLYWOOD CORP PROJECT Client Project #0401-3 Olympia, Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analysis of Diesel Range Organics & Lube Oil Range Organics in Water by Method NWTPH-Dx

Sample	Date	Date	Surrogate	Diesel Range Organ	nics Lube	Oil Range Orga	anics
Number	Prepared	Analyzed	Recovery (%)	(ug/L)	ere so a till a	(ug/L)	1010.
Method Blank	5/20/2011	5/23/2011	110%	nd	2 2 2 5	nd	86 G
MW-2	5/20/2011	5/23/2011	139%	nd		nd	
MW-3	5/20/2011	5/23/2011	136%	nd		nd	
MW-6	5/20/2011	5/23/2011	108%	nd		nd	
MW-10	5/20/2011	5/23/2011	75%	nd		nd	
MW-11	5/20/2011	5/23/2011	122%	nd	8	nd	
MW-12	5/20/2011	5/23/2011	67%	nd		nd	
MW-13	5/20/2011	5/23/2011	125%	nd		nd	
MW-14	5/20/2011	5/23/2011	88%	nd		nd	
MW-15	5/20/2011	5/23/2011	102%	nd		nd	

[&]quot;nd" Indicates not detected at the listed detection limits.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE: 50% TO 150%

[&]quot;int" Indicates that interference prevents determination.

ESN NORTHWEST CHEMISTRY LABORATORY

Greylock Consulting HARDEL MUTUAL PLYWOOD CORP PROJECT Client Project #0401-3 Olympia, Washington

ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (3 (360) 459-3432 Fax lab@esnnw.com

Analysis of Polynuclear Aromatic Hydrocarbons in Water by Method 8270

Analytical Results	Reporting	MTH BLK	LCS.	MW-2	MW-3	MW-6	MW-10	MW-11	MW-12	MW-13	MW-14	MW-1
Date extracted	Limits	05/20/11	05/20/11	05/20/11	05/20/11	05/20/11	05/20/11	05/20/11	05/20/11	05/20/11	05/20/11	05/20/1
Date analyzed		05/23/11	05/23/11	05/23/11	05/23/11	05/23/11	05/23/11	05/20/11	05/23/11		02120111	
Date analyzed	. (ug/L)	03/23/11	03/23/11	03/23/11	03/23/11	03/23/11	03/23/11	03123111	03/23/11	03/23/11	.03/23/11	03/23/1
Acenaphthene	0.1	nd	128%	nd	nd	nd	nd	nd	nd	nd	nd	no
Acenaphthylene	0.1	nd	96%	nd	nd	nd	2.2	nd	nd	nd	nd	ne
Anthracene	0.1	nd	125%	nd	nd	nd	nd	nd	nd	nd	nd	ne
Benzo(a)anthracene*	0.1	nd	100%	nd	nd	nd	nd	nd	nd	nd	nd	no
Benzo(a)pyrene*	0.1	nd	115%	nd	nd	nd	nd	nd	nd	nd	nd	·no
Benzo(b)fluoranthene*	0.1	nd	126%	ñd	nd	nd	nd	nd	nd	nd	nd	no
Benzo(ghi)perylene	0.1	nd	127%	nd	nd	nd	nd	nd	nd	nd	nd	no
Benzo(k)fluoranthene*	0.1	nd	124%	nd	nd	nd	nd	nd	nd	nd	nd	ń
Chrysene*	0.1	nd	99%	nd	'nd	nd	nd	nd	nd	nd	nd	ño
Dibenzo(a,h)anthracene*	0.1	nd	115%	nd	nd	nd	nd	nd	nd	nd	nd	no
Fluorene	0.1	nd	146%	nd	nd	nd	nd	nd	nd	nd	nd	no
Fluoranthene	0.1	nd	106%	nd	nd	nd	nd	nd	nd	nd	nd	no
Indeno(1,2,3-cd)pyrene*	0.1	nd	119%	nd	nd	nd	nd	nd	nd	nd	nd	'n
Naphthalene	0.1	nd	123%	21	nd	nd	6.1	120	nd	nd	nd	1.
1-Methylnaphthalene	0.1	nd	ņš	nd	nd	nd	1.3	nd	nd	nd	nd	no
2-Methylnaphthalene	0.1	nd	ns	nd	nd	nd	nd	nd	nd	nd	nd	no
Phenanthrene	0.1	nd	103%	nd	nd	nd	5.7	nd	nd	nd	nd	nic
Pyrene.	. 0.1	nd	: . 98%	nd	nd	nd	. wnd	nd	<u>nd</u>	. End	nd	no.
Total Carcinogens	ħ.			nd	nd	nd	nd	nd	nd	nd	nd	ņ
Surrogate recoveries:	f . m.	1 1 1 1 1 1 1 1 1 1	a n <u>a</u> z ²	_0 10 10	5 3444	u .		2 2 4 ES 1			21	
2-Fluorobiphenyl		134%		113%	52%	51%	. 51%	52%	53%	78%		539
p-Terphenyl-d14		88%	72%	. 112%	109%	87%	120%	139%	54%	. 100%	143%	82%

Data Qualifiers and Analytical Comments

* - Carcinogenic Analyte

nd - not detected at listed reporting limits

na - not analyzed

C - coelution with sample peaks

M - matrix interference

J - estimated value

Results reported on dry-weight basis Acceptable Recovery limits: 50% TO 150%

Acceptable RPD limit: 35%

ns-not in the spiking solution

Environmental Services Network

CHAIN-OF-CUSTODY RECORD

5-16-11 PAGE 1 OF 1	WHIR	LOCATION: 1210 (V-Bay Drive O/VMPA LAN	R. Hoing Willowolds y COLLECTION	A Container Of Container Of Container Of Container											8 2			CEIPT LABORATORY NOTES:	2	ALS YNUNA		COCID	Turn Around Time: 24 HR 48 HR 5 DAY
film DATE: S.	Swile 210	FAX:	PROJECT MANAGER: SAZOMOR DAGRICOLECTOR:		×	X	× ×	ヌス	X	×		X	X					RECEIVED 84 (Signature) OATE/TIME SAMPLE RECEIPT	TOTAL NUMBER OF CONTAINERS	RECEIVED BY (Signature) DATE/TIME CHAIN OF CUSTODY SEALS YNNNA	() SEALS INTACTS YANNA	RECEIVED GOOD COND, COLD	Disking Disking
CHENT (TYPY lotter Cansul)	S. 720 333 rd	1652-199-632	ROJECT #: 04-01-3	we Container Type	11.13-3 174 1001 tes 300 mises	7 123	. 15	-	11-13 1446	1530	019/	69/ 01/0	11-6 R33VV			1		RELINQUISHED BY (Signature) DATE/TIME RECEN	1/11/1/	J		SAMPI F DISPOSAL INSTRUCTIONS	d L draw of the months of the

APPENDIX B

Well Monitoring Data Sheets

Hardel Water Cevels

5-16-11

Wells	Time	DTW	
MW-3	1050	0.65 U	later in Monument
MW-2	1059	1.21	, 1
MW-15	1104	1.61	1 1
MW-14	1108	1.44	//
MW-13	1111	1.06	11
MW-12	11.15	0.91	11
MW-11	1119	0.40	/ (
MW-10	1125	0.40	11
MW-6	1132	3.16	11.

Project: Llara	el Mus	wal s	Tywood	site	Well ID: M.WZ					
Client: Llar	del Pl	ywor	od Co	P	Well Diam	eter: Z	7/			
Date: 5	16-11	9			Well Depti	n:				
Sampler: M	ark U	211/04	10h51		Pump Dep	oth: 61				
Depth to Produ	ct: NI	1	1		Thickness	of Product				
Flow Rate:		w			Measuring	Point:	TOP of the DVC			
Type of Pump:	Peris	faltic	Pum	ρ			g .			
Depth to Water		Pre: C	2.74		Post:					
T:	T		0 1		T. 1.1.114	0.1	[OL			
Time	Temp O or F	pН	Cond. uS	DO	Turbidity NTUs	Redox millivolts	Observations			
:00	⊘ or F ± 0.2°C			mg/L						
100 00 000		± 0.1	± 3%	± 10%	± 10%	± 10				
1656	11.83	890	239	3.58	25.9	*	Purye Cler			
1236	11:65	838	735	0.63	24.0	-	0			
1240	11.60	3.11	239		225					
1744	11.48	7.82	243	0.49	70.5	_				
1748	11.51	7.6%	241	0.43	19.1	-				
	, .		- 11							
ŭ.			72							
					9					
Did well dewate	or2 Vool	No			Amt action	ally avacua	stadi 7/ (1/ - 1			
		No	7			ally evacua				
Sampling Time		65	5		Sampling Date: 5 - /6 - / 1					
Sample ID:	MI		7.4		Laboratory: ESM					
Analyzed For:	TPH	DAG	PAG	\$						
Equip. Blank ID);									

Project: Ha	101	LLil	104.		Well ID:	1111	, 1			
	rdel	LUTY	21119			<u> MU</u>	1-3			
	aga Mu	tuon	Plymas	d Circle	Well Diam	eter: 2	<i>,,</i>			
Date: 5	16-11	,			Well Dept	h:				
Sampler:	Mark		o ught	7-1	Pump Dep	oth: 6				
Depth to Produ		1A	7	,	Thickness	of Produc	NA			
	tk/m				Measuring	Point: 70	of us wel	Casing		
Type of Pump:		altic	2 Pui	n/						
Depth to Wate	r	Pre: C	2.7		Post:					
Time	Temp	pН	Cond.	DO	Turbidity	Redox	Observations			
	(C) or F		uS	mg/L	NTUs	millivolts				
5. 11	± 0.2°C	± 0.1	± 3%	± 10%	± 10%	± 10			- 04	
1153	17:08	11.33	1411	8.59	6.7	_	Purge C	lear		
1157	11 57	11.57	it has	7.34	6.6	***	Tu Je C			
1201	111.31	11.29	450	6.62	7.5	_				
100	11.28	11.28	1,50	6.60	7.3					
1600	11:25	11:69	11 115	6.58	7.7					
1209	11.63	11.00	444	6.30	7.1	-				
	-									
	-									
45										
			1							
	 									
	+									
	-									
		-								
	-									
	-									
Did well dewa	er? Yes	No			Amt actua	ally evacua	ted: 2	Gallons		
Sampling Time		14					5/6-11	Calleria		
					Sampling Date: 5-16-11					
Sample ID:	MI		6 0 a 11	O	Laboratory: ESN					
Analyzed For:	TVH -	DX	3 817H	2						
Equip. Blank I	D:		on STO							

Project: How	lol Mu	Hugh	Plywoo	1 site	Well ID:	μ	W-6			
Client: 140 x	le Ma	Had	Hywood	Cost	Well Diam	eter:				
	-16-11		7		Well Depth	1:				
Sampler:	Mark	Will	loughs	4	Pump Dep	th:				
Depth to Produ	ct:	MA	777		Thickness					
	46/mi	~			Measuring	Point:	TOP 00)	PUC		
Type of Pump:	Peris						0			
Depth to Water		Pre:	3.10		Post:					
Time	T	-11	Cond.	DO	Turbidity	Redox	Observations			
i ime	Temp C or F	рН	uS	mg/L	NTUs	millivolts	Observations			
ri e	± 0.2°C	± 0.1	± 3%	± 10%	± 10%	± 10		9		
		± 0.1			The second second		0.1-1.0			
1710	1110	1.15	1677	458	5903	-	1116	murky		
1714	11:15	674	1667	6.75	555.4	·-				
1418	11.05	B.68	175	11.13	5587	_				
1422	11.05	6.67	141	12-14	4779	_				
1726	11.02	6-66	185	13.44	417.5		7.1.1.15			
1730	11.00	6.66	1064	13.96	2669		Turbidity	not Stabilizing		
							100k San	nye.		
		16								
							10			
Did well dewat	or2 iVae	No			Amt. actua	ally evacus	ated: 2	Gellons		
		1 /	33					Gallens		
Sampling Time Sample ID:	MW-	11	55		Sampling Date: \$-16-1/ Laboratory: # SN					
	1900		C DA	10	Laborator	y	271			
Analyzed For:	71	1.1 - DX	7 /146	15						
Equip. Blank II	J;									

Project: Hara	el Mu	tual,	lywa.	1 site	Well ID:	LI	W-10		
Client: Flore		Meal	Driwon	Carp	Well Diam	eter: 'i'	7		
Date: 5	16-11		13		Well Depti				
Sampler:	Mack	Palil	lowghi		Pump Dep	th: 7			
Depth to Produ	ct: N	19	J.,)	Thickness	of Product	: NA		
Flow Rate:	4 4/mi	n			Measuring	Point:	TO S B DUC		
Type of Pump:	Voris	falti					, , ,		
Depth to Water	, ,	Pre: C	5.45		Post:				
Time	Temp	рН	Cond.	DO	Turbidity		Observations		
E.	O or F		uS	mg/L	NTUs	millivolts			
	± 0.2°C	± 0.1	± 3%	± 10%	± 10%	± 10			
1630	11.45	7.03	216	8.17	996	_	Purce clouds		
14 34	11.17	6-72	346	2.62	195-8	_	Puras Clear		
138	10.98	6.74	uol	1.22	19.1	-	7 00 70		
16 42	10.90	675	LANGE	1.12	17.7	_			
16 46	10.97	6.70	1405	1.08	18.7	**			
10 1	10 10	- 19	7-5	, ,					
							20 20 20 20 20 20 20 20 20 20 20 20 20 2		
Did well dewate	ar2 Vac	No	AND DESCRIPTION OF THE PERSON		Amt active	lly ovacua	ted: Ballons		
			100		Amt. actua				
Sampling Time	***	0 1	650		Sampling				
Sample ID:	Mu-		PDA		Laboratory: EST				
Analyzed For:	TVH.	-DX	7 8 A CH	2					
Equip. Blank ID):		1						

Project: Hard	el Mu	tug	Plywa	d Site	Well ID:		MW-1		
Client: Jara	el Mus	ual 1	Pylia	Corp	Well Diam		,		
Date: S	-16-1	(J .		Well Depti	n: /3'/	ti.		
Sampler:	Mark	(1)	llough	7	Pump Dep	th: '7'			
Depth to Produ	ct:	VA	-	1	Thickness	of Product	t: NA		
Flow Rate: 4		.,			Measuring	Point:	TO UJ PUC		
Type of Pump:	1/2015	taltic							
Depth to Water		Pre:	0.33	3	Post:				
Time	Temp	рН	Cond.	DO	Turbidity	Redox	Observations		
	O or F		uS	mg/L	NTUs	millivolts	. 1		
	± 0.2°C	± 0.1	± 3%	± 10%	± 10%	± 10			
1552	11.84	6'32	797	6.21	6.8	-	Purge Cler		
1556	11.56	6.33	290	1.27	24	_	, ,		
16 00	11.33	637	7.90	0.64	21	~			
16 04	11 -	6:117	798	0.57	7.6	~			
1600	11:55	6.46	290	0.50	1.3	4			
1000			ı						
							M		
81							()		
	1								
	+								
	1								
Did well dewat		No				ally evacua			
Sampling Time	:/	610			Sampling	Date:	5-16-11		
Sample ID:	MU	11			Laboratory: ESN				
Analyzed For:	TOH.		DAHS						
Equip. Blank II	D: 1	-, 1	,						

Project: Hardel My tual Plywood Site Well ID: MW-17										
Client: Haro	el Mu	Hal	Plutupa	Coxf	Well Diam	Well Diameter: 2//				
Date: %-	16-11		J		Well Depti	n: 131				
Sampler:	lark	11211	lough	50	Pump Dep	Pump Depth:				
Depth to Produ	ct: N	D	-	7	Thickness	of Produc	t NO			
Flow Rate: (LL/mil	n			Measuring	Measuring Point: 10 P of PUC				
Type of Pump:	Ver	13 491	4C							
Depth to Water	Pre: '	1.07		Post:						
Time	Temp	pН	Cond.	DO	Turbidity	Redox	Observations			
	C or F		uS	mg/L	NTUs	millivolts	"			
	± 0.2°C	± 0.1	± 3%	± 10%	± 10%	± 10				
1504	11.60	7.02	154	9.53	530	country	Water Murky. Tubina			
1508	11.56	6.72	357	3.22	-161		but the hoton it woll			
1817	11-77	6.67	356	1.40	70.4	-	Cossim Purge to be			
15/6	11.76	6.57	254	0.82	47.5	-	murky.			
1520	111-21	6.65	256	5.67	30.9	_	- 11100 . 10			
15714	11.20	6.56	356	0.60		~				
1576	11.29	6.55	357	0.58	33	_				
100		0	,							
	1									
	 				 					
	—									
	†									
	0.60	() (
						Amt. actually evacuated: 4 Gallons				
Sampling Time: Au 5 6 14 1530					Sampling Date: 5-/6-//					
Sample ID:	4.12			Laboratory: CSA						
Analyzed For: TPH-DX 9 PAHS										
Equip. Blank II										

Project: Hardel Mutual Plywood Site Well ID: 44-13										
Client: 1	IHIal	Mywoo	1 Corl	Well ID: HU-13 Well Diameter: 111						
Date:	5-6	6-11	J		Well Depth: /3'					
Sampler: M	ack L	Willow	21.511		Pump Depth: 7' Thickness of Product: V					
Denth to Produi	ct.	1111	7		Thickness	of Produc	t NA			
Flow Rate: L	- L/mix				Measuring	Point:	TOP OF PUC			
Type of Pump:	-L/mix	erist	altic				7-57 () 7			
Depth to Water		Pre:			Post:	Post:				
Time	Temp	рН	Cond.	DO	Turbidity	Redox	Observations			
	(C) or F		uS	mg/L	NTUs	millivolts	-			
357	± 0.2°C	± 0.1	± 3%	± 10%	± 10%	± 10				
1419	11.97	7.79	101.9	10-07	35-1	-	Purge Clouds			
11473	11-70	7.03	278	3.61	157		Ourens Clascones Sist			
11127	11:69	6.957	745	7.61			Quality Olent			
100 21	11.67	6.83	1673	1-16	37		mye con			
110 25	11.60	6.00	Gla	087	2:0	52.3	'			
14 20	1160	6.47	614	0.73	- Control of the Cont					
11 742	11:07	6.27	670	0.70	1.5	-	٠,٠			
14 45	11 61			- /						
							3.			
										
Did well dewater? Yes No					Amt. actually evacuated: 3/2 Gallons					
Sampling Time		14 4	-6	Sampling Date: 5-/6-1/						
Sample ID:	13			Laboratory: ESN						
Analyzed For:	TPH	·DX	9 PA	43						
Equip. Blank ID:										

Project: Hardel Muthal Plywood site					Well ID: M(u) - / Gr					
Client: Dord	wit Pl	Ywood.	Ort	Well Diameter:						
Date: 5	-16-11		J		Well Depth: 13 ²					
Sampler:	Mark	lui	lough	> 5	Pump Dep	th: 7 /				
Depth to Produ		A			Thickness	of Produc	t: / A			
Flow Rate: 4	Led Kill	7-			Measuring	Point:	708 01 PVC			
Type of Pump:	Peris		C							
Depth to Water	Pre:	.50		Post:						
Time	Temp	рН	Cond.	DO	Turbidity Redox Observations					
1,,,,,	© or F	р	uS	mg/L	NTUs	millivolts				
	± 0.2°C	± 0.1	± 3%	± 10%	± 10%	± 10				
1346	11.70	6.96	633	406		~	Purge Clear			
1250	11.45	6.9	693	1.01	2.3		14190			
13 54	11.70	6.90	703	0.71	0.9	_				
13:55	11.23	6.89	750	2.63	1.1	-				
10 02	11.09	6.86	7/17	0.57	0.0					
7	1	-	141							
							19			
	T									
	-									
Did well dewat	Did wall dawater2/Vag No						Amt. actually evacuated: 2 Gollens			
Did well dewater? Yes No Sampling Time: 1406					Sampling Date: 5-16-11					
Sample ID:	40,	0		Laboratory: ESM						
Sample ID: Analyzed For:	14/10	AHS		Laboratory.						
Equip. Blank II	XIP	11117					-			
Equip. Diank ID.										

Project: Hardel Mutual Plywood					Well Diameter: 111				
Client: Hardy Mutual Pluwbod Cort					Troil Bidiriotor.				
Date: 5	7	J.		Well Depth:					
Sampler:	Mads	- [1]	110110	nby	Pump Depth: 7'				
Depth to Produc	ct:	ALD	1		Thickness	of Product			
Flow Rate: /1	alden	h			Measuring	Point:	TOP OF PUC		
Type of Pump!	101	15/01	tic	Punt	,				
Depth to Water	Pré:	1.62		Post:					
Time	Temp	рН	Cond.	DO	Turbidity	Redox	Observations		
0	© or F		uS	mg/L	NTUs	millivolts	×		
27	± 0.2°C	± 0.1	± 3%	± 10%	± 10%	± 10			
1312	11.71	6.77	490	6.10	56.9	-	Purse Cloudy		
12/6	10.81	6.61	4716	0.99	19.4	М	Purge Clearing Ut		
1270	10.64	6.63	1.42	076	17-7	_	Purye Clear		
1324	10.53	6.62	11-77	0.70	8.8				
1200	10.54	6.62	1179	0:67	8.8				
1369	10.57		411		1 4				
					12				
						7			
l									
				-					
				L					
Did well dewater? Yes No					Amt. actually evacuated: 2/7 Gallers				
Sampling Time		33		Sampling Date: 5-16-1					
Sample ID:	MW	-15			Laborator		ESM		
Analyzed For:	Dx	9 PAI	+ 5			E I			
Equip. Blank ID:									
Equip. Blank ID:									