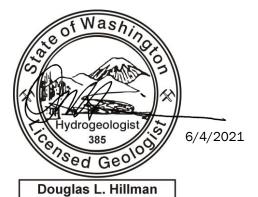
SITEWIDE RI/FS WORK PLAN Morell's Dry Cleaners

Prepared for:

D.E. Wickham, Successor to Walker Chevrolet

Project No. 080190 • June 4, 2021

SITEWIDE RI/FS WORK PLAN Morell's Dry Cleaners


Prepared for: D.E. Wickham, Successor to Walker Chevrolet

Project No. 080190 • June 4, 2021

Aspect Consulting, LLC

Breeyn Greer, PEProject Engineer
bgreer@aspectconsulting.com

Doug HillmanPrincipal Hydrogeologist
dhillman@aspectconsulting.com

Jury J Putu Jeremy Porter

Principal Remediation Engineer jporter@aspectconsulting.com

 $\label{thm:linear} V:\080190\ Stadium\ Thriftway\ LLC\ Deliverables\ Remedial\ Investigation\ Work\ Plan\ 2021\ Final\ Sitewide\ RIFS\ Work\ Plan\ 2021.06.04.docx$

Contents

Αc	cronyms	iv
1	Introduction	1
2	Background and Previous Investigations	2
	2.1 Site Physical Setting	
	2.1.1 Topography and Surface Cover	
	2.1.2 Hydrogeologic Conditions	
	2.2 Previous Reports	3
3	Interim Cleanup Actions	6
	3.1 2014 Interim Cleanup Action	6
	3.1.1 Biostimulation Injections (2014)	
	3.1.2 Soil Vapor Extraction System (2014)	
	3.1.3 SVE Performance (2014 to 2020)	
	3.2 2019-2020 Interim Cleanup Expansion	
	3.2.1 Remediation Injection (2019)	8
	3.2.2 Soil Vapor Extraction Expansion (2020)	8
4	Updated Conceptual Site Model	10
	4.1 Sources of Contamination	10
	4.2 Chemicals of Potential Concern	11
	4.3 Exposure Pathways and Potential Receptors	12
	4.3.1 Soil Exposure Pathways	
	4.3.2 Groundwater Exposure Pathways	13
5	Cleanup Requirements	15
	5.1 Applicable or Relevant and Appropriate Requirements	
	5.2 Establishment of Indicator Hazardous Substances	
	5.3 Nature and Extent of Contamination	
	5.3.1 Soil 18	
	5.3.2 Groundwater	
	5.3.3 Indoor Air and Soil Gas	
	5.4 Points of Compliance	19
	5.5 Terrestrial Ecological Evaluation	19
6	Data Gaps	20
7	Investigation Work Plan	21
	7.1 Soil Investigation	
	7.1.1 Drilling	
	7.1.2 Soil Sampling / Analysis	21

ASPECT CONSULTING

	7.1.3 Well Construction	21
	7.2 Groundwater Sampling	22
	7.3 Vapor Intrusion Investigation	22
	7.3.1 Permanent Vapor Point Installation	
	7.3.2 Contingency Temporary Vapor Point Installation	
	7.4 IDW Management	
Sc	chedule and Reporting	24
Re	eferences	25
Lir	mitations	27
1:	int of Tables (1. ()	
	ist of Tables (in text)	
Α	Contaminants of Potential Concerns and Affected Media	12
В	Summary of Preliminary Site Cleanup Levels	17
Lis	ist of Tables (attached)	
1	Soil - Indicator Hazardous Substances Evaluation	
2	Water - Indicator Hazardous Substances Evaluation	
3	Soil Gas - Indicator Hazardous Substances Evaluation	
4	Indoor Air - Indicator Hazardous Substances Evaluation	
Lis	ist of Figures	
1	Site Location Map	
2	Site Plan	
3	Cross Sections A-A' and B-B'	
4	Groundwater elevations & Gradient Map in Advance Outwash – December 22, 2010	
5	Estimated Extent of PCE Exceedances in Soil	
6	Extent of PCE Exceedances in Advance Outwash Groundwater	
7	Soil Vapor and Indoor Air Sample Locations	
8	SVE Layout and Vault Detail	
9	Data Gaps Investigation	

List of Appendices

- A Aspect Data
- B Stemen Environmental, Inc., Inspection Letter
- C Summary of 2019 Interim Actions and Proposed SVE Expansion Memo
- D Pre-Expansion SVE Performance Monitoring
- E SVE Expansion As-Built Record and Initial Performance
- F Terrestrial Ecological Evaluation Form (TEE)
- G VaporPin Standard Operating Procedure
- H Report Limitations and Guidelines for Use

Acronyms

ARAR applicable or relevant and appropriate requirement

Aspect Consulting, LLC

bgs below ground surface cDCE cis-1,2-dichloroethene

CFR Code of Federal Regulations

CLARC Cleanup Level and Risk Calculation

COPC chemical of potential concern

CSGP Construction Stormwater General Permit

CSM Conceptual Site Model

DCE 1,2-dichloroethene

dSFFS draft Supplemental Focused Feasibility Study

Ecology Washington Department of Ecology

EDR Environmental Data Resources, Inc.

ERH electrical resistance heating

FFS Focused Feasibility Study

GAC granular activated carbon

HEPA heat-enhanced plume attenuation

IDW investigation-derived waste

IHS indicator hazardous substance

ISCO *in situ* chemical oxidation

lbs pounds

lbs/day pounds per day

MCL Maximum Contaminant Level

mg/kg milligrams per kilograms

μg/L micrograms per liter

MTCA Model Toxics Control Act

NAVD88 North American Vertical Datum 1988

NPDES National Pollution Discharge Elimination System

ASPECT CONSULTING

ORP oxidation-reduction potential

PCE tetrachloroethene

PCUL preliminary cleanup level

PID photoionization detector

ppm parts per million

PVC polyvinyl chloride

RAO remedial action objective

RCW Revised Code of Washington

RI/FS Remedial Investigation/Feasibility Study

ROI radius of influence

Stemen Environmental, Inc.

SVE soil vapor extraction

SWPPP Stormwater Pollution Prevention Plan

TCE trichloroethene

TEE Terrestrial Ecological Evaluation

TOC total organic carbon

USCA United States Code Annotated

VC vinyl chloride

VCP Voluntary Cleanup Program

VOC volatile organic compound

WAC Washington Administrative Code

1 Introduction

This Data Gaps Investigation Work Plan (Work Plan) was prepared by Aspect Consulting, LLC (Aspect) to describe investigation activities to address remaining data gaps as necessary to select a final cleanup action for the Morell's Dry Cleaners Site (the Site). Site contamination results from chlorinated solvent releases from historical dry cleaner operations¹ at 608 North First Street in Tacoma, Washington (Property; Figure 1) from 1929 until 2009. The Site includes the Property and any off-Property soil and/or groundwater confirmed of being impacted by chemicals released at the Property.

The Property consists of two parcels, referred to in this report as the Building Parcel and the Parking Lot Parcel (Figure 2). The chlorinated solvent releases occurred on the Building Parcel. The Site, as defined by the full extent of impacts, extends both on- and off-Property. See Figure 2 for exploration locations and a generalized depiction of the Site boundary.

The majority of the contamination is located on the Building Parcel, beneath the existing building, and is inaccessible to excavation. Results of pilot testing and *in situ* remediation efforts to date have made substantial progress in removing and treating contamination but suggest that *in situ* treatment will require a long restoration time frame for the Building Parcel. The magnitude and extent of impacts on the hydraulically upgradient Parking Lot Parcel are limited to groundwater and relatively minor.

As a result, in 2020 Aspect proposed a Property-Specific Closure Report for the Parking Lot parcel (PL Closure Report, Aspect, 2020a, draft) as a demonstration that further cleanup actions at the Parking Lot parcel were disproportionately costly relative to the benefit to human health and the environment. Upon review of the PL Closure Report, the Washington State Department of Ecology (Ecology) determined that characterization of the Site was not sufficient to establish cleanup standards and select a cleanup action as documented in "Further Action at the Property associated with a Site: Morell's Dry Cleaners," dated January 6, 2021 (Further Action Letter). This Work Plan outlines interim cleanup actions to date, an updated Conceptual Site Model (CSM), proposes cleanup requirements, establishes data gaps, and concludes with a data gap investigation work plan.

The Site is currently enrolled in the Ecology Voluntary Cleanup Program (VCP) in accordance with the Washington State Model Toxics Control Act (MTCA) and requirements of the Washington Administrative Code (WAC) 173-340-515 (Independent Remedial Actions). The site is listed as VCP Site Number SW 1039.

-

¹ Petroleum hydrocarbons are also present in the subsurface, the source of which is unknown. A possible source is historical dry-cleaning operations, which may have used petroleum hydrocarbons (e.g., Stoddard solvent) before chlorinated solvents came into use.

2 Background and Previous Investigations

The Building Parcel is approximately 7,930 square feet and contains a single-story, approximately 3,700-square-foot building² of slab-on-grade construction (hereafter referred to as the Morrell's building), which is currently occupied by Morrell's Dry Cleaners and Tease Chocolates. The Parking Lot Parcel is approximately 13,450 square feet and is used primarily by patrons of the south-adjacent grocery store. The entire Site outside the Morrell's building footprint is paved with asphalt and concrete.

The Property is zoned by the City of Tacoma as a Neighborhood Commercial Mixed-Use District (NCX), allowing for a mix of residential, office, retail, and commercial service uses. The adjoining property to the south is the Former Walker Chevrolet Site (former VCP No. SW1040). A Thriftway grocery store on that property abuts the southern boundary of the Parking Lot Parcel. The adjoining properties to the north and northeast contain commercial and office space (hereafter referred to as the Northern Building; Figure 2). The Northern Building is separated from the Morrell's building by an approximately 5-foot-wide paved, gated alley.

According to city directories, dry cleaning operations have been performed continuously on the Property beginning in 1929. Tetrachloroethene (PCE) was used in successive drycleaning machines from the beginning of the Morrell's tenancy in 1972³ until early 2009, when Morrell's purchased the existing PCE-free dry-cleaning machine.

2.1 Site Physical Setting

2.1.1 Topography and Surface Cover

The Site is located in the Stadium District of Tacoma between Wright Park and Commencement Bay (Figure 1). The Stadium District is located above an escarpment that descends to Commencement Bay. The Parking Lot parcel is about elevation 278 feet (NAVD88) and the top of the escarpment is about elevation 240 feet. The top of the escarpment is about 500 feet north of the Site boundary. The bottom of the escarpment is about elevation 20 feet at Schuster Parkway, which extends along Commencement Bay.

The Stadium District is predominantly covered with impervious surfaces. The exception is Wright Park, a 32-acre city park located south of the Site. A pond in Wright Park is the closest surface water to the Site, located about 900 feet from the Site and at a higher elevation (approximately 290 feet), making it upgradient from the Site. Commencement Bay is the closest surface water body downslope at approximately 1,200 feet from the Site.

2.1.2 Hydrogeologic Conditions

The Property is underlain by a thick sequence of glacially overridden unconsolidated soils. Site soils consist of approximately 35 feet of dense, fine grained sandy silt and gravel, interpreted as ice-contact deposits (Qvi) and glacial till (Qvt), overlying

-

² As shown on Figure 2, the extreme northern portion of the building extends onto off-property Parcel 2030-12-0012

³ PCE was likely also used for dry cleaning at the Site prior to 1972, but records are not available.

approximately 30 feet of sand, interpreted as advance outwash (Qva). Underlying the outwash sand is a sequence consisting primarily of silt and silty sand, with a limited thickness of interbedded slightly silty sand, which is interpreted as Olympia bed interglacial deposits (Qob). This sequence of silt, silty sand, and sand extends to at least 146 feet below ground surface (bgs); the maximum depth drilled on the Site. Figure 3 provides hydrogeologic cross sections beneath the Site (see Figure 2 for cross-section locations).

The advance outwash is the uppermost groundwater-bearing unit at the Site, and the base of the outwash ranged from about 63 to 74 feet bgs with groundwater occurrence at depths below 50 feet. The majority of Site monitoring wells are completed in the advance outwash. The five advance outwash wells constructed along Tacoma Avenue North and North First Street (MW-3, MW-4, MW-6, MW-9, and MW-10; Figure 2) did not yield water over multiple years of monitoring and were decommissioned in 2010. On this basis, the upper water-bearing unit is perched, discontinuous, and estimated to terminate along the approximate boundary shown on Figures 2 and 4.

Borings for MW-3, MW-5, MW-8D, MW-10, MW-11, and MW-12D to MW-14D penetrated through the advance outwash into the Olympia bed interglacial deposits, which are characterized as a leaky lower-confining unit with discontinuous, low-yield sandy intervals. Deeper water-bearing zones were encountered within thin sandy intervals of the Olympia bed interglacial deposits. Wells MW-8D and MW-12D to MW-14D were completed in the interglacial deposits and yield limited quantities of groundwater during sample collection. The intersected water-bearing units are under unconfined conditions. The discontinuous, low-yield, water-bearing units in the Olympia bed interglacial deposits likely contain non-potable groundwater based on low yield (WAC 173-340-720(2)(b)(i)), and unlikely interconnection with potential future sources of drinking water (WAC 173-340-720(2)(c)). Impacted groundwater within the interglacial deposits would be unlikely to reach surface water, which is about 140 feet beneath and 1,200 feet north of the Site boundary.

Horizontal groundwater gradients within the advance outwash are very small. Inferred groundwater flow direction can vary widely from one monitoring round to the next. In order to illustrate the gradient over a larger area, the advance outwash groundwater elevations measured on December 22, 2010, and estimated groundwater elevation contours are shown on Figure 4.⁴ The inferred groundwater flow direction is to the north/northwest, consistent with the local topography and the presence of Wright Park (an elevated recharge area) upgradient to the south.

2.2 Previous Reports

The following is a chronological listing of technical reports submitted to Ecology and an Ecology opinion letter regarding investigation and cleanup of the Site. The contents of

PROJECT NO. 080190 • JUNE 4, 2021

⁴ Groundwater elevation measurements on this date included wells MW-1 and MW-11 on the Former Walker Chevrolet Site. More recent contours including MW-1 and MW-11 are not available because those wells have since been decommissioned.

each are briefly summarized. All data collected by Aspect for Site characterization purposes5 in included in Appendix A, for reference.

- Site Conditions Summary dated July 14, 2009 (Aspect, 2009). This technical memorandum documents due-diligence investigation results performed by Stemen Environmental, Inc. (Stemen) between 2006 and 2008, and follow-up investigations by Aspect in 2009. Investigations were initiated at the Morrell's Dry Cleaners Site after water was encountered beneath the Morrell's building floor slab, and an analysis of the water bill of Tully's Coffee (located across the alley to the north) indicated that an estimated 600,000 gallons of drinking water had been released between May 2006 and September 2007, see Appendix B for documentation.
- **Remedial Investigation (RI) Report** dated February 18, 2011 (Aspect, 2011). This report describes the historical uses and environmental setting, documents investigations completed to date, and develops a preliminary conceptual site model for the Site.
- Ecology's "further action" opinion letter dated September 26, 2011 (Ecology, 2011) provides review comments on the RI Report. It states that the perched groundwater in the advance outwash was adequately delineated but requested additional delineation of the deeper groundwater within the interglacial deposits. Ecology also recommended performing a Tier II indoor air sampling assessment in and adjacent to the Morrell's building.
- Focused Feasibility Study (FFS) dated March 26, 2012 (Aspect, 2012a). The FFS develops cleanup action objectives and develops and evaluates cleanup alternatives in accordance with MTCA criteria in WAC 173-340-360. The report identifies subslab depressurization, soil vapor extraction (SVE) treatment, and biostimulation as viable cleanup technologies that could be implemented under the current Site use. SVE was recommended to remove chlorinated volatile organic compounds (VOCs) from beneath the Morrell's building floor slab and the glacial till and advance outwash sand beneath the building, using perimeter SVE trenches and peripheral SVE wells that extend beneath the building. Biostimulation was recommended to enhance the natural reductive dechlorination of PCE in groundwater.
- Data Gaps Investigation dated May 1, 2012 (Aspect, 2012b). This technical memorandum documents investigations that were conducted to address data gaps identified in Ecology's "further action" opinion letter (Ecology, 2011). This memorandum states that remaining data gaps are the vertical extents of contamination soil beneath the Morell's building and indoor air quality of the Northern Building.
- Interim Cleanup Action Construction and Design Report dated May 16, 2014 (Aspect, 2014a). This report documents construction and baseline groundwater

_

⁵ Data in Appendix A has all been included in previous reports. Soil gas data included in Appendix A does not include gas samples collected for soil vapor extraction system performance monitoring. Appendix A does not include data collected by other consultants (pre 2008) as that data is not available electronically and has been superseded by subsequent work.

sampling of wells to be used for biostimulant injection, and construction and pilot testing of wells and a trench to be used for SVE treatment. Pilot test and groundwater sampling results were used to finalize remediation system design and to design a groundwater monitoring and biostimulation program to enhance degradation of contaminants in groundwater.

- Interim Cleanup Action Construction Completion Report dated December 23, 2014 (Aspect, 2014b). This report describes the June 2014 biostimulant injection event and specifications, construction, startup, and initial testing of the SVE system.
- Supplemental Focused Feasibility Study (Draft; dSFFS) dated August 10, 2018 (Aspect, 2018). This report evaluates biostimulation injection and SVE treatment performance to date and uses that information to develop and evaluate on-Property remedial alternatives for the Site. Active technologies evaluated include expanded biostimulation, expanded SVE, electrical resistance heating (ERH), and heat-enhanced plume attenuation (HEPA). An alternative which utilizes a combination of SVE and biostimulant injection was recommended for interim implementation.
- Summary of 2019 Interim Actions and SVE System Expansion Morell's Dry Cleaner Site dated June 17, 2020 (Aspect, 2020a, Appendix C). This technical memorandum documents the ongoing interim cleanup action activities at the Site. This report has not previously been submitted to Ecology and therefore is included as Appendix C for reference. The 2019 work documented therein includes the installation of 17 wells and provides design information for the connection of the five wells to the soil vapor extraction system (SVE Expansion is included in this memorandum).
- Property-Specific Closure Report for Parking Lot Parcel draft dated August 2020 (Aspect 2020b). This report presented the case for the property-specific closure of the Parking Lot Parcel, a subset of the Site. This report documents MW-20 injection pilot test, which did not complete dechlorination and concluded that the radius of influence was less than 15 feet. All biostimulation injections at the Site have been completed without favorable results and a disproportional cost analysis concludes that any benefit from additional treatment of the Parking Lot Parcel to be impracticable. Monitored Natural Attenuation with institutional controls is selected as the alternative and is demonstrated to be protective of human health and the environment. This report is in Draft form and has yet to be approved by Ecology.
- Ecology's 'Further Action' Opinion Letter dated January 6, 2021 (Ecology, 2021a) provides review comments on the PL Closure Report. It states that the following must be completed before further cleanup actions at the Parking Lot parcel can be disproportionately costly relative to the benefit to human health and the environment: complete Site characterization, establish cleanup standards, and selection of sitewide cleanup action(s).

3 Interim Cleanup Actions

As referenced above, two FFSs have been completed for the Site, the FFS (Aspect, 2012a) and the dSFFS (Aspect, 2018). Both the FFS and the dSFFS selected a combination of SVE treatment for the vadose zone and *in situ* injections for the treatment of groundwater as the preferred alternatives given existing site conditions and restrictions (such as the Morell's building and access).

3.1 2014 Interim Cleanup Action

The FFS (Aspect 2012a) evaluated cleanup alternatives via the MTCA cleanup action selection process. The FFS compared five alternatives ranging from least aggressive and lowest cost Alternative 1, no action, to most aggressive and highest cost Alternative 5, Removal of On-Property Contaminated Soil to 15-Foot Depth Following Building Demolition and *in situ* chemical oxidation (ISCO) to treat remaining contaminated soil and groundwater. A disproportional cost analysis was completed for the alternatives and Alternative 4 was recommended for implementation, as it had the most benefit to human health and the environment while not being disproportionately expensive. Alternative 4 included SVE treatment paired with biostimulation, and eventual engineering and institutional controls. Alternative 4 from the FFS was implemented as the '2014 Interim Cleanup Action,' which is summarized below; all supporting data can be found in Appendix A.

3.1.1 Biostimulation Injections (2014)

The June 2014 biostimulant injection to nine wells was documented in the Interim Cleanup Action Construction Completion Report (Aspect, 2014b), and injection performance was evaluated in the dSFFS (Aspect, 2018). Remediation products provided by Regenesis were injected into all impacted groundwater wells screened in the advance outwash except MW-5, Figure 2.⁶ Each of the nine wells received approximately 550 gallons of a dilute mixture of 3D-Microemulsion (3DMe[®] Factory Emulsified) and Hydrogen Release Compound (HRC Primer[®]).

Post-injection groundwater monitoring results indicated that PCE concentrations were successfully reduced by up to two orders of magnitude in all of the June 2014 injection wells⁷ with little or no rebound, and the PCE screening level was attained in four of those wells (MW-15, MW-16, MW-19, and MW-20). Trichloroethene (TCE) concentrations decreased significantly, and total molar concentrations of chlorinated VOCs were greatly reduced overall. However, vinyl chloride (VC) concentrations increased significantly, which suggests that incomplete dechlorination resulted in the accumulation of VC.

The radius of influence (ROI) of the 2014 injection appears to be very limited based on persistent contaminants of concern in near proximity (within 10 feet of an injection well)

-

⁶ Well MW-5 was not included in the June 2014 injection because results of the January 2014 sampling of MW-5 indicated no screening level exceedances. As is evident in Table 4, these were erroneous results.

⁷ MW-18 has not been sampled post-injection due to a well obstruction.

monitoring wells installed in 2019 (MW-24, MW-25, MW-31, and MW-34). This conclusion is further supported by the natural attenuation parameter results, which indicate that injection products (total organic carbon (TOC) remain elevated in the injection wells but are near background in adjacent non-injection wells.

3.1.2 Soil Vapor Extraction System (2014)

A SVE system has operated in the source area since October 15, 2014. The original SVE system was designed to remove VOC contaminant mass from beneath the northern portion of the Building Parcel and to prevent vapor intrusion into the Morell's building.

The original SVE system installed in 2014 consisted of four angled wells (VE-1 through VE-4), a 48-foot-long SVE trench in the alley on the north side of the Morrell's building (VE-H), and a subslab suction pit (VE-SS) inside the building. The original SVE system's components and conveyance piping are shown on Figure 7. SVE wells VE-1 and VE-2 are completed in the glacial till, with screen intervals of 18 to 32 feet bgs. SVE wells VE-3 and VE-4 are completed in the advance outwash, with screen intervals of 30 to 45 feet bgs.

SVE treatment equipment is situated in the alley and includes a 2-horsepower single-phase regenerative blower, a 55-gallon moisture separator with automatic water transfer pump, and the original configuration included two 55-gallon vapor-phase granular activated carbon (GAC) drums connected in series.

The original SVE system construction and operation has been documented in previous reports. The "Interim Cleanup Action Construction and Design Report" (Aspect, 2014a) documents original system design and installation of the SVE wells. The "Interim Cleanup Action Construction Completion Report" (Aspect, 2014b) documents SVE system construction and start-up.

3.1.3 SVE Performance (2014 to 2020)

SVE System Performance monitoring from installation to expansion is briefly summarized here and expanded upon in Appendix D. An average PCE removal rate of 0.626 pounds per day (lbs/day) was estimated during the first 3 months of operation (mid-October through mid-December 2014), versus 0.133 lbs/day estimated for the first 9 months of 2020, indicating that SVE treatment effectiveness was declining as is standard for the technology. The original orientation of the SVE system removed an estimated 345 pounds (lbs) of PCE from the subsurface through shut down in preparation of expansion on September 21, 2020.

The glacial till wells (VE-1 and VE-2) were estimated to account for approximately 65 percent of the total contaminant mass removed by the SVE system, versus 35 percent removed by the advance outwash wells (VE-3 and VE-4). This may be attributable to higher contaminate mass concentrations in the glacial till unit. Yet, advance outwash soils are more permeable and, therefore, more amenable to SVE. Both glacial till and advance outwash wells are considered valuable to SVE performance. Operating information on

_

⁸ Injection impacts are expected to be most pronounced downgradient of an injection well. While the inferred flow direction is to the northwest, the groundwater gradient is very small and has high variation. There is also a significant downward flow component.

the original SVE configuration, including a demonstration of subslab depressurization beneath the Morell's Building prior to SVE expansion can be found in Appendix D.

3.2 2019-2020 Interim Cleanup Expansion

Cleanup alternatives were most recently re-evaluated via the MTCA cleanup action selection process in the dSFFS (Aspect, 2018). This study compared six alternatives ranging from least aggressive and lowest cost Alternative 1, Long Term Controls and Environmental Covenant, to most aggressive and highest cost Alternative 6, Removal of On-Property Contaminated Soil to 15-Foot Depth Following Building Demolition and ERH of Deeper On-Property Contaminated Soil and Advance Outwash Groundwater. A disproportional cost analysis was completed for the alternatives and Alternative 2 was recommended for implementation, as it was the most cost-effective alternative that included active remediation.

Alternative 2 expanded SVE treatment of vadose zone soil and biostimulation of advance outwash groundwater, the remedial technologies already implemented at the Site. Alternative 2 from the dFFS was implemented via the '2019- 2020 Interim Cleanup Expansion,' as described below and expanded upon in Appendix E. This interim cleanup action also included a data gaps investigation to better define the nature and extent (vertical and lateral) of contamination. The "Summary of 2019 Interim Actions and SVE Expansion Memorandum" (Aspect, 2020a; Appendix C) includes a summary of the investigation and presents a work plan for SVE expansion.

3.2.1 Remediation Injection (2019)

Injection of biostimulants into contaminated advance outwash groundwater in June 2014 showed promise based on the results of post-injection groundwater monitoring through January 2017 in the injection wells. However, the previous injection wellfield covered only a portion of the estimated groundwater exceedance area and the treatment ROI appeared to be limited. A Remediation Injection pilot test was completed to determine the remediation products' ROI and effectiveness for a potential full-scale implementation.

Remediation injection solution was also modified in an attempt to complete dechlorination to non-toxic end products. The injection solution was approximately 4,950 gallons of a dilute mixture of 3D-Microemulsion (3DMe® Factory Emulsified), Chemical Reducing Solution (CRS®, iron amendment), Dehalococcoides sp. Microbial culture (KB-1®), and anaerobic water primer. The results of this remediation injection pilot test were previously reported in the "Property-Specific Closure Report for the Parking Lot" (Aspect, 2020b), which concluded that the injection resulted in incomplete dechlorination, and the ROI is considered to be confirmed at less than 15 feet.

3.2.2 Soil Vapor Extraction Expansion (2020)

The interim action SVE wells (VE-1 through VE-4) have removed a significant amount of contaminant mass from vadose zone soils beneath the northeast portion of the Morrell's building (Appendix D). However, those wells only targeted contamination beneath the northeast portion of the building. SVE was expanded in 2020 to address the entire Morell's Building footprint area, thus also enhancing subslab depressurization. SVE expansion included the connection of the four new angled wells (VE-5 through VE-8; Figure 8) and one new vertical well (MW-23) to the existing SVE system.

Due to the lack of space in the alley, the new angled wells were connected to the SVE system by tapping into existing laterals attached to VE-1/2 and VE-3/4 in the northwest corner of the parking lot; Figure 8. The calculated mass of PCE removed by the system increased from an average of 0.133 lbs/day (estimated for the first 9 months of 2020) to an average of 0.295 lbs/day (estimated for the first 2 months after expanded SVE startup). As-built details for: construction sequence, trenching and backfill, piping, instrumentation details, vapor emissions control, waste management, expanded SVE startup, and monitoring are included in Appendix E.

4 Updated Conceptual Site Model

An updated CSM is provided here based on all Aspect data collected to date. Note that previous CSMs for this Site included data collected by Stemen between 2006 and 2008 (Appendix B). This data is now excluded due to age of data, absence of Aspect standard quality assurance / quality control, and influence of the drinking water leak on data collected.⁹

4.1 Sources of Contamination

Historical use of the Property and surrounding properties was compiled from a combination of sources including:

- Reverse city directories for years between 1928 and 2011.
- Regulatory agency databases for the vicinity as compiled by Environmental Data Resources, Inc. (EDR).
- Sanborn fire insurance maps from 1885, 1888, 1896, 1912, 1950, and 1969.
- A deposition of Linda Morrell, owner of Morrell's Dry Cleaning, on April 22, 2010 (Morell, 2010).

Historical operations on the Property and on nearby properties with suspected or identified environmental impacts are described below; the sources of contamination presented in this section were originally reported in the RI Report (Aspect, 2011).

The Property and adjacent properties on the same city block were initially developed in the 1880s as the Annie Wright Seminary, a boarding school. Based on the Sanborn maps, the school was present until at least 1912. The 1950 and 1969 Sanborn maps show what appears to be the current building at the Property, with the current location of Morrell's listed as "cleaning and dying."

Reverse city directories list Puget Sound Cleaners as located at the Property from 1929 to 1966. From 1967 to 1972, Marcus Cleaners is listed at the Property. Around 1972 Morrell's began dry cleaning operations at the property.

Mrs. Morell and her former husband purchased the dry-cleaning business in 1972. A Union brand cleaning machine was purchased in or around 1975 to replace the old one that came with the business. The new machine used PCE. Throughout the 1970s and 1980s, PCE was pumped from a delivery truck into the machine as needed. The Union machine was used for approximately 17 years before repairs became too expensive. A Columbia brand machine, which also used PCE, was purchased in 1992. In early 2009, another new Union machine was purchased, which reportedly does not use a PCE-based dry cleaning solvent.

The general cleaning method was to steam the garment, removing spots before placing it into the cleaning machine. The cleaning machines used filter cartridges to separate lint and dirt accumulated during cleaning from the PCE solvent. Approximately every

-

⁹ The water leak was repaired in 2007 and is no longer a current part of the CSM.

6 weeks, Safety-Kleen, a waste disposal service, would collect the used solvent and dirt "sludge." From the time the business was purchased by the Morrell's until 1986, the spent cartridges were placed on the ground in the alley behind the building for storage until the trash was collected. In 1986, regulations governing handling and disposal of the filter cartridges changed and the cartridges were then stored in drums for pickup and disposal. The use of filter cartridges ceased with the purchase of the Columbia cleaning machine equipped with a solvent still in 1992.

In addition to the dry-cleaning machines, a 15-gallon dip tank was used from at least 1972 until the early 2000s to waterproof clothes. The general method was to dip the cleaned clothes into the tank, which held a mixture of PCE and wax, drain the solvent back into the tank, and allow the clothes to dry.

In summary, former possible sources of contamination include the dry-cleaning machine, spent cartridge filter staging and disposal, and a dip tank. While the contamination documented at the Site is not directly attributable to an individual source, each of these features was located on near the northern portion of the Morell's Building and alley, congruent with the source area.

4.2 Chemicals of Potential Concern

The impacted media at the Site are soil, groundwater, and air. For this analysis, chemicals of potential concern (COPCs) are defined by chemicals that exceed the screening level in any Site characterization sample¹⁰ reported in Appendix A. Screening levels are based on values presented in the Cleanup Level and Risk Calculation Tables (CLARC; Ecology, 2021b). For the purposes of analysis, MTCA Method A screening levels were used for soil supplemented with the most stringent Method B value if no Method A exists. For chemicals without Method A screening levels, Target Cleanup Levels for Soil to Groundwater Pathway as identified in CLARC were used for groundwater screening levels, which are based on the Washington State Maximum Contaminant Level (MCL) if available¹¹ and the most stringent of the Method B noncancer (N), and the Method B cancer (C) if an MCL is not available. Air samples were screened by the Method B cleanup levels for indoor air, and the Method B Subslab screening levels for subslab soil gas. COPCs and their affected media are summarized in Table A.

¹⁰ Deep soil gas as extracted by the SVE system is not included.

¹¹ The MCL has been adjusted to a lower concentration so that the excess cancer (C) risk is one in 100,000 and the noncancer (N) hazard index is less than or equal to one per WAC 173-340-720(7)(b).

Table A: Contaminants of Potential Concern and Affected Media

Media	Contaminants of Potential Concern	Screening Level	
0 1112	PCE	0.05 (mg/kg)	
Soil ¹²	TCE 0.03 (mg/kg)		
	Naphthalene	5.0 (mg/kg)	
	PCE	5 (μg/L)	
	TCE	5 (μg/L)	
Groundwater	DCE	16 (μg/L)	
	VC	0.2(μg/L)	
	2-Hexanone	40 (μg/L)	
	Iron	11000 (µg/L)	
Indoor Air	PCE	9.6 (μg/m³)	
	TCE	0.33 (μg/m³)	
	PCE	320 (µg/m³)	
	TCE	11(µg/m³)	
	Acrolein	0.3 (µg/m³)	
Subslab Soil Gas	Chloroform	3.6 (µg/m³)	
	Benzene	11 (μg/m³)	
	Naphthalene	2.5 (µg/m³)	
N. (1 '11'	Total Xylenes	1500 (µg/m³)	

Notes: mg/kg - milligrams per kilogram, $\mu g/L - micrograms$ per liter, $\mu g/m^3 - micrograms$ per cubic meter

Other chemicals were either not detected or were detected at concentrations less than their respective screening levels.¹³

4.3 Exposure Pathways and Potential Receptors

4.3.1 Soil Exposure Pathways

Potential exposure pathways and receptors for contaminated soil include:

• **Direct Contact.** Workers contacting contaminated soils in the future (skin contact or incidental ingestion) during excavation or other construction-related activities, if no worker protection controls are in place. While site is currently covered with impervious surfacing, without institutional controls in place this is not guaranteed into the future and the pathway is considered currently mitigated but potentially complete for this Site.

¹²Methylene chloride was detected above its screening level of 0.02 mg/kg (MTCA Method A soil cleanup level) in three of the soil samples collected from MW-23. The laboratory report noted that those detections were due to laboratory contamination and methylene chloride is not retained as a COPC.

 $^{^{13}}$ Bromodichloromethane was detected in three reconnaissance groundwater samples collected in 2006/2007 by Stemen during the Tully's drinking water leak. Bromodichloromethane is a byproduct of drinking water disinfection, and its presence in these samples is attributable to the water leak. Bromodichloromethane has not been detected in the shallow or deeper water-bearing zones since; and, therefore, is not recognized as an indicator hazardous substance (IHS). Lead was detected above the 15 μ g/L screening level in one of the shallow parking lot samples collected in 2006 by Stemen. Lead has not exceeded the screening level in any of the advance outwash groundwater samples and is not recognized as an IHS.

- Soil Leaching to Groundwater. Data indicates that soil contamination is contained above the water table (angled borings beneath the Morell's building A-5 through A-8 all had soil results below the screening level, above the water table at ~50 feet bgs). However, groundwater is contaminated at the Site via another mechanism (ex. surface infiltration or plumbing leaks). As noted below, groundwater at the Site is currently not used as a drinking water source and unlikely to be in the future. However, this is not guaranteed and therefore this pathway is considered potentially complete for this Site.
- Soil to Vapor Inhalation. Humans in buildings inhaling indoor air contaminated—via vapor intrusion—by volatilization from impacted soils. Pre SVE- soil vapor results indicate that the vapor intrusion pathway may have been complete at the Morrell's building, however current SVE operation maintains adequate subslab depressurization beneath the Morell's building as described in Appendix D. Since SVE is not guaranteed to be operated indefinitely into the future, the pathway is currently mitigated but considered potentially complete for this Site.

Terrestrial ecological receptors are not considered potential receptors at the Site due to the developed nature of the neighborhood. A terrestrial ecological evaluation is provided in Appendix F.

4.3.2 Groundwater Exposure Pathways

Potential groundwater exposure pathways and receptors include:

- **Groundwater Ingestion.** Humans drinking contaminated groundwater in the future, if groundwater is brought to the surface for this purpose. Advance outwash groundwater is not currently used as a drinking water source. Based on the limited saturated thickness and lateral extent of this unit, it is unlikely to be used for drinking water purposes in the future. However, potential migration of contaminated water from the advance outwash to deeper units that could support future drinking water use cannot be ruled out and the groundwater ingestion pathway is retained.
- **Groundwater to Vapor Inhalation.** Humans in buildings inhaling indoor air contaminated—via vapor intrusion—by volatilization from contaminated groundwater. In general, contaminants in soil gas immediately beneath the building are assumed to originate from contaminated soils or from above-ground sources, not from contaminated groundwater. Since the depth to groundwater is relatively large (greater than 50 feet bgs), dissolved petroleum hydrocarbons, such as benzene, are not a vapor intrusion concern per Ecology guidance.¹⁴

_

¹⁴ Updated Process for Initially Assessing the Potential for Petroleum Vapor Intrusion (Ecology, 2016b) discusses vertical screening distances for buildings in determining whether the initial VI assessment process is complete.

ASPECT CONSULTING

However, the potential for vapor intrusion impacts by chlorinated VOCs that may volatilize from groundwater cannot be ruled out based on Ecology guidance.¹⁵

The Groundwater to Surface Water pathway, including aquatic receptor exposure and human consumption of aquatic ecological receptors, is not complete, based on the perched nature and limited lateral extent of the upper water-bearing unit; the more than two orders of magnitude decrease in PCE concentrations between the upper water-bearing unit and the deeper, downgradient water-bearing unit; the 1,200-foot distance from the Property to surface water of Commencement Bay; and the apparent biodegradation of chlorinated VOCs, contaminants in groundwater from the upper water-bearing unit are not discharging to surface water.

PROJECT NO. 080190 • JUNE 4, 2021

¹⁵ Chapter 2 of *Guidance for Evaluating Soil Vapor Intrusion in Washington State* (Ecology, 2016a) discusses the "100-foot rule" as a guideline for determining whether the vapor intrusion pathway must be considered for contaminants other than petroleum hydrocarbons.

5 Cleanup Requirements

This section identifies the applicable or relevant and appropriate requirements (ARARs), remedial action objectives (RAOs), and preliminary cleanup levels (PCULs) used as the basis for developing and evaluating remedial alternatives, as follows:

- Section 5.1 identifies the ARARs that are most likely to have a significant influence on the identification and assembly of remedial alternatives to be evaluated.
- Section 5.2 presents the establishment of indicator hazardous substances (IHSs) by media.
- Section 5.3 describes the preliminary cleanup levels (PCULs).
- Section 5.4 presents the points of compliance.
- Section 5.5 presents the Terrestrial Ecological Evaluation (TEE)

5.1 Applicable or Relevant and Appropriate Requirements

The MTCA (Chapter 70.105D Revised Code of Washington [RCW]) requires that cleanup actions comply with applicable state and federal laws (WAC 173-340-360(2)a(iii)), which include legally applicable requirements, as well as requirements that the department determines are relevant and appropriate. ARARs for cleanup actions often include various construction-related permits, air emission requirements, water discharge requirements, off-site disposal requirements, and other issues related to impacts in and around the site. ARARs can be categorized as follows:

- Chemical-specific ARARs are laws and requirements that establish health- or risk-based numerical values or methodologies for developing such values. These ARARs are used to establish the acceptable concentration of a chemical that may remain in or be discharged to the environment. As such, chemical-specific ARARs are considered in developing cleanup standards (Sections 5.3 and 5.4).
- Action-specific ARARs are performance, design, or other requirements that may place controls or restrictions on a particular remedial action.
- Location-specific ARARs are requirements that are triggered based on the location of the remedial action to be undertaken.

The following ARARs are identified for the Site:

Washington Dangerous Waste Regulations (Chapter 173-303 WAC) would apply
if dangerous wastes are generated, and United State Department of Transportation
and Washington State Department of Transportation regulations regarding
transport of hazardous materials (49 Code of Federal Regulations [CFR] Parts
171-180) would apply if regulated material is transported off-site as part of the
cleanup action.

- If construction-generated dewatering water or stormwater from the cleanup action is discharged to surface waters of the State of Washington, such discharge would need to comply with requirements of a National Pollutant Discharge Elimination System (NPDES) Construction Stormwater General Permit (CSGP). Infiltration of stormwater is not subject to the CSGP, but there are no plans to infiltrate stormwater at this Site. Ecology administers the federal NPDES program in Washington State. Operators of regulated construction sites discharging to surface waters of the state are required to:
 - Submit a Notice of Intent and obtain coverage under the Construction stormwater General Permit.
 - Develop a stormwater pollution prevention plan (SWPPP).
 - Implement sediment, erosion, and pollution prevention control measures, including water quality treatment, as needed, to comply with the SWPPP.
 - The permit also requires that site inspections be conducted by a Certified Erosion and Sediment Control Lead.
- Contaminated water may be also collected, tested, and treated (if warranted) prior to discharge to a nearby sanitary sewer system. The applicable authorities for permitting such discharges are City of Tacoma and Pierce County who maintain the piping and treatment facilities, respectively.
- Occupational Safety and Health Administration and Washington Industrial Safety and Health Act regulations (29 CFR 1910.120; Chapter 296-62 WAC) governing worker safety during cleanup action execution.
- Washington State Water Well Construction Regulations (Chapter 173-160 WAC) regulating groundwater well installation and decommissioning would be applicable as part of the cleanup action.
- The Archeological and Historical Preservation Act (16 United States Code Annotated [USCA] 496a-1) would be applicable if the cleanup action included grading or excavation activities.

Additional ARARs that may be relevant to a remedial action include:

- General Occupational Health Standards (Chapter 296-62 WAC)
- Safety Standards for Construction Work (Chapter 296-155 WAC)
- Underground Injection Control Program (Chapter 173-218 WAC)
- Permits from local municipalities as required for activities at the Site. Examples
 include Pierce County and City of Tacoma permits for any necessary sewer
 discharges, grading permits, and/or street-use permits.

Many ARARs are commonly addressed through standard industry practices. For instance, construction of monitoring or remediation wells will be conducted by a Washington State-licensed driller, and construction work is conducted under site-specific health and safety plans in compliance with applicable safety regulations.

5.2 Establishment of Indicator Hazardous Substances

For the purposes of this Work Plan, the Site indicator hazardous substances (IHSs) are proposed as those contaminants with a frequency of exceedance ¹⁶ greater than 10 percent and an exceedance factor¹⁷ greater than 2 in soil or groundwater, as identified in orange highlighting in Tables 1–2. Contaminants with a lower exceedance frequency or magnitude contribute a small percentage of the overall threat to human health and the environment and thus are not used to define the site cleanup requirements in accordance with WAC 173-340-703. COPCs that were not retained as IHSs are highlighted in blue in Tables 1–4; exceedances of those COPCs are within the footprint of IHS exceedances. The Site IHSs are:

- PCE and daughter products: TCE, 1,2-dichloroethene (DCE), VC
- Iron, due to use as a remediation injection component

5.3 Nature and Extent of Contamination

This section summarizes the extent of IHSs detected above PCULs in Site media. PCULs were identified based on the screening levels presented in Section 4.1 for the IHSs established in Section 5.2 as summarized in Table B.

Table B: Summary of Preliminary Site Cleanup Levels for IHSs

	Preliminary Cleanup Level by Media			
Contaminant of Concern	Soil (mg/kg)	Groundwater (µg/l)	Indoor Air (µg/m³) ¹⁸	
PCE	0.05	5	9.6	
TCE	0.03	5	0.33	
DCE	160	16	N/A	
VC	0.67	0.2	45.7	
Iron	56,000	11,000	N/A	

Notes: mg/kg – milligrams per kilogram, μg/L – micrograms per liter, ug/m³ – micrograms per cubic meter

_

¹⁶ Frequency of exceedance = number of samples exceeding PCUL / number of samples

 $^{^{17}}$ Exceedance factor = Maximum detected exceedance / PCUL.

¹⁸ Indoor air cleanup levels are based on unrestricted land use. For a workplace exposure scenario, these CULs (based 168 hours per week exposure) could be adjusted based on a 45-hour work week, consistent with Ecology's Toxics Cleanup Program Implementation Memo #22 (Ecology, 2019). Also, Section 6.6.2 of Ecology's draft *Guidance for Evaluating Soil Vapor Intrusion* (Ecology, 2016a) provides for adjustment of Method B values where the building of concern is being used commercially. Based on a commercial exposure of 40 hours per week rather than continuous exposure (168 hours per week). Adjustments would be referred to as remediation levels, used to monitor worker safety.

5.3.1 Soil

The IHSs detected in soil above PCULs are PCE and TCE. PCE defines the maximum extent of soil contamination, as all other COPCs were located within the zone of PCE contamination. The extent of PCE contamination is shown on Figure 5. The lateral extent of PCE is bound by MW-20, MW-24, MW-25, MW-28, MW-29, MW-32, and MW-33 to the west and south. Soil contamination does not extend onto the Parking Lot Parcel based on soil analytical results from MW-24 through MW-29, MW-32, and MW-33. The lateral extent of PCE is less well defined to the west and north. Monitoring wells MW-6, MW-8, MW-10, MW-12D, MW-13D, and MW-14D were all installed in the City of Tacoma Rights-of-Way along Tacoma Avenue and North First Street but none of them have discrete soil data¹⁹.

Data supports that PCE is vertically contained in the glacial till. While there are a few instances of slight PCE exceedances (maximum concentration of 0.095 mg/kg) in the advance outwash soil, below the water table (MW-21, MW-23, and MW-31) the preinjection groundwater concentrations at those locations (100 to 500 ug/L) indicate that the soil exceedances may have originated from contaminated pore water in the soil sample and/or sorption from contaminated water onto the soil matrix. Additionally, both MW-21 and MW-31 have results below detection levels above the water table at 40 and 40.5 feet bgs, respectively. MW-23 did not have a soil sample collected in advance outwash, above the water table. While the original direct push investigation (DP-1 through DP-10) of the source area did not define the vertical boundary beneath the building (Ecology 2011), recent investigation completed as part of the 2019 – 2020 Interim Cleanup Expansion did. Angled borings (A-7 through A-7) for SVE Wells VE-5 through VE-7 were extended beneath the Morell's Building and the deepest PCE exceedance was at 24-feet bgs, within the glacial till.

5.3.2 Groundwater

The IHSs detected in groundwater above PCULs include the chlorinated VOCs PCE, TCE, cis-1,2-dichloroethene (cDCE), and vinyl chloride.

The extent of contamination in **advance outwash groundwater** can be defined by the extent of PCE, as all other IHS PCUL exceedances are within the extents of PCE contamination. Extent of PCE contamination in advance outwash groundwater is defined by MW-7 to the west, former Walker Chevrolet Site (VCP. No. SW1040) MW-11 to the south (Figure 4), and the estimated extent of advance outwash groundwater to the west and north. The extent of PCE contamination in advance outwash groundwater is shown on Figure 6.

The extent of contamination in the **deeper water-bearing zones** in the Olympia beds is defined by the extent of both PCE and cDCE and warrants further investigation. MW-8D, screened in the Olympia beds, is closest to the source area and samples are consistently contaminated with cDCE. The deeper water-bearing zone contamination is bounded to the north by MW-12D, which has not had an PCUL exceedance since 2014, and MW-14D to the west, which has not had an PCUL exceedance since 2017. However, the regional groundwater flow direction is to the northwest and a downgradient, deeper

-

¹⁹ MW-12D and MW-13D each have a composite sample, taken for waste disposal purposes, but are not considered sufficient for Site characterization.

water-bearing zone monitoring well near the intersection of Tacoma Avenue and North First Street is warranted.

5.3.3 Indoor Air and Soil Gas

IHSs detected above PCULs in indoor air or detected above soil gas screening levels in soil gas are PCE and TCE. Contaminants present in soil gas originate from volatilization of soil and groundwater concentrations; therefore, the IHSs are the same for soil gas and indoor air.

PCE and TCE have been detected at levels exceeding the PCUL in indoor air in the Morell's Building in both samples collected pre-SVE startup. Indoor air samples have not been collected since SVE startup, and protection of vapor intrusion has been documented via subslab depressurization (Appendix D and E). PCE and TCE were detected at concentrations that exceed the PCUL in subslab soil gas before SVE operation at vapor points: SV-2, SV-3, VP-2, VP-3, VP-4, and VP-7. In the first 2 years of SVE operation, rebound studies were completed to assess the safety of possibly turning the SVE system off, and during this time IHSs has PCUL exceedances at VP-4 and VP-5; however, at the end of these rebound studies in late 2016, there were no IHS exceedances under steady-state, SVE operation conditions. This indicates that the SVE system was effectively mitigating vapor intrusion risk under that configuration.

5.4 Points of Compliance

In accordance with WAC 173-340-740(6)(d), the soil point of compliance for the direct contact and ingestion exposure pathways extends from the ground surface to a depth of 15 feet bgs. The point of compliance for the soil leaching to groundwater exposure pathway extends from the ground surface throughout the Site. The groundwater point of compliance is established throughout the Site from the uppermost level of the saturated zone extending vertically to the lowest depth that could potentially be affected by the Site. The point of compliance for the indoor air exposure pathway is all occupied spaces within buildings overlying contamination, including the Morell's building and the Northern Building.

5.5 Terrestrial Ecological Evaluation

Under MTCA, a TEE is required for sites with releases of hazardous substances to soil, unless the site meets one or more exclusions. Aspect completed Ecology's TEE Form, included in Appendix F. TEE exclusion is based on the following Undeveloped Land criteria in WAC 173-340-7491(b) under MTCA:

• For Sites not containing any of the chemicals mentioned above, there is less than 1.5-acres of contiguous undeveloped land on or within 500 feet of any area of the Site.

The Site and all adjacent properties are all developed. Wright Park is the nearest undeveloped land and only a small portion of it is within 500 feet of the Site.

6 Data Gaps

The following data gaps are identified for the Site and serve as the basis of Work Plan activities.

- 1) **Delineation of IHSs in Soil.** The lateral extents of off-Property contamination to the west and north of the Morell's Building is unknown. While many well installations have occurred in the City of Tacoma rights-of-way in Tacoma Ave and N First Street (MW-3, MW-4, MW-6, MW-9, MW-10, MW-12D, MW-13D, MW-14D) none of them have discrete soil data.
- 2) Delineation of IHSs in Groundwater. The lateral extent of off-Property impacts to the deeper water-bearing zone to the northwest of the source area remains unknown. While groundwater data exists to the north of the source area (from MW-12D and MW-13D) and to the west of the source area (from MW-14D), groundwater quality to the northwest is unknown, which is the regional interpretation of groundwater flow direction (Figure 4). Additional temporal groundwater quality data is also needed from both the advance outwash groundwater and the deeper water-bearing zones to assess the statistical significance and rate of advance outwash groundwater natural attenuation.
- 3) Evaluation of Off-Property Vapor Intrusion Risk. The ROI of the original SVE configuration can be conservatively estimated at at-least 30 feet, as the distance between VP-7 to the south (which exhibited negative pressure during SVE operation) and the nearest SVE well (VE-4). Based on that radius, reflected north, the southern portion of the Northern Building is also within the SVE radius of influence. The expanded SVE configuration is presumed to increase the area of SVE influence both further north and further south due to the addition of VE-6 though VE-8 and MW-23. Soil gas data has never been collected beneath the Northern Building. The radius of influence of the expanded SVE system has also not been directly measured, and protection of the Northern Building by the SVE system has not been confirmed.

While the Further Action Opinion Letter (Ecology, 2021a) also identified indoor air quality in the Morell's building as a Data Gap, indoor air sampling of an active dry cleaner is not an accurate measure of vapor intrusion risk (or completion of the soil and groundwater to vapor inhalation pathway) because the source of contamination may be the building itself. Protection of the Morell's building from contaminants in soil and groundwater is attained by subslab depressurization induced by the SVE system (Appendix D and E).

Work Plan activities to address the identified data gaps are described in the following section.

7 Investigation Work Plan

The investigation scope below is intended to resolve Site characterization data gaps and consists of supplemental soil sampling, groundwater monitoring, soil vapor sampling, and an SVE ROI evaluation.

All samples collected as part of this investigation will be submitted to a Washington State-accredited laboratory. Samples will be collected in laboratory-provided containers and handled under chain-of-custody control.

7.1 Soil Investigation

One soil boring will be advanced into the Olympia bed interglacial deposits and soil samples collected for analysis to address Data Gap #1. The preliminary boring location is shown on Figure 9 as MW-15D. MW-15D is located at the intersection of Tacoma Avenue and North First Street with the objective of being hydraulically downgradient of the source area; the location of MW-15D is the result of a matrix of utilities in the intersection and is subject to City of Tacoma permit review.

7.1.1 Drilling

Aspect will subcontract a Washington State-licensed driller to advance these boring locations. Hollow stem auger drilling technology has been selected for this investigation as it can attain the required depth while not inducing heat or vibration into the subsurface. MW-15D will be drilled vertically with the goal of intersecting the deeper water-bearing zone, which is estimated to be 140 feet bgs.

7.1.2 Soil Sampling / Analysis

All soil will be screened at 2.5-foot intervals using visual, olfactory, and photoionization detector (PID) headspace vapor filed screening techniques. The PID will be calibrated daily in the field using the manufacturer's calibration standard (100 parts per million [ppm] isobutylene gas). Soil samples will be collected from any interval that illicit a PID response; of those, up to six samples will be selected for analysis based on field screening results. Should no PID response occur, six samples will be collected and analyzed, two from each of the geologic units: glacial till, advance outwash, and Olympia bed interglacial deposits. All soil samples submitted for laboratory analysis will be analyzed for chlorinated VOCs via method U.S. Environmental Protection Agency (EPA) 8260C and will be collected in accordance with EPA Method 5035A. The soil aliquot for these analyses will be collected using a laboratory-supplied modified disposable plastic syringe as required by the EPA Method 5035A and placed in preweighed laboratory-supplied vials.

7.1.3 Well Construction

Each boring will be constructed as a monitoring well in accordance with WAC 173-160. Monitoring wells will be constructed with 2-inch diameter threaded Schedule 40 polyvinyl chloride (PVC) slotted screen. Well will be constructed of 0.020-inch (20-slot) screen and the planned length is 15 feet with an artificial filter pack of 12/20 silica sand and an annular seal of hydrated bentonite chips will be placed above the filter pack.

A concrete surface seal will be set at grade for the new monitoring well. A lockable Thermos-type cap will be installed at the top of the PVC well casing. The finished monitoring wells will be protected with a steel flush-mount monument embedded in the concrete surface seal. An Aspect field geologist will oversee and document installation of each boring and monitoring well, including completion of an As-Built Well Completion Diagram.

7.2 Groundwater Sampling

Groundwater sampling of both new and a selection of the existing monitoring wells will be conducted to address Data Gap #2.

• New Well: MW-15D

• Existing Monitoring Wells: MW-5, MW-8D, MW-12D, MW-13D, MW-14D, MW-17, MW-21, MW-24, MW-25, MW-28, MW-31, MW-32, and MW-33.

Groundwater monitoring will occur after installation and development of the new deep groundwater monitoring well. A total of fourteen locations will be sampled during the groundwater monitoring event. Due to the depth of the water table below ground surface, bladder pump sampling is required. Monitoring wells to be sampled as part of the data gaps investigation are shown on Figure 9.

Each sample location will be submitted for analysis of chlorinated VOCs via EPA Method 8260C as a metric of groundwater quality. Nitrate, nitrite, and sulfate by EPA Method 300.0, total iron by EPA Method 6020B, and total organic carbon by SM 5310C will also be analyzed for as a metric of natural attenuation potential. Samples will also be tested for dissolved oxygen, oxidation-reduction potential (ORP), and pH using a field meter.

7.3 Vapor Intrusion Investigation

Two possible approaches to evaluating vapor intrusion risk may be implemented to address Data Gap #3. The preferred option is to install permanent vapor points in the City of Tacoma rights-of way along Tacoma Avenue and North First Street. The contingency option, in the event that the City of Tacoma requires an inhibitory level of permitting (\$10,000 bond) for each vapor point, will be to investigate the SVE ROI and the soil gas quality in the Morell's Parking Lot Parcel via temporary vapor points. Both Permanent and temporary vapor points would be installed via the Vapor Pin® Standard Operating Procedure (Appendix G).

7.3.1 Permanent Vapor Point Installation

The proposed permanent vapor points VP-8 and VP-9 will be used to bound the area of vapor intrusion risk to the west and north during SVE operation. The points would be installed in the City of Tacoma sidewalk and sampled for Site air COPCs via EPA Method TO-15 with the SVE system in operation. VP-8 is proposed to the west of the Morell's Building and VP-9 is proposed to the north of the Northern building. The permanent vapor points be used to delineate the SVE system's ROI in the north and west directions by measuring the presence or absence of SVE induced subslab

depressurization.²⁰ Permanent points could also be used to monitor for rebound soil gas concentrations if the SVE system were to be turned off in the future.

7.3.2 Contingency Temporary Vapor Point Installation

Should the contingency temporary vapor point option be necessary, the points would be installed in the Morell's and Parking Lot Parcel to measure the SVE system's ROI to the east. The proposed temporary vapor points are shown on Figure 9 as VP-8B, VP-9B, and VP-10B; VP-8B would be installed first and the others would be adjusted towards (west) or away (east) from the SVE system based on vacuum measured at the first (VP-8B). For example, if temporary vapor point VP-8B did not have measurable vacuum, the remaining points would be installed towards the SVE system (west). The measure of SVE influence would then be applied to the north and west directions to assess the protection of vapor intrusion in the Northern Building. No soil gas sampling is proposed should contingency temporary vapor point installation be the selected option.

7.4 IDW Management

Boring and well installation will generate soil and water to be managed as investigation-derived waste (IDW) in accordance with Ecology Dangerous Waste regulations (Chapter 173-303 WAC). An estimated eight (8) 55-gallon drums will be necessary to contain the soil IDW from the groundwater monitoring wells including soil, development, and sampling purge water.

An Aspect subcontractor will profile the soil and water IDW, coordinate transportation and off-Site disposal, and provide waste manifests. It is assumed that all IDW will be temporarily stored on the Morell's Building parcel prior to off-Site disposal.

.

²⁰ The metric for adequate subslab depressurization is 0.005 inches water column.

Schedule and Reporting

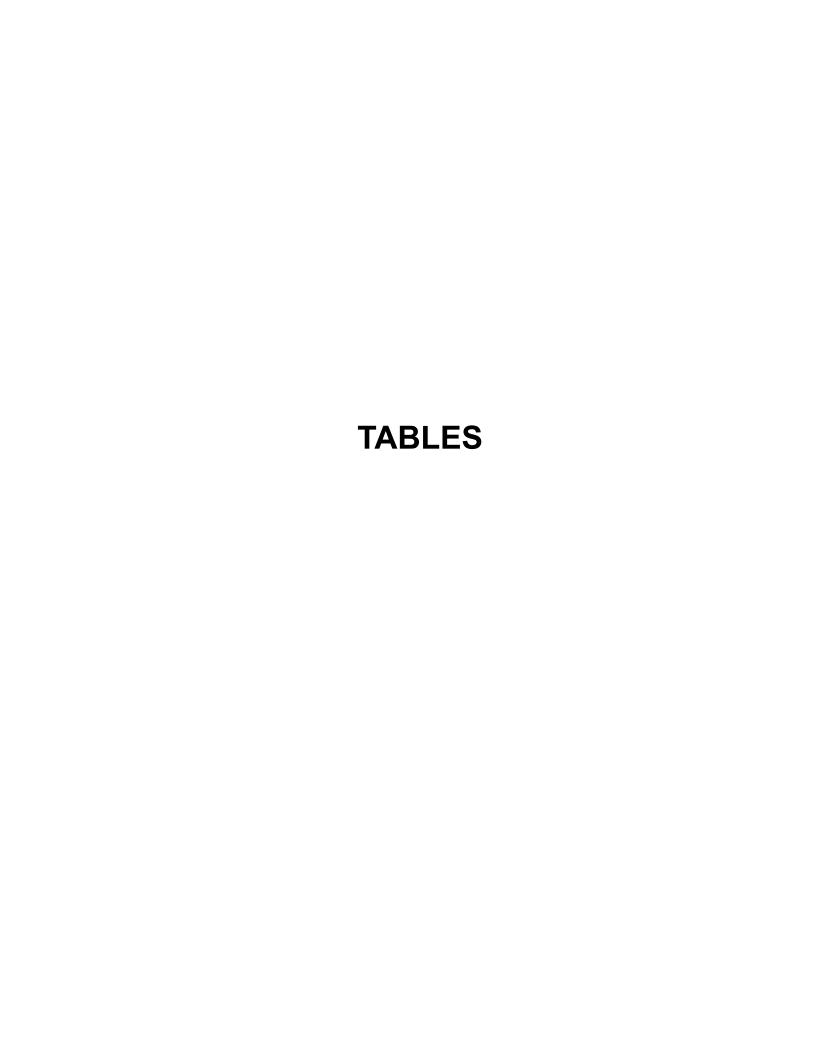
Aspect and the Property owner are working with urgency to continue investigation activities at the Site. All activities in this Work Plan are proposed to occur in the summer of 2021.

The results of Work Plan activities, and an updated evaluation of cleanup alternatives for the Site, will be summarized in a Sitewide Remedial Investigation and Feasibility Study (Sitewide RI/FS). The Sitewide RI/FS is proposed to be completed in the fourth quarter of 2021.

References

- Aspect Consulting, LLC (Aspect), 2009, Site Conditions Summary, Former Walker Chevrolet Property, July 14, 2009.
- Aspect Consulting, LLC (Aspect), 2011, Remedial Investigation Report, Morrell's Dry Cleaners, Prepared for David Shaw, Successor to Walker Chevrolet, February 18, 2011.
- Aspect Consulting, LLC (Aspect), 2012, Data Gaps Investigation, Former Walker Chevrolet and Morrell's Dry Cleaners, May 1, 2012.
- Aspect Consulting, LLC (Aspect), 2013, Focused Feasibility Study, Morrell's Dry Cleaner, Prepared for David Shaw, Successor to Walker Chevrolet, March 26, 2013.
- Aspect Consulting, LLC (Aspect), 2014b, Interim Cleanup Action Construction and Design Report, Morrell's Dry Cleaners, Prepared for David Shaw, Successor to Walker Chevrolet, May 16, 2014.
- Aspect Consulting, LLC (Aspect), 2014c, Interim Cleanup Action Construction Completion Report, Morrell's Dry Cleaners, Prepared for David Shaw, Successor to Walker Chevrolet, December 23, 2014.
- Aspect Consulting, LLC (Aspect), 2018, Supplemental Focused Feasibility Study, Morrell's Dry Cleaners Site, Prepared for David Shaw, Successor to Walker Chevrolet, August 10, 2018, Draft.
- Aspect Consulting, LLC (Aspect), 2020a, Summary of 2019 Interim Action and SVE System Expansion Morell's Dry Cleaner Site, Prepared for D.E. Wickham, Successor to Walker Chevrolet, June 17, 2020.
- Aspect Consulting, LLC (Aspect), 2020b, Property-Specific Closure Report for Parking Lot Parcel, Morell's Dry Cleaners, Prepared for David Shaw, Successor to Walker Chevrolet, draft August 2020.
- Morell, Linda (2010), David Shaw & Darrell Wickham v. Linda Morell No. 09-2-14692-1, Deposition Upon Oral Examination by the Superior Court of the State of Washington, April 22, 2010.
- Washington State Department of Ecology (Ecology), 2011, Opinion Letter on Independent Cleanup of the Morrell's Dry Cleaning Facility (Site), VCP Project No. SW1039, September 26, 2011.
- Washington State Department of Ecology (Ecology), 2016a, Guidance for Evaluating Soil Vapor Intrusion in Washington State: Investigation and Remedial Action, Publication No. 09-09-047, Review Draft Revised February 2016.
- Washington State Department of Ecology (Ecology), 2016b, Updated Process for Initially Assessing the Potential for Petroleum Vapor Intrusion, Implementation Memorandum No. 14, March 31, 2016.

ASPECT CONSULTING


- Washington State Department of Ecology (Ecology), 2019, Vapor intrusion (VI) Investigations and Short-term Trichloroethene (TCE) Toxicity, Implementation Memorandum No. 22, October 1, 2019.
- Washington State Department of Ecology (Ecology), 2021a, Further Action Opinion Letter on Morrell's Dry Cleaning Facility (Site), VCP Project No. SW1039, January 6, 2021.
- Washington State Department of Ecology (Ecology), 2021b, Cleanup Level and Risk Calculation (CLARC) Table, February, 2021.

Limitations

Work for this project was performed for D.E. Wickham, Successor to Walker Chevrolet (Client), and this report was prepared in accordance with generally accepted professional practices for the nature and conditions of work completed in the same or similar localities, at the time the work was performed. This report does not represent a legal opinion. No other warranty, expressed or implied, is made.

All reports prepared by Aspect Consulting for the Client apply only to the services described in the Agreement(s) with the Client. Any use or reuse by any party other than the Client is at the sole risk of that party, and without liability to Aspect Consulting. Aspect Consulting's original files/reports shall govern in the event of any dispute regarding the content of electronic documents furnished to others.

Please refer to Appendix H titled "Report Limitations and Guidelines for Use" for additional information governing the use of this report.

Table 1. Soil - Indicator Hazardous Substance Evaluation

Project No. 080190, Morell's Dry Cleaners, Tacoma, Washington

Analuta	Number of Samples (excluding Field	Number of Samples with Detected	Frequency	Maxumim Detected	Unito	Screening	Number of Samples with Screening Level Exceedance	Frquency of Detected	Max Exceedance Factor ¹
Analyte BTEX	Dups)	Concentration	or Detection	Concentration	Units	Level	Exceedance	Exceedance	Factor
Benzene	73	I	0%		1 1	0.03		0%	I
Toluene	73		0%			7		0%	
Ethylbenzene	73		0%			6		0%	
Total Xylenes	1	1	100%	0.16	mg/kg	9		0%	
Metals									
Arsenic	2	2	100%	2.84	mg/kg	20		0%	
Barium Cadmium	2	2	100% 0%	39.6	mg/kg	16000 2		0%	
Chromium	2	2	100%	16.5	mg/kg			0% 0%	No CUL
Lead	10	10	100%	2.81	mg/kg	250		0%	
Mercury	2		0%			2		0%	
Selenium	2		0%			400		0%	
Silver	2		0%			400		0%	
PAHs									
Naphthalene	73	4	5%	28	mg/kg	5	1	1%	5.6
VOCs	T				1 1				T
1,1,1,2-Tetrachloroethane	72		0%		+ +	38		0%	
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	72 72	-	0% 0%		+ +	<u>2</u> 5		0% 0%	
1,1,2,Z-Tetrachioroethane	72	+	0%		+ +	18		0%	
1,1-Dichloroethane	72	1	0%		1	180		0%	
1,1-Dichloroethene	73		0%		1 1	4000		0%	
1,1-Dichloropropene	72		0%					0%	
1,2,3-Trichlorobenzene	72		0%					0%	
1,2,3-Trichloropropane	72		0%			0.0063		0%	
1,2,4-Trichlorobenzene	72	0	0%	70		34		0%	
1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane	73 72	8	11% 0%	76	mg/kg	800 1.3		0% 0%	
1,2-Dibromoethane (EDB)	72		0%			0.005		0%	
1,2-Dichlorobenzene	72		0%			7200		0%	
1,2-Dichloroethane (EDC)	72		0%			11		0%	
1,2-Dichloropropane	72		0%			27		0%	
1,3,5-Trimethylbenzene	73	6	8%	26	mg/kg	800		0%	
1,3-Dichlorobenzene	72		0%					0%	
1,3-Dichloropropane	72		0%			400		0%	
1,4-Dichlorobenzene 2,2-Dichloropropane	72 72		0% 0%			190		0% 0%	
2-Butanone	72		0%			48000		0%	
2-Chlorotoluene	72		0%			1600		0%	
2-Hexanone	72		0%			400		0%	
4-Chlorotoluene	72		0%					0%	
4-Methyl-2-pentanone	72		0%			6400		0%	
Acetone	72		0%			72000		0%	
Bromobenzene	72		0%			640		0%	
Bromodichloromethane Bromoform	72 72		0% 0%			16 130		0%	
Bromomethane	72	-	0%			110		0% 0%	
Carbon Tetrachloride	73		0%			14		0%	
Chlorobenzene	72		0%			1600		0%	
Chloroethane	73		0%					0%	
Chloroform	73	3	4%	0.15	mg/kg	32		0%	
Chloromethane	72		0%					0%	
cis-1,2-Dichloroethene (cDCE)	73	6	8%	0.34	mg/kg	160		0%	
cis-1,3-Dichloropropene Dibromochloromethane	72 72	1	0% 0%		1	12		0%	
Dibromocnioromethane Dibromomethane	72	1	0%		+ +	800		0% 0%	
Dichlorodifluoromethane	72	 	0%		+ +	16000		0%	
Isopropylbenzene	72	3	4%	0.43	mg/kg	8000		0%	
m,p-Xylenes	72	1	1%	0.51	mg/kg	16000		0%	
Methyl tert-butyl ether (MTBE)	72		0%			0.1		0%	
Methylene Chloride	73	3	4%	1.4	mg/kg	0.02	3	4%	70
n-Hexane	43		0%		<u> </u>	4800		0%	
n-Propylbenzene	72	3	4% 1%	1.6	mg/kg	8000		0%	
o-Xylene p-Isopropyltoluene	72 73	8	1% 11%	0.65 12	mg/kg mg/kg	16000		0% 0%	No CUL
sec-Butylbenzene	73	9	12%	1.8	mg/kg	8000		0%	NO COL
Styrene	72	,	0%	1.0	mg/kg	16000		0%	
tert-Butylbenzene	73	3	4%	0.43	mg/kg	8000		0%	
Tetrachloroethene (PCE)	73	34	47%	120	mg/kg	0.05	28	38%	2400
trans-1,2-Dichloroethene	73		0%			1600		0%	
trans-1,3-Dichloropropene	72		0%					0%	
Trichloroethene (TCE)	73	8	11%	1.5	mg/kg	0.03	7	10%	50
Trichlorofluoromethane Vinyl Chloride	72 73	1	0%		1	24000 0.67		0%	
viriyi Ciliolide	13	<u> </u>	0%			0.07	I	0%	

Notes:

Orange Shading indicates chemical selected as Indicator Hazardous Substance (IHS).

Blue Shading indicates chemical was a Contaminant of Possible Concern (COPC), not retained as IHS.

2) Methylene chloride was due to laboratory contamination and is not listed as a COPC for the Site.

Max Exceedance Factor = Maximum Detected / Screening Level (SL)

Table 2. Water - Indicator Hazardous Substance Evaluation

Project No. 080190, Morell's Dry Cleaners, Tacoma, Washington

Analyte	Number of Samples	Number of Samples with Detected Concentration	Frequency of Detection	Maxumim Detected Concentration	Units	Screening Level	Number of Screening Level Exceedances	Frequency of Detected Exceedance	Max Exceedance Factor ¹
BTEX			1 404			_		I	
Benzene Toluene	86 80	1	1% 0%	1.1	ug/L	5 1000		0%	
Ethylbenzene	80		0%			700		0% 0%	
Metals			070			700		0 70	
Iron	63	63	100%	294000	ug/L	11000	30	48%	26.7
Lead	10	2	20%	5.8	ug/L	15		0%	
PAHs			L						
Naphthalene	80	3	4%	2	ug/L	160		0%	
VOCs		•	•						
1,1,1,2-Tetrachloroethane	80		0%			1.7		0%	
1,1,1-Trichloroethane	159		0%			200		0%	-
1,1,2,2-Tetrachloroethane	80		0%			0.22		0%	
1,1,2-Trichloroethane	80		0%			0.77		0%	
1,1,2-Trichlorotrifluoroethane	3		0%			240000		0%	
1,1-Dichloroethane	159	47	0%	40	/1	7.7		0%	
1,1-Dichloroethene 1,1-Dichloropropene	159 80	17	11% 0%	10	ug/L	400		0%	No SL
1,2,3-Trichlorobenzene	80		0%					0%	No SL No SL
1,2,3-Trichloropropane	80		0%			0.00038		0% 0%	
1,2,4-Trichlorobenzene	80	+	0%			1.5		0%	
1,2,4-Trimethylbenzene	80	†	0%			80		0%	
1,2-Dibromo-3-chloropropane	80	†	0%			0.055	1	0%	
1,2-Dibromoethane (EDB)	80		0%			0.01		0%	
1,2-Dichlorobenzene	80		0%			720		0%	
1,2-Dichloroethane (EDC)	159		0%					0%	No SL
1,2-Dichloropropane	80		0%			1.2		0%	
1,3,5-Trimethylbenzene	80		0%			80		0%	
1,3-Dichlorobenzene	80		0%					0%	No SL
1,3-Dichloropropane	80		0%					0%	No SL
1,4-Dichloro-2-Butene	3		0%					0%	No SL
1,4-Dichlorobenzene	80		0%			8.1		0%	
2,2-Dichloropropane	80	0	0%	500	/1	1000		0%	No SL
2-Butanone 2-Chloroethyl Vinyl Ether	80 3	9	11% 0%	500	ug/L	4800		0%	
2-Chlorotoluene	80		0%			160		0% 0%	
2-Hexanone	80	11	14%	120	ug/L	40	4	5%	3
4-Chlorotoluene	80		0%	120	ug/L	-10	-	0%	No SL
4-Methyl-2-pentanone	80	1	1%	15	ug/L	640		0%	
Acetone	80	14	18%	320	ug/L	7200		0%	
Acrolein	3		0%			4		0%	
Acrylonitrile	3		0%			0.081		0%	
Bromobenzene	80		0%			64		0%	
Bromochloromethane	3		0%					0%	No SL
Bromodichloromethane	80		0%			7.06		0%	
Bromoethane	3		0%					0%	No SL
Bromoform	80		0% 0%			5.5 11		0%	
Bromomethane Carbon Disulfide	80 3		0%			800		0% 0%	
Carbon Tetrachloride	87	23	26%	7	ug/L	5	1	1%	1.4
Chlorobenzene	80	20	0%	,	ug/L	160	'	0%	1.4
Chloroethane	166	1	1%	8.1	ug/L			0%	No SL
Chloroform	87	29	33%	5	ug/L	14.1		0%	
Chloromethane	80	1	1%	15	ug/L			0%	No SL
cis-1,2-Dichloroethene (cDCE)	166	146	88%	7100	ug/L	16	96	58%	443.75
cis-1,3-Dichloropropene	80		0%					0%	No SL
Dibromochloromethane	80		0%			0.52		0%	
Dibromomethane	80		0%			80		0%	-
Dichlorodifluoromethane	77	1	0%			1600		0%	
Isopropylbenzene	80	1	0%			800	1	0%	
m,p-Xylenes	80 73	1	0%			1600	1	0%	
Methyl tert-butyl ether (MTBE) Methylene Chloride	73 159	5	0% 3%	6.2	ua/I	20 5	5	0%	1 24
Methyliodide	3	5	0%	∪.∠	ug/L	<u> </u>	5	3% 0%	1.24 No SL
n-Butylbenzene	3	+	0%			400	+	0%	
n-Hexane	30		0%			480		0%	
n-Propylbenzene	80	†	0%			800	1	0%	
o-Xylene	80	†	0%			1600	1	0%	
p-Isopropyltoluene	80	1	0%					0%	No SL
sec-Butylbenzene	80		0%			800		0%	
Styrene	75		0%			1600		0%	-
tert-Butylbenzene	80		0%			800		0%	
Tetrachloroethene (PCE)	166	135	81%	2900	ug/L	5	111	67%	580
trans-1,2-Dichloroethene	166	18	11%	7.6	ug/L	160		0%	
trans-1,3-Dichloropropene	80		0%					0%	No SL
Trichloroethene (TCE)	165	119	72%	1100	ug/L	5	63	38%	220
Trichlorofluoromethane	80		0%			2400		0%	
Vinyl Acetate	3		0%			8000		0%	
Vinyl Chloride	166	57	34%	19	ug/L	0.292	57	34%	65

Notes:

Orange Shading indicates chemical selected as Indicator Hazardous Substance (IHS).

Blue Shading indicates chemical was a Contaminant of Possible Concern, not retained as IHS.

¹⁾ Max Exceedance Factor = Maximum Detected / Screening Level (SL)

Table 3. Soil Gas - Indicator Hazardous Substance EvaluationProject No. 080190, Morell's Dry Cleaners, Tacoma, Washington

Analyte	Number of Samples	Number of Samples with Detected Concentration	Frequency of Detection	Maxumim Detected Concentration	Units	Screening Level	Number of Samples Exceeding Screening Level	Frequency of Detected Exceedance	Max Exceedance Factor ¹
(None) Acetaldehyde	4	<u> </u>	25%	16	ug/m3	38		0%	
APH					_				
C5 - C8 Aliphatic Hydrocarbons C9 - C12 Aliphatic Hydrocarbons	4	4	100% 100%	5600 3600	ug/m3 ug/m3			0% 0%	No SL No SL
C9 - C10 Aromatic Hydrocarbons	4		0%	333				0%	
BTEX Benzene	15	3	20%	1300	ug/m3	11	1	7%	118
Toluene	15	9	60%	2600	ug/m3	76000		0%	
Ethylbenzene Total Vylence	15 11	5 9	33% 82%	1700 4600	ug/m3	15000 1500	1	0% 9%	3
Total Xylenes Other SVOCs	11	9	02%	4600	ug/m3	1500	<u> </u>	9%	3
1,4-Dioxane	6		0%					0%	
Hexachlorobutadiene PAHs	10		0%			3.8		0%	
Naphthalene	11	4	36%	3	ug/m3	2.5	2	18%	1.2
VOCs 1,1,1,2-Tetrachloroethane	4	T	0%			11		0%	<u></u>
1,1,1-Trichloroethane	12		0%			76000		0%	
1,1,2,2-Tetrachloroethane	12		0%			1.4		0%	
1,1,2-Trichloroethane 1,1,2-Trichlorotrifluoroethane	12 6		0% 0%			3 76000		0% 0%	
1,1-Dichloroethane	12		0%			52		0%	
1,1-Dichloroethene 1,1-Dichloropropene	12 4		0% 0%			3000		0% 0%	 No SL
1,2,3-Trichlorobenzene	4		0%					0%	No SL
1,2,3-Trichloropropane	4		0%					0%	No SL
1,2,3-Trimethylbenzene 1,2,4-Trichlorobenzene	4 10	1	0% 10%	0.75	ug/m3	30		0% 0%	No SL
1,2,4-Trimethylbenzene	10	3	30%	3.8	ug/m3	910		0%	
1,2-Dibromo-3-chloropropane 1,2-Dibromoethane (EDB)	4 12		0% 0%			0.14		0% 0%	No SL
1,2-Dichlorobenzene	10		0%			3000		0%	
1,2-Dichloroethane (EDC)	12		0%			3.2		0%	
1,2-Dichloropropane 1,3,5-Trimethylbenzene	10 10		0% 0%			23		0% 0%	No SL
1,3-Dichlorobenzene	10		0%					0%	No SL
1,3-Dichloropropane 1,4-Dichlorobenzene	4 12		0% 0%			7.6		0% 0%	No SL
1-Propene	4	3	75%	10	ug/m3	7.6		0%	No SL
2,2-Dichloropropane	4		0%					0%	No SL
2-Butanone 2-Chlorotoluene	10 4	1	10% 0%	5.3	ug/m3	76000		0% 0%	No SL
2-Hexanone	10		0%					0%	No SL
2-Pentanone 3-Hexanone	4		0% 0%					0% 0%	No SL No SL
3-Pentanone	4		0%					0%	No SL
4-Chlorotoluene	4		0%	47	/ 0	40000		0%	No SL
4-Methyl-2-pentanone Acetone	10 10	5	20% 50%	17 1000	ug/m3 ug/m3	46000		0% 0%	No SL
Acetonitrile	4		0%		Ī	910		0%	
Acrolein Acrylonitrile	<u>4</u> 8	1	25% 0%	5.9	ug/m3	0.3 1.2	1	25% 0%	20
Allyl Chloride	2		0%			1.2		0%	No SL
Bromobenzene	4		0%			910		0%	
Bromochloromethane Bromodichloromethane	4 10		0% 0%			2.3		0% 0%	No SL
Bromoform	10		0%			76		0%	
Bromomethane Butyraldehyde	10 4		0% 0%			76		0% 0%	 No SL
Carbon Disulfide	6		0%			11000		0%	
Carbon Tetrachloride Chlorobenzene	12 10		0% 0%			14 760		0% 0%	
Chlorodifluoromethane	4	2	50%	1.5	ug/m3	760000		0%	
Chloroethane	12	0	0%	40	. / 0	150000		0%	
Chloroform Chloromethane	12 12	2	17% 8%	18 0.36	ug/m3 ug/m3	3.6 1400	1	8% 0%	<u>5</u>
cis-1,2-Dichloroethene (cDCE)	15	5	33%	8.6	ug/m3			0%	No SL
cis-1,3-Dichloropropene Cyclohexane	10 6	2	0% 33%	150	ug/m3			0% 0%	No SL No SL
Cyclopentane	4	2	50%	5.3	ug/m3			0%	No SL
Dibromochloromethane	10		0% 0%					0%	No SL
Dibromomethane Dichlorodifluoromethane	4 12	3	25%	2.3	ug/m3	1500		0% 0%	No SL
Ethanol	5	3	60%	31	ug/m3			0%	No SL
Hexaldehyde Isobutylene	4	2	25% 50%	7.6 6.3	ug/m3 ug/m3			0% 0%	No SL No SL
Isoprene	4		0%		ug/IIIJ			0%	No SL
Isopropyl Alcohol	6	2	33%	63	ug/m3	0400		0%	No SL
Isopropylbenzene m,p-Xylenes	6 15	1 10	17% 67%	9.4 3400	ug/m3 ug/m3	6100 1500	1	0% 7%	2
Methacrolein	4		0%		J			0%	No SL
Methyl tert-butyl ether (MTBE) Methyl vinyl ketone	12 4		0% 0%			320		0% 0%	 No SL
Methylene Chloride	10	3	30%	150	ug/m3	2200		0%	
	4		0%					0%	No SL
Methyliodide	4		007			·		^^′	(1)
Methysticin	4	1	0% 25%	12	ua/m3			0% 0%	No SL No SL
-		1 2	0% 25% 0% 33%	12	ug/m3	11000		0% 0% 0% 0%	No SL No SL No SL

Table 3. Soil Gas - Indicator Hazardous Substance Evaluation

Project No. 080190, Morell's Dry Cleaners, Tacoma, Washington

Analyte	Number of Samples	Number of Samples with Detected Concentration	Frequency of Detection	Maxumim Detected Concentration	Units	Screening Level	Number of Samples Exceeding Screening Level	Frequency of Detected Exceedance	Max Exceedance Factor ¹
o-Xylene	15	9	60%	1200	ug/m3	1500		0%	
Pentane	4	2	50%	6.7	ug/m3			0%	No SL
p-Isopropyltoluene	4		0%					0%	No SL
sec-Butylbenzene	4		0%					0%	No SL
Styrene	10	3	30%	3.5	ug/m3	15000		0%	-
tert-Butylbenzene	4		0%					0%	No SL
Tetrachloroethene (PCE)	15	14	93%	680000	ug/m3	320	10	67%	2125
Tetrahydrofuran	2		0%					0%	No SL
trans-1,2-Dichloroethene	15	2	13%	2.7	ug/m3			0%	No SL
trans-1,3-Dichloropropene	10		0%					0%	No SL
Trichloroethene (TCE)	15	10	67%	5100	ug/m3	11	6	40%	464
Trichlorofluoromethane	10	3	30%	1.2	ug/m3	11000		0%	
Vinyl Acetate	4	1	25%	52	ug/m3	3000		0%	-
Vinyl Chloride	15		0%			9.5		0%	-
1,3-Butadiene	6		0%			2.8		0%	1
2,2,4-Trimethylpentane	2		0%					0%	No SL
4-Ethyltoluene	2	1	50%	2.6	ug/m3			0%	No SL
alpha-Chlorotoluene	6		0%			1.7		0%	
Freon 114	8		0%					0%	No SL
Heptane	2		0%					0%	No SL

Notes:

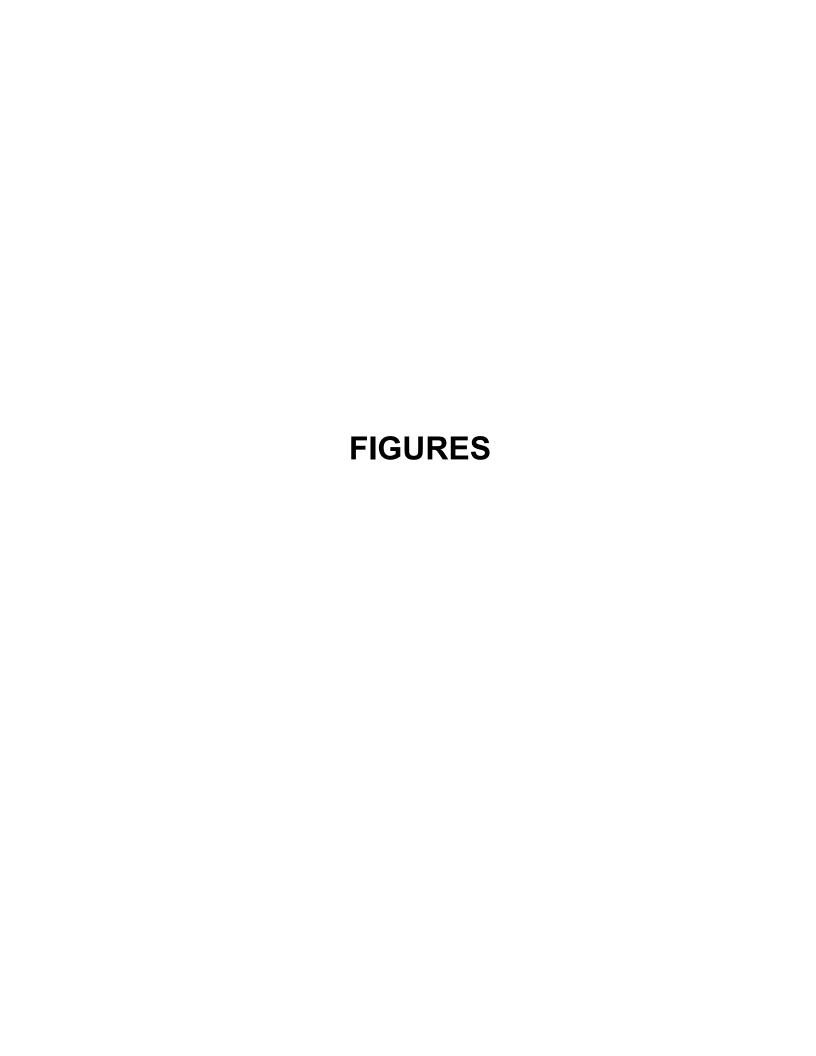
Orange Shading indicates chemical selected as Indicator Hazardous Substance (IHS).

Blue Shading indicates chemical was a Contaminant of Possible Concern, not retained as IHS.

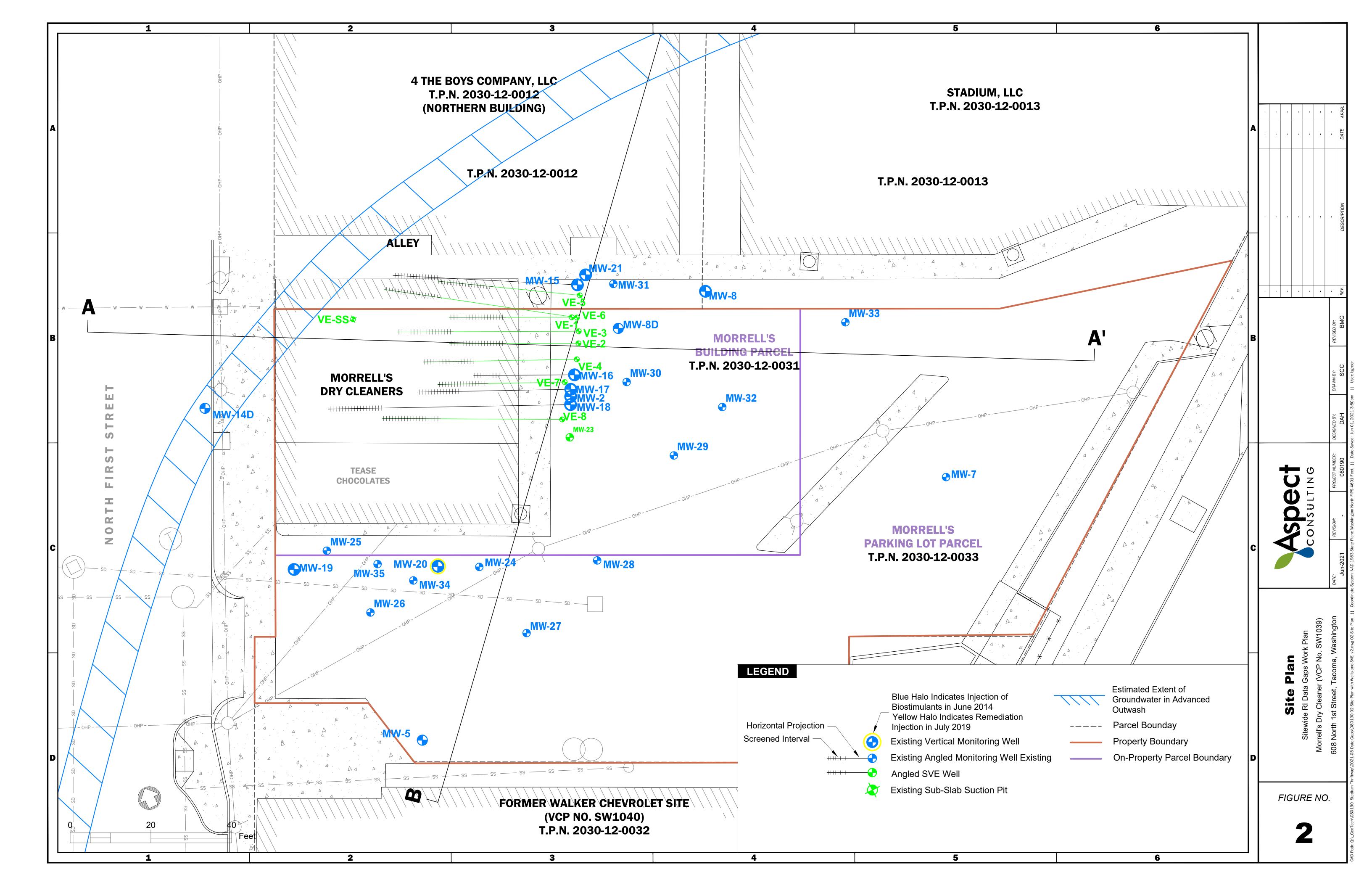
1) Max Exceedance Factor = Maximum Detected / Screening Level (SL)

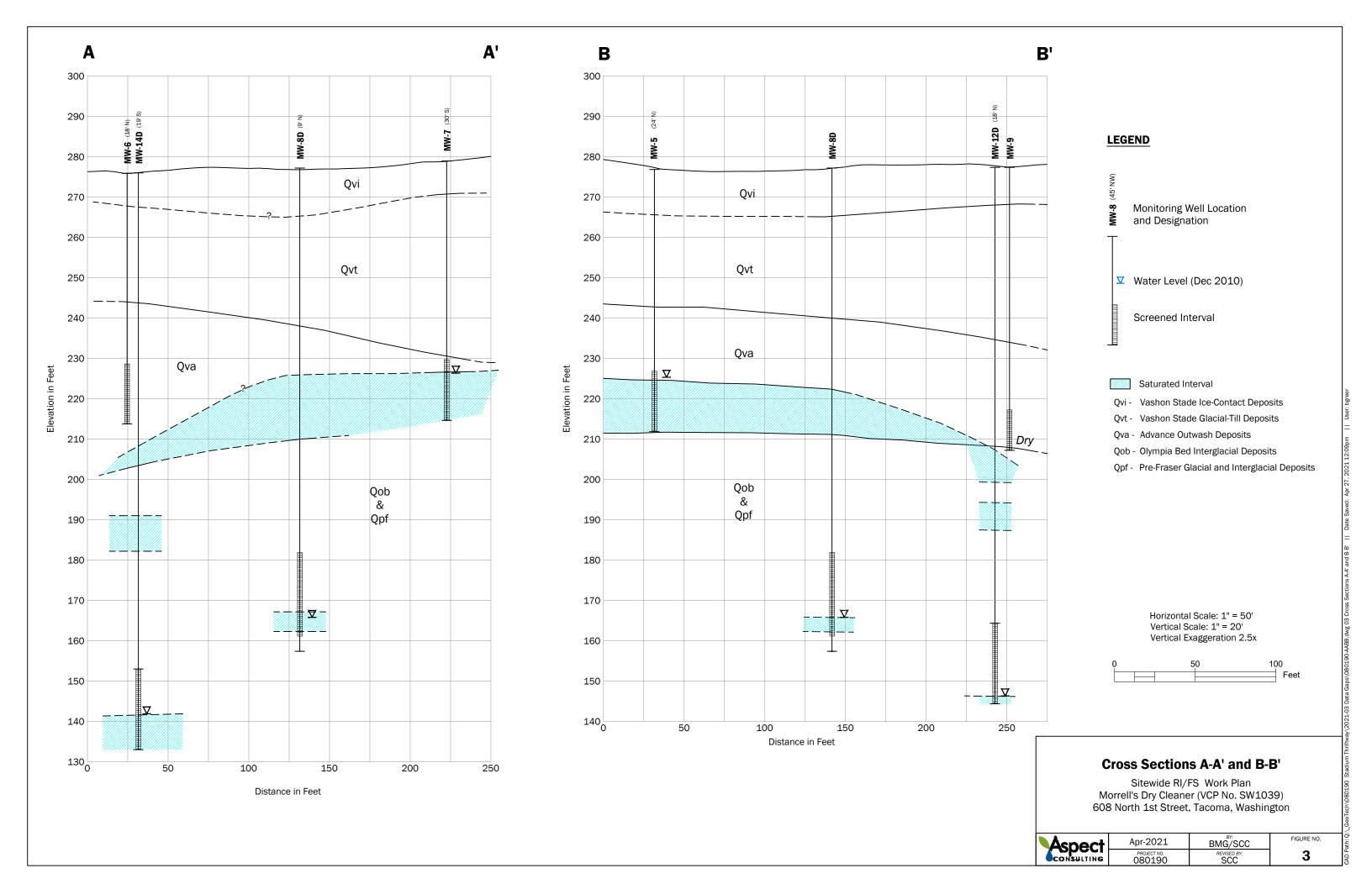
Page 2 of 2

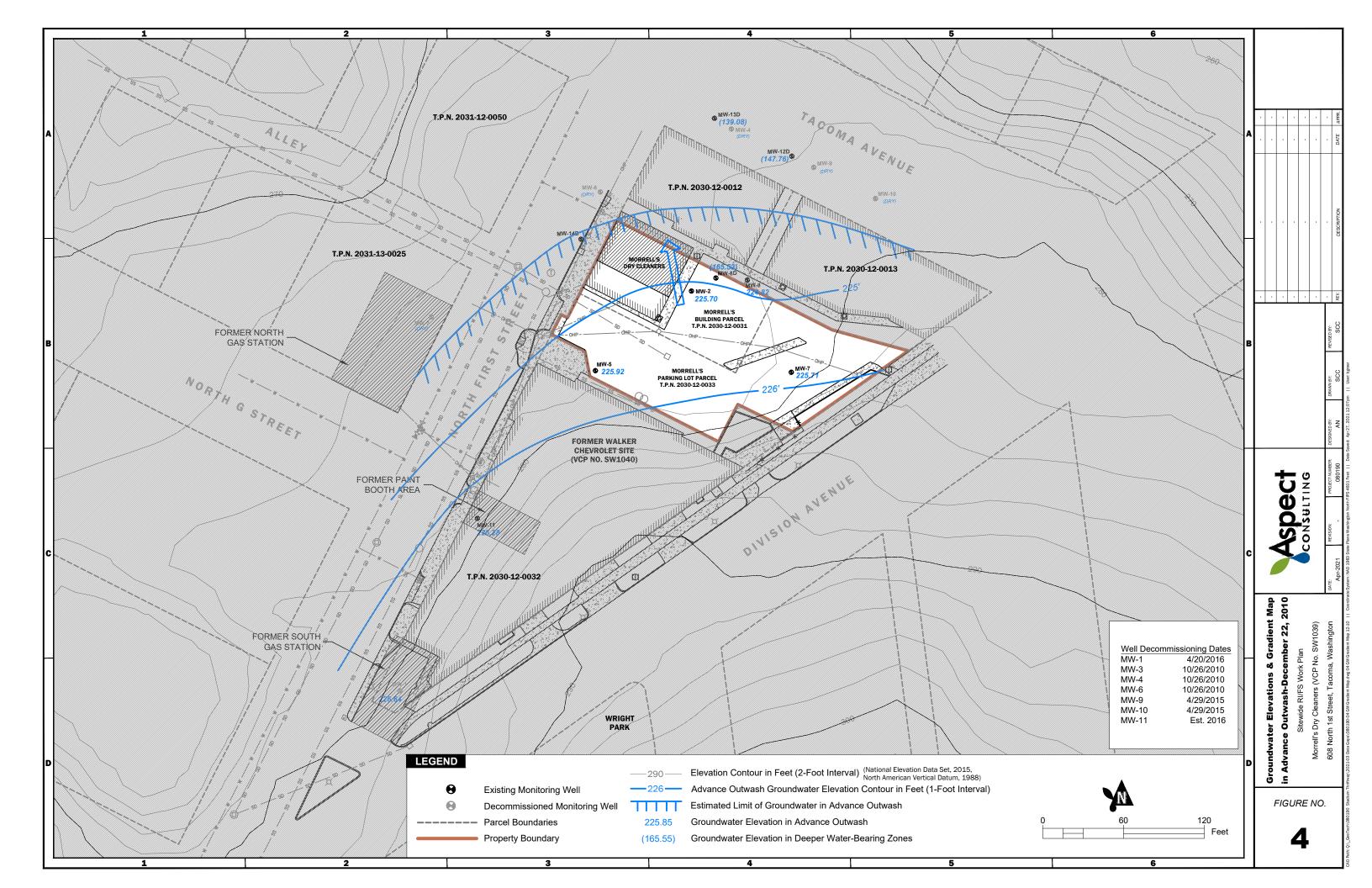
Table 4. Indoor Air - Indicator Hazardous Substance Evaluation

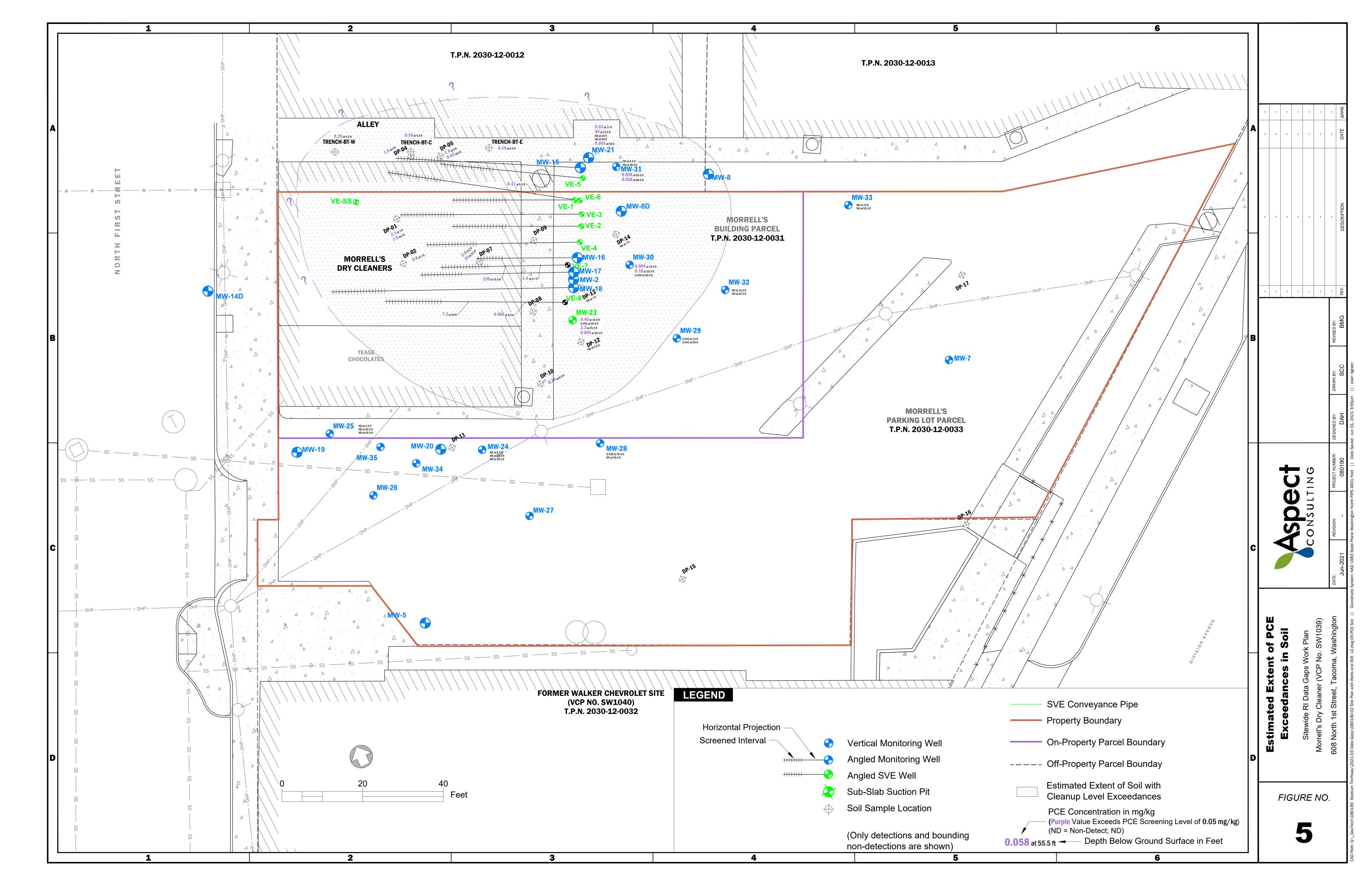

Project No. 080190, Morell's Dry Cleaners, Tacoma, Washington

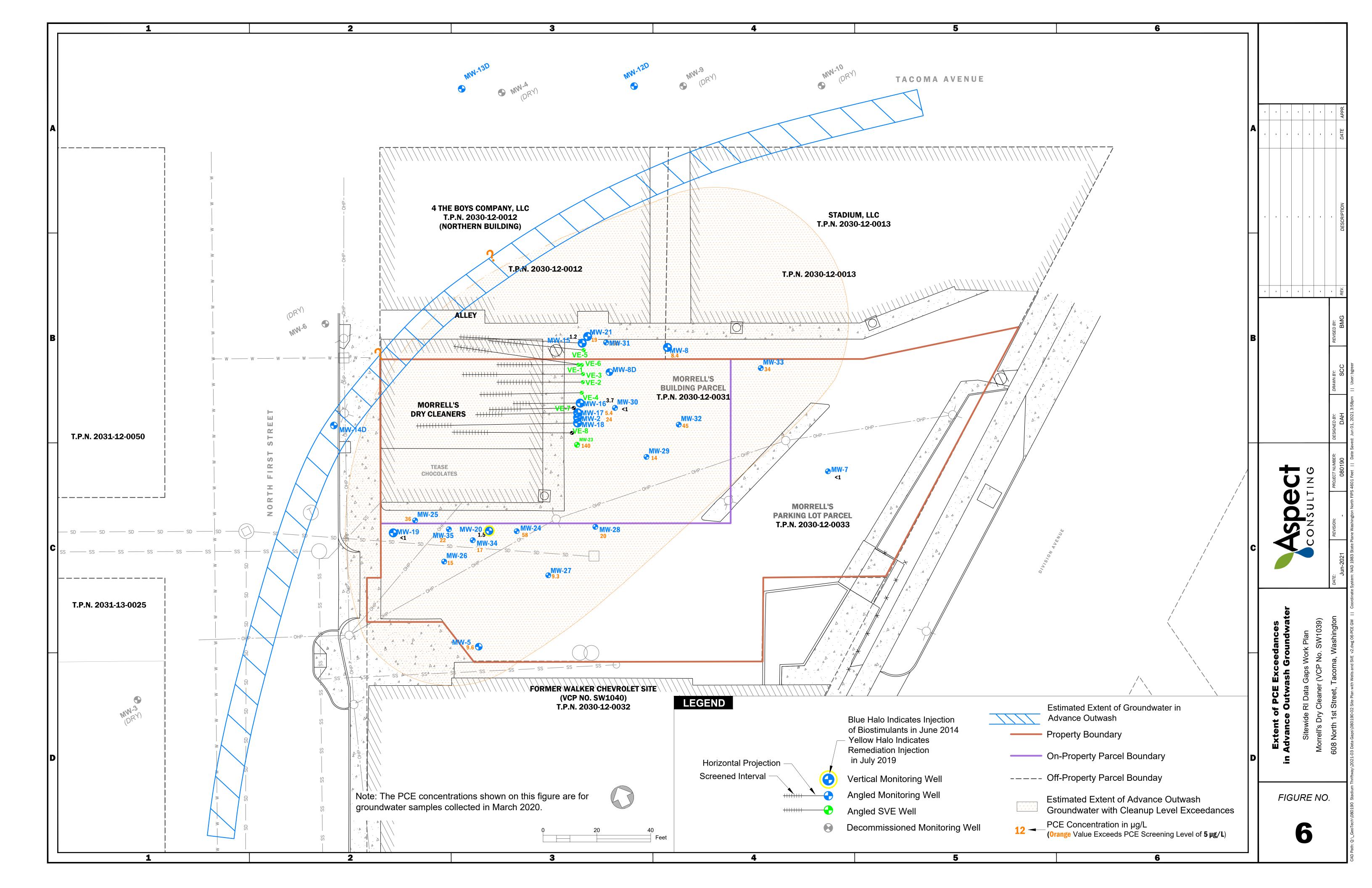
Analyte	Number of Samples	Number of Samples with Detected Concentration	Frequency of Detection	Maxumim Detected Concentration	Units	Screening Level	Number of Samples with Exceedance	Frequency of Detected Exceedance	Max Exceedance Factor ³
BTEX									
Benzene	3	3	100%	2.2	ug/m3	0.32	1 ²	33%	6.25 ²
Toluene	3	3	100%	9	ug/m3	2300		0%	
Ethylbenzene	3	3	100%	2.2	ug/m3	460		0%	
Total Xylenes	3	3	100%	11.2	ug/m3	45.7		0%	
PAHs									
Naphthalene	3		0%			0.073		0%	
VOCs									
cis-1,2-Dichloroethene (cDCE)	3		0%					0%	
m,p-Xylenes	3	3	100%	8.1	ug/m3	45.7		0%	
o-Xylene	3	3	100%	3.1	ug/m3	45.7		0%	
Tetrachloroethene (PCE)	3	3	100%	22	ug/m3	9.6	2	67%	2.29
trans-1,2-Dichloroethene	3		0%			_		0%	
Trichloroethene (TCE)	3	2	67%	9	ug/m3	0.33	2	67%	27.27
Vinyl Chloride	3		0%			0.28		0%	

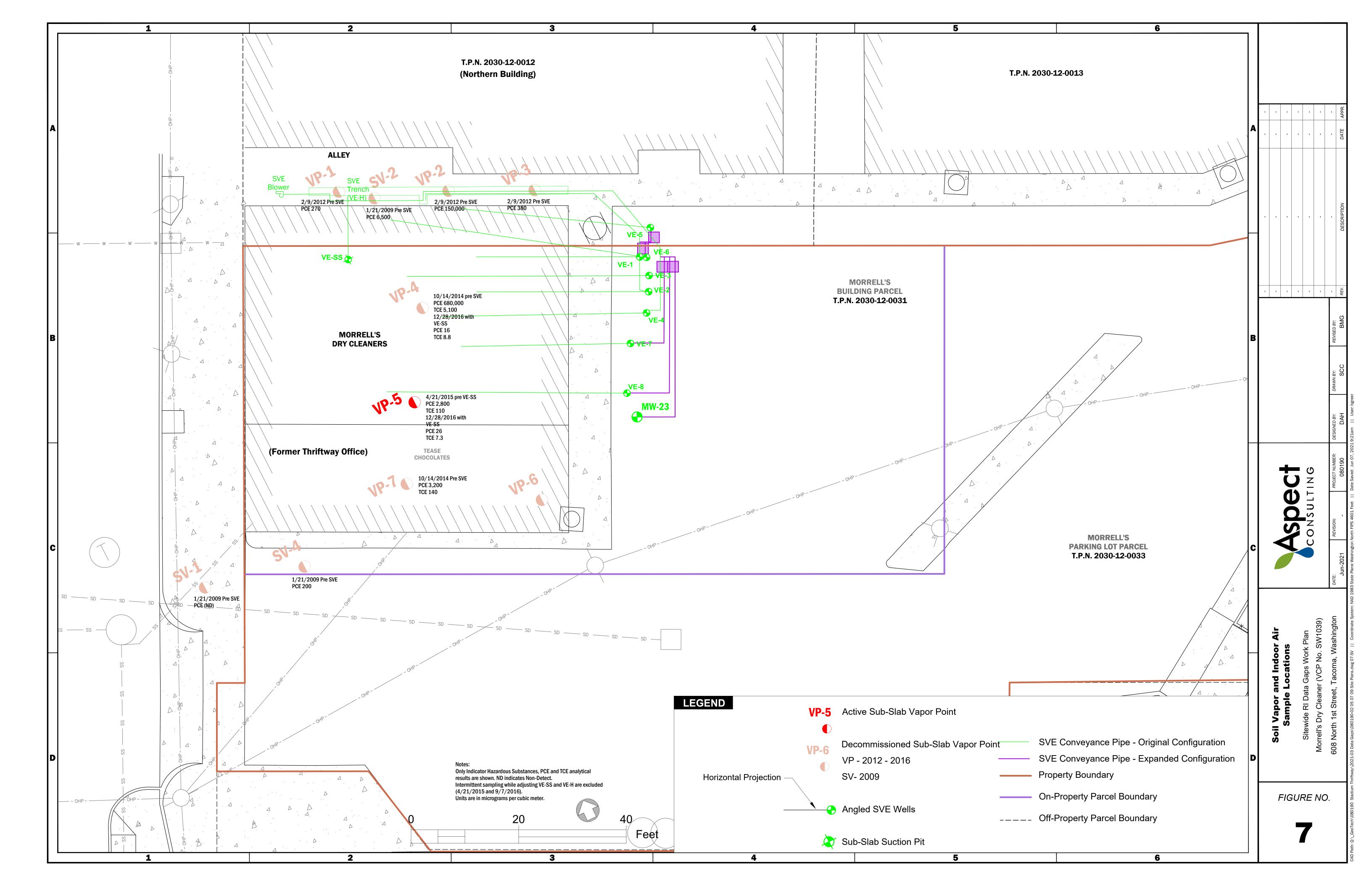

Notes:

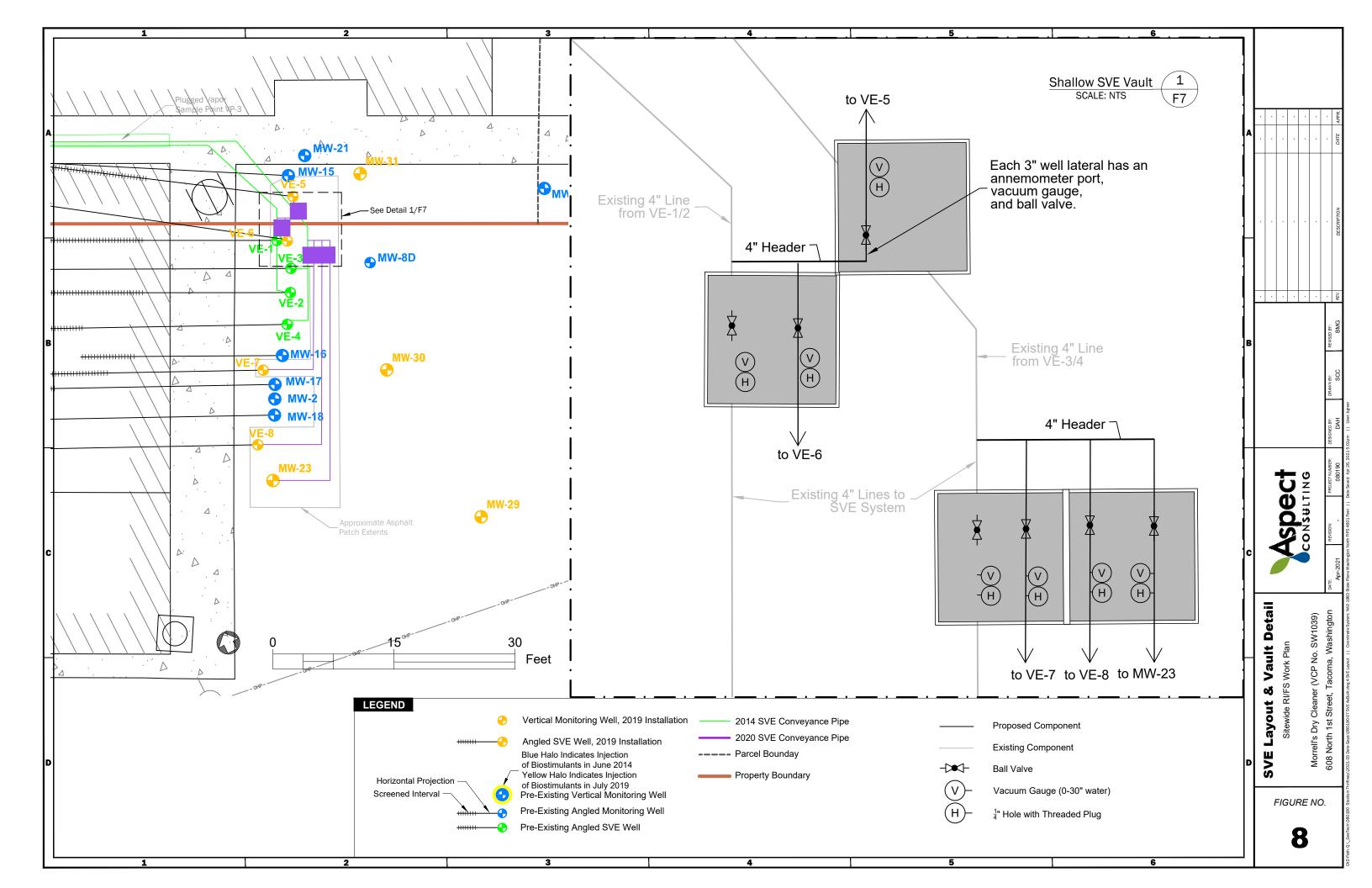

Orange shading indicates chemical retained as Indicator Hazardous Substance

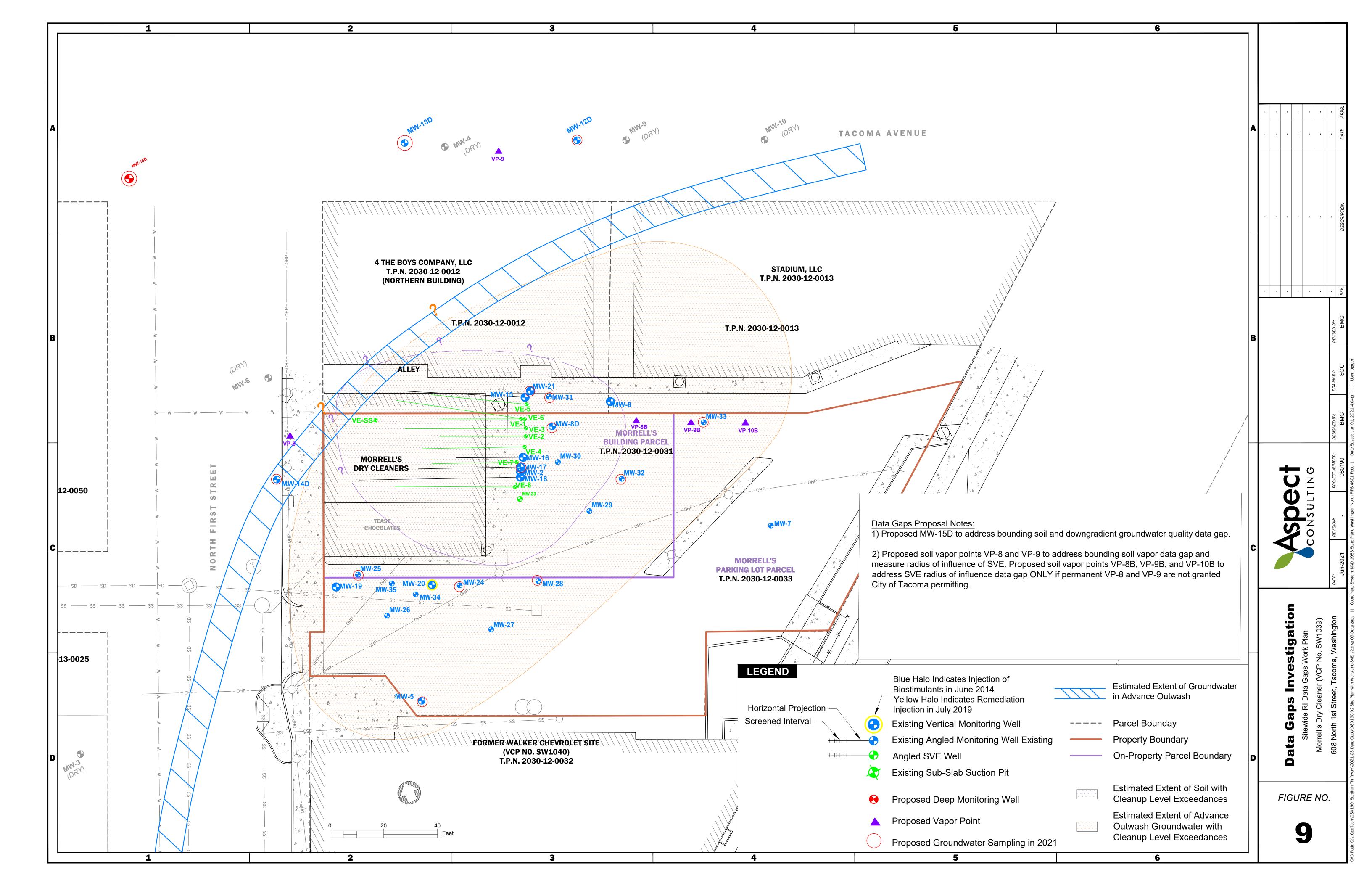

- 1) Indoor Air analytical results corrected by subtracting background detected results from indoor air results.
- 2) This sample was the outdoor/backgdound sample. Benzene not retained as IHS.
- 3) Max Exceedance Factor = Maximum Detected / Screening Level (SL)











APPENDIX A

Aspect Data

	L	ocation Date Depth	A-5 / 02/26/2019 22.5 ft	VE-5 02/26/2019 32 ft	02/27/2019 13 ft	A-6 / VE-6 02/27/2019 36 ft	02/28/2019 57.5 ft	02/28/2019 9.5 ft	A-7 / VE-7 03/01/2019 22 ft	03/01/2019 37 ft	A-8 / VE-8 02/26/2019 14 ft	A-8 / 02/27/2019 34 ft	VE-8 02/27/2019 47 ft	DC-1 08/31/2006 8 ft	DP- 10/21/2010 1 ft	-01 10/21/2010 2 ft	DP-02 10/21/2010 1 ft	DP-04 10/20/2010 2 ft	DP 10/20/2010 3 ft	-05 10/20/2010 6 ft	DP- 10/21/2010 2 ft	-07 10/21/2010 2.5 ft
Analyte		reening evel ¹																				
BTEX Benzene	mg/kg	0.03	< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U	< 0.03	< 0.03 U	< 0.03	< 0.03 U	< 0.03 U	< 0.03 U	< 0.02 U	< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U
Toluene	mg/kg	7	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05	< 0.05 U	< 0.05	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U
Ethylbenzene Total Xylenes	mg/kg mg/kg	9	< 0.05 U 	< 0.05 U 	< 0.05 U 	< 0.05 U	< 0.05 U 	< 0.05	< 0.05 U	< 0.05	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U 0.16	< 0.05 U 	< 0.05 U 	< 0.05 U	< 0.05 U 	< 0.05 U 	< 0.05 U	< 0.05 U 	< 0.05 U
Metals							1						1					1				
Arsenic Barium	mg/kg mg/kg	20	-							-	-											
Cadmium	mg/kg	2			1					1	-			-					-	-		
Chromium Lead	mg/kg mg/kg	250																	-			
Mercury	mg/kg	2			-					-									-			
Selenium Silver		400 400								-									-	-		
Other SVOCs																						
Hexachlorobutadiene PAHs	mg/kg	13	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25	< 0.25 U	< 0.25	< 0.25 U	< 0.25 U	< 0.25 U		< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U
Naphthalene VOCs	mg/kg	5	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05	0.44	< 0.05	0.1	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane	mg/kg mg/kg	38	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 < 0.05	< 0.05 U < 0.05 U	< 0.05 < 0.05	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U		< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U
1,1,2,2-Tetrachloroethane	mg/kg	5	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05	< 0.05 U	< 0.05	< 0.05 U	< 0.05 U	< 0.05 U		< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U
1,1,2-Trichloroethane 1,1-Dichloroethane	mg/kg mg/kg	18 180	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 < 0.05	< 0.05 U < 0.05 U	< 0.05 < 0.05	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U		< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U
1,1-Dichloroethene		4000	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05	< 0.05 U	< 0.05	< 0.05 U	< 0.05 U	< 0.05 U	< 0.5 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U
1,1-Dichloropropene 1,2,3-Trichlorobenzene	mg/kg		< 0.05 U < 0.25 U	< 0.05 U < 0.25 U	< 0.05 U < 0.25 U	< 0.05 U < 0.25 U	< 0.05 U	< 0.05 < 0.25	< 0.05 U < 0.25 U	< 0.05 < 0.25	< 0.05 U < 0.25 U	< 0.05 U < 0.25 U	< 0.05 U < 0.25 U		< 0.05 U < 0.25 U	< 0.05 U < 0.25 U	< 0.05 U < 0.25 U	< 0.05 U	< 0.05 U < 0.25 U	< 0.05 U < 0.25 U	< 0.05 U < 0.25 U	< 0.05 U < 0.25 U
1,2,3-Trichloropropane	mg/kg mg/kg (.0063	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U < 0.05 U	< 0.25	< 0.25 U	< 0.25	< 0.25 U	< 0.25 U	< 0.25 U		< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U < 0.05 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U
1,2,4-Trichlorobenzene	mg/kg	34	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25	< 0.25 U	< 0.25	< 0.25 U	< 0.25 U	< 0.25 U		< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U
1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane	mg/kg mg/kg	1.3	0.069 < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 < 0.5	5.4 < 0.5 U	< 0.05 < 0.5	0.91 < 0.5 U	0.88 < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U
1,2-Dibromoethane (EDB)	mg/kg	0.005	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05	< 0.05 U	< 0.05	< 0.05 U	< 0.05 U	< 0.05 U	-	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U
1,2-Dichlorobenzene 1,2-Dichloroethane (EDC)	mg/kg mg/kg	7200 11	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 < 0.05	< 0.05 U < 0.05 U	< 0.05 < 0.05	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U		< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U
1,2-Dichloropropane	mg/kg	27	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05	< 0.05 U	< 0.05	< 0.05 U	< 0.05 U	< 0.05 U		< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U
1,3,5-Trimethylbenzene		800	< 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U	< 0.05 U	< 0.05	3	< 0.05	1	0.76	< 0.05 U	< 0.05 U	< 0.05 U < 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U
1,3-Dichlorobenzene 1,3-Dichloropropane	mg/kg mg/kg		< 0.05 U < 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 < 0.05	< 0.05 U < 0.05 U	< 0.05 < 0.05	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U		< 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U
1,4-Dichlorobenzene	mg/kg	190	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05	< 0.05 U	< 0.05	< 0.05 U	< 0.05 U	< 0.05 U	-	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U
2,2-Dichloropropane 2-Butanone	mg/kg mg/kg	18000	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 < 0.5	< 0.05 U < 0.5 U	< 0.05 < 0.5	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	-	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U
2-Chlorotoluene	mg/kg	1600	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05	< 0.05 U	< 0.05	< 0.05 U	< 0.05 U	< 0.05 U	-	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U
2-Hexanone 4-Chlorotoluene	mg/kg mg/kg	400	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 < 0.05	< 0.5 U < 0.05 U	< 0.5 < 0.05	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	-	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U
4-Methyl-2-pentanone		6400	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5	< 0.5 U	< 0.5	< 0.5 U	< 0.5 U	< 0.5 U	-	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U
Acetone Bromobenzene	mg/kg mg/kg	72000 640	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 < 0.05	< 0.5 U < 0.05 U	< 0.5 < 0.05	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U		< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U
Bromodichloromethane	mg/kg	16	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05	< 0.05 U	< 0.05	< 0.05 U	< 0.05 U	< 0.05 U	-	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U
Bromoform	mg/kg	130	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05	< 0.05 U	< 0.05	< 0.05 U	< 0.05 U	< 0.05 U		< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U
Bromomethane Carbon Tetrachloride	mg/kg mg/kg	110 14	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 < 0.05	< 0.5 U < 0.05 U	< 0.5 < 0.05	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	 < 0.05 U	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U
Chlorobenzene	mg/kg	1600	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05	< 0.05 U	< 0.05	< 0.05 U	< 0.05 U	< 0.05 U		< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U
Chloroethane Chloroform	mg/kg mg/kg	32	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 < 0.05	< 0.5 U < 0.05 U	< 0.5 < 0.05	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.05 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U
Chloromethane	mg/kg		< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5	< 0.5 U	< 0.5	< 0.5 U	< 0.5 U	< 0.5 U		< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U
cis-1,2-Dichloroethene (cDCE) cis-1,3-Dichloropropene	mg/kg mg/kg	160	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	0.16 < 0.05	< 0.05 U < 0.05 U	< 0.05 < 0.05	0.34 < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	0.11 < 0.05 U
Dibromochloromethane	mg/kg	12	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05	< 0.05 U	< 0.05	< 0.05 U	< 0.05 U	< 0.05 U		< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U
Dibromomethane Dichlorodifluoromethane		800 6000	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 < 0.5	< 0.05 U < 0.5 U	< 0.05 < 0.5	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U		< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U
Isopropylbenzene	mg/kg	8000	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05	0.43	< 0.05	0.084	0.12	< 0.05 U	-	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U
m,p-Xylenes Methyl tert-butyl ether (MTBE)		0.1	< 0.1 U < 0.05 U	< 0.1 U < 0.05 U	< 0.1 U < 0.05 U	< 0.1 U < 0.05 U	< 0.1 U < 0.05 U	< 0.1 < 0.05	< 0.1 U < 0.05 U	< 0.1 < 0.05	< 0.1 U < 0.05 U	< 0.1 U < 0.05 U	< 0.1 U < 0.05 U		< 0.1 U < 0.05 U	< 0.1 U < 0.05 U	< 0.1 U < 0.05 U	< 0.1 U < 0.05 U	< 0.1 U < 0.05 U	< 0.1 U < 0.05 U	< 0.1 U < 0.05 U	< 0.1 U < 0.05 U
Methylene Chloride		0.02	< 0.05 U	< 0.5 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05	< 0.05 U	< 0.5	< 0.05 U	< 0.05 U	< 0.05 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U
n-Hexane	mg/kg	4800	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25	< 0.25 U	< 0.25	< 0.25 U	< 0.25 U	< 0.25 U	-	-	-		-	-	-		-
n-Propylbenzene o-Xylene		8000	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 < 0.05	1.6 < 0.05 U	< 0.05 < 0.05	0.27 < 0.05 U	0.4 < 0.05 U	< 0.05 U < 0.05 U		< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U
p-Isopropyltoluene	mg/kg		< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05	0.12	< 0.05	0.57	0.55	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U
sec-Butylbenzene Styrene		8000 16000	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 < 0.05	1.6 < 0.05 U	< 0.05 < 0.05	0.35 < 0.05 U	1.2 < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U
tert-Butylbenzene	mg/kg	8000	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05	0.094	< 0.05	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U
Tetrachloroethene (PCE) trans-1,2-Dichloroethene		0.05 1600	< 0.025 U < 0.05 U	< 0.025 U < 0.05 U	0.47 < 0.05 U	< 0.025 U < 0.05 U	< 0.025 U < 0.05 U	1.4 < 0.05	120 < 0.05 U	< 0.025 < 0.05	0.089 < 0.05 U	7.3 < 0.05 U	0.047 < 0.05 U	< 0.02 U < 0.05 U	2.1 < 0.05 U	1 < 0.05 U	0.8 < 0.05 U	1.8 < 0.05 U	1.4 < 0.05 U	0.54 < 0.05 U	2.7 < 0.05 U	36 < 0.05 U
trans-1,3-Dichloropropene	mg/kg mg/kg	1000	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05	< 0.05 U	< 0.05	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U
Trichloroethene (TCE)	mg/kg	0.03	< 0.02 U	< 0.02 U	< 0.02 U	< 0.02 U	< 0.02 U	0.16	1.5	< 0.02	< 0.02 U	0.15	< 0.02 U	< 0.02 U	< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U	0.14
Trichlorofluoromethane Vinyl Chloride		0.67	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 < 0.05	< 0.5 U < 0.05 U	< 0.5 < 0.05	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	 < 0.01 U	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U
	99		. 0.00 0	. 0.00 0	. 0.00 0	. 5.00 0	. 5.00 0	. 5.00	. 0.00 0	- 5.00	. 0.00 0		. 5.00 0	. 5.01 0	0.000	. 0.00 0	. 5.00 0		0.000	. 0.00 0	0.000	0.000

Notes:

1) Soil screening levels are based on the MTCA Method A cleanup levels and Method B cleanup levels if A does not exist.

Bold - detected
Blue Shaded - Detected result or non-detected RL exceeded screening level
U - Analyte not detected at or above Reporting Limit (RL) shown
J - Result value estimated
UJ - Analyte not detected and the Reporting Limit (RL) is an estimate
"--" - indicates results not available

Aspect Consulting
6/4/2021
S.Walker Chevrolet 080190/Deliverables/Remedial Investigation Work Plan_2021/APPENDICES/App A Data/A-2 Soil Summary 20210428

		Location	DP-			P-09	DP-10	DP-11	DP-12	DP-13	DP-14	DP-15	DP-16	DP-17	MW-8D	MW-9	MW-10	MW-12D	MW-13D	40/44/2042	1 40/44/2042	MW-21	1 40/44/2042
		Date Depth	10/20/2010 3 ft	10/20/2010 4.5 ft	10/20/2010 3 ft	10/20/2010 6 ft	02/08/2012 8.5 ft	02/08/2012 4 ft	02/08/2012 5.5 ft	02/08/2012 7 ft	02/08/2012 7 ft	02/08/2012 4 ft	02/08/2012 4 ft	02/08/2012 4 ft	05/11/2009	05/11/2009	05/11/2009 -	10/27/2010	10/28/2010	10/11/2013 11 ft	10/11/2013 15.5 ft	10/11/2013 25 ft	10/11/2013 40 ft
Analyte	Unit	Screening Level ¹																					
BTEX Benzene	mg/kg	0.03	< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U		< 0.03 U	< 0.03 U	< 0.03 U	T			< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U				
Toluene	mg/kg	7	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U		< 0.05 U	< 0.05 U	< 0.05 U			-	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U				
Ethylbenzene Total Xvlenes	mg/kg mg/kg		< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U		< 0.05 U	< 0.05 U	< 0.05 U			-	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U				
Metals	Illy/kg	3			_	-	_				-				-				-				
Arsenic	mg/kg			-	-		-	-				-		-	-			2.84	2.55		-	-	
Barium Cadmium	mg/kg mg/kg														-			39.6 < 1 U	34.5 < 1 U				
Chromium	mg/kg			-	-	-	-	-	-					-	1			15.6	16.5				-
Lead Mercury	mg/kg	250			-		1.7	1.17	1.75	1.66	2.08	1.33	2.81	1.96	-			1.99 < 0.2 U	2.29 < 0.2 U				
Selenium	mg/kg mg/kg	400			-		-							-				< 1 U	< 1 U			-	
Silver	mg/kg	400			-	-	-				-			-	-			< 1 U	< 1 U			-	
Other SVOCs Hexachlorobutadiene	mg/kg	13	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U		< 0.25 U	< 0.25 U	< 0.25 U			-	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 UJ	< 0.25 UJ				
PAHs Naphthalene	mg/kg	5	28	0.22	< 0.05 U	< 0.05 U	< 0.05 U		< 0.05 U	< 0.05 U	< 0.05 U				< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U				
VOCs									.0.0511			ı	ı										
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane	mg/kg mg/kg		< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U		< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U				< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U				
1,1,2,2-Tetrachloroethane	mg/kg	5	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	-	< 0.05 U	< 0.05 U	< 0.05 U	-		-	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U				
1,1,2-Trichloroethane	mg/kg		< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U		< 0.05 U	< 0.05 U	< 0.05 U			-	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U < 0.05 U				
1,1-Dichloroethane 1,1-Dichloroethene	mg/kg mg/kg		< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 UJ	-	< 0.05 U < 0.05 UJ	< 0.05 U < 0.05 UJ	< 0.05 U < 0.05 UJ				< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U				
1,1-Dichloropropene	mg/kg		< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U		< 0.05 U	< 0.05 U	< 0.05 U				< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U				
1,2,3-Trichlorobenzene 1,2,3-Trichloropropane	mg/kg mg/kg	0.0063	< 0.25 U < 0.05 U	< 0.25 U < 0.05 U	< 0.25 U < 0.05 U	< 0.25 U < 0.05 U	< 0.25 U < 0.05 U		< 0.25 U < 0.05 U	< 0.25 U < 0.05 U	< 0.25 U < 0.05 U				< 0.25 U < 0.05 U	< 0.25 U < 0.05 U	< 0.25 U < 0.05 U	< 0.25 U < 0.05 U	< 0.25 U < 0.05 U				
1,2,4-Trichlorobenzene	mg/kg		< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U		< 0.25 U	< 0.25 U	< 0.25 U			-	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U				
1,2,4-Trimethylbenzene	mg/kg	800	76	0.49	< 0.05 U	< 0.05 U	0.054	-	< 0.05 U	< 0.05 U	< 0.05 U			-	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U				
1,2-Dibromo-3-chloropropane 1,2-Dibromoethane (EDB)	mg/kg mg/kg		< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U		< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U				< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U
1,2-Dichlorobenzene	mg/kg		< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U		< 0.05 U	< 0.05 U	< 0.05 U			-	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U				
1,2-Dichloroethane (EDC)	mg/kg		< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	-	< 0.05 U	< 0.05 U	< 0.05 U			-	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U				
1,2-Dichloropropane 1,3,5-Trimethylbenzene	mg/kg mg/kg		< 0.05 U 26	< 0.05 U 0.35	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U		< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U			-	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U				
1,3-Dichlorobenzene	mg/kg		< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	-	< 0.05 U	< 0.05 U	< 0.05 U			-	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U				
1,3-Dichloropropane 1,4-Dichlorobenzene	mg/kg	190	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U		< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U				< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U				
2,2-Dichloropropane	mg/kg mg/kg	130	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	-	< 0.05 U	< 0.05 U	< 0.05 U			_	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U				
2-Butanone	mg/kg	48000	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	-	< 0.5 U	< 0.5 U	< 0.5 U			-	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U				
2-Chlorotoluene 2-Hexanone	mg/kg mg/kg	1600 400	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U		< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U			-	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U				
4-Chlorotoluene	mg/kg		< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U		< 0.05 U	< 0.05 U	< 0.05 U			-	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U				
4-Methyl-2-pentanone	mg/kg		< 0.5 U < 0.5 U	< 0.5 U	< 0.5 U < 0.5 U	< 0.5 U < 0.5 U	< 0.5 U < 0.5 U		< 0.5 U < 0.5 U	< 0.5 U < 0.5 U	< 0.5 U < 0.5 U				< 0.5 U < 0.5 U	< 0.5 U < 0.5 U	< 0.5 U < 0.5 U	< 0.5 U < 0.5 U	< 0.5 U < 0.5 U				
Acetone Bromobenzene	mg/kg	72000 640	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U		< 0.05 U	< 0.05 U	< 0.05 U			-	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U				
Bromodichloromethane	mg/kg		< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U		< 0.05 U	< 0.05 U	< 0.05 U			_	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U				
Bromoform Bromomethane	mg/kg mg/kg		< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U		< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U			-	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U				
Carbon Tetrachloride	mg/kg		< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	<u> </u>	< 0.05 U	< 0.05 U	< 0.05 U			-	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U				
Chlorobenzene	mg/kg	1600	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U		< 0.05 U	< 0.05 U	< 0.05 U			-	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U				
Chloroethane Chloroform	mg/kg mg/kg	32	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U		< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U				< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 U 0.14 J	< 0.5 U				
Chloromethane	mg/kg		< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	-	< 0.5 U	< 0.5 U	< 0.5 U			-	< 0.05 U	< 0.05 U	< 0.05 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U
cis-1,2-Dichloroethene (cDCE) cis-1,3-Dichloropropene) mg/kg mg/kg	160	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U		< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U				< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	0.051 < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U				
Dibromochloromethane	mg/kg	12	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U		< 0.05 U	< 0.05 U	< 0.05 U			-	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U				
Dibromomethane	mg/kg		< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	-	< 0.05 U	< 0.05 U	< 0.05 U			-	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U				
Dichlorodifluoromethane Isopropylbenzene	mg/kg mg/kg		< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 UJ < 0.05 U		< 0.5 UJ < 0.05 U	< 0.5 UJ < 0.05 U	< 0.5 UJ < 0.05 U				< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 UJ < 0.05 U	< 0.5 UJ < 0.05 U	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U
m,p-Xylenes	mg/kg		0.51	< 0.1 U	< 0.1 U	< 0.1 U	< 0.1 U		< 0.1 U	< 0.1 U	< 0.1 U	-		-	< 0.1 U	< 0.1 U	< 0.1 U	< 0.1 U	< 0.1 U				
Methyl tert-butyl ether (MTBE) Methylene Chloride		0.1	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U		< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U				< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U				
n-Hexane	mg/kg	0.02 4800		< 0.5 U			< 0.5 U	-		- 0.00		-						< 0.5 0	< 0.5 0		< 0.5 0		
n-Propylbenzene	mg/kg	8000	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U		< 0.05 U	< 0.05 U	< 0.05 U		-	-	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U				
o-Xylene p-Isopropyltoluene	mg/kg mg/kg	16000	0.65 12	< 0.05 U 0.099	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U 0.21		< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U			-	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U				
sec-Butylbenzene	mg/kg	8000	1.8	0.14	< 0.05 U	< 0.05 U	0.94		0.13	< 0.05 U	< 0.05 U				< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U				
Styrene	mg/kg	16000	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	-	< 0.05 U	< 0.05 U	< 0.05 U	-		-	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U				
tert-Butylbenzene Tetrachloroethene (PCE)		8000 0.05	0.43 < 0.025 U	< 0.05 U < 0.025 U	< 0.05 U < 0.025 U	< 0.05 U 0.13	0.083 0.24		< 0.05 U < 0.025 U	< 0.05 U < 0.025 U	< 0.05 U < 0.025 U				< 0.05 U < 0.025 U	< 0.05 U 0.63	< 0.05 U	< 0.05 U < 0.025 U	< 0.05 U < 0.025 U				
trans-1,2-Dichloroethene	mg/kg	1600	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 UJ		< 0.05 UJ	< 0.05 UJ	< 0.05 UJ			_	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U				
trans-1,3-Dichloropropene Trichloroethene (TCE)	mg/kg		< 0.05 U < 0.03 U	< 0.05 U < 0.03 U	< 0.05 U < 0.03 U	< 0.05 U < 0.03 U	< 0.05 U < 0.03 U		< 0.05 U < 0.03 U	< 0.05 U < 0.03 U	< 0.05 U < 0.03 U				< 0.05 U < 0.03 U	< 0.05 U < 0.03 U	< 0.05 U 0.57	< 0.05 U < 0.03 U	< 0.05 U < 0.03 U				
Trichlorofluoromethane	mg/kg	0.03 24000	< 0.03 U	< 0.03 U	< 0.5 U	< 0.03 U	< 0.5 UJ		< 0.5 UJ	< 0.03 U < 0.5 UJ	< 0.03 U < 0.5 UJ	-		-	< 0.03 U	< 0.03 U	< 0.5 U	< 0.03 U	< 0.03 U	< 0.03 U	< 0.5 U	< 0.03 U	< 0.03 U
Vinyl Chloride		0.67	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U		< 0.05 U	< 0.05 U	< 0.05 U				< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U				

Notes:

1) Soil screening levels are based on the MTCA Method A cleanup levels and Method B cleanup levels if A does not exist.

Bold - detected
Blue Shaded - Detected result or non-detected RL exceeded screening level
U - Analyte not detected at or above Reporting Limit (RL) shown
J - Result value estimated
UJ - Analyte not detected and the Reporting Limit (RL) is an estimate
"--" - indicates results not available

Aspect Consulting
6/4/2021
S.Walker Chevrolet 080190/Deliverables/Remedial Investigation Work Plan_2021/APPENDICES/App A Data/A-2 Soil Summary 20210428

	Location	,		MW-23		MV	V-23		MW-24			MW-25		MW-26	M	V-26		MW-27	
	Date	10/11/2013	02/06/2019	02/06/2019	02/06/2019	02/06/2019	02/06/2019	01/30/2019	01/30/2019	01/31/2019	01/28/2019	01/28/2019	01/29/2019	01/29/2019	01/29/2019	01/30/2019	01/31/2019	01/31/2019	01/31/2019
	Depth		5.5 ft	10.5 ft	20.5 ft	25.5 ft	55.5 ft	5.5 ft	30.5 ft	50.5 ft	5.5 ft	30.5 ft	50.5 ft	5.5 ft	30.5 ft	50.5 ft	5.5 ft	30.5 ft	50.5 ft
	Screening	3																	
Analyte	Unit Level 1																		
BTEX		.0.0011		.00011	. 0 00 11	. 0.00.11			.00011	.00011	.00011			- 0.00.11	-0.0011				
Benzene Toluene	mg/kg 0.03 mg/kg 7	< 0.03 U < 0.05 U	< 0.03 U < 0.05 U	< 0.03 U < 0.05 U	< 0.03 U < 0.05 U	< 0.03 U < 0.05 U	< 0.03 U < 0.05 U	< 0.03 U < 0.05 U	< 0.03 U < 0.05 U	< 0.03 U < 0.05 U	< 0.03 U < 0.05 U	< 0.03 U < 0.05 U	< 0.03 U < 0.05 U	< 0.03 U < 0.05 U	< 0.03 U < 0.05 U	< 0.03 U < 0.05 U	< 0.03 U < 0.05 U	< 0.03 U < 0.05 U	< 0.03 U < 0.05 U
Ethylbenzene	mg/kg 6	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U
Total Xylenes	mg/kg 9	-											-	-			-	-	
Metals																			
Arsenic	mg/kg 20												-					-	
Barium	mg/kg 16000 mg/kg 2		-	-									-	-		-	-		
Cadmium Chromium	mg/kg 2 mg/kg												-				-		
Lead	mg/kg 250			_		-					-		_	-		-	_	-	
Mercury	mg/kg 2												-	-		-		-	
Selenium	mg/kg 400				-	-				-			-	-		-		-	
Silver	mg/kg 400																		
Other SVOCs Hexachlorobutadiene	mg/kg 13	< 0.25 UJ	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U
PAHs	ilig/kg 15	V 0.25 05	10.230	10.230	10.230	10.250	V 0.23 0	10.230	10.230	V 0.23 0	V 0.23 0	10.230	V 0.23 0	V 0.25 0	V 0.23 0	V 0.23 O	V 0.25 0	10.230	V 0.25 0
Naphthalene	mg/kg 5	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U
VOCs																			
1,1,1,2-Tetrachloroethane	mg/kg 38	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U
1,1,1-Trichloroethane	mg/kg 2	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U
1,1,2,2-Tetrachloroethane	mg/kg 5 mg/kg 18	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U
1,1-Dichloroethane	mg/kg 180	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U
1,1-Dichloroethene	mg/kg 4000	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U
1,1-Dichloropropene	mg/kg	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U
1,2,3-Trichlorobenzene	mg/kg	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U
1,2,3-Trichloropropane 1,2,4-Trichlorobenzene	mg/kg 0.0063 mg/kg 34	< 0.05 U < 0.25 U	< 0.05 U < 0.25 U	< 0.05 U < 0.25 U	< 0.05 U < 0.25 U	< 0.05 U < 0.25 U	< 0.05 U < 0.25 U	< 0.05 U < 0.25 U	< 0.05 U < 0.25 U	< 0.05 U < 0.25 U	< 0.05 U < 0.25 U	< 0.05 U < 0.25 U	< 0.05 U < 0.25 U	< 0.05 U < 0.25 U	< 0.05 U < 0.25 U	< 0.05 U < 0.25 U	< 0.05 U < 0.25 U	< 0.05 U < 0.25 U	< 0.05 U < 0.25 U
1,2,4-Trimethylbenzene	mg/kg 34 mg/kg 800	< 0.25 U	0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U
1.2-Dibromo-3-chloropropane	mg/kg 1.3	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U
1,2-Dibromoethane (EDB)	mg/kg 0.005	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U
1,2-Dichlorobenzene	mg/kg 7200	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U
1,2-Dichloroethane (EDC)	mg/kg 11	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U
1,2-Dichloropropane 1,3,5-Trimethylbenzene	mg/kg 27	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U
1.3-Dichlorobenzene	mg/kg 800 mg/kg	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	0.11 J < 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U
1,3-Dichloropropane	mg/kg	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U
1,4-Dichlorobenzene	mg/kg 190	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U
2,2-Dichloropropane	mg/kg	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U
2-Butanone	mg/kg 48000	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U
2-Chlorotoluene 2-Hexanone	mg/kg 1600 mg/kg 400	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U
4-Chlorotoluene	mg/kg	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U
4-Methyl-2-pentanone	mg/kg 6400	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U
Acetone	mg/kg 72000	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U
Bromobenzene	mg/kg 640	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U
Bromodichloromethane Bromoform	mg/kg 16 mg/kg 130	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U
Bromomethane	mg/kg 110	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U
Carbon Tetrachloride	mg/kg 14	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U
Chlorobenzene	mg/kg 1600	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U
Chloroethane	mg/kg	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U
Chloroform Chloromethane	mg/kg 32 mg/kg	0.15 J < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U
cis-1,2-Dichloroethene (cDCE		0.095	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U
cis-1,3-Dichloropropene	mg/kg	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U
Dibromochloromethane	mg/kg 12	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U
Dibromomethane	mg/kg 800	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U
Dichlorodifluoromethane	mg/kg 16000	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 UJ < 0.05 U	< 0.5 UJ < 0.05 U	< 0.5 UJ < 0.05 U	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U
Isopropylbenzene m,p-Xylenes	mg/kg 8000 mg/kg 16000	< 0.05 U	< 0.05 U < 0.1 U	< 0.05 U < 0.1 U	< 0.05 U < 0.1 U	< 0.05 U < 0.1 U	< 0.05 U < 0.1 U	< 0.05 U < 0.1 U	< 0.05 U < 0.1 U	< 0.05 U < 0.1 U	< 0.05 U	< 0.05 U	< 0.05 U < 0.1 U	< 0.05 U < 0.1 U	< 0.05 U < 0.1 U	< 0.05 U < 0.1 U	< 0.05 U < 0.1 U	< 0.05 U	< 0.05 U < 0.1 U
Methyl tert-butyl ether (MTBE		< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U
Methylene Chloride	mg/kg 0.02	< 0.5 U	< 0.5 U	1.4 C	0.5 C	< 0.5 U	0.83 C	< 0.5 U											
n-Hexane	mg/kg 4800		< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U
n-Propylbenzene	mg/kg 8000	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U
o-Xylene p-Isopropyltoluene	mg/kg 16000 mg/kg	< 0.05 U < 0.05 U	< 0.05 U 0.058 J	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U 0.094 J	< 0.05 U < 0.05 U												
sec-Butylbenzene	mg/kg 8000	< 0.05 U	0.058 J	< 0.05 U	< 0.05 U	0.094 J 0.064 J	< 0.05 U												
Styrene	mg/kg 16000	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U
tert-Butylbenzene	mg/kg 8000	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U
Tetrachloroethene (PCE)	mg/kg 0.05	0.095	< 0.025 U	0.4 J	0.045 J	2.3 J	0.095 J	< 0.025 U											
trans-1,2-Dichloroethene	mg/kg 1600	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U < 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U < 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U
trans-1,3-Dichloropropene Trichloroethene (TCE)	mg/kg mg/kg 0.03	< 0.05 U 0.032	< 0.05 U < 0.02 U	< 0.05 U 0.18 J	< 0.05 U < 0.02 U	< 0.05 U < 0.02 U	< 0.05 U < 0.02 U	< 0.05 U < 0.02 U	< 0.05 U < 0.02 U	< 0.05 U < 0.02 U	< 0.05 U < 0.02 U	< 0.05 U < 0.02 U	< 0.05 U < 0.02 U	< 0.05 U < 0.02 U	< 0.05 U < 0.02 U	< 0.05 U < 0.02 U	< 0.05 U < 0.02 U	< 0.05 U < 0.02 U	< 0.05 U < 0.02 U
Trichlorofluoromethane	mg/kg 0.03	< 0.5 U	< 0.5 U	< 0.5 U	< 0.02 U	< 0.02 U	< 0.02 U	< 0.02 U	< 0.02 U	< 0.02 U	< 0.5 U	< 0.02 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.02 U	< 0.5 U	< 0.02 U
Vinyl Chloride	mg/kg 0.67		< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U

Notes:

1) Soil screening levels are based on the MTCA Method A cleanup levels and Method B cleanup levels if A does not exist.

Bold - detected
Blue Shaded - Detected result or non-detected RL exceeded screening level
U - Analyte not detected at or above Reporting Limit (RL) shown
J - Result value estimated
UJ - Analyte not detected and the Reporting Limit (RL) is an estimate
"--" - indicates results not available

Aspect Consulting
6/4/2021
S.Walker Chevrolet 080190/Deliverables/Remedial Investigation Work Plan_2021/APPENDICES/App A Data/A-2 Soil Summary 20210428

	Location	M\	W-28	I M'	W-29		MW-30			MV	V-31		l my	V-32	M\	W-33	TRENCH-BT-C-4.5	TRENCH-BT-E-4.5	TRENCH-BT-W-4.5
	Date	03/14/2019	03/15/2019	03/11/2019	03/12/2019	02/07/2019	02/07/2019	02/07/2019	02/05/2019	02/05/2019	02/05/2019	02/05/2019	03/13/2019	03/13/2019	03/12/2019	03/13/2019	12/09/2013	12/09/2013	12/09/2013
	Depth Screening	30.5 ft	55.5 ft	15 ft	50 ft	10.5 ft	35.5 ft	60.5 ft	15.5 ft	40.5 ft	55.5 ft	60.5 ft	15.5 ft	55.5 ft	10 ft	55.5 ft	4.5 ft	4.5 ft	4.5 ft
Analyte	Unit Level 1																		
BTEX Benzene	mg/kg 0.03	< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U
Toluene	mg/kg 0.03	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U
Ethylbenzene	mg/kg 6	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U
Total Xylenes Metals	mg/kg 9																		
Arsenic	mg/kg 20	-			I	_			-	-					-		I	-	
Barium	mg/kg 16000			-	-	-							-	-			-	-	
Cadmium Chromium	mg/kg 2 mg/kg								-										
Lead	mg/kg 250			_		-			-								-	-	
Mercury	mg/kg 2	-		-	-	-				-			-	-			-	-	
Selenium	mg/kg 400 mg/kg 400	<u> </u>				-					-								
Other SVOCs	inging ioo			1	L													L	
Hexachlorobutadiene	mg/kg 13	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U
PAHs Naphthalene	mg/kg 5	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U
VOCs	1991 - 1		1,000	1 0,100	1	1.04.4				1						1 0,000	1 0.000	1 2144 2	
1,1,1,2-Tetrachloroethane	mg/kg 38	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	mg/kg 2 mg/kg 5	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U
1,1,2-Trichloroethane	mg/kg 18	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U
1,1-Dichloroethane	mg/kg 180	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U
1,1-Dichloroethene 1,1-Dichloropropene	mg/kg 4000 mg/kg	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U
1,2,3-Trichlorobenzene	mg/kg	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U
1,2,3-Trichloropropane	mg/kg 0.0063	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U
1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene	mg/kg 34 mg/kg 800	< 0.25 U < 0.05 U	< 0.25 U < 0.05 U	< 0.25 U < 0.05 U	< 0.25 U < 0.05 U	< 0.25 U < 0.05 U	< 0.25 U < 0.05 U	< 0.25 U < 0.05 U	< 0.25 U < 0.05 U	< 0.25 U < 0.05 U	< 0.25 U < 0.05 U	< 0.25 U < 0.05 U	< 0.25 U < 0.05 U	< 0.25 U < 0.05 U	< 0.25 U < 0.05 U	< 0.25 U < 0.05 U	< 0.25 U < 0.05 U	< 0.25 U < 0.05 U	< 0.25 U < 0.05 U
1,2-Dibromo-3-chloropropane	e mg/kg 1.3	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U
1,2-Dibromoethane (EDB) 1,2-Dichlorobenzene	mg/kg 0.005 mg/kg 7200	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U
1,2-Dichloroethane (EDC)	mg/kg 7200	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U
1,2-Dichloropropane	mg/kg 27	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U
1,3,5-Trimethylbenzene 1,3-Dichlorobenzene	mg/kg 800 mg/kg	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U
1,3-Dichloropropane	mg/kg	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U
1,4-Dichlorobenzene	mg/kg 190	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U
2,2-Dichloropropane 2-Butanone	mg/kg mg/kg 48000	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U
2-Chlorotoluene	mg/kg 1600	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U
2-Hexanone	mg/kg 400	< 0.5 U	< 0.5 U	< 0.5 UJ	< 0.5 UJ	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U
4-Chlorotoluene 4-Methyl-2-pentanone	mg/kg 6400	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U
Acetone	mg/kg 72000	< 0.5 U	< 0.5 U	< 0.5 UJ	< 0.5 UJ	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U
Bromobenzene	mg/kg 640 mg/kg 16	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U < 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U < 0.05 U	< 0.05 U
Bromodichloromethane Bromoform	mg/kg 16 mg/kg 130	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U	< 0.05 U < 0.05 U
Bromomethane	mg/kg 110	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U
Carbon Tetrachloride	mg/kg 14	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U
Chlorobenzene Chloroethane	mg/kg 1600 mg/kg	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U
Chloroform	mg/kg 32	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U
Chloromethane cis-1,2-Dichloroethene (cDCI	mg/kg E) mg/kg 160	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U	< 0.5 U < 0.05 U
cis-1,3-Dichloropropene	mg/kg	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U
Dibromochloromethane	mg/kg 12	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U
Dibromomethane Dichlorodifluoromethane	mg/kg 800 mg/kg 16000	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 UJ	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U			
Isopropylbenzene	mg/kg 8000	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U
m,p-Xylenes	mg/kg 16000	< 0.1 U	< 0.1 U	< 0.1 U	< 0.1 U	< 0.1 U	< 0.1 U	< 0.1 U	< 0.1 U	< 0.1 U	< 0.1 U	< 0.1 U	< 0.1 U	< 0.1 U	< 0.1 U	< 0.1 U	< 0.1 U	< 0.1 U	< 0.1 U
Methyl tert-butyl ether (MTBE Methylene Chloride	mg/kg 0.1 mg/kg 0.02	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U	< 0.05 U < 0.5 U
n-Hexane	mg/kg 4800	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U		-	-
n-Propylbenzene	mg/kg 8000	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U
o-Xylene p-Isopropyltoluene	mg/kg 16000 mg/kg	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U
sec-Butylbenzene	mg/kg 8000	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U
Styrene	mg/kg 16000	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U
tert-Butylbenzene Tetrachloroethene (PCE)	mg/kg 8000 mg/kg 0.05	< 0.05 U 0.038	< 0.05 U < 0.025 U	< 0.05 U 0.043	< 0.05 U 0.043	< 0.05 U 0.084	< 0.05 U	< 0.05 U 0.026	< 0.05 U < 0.025 U	< 0.05 U < 0.025 U	< 0.05 U 0.058	< 0.05 U 0.058	< 0.05 U < 0.025 U	< 0.05 U 0.26	< 0.05 U 0.16	< 0.05 U 0.25			
trans-1,2-Dichloroethene	mg/kg 1600	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U
trans-1,3-Dichloropropene	mg/kg	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U
Trichloroethene (TCE) Trichlorofluoromethane	mg/kg 0.03 mg/kg 24000	< 0.02 U < 0.5 U	< 0.02 U < 0.5 U	< 0.02 U < 0.5 U	< 0.02 U < 0.5 U	0.021 < 0.5 U	< 0.02 U < 0.5 U	< 0.02 U < 0.5 U	< 0.02 U < 0.5 U	< 0.02 U < 0.5 U	< 0.02 U < 0.5 U	< 0.02 U < 0.5 U	< 0.02 U < 0.5 U	< 0.02 U < 0.5 U	< 0.02 U < 0.5 U	< 0.02 U < 0.5 U	< 0.03 U < 0.5 U	< 0.03 U < 0.5 U	< 0.03 U < 0.5 U
Vinyl Chloride	mg/kg 0.67	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U

Notes:

1) Soil screening levels are based on the MTCA Method A cleanup levels and Method B cleanup levels if A does not exist.

Bold - detected
Blue Shaded - Detected result or non-detected RL exceeded screening level
U - Analyte not detected at or above Reporting Limit (RL) shown
J - Result value estimated
UJ - Analyte not detected and the Reporting Limit (RL) is an estimate
"--" - indicates results not available

Aspect Consulting
6/4/2021
S.Walker Chevrolet 080190/Deliverables/Remedial Investigation Work Plan_2021/APPENDICES/App A Data/A-2 Soil Summary 20210428

Sitewide Remedial Investigation Work Plan Page 4 of 4

		Location Date		MW-2 01/30/2008	MW-2 10/02/200	MW-2 8 05/12/2009	MW-2 12/22/2010	MW-2 02/07/2012	MW-2 12/12/2013	MW-2 01/21/2015	MW-2 07/30/2015	MW-2 09/08/2015	MW-2 02/02/2016	MW-2 09/22/2016	MW-2 01/04/2017	MW-2 11/28/2018	MW-2 03/26/2020	MW-5 01/22/2008	MW-5 01/30/2008	MW-5 10/02/2008	MW-5 05/11/2009	MW-5 12/22/2010	MW-5 02/07/2012	MW-5 01/09/2014	MW-5 04/28/2015	MW-5 09/09/2015	MW-5 02/02/2016	MW-5 09/07/2016	MW-5 01/04/2017	MW-5 11/28/2018	MW-5 03/25/2020	MW-7 01/22/2008
		Screening																														
Analyte BTEX	Unit	Level																														
Benzene	ug/L			< 1 U	<1U				< 0.35 U	< 0.35 U	-	-	-	-	-	< 0.35 U	-	< 1 U	< 1 U	<1U	<1U	1.1	< 0.35 U				-		-	< 0.35 U		< 1 U
Toluene Ethylbenzene	ug/L ug/L	1000 700	-		< 1 U < 1 U	< 1 U < 1 U	< 1 U < 1 U	< 100 U < 100 U	< 1 U < 1 U	< 1 U	-	-	-	-	-	< 1 U	-	-		< 1 U < 1 U	< 0.2 U < 0.2 U	<1U <1U				-	< 1 U < 1 U	-				
Other SVOCs 1.4-Dioxane	Lug/I	I 0.44		ı				-						1			- 1	- 1			1							T				
Dibenzofuran	ug/L	0.44 16	-		-	-	-	-			-	-		-	-		-	-			-	-		< 0.1 U	-			-		-		
Hexachlorobutadiene Naphthalene	ug/L	0.56 160			<1U	<1U	<1U <1U	< 100 U < 100 U	<1U <1U	<1U	-		-	-	-	<1U	-	-	-	<1U <1U	<1U <1U	<1U	<1U <1U	< 0.5 U 0.14	<1U <1U				-	<1U <1U		
VOCs				1				•									1															
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane	ug/L ug/L				< 1 U < 1 U	<1U <1U	< 1 U	< 100 U < 100 U	< 1 U < 1 U	< 1 U	 < 1 U	 < 1 U	 < 1 U	 < 1 U	 < 1 U	< 1 U	 <1U	-		< 1 U	<1U <1U	< 1 U < 1 U	<1U <1U	< 0.2 U < 0.2 U	<1U <1U	 < 1 U	 < 1 U	 < 1 U	 < 1 U	< 1 U	 < 1 UJ	
1,1,2,2-Tetrachloroethane	ug/L	0.22			< 1 U	< 1 U	< 1 U	< 100 U	< 1 U	<1U	-	-	-			<1U	-	-	-	<1U	< 1 U	<1U	< 1 U	< 0.2 U	<1U		-			<1U		
1,1,2-Trichloroethane 1,1,2-Trichlorotrifluoroethane		0.77 240000			< 1 U	< 1 U 	< 1 U 	< 100 U	< 1 U 	< 1 U 	-	-				< 1 U 	-	-	-	<1U 	< 1 U 	< 1 U 	< 1 U 	< 0.2 U < 0.2 U	< 1 U 					< 1 U 		
1,1-Dichloroethane	ug/L	7.7			< 1 U	< 1 U	< 1 U	< 100 U	< 1 U	< 1 U	< 1 U	<1U	<1U	<1U	<1U	<1U	< 1 UJ	-	-	< 1 U	< 1 U	< 1 U	< 1 U	< 0.2 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 UJ	
1,1-Dichloroethene 1,1-Dichloropropene	ug/L ug/L				< 1 U < 1 U	< 1 U < 1 U	< 1 U < 1 U	< 100 U < 100 U	< 1 U < 1 U	< 1 U	< 1 U 	1.6	4.2	3.8	3.8	3.8	3.8	-		< 1 U < 1 U	< 0.2 U < 0.2 U	< 1 U < 1 U	< 1 U 	< 1 U 	< 1 U 	< 1 U 	< 1 U	< 1 UJ 				
1,2,3-Trichlorobenzene	ug/L				< 1 U	<1U	<1U	< 100 U	< 1 U	<1U	-	-				<1U	-	-	-	<1U	<1U	<1U	<1U	< 0.5 U	<1U		-			<1U		
1,2,3-Trichloropropane 1,2,4-Trichlorobenzene	ug/L ug/L				< 1 U < 1 U	< 1 U < 1 U	< 1 U < 1 U	< 100 U < 100 U	< 1 U < 1 U	< 1 U	-	-	-	-	-	< 1 U	-	-		< 1 U < 1 U	< 0.5 U < 0.5 U	< 1 U < 1 U					< 1 U					
1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane	ug/L				<1U <1U	< 1 U < 1 U	< 1 U < 10 U	< 100 U < 1000 U	< 1 U < 10 U	< 1 U < 10 U		-				< 1 U < 10 U	-	-	-	<1U <1U	< 1 U < 1 U	< 1 U < 10 U	< 1 U < 10 U	< 0.2 U < 0.5 U	< 1 U < 10 U					< 1 U < 10 U		
1,2-Dibromoethane (EDB)	ug/L	0.01			< 1 U	< 1 U	< 1 U	< 100 U	< 1 U	< 1 U	-	-	-	-		<1U	-	-		< 1 U	< 1 U	< 1 U	< 1 U	< 0.2 U	< 1 U				-	< 1 U		
1,2-Dichlorobenzene 1,2-Dichloroethane (EDC)	ug/L ug/L				< 1 U < 1 U	<1U <1U	<1U <1U	< 100 U < 100 U	<1U	<1U <1U	 <1U	 <1U	 <1U	 <1U	 <1U	<1U <1U	 <1U	-	-	<1U <1U	<1U <1U	<1U	<1U <1U	< 0.2 U < 0.2 U	<1U <1U	 <1U	 <1U	 <1U	 <1U	<1U <1U	 < 1 UJ	
1,2-Dichloropropane	ug/L	1.2	-	-	< 1 U	< 1 U	< 1 U	< 100 U	< 1 U	<1U	-	-	-	-	-	<1U	-	-	-	<1U	< 1 U	< 1 U	< 1 U	< 0.2 U	< 1 U		-			<1U		
1,3,5-Trimethylbenzene 1.3-Dichlorobenzene	ug/L ug/L				<1U	<1U	< 1 U	< 100 U < 100 U	<1U	<1U <1U		-	-			<1U <1U	-	-		<1U	<1U	<1U	<1U	< 0.2 U < 0.2 U	<1U					<1U		
1,3-Dichloropropane	ug/L				< 1 U	< 1 U	<1U	< 100 U	< 1 U	< 1 U	-					< 1 U	-	-	-	< 1 U	< 1 U	< 1 U	<1U	< 0.2 U	< 1 U		-			<1U		
1,4-Dichloro-2-Butene 1,4-Dichlorobenzene	ug/L ug/L				 <1U	 <1U	 < 1 U	 < 100 U	 <1U	 < 1 U	-	-		-		 <1U	-	-	-	 <1U	 <1U	 <1U	 <1U	< 1 U < 0.2 U	 < 1 U					 <1U		
2,2-Dichloropropane	ug/L		-		< 1 U	< 1 U	< 1 U	< 100 U	< 1 U	< 1 U	-		-			< 1 U	-	-	-	< 1 U	< 1 U	< 1 U	< 1 U	< 0.2 U	< 1 U		-			<1U	-	
2-Butanone 2-Chloroethyl Vinyl Ether	ug/L ug/L				< 10 U	< 10 U	< 10 U	< 1000 U	< 10 U		-					< 10 U		-		< 10 U	< 10 U	< 10 U	< 10 U	< 5 U	< 10 U					< 10 U	-	
2-Chlorotoluene	ug/L				< 1 U	<1U	< 1 U	< 100 U	< 1 U	< 1 U	-	-				< 1 U 120	-	-	-	<1U	< 1 U	< 1 U	<1U	< 0.2 U	<1U		-			<1U		
2-Hexanone 4-Chlorotoluene	ug/L ug/L				< 10 U	< 10 U	< 10 U	< 1000 U < 100 U	< 10 U	22 < 1 U		-	-	-	-	< 1 U	-	-	-	< 10 U < 1 U	< 10 U < 1 U	< 10 U	< 10 U < 1 U	< 5 U < 0.2 U	< 10 U < 1 U				-	< 10 U		
	ug/L ug/L			-	< 10 U	< 10 U	< 10 U	< 1000 U < 1000 U	< 10 U	< 10 U	-		-	-	-	< 10 U < 50 U	-	-		< 10 U	< 10 U < 10 U	< 10 U	< 10 U	< 5 U	< 10 U < 10 U			-	-	< 10 U < 50 U	-	
Acrolein	ug/L	4									-	-	-					-						< 5 U					-			
Acrylonitrile Bromobenzene	ug/L ug/L				 < 1 U	 < 1 U	 < 1 U	 < 100 U	 < 1 U	 < 1 U						 < 1 U		-		 < 1 U	 < 1 U	 < 1 U	 < 1 U	< 1 U < 0.2 U	 < 1 U					 < 1 U		
Bromochloromethane	ug/L								-	-	-	-		-				-	-	-	-			< 0.2 U			-			-		-
Bromodichloromethane Bromoethane	ug/L ug/L				< 1 U	< 1 U 	< 1 U 	< 100 U	< 1 U 	< 1 U 	-	-				< 1 U 	-	-	-	< 1 U 	< 1 U 	< 1 U 	< 1 U 	< 0.2 U < 0.2 U	< 1 U 					< 1 U 		
Bromoform Bromomethane	ug/L				<1U	<1U	<1U	< 100 U	<1U	< 1 U	-	-				<1U		-	-	<1U	<1U	<1U	<1U	< 0.2 U	<1U				-	<1U		
Carbon Disulfide	ug/L ug/L		-	-	< 1 U 	< 1 U 	< 1 U 	< 100 U	< 1 U 	< 1 U	-			-	-	< 1 U 	-	-		< 1 U 	< 1 U 	< 1 U 	< 1 U 	< 1 U < 0.2 U	< 1 U 			-	-	< 1 U 		
Carbon Tetrachloride Chlorobenzene	ug/L ug/L		1	<1U	1 <1U	<1U <1U	<1U <1U	< 100 U < 100 U	< 1 U	< 1 U	-	-			-	<1U <1U	-	3.3	2	1.2 < 1 U	<1U <1U	3.2 < 1 U	4.6 < 1 U	< 0.2 U < 0.2 U	2.1 < 1 U		-			<1U <1U	-	< 1 U
Chloroethane	ug/L		8.1	< 1 U	< 1 U	< 1 U	<1U	< 100 U	< 1 U	<10	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	<1U	< 1 U	< 1 U	< 1 U	<1U	<1U	<1U	<1U	< 0.2 U	<1U	< 1 U	< 1 U	< 1 U	< 1 U	<1U	< 1 U	< 1 U
Chloroform Chloromethane	ug/L ug/L		1	2.5	3.5 < 1 U	4 < 2 U	5 < 10 U	< 100 U < 1000 U	3.3 J < 10 U	< 1 U < 10 U	1 1					< 1 U		2.1	1.8	1.9 < 1 U	<1U <1U	2.9 < 10 U	2.3 < 10 U	0.35 < 0.5 U	1.1 < 10 U		-		-	1.3 < 10 U		< 1 U
cis-1,2-Dichloroethene (cDCE)	ug/L	16	7100	2000	2300	2400	2100	1400	1200	150	600	610	640	480	520	490	540	13	4.5	17	44	41	25	< 0.2 U	6.4	3.6	2.5	1.4	1.3	<1U	< 1 U	< 1 U
cis-1,3-Dichloropropene Dibromochloromethane	ug/L ug/L				<1U <1U	<1U	< 1 U	< 100 U < 100 U	<1U	<1U <1U	-	-		-		<1U <1U	-	-	-	<1U	<1U <1U	<1U <1U	<1U <1U	< 0.2 U < 0.2 U	<1U <1U					<1U		
Dibromomethane	ug/L	80	-		< 1 U	< 1 U	< 1 U	< 100 U	< 1 U	<1U	-		-			<1U	-	-	-	< 1 U	< 1 U	<1U	< 1 U	< 0.2 U	< 1 U		-			<1U	-	
Dichlorodifluoromethane Isopropylbenzene	ug/L ug/L				< 1 U < 1 U	< 1 U < 1 U	< 1 U < 1 U	< 100 U < 100 U	< 1 U < 1 U	< 1 U < 1 U	1 1	-		-		< 1 U < 1 U	-	-		<1U <1U	< 1 U < 1 U	< 1 U < 1 U	<1U <1U	< 0.2 U	<1U <1U		-			< 1 U < 1 U		
m,p-Xylenes	ug/L	1600			< 2 U	< 2 U	< 2 U	< 200 U	< 2 U	< 2 U						< 2 U	-	-	-	< 2 U	< 2 U	< 2 U	< 2 U	< 0.4 U	< 2 U					< 2 U		
Methyl tert-butyl ether (MTBE) Methylene Chloride	ug/L ug/L				< 1 U < 5 U	< 1 U < 5 U	< 1 U < 5 U	< 100 U < 500 U	< 1 U < 5 U	< 1 U < 5 U	 < 5 U	< 5 U	 < 5 U	 < 5 U	 < 5 U	< 1 U < 5 U	 < 5 U	-	-	< 1 U < 5 U	 < 1 U	< 1 U < 5 U	 < 5 U	 < 5 U	 < 5 U	 < 5 U	< 1 U < 5 U	 < 5 U				
Methyliodide n-Butylbenzene	ug/L				-			-		-	-	-						-	-	-		-		< 1 U < 0.2 U			-		-	-		
n-Hexane	ug/L ug/L	480			-		-	-		-	-	-		-		 < 1 U		-	-	-	-	-					-			 < 1 U		
n-Propylbenzene o-Xylene		800 1600			< 1 U			< 100 U < 100 U	< 1 U < 1 U	< 1 U		-				< 1 U < 1 U	-	-	-	<1U	< 1 U < 1 U	< 1 U < 1 U	< 1 U < 1 U	< 0.2 U < 0.2 U			-			<1U <1U		
p-Isopropyltoluene	ug/L			-	< 1 U	< 1 U	<1U	< 100 U	< 1 U	< 1 U	-	-	-	-	-	<1U	-	_	-	< 1 U	< 1 U	< 1 U	< 1 U	< 0.2 U	< 1 U		-	-	-	<1U		
	ug/L ug/L	800 1600			< 1 U < 50 U	< 1 U < 50 U	< 1 U < 1 U	< 100 U < 100 U	< 1 U	< 1 U						< 1 U		-		< 1 U 	< 1 U 	< 1 U	<1U <1U	< 0.2 U < 0.2 U	< 1 U					< 1 U		
tert-Butylbenzene	ug/L	800			< 1 U	< 1 U	< 1 U	< 100 U	< 1 U	<1U	-	-		-		<1U		-	-	< 1 U	<1U	<1U	< 1 U	< 0.2 U	< 1 U	-	-		-	<1U		
		5 160	2900 7.4	1400 3	1900 5.3	1600 5.7	2100 4.8	1600 < 100 U	1600 2.7	19	17 1.8	18 2	1.8	16 < 1 U	18 < 1 U	28	24 < 1 U	67	31 < 1 U	75	17 < 1 U	190 < 1 U	140 < 1 U	< 0.2 U < 0.2 U	67 < 1 U	31 < 1 U	27	12 < 1 U	14 < 1 U	13	9.6 < 1 UJ	6.6 < 1 U
trans-1,3-Dichloropropene	ug/L				< 1 U	< 1 U	< 1 U	< 100 U	< 1 U	< 1 U	-					<1U		-	-	< 1 U	< 1 U	< 1 U	< 1 U	< 0.2 U	< 1 U		-			< 1 U		
		5 2400		520	880 < 1 U		1100 < 1 U	810 < 100 U	830 < 1 U	25 < 1 U	46 	77	190 	110 	80 	14 < 1 U	7.1 	3	1.1	3.2 < 1 U	1.1 < 1 U	14 < 1 U	8.7 < 1 U	0.46 < 0.2 U		3.6	2.7	1.4	1.4	1.4 < 1 U	< 1 UJ 	< 1 U
Vinyl Acetate	ug/L	8000				-		-										-		-	-			< 0.2 U						-		
Vinyl Chloride	ug/L	0.292	19	< 0.2 U	3.1	2.7	2.7 J	< 20 U	0.84	0.77	15	17	15	7.8	7.4	5.9	5.6	< 0.2 U	< 0.2 U	< 0.2 U	< 0.2 U	< 0.2 U	< 0.2 U	< U.Z U	< 0.2 U	< 0.2 U						

Notes; Bold - detected Blue Shaded - Detected result exceeded screening level U - Analyte not detected at or above Reporting Limit (RL)

J - Result value estimated
"--" - indicates results not available

Aspect Consulting 6/4/2021 S:\Walker Chevrolet 080190\D rolet 080190/Deliverables\Remedial investigation Work Plan_2021\APPENDICES\App A Data\A-3 A-4 Groundwater Summary 20210503

		Location Date	MW-7 01/30/2008	MW-7 10/02/2008	MW-7 05/11/2009	MW-7 12/22/2010	MW-7 02/06/2012	MW-7 01/07/2014	MW-7 03/26/2020	MW-8 04/22/2008	MW-8 10/02/2008	MW-8 05/12/2009	MW-8 12/22/2010	MW-8 02/07/2012	MW-8 12/17/2013	MW-8 01/20/2015	MW-8 07/30/2015	MW-8 09/10/2015	MW-8 02/01/2016	MW-8 09/07/2016	MW-8 MW-i 09/22/2016 01/05/2	MW-8 17 11/28/2018	MW-8 03/25/2020	MW-15 12/17/2013	MW-15 09/08/2015	MW-15 02/01/2016	MW-15 09/07/2016	MW-15 01/04/2017	MW-15 11/28/2018	MW-15 03/23/2020
		Screening	01/00/2000	10/02/2000	00/11/2003	12/22/2010	02/00/2012	01/01/2014	00/20/2020	04/22/2000	10/02/2000	00/12/2003	12/22/2010	02/01/2012	12/1//2010	01/20/2010	01700/2010	03/10/2010	02/01/2010	03/01/2010	03/22/2010 01/03/2	17 17/20/2010	00/20/2020	12/1//2010	03/00/2010	02/01/2010	03/01/2010	01/04/2017	11/20/2010	00/20/2020
Analyte	Unit	Level																												
BTEX Benzene	ug/L	5	< 1 U	< 1 U	< 1 U	< 0.35 U	< 0.35 U	< 0.35 U		< 1 U	< 1 U	< 1 U	< 0.35 U	< 35 U	< 17 U	< 1.7 U	T		-	-		< 0.35 U	-	< 3.5 U	-				< 0.35 U	
Toluene Ethylbenzene	ug/L			<1U <1U	<1U <1U	<1U <1U	<1U <1U	<1U <1U			< 1 U < 1 U	<1U <1U	<1U <1U	< 100 U < 100 U	< 50 U < 50 U	< 5 U				-		<1U <1U		< 10 U					<1U <1U	
Other SVOCs	ug/L	700	-	V10	×10	V10	×10	V10			V 10	\10	×10	< 100 0	< 50 0	V 5 U						V10		V 10 0					V10	
1,4-Dioxane	ug/L	0.44 16			-	-	-				-		-	-		-				-		-			-					
Dibenzofuran Hexachlorobutadiene	ug/L ug/L	0.56		 <1U	< 1 U	< 1 U	 <1U	 < 1 U	-	-	< 1 U	< 1 U	<1U	< 100 U	< 50 U	< 5 U	-		-			<1U	-	< 10 U	-	-	-	-	 < 1 U	
Naphthalene VOCs	ug/L	160		<1U	< 1 U	< 1 U	< 1 U	< 0.1 U			< 1 U	< 1 U	<1U	< 100 U	< 50 U	< 5 U				-		<1U		< 10 U	-				<1U	
1,1,1,2-Tetrachloroethane	ug/L	1.7		< 1 U	< 1 U	< 1 U	< 1 U	< 1 U			< 1 U	< 1 U	< 1 U	< 100 U	< 50 U	< 5 U				-		< 1 U		< 10 U	-				< 1 U	
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	ug/L	200		<1U <1U	< 1 U	< 1 U	< 1 U	<1U <1U	< 1 U 		< 1 U < 1 U	< 1 U < 1 U	< 1 U	< 100 U < 100 U	< 50 U < 50 U	< 5 U	<1U	< 1 U	< 1 U 	< 50 U	<1U <1U	<1U <1U	< 1 UJ 	< 10 U	< 1 U 	< 1 U	< 5 U	< 1 U	<1U <1U	< 1 UJ
1,1,2-Trichloroethane	ug/L ug/L	0.22 0.77		<1U	<1U	<1U	<1U	<1U			<10	<1U	<1U	< 100 U	< 50 U	< 5 U	-			-		<1U	-	< 10 U					<1U	
1,1,2-Trichlorotrifluoroethane 1,1-Dichloroethane	ug/L ug/L	240000 7.7		 <1U	 < 1 U	 < 1 U	 < 1 U	 < 1 U	 < 1 UJ		 < 1 U	 < 1 U	 < 1 U	 < 100 U	 < 50 U	 < 5 U	 < 1 U	 <1U	 < 1 U	 < 50 U	 <1U <1U	 <1U	 < 1 UJ	 < 10 U	 <1U	 <1U	 < 5 U	 <1U	 <1U	 < 1 UJ
1,1-Dichloroethene	ug/L			<1U	<1U	<1U	<1U	<1U	< 1 U	-	10	4.3	3.7	< 100 U	< 50 U	6.4	1.5	4.2	2.5	< 50 U	2.2 1.8		< 1 UJ	< 10 U	<10	<1U	<5U	<1U	< 1 U	< 1 UJ
1,1-Dichloropropene 1,2,3-Trichlorobenzene	ug/L ug/L			< 1 U < 1 U	< 1 U	< 1 U < 1 U	< 1 U	<1U <1U	-		< 1 U < 1 U	< 1 U	< 1 U	< 100 U < 100 U	< 50 U < 50 U	< 5 U	-			-		<1U <1U	-	< 10 U		-			<1U <1U	
1,2,3-Trichloropropane		0.00038		<1U	<1U	<1U	<1U	<1U		-	<1U	<1U	<1U	< 100 U	< 50 U	< 5 U	-			_		<1U	-	< 10 U	-	-	-		< 1 U	
1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene	ug/L ug/L			<1U <1U	< 1 U	<1U	<1U	<1U <1U			< 1 U	< 1 U < 1 U	< 1 U	< 100 U < 100 U	< 50 U < 50 U	< 5 U < 5 U	-			-		<1U <1U		< 10 U		-			<1U <1U	
1,2-Dibromo-3-chloropropane				<1U	<1U	< 10 U	< 10 U	< 10 U	-		<10	<1U	< 10 U	< 100 U	< 500 U	< 50 U		-		-		< 10 U	-	< 100 U	-	-			< 10 U	
1,2-Dibromoethane (EDB) 1,2-Dichlorobenzene	ug/L ug/L	0.01 720		<1U <1U	<1U <1U	<1U <1U	<1U <1U	<1U <1U	-		< 1 U < 1 U	<1U <1U	<1U <1U	< 100 U < 100 U	< 50 U < 50 U	< 5 U < 5 U		-		-		<1U <1U		< 10 U < 10 U	-	-	-		<1U <1U	
1,2-Dichloroethane (EDC)	ug/L	720		<1U	<1U	<1U	<1U	<10	< 1 U		<10	<1U	< 1 U	< 100 U	< 50 U	< 5 U	< 1 U	< 1 U	< 1 U	< 50 U	<1U <1U		< 1 UJ	< 10 U	< 1 U	< 1 U	< 5 U	< 1 U	<1U	< 1 UJ
1,2-Dichloropropane 1,3,5-Trimethylbenzene	ug/L ug/L			<1U <1U	< 1 U < 1 U	<1U <1U	<1U <1U	<1U <1U			< 1 U < 1 U	<1U <1U	<1U <1U	< 100 U < 100 U	< 50 U < 50 U	< 5 U < 5 U		-	-	=		<1U <1U	-	< 10 U < 10 U	-	-	-		<1U <1U	
1,3-Dichlorobenzene	ug/L	00		<1U	<1U	< 1 U	<1U	<10	-		<10	<1U	< 1 U	< 100 U	< 50 U	< 5 U				-		<1U		< 10 U	-	-			<1U	
1,3-Dichloropropane 1,4-Dichloro-2-Butene	ug/L ug/L			<1U	< 1 U	< 1 U	< 1 U	<1U	-		< 1 U	< 1 U	< 1 U	< 100 U	< 50 U	< 5 U	-			-		<1U	-	< 10 U	-	-			<1U	
1,4-Dichlorobenzene	ug/L	8.1		< 1 U	< 1 U	< 1 U	< 1 U	<1U	-		< 1 U	< 1 U	< 1 U	< 100 U	< 50 U	< 5 U				-		< 1 U		< 10 U	-	-			< 1 U	
2,2-Dichloropropane 2-Butanone	ug/L ug/L	4800		< 1 U < 10 U			< 1 U < 10 U	< 1 U < 10 U	< 1 U < 10 U	< 100 U < 1000 U	< 50 U < 500 U	< 5 U < 50 U	-		-	-		< 1 U 130	-	< 10 U < 100 U	-				< 1 U < 10 U					
2-Chloroethyl Vinyl Ether	ug/L	4600						- 10 0	-	-							-	-	-	-			-		-	-	-			
2-Chlorotoluene 2-Hexanone	ug/L ug/L			< 1 U < 10 U			< 1 U < 10 U	< 1 U < 10 U	< 1 U < 10 U	< 100 U < 1000 U	< 50 U < 500 U	< 5 U < 50 U	-			-		< 1 U		< 10 U < 100 U		-			< 1 U < 10 U					
4-Chlorotoluene	ug/L	40		<1U	<1U	<1U	< 1 U	<1U			< 1 U	< 1 U	< 1 U	< 100 U	< 50 U	< 5 U	-			-		< 1 U	-	< 10 U					< 1 U	
4-Methyl-2-pentanone Acetone	ug/L ug/L			< 10 U < 10 U	< 10 U	< 10 U	< 10 U	< 10 U < 10 U			< 10 U < 10 U	< 10 U	< 10 U	< 1000 U < 1000 U	< 500 U < 500 U	< 50 U		-		-		< 10 U	-	< 100 U < 100 U					< 10 U < 50 U	-
Acrolein	ug/L	4				- :-				-						- '-	-		-	-		-	-		-	-	-			
Acrylonitrile Bromobenzene	ug/L ug/L	0.081 64		 < 1 U			 < 1 U	 < 1 U	 < 1 U	 < 100 U	 < 50 U	 < 5 U				-		 <1U		 < 10 U					 < 1 U					
Bromochloromethane	ug/L				-								-							-					-					
Bromodichloromethane Bromoethane	ug/L ug/L	7.06		< 1 U	< 1 U	< 1 U	< 1 U	< 1 U			< 1 U	< 1 U	< 1 U	< 100 U	< 50 U	< 5 U				-		< 1 U		< 10 U					< 1 U	
Bromoform	ug/L			<1U	< 1 U	< 1 U	<1U	< 1 U	-		< 1 U	< 1 U	<1U	< 100 U	< 50 U	< 5 U				-		< 1 U	-	< 10 U	-	-			<1U	
Bromomethane Carbon Disulfide	ug/L ug/L	11 800		<1U 	< 1 U 	< 1 U 	< 1 U	<1U 			< 1 U	< 1 U 	< 1 U 	< 100 U	< 50 U	< 5 U				-		< 1 U	-	< 10 U					<1U 	
Carbon Tetrachloride	ug/L	5	1.5	1.5	2	3.3	2.2	1.6		< 1 U	< 1 U	< 1 U	< 1 U	< 100 U	< 50 U	< 5 U				-		< 1 U		< 10 U					< 1 U	
Chlorobenzene Chloroethane	ug/L ug/L	160	 < 1 U	<1U <1U	< 1 U	<1U <1U	< 1 U	<1U <1U	 <1U	 < 1 U	< 1 U	< 1 U	< 1 U < 1 U	< 100 U < 100 U	< 50 U < 50 U	< 5 U	 < 1 U	 < 1 U	 < 1 U	 < 50 U	 <1U <1U	<1U <1U	 < 1 U	< 10 U	 <1U	 <1U	 < 5 U	 < 1 U	<1U <1U	 < 1 U
Chloroform	ug/L	14.1	< 1 U	< 1 U	<1U	< 1 U	<1U	< 1 U		2.5	2.5	2.5	2.2	< 100 U	< 50 U	< 5 U	-			-		<1U	-	< 10 U	-				< 1 U	
Chloromethane cis-1,2-Dichloroethene (cDCE	ug/L) ug/L	16	 < 1 U	<1U	< 1 U	< 10 U	< 10 U	< 10 U	 < 1 U	2400	< 1 U 3600	< 2 U 2600	< 10 U	< 1000 U 1600	< 500 U 1300	< 50 U 1200	740	1000	830	560	500 480	< 10 U	210	< 100 U	220	290	330	520	< 10 U	67
cis-1,3-Dichloropropene	ug/L		-	<1U	< 1 U	< 1 U	<1U	<1U	-		< 1 U	< 1 U	<1U	< 100 U	< 50 U	< 5 U	-		-	-		< 1 U	-	< 10 U	-	-	-		< 1 U	
Dibromochloromethane Dibromomethane	ug/L ug/L	0.52 80		< 1 U < 1 U			< 1 U < 1 U	< 1 U < 1 U	< 1 U < 1 U	< 100 U < 100 U	< 50 U < 50 U	< 5 U				-		<1U <1U		< 10 U	-				<1U <1U					
Dichlorodifluoromethane	ug/L	1600	-	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	-		< 1 U	<1U	<1U	< 100 U	< 50 U	< 5 U	-	-	-	-		< 1 U	-	< 10 U	-	-	-		< 1 U	
Isopropylbenzene m,p-Xylenes	ug/L ug/L	800 1600		< 1 U < 2 U	-		< 1 U < 2 U	< 1 U < 2 U	< 1 U	< 100 U < 200 U	< 50 U < 100 U	< 5 U < 10 U				-		< 1 U < 2 U		< 10 U < 20 U					< 1 U < 2 U					
Methyl tert-butyl ether (MTBE) ug/L	20		< 1 U	<1U	< 1 U	< 1 U	< 1 U			< 1 U	< 1 U	< 1 U	< 100 U		< 5 U						< 1 U							< 1 U	
Methylene Chloride Methyliodide	ug/L ug/L	5		< 5 U 	< 5 U	< 5 U 	< 5 U 	< 5 U 	< 5 U 		< 5 U 	< 5 U 	< 5 U 	< 500 U	< 250 U 	< 25 U	< 5 U 	< 5 U 	< 5 U 	< 250 U 	<5U <5U	< 5 U 	< 5 U 	< 50 U 	< 5 U 	< 5 U 	< 25 U 	< 5 U 	< 5 U 	< 5 U
n-Butylbenzene	ug/L					-	-	-			-		-							-										
n-Hexane n-Propylbenzene		800		 <1U	 < 1 U	 <1U	 <1U	 <1U	-		 < 1 U	 < 1 U	 < 1 U	< 100 U	 < 50 U	 < 5 U		-		-		<1U <1U	-	 < 10 U	_				<1U <1U	
o-Xylene		1600		<1U	<1U	<1U	<1U	<1U	-		<1U	<1U	<1U	< 100 U		< 5 U				-		<1U		< 10 U	-				<1U	
p-Isopropyltoluene sec-Butylbenzene	ug/L ug/L	800		< 1 U < 1 U	< 1 U	<1U <1U	< 1 U < 1 U	<1U			< 1 U < 1 U	< 1 U < 1 U	< 1 U	< 100 U < 100 U	< 50 U < 50 U	< 5 U < 5 U				-		<1U <1U		< 10 U		-			<1U <1U	
Styrene tert-Butvlbenzene	ug/L	1600				< 1 U	<1U	< 1 U	-		< 100 U	< 50 U	<1U	< 100 U	< 50 U	< 5 U		-		-		< 1 U		< 10 U					< 1 U < 1 U	
Tetrachloroethene (PCE)		800 5	1.5	< 1 U < 1 U	< 1 U 1.1	< 1 U 1.4	< 1 U < 1 U	< 1 U 1.4	 < 1 U	1300	< 1 U	< 1 U 780	< 1 U 470	< 100 U 960	< 50 U 940	< 5 U 14	41	18	21	 < 50 U	 16 19		8.4	< 10 U 460	86	43	 15	6.6	3.3	1.2
trans-1,2-Dichloroethene trans-1,3-Dichloropropene	ug/L	160	< 1 U 	<1U <1U	< 1 U < 1 U	<1U <1U	<1U <1U	<1U <1U	< 1 U 	6.3	7.6 < 1 U	3.7 < 1 U	3.3 < 1 U	< 100 U < 100 U	< 50 U < 50 U	< 5 U < 5 U	1.1	1.5	1.2	< 50 U	<1U <1U	<1U <1U	< 1 UJ 	< 10 U < 10 U	< 1 U 	<1U	< 5 U	< 1 U	<1U <1U	< 1 UJ
Trichloroethene (TCE)	ug/L ug/L	5	 <1U	<1U	< 1 U	<1U	<1U	<1U	 <1U	780	390	370	< 1 U	< 100 U	< 50 U	8.5	17	13	13	< 50 U	11 12		2.9 J	< 10 U	53	25	8.4	3.3	1.6	 < 1 UJ
Trichlorofluoromethane	ug/L	2400		< 1 U	< 1 U	<1U	<1U	<1U	-	-	< 1 U	< 1 U	<1U	< 100 U	< 50 U	< 5 U				-		< 1 U	-	< 10 U	-				< 1 U	
Vinyl Acetate Vinyl Chloride		8000 0.292	< 0.2 U	 < 0.2 U	< 0.2 U	< 0.2 U	< 0.2 U	< 0.2 U	< 0.2 U	 < 0.2 U	6.9	2	1.4	< 20 U	 < 10 U	9.4	8.9	12	7.1	< 10 U	5.4 5.6	3.7	2.4	 < 2 U	4	7.4	4	4.9	0.78	7.9
Notes:			LI CONTRACTOR OF THE PROPERTY					<u> </u>																						

Notes; Bold - detected Blue Shaded - Detected result exceeded screening level U - Analyte not detected at or above Reporting Limit (RL)

J - Result value estimated
"--" - indicates results not available

Aspect Consulting 6/4/2021 S:\Walker Chevrolet 080190\D let 080190/Deliverables\Remedial Investigation Work Plan_2021\APPENDICES\App A Data\A-3 A-4 Groundwater Summary 20210503

	L	ocation Date	MW-16 12/13/2013	MW-16 01/21/2015	MW-16 11/28/2018	MW-16 03/25/2020	MW-17 12/13/2013	MW-17 11/28/2018	MW-17 03/24/2020	MW-18 12/12/2013	MW-19 01/08/2014	MW-19 01/21/2015	MW-19 09/09/2015	MW-19 02/02/2016	MW-19 09/07/2016	MW-19 09/22/2016	MW-19 01/04/2017	MW-19 11/28/2018	MW-19 03/24/2020	MW-20 01/08/2014	MW-20 01/20/2015	MW-20 09/09/2015	MW-20 02/02/2016	MW-20 09/07/2016	MW-20 09/22/2016	MW-20 01/04/2017	MW-20 11/28/2018
		eening																									
Analyte BTEX	Unit L	.evel				<u> </u>		<u> </u>										<u> </u>			<u> </u>						
Benzene Toluene	ug/L ug/L 1	5 1000	< 0.35 U < 1 U	< 1.7 U < 5 U	< 0.35 U < 1 U	-	< 0.35 U < 1 U	< 0.35 U < 1 U	-	< 0.35 U < 1 U	< 0.35 U < 1 U	< 1.7 U < 5 U	-	-		-	-	< 0.35 U < 1 U	-	< 0.35 U < 1 U	< 0.35 U < 1 U	-	-	-	-	-	< 0.35 U < 1 U
Ethylbenzene		700	< 1 U	< 5 U	< 1 U	-	< 1 U	< 1 U	-	< 1 U	< 1 U	< 5 U			-		-	< 1 U		<1U	< 1 U		-	-			< 1 U
Other SVOCs 1,4-Dioxane	ug/L (0.44			-	T	I		I -	-		I -				1								-	I		-
Dibenzofuran	ug/L	16				-	-		-			-			-								-	-		-	
Hexachlorobutadiene Naphthalene		0.56 160	< 1 U	< 5 U < 5 U	< 1 U < 1 U		<1U <1U	<1U <1U	-	<1U	< 1 U	< 5 U < 5 U					-	< 1 U < 1 U		< 1 U	<1U <1U		-	-			<1U <1U
VOCs 1,1,1,2-Tetrachloroethane	ug/L	1.7	< 1 U	<5U	<1U	T	<1U	<1U	1	< 1 U	< 1 U	<5U	l					<1U		< 1 U	<1U	ı			1		<1U
1,1,1-Trichloroethane		200	<1U	< 5 U	<1U	< 1 UJ	<1U	<1U	< 1 UJ	<1U	< 1 U	< 5 U	< 1 U	 < 1 U	< 20 U	 < 1 U	 < 1 U	< 1 U	< 1 UJ	<1U	< 1 U	< 1 U	< 1 U	< 20 U	< 1 U	< 1 U	< 1 U
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane		0.22 0.77	< 1 U	< 5 U < 5 U	< 1 U < 1 U		<1U <1U	<1U <1U		<1U	< 1 U	< 5 U < 5 U						< 1 U		< 1 U	< 1 U			-			< 1 U < 1 U
1,1,2-Trichlorotrifluoroethane	ug/L 24	10000						-	-	-	_			-	-		-	-			-		-				
1,1-Dichloroethane 1.1-Dichloroethene		7.7 400	<1U	< 5 U	<1U	< 1 UJ < 1 UJ	<1U <1U	<1U <1U	< 1 UJ < 1 UJ	< 1 U	<1U	< 5 U	<1U <1U	<1U	< 20 U	< 1 U	<1U	<1U <1U	< 1 UJ < 1 UJ	<1U	<1U	<1U <1U	< 1 U	< 20 U < 20 U	< 1 U	< 1 U	<1U <1U
1,1-Dichloropropene	ug/L		< 1 U	< 5 U	< 1 U		< 1 U	< 1 U	-	< 1 U	< 1 U	< 5 U			-			< 1 U		< 1 U	< 1 U		-				< 1 U
1,2,3-Trichlorobenzene 1,2,3-Trichloropropane	ug/L 0.0	00038	< 1 U	< 5 U < 5 U	<1U <1U		<1U <1U	<1U <1U	-	< 1 U < 1 U	< 1 U	< 5 U		-				< 1 U		< 1 U	< 1 U			-			<1U <1U
1,2,4-Trichlorobenzene	ug/L	1.5	< 1 U	< 5 U	< 1 U		< 1 U	< 1 U	-	< 1 U	< 1 U	< 5 U			-		-	< 1 U		< 1 U	<1U		-	-			< 1 U
1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane		80 0.055	< 1 U < 10 U	< 5 U < 50 U	< 1 U < 10 U		< 1 U < 10 U	< 1 U < 10 U	-	< 1 U < 10 U	< 1 U < 10 U	< 5 U < 50 U						< 1 U < 10 U	-	< 1 U < 10 U	< 1 U < 10 U		-	-			< 1 U < 10 U
1,2-Dibromoethane (EDB) 1,2-Dichlorobenzene		0.01 720	<1U <1U	< 5 U < 5 U	<1U <1U		<1U <1U	<1U <1U	-	<1U <1U	<1U <1U	< 5 U < 5 U			-		-	<1U <1U	-	<1U <1U	<1U <1U		-	-			<1U <1U
1,2-Dichloroethane (EDC)	ug/L		< 1 U	< 5 U	<1U	< 1 UJ	< 1 U	< 1 U	< 1 UJ	< 1 U	< 1 U	< 5 U	<1U	<1U	< 20 U	 <1U	< 1 U	< 1 U	< 1 UJ	< 1 U	< 1 U	< 1 U	< 1 U	< 20 U	< 1 U	< 1 U	< 1 U
1,2-Dichloropropane 1,3,5-Trimethylbenzene	ug/L ug/L	1.2	<1U	< 5 U	<1U <1U		<1U	<1U <1U	-	<1U	<1U	< 5 U		-			-	<1U <1U	-	<1U	<1U <1U		-				<1U
1,3-Dichlorobenzene	ug/L		< 1 U	< 5 U	< 1 U		< 1 U	< 1 U		< 1 U	< 1 U	< 5 U			-		-	< 1 U		< 1 U	< 1 U		-				< 1 U
1,3-Dichloropropane 1,4-Dichloro-2-Butene	ug/L ug/L		< 1 U 	< 5 U	<1U 		< 1 U 	< 1 U 	-	< 1 U 	< 1 U 	< 5 U		-				< 1 U 		< 1 U 	< 1 U 		-	-			<1U
1,4-Dichlorobenzene		8.1	<1U	<5U	<1U	-	<1U	<1U	-	<1U	<1U	< 5 U			-		-	<1U	-	<1U	<1U		-	-			<1U <1U
2,2-Dichloropropane 2-Butanone	ug/L 4	1800	< 1 U < 10 U	< 5 U < 50 U	< 1 U < 10 U		< 1 U < 10 U	< 1 U	-	< 1 U < 10 U	< 1 U < 10 U	< 5 U 57	-	-			-	< 1 U < 10 U		< 1 U < 10 U	< 1 U		-	-		-	34
2-Chloroethyl Vinyl Ether 2-Chlorotoluene	ug/L ug/L	160	 <1U	 < 5 U	 <1U		 <1U	 <1U	-	 <1U	 <1U	 < 5 U			-			 <1U		 <1U	 <1U			-			 <1U
2-Hexanone	ug/L	40	< 10 U	< 50 U	< 10 U	-	< 10 U	31	-	< 10 U	< 10 U	73	-					19	-	< 10 U	25		-			-	32
4-Chlorotoluene 4-Methyl-2-pentanone	ug/L ug/L	640	< 1 U < 10 U	< 5 U < 50 U	< 1 U < 10 U		< 1 U < 10 U	< 1 U < 10 U	-	< 1 U < 10 U	< 1 U < 10 U	< 5 U < 50 U						< 1 U < 10 U		< 1 U < 10 U	< 1 U < 10 U			-			< 1 U < 10 U
Acetone	ug/L 7	7200	< 10 U	210	< 50 U		< 10 U	< 50 U		< 10 U	< 10 U	130						< 50 U		< 10 U	51						< 50 U
Acrolein Acrylonitrile	ug/L 0	.081			-	-		-	-	-		-			-					-			-	-			
Bromobenzene Bromochloromethane	ug/L ug/L	64	< 1 U	< 5 U	<1U		<1U	<1U	-	< 1 U	< 1 U	< 5 U			-			<1U		<1U	< 1 U			-			< 1 U
Bromodichloromethane	ug/L	7.06	< 1 U	< 5 U	< 1 U	-	< 1 U	<1U	-	< 1 U	< 1 U	< 5 U	-					< 1 U	-	<1U	< 1 U		-			-	< 1 U
Bromoethane Bromoform	ug/L ug/L	5.5	 < 1 U	 < 5 U	 < 1 U		 < 1 U	 <1U		 < 1 U	 <1U	 < 5 U						 <1U		 < 1 U	 < 1 U						 < 1 U
Bromomethane	ug/L	11	< 1 U	< 5 U	<1U	-	< 1 U	<1U	-	<1U	<1U	< 5 U			-			<1U		<1U	<1U		-	-		-	< 1 U
Carbon Disulfide Carbon Tetrachloride		800 5	2.2	 < 5 U	 <1U		3	 < 1 U	-	 < 1 U	7	 < 5 U						 < 1 U	-	3.6	 < 1 U		-	-			 < 1 U
Chlorobenzene Chloroethane		160	<1U <1U	< 5 U < 5 U	<1U <1U	 <1U	<1U <1U	<1U <1U	 <1U	<1U <1U	<1U <1U	< 5 U < 5 U	 <1U	 <1U	 < 20 U	 <1U	 <1U	<1U <1U	 <1U	<1U <1U	<1U <1U	 <1U	 < 1 U	 < 20 U	 <1U	 < 1 U	<1U <1U
Chloroform	,	14.1	2.5 J	< 5 U	<1U		2.4 J	< 1 U	-	1.3 J	3.8	< 5 U						< 1 U		2.2	< 1 U		-				< 1 U
Chloromethane cis-1.2-Dichloroethene (cDCE	ug/L E) ug/L	16	< 10 U	< 50 U 180	< 10 U	74	< 10 U	< 10 U	 77	< 10 U	< 10 U	< 50 U 45	 35	 43	 < 20 U	 16	 36	< 10 U	 46	< 10 U	< 10 U	 150	250	250	250	240	< 10 U
cis-1,3-Dichloropropene	ug/L		< 1 U	< 5 U	<1U		< 1 U	< 1 U		< 1 U	< 1 U	< 5 U			-			< 1 U		< 1 U	< 1 U						< 1 U
Dibromochloromethane Dibromomethane		0.52 80	< 1 U	< 5 U	<1U <1U		<1U <1U	<1U <1U	-	<1U <1U	<1U	< 5 U		-				<1U <1U		<1U	<1U <1U		-	-			<1U <1U
Dichlorodifluoromethane	ug/L 1	1600	< 1 U	< 5 U	<1U		< 1 U	< 1 U		< 1 U	< 1 U	< 5 U			-		-	< 1 U		< 1 U	< 1 U		-	-			< 1 U
Isopropylbenzene m,p-Xylenes		800 1600	< 1 U < 2 U	< 5 U < 10 U	<1U <2U		< 1 U < 2 U	<1U <2U	-	< 1 U < 2 U	< 1 U < 2 U	< 5 U < 10 U					-	< 1 U < 2 U	-	< 1 U < 2 U	< 1 U < 2 U		-	-			< 1 U < 2 U
Methyl tert-butyl ether (MTBE) Methylene Chloride	ug/L ug/L	20	< 1 U < 5 U	< 5 U < 25 U	<1U <5U	 < 5 U	<1U <5U	<1U <5U	 < 5 U	< 1 U < 5 U	< 1 U < 5 U	< 5 U < 25 U	 < 5 U	 < 5 U	 < 100 U	 < 5 U	 < 5 U	<1U <5U	 < 5 U	< 1 U < 5 U	<1U <5U	 < 5 U	 < 5 U	 < 100 U	 < 5 U	 < 5 U	<1U <5U
Methyliodide	ug/L	J						-	-		-																
n-Butylbenzene n-Hexane		400 480			 < 1 U			 < 1 U										 < 1 U									 < 1 U
n-Propylbenzene	ug/L	800	< 1 U	< 5 U	< 1 U	-	< 1 U	<1U	_	<1U	< 1 U	< 5 U			-		-	< 1 U		<1U	< 1 U		-	-		-	< 1 U
o-Xylene p-Isopropyltoluene	ug/L 1	1600	< 1 U	< 5 U < 5 U	< 1 U < 1 U		< 1 U < 1 U	<1U <1U	-	< 1 U	< 1 U	< 5 U < 5 U						< 1 U < 1 U	-	< 1 U	< 1 U < 1 U		-	-			< 1 U < 1 U
sec-Butylbenzene Styrene	ug/L	800	< 1 U	< 5 U	<1U <1U		< 1 U	< 1 U		< 1 U	< 1 U < 1 U	< 5 U < 5 U			-		-	< 1 U < 1 U		<1U <1U	< 1 U < 1 U			-			< 1 U < 1 U
tert-Butylbenzene	ug/L	1600 800	<1U	< 5 U < 5 U	<1U		<1U <1U	<1U <1U	_	< 1 U < 1 U	<1U	< 5 U			-			< 1 U		< 1 U	<1U		-	-			< 1 U
Tetrachloroethene (PCE) trans-1,2-Dichloroethene		5 160	450 < 1 U	14 < 5 U	11 < 1 U	3.7 < 1 UJ	170 < 1 U	9.7 < 1 U	5.4 < 1 UJ	460 < 1 U	62 < 1 U	9.7 < 5 U	7.6 < 1 U	8.5 < 1 U	< 20 U < 20 U	8.5 < 1 U	12 < 1 U	2.5 < 1 U	< 1 U < 1 UJ	140 < 1 U	7.4 < 1 U	11 < 1 U	< 1 U < 1 U	< 20 U < 20 U	4.9 < 1 U	6.2 < 1 U	4.9 < 1 U
trans-1,3-Dichloropropene	ug/L		< 1 U	< 5 U	<1U		< 1 U	< 1 U	-	< 1 U	< 1 U	< 5 U						< 1 U		< 1 U	< 1 U		-	-			< 1 U
Trichloroethene (TCE) Trichlorofluoromethane		5 2400	98 < 1 U	6.3 < 5 U	2.8 < 1 U	< 1 UJ 	24 < 1 U	2.1 < 1 U	< 1 UJ 	57	4.8 < 1 U	< 5 U	3.9	5.1 	< 20 U	4.1 	4.6	1.6 < 1 U	< 1 UJ 	16	5.3 < 1 U	5.8	< 1 U 	< 20 U	1.7	2	<1U
Vinyl Acetate	ug/L 8	3000						-		-	_													1			
Vinyl Chloride	ug/L 0	1.292	0.49	2.2	2.6	0.83	< 0.2 U	0.72	0.86	0.53	< 0.2 U	< 1 U	1.5	1.5	< 4 U	0.43	0.97	0.56	0.51	< 0.2 U	1.8	1.5	1.9	< 4 U	1.8	2.5	0.84

Notes; Bold - detected Blue Shaded - Detected result exceeded screening level U - Analyte not detected at or above Reporting Limit (RL)

J - Result value estimated
"--" - indicates results not available

Aspect Consulting 6/4/2021 S:\Walker Chevrolet 080190\D rolet 080190\Deliverables\Remedial Investigation Work Plan_2021\APPENDICES\App A Data\A-3 A-4 Groundwater Summary 20210503

		Location Date	MW-20 12/12/2019	MW-20 03/24/2020	MW-21 12/17/2013	MW-21 01/20/2015	MW-21 09/08/2015	MW-21 02/01/2016	MW-21 09/22/2016	MW-21 01/04/2017	MW-21 11/28/2018	MW-21 03/25/2020	MW-23 03/14/2019	MW-23 03/26/2020	MW-24 02/13/2019	MW-24 08/27/2019	MW-24 12/12/2019	MW-24 03/26/2020	MW-25 02/13/2019	MW-25 03/26/2020	MW-26 02/13/2019	MW-26 08/28/2019	MW-26 12/13/2019
		Screening																				3000.0	
Analyte BTEX	Unit	Level					1	1												1			
Benzene	ug/L		< 0.35 U		< 3.5 U	< 1.7 U	-	-	-		< 0.35 U	-	< 0.35 U		< 0.35 U	< 0.35 U	< 0.35 U		< 0.35 U		< 0.35 U	< 0.35 U	< 0.35 U
Toluene Ethylbenzene	ug/L ug/L	1000 700	< 1 U < 1 U	-	< 10 U	< 5 U	-	-	-		<1U	-	<1U		<1U	<1U	<1U		<1U <1U	-	<1U <1U	< 1 U < 1 U	<1U <1U
Other SVOCs	/1	0.44																					
1,4-Dioxane Dibenzofuran	ug/L ug/L	0.44 16		-		-	-	-	-		-	-			-		-			-	-		
Hexachlorobutadiene	ug/L	0.56	<1U	-	< 10 U	< 5 U	-	-	-		<1U	-	<1U		<1U	<1U	<1U		<1U	-	<1U	<1U	< 1 U
Naphthalene VOCs	ug/L	160	< 1 U		< 10 U	< 5 U		-			<1U	-	<1U		<1U	<1U	< 1 U		<1U	-	< 1 U	< 1 U	< 1 U
1,1,1,2-Tetrachloroethane	ug/L	1.7	<1U		< 10 U	< 5 U					<1U		<1U		<1U	<1U	<1U		<1U		<1U	< 1 U	< 1 U
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	ug/L ug/L	200 0.22	<1U <1U	< 1 UJ 	< 10 U	< 5 U < 5 U	< 1 U 	< 1 U 	< 1 U 	< 1 U 	<1U	< 1 UJ 	<1U	< 1 U 	<1U	<1U	<1U	< 1 U 	<1U <1U	< 1 U 	<1U <1U	< 1 U < 1 U	<1U <1U
1,1,2-Trichloroethane	ug/L	0.77	< 1 U		< 10 U	< 5 U	-	-	-	-	<1U	-	<1U		<1U	<1U	<1U		<1U	-	<1U	<1U	< 1 U
1,1,2-Trichlorotrifluoroethane 1,1-Dichloroethane	ug/L ug/L	240000 7.7	 < 1 U	 < 1 UJ	< 10 U	 < 5 U	 <1U	 <1U	 < 1 U	 < 1 U	- < 1 U	 < 1 UJ	 <1U	 < 1 UJ	 < 1 U	 <1U	 <1U	 < 1 UJ	 <1U	 < 1 UJ	 <1U	 < 1 U	 < 1 U
1,1-Dichloroethene	ug/L	400	<1U	< 1 UJ	< 10 U	< 5 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 UJ	< 1 U	<1U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U
1,1-Dichloropropene 1,2,3-Trichlorobenzene	ug/L ug/L		<1U <1U		< 10 U	< 5 U < 5 U	-	-	-		<1U		<1U		<1U	<1U	<1U		<1U <1U		<1U <1U	< 1 U < 1 U	< 1 U
1,2,3-Trichloropropane	ug/L	0.00038	< 1 U		< 10 U	< 5 U	-	-	-		< 1 U	-	< 1 U		< 1 U	< 1 U	< 1 U		< 1 U	-	< 1 U	< 1 U	< 1 U
1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene	ug/L ug/L	1.5 80	< 1 U		< 10 U	< 5 U					<1U		<1U		<1U	<1U	<1U		<1U <1U		<1U <1U	< 1 U < 1 U	< 1 U
1,2-Dibromo-3-chloropropane	ug/L	0.055	< 10 U		< 100 U	< 50 U	-	-	-		< 10 U	-	< 10 U		< 10 U	< 10 U	< 10 U		< 10 U		< 10 U	< 10 U	< 10 U
1,2-Dibromoethane (EDB) 1,2-Dichlorobenzene	ug/L ug/L	0.01 720	<1U <1U		< 10 U	< 5 U	-				<1U		<1U		<1U	<1U	<1U		<1U <1U		<1U <1U	< 1 U	< 1 U
1,2-Dichloroethane (EDC)	ug/L		< 1 U	< 1 UJ	< 10 U	< 5 U	<1U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 UJ	< 1 U	<1U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	<1U	< 1 U	< 1 U	< 1 U
1,2-Dichloropropane 1,3,5-Trimethylbenzene	ug/L ug/L	1.2 80	<1U <1U		< 10 U	< 5 U < 5 U	-	-	-		<1U	-	<1U		<1U	<1U	<1U <1U		<1U		<1U	<1U <1U	<1U <1U
1,3-Dichlorobenzene	ug/L	- 55	< 1 U		< 10 U	< 5 U	-	-	-	-	< 1 U	-	< 1 U		< 1 U	< 1 U	< 1 U		< 1 U	-	< 1 U	< 1 U	< 1 U
1,3-Dichloropropane 1,4-Dichloro-2-Butene	ug/L ug/L		< 1 U		< 10 U	< 5 U	-	-	-		<1U	-	<1U		<1U	<1U	<1U		<1U		<1U	< 1 U	< 1 U
1,4-Dichlorobenzene	ug/L	8.1	< 1 U		< 10 U	< 5 U	-	-	-		< 1 U	-	< 1 U		< 1 U	< 1 U	< 1 U		< 1 U	-	< 1 U	< 1 U	< 1 U
2,2-Dichloropropane 2-Butanone	ug/L	4800	< 1 UJ 500 J		< 10 U	< 5 U 100			-		< 1 U 27	-	< 1 U < 10 U		< 1 U < 10 U	< 1 U < 10 UJ	< 1 UJ < 10 U		< 1 U < 10 U		< 1 U < 10 U	< 1 U < 10 UJ	< 1 UJ < 10 U
2-Chloroethyl Vinyl Ether	ug/L ug/L	4000					-	-	-		-	_								-			
2-Chlorotoluene 2-Hexanone	ug/L ug/L	160 40	< 1 U		< 10 U < 100 U	< 5 U < 50 U		-	-	-	< 1 U 27	-	< 1 U < 10 U	-	< 1 U < 10 U	< 1 U < 10 U	< 1 U < 10 U		< 1 U < 10 U	-	< 1 U < 10 U	< 1 U < 10 U	< 1 U < 10 U
4-Chlorotoluene	ug/L		< 1 U		< 10 U	< 5 U	-	-	-		< 1 U	-	< 1 U		< 1 U	< 1 U	< 1 U		< 1 U	-	< 1 U	< 1 U	< 1 U
4-Methyl-2-pentanone Acetone	ug/L ug/L	640 7200	15 320 J		< 100 U < 100 U	< 50 U 200	-		-		< 10 U < 50 U	-	< 10 U < 50 U		< 10 U < 50 U	< 10 U < 50 UJ	< 10 U < 50 UJ		< 10 U < 50 U		< 10 U < 50 U	< 10 U < 50 UJ	< 10 U < 50 UJ
Acrolein	ug/L	4					-	-	-		-	-								-			
Acrylonitrile Bromobenzene	ug/L ug/L	0.081 64	 < 1 U		 < 10 U	 < 5 U	-	-	-		 < 1 U	-	 < 1 U		 < 1 U	 < 1 U	 < 1 U		 <1U		 <1U	 < 1 U	 < 1 U
Bromochloromethane	ug/L		-					-	-		1	-								-			
Bromodichloromethane Bromoethane	ug/L ug/L	7.06	< 1 U 		< 10 U	< 5 U		-	-		<1U -	_	< 1 U 		< 1 U 	< 1 U 	< 1 U 		< 1 U 		< 1 U 	< 1 U	< 1 U
Bromoform	ug/L	5.5	< 1 U		< 10 U	< 5 U	-	-	-		<1U	-	<1U		< 1 U	<1U	<1U		< 1 U	-	< 1 U	< 1 U	< 1 U
Bromomethane Carbon Disulfide	ug/L ug/L	11 800	< 1 U 		< 10 U	< 5 U	-	-	-		<1U 	-	<1U 		< 1 U 	< 1 U 	< 1 U 		< 1 U 		< 1 U 	< 1 U 	< 1 U
Carbon Tetrachloride	ug/L	5	<1U		< 10 U	< 5 U	-	-	-	-	<1U	-	<1U		<1U	<1U	<1U		<1U	-	<1U	<1U	<1U
Chlorobenzene Chloroethane	ug/L ug/L	160	< 1 U < 1 U	 < 1 U	< 10 U	< 5 U < 5 U	 < 1 U	 < 1 U	 <1U	 < 1 U	<1U	 <1U	<1U	 < 1 U	<1U	<1U	< 1 U	 < 1 U	<1U <1U	 < 1 U	<1U <1U	< 1 U < 1 U	< 1 U
Chloroform	ug/L	14.1	< 1 U		< 10 U	< 5 U		-	-		< 1 U	-	< 1 U		< 1 U	< 1 U	< 1 U		1.2		1.1	1.2	1.5
Chloromethane cis-1,2-Dichloroethene (cDCE)	ug/L ug/L	16	< 10 U	9.8	< 100 U 460	< 50 U 270	510	650	320	340	< 10 U 190	230	< 10 U	20	< 10 U 5.4	< 10 U 5.1	< 10 U 4.2	4.1	< 10 U	3	< 10 U 2.1	< 10 U 2.2	< 10 U
cis-1,3-Dichloropropene	ug/L		< 1 U		< 10 U	< 5 U	-	-	-	-	< 1 U	-	< 1 U	-	< 1 U	< 1 U	< 1 U	-	<1U	-	< 1 U	< 1 U	<1U
Dibromochloromethane Dibromomethane	ug/L ug/L	0.52 80	< 1 U		< 10 U	< 5 U < 5 U	-		-		<1U	-	<1U		<1U	<1U	< 1 U		<1U <1U		<1U <1U	< 1 U < 1 U	< 1 U
Dichlorodifluoromethane	ug/L	1600	<1U	-	< 10 U	< 5 U	-	-	-	-	< 1 U	-	< 1 U		< 1 U	< 1 U	< 1 U		< 1 U	-	< 1 U	< 1 U	< 1 U
Isopropylbenzene m,p-Xylenes	ug/L ug/L	800 1600	< 1 U < 2 U		< 10 U < 20 U	< 5 U < 10 U					< 1 U < 2 U		< 1 U < 2 U		< 1 U < 2 U	< 1 U < 2 U	< 1 U < 2 U		<1U <2U		< 1 U < 2 U	< 1 U < 2 U	< 1 U < 2 U
Methyl tert-butyl ether (MTBE)	ug/L	20	< 1 U			< 5 U					< 1 U		< 1 U		< 1 U	< 1 U	< 1 U		< 1 U		< 1 U	< 1 U	< 1 U
Methylene Chloride Methyliodide	ug/L ug/L	5	< 5 U	< 5 U	< 50 U	< 25 U	< 5 U 	< 5 U 	< 5 U 	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U 	< 5 U 	5.6 C	< 5 U 	< 5 U 	< 5 U 	< 5 U	< 5 U 	6.2 C	< 5 U
n-Butylbenzene	ug/L	400		-	-		-	-	-	-		-						-		-			
n-Hexane n-Propylbenzene	ug/L ug/L	480 800	< 1 U < 1 U		 < 10 U	 < 5 U					< 1 U < 1 U		< 1 U		< 1 U	<1U <1U	< 1 U		<1U <1U		<1U <1U	< 1 U < 1 U	< 1 U < 1 U
o-Xylene	ug/L		<1U		< 10 U	< 5 U	-	-	-		< 1 U	-	< 1 U		< 1 U	< 1 U	< 1 U		< 1 U		< 1 U	< 1 U	< 1 U
p-Isopropyltoluene sec-Butylbenzene	ug/L ug/L	800	<1U <1U		< 10 U	< 5 U < 5 U	-	-	-		<1U	-	<1U		<1U	<1U	<1U		<1U <1U		<1U <1U	< 1 U < 1 U	< 1 U
Styrene	ug/L	1600	< 1 U		< 10 U	< 5 U	-	-	-		< 1 U	-	< 1 U		< 1 U	< 1 U	< 1 U		< 1 U	-	< 1 U	< 1 U	< 1 U
tert-Butylbenzene Tetrachloroethene (PCE)	ug/L ug/L	800 5	< 1 U < 1 U	1.5	< 10 U 500	< 5 U	7.1	 18	 12	 15	< 1 U	 19	< 1 U 100	140	< 1 U	< 1 U	< 1 U	 58	< 1 U	36	< 1 U	< 1 U 20	< 1 U
trans-1,2-Dichloroethene	ug/L	160	< 1 U	< 1 UJ	< 10 U	< 5 U	1.6	1.7	< 1 U	< 1 U	< 1 U	< 1 UJ	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U
trans-1,3-Dichloropropene Trichloroethene (TCE)	ug/L ug/L	5	<1U	 < 1 UJ	< 10 U	< 5 U	9.2	 17	 13	 14	< 1 U 7.6	9.6 J	< 1 U 25	23	< 1 U	< 1 U	< 1 U	 11	< 1 U 3.6	3.2	< 1 U 2.4	< 1 U 2.7	< 1 U 2.3
Trichlorofluoromethane	ug/L	2400	< 1 U		< 10 U	< 5 U			-		<1U	-	< 1 U		< 1 U	< 1 U	< 1 U		< 1 U		< 1 U	< 1 U	< 1 U
Vinyl Acetate Vinyl Chloride	ug/L ug/L	8000 0.292	1.5	0.65	 < 2 U	 <1U	7.4	9.7	4.1	4.2	2.3	1.5	 < 0.2 U	 < 0.2 U	 < 0.2 U	 < 0.2 U	 < 0.2 U	 < 0.2 U	 < 0.2 U	 < 0.2 U	 < 0.2 U	 < 0.2 U	 < 0.2 U
	J	1									_,•		. – -										

Notes; Bold - detected Blue Shaded - Detected result exceeded screening level U - Analyte not detected at or above Reporting Limit (RL)

J - Result value estimated
"--" - indicates results not available

Aspect Consulting 6/4/2021 S:\Walker Chevrolet 080190\D rolet 080190\Deliverables\Remedial Investigation Work Plan_2021\APPENDICES\App A Data\A-3 A-4 Groundwater Summary 20210503

		Location Date	MW-26 03/25/2020	MW-27 02/13/2019	MW-27 03/24/2020	MW-28 03/26/2019	MW-28 03/25/2020	MW-29 03/26/2019	MW-29 03/25/2020	MW-30 02/25/2019	MW-30 03/26/2020	MW-31 02/25/2019	MW-31 03/26/2020	MW-32 03/26/2019	MW-32 03/26/2020	MW-33 03/26/2019	MW-33 03/26/2020	MW-34 07/15/2019	MW-34 08/27/2019	MW-34 12/13/2019	MW-34 03/25/2020	MW-35 08/28/2019	MW-35 12/13/2019	MW-35 03/25/2020
		Screening																						
Analyte BTEX	Unit	Level		<u> </u>	<u> </u>	L	<u> </u>								<u> </u>			<u> </u>		<u> </u>			<u> </u>	
Benzene	ug/L	5		< 0.35 U	< 0.35 U	< 0.35 U		< 0.35 U	< 0.35 U															
Toluene	ug/L	1000		<10	-	<1U		< 1 U	-	< 1 U		<10	-	<1U		< 1 U		<10	< 1 U	< 1 U		<10	<10	
Ethylbenzene Other SVOCs	ug/L	700		< 1 U		< 1 U	-	< 1 U	-	< 1 U	-	< 1 U		< 1 U	-	< 1 U		< 1 U	< 1 U	< 1 U		< 1 U	< 1 U	
1,4-Dioxane	ug/L	0.44							-			-												
Dibenzofuran Hexachlorobutadiene	ug/L ug/L	16 0.56		 <1U	-	 <1U	-	 <1U	-	 <1U		- <1U		 <1U		 <1U		 <1U	 <1U	 <1U		 <1U	 <1U	
Naphthalene	ug/L ug/L			< 1 U	-	<10		<1U		<1U	-	< 1 U		< 1 U	-	<1U		< 1 U	< 1 U	<1U		<1U	<10	
VOCs																								
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane	ug/L ug/L		 < 1 UJ	<1U <1U	 < 1 UJ	< 1 U < 1 U	 < 1 UJ	<1U <1U	 < 1 UJ	< 1 U	 < 1 U	<1U	 < 1 U	<1U <1U	 <1U	< 1 U	 <1U	<1U <1U	< 1 U	<1U <1U	 < 1 UJ	<1U <1U	< 1 U < 1 U	 < 1 U
1,1,2,2-Tetrachloroethane	ug/L			< 1 U		< 1 U		< 1 U		< 1 U		< 1 U		< 1 U		< 1 U		< 1 U	< 1 U	< 1 U		< 1 U	< 1 U	
1,1,2-Trichloroethane	ug/L	0.77		< 1 U	-	< 1 U	-	<1U	-	< 1 U		< 1 U		< 1 U		< 1 U		< 1 U	< 1 U	<1U	-	< 1 U	< 1 U	
1,1,2-Trichlorotrifluoroethane 1,1-Dichloroethane	e ug/L ug/L	240000 7.7	 < 1 UJ	 < 1 U	 < 1 UJ	 <1U	 < 1 UJ	 < 1 U	 < 1 UJ	 < 1 U	 < 1 UJ	 <1U	 < 1 UJ	 < 1 U	 < 1 UJ	 < 1 U	 < 1 UJ	 <1U	 < 1 U	 < 1 U	 < 1 UJ	 < 1 U	 < 1 U	 < 1 UJ
1,1-Dichloroethene	ug/L	400	< 1 UJ	<10	< 1 UJ	<10	< 1 UJ	< 1 U	< 1 UJ	< 1 U	< 1 U	<10	<1U	<10	< 1 U	< 1 U	<1U	< 1 U	< 1 U	< 1 U	< 1 UJ	<10	<10	< 1 U
1,1-Dichloropropene	ug/L			< 1 U	-	< 1 U	-	< 1 U	-	< 1 U	-	< 1 U		< 1 U	-	< 1 U		< 1 U	< 1 U	< 1 U	-	< 1 U	< 1 U	-
1,2,3-Trichlorobenzene 1,2,3-Trichloropropane	ug/L ug/L	0.00038		<1U <1U		< 1 U < 1 U		<1U <1U	-	< 1 U		<1U		<1U <1U		< 1 U		<1U <1U	< 1 U	<1U <1U	-	<1U <1U	< 1 U < 1 U	
1,2,4-Trichlorobenzene	ug/L	1.5	-	< 1 U	-	< 1 U	-	< 1 U	_	< 1 U	_	< 1 U	-	< 1 U	-	< 1 U		< 1 U	< 1 U	< 1 U	-	< 1 U	< 1 U	-
1,2,4-Trimethylbenzene	ug/L			< 1 U	-	< 1 U	-	<1U	-	< 1 U	-	< 1 U		< 1 U	-	< 1 U		< 1 U	< 1 U	<10.11		< 1 U	< 1 U	
1,2-Dibromo-3-chloropropan 1,2-Dibromoethane (EDB)	ne ug/L ug/L	0.055 0.01		< 10 U	-	< 10 U	-	< 10 U < 1 U	-	< 10 U		< 10 U		< 10 U		< 10 U < 1 U		< 10 U	< 10 U	< 10 U < 1 U		< 10 U	< 10 U	
1,2-Dichlorobenzene	ug/L	720		< 1 U	-	< 1 U	-	< 1 U	-	< 1 U	-	< 1 U	-	< 1 U	-	< 1 U		< 1 U	< 1 U	< 1 U	-	< 1 U	< 1 U	-
1,2-Dichloroethane (EDC) 1,2-Dichloropropane	ug/L	1.2	< 1 UJ	<1U <1U	< 1 UJ	<1U <1U	< 1 UJ	<1U <1U	< 1 UJ	<1U	< 1 U	<1U	< 1 U	<1U <1U	<1U	<1U <1U	<1U	<1U <1U	<1U	<1U	< 1 UJ	<1U <1U	<1U <1U	< 1 U
1,3,5-Trimethylbenzene	ug/L ug/L		-	<1U	-	<1U	-	<1U	<1U	<1U		<1U	< 1 U	-										
1,3-Dichlorobenzene	ug/L			< 1 U		< 1 U		< 1 U		< 1 U		< 1 U	-	< 1 U		< 1 U		< 1 U	< 1 U	< 1 U		<1U	< 1 U	
1,3-Dichloropropane 1,4-Dichloro-2-Butene	ug/L ug/L			< 1 U		< 1 U	-	< 1 U 	-	< 1 U 	-	< 1 U		< 1 U		< 1 U		< 1 U	< 1 U	<1U 	-	< 1 U	< 1 U	-
1,4-Dichlorobenzene	ug/L	8.1		< 1 U	-	< 1 U	-	< 1 U	_	< 1 U	-	< 1 U		< 1 U	-	< 1 U		< 1 U	< 1 U	< 1 U		< 1 U	< 1 U	
2,2-Dichloropropane	ug/L		-	< 1 U	-	<1U	-	< 1 U	-	< 1 U	-	< 1 U		<1U	-	< 1 U		< 1 U	< 1 U	< 1 UJ	-	<10	< 1 UJ	-
2-Butanone 2-Chloroethyl Vinyl Ether	ug/L ug/L			< 10 U		< 10 U		< 10 U	-	< 10 UJ		< 10 UJ		< 10 U		< 10 U		< 10 U	< 10 UJ	< 10 U		< 10 UJ	< 10 U	
2-Chlorotoluene	ug/L	160		< 1 U		< 1 U		< 1 U	_	< 1 U	_	< 1 U	-	< 1 U		< 1 U		< 1 U	< 1 U	< 1 U		< 1 U	< 1 U	
2-Hexanone	ug/L	40		< 10 U	-	< 10 U		< 10 U	-	< 10 UJ		< 10 UJ		< 10 U		< 10 U		< 10 U	< 10 U	< 10 U		15 J	< 10 U	
4-Chlorotoluene 4-Methyl-2-pentanone	ug/L ug/L	640		< 1 U < 10 U		< 1 U < 10 U	-	< 1 U < 10 U	-	< 1 U < 10 U		< 1 U < 10 U	< 1 U < 10 U	< 1 U < 10 U		< 1 U < 10 U	< 1 U < 10 U							
Acetone	ug/L	7200		< 50 U	-	< 50 U		< 50 U	-	< 50 U		< 50 U		< 50 U	-	< 50 U		< 50 U	< 50 UJ	< 50 UJ		< 50 UJ	< 50 UJ	
Acrolein Acrylonitrile	ug/L ug/L	4 0.081						-	-	-	-	-						-						
Bromobenzene	ug/L	64		< 1 U		< 1 U	-	< 1 U	-	< 1 U	-	< 1 U		< 1 U		< 1 U		< 1 U	< 1 U	< 1 U		< 1 U	< 1 U	
Bromochloromethane	ug/L			-	-		-	-	-	-		-						-			-		-	-
Bromodichloromethane Bromoethane	ug/L ug/L	7.06		< 1 U	-	< 1 U	-	< 1 U	-	< 1 U	-	< 1 U		< 1 U	-	< 1 U		< 1 U	< 1 U	< 1 U	-	< 1 U	< 1 U	
Bromoform	ug/L	5.5		< 1 U		< 1 U		< 1 U	-	< 1 U		< 1 U		< 1 U		< 1 U		< 1 U	< 1 U	< 1 U	-	< 1 U	< 1 U	
Bromomethane	ug/L	11		< 1 U		< 1 U		< 1 U		< 1 U		< 1 U		< 1 U		< 1 U		< 1 U	< 1 U	< 1 U		< 1 U	< 1 U	
Carbon Disulfide Carbon Tetrachloride	ug/L ug/L	800 5		 < 1 U		 <1U	-	 < 1 U	-	 < 1 U		 < 1 U	-	 <1U		 < 1 U		 < 1 U	 < 1 U	 < 1 U		 <1U	 < 1 U	-
Chlorobenzene	ug/L	160		< 1 U		< 1 U		< 1 U	-	< 1 U		< 1 U		< 1 U		< 1 U		< 1 U	< 1 U	< 1 U		< 1 U	< 1 U	
Chloroethane Chloroform	ug/L ug/L	14.1	< 1 U	<1U <1U	< 1 U	< 1 U < 1 U	< 1 U	<1U <1U	< 1 U	< 1 U	< 1 U	<1U	<1U	<1U <1U	< 1 U	<1U <1U	<1U	< 1 U 1.3	<1U	<1U	< 1 U	<1U	< 1 U	< 1 U
Chloromethane	ug/L	14.1		< 10 U		< 10 U	-	< 10 U	-	< 10 U	-	< 10 U		< 10 U		< 10 U		1.5	< 10 U	< 10 U		< 10 U	< 10 U	-
cis-1,2-Dichloroethene (cDC	/ -	16	<1U	<10	<1U	2.1	1.8	<1U	<1U	6.3	<1U	28	34	2.8	4.9	1.6	2.4	<1U	1.3	20	10	2.8	7.2	4.9
cis-1,3-Dichloropropene Dibromochloromethane	ug/L ug/L	0.52		<1U <1U		<1U <1U	-	<1U	-	< 1 U	-	<1U		<1U	-	<1U <1U		<1U <1U	< 1 U	<1U	-	<1U	< 1 U < 1 U	
Dibromomethane	ug/L	80		< 1 U	-	< 1 U	-	< 1 U	-	< 1 U	-	< 1 U	-	< 1 U	-	< 1 U	-	< 1 U	< 1 U	< 1 U	-	< 1 U	< 1 U	
Dichlorodifluoromethane	ug/L	1600	-	<10	-	<1U	-	<1U <1U	-	<1U <1U	-	<1U <1U		<10	-	<1U <1U		<1U <1U	<1U <1U	<1U <1U	-	<1U <1U	<1U <1U	
Isopropylbenzene m,p-Xylenes	ug/L ug/L	800 1600		< 1 U < 2 U	-	< 1 U < 2 U	-	<1U <2U	-	< 1 U	-	< 1 U		< 1 U < 2 U	-	<1U <2U		< 1 U	< 1 U	<1U <2U	-	<1U	< 1 U	
Methyl tert-butyl ether (MTBI	E) ug/L	20		< 1 U		< 1 U		< 1 U	-	< 1 U	-	< 1 U		< 1 U		< 1 U		< 1 U	< 1 U	< 1 U		< 1 U	< 1 U	
Methylene Chloride Methyliodide	ug/L ug/L	5	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U 	< 5 U 	< 5 U	< 5 U 	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U 	< 5 U	5.6 C	< 5 U 	< 5 U	5.4 C	< 5 U	5.3 C
n-Butylbenzene	ug/L ug/L	400	-	-	-	-	-					-	-	-		-	-			=	-	-	-	- -
n-Hexane	ug/L	480	-	<1U	<1U	<1U	-	<1U	<1U															
n-Propylbenzene o-Xylene	ug/L ug/L			<1U		< 1 U < 1 U	-	<1U <1U	-	<1U		< 1 U < 1 U		<1U <1U		<1U <1U		<1U	<1U	<1U <1U		<1U <1U	< 1 U < 1 U	
p-Isopropyltoluene	ug/L			< 1 U		<1U	-	< 1 U	-	<10		< 1 U		< 1 U		< 1 U		< 1 U	<10	<1U		< 1 U	< 1 U	
sec-Butylbenzene	ug/L			<1U	-	<1U	-	<1U	-	<1U	-	<1U		<1U	-	<1U		<1U	<1U	<1U	-	<1U	<1U	
Styrene tert-Butylbenzene	ug/L ug/L			<1U		< 1 U < 1 U		<1U <1U	-	<1U		<1U		<1U <1U		<1U <1U		<1U <1U	<1U	<1U <1U		<1U <1U	< 1 U < 1 U	
Tetrachloroethene (PCE)	ug/L	5	15	9.4	9.3	20	20	12	14	27	< 1 U	150	160	36	45	28	34	18	25	11	17	39	23	22
trans-1,2-Dichloroethene trans-1,3-Dichloropropene	ug/L ug/L		< 1 UJ	<1U <1U	< 1 UJ 	<1U <1U	< 1 UJ	<1U <1U	< 1 UJ 	<1U <1U	<1U 	<1U <1U	< 1 U 	<1U <1U	< 1 U 	<1U <1U	<1U 	<1U <1U	<1U <1U	<1U <1U	< 1 UJ 	<1U <1U	< 1 U < 1 U	< 1 U
Trichloroethene (TCE)	ug/L ug/L		1.4 J	1.6	1.5 J	5.1	2.7 J	1.1	1.4 J	6.2	 <1U	45	40	8.7	9.1	3.9	5.4	1.4	2.2	1.4	2.5 J	4.9	3.2	3.6
Trichlorofluoromethane	ug/L	2400		< 1 U		<1U		< 1 U	-	< 1 U	-	<10		< 1 U		< 1 U		<10	< 1 U	< 1 U		<10	< 1 U	
Vinyl Acetate Vinyl Chloride	ug/L ug/l	8000 0.292	 < 0.2 U																					
- inyi Onionae	ug/L	V.LJL	- 0.2 0	- 0.2 0	- 0.2 0	- 0.2 0	- 0.2 0	- 0.2 0	- 0.2 0	- 0.2 0	- 0.2 0	- 0.2 0	- 0.2 0	- 0.2 0	- 0.2 0	- 0.2 0	- 0.2 0	- 0.2 0	- 0.2 0	- 0.2 0	- 0.2 0	- 0.2 0	- 0.2 0	- 0.2 0

Notes; Bold - detected Blue Shaded - Detected result exceeded screening level U - Analyte not detected at or above Reporting Limit (RL)

J - Result value estimated
"--" - indicates results not available

Aspect Consulting 6/4/2021 S:\Walker Chevrolet 080190\D rolet 080190\Deliverables\Remedial Investigation Work Plan_2021\APPENDICES\App A Data\A-3 A-4 Groundwater Summary 20210503

			Location	MW-2	MW-2	MW-2	MW-2	MW-2	MW-2	MW-5	MW-5	MW-5	MW-7	MW-7	MW-7	MW-8	MW-8	MW-8	MW-8
			Date	02/07/2012	12/12/2013	01/21/2015	11/28/2018	02/27/2019	03/26/2020	01/09/2014	11/28/2018	03/25/2020	02/06/2012	01/07/2014	03/26/2020	02/07/2012	12/17/2013	01/20/2015	11/28/2018
			Sample	MW-2-020712	MW-2-121213	MW-2-012115	MW-2-112818	MW-2-022719	MW-2-032620	MW-5-010914	MW-5-112818	MW-5-032520	MW-7-020612	MW-07-010714	MW-7-032620	MW-8-020712	MW-8-121713	MW-8-012015	MW-8-112818
Analyte	Fraction	Unit	Screening Level																
Conventionals																			
Chloride	Т	mg/L						50.6									-		
Nitrate as Nitrogen	Т	mg/L	26					< 0.100 U	0.452	0.7		0.492			1.75		-		
Nitrite as Nitrogen	Т	mg/L	1.6					0.675	0.726	< 0.1 U		< 0.100 U			< 0.200 U		-		
Sulfate	Т	mg/L						1.22	< 0.600 U	20.6		6.84			29.6		-		
Total Organic Carbon	Т	mg/L						209	209	< 1.5 U		2.66	-		< 0.500 U	-	1		
Dissolved Gases																			
Ethane	Т	mg/L																	
Ethene	Т	mg/L																	
Methane	Т	mg/L																	
Metals																			
Iron	Т	ug/L	11000		6170	294000		49200	38000	11500		4030		14500	21100		77300	89100	
Lead	D	ug/L	15	< 1 U									< 1 U			< 1 U			
Lead	Т	ug/L	15							5.8				3.53					
PCBAro																			
Aroclor 1016	Т	ug/L								< 0.1 U				< 0.1 U			-		
Aroclor 1221	Т	ug/L								< 0.1 U				< 0.1 U			-		
Aroclor 1232	Т	ug/L								< 0.1 U				< 0.1 U			-		
Aroclor 1242	Т	ug/L								< 0.1 U				< 0.1 U					
Aroclor 1248	Т	ug/L								< 0.1 U				< 0.1 U			-		
Aroclor 1254	Т	ug/L	0.044							< 0.1 U				< 0.1 U					
Aroclor 1260	Т	ug/L	0.044							< 0.1 U				< 0.1 U			-		

Bold - detected

Blue Shaded - Detected result exceeded screening level

U - Analyte not detected at or above Reporting Limit (RL) shown

J - Result value estimated

D - Dissolved Fraction (filtered) sample result

T - Total Fraction (unfiltered) sample result

			Location		MW-15	MW-15	MW-15	MW-16	MW-16	MW-16	MW-16	MW-17	MW-17	MW-17	MW-18	MW-19	MW-19	MW-19
			Date	03/25/2020	12/17/2013	11/28/2018	03/23/2020	12/13/2013	01/21/2015	11/28/2018	03/25/2020	12/13/2013	11/28/2018	03/24/2020	12/12/2013	01/08/2014	01/21/2015	11/28/2018
			Sample	MW-8-032520	MW-15-121713	MW-15-112818	MW-15-032320	MW-16-121313	MW-16-012115	MW-16-112818	MW-16-032520	MW-17-121313	MW-17-112818	MW-17-032420	MW-18-121213	MW-19-010814	MW-19-012115	MW-19-112818
Analyte	Fraction	Unit	Screening Level															
Conventionals																		
Chloride	Т	mg/L																
Nitrate as Nitrogen	Т	mg/L	26	< 0.100 U			< 0.100 U	1		1	0.122	-		0.222	1			
Nitrite as Nitrogen	Т	mg/L	1.6	< 0.100 UJ			< 0.100 U	-		-	< 0.100 U			0.402	-			
Sulfate	Т	mg/L		0.557			16	1		1	2.09	-		1.93	1			
Total Organic Carbon	Т	mg/L		157			6.59	-		1	63.4			258	-			
Dissolved Gases																		
Ethane	T	mg/L																
Ethene	Т	mg/L																
Methane	T	mg/L																
Metals																		
Iron	Т	ug/L	11000	20300	968		3630	4130	62500		21500	32800		36400	216	113000	59400	
Lead	D	ug/L	15															
Lead	Т	ug/L	15															
PCBAro																		
Aroclor 1016	Т	ug/L								-								
Aroclor 1221	T	ug/L																
Aroclor 1232	Т	ug/L																
Aroclor 1242	T	ug/L																
Aroclor 1248	Т	ug/L								-								
Aroclor 1254	T	ug/L	0.044															
Aroclor 1260	T	ug/L	0.044															

Bold - detected

Blue Shaded - Detected result exceeded screening level

U - Analyte not detected at or above Reporting Limit (RL) shown

J - Result value estimated

D - Dissolved Fraction (filtered) sample result

T - Total Fraction (unfiltered) sample result

			Location Date	MW-19 03/24/2020	MW-20 01/08/2014	MW-20 01/20/2015	MW-20 11/28/2018	MW-20 02/28/2019	MW-20 07/15/2019	MW-20 12/12/2019	MW-20 03/24/2020	MW-21 12/17/2013	MW-21 01/20/2015	MW-21 11/28/2018	MW-21 03/25/2020	MW-23 03/14/2019	MW-23 03/26/2020	MW-24 02/13/2019
			Date	03/24/2020	01/00/2014	01/20/2013	11/20/2010	02/20/2013	07713/2013	12/12/2013	03/24/2020	12/1//2013	01/20/2013	11/20/2010	03/23/2020	03/14/2013	03/20/2020	02/13/2013
			Sample	MW-19-032420	MW-20-010814	MW-20-012015	MW-20-112818	MW-20-022819	MW-20-071519	MW-20-121219	MW-20-032420	MW-21-121713	MW-21-012015	MW-21-112818	MW-21-032520	MW-23-031419	MW-23-032620	MW-24-021319
Analyte	Fraction	Unit	Screening Level															
Conventionals																		
Chloride	T	mg/L						31.4										32.9
Nitrate as Nitrogen	T	mg/L	26	< 0.200 UJ				< 0.100 U		0.252 J	0.105 J				0.566		0.912	0.606 J
Nitrite as Nitrogen	T	mg/L	1.6	< 0.200 UJ				0.128		2.74 J	1.3				1.1		< 0.100 UJ	< 0.200 UJ
Sulfate	T	mg/L		< 0.600 U				< 0.300 U		< 0.3	< 0.300 U				8.42		24.9	12.6
Total Organic Carbon	T	mg/L		142				179		809	304				241		< 0.500 U	0.751
Dissolved Gases																		
Ethane	T	mg/L							< 0.0162 U	< 0.0162								
Ethene	T	mg/L							< 0.0151 U	< 0.0151								
Methane	T	mg/L							10.2	3.73								
Metals																		
Iron	T	ug/L	11000	89000	40800	50600		71000		114000	73000	79100	42200		34300		4950	3640
Lead	D	ug/L	15														-	
Lead	T	ug/L	15															
PCBAro																		
Aroclor 1016	T	ug/L																
Aroclor 1221	T	ug/L																
Aroclor 1232	T	ug/L															-	
Aroclor 1242	Т	ug/L																
Aroclor 1248	T	ug/L															-	
Aroclor 1254	T	ug/L	0.044														-	
Aroclor 1260	T	ug/L	0.044															

Bold - detected

Blue Shaded - Detected result exceeded screening level

U - Analyte not detected at or above Reporting Limit (RL) shown

J - Result value estimated

D - Dissolved Fraction (filtered) sample result

T - Total Fraction (unfiltered) sample result

			Location Date	MW-24 08/27/2019	MW-24 12/12/2019	MW-24 03/26/2020	MW-25 02/13/2019	MW-25 03/26/2020	MW-26 02/13/2019	MW-26 08/28/2019	MW-26 12/13/2019	MW-26 03/25/2020	MW-27 02/13/2019	MW-27 03/24/2020	MW-28 03/26/2019	MW-28 03/25/2020	MW-29 03/26/2019	MW-29 03/25/2020
			Sample	MW-24-082719	MW-24-121219	MW-24-032620	MW-25-021319	MW-25-032620	MW-26-021319	MW-26-082719	MW-26-121319	MW-26-032520	MW-27-021319	MW-27-032420	MW-28-032619	MW-28-032520	MW-29-032619	MW-29-032520
Analyte	Fraction	Unit	Screening Level															
Conventionals																		
Chloride	Т	mg/L					48.5		46.9				298		-		-	
Nitrate as Nitrogen	Т	mg/L	26	0.566	0.307 J	< 0.200 U	0.624 J	0.556	1.78 J	1.92	1.85 J	1.69	2.41 J	2.01	-	1.76	-	1.29
Nitrite as Nitrogen	Т	mg/L	1.6	< 0.2 UJ	< 0.1 UJ	< 0.200 U	0.308 J	< 0.200 U	< 0.200 UJ	< 0.2 UJ	< 0.1 UJ	< 0.100 U	< 1.00 UJ	< 0.200 U	-	< 0.200 U	-	< 0.100 U
Sulfate	Т	mg/L		11.6	9.69	8.86	16.1	13.3	14.4	13.7	12.9	13.4	18.9	23.1	1	18.5	-	14.6
Total Organic Carbon	Т	mg/L		3.36	2.43	3.25	0.862	< 0.500 U	< 0.500 U	< 0.5 U	< 1	< 0.500 U	0.719	0.506	1	< 0.500 U	1	< 0.500 U
Dissolved Gases																		
Ethane	Т	mg/L		< 0.0162 U	< 0.0162										1		1	
Ethene	Т	mg/L		< 0.0151 U	< 0.0151										1		1	
Methane	Т	mg/L		0.0278	2.3										-		-	
Metals	·						•	•				•						
Iron	Т	ug/L	11000	41400	4070	3470	1670	829	4240	49400	51700	45300	3220	6940		3060	-	17200
Lead	D	ug/L	15	1											1		1	
Lead	Т	ug/L	15														-	
PCBAro																		
Aroclor 1016	Т	ug/L		1											1		1	
Aroclor 1221	Т	ug/L		-											-		-	
Aroclor 1232	Т	ug/L		-											-		-	
Aroclor 1242	Т	ug/L		-											-		-	
Aroclor 1248	Т	ug/L													-		-	
Aroclor 1254	Т	ug/L	0.044														==	
Aroclor 1260	Т	ug/L	0.044														==	

Bold - detected

Blue Shaded - Detected result exceeded screening level

U - Analyte not detected at or above Reporting Limit (RL) shown

J - Result value estimated

D - Dissolved Fraction (filtered) sample result

T - Total Fraction (unfiltered) sample result

			Location Date	MW-30 02/25/2019	MW-30 03/26/2020	MW-31 02/25/2019	MW-31 03/26/2020	MW-32 03/26/2019	MW-32 03/26/2020	MW-33 03/26/2019	MW-33 03/26/2020	MW-34 07/15/2019	MW-34 08/27/2019	MW-34 12/13/2019	MW-34 03/25/2020	MW-35 08/28/2019	MW-35 12/13/2019	MW-35 03/25/2020
				MW-30-022519	MW-30-032620	MW-31-022519	MW-31-032620	MW-32-032619	MW-32-032620	MW-33-032619	MW-33-032620	MW-34-071519	MW-34-082719	MW-34-121319	MW-34-032520	MW-35-082719	MW-35-121319	MW-35-032520
Analyte	Fraction	Unit	Screening Level															
Conventionals																		
Chloride	Т	mg/L		10.1		23.7									-		-	
Nitrate as Nitrogen	Т	mg/L	26	1.17	1.71	1.09	0.462		2.95		11.1 J	0.484	0.284 J	0.208 J	0.445	0.268 J	0.388 J	0.611
Nitrite as Nitrogen	Т	mg/L	1.6	< 0.2 U	< 0.200 U	0.166 J	< 0.100 UJ		< 0.200 U		< 0.200 U	0.125	< 0.4 UJ	< 0.1 UJ	< 0.100 U	1.17 J	< 0.1 UJ	< 0.100 U
Sulfate	Т	mg/L		24.2	35.3	13.3	13.3		17		27.3	15.1	7.48	4.26	8.65	7.27	13.2	13.1
Total Organic Carbon	Т	mg/L		1.24	1.17	0.723	0.541		< 0.500 U		< 0.500 U	3.9 J	20.5	6.76	1.23	132	3.66	0.699
Dissolved Gases																		
Ethane	T	mg/L										< 0.0162 U	< 0.0162 U	< 0.0162	1		< 0.0162	
Ethene	Т	mg/L										< 0.0151 U	< 0.0151 U	< 0.0151	1		< 0.0151	
Methane	T	mg/L										0.0309	< 0.00863 U	0.0646	1		< 0.00863	
Metals			•	•	•				•	•								•
Iron	Т	ug/L	11000	4530	6920	8680	8820		2760		5280	3650	6090	7320	2370	6170	4660	2220
Lead	D	ug/L	15						-						1		1	
Lead	Т	ug/L	15												1		1	
PCBAro																		
Aroclor 1016	Т	ug/L													1		1	
Aroclor 1221	Т	ug/L																
Aroclor 1232	Т	ug/L													1		1	
Aroclor 1242	Т	ug/L													-		-	
Aroclor 1248	Т	ug/L													-		-	
Aroclor 1254	Т	ug/L	0.044			==											==	
Aroclor 1260	Т	ug/L	0.044												-		-	

Bold - detected

Blue Shaded - Detected result exceeded screening level

U - Analyte not detected at or above Reporting Limit (RL) shown

J - Result value estimated

D - Dissolved Fraction (filtered) sample result

T - Total Fraction (unfiltered) sample result

Table A-4. Deeper Water Bearing Zone Groundwater Quality Project No. 080190, Morell's Dry Cleaners, Tacoma, Washington

		Location	MW-8D	MW-8D	MW-8D	MW-8D	MW-8D	MW-8D	MW-8D	MW-8D	MW-8D	MW-8D	MW-8D	MW-12D	MW-12D	MW-12D	MW-12D	MW-12D	MW-12D	MW-12D	MW-12D	MW-12D
		Date	05/11/2009	12/22/2010	02/06/2012	01/10/2014	04/28/2015	09/08/2015	02/02/2016	09/07/2016	01/12/2017	04/09/2019	03/23/2020	12/22/2010	02/06/2012	01/10/2014	04/29/2015	09/10/2015	02/02/2016	09/07/2016	01/12/2017	03/24/2020
Analyte	Unit S	Sample Screening Level	MW-8D-051109	MW-8D-122210	MW-8D-020612	MW-8D-011014	MW-8D-042815	MW-8D-090815	MW-8D-020216	MW-8D-090916	MW-8D-011217	MW-8D-040919	MW-8D-032320	MW-12D-122210	MW-12D-020612	MW-12D-011014	MW-12D-042915	MW-12D-091015	MW-12D-020216	MW-12D-090716	MW-12D-011217	MW-12D-032420
BTEX																						
Benzene Toluene	ug/L ug/L	1000	<1U	< 0.35 U	< 0.35 U	< 0.2 U < 0.2 U	< 0.35 U < 1 U				-	-		< 0.35 U	< 0.35 U	< 0.2 U	< 0.35 U			-	-	
Ethylbenzene	ug/L	700	<1U	< 1 U	< 1 U	< 0.2 U	< 1 U				_	-		< 1 U	< 1 U	< 0.2 U	< 1 U			_		
Other SVOCs																						
1,4-Dioxane	ug/L	0.44 16	-						-		-	-				-	-	-		-	-	-
Dibenzofuran Hexachlorobutadiene	ug/L ug/L	0.56	 <1U	 < 1 U	 < 1 U	< 0.5 U	 <1U		-		-			 < 1 U	 <1U	< 0.5 U	 < 1 U					-
Naphthalene	ug/L	160	< 1 U	< 1 U	< 1 U	0.8	< 1 U		-					< 1 U	< 1 U	< 0.5 U	< 1 U					
VOCs		4.7								1			ı			-0011		1				
1,1,1,2-Tetrachloroethane	ug/L ug/L	1.7 200	<1U	<1U	<1U <1U	< 0.2 U < 0.2 U	<1U <1U	 < 1 U	 <1U	 <1U	 < 1 U	 < 1 U	 < 1 UJ	<1U	< 1 U < 1 U	< 0.2 U	<1U	 < 1 U	 < 1 U	 < 1 U	 < 1 U	 < 1 UJ
1,1,2,2-Tetrachloroethane	ug/L	0.22	< 1 U	< 1 U	< 1 U	< 0.2 U	< 1 U		-		-			< 1 U	< 1 U	< 0.2 U	< 1 U			-		-
1,1,2-Trichloroethane	ug/L	0.77	< 1 U	< 1 U	< 1 U	< 0.2 U	< 1 U		-		-			< 1 U	< 1 U	< 0.2 U	< 1 U					
1,1,2-Trichlorotrifluoroethane 1,1-Dichloroethane	e ug/L ug/L	240000 7.7	 <1U	 < 1 U	 < 1 U	< 0.2 U < 0.2 U	 <1U	 <1U	 <1U	 <1U	 <1U	 <1U	 < 1 UJ	 < 1 U	 < 1 U	< 0.2 U	 < 1 U	 < 1 U	 <1U	 < 1 U	 < 1 U	 < 1 UJ
1,1-Dichloroethene	ug/L	400	<1U	< 1 U	< 1 U	< 0.2 U	< 1 U	<1U	< 1 U	< 1 U	< 1 U	<10	< 1 UJ	< 1 U	< 1 U	< 0.2 U	< 1 U	<1U	< 1 U	< 1 U	< 1 U	< 1 UJ
1,1-Dichloropropene	ug/L		< 1 U	< 1 U	< 1 U	< 0.2 U	< 1 U		-		-			< 1 U	< 1 U	< 0.2 U	< 1 U		-			-
1,2,3-Trichlorobenzene 1,2,3-Trichloropropane	ug/L	0.00038	< 1 U	< 1 U	<1U <1U	< 0.5 U < 0.5 U	<1U <1U		-		-	-	-	< 1 U	<1U	< 0.5 U	< 1 U	-		-	-	
1,2,3-Trichloropropane	ug/L ug/L	1.5	<1U	<1U	<1U	< 0.5 U	<1U		-		-			<1U	< 1 U	< 0.5 U	< 1 U	-		-	-	-
1,2,4-Trimethylbenzene	ug/L	80	< 1 U	< 1 U	< 1 U	< 0.2 U	< 1 U		-		-			< 1 U	< 1 U	< 0.2 U	< 1 U					
1,2-Dibromo-3-chloropropan 1,2-Dibromoethane (EDB)		0.055	<1U	< 10 U	< 10 U	< 0.5 U < 0.2 U	< 10 U							< 10 U	< 10 U	< 0.5 U	< 10 U	-		-		-
1,2-Dibromoethane (EDB) 1,2-Dichlorobenzene	ug/L ug/L	720	<1U	<1U	<1U <1U	< 0.2 U	<1U <1U		-		+ -			<1U <1U	< 1 U	< 0.2 U	< 1 U			-	-	-
1,2-Dichloroethane (EDC)	ug/L		< 1 U	< 1 U	< 1 U	< 0.2 U	< 1 U	<1U	< 1 U	< 1 U	<1U	<1U	< 1 UJ	< 1 U	< 1 U	< 0.2 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 UJ
1,2-Dichloropropane	ug/L	1.2	<1U	<1U	< 1 U	< 0.2 U	<1U		-		-			<10	<10	< 0.2 U	<10			-	-	
1,3,5-Trimethylbenzene 1,3-Dichlorobenzene	ug/L ug/L	80	<1U	< 1 U < 1 U	<1U <1U	< 0.2 U < 0.2 U	<1U <1U		-		-			< 1 U < 1 U	< 1 U	< 0.2 U	< 1 U < 1 U			-		
1,3-Dichloropropane	ug/L		< 1 U	< 1 U	< 1 U	< 0.2 U	< 1 U		-		-			< 1 U	< 1 U	< 0.2 U	< 1 U			-		
1,4-Dichloro-2-Butene	ug/L					< 1 U			-		-					< 1 U						
1,4-Dichlorobenzene 2,2-Dichloropropane	ug/L ug/L	8.1	<1U	<1U <1U	<1U <1U	< 0.2 U < 0.2 U	<1U <1U							<1U	< 1 U < 1 U	< 0.2 U	<1U			-		
2-Butanone	ug/L	4800	< 10 U	< 10 U	< 10 U	< 5 U	< 10 U		_		_			< 10 U	< 10 U	< 5 U	< 10 U					-
2-Chloroethyl Vinyl Ether	ug/L					<10			-		-				-	<1U	-	-	-	-		-
2-Chlorotoluene 2-Hexanone	ug/L ug/L	160 40	< 1 U < 10 U	< 1 U < 10 U	< 1 U < 10 U	< 0.2 U < 5 U	< 1 U < 10 U		-					< 1 U < 10 U	< 1 U < 10 U	< 0.2 U	< 1 U < 10 U					
4-Chlorotoluene	ug/L	40	< 1 U	< 1 U	< 1 U	< 0.2 U	< 1 U				-	-		< 1 U	< 1 U	< 0.2 U	< 1 U					-
4-Methyl-2-pentanone	ug/L	640	< 10 U	< 10 U	< 10 U	< 5 U	< 10 U		-		-			< 10 U	< 10 U	< 5 U	< 10 U					
Acetone Acrolein	ug/L ug/L	7200 4	< 10 U	13	< 10 U	< 5 U	< 10 U		-					12	< 10 U	< 5 U	< 10 U			-		
Acrylonitrile	ug/L	0.081				< 1 U	-				_					<1U		-		-		
Bromobenzene	ug/L	64	< 1 U	< 1 U	< 1 U	< 0.2 U	<1U		-		-			< 1 U	< 1 U	< 0.2 U	< 1 U			-		-
Bromochloromethane Bromodichloromethane	ug/L ug/L	7.06	 <1U	 < 1 U	 <1U	< 0.2 U < 0.2 U	 <1U		-		-			 <1U	 < 1 U	< 0.2 U	 <1U					
Bromoethane	ug/L	7.00				< 0.2 U	-				-					< 0.2 U						_
Bromoform	ug/L	5.5	< 1 U	< 1 U	< 1 U	< 0.2 U	< 1 U		-					< 1 U	< 1 U	< 0.2 U	< 1 U			-		
Bromomethane Carbon Disulfide	ug/L ug/L	11 800	< 1 U	< 1 U	< 1 U	< 1 U < 0.2 U	< 1 U							< 1 U	< 1 U	< 1 U < 0.2 U	< 1 U					
Carbon Tetrachloride	ug/L	5	1.9	2	1.8	1.7	1.7				-			< 1 U	< 1 U	< 0.2 U	< 1 U					-
Chlorobenzene	ug/L	160	<1U	< 1 U	< 1 U	< 0.2 U	< 1 U		-					< 1 U	< 1 U	< 0.2 U	< 1 U	-		-		-
Chloroethane Chloroform	ug/L ug/L	14.1	<1U	< 1 U	<1U <1U	< 0.2 U 0.68	<1U <1U	< 1 U	<1U 	< 1 U	< 1 U	< 1 U	< 1 U	<1U	< 1 U < 1 U	< 0.2 U	<1U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U
Chloromethane	ug/L	17.1	<10	< 10 U	< 10 U	< 0.5 U	< 10 U		_	-	-	-		< 10 U	< 10 U	< 0.5 U	< 10 U				-	
cis-1,2-Dichloroethene (cDC	E) ug/L	16	11	21	26	42	54	65	62	69	77	97	110	22	17	22	13	9.1	9.2	3.4	3	8.9
cis-1,3-Dichloropropene Dibromochloromethane	ug/L ug/L	0.52	< 1 U	< 1 U	<1U <1U	< 0.2 U < 0.2 U	<1U <1U		-					< 1 U	<1U	< 0.2 U	<1U					
Dibromomethane	ug/L	80	<10	<1U	< 1 U	< 0.2 U	<10		_	-	- -	 -		< 1 U	< 1 U	< 0.2 U	< 1 U				-	-
Dichlorodifluoromethane	ug/L	1600	<10	<1U	<1U		<1U		-		-			< 1 U	< 1 U		<10	-			-	-
Isopropylbenzene m,p-Xylenes	ug/L ug/L	800 1600	< 1 U < 2 U	< 1 U < 2 U	< 1 U < 2 U	< 0.2 U < 0.4 U	< 1 U < 2 U		-		-			< 1 U < 2 U	< 1 U	< 0.2 U < 0.4 U	< 1 U < 2 U				-	
Methyl tert-butyl ether (MTBI		20	<1U	<1U	< 1 U		< 1 U							< 1 U	< 1 U		< 1 U					
Methylene Chloride	ug/L	5	< 5 U	< 5 U	< 5 U	< 1 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 1 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U
Methyliodide n-Butylbenzene	ug/L ug/L	400				< 1 U < 0.2 U			-		-					< 1 U < 0.2 U	-			-		
n-Hexane	ug/L	480	-									-					_	-		_	-	_
n-Propylbenzene	ug/L	800	< 1 U	< 1 U	< 1 U	< 0.2 U	<10		-		-			< 1 U	< 1 U	< 0.2 U	< 1 U		-	-		-
o-Xylene p-Isopropyltoluene	ug/L ug/L	1600	<1U	< 1 U	<1U	< 0.2 U < 0.2 U	<1U		-		-			< 1 U	<1U <1U	< 0.2 U	<1U					
sec-Butylbenzene	ug/L ug/L	800	<1U	<1U	<1U	< 0.2 U	<1U		-		-			<1U	< 1 U	< 0.2 U	< 1 U	-		-		-
Styrene	ug/L	1600		< 1 U	< 1 U	< 0.2 U	< 1 U		-					< 1 U	< 1 U	< 0.2 U	< 1 U			-		
tert-Butylbenzene Tetrachloroethene (PCE)	ug/L	800	<1U	<1U	<1U <1U	< 0.2 U < 0.2 U	<1U <1U	 <1U	 <1U		 <1U	 <1U	 <1U	< 1 U	<1U	< 0.2 U	<1U	 <1U	 <1U	 <1U	 <1U	 <1U
trans-1,2-Dichloroethene	ug/L ug/L	5 160	<1U	<1U	<1U	< 0.2 U	<1U	< 1 U	<1U	<1U	<1U	<1U	< 1 UJ	6.1 < 1 U	<1U	0.7 < 0.2 U	< 1 U	< 1 U	< 1 U	< 1 U	<1U	< 1 UJ
trans-1,3-Dichloropropene	ug/L		< 1 U	< 1 U	< 1 U	< 0.2 U	< 1 U		-		-			< 1 U	< 1 U	< 0.2 U	< 1 U	-	ı	-		-
Trichloroethene (TCE)	ug/L	5	<10	<1U	< 1 U	< 0.2 U	<10	< 1 U	<1U	<10	< 1 U	< 1 U	< 1 UJ	<1U	<10	0.34	<10	< 1 U	< 1 U	< 1 U	< 1 U	< 1 UJ
Trichlorofluoromethane Vinyl Acetate	ug/L ug/L	2400 8000	< 1 U	< 1 U	< 1 U	< 0.2 U < 0.2 U	< 1 U		-		-			< 1 U	< 1 U	< 0.2 U	<1U 					
Vinyl Chloride	ug/L	0.292	< 0.2 U	< 0.2 U	< 0.2 U	< 0.2 U	< 0.2 U	< 0.2 U	< 0.2 U	< 0.2 U	< 0.2 U	< 0.2 U	< 0.2 U	< 0.2 U	< 0.2 U	< 0.2 U	< 0.2 U	< 0.2 U	< 0.2 U	< 0.2 U	< 0.2 U	< 0.2 U
					•						•							•		•		

Bold - detected
Blue Shaded - Detected result exceeded screening level
U - Analyte not detected at or above Reporting Limit (RL) shown
J - Result value estimated
"..." - indicates results not available

Aspect Consulting
6/4/2021
S:Walker Chevrolet 080190|Deliverables/Remedial Investigation Work Plan_2021\APPENDICES\App A Data\A-3 A-4 Groundwater Summary 20210503

Table A-4. Deeper Water Bearing Zone Groundwater Quality Project No. 080190, Morell's Dry Cleaners, Tacoma, Washington

		Location Date	MW-13D 12/22/2010	MW-13D 02/07/2012	MW-13D 12/16/2013	MW-13D 04/29/2015	MW-13D 09/09/2015	MW-13D 02/02/2016	MW-13D 09/07/2016	MW-13D 01/12/2017	MW-13D 04/09/2019	MW-13D 03/24/2020	MW-14D 02/06/2012	MW-14D 01/23/2014	MW-14D 04/29/2015	MW-14D 09/09/2015	MW-14D 02/02/2016	MW-14D 09/07/2016	MW-14D 01/12/2017	MW-14D 04/09/2019	MW-14D 03/25/2020
		Samala	MW 12D 122210	MW 42D 020742	MW-13D-121613	MW 12D 042015	MW-13D-090915	MW 12D 020216	MW 42D 000746	MW-13D-011217	MW 42D 040040	MW 42D 022420	MW 44D 020642	MW-14D-012314	MW-14D-042915	MW-14D-090915	MW 44D 020246	MW 14D 000716	MW 14D 011217	MW-14D-040919	MW 44D 022520
Analyte	Unit	Screening Level	WW-13D-122210	WW-13D-020712	WW-13D-121613	WW-13D-042913	IMWV-13D-090913	WW-13D-020216	WW-13D-030716	WW-13D-011217	WIVV-13D-040313	WW-13D-032420	WW-14D-020612	WW-14D-012314	WW-14D-042915	WW-14D-030313	WW-14D-020216	WWV-14D-030716	WW-14D-011217	WW-14D-040919	WW-14D-032520
BTEX Benzene	ug/L	5	< 0.35 U	< 0.35 U	< 0.35 U	< 0.35 U					-		< 0.35 U	< 0.35 U	< 0.35 U	-					
Toluene	ug/L	1000	< 1 U	< 1 U	<1U	< 1 U					-		< 1 U	< 1 U	< 1 U	-					
Ethylbenzene Other SVOCs	ug/L	700	< 1 U	< 1 U	< 1 U	< 1 U							< 1 U	<1U	<1U						
1,4-Dioxane	ug/L	0.44												< 10 U							
Dibenzofuran Hexachlorobutadiene	ug/L ug/L	16 0.56	 < 1 U	 < 1 U	 < 1 U	 < 1 U					-		 <1U	 <1U	 < 1 U	-					
Naphthalene	ug/L	160	< 1 U	< 1 U	< 1 U	< 1 U							< 1 U	2	< 1 U						
VOCs 1,1,1,2-Tetrachloroethane	ug/L	1.7	< 1 U	< 1 U	< 1 U	< 1 U			I				< 1 U	< 1 U	< 1 U						
1,1,1-Trichloroethane	ug/L	200	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 UJ	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 UJ
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane	ug/L ug/L	0.22 0.77	< 1 U < 1 U	<1U	<1U	< 1 U < 1 U							<1U	<1U <1U	<1U <1U	-					-
1,1,2-Trichlorotrifluoroethane	ug/L	240000			-	-			-	-	-	=				-			-	-	-
1,1-Dichloroethane 1,1-Dichloroethene	ug/L ug/L	7.7 400	< 1 U	<1U	<1U	< 1 U < 1 U	<1U	< 1 U	< 1 U	<1U <1U	< 1 U	< 1 UJ < 1 UJ	<1U <1U	<1U <1U	<1U	< 1 U < 1 U	<1U <1U	< 1 U	< 1 U	<1U <1U	< 1 UJ < 1 UJ
1,1-Dichloropropene	ug/L		<10	< 1 U	< 1 U	< 1 U							< 1 U	< 1 U	< 1 U	-					
1,2,3-Trichlorobenzene 1,2,3-Trichloropropane	ug/L ug/L	0.00038	< 1 U	< 1 U	<1U	< 1 U							< 1 U	<1U <1U	<1U	-			-		
1,2,4-Trichlorobenzene	ug/L	1.5	< 1 U	< 1 U	< 1 U	< 1 U					-		< 1 U	< 1 U	< 1 U			-		-	
1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane	ug/L ug/L	80 0.055	< 1 U < 10 U					-		< 1 U < 10 U	< 1 U < 10 U	< 1 U < 10 U	-		-			-			
1,2-Dibromoethane (EDB)	ug/L	0.01	< 1 U	< 1 U	< 1 U	< 1 U					-		< 1 U	< 1 U	<1U	-					
1,2-Dichlorobenzene 1,2-Dichloroethane (EDC)	ug/L ug/L	720	< 1 U	<1U	<1U	<1U	 < 1 U	 < 1 U	 <1U	 <1U	 <1U	 < 1 UJ	<1U <1U	<1U <1U	<1U	 <1U	 <1U	 <1U	 < 1 U	 <1U	 < 1 UJ
1,2-Dichloropropane	ug/L	1.2	< 1 U	< 1 U	< 1 U	< 1 U							< 1 U	< 1 U	< 1 U	-					
1,3,5-Trimethylbenzene 1,3-Dichlorobenzene	ug/L ug/L	80	< 1 U	<1U	<1U	< 1 U < 1 U							< 1 U	<1U <1U	<1U						
1,3-Dichloropropane	ug/L		< 1 U	< 1 U	< 1 U	< 1 U					-		< 1 U	< 1 U	<1U	-			-		
1,4-Dichloro-2-Butene 1,4-Dichlorobenzene	ug/L ug/L	8.1	 < 1 U	 <1U	 <1U	 <1U					<u></u>		 < 1 U	 <1U	 < 1 U	-			-		
2,2-Dichloropropane	ug/L		< 1 U	< 1 U	< 1 U	< 1 U							< 1 U	< 1 U	< 1 U	-					-
2-Butanone 2-Chloroethyl Vinyl Ether	ug/L ug/L	4800	< 10 U	< 10 U	< 10 U	< 10 U							< 10 U	< 10 U	< 10 U						
2-Chlorotoluene	ug/L	160	< 1 U	< 1 U	< 1 U	< 1 U							< 1 U	< 1 U	< 1 U						
2-Hexanone 4-Chlorotoluene	ug/L ug/L	40	< 10 U	< 10 U	< 10 U	< 10 U					-		< 10 U	< 10 U	< 10 U	-					
4-Methyl-2-pentanone	ug/L	640	< 10 U	< 10 U	< 10 U	< 10 U							< 10 U	< 10 U	< 10 U						
Acetone Acrolein	ug/L ug/L	7200 4	18 	< 10 U	< 10 U	< 10 U					-		< 10 U	< 10 U	< 10 U				-		
Acrylonitrile	ug/L	0.081														-					
Bromobenzene Bromochloromethane	ug/L ug/L	64	< 1 U 	< 1 U 	< 1 U	<1U 							< 1 U 	<1U 	< 1 U				-		
Bromodichloromethane	ug/L	7.06	< 1 U	< 1 U	< 1 U	< 1 U					-		< 1 U	< 1 U	< 1 U	-			-		
Bromoethane Bromoform	ug/L ug/L	5.5	 < 1 U	 < 1 U	 < 1 U	 < 1 U							 < 1 U	 < 1 U	 < 1 U						
Bromomethane	ug/L	11	< 1 U	< 1 U	< 1 U	< 1 U					-		< 1 U	< 1 U	< 1 U	1			-		-
Carbon Disulfide Carbon Tetrachloride	ug/L ug/L	800 5	 < 1 U	 < 1 U	 < 1 U	 < 1 U					-		 < 1 U	 < 1 U	 < 1 U						
Chlorobenzene	ug/L	160	< 1 U	< 1 U	< 1 U	< 1 U						-	< 1 U	< 1 U	< 1 U	-					-
Chloroethane Chloroform	ug/L ug/L	14.1	< 1 U	< 1 U	<1U	< 1 U < 1 U	< 1 U 	<1U <1U	<1U <1U	<1U <1U	< 1 U 										
Chloromethane	ug/L		< 10 U	< 10 U	< 10 U	< 10 U							< 10 U	< 10 U	< 10 U						
cis-1,2-Dichloroethene (cDCE) cis-1,3-Dichloropropene	ug/L ug/L	16	30 < 1 U	28 < 1 U	32 < 1 U	14 < 1 U	22	23 	13 	16 	12 	13 	28 < 1 U	4.5 < 1 U	2.5 < 1 U	15 	2.2	3.6	4.8	< 1 U 	1.8
Dibromochloromethane	ug/L	0.52	<1U	<1U	<1U	<1U			-		-		<10	<10	<1U	-			-	-	-
Dibromomethane Dichlorodifluoromethane	ug/L ug/L	80 1600	< 1 U	< 1 U < 1 U	< 1 U < 1 U	<1U <1U					<u>-</u>		< 1 U < 1 U	< 1 U < 1 U	< 1 U < 1 U	-				-	-
Isopropylbenzene	ug/L	800	< 1 U	<1U	<1U	<1U					-		<1U	<1U	<1U	-		-	-		
m,p-Xylenes Methyl tert-butyl ether (MTBE)	ug/L ug/L	1600 20	< 2 U	< 2 U	< 2 U	< 2 U		-			-		< 2 U < 1 U	< 2 U	< 2 U	-			-	-	-
Methylene Chloride Methyliodide	ug/L	5	< 5 U	< 5 U	< 5 U 	< 5 U	< 5 U 	< 5 U	< 5 U 	< 5 U 	< 5 U	< 5 U 	< 5 U 	< 5 U 							
n-Butylbenzene	ug/L ug/L	400			-						-					-			-		
n-Hexane	ug/L	480 800	 <1U	 <1U	 <1U	 <1U					-		 <1U	 <1U	 <1U	-				-	-
n-Propylbenzene o-Xylene	ug/L ug/L	1600	< 1 U	< 1 U	< 1 U	< 1 U							< 1 U	< 1 U	< 1 U	-			-		
p-Isopropyltoluene sec-Butylbenzene	ug/L	800	< 1 U < 1 U	<1U <1U	<1U <1U	<1U <1U							<1U <1U	<1U <1U	<1U <1U	-			-		
Styrene	ug/L ug/L	1600	< 1 U	<1U	<1U	<1U <1U					-		<1U <1U	<1U <1U	<1U <1U	-			-		-
tert-Butylbenzene Tetrachloroethene (PCE)	ug/L	800 5	< 1 U	< 1 U 4.2	< 1 U 5.9	<1U <1U	 4.1	2.2	2.3		 3.1	3.7	< 1 U 4.2	< 1 U 2.4	< 1 U 2.2			3.2	7.4	 <1U	1.8
trans-1,2-Dichloroethene	ug/L ug/L	160	14 < 1 U	< 1 U	<1U	<10	4.1 < 1 U	2.2 < 1 U	2.3 < 1 U	11 < 1 U	3.1 < 1 U	3.7 < 1 UJ	4.2 < 1 U	2.4 < 1 U	< 1 U	9.2 < 1 U	1.8 < 1 U	3.2 < 1 U	7.4 < 1 U	<1U	1.8 < 1 UJ
trans-1,3-Dichloropropene Trichloroethene (TCE)	ug/L	5	< 1 U 3.2	< 1 U 2.4	< 1 U 3.7	<1U <1U	2.2	2.1	1.7	3.2	 1.9	 1.7 J	< 1 U 3.3	< 1 U	<1U <1U	3.9	 <1U	 1.1	 1.9	 <1U	 < 1 UJ
Trichlorofluoromethane	ug/L ug/L	2400	3.2 < 1 U	2.4 < 1 U	3.7 <1U	<10		Z.1 	1.7	3.2 	1.9	1.7 J 	3.3 < 1 U	1 <1U	<1U	3.9	<10 	1.1	1.9		< 1 UJ
Vinyl Acetate	ug/L	8000 0.292	 < 0.2 U	 < 0.2 U			 < 0.2 U	 < 0.2 U			 < 0.2 U						 < 0.2 U			 < 0.2 U	 < 0.2 U
Vinyl Chloride Bold - detected	ug/L	0.292	> ∪.∠ ∪	<u> </u>	< 0.2 U	< 0.2 U	<u> </u>	<u> </u>	< 0.2 U	< 0.2 U	> U.∠ U	< 0.2 U	<u> </u>	< 0.2 U	< 0.2 U	<u> </u>	<u> </u>				

Bold - detected
Blue Shaded - Detected result exceeded screening level
U - Analyte not detected at or above Reporting Limit (RL) shown
J - Result value estimated
"..." - indicates results not available

Aspect Consulting
6/4/2021
S:Walker Chevrolet 080190|Deliverables/Remedial Investigation Work Plan_2021\APPENDICES\App A Data\A-3 A-4 Groundwater Summary 20210503

Table A-4. Deeper Water Bearing Zone Groundwater Quality Project No. 080190, Morell's Dry Cleaners, Tacoma, Washington

			Location	_	MW-8D	MW-8D	MW-12D	MW-13D	MW-13D	MW-13D	MW-14D	MW-14D	MW-14D
			Date	01/10/2014	04/09/2019	03/23/2020	03/24/2020	02/07/2012	04/09/2019	03/24/2020	02/06/2012	04/09/2019	03/25/2020
			Screening										
Analyte	Fraction	Unit	Level										
Conventionals													
Chloride	T	mg/L											
Nitrate as Nitrogen	Т	mg/L	26	1.6	-	2.13	3.93 J			3.31 J			3.38 J
Nitrite as Nitrogen	T	mg/L	1.6	< 0.1 U		< 0.100 U	< 0.100 U			< 0.100 U			< 0.100 U
Sulfate	Т	mg/L		22.8	-	21.2	19.1			19.8			20.2
Total Organic Carbon	T	mg/L		< 1.5 U		< 0.500 U	< 0.500 U			0.538			< 0.500 U
Metals													
Iron	T	ug/L	11000	790		502	6420			26900			8650
Lead	D	ug/L	15					< 1 U			< 1 U		
Lead	T	ug/L	15										

Bold - detected

Blue Shaded - Detected result exceeded screening level

U - Analyte not detected at or above Reporting Limit (RL) shown

J - Result value estimated

D - Dissolved Fraction (filtered) sample result

T - Total Fraction (unfiltered) sample result

		Location Date	SV-1 01/21/2009	SV-2 01/21/2009	SV-3 01/21/2009	SV-4 01/21/2009	VP-1 02/09/2012	VP-2 02/09/2012	VP-3 02/09/2012	VP-4 10/15/2014	VP-4 04/21/2015	VP-4 09/07/2016	VP-4 12/28/2016	VP-5 04/21/2015	VP-5 09/07/2016	VP-5 12/28/2016	VP-7 10/15/2014
Analyte	Unit	Screening Level ¹															
(None) Acetaldehyde	ug/m3	38										< 45 U	16		< 45 U	< 9 U	
APH C5 - C8 Aliphatic Hydrocarbor												1700	5600		1700	3500	
C9 - C12 Aliphatic Hydrocarbo C9 - C10 Aromatic Hydrocarbo BTEX										-		1100 < 250 U	3600 < 250 U		2400 < 250 U	460 < 250 U	
Benzene Toluene	ug/m3	11 76000	< 200 U < 200 U	< 0.58 U	< 140 U < 160 U	< 0.97 U	1300 2600	< 0.60 U	< 1.6 U	3.7	< 5.8 U	< 1.6 U	0.94 5.5	< 5.6 U < 6.6 U			
Ethylbenzene Total Xylenes	ug/m3 ug/m3	15000 15000	< 200 U	< 200 U	< 200 U	< 200 U	< 0.79 U 4.12	< 180 U	1.8	1700 4600	3.4 13.9	< 2.2 U 9.2	7.7 8.7	< 7.8 U	< 2.2 U	3.3 7.9	< 7.6 U
Other SVOCs 1,4-Dioxane	ug/m3	1000		l							< 0.67 U	< 90 UJ	< 0.36 U	< 6.5 U	< 90 UJ	< 0.36 U	
Hexachlorobutadiene Naphthalene	ug/m3	3.8 2.5	< 200 U < 200 U	 < 4.8 U	 < 900 U	 < 8.0 U		< 10 U	< 5.3 U 2.8	< 1.1 U	< 96 U	< 5.3 U	< 1.1 U				
VOCs 1,1,1,2-Tetrachloroethane	ug/m3	11	< 200 U	< 200 U	< 200 U	< 200 U											
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	ug/m3 ug/m3	76000 1.4	< 200 U < 200 U				< 1200 U < 1500 U	< 1.0 U < 1.3 U	< 2.7 U < 3.4 U	< 0.55 U < 0.69 U	< 9.9 U < 12 U	< 2.7 U < 3.4 U	< 0.55 U < 0.69 U	< 9.5 U < 12 U			
1,1,2-Trichloroethane 1,1,2-Trichlorotrifluoroethane	ug/m3 ug/m3	3 76000	< 200 U 	< 200 U 	< 200 U 	< 200 U 	-		-	< 1200 U 	< 1.0 U < 1.4 U	< 2.7 U < 3.8 U	< 0.55 U < 0.77 U	< 9.9 U < 14 U	< 2.7 U < 3.8 U	< 0.55 U < 0.77 U	< 9.5 U
1,1-Dichloroethane 1,1-Dichloroethene	ug/m3 ug/m3	52 3000	< 200 U	< 200 U < 200 U	< 200 U	< 200 U < 200 U				< 890 U < 880 U	< 0.76 U < 0.74 U	< 2 U < 2 U	< 0.4 U < 0.4 U	< 7.3 U < 7.2 U	< 2 U < 2 U	< 0.4 U < 0.4 U	< 7.1 U < 6.9 U
1,1-Dichloropropene 1,2,3-Trichlorobenzene	ug/m3 ug/m3		< 200 U	< 200 U < 200 U	< 200 U	< 200 U < 200 U											
1,2,3-Trichloropropane 1,2,3-Trimethylbenzene	ug/m3	20	< 200 U	< 200 U	< 200 U	< 200 U				-		< 12 U	< 2.5 U < 0.74 U	 < 67 U	 < 12 U	< 2.5 U	
1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane	ug/m3 ug/m3 ug/m3	30 910	< 200 U < 200 U < 1000 U					< 6.9 U 2.8	< 3.7 U < 12 U	3.8	< 8.9 U	< 3.7 U < 12 U	0.75 3				
1,2-Dibromoethane (EDB) 1,2-Dichlorobenzene	ug/m3 ug/m3	0.14 3000	< 200 U	< 200 U	< 200 U	< 200 U				< 1700 U	< 1.4 U	< 3.8 U	< 0.77 U < 1.2 U	< 14 U < 11 U	< 3.8 U	< 0.77 U	< 13 U
1,2-Dichloroethane (EDC) 1,2-Dichloropropane	ug/m3 ug/m3	3.2 23	< 200 U < 200 U				< 890 U	< 0.76 U < 0.86 U	< 2 U < 2.3 U	< 0.4 U < 0.46 U	< 7.3 U < 8.4 U	< 2 U < 2.3 U	< 0.4 U < 0.46 U	< 7.1 U			
1,3,5-Trimethylbenzene 1,3-Dichlorobenzene	ug/m3 ug/m3		< 200 U < 200 U					< 0.92 U < 1.1 U	< 12 U < 6 U	< 2.5 U < 1.2 U	< 8.9 U	< 12 U < 6 U	< 2.5 U < 1.2 U				
1,3-Dichloropropane 1,4-Dichlorobenzene	ug/m3 ug/m3	7.6	< 200 U < 200 U				 < 1300 U	 < 1.1 U	 < 3 U	 < 0.6 U	 < 11 U	 < 3 U	 < 0.6 U	 < 10 U			
1-Propene 2,2-Dichloropropane	ug/m3 ug/m3		 < 200 U	 < 200 U	 < 200 U	 < 200 U				-		4.8	8.3		< 3.4 U	10 	
2-Butanone 2-Chlorotoluene	ug/m3 ug/m3	76000	< 1000 U < 200 U				-	< 2.8 U	< 15 U	< 2.9 U	< 27 U	< 15 U	5.3				
2-Hexanone 2-Pentanone	ug/m3		< 1000 U 	< 1000 U	< 1000 U 	< 1000 U 					< 3.8 U	< 20 U < 18 U	< 4.1 U < 3.5 U	< 37 U 	< 20 U < 18 U	< 4.1 U < 3.5 U	
3-Hexanone 3-Pentanone	ug/m3		 < 200 U	 < 200 U	 < 200 U	 < 200 U						< 20 U < 18 U	< 4.1 U < 3.5 U		< 20 U < 18 U	< 4.1 U < 3.5 U	
4-Chlorotoluene 4-Methyl-2-pentanone Acetone	ug/m3 ug/m3 ug/m3	46000	< 1000 U 1000	< 1000 U < 1000 U	< 1000 U < 1000 U	< 1000 U < 1000 U				-	1 7.2	< 20 U < 24 U	< 4.1 U 4.8	17 170	< 20 U < 24 U	 < 4.1 U 8.4	
Acetonie Acetonitrile Acrolein	ug/m3 ug/m3	910 0.3								-		< 8.4 U	< 1.7 U < 0.92 U		< 8.4 U	< 1.7 U < 0.92 U	
Acrylonitrile Allyl Chloride	ug/m3 ug/m3	1.2	< 1000 U	< 1000 U	< 1000 U	< 1000 U					 < 2.9 UJ	< 1.1 U	< 0.22 U	 < 28 UJ	< 1.1 U	< 0.22 U	
Bromobenzene Bromochloromethane	ug/m3 ug/m3	910	< 200 U < 200 U								-						
Bromodichloromethane Bromoform	ug/m3 ug/m3	2.3 76	< 200 U < 200 U				-	< 1.2 U < 1.9 U	< 3.4 U < 10 U	< 0.67 U < 2.1 U	< 12 U < 19 U	< 3.4 U < 10 U	< 0.67 U < 2.1 U				
Bromomethane Butyraldehyde	ug/m3 ug/m3	76	< 200 U 	< 200 U 	< 200 U 	< 200 U 					< 3.6 U	< 1.9 U < 15 U	< 0.39 U < 2.9 U	< 35 U 	< 1.9 U < 15 U	< 0.39 U < 2.9 U	
Carbon Disulfide Carbon Tetrachloride	ug/m3 ug/m3	11000 14	 < 200 U	 < 200 U	 < 200 U	 < 200 U				 < 1400 U	< 2.9 U < 1.2 U	< 31 U < 3.1 U	< 6.2 U < 0.63 U	< 28 U < 11 U	< 31 U < 3.1 U	< 6.2 U < 0.63 U	 < 11 U
Chlorodifluoromethane	ug/m3 ug/m3	760 760000	< 200 U	< 200 U	< 200 U	< 200 U					< 0.86 U	< 2.3 U < 1.8 U	< 0.46 U 1.5	< 8.3 U 	< 2.3 U < 1.8 U	< 0.46 U 0.89	
Chloroform	ug/m3	3.6 1400	< 200 U < 200 U < 200 U				< 2300 U < 1100 U < 1800 U	< 2.5 U < 0.91 U	< 1.3 U 18 < 1 U	< 0.26 U 0.83	< 24 U < 8.8 U < 19 U	< 1.3 U < 2.4 U < 1 U	< 0.26 U < 0.49 U < 0.21 U	< 18 U < 8.5 U < 36 U			
Chloromethane cis-1,2-Dichloroethene (cDCE cis-1,3-Dichloropropene	ug/m3) ug/m3 ug/m3	1400	< 200 U < 200 U	 < 0.72 U	 < 170 U 	 < 1.2 U 	< 880 U	< 1.9 U 0.81 < 0.85 U	< 2 U < 2.3 U	0.36 < 0.4 U < 0.45 U	8.2 < 8.2 U	2.5 < 2.3 U	0.74 < 0.45 U	8.6			
Cyclohexane Cyclopentane	ug/m3 ug/m3									-	< 0.64 U	< 34 U < 1.4 U	150 3.5	< 6.2 U	< 34 U < 1.4 U	150	
Dibromochloromethane Dibromomethane	ug/m3		< 200 U < 200 U					< 1.6 U	< 4.3 U	< 0.85 U	< 15 U 	< 4.3 U	< 0.85 U				
Dichlorodifluoromethane Ethanol	ug/m3 ug/m3	1500	< 200 U	< 200 U	< 200 U	< 200 U				< 1100 U	1.2 7.9	< 13 U < 38 U	2.3 19	< 9.0 U	< 13 U < 38 U	2.2 31	< 8.6 U
Hexaldehyde Isobutylene	ug/m3 ug/m3									-		< 20 U 6.3	< 4.1 U 1.3		< 20 U < 4.6 U	7.6 < 0.92 U	
Isoprene Isopropyl Alcohol	ug/m3 ug/m3								-	-	 < 2.3 U	< 1.4 U < 43 U	< 0.28 U < 8.6 U	22	< 1.4 U 63	< 0.28 U < 8.6 U	
Isopropylbenzene m,p-Xylenes	ug/m3	6100 1500	< 200 U 500	< 200 U < 400 U	< 200 U < 400 U	< 200 U < 400 U	3.2	 < 180 U	7.2	3400	< 0.92 U 10	6.5	6.6	9.4 13	7.1	6	 < 7.6 U
Methyl tert-butyl ether (MTBE) Methyl vinyl ketone	ug/m3 ug/m3 ug/m3	320	< 200 U	< 200 U	< 200 U	 < 200 U				 < 800 U	< 0.67 U	< 14 U < 1.8 U < 5.7 U	< 2.9 U < 0.36 U < 1.1 U	< 6.5 U	< 14 U < 1.8 U < 5.7 U	< 2.9 U < 0.36 U < 1.1 U	 < 6.3 U
Methylene Chloride Methyliodide	ug/m3 ug/m3 ug/m3	2200	 < 500 U	< 500 U	 < 500 U	< 500 U				-	60	< 430 U < 2.9 U	< 1.1 U 150 < 0.58 U	23	< 430 U < 2.9 U	< 1.1 U < 87 U < 0.58 U	
Methysticin n-Butyl alcohol	ug/m3 ug/m3									-		< 18 U < 30 U	< 3.5 U		< 18 U	< 3.5 U < 6.1 U	
n-Butylbenzene n-Hexane	ug/m3 ug/m3	11000	< 200 U	< 200 U	< 200 U	< 200 U				-	 < 0.66 U	 < 18 U	 64	 < 6.4 U	 < 18 U	89	
n-Propylbenzene o-Xylene	ug/m3 ug/m3	1500	< 200 U 200	< 200 U < 200 U	< 200 U < 200 U	< 200 U < 200 U	0.92	 < 180 U	 2.1	 1200	< 0.92 U	2.7	2.1	< 8.9 U	3	1.9	 < 7.6 U
Pentane p-Isopropyltoluene	ug/m3 ug/m3		 < 200 U	 < 200 U	 < 200 U	 < 200 U				-		< 15 U 	5.9 		< 15 U 	6.7	
sec-Butylbenzene Styrene	ug/m3 ug/m3	15000	< 200 U	< 200 U	< 200 U	< 200 U			-	-	3.5	 < 4.3 U	1.3	 < 7.7 U	 < 4.3 U	1.2	
Tetrachloroethene (PCE)	ug/m3	320	< 200 U < 200 U	< 200 U 6500	< 200 U 400	< 200 U 200	270	150000	380	680000	400	1000	 16	2800	900	26	3200
Tetrahydrofuran trans-1,2-Dichloroethene	ug/m3		< 200 U	< 200 U	< 200 U	< 200 U	 < 0.72 U	 < 170 U	 < 1.2 U	 < 880 U	< 2.8 U 2.7	< 2 U	0.45	< 27 U < 7.2 U	 <2U	< 0.4 U	 < 6.9 U
trans-1,3-Dichloropropene Trichloroethene (TCE)	ug/m3	11 11000	< 200 U < 200 U	1.1	 < 230 U	1.9	5100	< 0.85 U 29 1.2	< 2.3 U 27 < 2.8 U	< 0.45 U 8.8 1.2	< 8.2 U 110 < 10 U	< 2.3 U 54 < 2.8 U	< 0.45 U 7.3 1.2	140			
Trichlorofluoromethane Vinyl Acetate Vinyl Chloride	ug/m3 ug/m3 ug/m3	3000 9.5	< 200 U < 200 U	 < 0.47 U	 < 110 U	 < 0.78 U	 < 560 U	1.2 < 0.48 U	< 2.8 U < 35 U < 1.3 U	1.2 < 7 U < 0.26 U	< 10 U < 4.6 U	< 2.8 U < 35 U < 1.3 U	1.2 52 < 0.26 U	 < 4.5 U			
1,3-Butadiene 2,2,4-Trimethylpentane	ug/m3 ug/m3	2.8									< 0.41 U < 4.4 UJ	< 1.1 U	< 0.22 U	< 4.0 U	< 1.1 U	< 0.20 U	
4-Ethyltoluene alpha-Chlorotoluene	ug/m3 ug/m3	1.7									2.6 < 0.97 U	 < 2.6 U	 < 0.52 U	< 8.9 U	 < 2.6 U	 < 0.52 U	
Freon 114 Heptane	ug/m3 ug/m3									< 1500 U	< 1.3 U < 0.77 U	< 3.5 U	< 0.7 U	< 13 U < 7.4 U	< 3.5 U	< 0.7 U	< 12 U
Notes:				•	•	•	•	•				•	•		•	•	

Notes:
Bold - detected
Blue Shaded - Detected result exceeded screening level
U - Analyte not detected at or above Reporting Limit (RL) shown
J - Result value estimated
UJ - Analyte not detected and the Reporting Limit (RL) is an estimate
"--" - indicates results not available
1) Values in this column based on the most stringent MTCA Method B indoor air

Table A-6. Indoor Air Analyical Results

Project No. 080190, Morell's Dry Cleaners, Seattle, Washington

		Location Date	OUTDOOR 02/09/2012	MORRELLS ² 02/09/2012	THRIFTWAY OFFICE ² 02/09/2012
Analyte	Unit	Indoor Air Screening Level ¹			
BTEX					
Benzene	ug/m3	0.32	2	0.2	0.2
Toluene	ug/m3	2300	6.3	1	2.7
Ethylbenzene	ug/m3	460	1.7	0.3	0.5
Total Xylenes	ug/m3	45.7	7.9	2.1	3.3
PAHs					
Naphthalene	ug/m3	0.073	< 4.1 U	< 4.8 U	< 4.6 U
VOCs					
cis-1,2-Dichloroethene (cDCE)	ug/m3		< 0.12 U	< 0.14 U	< 0.14 U
Tetrachloroethene (PCE)	ug/m3	9.6	0.42	22	15
trans-1,2-Dichloroethene	ug/m3		< 0.63 U	< 0.72 U	< 0.69 U
Trichloroethene (TCE)	ug/m3	0.33	< 0.17 U	9	5.7
Vinyl Chloride	ug/m3	0.28	< 0.040 U	< 0.047 U	< 0.045 U

Bold - detected

Blue Shaded - Detected result or non-detected RL exceeded screening level

U - Analyte not detected at or above Reporting Limit (RL) shown

PCUL = Proposed Cleanup Level

- 1) Values in this column based on the most stringent MTCA Method B indoor air cleanup level.
- 2) Analytical results corrected by subtracting background detected results from indoor air results.

Aspect Consulting Table A-6

APPENDIX B

Stemen Environmental, Inc., Inspection Letter

STEMEN ENVIRONMENTAL, INC.

P.O. Box 3644 LACEY, WASHINGTON 98509-3644 CONTR. LIC. #STEMEEI081J9

Telephone 360-438-9521 Fax 360-412-1225

May 17, 2009

Mr. Aaron Morrell 608 N. 1st Street Tacoma, Washington 98403

Dear Mr. Morrell:

RE: SITE INSPECTIONS OF COMMERCIAL PROPERTY LOCATED AT 608 N. 1ST STREET, TACOMA, WASHINGTON.

Our company performed various environmental investigations on the subject property and neighboring properties. The following facts and information was obtained during these investigations:

- 1. Subsurface soils, at depths greater than 3 feet b.g.s. (below ground surface), beneath substantial portions of the subject properties consist of densely compacted gravelly sands.
- 2. Groundwater is present at depths of 50+ feet b.g.s. Groundwater elevations were measured via the on-site groundwater monitoring wells. Soil samples obtained from locations directly surrounding the on-site Dry Cleaners/Office Building produced dry soil samples to an approximate depth of 50 feet b.g.s.
- 3. On May 7, 2007, I was on-site to obtain soil gas vapors from the shallow subsurface soils at selected locations within the boundaries of the commercial building located at 608 N. 1st Street and currently occupied by Morrell's Dry Cleaners. Our company contracted with Environmental Services Network Northwest, Inc., Olympia, Washington to provide Licensed Well Drillers to perform the required drilling activities.

To provide reasonable access to the subsurface soils, holes were drilled through the concrete floor at two (2) selected locations on the northern portion of the site. Steel probes were then mechanically advanced into the soils using a roto-hammer. The initial probe was easily advanced into the subsurface soils to a depth of 3 ft. PVC tubing was advanced into the probe, and a peristaltic pump was used to pump vapors into a Tedler bag. It was immediately noticed that we were pumping liquids not vapors. A sample was obtained from the liquids and was placed in an appropriate container.

An additional probe was advanced to a depth of 1 ft. It was immediately determined that water was present in this shallow probe also. You (Mr. Aaron Morrell) were on-site for these drilling activities.

The presence of very shallow water was discovered beneath the concrete floor of the Thriftway Office portion of the building also.

I have included a Boring Log for this event.

All interested parties and the Tacoma-Pierce County Health Department were informed of the presence of water at very shallow depths beneath the building. You (Mr. Aaron Morrell) were on-site for these drilling activities.

4. On June 29, 2007, Licensed Drillers and Geologists from Environmental Services Network, Inc. were on-site to install dewatering/monitoring wells at selected location inside the Dry Cleaners portion of the on-site building. Large holes were cored in the concrete floor to provide reasonable access for well installation activities. Water and water laden sand was observed just below the concrete.

Due to the liquidity/instability of the sands beneath the slab, the on-site Drillers and Geologist were unable to install a well.

I have included a Geologists Boring Log for this event.

5. On July 5th, 2007, I attempted to pump down the water level beneath the on-site building. The pumped water contained a significant amount of particulates.

I pumped approximately 200 gallons of water from beneath the building and the measured water level stayed stable. Ms. Sharon Bell of the Tacoma-Pierce County Health Department was on-site during these water pumping activities.

- 6. I was on-site with Ms Sharon Bell and representatives of the City of Tacoma to observe the excavation activities associated with the installation of new underground utilities on N. 1st Street. The northern extension of the excavation trenches was located approximately 25 feet southwest of the southwest corner of the on-site Dry Cleaners/Thriftway Office Building. The trenches were advanced to approximate depths of 13 feet b.g.s. No water was observed in these trenches.
- 7. It was discovered that the Tully's Coffee Shop had a water leak that, according to available records, had been leaking a substantial amount of water for an extended period of time. When the water leak was repaired, all of the waters beneath the Dry Cleaners/Thriftway Office Building drained in a few hours.

When the waters had drained, I observed an open space between the surface of the subsurface sands/soils and the bottom of the concrete slab.

If you have any questions or require further information please feel free to contact us at the above phone number.

Sincerely,

Ecology-Registered Site Assessor IFCI #0874201-U2

ASTM Certified

Please print, sign and return to the Department of Ecology

RESOURCE PROTECTION		IRRENT Notice of Intent No. <u>A127970</u>
(SUBMIT ONE WELL REPORT PER WI Construction/Decommission ("x" in box)	ELL INSTALLED)	Type of Well ("x in box)
		Resource Protection
Decommission	47501	Geotech Soil Boring
ORIGINAL INSTALLATION Notice of Intent	Number: Property	Owner Titus-Will
E006830	Site Addr	ress 633 Division Street
Consulting Firm Stemen Environmental		oma County Pierce
Unique Ecology Well IDTag No		NW1/4-1/4 SE1/4 Sec 32 Twn 21N R 3E
WELL CONSTRUCTION CERTIFICATION	20441.011	or WWM
accept responsibility for construction of this well, and its	compliance with all	
Washington well construction standards. Materials used reported above are true to my best knowledge and belief		(s, t, r Lat Deg Min Sec
reported above are true to my dest knowledge and benefit		UIRED) Long DegMinSec
☐ Driller ☐ Engineer ☒ Trainee Name (Print Last, First Name) Haun, Marty	j e e e e e e e e e e e e e e e e e e e	el No
Driller/Engineer /Trainee Signature	Cased or I	Uncased Diameter Static Level/, \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Driller or Trainee License No. T2827	Work/Dec	commission Start Date 5/7/07
ver to the desired Company		commission Completed Date 5/7/07
If trainee, licensed driller's Signature and		commission Completed Date 3/1/01
- OVMAN CON CELL		
Construction Design	Well Data	Formation Description
	Drove a retractable stainless steel / PVC screen to depth and collected a water sample. Boring Depth:	RECEIVED JUN 112 2007

SCALE: 1"= ____ PAGE _ ___ PAGE _ ___ ___

Please print, sign and return to the Department of Ecology

RESOURCE PROTECTION WELL REPORT

CURRENT Notice of Inter-

(SUBMIT ONE WELL DEBORT DED)		CURRENT	Notice of Intent No. <u>A129880</u>
(SUBMIT ONE WELL REPORT PER V Construction/Decommission ("x" in box)	,		Type of Well ("x in box)
Construction	265969	₹	Resource Protection
□ Decommission		J	Geotech Soil Boring
ORIGINAL INSTALLATION Notice of Inte	nt Number:	Property Owner Br	uce-Titus
· 		Site Address 633 D	ivision
Consulting Firm Stemen Environmental	D /	City Tacoma	County Pierce
Unique Ecology Well IDTag No.	<u> </u>	Location NW1/4-1/	4 <u>SE</u> 1/4 Sec <u>32</u> Twn <u>21N</u> R <u>3E</u>
WELL CONSTRUCTION CERTIFICATI		EWM 🛛 or WWM	
accept responsibility for construction of this well, and Washington well construction standards. Materials u		Lat/Long (s. t. r	Lat Deg Min Sec
reported above are true to my best knowledge and bel		still REQUIRED)	Long DegMinSec
☐ Driller ☐ Engineer ☒ Trainee		Tax Parcel No	Long DegWillSec
Name (Print Last, First Name) Mefford, John Driller/Engineer /Trainee Signature	1 /2 1/2	Cased or Uncased I	Diameter / / Static Level 2
Driller or Trainee License No. T2815	ohn Mefford		
			on Start Date <u>6/29/07</u>
If trainee, licensed driller's Signature an	d License Number:	Work/Decommission	on Completed Date 6/29/07
· Company			
Construction Design	Well I	Data	Formation Description
	Dowe a retractable stainless steel / Pt to depth and collect sample. Boring Depth: Screen: Screen: Type: Shuble:	C screen down ed a water	0-3- gravelly son
	Removed all rods ar boring and backfilled		RECEIVED JUL 13 2007 DEPARTIMENT OF EUOLOGY WELL DRILLING UNIT

SCALE: 1"= NA PAGE | OF |

Cover Letter.

To: Kevin Chang

From: Aaron Morrell

Morrells Dry Cleaners 608 No 18+ ST TACOMA, WA 28403

R.E.

TullyS WATER LEAK

5 pg. to follow.

Tully's Coffee Corportion/ BP 400030657 Service Address 24 North Tacoma Avenue, Tacoma WA Contract Account 100231059

Consumption History Report

Re	ead Dates:		Vater	Wastewater			
		Consumption		Consumption			
From	То	(in CCFs)	Amount billed	(in CCFs)	Amount billed		
9/6/2003	11/5/2003	61.03	\$77.78	61.03	\$204.22		
11/6/2003	1/9/2004	43.09	\$64.58	43.09	\$149.86		
1/10/2004	3/11/2004	42.17	\$68.28	42.17	\$155.56		
3/12/2004	5/10/2004	45.42	\$71.01	45.42	\$166.45		
5/11/2004	7/9/2004	49.94	\$74.81	49.94	\$181.61		
7/10/2004	9/8/2004	45.31	\$70.92	45.31	\$166.08		
9/9/2004	11/5/2004	44.48	\$70.22	44.48	\$163.30		
11/6/2004	1/10/2005	43.61	\$70.43	43.61	\$160.64		
1/11/2005	3/11/2005	40.89	\$73.18	40.89	\$152.91		
3/12/2005	5/10/2005	38.82	\$71.27	38.82	\$145.92		
5/11/2005	7/11/2005	46.82	\$78.63	46.82	\$172.96		
7/12/2005	9/8/2005	47.52	\$79.28	47.52	\$175.32		
9/9/2005	11/5/2005	59.59	\$90.38	59.59	\$216.11		
11/6/2005	1/10/2006	73.84	\$104.91	73.84	\$265.14		
1/11/2006	3/10/2006	64.04	\$102.97	64.04	\$236.09		
3/11/2006	5/9/2006	58.76	\$97.65	58.76	\$217.86		
5/10/2006	7/10/2006	77.46	\$116.48	77.46	\$282.42		
7/11/2006	9/7/2006	83.86	\$122.93	83.86	\$304.52		
9/8/2006	11/4/2006	103.83	\$143.04	103.83	\$373.47		
11/5/2006	1/9/2007	150.22	\$191.72	150.22	\$540.64		
1/10/2007	3/12/2007	154.62	\$208.98	154.62	\$601.68		
3/13/2007	5/9/2007	173.49	\$229.46	173.49	\$673.40		
5/10/2007	7/10/2007	345.94	\$415.56	345.94	[\$1,328.84		
7/11/2007	9/7/2007	197.39	\$255.39	197.39	\$764.24		
9/8/2007	11/6/2007	52.42	\$98.10	52.42	\$213.25		
11/7/2007	1/9/2008	59.23	\$106.61	59.23	\$241.35		
1/10/2008	3/11/2008	55.57	\$109.20	55.57	\$239.95		
3/12/2008	5/8/2008	52.53	\$105.64	52.53	\$227.61		
5/9/2008	7/9/2008	58.49	\$112.61	58.49	\$251.81		
7/10/2008	9/8/2008	60.37	\$114.81	60.37	\$259.44		
9/9/2008	11/5/2008	72.87	\$129.44	72.87	\$310.21		
11/6/2008	1/9/2009	78.38	\$135.88	78.38	\$336.09		
1/10/2009	3/11/2009	53.75	\$112.77	53.75	\$249.90		

1 CCF=100 cubic feet

Amounts listed are amounts billed on original invoice-a leak adjustment was performed for the May 10,2007 thru July 10th 2007 water and wastewater charges

COMPLETED LEAK ADJUSTMENT FOR BILLING PERIOD 5/9/07-7/10/07 - LEAK ONGOING FOR OVER A YEAR - DID ADJUSTMENT BASED ON 2005 CONSUMPTION FOR JULY BILLING PERIOD - WROTE OFF 345.94 CCF AT 416.56 WATER AND 1328.84 SEWER - BILLED 46.82 CCF AT 92.02 WATER AND 191.97 SEWER - EDJ*

Water Consumption

Water Consumption

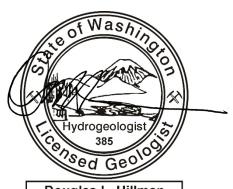
Water Consumption

APPENDIX C

Summary of 2019 Interim Actions and Proposed SVE Expansion Memo

Project No.: 080190

June 17, 2020


To: D.E. Wickham, Successor to Walker Chevrolet

cc: Al Notary, P.E., L.S., Brown and Caldwell

From:

Breeyn Greer, PEProject Engineer
bgreer@aspectconsulting.com

Douglas L. Hillman

Doug Hillman, LHG, RGPrincipal Hydrogeologist
dhillman@aspectconsulting.com

Re: Summary of 2019 Interim Actions and SVE System Expansion

Morrell's Dry Cleaner Site

Interim Action Overview and 2019/2020 Objectives

This technical memorandum documents ongoing interim cleanup action activities at the Morrell's Dry Cleaner Site. The 2019 work documented herein includes the installation of 17 wells and provides design information for connecting five of the wells to the existing soil vapor extraction (SVE) system. The Site is located at 608 North First Street in Tacoma, Washington (Figure 1). Primary contaminants of concern are chlorinated volatile organic compounds (VOCs) tetrachloroethene (PCE), trichloroethene (TCE), cis-1,2-dichloroethene (cDCE), and vinyl chloride. Petroleum hydrocarbons are also present in soil (generally collocated with the chlorinated VOCs) and represent a significant fraction of the total contaminant mass¹. Historical dry-cleaning operations, which may have used petroleum hydrocarbons (e.g., Stoddard solvent or mineral spirits) before chlorinated solvents came into use, are a possible source of the petroleum hydrocarbons as well as the chlorinated solvents².

¹ Low concentrations of other chlorinated VOCs and several ketones have also been detected in groundwater.

² Dry cleaners have continuously operated in the current dry cleaner building since 1929. Morrell's reportedly used PCE dry cleaner machines between 1972, the first year of their tenancy, and 2009, when they switched to a non-PCE solvent. It is not known whether PCE was used by prior tenants.

Project No.: 080190

The Morrell's property consists of two parcels, referred to in this report as the Building Parcel and the Parking Lot Parcel (Figure 2). The Site includes the Morrell's property and any off-property soil or groundwater confirmed or suspected of being impacted by releases at the property. The Site is enrolled in the Washington State Department of Ecology (Ecology) Voluntary Cleanup Program (VCP) and assigned VCP No. SW1039.

2013/2014 Actions—Interim Cleanup Initiated

Environmental investigations began at the Site in 2006, and Aspect Consulting, LLC (Aspect) conducted an interim cleanup action in 2013/2014 that included the following (refer to Figure 2):

- Installation and operation of a SVE system that draws soil gas from: 1) beneath the Morrell's building floor slab; 2) a shallow trench along the north side of the building; and 3) four angled wells screened in vadose zone soils beneath the northeast portion of the building. The SVE system has operated since October 2014 and continues to remove significant contaminant mass from the subsurface.
- An injection of biostimulants (in June 2014) to the uppermost water-bearing unit (i.e., the advance outwash) via three angled wells screened beneath the central portion of the Morrell's building and six vertical wells located south and east of the building. PCE concentrations were reduced by up to two orders of magnitude among the nine wells that received the biostimulants, and vinyl chloride concentrations increased.

The interim cleanup action demonstrated that SVE of vadose zone soils and biostimulation of advance outwash groundwater are appropriate technologies to consider for the remediation of contaminated media at the Morrell's Site. These technologies were applied in limited areas of the property where significant contamination was either known to exist or highly suspected.

2019/2020 Actions — Further Delineate Impacts, In Situ Pilot Test, and Expand SVE

The 2019 well installations were a component of cleanup expansion activities that included further investigation of the magnitude and extent of on-property contamination, pilot testing for *in situ* remediation of groundwater, and a proposed expansion of SVE for vadose zone soil remediation. The general work scope and objectives were as follows:

• Investigate the magnitude and extent of soil and advance outwash groundwater contamination in the Parking Lot Parcel by drilling an array of borings, starting adjacent to the Morrell's building and "stepping out" southward and eastward. Complete all borings as groundwater monitoring wells that can also be used for remediation product injection if warranted. In addition, install shallow screens in wells when field monitoring of soil samples indicates significant vadose zone contamination (for potential dual use as SVE wells). Collect and analyze groundwater samples from the completed wells.

_

³ Most of the borings/well installations were completed for this purpose. However, it was decided to install the last few wells to accommodate an injection pilot test on the south side of the Morrell's building.

Project No.: 080190

Perform a remediation product injection pilot test at well MW-20 to assess injection radius
of influence (ROI) and effectiveness, in preparation for a possible second round of
remediation product injection.⁴.

• Expand the coverage of SVE beneath the Morrell's building by installing four additional angled SVE wells north and south of the existing wells. Connect the new angled wells and, if warranted, new shallow-screened vertical wells to the existing SVE blower via a piping manifold located inside a new vault to be installed in the northwest corner of the parking lot. Operate the expanded SVE system to maximize contaminant mass removal from vadose zone soils.

Investigation, well installation, and injection pilot test activities have been completed. This technical memorandum includes the following:

- Documentation of the new well installations, including boring logs and well construction diagrams
- Documentation of waste management, profiling, and disposal
- A summary of soil sampling results and assessment of the vertical and lateral nature and extent of on-property vadose zone contamination
- The SVE expansion design (collection system vault, conveyance piping, instrumentation, and connections to new angled wells and selected vertical wells with vadose zone screens)

Documentation of groundwater sampling results and assessment of the injection pilot test at MW-20 for possible treatment of the Parking Lot Parcel will be addressed in a separate technical memorandum. This document focuses on vadose zone activities on the Morell's Building Parcel and transmits the proposed SVE expansion design for implementation.

Well Installation Documentation

Seventeen well installations were completed on the Morrell's Site between January 28 and July 11, 2019, including 13 vertical wells and 4 angled wells. Figure 2 shows the locations of both the new and pre-existing wells. Drilling, well installation, well development, top-of-casing (TOC) survey, and waste management, profiling, and disposal are discussed in this section. Boring and well construction logs for the new wells are provided as Appendix A⁵.

Vertical Borings and Well Installations

The new vertical well installations, designated MW-23 through MW-35, were drilled and installed by Holt Services, Inc. (Holt) using hollow-stem auger (HSA) drilling technology. During drilling, soil samples were collected at 5-foot depth intervals except for well MW-35 (refer to the Soil Screening and Sampling section for sampling results). All thirteen wells were constructed with 2-inch-diameter polyvinyl chloride (PVC), 10- to 20-mesh sand filter packs, and flush-mount

⁴ The original work scope included a full-scale injection in lieu of a pilot test. However, groundwater monitoring results at the first set of new wells indicated that the 2014 injections had small ROIs and additional information was needed before a full-scale injection could be designed.

⁵ Borings and soil samples collected during drilling were designated "A-x" for angled borings and "B-xx" for vertical borings. When wells were installed, the letter designations were changed to "VE-x" for angled (soil vapor extraction) wells and "MW-xx" for vertical (advance outwash groundwater) wells.

Project No.: 080190

D.E. Wickham June 17, 2020

monuments. Their 0.020-inch slotted screens intersect the saturated interval of the advance outwash at the approximate depth range of 45 to 60 feet below ground surface⁶ (bgs). The wells have been used for groundwater monitoring and remediation product injection pilot testing⁷. In addition, shallow screens at the approximate depth range of approximately 10 to 20 feet bgs were installed in wells MW-23, MW-24 and MW-31 for possible use as vadose zone SVE wells.

MW-22 was attempted approximately 11 feet east of the northeast corner of the Morrell's building, between angled wells VE-1 and VE-3. Subsurface utilities were expected at that location, and a vacuum truck with air knife was used to remove soil beneath the asphalt. However, Holt was unable to gain access through the subsurface utilities, and that boring location was abandoned.

The new wells were developed to reduce turbidity and establish hydraulic connection with the surrounding aquifer. Aspect surveyed TOC elevations of both the new and pre-existing on-property monitoring wells. TOC elevations of all Site monitoring wells with respect to the Site datum are listed in Table 1 along with well screen intervals and groundwater elevations.

Angled Borings and Well Installations

The new angled well installations, designated VE-5 through VE-8, were drilled at a 45-degree angle and installed by Holt using SONIC drilling technology. Boring lengths were approximately 45 feet for VE-5 and VE-7, and 65 feet for VE-6 and VE-8. Twenty-foot-long screens were installed at the bottom of each boring. Therefore, VE-5 and VE-7 were screened at the approximate depth range of 18 to 32 feet bgs, and VE-6 and VE-8 were screened at the approximate depth range of 32 to 46 feet bgs. These wells will be used to enhance removal of vapor-phase contaminants from vadose zone soils in the source area. The proposed connection of the new angled wells to the SVE system is discussed below.

As shown on Figure 2, the wells were drilled as close as possible to the east side of the Morrell's building and angled under the building. Due to subsurface congestion in this area (primarily pre-existing angled SVE wells and conveyance piping), a vacuum truck with air knife was used at each drilling location to remove shallow soil beneath the asphalt. During drilling, continuous soil cores were field-screened and sampled. The wells were constructed with 4-inch-diameter PVC, 10- to 20-mesh sand filter packs, and 0.020-inch slotted screens. The top of each well was capped at less than 1-foot bgs, and the asphalt was patched pending connection of the wells to the SVE system.

Waste Management, Profiling, and Disposal

All soil cuttings and water generated from equipment decontamination and well development and purging were placed in 55-gallon drums, which were temporarily stored along the southern wall of the Morell's building. Laboratory analytical results from soil sampling during drilling and groundwater sampling from the completed wells were used to profile the waste streams for disposal in accordance with the Washington Dangerous Waste regulations (Chapter 173-303 WAC). A portion of the cuttings from boring VE-7 were placed in a separate drum because they appeared to contain separate-phase (non-aqueous) liquid. That drum designated as F002 hazardous waste and required incineration due to the high PCE concentration. All other cuttings from borings with detectable PCE in one or more soil samples were disposed of as F002 hazardous waste not

⁶ Slightly shallower screens were installed for MW-34 (44 to 59 feet bgs) and MW-35 (43 to 58 feet bgs).

⁷ MW-34 and MW-35 were installed specifically for the MW-20 injection pilot test.

Project No.: 080190

requiring incineration. These cuttings were initially stored in drums but were transferred to a roll-off container prior to disposal.

Non-hazardous wastes were transported to Waste Management's Columbia Ridge Subtitle D facility and hazardous wastes to the Chemical Waste Management Subtitle C facility, both located in Arlington, Oregon. Waste disposal documentation is provided as Appendix B.

Soil Screening and Sampling

Soil samples collected during drilling were screened in the field for evidence of contamination using visual and olfactory methods, and by headspace screening using a photoionization detector (PID). Samples with elevated PID readings were preferentially selected for laboratory analysis of VOCs using EPA Method 8260. At least two samples from each boring were analyzed⁸, and up to five samples were analyzed from borings with elevated PID readings. For all borings that extended below the water table (i.e., all vertical borings), at least one soil sample collected from below the water table was analyzed for VOCs; the results report the concentration from the combined sample with solid and liquid phase material.

PID readings and laboratory analytical results are summarized in Table 2, and laboratory reports are provided as Appendix C. Table 2 lists only those analytes that were detected in at least one soil sample. Consistent with previous soil sampling results, chlorinated VOC detections included PCE, TCE, and cDCE, and some PCE and TCE concentrations exceeded Site screening levels⁹. Low concentrations of petroleum hydrocarbons were also detected, which is also consistent with previous soil sampling results. Petroleum hydrocarbon detections are typically collocated with chlorinated VOC detections¹⁰, suggesting that they are also associated with former dry-cleaning operations.

PCE concentrations define the extent of soil with screening level exceedances, although TCE was often detected along with PCE in soil samples. Figure 3 shows PCE detections in current investigation soil samples, and the estimated on-property lateral extent of soils with screening level exceedances from all investigations. Soil quality results from previous investigations are documented in the *Supplemental Focused Feasibility Study* report (Aspect, 2018).

Soil cuttings from boring VE-7 at depth ranges of 7 to 10 and 15 to 16 feet bgs had a strong solvent odor and appeared to contain separate-phase liquid. Field-screening of a soil sample collected from 15 to 16 feet bgs yielded a PID reading of 2,498 parts per million (ppm), and the laboratory subsequently detected PCE at 120 mg/kg. This is the first instance of separate-phase liquid being tentatively identified at the Site, and the highest soil PCE detection to date. As shown in Table 2,

⁸ No soil samples from MW-34 and MW-35 were submitted for laboratory analysis since VOCs were not detected in nearby wells MW-24, MW-25, and MW-26.

⁹ The Site screening levels are Washington State Model Toxics Control Act (MTCA) Method A cleanup levels for PCE, TCE, methylene chloride, and naphthalene, and the Method B direct contact (CLARC table value) cleanup levels for all other compounds listed in Table 2.

¹⁰ However, this is not always the case. The highest petroleum hydrocarbon detections to date in Site soils were in a sample from 3 feet beneath the sidewalk on the east site of the Morrell's building (from direct-push boring DP-8, advanced in October 2010). Chlorinated VOCs were not detected in that sample.

Project No.: 080190

that soil sample also exhibited the highest concentrations of petroleum hydrocarbons detected in the current investigation.

Planned Connection of New Wells to SVE System

This section provides specifications for the connection of the four new angled wells (VE-5 through VE-8) and one new vertical well (MW-23) to the SVE system. MW-24 and MW-31, initially constructed as SVE wells, will not be added to the system due to near-zero PID readings during drilling. Construction sequence, trenching and backfill, piping, vault and instrumentation details, vapor emissions control, waste management, planned construction schedule, and the monitoring plan are also discussed. Information on the existing SVE system can be found in the *Interim Cleanup Action Construction Completion Report* (Aspect, 2014).

Construction Sequence and Oversight

The four new wells will be connected to the existing system in the following construction sequence:

- Site preparation and private utility locate
- Asphalt demolition and trenching
- Conveyance pipe connection and vault installation
- Conveyance pipe vacuum testing and slope confirmation
- Trench backfill, site restoration and system restart

Aspect will provide pre-construction tenant, contractor and utility locate coordination as well as part-time oversight during trenching, conveyance pipe installation, and restoration. Aspect will be present onsite for the vacuum testing and slope confirmation. All work will be completed at night, generally between 8 p.m. and 8 a.m. per the tenants' request.

SVE Trenching and Backfill

An approximately 40-foot-long trench will be excavated from MW-23 north to just south of MW-15 and MW-21. The trench will be approximately 3-feet deep and approximately 3-feet wide. Figure 4 shows the approximate orientation of the conveyance laterals from the wells to the vault. However, some field adjustment will likely be necessary due to the high concentration of wells in the vicinity of the connections.

Excavated soil will be screened with a PID, and granular soil that does not elicit a PID response is suitable for re-use as backfill in the trench. Soil deemed suitable for re-use as backfill will be temporarily stockpiled onsite with plastic polyethylene sheeting both above and below it. Soil not eligible for backfill will be placed in a roll off box for disposal as F002 hazardous waste not requiring incineration. All stockpiles and the roll off box will be covered when not actively in use. Once construction is complete, piping will be bedded in sand, and the remainder of the trench will be backfilled with native soil or fill to approximately 6-inches bgs. The remainder of the trench will be filled with gravel base coarse and restored with asphalt. For angled wells without a monument, a survey nail or marker will be placed above the well for future reference. MW-23 has a monument which will need to be removed and possibly modified to accommodate the SVE piping connection.

Project No.: 080190

Piping, Vault, and Instrumentation Details

Since it is not practicable to install additional subsurface piping in the narrow alley on the north side of the building, the connection will be made by tapping into the existing conveyance piping serving wells VE-1 through VE-4. A shallow utility vault (575-LA) will be installed for this purpose in the northwest corner of the Parking Lot Parcel. The 575-LA vault will be installed just south of MW-15 and MW-21. The vault is 6 feet long by 4 feet wide and is traffic-rated. The vault has hatch style doors which open for easy access to the SVE conveyance piping within; SVE wells will be manifolded together in the vault. Instrumentation inside the vault will include a flow control valve, sample port, anemometer port, and vacuum gage on each individual well line. Figure 4 shows an instrumentation diagram for the SVE conveyance piping within the vault.

Each new SVE well will have a 3-inch diameter, Schedule 80 PVC lateral connecting it to the new vault, where all of the individual laterals will feed into a 4-inch diameter header. A ball valve is placed on each SVE well lateral to connect or disconnect that well from the blower. Between the vault and the SVE equipment manifold in the alley, the flows will be combined and transmitted through two existing 4-inch PVC conveyance pipes¹². Two ball values are also placed on the 4-inch header to direct flows into either of the 4-inch laterals for increased control in optimizing the system.

The conveyance pipes will be completed to the manifolded wells with a minimum grade of -2.5% and with no sag points so that any condensate will drain back into the wells. The conveyance pipes from VE-5 and VE-6 will likely be installed beneath a natural gas line that extends east along the parcel boundary.

A contractor's bid to complete the work is provided in Appendix D.

Vapor Emissions Control

The VOC emissions will be treated with granular activated carbon (GAC) prior to discharge through two existing 55-gallon, vapor-phase GAC drums connected in series with new coconut carbon substrate. The existing GAC drums have a flow capacity of roughly 150 standard cubic feet per minute (SCFM).

The Puget Sound Clean Air Agency (PSCAA) is the local air authority with primacy for regulation of air emissions at the Site. As described in Section 6.03(94) of Regulation I of the PSCAA, soil and groundwater remediation systems are exempt from submitting a Notice of Construction and needing an Order of Approval from the PSCAA when air emission releases are less than 15 pounds per year (lbs/year) of benzene or vinyl chloride, less than 500 lbs/year of PCE, and less than 1,000 lbs/year of toxic air contaminants. These limits will not be exceeded due to GAC treatment of emissions. Sampling and calculations will be performed and documented to verify that emission limits are not exceeded.

Waste Management

Any granular soil that elicits a PID response will be placed in a roll off box and disposed of as F002 listed hazardous waste not requiring incineration. The volume of soil needing disposal is not

¹¹ As originally constructed, VE-1/2 and VE-3/4 will remain dual well laterals.

¹² Existing SVE piping downstream of the vault will not be modified.

Project No.: 080190

expected to exceed 15 cubic yards or 25 tons. Aspect will conduct waste disposal characterization sampling.

Construction Schedule and Start-Up

Aspect proposes to complete the SVE expansion in the summer of 2020. This work must be completed at night and will require the cooperation of the property tenants so some flexibility in scheduling may be required. However, July will be the target for construction and startup of the expanded system.

Once the expanded SVE system is constructed, Aspect proposes to close the original SVE wells prior to restart. By closing original wells VE-1 through VE-4 and only running new wells VE-5 through VE-8 and MW-23, the expanded SVE system will initially extract soil vapor only from pore volumes that have previously been at the outskirts or beyond the radius of influence of the original SVE system. That is to say, the system will focus on areas that potentially have the highest VOC concentrations. Based on field screening and soil analytical results from the installation of VE-7, it is anticipated that soil vapor concentrations from that well will be high.

Performance Monitoring

Monitoring will be performed to estimate the mass removal rate, to optimize the performance of the SVE collection system, and to assess the diminishing effectiveness of removal with continued operations. The system will be operated continuously post-restart with the objective of maximizing mass removal.

Once the system is restarted, an Aspect filed technician will allow the system to equilibrate for 1 hour prior to doing a complete round of Operation and Maintenance (O&M) measurements. O&M Measurements include:

- Vacuum and the concentrations of VOCs from each of the active wellheads (ex. VE-5 through VE-8 and MW-23 as proposed for initial system restart)
- Vacuum, temperature, flow rate, and concentration from the manifolded line between the vapor liquid separator and the blower
- Pressure and temperature from the effluent line from the blower
- Influent and effluent concentrations from the two vapor-phase GAC drums

The concentrations of VOCs will be measured with a PID. The PCE mass removal rate will be calculated from the flow rate, PID measurement, vacuum pressure, and temperature; and will assume that all contamination exists as PCE.

An Aspect field technician will return the following day to repeat the O&M measurements, to collect effluent vapor samples, and to make adjustments to balance flows, if needed. Day one effluent vapor samples will be collected from each of the five new SVE wells and will be analyzed by EPA Method TO-15 for chlorinated VOCs, benzene, toluene, ethylbenzene, and xylenes (BTEX). After the 'day one' set of measurements, O&M visits will become weekly for the first month of operation to accurately track PCE removal and monitor for PCE breakthrough of the first GAC filter. After the first month of operation, the O&M visits will return to the standard monthly

Project No.: 080190

schedule. For a complete description of standard performance monitoring activities, please see the *Interim Cleanup Action Construction Completion Report* (Aspect, 2014).

The SVE system will continue to operate on just the new wells until concentrations (via PID measurements) drop to levels comparable to the previous well orientation (less than 20 ppm in the individual conveyance pipes) or until the PSCAA air emissions limit is reached, whichever occurs first. Once this initial stage of utilizing primarily the new SVE wells is complete, Aspect will alternate which wells are utilized to maximize mass removal of VOCs. The number of wells in rotation will consistently be between four and nine wells, and system effluent concentrations will be closely monitored against effluent limits. Regardless of active well orientation, quarterly effluent samples from the influent line to the first GAC drum and effluent from the second GAC vessel will be collected in a Summa canister and submitted for analysis of VOCs by Method TO-15. The total mass of PCE, TCE, DCE, and vinyl chloride will be estimated for both SVE removal and to confirm compliance with the PSCAA air emission limits described above. Based on the original SVE System startup operations data, no GAC exchanges are expected; however, this is subject to change based on new SVE operational data. Once the emissions are low enough that the system can run year-round without risk of exceeding the air emission limits effluent samples will be reduced to annually.

The existing SVE system was installed in 2014, has operated for 5 years to date, and is still removing significant contaminant mass (on the pounds per year scale). The SVE expansion is proposed for the summer of 2020, dependent on tenant coordination. It is expected that with the expanded well network, it will continue to remove significant contaminant mass for the foreseeable future. The SVE system is seen as an interim cleanup action and will continue to be used as long as it is removing contaminates and no other cleanup actions have been implemented.

References

Aspect Consulting LLC (Aspect), 2014, Interim Cleanup Action Construction Completion Report, December 23, 2014.

Aspect Consulting, LLC (Aspect), 2018, Supplemental Focused Feasibility Study, August 10, 2018.

Project No.: 080190

Limitations

Work for this project was performed for D.E. Wickham (Client), and this memorandum was prepared in accordance with generally accepted professional practices for the nature and conditions of work completed in the same or similar localities, at the time the work was performed. This memorandum does not represent a legal opinion. No other warranty, expressed or implied, is made.

All reports prepared by Aspect Consulting for the Client apply only to the services described in the Agreement(s) with the Client. Any use or reuse by any party other than the Client is at the sole risk of that party, and without liability to Aspect Consulting. Aspect Consulting's original files/reports shall govern in the event of any dispute regarding the content of electronic documents furnished to others.

Please refer to Appendix E titled "Report Limitations and Guidelines for Use" for additional information governing the use of this report.

Attachments

Table 1 – Monitoring Well Information and Groundwater Elevation Data

Table 2 – Summary of PID Screening and Analytical Data for 2019 Soil Borings

Figure 1 – Site Location Map

Figure 2 – Site Plan

Figure 3 – PCE Detections in Soil Samples, 2019 Soil Borings

Figure 4 – SVE Layout & Vault Detail

Appendix A – Boring and Well Construction Logs

Appendix B – Waste Disposal Documentation

Appendix C – All Analytical Data

Appendix D – Clear Creek Contractors Estimate for Connection

Appendix E – Report Limitations and Guidelines for Use

V:\080190 Stadium Thriftway LLC\Deliverables\SVE Expansion\Final\SVE Expansion Memo_20200617.docx

TABLES

Table 1. Monitoring Well Information and Groundwater Elevation Data Project No. 080190, Morrell's Dry Cleaners Site (VCP SW1039), 608 North First Street, Tacoma, WA

Monitoring Well ID and Installation Date	Date	Vertical Angle	Screened Intervals (feet bgs)	Top of Casing Elevation (feet, site datum)	Depth to Water (feet)	Groundwater Elevation (feet, site datum)
	<u> </u>		Wells Screened in Ad	lvance Outwash		1
MW-2 Installed 1/22/2007	2/27/2008 10/2/2008	0	50 to 65	278.14	51.50 51.84	226.64 226.30
iristalled 1/22/2007	5/12/2009				52.42	225.72
	12/22/2010				52.44	225.70
	2/7/2012 12/12/2013				51.77 52.74	226.37 225.40
	6/24/2014		Injection	of Regenesis products 3DM		
	1/21/2015				51.83	226.31
	9/8/2015 2/2/2016				51.77 52.14	226.37 226.00
	11/28/2018				50.74	227.40
	2/27/2019				50.42	227.72
	4/12/2020 3/26/2020				50.73 51.12	227.41 227.02
	4/28/220				51.01	227.13
MW-4	2/27/2008	0	49 to 64	278.01	dry	dry
Installed 1/9/2008	10/2/2008 5/11/2009				dry dry	dry dry
	10/25/2010		1	Decommissioned	l diy	l diy
MW-5	2/27/2008	0	50 to 65	278.13	50.87	227.26
nstalled 1/11/2008	10/2/2008 5/11/2009				51.65 52.28	226.48 225.85
	12/22/2010				52.21	225.92
	2/7/2012				51.60	226.53
	1/9/2014 4/28/2015				52.68 51.38	225.45 226.75
	9/9/2015				51.61	226.75
	2/2/2016				51.52	226.61
	11/28/2018 3/25/2020				50.39 51.09	227.74 227.04
	3/25/2020 4/28/220				51.09	227.04
MW-6	2/27/2008	0	49 to 64	277.55	dry	dry
nstalled 1/16/2008	10/2/2008				dry	dry
	5/11/2009 10/25/2010		1	Decommissioned	dry	dry
MW-7	2/27/2008	0	50 to 65	279.44	52.90	226.54
nstalled 1/18/2008	10/2/2008				53.08	226.36
	5/11/2009 12/22/2010				53.69 53.73	225.75 225.71
	2/6/2012				52.98	226.46
	1/7/2014				54.10	225.34
	3/26/2020 4/28/220				52.95 52.91	226.49 226.53
MW-8	10/2/2008	0	51 to 61	278.14	52.68	225.46
Installed 4/17/2008	5/12/2009				53.28	224.86
	12/22/2010 2/7/2012				53.32 52.58	224.82 225.56
	12/7/2013				53.64	224.50
	6/23/2014		Injection	of Regenesis products 3DM	1	
	1/20/2015 9/10/2015				52.70 49.76	225.44 228.38
	2/1/2016				52.31	225.83
	11/28/2018				51.64	226.50
		,	ed in 2019 with new MW installations)	278.80		
	4/12/2019			270.00	51.65	227.15
	3/25/2020				51.73	227.07
MW-9	4/28/2020 5/11/2009	0	60 to 70	278.78	51.79 dry	227.01 dry
WI VV-3	12/22/2010	0	00 10 70	210.10	dry	dry
Installed 5/5/2009						dry
Installed 5/5/2009	2/6/2012				dry	
Installed 5/5/2009	12/16/2013			Decembracioned	dry dry	dry
Installed 5/5/2009		0	60 to 70	Decommissioned 279.45	dry	<u> </u>
MW-10	12/16/2013 4/29/2015 5/11/2009 12/22/2010	0	60 to 70		dry dry dry	dry dry
	12/16/2013 4/29/2015 5/11/2009 12/22/2010 2/6/2012	0	60 to 70		dry dry dry dry	dry dry dry
MW-10	12/16/2013 4/29/2015 5/11/2009 12/22/2010 2/6/2012 12/16/2013	0	60 to 70	279.45	dry dry dry	dry dry
MW-10 Installed 5/7/2009 MW-15	12/16/2013 4/29/2015 5/11/2009 12/22/2010 2/6/2012 12/16/2013 4/29/2015 12/17/2013	0 37	44 to 60	279.45 Decommissioned 278.84	dry dry dry dry dry dry	dry dry dry dry dry
MW-10 Installed 5/7/2009 MW-15	12/16/2013 4/29/2015 5/11/2009 12/22/2010 2/6/2012 12/16/2013 4/29/2015 12/17/2013 6/23/2014		44 to 60	279.45 Decommissioned	dry dry dry dry dry dry 53 e and HRC Prime	dry dry dry dry dry
MW-10 Installed 5/7/2009 MW-15	12/16/2013 4/29/2015 5/11/2009 12/22/2010 2/6/2012 12/16/2013 4/29/2015 12/17/2013		44 to 60	279.45 Decommissioned 278.84	dry dry dry dry dry dry	dry dry dry dry dry
MW-10 Installed 5/7/2009	12/16/2013 4/29/2015 5/11/2009 12/22/2010 2/6/2012 12/16/2013 4/29/2015 12/17/2013 6/23/2014 9/8/2015 2/1/2016 11/28/2018		44 to 60	279.45 Decommissioned 278.84	dry dry dry dry dry dry 49 49	dry dry dry dry = 226 er 230 230 230
MW-10 nstalled 5/7/2009 MW-15 nstalled 10/14/2013	12/16/2013 4/29/2015 5/11/2009 12/22/2010 2/6/2012 12/16/2013 4/29/2015 12/17/2013 6/23/2014 9/8/2015 2/1/2016 11/28/2018 3/23/2020	37	44 to 60 Injection	279.45 Decommissioned 278.84 of Regenesis products 3DM	dry dry dry dry dry dry 49 49 49	dry dry dry dry 226 er 230 230 230 230
MW-10	12/16/2013 4/29/2015 5/11/2009 12/22/2010 2/6/2012 12/16/2013 4/29/2015 12/17/2013 6/23/2014 9/8/2015 2/1/2016 11/28/2018		44 to 60 Injection 41 to 60	279.45 Decommissioned 278.84 of Regenesis products 3DM	dry dry dry dry dry dry 49 49 49 49 53	dry dry dry dry = 226 er = 230 230 230 230 230 230
MW-10 nstalled 5/7/2009 MW-15 nstalled 10/14/2013	12/16/2013 4/29/2015 5/11/2009 12/22/2010 2/6/2012 12/16/2013 4/29/2015 12/17/2013 6/23/2014 9/8/2015 2/1/2016 11/28/2018 3/23/2020 12/13/2013 6/23/2014 1/21/2015	37	44 to 60 Injection 41 to 60	279.45 Decommissioned 278.84 of Regenesis products 3DM	dry dry dry dry dry dry 49 49 49 53 e and HRC Prime 49 553 e and HRC Prime 56	dry dry dry dry dry dry dry 226 er 230 230 230 230 225 er 222
MW-10 nstalled 5/7/2009 MW-15 nstalled 10/14/2013	12/16/2013 4/29/2015 5/11/2009 12/22/2010 2/6/2012 12/16/2013 4/29/2015 12/17/2013 6/23/2014 9/8/2015 2/1/2016 11/28/2018 3/23/2020 12/13/2013 6/23/2014 1/21/2015 11/28/2018	37	44 to 60 Injection 41 to 60	279.45 Decommissioned 278.84 of Regenesis products 3DM	dry dry dry dry dry dry 53 e and HRC Prime 49 49 49 53 e and HRC Prime 553 e and HRC Prime 56 50	dry
MW-10 Installed 5/7/2009 MW-15 Installed 10/14/2013 MW-16 Installed 10/15/2013	12/16/2013 4/29/2015 5/11/2009 12/22/2010 2/6/2012 12/16/2013 4/29/2015 12/17/2013 6/23/2014 9/8/2015 2/1/2016 11/28/2018 3/23/2020 12/13/2013 6/23/2014 1/21/2015	37	44 to 60 Injection 41 to 60	279.45 Decommissioned 278.84 of Regenesis products 3DM	dry dry dry dry dry dry 49 49 49 53 e and HRC Prime 49 553 e and HRC Prime 56	dry dry dry dry dry dry dry 226 er 230 230 230 230 225 er 222
MW-10 installed 5/7/2009 MW-15 installed 10/14/2013 MW-16 installed 10/15/2013	12/16/2013 4/29/2015 5/11/2009 12/22/2010 2/6/2012 12/16/2013 4/29/2015 12/17/2013 6/23/2014 9/8/2015 2/1/2016 11/28/2018 3/23/2020 12/13/2013 6/23/2014 1/21/2015 11/28/2018 3/25/2020	37	44 to 60 Injection 41 to 60 Injection 43 to 60	279.45 Decommissioned 278.84 of Regenesis products 3DM 277.88 of Regenesis products 3DM	dry dry dry dry dry dry 49 49 49 53 e and HRC Prime 56 50 51 53	dry
MW-10 Installed 5/7/2009 MW-15 Installed 10/14/2013 MW-16 Installed 10/15/2013 MW-17 Installed 10/15/2013	12/16/2013 4/29/2015 5/11/2009 12/22/2010 2/6/2012 12/16/2013 4/29/2015 12/17/2013 6/23/2014 9/8/2015 2/1/2016 11/28/2018 3/23/2020 12/13/2013 6/23/2014 1/21/2015 11/28/2018 3/25/2020 12/13/2013 6/23/2014 1/21/2015 11/28/2018 3/25/2020 12/13/2013 6/24/2014 3/24/2020	23	44 to 60 Injection 41 to 60 Injection 43 to 60 Injection	279.45 Decommissioned 278.84 of Regenesis products 3DM 277.88 of Regenesis products 3DM 277.97 of Regenesis products 3DM	dry dry dry dry dry dry dry dry 53 e and HRC Prime 49 49 49 53 e and HRC Prime 56 50 51 53 e and HRC Prime	dry dry dry dry dry dry 226 er 230 230 230 230 230 225 er 222 228 227 225 er 227
MW-10 Installed 5/7/2009 MW-15 Installed 10/14/2013 MW-16 Installed 10/15/2013 MW-17 Installed 10/15/2013 MW-18	12/16/2013 4/29/2015 5/11/2009 12/22/2010 2/6/2012 12/16/2013 4/29/2015 12/17/2013 6/23/2014 9/8/2015 2/1/2016 11/28/2018 3/23/2020 12/13/2013 6/23/2014 1/21/2015 11/28/2018 3/25/2020 12/13/2013 6/23/2014 1/21/2015 11/28/2018 3/25/2020 12/13/2013 6/24/2014 3/24/2020 12/12/2013	37	44 to 60 Injection 41 to 60 Injection 43 to 60 Injection 46 to 60	279.45 Decommissioned 278.84 of Regenesis products 3DM 277.88 of Regenesis products 3DM 277.97 of Regenesis products 3DM 277.80	dry dry dry dry dry dry dry dry dry 53 e and HRC Prime 49 49 49 53 e and HRC Prime 56 50 51 53 e and HRC Prime	dry
MW-10 Installed 5/7/2009 MW-15 Installed 10/14/2013 MW-16 Installed 10/15/2013 MW-17 Installed 10/15/2013 MW-18	12/16/2013 4/29/2015 5/11/2009 12/22/2010 2/6/2012 12/16/2013 4/29/2015 12/17/2013 6/23/2014 9/8/2015 2/1/2016 11/28/2018 3/23/2020 12/13/2013 6/23/2014 1/21/2015 11/28/2018 3/25/2020 12/13/2013 6/23/2014 1/21/2015 11/28/2018 3/25/2020 12/13/2013 6/24/2014 3/24/2020	23	44 to 60 Injection 41 to 60 Injection 43 to 60 Injection 46 to 60	279.45 Decommissioned 278.84 of Regenesis products 3DM 277.88 of Regenesis products 3DM 277.97 of Regenesis products 3DM	dry dry dry dry dry dry dry dry 53 e and HRC Prime 49 49 49 53 e and HRC Prime 56 50 51 53 e and HRC Prime 60 e and HRC Prime	dry
MW-10 Installed 5/7/2009 MW-15 Installed 10/14/2013 MW-16 Installed 10/15/2013 MW-17 Installed 10/15/2013 MW-18 Installed 10/16/2013 MW-19	12/16/2013 4/29/2015 5/11/2009 12/22/2010 2/6/2012 12/16/2013 4/29/2015 12/17/2013 6/23/2014 9/8/2015 2/1/2016 11/28/2018 3/23/2020 12/13/2013 6/23/2014 1/21/2015 11/28/2018 3/25/2020 12/13/2013 6/24/2014 3/24/2020 12/12/2013 6/24/2014 3/25/2020 1/8/2014	23	44 to 60 Injection 41 to 60 Injection 43 to 60 Injection 46 to 60 Injection 45 to 60	279.45 Decommissioned 278.84 of Regenesis products 3DM 277.88 of Regenesis products 3DM 277.97 of Regenesis products 3DM 277.80 of Regenesis products 3DM 278.15	dry dry dry dry dry dry dry dry 53 e and HRC Prime 49 49 49 53 e and HRC Prime 56 50 51 51 60 e and HRC Prime dry 52.72	dry dry dry dry dry dry dry 226 er 230 230 230 230 230 225 er 222 228 227 225 er 217 er dry 225.43
MW-10 Installed 5/7/2009 MW-15 Installed 10/14/2013 MW-16 Installed 10/15/2013 MW-17 Installed 10/15/2013 MW-18 Installed 10/16/2013 MW-19	12/16/2013 4/29/2015 5/11/2009 12/22/2010 2/6/2012 12/16/2013 4/29/2015 12/17/2013 6/23/2014 9/8/2015 2/1/2016 11/28/2018 3/23/2020 12/13/2013 6/23/2014 1/21/2015 11/28/2018 3/25/2020 12/13/2013 6/24/2014 3/24/2020 12/13/2013 6/24/2014 3/25/2020	37 23 32 45	44 to 60 Injection 41 to 60 Injection 43 to 60 Injection 46 to 60 Injection 45 to 60	279.45 Decommissioned 278.84 of Regenesis products 3DM 277.88 of Regenesis products 3DM 277.97 of Regenesis products 3DM 277.80 of Regenesis products 3DM	dry dry dry dry dry dry dry dry 53 e and HRC Prime 49 49 49 53 e and HRC Prime 56 50 51 53 e and HRC Prime 60 e and HRC Prime dry 52.72 e and HRC Prime	dry dry dry dry dry dry dry 226 er 230 230 230 230 230 225 er 222 228 227 225 er 217 er dry 225.43
MW-10 Installed 5/7/2009 MW-15 Installed 10/14/2013 MW-16 Installed 10/15/2013 MW-17 Installed 10/15/2013 MW-18 Installed 10/16/2013 MW-19	12/16/2013 4/29/2015 5/11/2009 12/22/2010 2/6/2012 12/16/2013 4/29/2015 12/17/2013 6/23/2014 9/8/2015 2/1/2016 11/28/2018 3/23/2020 12/13/2013 6/23/2014 1/21/2015 11/28/2018 3/25/2020 12/13/2013 6/24/2014 3/24/2020 12/13/2013 6/24/2014 3/25/2020 12/13/2013 1/21/2015	37 23 32 45	44 to 60 Injection 41 to 60 Injection 43 to 60 Injection 46 to 60 Injection 45 to 60	279.45 Decommissioned 278.84 of Regenesis products 3DM 277.88 of Regenesis products 3DM 277.97 of Regenesis products 3DM 277.80 of Regenesis products 3DM 278.15	dry dry dry dry dry dry dry dry 53 e and HRC Prime 49 49 49 53 e and HRC Prime 56 50 51 51 60 e and HRC Prime dry 52.72	dry dry dry dry dry dry dry 226 er 230 230 230 230 230 225 er 222 228 227 225 er 217 er dry 225.43
MW-10 Installed 5/7/2009 MW-15 Installed 10/14/2013 MW-16 Installed 10/15/2013 MW-17 Installed 10/15/2013 MW-18 Installed 10/16/2013 MW-19	12/16/2013 4/29/2015 5/11/2009 12/22/2010 2/6/2012 12/16/2013 4/29/2015 12/17/2013 6/23/2014 9/8/2015 2/1/2016 11/28/2018 3/23/2020 12/13/2013 6/23/2014 1/21/2015 11/28/2018 3/25/2020 12/13/2013 6/24/2014 3/24/2020 12/12/2013 6/24/2014 3/25/2020 1/8/2014 1/21/2015 9/9/2015 2/2/2016	37 23 32 45	44 to 60 Injection 41 to 60 Injection 43 to 60 Injection 46 to 60 Injection 45 to 60	279.45 Decommissioned 278.84 of Regenesis products 3DM 277.88 of Regenesis products 3DM 277.97 of Regenesis products 3DM 277.80 of Regenesis products 3DM 278.15	dry	dry dry dry dry dry dry dry dry 226 er 230 230 230 230 230 225 er 222 228 227 225 er 227 217 er dry 225.43 er
MW-10 Installed 5/7/2009 MW-15 Installed 10/14/2013 MW-16 Installed 10/15/2013 MW-17 Installed 10/15/2013 MW-18 Installed 10/16/2013 MW-19	12/16/2013 4/29/2015 5/11/2009 12/22/2010 2/6/2012 12/16/2013 4/29/2015 12/17/2013 6/23/2014 9/8/2015 2/1/2016 11/28/2018 3/23/2020 12/13/2013 6/23/2014 1/21/2015 11/28/2018 3/25/2020 12/13/2013 6/24/2014 3/24/2020 12/12/2013 6/24/2014 3/25/2020 1/8/2014 1/21/2015 1/8/2014 1/21/2015 1/8/2014 1/21/2015 1/8/2014 1/21/2015 1/8/2014 1/21/2015 1/8/2016 11/28/2016 11/28/2016	37 23 32 45	44 to 60 Injection 41 to 60 Injection 43 to 60 Injection 46 to 60 Injection 45 to 60	279.45 Decommissioned 278.84 of Regenesis products 3DM 277.88 of Regenesis products 3DM 277.97 of Regenesis products 3DM 277.80 of Regenesis products 3DM 278.15	dry	dry
MW-10 Installed 5/7/2009 MW-15 Installed 10/14/2013	12/16/2013 4/29/2015 5/11/2009 12/22/2010 2/6/2012 12/16/2013 4/29/2015 12/17/2013 6/23/2014 9/8/2015 2/1/2016 11/28/2018 3/23/2020 12/13/2013 6/23/2014 1/21/2015 11/28/2018 3/25/2020 12/13/2013 6/24/2014 3/24/2020 12/12/2013 6/24/2014 3/25/2020 1/8/2014 1/21/2015 1/8/2014 1/21/2015 1/8/2014 1/21/2015 9/9/2015 2/2/2016 11/28/2018 4/12/2019	37 23 32 45	44 to 60 Injection 41 to 60 Injection 43 to 60 Injection 46 to 60 Injection 45 to 60	279.45 Decommissioned 278.84 of Regenesis products 3DM 277.88 of Regenesis products 3DM 277.97 of Regenesis products 3DM 277.80 of Regenesis products 3DM 278.15	dry	dry
MW-10 Installed 5/7/2009 MW-15 Installed 10/14/2013 MW-16 Installed 10/15/2013 MW-17 Installed 10/15/2013 MW-18 Installed 10/16/2013 MW-19 Installed 10/17/2013	12/16/2013 4/29/2015 5/11/2009 12/22/2010 2/6/2012 12/16/2013 4/29/2015 12/17/2013 6/23/2014 9/8/2015 2/1/2016 11/28/2018 3/23/2020 12/13/2013 6/23/2014 1/21/2015 11/28/2018 3/25/2020 12/13/2013 6/24/2014 3/24/2020 12/12/2013 6/24/2014 3/25/2020 1/8/2014 1/21/2015 1/8/2014 1/21/2015 1/8/2014 1/21/2015 1/8/2014 1/21/2015 1/8/2014 1/21/2015 1/8/2016 11/28/2016 11/28/2016	37 23 32 45	44 to 60 Injection 41 to 60 Injection 43 to 60 Injection 46 to 60 Injection 45 to 60 Injection	279.45 Decommissioned 278.84 of Regenesis products 3DM 277.88 of Regenesis products 3DM 277.97 of Regenesis products 3DM 277.80 of Regenesis products 3DM 278.15 of Regenesis products 3DM	dry	dry
WW-10 Installed 5/7/2009 WW-15 Installed 10/14/2013 WW-16 Installed 10/15/2013 WW-17 Installed 10/15/2013 WW-18 Installed 10/16/2013 WW-19 Installed 10/17/2013	12/16/2013 4/29/2015 5/11/2009 12/22/2010 2/6/2012 12/16/2013 4/29/2015 12/17/2013 6/23/2014 9/8/2015 2/1/2016 11/28/2018 3/23/2020 12/13/2013 6/23/2014 1/21/2015 11/28/2018 3/25/2020 12/13/2013 6/24/2014 3/24/2020 12/12/2013 6/24/2014 3/25/2020 1/8/2014 1/21/2015 9/9/2015 2/2/2016 11/28/2018 4/12/2019 3/24/2020 1/21/2015 9/9/2015 2/2/2016 11/28/2018 4/12/2019 3/24/2020 1/8/2019	37 23 32 45	44 to 60 Injection 41 to 60 Injection 43 to 60 Injection 46 to 60 Injection 45 to 60 Injection	279.45 Decommissioned 278.84 of Regenesis products 3DM 277.88 of Regenesis products 3DM 277.97 of Regenesis products 3DM 277.80 of Regenesis products 3DM 278.15 of Regenesis products 3DM 278.15	dry	dry
MW-10 Installed 5/7/2009 MW-15 Installed 10/14/2013 MW-16 Installed 10/15/2013 MW-17 Installed 10/15/2013 MW-18 Installed 10/16/2013 MW-19 Installed 10/17/2013	12/16/2013 4/29/2015 5/11/2009 12/22/2010 2/6/2012 12/16/2013 4/29/2015 12/17/2013 6/23/2014 9/8/2015 2/1/2016 11/28/2018 3/23/2020 12/13/2013 6/23/2014 1/21/2015 11/28/2018 3/25/2020 12/13/2013 6/24/2014 3/24/2020 1/8/2014 6/24/2014 3/25/2020 1/8/2014 6/24/2014 1/21/2015 9/9/2015 2/2/2016 11/28/2018 4/12/2019 3/24/2020 1/8/2014 6/24/2014 1/21/2015 9/9/2015 2/2/2016 11/28/2018 4/12/2019 3/24/2020 1/8/2014 6/24/2014	37 23 32 45	44 to 60 Injection 41 to 60 Injection 43 to 60 Injection 46 to 60 Injection 45 to 60 Injection	279.45 Decommissioned 278.84 of Regenesis products 3DM 277.88 of Regenesis products 3DM 277.97 of Regenesis products 3DM 277.80 of Regenesis products 3DM 278.15 of Regenesis products 3DM	dry	dry
WW-10 Installed 5/7/2009 WW-15 Installed 10/14/2013 WW-16 Installed 10/15/2013 WW-17 Installed 10/15/2013 WW-18 Installed 10/16/2013 WW-19 Installed 10/17/2013	12/16/2013 4/29/2015 5/11/2009 12/22/2010 2/6/2012 12/16/2013 4/29/2015 12/17/2013 6/23/2014 9/8/2015 2/1/2016 11/28/2018 3/23/2020 12/13/2013 6/23/2014 1/21/2015 11/28/2018 3/25/2020 12/13/2013 6/24/2014 3/24/2020 12/12/2013 6/24/2014 3/25/2020 1/8/2014 1/21/2015 9/9/2015 2/2/2016 11/28/2018 4/12/2019 3/24/2020 1/21/2015 9/9/2015 2/2/2016 11/28/2018 4/12/2019 3/24/2020 1/8/2019	37 23 32 45	44 to 60 Injection 41 to 60 Injection 43 to 60 Injection 46 to 60 Injection 45 to 60 Injection	279.45 Decommissioned 278.84 of Regenesis products 3DM 277.88 of Regenesis products 3DM 277.97 of Regenesis products 3DM 277.80 of Regenesis products 3DM 278.15 of Regenesis products 3DM 278.15	dry	dry dry dry dry dry dry dry dry dry 226 er 230 230 230 230 230 225 er 222 228 227 225 er 227 217 er dry 225.43 er 226.44 226.51 227.60 227.52 227.03 227.07 225.39
WW-10 Installed 5/7/2009 WW-15 Installed 10/14/2013 WW-16 Installed 10/15/2013 WW-17 Installed 10/15/2013 WW-18 Installed 10/16/2013 WW-19 Installed 10/17/2013	12/16/2013 4/29/2015 5/11/2009 12/22/2010 2/6/2012 12/16/2013 4/29/2015 12/17/2013 6/23/2014 9/8/2015 2/1/2016 11/28/2018 3/23/2020 12/13/2013 6/23/2014 1/21/2015 11/28/2018 3/25/2020 12/13/2013 6/24/2014 3/24/2020 12/12/2013 6/24/2014 3/25/2020 1/8/2014 6/24/2014 1/21/2015 9/9/2015 2/2/2016 11/28/2020 1/8/2014 4/12/2019 3/24/2020 4/28/2020 1/8/2014 6/24/2014 1/2019 3/24/2020 1/8/2014 6/24/2014 1/2019 1/8/2014 6/24/2014 1/20/2015 2/2/2016	37 23 32 45	44 to 60 Injection 41 to 60 Injection 43 to 60 Injection 46 to 60 Injection 45 to 60 Injection	279.45 Decommissioned 278.84 of Regenesis products 3DM 277.88 of Regenesis products 3DM 277.97 of Regenesis products 3DM 277.80 of Regenesis products 3DM 278.15 of Regenesis products 3DM 278.15	dry	dry
MW-10 Installed 5/7/2009 MW-15 Installed 10/14/2013 MW-16 Installed 10/15/2013 MW-17 Installed 10/15/2013 MW-18 Installed 10/16/2013 MW-19 Installed 10/17/2013	12/16/2013 4/29/2015 5/11/2009 12/22/2010 2/6/2012 12/16/2013 4/29/2015 12/17/2013 6/23/2014 9/8/2015 2/1/2016 11/28/2018 3/23/2020 12/13/2013 6/23/2014 1/21/2015 11/28/2018 3/25/2020 12/13/2013 6/24/2014 3/24/2020 12/12/2013 6/24/2014 3/25/2020 1/8/2014 6/24/2014 1/21/2015 9/9/2015 2/2/2016 11/28/2018 4/12/2020 4/28/2020 1/8/2014 6/24/2014 1/20/2015 2/2/2016 11/28/2018	37 23 32 45	44 to 60 Injection 41 to 60 Injection 43 to 60 Injection 46 to 60 Injection 45 to 60 Injection	279.45 Decommissioned 278.84 of Regenesis products 3DM 277.88 of Regenesis products 3DM 277.97 of Regenesis products 3DM 277.80 of Regenesis products 3DM 278.15 of Regenesis products 3DM 278.15	dry	dry
WW-10 Installed 5/7/2009 WW-15 Installed 10/14/2013 WW-16 Installed 10/15/2013 WW-17 Installed 10/15/2013 WW-18 Installed 10/16/2013 WW-19 Installed 10/17/2013	12/16/2013 4/29/2015 5/11/2009 12/22/2010 2/6/2012 12/16/2013 4/29/2015 12/17/2013 6/23/2014 9/8/2015 2/1/2016 11/28/2018 3/23/2020 12/13/2013 6/23/2014 1/21/2015 11/28/2018 3/25/2020 12/13/2013 6/24/2014 3/25/2020 12/13/2013 6/24/2014 3/25/2020 1//12/2013 6/24/2014 3/25/2020 1//12/2015 9/9/2015 2/2/2016 11/28/2018 4/12/2019 3/24/2020 1//12/2015 9/9/2015 2/2/2016 11/28/2014 6/24/2014 1/20/2015 9/9/2015 2/2/2016 11/28/2018 4/12/2019 3/24/2020 1/8/2014 6/24/2014 1/20/2015 9/9/2015 2/2/2016 11/28/2018 2/2/2016 11/28/2018 2/2/2016	37 23 32 45	44 to 60 Injection 41 to 60 Injection 43 to 60 Injection 46 to 60 Injection 45 to 60 Injection	279.45 Decommissioned 278.84 of Regenesis products 3DM 277.88 of Regenesis products 3DM 277.97 of Regenesis products 3DM 277.80 of Regenesis products 3DM 278.15 of Regenesis products 3DM 278.15	dry	dry
MW-10 Installed 5/7/2009 MW-15 Installed 10/14/2013 MW-16 Installed 10/15/2013 MW-17 Installed 10/15/2013 MW-18 Installed 10/16/2013 MW-19	12/16/2013 4/29/2015 5/11/2009 12/22/2010 2/6/2012 12/16/2013 4/29/2015 12/17/2013 6/23/2014 9/8/2015 2/1/2016 11/28/2018 3/23/2020 12/13/2013 6/23/2014 1/21/2015 11/28/2018 3/25/2020 12/13/2013 6/24/2014 3/24/2020 12/12/2013 6/24/2014 3/25/2020 1/8/2014 6/24/2014 1/21/2015 9/9/2015 2/2/2016 11/28/2018 4/12/2020 4/28/2020 1/8/2014 6/24/2014 1/20/2015 2/2/2016 11/28/2018	37 23 32 45	44 to 60 Injection 41 to 60 Injection 43 to 60 Injection 46 to 60 Injection 45 to 60 Injection	279.45 Decommissioned 278.84 of Regenesis products 3DM 277.88 of Regenesis products 3DM 277.97 of Regenesis products 3DM 277.80 of Regenesis products 3DM 278.15 of Regenesis products 3DM 278.15	dry	dry
WW-10 Installed 5/7/2009 WW-15 Installed 10/14/2013 WW-16 Installed 10/15/2013 WW-17 Installed 10/15/2013 WW-18 Installed 10/16/2013 WW-19 Installed 10/17/2013	12/16/2013 4/29/2015 5/11/2009 12/22/2010 2/6/2012 12/16/2013 4/29/2015 12/17/2013 6/23/2014 9/8/2015 2/1/2016 11/28/2018 3/23/2020 12/13/2013 6/23/2014 1/21/2015 11/28/2018 3/25/2020 12/13/2013 6/24/2014 3/24/2020 12/13/2013 6/24/2014 3/25/2020 1/8/2014 6/24/2014 1/21/2015 9/9/2015 2/2/2016 11/28/2018 4/12/2019 3/24/2020 1/8/2014 6/24/2014 1/21/2015 9/9/2015 2/2/2016 11/28/2018 4/12/2019 4/28/2019 4/28/2019 4/12/2019	37 23 32 45	44 to 60 Injection 41 to 60 Injection 43 to 60 Injection 46 to 60 Injection 45 to 60 Injection	279.45 Decommissioned 278.84 of Regenesis products 3DM 277.88 of Regenesis products 3DM 277.97 of Regenesis products 3DM 277.80 of Regenesis products 3DM 278.15 of Regenesis products 3DM 278.15	dry	dry
MW-10 Installed 5/7/2009 MW-15 Installed 10/14/2013 MW-16 Installed 10/15/2013 MW-17 Installed 10/15/2013 MW-18 Installed 10/16/2013 MW-19 Installed 10/17/2013	12/16/2013 4/29/2015 5/11/2009 12/22/2010 2/6/2012 12/16/2013 4/29/2015 12/17/2013 6/23/2014 9/8/2015 2/1/2016 11/28/2018 3/23/2020 12/13/2013 6/23/2014 1/21/2015 11/28/2018 3/25/2020 12/13/2013 6/24/2014 3/24/2020 12/13/2013 6/24/2014 3/25/2020 1/8/2014 6/24/2014 1/21/2015 9/9/2015 2/2/2016 11/28/2018 4/12/2019 3/24/2020 1/8/2014 6/24/2014 1/21/2015 9/9/2015 2/2/2016 11/28/2018 4/12/2019 3/24/2020 1/8/2014 6/24/2014 1/20/2015 9/9/2015 2/2/2016 11/28/2019 4/12/2019 7/15/2019	37 23 32 45	44 to 60 Injection 41 to 60 Injection 43 to 60 Injection 46 to 60 Injection 45 to 60 Injection	279.45 Decommissioned 278.84 of Regenesis products 3DM 277.88 of Regenesis products 3DM 277.97 of Regenesis products 3DM 277.80 of Regenesis products 3DM 278.15 of Regenesis products 3DM 278.15 of Regenesis products 3DM	dry	dry
MW-10 Installed 5/7/2009 MW-15 Installed 10/14/2013 MW-16 Installed 10/15/2013 MW-17 Installed 10/15/2013 MW-18 Installed 10/16/2013 MW-19 Installed 10/17/2013	12/16/2013 4/29/2015 5/11/2009 12/22/2010 2/6/2012 12/16/2013 4/29/2015 12/17/2013 6/23/2014 9/8/2015 2/1/2016 11/28/2018 3/23/2020 12/13/2013 6/23/2014 1/21/2015 11/28/2018 3/25/2020 12/13/2013 6/24/2014 3/24/2020 12/13/2013 6/24/2014 3/25/2020 1//8/2014 6/24/2014 1/21/2015 9/9/2015 2/2/2016 11/28/2018 4/12/2019 3/24/2020 1/8/2014 6/24/2014 1/21/2015 9/9/2015 2/2/2016 11/28/2018 4/12/2019 3/24/2020 1/8/2014 6/24/2014 1/20/2015 9/9/2015 2/2/2016 11/28/2018 4/12/2019 1/8/2019 4/12/2019 7/15/2019	37 23 32 45	44 to 60 Injection 41 to 60 Injection 43 to 60 Injection 46 to 60 Injection 45 to 60 Injection	279.45 Decommissioned 278.84 of Regenesis products 3DM 277.88 of Regenesis products 3DM 277.97 of Regenesis products 3DM 277.80 of Regenesis products 3DM 278.15 of Regenesis products 3DM 278.15 of Regenesis products 3DM	dry	dry

Table 1. Monitoring Well Information and Groundwater Elevation Data Project No. 080190, Morrell's Dry Cleaners Site (VCP SW1039), 608 North First Street, Tacoma, WA

Monitoring Well ID and Installation Date	Date	Vertical Angle	Screened Intervals (feet bgs)	Top of Casing Elevation (feet, site datum)	Depth to Water (feet)	Groundwater Elevation (feet, site datum)
MW-21	12/17/2013	0	45 to 60	279.03	53.66	225.37
Installed 10/17/2013	6/23/2014		Injection o	f Regenesis products 3DN		
	1/20/2015 9/8/2015				52.78 52.83	226.25 226.20
	2/1/2016				53.21	225.82
	11/28/2018				51.6	227.43
	4/12/2019				51.57	227.46
	3/25/2020				52.15	226.88
MW-23	4/28/2020 3/14/2019	0	10 to 20 and 45 to 60	277.94	52.12 50.61	226.91 227.33
Installed 2/6/2019	3/14/2019 4/12/2019	U	10 to 20 and 45 to 60	211.94	50.61	227.23
1113talled 2/0/2013	3/26/2020				51.22	226.72
	4/28/2020				51.01	226.93
MW-24	2/13/2019	0	10 to 20 and 45 to 60	278.08	50.92	227.16
nstalled 1/31/2019	4/12/2019				50.88	227.20
	8/27/2019				51.17	226.91
	12/12/2019 3/26/2020				51.57 51.54	226.51 226.54
	4/28/2020				51.3	226.78
MW-25	2/13/2019	0	45 to 60	278.16	50.81	227.35
Installed 1/29/2019	4/12/2019				50.86	227.30
	3/26/2020				51.42	226.74
	4/28/2020				51.15	227.01
MW-26	2/13/2019	0	45 to 60	278.10	50.74	227.36
Installed 1/20/2019	4/12/2019 8/28/2019				50.89 51.14	227.21 226.96
	12/13/2019				51.14	226.96
	3/25/2020				51.62	226.48
	4/28/2020				51.24	226.86
MW-27	2/13/2019	0	45 to 60	277.75	50.47	227.28
Installed 2/1/2019	4/12/2019				50.68	227.07
	3/24/2020				51.39	226.36
MW 28	4/28/2020		45 to 60	077.60	51.06	226.69
MW-28 Installed 3/14/2019	3/26/2019 4/12/2019	0	45 to 60	277.68	50.4 50.6	227.28 227.08
	3/25/2020				50.13	227.55
	4/28/2020				50.99	226.69
MW-29	3/26/2019	0	45 to 60	277.87	50.64	227.23
Installed 3/11/2019	4/12/2019				50.76	227.11
	3/25/2020				51.34	226.53
104/00	4/28/2020		45.1.00	070.07	51.16	226.71
MW-30	2/25/2019	0	45 to 60	278.27	51.24	227.03
Installed 2/7/2019	4/12/2019 3/26/2020				51.29 51.9	226.98 226.37
	4/28/2020				51.6	226.67
MW-31	2/25/2019	0	10 to 20 and 45 to 60	278.87	51.84	227.03
Installed 2/5/2019	4/12/2019				51.93	226.94
	3/26/2020				51.3	227.57
	4/28/2020				52.25	226.62
MW-32 Installed 3/13/2019	3/26/2019 4/12/2019	0	45 to 60	278.40	51.23	227.17
Installed 3/13/2019	3/26/2020				51.3 51.85	227.10 226.55
	4/28/2020				51.64	226.76
MW-33	3/26/2019	0	45 to 60	279.21	51.95	227.26
Installed 3/13/2019	4/12/2019				52.15	227.06
	3/26/2020				52.55	226.66
	4/28/2020				52.52	226.69
MW-34	7/15/2019	0	44 to 59	278.10	51.03	227.07
	8/27/2019				51.27	226.83
Installed 7/9/2019	12/13/2019				51.5	226.60
	3/25/2020				51.9	226.20
MW-35	4/28/2020 8/27/2019	0	43 to 58	278.15	51.32 51.25	226.78 226.90
Installed 7/11/2019	12/13/2019		70 10 00	210.10	51.64	226.51
	3/25/2020				51.74	226.41
	4/28/2020	<u></u>			51.25	226.90
			ells Screened in Deeper \			
MW-8D	5/11/2009	0	96 to 116	278.11	112.56	165.55
Installed 5/6/2009	12/22/2010				112.58	165.53
	2/6/2012 1/10/2014				112.52 112.56	165.59 165.55
	4/28/2015				112.56	165.66
	9/8/2015				118.92	159.19
	2/2/2016				112.53	165.58
	4/9/2019				112.48	165.63
MW 42D	3/24/2020		440 to 400	077 70	112.67	165.44
MW-12D Installed 10/27/2010	12/22/2010 2/6/2012	0	113 to 123	277.72	129.96 129.80	147.76 147.92
notalied 10/2//2010	2/6/2012 1/10/2014				129.80	147.92
	4/29/2015				129.89	147.83
	9/10/2015				130.90	146.82
	2/2/2016				131.03	146.69
MM 42D	3/24/2020		405 1: 445	070.00	130.47	147.25
MW-13D	12/22/2010	0	125 to 145	276.96	137.88	139.08
nstalled 10/29/2010	2/7/2012 12/16/2013				137.43 137.70	139.53 139.26
	4/29/2015				137.70	139.83
	9/9/2015				137.13	139.74
	2/2/2016				137.14	139.82
	4/9/2019				137.62	139.34
1007.4.45	3/24/2020	_	4004		138.26	138.70
MW-14D	2/6/2012	0	123 to 143	277.46	134.02	143.44
nstalled 2/2/2012	1/23/2014				134.26 133.82	143.20
	4/29/2015 9/9/2015				133.82 134.16	143.64 143.30
	2/2/2016				134.11	143.35
	4/9/2019				134.3	143.16
	3/24/2020	i	i l		134.41	143.05

bgs = below ground surface

nm = not measured

Table 2. Summary of PID Screening and Analytical Data for 2019 Soil BoringsProject No. 080190, Morrell's Dry Cleaners (VCP No. SW1039), 608 North First Street, Tacoma, Washington

					Chlorina	ted VOCs				F	Petroleum H	ydrocarbon	ıs		
Well ID ²	Sample Date	Sample Depth (feet bgs)	[PID] ³	Tetrachloroethene (PCE)	Trichloroethene (TCE)	cis-1,2- Dichloroethene (cDCE)	Methylene Chloride ⁴	1,2,4- Trimethylbenzene	1,3,5- Trimethylbenzene	n-Propylbenzene	Isopropylbenzene	sec-Butylbenzene	tert-Butylbenzene	p-IsopropyItoluene	Naphthalene
MW-22				npted on 2/4			-								0.0511
		5.5 10.5	360 31	0.025 U 0.40	0.02 U 0.18	0.05 U 0.19	0.5 U 1.4	0.14 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.059 0.05 U	0.05 U 0.05 U	0.058 0.05 U	0.05 U 0.05 U
		15.5	1.2	0.40	0.10	0.15	1.4	0.00 0	0.00 0	0.00 0	0.00 0	0.00 0	0.000	0.00 0	0.00 0
		20.5	4.1	0.045	0.02 U	0.05 U	0.51	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
		25.5 30.5	704 2.1	2.3	0.02 U	0.05 U	0.5 U	0.05 U	0.11	0.05 U	0.05 U	0.064	0.05 U	0.094	0.05 U
MW-23	02/06/19	35.5	1.8												
		40.5	0.2												
		45.5	0.2												
		50.5 55.5 ⁹	0.3 2.2	0.095	0.02 U	0.05 U	0.83	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
		60.5	0.4	0.033	0.02 0	0.03 0	0.03	0.03 0	0.03 0	0.03 0	0.03 0	0.03 0	0.03 0	0.03 0	0.00 0
		5.5	0	0.025 U	0.02 U	0.05 U	0.5 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
		10.5 15.5	0												
		20.5													
		25.5	0												
MW-24	1/30/19 & 1/31/19	30.5	0.5	0.025 U	0.02 U	0.05 U	0.5 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
	1/31/19	35.5 40.5	0												
		45.5	0												
		50.5 ⁹	0	0.025 U	0.02 U	0.05 U	0.5 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
		55.5 60.5	0												
		5.5	0	0.025 U	0.02 U	0.05 U	0.5 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
		10.5	0												
		15.5 20.5	0	1											
		25.5	0												
MW-25	1/28/19 &	30.5	0.2	0.025 U	0.02 U	0.05 U	0.5 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
	1/29/19	35.5 40.5	0												
		45.5	0												
		50.5 ⁹	0.5	0.025 U	0.02 U	0.05 U	0.5 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
		55.5	0												
		60.5 5.5	0	0.025 U	0.02 U	0.05 U	0.5 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
		10.5	0												
		15.5 20.5	0	1											
		25.5	0												
MW-26	1/29/19 &	30.5	0	0.025 U	0.02 U	0.05 U	0.5 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
	1/30/19	35.5 40.5	0	1											
		45.5	0												
		50.5 ⁹	0	0.025 U	0.02 U	0.05 U	0.5 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
		55.5 60.5	0												
		5.5	0	0.025 U	0.02 U	0.05 U	0.5 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
		10.5	0												
		15.5 20.5	0												
		25.5	0												
MW-27	1/31/19 &	30.5	1.5	0.025 U	0.02 U	0.05 U	0.5 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
	2/1/19	35.5 40.5	0												
		45.5	0.5												
		50.5 ⁹	0.5	0.025 U	0.02 U	0.05 U	0.5 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
		55.5 60.5	0	1											
		5.5	0												
		10.5	0.3												
		15.5 20.5	0												
		25.5	0												
MW-28	03/14/19	30.5	3.5	0.038	0.02 U	0.05 U	0.5 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
		35.5 40.5	0												
		45.5	0												
		50.5	0												
		55.5 ⁹ 60.5	0	0.025 U	0.02 U	0.05 U	0.5 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
		5.5	0												
		10.5	0												
		15 20.5	0	0.043	0.02 U	0.05 U	0.5 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
		25.5	0	1											
MW-29	03/11/19	30.5	0												
		35.5 40.5	0.5	<u> </u>											
		45.5	0.5	 											
		50 ⁹	0.9	0.043	0.02 U	0.05 U	0.5 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
		55.5 60.5	0	1											
L	I	ບບ.ບ	U	ı	1	1			1	1	1	1		<u> </u>	

Table 2. Summary of PID Screening and Analytical Data for 2019 Soil BoringsProject No. 080190, Morrell's Dry Cleaners (VCP No. SW1039), 608 North First Street, Tacoma, Washington

					Chlorina	ted VOCs				F	etroleum H	ydrocarbor	ıs		
Well ID ²	Sample Date	Sample Depth (feet bgs)	[PID] ³	Tetrachloroethene (PCE)	Trichloroethene (TCE)	cis-1,2- Dichloroethene (cDCE)	Methylene Chloride ⁴	1,2,4- Trimethylbenzene	1,3,5- Trimethylbenzene	n-Propylbenzene	Isopropylbenzene	sec-Butylbenzene	tert-Butylbenzene	p-IsopropyItoluene	Naphthalene
		5.5 10.5	0 4	0.084	0.021	0.05 U	0.5 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
MW-30	02/07/19	15.5 20.5 25.5 30.5	0.2 0.5 0.6						0.00	0.00	0.00	0.00	0.00 0	0.00 0	0.00 0
WWV 00	02/01/10	35.5 40.5 45.5 50.5	2.6 0 0 0	0.10	0.02 U	0.05 U	0.5 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
		55.5 60.5 ⁹	0 0.4	0.026	0.02 U	0.05 U	0.5 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
		5.5 10.5 15.5 20.5	0 0.1 0.1 0.1	0.025 U	0.02 U	0.05 U	0.5 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
MW-31	02/05/19	25.5 30.5 35.5 40.5	0 0.1 0.3 1	0.025 U	0.02 U	0.05 U	0.5 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
		45.5 50.5 55.5 ⁹ 60.5 ⁹	0 0.3 1.5 1.3	0.058 0.058	0.02 U 0.02 U	0.05 U 0.05 U	0.5 U 0.5 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U
		5.5 10.5 15.5 20.5 25.5	1 1 5	0.025 U	0.02 U	0.05 U	0.5 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
MW-32	03/13/19	30.5 35.5 40.5 45.5	1.5 1.5 0												
		50.5 55.5 ⁹ 60.5 5.5	0 0 0 2	0.025 U	0.02 U	0.05 U	0.5 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
		10 15.5 20.5 25.5	2 0 1 0	0.025 U	0.02 U	0.05 U	0.5 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
MW-33	3/12/19 & 3/13/19	30.5 35.5 40.5 45.5 50.5	0 0.5 0 0												
		55.5 ⁹ 60.5 5.5 10.5 15.5	0 0 2 0.8	0.025 U	0.02 U	0.05 U	0.5 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
MW-34	7/8/19 & 7/9/19	20.5 25.5 30.5 35.5	1.5 0.5 0.5												
		40.5 45.5 50.5 55.5	0.5 0 0.2 0.1												
		60.5 5.5 10.5 15.5 20.5	0.1 0 0 0 0												
B-35A ⁵	7/9/19 & 7/10/19	25.5 30.5 35.5 40.5	0.3 1.1 0.3 0												
		45.5 2.8 4.9 6.7 11.0	0 7 21 7 41												
VE-5 ⁶ (45 deg angle)	02/26/19	13.8 15.9 19.4 22.6	14 666 109 126	0.025 U 0.025 U	0.02 U	0.05 U	0.5 U	0.069	0.05 U 0.05 U	0.05 U	0.05 U	0.05 U 0.05 U	0.05 U	0.05 U	0.05 U
		25.5 27.9 30.4 4.9 9.2	7 21 16 13 126	0.47	0.02 U	0.05 U	0.5 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
VE-6 ⁶ (45 deg	02/28/19	14.8 20.9 26.9 29.0	99 22 71 33	0.47 0.025 U	0.02 U	0.05 U	0.5 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
angle)		35.7 40.3 44.2 46.0	8 42 27 55	0.025 U	0.02 U	0.05 U	0.5 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U

Table 2

Table 2. Summary of PID Screening and Analytical Data for 2019 Soil Borings

Project No. 080190, Morrell's Dry Cleaners (VCP No. SW1039), 608 North First Street, Tacoma, Washington

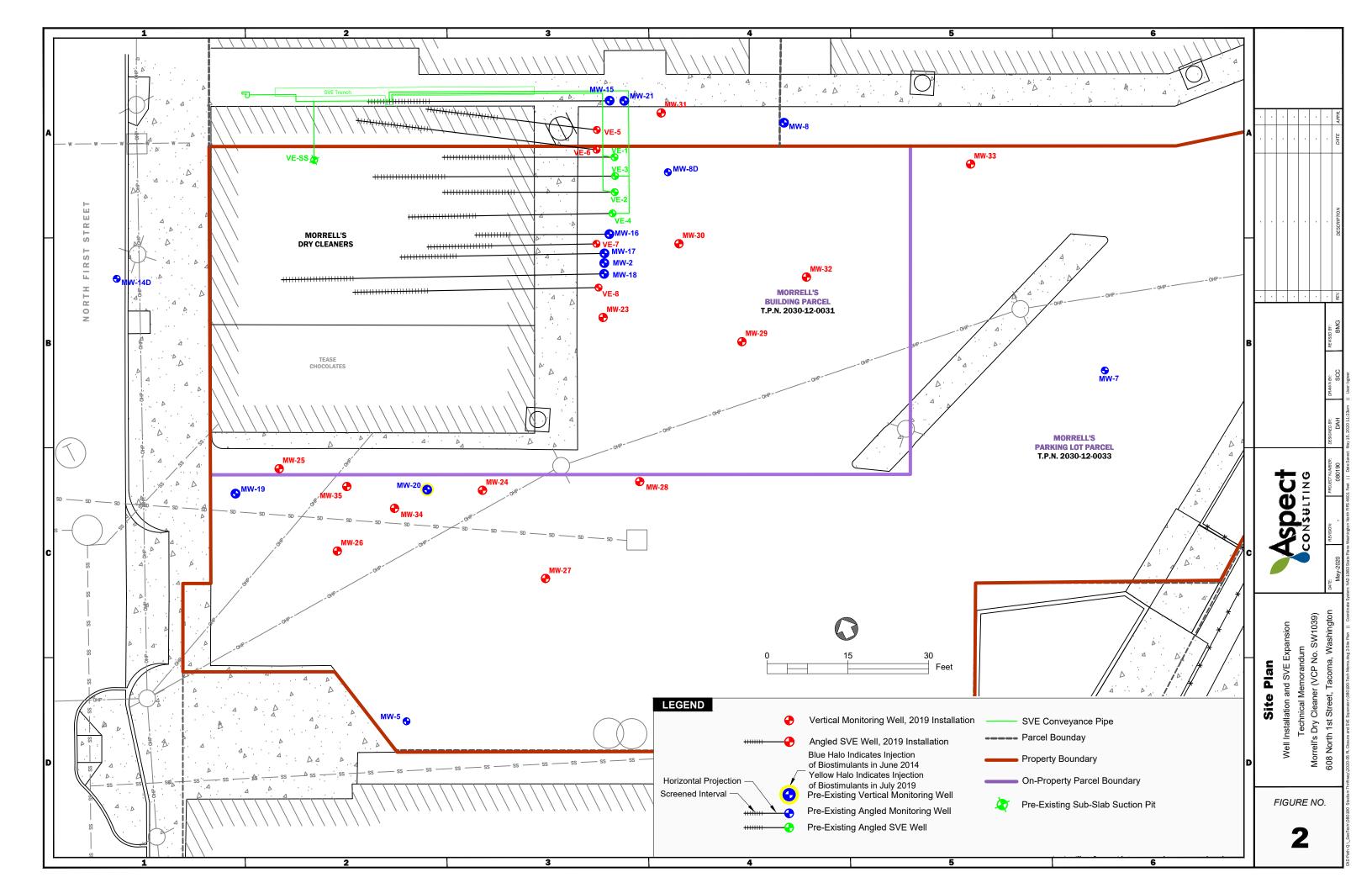
VE-7 ^{6,7} (45 deg angle) 9.5 210 11.3 1641 13.1 30 15.6 2,489 120 1.5 0.05 U 0.5 U 0.5 U 0.5 U 0.5 U 0.05 U						Chlorina	ted VOCs				P	etroleum H	ydrocarbon	ıs		
VE-7 ^{6.7} (45 deg angle) 9.5 210 1.4 0.16 0.5 0.5 0.05 0.	Well ID ²		Depth	[PID] ³	Tetrachloroethene (PCE)	Trichloroethene (TCE)	cis-1,2- Dichloroethene (cDCE)	Methylene Chloride ⁴	1,2,4- Trimethylbenzene	1,3,5- Trimethylbenzene	n-Propylbenzene	Isopropylbenzene	sec-Butylbenzene	tert-Butylbenzene	p-IsopropyItoluene	Naphthalene
VE-7 ^{6,7} (45 deg angle) 9.5			4.6													
VE-7 ^{6.7} (45 deg angle) 11.3					1.4	0.16	0.16	0.5 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
VE-7 ^{6,7} (45 deg angle) 13.1 30 15.6 2,489 120 1.5 0.05 U 0.5 U 5.4 3.0 1.6 0.43 1.6 0.094 0.12 0.05 U 0.0																
(45 deg angle) 03/01/19 15.6 2,489 120 1.5 0.05 U 0.5 U 5.4 3.0 1.6 0.43 1.6 0.094 0.12 0.0 16.6 30 21.6 40 </td <td>6.7</td> <td></td>	6.7															
Angle		00/04/40			400	4 =	0.05.11	0.511			4.0	0.40	4.0	0.004	0.40	0.44
VE-8 ⁶ (45 deg angle) 21.6 40 20.2 148 0.025 U 0.02 U 0.05 U 0.		03/01/19			120	1.5	0.05 U	0.5 U	5.4	3.0	1.6	0.43	1.6	0.094	0.12	0.44
26.2 148 0.025 U 0.05 U	angle)															
VE-8 ⁶ (45 deg angle) 29.0 30 30					0.02511	0.0211	0.0511	0.511	0.0511	0.0511	0.0511	0.0511	0.0511	0.0511	0.0511	0.05 U
VE-8 ⁶ (45 deg angle) 31.5 2 2.1 109 5.7 965 9.9 1,508 0.089 0.02 U 0.34 0.5 U 0.91 1.0 0.27 0.084 0.35 0.05 U 0.57 0.00 0.00 U 0.57 0.00 U 0.50 U 0.55 0.00 U 0.50 U 0.55 0.00 U 0.55 0.00 U 0.50 U 0.5					0.025 0	0.02 0	0.00 0	0.0 0	0.00 0	0.00 0	0.000	0.00 0	0.00 0	0.00 0	0.00 0	0.00 0
VE-8 ⁶ (45 deg angle) 2.1 109 2.1 109 5.7 965 9.9 1,508 0.089 0.02 U 0.34 0.5 U 0.91 1.0 0.27 0.084 0.35 0.05 U 0.57 0.0 13.4 343 18.0 14 22.3 16 22.3 16 22.3 16 27.2 69 0.05 U 0.5 U 0.5 U 0.88 0.76 0.40 0.12 1.2 0.05 U 0.55 0.05 U																
VE-8 ⁶ (45 deg angle) 02/27/19 24.0 1,404 7.3 0.15 0.05 U 0.51 0.05 U 0.50 0.50 0.50 0.50 0.50 0.50 0.																
VE-8 ⁶ (45 deg angle) 02/27/19 24.0 1,404 7.3 0.15 0.05 U 0.5 U 0.88 0.76 0.40 0.12 1.2 0.05 U 0.55 0.05 0.05 0.05 0.05 0.05 0.			5.7	965												
VE-8 ⁶ (45 deg angle) 02/27/19 24.0 1,404 7.3 0.15 0.05 U 0.5 U 0.88 0.76 0.40 0.12 1.2 0.05 U 0.55 0.05 0.05 0.05 0.05 0.05 0.			9.9	1,508	0.089	0.02 U	0.34	0.5 U	0.91	1.0	0.27	0.084	0.35	0.05 U	0.57	0.1
VE-8 ⁶ (45 deg angle) 02/27/19 24.0 1,404 7.3 0.15 0.05 U 0.5 U 0.88 0.76 0.40 0.12 1.2 0.05 U 0.55 U 0.			13.4	343												
(45 deg angle) 02/27/19 24.0 1,404 7.3 0.15 0.05 U 0.5 U 0.88 0.76 0.40 0.12 1.2 0.05 U 0.55																
angle) 27.2 69																
		02/27/19		,	7.3	0.15	0.05 U	0.5 U	0.88	0.76	0.40	0.12	1.2	0.05 U	0.55	0.05 U
	angle)															
					0.047	0.0011	0.0511	0.511	0.0511	0.0511	0.0511	0.0511	0.0511	0.05.11	0.0511	0.05.11
					0.047	0.02 0	0.05 U	0.5 U	0.05 U	0.05 U	0.05 0	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
35.7 7 39.6 19																
45.3 2																
					0.05	0.03	160	0.02		800	8 000		8 000	8 000		5

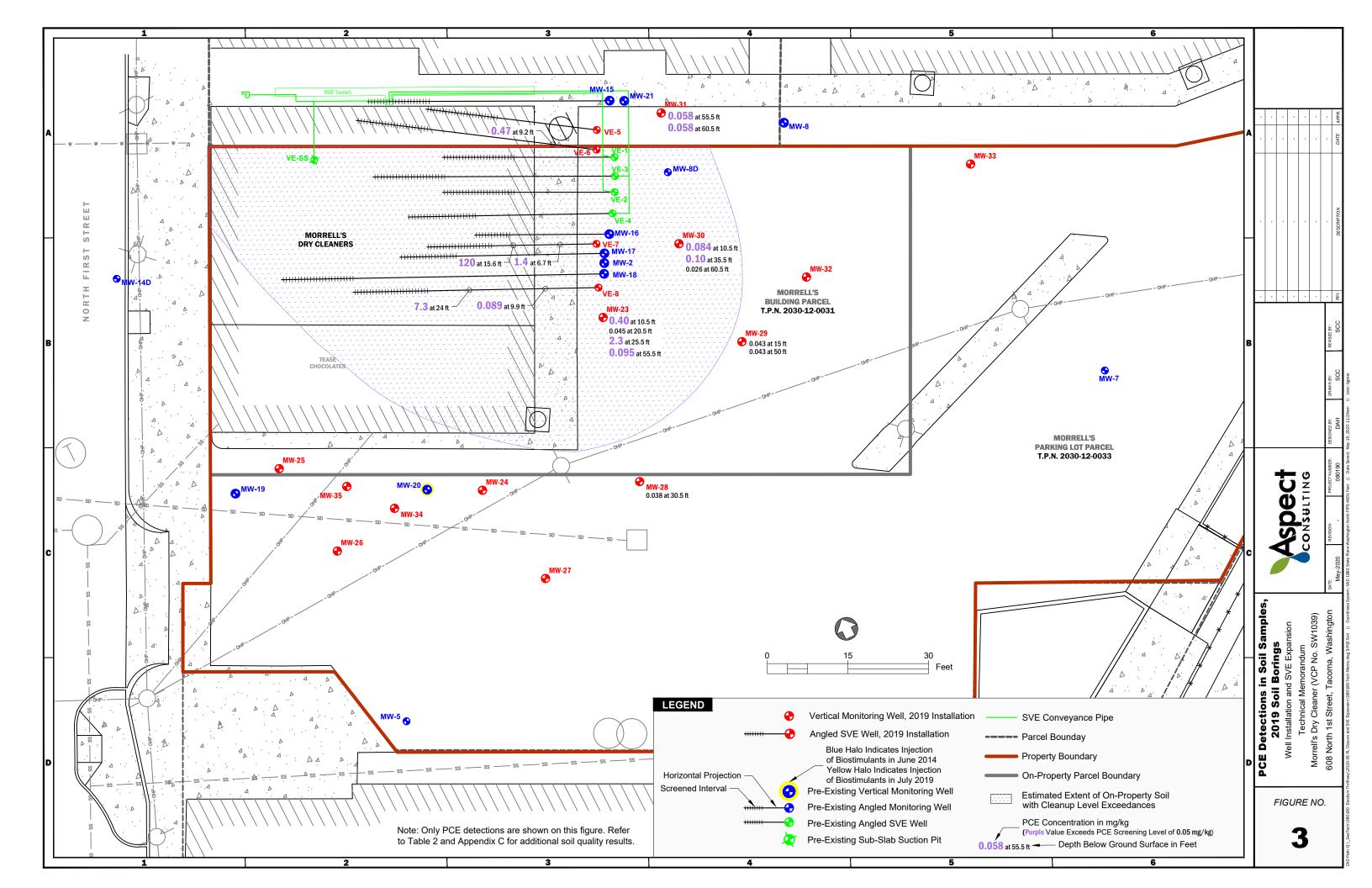
bgs below ground surface

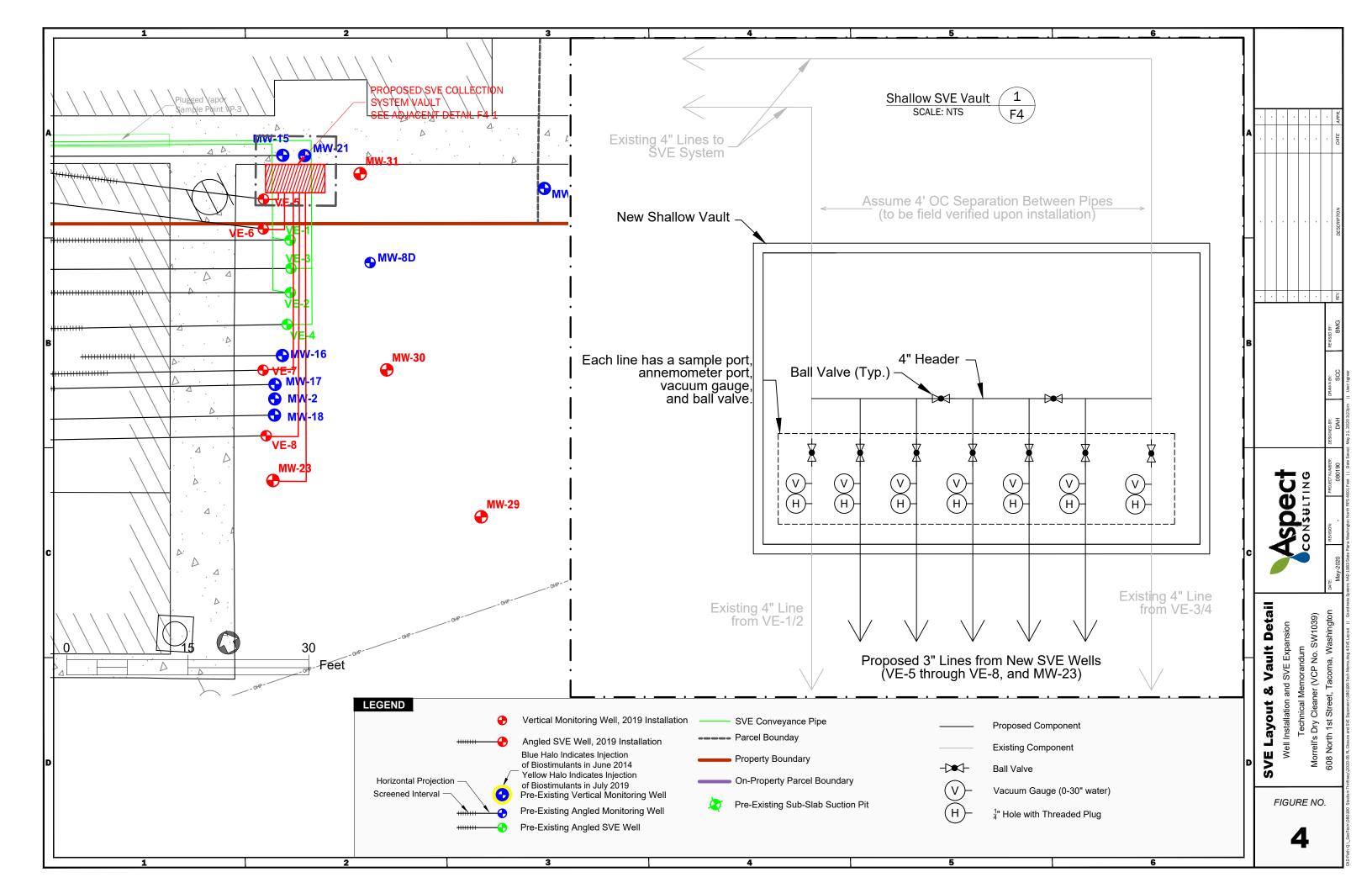
not detected at the indicated detection limit

PID photo-ionization detector

VOC volatile organic compound


Notes:


- 1) All laboratory concentrations are in milligrams per kilogram (mg/kg). Only analytes detected in at least one sample are included in this table. Detections are bolded.


 Screening level exceedances are shaded.
- 2) Borings and soil samples collected during drilling were designated "A-x" for angled borings and "B-xx" for vertical borings. When wells were installed, the letter designations were changed to "VE-x" for angled (soil vapor extraction) wells and "MW-xx" for vertical (advance outwash groundwater) wells.
- 3) PID readings were obtained by placing the soil sample in a zip-lock bag and, after waiting several minutes, inserting the tip of the PID into the bag to measure the total VOC concentration in the headspace. PID concentrations are in parts per million (ppm).
- 4) In all cases where methylene chloride was detected, the laboratory noted that it was likely due to laboratory contamination.
- 5) In drilling B-35A, the auger got stuck at 46.5 ft bgs and the hole was abandoned. MW-35 was drilled (no soil sampling) and installed the following night.
- 6) For the angled borings, only a subset of the PID readings are included in this table. Refer to the boring logs for the full sets of PID readings.
- 7) Based on field screening of the A-7 cuttings, the presence of separate-phase liquid was suspected in the approximate depth ranges of 7 to 10 and 21 to 22.5 feet bgs.
- 8) The screening levels are Model Toxics Control Act (MTCA) Method A cleanup levels for PCE, TCE, methylene chloride, and naphthalene, and the Method B direct contact (CLARC table value) cleanup levels for all other compounds.
- 9) Sample was collected from at or below the water table and results indicate concentration from the combined solid and liquid phase sample material.

APPENDIX A Boring and Well Construction Logs

	se Fraction e	≤5% Fines		GW	Well-graded GRAVEL Well-graded GRAVEL WITH SAND												
200 Sieve)% ¹ of Coarse No. 4 Sieve	%5≅		GP	Poorly-graded GRAVEL Poorly-graded GRAVEL WITH SAND												
Coarse-Grained Soils - More than 50%1 Retained on No. 200 Sieve	Gravels - More than 50%¹ of Coarse Fraction Retained on No. 4 Sieve	Fines	0.00.00	GM	SILTY GRAVEL SILTY GRAVEL WITH SAND												
50%1 Reta	Gravels - P	≥15% F		GC	CLAYEY GRAVEL CLAYEY GRAVEL WITH SAND												
- More than	e Fraction	≤5% Fines		SW	Well-graded SAND Well-graded SAND WITH GRAVEL												
ained Soils	re of Coarse o. 4 Sieve	%5≅		SP	Poorly-graded SAND Poorly-graded SAND WITH GRAVEL												
Coarse-Gr	Sands - $50\%^{1}$ or More of Coarse Fraction Passes No. 4 Sieve	Fines		SM	SILTY SAND SILTY SAND WITH GRAVEL												
	Sands -	≥15% F		SC	CLAYEY SAND CLAYEY SAND WITH GRAVEL												
Sieve	S DR 70%	200		ML	SILT SANDY or GRAVELLY SILT SILT WITH SAND SILT WITH GRAVEL												
e Passes No. 200 Sieve	Silts and Clays	וווור בכסס נוו		CL	LEAN CLAY SANDY or GRAVELLY LEAN CLAY LEAN CLAY WITH SAND LEAN CLAY WITH GRAVEL												
More Pass	S - Pilloi	בולמומ		OL	ORGANIC SILT SANDY or GRAVELLY ORGANIC SILT ORGANIC SILT WITH SAND ORGANIC SILT WITH GRAVEL												
ls - 50%1 or	ys yr More	202		МН	ELASTIC SILT SANDY OF GRAVELLY ELASTIC SILT ELASTIC SILT WITH SAND ELASTIC SILT WITH GRAVEL												
Fine-Grained Soils - 50%1 or Mor	Silts and Clays			СН	FAT CLAY SANDY or GRAVELLY FAT CLAY FAT CLAY WITH SAND FAT CLAY WITH GRAVEL												
Fine-	Si Liquid I		Sil Liquid L		S Liquid		S Liquid		S Liquid		S Liquid		S Liquid			ОН	ORGANIC CLAY SANDY or GRAVELLY ORGANIC CLAY ORGANIC CLAY WITH SAND ORGANIC CLAY WITH GRAVEL
Highly	Highly Organic Soils			PT	PEAT and other mostly organic soils												

"WITH SILT" or "WITH CLAY" means 5 to 15% silt and clay, denoted by a "-" in the group name; e.g., SP-SM • "SILTY" or "CLAYEY" means >15% silt and clay • "WITH SAND" or "WITH GRAVEL" means 15 to 30% sand and gravel. • "SANDY" or "GRAVELLY" means >30% sand and gravel. • "Well-graded" means approximately equal amounts of fine to coarse grain sizes • "Poorly graded" means unequal amounts of grain sizes • Group names separated by "/" means soil contains layers of the two soil types; e.g., SM/ML.

Soils were described and identified in the field in general accordance with the methods described in ASTM D2488. Where indicated in the log, soils were classified using ASTM D2487 or other laboratory tests as appropriate. Refer to the report accompanying these exploration logs for details.

- Estimated or measured percentage by dry weight
 (SPT) Standard Penetration Test (ASTM D1586)
 Determined by SPT, DCPT (ASTM STP399) or other field methods. See report text for details.

MC GS FC GH AL C Str OC Comp K SG	= = = = = = = = = = = = = = = = = = = =	Grain S Fines O Hydror Atterbe Conso Streng Organi Procto Hydrau	Il Moisture (Bize Distribu Content (% - meter Test erg Limits lidation Tes th Test c Content (r Test ulic Conduct ic Gravity Te	ution < 0.075 mn t % Loss by Ig tivity Test	,		CHNICAL LAB TESTS
		Organ	ic Chemical	<u>s</u>		C	HEMICAL LAB TESTS
BTEX TPH-DX TPH-G VOCs SVOCS PAHS PCBS RCRA8 MTCA5 PP-13	= = = =	Diesel Gasoli Volatile Semi-V Polycy Polych Metals As, Ba As, Cd	ne-Range P e Organic Co folatile Orga clic Aromati lorinated Bi c , Cd, Cr, Pb, , Cr, Hg, Pb	nge Petroleu etroleum Hy ompounds anic Compo c Hydrocart phenyls Hg, Se, Ag, (d = dissolv	um H ydrod unds oon ((d = red, t	lydrocarbons carbons carbons compounds dissolved, t = t = total)	= total) (d=dissolved, t=total)
PID	=	Photoi	onization D	etector			FIELD TESTS
Sheen SPT ²	=		een Test ard Penetra	tion Test			
NSPT	=	Non-St	andard Per	etration Te			
DCPT	=	Dynan	nic Cone Pe	netration Te	st		
Descrip Boulder Cobbles Coarse Fine Gra Coarse Medium Fine Sar Silt and	s Grav avel San San	= 	3 inches t 3 inches t 3 inches t 3/4 inches No. 4 (4.7 No. 10 (2 No. 40 (0	.00 mm) to	s es 4.75 lo. 1 No. 4 o No	5 mm) 0 (2.00 mm) 40 (0.425 mn . 200 (0.075)	
% by We	eigh	t Mod	lifier	% by Weig	ht	Modifier	ESTIMATED ¹
<1 1 to <5 5 to 10		= Sub = Trac = Few	-	15 to 25 30 to 45 >50	= = =	Little Some Mostly	PERCENTAGE
Dry Slightly	Moi		Absence of Perceptible		usty,	, dry to the tou	uch MOISTURE CONTENT

% by Weight	Modifier	% by Weigh	Mod	<u>lifie</u> r	ESTIMATED ¹
	Subtrace Trace Few	30 to 45		ne	PERCENTAGE

Moist Damp but no visible water Very Moist Water visible but not free draining

Wet Visible free water, usually from below water table

RELATIVE DENSITY Non-Cohesive or Coarse-Grained Soils

Density ³	SPT ² Blows/Foot	Penetration with 1/2" Diameter Rod
Very Loose	= 0 to 4	≥ 2'
Loose	= 5 to 10	1' to 2'
Medium Dense	= 11 to 30	3" to 1'
Dense	= 31 to 50	1" to 3"
Very Dense	= > 50	< 1"

Cohesive or Fine-Grained Soils

CONSISTENCY Manual Test

Consistency³ SPT² Blows/Foot

Very Soft = 0 to 1Penetrated >1" easily by thumb. Extrudes between thumb & fingers. Penetrated 1/4" to 1" easily by thumb. Easily molded. Soft 2 to 4

Penetrated >1/4" with effort by thumb. Molded with strong pressure. Medium Stiff = 5 to 8 = 9 to 15 Stiff Indented $\sim 1/4$ " with effort by thumb.

Very Stiff = 16 to 30 Indented easily by thumbnail. Hard = > 30 Indented with difficulty by thumbnail.

GEOLOGIC CONTACTS

Observed and Distinct

Observed and Gradual

Inferred

Exploration Log Key

			Mor	ell's Dry Clea	aners - 080	Environmental Exploration Log				
	4 spect	608 N 1st	Street	Project Address & Site	Specific Location Fast of Morell's	Coordinates		Exploration Number		
	CONSULTING Contractor		Project Address & Site Specific Location 608 N 1st Street, Tacoma WA 98403, East of Morell's MW-17 Equipment Sampling Metr					NA Ground Surface (GS) Elev.	MW-23	
	Holt			Autol	Autohammer; Ib hammer; " drop			0' (est)	Ecology Well Tag No. BLI 160	
	Operator		CME - 85 Exploration Method(s)		Work Start/Completion Dates		ή	Top of Casing Elev.	Depth to Water (Below	v GS)
	John B	8.5" OD Hollow-S	8.5" OD X 4.25" ID Hollow-Stem Auger		2/6/2019			NA	52.7' (ATD)	
Depth (feet)	Exploration and N	Completion lotes	Sample Type/ID	Analytical Sample Number & Lab Test(s)	Field Tests	Material Type		Description		Depth (ft)
							\ ASPHA	ALT; with base course.		
1 +	Flushr	ment, lockable						SAND (SM); very dense, moist, sand; trace fine subround grave		- 1
2 +	seal, 0	os cap, concrete '-2' bgs						,		- 2
3 -										- 3
4 +	2" diar	meter, schedule								- 4
5 +	conne	C, threaded ctions, 0'-45'								- 5
				B-23-5.5 VOCs by 8260C	PID=360 SPT=50/5					
6 +										- 6
7 +										- 7
8 +										- 8
9 +										- 9
10-				B-23-10.5	PID=31 SPT=29, 50/5					-10
11-				VOCs by 8260C	3. 1 20, 00.0					-11
12-										-12
13-										-13
0.019.0										-14
15 —					PID=1.2 SPT=50/6	0000	GRAVE	EL (GP); very dense; gray; mois	t; fine subround	-15
16 -					SP1=50/6	00000	gravel.	, , , , , , , , , , , , , , , , , , , ,	,	-16
17 -						00000			-	-17
MINION 18-						00000				-18
19 H						00000				-19
20 +	Bento	nite chips, 2'-8'								-20
31.4SPECT	bgs	F-/-		B-23-20.5 VOCs by 8260C	PID=4.1 SPT=29, 50/4			WITH SILT AND GRAVEL (SW ray brown; fine to coarse sand; f d gravel.	ine to coarse	-21
22 BISERVER 22 -							30010011	- g -		-22
ATE (B)										
23+										-23
9 24 +										-24
EXPLOR T	Legend TO Continuous co	ro 1 125" ID		☐ ₩ater Le	evel ATD			pration Log Key for explanation	Exploration	n
New STANDARD EXPLORATION LOG TEMPLATE (BISERVER! ASPECT. LOCALIPROJECT SIGNITW/PROJECT SIGNITW	■ Continuous co	ie i.125" ID		Water Level			of symbol Logged by Approved	y: MVA	Log MW-23	
Ä	T.			1					Sheet 1 of 3	

	Aspost		More	ell's Dry Clea	aners - 080	Environmental Exploration Log					
	CONSULTING	Project Address & Site Specific Location 608 N 1st Street, Tacoma WA 98403, East of Morell's entrance, MW-17					south of	Coordinates NA	Exploration Num		
	Contractor	Equi	Equipment		Sampling Method			Ground Surface (GS) Elev.	MW-23		
	Holt		CME - 85		Autohammer; Ib hammer; " drop		р	0' (est)	Ecology Well Ta BLI 160		
	Operator	8.5" OD	Exploration Method(s) 8.5" OD X 4.25" ID		Work Start/Completion Date			Top of Casing Elev. Depth to		,	
Donth	John B		Hollow-Stem Auger		2/6/2019 Analytical			NA NA	52.7' (ATD)	` ,	
Depth (feet)	Exploration and N	lotes	Sample Type/ID	Sample Number & Lab Test(s)	Field Tests	Material Type	·	Description		Depth (ft)	
26-				B-23-25.5 VOCs by 8260C	SPT=22, 50/6 PID=704		gray to g	SAND WITH GRAVEL (SM); ve gray brown; fine to medium sand rel. WITH SILT (SP-SM); very dens	l (trace coarse);		
27-							brown; f	ine to medium sand; trace fine s	subround gravel.	-27	
28-							-			-28	
29-							_			-29	
30-					PID=2.1 SPT=16, 50/5		SILTY to mediu	SAND (SM); very dense, slightly Im sand; trace fine subround gra		€ 30	
31-							chemica		, 0	-31	
32-										-32	
33-										-33	
34-										-34	
35-					PID=1.8 SPT=24, 30, 50/6		fine to m	WITH SILT (SP-SM); very dens nedium sand (trace coarse sand		 35	
36-					, , , , , , ,		subroun	a gravei.		+36	
37 - 38 - 37 - 38 -							-			-37 -38	
39-							_			-39	
061080 \$.			_		5.5					-40	
SMORELL STATE STAT					PID=0.2 SPT=33, 50/5		SAND (to mediu	OUTWASH SP); dense to very dense, mois Im sand (with trace coarse sand	t, red brown; fine l); trace silt.	-41	
42-										-42	
MINIS/SI 43-							1			-43	
TAPROJECT										-44	
45-	12/20	sand filter pack, .5' bgs			PID=0.2					-45	
46-		-			SPT=30, 32, 42					-46	
AR 47-										-47	
48-										-48	
1907 NOI.										-49	
EXPLORAT	Legend	4.25-7:-		∑ Water Le	Nel ATD			pration Log Key for explanation	Explorati	or	
NEW STANDARD EXPLORATION LOC TEMPLATE (NBISERVERT ASPECT.LOCALIPROJECTSGINTWPROJECTSMORELL'S 080190 2019.6 by July 31, 2019 Sample Sample Anna Anna Anna Anna Anna Anna Anna Ann	Continuous co	re 1.125" ID		Water Level	MAINID		of symbol Logged b Approved	ls y: MVA	Log MW-23 Sheet 2 of 3		

	cpost		More	ell's Dry Clea	aners - 0801	190		Environmental Ex		
X	spect	608 N 1st	Street, 7	Project Address & Site acoma WA 98403, MW-1	Specific Location East of Morell's er	ntrance,	south of	Coordinates NA	Exploration Num	
	ONSULTING Contractor		iipment	MIVV-1	Sampling Method			Ground Surface (GS) Elev.	MW-2	
	Holt	СМ	IE - 85		nammer; Ib hamm		р	0' (est)	Ecology Well Ta BLI 160	ag No.
	Operator	8.5" OD	on Method X 4.25"	ÌĎ	Vork Start/Completion	Dates		Top of Casing Elev.	Depth to Water (Bel	ow GS)
	John B	Hollow-S	Stem Aug	ger	2/6/2019	Ī.,		NA	52.7' (ATD)	<u>, </u>
Depth (feet)	Exploration C and No	ompletion tes	Sample Type/ID	Analytical Sample Number & Lab Test(s)	Field Tests	Material Type		Description		Depth (ft)
51- 52- 53- 54- 55- 56- 57- 58- 59- 60- 61- 62- 63- 64- 65- 66- 67-	2" diam schedul \$€£88/2d	eter 0.020", e 40 PVC A5 60' bgs		B-23-55.5 VOCs by 8260C	SPT=18, 22, 32 PID=0.3 PID=2.2 SPT=17, 21, 33 PID=0.4 SPT=27, 35, 50/5	iype	SILTY S	OUTWASH SP); dense to very dense, mois m sand (with trace coarse sanced) SAND (SM); very dense, very more exploration at 61.5 ft. bgs.); trace silt.	-51 -52 -53 -54 -55 -56 -57 -58 -60 -61 -62 -63 -64 -65 -66
68-										-68
69										-69
70-										-70
71										-71
72-										-72
73-										-73
74-										-74
	egend Continuous core	= 1.125" ID		Vwater revel	vel ATD		See Explo of symbol Logged by Approved	y: MVA	Exploration Log	

	Acna	~ 1		Mor	ell's Dry Cle	eaners - 080	190		Environmental Ex		
7	Lohe.		000 11 1		Project Address & S	ite Specific Location			Coordinates	Exploration Number	
	Contractor	NG		Street, ipment	l acoma WA 9840	3, South of Morell's Sampling Metho		st corner	NA Ground Surface (GS) Elev.	MW-24	
	Holt		•	E - 75	Διι	tohammer; Ib hamr		nn.	0' (est)	Ecology Well Tag No. BLI 186	0.
	Operator		Exploration	n Method	d(s)	Work Start/Completion		7	Top of Casing Elev.	Depth to Water (Below G	SS)
	Kyle		8.5" OD Hollow-S	X 4.25"	İĎ	1/30/2019			NA	50.6' (ATD)	ĺ
Depth (feet)	Explora	ation Co and Not	ompletion tes	Sample Type/ID	Analytical Sample Number & Lab Test(s)	Field Tests	Material Type		Description		epth (ft)
								\ ASPHA	LT; with base course.		
1 -		hermos	ent, lockable cap, concrete					SAND V	VITH GRAVEL (SP); dense, mo redium sand; fine subround grav	Jiot, dank brown,	1
2 -		seal, 0'-2	z bgs							+ 2	2
3 -	-									+;	3
4 -	- 2 2	2" diame 10 PVC.	eter, schedule threaded							- 4	4
5 -		connecti ogs	threaded ons, 0'-10'			PID=0				+ 9	5
6 -		3entonit	e chips, 2'-8'		B-24-5.5 VOCs by 82600				'SILT WITH GRAVEL (ML); ha		6
		ogs						subroun	ow plasticity silt; fine to coarse s d gravel.	and, fine to coarse	
7 -											7
8 -										+ 1	8
9 -	- 1 8	12/20 sa 3'-22' bg	ind filter pack, s							+ 9	9
10-						PID=0		SILTY :	SAND WITH GRAVEL (SM); very brown; fine to coarse sand; f	ery dense, slightly	10
11-						SPT=15, 47, 50/5		subroun			11
12-										+1	12
is in 13-										 1	13
14-										<u>+</u> 1	14
15-	- 2	2" diame	eter 0.020",			PID=0		CAND	WITH SILT AND GRAVEL (SP-	<u></u> 1	15
16-	- S	screen, '	e 40 PVC 10'-20' bgs			SPT=14, 37, 50/5		slightly n	noist, brown; fine to medium sai	nd; fine to course	16
17-										+1	17
- 18 -											18
OVECTS								_			
19-								- -			19
20 –				•		SPT=50/5		moist, gr	WITH SILT AND GRAVEL (SW ray brown; fine to coarse sand; o	'-SIVI); very dense,	20
ZEK4.9									n rock, blow counts overstated	-2	<u>2</u> 1
22-								_		-2	22
23-								-		-2	23
24 -								-		-2	24
EXPLOR	Legend No Soil Sa	ample	Recovery			Level ATD	11-11-15%	See Explo	oration Log Key for explanation	Exploration	
New Standbard Exploration to Green Templaria (Biserver) Aspect Localiproduct Scientify Project (Sample Control of Control	Continuou		-		Water			of symbol Logged by Approved	y: BMG	Log MW-24 Sheet 1 of 3	

	Acce	.1	Mor	ell's Dry Clea	aners - 080°	190		Environmental Ex	ploration Lo	g
	Aspec	-		Project Address & Site	Specific Location			Coordinates	Exploration Numb	
	Contractor		Street, 7	Гасота WA 98403,	South of Morell's		st corner	NA Ground Surface (GS) Elev.	− MW-2 4	Ļ
	Holt		прттетт IE - 75	Autol	hammer; Ib hamm		nn.	0' (est)	Ecology Well Tag BLI 186	
	Operator		on Method		Nork Start/Completion		ρþ	Top of Casing Elev.	Depth to Water (Below	w GS)
	Kyle	8 5" OD	X 4.25" Stem Au	ID	1/30/2019			NA	50.6' (ATD)	,
Depth (feet)		on Completion and Notes	Sample Type/ID	Analytical Sample Number & Lab Test(s)	Field Tests	Material Type		Description		Depth (ft)
26-	2" 400 kgs	diameter, schedule PVC, threaded nnections, 20'-45'			SPT=24, 40, 50/5 PID=0		SILTY s coarse s	SAND (SM); very dense, moist, and; trace fine to coarse subro	gray brown; fine to und gravel.	-26
27-		•								-27
28-									•	-28
29-										-29
30-	Be 22'	ntonite chips, -42' bgs	T	B-24-30.5	PID=0.5 SPT=32, 50/5					-30
31-				VOCs by 8260C	,,,,,,					-31
32-										-32
33-										-33
34-										-34
35-					PID=0 SPT=36, 50/5					-35
36-					SP1=30, 50/5					-36
37-										-37
38 -										-38
39 - 39 -										-39
080 S.TT3					PID=0	71		OUTWASH		40
41 -					SPT=38, 41, 24		SAND (SP); very dense, moist, brown; ace silt.	fine to medium	41
12-										-42
43-										-43
344 -										44
45 -	12/	'20 sand filter pack, -61.5' bgs			PID=0					-45
46 -					SPT=18, 50/6					-46
47 -										-47
48 -										-48
# 907 49 -										-49
EXPLORAT	Legend	no Dana		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	nvol ATD	``_\.	See Explo	pration Log Key for explanation	Evento 41	
NEW STANDARD EXPLORATION LOG TEMPLATE VBISERVER! ASPECT LOCALIPROJECT SIGNITW/PROJECT SMORELL:S 080190 2019 (2P 2 1 4 4 4 4 5 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4	No Soil San Continuous	nple Recovery core 1.125" ID		Water Fevel	evel ATD		of symbol Logged by	y: BMG	Exploratio Log MW-24 Sheet 2 of 3	on

	Aspost		More	ell's D	ry Cle	aners - 080 Specific Location	190		Environme	ntal Ex	ploration Log	
	Aspect								Coordinate	es	Exploration Number	
	CONSULTING Contractor		Street, T ipment	Tacoma V	VA 98403,	South of Morell's Sampling Metho		st corner	NA Ground Surface (GS) Flov	MW-24	
	Holt	· ·	E - 75		Διιτο	hammer; Ib hamn		nn.	0' (est)	•	Ecology Well Tag No BLI 186).
	Operator	Exploration	n Method	d(s)		Work Start/Completion		J P	Top of Casing		Depth to Water (Below GS	S)
	Kyle	8.5" OD Hollow-S	X 4.25" stem Auզ	ÎD ger		1/30/2019			NA		50.6' (ATD)	
Depth (feet)	Exploration C and No	completion	Sample Type/ID	Sample	alytical Number & Test(s)	Field Tests	Material Type		Desc	ription	Dep (fi	
NEW STANDARD EXPLORATION LOG TEMPLATE VBISERVERT ASPECT LOCAL/PROJECT SIGNATURAND STUBS CP1 July 31, 2019 Sample Type Type Type	and No.	otes	Type/ID	Sample Lab	Number &	PID=0 SPT=23, 50/6	Material Type	SAND sand (trace silt	WITH SILT (SP-SM d. (SP); very dense, wo	et, red brow e to coarse s	e, wet, red brown; -52 -52 -53 -54 n; fine to medium	tt)
73											-73	3
74 -											-74	4
W STANDARD EXPLORATIC Sample Type	Legend No Soil Sample Continuous core			Water Level i∆	Water Le	evel ATD		See Explo of symbol Logged by Approved	y: BMG	explanation	Exploration Log MW-24 Sheet 3 of 3	_

	A _===	L	Mor	ell's Dry Cle	aners - 080°	190		Environmental Ex	ploration Log	
	Aspec	608 N 1st S	Street, Ta	Project Address & Site acoma WA 98403,	e Specific Location South of southwes	st Morell'	s building	Coordinates	Exploration Number	
	CONSULTING Contractor	•	uipment	corn	er Sampling Metho			NA Ground Surface (GS) Elev.	MW-25	
	Holt	· '	, IE - 75	Auto	hammer; Ib hamn		р	0' (est)	Ecology Well Tag N BLI 184	٧о.
	Operator	Exploration 8.5" OD	on Method X 4.25"	d(s) I	Nork Start/Completion	Dates		Top of Casing Elev.	Depth to Water (Below of	GS)
	Kyle	Hollow-S	Stem Au	ger Analytical	1/28/2019			NA	51.9' (ATD)	
Depth (feet)	Exploratio and	n Completion I Notes	Sample Type/ID	Sample Number & Lab Test(s)	Field Tests	Material Type	AODUA	Description		Depth (ft)
1 -	Flue	hmount						LT; Asphalt Till		1
	NA NA mor	nument, lockable mos cap, concrete , 0'-2' bgs					moist, gr	SAND WITH GRAVEL (SM); ver ay brown; fine to coarse sand, t	ry dense, very fine subround	'
2 -		, 0 2 595					gravel		†	2
3 -									+	3
4 -									_	4
										_
5 -				B-25-5.5	PID=0 SPT=24, 50/5				Ī	5
6 -				VOCs by 8260					+	6
7 -									+	7
8 -									+	8
9 -									+	9
10-	2" d	iameter, schedule PVC, threaded nections, 0'-45'			PID=0	14	SAND ((SP); dense. slightly moist gray	brown; fine sand,	10
11-	2" d 40 F coni	nections, 0-45			SPT=14, 38, 50/4		5% silt		+	11
12 -									_	12
13-							1		-	13
14									_	14
15-										15
16-					PID=0 SPT=70/5			WITH SILT (SW-SM); very den- wn; fine to coarse sand, fine sul	se, slightly moist, pround gravel	16
							_			
17-							-		†	17
18-							-		+	18
19-	· 🕅 🕅						_		+	19
20-	Ben bgs	tonite chips, 2'-42'			PID=0 SPT=50/5			SAND (SM); very dense, moist,	gray brown; fine to	20
21-					3F1=5U/5		coarse s	and, fine to coarse subround gr		21
22-									-	22
23-									-	23
24-	Ben bgs								-	24
5 a	Legend	core 1.125" ID			evel ATD		See Explo	pration Log Key for explanation	Exploration	
12				Water			Logged by Approved	y: BMG	Log MW-25 Sheet 1 of 3	

Depth (feet) 26 - 27 - 28 - 29 - 30 - 31 - 32 - 33 - 34 -	Consulting Contractor Holt Operator Kyle Exploration Coand No	Equipmer CME - 7 Exploration Me 8.5" OD X 4.1 Hollow-Stem ompletion Sam	Project t, Tacoma nt 5 thod(s)	Address & Site WA 98403, S corne Auto	Sampling Method hammer; Ib hamm Work Start/Completion	t Morell's		Coordinates NA Ground Surface (GS) Elev. 0' (est) Top of Casing Elev.	Exploration Number WW-25 Ecology Well Tag N BLI 184 Depth to Water (Below G
Depth (feet) 26 - 27 - 28 - 29 - 31 - 32 - 33 -	Contractor Holt Operator Kyle Exploration C	Equipmer CME - 7 Exploration Me 8.5" OD X 4.1 Hollow-Stem ompletion Sam	nt 5 thod(s)	Auto	er Sampling Method hammer; Ib hamm	d ner; " dro		Ground Surface (GS) Elev. 0' (est)	Ecology Well Tag N BLI 184
26 - 27 - 28 - 29 - 30 - 31 - 32 - 33 -	Holt Operator Kyle Exploration C	CME - 7 Exploration Me 8.5" OD X 4.: Hollow-Stem ompletion Sam	thod(s)		hammer; lb hamm	ner; " dro	p	0' (est)	Ecology Well Tag N BLI 184 Depth to Water (Below G
26 - 27 - 28 - 29 - 30 - 31 - 32 - 33 -	Operator Kyle Exploration Co	Exploration Me 8.5" OD X 4.: Hollow-Stem	thod(s)				Ρ		Depth to Water (Below G
26- 27- 28- 29- 30- 31- 32- 33-	Exploration C	Hollow-Stem ompletion Sam	25" ID Auger					1, 1 1 1 3	
26- 27- 28- 29- 30- 31- 32- 33-	Exploration Coand No	ompletion Sam			1/28/2019			NA	51.9' (ATD)
27- 28- 29- 30- 31- 32- 33-		otes Type	Ipie Samp	nalytical ble Number & ab Test(s)	Field Tests	Material Type		Description	De (
27- 28- 29- 30- 31- 32- 33-		L			SPT=70/6 PID=0			SP); very dense, moist, gray barse subround gravel	rown; fine to coarse
29 - 30 - 31 - 32 - 33 -									+2
30 - 31 - 32 - 33 -									-2
31 - 32 - 33 -									-2
32+ 33+		T	B-	-25-30.5	PID=0.2		SAND \	WITH SILT (SP-SM); very dens	se, moist, gray
33-			VOC	Cs by 8260	SPT=22, 37, 50/6		DIOWII, O	5% fine sand, 5% medium to c	-3
									+3
34+						<u> </u>			+3
1 25							SILT (N	IL); very stiff, moist, light brown	
35+					PID=0 SPT=14, 29, 38		SAND \	WITH SILT (SP-SM); very dens	se, moist, red
							brown; iii	ne to medium sand	+3
38 -									+3
39 -									-3
40+		T			PID=0)]		Outwash	
41 -					SPT=23, 38, 46			SP); very dense, moist, red bro ubround gravel	wn; 5% silt, 5%
42-									-2
43 + 43 +									-4
44 +		150							-4
45+ 46+ 46+	12/20 sa 42'-61.5	and filter pack, b' bgs			PID=0 SPT=24, 32, 36				
31SERVER1									-4
# 48 + 48 + 48 + 48 + 48 + 48 + 48 + 48									-4
9N LOG TEN									-4
LORATIC									
New Standard Exploration to Grant English and Specific Confirmation (Scholar) (Specific Confirmation (Specific Con	Legend								

	Aspost	M	lorell's	Dry Clea	aners - 080°	190		Environmental Ex		
7	CONSULTING	608 N 1st Stree	<i>Projed</i> et, Tacoma	ı WA 98403, 🤄	Specific Location South of southwes	t Morell'	s building	Coordinates NA	Exploration Num	
	Contractor	Equipme	ent	corne	Sampling Metho	d		Ground Surface (GS) Elev.	− MW-2	
	Holt	CME -			hammer; Ib hamm		pp	0' (est)	Ecology Well Ta BLI 184	ag No.
	Operator Kyle	Exploration M 8.5" OD X 4 Hollow-Stem	1.25" ÌD	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Work Start/Completion 1/28/2019	Dates		Top of Casing Elev. NA	Depth to Water (Beld 51.9' (ATD)	
Depth (feet)	Exploration C and No	Completion Sar otes Typ	imple Sam	Analytical ple Number & ah Test(s)	Field Tests	Material Type		Description		Dept (ft)
Depth (feet) 51 - 52 - 53 - 54 - 55 - 56 - 57 - 58 - 59 - 60 - 61 - 70 - 71 - 72 - 73 - 74 - 60 - 71 - 72 - 73 - 74 - 60 - 71 - 72 - 73 - 74 - 60 - 71 - 72 - 73 - 74 - 60 - 71 - 72 - 73 - 74 - 60 - 71 - 72 - 73 - 74 - 60 - 71 - 72 - 73 - 74 - 60 - 71 - 72 - 73 - 74 - 60 - 71 - 72 - 73 - 74 - 60 - 71 - 72 - 73 - 74 - 74 - 74 - 74 - 74 - 74 - 74	and No	ed PVC endcap	PEND L	Analytical pile Number & ab Test(s) 3-25-50.5 Cs by 8260	PID=0 SPT=26, 32, 50/6 PID=0 SPT=26, 50/6	Material	SAND (sand (<5 gravel	SAND (SM); very dense, moist, SP); very dense, wet, red brow % coarse), 5% silt, up to 10% of exploration at 61.5 ft. bgs.	n; fine to medium	-51 -52 -53 -54 -55 -56 -57 -58 -59 -60 -61 -62 -63 -64 -65
66 +										-66
67 -										-67
68 -										-68
69 										-69
70										-70
71 - 71 - 71 - 71 - 71 - 71 - 71 - 71 -										-71
경 경 경 72 +										-72
ا ا ا										-73
74-										-74
Sample Type	Legend Continuous con	e 1.125" ID	Water	☑ Water Le	evel ATD		See Explo of symbols Logged by Approved	r: BMG	Exploration Log MW-25 Sheet 3 of 3	

	Acno	~ ‡		Mor	ell's	Dry Clea	aners - 080	190		Environmental Ex		
7	Aspe CONSULT		608 N 1et	Stroot -	-		Specific Location South of Morell's,	couth	of MM//_25	Coordinates NA	Exploration Nun	
	Contractor	1113		ipment	I acom	3 VVA 90403,	Sampling Metho		01 10100-23	Ground Surface (GS) Elev.	− MW-2	
	Holt		СМ	E - 75			hammer; Ib hamn		ор	0' (est)	Ecology Well Ta BLI 185	ag No.
	Operator		Exploration 8.5" OD	X 4.25"	ÌĎ	ı	Nork Start/Completion	n Dates		Top of Casing Elev.	Depth to Water (Bel	
	Kyle		Hollow-S	Stem Au	ger	Analytical	1/29/2019			NA	52' (ATD)	
Depth (feet)	Explo	and No	ompletion ites	Sample Type/ID	Sam	ple Number & ab Test(s)	Field Tests	Materia Type		Description		Depti (ft)
		-								ALT; Asphalt RETE; Concrete		_/ _/
1 +		Flushmo	ount ent, lockable s cap, concrete 2' bgs						SILTY S	TILL SAND (SM); dense to very dens	e, slightly moist,	
2 -		seal, 0'-	z bgs						gray brow	wn; fine to coarse sand, few fin	e to coarse	- 2
3 -	- 🖁 🖁											- 3
4 -												4
									<u> </u>			•
5 -					E	3-26-5.5	PID=0 SPT=29, 50/5		-			+ 5
6 -					VO	Cs by 8260	01 1-29, 30/3					- 6
7 -									- -			 7
8 -	- 8 8								.[.]			- 8
9 -												- 9
10-	- 🖁 🖁	2" diame	eter, schedule				PID=0		- - -			10
11-		connect	, threaded ions, 0'-44'				SPT=27, 50/6					-11
_{ရီဥ} 12-	-]. -			-12
13 -	- 🖁 🖁											-13
14 T	- 8 8								: - -			14
61080 S.T. 15 -	-						PID=0		SANIDA	′ SILT (ML); hard, slightly mois	t light brown: low	15
SWORE 30 16							SPT=19, 42, 50/5		plasticity	silt; fine to coarse sand; few fi	ne to coarse	16
17 -	- 8 8											-17
MLNIS 18-	-											-18
19 19												-19
20-		Bentonit bgs	te chips, 2'-42'				PID=0		SILTY	SAND WITH GRAVEL (SM); ve	erv dense moist	20
EK1.ASPEC		-30					SPT=19, 50/6			wn; fine to coarse sand (mostly		-21
3 RISERVE 22 -									- - -			-22
23 -									- -			-23
11 24 - 24 -									<u>.</u> - -			-24
to explorat	Legend	us core	 e 1.125" ID			∑ Water Le	evel ATD	<u> </u>	See Explo	oration Log Key for explanation	Explorati	ion
NEW STANDARD EXPLORATION LOG TEMPLATE \(\text{NBISERVER} \) ASPECT LOCALIPROJECTS\(\text{GNINTWPROJECTS\(\text{MORPROJECTS\(\text{MORPROJE\(\text{MORPROJECTS\(\text{MORPROJECTS\(\text{MORPROJE\(\text{MORPROJE\(\text{MORPROJE\) \end{array}}}}}}}}}} \rm \)	5				Water				Logged by	y: BMG	Log MW-26 Sheet 1 of 3	

	Aspost		More	ell's Dry Clea Project Address & Site	aners - 080	190		Environmental Ex	ploration Lo	og
	ASPECT CONSULTING			Project Address & Site acoma WA 98403,			F NAVA / 25	Coordinates NA	Exploration Num	
	Contractor		oment	acoma WA 96403,	Sampling Metho		1 10100-25	Ground Surface (GS) Elev.	⊢ MW-2 6	
	Holt	CME	- 75	Auto	hammer; Ib hamn	ner; " dro	р	0' (est)	Ecology Well Ta BLI 185	ag No.
	Operator	Exploration 8.5" OD	Method(s) l	Work Start/Completion	n Dates		Top of Casing Elev.	Depth to Water (Beld	ow GS)
	Kyle	Hollow-St	em Aug	er	1/29/2019			NA	52' (ATD)	
Depth (feet)	Exploration C and No	completion otes	Sample Type/ID	Analytical Sample Number & Lab Test(s)	Field Tests	Material Type		Description		Depth (ft)
26-		-			SPT=18, 50/6 PID=0		gray brow	SAND WITH GRAVEL (SM); vewn; fine to coarse sand (mostly digravel. (continued)		-26
27-										-27
28-										-28
29-										-29
30-				B-26-30.5	PID=0		SAND V	WITH SILT (SP-SM); very dens ne to medium sand; up to trace	e, moist, red	+30
31-			▋ᅦ	VOCs by 8260	SPT=19, 34, 38		broken r	ock found in sampler.	course graver,	-31
32-							-			-32
33-										-33
34-							-			-34
35-			\mathbf{H}		PID=0		Become	es wet		-35
36-					SPT=20, 25, 49		-			-36
37-							-			-37
38-							-			-38
39-							_			39
40 -					PID=0			OUTWASH		+40
41-			1		SPT=39, 50/5			SP); very dense, moist, red brounce silt; trace fine subround grav		41
42-										-42
43-										-43
44-										-44
45-	12/20 s	and filter pack, -5' bgs			PID=0					-45
46-					SPT=46, 39, 36					-46
% 47 -										-47
48-										-48
49-										-49
NEW STANDARD EXPLORATION LOG TEMPLATE \(\)\(\)\(\)\(\)\(\)\(\)\(\)\(\)\(\)\(\	Legend						See Evolo	oration Log Key for explanation		
STANDARD EX	Continuous con	e 1.125" ID		Water Fe Gever Mater Fe Z Water Fe	evel ATD		of symbol	S	Exploration Log	
NEW STA			:	≤ _			Logged by Approved		MW-26 Sheet 2 of 3	

	lenget		More	ell's Dry Clea	aners - 080	190		Environmental Ex		
X	wheel	600 N 4-4		Project Address & Site	•	oouth -	f N/N/ OF	Coordinates	Exploration Num	
● C	Contractor		ipment	acoma WA 98403,	South of Morell's, Sampling Method		f MW-25	NA Ground Surface (GS) Elev.	− MW-2 0	6
	Holt		E - 75	Autol	hammer; Ib hamm		nn .	0' (est)	Ecology Well Ta BLI 185	ag No.
	Operator	Exploration	on Method	(s) V	Nork Start/Completion		7	Top of Casing Elev.	Depth to Water (Beld	ow GS)
	Kyle	8.5" OD Hollow-S	X 4.25"	ÍĎ	1/29/2019			NA	52' (ATD)	
Depth (feet)	Exploration C and No	ompletion tes	Sample Type/ID	Analytical Sample Number & Lab Test(s)	Field Tests	Material Type		Description		Depth (ft)
51 – 52 – 53 – 54 – 55 –	¥" li30/m schedul screen,	20190.020", e 40 PVC 44'-59' bgs		B-26-50.5 VOCs by 8260	SPT=14, 40, 50/5 PID=0		SAND (sand; tra Becom	OUTWASH SP); very dense, moist, red brownice silt; trace fine subround graves wet	wn; fine to medium vel. (continued)	-51 -52 -53 -54 -55
56					SPT=21, 50/6					-56
57										-57
58-										-58
59+	Threade	ed PVC endcap								-59
60+					PID=0 SPT=14, 23, 50/6					-60
61+							Bottom o	of exploration at 61.5 ft. bgs.		-61 -62
62+										-63
64 -										-64
65 -										-65
66 -										-66
67										-67
68-										-68
69										-69
70-										-70
71										71
72										-72
73										-73
74										-74
	egend						See Explo	oration Log Key for explanation	F 1	
Sample Type	Continuous core	e 1.125" ID		Water Le	evel ATD		of symbol Logged by	s y: BMG	Exploration Log MW-26 Sheet 3 of 3	

	Name of		More	ell's Dry Clea	aners - 080	190		Environmental Ex		
	Aspect	608 N 1st S	Street, T	Project Address & Site acoma WA 98403,	e Specific Location South of Morell's,	southeas	st of B-24	Coordinates	Exploration Nun	nber
	CONSULTING Contractor		ipment		Sampling Metho			NA Ground Surface (GS) Elev.	⊢ MW-2	
	Holt	CM	E - 75	Auto	hammer; Ib hamr		pp	0' (est)	Ecology Well Ta BLI 158	ag No.
	Operator	Exploration 8.5" OD	n Method	((s)	Nork Start/Completion	n Dates	-	Top of Casing Elev.	Depth to Water (Be	low GS)
	Kyle	Hollow-S	Stem Au	ger	1/31/2019			NA	46.3' (ATD)
Depth (feet)	Exploration C and No	completion otes	Sample Type/ID	Analytical Sample Number & Lab Test(s)	Field Tests	Material Type		Description		Depti (ft)
NEW STANDARD EMPIRATE VBISERVER! ASPECT LOCALIPROJECT SOM 31, 2019 Sample Sample Type Type	and No. Flushm monum thermoseal, 0'. 2" diam 40 PVC connect by series and the series are series are series and the series are series and the series are series and the series are series are series and the series are series and the series are series are series and the series are series and the series are series are series are series are	otes	Type/ID		PID=0 SPT=24, 50/4 PID=0 SPT=10, 42, 50/3 PID=0 SPT=37, 50/5	Туре	SAND (spiece of spiece of	LT; with base course. TILL SP); dense, moist, gray; with be concrete in sampler. SAND (SM); very dense, slightly ne to medium sand (trace coars)	y moist, gray se); few fine e, slightly moist, ne subround gray brown; fine round gravel.	
23 -										-23
24 -										-24
W STANDARD EXPLORA Sample Type	F≱I F≱I Legend ☐ Continuous con	e 1.125" ID	1 1	Water Level □ Water □ Water	evel ATD		See Explo of symbol Logged by Approved	y: BMG	Explorati Log MW-27 Sheet 1 of 3	•

	Assat	Mor	ell's Dry	/ Cleaners - 08	0190		Environmental Ex	
	CONSULTING		Project Addre	ess & Site Specific Location 98403, South of Morell		st of B-24	Coordinates NA	Exploration Number
	Contractor	Equipment		Sampling Me	hod		Ground Surface (GS) Elev.	MW-27
	Holt	CME - 75		Autohammer; Ib ha		ор	0' (est)	Ecology Well Tag No. BLI 158
	Operator	Exploration Metho 8.5" OD X 4.25 Hollow-Stem Au	d(s) " ID	Work Start/Comple			Top of Casing Elev.	Depth to Water (Below GS)
Depth	Kyle Exploration C		Analytic	1/31/201	9 Materia		NA Pagasiation	46.3' (ATD)
(feet)	and No	otes Type/ID	Sample Nur Lab Test	t(s)	Type		Description	(ft)
26 - 27 - 28 -				SPT=23, 13, 2 PID=0	3	.\dilatency	ML); very stiff, moist, light brown WITH SILT (SP-SM); dense, mo	
30 - 31 - 32 - 33 - 34 -			B-27-3 VOCs by		9	SILTY	SAND (SM); very dense, moist, sand; trace fine round gravel.	-29 gray brown; fine to -31 -32 -33 -34
35 36 37 37 38 39				PID=0 SPT=33, 50//	7	SAND to mediu	WITH SILT (SP-SM); very dens im sand; trace coarse subround	gravel36 -37 -38 -39
40 41 42 43 44				PID=0 SPT=26, 50/		SAND (trace silt	OUTWASH SP); very dense, moist, red browace coarse), few fine to coarse s	wn; fine to medium subround gravel; -41 -42 -43
45+	12/20 s	sand filter pack, 5' bgs		PID=0.5		-		-45
46-	☑ 2/1/2	0019		SPT=20, 29, 3	2	-		46
47						-1		- 47
48+ 49+						- - - -		-48 -49
Sample Type	Legend Continuous con	e 1.125" ID	Water Level ∆ ∆	Vater Level ATD	<u> </u>	See Explo of symbol Logged by Approved	y: BMG	Exploration Log MW-27 Sheet 2 of 3

	Aspect		Morell's	s Dry Cle	aners - 080 [,]	190		Environmental	Exploratio	n Log
7	CONSULTING	608 N 1st Str	<i>Proj</i> ireet, Tacom	ect Address & Site na WA 98403,	e Specific Location South of Morell's,	southea	st of B-24	Coordinates NA		on Number
	Contractor	Equip	ment		Sampling Method	d		Ground Surface (GS) Elev.		<i>I</i> -27
	Holt	CME			hammer; Ib hamm	-	ор	0' (est)	Ecology W BLI	Vell Tag No. 158
	Operator Kulo	Exploration 8.5" OD X Hollow-Ste	Method(s) (4.25" ID	ı	Work Start/Completion 1/31/2019	Dates		Top of Casing Elev. NA	'	ter (Below GS) (ATD)
Depth	Kyle Exploration C			Analytical		Material			40.3	(ATD) Depti
(feet)	and No	otes	Type/ID Sa	Lab Test(s)	Field Tests	Type			longo wat rad b	(ft)
NEW STANDARD EXPLORATION LOG TEMPLATE 'WEISERVERT ASPECT. LOCALIPROJECTS SIGNTYWPROJECTS SMORELL'S 080190 2019 GF 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	and No	eter 0.020", e 40 PVC 44'-59' bgs	Type/ID Ga	mple Number & Lab Test(s) B-27-50.5 OCs by 8260	PID=0 SPT=24, 35, 50/5 PID=0 SPT=24, 35, 50/5	Туре	SAND (sand; tra	(SP); very dense, wet, red b	rown; fine to me	rown; (ft)
70-	_									-70
ER1.ASPE										-71
72 -										-72
73- 73-										- 73
74-	-									-74
V STANDARD EXPLORATIO Sample Type	Legend Continuous core	 ⊋ 1.125" ID	Water	∑ Water Le	evel ATD		See Explo of symbol Logged by Approved	y: BMG	L L	ration og 1-27 3 of 3

	Aspa	~ 1		Mor	ell's	Dry Cle	aners - 080	190		Environmental Ex		
7	Aspe CONSULT		608 N 1s	t Street	<i>Projed</i> , Tacor	na WA 98403	e Specific Location 3, Southeast of M	orell's s	outheast	Coordinates NA	Exploration Number	r
	Contractor	1110	Equ	ipment		corn	Sampling Meth	od		Ground Surface (GS) Elev.	MW-28	.
	Holt			E - 85	-1/-)		hammer; Ib ham		ор	0' (est)	Ecology Well Tag N BLR 935	NO.
	<i>Operator</i> John B		Exploration 8.5" OD Hollow-S	X 4.25"	'ÌĎ		Work Start/Completion 3/14/2019 to 3/15			Top of Casing Elev. NA	Depth to Water (Below (49' (Static)	GS)
Depth (feet)	Explo	oration Co and Not	ompletion	Sample Type/ID	Sam	Analytical ple Number & .ab Test(s)	Field Tests	Materia Type		Description		Depti
						ab resi(s)		X//	\ ASPH	ALT; Asphalt		
1 -		Flushmo	ent. lockable							RETE; Concrete TILL		1
2 -		seal, 0'-2	cap, concrete 2' bgs						SANDY fine to n	' SILT (ML); Very dense, slightly nedium sand; few fine subround		- 2
3 -											1	- 3
4 -											Ţ	- 4
5 -							PID=0				†	5
6 -							SPT=17, 50/5				+	6
7 -											_	- 7
8 -											_	- 8
9 -	- 🕷											- 9
10-		2" diame	eter, schedule						L			10
		40 PVC.	threaded ons, 0'-44'				PID=0.3 SPT=22, 50/4		moist, li	WITH SILT AND GRAVEL (SP ght brown; fine to medium sand	; fine subround	
11-									gravel.		+	∙11
12-	- 💥 💥								<u>. </u>		+	12
13-]- - -		+	13
5.0 2019.0 14 -	- 💥 💥								- - -		+	14
5080 15							PID=0			SAND WITH GRAVEL (SM); V	any dense, clightly	15
SWORE 16	. 💥 💥						SPT=22, 50/5			ght brown; fine to coarse sand;	fine to coarse	16
SONECTS												
ĭă 17−									- - -			∙17
18 18									. -			18
19 -									}. -		+	19
20 -		Bentonite bgs	e chips, 2'-42'				PID=0		: Gravel	content decreases to trace.	+:	20
34.4SP 21 -							SPT=17, 39, 50/5				+:	21
BISERVE 22 -									- -			-22
# 23 -									- -			-23
ZO TEMP									-1 -			
9 24 -									• • •		+:	24
EXPLOR	Legend No Soil S	Sample I	Recovery		<u> </u>	▼ Static W	ater Level	11-111	See Expl	oration Log Key for explanation	Exploration	— n
New Standard Exploration Log Templarte (Bisservert Aspect Local, PROJECT Signify WPROJECT Signify 31, 2019 Sample Sample Type Type	Continuo		-		Water Level	_			of symbo	y: BMG	Log MW-28	
S S S									Approved	l by: DAH	Sheet 1 of 3	

	A		Mor	ell's Dry Cle	aners - 080°	190		Environmental Ex	ploration Lo	g
	Aspect	608 N 1s		Project Address & Site Tacoma WA 9840	e Specific Location		utheast	Coordinates	Exploration Numb	
	Contractor		ipment	corn	er Sampling Metho		utilicast	NA Ground Surface (GS) Elev.	MW-28	3
	Holt		E - 85	Auto	hammer; Ib hamn		nn	0' (est)	Ecology Well Tag BLR 935	
	Operator	Exploration	on Method	d(s)	Work Start/Completion		Ψ	Top of Casing Elev.	Depth to Water (Belo	ow GS)
	John B	8.5" OD Hollow-S	X 4.25" Stem Au	ID ger	3/14/2019 to 3/15/	2019		NA	49' (Static)	
Depth (feet)	Exploration (Completion otes	Sample Type/ID	Analytical Sample Number & Lab Test(s)	Field Tests	Material Type		Description		Depth (ft)
26-	-				SPT=12, 34, 36 PID=0		moist, lig	SAND WITH GRAVEL (SM); Vous the brown; fine to coarse sand; for the distribution of the same of the sa	ery dense, slightly ine to coarse	-26
27-										-27
28-										-28
29-										-29
30-	- 🖁 🖁			B-28-30.5	PID=3.5		SANDY silt: fine	'SILT (ML); Hard, moist, light to medium sand; trace fine to c	prown; low plasticity	30
31-				VOCs by 8260	SPT=17, 39, 50/5		gravel.			-31
32-	- 💥 💥									-32
33-	-									-33
34-										-34
35-	- 🖁 🖁				PID=0) V	SAND	(SP); Very dense, wet, red brow	n; find to medium	35
36-					SPT=21, 34, 42		sand; tra	ce silt; trace fine to course sub	round gravei.	-36
37-										-37
38-1 38-										-38
39 -										-39
40 -					PID=0			/ SILT (ML); Hard, moist, tan; lo	ow plasticity silt;	40
41 -	- 🖁 🖁				SPT=24, 29, 32		fine sand SAND trace silt	(SP); Very dense, moist, light be	rown; fine sand;	41
42-										-42
43-										-43
HVPROJE										-44
45-	- 12/20 s	sand filter pack, 5' bgs			PID=0			OUTWASH		45
46-					SPT=19, 29, 34		SAND (sand; tra	SP); Very dense, wet, red brow ace silt; trace fine to course sub	n; find to medium round gravel.	-46
ABISER/										-47
48-										-48
49 -	_	/2019								-49
NEW STANDARD EXPLORATION LOG TEMPLATE \(\begin{array}{c ccccccccccccccccccccccccccccccccccc	Legend No Soil Sample	-			ater Level		See Explo	oration Log Key for explanation s	Exploration Log	on
Sample Type	Continuous cor	e 1.125" ID		Water Level			Logged by Approved		MW-28 Sheet 2 of 3	

	coost		More	II's Dry Clea	aners - 080	190		Environmental Ex	ploration Lo	g
	pheci	608 N 1s	t Street, T	Project Address & Site Facoma WA 98403	aners - 080' e Specific Location B, Southeast of Mo	rell's so	utheast	Coordinates	Exploration Num	
	ONSULTING Contractor		ipment	corne	er Sampling Metho			NA Ground Surface (GS) Elev.	₩W-28	3
	Holt		E - 85	Auto	hammer; Ib hamn		ממ	0' (est)	Ecology Well Tag BLR 935	g No.
	Operator	Exploration	on Method(s	s) l	Nork Start/Completion		· P	Top of Casing Elev.	Depth to Water (Belo	ow GS)
	John B	8.5" OD Hollow-S	X 4.25" ÌI Stem Auge	or :	3/14/2019 to 3/15/	2019		NA	49' (Static)	
Depth (feet)	Exploration C and No	ompletion otes	Sample Type/ID	Analytical Sample Number & Lab Test(s)	Field Tests	Material Type		Description		Depth (ft)
51 - 52 -	2" diam	eter 0.020", le 40 PVC 44'-59' bgs			SPT=17, 22, 34 PID=0		SAND (sand; tra (continu	OUTWASH (SP); Very dense, wet, red brown ace silt; trace fine to course subred)	n; find to medium ound gravel.	-51 -52
53 - 54 - 55 -			T		PID=0					-53 -54 -55
56 – 57 – 58 –				B-28-55.5 VOCs by 8260	SPT=40, 33, 29					-56 -57 -58
59-	Threade	ed PVC endcap								-59
60+					PID=0 SPT=43, 50/5					+60 -61
୍ଦ୍ର 62 -	<u>- 1: 1: 1</u>					<u> </u>	Bottom (of exploration at 61.5 ft. bgs.		-62
6107 178 (AIV) 371 5010 62 + 63 + 63 + 64 + 64 + 64 + 64 + 64 + 64										-63
64 -										-64
80 s. Tig										-65
66 -										-66
67 -										-67
68 -										-68
44L/PROJE										-69
70 -										-70
71 -										-71
72 - 72 - 72 - 72 - 73 - 73 - 73 - 73 -										-72
73 -										-73
74 -										-74
	egend No Soil Sample Continuous core		, , , , , , , , , , , , , , , , , , ,	Static W	ater Level		See Exploof symbol Logged b	y: BMG	Exploration Log MW-28 Sheet 3 of 3	

	٨٥٠		_1		Mor		eaners - 080	190		Environmental Ex		
	CONS)e		608 N 1	st Street	Project Address & S , Tacoma WA 984	ite Specific Location 03, Parking lot eas /-23	t of Morel	's and	Coordinates	Exploration Nun	
	Contra		ING		ipment	MVV	Sampling Meth			NA Ground Surface (GS) Elev.	MW-2	
	Но	olt			IE - 85		ohammer; Ib ham		р	0' (est)	Ecology Well Ta BLR 932	ag No.
	Oper			8.5" OD	on Method X 4.25"	ÍĎ	Work Start/Completion			Top of Casing Elev.	Depth to Water (Bel	
Dareth	Johr			Hollow-S	1	Analytical	3/11/2019 to 3/12			NA	50.18' (Stati	İ
Depth (feet)	- Ru	Expid	and No	ompletion tes	Sample Type/ID	Sample Number & Lab Test(s)	Field Tests	Material Type	ACDILI	Description		Depth (ft)
			.							ALT; Asphalt RETE; Concrete		$\int_{\mathbb{R}}$
1 +			Flushmo monume thermos	ount ent, lockable cap, concrete 2' bgs					SILTY S	TLL SAND (SM); Very dense, moist,	gravfine to	- 1
2 +			seal, 0'-2	2' bgs					medium	sand; trace fine to coarse subroroken cobble found in sampler	ound gravel; trace	- 2
3 +										overstated.	,	+ 3
4 +												+ 4
5 +					\mathbf{H}		PID=0					- 5
6 +					Ш		SPT=50, 50/5					- 6
7 +												+ 7
8 +												8
9 +												- 9
10+			40 PVC.	eter, schedule , threaded ions, 0'-45'	0		PID=0 SPT=50/6					10
11			bgs									11
12-												-12
13+												- 13
14												14
15							PID=0		NII-	blac formalis assessed		15
						B-29-15.0 VOCs by 8260	SPT=26, 50/5		NO COD	bles found in sample.		
16+					П							- 16
17												17
18												-18
40												10
19+												- 19
20			Bentonit bgs	te chips, 2'-42'			PID=0		SAND	WITH SILT (SP-SM); Very den	se, slightly moist;	+20
21-							SPT=12, 26, 42		light bro	wn; fine to medium sand.		-21
22												22
22+												-22
23												-23
24												-24
	Legend No		Sample	Recovery		▼ Static V	Vater Level			oration Log Key for explanation	Explorati	on
Sample Type				1.125" ID		Water Level			of symbo Logged b		Log MW-29	
ιχ΄ –						> -			Approved	by: DAH	Sheet 1 of 3	

	Aspa	<u></u>		More	ell's Dry Cle	aners - 080	190		Environmental Ex		
	CONSULTI		08 N 1st	Street,	Project Address & Site Tacoma WA 9840 MW-	e Specific Location 3, Parking lot east	of More	ll's and	Coordinates NA	Exploration Numb	
	Contractor	ING	Equip		IVIVV	23 Sampling Metho			Ground Surface (GS) Elev.	MW-29	
	Holt		CME			hammer; Ib hamr		p	0' (est)	Ecology Well Tag BLR 932	ag No.
	Operator	8	xploration .5" OD X	4.25"	ìĎ	Work Start/Completion			Top of Casing Elev.	Depth to Water (Belo	,
Danth	John B	- I	lollow-Ste	Ī	Analytical	3/11/2019 to 3/12			NA NA	50.18' (Statio	C) Depti
Depth (feet)	Explo	ration Comple and Notes	tion	Sample Type/ID	Sample Number & Lab Test(s)	Field Tests	Material Type		Description		(ft)
26-			_			SPT=26, 50/5 PID=0		SAND light bro	WITH SILT (SP-SM); Very den: wn; fine to medium sand. (conti	se, slightly moist; nued)	-26
27-											-27
28-											-28
29-											-29
30-			_	<u> </u>		PID=0 SPT=50/6		SILTY	SAND (SM); Very dense, slight	ly moist, light	+30
31-								found in	ine to coarse sand; few cobbles sampler. Blow counts may be o	overstated.	-31
32-											-32
33-											-33
34-											-34
35-						PID=0		SAND	(SP); Very dense, slightly moist sand, trace silt. Heave?	gray; fine to	+35
36-						SPT=11, 22, 33		mediam	Sand, trace sit. Fleave:		-36
37-											-37
38-											-38
380190 201											- 39
ORELL'S						PID=0.5 SPT=18, 30, 37			OUTWASH SP); Very dense, slightly moist,	red brown; fine to	+ 40
OJECTSIN						01 1-10, 30, 37		medium	sand, trace silt.		-41
42 -											+42 42
9/S 43 -											+43 +44
44 - 45 - 45 -		12/20 sand filt	ter pack.								-44 -45
43.43PECT		42'-61.5' bgs	h			PID=0 SPT=17, 30, 40					-46
BISERVER 47-			-								-47
MPLATE											-48
NLOG TEN											-49
PLORATIC	Legend							0== 5	anation Land Key fee		
NEW STANDARD EXPLORATION LOG TEMPLATE \(\text{NBISERVER1.ASPECT.LOCALIPROJECTSIGINTWPROJECTSMORELL'S 080190 2019.6PJ July 31, 2019} \) Sample 4	No Soil S		-		Mater North	ater Level		See Explo of symbo Logged b Approved	y: BMG	Exploration Log MW-29 Sheet 2 of 3	

	Venoct		More	ell's Dry Clea	aners - 080	190		Environmental Ex		
	Aspect CONSULTING	608 N 1s	t Street,	Project Address & Site Tacoma WA 98403 MW-2	e Specific Location 3, Parking lot east	of Morel	ll's and	Coordinates NA	Exploration Num	
	Contractor		ipment	MIVV-2	Sampling Metho			Ground Surface (GS) Elev.	MW-29	
	Holt		E - 85		hammer; Ib hamr		p	0' (est)	Ecology Well Ta BLR 932	ag No.
	Operator	Exploration 8.5" OD	X 4.25"	ìÒ l	Work Start/Completion			Top of Casing Elev.	Depth to Water (Belo	
Depth	John B Exploration C	Hollow-S	Sample	Analytical Sample Number &	3/11/2019 to 3/12	Material		NA	50.18' (Statio	Depth
(feet)	and No	tes	Type/ID	Sample Number & Lab Test(s)	Field Tests	Type		Description OUTWASH		(ft)
51-	3/12/2			B-29-50.0 VOCs by 8260	SPT=30, 33, 35 PID=0.9		medium	(SP); Very dense, slightly moist, a sand, trace silt. (continued) fine subangular gravel.	red brown; fine to	-51
52-	2" diameschedul	eter 0.020", e 40 PVC 45'-60' bgs								-52 -52
53+										-53 -54
54+										+54 +55
56					PID=0 SPT=8, 22, 33					-56
57										-57
58-										-58
59-										-59
60	Threade	ed PVC endcap			PID=0					-60
61-					SPT=18, 27, 38					-61
62							Bottom	of exploration at 61.5 ft. bgs.		-62
63-										-63
64										-64
65-										-65
66										-66
67										-67
68										-68
69										-69
70-										-70
71-										-71
72-										-72
73										-73
74-										-74
62	Legend No Soil Sample Continuous core			Nater Level	ater Level		of symbo		Exploration Log MW-29 Sheet 3 of 3	

Constauting Constauting		A	Мо	rell's Dr	y Clea	ners - 080	190		Environmental Ex		_
Contractor Expensed Supplied Contractor Country String (Spill		Aspect	608 N 1st Stree	Project Add , Tacoma W	ress & Site A 98403,	Specific Location East of Morell's	entrance	e, east of	Coordinates	Exploration Number	
Open B STOCK AND IN STOCK AND IN STATE CONTRIBUTION					IVIVV-2	2 Sampling Metho	nd				
Open B STOCK AND IN STOCK AND IN STATE CONTRIBUTION		Holt	CME - 85		Autoh	nammer; Ib hamr	ner; " dr	ор	0' (est)	Ecology Well Tag No BLI 161	Ο.
Annals Discourage Controlled Symptol Controlled Sym		Operator	Exploration Meth	od(s)	И	ork Start/Completion	n Dates		Top of Casing Elev.		
1		John B	Hollow-Stem A	uger		2/7/2019			NA	51.15' (Static)	
1	Depth (feet)	Exploration (and N	Completion Samp Notes Type/I	e Sample Ňi	umber &	Field Tests	Materia Type	I	Description		
1											
SANDY SIT (ML), hard, sightly most, gray brown, single, and brown and a sightly most and	1 +	NA NA monun	ment, lockable					CONC	·		1
10		thermo seal, 0	os cap, concrete)'-2' bgs					SANDY	SILT (ML); hard, slightly moist,	gray brown; low	2
9 - 10 - 27 diameter exheated at PIVC. Introduct connections, 0*45' Display 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19 - 20 - 20 - 20 - 21 - 22 - 23 - 24 - 24 - 26 - 20 - 20 - 20 - 20 - 20 - 20 - 20								trace fine	e subround gravel.	is to modiam sand,	_
9 - 10 - 27 diameter exheated at PIVC. Introduct connections, 0*45' Display 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19 - 20 - 20 - 20 - 21 - 22 - 23 - 24 - 24 - 26 - 20 - 20 - 20 - 20 - 20 - 20 - 20	3 +									+;	3
9 - 10 - 27 diameter exheated at PIVC. Introduct connections, 0*45' Display 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19 - 20 - 20 - 20 - 21 - 22 - 23 - 24 - 24 - 26 - 20 - 20 - 20 - 20 - 20 - 20 - 20	4										4
9 - 10 - 27 diameter exheated at PIVC. Introduct connections, 0*45' Display 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19 - 20 - 20 - 20 - 21 - 22 - 23 - 24 - 24 - 26 - 20 - 20 - 20 - 20 - 20 - 20 - 20											7
9 - 10 - 27 diameter exheated at PIVC. Introduct connections, 0*45' Display 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19 - 20 - 20 - 20 - 21 - 22 - 23 - 24 - 24 - 26 - 20 - 20 - 20 - 20 - 20 - 20 - 20	5 +									+ !	5
9 - 10 - 27 diameter exheated at PIVC. Introduct connections, 0*45' Display 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19 - 20 - 20 - 20 - 21 - 22 - 23 - 24 - 24 - 26 - 20 - 20 - 20 - 20 - 20 - 20 - 20	6					3F1-6, 50/3				_	6
9 - 10 - 27 diameter exheated at PIVC. Introduct connections, 0*45' Display 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19 - 20 - 20 - 20 - 21 - 22 - 23 - 24 - 24 - 26 - 20 - 20 - 20 - 20 - 20 - 20 - 20											
9 - 10 - 27 diameter exheated at PIVC. Introduct connections, 0*45' Display 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19 - 20 - 20 - 20 - 21 - 22 - 23 - 24 - 24 - 26 - 20 - 20 - 20 - 20 - 20 - 20 - 20	7 +									† 7	7
9 - 10 - 27 diameter exheated at PIVC. Introduct connections, 0*45' Display 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19 - 20 - 20 - 20 - 21 - 22 - 23 - 24 - 24 - 26 - 20 - 20 - 20 - 20 - 20 - 20 - 20	8									+ 8	8
10											_
B-30-10.5 VOCs by 8260 B-30-10.5 SPT=23, 37, 50/3 112 - 12 13 - 14 - 15 - 16 - 16 - 17 18 - 19 - 20 - 21 - 22 - 23 - 23 - 24 - 24 - 22 - 23 - 24 - 24	9 -									+ 5	9
Bandonite chips. 2-42	10	2" dian	meter, schedule			PID=4		SILTY	SAND (SM): very dense, slightly	1	0
12 - 13 - 14 - 15 - 16 - 15 - 16 - 16 - 16 - 17 - 18 - 19 - 19 - 19 - 19 - 19 - 19 - 19	11	connec	ctions, 0'-45'			SPT=23, 37, 50/3		brown; fi	ne to coarse sand; fine subrour	nd gravel.	1
13 - 14 - 15 - 16 - 16 - 17 - 18 - 19 - 19 - 19 - 19 - 19 - 19 - 19	$\prod_{i=1}^{n} \prod_{j=1}^{n} a_{ij}$			10000	y 0200					Γ'	1
SPT=50/1 16- 17- 18- 19- 20- Bentonite chips, 2-42 PID=0.2 SPT=23, 43, 50/3 SPT=23, 43, 50	12									 1	2
SPT=50/1 16- 17- 18- 19- 20- Bentonite chips, 2-42 PID=0.2 SPT=23, 43, 50/3 SPT=23, 43, 50	3 13										3
SPT=50/1 PID=N/A SPT=50/1 PID=N/A 16- 17- 18- 19- 20- 21- 21- 22- 23- 24- Legend No Soil Sample Recovery Legend No Soil Sample Recovery Continuous core 1.125" ID SPT=23, 43, 50/3 See Exploration Log Key for explanation of symbols Log MW-30 Exploration Log MW-30											Ŭ
Bentonite chips, 2'-42' 18 - 19 - 20 - 20 - 20 - 20 - 20 - 20 - 20 - 2	14									- 1	4
Bentonite chips, 2'-42' 18 - 19 - 20 - 20 - 20 - 20 - 20 - 20 - 20 - 2	15		0			SPT=50/1				<u> </u>	5
17 - 18 - 18 - 19 - 19 - 19 - 19 - 19 - 19						PID=N/A		-			
Bentonite chips, 2'-42' 20	16									+ 1	6
Bentonite chips, 2'-42' 20 Bentonite chips, 2'-42' 21 SAND WITH SILT AND GRAVEL (SW-SM); very dense, slightly moist, gray brown; fine to coarse sand; fine to coarse subround gravel. 22 23 24	17									+1	7
Bentonite chips, 2'-42' 20 Bentonite chips, 2'-42' 21 SAND WITH SILT AND GRAVEL (SW-SM); very dense, slightly moist, gray brown; fine to coarse sand; fine to coarse subround gravel. 22 23 24											
Bentonite chips, 2'-42' bys Bentonite chips, 2'-42' bys Bentonite chips, 2'-42' bys SAND WITH SILT AND GRAVEL (SW-SM); very dense, slightly moist, gray brown; fine to coarse sand; fine to coarse subround gravel. 21 22 23 Legend No Soil Sample Recovery Continuous core 1.125" ID See Exploration Log Key for explanation of symbols Log MW-30 Exploration Log MW-30	18+									 	8
Coarse subround gravel. 22 23 24 Legend No Soil Sample Recovery No Soil Sample Recovery Continuous core 1.125" ID See Exploration Log Key for explanation of symbols Logged by: BMG Assessed by: BMG Assessed by: BMG Assessed by: BMG	19							-		+1	9
Coarse subround gravel. 22 23 24 Legend No Soil Sample Recovery No Soil Sample Recovery Continuous core 1.125" ID See Exploration Log Key for explanation of symbols Logged by: BMG Assessed by: BMG Assessed by: BMG Assessed by: BMG	20-	Danta.	nite chins 2'-42'								'n
Coarse subround gravel. 22 23 24 Legend No Soil Sample Recovery No Soil Sample Recovery Continuous core 1.125" ID See Exploration Log Key for explanation of symbols Logged by: BMG Assessed by: BMG Assessed by: BMG Assessed by: BMG		bgs	into ompo, 2 -42							-SM); very dense,	.U
23 24 Legend No Soil Sample Recovery Continuous core 1.125" ID PROPOSED BY See Exploration Log Key for explanation of symbols Logged by: BMG Assessed by: BMG Assessed by: BMG	21					SPT=23, 43, 50/3		coarse s	ubround gravel.		<u>'</u> 1
23 24 Legend No Soil Sample Recovery Continuous core 1.125" ID PROPOSED BY See Exploration Log Key for explanation of symbols Logged by: BMG Assessed by: BMG Assessed by: BMG	22							-		+2	22
Legend No Soil Sample Recovery Continuous core 1.125" ID See Exploration Log Key for explanation of symbols Logged by: BMG Assessed by: BMG Assessed by: BMG										-	_
Legend No Soil Sample Recovery Continuous core 1.125" ID Logged by: BMG Assessed by: BMG MW-30	23							-		 	23
Legend No Soil Sample Recovery Continuous core 1.125" ID Logged by: BMG Assessed by: BMG MW-30	24									+2	24
No Soil Sample Recovery Continuous core 1.125" ID See Exploration Log Key for explanation of symbols Logg MW-30								-			
The soil sample recovery The soil sample re			o Poorvor	· -	Ctatic \^/-	etor Lovo!		See Explo	oration Log Key for explanation	Evaleration	_
S o o o o o o o o o o o o o o o o o o	pe e	Continuous co	-		olalic VV2	ilei Levei					
	San			Le						MW-30 Sheet 1 of 3	

	Asp			Mor	ell's D	ry Cle	aners - 080	190		Environmental Ex		
7	CONSU	ect	608 N 1st	t Street,	Project Ad Tacoma \	ddress & Site NA 98403	e Specific Location I, East of Morell's -2	entrand	ce, east of	Coordinates NA	Exploration Num	
	Contracto			iipment		IVIVV-	Sampling Metho	d		Ground Surface (GS) Elev.	- MW-3	
	Holt			IE - 85			hammer; Ib hamr		rop	0' (est)	Ecology Well Ta BLI 161	ag No.
	Operator John B		Exploration 8.5" OD Hollow-S	X 4.25"	ÍĎ I	l	Work Start/Completio 2/7/2019	n Dates		Top of Casing Elev. NA	Depth to Water (Bell 51.15' (Statio	-
Depth		xploration C	ompletion	Sample		lytical Number &	Field Tests	Materi	al	Description	01.10 (Glass	Depti
(feet)		and No	otes	Type/ID	Lab .	Test(s)		Туре		Y SILT (ML); hard, slightly mois	st, light brown; fine	(ft)
26-							SPT=35, 50/3 PID=0.5		to coars	e sand; trace fine to coarse sul	pround gravel.	-26
27-												-27
28-												-28
29-	-											-29
30-	-						PID=0.6					-30
31-							SPT=12, 50/6					-31
32-												-32
33-												-33
34-												-34
35-					B-30	0-35.5	PID=2.6			CUTIMACU		35
36-						by 8260	SPT=33, 50/5		SAND (OUTWASH (SP); very dense, slightly moist sand; trace silt; trace fine to co	red brown; fine to parse subround	-36
37-	-								gravel.			-37
38 -												-38
39 -												-39
080 S.T.T.S	-			T			PID=0					-40
41 -	-	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX					SPT=25, 34, 35					-41
42-												-42
43 -	-											-43
HVPROJE	-											44
45-		12/20 s 42'-61.5	and filter pack, 5' bgs				PID=0					-45
46-							SPT=11, 30, 36		· : · : · :			-46
ABISER/												-47
48-									·]			-48
100 LOG TE												-49
EXPLORAT	Legend No So	il Sample	Recovery		<u> </u>	Static W	ater Level	<u> </u>	See Explo	oration Log Key for explanation	Exploration	on
NEW STANDARD EXPLORATION LOG TEMPLATE \(\text{VBISERVER1}\) ASPECT LOCALIPROJECTS\(\text{GNINTWPROJECTS\(\text{MORPIL'S 080190}\) 2019\(\text{SOT}\) 2019\(\text{SOT}\) \(\text{SOT}\) \(\	Contin		e 1.125" ID		Water Level	Statio VV	2.0. 2010		of symbo Logged b Approved	y: BMG	Log MW-30 Sheet 2 of 3	

	lsnect		More	ell's Dry Clea	aners - 080	190		Environmental Ex		
A _C	ONSULTING	608 N 1s	t Street,	Project Address & Site Tacoma WA 98403 MW-	e Specific Location , East of Morell's e	entrance	, east of	Coordinates NA	Exploration Nun	
	Contractor		uipment	IVIVV-	-2 Sampling Metho	d		Ground Surface (GS) Elev.	- MW-3	
	Holt	CM	1E - 85	Auto	hammer; Ib hamn	ner; " dro	р	0' (est)	Ecology Well Ta BLI 161	ag No.
	Operator	Explorati	on Method X 4.25"	d(s)	Nork Start/Completion	Dates		Top of Casing Elev.	Depth to Water (Bel	low GS)
	John B	Hollow-S	Stem Aug	ger	2/7/2019	_		NA	51.15' (Stati	
Depth (feet)	Exploration C and No	ompletion otes	Sample Type/ID	Analytical Sample Number & Lab Test(s)	Field Tests	Material Type		Description		Depth (ft)
51 - 52 - 53 - 54 - 55 - 56 - 57 - 58 - 60 - 61 - 62 - 63 - 64 - 65 - 65 - 65 - 65 - 65 - 65 - 65	2" diam schedul screen,			B-30-60.5 VOCs by 8260	PID=0 SPT=15, 24, 31 PID=0.4 SPT=16, 36, 42	iype	medium gravel. (d	OUTWASH SP); very dense, slightly moist, sand; trace silt; trace fine to cocontinued) es wet.	red brown; fine to arse subround	-51 -52 -53 -54 -55 -56 -57 -58 -59 -60 -61 -62 -63 -64 -65
66										-66
67										-67
68										-68
69										-69
70										-70
71 -										- 71
72+										-72
73-										-73
74-										-73 -74
74										- /4
o C	egend No Soil Sample Continuous core			Mater Cevel	ater Level		See Explo of symbol Logged b Approved	y: BMG	Explorati Log MW-30 Sheet 3 of 3)

Γ	<u></u>	Nanas t		Mor	ell's	Dry Clea	aners - 080	190		Environmental Ex		
		Aspect			Project	Address & Site	Specific Location			Coordinates	Exploration Num	
	J	CONSULTING Contractor		Street, T	acoma	WA 98403, I	MW corner of Mo Sampling Metho		rking area	NA Ground Surface (GS) Elev.	MW-3	1
				•		A - 4 - 1				` ´	Ecology Well Ta	
-		Holt Operator	Exploration Exploration	E - 85	4(e)		nammer; Ib hamn Vork Start/Completion		op	0' (est) Top of Casing Elev.	BLI 159 Depth to Water (Belo	- (CS)
		John B	8.5" OD Hollow-S	X 4.25"	ÌĎ	,	2/5/2019	i Dales		NA	51.36' (Static	
De (fe	epth	Exploration C and No	Completion	Sample Type/ID	Samp	nalytical ble Number & ab Test(s)	Field Tests	Materia Type	ı	Description	1	Dept (ft)
Ė	7	881				ib resi(s)		V//×	\ ASPHA	LT; Asphalt.		
	1 +	Flushm	ount						CONC	RETE; Concrete.		<u></u>
		monum thermos	ent, lockable s cap, concrete -2' bgs						GRAVE	Till LLY SILT WITH SAND (ML); ve	ery dense, wet,	
	2 +		-2 bgs						brown; lo	ow plasticity silt; fine to coarse s	and; fine to coarse	- 2
	3 +									- g		2
	٥											+ 3
	4 +	2" diam	eter, schedule									4
		connec	tions, 0'-9.5'									
	5 +						PID=0 SPT=50/5					+ 5
	6 +	Bentoni	ite chips, 2'-7.5'				0 00.0					- 6
		bgs										
	7 +											 7
	8 +											8
	•											
	9	12/20 s 7.5'-21.	and filter pack, 5' bgs									9
1	10+						PID=0.1		L SAND	WITH SILT (SP-SM); very dens		10
	11+						SPT=15, 38, 50/5		gray brow	wn; fine to medium sand (trace ubround gravel.	coarse); trace	-11
				8					-	-		
31, 201	12+											-12
n 1	13+								-			-13
6107061	14								-			14
080 5 1	15	2" diam	neter 0.020", le 40 PVC				PID=0.1		Gravel	content increases to SAND WIT	LH GII T VVID	15
O REL		screen,	9.5'-19.5' bgs			-31-15.5 Os by 8260	SPT=20, 50/5		GRAVEL		IN SILI AND	
	16+					,			-			- 16
0 2 1 1	17+											-17
190	18											18
1 JACOE	19-											- 19
CALI									-]			
	20+						PID=0.1 SPT=24, 50/6		gray brow	SILT WITH GRAVEL (ML); hawn; low plasticity silt; fine to coa		+20
Z Z	21+								coarse s	ubround gravel.		-21
WBISER 2	22-											-22
<u> </u>	23+											-23
<u>ا</u>												
	24+											-24
		Legend No Soil Sample	Poor		[·	T Ctotic M/	otor Lovel		See Explo	pration Log Key for explanation	Evalerat!	
ARD S	9 P	○ No Soil SampleI Continuous core	-			▼ Static Wa	alei Levei		of symbol		Exploration Log	JΠ
N S I AIN	Type	GOIGITIOUS COIC	C 1.120 ID		Water				Logged by Approved		MW-31 Sheet 1 of 3	

	Aspect	, N	lorell's	Dry Clea	aners - 080	190		Environmental Ex	
	Aspect CONSULTING	608 N 1et Stra	-		Specific Location MW corner of Mo	rell's nar	king area	Coordinates NA	Exploration Number
	Contractor	Equipm		VVA 30403,	Sampling Metho		Kirig arca	Ground Surface (GS) Elev.	MW-31
	Holt	CME -	85	Auto	hammer; Ib hamn	ner; " dro	ор	0' (est)	Ecology Well Tag No BLI 159
	Operator	Exploration M	lethod(s)	ı	Work Start/Completion	n Dates		Top of Casing Elev.	Depth to Water (Below G
	John B	8.5" OD X 4 Hollow-Sten	n Auger		2/5/2019			NA	51.36' (Static)
Depth (feet)	Exploration (and N	Completion Sa Notes Sa	mpie Sam	Analytical ple Number & ab Test(s)	Field Tests	Materia Type	I	Description	De (t
26 27 28 29	2" diar 40 PV conne 19.5'-4	meter, schedule C, threaded ctions, 44.5' bgs			SPT=18, 50/4 PID=0		gray brov	' SILT WITH GRAVEL (ML); ha wn; low plasticity silt; fine to coa ubround gravel. (continued)	rd, slightly moist, rese sand, fine to
30 - 31 - 32 - 33 -	Bentor 21.5'-4	nite chips, 41.5' bgs			PID=0.1 SPT=31, 50/3			SAND (SM); very dense, slightly m sand (trace coarse); trace co	/ moist, brown; fine
34 - 35 - 36 - 37 - 38 - 38 -	Bentor 21.5'-4	Ι			PID=0.3 SPT=37, 50/6				-3 -3 -3 -3
39-		Т		3-31-40.5	PID=1.0		SAND (OUTWASH SP); very dense, moist, brown;	-3
41 - 42 - 43 - 44 -		1		Cs by 8260	SPT=28, 42, 37		sand; tra	ice silt; trace fine gravel.	+4 +4 +4
							:		
45+	12/20 41.5'-6	sand filter pack, 60' bgs			PID=0		- - -		 4
46+		0			SPT=17, 39, 46		-		-4
47+							-		-4
48-									-4 -4
Sample	Legend No Soil Sample Continuous con	-	Water	▼ Static W	ater Level	· · · ·	See Explo of symbol Logged by Approved	y: BMG	Exploration Log MW-31 Sheet 2 of 3

	lenge+		More	ell's Dry Cle	aners - 080	190		Environmental Ex		
X	aheci	600 N 1at 6	Street T	Project Address & Site acoma WA 98403,		ممم مالاه	kina araa	Coordinates	Exploration Nun	
	ONSULTING Contractor		ipment	acoma WA 98403,	Sampling Method		king area	NA Ground Surface (GS) Elev.	⊢ MW-3	
	Holt		E - 85	Auto	hammer; Ib hamm		op	0' (est)	Ecology Well Ta BLI 159	ag No.
	Operator	Exploration	n Method	I(s) I	Nork Start/Completion			Top of Casing Elev.	Depth to Water (Be	low GS)
	John B	8.5" OD Hollow-S	X 4.25" Stem Aug	ger	2/5/2019	1		NA	51.36' (Stati	ic)
epth feet)	Exploration C and No	ompletion otes	Sample Type/ID	Analytical Sample Number & Lab Test(s)	Field Tests	Material Type		Description		Depth (ft)
51 - 52 - 53 -	▼ 2/5/20 2" diam schedul screen,	019 eter 0.020", le 40 PVC 44.5'-59.5' bgs			SPT=11, 39, 49 PID=0.3		SAND (i sand; tra	OUTWASH SP); very dense, moist, brown; ice silt; trace fine gravel. (contin	fine to medium uued)	-51 -52 -53
54										-54
55 +					PID=1.5					-55
56 –				B-31-55.5 VOCs by 8260	SPT=22, 31, 50/6					-56
57										-57
58-										-58
59-							_			-59
60+	Threade	ed PVC endcap	_		PID=1.3					-60
61 –				B-31-60.5 VOCs by 8260	SPT=20, 33, 50/5					-61
62-							Bottom o	of exploration at 61.5 ft. bgs.		-62
63-										-63
64 –										-64
65-										-65
66 +										-66
67										-67
68-										-68
69-										-69
70-										-70
71 –										-71
72-										-72
73-										-73
74-										-74
1.	egend									
o C	egend ☑ No Soil Sample ☑ Continuous core			Water Level	ater Level		See Explo of symbol Logged by Approved	y: BMG	Explorati Log MW-31 Sheet 3 of 3	

	Aspa	-1		Mor	ell's Dry (Clea	aners - 080°	190		Environmental Ex	ploration L	og
7	CONSULTIN	CT	608 N 1s	t Street	Project Address , Tacoma WA 9	& Site 8403	e Specific Location B, Parking Lot east)	of More	ll's and	Coordinates NA	Exploration Nur	
	Contractor			ipment		D-3(Sampling Metho	d		Ground Surface (GS) Elev.	− MW-3	
	Holt			E - 85			nammer; Ib hamn		р	0' (est)	Ecology Well T BLR 934	ag No.
	Operator John B		Exploration 8.5" OD Hollow-S	X 4.25	"ÍĎ		Work Start/Completion 3/13/2019 to 3/14/			Top of Casing Elev. NA	Depth to Water (Be 50.09' (Stat	-
Depth (feet)	Explora	ation Co and Not	mpletion	Sample Type/ID	Analytical		Field Tests	Material Type		Description	30.09 (Stat	Depth (ft)
				Ĥ	Lab Test(s)			\//\		ALT; Asphalt.		<u></u>
1 -	l KM KM n	- lushmo nonume	ent. lockable						CONC	RETE; Concrete.		√ 1
2 -	t s	hermos eal, 0'-2	cap, concrete 2' bgs									- 2
3 -												+ 3
4 -												- 4
5 -				0			SPT=50/3					- 5
6 -												- 6
7 -												- 7
8 -												- 8
9 -												- 9
10-		?" diame	eter, schedule	0			SPT=50/4					-10
11-		connections	threaded ons, 0'-45'									-11
602 12-												-12
13-												-13
14 -												14
15 -	וכא וכא				B-32-15.5		PID=1		SILTY	SAND (SM); Very dense, slight	lv moist, light	- 15
16-					VOCs by 82	.60	SPT=24, 50/5		brown; f	ine to medium sand, trace fine	subround gravel.	16
17-												-17
18 -												-18
19-	+ 1401 1401											19
20 -		Bentonite ogs	e chips, 2'-42'				PID=1					-20
ER1.ASP				₽			SPT=30, 50/5		light bro	wn; fine to medium sand; trace	fine subround	-21
32-												-22
EMPLATE												-23
24-												-24
ARD EXPLOR	Legend	s core	1.125" ID	1 1	ু ∑ Stat	ic Wa	ater Level		See Explo of symbo	pration Log Key for explanation	Explorati	ion
NEW STANDARD EXPLORATION LOG TEMPLATE \(\text{NBISERVERT} \) ASPECT. LOCALIPROJECTS \(\text{GINTWPROJECTS} \) MORPHONE \(\text{SMORELL'S 080190 2019 GPJ July 31, 2019} \) A TOPE \(\text{TOTAL PLANDARD EXPLORATION LOG TEMPLATE \(\text{VIDE} \) \(\text{LOCALIPROJECTS} \) \(\text{CALIPROJECTS} \) \(\text{MORPH LOCALIPROJECTS} \) \(M					Water				Logged b Approved		Log MW-32 Sheet 1 of	

	A _ =		Mor	ell's Dry Cle	aners - 080	190		Environmental Ex	ploration Log
	Aspect	608 N 1s	st Street	Project Address & Site Tacoma WA 98403 B-3	e Specific Location	t of More	ell's and	Coordinates	Exploration Number
	Contractor		uipment	B-3	Sampling Metho		,,, o and	NA Ground Surface (GS) Elev.	MW-32
	Holt		прттетт IE - 85	Auto	hammer; Ib hamr		nn .	0' (est)	Ecology Well Tag No BLR 934
	Operator	Exploration	on Method	1(s)	Work Start/Completion		7 P	Top of Casing Elev.	Depth to Water (Below G
	John B	8.5" OD Hollow-S	X 4.25" Stem Au	ID ger	3/13/2019 to 3/14	/2019		NA	50.09' (Static)
Depth (feet)	Exploration and	Completion Notes	Sample Type/ID	Analytical Sample Number & Lab Test(s)	Field Tests	Material Type		Description	De (t
26-	-				SPT=24, 50/4 PID=5			' SILT (ML); Hard, slightly mois silt; trace fine sand.	t, light gray; low
27-									-2
28-	- 🖁 🖁								-2
29-	-								-2
30-					PID=1.5		SILTY	SAND (SM); Very dense, moist	, light brown; fine 3
31-	- 🖁 🖁				SPT=23, 50/6		to mediu	m sand; trace fine subround gra	avel3
32-	-								-3
33-	-								-3
34-									-3
35-	-				PID=1.5		No grav	vel.	-3
36-					SPT=15, 50/6				-3
37-	- 🖁 🖁]		-3
88 - 38 -	-						[-3
39 -									-3
40 -					PID=0	411	SAND	(SP); Very dense, moist, red bro	4 own; fine to
41 -					SPT=17, 28, 30		medium	sand; trace silt.	-4
42-] :		-4
43-	-								-4
44\PRoJe	-								-4
45 -	- 12/20 42'-6) sand filter pack, 1.5' bgs							-4
VER1.ASPI	-				SPT=44, 30/4				-4
%BISER/	-								-4
48-	-								-4
1907 NOI.	-						· -		-4
XPLORAT	Legend			<u> </u>			See Explo	oration Log Key for explanation	
NEW STANDARD EXPLORATION LOG TEMPLATE \(\begin{align*}{c c c c c c c c c c c c c c c c c c c	■ Continuous of	ore 1.125" ID		Mater Natic W Static W Static W	ater Level		of symbol Logged by Approved	s y: BMG	Exploration Log MW-32 Sheet 2 of 3

	lenact		More	ell's Dry Cle	aners - 080	190		Environmental Ex		
X	pheci	608 N 1s	t Street,	Project Address & Sitt Tacoma WA 98403 B-3	e Specific Location 3, Parking Lot east	of More	ell's and	Coordinates	Exploration Nun	nber
UC	Contractor	Fai	ipment	B-3	O Sampling Metho	d		NA Ground Surface (GS) Elev.	- MW-3	2
	Holt		E - 85	Auto	hammer; Ib hamn		ac	0' (est)	Ecology Well Ta BLR 934	ag No.
	Operator	Exploration	on Method	(s)	Work Start/Completion		-	Top of Casing Elev.	Depth to Water (Bel	low GS)
	John B	8.5" OD Hollow-S	X 4.25 Stem Aug	ger	3/13/2019 to 3/14	2019	T	NA	50.09' (Stati	ic)
Depth (feet)	Exploration C and No	ompletion otes	Sample Type/ID	Analytical Sample Number & Lab Test(s)	Field Tests	Material Type		Description		Depth (ft)
	3/14/2	2019					SAND medium	(SP); Very dense, moist, red bro sand; trace silt. (continued)	own; fine to	
51+					SPT=17, 24, 28 PID=0		Becom			-51
52 +	2" diam	eter 0.020",								-52
	schedul screen,	eter 0.020", le 40 PVC 45'-60' bgs								
53+										+53
54										-54
55 +										-55
55				B-32-55.5	PID=0					
56+				VOCs by 8260	SPT=21, 33, 40					-56
57										-57
58+										+ 58
59										-59
60+	Threade	ed PVC endcap					-			-60
		·			PID=0 SPT=34, 50/5					
61+					37 1-34, 30/3					- 61
62							Bottom o	of exploration at 61.5 ft. bgs.		62
63+										-63
00										
64 +										-64
65										-65
66										00
66+										+ 66
67										-67
68 +										-68
69+										+ 69
70										70
71 +										-71
72+										-72
73										-73
74										-74
74+										T/4
L	egend						See Evol	oration Log Key for explanation		
n ge	Continuous core	e 1.125" ID			ater Level		of symbo		Explorati Log	on
Sample Type				Water			Logged b	y: BMG	MW-32	
				<u> </u>			Approved	иу. DAП	Sheet 3 of 3	3

	Aspect		More	ll's Dry Clea	aners - 080	190		Environmental Ex		
	Aspect CONSULTING	608 N 1et S		Project Address & Site		Door in r	arking lot	Coordinates NA	Exploration Number	
	Contractor		pment	Coma VVA 90403,	Sampling Metho		arking lot	Ground Surface (GS) Elev.	MW-33	
	Holt	CME	E - 85	Autol	hammer; Ib hamn	ner; " dr	op g	0' (est)	Ecology Well Tag No BLR 933	Ο.
	Operator	Exploration	n Method(s	·)	Vork Start/Completion			Top of Casing Elev.	Depth to Water (Below G	S,
	John B	8.5" OD 2 Hollow-St	X 4.25" IE tem Auge	or (3/12/2019 to 3/13.	/2019		NA	51.8' (Static)	
Depth (feet)	Exploration and N	Completion lotes	Sample Type/ID	Analytical Sample Number & Lab Test(s)	Field Tests	Materia Type		Description	De (ept (ft)
	88			240 100(0)		X// <i>X</i>	√ ASPHA	LT; Asphalt.	/	_
1 +	Flushr	mount					CONC	RETE; Concrete		1
'	M M monur	ment, lockable os cap, concrete l'-2' bgs					SANDY	TILL SILT (ML); Hard, very moist, gr		
2 -	seal, 0)'-2' bgs					silt; fine	to coarse sand; few fine, subrou		2
							gravel.			
3 +									† ;	3
4 -									L	4
4									Γ'	+
5									+ !	5
					PID=2					
6 +			8		SPT=18, 27, 50/3				+ 6	6
_										_
7 +									Ţ ·	7
8 -									<u> </u>	8
9 +									+ 9	9
						111111				
10+	M2 M2 40 PV	meter, schedule C, threaded ctions, 0'-45'		B-33-10.0			SANDY	SILT WITH GRAVEL (ML); Ha	ard, moist, gray;	0
11-	bgs	ctions, 0-45	<u> </u>	VOCs by 8260	SPT=8, 50/6 PID=2			icity silt; fine to coarse sand; fin lar gravel.	ie, subround to +1	1
' '								· g··-	'	•
12									+1	2
13+									 1	3
14-									<u> </u>	4
						HIIII			'	_
15			-		PID=0			SAND WITH GRAVEL (SM); Ve	1	5
					SPT=27, 50/6		moist, lig	tht brown; fine to coarse sand; f	ine to coarse	
16+							subround	d gravel.	†1	6
17-									+1	7
''									'	•
18							:		<u>+</u> 1	8
							:			
19									 1	9
20-		nite chips, 2'-42'							-2) (
20	Bentol bgs	c ompo, 2 -42			PID=1 SPT=40, 50/6				[2	.U
21					01 1-40, 30/0				-2	21
							-			
22]		-2	2
										۰.
23+									-2	3
24									+2	24
- '						1111				. •
	Legend	- Day		T 00 11 111	ton Level	1 . 1.15/	See Explo	pration Log Key for explanation	E	_
ple ē	No Soil Sample	-	ă	▼ Static Wa	ater Level		of symbol		Exploration Log	
Sample Type	■ Continuous co	re 1.125" ID	ţc/	Level			Logged by		MW-33	
"							Approved		Sheet 1 of 3	

	Aspo	<u></u>		More	ell's	Dry Cle	aners - 080	190		Environmental Ex		
7	Aspe (N 1ct Ct	troot T	-		e Specific Location South of Copper	Door in n	arking lot	Coordinates NA	Exploration Num	
	Contractor	NG 600		ment	acoma	WA 90403,	Sampling Metho		arking iot	Ground Surface (GS) Elev.	− MW-3 ;	
	Holt		CME	- 85		Auto	hammer; lb hami	mer; " dro	ор	0' (est)	Ecology Well Ta BLR 933	ag No.
	Operator	E	xploration .5" OD X	Method	d(s)		Work Start/Completio	n Dates		Top of Casing Elev.	Depth to Water (Beld	ow GS)
	John B	H	iollow-St	em Au	ger		3/12/2019 to 3/13	3/2019		NA	51.8' (Static)
Depth (feet)	Explor	ation Complet and Notes	tion	Sample Type/ID	Samp La	nalytical le Number & ab Test(s)	Field Tests	Material Type		Description		Dept (ft)
26-			-				SPT=26, 50/6 PID=0		sAND brown; fi	WITH SILT (SP-SM); Very den ne to medium sand; few fine to	se, moist, light coarse subround	-26
27-												-27
28-									-			-28
29-									-			-29
30-							PID=0 SPT=50/6		SAND	WITH SILT (SW-SM); Very de	nse, slightly moist,	-30
31-									gravel.	wn; fine to coarse sand; trace fi	ine subround	-31
32-									-			-32
33-									· - -			-33
34-												-34
35-				\mathbf{I}			PID=0.5	4	SAND	(SP); Very dense, slightly moist	t, light brown; fine	+35
36-							SPT=28, 30, 36		to mediu	m sand; trace silt.		-36
37-] :			-37
8 - 38 -												-38
39 -									· ·			-39
080 S, TIE				\mathbf{H}			PID=0			OUTWASH		-40
41 -							SPT=15, 24, 37		Become	es red brown.		-41
42-												-42
43-									·			-43
AL/PROJE												-44
45-		12/20 sand filt 12'-61.5' bgs	ter pack,				DIF. 6		:			-45
VER1.ASP							PID=0 SPT=22, 31, 35					-46
MBISER 47-												-47
48-												-48
49-												-49
D EXPLORA	Legend No Soil Sa	ample Reco	overy		 	▼ Static W	ater Level	[]	See Explo	oration Log Key for explanation	Exploration	on
NEW STANDARD EXPLORATION LOG TEMPLATE 'UBISERVER! ASPECT LOCALIPROJECTS/GINTW/PROJECTS/MORELL'S 080190 2019 (SP. 1) 1 2019 Sample 6 8 4 4 9 5 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Continuou	is core 1.12	25" ID		Water				Logged by Approved	y: BMG	Log MW-33 Sheet 2 of 3	3

	Snect		More	ell's Dry Cle	aners - 080	190		Environmental Ex		
X	CONSULTING	608 N 164 9		Project Address & Site acoma WA 98403,	•	nor in n	arking lot	Coordinates NA	Exploration Num	
	Contractor		ipment	acoma WA 96403,	Sampling Metho		arking lot	Ground Surface (GS) Elev.	MW-33	
	Holt	CM	E - 85	Auto	hammer; Ib hamn	ner; " dro	p	0' (est)	Ecology Well Ta BLR 933	ag No.
	Operator	Exploration 8.5" OD	on Method	(s)	Work Start/Completion	Dates	-	Top of Casing Elev.	Depth to Water (Beld	ow GS)
	John B	Hollow-S	Stem Aug	ger	3/12/2019 to 3/13/	2019		NA	51.8' (Static	<u>;) </u>
Depth feet)	Exploration C and No	ompletion ites	Sample Type/ID	Analytical Sample Number & Lab Test(s)	Field Tests	Material Type		Description		Depth (ft)
51 -	▼ 3/13/2 2" diam schedul screen,	2019 eter 0.020", e 40 PVC 45'-60' bgs	0		SPT=24, 35, 35 PID=0			(SP); Very dense, slightly moist, m sand; trace silt. (continued) es wet.	light brown, line	-51 -52
53-										-53
54-										-54
55+ 56+				B-33-55.5 VOCs by 8260	PID=0 SPT=24, 30, 37		Trace fi	ine subround gravel.		-55 -56
57 -				VOO3 By 0200						-57
58-										-58
59-										-59
60	Threade	ed PVC endcap			PID=0		SAND	WITH SILT (SP-SM); Very dens	e, wet, light	60
61					SPT=9, 24, 38		Drown,, i	ine sand.		-61
62							Bottom o	of exploration at 61.5 ft. bgs.		62
63										-63
64										-64
65										-65
66										-66
67										-67
68-										- 68
69+										+ 69
70+										-70
71+										+71
72+										-72
73+										-73 -74
o [Legend No Soil Sample Continuous core			Mater Level Level Level Table 1 Level Lev	ater Level		See Explo of symbol Logged by Approved	y: BMG	Exploration Log MW-33 Sheet 3 of 3	

	Acac	.	Mor	ell's Dry Cle	aners - 080	190		Environmental Ex		_
	Aspect	- I	<u> </u>	Project Address & Site	•			Coordinates	Exploration Number	
	Contractor		Street, in	Tacoma WA 98403,	South of Morell's, Sampling Metho		f MW-20	NA Ground Surface (GS) Elev.	MW-34	
	Holt		ль-75	Auto	hammer; Ib hamr		ac	0' (est)	Ecology Well Tag N BMF673	lo.
	Operator	Exploration	on Method	d(s)	Work Start/Completion			Top of Casing Elev.	Depth to Water (Below G	is)
	Kyle	8.5" OD Hollow-S	Stem Au	ger	7/8/2019 to 7/9/2	2019	1	NA	47.7' (ATD)	
Depth (feet)	Exploration and	Completion Notes	Sample Type/ID	Analytical Sample Number & Lab Test(s)	Field Tests	Material Type		Description	De (epth (ft)
							SAND	LT; Asphalt WITH SILT AND GRAVEL (SP		
1 -	l KM KM mon	nmount ument, lockable nos cap, concrete 0'-2' bgs					slightly r silt; fine	noist, brown; fine to medium sa to coarse subround gravel.		
2 -							_		<u></u>	2
3 -							-		+ :	3
4 -							-		-	4
5 -			\mathbf{H}				-		+ :	5
6 -					PID=2 SPT=42, 42, 50/3		-		-	6
7 -							-		_	7
8 -							-		- :	8
9 -							<u>.</u> -		- !	9
10-	2" di 40 P	ameter, schedule VC, threaded ections, 0'-44'			SPT=50/4		-		 	10
11-	2" di 40 P conn bgs	ections, 0'-44'			PID=N/A				 	11
ာ္ကို 12 -							-		 +1	12
13-							-		 +1	13
0 2019:Gb 14 -							-		<u> </u> -1	14
15-					PID=0.8]1[SAND	(SP); Very dense, slightly moist	1	15
3WO KE			H		SPT=37, 50/4			sand; trace silt; trace fine subro	ound gravel.	16
일 17-									-1	17
18 -							1		 +1	18
[일 [일 [일 [일 [일 [일 [일 [일 []] [] [] [] [] [] [] [] [] [] [] [] []									 +1	19
20 -	Bent	onite chips, 2'-42'			DID-N/A		1		+2	20
21- 21-	bgs				PID=N/A SPT=50/5				+2	21
1 22 -										22
를 일 23-										23
24-	Bent bgs									24
N										
G EXP	Legend No Soil Samp	-		∑ Water Lo	evel ATD		See Explo	oration Log Key for explanation s	Exploration	
New Standbard Exploration to General Templaria (Biserver) Aspect Localiproduct Scinity where the product of the	Continuous c	ore 1.125" ID		Water			Logged by Approved	y: BMG	Log MW-34 Sheet 1 of 3	

	Acres		More	ell's Dry Cle	aners - 080°	190		Environmental Ex		
	Aspect		~ .	Project Address & Site	•			Coordinates	Exploration Num	nber
	Contractor		Street, T ipment	acoma WA 98403,	South of Morell's		f MW-20	NA Ground Surface (GS) Elev.	MW-34	4
	Holt		E-75	Auto	hammer; Ib hamm		ac	0' (est)	Ecology Well Ta BMF673	ag No.
	Operator	Exploratio	n Method	(s)	Work Start/Completion			Top of Casing Elev.	Depth to Water (Bel	low GS)
	Kyle	8.5" OD Hollow-S	tem Aug	ger	7/8/2019 to 7/9/2	019		NA	47.7' (ATD))
Depth (feet)	Exploration C and No	completion	Sample Type/ID	Analytical Sample Number & Lab Test(s)	Field Tests	Material Type		Description		Depti (ft)
26-					SPT=29, 50/5 PID=1.5		to mediu subangu	SAND (SM); Very dense, moist m sand; low plasticity silt; trace lar gravel; broken rock in samp piased high.	fine to coarse	-26
27-										-27
28-										-28
29-										-29
30-					PID=0.5		-			-30
31-					SPT=28, 45, 50/4					-31
32-										-32
33-										-33
34-										-34
35-					PID=0.5	7.7[SAND	(SP); Very dense, moist, red bro	own; fine to	35
36-					SPT=11, 40, 40		mealum	sand; trace silt.		-36
37-										-37
38-										-38
39 -							-			-39
080 S.TI					PID=0.5					-40
41 -					SPT=42, 50/5					-41
42-										-42
43-										-43
44 -										-44
45-	12/20 s	and filter pack, 5' bgs								-45
46-					PID=0 SPT=33, 35, 43					-46
AR 47-										-47
48-		019								-48
49-										-49
XPLORAT	Legend			\(\tau_1\)			See Explo	oration Log Key for explanation	F	
New Standard Exploration Log Template NBISERVER1. ASPECT. LOCALIPROJECTS GINTWPROJECTS MORELL'S 080190 2019 GPJ July 31, 2019 Sample	No Soil Sample Continuous core			Mater Level	evel A I D		of symbol Logged by Approved	y: BMG	Exploration Log MW-34 Sheet 2 of 3	

	Aspost		More	ell's Dry Clea Project Address & Site	aners - 080 <i>°</i>	190		Environmental Ex	ploration Log	g
7	CONSULTING	609 N 1ot		Project Address & Site acoma WA 98403,			f N/N/ 20	Coordinates NA	Exploration Number	
	Contractor		ipment	acoma vva 96403,	Sampling Method		1 10100-20	Ground Surface (GS) Elev.	MW-34	
	Holt		1E-75	Auto	hammer; Ib hamm	ner; " dro	р	0' (est)	Ecology Well Tag BMF673	No.
	Operator	Exploration	n Method	(s)	Work Start/Completion	Dates		Top of Casing Elev.	Depth to Water (Below	v GS)
	Kyle	8.5" OD Hollow-S	Stem Aug		7/8/2019 to 7/9/2	019	1	NA	47.7' (ATD)	
Depth (feet)	Exploration C and No	ompletion otes	Sample Type/ID	Analytical Sample Number & Lab Test(s)	Field Tests	Material Type		Description		Depth (ft)
51 -		eter () ()2()"			SPT=24, 35, 42 PID=0.2		SAND medium Becom	(SP); Very dense, moist, red bro sand; trace silt. (continued) es wet		-51 -52
53-	schedul screen,	eter 0.020", le 40 PVC 44'-59' bgs								-53
54 - 55 -					PID=0 1				-	-54 -55
56-					PID=0.1 SPT=50/5					-56
58									-	-57 -58
59-	Threade	ed PVC endcap								-59
61-					PID=0.1 SPT=12, 17, 30		Becom	es dense		-60 -61
62-							Bottom o	of exploration at 61.5 ft. bgs.		-62
63-									-	-63
64										-64
65 + 65 + 66 + 66 + 66 + 66 + 66 + 66 +										-65 -66
PROJECTS 67									-	-67
18/GINTWI 18/GINTWI									-	-68
ALIPROJEC										-69
70 TOO										-70
71 - 71 - 71 - 71 - 71 - 71 - 71 - 71 -									+	-71
72 72 72 72 73 74 75 75 75 75 75 75 75										-72
73+ 500 74+										-73 -74
ORATION										, 4
NEW STANDARD EXPLORATION LOG TEMPLATE \(\text{BISERVER1}\) ASPECT LOCALIPROJECTSGINTWPROJECTSGMORELL'S 080190 2019 5PJ 99 99 99 90 90 90 90 90 90 90 90 90 90	Legend No Soil Sample Continuous core			Water Level	evel ATD		See Explo of symbo Logged b Approved	y: BMG	Exploration Log MW-34 Sheet 3 of 3	n

	Aan			Mor	ell's	Dry Cle	aners - 080 e Specific Location	190		Environmental Ex	ploration Lo	og
7		OCT ULTING	600 N 1at						F N 4\A / OO	Coordinates	Exploration Num	ber
	Contrac			ipment	racon	1a WA 98403,	South of Morell's Sampling Metho		I IVIVV-20	NA Ground Surface (GS) Elev.	- MW-3	
	Holt	t	CM	E-75			No Sampling			0' (est)	Ecology Well Ta BMF672	ıg No.
	Operat		Exploration 8.5" OD	n Metho	d(s) " ID		Work Start/Completion			Top of Casing Elev.	Depth to Water (Belo	ow GS)
	Kyle		8.5" OD Hollow-S	tem Au	1	Analytical	7/10/2019 to 7/11	/2019		NA	50.8' (Static	
Depth (feet)		Exploration Co and No	ompletion otes	Sample Type/ID	San	nple Number & Lab Test(s)	Field Tests	Material Type		Description		Depti (ft)
									ASPHA	ALT; Asphalt.		7
1 -		Flushmo	ount ent, lockable s cap, concrete 2' bgs						No logg	ging or sampling		 1
2 -		seal, 0'-	2' bgs									- 2
3 -												+ 3
4 -												+ 4
5 -												- 5
6 -												- 6
7 -												+ 7
8 -												8
9 -												- 9
10												
10-		40 PVC connect	eter, schedule , threaded tions, 0'-43'									+10
11-		bgs										-11
_{စို} 12-												12
13-												-13
9.GPJ ,												13
14		b-r ni										14
080 S. I												15
SMOREI												- 16
DUECTS												
절 17-												+ 17
18-												18
19 H												- 19
LOCAL			4ki 0! (C									
SPECT.LC		Bentonii bgs	te chips, 2'-42'									-20
21 -												-21
22 -												-22
LATE V												
23 -												-23
24 -		Bentoni bgs										-24
LORAT	Legend											
RD EXF					<u>ኤ</u>	▼ Static W	ater Level		See Explo	oration Log Key for explanation ls	Exploration	on
NEW STANDARD EXPLORATION LOG TEMPLATE \(\text{NBISERVER1}\) ASPECT. LOCALIPROJECTSIGINTWPROJECTS SMORELL'S 080190 2019.6PJ July 31, 2019 Sample					Water Level				Logged b		Log MW-35	
NEW NEW									Approved	by: DAH	Sheet 1 of 3	3

	spect		More	ell's Dry Clea Project Address & Site	ners - 080	190	Environmental Ex	ploration Log
	ONSULTING	608 N 1st		Project Address & Site acoma WA 98403,			Coordinates 0 NA	Exploration Number
	Contractor		ipment .		Sampling Meth		Ground Surface (GS) Elev.	MW-35
	Holt		/IE-75		No Sampling		0' (est)	Ecology Well Tag N BMF672
	Operator Kyle	8.5" OD	on Method X 4.25" Stem Aug	(s) V ID per 7	Vork Start/Completion 7/10/2019 to 7/11		Top of Casing Elev. NA	Depth to Water (Below (50.8' (Static)
epth eet)	Exploration C	ompletion	Sample Type/ID	Analytical Sample Number &	Field Tests	Material Type	Description	D
			7,1	Lab Test(s)		No.		
26								-
27 -								
28 -								+
29 -								
30 +								
31 —								
32+								
33+								
34 —								
5+								
86+								
37+								
88+								
89+								
+0+								+
11+								
12+								
13-								_
4								
ļ5 -	12/20 s 42'-61.5	and filter pack, 5' bgs						+
6-								
7-								†
18-								+
19 -								
	egend			▼ Static Wa	ater Level	See Exof sym	ploration Log Key for explanation bols	Exploratio
Type				Water Level		Logge Approv	d by: BMG ved by: DAH	Log MW-35 Sheet 2 of 3

	Aspect		Mor	ell's Dry Cle	aners - 080	190		Environmental Ex	ploration Log
7	Aspect CONSULTING	608 N 1st	Street :	Project Address & Site		15' W of	f MW-20	Coordinates NA	Exploration Number
	Contractor		ipment	Tacoma VVA 90405	Sampling Metho		1 10100-20	Ground Surface (GS) Elev.	MW-35
	Holt	CM	1E-75		No Sampling	ı		0' (est)	Ecology Well Tag No. BMF672
	Operator	Exploration	n Method	d(s)	Work Start/Completion			Top of Casing Elev.	Depth to Water (Below GS)
	Kyle	Exploration 8.5" OD Hollow-S	X 4.25 Stem Au	 	7/10/2019 to 7/11	/2019		NA	50.8' (Static)
Depth (feet)	Exploration C and No	completion otes	Sample Type/ID	Analytical Sample Number & Lab Test(s)	Field Tests	Material Type		Description	Dept (ft)
51 –	▼ 7/11/:	2019							- 51
52-	2" diam	eter 0.020", le 40 PVC 43'-58' bgs							-52
53	screen,	43°-58° bgs							-53
54-									-54
55-									- 55
56+									- 56
57+									-57
58+ 59+	Threade	ed PVC endcap							-58 -59
60-		ou i i o onuoup							-60
61 –									-61
66 62							Bottom	of exploration at 61.5 ft. bgs.	-62
15 ylut (4)									-63
64 -									-64
80 S. T. S. O. S. C. S. O. S. C. S. O. S. C. S.									-65
Hectsimo									-66
08-WTW 67 -									- 67
68 +									-68
69 1.LOCAL/PRC									-69 -70
31.ASPECT									+71
BSERVE 72 -									-72
73 - 73 - 73 - 73 - 73 - 73 - 73 - 73 -									- 73
74 -									- 74
EXPLORAT	Legend			▼ Static W	lator Leval		See Expl	oration Log Key for explanation	Eveloustion
NEW STANDARD EXPLORATION LOG TEMPLATE \(\text{VBISERVER1}\) ASPECT LOCALIPROJECTSIGNITW/PROJECTSIMORELL'S 080190 2019.6PJ July 31, 2019 \\ Sample \qquad \qquad \qquad \qquad \qqqqq \qqqq \qqqq \qqqq \qqqq \qqqq \qqqq \qqqq \qqqq \qqqq \qqqq \qqqq \qqqq \q				Water Level	aici Level		of symbo Logged b Approved	ls y: BMG	Exploration Log MW-35 Sheet 3 of 3

	A ar		L	Morel	l's Dry Clea	aners - 080	190		Environmental Ex	ploration Log
	Azk	ec	608 N 1st	P. t Street, Ta	roject Address & Site	e Specific Location 3. Off of Morell's r /IW-21	northeast	corner.	Coordinates	Exploration Number
	Contra	ULTING	G Four	ipment	south of N	/IW-21 Sampling Metho	nd		NA Ground Surface (GS) Elev.	VE-5
			,	•					, ,	Ecology Well Tag No. BLI 188
	Ho Opera			nic 150 cc n Method(s)		Rotary core Work Start/Completio			0' (est) Top of Casing Elev.	BLI 188 Depth to Water (Below GS)
	•		'	()	"	2/26/2019	II Dales		, ,	No Water Encountered
Dist.	Be Depth			onic	Analytical	2/20/2019			NA NA	Dist.
Along (feet)	(feet	Exploratio and	n Completion I Notes	Sample Type/ID	Sample Number & Lab Test(s)	Field Tests	Materia Type		Description ALT; Asphalt	Along (ft)
1 -	1	com	Monument, well pleted sub ace for future SVE	T				SILTY Solution of the subroun	TILL SAND WITH GRAVEL (SM); Sli ine to medium and trace course d gravel.	ghtly moist, gray sand; fine - 2
3 -	. 2	theri	nection, lockable mos cap			PID=7				- 3 - 4
5 -	3		l installed at 45 ree angle			PID=12		- - - -		- 5
6 -	4	\$				PID=3			Y SILT WITH GRAVEL (ML); Slipow plasticity silt; fine to medium	
7 -	5					PID=21		subroun		 7
8 -	6	2" di 40 P conr bgs	iameter, schedule PVC, threaded nections, 1'-25'			PID=15				- 8 - 9
10-	- 7					7107		SILTY	SAND WITH GRAVEL (SM); Ve	10
11-	8								nedium sand; fine to course sub-	
12-						PID=39				-12
inc (13-	9 💥					PID=30				-13
7 05 1080 S 15 -	10	Beni	tonite chips, 1'-22'			PID=41		- - - -		- 14 - 15
16 - 16 -	11					PID=41		- - - -		-16
17-	- 12							SAND	WITH SILT AND GRAVEL (SP-	SM); Very moist,
18-	13	***************************************				PID=24		gray bro gravel.	wn; fine to medium sand; fine to	course, subround -18
19-	14					PID=14		- - -		-19
20 - 21 21 -									SAND WITH GRAVEL (SM); Meand; fine to course subround gr	
21 gige 22 -	15					PID=508		-		-22
23-	16				A-5-22.5 VOCs by 8260C	PID=666		-		-23
24-	-	12/2	0 sand filter pack, 45' bgs					-		-24
Sample Type	Legend Cor	itinuous c	core 7" ID	Water	No Wate	r Encountered	<u> </u>	See Explo of symbo Logged b Approved	y: BMG	Exploration Log VE-5 Sheet 1 of 2

	Λ.	cno	~ T		Мо	rell's	Dry Clea	aners - 080	190	Environmental Ex	ploration L	og	
		SPE	LT NG	608 N 1	st Stree	Proje et, Taco	ct Address & Site ma WA 98403	aners - 080 e Specific Location 3. Off of Morell's I MW-21	northeast	corner,	Coordinates NA	Exploration Nur	mber
		contractor		Eq	uipment		South of it	Sampling Meth	od		Ground Surface (GS) Elev.	∀ VE-5	
		Holt		TerraS	onic 15	50 cc		Rotary core	;		0' (est)	Ecology Well T	ag No.
	(Operator		Explorat	ion Meth	nod(s)	١	Nork Start/Completic	n Dates		Top of Casing Elev.	Depth to Water (Be	,
Dist	Donath	Ben			Sonic			2/26/2019	_	1	NA	No Water Encou	
Along		Explora	ation Co and Not	ompletion tes	Samp Type/		Analytical nple Number & Lab Test(s)	Field Tests	Materia Type		Description		
Along	20 21 22 23 24 25 26 27 28	Explora	and Not		Samp Type/I	ID Garri	Analytical nple Number & Lab Test(s) A-5-32.0 Cs by 8260C	PID=100 PID=100 PID=109 PID=18 PID=126 PID=24 PID=13 PID=7 PID=9 PID=9 PID=10 PID=10		SILTY course s	SAND WITH GRAVEL (SM); M sand; fine to course subround grand; fine to course subround grand; fine to medium SAND; fine to medium SAND; fine	-SM); Very moist, to course	Dist. Along (ft) -26 -27 -28 -29 -30 -31 -32 -33 -34 -35 -36 -37 -38 -39 -40 -41 -42 -43 -44
45 45	32	<u>'</u>	illicauci	d PVC endca							of exploration at 45 ft. bgs.		45
SERVER1.	33									Note: A-	5 was advanced at a 45 degree	angie	+46
SIB 47													-47
748 48	34												-48
07 49 ·	Ť												-49
Sample		gend Continuou	s core	: 7" ID		Water		er Encountered	<u>'</u>	See Explo of symbo Logged b Approved	y: BMG	Explorati Log VE-5 Sheet 2 of	

A	ASPH.	Coordinates NA Ground Surface (GS) Elev. 0' (est) Top of Casing Elev. NA Description ALT; Asphalt SAND (SM); Slightly moist, light brown; fine to sand; trace fine subround gravel. Exploration Number VE-6 Ecology Well Tag No BLI 190 Depth to Water (Below GS No Water Encountere
Contractor Equipment Holt TerraSonic 150 cc Operator Exploration Method(s) Ben Sonic Dist. Non Monument, well completed sub surface for future SVE connection, lockable thermos cap Well installed at 45 degree angle	Sampling Method Rotary core Work Start/Completion Dates 2/27/2019 to 2/28/2019 er & Field Tests Material Type ASPH. SILTY Course:	Ground Surface (GS) Elev. 0' (est) Top of Casing Elev. NA Description ALT; Asphalt SAND (SM); Slightly moist, light brown; fine to sand; trace fine subround gravel. PCOORTING WEIL 190 Depth to Water (Below GS) No Water Encountere (ft) Alor (ft) - 1
Operator Ben Sonic Sonic Sonic Exploration Method(s) Sonic Sample Type/ID Analytical Sample Number and Notes No Monument, well completed sub surface for future SVE connection, lockable thermos cap Well installed at 45 degree angle	Work Start/Completion Dates 2/27/2019 to 2/28/2019 er & Field Tests Material Type ASPH. SILTY course:	Top of Casing Elev. NA No Water Encountere Description ALT; Asphalt SAND (SM); Slightly moist, light brown; fine to sand; trace fine subround gravel. - 1 - 2 - 3
Ben Sonic St. Depth ong (feet eet) bgs) Exploration Completion and Notes Sample Type/ID Sample Number Lab Test(s)	2/27/2019 to 2/28/2019 er & Field Tests Material Type ASPH. SILTY course:	Top of Casing Elev. NA No Water Encountere Description ALT; Asphalt SAND (SM); Slightly moist, light brown; fine to sand; trace fine subround gravel.
st. Depth ong (feet bet) bgs) Exploration Completion and Notes Exploration Completion Sample Type/ID Analytical Sample Number Lab Test(s) No Monument, well completed sub surface for future SVE connection, lockable thermos cap Well installed at 45 degree angle	er & Field Tests Material Type ASPH. SILTY course:	Description ALT; Asphalt SAND (SM); Slightly moist, light brown; fine to sand; trace fine subround gravel.
long (feet eet) bgs) Exploration Completion and Notes Sample Number Type/ID Sample Number Lab Test(s) No Monument, well completed sub surface for future SVE connection, lockable thermos cap Well installed at 45 degree angle	ASPH. SILTY course:	Description Alc (f ALT; Asphalt SAND (SM); Slightly moist, light brown; fine to sand; trace fine subround gravel. - 1 - 2 - 3
No Monument, well completed sub surface for future SVE connection, lockable thermos cap Well installed at 45 degree angle	SILTY	SAND (SM); Slightly moist, light brown; fine to sand; trace fine subround gravel. - 1 - 2 - 3
8 - 6 2" diameter, schedule 40 PVC, threaded connections, 1'-45' bgs 10 - 7 11 - 8 12 - 13 - 9	PID=19 PID=126 PID=87 SAND brown; 1 gravel. PID=12 PID=17 PID=99	WITH SILT (SP-SM); Very moist, light brown; fine um sand; fine subround gravel. WITH SILT AND GRAVEL (SP-SM); Moist, gray fine to medium sand; fine to course, subround 1 -1: -1: -1: -1: -1: -1: -1: -1: -1:

		ЭN						,	aners - 080			Environmental Ex	pioration Lo	<u>y</u>
	-	ME	1117	ING	608 N 1	et Stroc	-		e Specific Location O3, East of More	ll'e couth	of A. 5	Coordinates NA	Exploration Numb	oer
		Contrac		ING		ipment	i, raci	IIIa WA 9640	Sampling Meti		01 A-3	Ground Surface (GS) Elev.	∀ VE-6	
		Holt			TerraSc	nic 150	СС		Rotary cor			0' (est)	Ecology Well Tag BLI 190	g No
	(Operat	tor		Exploration			ı	Nork Start/Completi			Top of Casing Elev.	Depth to Water (Belo	w GS
		Ben	l		s	onic		:	2/27/2019 to 2/2	8/2019		NA	No Water Encoun	itere
Dist. Along feet)	Depth (feet bgs)	ו	Explo	oration C and No	ompletion	Sample Type/ID	Sam	Analytical ple Number &ab Test(s)	Field Tests	Material Type		Description		Dist Alor (fi
26-	18		XXXXXXX						PID=86			SAND WITH GRAVEL (SM); M ledium sand; fine subround gra		-26
27-	_ 19	******	***************************************						PID=38 PID=25					-2
28 - 29 -	20		*******						PID=22					+28 +29
30-	21	*******	XXXXXX	Bentoni bgs	te chips, 1'-42'	\parallel					-			-30
31- 32-	22		XXXXXX						PID=25					-3 ²
33-	23		***************************************								Silt con only fine	tent dereases; gravel content d	ecreases and is	-3:
34-	- 24		XXXXXX						PID=50					-34
35- 36-	25		XXXXXX								Become to course	es very moist, gravel content in e.	ncreases and is fine	+3 +3
37-	26	******	XXXXXX						PID=57					-3
38-	27							A-6-36.0 Cs by 8260C	PID=71					-38
39 - 40 -	28		XXXXXX						PID=43		SAND	WITH SILT (SP-SM); Moist, bro	own: fine to	+3: +4:
41-	- 29	******	XXXXXX						PID=33		medium	sand; trace fine subround grave	el.	-4
42- 43-	30	X	×						PID=28		-			-4 -4
44-	_ 31								PID=41		-			-4
45- 46-	32			12/20 sa 42'-65' t	and filter pack, bgs				PID=10		SAND silt.	(SP); Moist, brown; fine to med	ium sand; trace	+4 +4
47-	33													-4
48 - 49 -	34								PID=35 PID=12		GRAVE brown; fi	EL WITH SILT AND SAND (GW ne to course sand; fine to cours	/-GM); Moist, light se subround gravel.	-4 -4
Sample		gend Cont	inuc	ous core	e 7" ID		Water Level	No Wate	r Encountered	8.181	See Explor		Exploratio Log VE-6	_ on

0	Δ	spec	+	Mor	ell's Dry Cle	eaners - 080	0190		Environmental Ex		
7	C	DUSULTIN		1st Stree	Project Address & S. et, Tacoma WA 984	•	ll's, south	of A-5	Coordinates NA	Exploration Numb	ber
		Contractor		uipment	.,	Sampling Meth			Ground Surface (GS) Elev.	VE-6	NI
		Holt		onic 150		Rotary core			0' (est)	Ecology Well Tag BLI 190	_
	(Operator _		on Method	d(s)	Work Start/Completi			Top of Casing Elev.	Depth to Water (Belo	
Dist.	Depth	Ben		Sonic	Analytical	2/27/2019 to 2/2	8/2019		NA NA	No Water Encoun	ntere Dist
Along	(feet bgs)	Explorati ar	on Completion d Notes	Sample Type/ID	Sample Number &	Field Tests	Materia Type		Description		Aloi (ft
51 -	36	scr	diameter 0.020", nedule 40 PVC een, 45'-65' bgs			PID=8		SAND sand; tra	(SP); Very moist, light brown; fi ace silt.	ne to medium	-5°
52-	37					PID=13		SILT W	/ITH SAND (ML); Moist, light breat to medium sand.	rown;low-plasticity	-52
53-	38							SAND	(SP); Moist, red brown; fine to r	modium cand: faw	53
54-	Ť					PID=23		fine sub	round gravel.	nedidiri sand, rew	-54
55 - 56 -											+59 +50
57-	40				A-6-57.5 VOCs by 8260C	PID=42		· · ·			-5
58-	- 41				7 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3						-58
59-	42					PID=33					-59
61-	43					PID=37		Gravel	deminishes, trace silt.		+6 +6
62-	44										-6 :
63-	"					PID=27		-			-6
62- 63- 64- 65- 66- 67- 68- 71- 72- 73- 74-	45										-64
65-	46	Thi	readed PVC endcap			PID=55			of exploration at 65 ft. bgs.		6
66-	47							Note: A-	6 was advanced at a 45 degree	angle	-6
67 - 68 -	48										+6 +6
69-	49										-6
70-											-7
71-	50										-7
72-											-7
73 -	52										 7
74-											+7·
Sample		gend Continuous	core 7" ID		Mater Personal No Water Person	er Encountered		of symbo		Exploration Log	on
Sai	-				N N			Logged b Approved	y: BMG I by: DAH	VE-6 Sheet 3 of 3	

	٨٥٠		_1		Мо	rell's	Dry Clea	aners - 080	190		Environmental Ex	ploration Log
	Hal)e(CT	608 N 1st	Street	Project, Tacon	ct Address & Site	e Specific Location East of Morell's, V-17	betweer	MW-16	Coordinates	Exploration Number
	Contra	octor	NG	Fau	ipment		and MV	V-17 Sampling Metho	nd		NA Ground Surface (GS) Elev.	VE-7
	Ho			TerraSo	•	0.00		, -			0' (est)	Ecology Well Tag No.
	Oper			Exploration			<u> </u>	Rotary core Vork Start/Completion			Top of Casing Elev.	BLI 191 Depth to Water (Below GS)
	Ве			·	onic	ou(o)		2/28/2019 to 3/1/			NA	No Water Encountered
Along	Depth (feet	Explora	ation Co	ompletion	Sampl Type/II	e Sam	Analytical sple Number &	Field Tests	Materia Type	ı	Description	Dist. Alon
(feet)	bgs)	•	and Not		Турси		_ab Test(s)		1ypc	↑ ASPHA	ALT; Asphalt	(ft)
									MA		RETE; Concrete	
2 -	1	S s	omplete urface f	ument, well ed sub for future SVE on, lockable	T				00.000.	SILTY (TILL GRAVEL WITH SAND (GM); Sli nedium sand; fine to course sub	round gravel. 2
3 +	. 2	t t	hermos	cap	Ш			PID=4) {		+ 3
4 -	3	XXXXXX.						PID=9		SILTY brown; f	SAND WITH GRAVEL (SM); SI ine to medium sand; fine subrou	und gravel. + 4
5			Vell inst legree a	talled at 45 angle								
6 -	5						PID=20		SANDY brown; lo subroun	SILT WITH GRAVEL (MH); Slow plasticity silt; fine to medium d gravel.	sand; fine + 6	
7 -	5											- 7
8 -	6	4	OPVC,	eter, schedule threaded ons, 1'-25'				PID=48			SAND WITH GRAVEL (SM); W Im sand; fine subround gravel. \$	Strong solvent + 8
9 -								PID=1921		· 		- 9
10-	. 7				Н			F1D=1921		Succes	et congrato phaco liquid 7' 10' be	-10
11-	8									Suspec	ct separate-phase liquid 7'-10' b	gs. 11
12-								PID=762		· 		-12
13-	9							PID=210		· · ·		- 13
14	10		Bentonit gs	e chips, 1'-22'				PID=256			SAND (SM); Moist, light brown; w fine subround gravel. Strong	
16	11							PID=1641		· ·		- 16
17-	- 12							PID=700		CAND	WITH SILT AND GRAVEL (SW	17
										moist, gr	ray; fine to medium sand; fine to	course subround
8 18	13							PID=30		gravel; fe	ew cobbles.	- 18
19	- 🞇											- 19
20-	. 14	****								. CDAV#	EL MITTLE OIL T AND CAND (OD	20
21-	15								10001 10001	fine to co		ourse sand. Strong21
22-							A-7-22.0 Cs by 8260C	PID=2489			(SP); Slightly moist, gray; fine to . Strong solvent odor. Separate ed.	
23	16						JJ JJ 02000	PID=30		SILTY	SAND (SM); Slightly moist, gray w fine subround gravel.	y; fine to medium
24-	- [2/20 sa !2'-45' b	and filter pack, gs				PID=30		- - -		-24
Sample	Legend Cor		s core	: 7" ID	<u> </u>	Water Level	No Wate	r Encountered	<u> - - - - </u>	of symbol		Exploration Log
Sar						W. Le				Logged by Approved		VE-7 Sheet 1 of 2

	Λ	coot		Mor	ell's Dry Cle	eaners - 080	190		Environmental Ex		
		spect	608 N 1st	Street,	Project Address & S Tacoma WA 9840: and M	ite Specific Location 3, East of Morell's,	between	MW-16	Coordinates	Exploration Num	nber
-		ONSULTING Contractor		ipment	and M	W-17 Sampling Meth	od		NA Ground Surface (GS) Elev.	∀ VE-7	
		Holt	TerraSor	•	cc	Rotary core			0' (est)	Ecology Well Ta BLI 191	ag No.
		Operator	Exploration			Work Start/Completic			Top of Casing Elev.	Depth to Water (Bel	low GS)
		Ben	Sc	onic		2/28/2019 to 3/1	/2019		NA	No Water Encour	ntered
Dist. Along (feet	Depti (feet) bgs)		completion	Sample Type/ID	Analytical Sample Number & Lab Test(s)	Field Tests	Material Type		Description		Dist. Along (ft)
Along	g (feet) bgs) 18 - 19 - 20 - 21 - 22 - 23 - 24 - 25 - 26 - 27 - 28 - 30 - 31 - 32 - 33	Exploration C and No 2" diam schedu screen,	etter 0.020", le 40 PVC 25'-45' bgs	Sample Type/ID	Sample Number &	PID=20 PID=26 PID=40 PID=75 PID=59		SILTY sand; fer SILTY fine to m	SAND (SM); Slightly moist, gray w fine subround gravel. (continual states of the subround gravel. (continual states of the subround gravel. (SM); Slandium sand; fine to course subredum sand; fine to course subredum sand; fine to medium sand	ightly moist, gray; round gravel. increases. oist, light brown; ine to course SM); Very moist, rse subround	Along
48 49 49											-48 -49
MATION											
NEW STANDARD EXPLORA		gend Continuous con	e 7" ID	<u> </u>	Water Level No Mat	er Encountered		See Explo of symbol Logged b Approved	y: BMG	Exploration Log VE-7 Sheet 2 of 2	

	Ā	spe	ect			ell's Dry Clea Project Address & Site	Specific Location			Environmental Ex	ploration Log Exploration Number
			TING			Tacoma WA 98403,			MW-18	NA (20) 51	VE-8
		ontractor	•	'	ipment		Sampling Meth			Ground Surface (GS) Elev.	
		Holt		TerraSo Exploration			Rotary core Vork Start/Completic			0' (est) Top of Casing Elev.	Ecology Well Tag N BLI 189 Depth to Water (Below)
		perator Ben		,			vork รเลก/Completic 2/26/2019 to 2/27			,	
st.	Depth (feet		ploration C		onic Sample	Analytical	Field Tests	Material		NA Description	No Water Encounte
	bgs)	'	and No	tes	Type/ID	Lab Test(s)	Field Tests	Туре		ALT; Asphalt	
										RETE; Concrete	
1 -	1		3						SILTY	SAND (SM); Moist, light brown; w fine to course subround grave	fine to course
2 -	-		No Mon	ument, well ted sub			PID=18		Saliu, le	w line to course subround grave	ai.
			∡ surface	ted sub for future SVE tion, lockable							
-	_ 2		thermos	s cap			PID=109		1		+
			$\stackrel{\star}{\approx}$								
	3		$\stackrel{>}{\sim}$				PID=683				Ţ
_	-			stalled at 45	Ш						+
	4		degree a	angle					<u> </u>		
-	- '						PID=192				+
			₹						SILTY	SAND WITH GRAVEL (SM); S	lightly moist, light
-	5		$\stackrel{>}{\sim}$				PID=402		brown; f	ine to medium sand; fine to cou	rse subround +
_	-		2" diam	eter, schedule			PID=965		9.2.5		+
	6		40 PVC connect	tions, 1'-45'							
-	-		≯ bgs								+
	- 7						PID=651				
	- /		$\stackrel{>}{\sim}$								†
	-		*						}		1
	8		3				PID=440				
	-										+
	9		$\stackrel{\star}{\otimes}$				PID=893			WITH SILT (SP-SM); Moist, lig	
-	_		3						course s	and; few fine to course subrour	nd gravel.
ļ -	- 10		3			A-8-14.0	PID=1508				+
	10		3			VOCs by 8260C			-		
; -	-		$\stackrel{\checkmark}{}$		H						+
3 -	11		×						-		
,			3				PID=414			WITH SILT AND GRAVEL (SW ourse sand; fine to course subre	/-SM); Moist, gray;
	- 12		3				PID=228		cobbles.	ourse sand, fine to course subm	burid graver, rew
			₹				PID=1277				
-	- 13		$\stackrel{>}{\sim}$								†
) –	- 13		3				DID 040		Gravel	content increases, no cobbles	_
			3				PID=343				
) –	_ 14				H			272.4	SVND	(SP); Slightly moist, light gray; f	fine to modium
			3							th silt; few fine subround gravel	, and few cobbles.
-	15		3								†
2 -	_		3				PID=25				_
-	16		$\stackrel{*}{\Rightarrow}$						CALIE	MITH OUT AND ODAYEL (CO	
3 -	-		\$						moist, q	WITH SILT AND GRAVEL (SPray; fine to medium sand, fine to	-SM); Slightly o course subround
			3				PID=7		gravel.	,	
4-	-										†
	Leg	end	\$								
			uous core	= 7" ID			r Encountered		See Explo	oration Log Key for explanation	Exploration
Tyne				-		Water Level			•		Log
}⊢						≶ –			Logged b Approved		VE-8
	1					T			1.12.3.30	•	Sheet 1 of 3

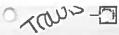
	Aar			Mor	ell's	Dry Cle	aners - 080	190		Environmental Ex	ploration Lo	og
	Azk	DECT			Projed	ct Address & Site	e Specific Location			Coordinates	Exploration Num	nber
	Contra	ULTING		Street, ipment	Tacom	ıa WA 98403 ⊺	East of Morell's, Sampling Metho		f MW-18	NA Ground Surface (GS) Elev.	VE-8	
	Но		TerraSo	•	cc		Rotary core			0' (est)	Ecology Well Ta	ag No.
	Opera		Exploratio			ı	Nork Start/Completio			Top of Casing Elev.	BLI 189 Depth to Water (Bel	low GS)
	, Be		1	onic	()		2/26/2019 to 2/27			NA NA	No Water Encou	
Dist. Along (feet)	Depth (feet	Exploration C	Completion	Sample Type/ID	Sam	I Analytical ple Number & .ab Test(s)	Field Tests	Materia Type	ıl	Description	I	Dist. Along (ft)
26 - 27 - 28 - 29 -	18						PID=14 PID=6		Few co	obbles. (SP); Moist, gray; fine to mediur subround gravel.	n sand; trace silt;	-26 -27 -28 -29
30 - 31 - 32 - 33 - 34 - 35 -	23 - 24	Benton	ite chips, 1'-42'			A-8-34.0 Cs by 8260C	PID=16 PID=341 PID=1404		sand; fe	SAND (SM); Moist, light brown; w fine subround gravel.		-30 -31 -32 -33 -34 -35
36 - 37 - 38 - 39 - 39 - 40 -	25 - 26 - 27 - 27 - 28						PID=820 PID=69		medium	WITH SILT (SP-SM); Moist, light sand; trace fine subround grave sand; trace fine subround grave. SAND (SM); Moist, light brown; lie to course subround gravel.	al.	-36 -37 -38 -39 -40
41 - 42 - 43 - 44 - 45 - 45 - 46 -	30	12/20 s 42'-65'	eand filter pack, bgs				PID=26 PID=36 PID=39		fine to m	WITH SILT (SP-SM); Slightly m nedium sand; few fine subround SAND (SM); Moist, light brown;	gravel.	-41 -42 -43 -44 -45
47 - 48 - 48 - 49 - 49 - 49 - 49 - 49 - 49	33					A-8-47.0 Cs by 8260C	PID=68 PID=47		sand.	WITH SILT (SP-SM); Slightly m sand; few fine subround gravel.	oist, gray; fine to	-47 48 -49
Sample Type	Legend Cor	d ntinuous cor	e 7" ID		Water Level	No Wate	r Encountered		See Explo of symbo Logged b Approved	y: BMG	Exploration Log VE-8	

	Δ	spe	~ +		Mor	ell's	Dry Cle	aners - 080	190		Environmental Ex	ploration Log
7		DUSULTI		608 N 1st	Street	-		Specific Location , East of Morell's,	South of	MW-18	Coordinates NA	Exploration Number
		Contractor	.,,		ipment	1400111	W/100400	Sampling Meth		10100	Ground Surface (GS) Elev.	VE-8
		Holt		TerraSo	nic 150	СС		Rotary core	!		0' (est)	Ecology Well Tag No. BLI 189
	(Operator		Exploration	on Method	d(s)	I	Nork Start/Completic	n Dates		Top of Casing Elev.	Depth to Water (Below GS)
	l=	Ben		S	onic		;	2/26/2019 to 2/27	7/2019		NA	No Water Encountered
Dist. Along (feet)	Depth (feet bgs)	Exploi	and Not		Sample Type/ID	Sam	Analytical ple Number & ab Test(s)	Field Tests	Material Type		Description	Dist. Along (ft)
	26	19-1-19-19	schedule	eter 0.020", e 40 PVC 45'-65' bgs				PID=7		SAND trace silt	(SP); Very moist, red brown; fir	
51-	_ 36							PID=12.5				+ 51
52-	37											-52
53-												-53
54-	38							PID=14				-54
55-	39									-		-55
56-	-					VOC	A-8-56.0 Cs by 8260C	PID=19				-56
57-	40						70 by 02000					-57
58-	41							PID=7				-58
59-												- 59
60-	42											-60
61-	43											- 61
								PID=4.5				
31, 2018 62 -	44							PID=3.5				-62
19.GPJ	45									1		-63
07 061080								PID=2				+ 64
OSELL'S	46		Threade	d PVC endcap							of exploration at 65 ft. bgs.	65
66 -	47									Note: A-	8 was advanced at a 45 degree	angle -66
84 67 -	-											-67
68 -	48											-68
-69	49											-69
70 -												-70
ER1.ASP - 12	50											- 71
%BSE% 72−	51											-72
∄ 73-	<u> </u>											-73
[74 -	52											-74
ORATION												
RD EXP.		gend Continuou	us core			<u> </u>	No Wate	er Encountered		See Explo	oration Log Key for explanation ls	Exploration
New Standbard Exploration to General Respect Local Product Scients (1974) 1979	2					Water				Logged by Approved	y: BMG	Log VE-8 Sheet 3 of 3

APPENDIX B Waste Disposal Documentation

A	NON-HAZARDOUS 1. Generator ID Number	2. Page 1 of	3. Emergency Response Pho	one 4. Waste T	racking Nun	nber 0
	WASTE MANIFEST WAD988477873	1	(800) 337-7455		-020	119-60
	5. Generator's Name and Mailing Address Thrifbway Properties LLC 710 2 nd Ave., 5te: 550 Seattle, WA 98104 Generator's Phone: (206) 838-5831 Attn: Dave Heff 6. Transporter 1 Company Name	THE F	Frentice Sig Advessific 608 North 1" Street Tacoma, WA 98403	U.S. EPAID		
Н	DH Environmental, Inc.			WAHOO		7
	7. Transporter 2 Company Name Chemical Waste Management of the Northwest			U.S. EPA ID		
Ш	Designated Facility Name and Site Address Chemical Waste Management of the Northwest			U.S. EPA ID I	Number	
	17629 Cedur Springs Lane Arlington, OR 97812 Facilit's Phone (541) 454-2643			CRD089	4523.7	•
Н	9. Waste Shipping Name and Description		10. Containers No. 1	11. Total Type Quantity	12. Unit Wt./Vol.	
GENERATOR -	*Material Not Regulated by DOT (non-Regulated IDW ********) Soci		17	M 11,500	P	X094
GEN	2.					
	3.					
	4.					
Ш						
Ш	13. Special Handling Instructions and Additional Information ORG28266 — LFO1/STARO1, Figure 198					
П	1. IDNV suil					
Н				MAKE	970	272
Н	14. GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of this	s consignment a	re fully and accumulely describe	d above by the proper ship		
V	marked and labeled/placarded, and are in all respects in proper condition for transport as Generator's/Offeror's Printed/Typed Name Lecyland Turkey		nature	n vernmentäjkegulations. Meuvei	#	Month Day Year
INT'L	15. International Shipments Import to U.S.	Export from U	7	7/	1.6	7
	Transporter Signature (for exports only): 16. Transporter Acknowledgment of Receipt of Materials		Date leaving U		- /	
THANSPORTER	Transporter 1 Printed Typed Name Townsporter 1 Printed Typed Name	Sig	nature Tearras	14 War		Month Day Year
THANS	Transporter 2 Printed/Typed Name Pincel / q	Sig	nature 4/	/		Month Day Year 2 5 19
4	17. Discrepancy 17a. Discrepancy Indication Space	•				
	Type		Residue Manifest Reference Numbr	Partial Reje	ection	L Full Rejection
DESIGNATED FACILITY	17b. Alternate Facility (or Generator)			U.S. EPA ID N	lumber	
ED F	Facility's Phone: 17c. Signature of Alternate Facility (or Generator)					Month Day Year
GNAT						
- DESI						
	18. Designated Facility Owner or Operator: Certification of receipt of materials covered by the	manifest except	noted in term 17a	1		
¥	Printed/Typersame Our Gp		lure lu 6	de		Month Day Year 2 19 19
169	-BLC-O 6 10498 (Rev. 9/09)			DESIGNATE	D FACIL	LITY TO GENERATOR

A	NON-HAZARDOUS WASTE MANIFEST UAD 988477813 2. Page 1	of 3. Emergency Response Phone	4. Waste Tracking Number 17 P - 0201	719-01					
Ш	5. Generator's Name and Mailing Address	Generator's Site Address (if different	than mailing address)						
	Generator's Phone: 6. Transporter 1 Company Name Wion Pacific Rail Road 7. Transporter 2 Company Name Coumbia Ridge Land Fill U.S. EPA ID Number NED 001792910 U.S. EPA ID Number NED 01792910 U.S. EPA ID Number OPD 987173457								
	6. Transporter 1 Company Name Wion Pactic Rail Road U.S. EPA ID Number NED 001792910								
	7. Transporter 2 Company Name Courses a Ridge Land Fill U.S. EPA ID Number OPD 987173457								
	8. Designated Facility Name and Site Address U.S. EPA ID Number								
	Facility's Phone:								
Ш		10. Containers	11, Total 12, Unit						
	Waste Shipping Name and Description	No. Type	Quantity Wt./Vol.	w					
GENERATOR									
GENE	2.								
	3.								
				1					
	4.								
	13. Special Handling Instructions and Additional Information								
	Www. 970272								
	14. GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of this consignmen marked and labeled/placarded, and are in all respects in proper condition for transport according to app	t are fully and accurately described above	by the proper shipping name, a						
		oncapie international and national governm Gignature	nental regulations.	Month Day Year					
*	15. International Shipments								
INT.	Import to U.S. Export from Transporter Signature (for exports only):	n U.S. Port of entry/exit: Date leaving U.S.:							
띮	16. Transporter Acknowledgment of Receipt of Materials	**************************************							
POR	Transporter 1 Printed/Typed Name Support	Signature		Month Day Year					
TRANSPORTER	Transporter & Frinted/Typed Name L Dabhen	Signature August C	abben	Month Day Year					
A	17. Discrepancy	The C							
	17a. Discrepancy Indication Space Quantity Type	Residue	Partial Rejection	Full Rejection					
ļ		Manifest Reference Number:							
iLITY	17b. Alternate Facility (or Generator)		U.S. EPA ID Number						
FAC	Facility's Phone:								
DESIGNATED FACILITY	17c. Signature of Alternate Facility (or Generator)			Month Day Year					
- DESIC									
	18. Designated Facility Owner or Operator: Certification of receipt of materials covered by the manifest exc	ept as noted in Item 17a							
1 PL 2		- F							


Pleas	se print or type.		-5-								Approved. O	MB No. 2	050-0039
	UNIFORM HAZARDOUS WASTE MANIFEST		2 7 5 5 5,	184	2. Page 1 of	(800	gency Response)-337-7455		4. Manifest	012	1083	JJ	K
	5. Generator's Name and Mailin Thriftway Propert 401 2nd Ave S #2 Seattle V/A 9810 Generator's Phone: 2 0	les LLC 101 14 8 831	3 - 8 5 9 2	Att A	Jan Noell	633 I	or's Site Address oway Prope Division Avo ma WA 98	e een					
	Transporter 1 Company Nan	ne							U.S. EPA ID N				100
	OH Environmer	ntal Inc.									0 0 4 7	7 2 1	7
	7. Transporter 2 Company Nan	ne				The same			U.S. EPA ID N	lumber			
	Chemical Wast		nt						ORE	0 8	9 4 5 2	2 3 5	3
	8. Designated Facility Name an CHEMICAL WAS 17829 CEDAR S ARLINGTON OI	TE MANAGEM PRINGS LANG R 97812							U.S. EPA ID I				
Ш	Facility's Phone: 541 4	54-2643							ORL	0 8	9 4 5	2 3 5	3
	9a. 9b. U.S. DOT Descript and Packing Group (if		hipping Name, Hazard (Class, ID Number,	97		10. Contain	ners Type	11. Total Quantity	12. Unit Wt./Vol.	13. Wa	aste Codes	
GENERATOR -	X Tetrachlorceti		liquid, n.o.s. (Tr	ichloroethen	e,		015	DM	4,500	P	F002		
GEN	3.												
	4.												
	14. Special Handling Instruction 15. GENERATOR'S/OFFER	ERG#171		the contents of this	consignment	t are fully	and accurately de	escribed above			<u> 1 980</u>		
	marked and labeled/plac Exporter, I certify that the I certify that the waste m	arded, and are in all re contents of this consiqued inimization statement	spects in proper condition grament conform to the to dentified in 40 CFR 262	on for transport acc erms of the attache 27(a) (if I am a lar	cording to appled EPA Acknow ge quantity ge	licable inte wledgmen nerator) o	ernational and nat t of Consent. or (b) (if I am a sm	tional governr	mental regulations	s. If export sh	nipment and I ar	n the Prima	iry
	Generator's/Offeror's Printed/	Typed Name	oenall of	. NI/til	NAY Si	gnature	7-1	l_			Monti	Day	
INT.L	16. International Shipments Transporter signature (for exp	Import to oorts only):	U.S.		Export from	U.S.	Port of el Date leav						
2	17. Transporter Acknowledgme	ent of Receipt of Materia	als						1				1
TRANSPORTER	Transporter 1 Printed/Typed N Transporter 2 Printed/Typed N	IRVIS	Forsi	ine		gnature	1	N			Mont	14	Year
TRAI		CHAEL	CASTANE	-DA			4/ /	1	ing		13	- 11	119
	18. Discrepancy Indication S	pace Quan	tity	Туре			Residue Applifact Reference	oo Numbor	Partial Ro	ejection	Г	Full Reje	ection
DESIGNATED FACILITY	18b. Alternate Facility (or Ger	nerator)				r	Manifest Reference	o Mullioet.	U.S. EPA ID	Number			
FAC	Facility's Phone:												
	18c. Signature of Alternate Fa	acility (or Generator)									Mor	th Day	Year
IAT												1	
5	19. Hazardous Waste Report	Management Method	Codes (i.e., codes for ha	azardous waste tre	atment, dispos	sal, and re	ecycling systems)			3		<u> </u>	
DES	1.	27	2.		3.				4.				
11	/71	00					Za 2	100					
	20. Designated Facility Owner Printed/Typed Name	r or Operator: Certifica	tion of receipt of hazard	ous materials cove		inifest exc Signature	ept as noted in It	em 18a			Mor	th Day	Year
1	Timed Typed Name	Dawn	Dunia	0	1	-ignature	Au 6				=	317	31/9

Please print or type. Form Approved. OMB No. 2050-0039 23. Manifest Tracking Number 21. Generator ID Number 22. Page UNIFORM HAZARDOUS WASTE MANIFEST (Continuation Sheet) 24. Generator's Name U.S. EPA ID Number 25. Transporter Company Name U.S. EPAID Number 26. Transporter Company Name 28. Containers 27b. U.S. DOT Description (including Proper Shipping Name, Hazard Class, ID Number, 29. Total 30. Unit 31. Waste Codes Quantity and Packing Group (if any)) Wt./Vol. No. Type 32. Special Handling Instructions and Additional Information MXU 980684 33. Transporter ____3 Acknowledgment of Receipt of Materials TRANSPORTER Printed/Typed Name___ Signature Acknowledgment of Receipt of Materials 34. Transporter Printed/Typed Name Signature 35. Discrepancy DESIGNATED FACILITY 36. Hazardous Waste Report Management Method Codes (i.e., codes for hazardous waste treatment, disposal, and recycling systems)

468770 Please print or type.

		INIFORM HAZARDOUS WAST MANIFEST Generator's Name and Mailin	1. Generator ID Number WAD 388,47778	73	1.1.	3. Emergency Re (800)-337-	7455	0	nifest Trackin	2108	_	JK
		Thriftway Properti 401 2nd Ave S #2 Seattle WA 9810	es !!_C 01 4	Att /	Alan Noell	Generator's Site A Thriftway P 522 Davisor Tacoma W	roperties	608 N				
	G. 6.	enerator's Phone: 7 [] Transporter 1 Company Name	R 838 - 8502	A Commence		Idcolle AA	-600a	4-3-19 U.S. E	per Sc	ott St	John	CHA
1	П	R Transport Inc					1776					
1	7.	Transporter 2 Company Name	8		0			116 66	AHD (002	8 3 :	3 8
1	L	Chemical Waste	Management	4	730			T				
1	8.	Designated Facility Name and	d Site Address		-			U.S. EF	PAID Number	0 4 5	231	5 2
	Fac	17629 CEDAR SF ARUNGTON OR cility's Phone: 544 45	97812 54-2843					Los	2-5-0-6	1945		
I.	9a HM	9b. U.S. DOT Description and Packing Group (if ar	n (including Proper Shipping Name, Hazard Cla	ass, ID Number,		10.0	Containers	11. Tota			2 3 6	1 3
	111					No.	Ту	pe Quantit		114	Waste Code	S
GENEBATOD	7	X 9, PGIII	rdous waste, solid, n.o.s. (Tetr	achloroethe	ene, Soil)	00	[C1	M 10	T	F002		
19												
	Г	3.				3.3	+-		-			
		4.					-	-				
П	1	(3)						-				
	14. 5	Special Handling Instructions	and Additional Information					_7				
		1) OR341097-Bulk	ERG#171		-							
						4-0	0					
			The second of th	M	wxa	875.	3					
	15.	GENERATOR'S/OFFEROR'S marked and labeled/placarde	S CERTIFICATION: I hereby declare that the	contents of this c	onsignment are	fully and accurate	y described a	bove by the prope	er shipping nan	e, and are class	sified, packad	ged.
		Exporter, I certify that the con-	tents of this consignment conform to the terms	of the attached	EDA Askasidad	ne international and	nauonai gov	emmental regulati	ions. If export s	hipment and I a	m the Primar	у
ı	Gene	rator's/Offeror's Printed/Typer	Ization statement identified in 40 CFR 262.27(a	l am a large	quantity genera Signal	tor) or (b) (if I am a	small quantit	y generator) is tru	e.			20. 10
1	17	noortus 100	urs Forsional	11127	Jogna	ure 9	W	11		Mont	h Day	Year 19
2	16. ln	terrational Shipments	Import to U.S.		10	-/	Ju	0				17
Ξ		sporter signature (for exports	only):		export from U.S	Patel	entry/exit: _eaving U.S.;					
E		ansporter Acknowledgment of	Receipt of Materials		1 50	20101	caving U.S.,				-	
FOR S	Iransp	porter 1 Printed/Typed Name	\		Signak	TE)				Month	Day	Year
ומ	Transi	Porter 2 Printed/Typed Name	monds		-	/	_			13	III	19
NA S	L	Junes R.	horit		Signati	and and	>	- 2		Month	Day	Year
Ī	18. Dis	screpancy	11			1	_			13	1//	
	18a. D	iscrepancy Indication Space	Quantity	7-		- N					-	
			C duality	Type		Residue		Partial i	Rejection	L	J Full Reject	ion
-	I DIS AI	Hamala Facility (- 254			Manifest Refere	nce Number:					
	IOU. A	Iternate Facility (or Generator			-			U.S. EPA I	D Number		50.00	
	acility	's Phone:						- 1				- 1
		gnature of Alternate Facility (c	or Generator)									
			Sec. 1							Monti	n Day	Year
	9. Haz	zardous Waste Report Manag	gement Method Codes (i.e., codes for hazardo	us waste treatme	nt. disposal, an	1 recycling system	0					
1		4127	2.		3.	- toyamig byotom		4.				-
-	0.5	1100										
12	ninted/	ignated Facility Owner or Op Typed Name	erator: Certification of receipt of hazardous ma	aterials covered b			em 18a		,	*		
		MI	in Dinin		Signatur	h.	1	1,		Month	Day	Year
AF	orm 8	3700-22 (Rev. 12-17) Pre	vious editions are obsolete.			wh				14	111	19
			and addition a			DE	SIGNATI	D FACILITY	Y TO EPA'	s e-MANIF	EST SY	STEM

lease print or type. UNIFORM HAZARDOUS WASTE MANIFEST 21. Generaling ID Number,	1 22 Page	22 Man	fort Tour bloom the	Form A	pproved. OMB No.	2050-00
(Continuation Sheet)	34 22, Page	23. Man	Tracking N	12/0	188 UK	
24. Generator's Name Thy Hway Property	25 W	C	Ŷ			
25. Transporter Company Name CRL			U.S. EPAUD	198	71734	57
26. Transporter Company Name			U.S. EPA ID	Number		
27a. 27b. U.S. DOT Description (including Proper Shipping Name, Hazard Class, ID Number, HM and Packing Group (if any))	28. Con No.	tainers Type	29. Total Quantity	30. Unit Wt./Vol.	31, Waste Code	s
				-		
				-		
	le le			-		
				1 -		
		\vdash				
32. Special Handling Instructions and Additional Information						
	-	A 11.		A-7	-1-20	
33. Transpoder Acknowledgment of Receipt of Materials		VYV	XU	015	3	
Printed/Typed Name Signa Signa	lure) 9	app	on	Month/ Day	1/27
34. Transporter Acknowledgment of Receipt of Materials Printed/Typed Name Signa	//-				Month Day	Year
35. Discrepancy		2,76	-			
36. Hazardous Waste Report Management Method Codes (i.e., codes for hazardous waste treatment, disposal, a	and recycling systems)					_
Form 8700-22A (Rev. 12-17) Previous editions are obsolete.	DEC	NONATED	EACH ITY	TO EDAI-	-MANIFFST S	· · · · · · · · · · · · · · · · · · ·

Chemical Waste Management Of The Northwest

17629 Cedar Springs Lane Arlington, Oregon 97812 541-454-2643 EPA I.D.# ORDO89452353

LOAD NO.			
		0.00	

MANIFEST DOC. NO. ______

INBOUND T/D: 15:02:30 2019-04-11 ID: 468770 TRK ID: 8753 L14 70700 lb G

OUTBOUND
T/D: 15:17:47 2019-04-11
ID: 468770 TRK ID: 8753 L14
70700 lb G
48800 lb FT
21900 lb N

NET 10.95 TONS

GENERATOR_

468677 Please print or type. Form Approved. OMB No. 2050-0039 1. Generator ID Numb UNIFORM HAZARDOUS 2. Page 1 of 3. Emergency Response Phone 02012100 WASTE MANIFEST WAD988477873 (800) 337-7455 5. Generator's Name and Mailing Address Thrifbaray Properties LLC (seemble griffism and formally lighter of Colorse) 491 2" Ave. 5 #201 Tacomu, WA 98403 Souttle, WA 90104 Generator's Phone: 6. Transporter 1 Company Name (205) 780-7729 Attn: Bob Hanford U.S. EPA IO Number 7. Transporter 2 Company Name HAMINATE. 8. Display Facilities & Facilit Chemical Waste Management of the Northwest 17629 Carlos Springs Lane Facility's Phone Artimeters, OR 97812 Sa. Sh. U.S. [504] 411345 (Reuding Proper Shipping Name, Hazard Class, ID Number, ORD089452353 10. Containers and Packing Group (if any)) tf Total 12 Unit HM 13. Waste Codes No. Тура Outsetile MA2077, Hazar dous Waste Sulld, n.o.s., 9, PG No-GENERATOR (tetrachioroethylene) none NA3082, Hazardous Waste Liquid, n.o.s., 9 PG III (tetrachlorosthene, trichlorosthene) F40.22 50m Material Not Regulated by DOT, (norregulate) 19W-soil) 14 Specialization of the Particular (171) OR328813-STAISLS, F002 IDW wester, missels LDR's ERG: (171) OR320200 - LFO1 mon-regulated IDW soil 16. GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of this consignment are fully and accurately described above by the proper shipping name, and are classified, packaged, GERREATON SIGN FERRIA'S GERTIFICATION: I hereby deciate that the contents of this consignment are fully and accurately described above by the proper shipping name, and are classified, peckage marked and labeled/plucarded, and are in all respects in proper condition for transport according to applicable international contents of this consignment contents of the temport shipping name, and are classified, peckage Exporter, I certify that the contents of this consignment contents to the tempor of the attached EPA Acknowledgment of Company (certify that the waste minimization statement (fortified by 40 CFR (acaditia) (if Log a large quantity generator) or (b) (if Log a small quantity property if trust) instances (Company Company Generator a Gleror a Printed Typed Name __ import to U.S. __ Export from U.S. Port of entry/exits Transporter signature (for exports only): Data leaving U.S.: 17. Transporter Acknowledgment of Receipt of Malariab CONGTO Transporter 2 Philif 18. Discrepancy 18a. Discrepancy Indication Space Quantity Туре Full Rejection Partial Rejection Manifest Reference Number IGNATED FACILITY 18b. Alternate Facility (or Generator) U.S. EPAID Number Facility's Phone: 18c. Signature of Alternate Facility (or Generator) Day 19. Hazardous Waste Report Management Method Codes (i.e., codes for hazardous waste treatment, disposal, and recycling systems) DESI 20. Designated Facility Owner or Operator: Cartification of receipt of hazardous materials covered by the manufest except as gated in Item 18a EPA Form 8700-22 (Run. 12-17) Previous editions are obsolete.

DESIGNATED FACILITY TO EPA'S e-MANIFEST SYSTEM

EPA Form 8700-22 (Rev. 3-05) Previous editions are obsolete.

Form Approved. OMB No. 2050-0039 Please print or type. (Form designed for use on elite (12-pitch) typewriter. Manifest Tracking Number 017543359 2. Page 1 of | 3. Emergency Response Phone UNIFORM HAZARDOUS 1. Generator ID Numb (801) 337 - 74.53 WASTE MANIFEST Generator's Phone: U.S. EPA ID Number
WA H 000047217
U.S. EPA ID Number 6. Transporter 1 Company Na U.S. EPA ID Number Management of the ORD 037 452 353 341 454-2643 Facility's Phone: 12. Unit 9b. U.S. DOT Description (inc ding Proper Shipping Name, Hazard Class, ID Number, 13. Waste Codes Quantity WL/Vol. and Packing Group (if any)) Type HM 9, PGILL (tetractionedly fre) tace GENERATOR 00 70 o 14. Special Handling Instructions and Additional Information
1. CR34 3 1297 - Incol, Foo2 IDW Soil ERG:(171) 16. GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of this consignment are fully and accurately described above by the proper shipping name, and are classified, packaged, marked and labeled/placarded, and are in all respects in proper condition for transport according to applicable international and national governmental regulations. If export shipment and I am the Primary Exporter, I certify that the contents of this consignment conform to the terms of the attached EPAAcknowledgment of Consent.

I certify that the wester minimization statement identified in 40 CFR 282.27(a) (if I am a targe quantity generator) or (b) (if I am a small quantity generator) is true. Day ara/Ollaro's Printed/Typed Name Con be by If 20 Export from U.S. Port of entry/exit: Import to U.S. Date leaving U.S.: Transporter signature (for exports only): 17, Transporter Acknowledgment of Receipt of Materials Month Transporter 1 Printed/Typed Name 3/2/1 43TANEDA MICHAGE 16. Discrepancy Full Rejection 18a. Discrepancy Indication Space Type Residue Partial Rejection Quantity Manifest Reference Number. U.S. EPAID Number 18b. Alternate Facility (or Generator) DESIGNATED FACILITY Facility's Phone: Day 19c. Signature of Atternate Facility (or Generator) 19. Hazardous Waste Report Management Method Codes (i.e., codes for hazardous waste treatment, disposal, and recycling systems) HOYD 20. Designated Facility Owner or Operator Certification of receipt of hazardous materials covered by the manifest except as noted in Item 18a Signature Sa

18	WASTE MANIFEST I. Generator's Name and Mailir	WAD	Number 1988477873 Thriftsray Prop	eries UC	2. Page 1 of 3. Er	(800) 33	7-7455		acking Numb	32019-01
	Semerator's Phone:	Ŀā	401 2 nd Ave. 5 Seattle, WA 96	104	2 .	608 North Tacoma, V	1st Street			
	DH Erreir on DH Erreir on Transporter 2 Company Nam	mental Inc	(206) 704 772		A A	l l	ı n	U.S. EPAID	MOODOM	7217
8	. Designated Facility Name and	d Site Address	ngerment of th	fill in	a			17	D089452	EST
F	1762 Arlin	19 Cedar Springton, OR 978		he Northwest			Z.	OR	D089452	1353
	9. Waste Shipping Name	and Description		The second		10. Con	-,	11. Total	12. Unit	
- 12000000000000000000000000000000000000	1. Materia	l Not Regu	ilated by DOI	, (non-regu	lated IDW so	019	Туре	11,40	Wr.val.	X004
14. Ge	3. GENERATOR'S/OFFEROR' majked and labelet/placestenerator's/Offeror's Printed/Typ	S CERTIFICATION Id, and are in all re and hame	N: I hereby declare that specia in proper conditions of the second of th	the contents of this ion for transport acco	ming to applicable into	and accurately de	scribed above	by the amous chie	MXU ping name, an	Month Day Yes
15,	International Shipments Insporter Stonature (for exporte	Import to	Brithay	- C	Expon Iron U.S.	Port of a				13/20/19
16.	Transporter Acknowledgment insporter 1 Printed/Typed Nam	of Receipt of Mai	erials		100	Date lea	vina U.S.:			
ira	insporter 2 Participant Name	Bak	CATI		Signature	Ha	Upp	6		Month Day Yes 3 20 19 Month Day Yes 3 20 19
	i. Discrepancy Indication Space	e Quanti	ly .	Туре		Residue		Partial Rejec	tion	Full Rejection
	. Alternate Facility (or General	lor)				ndast Reference I	Number,	U.S. EPA ID No	mber	THE P
	ildy's Phone: . Signature of Alternate Facility	y (or Generator)	L	N ON						Month Day Yea

NON-HAZARDOUS WASTE MANIFEST 19. Generator ID Number (Continuation Sheet)	20, Pege		Tracking Num		2012
(Continuation Sheet) WAD 988477873 Generator's Name THRIFTWAY PROPERTIES //	C		FLLC	-05)	2019-0
			U.S. EPA ID		Dari.
UKA	A CONTRACT	- N	U.S. EPA ID	Number	792921
COLUMBIA NIDGE	28. Cor	LL deiners	27. Total	997 28. Unit	734.57
25. Waste Shipping Name and Description	No.	Туре	Quantity	Wt./Vol.	
			- Way	1 1	
2 10 mm or 1	120		773		
			18	- 1	
				- 5	
		a		August 10	
		L	14	8	
Later Land	7			1	
C. ST. T. W. L. L. L. T.					
				Aug B	
by the street of			4		
THE LAND STREET, STREE	1 .				
		15.			
	II TAR			340	
pecial Handling Instructions and Additional Information	Market 1				
process Figures grant and Additional Recognition	36		L.		
Sale Comment of the C	na i	7	WM	VIII	180614
ensporter Acknowledgment of Receipt of Materials VTyped Name Signatur	10 15			A4_	Month Day
	3/-				13 156
Insporter Acknowledgment of Receipt of Materials ITypes Home Signatur Signatur	7	17	ach	0.0	Month Day
crepancy	you.	1	Juni	reg	Month Day 28
	The state of the s		10 %		
	Dist. I		· III.		

APPENDIX C All Analytical Data

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

February 1, 2019

Dave Heffner, Project Manager Aspect Consulting, LLC 401 2nd Ave S, Suite 201 Seattle, WA 98104

Dear Mr Heffner:

Included are the results from the testing of material submitted on January 29, 2019 from the Morell's Walker Chevy 080190, F&BI 901382 project. There are 8 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Data Aspect ASP0201R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on January 29, 2019 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Morell's Walker Chevy 080190, F&BI 901382 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	Aspect Consulting, LLC
901382 -01	B-25-5.5
901382 -02	B-25-10.5
901382 -03	B-25-15.5
901382 -04	B-25-20.5
901382 -05	B-25-25.5
901382 -06	B-25-30.5
901382 -07	B-25-35.5
901382 -08	B-25-40.5
901382 -09	B-25-45.5
901382 -10	B-25-50.5
901382 -11	B-25-55.5
901382 -12	B-25-60.6

The 8260C dichlorodifluoromethane failed below the acceptance criteria in the matrix spike samples. In addition, hexane failed the relative percent difference. The laboratory control sample met the acceptance criteria, therefore the data were likely due to sample matrix effect.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	B-25-5.5	Client:	Aspect Consulting, LLC
Date Received:	01/29/19	Project:	Morell's Walker Chevy 080190

Date Extracted: 01/29/19 Lab ID: 901382-01 Date Analyzed: 01/29/19 Data File: 012932.D Matrix: Soil Instrument: GCMS4 mg/kg (ppm) Dry Weight Units: Operator: MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	62	142
Toluene-d8	106	55	145
4-Bromofluorobenzene	97	65	139

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Hexane	< 0.25	o-Xylene	< 0.05
Methylene chloride	< 0.5	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Bromoform	< 0.05
1,1-Dichloroethane	< 0.05	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	< 0.5	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.05	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.03	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.02	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.05	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.05
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	B-25-30.5	Client:	Aspect Consulting, LLC
Date Received:	01/29/19	Project:	Morell's Walker Chevy 080190

Date Extracted: 01/29/19 Lab ID: 901382-06 Data File: Date Analyzed: 01/29/19 012933.D Matrix: Soil Instrument: GCMS4 mg/kg (ppm) Dry Weight Units: Operator: MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	62	142
Toluene-d8	103	55	145
4-Bromofluorobenzene	95	65	139

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Hexane	< 0.25	o-Xylene	< 0.05
Methylene chloride	< 0.5	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Bromoform	< 0.05
1,1-Dichloroethane	< 0.05	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	< 0.5	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.05	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.03	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.02	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.05	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.05
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	B-25-50.5	Client:	Aspect Consulting, LLC
Date Received:	01/29/19	Project:	Morell's Walker Chevy 080190

Date Extracted: 01/29/19 Lab ID: 901382-10 Date Analyzed: 01/29/19 Data File: 012934.D Matrix: Soil Instrument: GCMS4 mg/kg (ppm) Dry Weight Units: Operator: MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	62	142
Toluene-d8	101	55	145
4-Bromofluorobenzene	96	65	139

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Hexane	< 0.25	o-Xylene	< 0.05
Methylene chloride	< 0.5	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Bromoform	< 0.05
1,1-Dichloroethane	< 0.05	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	< 0.5	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.05	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.03	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.02	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.05	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.05
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Method Blank Client: Aspect Consulting, LLC
Date Received: Not Applicable Project: Morell's Walker Chevy 080190

Date Extracted: 01/29/19 Lab ID: 09-0192 mb 01/29/19 Date Analyzed: Data File: 012909.D Matrix: Soil Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight Operator: MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	62	142
Toluene-d8	101	55	145
4-Bromofluorobenzene	90	65	139

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Hexane	< 0.25	o-Xylene	< 0.05
Methylene chloride	< 0.5	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Bromoform	< 0.05
1,1-Dichloroethane	< 0.05	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	< 0.5	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.05	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.03	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.02	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.05	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.05
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Date of Report: 02/01/19 Date Received: 01/29/19

Project: Morell's Walker Chevy 080190, F&BI 901382

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 901386-01 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Ûnits	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Dichlorodifluoromethane	mg/kg (ppm)	2.5	< 0.5	6 vo	7 vo	10-142	15
Chloromethane	mg/kg (ppm)	2.5	< 0.5	28	30	10-126	7
Vinyl chloride	mg/kg (ppm)	2.5 2.5	<0.05 <0.5	26 43	28 48	10-138 10-163	7 11
Bromomethane Chloroethane	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	<0.5 <0.5	43 36	48 40	10-163 10-176	11
Trichlorofluoromethane	mg/kg (ppm)	2.5	<0.5	24	29	10-176	19
Acetone	mg/kg (ppm)	12.5	0.46	69	70	10-163	1
1,1-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	35	40	10-160	13
Hexane	mg/kg (ppm)	2.5	< 0.25	10	13	10-137	26 vo
Methylene chloride	mg/kg (ppm)	2.5	< 0.5	52	55	10-156	6
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	2.5	< 0.05	60	64	21-145	6
trans-1,2-Dichloroethene 1.1-Dichloroethane	mg/kg (ppm)	2.5 2.5	<0.05 <0.05	43 50	47 55	14-137 19-140	9 10
2,2-Dichloropropane	mg/kg (ppm) mg/kg (ppm)	2.5	< 0.05	45	51	10-158	12
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	52	57	25-135	9
Chloroform	mg/kg (ppm)	2.5	< 0.05	54	58	21-145	7
2-Butanone (MEK)	mg/kg (ppm)	12.5	< 0.5	66	70	19-147	6
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	< 0.05	55	59	12-160	7
1,1,1-Trichloroethane	mg/kg (ppm)	2.5	< 0.05	46	52	10-156	12
1,1-Dichloropropene Carbon tetrachloride	mg/kg (ppm)	2.5 2.5	<0.05 <0.05	42 43	49 49	17-140 9-164	15 13
Benzene	mg/kg (ppm) mg/kg (ppm)	2.5	< 0.03	50	55	29-129	10
Trichloroethene	mg/kg (ppm)	2.5	< 0.02	48	54	21-139	12
1,2-Dichloropropane	mg/kg (ppm)	2.5	< 0.05	56	63	30-135	12
Bromodichloromethane	mg/kg (ppm)	2.5	< 0.05	56	62	23-155	10
Dibromomethane	mg/kg (ppm)	2.5	<0.05	57	62	23-145	8
4-Methyl-2-pentanone cis-1,3-Dichloropropene	mg/kg (ppm) mg/kg (ppm)	12.5 2.5	<0.5 <0.05	67 59	72 65	24-155 28-144	7 10
Toluene	mg/kg (ppm)	2.5	<0.05	48	55	35-130	14
trans-1,3-Dichloropropene	mg/kg (ppm)	2.5	< 0.05	54	60	26-149	11
1,1,2-Trichloroethane	mg/kg (ppm)	2.5	< 0.05	57	63	10-205	10
2-Hexanone	mg/kg (ppm)	12.5	< 0.5	61	67	15-166	9
1,3-Dichloropropane	mg/kg (ppm)	2.5	< 0.05	57	61	31-137	7
Tetrachloroethene Dibromochloromethane	mg/kg (ppm)	2.5 2.5	<0.025 <0.05	43 57	50 65	20-133 28-150	15 13
1,2-Dibromoethane (EDB)	mg/kg (ppm) mg/kg (ppm)	2.5	<0.05	55	62	28-142	12
Chlorobenzene	mg/kg (ppm)	2.5	< 0.05	51	57	32-129	11
Ethylbenzene	mg/kg (ppm)	2.5	< 0.05	48	55	32-137	14
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	2.5	< 0.05	56	62	31-143	10
m,p-Xylene	mg/kg (ppm)	5	<0.1	49	57	34-136	15
o-Xylene Styrene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	<0.05 <0.05	51 56	56 62	33-134 35-137	9 10
Isopropylbenzene	mg/kg (ppm)	2.5	< 0.05	49	59	31-142	19
Bromoform	mg/kg (ppm)	2.5	< 0.05	61	69	21-156	12
n-Propylbenzene	mg/kg (ppm)	2.5	< 0.05	45	52	23-146	14
Bromobenzene	mg/kg (ppm)	2.5	< 0.05	50	56	34-130	11
1,3,5-Trimethylbenzene	mg/kg (ppm)	2.5	< 0.05	44	51	18-149	15
1,1,2,2-Tetrachloroethane 1,2,3-Trichloropropane	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	<0.05 <0.05	58 55	63 59	28-140 25-144	8 7
2-Chlorotoluene	mg/kg (ppm)	2.5	<0.05	47	53	31-134	12
4-Chlorotoluene	mg/kg (ppm)	2.5	< 0.05	48	54	31-136	12
tert-Butylbenzene	mg/kg (ppm)	2.5	< 0.05	46	52	30-137	12
1,2,4-Trimethylbenzene	mg/kg (ppm)	2.5	< 0.05	45	52	10-182	14
sec-Butylbenzene	mg/kg (ppm)	2.5	< 0.05	44	51	23-145	15
p-Isopropyltoluene 1,3-Dichlorobenzene	mg/kg (ppm)	2.5 2.5	<0.05 <0.05	43 45	51 53	21-149 30-131	17 16
1,3-Dichlorobenzene 1.4-Dichlorobenzene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	<0.05 <0.05	45 46	53 53	29-129	16
1,2-Dichlorobenzene	mg/kg (ppm)	2.5	< 0.05	46	54	31-132	16
1,2-Dibromo-3-chloropropane	mg/kg (ppm)	2.5	< 0.5	48	57	11-161	17
1,2,4-Trichlorobenzene	mg/kg (ppm)	2.5	< 0.25	36	41	22-142	13
Hexachlorobutadiene	mg/kg (ppm)	2.5	< 0.25	35	42	10-142	18
Naphthalene 1,2,3-Trichlorobenzene	mg/kg (ppm)	2.5 2.5	<0.05 <0.25	44 38	47 43	14-157 20-144	7 12
1,2,3-111CHOLOBERZERE	mg/kg (ppm)	2.3	<0.20	30	43	2U-144	12

ENVIRONMENTAL CHEMISTS

Date of Report: 02/01/19 Date Received: 01/29/19

Project: Morell's Walker Chevy 080190, F&BI 901382

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: Laboratory Control Sample

•	_		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Dichlorodifluoromethane	mg/kg (ppm)	2.5	45	10-146
Chloromethane Vinyl chloride	mg/kg (ppm)	2.5 2.5	71 84	27-133 22-139
Bromomethane	mg/kg (ppm) mg/kg (ppm)	2.5	91	38-114
Chloroethane	mg/kg (ppm)	2.5	93	10-163
Trichlorofluoromethane	mg/kg (ppm)	2.5	102	10-196
Acetone	mg/kg (ppm)	12.5	107	52-141
1,1-Dichloroethene	mg/kg (ppm)	2.5	101	47-128
Hexane	mg/kg (ppm)	2.5	83	43-142
Methylene chloride Methyl t-butyl ether (MTBE)	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	110 93	42-132 60-123
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	100	67-127
1,1-Dichloroethane	mg/kg (ppm)	2.5	102	68-115
2,2-Dichloropropane	mg/kg (ppm)	2.5	105	52-170
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	104	72-113
Chloroform	mg/kg (ppm)	2.5	102	66-120
2-Butanone (MEK)	mg/kg (ppm)	12.5	96	57-123
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5 2.5	95 102	56-135 62-131
1,1,1-Trichloroethane 1,1-Dichloropropene	mg/kg (ppm)	2.5 2.5	102	69-128
Carbon tetrachloride	mg/kg (ppm) mg/kg (ppm)	2.5	100	60-139
Benzene	mg/kg (ppm)	2.5	97	68-114
Trichloroethene	mg/kg (ppm)	2.5	99	64-117
1,2-Dichloropropane	mg/kg (ppm)	2.5	99	72-127
Bromodichloromethane	mg/kg (ppm)	2.5	101	72-130
Dibromomethane	mg/kg (ppm)	2.5	99	70-120
4-Methyl-2-pentanone	mg/kg (ppm)	12.5	96	45-145
cis-1,3-Dichloropropene	mg/kg (ppm)	2.5 2.5	102 97	75-136
Toluene trans-1,3-Dichloropropene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	97 97	66-126 72-132
1,1,2-Trichloroethane	mg/kg (ppm)	2.5	97	75-113
2-Hexanone	mg/kg (ppm)	12.5	85	33-152
1,3-Dichloropropane	mg/kg (ppm)	2.5	95	72-130
Tetrachloroethene	mg/kg (ppm)	2.5	105	72-114
Dibromochloromethane	mg/kg (ppm)	2.5	106	74-125
1,2-Dibromoethane (EDB)	mg/kg (ppm)	2.5	97	74-132
Chlorobenzene	mg/kg (ppm)	2.5	99 99	76-111
Ethylbenzene 1,1,1,2-Tetrachloroethane	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	109	64-123 69-135
m,p-Xylene	mg/kg (ppm)	5	103	78-122
o-Xylene	mg/kg (ppm)	2.5	98	77-124
Styrene	mg/kg (ppm)	2.5	104	74-126
Isopropylbenzene	mg/kg (ppm)	2.5	111	76-127
Bromoform	mg/kg (ppm)	2.5	113	56-132
n-Propylbenzene	mg/kg (ppm)	2.5	106	74-124
Bromobenzene 1,3,5-Trimethylbenzene	mg/kg (ppm)	2.5 2.5	103 108	72-122 76-126
1,3,5-1rimethylbenzene 1,1,2,2-Tetrachloroethane	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	108	76-126 56-143
1,2,3-Trichloropropane	mg/kg (ppm)	2.5	97	61-137
2-Chlorotoluene	mg/kg (ppm)	2.5	107	74-121
4-Chlorotoluene	mg/kg (ppm)	2.5	105	75-122
tert-Butylbenzene	mg/kg (ppm)	2.5	103	73-130
1,2,4-Trimethylbenzene	mg/kg (ppm)	2.5	100	76-125
sec-Butylbenzene	mg/kg (ppm)	2.5	102	71-130
p-Isopropyl toluene 1.3-Dichlorobenzene	mg/kg (ppm)	2.5 2.5	104 102	70-132 75-121
1,3-Dichlorobenzene 1,4-Dichlorobenzene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	102	75-121 74-117
1,2-Dichlorobenzene	mg/kg (ppm)	2.5	103	76-121
1,2-Dibromo-3-chloropropane	mg/kg (ppm)	2.5	103	58-138
1,2,4-Trichlorobenzene	mg/kg (ppm)	2.5	104	64-135
Hexachlorobutadiene	mg/kg (ppm)	2.5	110	50-153
Naphthalene	mg/kg (ppm)	2.5	104	63-140
1,2,3-Trichlorobenzene	mg/kg (ppm)	2.5	109	63-138

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- \boldsymbol{J} The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- \mbox{pc} The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- $\mbox{\it ve}$ The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Address HO 2nd Ave Ste 550 Company Aspect Report To Bare Heffmer 901382 SAMPLE CHAIN OF CUSTODY MCPROJECT NAME

City, State, ZIP Seattle WA 98104

Page#_

pg N

500

REMARKS Morell's / Wedker Cury 080190 INVOICE TO PO#

Other XRUSH 4-Day ☐ Standard Turnaround ☐ Archive Samples MDispose after 30 days Rush charges authorized by: TURNAROUND TIME SAMPLE DISPOSAL

SIGNATURE Relinquished by	8-25-50.5 10 1/29 0150	8-25-45.5 69 1/29 0100	B-25-40,5 08 1/28 2350	B-25-35.5 07 1/28 23io	B-25-30.5 06 1/28 2250	B-25-25.5 05 1/28 2230	B-25-20,5 Oy 1/28 2210	B-25-15.5 03 1/28 2155	B-25-10.5 62 1/28 2130	B-25-5.5 0/A-N1/28 2116	Sample ID Lab ID Date Time Sampled Sampled		2 to University a Jest 100	Phone 20 638 5831 Email other Cy
PRINT N	₩									8 4	Sample # of Type Jars		25	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
PRINT NAME	×				×					×	TPH-HCID TPH-Diesel TPH-Gasoline BTEX by 8021B VOCs by 8260C	ANA		
COMPANY											SVOCs by 8270D PAHs 8270D SIM	ANALYSES REQUESTED		□ Othe
DATE TIME		*		Please HOLD					Please HOLD		Notes			Other Samples

Ph. (206) 285-8282

Received by:

MODE

Schrody

Seattle, WA 98119-2029

Relinqueshed by:

3012 I6th Avenue West

Received by-

Friedman & Bruya, Inc.

Relinquished by: \and

David Heftner

Aspect

129/19 9:50

Sist

アン

Samples received at

1200

かだくろびない

Ph. (206) 285-8282 Seattle, WA 98119-2029 3012 16th Avenue West Friedman & Bruya, Inc. City, State, ZIP Seattle wit 98104 Phone 206 636 5831 Emaild Weffur (bgreer Address 710 2nd Are Ste. 550 Company 175 pect B-25-55.5 B-25-60,6 901382 of the Heffner Sample ID Relinquished by: Dary H Received by: Relinquished by Received by: Lab ID AU A-1) 1/29 SIGNATURE Sampled 129 Date 0250 SAMPLE CHAIN OF CUSTODY 0220 Sampled PROJECT NAME Time REMARKS Morell's I Walter Church Sample Type HOUSE V XUED NEWWOO David Heffner S Jars # of PRINT NAME ٥ struges/ TPH-HCID TPH-Diesel TPH-Gasoline BTEX by 8021B ME 01/291 ANALYSES REQUESTED VOCs by 8260C INVOICE TO 080190 FRI SVOCs by 8270D PO# CO Aspect PAHs 8270D SIM COMPANY Sample received at [] Other_ RUSH 4-Day ☐ Archive Samples Dispose after 30 days Rush charges authorized by: Page#_ TURNAROUND TIME SAMPLE DISPOSAL 458 Please 1/29/19 DATE 129/19 12 pt 4 Notes HOLV 9:50 70.54 003 TIME

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl. B.S. Arina Podnozova, B.S. Eric Young, B.S.

3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

February 1, 2019

Dave Heffner, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Mr Heffner:

Included are the results from the testing of material submitted on January 30, 2019 from the Walker Chevy Morell's 080190, F&BI 901399 project. There are 8 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl **Project Manager**

Enclosures

c: Data Aspect, Breeyn Greer

ASP0201R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on January 30, 2019 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Walker Chevy Morell's 080190, F&BI 901399 project. Samples were logged in under the laboratory ID's listed below.

Aspect Consulting, LLC
B-26-5.5
B-26-10.5
B-26-15.5
B-26-20.5
B-26-25.5
B-26-30.5
B-26-35.5
B-26-40.5
B-26-45.5
B-26-50.5
B-26-55.5
B-26-60.0

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	B-26-5.5	Client:	Aspect Consulting, LLC
Date Received:	01/30/19	Project:	Walker Chevy Morell's 080190

Date Extracted: 01/30/19 Lab ID: 901399-01 Date Analyzed: 01/30/19 Data File: 013037.D Matrix: Soil Instrument: GCMS4 mg/kg (ppm) Dry Weight Units: Operator: MS/JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	62	142
Toluene-d8	102	55	145
4-Bromofluorobenzene	96	65	139

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Hexane	< 0.25	o-Xylene	< 0.05
Methylene chloride	< 0.5	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Bromoform	< 0.05
1,1-Dichloroethane	< 0.05	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	< 0.5	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.05	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.03	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.02	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.05	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.05
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	B-26-30.5	Client:	Aspect Consulting, LLC
Date Received:	01/30/19	Project:	Walker Chevy Morell's 080190

Date Extracted: 01/30/19 Lab ID: 901399-06 01/30/19 Data File: Date Analyzed: 013038.D Matrix: Soil Instrument: GCMS4 mg/kg (ppm) Dry Weight Units: Operator: MS/JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	62	142
Toluene-d8	104	55	145
4-Bromofluorobenzene	101	65	139

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Hexane	< 0.25	o-Xylene	< 0.05
Methylene chloride	< 0.5	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Bromoform	< 0.05
1,1-Dichloroethane	< 0.05	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	< 0.5	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.05	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.03	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.02	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.05	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.05
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	B-26-50.5	Client:	Aspect Consulting, LLC
Date Received:	01/30/19	Project:	Walker Chevy Morell's 080190

Date Extracted: 01/30/19 Lab ID: 901399-10 Date Analyzed: 01/30/19 Data File: 013039.D Matrix: Soil Instrument: GCMS4 mg/kg (ppm) Dry Weight Units: Operator: MS/JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	98	62	142
Toluene-d8	102	55	145
4-Bromofluorobenzene	102	65	139

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Hexane	< 0.25	o-Xylene	< 0.05
Methylene chloride	< 0.5	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Bromoform	< 0.05
1,1-Dichloroethane	< 0.05	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	< 0.5	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.05	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.03	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.02	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.05	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.05
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	Method Blank	Client:	Aspect Consulting, LLC
Date Received:	Not Applicable	Project:	Walker Chevy Morell's 080190

Date Extracted: 01/30/19 Lab ID: 09-0197 mb Date Analyzed: 01/30/19 Data File: 013021.D Matrix: Soil Instrument: GCMS4 mg/kg (ppm) Dry Weight Units: MS/JS Operator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	62	142
Toluene-d8	98	55	145
4-Bromofluorobenzene	93	65	139

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Hexane	< 0.25	o-Xylene	< 0.05
Methylene chloride	< 0.5	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Bromoform	< 0.05
1,1-Dichloroethane	< 0.05	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	< 0.5	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.05	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.03	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.02	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.05	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.05
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Date of Report: 02/01/19 Date Received: 01/30/19

Project: Walker Chevy Morell's 080190, F&BI 901399

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 901327-01 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Dichlorodifluoromethane	mg/kg (ppm)	2.5	< 0.5	17	17	10-142	0
Chloromethane	mg/kg (ppm)	2.5	< 0.5	49	48	10-126	2
Vinyl chloride Bromomethane	mg/kg (ppm)	2.5 2.5	<0.05 <0.5	53 72	53 70	10-138 10-163	0 3
Chloroethane	mg/kg (ppm) mg/kg (ppm)	2.5	<0.5	64	65	10-103	2
Trichlorofluoromethane	mg/kg (ppm)	2.5	<0.5	59	59	10-176	õ
Acetone	mg/kg (ppm)	12.5	< 0.5	82	88	10-163	7
1,1-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	71	70	10-160	1
Hexane	mg/kg (ppm)	2.5	< 0.25	29	33	10-137	13
Methylene chloride	mg/kg (ppm)	2.5	< 0.5	80	83 86	10-156 21-145	4
Methyl t-butyl ether (MTBE) trans-1,2-Dichloroethene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	<0.05 <0.05	83 73	86 79	21-145 14-137	4 8
1.1-Dichloroethane	mg/kg (ppm)	2.5	< 0.05	82	86	19-140	5
2,2-Dichloropropane	mg/kg (ppm)	2.5	< 0.05	74	79	10-158	7
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	84	88	25-135	5
Chloroform	mg/kg (ppm)	2.5	< 0.05	84	90	21-145	7
2-Butanone (MEK)	mg/kg (ppm)	12.5	<0.5	87	95	19-147	9
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	< 0.05	79	87	12-160	10
1,1,1-Trichloroethane 1,1-Dichloropropene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	<0.05 <0.05	76 69	84 75	10-156 17-140	10 8
Carbon tetrachloride	mg/kg (ppm)	2.5	<0.05	71	79	9-164	8 11
Benzene	mg/kg (ppm)	2.5	< 0.03	75	79	29-129	5
Trichloroethene	mg/kg (ppm)	2.5	< 0.02	72	79	21-139	9
1,2-Dichloropropane	mg/kg (ppm)	2.5	< 0.05	81	83	30-135	2
Bromodichloromethane	mg/kg (ppm)	2.5	< 0.05	83	88	23-155	6
Dibromomethane	mg/kg (ppm)	2.5	< 0.05	82	87	23-145	6
4-Methyl-2-pentanone cis-1,3-Dichloropropene	mg/kg (ppm) mg/kg (ppm)	12.5 2.5	<0.5 <0.05	90 82	94 87	24-155 28-144	4 6
Toluene	mg/kg (ppm)	2.5	0.15	68	75	35-130	10
trans-1,3-Dichloropropene	mg/kg (ppm)	2.5	< 0.05	80	84	26-149	5
1,1,2-Trichloroethane	mg/kg (ppm)	2.5	< 0.05	88	93	10-205	6
2-Hexanone	mg/kg (ppm)	12.5	< 0.5	83	88	15-166	6
1,3-Dichloropropane	mg/kg (ppm)	2.5	< 0.05	79	85	31-137	7
Tetrachloroethene Dibromochloromethane	mg/kg (ppm)	2.5 2.5	0.044	58 83	67 88	20-133 28-150	14
1,2-Dibromoethane (EDB)	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	<0.05 <0.05	83 78	83	28-150 28-142	6 6
Chlorobenzene	mg/kg (ppm)	2.5	< 0.05	76 74	80	32-129	8
Ethylbenzene	mg/kg (ppm)	2.5	0.23	65	70	32-137	7
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	2.5	< 0.05	81	87	31-143	7
m,p-Xylene	mg/kg (ppm)	5	0.79	63	70	34-136	11
o-Xylene	mg/kg (ppm)	2.5	0.42	62	67	33-134	8
Styrene Isopropylbenzene	mg/kg (ppm)	2.5 2.5	<0.05 0.14	76 62	83 68	35-137 31-142	9 9
Bromoform	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	< 0.05	87	93	21-156	9 7
n-Propylbenzene	mg/kg (ppm)	2.5	0.54	57 b	62 b	23-146	8 b
Bromobenzene	mg/kg (ppm)	2.5	< 0.05	73	78	34-130	7
1,3,5-Trimethylbenzene	mg/kg (ppm)	2.5	0.72	53 b	59 b	18-149	11 b
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	2.5	< 0.05	100	101	28-140	1
1,2,3-Trichloropropane	mg/kg (ppm)	2.5	< 0.05	80	80	25-144	0
2-Chlorotoluene 4-Chlorotoluene	mg/kg (ppm)	2.5 2.5	<0.05 <0.05	75 68	79 72	31-134 31-136	5 6
tert-Butylbenzene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	<0.05 <0.05	55	60	31-136 30-137	9
1,2,4-Trimethylbenzene	mg/kg (ppm)	2.5	2.1	51 b	59 b	10-182	15 b
sec-Butylbenzene	mg/kg (ppm)	2.5	0.28	52	58	23-145	11
p-Isopropyltoluene	mg/kg (ppm)	2.5	0.25	51	58	21-149	13
1,3-Dichlorobenzene	mg/kg (ppm)	2.5	< 0.05	66	71	30-131	7
1,4-Dichlorobenzene	mg/kg (ppm)	2.5	< 0.05	67	71	29-129	6
1,2-Dichlorobenzene	mg/kg (ppm)	2.5 2.5	< 0.05	71	75	31-132	5 0
1,2-Dibromo-3-chloropropane 1,2,4-Trichlorobenzene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	<0.5 <0.25	83 60	83 66	11-161 22-142	0 10
Hexachlorobutadiene	mg/kg (ppm)	2.5	<0.25	51	58	10-142	13
Naphthalene	mg/kg (ppm)	2.5	0.42	74	78	14-157	5
1,2,3-Trichlorobenzene	mg/kg (ppm)	2.5	< 0.25	66	72	20-144	9

ENVIRONMENTAL CHEMISTS

Date of Report: 02/01/19 Date Received: 01/30/19

Project: Walker Chevy Morell's 080190, F&BI 901399

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Dichlorodifluoromethane	mg/kg (ppm)	2.5	42	10-146
Chloromethane	mg/kg (ppm)	2.5	70	27-133
Vinyl chloride	mg/kg (ppm)	2.5	84	22-139
Bromomethane	mg/kg (ppm)	2.5	91	38-114
Chloroethane Trichlorofluoromethane	mg/kg (ppm)	2.5 2.5	89 97	10-163 10-196
Acetone	mg/kg (ppm) mg/kg (ppm)	12.5	94	52-141
1.1-Dichloroethene	mg/kg (ppm)	2.5	96	47-128
Hexane	mg/kg (ppm)	2.5	79	43-142
Methylene chloride	mg/kg (ppm)	2.5	97	42-132
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	2.5	99	60-123
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	100	67-127
1,1-Dichloroethane	mg/kg (ppm)	2.5	102	68-115
2,2-Dichloropropane cis-1.2-Dichloroethene	mg/kg (ppm)	2.5 2.5	104 104	52-170 72-113
Chloroform	mg/kg (ppm) mg/kg (ppm)	2.5	104	66-120
2-Butanone (MEK)	mg/kg (ppm)	12.5	104	57-123
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	106	56-135
1,1,1-Trichloroethane	mg/kg (ppm)	2.5	111	62-131
1,1-Dichloropropene	mg/kg (ppm)	2.5	102	69-128
Carbon tetrachloride	mg/kg (ppm)	2.5	111	60-139
Benzene	mg/kg (ppm)	2.5	100	68-114
Trichloroethene	mg/kg (ppm)	2.5	106	64-117
1,2-Dichloropropane Bromodichloromethane	mg/kg (ppm)	2.5 2.5	102 107	72-127 72-130
Dibromomethane	mg/kg (ppm) mg/kg (ppm)	2.5	107	70-120
4-Methyl-2-pentanone	mg/kg (ppm)	12.5	106	45-145
cis-1,3-Dichloropropene	mg/kg (ppm)	2.5	106	75-136
Toluene	mg/kg (ppm)	2.5	97	66-126
trans-1,3-Dichloropropene	mg/kg (ppm)	2.5	100	72-132
1,1,2-Trichloroethane	mg/kg (ppm)	2.5	101	75-113
2-Hexanone	mg/kg (ppm)	12.5	94	33-152
1,3-Dichloropropane Tetrachloroethene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	100 104	72-130 72-114
Dibromochloromethane	mg/kg (ppm)	2.5	104	74-125
1,2-Dibromoethane (EDB)	mg/kg (ppm)	2.5	102	74-132
Chlorobenzene	mg/kg (ppm)	2.5	102	76-111
Ethylbenzene	mg/kg (ppm)	2.5	101	64-123
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	2.5	108	69-135
m,p-Xylene	mg/kg (ppm)	5	103	78-122
o-Xylene Styrene	mg/kg (ppm)	2.5 2.5	98 108	77-124 74-126
Isopropylbenzene	mg/kg (ppm) mg/kg (ppm)	2.5	108	76-127
Bromoform	mg/kg (ppm)	2.5	109	56-132
n-Propylbenzene	mg/kg (ppm)	2.5	107	74-124
Bromobenzene	mg/kg (ppm)	2.5	109	72-122
1,3,5-Trimethylbenzene	mg/kg (ppm)	2.5	108	76-126
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	2.5	109	56-143
1,2,3-Trichloropropane 2-Chlorotoluene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	106 109	61-137 74-121
4-Chlorotoluene	mg/kg (ppm)	2.5	110	75-122
tert-Butylbenzene	mg/kg (ppm)	2.5	104	73-130
1,2,4-Trimethylbenzene	mg/kg (ppm)	2.5	103	76-125
sec-Butylbenzene	mg/kg (ppm)	2.5	101	71-130
p-Isopropyltoluene	mg/kg (ppm)	2.5	104	70-132
1,3-Dichlorobenzene	mg/kg (ppm)	2.5	105	75-121
1,4-Dichlorobenzene	mg/kg (ppm)	2.5	102	74-117 76-121
1,2-Dichlorobenzene 1,2-Dibromo-3-chloropropane	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	104 97	76-121 58-138
1,2,4-Trichlorobenzene	mg/kg (ppm)	2.5	102	64-135
Hexachlorobutadiene	mg/kg (ppm)	2.5	106	50-153
Naphthalene	mg/kg (ppm)	2.5	102	63-140
1,2,3-Trichlorobenzene	mg/kg (ppm)	2.5	105	63-138

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- \boldsymbol{J} The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- \mbox{pc} The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- $\mbox{\it ve}$ The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Ph. (206) 285-8282 Seattle, WA 98119-2029 3012 16th Avenue West Friedman & Bruya, Inc. 901399 Phone 2068 38583 | Email d/ne ffloor Caspect Consulting Com City, State, ZIP Seathle WA 98104 Address 710 2nd Ave Ste 550 Company_ Report To_ 6-26-5.5 B-26-35.5 8-26-30.5 B-26-25.5 B-26-20,5 B-26-10,5 B-26-405 B-26-155 13-26-45.5 15-26-505 Sample ID)ave Relinquished by: Received by: Relinguished by: Received by: 20 30 3 2 8 <u>_</u> 0 0 2 8 Lab ID AU SIGNATURE 129/19 Sampled W1/30 Date 738 シャジー 2315 2215 2330 2230 SAMPLE CHAIN OF CUSTODY ME 01/30/19 28 2355 2200 0100 2300 Sampled Time SAMPLERS (signature) Bleen bree REMARKS PROJECT NAME Walker Cherry / Morrell's Sample Туре S Breeze Greek Jars # of PRINT NAME _ TPH-HCID TPH-Diesel TPH-Gasoline BTEX by 8021B ANALYSES REQUESTED 080190 VOCs by 8260C INVOICE TO SVOCs by 8270D PO# Samples received at T S PAHs 8270D SIM 45pect COMPANY □ Other ☐ Archive Samples ADispose after 30 days Rush charges authorized by: Standard Turnaround TURNAROUND TIME SAMPLE DISPOSAL Page # 130/19 S C 130119 glease DATE Pleast Hold ----= ___ Notes ハくく of _ e e 88 更更 TIME

Company_

City, State, ZIP.

Address

SAMPLE CHAIN OF CUSTODY

TURNAROUND TIME

Page#_

Ng

V55

SAMPLE DISPOSAL

Phone 2066365831 Emaildhe Phone as ped answhig con PROJECT NAME SAMPLERS (signatur REMARKS Walker Cleany / Morell's INVOICE TO 080190 PO# ADispose after 30 days

Archive Samples

Other RUSH 4 Jay Rush charges authorized by:

Ph. (206) 285-8282 Received by:	Seattle, WA 98119-2029 Relinquished by:		Friedman & Bruya, Inc. Relinguished by:				The state of the s				8-26-60.0 12	B-26-555 11	Sample ID
	l by:	TENS TO	eyn Gren	SIGNATURE					K		V 1/30	AZV 1/30	Lab ID Date Sampled
	······································		1			-					0 200 0 200	0200	Time Sampled
	•	())	Ø									S	Sample Type
	•	シンド	reed	PRINT NAME	*							2	# of Jars
		1	100	I NA									TPH-HCID
			Gie	ME									TPH-Diesel
			7										TPH-Gasoline BTEX by 8021B
70			1					,					VOCs by 8260C
am													SVOCs by 8270D
Samples received at	(以一	Aspea	CO									PAHs 8270D SIM
Celvi			St.	COMPANY									
d a				Y							- 1 - 4 - 1 - 1		
								•		<u> </u>			
Ĉ	W.	1/30/19	1/20/19	DATE						7) u	Hold	Notes
÷		11150	0800	HMIL							V		tes

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

February 6, 2019

Dave Heffner, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Mr Heffner:

Included are the results from the testing of material submitted on January 31, 2019 from the Morell's Walker Chevy 080190, F&BI 901423 project. There are 8 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Data Aspect ASP0206R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on January 31, 2019 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Morell's Walker Chevy 080190, F&BI 901423 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	Aspect Consulting, LLC
901423 -01	B-24-5.5
901423 -02	B-24-10.5
901423 -03	B-24-15.5
901423 -04	B-24-20.5
901423 -05	B-24-25.5
901423 -06	B-24-30.5
901423 -07	B-24-35.5
901423 -08	B-24-40.5
901423 -09	B-24-45.5
901423 -10	B-24-50.5
901423 -11	B-24-55.5
901423 -12	B-24-60.5

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	B-24-5.5	Client:	Aspect Consulting, LLC
Date Received:	01/31/19	Project:	Morell's Walker Chevy 080190

Date Extracted: 02/01/19 Lab ID: 901423-01 Date Analyzed: Data File: 02/01/19 020113.D Matrix: Soil Instrument: GCMS4 mg/kg (ppm) Dry Weight Units: Operator: MS/JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	102	62	142
Toluene-d8	100	55	145
4-Bromofluorobenzene	96	65	139

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Hexane	< 0.25	o-Xylene	< 0.05
Methylene chloride	< 0.5	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Bromoform	< 0.05
1,1-Dichloroethane	< 0.05	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	< 0.5	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.05	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.03	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.02	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.05	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.05
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	B-24-30.5	Client:	Aspect Consulting, LLC
Date Received:	01/31/19	Project:	Morell's Walker Chevy 080190

Date Extracted: 02/01/19 Lab ID: 901423-06 Data File: Date Analyzed: 02/01/19 020114.D Matrix: Soil Instrument: GCMS4 mg/kg (ppm) Dry Weight Units: Operator: MS/JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	62	142
Toluene-d8	100	55	145
4-Bromofluorobenzene	95	65	139

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Hexane	< 0.25	o-Xylene	< 0.05
Methylene chloride	< 0.5	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Bromoform	< 0.05
1,1-Dichloroethane	< 0.05	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	< 0.5	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.05	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.03	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.02	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.05	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.05
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	B-24-50.5	Client:	Aspect Consulting, LLC
Date Received:	01/31/19	Project:	Morell's Walker Chevy 080190

Date Extracted: 02/01/19 Lab ID: 901423-10 Data File: Date Analyzed: 02/01/19 020115.D Matrix: Soil Instrument: GCMS4 mg/kg (ppm) Dry Weight Units: Operator: MS/JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	62	142
Toluene-d8	99	55	145
4-Bromofluorobenzene	96	65	139

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Hexane	< 0.25	o-Xylene	< 0.05
Methylene chloride	< 0.5	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Bromoform	< 0.05
1,1-Dichloroethane	< 0.05	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	< 0.5	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.05	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.03	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.02	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.05	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.05
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	Method Blank	Client:	Aspect Consulting, LLC
Date Received:	Not Applicable	Project:	Morell's Walker Chevy 080190

Date Extracted: 02/01/19 Lab ID: 09-0199 mb Data File: Date Analyzed: 02/01/19 020110.D Matrix: Soil Instrument: GCMS4 mg/kg (ppm) Dry Weight Units: Operator: MS/JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	62	142
Toluene-d8	98	55	145
4-Bromofluorobenzene	95	65	139

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	<0.5	1,3-Dichloropropane	< 0.05
Chloromethane	<0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	<0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	<0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	<0.5	Ethylbenzene	< 0.05
Acetone	<0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Hexane	<0.25	o-Xylene	< 0.05
Methylene chloride	< 0.5	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Bromoform	< 0.05
1,1-Dichloroethane	< 0.05	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	< 0.5	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.05	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.03	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.02	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.05	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.05
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Date of Report: 02/06/19 Date Received: 01/31/19

Project: Morell's Walker Chevy 080190, F&BI 901423

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 901411-01 (Matrix Spike)

•	-		Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Dichlorodifluoromethane	mg/kg (ppm)	2.5	<0.5	16	16	10-142	0
Chloromethane Vinyl chloride	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	<0.5 <0.05	46 48	44 46	10-126 10-138	4 4
Bromomethane	mg/kg (ppm)	2.5	< 0.5	64	62	10-163	3
Chloroethane	mg/kg (ppm)	2.5	<0.5	60	57	10-176	5
Trichlorofluoromethane	mg/kg (ppm)	2.5	< 0.5	52	49	10-176	6
Acetone	mg/kg (ppm)	12.5	0.64	76	78	10-163	3
1,1-Dichloroethene Hexane	mg/kg (ppm)	2.5 2.5	<0.05 <0.25	64 27	62 26	10-160 10-137	3 4
Methylene chloride	mg/kg (ppm) mg/kg (ppm)	2.5	<0.25 <0.5	77	73	10-156	5
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	2.5	< 0.05	81	74	21-145	9
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	72	66	14-137	9
1,1-Dichloroethane	mg/kg (ppm)	2.5	< 0.05	79	74	19-140	7
2,2-Dichloropropane cis-1,2-Dichloroethene	mg/kg (ppm)	2.5 2.5	<0.05 <0.05	81 82	74 78	10-158 25-135	9 5
Chloroform	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	<0.05 <0.05	83	78 80	21-145	3 4
2-Butanone (MEK)	mg/kg (ppm)	12.5	<0.5	76	84	19-147	10
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	< 0.05	74	75	12-160	1
1,1,1-Trichloroethane	mg/kg (ppm)	2.5	< 0.05	75	72	10-156	4
1,1-Dichloropropene	mg/kg (ppm)	2.5	< 0.05	68	68	17-140	0
Carbon tetrachloride Benzene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	<0.05 <0.03	70 72	68 72	9-164 29-129	3
Trichloroethene	mg/kg (ppm)	2.5	<0.03	72 72	68	21-139	6
1,2-Dichloropropane	mg/kg (ppm)	2.5	< 0.05	72	73	30-135	1
Bromodichloromethane	mg/kg (ppm)	2.5	< 0.05	77	80	23-155	4
Dibromomethane	mg/kg (ppm)	2.5	< 0.05	77	76	23-145	1
4-Methyl-2-pentanone	mg/kg (ppm)	12.5	< 0.5	76	81	24-155	6
cis-1,3-Dichloropropene Toluene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	<0.05 <0.05	70 68	78 68	28-144 35-130	11 0
trans-1,3-Dichloropropene	mg/kg (ppm)	2.5	< 0.05	71	78	26-149	9
1,1,2-Trichloroethane	mg/kg (ppm)	2.5	< 0.05	80	86	10-205	7
2-Hexanone	mg/kg (ppm)	12.5	< 0.5	67	81	15-166	19
1,3-Dichloropropane	mg/kg (ppm)	2.5	< 0.05	70	80	31-137	13
Tetrachloroethene Dibromochloromethane	mg/kg (ppm)	2.5 2.5	<0.025 <0.05	60 81	62 82	20-133 28-150	3 1
1.2-Dibromoethane (EDB)	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	<0.05 <0.05	71	82 76	28-150 28-142	7
Chlorobenzene	mg/kg (ppm)	2.5	< 0.05	71	72	32-129	1
Ethylbenzene	mg/kg (ppm)	2.5	< 0.05	65	65	32-137	0
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	2.5	< 0.05	86	79	31-143	8
m,p-Xylene	mg/kg (ppm)	5	<0.1	65	65	34-136	0
o-Xylene Styrene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	<0.05 <0.05	64 73	62 75	33-134 35-137	3
Isopropylbenzene	mg/kg (ppm)	2.5	< 0.05	64	63	31-142	2
Bromoform	mg/kg (ppm)	2.5	< 0.05	86	89	21-156	3
n-Propylbenzene	mg/kg (ppm)	2.5	< 0.05	57	58	23-146	2
Bromobenzene	mg/kg (ppm)	2.5	< 0.05	69	73	34-130	6
1,3,5-Trimethylbenzene 1,1,2,2-Tetrachloroethane	mg/kg (ppm)	2.5 2.5	<0.05 <0.05	55 102	52 103	18-149 28-140	6 1
1,2,3-Trichloropropane	mg/kg (ppm) mg/kg (ppm)	2.5	<0.05	75	79	25-140 25-144	5
2-Chlorotoluene	mg/kg (ppm)	2.5	< 0.05	66	64	31-134	3
4-Chlorotoluene	mg/kg (ppm)	2.5	< 0.05	64	64	31-136	0
tert-Butylbenzene	mg/kg (ppm)	2.5	< 0.05	57	53	30-137	7
1,2,4-Trimethylbenzene	mg/kg (ppm)	2.5	< 0.05	57 54	54 50	10-182 23-145	5 8
sec-Butylbenzene p-Isopropyltoluene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	<0.05 <0.05	54 52	50 49	23-145 21-149	6
1.3-Dichlorobenzene	mg/kg (ppm)	2.5	< 0.05	67	66	30-131	2
1,4-Dichlorobenzene	mg/kg (ppm)	2.5	< 0.05	67	67	29-129	0
1,2-Dichlorobenzene	mg/kg (ppm)	2.5	< 0.05	73	69	31-132	6
1,2-Dibromo-3-chloropropane	mg/kg (ppm)	2.5	< 0.5	90	80	11-161	12
1,2,4-Trichlorobenzene Hexachlorobutadiene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	<0.25 <0.25	66 46	60 44	22-142 10-142	10 4
Naphthalene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	<0.25 <0.05	46 87	44 79	10-142	10
1,2,3-Trichlorobenzene	mg/kg (ppm)	2.5	<0.25	73	66	20-144	10

ENVIRONMENTAL CHEMISTS

Date of Report: 02/06/19 Date Received: 01/31/19

Project: Morell's Walker Chevy 080190, F&BI 901423

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: Laboratory Control Sample

· ·	-		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Dichlorodifluoromethane	mg/kg (ppm)	2.5	47	10-146
Chloromethane	mg/kg (ppm)	2.5	67	27-133
Vinyl chloride Bromomethane	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	80 89	22-139 38-114
Chloroethane	mg/kg (ppm)	2.5	94	10-163
Trichlorofluoromethane	mg/kg (ppm)	2.5	101	10-196
Acetone	mg/kg (ppm)	12.5	100	52-141
1,1-Dichloroethene	mg/kg (ppm)	2.5	102	47-128
Hexane	mg/kg (ppm)	2.5	82	43-142
Methylene chloride Methyl t-butyl ether (MTBE)	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	109 101	42-132 60-123
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	107	67-127
1,1-Dichloroethane	mg/kg (ppm)	2.5	108	68-115
2,2-Dichloropropane	mg/kg (ppm)	2.5	117	52-170
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	111	72-113
Chloroform	mg/kg (ppm)	2.5	110	66-120
2-Butanone (MEK) 1,2-Dichloroethane (EDC)	mg/kg (ppm) mg/kg (ppm)	12.5 2.5	93 101	57-123 56-135
1,1,1-Trichloroethane	mg/kg (ppm)	2.5	112	62-131
1,1-Dichloropropene	mg/kg (ppm)	2.5	104	69-128
Carbon tetrachloride	mg/kg (ppm)	2.5	112	60-139
Benzene	mg/kg (ppm)	2.5	98	68-114
Trichloroethene	mg/kg (ppm)	2.5	103	64-117
1,2-Dichloropropane	mg/kg (ppm)	2.5	96	72-127
Bromodichloromethane Dibromomethane	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	100 99	72-130 70-120
4-Methyl-2-pentanone	mg/kg (ppm)	12.5	90	45-145
cis-1,3-Dichloropropene	mg/kg (ppm)	2.5	93	75-136
Toluene	mg/kg (ppm)	2.5	100	66-126
trans-1,3-Dichloropropene	mg/kg (ppm)	2.5	90	72-132
1,1,2-Trichloroethane	mg/kg (ppm)	2.5	93	75-113
2-Hexanone	mg/kg (ppm)	12.5	77 88	33-152 72-130
1,3-Dichloropropane Tetrachloroethene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	106	72-130 72-114
Dibromochloromethane	mg/kg (ppm)	2.5	104	74-125
1,2-Dibromoethane (EDB)	mg/kg (ppm)	2.5	91	74-132
Chlorobenzene	mg/kg (ppm)	2.5	99	76-111
Ethylbenzene	mg/kg (ppm)	2.5	100	64-123
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	2.5	116	69-135
m.p-Xylene o-Xylene	mg/kg (ppm) mg/kg (ppm)	5 2.5	102 101	78-122 77-124
Styrene	mg/kg (ppm)	2.5	103	74-126
Isopropylbenzene	mg/kg (ppm)	2.5	108	76-127
Bromoform	mg/kg (ppm)	2.5	108	56-132
n-Propylbenzene	mg/kg (ppm)	2.5	101	74-124
Bromobenzene	mg/kg (ppm)	2.5	98	72-122
1,3,5-Trimethylbenzene 1,1,2,2-Tetrachloroethane	mg/kg (ppm)	2.5 2.5	105 101	76-126 56-143
1,2,3-Trichloropropane	mg/kg (ppm) mg/kg (ppm)	2.5	92	61-137
2-Chlorotoluene	mg/kg (ppm)	2.5	104	74-121
4-Chlorotoluene	mg/kg (ppm)	2.5	99	75-122
tert-Butylbenzene	mg/kg (ppm)	2.5	107	73-130
1,2,4-Trimethylbenzene	mg/kg (ppm)	2.5	103	76-125
sec-Butylbenzene	mg/kg (ppm)	2.5	105	71-130
p-Isopropyltoluene 1.3-Dichlorobenzene	mg/kg (ppm)	2.5 2.5	106 102	70-132 75-121
1,4-Dichlorobenzene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	98	75-121 74-117
1,2-Dichlorobenzene	mg/kg (ppm)	2.5	105	76-121
1,2-Dibromo-3-chloropropane	mg/kg (ppm)	2.5	112	58-138
1,2,4-Trichlorobenzene	mg/kg (ppm)	2.5	108	64-135
Hexachlorobutadiene	mg/kg (ppm)	2.5	108	50-153
Naphthalene	mg/kg (ppm)	2.5	111	63-140
1,2,3-Trichlorobenzene	mg/kg (ppm)	2.5	110	63-138

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- \boldsymbol{J} The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- \boldsymbol{L} The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- \mbox{pc} The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- $\mbox{\it ve}$ The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Ph. (206) 285-8282	3012 16th Avenue West Seattle, WA 98119-2029	Friedman & Bruya, Inc.									B-24-60.5	8-24-55.5	Sample ID		Phone 206 8385831 Er	City, State, ZIP	Company Atspect	Report To Dave Hether	901423
Received by:	Received by: DAGD Relinquished by:	Relinquished by: Dand Hoffmen	SI								12A.D	II A.D	Lab ID	7	Email duffrer	an paint, print,		ethrer	>>>
Pars -		Dame Hay	SIGNATURE								1/31	1/31	Date Sampled					the factor of the party of the	
	NEARCE	how									0110	5400	Time Sampled			- REMARKS	Mar	PROJE	SAMPL
Nhan	DAUS DU CALA	David Heffner		And the first tender of the control			•				S	8	Sample Type			RKS	Morelis/ Walker Chary	Droince NAME	SAMPLE CHAIN OF CUSTODY ME 61/
	206	F	PRI						[4	4	# of Jars				alka		OF ture)
Dhan	12	茅	PRINT NAME			·							TPH-HCID	Ħ			2	102	CUS
22	3	ç	AME							·····			TPH-Diesel				ren	R	OTS
										 			TPH-Gasoline					13-	YG
													BTEX by 8021B	A			0	574	W.
						·		•					VOCs by 8260C SVOCs by 8270D	ÀĹY	主	INVOICE TO	080190		10
7	E	\$												SES		OICI	190	₽ # 0₫	(3)
FIBI	8	Aspect	COI							 			PAHs 8270D SIM	ANALYSES REQUESTED		OT			10
	0	4	COMPANY											UES			<u> </u>		
		***************************************	YY		San			***************************************							□ Other	<u>\$</u>	Rusl	2	
					aple										her_	SAI spose	JSH_ n chau	in Till	Page #
I	, you	1/6	ū		Samples received at					,		Р			☐ Other	SAMPLE DISPOSAL SAMPLE DISPOSAL A in a in a in a in a in a in a in a in	MRUSH 4 Day Rush charges authorized by:	TURNAROUND TIME	#
1/1/2	1/1	1/19	DATE		eive					,	,	Please			Services) DISI 30 da	1 2 m	OUN	2
			\perp		d at					÷	-	e H	Notes		***************************************	POSA tys	Teg &	DTI	55 J
x/19 11 cs	15:01	8:50	HMIL	Wallet 144 - Taballe 144 - Tab	<u> </u> 4							HOLD			***************************************	Ŀ	y;	Œ	N-c
		L	لــا		ငိ				Ĭ					٢	<u> </u>		<u>L</u>		l

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

February 6, 2019

Dave Heffner, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Mr Heffner:

Included are the results from the testing of material submitted on February 1, 2019 from the Morell's Walker Chevy 080190, F&BI 902014 project. There are 8 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Data Aspect ASP0206R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on February 1, 2019 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Morell's Walker Chevy 080190, F&BI 902014 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Aspect Consulting, LLC
902014 -01	B-27-5.5
902014 -02	B-27-10.5
902014 -03	B-27-15.5
902014 -04	B-27-20.5
902014 -05	B-27-25.5
902014 -06	B-27-30.5
902014 -07	B-27-35.5
902014 -08	B-27-40.5
902014 -09	B-27-45.5
902014 -10	B-27-50.5
902014 -11	B-27-55.5
902014 -12	B-27-60.5

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	B-27-5.5	Client:	Aspect Consulting, LLC
Date Received:	02/01/19	Project:	Morell's Walker Chevy 080190

Date Extracted: 02/01/19 Lab ID: 902014-01 Date Analyzed: 02/01/19 Data File: 020121.D Matrix: Soil Instrument: GCMS4 mg/kg (ppm) Dry Weight Units: MS/JS Operator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	62	142
Toluene-d8	101	55	145
4-Bromofluorobenzene	94	65	139

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Hexane	< 0.25	o-Xylene	< 0.05
Methylene chloride	< 0.5	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Bromoform	< 0.05
1,1-Dichloroethane	< 0.05	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	< 0.5	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.05	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.03	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.02	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.05	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.05
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	B-27-30.5	Client:	Aspect Consulting, LLC
Date Received:	02/01/19	Project:	Morell's Walker Chevy 080190

Date Extracted: 02/01/19 Lab ID: 902014-06 Data File: Date Analyzed: 02/01/19 020122.D Matrix: Soil Instrument: GCMS4 mg/kg (ppm) Dry Weight Units: Operator: MS/JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	62	142
Toluene-d8	103	55	145
4-Bromofluorobenzene	97	65	139

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Hexane	< 0.25	o-Xylene	< 0.05
Methylene chloride	< 0.5	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Bromoform	< 0.05
1,1-Dichloroethane	< 0.05	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	< 0.5	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.05	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.03	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.02	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.05	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.05
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	B-27-50.5	Client:	Aspect Consulting, LLC
Date Received:	02/01/19	Project:	Morell's Walker Chevy 080190

Date Extracted: 02/01/19 Lab ID: 902014-10 Data File: Date Analyzed: 02/01/19 020123.D Matrix: Soil Instrument: GCMS4 mg/kg (ppm) Dry Weight Units: Operator: MS/JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	62	142
Toluene-d8	100	55	145
4-Bromofluorobenzene	96	65	139

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Hexane	< 0.25	o-Xylene	< 0.05
Methylene chloride	< 0.5	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Bromoform	< 0.05
1,1-Dichloroethane	< 0.05	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	< 0.5	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.05	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.03	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.02	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.05	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.05
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Method Blank Client: Aspect Consulting, LLC
Date Received: Not Applicable Project: Morell's Walker Chevy 080190

Date Extracted: 02/01/19 Lab ID: 09-0199 mb Date Analyzed: 02/01/19 Data File: 020110.D Matrix: Soil Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight Operator: MS/JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	62	142
Toluene-d8	98	55	145
4-Bromofluorobenzene	95	65	139

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Hexane	< 0.25	o-Xylene	< 0.05
Methylene chloride	< 0.5	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Bromoform	< 0.05
1,1-Dichloroethane	< 0.05	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	< 0.5	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.05	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.03	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.02	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.05	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.05
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Date of Report: 02/06/19 Date Received: 02/01/19

Project: Morell's Walker Chevy 080190, F&BI 902014

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 901411-01 (Matrix Spike)

Reporting Reporting Spike Result Recovery Recovery Acceptance Reporting Climit 20				Sample	Percent	Percent		
Dichlarder mykg (ppm)		Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Chloromethame mpkg (ppm) 2.5 0.05 4.6 4.4 10.128 4. Vinyl chloride mpkg (ppm) 2.5 0.05 4.6 4.6 10.138 4. Vinyl chloride mpkg (ppm) 2.5 0.05 4.6 4.6 4.7 10.176 6. Vinyl chloride mpkg (ppm) 2.5 0.4 10.176 6. Vinyl chloride mpkg (ppm) 2.5 0.5 0.5 2.6 10.176 6. Vinyl chloride mpkg (ppm) 2.5 0.6 10.176 6. Vinyl chloride mpkg (ppm) 2.5 0.6 10.176 10.176 6. Vinyl chloride mpkg (ppm) 2.5 0.6 10.176 10	Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Viny chloride mykk (ppm) 2.5								
Broinsenthane								
Chlorechane								
Trichinordunomethane								5
Acetone								
Heanne		mg/kg (ppm)						
Methylt-butylether (MTBE)		mg/kg (ppm)						
Methylt-buryl ether (MTBE)								
trans-12-Dichlorocthane mg/kg (ppm)		mg/kg (ppm)						
1.1-Dichlororethane								9
2.2-Dichloropropane								
Chloroform		mg/kg (ppm)						
2-Butanone (MEK)								
1,2-Dichloroethane (EDC)								
1.11-Trichloroethane mg/kg (ppm) 2.5 <0.05 75 72 10 156 4 1.11-Dichloropropene mg/kg (ppm) 2.5 <0.05 70 68 68 17 140 0 Carbon tetrachloride mg/kg (ppm) 2.5 <0.05 70 68 9 164 3 Benzene mg/kg (ppm) 2.5 <0.03 72 72 29 129 0 Trichloroethene mg/kg (ppm) 2.5 <0.02 72 68 21 139 6 1.21-Dichloropropane mg/kg (ppm) 2.5 <0.02 72 78 30 131 1 Bromodichloromethane mg/kg (ppm) 2.5 <0.05 77 78 22 145 1 4 Methyl 2-pentanone mg/kg (ppm) 2.5 <0.05 77 78 22 145 1 4 Methyl 2-pentanone mg/kg (ppm) 2.5 <0.05 77 78 22 145 1 4 Methyl 2-pentanone mg/kg (ppm) 2.5 <0.05 77 78 22 145 1 4 Methyl 2-pentanone mg/kg (ppm) 2.5 <0.05 70 78 28 144 11 Tollene mg/kg (ppm) 2.5 <0.05 77 78 28 144 11 Tollene mg/kg (ppm) 2.5 <0.05 77 78 28 144 11 Tollene mg/kg (ppm) 2.5 <0.05 77 78 28 149 9 1.12-Trichloropropene mg/kg (ppm) 2.5 <0.05 77 78 28 149 9 1.13-Dichloropropene mg/kg (ppm) 2.5 <0.05 77 88 29 149 9 1.13-Dichloropropene mg/kg (ppm) 2.5 <0.05 77 88 28 149 9 1.13-Dichloropropene mg/kg (ppm) 2.5 <0.05 77 88 28 149 9 1.13-Dichloropropane mg/kg (ppm) 2.5 <0.05 77 88 28 149 9 1.14-Trichloroethane mg/kg (ppm) 2.5 <0.05 67 81 15 166 19 1.3-Dichloropropane mg/kg (ppm) 2.5 <0.05 67 81 15 166 19 1.3-Dichloropropane mg/kg (ppm) 2.5 <0.05 67 81 15 166 19 1.3-Dichloropropane mg/kg (ppm) 2.5 <0.05 67 81 15 166 19 1.11-Tetrachloroethane mg/kg (ppm) 2.5 <0.05 67 81 82 83 13 13 13 1.11-Tetrachloroethane mg/kg (ppm) 2.5 <0.05 67 83 23 43 3 1.11-Tetrachloroethane mg/kg (ppm) 2.5 <0.05 68 68 79 31 43 8 1.12-Tetrachloroethane mg/kg (ppm) 2.5								
1.1-Dichloropropene								
Carbon tetrachloride		mg/kg (ppm)						
Trichloroethene	Carbon tetrachloride	mg/kg (ppm)						
1.2-Dichloropropane mg/kg (ppm) 2.5 0.005 72 73 30-135 1		mg/kg (ppm)						
Bromodichloromethane								
Dibromomethane		mg/kg (ppm)						
A-Methyl-2-pentanone mg/kg (ppm) 125 < .0.5 76								
cis-13-Dichloropropene mg/kg (ppm) 2.5 <0.05 70 78 28-144 11 Toluene mg/kg (ppm) 2.5 <0.05 68 88 35-130 0 trans-13-Dichloropropene mg/kg (ppm) 2.5 <0.05 80 86 10-205 7 2-Hexanone mg/kg (ppm) 2.5 <0.05 70 80 31-137 13 13-Dichloropropane mg/kg (ppm) 2.5 <0.05 70 80 31-137 13 Tetrachloroethene mg/kg (ppm) 2.5 <0.05 70 80 31-337 13 12-Dibromoethane mg/kg (ppm) 2.5 <0.05 81 82 28-142 7 12-Dibromoethane (EDB) mg/kg (ppm) 2.5 <0.05 71 76 28-142 7 12-Dibromoethane (EDB) mg/kg (ppm) 2.5 <0.05 71 76 28-142 7 12-Distractione (EDB) mg/kg (ppm) 2.5 <0.05 71								
Trans-13-Dichloropropene								11
1,1,2-Trichloroethane								
2-Hexanone								
1.3-Dichloropropane								
Tetrachloroethene Dibromochloromethane mg/kg (ppm) 2.5 <0.025 60 62 20.133 3 1.2-Dibromochane (EDB) mg/kg (ppm) 2.5 <0.05 71 76 28.142 7 Chlorobenzene mg/kg (ppm) 2.5 <0.05 71 72 32.129 1 Ethylbenzene mg/kg (ppm) 2.5 <0.05 65 65 65 32.137 0 1.1,1.2-Tetrachloroethane mg/kg (ppm) 2.5 <0.05 86 79 31.143 8 mg-Xylene mg/kg (ppm) 2.5 <0.05 65 65 33.134 3 np-Xylene mg/kg (ppm) 2.5 <0.05 64 62 33.134 3 Styrene mg/kg (ppm) 2.5 <0.05 64 62 33.134 3 Styrene mg/kg (ppm) 2.5 <0.05 64 62 33.134 3 Styrene mg/kg (ppm) 2.5 <0.05 64 62 33.134 3 Isopropylbenzene mg/kg (ppm) 2.5 <0.05 64 63 31.142 2 Bromoform mg/kg (ppm) 2.5 <0.05 64 63 31.142 2 Bromoform mg/kg (ppm) 2.5 <0.05 64 63 31.142 2 mg/kg (ppm) 2.5 <0.05 64 63 31.142 2 mg/kg (ppm) 2.5 <0.05 64 63 31.142 2 mg/kg (ppm) 2.5 <0.05 64 63 31.142 2 mg/kg (ppm) 2.5 <0.05 64 63 31.142 2 mg/kg (ppm) 2.5 <0.05 64 63 31.142 2 mg/kg (ppm) 2.5 <0.05 66 68 89 21.156 3 n-Propylbenzene mg/kg (ppm) 2.5 <0.05 69 73 34.130 6 1.3.5-Trimethylbenzene mg/kg (ppm) 2.5 <0.05 69 73 34.130 6 1.3.5-Trimethylbenzene mg/kg (ppm) 2.5 <0.05 69 73 34.130 6 1.1.2.2-Tetrachloroethane mg/kg (ppm) 2.5 <0.05 66 64 31.134 3 61.1.2.2-Tetrachloroethane mg/kg (ppm) 2.5 <0.05 66 64 31.134 3 61.1.2.2-Tetrachloroethane mg/kg (ppm) 2.5 <0.05 66 64 31.134 3 61.1.2.3-Trichloropropane mg/kg (ppm) 2.5 <0.05 66 64 31.134 3 61.1.2.3-Trichloropropane mg/kg (ppm) 2.5 <0.05 66 64 31.134 3 61.1.2.4-Trimethylbenzene mg/kg (ppm) 2.5 <0.05 67 79 25.144 5 mg/kg (ppm) 2.5 <0.05 67 69 29.129 0 1.2.4-Trimethylbenzene mg/kg (ppm) 2.5 <0.05 67 67 67 29.129 0 1.2.4-Trinchylbenzene mg/kg (ppm) 2.5 <0.05 67 67 67 29.129 0 1.2.5-Dichlorobenzene mg/kg (ppm) 2.5 <0.05 66 60 22.142 10 Hexachlorobutadiene mg/kg (ppm) 2.5 <0.05 67 67 67 29.129 0 1.2.1-Dichlorobenzene mg/kg (ppm) 2.5 <0.05 67 67 67 29.129 0 1.2.1-Dichlorobenzene mg/kg (ppm) 2.5 <0.05 68 60 22.142 10 Hexachlorobutadiene mg/kg (ppm) 2.5 <0.05 68 60 22.142 10 Hexachlorobutadiene mg/kg (ppm) 2.5 <0.05 67 79 14.1157 10		mg/kg (ppm)						
Dibromochloromethane mg/kg (ppm) 2.5 0.005 71 76 28-142 77		mg/kg (ppm)						
1.2-Dibromoethane (EDB)								
Ethylbenzene		mg/kg (ppm)						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
mp-Xylene mg/kg (ppm) 5 <.0.1 65 65 34-136 0 o-Xylene mg/kg (ppm) 2.5 <0.05								
o-Xylene mg/kg (ppm) 2.5 <0.05 64 62 33-134 3 Styrene mg/kg (ppm) 2.5 <0.05								
Styren								
n-Propylbenzene mg/kg (ppm) 2.5 <0.05 57 58 23-146 2 Bromobenzene mg/kg (ppm) 2.5 <0.05 69 73 34-130 6 1.3.5-Trimethylbenzene mg/kg (ppm) 2.5 <0.05 55 52 18-149 6 1.1.2.2-Tetrachloroethane mg/kg (ppm) 2.5 <0.05 102 103 28-140 1 1.2.3-Trichloropropane mg/kg (ppm) 2.5 <0.05 75 79 25-144 5 2-Chlorotoluene mg/kg (ppm) 2.5 <0.05 66 64 31-134 3 4-Chlorotoluene mg/kg (ppm) 2.5 <0.05 66 64 31-136 0 1.2.4-Trimethylbenzene mg/kg (ppm) 2.5 <0.05 57 53 30-137 7 1.2.4-Trimethylbenzene mg/kg (ppm) 2.5 <0.05 57 54 10-182 5 sec-Butylbenzene mg/kg (ppm) 2.5 <0.05 57 54 10-182 5 sec-Butylbenzene mg/kg (ppm) 2.5 <0.05 54 50 23-145 8 p-Isopropyltoluene mg/kg (ppm) 2.5 <0.05 54 50 23-145 8 p-Isopropyltoluene mg/kg (ppm) 2.5 <0.05 57 66 30-131 2 1.4-Dichlorobenzene mg/kg (ppm) 2.5 <0.05 67 66 30-131 2 1.4-Dichlorobenzene mg/kg (ppm) 2.5 <0.05 67 66 30-131 2 1.4-Dichlorobenzene mg/kg (ppm) 2.5 <0.05 73 69 31-132 6 1.2-Dibromo-3-chloropropane mg/kg (ppm) 2.5 <0.5 90 80 11-161 12 1.2-L-Trichlorobenzene mg/kg (ppm) 2.5 <0.25 66 60 60 22-142 10 Hexachlorobutadiene mg/kg (ppm) 2.5 <0.25 46 44 10-142 4 Naphthalene mg/kg (ppm) 2.5 <0.25 46 44 10-142 4 Naphthalene mg/kg (ppm) 2.5 <0.25 46 44 10-142 4 Naphthalene								3
n-Propylbenzene mg/kg (ppm) 2.5 <0.05 57 58 23-146 2 Bromobenzene mg/kg (ppm) 2.5 <0.05 69 73 34-130 6 1.3.5-Trimethylbenzene mg/kg (ppm) 2.5 <0.05 55 52 18-149 6 1.1.2.2-Tetrachloroethane mg/kg (ppm) 2.5 <0.05 102 103 28-140 1 1.2.3-Trichloropropane mg/kg (ppm) 2.5 <0.05 75 79 25-144 5 2-Chlorotoluene mg/kg (ppm) 2.5 <0.05 66 64 31-134 3 4-Chlorotoluene mg/kg (ppm) 2.5 <0.05 66 64 31-134 3 4-Chlorotoluene mg/kg (ppm) 2.5 <0.05 57 53 30-137 7 1.2.4-Trimethylbenzene mg/kg (ppm) 2.5 <0.05 57 51 102 103 28-140 1 1.2.5-Trichloropropane mg/kg (ppm) 2.5 <0.05 66 64 64 31-136 0 1.3-136		mg/kg (ppm)						2
Bromobenzene								3
1,3,5-Trimethylbenzene								
1,1,2,2-Tetrachloroethane mg/kg (ppm) 2.5 <0.05		mg/kg (ppm)						
1,2,3-Trichloropropane								
2-Chlorotoluene mg/kg (ppm) 2.5 <0.05 66 64 31-134 3 4-Chlorotoluene mg/kg (ppm) 2.5 <0.05 64 64 31-136 0 tert-Butylbenzene mg/kg (ppm) 2.5 <0.05 57 53 30-137 7 1.2,4-Trimethylbenzene mg/kg (ppm) 2.5 <0.05 57 54 10-182 5 sec-Butylbenzene mg/kg (ppm) 2.5 <0.05 57 54 10-182 5 sec-Butylbenzene mg/kg (ppm) 2.5 <0.05 52 49 10-182 8 p-Isopropyltoluene mg/kg (ppm) 2.5 <0.05 52 49 21-149 6 1.3-Dichlorobenzene mg/kg (ppm) 2.5 <0.05 67 66 30-131 2 1.4-Dichlorobenzene mg/kg (ppm) 2.5 <0.05 67 67 29-129 0 1.2-Dichlorobenzene mg/kg (ppm) 2.5 <0.05 73 69 31-132 6 1.2-Dibromo-3-chloropropane mg/kg (ppm) 2.5 <0.05 90 80 11-161 12 1.2,4-Trichlorobenzene mg/kg (ppm) 2.5 <0.25 66 60 22-142 10 Hexachlorobutadiene mg/kg (ppm) 2.5 <0.25 46 44 10-142 4 Naphthalene mg/kg (ppm) 2.5 <0.05 87 79 14-157 10								
tert-Butylbenzene mg/kg (ppm) 2.5 <0.05 57 53 30-137 7 1.2.4-Trimethylbenzene mg/kg (ppm) 2.5 <0.05		mg/kg (ppm)						3
1.2,4-Trimethylbenzene mg/kg (ppm) 2.5 <0.05								
sec-Butylbenzene mg/kg (ppm) 2.5 <0.05 54 50 23-145 8 p-Isopropyltoluene mg/kg (ppm) 2.5 <0.05								
p-Isopropyltoluene mg/kg (ppm) 2.5 <0.05 52 49 21-149 6 1.3-Dichlorobenzene mg/kg (ppm) 2.5 <0.05 67 66 30-131 2 1.4-Dichlorobenzene mg/kg (ppm) 2.5 <0.05 67 67 29-129 0 1.2-Dichlorobenzene mg/kg (ppm) 2.5 <0.05 73 69 31-132 6 1.2-Dibromo-3-chloropropane mg/kg (ppm) 2.5 <0.05 90 80 11-161 12 1.2.4-Trichlorobenzene mg/kg (ppm) 2.5 <0.25 66 60 22-142 10 1.2-Leachlorobutadiene mg/kg (ppm) 2.5 <0.25 46 44 10-142 4 1.2-Naphthalene mg/kg (ppm) 2.5 <0.05 87 79 14-157 10								
1,3-Dichlorobenzene mg/kg (ppm) 2.5 <0.05								
1,4-Dichlorobenzene mg/kg (ppm) 2.5 <0.05								
1,2-Dichlorobenzene mg/kg (ppm) 2.5 <0.05	1,4-Dichlorobenzene	mg/kg (ppm)						
1,2,4-Trichlorobenzene mg/kg (ppm) 2.5 <0.25		mg/kg (ppm)						
Hexachlorobutadiene mg/kg (ppm) 2.5 <0.25 46 44 10-142 4 Naphthalene mg/kg (ppm) 2.5 <0.05								
Naphthalene mg/kg (ppm) 2.5 <0.05 87 79 14-157 10		mg/kg (ppm)						

ENVIRONMENTAL CHEMISTS

Date of Report: 02/06/19 Date Received: 02/01/19

Project: Morell's Walker Chevy 080190, F&BI 902014

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: Laboratory Control Sample

	_		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Dichlorodifluoromethane	mg/kg (ppm)	2.5	47	10-146
Chloromethane	mg/kg (ppm)	2.5 2.5	67 80	27-133
Vinyl chloride Bromomethane	mg/kg (ppm) mg/kg (ppm)	2.5	89	22-139 38-114
Chloroethane	mg/kg (ppm)	2.5	94	10-163
Trichlorofluoromethane	mg/kg (ppm)	2.5	101	10-196
Acetone	mg/kg (ppm)	12.5	100	52-141
1,1-Dichloroethene	mg/kg (ppm)	2.5	102	47-128
Hexane	mg/kg (ppm)	2.5	82	43-142
Methylene chloride Methyl t-butyl ether (MTBE)	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	109 101	42-132 60-123
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	107	67-127
1,1-Dichloroethane	mg/kg (ppm)	2.5	108	68-115
2,2-Dichloropropane	mg/kg (ppm)	2.5	117	52-170
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	111	72-113
Chloroform	mg/kg (ppm)	2.5	110	66-120
2-Butanone (MEK)	mg/kg (ppm)	12.5	93	57-123
1,2-Dichloroethane (EDC) 1,1,1-Trichloroethane	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	101 112	56-135 62-131
1,1-Dichloropropene	mg/kg (ppm)	2.5	104	69-128
Carbon tetrachloride	mg/kg (ppm)	2.5	112	60-139
Benzene	mg/kg (ppm)	2.5	98	68-114
Trichloroethene	mg/kg (ppm)	2.5	103	64-117
1,2-Dichloropropane	mg/kg (ppm)	2.5	96	72-127
Bromodichloromethane	mg/kg (ppm)	2.5	100	72-130
Dibromomethane 4-Methyl-2-pentanone	mg/kg (ppm) mg/kg (ppm)	2.5 12.5	99 90	70-120 45-145
cis-1,3-Dichloropropene	mg/kg (ppm)	2.5	93	75-136
Toluene	mg/kg (ppm)	2.5	100	66-126
trans-1,3-Dichloropropene	mg/kg (ppm)	2.5	90	72-132
1,1,2-Trichloroethane	mg/kg (ppm)	2.5	93	75-113
2-Hexanone	mg/kg (ppm)	12.5	77	33-152
1,3-Dichloropropane	mg/kg (ppm)	2.5	88	72-130 72-114
Tetrachloroethene Dibromochloromethane	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	106 104	72-114 74-125
1.2-Dibromoethane (EDB)	mg/kg (ppm)	2.5	91	74-123
Chlorobenzene	mg/kg (ppm)	2.5	99	76-111
Ethylbenzene	mg/kg (ppm)	2.5	100	64-123
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	2.5	116	69-135
m,p-Xylene	mg/kg (ppm)	5	102	78-122
o-Xylene Styrene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	101 103	77-124 74-126
Isopropylbenzene	mg/kg (ppm)	2.5	103	76-127
Bromoform	mg/kg (ppm)	2.5	108	56-132
n-Propylbenzene	mg/kg (ppm)	2.5	101	74-124
Bromobenzene	mg/kg (ppm)	2.5	98	72-122
1,3,5-Trimethylbenzene	mg/kg (ppm)	2.5	105	76-126
1,1,2,2-Tetrachloroethane 1,2,3-Trichloropropane	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	101 92	56-143 61-137
2-Chlorotoluene	mg/kg (ppm)	2.5	104	74-121
4-Chlorotoluene	mg/kg (ppm)	2.5	99	75-122
tert-Butylbenzene	mg/kg (ppm)	2.5	107	73-130
1,2,4-Trimethylbenzene	mg/kg (ppm)	2.5	103	76-125
sec-Butylbenzene	mg/kg (ppm)	2.5	105	71-130
p-Isopropyltoluene	mg/kg (ppm)	2.5	106	70-132
1,3-Dichlorobenzene 1,4-Dichlorobenzene	mg/kg (ppm)	2.5 2.5	102 98	75-121 74-117
1,2-Dichlorobenzene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	98 105	74-117 76-121
1,2-Dibromo-3-chloropropane	mg/kg (ppm)	2.5	112	58-138
1,2,4-Trichlorobenzene	mg/kg (ppm)	2.5	108	64-135
Hexachlorobutadiene	mg/kg (ppm)	2.5	108	50-153
Naphthalene	mg/kg (ppm)	2.5	111	63-140
1,2,3-Trichlorobenzene	mg/kg (ppm)	2.5	110	63-138

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- \boldsymbol{J} The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- $\mbox{\it ve}$ The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Ph. (206) 285-8282 Seattle, WA 98119-2029 3012 16th Avenue West Friedman & Bruya, Inc. Phone_ Company 145 peet Report To Dave Heffner HORDH City, State, ZIP Seattle WA 98104 Address 710 2nd Are 8-27-55.5 8-27-60,5 Sample ID Email dhethrer byreer Received by Relinquished by: Dan's Hefferer Relinquished by: Received by: F - A-D Ste 550 Lab ID 7 SIGNATURE Trace Sampled Date -0110 0040 SAMPLE CHAIN OF CUSTODY Sampled SAMPLERS (signature) Buyn (7em Time REMARKS Movell's / Walker Chary PROJECT NAME Sample Shin Туре S S David Heffner ۲ Jars # of PRINT NAME 7 FLAS TPH-HCID TPH-Diesel TPH-Gasoline BTEX by 8021B 080190 ANALYSES REQUESTED VOCs by 8260C INVOICE TO A ME OD/OI なる SVOCs by 8270D PO# Aspect PAHs 8270D SIM COMPANY Samples received at **W**Dispose after 30 days □ Archive Samples Other Rush charges authorized by: ☐ Standard Turnaround TURNAROUND TIME Page #_ SAMPLE DISPOSAL Please, 2/1/19 DATE 2 of_ Notes HOLD 2 8:20 1/05 TIME ŝ

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

February 12, 2019

Dave Heffner, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Mr Heffner:

Included are the results from the testing of material submitted on February 6, 2019 from the Morell's 080190, F&BI 902073 project. There are 9 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Data Aspect ASP0212R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on February 6, 2019 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Morell's 080190, F&BI 902073 project. Samples were logged in under the laboratory ID's listed below.

Aspect Consulting, LLC
B-31-5.5
B-31-10.5
B-31-15.5
B-31-20.5
B-31-25.5
B-31-30.5
B-31-35.5
B-31-40.5
B-31-45.5
B-31-50.5
B-31-55.5
B-31-60.5

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	B-31-15.5	Client:	Aspect Consulting, LLC
Date Received:	02/06/19	Project:	Morell's 080190, F&BI 902073

Date Extracted: 02/07/19 Lab ID: 902073-03 Date Analyzed: 02/07/19 Data File: 020725.D Matrix: Soil Instrument: GCMS9 mg/kg (ppm) Dry Weight Units: Operator: MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	98	50	150
Toluene-d8	98	50	150
4-Bromofluorobenzene	99	50	150

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Hexane	< 0.25	o-Xylene	< 0.05
Methylene chloride	< 0.5	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Bromoform	< 0.05
1,1-Dichloroethane	< 0.05	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	< 0.5	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.05	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.03	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.02	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.05	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.05
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	B-31-40.5	Client:	Aspect Consulting, LLC
Date Received:	02/06/19	Project:	Morell's 080190, F&BI 902073

Date Extracted: 02/07/19 Lab ID: 902073-08 Date Analyzed: Data File: 02/07/19 020726.D Matrix: Soil Instrument: GCMS9 mg/kg (ppm) Dry Weight Units: Operator: MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	50	150
Toluene-d8	100	50	150
4-Bromofluorobenzene	101	50	150

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Hexane	< 0.25	o-Xylene	< 0.05
Methylene chloride	< 0.5	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Bromoform	< 0.05
1,1-Dichloroethane	< 0.05	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	< 0.5	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.05	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.03	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.02	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.05	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.05
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	B-31-55.5	Client:	Aspect Consulting, LLC
Date Received:	02/06/19	Project:	Morell's 080190, F&BI 902073

Date Extracted: 02/07/19 Lab ID: 902073-11 Date Analyzed: Data File: 02/07/19 020727.D Matrix: Soil Instrument: GCMS9 mg/kg (ppm) Dry Weight Units: Operator: MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	50	150
Toluene-d8	99	50	150
4-Bromofluorobenzene	99	50	150

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	0.058
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Hexane	< 0.25	o-Xylene	< 0.05
Methylene chloride	< 0.5	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Bromoform	< 0.05
1,1-Dichloroethane	< 0.05	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	< 0.5	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.05	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.03	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.02	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.05	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.05
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: B-31-60.5 Client: Aspect Consulting, LLC
Date Received: 02/06/19 Project: Morell's 080190, F&BI 902073

Date Extracted: 02/07/19 Lab ID: 902073-12 Data File: Date Analyzed: 020728.D 02/07/19 Matrix: Instrument: GCMS9 Soil mg/kg (ppm) Dry Weight Units: Operator: MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	50	150
Toluene-d8	97	50	150
4-Bromofluorobenzene	101	50	150

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	0.058
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Hexane	< 0.25	o-Xylene	< 0.05
Methylene chloride	< 0.5	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Bromoform	< 0.05
1,1-Dichloroethane	< 0.05	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	< 0.5	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.05	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.03	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.02	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.05	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.05
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Method Blank Client: Aspect Consulting, LLC
Date Received: Not Applicable Project: Morell's 080190, F&BI 902073

Date Extracted: 02/07/19 Lab ID: 09-0271 mb 02/07/19 Data File: Date Analyzed: 020711.D Matrix: Soil Instrument: GCMS9 Units: mg/kg (ppm) Dry Weight Operator: MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	50	150
Toluene-d8	98	50	150
4-Bromofluorobenzene	99	50	150

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Hexane	< 0.25	o-Xylene	< 0.05
Methylene chloride	< 0.5	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Bromoform	< 0.05
1,1-Dichloroethane	< 0.05	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	< 0.5	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.05	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.03	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.02	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.05	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.05
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Date of Report: 02/12/19 Date Received: 02/06/19

Project: Morell's 080190, F&BI 902073

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 902082-01 (Matrix Spike)

•	-		Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Ûnits	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Dichlorodifluoromethane	mg/kg (ppm)	2.5	<0.5	35	33	10-56	6
Chloromethane Vinyl chloride	mg/kg (ppm)	2.5 2.5	<0.5 <0.05	58 63	58 62	10-90 10-91	0 2
Bromomethane	mg/kg (ppm) mg/kg (ppm)	2.5	<0.5	74	73	10-91	1
Chloroethane	mg/kg (ppm)	2.5	<0.5	68	70 70	10-110	3
Trichlorofluoromethane	mg/kg (ppm)	2.5	< 0.5	67	68	10-95	1
Acetone	mg/kg (ppm)	12.5	< 0.5	98	99	11-141	1
1,1-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	76	76	22-107	0
Hexane	mg/kg (ppm)	2.5	< 0.25	62	63	10-95	2
Methylene chloride Methyl t-butyl ether (MTBE)	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	<0.5 <0.05	83 85	86 87	14-128 17-134	4 2
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	83	85	13-112	2
1,1-Dichloroethane	mg/kg (ppm)	2.5	< 0.05	85	88	23-115	3
2,2-Dichloropropane	mg/kg (ppm)	2.5	< 0.05	90	92	18-117	2
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	85	89	25-120	5
Chloroform	mg/kg (ppm)	2.5	< 0.05	85	86	29-117	1
2-Butanone (MEK)	mg/kg (ppm)	12.5	< 0.5	92	90	20-133	2
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	< 0.05	90 91	92 93	22-124 27-112	2 2
1,1,1-Trichloroethane 1,1-Dichloropropene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	<0.05 <0.05	83	93 85	26-107	2
Carbon tetrachloride	mg/kg (ppm)	2.5	< 0.05	88	90	28-126	2
Benzene	mg/kg (ppm)	2.5	< 0.03	86	87	26-114	1
Trichloroethene	mg/kg (ppm)	2.5	< 0.02	87	87	30-112	0
1,2-Dichloropropane	mg/kg (ppm)	2.5	< 0.05	92	92	31-119	0
Bromodichloromethane	mg/kg (ppm)	2.5	< 0.05	94	95	31-131	1
Dibromomethane	mg/kg (ppm)	2.5	< 0.05	89	89	27-124	0
4-Methyl-2-pentanone	mg/kg (ppm)	12.5	<0.5	99	98	16-147	1
cis-1,3-Dichloropropene Toluene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	<0.05 <0.05	95 87	96 89	28-137 34-112	1 2
trans-1,3-Dichloropropene	mg/kg (ppm)	2.5	< 0.05	94	95	30-136	1
1,1,2-Trichloroethane	mg/kg (ppm)	2.5	< 0.05	94	94	32-126	0
2-Hexanone	mg/kg (ppm)	12.5	<0.5	98	97	17-147	1
1,3-Dichloropropane	mg/kg (ppm)	2.5	< 0.05	92	91	29-125	1
Tetrachloroethene	mg/kg (ppm)	2.5	< 0.025	87	89	25-114	2
Dibromochloromethane	mg/kg (ppm)	2.5	< 0.05	98	99	32-143	1
1,2-Dibromoethane (EDB) Chlorobenzene	mg/kg (ppm)	2.5 2.5	<0.05 <0.05	101 86	100 87	32-126 37-113	1
Ethylbenzene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	<0.05 <0.05	89	90	34-115	1
1.1.1.2-Tetrachloroethane	mg/kg (ppm)	2.5	< 0.05	102	103	35-126	1
m,p-Xylene	mg/kg (ppm)	5	<0.1	88	90	25-125	2
o-Xylene	mg/kg (ppm)	2.5	< 0.05	88	90	27-126	2
Styrene	mg/kg (ppm)	2.5	< 0.05	91	94	39-121	3
Isopropylbenzene	mg/kg (ppm)	2.5	< 0.05	90	92	34-123	2
Bromoform	mg/kg (ppm)	2.5	< 0.05	97 90	100 90	18-155 31-120	3
n-Propylbenzene Bromobenzene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	<0.05 <0.05	90	90 92	40-115	2
1,3,5-Trimethylbenzene	mg/kg (ppm)	2.5	< 0.05	91	94	24-130	3
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	2.5	< 0.05	94	96	27-148	2
1,2,3-Trichloropropane	mg/kg (ppm)	2.5	< 0.05	93	92	33-123	1
2-Chlorotoluene	mg/kg (ppm)	2.5	< 0.05	91	92	39-110	1
4-Chlorotoluene	mg/kg (ppm)	2.5	< 0.05	91	91	39-111	0
tert-Butylbenzene	mg/kg (ppm)	2.5	< 0.05	91 90	93	36-116	2
1,2,4-Trimethylbenzene sec-Butylbenzene	mg/kg (ppm)	2.5 2.5	<0.05 <0.05	90 91	93 93	35-116 33-118	3
p-Isopropyltoluene	mg/kg (ppm) mg/kg (ppm)	2.5	< 0.05	90	93 92	32-119	2
1.3-Dichlorobenzene	mg/kg (ppm)	2.5	< 0.05	89	90	38-111	1
1,4-Dichlorobenzene	mg/kg (ppm)	2.5	< 0.05	86	87	39-109	1
1,2-Dichlorobenzene	mg/kg (ppm)	2.5	< 0.05	90	91	40-111	1
1,2-Dibromo-3-chloropropane	mg/kg (ppm)	2.5	< 0.5	97	95	47-127	2
1,2,4-Trichlorobenzene	mg/kg (ppm)	2.5	< 0.25	84	87	31-121	4
Hexachlorobutadiene	mg/kg (ppm)	2.5	< 0.25	86	90	24-128	5
Naphthalene 1,2,3-Trichlorobenzene	mg/kg (ppm)	2.5 2.5	<0.05 <0.25	87 85	88 88	24-139 35-117	1 3
1,6,5-11 ICHIOI ODEHZEHE	mg/kg (ppm)	د.۵	\0.23	99	00	35-117	ა

ENVIRONMENTAL CHEMISTS

Date of Report: 02/12/19 Date Received: 02/06/19

Project: Morell's 080190, F&BI 902073

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: Laboratory Control Sample

· ·	-		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Dichlorodifluoromethane	mg/kg (ppm)	2.5	62	10-76
Chloromethane	mg/kg (ppm)	2.5 2.5	80 90	34-98 42-107
Vinyl chloride Bromomethane	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	102	42-107 46-113
Chloroethane	mg/kg (ppm)	2.5	96	47-115
Trichlorofluoromethane	mg/kg (ppm)	2.5	98	53-112
Acetone	mg/kg (ppm)	12.5	97	39-147
1,1-Dichloroethene	mg/kg (ppm)	2.5	99	65-110
Hexane	mg/kg (ppm)	2.5 2.5	87 115	55-107 50-127
Methylene chloride Methyl t-butyl ether (MTBE)	mg/kg (ppm) mg/kg (ppm)	2.5	96	72-122
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	101	71-113
1,1-Dichloroethane	mg/kg (ppm)	2.5	99	74-109
2,2-Dichloropropane	mg/kg (ppm)	2.5	118	64-151
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	99	73-110
Chloroform	mg/kg (ppm)	2.5 12.5	97 86	76-110
2-Butanone (MEK) 1,2-Dichloroethane (EDC)	mg/kg (ppm) mg/kg (ppm)	2.5	86 97	60-121 73-111
1,1,1-Trichloroethane	mg/kg (ppm)	2.5	107	72-116
1,1-Dichloropropene	mg/kg (ppm)	2.5	95	72-112
Carbon tetrachloride	mg/kg (ppm)	2.5	107	67-123
Benzene	mg/kg (ppm)	2.5	94	72-106
Trichloroethene	mg/kg (ppm)	2.5	94	72-107
1,2-Dichloropropane Bromodichloromethane	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	96 102	74-115 75-126
Dibromomethane	mg/kg (ppm)	2.5	92	76-116
4-Methyl-2-pentanone	mg/kg (ppm)	12.5	97	80-128
cis-1,3-Dichloropropene	mg/kg (ppm)	2.5	97	71-138
Toluene	mg/kg (ppm)	2.5	97	74-111
trans-1,3-Dichloropropene	mg/kg (ppm)	2.5	97	77-135
1,1,2-Trichloroethane 2-Hexanone	mg/kg (ppm)	2.5 12.5	95 87	77-116 70-129
1,3-Dichloropropane	mg/kg (ppm) mg/kg (ppm)	2.5	90	75-115
Tetrachloroethene	mg/kg (ppm)	2.5	96	73-111
Dibromochloromethane	mg/kg (ppm)	2.5	107	64-152
1,2-Dibromoethane (EDB)	mg/kg (ppm)	2.5	100	77-117
Chlorobenzene	mg/kg (ppm)	2.5	91	76-109
Ethylbenzene 1,1,1,2-Tetrachloroethane	mg/kg (ppm)	2.5 2.5	96 119	75-112 76-125
m,p-Xylene	mg/kg (ppm) mg/kg (ppm)	2.5 5	97	77-115
o-Xylene	mg/kg (ppm)	2.5	99	76-115
Styrene	mg/kg (ppm)	2.5	97	76-119
Isopropylbenzene	mg/kg (ppm)	2.5	103	76-120
Bromoform	mg/kg (ppm)	2.5	106	50-174
n-Propylbenzene Bromobenzene	mg/kg (ppm)	2.5 2.5	99 97	77-115 76-112
1,3,5-Trimethylbenzene	mg/kg (ppm) mg/kg (ppm)	2.5	105	77-121
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	2.5	104	74-121
1,2,3-Trichloropropane	mg/kg (ppm)	2.5	96	74-116
2-Chlorotoluene	mg/kg (ppm)	2.5	101	75-113
4-Chlorotoluene	mg/kg (ppm)	2.5	96	77-115
tert-Butylbenzene	mg/kg (ppm)	2.5 2.5	105	77-123
1,2,4-Trimethylbenzene sec-Butylbenzene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	103 105	77-119 78-120
p-Isopropyltoluene	mg/kg (ppm)	2.5	104	77-120
1,3-Dichlorobenzene	mg/kg (ppm)	2.5	95	76-112
1,4-Dichlorobenzene	mg/kg (ppm)	2.5	92	74-109
1,2-Dichlorobenzene	mg/kg (ppm)	2.5	100	75-114
1,2-Dibromo-3-chloropropane	mg/kg (ppm)	2.5 2.5	106 100	68-122 75-122
1,2,4-Trichlorobenzene Hexachlorobutadiene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	100	75-122 74-130
Naphthalene	mg/kg (ppm)	2.5	100	73-122
1,2,3-Trichlorobenzene	mg/kg (ppm)	2.5	102	75-117

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- \boldsymbol{J} The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- \mbox{pc} The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- $\mbox{\it ve}$ The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Report To Dave Heffner Breeze Greek Address 710 2nd Au Ste 550 Company___ Phone 206 835 583 | City, State, ZIP Seathy WA 98/04 Ph. (206) 285-8282 Seattle, WA 98119-2029 3012 16th Avenue West Friedman & Bruya, Inc. 8-31-5.5 8-31-155 8-31-30,5 6-31-25.5 8-31-2015 8-31-35.5 6-31-40,5 8-31-10,5 8-31-505 B-31-45.5 902073 Sample ID topert Email du ffur Caspect consulting, com Relinquished 5: Relinquished by Received by Received by 2 02 4 00 S S 0 00 0 δ Lab ID A-D SIGNATURE 2/5/19 Sampled Date SAMPLE CHAIN OF CUSTODY 0000 0940 0930 Sampled joo 2007 1100 1030 SAMPLERS (signature) PROJECT NAME 1045 1130 REMARKS Time Morell's Sample Type **(**) のなかってかれ Viz Nebber-Brixe Jars # of _ eaboxylo PRINT NAME \leftarrow TPH-HCID TPH-Diesel TPH-Gasoline BTEX by 8021B ANALYSES REQUESTED VOCs by 8260C INVOICE TO 080190 ME PO# SVOCs by 8270D 8 62 PAHs 8270D SIM 02 F78 COMPANY PER PO 706-19 Samples received at | Standard Turnaround Dispose after 30 days
Of Archive Samples Rush charges authorized by: TURNAROUND TIME Page# SAMPLE DISPOSAL 461 DATE 2 Notes 8 TIME

City, State, ZIP Address Company_ Report To_ Phone 206838 583 | Seattle, WA 98119-2029 Friedman & Bruya, Inc. Ph. (206) 285-8282 3012 16th Avenue West B-31-555 B-31-60.5 Sample ID Dave Heffner / Breeyn Greer 9020F3 Hopeot Email Multine Relinquished Received by Received by: L Relinguished by: 7 II A-D Lab ID SIGNATURE 12/5/19 11/5/19 barret Sampled Date SAMPLE CHAIN OF CUSTODY Time Sampled ミス 1200 SAMPLERS (signature) PROJECT NAME REMARKS Monells Sample Туре S S 分死 13 Newber Banga baroar Jars # of _____ PRINT NAME NPCACE TPH-HCID TPH-Diesel TPH-Gasoline BTEX by 8021B ANALYSES REQUESTED VOCs by 8260C INVOICE TO F 080190 SVOCs by 8270D P0# Fig PAHs 8270D SIM COMPANY Dispose after 30 days
☐ Archive Samples Rush charges authorized by: XRUSH Turnaround □ Other_ Page# TURNAROUND TIME SAMPLE DISPOSAL 16:19 DATE 9° ° Notes 200 TIME

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

February 14, 2019

Dave Heffner, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Mr Heffner:

Included are the results from the testing of material submitted on February 7, 2019 from the Morrells 080190, F&BI 902103 project. There are 10 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: Data Aspect, Breeyn Greer ASP0214R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on February 7, 2019 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Morrells 080190, F&BI 902103 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Aspect Consulting, LLC
902103 -01	B-23-5.5
902103 -02	B-23-10.5
902103 -03	B-23-20.5
902103 -04	B-23-25.5
902103 -05	B-23-30.5
902103 -06	B-23-35.5
902103 -07	B-23-55.5

Methylene chloride was detected in the 8260C analysis of samples B-23-10.5, B-23-20.5, and B-23-55.5. The data were flagged as due to laboratory contamination.

The 8260C matrix spike and matrix spike duplicate failed the relative percent difference for several compounds. The laboratory control sample passed the acceptance criteria, therefore the results were likely due to matrix effect.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	B-23-5.5	Client:	Aspect Consulting, LLC
Date Received:	02/07/19	Project:	Morrells 080190, F&BI 902103

Date Extracted: 02/08/19 Lab ID: 902103-01 Data File: Date Analyzed: 02/11/19 021150.D Matrix: Soil Instrument: GCMS9 mg/kg (ppm) Dry Weight Units: Operator: MS

		Lower	Opper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	102	50	150
Toluene-d8	100	50	150
4-Bromofluorobenzene	101	50	150

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)	
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05	
Chloromethane	< 0.5	Tetrachloroethene	< 0.025	
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05	
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05	
Chloroethane	< 0.5	Chlorobenzene	< 0.05	
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05	
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05	
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1	
Hexane	< 0.25	o-Xylene	< 0.05	
Methylene chloride	< 0.5	Styrene	< 0.05	
Methyl t-butyl ether (MTBE)	< 0.05	Isopropylbenzene	< 0.05	
trans-1,2-Dichloroethene	< 0.05	Bromoform	< 0.05	
1,1-Dichloroethane	< 0.05	n-Propylbenzene	< 0.05	
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05	
cis-1,2-Dichloroethene	< 0.05	1,3,5-Trimethylbenzene	< 0.05	
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05	
2-Butanone (MEK)	< 0.5	1,2,3-Trichloropropane	< 0.05	
1,2-Dichloroethane (EDC)	< 0.05	2-Chlorotoluene	< 0.05	
1,1,1-Trichloroethane	< 0.05	4-Chlorotoluene	< 0.05	
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05	
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	0.14	
Benzene	< 0.03	sec-Butylbenzene	0.059	
Trichloroethene	< 0.02	p-Isopropyltoluene	0.058	
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05	
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05	
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05	
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5	
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25	
Toluene	< 0.05	Hexachlorobutadiene	< 0.25	
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.05	
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25	
2-Hexanone	< 0.5			

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: B-23-10.5 Client: Aspect Consulting, LLC
Date Received: 02/07/19 Project: Morrells 080190, F&BI 902103

Lab ID: Date Extracted: 02/08/19 902103-02 Date Analyzed: 02/11/19 Data File: 021153.D Matrix: Soil Instrument: GCMS9 Units: mg/kg (ppm) Dry Weight Operator: MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	50	150
Toluene-d8	98	50	150
4-Bromofluorobenzene	100	50	150

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)	
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05	
Chloromethane	< 0.5	Tetrachloroethene	0.40	
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05	
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05	
Chloroethane	< 0.5	Chlorobenzene	< 0.05	
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05	
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05	
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1	
Hexane	< 0.25	o-Xylene	< 0.05	
Methylene chloride	1.4 lc	Styrene	< 0.05	
Methyl t-butyl ether (MTBE)	< 0.05	Isopropylbenzene	< 0.05	
trans-1,2-Dichloroethene	< 0.05	Bromoform	< 0.05	
1,1-Dichloroethane	< 0.05	n-Propylbenzene	< 0.05	
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05	
cis-1,2-Dichloroethene	0.19	1,3,5-Trimethylbenzene	< 0.05	
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05	
2-Butanone (MEK)	< 0.5	1,2,3-Trichloropropane	< 0.05	
1,2-Dichloroethane (EDC)	< 0.05	2-Chlorotoluene	< 0.05	
1,1,1-Trichloroethane	< 0.05	4-Chlorotoluene	< 0.05	
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05	
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05	
Benzene	< 0.03	sec-Butylbenzene	< 0.05	
Trichloroethene	0.18	p-Isopropyltoluene	< 0.05	
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05	
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05	
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05	
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5	
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25	
Toluene	< 0.05	Hexachlorobutadiene	< 0.25	
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.05	
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25	
2-Hexanone	< 0.5			

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: B-23-20.5 Client: Aspect Consulting, LLC Date Received: 02/07/19 Project: Morrells 080190, F&BI 902103

Lab ID: Date Extracted: 02/08/19 902103-03 Date Analyzed: 02/11/19 Data File: 021148.D Matrix: Soil Instrument: GCMS9 Units: mg/kg (ppm) Dry Weight Operator: MS

		Lower	Opper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	50	150
Toluene-d8	100	50	150
4-Bromofluorobenzene	100	50	150

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)	
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05	
Chloromethane	< 0.5	Tetrachloroethene	0.045	
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05	
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05	
Chloroethane	< 0.5	Chlorobenzene	< 0.05	
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05	
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05	
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1	
Hexane	< 0.25	o-Xylene	< 0.05	
Methylene chloride	0.50 lc	Styrene	< 0.05	
Methyl t-butyl ether (MTBE)	< 0.05	Isopropylbenzene	< 0.05	
trans-1,2-Dichloroethene	< 0.05	Bromoform	< 0.05	
1,1-Dichloroethane	< 0.05	n-Propylbenzene	< 0.05	
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05	
cis-1,2-Dichloroethene	< 0.05	1,3,5-Trimethylbenzene	< 0.05	
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05	
2-Butanone (MEK)	< 0.5	1,2,3-Trichloropropane	< 0.05	
1,2-Dichloroethane (EDC)	< 0.05	2-Chlorotoluene	< 0.05	
1,1,1-Trichloroethane	< 0.05	4-Chlorotoluene	< 0.05	
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05	
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05	
Benzene	< 0.03	sec-Butylbenzene	< 0.05	
Trichloroethene	< 0.02	p-Isopropyltoluene	< 0.05	
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05	
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05	
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05	
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5	
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25	
Toluene	< 0.05	Hexachlorobutadiene	< 0.25	
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.05	
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25	
2-Hexanone	< 0.5			

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: B-23-25.5 Client: Aspect Consulting, LLC Date Received: 02/07/19 Project: Morrells 080190, F&BI 902103

Lab ID: Date Extracted: 02/08/19 902103-04 Date Analyzed: 02/12/19 Data File: 021154.D Matrix: Soil Instrument: GCMS9 Units: mg/kg (ppm) Dry Weight Operator: MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	102	50	150
Toluene-d8	99	50	150
4-Bromofluorobenzene	104	50	150

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)	
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05	
Chloromethane	< 0.5	Tetrachloroethene	2.3	
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05	
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05	
Chloroethane	< 0.5	Chlorobenzene	< 0.05	
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05	
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05	
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1	
Hexane	< 0.25	o-Xylene	< 0.05	
Methylene chloride	< 0.5	Styrene	< 0.05	
Methyl t-butyl ether (MTBE)	< 0.05	Isopropylbenzene	< 0.05	
trans-1,2-Dichloroethene	< 0.05	Bromoform	< 0.05	
1,1-Dichloroethane	< 0.05	n-Propylbenzene	< 0.05	
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05	
cis-1,2-Dichloroethene	< 0.05	1,3,5-Trimethylbenzene	0.11	
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05	
2-Butanone (MEK)	< 0.5	1,2,3-Trichloropropane	< 0.05	
1,2-Dichloroethane (EDC)	< 0.05	2-Chlorotoluene	< 0.05	
1,1,1-Trichloroethane	< 0.05	4-Chlorotoluene	< 0.05	
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05	
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05	
Benzene	< 0.03	sec-Butylbenzene	0.064	
Trichloroethene	< 0.02	p-Isopropyltoluene	0.094	
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05	
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05	
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05	
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5	
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25	
Toluene	< 0.05	Hexachlorobutadiene	< 0.25	
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.05	
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25	
2-Hexanone	< 0.5			

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: B-23-55.5 Client: Aspect Consulting, LLC Date Received: 02/07/19 Project: Morrells 080190, F&BI 902103

Lab ID: Date Extracted: 02/08/19 902103-07 Date Analyzed: 02/11/19 Data File: 021149.D Matrix: Soil Instrument: GCMS9 Units: mg/kg (ppm) Dry Weight Operator: MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	102	50	150
Toluene-d8	101	50	150
4-Bromofluorobenzene	102	50	150

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)	
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05	
Chloromethane	< 0.5	Tetrachloroethene	0.095	
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05	
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05	
Chloroethane	< 0.5	Chlorobenzene	< 0.05	
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05	
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05	
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1	
Hexane	< 0.25	o-Xylene	< 0.05	
Methylene chloride	0.83 lc	Styrene	< 0.05	
Methyl t-butyl ether (MTBE)	< 0.05	Isopropylbenzene	< 0.05	
trans-1,2-Dichloroethene	< 0.05	Bromoform	< 0.05	
1,1-Dichloroethane	< 0.05	n-Propylbenzene	< 0.05	
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05	
cis-1,2-Dichloroethene	< 0.05	1,3,5-Trimethylbenzene	< 0.05	
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05	
2-Butanone (MEK)	< 0.5	1,2,3-Trichloropropane	< 0.05	
1,2-Dichloroethane (EDC)	< 0.05	2-Chlorotoluene	< 0.05	
1,1,1-Trichloroethane	< 0.05	4-Chlorotoluene	< 0.05	
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05	
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05	
Benzene	< 0.03	sec-Butylbenzene	< 0.05	
Trichloroethene	< 0.02	p-Isopropyltoluene	< 0.05	
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05	
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05	
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05	
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5	
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25	
Toluene	< 0.05	Hexachlorobutadiene	< 0.25	
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.05	
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25	
2-Hexanone	< 0.5			

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Method Blank Client: Aspect Consulting, LLC Date Received: Not Applicable Project: Morrells 080190, F&BI 902103

02/08/19 Lab ID: Date Extracted: 09-0272 mb 02/08/19 Date Analyzed: Data File: 020810.D Matrix: Soil Instrument: GCMS9 mg/kg (ppm) Dry Weight Units: Operator: MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	98	50	150
Toluene-d8	98	50	150
4-Bromofluorobenzene	100	50	150

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)	
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05	
Chloromethane	< 0.5	Tetrachloroethene	< 0.025	
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05	
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05	
Chloroethane	< 0.5	Chlorobenzene	< 0.05	
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05	
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05	
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1	
Hexane	< 0.25	o-Xylene	< 0.05	
Methylene chloride	< 0.5	Styrene	< 0.05	
Methyl t-butyl ether (MTBE)	< 0.05	Isopropylbenzene	< 0.05	
trans-1,2-Dichloroethene	< 0.05	Bromoform	< 0.05	
1,1-Dichloroethane	< 0.05	n-Propylbenzene	< 0.05	
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05	
cis-1,2-Dichloroethene	< 0.05	1,3,5-Trimethylbenzene	< 0.05	
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05	
2-Butanone (MEK)	< 0.5	1,2,3-Trichloropropane	< 0.05	
1,2-Dichloroethane (EDC)	< 0.05	2-Chlorotoluene	< 0.05	
1,1,1-Trichloroethane	< 0.05	4-Chlorotoluene	< 0.05	
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05	
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzen e	< 0.05	
Benzene	< 0.03	sec-Butylbenzene	< 0.05	
Trichloroethene	< 0.02	p-Isopropyltoluene	< 0.05	
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05	
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05	
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05	
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5	
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25	
Toluene	< 0.05	Hexachlorobutadiene	< 0.25	
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.05	
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25	
2-Hexanone	< 0.5			

ENVIRONMENTAL CHEMISTS

Date of Report: 02/14/19 Date Received: 02/07/19

Project: Morrells 080190, F&BI 902103

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 902035-36 (Matrix Spike)

, i	1 ,		Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Dichlorodifluoromethane	mg/kg (ppm)	2.5	<0.5	28	26	10-56	7
Chloromethane Vinyl chloride	mg/kg (ppm)	2.5 2.5	<0.5 <0.05	39 40	48 49	10-90 10-91	21 vo 20
Bromomethane	mg/kg (ppm) mg/kg (ppm)	2.5	<0.05 <0.5	50	65	10-110	26 vo
Chloroethane	mg/kg (ppm)	2.5	<0.5	48	60	10-110	22 vo
Trichlorofluoromethane	mg/kg (ppm)	2.5	< 0.5	44	53	10-95	19
Acetone	mg/kg (ppm)	12.5	0.51	75	95	11-141	24 vo
1,1-Dichloroethene Hexane	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	<0.05 <0.25	51 36	63 42	22-107 10-95	21 vo 15
Methylene chloride	mg/kg (ppm)	2.5	< 0.5	70	84	14-128	18
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	2.5	< 0.05	71	88	17-134	21 vo
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	56	73	13-112	26 vo
1,1-Dichloroethane 2,2-Dichloropropane	mg/kg (ppm)	2.5 2.5	<0.05 <0.05	64 70	82 90	23-115 18-117	25 vo 25 vo
cis-1,2-Dichloroethene	mg/kg (ppm) mg/kg (ppm)	2.5	<0.05	64	82	25-120	25 vo
Chloroform	mg/kg (ppm)	2.5	< 0.05	65	84	29-117	26 vo
2-Butanone (MEK)	mg/kg (ppm)	12.5	< 0.5	72	92	20-133	24 vo
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	< 0.05	69	88	22-124	24 vo
1,1,1-Trichloroethane 1,1-Dichloropropene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	<0.05 <0.05	68 60	86 76	27-112 26-107	23 vo 24 vo
Carbon tetrachloride	mg/kg (ppm)	2.5	< 0.05	65	82	28-126	23 vo
Benzene	mg/kg (ppm)	2.5	< 0.03	63	80	26-114	24 vo
Trichloroethene	mg/kg (ppm)	2.5	< 0.02	61	79	30-112	26 vo
1,2-Dichloropropane	mg/kg (ppm)	2.5 2.5	< 0.05	70 71	89 93	31-119	24 vo
Bromodichloromethane Dibromomethane	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	<0.05 <0.05	65	93 84	31-131 27-124	27 vo 26 vo
4-Methyl-2-pentanone	mg/kg (ppm)	12.5	<0.5	80	104	16-147	26 vo
cis-1,3-Dichloropropene	mg/kg (ppm)	2.5	< 0.05	71	92	28-137	26 vo
Toluene	mg/kg (ppm)	2.5	< 0.05	65	83	34-112	24 vo
trans-1,3-Dichloropropene 1.1.2-Trichloroethane	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	<0.05 <0.05	71 71	92 94	30-136 32-126	26 vo 28 vo
2-Hexanone	mg/kg (ppm)	12.5	<0.05 <0.5	78	102	17-147	27 vo
1,3-Dichloropropane	mg/kg (ppm)	2.5	< 0.05	70	91	29-125	26 vo
Tetrachloroethene	mg/kg (ppm)	2.5	< 0.025	61	80	25-114	27 vo
Dibromochloromethane	mg/kg (ppm)	2.5	< 0.05	75 74	98	32-143	27 vo
1,2-Dibromoethane (EDB) Chlorobenzene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	<0.05 <0.05	74 64	95 81	32-126 37-113	25 vo 23 vo
Ethylbenzene	mg/kg (ppm)	2.5	< 0.05	68	86	34-115	23 vo
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	2.5	< 0.05	80	102	35-126	24 vo
m,p-Xylene	mg/kg (ppm)	5	< 0.1	66	85	25-125	25 vo
o-Xylene Styrene	mg/kg (ppm)	2.5 2.5	<0.05 <0.05	67 67	86 88	27-126 39-121	25 vo 27 vo
Isopropylbenzene	mg/kg (ppm) mg/kg (ppm)	2.5	< 0.05	71	89	34-123	22 vo
Bromoform	mg/kg (ppm)	2.5	< 0.05	74	97	18-155	27 vo
n-Propylbenzene	mg/kg (ppm)	2.5	< 0.05	68	86	31-120	23 vo
Bromobenzene	mg/kg (ppm)	2.5	< 0.05	66	85	40-115	25 vo
1,3,5-Trimethylbenzene 1,1,2,2-Tetrachloroethane	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	<0.05 <0.05	71 80	89 100	24-130 27-148	22 vo 22 vo
1,2,3-Trichloropropane	mg/kg (ppm)	2.5	< 0.05	75	94	33-123	22 vo
2-Chlorotoluene	mg/kg (ppm)	2.5	< 0.05	69	87	39-110	23 vo
4-Chlorotoluene	mg/kg (ppm)	2.5	< 0.05	67	86	39-111	25 vo
tert-Butylbenzene 1,2,4Trimethylbenzene	mg/kg (ppm)	2.5 2.5	<0.05 <0.05	72 68	90 87	36-116 35-116	22 vo 25 vo
sec-Butylbenzene	mg/kg (ppm) mg/kg (ppm)	2.5	<0.05	72	90	33-118	22 vo
p-Isopropyltoluene	mg/kg (ppm)	2.5	< 0.05	70	88	32-119	23 vo
1,3-Dichlorobenzene	mg/kg (ppm)	2.5	< 0.05	64	81	38-111	23 vo
1,4-Dichlorobenzene	mg/kg (ppm)	2.5	< 0.05	62	78	39-109	23 vo
1,2-Dichlorobenzene 1,2-Dibromo-3-chloropropane	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	<0.05 <0.5	66 73	84 94	40-111 47-127	24 vo 25 vo
1,2,4 Trichlorobenzene	mg/kg (ppm)	2.5	<0.25	73 57	73	31-121	25 vo
Hexachlorobutadiene	mg/kg (ppm)	2.5	< 0.25	70	87	24-128	22 vo
Naphthalene	mg/kg (ppm)	2.5	< 0.05	60	77	24-139	25 vo
1,2,3-Trichlorobenzene	mg/kg (ppm)	2.5	< 0.25	59	75	35-117	24 vo

ENVIRONMENTAL CHEMISTS

Date of Report: 02/14/19 Date Received: 02/07/19

Project: Morrells 080190, F&BI 902103

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Dichlorodifluoromethane	mg/kg (ppm)	2.5	58	10-76
Chloromethane	mg/kg (ppm)	2.5	77	34-98
Vinyl chloride Bromomethane	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	87 97	42-107 46-113
Chloroethane	mg/kg (ppm)	2.5	97 91	47-115
Trichlorofluoromethane	mg/kg (ppm)	2.5	95	53-112
Acetone	mg/kg (ppm)	12.5	105	39-147
1,1-Dichloroethene	mg/kg (ppm)	2.5	96	65-110
Hexane Mathydana ablavida	mg/kg (ppm)	2.5 2.5	92 108	55-107 50-127
Methylene chloride Methyl t-butyl ether (MTBE)	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	97	72-122
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	101	71-113
1,1-Dichloroethane	mg/kg (ppm)	2.5	102	74-109
2,2-Dichloropropane	mg/kg (ppm)	2.5	114	64-151
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	101 98	73-110
Chloroform 2-Butanone (MEK)	mg/kg (ppm) mg/kg (ppm)	2.5 12.5	98 95	76-110 60-121
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	102	73-111
1,1,1-Trichloroethane	mg/kg (ppm)	2.5	108	72-116
1,1-Dichloropropene	mg/kg (ppm)	2.5	97	72-112
Carbon tetrachloride	mg/kg (ppm)	2.5	106	67-123
Benzene Trichloroethene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	97 96	72-106 72-107
1,2-Dichloropropane	mg/kg (ppm)	2.5	100	74-115
Bromodichloromethane	mg/kg (ppm)	2.5	103	75-126
Dibromomethane	mg/kg (ppm)	2.5	96	76-116
4-Methyl-2-pentanone	mg/kg (ppm)	12.5	102	80-128
cis-1,3-Dichloropropene	mg/kg (ppm)	2.5	102	71-138
Toluene trans-1,3-Dichloropropene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	97 103	74-111 77-135
1,1,2-Trichloroethane	mg/kg (ppm)	2.5	100	77-116
2-Hexanone	mg/kg (ppm)	12.5	98	70-129
1,3-Dichloropropane	mg/kg (ppm)	2.5	96	75-115
Tetrachloroethene Dibromochloromethane	mg/kg (ppm)	2.5 2.5	96 109	73-111 64-152
1,2-Dibromoethane (EDB)	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	105	77-117
Chlorobenzene	mg/kg (ppm)	2.5	93	76-109
Ethylbenzene	mg/kg (ppm)	2.5	98	75-112
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	2.5	116	76-125
m,p-Xylene	mg/kg (ppm)	5 2.5	97 100	77-115
o-Xylene Styrene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	100	76-115 76-119
Isopropylbenzene	mg/kg (ppm)	2.5	103	76-120
Bromoform	mg/kg (ppm)	2.5	107	50-174
n-Propylbenzene	mg/kg (ppm)	2.5	99	77-115
Bromobenzene 1,3,5-Trimethylbenzene	mg/kg (ppm)	2.5 2.5	99 103	76-112 77-121
1,1,2,2-Tetrachloroethane	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	103	77-121 74-121
1,2,3-Trichloropropane	mg/kg (ppm)	2.5	98	74-116
2-Chlorotoluene	mg/kg (ppm)	2.5	102	75-113
4-Chlorotoluene	mg/kg (ppm)	2.5	99	77-115
tert-Butylbenzene	mg/kg (ppm)	2.5	102	77-123
1,2,4 Trimethylbenzene sec-Butylbenzene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	102 104	77-119 78-120
p-Isopropyltoluene	mg/kg (ppm)	2.5	102	77-120
1,3-Dichlorobenzene	mg/kg (ppm)	2.5	98	76-112
1,4-Dichlorobenzene	mg/kg (ppm)	2.5	94	74-109
1,2-Dichlorobenzene	mg/kg (ppm)	2.5	100	75-114
1,2-Dibromo-3-chloropropane 1,2,4 Trichlorobenzene	mg/kg (ppm)	2.5 2.5	108 97	68-122 75-122
Hexachlorobutadiene	mg/kg (ppm) mg/kg (ppm)	2.5	103	74-130
Naphthalene	mg/kg (ppm)	2.5	99	73-122
1,2,3-Trichlorobenzene	mg/kg (ppm)	2.5	99	75-117

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- \boldsymbol{J} The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

3012 16th Avenue West 8-23-25.5 B-23 - 10.5 Ph. (206) 285-8282 Seastle, WA 98119-2029 3-13-36.5 Friedman & Bruya, Inc. D-23-55.5 Company 75 tect 3.23-55 City, State, ZIP Report To Dauc Hen Phone 6122327343 Email Address dhettrever en spilons uttig um いない Sample ID by nearly aspect consulting an Relinquished by: Received by: Received by: Relinquished by D 3 R 20 20 \mathcal{Z} OIA-D Lab ID SIGNATURE 2/6/19 Sampled Date عبند البعا 100 55:00 10:10 2420 11:25 12:00 Sampled Time PROJECT NAME

SAMPLERS (signature)

Mathemy Vander Ah REMARKS Morrells 30° Sample がらり Breum Gren # of Jars PRINT NAME TPH-HCID 17 ACO TPH-Diesel TPH-Gasoline BTEX by 8021B MALYSES REQUESTED 080190 VOCs by 8260C INVOICE TO SVOCs by 8270D PO# 多色 FEBT PAHs 8270D SIM Great COMPANY Ç less in the property of the second se □ Other_

Samples redeived at

ကိ

HULL

Hold

WIFF

0000 TIME

10:50

DATE

SAMPLE CHAIN OF CUSTODY

ME 02-07-19

MDispose after 30 days

Archive Samples

Notes

SAMPLE DISPOSAL

Standard Turnaround RUSH H day Jun eseund Rush charges authorized by:

TURNAROUND TIME

Page #

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

February 14, 2019

Dave Heffner, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Mr Heffner:

Included are the results from the testing of material submitted on February 8, 2019 from the Morell's 080190, F&BI 902125 project. There are 8 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Data Aspect ASP0214R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on February 8, 2019 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Morell's 080190, F&BI 902125 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Aspect Consulting, LLC
902125 -01	B-30-5.5
902125 -02	B-30-10.5
902125 -03	B-30-20.5
902125 -04	B-30-25.5
902125 -05	B-30-30.5
902125 -06	B-30-35.5
902125 -07	B-30-50.5
902125 -08	B-30-60.5

Methylene chloride was detected in the 8260C method blank. The data were flagged as due to laboratory contamination.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: B-30-10.5 Client: Aspect Consulting, LLC Date Received: 02/08/19 Project: Morell's 080190, F&BI 902125

Lab ID: Date Extracted: 02/11/19 902125-02 Date Analyzed: 02/11/19 Data File: 021141.D Matrix: Soil Instrument: GCMS9 Units: mg/kg (ppm) Dry Weight Operator: MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	50	150
Toluene-d8	100	50	150
4-Bromofluorobenzene	101	50	150

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	<0.5	Tetrachloroethene	0.084
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Hexane	< 0.25	o-Xylene	< 0.05
Methylene chloride	< 0.5	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Bromoform	< 0.05
1,1-Dichloroethane	< 0.05	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	< 0.5	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.05	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.03	sec-Butylbenzene	< 0.05
Trichloroethene	0.021	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.05	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.05
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	B-30-35.5	Client:	Aspect Consulting, LLC
Date Received:	02/08/19	Project:	Morell's 080190, F&BI 902125

Date Extracted: 02/11/19 Lab ID: 902125-06 Date Analyzed: 02/11/19 Data File: 021142.D Matrix: Soil Instrument: GCMS9 mg/kg (ppm) Dry Weight Units: Operator: MS

		Lower	Opper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	50	150
Toluene-d8	100	50	150
4-Bromofluorobenzene	100	50	150

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	0.10
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Hexane	< 0.25	o-Xylene	< 0.05
Methylene chloride	< 0.5	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Bromoform	< 0.05
1,1-Dichloroethane	< 0.05	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	< 0.5	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.05	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.03	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.02	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanon e	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.05	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.05
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: B-30-60.5 Client: Aspect Consulting, LLC Date Received: 02/08/19 Project: Morell's 080190, F&BI 902125

Lab ID: Date Extracted: 02/11/19 902125-08 Date Analyzed: 02/11/19 Data File: 021143.D Matrix: Soil Instrument: GCMS9 Units: mg/kg (ppm) Dry Weight Operator: MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	50	150
Toluene-d8	100	50	150
4-Bromofluorobenzene	101	50	150

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	0.026
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Hexane	< 0.25	o-Xylene	< 0.05
Methylene chloride	< 0.5	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Bromoform	< 0.05
1,1-Dichloroethane	< 0.05	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	< 0.5	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.05	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.03	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.02	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.05	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.05
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Method Blank Client: Aspect Consulting, LLC
Date Received: Not Applicable Project: Morell's 080190, F&BI 902125

Lab ID: Date Extracted: 02/11/19 09-0274 mb Date Analyzed: 02/11/19 Data File: 021128.D Matrix: Soil Instrument: GCMS9 mg/kg (ppm) Dry Weight Units: Operator: MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	102	50	150
Toluene-d8	99	50	150
4-Bromofluorobenzene	101	50	150

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Hexane	< 0.25	o-Xylene	< 0.05
Methylene chloride	0.90 lc	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Bromoform	< 0.05
1,1-Dichloroethane	< 0.05	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	< 0.5	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.05	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.03	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.02	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.05	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.05
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Date of Report: 02/14/19 Date Received: 02/08/19

Project: Morell's 080190, F&BI 902125

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 902114-21 (Matrix Spike)

Laboratory Code. 902114-2	i (Matrix Spike)			_	_		
			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Dichlorodifluoromethane	mg/kg (ppm)	2.5	<0.5	31	26	10-56	18
Chloromethane	mg/kg (ppm)	2.5	<0.5	57	52	10-90	9
Vinyl chloride	mg/kg (ppm)	2.5	< 0.05	60	56	10-91	7
Bromomethane	mg/kg (ppm)	2.5	< 0.5	70	65	10-110	7
Chloroethane	mg/kg (ppm)	2.5	< 0.5	69	64	10-101	8
Trichlorofluoromethane	mg/kg (ppm)	2.5	< 0.5	66	61	10-95	8
Acetone	mg/kg (ppm)	12.5	< 0.5	97	98	11-141	1
1,1-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	78 58	74	22-107	5
Hexane Methylene chloride	mg/kg (ppm)	2.5 2.5	<0.25 <0.5	58 113	54 132 vo	10-95 14-128	7 16
Methyl t-butyl ether (MTBE)	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	<0.05 <0.05	88	132 V0 84	17-134	5
trans-1,2-Dichlor oethene	mg/kg (ppm)	2.5	< 0.05	84	80	13-112	5
1.1-Dichloroethane	mg/kg (ppm)	2.5	< 0.05	88	84	23-115	5
2,2-Dichloropropane	mg/kg (ppm)	2.5	< 0.05	84	81	18-117	4
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	88	85	25-120	3
Chloroform	mg/kg (ppm)	2.5	< 0.05	88	84	29-117	5
2-Butanone (MEK)	mg/kg (ppm)	12.5	< 0.5	91	89	20-133	2
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	< 0.05	90	87	22-124	3
1,1,1-Trichloroethane	mg/kg (ppm)	2.5	< 0.05	92	89	27-112	3
1,1-Dichloropropene	mg/kg (ppm)	2.5	< 0.05	85 90	80	26-107	6
Carbon tetrachloride Benzene	mg/kg (ppm)	2.5 2.5	<0.05 <0.03	90 87	86 84	28-126 26-114	5 4
Benzene Trichloroethene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	<0.03 <0.02	87 90	84 86	26-114 30-112	4 5
1,2-Dichloropropane	mg/kg (ppm)	2.5	< 0.05	94	90	31-119	4
Bromodichloromethane	mg/kg (ppm)	2.5	< 0.05	96	92	31-131	4
Dibromomethane	mg/kg (ppm)	2.5	< 0.05	91	88	27-124	3
4-Methyl-2-pentanone	mg/kg (ppm)	12.5	< 0.5	103	99	16-147	4
cis-1,3-Dichloropropene	mg/kg (ppm)	2.5	< 0.05	97	93	28-137	4
Toluene	mg/kg (ppm)	2.5	< 0.05	90	86	34-112	5
trans-1,3-Dichloropropene	mg/kg (ppm)	2.5	< 0.05	95	92	30-136	3
1,1,2-Trichloroethane	mg/kg (ppm)	2.5	< 0.05	96	93	32-126	3
2-Hexanone	mg/kg (ppm)	12.5	< 0.5	100	95	17-147	5
1,3-Dichloropropane	mg/kg (ppm)	2.5	< 0.05	93	89	29-125	4
Tetrachloroethene Dibromochloromethane	mg/kg (ppm)	2.5 2.5	<0.025 <0.05	91 102	85 97	25-114 32-143	7 5
1,2-Dibromoethane (EDB)	mg/kg (ppm) mg/kg (ppm)	2.5	< 0.05	102	99	32-145	4
Chlorobenzene	mg/kg (ppm)	2.5	< 0.05	89	86	37-113	3
Ethylbenzene	mg/kg (ppm)	2.5	< 0.05	92	88	34-115	4
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	2.5	< 0.05	105	102	35-126	3
m,p-Xylene	mg/kg (ppm)	5	< 0.1	91	87	25-125	4
o-Xylene	mg/kg (ppm)	2.5	< 0.05	92	88	27-126	4
Styrene	mg/kg (ppm)	2.5	< 0.05	96	92	39-121	4
Isopropylbenzene	mg/kg (ppm)	2.5	< 0.05	94	90	34-123	4
Bromoform	mg/kg (ppm)	2.5	< 0.05	101	98	18-155	3
n-Propylbenzene	mg/kg (ppm)	2.5	< 0.05	92	88	31-120	4
Bromobenzene 1,3,5-Trimethylbenzene	mg/kg (ppm)	2.5 2.5	<0.05 <0.05	95 95	90 91	40-115 24-130	5 4
1,1,2,2-Tetrachloroethane	mg/kg (ppm) mg/kg (ppm)	2.5	< 0.05	98 98	95	27-148	3
1,2,3-Trichloropropane	mg/kg (ppm)	2.5	< 0.05	95	93	33-123	2
2-Chlorotoluene	mg/kg (ppm)	2.5	< 0.05	94	89	39-110	5
4-Chlorotoluene	mg/kg (ppm)	2.5	< 0.05	93	89	39-111	4
tert-Butylbenzene	mg/kg (ppm)	2.5	< 0.05	95	90	36-116	5
1,2,4-Trimethylbenzene	mg/kg (ppm)	2.5	< 0.05	93	89	35-116	4
sec-Butylbenzene	mg/kg (ppm)	2.5	< 0.05	95	89	33-118	7
p-Isopropyltoluene	mg/kg (ppm)	2.5	< 0.05	94	90	32-119	4
1,3-Dichlorobenzene	mg/kg (ppm)	2.5	< 0.05	93	88	38-111	6
1,4-Dichlorobenzene	mg/kg (ppm)	2.5	< 0.05	89	85	39-109	5
1,2-Dichlorobenzene	mg/kg (ppm)	2.5	< 0.05	93	88	40-111	6
1,2-Dibromo-3-chloropropane 1,2,4 Trichlorobenzene	mg/kg (ppm)	2.5 2.5	<0.5 <0.25	99 89	96 86	47-127 31-121	3 3
Hexachlorobutadiene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	<0.25 <0.25	89 91	86	24-128	3 6
Naphthalene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	<0.25 <0.05	91 92	88	24-128	4
1,2,3-Trichlorobenzene	mg/kg (ppm)	2.5	< 0.25	90	86	35-117	5
, ,			.5.20	30	30		=

ENVIRONMENTAL CHEMISTS

Date of Report: 02/14/19 Date Received: 02/08/19

Project: Morell's 080190, F&BI 902125

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: Laboratory Control Sample

Zaboratory Code. Zaboratory Con	er or Sumpre			
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Dichlorodifluoromethane	mg/kg (ppm)	2.5	57	10-76
Chloromethane Vinyl chloride	mg/kg (ppm)	2.5 2.5	74 84	34-98 42-107
Bromomethane	mg/kg (ppm) mg/kg (ppm)	2.5	90	46-113
Chloroethane	mg/kg (ppm)	2.5	86	47-115
Trichlorofluoromethane	mg/kg (ppm)	2.5	90	53-112
Acetone	mg/kg (ppm)	12.5	102	39-147
1,1-Dichloroethene	mg/kg (ppm)	2.5	95	65-110
Hexane Methyl ene chloride	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	84 119	55-107 50-127
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	2.5	94	72-122
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	97	71-113
1,1-Dichloroethane	mg/kg (ppm)	2.5	97	74-109
2,2-Dichloropropane	mg/kg (ppm)	2.5	95	64-151
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	98	73-110
Chloroform	mg/kg (ppm)	2.5	95	76-110
2-Butanone (MEK) 1,2-Dichloroethane (EDC)	mg/kg (ppm)	12.5 2.5	96 100	60-121 73-111
1,1,1-Trichloroethane	mg/kg (ppm) mg/kg (ppm)	2.5	104	73-111
1,1-Dichloropropene	mg/kg (ppm)	2.5	96	72-110
Carbon tetrachloride	mg/kg (ppm)	2.5	101	67-123
Benzene	mg/kg (ppm)	2.5	96	72-106
Trichloroethene	mg/kg (ppm)	2.5	95	72-107
1,2-Dichloropropane	mg/kg (ppm)	2.5	101	74-115
Bromodichloromethane	mg/kg (ppm)	2.5	104	75-126
Dibromomethane	mg/kg (ppm)	2.5 12.5	99	76-116
4-Methyl-2-pentanone cis-1,3-Dichloropropene	mg/kg (ppm) mg/kg (ppm)	2.5	108 104	80-128 71-138
Toluene	mg/kg (ppm)	2.5	97	71-136 74-111
trans-1,3-Dichloropropene	mg/kg (ppm)	2.5	102	77-135
1,1,2-Trichloroethane	mg/kg (ppm)	2.5	102	77-116
2-Hexanone	mg/kg (ppm)	12.5	105	70-129
1,3-Dichloropropane	mg/kg (ppm)	2.5	99	75-115
Tetrachloroethene	mg/kg (ppm)	2.5	97	73-111
Dibromochloromethane	mg/kg (ppm)	2.5 2.5	109 110	64-152 77-117
1,2-Dibromoethane (EDB) Chlorobenzene	mg/kg (ppm) mg/kg (ppm)	2.5	95	76-109
Ethylbenzene	mg/kg (ppm)	2.5	97	75-112
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	2.5	113	76-125
m,p-Xylene	mg/kg (ppm)	5	98	77-115
o-Âylene	mg/kg (ppm)	2.5	97	76-115
Styrene	mg/kg (ppm)	2.5	102	76-119
Isopropylbenzene	mg/kg (ppm)	2.5	99	76-120
Bromoform n-Propylbenzene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	108 98	50-174 77-115
Bromobenzene	mg/kg (ppm)	2.5	101	76-112
1,3,5-Trimethylbenzene	mg/kg (ppm)	2.5	101	77-121
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	2.5	107	74-121
1,2,3-Trichloropropane	mg/kg (ppm)	2.5	99	74-116
2-Chlorotoluene	mg/kg (ppm)	2.5	100	75-113
4-Chlorotoluene	mg/kg (ppm)	2.5	99	77-115
tert-Butylbenzene 1,2,4-Trimethylbenzene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	100 100	77-123 77-119
sec-Butylbenzene	mg/kg (ppm)	2.5	100	77-119 78-120
p-Isopropyltoluene	mg/kg (ppm)	2.5	99	77-120
1,3-Dichlorobenzene	mg/kg (ppm)	2.5	98	76-112
1,4-Dichlorobenzene	mg/kg (ppm)	2.5	94	74-109
1,2-Dichlorobenzene	mg/kg (ppm)	2.5	99	75-114
1,2-Dibromo-3-chloropropane	mg/kg (ppm)	2.5	104	68-122
1,2,4 Trichlorobenzene	mg/kg (ppm)	2.5	95	75-122
Hexachlorobutadiene Naphthalene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	97 97	74-130 73-122
1,2,3-Trichlorobenzene	mg/kg (ppm)	2.5	96	75-122 75-117
-,-,		2.0	30	.0 111

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- \boldsymbol{J} The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

													•										
	Ph. (206) 285-8282	Seattle, WA 98119-2029	3012 I 6 th Avenue West	Friedman & Bruya, Inc.		B-30-60.5	B-30-50,5	B-30-455	B-30=40.5	15-30-35.5	B-30-30,5	B-30-25.5	b-30-20-5	130-10,5	B-30-5.5	Sample ID		Phone 206 636563 Email Meffrey @ as pod consulting com	City, State, ZIP Seathu	4	Company Aspect	Report To Dave Heffner Breeyn Grees	25158
	Received by	Relinquished by	Received by:	Relinquished by:	SI	80	07A-D			06	Se	04	\$	02	0/A-P	Lab ID	p Green & C	nailAlleftmerfo	WA	e Ste sso	•	er Breeyn C	
***************************************	4	D M-8		Brunch	SIGNATURE	<									2/7/19	Date Sampled	Sharmon	os bodycows	98104)		recor	
WOODSTANDED TO THE PERSON OF T		R C	A COMPANY TO THE COMP	Sm		1300	1150	1135	1125) IS	0011	apor	1030	0 (9)	lovo	Time Sampled	Called Carry	Ating con	REMARKS		PROJEC	SAMPLI	SAMPLE CHAIN OF CUSTODY
		471	=	Trademont in a revenue and accompany in pro-		S	S	86	BE	<					S	Sample Type		A THE STREET STREET	KS	rueus	PROJECT NAME	SAMPLERS (signature)	CHAIN
			MOEVIK	Breey	PRINT NAME	<	-								4	# of Jars			AAAA TII		7	\mathcal{F}_{a}^{uve}	I
		Webber-Branch	T	2/2	N C											TPH-HCID					•) Uk	CU
		K	X	F_	IAM											TPH-Diesel						h	
			PAGNA	Greek	(E)											TPH-Gasoline						2	U
-		Z 2	\$													BTEX by 8021B	5					3	
		2, ,	<u> </u>			×								\succeq	7	VOCs by 8260C	NAI		Ħ	080190	<u>}</u>)	
				ALCO TO COLUMN TO THE PARTY OF			ļ	-	-	-		<u> </u>		<u> </u>		SVOCs by 8270D	YSE		₽ S S S S	219	PO#	-	ME
		77	艺	A	CC					ļ		<u> </u>		-		PAHs 8270D SIM	ANALYSES REQUESTED		INVOICE TO	0	*		W.
ស		22	2	Aspea	COMPANY		-					ŀ		-	-		NE CONTRACTOR	ļ					9
imples re				Andreas California (Andreas Canada) est canada de la Antrepresenta	ANY												STED	Other_	SA: Dispose	Rush cha	Standa	TURN	8
Samples received at		2/8/19	28-19	2/8/19	DATE				Hold	>	<		180	7	Pag	No		Other Samples	SAMPLE DISPOSAL MDispose after 30 days	Rush charges authorized by:	☐ Standard Turnaround MRUSH 4 day	TURNAROUND TIME	-
		348	Of Victory	1 0800	TMIT	,										Notes			SAL	d by:	1	TIME	, / US2

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

March 7, 2019

Dave Heffner, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Mr Heffner:

Included are the results from the testing of material submitted on February 26, 2019 from the Morell's 080190, F&BI 902383 project. There are 11 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: Data Aspect, Breeyn Greer

ASP0307R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on February 26, 2019 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Morell's 080190, F&BI 902383 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Aspect Consulting, LLC
902383 -01	MW-31-022519
902383 -02	MW-30-022519
902383 -03	A-5-7.0
902383 -04	A-5-15.0
902383 -05	A-5-22.5
902383 -06	A-5-32.0
902383 -07	A-5-43.0

Samples MW-31-022519 and MW-30-022519 were sent to Fremont Analytical for nitrate, nitrite, chloride, sulfate, and TOC analyses. The report is enclosed.

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: MW-31-022519 Client: Aspect Consulting, LLC
Date Received: 02/26/19 Project: Morell's 080190, F&BI 902383

 Date Extracted:
 03/01/19
 Lab ID:
 902383-01 x10

 Date Analyzed:
 03/04/19
 Data File:
 902383-01 x10.067

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

Iron 8,680

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: MW-30-022519 Client: Aspect Consulting, LLC
Date Received: 02/26/19 Project: Morell's 080190, F&BI 902383

 Date Extracted:
 03/01/19
 Lab ID:
 902383-02

 Date Analyzed:
 03/01/19
 Data File:
 902383-02.078

 Matrix:
 Water
 Instrument:
 ICPMS2

Units: water instrument: ICPMS2
Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

Iron 4,530

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Method Blank Client: Aspect Consulting, LLC
Date Received: Not Applicable Project: Morell's 080190, F&BI 902383

Date Extracted: 03/01/19 Lab ID: I9-136 mb 03/04/19 Data File: Date Analyzed: I9-136 mb.061 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

Iron <50

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	A-5-22.5	Client:	Aspect Consulting, LLC
Date Received:	02/26/19	Project:	Morell's 080190, F&BI 902383

Date Extracted: 02/28/19 Lab ID: 902383-05 Date Analyzed: Data File: 02/28/19 022819.D Matrix: Soil Instrument: GCMS9 mg/kg (ppm) Dry Weight Units: Operator: MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	103	50	150
Toluene-d8	96	50	150
4-Bromofluorobenzene	96	50	150

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Hexane	< 0.25	o-Xylene	< 0.05
Methylene chloride	< 0.5	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Bromoform	< 0.05
1,1-Dichloroethane	< 0.05	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	< 0.5	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.05	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	0.069
Benzene	< 0.03	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.02	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.05	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.05
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	A-5-32.0	Client:	Aspect Consulting, LLC
Date Received:	02/26/19	Project:	Morell's 080190, F&BI 902383

Date Extracted: 02/28/19 Lab ID: 902383-06 Data File: Date Analyzed: 02/28/19 022818.D Matrix: Soil Instrument: GCMS9 mg/kg (ppm) Dry Weight Units: Operator: MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	50	150
Toluene-d8	105	50	150
4-Bromofluorobenzene	105	50	150

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Hexane	< 0.25	o-Xylene	< 0.05
Methylene chloride	< 0.5	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Bromoform	< 0.05
1,1-Dichloroethane	< 0.05	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	< 0.5	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.05	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.03	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.02	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.05	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.05
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	Method Blank	Client:	Aspect Consulting, LLC
Date Received:	Not Applicable	Project:	Morell's 080190, F&BI 902383

Date Extracted: 02/28/19 Lab ID: 09-0308 mb Data File: Date Analyzed: 02/28/19 022808.D Matrix: Soil Instrument: GCMS9 mg/kg (ppm) Dry Weight Units: Operator: MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	50	150
Toluene-d8	100	50	150
4-Bromofluorobenzene	98	50	150

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Hexane	< 0.25	o-Xylene	< 0.05
Methylene chloride	< 0.5	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Bromoform	< 0.05
1,1-Dichloroethane	< 0.05	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	< 0.5	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.05	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.03	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.02	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.05	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.05
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Date of Report: 03/07/19 Date Received: 02/26/19

Project: Morell's 080190, F&BI 902383

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 902435-01 x10 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Iron	ug/L (ppb)	100	49,200	0 b	0 b	75-125	0 b

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Iron	ug/L (ppb)	100	101	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 03/07/19 Date Received: 02/26/19

Project: Morell's 080190, F&BI 902383

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 902419-09 (Matrix Spike)

•	-		Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Dichlorodifluoromethane	mg/kg (ppm)	2.5	<0.5	13	14	10-56	7
Chloromethane	mg/kg (ppm)	2.5 2.5	<0.5 <0.05	29 27	31 28	10-90 10-91	7 4
Vinyl chloride Bromomethane	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	<0.05 <0.5	34	28 37	10-91	8
Chloroethane	mg/kg (ppm)	2.5	<0.5	31	35	10-110	12
Trichlorofluoromethane	mg/kg (ppm)	2.5	<0.5	27	30	10-95	11
Acetone	mg/kg (ppm)	12.5	< 0.5	62	69	11-141	11
1,1-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	36	39	22-107	8
Hexane Mahadana ahlarida	mg/kg (ppm)	2.5 2.5	< 0.25	29 50	32 54	10-95	10
Methylene chloride Methyl t-butyl ether (MTBE)	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	<0.5 <0.05	55	54 59	14-128 17-134	8 7
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	43	47	13-112	9
1,1-Dichloroethane	mg/kg (ppm)	2.5	< 0.05	48	52	23-115	8
2,2-Dichloropropane	mg/kg (ppm)	2.5	< 0.05	45	48	18-117	6
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	52	55	25-120	6
Chloroform	mg/kg (ppm)	2.5 12.5	< 0.05	53 83	57 88	29-117	7 6
2-Butanone (MEK) 1,2-Dichloroethane (EDC)	mg/kg (ppm) mg/kg (ppm)	2.5	<0.5 <0.05	63	67	20-133 22-124	6
1,1,1-Trichloroethane	mg/kg (ppm)	2.5	< 0.05	47	51	27-112	8
1,1-Dichloropropene	mg/kg (ppm)	2.5	< 0.05	51	55	26-107	8
Carbon tetrachloride	mg/kg (ppm)	2.5	< 0.05	45	48	28-126	6
Benzene	mg/kg (ppm)	2.5	< 0.03	54	57	26-114	5
Trichloroethene	mg/kg (ppm)	2.5	< 0.02	56	62	30-112	10 6
1,2-Dichloropropane Bromodichloromethane	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	<0.05 <0.05	64 62	68 67	31-119 31-131	8
Dibromomethane	mg/kg (ppm)	2.5	< 0.05	60	64	27-124	6
4-Methyl-2-pentanone	mg/kg (ppm)	12.5	< 0.5	79	85	16-147	7
cis-1,3-Dichloropropene	mg/kg (ppm)	2.5	< 0.05	72	77	28-137	7
Toluene	mg/kg (ppm)	2.5	1.1	61 b	62 b	34-112	2 b
trans-1,3-Dichloropropene	mg/kg (ppm)	2.5	< 0.05	71	76	30-136	7
1,1,2-Trichloroethane 2-Hexanone	mg/kg (ppm)	2.5 12.5	<0.05 <0.5	69 84	73 91	32-126 17-147	6 8
1,3-Dichloropropane	mg/kg (ppm) mg/kg (ppm)	2.5	< 0.05	69	72	29-125	4
Tetrachloroethene	mg/kg (ppm)	2.5	< 0.025	54	60	25-114	11
Dibromochloromethane	mg/kg (ppm)	2.5	< 0.05	64	68	32-143	6
1,2-Dibromoethane (EDB)	mg/kg (ppm)	2.5	< 0.05	71	74	32-126	4
Chlorobenzene	mg/kg (ppm)	2.5 2.5	< 0.05	61 70 b	66	37-113	8
Ethylbenzene 1.1.1.2-Tetrachloroethane	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	3.3 <0.05	70 b 60	53 b 65	34-115 35-126	28 b 8
m,p-Xylene	mg/kg (ppm)	5	17	87 b	32 b	25-125	92 b
o-Xylene	mg/kg (ppm)	2.5	4.3	57 b	36 b	27-126	45 b
Styrene	mg/kg (ppm)	2.5	< 0.05	68	72	39-121	6
Isopropylbenzene	mg/kg (ppm)	2.5	0.11	59	62	34-123	5
Bromoform	mg/kg (ppm)	2.5 2.5	<0.05 0.31	70 60	74 64	18-155 31-120	6 6
n-Propylbenzene Bromobenzene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	< 0.05	63	70	40-115	ь 11
1,3,5-Trimethylbenzene	mg/kg (ppm)	2.5	0.55	61 b	64 b	24-130	5 b
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	2.5	< 0.05	71	77	27-148	8
1,2,3-Trichloropropane	mg/kg (ppm)	2.5	< 0.05	66	72	33-123	9
2-Chlorotoluene	mg/kg (ppm)	2.5	< 0.05	68	71	39-110	4
4-Chlorotoluene tert-Butylbenzene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	<0.05 <0.05	65 62	70 69	39-111 36-116	7 11
1,2,4-Trimethylbenzene	mg/kg (ppm)	2.5	2.1	64 b	58 b	35-116	10 b
sec-Butylbenzene	mg/kg (ppm)	2.5	0.080	62	67	33-118	8
p-Isopropyltoluene	mg/kg (ppm)	2.5	0.092	61	65	32-119	6
1,3-Dichlorobenzene	mg/kg (ppm)	2.5	0.036	61	66	38-111	8
1,4-Dichlorobenzene	mg/kg (ppm)	2.5	0.29	62	64	39-109	3
1,2-Dichlorobenzene 1,2-Dibromo-3-chloropropane	mg/kg (ppm)	2.5 2.5	1.7 <0.5	66 b 61	54 b 66	40-111 47-127	20 b 8
1,2,4-Trichlorobenzene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	<0.5 <0.25	54	59	47-127 31-121	8 9
Hexachlorobutadiene	mg/kg (ppm)	2.5	<0.25	55	60	24-128	9
Naphthalene	mg/kg (ppm)	2.5	0.14	57	61	24-139	7
1,2,3-Trichlorobenzene	mg/kg (ppm)	2.5	< 0.25	54	58	35-117	7

ENVIRONMENTAL CHEMISTS

Date of Report: 03/07/19 Date Received: 02/26/19

Project: Morell's 080190, F&BI 902383

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: Laboratory Control Sample

· ·	-		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Dichlorodifluoromethane	mg/kg (ppm)	2.5	37	10-76
Chloromethane Vinyl chloride	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	58 62	34-98 42-107
Bromomethane	mg/kg (ppm)	2.5	67	46-113
Chloroethane	mg/kg (ppm)	2.5	65	47-115
Trichlorofluoromethane	mg/kg (ppm)	2.5	71	53-112
Acetone	mg/kg (ppm)	12.5	90	39-147
1,1-Dichloroethene Hexane	mg/kg (ppm)	2.5 2.5	77 86	65-110 55-107
Methylene chloride	mg/kg (ppm) mg/kg (ppm)	2.5	81	50-127
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	2.5	84	72-122
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	82	71-113
1,1-Dichloroethane	mg/kg (ppm)	2.5	88	74-109
2,2-Dichloropropane cis-1,2-Dichloroethene	mg/kg (ppm)	2.5 2.5	76 87	64-151 73-110
Chloroform	mg/kg (ppm) mg/kg (ppm)	2.5	88	76-110 76-110
2-Butanone (MEK)	mg/kg (ppm)	12.5	119	60-121
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	103	73-111
1,1,1-Trichloroethane	mg/kg (ppm)	2.5	86	72-116
1,1-Dichloropropene	mg/kg (ppm)	2.5	98	72-112
Carbon tetrachloride Benzene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	87 94	67-123 72-106
Trichloroethene	mg/kg (ppm)	2.5	104	72-100
1,2-Dichloropropane	mg/kg (ppm)	2.5	107	74-115
Bromodichloromethane	mg/kg (ppm)	2.5	105	75-126
Dibromomethane	mg/kg (ppm)	2.5	99	76-116
4-Methyl-2-pentanone cis-1,3-Dichloropropene	mg/kg (ppm) mg/kg (ppm)	12.5 2.5	113 118	80-128 71-138
Toluene	mg/kg (ppm)	2.5	100	74-111
trans-1,3-Dichloropropene	mg/kg (ppm)	2.5	118	77-135
1,1,2-Trichloroethane	mg/kg (ppm)	2.5	114	77-116
2-Hexanone	mg/kg (ppm)	12.5	122	70-129
1,3-Dichloropropane Tetrachloroethene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	114 102	75-115 73-111
Dibromochloromethane	mg/kg (ppm)	2.5	109	64-152
1,2-Dibromoethane (EDB)	mg/kg (ppm)	2.5	117	77-117
Chlorobenzene	mg/kg (ppm)	2.5	103	76-109
Ethylbenzene	mg/kg (ppm)	2.5	100	75-112
1,1,1,2-Tetrachloroethane m,p-Xylene	mg/kg (ppm)	2.5 5	99 101	76-125 77-115
o-Xylene	mg/kg (ppm) mg/kg (ppm)	2.5	95	76-115
Styrene	mg/kg (ppm)	2.5	107	76-119
Isopropylbenzene	mg/kg (ppm)	2.5	97	76-120
Bromoform	mg/kg (ppm)	2.5	115	50-174
n-Propylbenzene Bromobenzene	mg/kg (ppm)	2.5 2.5	102 110	77-115 76-112
1,3,5-Trimethylbenzene	mg/kg (ppm) mg/kg (ppm)	2.5	100	77-121
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	2.5	107	74-121
1,2,3-Trichloropropane	mg/kg (ppm)	2.5	110	74-116
2-Chlorotoluene	mg/kg (ppm)	2.5	103	75-113
4-Chlorotoluene tert-Butylbenzene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	107 107	77-115 77-123
1,2,4-Trimethylbenzene	mg/kg (ppm)	2.5	102	77-123
sec-Butylbenzene	mg/kg (ppm)	2.5	105	78-120
p-Isopropyltoluene	mg/kg (ppm)	2.5	102	77-120
1,3-Dichlorobenzene	mg/kg (ppm)	2.5	104	76-112
1,4-Dichlorobenzene 1,2-Dichlorobenzene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	101 99	74-109 75-114
1,2-Dichioropenzene 1,2-Dibromo-3-chloropropane	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	99 96	75-114 68-122
1,2,4-Trichlorobenzene	mg/kg (ppm)	2.5	90	75-122
Hexachlorobutadiene	mg/kg (ppm)	2.5	89	74-130
Naphthalene	mg/kg (ppm)	2.5	93	73-122
1,2,3-Trichlorobenzene	mg/kg (ppm)	2.5	88	75-117

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- \boldsymbol{J} The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- $\mbox{\it ve}$ The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Friedman & Bruya Michael Erdahl 3012 16th Ave. W.

Seattle, WA 98119

RE: 902383

Work Order Number: 1902335

March 06, 2019

Attention Michael Erdahl:

Fremont Analytical, Inc. received 2 sample(s) on 2/27/2019 for the analyses presented in the following report.

Ion Chromatography by EPA Method 300.0 Total Organic Carbon by SM 5310C

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Jul c. Redy

Sincerely,

Mike Ridgeway Laboratory Director

DoD/ELAP Certification #L17-135, ISO/IEC 17025:2005 ORELAP Certification: WA 100009-007 (NELAP Recognized)

Date: 03/06/2019

CLIENT: Friedman & Bruya Work Order Sample Summary

Project: 902383 **Work Order:** 1902335

 Lab Sample ID
 Client Sample ID
 Date/Time Collected
 Date/Time Received

 1902335-001
 MW-31-022519
 02/25/2019 7:30 PM
 02/27/2019 9:59 AM

 1902335-002
 MW-30-022519
 02/25/2019 11:00 PM
 02/27/2019 9:59 AM

Case Narrative

WO#: **1902335**Date: **3/6/2019**

CLIENT: Friedman & Bruya

Project: 902383

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: 1902335

Date Reported: 3/6/2019

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

Analytical Report

Work Order: 1902335

Date Reported: 3/6/2019

Client: Friedman & Bruya Collection Date: 2/25/2019 7:30:00 PM

Project: 902383

Lab ID: 1902335-001 **Matrix:** Water

Client Sample ID: MW-31-022519

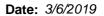
Analyses	Result	PQL	Qual	Units	DF	Date Analyzed
lon Chromatography by EP	A Method 300.0			Bato	h ID: 23	656 Analyst: GM
Chloride	23.7	1.00	D	mg/L	10	3/4/2019 5:23:00 PM
Nitrite (as N)	0.166	0.200	JD	mg/L	2	2/27/2019 1:48:00 PM
Nitrate (as N)	1.09	0.200	D	mg/L	2	2/27/2019 1:48:00 PM
Sulfate	13.3	0.600	D	mg/L	2	2/27/2019 1:48:00 PM
NOTES: Diluted due to matrix.						
Total Organic Carbon by SI	<u>W 5310C</u>			Bato	h ID: R4	9834 Analyst: GM
Total Organic Carbon	0.723	0.500		mg/L	1	3/5/2019 6:47:00 PM

Original

Analytical Report

Work Order: **1902335**Date Reported: **3/6/2019**

Client: Friedman & Bruya Collection Date: 2/25/2019 11:00:00 PM


Project: 902383

Lab ID: 1902335-002 **Matrix:** Water

Client Sample ID: MW-30-022519

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed
Ion Chromatography by EP	A Method 300.0			Bato	h ID: 23	656 Analyst: GM
Chloride	10.1	1.00	D	mg/L	10	3/4/2019 5:46:00 PM
Nitrite (as N)	ND	0.200	D	mg/L	2	2/27/2019 2:11:00 PM
Nitrate (as N)	1.17	0.200	D	mg/L	2	2/27/2019 2:11:00 PM
Sulfate	24.2	0.600	D	mg/L	2	2/27/2019 2:11:00 PM
NOTES: Diluted due to matrix.						
Total Organic Carbon by SI	W 5310C			Bato	h ID: R4	9834 Analyst: GM
Total Organic Carbon	1.24	0.500		mg/L	1	3/5/2019 8:06:00 PM

Original

Work Order: 1902335

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

Ion Chromatography by EPA Method 300.0

Project:	902383							Ion Ch	romatogra	ohy by EP	A Method	300.
Sample ID ME	3-23656	SampType: MBL	K		Units: mg/L		Prep Date	e: 2/27/2 0	019	RunNo: 49	735	
Client ID: ME	BLKW	Batch ID: 2365	i6				Analysis Date	e: 2/27/2 0	019	SeqNo: 974	1986	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloride		ND	0.100									
Nitrite (as N)		ND	0.100									
Nitrate (as N)		ND	0.100									
Sulfate		ND	0.300									
Sample ID LC	S-23656	SampType: LCS			Units: mg/L		Prep Date	e: 2/27/2 0	019	RunNo: 49	735	
Client ID: LC	sw	Batch ID: 2365	66				Analysis Date	e: 2/27/2 0	019	SeqNo: 974	1987	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloride		0.742	0.100	0.7500	0	98.9	90	110				
Nitrite (as N)		0.732	0.100	0.7500	0	97.6	90	110				
Nitrate (as N)		0.747	0.100	0.7500	0	99.6	90	110				
Sulfate		3.66	0.300	3.750	0	97.5	90	110				
Sample ID 19	02336-001ADUP	SampType: DUP			Units: mg/L		Prep Date	e: 2/27/2 0	D19	RunNo: 49	735	
Client ID: BA	тсн	Batch ID: 2365	66				Analysis Date	e: 2/27/2 0	019	SeqNo: 974	1994	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloride		3.15	0.100						3.112	1.09	20	Е
Nitrite (as N)		ND	0.100						0		20	Н
Nitrate (as N)		ND	0.100						0		20	Н
Sulfate		9.41	0.300						9.360	0.533	20	
NOTES: E - Estimate	d value. The amour	nt exceeds the linear v	vorking range of	the instrumen	t.							
Sample ID 19	02336-001AMS	SampType: MS			Units: mg/L		Prep Date	e: 2/27/2 0	D19	RunNo: 49	735	
Client ID: BA	тсн	Batch ID: 2365	i6				Analysis Date	e: 2/27/2 0	019	SeqNo: 974	1995	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloride		4.03	0.100	0.7500	3.112	122	80	120				ES

Original Page 7 of 12

Date: 3/6/2019

Work Order: 1902335

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

902383

Ion Chromatography by EPA Method 300.0

Sample ID 1902336-001AMS	SampType: MS			Units: mg/L		Prep Da	te: 2/27/2 0)19	RunNo: 497	735	
Client ID: BATCH	Batch ID: 23656					Analysis Da	te: 2/27/2 0)19	SeqNo: 974	1995	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrite (as N)	0.682	0.100	0.7500	0	90.9	80	120				Н
Nitrate (as N)	0.762	0.100	0.7500	0.05200	94.7	80	120				Н
Sulfate	13.4	0.300	3.750	9.360	108	80	120				

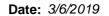
NOTES:

Project:

E - Estimated value. The amount exceeds the linear working range of the instrument.

Sample ID 1902336-001AMSD	SampType: MSD			Units: mg/L		Prep Da	te: 2/27/2 0)19	RunNo: 497	735	
Client ID: BATCH	Batch ID: 23656					Analysis Da	te: 2/27/2 0)19	SeqNo: 974	4998	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloride	4.01	0.100	0.7500	3.112	120	80	120	4.029	0.498	20	E
Nitrite (as N)	0.534	0.100	0.7500	0	71.2	80	120	0.6820	24.3	20	RSH
Nitrate (as N)	0.753	0.100	0.7500	0.05200	93.5	80	120	0.7620	1.19	20	Н
Sulfate	13.4	0.300	3.750	9.360	108	80	120	13.42	0.0298	20	

NOTES:


S - Outlying spike recovery(ies) observed. A duplicate analysis was performed and recovered within range (Nitrite).

E - Estimated value. The amount exceeds the linear working range of the instrument.

Original Page 8 of 12

S - Outlying spike recovery(ies) observed. A duplicate analysis was performed and recovered within range (Chloride).

R - High RPD observed. The method is in control as indicated by the LCS.

Work Order: 1902335

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

Total Organic Carbon by SM 5310C

Project:	902383								Total Orga	nic Carbo	on by SM	5310C
Sample ID	MB-49834	SampType: MBLK			Units: mg/L		Prep Date:	3/5/201	9	RunNo: 49	834	
Client ID:	MBLKW	Batch ID: R49834					Analysis Date	3/5/201	9	SeqNo: 97	7061	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit F	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Total Organ	nic Carbon	ND	0.500									
Sample ID	LCS-49834	SampType: LCS			Units: mg/L		Prep Date:	3/5/201	9	RunNo: 49	834	
Client ID:	LCSW	Batch ID: R49834					Analysis Date	3/5/201	9	SeqNo: 97	7062	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Total Organ	nic Carbon	5.08	0.500	5.000	0	102	80	120				
Sample ID	1902335-001BDUP	SampType: DUP			Units: mg/L		Prep Date:	3/5/201	9	RunNo: 49	834	
Client ID:	MW-31-022519	Batch ID: R49834					Analysis Date	3/5/201	9	SeqNo: 97	7064	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Total Organ	nic Carbon	0.733	0.500						0.7230	1.37	20	
Sample ID	1902335-001BMS	SampType: MS			Units: mg/L		Prep Date:	3/5/201	9	RunNo: 49	834	
Client ID:	MW-31-022519	Batch ID: R49834					Analysis Date	3/5/201	9	SeqNo: 97	7065	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Total Organ	nic Carbon	5.96	0.500	5.000	0.7230	105	70	130				
Sample ID	1902335-001BMSD	SampType: MSD			Units: mg/L		Prep Date:	3/5/201	9	RunNo: 49	834	
Client ID:	MW-31-022519	Batch ID: R49834					Analysis Date	3/5/201	9	SeqNo: 97	7066	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Total Organ	nic Carbon	5.77	0.500	5.000	0.7230	101	70	130	5.957	3.24	30	

Original Page 9 of 12

Date: 3/6/2019

Work Order: 1902335

Project:

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

902383

Total Organic Carbon by SM 5310C

Sample ID 1903018-001ADUP SampType: DUP Units: mg/L Prep Date: 3/5/2019 RunNo: 49834

Client ID: BATCH Batch ID: R49834 Analysis Date: 3/5/2019 SeqNo: 977076

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

 Total Organic Carbon
 4.79
 0.500
 5.022
 4.77
 20

Sample ID 1903018-001AMS Prep Date: 3/5/2019 SampType: MS Units: mg/L RunNo: 49834 Client ID: BATCH Batch ID: R49834 Analysis Date: 3/5/2019 SeqNo: 977077 Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Total Organic Carbon 9.63 0.500 5.000 5.022 92.1 70 130

Original Page 10 of 12

Sample Log-In Check List

С	lient Name:	FB		Work O	rder Numl	ber: 1902335	
Lo	ogged by:	Brianna Barnes		Date Re	ceived:	2/27/2019	9:59:00 AM
Cha	nin of Cust	<u>ody</u>					
		ustody complete?		Yes	✓	No 🗌	Not Present
2.	How was the	sample delivered?		<u>FedE</u>	<u>x</u>		
1.00	ı İn						
Log		araa ant?		Voo		No 🗹	NA 🗆
3.	Coolers are p	oresent?	Sample re	Yes	nnronria		
4	Shipping con	tainer/cooler in good condition?	•	Yes	· <u>·</u>	te temperature No	<u>z.</u>
5.	Custody Sea	ls present on shipping containe nments for Custody Seals not in	er/cooler?	Yes		No 🗹	Not Required
6.	Was an atter	npt made to cool the samples?		Yes	✓	No 🗌	NA \square
7.	Were all item	s received at a temperature of	>0°C to 10.0°C*	Yes	✓	No 🗆	NA 🗌
8.	Sample(s) in	proper container(s)?		Yes	✓	No 🗌	
9.	Sufficient sar	mple volume for indicated test(s	s)?	Yes	✓	No 🗌	
10.	Are samples	properly preserved?		Yes	✓	No 🗌	
11.	Was preserv	ative added to bottles?		Yes		No 🗸	NA \square
12	Is there head	space in the VOA vials?		Yes		No 🗌	NA 🗹
		es containers arrive in good co	ndition(unbroken)?	Yes	✓	No 🗌	
14.	Does paperw	ork match bottle labels?		Yes	✓	No 🗌	
15	Are matrices	correctly identified on Chain of	Custody?	Yes	✓	No 🗌	
		at analyses were requested?	Cucicay.	Yes	<u>✓</u>	No 🗌	
_		ling times able to be met?			✓	No 🗌	
		ing (if applicable)					_
18.	Was client no	otified of all discrepancies with	this order?	Yes		No 🗆	NA 🔽
	Person	Notified:	Dar	te 📗			
	By Who	m:	Via	і: 🗌 еМа	il 🗌 Ph	one 🗌 Fax [In Person
	Regardi	ng:					
	Client Ir	nstructions:					
19.	Additional rei	marks:					
ltem	<u>Information</u>						
		Item #	Temp °C				
	Sample		3.1				

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

SUBCONTRACT SAMPLE CHAIN OF CUSTODY

					\dashv									Received by:		Fax (206) 283-5044
			+							}			y :	Relinquished by:		Ph. (206) 285-8282
2	2		I	7	()	2	XOX		7	2	5		MOONE	Received by:	029	Seattle, WA 98119-2029
16/14 150V	7	Friedman & Bruya	ıan &	riedn	H			_	rdah	Michael Erdahl	Mic	6	70	Relinquished-by:	est	3012 16th Avenue West
DATE TI		ANY	COMPANY		_		ME	PRINT NAME	PRI				SIGNATURE		Inc.	Friedman & Bruya, Inc.
		-														
										1						
												26				
																Y.
	S SH															
et 1																
	200															
	1, 2		,													
	p 80	-	x	×	×	x	×				2	4	2300	+		MW-30-0225 19
		×		×	×	<u>/</u> ×	×				2	Hzo	1930	2/25/15		MW-31-0225/9
Notes		TOC		Sultate.	Chlorde.	Nitote.	VPH Nitrak	EPH		Dioxins/Furans	# of jars	Matrix	Time Sampled	Date Sampled	Lab ID	Sample ID
×		D	STE	EQUI	ANALYSES REQUESTED	SKTV	AN	$\ \ $		Н						
☐ Return samples ☐ Will call with instructions	eturn san 'ill call wi	O R					ılts	Please Email Results	Ema	Please			(206) 283-5044	Fax #(2	-8282	Phone # <u>(206) 285-8282</u>
SAMPLE DISPOSAL Dispose after 30 days	SAMP ispose afte	□ D ;								S	REMARKS	RE		Seattle, WA 98119	eattle,	City, State, ZIP_S
Rush charges authorized by:	h charges	Rus		7	8-152			W	59820b	ac		1		3012 16th Ave W	012 16	
2 Weeks)	□ Standard (2 Weeks) □ RUSH			#	P0#			0.	ME/N	TNAI	PROJECT NAME/NO.	PR	a, Inc.	Friedman and Bruya,	riedm	
Page # _ t _ of TURNAROUND TIME	Page #1					,	Frank		CTER	TRAC	SUBCONTRACTER	USU	140	Michael Erdahl	Michae	Send Report To 1

Page 12 of 12

902383

Report To Dave Heffner 1 bruga Grus

Address 710 2nd 3.5 Ste SSO

Company

Front

Consulting

City, State, ZIP Scattu WA 48194

SAMPLE CHAIN OF CUSTODY ME 02-26-19

Phone 206838 5831 Email dhe fra Paspecton sulfing con SAMPLERS REMARKS PROJECT N Mor

S (signature)		Page # 1 of / AT 4 TURNAROUND TIME
NAME ,	PO#	XStandard Turnaround
. U's	080190	Rush charges authorized by:
	INVOICE TO	SAMPLE DISPOSAL
	AF	# Dispose after 30 days Archive Samples Other
·	ANAL YORG BEOLIEGER	

Sample III		···	_	٠.				-T		·	 	7	т	7	· · · · · · · · · · · · · · · · · · ·			
Date Time Sample Sampled Type Jan's Cate Sampled Type Jan's Sampled Ty	11. (200) 200-0202	26 /996) 995 9999	Sault Wil South Sons	3012 16" Avenue West	Friedman & Bruya, Inc.						A-5-43.0	A-5-32-0	A-5-22.5	A-5-15.0	A-5-7.0	mw-30-022519	MW-31-022519	Sample ID
Date Time Sample Sampled Type Jan's Cate Sampled Type Jan's Sampled Ty	2,000	Relifi	.1.0	Recei	Kelin	1												
Sampled Type Sampled Type Sampled Type Sampled Type Jarrs 1930 W 3 Jarrs 1940 S S 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Asa so	dingues of	1	ved by:	quished by:	SIC				1	67/	20	20	09	63A-0	02	OIAC	Lab ID
Type Sample Sample Sample Sample Samples received at 1 Samples Technology Samples received at 1 Samples Technology Samples received at 1 Samples received	The state of the s	an y	200	* 10 A"	Samped Hell	NATURE	manufacture (conjumped administration)				i	2/26/19	2/26/19	1126/19	ì	2/25/19	2/25/19	Date Sampled
Heffner Heffner Aspect Company Company Date Stores Aspect Company Date Stores		NA		/	M. Jane		merano, yan i (mi) ja menana yang yang kang kang kang kang kang kang kang k				0315	0245	27.0	0140	0115	2300	1930	Time Sampled
TPH-Diesel TPH-Gasoline BTEX by 8021B X X VOCs by 8260C SVOCs by 8270D PAHs 8270D SIM PAHs 8270D SIM X X Ritrate/Ritrite CI/sultate 366.0 X X Total Fe EPA 602.0 X X TOE SYMS310 Apples received at 1226/19		4	787	<u>/</u>	David		arming the second secon			-	5	\sim	И	y	ч	3	ξ	Sample Type
TPH-Diesel TPH-Gasoline BTEX by 8021B X X VOCs by 8260C SVOCs by 8270D PAHs 8270D SIM PAHs 8270D SIM X X Ritrate/Ritrite CI/sultate 366.0 X X Total Fe EPA 602.0 X X TOE SYMS310 Apples received at 1226/19		W) ch	1	-	Het	PRIN					عـ	حد				W	W	# of Jars
TPH-Diesel TPH-Gasoline BTEX by 8021B X X VOCs by 8260C SVOCs by 8270D PAHs 8270D SIM PAHs 8270D SIM X X Ritrate/Ritrite CI/sultate 366.0 X X Total Fe EPA 602.0 X X TOE SYMS310 Apples received at 1226/19		60	18	5	The	T N	ļ											TPH-HCID
Samples received at 1 PATE VOCs by 8260C			2	,	7	AM E		_	_									TPH-Diesel
Samples received at 1 PATE VOCs by 8260C		50					-		4									TPH-Gasoline
SVOCs by 8270D SVOCs by 8270D PAHs 8270D SIM Y Intrate intrite X Confany Confany Confany Confany Confany Confany DATE Appeal Consulting Appeal Consulting Appeal Confany Appea		QV QV						-	4									BTEX by 8021B
DATE 2/26/19 2/26/19		-	-		***			-	_			\times	×					VOCs by 8260C
DATE 2/26/19 2/26/19			(6))	200			 	4	·								SVOCs by 8270D
DATE 2/26/19 2/26/19	Sa	7)	47		計	္ဂ		ļ	1									PAHs 8270D SIM
DATE 2/26/19 2/26/19	ld'un	38	~		20	AMC										X	×	nitrate initiate Clisulfate Est.o
DATE 2/26/19 2/26/19	esr		7		## ## ## ## ## ## ## ## ## ## ## ## ##	AN										X	×	Total Fe EPA 602.0
TO ATE HOLD NO	eceiv			4	Š	7	-		-	·						×	Х	TOC 500 5310
TO ATE HOLD NO	ed :	\ <u>\</u>	7	H	0	\vdash		-	4								tarianan esa	
TIME TIME		19			126/19	DATE					五二			Hold	Hold.	***************************************	-	No
	ငိ	1358	97.71		24.9	BMIL				·				-				ites

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

March 6, 2019

Dave Heffner, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Mr Heffner:

Included are the results from the testing of material submitted on February 27, 2019 from the Morell's 080190, F&BI 902407 project. There are 8 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Data Aspect ASP0306R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on February 27, 2019 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Morell's 080190, F&BI 902407 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	Aspect Consulting, LLC
902407 -01	A-8-8.0
902407 -02	A-8-14.0
902407 -03	A-8-34.0
902407 -04	A-8-47.0
902407 -05	A-8-56.0

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: A-8-14.0 Client: Aspect Consulting, LLC
Date Received: 02/27/19 Project: Morell's 080190, F&BI 902407

Date Extracted: 02/28/19 Lab ID: 902407-02 Data File: Date Analyzed: 02/28/19 022831.D Matrix: Instrument: GCMS4 Soil mg/kg (ppm) Dry Weight Units: Operator: MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	62	142
Toluene-d8	104	55	145
4-Bromofluorobenzene	101	65	139

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	0.089
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Hexane	< 0.25	o-Xylene	< 0.05
Methylene chloride	< 0.5	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Isopropylbenzene	0.084
trans-1,2-Dichloroethene	< 0.05	Bromoform	< 0.05
1,1-Dichloroethane	< 0.05	n-Propylbenzene	0.27
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	0.34	1,3,5-Trimethylbenzene	1.0
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	< 0.5	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.05	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	0.91
Benzene	< 0.03	sec-Butylbenzene	0.35
Trichloroethene	< 0.02	p-Isopropyltoluene	0.57
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.05	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	0.10
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	A-8-34.0	Client:	Aspect Consulting, LLC
Date Received:	02/27/19	Project:	Morell's 080190, F&BI 902407

Date Extracted: 02/28/19 Lab ID: 902407-03 Date Analyzed: Data File: 02/28/19 022832.D Matrix: Soil Instrument: GCMS4 mg/kg (ppm) Dry Weight Units: Operator: MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	62	142
Toluene-d8	103	55	145
4-Bromofluorobenzene	112	65	139

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	7.3
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Hexane	< 0.25	o-Xylene	< 0.05
Methylene chloride	< 0.5	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Isopropylbenzene	0.12
trans-1,2-Dichloroethene	< 0.05	Bromoform	< 0.05
1,1-Dichloroethane	< 0.05	n-Propylbenzene	0.40
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	1,3,5-Trimethylbenzene	0.76
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	< 0.5	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.05	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	0.88
Benzene	< 0.03	sec-Butylbenzene	1.2
Trichloroethene	0.15	p-Isopropyltoluene	0.55
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.05	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.05
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	A-8-47.0	Client:	Aspect Consulting, LLC
Date Received:	02/27/19	Project:	Morell's 080190, F&BI 902407

Date Extracted: 02/28/19 Lab ID: 902407-04 Date Analyzed: Data File: 02/28/19 022817.D Matrix: Soil Instrument: GCMS9 mg/kg (ppm) Dry Weight Units: Operator: MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	50	150
Toluene-d8	102	50	150
4-Bromofluorobenzene	101	50	150

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	0.047
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Hexane	< 0.25	o-Xylene	< 0.05
Methylene chloride	< 0.5	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Bromoform	< 0.05
1,1-Dichloroethane	< 0.05	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	< 0.5	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.05	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.03	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.02	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.05	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.05
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Method Blank Client: Aspect Consulting, LLC
Date Received: Not Applicable Project: Morell's 080190, F&BI 902407

Date Extracted: 02/28/19 Lab ID: 09-0308 mb 02/28/19 Data File: Date Analyzed: 022808.D Matrix: Instrument: GCMS9 Soil Units: mg/kg (ppm) Dry Weight Operator: MS

G .	0/ P	Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	50	150
Toluene-d8	100	50	150
4-Bromofluorobenzene	98	50	150

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	<0.5	1,3-Dichloropropane	< 0.05
Chloromethane	<0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	<0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	<0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Hexane	< 0.25	o-Xylene	< 0.05
Methylene chloride	< 0.5	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Bromoform	< 0.05
1,1-Dichloroethane	< 0.05	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	< 0.5	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.05	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.03	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.02	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.05	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.05
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Date of Report: 03/06/19 Date Received: 02/27/19

Project: Morell's 080190, F&BI 902407

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 902419-09 (Matrix Spike)

Reporting	· ·	-		Sample	Percent	Percent		
Analyte Units Leve Wet with MS MSD Criteria (Limit 20)		Reporting	Spike		Recovery	Recovery	Acceptance	RPD
Chloromethene mpkg (ppm) 2.5	Analyte						•	(Limit 20)
Vary Ichorlode mögke (ppm) 2.5 c.0.65 27 28 10.91 4 Extramementane mögke (ppm) 2.5 c.0.5 34 37 10.10 18 Chloredtane mögke (ppm) 2.5 c.0.5 34 37 10.10 11 8 Chloredtane mögke (ppm) 2.5 c.0.5 34 37 10.10 11 12 11 11 11 11 11 11 11 11 11 11 11								
Bromomethane								
Chlorechane								
Trichloroducomethane mg/kg (ppm) 2.5 -0.5 27 30 10-95 11								
1.1-Dichloroethene		mg/kg (ppm)						
Hexane								
Methylen chloride								
Methyl-butyl ether (MTBE)		mg/kg (ppiii)						
trans-12-Dichlorocthane mg/kg (ppm)								
2-2-Dichloropropane		mg/kg (ppm)						
cis-12-Dichlorosethene mg/kg (ppm) 2.5 -0.05 52 55 25-120 6								
Chloroform (MEK) (mg/kg (ppm) (ppm								
2-Butanone (MEK) mg/kg (ppm) 12.5		mg/kg (ppm)						
1.2-Dichloroethane (EDC)								
1,1,1-Trichlororethane								
Carbon tetrachioride								
Benzene								
Trichloroethene mg/kg (ppm) 2.5 <0.02 56 62 30-112 10 L2-Dichloropropane mg/kg (ppm) 2.5 <0.05		mg/kg (ppm)						
1.2-Dichloropropane								
Bromodichloromethane								
4-Methyl-2-pentanone mg/kg (ppm) 12.5 <0.5 79 85 16-147 7 cis-13-Dichloropropene mg/kg (ppm) 2.5 <0.05 72 77 28-137 7 Toluene mg/kg (ppm) 2.5 <0.05 71 76 30-136 7 1.1.2 Trichloroethane mg/kg (ppm) 2.5 <0.05 89 73 32-126 6 2.1-Exanone mg/kg (ppm) 2.5 <0.05 89 73 32-126 6 2.1-Exanone mg/kg (ppm) 2.5 <0.05 89 73 32-126 6 1.3-Dichloropropane mg/kg (ppm) 2.5 <0.05 69 72 29-125 4 1.3-Dichloropropane mg/kg (ppm) 2.5 <0.05 64 68 32-143 6 1.2-Dibromochloromethane (EDB) mg/kg (ppm) 2.5 <0.05 61 68 37-113 8 Ethylberzene mg/kg (ppm) 2.5 <0.05 61 66	Bromodichloromethane							
cis-13-Dichloropropene mg/kg (ppm) 2.5 <0.05 72 77 28-137 7 Toluene mg/kg (ppm) 2.5 1.1 61 b 62 b 34-112 2 b trans-1,3-Dichloropropene mg/kg (ppm) 2.5 <0.05								
Toluene		mg/kg (ppm)						
trans-13-Dichloropropene mg/kg (ppm) 2.5 <0.05 71 76 30-136 7 1.12-Trichlorochane mg/kg (ppm) 2.5 <0.05								
1,12-Trichloroethane								
1.3 Dichloropropane mg/kg (ppm) 2.5 <0.05 69 72 29-125 4 Tetrachloroethene mg/kg (ppm) 2.5 <0.025		mg/kg (ppm)	2.5			73		6
Tetrachloroethene mg/kg (ppm) 2.5 <0.025 54 60 25-114 11 Dibromochloromethane mg/kg (ppm) 2.5 <0.05		mg/kg (ppm)						
Dibromochlaromethane mg/kg (ppm) 2.5 < 0.05 64 68 32.143 6 1.2. Dibromochlane (EDB) mg/kg (ppm) 2.5 < 0.05 71 74 32.126 4 32.12		mg/kg (ppm)						
1.2-Dibromeethane (EDB) mg/kg (ppm) 2.5 < 0.05								
Chlorobenzene mg/kg (ppm) 2.5 <0.05 61 66 37-113 8 Ethylbenzene mg/kg (ppm) 2.5 <0.05								
Ethylenzene mg/kg (ppm) 2.5 3.3 70 b 53 b 34-115 28 b 1,1,1,2-Tertachloroethane mg/kg (ppm) 2.5 <0.05								
mp-Xylene mg/kg (ppm) 5 17 87 b 32 b 25-125 92 b o-Xylene mg/kg (ppm) 2.5 4.3 57 b 36 b 27-126 45 b Styrene mg/kg (ppm) 2.5 -0.05 68 72 39-121 6 Isopropylbenzene mg/kg (ppm) 2.5 -0.05 70 74 18-155 6 n-Propylbenzene mg/kg (ppm) 2.5 -0.05 70 74 18-155 6 n-Propylbenzene mg/kg (ppm) 2.5 -0.05 63 70 40-115 11 scombenzene mg/kg (ppm) 2.5 -0.05 63 70 40-115 11 1,3.5-Trinethylbenzene mg/kg (ppm) 2.5 -0.05 63 70 40-115 11 1,2.2-Tetrachloroethane mg/kg (ppm) 2.5 -0.05 63 70 40-115 11 1,2.2-Tetrachloroethane mg/kg (ppm) 2.5 -0.05 66 72		mg/kg (ppm)						28 b
o-Xylene mg/kg (ppm) 2.5 4.3 57 b 36 b 27-126 45 b Styrene mg/kg (ppm) 2.5 <0.05		mg/kg (ppm)						
Styrene mg/kg (ppm) 2.5 <0.05 68 72 39-121 6 Isopropylbenzene mg/kg (ppm) 2.5 0.11 59 62 34-123 5 Bromoform mg/kg (ppm) 2.5 <0.05								
Sopropylbenzene								
Bromoform mg/kg (ppm) 2.5 <0.05 70 74 18-155 6 n-Propylbenzene mg/kg (ppm) 2.5 0.01 60 64 31-120 6 Bromobenzene mg/kg (ppm) 2.5 0.05 63 70 40-115 11 1.3.5-Trimethylbenzene mg/kg (ppm) 2.5 0.55 61 b 64 b 24-130 5 b 1.1.2.2-Tetrachloroethane mg/kg (ppm) 2.5 0.05 71 77 27-148 8 1.2.3-Trichloropropane mg/kg (ppm) 2.5 <0.05								
Bromobenzene mg/kg (ppm) 2.5 <0.05 63 70 40-115 11 1,3.5-Trimethylbenzene mg/kg (ppm) 2.5 0.55 61 b 64 b 24-130 5 b 1,2.2-Tetrachloroethane mg/kg (ppm) 2.5 <0.05 71 77 27-148 8 1,2.3-Trichloropropane mg/kg (ppm) 2.5 <0.05 66 72 33-123 9 2-Chlorotoluene mg/kg (ppm) 2.5 <0.05 68 71 39-110 4 4 4 4 4 4 4 4 4	Bromoform	mg/kg (ppm)	2.5	< 0.05	70	74	18-155	6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		mg/kg (ppm)						
1,1,2,2-Tetrachloroethane mg/kg (ppm) 2.5 <0.05 71 77 27-148 8 1,2,3-Trichloropropane mg/kg (ppm) 2.5 <0.05								
1.2.3-Trichloropropane mg/kg (ppm) 2.5 <0.05								
2-Chlorotoluene mg/kg (ppm) 2.5 <0.05 68 71 39-110 4 4-Chlorotoluene mg/kg (ppm) 2.5 <0.05 65 70 39-111 7 4-Chlorotoluene mg/kg (ppm) 2.5 <0.05 65 70 39-111 7 1.2.4-Trimethylbenzene mg/kg (ppm) 2.5 <0.05 62 69 36-116 11 1.2.4-Trimethylbenzene mg/kg (ppm) 2.5 2.1 64 b 58 b 35-116 10 b sec-Butylbenzene mg/kg (ppm) 2.5 0.080 62 67 33-118 8 p-Isopropyltoluene mg/kg (ppm) 2.5 0.092 61 65 32-119 6 1.3-Dichlorobenzene mg/kg (ppm) 2.5 0.036 61 66 38-111 8 1.4-Dichlorobenzene mg/kg (ppm) 2.5 0.036 61 66 38-111 8 1.4-Dichlorobenzene mg/kg (ppm) 2.5 0.29 62 64 39-109 3 1.2-Dichlorobenzene mg/kg (ppm) 2.5 1.7 66 b 54 b 40-111 20 b 1.2-Dibromo-3-chloropropane mg/kg (ppm) 2.5 <0.5 61 66 47-127 8 1.2.4-Trichlorobenzene mg/kg (ppm) 2.5 <0.25 55 60 24-128 9								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2-Chlorotoluene	mg/kg (ppm)	2.5	< 0.05	68	71	39-110	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		mg/kg (ppm)						
sec-Butylbenzene mg/kg (ppm) 2.5 0.080 62 67 33-118 8 p-Isopropyltoluene mg/kg (ppm) 2.5 0.092 61 65 32-119 6 1,3-Dichlorobenzene mg/kg (ppm) 2.5 0.036 61 66 38-111 8 1,4-Dichlorobenzene mg/kg (ppm) 2.5 0.29 62 64 39-109 3 1,2-Dichlorobenzene mg/kg (ppm) 2.5 1,7 66 b 54 b 40-111 20 b 1,2-Dibromo-3-chloropropane mg/kg (ppm) 2.5 <0.5								
p-Isopropyltoluene mg/kg (ppm) 2.5 0.092 61 65 32-119 6 1,3-Dichlorobenzene mg/kg (ppm) 2.5 0.036 61 66 38-111 8 1,4-Dichlorobenzene mg/kg (ppm) 2.5 0.29 62 64 39-109 3 1,2-Dichlorobenzene mg/kg (ppm) 2.5 1.7 66 b 54 b 40-111 20 b 1,2-Dibromo-3-chloropropane mg/kg (ppm) 2.5 <0.5								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								
1,2-Dibromo-3-chloropropane mg/kg (ppm) 2.5 <0.5		mg/kg (ppm)						3
1,2,4-Trichlorobenzene mg/kg (ppm) 2.5 <0.25								
Hexachlorobutadiene mg/kg (ppm) 2.5 <0.25 55 60 24-128 9								
		mg/kg (ppm)						
1.2.3-Trichlorobenzene ng/kg (ppm) 2.5 <0.25 54 58 35-117 7	1,2,3-Trichlorobenzene		2.5	< 0.25	54	58	35-117	7

ENVIRONMENTAL CHEMISTS

Date of Report: 03/06/19 Date Received: 02/27/19

Project: Morell's 080190, F&BI 902407

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: Laboratory Control Sample

Reporting Spike Recovery Acceptant	
Dichlorodifluoromethane	ce
Chloromethane mg/kg (ppm) 2.5 58 34-98 Vinyl chloride mg/kg (ppm) 2.5 62 42-107 Bromomethane mg/kg (ppm) 2.5 67 46-113 Chloroethane mg/kg (ppm) 2.5 65 47-115 Trichlorofluoromethane mg/kg (ppm) 2.5 71 53-112 Acetone mg/kg (ppm) 2.5 77 65-110 Hexane mg/kg (ppm) 2.5 77 65-110 Hexane mg/kg (ppm) 2.5 86 55-107 Methylene chloride mg/kg (ppm) 2.5 81 50-127 Methyl t-butyl ether (MTBE) mg/kg (ppm) 2.5 81 50-127 Methyl t-butyl ether (MTBE) mg/kg (ppm) 2.5 84 72-122 Itans-1,2-Dichloroethene mg/kg (ppm) 2.5 84 72-122 Itans-1,2-Dichloropropane mg/kg (ppm) 2.5 88 74-109 2,2-Dichloropropane mg/kg (ppm) 2.5 87 7	ì
Vinyl chloride mg/kg (ppm) 2.5 62 42-107 Bromomethane mg/kg (ppm) 2.5 67 46-113 Chloroethane mg/kg (ppm) 2.5 65 47-115 Trichlorofluoromethane mg/kg (ppm) 2.5 71 53-112 Acetone mg/kg (ppm) 2.5 77 65-110 Hexane mg/kg (ppm) 2.5 86 55-107 Methylene chloride mg/kg (ppm) 2.5 86 55-107 Methyl t-butyl ether (MTBE) mg/kg (ppm) 2.5 81 50-127 Methyl t-butyl ether (MTBE) mg/kg (ppm) 2.5 84 72-122 trans-1,2-Dichloroethene mg/kg (ppm) 2.5 82 71-113 1,1-Dichloroethane mg/kg (ppm) 2.5 82 71-113 1,1-Dichloroethane mg/kg (ppm) 2.5 88 74-109 2,2-Dichloroethene mg/kg (ppm) 2.5 87 73-110 Cis-1,2-Dichloroethane mg/kg (ppm) 2.5 87	
Bromomethane	
Chloroethane mg/kg (ppm) 2.5 65 47-115 Trichlorofluoromethane mg/kg (ppm) 2.5 71 53-112 Acetone mg/kg (ppm) 12.5 90 39-147 1,1-Dichloroethene mg/kg (ppm) 2.5 77 65-110 Hexane mg/kg (ppm) 2.5 86 55-107 Methylene chloride mg/kg (ppm) 2.5 81 50-127 Methyl t-butyl ether (MTBE) mg/kg (ppm) 2.5 82 71-113 1,1-Dichloroethene mg/kg (ppm) 2.5 82 71-113 1,1-Dichloroethane mg/kg (ppm) 2.5 82 71-113 1,1-Dichloroethane mg/kg (ppm) 2.5 88 74-109 2,2-Dichloropropane mg/kg (ppm) 2.5 88 74-109 2,2-Dichloropropane mg/kg (ppm) 2.5 88 74-110 Chloroform mg/kg (ppm) 2.5 87 73-110 Chloroform mg/kg (ppm) 2.5 88 76-110 2-Butanone (MEK) mg/kg (ppm) 2.5 88 76-110 2-Butanone (MEK) mg/kg (ppm) 2.5 119 60-121 1,1-Dichloroethane (EDC) mg/kg (ppm) 2.5 103 73-111 1,1,1-Trichloroethane mg/kg (ppm) 2.5 86 72-116 1,1-Dichloropropene mg/kg (ppm) 2.5 86 72-116 1,1-Dichloropropene mg/kg (ppm) 2.5 98 72-112 Carbon tetrachloride mg/kg (ppm) 2.5 98 72-112 Carbon tetrachloride mg/kg (ppm) 2.5 99 76-123 Benzene mg/kg (ppm) 2.5 104 72-106 Trichloroethane mg/kg (ppm) 2.5 107 74-115 Bromodichloromethane mg/kg (ppm) 2.5 107 74-115 Bromodichloromethane mg/kg (ppm) 2.5 113 80-128 cis-1,3-Dichloropropene mg/kg (ppm) 2.5 118 71-138 Toluene mg/kg (ppm) 2.5 118 77-135 1,1,2-Trichloroethane mg/kg (ppm) 2.5 118 77-135 1,1,2-Trichloropropane mg/kg (ppm) 2.5 114 77-116 2-Hexanone mg/kg (ppm) 2.5 114 77-116 2-Hexanone mg/kg (ppm) 2.5 114 77-116	
Trichlorofluoromethane mg/kg (ppm) 2.5 71 53-112 Acetone mg/kg (ppm) 12.5 90 39-147 1,1-Dichloroethene mg/kg (ppm) 2.5 77 65-110 Hexane mg/kg (ppm) 2.5 86 55-107 Methylene chloride mg/kg (ppm) 2.5 81 50-127 Methyl t-butyl ether (MTBE) mg/kg (ppm) 2.5 84 72-122 trans-1,2-Dichloroethene mg/kg (ppm) 2.5 82 71-113 1,1-Dichloroethane mg/kg (ppm) 2.5 88 74-109 2,2-Dichloropropane mg/kg (ppm) 2.5 88 74-109 cis-1,2-Dichloroethene mg/kg (ppm) 2.5 87 73-110 Chloroform mg/kg (ppm) 2.5 87 73-110 Chloroform mg/kg (ppm) 2.5 87 73-110 Chloroform mg/kg (ppm) 2.5 119 60-121 1,2-Dichloroethane (EDC) mg/kg (ppm) 2.5 103	
1-Dichloroethene	
Hexane	
Methylene chloride mg/kg (ppm) 2.5 81 50-127 Methyl t-butyl ether (MTBE) mg/kg (ppm) 2.5 84 72-122 trans-1,2-Dichloroethene mg/kg (ppm) 2.5 82 71-113 1,1-Dichloroethane mg/kg (ppm) 2.5 88 74-109 2,2-Dichloropropane mg/kg (ppm) 2.5 76 64-151 cis-1,2-Dichloroethene mg/kg (ppm) 2.5 87 73-110 Chloroform mg/kg (ppm) 2.5 88 76-110 2-Butanone (MEK) mg/kg (ppm) 2.5 119 60-121 1,2-Dichloroethane (EDC) mg/kg (ppm) 2.5 103 73-111 1,1-Dichloropropene mg/kg (ppm) 2.5 86 72-116 1,1-Dichloropropene mg/kg (ppm) 2.5 86 72-116 1,1-Dichloropropene mg/kg (ppm) 2.5 98 72-112 Benzene mg/kg (ppm) 2.5 94 72-106 Trichloroethene mg/kg (ppm) 2.5	
Methyl t-butyl ether (MTBE) mg/kg (ppm) 2.5 84 72-122 trans-1,2-Dichloroethene mg/kg (ppm) 2.5 82 71-113 1,1-Dichloroethane mg/kg (ppm) 2.5 88 74-109 2,2-Dichloropropane mg/kg (ppm) 2.5 76 64-151 cis-1,2-Dichloroethene mg/kg (ppm) 2.5 87 73-110 Chloroform mg/kg (ppm) 2.5 88 76-110 2-Butanone (MEK) mg/kg (ppm) 2.5 119 60-121 1,2-Dichloroethane (EDC) mg/kg (ppm) 2.5 103 73-111 1,1-Trichloroethane mg/kg (ppm) 2.5 86 72-116 1,1-Dichloropropene mg/kg (ppm) 2.5 98 72-116 1,1-Dichloropropene mg/kg (ppm) 2.5 98 72-116 1,1-Dichloropropene mg/kg (ppm) 2.5 98 72-112 Carbon tetrachloride mg/kg (ppm) 2.5 98 72-112 Carbon tetrachloride mg/kg (ppm)	
trans-1,2-Dichloroethene mg/kg (ppm) 2.5 82 71-113 1,1-Dichloroethane mg/kg (ppm) 2.5 88 74-109 2,2-Dichloropropane mg/kg (ppm) 2.5 76 64-151 cis-1,2-Dichloroethene mg/kg (ppm) 2.5 87 73-110 Chloroform mg/kg (ppm) 2.5 88 76-110 Chloroform mg/kg (ppm) 2.5 119 60-121 2-Butanone (MEK) mg/kg (ppm) 2.5 103 73-111 1,2-Dichloroethane (EDC) mg/kg (ppm) 2.5 86 72-112 1,1-Dichloroethane mg/kg (ppm) 2.5 86 72-112 1,1-Dichloropropene mg/kg (ppm) 2.5 87 67-123 Benzene mg/kg (ppm) 2.5 87 67-123 Benzene mg/kg (ppm) 2.5 94 72-106 1,2-Dichloropropane mg/kg (ppm) 2.5 104 72-107 1,2-Dichloropropane mg/kg (ppm) 2.5 105	
2.2-Dichloropropane mg/kg (ppm) 2.5 76 64-151 cis-1,2-Dichloroethene mg/kg (ppm) 2.5 87 73-110 Chloroform mg/kg (ppm) 2.5 88 76-110 2-Butanone (MEK) mg/kg (ppm) 12.5 119 60-121 1,2-Dichloroethane (EDC) mg/kg (ppm) 2.5 103 73-111 1,1-1-Trichloroethane mg/kg (ppm) 2.5 86 72-116 1,1-Dichloropropene mg/kg (ppm) 2.5 98 72-116 Carbon tetrachloride mg/kg (ppm) 2.5 98 72-116 Carbon tetrachloride mg/kg (ppm) 2.5 94 72-106 Trichloroethene mg/kg (ppm) 2.5 94 72-106 Trichloroethene mg/kg (ppm) 2.5 104 72-107 1,2-Dichloropropane mg/kg (ppm) 2.5 105 75-126 Dibromomethane mg/kg (ppm) 2.5 99 76-116 4-Methyl-2-pentanone mg/kg (ppm) 2.5 118 71-138 Toluene mg/kg (ppm) 2.5	
cis-1,2-Dichloroethene mg/kg (ppm) 2.5 87 73-110 Chloroform mg/kg (ppm) 2.5 88 76-110 2-Butanone (MEK) mg/kg (ppm) 12.5 119 60-121 1,2-Dichloroethane (EDC) mg/kg (ppm) 2.5 103 73-111 1,1-1-Trichloroethane mg/kg (ppm) 2.5 86 72-112 Carbon tetrachloride mg/kg (ppm) 2.5 87 67-123 Benzene mg/kg (ppm) 2.5 94 72-106 Trichloroethene mg/kg (ppm) 2.5 104 72-107 1,2-Dichloropropane mg/kg (ppm) 2.5 104 72-107 1,2-Dichloropropane mg/kg (ppm) 2.5 105 75-128 Bromodichloromethane mg/kg (ppm) 2.5 105 75-126 Dibromomethane mg/kg (ppm) 2.5 199 76-116 4-Methyl-2-pentanone mg/kg (ppm) 2.5 113 80-128 cis-1,3-Dichloropropene mg/kg (ppm) 2.5	
Chloroform mg/kg (ppm) 2.5 88 76-110 2-Butanone (MEK) mg/kg (ppm) 12.5 119 60-121 1,2-Dichloroethane (EDC) mg/kg (ppm) 2.5 103 73-111 1,1-Trichloroethane mg/kg (ppm) 2.5 86 72-116 1,1-Dichloropropene mg/kg (ppm) 2.5 98 72-112 Carbon tetrachloride mg/kg (ppm) 2.5 87 67-123 Benzene mg/kg (ppm) 2.5 94 72-106 Trichloroethene mg/kg (ppm) 2.5 104 72-106 Trichloropropane mg/kg (ppm) 2.5 107 74-115 Bromodichloromethane mg/kg (ppm) 2.5 105 75-126 Dibromomethane mg/kg (ppm) 2.5 99 76-116 4-Methyl-2-pentanone mg/kg (ppm) 2.5 113 80-128 cis-1,3-Dichloropropene mg/kg (ppm) 2.5 118 71-138 Toluene mg/kg (ppm) 2.5 110	
2-Butanone (MEK) mg/kg (ppm) 12.5 119 60-121 1,2-Dichloroethane (EDC) mg/kg (ppm) 2.5 103 73-111 1,1-1-Trichloroethane mg/kg (ppm) 2.5 86 72-116 1,1-Dichloropropene mg/kg (ppm) 2.5 98 72-112 Carbon tetrachloride mg/kg (ppm) 2.5 87 67-123 89.2-112 Carbon tetrachloride mg/kg (ppm) 2.5 87 67-123 89.2-116 Trichloroethene mg/kg (ppm) 2.5 94 72-106 Trichloropropane mg/kg (ppm) 2.5 104 72-107 1,2-Dichloropropane mg/kg (ppm) 2.5 107 74-115 Bromodichloromethane mg/kg (ppm) 2.5 107 74-115 Bromodichloromethane mg/kg (ppm) 2.5 105 75-126 105 75-126 105 105 105 105 105 105 105 105 105 105	
1,2-Dichloroethane (EDC) mg/kg (ppm) 2.5 103 73-111 1,1-1,1-Trichloroethane mg/kg (ppm) 2.5 86 72-116 1,1-Dichloropropene mg/kg (ppm) 2.5 98 72-112 Carbon tetrachloride mg/kg (ppm) 2.5 87 67-123 Benzene mg/kg (ppm) 2.5 94 72-106 Trichloroethene mg/kg (ppm) 2.5 104 72-107 1,2-Dichloropropane mg/kg (ppm) 2.5 107 74-115 Bromodichloromethane mg/kg (ppm) 2.5 105 75-126 Dibromomethane mg/kg (ppm) 2.5 105 75-126 4-Methyl-2-pentanone mg/kg (ppm) 2.5 113 80-128 cis-1,3-Dichloropropene mg/kg (ppm) 2.5 118 71-138 Toluene mg/kg (ppm) 2.5 100 74-111 trans-1,3-Dichloropropene mg/kg (ppm) 2.5 118 77-135 1,1,2-Trichloroethane mg/kg (ppm) 2.5 114 77-116 2-Hexanone mg/kg (ppm) 2.5 114 75-115	
1,1-Dichloropropene mg/kg (ppm) 2.5 98 72-112 Carbon tetrachloride mg/kg (ppm) 2.5 87 67-123 Benzene mg/kg (ppm) 2.5 94 72-106 Trichloroethene mg/kg (ppm) 2.5 104 72-107 1,2-Dichloropropane mg/kg (ppm) 2.5 107 74-115 Bromodichloromethane mg/kg (ppm) 2.5 105 75-126 Dibromomethane mg/kg (ppm) 2.5 99 76-116 4-Methyl-2-pentanone mg/kg (ppm) 12.5 113 80-128 cis-1,3-Dichloropropene mg/kg (ppm) 2.5 118 71-138 Toluene mg/kg (ppm) 2.5 100 74-111 trans-1,3-Dichloropropene mg/kg (ppm) 2.5 118 77-135 1,1,2-Trichloroethane mg/kg (ppm) 2.5 114 77-116 2-Hexanone mg/kg (ppm) 2.5 114 75-115	
Carbon tetrachloride mg/kg (ppm) 2.5 87 67-123 Benzene mg/kg (ppm) 2.5 94 72-106 Trichloroethene mg/kg (ppm) 2.5 104 72-107 1,2-Dichloropropane mg/kg (ppm) 2.5 107 74-115 Bromodichloromethane mg/kg (ppm) 2.5 105 75-126 Dibromomethane mg/kg (ppm) 2.5 99 76-116 4-Methyl-2-pentanone mg/kg (ppm) 2.5 113 80-128 cis-1,3-Dichloropropene mg/kg (ppm) 2.5 118 71-138 Toluene mg/kg (ppm) 2.5 100 74-111 trans-1,3-Dichloropropene mg/kg (ppm) 2.5 118 77-135 1,1,2-Trichloroethane mg/kg (ppm) 2.5 114 77-116 2-Hexanone mg/kg (ppm) 12.5 122 70-129 1,3-Dichloropropane mg/kg (ppm) 2.5 114 75-115	
Benzene mg/kg (ppm) 2.5 94 72-106 Trichloroethene mg/kg (ppm) 2.5 104 72-107 1,2-Dichloropropane mg/kg (ppm) 2.5 107 74-115 Bromodichloromethane mg/kg (ppm) 2.5 105 75-126 Dibromomethane mg/kg (ppm) 2.5 99 76-116 4-Methyl-2-pentanone mg/kg (ppm) 12.5 113 80-128 cis-1,3-Dichloropropene mg/kg (ppm) 2.5 118 71-138 Toluene mg/kg (ppm) 2.5 100 74-111 trans-1,3-Dichloropropene mg/kg (ppm) 2.5 118 77-135 1,1,2-Trichloroethane mg/kg (ppm) 2.5 114 77-116 2-Hexanone mg/kg (ppm) 12.5 122 70-129 1,3-Dichloropropane mg/kg (ppm) 2.5 114 75-115	
Trichloroethene mg/kg (ppm) 2.5 104 72-107 1,2-Dichloropropane mg/kg (ppm) 2.5 107 74-115 Bromodichloromethane mg/kg (ppm) 2.5 105 75-126 Dibromomethane mg/kg (ppm) 2.5 99 76-116 4-Methyl-2-pentanone mg/kg (ppm) 12.5 113 80-128 cis-1,3-Dichloropropene mg/kg (ppm) 2.5 118 71-138 Toluene mg/kg (ppm) 2.5 100 74-111 trans-1,3-Dichloropropene mg/kg (ppm) 2.5 118 77-135 1,1,2-Trichloroethane mg/kg (ppm) 2.5 114 77-116 2-Hexanone mg/kg (ppm) 12.5 122 70-129 1,3-Dichloropropane mg/kg (ppm) 2.5 114 75-115	
1,2-Dichloropropane mg/kg (ppm) 2.5 107 74-115 Bromodichloromethane mg/kg (ppm) 2.5 105 75-126 Dibromomethane mg/kg (ppm) 2.5 99 76-116 4-Methyl-2-pentanone mg/kg (ppm) 12.5 113 80-128 cis-1,3-Dichloropropene mg/kg (ppm) 2.5 118 71-138 Toluene mg/kg (ppm) 2.5 100 74-111 trans-1,3-Dichloropropene mg/kg (ppm) 2.5 118 77-135 1,1,2-Trichloroethane mg/kg (ppm) 2.5 114 77-116 2-Hexanone mg/kg (ppm) 12.5 122 70-129 1,3-Dichloropropane mg/kg (ppm) 2.5 114 75-115	
Bromodichloromethane mg/kg (ppm) 2.5 105 75-126 Dibromomethane mg/kg (ppm) 2.5 99 76-116 4-Methyl-2-pentanone mg/kg (ppm) 12.5 113 80-128 cis-1,3-Dichloropropene mg/kg (ppm) 2.5 118 71-138 Toluene mg/kg (ppm) 2.5 100 74-111 trans-1,3-Dichloropropene mg/kg (ppm) 2.5 118 77-135 1,1,2-Trichloroethane mg/kg (ppm) 2.5 114 77-116 2-Hexanone mg/kg (ppm) 12.5 122 70-129 1,3-Dichloropropane mg/kg (ppm) 2.5 114 75-115	
4-Methyl-2-pentanone mg/kg (ppm) 12.5 113 80-128 cis-1,3-Dichloropropene mg/kg (ppm) 2.5 118 71-138 Toluene mg/kg (ppm) 2.5 100 74-111 trans-1,3-Dichloropropene mg/kg (ppm) 2.5 118 77-135 1,1,2-Trichloroethane mg/kg (ppm) 2.5 114 77-116 2-Hexanone mg/kg (ppm) 12.5 122 70-129 1,3-Dichloropropane mg/kg (ppm) 2.5 114 75-115	
cis-1,3-Dichloropropene mg/kg (ppm) 2.5 118 71-138 Toluene mg/kg (ppm) 2.5 100 74-111 trans-1,3-Dichloropropene mg/kg (ppm) 2.5 118 77-135 1,1,2-Trichloroethane mg/kg (ppm) 2.5 114 77-116 2-Hexanone mg/kg (ppm) 12.5 122 70-129 1,3-Dichloropropane mg/kg (ppm) 2.5 114 75-115	
Toluene mg/kg (ppm) 2.5 100 74-111 trans-1,3-Dichloropropene mg/kg (ppm) 2.5 118 77-135 1,1,2-Trichloroethane mg/kg (ppm) 2.5 114 77-116 2-Hexanone mg/kg (ppm) 12.5 122 70-129 1,3-Dichloropropane mg/kg (ppm) 2.5 114 75-115	
trans-1,3-Dichloropropene mg/kg (ppm) 2.5 118 77-135 1,1,2-Trichloroethane mg/kg (ppm) 2.5 114 77-116 2-Hexanone mg/kg (ppm) 12.5 122 70-129 1,3-Dichloropropane mg/kg (ppm) 2.5 114 75-115	
1.1.2-Trichloroethane mg/kg (ppm) 2.5 114 77-116 2-Hexanone mg/kg (ppm) 12.5 122 70-129 1.3-Dichloropropane mg/kg (ppm) 2.5 114 75-115	
1,3-Dichloropropane mg/kg (ppm) 2.5 114 75-115	
Dibromochloromethane mg/kg (ppm) 2.5 109 64-152	
11.2-Dibromoethane (EDB) mg/kg (ppm) 2.5 117 77-117	
Chlorobenzene mg/kg (ppm) 2.5 103 76-109	
Ethylbenzene mg/kg (ppm) 2.5 100 75-112	
1,1,1,2-Tetrachloroethane mg/kg (ppm) 2.5 99 76-125	
m.p-Xylene mg/kg (ppm) 5 101 77-115 o-Xylene mg/kg (ppm) 2.5 95 76-115	
Styrene mg/kg (ppm) 2.5 107 76-119	
Isopropylbenzene mg/kg (ppm) 2.5 97 76-120	
Bromoform mg/kg (ppm) 2.5 115 50-174	
n-Propylbenzene mg/kg (ppm) 2.5 102 77-115	
Bromobenzene mg/kg (ppm) 2.5 110 76-112 1,3,5-Trimethylbenzene mg/kg (ppm) 2.5 100 77-121	
1,1,2,2-Tetrachloroethane ing/kg (ppin) 2.5 107 74-121 mg/kg (ppin) 2.5 107 74-121	
1,2,3-Trichloropropane mg/kg (ppm) 2.5 110 74-116	
2-Chlorotoluene mg/kg (ppm) 2.5 103 75-113	
4-Chlorotoluene mg/kg (ppm) 2.5 107 77-115	
tert-Butylbenzene mg/kg (ppm) 2.5 107 77-123 1,2,4-Trimethylbenzene mg/kg (ppm) 2.5 102 77-119	
1,2,4-Trimethylbenzene mg/kg (ppm) 2.5 102 77-119 sec-Butylbenzene mg/kg (ppm) 2.5 105 78-120	
p-Isopropyltoluene mg/kg (ppm) 2.5 102 77-120	
1,3-Dichlorobenzene mg/kg (ppm) 2.5 104 76-112	
1,4-Dichlorobenzene mg/kg (ppm) 2.5 101 74-109	
1,2-Dichlorobenzene mg/kg (ppm) 2.5 99 75-114 1,2-Dibromo-3-chloropropane mg/kg (ppm) 2.5 96 68-122	
1,2-Dibromo-3-chloropropane mg/kg (ppm) 2.5 96 68-122 1,2,4-Trichlorobenzene mg/kg (ppm) 2.5 90 75-122	
Hexachlorobutatien mg/kg (ppm) 2.5 89 74-130	
Naphthalene mg/kg (ppm) 2.5 93 73-122	
1,2,3-Trichlorobenzene $m\overline{g}/k\overline{g}$ (\overline{ppm}) 2.5 88 75-117	

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- $hr\ -\ The\ sample\ and\ duplicate\ were\ reextracted\ and\ reanalyzed.\ RPD\ results\ were\ still\ outside\ of\ control\ limits.\ Variability\ is\ attributed\ to\ sample\ inhomogeneity.$
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- \boldsymbol{J} The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- \boldsymbol{L} The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- \mbox{pc} The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- $\mbox{\it ve}$ The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

March 11, 2019

Dave Heffner, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Mr Heffner:

Included are the results from the testing of material submitted on February 28, 2019 from the Morell's 080190, F&BI 902435 project. There are 12 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Data Aspect ASP0311R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on February 28, 2019 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Morell's 080190, F&BI 902435 project. Samples were logged in under the laboratory ID's listed below.

Aspect Consulting, LLC
MW-2-022719
MW-20-022819
A-6-13.0
A-6-21.0
A-6-36.0
A-6-57.5
A-6-65.0

Samples MW-31-022519 and MW-30-022519 were sent to Fremont Analytical for nitrate, nitrite, chloride, sulfate, and TOC analyses. The report is enclosed.

Several compounds in the 8260C matrix spike and laboratory control sample exceeded the acceptance criteria. The analyte was not detected in the samples, therefore the data were acceptable.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: MW-2-022719 Client: Aspect Consulting, LLC
Date Received: 02/28/19 Project: Morell's 080190, F&BI 902435

 Date Extracted:
 03/01/19
 Lab ID:
 902435-01 x10

 Date Analyzed:
 03/04/19
 Data File:
 902435-01 x10.095

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

Iron 49,200

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: MW-20-022819 Client: Aspect Consulting, LLC
Date Received: 02/28/19 Project: Morell's 080190, F&BI 902435

Date Extracted: 03/01/19 Lab ID: 902435-02 x10
Date Analyzed: 03/04/19 Data File: 902435-02 x10.098

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

Iron 71,000

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Method Blank Client: Aspect Consulting, LLC
Date Received: Not Applicable Project: Morell's 080190, F&BI 902435

Date Extracted: 03/01/19 Lab ID: I9-136 mb 03/04/19 Data File: Date Analyzed: I9-136 mb.061 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

Iron <50

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	A-6-13.0	Client:	Aspect Consulting, LLC
Date Received:	02/28/19	Project:	Morell's 080190, F&BI 902435

Date Extracted: 03/01/19 Lab ID: 902435-03 Date Analyzed: Data File: 03/01/19 030119.D Matrix: Soil Instrument: GCMS9 mg/kg (ppm) Dry Weight Units: Operator: MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	50	150
Toluene-d8	105	50	150
4-Bromofluorobenzene	106	50	150

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	0.47
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Hexane	< 0.25	o-Xylene	< 0.05
Methylene chloride	< 0.5	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Bromoform	< 0.05
1,1-Dichloroethane	< 0.05	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	< 0.5	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.05	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.03	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.02	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.05	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.05
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	A-6-36.0	Client:	Aspect Consulting, LLC
Date Received:	02/28/19	Project:	Morell's 080190, F&BI 902435

Date Extracted: 03/01/19 Lab ID: 902435-05 Data File: Date Analyzed: 03/01/19 030120.D Matrix: Soil Instrument: GCMS9 mg/kg (ppm) Dry Weight Units: Operator: MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	50	150
Toluene-d8	105	50	150
4-Bromofluorobenzene	106	50	150

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Hexane	< 0.25	o-Xylene	< 0.05
Methylene chloride	< 0.5	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Bromoform	< 0.05
1,1-Dichloroethane	< 0.05	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	< 0.5	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.05	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.03	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.02	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.05	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.05
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	A-6-57.5	Client:	Aspect Consulting, LLC
Date Received:	02/28/19	Project:	Morell's 080190, F&BI 902435

Date Extracted: 03/01/19 Lab ID: 902435-06 Date Analyzed: Data File: 03/01/19 030121.D Matrix: Soil Instrument: GCMS9 mg/kg (ppm) Dry Weight Units: Operator: MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	50	150
Toluene-d8	105	50	150
4-Bromofluorobenzene	104	50	150

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Hexane	< 0.25	o-Xylene	< 0.05
Methylene chloride	< 0.5	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Bromoform	< 0.05
1,1-Dichloroethane	< 0.05	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	< 0.5	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.05	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.03	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.02	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.05	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.05
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Method Blank Client: Aspect Consulting, LLC
Date Received: Not Applicable Project: Morell's 080190, F&BI 902435

Date Extracted: 03/01/19 Lab ID: 09-0434 mb Date Analyzed: 03/01/19 Data File: 030114.D Matrix: Soil Instrument: GCMS9 Units: mg/kg (ppm) Dry Weight Operator: MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	50	150
Toluene-d8	104	50	150
4-Bromofluorobenzene	105	50	150

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Hexane	< 0.25	o-Xylene	< 0.05
Methylene chloride	< 0.5	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Bromoform	< 0.05
1,1-Dichloroethane	< 0.05	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	< 0.5	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.05	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.03	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.02	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.05	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.05
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Date of Report: 03/11/19 Date Received: 02/28/19

Project: Morell's 080190, F&BI 902435

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 902435-01 x10 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Iron	ug/L (ppb)	100	49,200	0 b	0 b	75-125	0 b

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Iron	ug/L (ppb)	100	101	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 03/11/19 Date Received: 02/28/19

Project: Morell's 080190, F&BI 902435

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 902261-29 (Matrix Spike)

·	-		Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Dichlorodifluoromethane	mg/kg (ppm)	2.5	<0.5	27	24	10-56	12
Chloromethane	mg/kg (ppm)	2.5 2.5	<0.5 <0.05	58 59	50	10-90 10-91	15 15
Vinyl chloride Bromomethane	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	<0.05 <0.5	72	51 62	10-91	15
Chloroethane	mg/kg (ppm)	2.5	<0.5	72 71	59	10-110	18
Trichlorofluoromethane	mg/kg (ppm)	2.5	< 0.5	69	60	10-95	14
Acetone	mg/kg (ppm)	12.5	< 0.5	106	101	11-141	5
1,1-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	82	71	22-107	14
Hexane	mg/kg (ppm)	2.5	< 0.25	81 97	78 81	10-95	4 18
Methylene chloride Methyl t-butyl ether (MTBE)	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	<0.5 <0.05	101	88	14-128 17-134	14
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	92	80	13-112	14
1,1-Dichloroethane	mg/kg (ppm)	2.5	< 0.05	97	85	23-115	13
2,2-Dichloropropane	mg/kg (ppm)	2.5	< 0.05	98	81	18-117	19
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	101	88	25-120	14
Chloroform	mg/kg (ppm)	2.5 12.5	< 0.05	102 122	89 132	29-117 20-133	14 8
2-Butanone (MEK) 1,2-Dichloroethane (EDC)	mg/kg (ppm) mg/kg (ppm)	2.5	<0.5 <0.05	108	102	20-133	8 6
1,1,1-Trichloroethane	mg/kg (ppm)	2.5	< 0.05	99	87	27-112	13
1,1-Dichloropropene	mg/kg (ppm)	2.5	< 0.05	104	96	26-107	8
Carbon tetrachloride	mg/kg (ppm)	2.5	< 0.05	99	87	28-126	13
Benzene	mg/kg (ppm)	2.5	< 0.03	100	93	26-114	7
Trichloroethene	mg/kg (ppm)	2.5 2.5	< 0.02	106	101	30-112	5
1,2-Dichloropropane Bromodichloromethane	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	<0.05 <0.05	112 111	107 103	31-119 31-131	5 7
Dibromomethane	mg/kg (ppm)	2.5	< 0.05	103	98	27-124	5
4-Methyl-2-pentanone	mg/kg (ppm)	12.5	<0.5	126	128	16-147	2
cis-1,3-Dichloropropene	mg/kg (ppm)	2.5	< 0.05	120	119	28-137	1
Toluene	mg/kg (ppm)	2.5	< 0.05	105	97	34-112	8
trans-1,3-Dichloropropene	mg/kg (ppm)	2.5	< 0.05	120	121	30-136	1
1,1,2-Trichloroethane 2-Hexanone	mg/kg (ppm) mg/kg (ppm)	2.5 12.5	<0.05 <0.5	116 123	113 137	32-126 17-147	3 11
1,3-Dichloropropane	mg/kg (ppm)	2.5	< 0.05	111	112	29-125	1
Tetrachloroethene	mg/kg (ppm)	2.5	< 0.025	108	100	25-114	8
Dibromochloromethane	mg/kg (ppm)	2.5	< 0.05	115	109	32-143	5
1,2-Dibromoethane (EDB)	mg/kg (ppm)	2.5	< 0.05	113	115	32-126	2
Chlorobenzene Ethylbenzene	mg/kg (ppm)	2.5 2.5	<0.05 <0.05	109 107	103 99	37-113 34-115	6 8
1.1.1.2-Tetrachloroethane	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	<0.05 <0.05	118	103	35-126	8 14
m,p-Xylene	mg/kg (ppm)	5	<0.1	109	101	25-125	8
o-Xylene	mg/kg (ppm)	2.5	< 0.05	108	97	27-126	11
Styrene	mg/kg (ppm)	2.5	< 0.05	111	106	39-121	5
Isopropylbenzene	mg/kg (ppm)	2.5	< 0.05	112	99	34-123	12
Bromoform n-Propylbenzene	mg/kg (ppm)	2.5 2.5	<0.05 <0.05	122 112	114 101	18-155 31-120	7 10
Bromobenzene	mg/kg (ppm) mg/kg (ppm)	2.5	< 0.05	112	106	40-115	6
1,3,5-Trimethylbenzene	mg/kg (ppm)	2.5	< 0.05	116	100	24-130	15
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	2.5	< 0.05	115	107	27-148	7
1,2,3-Trichloropropane	mg/kg (ppm)	2.5	< 0.05	112	107	33-123	5
2-Chlorotoluene	mg/kg (ppm)	2.5	< 0.05	114 vo	101	39-110	12
4-Chlorotoluene tert-Butylbenzene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	<0.05 <0.05	114 vo 122 vo	105 107	39-111 36-116	8 13
1,2,4-Trimethylbenzene	mg/kg (ppm)	2.5	< 0.05	115	107	35-116	13
sec-Butylbenzene	mg/kg (ppm)	2.5	< 0.05	122 vo	106	33-118	14
p-Isopropyltoluene	mg/kg (ppm)	2.5	< 0.05	117	103	32-119	13
1,3-Dichlorobenzene	mg/kg (ppm)	2.5	< 0.05	111	103	38-111	7
1,4-Dichlorobenzene	mg/kg (ppm)	2.5	< 0.05	108	100	39-109	8
1,2-Dichlorobenzene 1,2-Dibromo-3-chloropropane	mg/kg (ppm)	2.5 2.5	<0.05 <0.5	110 105	99 97	40-111 47-127	11 8
1,2-Dibromo-3-chioropropane 1,2,4-Trichlorobenzene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	<0.5 <0.25	105 109	97 91	47-127 31-121	8 18
Hexachlorobutadiene	mg/kg (ppm)	2.5	< 0.25	109	94	24-128	15
Naphthalene	mg/kg (ppm)	2.5	< 0.05	111	95	24-139	16
1,2,3-Trichlorobenzene	mg/kg (ppm)	2.5	< 0.25	108	90	35-117	18

ENVIRONMENTAL CHEMISTS

Date of Report: 03/11/19 Date Received: 02/28/19

Project: Morell's 080190, F&BI 902435

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: Laboratory Control Sample

Analyte Units Level LCS Criteria	•	-		Percent	
Dichbrordfilusromethane		Reporting	Spike	Recovery	Acceptance
Chloromethane	Analyte	Units	Level	LCS	Criteria
Variety Chorie mg/kg (ppm) 2.5 9.7 42-107 4					
Brommethane					
Chloroethane					
Trichlorofluoromethane					
1,1-Dichloroethene		mg/kg (ppm)			
Hexane					
Methyl-enchloride mg/kg (ppm) 2.5 104 50-127 Methyl-butyl ether (MTBE) mg/kg (ppm) 2.5 103 72-122 trans-12-Dichloroethene mg/kg (ppm) 2.5 103 71-113 1,1-Dichloropropane mg/kg (ppm) 2.5 105 74-119 22-Dichloropropane mg/kg (ppm) 2.5 105 73-110 Chloroform mg/kg (ppm) 2.5 103 76-110 Chloroform mg/kg (ppm) 2.5 103 76-110 Chloroform mg/kg (ppm) 2.5 103 76-110 L2-Dichloroptone mg/kg (ppm) 2.5 106 72-112 L2-Dichloroptopane mg/kg (ppm) 2.5 106 72-112 Carbon tetrachloride mg/kg (ppm) 2.5 106 72-112 Benzene mg/kg (ppm) 2.5 106 72-112 12-Dichloropropane mg/kg (ppm) 2.5 100 72-106 12-Dichloropropane mg/kg (ppm) 2.5 103					
Methyl t-butyl ether (MTBE)					
trans-12-Dichloroethene mg/kg (ppm) 2.5 103 71-113 1.1-Dichloroptopane mg/kg (ppm) 2.5 105 74-109 2.2-Dichloroptopane mg/kg (ppm) 2.5 105 73-110 Chloroform mg/kg (ppm) 2.5 103 78-110 Chloroform mg/kg (ppm) 2.5 103 78-110 2.Butanone (MEK) mg/kg (ppm) 2.5 103 78-110 1.1-Dichloroethane (EDC) mg/kg (ppm) 2.5 103 73-111 1.1-Trichloroethane (EDC) mg/kg (ppm) 2.5 106 72-116 1.1-Dichloroptopene mg/kg (ppm) 2.5 106 72-116 1.1-Dichloroptopene mg/kg (ppm) 2.5 106 72-116 1.1-Dichloroptopene mg/kg (ppm) 2.5 105 67-123 Benzene mg/kg (ppm) 2.5 105 67-123 Benzene mg/kg (ppm) 2.5 100 72-107 1.2-Dichloroptopane mg/kg (ppm) 2.5 100 72-107 1.2-Dichloroptopane mg/kg (ppm) 2.5 105 74-115 Bromodichloromethane mg/kg (ppm) 2.5 103 73-126 Dibromomethane mg/kg (ppm) 2.5 107 71-138 Dibromomethane mg/kg (ppm) 2.5 107 71-138 Dibromomethane mg/kg (ppm) 2.5 107 71-138 Dibromomethane mg/kg (ppm) 2.5 103 74-111 Tatas-1,3-Dichloropropene mg/kg (ppm) 2.5 103 74-111 Tatas-1,3-Dichloropropene mg/kg (ppm) 2.5 105 77-116 Dibromomethane mg/kg (ppm) 2.5 105 77-116 Dibromomethane mg/kg (ppm) 2.5 106 77-126 Dibromomethane mg/kg (ppm) 2.5 106 77-126 Dibromomethane mg/kg (ppm) 2.5 107 76-126 Dibromomethane mg/kg (ppm) 2.5 107 76-116 Dibromomethane mg/kg (ppm) 2.5 107 76-116 Dibromomethane mg/kg (ppm) 2.5 106 76-122 Dibromomethane mg/kg (ppm) 2.5 106 76-122					
22-Dichloropropane		mg/kg (ppm)			
cis 1.2 Dichloroethene mg/kg (ppm) 2.5 103 73-110 2-Butanone (MEK) mg/kg (ppm) 12.5 118 60-121 1.1.1-Dichloroprotethane (EDC) mg/kg (ppm) 2.5 108 73-111 1.1.1-Trichloroethane mg/kg (ppm) 2.5 106 72-116 1.1.1-Dichloropropene mg/kg (ppm) 2.5 106 72-116 1.1-Dichloropropene mg/kg (ppm) 2.5 106 72-116 1.1-Dichloropropene mg/kg (ppm) 2.5 106 72-116 1.1-Dichloropropene mg/kg (ppm) 2.5 105 67-123 Benzene mg/kg (ppm) 2.5 105 67-123 Benzene mg/kg (ppm) 2.5 105 72-107 1.2-Dichloropropane mg/kg (ppm) 2.5 103 75-126 Dibromomethane mg/kg (ppm) 2.5 103 75-126 Dibromomethane mg/kg (ppm) 2.5 103 75-126 Cis 1.3-Dichloropropene mg/kg (ppm) 2.5 107 71-138 Toluene mg/kg (ppm) 2.5 105 77-136 1.1.2-Trichloroethane mg/kg (ppm) 2.5 105 77-136 1.1.2-Trichloroethane mg/kg (ppm) 2.5 106 77-136 1.1.2-Trichloroethane mg/kg (ppm) 2.5 106 77-116 2-Hexanone mg/kg (ppm) 2.5 106 77-116 2-Hexanone mg/kg (ppm) 2.5 106 77-116 2-Hexanone mg/kg (ppm) 2.5 106 77-116 1.3-Dichloropropane mg/kg (ppm) 2.5 107 76-115 Tetrachloroethane mg/kg (ppm) 2.5 108 73-111 Dibromochloromethane mg/kg (ppm) 2.5 107 76-115 Tetrachloroethane mg/kg (ppm) 2.5 107 77-115 Tetrachloroethane m					
Chloroform					
2-Butanone (MEK) Polkhloroethane (EDC) mg/kg (ppm) 2.5 118 60-121 1.1-Prichloroethane mg/kg (ppm) 2.5 106 72-116 1.1-Prichloropropene mg/kg (ppm) 2.5 106 72-116 1.1-Prichloropropene mg/kg (ppm) 2.5 106 72-112 Carbon tetrachloride mg/kg (ppm) 2.5 105 67-123 Benzene mg/kg (ppm) 2.5 105 67-123 Benzene mg/kg (ppm) 2.5 105 67-123 Bromodichloromethane mg/kg (ppm) 2.5 100 72-107 1.2-Dichloropropane mg/kg (ppm) 2.5 105 74-115 Bromodichloromethane mg/kg (ppm) 2.5 103 75-126 Dibromomethane mg/kg (ppm) 2.5 96 76-116 Olivarian 76-126 76-116 Dibromomethane mg/kg (ppm) 2.5 96 76-116 Olivarian 76-126 76-126 Oli					
1.2-Dichloroethane (EDC)					
1-1-Dichloropropene					
Carbon tetrachloride mg/kg (ppm) 2.5 105 67-123 Benzene mg/kg (ppm) 2.5 99 72-106 Trichloroethene mg/kg (ppm) 2.5 100 72-107 1,2-Dichloropropane mg/kg (ppm) 2.5 103 75-128 Bromodichloromethane mg/kg (ppm) 2.5 103 75-128 Dibromomethane mg/kg (ppm) 2.5 96 76-116 4 Methyl-2-pentanone mg/kg (ppm) 2.5 107 71-138 Toluene mg/kg (ppm) 2.5 107 71-138 Toluene mg/kg (ppm) 2.5 105 77-135 1,1,2-Trichloroethane mg/kg (ppm) 2.5 105 77-135 1,1,2-Trichloroethane mg/kg (ppm) 2.5 105 77-116 2-Hexanone mg/kg (ppm) 2.5 105 77-116 2-Hexanone mg/kg (ppm) 2.5 106 75-116 2-Hexanone mg/kg (ppm) 2.5 107 76-129 <td></td> <td></td> <td></td> <td></td> <td></td>					
Benzene					
Trichloroethene 1,2-Dichloropropane 1,2-Dichloropropane 1,2-Dichloropropane 1,2-Dichloropropane 1,2-Dichloropropane 1,3-Dichloropropane 1,3-Dichlo					
1.2-Dichloropropane					
Bromodichloromethane mg/kg (ppm) 2.5 103 75-126					
A-Methyl-2-pentanone	Bromodichloromethane				75-126
cis-1,3-Dichloropropene mg/kg (ppm) 2.5 107 71-138 Toluene mg/kg (ppm) 2.5 103 74-111 trans-1,3-Dichloropropene mg/kg (ppm) 2.5 105 77-135 1,1,2-Trichloroethane mg/kg (ppm) 2.5 105 77-116 2-Hexanone mg/kg (ppm) 2.5 116 70-129 1,3-Dichloropropane mg/kg (ppm) 2.5 101 75-115 Tetrachloroethene mg/kg (ppm) 2.5 108 73-111 Dibromoethane (EDB) mg/kg (ppm) 2.5 101 77-117 Chlorobenzene mg/kg (ppm) 2.5 101 77-117 Chlorobenzene mg/kg (ppm) 2.5 103 76-109 Ethylbenzene mg/kg (ppm) 2.5 106 75-112 1,1,2-Tetrachloroethane mg/kg (ppm) 2.5 119 76-125 mp-Xylene mg/kg (ppm) 2.5 110 76-125 styrene mg/kg (ppm) 2.5 110					
Toluene					
trans-1,3-Dichloropropene mg/kg (ppm) 2.5 105 77-135 1,1,2-Trichloroethane mg/kg (ppm) 2.5 105 77-135 1,1,2-Trichloroethane mg/kg (ppm) 2.5 106 70-129 1,3-Dichloropropane mg/kg (ppm) 2.5 101 75-115 Tetrachloroethane mg/kg (ppm) 2.5 108 73-111 Dibromochloromethane mg/kg (ppm) 2.5 107 64-152 1,2-Dibromoethane (EDB) mg/kg (ppm) 2.5 107 64-152 1,2-Dibromoethane (EDB) mg/kg (ppm) 2.5 101 77-117 (Chlorobenzene mg/kg (ppm) 2.5 103 76-109 Ethylbenzene mg/kg (ppm) 2.5 106 75-112 1,1,1,2-Tetrachloroethane mg/kg (ppm) 2.5 106 75-112 1,1,1,2-Tetrachloroethane mg/kg (ppm) 2.5 108 77-115 o-Xylene mg/kg (ppm) 5 108 77-115 o-Xylene mg/kg (ppm) 5 108 77-115 Styrene mg/kg (ppm) 2.5 110 76-115 Styrene mg/kg (ppm) 2.5 110 76-115 Styrene mg/kg (ppm) 2.5 113 76-120 Bromoform mg/kg (ppm) 2.5 113 76-120 Bromoform mg/kg (ppm) 2.5 113 76-120 Bromoform mg/kg (ppm) 2.5 113 77-115 1,1,2,2-Tetrachloroethane mg/kg (ppm) 2.5 106 76-112 1,3-5-Trimethylbenzene mg/kg (ppm) 2.5 106 76-112 1,2,3-Trichloropropane mg/kg (ppm) 2.5 113 77-121 1,1,2,2-Tetrachloroethane mg/kg (ppm) 2.5 113 77-115 tert-Butylbenzene mg/kg (ppm) 2.5 116 77-120 1,2,3-Tinethylbenzene mg/kg (ppm) 2.5 116 77-120 1,3-Dichlorobenzene mg/kg (ppm) 2.5 100 75-114 1,2-Dichlorobenzene mg/kg (p					
1,12-Trichloroethane					
1,3-Dichloropropane	1,1,2-Trichloroethane			105	77-116
Tetrachloroethene mg/kg (ppm) 2.5 108 73-111 Dibromochloromethane mg/kg (ppm) 2.5 107 64-152 1,2-Dibromocthane (EDB) mg/kg (ppm) 2.5 101 77-117 Chlorobenzene mg/kg (ppm) 2.5 103 76-109 Ethylbenzene mg/kg (ppm) 2.5 106 75-112 1,1,1,2-Tetrachloroethane mg/kg (ppm) 2.5 119 76-125 m,-Xylene mg/kg (ppm) 2.5 110 76-125 m,-Xylene mg/kg (ppm) 2.5 110 76-115 Styrene mg/kg (ppm) 2.5 107 76-119 Isopropylbenzene mg/kg (ppm) 2.5 113 76-120 Bromoform mg/kg (ppm) 2.5 113 50-174 n-Propylbenzene mg/kg (ppm) 2.5 108 77-115 Bromobenzene mg/kg (ppm) 2.5 113 50-174 1,1,2,2-Tetrachloroethane mg/kg (ppm) 2.5 113 77-121					
Dibromochloromethane					
1,2-Dibromoethane (EDB) mg/kg (ppm) 2.5 101 77-117					
Chlorobenzene mg/kg (ppm) 2.5 103 76-109 Ethylbenzene mg/kg (ppm) 2.5 106 75-112 1,1,1,2-Tetrachloroethane mg/kg (ppm) 2.5 110 76-125 m.p-Xylene mg/kg (ppm) 5 108 77-115 o-Xylene mg/kg (ppm) 2.5 110 76-119 Isopropylbenzene mg/kg (ppm) 2.5 110 76-119 Isopropylbenzene mg/kg (ppm) 2.5 113 76-120 Bromoform mg/kg (ppm) 2.5 113 50-174 n-Propylbenzene mg/kg (ppm) 2.5 113 50-174 Bromobenzene mg/kg (ppm) 2.5 108 77-115 Bromobenzene mg/kg (ppm) 2.5 108 77-115 Bromobenzene mg/kg (ppm) 2.5 108 77-121 1,3,5-Trimethylbenzene mg/kg (ppm) 2.5 113 77-121 1,1,2,2-Tetrachloroethane mg/kg (ppm) 2.5 112 74-121 1,2,3-Trichloropropane mg/kg (ppm) 2.5 112 74-121 1,2,3-Trichloropropane mg/kg (ppm) 2.5 110 77-115 etr-Butylbenzene mg/kg (ppm) 2.5 111 75-113 4-Chlorotoluene mg/kg (ppm) 2.5 111 77-115 etr-Butylbenzene mg/kg (ppm) 2.5 111 77-115 etr-Butylbenzene mg/kg (ppm) 2.5 111 77-115 etr-Butylbenzene mg/kg (ppm) 2.5 118 77-123 1,2,4-Trimethylbenzene mg/kg (ppm) 2.5 118 77-129 p-Isopropyltoluene mg/kg (ppm) 2.5 118 78-120 p-Isopropyltoluene mg/kg (ppm) 2.5 116 77-120 1,3-Dichlorobenzene mg/kg (ppm) 2.5 106 76-112 1,4-Dichlorobenzene mg/kg (ppm) 2.5 107 75-114 1,2-Dichlorobenzene mg/kg (ppm) 2.5 100 75-114 1,2-Dichlorobenzene mg/kg (ppm) 2.5 100 77-111 1,2-Dichlorobenzene mg/kg (ppm) 2.5 100 77-111 1,2-Dichlorobenzene mg/kg (ppm) 2.5 100 77-111 1,2-Dichlorobenzene mg/kg (ppm) 2.5 100 77-111 1,2-Dichlorobenzene mg/kg (ppm) 2.5 100 77-111 1,2-Dichlorobenzene mg/kg (ppm) 2.5 100 77-111 1,2-Dichlorobenzene mg/kg (ppm) 2.5 100 77-111 1,2-Dichlorobenzene mg/kg (ppm) 2.5 100 77-111 1,2-Dichlorobenzene mg/kg (ppm) 2.5 100 77-111					
1.1,1,2-Tetrachloroethane mg/kg (ppm) 2.5 119 76-125 mpXylene mg/kg (ppm) 5 108 77-115 o-Xylene mg/kg (ppm) 2.5 110 76-115 Styrene mg/kg (ppm) 2.5 107 76-119 Isopropylbenzene mg/kg (ppm) 2.5 113 76-120 Bromoform mg/kg (ppm) 2.5 113 50-174 n-Propylbenzene mg/kg (ppm) 2.5 108 77-115 Bromobenzene mg/kg (ppm) 2.5 106 76-112 1,3.5-Trimethylbenzene mg/kg (ppm) 2.5 113 77-121 1,2,2-Tetrachloroethane mg/kg (ppm) 2.5 106 76-112 1,2,3-Trichloropropane mg/kg (ppm) 2.5 104 74-121 1,2,2-Tetrachloroethane mg/kg (ppm) 2.5 104 74-116 4-Chlorotoluene mg/kg (ppm) 2.5 104 74-116 4-Chlorotoluene mg/kg (ppm) 2.5 104 74-116 4-Chlorotoluene mg/kg (ppm) 2.5 113			2.5	103	76-109
mp-Xylene mg/kg (ppm) 5 108 77-115 o-Xylene mg/kg (ppm) 2.5 110 76-115 Styrene mg/kg (ppm) 2.5 107 76-119 Isopropylbenzene mg/kg (ppm) 2.5 113 76-120 Bromoform mg/kg (ppm) 2.5 113 50-174 n-Propylbenzene mg/kg (ppm) 2.5 108 77-115 Bromobenzene mg/kg (ppm) 2.5 108 77-115 Bromobenzene mg/kg (ppm) 2.5 108 77-115 Bromobenzene mg/kg (ppm) 2.5 106 76-112 1,3,5-Trimethylbenzene mg/kg (ppm) 2.5 113 77-121 1,1,2,2-Tetrachloroethane mg/kg (ppm) 2.5 112 74-121 1,2,3-Trichloropropane mg/kg (ppm) 2.5 104 74-116 2-Chlorotoluene mg/kg (ppm) 2.5 104 74-116 2-Chlorotoluene mg/kg (ppm) 2.5 107 77-115					
o-Xylene mg/kg (ppm) 2.5 110 76-115 Styrene mg/kg (ppm) 2.5 107 76-119 Isopropylbenzene mg/kg (ppm) 2.5 113 76-120 Bromoform mg/kg (ppm) 2.5 113 50-174 n-Propylbenzene mg/kg (ppm) 2.5 108 77-115 Bromobenzene mg/kg (ppm) 2.5 106 76-112 1,3.5-Trimethylbenzene mg/kg (ppm) 2.5 113 77-121 1,3.5-Trimethylbenzene mg/kg (ppm) 2.5 112 74-121 1,2.3-Trichloropropane mg/kg (ppm) 2.5 104 74-116 2-Chlorotoluene mg/kg (ppm) 2.5 104 74-116 2-Chlorotoluene mg/kg (ppm) 2.5 111 75-113 4-Chlorotoluene mg/kg (ppm) 2.5 111 75-113 tert-Butylbenzene mg/kg (ppm) 2.5 118 77-123 1,2-4-Trimethylbenzene mg/kg (ppm) 2.5 118 7					
Styrene mg/kg (ppm) 2.5 107 76-119 Isopropylbenzene mg/kg (ppm) 2.5 113 76-120 Bromoform mg/kg (ppm) 2.5 113 76-120 n-Propylbenzene mg/kg (ppm) 2.5 108 77-115 Bromobenzene mg/kg (ppm) 2.5 106 76-112 1,3.5-Trinethylbenzene mg/kg (ppm) 2.5 113 77-121 1,2,2-Tetrachloroethane mg/kg (ppm) 2.5 112 74-121 1,2,2-Tetrachloropropane mg/kg (ppm) 2.5 104 74-116 2-Chlorotoluene mg/kg (ppm) 2.5 104 74-116 2-Chlorotoluene mg/kg (ppm) 2.5 107 77-115 4-Chlorotoluene mg/kg (ppm) 2.5 118 77-123 4-Chlorotoluene mg/kg (ppm) 2.5 118 77-123 4-Chlorotoluene mg/kg (ppm) 2.5 118 77-123 4-Chlorotoluene mg/kg (ppm) 2.5 118					
Isopropylbenzene					
n-Propylbenzene mg/kg (ppm) 2.5 108 77-115 Bromobenzene mg/kg (ppm) 2.5 106 76-112 1,3.5-Trinethylbenzene mg/kg (ppm) 2.5 113 77-121 1,1,2,2-Tetrachloroethane mg/kg (ppm) 2.5 112 74-121 1,2,3-Trichloropropane mg/kg (ppm) 2.5 104 74-116 2-Chlorotoluene mg/kg (ppm) 2.5 107 77-115 4-Chlorotoluene mg/kg (ppm) 2.5 118 77-123 12,4-Trimethylbenzene mg/kg (ppm) 2.5 113 77-119 sec-Butylbenzene mg/kg (ppm) 2.5 118 78-120 p-Isopropyltoluene mg/kg (ppm) 2.5 116 77-120 1,3-Dichlorobenzene mg/kg (ppm) 2.5			2.5	113	
Bromobenzene mg/kg (ppm) 2.5 106 76-112 1,3,5-Trimethylbenzene mg/kg (ppm) 2.5 113 77-121 1,1,2,2-Tetrac hloroethane mg/kg (ppm) 2.5 112 74-121 1,2,3-Trichloropropane mg/kg (ppm) 2.5 104 74-116 2-Chlorotoluene mg/kg (ppm) 2.5 107 77-113 4-Chlorotoluene mg/kg (ppm) 2.5 107 77-115 tert-Butylbenzene mg/kg (ppm) 2.5 118 77-123 1,2,4-Trimethylbenzene mg/kg (ppm) 2.5 118 77-119 sec-Butylbenzene mg/kg (ppm) 2.5 118 78-120 p-Isopropyltoluene mg/kg (ppm) 2.5 116 77-120 1,3-Dichlorobenzene mg/kg (ppm) 2.5 106 76-112 1,4-Dichlorobenzene mg/kg (ppm) 2.5 102 74-109 1,2-Dibromo-3-chloropropane mg/kg (ppm) 2.5 107 75-114 1,2,4-Tririchlorobenzene mg/kg (ppm) <td></td> <td></td> <td></td> <td></td> <td></td>					
1,3,5-Trimethylbenzene mg/kg (ppm) 2.5 113 77-121 1,1,2,2-Tetrachloroethane mg/kg (ppm) 2.5 112 74-121 1,2,3-Trichloropropane mg/kg (ppm) 2.5 104 74-116 2-Chlorotoluene mg/kg (ppm) 2.5 104 74-116 2-Chlorotoluene mg/kg (ppm) 2.5 111 75-113 4-Chlorotoluene mg/kg (ppm) 2.5 107 77-115 tert-Butylbenzene mg/kg (ppm) 2.5 118 77-123 1,2,4-Trimethylbenzene mg/kg (ppm) 2.5 113 77-119 sec-Butylbenzene mg/kg (ppm) 2.5 118 78-120 p-Isopropyltoluene mg/kg (ppm) 2.5 116 77-120 1,3-Dichlorobenzene mg/kg (ppm) 2.5 106 76-112 1,4-Dichlorobenzene mg/kg (ppm) 2.5 102 74-109 1,2-Dichlorobenzene mg/kg (ppm) 2.5 107 75-114 1,2-Dirborobenzene mg/kg (ppm) 2.5 109 68-122 1,2,4-Trichlorobenzene mg/kg (ppm) 2.5 108 75-122					
1,1,2,2-Tetrachloroethane mg/kg (ppm) 2.5 112 74-121 1,2,3-Trichloropropane mg/kg (ppm) 2.5 104 74-116 2-Chlorotoluene mg/kg (ppm) 2.5 111 75-113 4-Chlorotoluene mg/kg (ppm) 2.5 107 77-115 tert-Butylbenzene mg/kg (ppm) 2.5 118 77-123 1,2,4-Trinethylbenzene mg/kg (ppm) 2.5 113 77-119 sec-Butylbenzene mg/kg (ppm) 2.5 118 78-120 p-Isopropyltoluene mg/kg (ppm) 2.5 116 77-120 1,3-Dichlorobenzene mg/kg (ppm) 2.5 106 76-112 1,4-Dichlorobenzene mg/kg (ppm) 2.5 102 74-109 1,2-Diblorobenzene mg/kg (ppm) 2.5 107 75-114 1,2-Dibromo-3-chloropropane mg/kg (ppm) 2.5 109 68-122 1,2,4-Trichlorobenzene mg/kg (ppm) 2.5 108 75-122					
1.2,3-Trichloropropane mg/kg (ppm) 2.5 104 74-116 2-Chlorotoluene mg/kg (ppm) 2.5 111 75-113 4-Chlorotoluene mg/kg (ppm) 2.5 107 77-115 tert-Butylbenzene mg/kg (ppm) 2.5 118 77-123 1.2,4-Trimethylbenzene mg/kg (ppm) 2.5 113 77-119 sec-Butylbenzene mg/kg (ppm) 2.5 118 78-120 p-Isopropyltoluene mg/kg (ppm) 2.5 116 77-120 1,3-Dichlorobenzene mg/kg (ppm) 2.5 106 76-112 1,4-Dichlorobenzene mg/kg (ppm) 2.5 102 74-109 1,2-Dichlorobenzene mg/kg (ppm) 2.5 107 75-114 1,2-Dibromo-3-chloropropane mg/kg (ppm) 2.5 109 68-122 1,2,4-Trichlorobenzene mg/kg (ppm) 2.5 108 75-122					
2-Chlorotoluene mg/kg (ppm) 2.5 111 75-113 4-Chlorotoluene mg/kg (ppm) 2.5 107 77-115 tert-Butylbenzene mg/kg (ppm) 2.5 118 77-123 1,2,4-Trimethylbenzene mg/kg (ppm) 2.5 113 77-119 sec-Butylbenzene mg/kg (ppm) 2.5 118 78-120 p-Isopropyltoluene mg/kg (ppm) 2.5 116 77-120 1,3-Dichlorobenzene mg/kg (ppm) 2.5 106 76-112 1,4-Dichlorobenzene mg/kg (ppm) 2.5 102 74-109 1,2-Dichlorobenzene mg/kg (ppm) 2.5 107 75-114 1,2-Dirhoro-3-chloropropane mg/kg (ppm) 2.5 109 68-122 1,2,4-Trichlorobenzene mg/kg (ppm) 2.5 108 75-122					
tert-Butylbenzene mg/kg (ppm) 2.5 118 77-123 1.2,4-Trimethylbenzene mg/kg (ppm) 2.5 113 77-119 sec-Butylbenzene mg/kg (ppm) 2.5 1118 78-120 p-Isopropyltoluene mg/kg (ppm) 2.5 116 77-120 1.3-Dichlorobenzene mg/kg (ppm) 2.5 106 76-112 1.4-Dichlorobenzene mg/kg (ppm) 2.5 102 74-109 1.2-Dichlorobenzene mg/kg (ppm) 2.5 107 75-114 1.2-Dibromo-3-chloropropane mg/kg (ppm) 2.5 109 68-122 1.2,4-Trichlorobenzene mg/kg (ppm) 2.5 109 68-122 mg/kg (ppm) 2.5 108 75-122		mg/kg (ppm)			
1,2,4-Trimethylbenzene mg/kg (ppm) 2.5 113 77-119 sec-Butylbenzene mg/kg (ppm) 2.5 118 78-120 p-Isopropyltoluene mg/kg (ppm) 2.5 116 77-120 1,3-Dichlorobenzene mg/kg (ppm) 2.5 106 76-112 1,4-Dichlorobenzene mg/kg (ppm) 2.5 102 74-109 1,2-Dichlorobenzene mg/kg (ppm) 2.5 107 75-114 1,2-Dibrono-3-chloropropane mg/kg (ppm) 2.5 109 68-122 1,2,4-Trichlorobenzene mg/kg (ppm) 2.5 108 75-122					
sec-Butylbenzene mg/kg (ppm) 2.5 118 78-120 p-Isopropyltoluene mg/kg (ppm) 2.5 116 77-120 1,3-Dichlorobenzene mg/kg (ppm) 2.5 106 76-112 1,4-Dichlorobenzene mg/kg (ppm) 2.5 102 74-109 1,2-Dichlorobenzene mg/kg (ppm) 2.5 107 75-114 1,2-Dibromo-3-chloropropane mg/kg (ppm) 2.5 109 68-122 1,2,4-Trichlorobenzene mg/kg (ppm) 2.5 108 75-122					
p-Isopropyltoluene mg/kg (ppm) 2.5 116 77-120 1.3-Dichlorobenzene mg/kg (ppm) 2.5 106 76-112 1.4-Dichlorobenzene mg/kg (ppm) 2.5 102 74-109 1.2-Dichlorobenzene mg/kg (ppm) 2.5 107 75-114 1.2-Dibromo-3-chloropropane mg/kg (ppm) 2.5 109 68-122 1.2-4-Trichlorobenzene mg/kg (ppm) 2.5 108 75-122					
1,3-Dichlorobenzene mg/kg (ppm) 2.5 106 76-112 1,4-Dichlorobenzene mg/kg (ppm) 2.5 102 74-109 1,2-Dichlorobenzene mg/kg (ppm) 2.5 107 75-114 1,2-Dibromo-3-chloropropane mg/kg (ppm) 2.5 109 68-122 1,2,4-Trichlorobenzene mg/kg (ppm) 2.5 108 75-122					
1,2-Dichlorobenzene mg/kg (ppm) 2.5 107 75-114 1,2-Dibromo-3-chloropropane mg/kg (ppm) 2.5 109 68-122 1,2,4-Trichlorobenzene mg/kg (ppm) 2.5 108 75-122			2.5	106	76-112
1,2-Dibromo-3-chloropropane mg/kg (ppm) 2.5 109 68-122 1,2,4-Trichlorobenzene mg/kg (ppm) 2.5 108 75-122		mg/kg (ppm)			
1,2,4-Trichlorobenzene mg/kg (ppm) 2.5 108 75-122					
Hexachlorobutadiene mg/kg (ppm) 2.5 110 74-130					
Naphthalene mg/kg (ppm) 2.5 114 73-122	Naphthalene		2.5	114	73-122
1,2,3-Trichlorobenzene mg/kg (pm) 2.5 109 75-117	1,2,3-Trichlorobenzene	mg/kg (ppm)	2.5	109	75-117

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dy Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- $hr\ -\ The\ sample\ and\ duplicate\ were\ reextracted\ and\ reanalyzed.\ RPD\ results\ were\ still\ outside\ of\ control\ limits.\ Variability\ is\ attributed\ to\ sample\ inhomogeneity.$
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- \boldsymbol{J} The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- \boldsymbol{L} The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- $\mbox{\it ve}$ The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Friedman & Bruya Michael Erdahl 3012 16th Ave. W.

Seattle, WA 98119

RE: 902435

Work Order Number: 1902363

March 07, 2019

Attention Michael Erdahl:

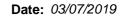
Fremont Analytical, Inc. received 2 sample(s) on 2/28/2019 for the analyses presented in the following report.

Ion Chromatography by EPA Method 300.0 Total Organic Carbon by SM 5310C

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.


Thank you for using Fremont Analytical.

Jul c. Rady

Sincerely,

Mike Ridgeway Laboratory Director

DoD/ELAP Certification #L17-135, ISO/IEC 17025:2005 ORELAP Certification: WA 100009-007 (NELAP Recognized)

CLIENT: Friedman & Bruya Work Order Sample Summary

Project: 902435 **Work Order:** 1902363

 Lab Sample ID
 Client Sample ID
 Date/Time Collected
 Date/Time Received

 1902363-001
 MW-2-022719
 02/27/2019 8:45 PM
 02/28/2019 3:26 PM

 1902363-002
 MW-20-022818
 02/28/2019 2:45 AM
 02/28/2019 3:26 PM

Case Narrative

WO#: **1902363**Date: **3/7/2019**

CLIENT: Friedman & Bruya

Project: 902435

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: 1902363

Date Reported: 3/7/2019

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

Analytical Report

Work Order: 1902363

Date Reported: 3/7/2019

Client: Friedman & Bruya Collection Date: 2/27/2019 8:45:00 PM

Project: 902435

Lab ID: 1902363-001 **Matrix:** Water

Client Sample ID: MW-2-022719

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Ion Chromatography by EPA	A Method 300.0			Bato	h ID: 1	Analyst: GM
Chloride	50.6	5.00	D	mg/L	50	3/4/2019 4:37:00 PM
Nitrite (as N)	0.675	0.100		mg/L	1	2/28/2019 6:23:00 PM
Nitrate (as N)	ND	0.100		mg/L	1	2/28/2019 6:23:00 PM
Sulfate	1.22	1.20	D	mg/L	4	3/4/2019 6:56:00 PM
Total Organic Carbon by SM	<u>// 5310C</u>			Bato	h ID: 1	Analyst: GM
Total Organic Carbon	209	10.0	D	mg/L	20	3/6/2019 10:49:00 AM

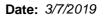
Original

Analytical Report

Work Order: 1902363

Date Reported: 3/7/2019

Client: Friedman & Bruya Collection Date: 2/28/2019 2:45:00 AM


Project: 902435

Lab ID: 1902363-002 **Matrix:** Water

Client Sample ID: MW-20-022818

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Ion Chromatography by EP	A Method 300.0			Bato	ch ID: 1	Analyst: GM
Chloride	31.4	2.00	D	mg/L	20	3/4/2019 5:00:00 PM
Nitrite (as N)	0.128	0.100		mg/L	1	2/28/2019 9:29:00 PM
Nitrate (as N)	ND	0.100		mg/L	1	2/28/2019 9:29:00 PM
Sulfate	ND	0.300		mg/L	1	2/28/2019 9:29:00 PM
Total Organic Carbon by SM	<u>// 5310C</u>			Bato	h ID: 1	Analyst: GM
Total Organic Carbon	179	10.0	D	mg/L	20	3/6/2019 12:37:00 PM

Original

Work Order: 1902363

QC SUMMARY REPORT

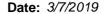
CLIENT: Friedman & Bruya

Ion Chromatography by EPA Method 300.0

Proiect:	902435
FIOIECL.	302433

Sample ID MB-23680	SampType: MBLK			Units: mg/L		Prep Da	te: 2/28/2 0	019	RunNo: 49	776	
Client ID: MBLKW	Batch ID: 23680					Analysis Da	te: 2/28/2 0	019	SeqNo: 97	5827	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloride	ND	0.100									
Nitrite (as N)	ND	0.100									
Nitrate (as N)	ND	0.100									
Sulfate	ND	0.300									

Sample ID LCS-23680	SampType: LCS			Units: mg/L		Prep Dat	te: 2/28/20	19	RunNo: 497	776	
Client ID: LCSW	Batch ID: 23680					Analysis Dat	te: 2/28/20	19	SeqNo: 975	5828	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloride	0.760	0.100	0.7500	0	101	90	110				
Nitrite (as N)	0.735	0.100	0.7500	0	98.0	90	110				
Nitrate (as N)	0.754	0.100	0.7500	0	101	90	110				
Sulfate	3.60	0.300	3.750	0	95.9	90	110				


Sample ID 1902354-001BDUP	SampType: DUP			Units: mg/L		Prep Da	te: 2/28/2 0	019	RunNo: 497	776	
Client ID: BATCH	Batch ID: 23680					Analysis Da	ite: 2/28/20)19	SeqNo: 97	5832	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloride	32.3	0.100						32.31	0.111	20	QE
Nitrite (as N)	ND	0.100						0		20	
Nitrate (as N)	ND	0.100						0		20	
Sulfate	6.21	0.300						6.252	0.706	20	

NOTES:

Q - Indicates an analyte with a continuing calibration that does not meet established acceptance criteria

E - Estimated value. The amount exceeds the linear working range of the instrument.

Original Page 7 of 12

Work Order: 1902363

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

902435

Ion Chromatography by EPA Method 300.0

Sample ID 1902354-001BMS	SampType: MS			Units: mg/L		Prep Da	te: 2/28/2 0	019	RunNo: 497	776	
Client ID: BATCH	Batch ID: 23680					Analysis Da	te: 2/28/2 0	019	SeqNo: 97	5833	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloride	33.1	0.100	0.7500	32.31	111	80	120				Е
Nitrite (as N)	0.571	0.100	0.7500	0	76.1	80	120				S
Nitrate (as N)	0.739	0.100	0.7500	0.05300	91.5	80	120				
Sulfate	9.98	0.300	3.750	6.252	99.5	80	120				
NOTES:											

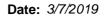
NOTES:

Project:

E - Estimated value. The amount exceeds the linear working range of the instrument.

Sample ID 1902354-001BMSD	SampType: MSD			Units: mg/L		Prep Da	te: 2/28/2 0)19	RunNo: 497	776	
Client ID: BATCH	Batch ID: 23680					Analysis Da	te: 2/28/2 0)19	SeqNo: 97	5834	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloride	33.2	0.100	0.7500	32.31	122	80	120	33.15	0.238	20	ES
Nitrite (as N)	0.605	0.100	0.7500	0	80.7	80	120	0.5710	5.78	20	
Nitrate (as N)	0.749	0.100	0.7500	0.05300	92.8	80	120	0.7390	1.34	20	
Sulfate	10.0	0.300	3.750	6.252	101	80	120	9.982	0.520	20	

NOTES:


E - Estimated value. The amount exceeds the linear working range of the instrument.

Sample ID CCV-23680F	SampType: CCV			Units: mg/L		Prep Da	te: 3/4/201	9	RunNo: 497	776	
Client ID: CCV	Batch ID: 23680					Analysis Da	te: 3/4/201	9	SeqNo: 976	6381	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloride	0.746	0.100	0.7500	0	99.5	90	110				
Sulfate	3.79	0.300	3.750	0	101	90	110				

Original Page 8 of 12

S - Outlying spike recovery(ies) observed. A duplicate analysis was performed and recovered within range.

S - Outlying spike recovery(ies) observed. A duplicate analysis was performed and recovered within range (Chloride).

Friedman & Bruya

Work Order: 1902363

CLIENT:

QC SUMMARY REPORT

Total Organic Carbon by SM 5310C

Project:	902435	•				Total Organic Carbon by SM 5310
Sample ID	MB-49834	SampType: MBLK			Units: mg/L	Prep Date: 3/5/2019 RunNo: 49834
Client ID:	MBLKW	Batch ID: R49834				Analysis Date: 3/5/2019 SeqNo: 977061
Analyte		Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual
Total Organ	nic Carbon	ND	0.500			
Sample ID	LCS-49834	SampType: LCS			Units: mg/L	Prep Date: 3/5/2019 RunNo: 49834
Client ID:	LCSW	Batch ID: R49834				Analysis Date: 3/5/2019 SeqNo: 977062
Analyte		Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual
Total Organ	nic Carbon	5.08	0.500	5.000	0	102 80 120
Sample ID	1902335-001BDUP	SampType: DUP			Units: mg/L	Prep Date: 3/5/2019 RunNo: 49834
Client ID:	BATCH	Batch ID: R49834				Analysis Date: 3/5/2019 SeqNo: 977064
Analyte		Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual
Total Organ	nic Carbon	0.733	0.500			0.7230 1.37 20
Sample ID	1902335-001BMS	SampType: MS			Units: mg/L	Prep Date: 3/5/2019 RunNo: 49834
Client ID:	ВАТСН	Batch ID: R49834				Analysis Date: 3/5/2019 SeqNo: 977065
Analyte		Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual
Total Organ	nic Carbon	5.96	0.500	5.000	0.7230	105 70 130
Sample ID	1902335-001BMSD	SampType: MSD			Units: mg/L	Prep Date: 3/5/2019 RunNo: 49834
Client ID:	BATCH	Batch ID: R49834				Analysis Date: 3/5/2019 SeqNo: 977066
Analyte		Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual
Total Organ	nic Carbon	5.77	0.500	5.000	0.7230	101 70 130 5.957 3.24 30

Original Page 9 of 12

Date: 3/7/2019

Work Order: 1902363

Project:

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

902435

Total Organic Carbon by SM 5310C

Sample ID 1903018-001ADUP SampType: DUP Units: mg/L Prep Date: 3/5/2019 RunNo: 49834

Client ID: BATCH Batch ID: R49834 Analysis Date: 3/5/2019 SeqNo: 977076

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Total Organic Carbon 4.79 0.500 5.022 4.77 20

Sample ID 1903018-001AMS Prep Date: 3/5/2019 SampType: MS Units: mg/L RunNo: 49834 Client ID: BATCH Batch ID: R49834 Analysis Date: 3/5/2019 SeqNo: 977077 Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Total Organic Carbon 9.63 0.500 5.000 5.022 92.1 70 130

Original Page 10 of 12

Sample Log-In Check List

C	ient Name:	FB		Work O	rder Num	nber: 1902363		
Lo	ogged by:	Brianna Barnes		Date Re	eceived:	2/28/2019	9 3:26:00 PM	
<u>Cha</u>	in of Custo	<u>ody</u>						
1.	Is Chain of C	ustody complete?		Yes	✓	No \square	Not Present	
2.	How was the	sample delivered?		FedE	<u> </u>			
<u>Log</u>	ıIn							
	Coolers are p	iresent?		Yes		No 🗸	NA 🗆	
ა.	Oddicis are p	resent:	Sample			ate temperatur		
4.	Shipping conf	tainer/cooler in good condition		Yes	_	No 🗌	<u></u>	
5.		s present on shipping contain ments for Custody Seals not		Yes		No 🗹	Not Required	
6.	Was an atten	npt made to cool the samples	?	Yes	✓	No \square	na 🗆	
7.	Were all item	s received at a temperature o	f >0°C to 10.0°C*	Yes	✓	No 🗌	NA \square	
8.	Sample(s) in	proper container(s)?		Yes	✓	No 🗌		
9.	Sufficient san	nple volume for indicated test	(s)?	Yes	✓	No 🗌		
10.	Are samples	properly preserved?		Yes	✓	No \square		
11.	Was preserva	ative added to bottles?		Yes		No 🗸	NA \square	
12	Is there head	space in the VOA vials?		Yes		No 🗌	NA 🗸	
		es containers arrive in good co	ondition(unbroken)		✓	No 🗌		
		ork match bottle labels?		Yes	✓	No 🗌		
						\square		
_		correctly identified on Chain of	of Custody?	Yes		No 🗀		
_		at analyses were requested?		Yes	✓	No □		
17.	vvere all noid	ing times able to be met?		Yes	V	No L		
Spe	cial Handli	ing (if applicable)						
18.	Was client no	otified of all discrepancies with	this order?	Yes		No 🗌	NA 🗹	
	Person	Notified:	D	ate				
	By Who	m:	V	ia: 🗌 eMa	il 🗌 Pl	hone 🗌 Fax	☐ In Person	
	Regardi	ng:						
	Client In	structions:						
19.	Additional rer	marks:						
ltem	<u>Information</u>							
		Item #	Temp °C					
	Sample		3.2					

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

SUBCONTRACT SAMPLE CHAIN OF CUSTODY

SUBCONTRACTER

Fax (206) 283-5044	Ph. (206) 285-8282	Seattle, WA 98119-2029	3012 16th Avenue West	Friedman & Bruya, Inc.			4)	¥				MW-20-0728 18	MW-2 -022719	Sample ID Lab		Phone #(206) 285-8282	(200)	ate, ZIP_	3	Company Fried	Send Report To Mich
Rec	Rel	Rec	_							_	,	2	2		H			le, WA	3012 16th Ave W	man a	Michael Erdahl
Received by:	Relinquished by:	Received by:	Relinquished by:	١								2/28	7/27	Date Sampled		ax # (2)	4 /0	Seattle, WA 98119	ve W	Friedman and Bruya, Inc	dahl
	SUR	The state of the s	X	SIGNATURE				9				6245	2045	Time Sampled		Fax # (206) 283-5044	70 000 E011			, Inc.	
			P						280			4	water	Matrix	and the			RE		PR	
			Mic	7										# of jars			H	REMARKS	2	PROJECT NAME/NO.	
		whe	Michael Erdahl		1									Dioxins/Furans			Please Email Results	8	52h 7.0h	I NAM	
		7	rdahl	PRIN										EPH			Email		38	E/NO.	
		Joh		PRINT NAME										VPH			Result			5	Fremont
		Ohnson		E								×	Χ.	TOC	ANAI			As	•	-	ont-
		\										Ж	4		LYSES		-	Asparct EDD	8		
		71	Fri									Х	×	Nitrate Nitrite. Chloride Sulfate:	SREG			all	18-189	PO#	
		FAI	Friedman & Bruya	CO								×	×	Chloride	REQUESTED				دهسا		
			l & Br	COMPANY								Х	×	Sulfate	ŒD	. [1 17		
			uya	X									_			O Will o	□ Return samples	Dispo	Rush ch	Stand	1
_		12	79			, ,										all wit	n sam	SAMP se afte	arges	lard (2	URN!
		h3/19	2/18/19	DATE									X 4	Z		Will call with instructions	ples	SAMPLE DISPOSAL □ Dispose after 30 days	Rush charges authorized by:	Standard (2 Weeks) □ RUSH	TURNAROUND TIME
1		15	14	Ţ										Notes	*	suor		SAL	d by:	,	TIME

1430

TIME

1526

Page # _ t _ of _ t
TURNAROUND TIME ed by:

Page 12 of 12

Report To Dave Heffur

Company Aspect
Address 710 2nd Ave Ste 550
City, State, ZIP Seathle with 48108
Phone 2008385831 Email dheftuur Caspect cons

Ţ,	SAMPLE CHAIN OF CUSTODY	ME 2/28/14	€.
1	SAMPLERS (signature)		\
	PROJECT NAME	PO#	
	Morell's	080190	
20,	REMARKS	INVOICE TO	
•		F	

Other_

☐ Archive Samples

SAMPLE DISPOSAL Dispose after 30 days Standard Turnaround

TURNAROUND TIME

Page#_

Rush charges authorized by:

<i>Ph.</i> (206) 285-8282	2029	Τ-	 ن				A-6-65.0	A-6-57-5	A-6-36.0	A-6-21.0	A-6-13.0 make	MW-20-0228189	MW-2-022719	Sample ID	
Received by:	Relinquis K ed by:	Received by: M. B. M. B.	Kelinquished by:	SIC			07AD	o6AD	05AD 2/27	OYAO	03/10	0246	OIAC	Lab ID	
		D. W-B	mbn	SIGNATURE			2/28	2/28	2/27	2/27	2/27	2/28	2/27	Date Sampled	
		ζ,					0110	0040	23.30	2300	2220	0245	2045	Time Sampled	
		2,2	B				S	V	S	S	S	3	3	Sample Type	
		Webber - B	Breegn Green	PRINT NAME			~	2	4	4	4	3	W	# of Jars	
		4	2	TN		 								TPH-HCID	П
		1	61	AME										TPH-Diesel	
		20	car											TPH-Gasoline	
		2/2	,								2.5			BTEX by 8021B	A
						 ·		メ	<u>×</u>		×			VOCs by 8260C	NAI
						 								SVOCs by 8270D	YSE
		A.	A	2		 				_				PAHs 8270D SIM	SRE
	•		Oec	COMPANY	က္က	 						×	<u> </u>	CI / Sulfate 300	QUE
		#	4	YNA								×	\times	FPA 6020	ANALYSES REQUESTED
		F?BI			es T	 						\times	\times	nitrate/nitrite CI-/Sulfate EPA Total Fe EPA GOZO TOC SM 5310	
		13			eCP.										
		2/28/19	19	MPANY DATE	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		Hold			Hold				Notes	
		1320	0500	TIME										Ϋ́	

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

March 18, 2019

Dave Heffner, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Mr Heffner:

Included are the results from the testing of material submitted on March 1, 2019 from the Morell's 080190, F&BI 903011 project. There are 9 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Data Aspect ASP0318R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on March 1, 2019 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Morell's 080190, F&BI 903011 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	Aspect Consulting, LLC
903011 -01	A-7-9.5
903011 -02	A-7-16.0
903011 -03	A-7-22.0
903011 -04	A-7-37.0
903011 -05	A-7-41.0

The 8260C calibration standard failed the acceptance criteria for 2-hexanone in the dilution of sample A-7-22.0. The data were flagged accordingly.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: A-7-9.5 Client: Aspect Consulting, LLC
Date Received: 03/01/19 Project: Morell's 080190, F&BI 903011

Lab ID: Date Extracted: 03/01/19 903011-01 Date Analyzed: 03/01/19 Data File: 030138a.D Matrix: Soil Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight Operator: MS/bat

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	62	142
Toluene-d8	98	55	145
4-Bromofluorobenzene	97	65	139

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	1.4
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Hexane	< 0.25	o-Xylene	< 0.05
Methylene chloride	< 0.5	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Bromoform	< 0.05
1,1-Dichloroethane	< 0.05	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	0.16	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	< 0.5	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.05	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.03	sec-Butylbenzene	< 0.05
Trichloroethene	0.16	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.05	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.05
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: A-7-22.0 Client: Aspect Consulting, LLC Date Received: 03/01/19 Project: Morell's 080190, F&BI 903011

Lab ID: Date Extracted: 03/01/19 903011-03 Date Analyzed: 03/01/19 Data File: 030139.D Matrix: Soil Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight Operator: MS/bat

		Lower	Opper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	103	62	142
Toluene-d8	100	55	145
4-Bromofluorobenzene	113	65	139

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	110 ve
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Hexane	< 0.25	o-Xylene	< 0.05
Methylene chloride	< 0.5	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Isopropylbenzene	0.43
trans-1,2-Dichloroethene	< 0.05	Bromoform	< 0.05
1,1-Dichloroethane	< 0.05	n-Propylbenzene	1.6
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	1,3,5-Trimethylbenzene	3.0
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	< 0.5	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.05	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	0.094
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	5.4
Benzene	< 0.03	sec-Butylbenzene	1.6
Trichloroethene	1.5	p-Isopropyltoluene	0.12
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.05	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	0.44
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: A-7-22.0 Client: Aspect Consulting, LLC
Date Received: 03/01/19 Project: Morell's 080190, F&BI 903011

Lab ID: Date Extracted: 03/08/19 903011-03 1/10 Date Analyzed: 03/08/19 Data File: 030823.D Matrix: Soil Instrument: GCMS9 mg/kg (ppm) Dry Weight Units: Operator: MS

		Lower	∪pper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	104	50	150
Toluene-d8	101	50	150
4-Bromofluorobenzene	102	50	150

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	<5	1,3-Dichloropropane	< 0.5
Chloromethane	<5	Tetrachloroethene	120
Vinyl chloride	< 0.5	Dibromochloromethane	< 0.5
Bromomethane	<5	1,2-Dibromoethane (EDB)	< 0.5
Chloroethane	<5	Chlorobenzene	< 0.5
Trichlorofluoromethane	<5	Ethylbenzene	< 0.5
Acetone	<5	1,1,1,2-Tetrachloroethane	< 0.5
1,1-Dichloroethene	< 0.5	m,p-Xylene	<1
Hexane	< 2.5	o-Xylene	< 0.5
Methylene chloride	<5	Styrene	< 0.5
Methyl t-butyl ether (MTBE)	< 0.5	Isopropylbenzene	< 0.5
trans-1,2-Dichloroethene	< 0.5	Bromoform	< 0.5
1,1-Dichloroethane	< 0.5	n-Propylbenzene	1.5
2,2-Dichloropropane	< 0.5	Bromobenzene	< 0.5
cis-1,2-Dichloroethene	< 0.5	1,3,5-Trimethylbenzene	2.8
Chloroform	< 0.5	1,1,2,2-Tetrachloroethane	< 0.5
2-Butanone (MEK)	<5	1,2,3-Trichloropropane	< 0.5
1,2-Dichloroethane (EDC)	< 0.5	2-Chlorotoluene	< 0.5
1,1,1-Trichloroethane	< 0.5	4-Chlorotoluene	< 0.5
1,1-Dichloropropene	< 0.5	tert-Butylbenzene	< 0.5
Carbon tetrachloride	< 0.5	1,2,4-Trimethylbenzene	5.3
Benzene	< 0.3	sec-Butylbenzen e	1.6
Trichloroethene	1.4	p-Isopropyltoluene	< 0.5
1,2-Dichloropropane	< 0.5	1,3-Dichlorobenzene	< 0.5
Bromodichloromethane	< 0.5	1,4-Dichlorobenzene	< 0.5
Dibromomethane	< 0.5	1,2-Dichlorobenzene	< 0.5
4-Methyl-2-pentanone	<5	1,2-Dibromo-3-chloropropane	<5
cis-1,3-Dichloropropene	< 0.5	1,2,4-Trichlorobenzene	< 2.5
Toluene	< 0.5	Hexachlorobutadiene	< 2.5
trans-1,3-Dichloropropene	< 0.5	Naphthalene	< 0.5
1,1,2-Trichloroethane	< 0.5	1,2,3-Trichlorobenzene	<2.5
2-Hexanone	<5 ca		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: A-7-37.0 Client: Aspect Consulting, LLC
Date Received: 03/01/19 Project: Morell's 080190, F&BI 903011

Lab ID: Date Extracted: 03/01/19 903011-04 Date Analyzed: 03/01/19 Data File: 030137.D Matrix: Soil Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight Operator: MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	62	142
Toluene-d8	105	55	145
4-Bromofluorobenzene	101	65	139

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Hexane	< 0.25	o-Xylene	< 0.05
Methylene chloride	< 0.5	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Bromoform	< 0.05
1,1-Dichloroethane	< 0.05	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	< 0.5	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.05	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.03	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.02	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.05	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.05
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Method Blank Client: Aspect Consulting, LLC
Date Received: Not Applicable Project: Morell's 080190, F&BI 903011

03/01/19 Lab ID: Date Extracted: 09-0438 mb Date Analyzed: 03/01/19 Data File: 030132.D Matrix: Soil Instrument: GCMS4 mg/kg (ppm) Dry Weight Units: Operator: MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	57	121
Toluene-d8	98	63	127
4-Bromofluorobenzene	97	60	133

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Hexane	< 0.25	o-Xylene	< 0.05
Methylene chloride	< 0.5	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Bromoform	< 0.05
1,1-Dichloroethane	< 0.05	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	< 0.5	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.05	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.03	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.02	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.05	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.05
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Date of Report: 03/18/19 Date Received: 03/01/19

Project: Morell's 080190, F&BI 903011

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 902238-06 (Matrix Spike)

Reporting Spike Result Recovery Acceptance Analyte Units Level Wet wit MS Criteria	Laboratory Code. 302230-00 (Ma	trix Spike)		~ 1	_	
Analyte				Sample	Percent	
Dichlorodifluoromethane		Reporting Spike Result Recover		Recovery	Acceptance	
Dictiouredifueromethane	Analyte	Units	Level	(Wet wt)	MS	Criteria
Chloromethame	Dichlorodifluoromethane		2.5	<0.5	29	10-142
Brommethane					52	10-126
Chlorochane mg/kg (ppm) 2.5		mg/kg (ppm)				10-138
Trichlorofluoromethane mg/kg (ppm) 1.5						
Acetone						
1.1-Dichloroethene						
Hexane						
Methyle-berloride mg/kg (ppm) 2.5 <.0.5 88 10.156						
Methyl:butyl ether (MTBE)						
trans-1.2-Dichloroethane mg/kg (ppm) 2.5						
22-Dichloropropane	trans-1,2-Dichloroethene		2.5	< 0.05	85	14-137
cis-12 Dichloroethene mg/kg (ppm)	1,1-Dichloroethane	mg/kg (ppm)	2.5	< 0.05	88	19-140
Chloroform						
2-Butanone (MEK)						
1.2-Dichloroethane (EDC)						
1,1-Trichloroethane						
1.1-Dichloropropene						
Carbon tetrachloride						
Benzene						
Trichloroethene	Benzene		2.5		86	29-129
Bromodichloromethane	Trichloroethene		2.5	< 0.02	85	21-139
Dibromomethane						
A-Methyl-2-pentanone						
cis-13-Dichloropropene mg/kg (ppm) 2.5 <0.05 91 28-144 Toluene mg/kg (ppm) 2.5 <0.05						
Toluene mg/kg (ppm) 2.5 <0.05 95 35.130 trans-1.3-Dichloropropene mg/kg (ppm) 2.5 <0.05						
Trans-1.3-Dichloropropene						
1,1,2-Trichloroethane						
2-Hexanone						
1.3-Dichloropropane						
Dibromochloromethane mg/kg (ppm) 2.5 < 0.05 95 28-150 1,2-Dibromochlarome (EDB) mg/kg (ppm) 2.5 < 0.05 92 28-142 Chlorobenzene mg/kg (ppm) 2.5 < 0.05 91 32-129 Ethylbenzene mg/kg (ppm) 2.5 < 0.05 92 32-137 1,1,1,2-Tetrachloroethane mg/kg (ppm) 2.5 < 0.05 97 31-143 mp-Xylene mg/kg (ppm) 2.5 < 0.05 94 33-134 o-Xylene mg/kg (ppm) 2.5 < 0.05 94 33-134 Styrene mg/kg (ppm) 2.5 < 0.05 95 35-137 Isopropylbenzene mg/kg (ppm) 2.5 < 0.05 95 33-137 Isopropylbenzene mg/kg (ppm) 2.5 < 0.05 95 31-142 Bromoform mg/kg (ppm) 2.5 < 0.05 98 21-156 n-Propylbenzene mg/kg (ppm) 2.5 < 0.05 98 21-156 n-Propylbenzene mg/kg (ppm) 2.5 < 0.05 94 33-146 Bromobenzene mg/kg (ppm) 2.5 < 0.05 94 33-146 Bromobenzene mg/kg (ppm) 2.5 < 0.05 94 34-130 1,3,5-Trimethylbenzene mg/kg (ppm) 2.5 < 0.05 92 28-140 1,2,2-Tetrachloroethane mg/kg (ppm) 2.5 < 0.05 92 28-140 1,2,2-Trichloropropane mg/kg (ppm) 2.5 < 0.05 92 31-134 2-Chlorotoluene mg/kg (ppm) 2.5 < 0.05 92 31-134 2-Chlorotoluene mg/kg (ppm) 2.5 < 0.05 92 31-134 2-Chlorotoluene mg/kg (ppm) 2.5 < 0.05 92 30-137 1,2,4-Trimethylbenzene mg/kg (ppm) 2.5 < 0.05 91 10-182 sec-Butylbenzene mg/kg (ppm) 2.5 < 0.05 91 10-182 sec-Butylbenzene mg/kg (ppm) 2.5 < 0.05 93 31-134 1,3-Dichlorobenzene mg/kg (ppm) 2.5 < 0.05 93 31-134 1,2-Dichlorobenzene mg/kg (ppm) 2.5 < 0.5 88 11-161 1,2-Dichlorobenzene mg/kg (ppm) 2.5 <	1,3-Dichloropropane	mg/kg (ppm)	2.5	< 0.05	95	31-137
1,2-Dibromoethane (EDB)						
Chlorobenzene mg/kg (ppm) 2.5 < 0.05 91 32-129 Ethylbenzene mg/kg (ppm) 2.5 < 0.05 92 32-137 1,1,1.2-Tetrachloroethane mg/kg (ppm) 2.5 < 0.05 97 31-143 mp-Xylene mg/kg (ppm) 5 < 0.1 95 34-136 o-Xylene mg/kg (ppm) 2.5 < 0.05 94 33-134 Styrene mg/kg (ppm) 2.5 < 0.05 95 33-137 Isopropylbenzene mg/kg (ppm) 2.5 < 0.05 95 33-137 Isopropylbenzene mg/kg (ppm) 2.5 < 0.05 95 33-134 Bromoform mg/kg (ppm) 2.5 < 0.05 95 31-142 Bromoform mg/kg (ppm) 2.5 < 0.05 98 21-156 n-Propylbenzene mg/kg (ppm) 2.5 < 0.05 94 23-146 Bromobenzene mg/kg (ppm) 2.5 < 0.05 94 23-146 Bromobenzene mg/kg (ppm) 2.5 < 0.05 94 34-130 1,3.5-Trimethylbenzene mg/kg (ppm) 2.5 < 0.05 94 34-130 1,3.5-Trimethylbenzene mg/kg (ppm) 2.5 < 0.05 92 18-149 1,1,2,2-Tetrachloroethane mg/kg (ppm) 2.5 < 0.05 92 28-140 1,2,3-Trichloropropane mg/kg (ppm) 2.5 < 0.05 92 28-140 1,2,3-Trichloropropane mg/kg (ppm) 2.5 < 0.05 92 31-134 4-Chlorotoluene mg/kg (ppm) 2.5 < 0.05 92 31-134 4-Chlorotoluene mg/kg (ppm) 2.5 < 0.05 92 31-136 tetr-Butylbenzene mg/kg (ppm) 2.5 < 0.05 92 31-136 tetr-Butylbenzene mg/kg (ppm) 2.5 < 0.05 92 30-137 1,2,4-Trimethylbenzene mg/kg (ppm) 2.5 < 0.05 92 30-137 1,2,4-Trimethylbenzene mg/kg (ppm) 2.5 < 0.05 92 30-137 1,2,4-Trimethylbenzene mg/kg (ppm) 2.5 < 0.05 93 31-136 tetr-Butylbenzene mg/kg (ppm) 2.5 < 0.05 93 30-131 1,4-Dichlorobenzene mg/kg (ppm) 2.5 < 0.05 93 30-131 1,4-Dichlorobenzene mg/kg (ppm) 2.5 < 0.05 93 30-131 1,4-Dichlorobenzene mg/kg (ppm) 2.5 < 0.05 93 31-132 1,2-Dibromo-3-chloropropane mg/kg						
Ethylbenzene mg/kg (ppm) 2.5 <0.05 92 32-137 1,1,1,2-Tetrachloroethane mg/kg (ppm) 2.5 <0.05						
1,1,1,2-Tetrachloroethane mg/kg (ppm) 2.5 <0.05						
mp-Xylene mg/kg (ppm) 5 <0.1 95 34-136 o-Xylene mg/kg (ppm) 2.5 <0.05						
o-Xylene mg/kg (ppm) 2.5 <0.05 94 33-134 Styrene mg/kg (ppm) 2.5 <0.05 95 35-137 Isopropylbenzene mg/kg (ppm) 2.5 <0.05 95 31-142 Bromoform mg/kg (ppm) 2.5 <0.05 98 21-156 n-Propylbenzene mg/kg (ppm) 2.5 <0.05 94 23-146 Bromobenzene mg/kg (ppm) 2.5 <0.05 94 23-146 Bromobenzene mg/kg (ppm) 2.5 <0.05 94 23-146 Bromobenzene mg/kg (ppm) 2.5 <0.05 94 34-130 1,3,5-Trimethylbenzene mg/kg (ppm) 2.5 <0.05 92 18-149 1,1,2,2-Trichloroperopane mg/kg (ppm) 2.5 <0.05 92 28-140 1,2,2-Trichloroperopane mg/kg (ppm) 2.5 <0.05 92 28-144 2,-Chlorotoluene mg/kg (ppm) 2.5 <0.05 92 31-134 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
Styrene mg/kg (ppm) 2.5 <0.05 95 35-137 Isopropylbenzene mg/kg (ppm) 2.5 <0.05						
Bromoform mg/kg (ppm) 2.5 <0.05 98 21-156 n-Propylbenzene mg/kg (ppm) 2.5 <0.05						
n-Propylbenzene mg/kg (ppm) 2.5 <0.05 94 23-146 Bromobenzene mg/kg (ppm) 2.5 <0.05	Isopropylbenzene	mg/kg (ppm)		< 0.05		31-142
Brombenzene						
1,3,5-Trimethylbenzene mg/kg (ppm) 2.5 <0.05						
1,1,2,2-Tetrachloroethane						
1,2,3-Trichloropropane						
2-Chlorotoluene mg/kg (ppm) 2.5 <0.05						
4-Chlorotoluene mg/kg (ppm) 2.5 <0.05 90 31-136 tert-Butylbenzene mg/kg (ppm) 2.5 <0.05						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	tert-Butylbenzene		2.5	< 0.05	92	30-137
P-Isopropyltoluene mg/kg (ppm) 2.5 <0.05 93 21-149 1.3-Dichlorobenzene mg/kg (ppm) 2.5 <0.05 93 30-131 1.4-Dichlorobenzene mg/kg (ppm) 2.5 <0.05 92 29-129 1.2-Dichlorobenzene mg/kg (ppm) 2.5 <0.05 93 31-132 1.2-Dibromo-3-chloropropane mg/kg (ppm) 2.5 <0.5 88 11-161 1.2.4-Trichlorobenzene mg/kg (ppm) 2.5 <0.25 92 22-142 1.2-A-Trichlorobenzene mg/kg (ppm) 2.5 <0.25 101 10-142 Naphthalene mg/kg (ppm) 2.5 <0.05 87 14-157		mg/kg (ppm)				
1.3-Dichlorobenzene mg/kg (ppm) 2.5 <0.05						
1,4-Dichlorobenzene mg/kg (ppm) 2.5 <0.05						
1,2-Dichlorobenzene						
1,2-Dibromo-3-chloropropane mg/kg (ppm) 2.5 <0.5						
1,2,4 Trichlorobenzene mg/kg (ppm) 2.5 <0.25						
Hexachlorobutadiene mg/kg (ppm) 2.5 <0.25 101 10-142 Naphthalene mg/kg (ppm) 2.5 <0.05						
Naphthalene mg/kg (ppm) 2.5 <0.05 87 14-157						
	1,2,3-Trichlorobenzene		2.5	< 0.25	91	

ENVIRONMENTAL CHEMISTS

Date of Report: 03/18/19 Date Received: 03/01/19

Project: Morell's 080190, F&BI 903011

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: Laboratory Control Sample

	and of Sumpre		Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Dichlorodifluoromethane	mg/kg (ppm)	2.5	50	56	10-146	11
Chloromethane	mg/kg (ppm)	2.5 2.5	66 77	73 84	27-133 22-139	10 9
Vinyl chloride Bromomethane	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	71	84 78	38-114	9
Chloroethane	mg/kg (ppm)	2.5	80	90	10-163	12
Trichlorofluoromethane	mg/kg (ppm)	2.5	86	95	10-196	10
Acetone	mg/kg (ppm)	12.5	84	102	52-141	19
1,1-Dichloroethene	mg/kg (ppm)	2.5	83	91	47-128	9
Hexane Mathedon ablasida	mg/kg (ppm)	2.5 2.5	104 95	114 107	43-142 42-132	9 12
Methylene chloride Methyl t-butyl ether (MTBE)	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	95 98	107	42-132 60-123	12
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	96	105	67-127	9
1,1-Dichloroethane	mg/kg (ppm)	2.5	97	108	68-115	11
2,2-Dichloropropane	mg/kg (ppm)	2.5	92	103	52-170	11
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	92	101	72-113	9
Chloroform	mg/kg (ppm)	2.5	89	102	66-120	14
2-Butanone (MEK) 1,2-Dichloroethane (EDC)	mg/kg (ppm)	12.5 2.5	93 92	104 101	57-123 56-135	11 9
1,1,1-Trichloroethane	mg/kg (ppm) mg/kg (ppm)	2.5	92 89	98	62-131	10
1,1-Dichloropropene	mg/kg (ppm)	2.5	88	98	69-128	11
Carbon tetrachloride	mg/kg (ppm)	2.5	90	100	60-139	11
Benzene	mg/kg (ppm)	2.5	89	98	68-114	10
Trichloroethene	mg/kg (ppm)	2.5	85	95	64-117	11
1,2-Dichloropropane	mg/kg (ppm)	2.5	90	101	72-127	12
Bromodichloromethane	mg/kg (ppm)	2.5	90	98 98	72-130	9 10
Dibromomethane 4-Methyl-2-pentanone	mg/kg (ppm) mg/kg (ppm)	2.5 12.5	89 102	98 117	70-120 45-145	10 14
cis-1,3-Dichloropropene	mg/kg (ppm)	2.5	96	103	75-136	7
Toluene	mg/kg (ppm)	2.5	88	98	66-126	11
trans-1,3-Dichloropropene	mg/kg (ppm)	2.5	84	93	72-132	10
1,1,2-Trichloroethane	mg/kg (ppm)	2.5	90	102	75-113	12
2-Hexanone	mg/kg (ppm)	12.5	92	102	33-152	10
1,3-Dichloropropane	mg/kg (ppm)	2.5	90	99	72-130	10
Tetrachloroethene Dibromochloromethane	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	94 92	101 101	72-114 74-125	7 9
1,2-Dibromoethane (EDB)	mg/kg (ppm)	2.5	93	101	74-123	8
Chlorobenzene	mg/kg (ppm)	2.5	95	100	76-111	5
Ethylbenzene	mg/kg (ppm)	2.5	96	101	64-123	5
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	2.5	98	108	69-135	10
m,p-Xylene	mg/kg (ppm)	5	100	103	78-122	3
o-Xylene Styrene	mg/kg (ppm)	2.5 2.5	97 99	107 109	77-124 74-126	10 10
Isopropylbenzene	mg/kg (ppm) mg/kg (ppm)	2.5	100	108	76-127	8
Bromoform	mg/kg (ppm)	2.5	101	110	56-132	9
n-Propylbenzene	mg/kg (ppm)	2.5	96	103	74-124	7
Bromobenzene	mg/kg (ppm)	2.5	97	108	72-122	11
1,3,5-Trimethylbenzene	mg/kg (ppm)	2.5	94	103	76-126	9
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	2.5	94	104	56-143	10
1,2,3-Trichloropropane 2-Chlorotoluene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	91 95	104 102	61-137 74-121	13 7
4-Chlorotoluene	mg/kg (ppm)	2.5	92	100	75-122	8
tert-Butylbenzene	mg/kg (ppm)	2.5	97	100	73-130	3
1,2,4 Trimethylbenzene	mg/kg (ppm)	2.5	94	100	76-125	6
sec-Butylbenzene	mg/kg (ppm)	2.5	94	100	71-130	6
p-Isopropyltoluene	mg/kg (ppm)	2.5	98	101	70-132	3
1,3-Dichlorobenzene	mg/kg (ppm)	2.5 2.5	96 96	101 100	75-121 74-117	5 4
1,4-Dichlorobenzene 1,2-Dichlorobenzene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	96 97	100	74-117 76-121	4
1,2-Dictior oberizene 1,2-Dibromo-3-chloropropane	mg/kg (ppm)	2.5	98	105	58-138	7
1,2,4 Trichlorobenzene	mg/kg (ppm)	2.5	92	106	64-135	14
Hexachlorobutadiene	mg/kg (ppm)	2.5	96	109	50-153	13
Naphthalene	mg/kg (ppm)	2.5	85	102	63-140	18
1,2,3-Trichlorobenzene	mg/kg (ppm)	2.5	88	105	63-138	18

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- \boldsymbol{J} The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

March 18, 2019

Dave Heffner, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Mr Heffner:

Included are the results from the testing of material submitted on March 12, 2019 from the Morell's 080190, F&BI 903193 project. There are 7 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Data Aspect ASP0318R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on March 12, 2019 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Morell's 080190, F&BI 903193 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	Aspect Consulting, LLC
903193 -01	B-29-15.0
903193 -02	B-29-40.0
903193 -03	B-29-50.0
903193 -04	B-29-55.0

The 8260C calibration standard failed the acceptance criteria for acetone and 2-hexanone. The data were flagged accordingly.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: B-29-15.0 Client: Aspect Consulting, LLC
Date Received: 03/12/19 Project: Morell's 080190, F&BI 903193

Lab ID: Date Extracted: 03/13/19 903193-01 Date Analyzed: 03/14/19 Data File: 031351.D Matrix: Soil Instrument: GCMS9 Units: mg/kg (ppm) Dry Weight Operator: VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	104	50	150
Toluene-d8	102	50	150
4-Bromofluorobenzene	98	50	150

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	0.043
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	<0.5 ca	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Hexane	< 0.25	o-Xylene	< 0.05
Methylene chloride	< 0.5	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Bromoform	< 0.05
1,1-Dichloroethane	< 0.05	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	< 0.5	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.05	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.03	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.02	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.05	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.05
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	<0.5 ca		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: B-29-50.0 Client: Aspect Consulting, LLC
Date Received: 03/12/19 Project: Morell's 080190, F&BI 903193

Lab ID: Date Extracted: 03/13/19 903193-03 Date Analyzed: 03/14/19 Data File: 031352.D Matrix: Soil Instrument: GCMS9 Units: mg/kg (ppm) Dry Weight Operator: VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	104	50	150
Toluene-d8	103	50	150
4-Bromofluorobenzene	100	50	150

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	0.043
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	<0.5 ca	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Hexane	< 0.25	o-Xylene	< 0.05
Methylene chloride	< 0.5	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Bromoform	< 0.05
1,1-Dichloroethane	< 0.05	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	< 0.5	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.05	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.03	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.02	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.05	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.05
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	<0.5 ca		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Method Blank Client: Aspect Consulting, LLC
Date Received: Not Applicable Project: Morell's 080190, F&BI 903193

03/13/19 Lab ID: Date Extracted: 09-564 mb Date Analyzed: 03/13/19 Data File: 031311.D Matrix: Soil Instrument: GCMS4 mg/kg (ppm) Dry Weight Units: Operator: VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	62	142
Toluene-d8	100	55	145
4-Bromofluorobenzene	101	65	139

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Hexane	< 0.25	o-Xylene	< 0.05
Methylene chloride	< 0.5	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Bromoform	< 0.05
1,1-Dichloroethane	< 0.05	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	< 0.5	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.05	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.03	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.02	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.05	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.05
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Date of Report: 03/18/19 Date Received: 03/12/19

Project: Morell's 080190, F&BI 903193

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 903196-05 (Matrix Spike)

Laboratory Code. 903190-03 (Ma	atrix Spike)			_	_		
			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Dichlorodifluoromethane	mg/kg (ppm)	2.5	<0.5	21	17	10-142	21 vo
Chloromethane	mg/kg (ppm)	2.5	<0.5	49	45	10-126	9
Vinyl chloride	mg/kg (ppm)	2.5	< 0.05	52	49	10-138	6
Bromomethane	mg/kg (ppm)	2.5	< 0.5	66	64	10-163	3
Chloroethane	mg/kg (ppm)	2.5	< 0.5	65	62	10-176	5
Trichlorofluoromethane	mg/kg (ppm)	2.5	< 0.5	59	57	10-176	3
Acetone	mg/kg (ppm)	12.5	< 0.5	78	79	10-163	1
1,1-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	70	67	10-160	4
Hexane	mg/kg (ppm)	2.5	< 0.25	53	51	10-137	4
Methylene chloride	mg/kg (ppm)	2.5 2.5	< 0.5	80 83	77 81	10-156	4 2
Methyl t-butyl ether (MTBE) trans-1,2-Dichloroethene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	<0.05 <0.05	80	77	21-145 14-137	4
1.1-Dichloroethane	mg/kg (ppm)	2.5	< 0.05	80	76	19-140	5
2,2-Dichloropropane	mg/kg (ppm)	2.5	< 0.05	79	76 77	10-158	3
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	77	74	25-135	4
Chloroform	mg/kg (ppm)	2.5	< 0.05	83	80	21-145	4
2-Butanone (MEK)	mg/kg (ppm)	12.5	<0.5	83	84	19-147	1
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	< 0.05	83	81	12-160	2
1,1,1-Trichloroethane	mg/kg (ppm)	2.5	< 0.05	80	78	10-156	3
1,1-Dichloropropene	mg/kg (ppm)	2.5	< 0.05	81	77	17-140	5
Carbon tetrachloride	mg/kg (ppm)	2.5	< 0.05	81	80	9-164	1
Benzene	mg/kg (ppm)	2.5	< 0.03	80	78	29-129	3
Trichloroethene	mg/kg (ppm)	2.5	< 0.02	82	81	21-139	1
1,2-Dichloropropane	mg/kg (ppm)	2.5	< 0.05	86	82	30-135	5
Bromodichloromethane	mg/kg (ppm)	2.5	< 0.05	88	86	23-155	2
Dibromomethane	mg/kg (ppm)	2.5	< 0.05	87	85	23-145	2
4-Methyl-2-pentanone	mg/kg (ppm)	12.5	< 0.5	90	90	24-155	0 2
cis-1,3-Dichloropropene Toluene	mg/kg (ppm)	2.5 2.5	<0.05 <0.05	88 76	86 75	28-144 35-130	2 1
trans-1,3-Dichloropropene	mg/kg (ppm) mg/kg (ppm)	2.5	< 0.05	91	73 88	26-149	3
1,1,2-Trichloroethane	mg/kg (ppm)	2.5	< 0.05	90	87	10-205	3
2-Hexanone	mg/kg (ppm)	12.5	<0.5	87	85	15-166	2
1,3-Dichloropropane	mg/kg (ppm)	2.5	< 0.05	89	86	31-137	3
Tetrachloroethene	mg/kg (ppm)	2.5	< 0.025	86	84	20-133	2
Dibromochloromethane	mg/kg (ppm)	2.5	< 0.05	88	87	28-150	1
1,2-Dibromoethane (EDB)	mg/kg (ppm)	2.5	< 0.05	89	87	28-142	2
Chlorobenzene	mg/kg (ppm)	2.5	< 0.05	86	83	32-129	4
Ethylbenzene	mg/kg (ppm)	2.5	< 0.05	85	83	32-137	2
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	2.5	< 0.05	94	92	31-143	2
m,p-Xylene	mg/kg (ppm)	5	< 0.1	85	83	34-136	2
o-Xylene	mg/kg (ppm)	2.5	< 0.05	85 92	83	33-134	2 3
Styrene	mg/kg (ppm)	2.5 2.5	<0.05 <0.05	92 89	89 87	35-137	3 2
Isopropylbenzene Bromoform	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	<0.05 <0.05	83	87 82	31-142 21-156	1
n-Propylbenzene	mg/kg (ppm)	2.5	< 0.05	88	86	23-146	2
Bromobenzene	mg/kg (ppm)	2.5	< 0.05	88	85	34-130	3
1,3,5-Trimethylbenzene	mg/kg (ppm)	2.5	< 0.05	89	87	18-149	2
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	2.5	< 0.05	89	87	28-140	2
1,2,3-Trichloropropane	mg/kg (ppm)	2.5	< 0.05	90	88	25-144	2
2-Chlorotoluene	mg/kg (ppm)	2.5	< 0.05	87	84	31-134	4
4-Chlorotoluene	mg/kg (ppm)	2.5	< 0.05	87	85	31-136	2
tert-Butylbenzene	mg/kg (ppm)	2.5	< 0.05	90	88	30-137	2
1,2,4 Trimethylbenzene	mg/kg (ppm)	2.5	< 0.05	89	87	10-182	2
sec-Butylbenzene	mg/kg (ppm)	2.5	< 0.05	91	88	23-145	3
p-Isopropyltoluene	mg/kg (ppm)	2.5	< 0.05	90	89	21-149	1
1,3-Dichlorobenzene 1,4-Dichlorobenzene	mg/kg (ppm)	2.5 2.5	<0.05 <0.05	89 87	88 84	30-131 29-129	1 4
1,4-Dichlorobenzene 1,2-Dichlorobenzene	mg/kg (ppm)	2.5 2.5	<0.05 <0.05	87 88	84 87	29-129 31-132	1
1,2-Dichiorobenzene 1,2-Dibromo-3-chloropropane	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	<0.05 <0.5	92	87 90	31-132 11-161	2
1,2,4Trichlorobenzene	mg/kg (ppm)	2.5	<0.25	92 92	90	22-142	2
Hexachlorobutadiene	mg/kg (ppm)	2.5	< 0.25	95	93	10-142	2
Naphthalene	mg/kg (ppm)	2.5	< 0.25	92	90	14-157	2
1,2,3-Trichlorobenzene	mg/kg (ppm)	2.5	< 0.25	93	91	20-144	$\tilde{\tilde{2}}$
	0 0 41 -9				-	-	

ENVIRONMENTAL CHEMISTS

Date of Report: 03/18/19 Date Received: 03/12/19

Project: Morell's 080190, F&BI 903193

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: Laboratory Control Sample

		Percent		
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Dichlorodifluoromethane	mg/kg (ppm)	2.5	57	10-146
Chloromethane	mg/kg (ppm)	2.5	76	27-133
Vinyl chloride Bromomethane	mg/kg (ppm)	2.5 2.5	82 93	22-139 38-114
Chloroethane	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	93 94	38-114 10-163
Trichlorofluoromethane	mg/kg (ppm)	2.5	93	10-196
Acetone	mg/kg (ppm)	12.5	95	52-141
1,1-Dichloroethene	mg/kg (ppm)	2.5	94	47-128
Hexane	mg/kg (ppm)	2.5	97	43-142
Methylene chloride Methyl t-butyl ether (MTBE)	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	100 99	42-132 60-123
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	102	67-127
1.1-Dichloroethane	mg/kg (ppm)	2.5	99	68-115
2,2-Dichloropropane	mg/kg (ppm)	2.5	100	52-170
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	93	72-113
Chloroform	mg/kg (ppm)	2.5	100	66-120
2-Butanone (MEK) 1,2-Dichloroethane (EDC)	mg/kg (ppm) mg/kg (ppm)	12.5 2.5	105 103	57-123 56-135
1,1,1-Trichloroethane	mg/kg (ppm)	2.5	101	62-131
1,1-Dichloropropene	mg/kg (ppm)	2.5	101	69-128
Carbon tetrachloride	mg/kg (ppm)	2.5	103	60-139
Benzene	mg/kg (ppm)	2.5	97	68-114
Trichloroethene	mg/kg (ppm)	2.5 2.5	99 102	64-117 72-127
1,2-Dichloropropane Bromodichloromethane	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	102	72-127 72-130
Dibromomethane	mg/kg (ppm)	2.5	103	70-120
4-Methyl-2-pentanone	mg/kg (ppm)	12.5	108	45-145
cis-1,3-Dichloropropene	mg/kg (ppm)	2.5	107	75-136
Toluene	mg/kg (ppm)	2.5	91	66-126
trans-1,3-Dichloropropene	mg/kg (ppm)	2.5	110	72-132
1,1,2-Trichloroethane 2-Hexanone	mg/kg (ppm) mg/kg (ppm)	2.5 12.5	105 107	75-113 33-152
1,3-Dichloropropane	mg/kg (ppm)	2.5	107	72-130
Tetrachloroethene	mg/kg (ppm)	2.5	103	72-114
Dibromochloromethane	mg/kg (ppm)	2.5	110	74-125
1,2-Dibromoethane (EDB)	mg/kg (ppm)	2.5	106	74-132
Chlorobenzene Ethylbenzene	mg/kg (ppm)	2.5 2.5	100 100	76-111 64-123
1,1,1,2-Tetrachloroethane	mg/kg (ppm) mg/kg (ppm)	2.5	110	69-135
m.p-Xvlene	mg/kg (ppm)	5	100	78-122
o-Xylene	mg/kg (ppm)	2.5	100	77-124
Styrene	mg/kg (ppm)	2.5	108	74-126
Isopropylbenzene	mg/kg (ppm)	2.5	105	76-127
Bromoform n-Propylbenzene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	103 105	56-132 74-124
Bromobenzene	mg/kg (ppm)	2.5	102	72-122
1,3,5-Trimethylbenzene	mg/kg (ppm)	2.5	106	76-126
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	2.5	107	56-143
1,2,3-Trichloropropane	mg/kg (ppm)	2.5	108	61-137
2-Chlorotoluene 4-Chlorotoluene	mg/kg (ppm)	2.5 2.5	103 104	74-121 75-122
tert-Butylbenzene	mg/kg (ppm) mg/kg (ppm)	2.5	105	73-122
1,2,4 Trimethylbenzene	mg/kg (ppm)	2.5	105	76-125
sec-Butylbenzene	mg/kg (ppm)	2.5	107	71-130
p-Isopropyltoluene	mg/kg (ppm)	2.5	106	70-132
1,3-Dichlorobenzene	mg/kg (ppm)	2.5	104	75-121
1,4-Dichlorobenzene 1.2-Dichlorobenzene	mg/kg (ppm)	2.5 2.5	101 103	74-117 76-121
1,2-Dichioropenzene 1,2-Dibromo-3-chloropropane	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	103 114	76-121 58-138
1,2,4 Trichlorobenzene	mg/kg (ppm)	2.5	107	64-135
Hexachlorobutadiene	mg/kg (ppm)	2.5	111	50-153
Naphthalene	mg/kg (ppm)	2.5	108	63-140
1,2,3-Trichlorobenzene	mg/kg (ppm)	2.5	108	63-138

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- \boldsymbol{J} The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- $\mbox{\sc vo}$ The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

SAMPLE CHAIN OF CUSTODY

Company Aspect Consulting City, State, ZIP Seath WA 98104 Report To Dave Heff ner Address 710 2nd Are Ste 550 Breeyn Green

Phone_

Emaildheffwerforspectconsulting.com SAMPLERS (signature) / Keyn Green REMARKS PROJECT NAME Morellis INVOICE TO 080190 PO#

Standard Turnaround RUSH 3 224
Rush charges authorized by: XDispose after 30 days □ Archive Samples TURNAROUND TIME SAMPLE DISPOSAL

Other_

3012 16 th Avenue West Seattle, WA 98119-2029 Ph. (206) 285-8282	Friedman & Bruya, Inc.		- A second secon		8-29-55.0	8-29-50.0	6-29-40,0	B-29-15.0	Sample ID	
Received by:	Relinquished by:							01A-7	Lab ID	
D. 11 8	SIGNATURE				3/12/19	3/12/19/0015	3/11/119	5/11/19	Date Sampled	
The E					0130	0015	7350	2240	Time Sampled	
TRAVED NECACH	R	,			S	S	S	s	Sample Type	
Viz Webbur-Bru	PRINT NAME				_e	ح	2		# of Jars	
2) IC C	Z C								TPH-HCID	
The Co	ME								TPH-Diesel	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1									TPH-Gasoline	
						X		X	BTEX by 8021B	Ą
								_	VOCs by 8260C SVOCs by 8270D	ALY
7 61									PAHs 8270D SIM	SES
18,4 E361	COM	Sar							1 1118 02 1017 01191	REQ
1 2 1 7 Pect	COMPANY				<u> </u>				e-	ANALYSES REQUESTED
		378								ŒŒ
4 / m 🕏		Siv.				,				
3/12/19 1235	ا "است	Samples received at # °C		500	1/8		エブ		Notes	

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

March 19, 2019

Dave Heffner, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Mr Heffner:

Included are the results from the testing of material submitted on March 13, 2019 from the Morell's 080190, F&BI 903200 project. There are 7 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: Data Aspect, Breeyn Greer

ASP0319R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on March 13, 2019 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Morell's 080190, F&BI 903200 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	Aspect Consulting, LLC
903200 -01	B-33-5.5
903200 -02	B-33-10.0
903200 -03	B-33-35.5
903200 -04	B-33-55.5

The 8260C dichlorodifluoromethane failed below the acceptance criteria in the matrix spike samples. The laboratory control samples met the acceptance criteria, therefore the data were likely due to sample matrix effect.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	B-33-10.0	Client:	Aspect Consulting, LLC
Date Received:	03/13/19	Project:	Morell's 080190, F&BI 903200

Date Extracted: 03/14/19 Lab ID: 903200-02 Data File: Date Analyzed: 03/14/19 031434.D Matrix: Soil Instrument: GCMS9 mg/kg (ppm) Dry Weight Units: Operator: MS/IJL

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	104	50	150
Toluene-d8	103	50	150
4-Bromofluorobenzene	97	50	150

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	<0.5	1,3-Dichloropropane	< 0.05
Chloromethane	<0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	<0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	<0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	<0.5	Ethylbenzene	< 0.05
Acetone	<0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Hexane	< 0.25	o-Xylene	< 0.05
Methylene chloride	< 0.5	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Bromoform	< 0.05
1,1-Dichloroethane	< 0.05	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	< 0.5	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.05	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.03	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.02	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.05	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.05
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: B-33-55.5 Client: Aspect Consulting, LLC
Date Received: 03/13/19 Project: Morell's 080190, F&BI 903200

Date Extracted: 03/14/19 Lab ID: 903200-04 Data File: Date Analyzed: 031435.D 03/14/19 Matrix: Instrument: GCMS9 Soil mg/kg (ppm) Dry Weight Units: Operator: MS/IJL

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	103	50	150
Toluene-d8	103	50	150
4-Bromofluorobenzene	98	50	150

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	<0.5	1,3-Dichloropropane	< 0.05
Chloromethane	<0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	<0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	<0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Hexane	< 0.25	o-Xylene	< 0.05
Methylene chloride	< 0.5	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Bromoform	< 0.05
1,1-Dichloroethane	< 0.05	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	< 0.5	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.05	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.03	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.02	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.05	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.05
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	Method Blank	Client:	Aspect Consulting, LLC
Date Received:	Not Applicable	Project:	Morell's 080190, F&BI 903200

Date Extracted: 03/14/19 Lab ID: 09-0567 mb Date Analyzed: Data File: 03/14/19 031433.D Matrix: Soil Instrument: GCMS9 mg/kg (ppm) Dry Weight Units: Operator: MS/IJL

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	104	50	150
Toluene-d8	104	50	150
4-Bromofluorobenzene	99	50	150

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Hexane	< 0.25	o-Xylene	< 0.05
Methylene chloride	< 0.5	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Bromoform	< 0.05
1,1-Dichloroethane	< 0.05	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	< 0.5	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.05	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.03	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.02	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.05	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.05
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Date of Report: 03/19/19 Date Received: 03/13/19

Project: Morell's 080190, F&BI 903200

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 903157-03 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Dichlorodifluoromethane	mg/kg (ppm)	2.5	<0.5	9 vo	9 vo	10-142	0
Chloromethane	mg/kg (ppm)	2.5	< 0.5	35	34	10-126	3
Vinyl chloride	mg/kg (ppm)	2.5	< 0.05	35	34	10-138	3
Bromomethane	mg/kg (ppm)	2.5	< 0.5	49	48	10-163	2
Chloroethane	mg/kg (ppm)	2.5	<0.5	45	42	10-176	7
Trichlorofluoromethane Acetone	mg/kg (ppm)	2.5 12.5	<0.5 <0.5	37 59	34 58	10-176 10-163	8 2
1,1-Dichloroethene	mg/kg (ppm) mg/kg (ppm)	2.5	< 0.05	48	45	10-160	6
Hexane	mg/kg (ppm)	2.5	<0.25	22	21	10-137	5
Methylene chloride	mg/kg (ppm)	2.5	< 0.5	62	56	10-156	10
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	2.5	< 0.05	75	68	21-145	10
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	60	56	14-137	7
1,1-Dichloroethane	mg/kg (ppm)	2.5	< 0.05	66	62	19-140	6
2,2-Dichloropropane	mg/kg (ppm)	2.5	< 0.05	80	72	10-158	11
cis-1,2-Dichloroethene Chloroform	mg/kg (ppm)	2.5 2.5	<0.05 <0.05	70 72	66 66	25-135 21-145	6 9
2-Butanone (MEK)	mg/kg (ppm) mg/kg (ppm)	12.5	<0.05	64	63	19-147	2
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	< 0.05	72	68	12-160	6
1,1,1-Trichloroethane	mg/kg (ppm)	2.5	< 0.05	70	64	10-156	9
1,1-Dichloropropene	mg/kg (ppm)	2.5	< 0.05	62	59	17-140	5
Carbon tetrachloride	mg/kg (ppm)	2.5	< 0.05	67	61	9-164	9
Benzene	mg/kg (ppm)	2.5	< 0.03	66	61	29-129	8
Trichloroethene	mg/kg (ppm)	2.5	< 0.02	63	60	21-139	5
1,2-Dichloropropane	mg/kg (ppm)	2.5	< 0.05	70	67	30-135	4
Bromodichloromethane Dibromomethane	mg/kg (ppm)	2.5 2.5	<0.05 <0.05	78 71	72 68	23-155 23-145	8 4
4-Methyl-2-pentanone	mg/kg (ppm) mg/kg (ppm)	2.5 12.5	<0.05 <0.5	68	66	23-145 24-155	3
cis-1,3-Dichloropropene	mg/kg (ppm)	2.5	< 0.05	77	73	28-144	5
Toluene	mg/kg (ppm)	2.5	< 0.05	68	64	35-130	6
trans-1,3-Dichloropropene	mg/kg (ppm)	2.5	< 0.05	76	71	26-149	7
1,1,2-Trichloroethane	mg/kg (ppm)	2.5	< 0.05	71	67	10-205	6
2-Hexanone	mg/kg (ppm)	12.5	< 0.5	59	61	15-166	3
1,3-Dichloropropane	mg/kg (ppm)	2.5	< 0.05	68	67	31-137	1
Tetrachloroethene	mg/kg (ppm)	2.5	< 0.025	70	65	20-133	7 7
Dibromochloromethane 1,2-Dibromoethane (EDB)	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	<0.05 <0.05	79 69	74 66	28-150 28-142	4
Chlorobenzene	mg/kg (ppm)	2.5	< 0.05	70	65	32-129	7
Ethylbenzene	mg/kg (ppm)	2.5	< 0.05	70	66	32-137	6
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	2.5	< 0.05	81	72	31-143	12
m,p-Xylene	mg/kg (ppm)	5	< 0.1	69	65	34-136	6
o-Xylene	mg/kg (ppm)	2.5	< 0.05	70	66	33-134	6
Styrene	mg/kg (ppm)	2.5	< 0.05	71	68	35-137	4
Isopropylbenzene	mg/kg (ppm)	2.5	< 0.05	75	70	31-142	7 5
Bromoform n-Propylbenzene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	<0.05 <0.05	85 71	81 65	21-156 23-146	9
Bromobenzene	mg/kg (ppm)	2.5	< 0.05	70	66	34-130	6
1,3,5-Trimethylbenzene	mg/kg (ppm)	2.5	< 0.05	73	67	18-149	9
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	2.5	< 0.05	77	73	28-140	5
1,2,3-Trichloropropane	mg/kg (ppm)	2.5	< 0.05	66	64	25-144	3
2-Chlorotoluene	mg/kg (ppm)	2.5	< 0.05	71	66	31-134	7
4-Chlorotoluene	mg/kg (ppm)	2.5	< 0.05	71	67	31-136	6
tert-Butylbenzene	mg/kg (ppm)	2.5 2.5	<0.05 <0.05	75	69	30-137	8 9
1,2,4-Trimethylbenzene sec-Butylbenzene	mg/kg (ppm)	2.5 2.5	<0.05 <0.05	73 74	67 67	10-182 23-145	10
p-Isopropyltoluene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	<0.05 <0.05	74 75	69	23-145 21-149	8
1.3-Dichlorobenzene	mg/kg (ppm)	2.5	< 0.05	73 71	67	30-131	6
1,4-Dichlorobenzene	mg/kg (ppm)	2.5	< 0.05	69	64	29-129	8
1,2-Dichlorobenzene	mg/kg (ppm)	2.5	< 0.05	72	66	31-132	9
1,2-Dibromo-3-chloropropane	mg/kg (ppm)	2.5	< 0.5	79	73	11-161	8
1,2,4-Trichlorobenzene	mg/kg (ppm)	2.5	< 0.25	72	66	22-142	9
Hexachlorobutadiene	mg/kg (ppm)	2.5	< 0.25	76	72	10-142	5
Naphthalene	mg/kg (ppm)	2.5	< 0.05	71	67	14-157	6
1,2,3-Trichlorobenzene	mg/kg (ppm)	2.5	< 0.25	73	66	20-144	10

ENVIRONMENTAL CHEMISTS

Date of Report: 03/19/19 Date Received: 03/13/19

Project: Morell's 080190, F&BI 903200

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: Laboratory Control Sample

•	-		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Dichlorodifluoromethane	mg/kg (ppm)	2.5	51	10-146
Chloromethane	mg/kg (ppm)	2.5	73	27-133
Vinyl chloride	mg/kg (ppm)	2.5	86	22-139
Bromomethane	mg/kg (ppm)	2.5	101	38-114
Chloroethane	mg/kg (ppm)	2.5	94	10-163
Trichlorofluoromethane	mg/kg (ppm)	2.5 12.5	99 79	10-196 52-141
Acetone 1.1-Dichloroethene	mg/kg (ppm) mg/kg (ppm)	2.5	79 98	52-141 47-128
Hexane	mg/kg (ppm)	2.5	81	43-142
Methylene chloride	mg/kg (ppm)	2.5	100	42-132
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	2.5	109	60-123
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	105	67-127
1,1-Dichloroethane	mg/kg (ppm)	2.5	107	68-115
2,2-Dichloropropane	mg/kg (ppm)	2.5	136	52-170
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	107	72-113
Chloroform	mg/kg (ppm)	2.5	106	66-120
2-Butanone (MEK) 1,2-Dichloroethane (EDC)	mg/kg (ppm)	12.5 2.5	77 99	57-123 56-135
1,1,1-Trichloroethane	mg/kg (ppm) mg/kg (ppm)	2.5	112	62-131
1,1-Dichloropropene	mg/kg (ppm)	2.5	99	69-128
Carbon tetrachloride	mg/kg (ppm)	2.5	114	60-139
Benzene	mg/kg (ppm)	2.5	97	68-114
Trichloroethene	mg/kg (ppm)	2.5	93	64-117
1,2-Dichloropropane	mg/kg (ppm)	2.5	96	72-127
Bromodichloromethane	mg/kg (ppm)	2.5	103	72-130
Dibromomethane	mg/kg (ppm)	2.5	94	70-120
4-Methyl-2-pentanone	mg/kg (ppm)	12.5	83	45-145
cis-1,3-Dichloropropene Toluene	mg/kg (ppm)	2.5 2.5	98 96	75-136 66-126
trans-1,3-Dichloropropene	mg/kg (ppm) mg/kg (ppm)	2.5	96	72-132
1,1,2-Trichloroethane	mg/kg (ppm)	2.5	92	75-113
2-Hexanone	mg/kg (ppm)	12.5	71	33-152
1,3-Dichloropropane	mg/kg (ppm)	2.5	88	72-130
Tetrachloroethene	mg/kg (ppm)	2.5	101	72-114
Dibromochloromethane	mg/kg (ppm)	2.5	101	74-125
1,2-Dibromoethane (EDB)	mg/kg (ppm)	2.5	87	74-132
Chlorobenzene	mg/kg (ppm)	2.5	95	76-111
Ethylbenzene 1,1,1,2-Tetrachloroethane	mg/kg (ppm)	2.5 2.5	98 116	64-123 69-135
n,p-Xylene	mg/kg (ppm) mg/kg (ppm)	2.5 5	96	78-122
o-Xylene	mg/kg (ppm)	2.5	100	77-124
Styrene	mg/kg (ppm)	2.5	97	74-126
Isopropylbenzene	mg/kg (ppm)	2.5	109	76-127
Bromoform	mg/kg (ppm)	2.5	107	56-132
n-Propylbenzene	mg/kg (ppm)	2.5	101	74-124
Bromobenzene	mg/kg (ppm)	2.5	95	72-122
1,3,5-Trimethylbenzene	mg/kg (ppm)	2.5	106	76-126
1,1,2,2-Tetrachloroethane 1,2,3-Trichloropropane	mg/kg (ppm)	2.5 2.5	105 89	56-143 61-137
2-Chlorotoluene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	89 102	74-121
4-Chlorotoluene	mg/kg (ppm)	2.5	98	75-122
tert-Butylbenzene	mg/kg (ppm)	2.5	107	73-130
1,2,4-Trimethylbenzene	mg/kg (ppm)	2.5	106	76-125
sec-Butylbenzene	mg/kg (ppm)	2.5	108	71-130
p-Isopropyltoluene	mg/kg (ppm)	2.5	109	70-132
1,3-Dichlorobenzene	mg/kg (ppm)	2.5	97	75-121
1,4-Dichlorobenzene	mg/kg (ppm)	2.5	94	74-117
1,2-Dichlorobenzene	mg/kg (ppm)	2.5	102	76-121
1,2-Dibromo-3-chloropropane 1,2,4-Trichlorobenzene	mg/kg (ppm)	2.5 2.5	106 109	58-138 64-135
1,2,4-1 richiorobenzene Hexachlorobutadiene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	117	50-153
Naphthalene	mg/kg (ppm)	2.5	106	63-140
1,2,3-Trichlorobenzene	mg/kg (ppm)	2.5	110	63-138
	0 0 11 /			

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dy Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- $hr\ -\ The\ sample\ and\ duplicate\ were\ reextracted\ and\ reanalyzed.\ RPD\ results\ were\ still\ outside\ of\ control\ limits.\ Variability\ is\ attributed\ to\ sample\ inhomogeneity.$
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- \boldsymbol{J} The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- $\mbox{\it ve}$ The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Ph. (206) 285-8282 Seattle, WA 98119-2029 3012 16th Avenue West Friedman & Bruya, Inc. Phone_ O B-33-5.5 B-33-35,5 City, State, ZIP Address 710 2nd Au Ste 550 Company Aspect B-33-10.0 Report To Dave Hoffner/Breyn Green 3 903200 Sample ID -85.5 Septhy WA 98108 Email dheffwer Oaspeet consulting, com Received by: Relinquished by Received by: Relinquished by: 20 00 NO B-4-Lab ID SIGNATURE miles terms Breezenther 13/13 13/12 13/12 13/12 Sampled Date 2210 0030 2320 Time Sampled 2200 SAMPLE CHAIN OF CUSTODY REMARKS SAMPLERS (signature) Blanch PROJECT NAME Marell's MAKIN NECONCE Sample Туре Nhan Phan Breezen Green PRINT NAME # of Jars TPH-HCID TPH-Diesel TPH-Gasoline ANALYSES REQUESTED m VOCs by 8260C080190 A INVOICE TO からなり ME 3/13/19 P0# troped PAHs 8270D SIM COMPANY RUSH DA 3/2.

Rush charges authorized by: Samples received at □ Other AlDispose after 30 days ☐ Archive Samples TURNAROUND TIME SAMPLE DISPOSAL 3/13/19 0600 DATE PAT PAT を変 Notes PHOP HMIT

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

March 19, 2019

Dave Heffner, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Mr Heffner:

Included are the results from the testing of material submitted on March 14, 2019 from the Morell's 080190, F&BI 903259 project. There are 7 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: Data Aspect, Breeyn Greer

ASP0319R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on March 14, 2019 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Morell's 080190, F&BI 903259 project. Samples were logged in under the laboratory ID's listed below.

Aspect Consulting, LLC			
B-32-15.5			
B-32-25.5			
B-32-55.5			

The 8260C dichlorodifluoromethane failed below the acceptance criteria in the matrix spike samples. The laboratory control samples met the acceptance criteria, therefore the data were likely due to sample matrix effect.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	B-32-15.5	Client:	Aspect Consulting, LLC
Date Received:	03/14/19	Project:	Morell's 080190, F&BI 903259

Date Extracted: 03/14/19 Lab ID: 903259-01 Data File: Date Analyzed: 03/14/19 031436.D Matrix: Soil Instrument: GCMS9 mg/kg (ppm) Dry Weight Units: Operator: MS/IJL

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	50	150
Toluene-d8	103	50	150
4-Bromofluorobenzene	98	50	150

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	<0.5	1,3-Dichloropropane	< 0.05
Chloromethane	<0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	<0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Hexane	< 0.25	o-Xylene	< 0.05
Methylene chloride	< 0.5	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Bromoform	< 0.05
1,1-Dichloroethane	< 0.05	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	< 0.5	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.05	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.03	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.02	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.05	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.05
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	B-32-55.5	Client:	Aspect Consulting, LLC
Date Received:	03/14/19	Project:	Morell's 080190, F&BI 903259

Date Extracted: 03/14/19 Lab ID: 903259-03 Data File: Date Analyzed: 03/14/19 031437.D Matrix: Soil Instrument: GCMS9 mg/kg (ppm) Dry Weight Units: MS/IJL Operator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	50	150
Toluene-d8	103	50	150
4-Bromofluorobenzene	99	50	150

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Hexane	< 0.25	o-Xylene	< 0.05
Methylene chloride	< 0.5	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Bromoform	< 0.05
1,1-Dichloroethane	< 0.05	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	< 0.5	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.05	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.03	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.02	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.05	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.05
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	Method Blank	Client:	Aspect Consulting, LLC
Date Received:	Not Applicable	Project:	Morell's 080190, F&BI 903259

Date Extracted: 03/14/19 Lab ID: 09-0567 mb Date Analyzed: Data File: 03/14/19 031433.D Matrix: Soil Instrument: GCMS9 mg/kg (ppm) Dry Weight Units: Operator: MS/IJL

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	104	50	150
Toluene-d8	104	50	150
4-Bromofluorobenzene	99	50	150

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Hexane	< 0.25	o-Xylene	< 0.05
Methylene chloride	< 0.5	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Bromoform	< 0.05
1,1-Dichloroethane	< 0.05	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	< 0.5	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.05	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.03	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.02	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.05	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.05
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Date of Report: 03/19/19 Date Received: 03/14/19

Project: Morell's 080190, F&BI 903259

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 903157-03 (Matrix Spike)

,	-		Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Dichlorodifluoromethane	mg/kg (ppm)	2.5	<0.5	9 vo	9 vo	10-142	0
Chloromethane Vinyl chloride	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	<0.5 <0.05	35 35	34 34	10-126 10-138	3 3
Bromomethane	mg/kg (ppm)	2.5	<0.5	49	48	10-163	2
Chloroethane	mg/kg (ppm)	2.5	<0.5	45	42	10-176	~ 7
Trichlorofluoromethane	mg/kg (ppm)	2.5	< 0.5	37	34	10-176	8
Acetone	mg/kg (ppm)	12.5	< 0.5	59	58	10-163	2
1,1-Dichloroethene Hexane	mg/kg (ppm)	2.5 2.5	<0.05 <0.25	48 22	45 21	10-160 10-137	6 5
Methylene chloride	mg/kg (ppm) mg/kg (ppm)	2.5	<0.25 <0.5	62	56	10-156	10
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	2.5	< 0.05	75	68	21-145	10
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	60	56	14-137	7
1,1-Dichloroethane	mg/kg (ppm)	2.5	< 0.05	66	62	19-140	6
2,2-Dichloropropane	mg/kg (ppm)	2.5	< 0.05	80	72	10-158	11
cis-1,2-Dichloroethene Chloroform	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	<0.05 <0.05	70 72	66 66	25-135 21-145	6 9
2-Butanone (MEK)	mg/kg (ppm)	12.5	<0.5	64	63	19-147	2
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	< 0.05	72	68	12-160	6
1,1,1-Trichloroethane	mg/kg (ppm)	2.5	< 0.05	70	64	10-156	9
1,1-Dichloropropene	mg/kg (ppm)	2.5	< 0.05	62	59	17-140	5
Carbon tetrachloride	mg/kg (ppm)	2.5	< 0.05	67	61	9-164	9
Benzene Trichloroethene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	<0.03 <0.02	66 63	61 60	29-129 21-139	8 5
1,2-Dichloropropane	mg/kg (ppm)	2.5	< 0.05	70	67	30-135	4
Bromodichloromethane	mg/kg (ppm)	2.5	< 0.05	78	72	23-155	8
Dibromomethane	mg/kg (ppm)	2.5	< 0.05	71	68	23-145	4
4-Methyl-2-pentanone	mg/kg (ppm)	12.5	< 0.5	68	66	24-155	3
cis-1,3-Dichloropropene	mg/kg (ppm)	2.5 2.5	< 0.05	77 68	73	28-144	5 6
Toluene trans-1,3-Dichloropropene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	<0.05 <0.05	76	64 71	35-130 26-149	7
1,1,2-Trichloroethane	mg/kg (ppm)	2.5	< 0.05	71	67	10-205	6
2-Hexanone	mg/kg (ppm)	12.5	<0.5	59	61	15-166	3
1,3-Dichloropropane	mg/kg (ppm)	2.5	< 0.05	68	67	31-137	1
Tetrachloroethene	mg/kg (ppm)	2.5	< 0.025	70	65	20-133	7
Dibromochloromethane 1,2-Dibromoethane (EDB)	mg/kg (ppm)	2.5 2.5	<0.05 <0.05	79 69	74 66	28-150 28-142	7 4
Chlorobenzene	mg/kg (ppm) mg/kg (ppm)	2.5	<0.05	70	65	32-129	7
Ethylbenzene	mg/kg (ppm)	2.5	< 0.05	70	66	32-137	6
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	2.5	< 0.05	81	72	31-143	12
m,p-Xylene	mg/kg (ppm)	5	< 0.1	69	65	34-136	6
o-Xylene	mg/kg (ppm)	2.5	< 0.05	70	66 68	33-134	6
Styrene Isopropylbenzene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	<0.05 <0.05	71 75	68 70	35-137 31-142	4 7
Bromoform	mg/kg (ppm)	2.5	< 0.05	85	81	21-156	5
n-Propylbenzene	mg/kg (ppm)	2.5	< 0.05	71	65	23-146	9
Bromobenzene	mg/kg (ppm)	2.5	< 0.05	70	66	34-130	6
1,3,5-Trimethylbenzene	mg/kg (ppm)	2.5	< 0.05	73	67	18-149	9
1,1,2,2-Tetrachloroethane 1,2,3-Trichloropropane	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	<0.05 <0.05	77 66	73 64	28-140 25-144	5 3
2-Chlorotoluene	mg/kg (ppm)	2.5	< 0.05	71	66	31-134	7
4-Chlorotoluene	mg/kg (ppm)	2.5	< 0.05	71	67	31-136	6
tert-Butylbenzene	mg/kg (ppm)	2.5	< 0.05	75	69	30-137	8
1,2,4-Trimethylbenzene	mg/kg (ppm)	2.5	< 0.05	73	67	10-182	9
sec-Butylbenzene p-Isopropyltoluene	mg/kg (ppm)	2.5 2.5	<0.05 <0.05	74 75	67 69	23-145 21-149	10 8
1.3-Dichlorobenzene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	<0.05 <0.05	75 71	67	21-149 30-131	6
1,4-Dichlorobenzene	mg/kg (ppm)	2.5	< 0.05	69	64	29-129	8
1,2-Dichlorobenzene	mg/kg (ppm)	2.5	< 0.05	72	66	31-132	9
1,2-Dibromo-3-chloropropane	mg/kg (ppm)	2.5	< 0.5	79	73	11-161	8
1,2,4-Trichlorobenzene	mg/kg (ppm)	2.5	< 0.25	72	66	22-142	9
Hexachlorobutadiene Naphthalene	mg/kg (ppm)	2.5 2.5	<0.25 <0.05	76 71	72 67	10-142 14-157	5 6
Naphthalene 1,2,3-Trichlorobenzene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	<0.05 <0.25	71 73	66	14-157 20-144	6 10
1,0,0 1110HOLOBOHZOHO	6' we (bbin)	۵.0	~0.20	7.5	00	20 177	10

ENVIRONMENTAL CHEMISTS

Date of Report: 03/19/19 Date Received: 03/14/19

Project: Morell's 080190, F&BI 903259

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: Laboratory Control Sample

· ·	-		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Dichlorodifluoromethane	mg/kg (ppm)	2.5	51	10-146
Chloromethane Vinyl chloride	mg/kg (ppm)	2.5 2.5	73 86	27-133 22-139
Bromomethane	mg/kg (ppm) mg/kg (ppm)	2.5	101	38-114
Chloroethane	mg/kg (ppm)	2.5	94	10-163
Trichlorofluoromethane	mg/kg (ppm)	2.5	99	10-196
Acetone	mg/kg (ppm)	12.5	79	52-141
1,1-Dichloroethene	mg/kg (ppm)	2.5	98	47-128
Hexane	mg/kg (ppm)	2.5	81	43-142
Methylene chloride Methyl t-butyl ether (MTBE)	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	100 109	42-132 60-123
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	105	67-127
1,1-Dichloroethane	mg/kg (ppm)	2.5	107	68-115
2,2-Dichloropropane	mg/kg (ppm)	2.5	136	52-170
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	107	72-113
Chloroform	mg/kg (ppm)	2.5	106	66-120
2-Butanone (MEK)	mg/kg (ppm)	12.5	77	57-123
1,2-Dichloroethane (EDC) 1,1,1-Trichloroethane	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	99 112	56-135 62-131
1,1-Dichloropropene	mg/kg (ppm)	2.5	99	69-128
Carbon tetrachloride	mg/kg (ppm)	2.5	114	60-139
Benzene	mg/kg (ppm)	2.5	97	68-114
Trichloroethene	mg/kg (ppm)	2.5	93	64-117
1,2-Dichloropropane	mg/kg (ppm)	2.5	96	72-127
Bromodichloromethane	mg/kg (ppm)	2.5	103	72-130
Dibromomethane 4-Methyl-2-pentanone	mg/kg (ppm) mg/kg (ppm)	2.5 12.5	94 83	70-120 45-145
cis-1,3-Dichloropropene	mg/kg (ppm)	2.5	98	75-136
Toluene	mg/kg (ppm)	2.5	96	66-126
trans-1,3-Dichloropropene	mg/kg (ppm)	2.5	96	72-132
1,1,2-Trichloroethane	mg/kg (ppm)	2.5	92	75-113
2-Hexanone	mg/kg (ppm)	12.5	71	33-152
1,3-Dichloropropane Tetrachloroethene	mg/kg (ppm)	2.5 2.5	88 101	72-130 72-114
Dibromochloromethane	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	101	72-114 74-125
1.2-Dibromoethane (EDB)	mg/kg (ppm)	2.5	87	74-123
Chlorobenzene	mg/kg (ppm)	2.5	95	76-111
Ethylbenzene	mg/kg (ppm)	2.5	98	64-123
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	2.5	116	69-135
m,p-Xylene	mg/kg (ppm)	5 2.5	96 100	78-122
o-Xylene Styrene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	97	77-124 74-126
Isopropylbenzene	mg/kg (ppm)	2.5	109	76-127
Bromoform	mg/kg (ppm)	2.5	107	56-132
n-Propylbenzene	mg/kg (ppm)	2.5	101	74-124
Bromobenzene	mg/kg (ppm)	2.5	95	72-122
1,3,5-Trimethylbenzene	mg/kg (ppm)	2.5 2.5	106	76-126
1,1,2,2-Tetrachloroethane 1,2,3-Trichloropropane	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	105 89	56-143 61-137
2-Chlorotoluene	mg/kg (ppm)	2.5	102	74-121
4-Chlorotoluene	mg/kg (ppm)	2.5	98	75-122
tert-Butylbenzene	mg/kg (ppm)	2.5	107	73-130
1,2,4-Trimethylbenzene	mg/kg (ppm)	2.5	106	76-125
sec-Butylbenzene	mg/kg (ppm)	2.5	108	71-130
p-Isopropyltoluene 1.3-Dichlorobenzene	mg/kg (ppm)	2.5 2.5	109 97	70-132 75-121
1,4-Dichlorobenzene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	97 94	75-121 74-117
1,2-Dichlorobenzene	mg/kg (ppm)	2.5	102	76-121
1,2-Dibromo-3-chloropropane	mg/kg (ppm)	2.5	106	58-138
1,2,4-Trichlorobenzene	mg/kg (ppm)	2.5	109	64-135
Hexachlorobutadiene	mg/kg (ppm)	2.5	117	50-153
Naphthalene	mg/kg (ppm)	2.5	106	63-140
1,2,3-Trichlorobenzene	mg/kg (ppm)	2.5	110	63-138

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- $hr\ -\ The\ sample\ and\ duplicate\ were\ reextracted\ and\ reanalyzed.\ RPD\ results\ were\ still\ outside\ of\ control\ limits.\ Variability\ is\ attributed\ to\ sample\ inhomogeneity.$
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- \boldsymbol{J} The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- \mbox{pc} The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- $\mbox{\it ve}$ The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Ph. (206) 285-8282 Seattle, WA 98119-2029 3012 16th Avenue West Friedman & Bruya, Inc. Address 710 2nd Ave Ste 550 Company HSPect O City, State, ZIP_ B-32-55,5 Report To Dave Heffner B-32 - 32 -903259 Sample ID -25,s S, S Seather WA 98104 Email duffued aspect consulting on Received by: TANO W Relinquished by: Received by: Relinquished by: \mathcal{Z} Ş Lab ID AD|3/13/19 2200 B Green SIGNATURE 3/13/19/2235 3/12/19/2330 Sampled Date Ţ, SAMPLE CHAIN OF CUSTODY ME Sampled REMARKS SAMPLERS (signature) PROJECT NAME Morell's Sample Type N 0 **(**1) MONTE STEMMEN Breeze Greek C Jars PRINT NAME # of TPH-HCID TPH-Diesel TPH-Gasoline S. 3 ろ ANALYSES REQUESTED VOCs by 8260C 080190 INVOICE TO THE SVOCs by 8270D PO# The Char PAHs 8270D SIM COMPANY Kpeex Samples received at □ Other_ Dispose after 30 days

Archive Samples Standard Turnaround Rush charges authorized by: TURNAROUND TIME SAMPLE DISPOSAL 3/14/19 3/11/10 111110 3/14/19/0500 DATE Notes 18:37 TIME

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl. B.S. Arina Podnozova, B.S. Eric Young, B.S.

3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

March 21, 2019

Dave Heffner, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Mr Heffner:

Included are the results from the testing of material submitted on March 15, 2019 from the Morell's 080190, F&BI 903291 project. There are 13 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: Data Aspect, Breeyn Greer

ASP0321R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on March 15, 2019 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Morell's 080190, F&BI 903291 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Aspect Consulting, LLC
903291 -01	B-28-10.5
903291 -02	B-28-15.5
903291 -03	B-28-30.5
903291 -04	B-28-55.5
903291 -05	MW-23-031419

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	B-28-30.5	Client:	Aspect Consulting, LLC
Date Received:	03/15/19	Project:	Morell's 080190, F&BI 903291

Date Extracted: 03/15/19 Lab ID: 903291-03 Date Analyzed: Data File: 03/19/19 031920.D Matrix: Soil Instrument: GCMS4 mg/kg (ppm) Dry Weight Units: Operator: **AEN**

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	62	142
Toluene-d8	101	55	145
4-Bromofluorobenzene	97	65	139

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	0.038
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Hexane	< 0.25	o-Xylene	< 0.05
Methylene chloride	< 0.5	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Bromoform	< 0.05
1,1-Dichloroethane	< 0.05	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	< 0.5	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.05	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.03	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.02	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.05	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.05
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: B-28-55.5 Client: Aspect Consulting, LLC
Date Received: 03/15/19 Project: Morell's 080190, F&BI 903291

Date Extracted: 03/15/19 Lab ID: 903291-04 Data File: Date Analyzed: 03/19/19 031921.D Matrix: Instrument: GCMS4 Soil mg/kg (ppm) Dry Weight Units: Operator: **AEN**

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	62	142
Toluene-d8	101	55	145
4-Bromofluorobenzene	96	65	139

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Hexane	< 0.25	o-Xylene	< 0.05
Methylene chloride	< 0.5	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Bromoform	< 0.05
1,1-Dichloroethane	< 0.05	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	< 0.5	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.05	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.03	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.02	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.05	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.05
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	Method Blank	Client:	Aspect Consulting, LLC
Date Received:	Not Applicable	Project:	Morell's 080190, F&BI 903291

Date Extracted: 03/15/19 Lab ID: 09-0568 mb Date Analyzed: Data File: 031529.D 03/15/19 Matrix: Soil Instrument: GCMS4 mg/kg (ppm) Dry Weight Units: Operator: MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	62	142
Toluene-d8	99	55	145
4-Bromofluorobenzene	96	65	139

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Hexane	< 0.25	o-Xylene	< 0.05
Methylene chloride	< 0.5	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Bromoform	< 0.05
1,1-Dichloroethane	< 0.05	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	< 0.5	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.05	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.03	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.02	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.05	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.05
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW-23-031419	Client:	Aspect Consulting, LLC
Date Received:	03/15/19	Project:	Morell's 080190, F&BI 903291
Data Extracted	02/15/10	Lab ID:	002201 05

Date Extracted: 03/15/19 Lab ID: 903291-05 Date Analyzed: 03/15/19 Data File: 031543.D Matrix: Water GCMS4 Instrument: ug/L (ppb) Units: Operator: MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	98	57	121
Toluene-d8	98	63	127
4-Bromofluorobenzene	96	60	133

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	100
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<1	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<1
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	18	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	<1
2-Butanone (MEK)	<10	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	<1	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	<1	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	25	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	<1	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	<1	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	<1
trans-1,3-Dichloropropene	<1	Naphthalene	<1
1,1,2-Trichloroethane	<1	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	Method Blank	Client:	Aspect Consulting, LLC
Date Received:	Not Applicable	Project:	Morell's 080190, F&BI 903291

Date Extracted: 03/18/19 Lab ID: 09-0569 mb Date Analyzed: 03/18/19 Data File: 031817.D Matrix: Water Instrument: GCMS4 Units: ug/L (ppb) Operator: MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	57	121
Toluene-d8	100	63	127
4-Bromofluorobenzene	99	60	133

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<1	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<1
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	<1
2-Butanone (MEK)	<10	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	<1	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	<1	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	<1	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	<1	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	<1	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	<1
trans-1,3-Dichloropropene	<1	Naphthalene	<1
1,1,2-Trichloroethane	<1	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Date of Report: 03/21/19 Date Received: 03/15/19

Project: Morell's 080190, F&BI 903291

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 903262-15 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Dichlorodifluoromethane	mg/kg (ppm)	2.5	<0.5	24	20	10-142	18
Chloromethane	mg/kg (ppm)	2.5	< 0.5	52	49	10-126	6
Vinyl chloride	mg/kg (ppm)	2.5	< 0.05	55	51	10-138	8
Bromomethane	mg/kg (ppm)	2.5	< 0.5	69	70	10-163	1
Chloroethane	mg/kg (ppm)	2.5	< 0.5	70	63	10-176	11
Trichlorofluoromethane	mg/kg (ppm)	2.5	< 0.5	67	60	10-176	11
Acetone	mg/kg (ppm)	12.5	< 0.5	86	79	10-163	8
1,1-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	71	64	10-160	10
Hexane	mg/kg (ppm)	2.5	< 0.25	53	48	10-137	10
Methylene chloride	mg/kg (ppm)	2.5	< 0.25	83	77	10-157	7
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	2.5	< 0.05	81	79	21-145	2
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	76	70	14-137	8
1,1-Dichloroethane		2.5	< 0.05	76 76	70 73	19-140	4
2,2-Dichloropropane	mg/kg (ppm)	2.5	< 0.05	95	73 89	19-140	7
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	93 81	77	25-135	5
Chloroform	mg/kg (ppm)		<0.05 <0.05	81	77 78	25-135 21-145	3 4
	mg/kg (ppm)	2.5					
2-Butanone (MEK)	mg/kg (ppm)	12.5	< 0.5	79	80	19-147	1
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	< 0.05	85	84	12-160	1
1,1,1-Trichloroethane	mg/kg (ppm)	2.5	< 0.05	80	77	10-156	4
1,1-Dichloropropene	mg/kg (ppm)	2.5	< 0.05	75	73	17-140	3
Carbon tetrachloride	mg/kg (ppm)	2.5	< 0.05	80	74 70	9-164	8
Benzene	mg/kg (ppm)	2.5	< 0.03	77	76 73	29-129	1
Trichloroethene	mg/kg (ppm)	2.5	< 0.02	75	73	21-139	3
1,2-Dichloropropane	mg/kg (ppm)	2.5	< 0.05	77	77	30-135	0
Bromodichloromethane	mg/kg (ppm)	2.5	< 0.05	78	77	23-155	1
Dibromomethane	mg/kg (ppm)	2.5	< 0.05	78	77	23-145	1
4-Methyl-2-pentanone	mg/kg (ppm)	12.5	< 0.5	86	87	24-155	1
cis-1,3-Dichloropropene	mg/kg (ppm)	2.5	< 0.05	79	80	28-144	1
Toluene	mg/kg (ppm)	2.5	< 0.05	77	75	35-130	3
trans-1,3-Dichloropropene	mg/kg (ppm)	2.5	< 0.05	77	77	26-149	0
1,1,2-Trichloroethane	mg/kg (ppm)	2.5	< 0.05	85	84	10-205	1
2-Hexanone	mg/kg (ppm)	12.5	< 0.5	75	78	15-166	4
1,3-Dichloropropane	mg/kg (ppm)	2.5	< 0.05	79	80	31-137	1
Tetrachloroethene	mg/kg (ppm)	2.5	< 0.025	81	77	20-133	5
Dibromochloromethane	mg/kg (ppm)	2.5	< 0.05	78	75	28-150	4
1,2-Dibromoethane (EDB)	mg/kg (ppm)	2.5	< 0.05	80	79	28-142	1
Chlorobenzene	mg/kg (ppm)	2.5	< 0.05	83	81	32-129	2
Ethylbenzene	mg/kg (ppm)	2.5	< 0.05	82	80	32-137	2
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	2.5	< 0.05	81	77	31-143	5
m,p-Xylene	mg/kg (ppm)	5	< 0.1	83	81	34-136	2
o-Xylene	mg/kg (ppm)	2.5	< 0.05	82	78	33-134	5
-							

ENVIRONMENTAL CHEMISTS

Date of Report: 03/21/19 Date Received: 03/15/19

Project: Morell's 080190, F&BI 903291

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 903262-15 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Styrene	mg/kg (ppm)	2.5	< 0.05	81	81	35-137	0
Isopropylbenzene	mg/kg (ppm)	2.5	< 0.05	85	82	31-142	4
Bromoform	mg/kg (ppm)	2.5	< 0.05	71	70	21-156	1
n-Propylbenzene	mg/kg (ppm)	2.5	< 0.05	84	79	23-146	6
Bromobenzene	mg/kg (ppm)	2.5	< 0.05	81	78	34-130	4
1,3,5-Trimethylbenzene	mg/kg (ppm)	2.5	< 0.05	84	78	18-149	7
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	2.5	< 0.05	89	85	28-140	5
1,2,3-Trichloropropane	mg/kg (ppm)	2.5	< 0.05	82	80	25-144	2
2-Chlorotoluene	mg/kg (ppm)	2.5	< 0.05	84	78	31-134	7
4-Chlorotoluene	mg/kg (ppm)	2.5	< 0.05	81	77	31-136	5
tert-Butylbenzene	mg/kg (ppm)	2.5	< 0.05	86	81	30-137	6
1,2,4-Trimethylbenzene	mg/kg (ppm)	2.5	< 0.05	85	79	10-182	7
sec-Butylbenzene	mg/kg (ppm)	2.5	< 0.05	85	79	23-145	7
p-Isopropyltoluene	mg/kg (ppm)	2.5	< 0.05	88	82	21-149	7
1,3-Dichlorobenzene	mg/kg (ppm)	2.5	< 0.05	82	79	30-131	4
1,4-Dichlorobenzene	mg/kg (ppm)	2.5	< 0.05	83	80	29-129	4
1,2-Dichlorobenzene	mg/kg (ppm)	2.5	< 0.05	81	77	31-132	5
1,2-Dibromo-3-chloropropane	mg/kg (ppm)	2.5	< 0.5	82	75	11-161	9
1,2,4-Trichlorobenzene	mg/kg (ppm)	2.5	< 0.25	88	81	22-142	8
Hexachlorobutadiene	mg/kg (ppm)	2.5	< 0.25	91	83	10-142	9
Naphthalene	mg/kg (ppm)	2.5	< 0.05	88	81	14-157	8
1,2,3-Trichlorobenzene	mg/kg (ppm)	2.5	< 0.25	89	81	20-144	9

ENVIRONMENTAL CHEMISTS

Date of Report: 03/21/19 Date Received: 03/15/19

Project: Morell's 080190, F&BI 903291

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: Laboratory Control Sample

, , , , , , , , , , , , , , , , , , ,	•		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Ûnits	Level	LCS	Criteria
Dichlorodifluoromethane	mg/kg (ppm)	2.5	47	10-146
Chloromethane	mg/kg (ppm)	2.5	67	27-133
Vinyl chloride	mg/kg (ppm)	2.5	78	22-139
Bromomethane	mg/kg (ppm)	2.5	90	38-114
Chloroethane	mg/kg (ppm)	2.5	83	10-163
Trichlorofluoromethane	mg/kg (ppm)	2.5	93	10-196
Acetone	mg/kg (ppm)	12.5	79	52-141
1,1-Dichloroethene	mg/kg (ppm)	2.5	90	47-128
Hexane	mg/kg (ppm)	2.5	81	43-142
Methylene chloride	mg/kg (ppm)	2.5	93	42-132
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	2.5	102	60-123
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	97	67-127
1,1-Dichloroethane	mg/kg (ppm)	2.5	100	68-115
2,2-Dichloropropane	mg/kg (ppm)	2.5	125	52-170
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	100	72-113
Chloroform	mg/kg (ppm)	2.5	103	66-120
2-Butanone (MEK)	mg/kg (ppm)	12.5	92	57-123
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	105	56-135
1,1,1-Trichloroethane	mg/kg (ppm)	2.5	106	62-131
1,1-Dichloropropene	mg/kg (ppm)	2.5	100	69-128
Carbon tetrachloride	mg/kg (ppm)	2.5	108	60-139
Benzene	mg/kg (ppm)	2.5	97	68-114
Trichloroethene	mg/kg (ppm)	2.5	96	64-117
1,2-Dichloropropane	mg/kg (ppm)	2.5	102	72-127
Bromodichloromethane	mg/kg (ppm)	2.5	110	72-130
Dibromomethane	mg/kg (ppm)	2.5	101	70-120
4-Methyl-2-pentanone	mg/kg (ppm)	12.5	95	45-145
cis-1,3-Dichloropropene	mg/kg (ppm)	2.5	111	75-136
Toluene	mg/kg (ppm)	2.5	98	66-126
trans-1,3-Dichloropropene	mg/kg (ppm)	2.5	111	72-132
1,1,2-Trichloroethane	mg/kg (ppm)	2.5	100	75-113
2-Hexanone	mg/kg (ppm)	12.5	88	33-152
1,3-Dichloropropane	mg/kg (ppm)	2.5	99	72-130
Tetrachloroethene	mg/kg (ppm)	2.5	105	72-114
Dibromochloromethane	mg/kg (ppm)	2.5	109	74-125
1,2-Dibromoethane (EDB)	mg/kg (ppm)	2.5	98	74-132
Chlorobenzene	mg/kg (ppm)	2.5	100	76-111
Ethylbenzene	mg/kg (ppm)	2.5	99	64-123
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	2.5	108	69-135
m,p-Xylene	mg/kg (ppm)	5	98	78-122
o-Xylene	mg/kg (ppm)	2.5	98	77-124

ENVIRONMENTAL CHEMISTS

Date of Report: 03/21/19 Date Received: 03/15/19

Project: Morell's 080190, F&BI 903291

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: Laboratory Control Sample

		Percent				
	Reporting	Spike	Recovery	Acceptance		
Analyte	Units	Level	LCS	Criteria		
Styrene	mg/kg (ppm)	2.5	102	74-126		
Isopropylbenzene	mg/kg (ppm)	2.5	105	76-127		
Bromoform	mg/kg (ppm)	2.5	118	56-132		
n-Propylbenzene	mg/kg (ppm)	2.5	100	74-124		
Bromobenzene	mg/kg (ppm)	2.5	98	72-122		
1,3,5-Trimethylbenzene	mg/kg (ppm)	2.5	102	76-126		
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	2.5	107	56-143		
1,2,3-Trichloropropane	mg/kg (ppm)	2.5	94	61-137		
2-Chlorotoluene	mg/kg (ppm)	2.5	99	74-121		
4-Chlorotoluene	mg/kg (ppm)	2.5	100	75-122		
tert-Butylbenzene	mg/kg (ppm)	2.5	103	73-130		
1,2,4-Trimethylbenzene	mg/kg (ppm)	2.5	102	76-125		
sec-Butylbenzene	mg/kg (ppm)	2.5	102	71-130		
p-Isopropyltoluene	mg/kg (ppm)	2.5	105	70-132		
1,3-Dichlorobenzene	mg/kg (ppm)	2.5	99	75-121		
1,4-Dichlorobenzene	mg/kg (ppm)	2.5	97	74-117		
1,2-Dichlorobenzene	mg/kg (ppm)	2.5	99	76-121		
1,2-Dibromo-3-chloropropane	mg/kg (ppm)	2.5	104	58-138		
1,2,4-Trichlorobenzene	mg/kg (ppm)	2.5	98	64-135		
Hexachlorobutadiene	mg/kg (ppm)	2.5	107	50-153		
Naphthalene	mg/kg (ppm)	2.5	98	63-140		
1,2,3-Trichlorobenzene	mg/kg (ppm)	2.5	99	63-138		

ENVIRONMENTAL CHEMISTS

Date of Report: 03/21/19 Date Received: 03/15/19

Project: Morell's 080190, F&BI 903291

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 903261-01 (Matrix Spike)

•	-			Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Dichlorodifluoromethane	ug/L (ppb)	50	<1	108	10-172
Chloromethane	ug/L (ppb)	50	<10	100	25-166
Vinyl chloride Bromomethane	ug/L (ppb) ug/L (ppb)	50 50	<0.2 <1	104 113	36-166 47-169
Chloroethane	ug/L (ppb)	50	<1	101	46-160
Trichlorofluoromethane	ug/L (ppb)	50	<1	110	44-165
Acetone	ug/L (ppb)	250	< 50	90	10-182
1,1-Dichloroethene	ug/L (ppb)	50	<1	94	60-136
Hexane Methylene chloride	ug/L (ppb)	50 50	<1 <5	93 97	52-150 67-132
Methyl t-butyl ether (MTBE)	ug/L (ppb) ug/L (ppb)	50 50	<1	92	74-127
trans-1,2-Dichloroethene	ug/L (ppb)	50	<1	91	72-129
1,1-Dichloroethane	ug/L (ppb)	50	<1	90	70-128
2,2-Dichloropropane	ug/L (ppb)	50	<1	109	36-154
cis-1,2-Dichloroethene	ug/L (ppb)	50	<1	92	71-127
Chloroform 2-Butanone (MEK)	ug/L (ppb)	50 250	<1 <10	91 94	65-132 10-129
1,2-Dichloroethane (EDC)	ug/L (ppb) ug/L (ppb)	50 50	<10	99	69-133
1,1,1-Trichloroethane	ug/L (ppb)	50	<1	94	60-146
1,1-Dichloropropene	ug/L (ppb)	50	<1	92	69-133
Carbon tetrachloride	ug/L (ppb)	50	<1	95	56-152
Benzene	ug/L (ppb)	50	< 0.35	91	76-125
Trichloroethene 1,2-Dichloropropane	ug/L (ppb) ug/L (ppb)	50 50	<1 <1	87 90	66-135 78-125
Bromodichloromethane	ug/L (ppb)	50 50	<1	89	61-150
Dibromomethane	ug/L (ppb)	50	<1	89	66-141
4-Methyl-2-pentanone	ug/L (ppb)	250	<10	102	10-185
cis-1,3-Dichloropropene	ug/L (ppb)	50	<1	93	72-132
Toluene	ug/L (ppb)	50	<1	86	76-122
trans-1,3-Dichloropropene 1,1,2-Trichloroethane	ug/L (ppb) ug/L (ppb)	50 50	<1 <1	88 97	76-130 68-131
2-Hexanone	ug/L (ppb)	250	<10	89	10-185
1,3-Dichloropropane	ug/L (ppb)	50	<1	92	71-128
Tetrachloroethene	ug/L (ppb)	50	<1	91	10-226
Dibromochloromethane	ug/L (ppb)	50	<1	89	70-139
1,2-Dibromoethane (EDB)	ug/L (ppb)	50 50	<1	91 92	69-134
Chlorobenzene Ethylbenzene	ug/L (ppb) ug/L (ppb)	50 50	<1 <1	92 90	77-122 69-135
1,1,1,2-Tetrachloroethane	ug/L (ppb)	50	<1	88	73-137
m,p-Xylene	ug/L (ppb)	100	<2	92	69-135
o-Xylene	ug/L (ppb)	50	<1	88	60-140
Styrene	ug/L (ppb)	50	<1	91	71-133
Isopropylbenzene Bromoform	ug/L (ppb) ug/L (ppb)	50 50	<1 <1 ca	90 83	65-142 65-142
n-Propylbenzene	ug/L (ppb)	50 50	<1 <1	88	58-144
Bromobenzene	ug/L (ppb)	50	<1	89	75-124
1,3,5-Trimethylbenzene	ug/L (ppb)	50	<1	89	66-137
1,1,2,2-Tetrachloroethane	ug/L (ppb)	50	<1	98	51-154
1,2,3-Trichloropropane	ug/L (ppb)	50 50	<1	92 88	53-150
2-Chlorotoluene 4-Chlorotoluene	ug/L (ppb) ug/L (ppb)	50 50	<1 <1	88	66-127 65-130
tert-Butylbenzene	ug/L (ppb)	50	<1	89	65-137
1,2,4-Trimethylbenzene	ug/L (ppb)	50	<1	89	59-146
sec-Butylbenzene	ug/L (ppb)	50	<1	86	64-140
p-Isopropyltoluene	ug/L (ppb)	50	<1	89	65-141
1,3-Dichlorobenzene	ug/L (ppb)	50 50	<1	89 89	72-123
1,4-Dichlorobenzene 1,2-Dichlorobenzene	ug/L (ppb) ug/L (ppb)	50 50	<1 <1	89 87	69-126 69-128
1,2-Dibromo-3-chloropropane	ug/L (ppb)	50	<10	89	32-164
1,2,4-Trichlorobenzene	ug/L (ppb)	50	<1	89	66-136
Hexachlorobutadiene	ug/L (ppb)	50	<1	77	60-143
Naphthalene	ug/L (ppb)	50	<1	92	44-164
1,2,3-Trichlorobenzene	ug/L (ppb)	50	<1	90	69-148

ENVIRONMENTAL CHEMISTS

Date of Report: 03/21/19 Date Received: 03/15/19

Project: Morell's 080190, F&BI 903291

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: Laboratory Control Sample

	-		Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Dichlorodifluoromethane	ug/L (ppb)	50	105	105	25-158	0
Chloromethane Vinyl chloride	ug/L (ppb) ug/L (ppb)	50 50	93 104	95 105	45-156 50-154	2 1
Bromomethane	ug/L (ppb) ug/L (ppb)	50	105	106	55-143	1
Chloroethane	ug/L (ppb)	50	98	99	58-146	1
Trichlorofluoromethane	ug/L (ppb)	250	109	112	50-150	3
Acetone	ug/L (ppb)	250	84	84	53-131	0
1,1-Dichloroethene	ug/L (ppb)	50	98	101	67-136	3
Hexane Methylene chloride	ug/L (ppb) ug/L (ppb)	50 50	90 98	91 100	57-137 39-148	1 2
Methyl t-butyl ether (MTBE)	ug/L (ppb) ug/L (ppb)	50	105	108	64-147	3
trans-1,2-Dichloroethene	ug/L (ppb)	50	102	105	68-128	3
1,1-Dichloroethane	ug/L (ppb)	50	104	106	79-121	2
2,2-Dichloropropane	ug/L (ppb)	50	127	132	55-143	4
cis-1,2-Dichloroethene	ug/L (ppb)	50	102	105	80-123	3
Chloroform 2-Butanone (MEK)	ug/L (ppb)	50 250	103 96	107 96	80-121 57-149	4 0
1,2-Dichloroethane (EDC)	ug/L (ppb) ug/L (ppb)	50 50	106	108	73-132	2
1,1,1-Trichloroethane	ug/L (ppb)	50	110	113	83-130	3
1,1-Dichloropropene	ug/L (ppb)	50	103	105	77-129	2
Carbon tetrachloride	ug/L (ppb)	50	112	115	75-158	3
Benzene	ug/L (ppb)	50	100	102	69-134	2
Trichloroethene 1,2-Dichloropropane	ug/L (ppb)	50 50	97 103	97 106	80-120 77-123	0 3
Bromodichloromethane	ug/L (ppb) ug/L (ppb)	50 50	115	117	81-133	2
Dibromomethane	ug/L (ppb)	50	104	106	82-125	2
4-Methyl-2-pentanone	ug/L (ppb)	250	100	101	65-138	1
cis-1,3-Dichloropropene	ug/L (ppb)	50	111	113	82-132	2
Toluene	ug/L (ppb)	50	98	100	72-122	2
trans-1,3-Dichloropropene	ug/L (ppb)	50	116 102	117	80-136	1 0
1,1,2-Trichloroethane 2-Hexanone	ug/L (ppb) ug/L (ppb)	50 250	90	102 90	75-124 60-136	0
1,3-Dichloropropane	ug/L (ppb)	50	100	101	76-126	1
Tetrachloroethene	ug/L (ppb)	50	104	105	76-121	1
Dibromochloromethane	ug/L (ppb)	50	110	111	84-133	1
1,2-Dibromoethane (EDB)	ug/L (ppb)	50	101	101	82-125	0
Chlorobenzene	ug/L (ppb)	50 50	100	100	83-114	0
Ethylbenzene 1,1,1,2-Tetrachloroethane	ug/L (ppb) ug/L (ppb)	50 50	100 112	101 115	77-124 84-127	1 3
m,p-Xylene	ug/L (ppb)	100	99	100	83-125	1
o-Xylene	ug/L (ppb)	50	98	100	81-121	2
Styrene	ug/L (ppb)	50	103	104	84-119	1
Isopropylbenzene	ug/L (ppb)	50	106	107	85-117	1
Bromoform n-Propylbenzene	ug/L (ppb) ug/L (ppb)	50 50	118 98	119 101	74-136 74-126	1 3
Bromobenzene	ug/L (ppb) ug/L (ppb)	50	99	101	80-121	2
1,3,5-Trimethylbenzene	ug/L (ppb)	50	101	103	78-123	2
1,1,2,2-Tetrachloroethane	ug/L (ppb)	50	109	111	66-126	2
1,2,3-Trichloropropane	ug/L (ppb)	50	94	96	67-124	2
2-Chlorotoluene	ug/L (ppb)	50	98	100	77-127	2
4-Chlorotoluene tert-Butylbenzene	ug/L (ppb) ug/L (ppb)	50 50	99 101	101 105	78-128 80-123	2 4
1,2,4-Trimethylbenzene	ug/L (ppb)	50	100	102	79-122	2
sec-Butylbenzene	ug/L (ppb)	50	101	104	80-125	3
p-Isopropyltoluene	ug/L (ppb)	50	104	107	81-123	3
1,3-Dichlorobenzene	ug/L (ppb)	50	99	102	85-116	3
1,4-Dichlorobenzene	ug/L (ppb)	50	95	98	84-121	3
1,2-Dichlorobenzene	ug/L (ppb)	50 50	98 111	102 115	85-116 57-141	4
1,2-Dibromo-3-chloropropane 1,2,4-Trichlorobenzene	ug/L (ppb) ug/L (ppb)	50 50	97	115	57-141 72-130	4
Hexachlorobutadiene	ug/L (ppb)	50	103	105	53-141	2
Naphthalene	ug/L (ppb)	50	99	102	64-133	3
1,2,3-Trichlorobenzene	ug/L (ppb)	50	98	100	65-136	2

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- \boldsymbol{J} The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- $\mbox{\it ve}$ The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

APPENDIX D Clear Creek Contractors Estimate for Connection

Quote for Aspect - Morrell Dry Cleaners -

06/15/2020 4:22PM Page 1

QUOTE #20057

 Clearcreek Contractors, Inc.
 Contact: Mark McCullough

 3203 15TH Street
 Phone: (360) 659-2459

 Everettt, WA 98201
 Fax: (360) 659-9346

markm@clearcreekcon.com Cell: (206) 423-8120 Bond: Not Included Sales Tax: Not Included

Bid Date: Not Included 05/24/2019

Quote To: Breeyn Greer **Phone:** (612) 232-7343

Aspect Consulting Fax:

350 Madison Avenue North Email: bgreer@aspectconsulting.com

Bainbridge Island WA 98110 Quote is valid for 60 days.

Item	Description	Quantity Unit	Unit Price	Extension
10	Mob/Demob	1.000 LS	4,705.000	4,705.00
20	Site Prep	1.000 LS	860.000	860.00
30	Surface Demolition and Disposal	150.000 SF	11.000	1,650.00
40	Remedial Trenching	40.000 LF	54.000	2,160.00
50	Pipe Installation	105.000 LF	32.000	3,360.00
55	Pressure Test	1.000 LS	850.000	850.00
65	Backfill Using Clean Imported Soil	12.000 TON	135.000	1,620.00
80	Stockpile trench spoils on site	12.000 TON	67.000	804.00
90	Provide & Install 575-LA w/ LW HDSBS-1 Lid	1.000 LS	10,190.000	10,190.00
120	Asphalt Resurfacing	150.000 SF	18.000	2,700.00
	-	Total Qu	ote: \$	28,899.00

Inclusions/Exclusions:

Bid Item 10 includes setupm security fence, portable toilets, and cost to mob/demob labor and equipment.

Unit rate bid items are estimated quantities only. Project billing will be based on actual quantities encountered during field work.

Quantities encountered that are 50% more or 50% less than bid quantities are subject to changes in unit rates.

Includes one mobilization / demobilization to the site.

Site assessment and analytical testing is not included.

Physical testing or compaction monitoring is not included.

Clearcreek has not included applying and/or paying for permits.

Analytical testing for waste characterization or profiling is not included.

Concrete removal, transport, and disposal are not included.

Concrete restoration is not included.

Private utility locate is not included.

Utility or building shoring is not included.

Costs associated with repairs, damages, and delays from unidentified utilities are not included.

Clearcreek assumes no utilities are in the excavation area that would impede our work.

Dewatering and disposal of water is not included.

Asphalt striping is not included.

We are assuming direct load, haul, and dispose of soil (no stockpiling).

Manholes have not been included for HSVE connection points. Assume direct bury of connection point.

Bid Item 65 includes providing and placing sand pipe bedding and crushed surfacing for paving.

APPENDIX E Report Limitations and Guidelines for Use

REPORT LIMITATIONS AND USE GUIDELINES

Reliance Conditions for Third Parties

This report was prepared for the exclusive use of the Client. No other party may rely on this report or the product of our services without the express written consent of Aspect Consulting, LLC (Aspect). This limitation is to provide our firm with reasonable protection against liability claims by third parties with whom there would otherwise be no contractual conditions or limitations and guidelines governing their use of the report. Within the limitations of scope, schedule and budget, our services have been executed in accordance with our Agreement with the Client and recognized standards of professionals in the same locality and involving similar conditions.

Services for Specific Purposes, Persons and Projects

Aspect has performed the services in general accordance with the scope and limitations of our Agreement. This report has been prepared for the exclusive use of the Client and their authorized third parties, approved in writing by Aspect. This report is not intended for use by others, and the information contained herein is not applicable to other properties.

This report is not, and should not, be construed as a warranty or guarantee regarding the presence or absence of hazardous substances or petroleum products that may affect the subject property. The report is not intended to make any representation concerning title or ownership to the subject property. If real property records were reviewed, they were reviewed for the sole purpose of determining the subject property's historical uses. All findings, conclusions, and recommendations stated in this report are based on the data and information provided to Aspect, current use of the subject property, and observations and conditions that existed on the date and time of the report.

Aspect structures its services to meet the specific needs of our clients. Because each environmental study is unique, each environmental report is unique, prepared solely for the specific client and subject property. This report should not be applied for any purpose or project except the purpose described in the Agreement.

This Report Is Project-Specific

Aspect considered a number of unique, project-specific factors when establishing the Scope of Work for this project and report. You should not rely on this report if it was:

- Not prepared for you
- Not prepared for the specific purpose identified in the Agreement
- Not prepared for the specific real property assessed
- Completed before important changes occurred concerning the subject property, project or governmental regulatory actions

If changes are made to the project or subject property after the date of this report, Aspect should be retained to assess the impact of the changes with respect to the conclusions contained in the report.

Geoscience Interpretations

The geoscience practices (geotechnical engineering, geology, and environmental science) require interpretation of spatial information that can make them less exact than other engineering and natural science disciplines. It is important to recognize this limitation in evaluating the content of the report. If you are unclear how these "Report Limitations and Use Guidelines" apply to your project or site, you should contact Aspect.

Discipline-Specific Reports Are Not Interchangeable

The equipment, techniques and personnel used to perform an environmental study differ significantly from those used to perform a geotechnical or geologic study and vice versa. For that reason, a geotechnical engineering or geologic report does not usually address any environmental findings, conclusions or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. Similarly, environmental reports are not used to address geotechnical or geologic concerns regarding the subject property.

Environmental Regulations Are Not Static

Some hazardous substances or petroleum products may be present near the subject property in quantities or under conditions that may have led, or may lead, to contamination of the subject property, but are not included in current local, state or federal regulatory definitions of hazardous substances or petroleum products or do not otherwise present potential liability. Changes may occur in the standards for appropriate inquiry or regulatory definitions of hazardous substance and petroleum products; therefore, this report has a limited useful life.

Property Conditions Change Over Time

This report is based on conditions that existed at the time the study was performed. The findings and conclusions of this report may be affected by the passage of time (for example, Phase I ESA reports are applicable for 180 days), by events such as a change in property use or occupancy, or by natural events, such as floods, earthquakes, slope failure or groundwater fluctuations. If more than six months have passed since issuance of our report, or if any of the described events may have occurred following the issuance of the report, you should contact Aspect so that we may evaluate whether changed conditions affect the continued reliability or applicability of our conclusions and recommendations.

Phase I ESAs – Uncertainty Remains After Completion

Aspect has performed the services in general accordance with the scope and limitations of our Agreement and the current version of the "Standard Practice for Environmental Site Assessments: Phase I Environmental Site Assessment Process", ASTM E1527, and U.S. Environmental Protection Agency (EPA)'s Federal Standard 40 CFR Part 312 "Innocent Landowners, Standards for Conducting All Appropriate Inquiries".

No ESA can wholly eliminate uncertainty regarding the potential for recognized environmental conditions in connection with subject property. Performance of an ESA study is intended to reduce, but not eliminate, uncertainty regarding the potential for environmental conditions affecting the subject property. There is always a potential that areas with contamination that were not identified during this ESA exist at the subject property or in the study area. Further evaluation of such potential would require additional research, subsurface exploration, sampling and/or testing.

Historical Information Provided by Others

Aspect has relied upon information provided by others in our description of historical conditions and in our review of regulatory databases and files. The available data does not provide definitive information with regard to all past uses, operations or incidents affecting the subject property or adjacent properties. Aspect makes no warranties or guarantees regarding the accuracy or completeness of information provided or compiled by others.

Exclusion of Mold, Fungus, Radon, Lead, and HBM

Aspect's services do not include the investigation, detection, prevention or assessment of the presence of molds, fungi, spores, bacteria, and viruses, and/or any of their byproducts. Accordingly, this report does not include any interpretations, recommendations, findings, or conclusions regarding the detection, assessment, prevention or abatement of molds, fungi, spores, bacteria, and viruses, and/or any of their byproducts. Aspect's services also do not include the investigation or assessment of hazardous building materials (HBM) such as asbestos, polychlorinated biphenyls (PCBs) in light ballasts, lead based paint, asbestos-containing building materials, urea-formaldehyde insulation in on-site structures or debris or any other HBMs. Aspect's services do not include an evaluation of radon or lead in drinking water, unless specifically requested.

APPENDIX D

Pre-Expansion SVE Performance Monitoring

D. Pre-Expansion Soil Vapor Extraction System Performance Monitoring

The Morrell's Dry Cleaners Soil Vapor Extraction (SVE) system has operated continuously since October 15, 2014. Figure 7 of the main report shows the SVE system components, the dry cleaners and adjacent building details, and the permanent sub-slab vapor probe locations beneath the Morell's dry cleaners building. Morrell's Dry Cleaners occupies the northern 40 feet of the building. The southern 20 feet of the building served as Stadium Thriftway storage space until March 2015, when Tease Chocolates began operating in this lease space.

The construction, testing, and start-up of the SVE system are described in the "Construction and Design Report" (Aspect, 2014a) and "Construction Completion Report" (Aspect, 2014b). The system was monitored initially on a biweekly, and later on a monthly, basis. During operation and maintenance (O&M) site visits, system parameters were recorded, vapor concentrations were measured using a photoionization detector (PID), and sub-slab vapor pressures were measured. This appendix evaluates SVE system performance with respect to sub-slab depressurization (SSD) and contaminant mass removal.

D.1 Sub-Slab Depressurization (SSD) Performance

The 3,600-square-foot dry cleaners building has a concrete slab on top of 6 to 12 inches of gravel bedding and is underlain by about 30 feet of glacial till and about 15 feet of dry advance outwash. There is a risk of vapor intrusion into the Morell's building when Volatile organic compounds (VOCs) diffuse from the glacial till and accumulate in the gravel bedding beneath the building. SSD alleviates the risk of vapor intrusion by gently removing VOC accumulation beneath the slab before the vapors enter into the building.

Previously analyzed sub-slab vapor samples collected from beneath the alley and the building in 2012 and 2014, respectively, had results that exceeded the Model Toxics Control Act (MTCA) Method B sub-slab soil gas screening levels (Aspect, 2014a and 2014b). The concentration of PCE was 150,000 μ g/m³ beneath the middle of the alley, which is consistent with soil impacts extending beyond the building perimeter to the north.

The SVE system was operated to maintain a minimum of 0.005 inches of water column (IWC) of vapor pressure beneath the entire slab foundation of the dry cleaner building. The extent of SSD from the SVE trench in the alley (VE-H) was initially evaluated using a 1-horse-power (HP), regenerative blower (Rotron Model EN404) during the January 2014 SVE pilot test. Table D-1 shows the sub-slab pressure measurements collected during the 4-hour SVE pilot test. Note that the temporary vapor point (VP) locations used in the pilot test are different than the permanent VPs used for soil gas collection (see Figure D-1 from Aspect, 2014b). The 1-HP blower provided 0.005 IWC of depressurization beneath the entire Morrell's Dry Cleaners lease space, but not beneath the adjoining lease space; therefore, a larger blower was selected for the SVE system.

ASPECT CONSULTING

After start-up of the SVE system on October 15, 2014, the extent of SSD from VE-H was evaluated using the permanently installed 2-HP, regenerative blower (Rotron Model EN505). Sub-slab sample locations were completed with a Cox-Colvin vapor pin in the middle of Morrell's Dry Cleaners (VP-4) and the adjoining lease space (VP-7). The SVE system was operated with the SVE trench (VE-H) and the four SVE wells (VE-1 to VE-4) fully open, which provided about 5 IWC of vacuum pressure in VE-H. Table D-2 shows the sub-slab pressure measurements collected during SVE O&M site visits. The vacuum pressures ranged from 0.015 to 0.028 IWC in VP-4 in Morrell's Dry Cleaners, which exceeds the 0.005 IWC standard; however, the vacuum pressures ranged from 0.000 to 0.005 IWC in VP-7 in the Tease Chocolate tenant space, which did not meet the 0.005 IWC standard.

To improve SSD beneath the Tease Chocolate tenant space, a sub-slab suction pit (VE-SS) was constructed on November 12 and 13, 2014 and connected to the SVE system. The SVE system was initially operated with VE-SS and the SVE wells fully open to maximize SSD. This resulting vacuum pressure was 0.025 IWC in VP-7, which is 36 feet from VE-SS. This configuration limits SVE effectiveness because air is disproportionately extracted from the sub-slab and the mass removal rate is relatively low.

Subsequently, the valve to VE-SS was partially closed to decrease the intrusion of surface air while maintaining 0.005 IWC in VP-7. As shown in Table D-2, the vacuum pressure in VE-SS ranged from 0.6 to 0.8 IWC, while the vacuum pressure in VE-7 ranged from 0.007 to 0.013 IWC. VP-7 was destroyed when the lease space was redeveloped in 2015, and an alternate probe VP-5 was completed inside Morrell's Dry Cleaners and adjacent to the interior wall between the two lease spaces. The vacuum pressure ranged from 0.188 to 0.321 IWC in VP-5 when VE-SS operated.

Sub-slab vapor samples were collected from VP-4 and VP-5 to evaluate the effectiveness of the SVE system and the rebound of contamination in the absence of SVE. VE-SS was shut down for 39 days prior to sample collection on April 21, 2015, and for 35 days prior to sample collection on September 7, 2015, while vapor was alternately extracted from VE-H. When sub-slab vapors were allowed to recover for a month, the concentrations of PCE and TCE exceeded the Method B sub-slab soil gas screening levels. In contrast, VE-SS was only shut down during sample collection on December 28, 2016. The extraction of vapors from VE-SS maintained the concentrations of PCE and TCE below the Method B sub-slab soil gas screening levels when the concentrations were not allowed to rebound. Therefore, VE-SS has been operated continuously since 2016, and VE-H has been permanently shut off.

D.2 Contaminant Mass Removal

Selected SVE system operational data are summarized in Table D-3. Summa canister samples were collected from the following SVE system locations and submitted for laboratory analysis:

- "VE-1/2 Leg" of the system, which includes soil gas extracted from SVE wells VE-1 and VE-2 completed in the glacial till (screen intervals of 18 to 32 feet bgs)
- "VE-3/4 Leg" of the system, which includes soil gas extracted from SVE wells VE-3 and VE-4 completed in the advance outwash (screen intervals of 30 to 45 feet bgs)
- Sub-slab suction pit (VE-SS)

- Combined flow prior to the GAC vessels (INF)
- Combined flow between the GAC vessels (MID)
- Effluent from the GAC vessels (EFF)

All samples were analyzed for individual VOCs by Method TO-15. Samples collected on July 5, 2018, were also analyzed for aliphatic and aromatic petroleum hydrocarbons in three carbon ranges (by Method MA-APH). Sample results are summarized in Table D-4. PCE initially accounted for 98.7 percent by weight of detected VOCs. The percentage decreased to the 77 to 87 percent range as the PCE concentrations and detection limits decreased, and to 60 percent on August 30, 2016, because of detections of methylene chloride and petroleum hydrocarbons—including benzene, toluene, xylenes, pentane, and hexane—that were previously not detected or were present at lower concentrations.

Samples collected during the SVE pilot test (Aspect, 2014a) indicate that the relative concentrations of PCE biodegradation products increase with depth, as summarized in Table D-5 below:

Table D-5. Percentage of Chlorinated VOC Compounds with Depth during SVE Pilot Test

Pilot Test Well Depth (feet bgs)	VE-H 1.5 - 4	VE-1 18 - 32	VE-3 31-45
Formation	Glacial till	Glacial till	Advance outwash
PCE	100%	96%	77%
TCE	ND	2%	8%
cis-1,2-DCE	ND	2%	15%
Vinyl chloride	ND	ND	0.08%

ND - not detected

During O&M site visits, a photoionization detector (PID) was used to measure VOC concentrations and an anemometer was used to measure gas flow rates at various points in the SVE system. Based on measured concentrations and gas flow rates, contaminant mass is primarily removed from the four SVE wells. Mass removal from VE-H and VE-SS, which is limited by diffusion of PCE from the underlying glacial till, attenuated to negligible amounts within a couple of months. Thus VE-H and VE-SS were primarily used for SSD.

By September 2018, the mass removal had reduced enough to warrant only one of the two GAC vessels remain connected and the first in series was disconnected. At this time, the GAC inlet concentration was no longer collected; as GAC efficiency was not being monitored. Total mass removal calculations transitioned to be based on PID measurements at the VE-1/2, VE-3/4, and VE-SS legs, normalized with respect to flow rate (i.e., blower flowrate divided by the sum of the three leg flow rates).

PCE concentration is correlated to the VOC concentration measured by PID using the average of the [PCE]/[VOC] ratios measured on the seven occasions when GAC influent samples were collected for laboratory analysis (refer to Table D-4). The resulting correlation factor of 0.29 is used to estimate PCE mass removal based on PID readings. PCE mass removal estimates are provided in Table D-3 and plotted on report Figure E-2. The SVE

ASPECT CONSULTING

system has removed an estimated 345 pounds (lbs) of PCE from the subsurface through shutdown of the original system for expansion on September 21, 2020. An average PCE removal rate of 0.633 lbs/day is estimated for the first 3 months of SVE system operation (mid-October through mid-December 2015), versus 0.133 lbs/day estimated for the pre-expansion annual average for 2020.

Mass removal of petroleum hydrocarbons by the SVE system is comparable to mass removal of chlorinated VOCs. This is evident from analysis of the combined flow (INF) sample collected on July 5, 2018, in which the sum of PCE, TCE, and DCE is about 11,000 μ g/m³ and the sum of aliphatic hydrocarbons in the C5 to C12 range is 12,000 μ g/m³. Chlorinated VOCs are primarily coming from the mid-depth soils beneath the dry cleaner building (via angled wells VE-1 and VE-2 screened at 18 to 32 feet bgs), whereas petroleum hydrocarbons are primarily coming from deeper soils (via angled wells VE-3 and VE-4 screened at 30 to 45 feet bgs). The source of the deep petroleum hydrocarbon contamination is not known. One possible source is historical dry-cleaning operations, which may have used petroleum hydrocarbons (e.g., Stoddard solvent) before chlorinated solvents came into use.

The original SVE system configuration operated continuously through the evening of September 21, 2020, when it was shut down for system expansion construction. System expansion construction details and restart operational data can be found in Appendix E.

References

- Aspect Consulting, LLC (Aspect), 2014a, Interim Cleanup Action Construction and Design Report, Morrell's Dry Cleaners, Prepared for David Shaw, Successor to Walker Chevrolet, May 16, 2014.
- Aspect Consulting, LLC (Aspect), 2014b, Interim Cleanup Action Construction Completion Report, Morrell's Dry Cleaners, Prepared for David Shaw, Successor to Walker Chevrolet, December 23, 2014.
- Aspect Consulting, LLC (Aspect), 2018, Supplemental Focused Feasibility Study, Morrell's Dry Cleaners Site, Prepared for David Shaw, Successor to Walker Chevrolet, August 10, 2018, Draft.
- Aspect Consulting, LLC (Aspect), 2020a, Summary of 2019 Interim Action and SVE System Expansion Morell's Dry Cleaner Site, Prepared for D.E. Wickham, Successor to Walker Chevrolet, June 17, 2020.

Attachments: Table D-1 – Sub-Slab Depressurization Measurements during Pilot Test

Table D-2 – Sub-Slab Depressurization Measurements during SVE Operations

Table D-3 – SVE System Operational Data

Table D-4 – SVE System Gas Sampling Results

Table D-1. Sub-Slab Depressurization Measurements during Pilot Test

Project No. 080190, Morrell's Dry Cleaners Site (VCP No. SW1039), Tacoma, Washington

	VP-1	VP-3	VP-4	VP-5	VP-7	VP-6	VP-2	VP-8
Elapsed Time (minutes)	(IWC)	(IWC)	(IWC)	(IWC)	(IWC)	(IWC)	(IWC)	(IWC)
Distance from SVE Trench (ft)	1.75	9	22.5	35	57.4	57.4	12.5	57.9
Pilot Test (0 min)	0	0	0	0	0	0	0.002	0
Pilot Test (15 min)	-0.058	-0.024	-0.014	-0.01	-0.001	-0.003	-0.003	-0.003
Pilot Test (45 min)	-0.058	-0.025	-0.015	-0.011	0	0	-0.004	-0.001
Pilot Test (75 min)	-0.056	-0.024	-0.014	-0.01	0	0	-0.002	0.001
Pilot Test (105 min)	-0.05	-0.02	-0.011	-0.008	0	-0.002	-0.001	-0.003
Pilot Test (135 min)	-0.054	-0.023	-0.014	-0.01	0	0.002	-0.002	0.001
Pilot Test (165 min)	-0.056	-0.024	-0.014	-0.01	0	-0.001	-0.004	-0.001
Pilot Test (195 min)	-0.055	-0.024	-0.014	-0.01	0	-0.001	-0.003	-0.001
Pilot Test (225 min)	-0.053	-0.024	-0.013	-0.01	0	0	-0.004	-0.003

Notes:

Pilot test performed on January 21, 2014 using a 1-horsepower Rotron blower for the SVE Trench (VE-H)

Recommended minimum vacuum for sub-slab depressurization = 0.005 IWC

IWC = inches of water column

SVE = soil vapor extraction

\\seafps\Projects\Walker Chevrolet 080190\Deliverables\Data Gaps Investigation Work Plan_2021\App D SVE Pre Expansion\App D tbls and figs 2021

Table D-2. Sub-Slab Depressurization Measurements during SVE Operations

Project No. 080190, Morrell's Dry Cleaners Site (VCP No. SW1039), Tacoma, Washington

Project No. 08019	VE-H	VE-SS	VP-4	VP-5	VP-7	na. washindton
Date	(IWC)	(IWC)	(IWC)	(IWC)	(IWC)	
		, ,	,	, ,	Stadium	
					Thriftway	
		Morrell's	Morrell's	Morrell's	Storage/	
		Dry	Dry	Dry	Teese	
Location	Alley	Cleaners	Cleaners	Cleaners	Chocolates	
Distance from					F7.4	
VE-H (ft)	0		22.5	38	57.4	
Distance from			40	00	0.0	
VE-SS (ft)		0	12	28	36	Comments
10/15/2014	-4	NA	-0.03		-0.005	VE-H, VE-1/2, and VE-3/4 were fully open
10/16/2014	-4	NA	-0.024		0	VE-H, VE-1/2, and VE-3/4 were fully open
10/22/2014	-5	NA	-0.028		-0.001	VE-H, VE-1/2, and VE-3/4 were fully open
10/29/2014	-5	NA	-0.022		0	VE-H, VE-1/2, and VE-3/4 were fully open
11/6/2014	-5	NA	-0.015		0	VE-H, VE-1/2, and VE-3/4 were fully open
11/13/2014	-5	NA	-0.015		-0.001	VE-H, VE-1/2, and VE-3/4 were fully open
11/13/2014	-5	NA	-0.441		-0.021	VE-SS, VE-1/2, and VE-3/4 fully open, VE-H turned off
11/20/2014	-	-1.5	-0.5		-0.025	VE-SS, VE-1/2, and VE-3/4 fully open, VE-H turned off
12/4/2014	-	-0.7	-0.247		-0.009	VE-SS barely open, VE-1/2 and VE-3/4 fully open, VE-H turned off
12/18/2014	-	-0.6	-0.182		-0.007	VE-SS barely open, VE-1/2 and VE-3/4 fully open, VE-H turned off
1/2/2015	-	-0.6	-0.183		-0.007	VE-SS barely open, VE-1/2 and VE-3/4 fully open, VE-H turned off
1/15/2015	-	-0.6	-0.211		-0.008	VE-SS barely open, VE-1/2 and VE-3/4 fully open, VE-H turned off
1/28/2015	-	-1.7	-		-	VE-SS barely open, VE-1/2 and VE-3/4 fully open, VE-H turned off
2/11/2015	-	-0.7	-0.233		-	VE-SS barely open, VE-1/2 and VE-3/4 fully open, VE-H turned off
2/26/2015	-	-0.7	-0.237		-0.013	VE-SS barely open, VE-1/2 and VE-3/4 fully open, VE-H turned off
3/13/2015	-	-0.7	-0.25			VE-SS barely open, VE-1/2 and VE-3/4 fully open, VE-H turned off
4/21/2015	-5	-	-0.015	-0.012		VE-H barely open, VE-1/2, and VE-3/4 fully open, VE-SS turned off
5/27/2015	-	-0.8	-0.31	-0.257		VE-SS barely open, VE-1/2 and VE-3/4 fully open, VE-H turned off
6/30/2015	-	-0.8	-0.383	-0.321		VE-SS barely open, VE-1/2 and VE-3/4 fully open, VE-H turned off
7/29/2015	-3	-	-0.016	-0.013		VE-H barely open, VE-1/2, and VE-3/4 fully open, VE-SS turned off
8/27/2015	-	-0.8	-0.339	-0.286		VE-SS barely open, VE-1/2 and VE-3/4 fully open, VE-H turned off
9/28/2015	-3	-	-0.001	-0.008		VE-H barely open, VE-1/2, and VE-3/4 fully open, VE-SS turned off
10/29/2015	-	-0.6	-0.227	-0.188		VE-SS barely open, VE-1/2 and VE-3/4 fully open, VE-H turned off
12/1/2015	-2	-0.5	-0.191	-0.155		VE-SS and VE-H barely open, VE-1/2 and VE-3/4 fully open
12/28/2015	-	-0.6	-0.202	-0.164		VE-SS barely open, VE-1/2 and VE-3/4 fully open, VE-H turned off
1/29/2016	-	-0.6	-0.279	-0.236		VE-SS barely open, VE-1/2 and VE-3/4 fully open, VE-H turned off
2/26/2016	-	-0.6	-0.255	-0.214		VE-SS barely open, VE-1/2 and VE-3/4 fully open, VE-H turned off
3/29/2016	-	-0.6	-0.203	-0.197		VE-SS barely open, VE-1/2 and VE-3/4 fully open, VE-H turned off
4/26/2016	-	-0.6	0.000	0.004		VE-SS barely open, VE-1/2 and VE-3/4 fully open, VE-H turned off
6/3/2016	-	-0.7	-0.338	-0.281		VE-SS barely open, VE-1/2 and VE-3/4 fully open, VE-H turned off
6/29/2016	-3	- 0.6	-0.015	-0.011		VE-H barely open, VE-1/2 and VE-3/4 fully open, VE-SS turned off
8/3/2016 8/30/2016	- 2	-0.6	-0.324	-0.272		VE-SS barely open, VE-1/2 and VE-3/4 fully open, VE-H turned off
	-3	_	0.011	0.007		VE-H barely open, VE-1/2 and VE-3/4 fully open, VE-SS turned off
10/5/2016	-3	- -0.9	-0.011 -0.357	-0.007		VE-H barely open, VE-1/2 and VE-3/4 fully open, VE-SS turned off VE-SS barely open, VE-1/2 and VE-3/4 fully open, VE-H turned off
11/2/2016 12/6/2016	-	-0.9 -0.7	-0.357 -0.297	-0.298 -0.251		VE-SS barely open, VE-1/2 and VE-3/4 fully open, VE-H turned off
12/0/2016	-	-0.7 -0.6	-0.297 -0.298	-0.231 -0.238		VE-SS barely open, VE-1/2 and VE-3/4 fully open, VE-H turned off
2/3/2017	-	-0.6 -0.9	-0.290	-0.230		VE-SS barely open, VE-1/2 and VE-3/4 fully open, VE-H turned off
3/2/2017	-	-0.9 -0.8		-0.446		VE-SS barely open, VE-1/2 and VE-3/4 fully open, VE-H turned off
3/2/2017 4/4/2017	-	-0.8 -0.8		-0.446 -0.446		VE-SS barely open, VE-1/2 and VE-3/4 fully open, VE-H turned off
4/4/2017 5/4/2017	-	-0.8 -0.9		-0.446 -0.463		VE-SS barely open, VE-1/2 and VE-3/4 fully open, VE-H turned off
6/2/2017	- -3	-0.9		-0.463		VE-H barely open, VE-1/2 and VE-3/4 fully open, VE-H turned off
Notes:	-0	-		-0.014		TVE-11 barroly open, VE-1/2 and VE-0/4 fully open, VE-00 tuffed on

Notes:

VE-SS was installed on 11/13/2014 to reduce contamination beneath the dry cleaners and to provide sub-slab depressurization beneath the entire building. The 2-hp regenerative blower does not have flow capacity to simultaneously operate VE-H and VE-SS effectively.

VP-7 was sampled in the former Stadium Thriftway storage space. After Teese Chocolates began occupying the tenant space, VP-5 was installed near the adjoining wall in Morrell's Dry Cleaners in April 21, 2015.

IWC = inches of water column

SVE = soil vapor extraction

VE-1/2 - Manifolded angled SVE wells completed in the glacial till.

VE-3/4 - Manifolded angled SVE wells completed in the advance outwash.

VE-H - SVE trench

VE-SS - Sub-slab suction pit within the dry cleaners building. VE-SS is connected to the SVE system.

Table D-3. SVE System Operational DataProject No. 080190, Morrell's Dry Cleaners Site (VCP No. SW1039)
608 North First Street, Tacoma, Washington

						,							Est. P	CE Mass Ren		VE-1/	2 Leg	VE-3/4	4 Leg
Date	SVE Blower Clock (hours)	Elapsed Run Time (days)	Cumulative Percent Operating Time	Effluent Pitot Tube Differential Pressure (IWC)	Air Density (kg/m³)	Blower Flow Rate ¹ (SCFM)	Pressure at Blower (IWC)	Pressure at Wellhead/ Sample Point (IWC)	Inlet/ Outlet Temp (F)	Inlet/ Outlet Temp (K)	[VOC] (ppmV, PID) (Measured)	[VOC] (ppmV, PID) (Standard)	PCE Mass Removal Rate ³ (lbs/day)	Mass of PCE Removed ³ (lbs)	Mass of PCE Removed ³ (lbs)	Flow Rate ² (SCFM)	[VOC] (ppmV, PID)	Flow Rate ² (SCFM)	[VOC] (ppmV, PID)
10/15/14	5	0.0																	
10/15/14	7	0.1	100%	2.1	1.18	94	-18.5	16	103	313	267	279	4.518	0.5	0.5	20.1	280	22.4	191
10/16/14	26	0.9	100%	2.1	1.19	94	-19	16	98	310	139	144	2.352	1.9	2.3	19.5	205	19.6	221
10/22/14	173	7.0	100%	2.1	1.18	94	-19	15	99	310	34	35	0.575	3.5	5.9	19.5	193	21.0	98
10/29/14	345	14.2	100%	2.1	1.18	94	-19	15	98	310	32	33	0.541	3.9	9.7	20.3	400	21.1	130
11/6/14	534	22.1	100%	2.1	1.18	94	-20	15	98	310	40	41	0.677	5.3	15.1	24.8	400	21.8	394
11/13/14	699	28.9	99.8%	2.1	1.19	94	-20	15	94	308	23	24	0.389	2.7	17.7	19.7	460	22.0	168
11/13/14	700	29.0	99.9%	2.1	1.19	94	-20	15	94	308	23	24	0.389	0.0	17.8	3.0	363	3.0	168
11/20/14	868	36.0	99.9%	2.1	1.19	94	-17	16	98	310	24	25	0.406	2.8	20.6	2.3	265	4.5	167
12/4/14	1,204	50.0	100.0%	1.7	1.16	94	-31	13	104	313	34	36	0.575	8.1	28.7	68.3	98	73.5	71
12/18/14	1,539	63.9	99.9%	1.6	1.16	94	-37	11	106	314	48	51	0.812	11.3	40.0	75.3	75 47	80.5	92
1/2/15	1,899	78.9	99.9%	1.6	1.16	94	-38	11	104	313	22	23	0.372	5.6	45.6	74.9	47	80.1	84
1/15/15	2,209	91.9	99.8%	1.6	1.16	94	-38	11	106	314	18	19	0.305	3.9	49.5	94.5	360	83.4	134
1/28/15	2,521	104.9	99.9%	1.6	1.16	94	-38	11	104	313	31	32	0.525	6.8	56.3	86.7	302	84.5	138
2/11/15	2,858	118.9	99.9%	1.6	1.17	94	-35	13	103	313	8	8	0.135	1.9	58.2	83.2	65	89.9	33
2/26/15	3,214	133.7	99.8%	1.5	1.17	94	-35	14	104	313	11	12	0.186	2.8	61.0	60.8	101	43.0	37
3/13/15	3,576	148.8	99.9%	1.5	1.15	94	-35 40	14	112	318	13 1	14	0.220	3.3	64.3	78.2	136	81.1	41
4/21/15	4,401	183.2	97.4% 94.0%	1.9	1.17	94 94	-19	16	106	314 315	'	30	0.017 0.474	0.6 13.0	64.9 77.9	21.5	91 946	23.0	32
5/27/15	5,060	210.6		1.6	1.16		-31	15	108		28					75.9 76.0		88.4	63
6/30/15	5,827	242.6 271.3	94.0%	1.6	1.14	94	-32	15	118	321	23	25	0.389	12.4	90.3	76.0 37.2	173	65.1	20
7/29/15	6,516	271.3	94.5% 94.3%	1.7	1.15 1.14	94 94	-31	15	113 118	318 321	19	20	0.321	9.2	99.6 105.0	75.3	162	34.3	20
8/27/15	7,156		94.3% 94.8%	1.6	1	94 94	-33	14		314	12	13	0.203	5.4	111.5		312	92.6 58.4	19
9/28/15	7,925 8,669	330.0	94.8% 95.3%	1.6	1.16	94 94	-34	14	106	314	12	13	0.203 0.203	6.5 6.3	117.8	78.3 76.0	36 70		38 14
10/29/15 12/1/15	9,339	361.0 388.9	95.3%	1.3 1.5	1.16 1.20	94 94	-39 -22	12 16	106	306	12 3	13 3	0.203	1.4	117.0	41.8	78 57	91.5 42.6	12
12/1/15	9,339	416.0	94.4%	1.4	1.18	94 94	-22 -37	11	91 92	306	7	3 7	0.031	3.2	122.4	74.2	11	58.3	12
1/29/16	10,757	448.0	95.1%	1.4	1.19	88	-32	12	93	307	9	9	0.118	4.6	127.0	109.7	38	105.9	13
2/26/16	11,425	475.9	95.1%	1.4	1.18	89	-36	12	94	308	15	15	0.143	6.7	133.7	109.7	110	111.7	27
3/29/16	12,197	508.0	95.7%	1.4	1.16	89	-35	12	107	315	12	13	0.192	6.2	139.8	45.7	115	47.2	18
4/26/16	12,137	535.1	95.7%	1.4	1.15	89	-36	12	107	316	16	17	0.256	6.9	146.8	64.6	154	39.7	27
6/3/16	13,753	572.9	96.0%	1.5	1.13	93	-36	12	118	321	9	10	0.151	5.7	152.5	109.9	51	118.6	23
6/29/16	14,360	598.1	96.0%	1.5	1.14	93	-35	11	114	319	8	9	0.134	3.4	155.9	95.4	167	120.2	21
8/3/16	15,079	628.1	95.5%	1.5	1.13	93	-37	11	118	321	7	8	0.117	3.5	159.4	73.0	41	88.9	9
8/30/16	15,614	650.4	94.9%	1.5	1.13	93	-36	11	120	322	7	8	0.117	2.6	162.0	43.9	28	45.4	9
10/5/16	16,446	685.1	95.0%	1.5	1.15	92	-37	11	108	315	6	6	0.099	3.4	165.4	85.3	14	101.5	9
11/2/16	17,114	712.9	95.2%	1.5	1.16	92	-37	11	104	313	11	12	0.182	5.1	170.5	47.4	3	44.5	20
12/6/16	17,936	747.1	95.4%	1.5	1.19	91	-36	11	90	305	5	5	0.082	2.8	173.3	55.5	16	43.3	9
12/28/16	18,459	768.9	95.5%	1.5	1.18	91	-38	11	94	308	5	5	0.082	1.8	175.1	58.8	31	48.3	10
2/3/17	19,345	805.9	95.7%	1.5	1.17	91	-36	8	93	307	5	5	0.082	3.0	178.1	56.0	28	59.7	9
3/2/17	19,995	832.9	95.9%	1.5	1.16	92	-36	7	99	310	6	6	0.099	2.7	180.8	66.5	39	70.3	11
4/4/17	20,781	865.7	96.0%	1.5	1.14	92	-35	7	106	314	5	5	0.083	2.7	183.5	57.6	37	51.0	10
5/5/17	21,530	896.9	96.1%	1.5	1.14	92	-36	7	107	315	4	4	0.066	2.1	185.6	25.8	5	29.5	8
6/2/17	22,142	922.4	96.0%	1.5	1.11	93	-36	6	120	322	6	6	0.100	2.6	188.1	44.0	9	45.4	14
6/29/17	22,747	947.6	95.9%	1.5	1.14	93	-37	6	106	314	7	7	0.117	3.0	191.1	31.0	44	34.0	11
8/1/17	23,507	979.3	95.9%	1.5	1.13	93	-36	6	114	319	13	14	0.218	6.9	198.0	35.0	27	34.0	18
9/5/17	24,171	1,006.9	95.4%	1.6	1.12	96	-31	8	119	321	10	11	0.173	4.8	202.8	40.0	8	37.0	13
9/29/17	24,713	1,029.5	95.3%	1.3	1.13	87	-41	4	108	315	37	39	0.579	13.1	215.8	29.0	12	32.0	30
10/26/17	25,362	1,056.6	95.4%	1.4	1.14	89	-37	6	108	315	18	19	0.288	7.8	223.6	27.0	9	30.0	23
12/4/17	26,297	1,095.5	95.6%	1.7	1.17	97	-39	4	90	305	4	4	0.070	2.7	226.4	42.0	5	41.0	12
1/5/18	27,063	1,127.4	95.7%	1.7	1.16	97	-35	4	96	309	4	4	0.070	2.2	228.6	24.0	8	26.0	7
2/1/18	27,365	1,140.0	94.6%	1.8	1.15	100	-35	4	99	310	5	5	0.090	1.1	229.7	30.0	51	30.0	11

Table D-3

Table D-3. SVE System Operational Data

Project No. 080190, Morrell's Dry Cleaners Site (VCP No. SW1039) 608 North First Street, Tacoma, Washington

													Est. P	CE Mass Rer		VE-1/	2 Leg	VE-3/4	4 Leg
Date	SVE Blower Clock (hours)	Elapsed Run Time (days)	Cumulative Percent Operating Time	Effluent Pitot Tube Differential Pressure (IWC)	Air Density (kg/m³)	Blower Flow Rate ¹ (SCFM)	Pressure at Blower (IWC)	Pressure at Wellhead/ Sample Point (IWC)	Inlet/ Outlet Temp (F)	Inlet/ Outlet Temp (K)	[VOC] (ppmV, PID) (Measured)	[VOC] (ppmV, PID) (Standard)	PCE Mass Removal Rate ³ (lbs/day)	Mass of PCE Removed ³ (lbs)	Mass of PCE Removed ³ (lbs)	Flow Rate ² (SCFM)	[VOC] (ppmV, PID)	Flow Rate ² (SCFM)	[VOC] (ppmV, PID)
3/5/18	28,031	1,167.8	94.4%	1.7	1.16	97	-37	3.5	95	308	6	6	0.105	2.9	232.6	27.0	25	51.0	19
4/2/18	28,806	1,200.1	94.9%	1.7	1.15	97	-36	4	100	311	6	6	0.105	3.4	236.0	54.0	60	88.0	22
5/1/18	29,502	1,229.1	95.0%	1.8	1.13	101	-34	4	108	315	10	11	0.182	5.3	241.3	29.0	102	25.0	32
6/8/18	30,372	1,265.3	95.0%	1.7	1.13	98	-33	4	110	316	5	5	0.088	3.2	244.5	83.0	16	74.0	14
7/5/18	30,928	1,288.5	94.8%	1.6	1.12	95	-33	4	115	319	3.5	3.7	0.060	1.4	245.9	66.0	11	77.0	9
07/30/18	31,069	1,294	93.5%	1.9	1.11	104	-30	4	118	321	2	2	0.037	0.2	246.1	45	4	35.0	3
9/5/18	31,486	1,312	92.3%	1.8	1.11	101	-32	4	120	322	10	11	0.182	3.2	249.3	40	67	38.0	27
10/3/18	31,683	1,320	91.1%	2	N/A	105	-34	NA	98	310	N/A	N/A	0.084	0.7	249.9	30	7	29.0	4
11/5/18	31,771	1,324	89.3%	2	N/A	105	-34	N/A	96	309	N/A	N/A	0.094	0.3	250.3	29	11	29.0	4
12/18/18	32,270	1,344	88.2%	1.8	N/A	100	-38	N/A	98	310	N/A	N/A	0.166	3.4	253.7	27	22	29.0	11
1/15/19	32,940	1,372	88.4%	1.9	N/A	103	-38	N/A	90	305	N/A	N/A	0.171	4.8	258.5	39	15	26.0	11
3/8/19	34,177	1,424	88.7%	2	N/A	104	-36	N/A	80	300	N/A	N/A	0.104	5.4	263.9	36	13	33.0	4
4/3/19	34,798	1,450	88.9%	2	N/A	106	-36	N/A	102	312	N/A	N/A	0.217	5.6	269.5	27	16	23.0	24
5/1/19	35,472	1,478	89.1%	2	N/A	106	-36	N/A	108	315	N/A	N/A	0.143	4.0	273.5	26	11	38.0	12
6/12/19	36,479	1,520	89.3%	2	N/A	108	-35	N/A	120	322	N/A	N/A	0.178	7.5	281.0	34	10	48.0	14
7/16/19	37,297	1,554	89.6%	2	N/A	107	-35	N/A	118	321	N/A	N/A	0.136	4.6	285.6	45	7	42.0	11
8/14/19	37,991	1,583	89.7%	2.2	N/A	112	-32	N/A	112	318	N/A	N/A	0.049	1.4	287.0	37	4	52.0	3
9/10/19	38,637	1,610	89.9%	2.2	N/A	112	-35	N/A	108	315	N/A	N/A	0.145	3.9	290.9	53	7	82.0	10
10/11/19	39,384	1,641	90.1%	2.2	N/A	110	-36	N/A	100	311	N/A	N/A	0.145	4.5	295.4	47	7	83.0	10
11/5/19	39,984	1,666	90.2%	2	N/A	105	-37	N/A	96	309	N/A	N/A	0.496	12.4	307.8	53	30	46.0	41
12/3/19	40,657	1,694	90.3%	2.4	N/A	113	-25	N/A	90	305	N/A	N/A	0.002	0.1	307.9	9	0	12.0	0
1/2/20	41,374	1,724	90.5%	2.4	N/A	113	-25	N/A	90	305	N/A	N/A	0.044	1.3	309.2	13	2	22.0	4
2/5/20	42,192	1,758	90.7%	2.4	N/A	113	-27	N/A	87	304	N/A	N/A	0.057	1.9	311.2	20	2	7.0	4
3/5/20	42,885	1,787	90.8%	2.4	N/A	114	-30	N/A	90	305	N/A	N/A	0.245	7.1	318.2	24	22	19.0	21
4/7/20	43,673	1,820	90.9%	1.8	N/A	101	-45	N/A	103	313	N/A	N/A	0.142	4.7	322.9	63	12	58.0	5
5/12/20	44,514	1,855	91.1%	2	N/A	106	-37	N/A	106	314	N/A	N/A	0.201	7.0	329.9	34	10	38.0	17
6/2/20	45,017	1,876	91.2%	2.1	N/A	109	-36	N/A	112	318	N/A	N/A	0.216	4.5	334.5	41	15	42.0	16
7/13/20	46,002	1,917	91.4%	2.1	N/A	109	-36	N/A	116	320	N/A	N/A	0.048	2.0	336.4	36	1	34.0	5
8/10/20	46,675	1,945	91.5%	2.1	N/A	110	-35	N/A	120	322	N/A	N/A	0.152	4.3	340.7	35	7	42.0	12
9/2/20	47,222	1,967	91.5%	2.1	N/A	110	-35	N/A	117	320	N/A	N/A	0.092	2.1	342.8	25	4	42.0	8
9/21/20	47,909	1,996	92.1%	Sys	stem shutdo	wn for Expansio	n Constructio	n					0.092	2.6	345.4				1

IWC = inches of water column

PCE = tetrachloroethene

PID = photoionization detector ppmV = parts per million by volume SCFM = standard cubic feet per minute SVE = soil vapor extraction VOC = volatile organic compound

Notes:

¹⁾ Rotron EN505 blower curve indicates that the blower should extract 97.5 SCFM at 37.5 IWC and 120 SCFM at 20 IWC. Flow rate for the blower is measured using a pitot tube, and the flow measurements reconcile with the two Rotron EN505 blower curve match points, indicating the accuracy of the blower flow measurements.

²⁾ Flow rates are measured with an anemometer for the VE-1/2 and VE-3/4 legs of the SVE system. These are highly variable and combined measurements often greatly exceed blower capacity, indicating limitations for the anemometer flow measurements.

³⁾ PCE concentration was correlated to the VOC concentration measured by PID using the average of the [PCE]/[VOC] ratios measured on the seven occasions on which SVE influent samples were analyze by EPA Method TO-15 (refer to Table C-4). The resulting correlation factor of 0.290 is used to estimate PCE mass removal based on PID readings.

Table D-4. SVE System Gas Sampling Results

Project No. 080190, Morrell's Dry Cleaners Site (VCP No. SW1040), Tacoma, Washington

Location	VE-1/2	VE-3/4	VE-SS				GAC Influent				Betwee	en GAC			GAC E	Effluent		
Date		7/5/18	7/5/18	10/15/14	3/13/15	6/30/15	2/26/16	8/30/16	10/26/17	7/5/18	2/26/16	8/30/16	10/15/14	3/13/15	6/30/15	2/26/16	8/30/16	10/26/17
24.0	Well Screen	Well Screen	170710	. 6, . 6,	0, 10, 10	0,00,10	2,20,.0	0,00,10	10/20/11	1707.0		0,00,10		07.07.0	0,00,10	2/20/10	0,00,10	
	Intervals 18 to	Intervals 30 to									Betv	veen						
Chemical	32 feet bgs	45 feet bgs	Sub-slab			Combined	Flow Prior to	Treatment			Serial Carb				Emissions to	Atmosphere		
Chlorinated Volatile Organic Co						Combined	1 1011 1 1101 10	riodinoni	I	I	Goriai Gara	1000000				Г		
Tetrachloroethene (PCE)	96,000	26.000	1,200 ve	800,000	31,000	38,000	7,500	21,000	21,000 ve	9,900 ve	11,000	2,500	< 8.2 U	< 8.1 U	< 8.0 U	< 6.8 U	< 3.4 U	25
Trichloroethene (TCE)	450	1,300	29	2.000	2,400	2,100	580	1.100	1,300	440	1,200	1,500	< 6.5 U	< 6.4 U	< 6.4 U	< 5.4 U	< 2.7 U	1,900
cis-1,2-Dichloroethene (cDCE)	5,300	1,300	<1.3 U	1,500	2,200	1,400	550	790	740	390	540	1,500	< 4.8 U	< 4.7 U	1,100	1,500	12	1,300
trans-1,2-Dichloroethene (tDCE)	<200 U	<99 U	<1.3 U	< 1300 U	< 73 U	< 66 U	< 20 U	< 40 U	< 9.9 U	<9.9 U	7.1	< 40 U	< 4.8 U	< 4.7 U	16	24	< 2 U	950
1,1-Dichloroethene	<200 U	<99 U	4.6	< 1300 U	< 73 U	< 66 U	< 20 U	< 40 U	< 9.9 U	<9.9 U	< 4 U	< 40 U	< 4.8 U	< 4.7 U	< 4.7 U	< 4 U	< 2 U	5.6
1,1,1-Trichloroethane	<270 U	<140 U	4.8	< 1800 U	< 100 U	< 91 U	< 27 U	< 55 U	\ 9.9 U	<14 U	< 5.5 U	< 55 U	< 6.6 U	< 6.5 U	< 6.5 U	< 5.5 U	< 2.7 U	3.0
Vinyl chloride	440	<64 U	<0.84 U	< 820 U	< 47 U	< 43 U	< 13 U	< 26 U	< 6.4 U	<6.4 U	< 2.6 U	< 26 U	< 3.1 U	< 3.0 U	< 3.0 U	< 2.6 U	< 1.3 U	< 2.6 U
Carbon tetrachloride	<310 U	<310 U	6.5	< 2000 U	160	< 100 U	< 31 U	< 63 U	V 0.4 0	22	70	< 63 U	< 7.6 U	< 7.5 U	< 7.4 U	< 6.3 U	< 3.1 U	~ 2.0 0
Chloroform	<24 U	46	1.5	< 1600 U	< 90 U	< 82 U	< 24 U	< 49 U		15	22	< 49 U	< 5.9 U	< 5.8 U	< 7.4 U	45	< 2.4 U	
Methylene chloride	<43,000 U	<22,000 U	<290 U	< 1100 U	< 640 U	< 580 U	< 870 UJ	10,000		<2,200 U	430 J	< 8700 U	< 42 U	< 41 U	48	250 J	850	
1,4-Dichlorobenzene	<43,000 U	<22,000 U	<290 U	< 1900 U	< 110 U	< 100 U	< 30 U	< 60 U	-	<2,200 U	430 J	< 60 U	< 7.3 U	< 7.2 U	< 7.1 U	< 6 U	< 3 U	
Petroleum Hydrocarbons	\120 U	\00 U	1.0	> 1900 U	\ 110 U	<u> </u>	\ 30 U	< 00 U		\0 U	\ U U	\ 00 U	× 1.3 U	\ 1.2 U	<u> </u>	\ 00	\ 3 U	
	<23,000 U	40,000	<150 U							10,000					+			
APH EC5-8 aliphatics ⁽²⁾	<17,000 U	<8,700 U	1,200							2,000					+			
APH EC9-12 aliphatics ⁽²⁾		<6,200 U	<82 U												-			
APH EC9-10 aromatics ⁽²⁾	<12,000 U			< 1000 II	< FO 11	- E2 II	- 16 II	460	420	<620 U	24	200	< 2.011	< 2.011	< 2.011	~ 2 D L L	-16H	420
Benzene	<160 U <190 U	190	<1.1 U	< 1000 U < 1200 U	< 59 U	< 53 U	< 16 U	160	130	58	34	280	< 3.9 U	< 3.8 U	< 3.8 U < 4.5 U	< 3.2 U	< 1.6 U 2.7	130
Toluene		280	4.5		< 69 U	< 63 U	< 19 U	280	200	93	< 3.8 U	< 38 U	< 4.6 U	< 4.5 U		< 3.8 U		28
Ethylbenzene	<220 U	<110 U	<1.4 U	< 1400 U	< 80 U	< 72 U	< 22 U	< 43 U	13	<11 U	< 4.3 U	< 43 U	< 5.3 U	< 5.2 U	< 5.1 U	< 4.3 U	< 2.2 U	< 4.3 U
Total Xylenes	<650 U	650	<4.3 U	< 1400 U	< 80 U	< 72 U	< 43 U	211	335	210	< 8.7 U	< 87 U	< 5.3 U	< 5.2 U	< 5.1 U	< 8.7 U	< 4.3 U	47
Naphthalene	<52 U	<26 U	3.0 fb	. 0500 11	. 440.11	. 400 11	< 26 U	< 52 U	< 13 U	3.5 fb	< 5.2 U	< 52 U	. 0 0 11	.0.4.11	.0411	< 5.2 U	< 2.6 U	< 5.2 U
1,2-Dibromoethane (EDB)	<38 U	<19 U	<0.56 U	< 2500 U	< 140 U	< 130 U	< 38 U	< 77 U	40.11	<1.9 U	< 7.7 U	< 77 U	< 9.3 U	< 9.1 U	< 9.1 U	< 7.7 U	< 3.8 U	
1,2-Dichloroethane (EDC)	<20 U	<10 U	<0.24 U	< 1300 U	< 74 U	< 68 U	< 20 U	< 40 U	< 10 U	<1 U	4.5	< 40 U	< 4.9 U	< 4.8 U	< 4.8 U	< 4 U	< 2 U	< 4 U
Methyl tert-butyl ether (MTBE)	<900 U	<450 U	<5.9 U	< 1200 U	< 66 U	< 60 U	< 18 U	< 36 U		<45 U	< 3.6 U	< 36 U	< 4.4 U	< 4.3 U	< 4.3 U	< 3.6 U	< 1.8 U	
Propene	<340 U	<170 U	<2.3 U				< 34 U	< 69 U		<17 U	< 6.9 U	< 69 U				< 6.9 U	4.1	
Isobutene	<460 U	<230 U	<3 U				< 46 U	< 92 U		<23 U	< 9.2 U	< 92 U				< 9.2 U	9.5	
Pentane	<1,500 U	<740 U	<9.7 U				170	320		170	430	420				< 30 U	< 15 U	
Cyclopentane	<140 U	<72 U	<0.95 U				< 14 U	48		<7.2 U	< 2.9 U	81			L	160	4	
n-Hexane	<1,800 U	<880 U	<12 U	< 1100 U	640	260	230	550		150	760	930	< 4.3 U	< 4.2 U	< 4.2 U	< 35 U	< 18 U	
Cyclohexane	<3,400 U	<1,700 U	<23 U	< 1100 U	370	160	< 340 U	< 690 U		<170 U	380	< 690 U	< 4.2 U	< 4.1 U	< 4.1 U	< 69 U	< 34 U	
Heptane				< 1300 U	630	150							< 5.0 U	< 4.9 U	< 4.8 U			
2,2,4-Trimethylpentane				< 1500 U	2,700	1,500							< 5.7 U	< 5.6 U	< 5.5 U			
Other Detected Volatile Organic																		
Acetone	<2,400 U	<1,200 U	<16 U	< 3000 U	< 440 U	< 400 U	< 240 U	< 480 U		<120 U	< 48 U	< 480 U	36	< 28 U	37	< 48 U	30	
Acrolein	<460 U	<230 U	<3 U				< 46 U	< 92 U		<23 U	< 9.2 U	< 92 U				< 9.2 U	9.4	
CFC-113	<380 U	<190 U	23				< 38 U	< 77 U		23	< 7.7 U	< 77 U		ļ		< 7.7 U	< 3.8 U	<u> </u>
Chlorodifluoromethane	<180 U	<88 U	1.3				< 18 U	< 35 U		<8.8 U	< 3.5 U	< 35 U		ļ		< 3.5 U	< 1.8 U	<u> </u>
Dichlorodifluoromethane	<250 U	<120 U	3.1	< 1600 U	< 91 U	< 82 U	29	55		38	48	49	< 6.0 U	68	60	60	42	<u> </u>
Ethanol	<3,800 U	<1,900 U	<25 U	< 2400 U	< 140 U	< 120 U	< 380 U	< 750 U		<190 U	< 75 U	< 750 U	< 9.2 UJ	28	130	< 75 U	< 38 U	
2-Propanol	<4,300 U	<2,200 U	<28 U	< 3200 U	< 180 U	< 160 U	< 430 UJ	< 860 U		<220 U	< 86 UJ	< 860 U	< 12 U	< 12 U	35	< 86 UJ	85	
Tetrahydrofuran				1,600	< 54 U	< 49 U							< 3.6 U	< 3.5 U	< 3.5 U			
Trichlorofluoromethane	<280 U	<140 U	5.8	< 1800 U	< 100 U	< 94 U	< 28 U	< 56 U		<14 U	< 5.6 U	< 56 U	< 6.8 U	< 6.7 U	16	5.6	6.2	
APH air-phase hydrocarbons							I the ve	luo roportod i	is an estimate	(concontration	on ic bolow lo	west calibration	on ctandard)					

APH air-phase hydrocarbons

bgs below ground surface

the analyte was detected in the method blank

the value reported is an estimate (concentration is below lowest calibration standard)

the value reported is an estimate (response exceeded the valid instrument calibration range)

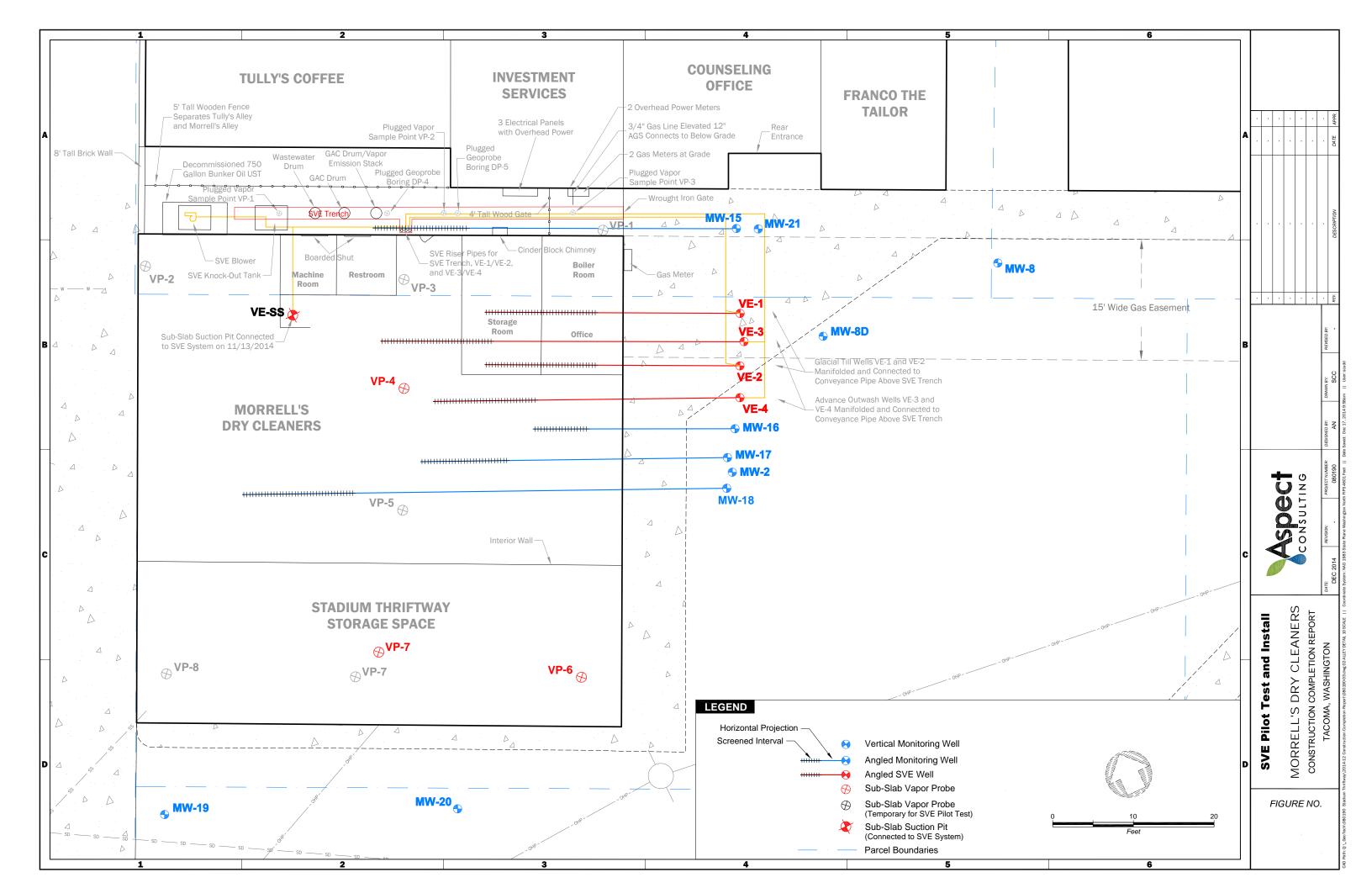

Notes:

Table D-4

not detected at the indicated reporting limit

¹⁾ All concentrations are in micrograms per cubic meter. Only analytes detected in at least one sample are included in this table. Detections are bolded.

²⁾ All samples were analyzed by EPA Method TO-15 for volatile organic compounds (VOCs). Samples collected on 7/5/18 were also analyzed by Method MA-APH for aliphatic and aromatic hydrocarbons in the indicated carbon ranges. Non-petroleum compounds were subtracted from the EC5-8 aliphatic range prior to quantitation.

APPENDIX E

SVE Expansion As-Built Record and Initial Performance

Contents – Appendix E

Soil Vapor Extraction Expansion (2020)	1
Construction Completion Details	1
SVE Trenching and Backfill	2
Piping, Vault, and Instrumentation Details	2
Vapor Emissions Control	3
IDW Management	3
Soil 3 Dewatering Water	3
Startup and Initial Expanded SVE Performance	
Sub-Slab Depressurization Monitoring	
References	6

List of Tables

- E-1 Soil Vapor and Air Emissions Data
- E-2 SVE System Operational Data and Calculations
- E-3 Sub-Slab Depressurization Monitoring

List of Figures

- E-1 SVE Trench Extent of Influence during Pilot Test
- E-2 SVE System Performance

Attachments

- 1 Laboratory Analytical Reports
- 2 Waste Disposal Manifests

Soil Vapor Extraction Expansion (2020)

The interim action SVE wells (VE-1 through VE-4) have removed a significant amount of contaminant mass from vadose zone soils beneath the northeast portion of the Morrell's building, (Appendix D of Work Plan). However, those wells only targeted contamination beneath the northeast portion of the building. SVE was expanded in 2020 to address the entire Morell's Building footprint area, thus targeting a larger portion of impacted vadose zone contamination and expanding the sub-slab depressurization (SSD) potential beneath the building. The work plan for this VE expansion was outlined in the *Summary of 2019 Interim Actions and SVE Expansion Memorandum* (Aspect, 2020a; Appendix C of Work Plan). This section provides an as-built record for the connection of the four new angled wells (VE-5 through VE-8; Figure E-1) and one new vertical well (MW-23) to the existing SVE system.

VE-5 and VE-7 were completed in the glacial till, with screen intervals of 18 to 32 feet bgs. SVE wells VE-6 and VE-8 were completed in the Advance Outwash, with screen intervals of 32 to 46 feet bgs. MW-23 has a dual screen: a vadose zone screen from 10 to 20 feet bgs and a saturated-zone screen from 45 to 60 feet bgs. Well construction details can be found in Appendix C of the Work Plan.

Due to the lack of space in the ally, the new angled wells were connected to the SVE system by tapping into existing laterals attached to VE-1/2 and VE-3/4 in the northwest corner of the parking lot; Figure E-1. MW-24 and MW-31, initially constructed as SVE wells, were not added to the system due to near-zero PID readings during drilling.

Construction sequence, trenching and backfill, piping, vault and instrumentation details, vapor emissions control, waste management, expanded SVE startup and monitoring are discussed below. Information on the existing SVE system layout and components can be found in the "Interim Cleanup Action Construction Completion Report" (Aspect, 2014b).

Construction Completion Details

This section summarizes the construction and completion details for the SVE conveyance pipes from the wellheads to the connection with existing SVE laterals. The four new wells were connected to the existing system in the following construction sequence:

- 1. Asphalt demolition and trenching
- 2. Conveyance pipe connection and vault installation
- 3. Conveyance pipe vacuum testing and slope confirmation
- 4. Trench backfill, site restoration, and system restart

Aspect provided preconstruction tenant and contractor coordination as well as an on-site preconstruction meeting with all interested tenants and the contractor on September 14, 2020. Construction began on September 21, 2020, at which time the SVE system was shut down for the duration of construction. Aspect also provided part-time oversight

MAY 2021 1

during trenching, conveyance pipe installation, and restoration and was onsite for the vacuum testing and slope confirmation. All work was completed at night, generally between 8 p.m. and 6 a.m. per the tenants' request.

SVETrenching and Backfill

An approximately 40-foot-long trench was excavated from MW-23 north to just south of MW-15 and MW-21. The trench was approximately 2.5-feet deep and 2.5-feet wide. Figure E-1 shows the approximate trenching and asphalt patch perimeter. The design was somewhat dictated by the locations of the installed wells, the property line, and the natural gas line in relation to the tie-in points.

Excavated soil was field screened with a PID. Granular soil and previously placed gravel fill¹ that did not elicit a PID response was used as backfill in the trench. Soil that did elicit a PID response was not eligible for backfill and was placed in a roll off box for disposal. The roll off box was covered when not actively in use.

Once piping construction was complete, piping was bedded in 6 inches of sand, and covered with a geotextile membrane. The trench was backfilled with a 9-inch layer of native soil, approximately 12 inches of gravel, and restored with approximately 3 inches of asphalt. The MW-23 monument was removed and replaced once piping construction and backfill was complete for continued use as a monitoring well.

Piping, Vault, and Instrumentation Details

The connection of the new SVE wells was completed by tapping into the existing conveyance piping serving wells VE-1 through VE-4. These connections are all underground, and each lateral (existing and new) received instrumentation accessible via four, 2-foot by 2-foot utility vaults.² An as-built diagram of the piping from wells to connection point, ports, and utility vaults can be seen on Figure E-1. The vaults have hatch-style, traffic-rated doors which open for easy access to the valves and gauges within. Instrumentation inside the vaults included a flow-control valve, anemometer and sample port, and vacuum gage on each individual well line.

Each new 4-inch-diameter SVE well was connected to a 3-inch-diameter, Schedule 80 PVC lateral which feeds into 4-inch-diameter headers. A ball valve is placed on each SVE well lateral to connect or disconnect that well from the blower. Between the vaults and the SVE equipment manifold in the alley, the flows are combined and transmitted through two existing 4-inch PVC conveyance pipes.³ Two ball values were also placed on the 4-inch header to direct flows into either of the 4-inch laterals for increased control in optimizing the system.

The conveyance pipes were completed to the manifolded wells with a negative slope and with no sag points so that condensate drains back into the wells. There is a natural gas line that extends east along the parcel boundary, which was hand located during

2 MAY 2021

¹ Gravel backfill was placed during original SVE construction in September 2014.

² As originally constructed, VE-1/2 and VE-3/4 remain dual well laterals.

³ Existing SVE piping downstream of the vault was not modified.

construction and determined to be approximately 25 inches below grade. This utility was carefully avoided and no conveyance pipes were installed beneath the natural gas line.

Once laterals from VE-7, VE-8, and MW-23 were constructed and glued, a pressure test was completed to ensure completely sealed unions. VE-5 and VE-6 laterals were determined to be too short for vacuum testing at less than 3-feet long, each. Pressure testing was completed by inducing 10 PSI within the pipe for 10 minutes. None of the laterals had an observable loss in pressure throughout the testing period. An as-built of the expanded SVE system is shown on Figure E-1.

Vapor Emissions Control

The VOC emissions are treated with granular activated carbon (GAC) prior to discharge through one of the existing 55-gallon, vapor-phase GAC drums. The existing GAC drums have a flow capacity of roughly 150 standard cubic feet per minute (SCFM). Effluent from the GAC is being monitored with a PID and a PCE Gastec tube for signs of breakthrough. Should any signs of GAC breakthrough be detected during O&M visits, the substrate would be replaced with new coconut carbon substrate; or disconnected if emissions calculations demonstrate it is obsolete.

The Puget Sound Clean Air Agency (PSCAA) is the local authority that regulates air emissions at the Site. As described in Section 6.03(94) of Regulation I of the PSCAA, soil and groundwater remediation systems are exempt from submitting a Notice of Construction and needing an Order of Approval from the PSCAA when air emission releases are less than 15 pounds per year (lbs/year) of benzene or vinyl chloride, less than 500 lbs/year of PCE, and less than 1,000 lbs/year of toxic air contaminants. These limits will not be exceeded at the Site. Monthly emissions monitoring and calculations are performed and documented to verify that emission limits are not exceeded.

IDW Management

Soil

Granular soil that elicited a PID response was placed in the roll-off box and disposed of as F002 listed hazardous waste not requiring incineration. Aspect conducted waste disposal characterization sampling and the analytical results were below laboratory detection levels; laboratory reports are provided in Attachment 1. However, due to tenant induced time constraints on storing the roll-off box in the parking lot, the existing F002 profile was used.

A total of 17.86 tons of soil was transported to Chemical Waste Management of the Northwest Subtitle C landfill in Arlington, Oregon for disposal as Subtitle C waste. The waste manifests are provided in Attachment 2.

Dewatering Water

Unexpected significant rainfall occurred during construction on the night of September 22, 2020. As a result, approximately 300 gallons of water was pumped from the excavation and temporarily stored onsite. Aspect conducted waste disposal characterization sampling; the analytical results were below laboratory detection

MAY 2021 3

levels (laboratory reports are provided in Appendix B). This water was transported to Lafarge North America in Seattle, Washington, for disposal as Non-RCRA, Non-DOT waste. The waste manifests are provided in Attachment 2.

Startup and Initial Expanded SVE Performance

The expanded SVE system was restarted on October 1, 2020. The original SVE wells were closed prior to restart. By closing original wells VE-1 through VE-4 and only running new wells VE-5 through VE-8 and MW-23, the expanded SVE system initially extracted soil vapor only from pore volumes that have previously been at the outskirts or beyond the radius of influence of the original SVE system. Once the system was restarted, the system was allowed to equilibrate for 1 hour prior to completing an initial round of Operation and Maintenance (O&M) measurements, which include:

- 1. Vacuum and the concentrations of VOCs from each of the active wellheads (VE-5 through VE-8 and MW-23 for initial system restart)
- 2. Vacuum, temperature, flow rate, and concentration from the manifolded line between the vapor liquid separator and the blower
- 3. Pressure and temperature from the effluent line from the blower
- 4. Influent and effluent concentrations from the vapor-phase GAC drums

The concentrations of VOCs were measured with a PID. The PCE mass removal rate was calculated from the flow rate, PID measurement, vacuum pressure, and temperature; it is assumed that all contamination exists as PCE.

On October 2, 2020, an Aspect field technician repeated the O&M measurements, monitored blower performance, and collected effluent vapor samples. Vapor samples were collected from each of the five new SVE wells and analyzed by Environmental Protection Agency (EPA) Method TO-15 for chlorinated VOCs, benzene, toluene, ethylbenzene, and xylenes (BTEX). After the 'day one' set of measurements, O&M visits became weekly for the first month of operation to accurately track PCE removal and monitor for PCE breakthrough of the first GAC filter. After the first month of operation, the O&M visits returned to the standard monthly schedule.

The calculated mass of PCE removed by the system increased from an average of 0.133 lbs/day (estimated for the first 9 months of 2020) to an average of 0.295 lbs/day (estimated for the first 2 months after expanded SVE startup).

Soil vapor sampling results are summarized in Table E-1 and expanded SVE startup operational data is shown in Table E-2. PCE emissions are shown on Figure E-2. Laboratory reports are included in Attachment 1. The system will be operated in alternating patterns to maximize contaminant mass removal.

Sub-Slab Depressurization Monitoring

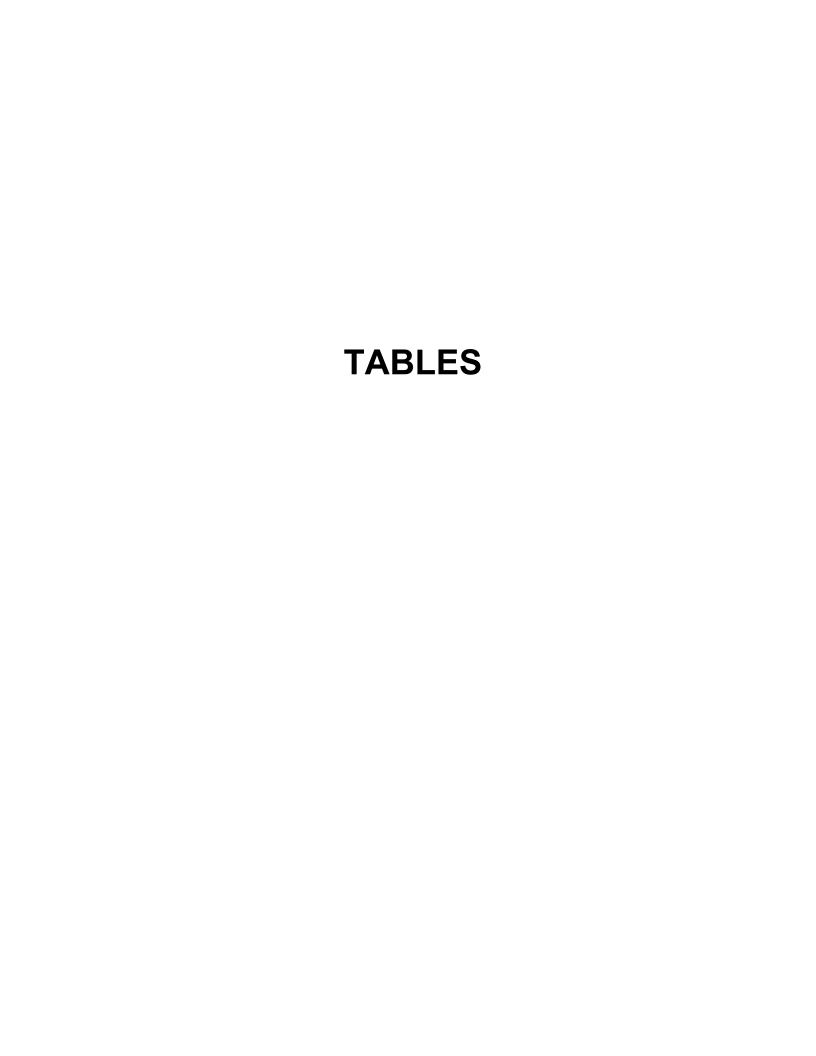
As discussed in Appendix D an important function of the SVE system is to provide SSD throughout the Morell's building, and alleviate the potential for vapor intrusion. The original SVE configuration was determined to provide adequate SSD throughout the

4 MAY 2021

building by monitoring the vacuum at VP-7⁴ in response to the operation of VE-SS in 2015 and sampling sub-slab soil gas in 2016.

VP-7 was destroyed due to tenant space renovation in 2015, however VP-5 was installed in the center of the building, just north of the dividing wall to continue to monitor SSD. VP-7 was demonstrated to have sufficient vacuum⁴ when VP-5 measured around 0.2 inches water column vacuum. A record of VP-5 monitoring is provided in Table E-3.

MAY 2021 5


 $^{^4}$ Recommended minimum vacuum for sub-slab depressurization = 0.005 inches water column.

References

- Aspect Consulting, LLC (Aspect), 2014a, Interim Cleanup Action Construction and Design Report, Morrell's Dry Cleaners, Prepared for David Shaw, Successor to Walker Chevrolet, May 16, 2014.
- Aspect Consulting, LLC (Aspect), 2014b, Interim Cleanup Action Construction Completion Report, Morrell's Dry Cleaners, Prepared for David Shaw, Successor to Walker Chevrolet, December 23, 2014.
- Aspect Consulting, LLC (Aspect), 2018, Supplemental Focused Feasibility Study, Morrell's Dry Cleaners Site, Prepared for David Shaw, Successor to Walker Chevrolet, August 10, 2018, Draft.
- Aspect Consulting, LLC (Aspect), 2020a, Summary of 2019 Interim Action and SVE System Expansion Morell's Dry Cleaner Site, Prepared for D.E. Wickham, Successor to Walker Chevrolet, June 17, 2020.

V:\080190 Stadium Thriftway LLC\Deliverables\Remedial Investigation Work Plan_2021\Final\APPENDICES\App E SVE Expansion\Appendix E Interim Actions.docx

6 MAY 2021

Table E-1. Soil Vapor and Air Emissions DataProject No. 080190, Morell's Dry Cleaners (VCP SW1039), Tacoma, Washington

	Location Date	Pre-Expansion Effluent 09/21/2020	MW-23 10/02/2020	VE-5 10/02/2020	VE-6 10/02/2020	VE-7 10/02/2020	VE-8 10/02/2020	Post- Expansion Effluent 3/24/2021
Analyte	Unit							
BTEX	•				•			
Benzene	ug/m3	20	< 14 U	< 170 U	6.3	< 770 U	42	35
Toluene	ug/m3	< 810 U	< 830 U	< 9800 U	< 320 U	< 45000 U	< 770 U	< 160 U
Ethylbenzene	ug/m3	< 19 U	< 19 U	< 230 U	< 7.4 U	< 1000 U	< 18 U	5.4
Total Xylenes	ug/m3	< 37 U	< 38 U	< 450 U	< 15 U	< 2100 U	51	-
Other SVOCs								
1.4-Dioxane	ug/m3	< 15 U	< 16 U	< 190 U	< 6.1 U	< 860 U	< 15 U	< 3.1 U
Hexachlorobutadiene	ug/m3	< 9.2 U	< 9.4 U	< 110 U	< 3.6 U	< 510 U	< 8.7 U	< 1.8 U
PAHs								
Naphthalene	ug/m3	< 11 U	< 12 U	< 140 U	< 4.5 U	< 630 U	< 11 U	< 2.2 U
VOCs			.= -				<u> </u>	
1.1.1-Trichloroethane	ug/m3	< 23 U	< 24 U	< 280 U	< 9.3 U	< 1300 U	< 22 U	< 4.6 U
1.1.2.2-Tetrachloroethane	ug/m3	< 5.9 U	< 6 U	< 71 U	< 2.3 U	< 330 U	< 5.6 U	< 1.2 U
1.1.2-Trichloroethane	ug/m3	< 2.3 U	< 2.4 U	< 28 U	< 0.93 U	< 130 U	< 2.2 U	< 0.46 U
1.1.2-Trichlorotrifluoroethane	ug/m3	< 33 U	< 34 U	< 400 U	< 13 U	< 1800 U	< 31 U	< 6.5 U
1,1-Dichloroethane	ug/m3	< 17 U	< 18 U	< 210 U	< 6.9 U	< 970 U	< 17 U	< 3.4 U
1.1-Dichloroethene	ug/m3	< 17 U	< 17 U	< 210 U	< 6.7 U	< 950 U	< 16 U	< 3.4 U
1.2.4-Trichlorobenzene	ug/m3	< 32 U	< 33 U	< 390 U	< 13 U	< 1800 U	< 30 U	< 6.3 U
1.2.4-Trimethylbenzene	ug/m3	< 110 U	< 110 U	< 1300 U	< 42 U	< 5900 U	< 100 U	< 21 U
1,2-Dibromoethane (EDB)	ug/m3	< 3.3 U	< 3.4 U	< 40 U	< 1.3 U	< 180 U	< 3.2 U	< 0.65 U
1,2-Dichlorobenzene	ug/m3	< 26 U	< 26 U	< 310 U	< 10 U	< 1400 U	< 25 U	< 5.1 U
1,2-Dichloroethane (EDC)	ug/m3	< 1.7 U	< 1.8 U	< 21 U	< 0.69 U	< 97 U	< 1.7 U	< 0.34 U
1,2-Dichloropropane	ug/m3	< 9.9 U	< 10 U	< 120 U	< 3.9 U	< 550 U	< 9.5 U	< 2 U
1,3,5-Trimethylbenzene	ug/m3	< 110 U	< 110 U	< 1300 U	< 42 U	< 5900 U	< 100 U	< 21 U
1,3-Dichlorobenzene	ug/m3	< 26 U	< 26 U	< 310 U	< 10 U	< 1400 U	< 25 U	< 5.1 U
1,4-Dichlorobenzene	ug/m3	< 9.9 U	< 11 U	< 120 U	< 4 U	< 560 U	< 9.5 U	< 2 U
1-Propene	ug/m3	< 52 U	< 53 U	< 630 U	< 20 U	< 2900 U	< 49 U	< 10 U
2-Butanone	ug/m3	< 130 U	160	< 1500 U	< 50 U	< 7100 U	2000	< 25 U
2-Chlorotoluene	ug/m3	< 220 U	< 230 U	< 2700 U	< 88 U	< 12000 U	< 210 U	< 44 U
2-Hexanone	ug/m3	< 180 U	< 180 U	< 2100 U	< 70 U	< 9800 U	< 170 U	< 35 U
4-Methyl-2-pentanone	ug/m3	< 180 U	< 180 U	< 2100 U	< 70 U	< 9800 U	< 170 U	< 35 U
Acetone	ug/m3	< 200 U	< 210 U	< 2500 U	< 81 U	< 11000 U	400	< 40 U
Acrolein	ug/m3	< 89 U	< 91 U	< 1100 U	< 35 U	< 5000 U	< 85 U	< 18 U
Allyl Chloride	ug/m3	< 67 U	< 69 U	< 810 U	< 27 U	< 3800 U	< 64 U	< 13 U
Bromodichloromethane	ug/m3	< 2.9 U	< 2.9 U	< 35 U	< 1.1 U	< 160 U	< 2.7 U	< 0.57 U
Bromoform	ug/m3	< 89 U	< 91 U	< 1100 U	< 35 U	< 5000 U	< 85 U	< 18 U
Bromomethane	ug/m3	< 100 U	< 100 U	< 1200 U	< 40 U	< 5600 U	< 96 U	< 20 U
Butane	ug/m3	150	< 100 U	< 1200 U	< 40 U	< 5700 U	780	270
Carbon Disulfide	ug/m3	< 270 U	< 270 U	< 3200 U	< 110 U	< 15000 U	< 260 U	< 53 U
Carbon Tetrachloride	ug/m3	< 14 U	< 14 U	< 160 U	15	< 750 U	53	11

Table E-1

Table E-1. Soil Vapor and Air Emissions Data

Project No. 080190, Morell's Dry Cleaners (VCP SW1039), Tacoma, Washington

Chlorobenzene ug/m3 < 20 U	< 3.9 U < 22 U 22
Chloroform ug/m3 17 4.3 < 25 U 25 < 120 U 88 Chloromethane ug/m3 < 160 U	
Chloromethane ug/m3 < 160 U < 160 U < 1900 U < 63 U < 8900 U < 150 U	22
	22
	< 32 U
cis-1,2-Dichloroethene (cDCE)	180
cis-1,3-Dichloropropene ug/m3 < 20 U < 20 U < 240 U < 7.7 U < 1100 U < 19 U	< 3.9 U
Cyclohexane ug/m3 < 300 U < 300 U < 3600 U < 120 U < 17000 U < 280 U	67
Dibromochloromethane ug/m3 < 3.7 U < 3.7 U < 44 U < 1.4 U < 200 U < 3.5 U	< 0.72 U
Dichlorodifluoromethane ug/m3 23 < 22 U < 260 U 200 < 1200 U 33	36
Ethanol ug/m3 < 320 UJ < 330 UJ < 3900 UJ < 130 UJ < 18000 UJ < 310 UJ	< 64 U
Ethyl acetate	< 61 U
Isopropyl Alcohol ug/m3 < 370 U < 380 U < 4500 U < 150 U < 21000 U < 350 U	< 73 U
Isopropylbenzene ug/m3 < 110 U < 110 U < 1300 U < 42 U < 5900 U < 100 U	34
m,p-Xylenes ug/m3 < 37 U < 38 U < 450 U < 15 U < 2100 U 51	67
Methyl Methacrylate ug/m3 < 180 U < 180 U < 2100 U < 70 U < 9800 U < 170 U	< 35 U
Methyl tert-butyl ether (MTBE)	< 15 U
Methylene Chloride ug/m3 < 1500 UJ < 1500 UJ < 18000 UJ < 590 UJ < 83000 UJ < 1400 U.	J < 300 U
n-Hexane ug/m3 < 150 U < 160 U < 1800 U < 60 U < 8500 U 250	140
Nonane ug/m3 < 230 U < 230 U < 2700 U < 89 U < 13000 U < 220 U	< 45 U
n-Propylbenzene ug/m3 < 110 U < 110 U < 1300 U < 42 U < 5900 U < 100 U	< 21 U
o-Xylene	24
Pentane ug/m3 < 130 U < 130 U < 1500 U < 50 U < 7100 U 550	190
Styrene ug/m3 < 37 U < 37 U < 440 U < 14 U < 2000 U < 35 U	< 7.2 U
t-Butyl alcohol (TBA) ug/m3 < 520 U < 530 U < 6300 U < 210 U < 29000 U < 500 U	< 100 U
Tetrachloroethene (PCE) ug/m3 7400 E 15000 E 39000 E 1700 520000 E 2300	3300 E
Tetrahydrofuran ug/m3 < 13 U 630 6200 350 9700 2800	< 2.5 U
trans-1,2-Dichloroethene ug/m3 < 17 U < 17 U < 210 U < 6.7 U < 950 U < 16 U	< 3.4 U
trans-1,3-Dichloropropene ug/m3 < 20 U < 20 U < 240 U < 7.7 U < 1100 U < 19 U	< 3.9 U
Trichloroethene (TCE) ug/m3 340 1100 770 230 10000 350	190
Trichlorofluoromethane ug/m3 < 97 U < 99 U < 1200 U < 38 U < 5400 U < 92 U	< 19 U
Vinyl Acetate ug/m3 < 300 U < 310 U < 3700 U < 120 U < 17000 U < 290 U	96
Vinyl Bromide ug/m3 < 19 U < 19 U < 230 U < 7.4 U < 1000 U < 18 U	< 3.7 U
Vinyl Chloride ug/m3 < 11 U < 11 U 230 < 4.3 U < 610 U < 10 U	2.4
1,3-Butadiene ug/m3 < 1.9 U < 1.9 U < 23 U < 0.75 U < 110 U < 1.8 U	< 0.38 U
2,2,4-Trimethylpentane ug/m3 680 < 210 U < 2400 U < 79 U < 11000 U 2500	600 E
4-Ethyltoluene ug/m3 < 110 U < 110 U < 1300 U < 42 U < 5900 U < 100 U	< 21 U
alpha-Chlorotoluene ug/m3 < 2.2 U	< 0.44 U
	< 5.9 U
Freon 114	130

Notes:

Bold - detected

U - Analyte not detected at or above Reporting Limit (RL) shown

- J Result value estimated
- UJ Analyte not detected and the Reporting Limit (RL) is an estimate
- E Result exceeded calibration range. Result usable for qualitative analysis of analyte presence, but numeric value should not be included in quantitate analysis.

Aspect Consulting

Table E-2. SVE System Operational Data and Calculations

Project No. 080190, Morell's Dry Cleaners (VCP SW1039), Tacoma, Washington

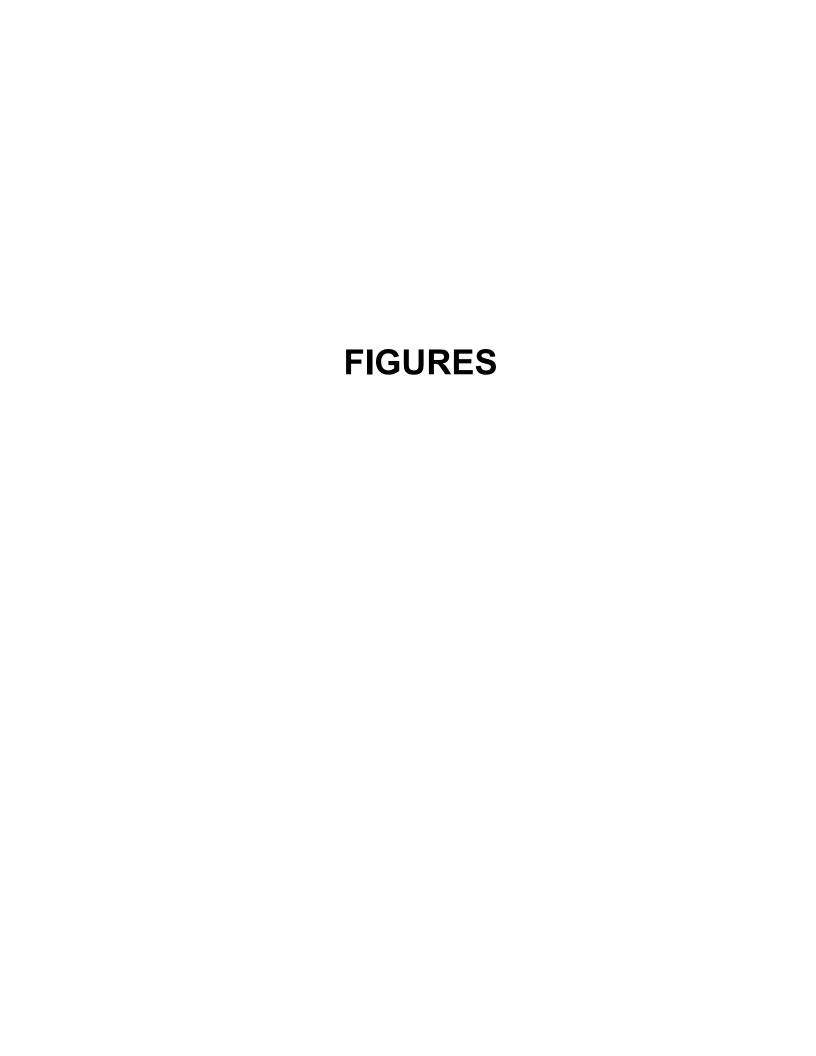
				G	AC	VE	-1/2	VE	-3/4	VI	E-5	VI	Ξ-6	VI	E-7	VI	- 8	MV	V-23	VE	-SS	Est. PC	E Mass Re	moval ^{3,4}
Date	SVE Blower Clock (hours)	Elapsed Run Time (days)	Cumulative Percent Operating Time	Blower Flow Rate ¹ (CFM)	Effluent [VOC] (ppmV, Gastec)	Flow Rate ² (CFM)	[VOC] (ppmV, PID)	Flow Rate ² (CFM)	[VOC] (ppmV, PID)	Flow Rate ² (CFM)	[VOC] (ppmV, PID)	Flow Rate ² (CFM)	[VOC] (ppmV, PID)	Flow Rate ² (CFM)	[VOC] (ppmV, PID)	Flow Rate ² (CFM)	[VOC] (ppmV, PID)	Flow Rate ² (CFM)	[VOC] (ppmV, PID)	Flow Rate ² (CFM)	[VOC] (ppmV, PID)	Removal Rate (Ibs/day)	Incr. Removal (Ibs)	Cum. Removal (Ibs)
9/21/2020	47,909	1,996	92.1%	System Sh	nutdown for	Expansion	Constructi	on										Final Calc	ulations Pre	e-Expansio	n	0.092	2.6	345.4
9/21/2020	47,909	1,996	92.1%	System Sh	nutdown for	Expansion	Constructi	on																
10/1/2020	47,909	1,996	92.1%	112	0.6	17	14	38	25	nm	nm	47	3	0.263	N/A	345.4								
10/2/2020	47,935	1,997	92.1%	110	1	off	off	nm	nm	19	10	27	3	26	86	26	9	39	9	48	3	0.345	0.4	345.8
10/9/2020	48,104	2,004	92.1%	110	0.8	off	off	nm	nm	23	4	30	3	21	79	21	12	22	3	53	3	0.270	1.9	347.7
10/16/2020	48,269	2,011	92.1%	112	0.5	off	off	off	off	21	16	20	2	24	77	24	12	26	3	50	5	0.347	2.4	350.1
10/23/2020	48,436	2,018	92.2%	112	0.1	off	off	off	off	21	2	18	1	19	9	20	5	32	1	42	4	0.070	0.5	350.6
11/23/20	49,178	2,049	92.3%	109	0.5	off	off	off	off	28	4	18	2	32	69	27	11	25	2	31	3	0.341	10.5	361.1
12/29/20	50,039	2,085	92.4%	111	0.5	off	off	off	off	25	7.7	25	6.1	24	44.2	25	8.3	24	1.2	34	3.6	0.225	8.1	369.2
01/29/21	50,718	2,113	92.4%	107	0.5	off	off	off	off	32	11	30	4.3	37	17.3	31	3.8	32	0.2	36	3.5	0.133	3.8	373.0
02/26/21	51,438	2,143	92.6%	107	0.7	off	off	off	off	30	10.5	29	4	36	22.6	30	4.2	32	0.7	36	3.3	0.151	4.5	377.5
03/24/21	52,601	2,192	93.6%	109	2.5	off	off	off	off	30	7.4	28	4.1	29	23.6	27	8.5	31	3	34	4.7	0.165	8.0	385.5

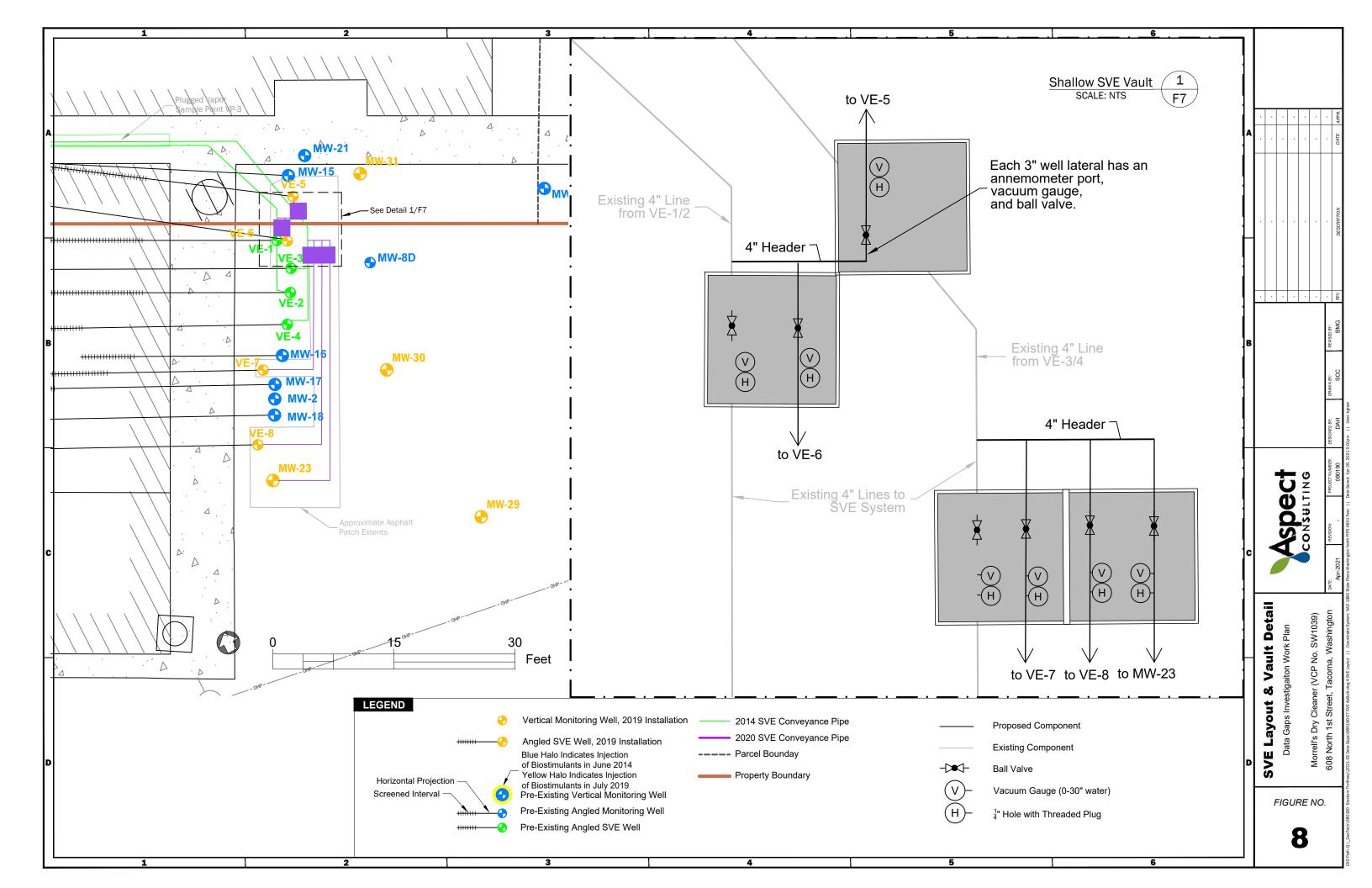
CFM = cubic feet per minute PCE = tetrachloroethene PID = photoionization detector ppmV = parts per million by volume SVE = soil vapor extraction VOC = volatile organic compound

Notes:

- 1) Rotron EN505 blower curve indicates that the blower should extract 97.5 SCFM at 37.5 IWC and 120 SCFM at 20 IWC. Blower flow rate is measured using a pitot tube.
- 2) Flow rates for the VE-1/2, VE-3/4, and SV-SS legs of the SVE system are measured using an anemometer .
- 3) [PCE] was correlated to [VOC] measured by PID using the average of the [PCE]/[VOC] ratios measured on the seven occasions on which SVE influent samples were analyzed by EPA Method TO-15 (refer to Table C-4). The resulting correlation factor of 0.290 is used to estimate PCE mass removal based on PID readings.
- 4) From startup through 9/5/18, flow rate and [VOC] at the GAC influent were used to estimate PCE mass. After September 2018, [VOC] was not measured at the GAC influent, so PCE mass is estimated using measurements at the VE-1/2, VE-3/4, and VE-SS legs (VE-H leg closed), normalized with respect to flow rate (i.e., blower flow rate divided by the sum of the three leg flow rates).

Table E-2


Table E-3. Sub-Slab Depressurization Monitoring


Project No. 080190, Morell's Dry Cleaners (VCP SW1039), Tacoma, Washington

Date	VE-SS	VP-5	Notes
	(inches wc)	(inches wc)	
10/1/2020	1.1	0.563	
10/2/2020	1.2	0.569	
10/9/2020	1.2	0.558	
10/16/2020	1.2	0.614	
10/23/2020	0.6	0.292	Valve on VE-SS adjusted to reduce Vacuum
11/23/2020	0.5	0.234	
12/29/2020	0.5	0.281	
1/27/2021	0.6	0.314	
2/26/2021	0.5	0.278	
3/24/2021	0.6	0.282	

Aspect Consulting
May 2021

Table E-3
SItewide RI/FS Work Plan

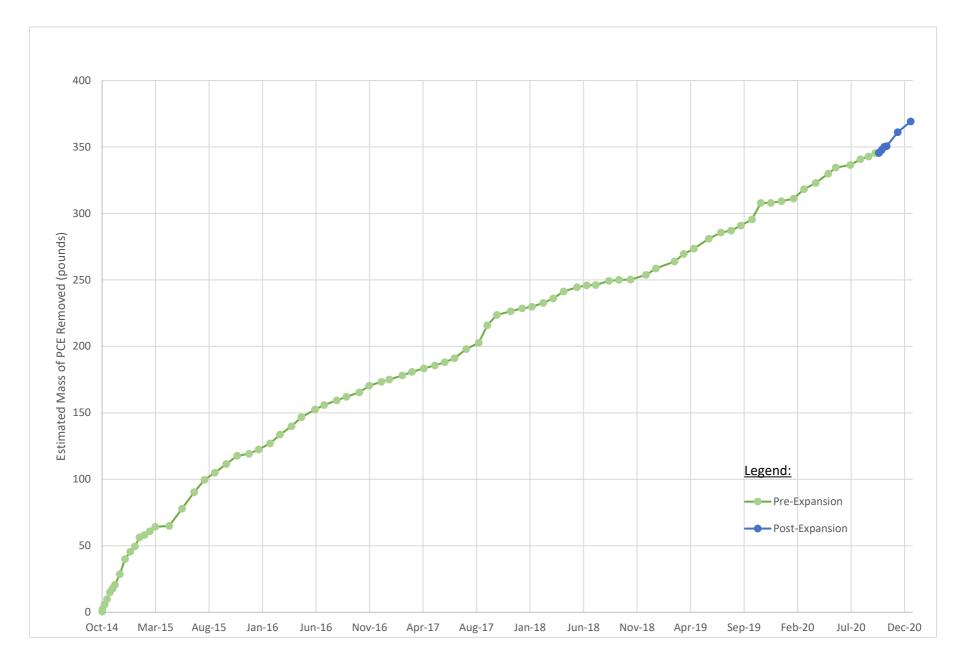


Figure E-2
Soil Vapor Extraction System Performance
Morrell's Dry Cleaners, Tacoma, WA

FRIEDMAN & BRUYA, INC.

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

October 5, 2020

Breeyn Greer, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Ms Greer:

Included are the results from the testing of material submitted on September 22, 2020 from the Morell's PO 080190, F&BI 009388 project. There are 5 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Aspect Data ASP1005R.DOC

FRIEDMAN & BRUYA, INC.

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on September 22, 2020 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Morell's PO 080190, F&BI 009388 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u> <u>Aspect Consulting, LLC</u>

009388 -01 EFF-092120

The tetrachloroethene concentration in sample EFF-092120 exceeded the calibration range of the instrument. The data were flagged accordingly.

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID:	EFF-092120	Client:	Aspect Consulting, LLC

Date Received: 09/22/20 Project: Morell's PO 080190, F&BI 009388

Lab ID: Date Collected: 009388-01 1/43 09/21/20 Date Analyzed: Data File: 093033.D10/01/20 Matrix: GCMS7 Air Instrument: Units: ug/m3 Operator: bat

	%	Lower	Upper
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	101	70	130

	Concen	tration
Compounds:	ug/m3	ppbv
Vinyl chloride	<11	<4.3
Chloroethane	<110	<43
1,1-Dichloroethene	<17	<4.3
trans-1,2-Dichloroethene	<17	<4.3
1,1-Dichloroethane	<17	<4.3
cis-1,2-Dichloroethene	350	89
1,2-Dichloroethane (EDC)	< 1.7	< 0.43
1,1,1-Trichloroethane	<23	<4.3
Trichloroethene	340	63
1,1,2-Trichloroethane	< 2.3	< 0.43
Tetrachloroethene	7,400 ve	1,100 ve

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: Method Blank Client: Aspect Consulting, LLC

Date Received: Not Applicable Project: Morell's PO 080190, F&BI 009388

Lab ID: Date Collected: Not Applicable 00-2194 MB09/30/20 Date Analyzed: Data File: 093013.DMatrix: Air Instrument: GCMS7Units: ug/m3 Operator: bat

	%	Lower	Upper
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	101	70	130

	Concen	tration
Compounds:	ug/m3	ppbv
Vinyl chloride	< 0.26	< 0.1
Chloroethane	< 2.6	<1
1,1-Dichloroethene	< 0.4	< 0.1
trans-1,2-Dichloroethene	< 0.4	< 0.1
1,1-Dichloroethane	< 0.4	< 0.1
cis-1,2-Dichloroethene	< 0.4	< 0.1
1,2-Dichloroethane (EDC)	< 0.04	< 0.01
1,1,1-Trichloroethane	< 0.55	< 0.1
Trichloroethene	< 0.11	< 0.02
1,1,2-Trichloroethane	< 0.055	< 0.01
Tetrachloroethene	<6.8	<1

ENVIRONMENTAL CHEMISTS

Date of Report: 10/05/20 Date Received: 09/22/20

Project: Morell's PO 080190, F&BI 009388

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 009434-01 1/3.4 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
Vinyl chloride	ug/m3	< 0.87	< 0.87	nm
Chloroethane	ug/m3	<9	<9	nm
1,1-Dichloroethene	ug/m3	<1.3	<1.3	nm
trans-1,2-Dichloroethene	ug/m3	<1.3	<1.3	nm
1,1-Dichloroethane	ug/m3	<1.4	<1.4	nm
cis-1,2-Dichloroethene	ug/m3	<1.3	<1.3	nm
1,2-Dichloroethane (EDC)	ug/m3	< 0.14	< 0.14	nm
1,1,1-Trichloroethane	ug/m3	<1.9	<1.9	nm
Trichloroethene	ug/m3	< 0.37	< 0.37	nm
1,1,2-Trichloroethane	ug/m3	< 0.19	< 0.19	nm
Tetrachloroethene	ug/m3	<23	<23	nm

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Vinyl chloride	ug/m3	35	102	70-130
Chloroethane	ug/m3	36	101	70-130
1,1-Dichloroethene	ug/m3	54	106	70-130
trans-1,2-Dichloroethene	ug/m3	54	102	70-130
1,1-Dichloroethane	ug/m3	55	103	70-130
cis-1,2-Dichloroethene	ug/m3	54	106	70-130
1,2-Dichloroethane (EDC)	ug/m3	55	102	70-130
1,1,1-Trichloroethane	ug/m3	74	101	70-130
Trichloroethene	ug/m3	73	111	70-130
1,1,2-Trichloroethane	ug/m3	74	112	70-130
Tetrachloroethene	ug/m3	92	110	70-130

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Report To Brugh Phone 6/1132 7343 Email bgreen easpect consulting com City, State, ZIP_Sead $Address_{_}$ Company_ 70 2

W	SAMPLE CHAIN OF CUSTODY	Ne 09-22-20	[-22-20
Corner	SAMPLERS (signature)	a_	Page #of TURNAROUND TIME
	PROJECT NAME & ADDRESS	PO#	Standard
w And Ste SSO	Morell's	080190	Rush charges authorized by:
HU WA 98104	NOTES:	INVOICE TO	SAMPLE DISPOSAL P Default: Clean after 3 days
	JVC	Af	☐ Archive (Fee may apply)

SAMPLE INFORMATION						1	ANALYSIS REQUESTED	SIS R	EQU	ESTED	
			Reporting Level: IA=Indoor Air	Initial	Final	Field	O15 Full Scan	TO15 cVOCs	APH	Helium	
Sample Name	Lab Canister ID ID	Cont. ID	SG=Soil Gas (Circle One)	Date Vac. Sampled ("Hg)		Final Time		,	ļ		Notes
EFF-092120 01 3676	01 3676	106	IA /(SG)	IA /(SG) 9/21/20-29.0 1946-5.	0	1950		>			
			IA / SG								
			IA / SG								
			IA / SG						<u> </u>		
			IA / SG						ļ		
			IA / SG								
			IA / SG						ļ		
			IA / SG								
										Samj	Samples received at
Friedman & Bruya, Inc.	SIC	SIGNATURE	Œ	PRINT	PRINT NAME		CC	COMPANY	Y.		DATE TIME
3012 16th Avenue West	Relinquished by: 🗸	Bunds	dan	Brz	up Green	7		Ro	cep		9/22/20
Seattle, WA 98119-2029	Received by:	1	L .	Eac Whine-	Jung-		-+-	7	W		9/22/21/04/2
Ph. (206) 285-8282	Relinquished by:			1					1		
Fax (206) 283-5044	Received by:										

FORMS\COC\COCTO-15.DOC

				The same of the sa	
a, Inc.	SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
	Relinquished by: Buntz	Breege Green	Aspect	9/22/20	Ohoi
2029	Received by:	Eu c V bunco	77,00	9/22/21/045	1000
	Relinquished by:	7			
4	Received by:				

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

October 26, 2020

Breeyn Greer, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Ms Greer:

Included are the additional results from the testing of material submitted on September 22, 2020 from the Morell's PO 080190, F&BI 009388 project. There are 8 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Aspect Data ASP1026R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on September 22, 2020 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Morell's PO 080190 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u> <u>Aspect Consulting, LLC</u>

009388 -01 EFF-092120

The tetrachloroethene concentration in sample EFF-092120 exceeded the calibration range of the instrument. The data were flagged accordingly.

The TO-15 calibration standard failed the acceptance criteria for several analytes. The data were flagged accordingly.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: EFF-092120 Client: Aspect Consulting, LLC

Date Received: 09/22/20 Project: Morell's PO 080190, F&BI 009388

Lab ID: Date Collected: 009388-01 1/43 09/21/20 Date Analyzed: 10/01/20 Data File: 093033.DMatrix: Instrument: GCMS7Air ug/m3 Units: Operator: bat

	Concen	tration		Concer	ntration
Compounds:	ug/m3	ppbv	Compounds:	ug/m3	ppbv
D	.	-00	1 0 D' 11	* 0.0	-0.1
Propene Dichlorodifluoromethane	<52 23	<30	1,2-Dichloropropane	<9.9	<2.1
		4.7	1,4-Dioxane	<15	<4.3
Chloromethane	<160	<77	2,2,4-Trimethylpentane	680	150
F-114	<30	<4.3	Methyl methacrylate	<180	<43
Vinyl chloride	<11	<4.3	Heptane	<180	<43
1,3-Butadiene	<1.9	< 0.86	Bromodichloromethane	<2.9	< 0.43
Butane	150	62	Trichloroethene	340	63
Bromomethane	<100	<26	cis-1,3-Dichloropropene	<20	<4.3
Chloroethane	<110	<43	4-Methyl-2-pentanone	<180	<43
Vinyl bromide	<19	<4.3	trans-1,3-Dichloropropene	<20	<4.3
Ethanol	<320 ca	<170 ca	Toluene	<810	<210
Acrolein	<89	<39	1,1,2-Trichloroethane	< 2.3	< 0.43
Pentane	<130	<43	2-Hexanone	<180	<43
Trichlorofluoromethane	<97	<17	Tetrachloroethene	7,400 ve	1,100 ve
Acetone	<200	<86	Dibromochloromethane	<3.7	< 0.43
2-Propanol	<370	<150	1,2-Dibromoethane (EDB)	<3.3	< 0.43
1,1-Dichloroethene	<17	<4.3	Chlorobenzene	<20	<4.3
trans-1,2-Dichloroethene	<17	<4.3	Ethylbenzene	<19	<4.3
Methylene chloride	<1,500 ca	<430 ca	1,1,2,2-Tetrachloroethane	< 5.9	< 0.86
t-Butyl alcohol (TBA)	< 520	<170	Nonane	<230	<43
3-Chloropropene	<67	<21	Isopropylbenzene	<110	<21
CFC-113	<33	<4.3	2-Chlorotoluene	<220	<43
Carbon disulfide	<270	<86	Propylbenzene	<110	<21
Methyl t-butyl ether (MTB		<21	4-Ethyltoluene	<110	<21
Vinyl acetate	<300	<86	m,p-Xylene	<37	<8.6
1,1-Dichloroethane	<17	<4.3	o-Xylene	<19	<4.3
cis-1,2-Dichloroethene	350	89	Styrene	<37	<8.6
Hexane	<150	<43	Bromoform	<89	<8.6
Chloroform	17	3.5	Benzyl chloride	<2.2	< 0.43
Ethyl acetate	<310	<86	1,3,5-Trimethylbenzene	<110	<21
Tetrahydrofuran	<13	<4.3	1,2,4-Trimethylbenzene	<110	<21
2-Butanone (MEK)	<130	<43	1,3-Dichlorobenzene	<26	<4.3
1,2-Dichloroethane (EDC)	<1.7	< 0.43	1,4-Dichlorobenzene	<9.9	<1.6
1,1,1-Trichloroethane	<23	<4.3	1,2-Dichlorobenzene	<26	<4.3
Carbon tetrachloride	<14	<2.1	1,2,4-Trichlorobenzene	<32	<4.3
Benzene	20	6.1	Naphthalene	<11	<2.1
		<86	Hexachlorobutadiene	<9.2	
Cyclohexane	<300	<86	nexacniorobutadiene	<9.2	< 0.86

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: Method Blank Client: Aspect Consulting, LLC

Date Received: Not Applicable Project: Morell's PO 080190, F&BI 009388

Lab ID: Date Collected: Not Applicable 00-2194 MB09/30/20 Date Analyzed: Data File: 093013.DMatrix: Air Instrument: GCMS7Units: ug/m3 Operator: bat

	%	Lower	Upper
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	101	70	130

	Concent	tration		Concer	ntration
Compounds:	ug/m3	ppbv	Compounds:	ug/m3	ppbv
Propene	<1.2	< 0.7	1,2-Dichloropropane	< 0.23	< 0.05
Dichlorodifluoromethane	< 0.49	< 0.1	1,4-Dioxane	< 0.36	< 0.1
Chloromethane	<3.7	<1.8	2,2,4-Trimethylpentane	<4.7	<1
F-114	< 0.7	< 0.1	Methyl methacrylate	<4.1	<1
Vinyl chloride	< 0.26	< 0.1	Heptane	<4.1	<1
1,3-Butadiene	< 0.044	< 0.02	Bromodichloromethane	< 0.067	< 0.01
Butane	< 2.4	<1	Trichloroethene	< 0.11	< 0.02
Bromomethane	< 2.3	< 0.6	cis-1,3-Dichloropropene	< 0.45	< 0.1
Chloroethane	< 2.6	<1	4-Methyl-2-pentanone	<4.1	<1
Vinyl bromide	< 0.44	< 0.1	trans-1,3-Dichloropropene	< 0.45	< 0.1
Ethanol	<7.5 ca	<4 ca	Toluene	<19	<5
Acrolein	< 2.1	< 0.9	1,1,2-Trichloroethane	< 0.055	< 0.01
Pentane	<3	<1	2-Hexanone	<4.1	<1
Trichlorofluoromethane	< 2.2	< 0.4	Tetrachloroethene	<6.8	<1
Acetone	<4.8	<2	Dibromochloromethane	< 0.085	< 0.01
2-Propanol	<8.6	< 3.5	1,2-Dibromoethane (EDB)	< 0.077	< 0.01
1,1-Dichloroethene	< 0.4	< 0.1	Chlorobenzene	< 0.46	< 0.1
trans-1,2-Dichloroethene	< 0.4	< 0.1	Ethylbenzene	< 0.43	< 0.1
Methylene chloride	<35 ca	<10 ca	1,1,2,2-Tetrachloroethane	< 0.14	< 0.02
t-Butyl alcohol (TBA)	<12	<4	Nonane	< 5.2	<1
3-Chloropropene	<1.6	< 0.5	Isopropylbenzene	< 2.5	< 0.5
CFC-113	< 0.77	< 0.1	2-Chlorotoluene	< 5.2	<1
Carbon disulfide	< 6.2	<2	Propylbenzene	< 2.5	< 0.5
Methyl t-butyl ether (MTBE)	<1.8	< 0.5	4-Ethyltoluene	< 2.5	< 0.5
Vinyl acetate	<7	<2	m,p-Xylene	< 0.87	< 0.2
1,1-Dichloroethane	< 0.4	< 0.1	o-Xylene	< 0.43	< 0.1
cis-1,2-Dichloroethene	< 0.4	< 0.1	Styrene	< 0.85	< 0.2
Hexane	< 3.5	<1	Bromoform	<2.1	< 0.2
Chloroform	< 0.049	< 0.01	Benzyl chloride	< 0.052	< 0.01
Ethyl acetate	< 7.2	<2	1,3,5-Trimethylbenzene	< 2.5	< 0.5
Tetrahydrofuran	< 0.29	< 0.1	1,2,4-Trimethylbenzene	< 2.5	< 0.5
2-Butanone (MEK)	< 2.9	<1	1,3-Dichlorobenzene	< 0.6	< 0.1
1,2-Dichloroethane (EDC)	< 0.04	< 0.01	1,4-Dichlorobenzene	< 0.23	< 0.038
1,1,1-Trichloroethane	< 0.55	< 0.1	1,2-Dichlorobenzene	< 0.6	< 0.1
Carbon tetrachloride	< 0.31	< 0.05	1,2,4-Trichlorobenzene	< 0.74	< 0.1
Benzene	< 0.32	< 0.1	Naphthalene	< 0.26	< 0.05
Cyclohexane	< 6.9	<2	Hexachlorobutadiene	< 0.21	< 0.02
5, 550110110110				1	J.U.

ENVIRONMENTAL CHEMISTS

Date of Report: 10/26/20 Date Received: 09/22/20

Project: Morell's PO 080190, F&BI 009388

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 009434-01 1/3.4 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
Propene	ug/m3	<4.1	<4.1	nm
Dichlorodifluoromethane	ug/m3	3.0	3.0	0
Chloromethane	ug/m3	<13	<13	nm
F-114	ug/m3	< 2.4	< 2.4	nm
Vinyl chloride	ug/m3	< 0.87	< 0.87	nm
1,3-Butadiene	ug/m3	< 0.15	< 0.15	nm
Butane	ug/m3	<8.1	<8.1	nm
Bromomethane	ug/m3	< 7.9	< 7.9	nm
Chloroethane	ug/m3	<9	<9	nm
Vinyl bromide	ug/m3	<1.5	<1.5	nm
Ethanol	ug/m3	<26	<26	nm
Acrolein	ug/m3	<7	<7	nm
Pentane	ug/m3	<10	<10	nm
Trichlorofluoromethane	ug/m3	< 7.6	< 7.6	nm
Acetone	ug/m3	<16	<16	nm
2-Propanol	ug/m3	34	35	3
1,1-Dichloroethene	ug/m3	<1.3	<1.3	nm
trans-1,2-Dichloroethene	ug/m3	<1.3	<1.3	nm
Methylene chloride	ug/m3	<120	<120	nm
t-Butyl alcohol (TBA)	ug/m3	<41	<41	nm
3-Chloropropene	ug/m3	< 5.3	< 5.3	nm
CFC-113	ug/m3	< 2.6	< 2.6	nm
Carbon disulfide	ug/m3	<21	<21	nm
Methyl t-butyl ether (MTBE)	ug/m3	< 6.1	<6.1	nm
Vinyl acetate	ug/m3	<24	<24	nm
1,1-Dichloroethane	ug/m3	<1.4	<1.4	nm
cis-1,2-Dichloroethene	ug/m3	<1.3	<1.3	nm
Hexane	ug/m3	<12	<12	nm
Chloroform	ug/m3	< 0.17	< 0.17	nm
Ethyl acetate	ug/m3	<25	<25	nm
Tetrahydrofuran	ug/m3	<1	<1	nm
2-Butanone (MEK)	ug/m3	<10	<10	nm
1,2-Dichloroethane (EDC)	ug/m3	< 0.14	< 0.14	nm
1,1,1-Trichloroethane	ug/m3	<1.9	<1.9	nm
Carbon tetrachloride	ug/m3	<1.1	<1.1	nm
Benzene	ug/m3	<1.1	<1.1	nm
Cyclohexane	ug/m3	<23	<23	nm
1,2-Dichloropropane	ug/m3	< 0.79	< 0.79	nm
1,4-Dioxane	ug/m3	<1.2	<1.2	nm
2,2,4-Trimethylpentane	ug/m3	<16	<16	nm

ENVIRONMENTAL CHEMISTS

Date of Report: 10/26/20 Date Received: 09/22/20

Project: Morell's PO 080190, F&BI 009388

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 009434-01 1/3.4 (Continued)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
Methyl methacrylate	ug/m3	<14	<14	nm
Heptane	ug/m3	<14	<14	nm
Bromodichloromethane	ug/m3	< 0.23	< 0.23	nm
Trichloroethene	ug/m3	< 0.37	< 0.37	nm
cis-1,3-Dichloropropene	ug/m3	<1.5	<1.5	nm
4-Methyl-2-pentanone	ug/m3	<14	<14	nm
trans-1,3-Dichloropropene	ug/m3	<1.5	<1.5	nm
Toluene	ug/m3	<64	<64	nm
1,1,2-Trichloroethane	ug/m3	< 0.19	< 0.19	nm
2-Hexanone	ug/m3	<14	<14	nm
Tetrachloroethene	ug/m3	<23	<23	nm
Dibromochloromethane	ug/m3	< 0.29	< 0.29	nm
1,2-Dibromoethane (EDB)	ug/m3	< 0.26	< 0.26	nm
Chlorobenzene	ug/m3	<1.6	<1.6	nm
Ethylbenzene	ug/m3	<1.5	<1.5	nm
1,1,2,2-Tetrachloroethane	ug/m3	< 0.47	< 0.47	nm
Nonane	ug/m3	<18	<18	nm
Isopropylbenzene	ug/m3	<8.4	<8.4	nm
2-Chlorotoluene	ug/m3	<18	<18	nm
Propylbenzene	ug/m3	<8.4	<8.4	nm
4-Ethyltoluene	ug/m3	<8.4	<8.4	nm
m,p-Xylene	ug/m3	7.0	6.9	1
o-Xylene	ug/m3	2.1	2.1	0
Styrene	ug/m3	< 2.9	< 2.9	nm
Bromoform	ug/m3	<7	<7	nm
Benzyl chloride	ug/m3	< 0.18	< 0.18	nm
1,3,5-Trimethylbenzene	ug/m3	<8.4	<8.4	nm
1,2,4-Trimethylbenzene	ug/m3	<8.4	<8.4	nm
1,3-Dichlorobenzene	ug/m3	<2	<2	nm
1,4-Dichlorobenzene	ug/m3	< 0.78	< 0.78	nm
1,2-Dichlorobenzene	ug/m3	<2	<2	nm
1,2,4-Trichlorobenzene	ug/m3	< 2.5	< 2.5	nm
Naphthalene	ug/m3	1.4	1.4	0
Hexachlorobutadiene	ug/m3	< 0.73	< 0.73	nm

ENVIRONMENTAL CHEMISTS

Date of Report: 10/26/20 Date Received: 09/22/20

Project: Morell's PO 080190, F&BI 009388

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: Laboratory Control Sample

, , ,	1		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Propene	ug/m3	23	95	70-130
Dichlorodifluoromethane	ug/m3	67	107	70-130
Chloromethane	ug/m3	28	95	70-130
F-114	ug/m3	94	106	70-130
Vinyl chloride	ug/m3	35	102	70-130
1,3-Butadiene	ug/m3	30	102	70-130
Butane	ug/m3	32	96	70-130
Bromomethane	ug/m3	52	107	70-130
Chloroethane	ug/m3	36	101	70-130
Vinyl bromide	ug/m3	59	101	70-130
Ethanol	ug/m3	25	49 vo	70-130
Acrolein	ug/m3	31	93	70-130
Pentane	ug/m3	40	97	70-130
Trichlorofluoromethane	ug/m3	76	108	70-130
Acetone	ug/m3	32	101	70-130
2-Propanol	ug/m3	33	94	70-130
1,1-Dichloroethene	ug/m3	54	106	70-130
trans-1,2-Dichloroethene	ug/m3	54	102	70-130
Methylene chloride	ug/m3	94	49 vo	70-130
t-Butyl alcohol (TBA)	ug/m3	41	94	70-130
3-Chloropropene	ug/m3	42	96	70-130
CFC-113	ug/m3	100	107	70-130
Carbon disulfide	ug/m3	42	98	70-130
Methyl t-butyl ether (MTBE)	ug/m3	49	103	70-130
Vinyl acetate	ug/m3	48	97	70-130
1,1-Dichloroethane	ug/m3	55	103	70-130
cis-1,2-Dichloroethene	ug/m3	54	106	70-130
Hexane	ug/m3	48	92	70-130
Chloroform	ug/m3	66	103	70-130
Ethyl acetate	ug/m3	49	105	70-130
Tetrahydrofuran	ug/m3	40	105	70-130
2-Butanone (MEK)	ug/m3	40	100	70-130
1,2-Dichloroethane (EDC)	ug/m3	55	102	70-130
1,1,1-Trichloroethane	ug/m3	74	101	70-130
Carbon tetrachloride	ug/m3	85	106	70-130
Benzene	ug/m3	43	100	70-130
Cyclohexane	ug/m3	46	95	70-130
1,2-Dichloropropane	ug/m3	62	111	70-130
1,4-Dioxane	ug/m3	49	112	70-130
2,2,4-Trimethylpentane	ug/m3	63	109	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 10/26/20 Date Received: 09/22/20

Project: Morell's PO 080190, F&BI 009388

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: Laboratory Control Sample (Continued)

Laboratory Code. Laboratory Con	Percent								
	Reporting	Spike	Recovery	Acceptance					
Analyte	Units	Level	LCS	Criteria					
Methyl methacrylate	ug/m3	55	110	70-130					
Heptane	ug/m3	55	110	70-130					
Bromodichloromethane	ug/m3	90	109	70-130					
Trichloroethene	ug/m3	73	111	70-130					
cis-1,3-Dichloropropene	ug/m3	61	102	70-130					
4-Methyl-2-pentanone	ug/m3	55	110	70-130					
trans-1,3-Dichloropropene	ug/m3	61	102	70-130					
Toluene	ug/m3	51	110	70-130					
1,1,2-Trichloroethane	ug/m3	74	112	70-130					
2-Hexanone	ug/m3	55	99	70-130					
Tetrachloroethene	ug/m3	92	110	70-130					
Dibromochloromethane	ug/m3	120	111	70-130					
1,2-Dibromoethane (EDB)	ug/m3	100	115	70-130					
Chlorobenzene	ug/m3	62	108	70-130					
Ethylbenzene	ug/m3	59	101	70-130					
1,1,2,2-Tetrachloroethane	ug/m3	93	101	70-130					
Nonane	ug/m3	71	111	70-130					
Isopropylbenzene	ug/m3	66	102	70-130					
2-Chlorotoluene	ug/m3	70	100	70-130					
Propylbenzene	ug/m3	66	107	70-130					
4-Ethyltoluene	ug/m3	66	101	70-130					
m,p-Xylene	ug/m3	120	104	70-130					
o-Xylene	ug/m3	59	105	70-130					
Styrene	ug/m3	58	106	70-130					
Bromoform	ug/m3	140	105	70-130					
Benzyl chloride	ug/m3	70	96	70-130					
1,3,5-Trimethylbenzene	ug/m3	66	107	70-130					
1,2,4-Trimethylbenzene	ug/m3	66	110	70-130					
1,3-Dichlorobenzene	ug/m3	81	112	70-130					
1,4-Dichlorobenzene	ug/m3	81	94	70-130					
1,2-Dichlorobenzene	ug/m3	81	98	70-130					
1,2,4-Trichlorobenzene	ug/m3	100	96	70-130					
Naphthalene	ug/m3	71	96	70-130					
Hexachlorobutadiene	ug/m3	140	100	70-130					

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- $\rm jl$ The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Report To Brugh Greet

Company Aspect

Address 710 2 m Anc Ste 550

City, State, ZIP Scattle WA 98104

Phone Wills 732 7343 Email bgreet@spectcassulfing. a

SAMPLE CHAIN OF CUSTODY
<i>w</i>
09-22-20

	SAMPLERS (signature)	7	Page # of
	Sunta	7	TURNAROUND TIME
	PROJECT NAME & ADDRESS	PO#	Standard
	Morell's	080190	RUSH charges authorized by:
2	NOTES:	INVOICE TO	SAMPLE DISPOSAL
:	SVE	F	∠Default: Clean after 3 days ∴ Archive (Fee may apply)
answithing com	. COM.		

Relinquished by:			Friedman & Bruya, Inc. SIGNATURE PRINT NAME		IA / SG	IA / SG	IA / SG	IA / SG	IA / SG	IA / SC	IA / SG	FFF-092170 01 3676 106 IA (SG) 9/21/20-29.0 1946-5.0	Air Initial Field as Date Vac. Initial e) Sampled ("Hg) Time	Reporting Level:
7			SIGNATU											***************************************
		nla	RE		IA / SG		IA / SG	IA / SG	IA / SG	IA / SG	IA / SG	IA /(SG)		Reporting Level:
	2											9/21/20		
+		ά	PRIN							-		-29.0		
	ک ج	xux	T NAM									1946	Field Initial Time	
	7	Gre	E									-5.0	Final Vac. ("Hg)	
		7										1950	Final Final Time	
	`											\otimes	TO15	Full Scan
	M	A	COM			-	-			+			1	5 BTEXN
+	Á.	pce	COMPANY		ļ			 	-					5 cVOCs APH
		B	Y	Samples received at									†	Telium
		1		23	<u> </u>			 					 	

FORMS\COC\COCTO-15DOC

.

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

October 22, 2020

Breeyn Greer, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Ms Greer:

Included are the results from the testing of material submitted on October 7, 2020 from the Morrell's PO 080190, F&BI 010116 project. There are 12 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Aspect Data ASP1022R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on October 7, 2020 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Morrell's PO 080190, F&BI 010116 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Aspect Consulting, LLC
010116 -01	VE-05-100220
010116 -02	VE-06-100220
010116 -03	VE-07-100220
010116 -04	VE-08-100220
010116 -05	MW-23-100220

The TO-15 calibration standard failed the acceptance criteria for several analytes. The data were flagged accordingly.

The tetrachloroethene concentration in samples VE-05-100220, VE-07-100220, and MW-23-100220 exceeded the calibration range of the instrument. The data were flagged accordingly.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: VE-05-100220 Client: Aspect Consulting, LLC Date Received: 10/07/20 Project: Morrell's PO 080190 Lab ID: Date Collected: 010116-01 1/520 10/02/20 Date Analyzed: 10/16/20 Data File: 101528.DMatrix: GCMS7Air Instrument: ug/m3 Units: Operator: bat

Conc	entration		Conce	ntration
Compounds: ug/m	3 ppbv	Compounds:	ug/m3	ppbv
Propene <63		1,2-Dichloropropane	<120	<26
Dichlorodifluoromethane <26		1,4-Dioxane	<190	<52
Chloromethane <1,90		2,2,4-Trimethylpentane	<2,400	< 520
F-114 <36		Methyl methacrylate	<2,100	< 520
Vinyl chloride 23		Heptane	<2,100	< 520
1,3-Butadiene <2		Bromodichloromethane	<35	< 5.2
Butane <1,20		Trichloroethene	770	140
Bromomethane <1,20	0 <310	cis-1,3-Dichloropropene	<240	<52
Chloroethane <1,40	0 <520	4-Methyl-2-pentanone	<2,100	< 520
Vinyl bromide <23	0 <52	trans-1,3-Dichloropropene	<240	<52
Ethanol <3,900 c	a < 2,100 ca	Toluene	<9,800	<2,600
Acrolein <1,10	0 <470	1,1,2-Trichloroethane	<28	< 5.2
Pentane <1,50	0 <520	2-Hexanone	<2,100	< 520
Trichlorofluoromethane <1,20	0 <210	Tetrachloroethene	39,000 ve	5,700 ve
Acetone <2,50	0 <1,000	Dibromochloromethane	<44	< 5.2
2-Propanol <4,50	0 <1,800	1,2-Dibromoethane (EDB)	<40	< 5.2
1,1-Dichloroethene <21	0 <52	Chlorobenzene	<240	< 52
trans-1,2-Dichloroethene <21	0 <52	Ethylbenzene	<230	< 52
Methylene chloride <18,000 c	a < 5,200 ca	1,1,2,2-Tetrachloroethane	<71	<10
t-Butyl alcohol (TBA) <6,30	0 <2,100	Nonane	< 2,700	< 520
3-Chloropropene <81	0 <260	Isopropylbenzene	<1,300	<260
CFC-113 <40	0 <52	2-Chlorotoluene	<2,700	< 520
Carbon disulfide <3,20	0 <1,000	Propylbenzene	<1,300	<260
Methyl t-butyl ether (MTBE) <94	0 <260	4-Ethyltoluene	<1,300	<260
Vinyl acetate <3,70	0 <1,000	m,p-Xylene	<450	<100
1,1-Dichloroethane <21	0 <52	o-Xylene	<230	< 52
cis-1,2-Dichloroethene 3,20	0 820	Styrene	<440	<100
Hexane <1,80	0 <520	Bromoform	<1,100	<100
Chloroform <2	5 <5.2	Benzyl chloride	<27	< 5.2
Ethyl acetate <3,70	0 <1,000	1,3,5-Trimethylbenzene	<1,300	<260
Tetrahydrofuran 6,20	0 2,100	1,2,4-Trimethylbenzene	<1,300	<260
2-Butanone (MEK) <1,50		1,3-Dichlorobenzene	<310	< 52
1,2-Dichloroethane (EDC) <2	1 <5.2	1,4-Dichlorobenzene	<120	<20
1,1,1-Trichloroethane <28	0 <52	1,2-Dichlorobenzene	<310	< 52
Carbon tetrachloride <16		1,2,4-Trichlorobenzene	<390	< 52
Benzene <17	0 <52	Naphthalene	<140	<26
Cyclohexane <3,60	0 <1,000	Hexachlorobutadiene	<110	<10

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: VE-06-100220 Client: Aspect Consulting, LLC Date Received: 10/07/20 Project: Morrell's PO 080190 Lab ID: Date Collected: 010116-02 1/17 10/02/20 Date Analyzed: 10/16/20 Data File: 101524.DMatrix: Instrument: GCMS7Air Operator: Units: ug/m3 bat

	%	Lower	Upper
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	103	70	130

	Concen	tration		Concer	ntration
Compounds:	ug/m3	ppbv	Compounds:	ug/m3	ppbv
Propene	<20	<12	1,2-Dichloropropane	<3.9	< 0.85
Dichlorodifluoromethane	200	41	1,4-Dioxane	< 6.1	<1.7
Chloromethane	<63	<31	2,2,4-Trimethylpentane	<79	<17
F-114	<12	<1.7	Methyl methacrylate	< 70	<17
Vinyl chloride	<4.3	<1.7	Heptane	< 70	<17
1,3-Butadiene	< 0.75	< 0.34	Bromodichloromethane	<1.1	< 0.17
Butane	<40	<17	Trichloroethene	230	43
Bromomethane	<40	<10	cis-1,3-Dichloropropene	< 7.7	<1.7
Chloroethane	<45	<17	4-Methyl-2-pentanone	< 70	<17
Vinyl bromide	< 7.4	<1.7	trans-1,3-Dichloropropene	< 7.7	< 1.7
Ethanol	<130 ca	<68 ca	Toluene	<320	<85
Acrolein	<35	<15	1,1,2-Trichloroethane	< 0.93	< 0.17
Pentane	< 50	<17	2-Hexanone	< 70	<17
Trichlorofluoromethane	<38	< 6.8	Tetrachloroethene	1,700	240
Acetone	<81	<34	Dibromochloromethane	<1.4	< 0.17
2-Propanol	<150	< 59	1,2-Dibromoethane (EDB)	<1.3	< 0.17
1,1-Dichloroethene	< 6.7	<1.7	Chlorobenzene	< 7.8	<1.7
trans-1,2-Dichloroethene	< 6.7	<1.7	Ethylbenzene	< 7.4	<1.7
Methylene chloride	<590 ca	<170 ca	1,1,2,2-Tetrachloroethane	< 2.3	< 0.34
t-Butyl alcohol (TBA)	<210	<68	Nonane	<89	<17
3-Chloropropene	<27	< 8.5	Isopropylbenzene	<42	< 8.5
CFC-113	<13	<1.7	2-Chlorotoluene	<88	<17
Carbon disulfide	<110	<34	Propylbenzene	<42	< 8.5
Methyl t-butyl ether (MTBE)	<31	< 8.5	4-Ethyltoluene	<42	< 8.5
Vinyl acetate	<120	<34	m,p-Xylene	<15	< 3.4
1,1-Dichloroethane	< 6.9	<1.7	o-Xylene	< 7.4	<1.7
cis-1,2-Dichloroethene	320	81	Styrene	<14	< 3.4
Hexane	<60	<17	Bromoform	<35	< 3.4
Chloroform	25	5.2	Benzyl chloride	< 0.88	< 0.17
Ethyl acetate	<120	<34	1,3,5-Trimethylbenzene	<42	< 8.5
Tetrahydrofuran	350	120	1,2,4-Trimethylbenzene	<42	< 8.5
2-Butanone (MEK)	< 50	<17	1,3-Dichlorobenzene	<10	<1.7
1,2-Dichloroethane (EDC)	< 0.69	< 0.17	1,4-Dichlorobenzene	<4.0	< 0.65
1,1,1-Trichloroethane	<9.3	<1.7	1,2-Dichlorobenzene	<10	<1.7
Carbon tetrachloride	15	2.4	1,2,4-Trichlorobenzene	<13	<1.7
Benzene	6.3	2.0	Naphthalene	<4.5	< 0.85
Cyclohexane	<120	<34	Hexachlorobutadiene	<3.6	< 0.34
•					

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: VE-07-100220 Client: Aspect Consulting, LLC Date Received: 10/07/20 Project: Morrell's PO 080190 Lab ID: Date Collected: 010116-03 1/2400 10/02/20 Date Analyzed: 10/16/20 Data File: 101529.D

Date Analyzed: 10/16/20 Data File: 101529.1

Matrix: Air Instrument: GCMS7

Units: ug/m3 Operator: bat

	%	Lower	Upper
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	96	70	130

	Concen	tration		Conce	ntration
Compounds:	ug/m3	ppbv	Compounds:	ug/m3	ppbv
Propene	<2,900	<1,700	1,2-Dichloropropane	< 550	<120
Dichlorodifluoromethane	<1,200	<240	1,4-Dioxane	<860	<240
Chloromethane	<8,900	<4,300	2,2,4-Trimethylpentane	<11,000	<2,400
F-114	<1,700	<240	Methyl methacrylate	<9,800	<2,400
Vinyl chloride	<610	<240	Heptane	<9,800	<2,400
1,3-Butadiene	<110	<48	Bromodichloromethane	<160	<24
Butane	<5,700	<2,400	Trichloroethene	10,000	1,900
Bromomethane	<5,600	<1,400	cis-1,3-Dichloropropene	<1,100	<240
Chloroethane	<6,300	<2,400	4-Methyl-2-pentanone	<9,800	<2,400
Vinyl bromide	<1,000	<240	trans-1,3-Dichloropropene	<1,100	<240
Ethanol	<18,000 ca <	<9,600 ca	Toluene	<45,000	<12,000
Acrolein	<5,000	<2,200	1,1,2-Trichloroethane	<130	<24
Pentane	<7,100	<2,400	2-Hexanone	<9,800	<2,400
Trichlorofluoromethane	<5,400	<960	Tetrachloroethene	520,000 ve	77,000 ve
Acetone	<11,000	<4,800	Dibromochloromethane	<200	<24
2-Propanol	<21,000	<8,400	1,2-Dibromoethane (EDB)	<180	<24
1,1-Dichloroethene	<950	<240	Chlorobenzene	<1,100	<240
trans-1,2-Dichloroethene	<950	<240	Ethylbenzene	<1,000	<240
Methylene chloride	<83,000 ca<	24,000 ca	1,1,2,2-Tetrachloroethane	<330	<48
t-Butyl alcohol (TBA)	<29,000	<9,600	Nonane	<13,000	<2,400
3-Chloropropene	<3,800	<1,200	Isopropylbenzene	< 5,900	<1,200
CFC-113	<1,800	<240	2-Chlorotoluene	<12,000	<2,400
Carbon disulfide	<15,000	<4,800	Propylbenzene	<5,900	<1,200
Methyl t-butyl ether (MTI		<1,200	4-Ethyltoluene	< 5,900	<1,200
Vinyl acetate	<17,000	<4,800	m,p-Xylene	<2,100	<480
1,1-Dichloroethane	<970	<240	o-Xylene	<1,000	<240
cis-1,2-Dichloroethene	7,400	1,900	Styrene	<2,000	<480
Hexane	<8,500	<2,400	Bromoform	<5,000	<480
Chloroform	<120	<24	Benzyl chloride	<120	<24
Ethyl acetate	<17,000	<4,800	1,3,5-Trimethylbenzene	< 5,900	<1,200
Tetrahydrofuran	9,700	3,300	1,2,4-Trimethylbenzene	<5,900	<1,200
2-Butanone (MEK)	<7,100	<2,400	1,3-Dichlorobenzene	<1,400	<240
1,2-Dichloroethane (EDC)		<24	1,4-Dichlorobenzene	< 560	<91
1,1,1-Trichloroethane	<1,300	<240	1,2-Dichlorobenzene	<1,400	<240
Carbon tetrachloride	<750	<120	1,2,4-Trichlorobenzene	<1,800	<240
Benzene	<770	<240	Naphthalene	<630	<120
Cyclohexane	<17,000	<4,800	Hexachlorobutadiene	<510	<48
- 0	,	-,0			-0

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: VE-08-100220 Client: Aspect Consulting, LLC Date Received: 10/07/20 Project: Morrell's PO 080190 Lab ID: Date Collected: 10/02/20 010116-04 1/41 Date Analyzed: 10/16/20 Data File: 101526.DMatrix: Instrument: GCMS7Air Units: ug/m3 Operator: bat

	%	Lower	Upper
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	104	70	130

	Concen	tration		Conce	ntration
Compounds:	ug/m3	ppbv	Compounds:	ug/m3	ppbv
T)	-10	- 200	10 D: 11	-O. F	
Propene	<49	<29	1,2-Dichloropropane	< 9.5	<2
Dichlorodifluoromethane	33	6.8	1,4-Dioxane	<15	<4.1
Chloromethane	<150	<74	2,2,4-Trimethylpentane	2,500	540
F-114	<29	<4.1	Methyl methacrylate	<170	<41
Vinyl chloride	<10	<4.1	Heptane	<170	<41
1,3-Butadiene	<1.8	< 0.82	Bromodichloromethane	<2.7	< 0.41
Butane	780	330	Trichloroethene	350	66
Bromomethane	<96	<25	cis-1,3-Dichloropropene	<19	<4.1
Chloroethane	<110	<41	4-Methyl-2-pentanone	<170	<41
Vinyl bromide	<18	<4.1	trans-1,3-Dichloropropene	<19	<4.1
Ethanol	<310 ca	<160 ca	Toluene	<770	<200
Acrolein	<85	<37	1,1,2-Trichloroethane	< 2.2	< 0.41
Pentane	550	190	2-Hexanone	<170	<41
Trichlorofluoromethane	<92	<16	Tetrachloroethene	2,300	340
Acetone	400	170	Dibromochloromethane	< 3.5	< 0.41
2-Propanol	<350	<140	1,2-Dibromoethane (EDB)	< 3.2	< 0.41
1,1-Dichloroethene	<16	<4.1	Chlorobenzene	<19	<4.1
trans-1,2-Dichloroethene	<16	<4.1	Ethylbenzene	<18	<4.1
Methylene chloride	<1,400 ca	<410 ca	1,1,2,2-Tetrachloroethane	< 5.6	< 0.82
t-Butyl alcohol (TBA)	< 500	<160	Nonane	<220	<41
3-Chloropropene	<64	<20	Isopropylbenzene	<100	<20
CFC-113	<31	<4.1	2-Chlorotoluene	<210	<41
Carbon disulfide	<260	<82	Propylbenzene	<100	<20
Methyl t-butyl ether (MTB	SE) <74	<20	4-Ethyltoluene	<100	<20
Vinyl acetate	<290	<82	m,p-Xylene	51	12
1,1-Dichloroethane	<17	<4.1	o-Xylene	<18	<4.1
cis-1,2-Dichloroethene	220	55	Styrene	<35	<8.2
Hexane	250	70	Bromoform	<85	<8.2
Chloroform	88	18	Benzyl chloride	<2.1	< 0.41
Ethyl acetate	<300	<82	1,3,5-Trimethylbenzene	<100	<20
Tetrahydrofuran	2,800	950	1,2,4-Trimethylbenzene	<100	<20
2-Butanone (MEK)	2,000	690	1,3-Dichlorobenzene	<25	<4.1
1,2-Dichloroethane (EDC)	<1.7	< 0.41	1,4-Dichlorobenzene	<9.5	<1.6
1,1,1-Trichloroethane	<22	<4.1	1,2-Dichlorobenzene	<25	<4.1
Carbon tetrachloride	53	8.4	1,2,4-Trichlorobenzene	<30	<4.1
Benzene	42	13	Naphthalene	<11	<2
Cyclohexane	<280	<82	Hexachlorobutadiene	<8.7	< 0.82
Cyclonexane	~200	~ 02	11exaciii010butautetle	~0.1	~0.02

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: MW-23-100220 Client: Aspect Consulting, LLC Date Received: 10/07/20 Project: Morrell's PO 080190 10/02/20 Lab ID: Date Collected: 010116-05 1/44 Date Analyzed: 10/16/20 Data File: 101525.DMatrix: Instrument: GCMS7Air Units: ug/m3 Operator: bat

	%	Lower	Upper
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	101	70	130

	Concen	tration		Conce	ntration
Compounds:	ug/m3	ppbv	Compounds:	ug/m3	ppbv
Propene	<53	<31	1,2-Dichloropropane	<10	< 2.2
Dichlorodifluoromethane	<22	<4.4	1,4-Dioxane	<16	<4.4
Chloromethane	<160	<79	2,2,4-Trimethylpentane	<210	<44
F-114	<31	<4.4	Methyl methacrylate	<180	<44
Vinyl chloride	<11	<4.4	Heptane	<180	<44
1,3-Butadiene	<1.9	< 0.88	Bromodichloromethane	< 2.9	< 0.44
Butane	<100	<44	Trichloroethene	1,100	210
Bromomethane	<100	<26	cis-1,3-Dichloropropene	<20	<4.4
Chloroethane	<120	<44	4-Methyl-2-pentanone	<180	<44
Vinyl bromide	<19	<4.4	trans-1,3-Dichloropropene	<20	<4.4
Ethanol	<330 ca	<180 ca	Toluene	<830	<220
Acrolein	<91	<40	1,1,2-Trichloroethane	< 2.4	< 0.44
Pentane	<130	<44	2-Hexanone	<180	<44
Trichlorofluoromethane	<99	<18	Tetrachloroethene	15,000 ve	2,200 ve
Acetone	<210	<88	Dibromochloromethane	<3.7	< 0.44
2-Propanol	<380	<150	1,2-Dibromoethane (EDB)	< 3.4	< 0.44
1,1-Dichloroethene	<17	<4.4	Chlorobenzene	<20	<4.4
trans-1,2-Dichloroethene	<17	<4.4	Ethylbenzene	<19	<4.4
Methylene chloride	<1,500 ca	<440 ca	1,1,2,2-Tetrachloroethane	<6	< 0.88
t-Butyl alcohol (TBA)	<530	<180	Nonane	<230	<44
3-Chloropropene	<69	<22	Isopropylbenzene	<110	<22
CFC-113	<34	<4.4	2-Chlorotoluene	<230	<44
Carbon disulfide	<270	<88	Propylbenzene	<110	<22
Methyl t-butyl ether (MTB		<22	4-Ethyltoluene	<110	<22
Vinyl acetate	<310	<88	m,p-Xylene	<38	<8.8
1,1-Dichloroethane	<18	<4.4	o-Xylene	<19	<4.4
cis-1,2-Dichloroethene	1,700	430	Styrene	<37	<8.8
Hexane	<160	<44	Bromoform	<91	<8.8
Chloroform	4.3	0.88	Benzyl chloride	<2.3	< 0.44
Ethyl acetate	<320	<88	1,3,5-Trimethylbenzene	<110	<22
Tetrahydrofuran	630	210	1,2,4-Trimethylbenzene	<110	<22
2-Butanone (MEK)	160	53	1,3-Dichlorobenzene	<26	<4.4
1,2-Dichloroethane (EDC)	<1.8	< 0.44	1,4-Dichlorobenzene	<11	<1.7
1,1,1-Trichloroethane	<24	<4.4	1,2-Dichlorobenzene	<26	<4.4
Carbon tetrachloride	<14	<2.2	1,2,4-Trichlorobenzene	<33	<4.4
Benzene	<14	<4.4	Naphthalene	<12	<2.2
Cyclohexane	<300	<88	Hexachlorobutadiene	<9.4	< 0.88
•					

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: Method Blank Client: Aspect Consulting, LLC Not Applicable Project: Morrell's PO 080190 Date Received: Lab ID: Date Collected: $00-2264~\mathrm{MB}$ Not Applicable 10/15/20 Date Analyzed: Data File: 101510.DMatrix: GCMS7Air Instrument: ug/m3 Units:

Operator:

bat

% Lower Upper Surrogates: Recovery: Limit: Limit: 4-Bromofluorobenzene 96 70 130

	Concent	tration		Concer	ntration
Compounds:	ug/m3	ppbv	Compounds:	ug/m3	ppbv
compounds.	u.g. 1110	PP~·	compositios.	51g/ 1110	PP~ '
Propene	<1.2	< 0.7	1,2-Dichloropropane	< 0.23	< 0.05
Dichlorodifluoromethane	< 0.49	< 0.1	1,4-Dioxane	< 0.36	< 0.1
Chloromethane	<3.7	<1.8	2,2,4-Trimethylpentane	<4.7	<1
F-114	< 0.7	< 0.1	Methyl methacrylate	<4.1	<1
Vinyl chloride	< 0.26	< 0.1	Heptane	<4.1	<1
1,3-Butadiene	< 0.044	< 0.02	Bromodichloromethane	< 0.067	< 0.01
Butane	< 2.4	<1	Trichloroethene	< 0.11	< 0.02
Bromomethane	< 2.3	< 0.6	cis-1,3-Dichloropropene	< 0.45	< 0.1
Chloroethane	< 2.6	<1	4-Methyl-2-pentanone	<4.1	<1
Vinyl bromide	< 0.44	< 0.1	trans-1,3-Dichloropropene	< 0.45	< 0.1
Ethanol	<7.5 ca	<4 ca	Toluene	<19	<5
Acrolein	< 2.1	< 0.9	1,1,2-Trichloroethane	< 0.055	< 0.01
Pentane	<3	<1	2-Hexanone	<4.1	<1
Trichlorofluoromethane	< 2.2	< 0.4	Tetrachloroethene	<6.8	<1
Acetone	<4.8	<2	Dibromochloromethane	< 0.085	< 0.01
2-Propanol	<8.6	<3.5	1,2-Dibromoethane (EDB)	< 0.077	< 0.01
1,1-Dichloroethene	< 0.4	< 0.1	Chlorobenzene	< 0.46	< 0.1
trans-1,2-Dichloroethene	< 0.4	< 0.1	Ethylbenzene	< 0.43	< 0.1
Methylene chloride	<35 ca	<10 ca	1,1,2,2-Tetrachloroethane	< 0.14	< 0.02
t-Butyl alcohol (TBA)	<12	<4	Nonane	< 5.2	<1
3-Chloropropene	<1.6	< 0.5	Isopropylbenzene	< 2.5	< 0.5
CFC-113	< 0.77	< 0.1	2-Chlorotoluene	< 5.2	<1
Carbon disulfide	< 6.2	<2	Propylbenzene	< 2.5	< 0.5
Methyl t-butyl ether (MTBE)	<1.8	< 0.5	4-Ethyltoluene	< 2.5	< 0.5
Vinyl acetate	<7	<2	m,p-Xylene	< 0.87	< 0.2
1,1-Dichloroethane	< 0.4	< 0.1	o-Xylene	< 0.43	< 0.1
cis-1,2-Dichloroethene	< 0.4	< 0.1	Styrene	< 0.85	< 0.2
Hexane	<3.5	<1	Bromoform	< 2.1	< 0.2
Chloroform	< 0.049	< 0.01	Benzyl chloride	< 0.052	< 0.01
Ethyl acetate	< 7.2	<2	1,3,5-Trimethylbenzene	< 2.5	< 0.5
Tetrahydrofuran	< 0.29	< 0.1	1,2,4-Trimethylbenzene	< 2.5	< 0.5
2-Butanone (MEK)	< 2.9	<1	1,3-Dichlorobenzene	< 0.6	< 0.1
1,2-Dichloroethane (EDC)	< 0.04	< 0.01	1,4-Dichlorobenzene	< 0.23	< 0.038
1,1,1-Trichloroethane	< 0.55	< 0.1	1,2-Dichlorobenzene	< 0.6	< 0.1
Carbon tetrachloride	< 0.31	< 0.05	1,2,4-Trichlorobenzene	< 0.74	< 0.1
Benzene	< 0.32	< 0.1	Naphthalene	< 0.26	< 0.05
Cyclohexane	< 6.9	<2	Hexachlorobutadiene	< 0.21	< 0.02

ENVIRONMENTAL CHEMISTS

Date of Report: 10/22/20 Date Received: 10/07/20

Project: Morrell's PO 080190, F&BI 010116

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 010233-02 1/5.5 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
Propene	ug/m3	460	460	0
Dichlorodifluoromethane	ug/m3	15	15	0
Chloromethane	ug/m3	<20	<20	nm
F-114	ug/m3	<3.8	<3.8	nm
Vinyl chloride	ug/m3	<1.4	<1.4	nm
1,3-Butadiene	ug/m3	< 0.24	< 0.24	nm
Butane	ug/m3	290	290	0
Bromomethane	ug/m3	<13	<13	nm
Chloroethane	ug/m3	<15	<15	nm
Vinyl bromide	ug/m3	< 2.4	< 2.4	nm
Ethanol	ug/m3	<41	<41	nm
Acrolein	ug/m3	<11	<11	nm
Pentane	ug/m3	130	130	0
Trichlorofluoromethane	ug/m3	25	25	0
Acetone	ug/m3	<26	<26	nm
2-Propanol	ug/m3	<47	<47	nm
1,1-Dichloroethene	ug/m3	< 2.2	< 2.2	nm
trans-1,2-Dichloroethene	ug/m3	< 2.2	< 2.2	nm
Methylene chloride	ug/m3	<190	<190	nm
t-Butyl alcohol (TBA)	ug/m3	<67	<67	nm
3-Chloropropene	ug/m3	<8.6	<8.6	nm
CFC-113	ug/m3	<4.2	<4.2	nm
Carbon disulfide	ug/m3	<34	<34	nm
Methyl t-butyl ether (MTBE)	ug/m3	<9.9	<9.9	nm
Vinyl acetate	ug/m3	<39	<39	nm
1,1-Dichloroethane	ug/m3	< 2.2	<2.2	nm
cis-1,2-Dichloroethene	ug/m3	< 2.2	< 2.2	nm
Hexane	ug/m3	37	37	0
Chloroform	ug/m3	< 0.27	< 0.27	nm
Ethyl acetate	ug/m3	<40	<40	nm
Tetrahydrofuran	ug/m3	<1.6	<1.6	nm
2-Butanone (MEK)	ug/m3	<16	<16	nm
1,2-Dichloroethane (EDC)	ug/m3	< 0.22	< 0.22	nm
1,1,1-Trichloroethane	ug/m3	<3	<3	nm
Carbon tetrachloride	ug/m3	<1.7	<1.7	nm
Benzene	ug/m3	5.4	5.4	0
Cyclohexane	ug/m3	<38	<38	nm
1,2-Dichloropropane	ug/m3	<1.3	<1.3	nm
1,4-Dioxane	ug/m3	<2	<2	nm
2,2,4-Trimethylpentane	ug/m3	<26	<26	nm

ENVIRONMENTAL CHEMISTS

Date of Report: 10/22/20 Date Received: 10/07/20

Project: Morrell's PO 080190, F&BI 010116

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 010233-02 1/5.5 (Duplicate, continued)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
Methyl methacrylate	ug/m3	<23	<23	nm
Heptane	ug/m3	<23	<23	nm
Bromodichloromethane	ug/m3	< 0.37	< 0.37	nm
Trichloroethene	ug/m3	< 0.59	< 0.59	nm
cis-1,3-Dichloropropene	ug/m3	< 2.5	< 2.5	nm
4-Methyl-2-pentanone	ug/m3	<23	<23	nm
trans-1,3-Dichloropropene	ug/m3	< 2.5	< 2.5	nm
Toluene	ug/m3	<100	<100	nm
1,1,2-Trichloroethane	ug/m3	< 0.3	< 0.3	nm
2-Hexanone	ug/m3	<23	<23	nm
Tetrachloroethene	ug/m3	<37	<37	nm
Dibromochloromethane	ug/m3	< 0.47	< 0.47	nm
1,2-Dibromoethane (EDB)	ug/m3	< 0.42	< 0.42	nm
Chlorobenzene	ug/m3	< 2.5	< 2.5	nm
Ethylbenzene	ug/m3	< 2.4	< 2.4	nm
1,1,2,2-Tetrachloroethane	ug/m3	< 0.76	< 0.76	nm
Nonane	ug/m3	<29	<29	nm
Isopropylbenzene	ug/m3	<14	<14	nm
2-Chlorotoluene	ug/m3	<28	<28	nm
Propylbenzene	ug/m3	<14	<14	nm
4-Ethyltoluene	ug/m3	<14	<14	nm
m,p-Xylene	ug/m3	<4.8	<4.8	nm
o-Xylene	ug/m3	< 2.4	< 2.4	nm
Styrene	ug/m3	<4.7	<4.7	nm
Bromoform	ug/m3	<11	<11	nm
Benzyl chloride	ug/m3	< 0.28	< 0.28	nm
1,3,5-Trimethylbenzene	ug/m3	<14	<14	nm
1,2,4-Trimethylbenzene	ug/m3	<14	<14	nm
1,3-Dichlorobenzene	ug/m3	<3.3	<3.3	nm
1,4-Dichlorobenzene	ug/m3	<1.3	<1.3	nm
1,2-Dichlorobenzene	ug/m3	<3.3	<3.3	nm
1,2,4-Trichlorobenzene	ug/m3	<4.1	<4.1	nm
Naphthalene	ug/m3	<1.4	<1.4	nm
Hexachlorobutadiene	ug/m3	<1.2	<1.2	nm

ENVIRONMENTAL CHEMISTS

Date of Report: 10/22/20 Date Received: 10/07/20

Project: Morrell's PO 080190, F&BI 010116

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: Laboratory Control Sample

Dationary Court Dationary Con	itioi sampie		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Propene	ug/m3	23	93	70-130
Dichlorodifluoromethane	ug/m3	67	93	70-130
Chloromethane	ug/m3	28	95	70-130
F-114	ug/m3	94	95	70-130
Vinyl chloride	ug/m3	35	98	70-130
1,3-Butadiene	ug/m3	30	97	70-130
Butane	ug/m3	32	94	70-130
Bromomethane	ug/m3	52	100	70-130
Chloroethane	ug/m3	36	96	70-130
Vinyl bromide	ug/m3	59	99	70-130
Ethanol	ug/m3	25	54 vo	70-130
Acrolein	ug/m3	31	92	70-130
Pentane	ug/m3	40	92	70-130
Trichlorofluoromethane	ug/m3	76	93	70-130
Acetone	ug/m3	32	88	70-130
2-Propanol	ug/m3	33	104	70-130
1,1-Dichloroethene	ug/m3	54	102	70-130
trans-1,2-Dichloroethene	ug/m3	54	99	70-130
Methylene chloride	ug/m3	94	58 vo	70-130
t-Butyl alcohol (TBA)	ug/m3	41	102	70-130
3-Chloropropene	ug/m3	42	95	70-130
CFC-113	ug/m3	100	95	70-130
Carbon disulfide	ug/m3	42	93	70-130
Methyl t-butyl ether (MTBE)	ug/m3	49	99	70-130
Vinyl acetate	ug/m3	48	126	70-130
1,1-Dichloroethane	ug/m3	55	99	70-130
cis-1,2-Dichloroethene	ug/m3	54	98	70-130
Hexane	ug/m3	48	87	70-130
Chloroform	ug/m3	66	97	70-130
Ethyl acetate	ug/m3	49	105	70-130
Tetrahydrofuran	ug/m3	40	91	70-130
2-Butanone (MEK)	ug/m3	40	98	70-130
1,2-Dichloroethane (EDC)	ug/m3	55	94	70-130
1,1,1-Trichloroethane	ug/m3	74	104	70-130
Carbon tetrachloride	ug/m3	85	106	70-130
Benzene	ug/m3	43	95	70-130
Cyclohexane	ug/m3	46	89	70-130
1,2-Dichloropropane	ug/m3	62	104	70-130
1,4-Dioxane	ug/m3	49	103	70-130
2,2,4-Trimethylpentane	ug/m3	63	103	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 10/22/20 Date Received: 10/07/20

Project: Morrell's PO 080190, F&BI 010116

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: Laboratory Control Sample (Continued)

		(Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Methyl methacrylate	ug/m3	55	106	70-130
Heptane	ug/m3	55	103	70-130
Bromodichloromethane	ug/m3	90	112	70-130
Trichloroethene	ug/m3	73	103	70-130
cis-1,3-Dichloropropene	ug/m3	61	105	70-130
4-Methyl-2-pentanone	ug/m3	55	102	70-130
trans-1,3-Dichloropropene	ug/m3	61	116	70-130
Toluene	ug/m3	51	102	70-130
1,1,2-Trichloroethane	ug/m3	74	108	70-130
2-Hexanone	ug/m3	55	100	70-130
Tetrachloroethene	ug/m3	92	102	70-130
Dibromochloromethane	ug/m3	120	124	70-130
1,2-Dibromoethane (EDB)	ug/m3	100	122	70-130
Chlorobenzene	ug/m3	62	89	70-130
Ethylbenzene	ug/m3	59	93	70-130
1,1,2,2-Tetrachloroethane	ug/m3	93	99	70-130
Nonane	ug/m3	71	101	70-130
Isopropylbenzene	ug/m3	66	93	70-130
2-Chlorotoluene	ug/m3	70	98	70-130
Propylbenzene	ug/m3	66	98	70-130
4-Ethyltoluene	ug/m3	66	93	70-130
m,p-Xylene	ug/m3	120	92	70-130
o-Xylene	ug/m3	59	91	70-130
Styrene	ug/m3	58	93	70-130
Bromoform	ug/m3	140	118	70-130
Benzyl chloride	ug/m3	70	114	70-130
1,3,5-Trimethylbenzene	ug/m3	66	96	70-130
1,2,4-Trimethylbenzene	ug/m3	66	102	70-130
1,3-Dichlorobenzene	ug/m3	81	95	70-130
1,4-Dichlorobenzene	ug/m3	81	89	70-130
1,2-Dichlorobenzene	ug/m3	81	92	70-130
1,2,4-Trichlorobenzene	ug/m3	100	85	70-130
Naphthalene	ug/m3	71	90	70-130
Hexachlorobutadiene	ug/m3	140	89	70-130

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

SAMPLE CHAIN OF CUSTODY

ME 10 Page #

Address 710 ma Aur Stc 550 City, State, ZIP Seattle, WA & Company___ Report To_ Breezen Gren Aspect Consulting

Phone 2068 12-4739 Email byround aspect consulting, com NOTES: SAMPLERS (signature) PROJECT NAME & ADDRESS Murrell's 081070 INVOICE TO 7 PO#

Standard ☐ Archive (Fee may apply) □ Default: Clean after 3 days Rush charges authorized by: TURNAROUND TIME SAMPLE DISPOSAL

		-									IA / SG				
at 19	Samples received	1 000	ples	Sam							IA / SG				•
			 								IA / SG				
			\times	3	7	126	9	115	129	1012/10 29 1511	IA / 🔯	35	05 3483 35	20	MW-23-100220
C.			\times	જી	<	1525	4	1570	30	10/2/20 30	IA /(SG)	101	04 3671 101	100	NE-08-100220
High PID: 89			×	છ	7	1538	5	1533	30	10/2/20 30 1533	IA / (SG)	105	8209	03	NE-07=100220
			X	$\widehat{\mathscr{O}}$	<	1442	2	1433	79.5	101420 79.5 1433	IA / (SG)	279	2305	02	NE-01-100220
			\times	3	7	1403	_ `	1358	79.5	10/2/20 29. 5 1358 5	IA / (SG)	109	2438 109	0)	NE-05-100720
(s/zho re co/zho re co/zho re Re 10/19/20 Notes me	Helium	АРН	TO15 cVOCs	TO15 Fun Scan 8767 TO15-BTEXN	TO15 Full Scan	Field Final Time	Final Vac.	Field Initial Time	Initial Vac. ("Hg)	Initial Date Vac. Sampled ("Hg)	Reporting Level: IA=Indoor Air SG=Soil Gas (Circle One)	Flow Cont.	Canister ID	Lab	Sample Name
	ANALYSIS REQUESTED	EQU	SIS R	VALY	A									-	SAMPLE INFORMATION

FORMS\COC\COCTO-15.DOC Fax (206) 283-5044 Seattle, WA 98119-2029 Friedman & Bruya, Inc. Ph. (206) 285-8282 3012 16th Avenue West

Received by:

Relinquished by:

いたなと

Lackel Cornwell

Aspect

10/1/20

033 TIME

DATE

ESOI 99/2/01

COMPANY

PRINT NAME

Relinquished by:

SIGNATURE

Received by:

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

April 2, 2021

Breeyn Greer, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Ms Greer:

Included are the results from the testing of material submitted on March 24, 2021 from the Walker Chevrolet 080190, F&BI 103460 project. There are 13 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Aspect Data ASP0402R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on March 24, 2021 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Walker Chevrolet 080190, F&BI 103460 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	Aspect Consulting, LLC

103460 -01 EFF-032421

103460 -02 VE-COMB-032421

Non-petroleum compounds identified in the air phase hydrocarbon (APH) ranges were subtracted per the MA-APH method.

APH EC5-8 aliphatics were detected in the MA-APH method blank at a level greater than one tenth the concentration detected in the samples. The data were flagged accordingly.

Chloromethane and methylene chloride in the TO-15 laboratory control sample exceeded the acceptance criteria. The analytes were not detected in the samples, therefore the data were acceptable.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: EFF-032421 Client: Aspect Consulting, LLC

Date Received: 03/24/21 Project: Walker Chevrolet 080190, F&BI 103460

Lab ID: Date Collected: 03/24/21 103460-01 1/17 Date Analyzed: 03/29/21 Data File: 032921.DMatrix: Instrument: GCMS12 Air Units: ug/m3 Operator: bat

% Lower Upper Surrogates: Recovery: Limit: Limit:

4-Bromofluorobenzene 108 70 130

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics 9,500 fb APH EC9-12 aliphatics <420 APH EC9-10 aromatics <420

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: VE-COMB-032421 Client: Aspect Consulting, LLC

Date Received: 03/24/21 Project: Walker Chevrolet 080190, F&BI 103460

 Date Collected:
 03/24/21
 Lab ID:
 103460-02 1/8.5

 Date Analyzed:
 03/29/21
 Data File:
 032919.D

 Matrix:
 Air
 Instrument:
 GCMS12

Units: ug/m3 Operator: bat

Concentration

Compounds: ug/m3

 $\begin{array}{lll} \text{APH EC5-8 aliphatics} & 9,000 \text{ ve fb} \\ \text{APH EC9-12 aliphatics} & 450 \\ \text{APH EC9-10 aromatics} & <210 \end{array}$

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: Method Blank Client: Aspect Consulting, LLC

Date Received: Not Applicable Project: Walker Chevrolet 080190, F&BI 103460

Not Applicable Lab ID: Date Collected: $01\text{-}666~\mathrm{MB}$ Date Analyzed: 03/29/21 Data File: 032911.DMatrix: Instrument: GCMS12 Air Units: ug/m3 Operator: bat

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics 130 lc APH EC9-12 aliphatics <25 APH EC9-10 aromatics <25

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: EFF-032421 Client: Aspect Consulting, LLC

Date Received: 03/24/21 Project: Walker Chevrolet 080190, F&BI 103460

Lab ID: Date Collected: 03/24/20 103460-01 1/17 Date Analyzed: 03/29/21 Data File: $032921.\mathrm{D}$ Matrix: GCMS12Air Instrument: ug/m3 Units: Operator: bat

	Concentration			Concentration	
Compounds:	ug/m3	ppbv	Compounds:	ug/m3	ppbv
D	-20	40	1 0 D: 11		.0.0
Propene	<20	<12	1,2-Dichloropropane	< 3.9	< 0.85
Dichlorodifluoromethane	38	7.6	1,4-Dioxane	<6.1	<1.7
Chloromethane	<63	<31	2,2,4-Trimethylpentane	690	150
F-114	<12	<1.7	Methyl methacrylate	<70	<17
Vinyl chloride	<4.3	<1.7	Heptane	110	27
1,3-Butadiene	< 0.75	< 0.34	Bromodichloromethane	<1.1	< 0.17
Butane	280	120	Trichloroethene	170	31
Bromomethane	<40	<10	cis-1,3-Dichloropropene	<7.7	<1.7
Chloroethane	<45	<17	4-Methyl-2-pentanone	< 70	<17
Vinyl bromide	<7.4	<1.7	trans-1,3-Dichloropropene	<7.7	<1.7
Ethanol	<130	<68	Toluene	<320	<85
Acrolein	<35	<15	1,1,2-Trichloroethane	< 0.93	< 0.17
Pentane	170	56	2-Hexanone	<70	<17
Trichlorofluoromethane	<38	<6.8	Tetrachloroethene	5,000 ve	740 ve
Acetone	<81	<34	Dibromochloromethane	<1.4	< 0.17
2-Propanol	<150	< 59	1,2-Dibromoethane (EDB)	<1.3	< 0.17
1,1-Dichloroethene	< 6.7	<1.7	Chlorobenzene	<7.8	<1.7
trans-1,2-Dichloroethene	< 6.7	<1.7	Ethylbenzene	<7.4	<1.7
Methylene chloride	< 590	<170	1,1,2,2-Tetrachloroethane	< 2.3	< 0.34
t-Butyl alcohol (TBA)	<210	<68	Nonane	<89	<17
3-Chloropropene	<27	< 8.5	Isopropylbenzene	<42	< 8.5
CFC-113	<13	<1.7	2-Chlorotoluene	<88	<17
Carbon disulfide	<110	<34	Propylbenzene	<42	< 8.5
Methyl t-butyl ether (MTBE)	<31	< 8.5	4-Ethyltoluene	<42	< 8.5
Vinyl acetate	<120	<34	m,p-Xylene	<15	< 3.4
1,1-Dichloroethane	< 6.9	<1.7	o-Xylene	< 7.4	<1.7
cis-1,2-Dichloroethene	180	45	Styrene	<14	< 3.4
Hexane	140	39	Bromoform	<35	< 3.4
Chloroform	19	3.9	Benzyl chloride	< 0.88	< 0.17
Ethyl acetate	<120	<34	1,3,5-Trimethylbenzene	<42	< 8.5
Tetrahydrofuran	<5	<1.7	1,2,4-Trimethylbenzene	<42	< 8.5
2-Butanone (MEK)	< 50	<17	1,3-Dichlorobenzene	<10	<1.7
1,2-Dichloroethane (EDC)	< 0.69	< 0.17	1,4-Dichlorobenzene	<4.0	< 0.65
1,1,1-Trichloroethane	<9.3	<1.7	1,2-Dichlorobenzene	<10	<1.7
Carbon tetrachloride	10	1.6	1,2,4-Trichlorobenzene	<13	<1.7
Benzene	31	9.7	Naphthalene	<1.8	< 0.34
Cyclohexane	<120	<34	Hexachlorobutadiene	<3.6	< 0.34
•				- * *	

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: VE-COMB-032421 Client: Aspect Consulting, LLC

Date Received: 03/24/21 Project: Walker Chevrolet 080190, F&BI 103460

Lab ID: Date Collected: 03/24/20 103460-02 1/8.5 Date Analyzed: 03/29/21 Data File: $032919.\mathrm{D}$ Matrix: GCMS12Air Instrument: ug/m3 Units: Operator: bat

	Concentration			Concentration	
Compounds:	ug/m3	ppbv	Compounds:	ug/m3	ppbv
_					
Propene	<10	< 5.9	1,2-Dichloropropane	<2	< 0.42
Dichlorodifluoromethane	36	7.4	1,4-Dioxane	<3.1	< 0.85
Chloromethane	<32	<15	2,2,4-Trimethylpentane	600 ve	130 ve
F-114	< 5.9	< 0.85	Methyl methacrylate	<35	< 8.5
Vinyl chloride	2.4	0.93	Heptane	130	32
1,3-Butadiene	< 0.38	< 0.17	Bromodichloromethane	< 0.57	< 0.085
Butane	270	110	Trichloroethene	190	34
Bromomethane	<20	< 5.1	cis-1,3-Dichloropropene	<3.9	< 0.85
Chloroethane	<22	< 8.5	4-Methyl-2-pentanone	<35	< 8.5
Vinyl bromide	<3.7	< 0.85	trans-1,3-Dichloropropene	<3.9	< 0.85
Ethanol	<64	<34	Toluene	<160	<42
Acrolein	<18	< 7.6	1,1,2-Trichloroethane	< 0.46	< 0.085
Pentane	190	65	2-Hexanone	<35	<8.5
Trichlorofluoromethane	<19	<3.4	Tetrachloroethene	3,300 ve	480 ve
Acetone	<40	<17	Dibromochloromethane	< 0.72	< 0.085
2-Propanol	<73	<30	1,2-Dibromoethane (EDB)	< 0.65	< 0.085
1,1-Dichloroethene	< 3.4	< 0.85	Chlorobenzene	<3.9	< 0.85
trans-1,2-Dichloroethene	< 3.4	< 0.85	Ethylbenzene	5.4	1.2
Methylene chloride	<300	<85	1,1,2,2-Tetrachloroethane	<1.2	< 0.17
t-Butyl alcohol (TBA)	<100	<34	Nonane	<45	< 8.5
3-Chloropropene	<13	<4.2	Isopropylbenzene	34	6.9
CFC-113	< 6.5	< 0.85	2-Chlorotoluene	<44	< 8.5
Carbon disulfide	<53	<17	Propylbenzene	<21	<4.2
Methyl t-butyl ether (MTBE)	<15	< 4.2	4-Ethyltoluene	<21	<4.2
Vinyl acetate	96	27	m,p-Xylene	67	15
1,1-Dichloroethane	< 3.4	< 0.85	o-Xylene	24	5.5
cis-1,2-Dichloroethene	180	46	Styrene	< 7.2	<1.7
Hexane	140	40	Bromoform	<18	<1.7
Chloroform	22	4.6	Benzyl chloride	< 0.44	< 0.085
Ethyl acetate	<61	<17	1,3,5-Trimethylbenzene	<21	<4.2
Tetrahydrofuran	< 2.5	< 0.85	1,2,4-Trimethylbenzene	<21	<4.2
2-Butanone (MEK)	<25	< 8.5	1,3-Dichlorobenzene	< 5.1	< 0.85
1,2-Dichloroethane (EDC)	< 0.34	< 0.085	1,4-Dichlorobenzene	< 2.0	< 0.32
1,1,1-Trichloroethane	<4.6	< 0.85	1,2-Dichlorobenzene	< 5.1	< 0.85
Carbon tetrachloride	11	1.8	1,2,4-Trichlorobenzene	<6.3	< 0.85
Benzene	35	11	Naphthalene	<2.2	< 0.42
Cyclohexane	67	19	Hexachlorobutadiene	<1.8	< 0.17
- /	- •	_0			~·-·

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: Method Blank Client: Aspect Consulting, LLC

Date Received: Not Applicable Project: Walker Chevrolet 080190, F&BI 103460

Lab ID: Date Collected: Not Applicable 01-666 MB 03/29/21 Date Analyzed: Data File: 032911.DMatrix: Air Instrument: GCMS12ug/m3Units: Operator: bat

	%	Lower	Upper
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	106	70	130

	Concent	tration		Concer	ntration
Compounds:	ug/m3	ppbv	Compounds:	ug/m3	ppbv
Propene	<1.2	< 0.7	1,2-Dichloropropane	< 0.23	< 0.05
Dichlorodifluoromethane	< 0.49	< 0.1	1,4-Dioxane	< 0.36	< 0.1
Chloromethane	<3.7	<1.8	2,2,4-Trimethylpentane	<4.7	<1
F-114	< 0.7	< 0.1	Methyl methacrylate	<4.1	<1
Vinyl chloride	< 0.26	< 0.1	Heptane	<4.1	<1
1,3-Butadiene	< 0.044	< 0.02	Bromodichloromethane	< 0.067	< 0.01
Butane	< 2.4	<1	Trichloroethene	< 0.11	< 0.02
Bromomethane	< 2.3	< 0.6	cis-1,3-Dichloropropene	< 0.45	< 0.1
Chloroethane	< 2.6	<1	4-Methyl-2-pentanone	<4.1	<1
Vinyl bromide	< 0.44	< 0.1	trans-1,3-Dichloropropene	< 0.45	< 0.1
Ethanol	< 7.5	<4	Toluene	<19	<5
Acrolein	< 2.1	< 0.9	1,1,2-Trichloroethane	< 0.055	< 0.01
Pentane	<3	<1	2-Hexanone	<4.1	<1
Trichlorofluoromethane	< 2.2	< 0.4	Tetrachloroethene	<6.8	<1
Acetone	<4.8	<2	Dibromochloromethane	< 0.085	< 0.01
2-Propanol	<8.6	< 3.5	1,2-Dibromoethane (EDB)	< 0.077	< 0.01
1,1-Dichloroethene	< 0.4	< 0.1	Chlorobenzene	< 0.46	< 0.1
trans-1,2-Dichloroethene	< 0.4	< 0.1	Ethylbenzene	< 0.43	< 0.1
Methylene chloride	<35	<10	1,1,2,2-Tetrachloroethane	< 0.14	< 0.02
t-Butyl alcohol (TBA)	<12	<4	Nonane	< 5.2	<1
3-Chloropropene	<1.6	< 0.5	Isopropylbenzene	< 2.5	< 0.5
CFC-113	< 0.77	< 0.1	2-Chlorotoluene	< 5.2	<1
Carbon disulfide	< 6.2	<2	Propylbenzene	< 2.5	< 0.5
Methyl t-butyl ether (MTBE)	<1.8	< 0.5	4-Ethyltoluene	< 2.5	< 0.5
Vinyl acetate	<7	<2	m,p-Xylene	< 0.87	< 0.2
1,1-Dichloroethane	< 0.4	< 0.1	o-Xylene	< 0.43	< 0.1
cis-1,2-Dichloroethene	< 0.4	< 0.1	Styrene	< 0.85	< 0.2
Hexane	< 3.5	<1	Bromoform	< 2.1	< 0.2
Chloroform	< 0.049	< 0.01	Benzyl chloride	< 0.052	< 0.01
Ethyl acetate	< 7.2	<2	1,3,5-Trimethylbenzene	< 2.5	< 0.5
Tetrahydrofuran	< 0.29	< 0.1	1,2,4-Trimethylbenzene	< 2.5	< 0.5
2-Butanone (MEK)	< 2.9	<1	1,3-Dichlorobenzene	< 0.6	< 0.1
1,2-Dichloroethane (EDC)	< 0.04	< 0.01	1,4-Dichlorobenzene	< 0.23	< 0.038
1,1,1-Trichloroethane	< 0.55	< 0.1	1,2-Dichlorobenzene	< 0.6	< 0.1
Carbon tetrachloride	< 0.31	< 0.05	1,2,4-Trichlorobenzene	< 0.74	< 0.1
Benzene	< 0.32	< 0.1	Naphthalene	< 0.1	< 0.02
Cyclohexane	< 6.9	<2	Hexachlorobutadiene	< 0.21	< 0.02
•					

ENVIRONMENTAL CHEMISTS

Date of Report: 04/02/21 Date Received: 03/24/21

Project: Walker Chevrolet 080190, F&BI 103460

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD MA-APH

Laboratory Code: 103460-02 1/8.5 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
APH EC5-8 aliphatics	ug/m3	11,000	11,000	0
APH EC9-12 aliphatics	ug/m3	450	410	9
APH EC9-10 aromatics	ug/m3	<210	<210	nm

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
APH EC5-8 aliphatics	ug/m3	67	89	70-130
APH EC9-12 aliphatics	ug/m3	67	103	70-130
APH EC9-10 aromatics	ug/m3	67	94	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 04/02/21 Date Received: 03/24/21

Project: Walker Chevrolet 080190, F&BI 103460

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 103460-02 1/8.5 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
Propene	ug/m3	<10	<10	nm
Dichlorodifluoromethane	ug/m3	36	41	13
Chloromethane	ug/m3	<32	<32	nm
F-114	ug/m3	< 5.9	< 5.9	nm
Vinyl chloride	ug/m3	2.4	2.5	4
1,3-Butadiene	ug/m3	< 0.38	< 0.38	nm
Butane	ug/m3	270	300	11
Bromomethane	ug/m3	<20	<20	nm
Chloroethane	ug/m3	<22	<22	nm
Vinyl bromide	ug/m3	<3.7	<3.7	nm
Ethanol	ug/m3	<64	<64	nm
Acrolein	ug/m3	<18	<18	nm
Pentane	ug/m3	190	220	15
Trichlorofluoromethane	ug/m3	<19	<19	nm
Acetone	ug/m3	<40	42	nm
2-Propanol	ug/m3	<73	<73	nm
1,1-Dichloroethene	ug/m3	< 3.4	< 3.4	nm
trans-1,2-Dichloroethene	ug/m3	< 3.4	< 3.4	nm
Methylene chloride	ug/m3	<300	<300	nm
t-Butyl alcohol (TBA)	ug/m3	<100	<100	nm
3-Chloropropene	ug/m3	<13	<13	nm
CFC-113	ug/m3	< 6.5	< 6.5	nm
Carbon disulfide	ug/m3	<53	<53	nm
Methyl t-butyl ether (MTBE)	ug/m3	<15	<15	nm
Vinyl acetate	ug/m3	96	110	14
1,1-Dichloroethane	ug/m3	< 3.4	< 3.4	nm
cis-1,2-Dichloroethene	ug/m3	180	210	15
Hexane	ug/m3	140	170	19
Chloroform	ug/m3	22	25	13
Ethyl acetate	ug/m3	<61	<61	nm
Tetrahydrofuran	ug/m3	< 2.5	< 2.5	nm
2-Butanone (MEK)	ug/m3	<25	<25	nm
1,2-Dichloroethane (EDC)	ug/m3	< 0.34	< 0.34	nm
1,1,1-Trichloroethane	ug/m3	<4.6	<4.6	nm
Carbon tetrachloride	ug/m3	11	13	17
Benzene	ug/m3	35	40	13
Cyclohexane	ug/m3	67	75	11
1,2-Dichloropropane	ug/m3	<2	<2	nm
1,4-Dioxane	ug/m3	< 3.1	<3.1	nm
2,2,4-Trimethylpentane	ug/m3	600	590	2

ENVIRONMENTAL CHEMISTS

Date of Report: 04/02/21 Date Received: 03/24/21

Project: Walker Chevrolet 080190, F&BI 103460

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 103460-02 1/8.5 (Duplicate) (continued)

Analyte Units Result Result (Limit 30) Methyl methacrylate ug/m3 35 35 nm Heptane ug/m3 130 130 0 Bromodichloromethane ug/m3 4.057 <0.57 nm Trichloroethene ug/m3 190 170 11 cis-1,3-Dichloropropene ug/m3 <3.9 <3.9 nm 4-Methyl-2-pentanone ug/m3 <3.5 <35 nm trans-1,3-Dichloropropene ug/m3 <3.9 <3.9 nm Toluene ug/m3 <160 <160 nm 1,1,2-Trichloroethane ug/m3 <0.46 <0.46 nm 2-Hexanone ug/m3 <0.35 <35 nm Tetrachloroethane ug/m3 <0.72 <0.72 nm 1,2-Dibromoethane (EDB) ug/m3 <0.65 <0.65 nm Chlorobenzene ug/m3 <1.2 <1.2 nm Nonane ug/m3 <1.		Reporting	Sample	Duplicate	RPD
Heptane		Units	Result	Result	(Limit 30)
Bromodichloromethane ug/m3 <0.57 <0.57 nm Trichloroethene ug/m3 190 170 11 cis-1,3-Dichloropropene ug/m3 <3.9		_			
Trichloroethene ug/m3 190 170 11 cis-1,3-Dichloropropene ug/m3 <3.9		_			0
cis-1,3-Dichloropropene ug/m3 <3.9 <3.9 nm 4-Methyl-2-pentanone ug/m3 <35		ug/m3			
4-Methyl-2-pentanone ug/m3 <35	Trichloroethene	ug/m3			11
trans-1,3-Dichloropropene ug/m3 <3.9 <3.9 nm Toluene ug/m3 <160		_			nm
Toluene ug/m3 <160 <160 nm 1,1,2-Trichloroethane ug/m3 <0.46					nm
1,1,2-Trichloroethane ug/m3 <0.46		ug/m3		<3.9	nm
2-Hexanone ug/m3 <35 <35 nm Tetrachloroethene ug/m3 3,300 3,100 6 Dibromochloromethane ug/m3 <0.72	Toluene	ug/m3	<160	<160	nm
Tetrachloroethene ug/m3 3,300 3,100 6 Dibromochloromethane ug/m3 <0.72	1,1,2-Trichloroethane	ug/m3	< 0.46	< 0.46	nm
Dibromochloromethane ug/m3 <0.72 <0.72 nm 1,2-Dibromoethane (EDB) ug/m3 <0.65		ug/m3	<35	<35	
1,2-Dibromoethane (EDB) ug/m3 <0.65	Tetrachloroethene	ug/m3	3,300	3,100	6
Chlorobenzene ug/m3 <3.9 <3.9 nm Ethylbenzene ug/m3 5.4 5.3 2 1,1,2,2-Tetrachloroethane ug/m3 <1.2	Dibromochloromethane	ug/m3	< 0.72	< 0.72	nm
Ethylbenzene ug/m3 5.4 5.3 2 1,1,2,2-Tetrachloroethane ug/m3 <1.2	1,2-Dibromoethane (EDB)	ug/m3	< 0.65	< 0.65	nm
1,1,2,2-Tetrachloroethane ug/m3 <1.2	Chlorobenzene	ug/m3	<3.9	<3.9	nm
Nonane ug/m3 <45 <45 nm Isopropylbenzene ug/m3 34 28 19 2-Chlorotoluene ug/m3 34 28 19 2-Chlorotoluene ug/m3 <44	Ethylbenzene	ug/m3	5.4	5.3	2
Isopropylbenzene ug/m3 34 28 19 2-Chlorotoluene ug/m3 <44	1,1,2,2-Tetrachloroethane	ug/m3	<1.2	<1.2	nm
2-Chlorotoluene ug/m3 <44	Nonane	ug/m3	<45	<45	nm
Propylbenzene ug/m3 <21 <21 nm 4-Ethyltoluene ug/m3 <21	Isopropylbenzene	ug/m3	34	28	19
4-Ethyltoluene ug/m3 <21	2-Chlorotoluene	ug/m3	<44	<44	nm
m,p-Xylene ug/m3 67 66 2 o-Xylene ug/m3 24 24 0 Styrene ug/m3 <7.2	Propylbenzene	ug/m3	<21	<21	nm
o-Xylene ug/m3 24 24 0 Styrene ug/m3 <7.2	4-Ethyltoluene	ug/m3	<21	<21	nm
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	m,p-Xylene	ug/m3	67	66	2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	o-Xylene	ug/m3	24	24	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Styrene	ug/m3	<7.2	<7.2	nm
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Bromoform	ug/m3	<18	<18	nm
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Benzyl chloride	ug/m3	< 0.44	< 0.44	nm
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1,3,5-Trimethylbenzene	ug/m3	<21	<21	nm
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1,2,4-Trimethylbenzene	ug/m3	<21	<21	nm
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1,3-Dichlorobenzene	ug/m3	< 5.1	< 5.1	nm
1,2,4-Trichlorobenzene ug/m3 <6.3 <6.3 nm Naphthalene ug/m3 <2.2 <2.2 nm	1,4-Dichlorobenzene	ug/m3	< 1.9	< 1.9	nm
Naphthalene ug/m3 <2.2 <2.2 nm	1,2-Dichlorobenzene	ug/m3	< 5.1	< 5.1	nm
Naphthalene ug/m3 <2.2 <2.2 nm			< 6.3	<6.3	nm
Hexachlorobutadiene ug/m3 <1.8 <1.8 nm		ug/m3	< 2.2	< 2.2	nm
	Hexachlorobutadiene	ug/m3	<1.8	<1.8	nm

ENVIRONMENTAL CHEMISTS

Date of Report: 04/02/21 Date Received: 03/24/21

Project: Walker Chevrolet 080190, F&BI 103460

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Propene	ug/m3	23	114	70-130
Dichlorodifluoromethane	ug/m3	67	129	70-130
Chloromethane	ug/m3	28	133 vo	70-130
F-114	ug/m3	94	115	70-130
Vinyl chloride	ug/m3	35	116	70-130
1,3-Butadiene	ug/m3	30	102	70-130
Butane	ug/m3	32	112	70-130
Bromomethane	ug/m3	52	121	70-130
Chloroethane	ug/m3	36	119	70-130
Vinyl bromide	ug/m3	59	113	70-130
Ethanol	ug/m3	25	113	70-130
Acrolein	ug/m3	31	95	70-130
Pentane	ug/m3	40	99	70-130
Trichlorofluoromethane	ug/m3	76	114	70-130
Acetone	ug/m3	32	107	70-130
2-Propanol	ug/m3	33	104	70-130
1,1-Dichloroethene	ug/m3	54	103	70-130
trans-1,2-Dichloroethene	ug/m3	54	94	70-130
Methylene chloride	ug/m3	94	511 vo	70-130
t-Butyl alcohol (TBA)	ug/m3	41	102	70-130
3-Chloropropene	ug/m3	42	106	70-130
CFC-113	ug/m3	100	101	70-130
Carbon disulfide	ug/m3	42	99	70-130
Methyl t-butyl ether (MTBE)	ug/m3	49	95	70-130
Vinyl acetate	ug/m3	48	95	70-130
1,1-Dichloroethane	ug/m3	55	106	70-130
cis-1,2-Dichloroethene	ug/m3	54	94	70-130
Hexane	ug/m3	48	93	70-130
Chloroform	ug/m3	66	108	70-130
Ethyl acetate	ug/m3	49	107	70-130
Tetrahydrofuran	ug/m3	40	103	70-130
2-Butanone (MEK)	ug/m3	40	97	70-130
1,2-Dichloroethane (EDC)	ug/m3	55	121	70-130
1,1,1-Trichloroethane	ug/m3	74	110	70-130
Carbon tetrachloride	ug/m3	85	111	70-130
Benzene	ug/m3	43	91	70-130
Cyclohexane	ug/m3	46	86	70-130
1,2-Dichloropropane	ug/m3	62	92	70-130
1,4-Dioxane	ug/m3	49	88	70-130
2,2,4-Trimethylpentane	ug/m3	63	77	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 04/02/21 Date Received: 03/24/21

Project: Walker Chevrolet 080190, F&BI 103460

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: Laboratory Control Sample (continued)

Laboratory Code. Laboratory Con	Percent					
	Reporting	Spike	Recovery	Acceptance		
Analyte	Units	Level	LCS	Criteria		
Methyl methacrylate	ug/m3	55	93	70-130		
Heptane	ug/m3	55	86	70-130		
Bromodichloromethane	ug/m3	90	98	70-130		
Trichloroethene	ug/m3	73	92	70-130		
cis-1,3-Dichloropropene	ug/m3	61	94	70-130		
4-Methyl-2-pentanone	ug/m3	55	77	70-130		
trans-1,3-Dichloropropene	ug/m3	61	96	70-130		
Toluene	ug/m3	51	84	70-130		
1,1,2-Trichloroethane	ug/m3	74	93	70-130		
2-Hexanone	ug/m3	55	99	70-130		
Tetrachloroethene	ug/m3	92	83	70-130		
Dibromochloromethane	ug/m3	120	92	70-130		
1,2-Dibromoethane (EDB)	ug/m3	100	86	70-130		
Chlorobenzene	ug/m3	62	89	70-130		
Ethylbenzene	ug/m3	59	88	70-130		
1,1,2,2-Tetrachloroethane	ug/m3	93	96	70-130		
Nonane	ug/m3	71	106	70-130		
Isopropylbenzene	ug/m3	66	83	70-130		
2-Chlorotoluene	ug/m3	70	85	70-130		
Propylbenzene	ug/m3	66	90	70-130		
4-Ethyltoluene	ug/m3	66	86	70-130		
m,p-Xylene	ug/m3	120	84	70-130		
o-Xylene	ug/m3	59	90	70-130		
Styrene	ug/m3	58	74	70-130		
Bromoform	ug/m3	140	83	70-130		
Benzyl chloride	ug/m3	70	87	70-130		
1,3,5-Trimethylbenzene	ug/m3	66	82	70-130		
1,2,4-Trimethylbenzene	ug/m3	66	77	70-130		
1,3-Dichlorobenzene	ug/m3	81	90	70-130		
1,4-Dichlorobenzene	ug/m3	81	86	70-130		
1,2-Dichlorobenzene	ug/m3	81	91	70-130		
1,2,4-Trichlorobenzene	ug/m3	100	87	70-130		
Naphthalene	ug/m3	71	88	70-130		
Hexachlorobutadiene	ug/m3	140	96	70-130		

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

City, State, ZIP Seattle, WA 98104 Address 710 2ind Ave, Sec 550 Company Aspect GASUHARY Report To XXX 40 Green 103460

SAMPLE CHAIN
CHAIN
OF.
N OF CUSTODY
ME
03/
8

	The state of the s		
•	SAMPLERS (signature)		Page# of
1 2 20	Chenry		TURNAROUND TIME
COURT HAND	PROJECT NAME & ADDRESS	PO#	Standard
d Ave Skesso	Wallow Charlete	Ospigo	Rush charges authorized by:
ATR, WA 98704	NOTES:	INVOICE TO	SAMPLE DISPOSAL
Email bogress @ respect consulting usin	SUITING LOVA	さ	Archive (Fee may apply)
		The second secon	
N		ANALYSIS REQUESTED	QUESTED
_			

IA / SG	IA / SG	IA / SG	IA / SG	IA / SG	IA / SG	VE-10MB-032421 02 1305 111 1A / 60 3/24/21 129 04/26	EFF-032421 01 3667 18 1A /(SG) 3/24/21 30 0917	Reporting Level: Initial Field Sample Name ID ID ID ID Circle One) Reporting Level: Flow IA=Indoor Air SG=Soil Gas Date Vac. Initial Field Circle One) Sampled ("Hg) Time
						22	 	Field Final Initial Vac.
					The state of the s	833	0922	Field Final ic. Final
	0					X ,		TO15 Full Scan
	Samples received							TO15 BTEXN
 	les r	 			<u> </u>	 	×	TO15 cVOCs APH
	ecei.					 	<u> </u>	Helium
		<u> </u>						
	at 18 °C	The state of the s						Notes

FORMS\COC\COCTO-15,DOC	Fax (206) 283-5044	Ph. (206) 285-8282	2029		•
	Received by:	Relinquished by:	Received by: m/h/hms	Relinquished by:	SIGNATURE
			phan phan	Rashel Conwell	PRINT NAME
			FEBI	Aspect	COMPANY
			3/24/21 1406	3/24/21	DATE
			1406	1406	TIME

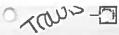
A	NON-HAZARDOUS 1. Generator ID Number	2. Page 1 of	3. Emergency Response Pho	one 4. Waste T	racking Nun	nber 0
	WASTE MANIFEST WAD988477873	1	(800) 337-7455		-020	119-60
	5. Generator's Name and Mailing Address Thrifbway Properties LLC 710 2 nd Ave., 5te: 550 Seattle, WA 98104 Generator's Phone: (206) 838-5831 Attn: Dave Heff 6. Transporter 1 Company Name	THE F	Frentice Sig Advessific 608 North 1" Street Tacoma, WA 98403	U.S. EPAID		
Н	DH Environmental, Inc.			WAHOO		7
	7. Transporter 2 Company Name Chemical Waste Management of the Northwest			U.S. EPA ID		
Ш	Designated Facility Name and Site Address Chemical Waste Management of the Northwest			U.S. EPA ID I	Number	
	17629 Cedur Springs Lane Arlington, OR 97812 Facilit's Phone (541) 454-2643			CRD089	4523.7	•
Н	9. Waste Shipping Name and Description		10. Containers No. 1	11. Total Type Quantity	12. Unit Wt./Vol.	
GENERATOR -	*Material Not Regulated by DOT (non-Regulated IDW ********) Soci		17	M 11,500	P	X094
GEN	2.					
	3.					
	4.					
Ш						
Ш	13. Special Handling Instructions and Additional Information ORG28266 — LFO1/STARO1, Figure 198					
П	1. IDNV suil					
Н				MAKE	970)272
Н	14. GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of this	s consignment a	re fully and accumulely describe	d above by the proper ship		
V	marked and labeled/placarded, and are in all respects in proper condition for transport as Generator's/Offeror's Printed/Typed Name Lecyland Turkey Lecyland Turkey		nature	n vernmentäjkegulations. Meuvei	#	Month Day Year
INT'L	15. International Shipments Import to U.S.	Export from U	7	7/	1.6	7
	Transporter Signature (for exports only): 16. Transporter Acknowledgment of Receipt of Materials		Date leaving U		- /	
THANSPORTER	Transporter 1 Printed Typed Name Townsporter 1 Printed Typed Name	Sig	nature Tearras	14 War		Month Day Year
THANS	Transporter 2 Printed/Typed Name Pincel / q	Sig	nature 4/	/		Month Day Year 2 5 19
4	17. Discrepancy 17a. Discrepancy Indication Space	•				
	Type		Residue Manifest Reference Numbr	Partial Reje	ection	L Full Rejection
DESIGNATED FACILITY	17b. Alternate Facility (or Generator)			U.S. EPA ID N	lumber	
ED F	Facility's Phone: 17c. Signature of Alternate Facility (or Generator)					Month Day Year
GNAT						
- DESI						
	18. Designated Facility Owner or Operator: Certification of receipt of materials covered by the	manifest except	noted in term 17a	1		
¥	Printed/Typersame Our Gp		lure lu 6	de		Month Day Year 2 19 19
169	-BLC-O 6 10498 (Rev. 9/09)			DESIGNATE	D FACIL	LITY TO GENERATOR

A	NON-HAZARDOUS WASTE MANIFEST UAD 988477813 2. Page 1	of 3. Emergency Response Phone	4. Waste Tracking Number 17 P - 0201	719-01
П	5. Generator's Name and Mailing Address	Generator's Site Address (if different	than mailing address)	
	Generator's Phone: 6. Transporter 1 Company Name Wion Pacific Rail 7 7. Transporter 2 Company Name Countries Pidan 1			
	6. Transporter 1 Company Name Was Dactic Rail 7	load	U.S. EPA ID Number	792910
	7. Transporter 2 Company Name	and full	U.S. EPA ID Number	7173457
	Designated Facility Name and Site Address	and file	U.S. EPA ID Number	1112427
	Facility's Phone:		ı	
Ш	Facility's Phone:	10. Containers	11, Total 12, Unit	
	Waste Shipping Name and Description	No. Type	Quantity Wt./Vol.	w
GENERATOR				
GENE	2.			
	3.			
				1
	4.			
	13. Special Handling Instructions and Additional Information	L.		
			WHYLL 9	10272
	14. GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of this consignmen marked and labeled/placarded, and are in all respects in proper condition for transport according to app	t are fully and accurately described above	by the proper shipping name, a	
		oncapie international and national governm Gignature	nental regulations.	Month Day Year
*	15. International Shipments			
INT.	Import to U.S. Export from Transporter Signature (for exports only):	n U.S. Port of entry/exit: Date leaving U.S.:		
띮	16. Transporter Acknowledgment of Receipt of Materials	**************************************		
POR	Transporter 1 Printed/Typed Name Support	Signature		Month Day Year
TRANSPORTER	Transporter & Frinted/Typed Name L Dabhen	Signature August C	abben	Month Day Year
A	17. Discrepancy	The Co		
	17a. Discrepancy Indication Space Quantity Type	Residue	Partial Rejection	Full Rejection
ļ		Manifest Reference Number:		
iLITY	17b. Alternate Facility (or Generator)		U.S. EPA ID Number	
FAC	Facility's Phone:			
DESIGNATED FACILITY	17c. Signature of Alternate Facility (or Generator)			Month Day Year
- DESIC				
	18. Designated Facility Owner or Operator: Certification of receipt of materials covered by the manifest exc	ept as noted in Item 17a		
1 P 2		- F		

Pleas	se print or type.		-5								Approved. O	MB No. 2	050-0039
	UNIFORM HAZARDOUS WASTE MANIFEST		2 7 5 5 5,	184	2. Page 1 of	(800	gency Response)-337-7455		4. Manifest	012	1083	JJ	K
	5. Generator's Name and Mailin Thriftway Propert 401 2nd Ave S #2 Seattle V/A 9810 Generator's Phone: 2 0	les LLC 101 14 8 831	3 - 8 5 9 2	Att A	Jan Noell	633 I	or's Site Address oway Prope Division Avo ma WA 98	e een					
	Transporter 1 Company Nan	ne							U.S. EPA ID N				100
	OH Environmer	ntal Inc.									0 0 4 7	7 2 1	7
	7. Transporter 2 Company Nan	ne				The same			U.S. EPA ID N	lumber			
	Chemical Wast		nt						ORE	0 8	9 4 5 2	2 3 5	3
	8. Designated Facility Name an CHEMICAL WAS 17829 CEDAR S ARLINGTON OI	TE MANAGEM PRINGS LANG R 97812							U.S. EPA ID I				
Ш	Facility's Phone: 541 4	54-2643							ORL	0 8	9 4 5	2 3 5	3
	9a. 9b. U.S. DOT Descript and Packing Group (if		hipping Name, Hazard (Class, ID Number,	97		10. Contain	ners Type	11. Total Quantity	12. Unit Wt./Vol.	13. Wa	aste Codes	
GENERATOR -	X Tetrachlorceti		liquid, n.o.s. (Tr	ichloroethen	e,		015	DM	4,500	P	F002		
GEN	3.												
	4.												
	14. Special Handling Instruction 15. GENERATOR'S/OFFER	ERG#171		the contents of this	consignment	t are fully	and accurately de	escribed above			<u> 1 980</u>		
	marked and labeled/plac Exporter, I certify that the I certify that the waste m	arded, and are in all re contents of this consiqued inimization statement in	spects in proper condition grament conform to the to dentified in 40 CFR 262	on for transport acc erms of the attache 27(a) (if I am a lar	cording to appled EPA Acknow ge quantity ge	licable inte wledgmen nerator) o	ernational and nat t of Consent. or (b) (if I am a sm	tional governr	mental regulations	s. If export sh	nipment and I ar	n the Prima	iry
	Generator's/Offeror's Printed/	Typed Name	oenall of	. NI/til	NAY Si	gnature	7-1	l_			Monti	Day	
INT.L	16. International Shipments Transporter signature (for exp	Import to oorts only):	U.S.		Export from	U.S.	Port of el Date leav						
12	17. Transporter Acknowledgme	ent of Receipt of Materia	als					1	1				1
TRANSPORTER	Transporter 1 Printed/Typed N Transporter 2 Printed/Typed N	IRVIS	Forsi	ine		gnature	1	N			Mont	14	Year
TRAI		CHAEL	CASTANE	-DA			4/ /	1	ing		13	- 11	119
	18. Discrepancy Indication S	ipace Quan	tity	Туре			Residue Applifact Reference	oo Numbor	Partial Ro	ejection	Г	Full Reje	ection
DESIGNATED FACILITY	18b. Alternate Facility (or Ger	nerator)				r	Manifest Reference	o Mullioet.	U.S. EPA ID	Number			
FAC	Facility's Phone:												
	18c. Signature of Alternate Fa	acility (or Generator)									Mor	th Day	Year
IAT												1	
5	19. Hazardous Waste Report	Management Method	Codes (i.e., codes for ha	azardous waste tre	atment, dispos	sal, and re	ecycling systems)			3		<u> </u>	
DES	1.	27	2.		3.				4.				
11	/71	00					Za 2	100					
	20. Designated Facility Owner Printed/Typed Name	r or Operator: Certifica	tion of receipt of hazard	ous materials cove		inifest exc Signature	ept as noted in It	em 18a			Mor	th Day	Year
1	Timed Typed Name	Dawn	Dunia	0	1	-ignature	Au 6				=	317	31/9

Please print or type. Form Approved. OMB No. 2050-0039 23. Manifest Tracking Number 21. Generator ID Number 22. Page UNIFORM HAZARDOUS WASTE MANIFEST (Continuation Sheet) 24. Generator's Name U.S. EPA ID Number 25. Transporter Company Name U.S. EPAID Number 26. Transporter Company Name 28. Containers 27b. U.S. DOT Description (including Proper Shipping Name, Hazard Class, ID Number, 29. Total 30. Unit 31. Waste Codes Quantity and Packing Group (if any)) Wt./Vol. No. Type 32. Special Handling Instructions and Additional Information MXU 980684 33. Transporter _____3 Acknowledgment of Receipt of Materials TRANSPORTER Printed/Typed Name___ Signature Acknowledgment of Receipt of Materials 34. Transporter Printed/Typed Name Signature 35. Discrepancy DESIGNATED FACILITY 36. Hazardous Waste Report Management Method Codes (i.e., codes for hazardous waste treatment, disposal, and recycling systems)

Please print or type.


A MINISTRALIA TARRELLA I Generator ID Number

3|3|

Form Approved. OMB No. 2050-0039

11		AST MANIFEST	WA	D 5 5	, 477	410 4		(800	1)-337-745	5	4. Manife	2012	2108	38	J.IK
	2	enerator's Name and Thriftway Prop 101 2nd Ave S Seattle WA 9	erties LLC #201 8104			Att	: Alan Noell	Thrift	tway Prop	erties LL(han mailing add	ress)	in the second		001
	Gene	rator's Phone: ansporter 1 Company	0.00	838-	8502			1200	ma WA 9	88403 Mar 4	3-19 D	er Sc	0H SH	John	-/CH
П	F	? Transport	ne	-10											
	1	insporter 2 Company					N.				U.S. EPA ID		0 0 :	2 8 3	3 8
	8. De:	Chemical Wassignated Facility Nam	iste Mana	aement			170				LOR	D_0_8	Q 4 -	5 2 3	5 3
	, C	HEMICAL W	ASTE MAN	AGEMENT	T, INC						U.S. EPA ID	Number			
	l A	7829 CEDAR RUNGTON y's Phone: 544	OR 97812								i				
П	9a.	9b. U.S. DOT Desc	ription (including		Name, Hazard	Class, ID Number	r,		10. Conta	iners	11. Total	_	94	5 2 3	5 3
	НМ	and Packing Group	(if any))						No.	Туре	Quantity	12. Uni Wt./Vol		3. Waste C	odes
CLINERALOR		5,1 OIII	azardous w	raste, solid,	, n.o.s. (Te	trachloroeth	nene, Soil)		100	CM	10	T	F002		
		2.										 '			+
-		3.													
ŀ		4.	10. 10. 10.					_							
1															
ŀ	4. Spe	cial Handling Instruc	tions and Addition										1		
			3ulk ERG#	171	and the	<u></u>	1 mXM	8	בזר	K	N. A. William	L.			
1	5. GE ma Exp	ENERATOR'S/OFFE irked and labeled/pla porter, I certify that the ertify that the waste r or's/Offeror's Printed	ROR'S CERTIFIC carded, and are to contents of this inimization state.	CATION: I hereb in all respects in s consignment co ement identified in	nform to the ten	e contents of this for transport according of the attache	consignment are cording to applicat	fully and ble interna gment of alor) or (b	d accurately de- ational and nati	scribed above l onal governme	ntal regulations.	lipping nam If export st	e, and are cla ripment and I	am the Pri	mary y Y <u>e</u>
1 G	5. GE ma Exp I ce enerato	ENERATOR'S/OFFE irked and labeled/pla porter, I certify that the ertify that the waste r or's/Offeror's Printed	ROR'S CERTIFIC carded, and are in the contents of this ninimization state. Typed Name	CATION: I hereb in all respects in a s consignment co	nform to the ten	e contents of this for transport acc ms of the attache 7(a) fill am a larg	s consignment are cording to applicat d EPA Acknowled ge quantity genera Signat	e fully and ple interna gment of ator) or (b ture	d accurately de- ational and nati f Consent. o) (if I am a sma	scribed above I onal governme If quantity gene	ntal regulations.	lipping nam If export sh	ripment and I	am the Pri	mary y Y <u>e</u>
Ti	5. GE ma Ex l ce enerate Proposition in Internation	ENERATOR'S/OFFE arked and labeled/pla porter, I certify that the rtify that the waste r or's/Offeror's Printed attional Shipments riter signature (for ex	ROR'S CERTIFIC Carded, and are lee contents of this minimization state. Typed Name Or I TOWNS Imports only):	CATION: I hereb in all respects in s consignment co ment identified in port to U.S.	nform to the ten	e contents of this for transport acc ms of the attache 7(a) fill am a larg	s consignment are cording to applicated d EPA Acknowled ge quantity genera	e fully and ple interna gment of ator) or (b ture	d accurately de- ational and nati	scribed above to nail governme If quantity gene	ntal regulations.	lipping nam	ripment and I	am the Pri	mary y Y <u>e</u>
1 G	5. GE ma Explice enerate continues in Internation ranspor	ENERATOR'S/OFFE arked and labeled/pla porter, I certify that it ertify that the waste r or's/Offeror's Printed. hational Shipments riter signature (for ex- sporter Acknowledgm	ROR'S CERTIFIC Carded, and are lee contents of this minimization state. Typed Name Typed Name Imports only):	CATION: I hereb in all respects in s consignment co ment identified in port to U.S.	nform to the ten	e contents of this for transport acc ms of the attache 7(a) fill am a larg	s consignment are cording to applicate department of EPA Acknowled the quantity general Signate Export from U.S.	e fully and ole interna gment of ator) or (b ure	d accurately de- ational and national f Consent. b) (if I am a sma	scribed above to nail governme If quantity gene	ntal regulations.	lipping nam If export st	ripment and I	am the Pri	mary y Y <u>e</u>
16 Ti 177 Tro	5. GE ma Exp l ce enerate Proposition 3. Internansport Trans	ENERATOR'S/OFFE Irked and labeled/pla porter, I certify that the ertify that the waster ror's/Offeror's Printed autional Shipments reter signature (for ex- sporter Acknowledgm ter 1 Printed/Typed N	ROR'S CERTIFIC carded, and are in the contents of this ninimization state. Typed Name Imports only): ent of Receipt of lame	CATION: I hereb in all respects in a sconsignment comment identified in contract to U.S.	nform to the ten	e contents of this for transport acc ms of the attache 7(a) fill am a larg	s consignment are cording to applicat d EPA Acknowled ge quantity genera Signat	e fully and ole interna gment of ator) or (b ure	d accurately de- ational and national f Consent. b) (if I am a sma	scribed above to nail governme If quantity gene	ntal regulations.	lipping nam	ripment and I	am the Pri	y Year
1 16 Tr	55. GE ma Ex l cenerate Pool Transpor	ENERATOR'S/OFFE irked and labeled/pla porter, I certify that the ertify that the waster ror's/Offeror's Printed hational Shipments riter signature (for ex- sporter Acknowledgm ter 1 Printed/Typed N	ROR'S CERTIFIC carded, and are in the contents of this ninimization state. Typed Name Imports only): ent of Receipt of larme.	CATION: I hereb in all respects in a sconsignment comment identified in the control of the U.S.	nform to the ten	e contents of this for transport acc ms of the attache 7(a) fill am a larg	s consignment are cording to applicate department of EPA Acknowled the quantity general Signate Export from U.S.	fully and ble internation gment of ator) or (bure	d accurately de- ational and national f Consent. b) (if I am a sma	scribed above to nail governme If quantity gene	ntal regulations.	lipping nam If export st	Mo Mo	am the Pri	y Ye
To Tes	55. GE ma Exp of the control of the	ENERATOR'S/OFFE arked and labeled/pla porter, I certify that the rutify that the waster or's/Offeror's Printed. actional Shipments after signature (for ex- sporter Acknowledgm ter 1 Printed/Typed N	ROR'S CERTIFIC carded, and are in the contents of this ninimization state. Typed Name Imports only): ent of Receipt of lame	CATION: I hereb in all respects in a sconsignment comment identified in the control of the U.S.	nform to the ten	e contents of this for transport acc ms of the attache 7(a) fill am a larg	s consignment are cording to applicate department of EPA Acknowled ge quantity general Signate Export from U.S.	fully and ble internation gment of ator) or (bure	d accurately de- ational and national f Consent. b) (if I am a sma	scribed above to nail governme If quantity gene	ntal regulations.	lipping nam	Mo	am the Printh Day	y Ye
16 Tra	5. GE ma Explication of the control	ENERATOR'S/OFFE irked and labeled/pla porter, I certify that the ertify that the waster ror's/Offeror's Printed hational Shipments reter signature (for ex- sporter Acknowledgm ter 1 Printed/Typed N	ROR'S CERTIFIC carded, and are incertification state Typed Name Typed Name Imports only): ent of Receipt of lame Receipt of lame Receipt of lame	CATION: I hereb in all respects in a sconsignment co ement identified in port to U.S.	nform to the ten	e contents of this for transport accoms of the attache 7(a) if I am a larg	s consignment are cording to applicate department of EPA Acknowled ge quantity general Signate Export from U.S.	fully and ole internations of the gment of ator) or (bure	d accurately de- lational and natif (Consent.) (if I am a sma Put ant Date leavir	scribed above to nail governme If quantity gene	ntal regulations.	If export sh	Mo Mor Mor	am the Printh Day	y Year Year I 9
16 Tr	5. GE ma Explication of the control	ENERATOR'S/OFFE arked and labeled/plate porter, I certify that the porter of the waste re or's/Offeror's Printed. The signature (for ex- porter Acknowledgm ter 1 Printed/Typed No. according to the signature of the signa	ROR'S CERTIFIC carded, and are incertification state Typed Name Typed Name Imports only): ent of Receipt of lame Receipt of lame Receipt of lame	CATION: I hereb in all respects in a sconsignment comment identified in the control of the U.S.	nform to the ten	e contents of this for transport acc ms of the attache 7(a) fill am a larg	s consignment are cording to applicate department of EPA Acknowled ge quantity general Signate Export from U.S.	fully and ole internations of the gment of ator) or (bure	d accurately de- ational and national f Consent. b) (if I am a sma	scribed above to nail governme If quantity gene	ntal regulations.	If export sh	Mo Mor Mor	am the Printh Day	Yes 19
1 17 Tra	Explanation of the control of the co	ENERATOR'S/OFFE rked and labeled/pla porter, i certify that the porter is certify that the porter is printed. Porter is printed. Shipments riter signature (for ex- sporter Acknowledgm ter 1 Printed/Typed N Carlot	ROR'S CERTIFIC carded, and are in the contents of this ininimization state Typed Name Towns Imports only): ent of Receipt of clarme lame pace	CATION: I hereb in all respects in a sconsignment co ement identified in port to U.S.	nform to the ten	e contents of this for transport accoms of the attache 7(a) if I am a larg	s consignment are cording to applicate department of EPA Acknowled ge quantity general Signate Export from U.S.	e fully and ole interna gment of ator) or (b	d accurately de- lational and natif (Consent.) (if I am a sma Put ant Date leavir	scribed above tonal governme If quantity gene If quantity	erator) is true.	If export sh	Mo Mor Mor	am the Printh Day	Ye 19
16 To 18 18.	Explanation of the control of the co	ENERATOR'S/OFFE arked and labeled/plate porter, I certify that the porter of the waste re or's/Offeror's Printed. The signature (for ex- porter Acknowledgm ter 1 Printed/Typed No. according to the signature of the signa	ROR'S CERTIFIC carded, and are in the contents of this ininimization state Typed Name Towns Imports only): ent of Receipt of clarme lame pace	CATION: I hereb in all respects in a sconsignment co ement identified in port to U.S.	nform to the ten	e contents of this for transport accoms of the attache 7(a) if I am a larg	s consignment are cording to applicate department of EPA Acknowled ge quantity general Signate Export from U.S.	e fully and ole interna gment of ator) or (b	d accurately de- lational and natificonsent. Consent. O) (iff am a sma Put and and participation of the consent	scribed above tonal governme If quantity gene If quantity	ntal regulations.	If export sh	Mo Mor Mor	am the Printh Day	Ye 19
16 Transition 18 18 18 18 18 18 18 18 18 18 18 18 18	55. GE ma Exil 1 ce enerate 1 c	ENERATOR'S/OFFE Inked and labeled/pla porter, I certify that the waste in or's/Offeror's Printed. Shipments Inter signature (for ex- sporter Acknowledgm ter 1 Printed/Typed In Ler 2 Printed/Typed In Ler 2 Printed/Typed In Ler 2 Printed/Typed In Ler 2 Printed/Typed In Ler 2 Printed/Typed In Ler 2 Printed/Typed In Ler 2 Printed/Typed In Ler 2 Printed/Typed In Ler 2 Printed/Typed In Ler 2 Printed/Typed In Ler 2 Printed/Typed In Ler 2 Printed/Typed In Ler 2 Printed/Typed In Ler 2 Printed/Typed In Ler 2 Printed/Typed In Ler 2 Printed/Typed In Ler 2 Printed/Typed In Ler 2 Printed/Typed In Ler 2 Printed/Typed In Ler 3 Printed/Typed In Ler 4 Printed/Typed In Ler 5 Printed/Typed In Ler 5 Printed/Typed In Ler 6 Printed/Typed In Ler 7 Printed/Typed In Ler 7 Printed/Typed In Ler 8 Printed/Typed In Ler 9 Printed/	ROR'S CERTIFIC carded, and are le contents of this minimization state Typed Name Typed Name Imports only): ent of Receipt of lame Rame Rame Rame Rame Rame Rame Rame R	CATION: I hereb in all respects in so consignment in comment identified in contract to U.S. Materials Quantity	nform to the ten	e contents of this for transport accoms of the attache 7(a) if I am a larg	s consignment are cording to applicate department of EPA Acknowled ge quantity general Signate Export from U.S.	e fully and ole interna gment of ator) or (b	d accurately de- lational and natificonsent. Consent. O) (iff am a sma Put and and participation of the consent	scribed above tonal governme If quantity gene If quantity	erator) is true.	If export sh	Mo Mor Mor	am the Printh Day	Ye.
16 Tra 18 18 18 18 18 18 18 18 18 18 18 18 18	55. GE ma Exil 1 ce enerate 1 c	ENERATOR'S/OFFE arked and labeled/plate porter, I certify that the waste re or's/Offeror's Printed. The signature (for ex- sporter Acknowledgm ter 1 Printed/Typed No. Acknowledgm ter 2 Printed/Typed No. Papancy repancy Indication S mate Facility (or General	ROR'S CERTIFIC carded, and are le contents of this minimization state Typed Name Typed Name Imports only): ent of Receipt of lame Rame Rame Rame Rame Rame Rame Rame R	CATION: I hereb in all respects in so consignment in comment identified in contract to U.S. Materials Quantity	nform to the ten	e contents of this for transport accoms of the attache 7(a) if I am a larg	s consignment are cording to applicate department of EPA Acknowled ge quantity general Signate Export from U.S.	e fully and ole interna gment of ator) or (b	d accurately de- lational and natificonsent. Consent. O) (iff am a sma Put and and participation of the consent	scribed above tonal governme If quantity gene If quantity	erator) is true.	If export sh	Mo Mor Mor	am the Printh Day	Yed
16 Tr. 17 Tr. 18 18.	55. GE maa Ex 1 cc enerate P	ENERATOR'S/OFFE arked and labeled/pla porter, I certify that the retify that the waste re or's/Offeror's Printed. Pational Shipments reter signature (for ex- sporter Acknowledgm ter 1 Printed/Typed N Ler 2 Printed/Typed N pancy repancy Indication S mate Facility (or Gen Phone: ature of Alternate Facility and Pational Phone:	ROR'S CERTIFIC carded, and are in the contents of this ininimization state Typed Name Towns Imports only): ent of Receipt of Idame Imports only: ent of Receipt of Idame Imports only: items Imports only: items Imports only: Imp	CATION: I hereb is consignment co- ment identified in port to U.S. Materials Quantity	nform to the ten	e contents of this for transport accommodities of the attache of t	s consignment are pording to applicate de EPA Acknowled ge quantity general Signate Export from U.S.	e fully and ole interna gment of alor) or (b ure	d accurately de- lational and natif Consent. b) (if I am a sma Put a ent Date leavin Residue	scribed above tonal governme If quantity gene If quantity	erator) is true.	If export sh	Mo Mor	am the Printh Da	Yed
18 18 18 18 18 18 18 18 18 18 18 18 18 1	55. GE maa Ex 1 cc enerate P	ENERATOR'S/OFFE Inked and labeled/pla porter, I certify that the waste in or's/Offeror's Printed. Shipments Inter signature (for ex- sporter Acknowledgm ter 1 Printed/Typed In Ler 2 Printed/Typed In Ler 2 Printed/Typed In Ler 2 Printed/Typed In Ler 2 Printed/Typed In Ler 2 Printed/Typed In Ler 2 Printed/Typed In Ler 2 Printed/Typed In Ler 2 Printed/Typed In Ler 2 Printed/Typed In Ler 2 Printed/Typed In Ler 2 Printed/Typed In Ler 2 Printed/Typed In Ler 2 Printed/Typed In Ler 2 Printed/Typed In Ler 2 Printed/Typed In Ler 2 Printed/Typed In Ler 2 Printed/Typed In Ler 2 Printed/Typed In Ler 2 Printed/Typed In Ler 3 Printed/Typed In Ler 4 Printed/Typed In Ler 5 Printed/Typed In Ler 5 Printed/Typed In Ler 6 Printed/Typed In Ler 7 Printed/Typed In Ler 7 Printed/Typed In Ler 8 Printed/Typed In Ler 9 Printed/	ROR'S CERTIFIC carded, and are in the contents of this ininimization state Typed Name Towns Imports only): ent of Receipt of Idame Imports only: ent of Receipt of Idame Imports only: items Imports only: items Imports only: Imp	CATION: I hereb is consignment co- ment identified in port to U.S. Materials Quantity	nform to the ten	e contents of this for transport accommodities of the attache of t	s consignment are pording to applicate de EPA Acknowled ge quantity general Signate Export from U.S.	e fully and ole interna gment of alor) or (b ure	d accurately de- lational and natif Consent. b) (if I am a sma Put a ent Date leavin Residue	scribed above tonal governme If quantity gene If quantity	erator) is true.	If export sh	Mo Mor	am the Printh Da	Yed
18 18 18 18 18 18 18 18 18 18 18 18 18 1	55. GE ma Exil 1 ce enerate 1 c	ENERATOR'S/OFFE Inked and labeled/pla porter, I certify that the waste in or's/Offeror's Printed. Shipments Inter signature (for ex- sporter Acknowledgm ter 1 Printed/Typed In Acknowledgm ter 1 Printed/Typed In Acknowledgm ter 2 Printed/Typed In Acknowledgm ter 1 Printed/Typed In Acknowledgm ter 1 Printed/Typed In Acknowledgm ter 1 Printed/Typed In Acknowledgm ter 1 Printed/Typed In Acknowledgm ter 2 Printed/Typed In Acknowledgm ter 1 Printed/Typed In Acknowledgm ter 2 Printed/Typed In Acknowledgm ter 3 Printed/Typed In Acknowledgm ter 4 Printed/Typed In Acknowledgm ter 5 Printed/Typed In Acknowledgm ter 5 Printed/Typed In Acknowledgm ter 6 Printed/Typed In Acknowledgm ter 1 Printed/Typed In Acknowledgm ter 1 Printed/Typed In Acknowledgm ter 2 Printed/Typed In Acknowledgm ter 2 Printed/Typed In Acknowledgm ter 3 Printed/Typed In Acknowledgm ter 4 Printed/Typed In Acknowledgm ter 5 Printed/Typed In Acknowledgm ter 5 Printed/Typed In Acknowledgm ter 1 Printed/Typed In Acknowledgm ter 1 Printed/Typed In Acknowledgm ter 2 Printed/Typed In Acknowledgm ter 2 Printed/Typed In Acknowledgm ter 3 Printed/Typed In Acknowledgm ter 4 Printed/Typed In Acknowledgm ter 4 Printed/Typed In Acknowledgm ter 5 Printed/Typed In Acknowledgm ter 5 Printed/Typed In Acknowledgm ter 6 Printed/Typed In Acknowledgm ter 7 Printed/Typed In Acknowledgm ter 1 Printed/Typed In Acknowledgm ter 1 Printed/Typed In Acknowledgm ter 1 Printed/Typed In Acknowledgm ter 1 Printed/Typed In Acknowledgm ter 2 Printed/Typed In Acknowledgm ter 1 Printed/Typed In Acknowledgm ter 2 Printed/Typed In Acknowledgm ter 3 Printed/Typed In Acknowledgm ter 4 Printed/Typed In Acknowledgm ter 4 Printed/Typed In Acknowledgm ter 5 Printed/Typed In Acknowledgm ter 5 Printed/Typed In Acknowledgm ter 5 Printed/Typed In Acknowledgm ter 6 Printed/Typed In Acknowledgm ter 6 Printed/Typed In Acknowledgm ter 6 Printed/Typed In Acknowledgm ter 7 Printed/Typed In Acknowledgm	ROR'S CERTIFIC carded, and are le contents of this inimization state Typed Name Typed Name Imports only): ent of Receipt of lame Pace Pace Interports only of the contents of the content	CATION: I hereb in all respects in social respects in consignment comment identified in the control of the U.S. Materials Quantity and Codes (i.e., or 2)	norm to the ten 140 CFR 262.2:	e contents of this for transport accoms of the attache 7(a) II I am a larg	s consignment are pording to applicate department department of the second of the seco	Manife	d accurately de- lational and natif (Consent. b) (if I am a sma Put and a sma Put and a sma Put and a sma Residue Residue	scribed above I onal governme Il quantity gene ry/exit: ng U.S.:	Partial Reje U.S. EPA ID No	If export sh	Mo Mor	am the Printh Da	Yes 19
18 18 18 18 18 18 18 18 18 18 18 18 18 1	55. GE ma Exil 1 ce enerate 1 c	ENERATOR'S/OFFE arked and labeled/pla porter, I certify that the retify that the waste re or's/Offeror's Printed. Pational Shipments reter signature (for ex- sporter Acknowledgm ter 1 Printed/Typed N Ler 2 Printed/Typed N pancy repancy Indication S mate Facility (or Gen Phone: ature of Alternate Facility and Pational Phone:	ROR'S CERTIFIC carded, and are le contents of this inimization state Typed Name Typed Name Imports only): ent of Receipt of lame Pace Pace Interports only of the contents of the content	CATION: I hereb in all respects in social respects in consignment comment identified in the control of the U.S. Materials Quantity and Codes (i.e., or 2)	norm to the ten 140 CFR 262.2:	e contents of this for transport accoms of the attache 7(a) II I am a larg	s consignment are pording to applicate de EPA Acknowled ge quantity general Signate Si	Manife	d accurately de- lational and natif (Consent. b) (if I am a sma Put and a sma Put and a sma Put and a sma Residue Residue	scribed above I onal governme Il quantity gene ry/exit: ng U.S.:	Partial Reje U.S. EPA ID No	If export sh	Mor Mor	am the Printh Day	Ye.
18 18 18 18 19 19 1 1 1 1 1 1 1 1 1 1 1	5. GE maa Ex I cc enerate P	ENERATOR'S/OFFE Inked and labeled/pla porter, I certify that the waste in or's/Offeror's Printed. Shipments Inter signature (for ex- sporter Acknowledgm Iter 1 Printed/Typed In Acknowledgm Iter 2 Printed/Typed In Acknowledgm Iter 2 Printed/Typed In Acknowledgm Iter 2 Printed/Typed In Acknowledgm Iter 2 Printed/Typed In Acknowledgm Iter 2 Printed/Typed In Acknowledgm Iter 2 Printed/Typed In Acknowledgm Iter 2 Printed/Typed In Acknowledgm Iter 2 Printed/Typed In Acknowledgm Iter 2 Printed/Typed In Acknowledgm Iter 2 Printed/Typed In Acknowledgm Iter 2 Printed/Typed In Acknowledgm Iter 2 Printed/Typed In Acknowledgm Iter 2 Printed/Typed In Acknowledgm Iter 2 Printed/Typed In Acknowledgm Iter 3 Printed/Typed In Acknowledgm Iter 3 Printed/Typed In Acknowledgm Iter 4 Printed/Typed In Acknowledgm Iter 4 Printed/Typed In Acknowledgm Iter 4 Printed/Typed In Acknowledgm Iter 4 Printed/Typed In Acknowledgm Iter 4 Printed/Typed In Acknowledgm Iter 4 Printed/Typed In Acknowledgm Iter 5 Printed/Typed In Acknowledgm It	ROR'S CERTIFIC carded, and are in econtents of this ninimization state Typed Name Towns Imports only): ent of Receipt of lame Pace Imports only: ent of Receipt of lame Compare Imports only: ent of Receipt of lame Im	CATION: I hereb in all respects in a sconsignment comment identified in contract to U.S. Materials Quantity 2. ification of receip	codes for hazardous at of hazardous at	e contents of this for transport accoms of the attache 7(a) II I am a larg	s consignment are pording to applicate department department of the second of the seco	Manife	d accurately de- lational and natif (Consent. b) (if I am a sma Put and a sma Put and a sma Put and a sma Residue Residue	scribed above I onal governme Il quantity gene ry/exit: ng U.S.:	Partial Reje U.S. EPA ID No	If export sh	Mo Mor	am the Printh Day	y Ye

lease print or type. UNIFORM HAZARDOUS WASTE MANIFEST 21. Generalog ID Number,	22, Page	23. Man	ifeshTracking N	Form A	pproved. OMB No	. 2050-00
(Continuation Sheet) WAD 027 55518	4 2		ifest Tracking Ni	1210	188 11/	
Thrittway Propetit	5 U	C				
25. Transporter Company Name CRL	Chicago and Chicag		U.S. EPAID	198	71734	57
26. Transporter Company Name			U.S. EPA ID	Number		
27a. 27b. U.S. DOT Description (including Proper Shipping Name, Hazard Class, ID Number, HM and Packing Group (if any))	28. Con No.	tainers Type	29. Total Quantity	30. Unit Wt./Vol.	31, Waste Code	es
				++		
				-		
				-		
			2			
			1 1/2			
		-				
				1 -		
32. Special Handling Instructions and Additional Information		-				
	1	Nm	XU	876	3	
33. Transpoder Acknowledgment of Receipt of Materials Printed/Typed Name Signal		10	0/1		Month/ Day	Vent
Jan L Janbey 4	Mul	1	ann	21	1417	19
34. Transporter Acknowledgment of Receipt of Materialis Printed/Typed Name Signal	ure	- 0	6		Month Day	Year
35. Discrepancy	20.					1
36. Hazardous Waste Report Management Method Codes (i.e., codes for hazardous waste treatment, disposal, and	nd recycling systems)					
Form 8700-22A (Rev. 12-17) Previous editions are obsolete.		NONATED	EAGU TO	1	-MANIFEST S	

Chemical Waste Management Of The Northwest

17629 Cedar Springs Lane Arlington, Oregon 97812 541-454-2643 EPA I.D.# ORDO89452353

LOAD NO.			
		0.00	

MANIFEST DOC. NO. ______

INBOUND T/D: 15:02:30 2019-04-11 ID: 468770 TRK ID: 8753 L14 70700 lb G

OUTBOUND
T/D: 15:17:47 2019-04-11
ID: 468770 TRK ID: 8753 L14
70700 lb G
48800 lb FT
21900 lb N

NET 10.95 TONS

GENERATOR_

468677 Please print or type. Form Approved. OMB No. 2050-0039 1. Generator ID Numb UNIFORM HAZARDOUS 2. Page 1 of 3. Emergency Response Phone 02012100 WASTE MANIFEST WAD988477873 (800) 337-7455 5. Generator's Name and Mailing Address Thrifbaray Properties LLC (seemble griffism and formally lighter of Colorse) 491 2" Ave. 5 #201 Tacomu, WA 98403 Souttle, WA 90104 Generator's Phone: 6. Transporter 1 Company Name (205) 780-7729 Attn: Bob Hanford U.S. EPA IO Number 7. Transporter 2 Company Name HAMINATE. 8. Dispute Facilities & Facilit Chemical Waste Management of the Northwest 17629 Carlos Springs Lane Facility's Phone Artimeters, OR 97812 Sa. Sh. U.S. [504] 411345 (Fibriding Proper Shipping Name, Hazard Class, ID Number, ORD089452353 10. Containers and Packing Group (if any)) tf Total 12 Unit HM 13. Waste Codes No. Тура Outsetile MA2077, Hazar dous Waste Sulld, n.o.s., 9, PG No-GENERATOR (tetrachioroethylene) none NA3082, Hazardous Waste Liquid, n.o.s., 9 PG III (tetrachlorosthene, trichlorosthene) F40.22 50m Material Not Regulated by DOT, (norregulate) IBW-soil) 14 Specialization of the Particular (171) OR328813-STAISLS, F002 IDW wester, missels LDR's ERG: (171) OR320200 - LFO1 mon-regulated IDW soil 16. GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of this consignment are fully and accurately described above by the proper shipping name, and are classified, packaged, GERREATON SIGN FERRIA'S GERTIFICATION: I hereby deciate that the contents of this consignment are fully and accurately described above by the proper shipping name, and are classified, package marked and labeled/placented, and are in all respects in proper condition for transport according to applicable international contents of this consignment contents of the tagms of the attached EPA Acknowledgment of Company (cartify that the waste minimization statement (fortified by 40 CFR (acaditia) (if large quantity generator) or (b) (if large a small quantity payment of trust) instruction of the content of the large quantity generator) or (b) (if large a small quantity payment of trust).

| Content | Cont Generator a Gleror a Printed Typed Name __ import to U.S. __ Export from U.S. Port of entry/exits Transporter signature (for exports only): Data leaving U.S.: 17. Transporter Acknowledgment of Receipt of Malariab CONGTO Transporter 2 Philif 18. Discrepancy 18a. Discrepancy Indication Space Quantity Туре Full Rejection Partial Rejection Manifest Reference Number IGNATED FACILITY 18b. Alternate Facility (or Generator) U.S. EPAID Number Facility's Phone: 18c. Signature of Alternate Facility (or Generator) Day 19. Hazardous Waste Report Management Method Codes (i.e., codes for hazardous waste treatment, disposal, and recycling systems) DESI 20. Designated Facility Owner or Operator: Cartification of receipt of hazardous materials covered by the manufest except as gated in Item 18a EPA Form 8700-22 (Run. 12-17) Previous editions are obsolete.

DESIGNATED FACILITY TO EPA'S e-MANIFEST SYSTEM

EPA Form 8700-22 (Rev. 3-05) Previous editions are obsolete.

Form Approved. OMB No. 2050-0039 Please print or type. (Form designed for use on elite (12-pitch) typewriter. Manifest Tracking Number 017543359 2. Page 1 of | 3. Emergency Response Phone UNIFORM HAZARDOUS 1. Generator ID Numb (801) 337 - 74.53 WASTE MANIFEST Generator's Phone: U.S. EPA ID Number
WA H 000047217
U.S. EPA ID Number 6. Transporter 1 Company Na U.S. EPA ID Number Management of the ORD 037 452 353 341 454-2643 Facility's Phone: 12. Unit 9b. U.S. DOT Description (inc ding Proper Shipping Name, Hazard Class, ID Number, 13. Waste Codes Quantity WL/Vol. and Packing Group (if any)) Type HM 9, PGILL (tetractionedly fre) tace GENERATOR 00 70 o 14. Special Handling Instructions and Additional Information
1. CR34 3 1297 - Incol, Foo2 IDW Soil ERG:(171) 16. GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of this consignment are fully and accurately described above by the proper shipping name, and are classified, packaged, marked and labeled/placarded, and are in all respects in proper condition for transport according to applicable international and national governmental regulations. If export shipment and I am the Primary Exporter, I certify that the contents of this consignment conform to the terms of the attached EPAAcknowledgment of Consent.

I certify that the wester minimization statement identified in 40 CFR 282.27(a) (if I am a targe quantity generator) or (b) (if I am a small quantity generator) is true. Day ara/Ollaro's Printed/Typed Name Con be by If 20 Export from U.S. Port of entry/exit: Import to U.S. Date leaving U.S.: Transporter signature (for exports only): 17, Transporter Acknowledgment of Receipt of Materials Month Transporter 1 Printed/Typed Name 3/2/1 43TANEDA MICHAGE 16. Discrepancy Full Rejection 18a. Discrepancy Indication Space Type Residue Partial Rejection Quantity Manifest Reference Number. U.S. EPAID Number 18b. Alternate Facility (or Generator) DESIGNATED FACILITY Facility's Phone: Day 19c. Signature of Atternate Facility (or Generator) 19. Hazardous Waste Report Management Method Codes (i.e., codes for hazardous waste treatment, disposal, and recycling systems) HOYD 20. Designated Facility Owner or Operator Certification of receipt of hazardous materials covered by the manifest except as noted in Item 18a Signature Sa

18	WASTE MANIFEST I. Generator's Name and Mailir	WAD	Number 1988477873 Thriftsray Prop	eries UC	2. Page 1 of 3. Er	(800) 33	7-7455		acking Numb	32019-01
	Semerator's Phone:	Ŀā	401 2 nd Ave. 5 Seattle, WA 96	104	2 .	608 North Tacoma, V	1st Street			
	DH Erreir on DH Erreir on Transporter 2 Company Nam	mental Inc	(206) 704 772		A A	l l	ı n	U.S. EPAID	MOODOM	7217
8	. Designated Facility Name and	d Site Address	ngerment of th	fill in	a			17	D089452	EST
F	1762 Arlin	19 Cedar Springton, OR 978		he Northwest			Z.	OR	D089452	1353
	9. Waste Shipping Name	and Description		The second		10. Con	-,	11. Total	12. Unit	
- Linguistical	1. Materia	l Not Regu	ilated by DOI	, (non-regu	lated IDW so	019	Туре	11,40	Wr.val.	X004
14. Ge	3. GENERATOR'S/OFFEROR' majked and labelet/placaste herator's/Offeror's Printed/Typ	S CERTIFICATION Id, and are in all re and hame	N: I hereby declare that specia in proper conditions of the second of th	the contents of this ion for transport acco	ming to applicable into	and accurately de	scribed above	by the amous chie	MXU ping name, an	Month Day Yes
15,	International Shipments Insporter Stonature (for exporte	Import to	Brithay	- C	Expon Iron U.S.	Port of a				13/20/19
16.	Transporter Acknowledgment insporter 1 Printed/Typed Nam	of Receipt of Mai	erials		100	Date lea	vina U.S.:			
ira	insporter 2 Participant Name	Bak	CATI		Signature	Ha	Upp	6		Month Day Yes 3 20 19 Month Day Yes 3 20 19
	i. Discrepancy Indication Space	e Quanti	ty	Туре		Residue		Partial Rejec	tion	Full Rejection
	. Alternate Facility (or General	lor)				ndast Reference I	Number,	U.S. EPA ID No	mber	THE P
	ildy's Phone: . Signature of Alternate Facility	y (or Generator)	L	N ON						Month Day Yea

NON-HAZARDOUS WASTE MANIFEST 19. Generator ID Number (Continuation Sheet)	20, Pege		Tracking Num		2012
(Continuation Sheet) WAD 988477873 Generator's Name THRIFTWAY PROPERTIES //	C		FLLC	-05)	2019-0
			U.S. EPA ID		Dari.
UKA	A CONTRACT	- N	U.S. EPA ID	Number	792921
COLUMBIA NIDGE	28. Cor	LL deiners	27. Total	997 28. Unit	734.57
25. Waste Shipping Name and Description	No.	Туре	Quantity	Wt./Vol.	
			- Way	1 1	
2 10 mm or 1	120		773		
			18	- 1	
				- 5	
		a		August 10	
		L	14	8	
Later Land	7			1	
C. ST. T. W. L. L. L. T.					
				Aug B	
by the street of			4		
THE LAND STREET, STREE	1 .				
	II TAR			340	
pecial Handling Instructions and Additional Information	Market 1				
process Figures grant and Additional Recognition	36		L.		
Sale Comment of the C	na i	7	WM	VIII	180614
ensporter Acknowledgment of Receipt of Materials VTyped Name Signatur	10 15			A4_	Month Day
	3/-				13 156
Insporter Acknowledgment of Receipt of Materials ITypes Home Signatur Signatur	7	17	ach	0.0	Month Day
crepancy	you.	1	Juni	reg	Month Day 28
	The state of		10 %		
	Dist. I		· III.		

lean	e print or type.								in the live		Approved. C	DMB No. 20	050-0039
_	UNIFORM HAZARDOUS WASTE MANIFEST		er 2 7 5 5 5	184	2. Page 1 of	7800	gency Response ()-337-7455			112	1409	JJ	K
	5. Generator's Name and Ma Thriftoway Prope 401 2nd Ave S I Seattle VA 981	ling Address mies LLC 1201 04		The state of the s	Alan Pibel	Thrif 833	or's Site Address (nvcay Prope Division Avortis NA 98	rties LLC e					
	Generator's Phone: 2 6. Transporter 1 Company Na DH Environme	ame	Bare of 6 19 2	diat of executivity are the 11 at atme?	enter this per anny (city and as	ins xod Po tesas asto um	booxe and scool editeatine brus.) etc edit(is) bres	in teurn 1900 ton hooms s gains self viz	U.S. EPA ID N	0 0	0 0 4	7 2 1	7
П		ite Manageme	nt							0 8	9 4 5	2 3 5	3
		STE MANAGEN SPRINGS LANE			nastTrailer				U.S. EPA ID N				
11	Facility's Phone:						on behalf of the	eleaw sri' p	nigeOs Ra C	0 8	9 4 5	2 3 5	3
		ption (including Proper SI				signaturi a chan	10. Contain No.	ners . Type	11. Total Quantity	12. Unit Wt./Vol.	13. V	Vaste Codes	
ATOR —	14	zardous waste, ethane) 9, PGIII	liquid, n.o.s. (Trichloroethe	he, is editi		003	DM	1100	P	F002		
GENERATOR	2. at man	d amenoviš ismojo ot anatomitani veda	ead south mean	idies to sinter info lotercznona Sosp	idje rûgeer s Left in Preifer	mel // 15	e de amportante estiblides lo er	caer eveil	electric cary palis year arrang	ta palyina	anatio (ana		
	3.	nandesi (Revision 13	ne 30-2018, this m	eginning on Jar z additional Imm	nber 2017 B	n Decem da gova	Sty U.S. EPA	inges mad Promisine	do estidore da De estidore en	eroollor i an prevn	tetins o elic e used and	0	
	0.												
	4.												
	14. Special Handling Instruc	tions and Additional Infor	mation	<u> </u>									
	1)(T) OR3289								WH.			19	6
	marked and labeled/pl	ROR'S CERTIFICATION acarded, and are in all re- the contents of this consig minimization statement ic	spects in proper cond	dition for transport at	ccording to app ned EPA Ackno arge quantity ge	wledgme enerator)	nt of Consent.	tional governi	nortal regulations	nipping nam . If export s	ne, and are class hipment and l		
1	Generator's/Offeror's Printer			They Pr	aparta)	ignature	A STATE OF THE PARTY OF THE PAR	AND THE PROPERTY OF THE PARTY O	The second secon	A Asserting	IVIOI	4/16	
INT	16. International Shipments Transporter signature (for e		<u> </u>		Export from	n Ű.S.		ntry/exit: ving U.S.:					
RTER	17. Transporter Acknowledg Transporter 1 Printed/Typec				S	ignature	And the second second	man-maning and success			Mor	nth Day	nest-fit
TRANSPORTER	Transporter 2 Printed/Typed	Transfell Control	Raub		S	Signature	And the second second	or a security of the second			Mo	nth Day	Year
<u></u> ↑	18. Discrepancy	Space				1	Residue		Partial Re	piaction		Full Re	iection
	18a. Discrepancy Indication	Space Quan	tity	Туре			Manifest Referen	ce Number:					
FACII ITY	18b. Alternate Facility (or G	enerator)							U.S. EPA ID	Number			
TED FA	Facility's Phone: 18c. Signature of Alternate	Facility (or Generator)	por service	Name of the state				1. (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)			M	onth Da	y Yea
DESIGNATED	19. Hazardous Waste Rep	ort Management Method	Codes (i.e., codes fo	r hazardous waste t	reatment, dispo	osal, and	recycling systems)	4.				
I DE			2.		3			10-	4.				
	20. Designated Facility Ow Printed/Typed Name	ner or Operator: Certifica	ation of receipt of haz	ardous materials co	vered by the m	Signature	cept as noted in It	em 18a			M	onth Da	y Year
EF	A Form 8700-22 (Rev. 12	2-17) Previous edition	s are obsolete.								TRAN	SPORT	R COF

	NON HAZARDOUS 1. Generator ID Number		2. Page 1 of 3. E	mergency Respor	neo Phono	A Wasto T	racking Num	hor
A	NON-HAZARDOUS	pr pn 1 m 1						
				001-337-74 erator's Site Addre		than mailing add	ree)	-TNK-2020
	5. Generator's Name and Mailing Address	7900	11	erator's Site Addre		man maning aud	633)	
	401 2nd Ave S #201			3 Division A				
	Seattle VA 98104		13	coma WA 9	98403			
	Generator's Phone: 206 838~6592							
	6. Transporter 1 Company Name DH Environmental Inc.					U.S. EPA ID		047217
	LITELIYEDERREENSE HE.					K. B. Vol. L.	1001	04121.1
	7. Transporter 2 Company Name					U.S. EPA ID	Number	
	8. Designated Facility Name and Site Address					U.S. EPA ID	Number	
	5400 W Marginal							
	Seattle VA 96106							
	Facility's Phone:							
	racinty's Friorie.			10 Co	ntainers	44 Total	40 11-11	
	Waste Shipping Name and Description			No.	Type	11. Total Quantity	12. Unit Wt./Vol.	
	1 Non-RCRA, non-DOT (IDW Water/Gro	ound wateri		INO.	Туре	Quantity	**********	
S.								
ATC				31	majoren species	77	1/1	
E				01	11	300	Ca	
GENERATOR	2.							
ĭ								
	3.							
	4.							
	13. Special Handling Instructions and Additional Information							
	1) DH-Aspet-thriftway-IDW-10012020	3540	0					
		2 2 800	5					
		Contraction of the Contraction o	Belly Roll, Surface Street, Surface Street, St					
		3540 3280 260	00					
		Account approximation	S-100KD-CAT					
	14. GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declar	e that the contents of this	consignment are ful	ly and accurately of	described above	by the proper s	nipping name,	and are classified, packaged,
	marked and labeled/placarded, and are in all respects in proper of		ording to applicable	international and n	national governm	nental regulation	3.	
	Generator's/Offeror's Printed/Typed Name Belle / Fire &	Castonar	Signatui	e	A. The same of the			. Month Day Year
*	for fram				and the same of th			
7	15. International Shipments Import to U.S.		Export from U.S.	Port of	entry/exit:			
INT'L	Transporter Signature (for exports only):	_	2 Export from 0.0.		eaving U.S.:			
	16. Transporter Acknowledgment of Receipt of Materials			Date to	aving 0.0	1.5.4-		
TRANSPORTER	Transporter 1 Printed/Typed Name		Signatur	e A				Month Day Year
Š	A1 10-6				- Commence of the Commence of	Halland Alberta Service State of Service		16/1/20
NSI	Transporter 2 Printed/Typed Name		Signatur	P at	A TOTAL OF THE PARTY OF THE PAR			Month Day Year
RA	Transporter 2 Trinious Typou Numb		Oigilatai	C				Day Teal
-	1- 5:							
A	17. Discrepancy							
Ш	17a. Discrepancy Indication Space Quantity	Type		Residue		Partial Re	ejection	Full Rejection
				Manifest Referenc	e Number:			
≱	17b. Alternate Facility (or Generator)					U.S. EPA ID	Number	
글								
FA	Facility's Phone:							
	17c. Signature of Alternate Facility (or Generator)							Month Day Year
IAT								
DESIGNATED FACILITY								
SES								
1								p
	10 Designated Facility Community Country Country Country	materials !! !!	and the state of t	atadia tra				
-	18. Designated Facility Owner or Operator: Certification of receipt of	materials covered by the r						Marth 5
	Printed/Typed Name		Signatur	e MA				Month Day Year
•	POPON / I WIN			17				10 1 20

U78333 Form Approved. OMB No. 2050-0039 Please print or type. 1. Generator ID Number 2. Page 1 of 3. Emergency Response Phone 4. Manifest Tracking Number **UNIFORM HAZARDOUS** 020121478 **WASTE MANIFEST** WAD988477873 (800) 337-7455 5. Generator's Name and Mailing Address rator's Site Address (if different than mailing address) Thriftway Properties 501 2rd Ave. Ste. 550 608 North F Street Taroma, WA 98403 Seattle, WA 98104 (206) 812-4739 Atm: Breeyn Green Generator's Phone: U.S. EPA ID Number 6. Transporter 1 Company Name DH Environmental Inc. WAH000047217 U.S. EPA ID Number Transporter 2 Company Name Chemical Waste Management of the Northwest CRD089452353 8. Designated Facility Name and Site Address

Chemical Waste Management of the Northwest U.S. EPA ID Number 17629 Cedar Springs Lane CRD089452353 Arlington, CR 97812 Facility's Phone: 541) 454-2643 10. Containers 9b. U.S. DOT Description (including Proper Shipping Name, Hazard Class, ID Number, 11. Total 12. Unit 13. Waste Codes and Packing Group (if any)) Quantity Wt./Vol. HM No. Type NA3077, Hazardous Waste, Solid, n.o.s., 9, PG III, GENERATOR FD02 35720 cm (tetrachioroethylene) KR 10/7/2020 14. Special Handling Instructions and Additional Information 35720p. CR341097 - LF04, Bulk Flisted Sail ERG: (171) 15. GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of this consignment are fully and accurately described above by the proper shipping name, and are classified, packaged, marked and labeled/placarded, and are in all respects in proper condition for transport according to applicable international and national governmental regulations. If export shipment and I am the Primary Exporter, I certify that the contents of this consignment conform to the terms of the attached EPA Acknowledgment of Consent. I certify that the waste minimization statement identified in 40 CFR 262.27(a) (if I am a large quantity generator) or (b) (if I am a small quantity generator) is true Senerator's/Offeror's Printed/Typed Name Day Year 20 Export from U.S. Port of entry/exit: Transporter signature (for exports only): Date leaving U.S. 17. Transporter Acknowledgment of Receipt of Materials Transporter 1 Printed/Typed Name erson Transporter 2 Printe 18. Discrepancy 18a. Discrepancy Indication Space 18a. Discrepancy Indication Space Quantity Corrected Container county quantity to match amount received Residue Scott St. John Director Project Serv. Dil Rejection 18b. Alternate Facility (or Generator) U.S. EPA ID Number Facility's Phone DESIGNATED 18c. Signature of Alternate Facility (or Generator) Day Month Year 19. Hazardous Waste Report Management Method Codes (i.e., codes for hazardous waste treatment, disposal, and recycling systems) 20. Designated Facility Owner or Operator: Certification of receipt of hazardous materials covered by the manifest except as noted in Item 18a Printed/Typed Name Day MOYOAN EPA Form 8700-22 (Rev. 12-17) Previous editions are obsolete. DESIGNATED FACILITY TO EPA's e-MANIFEST SYSTEM

WASTE MANAGERENT

CONTAMINATED SOILS LAIFD DISPOSAL RESTRICTION (LDR) NOTIFICATION AND CERTINCATION FORM (PHASE IV)

Generator N	lame: Thriftway Properties LLC	
CWM Profil	e Number	
Ref.#	3. US EPA HAZARDOUS WASTE CODE(s)	4. HOWMUSTTHE WASTE BEMANAGED? ENTER LITTER FROM BELOW
1.	F002 (Tetrachloroethene)	
2, 3.		
4.		
1. This wa	ste is a non-wasrewarer (See 40 CFR 268.2).	
		c).
To list a	nn 3, identify All USEPA hazardous waste codes that apply to this wasre shipment, a additional wasre code(s) use land Disposal Notification/Certification Supplemental Fon Mercury subcategory wasre (contains less than 260 ppm total Mercury) check here:	n (CMW 2005-F) and check here: (I
with the the land regulate	nn 4, enter the letter from the Management Method list below (A.I, 8.5 or D.) that de Land disposal restriction regulations in 40 CFR 268.49. Please nore that if you enroll Disposal Restrictions and may be Landfilled without further treatment. (States authourly citations different from the 40 CFR citations listed on this form. Where these regulations estate citations as well as 40 CFR.)	er 8.5 or D, you are certifying that the wasre meets all
- 101	ing hazardous constituents (UHCs) if present must be identified. If any constituents dentify UHCs, use the Identification of Constituents of Concern Form (CM-2007) and UHCs (IOx UTS) are present at the point of generation, check here:)!(apply, check appropriate box below; d check here: 0
MANACIME	NTMETHODS	
"[w	STRICTED SOIL REQUIRES TREATMENT certify under penalty of Lawthat I personal Ly have examined this contaminated so aste and 0 does)!(does not exhibit a characteristic of hazardous waste requires to ovided by 40 CFR 268.49(c)."	il and it)(does 0 does not contain Listed hazardous eatment to meet the soil treatment standards as
"l tro tro	IRICIED SOIL TREATED TO ALTERNATE PERFORMANCE STANDARDS certify under penalty of Law that I have personally examined and am familiar with teatment process used to support this certification and believe that it has been maintateatment standards specified in 40 CFR 268.49(c) without impermissible dilution of the natties for submitting a false certification, including the possibility of fine and imprint	ined and operated properly so as to comply with
"I kn D.	STRICTED SOIL CAN BE LAND DISPOSED WITHOUT FURTHER TREATMENT certify under penalty of Law that I personal Ly have examined and am familiar with the towledge of the waste to support this certification that the waste complies with the true, accurate, and complete. I am awaste certification, including the possibility of fine and imprisonment."	catment standards specified in 40 CER 268 cubons
I hereby cert	ify that aU information submitted in this and aU assex: lated documents is complete and a	ccurate to the best of my knowledge and information.
Name: (F		rector of Project Services
	- V	

CONTAMINATED SOILS LAND DISPOSAL RESTRICTION (LDR) NOTIFICATION AND CERTIFICATION FORM (PHASE IV)

	le Number OR341097 Manifest N	umber:
Ref. #	3. US EPA HAZARDOUS WASTE CODE(s)	4. HOW MUST THE WASTE BE MANAGED? ENTER LETTER FROM BELOW
1.	F002 (Tetrachloroethene)	
2.		
3.		The second second second
4.		
This w	aste is a non-wastewater (See 40 CFR 268.2).	
In column In col	one) This contaminated soil does does not contain listed hazardous work our waste and is subject to does with the soil treatment standard umm 3, identify ALL USEPA hazardous waste codes that apply to this waste shadditional waste code(s) use Land Disposal Notification/Certification Supplement Method waste code(s) use Land Disposal Notification/Certification Supplement Method list below (A.1, B.5 or light and disposal restriction regulations in 40 CFR 268.49. Please note that if and Disposal Restrictions and may be landfilled without further treatment. (Statory citations different from the 40 CFR citations listed on this form. Where to those state citations as well as 40 CFR.) Sying hazardous constituents (UHCs) if present must be identified. If any constituentify UHCs, use the Identification of Constituents of Concern Form (CWM-2)	ipment, as defined by 40 CFR 261. ipmental Form (CMW 2005-F) and check here: be k here: C.) that describes how the waste must be managed to complyou enter B.5 or D, you are certifying that the waste meets attes authorized by EPA to manage the LDR program may have hese regulatory citations differ, your form will be deemed to
111	ENT METHODS	
A.1 R	ESTRICTED SOIL REQUIRES TREATMENT	
ti	ESTRICTED SOIL TREATED TO ALTERNATE PERFORMANCE STANDARDS I certify under penalty of law that I have personally examined and am familia reatment process used to support this certification and believe that it has been reatment standards specified in 40 CFR 268.49(c) without impermissible dilution and believe that it has been reatment standards specified in 40 CFR 268.49(c) without impermissible dilution and the possibility of fine a	en maintained and operated properly so as to comply with
D, R	ESTRICTED SOIL TREATED TO ALTERNATE PERFORMANCE STANDARDS I certify under penalty of law that I have personally examined and am familiareatment process used to support this certification and believe that it has been reatment standards specified in 40 CFR 268.49(c) without impermissible dilutions.	en maintained and operated properly so as to comply with ion of the prohibited wastes. I am aware there are significant and imprisonment." The with the waste through analysis and testing or through the transfer of the property of the transfer of the property of the transfer of the property of the transfer of the property of the pro
tr tr p D. R "] kr	ESTRICTED SOIL TREATED TO ALTERNATE PERFORMANCE STANDARDS I certify under penalty of law that I have personally examined and am familial reatment process used to support this certification and believe that it has been reatment standards specified in 40 CFR 268.49(c) without impermissible dilutional tenalties for submitting a false certification, including the possibility of fine a set in the personal tenal en maintained and operated properly so as to comply with ion of the prohibited wastes. I am aware there are significant and imprisonment." The with the waste through analysis and testing or through the interest of the treatment standards specified in 40 CFR 268 subpart I am aware there are significant penalties for submitting a	
tr tr p D. R "] kr D. fa	ESTRICTED SOIL TREATED TO ALTERNATE PERFORMANCE STANDARDS If certify under penalty of law that I have personally examined and am familial reatment process used to support this certification and believe that it has been reatment standards specified in 40 CFR 268.49(c) without impermissible dilution enalties for submitting a false certification, including the possibility of fine an ESTRICTED SOIL CAN BE LAND DISPOSED WITHOUT FURTHER TREATMENT If certify under penalty of law that I personally have examined and am familian moveledge of the waste to support this certification that the waste complies we in believe that the information I submitted is true, accurate, and complete. The submitted is true, accurate, and complete certification, including the possibility of fine and imprisonment."	en maintained and operated properly so as to comply with ion of the prohibited wastes. I am aware there are significan nd imprisonment." The with the waste through analysis and testing or through ith the treatment standards specified in 40 CFR 268 subpart I am aware there are significant penalties for submitting a

APPENDIX F

Terrestrial Ecological Evaluation Form (TEE)

Voluntary Cleanup Program

Washington State Department of Ecology Toxics Cleanup Program

TERRESTRIAL ECOLOGICAL EVALUATION FORM

Under the Model Toxics Control Act (MTCA), a terrestrial ecological evaluation is necessary if hazardous substances are released into the soils at a Site. In the event of such a release, you must take one of the following three actions as part of your investigation and cleanup of the Site:

- 1. Document an exclusion from further evaluation using the criteria in WAC 173-340-7491.
- 2. Conduct a simplified evaluation as set forth in WAC 173-340-7492.
- 3. Conduct a site-specific evaluation as set forth in WAC 173-340-7493.

When requesting a written opinion under the Voluntary Cleanup Program (VCP), you must complete this form and submit it to the Department of Ecology (Ecology). The form documents the type and results of your evaluation.

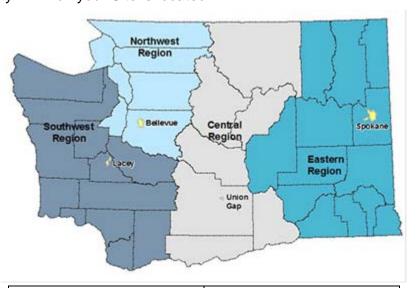
Completion of this form is not sufficient to document your evaluation. You still need to document your analysis and the basis for your conclusion in your cleanup plan or report.

If you have questions about how to conduct a terrestrial ecological evaluation, please contact the Ecology site manager assigned to your Site. For additional guidance, please refer to https://ecology.wa.gov/Regulations-Permits/Guidance-technical-assistance/Terrestrial-ecological-evaluation.

Step 1: IDENTIFY HAZARDOUS WASTE SITE			
Please identify below the hazardous waste site for which you are documenting an evaluation.			
Facility/Site Name: Morell's Dry Cleaners			
Facility/Site Address: 608 North First Street, Tacoma WA			
Facility/Site No: 18489568	VCP Project No.: SW 1039		

Step 2: IDENTIFY EVALUATOR						
Please identify below the person who conducted the evaluation and their contact information.						
Name: Breeyn Greer				Title: Project Engineer		
Organization: Aspect Consulting						
Mailing address: 701 2nd Ave. #550						
City: Seattle		Sta	te: WA	Zip code: 98104		
Phone: 612-232-734	Fax:		E-mail: bgreer@aspectconsulting.com			

Step 3: DOCUMENT EVALUATION TYPE AND RESULTS A. Exclusion from further evaluation. 1. Does the Site qualify for an exclusion from further evaluation? If you answered "YES," then answer Question 2. Yes No or If you answered "NO" or "UNKNOWN," then skip to Step 3B of this form. Unknown 2. What is the basis for the exclusion? Check all that apply. Then skip to Step 4 of this form. Point of Compliance: WAC 173-340-7491(1)(a) All soil contamination is, or will be,* at least 15 feet below the surface. All soil contamination is, or will be,* at least 6 feet below the surface (or alternative depth if approved by Ecology), and institutional controls are used to manage remaining contamination. Barriers to Exposure: WAC 173-340-7491(1)(b) All contaminated soil, is or will be,* covered by physical barriers (such as buildings or paved roads) that prevent exposure to plants and wildlife, and institutional controls are used to manage remaining contamination. Undeveloped Land: WAC 173-340-7491(1)(c) There is less than 0.25 acres of contiguous# undeveloped* land on or within 500 feet of any area of the Site and any of the following chemicals is present: chlorinated dioxins or furans, PCB mixtures, DDT, DDE, DDD, aldrin, chlordane, dieldrin, endosulfan, endrin, heptachlor, heptachlor epoxide, benzene hexachloride, toxaphene, hexachlorobenzene, pentachlorophenol, or pentachlorobenzene. For sites not containing any of the chemicals mentioned above, there is less than 1.5 X acres of contiguous# undeveloped± land on or within 500 feet of any area of the Site. Background Concentrations: WAC 173-340-7491(1)(d) Concentrations of hazardous substances in soil do not exceed natural background levels as described in WAC 173-340-200 and 173-340-709. * An exclusion based on future land use must have a completion date for future development that is acceptable to Ecology. # "Undeveloped land" is land that is not covered by building, roads, paved areas, or other barriers that would prevent wildlife from feeding on plants, earthworms, insects, or other food in or on the soil. # "Contiguous" undeveloped land is an area of undeveloped land that is not divided into smaller areas of highways, extensive paving, or similar structures that are likely to reduce the potential use of the overall area


by wildlife.

В.	. Simplified evaluation.						
1.	. Does the Site qualify for a simplified evaluation?						
	☐ Ye	s If you answered "YES," then answer Question 2 below.					
	☐ No Unkno	IT VOLLANGWARACIINI III OR "LINKNI IVVNI" TOAD GKID TO STAD REI OT TOIS TORM					
2.	Did you conduct a simplified evaluation?						
	☐ Ye	s If you answered "YES," then answer Question 3 below.					
	☐ No	If you answered "NO," then skip to Step 3C of this form.					
3.	Was further	evaluation necessary?					
	☐ Ye	s If you answered "YES," then answer Question 4 below.					
	☐ No	If you answered "NO," then answer Question 5 below.					
4.	If further eva	aluation was necessary, what did you do?					
		Used the concentrations listed in Table 749-2 as cleanup levels. If so, then skip to Step 4 of this form.					
		Conducted a site-specific evaluation. If so, then skip to Step 3C of this form.					
5.		evaluation was necessary, what was the reason? Check all that apply. Then skip					
	to Step 4 of this form.						
	· <u> </u>	nalysis: WAC 173-340-7492(2)(a) Area of soil contamination at the Site is not more than 350 square feet.					
	_	Current or planned land use makes wildlife exposure unlikely. Used Table 749-1.					
	Pathway Analysis: WAC 173-340-7492(2)(b) No potential exposure pathways from soil contamination to ecological receptors.						
	Contaminant Analysis: WAC 173-340-7492(2)(c)						
	No contaminant listed in Table 749-2 is, or will be, present in the upper 15 feet at						
		concentrations that exceed the values listed in Table 749-2.					
		No contaminant listed in Table 749-2 is, or will be, present in the upper 6 feet (or alternative depth if approved by Ecology) at concentrations that exceed the values listed in Table 749-2, and institutional controls are used to manage remaining contamination.					
		No contaminant listed in Table 749-2 is, or will be, present in the upper 15 feet at concentrations likely to be toxic or have the potential to bioaccumulate as determined using Ecology-approved bioassays.					
		No contaminant listed in Table 749-2 is, or will be, present in the upper 6 feet (or alternative depth if approved by Ecology) at concentrations likely to be toxic or have the potential to bioaccumulate as determined using Ecology-approved bioassays, and institutional controls are used to manage remaining contamination.					

C.	C. Site-specific evaluation. A site-specific evaluation process consists of two parts: (1) formulating the problem, and (2) selecting the methods for addressing the identified problem. Both steps require consultation with and approval by Ecology. See WAC 173-340-7493(1)(c).							
1.	Was there a pro	oblem? See	e WAC 173-340-7493(2).					
	☐ Yes	Yes If you answered "YES," then answer Question 2 below.						
	☐ No	If you answered "NO," then identify the reason here and then skip to Question 5 below:						
			No issues were identified during the problem formulation step.					
			While issues were identified, those issues were addressed by the cleanup actions for protecting human health.					
2.	What did you d	o to resolve	e the problem? See WAC 173-340-7493(3).					
		ed the conce estion 5 bel	entrations listed in Table 749-3 as cleanup levels. If so, then skip to low.					
			ore of the methods listed in WAC 173-340-7493(3) to evaluate and ntified problem. If so, then answer Questions 3 and 4 below.					
3.	8. If you conducted further site-specific evaluations, what methods did you use? Check all that apply. See WAC 173-340-7493(3).							
	Lite	rature surve	ys.					
	☐ Soi	l bioassays.						
	Wil	Wildlife exposure model.						
	Bio	☐ Biomarkers.						
	Site	Site-specific field studies.						
	□ We	ight of evide	nce.					
	Oth	er methods	approved by Ecology. If so, please specify:					
4.	4. What was the result of those evaluations?							
	☐ Cor	nfirmed there	e was no problem.					
	Cor	nfirmed there	e was a problem and established site-specific cleanup levels.					
5.	5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps?							
	☐ Yes	If so, pleas	e identify the Ecology staff who approved those steps:					
	□ No							

Step 4: SUBMITTAL

Please mail your completed form to the Ecology site manager assigned to your Site. If a site manager has not yet been assigned, please mail your completed form to the Ecology regional office for the County in which your Site is located.

Northwest Region: Attn: VCP Coordinator 3190 160th Ave. SE Bellevue, WA 98008-5452

Southwest Region: Attn: VCP Coordinator P.O. Box 47775 Olympia, WA 98504-7775 Central Region: Attn: VCP Coordinator 1250 West Alder St.

Eastern Region: Attn: VCP Coordinator N. 4601 Monroe Spokane WA 99205-1295

Union Gap, WA 98903-0009

APPENDIX G

VaporPin Standard Operating Procedure

Standard Operating Procedure Installation and Extraction of the Vapor Pin®

Updated March 16, 2018

Scope:

This standard operating procedure describes the installation and extraction of the VAPOR PIN® for use in sub-slab soil-gas sampling.

Purpose:

The purpose of this procedure is to assure good quality control in field operations and uniformity between field personnel in the use of the VAPOR PIN® for the collection of subslab soil-gas samples or pressure readings.

Equipment Needed:

- Assembled VAPOR PIN® [VAPOR PIN® and silicone sleeve(Figure 1)]; Because of sharp edges, gloves are recommended for sleeve installation;
- Hammer drill;
- 5/8-inch (16mm) diameter hammer bit (hole must be 5/8-inch (16mm) diameter to ensure seal. It is recommended that you use the drill guide). (Hilti™ TE-YX 5/8" x 22" (400 mm) #00206514 or equivalent);
- 1½-inch (38mm) diameter hammer bit (Hilti™ TE-YX 1½" x 23" #00293032 or equivalent) for flush mount applications;
- 3/4-inch (19mm) diameter bottle brush:
- Wet/Dry vacuum with HEPA filter (optional);
- VAPOR PIN® installation/extraction tool;
- Dead blow hammer;
- VAPOR PIN® flush mount cover, if desired;
- VAPOR PIN® drilling guide, if desired;

- VAPOR PIN® protective cap; and
- VOC-free hole patching material (hydraulic cement) and putty knife or trowel for repairing the hole following the extraction of the VAPOR PIN®.

Figure 1. Assembled VAPOR PIN®

Installation Procedure:

- 1) Check for buried obstacles (pipes, electrical lines, etc.) prior to proceeding.
- 2) Set up wet/dry vacuum to collect drill cuttings.
- 3) If a flush mount installation is required, drill a 1½-inch (38mm) diameter hole at least 1¾-inches (45mm) into the slab. Use of a VAPOR PIN® drilling guide is recommended.
- 4) Drill a 5/8-inch (16mm) diameter hole through the slab and approximately 1-inch (25mm) into the underlying soil to form a void. Hole must be 5/8-inch (16mm) in diameter to ensure seal. It is recommended that you use the drill guide.

VAPOR PIN® protected under US Patent # 8,220,347 B2, US 9,291,531 B2 and other patents pending

- 5) Remove the drill bit, brush the hole with the bottle brush, and remove the loose cuttings with the vacuum.
- 6) Place the lower end of VAPOR PIN® assembly into the drilled hole. Place the small hole located in the handle of the installation/extraction tool over the vapor pin to protect the barb fitting, and tap the vapor pin into place using a dead blow hammer (Figure 2). Make sure the installation/extraction tool is aligned parallel to the vapor pin to avoid damaging the barb fitting.

Figure 2. Installing the VAPOR PIN®

During installation, the silicone sleeve will form a slight bulge between the slab and the VAPOR PIN® shoulder. Place the protective cap on VAPOR PIN® to prevent vapor loss prior to sampling (Figure 3).

Figure 3. Installed VAPOR PIN®

7) For flush mount installations, cover the vapor pin with a flush mount cover, using either the plastic cover or the optional stainless-steel Secure Cover (Figure 4).

Figure 4. Secure Cover Installed

- 8) Allow 20 minutes or more (consult applicable guidance for your situation) for the sub-slab soil-gas conditions to reequilibrate prior to sampling.
- 9) Remove protective cap and connect sample tubing to the barb fitting of the VAPOR PIN®. This connection can be made using a short piece of TygonTM tubing to join the VAPOR PIN® with the

VAPOR PIN® protected under US Patent # 8,220,347 B2, US 9,291,531 B2 and other patents pending

Nylaflow tubing (Figure 5). Put the Nylaflow tubing as close to the VAPOR PIN® as possible to minimize contact between soil gas and TygonTM tubing.

Figure 5. VAPOR PIN® sample connection

10) Conduct leak tests in accordance with applicable guidance. If the method of leak testing is not specified, an alternative can be the use of a water dam and vacuum pump, as described in SOP Leak Testing the VAPOR PIN® via Mechanical Means (Figure 6). For flush-mount installations, distilled water can be poured directly into the 1 1/2 inch (38mm) hole.

Figure 6. Water dam used for leak detection

11) Collect sub-slab soil gas sample or pressure reading. When finished, replace

the protective cap and flush mount cover until the next event. If the sampling is complete, extract the VAPOR PIN®.

Extraction Procedure:

- 1) Remove the protective cap, and thread the installation/extraction tool onto the barrel of the VAPOR PIN® (Figure 7). Turn the tool clockwise continuously, don't stop turning, the VAPOR PIN® will feed into the bottom of the installation/extraction tool and will extract from the hole like a wine cork, DO NOT PULL.
- 2) Fill the void with hydraulic cement and smooth with a trowel or putty knife.

Figure 7. Removing the VAPOR PIN®

• Prior to reuse, remove the silicone sleeve and protective cap and discard. Decontaminate the VAPOR PIN® in a hot water and Alconox® wash, then heat in an oven to a temperature of 265° F (130° C) for 15 to 30 minutes. For both steps, STAINLESS – ½ hour, BRASS 8 minutes

VAPOR PIN® protected under US Patent # 8,220,347 B2, US 9,291,531 B2 and other patents pending

Standard Operating Procedure Installation and Removal of the Vapor Pin® Updated March 16, 2018 Page 4

3) Replacement parts and supplies are available online.

APPENDIX H

Report Limitations and Guidelines for Use

REPORT LIMITATIONS AND USE GUIDELINES

Reliance Conditions for Third Parties

This report was prepared for the exclusive use of the Client. No other party may rely on this report or the product of our services without the express written consent of Aspect Consulting, LLC (Aspect). This limitation is to provide our firm with reasonable protection against liability claims by third parties with whom there would otherwise be no contractual conditions or limitations and guidelines governing their use of the report. Within the limitations of scope, schedule and budget, our services have been executed in accordance with our Agreement with the Client and recognized standards of professionals in the same locality and involving similar conditions.

Services for Specific Purposes, Persons and Projects

Aspect has performed the services in general accordance with the scope and limitations of our Agreement. This report has been prepared for the exclusive use of the Client and their authorized third parties, approved in writing by Aspect. This report is not intended for use by others, and the information contained herein is not applicable to other properties.

This report is not, and should not, be construed as a warranty or guarantee regarding the presence or absence of hazardous substances or petroleum products that may affect the Property. The report is not intended to make any representation concerning title or ownership to the Property. If real property records were reviewed, they were reviewed for the sole purpose of determining the Property's historical uses. All findings, conclusions, and recommendations stated in this report are based on the data and information provided to Aspect, current use of the Property, and observations and conditions that existed on the date and time of the report.

Aspect structures its services to meet the specific needs of our clients. Because each environmental study is unique, each environmental report is unique, prepared solely for the specific client and Property. This report should not be applied for any purpose or project except the purpose described in the Agreement.

This Report Is Project-Specific

Aspect considered a number of unique, project-specific factors when establishing the Scope of Work for this project and report. You should not rely on this report if it was:

- Not prepared for you
- Not prepared for the specific purpose identified in the Agreement
- Not prepared for the specific real property assessed
- Completed before important changes occurred concerning the Property, project or governmental regulatory actions

If changes are made to the project or Property after the date of this report, Aspect should be retained to assess the impact of the changes with respect to the conclusions contained in the report.

Geoscience Interpretations

The geoscience practices (geotechnical engineering, geology, and environmental science) require interpretation of spatial information that can make them less exact than other engineering and natural science disciplines. It is important to recognize this limitation in evaluating the content of the report. If you are unclear how these "Report Limitations and Use Guidelines" apply to your project or site, you should contact Aspect.

Discipline-Specific Reports Are Not Interchangeable

The equipment, techniques and personnel used to perform an environmental study differ significantly from those used to perform a geotechnical or geologic study and vice versa. For that reason, a geotechnical engineering or geologic report does not usually address any environmental findings, conclusions or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. Similarly, environmental reports are not used to address geotechnical or geologic concerns regarding the Property.

Environmental Regulations Are Not Static

Some hazardous substances or petroleum products may be present near the Property in quantities or under conditions that may have led, or may lead, to contamination of the Property, but are not included in current local, state or federal regulatory definitions of hazardous substances or petroleum products or do not otherwise present potential liability. Changes may occur in the standards for appropriate inquiry or regulatory definitions of hazardous substance and petroleum products; therefore, this report has a limited useful life.

Property Conditions Change Over Time

This report is based on conditions that existed at the time the study was performed. The findings and conclusions of this report may be affected by the passage of time (for example, Phase I ESA reports are applicable for 180 days), by events such as a change in property use or occupancy, or by natural events, such as floods, earthquakes, slope failure or groundwater fluctuations. If more than six months have passed since issuance of our report, or if any of the described events may have occurred following the issuance of the report, you should contact Aspect so that we may evaluate whether changed conditions affect the continued reliability or applicability of our conclusions and recommendations.

Historical Information Provided by Others

Aspect has relied upon information provided by others in our description of historical conditions and in our review of regulatory databases and files. The available data does not provide definitive information with regard to all past uses, operations or incidents affecting the Property or adjacent properties. Aspect makes no warranties or guarantees regarding the accuracy or completeness of information provided or compiled by others.

Exclusion of Mold, Fungus, Radon, Lead, and HBM

Aspect's services do not include the investigation, detection, prevention or assessment of the presence of molds, fungi, spores, bacteria, and viruses, and/or any of their byproducts. Accordingly, this report does not include any interpretations, recommendations, findings, or conclusions regarding the detection, assessment, prevention or abatement of molds, fungi, spores, bacteria, and viruses, and/or any of their byproducts. Aspect's services also do not include the investigation or assessment of hazardous building materials (HBM) such as asbestos, polychlorinated biphenyls (PCBs) in light ballasts, lead based paint, asbestos-containing building materials, urea-formaldehyde insulation in on-site structures or debris or any other HBMs. Aspect's services do not include an evaluation of radon or lead in drinking water, unless specifically requested.