2016 ANNUAL MONITORING REPORT

OLALLA LANDFILL

KITSAP COUNTY, WASHINGTON

MARCH 2017

Prepared by

Environmental Partners, Inc., on behalf of Kitsap County Department of Public Works Port Orchard, Washington

bo l Jas C 9/in

Douglas C. Kunkel LG, LHG Principal Hydrogeologist

CHECKLIST FOR GROUNDWATER REPORTING Municipal Solid Waste Landfills WAC 173-351-415

Include a signed, completed copy of this checklist with each quarterly and annual report.

Quarterly groundwater reports shall be submitted to the jurisdictional health department and Ecology within 60 days of receipt of analytical data. Annual groundwater reports shall be submitted to the jurisdictional health department and Ecology by April 1 of each year.

1 st 2 nd 3 rd 4 th × YEAR 2016	Reference (section, subsection)	Included in this report	Location – page # or appendix #
Quarterly Groundwater Reports: 173-351-415 (2) plus the referenced section			
Statistical calculations and summaries			
Descriptive statistics	420, (1)		Pages 12.22
Statistical tests	420, (2)	\square	Pages 12-22
Notification of statistical increase (if applicable)	420, (4)	\square	Pages 20-21
Notification of concentrations above Chapter 173-200 WAC criteria (if any)	430, (4)		Pages 10-11
Static water level readings	415, (2)	\boxtimes	Appendix A
Potentiometric surface elevation maps depicting flow direction	415, (2)	\boxtimes	Appendix A
Flow rate – calculated	415, (2)		
Cation-anion balances	430, (5a)		
Explanation of greater than 5% (or 10%) difference if needed	430, (5a)		
Trilinear diagrams	430, (5b)		
Leachate analyses (if sampled and tested)	415, (2)		
Data entered into EIM database (date entered: 1/30/2017)	415, (3)	\boxtimes	NIA
Complete copy of the lab report with chain of custody record.		\boxtimes	CDROM
Annual Groundwater Reports: 173-351-415 (1) YEAR 2016			
Summary of statistical results and trends	415, (1)	X	Appendix C
Summary of groundwater flow rate and direction for the year	415, (1)	Κ	Page 6
Copy of all potentiometric maps for the year	415, (1)	$\mathbf{\times}$	AppendixA
Summary geochemical evaluation	415, (1)		
For Quarterly and Annual Reports		· ·	
Stamped by a licensed professional	RCW 18.220		COVER

Signature of Report Author

3/17/17 Date

Olalla

Landfill

If you need this publication in an alternate format, please call the Waste 2 Resources Program at (360) 407-6900. Persons with hearing loss can call 711 for Washington Relay Service. Persons with a speech disability can call 877-833-6341.

CONTENTS

INTRODUCTION	1
MONITORING PROGRAM DESCRIPTION	3
MONITORING RESULTS	5
Landfill Gas Data	5
March 24, 2016 – First Quarter	5
June 21, 2016 – Second Quarter	5
September 21, 2016 – Third Quarter	6
December 20, 2016 – Fourth Quarter	6
Groundwater Elevation, Flow Direction, Gradient, and Velocity	6
Surface Water Quality Data	9
Groundwater Quality Data	10
Exceedances of Primary Regulatory Standards	10
Exceedances of Secondary Regulatory Standards	11
STATISTICAL ANALYSIS	12
Time–Series Plots	14
Mann-Kendall Trend Test	14
Shapiro-Wilk Test for Normality	17
Confidence Interval	19
CONCLUSIONS	23
Landfill Gas Data	23
March 24, 2016 - First Quarter	23
June 21, 2016 - Second Quarter	23
September 21, 2016 - Third Quarter	24
December 20, 2016 - Fourth Quarter	24
Groundwater Elevation and Flow Direction Data	24
Exceedances of Primary Regulatory Standards	25
Exceedances of Secondary Regulatory Standards	26
Analytical Tests for Volatile Organic Compounds	28
REFERENCES	29

FIGURES

1	Olalla Landfill Monitoring Well Locations	4
2	Olalla Landfill Groundwater Elevation Contour Map, December 20, 2016	8
2	Data Evaluation Process for Olalla Landfill Groundwater Data	.13
TA	BLES	
1	2016 Olalla Landfill Calculated Groundwater Flow Velocities	9
2	2016 Water Quality Constituent Concentrations Exceeding Washington State Primary Standards	.10
3	2016 Water Quality Constituent Concentrations Exceeding Washington State Secondary Standards	.11

- 6 December 2016 Results of 95% Confidence Interval Evaluations20

APPENDICES

- A 2016 Quarterly Monitoring Data
- B 2016 Monitoring Field Notes
- C 2016 Statistical Summaries
- D Inspection, Maintenance, and Engineering Summary for 2016
- E Activities Planned for 2017

ATTACHMENT

2016 Quarterly Monitoring Analytical Data Sheets (provided on attached CD ROM)

INTRODUCTION

The Olalla Landfill (Landfill) is located approximately 0.75 miles east of Highway 16 on Burley-Olalla Road in Kitsap County, Washington. The Landfill was closed in 1989 in accordance with the Olalla Final Closure Plan (Parametrix, Inc., 1988). Post-closure activities have consisted primarily of quarterly monitoring and maintenance per WAC 173-304-407 (Minimum Functional Standards for Solid Waste Handling [MFS]), "General Closure and Post Closure Requirements" Kitsap County Board of Health Ordinance 2010-01 "Solid Waste Regulations" and Solid Waste Handling Permits (SWHP) issued annually by the Kitsap Public Health District (KPHD).

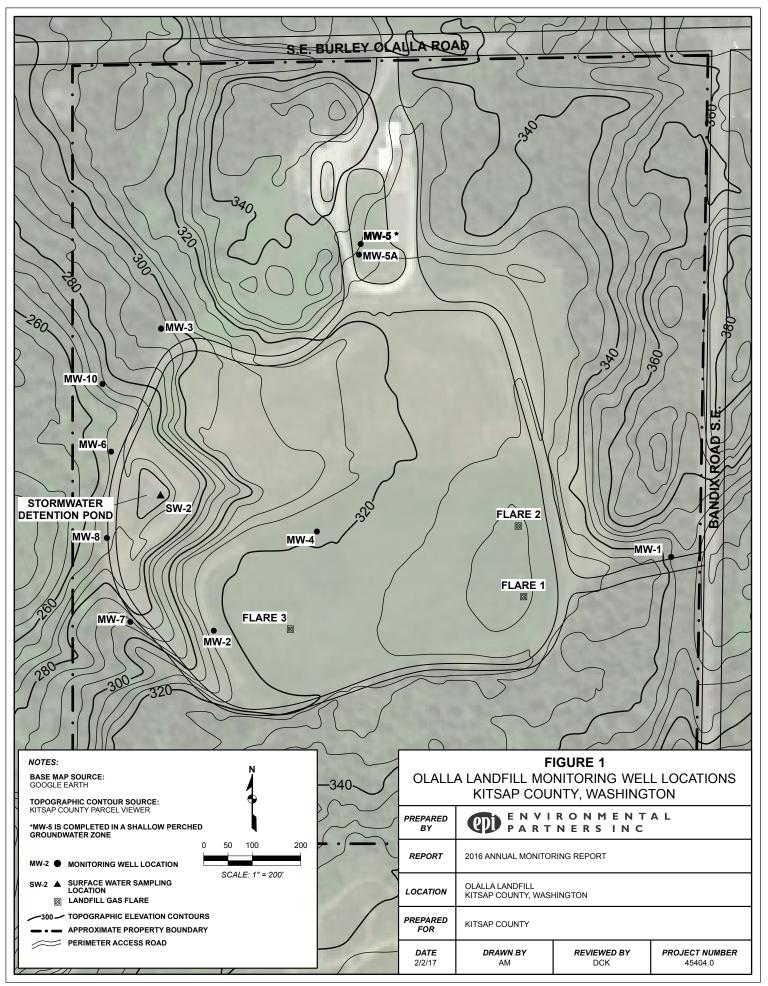
A Remedial Investigation/Feasibility Study (RI/FS) (Parametrix, 2014a) was performed at the Landfill starting in May 2010 and ending May 2014 when the RI/FS was submitted to the Washington State Department of Ecology (Ecology) and KPHD. Upon approval of the RI/FS the Kitsap County Solid Waste Division (SWD) prepared a Cleanup Action Plan (CAP) (Parametrix, 2014b) to summarize the RI/FS activities and present the preferred cleanup action, which was selected based on the results of the RI/FS. Ecology and KPHD approved the CAP in December 2014. The December 2016 Landfill monitoring event is the eighth event performed under the approved CAP.

The preferred cleanup action, monitored natural attenuation (MNA) and land use controls, is based on a continuation of ongoing groundwater monitoring in accordance with the SWHP. Quarterly monitoring results will be used to evaluate the effectiveness of the cleanup action and to verify that natural attenuation continues to occur at the Landfill. The overall effectiveness of the cleanup action will be evaluated at 5-year intervals as part of the periodic review process.

Specific groundwater, surface water, and landfill gas monitoring methods and procedures that are performed under the requirements of MFS, the SWHP, and the CAP are documented in a Compliance Monitoring Plan (CMP) (Environmental Partners, Inc., 2015). The CMP integrates all the previously noted monitoring program requirements into one document that contains a site-specific Sampling and Analysis Plan (SAP), Quality Assurance Plan (QAP), and Health and Safety Plan (HASP).

This Annual Report documents the results of the fourth quarter 2016 groundwater and landfill gas monitoring event and summarizes the results of the previous quarterly monitoring and reporting events completed at the Landfill in 2016, in accordance with WAC 173-304-405(4), CAP, CMP, and the 2016-2020 SWHP issued by KPHD on February 18, 2016.

Kitsap County Solid Waste Division (SWD) and Environmental Partners, Inc. (EPI) developed the current statistical evaluation process used in this report with input and direction from KPHD and the Washington State Department of Ecology (Ecology). KPHD and Ecology referenced the United States Environmental Protection Agency (USEPA) 2004 *Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities* (Unified Guidance) (USEPA, 2004) as the basis for evaluating appropriate statistical methods for Landfill groundwater data. The


statistical methods used in this report are consistent with recommended methods found in the Unified Guidance, which was updated in 2009 (USEPA, 2009).

Including this section, the 2016 Annual Monitoring Report consists of five main sections: Introduction, Monitoring Program Description, Monitoring Results, Statistical Analysis, and Conclusions. The Monitoring Program Description summarizes the monitoring well network and laboratory analyses. Landfill gas field measurement data, groundwater elevations, and groundwater analytical results are presented in the Monitoring Results section. The statistical data evaluation methods used in this report are consistent with recommended methods found in the Unified Guidance. Results of statistical and non-statistical evaluations of the 2016 monitoring data are summarized in the Conclusions section.

MONITORING PROGRAM DESCRIPTION

The sampling locations, analytical parameters, and frequency of sample collection for quarterly monitoring at the Landfill are specified in the 2016-2020 SWHP and the 2015 CMP. Groundwater, surface water and landfill gas monitoring locations are shown in Figure 1. Specific information pertaining to the 2016 fourth quarter monitoring event is summarized as follows:

- EPI performed groundwater and surface water sampling activities and measured landfill gas parameters at each of the three on-site passive landfill gas flares on December 20-21, 2016.
- Depth to water measurements were performed at all onsite monitoring wells on December 20, 2016. Field staff also measured the depth to water in well MW-5, which is screened in a discontinuous shallow perched groundwater zone that is not hydraulically connected to the uppermost aquifer beneath the Landfill.
- EPI collected groundwater samples from upgradient monitoring well MW-1 on December 20, 2016. The generator used to power the dedicated sampling pumps failed to re-start after MW-1 sampling was completed so it was replaced. Downgradient monitoring wells MW-3, MW-6, MW-8, and MW-10, and cross-gradient monitoring wells MW-5A and MW-7 were sampled on December 21, 2016.
- EPI measured landfill gas parameters at each of the three on-site passive landfill gas flares on December 20, 2016.
- EPI staff collected a surface water sample from location SW-2 on December 20, 2016 as part of the 4th quarter monitoring event.
- One set of field duplicate samples was collected from monitoring well MW-10 and was given the identifier OL-MW-13.
- Groundwater samples were hand delivered to Analytical Resources, Inc. in Tukwila, Washington, for sample analysis on December 22, 2016.
- Samples were analyzed within their respective holding times except laboratory measured pH samples. The pH holding time is 15-minutes, which cannot be achieved at the laboratory but is achieved by the field-measured pH data, which are used for the statistical evaluations.
- Data evaluations, statistical tests, and reporting were performed by EPI in accordance with methods described in the Unified Guidance (USEPA, 2004 [draft] and 2009 [final]) and developed with input and direction from KPHD and Ecology.
- Reporting limits for ammonia, carbonate, iron, nitrite, TOC, potassium, and zinc changed slightly relative to historical data as a result of changing analytical laboratories. All reporting limits are lower than regulatory standards.

MONITORING RESULTS

Results for 2016 quarterly monitoring events consist of landfill gas composition, groundwater elevations, calculated groundwater gradients and velocities, and groundwater quality data. Surface water quality data were obtained during the December 2016 sampling event, which was performed following several days of heavy precipitation. These data are summarized in this section and in Appendix A. Quarterly monitoring field notes associated with the monitoring events performed in 2016 are presented in Appendix B. The laboratory analytical data reports are provided in electronic format in Attachment 1 on the CD ROM included with this report.

Landfill Gas Data

Field measurements of landfill gas were taken from the three passive flares at the Landfill on March 24, 2016, June 21, 2016, September 21, 2016, and December 20, 2016. Landfill gas field measurement data tables are included in Appendix A. Data from the quarterly landfill gas monitoring events performed in 2016 are summarized in the following sections.

March 24, 2016 – First Quarter

- Methane was not detected in any of the flares. The calculated Lower Explosive Limit (LEL) value is 0% for all three flares.
- Carbon dioxide concentration measurements were 0.3%, 0.1%, and 1.6% by volume for Flares 1, 2, and 3, respectively.
- Oxygen concentration measurements were 20.3%, 20.4%, and 19.4% by volume in Flares 1, 2, and 3, respectively.
- Gas pressure measurements were 0.1, 0.1-0.3, and 0.48 inches of water in Flares 1, 2, and 3, respectively. Variable winds at the time of flare monitoring affected the gas pressure measurements.

June 21, 2016 – Second Quarter

- Methane was not detected in any of the flares. The calculated LEL value is 0% for all three flares.
- Carbon dioxide concentration measurements were 3.2%, 1.3%, and 7.1% by volume for Flares 1, 2, and 3, respectively.
- Oxygen concentration measurements were 17.8%, 16.2%, and 12.5% by volume in Flares 1, 2, and 3, respectively.
- Gas pressure measurements were 0.01, 0.01, and 0.00 inches of water in Flares 1, 2, and 3, respectively. Variable winds at the time of flare monitoring affected the gas pressure measurements.

September 21, 2016 – Third Quarter

- Methane was detected in Flares 1, 2, and 3 at concentrations of 0.3%, 0.3%, and 0.1% by volume, respectively. Calculated LEL values for Flares 1, 2, and 3 are 6%, 6%, and 2%, respectively.
- Carbon dioxide concentration measurements were 0.8%, 6.9%, and 8.1% by volume for Flares 1, 2, and 3, respectively.
- Oxygen concentration measurements were 17.4%, 10.2%, and 6.8% by volume in Flares 1, 2, and 3, respectively.
- Gas pressure measurements were 0.00 inches of water in all three flares indicating no flow from the flares during the monitoring event.

December 20, 2016 – Fourth Quarter

- Methane was not detected in any of the flares. The calculated LEL value is 0% for all three flares.
- Oxygen concentration measurements were 23.0%, 23.1%, and 22.9% by volume in Flares 1, 2, and 3, respectively.
- Carbon dioxide concentration measurements were 0.1%, 0.1%, and 0.2% by volume in Flares 1, 2, and 3, respectively.
- Gas pressure measurements were 0.00 to 0.05, 0.00 to 0.04, and 0.02 inches of water in Flares 1, 2, and 3, respectively. Variable winds at the time of flare monitoring affected the gas pressure measurements.

Groundwater Elevation, Flow Direction, Gradient, and Velocity

All monitoring wells installed at the Landfill, except for MW-5, are screened in a laterally continuous sand and gravel unit that has been interpreted as belonging to the same aquifer unit (Parametrix, Inc., 1988). Monitoring well MW-5 is screened in a shallow perched groundwater zone. Replacement monitoring well MW-5A was drilled at a nearby location to MW-5 and is screened in the same aquifer as the other monitoring wells at the Landfill.

The Permit and CAP do not require water level or water quality data to be collected from MW-5 as part of the monitoring program for the Landfill because the shallow perched groundwater zone that MW-5 is completed in is not hydraulically connected to the uppermost continuous aquifer in which the other Landfill monitoring wells are completed. However, SWD has elected to measure the depth to water in MW-5 as additional information. Depth to water measurements for MW-5 are included in the field notes presented in Appendix B.

The Permit and CAP specify annual monitoring of cross-gradient monitoring wells MW-5A and MW-7. As requested by the SWD, quarterly groundwater level measurements are made at

MW-5A and MW-7 to provide a more comprehensive data set for the groundwater elevation contour map and the groundwater elevation hydrograph.

The groundwater flow direction beneath the Landfill during the December 2016 monitoring event was generally toward the northwest as depicted in Figure 2. Based on the groundwater elevation contours the groundwater flow direction at the Landfill is toward the northwest, with potentially a western component near MW-3 and MW-10, as demonstrated by the quarterly groundwater elevation contour maps for all four quarters of 2016, which are presented in Appendix A. Groundwater elevation contour pattern and flow directions have been consistent throughout all four seasons and over many years of water level measurements.

The four quarters of groundwater flow direction figures for the Landfill are consistent with historical groundwater flow direction maps. The groundwater flow direction maps demonstrate that well MW-1 is consistently upgradient of the Landfill, wells MW-3, MW-6, MW-8, and MW-10 are downgradient of the Landfill, and wells MW-5A and MW-7 are consistently cross-gradient to the Landfill. Historically MW-7 was classified as a downgradient monitoring well but was reclassified as a cross-gradient well in 2013 based on consistent historical groundwater flow directions.

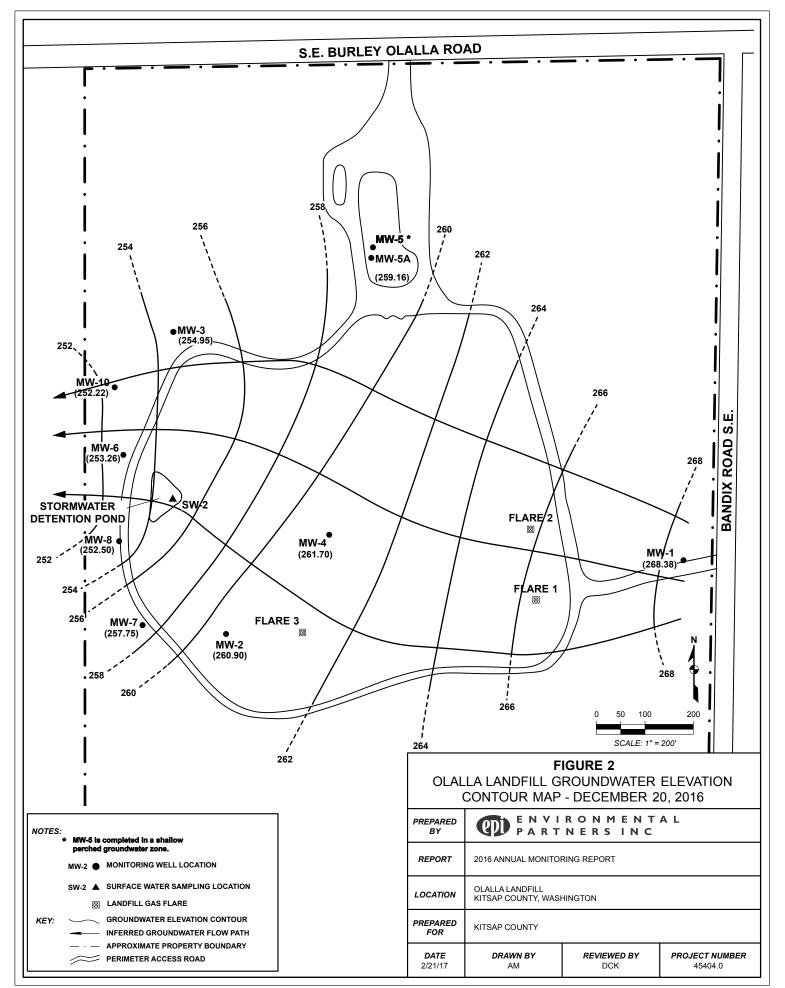
Groundwater elevation data from 1991 through the fourth quarter of 2016 for each of the onsite MFS monitoring wells (except MW-5) are plotted and shown on the water level elevation time-series graph in Appendix A.

December 2016 groundwater elevation data were mixed relative to the December 2015 groundwater elevation data. Water level elevations were higher in 2016 in five of the nine wells ranging in magnitude from 1.42 feet higher in cross-gradient well MW-7 to 3.91 feet higher in upgradient well MW-1. Water level elevations were lower in 2016 in four of the nine wells ranging in magnitude from 0.15 feet lower in downgradient well MW-3 to 1.96 feet lower in downgradient well MW-8.

Precipitation data from the Bremerton Washington Airport Weather Station indicate that during water year 2016 (November 2015 to October 2016) the area near the Landfill received 81.54¹ inches of precipitation, which is significantly greater than the 59.83 inches of precipitation for water year 2015 (Weather Underground, 2017).

Groundwater flow rates based on the quarterly groundwater elevation contour maps have been calculated based on a modified form of Darcy's Law:

$$V = KI/n$$


Where:

V = average linear velocity (L/T)

K = hydraulic conductivity (L/T)

- I = hydraulic gradient (L/L [dimensionless])
- n = effective porosity (percent expressed as a decimal)

¹ Likely erroneous precipitation value of 10.00 inches for March 25, 2016 was removed from data set for 2016 water year.

The hydraulic conductivity "K" of the aquifer was calculated from the results of single well aquifer tests (slug tests) performed in monitoring wells MW-1, MW-2, MW-3, and MW-4. The range of values obtained from these tests indicated that the hydraulic conductivity of the uppermost aquifer at the Landfill is approximately 7 x 10^{-3} to 3 x 10^{-2} cm/sec, with an average value of 2.2 x 10^{-2} cm/sec (62.4 feet/day) (Parametrix, Inc., 1988). This value correlates well with the hydraulic conductivity values calculated using the Hazen equation for soil samples from MW-8 and MW-10, which were 1.2×10^{-2} cm/sec (34 feet/day) and 1.4×10^{-2} cm/sec (40 feet/day), respectively. The single well aquifer test hydraulic conductivity value of 2.2 x 10^{-2} cm/sec is used for groundwater velocity calculations.

The hydraulic gradient "I" of the aquifer is calculated from groundwater elevation contour maps presented in Appendix A. Average hydraulic gradients calculated for the four quarterly events at the Landfill range from 0.0130 in December 2016 to 0.0176 in September 2016.

The effective porosity "n" of the aquifer is estimated to be 0.40, which is a typical value for fine to medium-grained sand (Freeze and Cherry, 1979).

The resulting groundwater flow velocities "V" calculated from 2016 quarterly data range from 2.03 ft./day in December 2016 to 2.74 ft./day in September 2016. The calculated groundwater gradients and flow velocities are summarized in Table 1.

Table 1 2016 Olalla Landfill Calculated Groundwater Flow Velocities							
Measurement Date	Calculated Hydraulic Gradient, (L/L)	Calculated Groundwater Flow Velocity (ft./day)					
March 24, 2016	0.0138	2.15					
June 21, 2016	0.0170	2.65					
September 21, 2016	0.0176	2.74					
December 20, 2016	0.0130	2.03					

Surface Water Quality Data

Section IV.D.3.a of the KPHD-issued 2016-2020 SWHP for the Landfill states that surface water samples shall be collected at location SW-2 (see Figure 1) between January and March or between November and December if there is sufficient water for a sample.

Surface water station SW-2 had sufficient water flow to sample during the December 20, 2016 sampling event due to heavy rains in the days preceding the sampling event. A surface water sample was collected and analyzed from station SW-2 during the December 2016 sampling event.

A summary of surface water quality data is presented in Appendix A. Analytical results (laboratory data sheets) are presented as an electronic file (a PDF file) in Attachment 1 of the CD ROM for this report to reduce the amount of paper required to produce this report.

Groundwater Quality Data

A summary of the groundwater quality data for 2016 is presented in Appendix A. Laboratory data sheets for all field samples, duplicates, and laboratory quality control samples reported by ARI are presented as an electronic file in Attachment 1 of the CD ROM for this report.

Exceedances of Primary Regulatory Standards

Constituent concentrations in groundwater that exceeded Washington State Drinking Water Primary Standards (WAC 246-290-310) or Washington State Groundwater Primary Standards (WAC 173-300-040) are summarized in Table 2.

Table 2 2016 Water Quality Constituent Concentrations Exceeding Washington State Primary Standards								
Constituent	Drinking Water Standards ^a	Groundwater Quality Standards ^ь	March	June	September	December		
MW-1 (upgradient)								
Arsenic	10 µg/L	0.05 µg/L	0.09	0.09	0.10	0.10		
MW-3 (downgradie	ent)							
Arsenic	10 µg/L	0.05 µg/L	0.10	0.08	0.12	0.10		
MW-5A (cross-grad	dient)					_		
Arsenic	10 µg/L	0.05 µg/L	NA	NA	NA	0.21		
MW-6 (downgradie	ent)							
Arsenic	10 µg/L	0.05 µg/L	0.90	0.81	1.21	1.20		
Arsenic FD	10 µg/L	0.05 µg/L	0.80	0.78				
MW-7 (cross-gradi	ent)							
Arsenic	10 µg/L	0.05 µg/L	NA	NA	NA	0.43		
MW-8 (downgradie	ent)							
Arsenic	10 µg/L	0.05 µg/L	2.20	1.89	1.74	2.71		
Arsenic FD	10 µg/L	0.05 µg/L			1.77			
Vinyl Chloride	2 µg/L	0.02 µg/L		0.035	0.036	0.071		
Vinyl Chloride FD	2 µg/L	0.02 µg/L			0.033			
MW-10 (downgradi	ient)							
Arsenic	10 µg/L	0.05 µg/L	0.90	1.57	1.82	1.72		
Arsenic FD	10 µg/L	0.05 µg/L				1.67		

^a WAC 246-290-310

^b WAC 173-200-040

Exceedances of Secondary Regulatory Standards

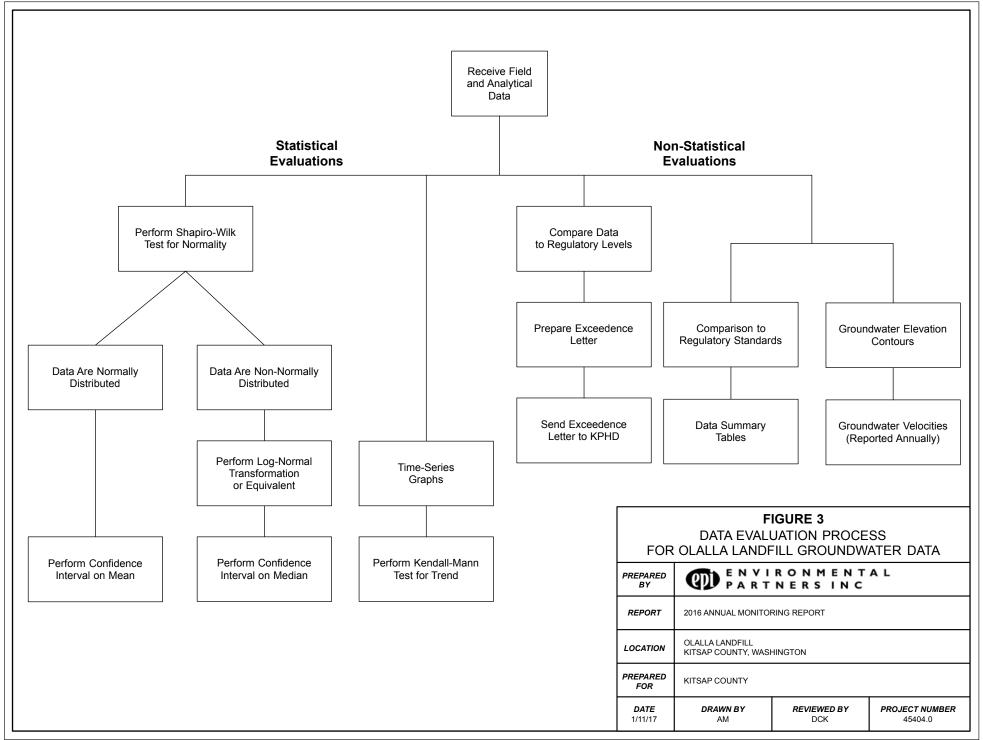
Constituent concentrations in groundwater that exceeded Washington State Drinking Water Secondary Standards (WAC 246-290-310) and Washington State Groundwater Secondary Standards (WAC 173-300-040) are summarized in Table 3.

Table 3 2016 Water Quality Constituent Concentrations Exceeding Washington State Secondary Standards								
Constituent	Drinking Water Standards ^a	Groundwater Quality Standards ^b	March	June	September	December		
MW-1 (upgradie	nt)							
pH (field)		6.5 - 8.5		5.8	6.3			
pH (lab)		6.5 - 8.5			6.2	6.4		
MW-3 (downgrad	dient)							
Manganese	50 µg/L	50 µg/L	2,430	2,460	6,820	6,610		
pH (field)		6.5 - 8.5	6.4	5.7	6.1	6.3		
pH (lab)		6.5 - 8.5		6.1	6.0	6.2		
MW-5A (cross-g	radient)				·			
MW-6 (downgrad	dient)							
Iron	300 µg/L	300 µg/L		800	1,300	734		
Iron FD	300 µg/L	300 µg/L		810				
Manganese	50 µg/L	50 µg/L	430	645	594	488		
Manganese FD	50 µg/L	50 µg/L	405	634				
pH (field)		6.5 - 8.5		6.4				
pH (lab)		6.5 – 8.5			6.4			
MW-7 (cross-gra	dient)							
MW-8 (downgrad	dient)							
Iron	300 µg/L	300 µg/L		320		1,080		
Manganese	50 µg/L	50 µg/L	350	3,590	3,020	3,150		
Manganese FD	50 µg/L	50 µg/L			2,980			
pH (field)		6.5 - 8.5		6.2				
MW-10 (downgra	adient)							
Manganese	50 µg/L	50 µg/L	5,440	6,470	4,370	4,120		
Manganese FD	50 μg/L	50 μg/L				4,180		
pH (field)		6.5 – 8.5	6.4	6.2				
pH (lab)		6.5 – 8.5			6.4	6.4		
pH (lab) FD		6.5 - 8.5				6.4		
Notes: Values are reported in the FD = Field Duplicate	he same units as the re	egulatory standards						

FD = Field Duplicate ^a WAC 246-290-310

^b WAC 173-200-040

° WAC 173-200-040


STATISTICAL ANALYSIS

Statistical analysis of groundwater data uses four tools: Shapiro-Wilk test for normality, confidence intervals (parametric and non-parametric), time-series plots, and the Mann-Kendall test for trend. Application of these tools is based on statistical methods identified in the Unified Guidance. These four statistical tools, and non-statistical evaluation tools, are applied to the data following the process shown in Figure 3.

Statistical analyses are performed on a data set consisting of a moving window of the 20 most recent sampling events (as one new data point is added the oldest data point is dropped). For most wells, this is a five-year moving window of data. However, with MW-5A and MW-7 now on an annual sampling schedule SWD has clarified this moving window of data to be defined as 20 sampling events rather than five years of data. The moving window of 20 sampling events provides a sufficient number of data points for adequate statistical power while focusing the statistical evaluations on the most recent and most relevant data. Statistical analyses for the Landfill groundwater monitoring data are performed using the following criteria:

- Dissolved metals, VOCs, conventional water quality parameters, and field parameters required for groundwater analysis under Section IV.D.2 of the 2016-2020 SWHP for the Landfill are presented in two sets of time-series plots and tables showing summary results of Mann-Kendall, Shapiro-Wilk, and confidence interval tests.
- Statistical tests are not automatically performed for every constituent analyzed during quarterly groundwater monitoring. Some constituents have not been detected in the past 20 sampling events or have too few detected data points to support statistical analysis. Data sets that have fewer than four detected values in the past 20 events are not amenable to statistical evaluations. These data sets are temporarily dropped from the statistical evaluation process until they have the minimum number of detected values required for statistical evaluation.
- Non-detections are managed by assigning them a uniform value that is less than the reporting limit for that constituent as prescribed in Section 14.4.2.2 of the Unified Guidance. Recent guidance from the United States Geological Survey (USGS, 2008) suggests that censoring values that are less than the detection limit (non-detects) provides more accurate statistical results compared to substituting a value, commonly one half of the reporting limit. SWD assigns a value of zero to non-detected results as recommended by the USGS and KPHD. Estimated (J-qualified) results are reported as individual values as recommended by the USGS.
- VOC detections may include values at concentrations less than laboratory specified reporting limits (i.e., qualified with a J), but do not include values where the constituent was also detected in the method blank (i.e., values qualified with a B).
- Beginning in 2012, wells MW-5A and MW-7 are sampled at a reduced (annual) frequency and for a reduced list of constituents relative to the other Olalla Landfill monitoring wells. Thus, the statistical evaluations at MW-5A and MW-7 ended in 2012 for some constituents that were no longer analyzed but will continue at a reduced frequency for other constituents.

The following subsections briefly describe the tools used in the statistical evaluation and summarize analytical results for 2016.

Time–Series Plots

Time-series plots are used to compare field measurements or analytical results from a well or a set of wells over time. The plots provide a convenient graphical means of delineating seasonal trends and large differences in concentration between upgradient and downgradient wells, and can be used to readily identify data that exceed regulatory levels. Time-series plots are presented by constituent for upgradient well MW-1, cross-gradient wells MW-5A and MW-7, and downgradient wells MW-3, MW-6, MW-8, and MW-10.

Historical data are presented as two time-series plots for each constituent. The first timeseries plot for each constituent presents all quarterly data dating to 1992, when groundwater monitoring was initiated at the Landfill. This time-series plot is useful to graphically demonstrate that groundwater quality has improved over time. Because MW-8 and MW-10 are relatively new (installed in 2010) their data sets are smaller than for other wells in the full time-series plots. The second time-series plot for each constituent presents a moving five-year window of data providing a greater level of detail for more recent data that might not be readily seen at the scale required for time-series plots that graph all historical results.

The moving 20 event window of data adds new data with each successive quarter and drops data from the oldest quarter to maintain a consistent sample population of the most current 20 data points. Using the 20 most current data points corresponds to the same data set used in the other statistical analyses. Full and recent (20-event window) time-series plots are presented in Appendix C.

Applicable Washington State drinking water and groundwater regulatory levels are shown graphically on each time-series plot when possible. Some constituents have regulatory levels that are significantly greater than concentrations detected in groundwater samples from the Landfill and those regulatory levels might not be visible at the scale of the time-series plots. Increasing the Y-axis scale to accommodate the applicable regulatory level would compress the analytical data resulting in a loss of detail on the time-series plots.

Mann-Kendall Trend Test

The Mann-Kendall trend test is a non-parametric statistical method recommended in the Unified Guidance for sites in the compliance assessment and corrective action monitoring phases and is appropriately paired with time-series plots. For this report, the Mann-Kendall trend test is used to determine if upward or downward data trends graphically presented in time-series plots are statistically significant. The Mann-Kendall test is applied to the same five-year moving window of data described in the Time-Series Plots section. December 2016 Mann-Kendall Trend Test results are presented in Table 4 and are summarized in the following bullets. Tabulated Mann-Kendall trend test results for all four quarters of 2016 are presented in Appendix C.

As described in the 2016-2020 SWHP, cross-gradient wells MW-5A and MW-7 are sampled annually for a reduced list of constituents relative to the other Olalla Landfill monitoring wells. The SWHP also specifies the fourth quarter monitoring event as the annual monitoring event during which MW-5A and MW-7 are sampled for the reduced list of constituents included in Table 4.

Constituent or										
MW-1	MW-3	MW-5A	MW-6	MW-7	MW-8	MW-10				
NO TREND	NO TREND	NA	NO TREND	NA	NO TREND	NO TREND				
NO TREND	NO TREND	NO TREND	UP	NO TREND	UP	DOWN				
UP	NO TREND	NA	NO TREND	NA	NO TREND	NO TREND				
NO TREND	NO TREND	NA	NO TREND	NA	NO TREND	NO TREND				
UP	NO TREND	NA	NO TREND	NA	NO TREND	NO TREND				
NO TREND	NO TREND	NA	NO TREND	NA	NO TREND	NO TREND				
NO TREND	NO TREND	NA	NO TREND	NA	NO TREND	NO TREND				
UP	UP	NA	NO TREND	NA	NO TREND	DOWN				
NO TREND	UP	NO TREND	UP	NO TREND	UP	UP				
NO TREND	NO TREND	NO TREND	NO TREND	NO TREND	NO TREND	NO TREND				
NO TREND	UP	NO TREND	NO TREND	NO TREND	NO TREND	NO TREND				
NO TREND	NO TREND	NA	NO TREND	NA	NO TREND	NO TREND				
NO TREND	NO TREND	NA	NO TREND	NA	DOWN	NO TREND				
NO TREND	NO TREND	NO TREND	NO TREND	NO TREND	NO TREND	NO TREND				
NO TREND	NO TREND	NO TREND	NO TREND	NO TREND	NO TREND	NO TREND				
NO TREND	NO TREND	DOWN	NO TREND	DOWN	NO TREND	DOWN				
NO TREND	NO TREND	NA	NO TREND	NA	NO TREND	NO TREND				
UP	NO TREND	NA	NO TREND	NA	NO TREND	NO TREND				
NO TREND	NO TREND	NO TREND	NO TREND	DOWN	NO TREND	NO TREND				
NO TREND	NO TREND	NA	NO TREND	NA	NO TREND	NO TREND				
DOWN	DOWN	DOWN	DOWN	NO TREND	DOWN	DOWN				
DOWN	NO TREND	NA	NO TREND	NA	NO TREND	NO TREND				
NO TREND	NO TREND	NA	NO TREND	NA	NO TREND	NO TREND				
NO TREND	NO TREND	NO TREND	DOWN	NO TREND	NO TREND	DOWN				
NO TREND	NO TREND	NA	NO TREND	NA	NO TREND	NO TREND				
	NO TREND NO TREND UP NO TREND NO TREND	NOTRENDNOTRENDNOTRENDNOTRENDUPNOTRENDUPNOTRENDNOTRENDNOTRENDNOTRENDNOTRENDNOTRENDUPNOTREND	NATIONNATIONNO TRENDNO TRENDNANO TRENDNO TRENDNAUPNO TRENDNANO TRENDNO TRENDNANO TRENDNO TRENDNANO TRENDNO TRENDNANO TRENDNO TRENDNANO TRENDNO TRENDNANO TRENDNO TRENDNANO TRENDNO TRENDNA <td< td=""><td>NATE NONATE NONATE NONATE NONO TRENDNO TRENDNO TRENDNO TRENDUPNO TRENDNANO TRENDNO TRENDNANO TRENDNAUPNO TRENDNANO TRENDNO TRENDNANO TRENDNO TRENDNO TRENDNANO TRENDNO TRENDNO TRENDNANO TRENDNO TRENDNO TRENDNO TRENDNANO TRENDNO TRENDNANO TRENDNO TREND<td>NATE INNATE INNATE INNATE INNO TRENDNO TRENDNO TRENDNO TRENDNO TRENDUPNO TRENDNANO TRENDNANO TRENDNO TRENDNO TRENDNO TRENDNANO TRENDNO TRENDNONO TRENDNO TRENDNO TRENDNO TRENDNONO TRENDNO TRENDNO TRENDNONONO TRENDNO TRENDNO TRENDNONONO TRENDNO TRENDNO TRENDNONONO TRENDNO TRENDNO TRENDNONONO TRENDNO TRENDNO<!--</td--><td>NATE NOTRENDNATE NANATENDNANATENDNANOTRENDNOTRENDNO TRENDUPNA TRENDUPNOTRENDNO TRENDNANO TRENDNANO TRENDUPNO TRENDNANO TRENDNANO TRENDNO TRENDNO TRENDNANO TRENDNANO TRENDUPNO TRENDNANO TRENDNANO TRENDNO TRENDNO TRENDNANO TRENDNANO TRENDNO TRENDNO TRENDNANO TRENDNO TRENDNO</td></td></td></td<>	NATE NONATE NONATE NONATE NONO TRENDNO TRENDNO TRENDNO TRENDUPNO TRENDNANO TRENDNO TRENDNANO TRENDNAUPNO TRENDNANO TRENDNO TRENDNANO TRENDNO TRENDNO TRENDNANO TRENDNO TRENDNO TRENDNANO TRENDNO TRENDNO TRENDNO TRENDNANO TRENDNO TRENDNANO TRENDNO TREND <td>NATE INNATE INNATE INNATE INNO TRENDNO TRENDNO TRENDNO TRENDNO TRENDUPNO TRENDNANO TRENDNANO TRENDNO TRENDNO TRENDNO TRENDNANO TRENDNO TRENDNONO TRENDNO TRENDNO TRENDNO TRENDNONO TRENDNO TRENDNO TRENDNONONO TRENDNO TRENDNO TRENDNONONO TRENDNO TRENDNO TRENDNONONO TRENDNO TRENDNO TRENDNONONO TRENDNO TRENDNO<!--</td--><td>NATE NOTRENDNATE NANATENDNANATENDNANOTRENDNOTRENDNO TRENDUPNA TRENDUPNOTRENDNO TRENDNANO TRENDNANO TRENDUPNO TRENDNANO TRENDNANO TRENDNO TRENDNO TRENDNANO TRENDNANO TRENDUPNO TRENDNANO TRENDNANO TRENDNO TRENDNO TRENDNANO TRENDNANO TRENDNO TRENDNO TRENDNANO TRENDNO TRENDNO</td></td>	NATE INNATE INNATE INNATE INNO TRENDNO TRENDNO TRENDNO TRENDNO TRENDUPNO TRENDNANO TRENDNANO TRENDNO TRENDNO TRENDNO TRENDNANO TRENDNO TRENDNONO TRENDNO TRENDNO TRENDNO TRENDNONO TRENDNO TRENDNO TRENDNONONO TRENDNO TRENDNO TRENDNONONO TRENDNO TRENDNO TRENDNONONO TRENDNO TRENDNO TRENDNONONO TRENDNO TRENDNO </td <td>NATE NOTRENDNATE NANATENDNANATENDNANOTRENDNOTRENDNO TRENDUPNA TRENDUPNOTRENDNO TRENDNANO TRENDNANO TRENDUPNO TRENDNANO TRENDNANO TRENDNO TRENDNO TRENDNANO TRENDNANO TRENDUPNO TRENDNANO TRENDNANO TRENDNO TRENDNO TRENDNANO TRENDNANO TRENDNO TRENDNO TRENDNANO TRENDNO TRENDNO</td>	NATE NOTRENDNATE NANATENDNANATENDNANOTRENDNOTRENDNO TRENDUPNA TRENDUPNOTRENDNO TRENDNANO TRENDNANO TRENDUPNO TRENDNANO TRENDNANO TRENDNO TRENDNO TRENDNANO TRENDNANO TRENDUPNO TRENDNANO TRENDNANO TRENDNO TRENDNO TRENDNANO TRENDNANO TRENDNO TRENDNO TRENDNANO TRENDNO				

Table 4: December 2016 Mann-Kendall Statistically Significant Trend **Test Results**

NO TREND = No statistically significant trend. UP = Statistically significant upward trend. DOWN = Statistically significant downward trend.

NA = Not analyzed per the SWHP

- Sixteen well-constituent combinations have statistically significant downward concentration trends. The 16 downward well-constituent combination trends are:
 - Arsenic: MW-10
 - Chloride: MW-10
 - Nitrite: MW-8
 - pH (laboratory): MW-5A, MW-7, and MW-10
 - Specific Conductance: MW-7
 - Temperature: MW-1, MW-3, MW-5A, MW-6, MW-8, and MW-10
 - Total Coliform: MW-1
 - Vinyl Chloride: MW-6 and MW-10
- Two of the 16 well-constituent combinations with statistically significant downward concentration trends also have regulatory standard exceedances in December 2016 data. The two well-constituent combinations are arsenic and pH (laboratory) at MW-10.
- Twelve well-constituent combinations have statistically significant upward concentration trends. The 12 upward well-constituent combination trends are:
 - Arsenic: MW-6 and MW-8
 - Barium: MW-1
 - Calcium: MW-1
 - Chloride: MW-1 and MW-3
 - Dissolved Oxygen: MW-3, MW-6, MW-8, and MW-10
 - Manganese: MW-3
 - Sodium: MW-1
- Four of the 12 statistically significant upward concentration trends are for constituents in the data set from upgradient well MW-1. Those constituents are: barium, calcium, chloride, and sodium.
- Three of the 12 well constituent combinations with statistically significant upward concentration trends also have regulatory standard exceedances in December 2016 data. The three well-constituent combinations are arsenic at MW-6 and MW-8 and manganese at MW-3.
- There are 147 well-constituent combinations that have no statistically significant concentration trend or the constituents are no longer analyzed in wells MW-5A and MW-7 per the SWHP. Of these 147 well-constituent combinations with no statistically significant trends samples from the wells listed in the following bullets exceed regulatory levels.
 - $\circ~$ Arsenic in samples from MW-1, MW-3, MW-5A, and MW-7 exceed the Washington State Groundwater Primary Standard of 0.05 $\mu g/L.$
 - Iron in the samples from MW-6 and MW-8 exceed the Washington State Groundwater and Drinking Water Secondary Standards of 300 μg/L.

- Manganese in samples from MW-6, MW-8, MW-10, and MW-13 (field duplicate of MW-10) respectively, exceed the Washington State Groundwater and Drinking Water Secondary Standards of 50 μg/L.
- Field-measured pH in purge water from well MW-3 is lower than the low value of the Washington State Groundwater Secondary Standard range of 6.5 to 8.5.
- Laboratory-measured pH values in the samples from MW-1 and MW-3 are lower than the low value of the Washington State Secondary Groundwater Standard range of 6.5 to 8.5.

Shapiro-Wilk Test for Normality

The Shapiro-Wilk Test for Normality is a method recommended in the Unified Guidance for evaluating if data sets are normally distributed. The Shapiro-Wilk Test for Normality is applied annually to the five-year moving window of analytical data for each well-constituent pair that has enough data points to apply this statistical method. Shapiro-Wilk results for the December 2016 monitoring event are summarized in Table 5 and in the following bullets. Shapiro-Wilk result summary tables for all four quarters of 2016 are presented in Appendix C.

As described in the Mann-Kendall Trend Test section, MW-5A and MW-7 are sampled at a reduced frequency (annually) and for a reduced list of constituents relative to the other Olalla Landfill monitoring wells and the Shapiro-Wilk statistical evaluations of the reduced list of constituents are included in Table 5.

- There are 175 well-constituent combinations presented in Table 5.
- Sixty-two well-constituent combinations had fewer than four detections and could not be tested for normality or the constituents are no longer analyzed in wells MW-5A and MW-7 per the SWHP; the remaining 113 well-constituent combinations were tested for normality.
- Normal data distributions were noted in 61 of the 113 well-constituent combinations that were tested for normality.
- Non-normal data distributions were noted in 52 of the 113 well-constituent combinations tested for normality.

Data that are normally distributed are evaluated using the 95% confidence interval around the mean (a parametric statistical test). Data that are not normally distributed are adjusted by log-normal transformation prior to being evaluated using the 95% confidence interval around the median (a non-parametric statistical test).

Constituent or	MW-1	MW-3	MW-5A	MW-6	MW-7	MW-8	MW-10
Parameter							
Ammonia (N)	Non-Normal	Non-Normal	NA	Non-Normal	NA	Normal	Non-Normal
Arsenic - Dissolved	Non-Normal	Non-Normal	Non-Normal	Normal	Normal	Non-Normal	Normal
Barium - Dissolved	Non-Normal	Normal	NA	Normal	NA	Normal	Normal
Bicarbonate	Normal	Non-Normal	NA	Normal	NA	Normal	Normal
Calcium	Normal	Normal	NA	Normal	NA	Normal	Normal
Carbonate	ND	ND	NA	ND	NA	ND	ND
COD	ND	ND	NA	ND	NA	ND	Non-Normal
Chloride	Non-Normal	Non-Normal	NA	Non-Normal	NA	Non-Normal	Normal
Dissolved Oxygen	Normal	Non-Normal	Normal	Non-Normal	Normal	Non-Normal	Non-Normal
Iron - Dissolved	ND	ND	ND	Normal	ND	Non-Normal	ND
Manganese - Dissolved	ND	Normal	ND	Normal	ND	Normal	Normal
Nitrate	Normal	Non-Normal	NA	Non-Normal	NA	Non-Normal	Non-Normal
Nitrite	Non-Normal	ND	NA	Non-Normal	NA	Non-Normal	Non-Normal
Oxidation-Reduction Potential	Non-Normal	Normal	Normal	Non-Normal	Normal	Non-Normal	Non-Normal
pH - Field	Normal	Normal	Non-Normal	Normal	Normal	Non-Normal	Normal
pH - Laboratory	Normal						
Potassium	Non-Normal	Non-Normal	NA	Non-Normal	NA	Non-Normal	Non-Normal
Sodium	Normal	Normal	NA	Normal	NA	Normal	Normal
Specific Conductance	Non-Normal	Normal	Non-Normal	Normal	Non-Normal	Non-Normal	Normal
Sulfate	Normal	Normal	NA	Non-Normal	NA	Normal	Non-Normal
Temperature	Normal	Normal	Normal	Normal	Normal	Normal	Non-Normal
Total Coliform	Non-Normal	ND	NA	ND	NA	ND	ND
тос	ND	Normal	NA	Normal	NA	Non-Normal	Non-Normal
Vinyl Chloride	ND	ND	ND	Non-Normal	ND	Non-Normal	Non-Normal
Zinc - Dissolved	ND	ND	NA	ND	NA	ND	ND

Table 5: December 2016 Shapiro-Wilk Test for Normality Results

Notes:

ND = Data set has four or fewer quarters with detects and statistical tests cannot be performed.

NA = Not analyzed per the SWHP

Confidence Interval

The statistical test for confidence interval is recommended in the Unified Guidance and is appropriate for compliance assessment and corrective action monitoring phases. In addition, evaluation of the confidence interval is appropriate when analytical data are compared to a fixed limit such as a regulatory standard. Confidence intervals are a common and statistically defensible way to assess compliance with a fixed numerical limit.

A moving 20 event window of data was evaluated for the 95% confidence interval for each well-constituent pair that had enough data points to apply this statistical method. The moving 20 event window of data adds a new data point with each successive quarter and drops the data from the oldest quarter to maintain a consistent sample population of the most current 20 events of data.

Confidence interval results for December 2016 are compared to Washington State Drinking Water and Groundwater Quality Standards and are summarized in Table 6. Confidence interval summaries for all four quarters of 2016 are presented in Appendix C. Exceedance of a regulatory standard is triggered when the lower 95% confidence interval is greater than the regulatory standard. Exceedances are highlighted in red on Table 6. Successful remediation is attained if the upper 95% confidence limit does not exceed the regulatory standard, which is highlighted in green on Table 6. In some cases, the upper 95% confidence interval exceeds the regulatory standard but the lower 95% confidence interval does not. This condition is not an exceedance but should be monitored for changes and is highlighted in yellow on Table 6.

Observations regarding the 95% confidence interval results are summarized in the following bullets:

- Sixty-three of the well-constituent combinations evaluated had an insufficient number of detections in the moving five-year window of data to perform the statistical analysis or the constituents are no longer analyzed in wells MW-5A and MW-7 per the SWHP. These well-constituent combinations were not evaluated statistically and are represented as ND (not detected) or NA (not analyzed) in Table 6.
- Confidence intervals were evaluated for remaining 112 well-constituent combinations.
- Eighty-eight of the well-constituent combinations that were statistically evaluated had 95% confidence intervals that did not exceed applicable regulatory standards or have no applicable regulatory standards.

Constituent or Parameter	MW-1	MW-3	MW-5A	MW-6	MW-7	MW-8	MW-10	Regulatory Level	Basis for Comparison
Ammonia (N)	ND to 40	ND to 40	NA	ND to 40	NA	36 to 88	22 to 83	None	
Arsenic - Dissolved	0.085 to 0.103	0.089 to 0.122	0.124 to 0.189	0.789 to 0.992	0.334 to 0.436	0.749 to 1.74	2.10 to 2.60	0.05 µg/L	Primary GW Standard
Barium - Dissolved	ND	12.5 to 15.3	NA	9.11 to 12.5	NA	6.82 to 8.54	11.6 to 14.5	1000 µg/L	Primary GW Standard
Bicarbonate (mg of CaCO₃/L)	36.6 to 44.4	96.2 to 133	NA	101 to 139	NA	84.9 to 108	142 to 165	None	
Calcium	10,512 to 11, 407	38,618 to 47,056	NA	25,452 to 33,729	NA	18,746 to 23,542	35,174 to 40,003	None	
Carbonate (mg of CaCO₃/L)	ND	ND	NA	ND	NA	ND	ND	None	
COD	ND	ND	NA	ND	NA	ND	ND to 11.4	None	
Chloride	2,910 to 4,620	2,840 to 3,380	NA	1,800 to 2,300	NA	2,050 to 2,350	5,199 to 8,504	250,000 µg/L	Secondary GW and DW Standard
Dissolved Oxygen (mg/L)	9.6 to 10.3	0.0 to 11.6	8.93 to 10.7	0.00 to 0.43	6.45 to 9.68	0.0 to 17.3	0.0 to .47	None	
Iron - Dissolved	ND	ND	ND	771 to 1,264	ND	ND to 471	ND	300 µg/L	Secondary GW and DW Standard
Manganese - Dissolved	ND	2,679 to 4,004	ND	547 to 663	ND	2,147 to 3,330	4,175 to 4,901	50 µg/L	Secondary GW and DW Standard
Nitrate	346 to 598	ND to 28	NA	ND to 13	NA	ND to 84	ND to 20	10,000 µg/L	Primary GW and DW Standard
Nitrite	ND to 4	ND	NA	ND to 5	NA	ND to 4	ND to 3	1,000 µg/L	Primary DW Standard
Oxidation-Reduction Potential	116 to 186	127 to 211	101 to 155	11 to 38	82 to 133	32.8 to 54	73 to 134.9	None	
pH - Field	6.1 to 6.3	6.1 to 6.2	6.4 to 6.6	6.5 to 6.7	6.4 to 6.7	6.5 to 6.7	6.4 to 6.6	6.5 - 8.5	Secondary GW Standard
pH - Laboratory	6.5 to 6.7	6.3 to 6.4	6.7 to 6.9	6.7 to 6.8	6.7 to 7.0	6.7 to 6.9	6.6 to 6.8	6.5 - 8.5	Secondary GW Standard

Table 6: December 2016 Results of 95% Confidence Interval Evaluations

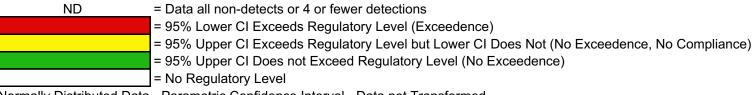

Constituent or Parameter	MW-1	MW-3	MW-5A	MW-6	MW-7	MW-8	MW-10	Regulatory Level	Basis for Comparison
Potassium	ND to 710	ND to 1030	NA	1220 to 1540	NA	900 to 1080	984 to 1210	None	
Sodium	4,304 to 4,647	8,305 to 9,381	NA	6,759 to 7,974	NA	6,992 to 8,008	9,286 to 10, 857	20,000 µg/L	Secondary DW Standard
Specific Conductance (µmhos/cm)	124 to 131.1	338 to 425	128 to 157	246 to 334	110 to 155	187 to 226	357 to 407	700 µmhos/cm	Secondary DW Standard
Sulfate	3,964 to 4,504	13,630 to 18,291	NA	7,250 to 10,600	NA	4.099 to 5,070	7,190 to 9,760	250,000 µg/L	Secondary GW and DW Standard
Temperature (°C)	11.3 to 12.6	12.0 to 12.8	12.5 to 13.5	11.8 to 12.7	10.9 to 12.0	11.2 to 12.1	11.6 to 12.3	None	
Total Coliform (count)	ND to 1	ND	NA	ND	NA	ND	ND	1/100mL	Primary GW and DW Standard
тос	ND	2,254 to 2,905	NA	1,659 to 2,042	NA	ND to 1,000	2,830 to 3,260	None	
Vinyl Chloride	ND	ND	ND	ND to 0.02	ND	ND to 0.04	ND to 0.03	0.02 µg/L	Primary GW Standard
Zinc - Dissolved	ND	ND	NA	ND	NA	ND	ND	5,000 µg/L	Secondary GW and DW Standard

Table 6: December 2016 Results of 95% Confidence Interval Evaluations

Notes:

All concentrations reported as µg/L unless otherwise noted.

= Not analyzed per the SWHP

Normally Distributed Data - Parametric Confidence Interval - Data not Transformed

Non-Normally Distributed Data - Non-Parametric Confidence Interval - Log Base-10 Transformed Data

Non-Detects treated as 0

NA

- Fifteen of the well-constituent combinations that were statistically evaluated had lower 95% confidence intervals that were greater than applicable regulatory levels (are exceedances). The exceedances are highlighted red in Table 6 and are summarized in the following bullets:
 - Arsenic: MW-1, MW-3, MW-5A, MW-6, MW-7, MW-8, and MW-10
 - Iron: MW-6
 - Manganese: MW-3, MW-6, MW-8, and MW-10
 - o pH (field): MW-1 and MW-3
 - pH (laboratory): MW-3
- Eight well-constituent combinations have upper 95% confidence intervals that were greater than (less than in the case of pH) applicable regulatory levels but have lower 95% confidence intervals that are less than applicable regulatory levels. These are not statistical exceedances but they should be monitored for changes. The well-constituent combinations are highlighted yellow in Table 6 and are summarized in the following bullets:
 - $\circ~$ Iron: MW-8
 - $\circ~$ pH (field): MW-5A, MW-6, and MW-10 ~
 - Total Coliform: MW-1
 - Vinyl Chloride: MW-6, MW-8, and MW-10

CONCLUSIONS

Quarterly monitoring data collected during 2016 at the Olalla Landfill are summarized in the following sections.

Landfill Gas Data

Landfill gas field measurements were performed at the three onsite passive flares during the four quarterly monitoring events in 2016. Landfill gas data for all four quarterly monitoring events are included in Appendix A and are summarized in the following sections.

March 24, 2016 - First Quarter

None of the three flares had measurable concentrations of methane; however, Flare 1 and Flare 2 had trace concentrations of carbon dioxide and Flare 3 had a carbon dioxide concentration of 1.6 % by volume. In addition, Flare 3 had a slightly depleted oxygen concentration, indicating an influence of the biodegradation of organics.

Gas pressure measurements ranged from 0.1 to 0.48 inches of water, which was likely affected by windy conditions at the time of measurement. These low-pressure readings indicate a low potential for landfill gas flow from the flares.

Weather station data from the Bremerton Airport (Station KPWT) indicate that mean barometric pressure decreased slightly from a high of 30.3 inches of mercury on March 23, 2016 to 30.14 inches of mercury on March 24, 2016, the day that the flares were measured (source Weather Underground, 2016). The decreasing barometric pressure just prior to and during the March 24, 2016 measurement event likely caused subsurface landfill gas, which was in equilibrium with previous higher barometric pressure, to flow from the subsurface into the flares resulting in the measured presence of landfill gas indicators.

June 21, 2016 - Second Quarter

None of the three flares had measurable concentrations of methane; however, all three flares had depressed oxygen concentrations and measurable concentrations of carbon dioxide indicating an influence of the biodegradation of organics.

Gas pressure measurements ranged from 0.0 to 0.01 inches of water. These zero to low pressure readings indicate a low potential for landfill gas flow from the flares.

Weather station data from the Bremerton Airport (Station KPWT) indicate that barometric pressure increased slightly from of 30.19 inches of mercury on June 20, 2016 to 30.26 inches of mercury on June 21, 2016, the day that the flares were measured (source Weather Underground, 2016). This increase in barometric pressure likely contributed to the zero to very low pressure measurements noted in all three flares.

September 21, 2016 - Third Quarter

Methane was detected in all three flares at concentrations ranging from 1.7% to 8.9% by volume. The presence of methane in combination with depressed oxygen concentrations, ranging from 0.0% to 10.5%, and elevated carbon dioxide concentrations, ranging from 3.6% to 14.3%, indicate the presence of landfill gas in all three flares.

Gas pressure measurements ranged from 0.0 to 0.03 inches of water. The low gas pressure readings indicate a low potential for landfill gas flow from the flares.

Weather station data from the Bremerton Airport (Station KPWT) indicate that barometric pressure decreased from of 30.16 inches of mercury on September 20, 2016 to 30.07 inches of mercury on September 21, 2016, the day that the flares were measured (source Weather Underground, 2016). This decrease in barometric pressure likely contributed to the presence of landfill gas indicators that were noted in all three flares.

December 20, 2016 - Fourth Quarter

None of the three flares had measurable concentrations of methane or depleted oxygen concentrations. However, all three flares had trace concentrations of carbon dioxide. which could indicate a minor influence of the biodegradation of organics.

Gas pressure measurements ranged from 0.00 to 0.05 inches of water. Variable winds at the time of flare monitoring affected the gas pressure measurements. The low gas pressure readings indicate a low potential for landfill gas flow from the flares.

Weather station data from Bremerton Airport (Station KPWT) indicate that barometric pressure rose from a low of 29.88 inches of mercury on December 19, 2016 to 30.52 inches of mercury on December 20, 2016, the day that flare measurements were made (Weather Underground, 2017). The increasing barometric pressure the day of the measurement event likely contributed to gas being retained in the subsurface at the time of the monitoring event.

Groundwater Elevation and Flow Direction Data

The groundwater flow direction beneath the Landfill is generally toward the northwest, with groundwater from beneath the Landfill flowing toward downgradient wells MW-3, MW-6, MW-8, and MW-10 as depicted in the quarterly groundwater elevation contour and flow direction figures presented in Attachment A. The groundwater flow directions and elevation contour patterns are consistent with historical groundwater elevation data from the Landfill.

The lowest calculated groundwater gradient among the four quarters of 2016 occurred in December 20, 2016 with a horizontal gradient of 0.0130. The resulting calculated groundwater flow velocity is 2.03 ft./day. Groundwater gradients and calculated groundwater velocities were greatest during September 21, 2016, which had a horizontal gradient of 0.0176 and a calculated flow velocity of 2.74 ft./day.

Exceedances of Primary Regulatory Standards

Upgradient Well (MW-1)

Arsenic

- Groundwater samples collected from MW-1 during the four quarterly monitoring events of 2016 had arsenic concentrations ranging from 0.09 μ g/L in March and June to 0.10 μ g/L in September and December. Arsenic concentrations exceed the Washington State Groundwater Primary Standard of 0.05 μ g/L in samples from MW-1 during all four quarters. Arsenic concentrations in the samples from MW-1 were significantly less than both the Washington State Drinking Water Primary Standard of 10 μ g/L and the site-specific Cleanup Level of 1.29 μ g/L.
- The presence of arsenic at concentrations greater than the Washington State Groundwater Primary Standard in samples from upgradient well MW-1 is an indication that dissolution of naturally-occurring arsenic in soil contributes to the arsenic concentrations noted in groundwater data from other wells at the Landfill.

Cross-Gradient Wells (MW-5A and MW-7)

Arsenic MW-5A, MW-7

- Per the SWHP and CMP, cross-gradient wells MW-5A and MW-7 were not sampled during the first three quarterly monitoring events. Groundwater samples collected from MW-5A and MW-7 during the December monitoring event had arsenic concentrations of 0.21 μ g/L and 0.43 μ g/L, respectively. These concentrations exceed the Washington State Groundwater Primary Standard of 0.05 μ g/L but are less than both the Washington State Drinking Water Primary Standard of 10 μ g/L and the site-specific Cleanup Level of 1.29 μ g/L.
- The presence of arsenic at concentrations greater than the Washington State Groundwater Primary Standard in samples from cross-gradient wells MW-5A and MW-7 is an indication that dissolution of naturally occurring arsenic in soil contributes to the arsenic concentrations noted in groundwater data from other wells at the Landfill.

Downgradient Wells (MW-3, MW-6, MW-8, and MW-10)

Arsenic

MW-3, MW-6, MW-8, and MW-10

- Groundwater samples from downgradient monitoring wells had arsenic concentrations exceeding the Washington State Groundwater Primary Standard of 0.05 μg/L during the four quarterly events in 2016. None of the arsenic concentrations detected during 2016 exceed the Washington State Drinking Water Primary Standard of 10 μg/L. Arsenic concentrations for specific wells are summarized in the following bullets:
 - $\circ~$ MW-3 had arsenic concentrations ranging from 0.08 $\mu g/L$ in June to 0.12 $\mu g/L$ in September.
 - \circ MW-6 had arsenic concentrations ranging from 0.81 µg/L in June to 1.21 µg/L in September. Arsenic concentrations in samples from MW-6 exhibit an increasing trend as noted in Table 4.

- \circ MW-8 had arsenic concentrations ranging from 1.74 µg/L in September to 2.71 µg/L in December. Arsenic concentrations in samples from MW-8 exhibit an increasing trend as noted in Table 4.
- \circ MW-10 had arsenic concentrations ranging from 0.90 µg/L in March to 1.82 µg/L in September. Arsenic concentrations in samples from MW-10 exhibit a decreasing trend as noted in Table 4.

Vinyl Chloride MW-8

- Vinyl chloride was detected in the June, September, and December samples from MW-8 at concentrations of 0.035 μg/L, 0.036 μg/L, and 0.071 μg/L, respectively. These concentrations exceed the Washington State Groundwater Primary Standard of 0.02 μg/L but do not exceed the Washington State Drinking Water Primary Standard of 2.0 μg/L or the site-specific Cleanup Level of 0.29 μg/L.
- Vinyl chloride concentrations have generally declined in downgradient wells, most notably in samples from MW-6 and MW-10 as demonstrated by the statistically significant downward trends noted in Table 4.
- Vinyl chloride was not detected in samples from downgradient wells MW-3, MW-6, and MW-10 during any of the four quarterly monitoring events of 2016.

Exceedances of Secondary Regulatory Standards

Upgradient Well (MW-1)

pH (field-measured)

• Groundwater purged from well MW-1 had field-measured pH values of 5.8 and 6.3 during the June and September monitoring events, respectively. These values are lower than the lower limit of the 6.5 to 8.5 range for the Washington State Groundwater Secondary Standard.

pH (laboratory-measured)

• Groundwater samples from well MW-1 had laboratory-measured pH values of 6.2 and 6.4 during the September and December monitoring events, respectively. These values are lower than the lower limit of 6.5 for the Washington State Groundwater Secondary Standard.

Cross-gradient Wells (MW-5A and MW-7)

There were no exceedances of the Washington State Groundwater Secondary Standards for samples from cross-gradient wells MW-5A and MW-7.

Downgradient Wells (MW-3, MW-6, MW-8, and MW-10)

Iron

MW-6 and MW-8

• Iron is a common constituent in landfill leachate and iron concentrations in groundwater samples from downgradient wells MW-6 and MW-8 exceeded the Washington State

Drinking Water Secondary Standard and Groundwater Secondary Standard of 300 μ g/L during some of the quarterly monitoring events in 2016 as summarized below

- MW-6 had iron concentrations of 800 μg/L, 1,300 μg/L, and 734 μg/L for the June, September, and December sampling events, respectively. Iron concentrations in samples from MW-6 have generally decreased since approximately 2000 but exhibit no statistical trend in the more recent data.
- $\circ~$ MW-8 had iron concentrations of 320 μ g/L and 1,080 μ g/L during the June and December sampling events, respectively.

Manganese

MW-3, MW-6, MW-8, and MW-10

- Manganese is a common constituent of landfill leachate and manganese concentrations in groundwater samples from downgradient wells MW-3 MW-6, MW-8, and MW-10 exceeded the Washington State Drinking Water Secondary Standard and Groundwater Secondary Standard of 50 μg/L during all four quarterly monitoring events in 2016 as summarized below.
 - \circ MW-3 had manganese concentrations ranging from 2,430 µg/L in March to 6,820 µg/L in September. Manganese concentrations in samples from MW-3 exhibit an increasing trend as noted in Table 4.
 - \circ MW-6 had manganese concentrations ranging from 430 µg/L in March to 645 µg/L in June. Manganese concentrations have generally decreased in samples from well MW-6 since peaking in 1997 but exhibit no statistical trend in the more recent data
 - $\circ~$ MW-8 had manganese concentrations ranging from 350 μ g/L in March to 3,590 μ g/L in June.
 - $\circ~$ MW-10 had manganese concentrations ranging from 4,120 $\mu g/L$ in December to 6,470 $\mu g/L$ in June.

pH (field-measured)

MW-3, MW-6, MW-8, and MW-10

- Purge water from downgradient monitoring wells MW-3, MW-6, MW-8, and MW-10 had field-measured pH values of less than the lower limit of the 6.5 to 8.5 range of the Washington State Groundwater Secondary Standard during at least one quarterly event in 2016 as summarized below.
 - MW-3 had field-measured pH values ranging from 5.7 in June to 6.4 in March.
 - MW-6 had a field-measured pH of 6.4 in June.
 - MW-8 had a field-measured pH of 6.2 in June.
 - MW-10 had field-measured pH values of 6.4 and 6.2 in March and June, respectively.

pH (laboratory-measured)

MW-3, MW-6, and MW-10

- Purge water from downgradient monitoring wells MW-3, MW-6, and MW-10 had laboratory-measured pH values of less than the lower limit of the 6.5 to 8.5 range of the Washington State Groundwater Secondary Standard during at least one quarterly event in 2016 as summarized below.
 - MW-3 had laboratory-measured pH values of 6.1, 6.0, and 6.2 in June, September, and December, respectively.
 - MW-6 had a laboratory-measured pH value of 6.4 in September.
 - MW-10 had laboratory-measured pH values of 6.4 in September and December. There is a statistically significant downward trend in laboratory pH values for samples from MW-10 as noted in Table 4.

Analytical Tests for Volatile Organic Compounds

This section lists and describes detections of additional VOC constituents in groundwater samples from the Landfill monitoring well network. The VOC detections listed in this section are at concentrations less than applicable Washington State Drinking Water Standards or Washington State Groundwater Quality Standards or are for VOCs that do not have applicable groundwater standards.

- Chlorobenzene was detected in samples from MW-6 at concentrations of 1.30 μg/L, 1.60 μg/L, 1.83 μg/L, and 2.14 μg/L in March, June, September, and December, respectively. These concentrations are significantly less than the Washington State Drinking Water Standard of 100 μg/L. There is no Washington State Groundwater Standard for chlorobenzene.
- cis-1,2-Dichloroethene was detected in the following samples:
 - \circ MW-3 at a concentration of 0.20 μ g/L in September.
 - \circ MW-8 at concentrations of 2.5 μg/L, 0.30 μg/L, 0.33 μg/L, and 0.40 μg/L in March, June, September, and December, respectively.
 - \circ MW-10 at a concentration of 0.25 µg/L in June.

These cis-1,2-dichloroethene concentrations are significantly less than the Washington State Drinking Water Standard of 70 μ g/L. There is no Washington State Groundwater Standard for cis-1,2-dichloroethene.

REFERENCES

Bremerton-Kitsap County Health District, 1992. Letter from Keith Grellner to Anne Bringloe, Kitsap County Department of Public Works. December 7, 1992.

Environmental Partners, Inc. 2015. Compliance Monitoring Plan – Post Closure Monitoring Under the Olalla Landfill Cleanup Action Plan. Prepared for Kitsap County Department of Public Works Solid Waste Division. March 17, 2015.

Freeze and Cherry, 1979. Groundwater. Prentice-Hall, Inc., page 37, Table 2.4.

Kitsap Public Health District, 2016. 2016-2020 Solid Waste Handling Permit. February 18, 2016.

Parametrix, Inc., 1988. Olalla Landfill Final Closure Plan. Prepared for Kitsap County Department of Public Works. Port Orchard, Washington.

Parametrix, Inc., 2014a. Olalla Landfill Remedial Investigation/Feasibility Study. Prepared for Kitsap County Department of Public Works. May 2014.

Parametrix, Inc., 2014b. Olalla Landfill Cleanup Action Plan. Prepared for Kitsap County Department of Public Works. December 2014.

United States Environmental Protection Agency, 2004. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance. September 2004.

United States Geological Survey, 2008. Invasive Data – How Substituting Values for Low-Level Trace Element Data Can Ruin Results. PowerPoint presentation by Dennis Helsel, 2008.

Washington State Department of Ecology, 1990. Groundwater Monitoring Guidance for Solid Waste Facilities. Olympia, Washington.

Weather Underground, 2016 and 2017 <u>www.wunderground.com</u>. Bremerton Airport Weather Station (KPWT).

Appendix A: 2016 Quarterly Monitoring Data

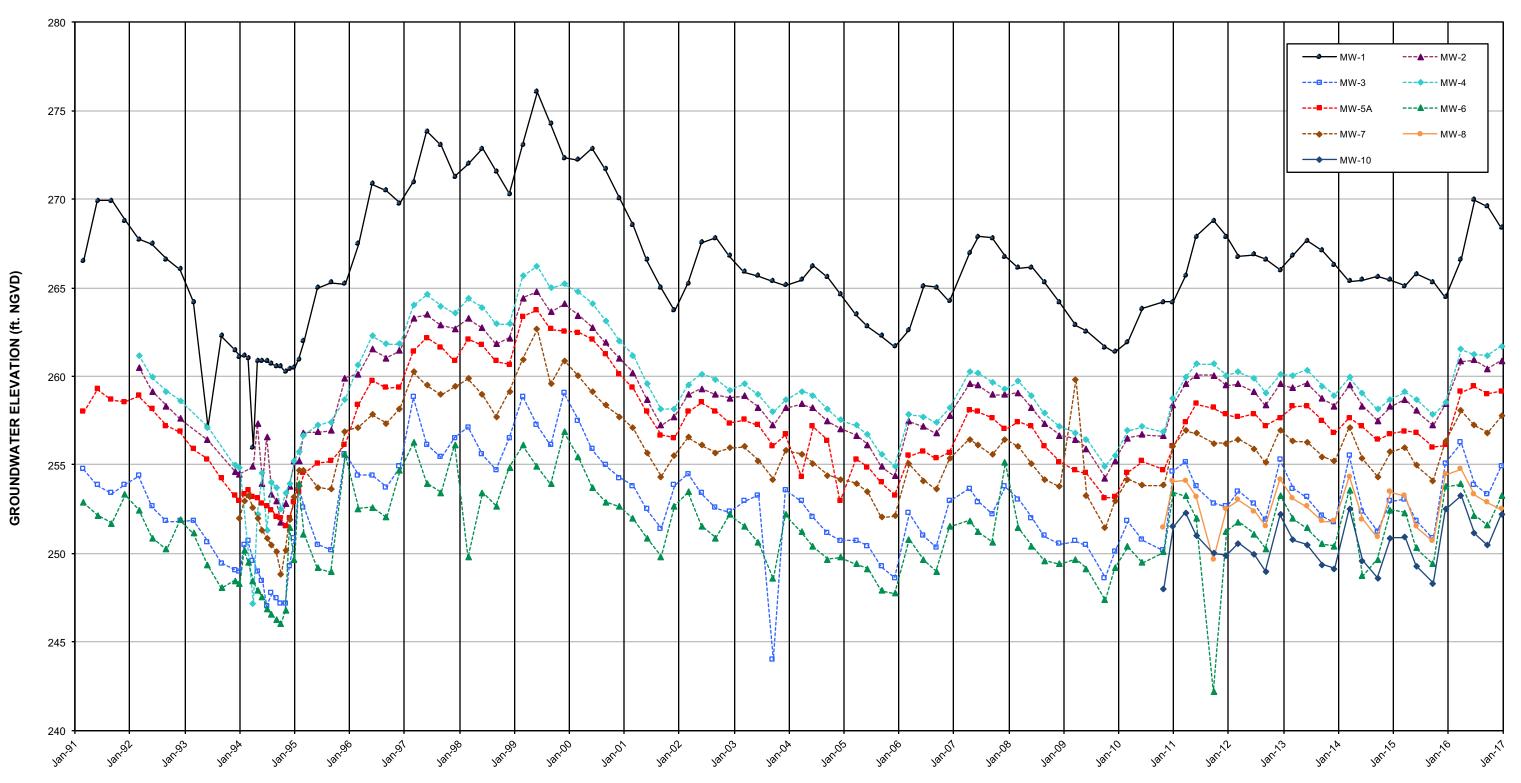
Landfill Gas Data Groundwater Elevations and Contour Maps Groundwater Quality Data

Olalla Landfill 2016 Landfill Gas Data

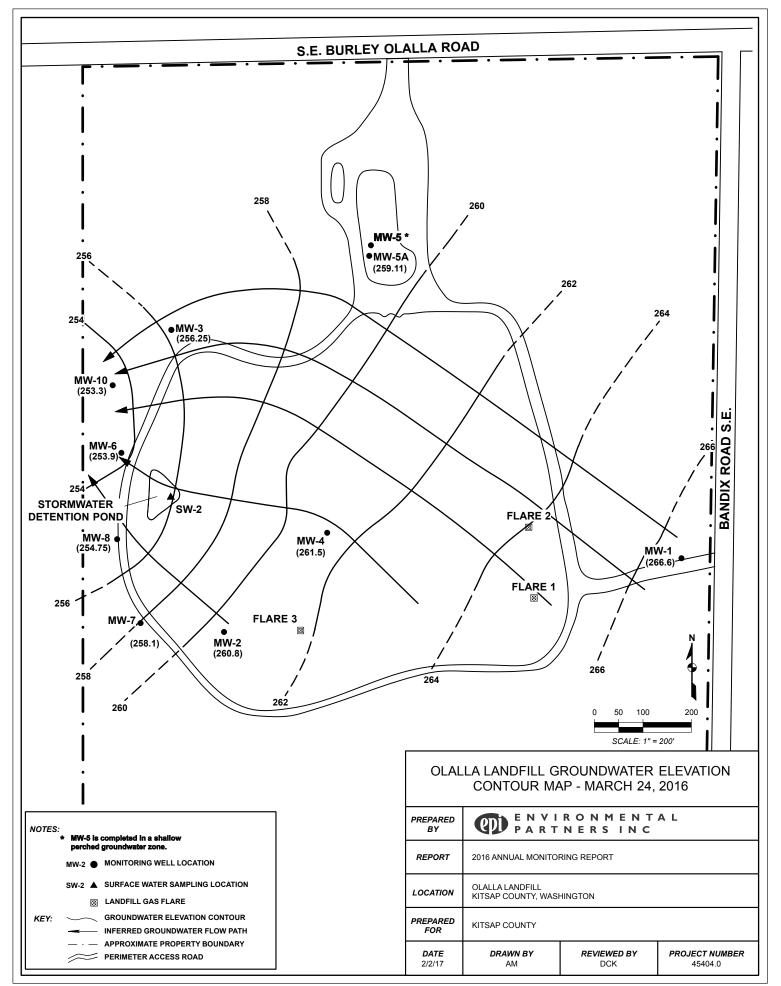
March 24, 2016	Flare #1	Flare #2	Flare #3
METHANE, (% LEL)	0.0	0.0	0.0
METHANE, (% Volume)	0.0	0.0	0.0
OXYGEN, (% Volume)	20.3	20.4	19.4
CARBON DIOXIDE, (% Volume)	0.3	0.1	1.6
PRESSURE (inches of water column)	0.1	0.1-0.3	0.48
AMBIENT TEMPERATURE, (°F)		50	

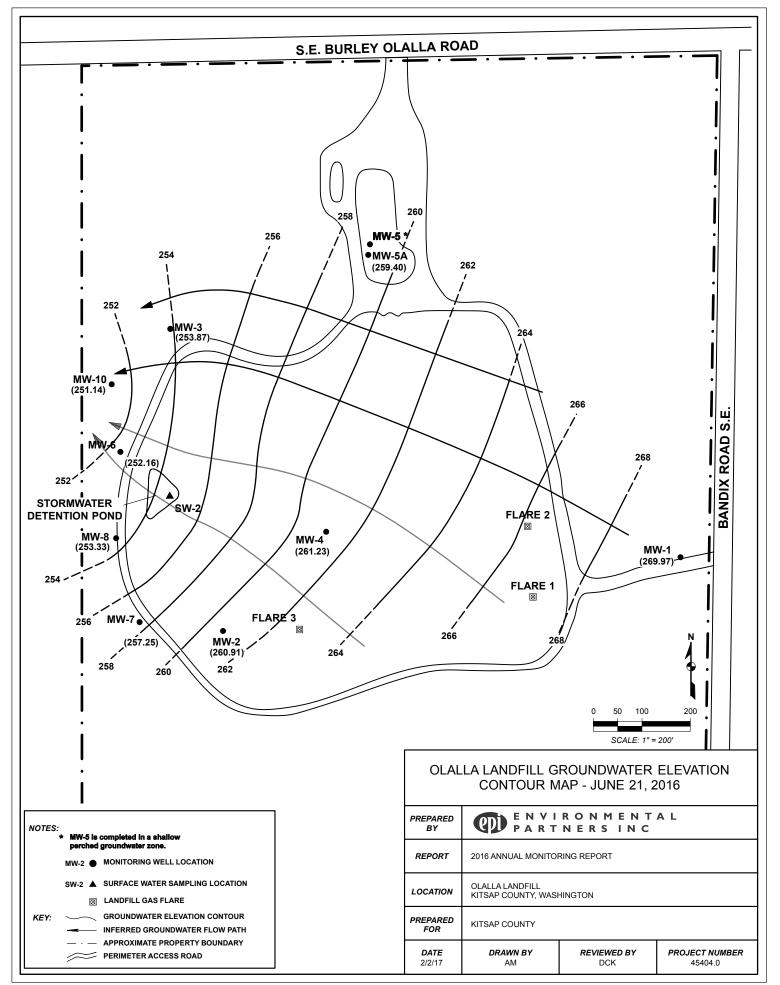
June 21, 2016	Flare #1	Flare #2	Flare #3
METHANE, (% LEL)	0.0	0.0	0.0
METHANE, (% Volume)	0.0	0.0	0.0
OXYGEN, (% Volume)	17.8	16.2	12.5
CARBON DIOXIDE, (% Volume)	3.2	1.3	7.1
PRESSURE (inches of water column)	0.01	0.01	0.00
AMBIENT TEMPERATURE, (°F)		70	

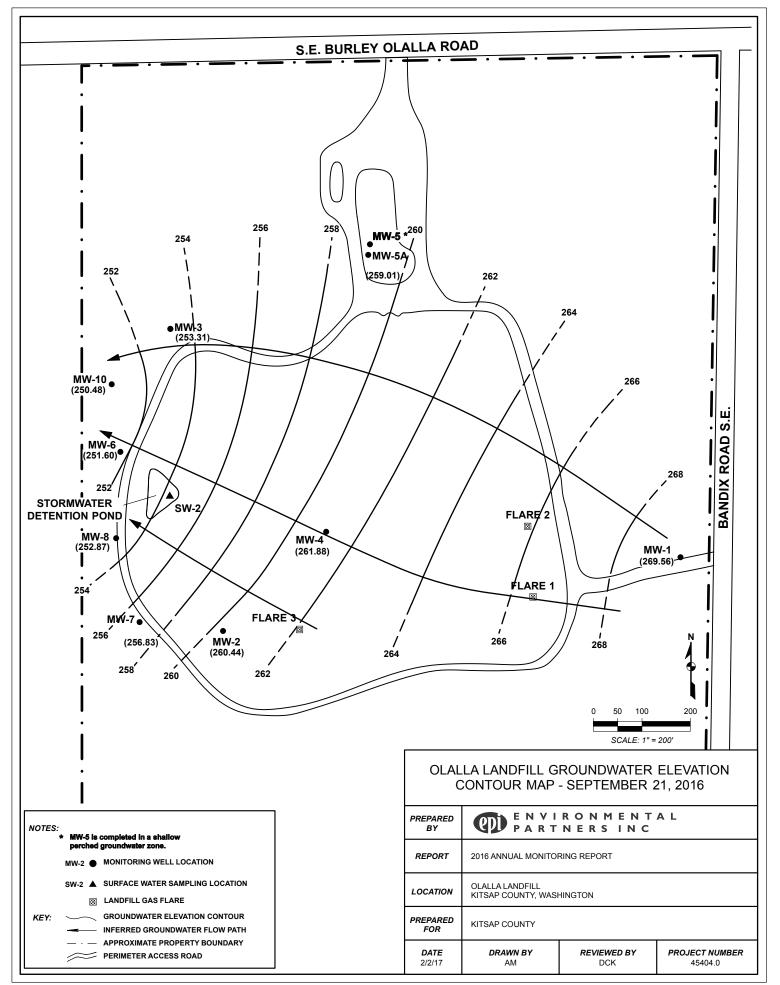
September 21, 2016	Flare #1	Flare #2	Flare #3
METHANE, (% LEL)	34	44	178
METHANE, (% Volume)	1.7	2.2	8.9
OXYGEN, (% Volume)	10.5	9.1	0.0
CARBON DIOXIDE, (% Volume)	3.6	7.2	14.3
PRESSURE (inches of water column)	0.01	0.03	0.00
AMBIENT TEMPERATURE, (°F)	58		

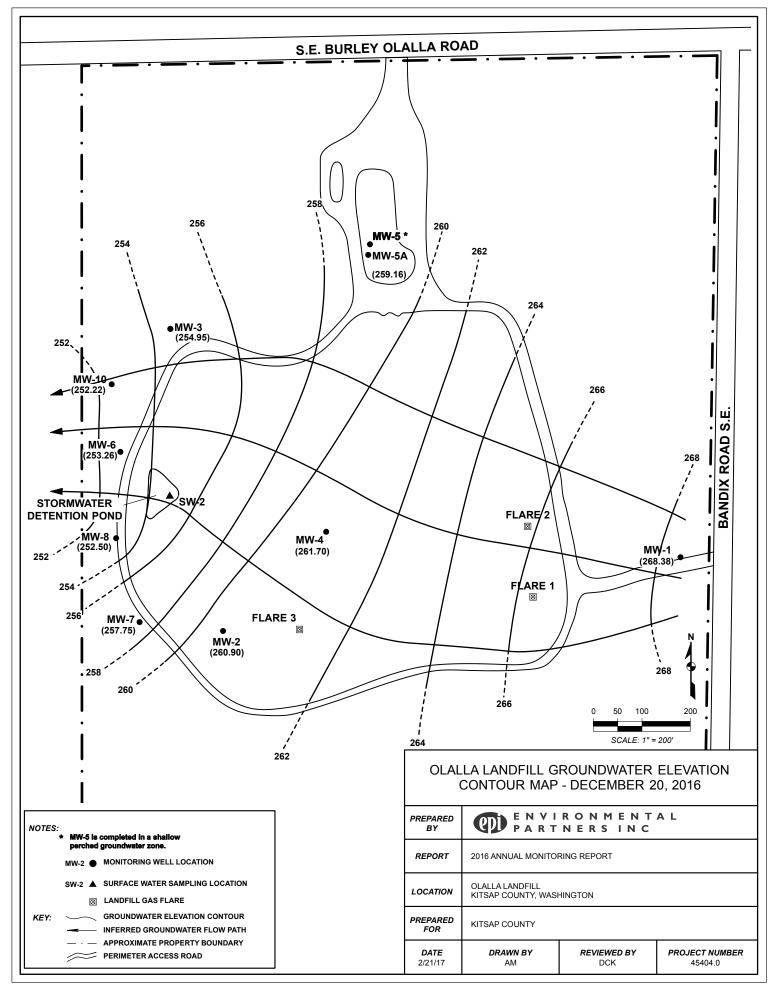

December 20, 2016	Flare #1	Flare #2	Flare #3
METHANE, (% LEL)	0	0	0
METHANE, (% Volume)	0.0	0.0	0.0
OXYGEN, (% Volume)	23.0	23.1	22.9
CARBON DIOXIDE, (% Volume)	0.1	0.1	0.2
PRESSURE (inches of water column)	0.05	0.04	0.02
AMBIENT TEMPERATURE, (°F)	47		

Olalla Landfill 2016 Groundwater Elevations


	Reference	Depth to	Groundwater
Station	Elevation*	Water (feet)	Elevation*
March 24, 2016			
MW-1	343.79	77.18	266.61
MW-2	323.25	62.42	260.83
MW-3	296.95	40.70	256.25
MW-4	320.93	59.41	261.52
MW-5A	332.53	73.43	259.10
MW-6	271.17	17.26	253.91
MW-7	280.43	22.35	258.08
MW-8	272.85	18.10	254.75
MW-10	279.21	25.94	253.27
June 21, 2016			
MW-1	343.79	73.82	269.97
MW-1 MW-2	323.25	62.34	260.91
MW-3	296.95	43.08	253.87
MW-4	320.93	59.70	261.23
MW-5A	332.53	73.13	259.40
MW-6	271.17	19.01	252.16
MW-7	280.43	23.18	257.25
MW-8	272.85	19.52	253.33
MW-10	279.21	28.07	251.14
O			•
September 21, 2016	0.40 70	74.00	000.50
MW-1	343.79	74.23	269.56
MW-2	323.25	62.81	260.44
MW-3	296.95	43.64	253.31
MW-4	320.93	59.75	261.18
MW-5A MW-6	<u>332.53</u> 271.17	73.52 19.57	259.01 251.60
MW-7	280.43	23.60	256.83
MW-8	272.85	19.98	252.87
MW-10	272.85	28.73	250.48
10100-10	219.21	20:13	230.40
December 20, 2016			
MW-1	343.79	75.41	268.38
MW-2	323.25	62.35	260.90
MW-3	296.95	42.00	254.95
MW-4	320.93	59.23	261.70
MW-5A	332.53	73.37	259.16
MW-6	271.17	17.91	253.26
MW-7	280.43	22.68	257.75
MW-8	272.85	20.35	252.50
MW-10	279.21	26.99	252.22


*Elevations in Feet NGVD, 29


OLALLA LANDFILL Groundwater Elevations



DATE

Groundwater Quality Data March 2016 Quarterly Monitoring Event Page 1 of 3

	State Drinking Water Standards	State Ground- water Standards							
	(a)	(b)	Units	MW-1	MW-3	MW-6	MW-8	MW-10	MW-13 (FD)
CONVENTIONALS									
ALKALINITY			mg/L	50.3	70.4	51.2	55.3	233	50.2
AMMONIA NITROGEN			mg/L	0.011	0.024	0.018	0.018	0.097	0.044
BICARBONATE			mg/L	50	70	51	55	233	50
CARBONATE			mg/L	1.0 U					
CHEMICAL OXYGEN DEMAND			mg/L	10.0 U	10.0 U	10.0 U	10.0 U	13.7	10.0 U
CHLORIDE	250**	250**	mg/L	4.2	3.1	1.8	1.4	3.9	1.6
DISSOLVED OXYGEN			mg/L	9.78	1.34	0.95	4.08	0.95	NA
NITRATE NITROGEN	10*	10*	mg/L	0.703	0.649	0.028	0.074	0.606	0.010 U
NITRITE NITROGEN	1*		mg/L	0.010 U					
ORP			mV	69.9	15.5	8.0	40.6	19.9	NA
pH (field)		6.5-8.5**	-log H+	6.5	6.4	6.8	6.7	6.4	NA
pH (laboratory)		6.5-8.5**	-log H+	6.7	6.5	6.9	6.8	6.6	6.8
SPECIFIC CONDUCTANCE	700**		umhos/cm	130	219	113	114	422	NA
SULFATE	250**	250**	mg/L	4.2	29.8	6.6	2.8	22.5	7.1
TEMPERATURE			°C	10.0	11.3	10.2	9.4	10.3	NA
TOTAL COLIFORM	1/100 mL*	1/100 mL*	cfu/100 mL	1 U	1 U	1 U	1 U	1 U	1 U
TOTAL ORGANIC CARBON			mg/L	0.5 U	1.74	2.1	0.8	3.4	2.1
TURBIDITY			NTU	0.00	0.20	3.30	6.60	0.21	NA
DISSOLVED METALS									
ARSENIC	10*	0.05*	µg/L	0.09	0.10	0.90	2.2	0.90	0.80
BARIUM	2,000*	1,000*	µg/L	4	9	4	4	18	3
CALCIUM			mg/L	12	23	53	12	54	11
IRON	300**	300**	µg/L	20 U	20 U	290	30	20 U	290
MANGANESE	50**	50**	µg/L	1 U	2,430	430	350	5,440	405
POTASSIUM			mg/L	0.7	0.6	1.4	0.6	1.4	0.8
SODIUM	20,000***		mg/L	4.6	5.5	9.2	5.1	9.3	4.8
ZINC	5,000**	5,000**	µg/L	4.0 U					
VOLATILE ORGANIC COI	MPOUNDS	6							
VINYL CHLORIDE	2*	0.02*	µg/L	0.02 U					

Notes:

Concentration exceeds Washington State Drinking Water or Groundwater Standards

FD = Field Duplicate of MW-6 was labeled MW-13.

NA = Not Analyzed

Regulatory Standards:

(a) WAC 246-290-310

(b) WAC 173-200-040

(c) WAC 173-201A-200 - Nitrate and Nitrite Standards noted are for Class AA water. Fecal coliform standard is 100/100mL for Primary The appropriate class of water for the detention pond has not been established.

* Primary Standard

** Secondary Standard

*** Recommended level of concern for consumers with restricted daily sodium intake.

Data Qualifiers:

U = Indicates compound was analyzed for, but not detected at the specified detection limit.

J = Estimated value - Compound positively identified, but below specified detection limit.

Groundwater Quality Data March 2016 Quarterly Monitoring Event Page 2 of 3

		l	raye	2013					
	State Drinking Water Standards	State Groundwater Standards							
VOLATILE ORGANIC COMPOUNDS	(a)	(b)	Units	MW-1	MW-3	MW-6	MW-8	MW-10	MW-13 (FD)
1,1,1,2-TETRACHLOROETHANE			µg/L	0.2 U					
1,1,1-TRICHLOROETHANE	200	200	µg/L	0.2 U					
1,1,2,2-TETRACHLOROETHANE			µg/L	0.2 U					
1,1,2-TRICHLOROETHANE	5		µg/L	0.2 U					
1,1-DICHLOROETHANE		1	µg/L	0.2 U					
1,1-DICHLOROETHENE	7		µg/L	0.2 U					
1,1-DICHLOROPROPENE			µg/L	0.2 U					
1,2,3-TRICHLOROBENZENE			µg/L	0.5 U					
1,2,3-TRICHLOROPROPANE			µg/L	0.5 U					
1,2,4-TRICHLOROBENZENE	70		µg/L	0.5 U					
1,2,4-TRIMETHYLBENZENE			µg/L	0.2 U					
1,2-DIBROMO-3-CHLOROPROPANE			µg/L	0.5 U					
1,2-DICHLOROBENZENE	600		µg/L	0.2 U					
1,2-DICHLOROETHANE	5	0.5	µg/L	0.2 U					
1,2-DICHLOROPROPANE	5	0.6	µg/L	0.2 U					
1,3,5-TRIMETHYLBENZENE			µg/L	0.2 U					
1,3-DICHLOROBENZENE			µg/L	0.2 U					
1,3-DICHLOROPROPANE			µg/L	0.2 U					
1,4-DICHLOROBENZENE	75	4	µg/L	0.2 U					
2,2-DICHLOROPROPANE			µg/L	0.2 U					
2-BUTANONE			µg/L	5 U	5 U	5 U	5 U	5 U	5 U
2-CHLOROETHYLVINYLETHER			µg/L	1 U	1 U	1 U	1 U	1 U	1 U
2-CHLOROTOLUENE			µg/L	0.2 U					
2-HEXANONE 4-CHLOROTOLUENE			µg/L	5 U	5 U 0.2 U	5 U	5 U 0.2 U	5 U 0.2 U	5 U 0.2 U
			µg/L	0.2 U		0.2 U			
4-ISOPROPYLTOLUENE 4-METHYL-2-PANTANONE			µg/L	0.2 U	0.2 U 5 U				
ACETONE			µg/L	5 U	5 U	5 U	5 U 5 U	5 U 5 U	5 U
			µg/L	5 U	5 U	5 U			
			µg/L	5 U	5 U	5 U	5 U	5 U	5 U
			µg/L	1 U	1 U	1 U	1 U	1 U	1 U
BENZENE BROMOBENZENE	5	1	µg/L	0.2 U					
BROMOBENZENE			µg/L	0.2 U 0.2 U					
BROMOETHANE			µg/L	0.2 U	0.2 U 0.2 U	0.2 U 0.2 U	0.2 U 0.2 U	0.2 U 0.2 U	0.2 U 0.2 U
BROMOFORM			µg/L	0.2 U	0.2 U 0.2 U	0.2 U 0.2 U	0.2 U 0.2 U	0.2 U 0.2 U	0.2 U 0.2 U
BROMOFORM		5	µg/L	0.2 U 1.0 U					
CARBON DISULFIDE			µg/L	0.2 U					
			µg/L						
CARBON TETRACHLORIDE	5	0.3	µg/L	0.2 U					
CFC-113			µg/L	0.2 U					
CHLOROBENZENE	100		µg/L	0.2 U	0.2 U	1.3	0.2 U	0.2 U	1.3
			µg/L	0.2 U					
			µg/L	0.2 U					
CHLOROETHANE			µg/L	0.2 U					
CHLOROFORM		7	µg/L	0.2 U					
			µg/L	0.5 U					
CIS-1,2-DICHLOROETHENE	70		µg/L	0.2 U	0.2 U	0.2 U	2.5	0.2 U	0.2 U

Groundwater Quality Data March 2016 Quarterly Monitoring Event Page 3 of 3

			age	5015					
	State Drinking Water Standards	State Groundwater Standards							
VOLATILE ORGANIC COMPOUNDS	(a)	(b)	Units	MW-1	MW-3	MW-6	MW-8	MW-10	MW-13 (FD)
CIS-1,3-DICHLOROPROPENE		0.2	µg/L	0.2 U					
DIBROMOETHANE			µg/L	0.2 U					
DICHLOROBROMOMETHANE		0.5	µg/L	0.2 U					
ETHYLBENZENE	700		µg/L	0.2 U					
ETHYLENE DIBROMIDE		0.001	µg/L	0.2 U					
HEXACHLOROBUTADIENE			µg/L	0.5 U					
IODOMETHANE			µg/L	1 U	1 U	1 U	1 U	1 U	1 U
ISOPROPYLBENZENE			µg/L	0.2 U					
METHYLENE CHLORIDE	5	5	µg/L	1 U	1 U	1 U	1 U	1 U	1 U
M & P-XYLENE	10		µg/L	0.4 U					
NAPHTHALENE			µg/L	0.5 U					
N-BUTYLBENZENE			µg/L	0.2 U					
N-PROPYLBENZENE			µg/L	0.2 U					
O-XYLENE	10		µg/L	0.2 U					
SEC-BUTYLBENZENE			µg/L	0.2 U					
STYRENE	100		µg/L	0.2 U					
TERT-BUTLYBENZENE			µg/L	0.2 U					
TETRACHLOROETHENE	5	0.8	µg/L	0.2 U					
TOLUENE	1000		µg/L	0.2 U					
TRANS-1,2-DICHLOROETHENE	100		µg/L	0.2 U					
TRANS-1,3-DICHLOROPROPENE		0.2	µg/L	0.2 U					
TRANS-1,4-DICHLORO-2-BUTENE			µg/L	1 U	1 U	1 U	1 U	1 U	1 U
TRICHLOROETHENE	5	3	µg/L	0.2 U					
TRICHLOROFLUOROMETHANE			µg/L	0.2 U					
VINYL ACETATE			µg/L	0.2 U					
VINYL CHLORIDE	2	0.02	µg/L	0.02 U					

Notes:

Concentration exceeds State Drinking Water Standards or Groundwater Standards

FD = Field Duplicate of MW-6 was labeled MW-13.

Regulatory Standards:

All regulatory standards listed for VOCs are Primary Regulatory Standards

(a) WAC 246-290-310

(b) WAC 173-200-040

Data Qualifiers:

U = Indicates compound was analyzed for but was not detected at the specified detection limit.

Groundwater Quality Data June 2016 Quarterly Monitoring Event Page 1 of 3

	State Drinking Water Standards	State Ground- water Standards							
CONVENTIONALS	(a)	(b)	Units	MW-1	MW-3	MW-6	MW-8	MW-10	MW-17 (FD)
				50.0	70.4	177.0	100	004	477
			mg/L	58.9	76.4	177.0	109	264	177
			mg/L	0.047	0.040 U	0.040 U	0.040 U	0.083	0.040 U
BICARBONATE			mg/L	59	76	177	109	264	177
			mg/L	1.0 U					
CHEMICAL OXYGEN DEMAND			mg/L	10.0 U	26.0	26.0	11.0	21.6	25.4
CHLORIDE	250**	250**	mg/L	5.5	3.8	1.5	2.2	4.3	1.7
DISSOLVED OXYGEN			mg/L	9.28	1.16	1.30	1.39	1.21	NA
NITRATE NITROGEN	10*	10*	mg/L	0.141	0.109	0.024	0.054	0.114	0.027
NITRITE NITROGEN	1*		mg/L	0.010 U	0.010 U	0.018	0.010 U	0.010 U	0.018
ORP			mV	108.8	88	-11.0	42.2	52.8	NA
pH (field)		6.5-8.5**	-log H+	5.8	5.7	6.4	6.2	6.2	NA
pH (laboratory)		6.5-8.5**	-log H+	6.5	6.1	6.7	6.6	6.5	6.7
SPECIFIC CONDUCTANCE	700**		umhos/cm	130	157	343	202	540	NA
SULFATE	250**	250**	mg/L	4.8	10.8	20.2	4.6	47.3	20.1
TEMPERATURE			°C	11.0	12.0	11.1	10.4	11.2	NA
TOTAL COLIFORM	1/100 mL*	1/100 mL*	cfu/100 mL	1 U	1 U	1 U	1 U	1 U	1 U
TOTAL ORGANIC CARBON			mg/L	0.5 U	1.23	1.6	0.8	3.1	1.7
TURBIDITY			NTU	0.25	3.50	3.22	8.95	1.26	NA
DISSOLVED METALS									
ARSENIC	10*	0.05*	µg/L	0.09	0.08	0.81	1.89	1.57	0.78
BARIUM	2,000*	1,000*	µg/L	6	7	14	7	22	14
CALCIUM			mg/L	13	17	36	19	51	37
IRON	300**	300**	µg/L	20 U	20 U	800	320	20 U	810
MANGANESE	50**	50**	µg/L	2	2,460	645	3,590	6,470	634
POTASSIUM			mg/L	0.7	0.5 U	1.3	0.9	1.2	1.3
SODIUM	20,000***		mg/L	4.9	5.7	8.3	7.0	13.9	8.5
ZINC	5,000**	5,000**	µg/L	4.0 U	6.0	4.0 U	4.0 U	4.0 U	4.0 U
VOLATILE ORGANIC COM	MPOUNDS	6							
VINYL CHLORIDE	2*	0.02*	µg/L	0.02 U	0.02 U	0.02 U	0.035	0.02 U	0.02 U

Notes:

Concentration exceeds Washington State Drinking Water or Groundwater Standards

FD = Field Duplicate of MW-6 was labeled MW-17.

NA = Not Analyzed

Regulatory Standards:

(a) WAC 246-290-310

(b) WAC 173-200-040

(c) WAC 173-201A-200 - Nitrate and Nitrite Standards noted are for Class AA water. Fecal coliform standard is 100/100mL for Primary The appropriate class of water for the detention pond has not been established.

* Primary Standard

** Secondary Standard

*** Recommended level of concern for consumers with restricted daily sodium intake.

Data Qualifiers:

U = Indicates compound was analyzed for, but not detected at the specified detection limit.

J = Estimated value - Compound positively identified, but below specified detection limit.

Groundwater Quality Data June 2016 Quarterly Monitoring Event Page 2 of 3

State

	State Drinking Water Standards	State Groundwater Standards							
VOLATILE ORGANIC COMPOUNDS	(a)	(b)	Units	MW-1	MW-3	MW-6	MW-8	MW-10	MW-17 (FD)
1,1,1,2-TETRACHLOROETHANE			µg/L	0.2 U					
1,1,1-TRICHLOROETHANE	200	200	µg/L	0.2 U					
1,1,2,2-TETRACHLOROETHANE			µg/L	0.2 U					
1,1,2-TRICHLOROETHANE	5		µg/L	0.2 U					
1,1-DICHLOROETHANE		1	µg/L	0.2 U					
1,1-DICHLOROETHENE	7		µg/L	0.2 U					
1,1-DICHLOROPROPENE			µg/L	0.2 U					
1,2,3-TRICHLOROBENZENE			µg/L	0.5 U					
1,2,3-TRICHLOROPROPANE			µg/L	0.5 U					
1,2,4-TRICHLOROBENZENE	70		µg/L	0.5 U					
1,2,4-TRIMETHYLBENZENE			µg/L	0.2 U					
1,2-DIBROMO-3-CHLOROPROPANE			µg/L	0.5 U					
1,2-DICHLOROBENZENE	600		µg/L	0.2 U					
1,2-DICHLOROETHANE	5	0.5	µg/L	0.2 U					
1,2-DICHLOROPROPANE	5	0.6	µg/L	0.2 U					
1,3,5-TRIMETHYLBENZENE			µg/L	0.2 U					
1,3-DICHLOROBENZENE			µg/L	0.2 U					
1,3-DICHLOROPROPANE			µg/L	0.2 U					
1,4-DICHLOROBENZENE	75	4	µg/L	0.2 U					
2,2-DICHLOROPROPANE			µg/L	0.2 U					
2-BUTANONE			µg/L	5 U	5 U	5 U	5 U	5 U	5 U
2-CHLOROETHYLVINYLETHER			µg/L	1 U	1 U	1 U	1 U	1 U	1 U
2-CHLOROTOLUENE 2-HEXANONE			μg/L μg/L	0.2 U 5 U					
4-CHLOROTOLUENE			µg/L	0.2 U					
4-ISOPROPYLTOLUENE			μg/L	0.2 U					
4-METHYL-2-PANTANONE			µg/L	5 U	5 U	5 U	5 U	5 U	5 U
ACETONE			µg/L	5 U	5 U	5 U	5 U	5 U	5 U
ACROLEIN			µg/L	5 U	5 U	5 U	5 U	5 U	5 U
ACRYLONITRILE			µg/L	1 U	1 U	1 U	1 U	1 U	1 U
BENZENE	5	1	µg/L	0.2 U					
BROMOBENZENE			µg/L	0.2 U					
BROMOCHLOROMETHANE			µg/L	0.2 U					
BROMOETHANE			µg/L	0.2 U					
BROMOFORM		5	μg/L	0.2 U					
BROMOMETHANE			μg/L	1.0 U					
CARBON DISULFIDE			μg/L	0.2 U					
CARBON TETRACHLORIDE	5	0.3	µg/L	0.2 U					
CFC-113			μg/L	0.2 U					
CHLOROBENZENE	100		μg/L	0.2 U	0.2 U	1.6	0.2 U	0.2 U	1.5
CHLOROBROMOMETHANE			µg/L	0.2 U					
CHLORODIBROMOMETHANE			µg/L	0.2 U					
CHLOROETHANE			µg/L	0.2 U					
CHLOROFORM		7	µg/L	0.2 U					
CHLOROMETHANE			µg/L	0.5 U					
CIS-1,2-DICHLOROETHENE	70		µg/L	0.2 U	0.2 U	0.2 U	0.3	0.25	0.2 U

Groundwater Quality Data June 2016 Quarterly Monitoring Event Page 3 of 3

				••••					
	State Drinking Water Standards	State Groundwater Standards							
VOLATILE ORGANIC COMPOUNDS		(b)	Units	MW-1	MW-3	MW-6	MW-8	MW-10	MW-17 (FD)
CIS-1,3-DICHLOROPROPENE		0.2	µg/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
DIBROMOETHANE			µg/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
DICHLOROBROMOMETHANE		0.5	µg/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
ETHYLBENZENE	700		µg/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
ETHYLENE DIBROMIDE		0.001	µg/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
HEXACHLOROBUTADIENE			µg/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
IODOMETHANE			µg/L	1 U	1 U	1 U	1 U	1 U	1 U
ISOPROPYLBENZENE			µg/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
METHYLENE CHLORIDE	5	5	µg/L	1 U	1 U	1 U	1 U	1 U	1 U
M & P-XYLENE	10		µg/L	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U
NAPHTHALENE			µg/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
N-BUTYLBENZENE			µg/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
N-PROPYLBENZENE			µg/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
O-XYLENE	10		µg/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
SEC-BUTYLBENZENE			µg/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
STYRENE	100		µg/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
TERT-BUTLYBENZENE			µg/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
TETRACHLOROETHENE	5	0.8	µg/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
TOLUENE	1000		µg/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
TRANS-1,2-DICHLOROETHENE	100		µg/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
TRANS-1,3-DICHLOROPROPENE		0.2	µg/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
TRANS-1,4-DICHLORO-2-BUTENE			µg/L	1 U	1 U	1 U	1 U	1 U	1 U
TRICHLOROETHENE	5	3	µg/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
TRICHLOROFLUOROMETHANE			µg/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
VINYL ACETATE			µg/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
VINYL CHLORIDE	2	0.02	µg/L	0.02 U	0.02 U	0.02 U	0.035	0.02 U	0.02 U
N <i>i</i>									_

Notes:

Concentration exceeds State Drinking Water Standards or Groundwater Standards

FD = Field Duplicate of MW-6 was labeled MW-17.

Regulatory Standards:

All regulatory standards listed for VOCs are Primary Regulatory Standards

(a) WAC 246-290-310

(b) WAC 173-200-040

Data Qualifiers:

U = Indicates compound was analyzed for but was not detected at the specified detection limit.

Groundwater Quality Data September 2016 Quarterly Monitoring Event Page 1 of 3

	State Drinking Water Standards	State Ground- water Standards							
	(a)	(b)	Units	MW-1	MW-3	MW-6	MW-8	MW-10	MW-12 (FD)
CONVENTIONALS									
ALKALINITY			mg/L	56	220	197	103	212	96
AMMONIA NITROGEN			mg/L	0.040 U	0.040 U		0.044	0.077	0.048
BICARBONATE			mg/L	56	220	197	103	212	96
CARBONATE			mg/L	1.0 U					
CHEMICAL OXYGEN DEMAND			mg/L	10.0 U	10.0 U	11.2	10.0 U	10.2	10.0 U
CHLORIDE	250**	250**	mg/L	3.6	3.4	2.3	2.2	2.4	2.2
DISSOLVED OXYGEN			mg/L	10.68	0.10	0.02	0.01	0.01	NA
NITRATE NITROGEN	10*	10*	mg/L	0.643	0.010 U	0.010 U	0.020	0.010 U	0.016
NITRITE NITROGEN	1*		mg/L	0.010 U					
ORP			mV	175	203.3	-1.9	42.2	93.9	NA
pH (field)		6.5-8.5**	-log H+	6.3	6.1	6.5	6.6	6.5	NA
pH (laboratory)		6.5-8.5**	-log H+	6.2	6.0	6.4	6.7	6.4	6.6
SPECIFIC CONDUCTANCE	700**		umhos/cm	131	455	384	197	411	NA
SULFATE	250**	250**	mg/L	3.8	20.7	10.2	4.1	16.1	3.9
TEMPERATURE			°C	11.0	12.0	11.4	11.0	11.6	NA
TOTAL COLIFORM	1/100 mL*	1/100 mL*	cfu/100 mL	1 U	1 U	1 U	1 U	1 U	1 U
TOTAL ORGANIC CARBON			mg/L	0.5 U	2.9	2.0	0.7	2.6	0.7
TURBIDITY			NTU	0.8	0.9	8.9	4.3	1.1	NA
DISSOLVED METALS									
ARSENIC	10*	0.05*	µg/L	0.10	0.12	1.21	1.74	1.82	1.77
BARIUM	2,000*	1,000*	µg/L	5	19	17	8	16	7
CALCIUM			mg/L	12	50	42	18	40	18
IRON	300**	300**	µg/L	20 U	20 U	1,300	202	20.5	181
MANGANESE	50**	50**	µg/L	1	6,820	594	3,020	4,370	2,980
POTASSIUM			mg/L	0.7	0.9	1.5	1.0	1.2	1.0
SODIUM	20,000***		mg/L	4.8	10.1	7.8	6.9	13.2	7.1
ZINC	5,000**	5,000**	µg/L	4.0 U					
VOLATILE ORGANIC COI	MPOUNDS	5							
VINYL CHLORIDE	2*	0.02*	µg/L	0.02 U	0.02 U	0.02 U	0.036	0.02 U	0.033

Notes:

Concentration exceeds Washington State Drinking Water or Groundwater Standards

FD = Field Duplicate of MW-8 was labeled MW-12.

NA = Not Analyzed

Regulatory Standards:

(a) WAC 246-290-310

(b) WAC 173-200-040

(c) WAC 173-201A-200 - Nitrate and Nitrite Standards noted are for Class AA water. Fecal coliform standard is 100/100mL for Primary The appropriate class of water for the detention pond has not been established.

* Primary Standard

** Secondary Standard

*** Recommended level of concern for consumers with restricted daily sodium intake.

Data Qualifiers:

U = Indicates compound was analyzed for, but not detected at the specified detection limit.

J = Estimated value - Compound positively identified, but below specified detection limit.

Groundwater Quality Data September 2016 Quarterly Monitoring Event Page 2 of 3

			Page	2 01 3					
	State Drinking Water Standards	State Groundwater Standards							
VOLATILE ORGANIC COMPOUNDS	(a)	(b)	Units	MW-1	MW-3	MW-6	MW-8	MW-10	MW-12 (FD)
1,1,1,2-TETRACHLOROETHANE			µg/L	0.2 U					
1,1,1-TRICHLOROETHANE	200	200	µg/L	0.2 U					
1,1,2,2-TETRACHLOROETHANE			µg/L	0.2 U					
1,1,2-TRICHLOROETHANE	5		µg/L	0.2 U					
1,1-DICHLOROETHANE		1	µg/L	0.2 U					
1,1-DICHLOROETHENE	7		µg/L	0.2 U					
1,1-DICHLOROPROPENE			µg/L	0.2 U					
1,2,3-TRICHLOROBENZENE			µg/L	0.5 U					
1,2,3-TRICHLOROPROPANE			µg/L	0.5 U					
1,2,4-TRICHLOROBENZENE	70		µg/L	0.5 U					
1,2,4-TRIMETHYLBENZENE			µg/L	0.2 U					
1,2-DIBROMO-3-CHLOROPROPANE			µg/L	0.5 U					
1,2-DICHLOROBENZENE	600		µg/L	0.2 U					
1,2-DICHLOROETHANE	5	0.5	µg/L	0.2 U					
1,2-DICHLOROPROPANE	5	0.6	µg/L	0.2 U					
1,3,5-TRIMETHYLBENZENE			µg/L	0.2 U					
1,3-DICHLOROBENZENE			µg/L	0.2 U					
1,3-DICHLOROPROPANE			µg/L	0.2 U					
1,4-DICHLOROBENZENE	75	4	µg/L	0.2 U					
2,2-DICHLOROPROPANE			µg/L	0.2 U					
2-BUTANONE 2-CHLOROETHYLVINYLETHER			μg/L μg/L	5 U 1 U					
2-CHLOROTOLUENE			µg/L	0.2 U					
2-HEXANONE			µg/L	5 U	5 U	5 U	5 U	5 U	5 U
4-CHLOROTOLUENE			µg/L	0.2 U					
4-ISOPROPYLTOLUENE			µg/L	0.2 U					
4-METHYL-2-PANTANONE			µg/L	5 U	5 U	5 U	5 U	5 U	5 U
ACETONE			µg/L	5 U	5 U	5 U	5 U	5 U	5 U
ACROLEIN			µg/L	5 U	5 U	5 U	5 U	5 U	5 U
ACRYLONITRILE			µg/L	1 U	1 U	1 U	1 U	1 U	1 U
BENZENE	5	1	µg/L	0.2 U					
BROMOBENZENE			µg/L	0.2 U					
BROMOCHLOROMETHANE			µg/L	0.2 U					
BROMOETHANE			µg/L	0.2 U					
BROMOFORM		5	µg/L	0.2 U					
BROMOMETHANE			µg/L	1.0 U					
CARBON DISULFIDE			µg/L	0.2 U					
CARBON TETRACHLORIDE	5	0.3	µg/L	0.2 U					
CFC-113			µg/L	0.2 U					
CHLOROBENZENE	100		µg/L	0.2 U	0.2 U	1.83	0.2 U	0.2 U	1.5
CHLOROBROMOMETHANE			µg/L	0.2 U					
CHLORODIBROMOMETHANE			µg/L	0.2 U					
CHLOROETHANE			µg/L	0.2 U					
CHLOROFORM		7	µg/L	0.2 U					
CHLOROMETHANE			µg/L	0.5 U					
CIS-1,2-DICHLOROETHENE	70		µg/L	0.2 U	0.20	0.2 U	0.33	0.2 U	0.32

Groundwater Quality Data September 2016 Quarterly Monitoring Event Page 3 of 3

			. ugo	0010					
	State Drinking Water Standards	State Groundwater Standards							
VOLATILE ORGANIC COMPOUNDS	(a)	(b)	Units	MW-1	MW-3	MW-6	MW-8	MW-10	MW-12 (FD)
CIS-1,3-DICHLOROPROPENE		0.2	µg/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
DIBROMOETHANE			µg/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
DICHLOROBROMOMETHANE		0.5	µg/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
ETHYLBENZENE	700		µg/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
ETHYLENE DIBROMIDE		0.001	µg/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
HEXACHLOROBUTADIENE			µg/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
IODOMETHANE			µg/L	1 U	1 U	1 U	1 U	1 U	1 U
ISOPROPYLBENZENE			µg/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
METHYLENE CHLORIDE	5	5	µg/L	1 U	1 U	1 U	1 U	1 U	1 U
M & P-XYLENE	10		µg/L	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U
NAPHTHALENE			µg/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
N-BUTYLBENZENE			µg/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
N-PROPYLBENZENE			µg/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
O-XYLENE	10		µg/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
SEC-BUTYLBENZENE			µg/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
STYRENE	100		µg/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
TERT-BUTLYBENZENE			µg/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
TETRACHLOROETHENE	5	0.8	µg/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
TOLUENE	1000		µg/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
TRANS-1,2-DICHLOROETHENE	100		µg/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
TRANS-1,3-DICHLOROPROPENE		0.2	µg/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
TRANS-1,4-DICHLORO-2-BUTENE			µg/L	1 U	1 U	1 U	1 U	1 U	1 U
TRICHLOROETHENE	5	3	µg/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
TRICHLOROFLUOROMETHANE			µg/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
VINYL ACETATE			µg/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
VINYL CHLORIDE	2	0.02	µg/L	0.02 U	0.02 U	0.02 U	0.036	0.02 U	0.033
								_	

Notes:

Concentration exceeds State Drinking Water Standards or Groundwater Standards

FD = Field Duplicate of MW-8 was labeled MW-12.

Regulatory Standards:

All regulatory standards listed for VOCs are Primary Regulatory Standards

(a) WAC 246-290-310

(b) WAC 173-200-040

Data Qualifiers:

U = Indicates compound was analyzed for but was not detected at the specified detection limit.

Groundwater Quality Data December 2016 Quarterly Monitoring Event Page 1 of 3

	State Drinking Water Standards	State Ground- water Standards										
	(a)	(b)	Units	MW-1	MW-3	MW-5A	MW-6	MW-7	MW-8	MW-10	SW-2	MW-13 (FD)
CONVENTIONALS												
ALKALINITY			mg/L	48.1	223		102		101	180		182
AMMONIA NITROGEN			mg/L	0.040 U	0.040 U		0.040 U		0.040 U	0.103		0.091
BICARBONATE			mg/L	48.1	223		102		101	180		181
CARBONATE			mg/L	1.0 U	1.0 U		1.0 U		1.0 U	1.0 U		1.0 U
CHEMICAL OXYGEN DEMAND			mg/L	10.0 U	10.0 U		10.0 U		10.0 U	14		10.0 U
CHLORIDE	250**	250**	mg/L	2.91	6.15		2.57		2.62	10.7		10.8
DISSOLVED OXYGEN			mg/L	10.51	0.25	8.84	0.18	4.48	2.16	0.20		NA
NITRATE NITROGEN	10*	10*	mg/L	1.41	0.020 U		0.020		0.163	0.020 U	0.020 U	0.020 U
NITRITE NITROGEN	1*		mg/L	0.010 U	0.010 U		0.010 U		0.010 U	0.010 U	0.010 U	0.010 U
ORP			mV	171.2	165.1	157.3	-4.7	115.5	32.8	113.6		NA
pH (field)		6.5-8.5**	-log H+	6.5	6.3	6.7	6.7	6.8	6.7	6.5	8.1	NA
pH (laboratory)		6.5-8.5**	-log H+	6.4	6.2	6.7	6.6	6.7	6.6	6.4	7.2	6.4
SPECIFIC CONDUCTANCE	700**		umhos/cm	115.4	417.2	145.6	199.4	98.9	301.4	357.7	43.4	NA
SULFATE	250**	250**	mg/L	4.04	13.2		7.25		5.06	7.19		7.18
TEMPERATURE			°C	10.8	11.7	11.6	11.9	11.0	11.4	11.7	3.8	NA
FECAL COLIFORM			cfu/100 mL								3	
TOTAL COLIFORM	1/100 mL*	1/100 mL*	cfu/100 mL	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
TOTAL ORGANIC CARBON			mg/L	0.5 U	2.51		2.77		1.36	2.87		3.00
TURBIDITY			NTU	1.9	0.6	0.6	3.5	0.6	4.4	1.5		NA
DISSOLVED METALS												
ARSENIC	10*	0.05*	µg/L	0.10	0.10	0.21	1.20	0.43	2.71	1.72		1.67
BARIUM	2,000*	1,000*	µg/L	3.0 U	14.5	4.3	8.2	3.0 U	7.5	10.2		11.1
CALCIUM			mg/L	10.8	47.3		19.9		32.4	35.5		35.9
IRON	300**	300**	µg/L	20 U	20 U	20 U	734	20 U	1,080	20 U		20 U
MANGANESE	50**	50**	µg/L	1.0 U	6,610	1.0 U	488	1.0 U	3,150	4,120		4,180
POTASSIUM			mg/L	0.64	0.86		1.1		1.1	1.2		1.2
SODIUM	20***		mg/L	4.62	9.44		5.66		8.80	10.9		10.8
ZINC	5,000**	5,000**	µg/L	4.0 U	4.0 U		4.0 U		4.0 U	4.0 U		4.0 U
VOLATILE ORGANIC COI	MPOUND	S	-									
VINYL CHLORIDE	2*	0.02*	μg/L	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.071	0.02 U	0.02 U	0.02 U
Nataa												

Notes:

Concentration exceeds Washington State Drinking Water or Groundwater Standards

FD = Field Duplicate of MW-10 was labeled MW-13.

NA = Not Analyzed

Regulatory Standards:

(a) WAC 246-290-310

(b) WAC 173-200-040

(c) WAC 173-201A-200 - Nitrate and Nitrite Standards noted are for Class AA water. Fecal coliform standard is 100/100mL for Primary Contact Recreation. The appropriate class of water for the detention pond has not been established.

* Primary Standard

** Secondary Standard

*** Recommended level of concern for consumers with restricted daily sodium intake.

Data Qualifiers:

U = Indicates compound was analyzed for, but not detected at the specified detection limit.

J = Estimated value - Compound positively identified, but below specified detection limit.

Groundwater Quality Data December 2016 Quarterly Monitoring Event Page 2 of 3

			Page	2 OT 3					
	State Drinking Water Standards	State Groundwater Standards							
VOLATILE ORGANIC COMPOUNDS	(a)	(b)	Units	MW-1	MW-3	MW-6	MW-8	MW-10	MW-13 (FD)
1,1,1,2-TETRACHLOROETHANE			µg/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
1,1,1-TRICHLOROETHANE	200	200	µg/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
1,1,2,2-TETRACHLOROETHANE			µg/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
1,1,2-TRICHLOROETHANE	5		µg/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
1,1-DICHLOROETHANE		1	µg/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
1,1-DICHLOROETHENE	7		µg/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
1,1-DICHLOROPROPENE			µg/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
1,2,3-TRICHLOROBENZENE			µg/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2,3-TRICHLOROPROPANE			µg/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2,4-TRICHLOROBENZENE	70		µg/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2,4-TRIMETHYLBENZENE			µg/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
1,2-DIBROMO-3-CHLOROPROPANE			µg/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-DICHLOROBENZENE	600		µg/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
1,2-DICHLOROETHANE	5	0.5	µg/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
1,2-DICHLOROPROPANE	5	0.6	µg/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
1,3,5-TRIMETHYLBENZENE			µg/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
1,3-DICHLOROBENZENE			µg/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
1,3-DICHLOROPROPANE			µg/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
1,4-DICHLOROBENZENE	75	4	µg/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
2,2-DICHLOROPROPANE			µg/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
2-BUTANONE			µg/L	5 U	5 U	5 U	5 U	5 U	5 U
2-CHLOROETHYLVINYLETHER			µg/L	1 U	1 U	1 U	1 U	1 U	1 U
2-CHLOROTOLUENE			µg/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
2-HEXANONE			µg/L	5 U	5 U	5 U	5 U	5 U	5 U
4-CHLOROTOLUENE			µg/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
4-ISOPROPYLTOLUENE			µg/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
4-METHYL-2-PANTANONE			µg/L	5 U	5 U	5 U	5 U	5 U	5 U
ACETONE			µg/L	5 U	5 U	5 U	5 U	5 U	5 U
ACROLEIN			µg/L	5 U	5 U	5 U	5 U	5 U	5 U
ACRYLONITRILE			µg/L	1 U	1 U	1 U	1 U	1 U	1 U
BENZENE	5	1	µg/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
BROMOBENZENE			µg/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
BROMOCHLOROMETHANE			µg/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
BROMOETHANE			µg/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
BROMOFORM		5	µg/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
BROMOMETHANE			µg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
CARBON DISULFIDE			µg/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
CARBON TETRACHLORIDE	5	0.3	µg/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
CFC-113			µg/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
CHLOROBENZENE	100		µg/L	0.2 U	0.2 U	2.14	0.2 U	0.2 U	0.2 U
CHLOROBROMOMETHANE			µg/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
CHLORODIBROMOMETHANE			µg/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
CHLOROETHANE			μg/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
CHLOROFORM		7	µg/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
CHLOROMETHANE			μg/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
CIS-1,2-DICHLOROETHENE	70		μg/L	0.2 U	0.2 U	0.2 U	0.40	0.2 U	0.2 U
			-						

Groundwater Quality Data December 2016 Quarterly Monitoring Event Page 3 of 3

			. ugu	0010					
	State Drinking Water Standards	State Groundwater Standards							
VOLATILE ORGANIC COMPOUNDS		(b)	Units	MW-1	MW-3	MW-6	MW-8	MW-10	MW-13 (FD)
CIS-1,3-DICHLOROPROPENE		0.2	µg/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
DIBROMOETHANE			µg/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
DICHLOROBROMOMETHANE		0.5	µg/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
ETHYLBENZENE	700		µg/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
ETHYLENE DIBROMIDE		0.001	µg/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
HEXACHLOROBUTADIENE			µg/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
IODOMETHANE			µg/L	1 U	1 U	1 U	1 U	1 U	1 U
ISOPROPYLBENZENE			µg/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
METHYLENE CHLORIDE	5	5	µg/L	1 U	1 U	1 U	1 U	1 U	1 U
M & P-XYLENE	10		µg/L	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U
NAPHTHALENE			µg/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
N-BUTYLBENZENE			µg/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
N-PROPYLBENZENE			µg/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
O-XYLENE	10		µg/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
SEC-BUTYLBENZENE			µg/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
STYRENE	100		µg/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
TERT-BUTLYBENZENE			µg/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
TETRACHLOROETHENE	5	0.8	µg/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
TOLUENE	1000		µg/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
TRANS-1,2-DICHLOROETHENE	100		µg/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
TRANS-1,3-DICHLOROPROPENE		0.2	µg/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
TRANS-1,4-DICHLORO-2-BUTENE			µg/L	1 U	1 U	1 U	1 U	1 U	1 U
TRICHLOROETHENE	5	3	µg/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
TRICHLOROFLUOROMETHANE			µg/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
VINYL ACETATE			µg/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
VINYL CHLORIDE	2	0.02	µg/L	0.02 U	0.02 U	0.02 U	0.071	0.02 U	0.02 U
		l.						_	

Notes:

Concentration exceeds State Drinking Water Standards or Groundwater Standards

FD = Field Duplicate of MW-10 was labeled MW-13.

Regulatory Standards:

All regulatory standards listed for VOCs are Primary Regulatory Standards

(a) WAC 246-290-310

(b) WAC 173-200-040

Data Qualifiers:

U = Indicates compound was analyzed for but was not detected at the specified detection limit.

Appendix B: 2016 Monitoring Field Notes 1180 NW Maple Street, Suite 310 Issaquab, Washington 98027 pb 425.395.0010

PARTNERS INC

Olalla Landfill Quarterly Monitoring Field Book March 2016

Olalla Landfill Kitsap County, Washington Project Number: 45403.0

Environmental Partners, Inc. 1180 NW Maple Street, Suite 310 Issaquah, Washington 98027 (425) 395-0010

Field Instruments Provided by Consultant:	Example
Multi-parameter meter or individual meters as noted:	YSI 556 or Horiba U-22
pH meter	Orion 250A
Specific conductance meter	YSI Pro 30
Dissolved oxygen meter	YSI Model 50B
ORP meter	YSI ORP15
- Turbidity meter	LaMott 2020
Flow-through cell for field parameter instruments	
Landfill gas meter (rented)	Landtech GEM 5000, or equivalent
Water Level Indicator	Solinst, Heron, Slope Indicator
Equipment to Obtain from the Co	unty:
Keys to Bandix Road Gate, wells, and gates to flares	
Grundfos Rediflow II pump controller and electrical cables	
Equipment Provided by Consult	
Appropriate gas powered generator (Honda eu2000i or equvalent)	int
Power cord for generator	······
Extra fuel for generator in DOT-approved container(s)	
Field logbook with appropriate field data forms	
Pens	
Sample bottles and coolers	
Spray bottles	
Appropriate PPE (see HASP)	
5-gallon purge water buckets	
Watch or phone for sample times	
Utility knife or equivalent	
Cell Phone	
Expendible Supplies:	
0.45 micron in-line filters for dissolved metals samples	
Nitrile gloves	
Garbage bags	
Ziploc-type bags	
Paper towels	
lce	
Distilled or deionized water	
Liguinox™ or equivalent non-phosphate detergent	
Chain of custody forms	<u>,</u>
Strapping tape (if shipping sample coolers)	
Clear packing tape (if shipping sample coolers)	
Calibration fluids for pH, specific conductance, DO, and ORP	
Calibration gases (methane, oxygen, CO ₂) and appropriate regulato	rs and hoses
Extra batteries or charging cords for meters and water level indicate	
Notes:	
DOT = Department of Transportation	Tea 6
DOT = Department of Transportation $\sim Q' e'$	1
HASP = Health and safety plan	
ORR - Ovidation reduction potential	-

Attachment B: Olalla Landfill MFS Monitoring Recommended Equipment List

ORP = Oxidation reduction potential PPE = Personal protective equipment YSI = Yellow Springs Instruments

-

Table 2-1: CAP and SWHP Monitoring Schedule

Olalla Landfill, Kitsap County, WA

	First Quarter							Second and Third Quarters							Fourth Quarter														
Sample Location	Water Level	Field Parameters	VOCs	T & D Metals	Total Coliform	Fecal Coliform	Geochemical	TOC / COD	Landfill Gas Parameters	Water Level	Field Parameters	VOCs	T & D Metals	Total Coliform	Geochemical	TOC / COD	Landfill Gas Parameters	Water Level	Field Parameters	vocs	T & D Metals	Total Coliform	Fecal Coliform	Geochemical	TOC / COD	D. Metals - COC list	pH (field and lab)	Vinyl Chloride	Landfill Gas Parameters
MW-1																													
MW-2																													
MW-3				• •																									
MW-4														_															
MW-5																													
MW-5A																													
MW-6						<u> </u>																							
MW-7															<u> </u>														
MW-8						<u> </u>																							
MW-10																													
SW-2 ¹				-																					-				
Flares 1, 2, 3													<u> </u>																

Notes:

¹ Surface water sample from SW-2 collected during first quarter or fourth quarter, not both quarters.

Field Parameters = pH, specific conductance, temperature, ORP, and DO

VOCs = Volatile organic compounds by EPA Method 8260C standard list, vinyl chloride by selective ion monitoring (SIM)

T (total) Metals = calcium, potassium, sodium

D (dissolved) Metals = arsenic, barium, iron, manganese, zinc

Geochemical = alkalinity, ammonia, bicarbonate, carbonate, chloride, sulfate, nitrate, nitrite, pH

TOC / COD = total organic carbon / chemical oxygen demand

Dissolved Metals - COC list = arsenic, iron, manganese

Landfill gas parameters = methane (%LEL), oxygen(% vol), carbon dioxide (% vol), and gas pressure

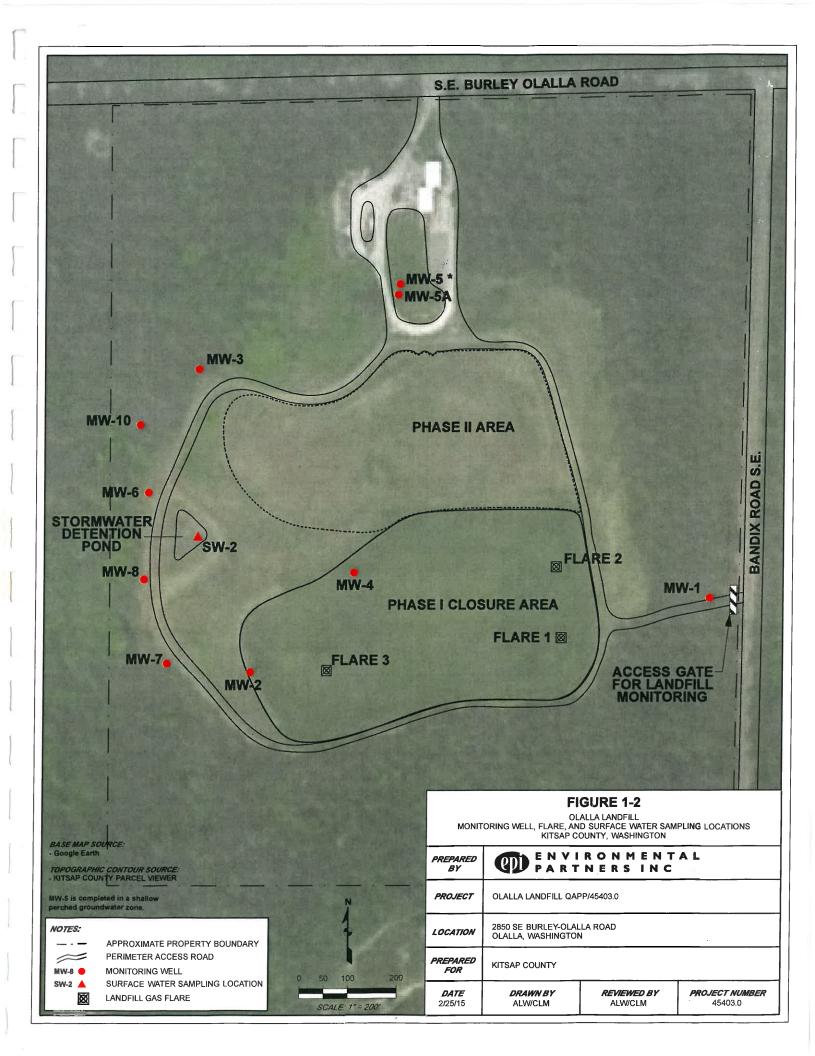
Instrument	Calibration	Log -	Olalla	Landfill	Monitoring

Calibrated By: <u>Eq.</u>	<u>pco-seecor</u>	titication fealbra		ate:	0	
Meter Type	Manufacturer	Model Number	Manufacture	Serial #	Rental Co. Serial #	Time
рН						
pH Electrode						
Calibrated:	to 4.00 buffer	to	7.00 buffer		to 10.00 buffer at	℃
Slope =	Comments:					
Meter Type	Manufacturer	Model Number	Manufacturer	Serial #	Rental Co. Serial #	Time
Specific Cond.						
Specific Conductance: (Calibrated	µS/cm	to	_µS/cm c	alibration standard	
Electrical Conductivity:	Calibrated	µS/cm to	uS/cm	calibratio	n standard at	°C
Comments:	T	Madal	I			1
Meter Type	Manufacturer	Model Number	Manufacturer	Serial #	Rental Co. Serial #	Time
ORP Meter						
ORP Electrode				-		
Electrode measured	millivolts	at	^o C using Zob	ell prepar	ed on / /	
Table value for Zobell so	olution at this tempera	iture is	mV.	2	2 0	
Meter Type	Manufacturer	Model Number	Manufacturer	Serial #	Rental Co. Serial #	Time
Turbidity						
Meter reads	NTUs using	NTUs sta	ndard Comme	nts:		
	NTUs using	NTUs star		There are a second		
Meter Type	Manufacturer	Model Number	Manufacturer	Serial #	Rental Co. Serial #	Time
DO Meter						
Air-Calibration: Measure	ed temperature	°C corre	sponds to	m	g/L DO (from Table I)	
Atmospheric pressure / e	elevation correction fa	ctor	_ (from Table I	I)		_
Corrected calibration val	ue mg/L D	O (Table I va	lue multiplied b	y Table II	value)	
Comments:						

Multiparameter Probe Calibration Log - Olalla Landfill Groundwater Monitoring

Meter Type	Manufacturer	Model Number	Mfg. Serial#	Rental Co. Serial #	Date	Time
Calibrated to Auto	ocal Solution					
Calibration Solution I	Manufacturer		Lot Number		Exp. Date	
рН =	<i>,</i>				ure =	
Conductivity =						
Comments:						
			E.			2
Meter Type	Manufacturer	Model Number	Mfg. Serial#	Rental Co. Serial #	Date	Time
						0
Calibrated to Auto	cal Solution		I			
Calibration Solution M	lanufacture <u>r</u>		Lot Number		Exp. Date _	
pH =	Turbid	ity =		Temperatu	ıre =	
Conductivity =	Disso	olved Oxygen	=	ORP =		
Comments:						
					<u>10</u>	
_						

Well	Total Well Depth (ft bgs)	Measuring Point Elevation (ft NGVD 29)	Surface Elevation (ft NGVD 29)	Screened Interval (ft bgs)	Northing	Easting	Measuring Point Description
MW-1	87	343.79	342.53	82-87	161858.133	560525.840	Pump wellhead
MW-2	73	323.25	318.95	68-73	161704.534	559572.839	Top of PVC casing
MW-3	55.5	296.95	294.95	50.5-55.5	162333.903	559463.060	Pump wellhead
MW-4	68	320.93	317.35	63-68	161911.192	559787.735	Top of PVC casing
MW-5	35.5	334.17	332.78	25-35	162510.115	559878.901	Top of PVC casing
MW-5A	98	332.53	331.43	86-96	162487.878	559875.742	Pump wellhead
MW-6	35	271.17	269.14	28-33	162077.699	559358.970	Pump wellhead
MW-7	33	280.43	278.21	21-31	161723.016	559398.979	Pump wellhead
MW-8	38	272.85	270.73	25-35	161897.813	559350.147	Pump wellhead
MW-10	47	279.21	276.84	37-47	162218.490	559340.899	Pump wellhead


 Table 3-1: Monitoring Well Construction Data Summary

 Olalla Landfill, Kitsap County, WA

Notes:

NGVD 29 = National Geodetic Vertical Datum (1929)

bgs = below ground surface

Depth to Water Measurement Field Data - Olalla Landfill Monitoring

Well	Time	Measuring Point Elevation (ft. NGVD ¹)	Depth to Water (ft.)	Comments and Well Inspection ² Notes
MVV-1	08.36	343.79	77,18	
MW-2	14:55	323.25	62.42	
MW-3	10:15	296.95	40.70	
MW-4	(5:00	320.93	59.41	
MW-5	09:58	334.17	8:35	
MW-5A	0455	332.53	73.43	
MW-6	17:44	271.17	17.26	
MW-7	14,41	280.43	22.35	
MW-8	(3:48	272.85	1810	
MW-10	11:20	279.21	25,94	

Notes:

hi

¹NGVD = National Geodetic Vertical Datum (1929)

²Observations regarding the condition of the well and surrounding area (e.g., protective casing, surface seal, cap, lock, bollards, soil conditions near the well such as depressions, ponded surface water, or other subsidence features, and any installed sampling equipment).

et gal a

EPI Project No./Site	: 45403.0/K	itsap County - (Dialla Land	fill			
e				1	Date	3/24	116
Station	FIW		- 2/16	Field T	eam: (Initials		//0
Sample ID Field Conditions		+ Call	- 3/10	Tield I	ourn (maaio	/ 1	
	0104						
	<u> </u>	Pur <u>i</u>	ge Inforn				
Well Diameter (in.)	87	4	Р	urge Method	Peristaltic Pur		
Well Depth (ft.)	77.18	-			Bladder Pump		
Depth of Water Column	9.54	1			Other: :		_
1 Casing Volume	1.57]		Start Time)	4
3 Casing Volumes	4.7]		End Time			
Cunt			Tot	al Gallons Purged	0		1
Time Gallons	pH	Conductivity	NTU	D0//L	Temp.	ORP	Appearance
09:03 3.5	6.83	0.131		9142	9.93	65.9	cloar
04:116 \$5.5	6.70	0.131		9.82	10.01	66.3	1/
(10) 09 V17.7	6.60	0.[3]		9.79	10:03	67.4	. 11
09.12 10	6.56	0.131		9.70	10.06	68.6	11
09:15 12.5	6.53	0130		9.78	10.02	6. 569.	9 17
09:16-Saple			-4.1				
						+	
	<u> </u>						
		- Com	nla Infor	mation		1	
			ple Infor		an / Other		
Sample Method(s)	Supmersibi	e pump) Perista	aitic pump	/ bladder Pull	Ip / Outer		
Analysis	Time	Bottle Type	Preserv	ative/Filtration		Comments	
Volatiles and VC	09:16	5 40-mi VOA	н	CL, ice			
Total Coliform		300-mi sterile AG		ice			
Geochemical Parameters		500-ml HDPE		ice			
						· · · · · · · · · · · · · · · · · · ·	
Nitrate/Nitrite		500-mi HDPE		ice			
TOC		250-ml AG	H₂SO₄t	o ph<2, ice			
COD		250-ml HDPE	H₂SO₄t	o ph<2, ice	¢.		
Total Metals		250-ml HDPE	HNO ₃ to	o ph<2, ice			
Dissolved Metals		250-ml HDPE	HNO3 to ph<	2, ice. Field filter	•		
End Time	0919						
		Comn	nents / Exc	ceptions:			
		Ĵ.Ţ.ſ		······································	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
Custraller -	E. I. I. iq	+10.7					
		_					

EPI Project No./Site	: <u>45403.0/k</u>	(itsap County - 0	Olalla Land	fill	<u></u>							
Station Sample ID Field Conditions	. MW. Ololla - Cirl L	-3 MW3-3/1 Ugar	6	Field T	Date eam: (Initials)							
			ge Inforr	nation								
Weil Diameter (in.) Well Depth (ft.) Initial Depth to Water (ft.) Depth of Water Column 1 Casing Volume 3 Casing Volumes	2' 55:5 40:70 14:8 2:37 7:1	55:5 Peristance Pump 10:70 Bladder Pump 11:87 Other:: 2:37 Start Time 7:1 End Time 10:37 Total Gallons Purged										
Time Gellene	ᆔ	Conductivity	NTU	DO	Temp.	ORP	Appearance					
Time Gallons 10:35 .5 10:34 3.3 10:37 6.8 10:40 5.6 10:43 7.2 10:43 7.2 10:45 Somple	pH 6.75 6.51 6.45 6.45 6.41 6.41	$\begin{array}{c} Conductivity \\ \hline \begin{array}{c} \mathcal{C} \cdot \mathcal{F} \\ \mathcal{F} \end{array} \\ \hline \begin{array}{c} \mathcal{O} \cdot \mathcal{F} \\ \mathcal{O} \cdot \mathcal{F} \end{array} \\ \hline \begin{array}{c} \mathcal{O} \cdot \mathcal{F} \\ \mathcal{O} \cdot \mathcal{F} \end{array} \\ \hline \begin{array}{c} \mathcal{O} \cdot \mathcal{F} \\ \mathcal{O} \cdot \mathcal{F} \end{array} \\ \hline \begin{array}{c} \mathcal{O} \\ \mathcal{O} \end{array} \\ \hline \begin{array}{c} \mathcal{O} \\ \mathcal{O} \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array}$	1 3 C	7.801 1.75 1.51 1.51 1.71 1.75	$ \begin{array}{c} 10, 18 \\ 11.06 \\ 11.20 \\ 11.20 \\ 11.26 \\ 11.26 \\ 11$	23.1 70.3 #19:1 18:2 17:1 15:5	i/ i/ i/ i/ i/ i/ i/ i/ i/					
Sample Method(s)	Submersibl			mation / Bladder Purr ative/Filtration	np / Other	Comments						
Volatiles and VC	10:45	Sar 40-mi VOA		CL, ice		Commente						
Total Coliform	(0 1)	300-ml sterile AG or poly		ice	1							
Geochemical Parameters		500-ml HDPE		ice								
Nitrate/Nitrite		500-mi HDPE		ice								
TOC	3	250-mi AG	H₂SO₄1	to ph<2, ice								
COD		250-ml HDPE	H₂SO₄t	o ph<2, ice	- 15- -							
Total Metals		250-ml HDPE	HNO₃ ta	o ph<2, ice								
Dissolved Metals		250-ml HDPE	HNO3 to ph<	2, ice. Field filter								
End Time	Control	Comm	nents / Exc	ceptions:								
		139,5		- 								
					~~~~~							

EPI Project No./Site: 45403.0/Kitsap County - Olalla Landfill										
Station Sample ID Field Conditions	Mw Vialla Coul	-10 - 11w10 - 1 016ar	<i>sfr</i> 6	Field T	Date eam: (Initials)		<i>[</i> /6			
		Pur	ge Inforr	nation						
Well Diameter (in.) Well Depth (ft.) Initial Depth to Water (ft.) Depth of Water Column 1 Casing Volume 3 Casing Volumes	3- 47 35.94 81.06 3.37 10.1		р "	Start Time End Time	Peristantic Pum Bladder Pump Other::	1p				
Time Gallons	pН	Conductivity	NTU	DO	Temp.	ORP	Appearance			
1207 4 120 5 1210 5 1216 9 1216 9 1216 9 1216 9 1227 10.2	6.42 6.41 6.41 6.41 6.41	0,444 0,443 0,443 0,440 0,442 0,432	0, 21	1.47 1.13 1.04 0.97 0.95	10.17 10.25 10.24 10.24 10.24 10.24	252 35-0 24,9 23,1 14.9	Cloat *			
		· · · · ·								
					•					
			ple Infor				L]			
Sample Method(s)	Submersib Time	le pump Perista Bottle Type	altic pump		np / Other	Comments				
Volatiles and VC		(8) 40-mi VOA		CL, ice						
Total Coliform	12.21	300-ml sterile AG or poly		ice	Mail					
Geochemical Parameters		500-ml HDPE		ice						
Nitrate/Nitrite		500-mi HDPE		ice						
TOC		250-ml AG	H₂SO4 tu	o ph<2, ice						
COD		250-mi HDPE		p ph<2, ice						
Total Metals		250-ml HDPE		ph<2, ice	k					
Dissolved Metals		250-ml HDPE		2, ice. Field filter						
End Time	126:41		· · · ·							
		Comm	nents / Exc	eptions:						
JET	ling -	127,8		-						
******										
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~										

EPI Proje	ect No./Site	e: <u>45403.0/</u>	Kitsap County -											
Station Sample II Field Con		MW-6, dialla-MW6-3/16 and Populati Cisar + Cuul Cisar + Cuul												
			Pu	rge Infori	nation		<							
Well Diamet Well Depth (Initial Depth Depth of Wa 1 Casing Vol 3 Casing Vol	ft.) to Water (ft.) ter Column ume	35 [7]27 [7,77 2.5 8.5		Purge Method : ubmersible pump Peristaltic Pump Bladder Pump Other: : Start Time End Time Total Gallons Purged										
Time	Gallons	рН	Conductivity	NTU	DO	Temp.	ORP	Appearance						
12:59	2.1	7.27	0.095	·	1.87	10.14	36.0	Claudy						
13:02	4.5	7.02	0.098		1.30	10.18	34.8	deany 40						
12:05	6.3	6.97	0.103		5.10	10.17	21.2	clohr						
17:08	9	6.88	0.107		1.02	10.18	14 6	11						
13:11	10.2	0.89	0.00	447534	0.98	10.18	8.2	1/						
1317	10,1	6.52	0.113	5.5	0.95	0.19	8.0	1/						
			· ·											
			1											
			1				-							
			Sam	ple Infor	mation									
Sample Me	ethod(s) :	Submersibl	e pump / Perist	altic pump	/ Bladder Pum	p / Other								
Anal	ysis	Time	Bottle Type	Preserva	ative/Filtration		Comments							
Volatiles	and VC	12:16	(2) 40-mi VOA	н	CL, ice									
Total Co	bliform		300-ml sterile AG or poly		ice	Lik.								
Geochemical	Parameters		500-ml HDPE		ice									
Nitrate/	Nitrite		500-ml HDPE		ice									
. TO	c		250-mi AG	H₂SO4 to	o ph<2, ice									
CO	D	- ·	250-ml HDPE	H₂SO₄to	p ph<2, ice									
Total M	etais		250-ml HDPE	HNO₃ to	ph<2, ice									
Dissolved	Metais		250-ml HDPE	HNO3 to ph<	2, ice. Field filter			3						
End Time	 	12:21												
			Comm	ents / Exc	eptions:	1								
		······································	autruller.	170	Dyp	112010- (Ialla-t	7115-3/16						
			Tink in Subala falling	-1.vf										

EPI Project No./Sit	e: <u>45403.0</u> /	Kitsap County -	Olalla Land	dfill								
Station Sample ID Field Conditions	ML Olalla Cius	N-8 1- MW8- 24, (vol	3/16	Field	Date Team: (Initials)		10					
		Pu	rge Infori	mation								
Well Diameter (in.) Well Depth (ft.) Initial Depth to Water (ft.) Depth of Water Column 1 Casing Volume 3 Casing Volumes	2 3 5 1 8 9 5 5 9 5 5 5		Purge Method : Submersible pump Peristaltic Pump Bladder Pump Other: : Start Time End Time Total Gallons Purged									
Time Gallons	pН	Conductivity	NTU	DO	Temp.	ORP	Appearance					
13:54 .5 19:02 7:5 14:05 4.8 14:08 7:1 14:08 7:1 14:11 9 14:14 (1 8	7.43 6.96 6.87 6.81 6.74 6.74	0.064 0.093 0.101 0.107 6.110 0.114	6.6	8.60	8,93 9,36 9,36 9,36 9,36 9,35	55.1 50.7 46.1 41.7 41.2 40.6	<u>clour</u> ,, ,, ,, ,,					
			1									
					· · · · · · · · · · · · · · · · · · ·							
Sample Method(s) : Analysis Volatiles and VC	Submersib Time		Preserva			Comments]					
Total Coliform		300-ml sterile AG or poly		ice			· ·					
Geochemical Parameters		500-ml HDPE		ice								
Nitrate/Nitrite		500-ml HDPE		ice								
TOC		250-ml AG	H₂SO4 to	o ph<2, ice								
COD		250-ml HDPE		p ph<2, ice	Ŷ							
Total Metals		250-ml HDPE		ph<2, ice		<u></u>	a					
Dissolved Metals		250-mi HDPE		2, ice. Field filter								
End Time 1	14:18				····		ь <u>.</u>					
End Time	17.(0	Comm	ents / Exc	eptions:								
	Coul	rotter_ 11 ()									

EPI Project No./Site: 45403.0/Kitsap County - Olalla Landfill

Station Sample ID Field Conditions Well Diameter (in.)		Date Field Team: (Initials) ELC Purge Information Purge Method : Submersible pump						
Weil Diameter (in.) Weil Depth (ft.) Initial Depth to Water (ft.) Depth of Water Column 1 Casing Volume 3 Casing Volumes					Start Time End Time al Gallons Purged	Peristaltic Pump Bladder Pump Other: :]
_ Time	Gallons	pН	Conductivity	NTU	DO	Temp.	ORP	Appearance
			Τ		Γ	I		
					· · ·		· <u> </u>	<u> </u>
		<u> </u>						<u>-</u>
			-					
		-						
				-				
		<u> </u>	<u> </u>			· ·		
<u> </u>		ļ						
<u> </u>		<u> </u>						
L	l	<u> </u>						
			Sam	ple Infor	mation			
Sample M	ethod(s) :	Submersibl	e pump / Perista	altic pump /	/ Bladder Purr	1p / Other		
٨٥٥	lucio	Time	Pottle Turne	Desserv	atives / Filtheaties		0	
	lysis	Time	Bottle Type		ative/Filtration		Comments	·
Volatiles	and VC		(3) 40-mi VOA	н	CL, ice			
Total C	oliform		300-ml sterile AG or poly	ice				
Geochemical Parameters			500-ml HDPE	ice				
Nitrate/Nitrite		500-ml HDPE	ice					
. TOC			250-ml AG	H₂SO₄ to ph<2, ice				
COD			250-ml HDPE	H₂SO₄ to ph<2, ice				
Total Metals			250-ml HDPE	HNO₃ to ph<2, ice				
Dissolved Metals			250-ml HDPE	HNO3 to ph<	2, ice. Field filter			
End Time								

Comments / Exceptions:

Landfill Gas Monitoring Field Data - Olalla Landfill Monitoring

Landin Gas Monitoring Field Data - Olana Landfill Monitoring							
Instrument Used:		GEM 2000		Date and Time: 3/24/16 15:10			
Ambient Temperature:		50°F			Field Team: F2 C		
Field Condition	ons:	cloudy & cul, moder		rate broeze		2	
			Landfil	l Gas Data			
Flare #	Time	Methane (% vol.)	% LEL	Oxygen (% vol.)	Carbon Dioxide (% vol.)	Temperature (°C)	Gas Pressure ("H₂O)
#3	15:12	00,0	0,0	19.4	1.6	-	0.48
#1	15:32	0	0	20, 3	0.3		0.10
#2	15.41	0	0	20,4	0.1	_	0.1-0.3
						~	
Comments / Inspection Results ¹							
- value on #3 vory loure							

¹Inspect the following: lock and gate operation, tightness of bolts and clamps, differential settlement, valve operation, debris or breaks in hose barb.

Surface Water Sampling Field Data - Olalla Landfill Monitoring

Station	SW-2	Date 3/24/16
Sample: ID		Field Team: (Initials)
Field Conditions	Cuul, clour	

Field Parameter Data

Time	рН	Specific Conductance	Temperature (°C)	Appearance and Flow Rate

Sample Information

Analysis	Time	Bottle Type	Preservative/Filtration	Comments
Fecal Coliform		300-mL sterile AG or poly	Cool to <4°C	
Nitrate-Nitrogen		500-mL HDPE	Cool to <4°C	
рН		125-mL AG	Cool to <4°C	
4				

Sample End Time

Comments / Exceptions:

pry-no water coming out of discharge pipe. Retention pond w/ no standing water is maddy ba

Notes: Where multiple visits are required to complete sampling, parameters are to be checked prior to sampling for each visit. Enter data under field comments.

CES LANDTECH MODEL: GEM 2000 CALIBRATION CERTIFICATE

	DATE: <u>3(23</u> /16
INSTRUMENT INFORMATION	
RENTAL ID: GEM2000.	
SERIAL NUMBER: GMO7710/03	
CALIBRATION INFORMATION	5.
1CALIBRATION GAS: 35 % CO2	LOT #: 53162
GAS RESPONSE: 35 % CO2 +2%	
2. CALIBRATION GAS: <u>5</u> % Vol. Methane	LOT #: 573162
GAS RESPONSE & Vol. Methane <u>+</u> 2%	
OXYGEN RESPONSE IN FRESH AIR ENVIRONME	ENT: 20.9%
OXYGEN DOWNSCALE RESPONSE CHECKED: 0	0% WITH 99.9% Nitrogen
THIS INSTRUMENT HAS BEEN CALIBRATED TO ST. MANUFACTURER	ANDARDS SET FORTH BY THE MULTION

YSI 6920 RENTAL CALIBRATION CERTIFICATE

SERVICE TECHNICIAN

DATE: 3/23/16

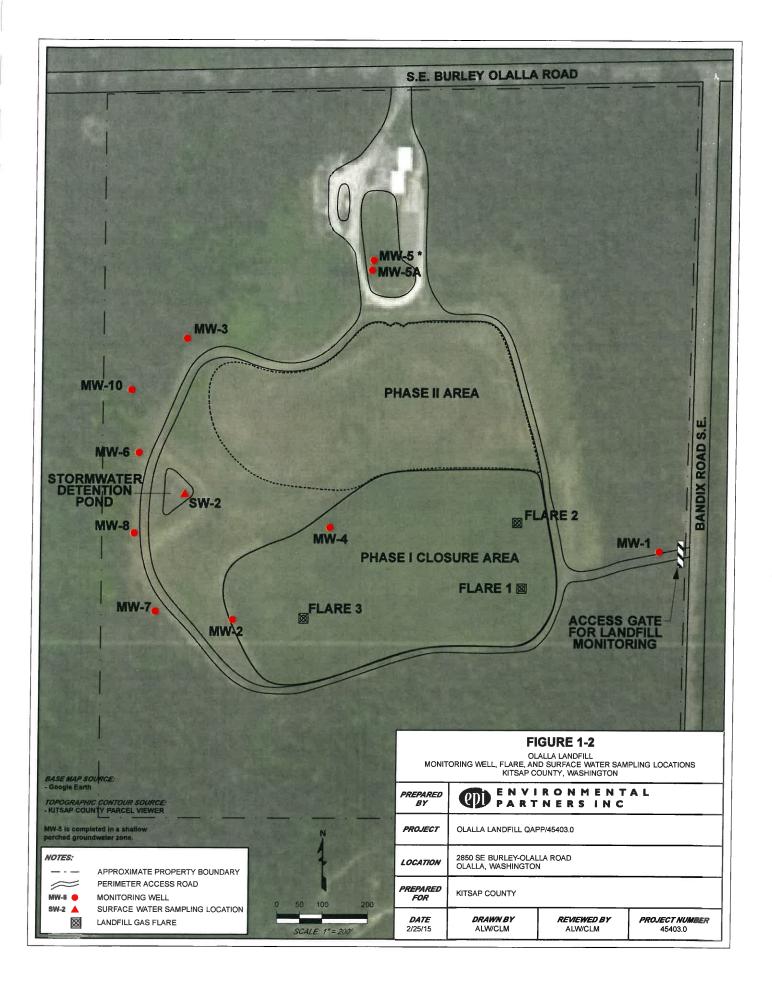
RENTAL CUSTOMER:

INSTRUMENT INFORMATION

RENTAL I.D. NUMBER: YSI-6920. 09 SERIALNUMBER: 9705 (1AF

CALIBRATION INFORMATION

PARAMETERS:	STANDARDS:	PASS () LOT#
CONDUCTIVITY	$(OOO \mu Mhos$	× 10932
pH ZERO	pH 7	> (2518
pH SLOPE	pH 4	× 10521
pH SLOPE 2	pH 10	× 10.503
DISSOLVED OXYGEN	Air Calibration Barometric pressure = 762 mmHg	× N/A
TURBIDITY ZERO	0.5 NTU	NA 100A
TURBIDITY SPAN	X NTU	N/A N/A
TURBIDITY SPAN 2	× _{NTU}	N/A
REDOX (ORP)	<u>Juz.7</u> mV (YSI Zobell solution)	\times 111413


PARTNERS INC

Olalla Landfill Quarterly Monitoring Field Book June 2016

Olalla Landfill Kitsap County, Washington Project Number: 45404.0

Environmental Partners, Inc. 1180 NW Maple Street, Suite 310 Issaquah, Washington 98027 (425) 395-0010

Multiparameter Probe Calibration Log - Olalla Landfill Groundwater Monitoring

Meter Type	Manufacturer	Model Number	Mfg. Serial#	Rental Co. Serial #	Date	Time					
Calibrated to Auto	ocal Solution	L	I	I	I	· · · · · · · · · · · · · · · · · · ·					
Calibration Solution I	Manufacture <u>r</u>		Lot Number		Exp. Date						
pH =	Turbic	lity =		Temperat	ure =						
Conductivity =	Diss	olved Oxyger	ı =	ORP =							
Comments: YJJ and GEM landfill gav motor Calibration by rontal company- Equipco. Calibration corts provided.											
Meter Type	Manufacturer	Model Number	Mfg. Serial#	Rental Co. Serial #	Date	Time					
Calibrated to Auto	cal Solution										
Calibration Solution N	lanufacture <u>r</u>		Lot Number		Exp. Date						
рН =	Turbid	ity =		Temperati	ure =						
Conductivity =	Diss	olved Oxygen	=	ORP =							
Comments:											

Table 2-1: CAP and SWHP Monitoring Schedule Olalla Landfill, Kitsap County, WA

				Firs	t Qua	arter					Sec	ond	and 1	hird	Quar	ters						F	ourt	h Qu	arter				
Sample Location	Water Level	Field Parameters	VOCs	T & D Metals	Total Coliform	Fecal Coliform	Geochemical	TOC / COD	Landfill Gas Parameters	Water Level	Field Parameters	VOCs	T & D Metals	Total Coliform	Geochemical	TOC / COD	Landfill Gas Parameters	Water Level	Field Parameters	VOCS	T & D Metals	Total Coliform	Fecal Coliform	Geochemical	TOC / COD	D. Metals - COC list	pH (field and lab)	Vinyl Chloride	Landfill Gas Parameters
MW-1																													1
MW-2																										-			
MW-3																													<u> </u>
MVV-4																								_					-
MVV-5																													
MW-5A																													
MW-6																												-	
MW-7																				_									
MW-8																										-			
MW-10																				_		-		-					
SW-2 ¹																													
Flares 1, 2, 3																							-	-					

Notes:

¹ Surface water sample from SW-2 collected during first quarter or fourth quarter, not both quarters.

Field Parameters = pH, specific conductance, temperature, ORP, and DO

VOCs = Volatile organic compounds by EPA Method 8260C standard list, vinyl chloride by selective ion monitoring (SIM)

T (total) Metals = calcium, potassium, sodium

D (dissolved) Metals = arsenic, barium, iron, manganese, zinc

Geochemical = alkalinity, ammonia, bicarbonate, carbonate, chloride, sulfate, nitrate, nitrite, pH

TOC / COD = total organic carbon / chemical oxygen demand

Dissolved Metals - COC list = arsenic, iron, manganese

Landfill gas parameters = methane (%LEL), oxygen(% vol), carbon dioxide (% vol), and gas pressure

Bap-14W-17 from MW-6

Well	Total Well Depth (ft bgs)	Measuring Point Elevation (ft NGVD 29)	Surface Elevation (ft NGVD 29)	Screened Interval (ft bgs)	Northing	Easting	Measuring Point Description
MW-1	87	343.79	342.53	82-87	161858.133	560525.840	Pump wellhead
MW-2	73	323.25	318.95	68-73	161704.534	559572.839	Top of PVC casing
MW-3	55.5	296.95	294.95	50.5-55.5	162333.903	559463.060	Pump wellhead
MW-4	68	320.93	317.35	63-68	161911.192	559787.735	Top of PVC casing
MW-5	35.5	334.17	332.78	25-35	162510.115	559878.901	Top of PVC casing
MW-5A	98	332.53	331.43	86-96	162487.878	559875.742	Pump wellhead
MW-6	35	271.17	269.14	28-33	162077.699	559358.970	Pump wellhead
MW-7	33	280.43	278.21	21-31	161723.016	559398.979	Pump wellhead
MW-8	38	272.85	270.73	25-35	161897.813	559350.147	Pump wellhead
MW-10	47	279.21	276.84	37-47	162218.490	559340.899	Pump wellhead

 Table 3-1: Monitoring Well Construction Data Summary

 Olalla Landfill, Kitsap County, WA

Notes:

NGVD 29 = National Geodetic Vertical Datum (1929)

bgs = below ground surface

Well	Time	Measuring Point Elevation (ft. NGVD ¹)	Depth to Water (ft.)	Comments and Well Inspection ² Notes	
MW-1	08:15	343.79	73.82	Good	
MW-2	15:38	323.25	62.34	a dh	
MW-3	09:55	296.95	43.08	Gurc	
MW-4	15:45	320.93	59.70	to usual issue - (41, 1, Bills 4born mongine	at
MW-5	09:25	334.17	(0,80	Good	,
MW-5A	09:30	332.53	73.17	·′/	
MVV-6	12:50	271.17	19.01	ί κ	
MW-7	15:15	280.43	23,18	Ţ1	
MW-8	14:24	272.85	19.52	Good	
MW-10	[(:00	279.21	28.07	Govd	

Depth to Water Measurement Field Data - Olalla Landfill Monitoring

Notes:

¹NGVD = National Geodetic Vertical Datum (1929)

²Observations regarding the condition of the well and surrounding area (e.g., protective casing, surface seal, cap, lock, bollards, soil conditions near the well such as depressions, ponded surface water, or other subsidence features, and any installed sampling equipment).

Ť.

Station $flw-l$ Date 21 -Jun-16Sample ID $OL - Hw - 1 - GH_6$ Field Team: (Initials)ELCField Conditions $CIBECEEICEEICEEICEEICEEICEEICEEICEEICEEI$
Sample ID Field Conditions $OL -MW - 1 - CHL$ $CHV - 1 - CHL$ $CHV - 1 - CHL$ Field Team: (Initials)ELCField Conditions $OL -MW - 1 - CHL$ $CHV - 1 - CHL$ Purge Information Purge InformationPurge Information Purge MethodWell Diameter (in.) Well Depth (ft.) Initial Depth to Water (ft.) Depth of Water Column 1 Casing Volume 3 Casing Volumes $3 - 7$ $4 + 7$ Purge Information Purge MethodStart Time $4 + 7$ $3 - 7$ $4 + 7$ $3 - 7$ $4 + 7$ $3 - 7$ $4 + 7$ Time $Callons$ $D - 1/7$ $4 + 7$ $D - 1/7$ $4 + 7$ $D - 1/7$ $4 + 7$ Time $Callons$ $D - 1/7$ $4 + 7$ $D - 1/7$ $4 + 7$ $D - 1/7$ $4 + 7$ Time $Callons$ $D - 1/7$ $4 + 7$ $D - 1/7$ $4 + 7$ $D - 1/7$ $4 + 7$ Time $Callons$ $D - 1/7$ $4 + 7$ $D - 1/7$ $4 + 7$ $D - 1/7$ $4 + 7$ Time $Callons$ $D - 1/7$ $4 + 7$ $D - 1/7$ $4 + 7$ $D - 1/7$ $4 + 7$ Time $Callons$ $D - 1/7$ $4 + 7$ $D - 1/7$ $4 + 7$ $D - 1/7$ $4 + 7$ Time $Callons$ $D - 1/7$ $4 + 7$ $D - 1/7$ $4 + 7$ $D - 1/7$ $4 + 7$ Time $Callons$ $D - 1/7$ $4 + 7$ $D - 1/7$ $4 + 7$ $D - 1/7$ $4 + 7$ Time $D - 1/7$ $D - 1/7$ $4 + 7$ $D - 1/7$ $4 + 7$ $D - 1/7$ $4 + 7$ Time $D - 1/7$ $D - 1/7$ $4 + 7$ $D - 1/7$ $4 + 7$ $D - 1/7$ $4 + 7$ Time $D - 1/7$ $D - 1/7$ $4 + 7$ $D - 1/7$ $4 + 7$ <td< td=""></td<>
Field ConditionsClass (Cart (Cart))Purge InformationPurge MethodSubmersible pumpWell Diameter (in.) 37 Well Depth (ft.) 75.33 Initial Depth to Water (ft.) 75.33 Depth of Water Column 37.18 Start Time 08.324 TimeGallonspHConductivity NTUDO 44Time GallonspHConductivity NTUDO 44Temp.ORPAppearance 08.37 0.6 0.171 12.88 08.37 0.6 0.131 10.35 08.37 0.6 0.131 10.35 08.37 0.6 0.131 10.35 08.37 0.6 0.131 10.35 08.37 0.63 0.131 0.36 08.37 0.63 0.131 10.35 08.37 0.63 0.131 10.35 08.37 0.63 0.131 0.36 08.37 0.131 0.36 10.41 10.35 0.131 0.36 10.41 10.55 0.131 0.36 1.46 10.56 0.121 0.36 1.46
Purge InformationWell Diameter (in.) Well Depth (ft.) Initial Depth to Water (ft.) 37 75.53 Depth of Water Column 1 Casing Volume 3 Casing Volumes 37 $7.5.53$ 1.11 1.22 Purge Information Purge Method Submersible pump Differ: End Time Total Gallons PurgedTime GallonspH ConductivityNTU O.171ORP Parstaltic Pump Other: IS.54Time OSGallons O.171pH O.171Conductivity O.171NTU O.176ORP Parstaltic Pump Other: Differ: IS.54Time OSGallons O.171pH O.171Conductivity O.171NTU O.176ORP O.176AppearanceOR OSPH O.171O.171O.185C30-1U.160-1OR OSPH O.171O.171Q.156U.171U.172OR OSPH O.171O.171Q.156U.171U.173OR OSPH O.171O.171Q.156U.171U.173OR OSPH O.171O.171Q.156U.171U.173OR OSPH O.171O.171Q.156U.171U.173OR OSPH O.171O.171Q.156U.171U.173OR OSPH O.171O.171Q.156U.171U.173OR OSPH O.171O.171Q.176U.171U.171OR OSPH O.171O.171Q.176U.171U.171OR OSPH O.171O.171Q.176U.171U.171
Well Diameter (in.) 1^{11} Purge MethodSubmersible pump Peristaltic Pump Bladder PumpInitial Depth (ft.) 75.5 87 Initial Depth to Water (ft.) 75.5 75.5 Depth of Water Column 13.13 0 1 Casing Volume 2.111 0 3 Casing Volumes 2.111 0 $1 Casing Volumes$ 2.111 0 $1 Casing Volumes$ 0 1.72 $1 Casing Volumes$ 0 0 <
Well Depth (ft.) $\$7$ $\rar{1}$ \r
Initial Depth to Water (ft.) Depth of Water Column 1 Casing Volume 3 Casing Volumes Time Gallons pH Conductivity NTU DO Time Gallons pH Conductivity NTU DO Time Gallons pH Conductivity NTU DO Temp. ORP Appearance 15.5 Time Gallons pH Conductivity NTU DO 15.5 Time Gallons pH Conductivity NTU DO 15.5 15.5 Time Gallons pH Conductivity NTU DO 15.5
Depth of Water Column 1 Casing Volume 3 Casing Volume 3 Casing Volumes Time Gallons pH Conductivity NTU DO V_{1}^{1} V_{2}^{1} V_{3}^{1}
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Time GallonspHConductivityNTU $DO^{AY/L}$ Temp.ORPAppearance $US:37$ G_{*} G_{*} G_{*} I_{11} I_{2} S_{*} I_{*} I_{12} I_{12
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
08:37 1.2 6.02 0.171 12.68 10.48 108.5 51.3414 cland 08:00 4 5.15 0.131 10.04 10.85 130.1 (160- 08:47 6.57 5-48 0.171 9.56 10.41 114.2 11 08:46 4 5.62 0.171 0.26 4.46 10.41 109.3 11
08:00 4 5:15 0-131 (0.04 10.85 (30-1) (160- 08:47 6.57 5-48 0.171 9:56 (0.91 114.2 11 08:46 9 5.62 0.171 0.26 9.46 10.91 109.3 11
08:47 6.57 5-48 0171 9,56 10.91 114.2 11 18:46 9 5.62 0171 0.26 9.46 10.91 109.3 11
08:46 9 5.62 U.1.71 0.26 9.46 1U.91 109.3 11
08.54 1) 5180 0.130 0.25 9.25 10.47 108,8 11
Sample Information
Sample Method(s) (: Submersible pump / Peristaltic pump / Bladder Pump / Other
Analysis Time Bottle Type Preservative/Filtration Comments
Volatiles and VC 0354 (5) 40-ml VOA HCL, ice
Total Coliform 300-ml sterile AG Na2S2O3
or poly
Geochemical Parameters Sm OJ ice
Nitrate/Cl/Nitrite/SO4/pH · Lg OJ ice
Nitrate/CI/Nitrite/SO4/pH · Lg OJ ice TOC/COD/NH3 250-ml AG H ₂ SO ₄
TOC/COD/NH3 250-ml AG H ₂ SO ₄ Total Metals 500-ml HDPE HNO ₃ to ph<2, ice
TOC/COD/NH3 250-ml AG H ₂ SO ₄
TOC/COD/NH3 250-ml AG H _s SO ₄ Total Metals 500-ml HDPE HNO ₃ to ph<2, ice
TOC/COD/NH3 250-ml AG H ₂ SO ₄ Total Metals 500-ml HDPE HNO ₃ to ph<2, ice
TOC/COD/NH3 250-ml AG H ₂ SO ₄ Total Metals 500-ml HDPE HNO ₃ to ph<2, ice
TOC/COD/NH3 250-ml AG H ₂ SO ₄ Total Metals 500-ml HDPE HNO ₃ to ph<2, ice
TOC/COD/NH3 250-ml AG H _s SO ₄ Total Metals 500-ml HDPE HNO ₃ to ph<2, ice
TOC/COD/NH3 250-ml AG H ₂ SO ₄ Total Metals 500-ml HDPE HNO ₃ to ph<2, ice
TOC/COD/NH3 250-ml AG H ₂ SO ₄ Total Metals 500-ml HDPE HNO ₃ to ph<2, ice
TOC/COD/NH3 250-ml AG H ₂ SO ₄ Total Metals 500-ml HDPE HNO ₃ to ph<2, ice

6

Station Sample ID Field Conditions		$\begin{array}{c c} M & J \\ \hline M & J \\ \hline 0 L - M & J \\ \hline 0$							
Well Diameter (in.) Well Depth (ft.) Initial Depth to Water (ft.) Depth of Water Column 1 Casing Volume 3 Casing Volumes	7 55.5 47.0 12.5 2.0 6.0	Pur		Purge Method⊄ ∽ Start Time End Time	Peristaltic Pum Bladder Pump Other: : ULLO				
$\begin{array}{c c} \text{Time} & \text{Gallons} \\ \hline 10:13 & (.5) \\ \hline 10:16 & 3 \end{array}$	рН 5 (67 5 (57)	Conductivity	NTU	DO DO DO L 64	Temp.	ORP 89.1 95.5	Appearance		
10:19 45 10:27 6 10:27 7,5	5.58 5.66 5.68	0.157 0.60 0.160	2.00	1.38 1.28 1.20	11.92 11.92 11.93	40.4 85.4 88.2	1/ ./ 15		
10:38 G	5.69	6.157	7.50	1,16	11.96	88.0	i)		
							· · · · · · · · · · · · · · · · · · ·		
Sample Method(s)	Submersible	Sam	ple Infor altic pump /		np / Other	<u>I</u>			
Analysis	Time	Bottle Type	Preserva	ative/Filtration		Comments			
Volatiles and VC	10:20	(5) 40-ml VOA	н	CL, ice					
Total Coliform		300-ml sterile AG or poly	Na	28203					
Geochemical Parameters		Sm OJ		ice					
Nitrate/Cl/Nitrite/SO4/pH		Lg OJ		ice					
TOC/COD/NH3		250-mi AG	н	₂SO₄	э.				
Total Metals		500-mi HDPE	HNO ₃ to	ph<2, ice					
Dissolved Metals		500-ml HDPE	HNO3 to ph<2	2, ice. Field filter					
End Time	10:32			}					
Lutraller-	147,3	Comm	ients / Exc						

EPI Project No./Site: 45404.0/Kitsap County - Olalla Landfill

EPI Project No./Site	e: <u>45404.0/</u>	Kitsap County -	Olalla Land	fill						
Station Sample ID		1-10 - MW-10-6/11		Field	Date Feam: (Initials)	21-Jun-16 ELC				
Field Conditions	<u> </u>	art coul								
		Purge Information								
Well Diameter (in.)	2"	2 Purge Method : Submersible pump 9 Peristaltic Pump								
Well Depth (ft.) Initial Depth to Water (ft.)		Peristaltic Pump Bladder Pump								
Depth of Water Column		18,93 Other:								
1 Casing Volume	3.02	3.02 Start Time (/// 3								
3 Casing Volumes	1.00	9.06 End Time 11.77 Total Gallons Purged 9								
Time Gallons	pH	Conductivity	NTU	DO	Temp.	ORP	Appearance			
11/16 1.2	6.05	0.540		1.39	<i>[].07</i> <i>[].</i> 22	92.2 98.7	<u>c(697</u>			
11:22 3.8	5.80	0.540		1.30	11.08	88.4				
11:25 5	5.44	0,542	1.26	1,27	1126	75.6	1/			
11:08 6.2	6.05	0,539		1.25	(1.77	60.5	۰,			
11:31 7	6.12	0.576		1.24	11.26	56.8	• /			
11:34 8.1	6.15	0.540		1.91	11.24	52.8	11			
· · · · · · · · · · · · · · · · · · ·										
			+							
					· ·					
<u> </u>		Sam	ple Infor	mation						
Sample Method(s)	Submersibl	le pump/ Perist	altic pump /	Bladder Pun	np / Other					
Analysis	Time	Bottle Type	Preserva	tive/Filtration		Comments				
Volatiles and VC	11:36	(5) 40-ml VOA	нс	CL, ice						
Total Coliform		300-ml sterile AG or poly	Nat	28203						
Geochemical Parameters		Sm OJ		ice						
Nitrate/CI/Nitrite/SO4/pH		Lg OJ	i	ice						
TOC/COD/NH3		250-ml AG	ң	sO₄						
Total Metals		500-ml HDPE	HNO ₃ to	ph<2, ice						
Dissolved Metals		500-mi HDPE	HNO3 to ph<2	, ice. Field filter						
End Time	11:38									
Wafreilry	173.(Comn	nents / Exc	eptions:						
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	,		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
			~~~~~							

•		2.4					
Station	Ph	7-6 -MW-6-6	162.		Date eam: (Initials)		3
Sample ID Field Conditions	Cartly		and	DU AL/UGTO		OL -MU	V-17-6/16
		Pur	ge Inforn	nation			
Well Diameter (in.)	7			urge Method	Submersible p	ump	
Weli Depth (ft.)	35.	_			Peristaltic Pun		
Initial Depth to Water (ft.)	19.04	4			Bladder Pump		
Depth of Water Column 1 Casing Volume	15.96	-1		Start Time	Other::		7
3 Casing Volumes	7.66	-		End Time			1
Ū	(90)		Tot	al Gallons Purgeo			
Time Gallons	pН	Conductivity	NTU	DO	Temp.	ORP	Appearance
13:17 2	6.09	0,742		-	10.96	79.8	at Signi
13:20 4	5.45	0.343		2.01	10.98	28.7	clearor
13:33 5.2	6.02	0,343		1.65	[1.03	7,6	Clego
17:26 6	6.52	O. PUD	3.21	1.51	$\left(1.d3\right)$	-1.0	1/
13:29 7	6.36	0, 343		39	11.04	-6.5	11
13:22 9	6.28	0.743		(.7)	11.06	-[0,] -[1,0	57 57
13:35 9.2	6.79	0,343		1.30	11,06	-11,0	
	<u> </u>						
			 				
ample Method(s)	Submersibl	Sam le pump Perist	ple Informaltic pump /		np / Other		
ample Method(s)	Submersibl	the second s	altic pump /			Comments	
	Time	le pump Perist	altic pump / Preserva	Bladder Pun		Comments	
Analysis		Bottle Type (5) 40-ml VOA 300-ml sterile AG	altic pump / Preserva	Bladder Pun		Comments	
Analysis Volatiles and VC Total Coliform	Time	le pump Perist Bottle Type (5) 40-ml VOA 300-ml sterile AG or poly	altic pump / Preserva нс Na	/ Bladder Pun ative/Filtration CL, ice 2S2O3		Comments	
Analysis Volatiles and VC Total Coliform	Time	Bottle Type (5) 40-ml VOA 300-ml sterile AG	altic pump / Preserva нс Na	/ Bladder Pun ative/Filtration CL, ice		Comments	
Analysis Volatiles and VC Total Coliform Geochemical Parameters	Time	le pump Perist Bottle Type (5) 40-ml VOA 300-ml sterile AG or poly	Preserva Preserva HC Nat	/ Bladder Pun ative/Filtration CL, ice 2S2O3		Comments	
Analysis Volatiles and VC Total Coliform Geochemical Parameters	Time	le pump Perist. Bottle Type (5) 40-ml VOA 300-ml sterile AG or poly Sm OJ	Preserva Preserva HC Na	/ Bladder Pun ative/Filtration CL, ice 2S2O3 ice		Comments	
Analysis Volatiles and VC Total Coliform Geochemical Parameters Nitrate/Cl/Nitrite/SO4/pH	Time	le pump Perist. Bottle Type (5) 40-ml VOA 300-ml sterile AG or poly Sm OJ Lg OJ	Altic pump / Preserva HC Nat	/ Bladder Pun ative/Filtration CL, ice 2S2O3 ice		Comments	
Analysis Volatiles and VC Total Coliform Geochemical Parameters Nitrate/CI/Nitrite/SO4/pH TOC/COD/NH3	Time	le pump Perist. Bottle Type (5) 40-ml VOA 300-ml sterile AG or poly Sm OJ Lg OJ 250-ml AG	Altic pump / Preserva HC Na:	/ Bladder Pun ative/Filtration CL, ice 2S2O3 ice ice		Comments	
Analysis Volatiles and VC Total Coliform Geochemical Parameters Nitrate/CI/Nitrite/SO4/pH TOC/COD/NH3 Total Metals	Time	le pump Perist. Bottle Type (5) 40-ml VOA 300-ml sterile AG or poly Sm OJ Lg OJ 250-ml AG 500-ml HDPE	Altic pump / Preserva HC Na:	/ Bladder Pun ative/Filtration CL, ice 2S2O3 ice ice ice ice iso4		Comments	
Analysis Volatiles and VC Total Coliform Geochemical Parameters Nitrate/CI/Nitrite/SO4/pH TOC/COD/NH3 Total Metals	Time	le pump Perist. Bottle Type (5) 40-ml VOA 300-ml sterile AG or poly Sm OJ Lg OJ 250-ml AG 500-ml HDPE	Altic pump / Preserva HC Na:	/ Bladder Pun ative/Filtration CL, ice 2S2O3 ice ice ice ice iso4		Comments	
Analysis Volatiles and VC Total Coliform Geochemical Parameters Nitrate/CI/Nitrite/SO4/pH TOC/COD/NH3 Total Metals Dissolved Metals		le pump Perist. Bottle Type (5) 40-ml VOA 300-ml sterile AG or poly Sm OJ Lg OJ 250-ml AG 500-ml HDPE 500-ml HDPE	Altic pump / Preserva HC Na:	/ Bladder Pun ative/Filtration CL, ice 2S2O3 ice ice ice kSO4 o ph<2, ice 2, ice. Field filter		Comments	
Analysis Volatiles and VC Total Coliform Geochemical Parameters Nitrate/CI/Nitrite/SO4/pH TOC/COD/NH3 Total Metals Dissolved Metals		le pump Perist. Bottle Type (5) 40-ml VOA 300-ml sterile AG or poly Sm OJ Lg OJ 250-ml AG 500-ml HDPE 500-ml HDPE	Altic pump / Preserva HC Na: HNO3 to ph<2	/ Bladder Pun ative/Filtration CL, ice 2S2O3 ice ice ice kSO4 o ph<2, ice 2, ice. Field filter			
Analysis Volatiles and VC Total Coliform Geochemical Parameters Nitrate/CI/Nitrite/SO4/pH TOC/COD/NH3 Total Metals Dissolved Metals		le pump Perist. Bottle Type (5) 40-ml VOA 300-ml sterile AG or poly Sm OJ Lg OJ 250-ml AG 500-ml HDPE 500-ml HDPE	Altic pump / Preserva HC Na: HNO3 to ph<2	/ Bladder Pun ative/Filtration CL, ice 2S2O3 ice ice ice kSO4 o ph<2, ice 2, ice. Field filter			иь о + <i>[6:00</i>
Analysis Volatiles and VC Total Coliform eeochemical Parameters litrate/CI/Nitrite/SO4/pH TOC/COD/NH3 Total Metals Dissolved Metals	Time [3:37]	le pump Perist. Bottle Type (5) 40-ml VOA 300-ml sterile AG or poly Sm OJ Lg OJ 250-ml AG 500-ml HDPE 500-ml HDPE	Altic pump / Preserva HC Na: HNO3 to ph<2	/ Bladder Pun ative/Filtration CL, ice 2S2O3 ice ice ice kSO4 o ph<2, ice 2, ice. Field filter			иь o + [6:00

EPI Project No./Site: 45404.0/Kitsap County - Olalla Landfill

Controllor -	107.	5-H2				~~~~~	
		Comin		epuons:			
End Time	14:58	Com	nents / Exc	entions:		<u></u>	
Dissolved Metals		500-ml HDPE	HNO3 to ph<	2, ice. Field filter			
Total Metals		500-mi HDPE	HNO ₃ to	o ph<2, ice			
TOC/COD/NH3		250-ml AG	н	IsO₄			
trate/CI/Nitrite/SO4/pH		Lg OJ		ice	<u>-</u>		
eochemical Parameters		Sm OJ		ice			
Total Coliform		300-ml sterile AG or poly	Na	28203			
Volatiles and VC	14:56	(5) 40-mi VOA	н	CL, ice			
Analysis	Time	Bottle Type	Preserva	ative/Filtration		Comments	<u>.</u>
mple Method(s)	Submersibl	e pump / Perist	-		p / Other		
		Sam	ple Infor	mation			
4:55 10.9	6,00	0202	8.95	1.39	(0.36	42.2	1,
14,52 9,6	6.25	0.201	9.00	1.42	10.75	44.1	1)
14 46 6 8 14 49 3	6.67	0.190	9,22	1.53	10.54	55.2 46.2	
14:42 5	5.88	0.185	0	1.62	10.78	74.8	clour, Tr. San
14:39 7.8	5.70	0.151		2.01	10.21	88.9	Slight If clan
Time Gallons	pH	Conductivity	NTU	DO	Temp.	ORP	Appearance
Casing Volumes		_J	Tot	End Time tal Gallons Purged			1
Casing Volume	2.9	-1		Start Time	TU, 73]
nitial Depth to Water (ft.) Depth of Water Column	1952 18.48				Bladder Pump Other: :		
ell Diameter (in.) ell Depth (ft.)	38		Р	Purge Method <	Peristaltic Puri		
		Pu	rge Inforr				
ield Conditions	Party		181		oarn (midalo)		······
ample ID	MTI M	W-8-6/16		- Field T	Date eam: (Initials)		<u> </u>

EPI Project No./Site: 45404.0/Kitsap County - Olalla Landfill

Landfill Gas Monitoring Field Data - Olalla Landfill Monitoring 2000 124/1 Date and Time: Instrument Used: 70°F ELC Ambient Temperature: Field Team: 125 Cint brooze Partly Clondy Field Conditions: Landfill Gas Data Carbon Gas Temperature Methane Oxygen Flare # Time % LEL Dioxide Pressure (% vol.) (% vol.) (°C) (% vol.) ("H₂O) 0.0 0.0 16:00 12 4.5 7.1 0,00 0 1.3 0.0 16.2 16:08 0.0 0,01 l 0.0 17.8 16:15 3,2 0.0 0.01 Comments / Inspection Results¹ and have barbs are lows on 322

¹Inspect the following: lock and gate operation, tightness of bolts and clamps, differential settlement, valve operation, debris or breaks in hose barb.

YSI 556MPS RENTAL CALIBRATION CERTIFICATE

SERVICE TECHNICIAN

INSTRUMENT INFORMATION

RENTAL I.D. NUMBER: YSI-556. 62 SERIAL#: 0190494B CUSTOMER.

CALIBRATION INFORMATION

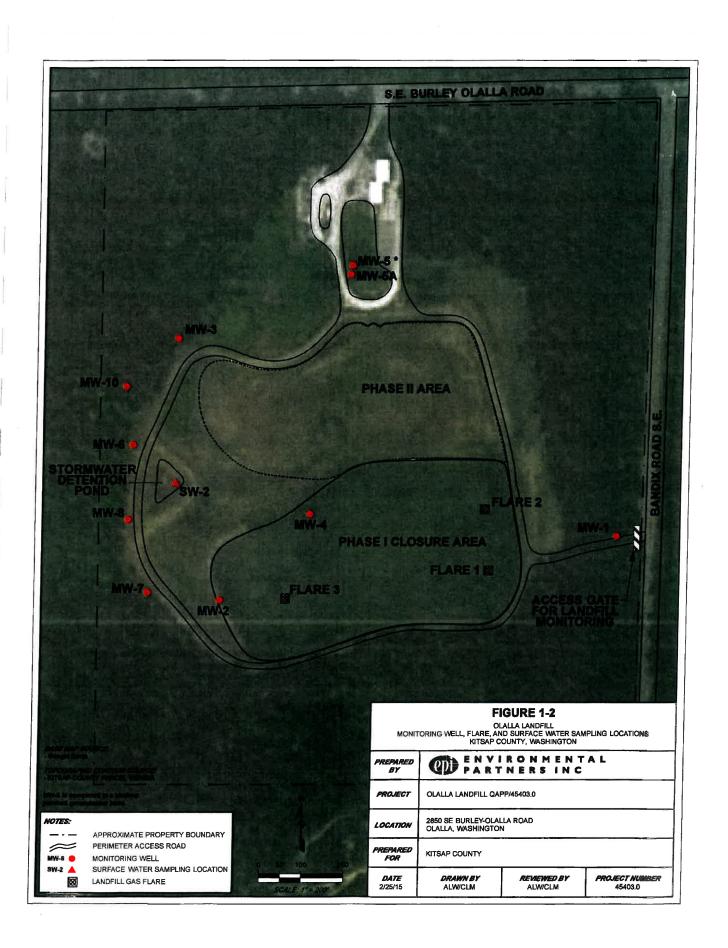
PARAMETERS:	STANDARDS:	PASS ()	LOT#
1. CONDUCTIVITY	(OOC µMhos	X	
2. pH ZERO	pH 7	A	
3. pH SLOPE	pH 4	\sim	
pH SLOPE	pH 10	\searrow	
4. DISSOLVED OXYGEN	Air Calibration Barometric pressure = 758 mmHg		N/A
5. REDOX (ORP)	\mathcal{PLP}_{mV} (YSI Zobell solution)	S	

DATE: 6/20/16

CES LANDTECH MODEL: GEM 2000 CALIBRATION CERTIFICATE

SERVICE TECHNICIAN:	DATE: 6/20/16
INSTRUMENT INFORMATION RENTAL ID: GEM2000،مور/	
SERIAL NUMBER: 6102904/06	2.
CALIBRATION INFORMATION	
1CALIBRATION GAS: 35 % CO2	LOT #: <u>57316</u> 2
GAS RESPONSE	
2. CALIBRATION GAS: % Vol. Methane	LOT #: 573162
GAS RESPONSE % Vol. Methane <u>+</u> 2%	
OXYGEN RESPONSE IN FRESH AIR ENVIRONN OXYGEN DOWNSCALE RESPONSE CHECKED:	
THIS INSTRUMENT HAS BEEN CALIBRATED TO S MANUFACTURE	२
	́ "» :

PARTNERS INC


1180 NW Maple Street, Snite 310 Issaquab, Washington 98027 ph 425.395.0010

Olalla Landfill Quarterly Monitoring Field Book September 2016

Olalla Landfill Kitsap County, Washington Project Number: 45404.0

Environmental Partners, Inc. 1180 NW Maple Street, Suite 310 Issaquah, Washington 98027 (425) 395-0010

Instrument Calibration Log - Olalla Landfill Monitoring

Calibrated By: <u>Fqu</u>	For Fo	inv from	En	vpco Date:		
Meter Type	Manufacturer	Model Number	Manu	ufacturer Serial #	Rental Co. Serial #	Time
рН						
pH Electrode						
Calibrated:	to 4.00 buffer	to	7.00 bi	uffer	to 10.00 buffer at	°C
Slope =	Comments:					
Meter Type	Manufacturer	Model Number	Manu	ufacturer Serial #	Rental Co. Serial #	Time
Specific Cond.						
Specific Conductance: (Calibrated	µS/cm	to	µS/cm c	alibration standard	
Electrical Conductivity:	Calibrated	µS/cm to		_µS/cm calibration	n standard at	°C
Comments:						9
Meter Type	Manufacturer	Model Number	Manu	ifacturer Serial #	Rental Co. Serial #	Time
ORP Meter						
ORP Electrode						
Electrode measured	millivolts	at	_°C u	sing Zobell prepar	red on / /	
Table value for Zobell se	olution at this tempera	ature is	n	ηV		
Meter Type	Manufacturer	Model Number	Manu	facturer Serial #	Rental Co. Serial #	Time
Turbidity						
Meter reads	NTUs using	NTUs sta	ndard	Comments:		
Meter reads	NTUs using	NTUs sta	ndard			
Meter Type	Manufacturer	Model Number	Manu	facturer Serial #	Rental Co. Serial #	Time
DO Meter						
Air-Calibration: Measure	ed temperature	°C corre	spond	s to n	ng/L DO (from Table I)	
Atmospheric pressure /	elevation correction fa	actor	(fro	m Table II)		
Corrected calibration va	lue mg/L [00 (Table I va	ilue mu	ultiplied by Table II	value)	
Comments:						

Well	Total Well Depth (ft bgs)	Measuring Point Elevation (ft NGVD 29)	Surface Elevation (ft NGVD 29)	Screened Interval (ft bgs)	Northing	Easting	Measuring Point Description
MW-1	87	343.79	342.53	82-87	161858.133	560525.840	Pump wellhead
MW-2	73	323.25	318.95	68-73	161704.534	559572.839	Top of PVC casing
MW-3	55.5	296.95	294.95	50.5-55.5	162333.903	559463.060	Pump wellhead
MW-4	68	320.93	317.35	63-68	161911.192	559787.735	Top of PVC casing
MW-5	35.5	334.17	332.78	25-35	162510.115	559878.901	Top of PVC casing
MW-5A	98	332.53	331.43	86-96	162487.878	559875.742	Pump wellhead
MW-6	35	271.17	269.14	28-33	162077.699	559358.970	Pump wellhead
MW-7	- 33	280.43	278.21	21-31	161723.016	559398.979	Pump wellhead
MVV-8	38	272.85	270.73	25-35	161897.813	559350.147	Pump wellhead
MW-10	47	279.21	276.84	37-47	162218.490	559340.899	Pump wellhead

 Table 3-1: Monitoring Well Construction Data Summary

 Olalla Landfill, Kitsap County, WA

Notes:

NGVD 29 = National Geodetic Vertical Datum (1929)

bgs = below ground surface

Table 2-1: CAP and SWHP Monitoring Schedule Olalia Landfill, Kitsap County, WA

Cialla Land	,					arter					Sec	ond	and 7	hird	Quar	ters						F	ourt	n Qu	arter				
Sample Location	Water Level	Field Parameters	VOCs	T & D Metals	Total Coliform	Fecal Coliform	Geochemical	TOC / COD	Landfill Gas Parameters	Water Level	Field Parameters		T & D Metals	Total Coliform	Geochemical		Landfill Gas Parameters	Water Level	Field Parameters	vocs	T & D Metals	Total Coliform	Fecal Coliform	Geochemical		D. Metals - COC list	pH (field and lab)	Vinyl Chloride	Landfill Gas Parameters
MW-1	8		3 1		M		M																						
MW-2																													
MW-3			•		181									-				11							-				
MW-4																													
MW-5																													
MW-5A												1																×	
MW-6			B]																			ж							
MW-7																													
MVV-8																						3							
MW-10	-									1					×														
SW-21						-																							
Flares 1, 2, 3																													

Notes:

¹ Surface water sample from SW-2 collected during first quarter or fourth quarter, not both quarters.

Field Parameters = pH, specific conductance, temperature, ORP, and DO

VOCs = Volatile organic compounds by EPA Method 8260C standard list, vinyl chioride by selective ion monitoring (SIM)

T (total) Metals = calcium, potasslum, sodium

D (dissolved) Metals = arsenic, barium, iron, manganese, zinc

Geochemical = alkalinity, ammonia, bicarbonate, carbonate, chloride, sulfate, nitrate, nitrite, pH

TOC / COD = total organic carbon / chemical oxygen demand

Dissolved Metals - COC list = arsenic, iron, manganese

Landfill gas parameters = methane (%LEL), oxygen(% vol), carbon dioxide (% vol), and gas pressure

App-191-17 From MW-8 NW-14 From MW-8

Depth to Water Measurement Field Data - Olalla Landfill Monitoring 8/21/16

Well	Time	Measuring Point Elevation (ft. NGVD ¹)	Depth to Water (ft.)	Comments and Well Inspection ² Notes
MW-1	08:00	343.79	74,23	Cast constitution
MW-2	15:52	323.25	62.81	ok
MW-3	09:45	296.95	43.64	Guid and Fin
MW-4	15:57	320.93	59.75	- Casing ST.1/ stick up alous motal managent - cant luck
MW-5	09:23	334.17	12,24	Gould Cundition
MW-5A	09:26	332.53	73.52	en en
MW-6	(3:0)	271.17	19.57	tup of convertor such that To 66 removed for monument cover to fit.
MW-7	15:30	280.43	25.60	Gurd condition
MVV-8	14:20	272.85	19.98	Gard curdition
MW-10	11:16	279.21	28.73	Gord condition

Notes:

¹NGVD = National Geodetic Vertical Datum (1929)

²Observations regarding the condition of the well and surrounding area (e.g., protective casing, surface seal, cap, lock, bollards, soil conditions near the well such as depressions, ponded surface water, or other subsidence features, and any installed sampling equipment).

e^{gh}

EPI Project No./Site:	45404.0/Kit	sap County - Ola	alla Landfi	1				-			
Station Sample ID Field Conditions	<u>Ми</u> 01 - М Синц У		6	Field Te	Date am: (Initials)	2[-20-Sep-16 ELC					
		Purg	e Inform	ation							
Well Diameter (in.) Well Depth (ft.) Initial Depth to Water (ft.) Depth of Water Column 1 Casing Volume 3 Casing Volumes	2 87.00 74.23 [2.77 2.06		Pi	Start Time End Time al Gallons Purged	Submersible pur Peristaltic Pump Bladder Pump Other:: OSJJ OSJJ OSJJ OSJJ	0	-				
		Conductivity		1	C_	ORPMV	Appearance				
Time Gallons 08:25 17 08:27 1 08:30 7 08:37 1 08:37 1 08:37 1 08:37 1 08:47 1 08:47 1 08:47 1 08:47 1	PH 7,13 6.54 6.72 6.75 6.51 6.51 6.30	4.5 4.5 4.5 1.7 1.2 1.2 1.1 1.1 1.1 1.1		DO right 11.95 11.95 11.85 11.67 10.67 10.68 10.68 10.68	10,9 10,5 10,6 10,7 10,9 10,9 10,9 10,9 11,0	181.1 154.4 162.0 168.5 148.1 163.4 163.4 174.1 174.1	Appearance (107				
Sample Method(s)		e pump Perista	ltic pump /	Bladder Pum		Commonto					
Analysis	Time	Bottle Type		ative/Filtration		Comments		٦			
Volatiles and VC	0847	(5) 40-ml VOA	F	ICL, ice	5			_			
Total Coliform	-	300-ml sterile AG or poly	N	a2S2O3	t			_			
Geochemical Parameters		Sm OJ		ice	ŀ						
Nitrate/CI/Nitrite/SO4/pH		Lg OJ		ice	t						
TOC/COD/NH3		250-ml AG		H₂SO₄	ł						
Total Metals		500-ml HDPE	HNO₃	to ph<2, ice	ŀ						
Dissolved Metals		500-ml HDPE	HNO3 to ph	<2, ice. Field filte							
					11 501	410					
End Time	OSTO							_			
Rigylaju	Comments / Exceptions: Regulatur Sottiy 210										

SI Time over Tumes pright

EPI Projec	t No./Site:	45404.0/Kit	sap County - Ol	alla Landfi	l			
Station	1	Phy	1-3			Date	2/ - 20 -Sep-16	
Sample ID		OL-P	W-3-9/1	2	Field Tea	am: (Initials)		
Field Cond	itions	Sunny	65UETT	7391				
			Purg	e Inform	ation			
Well Diamete	r (in.) 🚥	2		P		Submersible pu		
Well Depth (ft		555				Peristaltic Pump Bladder Pump)	
Initial Depth to Depth of Wate		U364 11-86				Other: :		
1 Casing Volu		1.92			Start Time	10:07		
3 Casing Volu	imes			Tet	End Time al Gallons Purged	10.29		
					-	(<i>C</i>		Anno 270700
Time	Gallons	pH	Conductivity	NTU	DO	Temp.	ORP	Appearance
10:10	· 8	6.07	473.2		0.58	11.9	211.9	()
10:16	5.2	6.05	64456	8 -	0.18	12.0	209.4	1/
10:10	4.5	6.05	454.0	-	0.14	12.0	207.3	1,
10:22	5.6	6.05	454.5		0.11	12.0	204.7	1,
10:25	6.8	6.05	455.0	0.9	0.10	12.0	203.3	ι,
				ple Infor				
Sample M	ethod(s) 🤇	Submersible	e pump)Perista	altic pump	Bladder Pum	p / Other		
Ana	lysis	Time	Bottle Type	Preserv	ative/Filtration		Comments	
	s and VC	10:26	(5) 40-ml VOA	۲ F	ICL, ice			•
Total C	Coliform		300-ml sterile AG or poly	N	a2S2O3			
Geochemica	I Parameters		Sm OJ		ice			
Nitrate/Cl/N	itrite/SO4/pH		Lg OJ		ice			
TOC/C	OD/NH3		250-ml AG		H ₂ SO₄			
Total	Metals		500-ml HDPE	HNO₃	to ph<2, ice			
Dissolve	ed Metals		500-ml HDPE	HNO3 to ph	<2, ice. Field filter			
		_	11 tan					
End Time		10:29						
			Com	ments / Ex	ceptions:			
		Wh H-						
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						$\frown$		
						A)		

16

١.

Ł

EPI Project No./Site: 45404.0/Kitsap County - Olalla Landfill									
				7	_	21			
Station	MW-1	0	H		Date	20-Sep-16			
Sample ID	06-1	11-10-91	16	Field Tea	am: (Initials)	ELC			
Field Conditions	Parily	clundy "	601-						
		^o Pura	e Inforn	nation					
Mall Dispertor (in)	2				Submersible pu	mp			
Well Diameter (in.)	47.00				Peristaltic Pump				
Well Depth (ft.) Initial Depth to Water (ft.)	28.72				Bladder Pump				
Depth of Water Column	(827	8			Other: :				
1 Casing Volume	2.95			Start Time	1+++7				
3 Casing Volumes				End Time	1154				
U			Tot	al Gallons Purged	9				
The college		Conductivity	NTU	DO	Temp.	ORP	Appearance		
Time Gallons	pH	Conductivity				141.8			
11.50 11	6.53	404.4	-	0,59	11.4		Clear		
11-37	6.51	410cl		0.15		621.7	<u> </u>		
11:36 3.4	6.50	411.2		0.09	11.6	10.5	1/		
11:39 4.8	6.49	44.2	-	0.06	11.5	105.0	1/		
11:42 5.7	6.48	410.5		0.04	11.5	100.0	17		
11:45 6.6	6.47	411+1	-	0.02	11.5	46.7	1/		
11:48 8-1	6.47	411-4	11	0.01	11.6	93.9	(,		
						, i			
					·······				
Sample Information									
			•		n / Othor				
Sample Method(s)	Submersible	e pump //Perista	litic pump	/ Bladder Pump	p7 Other				
Analysis	Time	Bottle Type	Preserv	vative/Filtration		Comments			
Volatiles and VC	11:50	(5) 40-ml VOA	ŀ	łCL, ice		5.			
Total Coliform		300-ml sterile AG or poly	N	a2S2O3					
Geochemical Parameters		Sm OJ		ice					
			<u>_</u>						
Nitrate/CI/Nitrite/SO4/pH		Lg OJ		ice					
TOC/COD/NH3		250-ml AG	1	H₂SO₄					
Total Metals		500-ml HDPE	HNO	to ph<2, ice			·		
Dissolved Metals		500-ml HDPE	HNO3 to ph	<2, ice. Field filter					
		Il tota							
End Time	1154		· .						
Comments / Exceptions:									
	23 HZ								
		~~~~~							

Ł

EPI Project No./Site: 45404.0/Kitsap County - Olalla Landfill									
	<b>B</b> <i>a</i>	0		1	<b>D</b> .	2/			
Station	MW-	6 alit			Date	<del>20</del> -Sep-16 ELC			
Sample ID	UL-M	w-6-4/16			am: (Initials)		** * * * *		
Field Conditions	Jun	uy 65-1-							
		Purg	e Inforn	nation					
Well Diameter (in.)	9	]	Р		Submersible pu				
Well Depth (ft.)	35.00				Peristaltic Pum	0			
Initial Depth to Water (ft.)	19:57				Bladder Pump				
Depth of Water Column	15.43	¥.			Other::		1		
1 Casing Volume	<u> </u>			Start Time	17:21		-		
3 Casing Volumes	·	]	Tot	End Time al Gallons Purged	1350		1		
				·			1		
Time Gallons	рН	Conductivity	NTU	DO	Temp.	ORP	Appea		
13:24 1.1	6.49	775,5		0,33	11.4	18.0	Nightly	cloury	
12:27 2.5	6.48	38/1	-	0.16	11,4	8.7	<u> </u>	· · ·	
13:70 4.8	6.47	281.9	-	0.10	11.4	4.6	4		
7:33 6	6.47	380.5	-	0.07	11.4	1.8	$\alpha$	17	
13:26 8.8	6.44	783,3		0.04	11.4	-0.5	1	"	
13:39 4.8	6.46	387.8	-	0.03	11.4	-1.7	11	1.	
13:42 10.8	6.45	287.8	8.9	0.02	11.0	-1.9	11	'/	
-									
		Sam	ple Info	mation					
Sample Method(s)	Submersible	e pump Perista	•		p / Other				
Dampie Method(5)						_			
Analysis	Time	Bottle Type	Preserv	ative/Filtration	1-	Comments			
Volatiles and VC	17:44	40-ml VOA	۲ I	ICL, ice	(5 R				
· · · · · · · · · · · · · · · · · · ·		300-ml sterile AG							
Total Coliform		or poly $\lambda$	N	a2S2O3	2				
Geochemical Parameters		Sm OJ		ice					
					1				
Nitrate/CI/Nitrite/SO4/pH		Lg OJ		ice	1.				
					<u> </u>				
TOC/COD/NH3		250-ml AG		H₂SO₄	`				
Total Metals		500-ml HDPE	HNO	to ph<2, ice	1				
					f				
Dissolved Metals 500-ml HDPE HNO3 to ph<2, ice. Field filter									
		1		-	0.7				
End Time	1351				23	<u> </u>			
		Comr	nents / Ex	ceptions:					
	CONVERTO	(09.5	#2						
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~									
						~~~~~			
******									

L

L

EPI Project No./Site:	45404.0/Kit	sap County - Ol	alla Landfi	II						
Station	Mine	~		1	Date	<b>&amp; (</b> <del>20</del> -Sep-16				
Station Sample ID	De-OL-H	1-8-9/16		Field Te	am: (Initials)	ELC				
Field Conditions	G	12 duplicito	06 - ML	v-12-9/16						
			e Inform							
Well Diameter (in.)	20			urge Method	Submersible pu	imp				
Well Depth (ft.)	38.00				Peristaltic Pum	p				
Initial Depth to Water (ft.) Depth of Water Column	19,98 18.02				Bladder Pump Other: :					
1 Casing Volume	8.41			Start Time	14.2	7				
3 Casing Volumes	,			End Time	16:00					
			Tota	al Gallons Purged	9.5					
Time Gallons	pH	Conductivity	NTU	DO	Temp.	ORP	Appearance			
10'00 .2	6.82	130.8		0.27	10.7	30.1 43.1	<u>logr</u>			
14:43 2.8	6.66	171.8		0.11	10.9	45.4	()			
14:49 5.5	6.62	193.4	_	0.04	10.9	44,5	• 1			
15:52 6.8	6.62	194.8	~	0.02	10.9	44.0	11			
15:15 8.3	6.63	196,5	43	0.01	11.0	40.2	1.			
<u>L</u>		Sam	ple Infor	mation						
Sample Method(s)	Submersible	e pump Perista	-		p / Other					
Analysis	Time	Bottle Type		ative/Filtration		Comments				
Volatiles and VC	15:56	(5) 40-ml VOA		CL, ice	MW-8	M~12				
Total Coliform		300-ml sterile AG or poly	Na	a2S2O3						
Geochemical Parameters		Sm OJ		ice						
Nitrate/CI/Nitrite/SO4/pH		Lg OJ		ice						
TOC/COD/NH3		250-ml AG		H₂SO₄						
Total Metals		500-ml HDPE	HNO₃	to ph<2, ice						
Dissolved Metals		500-ml HDPE	HNO3 to ph-	<2, ice. Field filter		v_				
End Time	16:00				[]	11				
End Time Comments / Exceptions:										
		CUALONTEr.	HAN H	2:						

.

### Landfill Gas Monitoring Field Data - Olalla Landfill Monitoring

Instrument U	sed:	GEM	2006	D	ate and Time:		16:10			
Ambient Tem	perature:	58°F			Field Team:	EL'C				
Field Condition	ons:	Cloar, B	BUF SI	Light Gro.	826					
			Landfil	l Gas Data						
Flare #	Time	Methane (% vol.)	% LEL	Oxygen (% vol.)	Carbon Dioxide (% vol.)	Temperature (°C)	Gas Pressure ("H₂O)			
#3	16:n	8.9	0	0.0	14.3		0.0			
#1	16:26	1.7	47%	10.5	3.61999		0.01			
772	16:27	8.2	55%	9.1	7.d	Ð	0.03			
			Comments / In	spection Res	ults ¹		<u></u>			
#	l - Ju,					22% The	0.			
	went back up To 22% when no bearco									
#2 - as above, junped to 55 LEC, this reduced to 32, 0, and										
	49 april .									

¹Inspect the following: lock and gate operation, tightness of bolts and clamps, differential settlement, valve operation, debris or breaks in hose barb.



### YSI ProDSS RENTAL CALIBRATION CERTIFICATE

SERVICE TECHNICIAN

RENTAL CUSTOMER: PPJ

**INSTRUMENT INFORMATION** 

RENTAL I.D. NUMBER: YSIPRODSS.

SERIAL NUMBER: 167 102613

#### **CALIBRATION INFORMATION**

PARAMETER:	STANDARD:	PASS()	LOT #
1. CONDUCTIVITY	1,000 µMhos	$\times$	46387
2. pH ZERO	pH 7	$\underline{\lambda}$	10518
pH SLOPE	pH 4	K	10521
pH SLOPE	pH 10	$\varkappa$	10503
3. DISSOLVED OXYGEN	Air Calibration Barometric pressure = 760mmHg	$\propto$	N/A
4. TURBIDITY ZERO	-0.0 NTU's		<u>N/A</u>
TURBIDITY SPAN	- <del>20 NTU's</del>		
5. REDOX (ORP)	231mV (YSI Zobell solution)	×	110113

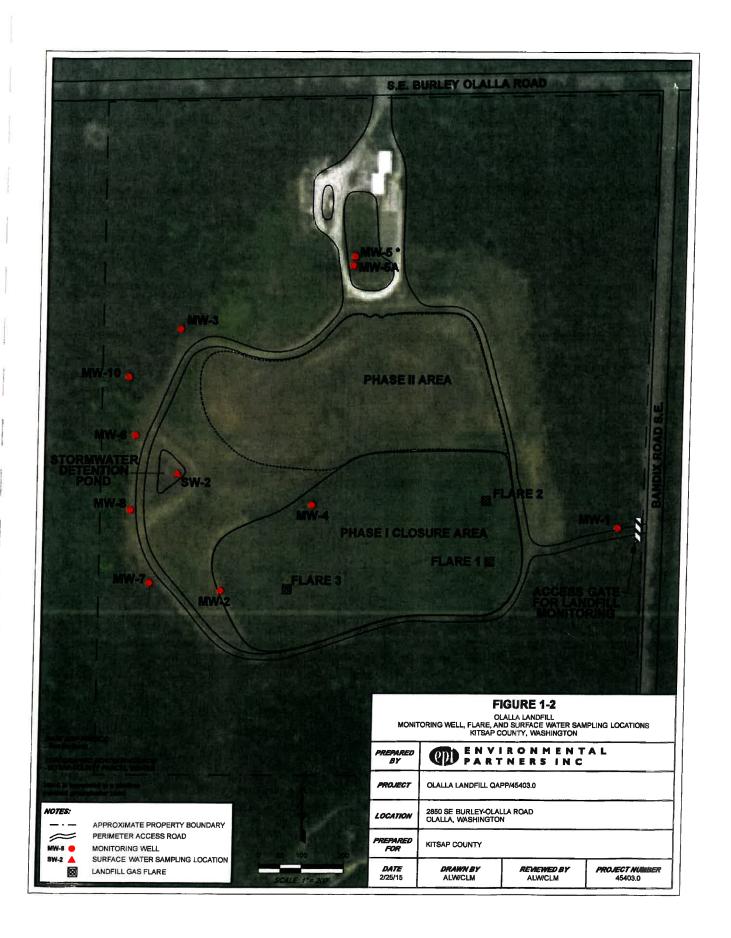
DATE: 9/19/16



### CES LANDTECH MODEL: GEM 2000 CALIBRATION CERTIFICATE

SERVICE TECHNICIAN:	DATE: 9/19/16
INSTRUMENT INFORMATION RENTAL ID: GEM2000.	
CALIBRATION INFORMATION 1CALIBRATION GAS: <u>5</u> % CO ₂ GAS RESPONSE: <u>5</u> % CO ₂ <u>+</u> 2%	LOT #: 573162
2. CALIBRATION GAS: <u>50</u> % Vol. Methane GAS RESPONSE: <u>6</u> % Vol. Methane <u>+</u>	
OXYGEN RESPONSE IN FRESH AIR ENVIRO	E /
THIS INSTRUMENT HAS BEEN CALIBRATED T MANUFACTU	

1180 NW Maple Street, Suite 310 Issaquab, Washington 98027 ph 425.395.0010


PARTNERS INC

## Olalla Landfill Quarterly Monitoring Field Book December 2016



Olalla Landfill Kitsap County, Washington Project Number: 45404.0

Environmental Partners, Inc. 1180 NW Maple Street, Suite 310 Issaquah, Washington 98027 (425) 395-0010



Table	2-1:	CAP and	I SWHP	Monitoring	Schedule
Olalla	Land	fill, Kitsar		, WA	

Olaha Landrill, Kitsap County, WA First Quarter Second and Third Quarters Fourth Quarter																													
	First Quarter								Sec	cond	and '	Third	Qua	rters		Fourth Quarter													
Sample Location	Water Level	Field Parameters	vocs	T & D Metals	Total Coliform	Fecal Coliform	Geochemical	TOC / COD	Landfill Gas Parameters	Water Level	Field Parameters	VOCs	T & D Metals	Total Coliform	Geochemical	TOC / COD	Landfill Gas Parameters	Water Level	Field Parameters	vocs	T & D Metals	Total Coliform	Fecal Coliform	Geochemical	TOC / COD	D. Metals - COC list	pH (field and lab)	Vinyl Chloride	Landfill Gas Parameters
MW-1			M								1																		
MW-2																													
MW-3	R				8																								
MW-4																		•											
MW-5																													
MW-5A					_																								
MW-6				<u>N</u>				ß			8																		
MW-7																		=										*	
MVV-8				2	<b>8</b>							1						*			•								
MW-10	5	8			9										8			-						X					
SW-21						8	۰																•						
Flares 1, 2, 3																													•

Notes:

¹ Surface water sample from SW-2 collected during first quarter or fourth quarter, not both quarters.

Field Parameters = pH, specific conductance, temperature, ORP, and DO

VOCs = Volatile organic compounds by EPA Method 8260C standard list, vinyl chloride by selective ion monitoring (SIM)

T (total) Metals = calcium, potassium, sodium

D (dissolved) Metals = arsenic, barium, iron, manganese, zinc

Geochemical = alkalinity, ammonia, bicarbonate, carbonate, chloride, sulfate, nitrate, nitrite, pH

TOC / COD = total organic carbon / chemical oxygen demand

Dissolved Metals - COC list = arsenic, iron, manganese

Landfill gas parameters = methane (%LEL), oxygen(% vol), carbon dioxide (% vol), and gas pressure

ith atr. Dap is MW-10, call it MW-13 SOPT 216 retTings !

MW-1 210 Hz MW-3 146 MW-10 123 MW-6 109 MW-8 108 MW-54 199 MW-7 118,2

# Calibrated By: <u>See Ciril France</u> + Calibration Log - Olalla Landfill Monitoring Date: <u>Date:</u>

Meter Type	Manufacturer	Model Number	Man	ufacturer Serial #	Rental Co. Serial #	Time
рН						
pH Electrode						
Calibrated:	to 4.00 buffer	to	7.00 b	uffer	to 10.00 buffer at	℃
Slope =	Comments:					
Meter Type	Manufacturer	Model Number	Manu	ufacturer Serial #	Rental Co. Serial #	Time
Specific Cond.						
Specific Conductance: C	alibrated	µS/cm ∣	to	µS/cm c	alibration standard	
Electrical Conductivity: C	Calibrated	µS/cm to		_µS/cm calibration	n standard at	_°C
Comments:						
Meter Type	Manufacturer	Model Number	Manu	Ifacturer Serial #	Rental Co. Serial #	Time
ORP Meter		-				
ORP Electrode						
Electrode measured	millivolts_a	at	_°C เ	ising Zobell prepar	red on / /	
Table value for Zobell so	lution at this tempera	ture is	n	nV.		
Meter Type	Manufacturer	Model Number	Manu	Ifacturer Serial #	Rental Co. Serial #	Time
Turbidity						
Meter reads	NTUs using	NTUs sta	ndard	Comments:		
Meter reads	NTUs using	NTUs sta	ndard			0.004510-0240
Meter Type	Manufacturer	Model Number	Manu	facturer Serial #	Rental Co. Serial #	Time
DO Meter						
Air-Calibration: Measure	d temperature	°C corre	spond	s to n	ng/L DO (from Table I)	
Atmospheric pressure / e	levation correction fa	ctor	(fro	m Table II)		
Corrected calibration valu	uemg/L D	O (Table I va	lue m	ultiplied by Table II	value)	
Comments:						

Table 3-1: Monitoring Well Construction Data SummaryOlalla Landfill, Kitsap County, WA

Well	Total Well Depth (ft bgs)	Measuring Point Elevation (ft NGVD 29)	Surface Elevation (ft NGVD 29)	Screened Interval (ft bgs)	Northing	Easting	Measuring Point Description
MVV-1	87	343.79	342.53	82-87	161858.133	560525.840	Pump wellhead
MW-2	73	323.25	318.95	68-73	161704.534	559572.839	Top of PVC casing
MW-3	55.5	296.95	294.95	50.5-55.5	162333.903	559463.060	Pump wellhead
MW-4	68	320.93	317.35	63-68	161911.192	559787.735	Top of PVC casing
MW-5	35.5	334.17	332.78	25-35	162510.115	559878.901	Top of PVC casing
MW-5A	98	332.53	331.43	86-96	162487.878	559875.742	Pump wellhead
MW-6	35	271.17	269.14	28-33	162077.699	559358.970	Pump wellhead
MW-7	33	280.43	278.21	21-31	161723.016	559398.979	Pump wellhead
MW-8	38	272.85	270.73	25-35	161897.813	559350.147	Pump wellhead
MVV-10	47	279.21	276.84	37-47	162218.490	559340.899	Pump wellhead

#### Notes:

NGVD 29 = National Geodetic Vertical Datum (1929)

bgs = below ground surface

### Depth to Water Measurement Field Data - Olalla Landfill Monitoring

Well	Time	Measuring Point Elevation (ft. NGVD ¹ )	Depth to Water (ft.)	Comments and Well Inspection ² Notes
MVV-1	08145	343.79	75.41	13/30/16
MW-2	11:49	323.25	62.35	
MW-3	11:03	296.95	42,00	
MW-4	11:55	320.93	59.23	
MW-5	10:55	334.17	8.80	
MW-5A	10:51	332.53	73.37	
MW-6	1122	271.17	17.91	
MW-7	[[:35	280.43	22.68	
MW-8	11:29	272.85	30.35-	
MW-10	11:09	279.21	26,99	V

#### Notes:

¹NGVD = National Geodetic Vertical Datum (1929)

²Observations regarding the condition of the well and surrounding area (e.g., protective casing, surface seal, cap, lock, bollards, soil conditions near the well such as depressions, ponded surface water, or other subsidence features, and any installed sampling equipment).

	Station		MW-	Sampling	<i>,</i> ,	]	Date	12/20/	H 4101					
	Sample: ID		0/41/4 - MWI - 12/11 Field Team: (Initials) / ELC											
	Field Cond	itions	Cloar.	CUST 278	7									
-	Low-Flow Purge Information													
	Well Diameter	r (in.)	21	Purge Method : Submersible pump										
	Well Depth (ft	.)	87 Other: :											
	Initial Depth to		75.4			Start Time	0911/	0833						
	Depth of Wate		(1.59		<b>T</b>	End Time	()	0150						
	1 Casing Volu Controller sett		1107	astern	10	tal Gallons Purged			1					
	Controller set		7-40 -007	ms/cm		myle	-	MV	•					
G	Time	Gallons	<u>pH</u>	Conductivity	NTU	DO	Temp.	ORP	Appearance					
	0913	_(	6.79	15=115		10,52	10,2	16015	Clock					
50	OQIE	415	6.35	► 113.1		10,56	10,7	167.7						
N	06	orate M	roord			C.								
	Oar	5	6.65	11415		92.7	11,0	163.9						
	0024	GENTIN	to pui	t an army con	r cit c	tarte 2, dies,	Tosh Gack	TO UNTR	Katak					
$\overline{D}$	0877	1,5	7.2%	11212		10.87	9.9	142.2	Cloge					
//t	1826	2,8	6.66	115.4		10.55	10.6	1525	11					
'	18.79	5	661	115.4		10,53	10.7	162.2	11					
	1842	7.8	6,55	115.4		10.51	10.8	165.6	1.					
-	17845	10	6.54	115.4	1.94	10,51	10.8	171.2	11					
	0.11													
L		· 1		Sam	ple Info	rmation								
	Sample Me	ethod(s)	Submersibl	e pump / Perista			p / Other							
	Ana	lysis	Time	Bottle Type	Preserv	vative/Filtration		Comments						
[	Volatiles	and VC	0848	5 (3) 40-mL VOA	HCI,	cool to <4°C								
ľ	Total Coliform       Geochemical Parameters       Nitrate/Nitrite		0010	300-mL sterile AG or poly	Co	ool to <4°C								
ſ				500-mL HDPE	Co	ol to <4°C								
				500-mL HDPE	Co	ol to <4°C								
Ī	тс	DC		2507mL AG	H₂SO₄ to p	H <2, cool to <4°C								
Ī	COD Total Metals Dissolved Metals			250-mL HDPE	H₂SO₄ to p	H <2, cool to <4°C								
ľ				250-mL HDPE		H <2, cool to <4°C								
				250-mL HDPE		, HNO₃ to pH <2, ol to <4°C								
								<u></u>						
	Sample End T	īmo	0850											

2

Notes: Where multiple visits are required to complete sampling, parameters are to be checked prior to sampling for each visit. Enter data under field comments.

Groundw	ater Sampling	Field D	ata - Olalla	a Landfil	l Monițori	ng
Station	MW-SA	. (		Date	12/21/	76
Sample: ID 01A	11a - MW5A -12/	14	, Field Tea	am: (Initials)	EL	
	nd Cost, Will "	15PTO	0411			
		Elow Pu	rge Informa	tion		
			urge Method :		~~~	
Well Diameter (in.)		FU	lige Method .	Other: :	mp	
Well Depth (ft.) Initial Depth to Water (ft.)	17 77		Start Time	0949		
Depth of Water Column	-63		End Time	1008		
	,94	Tota	al Gallons Purged	q		
17	9					
	H Conductivity	NTU	DO	Temp.	ORP	Appearance
0957 1.5 6	84 \$146.5		8.64	11.4	1468	Clar
6955 4 6.	73 147.7		8.77	11.6	150.1	37
	69 145.4	·	8,85	11.6	1527	4
	69 175145.5		8.85	11,6	IFCH	11
		013		11/6	1577	4
10:05 8.8 6.	68 145.6	0,63	8,84	<i>11 ,</i> e	157.3	
				· · · ·		
	Sam	ple Infor	mation			
Sample Method(s) : Subm	nersible pump/ Perista			p / Other		
Analysis Ti	me Bottle Type	Preserv	ative/Filtration		Comments	
Volatiles and VC (0;C	2 (2) 40-mL VOA	HCI, c	ool to <4°C			
	A 300-mL sterile AG or poly	Coo	ol to <4ºC			
Geochemical Parameters	500-mL HDPE	Coo	ol to <4°C			
Nitrate/Nitrite	500-mL HDPE	Coo	ol to <4°C			
	250-mL AG	H₂SO₄ to pH	I <2, cool to <4°C			
COD N	250-mL HDPE	H₂SO₄ to pH	I <2, cool to <4°C			
	250-mL HDPE		<2, cool to <4°C			
Dissolved Metals	> 250-mL HDPE		HNO₃ to pH <2, I to <4°C	. <u>.</u>		
Sample End Time	787					<u></u>
			ceptions:			

Notes: Where multiple visits are required to complete sampling, parameters are to be checked prior to sampling for each visit. Enter data under field comments.

0

Grou	Indwater	- Sampling	Field D	ata - Olall	a Landfil	I Monitor	ing	
Station		1-3 11		1	Date		/{	
Sample: ID		Clalla - MW3 - it/lb Field Team: (Initials) E'C						
Field Conditions	Ceelss	Innv						
	,	Low	-Flow Pu	irge Informa	ation			
Well Diameter (in.)	6	1		urge Method:		ımp		
Well Depth (ft.)	55.8				Other: :	<u></u>	-	
Initial Depth to Water (ft.)	42.00			Start Time	10:50			
Depth of Water Column	13.5	]		End Time	110			
1 Casing Volume (gal.)	2.16		Tot	al Gallons Purged	12			
Controller setting (Hz)	146	J						
Time Gallons	рН	Conductivity	NTU	DO	Temp.	ORP	Appearance	
10:53 1.5	6.43	44815		1.48	11.0	186.9	clour	
10:56 3.7	6.27	415-4		0.40	11-6	172.3	4	
10:59 6:25	6.26	41518		0.31	11.7	168.2	17	
11:02 8.5	6.26	415.7		0.28	11.7	166.4	17	
11:05 10	6.26	417-2	0,61	0.25	11.7	165.1	4	
				•				
	Sample Information							
Sample Method(s) :	Submersible	e pump Perista	altic pump /	Bladder Pum	p / Other			
Analysis	Time	Bottle Type	Preserv	ative/Filtration		Comments		
Volatiles and VC	11:07	5 (3) 40-mL VOA	HCI, c	cool to <4°C				
Total Coliform		300-mL sterile AG or poly	Coc	ol to <4℃			_	

____

#### Comments / Exceptions:

Cool to <4°C

Cool to <4°C H₂SO₄ to pH <2, cool to <4°C

 $\rm H_2SO_4$  to pH <2, cool to <4°C

HNO₃ to pH <2, cool to <4°C

Field filter, HNO₃ to pH <2,

cool to <4°C

Notes: Where multiple visits are required to complete sampling, parameters are to be checked prior to sampling for each visit. Enter data under field comments.

500-mL HDPE

500-mL HDPE

250-mL AG

250-mL HDPE

250-mL HDPE

250-mL HDPE

**Geochemical Parameters** 

Nitrate/Nitrite

тос

COD

Total Metals

**Dissolved Metals** 

Sample End Time

116

185- ;

Groundwater Sampling Field Data - Olalla Landfill Monitoring								
Station			10 ,		Date 12/2///0			
Sample: ID	1	Olalla -	MW10-12/1	1		am: (Initials)		C
Field Cond	itions	CUBI, Sa	MV '		Duplicai	MW-	3	
	<u>.                                    </u>		Low-	Flow Pu	rge Informa	ation		
Well Diameter	(in.)	2	<b>]</b>		urge Method:		amp	
Well Depth (ft	. ,	47	-			Other: :		r -
Initial Depth to	Water (ft.)	27			Start Time	1201		
Depth of Wate	er Column	20			End Time	(271		
1 Casing Volu	me (gal.)	3,10		Tota	al Gallons Purged	[3		
Controller set	ing (Hz)	123	l					
Time	Gallons	pH	Conductivity	NTU	DO	Temp.	ORP	Appearance
1204	18	6.57	35715		0,44	11.4	137.7	Clear
1207	3.5	6.55	357,2		0,30	11.6	1241	11
1210	5	6.54	357,1		0.28	11-6	121.8	11
1217	6.5	6.53	356.9		0,23	11.6	119.1	11
ING	8.5	653	357.3		0120	11.6	116-6	٤/
1219	10.2	6.53	357,5	1,5	0.20	11.7	113,6	1/
					•			

#### Sample Information

Sample Method(s) : Submersible pump / Peristaltic pump / Bladder Pump / Other

Analysis	Time	Bottle Type	Preservative/Filtration	Comments
Volatiles and VC	()- 21	40-mL VOA	HCl, cool to <4°C	
Total Coliform		300-mL sterile AG or poly	Cool to <4°C	
Geochemical Parameters		500-mL HDPE	Cool to <4°C	
Nitrate/Nitrite		500-mL HDPE	Cool to <4°C	
тос		250-mL AG	$H_2SO_4$ to pH <2, cool to <4°C	
COD		250-mL HDPE	$H_2SO_4$ to pH <2, cool to <4°C	
Total Metals		250-mL HDPE	HNO ₃ to pH <2, cool to <4°C	
Dissolved Metals		250-mL HDPE	Field filter, HNO₃ to pH <2, cool to <4°C	
Sample End Time	12-21	 ]		

#### Comments / Exceptions:

<u>ßun</u> 04

6

Notes: Where multiple visits are required to complete sampling, parameters are to be checked prior to sampling for each visit. Enter data under field comments.

Groundwater Sampling Field Data - Olalla Landfill Monitoring							
Station	14	-6 ,			Date		
Sample: ID	Glalle -	MW6-12/1	k	Field Te	am: (Initials)	E'c	/
Field Conditions	JONNY	close, cos					
<u>—————————————————————————————————————</u>			Flow Pu	irge Informa	ation		
Well Diameter (in.)	2	1 2011		urge Method:		ump	
Well Depth (ft.)	75	1			Other: :		
Initial Depth to Water (ft.)	17.91	1		Start Time	1202		]
Depth of Water Column	17.09	]		End Time	1325		
1 Casing Volume (gal.)	2.73		Tota	al Gallons Purged	[ <i>k</i>		]
Controller setting (Hz)	108	1					
Time Gallons	pН	Conductivity	NTU	DO	Temp.	ORP	Appearance
1305 2	6.80	186.2		0.48	11.9	14.5	VI.aLth Cloydy
1208 4.8	6.76	191.0		0.29	11.9	5.0	Clonry
1311 65	6:76	193,5		0.24	11.9	1.9	Clour
1314 9	6.75	145,5		0.21	11.9	-0.7	17
317 11	6.74	147.3		0.19	11.9	-2.9	17
1720 1912	6.74	149,4	2,57	0.18	11.9	-4.7	11
							10 s
				· · ·			
		Sam	ple Infor	mation			
Sample Method(s)	Submersibl	e pump Perista			p / Other		
Analysis	Time	Bottle Type	Preserv	ative/Filtration		Comments	
Volatiles and VC	1321	5 (8) 40-mL VOA	HCI, c	cool to <4°C			
Total Coliform		300-mL sterile AG or poly	Coc	ol to <4℃			
Geochemical Parameters		500-mL HDPE	Coc	ol to <4°C			
Nitrate/Nitrite		500-mL HDPE	Coc	ol to <4°C			
TOC		250-mL AG	H₂SO₄ to pH	I <2, cool to <4℃			
COD		250-mL HDPE		I <2, cool to <4°C			
Total Metals 250-mL H		250-mL HDPE		<2, cool to <4°C			
Dissolved Metals 250-mL HDPE			HNO₃ to pH <2, I to <4°C				
Sample End Time	(325						
		Comn	nents / Ex	centions:	<u> </u>		

1

Notes: Where multiple visits are required to complete sampling, parameters are to be checked prior to sampling for each visit. Enter data under field comments.

Groundwater Sampling Field Data - Olalla Landfill Monitoring									
Station	MW-	¥ ·		]	Date	12/21	//6		
Sample: ID	díalla -	Vialla-MW8-id/16			am: (Initials)	EC'			
Field Conditions	CIGAr	+ 600							
Low-Flow Purge Information									
Well Diameter (in.)	2		Р	urge Method:	Submersible pu	mp			
Well Depth (ft.)	38				Other: :		-		
Initial Depth to Water (ft.)	70.35	۲		Start Time			4		
Depth of Water Column	7.65			End Time			4		
1 Casing Volume (gal.)	1500		Tot	al Gallons Purged	L LA				
Controller setting (Hz)	<u> </u>								
Time Gallons	pH	Conductivity	NTU	DO	Temp.	ORP	Appearance		
13:59 2.5	6.76	242.1	-	2.18	11.4	58,0	SI, Jurly Clork		
14:03 5	6.70	29811		7.15	11.4	36.1			
1405 7	6.70	301.1		2.17	11.4	37.9	Cl64rm		
1418 9	670	302.9		2.0 8.	11.4	33.2	C/04-		
1411 10.5	6.70	301.4	4,36	2.16	11.4	32.8			
		30111	1.3	710		39.70			
			<u> </u>						
				2					
						l			
		Sam	ple Infor	mation					

#### Sample Information

Sample Method(s) : Submersible pump / Peristaltic pump / Bladder Pump / Other

Analysis	Time	Bottle Type	Preservative/Filtration	Comments
Volatiles and VC	14/12	5 (2) 40-mL VOA	HCI, cool to <4°C	
Total Coliform		300-mL sterile AG or poly	Cool to <4°C	
Geochemical Parameters		500-mL HDPE	Cool to <4°C	
Nitrate/Nitrite		500-mL HDPE	Cool to <4°C	
TOC		250-mL AG	$H_2SO_4$ to pH <2, cool to <4°C	
COD		250-mL HDPE	$H_2SO_4$ to pH <2, cool to <4°C	
Total Metals		250-mL HDPE	$HNO_3$ to pH <2, cool to <4°C	
Dissolved Metals		250-mL HDPE	Field filter, HNO₃ to pH <2, cool to <4°C	
Sample End Time	144	]		

#### Comments / Exceptions:

Notes: Where multiple visits are required to complete sampling, parameters are to be checked prior to sampling for each visit. Enter data under field comments.

S

Groundwater Sampling Field Data - Olalla Landfill Monitoring								
Station	MW-	7	(		Date	e 12/21/16		
Sample: ID	01444-1-	1w7-12/16		Field Te	eam: (Initials			
Field Conditions								
Low-Flow Purge Information								
Well Diameter (in.)	$\beta^{\prime\prime}$		Pu	urge Method	: Submersible p	oump		
Well Depth (ft.)	33.				Other: :			
Initial Depth to Water (ft.)	22.68			Start Time				
Depth of Water Column	10.32		<del>.</del> .	End Time		1)		
1 Casing Volume (gal.)	1.65		Iota	al Gallons Purged	└ <u>/∗</u> }			
Controller setting (Hz)					_		•	
Time Gallons	pH	Conductivity	NTU	DO	Temp.	ORP	Appearance	
14:54 1	6.87	48.8		4,74	10,6	91.2	C/69F	
1457 2	6.79	98.7		4,60	10.9	101.2	ì1	
15:00 2.5	6.78	98.9		4.54	10.9	106.0	t,	
15:03 4,5	6.75	98.9		4,52	10.9	109,5	21	
15:26 5.5	6.77	98.9		4.50	11.0	114-1	11	
15:09 615	6.76	9819	0.56	4,48	11,0	115.5	1/	
						+		
						-		
						+		
			ple Infor	mation			<u> </u>	
		Jam	hie illioi	mation				

Sample Method(s) : Submersible pump / Peristaltic pump / Bladder Pump / Other

Analysis	Time	Bottle Type	Preservative/Filtration	Comments
Volatiles and VC	1510	2 (8) 40-mL VOA	HCI, cool to <4°C	
Total Coliform	NA	300-mL sterile AG or poly	Cool to <4°C	
Geochemical Parameters	\$YG	-500-mL HDPE	Cool to <4°C	
Nitrate/Nitrite	1NO	500-mL HDPE	Cool to <4°C	
TOC		250-mL AG	$H_2SO_4$ to pH <2, cool to <4°C	
COD		250-mL HDPE	$H_2SO_4$ to pH <2, cool to <4°C	
Total Metals	V	250-mL HDPE	HNO ₃ to pH <2, cool to <4°C	
Dissolved Metals		250-mL HDPE	Field filter, HNO ₃ to pH <2, cool to <4°C	
Sample End Time	(5A			

#### Comments / Exceptions:

Notes: Where multiple visits are required to complete sampling, parameters are to be checked prior to sampling for each visit. Enter data under field comments.

	Surface	Water Sa	mpling Fie	ld Data	- Olalla La	andfill Mo	onitoring
Station		Per-	-2			Date	12/20/16
Sample: ID	)	olulla-S	Sur-2 01411a - Sur-2 - 12/16			am: (Initials)	ELC
Field Cond	eld Conditions Clear, Coul windy heavy ro				nis lart no	11-	
			Fiéld P	aramete	r Data		
Time	рН	Specific (	Conductance	Tempe	rature (°C)	Appearance and Flow Rate	
0820	8.09	43,4	-MS LM	3,8	<i>у</i> .	25 Gulla	Inin. light grown color
	00 - 13	10 M/L	URP- 125	e Inform	ation	ho od	fining, light of roma color,
	alysis	Time	Bottle Type	Preservat	rvative/Filtration		Comments
Fecal	Coliform	0820	300-mL sterile AG or poly	Cool to <4°C			
Nitrate-	Nitrogen	66	500-mL HDPE	Coc	ol to <4ºC		
Ĩ	рΗ	11	125-mL AG	Coc	l to <4°C		
						· · · · · · · · · · · · · · · · · · ·	
Sample En	d Time	l.	]				
			Comn	nents / Ex	ceptions:		
- y · uh	from W	ator diju	harppy from	<u>pipo</u>			

Notes: Where multiple visits are required to complete sampling, parameters are to be checked prior to sampling for each visit. Enter data under field comments.

La	andfill G	as Monito	ring Field	Data - Ola	alla Landfi	II Monitori	ng
Instrument U	sed: Land G	GEM 20	00 Londfi	II Gas I METER	Date and Time:	12/20/16	12.05
Ambient Tem	perature:	47"F		METUR	Field Team:	Еc	
Field Conditions: Clear, Verywhdy							
			Landfil	I Gas Data			
Flare #	Time	Methane (% vol.)	% LEL	Oxygen (% vol.)	Carbon Dioxide (% vol.)	Temperature (°C)	Gas Pressure ("H₂O)
#3	12:05	0.0	0	22.9	0,2		0,08
#1	17:19	0.70	0	22.0	0./	Come es antes	0.00-0.05

Comments / Inspection Results¹

23.1

0,1

0,00 0.00

Duryer magneholic for Gas prosence

0.0

0

#2

12-15

¹Inspect the following: lock and gate operation, tightness of bolts and clamps, differential settlement, valve operation, debris or breaks in hose barb.



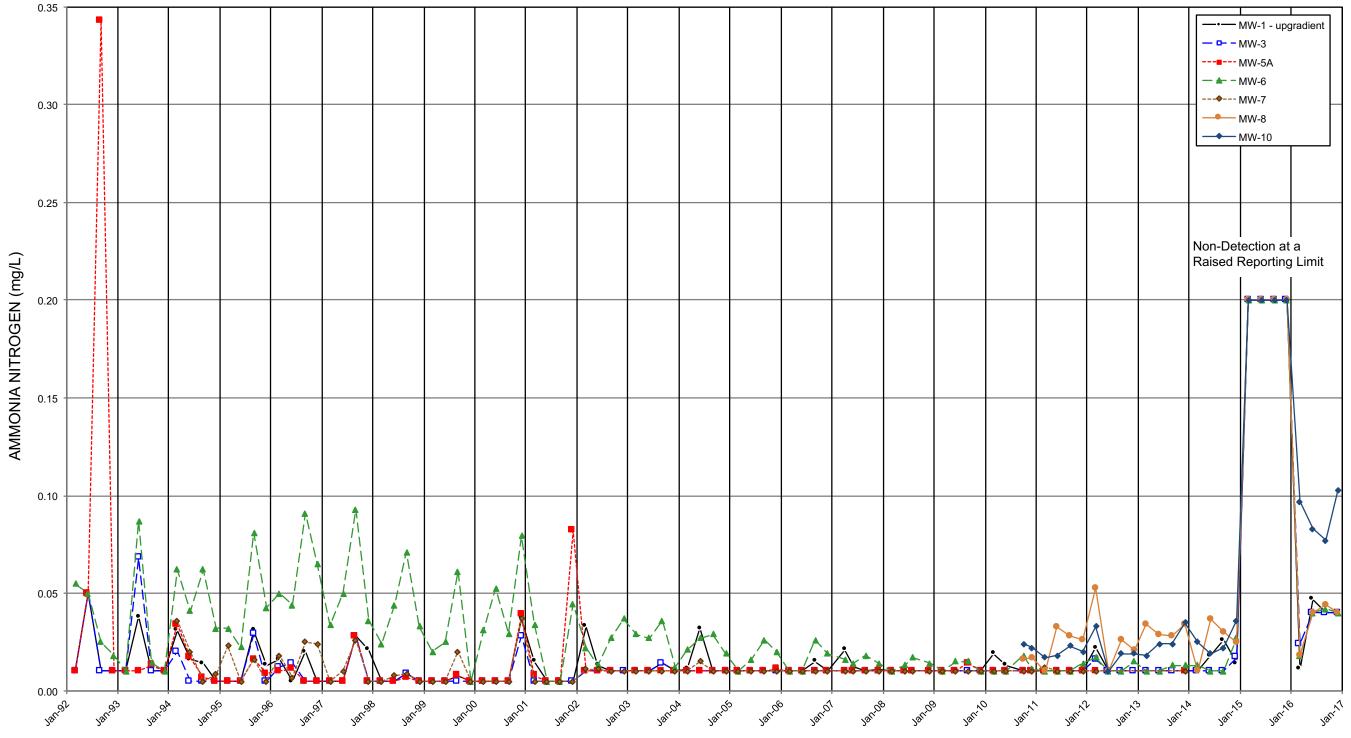
#### YSI ProDSS RENTAL CALIBRATION CERTIFICATE

SERVICE TECHNICIAN
RENTAL CUSTOMER: FRS
INSTRUMENT INFORMATION
RENTAL I.D. NUMBER: YSIPRODSS. O.S
SERIAL NUMBER: 6F1076K

DATE: 0/19/16

#### **CALIBRATION INFORMATION**

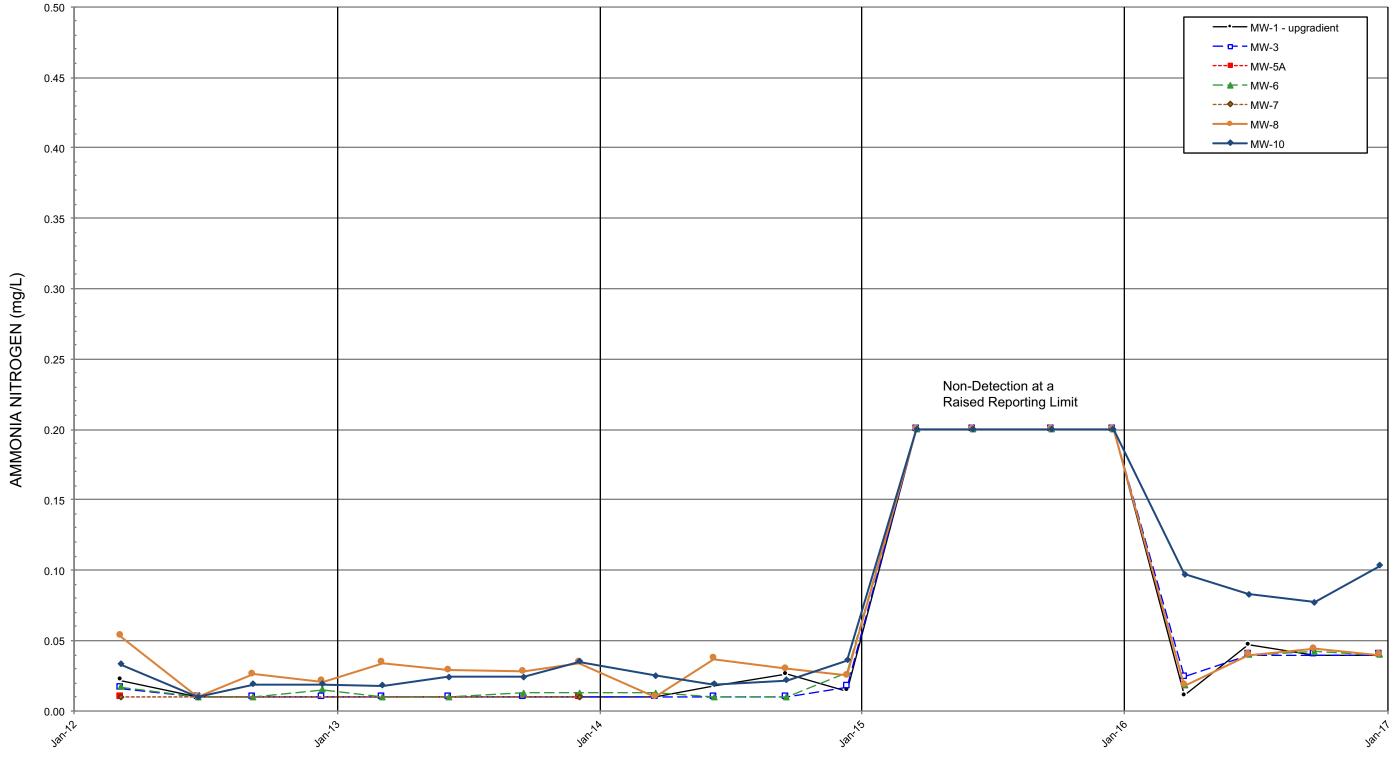
PARA	METER:	STANDARD:	PASS()	LOT #
	1. CONDUCTIVITY	1,000 µMhos	$\geq$	46387
	2. pH ZERO	pH 7	$\succeq$	44912
	pH SLOPE	pH 4		44935
	pH SLOPE	pH 10	$\mathcal{L}$	0503
1 00	3. DISSOLVED OXYGEN	Air Calibration Barometric pressure == 760mmHg	$\Delta$	N/A
	4. TURBIDITY ZERO	<del>0.0 NTU's</del>		N/A
	TURBIDITY SPAN	20 NTU's	>	
	5. REDOX (ORP)	231mV (YSI Zobell solution)	$\searrow$	10113




### CES LANDTECH MODEL: GEM 2000 CALIBRATION CERTIFICATE

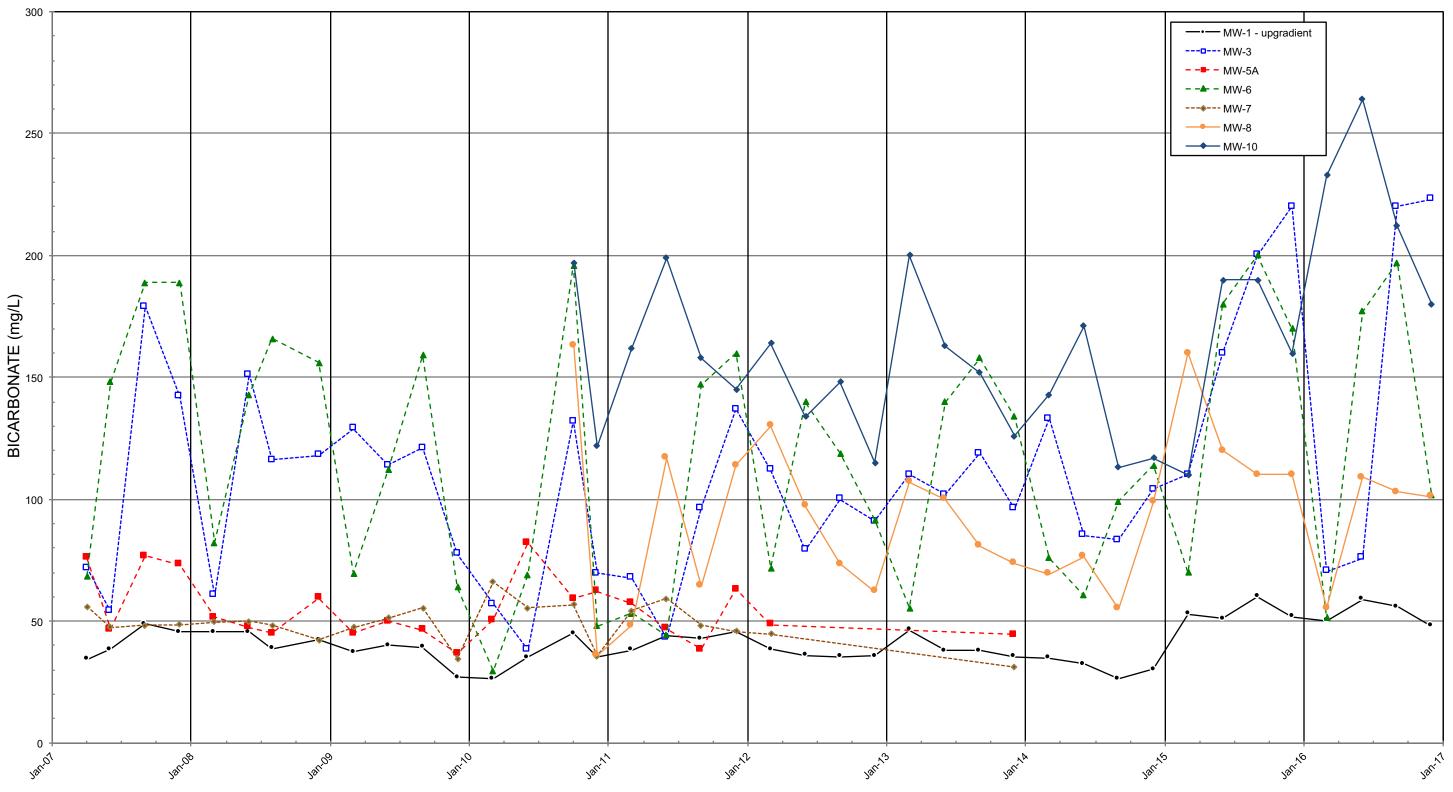
SERVICE TECHNICIAN	DATE: 12/19/6
INSTRUMENT INFORMATION RENTAL ID: GEM2000. <u>6</u> SERIAL NUMBER: <u>CM072</u> 43	
CALIBRATION INFORMATION 1CALIBRATION GAS: $25\%$ % CO ₂ GAS RESPONSE: $25\%$ % CO ₂ ±2%	LOT #: 573162
2. CALIBRATION GAS: 9 % Vol. Methane GAS RESPONSE: 9 % Vol. Methane <u>+</u> 2%	LOT #: <u>57&gt;(62</u>
OXYGEN RESPONSE IN FRESH AIR ENVIRONMENT: 20.9% OXYGEN DOWNSCALE RESPONSE CHECKED: 0% WITH 99.9% Nitrogen	
THIS INSTRUMENT HAS BEEN CALIBRATED TO STANDARDS SET FORTH BY THE MANUFACTURER	

### Appendix C: 2016 Statistical Summaries


Time-Series Plots through December 2016 Mann-Kendall Statistically Significant Trend Test Summary Tables Shapiro-Wilk Test for Normality Summary Tables Confidence Interval Summary Tables



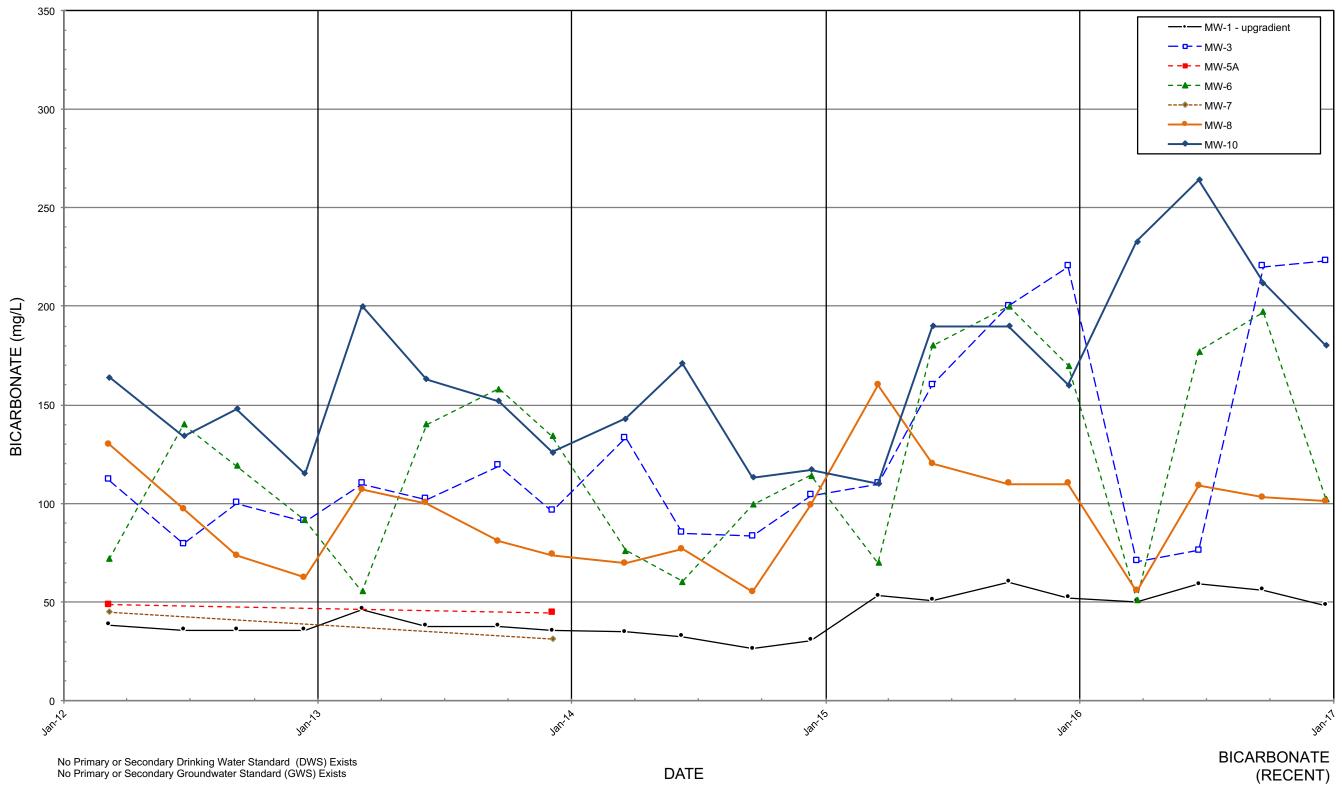
No Primary or Secondary Drinking Water Standard (DWS) Exists No Primary or Secondary Groundwater Standard (GWS) Exists DATE


#### AMMONIA NITROGEN

OLALLA LANDFILL Quarterly Monitoring Data (most recent five years)

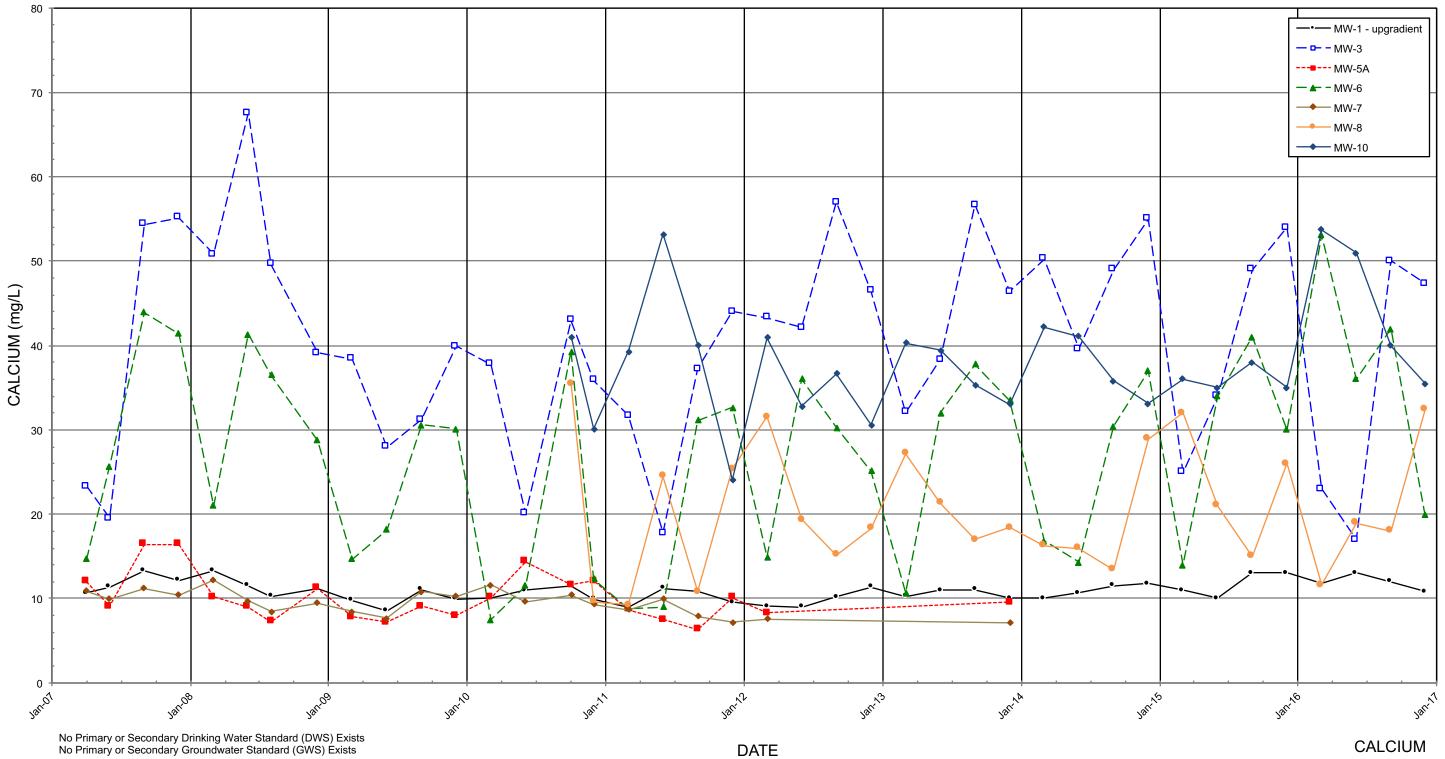


No Primary or Secondary Drinking Water Standard (DWS) Exists No Primary or Secondary Groundwater Standard (GWS) Exists



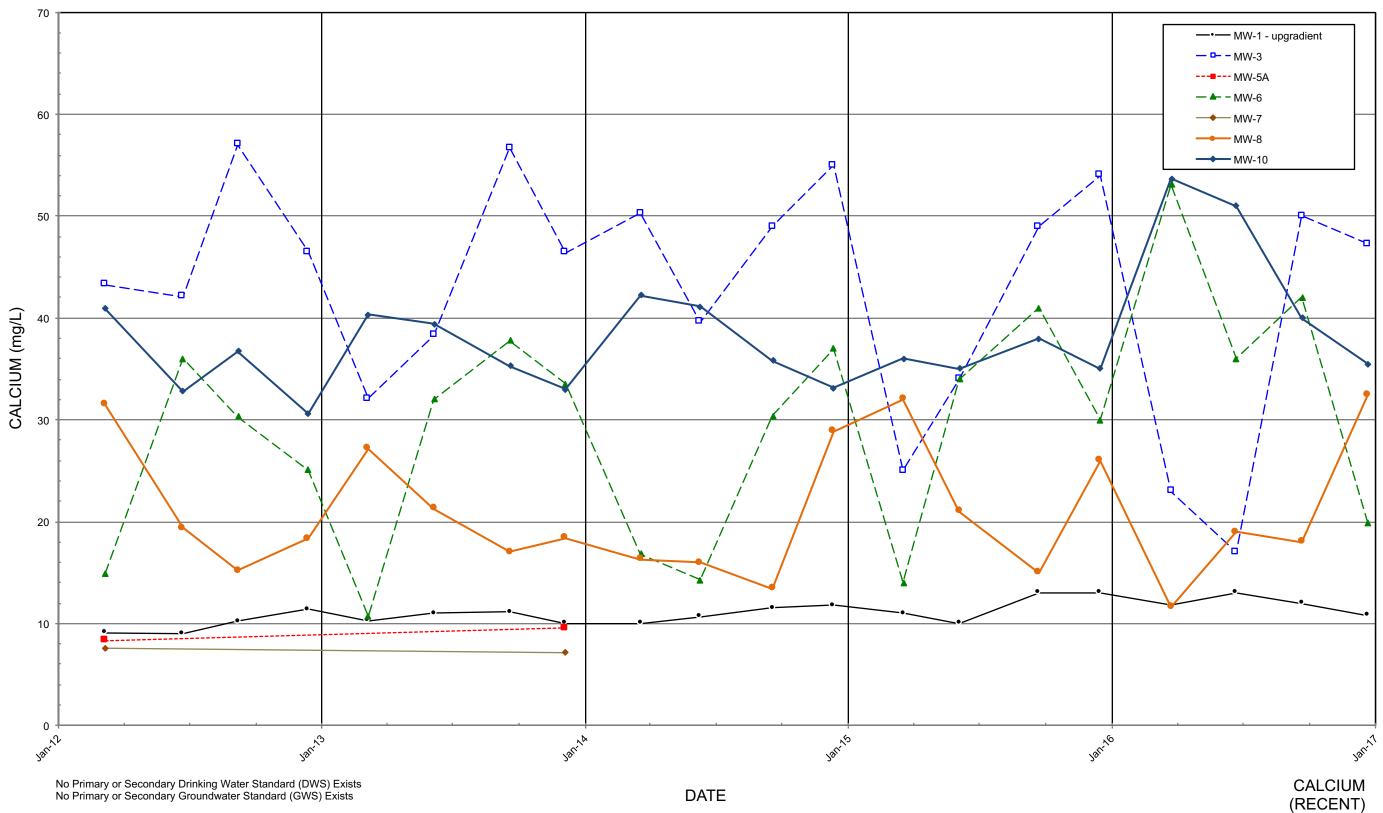


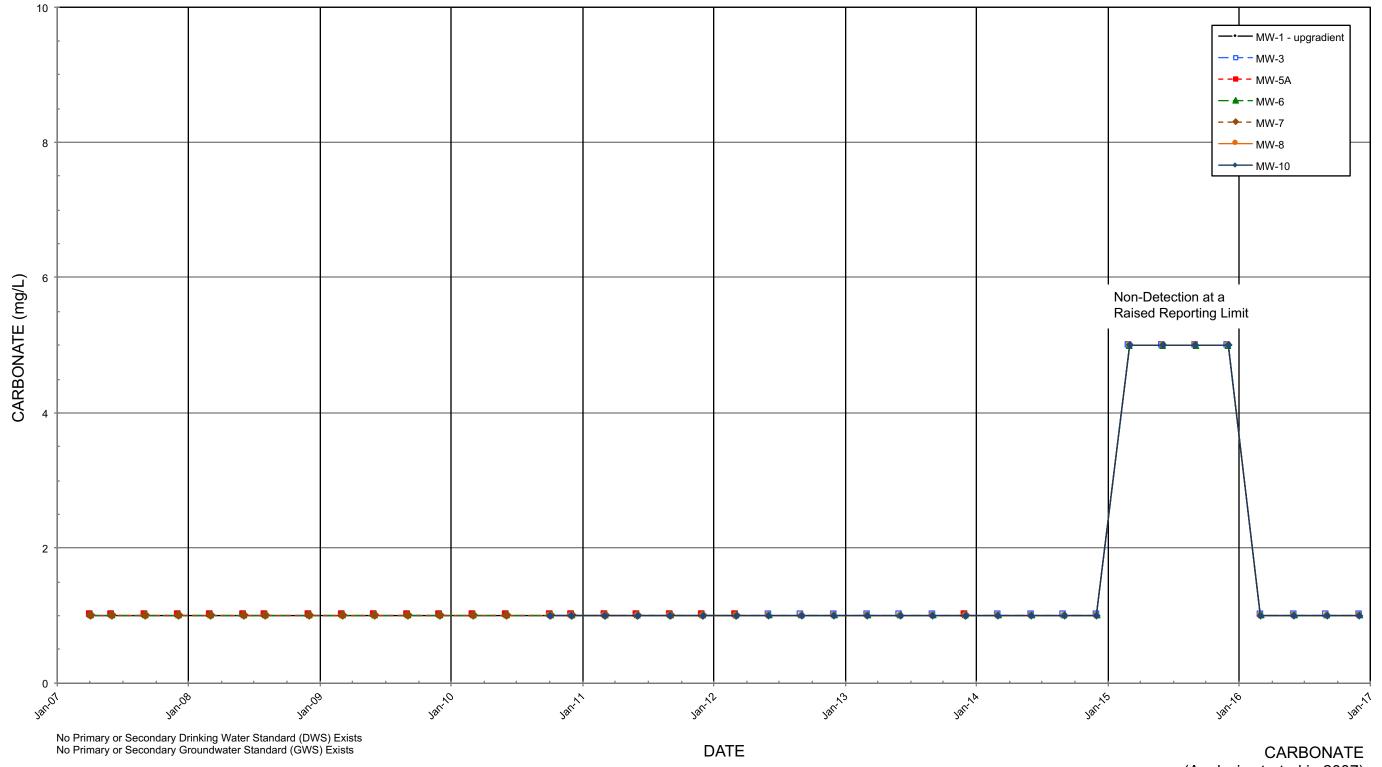

No Primary or Secondary Drinking Water Standard (DWS) Exists No Primary or Secondary Groundwater Standard (GWS) Exists


BICARBONATE (Analysis started in 2007)

OLALLA LANDFILL Quarterly Monitoring Data (most recent five years)

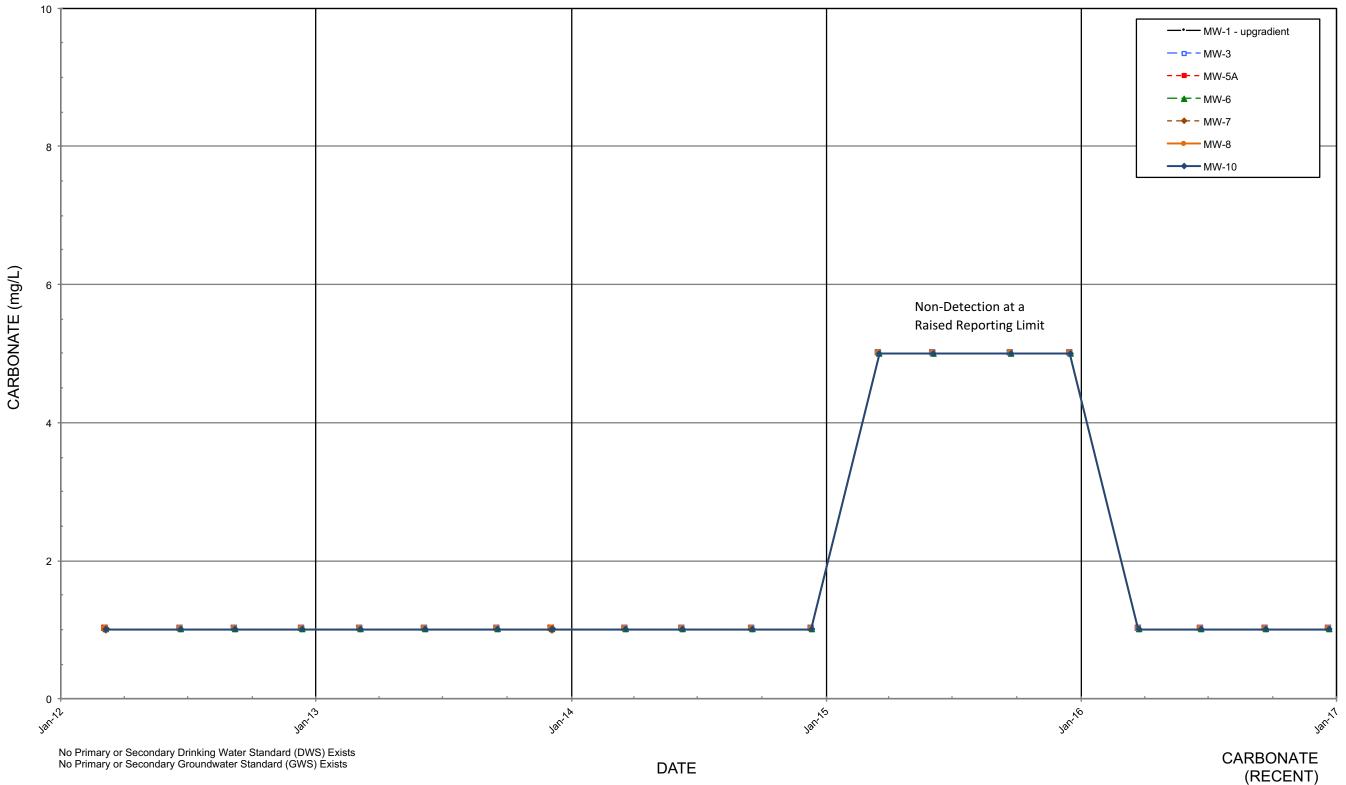



No Primary or Secondary Drinking Water Standard (DWS) Exists No Primary or Secondary Groundwater Standard (GWS) Exists


OLALLA LANDFILL Quarterly Monitoring Data



(Analysis started in 2007)


OLALLA LANDFILL Quarterly Monitoring Data (most recent five years)

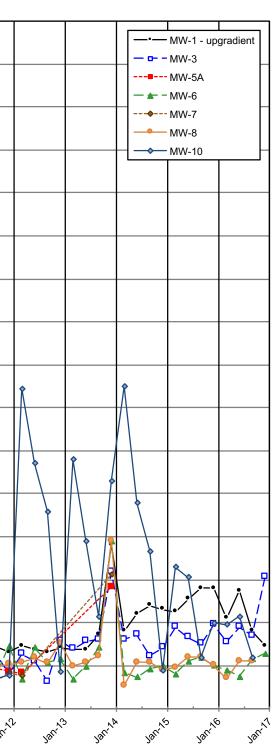




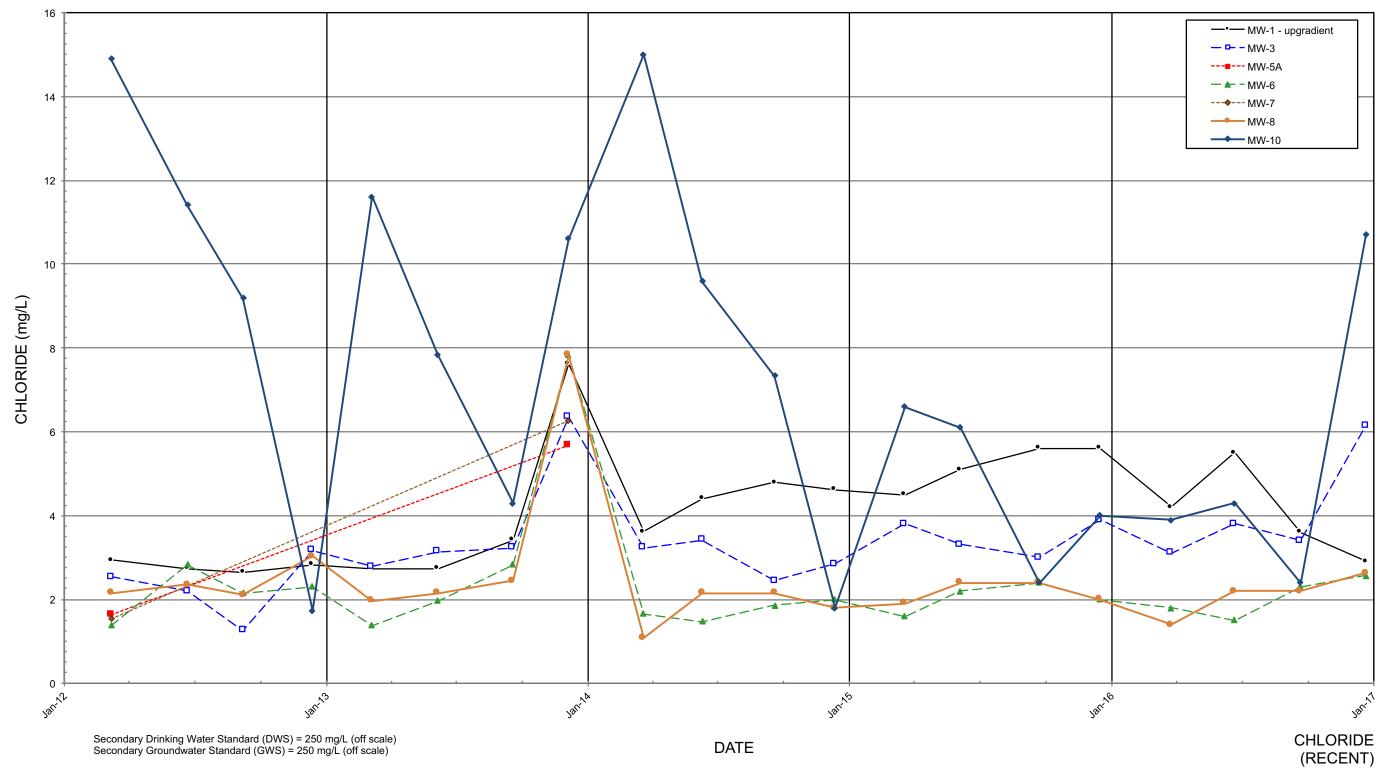
(Analysis started in 2007)

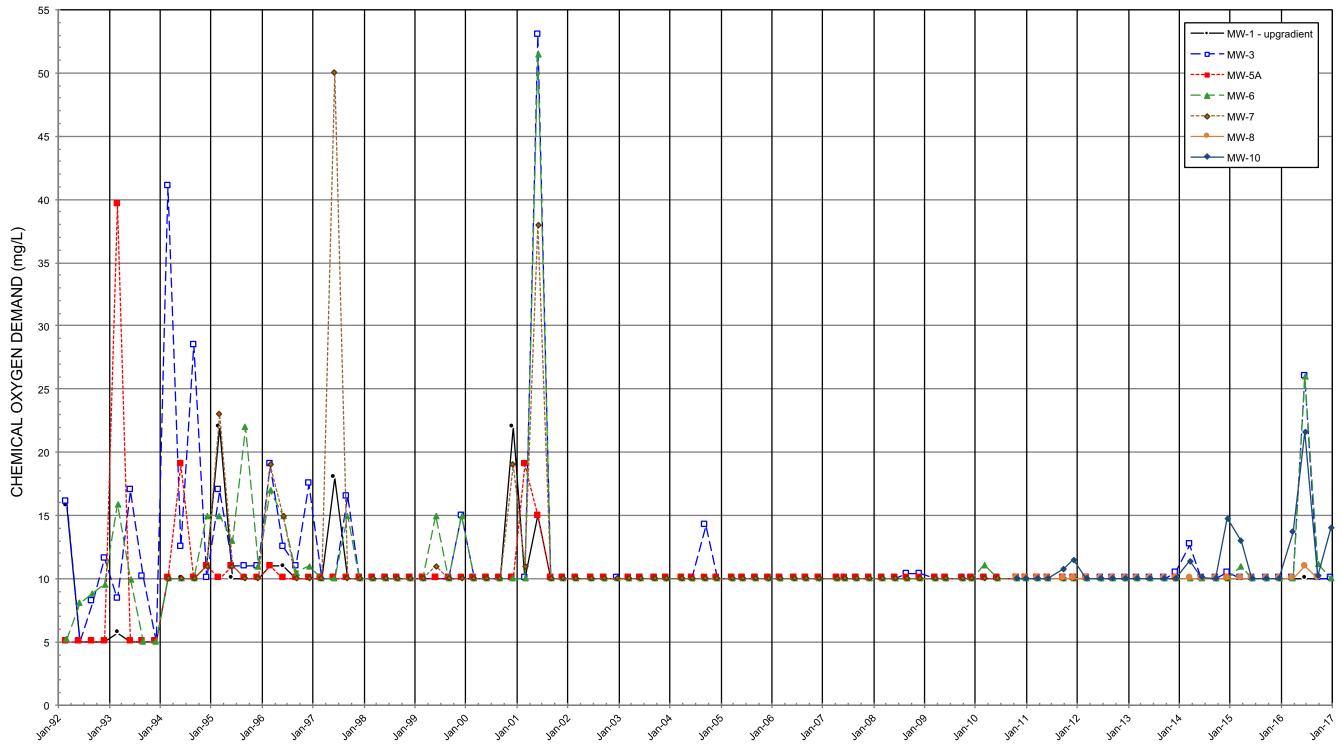
OLALLA LANDFILL Quarterly Monitoring Data (most recent five years)




#### 32 30 28 26 24 22 ill 11 Ш 20 Ш CHLORIDE (mg/L) 18 - 11 16 I II 1 14 12 10 1 8 6 Q 4 2 0 · 121.92 Janoo 1an-02 Janol 121.09 131-10 Janot Jan 08 120.04 ్రసి ණ °00 8 ŝ Ś Ś ŝ Ś S.

Secondary Drinking Water Standard (DWS) = 250 mg/L (off scale) Secondary Groundwater Standard (GWS) = 250 mg/L (off scale)

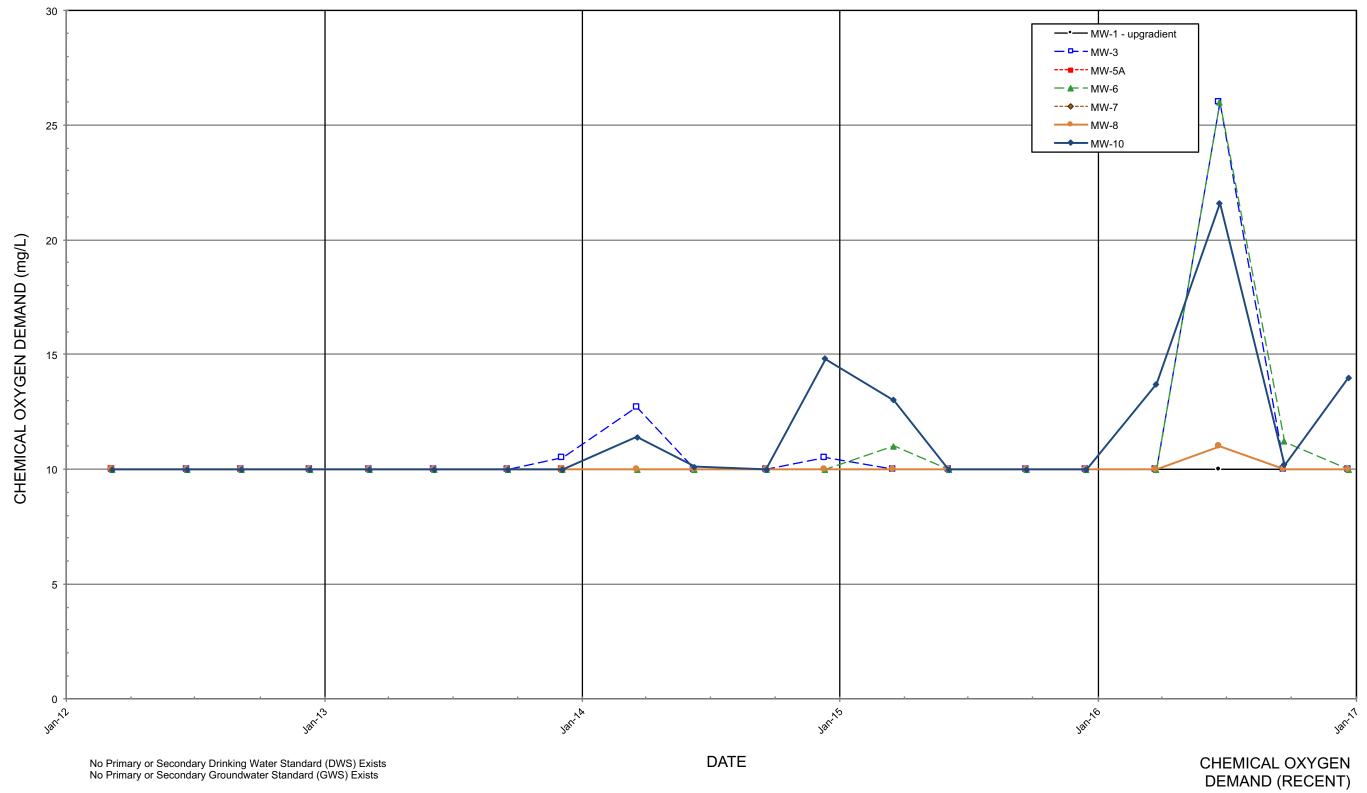

DATE


### OLALLA LANDFILL Quarterly Monitoring Data

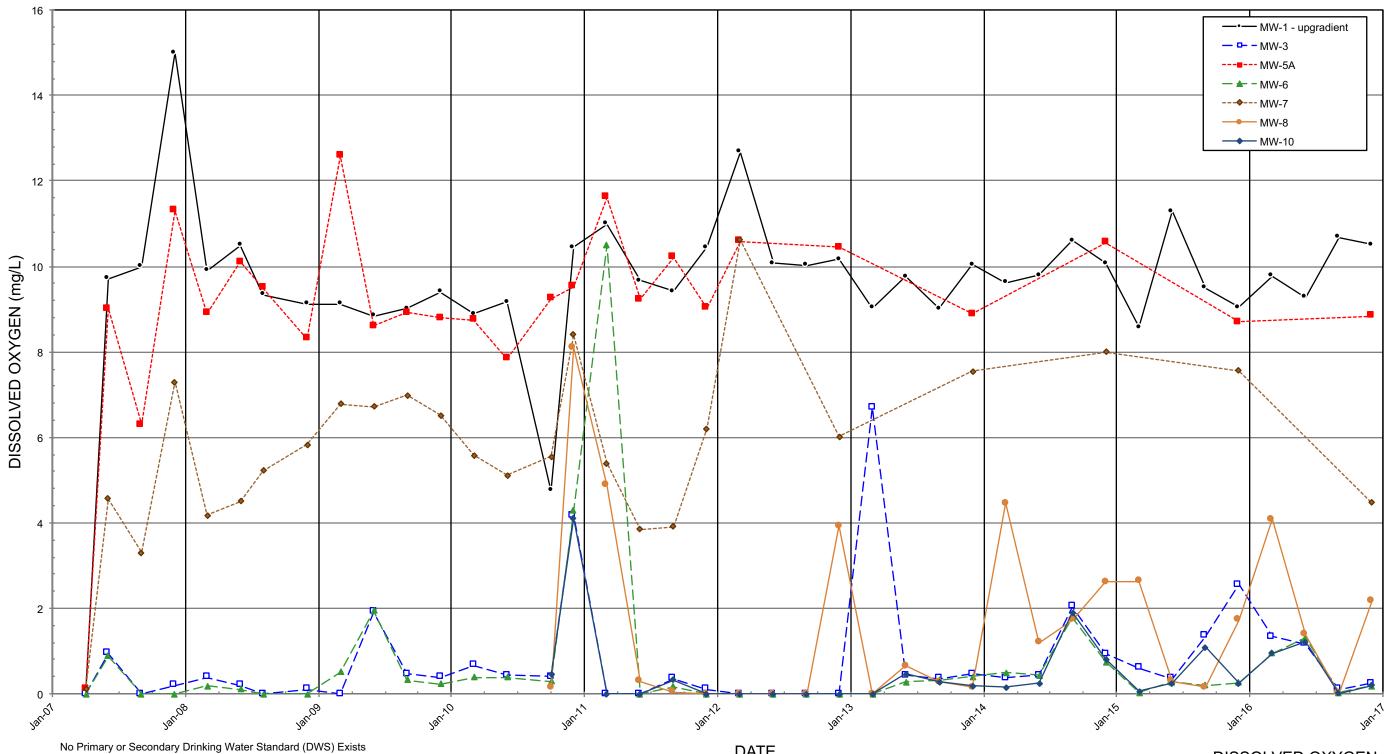
#### CHLORIDE



OLALLA LANDFILL Quarterly Monitoring Data (most recent five years)



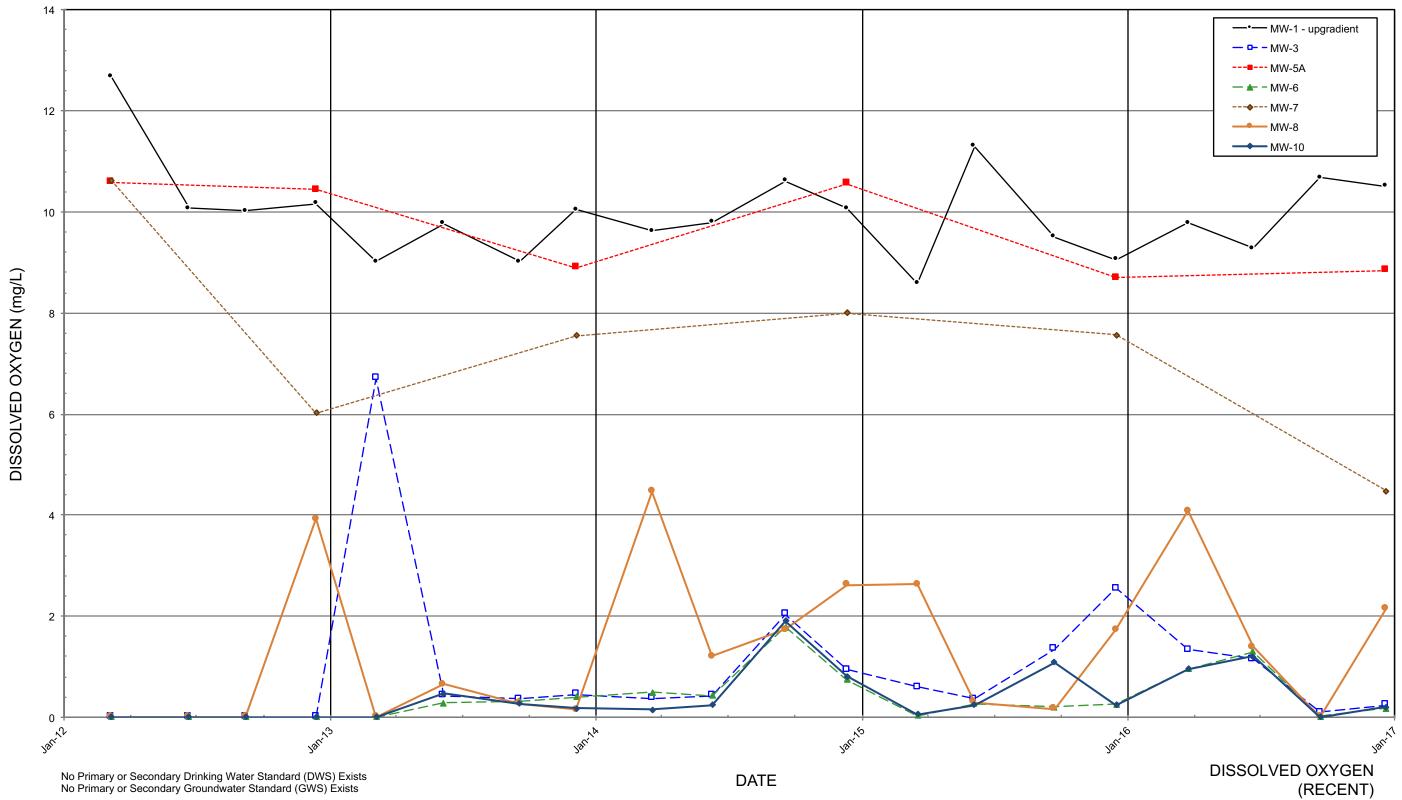


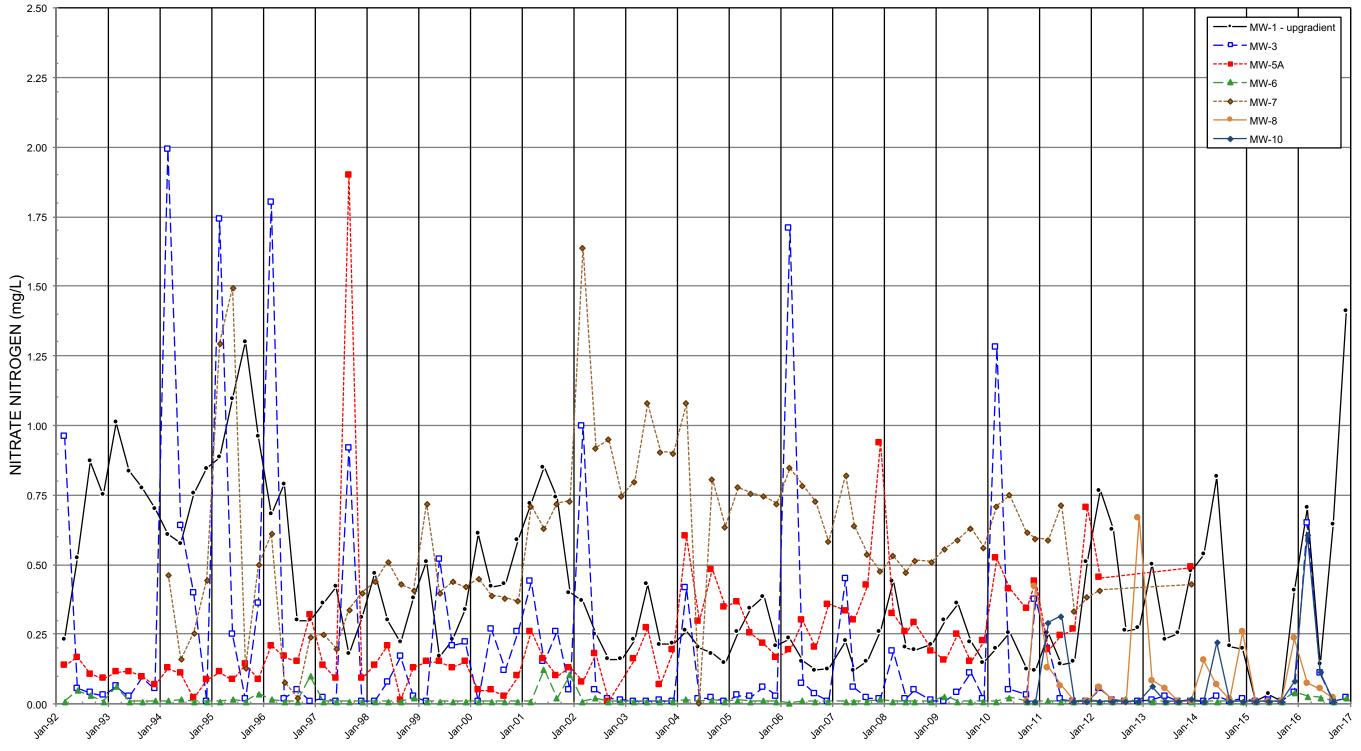


No Primary or Secondary Drinking Water Standard (DWS) Exists No Primary or Secondary Groundwater Standard (GWS) Exists

CHEMICAL OXYGEN DEMAND

OLALLA LANDFILL Quarterly Monitoring Data (most recent five years)



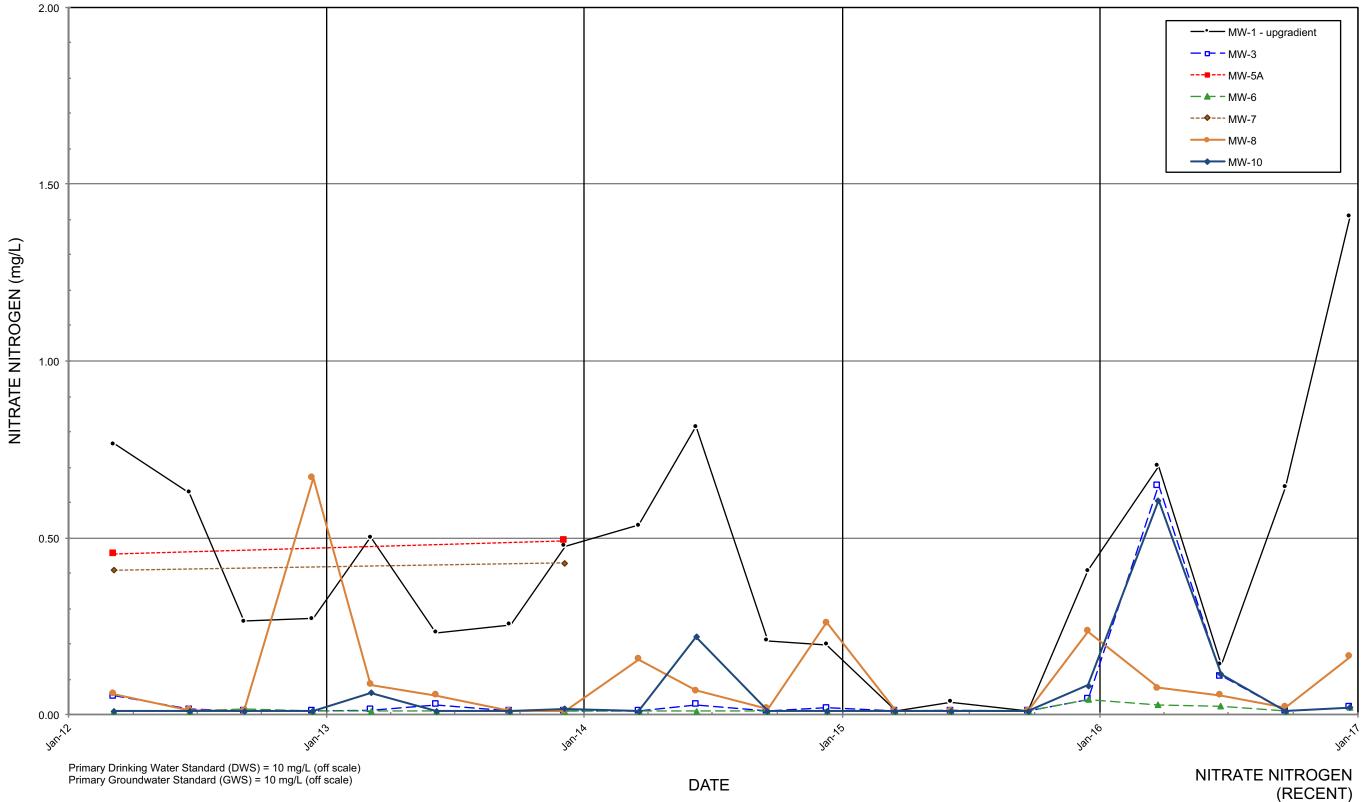

OLALLA LANDFILL Quarterly Monitoring Data

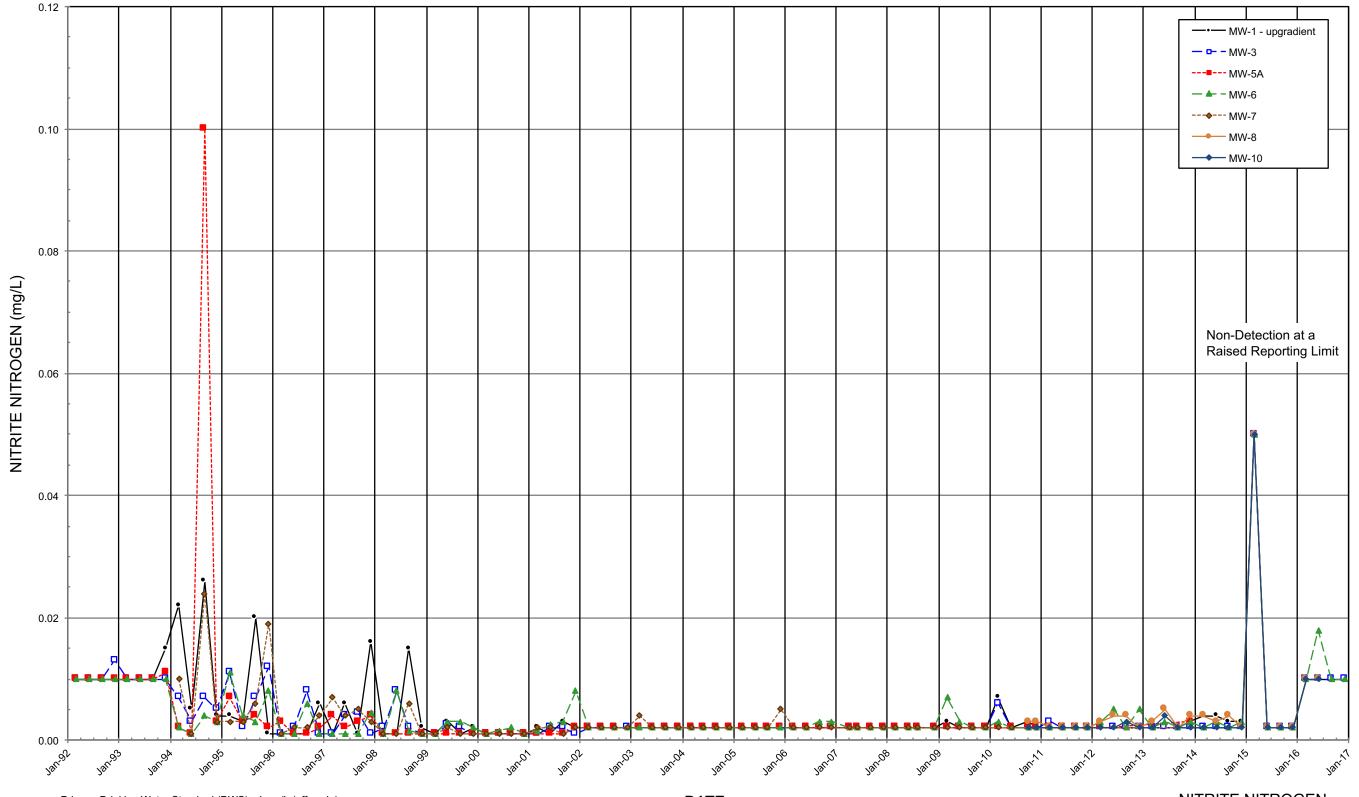



No Primary or Secondary Drinking Water Standard (DWS) Exists No Primary or Secondary Groundwater Standard (GWS) Exists

DISSOLVED OXYGEN

OLALLA LANDFILL Quarterly Monitoring Data (most recent five years)

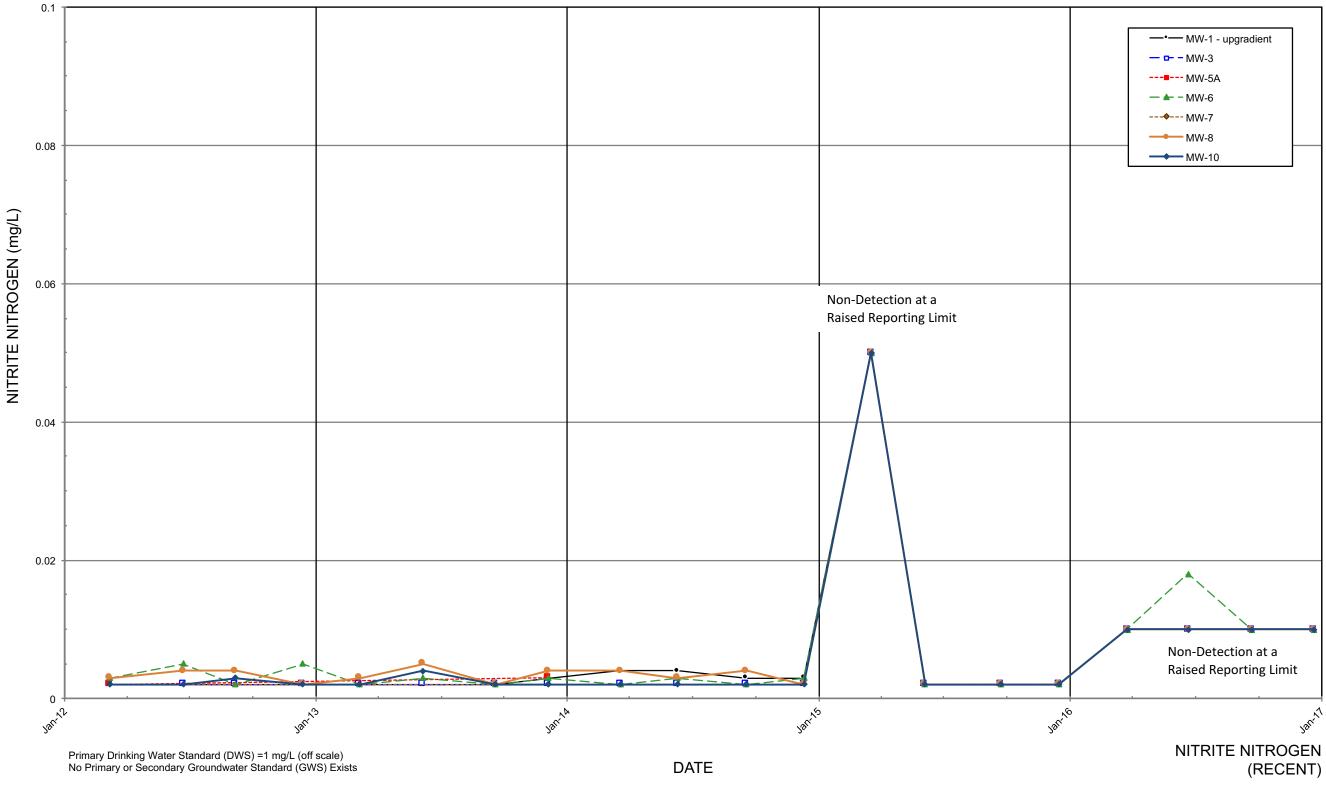


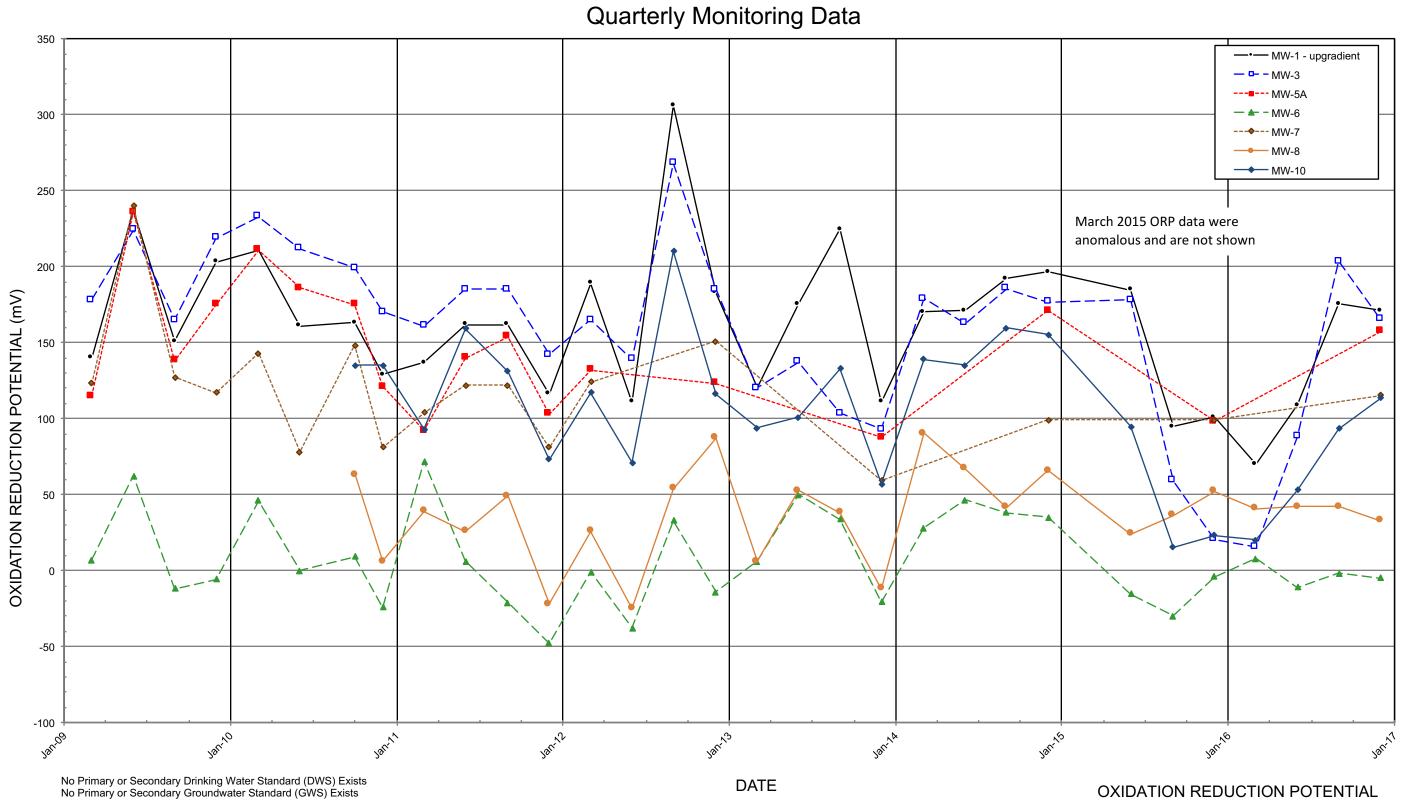




Primary Drinking Water Standard (DWS) = 10 mg/L (off scale) Primary Groundwater Standard (GWS) = 10 mg/L (off scale)

NITRATE NITROGEN

## OLALLA LANDFILL Quarterly Monitoring Data (most recent five years)

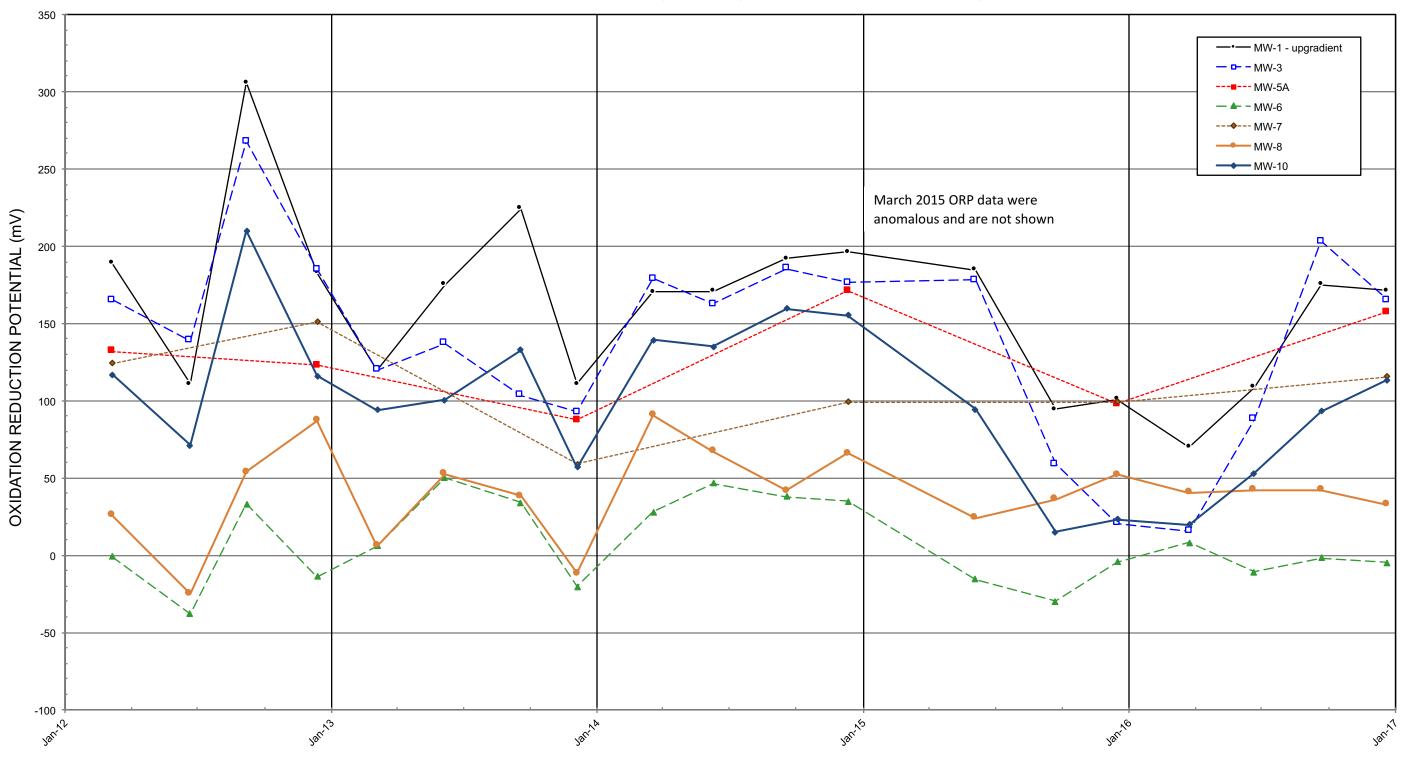



Primary Drinking Water Standard (DWS) =1 mg/L (off scale) No Primary or Secondary Groundwater Standard (GWS) Exists

NITRITE NITROGEN

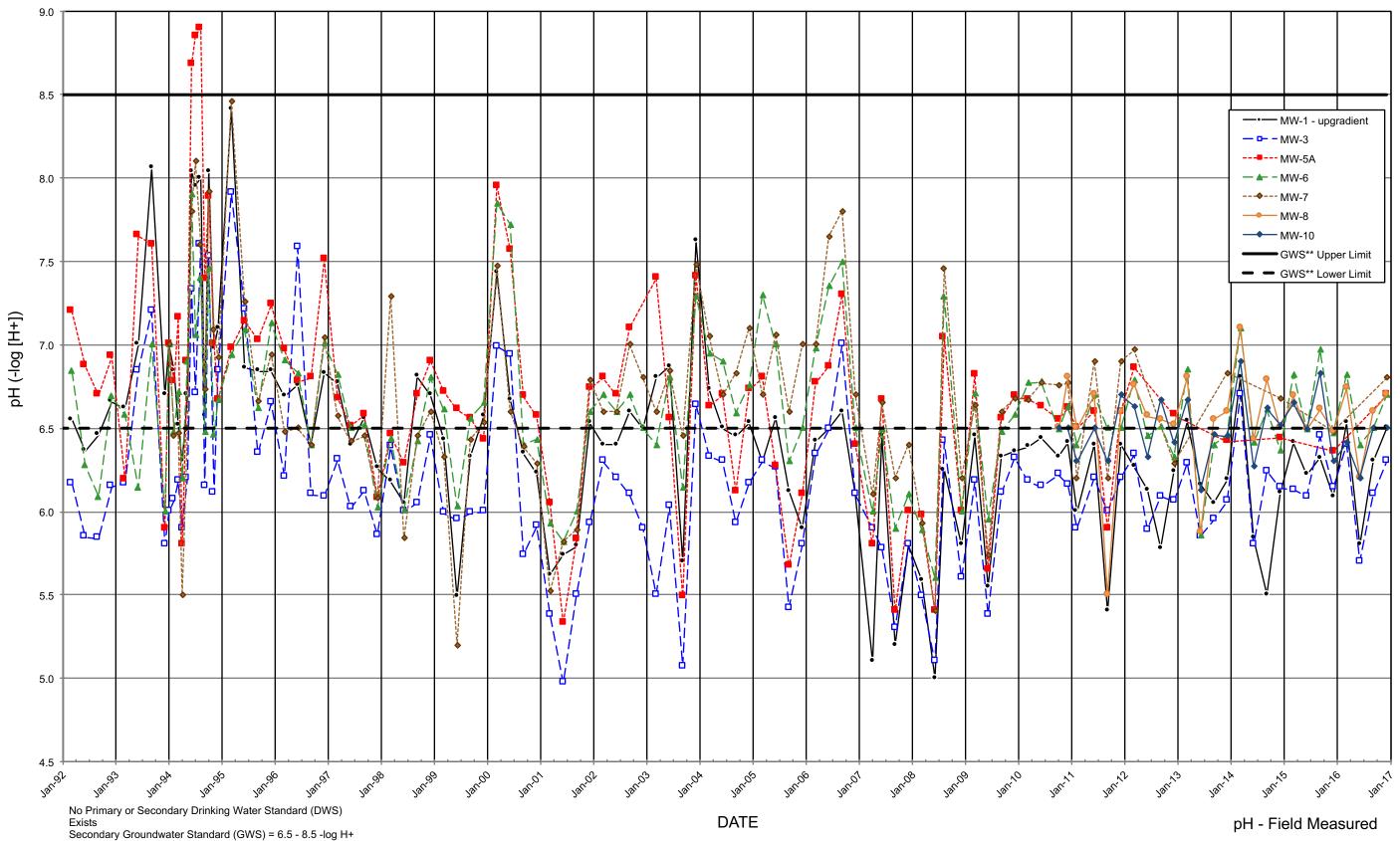
## OLALLA LANDFILL Quarterly Monitoring Data (most recent five years)



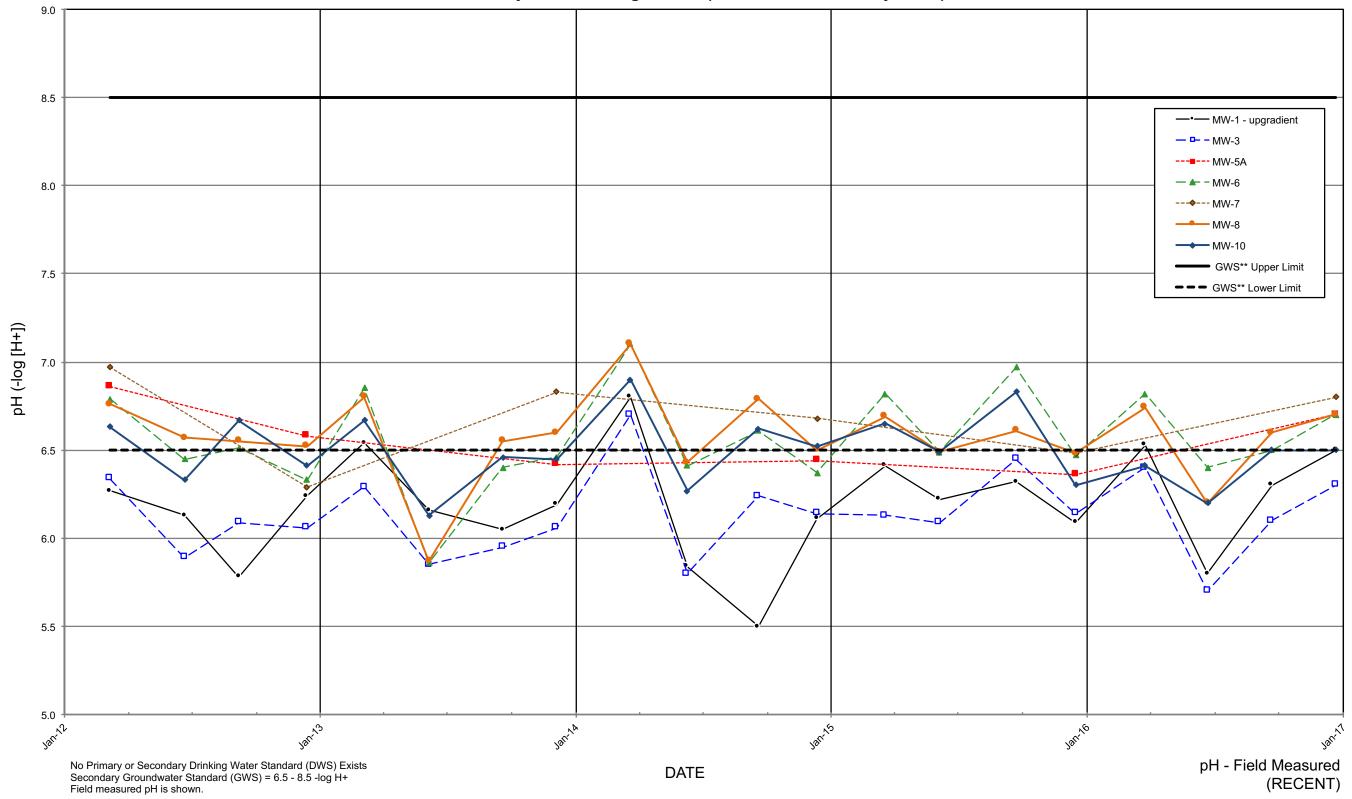


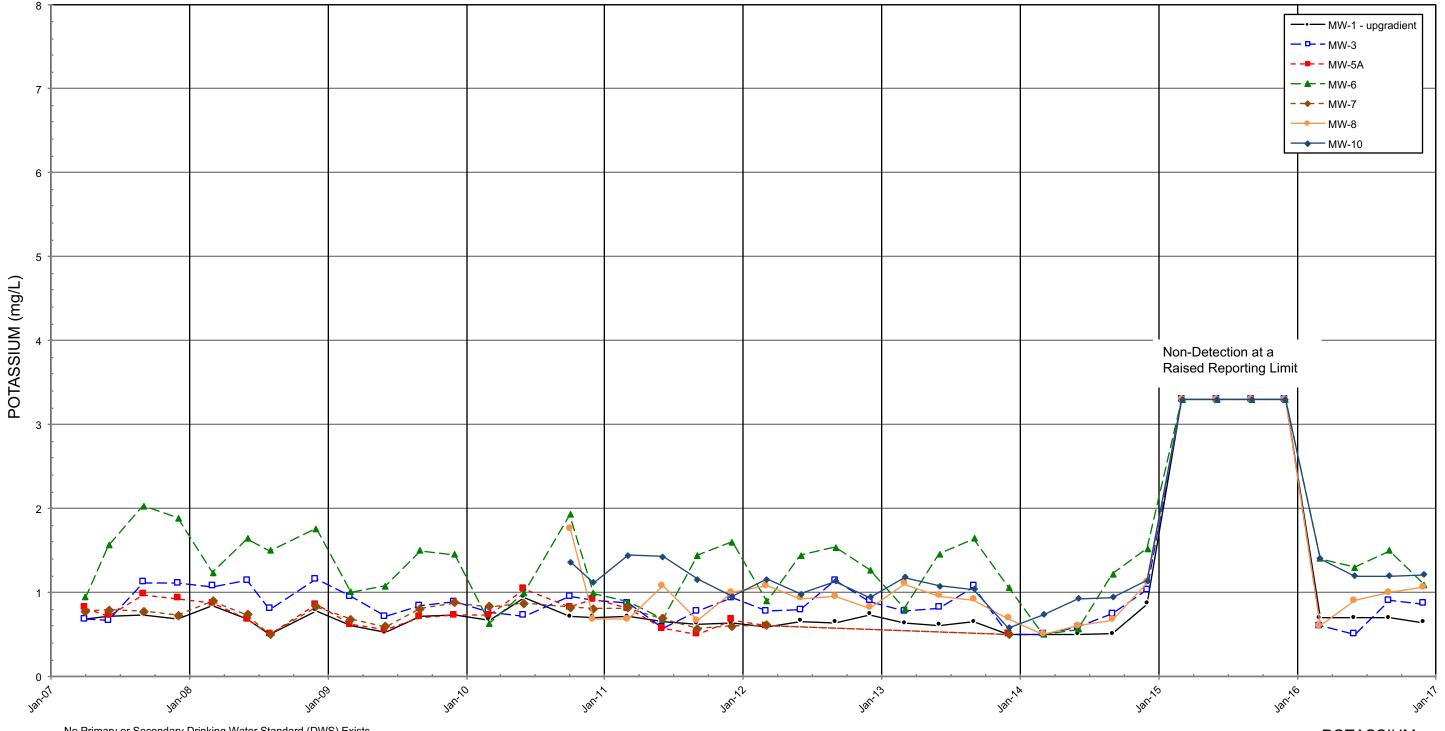

OLALLA LANDFILL




OLALLA LANDFILL Quarterly Monitoring Data (most recent five years)



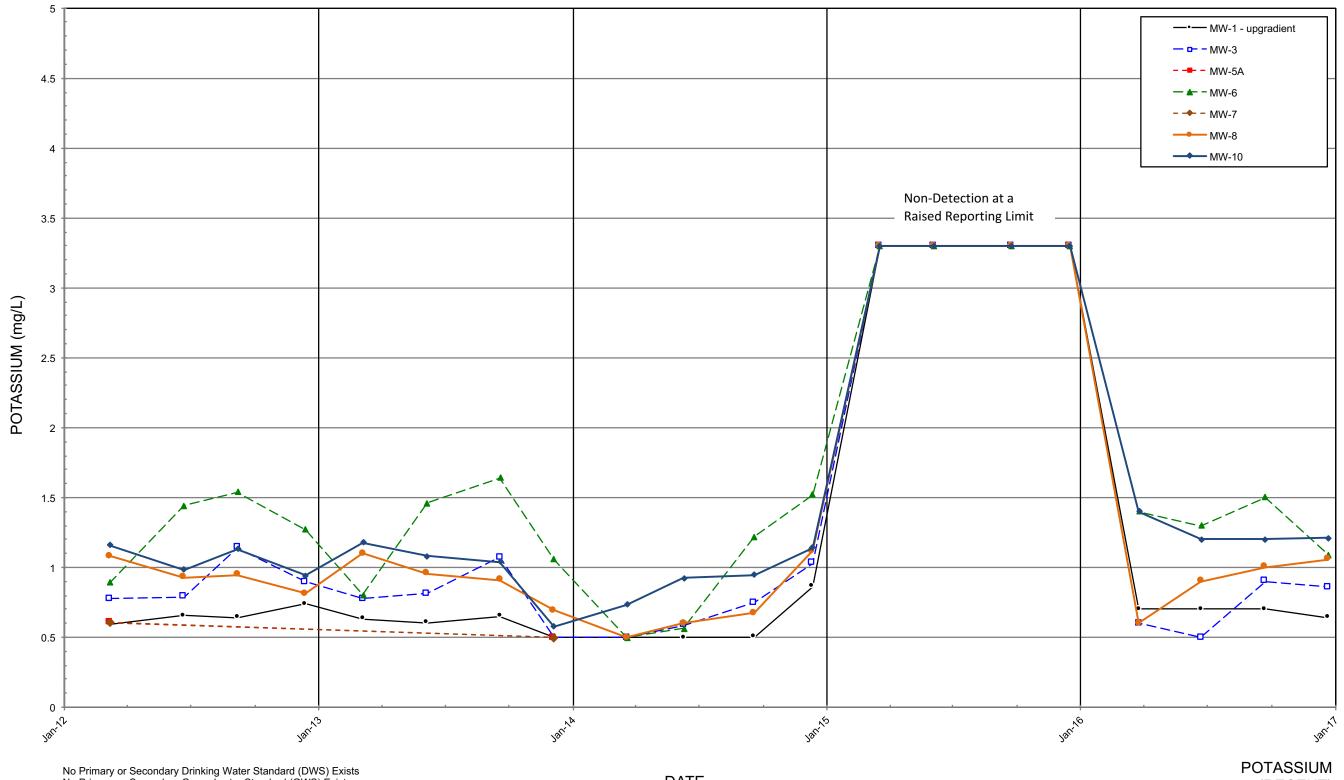

No Primary or Secondary Drinking Water Standard (DWS) Exists No Primary or Secondary Groundwater Standard (GWS) Exists


DATE

#### OXIDATION REDUCTION POTENTIAL (RECENT)

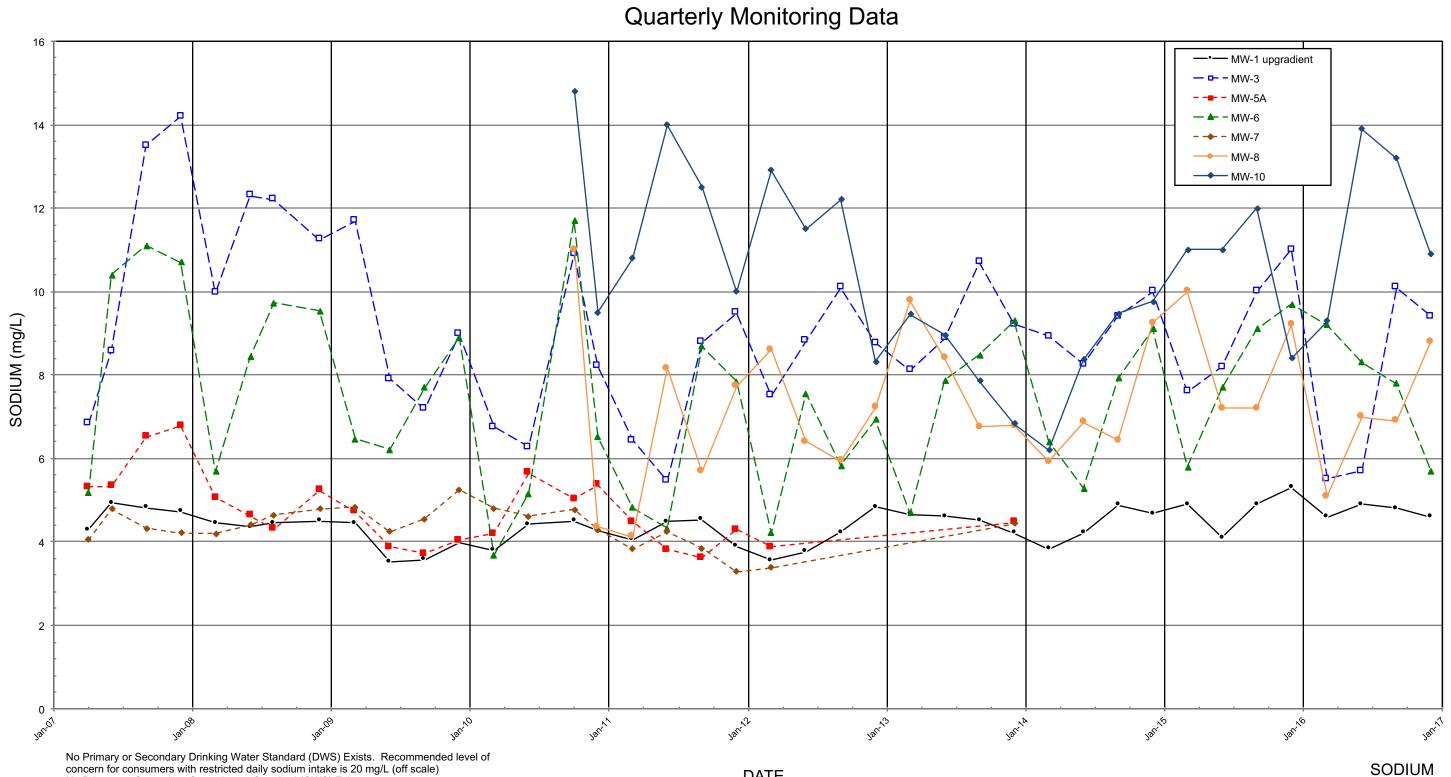


OLALLA LANDFILL Quarterly Monitoring Data (most recent five years)






No Primary or Secondary Drinking Water Standard (DWS) Exists No Primary or Secondary Groundwater Standard (GWS) Exists

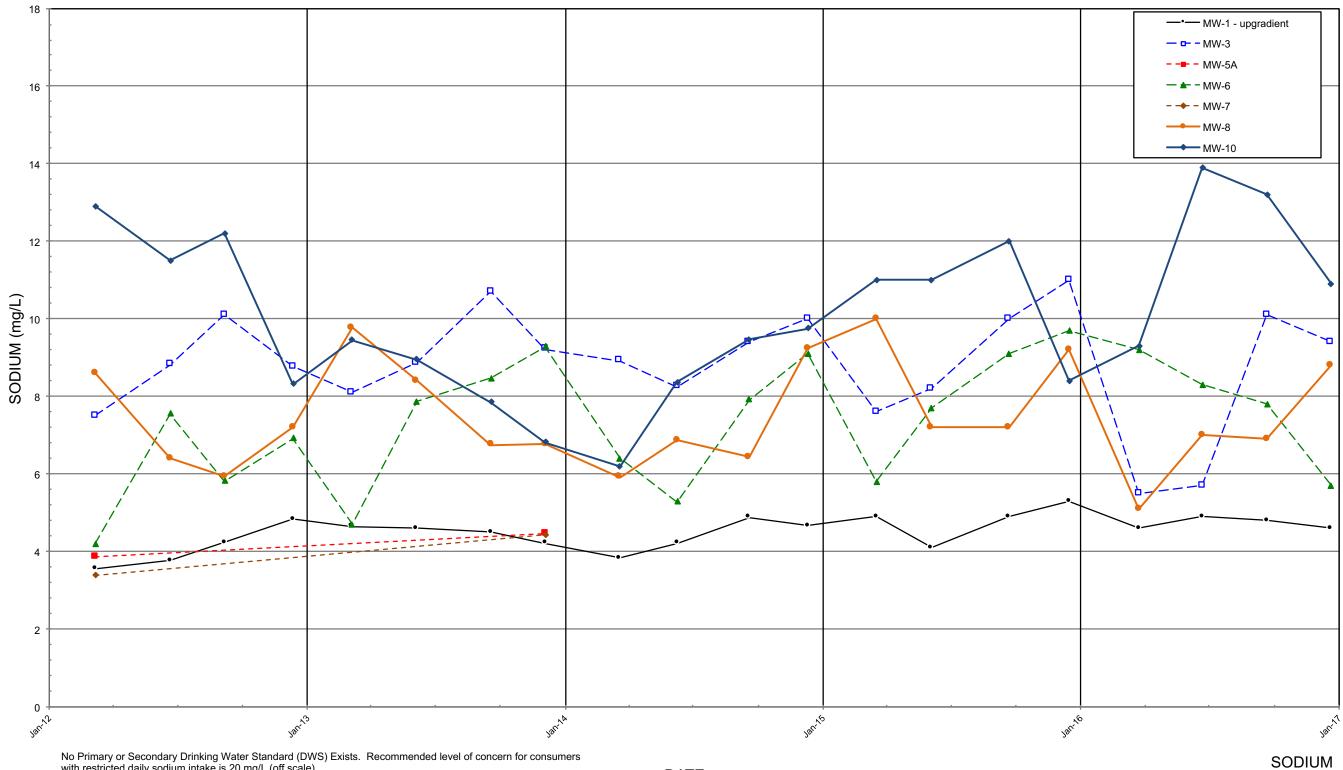

POTASSIUM (Analysis started in 2007)

OLALLA LANDFILL Quarterly Monitoring Data (most recent five years)



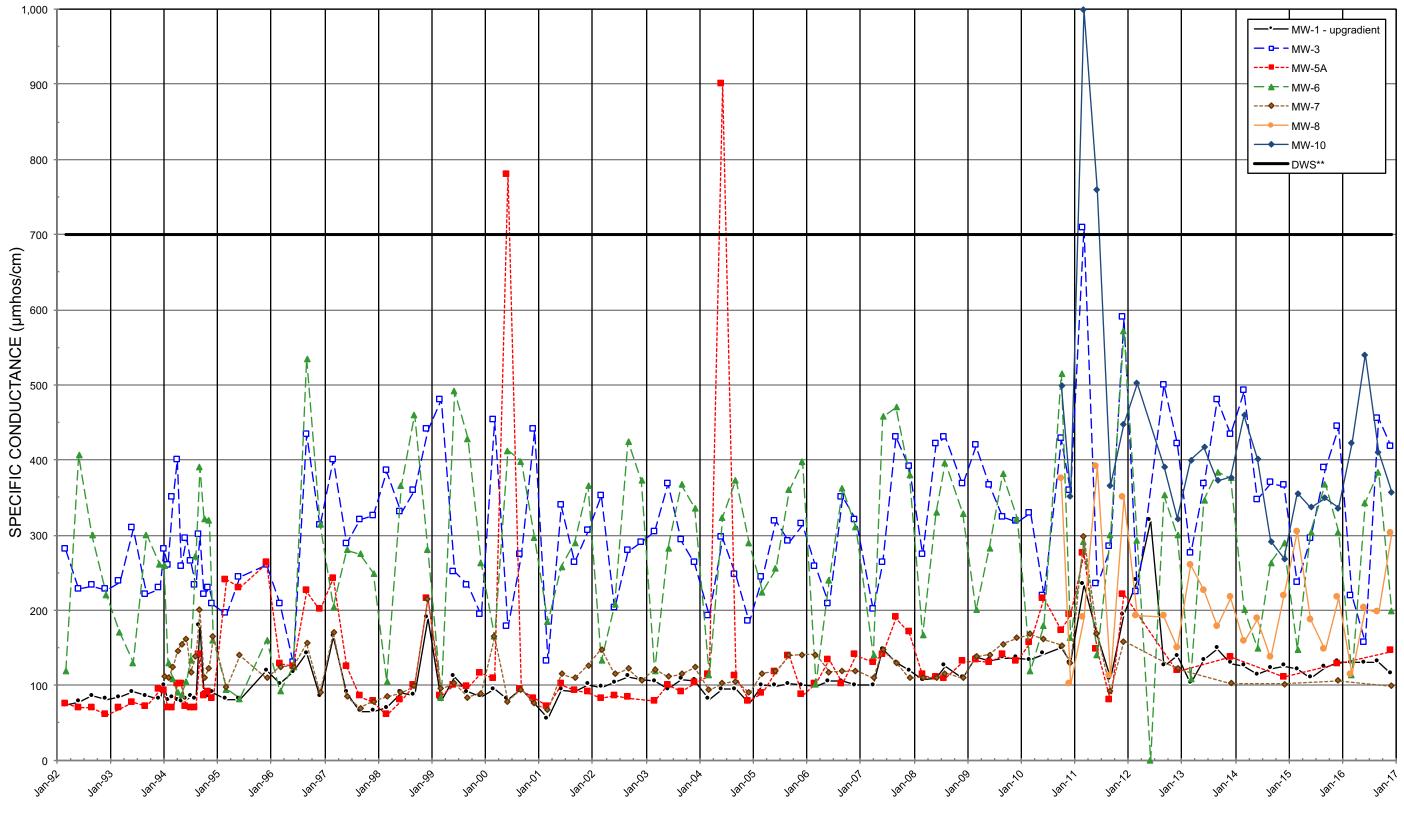
DATE

(RECENT)




OLALLA LANDFILL

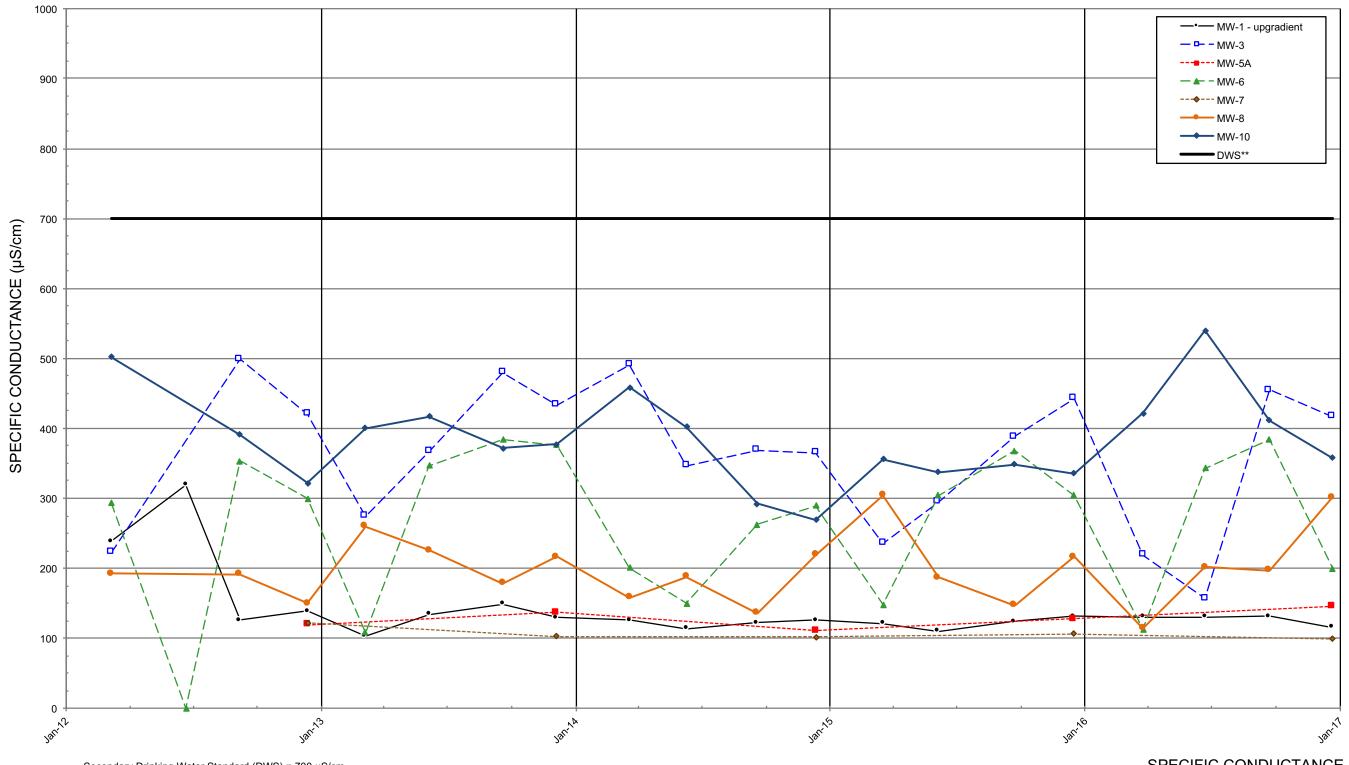
No Primary or Secondary Drinking Water Standard (DWS) Exists. Recommended level of concern for consumers with restricted daily sodium intake is 20 mg/L (off scale) No Primary or Secondary Groundwater Standard (GWS) Exists


(Analysis started in 2007)

OLALLA LANDFILL Quarterly Monitoring Data (most recent five years)

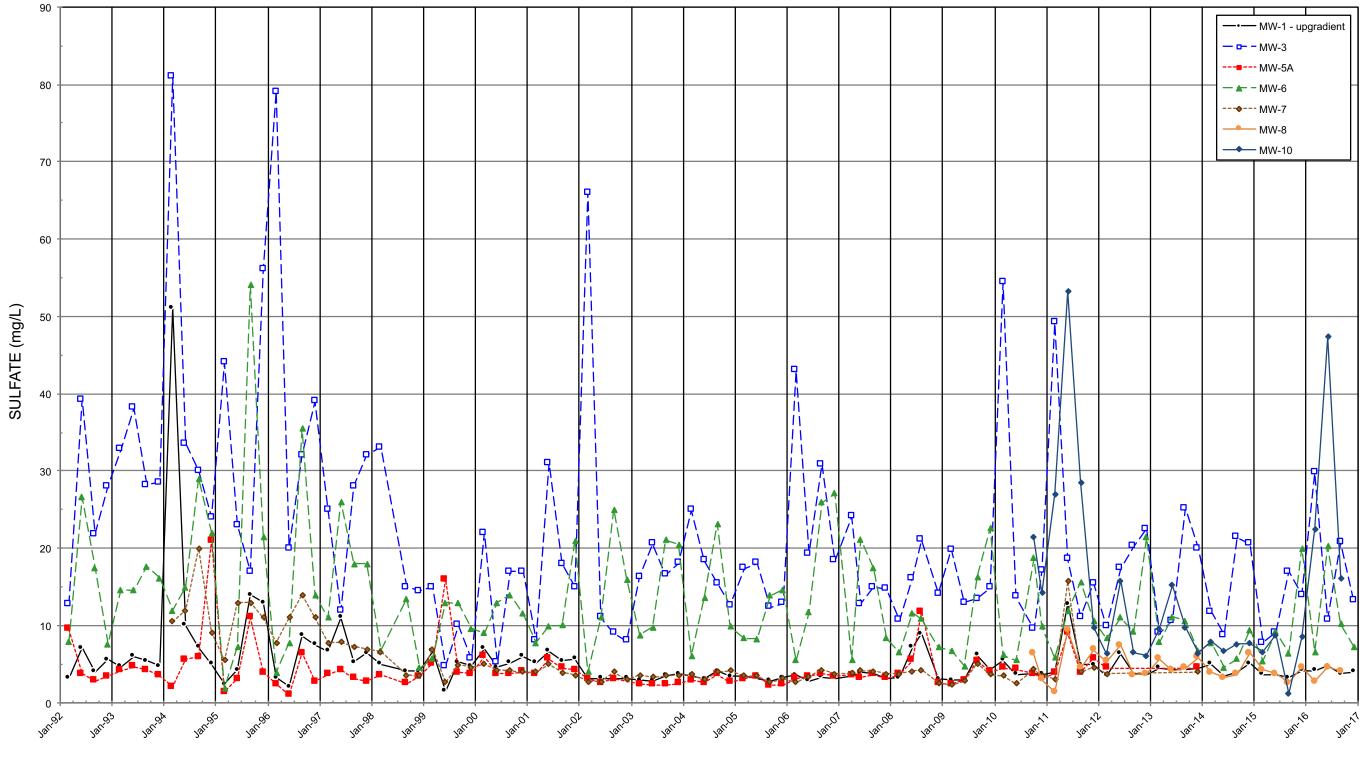


No Primary or Secondary Drinking Water Standard (DWS) Exists. Recommended level of concern for consumers with restricted daily sodium intake is 20 mg/L (off scale) No Primary or Secondary Groundwater Standard (GWS) Exists


(RECENT)



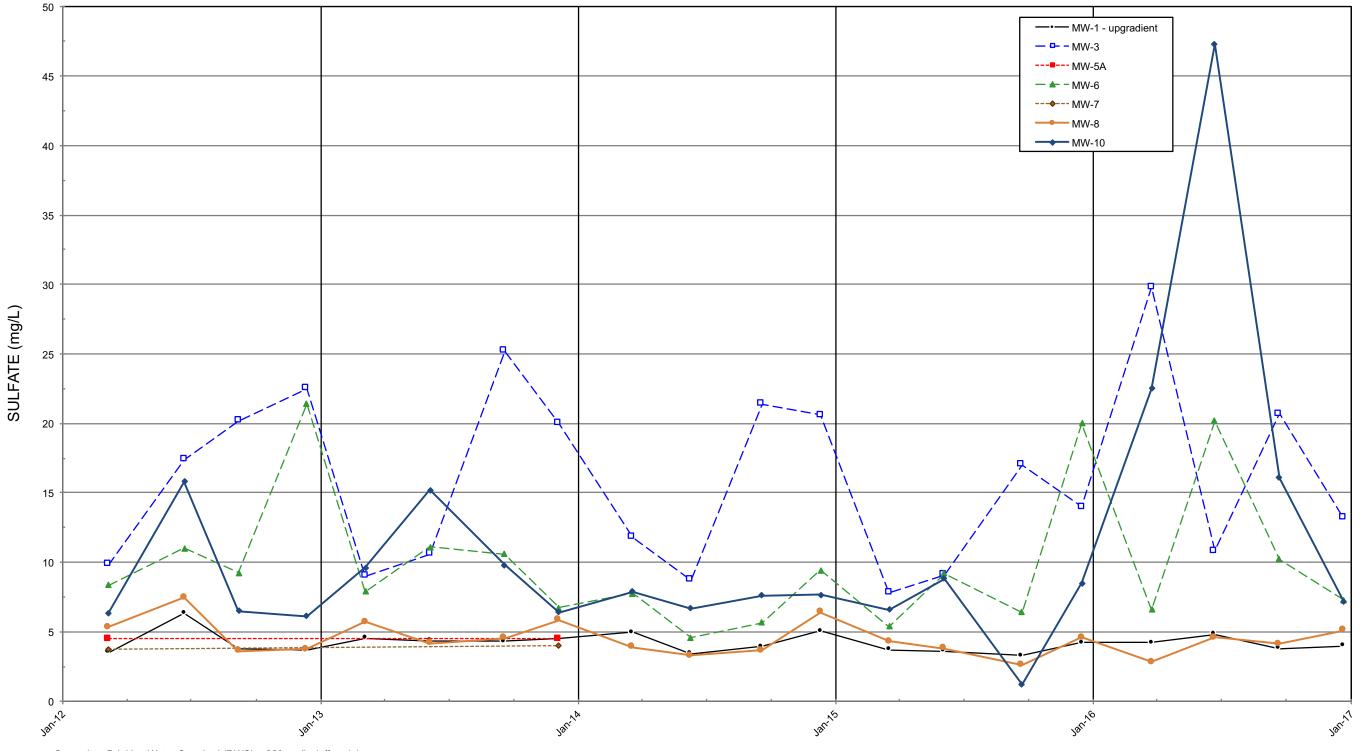
Secondary Drinking Water Standard (DWS) = 700 µmhos/cm No Primary or Secondary Groundwater Standard (GWS) Exists


SPECIFIC CONDUCTANCE

OLALLA LANDFILL Quarterly Monitoring Data (most recent five years)



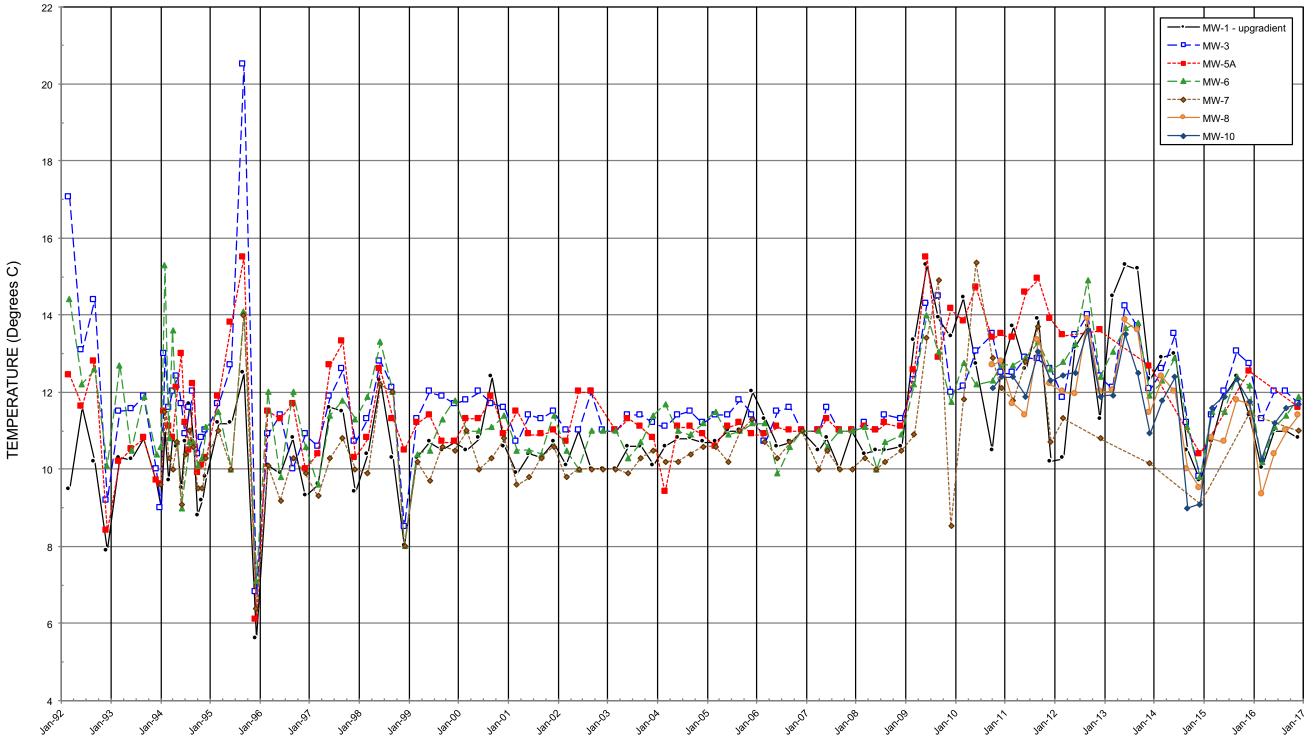
Secondary Drinking Water Standard (DWS) = 700 µS/cm No Primary or Secondary Groundwater Standard (GWS) Exists


SPECIFIC CONDUCTANCE (RECENT)



Secondary Drinking Water Standard (DWS) = 250 mg/L (off scale) Secondary Groundwater Standard (GWS) = 250 mg/L (off scale) DATE

SULFATE


OLALLA LANDFILL Quarterly Monitoring Data (most recent five years)

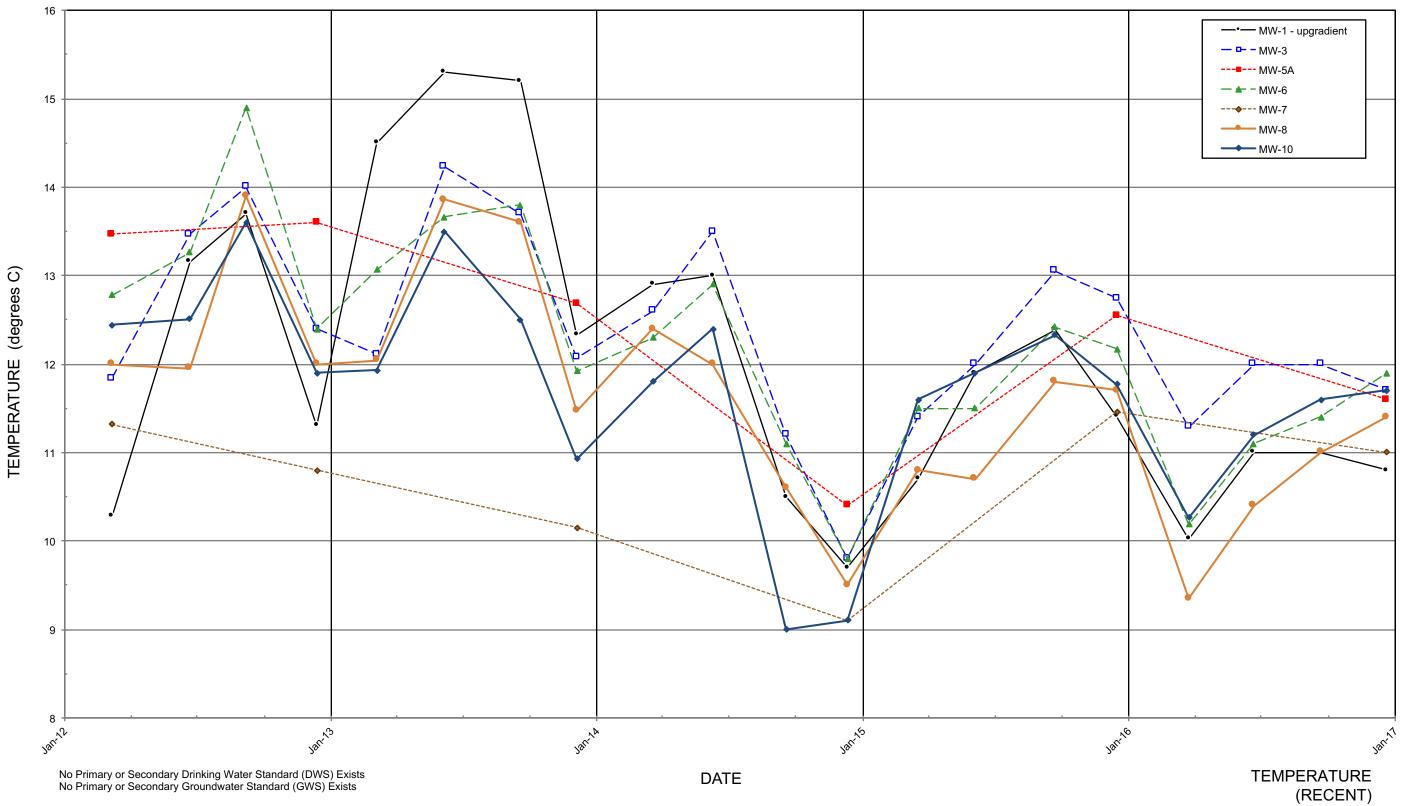


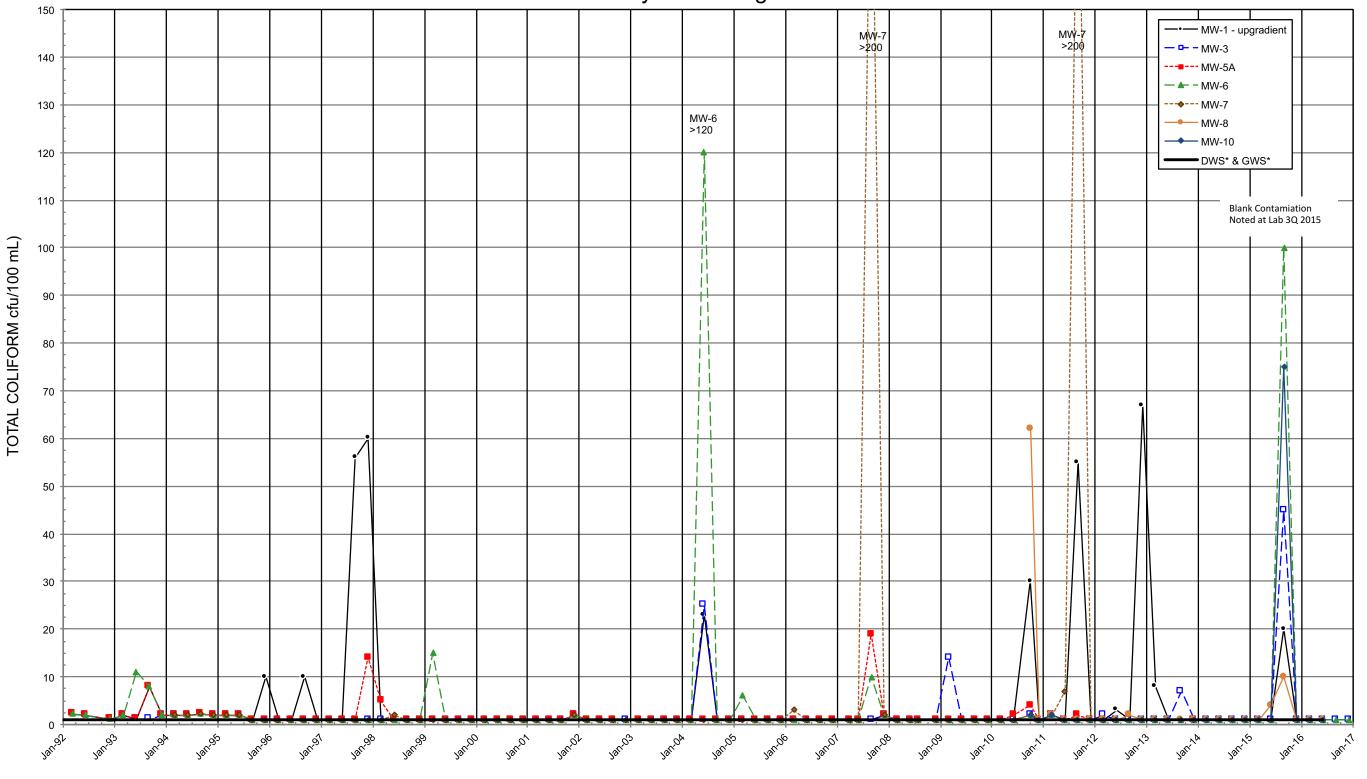
Secondary Drinking Water Standard (DWS) = 250 mg/L (off scale) Secondary Groundwater Standard (GWS) = 250 mg/L (off scale)

DATE

#### SULFATE (RECENT)




No Primary or Secondary Drinking Water Standard (DWS) Exists No Primary or Secondary Groundwater Standard (GWS) Exists

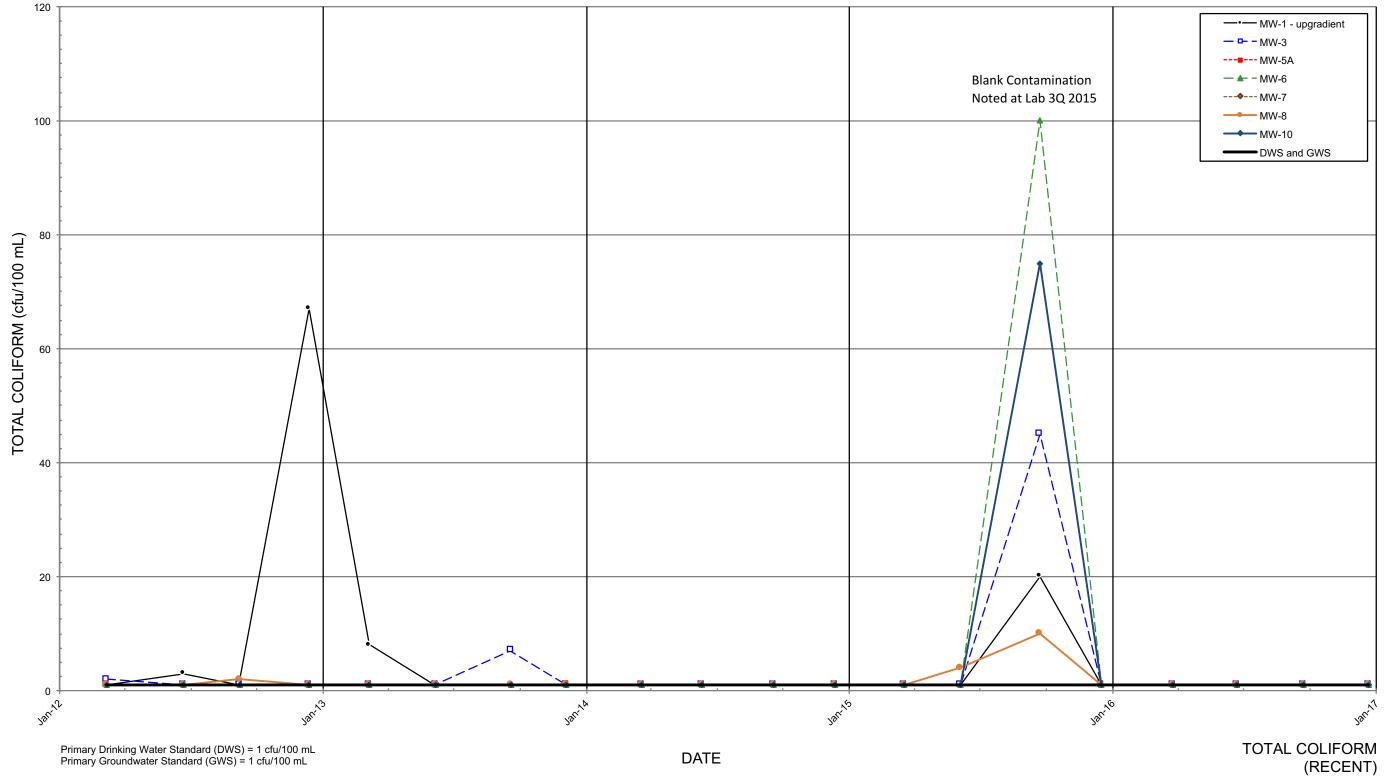

DATE

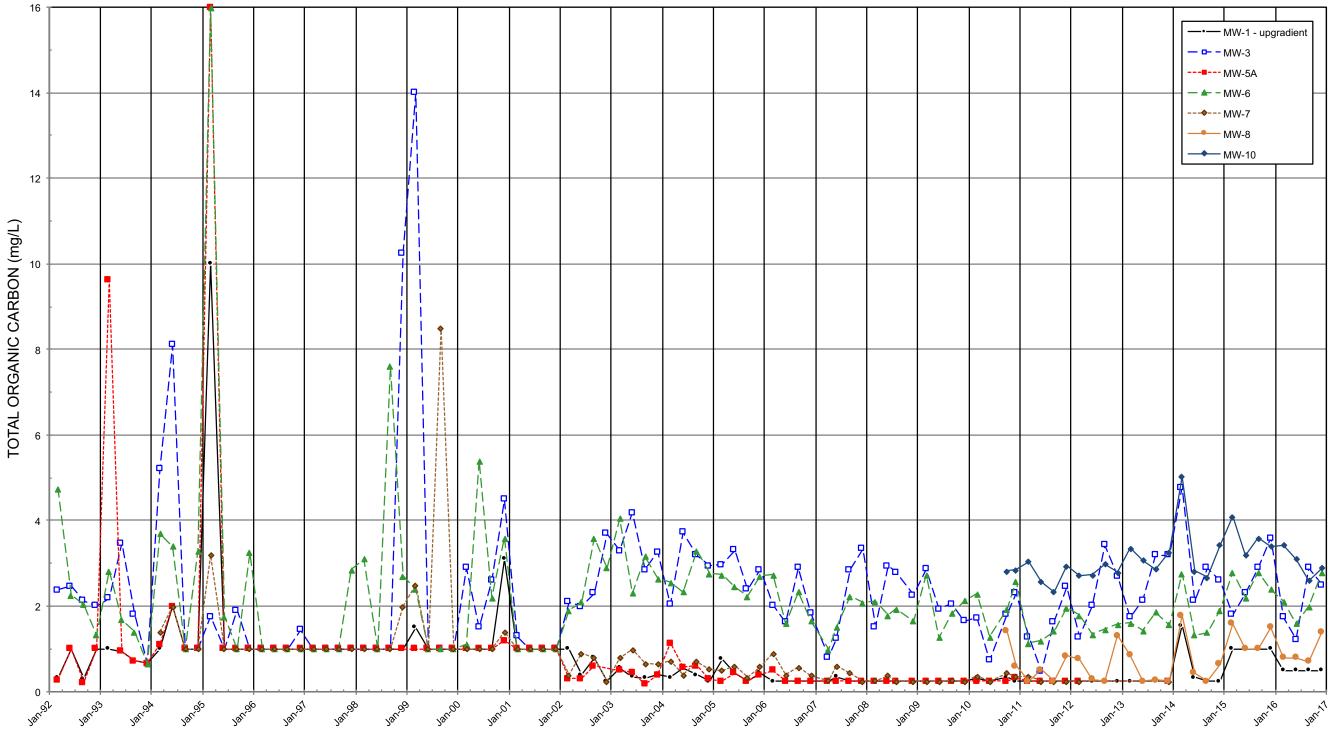
# OLALLA LANDFILL Quarterly Monitoring Data

TEMPERATURE

OLALLA LANDFILL Quarterly Monitoring Data (most recent five years)





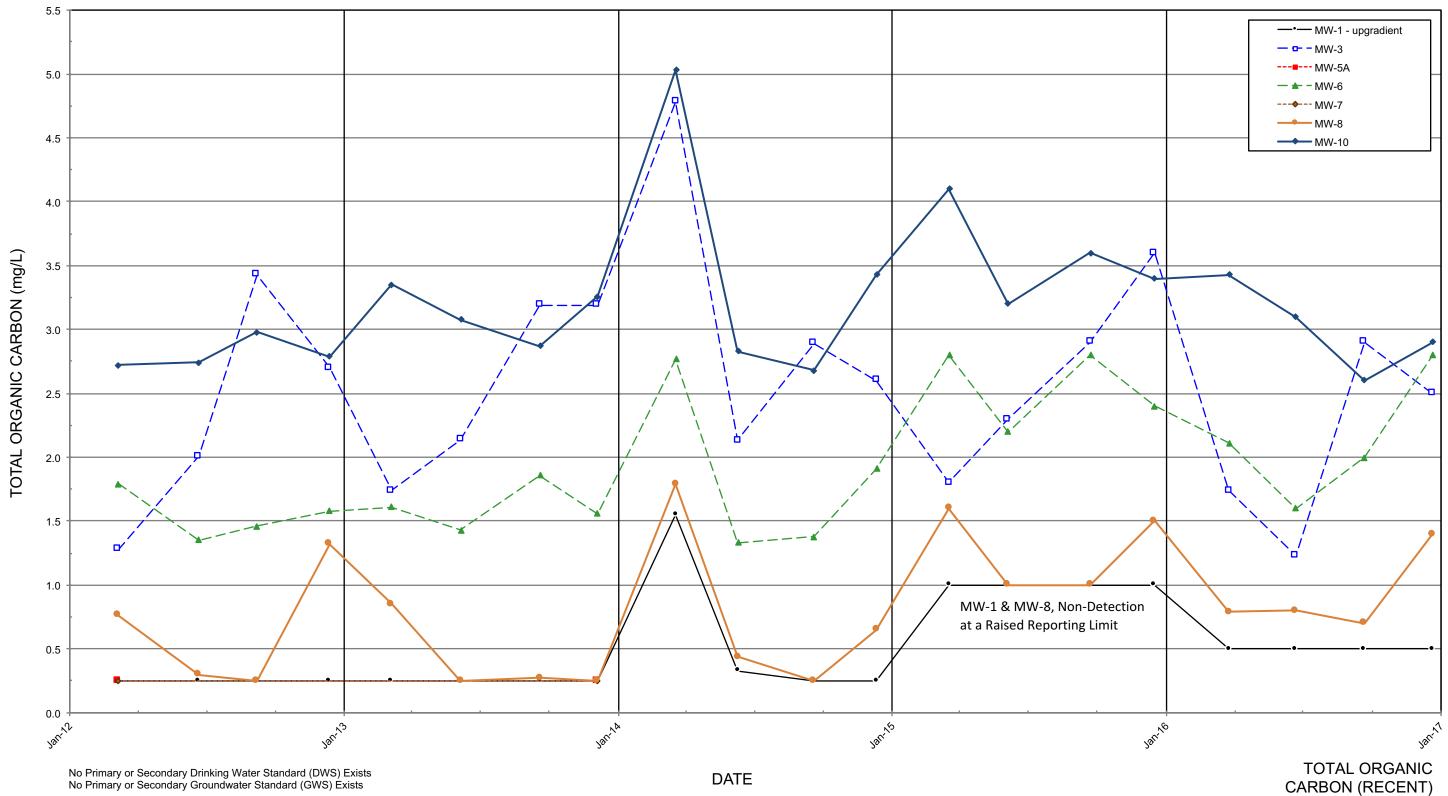


Primary Drinking Water Standard (DWS) = 1 cfu/100 mL Primary Groundwater Standard (GWS) = 1 cfu/100 mL

DATE

TOTAL COLIFORM

# OLALLA LANDFILL Quarterly Monitoring Data (most recent five years)

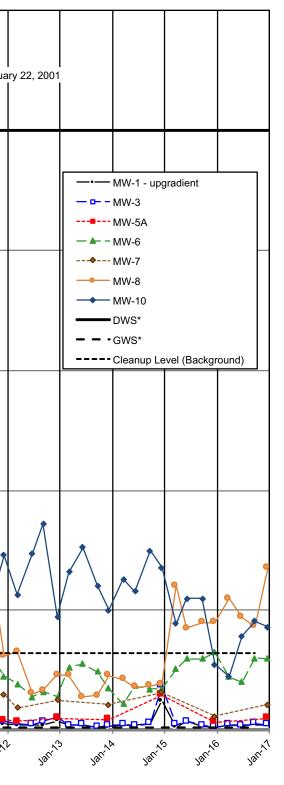





Data split (beginning 12/01) is due to a change in the Method Detection Limit No Primary or Secondary Drinking Water Standard (DWS) Exists No Primary or Secondary Groundwater Standard (GWS) Exists

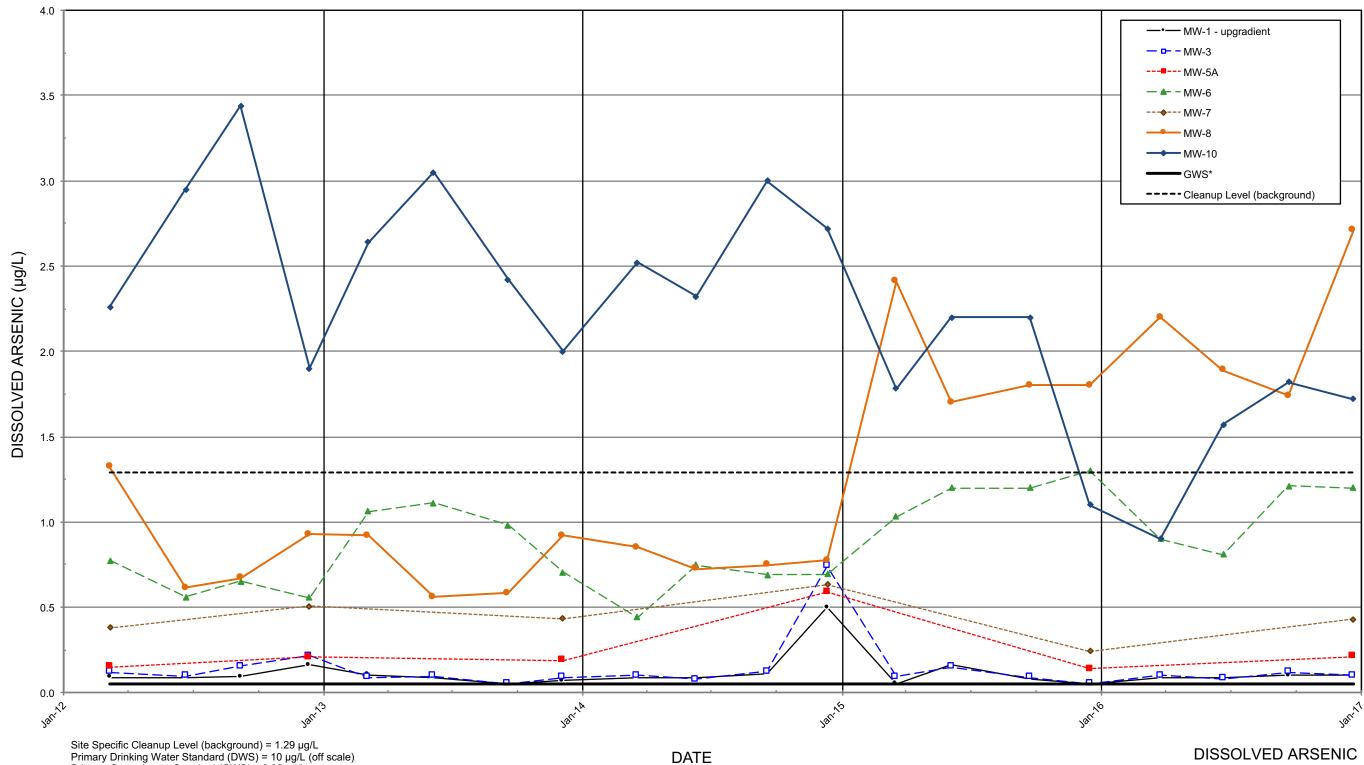
DATE

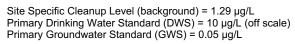



**OLALLA LANDFILL** Quarterly Monitoring Data (most recent five years)



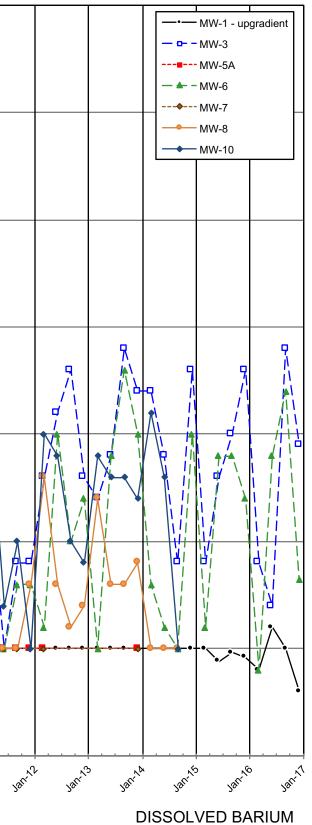
#### 12 The US EPA Changed the Arsenic DWS from 50 µg/L to 10 µg/L on January 22, 2001 10 8 ARSENIC, DISSOLVED ( µg/L) 6 11 11 4 ١. 7 2 V 1 0 Janoz Janot Janto 131-12 Janot Jan.09 Janni Janoa Janos Jari 98 181099 Janoo Janos Janob Janob Janos Jange Jan 93 Jan.96 Janot JanoA


### OLALLA LANDFILL Quarterly Monitoring Data

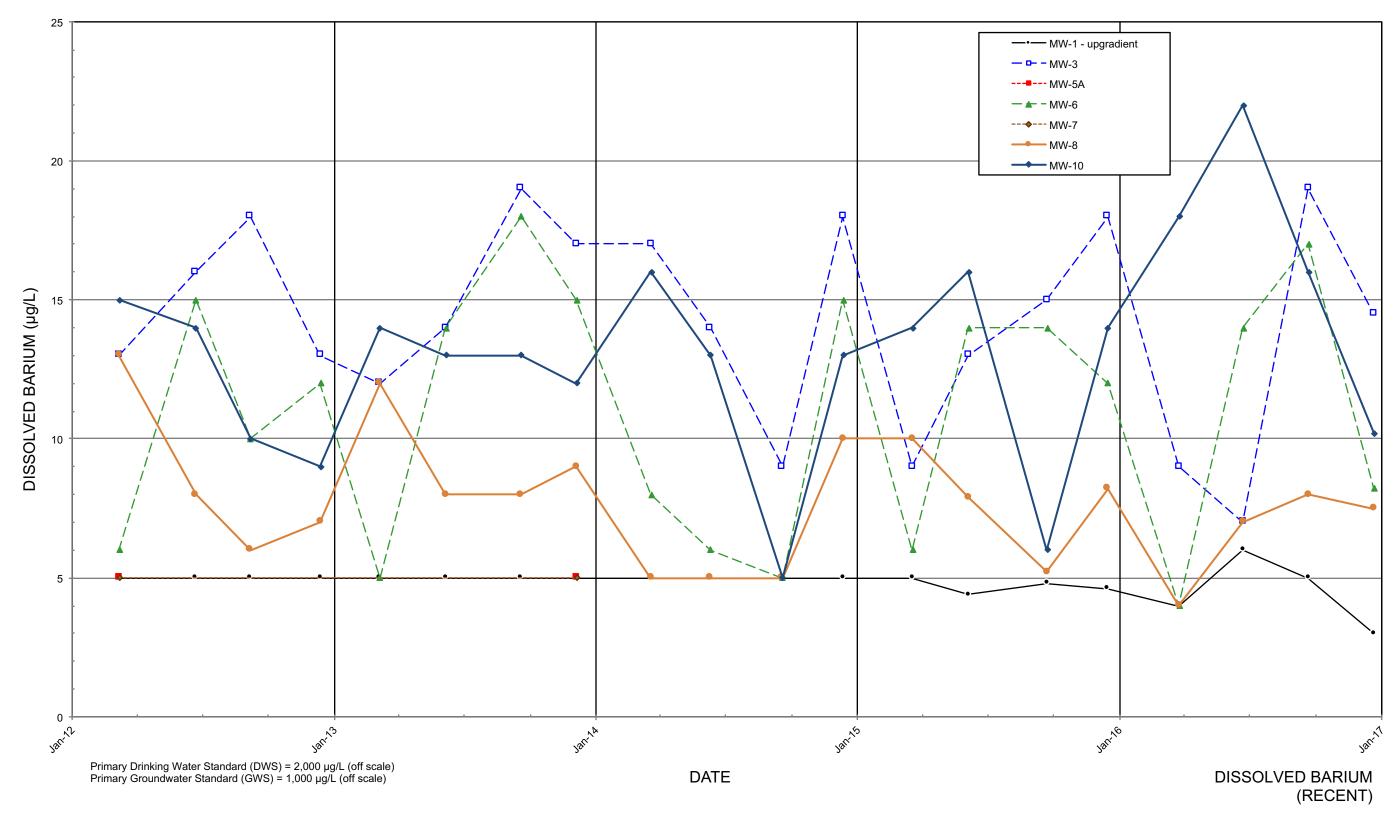

Cleanup Level (Background) = 1.29 ug/L Primary Drinking Water Standard (DWS) = 10 µg/L Primary Groundwater Standard (GWS) = 0.05 µg/L

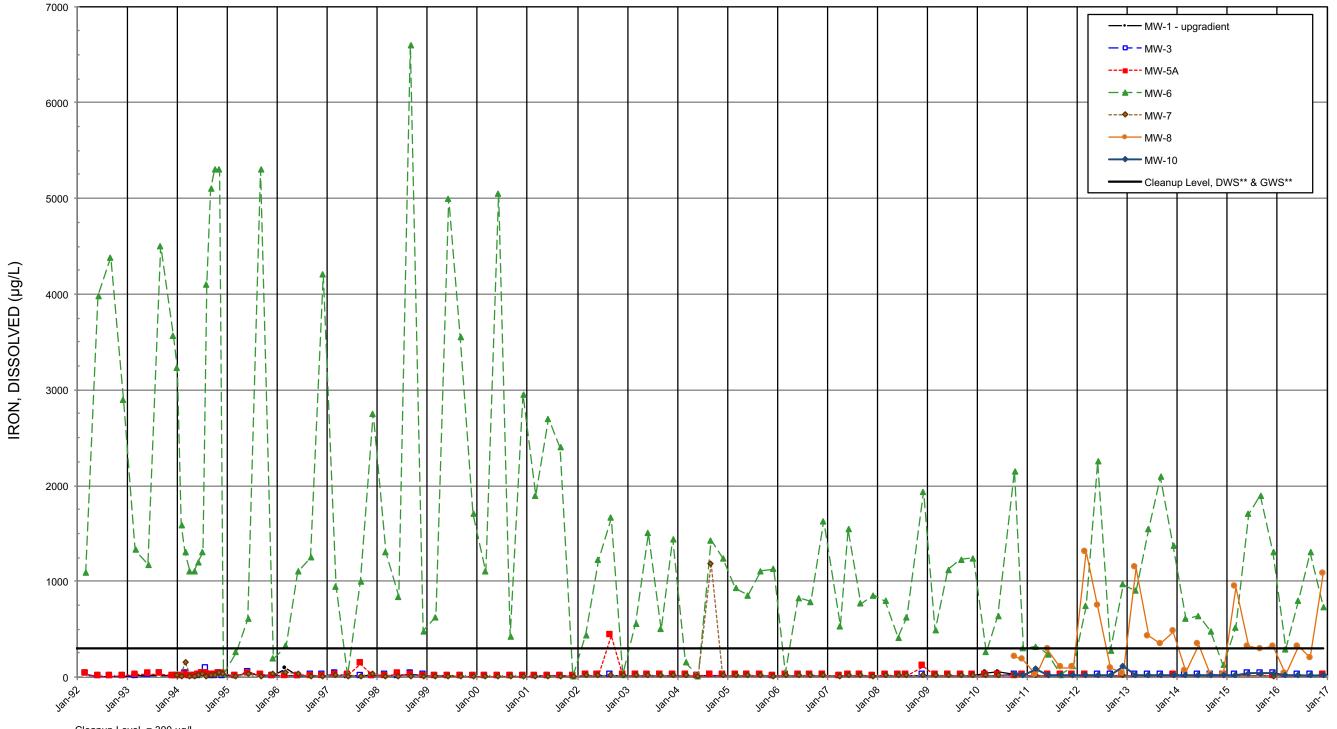


DISSOLVED ARSENIC


OLALLA LANDFILL Quarterly Monitoring Data (most recent five years)





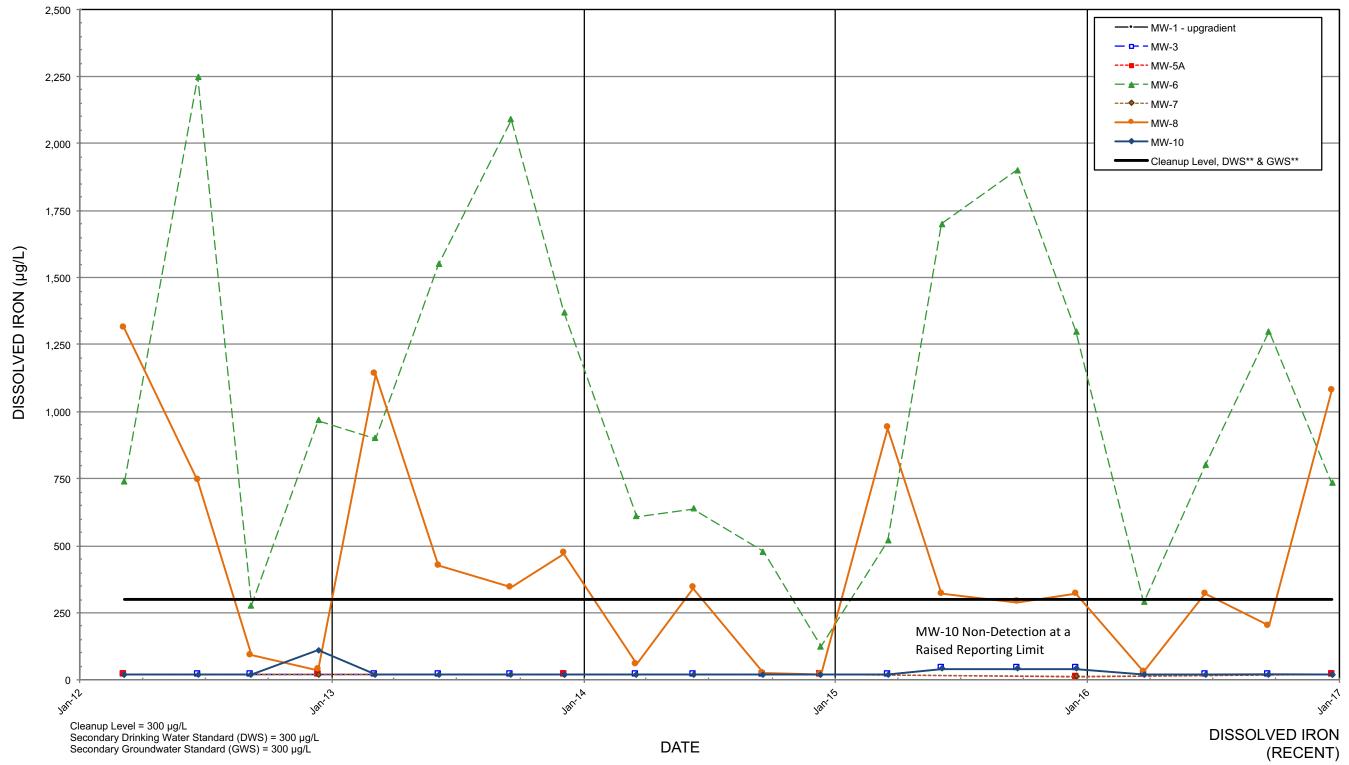


DISSOLVED ARSENIC (RECENT)

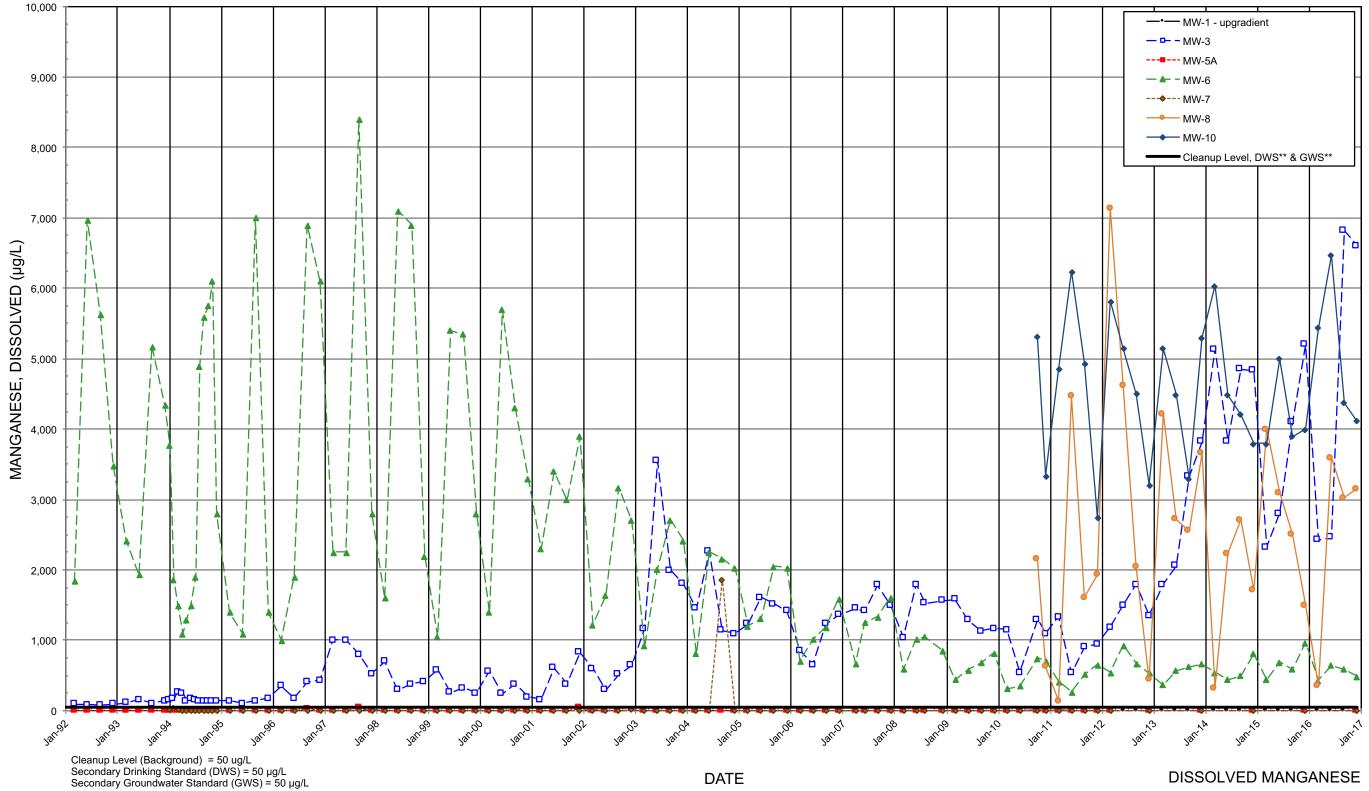
#### 35 30 25 9 BARIUM, DISSOLVED (µg/L) 11 11 ф 9-P q. 1Ď 名内 d 719 믺 1 11 14 ď 4 10 id' 5 0-0-0-9-<u>8-</u>0-0 Jano 18110 Janot 181-08 Janin Jangs Jangs Jango Janost 121-38 Jango Janoo Janon Vario2 Janos 121-04 Janos Janos Jan of Jan-94 Primary Drinking Water Standard (DWS) = 2000 µg/L (off scale) Primary Groundwater Standard (GWS) = 1000 µg/L (off scale) DATE



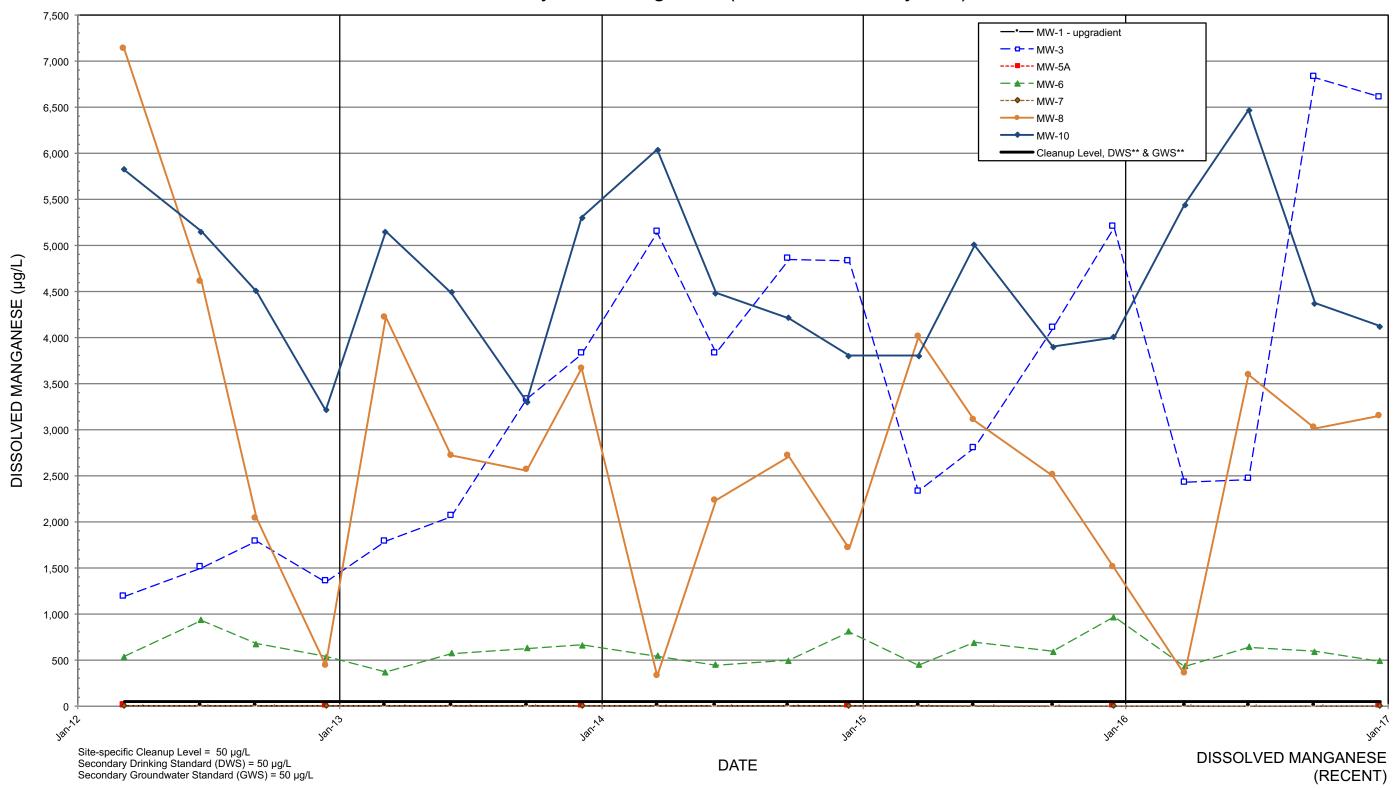
OLALLA LANDFILL Quarterly Monitoring Data (most recent five years)

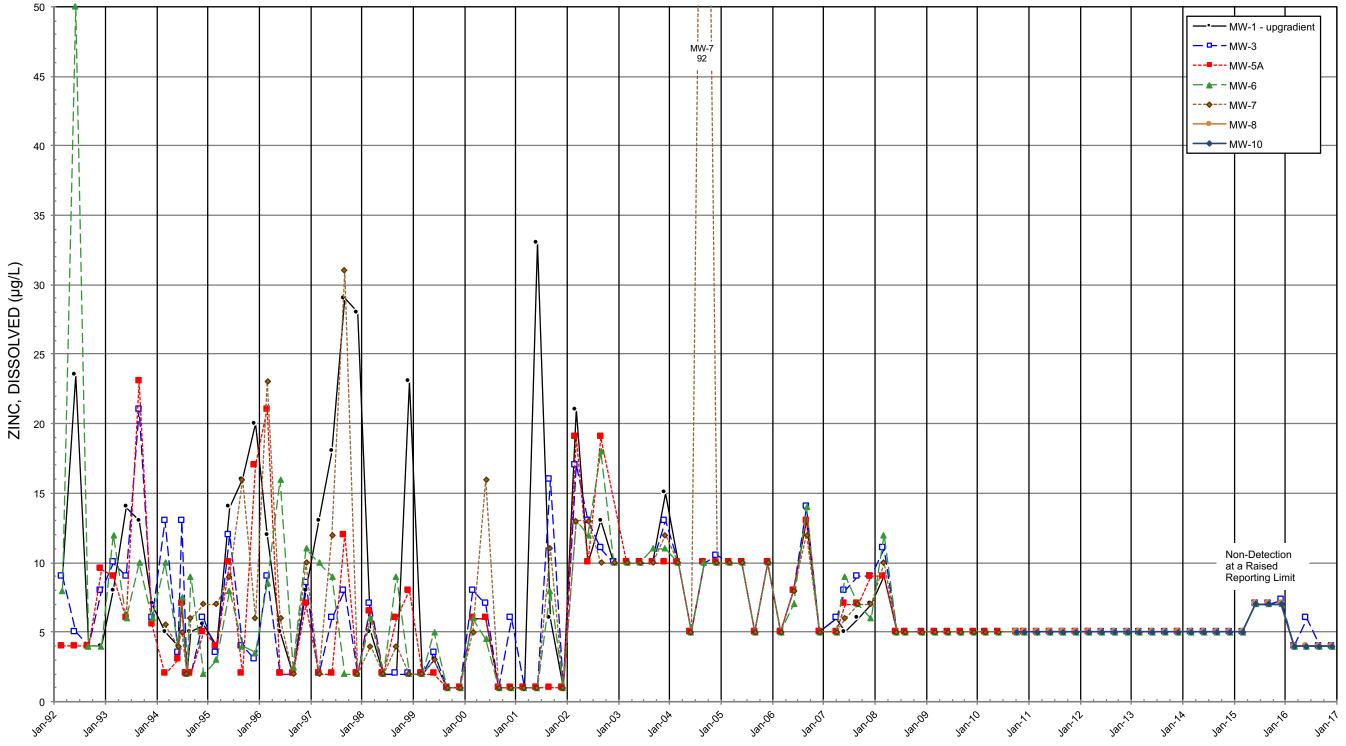






Cleanup Level = 300 µg/L Secondary Drinking Water Standard (DWS) = 300 µg/L Secondary Groundwater Standard (GWS) = 300 µg/L

DATE


DISSOLVED IRON

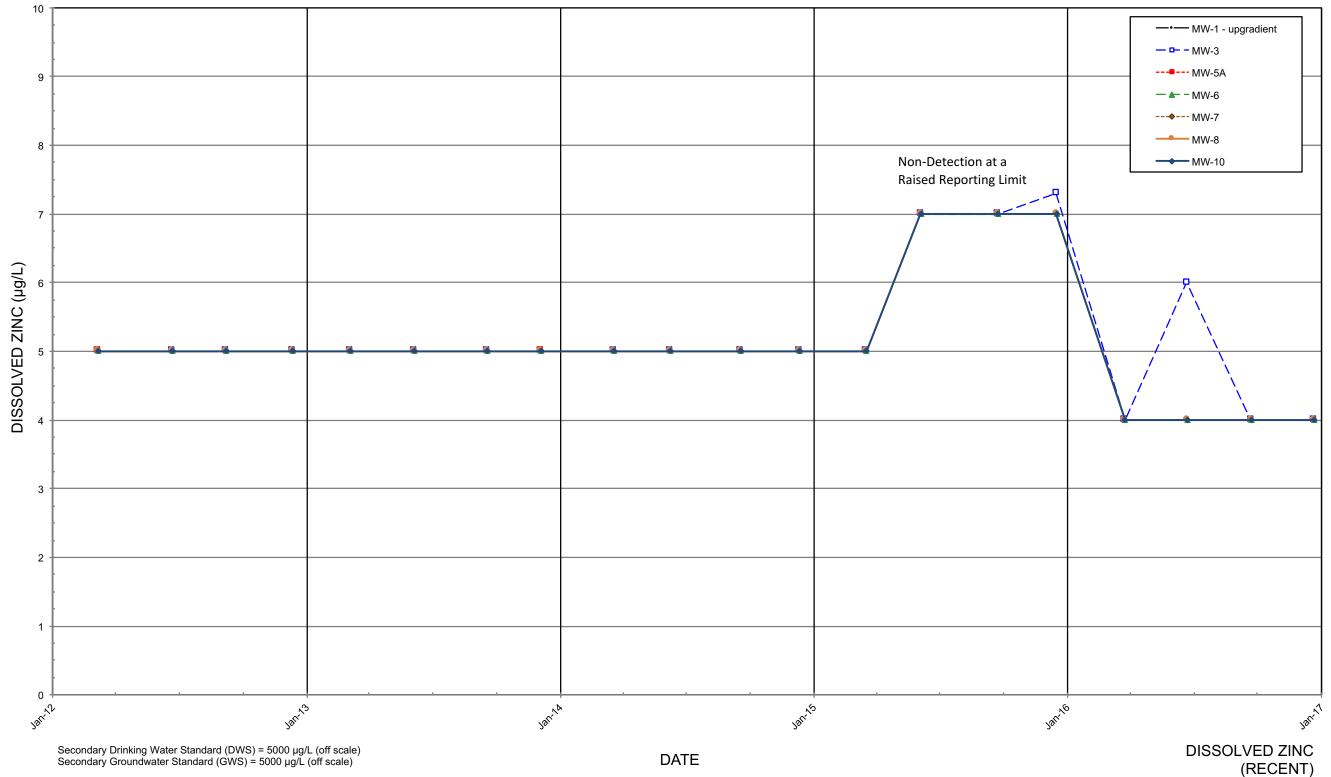

OLALLA LANDFILL Quarterly Monitoring Data (most recent five years)



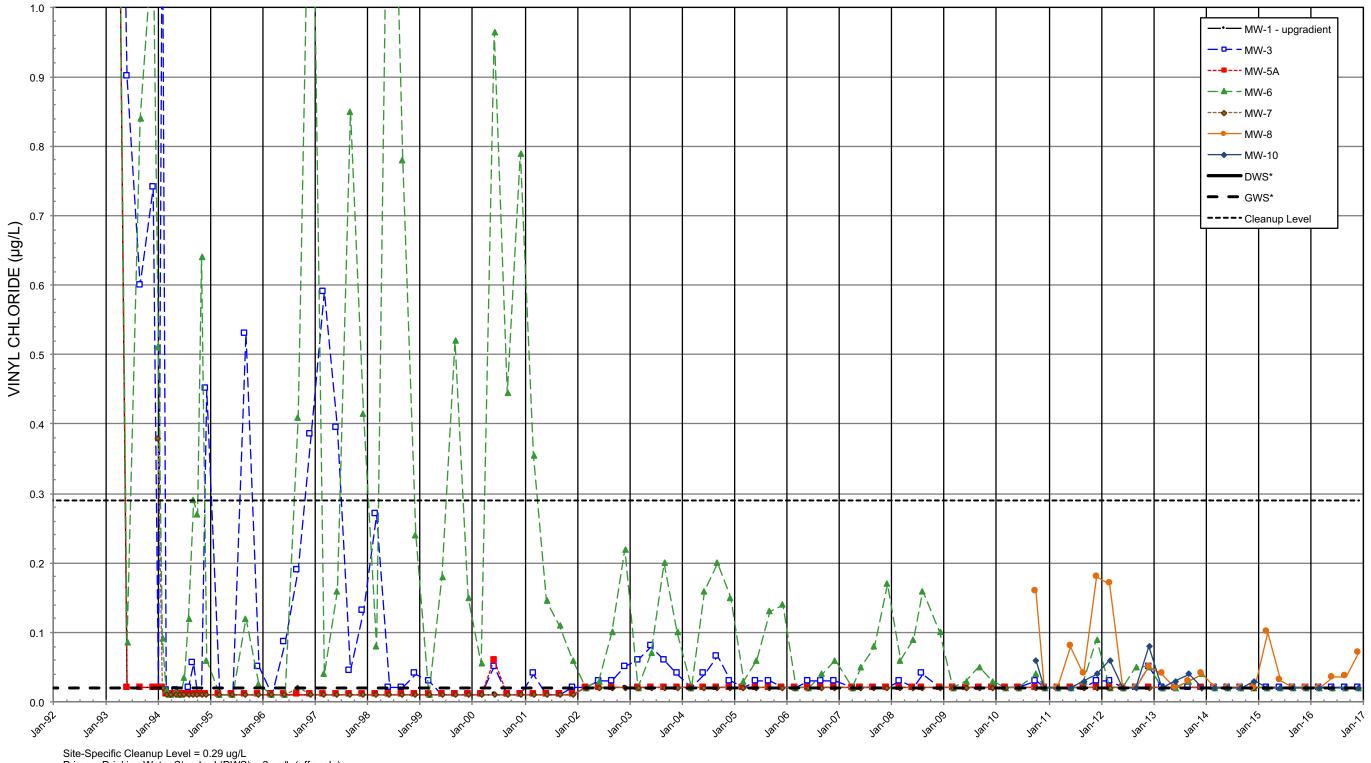


OLALLA LANDFILL Quarterly Monitoring Data (most recent five years)





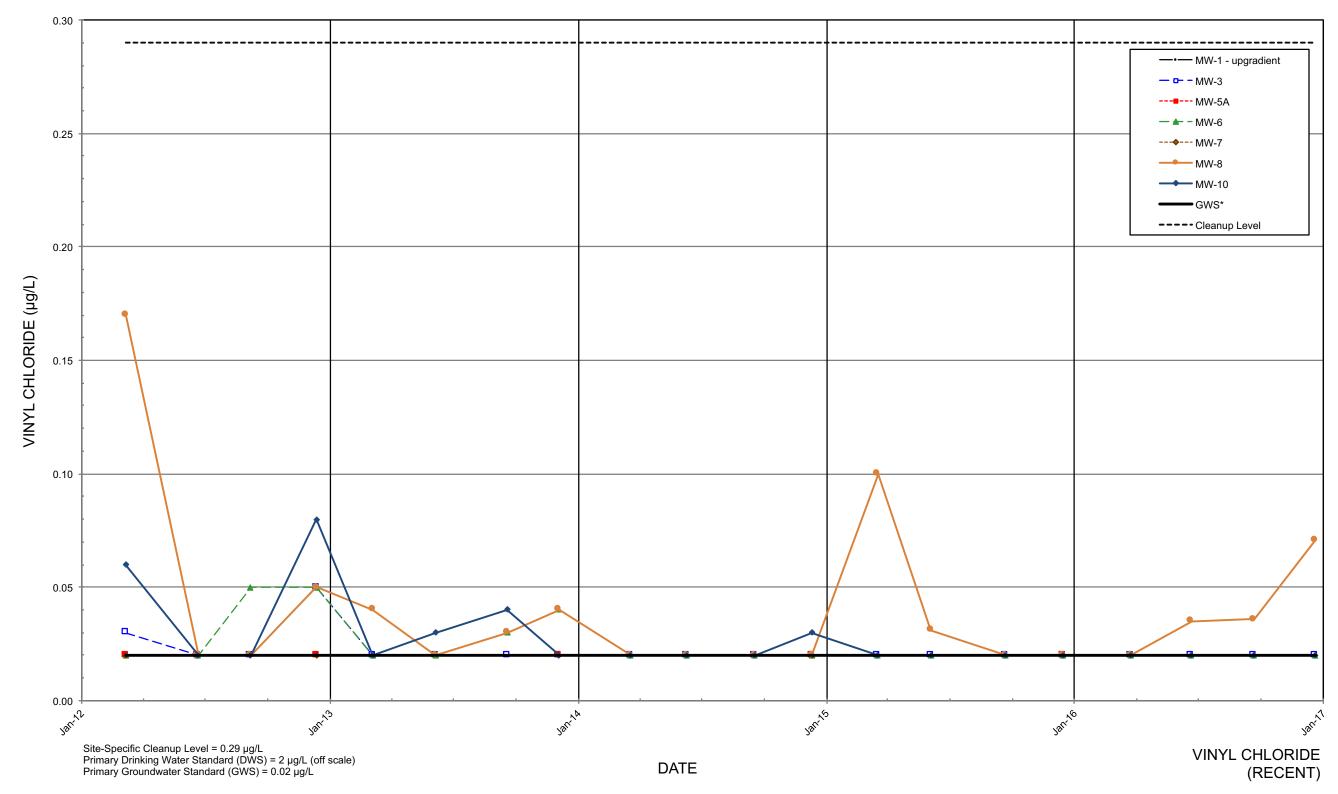

Secondary Drinking Water Standard (DWS) = 5000  $\mu$ g/L (off scale) Secondary Groundwater Standard (GWS) = 5000  $\mu$ g/L (off scale)


DATE



OLALLA LANDFILL Quarterly Monitoring Data (most recent five years)








Site-Specific Cleanup Level = 0.29 ug/L Primary Drinking Water Standard (DWS) = 2 μg/L (off scale) Primary Groundwater Standard (GWS) = 0.02 μg/L



OLALLA LANDFILL Quarterly Monitoring Data (most recent five years)



Appendix D: Inspection, Maintenance, and Engineering Summary for 2016

#### Inspection, Maintenance, and Engineering Summary for 2016

The bulleted items below present a summary of the inspection, maintenance, and engineering tasks that were performed by SWD during 2016 at the Olalla Landfill.

- EPI conducted groundwater and landfill gas monitoring activities in all four quarters of 2016. The results are discussed in this report.
- EPI continued reporting and data analysis in accordance with Section IV of the SWHP and the CAP. The results are discussed in this report.
- SWD supported KPHD in quarterly inspections conducted at the Landfill. After the inspections, KPHD stated that no problems were noted during the inspections.
- SWD conducted regular inspections of the Landfill and its engineered systems including evaluation of the drainage systems and potential erosion areas. During 2016, all systems were operating as designed.
- SWD worked with other divisions in KCPW to maintain the systems at the Landfill including maintenance of the cap, stormwater drainage systems, and the stormwater detention pond. During 2016, routine maintenance was required including mowing of the cap and removal of vegetation.

Appendix E: Activities Planned for 2017

#### Activities Planned for 2017

The bulleted items below present a summary of the planned inspections, maintenance and engineering activities planned for 2017 by SWD at the Olalla Landfill.

- Quarterly monitoring, sampling, and reporting will continue in accordance with Section IV of the SWHP and the CAP. SWD will continue to contract with EPI for monitoring and sampling activities for 2017.
- EPI will continue to conduct the reporting and data analysis in accordance with Section IV of the SWHP and the CAP.
- Regular inspections of the Landfill and its engineered systems will be conducted.
- SWD will continue to support KPHD in their quarterly inspections of the Landfill.
- SWD will continue to work with other divisions in the KCPW to maintain the systems at the Landfill including maintenance of the cap, stormwater drainage systems and the stormwater detention pond.

#### Attachment 1:

#### 2016 Quarterly Monitoring Analytical Data Sheets (Provided on attached CD ROM)