May 20, 2021

SENT VIA EMAIL

Mr. Tim O'Connor, LG, LHG Ecology NWRO 3190 160th Ave SE Bellevue, WA 98008-5452 Mr. Patrick Hamel Kitsap Public Health District 345 6th Street Bremerton, WA 98337

Mr. Alan Noell, PhD, PE Ecology NWRO 3190 160th Ave SE Bellevue, WA 98008-5452

Subject: Revised Technical Memorandum: Statistical Derivation of Background Metal Concentrations – Olympic View Sanitary Landfill, Kitsap County, Washington

On behalf of Waste Management of Washington, Inc. (WMW), JMO Consulting is pleased to provide this revised Technical Memorandum (Memo) describing the statistical analysis used to develop background concentrations for total arsenic, total iron and total manganese in groundwater at the Olympic View Sanitary Landfill (OVSL) in Kitsap County Washington. This project has been a collaborative effort working closely with Washington Department of Ecology (Ecology) and Kitsap Public Health District (KPHD). Based on agency comments received on the initial Technical Memorandum submitted on 22 April 2021, this document has been revised to include additional information on how background concentrations will be applied at the facility and further clarification that background values apply to total metal concentrations. Additional information concerning the data utilized in the development of background values is contained in a prior Technical Memorandum dated 25 March 2021 and included herein (Appendix 1).

BACKGROUND

Background values for arsenic, iron and manganese are currently established using water quality data from upgradient monitoring wells at the facility. This approach presents an inherent dilemma given the shift in redox conditions that exist across the site and the occurrence of wetlands along the downgradient margins of the facilities. Groundwater upgradient of the landfill to the east is subject to a geochemically-oxidizing (i.e., aerobic) conditions due to the percolation of rainwater with high dissolved oxygen.

As groundwater flows downgradient, recharge is restricted by the landfill cover system and oxygen may be consumed by aerobic microbial conditions. At the downgradient margins of the site, expansive wetland conditions exist along the margins of the Union River valley and further reduced (i.e., anaerobic) conditions prevail. Under the reducing conditions observed downgradient of the landfill, the concentrations of arsenic, iron and manganese may be naturally elevated compared to upgradient conditions.

Based on this knowledge, a goal was established to develop updated background metal concentrations in groundwater that would be more reflective of natural conditions monitored by the compliance, performance and downgradient wells at the facility. This effort included re-evaluation of previous data

Messrs. O'Connor, Noell and Hamel OVSL Background Metals May 20, 2021

collected from a background study performed as part of the 2007 Remedial Investigation Report (RI; Parametrix, 2007). The prior work included the sampling of nine domestic wells for total arsenic, total iron and total manganese. The wells are located approximately 0.5 to 0.75 miles to the west, northwest and north of the landfill in relatively close proximity to Union River valley (Figure 1). The analytical results from the domestic well sampling program (Table 1) indicate that arsenic was detected above the reporting limit (RL) in all samples analyzed. Iron and manganese were also detected in all samples analyzed with two results for each consistent being reported at estimated concentrations below the RL.

STATISTICAL METHODOLOGY AND RESULTS

Upon acceptance of the background dataset by Ecology and KPHD, the focus of the project shifted to statistical analysis of the data. In email correspondence dated 20 April 2021, Ecology provided direction on the statistical approach to be utilized. Ecology indicated that the methodology relies upon the Implementation Guidance for the Groundwater Quality Standards (Chapter 173-200 WAC) and the ProUCL Technical Guide, and that empirical groundwater quality data for the region should also be considered in the evaluation. Based on their assessment of background dataset, Ecology requested the following statistical analysis:

- <u>Total Arsenic</u>: 95% UTL with 95% Coverage assuming normal distribution;
- <u>Total Iron</u>: 95% Percentile Bootstrap UTL with 95% Coverage assuming nonparametric distribution; and
- <u>Total Manganese</u>: 95% Percentile Bootstrap UTL with 95% Coverage assuming nonparametric distribution.

Following Ecology's guidance, the data were analyzed by GeoChem Applications using the statistical software package ProUCL. The results of the analysis provide the following statistical background limits for the site's compliance, performance and downgradient wells:

- <u>Total Arsenic</u>: 0.00427 milligrams-per-liter (mg/L);
- <u>Total Iron</u>: 1.9 mg/L; and
- <u>Total Manganese</u>: 0.73 mg/L.

Attachment 1 provides the ProUCL statistical output documenting the above limits.

DISCUSSION

As discussed with Ecology, although the updated background values listed above provide a far better prediction of the natural metal concentrations in groundwater relative to current limits, it is unlikely that they bracket localized natural conditions (i.e., wetland areas) which exist at the site. This

Messrs. O'Connor, Noell and Hamel OVSL Background Metals May 20, 2021

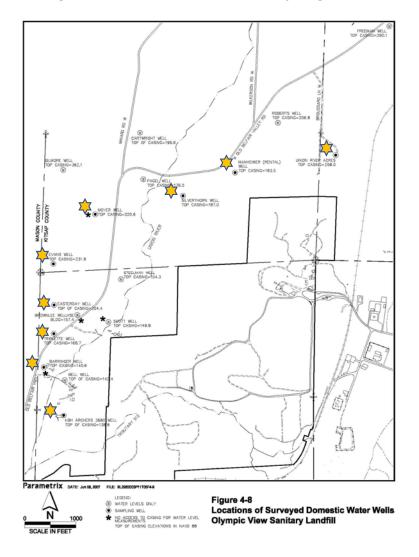
conclusion is based on long-term groundwater monitoring well data that show a significantly greater concentration range than that observed for the domestic wells included in the statistical calculation. This difference can likely be attributed to the presence of more reducing localized conditions at the site whereby certain trace metals can reach significantly higher natural equilibrium concentrations in groundwater.

It appears that this effect is reflected currently in certain site monitoring wells that exhibit apparent steady-state concentrations that are higher than the updated limits. Attachment 2 contains a few such examples.¹ Based on these and other long-term historical concentration data, it is unlikely that the updated limits fully bracket the natural conditions at the site. As such, it is anticipated that the groundwater quality at several monitoring wells affected by localized processes is unlikely to achieve the updated background limits (particularly for iron and manganese) and that additional well-specific analysis may be required in the future to move the facility through MTCA and the post-closure-care process.

CONCLUSIONS AND RECOMMENDATIONS

The change in natural redox conditions that occurs across the site necessitated a closer examination of background metal concentrations in groundwater. Utilizing data collected from a prior study and working closely with Ecology and KPHD, updated background concentrations for arsenic, iron and manganese have been developed for the site's compliance, performance and downgradient wells. Following the data evaluation procedures specified by Ecology, the following background concentrations were developed: total arsenic -0.00427 mg/L; total iron -1.9 mg/L; and total manganese -0.73 mg/L. The updated limits provide a better prediction of the natural conditions present at the facility and it is recommended that they replace the current background values.

JMO Consulting appreciates the assistance provided by Ecology and KPHD on this important project. Please let me know if you have any questions regarding the information presented.


Sincerely, JMO Consulting

James M. Obereiner, P.G. Principal Hydrogeologist

Cc: Steven Williams, Ecology Phil Perley, WM Will Neal, GeoChem Application

¹ Figures included in Attachment 2 provide both total and dissolved metals concentrations to present a more extensive historical dataset.

Figure 1 – Domestic Well Sampling Locations

Table 1: Domestic Well Analytical Data

Olympic View Sanitary Landfill Draft Final – Remedial Investigation Réport Olympic View Sanitary Landfill, Inc.

Sample No.	Well Owner/ Well Name	Date Sampled	1,1-DCE (µg/L)	Vinyl Chloride (µg/L)	VOCs (µg/L)	Arsenic (mg/L) ¹	Iron (mg/L)	Manganese (mg/L)	Total Coliform
Chapter 173-200	WAC:]		0.02	440	0.00005	0.3	0.05	
MCL:		1	70	2	-	0.01	0.3	0.05	
10499JS	Silverthorn	1/3/2006	<0.7	<0.02	all Non-Detect	0.00245	0.42	0.020 J	absent
3650KBHA	KBH Archers	1/3/2006	<0.7	<0.02	all Non-Detect	0.00132	0.14	0.0039 J	absent
11132T	Triplette	1/3/2006	<0.7	<0.02	all Non-Detect	0.00284	0.50	0.320 J	present
911132TD	Triplette (duplicate)	1/3/2006	<0.7	<0.02	all Non-Detect	0.00287	0.39	0.220 J	present
11120VE	Easterday	1/3/2006	<0.7	<0.02	all Non-Detect	0.00038	1.9	0.730 J	absent
11101WE	Evans	1/3/2006	<0.7	<0.02	all Non-Detect	0.00021	0.088	0.0012 J	present
5981VRA	Union River Acres	1/11/2006	<0.7	<0.02	all Non-Detect	0.00042	0.024B	0.00052 BJ	absent
10195EM	Manheimer	1/11/2006	<0.7	<0.02	all Non-Detect	0.00191	0.590	0.042 J	not tested
10771JPM	Moyer	1/11/2006	<0.7	<0.02	all Non-Detect	0.00046	0.060	0.0002 BJ	absent
11199LB	Barringer	1/11/2006	<0.7	<0.02	all Non-Detect	0.00160	0.031B	0.046 J	present

Table 5-2. Summary of Domestic Well Sampling Results, Olympic View Sanitary Landfill

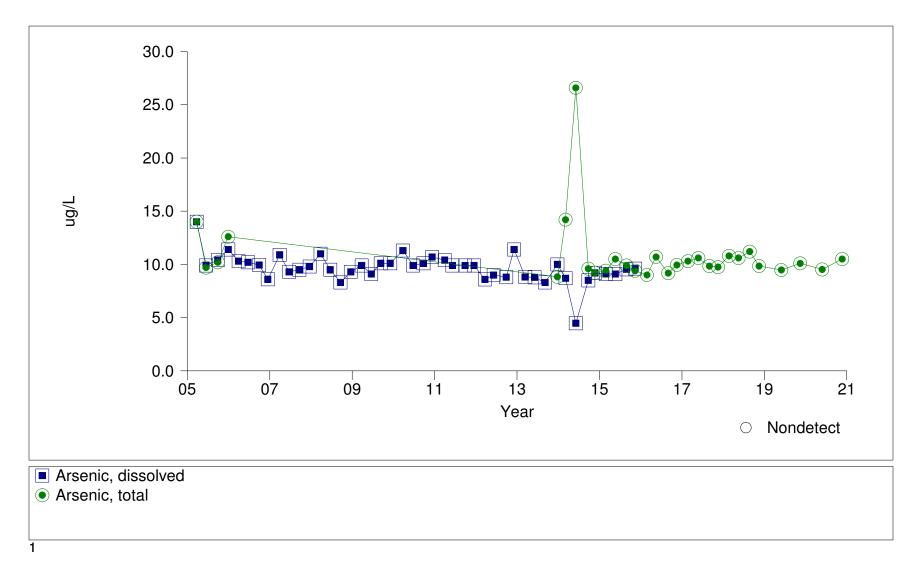
Highlighted values exceed Chapter 173-200 WAC and secondary MCL standards

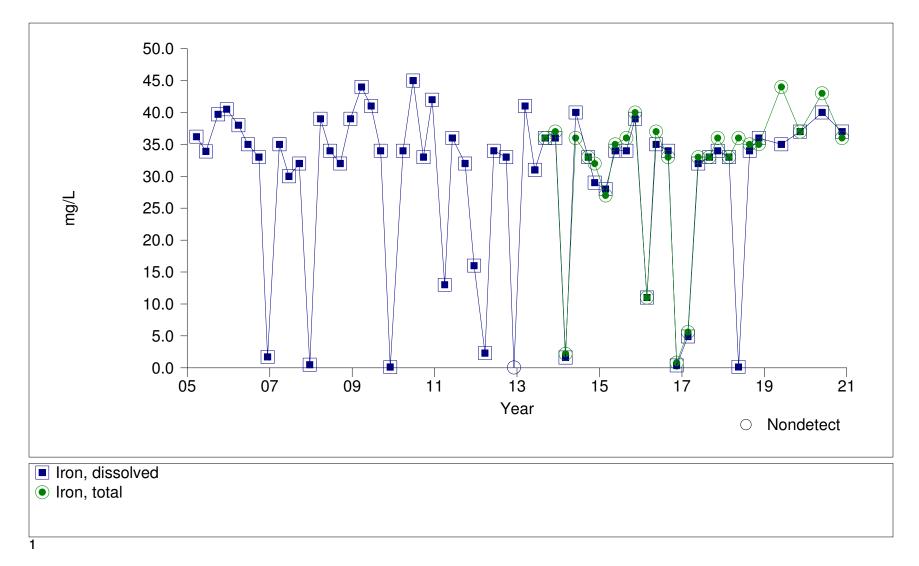
1 MTCA A (WA state background) = 0.005 mg/L

2 well casing has no cap or sanitary seal; well currently not in use

J = Method blank contamination

B = Estimated value less than the reporting limit.


Source: Parametrix 2007 RI Report


ARSENIC - TOTAL	Normal Background Stat	istics for Uno	censored Ful	I Data Sets				
	_							
User Selected Options								
Date/Time of Computation	ProUCL 5.14/21/2021 6:	03:22 AM						
From File	Test for OVSL.xls							
Full Precision	OFF							
Confidence Coefficient	95%							
Coverage	95%							
New or Future K Observations	1							
C0: data in mg/L								
General Statistics								
Tota	Number of Observations	9			Number	of Distinct Ol	bservations	9
					Number	of Missing Ol	bservations	1
	Minimum	2.10E-04				Fi	irst Quartile	4.20E-04
	Second Largest	0.00245					Median	0.00132
	Maximum	0.00286				Th	ird Quartile	0.00191
	Mean	0.00129					SD	9.82E-04
	Coefficient of Variation	0.762					Skewness	0.412
	Mean of logged Data	-7				SD of lo	ogged Data	0.953
	Critical Values f	or Backgrou	nd Threshold	d Values (B	ΓVs)			
Tole	rance Factor K (For UTL)	3.031				d2ma	ax (for USL)	2.11
		Normal C	GOF Test					
5	Shapiro Wilk Test Statistic	0.897			Shapiro Wi	k GOF Test		
5% S	hapiro Wilk Critical Value	0.829		Data appe	ear Normal at	5% Significa	nce Level	
	Lilliefors Test Statistic	0.245			Lilliefors	GOF Test		
5	% Lilliefors Critical Value	0.274		Data appe	ar Normal at	5% Significa	nce Level	
	Data appe	ar Normal at	t 5% Significa			-		
			Ū					
	Background S	tatistics Ass	sumina Norm	al Distributi	on			
95%	UTL with 95% Coverage					90% Pe	ercentile (z)	0.00255
	95% UPL (t)						ercentile (z)	
	95% USL						ercentile (z)	
Note: The use of USL	tends to yield a conservati	ve estimate	of BTV_espe	cially when t	the sample s	ize starts exce	eedina 20	
	se USL to estimate a BTV		•	•	•		•	
	and consists of observa	-			-			
The use of US	L tends to provide a balar			-		ovided the dat	ta	
	ackground data set and w		-					
							··	
Prepared by GeoChem Applications								

IRON -TOTAL	Nonparametric Backgro	ound Statistic	s for Uncens	orea Full D	ala Sels			
User Selected Options	;							
Date/Time of Computation	ProUCL 5.14/21/2021 6:	06:42 AM						
From File	Test for OVSL.xls							
Full Precision	OFF							
Confidence Coefficient	95%							
Coverage	95%							
Number of Bootstrap Operations	2000							
C1: data in mg/L								
General Statistics								
Total	Number of Observations	9			Numbe	er of Distir	nct Observati	ions 9
					Numbe	er of Missi	ng Observat	ions 1
	Minimum	0.024					First Qua	rtile 0.06
	Second Largest	0.59					Me	dian 0.14
	Maximum							rtile 0.455
		0.412						SD 0.596
	Coefficient of Variation	-					Skewr	less 2.339
	Mean of logged Data	-				SI	D of logged [
			nd Thursdala	Values /B	T\/_)			
	Critical Values	for Backgrou	na i nresnola	values (D	105)			
Tole	rance Factor K (For UTL) Nonparametric	3.031	Free Backgro	ound Statis	tics	(d2max (for U	ISL) 2.11
Tole	rance Factor K (For UTL) Nonparametric Data appear App	3.031 Distribution	Free Backgro rmal at 5% Si	ound Statis	tics Level		d2max (for U	ISL) 2.11
Tole	rance Factor K (For UTL) Nonparametric Data appear App Nonparametric Up	3.031 Distribution proximate No	Free Backgro rmal at 5% Si	ound Statis	tics Level Values			
	rance Factor K (For UTL) Nonparametric Data appear App Nonparametric Up Order of Statistic, r	3.031 Distribution proximate No per Limits for 9	Free Backgro rmal at 5% Si r Background	ound Statis ignificance Threshold	tics Level Values 95%	UTL with	95% Cover	rage 1.9
	rance Factor K (For UTL) Nonparametric Data appear App Nonparametric Up	3.031 Distribution proximate No per Limits for 9	Free Backgro rmal at 5% Si r Background Approximate	ound Statis ignificance Threshold	tics Level Values 95%	UTL with	95% Cover	age 1.9 UTL 0.37
	rance Factor K (For UTL) Nonparametric Data appear App Nonparametric Up Order of Statistic, r	3.031 Distribution proximate No per Limits for 9	Free Backgro rmal at 5% Si r Background Approximate	ound Statis ignificance Threshold	tics Level Values 95%	UTL with	95% Cover	age 1.9 UTL 0.37
	rance Factor K (For UTL) Nonparametric Data appear App Nonparametric Up Order of Statistic, r to compute achieved CC	3.031 Distribution proximate No per Limits for 9 0.474	Free Backgro rmal at 5% Si r Background Approximate	ound Statis ignificance Threshold e Actual Cc ate Sample	tics Level Values 95% Infidence Co Size neede	UTL with pefficient a ed to achie	95% Cover	age 1.9 UTL 0.37 CC 59
Approx, f used	rance Factor K (For UTL) Nonparametric Data appear App Nonparametric Up Order of Statistic, r to compute achieved CC	3.031 Distribution roximate No per Limits for 9 0.474 1.9	Free Backgro rmal at 5% Si r Background Approximate	ound Statis ignificance Threshold e Actual Cc ate Sample	tics Level Values 95% Infidence Co Size neede	UTL with pefficient a ed to achie	95% Cover achieved by eve specified	age 1.9 UTL 0.37 CC 59 age 1.9
Approx, f used	rance Factor K (For UTL) Nonparametric Data appear App Nonparametric Up Order of Statistic, r to compute achieved CC UTL with 95% Coverage	3.031 Distribution roximate No per Limits for 9 0.474 1.9	Free Backgro rmal at 5% Si r Background Approximate	ound Statis ignificance Threshold e Actual Cc ate Sample	tics Level Values 95% Infidence Co Size neede	UTL with pefficient a ed to achie	95% Cover achieved by eve specified 95% Cover	rage 1.9 UTL 0.37 CC 59 rage 1.9 ntile 0.852
Approx, f used	rance Factor K (For UTL) Nonparametric Data appear App Nonparametric Up Order of Statistic, r to compute achieved CC UTL with 95% Coverage 95% UPL	3.031 Distribution per Limits for 9 0.474 1.9 1.9 2.298	Free Backgro rmal at 5% Si r Background Approximate	ound Statis ignificance Threshold e Actual Cc ate Sample	tics Level Values 95% Infidence Co Size neede	UTL with pefficient a ed to achie	95% Cover achieved by eve specified 95% Cover 90% Perce	rage 1.9 UTL 0.37 CC 59 rage 1.9 ntile 0.852 ntile 1.376
Approx, f used	rance Factor K (For UTL) Nonparametric Data appear App Order of Statistic, r to compute achieved CC UTL with 95% Coverage 95% UPL 90% Chebyshev UPL	3.031 Distribution roximate No per Limits for 9 0.474 1.9 1.9 2.298 3.153	Free Backgro rmal at 5% Si r Background Approximate	ound Statis ignificance Threshold e Actual Cc ate Sample	tics Level Values 95% Infidence Co Size neede	UTL with pefficient a ed to achie	95% Cover achieved by eve specified 95% Cover 90% Percer 95% Percer	rage 1.9 UTL 0.37 CC 59 rage 1.9 ntile 0.852 ntile 1.376
Approx, f used 95% Percentile Bootstrap	rance Factor K (For UTL) Nonparametric Data appear App Order of Statistic, r to compute achieved CC UTL with 95% Coverage 95% UPL 90% Chebyshev UPL 95% Chebyshev UPL	3.031 Distribution roximate No per Limits for 9 0.474 1.9 1.9 2.298 3.153 1.9	Free Backgro rmal at 5% Si r Background Approximate Approximate	ound Statis ignificance Threshold e Actual Cc ate Sample 95% BC,	tics Level 95% onfidence Co Size neede A Bootstrap	UTL with pefficient a ed to achie UTL with	95% Cover achieved by eve specified 95% Cover 90% Percer 95% Percer 99% Percer	rage 1.9 UTL 0.37 CC 59 rage 1.9 ntile 0.852 ntile 1.376 ntile 1.795
Approx, f used 95% Percentile Bootstrap	rance Factor K (For UTL) Nonparametric Data appear App Order of Statistic, r to compute achieved CC UTL with 95% Coverage 95% UPL 90% Chebyshev UPL 95% Chebyshev UPL 95% USL	3.031 Distribution roximate No per Limits for 9 0.474 1.9 1.9 2.298 3.153 1.9 ive estimate	Free Backgro rmal at 5% Si r Background Approximate Approximate	ound Statis ignificance Threshold e Actual Cc ate Sample 95% BC	tics Level Values 95% Infidence Co Size neede A Bootstrap	UTL with pefficient a ed to achie UTL with	95% Cover achieved by eve specified 95% Cover 90% Percer 95% Percer 99% Percer	rage 1.9 UTL 0.37 CC 59 rage 1.9 ntile 0.852 ntile 1.376 ntile 1.795
Approx, f used 95% Percentile Bootstrap	rance Factor K (For UTL) Nonparametric Data appear App Order of Statistic, r to compute achieved CC UTL with 95% Coverage 95% UPL 90% Chebyshev UPL 95% Chebyshev UPL 95% USL	3.031 Distribution roximate No per Limits for 9 0.474 1.9 2.298 3.153 1.9 ive estimate for only when the formation of the setimate of the set of the se	Free Backgro rmal at 5% Si r Background Approximate Approximate of BTV, espective ne data set rep	ound Statis ignificance Threshold e Actual Cc ate Sample 95% BC, cially when presents a	tics Level Values 95% Infidence Co Size neede A Bootstrap the sample background	UTL with pefficient a ed to achie UTL with	95% Cover achieved by eve specified 95% Cover 90% Percer 95% Percer 99% Percer	rage 1.9 UTL 0.37 CC 59 rage 1.9 ntile 0.852 ntile 1.376 ntile 1.795
Approx, f used 95% Percentile Bootstrap Note: The use of USL t Therefore, one may us	rance Factor K (For UTL) Nonparametric Data appear App Order of Statistic, r to compute achieved CC UTL with 95% Coverage 95% UPL 90% Chebyshev UPL 95% Chebyshev UPL 95% Chebyshev UPL 95% USL	3.031 Distribution roximate No per Limits for 9 0.474 1.9 1.9 2.298 3.153 1.9 ive estimate for only when that ions collect	Free Backgro rmal at 5% Si r Background Approximate Approximate of BTV, espec- ne data set rep red from clean	ound Statis ignificance Threshold e Actual Cc ate Sample 95% BC.	tics Level Values 95% Infidence Co Size neede A Bootstrap the sample background d locations.	UTL with pefficient a ed to achie UTL with size starts data set	95% Cover achieved by eve specified 95% Cover 90% Percer 95% Percer 99% Percer s exceeding a free of outlie	rage 1.9 UTL 0.37 CC 59 rage 1.9 ntile 0.852 ntile 1.376 ntile 1.795
Approx, f used 95% Percentile Bootstrap 95% Percentile Bootstrap Note: The use of USL to Therefore, one may us The use of US	rance Factor K (For UTL) Nonparametric Data appear App Order of Statistic, r to compute achieved CC UTL with 95% Coverage 95% UPL 90% Chebyshev UPL 95% Chebyshev UPL 95% Chebyshev UPL 95% USL se USL to estimate a BTV and consists of observat	3.031 Distribution roximate No per Limits for 9 0.474 1.9 2.298 3.153 1.9 ive estimate for only when the ations collect nce between	Free Backgro rmal at 5% Si r Background Approximate Approximate Approximate of BTV, espective the data set rep red from clean false positive	ound Statis ignificance Threshold e Actual Cc ate Sample 95% BC cially when presents a unimpacte s and false	tics Level Values 95% Infidence Co Size neede A Bootstrap the sample background d locations. negatives p	UTL with pefficient a ed to achie UTL with size starts data set f	95% Cover achieved by eve specified 95% Cover 90% Percer 95% Percer 99% Percer s exceeding 2 free of outlie	rage 1.9 UTL 0.37 CC 59 rage 1.9 ntile 0.852 ntile 1.376 ntile 1.795
Approx, f used 95% Percentile Bootstrap 95% Percentile Bootstrap Note: The use of USL to Therefore, one may us The use of US	rance Factor K (For UTL) Nonparametric Data appear App Order of Statistic, r to compute achieved CC UTL with 95% Coverage 95% UPL 90% Chebyshev UPL 95% Chebyshev UPL 95% Chebyshev UPL 95% USL tends to yield a conservat se USL to estimate a BTV and consists of observa SL tends to provide a bala	3.031 Distribution roximate No per Limits for 9 0.474 1.9 2.298 3.153 1.9 ive estimate for only when the ations collect nce between	Free Backgro rmal at 5% Si r Background Approximate Approximate Approximate of BTV, espective the data set rep red from clean false positive	ound Statis ignificance Threshold e Actual Cc ate Sample 95% BC cially when presents a unimpacte s and false	tics Level Values 95% Infidence Co Size neede A Bootstrap the sample background d locations. negatives p	UTL with pefficient a ed to achie UTL with size starts data set f	95% Cover achieved by eve specified 95% Cover 90% Percer 95% Percer 99% Percer s exceeding 2 free of outlie	rage 1.9 UTL 0.37 CC 59 rage 1.9 ntile 0.852 ntile 1.376 ntile 1.795
Approx, f used 95% Percentile Bootstrap 95% Percentile Bootstrap Note: The use of USL to Therefore, one may us The use of US	rance Factor K (For UTL) Nonparametric Data appear App Order of Statistic, r to compute achieved CC UTL with 95% Coverage 95% UPL 90% Chebyshev UPL 95% Chebyshev UPL 95% Chebyshev UPL 95% USL tends to yield a conservat se USL to estimate a BTV and consists of observa SL tends to provide a bala	3.031 Distribution roximate No per Limits for 9 0.474 1.9 2.298 3.153 1.9 ive estimate for only when the ations collect nce between	Free Backgro rmal at 5% Si r Background Approximate Approximate Approximate of BTV, espective the data set rep red from clean false positive	ound Statis ignificance Threshold e Actual Cc ate Sample 95% BC cially when presents a unimpacte s and false	tics Level Values 95% Infidence Co Size neede A Bootstrap the sample background d locations. negatives p	UTL with pefficient a ed to achie UTL with size starts data set f	95% Cover achieved by eve specified 95% Cover 90% Percer 95% Percer 99% Percer s exceeding 2 free of outlie	rage 1.9 UTL 0.37 CC 59 rage 1.9 ntile 0.852 ntile 1.376 ntile 1.795
Approx, f used 95% Percentile Bootstrap 95% Percentile Bootstrap Note: The use of USL to Therefore, one may us The use of US	rance Factor K (For UTL) Nonparametric Data appear App Order of Statistic, r to compute achieved CC UTL with 95% Coverage 95% UPL 90% Chebyshev UPL 95% Chebyshev UPL 95% Chebyshev UPL 95% USL tends to yield a conservat se USL to estimate a BTV and consists of observa SL tends to provide a bala	3.031 Distribution roximate No per Limits for 9 0.474 1.9 2.298 3.153 1.9 ive estimate for only when the ations collect nce between	Free Backgro rmal at 5% Si r Background Approximate Approximate Approximate of BTV, espective the data set rep red from clean false positive	ound Statis ignificance Threshold e Actual Cc ate Sample 95% BC cially when presents a unimpacte s and false	tics Level Values 95% Infidence Co Size neede A Bootstrap the sample background d locations. negatives p	UTL with pefficient a ed to achie UTL with size starts data set f	95% Cover achieved by eve specified 95% Cover 90% Percer 95% Percer 99% Percer s exceeding 2 free of outlie	rage 1.9 UTL 0.37 CC 59 rage 1.9 ntile 0.852 ntile 1.376 ntile 1.795
Approx, f used 95% Percentile Bootstrap 95% Percentile Bootstrap Note: The use of USL to Therefore, one may us The use of US	rance Factor K (For UTL) Nonparametric Data appear App Order of Statistic, r to compute achieved CC UTL with 95% Coverage 95% UPL 90% Chebyshev UPL 95% Chebyshev UPL 95% Chebyshev UPL 95% USL tends to yield a conservat se USL to estimate a BTV and consists of observa SL tends to provide a bala	3.031 Distribution roximate No per Limits for 9 0.474 1.9 2.298 3.153 1.9 ive estimate for only when the ations collect nce between	Free Backgro rmal at 5% Si r Background Approximate Approximate Approximate of BTV, espective the data set rep red from clean false positive	ound Statis ignificance Threshold e Actual Cc ate Sample 95% BC cially when presents a unimpacte s and false	tics Level Values 95% Infidence Co Size neede A Bootstrap the sample background d locations. negatives p	UTL with pefficient a ed to achie UTL with size starts data set f	95% Cover achieved by eve specified 95% Cover 90% Percer 95% Percer 99% Percer s exceeding 2 free of outlie	rage 1.9 UTL 0.37 CC 59 rage 1.9 ntile 0.852 ntile 1.376 ntile 1.795
Approx, f used 95% Percentile Bootstrap 95% Percentile Bootstrap Note: The use of USL to Therefore, one may us The use of US	rance Factor K (For UTL) Nonparametric Data appear App Order of Statistic, r to compute achieved CC UTL with 95% Coverage 95% UPL 90% Chebyshev UPL 95% Chebyshev UPL 95% Chebyshev UPL 95% USL tends to yield a conservat se USL to estimate a BTV and consists of observa SL tends to provide a bala	3.031 Distribution roximate No per Limits for 9 0.474 1.9 2.298 3.153 1.9 ive estimate for only when the ations collect nce between	Free Backgro rmal at 5% Si r Background Approximate Approximate Approximate of BTV, espective the data set rep red from clean false positive	ound Statis ignificance Threshold e Actual Cc ate Sample 95% BC cially when presents a unimpacte s and false	tics Level Values 95% Infidence Co Size neede A Bootstrap the sample background d locations. negatives p	UTL with pefficient a ed to achie UTL with size starts data set f	95% Cover achieved by eve specified 95% Cover 90% Percer 95% Percer 99% Percer s exceeding 2 free of outlie	rage 1.9 UTL 0.37 CC 59 rage 1.9 ntile 0.852 ntile 1.376 ntile 1.795
Approx, f used 95% Percentile Bootstrap 95% Percentile Bootstrap Note: The use of USL to Therefore, one may us The use of US	rance Factor K (For UTL) Nonparametric Data appear App Order of Statistic, r to compute achieved CC UTL with 95% Coverage 95% UPL 90% Chebyshev UPL 95% Chebyshev UPL 95% Chebyshev UPL 95% USL tends to yield a conservat se USL to estimate a BTV and consists of observa SL tends to provide a bala	3.031 Distribution roximate No per Limits for 9 0.474 1.9 2.298 3.153 1.9 ive estimate for only when the ations collect nce between	Free Backgro rmal at 5% Si r Background Approximate Approximate Approximate of BTV, espective the data set rep red from clean false positive	ound Statis ignificance Threshold e Actual Cc ate Sample 95% BC cially when presents a unimpacte s and false	tics Level Values 95% Infidence Co Size neede A Bootstrap the sample background d locations. negatives p	UTL with pefficient a ed to achie UTL with size starts data set f	95% Cover achieved by eve specified 95% Cover 90% Percer 95% Percer 99% Percer s exceeding 2 free of outlie	rage 1.9 UTL 0.37 CC 59 rage 1.9 ntile 0.852 ntile 1.376 ntile 1.795
Approx, f used 95% Percentile Bootstrap 95% Percentile Bootstrap Note: The use of USL to Therefore, one may us The use of US	rance Factor K (For UTL) Nonparametric Data appear App Order of Statistic, r to compute achieved CC UTL with 95% Coverage 95% UPL 90% Chebyshev UPL 95% Chebyshev UPL 95% Chebyshev UPL 95% USL tends to yield a conservat se USL to estimate a BTV and consists of observa SL tends to provide a bala	3.031 Distribution roximate No per Limits for 9 0.474 1.9 2.298 3.153 1.9 ive estimate for only when the ations collect nce between	Free Backgro rmal at 5% Si r Background Approximate Approximate Approximate of BTV, espective the data set rep red from clean false positive	ound Statis ignificance Threshold e Actual Cc ate Sample 95% BC cially when presents a unimpacte s and false	tics Level Values 95% Infidence Co Size neede A Bootstrap the sample background d locations. negatives p	UTL with pefficient a ed to achie UTL with size starts data set f	95% Cover achieved by eve specified 95% Cover 90% Percer 95% Percer 99% Percer s exceeding 2 free of outlie	rage 1.9 UTL 0.37 CC 59 rage 1.9 ntile 0.852 ntile 1.376 ntile 1.795
Approx, f used 95% Percentile Bootstrap 95% Percentile Bootstrap Note: The use of USL to Therefore, one may us The use of US	rance Factor K (For UTL) Nonparametric Data appear App Order of Statistic, r to compute achieved CC UTL with 95% Coverage 95% UPL 90% Chebyshev UPL 95% Chebyshev UPL 95% Chebyshev UPL 95% USL tends to yield a conservat se USL to estimate a BTV and consists of observa SL tends to provide a bala	3.031 Distribution roximate No per Limits for 9 0.474 1.9 2.298 3.153 1.9 ive estimate for only when the ations collect nce between	Free Backgro rmal at 5% Si r Background Approximate Approximate Approximate of BTV, espective the data set rep red from clean false positive	ound Statis ignificance Threshold e Actual Cc ate Sample 95% BC cially when presents a unimpacte s and false	tics Level Values 95% Infidence Co Size neede A Bootstrap the sample background d locations. negatives p	UTL with pefficient a ed to achie UTL with size starts data set f	95% Cover achieved by eve specified 95% Cover 90% Percer 95% Percer 99% Percer s exceeding 2 free of outlie	rage 1.9 UTL 0.37 CC 59 rage 1.9 ntile 0.852 ntile 1.376 ntile 1.795

MANGANESE -TOTAL	Nonparametric Backgro	und Statistic	cs for Uncens	sorea Full Da	ata Sets			
User Selected Options	,							
Date/Time of Computation	ProUCL 5.14/21/2021 6:	08:30 AM						
From File	Test for OVSL.xls							
Full Precision	OFF							
Confidence Coefficient	95%							
Coverage	95%							
Number of Bootstrap Operations	2000							
2: data in mg/L								
General Statistics								
Total	Number of Observations	9					Observations	
					Numbe	r of Missing	Observations	1
	Minimum	2.00E-04					First Quartile	0.0012
	Second Largest	0.27					Median	0.02
	Maximum	0.73					Third Quartile	0.046
	Mean	0.124					SD	0.243
	Coefficient of Variation	1.963					Skewness	2.426
	Mean of logged Data	-4.46				SD c	of logged Data	2.815
	Critical Values for	n Dackgroui		1 0 0 0 1				
Tole	rance Factor K (For UTL)	-			•	d2i	max (for USL)	2.11
Tole		3.031 Distribution I	Free Backgro	ound Statisti	cs	d2i	max (for USL)	2.11
Tole	rance Factor K (For UTL) Nonparametric I Data appear Gan	3.031 Distribution I	Free Backgro ted at 5% Sig	ound Statisti gnificance Lo	cs evel	d21	max (for USL)	2.11
Tole	rance Factor K (For UTL) Nonparametric Data appear Gan Nonparametric Upp	3.031 Distribution I Imma Distribut	Free Backgro ted at 5% Sig	ound Statisti gnificance Lo	cs evel /alues			
	rance Factor K (For UTL) Nonparametric Data appear Gan Nonparametric Upp Order of Statistic, r	3.031 Distribution I mma Distributer er Limits for	Free Backgro ted at 5% Sig Background	ound Statisti gnificance Lo Threshold \	cs evel /alues 95%	UTL with 9	5% Coverage	0.73
	rance Factor K (For UTL) Nonparametric Data appear Gan Nonparametric Upp	3.031 Distribution I mma Distributer er Limits for	Free Backgro ted at 5% Sig Background Approxima	ound Statisti gnificance Lu Threshold \ te Actual Co	cs evel /alues 95% nfidence Co	UTL with 9 efficient ach	5% Coverage nieved by UTL	0.73 0.37
Approx, f used	rance Factor K (For UTL) Nonparametric I Data appear Garr Nonparametric Upp Order of Statistic, r to compute achieved CC	3.031 Distribution I ma Distribution er Limits for 9 0.474	Free Backgro ted at 5% Sig Background Approxima	ound Statisti gnificance Lo Threshold N te Actual Co nate Sample	cs evel /alues 95% nfidence Co Size neede	UTL with 9 efficient ach d to achieve	5% Coverage nieved by UTL e specified CC	0.73 0.37 59
	rance Factor K (For UTL) Nonparametric I Data appear Gam Nonparametric Upp Order of Statistic, r to compute achieved CC JTL with 95% Coverage	3.031 Distribution I ma Distribution I er Limits for 9 0.474 0.73	Free Backgro ted at 5% Sig Background Approxima	ound Statisti gnificance Lo Threshold N te Actual Co nate Sample	cs evel /alues 95% nfidence Co Size neede	UTL with 9 efficient ach d to achieve UTL with 9	5% Coverage hieved by UTL specified CC 5% Coverage	0.73 0.37 59 0.73
Approx, f used	rance Factor K (For UTL) Nonparametric I Data appear Garr Nonparametric Upp Order of Statistic, r to compute achieved CC UTL with 95% Coverage 95% UPL	3.031 Distribution I ma Distribution er Limits for 9 0.474 0.73 0.73	Free Backgro ted at 5% Sig Background Approxima	ound Statisti gnificance Lo Threshold N te Actual Co nate Sample	cs evel /alues 95% nfidence Co Size neede	UTL with 9 efficient ach d to achieve UTL with 9 9	5% Coverage nieved by UTL e specified CC 5% Coverage 0% Percentile	0.73 0.37 59 0.73 0.362
Approx, f used	rance Factor K (For UTL) Nonparametric D Data appear Garr Nonparametric Upp Order of Statistic, r to compute achieved CC UTL with 95% Coverage 95% UPL 90% Chebyshev UPL	3.031 Distribution I ma Distribution er Limits for 9 0.474 0.73 0.73 0.73 0.892	Free Backgro ted at 5% Sig Background Approxima	ound Statisti gnificance Lo Threshold N te Actual Co nate Sample	cs evel /alues 95% nfidence Co Size neede	UTL with 9 efficient ach d to achieve UTL with 9 9 9	5% Coverage hieved by UTL specified CC 5% Coverage 0% Percentile 5% Percentile	0.73 0.37 59 0.73 0.362 0.546
Approx, f used	rance Factor K (For UTL) Nonparametric I Data appear Garr Nonparametric Upp Order of Statistic, r to compute achieved CC UTL with 95% Coverage 95% UPL	3.031 Distribution I ma Distribution I er Limits for 9 0.474 0.73 0.73 0.892 1.24	Free Backgro ted at 5% Sig Background Approxima	ound Statisti gnificance Lo Threshold N te Actual Co nate Sample	cs evel /alues 95% nfidence Co Size neede	UTL with 9 efficient ach d to achieve UTL with 9 9 9	5% Coverage nieved by UTL e specified CC 5% Coverage 0% Percentile	0.73 0.37 59 0.73 0.362 0.546
Approx, f used 95% Percentile Bootstrap (rance Factor K (For UTL) Nonparametric Data appear Gam Nonparametric Upp Order of Statistic, r to compute achieved CC JTL with 95% Coverage 95% UPL 90% Chebyshev UPL 95% Chebyshev UPL	3.031 Distribution I ma Distribution I er Limits for 9 0.474 0.73 0.73 0.892 1.24 0.73	Free Backgro ted at 5% Sig Background Approxima Approxim	Dund Statisti gnificance Lo Threshold V te Actual Co nate Sample 95% BCA	cs evel /alues 95% nfidence Co Size neede A Bootstrap	UTL with 9 efficient ach d to achieve UTL with 9 9 9 9	5% Coverage hieved by UTL specified CC 5% Coverage 0% Percentile 5% Percentile 9% Percentile	0.73 0.37 59 0.73 0.362 0.546
Approx, f used 95% Percentile Bootstrap 0	rance Factor K (For UTL) Nonparametric I Data appear Gam Nonparametric Upp Order of Statistic, r to compute achieved CC JTL with 95% Coverage 95% UPL 90% Chebyshev UPL 95% Chebyshev UPL 95% USL	3.031 Distribution I ma Distribution I er Limits for 9 0.474 0.73 0.73 0.892 1.24 0.73	Free Backgro ted at 5% Sig Background Approxima Approxim	cially when th	cs evel /alues 95% nfidence Co Size neede A Bootstrap	UTL with 9 efficient ach d to achieve UTL with 9 9 9 9 9 9	5% Coverage nieved by UTL e specified CC 5% Coverage 0% Percentile 5% Percentile 9% Percentile 2% Percentile	0.73 0.37 59 0.73 0.362 0.546
Approx, f used 95% Percentile Bootstrap 0	rance Factor K (For UTL) Nonparametric I Data appear Garr Nonparametric Upp Order of Statistic, r to compute achieved CC UTL with 95% Coverage 95% UPL 90% Chebyshev UPL 95% Chebyshev UPL 95% Chebyshev UPL 95% USL	3.031 Distribution I ma Distribution I er Limits for 9 0.474 0.73 0.73 0.892 1.24 0.73 ve estimate o only when the	Free Backgro ted at 5% Sig Background Approxima Approxima of BTV, espected e data set rep	Dund Statisti gnificance Lo Threshold V te Actual Co nate Sample 95% BCA	cs evel /alues 95% nfidence Co Size neede A Bootstrap	UTL with 9 efficient ach d to achieve UTL with 9 9 9 9 9 9	5% Coverage nieved by UTL e specified CC 5% Coverage 0% Percentile 5% Percentile 9% Percentile 2% Percentile	0.73 0.37 59 0.73 0.362 0.546
Approx, f used 95% Percentile Bootstrap I Note: The use of USL te Therefore, one may use	rance Factor K (For UTL) Nonparametric Data appear Garr Nonparametric Upp Order of Statistic, r to compute achieved CC UTL with 95% Coverage 95% UPL 90% Chebyshev UPL 95% Chebyshev UPL 95% Chebyshev UPL 95% USL 95% USL	3.031 Distribution I ma Distribution I er Limits for 9 0.474 0.73 0.73 0.892 1.24 0.73 //e estimate of poly when the tions collected	Free Backgro ted at 5% Sig Background Approxima Approxima f BTV, espected from clean	Dund Statisti gnificance Lo Threshold V te Actual Co hate Sample 95% BCA 95% BCA	cs evel /alues 95% nfidence Co Size neede A Bootstrap he sample si ackground d locations.	UTL with 9 efficient ach d to achieve UTL with 9 9 9 9 9 9 9 9 9	5% Coverage nieved by UTL specified CC 5% Coverage 0% Percentile 5% Percentile 9% Percentile ceeding 20. of outliers	0.73 0.37 59 0.73 0.362 0.546
Approx, f used 95% Percentile Bootstrap U 95% Percentile Bootstrap U Note: The use of USL te Therefore, one may use The use of USL	And consists of observar Anonparametric I Data appear Garr Nonparametric Upp Order of Statistic, r to compute achieved CC UTL with 95% Coverage 95% UPL 90% Chebyshev UPL 95% Chebyshev UPL 95% USL ends to yield a conservative and consists of observar tends to provide a balan	3.031 Distribution I ma Distribution er Limits for 9 0.474 0.73 0.73 0.892 1.24 0.73 ve estimate of only when the tions collected ce between f	Free Backgro ted at 5% Sig Background Approxima Approxima f BTV, espected from clean false positive	cound Statisti gnificance Lo Threshold N te Actual Co nate Sample 95% BCA 95% BCA	cs avel /alues 95% nfidence Co Size neede A Bootstrap he sample si ackground d locations. egatives pro	UTL with 9 efficient ach d to achieve UTL with 9 9 9 9 2 2 2 2 2 2 5 3 3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	5% Coverage hieved by UTL specified CC 5% Coverage 0% Percentile 5% Percentile 9% Percentile eceeding 20. of outliers ata	0.73 0.37 59 0.73 0.362 0.546
Approx, f used 95% Percentile Bootstrap I Note: The use of USL te Therefore, one may use The use of USL	rance Factor K (For UTL) Nonparametric Data appear Garr Nonparametric Upp Order of Statistic, r to compute achieved CC UTL with 95% Coverage 95% UPL 90% Chebyshev UPL 95% Chebyshev UPL 95% Chebyshev UPL 95% USL 95% USL	3.031 Distribution I ma Distribution er Limits for 9 0.474 0.73 0.73 0.892 1.24 0.73 ve estimate of only when the tions collected ce between f	Free Backgro ted at 5% Sig Background Approxima Approxima f BTV, espected from clean false positive	cound Statisti gnificance Lo Threshold N te Actual Co nate Sample 95% BCA 95% BCA	cs avel /alues 95% nfidence Co Size neede A Bootstrap he sample si ackground d locations. egatives pro	UTL with 9 efficient ach d to achieve UTL with 9 9 9 9 2 2 2 2 2 2 5 3 3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	5% Coverage hieved by UTL specified CC 5% Coverage 0% Percentile 5% Percentile 9% Percentile eceeding 20. of outliers ata	0.73 0.37 59 0.73 0.362 0.546
Approx, f used 95% Percentile Bootstrap I Note: The use of USL te Therefore, one may use The use of USL	And consists of observar Anonparametric I Data appear Garr Nonparametric Upp Order of Statistic, r to compute achieved CC UTL with 95% Coverage 95% UPL 90% Chebyshev UPL 95% Chebyshev UPL 95% USL ends to yield a conservative and consists of observar tends to provide a balan	3.031 Distribution I ma Distribution er Limits for 9 0.474 0.73 0.73 0.892 1.24 0.73 ve estimate of only when the tions collected ce between f	Free Backgro ted at 5% Sig Background Approxima Approxima f BTV, espected from clean false positive	cound Statisti gnificance Lo Threshold N te Actual Co nate Sample 95% BCA 95% BCA	cs avel /alues 95% nfidence Co Size neede A Bootstrap he sample si ackground d locations. egatives pro	UTL with 9 efficient ach d to achieve UTL with 9 9 9 9 2 2 2 2 2 2 5 3 3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	5% Coverage hieved by UTL specified CC 5% Coverage 0% Percentile 5% Percentile 9% Percentile eceeding 20. of outliers ata	0.73 0.37 59 0.73 0.362 0.546
Approx, f used 95% Percentile Bootstrap U 95% Percentile Bootstrap U Note: The use of USL te Therefore, one may use The use of USL	Annoparametric I Nonparametric I Data appear Garr Nonparametric Upp Order of Statistic, r to compute achieved CC UTL with 95% Coverage 95% UPL 90% Chebyshev UPL 95% Chebyshev UPL 95% Chebyshev UPL 95% USL ends to yield a conservative and consists of observar tends to provide a balan	3.031 Distribution I ma Distribution er Limits for 9 0.474 0.73 0.73 0.892 1.24 0.73 ve estimate of only when the tions collected ce between f	Free Backgro ted at 5% Sig Background Approxima Approxima f BTV, espected from clean false positive	cound Statisti gnificance Lo Threshold N te Actual Co nate Sample 95% BCA 95% BCA	cs avel /alues 95% nfidence Co Size neede A Bootstrap he sample si ackground d locations. egatives pro	UTL with 9 efficient ach d to achieve UTL with 9 9 9 9 2 2 2 2 2 2 5 3 3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	5% Coverage hieved by UTL specified CC 5% Coverage 0% Percentile 5% Percentile 9% Percentile eceeding 20. of outliers ata	0.73 0.37 59 0.73 0.362 0.546
Approx, f used 95% Percentile Bootstrap U 95% Percentile Bootstrap U Note: The use of USL te Therefore, one may use The use of USL	Annoparametric I Nonparametric I Data appear Garr Nonparametric Upp Order of Statistic, r to compute achieved CC UTL with 95% Coverage 95% UPL 90% Chebyshev UPL 95% Chebyshev UPL 95% Chebyshev UPL 95% USL ends to yield a conservative and consists of observar tends to provide a balan	3.031 Distribution I ma Distribution er Limits for 9 0.474 0.73 0.73 0.892 1.24 0.73 ve estimate of only when the tions collected ce between f	Free Backgro ted at 5% Sig Background Approxima Approxima f BTV, espected from clean false positive	cound Statisti gnificance Lo Threshold N te Actual Co nate Sample 95% BCA 95% BCA	cs avel /alues 95% nfidence Co Size neede A Bootstrap he sample si ackground d locations. egatives pro	UTL with 9 efficient ach d to achieve UTL with 9 9 9 9 2 2 2 2 2 2 5 3 3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	5% Coverage hieved by UTL specified CC 5% Coverage 0% Percentile 5% Percentile 9% Percentile eceeding 20. of outliers ata	0.73 0.37 59 0.73 0.362 0.546
Approx, f used 95% Percentile Bootstrap U 95% Percentile Bootstrap U Note: The use of USL te Therefore, one may use The use of USL	Annoparametric I Nonparametric I Data appear Garr Nonparametric Upp Order of Statistic, r to compute achieved CC UTL with 95% Coverage 95% UPL 90% Chebyshev UPL 95% Chebyshev UPL 95% Chebyshev UPL 95% USL ends to yield a conservative and consists of observar tends to provide a balan	3.031 Distribution I ma Distribution er Limits for 9 0.474 0.73 0.73 0.892 1.24 0.73 ve estimate of only when the tions collected ce between f	Free Backgro ted at 5% Sig Background Approxima Approxima f BTV, espected from clean false positive	cound Statisti gnificance Lo Threshold N te Actual Co nate Sample 95% BCA 95% BCA	cs avel /alues 95% nfidence Co Size neede A Bootstrap he sample si ackground d locations. egatives pro	UTL with 9 efficient ach d to achieve UTL with 9 9 9 9 2 2 2 2 2 2 5 3 3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	5% Coverage hieved by UTL specified CC 5% Coverage 0% Percentile 5% Percentile 9% Percentile eceeding 20. of outliers ata	0.73 0.37 59 0.73 0.362 0.546
Approx, f used 95% Percentile Bootstrap U 95% Percentile Bootstrap U Note: The use of USL te Therefore, one may use The use of USL	Annoparametric I Nonparametric I Data appear Garr Nonparametric Upp Order of Statistic, r to compute achieved CC UTL with 95% Coverage 95% UPL 90% Chebyshev UPL 95% Chebyshev UPL 95% Chebyshev UPL 95% USL ends to yield a conservative and consists of observar tends to provide a balan	3.031 Distribution I ma Distribution er Limits for 9 0.474 0.73 0.73 0.892 1.24 0.73 ve estimate of only when the tions collected ce between f	Free Backgro ted at 5% Sig Background Approxima Approxima f BTV, espected from clean false positive	cound Statisti gnificance Lo Threshold N te Actual Co nate Sample 95% BCA 95% BCA	cs avel /alues 95% nfidence Co Size neede A Bootstrap he sample si ackground d locations. egatives pro	UTL with 9 efficient ach d to achieve UTL with 9 9 9 9 2 2 2 2 2 2 5 3 3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	5% Coverage hieved by UTL specified CC 5% Coverage 0% Percentile 5% Percentile 9% Percentile eceeding 20. of outliers ata	0.73 0.37 59 0.73 0.362 0.546
Approx, f used 95% Percentile Bootstrap U 95% Percentile Bootstrap U Note: The use of USL te Therefore, one may use The use of USL	Annoparametric I Nonparametric I Data appear Garr Nonparametric Upp Order of Statistic, r to compute achieved CC UTL with 95% Coverage 95% UPL 90% Chebyshev UPL 95% Chebyshev UPL 95% Chebyshev UPL 95% USL ends to yield a conservative and consists of observar tends to provide a balan	3.031 Distribution I ma Distribution er Limits for 9 0.474 0.73 0.73 0.892 1.24 0.73 ve estimate of only when the tions collected ce between f	Free Backgro ted at 5% Sig Background Approxima Approxima f BTV, espected from clean false positive	cound Statisti gnificance Lo Threshold N te Actual Co nate Sample 95% BCA 95% BCA	cs avel /alues 95% nfidence Co Size neede A Bootstrap he sample si ackground d locations. egatives pro	UTL with 9 efficient ach d to achieve UTL with 9 9 9 9 2 2 2 2 2 2 5 3 3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	5% Coverage hieved by UTL specified CC 5% Coverage 0% Percentile 5% Percentile 9% Percentile eceeding 20. of outliers ata	0.73 0.37 59 0.73 0.362 0.546
Approx, f used 95% Percentile Bootstrap U 95% Percentile Bootstrap U Note: The use of USL te Therefore, one may use The use of USL	Annoparametric I Nonparametric I Data appear Garr Nonparametric Upp Order of Statistic, r to compute achieved CC UTL with 95% Coverage 95% UPL 90% Chebyshev UPL 95% Chebyshev UPL 95% Chebyshev UPL 95% USL ends to yield a conservative and consists of observar tends to provide a balan	3.031 Distribution I ma Distribution er Limits for 9 0.474 0.73 0.73 0.892 1.24 0.73 ve estimate of only when the tions collected ce between f	Free Backgro ted at 5% Sig Background Approxima Approxima f BTV, espected from clean false positive	cound Statisti gnificance Lo Threshold N te Actual Co nate Sample 95% BCA 95% BCA	cs avel /alues 95% nfidence Co Size neede A Bootstrap he sample si ackground d locations. egatives pro	UTL with 9 efficient ach d to achieve UTL with 9 9 9 9 2 2 2 2 2 2 5 3 3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	5% Coverage hieved by UTL specified CC 5% Coverage 0% Percentile 5% Percentile 9% Percentile eceeding 20. of outliers ata	0.73 0.37 59 0.73 0.362 0.546

Time Series Plot for MW-32

Time Series Plot for MW-39

2.00 1.80 1.60 1.40 1.20 1 Í \mathbf{M} T mg/L 1.00 0.80 0.60 0.40 0.20 0.00 -11 13 21 15 17 07 09 19 05 Year Nondetect \bigcirc Manganese, dissolved • Manganese, total 1

Time Series Plot for MW-29A

APPENDIX 1

Technical Memorandum: Revised Technical Memorandum: Development of Background Metal Concentrations – Olympic View Sanitary Landfill, Kitsap County, Washington March 25, 2021 March 25, 2021

SENT VIA EMAIL

Mr. Tim O'Connor, LG, LHG Ecology NWRO 3190 160th Ave SE Bellevue, WA 98008-5452 Mr. Patrick Hamel Kitsap Public Health District 345 6th Street Bremerton, WA 98337

Mr. Alan Noell, PhD, PE Ecology NWRO 3190 160th Ave SE Bellevue, WA 98008-5452

Subject:Revised Technical Memorandum: Development of Background Metal
Concentrations – Olympic View Sanitary Landfill, Kitsap County, Washington

On behalf of Waste Management of Washington, Inc. (WMW), JMO Consulting is pleased to provide this Revised Technical Memorandum (Memo) describing the process completed to date for developing background concentrations of arsenic, iron and manganese in groundwater at the Olympic View Sanitary Landfill (OVSL) in Kitsap County Washington. This has been a collaborative effort working closely with Washington Department of Ecology (Ecology) and Kitsap Public Health District (KPHD). Based on the agency comments received on the initial Technical Memorandum submitted on 11 March 2021, this Memo has been revised to include: additional information on the analytical methods (total vs. dissolved) utilized during the domestic well sampling program; further justification for the use of all domestic wells in background development; and a change in nomenclature when referring to KPHD.

BACKGROUND

As discussed with Ecology and KPHD, background values for arsenic, iron and manganese are currently established using water quality data from upgradient monitoring wells at the facility. This approach presents an inherent dilemma given the shift in redox conditions that exist across the site and the occurrence of wetlands along the downgradient margins of the facilities. Groundwater upgradient of the landfill to the east is subject to a geochemically-oxidizing (i.e., aerobic) conditions due to the percolation of rainwater with high dissolved oxygen.

As groundwater flows downgradient, recharge is restricted by the landfill cover system and oxygen may be consumed by aerobic microbial conditions. At the downgradient margins of the site, expansive wetland conditions exist along the margins of the Union River valley and further reduced (i.e., anaerobic) conditions prevail. Under the reducing conditions observed downgradient of the landfill, the concentrations of arsenic, iron and manganese (as well as ammonia) may be naturally elevated compared to upgradient conditions.

Based on this knowledge, a goal was established to develop more appropriate background metal concentrations in groundwater for the facility. As part of this effort, previous data collected from a background study performed as part of the 2007 Remedial Investigation Report (RI; Parametrix, 2007) was re-evaluated. The prior work included the sampling of nine domestic wells for total arsenic, total

Messrs. O'Connor, Noell and Hamel OVSL Background Metals March 25, 2021

iron and total manganese. The wells are located approximately 0.5 to 0.75 miles to the west, northwest and north of the landfill in relatively close proximity to Union River valley (Figure 1). In an effort to supplement the existing domestic well sampling results, State and County databases were queried for additional data.

DATABASE SEARCH

A thorough database search was completed for arsenic, iron, manganese, and ammonia sampling results for groundwater wells located in the vicinity of the landfill. Although ammonia was not included in the previous domestic well sampling program, it has been identified as a constituent of concern at OVSL and a background limit has been established using the upgradient monitoring well data.

Working closely with Ecology, the database search was performed initially by JMO Consulting. SCS joined the effort to provide additional ArcGIS and data mining support. The following databases were queried:

- Ecology's Cleanup Site (TCP) <u>https://apps.ecology.wa.gov/gsp/SiteSearchPage.aspx</u>
- Ecology's statewide database used in conjunction with the *Draft Natural Background Arsenic in Groundwater Report* (Excel file)
- Washington State Department of Health Sentry site for community water supply systems -<u>https://www.doh.wa.gov/DataandStatisticalReports/EnvironmentalHealth/DrinkingWaterSyst</u> <u>emData/SentryInternet</u>
- KPHD's scanned records portal <u>https://kitsappublichealth.org/weblink</u>

Review of Ecology's TCP database indicated that several sites located within a 3-mile radius of the landfill may have tested for metals in groundwater based on site "profile" information. However, under the "view electronic documents" tab in the database, no analytical data appears to be posted for these facilities. The majority of these sites are also located to the east of the landfill, away from the Union River valley.

The focus shifted to Ecology's statewide arsenic database used in conjunction with the *Draft Natural Background Arsenic in Groundwater Report*. SCS utilized the coordinate information contained in Ecology's 2003-2010 database and ArcGIS to plot sampling locations within a 5-mile and 10-mile radius of OVSL. The SCS query was limited to true arsenic detections (i.e., non-U results) in wells less than 250-feet deep. The results of this query indicated no detections of arsenic above the reporting limit (RL) within a 5-mile radius of the site. In addition, no information on RLs is apparent in this database. As shown on Figure 2, arsenic detections were identified within a 10-mile radius of OVSL. These data are presented in a separate file prepared by SCS (Excel file #1) and they indicate that the detected arsenic concentrations range between 1.33 and 8 micrograms-per-liter (μ g/L).

As discussed with Ecology, the next step in the process was to identify if more recent sampling results may be available from wells in the area. The search was also expanded to include iron, manganese and ammonia data. SCS queried the Washington Department of Health's (DOH) water system

database for arsenic, iron, manganese and nitrate at the eight closest sampling locations to OVSL as identified in the ArcGIS mapping. Ammonia data was not available in the DOH database and nitrate data was queried for informational purposes. Review of water systems sampling data from 2000 to current found all non-detect results for arsenic, iron and manganese. Again, information regarding RLs is not apparent in the DOH database. A list of the 8 wells reviewed is included in a separate file prepared by SCS (Excel file #2) under the tabs "Wells Within 5 Miles" and "DOH Water Quality."

Lastly, the KPHD's database for single or shared domestic water systems was queried by SCS for iron, manganese and nitrate. Neither arsenic or ammonia data were available in the KPHD database, and nitrate data was queried for informational purposes. The search included an area bounded by the Mason County line and City of Bremerton water service area. This included an area extending approximately 1.5 miles north and south of the landfill and approximately 0.5 miles east and west of the landfill. Eight of the roughly two hundred parcels located in the search area had sample results from domestic wells after the year 2000 that indicate a detection of either manganese, iron, or nitrogen. Only one of these wells had detections for all three. Archived lab reports appear to be included in the KPHD's database and information on RLs could be extracted. The 3rd tab of the attached file prepared by SCS (Excel file #2) has a link to the original documentation submitted to the county for each analysis.

SUMMARY OF PREVIOUS DATA COLLECTED

As part of the 2007 RI, a domestic well sampling program was implemented at the site. Based on information contained in the RI, a Sampling and Analysis Plan (SAP) was prepared by Parametrix (Parametrix 2005a) and subsequently approved by Ecology. Groundwater samples were collected from nine domestic wells in late December 2005 and early January 2006. The wells were sampled for total arsenic, total iron, total manganese, total coliform and volatile organic compounds (VOCs). The locations of the wells are shown on Figure 1. Well depth and water level information are provided on Table 4-3b of the RI Report and attached herein as Table 1. The sampling results are provided on Table 5-2 of the RI Report and attached herein as Table 2.

The RI report (Appendix C and D) also included boring logs for domestic wells in the vicinity of the site. Review of that information indicates that boring logs were available for five of the domestic wells sampled [Evans, Union River Acres, Easterday, Barringer and KBH Archers; Attachment 1 (note: well log names shown on Table 4-3B)] and that that the wells were completed in sands and gravels. The hydrogeologic cross-sections included in the RI report indicate that the sand and gravel deposits penetrated by the domestic wells shown in the profile are completed in Vashon Outwash Deposits, consistent with the monitoring wells installed at OVSL. A geologic map and cross-sections A-A', D-D' and E-E' (which include orientations extending to the domestic wells) are attached herein as Figures 3 through 6.

The analytical results from the domestic well sampling program (Table 5-2) indicate that arsenic was detected above the RL in all samples analyzed. Iron and manganese were also detected in all samples analyzed with two results for each consistent being reported at estimated concentrations below the RL. No VOCs were reported in any of the samples.

As part of the Draft Final Human Health Risk Assessment (HHRA), Revision 1.0 (AMEC Geomatrix, 2008), analytical data collected from the domestic wells was utilized to calculate background concentrations for arsenic in the vicinity of the site. That work was performed by Arcadis and was included as Appendix D of the HHRA report. Data from seven of the domestic wells sampled were used along with five additional sampling results from a dataset provided by KPHD. The two southern-most domestic wells (Barringer and KBH Archer) were not used in the calculation because they were considered cross-gradient or downgradient of the western end of the landfill.

The Arcadis report indicates that the data was analyzed following guidance provided by Ecology for estimating natural background conditions for indicator hazardous substance (WAC 173-340-709) and Ecology's statistical software (MSTAT 3.0) in the background calculation module (BGCKD971). The background concentration was defined as the true upper 90th percentile or four times the 50th percentile, whichever is lower. In this case, four times the 50th percentile was the lower concentration and a background arsenic value of 8.5 ug/L was recommended.

SUMMARY AND CONCLUSIONS

An extensive internet search was completed with intent to augment the dataset to be used for development of background metal concentrations at the facility. This search was performed initially by JMO Consulting, and additional ArcGIS and data mining assistance was provided by SCS. A brief summary of the important findings is provided below:

- The existing data set from the nine domestic wells sampled as part of the RI had true detections of total arsenic, total iron and total manganese. These wells are located in relatively close proximity to the Union River valley at distances ranging between approximately 0.5 to 0.75 miles from the landfill. The data were collected under an approved SAP and there is a relatively high degree of confidence in the results.
- Ecology's statewide arsenic database provides useful information on regional arsenic concentrations in groundwater. These data provide good context (or comparative reference) for any future background limits established for arsenic in the landfill vicinity. However, there were no detections of arsenic within a 5-mile radius of the landfill and no RL information is apparent in this database.
- Similarly, review of more recent data in DOH's database for arsenic, iron, and manganese did not reveal any detections above the reporting limit. Again, information regarding RLs is not apparent in the DOH database.
- Examination of the KPHD database identified a few detections of iron and manganese within the query area and RL information appears to be available.

In summary, the results of the database search have not uncovered additional sampling results that would appear to beneficially augment data previously collected from the domestic well sampling program. The additional data obtained for wells located within a 5-mile radius of the landfill are predominantly non-detect for arsenic, iron and manganese. Even if reporting limit information was

Messrs. O'Connor, Noell and Hamel OVSL Background Metals March 25, 2021

available, these data would likely not add value to the existing dataset which includes all true detections for wells located in close proximity of both the landfill and Union River valley.

RECOMMENDATIONS

It is recommended that background concentrations for total arsenic, total iron and total manganese be developed utilizing data from the nine domestic wells sampled as part of the RI. This includes use of the two southerly-most wells (Barringer and KBH Archer) which may be located downgradient of the landfill. Review of the analytical data for these wells (Table 5-2) indicates that the concentrations of arsenic, iron and manganese are generally in the mid-range to low-end of all data collected from the domestic well sampling program (i.e., they are not elevated compared to the other wells). In addition, no VOCs were detected in these wells. The Barringer well is also located on the opposite side of the Union River from the landfill.

Further justification for including the two southerly-most domestic wells in background development is provided by examining the historical indicators of landfill-related groundwater effects at the facility and assessing the downgradient extent of such water quality changes. Utilizing chloride as a conservative tracer, Figure 7 was developed showing historical concentrations of chloride in a monitoring well with known landfill-related effects (MW-32) and two monitoring wells located further downgradient near the property boundary (MW-30A and MW-37). As shown on Figure 7, the chloride concentrations in MW-32 clearly show historical landfill-related effects, with more recent data approaching an asymptotic level more consistent with background. In contrast to the early chloride data for MW-32, the two downgradient wells do not show any appreciable landfill effect.

The two southerly-most domestic wells (Barringer and KBH Archer) are located approximately 3,000 feet from the landfill and it is very unlikely that the arsenic, iron and manganese data collected from these wells during the domestic well sampling program could have been influenced by the facility. Initial analysis of all nine domestic well sampling results indicates that the data is lognormally distributed with no outliers, and it is recommended that all nine wells be included in the background development for arsenic, iron and manganese.

Although the previous arsenic background calculation performed by Arcadis included five additional sampling results provided by KPHD, it is recommended that these data not be utilized to develop background concentrations. Based on available information, the locations of these sampling points are not certain. The data also appears to be from the 1992-1994 timeframe and the RLs look to be much higher than those used in the domestic well sampling program. The limited information available suggests that three of the samples had no arsenic detected above an RL of 20 ug/L. This reporting limit is two orders-of-magnitude higher than the RL achieved in the RI domestic well sampling program.

It is also not recommended that the background dataset be augmented with the KPHD data for iron and manganese identified during the SCS database query. The results of the RI sampling program measured true detections of arsenic, iron and manganese in all nine domestic wells sampled and there is a relatively high degree of confidence in these data. Use of the KPHD data would include mixing and matching of select parameters, potentially variable RLs, and inclusion of ½ RL or other assumption

Messrs. O'Connor, Noell and Hamel OVSL Background Metals March 25, 2021

into the calculation. Incorporating these data would add a degree of uncertainty into background development.

The above recommendations are supported by examination of the character and distribution of the data collected from the nine domestic wells sampled as part of the RI. Attachment 2 presents frequency distributions, quantile-quantile normal probability plots, and Shapiro-Wilk normality tests for arsenic, iron, and manganese prepared by GeoChem Applications. The statistical information presented in these attachments indicates the data for each metal appear uniformly structured with a log-normal distribution and no outliers. This suggests that an adequate number of representative background data points has likely been captured in the nine-well data sets, and upper background concentration limits can be calculated via various statistical methods based on log-normal distributions. These limits will likely be conservative given the extensive wetland conditions that exist downgradient of the landfill and the increased potential for more reduced groundwater conditions in site wells compared to the domestic wells sampled.

JMO Consulting appreciates the assistance provided by Ecology and KPHD on this important project. Please let me know if you have any questions regarding the information presented. I look forward to further discussion of the statistical approach once the background data set has been agreed upon.

Sincerely, JMO Consulting

James M. Obereiner, P.G. Principal Hydrogeologist

Cc: Steven Williams, Ecology Phil Perley, WM Chris Perra, SCS Engineers Will Neal, GeoChem Application

Separate Files:

Excel File #1 Excel File #2

Figure 1 – Domestic Well Sampling Locations

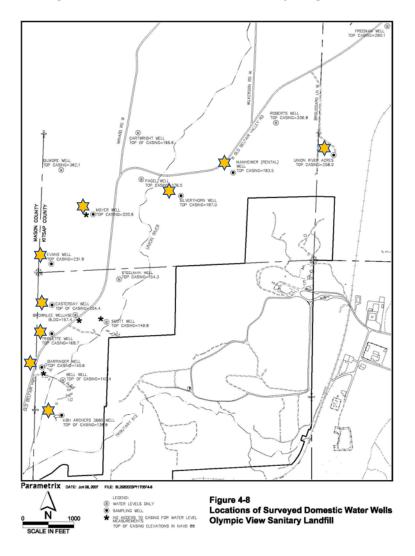
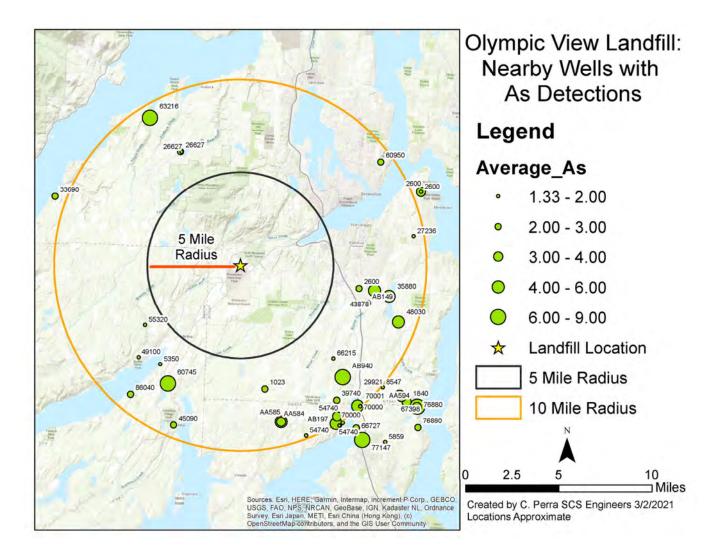



Figure 2: Radius Search of Arsenic Data from Ecology Statewide Database

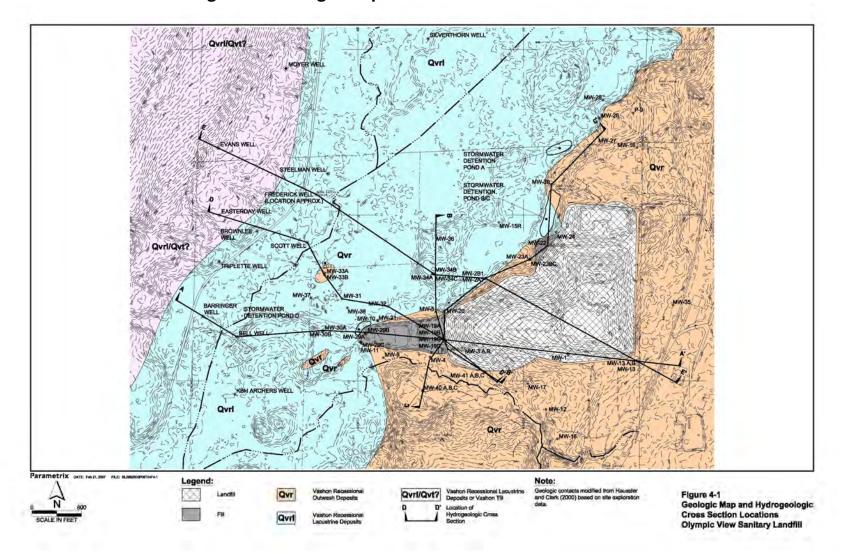
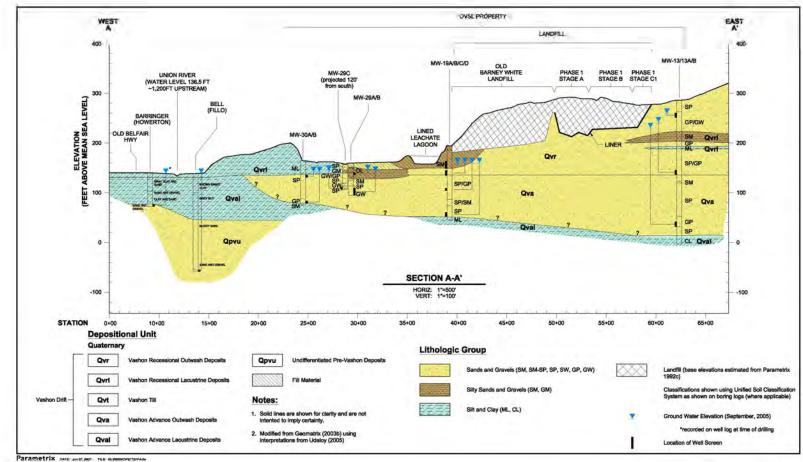



Figure 3: Geologic Map with Cross-Section Orientation

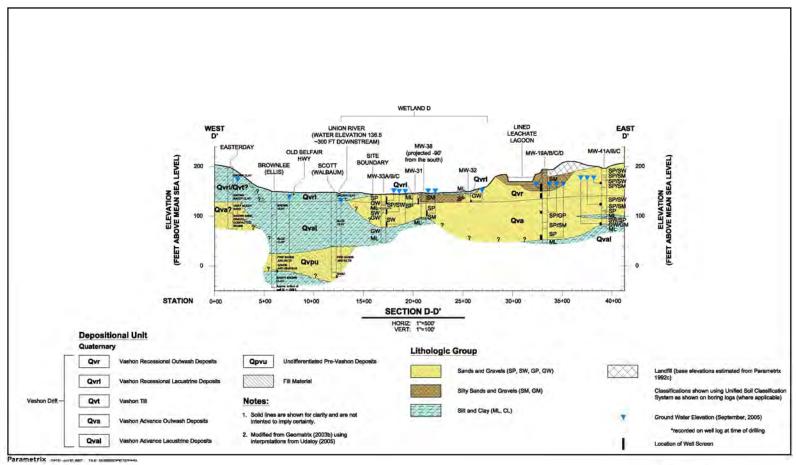


Figure 4: Geologic Cross-Section A-A'

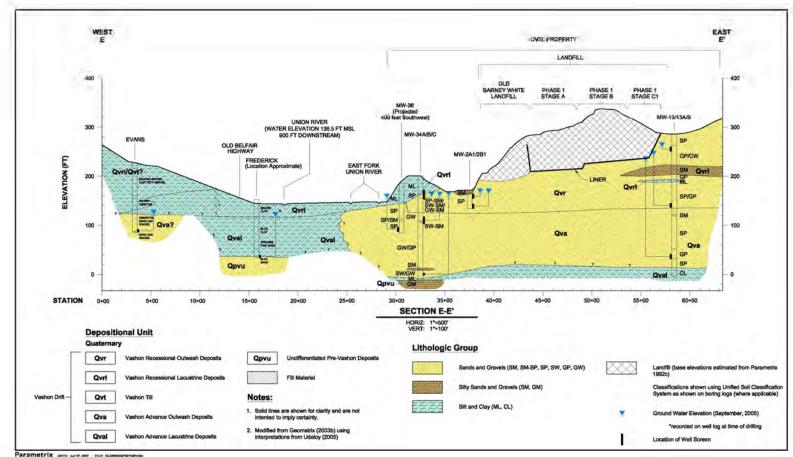

500 BCALE IN FEET

Figure 4-2a Hydrogeologic Cross-Section A-A **Olympic View Sanitary Landfill**

Figure 5: Geologic Cross-Section D-D'

500 BCALE IN FEET Figure 4-2d Hydrogeologic Cross-Section D-D' Olympic View Sanitary Landfill

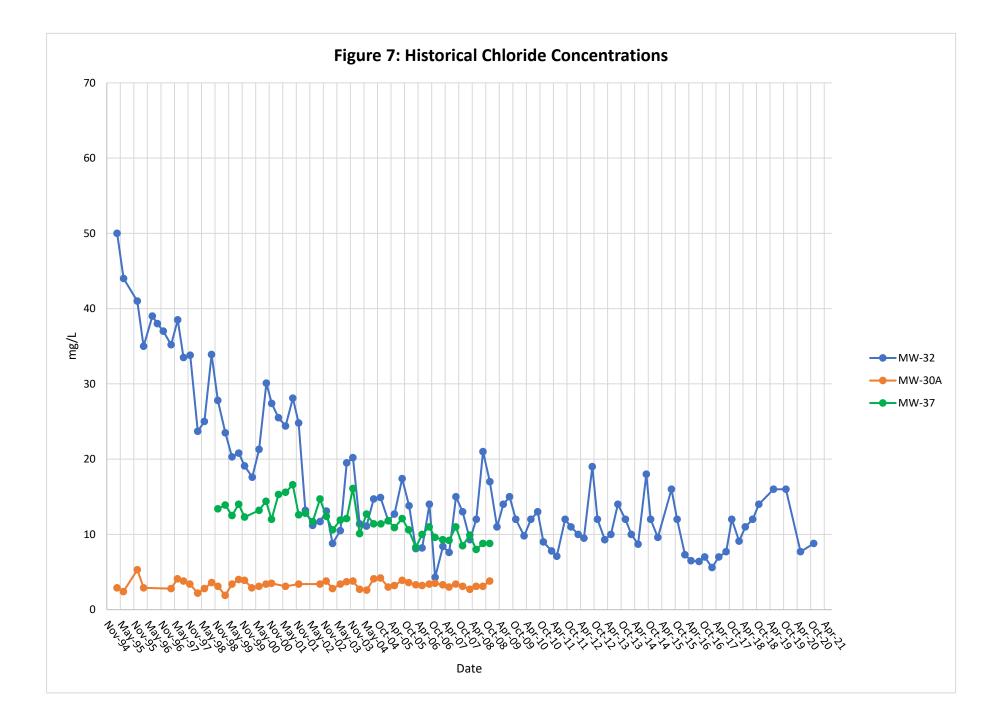


Figure 6: Geologic Cross-Section E-E'

Parametrix ours say ar manage

500 Nole: Vertical Exaggeration = 5x SEALE IN FEET

Figure 4-2e Hydrogeologic Cross-Section E-E' Olympic View Sanitary Landfill

Table 1: Domestic Well Information

	Olympic View Sanitary Landfill
Draft	Final - Remedial Investigation Report Olympic View Sanitary Landfill, Inc

					Table 4	-3b. Water L	evel Measure	ements, Pr	ivate Wells					
Well Log Name/Date Completed	Road	Address	Owner	Northing	Easting	Height of TOC above ground surface (ft)	TOC Elevation, ft NAVD 88 (surveyed 2005)	Depth, ft Below TOC	Elevation of Well Bottom, ft NAVD 88	Depth to Water, ft Below TOC	Water Level Elevation, ft NAVD 88	Water Level Elevation, ft MSL ¹	Date of Water-Level Measurement	Comments
Evans 6-1-01	Bill Evans Rd	11101	Evans, William F. Jr. *	190809.8	1154314.6	1.0	231.9	130.3	101.6	110.3	121.6	118.1	7-26-2005	
Cartwright 3-25-69	Minard	5618	Cartwright, Jack E.	193360.7	1156008.6	0.9	196.6	35.9	160.7	14.5	182.1	178.6	8-2-2005	
Gilmore 8-11-99	Minard	5747	Gilmore, Roger S.	192635.1	1154506.5	1.2	362.1	230.7	131.4	182.0	180.1	176.6	8-2-2005	
Les Smith 1-20-87	Wild Eagle Ln	5981	Union River Acres Water System *	192922.5	1159830.4	1.0	258.0	159.0	99.0	63.2	194.8	191.3	7-29-2005	
No Log	W. Belfair Valley Rd.	9545	Freeman, James Jjr & Mary	195443.8	1160879.7	0.5	290.1	87.0	203.1	83.0	207.1	203.6	8-2-2005	
Roberts 3-31-99	W. Belfair Valley Rd.	10011	Roberts, Carl A.	193560.8	1158702.3	1.9	206.8	64.7	142.1	11.3	195.5	192.0	8-2-2005	
No Log	W. Belfair Valley Rd.	10195	Manheimer, Elaine *	192583.0	1157865.3	0.2	183.5	42.0	141.5	1.2	182.3	178.8	7-28-2005	
No Log	W. Belfair Valley Rd.	10499	Silverthorn, Joseph *	192132.4	1156847.5	0.5	187.0	104.5	82.5	12.1	174.9	171.4	7-25-2005	
Pagel 4-15-00	W. Belfair Valley Rd.	10613	Pagel, Robert	192453.0	1156072.3	1.0	176.5	572.0	-395.5	0.0	176.5	173.0	8-2-2005	flowing well; water level at top of casing
Seabolt 5-7-78	W. Belfair Valley Rd.	10771	Moyer, John and Pam *	191772.3	1155130.7	1.5	220.6	179	41.6	63	158	154.1	5-7-1978	total depth from well log (5-7-1978); access plug could not be removed to measure well
No Log	W. Belfair Valley Rd.	10885	Steelman, Violet S.	190501.2	1155636.6	0.1	154.3	300	-145.7	0.0	154.3	150.8	7-25-2005	well depth reported by owner; flowing well; water level at top of casing
Ellis 8-22-92	W. Belfair Valley Rd.	10955	Brownlee, Christa	189805.0	1154787.1	-	157.4	160	-3	20	137	133	8-22-92	No access for well measurements; information from well log (8-22-92)
Walbaum 11-20-91	W. Belfair Valley Rd.	10979	Scott, Allison	189668.9	1155390.3	-	149.8	170	-20	17	133	129	11-20-91	No access for well measurements: information from well log (11-20-91)
Easterday 8-18-81	W. Belfair Valley Rd.	11120	Easterday, Val E. *	189999.6	1154327.7	0.8	204.4	119.9	84.5	47.4	157.0	153.5	9-3-2005	
No Log	W. Belfair Valley Rd.	11132	Triplette *	189439.5	1154322.7	1.0	168.7	130.5	38.2	28.2	140.5	137	7-26-2005	
Howerton 2-9-78	W. Belfair Valley Rd.	11199	Barringer, Lisa *	188782.4	1154128.0	-	140.6	68	73	1	140	136	2-9-78)	No access for well measurements: information from well log (2-9-78)
Fillo 9-30-75	W. Belfair Valley Rd.	11239	Bell, Larry	188533.1	1154538.6	3.0	142.4	196.0	-53.6	5.4	137.0	133.5	8-3-2005	152 TD in field; log shows TD=196
KBH Archers 4-20- 94	W. Belfair Valley Rd.	3650	KBH Archers *	187838.9	1154516.6	1.0	138.8	105.0	33.8	3.5	135.3	131.8	9-1-2005	

¹ NAVDB8 (North American Vertical Datum of 1989) converted to MSL by subtracting 3.52 ft. Wells sampled in January 2006 TOC = top of casing = No data available

Table 2: Domestic Well Analytical Data

Olympic View Sanitary Landfill Draft Final – Remedial Investigation Réport Olympic View Sanitary Landfill, Inc.

Sample No.	Well Owner/ Well Name	Date Sampled	1,1-DCE (µg/L)	Vinyl Chloride (µg/L)	VOCs (µg/L)	Arsenic (mg/L) ¹	Iron (mg/L)	Manganese (mg/L)	Total Coliform
Chapter 173-200	WAC:]		0.02	440	0.00005	0.3	0.05	
MCL:		1	70	2	-	0.01	0.3	0.05	
10499JS	Silverthorn	1/3/2006	<0.7	<0.02	all Non-Detect	0.00245	0.42	0.020 J	absent
3650KBHA	KBH Archers	1/3/2006	<0.7	<0.02	all Non-Detect	0.00132	0.14	0.0039 J	absent
11132T	Triplette	1/3/2006	<0.7	<0.02	all Non-Detect	0.00284	0.50	0.320 J	present
911132TD	Triplette (duplicate)	1/3/2006	<0.7	<0.02	all Non-Detect	0.00287	0.39	0.220 J	present
11120VE	Easterday	1/3/2006	<0.7	<0.02	all Non-Detect	0.00038	1.9	0.730 J	absent
11101WE	Evans	1/3/2006	<0.7	<0.02	all Non-Detect	0.00021	0.088	0.0012 J	present
5981VRA	Union River Acres	1/11/2006	<0.7	<0.02	all Non-Detect	0.00042	0.024B	0.00052 BJ	absent
10195EM	Manheimer	1/11/2006	<0.7	<0.02	all Non-Detect	0.00191	0.590	0.042 J	not tested
10771JPM	Moyer	1/11/2006	<0.7	<0.02	all Non-Detect	0.00046	0.060	0.0002 BJ	absent
11199LB	Barringer	1/11/2006	<0.7	<0.02	all Non-Detect	0.00160	0.031B	0.046 J	present

Table 5-2. Summary of Domestic Well Sampling Results, Olympic View Sanitary Landfill

Highlighted values exceed Chapter 173-200 WAC and secondary MCL standards

1 MTCA A (WA state background) = 0.005 mg/L

2 well casing has no cap or sanitary seal; well currently not in use

J = Method blank contamination

B = Estimated value less than the reporting limit.

CURRENT

WATER WELL REPORT

I's ' Original & Ist copy - Ecology, Ind copy - comper, Ind copy - driller

Construction/Decomposition ("x" in quele)

O Construction

-

O Decommission ORIGINAL CONSTRUCTION Notice of Intent Number

PROPOSED USE: X Domentic I Industrial Municipal DeWater Imgaboa 🗍 Ten Well Other_ City Bremerton TYPE OF WORK: Owner's number of well (if more than one) New Weil Reconditioned Methods Dug 🔲 Bornd Driven Deepcood Cable Roary 🔲 Jetted Lal/Long: (s,t,r still DEMENSIONS- Drameter of well_____ inches drilled 142 ft. REQUIRED) Depth of completes well ______ft. Tax Parcel No. 037301-3-041-1002 CONSTRUCTION DETAILS Canog Kiwelow -Dinm from

Notice of Intent No. ME. (20080 Unique Ecology Well ID Tag No. AFY 981 Water Right Permit No. Property Owner Name Bill Evans Well Street Address Old Bel Fair Hung Conny: KITSAF Location Sty 1/2 1/2 Sty 1/4 Soc 3 Tim 27 R I'd arrive one WWM. Lat Deg _____ Lat Min/Sec Long Min/Soc Long Deg

74 CONSTRUCTION OF DECON O CONSTR

Threaded "Diam from from	Formation: Describe by tolor: character, see: of a kind and nature of the material in carb stratum of	and some percent	course, and the
Petilorations: TYES ENO	USE ADDITIONAL SHEETS IF NECESSARY	Water cacquater j	त्व
Type of perfocator meedin. and on of perfs fromfr. to	MATERIAL	FROM	ŦŎ
Screens: X Y== []No & K-Pac Location 135 Manufacturer's Name GOOK	Top seil	D .	2
Type Stainless Model No. Diam 5 Skill Size 40 From 137 $h.to$ 142 t Diam 5 Skill Size 40 From 137 $h.to$ 142 t Diam 5 Skill Size 60 60 61 61	Redish brown clay with gray	el 7	70
Gravel/Filter packed: [Yes No]Size of gravel/Sind	Brown hardpan		. :: 5:
Surface Seal: Afres DNo To what dente? 19 A Maximals ased in seal <u>Betonite</u>	Cemented sand & gravel		
Did any strata contana nonsable water? []Yes [No	with water	135	
Type of water? Depth of suize	Sand & gravel with water	140	+42
POMP: Manufacturer's NameIactivazi Type: Sub. H.F. <u>7/4</u>			
WATER LEVELS: 1 and surface elevation above mean sea level 5 Static level 713 ft below seep of well Date			
Artesian pressure lbs. per square men Date Artesian water is controlled by			
(COD Valve, ctc.)			

WELL TESTS: Drawdown is amount when level is lowered below static level,	
Was a pump test stade? Yes No If yes, by whom?	
Yield 14 gal min with 5 fi drawdeing after 1 hrs.	
Yichd 14 szi min wah 5 ft drawdown after	
Yield gal-mun with fi drawnown after hrs.	
Recovery data linee taken at zero when pump terned off) water level measured from well top to water level)	
Time Water Level Time Water Level Time Water Level	
[min. 114	
2 min. 113	
Date of test	
Bailer iesi gal inun, with fi dia waa affer bra	
Amest gal min with stem set at fr. for hes.	
Artesian Dow	
Temperature of water Was a coemical analysis made? TYes UNo	Star Date 5/24/01 Completed Date 6/1/01
WELL CONSTRUCTION CERTIFICATION: I constructed and/or accept res Washington well construction standards. Materials used and the information	sponsibility for construction of this well, and its compliance work all reported above are true to my best knowledge and belief.
Doller Engineer Trance Name (Pros), Rylan Broughton Doller Engineer Traince Signature	Drilling Company <u>Davis Drilling</u> —— Address <u>340 NE Davis Farm Rd</u>
Doller Engineer Traince Signature Name (Pros) Bylan Broughton Doller Engineer Traince Signature	Address <u>340 NE Davis Farm Rd</u>
Doller Engineer Trance Name (Pros), Rylan Broughton Doller Engineer Traince Signeture	

•

• .

4 - · • •

٠

·

• •

• .

.

,

-

•

ATTACHMENT 1

23/010/02M KPUD-UNION RIVER ACRES WATER WELL REPORT Application Slo. File Orminal and Flest Copy with Densetment at Economy Scound Copy - Owner's Copy Person AAC934 STATE OF WASHINGTON GI-25296C 7550 E. Juneau Ct. Port Orchard Les Smith (1) OWNER: Name NW SW K See 2 7 23 N. a INWY 1 LOCATION OF WELL: County Kitsan current and distance from section or subdivision cotract

. .

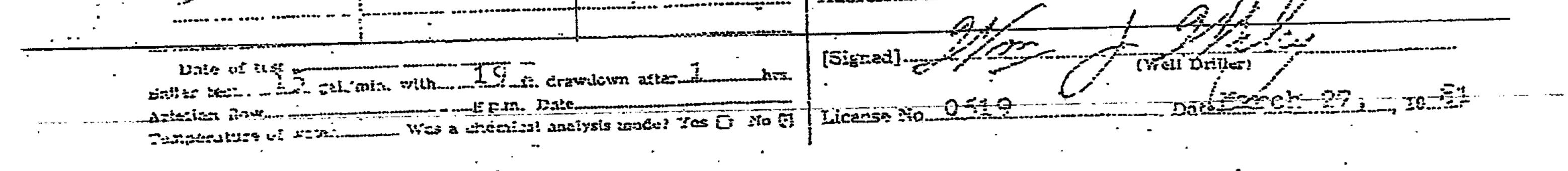
7

٠

· ·

	(10) WELL LOG:
(3) PROPOSED USE: Dementic II Industrial D Menticipal D Icrigation D Test Well D Other D	(10) WEILLS LICENE. Formation: Describe of color, character, such as material and structure, a score characters of southers and the kind that nothers of the material in es score characters of southers and the kind that nothers of the material in es score in period and of least one ratery for each change of formation scrutture period with of least one ratery for each change of formation
(4) TYPE OF WORK: Dener's number of Well	MATERIAL TO
(4) TYPE OF WORD in more than obstrained [Bored] New well [] Mathod; Dite [Bored] Despensed [Cable] Driven [] Reconcitioned [Retary [3 Jensed []	Brown sand041Brown sandLavers prown clay:41Brown sand13/21Brown sand75175120
(5) DIMENSIONS: Diameter of well 6 inches. Drilled 159 2 Deputs of completed well 159	Brown sand water Lavers 130
(6) CONSTRUCTION DETAILS: Casing installed: <u>6</u> - Dian. mon <u>0</u> t. 10 . <u>148</u> r. Threaded <u>1</u>	brown clav brown clav Brown sand some gravels water150 159
Perforations Tex I No G Type of perforations in. by in. SITE of perforations from fr. 30 fr. perforations from fr. 30 fr.	Woll Hohal 159 fr. 62 in. Woll Hohal 159 fr. 62 in. To too of packer 147 fr. 21 in. 1
Screens Yes B No C. Manuscreate Name Johnson Manuscreate Name Johnson Stainless steel Model No. Type Stainless steel Steel Model No. Type Stainless steel Steel Model No. Type Steel No.	Risser pipe 1 frind in 015 slot screen 5 ft. 3 in 615 slot screen 5 ft. 35 in Tailor screen 5 ft. 35 in Tailor screen 5 ft. 35 in Screen overall 19 fr. 61 in
	<u>Six in casing 168 5- :0 1/8 in</u>

	Gravel placed troti	<u>Static nead 53. The second se</u>
		<u>30.6 P.M. 76 Et. 5 in</u>
	Suifface seal: yes of No 13 To what depth?	
	Marginal meet in seal Rentoniable water? Yes I No I	
	Did any straig contain the	STREET ≈ 220 7- 220
	Type of water?	
		Soc HEIGENVIEL
	(7) PUMP: Minufacturer & Name	
	TYDE:	1.12 1.12
	(8) WATER LEVELS: Land - men sea invel. 1-20-87	
	Statze jevel	NORTHWEST REGION
	Artestan water is commiled by	
		1-20
X	(9) WELL TESTS: Drawdown is amount water level is powered below static level	
	Wes a atom test made? Yes J No JA 1 yes by what?	WELL DRILLER'S STATEMENT:
	Vield: 571. min. with fl. Grawdown after 200.	
		This well was drilled under my jurisdiction and this report :: irue is the best of my knowledge and belief.
		• · ·
	Removery sats ("inne taken as and when pump thirded off) (water level measured (rom well top to water level)	NAME Vicholson Drilling, Inc.
		P.O. box 123 Port Orchard, WA 98.
		ACCIEST
	ى. ئەلىمەن بېچى مەمەلىمەن چې جەمەلىمەنىن مەدەمەنى قەرىيەنىيەر بىر ورىپارە ئەتىرور د ب يەلىلىمامەر چېرمەتلىنىيە چى	Elle .
	Date of test monore a second and monore and a second and a	
	Arterian now	License North Manufacture and Date In The State of the


•

-Ten Dechart . USE ADOTTIONAS • The set of

.

•

	•	• • • • • • • • • • • • • • • • • • • •	•	23/07/1	- 74
The Original and First Copy with Day - the ent of Ecology Second Copy - Constrations if 18-81 Third Copy - Driller's Copy	WATER WELL STATE OF WAS	SHINGTON	Applie 3/01H-19D Permi	t No	* ****
(1) OWNER: Name Val Easterday	A	ddress 11120	ويستعملون والمواد والمتعادين والمتعادين والمتعادية والمتعادية والمتعادية والمتعادين		ه_خ
DEATION OF WELL: Courty Kits	ар	الماري	1 11 MH 11 Sec 10	i T. M. R#	
Section and distance from section or subdivision come					
(3) PROPOSED USE: Domestic CK Ladustei		10) WELL LOG: comation: Describe by a	Jon al - raine rise ut	material and stru	ciure, a
lerization (K Test Ve		comption: Describe by a how thickness of aquifer truber penetrated, with			
(4) TYPE OF WORM: Owner's number of warden of Warden (4) TYPE OF WORM: (16 more than one)	ell =		TERIAL	FP.OM	10
New well 2 Method: D		Brown clay			47
	Anna Tettor I	<u>Blue sandv</u>		v 53	8:
		Brown sand,	<u>eravie, cla</u>		1
(5) Dimeter of well. Drilled 112 ft. Depth of completed v	veli <u>112</u> ft	streaks w		84:	112
			•		<u></u>
(6) CONSTRUCTION DETAILS:	1:2				
Curing installed: Diam. from	ft. to ft. [7]	* 			+
Threaded [] Diam. from		Well total	112 Rt. 13 J	<u>n,</u>	
Perforations: Yes D No 2		No Screen			
Type of perforator liked		Total Six T	n. Casing =	112 []]	
SIZE of perforations in. b	ft. to	<u>Static Haad</u>	'75 Rt		
perforations from	IL to merce the	<u>10 GPH 89 F</u>	+. 6 In.		
perforations from	ft. to ft	15 GPN 04 7	t. 6 In.		<u> </u>
Screens: The Rock	· · ·				
Lianulacurer's Name	el No				<u></u>
Slot size from					
Diam Slot zize from	ft. to it.	•	· · · · · · · · · · · · · · · · · · ·		
Gravel packed: Yes D No E Size of	gravel:				
Gravel pieced from				· · · · · · · · · · · · · · · ·	
Surface stal: Yes 5 No 0 To what d Material used in seal Bentonits	esth? 20 st		· ·		<u> </u> .
Material used in seal DE-1001110. Distant unuseble wateric unuseble wateric	Yes I No E	· · · · · · · · · · · · · · · · · · ·	- -		
Type of Water? Depth of		•	• • • • • • • • • • • • • • • • • • •	· · ·	
Nethod of sealing strata of					
(7) PIJMP: Manufacturer's Name Berkel	ey				
(7) PIJMP: Manufacturer's Nome DELCES .1 Type:	HP			·	·
(8) JYATER LEVELS: Land-surface elect above mean sea le 75 ft below top of we	ation				
to below top at we	ll Date	······			
Static levellbs. per square inc Artesian pressurelbs. per square inc Artesian pressure					_ <u> </u>
	a construction of the second se		1 77 1 704		
(9) WELL TESTS: Drawdown is amon lowered below stati		Work starter Farc			
Way a pump test made? Yes [: No [] E yes by v		WELL DRILLEI	ys statemzni		
Yield: gel. mic. with ft. drawdu		This well was G	rilled under my jur	isdiction and the	is repo
		irue to the best of			
Recovery data (Sme takel as zero when pump. a measured from well top to waler level)	nued oil) (mater the	1	son Drillin	z Company	

:

•

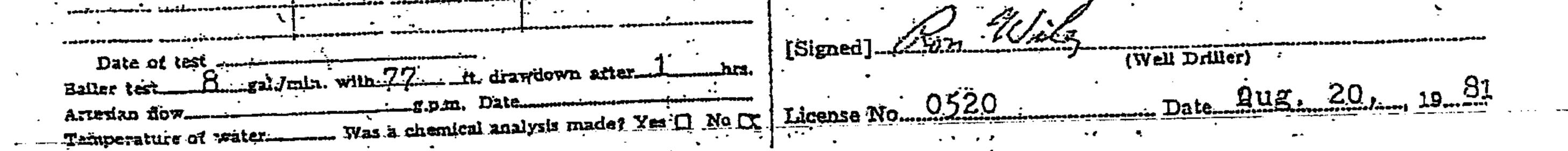
.

.

.

•

-


•

•

•	2.3/0/62-102
The Original and First Copy with Department of Ecology Second Copy — Owner's Copy #48=81 Third Copy — Driller's Copy	LL REPORT 23/1W-10D Application No.
) OWNER: Name Don Easterday (c) LOCATION OF WELL: county Kitsan Bearing and distance from section or subdivision corner	Address Erenicicion, Wa., Wa., 10 7.1. Address Erenicicion, Wa. NW 4 Sec. 10 T. 2.3.N. R. 1.Ww.
(3) PROPOSED USE: Domestic X Industrial [] Municipal [] Irrigation [] Test Well [] Other []	(10) WELL LOG: Formation: Describe by color, character, size of material and structure, and show thickness of aguiters and the kind and nature of the material in each show thickness of aguiters and the kind and nature of the material in each stratum penetrated, with at least one entry for each change of formation.
(4) TYPE OF WORK: Owner's number of well (4) TYPE OF WORK: Owner's number of well New well OX Method: Dug I Bored I Deepened I Cable I Driven I Rotary I Jetted I	NATERIALIROMTOBrown clay045Brown sandy clay45Gray muddy sand68

Brown sand, gravel, compacted Diameter of well (5) DIMENSIONS: inches. 108 124 Depth of completed well 124 seams, water hearing Drilled 1.24 . . . (6) CONSTRUCTION DETAILS: # to : 124 # Cusing installed: 6 " Diam. trom مالك متسبين ft. to . " Diam. from Threaded 🗍 tt. to " Diam. from ÷ . Welded [] - 2 Perforations: Yes D No DL Weil Total 124 Et. 10. In-• Type of perforator used SIZE of perforations No screen Total Six In Casting = 124 <u>o</u> Tn perforations from . 72÷perforations from . · · · perforations from . ft. tõ Static Head = 31 Et 8 GPM 108 Ft Screens: Yes [] Noff · · · , Manufactorer's Name_ Model No. Туре____ ft. fra _Slot_size . from Diam. ft. to Slot size from Diam. . Gravel packed: Yes D No Ø Size of gravel: • • . . $\sim \dot{\sim}$ - -

• • • •	Surface seal: Yes IX No I To what depth? <u>22</u> ft. Material used in seal <u>Bentonite & Cementi</u> Did any strate contain unuscole water? Yes I No IX Type of water? <u>Depth of strata</u> Method of sealing strata off	
	(7) PUMP: Manufacturer's Name None HP.	
	(8) WATER LEVELS: Land-surface elevation above mean sea level	
· · · · · · · · · · · · · · · · · · ·	Was a pump test made? Yes [] No [] It yes, by whom? Yield: gal./min. with it. drawdown after hrs. """"""""""""""""""""""""""""""""""""	Work started Aug. 13, 19 81 completed Aug. 9, 19 81 WELL DRILLER'S STATEMENT: This well was drilled under my jurisdiction and this report is true to the best of my knowledge and belief.
.*	Recovery flata (time taken is water leval) measured from weil top to water level Time Water Level Time Weter Level Time Water Level	NAME HIGHOLOGIA DE Marcorporation) (Type or print) (Person, firm, or corporation) (Type or print) P.O. Box 123 Port Orchard, Wa.

٠.

.

-

•

۰.

•

	$\frac{23}{0} \frac{1}{W} - \frac{1}{F}$
	F WASHINGTON Permit No
(1) OWNER: Name Harold T. Howerton (2) LOCATION OF WELL: County Kitsap Bearing and distance from section or subdivision corner	Address 70 27 1W
(3) PROPOSED USE: Domestic [] Industrial [] Municipal	 (10) WELL LOG: Formation: Describe by color, character, size of material and structure rhow thickness of againers and the kind and nature of the material is structure penetrated, with at least one entry for each change of form
(4) TYPE OF WORK: Owner's number of well (If more than one) New well IX Method: Dug I Bored Deepened II Cable E Driven	D + Crost]

	Reconditioned [] Rotary [] Jetted []	gray'clay, sand- some gravel	-	
(;	5) DIMENSIONS: Diameter of well <u>68</u> inches. Drilled <u>68</u> ft. Depth of completed well <u>68</u> ft.	to 1", hard packed - weeps water water bearing gray sand &	<u>28</u>	38
·	6) CONSTRUCTION DETAILS: Casing installed: <u>6</u> . " Diam. from <u>0</u> . It. to <u>65</u> . It.	gravel gray clay & sand	<u>38</u> 45	<u>45</u> <u>61</u>
	Threaded []	water bearing gray sand - gravel to 3 "	61	68
•	Perforations: Yes [] No K] Type of perforator used in. by in.	<u>gray sand, clay, gravel -</u> hard packed	68	
•	Size or perforations from ft. to ft. to ft.			
•••	periorations from			
	Screens: Yes Ly No L UPO Johnson Manufacturer's Name UPO Johnson Type stainless steel Model No Type Stainless steel 63. ft. to 68. ft. Diam. 5 Sot size from ft. to ft.		- 1 22	
	Gravel placed from ft. to ft.			
	Surface seal: yes [No [] To what depth?]8			

SHLINCE Sear- IS IX No 🗋 Did any strats contain unusable water? -Yes 🔲 . Depth of strata. Type of water?.... Method of sealing strata off... (7) PUMP: Manufacturer's Name Owner installing • • Type: (8) WATER LEVELS: .ft. below top of well Date Static level .lbs. per square inch Date. Artestan pressure Artesian water is controlled by (Cap, valve, etc.) 10 78 19_78 completed Feb. 9 Work started Feb. 5 Drawdown is amount water level is lowered below static level (9) WELL TESTS: WELL DRILLER'S STATEMENT: Was a pump test made? Yes [] No [T If yes, by whom?... hrs. it. drawdown after This well was drilled under my jurisdiction and this report is gal/min. with YIeld: true to the best of my knowledge and belief. **3 \$** Recovery data (time taken as zero when pump turned off) (water level measured from well top to water level) Frank's Well Drilling -----Staron Houte apparties 779Ispe or print) NAME. Water Level Time Water Level Water Level Time Bremerton, Wash. 98310 Time Address.... [Signed]____JAAne__ (Well Driller) Date of test h bri. withor.

_gal/min. with 40 ft. 18 78 Feb. Baller test... License No. 250 Date g.p.m. Data Artesian flow. Was a chemical analysis made? Yes E-No B-Temperature of water ...

(USE ADDITIONAL SHEETS IT NECLESSARY)

5. F. No. 7156-OS-(Rev. 4-71).

• •

.

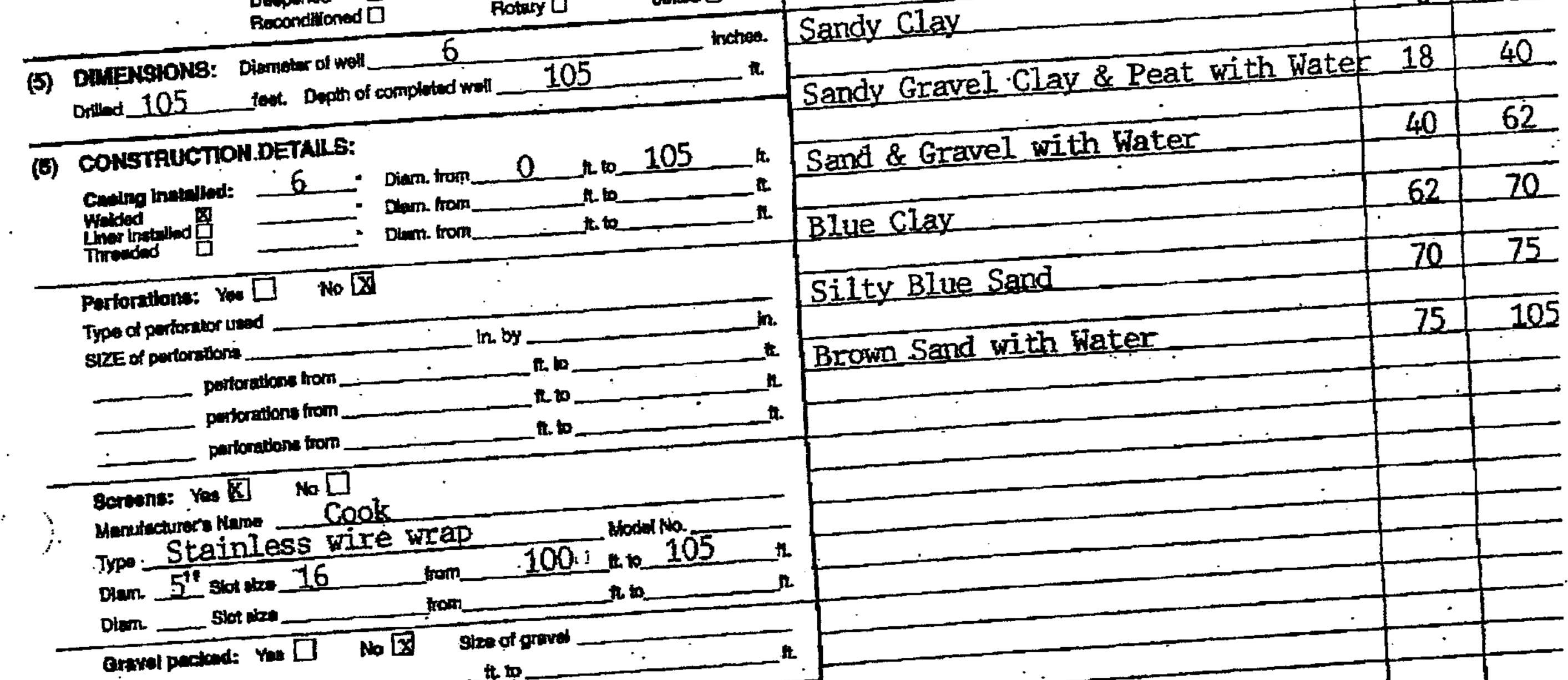
. .

. '

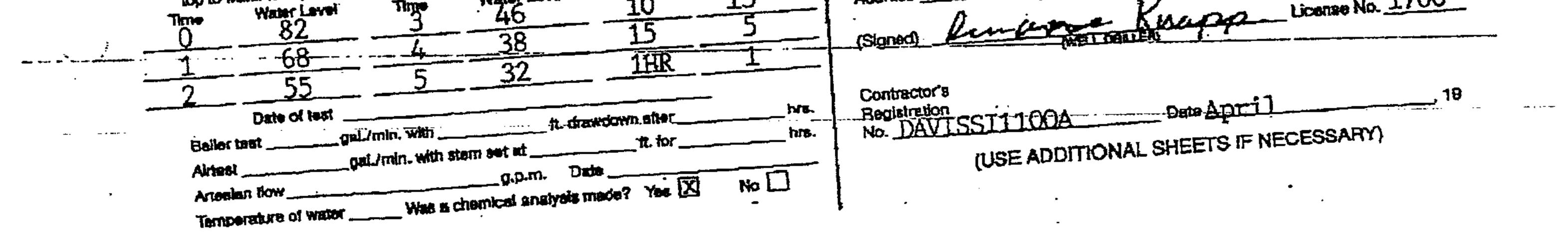
-

•

.....


•

•


-

· •

File Original and First Copy with Department of Ecology Becond Copy Owner's Copy 75-Wd Copy Driller's Copy	DEPT. OF ECOLOGY	STATE OF W	3680 Old Belfair Hwy Belrair, w	BG 095 W 10 1 A 98528	
OWNER: Nome_KBH	Archers		. NW 14 SET 14 Sec 10 T.2	<u>N_H</u>	
(2) LOCATION OF WELL:	County KIESSED 3680	Old Belfair	Hwy, Belfair WA 98528 (10) WELL LOG or ABANDONMENT PROCEDURE I (10) WELL LOG or ABANDONMENT PROCEDURE I	ESCRIPTIO	N
(2) STREET REPUBLIC (3) PROPOSED USE:	Inigation Test Wall	Municipal	Formation: Describe by contracted in each stratum penetrated, whith	at least one ent	
	Devracui		change of information. MATERIAL	FROM	<u> </u>
	more than one)				
Abendonad 🔲 Navi	rweii DK Mathod: Dug D Gened D Gable DK	Bored Driven Driven Distant	Top Soil	3	18

tt.to Gravel placed from To what depart? _ Surface seel: Yes X No Betonite Material used in seal No 🖾 Did any strate contain unusable water? Yes Depth of strate "Type of weter? . Method of sealing strate off H.P.__ (\mathbf{T}) Type: _____S11b_ Land-surface elevation ft WATER LEVELS: above mean see level It, below top of well Date (8) ibe, per square inch Date_ 4/17/94 18. Completed 4/20/94 Static level Attastan prosestare Work Started _ Ariesian water is controlled by (Cap. yawa, etc.) WELL CONSTRUCTOR CENTIFICATION: (9) WELL TESTS: Drawdown is amount water level is lowered below static level I constructed and/or accept responsibility for construction of this well, and Hype, by whom? _____1706 compliance with all Washington well construction standards. Materials used t No Was a pump test made? You X the Information reported above are true to my best knowledge and belief. hrs. TL CRANCOWN STOF 81 gel./min. with ____ Yield: 21 . . NAME Davis Drilling OR CORPORATION (MPEOR PARK) 81 21 92 Ħ Recovery data (time taken as zero when pump turned oit) (water level measured from well Address Belfair, WA 98528 Water Level License No. 1706 top to water level) To Water Level Time V

. .