

Post-Dredge Subsurface Sediment Characterization and Sand Cover Monitoring Report

Port of Seattle Seattle, Washington Terminal 115, Berth 1

Prepared for:

Port of Seattle 2711 Alaskan Way Seattle, WA 98121

Prepared by:

Science and Engineering for the Environment, LLC 4401 Latona Ave NE Seattle, WA 98105

June 25, 2010

TABLE OF CONTENTS

1. Introduction1-1
1.1 Project Description
1.2 Post-Dredge Subsurface Sediment Characterization
1.3 Sand Cover Monitoring
2. Bathymetric Survey Results
3. Terminal 115 Post-Dredge Subsurface Sediment Characterization
3.1 Methods
3.1.1 Sediment Collection
3.1.2 Sample Processing
3.2 Results
3.2.1 Station SC-01
3.2.2 Station SC-02
3.2.3 Station SC-03
3.2.4 Station SC-04
3.3Data Quality and Laboratory Performance
4. Sand Cover Monitoring
4.1 Methods
4.1.1 Pre-placement Sand Source and Chemical Analysis
4.1.2 Sample Locations
4.1.3 Sand Cover Sediment Collections
4.1.4 Sand Cover Sample Processing
4.2 Results
4.3 Data Quality and Laboratory Performance
5. References

LIST OF TABLES

Table 3-1	Post-Dredge Subsurface Sediment Characterization Sampling Stations and Cores Collected
Table 3-2	Post-Dredge Sediment Samples and Analyses
Table 3-3	Station SC-01 Detected Compounds Exceeding DMMP Criteria
Table 3-4	Station SC-01 Non-detect Compounds Exceeding DMMP Criteria 3-8
Table 3-5	Station SC-02 Non-detect Compounds Exceeding DMMP Criteria 3-8
Table 3-6	Station SC-02 Non-detect Compounds Exceeding DMMP Criteria 3-9
Table 3-7	Station SC-032 Detected Compounds Exceeding DMMP Criteria 3-10
Table 3-8	Station SC-032 Non-detect Compounds Exceeding DMMP Criteria 3-10
Table 3-9	Station SC-042 and SC-043 Detected Compounds Exceeding DMMP Criteria
Table 4-1	Sand Cover Monitoring Stations and Sampling Data

LIST OF FIGURES

Figure 1-1	Port of Seattle Terminal 115 Vicinity Map (adapted from the Sediment Cover QAPP)	1-4
Figure 2-1	T-115 Pre-dredge Contours and -16.5 Contour Plan Boundary	2-2
Figure 2-2	T-115 Pre-dredge Buckets and -16.5 Contour Plan Boundary	2-3
Figure 2-3	T-115 Post-dredge Contours and -16.5 Contour Plan Boundary	2-4
Figure 2-4	T115 Sand Cap Buckets, Jon Sloan Sand Boundary, and -16.5 Contour Plan Boundary	2-5
Figure 2-5	T115 Mapping and Jon Sloan Sand Boundaries and -16.5 Contour Plan Dredge Line	2-6
Figure 2-6	T115 Post-dredge to Final Sand Surface Including Fill and Cut Tick Marks	2-7
Figure 3-1	Post-dredge Sediment Core (SC) and Post-cover Sediment Grab (SG) Sample Locations	-14

LIST OF APPENDICES

Appendix A	Bathymetric Survey Results
Appendix B	Field Logs
Appendix C	Core Logs
Appendix D	Sediment Core Photographs
Appendix E	Chain of Custody
Appendix F	Subsurface Sediment Samples Comparison to DMMP Criteria
Appendix G	Subsurface Sediment Chemical Data Package
Appendix H	Subsurface Sediment Validation Report
Appendix I	Sand Cover Chemical Data Package
Appendix J	Post-placement Sand Cover Comparison to DMMP and SMS Criteria
Appendix K	Sand Cover Validation Report

1. **INTRODUCTION**

This document reports the methods and results of bathymetric surveys, sediment sampling and sediment analysis conducted in support of the Port of Seattle's Terminal 115 (T-115) Berth 1 maintenance dredging and pier replacement project. Terminal 115 required maintenance dredging to re-establish adequate depth to accommodate barge loading and unloading. The required project dredge depth is -16.5 feet (ft) mean lower low water (MLLW) with 2 ft of allowable overdepth. The overdredge depth allows for the placement of a 1-foot (ft) (minimum thickness) layer of clean sand over the sediments exposed by dredging.

Construction monitoring was required as a condition of the U.S. Army Corps of Engineers (USACE) Permit Number NWS-2008-1496-WRD. Two specific sampling plans governed the conduct of sampling at T-115:

- Post-Dredge Subsurface Sediment Characterization Quality Assurance Program Plan (Anchor-QEA 2009a)
- Sand Cover Monitoring Plan (Anchor-QEA 2009b).

Sediment sampling was conducted by Science and Engineering for the Environment (SEE), LLC of Seattle WA with support provided by Browning Environmental Services of Olympia, WA and Marine Sampling Services of Burley, WA. Laboratory analyses were conducted by Columbia Analytical Systems of Kelso, WA; data validation was conducted by Pyron Environmental of Olympia, WA.

Bathymetric surveys were also required by the *Sand Cover Monitoring Plan* to verify that the target thickness of cap material was placed over the dredged area. Those surveys were conducted by the Port of Seattle Engineering Department. Bathymetric surveys were conducted prior to and at the conclusion of maintenance dredging, and after placement of the sand cover.

1.1 PROJECT DESCRIPTION

T-115 is located at 6700 West Marginal Way Southwest in the City of Seattle on the west bank of the Duwamish River (Figure 1-1). The site is situated in the joint Model Toxics Control Act (MTCA)/Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Lower Duwamish Waterway Group (LDWG) Superfund Site (Port of Seattle 2009).

Major construction activities at the T-115 facility included:

- Removal of the existing wooded pier
- Installation of a sheet pile wall
- Dredging to -16.5 ft MLLW to accommodate barge berthing
- Installation of 48-inch piles
- Installation of a minimum 1-ft thick sand cover over the sediment surface exposed by dredging.

The in-water construction activities occurred from December 2, 2009 through February 23, 2010. Dredging occurred between January 20 and February 12, with sand cover placement beginning on February 20 and concluding on February 23, 2010. The brief hiatus between conclusion of dredging and placement of sand cover occurred to allow confirmation of final dredge depths with bathymetric surveys, and to allow for the collection of post-dredge sediment sampling. Construction activities at the site, and associated water quality monitoring and hydroacoustic monitoring may be found in previously submitted T-115 reports (SEE 2010, GRS and SEE 2010).

1.2 POST-DREDGE SUBSURFACE SEDIMENT CHARACTERIZATION

As part of USACE's coordination with U.S. Environmental Protection Agency (EPA) and Washington State Department of Ecology (Ecology) the Port agreed to collect cores after completion of dredging activities. The specific objective of the post-dredge subsurface sampling included:

- Collection of subsurface sediment cores at four locations within the post-dredge footprint of the T-115 dredging prism after the conclusion of maintenance dredging to characterize sediments that were exposed by dredging as well as the vertical distribution of chemicals in the sediment column down to 4 ft below mudline
- Analysis of four 1-ft intervals from each core in accordance with the Dredged Material Management Program (DMMP) guidelines for polycyclic aromatic hydrocarbon (PAH) compounds, polychlorinated biphenyls (PCBs), semivolatile organic chemicals (SVOCs), and dioxin and furan congeners
- Comparison of the chemical results against the DMMP interpretive criteria.

The methods and results for the post-dredge characterization are presented in Section 2.

1.3 SAND COVER MONITORING

The Corps permit also required that the Port place a 1-ft sand cover over the entire dredged area, and undertake a three-year monitoring program of the cover at T-115. The objectives of the baseline (post-placement) monitoring event reported herein include:

- Pre- and post sand cover placement bathymetric surveys to verify that the minimum 1-ft thickness is achieved.
- Chemical analyses of the sand pre-placement and sand cover samples collected after placement to establish baseline surface chemical concentrations and to confirm that minimal mixing of the sand cover with the underlying subsurface sediment occurred during sand cover placement. Chemical analyses and interpretation of the results follow both the DMMP and Washington State Sediment Management Standards (SMS) (WAC 173-204).

Longer-term monitoring will include 1) bathymetric surveys conducted at 6 months, 1 year, and 3 years following cover placement; 2) sediment samples taken again at years 1 and 3; and 3) a study of recontamination potential from storm drain discharges near the T-115 sand cover.

A separate *Recontamination Study Work Plan* (TEC and SEE, 2010) was submitted to the Port, EPA and Ecology in March 2010. The work plan describes procedures for collecting and processing of storm drain sediment samples from the storm drain systems at T-115 that drain into Berth 1. This project will collect and analyze sediment trap and sediment grab samples from the storm drain systems that discharge directly adjacent to Berth 1 at T-115. The resultant data will subsequently be used to evaluate the potential for recontamination of the clean sand cover placed on the maintenance dredged area in Berth 1 in the year following cover placement to observe changes to chemical concentrations over time.

2. **BATHYMETRIC SURVEY RESULTS**

Bathymetric surveys were conducted by the Port of Seattle Engineering Department throughout the T-115 Berth 1 construction activities. The purpose of the surveys was to confirm post-dredging and post-sand cover placement depths. The surveys were conducted using a Ross Model 960 Hydrographic Survey System and Trimble DSM GPS receiver integrated with HYPACK 2009 survey and data acquisition software. Water depth measurements taken with the Ross 960 Hydrographic System were supplemented with lead line measurements. The survey results are presented in the North American Datum, 1983 and elevations are referenced to MLLW.

HYPACK 2009 was used to process the single-beam data from the Ross 960. Tide elevations, times, and corrections were applied prior to editing data. Processed survey data was then reduced and defined to produce data in a 20-ft trackline interval. The data was then brought into Liscad v.8, Survey and Engineering Software, in which a preliminary Digital Terrain Model (DTM) was created and checked for uniformity and quality. In addition, the DTM was compared to previous surveys for accuracy and consistency.

The pre-dredge survey was conducted on 1 December 2009, post-dredge surveys were conducted from 25 January 2010 through 19 February 2010, and the post-sand cap survey was conducted from 23-25 February 2010. Multiple survey events were conducted during the port-dredging phase to ensure that project depths were met and due to debris encountered in the northern portion of the survey area.

Figure 2-1 shows the pre-construction contours. The overall goal of the dredging program was to have -16.5 ft. MLLW depth after placement of the 1-ft sand cover. Bucket prints are shown in Figure 2-2, showing where the mechanical dredge bucket cuts were taken. The final post-dredge depth is shown in Figure 2-3; generally the post-dredge depths within the -18 ft. or deeper. Given that the dredge bucket footprint extended outside of the original project line (Figure 2-3), a new sand-cover placement boundary was developed by the Port of Seattle Environmental Manager, Jon Sloan. Figure 2-4 shows the locations that sand placement buckets were placed over the entire project area. The final post-placement site bathymetry is shown in Figure 2-5, and Figure 2-6 presents the post-placement cover thickness. For most of the site, the cover thickness exceeded 1 ft. A few areas proximal to the sheet pile wall on the shore-side were less than 1 ft; this was likely due to difficult access for the placement equipment.

Complete bathymetric survey results from the Port of Seattle are provided in Appendix A.

CALL 48 HOURS	DESIGNER:	
1-800-424-5555	DRAWN BY:	
	SCALE:	
	DATE:	
	CHECKED BY:	

PPROVED BY:

NO.	DATE	BY	

-16.5 Contour Plan Dredge Line

> Sand Cover Boundary (Pre Sand Line)

	REV	ISI	ONS			
DESCRIPTION	APP'D	NO.	DATE	BY	DESCRIPTION	APP'D

PROGRAM MANAGER: GARRY ENSLEY DESIGN ENGINEER: GARRY ENSLEY DRAWN BY: MAPPING STAFF SCALE: AS SHOWN DATE: 07/07/2010 CHECKED BY:

Mapping Sand Cap Boundary (Post Sand Line)

LL 48	HOL	JRS	
FORE	YOU	DIG	
-800-	424-	5555	

PROJECT ENGR./ARCH:			
ESIGNER:	NO.	DATE	BY
RAWN BY:			
SCALE:			
DATE:			
HECKED BY:			
PPROVED BY:			

	PROGRAM MANAGER: GARRY ENSLEY						
DESCRIPTION	APP'D	NO.	DATE	BY	DESCRIPTION	APP'D	DESIGN ENGINEER: GARRY ENSLEY
							DRAWN BY: MAPPING STAFF
							SCALE: AS SHOWN
							DATE: 07/07/2010
							CHECKED BY:
							APPROVED BY:

3. TERMINAL 115 POST-DREDGE SUBSURFACE SEDIMENT CHARACTERIZATION

The purpose of sediment sampling after the conclusion of maintenance dredging was to characterize the chemical composition of the sediments exposed by dredging to the -16.5 MLLW project depth (with 2 ft of allowable overdredge) as well as to provide information on the vertical distribution of chemicals within the sediment column. Post-dredge sampling was conducted as part of USACE's multi-agency coordination with EPA and Ecology for projects within the Lower Duwamish Waterway joint MTCA / CERCLA site.

3.1 METHODS

3.1.1 Sediment Collection

Sediment collection and laboratory analyses for the post dredge survey were conducted in accordance with the *Quality Assurance Project Plan* (QAPP) (Anchor QEA 2009a). Notable variances from the QAPP that occurred during the sampling are detailed in the following.

Initial post-dredge subsurface sediment sampling occurred on 27 January 2010 and was conducted by SEE LLC of Seattle, WA and Marine Sampling Services (MSS) of Burley, WA. SEE was the project leader and MSS provided vessel, navigation and vibracoring services. Additional coring for post-dredge subsurface sediment characterization occurred on 10 March 2010 and was conducted by the same personnel as the first event. The field logs from both coring events are presented as Appendix B.

3.1.1.1 Sample Locations

The target locations of post-dredge coring were prescribed in the QAPP and were based on a projected dredge area calculated from bathymetric data and project design at the time when the QAPP was written. Post-dredge core locations (SC) and post-cover surface sediment (SG) locations for which chemical analyses were conducted are shown in Figure 3-1. The stations collected in the southern portion of the dredge area (SC-01 and SC-02) were close to those prescribed in the QAPP. For the northern stations (SC-03 and SC-04), a field-decision was made to locate both further east from the QAPP-designated locations. This was due to the inability, after multiple attempts, to core to the QAPP-specified collection depth of -6 ft. below mulline; both construction activities and seafloor debris interfered with core collection. After consultation with the Port, those stations were moved eastward and then successfully collected.

After collection of the sediment cores on 27 January 2010 and receipt of final post-dredge bathymetry, it was determined that Stations SC-03 and SC-04 were either on the border or outside the verified dredge area. As a result, these stations were relocated and sampled again at the time of the post-sand placement survey on 10 March 2010.

Throughout coring activities, a Trimble differential global positioning unit that used the U.S. Coast Guard differential correction was used. The DGPS was interfaced to an integrated navigation system that displayed the vessel position relative to target location and shoreline

features in real time. Coordinates were recorded electronically and in the field log when the corer reached the bottom.

3.1.1.2 Core Collection

All subsurface sediment samples were collected aboard the MSS's *MV Nancy Ann* using a hydraulically-powered vibracore, which met the criteria set for sample collection as prescribed in the QAPP. As stated in the QAPP, subsurface sediment samples were to be collected to a depth of 6 ft below post-dredge mudline, sectioned into 1-ft segments and then homogenized for analysis. For the post-dredge subsurface sediment sampling, the vibracoring device was outfitted with 4-inch outer-diameter (OD), pre-cleaned aluminum core tubes that were 8 ft in length. Based on the core tube length and corer geometry, a 7-ft drive length was anticipated in order to collect the desired 6 ft of sediment. Table 3-1 shows the cores collected as part of the post-dredge subsurface sediment cores collected as part of the collection of cores can be found in the field log (Appendix B).

Once collected, all cores were measured and then cut, covered with aluminum foil and capped in the field into segments of 4 ft or less for subsequent logging and processing. After segmenting, all cores were kept on ice until processing.

3.1.1.3 Sample Collection Deviations from QAPP

Notable deviations from the collection procedures outline in the QAPP (Anchor QEA 2009) and their reasons and rationale follow.

Although 6 ft of sediment core was targeted in the QAPP as the collection goal, at only one station (SC-02) was enough core length collected to produce samples representing all depth intervals to -6 ft below mudline. The top 5 ft of the sediment column was collected at SC-01 and the top 4 at SC-03 and SC-04. For each sampling location where less than 6 ft of sediment was retained, multiple coring attempts were made and the core was either driven to full travel length (7 ft) or to refusal.

Stations SC-03 and SC-04 were located at the edge or slightly outside the verified dredged area during the first sediment coring event (January 2010). After consultation with EPA and Ecology, it was agreed that additional samples within the dredged footprint would be collected. These samples were named SC-032 and SC-042 and were collected at the time of the post-sand cover placement survey. Post-dredge samples for the cores collected at these two stations began at the sand cover/sediment interface, and proceeded to the bottom of the core.

Station	Date	Time	Latitude	Longitude	Depth to Dredged Mudline (MLLW)	Sample Type	Drive Length	Recovery
SC-01	1/27/2010	10:30	47 32.6404N	122 20.2812W	-17.6	4-inch OD Vibracore	7 ft	5 ft
SC-02	1/27/2010	11:11	47 32.6536N	122 20.2867W	-17.3	4-inch OD Vibracore	7 ft	5.67 ft
SC-03	1/27/2010	12:14	47 32.6752N	122 20.2993W	-17.7	4-inch OD Vibracore	7 ft	4.92 ft
SC-04	1/27/2010	14:32	47 32.6797N	122 20.3074W	-20.6	4-inch OD Vibracore	7 ft	4.75 ft
SC-03-2	1/27/2010	12:14	47 32.6697N	122 20.3019W	-17.1	4-inch OD Vibracore	7 ft	4.6 ft
SC-04-2	1/27/2010	13:59	47 32.6901N	122 20.3128W	-15.8	4-inch OD Vibracore	7 ft	4.9 ft

Table 3-1 Post-Dredge Subsurface Sediment Characterization Sampling Stations and Cores Collected

During the resampling of station SC-042, two cores were retained in the event that additional sample volume would be needed. The core with the best recovery was selected to be the primary sample and the other core would be processed only if additional sediment was required to obtain sufficient volumes for analyses. Sufficient sediment was obtained from the selected core and the remaining core was to be logged, photographed and discarded. Due to the subsand cover sediment showing visible signs of contamination and being markedly different from that sampled as SC-042, the Port decided to analyze the 1 ft of post-dredge, non-sand cover sediment. This sample is reported as SC-043.

3.1.2 Sample Processing

Sample processing of cores collected as part of the post-dredge subsurface sediment characterization was conducted in accordance with the procedures prescribed in the QAPP (Anchor QEA 2009). Cores were cut longitudinally, split, photographed and logged prior to subsampling. Core logs from processing are presented in Appendix C. Photographs of each core are presented in Appendix D. All samples collected and their disposition is presented in Table 3-2.

During processing, cores were subsampled into 1-ft intervals (e.g., 0-1ft, 1-2 ft, 2-3 ft, and 3-4 ft, etc.) measured from mulline as prescribed in the QAPP. The sediment from each 1 ft segment was homogenized and then placed into pre-cleaned, labeled sample jars, logged in the chain of custody form and kept on ice up to and through delivery to the analytical laboratory. The uppermost four 1-ft units (0-1 ft, 1-2 ft, 2-3 ft and 3-4 ft below mulline) were submitted for laboratory analyses and the remaining two segments (4-5 and 5-6 ft below mulline) were archived for possible future analysis. All samples were submitted to Columbia Analytical Systems of Kelso, WA for analysis and archiving. Chain of custody documentation is presented as Appendix E.

3.2 **RESULTS**

The samples from the uppermost 4 ft of the sediment column were submitted Columbia Analytical Services for chemical and conventional analyses specified in the QAPP. Post-dredge subsurface sediment chemistry results are provided in Appendix F and full results are presented in Appendix G. All sediment chemistry data underwent a Tier IV validation that was conducted by Pyron Environmental of Olympia, WA. Validation reports for each sample batch are presented in Appendix H.

Sediment chemistry results were compared the DMMP Screening Level and Maximum Level criteria as specified in the QAPP (Anchor 2009a). In addition, dioxin and chlorinated furans were compared to the 2010 DMMP interim criteria for these compounds using toxicity equivalent quotients (TEQ). TEQ were calculated using the methodology outlined in the DMMP User Manual (USACE 1998). As prescribed in that document, dioxin and chlorinated furan congener TEQ summations are reported separately when non-detected congeners are not used in the summation and for when one-half of the reporting limit for non-detected analytes are used in the summation.

Station	Interval	Collection Interval (ft)	TVS, TOC	Grain Size	PCBs	PAHs GC/MS SIM	Dioxins	Archive
	ZA	0 - 1	✓	✓	✓	✓	✓	
	ZB	1 - 2	✓	√	✓	✓	✓	
T115- SC-01 -100127	ZC	2 - 3	✓	✓	✓	✓	✓	
	ZD	3 - 4	✓	\checkmark	✓	✓	✓	
	ZE	4 - 5						✓
	ZA	0 - 1	✓	\checkmark	✓	✓	✓	✓
	ZB	1 - 2	✓	✓	✓	✓	✓	✓
T115- SC-02 -100127	ZC	2 - 3	✓	✓	✓	✓	✓	✓
	ZD	3 - 4	✓	✓	✓	✓	✓	✓
	ZE	4 - 5						✓
	ZF	5 - 5.7						✓
	ZA	0 - 1	✓	\checkmark	✓	\checkmark	✓	✓
	ZB	1 - 2	✓	\checkmark	✓	✓	✓	✓
T115- SC-03 -100127	ZC	2 - 3	✓	\checkmark	✓	\checkmark	✓	✓
	ZD	3 - 4	✓	\checkmark	✓	\checkmark	✓	✓
	ZE	4 - 4.9						✓
	ZA	0 - 1	✓	✓	✓	✓	✓	✓
	ZB	1 - 2	✓	✓	✓	\checkmark	✓	✓
T115- SC-04 -100127	ZC	2 - 3	 ✓ 	✓	✓	✓	✓	✓
	ZD	3 - 4	✓	✓	✓	✓	✓	✓
	ZE	4 - 4.8						✓

Table 3-2 Post-Dredge Sediment Samples and Analyses

Station	Interval	Collection Interval (ft)	TVS, TOC	Grain Size	PCBs	PAHs GC/MS SIM	Dioxins	Archive
	ZA	0 - 1	✓	√	✓	✓	✓	✓
T115 SC 02 0 1002010	ZB	1 - 2	✓	√	✓	✓	✓	✓
1115- 3C-03 -2-1003210	ZC	2 - 3	✓	✓	✓	✓	✓	✓
	ZD	3 - 3.7	✓	√	✓	✓	✓	✓
T115- SC-04 -2-100310	ZA	0 - 1	✓	√	✓	✓	✓	✓
	ZB	1 - 2	✓	√	✓	✓	✓	✓
	ZC	2 - 3	✓	√	✓	✓	✓	✓
	ZD	3 - 4	✓	✓	✓	✓	✓	✓
T115- SC-04 -3-100310	ZA	0 - 1	✓	√	✓	✓	✓	✓

Table 3-2 Post-Dredge Sediment Samples and Analyses

All analytical results are reported and screened against DMMP criteria (Appendix F). Results are discussed by station.

3.2.1 Station SC-01

For SC-01, five 1-ft collection intervals were collected; four were analyzed per the work plan (ZA - ZD) and one was archived (ZE). Detected chemicals that exceed the DMMP criteria are presented in Table 3-3. Complete results for this station may be found in Appendix Table F-1.

At Station SC-01, total PCBs exceeded DMMP screening level criteria in all four depth intervals (ZA-ZD) (Table 3-3). Other detected compounds that exceeded screening levels were fluoranthene, pyrene and total high molecular weight PAHs (HPAH) in the SC01-ZD (3-4 ft below mudline) sample interval. Although total HPAH did not exceed the screening level in any sample interval, total HPAH did exceed the bioaccumulation trigger in the SC01-ZC and SCO1-ZD strata.

Dioxins and chlorinated furans were compared to two DMMP criteria: the 4 TEQ guideline for open water disposal of dredged material at a dispersive site; and 10 TEQ, the maximum concentration of a dredged material management unit (DMMU) that can be disposed of at a non-dispersive site with the additional requirement that the weighted average of the volume of all dredged material placed at the non-dispersive site does not exceed 4 TEQ. The TEQ calculations are calculated and presented in two ways: 1) where the non-detected values are not included in the TEQ total; and 2) the non-detected compounds are included in the TEQ total at one-half the Reporting Limit (RL). The TEQ guidelines were not exceeded in the surface (ZA) layer, but exceeded the 10 TEQ in the next two intervals (ZB and ZC) and the 4 TEQ in the lowest interval (ZD).

Chemical	SC01-ZA	SC01-ZB	SC01-ZC	SC01-ZD
Dry Weight	0 – 1 ft 1 – 2 ft		2 – 3 ft	3 – 4 ft
Fluoranthene (µg/kg)	—	—	—	2,700 (SL)
Pyrene (µg/kg)	—	—		2,600 (SL)
Total HPAH (µg/kg)	_	—	4,733 (BT)	8,236 (BT)
Total PCB (µg/kg)	330 (SL)	333 (SL)	590 (SL)	425 (SL)
Total Dioxins (TEQ)	_	20.2 (10 TEQ)	24.0 (10 TEQ)	6.4 (4 TEQ)
Total Dioxins 1/2 RL (TEQ)		20.6 (10 TEQ)	24.4 (10 TEQ)	6.7 (4 TEQ)

Table 3-3	Station SC-01	Detected (Compounds	Exceeding	DMMP	Criteria

Notes:

SL=Screening Level

ML=Maximum Level

BT = Bioaccumulation Trigger

TEQ = Toxicity Equivalent Quotient

Concentrations are reported in μ g/kg dry weight

There were several compounds that were non-detected but their reporting limits exceeded DMMP screening criteria. For SC-01, those compounds are listed in Table 3-4. A discussion of the elevated detection limits for these compounds is presented in Section 3.3.

	SC01-ZA	SC01-ZB	SC01-ZC	SC01-ZD
Chemical	0 – 1 ft	1 – 2 ft	2 – 3 ft	3 – 4 ft
1,2-Dichlorobenze	-	—	—	67 U (SL)
1,2,4-Trichlorobenzene	—			67 U (ML)
Butyl Benzyl Phthalate		—	—	67 U (SL)
N-Nitrosodiphenylamine	—			67 U (SL)
2-Methylphenol	—			67 U (SL)
2,4-Dimethylphenol	48 U (SL)	_	200 U (SL)	340 U (ML)
Pentachlorophenol	—		390 U (SL)	670 (SL)
Benzyl Alcohol		_	78 U (SL)	140 U (SL)
Benzoic Acid			780 U (SL)	1400 U (ML)

 Table 3-4
 Station SC-01 Non-detect Compounds Exceeding DMMP Criteria

Notes:

SL=Screening Level ML=Maximum Level Concentrations are reported in µg/kg dry weight

3.2.2 Station SC-02

For SC-06, six intervals were collected to 5.7 below mudline; four were analyzed per the work plan (ZA – ZD) and two are archived (ZE-ZF). Detected chemicals that exceed the DMMP criteria are presented in Table 3-5. Complete results for this station may be found in Appendix Table F-2.

The PCB SL was exceeded at the first, second and last sampling intervals (ZA, ZB and ZD). The SL for butyl benzyl phthalate was exceeded in the first two intervals (ZA and ZB), but was only detected in the second interval (ZB). The 4 TEQ threshold was exceeded at all four intervals, with the lowest interval (ZD) also exceeding 10 TEQ.

	SC02-ZA	SC02-ZB	SC02-ZC	SC02-ZD
Chemical	0 – 1 ft	1 – 2 ft	2 – 3 ft	3 – 4 ft
Butyl Benzyl Phthalate	—	100 D (SL)	—	—
Total HPAH (μg/kg)	—	—	—	5,381 (BT)
Total PCB (µg/kg)	349 (SL)	294 (SL)	—	214 (SL)
Total Dioxins (TEQ)	8.1 (4 TEQ)	6.3 (4 TEQ)	6.5 (4 TEQ)	10.1 (10 TEQ)
Total Dioxins 1/2 RL (TEQ)	9.4 (4 TEQ)	6.7 (4 TEQ)	5.9 (4 TEQ)	10.5 (10 TEQ)

Notes:

SL=Screening Level

ML=Maximum Level

BT = Bioaccumulation Trigger

TEQ = Toxicity Equivalent Quotient

Concentrations are reported in µg/kg dry weight

Non-detected chemicals from Station SC-02 that exceeded DMMP criteria are presented in Table 3-6.

	SC02-ZA	SC02-ZB	SC02-ZC	SC02-ZD
Chemical	0 – 1 ft	1 – 2 ft	2 – 3 ft	3 – 4 ft
1,2-Dichlorobenze	95 U (SL)	41 U (SL)	_	—
1,2,4-Trichlorobenzene	95 U (ML)	41 U (SL)	_	—
Dimethyl Phthalate	95 U (SL)	—	—	—
Butyl Benzyl Phthalate	95 U (SL)	—		—
N-nitrosodiphenyl-amine	95 U (SL)	41 U (SL)	_	—
2-Methylphenol	95 U (ML)	41 U (SL)	—	—
2,4-Dimethylphenol	480 U (ML)	210 U (ML)	42 U (SL)	42 U (SL)
Pentachlorophenol	950 U (ML)	410 U (SL)	—	—
Benzyl Alcohol	190 U (SL)	82 U (SL)	—	—
Benzoic Acid	1900 U (ML)	820 U (ML)		—

Table 3-6	Station SC-02 Non-detect	Compounds Exceeding	DMMP Criteria
		oompounds Execcuting	

Notes:

SL=Screening Level

ML=Maximum Level

Concentrations are reported in $\mu g/kg \; dry \; weight$

3.2.3 Station SC-03

For SC-03 only four intervals were collected. Detected chemicals that exceeded the DMMP criteria for Station SC-03 are presented in Table 3-7. Complete results for this station may be found in Appendix Table F-3. As noted in the Methods section, Station SC-03 was resampled in March 2010 and was designated SC-032. Sample SC-03 was from the initial collections in January 2010; this SC-03 was processed and archived, but not analyzed (Table 3-2).

Total PCBs exceeded the SL in the first three intervals (ZA – ZC), but no PCB Aroclors were detected in the last depth interval (ZD). Other detected chemicals that exceeded the SL included butyl benzyl phthalate in the first interval (ZA). Measured levels of pyrene, benzo(a)anthracene, chrysene, and total HPAHs exceeded the SL in the second interval (ZB). The total 10 TEQ threshold was exceeded in the first two intervals (ZA, ZB), but was less than the 4 TEQ threshold for the third and fourth intervals (ZC and ZD). However, when one-half the reporting limit for non-detected dioxin/furans were included in the TEQ calculation for the lowest interval (ZD), the resultant TEQ was 6.7, exceeding the 4 TEQ threshold.

	SC032-ZA	SC032-ZB	SC032-ZC	SC032-ZD
Chemical	0 – 1 ft	1 – 2 ft	2 – 3 ft	3 – 4 ft
Butyl Benzyl Phthalate	69 D (SL)			
Pyrene		9,000 (SL)		
Benzo(a)anthracene		1,600 (SL)		
Chrysene		2,100 (SL)		
Total HPAH (µg/kg)		18,640 SL)		
Total PCB (µg/kg)	296.5 (SL)	302 (SL)	540 (SL)	—
Total Dioxins (TEQ)	13.7 (10 TEQ)	12.6 (10 TEQ)	_	0.0087
Total Dioxins 1/2 RL (TEQ)	14.1 (10 TEQ)	13.0 (10 TEQ)		6.7 (4 TEQ)

Table 3-7 Station SC-032 Detected Compounds Exceeding DMMP Criteria

Notes:

SL=Screening Level

ML=Maximum Level

BT = Bioaccumulation Trigger

TEQ = Toxicity Equivalent Quotient

Concentrations are reported in µg/kg dry weight

Non-detected chemicals exceeding the DMMP criteria at Station SC-032 are presented in Table 3-8.

Table 3-8 Station SC-032 Non-detect Compounds Exceeding DMMP Criteria

	SC032-ZA	SC032-ZB	SC032-ZC	SC032-ZD
Chemical	0 – 1 ft	1 – 2 ft	2 – 3 ft	3 – 3.7 ft
1,2-Dichlorobenze	42 U (SL)	72 U (SL)	—	—
1,2,4-Trichlorobenzene	42 U (SL)	72 U (ML)	—	—
Hexachlorobenzene	42 U (SL)	72 U (SL)		
Dimethyl Phthalate		72 U (SL)		
Butyl Benzyl Phthalate	_	72 U (SL)	_	—
N-nitrosodiphenyl-amine		72 U (SL)		
2-Methylphenol	_	72 U (SL)	_	—
2,4-Dimethylphenol	—	360 U (ML)	—	29 U (SL)
Pentachlorophenol	420 U (SL)	720 U (ML)		
Benzyl Alcohol	83 U (SL)	150 U (SL)		
Benzoic Acid	830 U (ML)	1500 U (ML)		

Notes:

SL=Screening Level

ML=Maximum Level

Concentrations are reported in μ g/kg dry weight

3.2.4 Station SC-04

Detected chemicals that exceeded the DMMP criteria for Station SC-042 and SC-043 are presented in Table 3-9. As noted in the Methods section, due to a second collection of this sample, the second sample received the designation SC-042. The initial collection SC-04 was processed, archived, but not analyzed (Table 3-2). During the resampling of SC-04, two cores

were collected; the core with the greatest amount of recovery was used for sample SC-042. Sufficient sediment volume was obtained from this core sample to meet sample volume requirements. The core that became Sample SC-043 was originally retained in the event addition sample volume was needed for SC-042. Once volume requirements were met with the single core representing SC-042, the intent was to log the additional core for sand cover thickness and then discard. However, due to the dissimilarity to the pre-cover sediments in the other core, the small amount of post-dredge sediment from the second core was sampled and analyzed by the Port. Functionally, SC-042 and SC-043 are field duplicates of the same station. Complete results for this station may be found in Appendix Table F-4.

No analytes exceeded DMMP evaluative criteria from any depth strata sampled at SC-042. Only a few analytes were detected at concentrations above reporting limits. The sediments collected from all strata at SC-042 were gravels and sand (>98%) with minimal fines and this helped contribute to the low reporting limits for these samples. For Station SC-043, total PCBs exceeded the SL and total dioxins exceeded the 10 TEQ criteria.

	SC042-ZA	SC042-ZB	SC042-ZC	SC042-ZD	SC043-ZA
Chemical	0 – 1 ft	1 – 2 ft	2 – 3 ft	3 – 4 ft	0 – 1 ft
Total PCB (µg/kg)	_	—			203 (SL)
Total Dioxins (TEQ)	0	0	0	0	35.5 (10TEQ)
Total Dioxins 1/2 RL (TEQ)	7.6 (4TEQ)	6.4 (4TEQ)	6.4 (4TEQ)	6.2 (4TEQ)	35.9 (10TEQ)

Table 3-9	Station SC-042 and SC-043 Detected Compounds Exceeding DMM	P Criteria

Notes:

SL=Screening Level

ML=Maximum Level

BT = Bioaccumulation Trigger

TEQ = Toxicity Equivalent Quotient

Concentrations are reported in µg/kg dry weight

3.3 DATA QUALITY AND LABORATORY PERFORMANCE

All data were subjected to a Tier IV validation conducted by Pyron Environmental. Data validation reports are presented as Appendix G. The validation reports detail laboratory performance and results against al QC criteria outlined in the QAPP. This section discusses the overall performance and usability of post-dredge sediment data as well as stating where results and performance differed from the QAPP.

Post-dredge sediment samples were submitted to the laboratory in two separate groups due to the resampling of two stations (Section 3.1). Data validation reports were generated for each submission (batch).

For the samples collected in January 2010, holding times, instrument performance checks, calibrations, calibration verification, surrogate recoveries, matrix spike and matrix spike duplicates, and laboratory reporting limits were within control parameters outlined by the QAPP and methodologies specified in the QAPP for GCMS and HRGC/HRMS analyses.

Data that was qualified as a result of the validations include:

- Aroclor 160 being qualified as an estimated (J) concentration at SC01-ZA, SC01-ZB, SC01-ZC, SC01-ZD, SC02-ZA, SC02-ZB, SC0D-ZC and SC02-ZD because the matrix spike and matrix spike duplicate samples percent recoveries were less than lower control limits.
- Octochlorodibenzo-p-dioxin values for SC01-ZB and SC01-ZC were qualified as estimates (J) due to the reported value exceeding the calibration range.
- Dimethyl phthalate concentrations for SC01-ZA, SC01-ZB, SC01-ZC, SC02-ZB, SC0D-ZC and SC02-ZD were changed from estimated (J) values to non-detected values (U) due to detection of dimethyl phthalate in the method blank.

For the laboratory analyses conducted on samples collected in March 2010, holding times, instrument performance checks, calibrations, calibration verification, surrogate recoveries, matrix spike and matrix spike duplicates, and laboratory reporting limits were within control parameters outlined by the QAPP and methodologies specified in the QAPP for GCMS and HRGC/HRMS analyses. In addition, a field duplicate sample was collected from SC032-ZA and assigned a sample ID of SC0532-ZA. Duplicate results and RPD calculations are presented in the Validation Report (Appendix H).

Data that was qualified due to laboratory or duplicate results that exceeded the criteria in the QAPP include:

- Octochlorodibenzo-p-dioxin values for SC0532-ZA and SC043-ZA were qualified as estimates (J) due to the reported value exceeding the calibration range.
- 1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin (HpCDD) values for SC032-ZA, SC0532-ZA were qualified as estimates (J) due to field duplicate results being outside the precision criteria outlined in the QAPP.
- Octochlorodibenzo-p-dioxin values for for SC032-ZA, SC0532-ZA were qualified as estimates (J) due to field duplicate results being outside the precision criteria outlined in the QAPP.
- Dimethyl phthalate concentrations for SC032-ZA, SC032-ZB, SC032-ZC, SC0532-ZA and SC043-ZA were changed from estimated (J) values to non-detected values (U) due to detection of dimethyl phthalate in the method blank.
- 1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin (HpCDD) concentrations for SC032-ZD, SC042-ZA, SC042-ZC, and SC042-ZD were changed from estimated (J) values to non-detected values (U) due to detection in the method blank.
- Octochlorodibenzo-p-dioxin concentrations for SC042-ZA, SC042-ZB, SC042-ZC, and SC042-ZD were changed from estimated (J) values to non-detected values (U) due to detection in the method blank.

- 1,2,3,4,6,7,8,-Heptachlorodibenzofuran concentrations for SC032-ZD, SC042-ZA, SC042-ZB, and SC042-ZC were changed from estimated (J) values to non-detected values (U) due to detection in the method blank.
- Octochlorodibenzofuran concentrations for SC032-ZD and SC042-ZB were changed from estimated (J) values to non-detected values (U) due to detection in the method blank.

As shown in Tables 3-2 through 3-9, several compounds were not detected in post-dredge surface and subsurface sediments, but the reporting limits for these compounds exceeded the corresponding DMMP screening level for that compound. Samples that showed elevated reporting limits were those that had either a high proportion of fines or sufficient amounts of PAH such that the extract required dilution. Although the there were several high reporting limits, all data was deemed usable with the aforementioned qualifications based on the data validation.

Figure 3-1 Post-dredge Sediment Core (SC) and Post-cover Sediment Grab (SG) Sample Locations

4. SAND COVER MONITORING

The purpose of the sand cap sampling was to ensure that the sand substrate placed over the exposed dredged material was free of chemical contamination pre-placement, and to establish baseline chemical conditions post-placement. Additionally, sediment samples collected from the interim sand cover were also evaluated to ascertain if the desired cover thickness was achieved (1 ft) and whether any mixing between sand cover materials and dredge residuals or site sediments occurred. This sampling event was the first event in a three-year monitoring effort of the sand cover placed at T-115.

4.1 METHODS

Sediment collection and laboratory analyses for the sand cover survey were conducted in accordance with the *Quality Assurance Project Plan* (QAPP) *Port of Seattle Terminal 115 Post Dredge Subsurface Sediment Characterization* (Anchor QEA 2009). Notable variances from the QAPP that occurred during the sampling are detailed below.

Sediment collections for sand cover monitoring occurred on 10 March 2010 and were conducted by SEE LLC of Seattle, WA and Marine Sampling Services (MSS) of Burley WA. SEE was the project leader and MSS provided vessel support and navigation services. The field logs are presented as Appendix B.

4.1.1 Pre-placement Sand Source and Chemical Analysis

Sand cover material was obtained by the construction contractor, Pacific Pile and Marine, Inc. (Pacific) from Glacier Northwest's sand and gravel quarry on Vashon Island. Chemical analysis of the sand was directed by Anchor-QEA and the data supplied to the Port of Seattle. The results of the chemical analyses of the sand cover are presented in Appendix I. For SVOCs analyzed using Method 8270 (SIM), all target analytes were non-detected at the reporting limits with the exception of di-n-butylphthalate and bis (2-ethylhexyl)phlalate, which were both detected above the reporting limit but less than either the DMMP SL or the Lowest Apparent Effects Threshold (LAET) dry weight criteria.

4.1.2 Sample Locations

Sample locations occupied during the March 2010 sampling of the interim sand cover were those prescribed in the QAPP which were crosschecked against post sand cover placement bathymetric survey results (Section 2).

Throughout sand cover sampling activities, a Trimble differential global positioning unit that used the U.S. Coast Guard differential correction was used. The DGPS was interfaced to an integrated navigation system that displayed the vessel position relative to target location and shoreline features in real time. Coordinates were recorded electronically and in the field log when the sampler reached the bottom.

4.1.3 Sand Cover Sediment Collections

All sand cover sediment samples were collected aboard the MSS's *MV Nancy Ann* using a 0.06 m^2 Gray-O'Hara boxcore. The use of the Gray-O'Hara boxcore represents a departure from the QAPP where a 0.3 m^2 hydraulically powered grab sampler was specified. The decision to use the Gray O'Hara boxcore was made due to the potential for deeper penetration in order to better define cap thickness (1.5 ft [45 cm] for the boxcore versus 1 ft [30 cm] for the power grab sampler) and the smaller areal sample size (0.06 m^2 versus 0.30 m^2 for the power grab). The smaller sample area allowed less of the cover to be disturbed or removed though sampling. At all stations sampled, the Gray-O'Hara was successful at penetrating through cap sediments to pre-cover strata, mostly at thicknesses that exceeded 30 cm (1 ft).

4.1.4 Sand Cover Sample Processing

All sand cover boxcore samples were processed and sample handled in accordance with the QAPP. The boxcore was brought to the surface, evaluated for sampling related disturbance and representativeness, and then measured for penetration and recovery. If sufficient sediment was collected in a good quality, undisturbed, representative sample, the overlying water was the siphoned, photographs of the sediment surface taken, logged, and then subsampling proceeded. Sample logs/descriptions are provided in the field logs (Appendix B).

Three samples representing the 0-10 cm, 10-20 cm and 20-30 cm depth intervals below mudline were acquired for each of the four sand-cover sampling stations and designated as the SG-xxA (Surface Grab – station numberA[0-10cm]), SG-xxB(10-20 cm) and SGx-xxC (20-30+cm). The sediment from each 10 cm strata was placed into pre-cleaned stainless steel bowls, homogenized and then placed into pre-cleaned, labeled sample jars, logged in the chain of custody form and kept on ice up to and through delivery to the analytical laboratory. Chain of custody forms are provided in Appendix E. Only the samples representing the top 10 cm of the sediment column were analyzed for chemical constituents. All other samples, representing the 10-20 cm and 20-30+ cm below mudline strata, were archived at -4 degrees C.

4.2 **RESULTS**

Sand cover sediments from the top 10 cm of the sediment column were submitted to Columbia Analytical Services for analyses; all other strata collected were archived. All sediment chemistry data underwent a Tier IV data validation by Pyron Environmental of Olympia, WA. The results from sediment chemical analyses of post-sand cover samples are provided in Appendix J.

As discussed, sand cover sediment samples were collected using a 0.06 m^2 Gray-O'Hara boxcore. In addition, two post-dredge sediment samples were taken by coring through the sand cover and then collecting the underlying native sediments. In each sample, a minimum thickness of clean sand cover could be determined and thicknesses are shown in Table 4-1 along with other station coordinates and water depths.

Station	Date	Time	Latitude	Longitude	Sample Type	Drive Length	Sand Thickness	Notes
SG-01	3/10/2010	9:10	47 32.6403N	122 20.2812W	0.06 m ² Boxcore	50 cm (1.64 ft)	>50 cm (1.64 ft)	
SG-02	3/10/2010	10:11	47 32.6534N	122 20.2870W	0.06 m ² Boxcore	45 cm (1.48 ft)	45 cm (1.48 ft)	
SG-03	3/10/2010	11:06	47 32.6684N	122 20.3016W	0.06 m ² Boxcore	36 cm (1.18 ft)	>36 cm (1.18 ft)	
SG-04	3/10/2010	14:34	47 32.6902N	122 20.3126W	0.06 m ² Boxcore	27 cm (0.89 ft)	27 cm (0.89 ft)	
SC-03-2	3/10/2010	12:14	47 32.6697N	122 20.3019W	4" OD Vibracore	7 feet	23 cm (0.75 ft)	Clean contact between pre- cover and site sediment
SC-04-2	3/10/2010	13:59	47 32.6901N	122 20.3128W	4" OD Vibracore	7 feet	37 cm (1.21 ft)	Clean contact between pre- cover and site sediment
SC-04-3	3/10/2010	13:25	47 32.6900N	122 20.3118W	4" OD Vibracore	3.8 ft	10 cm (0.33 ft)	Sample disturbed, non- representative

Table 4-1 Sand Cover Monitoring Stations and Sampling Data

For sand cover sediments, sediment chemistry results were compared to both DMMP and SMS criteria. The sand cover sediments were depauperate in both fine-grained sediment and total organic carbon. SMS criteria are based on normalization to TOC concentrations as a proxy for bioavailabilty. Given the very low TOC concentrations measured in sand cover surface sediments (<0.2%), the TOC normalizations in SMS comparisons, which are intended for sediments with TOC >0.5\%, sand cover surface sediments were compared to LAET SMS criteria on a non-normalized, dry-weight basis. Comparisons to both the DMMP and LAET criteria are shown in Appendix J.

For both sand cover surface sediment samples collected after placement, there were no exceedances of DMMP or LAET chemical criteria for either detected analytes or the reporting limits of non-detected analytes. Although there were no exceedances of screening criteria, several LPAH, HPAH and dioxins were detected in sand cover sediments. The sands that were placed as the sand cover were analyzed prior to placement and no PAH compounds or dioxins were detected at concentrations greater than the reporting limit (Appendix I). The only SVOC compounds that were detected in the analysis of materials prior to its placement as the sand cover were the two phthalate esters, di-n-butylphthalate and bis-(2-ethylhexyl)phthalate.

During the field sampling, it was noted in the field log that occasional clasts of dark fine grained sediments that ranged from a few to 10+ cm in long axis dimension were present within the sand cover matrix. It is likely that these clasts were native/site sediments that were captured during sand cover placement. The contact between the underlying native/silt sediment and overlying sand cover was well defined, with little or no mixing. The fines that were observed as well as the detected analytes are likely a result of the clasts of fines sediments captured in the sand cover matrix. This sand cover samples that show the highest concentrations of PAH (though well under screening level criteria) are also the stations that show the greatest proportion of fine grained (silt or finer) sediments. There, although the clasts were noted, there appeared to be little or mixing between the xenoclasts and the cap sediments.

4.3 DATA QUALITY AND LABORATORY PERFORMANCE

Laboratory data for sand cover sediments underwent a Tier IV validation by Pyron Environmental. The full data validation report is provided in Appendix K. Although not specified in the Monitoring Plan, SVOCs were quantified, in addition to just LPAH and HPAH, as specified in the plan. All SVOC data is reported and validated.

All conventional parameters, Methods 8270 SVOCs and polychlorinated dioxins/furans by Method 1613B met quality control parameters set forth by the Monitoring plan with the following modifications:

- Data that was qualified due to laboratory or duplicate results that exceeded the criteria in the QAPP include:
 - Octochlorodibenzo-p-dioxin concentration for SG-02A was qualified as estimates (J) due to MS/MSD recovery RPDs outside of control limits.

- Dimethyl phthalate concentrations for SG-01A, SG-02A, SG-51A were changed from estimated (J) values to non-detected values (U) due to detection of dimethyl phthalate in the method blank.
- Octochlorodibenzo-p-dioxin concentrations for SG-01A, SG-02A, SG-03A, SG-04A and SG-51A were changed from estimated (J) values to non-detected values (U) due to detection in the method blank.
- 1,2,3,4,6,7,8,-Heptachlorodibenzofuran concentrations for SG-01A, SG-02A, SG-04A and SG-51A were changed from estimated (J) values to non-detected values (U) due to detection in the method blank.
- Samples SG-01A and SG-051A were duplicate samples from the same homogenate. A comparison of results and tabulation of RPDs, or straight concentration difference where appropriate, is presented as an appendix in the data validation report (Appendix H). All RPDs and differences were within limits specified by the QAPP.

5. **References**

- Anchor-QEA, 2009a. *Quality Assurance Project Plan*. Port of Seattle Terminal 115. Post Dredge Subsurface Sediment Characterization. Prepared for the Port of Seattle by Anchor-QEA LLC, Seattle, WA. June 2009.
- Anchor-QEA, 2009b. Sand Cover Monitoring Plan. Port of Seattle Terminal 115. Post Dredge Subsurface Sediment Characterization. Prepared for the Port of Seattle by Anchor-QEA LLC, Seattle, WA. June 2009.
- GRS and SEE, 2010. Hydroacoustic Monitoring Survey of Pile Driving Activities Port of Seattle, Seattle, Washington, Terminal 115, Berth 1. Prepared for the Port of Seattle by Global Remote Sensing LLC, Bothell WA, and Science and Engineering for the Environment LLC, Seattle WA. May 10, 2010.
- SEE, 2010. Water Quality Monitoring Report. Port of Seattle Terminal 115, Berth 1, Seattle, WA. Prepared for the Port of Seattle by Science and Engineering for the Environment LLC, Seattle WA. March 27, 2010.
- TEC and SEE, 2010. *Recontamination Study Work Plan Port of Seattle T-115 Berth 1, Seattle, WA*. Prepared for the Port of Seattle by TEC, Inc. Bellevue, WA and Science and Engineering for the Environment LLC, Seattle WA. March, 2010.

Appendix A

Bathymetric Survey Results
General Survey Notes:

Purpose:

This survey was made at the request of the Port of Seattle Engineering Department to support maintenance dredging operations at Terminal 115, Berth 1. This work was performed under Port of Seattle project 103773, T-115 Berth 1 Design.

The intent of this survey was to calculate payout volumes based upon pre- and post-dredge bathymetric surveys, conducted by the Port, of in situ materials at said location. Final Pay Volume was determined by creating a Digital Terrain Model (DTM) and generating AutoCAD Triangulated Irregular Network (TIN), of pre- and post-dredge hydrographic surveys and computing volumes to the nearest cubic yard.

Datums:

Horizontal Datum and Basis of Bearing:

North American Datum of 1983, Adjustment 2007, (NAD 83/07). Washington State Plane Coordinate System (North Zone), as derived by GPS Observations.

Vertical Datum:

Mean Lower Low Water (MLLW)

Vertical Benchmarks:

Port of Seattle (POS): HAZ 1 Elevation = 19.34' Contractor Benchmark: Elevation = 19.9'

Field Visitation:

Pre-dredge:

The field portion for the pre-dredge hydrographic survey was performed on December 01, 2009 (see Survey Data Table for times and tidal elevations).

Post-dredge:

The field portion for the post-dredge hydrographic survey was performed between the period of January 25, 2010 and February 25, 2010 (see Survey Data Table for times and tidal elevations).

Field Equipment:

- o Ross Surveyor Model 960 Hydrographic Survey System
- Trimble DSM GPS Receiver
- o Conventional hand lead lines (Manual Depth Measurement)

Bathymetry Survey Methods:

Daily discharge from the Duwamish River created strong water currents in the project area that impacted piloting and course travel. To mitigate these influences the pre- and post-dredge surveys were performed during periods of slack tide. Although not ideal, this was necessary to aid the helmsman in vessel navigation.

Prior to data collection vertical confirmation with POS benchmark HAZ 1 and contractor benchmarks were made, as well as adjustment to the project tide board. Transducer verification was also performed prior to and upon completion of activities. This was accomplished by implementing a bar check at the depths of 10 feet and 20 feet to confirm sonar draft below the water line.

Pre-dredge bathymetric data was collected by running lines parallel with the dock located at Berth 1 in the coverage area. Post-dredge bathymetric data was collected by running lines perpendicular to the dock.

Manual depth measurement techniques (conventional lead lines) were used in areas in which acoustic methods were not ideal. Derived elevations were noted accordingly.

Tide Elevations were noted in approximate intervals of 15 to 30-minutes. This was completed to document the accuracy of collected data and assist with post-processing efforts.

Horizontal positioning was determined by direct GPS observations resulting in real-time positional data.

Post-processing and Data Reduction:

Post-processing and data reduction was performed daily upon completion of field operations.

Post-processing software:

- o HYPACK 2009, Hydrographic Survey Software
- o Liscad v.8, Survey and Engineering Software

HYPACK 2009, Hydrographic Survey Software, was used to process the single-beam data collected. Tide elevations, times, and corrections were applied prior to editing data. Processed survey data was then reduced and defined to produce data in a 20-foot trackline interval. XYZ values were then exported for use in an American Standard Code for Information Interchange (ascii) file format.

The exported data was then brought into Liscad v.8, Survey and Engineering Software, in which a preliminary Digital Terrain Model (DTM) was created and checked for uniformity and quality. In addition, the DTM was compared to previous surveys for accuracy and consistency. Upon completion, the XYZ values were then exported in ascii file format and sent to the Port of Seattle Mapping Group

Final Volume Calculation and Data Exhibits:

Post-processed data was provided by field crew members in ascii file format. The Mapping Group, based upon the data received, calculated the final volumes, as well as prepared project exhibits and plots for this project.

Final Volume Calculation and Data Exhibit software:

• Autodesk Civil 3D Land Desktop Companion 2008

The XYZ ascii file was directly imported into AutoCad Civil 3D Land Desktop Companion 2008. Digital Terrain Models were then created using the provided data. Contours were generated using the Triangular Irregular Network (TIN) and were examined for quality and accuracy. Once verified, contours were overlaid for comparison and examined. A check was conducted to verify that the bathymetry data collected encompassed the project area.

Final Volume Calculations:

The values for the Final Volume Calculations were derived by the Average End Area Method . Computations, volume examination, and expressed results were performed using Autodesk Civil 3D Land Desktop Companion 2008

The Average End Area method calculates volumes by adding the area of a material type at one station to the area of the material type at the next station and dividing the sum by two, then multiplying the result by the distance between the sections (L=length).

$$V = \frac{L}{2} \left[A_1 + A_2 \right]$$

Data Exhibits:

Plot files and pdfs illustrating the result of the survey were provided to the Port of Seattle Engineering Department for distribution.

SURVEY DATA TABLE:

Dates of				
Surveys	Data Description	Equipment Used	TIME (2010)	Tidal Elevation (TZ/EM/PF)
12/1/2009	Pre Dredge by POS Survey	Ross Surveyor Model 960	11:26	10.00
			11:54	10.50
			12:04	10.60
1/25/2010	Post Dredge as of 1/25/2010	Ross Surveyor Model 960	9:13	11.40
			9:32	11.50
1/27/2010	Post Dredge as of 1/27/2010	Ross Surveyor Model 960	8:40	9.50
			9:52	9.80
2/5/2010	Post Dredge as of 02/5/2010	Ross Surveyor Model 960	9:17	13.30
			10:01	12.70
2/8/2010	To fill-in open area not covered from 2/5/2010	Ross Surveyor Model 960	9:06	9.60
			9:23	9.70
2/10/2010	Additional Lead Line Points	Ross Surveyor Model 960	9:17	8.40
			9:39	8.40
2/16/2010	Post Dredge as of 02/16/2010	Ross Surveyor Model 960	8:51	10.30
			8:57	9.90
			9:26	9.00
			9:33	8.70
2/17/2010	Post Dredge as of 02/17/2010	Ross Surveyor Model 960	8:31	10.70
	Additional Lead Line Points		9:40	8.80
			2:28	15.90
			3:30	14.30
2/19/2010	Additional Lead Line Points	Ross Surveyor Model 960	9:06	10.80
	Post Dredge as of 2/19/2010 FINAL (2/17 & 2/19			
	combined)		9:31	10.20
			10:08	9.20
2/23/2010	Sand Cap Topo as of 2/23/2010	Ross Surveyor Model 960	10:09	10.50
			10:31	10.60
			10:45	10.50
			11:06	10.40
			11:53	10.00

2/25/2010	Sand Cap Topo as of 2/25/2010 FINAL	Ross Surveyor Model 960	8:46	8.30
			9:23	8.50
			9:28	8.50
			9:36	8.70
			9:48	8.80

Appendix B

Field Logs

12 Varley	13
Sidimut Sampling	
Eurorti I	Lati (a) Lat 27.7
Thompson (Pornin)	Peneticition Recarge
Ouste 0946	THE IN CHIMAN
T115-5C-01 Drivel \$ 1000/115.	Note: A proprie tide accep has been installed
LAT 47 32.6386	Privet: Con Collaron de con matrial
Time 1000 - 1005 drive time	Moved reset
P 6 (713/4")	SC-02-01 Drip 2
Deth 28.2' Rejected	1 dt 47 32 6536 Jon 122 20, 2867
C + 0/01/1 / fill is and lin	Time 1111 - 11/11.5 Depth 27.9 Pointain 7: Depth 5'8"
- Conject soudy gravely	Perang of
Tweeficient records, Roject & Arie again	Had to push out further as construction crew
115-5C-01-CZ Deile Z 1030	Every + Quick, full petetration
Lot 47 32.6904 Lou 122 20.2812	the black silt
Povetation 7' Realing 5'	
Fax aquisition: Free fill to 3' ad then to Y.7'	
Black silt i botton & coe catcher	

14 SC-03 Drivel	5C-03-03 Drive 3
Loto 47.32.6698 Lou 122.20.2972 Jim 1137 Depth 27.7 P'5' R 3.3'	Lot 4132 6752 Low 122 20.2993 Time 1214-1218 Depth 28.2 P 28.27' R 4'11'
Statin - 27' East of designated poly Hit rejections at 4.8' Tide gage 10- 11.0 at 1141	SC-04-01 Davel
Clay of heavy gravel i shoe. Recevery insufficient. Rejected.	Lat 47 32 6858 Low 122 20.3011 Time 12:53 Depth 29.7 P 60" R 2' Refusal at 5'
SC-03-02 Drike 2 Lat 4732.6708 LON 122 202946 Time 1301 Depth 27.5 P-4' R O	Note: At the contincter given in the work glan, we were artside the dredge footprint and in 150 A. from Dock C. Figure 3 in the work Plan soland that Station y
Statue ~ 34' & pla point Sample rejected for insufficient perétration.	within 100 ft for status 3 / million to Recutive decision to more status to within 100 ft. of Dock C to ensure being w/in the divedge footprint.

17 16 8C04-02 Die 2 8004-05 Dre5 LAT 47 32 6821 LON 122 20 3084 47 32 6850 LOU 122 20 3052 1324 Depth 29.0 5'10" R 3'8" LAT Time 1414 Leth 28.8 Time 31811 5'10" Kerected Silty gravel in cetter. Siltare sad i catcher Rejected Drie 6 5004-00 UNT 47.32 6797 LON 122 203074 10'4" Tide Gag at 1345 Time 1432 Depth 28.8 P 41/2' R SCO4-03 Drie 3 1347-Tipped Over Rejected LAT 47 32.6831 LON 122.202993 me 1344-1359. Depth 30.8 After 5 filed cores spoke w Ja Slow. Lime He suggested we collect back @ SCOV-03 ad get a striple, ever if it is active the Rejected are as the sample location dredge prisy. was actside the dredge foot pait (150') SC04-07 Drive 7 in Figure 3 of the QAPP. LAT 47 32 6833 LON 122 20 2982 Time 1447 Depth 30.8 R=4:8" SCO4-04 Drive 4 AT 47 32626 LON 122 20,3090 P=7 Line 1402 Depth 29.6 Pac fell over-rejected Fie sad i choe

26 27 3/10/2018. 0800 ou bord Bill Javonski Dale The entire sample is composed of coarse sand w/ 4-8cm graded Dare 10YR 4/2 Soft wet coarse sand w/ graded sequences. There < 100 sitt. Imm have for the < 100 NM sitt. Imin band of sitt of swig with several than fules D> Grey O'Hora heavy, Any swell will the that over, that collapsed when waln was siphoned of . No odor. > Hads slip, trip, fall. No sheen. 89 The Gase 1009 Station SG-01 GRE 0910 47 32. 6403/122 20.2812 Stew 56-02 GRE 0'the P= 30 cm 1011 P=44 R=36 Depth 23-7 R=42 cm Gra DHore Depth= 23.6 Depty to sample in jards is soon 477 32.6534 10:11 122 20 2870 m Same 0

28 10x2 4/2 Surface, loose, wet 10 YR 3/2 Soft, wet, loose, poorly sorted poorly sorted normally graded coarse normally graded coarse sand u/ trace sitt (122). Sarface has Sand of trace site (K190) Thu < mm, vencer & fines, Soverl Imm vancer of sitt very fine normally grated 4-15cm services Sand Denterration to bettom of laws is ysim and Discom 10 x 10 × 15 Inclusion of native material (pred redge black suff / clay black, Soft, wit sitt @) ulsheen) large clast of pre-cap by form of sampler and represents. redement was present in 4-14cm pre-cap material deptin interval and covered a 20 30 & poxcore sortaic and. The inclusion contributed to both the 0-10 4 10.20 cm interval CAP Block 3 ample volumes. enabyse n + dive precap indusion 1106 R= 27 cuto box Snew in averlying water. Dull Have. 36

29

30	Junal 1745-121	5	1
sc-03		47 32,6900 13:25	
Drive &ft fube -> 7 of partnatin	9C-04 D=253 D=	122 20.3118	
1214 947 32.6697 /122 20.3019	1327 R=	3.7	
D = 24/6 $P = 7R = 4/7''$	Tide Gase 13.30	2,8	
Cap sad in Catcher			
1 st aut D and in Pan sand	Elected to try as	second cove	
107R 4/2 coarse sonder tim	SC-04-2 4	7 32.6901	
veneer. No odor. No sheen in	p = 23.8 12 p = 7'	2 20, 3128	
	R = 4.91		
cut O 2 below mudline black sat, showth unsalided	Sod in cos califor		
sity day of slight tes oda.			
in ove-cap loves.	Case records. Or	syGizzel in cercher	
	56-64- @SC-	04-2) 47 32.690	2
at 4.5' cut. com - fine	P 27		
vorinded ground af trace	R 1424		
than cap maturing gravel are			
Potric. Podor, No sheen .	Back a dack li	503	J

33 32 32 Processive: T. Thompson & Dase Braning. SC-03 Process Sac log water Sufficient waterial to take duplight SC032 ZA 100310 1214 SC532 ZA "Field Dyp ZB ZC ZD SC 532 Only sufficient material for 11/6 + 1-8 02 jor SC.042 Took 4 layers SCO42 ZA MS/MSD 20 1-1602 + 4 5802. SC-0421 Had rejected this scimple. However, sufficiently different (clay us. sad) to cuardive scimple into reining jors,

Appendix C

Core Logs

Job: 1115	Post	Dredge	Charact.
Street Les		7	
Job Numbe	r:		

Date/ Time: 1/28/10

Sample Logged by: D. Brownins

4" V braciale Type/Diameter of Sample:

Core Location/Sample Number: TIIS 5C-01

fair

poor

disturbed

Sample Quality: good

Notes:

Subsample No. Compaction Sample Depth Recovered Length (ft) nsitu Actual 9-% S-% 3-% Summary Sketch Depth (ft) Description Color DID (grain size, color, moisture, sheen/odor, biota, Size ' Size ' Size wood, other debris) 2 0-74cm, Soft, wet black 0-1 slightly coarse sandy (5) clayer (40-50) Sitt ZA (HS-SS). Slight H2S odor. Sand eventy disparsed. In sita UU 2-3 min blebs of sheens 1-2 B14 at 39-42 cm. 1×3 cin smea- 6 butf ZB day @ 45 cm & 56 cm. Saatteed twigs (0.3 x 2-3 cm) 5 72-101. Shoutly soft, damp sitty (30-40) CLAY (160-70) 2 2-2 SLEI Rock @ Bacin 1x 2.5cm +0 produces dill blues user yilling and coarse, angular sand 270 (whole unite 30 gofices 3-4 70% send). Soll. Daup. Slight fa- & 11502000, cannot produce sheen -(1120. ZD 4ths Seviate grainsize rame to five grand, Mineral Minic and appears construction related (1) damp sitta clay (30/20) plastic minin (2/2) 200220 Sound i produces minin dull sheen. Slight 4-5 ΖE sulfide odor. 108-112 Silly (10) dayey (10%) coarse some (50) & grovel. (30). Firm, moist. 112- 120 same as 105 108 120-126 Same as 108-112 126-139 produces dull like f:/fieldforms/coreprocess

No. of Sections:

Sample Length (from log):

Avg. % Compaction:

Job Number:	Date/ Time: 1/28 / 10 11:40			
No. of Sections: 2 (1+ catalua	Sample Logged by: D. Browning			
Sample Length (from log):	Type/Diameter of Sample: 4" Vibroire			
Avg, % Compaction:	Sample Quality: good fair poor disturbed			
Notes:				

Recovered Length (ft)	% Compaction	Color	Size % - G	Size % - S	Size % - F	DIA	Description (grain size, color, moisture, sheen/odor, biota, wood, other debris)	Insitu Actual Depth (ft)	Sample Depth	Subsample No.	Summary Sketch
						1157 131	0-78 10050, soft. wet trace sondy (CSB) cluppy (30-40) silt (60-65). Small son head twis Regnents/ heat Cognents. Moderate H2S ador I cm back of ha-site sheen G36cm. 78-101 104 5/1 vory soft wet clup homospice in texture. 2cm clot of black sity clup @94-96 cm. 101-109 GLEY 5/1, Sitty wood frogments, Woodlis lawmonly oriented & Prognants - Minor Sand admixed. 104-153 should shift (3048) clay (60-70) plashic. Organic a 190, 112 S and slight oily flar odor. Heterogenous in den sity material in Catchen 3-6' was invited to 104-153	<u>></u>	54 2 24 2 234 2 34 B		

Job: Port of Seattle TIIS Post Dredge	Core Location/Sample Number: THS SC-03
Job Number:	Date/ Time: 1/28/10 1415
No. of Sections: + Shoc/catacr	Sample Logged by: D. Browning
Sample Length (from log):	Type/Diameter of Sample: 4" Vibracine,
Avg. % Compaction: 4' r ""(Latcher)	Sample Quality: good fair poor disturbed

Notes:

Recovered Length (ft)	% Compaction	Color	Size % - G	Size % - S	Size % - F	DIA	Description (grain size, color, moisture, sheen/odor, biota, wood, other debris)	Insitu Actual Depth (ft)	Sample Depth	Subsample No.	Summary Sketch
	ms/coreproc	Ness.					0-36 cm loose, very soft wet Gley 2.5/1, trace meduin Sandy (3-5%) very clayer (to) sit (SD-60). H2S Odor. hydry veluced. Scattered organic particles. I cm drameder per grand partile 0 29 cm. 36-53 cm 54 4/11. soft, cohesive, moist clay. 36-33 cm 54 4/11. soft, cohesive, moist clay. 36-33 cm 54 4/11. soft, cohesive, moist clay. 36-33 cm 6187 2.5/11 black highly reduced, soft wet sitty (40) clay(60) trace sand. H2S odor. Sheen -[opplicch. 6 120 clutt blue. 69-89 cm s# Glay 2.5/11 80-99 11arse cable. Normally graded, possifiented. Reduced. Firm, moist. 89-102 Gley 1 311, Soft damp, weduin sand that is reversely graded. Slight 079 anic (national that is reversely graded. Slight 102-114. Gley 2.5/11. black, soft, damp, sitty (20-30) Clay (40-80, Plastic. 125 day, slight the odor, No in situe sheen. 14-122 Gley 1 3(1, soft damp gravely (20-30) clay (40-80, Plastic. 125 day, slight the odor, No in situe sheen. 144-122 Gley 1 3(1, soft damp gravely (20-30) medun Sand (70) No odors No 122- 4111" Skally Sand		0-1 FF ZA 1-2 FF ZA 1-2 FF ZB 23 FF ZC 1-4 ZE		

JOB: PORT OF SEATTLE TILS POST PRODE	Core Location/Sample Number: SC-C4
Job Number:	Date/Time: 1/28/10 /6:00
No. of Sections:	Sample Logged by: D Brown is
Sample Length (from log): $4' \beta^{\circ}$	Type/Diameter of Sample: 4" Ubra cui
Avg. % Compaction:	Sample Quality; good fair poor disturbed
Notes:	

Recovered Length (ft)	% Compaction	Color	Size % - G	Size % - S	Size % - F	DIA	Description (grain size, color, moisture, sheen/odor, biota, wood, other debris)	Insitu Actual Depth (ft)	Sample Depth	Subsample No.	Summary Sketch
							0-98 cm, Unionsolidated fo soff, wat, Ivace sand CI-200) sitty (40-50) Clay (50-60). Scattered plant fragments in appen 45 cm. Preserved methanic Vesicles. I-2 mm Eand stringer (O 20 cm. 98-98 unursaile blocky heteresceneous texture v1 cohosine classs of sitty Chay in welfer matrix (80 dasts, 20 matrix). Be omes plastic widepth (entre unit.) 98-122 Gley 1 3/1 damp firm, gravelly (30 coarse sayd. Vingraded poory solted, little to no trues		0-1 ft Scoy 2-2 Ft Scoy 2-2 Ft ZC 3-ta ZD 3-ta ZD		

Job: TILS Port of Seattle POST-CAP	Core Locat
Job Number:	Date/ Time:
No. of Sections: 2	Sample Log
Sample Length (from log): 5 (- 6" f caluer	Type/Diame
Avg. % Compaction: full drive (7 (7)	Sample Qu
Notes:	

2	Core Location/Sample Number: SC-032
_	Date/Time: 3/11/10 process. 09.15
_	Sample Logged by: D. Browning
lei	Type/Diameter of Sample: Y" Vibra con.
(Z)	Sample Quality: good fair poor disturbed

Recovered Length (ft)	% Compaction	Color	Size % - G	Size % - S	Size % - F	DId	Description (grain size, color, moisture, sheen/odor, biota, wood, other debris)	Insitu Actual Depth (ft)	Sample Depth	Subsample No.	Summary Sketch
		ess					0.23 cm, losse, vet, (2977)) gradial (normally) coarse Sand. Cap Material Sands are Stactal and subramdod (ithric No odor No sheen. 54 4/3 2.3 mm bands of black sitt inherstriked to sand O 18 & 21 cm and are trapped resersput - ed native materie that was stured up in placement 22-76 2.54 3/2 black saft, wet, d/most plastic, slightly difatent very (40/60 (agery sitt. Callapses O 14'ribbon, Slight H2S Odo. Produces sheen: Wapplicture of woter. 76-85 an Gley 1 5/1, soft morst auguia meduin sand. Trais gravel (553) 93-87. Firm, damp, colosine clayery sitt (259.40) 600 74R 3/1. Slight charcall burst odor. produces. dull sheea w/1/20. 89-140 2.57 5/3. Looses moist todamp, gravelly (20-30) coarse sen 1 (703. Normally graded to rounded, sandst gravels		23 Sep 23 P 28 1 28 1 20 1		

are lithic .

Job: TIIS Port of Seattle Post Caip

Job Number:

No. of Sections:

Date/Time: Collect 3/10/10 14:06 process 3/11/10 10:30

Core Location/Sample Number: SC-04 2

Sample Logged by: DB Browning

Avg. % Compaction:

Sample Length (from log): 5'

Type/Diameter of Sample:

Sample Quality: good fair

poor disturbed

Notes:

Recovered Length (ft)	% Compaction	Color	Size % - G	Size % - S	Size % - F	DID	Description (grain size, color, moisture, sheen/odor, biota, wood, other debris)	Insitu Actual Depth (ft)	Sample Depth	Subsample No.	Summary Sketch
							U-stem Cap Sand Coarse sand, (0050, wet Soft Roundid, gload Angled contact from 31-37 cm. 3 mm band of black- when stand of black- when stand site O 36.5 cm. (angled, 37-145, 2.57 5/2 Dense, from, unsveted. Coarse sandy (30) growel (70), Ungraded. growels are roundled and littic roughing in size from 2-10 cm No odor No streen.		25 26 26 26		

f:/fieldforms/coreprocess

L

Job: Port	of Seg	the
-----------	--------	-----

Job Number:

No.	of	Sections:
140.	Q1	000010110.

Sample Length (from log):

Avg. % Compaction:

Type/Diameter of Sample:

Sample Quality: good

Date/ Time: 3/10/10 conclus

Sample Logged by: D. Browning

fair poor

Core Location/Sample Number: SC-04-3 Reject

disturbed

10

Proces

3/11/

Notes:

Recovered Length (ft)	% Compaction	Color	Size % - G	Size % - S	Size % - F	DID	Description (grain size, color, moisture, sheen/odor, biota, wood, other debris)	Insitu Actual Depth (ft)	Sample Depth	Subsample No.	Summary Sketch
	% Co		Siz	Siz	Siz		wood, other debris) 0-10 C ap 10-35, 100se, 107R 4/3 600win wet, clayed 30 sitt (60) with minin coarse sand (10) 36-46- ungraded poorly sorted trave silly (10) coarse sand (90) 46-78 seeme as 10-35 10 YR 4/2 \$ Kept based on conver station W put of Seattle		A Same	Subse	Su
							174				

f:/fieldforms/coreprocess

Appendix D

Sediment Core Photographs

(Note: This appendix is provided on DVD)

Appendix E

Chain of Custody

Columbia				CI	HA	IN	OF	C	US	TC	D	Y						1		SR	#:			
An Employee - Owned Company 1317	7 South 13th	Ave. • Kels	so, WA 9	8626	• (360)	577-72	222 •	FAX (360) 6	36-106	8				P	AGE		-	OF			_ CO	OC #	
PROJECT NAME Port of Spath	le TI	15 Post	Dre	dae	1	1	ds	/	1	1	1	/	/	1	1	1	1	1	1	1	1	1	1	
PROJECT NUMBER		1.2.2.	UT	1	-	/	1 Sol	SEP	1	luble	(moj	ter	/	1	/ /	/	Villo	1	1	1	/ /	1	N	
PROJECT MANAGER	Muito	Lin			708	2/4	, of	à	La La	PrSo	qui	e wa	/	/	2	7	181	/	/	/	1	. /	ž/	
COMPANY/ADDRESS	ENTIE	WA 9	8105	-	AINE	10 2	5914	Dag	and a	netals	na D	5	/	18	J 82-	ar lo	1	/	18		aratio	15	5/	
EM	AIL:	NEISEE	40.0	m	1 No	Soli	D41	STM	10	IN U	a	in	17	Con	M	Wat	/ /	0	15 [] BI		Prep.	14	/ /	/ /
PHONE # 706-418-6173 FAX	×# 206-4	118-6	187	1	54	olatile	ISTM	T	NOSON	1SF	120.11	t belc	808	100	MS SI	Pore	1560)	1829	BER C		s bel	E	/	
SAMPLER'S SIGNATURE			-	78	tal	5/4	Size	de la	S IS	onia	s (lic	Cideo	8	volat	notin,	a loo	ns (s	E HOLA		10 00	Iction	91	/	
SAMPLEID DATE	TIME		MATRIX	NUM	10	100	Grain	Suffi	AL	Ama	Metal	Pesti	PCB	Sem	Orga	Volat	Diox		E la	Tissu		1	/	REMARKS
TUS-SC-01-100113 1/27/10 (9:40	LAD I.D.	SED	4	X	X	Y				1	-	X	X			X							SC-NI-ZA
FILS - SC OF - 100113 7 A	1	-	1	4	X	X	X					-	X	$\widehat{\mathbf{X}}$			X							SCOT ZR
THE SCOLLONIZE ZE				4	X	X	X		-				R	$\widehat{\times}$	-		X		Ī		P			51-11-21
THE CONTRACT				4	X	X	V						Y	()			X			-				5-0120
THE SCOLLARD ZENT	h			4			~	-					-	~			-		-	1-	V		. 1	SC-01-25
This scorrougt ce y	V		~	1							-			-							~			CC
									-															
	-											-				-								
		-		-										1										
			-	-		-						-												
	INVOIO	CE INFORM	ATION		Circle	which	metals	are to t	be ana	vzed:	_	-	-		_		-	-	-		-	-		
Boutine Benort: Method	P.O. #			-	SM	S Meta	Is: As	s Co	I Cr	Cu	Pb	Hg	Ag	Zn										
Blank, Surrogate, as required	Biii 10:			-	SEN	CA Meta M Meta	lls: Ag ls: Co	g As d Cu	G Co J Pt	I Cr b Hg	Cu Ni	Hg Zn	Ni	Pb	Se	Zn		_			_			
II. Report Dup., MS, MSD as	TURNARO	UND REQU	JIREME	NTS	SPEC	CIAL IN	ISTRU	UCTIO	NS/C	OMME	INTS:				0									
required	24 hr.		48 hr.		ar	eu.	re	1.C	ina	un.	3	M	ate	aie	al la			rp.	Ja	MIL	11 5	Va	C.	8270
(includes all raw data)	5 Day	1			For	r 4	No	c's	1 57	in	on	6	21	PA	Hor	14	1	rer	. /	5	1	~	120	0010
IV. CLP Deliverable Report	Provid	de FAX Resu	ults	5)	* R	eter	, to	T	1.5	Pay	1-D	rede	1e	Sale	Sart	faice	50	den	nect	CLR	or.	GP	eil b	
V. EDD																								
	Requ	lested Repor	rt Date						-									-				-		
RELINQUISHED BY:	12:00			RECE	IVED	BY:			-			RELI	NQUI	SHED	BY:						RE	CEIVE	ED BY:	
Signature Date/Time	126	Signati	ure		- Da	ate/Tim	ne	12.30	0	Sign	ature		-	Dat	e/Time	e		3	Signa	ture			Date/	Time
Printed Name Firm		Printed	Name		- Fi	rm	-	-		Print	ed Na	me	-	Firr	m				Printe	d Nan	ne	-	Firm	

COCSTC 7-04

Columbia Analytical Services**					CI	HA Sedi	IN ment	OF	Tissu		TC	DD 'stry	Y			F	PAGE	E	1	_OF	SF	R#:	_ cc)C #	
An Employee - Owned Company	13	817 South 13	th Ave. • Ke	elso, WA S	98626	• (360)	577-72	222 •	FAX ((360) 6	36-106	8									-				
PROJECT NAME Port of PROJECT NUMBER	Seafflu	e TII	s Post :	Dredg	e	-/	1	Solids	EP	/ /	ble	(m	1		/ /	1	1	Nuc	\square	/	/	/	/	11	
PROJECT MANAGER COMPANY/ADDRESS' PHONE # SAMPLER'S SIGNATURE	Ming NF 13	da Lin SeaHI MAIL: tst.omp AX# 206-6	E WA 5000 50 19 - 61	9810 eelle. (87	Ser To	TEH OF CONTAINED	Volatile Solids M.	1 (ASTM DA1201.	de ASTM DA	13 (9030M) 1 PSED	Donia SEM (metals lice)	Ial (350.1m) [] Plumb	cides (inst below) Fore wat	S (800,1-L)	ociors of Conce	noting Sim Doc	IK DPORE Water	ns (8260) DTBT	13 0 8290 WTPL 8290	00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	OHU SO	uctions belown	HIVE ONCH	1	
SAMPLELD	DATE	TIME	DARID	MATDIX	13	15	10	Grain	SEE	F	THE T	Meta	est	PCB	Sem	Deg D	olat	10io			Tissi	and and	1	/	REMARKS
SAIVIFLE I.U.	Unalle	TIME	LAB I.U.	MATHIX	4		X	0		14		<		V	X	-4	-	X	144		1	1	1		C1 02 20
THS SCO2 101127-2A	TEMOR	11.11	-	700	T	X	\ominus	C		-	-	-	-	$\widehat{\nabla}$	\bigcirc	-		5	-	-	-	-	-		56-02- CA
-ZB					1	X	5	X	-	-	-	-	-			_		X		-	-	-	-	2	5C-02-2B
11 -ZC					4	X	X	X	-	-	-			X	X			X	-				-	-	56.02.7C
11 -ZD				4	X	X	X	_					X	X	_	-	X			-			-	56-02-ED	
11 -ZE	¥	1		T	4					-	-		_									X		11	SC+02-7E
TUS-5402-10017178	El	-4	-		4		_							-			- 10				-	X			SC-02-2F
			-				-	-				-		-		-	-					-			
		-	-		-			10						-			-			-					
			-	-		-								-	- 1		-	-		-	-				
		INVC	ICE INFOR	MATION	J	Olivela						-	-	_	_			-		-	-	-	_		
I. Routine Report: M Blank, Surrogate, required	ENTS Nethod as	P.O. # _ Bill To:				SM	S Meta CA Meta M Meta	ls: A als: A ls: C	s Co g As d C	d Cr s Cc u Pl	Cu d Cr d Hg	Pb Cu Ni	Hg Hg Zn	Ag Ni	Zn Pb	Se	Zn								
II. Report Dup., MS, required	MSD as		OUND REC	QUIREMI	ENTS	SPEC	CIAL IN	NSTRU	JCTIC	nan	OMME	ENTS:	ma	teri	l								1-	-	
(includes all raw of	eport lata)	5 D	ay			For	51	1003	51	511	1 01	n f	PAH	071	icy ,	Ve	ma	(21)	us	50	100	-5	92	TOC	
IV. CLP Deliverable F	IV. CLP Deliverable Report Provide FAX Results									TI	51	ost	Do	rolq	e 3	546	541	fati	e S	nd.	CU	nar	9	AP	ρ
V. EDD	_ V. EDD													5											
	Requested Report Date												-			-									
RELINQUISH	RELINQUISHED BY:												REL	NQU	ISHED	BY:						RE	CEIV	ED BY:	
Signature	gnature Date/Time Signature						ate/Tin	ne	-50		Sign	ature		-	Dat	te/Tim	e	-		Signa	ature			Date/	Time
Printed Name	nted Name Firm Printed Nam										Print	ed Na	me		Fin	m				Printe	ed Nar	me		Firm	

COCSTC 7-04

Columbia Analytical Services**					CI	HA Sedi	IN ment	OF and	Tiss		STC hemi	DD stry	Y			F	AGE		1	OF	SR	#:	_ CO	C #	
An Employee - Owned Company	13	317 South 13	Bth Ave. • Ke	elso, WA s	98626	• (360)	577-72	222 •	FAX	(360) 6	636-106	58	-					-	1		1				
PROJECT NAME PROJECT NUMBER	Sectli	e TII	5 Port	Dree	dye	- /	1	Solids	9	/	le	1	1	/		/ /	1	1	/ /	/	/	/	/	11	
DDO ISOT MANAOSD					_		1	tal	PSE	1	olut	below	ater	/	/	/	1	10	/	/	/	/	/	1	
PHOJECT MANAGER	Thom	pson 11	lingta	Lin			2/5	2/	A	2 LAS	er s	umb umb	ren	/	/	SIL	3	H/	/	/	/	15	1	N.	
COMPANY/ADDRESS	RNE	Sec.	itie w	1 731	05	TAINE	plids D	4120A.	MUN	100	(metals	In In		1	Ono	1 Bri	ater		/	BDC		paratic	1	1	
	6	- Chiomo	sing se	ella	im	8	le Se	ND	457	2	EN	(E)	(mo)	87.1	37	MIS	Me M	-	00	015	/ /	9 Pr	1.2	/ /	
2406-418-617	3	706. 4	418-6	197	/	5/	olati	487	01	9030	00	350	st be	(80	So2.	SINS	Po	3260	18	JA I	1	Id st	=	1	
SAMPLER'S SIGNATURE	, D	in	2		MBC	Total		ain size	fide Tide	AVS 4	monia	tale	sticido.	Bs (8	mivola	ganotin	atiles	Skins (Tal Martin	IDIAL	Sue Se	truction	7	/	
SAMPLE I.D.	DATE	TIME	LABT.D.	MATRIX	13	10	12	02	100	0	140	Me	Pe	and a	Sel	PO1	10/	100	00	10	Tis	A A	/		REMARKS
THIS SCO3 HOURA TA	1/27/10	12:18		SED	4	X	X	X						X	X			X							
11 - ZB	1				5	×	X	X						X	X			X							
" -20					4	X	X	X				-		X	X			X							
" -20				4	X	X	X						X	X			X								
" -ZE	5	+		b	4				-			17		1				(X		1	
								0 3				E								(10)		-			
				-	-																				
	1										1														
								8											-						
REPORT REQUIREM	ENTS	INVO	ICE INFOR	MATION	1	Circle	which	metals	are to	be ana	lyzed:														
I. Routine Report: N	lethod	P.O. # _			-	SM	S Meta	ls: A	s Co	d Cr	r Cu	Pb	Hg	Ag	Zn										
Blank, Surrogate, required	as					SE	CA Meta M Meta	als: A ls: C	g A: d C	s Co u Pl	d Cr b Ho	G Ni	Hg Zn	Ni	Pb	Se	Zn								
II. Report Dup., MS,	MSD as	TURNAR		UIREM	ENTS	SPEC		ISTRU	JCTIC	NS/C	OMM	ENTS													
required		24	hr.	48 hr.		ari	chibe	e 1	em	and	ing	m	ater	int	5				-				112		
III. Data Validation R	eport	5 D	ay			Fo	r Su	loc.	5	SIM	for	P	At c	May	N.V.	acm	au	115	20	OC	5 5	827	oc	-	
(includes all raw o	lata)	rking day	s)	10	eter	. 4	0 :	Th	5 T	351	Dre	dae	1 5	ub	surd	gie	5.	d-1	Clia	0	Qŕ	PP			
IV. CLP Deliverable F	V EDD Provide FAX Results									1		dia	6.		r.0	1.2	20	2	Vor	100	K d	1.	x 1	- Kab	6.
V. EDD				Sal	nra	IC.	50	-	nos	124	- 7	0	2	25	2		-110	La C	2011	Sela		5.			
RELINQUISH	RELINQUISHED BY:												REL	INQU	SHEE	BY:	-		T		-	RE	CEIVE	D BY:	
Signature	ignature Date/Time_ Signature							10	7-30		Sign	ature		1	Dat	e/Tim	0			Signa	ture			Date/	Time
Printed Name	Firm		Deinte	d Mare	15			5			Drie	tod	me		- Ein	cor min	0			Drinta	dNar			Eirm	
- mileo Marile			Printe	eu mame		H	im				Prin	ied Na	une		Fin	m			- 1	Frinte	dNan	ne	_	Firm	and the second

COCSTC 7-04

An Employee - Owned Company 1317 South 13th Ave. • Kelso, WA 98626 • (360) 577-7222 • FAX (360) 636-1068	
Port of Southe 1115 Post Dreilge	7
PROJECT NUMBER	/
PROJECT MANAGER	/
COMPANY/ADDRESS	
Email: Relicion of so to	
PHONE # 418-673 FAX # 06. 418 - 6187 4 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
SAMPLER'S SIGNATURE SAMPLER'S SIGNATURE DI DI D	
SAMPLE I.D. DATE TIME LAB I.D. MATRIX 2 0 2 30 00 0 20 2 2 2 2 2 2 2 2 2 2 2	RKS
TIISSCOULDOI272A 1/27/10 14.41 50 4 X X X X X SCOU	-7A
"-26 " " " 5 X X X X X X X X X X X X X X X X	. 7B
"-2C " " 4XXX XX XX XX SC.0	470
"-ZO " " " YXXX X X X X X X X X X X X X X X	.70
"-ZE " " 7	1-75
DEPORT REQUIREMENTS INVOICE INFORMATION Circle which metals are to be analyzed:	
P.O. # SMS Metals: As Cd Cr Cu Pb Hg Ag Zn	
Blank, Surrogate, as required Bill To: CA Metals: Ag As Cd Cr Cu Hg Ni Pb Se Zn SEM Metals: Cd Cu Pb Hg Ni Zn	
II. Report Dup., MS, MSD as TURNAROUND REQUIREMENTS SPECIAL INSTRUCTIONS/COMMENTS:	
required48 hr. XAPCHINC PESTOMAN MATERIALS	
XIII. Data Validation Report5 Day	
IV. CLP Deliverable Report Standard (15 working days) & Keter to: 115 rost Drage Subsurt star Char.	
	>
Requested Report Date 25 26-3162+2 Box Const P	101
RELINQUISHED BY: RECEIVED BY: RELINQUISHED BY: RECEIVED BY:	
Signature Date/Time Signature Date/Time Signature Date/Time Date/Time	
Distant Name Time Tons Cas	_

COCSTC 7-04

Columbia					CI	HAI Sedir	N	OF	C Tissu		STO	DD	Y						i	0.5	SR	l#:		0 "	
An Employee - Owned Company	13	317 South 13t	th Ave. • Ke	lso, WA 9	98626	• (360)	577-72	222 •	FAX ((360) 6	36-106	8				P	AGE		1.	_ OF			_ CO	C #	
PROJECT NAME PROJECT NUMBER	16 71	ILS P	WST-D	REDG	R	-/	1	¹ Solids	SEP	1	uble	(m)	er	/ /	/ /	1	//	Aluo	//	/	1	/ /	1	1	///
PROJECT MANAGER	- a à					1:	, / ,	'ota	all	19	Sol	leg is	wat	/	/	0	-	181	/	/	/		/	/	/ /
COMPANY/ADDRESS	Dern.	a de la		0	9810	INER	10	1		PS	Vate	- All	Ton	/	1	ener.	2	7	/	1	0	ation	/	/	/ /
- 4401 CATE	E	EMAIL:	C SEAT	I.C.C.	in	NI A	Solid	0412	IMI	14	1 m	1UL	12	17	Cono		Wate	/ ,	/	12/20	5	repa	10	1	/ /
PHONE #	F	AX #		- 1	-/	20/	atile	MI	AS	3011)	SEN	0.1m	below	8081	70	SSIM	ore	60	8290	R001	/ /	ple p	3	/	
SAMPLER'S SIGNATURE		206 4	18-61	87	-	04	ion /	20 ZO	Da	06)	a la	1(35	(list	1800	lors	SCIM	0		DIA	190	0 /0	tions	E	/	/
Dent	-				MBIN	Tota	10	Binsi	- Hide	AVS	loun	stale	stici	Be	Parive	Build	latile	ioxin 1640	E SAC	Linia	Ssue	Struc	1	/	/
SAMPLE I.D.	DATE	TIME	LAB I.D.	MATRIX	Ž	0	12	00	00	0	40	M	10	a a	SA	00	12	10 A	00	0	FS				REMARKS
TIIS 50032 100310 ZA	3/0/10	12:14		Seo	4	X	X	X			-	1		X	X	-		X		_	-	X			
111556072 1003102B	1	17:14			4	X	X	X						X	Y			X				X			
7115 50032 100310 7C		12:14			4	X	X	X					2	×	X			X				X			
TILS 55037 100710 270	5	12:14			4	X	X	X						X	X			×				X			
THIS 560532100810 24	1	12:14	1	23	3×	X	X	X						×	X			×				X		10 T	
THE SECANZ 100310.72		14:34			5	X	6	X						X	X			X				X			MSIMSD
THESE dua louzia 28		16/1211			4	X	V	V			F. I.			X	X			×		1-1		X			
3115 (1 BUT 1003 10 21		1434			4	V	5	5						5	X			×				×			
THE 62 1942 102210 20		115-24			5	5	S	S			1	- 1		X	×			X				X			
THE SCHUSING IN 21	its	12-113		¥.	4	C	C	8						×	Y			X	-			1			11/1/2012
REPORT REQUIREME	NTC	INVO	ICE INFOR	MATION	1	Circle	which	metals	are to I	be ana	lyzed:	-				-		-		-	-	1			4.000
I. Routine Report: Me	ethod	P.O. # Bill To:	-		-	SM	S Meta	Is: A	s Co g As	d Cr	Cu d Cr	Pb Cu	Hg Hg	Ag Ni	Zn Pb	Se	Zn								
required					-	SER	/ Meta	is: C	a Ci	u Pi	o Hç		Zn				-		_						
II. Report Dup., MS, M	MSD as	TURNAR	OUND REG	UIREM	ENTS	SPEC	IAL IN	ISTRU	JCTIC	NS/C	OMME	INTS	Ja	.0	5.										
required	-	24 h	r	_48 hr.		Ave	Let al	e li	Lewa	ain	ing	P.W.	AHOU	ac.	2	- 1		F							
/ III. Data Validation Re (includes all raw da	ata)			Re	er	to	2 -	TI	5	Pos	1 5	redi	re !	sab	SH	ct-a	ce	QI	APP	6					
IV. CLP Deliverable R	eport	Stan	idard (15 wor	rking days	s)	For	5	Vac	4	Si	in f	n	P	Att	Or	ily.								1-	
V. EDD		FIOV			~			-						1											
		Rec																							
RELINQUISH	ED BY:	1.1.1.	RECE	IVED	BY:						REL	INQU	ISHE	BY:						RE	CEIVE	D BY:	1		
Signature	ate/Time	14:30	-	- Da	ite/Tin	ne			Sign	ature	-		Dat	e/Time	9		1	Signa	iture		-	Date/	Time		
Printed Name F	irm		Printe	d Name		- Fi	rm	-		-	Print	ed Na	ame		Fir	m		-		Printe	d Nar	ne	_	Firm	

Columbia					CI	HA Sedi	IN	OF	Tissi		STC nemis	DD '	Y					_	,	05	SR	{#:		C #	
An Employee - Owned Company	1:	317 South 13	th Ave. • Ke	Iso, WA	98626	• (360)	577-72	222 •	FAX	(360) 6	36-106	8				P	AGE	-	1	_ OF	-6	-		IC #	
PROJECT NAME Port of	Sen HU	o THIS	- Pas	+- (0.	0		1	8	1	7	1	1	1	7	1	1	7	7	7	1	1	1	1	1	
PROJECT NUMBER	and I	Alant	lin		-	-1	/	Soli	EP	1	ible	(mo	ler	/ /	1	/ /	1	NINO	1	/ /	1	/ /	/ /	/ /	///
PROJECT MANAGER	L	in consigning	Gri			-	0/+	l'ota	A	19	Sol	hh bel	wat	/	/		1	787	/	/	/		1	/	///
COMPANY/ADDRESS		A.F. 1-					5/4		-(m)	PSH PSH	Vate,	In a	ō l	/	1	ener.	0.	0	/	1		ation		/	///
7401 4P	TONA	MAIL:	SEARC	EWA	9910	VIA	olids	1120	IN	14	- me	100	1	12	ono	70	Vate		/	10	E/	epar	1	/ /	
PHONE #	F	AX #	ion @ St	EUC.	com	00	tiles	TMO	ASI	(mo	SEM	(m)	elow	081.	70	Sim	ore v	(0)	062	801	/ /	Delov	141	/ /	
2 46-418-6173	3	206-	418-61	87	_	01	Vola	(AS	Da	300		(350	list b	(800)	orso	Cin	6	185	000		1	ons	E/	/	
			-		MP	Total		lin siz	fide	al/S	nom	als	sticid	Be	mivo	gano	atilo	Sins	ELONA	Pin Po	Sue	truct	21	/	/
SAMPLE I.D.	DATE	TIME	LAB I.D.	MATRIX	13	10	12	15	13C	10	40	Me	Pe	100	Se	00	1º1		100		Tis	2	1		REMARKS
THIS SOUTH 1003	3/10/10	09:10		Sp	4	X	X	×							X	-		X				X			
EUS SCIALR IDOZIO	1	9:10		1	4																	X			
THESANICIONZIA		9:10	_		1				10	-												X			
TUESCOJA INDIA		10:11			6	X	X	X							X	Y		X				X			M5/M50
THE SOUT & LOUZIN		13.11			1	1	-	1							-			1			0.0	X		F	
1115 500 215100310		10:11			1	1					-	-										X			
THE SEASALLE	1	11:51			1	V	V	V				1			X			×	-			V			
1115 SCIU SA 100310	1	11.06			7	X	~	A			1		-	-	~			~				X		-	
1115 36038100310		11.06	-		1			-					-	-		-				-	-	Ŷ	-		
1115 50030/003/0	W.	11.06	-	V	1				-	-							-		-		1.000	0	-		
	1	INVO	ICE INFOR	MATIO													-	-	-	-	-				
REPORT REQUIREM	ENTS	P.O. # _		MATIO	-	Circle	which	metals	are to	be ana	lyzed:	-			-										
I. Routine Report: M	Method	Bill To:			-	SN	CA Meta	als: A	s C	d Cr s Co	d Cr	Pb Cu	Hg	Ag Ni	Zn Pb	Se	Zn								
required	ao				-	SE	M Meta	ils: C	d C	u Pl	b Hç	a Ni	Zn	_			_	_		-	_	-	-		
II. Report Dup., MS,	MSD as	TURNAR	OUND REG	UIREM	ENTS	SPE	CIAL I	NSTR	UCTIC	DNS/C	OMM	ENTS:			- Ds										
required		24 h	nr	_48 hr.		Ar	clea	ve	Ken	na.		7 ~	nat l		LL.	. la	110	ee :	P	lav	4	0	APP	>	
III. Data Validation R (includes all raw of	leport data)	5 D.	ay			Ke	101	-10	1	(15	x P	221	ca	P	10nd	Maria		2		1000		4			
IV. CLP Deliverable f	Report	Star	ndard (15 wo	rking day	s)	51	in	Ca		PAN	1 0	Mly												-	
V. EDD		Pro	VIDE FAX HES	suits								1													
	_	Re	quested Rep	ort Date																					
RELINQUISH	HED BY:				RECI	IVED	BY:						REL	INQU	SHE	DBY:						RE	CEIV	ED BY:	
Signature	14:30 / Date/Time	5/12/10	Ciano	turo	1		ato/Tin	ne	143	6	Sian	ature		_	Da	to/Tim	0			Signa	ature			Date	Time
Printed Name	Bes/	SEE	Signa	uure	1		ale/ In	2		. /	Driv	ad M-	-	_	Da	m .	0			Drint	ad Ne	20	_	Circo	
			Printe	u Name	2	H	unu				Prin	ied Na	une		Fir				-	FILLE	su Mar	ne		6.010	

COCSTC 7-04

Columbia					CI	HA Sedi	IN ment	OF	Tiss		STC	DD	Y					_	7	05	SR	{#:		0.1	
An Employee - Owned Company	1:	317 South 13	th Ave. • Ke	lso, WA	98626	(360)	577-72	222 •	FAX	(360) 6	36-106	58				ł	AGE		1	OF		2	_ CO	C #	
PROJECT NAME PROJECT NUMBER	euHte	T/15	Post (CAP		-/	1	l Solids	SEP	T	uble	(mo	ler	1	1	1	7	Nino	1	1	1	1	1	1	///
PROJECT MANAGER COMPANY/ADDRESS	UA AN	in /MI ENC	ngta i SERME	E wa	9810	NTAINED	olids CT	120. Jola	d Stone	10 PSEL	(metals in	Dumb	Pore wa	1	Jon	Toc	Valer Valer	TBI DIA	/	BDC		eparation			
PHONE # 206-412-6173 SAMPLER'S SIGNATURE	Þ-	AX # 706	418-6	187	MALE	Otol.	an Volatile	In size	Fide AS	01al (903000)	monia SEN	otal (350.1m) alc	ticides.	Bs (8081	mivolatilos	anotine Silv	tilo.	xins (8260)	WTPL 8290	HO DP00	sue c	ructions belo	2110	/	
SAMPLE I.D.	DATE	TIME	LAB I.D.	MATRIX	73	0	10	SA	Sul	10	140	Met	Pes	a	No.	00	Voli	io io	100		Tis	2	/	/	REMARKS
+115 54 (04 A 100310	3/10/10	13:27	-	20	4	×	×	X							X			X				X			
TILS SG QYA LOOBLD	T	13:27			1																	X			
1115591046100310	¥	13:27		t	1																	X			
				v																					
		_																					1	r.	
					120																	1			
			1 -									G									11		T		-
		1																							
												1													
																			1	-					
REPORT REQUIREM	ENTS	INVO	ICE INFOR	MATION	1	Circle	which	metals	are to	be ana	lyzed:														
I. Routine Report: N Blank, Surrogate, required	Method as	Bill To:				SM	IS Meta CA Meta M Meta	ls: A als: A ls: C	s C g A d C	d Ci s Co su P	r Cu d Cr b Ho	Pb Cu g Ni	Hg Hg Zn	Ag Ni	Zn Pb	Se	Zn								
II. Report Dup., MS,	MSD as	TURNAR	OUND REG	UIREM	ENTS	SPE	CIAL IN	ISTRI	JCTIC	DNS/C	OMM	ENTS	:												
III. Data Validation R	leport	241	nr	_48 hr.			Sc	E	1	PRO	evic	ours	5												
(includes all raw o	data)	Star	ndard (15 wo	rking day	s)				T	A	at.	-													
IV. CLP Deliverable I	Report	Pro	vide FAX Res	sults																				1	
V. EDD		Be	quested Rep	ort Date																					
RELINQUISH	HED BY:				RECE	IVED	BY:		-		-	-	REL	NQU	ISHE	BY:			1			BE	CEIVE	D BY:	
Sighatura	3/12/0	14:30		JUST.		_	. ker	1	14	-										0				-	
Printed Name	Firm	SE	Signa	ture	1.	D	ate/Tim	ne			Sign	ature			Dat	te/Tim	e			Signa	ture			Date/	lime
Printed Name	Firm		Printe	d Name		F	irm				Prin	ted Na	ame		Fir	m				Printe	d Nar	ne		Firm	

Appendix F

Subsurface Sediment Samples Comparison to DMMP Criteria

														Statio	n						
									SC01 Z	Ϋ́Α		S	SC01 ZE	3		S	6C01 Z0	;		SC)1 ZD
									1/27/20	10		1/	/27/2010	0		1/	/27/201	0		1/27	/2010
									9:44	-			9:44				9:44	1		9	:44
																					TOC
	SQS	CSL						Valid	Result Valid	TOC NormConc	Valid	Result	Valid	TOC NormConc	Valid	Result	Valid	TOC NormConc	Valid	Result	Valid NormConc
Chemical Name	(ppm OC)	(ppm OC)	SL	BT	ML	LAET	2AET	Result	Unit Flag	(ppm OC)	Result	Unit	Flag	(ppm OC)	Result	Unit	Flag	(ppm OC)	Result	Unit	Flag (ppm OC)
Solids, Total								52.5	percent												
Solids, Total								52.8	percent		60.7	percent			64.1	percent			74.7	percent	
Carbon, Total Organic (TOC)								2.15	percent		1.54	percent			4.69	percent			1.01	percent	
Gravel								1.7	percent		1.67	percent			2.28	percent			13.9	percent	
Sand, Very Coarse								1.08	percent		1.6	percent			1.57	percent			5.05	percent	
Sand, Coarse								2.61	percent		4.42	percent			3.51	percent			8.78	percent	
Sand, Medium								8.97	percent		17.3	percent			9.89	percent			13	percent	
Sand, Fine								7.93	percent		16.5	percent			11.1	percent			9.48	percent	
Sand, Very Fine								8.85	percent		11.2	percent			11	percent			7.53	percent	
Silt								59.3	percent		35.3	percent			52.2	percent	_		30.6	percent	
Clay								11.3	percent		15.4	percent			10.6	percent	-		8.71	percent	
LPAH	370	780	5200	—	29000	5.2	13	213		9.91	306			19.87	923	3		19.68	893		88.42
Naphthalene	99	170	2100	_	2400	2.1	2.4	12	μg/kg	0.56	6 40	µg/kg		2.60	25	i μg/kg	D	0.53	35	µg/kg	D 3.47
Acenaphthylene	66	66	560	—	1300	1.3	1.3	15	μg/kg	0.70	21	µg/kg		1.36	28	β µg/kg	D	0.60	28	µg/kg	2.77
Acenaphthene	16	57	500	—	2000	0.50	0.73	13	µg/kg	0.60	23	µg/kg		1.49	160) µg/kg	D	3.41	220	µg/kg	D 21.78
Fluorene	23	79	540	—	3600	0.54	1.0	16	μg/kg	0.74	25	µg/kg		1.62	110) µg/kg	D	2.35	150	µg/kg	D 14.85
Phenanthrene	100	480	1500	—	21000	1.5	5.4	110	µg/kg	5.12	130	µg/kg		8.44	270) µg/kg	D	5.76	200	µg/kg	D 19.80
Anthracene	220	1200	960	—	13000	0.96	4.4	47	μg/kg	2.19	67	µg/kg		4.35	330) µg/kg	D	7.04	260	µg/kg	D 25.74
2-Methylnaphthalene	38	64	670	—	1900	0.67	1.4	8.5	μg/kg	0.40	28	µg/kg		1.82	24	⊢µg/kg	D	0.51	34	µg/kg	U 3.37
НРАН	960	5300	12000	4600	69000	12	17	1873		87.12	2794			181.43	4733	3		100.92	8236	Ĩ	815.45
Fluoranthene	160	1200	1700	11980	30000	1.7	2.5	280	ua/ka	13.02	310	ua/ka		20.13	1200) ua/ka	D	25.59	2700	ua/ka	D 267.33
Pyrene	1000	1400	2600	_	16000	2.6	3.3	430	ua/ka	20.00	1100	ua/ka	D	71.43	1300) ua/ka	D	27.72	2600	ua/ka	D 257.43
Benz(a)anthracene	110	270	1300	_	5100	1.3	1.6	130	ua/ka	6.05	140	ua/ka	-	9.09	400) ua/ka	D	8.53	780	ua/ka	D 77.23
Chrysene	110	460	1400	_	21000	1.4	2.8	200	ua/ka	9.30	200	ua/ka		12.99	610) ua/ka	D	13.01	940	ua/ka	D 93.07
Benzo(b)fluoranthene								290	ua/ka	13.49	390	ua/ka		25.32	440) ua/ka	D	9.38	490	ua/ka	D 48.51
Benzo(k)fluoranthene								94	ua/ka	4.37	120	ua/ka		7.79	150) ua/ka	D	3.20	180	ua/ka	D 17.82
Total Benzofluoranthenes	230	450	3200		9900	3.2	3.6	384		17.86	510	13 3		33.12	590)		12.58	670	13 3	66.34
Benzo(a)pyrene	99	210	1600		3600	1.6	3.0	170	µq/kq	7.91	250	µg/kg		16.23	290) µq/kq	D	6.18	300	µg/kg	D 29.70
Indeno(1,2,3-cd)pyrene	34	88	600		4400	0.6	0.69	120	µg/kg	5.58	130	µg/kg		8.44	150) µg/kg	D	3.20	120	µg/kg	D 11.88
Dibenz(a,h)anthracene	12	33	230		1900	0.23	0.54	29	µg/kg	1.35	34	µg/kg		2.21	43	B µg/kg	D	0.92	33	µg/kg	3.27
Benzo(g,h,i)perylene	31	78	670		3200	0.67	0.72	130	µg/kg	6.05	5 120	µg/kg		7.79	150) µg/kg	D	3.20	93	µg/kg	D 9.21
Chlorinated Organics																					
1 2-Dichlorobenzene	23	23	35		110	0.035	0.050	96	ua/ka U	0.45	83	ua/ka	11	0.54	30	ua/ka	11	0.83	67	ua/ka	6.63
1 3-Dichlorobenzene	2.0	2.0	170		110	0.000	0.000	9.6		0.40	83	ug/kg	11	0.54	30		11	0.00	67	ug/kg	0 0.00
1 4-Dichlorobenzene	31	9	110		120	0.11	0.12	9.6	ug/kg U	0.45	8.3	ua/ka	U	0.54	30		U	0.03	67	ua/ka	U 6.63
1 2 4-Trichlorobenzene	0.81	1.8	31		64	0.031	0.051	9.6		0.10	83	ua/ka	U U	0.54	30		0	0.00	67	ua/ka	0 0.00
Heyachlorobenzene	0.01	2.3	22	168	230	0.031	0.001	0.0		0.45	83	µg/kg	0	0.54	30			0.03	67	µg/kg	0 0.03
	0.50	2.5	22	100	230	0.022	0.070	5.0	μg/kg U	0.45	0.5	µg/kg	0	0.34	53	μy/ky	0	0.05	07	ру/ку	0 0.03
Phthalate Esters	50	50			4.400	0.074	0.40			0.70		/1		0.74							
Dimethyl Phthalate	53	53	71		1400	0.071	0.16	15	μg/kg U	0.70	11	µg/kg	U	0.71	39) µg/kg	U	0.83	67	µg/kg	U 6.63
Diethyl Phthalate	61	110	200		1200	0.2	1.2	9.6	µg/kg U	0.45	8.3	µg/kg	U	0.54	39	µg/kg	U	0.83	67	µg/kg	0 6.63
Di-n-butyi Phthalate	220	1700	1400		5100	1.4	5.1	13	µg/kg J	0.60	20	µg/kg	-	1.30	40	р µg/кg	J	0.85	140	µg/kg	0 13.86
Butyi Benzyi Phthalate	4.9	64	63		970	0.063	0.9	40	μg/κg	1.86	140	µg/kg	-	9.09	50	µg/kg	D	1.07	67	µg/kg	0 6.63
Bis(2-ethylhexyl) Phthalate	47	78	1300		8300	1.3	3.1	590	µg/kg	27.44	730	µg/kg	<u> </u>	47.40	410	µg/kg	D	8.74	76	µg/kg	J 7.52
Di-n-octyl Phthalate	58	4500	6200		6200	6.2	6.2	18	µg/kg U	0.84	20	µg/kg	U	1.30	39	μg/kg	U	0.83	67	µg/kg	U 6.63
Dibenzofuran	15	58	540		1700	0.54	0.70	11	µg/kg	0.51	17	µg/kg		1.10	61	µg/kg	D	1.30	84	µg/kg	D 8.32
Hexachlorobutadiene	3.9	6.2				0.011	0.12	9.6	µg/kg U	0.45	8.3	µg/kg	U	0.54	39	µg/kg	U	0.83	67	µg/kg	U 6.63
N-Nitrosodiphenylamine	11	11	28		130	0.028	0.040	3.5	µg/kg J	0.16	8.3	µg/kg	U	0.54	39	µg/kg	U	0.83	67	µg/kg	U 6.63
			1	1	1	1	1	1	1 1		1	1	1		1	1	1		r		

Appendix F Table F-1 Station SC01

															Statio	n							<u>ju</u>
										SC01 ZA	4		S	6C01 ZE	3		5	SC01 ZC	;		SC	01 ZD	
									1	/27/201	0		1/	/27/2010	0		1	/27/201	0		1/27	7/2010	
										9:44				9:44	I		1	9:44	1		9	:44	1
																							тос
	SQS	CSL						Valid	Result	Valid	TOC NormConc	Valid	Result	Valid	TOC NormConc	Valid	Result	Valid	TOC NormConc	Valid	Result	Valid	NormConc
Chemical Name	(ppm OC)	(ppm OC)	SL	BT	ML	LAET	2AET	Result	Unit	Flag	(ppm OC)	Result	Unit	Flag	(ppm OC)	Result	Unit	Flag	(ppm OC)	Result	Unit	Flag	(ppm OC)
Total PCBs	12	65	130	38	3100	6.2	6.2	330			15.35	333			21.62	590			12.58	425			42.08
Aroclor 1016								9.6	i μg/kg	U		8.3	µg/kg	U		7.8	µg/kg	U		6.7	µg/kg	U	
Aroclor 1221								20) µg/kg	U		17	µg/kg	U		16	µg/kg	U		14	µg/kg	U	L
Aroclor 1232								9.6	i µg/kg	U		8.3	µg/kg	U		7.8	µg/kg	U		6.7	µg/kg	U	I
Aroclor 1242								50) µg/kg			83	µg/kg			170	µg/kg			120	µg/kg		L
Aroclor 1248								9.6	i µg∕kg	U		8.3	µg/kg	U		7.8	µg/kg	U		6.7	µg/kg	U	L
Aroclor 1254								110) µg/kg			140	µg/kg			260	µg/kg			210	µg/kg		L
Aroclor 1260								170) µg/kg	J		110	µg/kg	J		160	µg/kg	J		95	µg/kg	J	I
	SQS (µg/kg)	CSL (µg/kg)	SL	BT	ML																		I
Phenol	420	1200	420		1200	0.42	1.2	18	β µg/kg	J		13	µg/kg	J		120	µg/kg	U		210	µg/kg	U	I
2-Methylphenol	63	63	63		77	0.063	0.072	9.6	i µg∕kg	U		8.3	µg/kg	U		39	µg/kg	U		67	µg/kg	U	L
4-Methylphenol	670	670	670		3600	0.67	1.8	9.6	i µg/kg	U		6.8	µg/kg	J		39	µg/kg	U		67	µg/kg	U	1
2,4-Dimethylphenol	29	29	29		210	0.029	0.072	48	µg/kg	U		7	µg/kg	J		200	µg/kg	U		340	µg/kg	U	1
Pentachlorophenol (PCP)	360	690	400	504	690	0.36	0.69	96	i μg/kg	U		31	µg/kg	J		390	µg/kg	U		670	µg/kg	U	1
Benzyl Alcohol	57	73	57		870	0.057	0.073	24	µg/kg			7.6	µg/kg	J		78	µg/kg	U		140	µg/kg	U	1
Benzoic Acid	650	650	650		760	0.65	0.65	100) µg/kg	J		170	µg/kg	U		780	µg/kg	U		1400	µg/kg	U	
Hexachloroethane			1400		14000			9.6	j ua/ka	U		8.3	ua/ka	U		39	ua/ka	U		67	ua/ka	U	1
									100				1.2.2				13.3	-			10 0		[]
Phenol-d6																							(
Nitrobenzene-d5																							1
2-Fluorobiphenyl																							1
2,4,6-Tribromophenol																							1
p-Terphenyl-d14			4 TEQ Total	10 TEC	Volume W	/eighted	Total TEC	2.61092	2		Total TEQ	20.2317			Total TEQ	24.0247			Total TEQ	6.3896			
						Total	TEQ (1/2U)	4.038			Total TEQ (1/2U)	21.2071			Total TEQ (1/2U)	24.8279			Total TEQ (1/2U)	6.9986			(
						Dioxi	n TEQ (0U)	2.0204			Dioxin TEQ (0U)	16.826			Dioxin TEQ (0U)	21.57			Dioxin TEQ (0U)	4.8738			1
						Dioxin	TEQ (1/2U)	2.8204			Dioxin TEQ (1/2U)	16.826			Dioxin TEQ (1/2U)	21.57			Dioxin TEQ (1/2U)	4.8738			(
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)						-		1.6	ng/Kg	U		0.833	ng/Kg	J		0.619	ng/Kg	J		0.223	ng/Kg	J	(
1,2,3,7,8-Pentachlorodibenzo-p-dioxin (PeCDD)								0.332	ng/Kg	J		2.49	ng/Kg	J		2.41	ng/Kg	J		0.523	ng/Kg	J	(
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)								0.589	ng/Kg	J		3.09	ng/Kg	J		3.56	ng/Kg	J		0.818	ng/Kg	J	(
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)								3.24	ng/Kg	J		22.8	ng/Kg			31.9	ng/Kg			5.7	ng/Kg	J	1
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin (HxCDD)								1.7	′ ng/Kg			15.2	ng/Kg			18	ng/Kg			3.83	ng/Kg	J	1
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin (HpCDD)								89.1	ng/Kg			739	ng/Kg			1060	ng/Kg			237	ng/Kg		1
Octachlorodibenzo-p-dioxin (OCDD)								815	ng/Kg			6680	ng/Kg	J		8650	ng/Kg	J		2410	ng/Kg		1
· · · · · ·																							1
						Fura	n TEQ (0U)	0.59052	2		Furan TEQ (0U)	3.40567			Furan TEQ (0U)	2.45471			Furan TEQ (0U)	1.51581			1
						Furan	TEQ (1/2U)	1.21755	5		Furan TEQ (1/2U)	4.38107			Furan TEQ (1/2U)	3.25791			Furan TEQ (1/2U)	2.12481			i i
2,3,7,8-Tetrachlorodibenzofuran (TCDF)								0.374	ng/Kg	J		1.46	ng/Kg			1.21	ng/Kg	J		0.342	ng/Kg	J	1
1,2,3,7,8-Pentachlorodibenzofuran (PeCDF)								8.01	ng/Kg	U		0.969	ng/Kg	J		0.787	ng/Kg	J		0.337	ng/Kg	J	1
2,3,4,7,8-Pentachlorodibenzofuran (PeCDF)								0.411	ng/Kg	J		2.03	ng/Kg	J		1.56	ng/Kg	J		0.938	ng/Kg	J	1
1,2,3,4,7,8-Hexachlorodibenzofuran (HxCDF)								1.54	ng/Kg	J		9.14	ng/Kg			7.43	ng/Kg	J		6	ng/Kg	J	L
1,2,3,6,7,8-Hexachlorodibenzofuran (HxCDF)								0.624	ng/Kg	J		3.92	ng/Kg	J		2.13	ng/Kg	J		1.24	ng/Kg	J	I
1,2,3,7,8,9-Hexachlorodibenzofuran (HxCDF)								8.01	ng/Kg	U		6.71	ng/Kg	U		7.64	ng/Kg	U		6.24	ng/Kg	U	I
2,3,4,6,7,8-Hexachlorodibenzofuran (HxCDF)								0.872	ng/Kg	J		4.06	ng/Kg	J		2.86	ng/Kg	J		1.43	ng/Kg	J	
1,2,3,4,6,7,8-Heptachlorodibenzofuran (HpCDF)								10.7	′ ng/Kg			79.5	ng/Kg			52.3	ng/Kg			26.8	ng/Kg		
1,2,3,4,7,8,9-Heptachlorodibenzofuran (HpCDF)								0.74	ng/Kg	J		4.35	ng/Kg	J		3.03	ng/Kg	J		2.21	ng/Kg	J	
Octachlorodibenzofuran (OCDF)								39.4	ng/Kg			237	ng/Kg			156	ng/Kg			110	ng/Kg		I
Tetrachlorodibenzo-p-dioxins (TCDD), Total								1.6	i ng/Kg	U		3.77	ng/Kg			2.26	ng/Kg			0.388	ng/Kg	J	L
Pentachlorodibenzo-p-dioxin (PeCDD), Total								0.57	′ ng/Kg	J		19.5	ng/Kg			16	ng/Kg			2.98	ng/Kg	J	I
Hexachlorodibenzo-p-dioxins (HxCDD), Total								22.9	ng/Kg			204	ng/Kg			274	ng/Kg			58.9	ng/Kg		I
Heptachlorodibenzo-p-dioxins (HpCDD), Total								297	′ ng/Kg			1980	ng/Kg			2870	ng/Kg			809	ng/Kg		I
Tetrachlorodibenzofurans (TCDF), Total								1.26	ng/Kg	J		30	ng/Kg			16.8	ng/Kg			5.49	ng/Kg		I
Pentachlorodibenzofurans (PeCDF), Total								6.45	ng/Kg	J		56.1	ng/Kg			38.3	ng/Kg			14.8	ng/Kg		I
Hexachlorodibenzofurans (HxCDF), Total								18.5	ng/Kg			137	ng/Kg			83.5	ng/Kg			44.5	ng/Kg		1
Heptachlorodibenzofurans (HpCDF), Total								39.9	ng/Kg			288	ng/Kg			206	ng/Kg			117	ng/Kg		1

Appendix F Table F-1 Station SC01

Appendix F Table F-1 Station SC01

														Statio	n								
									5	SC01 Z	Α		S	C01 ZB			S	C01 ZC			SC	01 ZD	
									1	/27/201	0		1/	27/2010			1/:	27/2010			1/2	7/2010	
										9:44				9:44				9:44			9	:44	
																							TOC
	SOS	CSL						Valid	Result	Valid	TOC NormConc	Valid	Result	Valid	TOC NormConc	Valid	Result	Valid	TOC NormConc	Valid	Result	Valid	NormConc
Chemical Name	(ppm OC)	(ppm OC)	SL	вт	ML	LAET	2AET	Result	Unit	Flag	(ppm OC)	Result	Unit	Flag	(ppm OC)	Result	Unit	Flag	(ppm OC)	Result	Unit	Flag	(ppm OC)
2,3,7,8-Tetrachlorodibenzo-p-dioxin-C13																							
1,2,3,7,8-Pentachlorodibenzo-p-dioxin-C13																							
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin-C13																							
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin-C13																							
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin-C13																							
Octachlorodibenzo-p-dioxin-C13																							
2,3,7,8-Tetrachlorodibenzofuran-C13																							
1,2,3,7,8-Pentachlorodibenzofuran-C13																							
2,3,4,7,8-Pentachlorodibenzofuran-C13																							
1,2,3,4,7,8-Hexachlorodibenzofuran-C13																							
1,2,3,6,7,8-Hexachlorodibenzofuran-C13																							
1,2,3,7,8,9-Hexachlorodibenzofuran-C13																							
2,3,4,6,7,8-Hexachlorodibenzofuran-C13																							
1,2,3,4,6,7,8-Heptachlorodibenzofuran-C13																							
1,2,3,4,7,8,9-Heptachlorodibenzofuran-C13																							

Notes:

J - The analyte was detected above the reported quantitation limit, and the reported concentration was an estimated value.

R - The result was rejected and could not be used.
 U - The analyte was analyzed for, but was considered not detected at the reporting limit or reported value.
 UJ - The analyte was analyzed for, and the associated quantitation limit was an estimated value.

Double border indicates DMMP bioaccumulation trigger
A heavy border with italicized font indicates DMMP screening level

A heavy border with bold, italicized font indicates DMMP maximum level

Appendix F Table F-2 Station SC02

															Statio	n						
										SC02-Z/	Α			SC02-Z	В			SC02-Z	C		SC02-ZD	
										1/27/201	0			1/27/201	10			1/27/20 ⁻	10		1/27/2010	
										11:11				11:11				11:11			11:11	
													_									тос
	SQS	CSL						Valid	Result	Valid	TOC NormConc	Valid	Result	Valid	TOC NormConc	Valid	Result	Valid	TOC NormConc	Valid	Result Valid	NormConc
Chemical Name	(ppm OC)	(ppm 0C)	SL	BT	ML	LAET	2AET	Result	Unit	Flag	(ppm OC)	Result	Unit	Flag	(ppm OC)	Result	Unit	Flag	(ppm OC)	Result	Unit Flag	(ppm OC)
Solids, Total								52.9	percent	t		61.2	percent	t		60) percent			59.8	percent	I
Carbon, Total Organic (TOC)								2.44	percent	t		1.94	percent	t		1.6	6 percent			2.19	percent	
Gravel								0.25	percent	t		1.39	percent	t		0.49	9 percent			0	percent	I
Sand, Very Coarse								0.68	percent	t		0.29	percent	t		0.14	1 percent			0.09	percent	
Sand, Coarse								1.61	percent	t		1.46	percent	t		0.6	percent			0.25	percent	l
Sand, Medium								5.97	percent	t		5.72	percent	1		5.37	percent			1.91	percent	1
Sand, Fine								5.53	percent	t		11.9	percent	1		8.58	percent			3.82	percent	1
Sand, very Fine								9.80	percent	t		10.9	percent	[7.97	percent			13.3	percent	l
Sill								00.0	percent	•		10.1	percent			30.8	percent			57.0	percent	l
Clay								10.5	percent	t		12.2	percent			37.3	percent			24.7	percent	I
LPAH	370	780	5200	—	29000	5.2	13	284			11.64	376			19.38	217.8	3		13.61	1904		86.94
Naphthalene	99	170	2100	—	2400	2.1	2.4	48	µg/kg	U	1.97	21	µg/kg	U	1.08	12	2 µg/kg		0.75	30	µg/kg	1.37
Acenaphthylene	66	66	560		1300	1.3	1.3	29	µg/kg		1.19	18	µg/kg		0.93	5.8	3 µg/kg		0.36	44	µg/kg	2.01
Acenaphthene	16	57	500		2000	0.50	0.73	17	µg/kg		0.70	23	µg/kg		1.19	21	l µg/kg		1.31	150	µg/kg	6.85
Fluorene	23	/9	540	—	3600	0.54	1.0	27	µg/kg	<u> </u>	1.11	31	µg/kg		1.60	25	p µg/kg		1.56	200	µg/kg	9.13
Phenanthrene	100	480	1500	_	21000	1.5	5.4	140	µg/kg	<u> </u>	5.74	220	µg/kg		11.34	120	μg/kg		7.50	1100	µg/кд	50.23
Anthracene	220	1200	960	_	13000	0.96	4.4	71	µg/kg		2.91	84	µg/kg		4.33	34	+ μg/kg		2.13	380	µg/кд	17.35
	38	64	670	_	1900	0.67	1.4	48	µg/kg	U	1.97	21	µg/kg	U	1.08	7.8	⇒µg/kg		0.49	21	µg/кg	0.96
НРАН	960	5300	12000	4600	69000	12	17	3127			128.16	2239			115.41	866	6		54.13	5381		245.71
Fluoranthene	160	1200	1700	11980	30000	1.7	2.5	350	µg/kg		14.34	400	µg/kg		20.62	230) µg/kg		14.38	1300	µg/kg	59.36
Pyrene	1000	1400	2600	-	16000	2.6	3.3	800	µg/kg		32.79	520	µg/kg		26.80	190) µg/kg		11.88	990	µg/kg	45.21
Benz(a)anthracene	110	270	1300	_	5100	1.3	1.6	230	µg/kg		9.43	200	µg/kg		10.31	73	3 µg/kg		4.56	530	µg/kg	24.20
Chrysene	110	460	1400	—	21000	1.4	2.8	380	µg/kg		15.57	290	µg/kg		14.95	87	7 µg/kg		5.44	760	µg/kg	34.70
Benzo(b)fluoranthene								490	µg/kg		20.08	260	µg/kg		13.40	92	2 µg/kg		5.75	580	µg/kg	26.48
Benzo(k)fluoranthene								170	µg/kg		6.97	100	µg/kg		5.15	31	l μg/kg		1.94	220	µg/kg	10.05
Total Benzofluoranthenes	230	450	3200		9900	3.2	3.6	660			27.05	360			18.56	123	3		7.69	800		36.53
Benzo(a)pyrene	99	210	1600		3600	1.6	3.0	290	µg/kg		11.89	190	µg/kg		9.79	64	1 μg/kg		4.00	410	µg/kg	18.72
Indeno(1,2,3-cd)pyrene	34	88	600		4400	0.6	0.69	190	µg/kg		7.79	120	µg/kg		6.19	42	2 µg/kg		2.63	270	µg/kg	12.33
Dibenz(a,h)anthracene	12	33	230		1900	0.23	0.54	47	µg/kg		1.93	29	µg/kg		1.49	11	∣µg/kg		0.69	71	µg/kg	3.24
Benzo(g,h,i)perylene	31	78	670		3200	0.67	0.72	180	µg/kg		7.38	130	µg/kg		6.70	46	δ μg/kg		2.88	250	µg/kg	11.42
1,2-Dichlorobenzene	2.3	2.3	35		110	0.035	0.050	95	µg/kg	U	3.89	41	µg/kg	U	2.11	8.4	¹ μg/kg	U	0.53	8.4	µg/kg U	0.38
1,3-Dichlorobenzene			170					95	µg/kg	U	3.89	41	µg/kg	U	2.11	8.4	1 μg/kg	U	0.53	8.4	µg/kg U	0.38
1,4-Dichlorobenzene	3.1	9	110		120	0.11	0.12	95	µg/kg	U	3.89	41	µg/kg	U	2.11	8.4	¹ μg/kg	U	0.53	8.4	µg/kg U	0.38
1,2,4-Trichlorobenzene	0.81	1.8	31		64	0.031	0.051	95	µg/kg	U	3.89	41	µg/kg	U	2.11	8.4	¹ μg/kg	U	0.53	8.4	µg/kg U	0.38
Hexachlorobenzene	0.38	2.3	22	168	230	0.022	0.070	95	µg/kg	U	3.89	41	µg/kg	U	2.11	8.4	1 μg/kg	U	0.53	8.4	µg/kg U	0.38
Dimethyl Phthalate	53	53	71		1400	0.071	0.16	95	ua/ka	U	3.89	41	ua/ka	U	2.11	8.4	1 ua/ka	U	0.53	8.4	ua/ka U	0.38
Diethyl Phthalate	61	110	200		1200	0.071	12	95		U U	3.89	41		U U	2.11	8.4	1 ua/ka	0	0.00	8.4		0.38
Di-n-butyl Phthalate	220	1700	1400		5100	1.4	5.1	190		Ŭ	7.79	82		Ŭ	4.23	17	7 ua/ka	U	1.06	11	ug/kg J	0.50
Butyl Benzyl Phthalate	4 9	64	63		970	0.063	0.9	.00		Ŭ	3 89	100		-	5.15	17	7 ug/kg	•	1.06	42	µg/kg c	1.92
Bis(2-ethylbeyyl) Phthalate	47	78	1300		8300	13	3.0	520			21 31	550	ua/ka	D	28.35	140) $\mu g/kg$		8 75	270	ug/kg	12 33
Di-n-octyl Phthalate	58	4500	6200		6200	62	62	95	ug/kg	U	3.89	41		U U	20.00	8.4	1 ua/ka	U	0.53	84	ug/kg	0.38
	45	1000	540		4700	0.54	0.2	00	<u>µg/ng</u>		0.00	10	µg/ng	Ŭ	2.11	0.1	· µg/kg	0	0.00	0.1	µg/kg 0	0.00
Dibenzofuran	15	58	540		1700	0.54	0.70	95	µg/kg	U	3.89	13	µg/kg		0.67	14	i μg/kg		0.88	85	µg/kg	3.88
	3.9	6.2	00		400	0.011	0.12	95	µg/kg	U	3.89	41	µg/kg	U	2.11	8.4	+ μg/kg	U	0.53	8.4	µg/kg U	0.38
IN-INITrosodiphenylamine	11	11	28		130	0.028	0.040	95	µg/kg	U	3.89	41	µg/kg	U	Z.11	8.4	+ μg/kg	U	0.53	8.4	µg/kg U	0.38
PCB 209	12	65	130	38	3100	6.2	6.2	349			14.30	294			15.15	112	2		7.00	214		9.77
Aroclor 1016								9.5	µg/kg	U		8.2	µg/kg	U		8.4	1 μg/kg	U		8.4	µg/kg U	1
Aroclor 1221								19	µg/kg	U		17	µg/kg	U		17	7 µg/kg	U		17	µg/kg U	1
Aroclor 1232								9.5	µg/kg	U		8.2	µg/kg	U		8.4	1 μg/kg	U		8.4	µg/kg U	ļ
Aroclor 1242								79	µg/kg			61	µg/kg			23	β µg/kg			56	µg/kg	L
Aroclor 1248								9.5	µg/kg	U		8.2	µg/kg	U		8.4	1 μg/kg	U		8.4	µg/kg U	
Aroclor 1254								150	µg/kg			140	µg/kg			51	l µg/kg			87	µg/kg	
Aroclor 1260								120	µg/kg	J		93	µg/kg	J		38	3 µg/kg	J		71	µg/kg J	I
	SQS (µa/ka)	CSL (µa/ka)	SL	BT	ML					1 1			1				1					[
Phenol	420	1200	420		1200	0.42	1.2	290	µq/ka	U		130	µa/ka	U		2.4	1 µa/ka	J		8.6	µg/ka J	[
2-Methylphenol	63	63	63		77	0.063	0.072	95	µg/ka	U		41	µa/ka	U		8.4	1 µa/ka	U		8.4	µg/kg U	(
4-Methylphenol	670	670	670		3600	0.67	1.8	30	ua/ka			41	ua/ka	U		8.4	1 ua/ka	U		8.4	ua/ka U	[
2.4-Dimethylphenol	29	29	29		210	0.029	0.072	480	ua/ka	U		210	µa/ka	U		42	Liu/ku	U		42	ua/ka U	[
Pentachlorophenol (PCP)	360	690	400	504	690	0.36	0,69	950	ug/ka	U		410	ua/ka	U		84	1 µa/ka	U			ua/ka U	
Benzyl Alcohol	57	73	57		870	0.057	0.073	190	ug/ka	U		.13	ua/ka	U		17	7 µa/ka	U		4.2	ua/ka J	
Benzoic Acid	650	650	650		760	0.65	0.65	1900	ug/kg	U		820	ua/ka	U		170) ua/ka	U		170	ua/ka U	
Hexachloroethane			1400		14000		0.00	95	U0/kg	10		<u></u>	Un/ka	Ū		8/	1 µg/kg	Ū.		R /		
i londoi iloi ootilulio	I	I	1-100		14000	L	1	30	P9/N9	U			I PYNY	0		0.4	· P9/N9	5		0.4	Pg/ng U	

Appendix F Table F-2 Station SC02

													Statio	on					
									SC02-Z	A		SC02	-ZB		SC0	2-ZC		SC	02-ZD
									1/27/20	10		1/27/2	2010		1/27/	2010		1/2	7/2010
									11:11			11:	11		11	11		1	1:11
																			тос
	SQS	CSL						Valid	Result Valid	TOC NormConc	Valid	Result Vali	d TOC NormConc	Valid	Result Val	id TOC NormConc	Valid	Result	Valid NormConc
Chemical Name	(ppm OC)	(ppm 0C)	SL	BT	ML	LAET	2AET	Result	Unit Flag	(ppm OC)	Result	Unit Fla	g (ppm OC)	Result	Unit Fla	g (ppm OC)	Result	Unit	Flag (ppm OC)
Phenol-d6																			
Nitrobenzene-d5																			
2-Fluorobiphenyl																			
2,4,6-Tribromophenol																			
p-Terphenyl-d14							Total TEQ	8.0992	1	Total TEQ	6.3398		Total TEQ	5.5402	1	Total TEQ	10.0799	1	
			4 TEQ	10 TEQ (\	Volume		Total TEQ (1/2U)	9.7457		Total TEQ (1/2U)	6.8952		Total TEQ (1/2U)	6.0161		Total TEQ (1/2U)	10.7841		
				average	d to 4)		Dioxin TEQ (0U)	6.275		Dioxin TEQ (0U)	5.168		Dioxin TEQ (0U)	4.6531	1	Dioxin TEQ (0U)	8.595		
				Ť	,		Dioxin TEQ (1/2U)	7.165		Dioxin TEQ (1/2U)	5.168		Dioxin TEQ (1/2U)	4.6531		Dioxin TEQ (1/2U)	8.595		
2.3.7.8-Tetrachlorodibenzo-p-dioxin (TCDD)								1.78	na/Ka U		0.354	na/Ka J		0.409	na/Ka		0.42	na/Ka	J
1.2.3.7.8-Pentachlorodibenzo-p-dioxin (PeCDD)								0.907	na/Ka J		0.779	na/Ka J		0.868	na/Ka J		1.2	na/Ka	J
1.2.3.4.7.8-Hexachlorodibenzo-p-dioxin (HxCDD)								1.39	na/Ka JK		1.14	ng/Kg J		0.781	na/Ka		1.49	na/Ka	J
1.2.3.6.7.8-Hexachlorodibenzo-p-dioxin (HxCDD)								9.55	ng/Kg		7.33	ng/Kg		5.63	na/Ka J		11.6	na/Ka	
1.2.3.7.8.9-Hexachlorodibenzo-p-dioxin (HxCDD)								5.78	ng/Ka J		4.95	ng/Kg J		4.39	ng/Ka J		7.17	na/Ka	J
1.2.3.4.6.7.8-Heptachlorodibenzo-p-dioxin (HpCDD)								282	na/Ka B		212	ng/Kg B		181	na/Ka B		398	na/Ka	
Octachlorodibenzo-p-dioxin (OCDD)								2920	ng/Kg B		1910	ng/Kg B		1620	na/Ka B		3230	na/Ka	
								4 00 44 0			4 47400			0.00740			4 40 404		
							Furan TEQ (00)	1.82419		Furan TEQ (00)	1.17183		Furan TEQ (00)	0.88713		Furan TEQ (00)	1.48491		
							Furan TEQ $(1/20)$	2.58069		Furan TEQ $(1/20)$	1.72724		Furan TEQ (1/20)	1.36303		Furan TEQ (1/20)	2.18911		
2,3,7,8-1 etrachlorodibenzofuran (TCDF)								0.773	ng/Kg J		0.526	ng/Kg J		0.472	ng/Kg J		0.698	ng/Kg	J
1,2,3,7,8-Pentachlorodibenzofuran (PeCDF)						-		0.593	ng/Kg JK		0.388	ng/Kg J		0.363	ng/Kg J		0.547	ng/Kg	J
2,3,4,7,8-Pentachlorodibenzoturan (PeCDF)								0.992	ng/Kg J		0.644	ng/Kg JK		0.606	ng/Kg		0.896	ng/Kg	J
1,2,3,4,7,8-Hexachlorodibenzofuran (HxCDF)								6.11	ng/Kg J		3.68	ng/Kg J		2.48	ng/Kg J		4.53	ng/Kg	J
1,2,3,6,7,8-Hexachlorodibenzofuran (HxCDF)								1.//	ng/Kg J		1.3	ng/Kg J		0.849	ng/Kg J		1.47	ng/Kg	J
1,2,3,7,8,9-Hexachlorodibenzofuran (HxCDF)								8.92	ng/Kg U		7.15	ng/Kg U		6.98	ng/Kg U		8.09	ng/Kg	U
2,3,4,6,7,8-Hexachiorodibenzofuran (HxCDF)								2.3	ng/Kg J		1.3	ng/Kg JK		1.28	ng/Kg J		1.84	ng/Kg	J
1,2,3,4,6,7,8-Heptachlorodibenzofuran (HpCDF)								35.6	ng/Kg		24.9	ng/Kg		16.3	ng/Kg		29.6	ng/Kg	
1,2,3,4,7,8,9-Heptachiorodibenzoturan (HpCDF)								2.3	ng/Kg J		1.54	ng/Kg J		0.924	ng/Kg		1.66	ng/Kg	
Octachiorodibenzofuran (OCDF)								115	ng/Kg		/3.3	ng/Kg		47	ng/Kg		111	ng/Kg	
Tetrachiorodibenzo-p-dioxins (TCDD), Total								1.78	ng/Kg U		1.17	ng/Kg J		0.787	ng/Kg J		2.02	ng/Kg	
Pentachiorodibenzo-p-dioxin (PeCDD), Total								5.12	ng/Kg J		1.77	ng/Kg J		5.64	ng/Kg J		8.88	ng/Kg	
Hexachiorodibenzo-p-dioxins (HxCDD), Total								67.2	ng/Kg		66.9	ng/Kg		63.8	ng/Kg		107	ng/Kg	
Tetrachlorodibenzo-p-dioxins (HpCDD), Total								809	ng/Kg		121	ng/Kg		533	ng/Kg		0.20	ng/Kg	
Tetrachiorodibenzorurans (TCDF), Total								4.27	ng/Kg		3.42	ng/Kg		4.04	ng/Kg		9.28	ng/Kg	
Hereachiorodibenzolurans (PeCDF), Total								20.2	ng/Kg		13.0	ng/Kg		10.9	ng/Kg		20.7	ng/kg	
Hexaciliorodibenzofurana (HxCDF), Total								122	ng/Kg		39.2	ng/Kg		21.3	ng/Kg		47.0	ng/Kg	
2.2.7.8-Tetrachlorodibenzo-n-diovin-C12				├				132	ilg/r\g		00.9	iig/itg		55.5	iig/rtg		119	ng/r.g	<u> </u>
1 2 3 7 8-Deptachlorodibenzo p diovin C12				<u>├</u>					<u> </u>			<u>├</u> ──							<u> </u>
1,2,3,7,0-Perilacifiorodibenzo-p-dioxin-C13																			
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin-C13																			
1,2,3,0,7,0-Hexachiorodibenzo p dioxin-C13																			
1,2,3,4,0,7,8-Replacifiorodiberizo-p-dioxifi-C13																			
2 3 7 8-Tetrachlorodibenzofuran-C13																			
1 2 3 7 8-Pentachlorodibenzofuran-C13				├					<u>├</u>		-	<u>├</u> ──					1	<u> </u>	
2.2.4.7.8-Pentachlorodibenzofuran C12			1			-		+	<u> </u>		+	<u> </u>		-			1	+	
1 2 3 4 7 8-Heyechlorodibenzofuren_C13				├					<u>├</u>		-	<u>├</u> ──					1	<u> </u>	
1,2,3,7,7,0 TIEXACHIOTOUIDEII2OIUIdii-013			1			-		+	<u> </u>		+	<u> </u>		-			1	+	
				├					<u>├</u>		-	<u>├</u> ──					1	<u> </u>	
				├					<u> </u>			<u> </u>						<u> </u>	<u> </u>
1 2 3 4 6 7 8-Heptachlorodibenzofuren C12								+				<u> </u>							
1,2,3,4,0,7,80-Heptachlorodibenzofuren C12				-					<u> </u>			<u> </u>							
1,2,3,4,7,0,9-meptachiorodibenzoruran-C13																		1	

Notes:

J - The analyte was detected above the reported quantitation limit, and the reported concentration was an estimated value.

R - The result was rejected and could not be used.

U - The analyte was analyzed for, but was considered not detected at the reporting limit or reported value.

UJ - The analyte was analyzed for, and the associated quantitation limit was an estimated value.

Double border indicates DMMP bioaccumulation trigger

A heavy border with *italicized font* indicates DMMP screening level

A heavy border with *italicized, bold font* indicates DMMP maximum level
									Station															
									SC032-ZA SC-0-32 ZB						ZB		9	SC-032 ZO	C		SC03	3 ZD		
Description Description <thdescription< th=""> <thdescription< th=""></thdescription<></thdescription<>										-	12:14	10		3/	12:14	0			12:14)		3/10/.	2010 :14	
bit bit <th></th> <th>(compa</th> <th>re to dry</th> <th>wt AET)</th> <th>(c</th> <th>ompare to</th> <th>dry wt A</th> <th>AET)</th>																		(compa	re to dry	wt AET)	(c	ompare to	dry wt A	AET)
Decisional wave Decisional									Valid	Posult	Valid		Valid	Popult	Valid		Valid	Pocul	Valid	TOC NormConc	Valid	Pocult	Valid	TOC
Side, Form Land	Chemical Name	(ppm OC)	(ppm 0C)	SL	вт	ML	LAET	2AET	Result	Unit	Flag	(ppm OC)	Result	Unit	Flag	(ppm OC)	Result	Unit	Flag	(ppm OC)	Result	Unit	Flag	(ppm OC)
Chene Control Control <thcontrol< th=""> <thcontrol< th=""> <thcon< td=""><td>Solids, Total</td><td>(PP</td><td></td><td></td><td></td><td></td><td></td><td></td><td>60.5</td><td>percent</td><td>1</td><td></td><td>69.6</td><td>6 percent</td><td></td><td></td><td>91</td><td>percen</td><td>t</td><td></td><td>87.7</td><td>percent</td><td>_</td><td></td></thcon<></thcontrol<></thcontrol<>	Solids, Total	(PP							60.5	percent	1		69.6	6 percent			91	percen	t		87.7	percent	_	
Ball Arg Part Arg	Carbon, Total Organic (TOC)								1.88	percent			1.3	B percent			0.326	percen	t		0.077	percent		
Sind Config	Sand. Very Coarse								1.45	percent			2.30	percent			22.4 5.98	percen	t t		7.08	percent		
Sect. Monum Image: Monum </td <td>Sand, Coarse</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1.62</td> <td>percent</td> <td>t</td> <td></td> <td>5.95</td> <td>percent</td> <td></td> <td></td> <td>17.7</td> <td>percen</td> <td>t</td> <td></td> <td>22.2</td> <td>2 percent</td> <td></td> <td></td>	Sand, Coarse								1.62	percent	t		5.95	percent			17.7	percen	t		22.2	2 percent		
math start proof	Sand, Medium								3.16	percent			16.1	percent			30.7	percen	t		39.6	percent		
sh sh<	Sand, Fine Sand, Very Fine								3.62	percent			13.4	percent			12.6 4.07	percen	t t		10.5	percent	+	
Chy Con Con Con Con Con	Silt								61	percent			38.2	2 percent			3.63	percen	t		1.11	percent		
Image: marging and partial states in the state in the state in the state in the state in the states in th	Clay								11.9	percent	t		10.4	percent			1.68	percen	t		0.93	8 percent		
Nonservice Obj Obj Obj Obj O		370	780	5200	_	29000	5.2	13	256			13.62	981			75.46	105.4			32.33	1.6	5		2.08
Characterize Dia Dia Dia <thdia< th=""> <thd< td=""><td>Naphthalene</td><td>99</td><td>170</td><td>2100</td><td>—</td><td>2400</td><td>2.1</td><td>2.4</td><td>17</td><td>µg/kg</td><td>JD</td><td>0.90</td><td>69</td><td>) µg/kg</td><td>D</td><td>5.31</td><td>23</td><td>µg/kg</td><td>_</td><td>7.06</td><td>4.7</td><td>′µg/kg</td><td></td><td>6.10</td></thd<></thdia<>	Naphthalene	99	170	2100	—	2400	2.1	2.4	17	µg/kg	JD	0.90	69) µg/kg	D	5.31	23	µg/kg	_	7.06	4.7	′µg/kg		6.10
shore Nove No	Acenaphthylene	16	57	500	_	2000	0.50	0.73	10	ug/kg	JD	0.05	 53	β μg/kg 3 μα/ka	ם	4.54	5.0 3.6	µg/kg ua/ka		1.70	2.8) µg/kg) µg/kg	U	3.77
Pharestree 100 400 500 - 100 500 - 100 500 100<	Fluorene	23	79	540	_	3600	0.54	1.0	26	µg/kg	D	1.38	160) µg/kg	D	12.31	14	µg/kg		4.29	2.9) µg/kg	U	3.77
charger job	Phenanthrene	100	480	1500	—	21000	1.5	5.4	130	µg/kg	D	6.91	290) µg/kg	D	22.31	20	µg/kg		6.13	1.6	δ μg/kg	J	2.08
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Anthracene 2. Methylaaphthalone	220	1200	960 670	_	13000	0.96	4.4	48	µg/kg	D	2.55	350) µg/kg	D	26.92	39	µg/kg		11.96	2.9) µg/kg	U	3.77
Dubbin Dubin Dubin Dubin <td></td> <td>30</td> <td>5200</td> <td>12000</td> <td>4600</td> <td>60000</td> <td>10</td> <td>1.4</td> <td>2402</td> <td>μ<u>μ</u>γκα</td> <td>JD</td> <td>107.77</td> <td>19640</td> <td>ν μ<u>ανκα</u></td> <td>0</td> <td>1422.05</td> <td>2040</td> <td>µу/ку</td> <td></td> <td>001.84</td> <td>2.3</td> <td>, μ<u>γ</u>,κ<u>γ</u></td> <td>0</td> <td>54.02</td>		30	5200	12000	4600	60000	10	1.4	2402	μ <u>μ</u> γκα	JD	107.77	19640	ν μ <u>ανκα</u>	0	1422.05	2040	µу/ку		001.84	2.3	, μ <u>γ</u> ,κ <u>γ</u>	0	54.02
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Fluoranthene	960	1200	12000	4600	30000	17	25	330	ua/ka	D	127.77	16040) Jua/ka	D	1433.05	2940 450	ua/ka		138.04	41.0	l ua/ka		5 71
Series Series<	Pyrene	1000	1400	2600	_	16000	2.6	3.3	840	µg/kg	D	44.68	9000	μg/kg	D	692.31	1200	µg/kg	D	368.10	-1	β μg/kg		29.87
Chyperson Chyperson <t< td=""><td>Benz(a)anthracene</td><td>110</td><td>270</td><td>1300</td><td>—</td><td>5100</td><td>1.3</td><td>1.6</td><td>150</td><td>µg/kg</td><td>D</td><td>7.98</td><td>1900</td><td>µg/kg</td><td>D</td><td>146.15</td><td>380</td><td>µg/kg</td><td></td><td>116.56</td><td>3.7</td><td>′µg/kg</td><td></td><td>4.81</td></t<>	Benz(a)anthracene	110	270	1300	—	5100	1.3	1.6	150	µg/kg	D	7.98	1900	µg/kg	D	146.15	380	µg/kg		116.56	3.7	′µg/kg		4.81
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Chrysene	110	460	1400		21000	1.4	2.8	190	µg/kg	D	10.11	2100	µg/kg	D	161.54	390	µg/kg		119.63	3	β μg/kg		3.90
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Benzo(b)fluoranthene								340	µg/kg	D	18.09	1800) µg/kg	D	138.46	230	µg/kg		70.55	3.6	δ μg/kg		4.68
Second prime 99 210 100 300 1.6 3.0 210 100 100 100	Total Benzofluoranthenes	230	450	3200		9900	3.2	3.6	450	μg/kg	D	23.94	2390) µg/kg		183.85	309	µу/ку		94.79	3.6	, μg/κg	0	4.68
Internet (2)-schuyere 34 88 000 4400 0.6 0.6 100 0.6.16 100 0.2.6.25 40 0.950 1.2.27 2.9 0.950 U 3.3 0.200 0.000 0.200 0.000 0.200 0.000 0.200 0.000 0.200 0.200 0.2.00 0.0.00 0.2.00 0.2.00 0.2.00 0.2.00 0.2.00 0.2.00 0.2.00 0.0.00 0.2.00 0.2.00 0.2.00 0.2.00 0.2.00 0.2.00 0.2.00 0.2.00	Benzo(a)pyrene	99	210	1600		3600	1.6	3.0	210	µg/kg	D	11.17	1000) µg/kg	D	76.92	130	µg/kg		39.88	2.1	µg/kg	J	2.73
Oder Manufamentation 1 38 2.00 0.00 0.00 0.00 1.00 1.00 1.00 0.000 0.00	Indeno(1,2,3-cd)pyrene	34	88	600		4400	0.6	0.69	120	µg/kg	D	6.38	350) µg/kg	D	26.92	40	µg/kg	_	12.27	2.9) µg/kg	U	3.77
2-3 2-3 3-5 100 0.26 0.20 2-1 2-1 2-3 2-3 3-5 100 0.26 2-1 2-3 2-3 3-5 100 100 2-3 2-3 3-5 100 100 2-3 100 100 2-3 100 100 2-3 2-3 2-3 100 100 100 100 12-0 101 12-0 101 12-0 101 12-0 101 12-0 101 12-0 100 12-0 100 12-0 100 12-0 100 12-0 <	Dibenz(a,h)anthracene Benzo(a,h)anthracene	12	33	230 670		1900 3200	0.23	0.54	34	µg/kg		1.81	110) µg/kg		8.46	12 29	µg/kg		3.68	2.9) µg/kg	U	2.34
1.2-Bolthordservane 1.1 0 100 100 100 12 13 13 13 33 33 33 33 33 33 33 33 33 33 33 33	1 2-Dichlorobenzene	23	23	35		110	0.035	0.050	42		U	2 23	72		U	5.54	5.5		U	1.69	57	/ ug/kg	Ŭ	7 40
1.4-Disknownerwere 3.1 9 110 120 0.11 0.12 421 ipping 12.23 72 ipping 10 5.54 5.5 ipping 0 1.60 5.7 ipping 0 7.7 ipping 0 7.5 ipping	1,3-Dichlorobenzene	2.0	2.0	170		110	0.000	0.000	42	µg/kg	U	2.23	72	2 µg/kg	U	5.54	5.5	µg/kg	U	1.69	5.7	μg/kg	U	7.40
12.4 Trichlorobergene 0.81 1.8 31 64 0.61 42 µg/s U 2.23 ZZ µg/s U 5.54 5.5 µg/s U 1.68 5.7 µg/s U 7.1 9/5 0 7.1 1.24 <td>1,4-Dichlorobenzene</td> <td>3.1</td> <td>9</td> <td>110</td> <td></td> <td>120</td> <td>0.11</td> <td>0.12</td> <td>42</td> <td>µg/kg</td> <td>U</td> <td>2.23</td> <td>72</td> <td>2 µg/kg</td> <td>U</td> <td>5.54</td> <td>5.5</td> <td>µg/kg</td> <td>U</td> <td>1.69</td> <td>5.7</td> <td>′µg/kg</td> <td>U</td> <td>7.40</td>	1,4-Dichlorobenzene	3.1	9	110		120	0.11	0.12	42	µg/kg	U	2.23	72	2 µg/kg	U	5.54	5.5	µg/kg	U	1.69	5.7	′µg/kg	U	7.40
missanconderization 0.88 2.3 2.2 188 2.00 0.00 4.0 198 g 0 4.20 120 g/s g 0 5.51 5.71 199 g 0 7.1 199 g 0 3.83 7.1 199 g 0 7.1 199 g <t< td=""><td>1,2,4-Trichlorobenzene</td><td>0.81</td><td>1.8</td><td>31</td><td>100</td><td>64</td><td>0.031</td><td>0.051</td><td>42</td><td>µg/kg</td><td>U</td><td>2.23</td><td>72</td><td>µg/kg</td><td>U</td><td>5.54</td><td>5.5</td><td>µg/kg</td><td>U</td><td>1.69</td><td>5.7</td><td>μg/kg</td><td>U</td><td>7.40</td></t<>	1,2,4-Trichlorobenzene	0.81	1.8	31	100	64	0.031	0.051	42	µg/kg	U	2.23	72	µg/kg	U	5.54	5.5	µg/kg	U	1.69	5.7	μg/kg	U	7.40
Dimetry Physicale 53 53 71 1400 0.071 0.16 42 jpkg U 2.54 5.5 jpkg U 1.68 5.7 jpkg U 7.6 Dirt-Mythalate 220 1700 1400 510 1.2 12 jpkg U 6.44 6.5 jpkg U 5.4 5.5 jpkg U 5.6 5.5 jpkg U 5.6 jpkg U 5.6 jpkg U 5.7 jpkg U 5.6 jpkg<	Hexachlorobenzene	0.38	2.3	22	168	230	0.022	0.070	42	µg/kg	0	2.23	72	µg∕кд	0	5.54	5.5	µg/кд	0	1.69	5.1	µg/кg	0	7.40
Demokryterint Description Description <thdescription< th=""> <thdescription< th=""></thdescription<></thdescription<>	Dimethyl Phthalate	53	53	71		1400	0.071	0.16	42	µg/kg	U	2.23	72	µg/kg	U	5.54	5.5	µg/kg	U	1.69	5.7	μg/kg	U	7.40
Bayl Benyl Phrhalete 4.9 64 63 970 0.063 0.9 72 jpkg U 5.64 6.57 jpkg U 7.6 Bis/cet Mirkows/Phrhalete 58 4500 6200 6.20 6.22 6.2 42 jpkg U 7.6 2.0 6.44 5.6 jpkg U 6.64 5.7 jpkg U 7.6 Bis/cet Mirkows/Phrhalete 5.8 5.40 6.70 0.62 6.2 42 jpkg U 2.23 72 jpkg U 5.64 5.5 jpkg U 1.62 42 jpkg U 2.23 72 jpkg U 5.64 5.5 jpkg U 1.62 3.0	Di-n-butyl Phthalate	220	1700	1400		5100	1.4	5.1	83	μg/kg	U	4.41	150) µg/kg	U	11.54	11	µg/kg µg/kg	U	3.37	12	μg/kg 2 μg/kg	U	15.58
Bit2-exptipately Printalize A77 78 78 78 78 78 73 7.1 7.3 7.1 7.2 7.0 7.	Butyl Benzyl Phthalate	4.9	64	63		970	0.063	0.9	72	µg/kg	D	3.83	72	μg/kg	U	5.54	5.5	µg/kg	U	1.69	5.7	′µg/kg	U	7.40
Un-norm 58 4500 6200 6200 620 6	Bis(2-ethylhexyl) Phthalate	47	78	1300		8300	1.3	3.1	320	µg/kg	JD	17.02	280) µg/kg	JD	21.54	21	µg/kg	J	6.44	57	′µg/kg	U	74.03
Diberzoduran 15 58 540 1700 0.54 0.70 16 µg/kg U 0.885 58 µg/kg U 4.46 5.6 µg/kg U 1.72 2 µg/kg U 72 N-Nicosciphenylamine 11 11 12 66 130 0.028 0.040 13 µg/kg U 5.54 5.51 µg/kg U 1.66.4 1.2 pg/kg U 72 µg/kg U 5.54 µg/kg U 1.66.4 1.2 pg/kg U 72 µg/kg U 5.54 µg/kg U 1.66.4 1.2 pg/kg U 72 µg/kg U 1.66.4 1.2 pg/kg U 1.66.4 1.2 pg/kg U 1.6	Di-n-octyl Phthalate	58	4500	6200		6200	6.2	6.2	42	µg/kg	U	2.23	72	2 µg/kg	U	5.54	5.5	µg/kg	U	1.69	5.7	′µg/kg	U	7.40
Induction 0.0	Dibenzofuran Hexachlorobutadiene	15	58	540		1700	0.54	0.70	16	µg/kg	JD	0.85	58	B µg/kg	JD	4.46	5.6	µg/kg	11	1.72	57	2 µg/kg	J	2.60
PCB 209 12 65 130 38 3100 6.2 6.2 371 16.54 302 23.23 540 166.64 12 15 Arcolor 1016 Image: Constraint of the cons	N-Nitrosodiphenylamine	11	11	28		130	0.011	0.040	13	µg/kg	JD	0.69	72	μg/kg	U	5.54	5.5	µg/kg µg/kg	U	1.69	5.7	μg/kg μg/kg	U	7.40
Aroclor 1016 Image: Constraint of the	PCB 209	12	65	130	38	3100	62	6.2	311			16.54	302			23.23	540	100		165 64	12	, , , , , , , , , , , , , , , , , , , ,		15.58
Aroclor 1221 Image: Constraint of the	Aroclor 1016	12		100	00	0100	0.2	0.2	8.3	µg/kg	U	10104	7.2	2 µg/kg	U	20.20	5.5	µg/kg	U	100.01	5.7	′µg/kg	U	10.00
Aroclor 1232 Anole 1242 Anole 1242<	Aroclor 1221								17	µg/kg	U		15	i μg/kg	U		11	µg/kg	U		12	2 µg/kg	U	
Nocion 1242 Image: Constraint of the second sec	Aroclor 1232								8.3	µg/kg	U		7.2	2 µg/kg	U		5.5	µg/kg	U		5.7	ν μg/kg	U	
Aroclor 1254 Amocior 1254 Ander 1256 Ander 1256 Ander 125	Aroclor 1242 Aroclor 1248								8.3	μg/kg	U		7.2	2 µg/kg	U		5.5	µg/kg µg/kg	U		5.7	μg/kg	U	
Aroclor 1260 M <	Aroclor 1254								130	µg/kg			130) µg/kg			260	µg/kg			5.7	′µg/kg	U	
bit bit< bit bit bit </td <td>Aroclor 1260</td> <td>505 (·····///m)</td> <td></td> <td>61</td> <td>БТ</td> <td>M</td> <td></td> <td></td> <td>95</td> <td>µg/kg</td> <td></td> <td>├────┤</td> <td>82</td> <td>2 µg/kg</td> <td><u> </u></td> <td></td> <td>130</td> <td>µg/kg</td> <td></td> <td></td> <td>5.7</td> <td>′ µg/kg</td> <td>U</td> <td></td>	Aroclor 1260	505 (·····///m)		61	БТ	M			95	µg/kg		├ ────┤	82	2 µg/kg	<u> </u>		130	µg/kg			5.7	′ µg/kg	U	
2-Methylphenol 63 63 63 63 77 0.063 0.072 42 µg/kg U 55 µg/kg U 55 µg/kg U 57 µg/kg U 4-Methylphenol 670 670 670 670 3600 0.072 210 µg/kg U 5.5 µg/kg U 5.7 µg/kg <t< td=""><td>Phenol</td><td>3ω3 (μg/kg) 420</td><td>сэс (µg/кg) 1200</td><td>3L 420</td><td>ы</td><td>₩L 1200</td><td>0.42</td><td>1.2</td><td>20</td><td>µa/ka</td><td>JD</td><td></td><td>220</td><td>) µa/ka</td><td>U</td><td></td><td>17</td><td>µa/ka</td><td>U</td><td></td><td>18</td><td>B µa/ka</td><td>U</td><td></td></t<>	Phenol	3ω3 (μg/kg) 420	сэс (µg/кg) 1200	3L 420	ы	₩L 1200	0.42	1.2	20	µa/ka	JD		220) µa/ka	U		17	µa/ka	U		18	B µa/ka	U	
4-Methylphenol 670 670 670 3600 0.67 1.8 42 µg/kg U 5.5 µg/kg U 5.7 µg/kg U 2,4-Dimethylphenol 29 29 29 29 20 0.029 0.072 210 µg/kg U 28 µg/kg U 29 µg/kg U 28 µg/kg U 29 µg/kg U 20 12 µg/kg	2-Methylphenol	63	63	63		77	0.063	0.072	42	µg/kg	U		72	µg/kg	U		5.5	µg/kg	U		5.7	μg/kg	U	
2,4-Dimethylphenol 29 29 29 20 0.029 0.072 210 µg/kg U 28 µg/kg U 29 µg/kg U Pentachlorophenol (PCP) 360 690 400 504 690 0.36 0.69 420 µg/kg U 720 µg/kg U 55 µg/kg U 57 µg/kg U	4-Methylphenol	670	670	670		3600	0.67	1.8	42	µg/kg	U		72	2 µg/kg	U		5.5	µg/kg	U		5.7	′µg/kg	U	
Pentachlorophenol (PCP) 300 690 400 504 690 0.36 0.69 420 µg/kg 0 55 µg/kg 0 57 µg/kg 0 Benzyl Alcohol 57 73 57 870 0.057 0.073 83 µg/kg 0 11 µg/kg 0 12 µg/kg 0 Benzol Acid 650 650 650 760 0.65 830 µg/kg 0 110 µg/kg 0 12 µg/kg 0 Hexachloroethane 1400 14000 42 µg/kg 0 72 µg/kg 0 55 µg/kg 0 57 µg/kg 0 10 10 µg/kg 0 10 µg/kg 0 10 µg/kg 0 10 10 10 10 10 10 10 10	2,4-Dimethylphenol	29	29	29	50.1	210	0.029	0.072	210	µg/kg	U		360	µg/kg	U		28	µg/kg	U		29	µg/kg	U	
Benzoic Acid 650 650 650 760 0.65 830 µg/kg 0 11 µg/kg 0 12 µg/kg 0 Hexachloroethane 1400 14000 42 µg/kg 10 72 µg/kg 10 10 µg/kg 10 10 10 µg/kg 10 10 10 µg/kg 10 10 10 µg/kg 10 1	Pentachiorophenoi (PCP) Benzyl Alcohol	360	690 73	400	504	690 870	0.36	0.69	420	µg/kg	U		150	μg/kg			55 11	µg/kg	U		57	µg/kg	U	
Hexachloroethane 1400 1400 42 µg/kg 72 µg/kg 5.5 µg/kg U 5.7 µg/kg U	Benzoic Acid	650	650	650		760	0.65	0.65	830	µg/kg µg/ka	U		1500	µg/kg	U		110	µg/kg	U		12) µg/kg	U	
	Hexachloroethane			1400		14000	-		42	µg/kg	U		72	2 µg/kg	U		5.5	µg/kg	U		5.7	′µg/kg	U	

					Station																	
									S	C032-Z	A A		SC	C-0-32 Z	В		S	C-032 ZC	;		SC03 ZD	
									3	5/10/201	0		3/	/10/2010	0		3/	/10/2010			3/10/2010	j –
										12:14				12:14				12:14			12:14	
									1	-	1		r		1		(compare	e to dry v	wt AET)	(00)	mpare to dry	wt AET)
																					1	TOC
	SQS	CSL						Valid	Result	Valid	TOC NormConc	Valid	Result	Valid	TOC NormConc	Valid	Result	Valid	TOC NormConc	Valid	Result Val	id NormConc
Chemical Name	(ppm OC)	(ppm 0C)	SL	ВТ	ML	LAET	2AET	Result	Unit	Flag	(ppm OC)	Result	Unit	Flag	(ppm OC)	Result	Unit	Flag	(ppm OC)	Result	Unit Fla	ig (ppm OC)
Phenol-d6																					i	
Nitrobenzene-d5													-								·	
2-Fluorobiphenyi																						
2,4,0- ITIDIOMOPHENOI			4 750				Total TEO	705406				10 6 4 9 6 9	1			0.05046				0.0007	·	
p-Terprienyi-014			4 I EQ					7.20490				12.04302				2.00210				0.0007	ı — —	
				ł	averaged to	04 IEQ)		8.60737			Total TEQ (1/20)	13.32912				3.768			Total TEQ (1/20)	0.70555	/───	
							Dioxin TEQ (00)	6.529		-	Dioxin TEQ (00)	11.276			Dioxin TEQ (00)	2.127			Dioxin TEQ (00)	0.0087	·	
0.0.7.0 Tetrachlara diharata a diawia (TODD)							DIOXIN TEQ (1/20)	7.344			DIOXIN TEQ (1/20)	11.276			DIOXIN TEQ (1/20)	2.628			DIOXIN TEQ (1/20)	4.432		
2,3,7,8-1 etrachiorodibenzo-p-dioxin (1CDD)								1.03	ng/Kg	U		0.563	ng/Kg	JK		1.02	ng/Kg	U		1.17	ng/Kg U	
1,2,3,7,6-Penilachiorodibenzo-p-dioxin (PecDD)								1.20	ng/Kg	J		2.39	ng/Kg	J		0.445	ng/Kg	J		00.C		
1,2,3,4,7,6-Rexachiorodibenzo-p-dioxin (HxCDD)								1.01	ng/Kg	J		1.97	ng/Kg	J		0.300	ng/Kg	JN		5.00		
1,2,3,6,7,6-Rexachiorodibenzo-p-dioxin (HxCDD)								0.01	ng/Kg			10.7	ng/Kg			3.10	ng/Kg	J		5.00		
1,2,3,7,0,9-RezactiloToulbenzo-p-dioxin (RXCDD)								303	ng/Kg	J		10.9	ng/Kg	B		2.00	ng/Kg	J		5.86		
								2280	ng/Kg	J		3520	ng/Kg	B		07.9 808	ng/Kg	B		0.00	ng/Kg D	
								2300	ng/ng	Ь		3320	ng/ng	Б		000	ng/ng	Б		29	ng/ng b	
							Europ TEO (0U)	0 72506			Europ TEO (0U)	1 36762			Euron TEO (011)	0 72516			Europ TEO (0U)	0	r	
							Furan TEO (1/2U)	1 26337	•		Furan TEO (1/2U)	2 05312			Furan TEO (1/211)	1 14			Furan TEO (1/211)	2 27355		
2 3 7 8-Tetrachlorodibenzofuran (TCDE)							1 01011120 (1/20)	0.48	na/Ka	1		0.525	na/Ka	1		0 242	na/Ka	1	1 01011120 (1/20)	1 17		
1 2 3 7 8-Pentachlorodibenzofuran (PCDF)								0.40		ы Л		0.020	ng/Kg	U U		0.242	ng/Kg	i i		5.86		
2.3.4.7.8-Pentachlorodibenzofuran (PeCDF)								0.010	ng/Kg	JK		0.788	ng/Kg	J		0 449	ng/Kg	J		5.86	ng/Kg U	
1.2.3.4.7.8-Hexachlorodibenzofuran (HxCDF)								1.99	na/Ka	J		4.59	na/Ka	J		2.27	ng/Kg	J		5.86	na/Ka U	
1.2.3.6.7.8-Hexachlorodibenzofuran (HxCDF)								0.824	na/Ka	J		1.38	na/Ka	J		0.686	na/Ka	J		5.86	na/Ka U	
1,2,3,7,8,9-Hexachlorodibenzofuran (HxCDF)								8.14	ng/Kg	U		6.69	ng/Kg	U		5.1	ng/Kg	U		5.86	ng/Kg U	-
2,3,4,6,7,8-Hexachlorodibenzofuran (HxCDF)								0.55	ng/Kg	J		0.785	ng/Kg	J		0.357	ng/Kg	J		5.86	ng/Kg U	-
1,2,3,4,6,7,8-Heptachlorodibenzofuran (HpCDF)								17.3	ng/Kg	В		32.3	ng/Kg	В		19.7	ng/Kg	В		5.86	ng/Kg U	-
1,2,3,4,7,8,9-Heptachlorodibenzofuran (HpCDF)								1.19	ng/Kg	J		2.76	ng/Kg	J		1.36	ng/Kg	J		5.86	ng/Kg U	-
Octachlorodibenzofuran (OCDF)								48.3	ng/Kg	В		130	ng/Kg	В		59.2	ng/Kg	В		11.7	ng/Kg U	
Tetrachlorodibenzo-p-dioxins (TCDD), Total								1.63	ng/Kg	U		2.43	ng/Kg			0.75	ng/Kg	J		0.267	ng/Kg J	
Pentachlorodibenzo-p-dioxin (PeCDD), Total								4.59	ng/Kg	J		11.4	ng/Kg			1.21	ng/Kg	J		5.86	ng/Kg U	
Hexachlorodibenzo-p-dioxins (HxCDD), Total								81	ng/Kg			149	ng/Kg			23.4	ng/Kg			0.926	ng/Kg J	
Heptachlorodibenzo-p-dioxins (HpCDD), Total								813	ng/Kg			1280	ng/Kg			187	ng/Kg			9.08	ng/Kg	
Tetrachlorodibenzofurans (TCDF), Total								2.35	ng/Kg			9.29	ng/Kg			5.23	ng/Kg			1.17	ng/Kg U	
Pentachlorodibenzofurans (PeCDF), Total								6.69	ng/Kg	J		12.9	ng/Kg			7.83	ng/Kg			5.86	ng/Kg U	
Hexachlorodibenzofurans (HxCDF), Total								27.3	ng/Kg			48.4	ng/Kg			25.8	ng/Kg			0.292	ng/Kg J	
Heptachlorodibenzofurans (HpCDF), Total								66.3	ng/Kg			136	ng/Kg			72.3	ng/Kg			1.28	ng/Kg J	
2,3,7,8-Tetrachlorodibenzo-p-dioxin-C13										I			ļ								⊢	
1,2,3,7,8-Pentachlorodibenzo-p-dioxin-C13										<u> </u>											ı	
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin-C13																					I	
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin-C13																					·	
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin-C13																					·	
Octachlorodibenzo-p-dioxin-C13																					·	
2,3,7,8-1 etrachlorodibenzofuran-C13				↓																	├──	
1,2,3,7,8-Pentachiorodibenzoturan-C13				┨────┤																	┌───┤──	
2,3,4,7,8-Pentachiorodibenzofuran-C13																					┌───┤──	
1,2,3,4,7,8-Hexachiorodibenzofuran-U13				┨────┤						+				+							┌───┤──	
1,2,3,0,7,8-Hexachiorodibenzofuran-U13				┨────┤						+				+							┌───┤──	
1,2,3,7,0,9-FIEXaChiorodibenzofuran-013				┨────┤																	┌────┼──	_
2,3,4,0,7,8-Hexachiorodibenzofuran-U13				┨────┤																	┌───┼──	_
1,2,3,4,0,7,0-Teptachiorodibenzofuran-C13				┨────┤																	┌───┼──	_
1,2,3,4,7,0,9-meptachiorouldenzoruran-013			1			l			1	1			1	1							ı — — — — — — — — — — — — — — — — — — —	

Notes: J - The analyte was detected above the reported quantitation limit, and the reported concentration was an estimated value. R - The result was rejected and could not be used.

U - The analyte was analyzed for, but was considered not detected at the reporting limit or reported value.
 UJ - The analyte was analyzed for, and the associated quantitation limit was an estimated value.

Double border indicates DMMP bioaccumulation trigger

A heavy border with *italicized font* indicates DMMP screening level

A heavy border with *italicized, bold font* indicates DMMP maximum level

Appendix F Table F-4 Station SC04

								Station											
									5	SC042ZA		SC0422	ZB		S	C042ZC	SC0	42 ZD	
								3/10/2010				3/10/20	10		3,	/10/2010	3/10	/2010	
								14:34		,	14:34	1			14:34	14	:34		
									(compar	e to dry wt AET)	(compa	are to di	ry wt AET)		(compare	e to dry wt AET)	(compare to	o dry wt	AET)
																			тос
	sqs	CSL						Result	Result	Valid TOC NormConc	Result Result	t Valid	TOC NormConc	Result	Result	Valid TOC NormConc	Result Result	Valid	NormConc
Chemical Name	(ppm OC)	(ppm 0C)	SL	BT	ML	LAET	2AET	Value	Unit	Qual (ppm OC)	Value Unit	Qual	(ppm OC)	Value	Unit	Qual (ppm OC)	Value Unit	Qual	(ppm OC)
Solids, Total								87	7 percen	t	89.7 percer	nt		87.6	percent		86.8 percen	t	
Carbon, Total Organic (TOC)								0.0865	5 percent	t	0.054 percer	nt		0.047	percent	J	0.052 percen	t	
Gravel								43.95	5 percen	t	54.1 percer	nt		50.4	percent		42.8 percen	t	
Sand, Very Coarse								8.15	5 percen	t	7.44 percer	nt		6.57	percent		5.26 percen	t	
Sand, Coarse								12.35	percen	t	9.5 percer	nt .		9.47	percent		8.51 percen	t	
Sand, Medium								9.27	7 percen	t	6.86 percer	nt		21.2	percent		16.1 percen	t t	
Sand, Very Fine								0.985	5 percen	t	0.73 percer	nt		1.54	percent		2.17 percen	t	
Silt								0.565	percen	t	0.42 percer	nt		0.73	percent		0.65 percen	t	
Clay								0.7	7 percen	t	0.55 percer	nt		0.98	percent		0.82 percen	t	
	370	780	5200	_	29000	5.2	13	2.9	9	3.35	2.8		5.19	2.9		6.17	2.9		5.58
Naphthalene	99	170	2100	—	2400	2.1	2.4	2.9) µg/kg	U 3.35	2.8 µg/kg	U	5.19	2.9	µg/kg	U 6.17	2.9 µg/kg	U	5.58
Acenaphthylene	66	66	560	—	1300	1.3	1.3	2.9) µg/kg	U 3.35	2.8 µg/kg	U	5.19	2.9	µg/kg	U 6.17	2.9 µg/kg	U	5.58
Acenaphthene	16	57	500	-	2000	0.50	0.73	2.9) µg/kg	U 3.35	2.8 µg/kg	U	5.19	2.9	µg/kg	U 6.17	2.9 µg/kg	U	5.58
Huorene	23	79	540		3600	0.54	1.0	2.9) µg/kg	U 3.35	2.8 µg/kg	U	5.19	2.9	µg/kg	U 6.17	2.9 µg/kg	U	5.58
Anthracene	220	480 1200	0001		∠1000 13000	0.06	5.4 4.4	2.9	h ha/ka	U 3.35	2.8 μg/kg		5.19	2.9	µg/kg	U 6.17	2.9 µg/kg		5.58
2-Methylnaphthalene	38	64	670	_	1900	0.30	1 4	2.3) ua/ka	U 3.35	2.0 µg/kg	U	5.19	2.3	ua/ka	U 6.17	2.9 µg/kg	U	5.50
	060	5200	12000	4600	60000	10	17	2.0	1	2 02	2.0 μg/g		5.10 5.10	2.0	µ9/19	6.17	1.6	Ŭ	2.00
Fluoranthene	160	1200	12000	11980	30000	17	25	2.4	+) ua/ka	U 3.35	2.0 2.8 µg/kg		5.19	2.9	ua/ka	0.17 11 6.17	2.9 ua/ka	u	5.00
Pyrene	1000	1400	2600	—	16000	2.6	3.3	2.9	$\mu g/kg$	U 3.35	2.8 µg/kg	U	5.19	2.9	µg/kg	U 6.17	1.6 µg/kg	J	3.08
Benz(a)anthracene	110	270	1300	_	5100	1.3	1.6	2.9) µg/kg	U 3.35	2.8 µg/kg	U	5.19	2.9	µg/kg	U 6.17	2.9 µg/kg	U	5.58
Chrysene	110	460	1400	_	21000	1.4	2.8	2.9) µg/kg	U 3.35	2.8 µg/kg	U	5.19	2.9	µg/kg	U 6.17	2.9 µg/kg	U	5.58
Benzo(b)fluoranthene								2.9) µg/kg	U 3.35	2.8 µg/kg	U	5.19	2.9	µg/kg	U 6.17	2.9 µg/kg	U	5.58
Benzo(k)fluoranthene	000	450	2000		0000		2.0	2.9) µg/kg	U 3.35	2.8 µg/kg	U	5.19	2.9	µg/kg	U 6.17	2.9 µg/kg	U	5.58
Porzo(a)avrono	230	450	3200		3600	3.2	3.0	2.9		3.35	2.8		5.19	2.9	ua/ka	6.17	2.9 2.0 µg/kg		5.58
Indeno(1,2,3-cd)pyrene	34	88	600		4400	0.6	0.69	2.8) µg/kg	U 3.35	2.0 µg/kg 2.8 µg/kg		5.19	2.9	ug/kg	U 6.17	2.9 µg/kg 2.9 µg/kg	U	5.58
Dibenz(a,h)anthracene	12	33	230		1900	0.23	0.54	2.9	$\mu g/kg$	U 3.35	2.8 µg/kg	U	5.19	2.9	µg/kg	U 6.17	2.9 µg/kg	U	5.58
Benzo(g,h,i)perylene	31	78	670		3200	0.67	0.72	3.4	1 μg/kg	3.93	2.8 µg/kg	U	5.19	2.9	µg/kg	U 6.17	2.9 µg/kg	U	5.58
1.2-Dichlorobenzene	2.3	2.3	35		110	0.035	0.050	5.7	7 µg/kg	U 6.59	5.6 µg/kg	U	10.37	5.7	µq/kq	U 12.13	5.8 µg/kg	U	11.15
1,3-Dichlorobenzene			170					5.7	7 µg/kg	U 6.59	5.6 µg/kg	U	10.37	5.7	µg/kg	U 12.13	5.8 µg/kg	U	11.15
1,4-Dichlorobenzene	3.1	9	110		120	0.11	0.12	5.7	7 μg/kg	U 6.59	5.6 µg/kg	U	10.37	5.7	µg/kg	U 12.13	5.8 µg/kg	U	11.15
1,2,4-Trichlorobenzene	0.81	1.8	31	100	64	0.031	0.051	5.7	7 μg/kg	U 6.59	5.6 µg/kg	U	10.37	5.7	µg/kg	U 12.13	5.8 µg/kg	U	11.15
Hexachlorobenzene	0.38	2.3	22	168	230	0.022	0.070	5.7	ν μg/kg	0 6.59	5.6 µg/kg	U	10.37	5.7	µg/kg	U 12.13	5.8 µg/kg	U	11.15
Dimethyl Phthalate	53	53	71		1400	0.071	0.16	5.7	7 μg/kg	U 6.59	5.6 µg/kg	U	10.37	5.7	µg/kg	U 12.13	5.8 µg/kg	U	11.15
Diethyl Phthalate	61	110	200		1200	0.2	1.2	5.7	γ μg/kg	U 6.59	5.6 µg/kg	U	10.37	5.7	µg/kg	U 12.13	5.8 µg/kg	U	11.15
Butyl Benzyl Phthalate	4 9	64	63		970	0.063	0.9	57	2 μg/kg 7 μg/kg	0 13.67	12 μg/kg 5.6 μg/kg		10.37	57	µg/kg µg/kg	U 20.00 11 12.13	5.8 µg/kg	U	23.00
Bis(2-ethylhexyl) Phthalate	4.5	78	1300		8300	1.3	3.1	57	7 µg/kg	U 65.90	56 µg/kg	U	103.70	57	ua/ka	U 121.28	58 µg/kg	U	111.54
Di-n-octyl Phthalate	58	4500	6200		6200	6.2	6.2	5.7	7 µg/kg	U 6.59	5.6 µg/kg	U	10.37	5.7	µg/kg	U 12.13	5.8 µg/kg	U	11.15
Dibenzofuran	15	58	540		1700	0.54	0.70	5.7	7 µa/ka	U 6.59	5.6 µa/ka	U	10.37	5.7	µq/ka	U 12.13	5.8 µa/ka	U	11.15
Hexachlorobutadiene	3.9	6.2				0.011	0.12	5.7	7 µg/kg	U 6.59	5.6 µg/kg	U	10.37	5.7	µg/kg	U 12.13	5.8 µg/kg	U	11.15
N-Nitrosodiphenylamine	11	11	28		130	0.028	0.040	5.7	7 μg/kg	U 6.59	5.6 µg/kg	U	10.37	5.7	µg/kg	U 12.13	5.8 µg/kg	U	11.15
PCB 209	12	65	130	38	3100	6.2	6.2	12	2	13.87	12		22.22	12		25.53	12		23.08
Aroclor 1016								5.8	β µg/kg	U	5.6 µg/kg	U		5.8	µg/kg	U	5.8 µg/kg	U	
Aroclor 1221								12	2 µg/kg	U	12 µg/kg	U		12	µg/kg	U	12 µg/kg	U	
Aroclor 1232								5.8	3 µg/kg	U	5.6 µg/kg	U		5.8	µg/kg	U	5.8 µg/kg	U	
Aroclor 1242								5.8	s µg/kg	U	5.6 µg/kg			5.8	µg/kg		5.8 µg/kg	U	
Aroclor 1254								5.8	3 µg/kg 3 µg/kg	U	5.0 µg/kg			5.8	ua/ka	U	5.8 µg/kg	U	
Aroclor 1260								5.8	B µg/kg	U	5.6 µg/kg	Ū		5.8	µg/kg	U	5.8 µg/kg	Ū	
	SQS (µg/kg)	CSL (µg/kg)	SL	BT	ML														
Phenol	420	1200	420		1200	0.42	1.2	18	β μg/kg	U	17 µg/kg	U		18	µg/kg	U	18 µg/kg	U	
2-Methylphenol	63	63	63		77	0.063	0.072	5.7	γ μg/kg	U	5.6 µg/kg	U		5.7	µg/kg	U	5.8 µg/kg	U	
4-ivietnyiphenol	6/0	6/0	670 20		3600	0.020	1.8	5.7	μg/kg		5.6 µg/kg			5.7	µg/kg		5.8 µg/kg		
Pentachlorophenol (PCP)	360	690	400	504	690	0.029	0.69	57	/ μα/ka	U	20 μy/kg 56 μα/kg	U		29 57	µg/kg µa/ka	U	29 µy/ky 58 µa/ka	U	
Benzyl Alcohol	57	73	57		870	0.057	0.073	12	2 µg/ka	U	12 µg/kg	U		12	µg/kq	U	12 µg/kg	U	
Benzoic Acid	650	650	650		760	0.65	0.65	120) µg/kg	U	120 µg/kg	U		120	µg/kg	U	120 µg/kg	U	
Hexachloroethane			1400		14000			5.7	∕ µg/kg	U	5.6 µg/kg	U		5.7	µg/kg	U	5.8 µg/kg	U	

Appendix F Table F-4 Station SC04

								Station												
								SC042ZA						ZB	SC042ZC			SC)42 ZC)
								3/10/2010					/10/20	10			3/10/2010	3/1	0/2010)
									14	:34			14:34	4			14:34	1	4:34	
									compare to	o dry wt AET)	(compare	e to d	ry wt AET)		(compa	re to dry wt AET)	(compare t	o dry	wt AET)
																				тос
	600	001						Pocult	Result V		Posult	Pocult	Valid	TOC NormConc	Posult	Posult	Valid TOC NormConc	Posult Posu	+ Vali	id NormCond
Chamical Nama	SQS			вт		LACT	24ET	Value	Unit O		Value	Unit	Oual		Valuo	Unit		Valuo Unit		
	(ppm OC)	(ppm uc)	3L	ы	IVIL	LAET	ZAET	Value	Unit Q		Value	Unit	Quai	(ppin oc)	value	Unit	auai (ppiii OC)	value Offic	Qua	
Phenol-do											-									
Nitrobenzene-d5											_									
2-Fluorobipnenyi											_									
2,4,6-1 ribromophenol			4 750					0			0.0116							0		
p-reipnenyi-dit4			4 I E G	2	10 TEQ VC			7 000005			0.0116				0 400 40	,		0	_	
					averaged t	04 TEQ)	Total TEQ (1/20)	7.622935		Total TEQ (1/20)	6.38608				6.40248			6.21039		
							Dioxin TEQ (00)	0		Dioxin TEQ (00)	0.0116			Dioxin TEQ (00)	4 00000	,	Dioxin TEQ (00)	0	_	
							Dioxin TEQ (1/20)	4.103285		DIOXIN TEQ (1/20)	4.21328			DIOXIN TEQ (1/20)	4.22968	5	Dioxin TEQ (1/20)	4.103285		
2,3,7,8-Tetrachiorodibenzo-p-dioxin (TCDD)								1.09	ng/Kg U		1.12	ng/Kg	U		1.14	ng/Kg	0	1.09 ng/Kg] U	
1,2,3,7,8-Pentachiorodibenzo-p-dioxin (PeCDD)								5.43	ng/Kg U		5.6	ng/Kg	U		5.6	ng/Kg	0	5.43 ng/K	3 0	
1,2,3,4,7,8-Hexachiorodibenzo-p-dioxin (HxCDD)								5.43	ng/Kg U		5.6	ng/Kg	U		5.6	ng/Kg	0	5.43 ng/Kg) U	
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)								5.43	ng/Kg U		5.6	ng/Kg	U		5.6	ng/Kg	0	5.43 ng/Kg] U	
1,2,3,7,8,9-Hexachiorodibenzo-p-dioxin (HxCDD)								5.43	ng/Kg U		5.6	ng/Kg			5.6	ng/Kg	0	5.43 ng/Kg) U	
1,2,3,4,6,7,8-Heptachiorodibenzo-p-dioxin (HpCDD)								5.43	ng/Kg U		1.16	ng/Kg	BJ		5.0	ng/Kg	0	5.43 ng/Kg] U	
Octachlorodibenzo-p-dioxin (OCDD)								10.9	ng/kg U		11.2	ng/Kg	U		11.2	ng/Kg	0	10.9 ng/Kg	g U	
							Furan TEQ (0U)	0		Furan TEQ (0U)	0			Furan TEQ (0U)	0)	Furan TEQ (0U)	0		
							Furan TEQ (1/2U)	3.51965		Furan TEQ (1/2U)	2.1728			Furan TEQ (1/2U)	2.1728	3	Furan TEQ (1/2U)	2.1071		
2,3,7,8-Tetrachlorodibenzofuran (TCDF)								11.2	ng/Kg U		1.12	ng/Kg	U		1.12	2 ng/Kg	U	1.09 ng/Kg	g U	
1,2,3,7,8-Pentachlorodibenzofuran (PeCDF)								11.2	ng/Kg U		5.6	ng/Kg	U		5.6	ng/Kg	U	5.43 ng/Kg	g U	
2,3,4,7,8-Pentachlorodibenzofuran (PeCDF)								10.9	ng/Kg U		5.6	ng/Kg	U		5.6	ng/Kg	U	5.43 ng/Kg	g U	
1,2,3,4,7,8-Hexachlorodibenzofuran (HxCDF)								5.43	ng/Kg U		5.6	ng/Kg	U		5.6	ng/Kg	U	5.43 ng/K	g U	
1,2,3,6,7,8-Hexachlorodibenzofuran (HxCDF)								5.43	ng/Kg U		5.6	ng/Kg	U		5.6	ng/Kg	U	5.43 ng/K	g U	
1,2,3,7,8,9-Hexachlorodibenzofuran (HxCDF)								5.43	ng/Kg U		5.6	ng/Kg	U		5.6	ng/Kg	U	5.43 ng/K	g U	
2,3,4,6,7,8-Hexachlorodibenzofuran (HxCDF)								5.43	ng/Kg U		5.6	ng/Kg	U		5.6	ng/Kg	U	5.43 ng/K	g U	
1,2,3,4,6,7,8-Heptachlorodibenzofuran (HpCDF)								5.43	ng/Kg U		5.6	ng/Kg	U		5.6	6 ng/Kg	U	5.43 ng/K	g U	
1,2,3,4,7,8,9-Heptachlorodibenzofuran (HpCDF)								5.43	ng/Kg U		5.6	ng/Kg	U		5.6	6 ng/Kg	U	5.43 ng/K	g U	
Octachlorodibenzofuran (OCDF)								10.9	ng/Kg U		11.2	ng/Kg	U		11.2	2 ng/Kg	U	10.9 ng/K	g U	
Tetrachlorodibenzo-p-dioxins (TCDD), Total								1.09	ng/Kg U		1.12	ng/Kg	U		1.12	2 ng/Kg	U	1.09 ng/K	g U	
Pentachlorodibenzo-p-dioxin (PeCDD), Total								5.43	ng/Kg U		5.6	ng/Kg	U		5.6	6 ng/Kg	U	5.43 ng/K	g U	
Hexachlorodibenzo-p-dioxins (HxCDD), Total								5.43	ng/Kg U		5.6	ng/Kg	U		5.6	6 ng/Kg	U	5.43 ng/K	g U	
Heptachlorodibenzo-p-dioxins (HpCDD), Total								0.954	ng/Kg J		3.56	ng/Kg	J		0.485	i ng/Kg	J	0.691 ng/Kg	g J	
Tetrachlorodibenzofurans (TCDF), Total								1.09	ng/Kg U		1.12	ng/Kg	U		1.12	2 ng/Kg	U	1.09 ng/K	g U	
Pentachlorodibenzofurans (PeCDF), Total								5.43	ng/Kg U		5.6	ng/Kg	U		5.6	6 ng/Kg	U	5.43 ng/Kg	3 U	
Hexachlorodibenzofurans (HxCDF), Total								5.43	ng/Kg U		5.6	ng/Kg	U		3.21	ng/Kg	J	5.43 ng/Kg	g U	
Heptachlorodibenzofurans (HpCDF), Total								5.43	ng/Kg U		0.321	ng/Kg	J		5.6	6 ng/Kg	U	5.43 ng/Kg	g U	
2,3,7,8-1 etrachlorodibenzo-p-dioxin-C13											-									
1,2,3,7,8-Pentachlorodibenzo-p-dioxin-C13																				
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin-C13	-	-																		
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin-C13											-									
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin-C13											-									
Octachiorodibenzo-p-dioxin-C13																			_	
2,3,7,8- i etrachiorodibenzoturan-013			+		+						+					+			_	-
1,2,3,7,0-Pentachiorodibenzoturan-013			+		+						+					+			_	-
2,3,4,7,8-Pentachiorodibenzoturan-U13			1		+						+							├ ───		
1,2,3,4,7,8-Hexachiorodibenzoturan-U13											+							╡───┤───	_	-
1,2,3,0,7,0-riexachiorodibenzofuran-013			+		+						+				l	+			_	-
1,2,3,7,0,9-FIEXaChlorodibenZofuran-U13			+		+						+				l	+			_	-
2,3,4,0,7,0-HEXACNIORODIDENZOTURAN-U13			+		+						+					+		<u> </u>		
1,2,3,4,0,7,6-Heptachiorodibenzofuran-C13			+		+						+				l	+			_	-
1,2,3,4,7,6,9-neptachiorodibenzoruran-C13																1				

Notes: J - The analyte was detected above the reported quantitation limit, and the reported concentration was an estimated value. U - The analyte was analyzed for, but was considered not detected at the reporting limit or reported value.

F

Double border indicates DMMP bioaccumulation trigger
A heavy border with <i>italicized font</i> indicates DMMP screening level
A heavy border with <i>italicized hold font</i> indicates DMMP maximum level
A neavy border with <i>italicized, bold font</i> indicates DiviviP maximum level

Appendix F Table F-5 Station SC043

								Station SC043 ZA						
									3/10/20	10				
									13:00		тос			
Chamical Name	SQS	CSL	61	вт			24FT	Result Value	Result	Valid	NormConc			
Solids, Total	(ppm OC)	(ppm UC)	5L	ы	ML	LAEI	ZAET	75.5	percent	Quai	(ppin oc)			
Carbon, Total Organic (TOC)								0.814	percent					
Sand, Very Coarse								19.2	percent					
Sand, Coarse								12.6	percent					
Sand, Medium Sand, Fine								13.4	percent					
Sand, Very Fine								3.29	percent					
Silt								21.4	percent					
	370	780	5200		29000	5.2	13	0.09 47 A	percent		5.82			
Naphthalene	99	170	2100	_	2400	2.1	2.4	4.2	µg/kg		0.52			
Acenaphthylene	66	66	560	_	1300	1.3	1.3	4.8	µg/kg		0.59			
Fluorene	23	79	500	_	3600	0.50	1.0	2.5	µg/kg µg/kg	J	0.31			
Phenanthrene	100	480	1500	—	21000	1.5	5.4	23	µg/kg		2.83			
Anthracene	220	1200	960 670		13000	0.96	4.4	9.3	µg/kg		1.14			
	960	5300	12000	4600	69000	12	1.4	295 /	μ9/19		36.20			
Fluoranthene	160	1200	1700	11980	30000	1.7	2.5	42	µg/kg		5.16			
Pyrene	1000	1400	2600	_	16000	2.6	3.3	58	µg/kg		7.13			
Benz(a)anthracene Chrysene	110	270 460	1300	_	21000	1.3	1.6	21	µg/kg ua/ka		2.58			
Benzo(b)fluoranthene								56	µg/kg		6.88			
Benzo(k)fluoranthene	230	150	3200		9900	30	3.6	19 75	µg/kg		2.33			
Benzo(a)pyrene	99	210	1600		3600	1.6	3.0	31	µg/kg	L	3.81			
Indeno(1,2,3-cd)pyrene	34	88	600		4400	0.6	0.69	22	µg/kg		2.70			
Dibenz(a,h)anthracene	12	33	230 670		1900 3200	0.23	0.54	5.4	µg/kg		0.66			
1 2-Dichlorobenzene	2.3	23	35		110	0.035	0.050	66	ua/ka	υ	0.81			
1,3-Dichlorobenzene	2.0	2.0	170		110	0.000	0.000	6.6	µg/kg	U	0.81			
1,4-Dichlorobenzene	3.1	9	110		120	0.11	0.12	6.6	µg/kg	U	0.81			
Hexachlorobenzene	0.81	2.3	22	168	230	0.031	0.051	6.6	µg/kg µg/kg	U	0.81			
Dimethyl Phthalate	53	53	71		1400	0.071	0.16	6.6	µg/kg	U	0.81			
Diethyl Phthalate	61	110	200		1200	0.2	1.2	6.6	µg/kg	U	0.81			
Di-n-butyl Phthalate Butyl Benzyl Phthalate	220	1700 64	1400 63		5100 970	1.4	5.1	14	µg/kg	U	1.72			
Bis(2-ethylhexyl) Phthalate	47	78	1300		8300	1.3	3.1	41	µg/kg	J	5.04			
Di-n-octyl Phthalate	58	4500	6200		6200	6.2	6.2	6.6	µg/kg	U	0.81			
Dibenzofuran	15	58	540		1700	0.54	0.70	3	µg/kg	J	0.37			
N-Nitrosodiphenylamine	3.9	6.2 11	28		130	0.011	0.12	6.6	µg/kg µg/kg	U	0.81			
PCB 209	12	65	130	38	3100	6.2	6.2	203			24.94			
Aroclor 1016								6.6	µg/kg	U				
Aroclor 1221 Aroclor 1232								14	µg/kg µg/kg	U				
Aroclor 1242								44	µg/kg	Ĩ				
Aroclor 1248								6.6	µg/kg	U				
Aroclor 1254 Aroclor 1260								62	µg/kg µg/kg					
	SQS (µg/kg)	CSL (µg/kg)	SL	BT	ML									
Phenol	420	1200	420		1200	0.42	1.2	20	µg/kg	U				
2-Methylphenol 4-Methylphenol	63	63 670	63 670		3600	0.063	0.072	6.6	µg/kg ua/ka	U				
2,4-Dimethylphenol	29	29	29		210	0.029	0.072	33	µg/kg	U				
Pentachlorophenol (PCP) Benzyl Alcohol	360	690 73	400	504	690 870	0.36	0.69	66	µg/kg	U				
Benzoic Acid	650	650	650		760	0.65	0.65	140	µg/kg µg/kg	U				
Hexachloroethane			1400		14000			6.6	µg/kg	U				
Phenol-d6														
Nitrobenzene-d5														
2-Fluorobiphenyl														
p-Terphenyl-d14			4 TEQ Total		10 TEQ \	/olume	Total TEQ							
					Weigł	nted	Total TEQ (1/2U)							
							Dioxin TEQ (00) Dioxin TEQ (1/20)							
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)								0.79	ng/Kg	J				
1,2,3,7,8-Pentachlorodibenzo-p-dioxin (PeCDD)								0.902	ng/Kg	1				
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)								12.2	ng/Kg	5				
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin (HxCDD)								6.41	ng/Kg	J				
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin (HpCDD)								389 5870	ng/Kg ng/Kg	.1				
							Furan TEQ (0U)	26 204126	ng/ng	Ŭ				
							Furan TEQ (1/2U)	26.54916						
2,3,7,8-Tetrachlorodibenzofuran (TCDF)								0.795	ng/Kg	J				
2,3,4,7,8-Pentachlorodibenzofuran (PeCDF)								1.54 6.72	ng/Kg ng/Ka	J				
1,2,3,4,7,8-Hexachlorodibenzofuran (HxCDF)								48.2	ng/Kg	-				
1,2,3,6,7,8-Hexachlorodibenzofuran (HxCDF)								7.48	ng/Kg	U				
2,3,4,6,7,8-Hexachlorodibenzofuran (HxCDF)						L		7.62	ng/Kg	Ľ				
1,2,3,4,6,7,8-Heptachlorodibenzofuran (HpCDF)								80.1	ng/Kg					
Octachlorodibenzofuran (OCDF)								9.78	ng/Kg ng/Ka					
Tetrachlorodibenzo-p-dioxins (TCDD), Total								2.42	ng/Kg	1.				
Pentachlorodibenzo-p-dioxin (PeCDD), Total								1.72	ng/Kg	J				
Heptachlorodibenzo-p-dioxins (HpCDD), Total						1		897	ng/Kg	1				

Appendix F Table F-5 Station SC043

									Statio	n	
									SC043 2	ZA	
									3/10/20	10	
									13:00		
											TOC
	SQS	CSL							Result	Valid	NormConc
Chemical Name	(ppm OC)	(ppm 0C)	SL	BT	ML	LAET	2AET	Result Value	Unit	Qual	(ppm OC)
Tetrachlorodibenzofurans (TCDF), Total								11.4	ng/Kg		
Pentachlorodibenzofurans (PeCDF), Total								65.3	ng/Kg		
Hexachlorodibenzofurans (HxCDF), Total								210	ng/Kg		
Heptachlorodibenzofurans (HpCDF), Total								311	ng/Kg		
2,3,7,8-Tetrachlorodibenzo-p-dioxin-C13											
1,2,3,7,8-Pentachlorodibenzo-p-dioxin-C13											
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin-C13											
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin-C13											
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin-C13											
Octachlorodibenzo-p-dioxin-C13											
2,3,7,8-Tetrachlorodibenzofuran-C13											
1,2,3,7,8-Pentachlorodibenzofuran-C13											
2,3,4,7,8-Pentachlorodibenzofuran-C13											
1,2,3,4,7,8-Hexachlorodibenzofuran-C13											
1,2,3,6,7,8-Hexachlorodibenzofuran-C13											
1,2,3,7,8,9-Hexachlorodibenzofuran-C13											
2,3,4,6,7,8-Hexachlorodibenzofuran-C13											
1,2,3,4,6,7,8-Heptachlorodibenzofuran-C13											
1,2,3,4,7,8,9-Heptachlorodibenzofuran-C13											

Notes:

J - The analyte was detected above the reported quantitation limit, and the reported concentration was an estimated value. U - The analyte was analyzed for, but was considered not detected at the reporting limit or reported value.

Double border indicates DMMP bioaccumulation trigger
A heavy border with <i>italicized font</i> indicates DMMP screening level
A heavy border with <i>italicized, bold font</i> indicates DMMP maximum level

Table F-5 Page 2 of 2

Appendix F Table F-6 Station SC05

									Stat SC0 3/10/2 12:	tion 5 ZA 2010 14	
Chemical Name	SQS (ppm OC)	CSL (ppm 0C)	SL	вт	ML	LAET	2AET	Result Value	Result Unit	Valid Qual	TOC NormConc (ppm OC)
Solids, Total								61.8	percent		
Gravel								0.56	percent		
Sand, Very Coarse								1.39	percent		
Sand, Coarse Sand, Medium								2.47	percent		
Sand, Fine								3.55	percent		
Sand, Very Fine								14.3 54.5	percent		
Clay								13.2	percent		
	370	780	5200	_	29000	5.2	13	249			12.21
Naphthalene	99	170	2100	—	2400	2.1	2.4	16	µg/kg		0.78
Acenaphthylene	66 16	66 57	560		2000	1.3	1.3	18 17	µg/kg ua/ka		0.88
Fluorene	23	79	540		3600	0.54	1.0	24	µg/kg		1.18
Phenanthrene	100	480	1500		21000	1.5	5.4	130	µg/kg		6.37
2-Methylnaphthalene	38	64	960 670		13000	0.96	1.4	44	µg/kg µg/kg		0.59
	960	5300	12000	4600	69000	12	17	2629			128.87
Fluoranthene	160	1200	1700	11980	30000	1.7	2.5	450	µg/kg		22.06
Pyrene Ronz(a)anthracana	1000	1400	2600		16000	2.6	3.3	860	µg/kg		42.16
Chrysene	110	460	1400		21000	1.4	2.8	210	µg/kg		9.31
Benzo(b)fluoranthene								350	µg/kg		17.16
Benzo(K)filuoranthene	230	450	3200		9900	3.2	3.6	120 470	µg/kg		5.88 23.04
Benzo(a)pyrene	99	210	1600		3600	<u>1.6</u>	3.0	220	µg/kg		10.78
Indeno(1,2,3-cd)pyrene	34	88	600		4400	0.6	0.69	120	µg/kg	<u> </u>	5.88
Benzo(g,h,i)perylene	31	78	670		3200	0.23	0.54	35 74	μg/kg μg/kg		3.63
1.2-Dichlorobenzene	2.3	2.3	35		110	0.035	0.050	41	ua/ka	U	2 01
1,3-Dichlorobenzene			170					41	µg/kg	U	2.01
1,4-Dichlorobenzene	3.1	9	110		120	0.11	0.12	41	µg/kg	U	2.01
1,2,4-1 richlorobenzene Hexachlorobenzene	0.81	1.8	22	168	64 230	0.022	0.051	41	µg/kg ua/ka	U	2.01
Dimethyl Phthalata	52	52	71		1400	0.071	0.16		ug/kg		2.01
Diethyl Phthalate	61	110	200		1200	0.071	1.2	41	µg/kg	U	2.01
Di-n-butyl Phthalate	220	1700	1400		5100	1.4	5.1	81	µg/kg	U	3.97
Butyl Benzyl Phthalate Bic(2-ethylbeyyl) Phthalate	4.9	64	63 1300		970 8300	0.063	0.9	66 230	µg/kg		3.24
Di-n-octyl Phthalate	58	4500	6200		6200	6.2	6.2	41	µg/kg	U	2.01
Dibenzofuran	15	58	540		1700	0.54	0.70	14	µg/kg		0.69
Hexachlorobutadiene	3.9	6.2			400	0.011	0.12	41	µg/kg	U	2.01
	11	11	28		130	0.028	0.040	9.7	µg/ĸg		0.48
PCB 209 Aroclor 1016	12	65	130	38	3100	6.2	6.2	282	ua/ka	11	13.82
Aroclor 1221								17	µg/kg µg/kg	U	
Aroclor 1232								8.1	µg/kg	U	
Aroclor 1242 Aroclor 1248								87	µg/kg µg/kg	U	
Aroclor 1254								120	µg/kg		
Aroclor 1260								75	µg/kg		
Phenol	SQS (µg/kg) 420	CSL (µg/kg) 1200	SL 420	BT	ML 1200	0.42	1.2	16	ua/ka		
2-Methylphenol	63	63	63		77	0.063	0.072	41	µg/kg	U	
4-Methylphenol	670	670	670		3600	0.67	1.8	41 210	µg/kg	U	
Pentachlorophenol (PCP)	360	690	400	504	690	0.36	0.69	410	µg/kg µg/kg	U	
Benzyl Alcohol	57	73	57		870	0.057	0.073	81	µg/kg	U	
Benzoic Acid Hexachloroethane	650	650	650 1400		760 14000	0.65	0.65	810 41	µg/kg	U	
Phenol-d6					. +000			11	r 3' ' Y	-	
Nitrobenzene-d5											
2-Fluorobiphenyl											
p-Terphenyl-d14			4 TEQ		10 TEQ Vo	olume	Total TEQ	18.43595			
					averaged t	o 4 TEQ)	Total TEQ (1/2U)	19.09745			
						_	Dioxin TEQ (0U)	17.094			
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)								0.645	ng/Kg	J	
1,2,3,7,8-Pentachlorodibenzo-p-dioxin (PeCDD)								1.87	ng/Kg	J	
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)								17.2	ng/Kg	J	
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin (HxCDD)								12.7	ng/Kg		
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin (HpCDD) Octachlorodibenzo-p-dioxin (OCDD)								885 8500	ng/Kg ng/Kg	J	
							Furan TEQ (0U)	1 34195			
							Furan TEQ (1/2U)	2.00345			
2,3,7,8-Tetrachlorodibenzofuran (TCDF)								0.705	ng/Kg	J	
2,3,4,7,8-Pentachlorodibenzofuran (PeCDF)								0.979	ng/Kg	J	
1,2,3,4,7,8-Hexachlorodibenzofuran (HxCDF)								3.56	ng/Kg	J	
1,2,3,0,7,8,9-Hexachlorodibenzofuran (HxCDF)								1.18 7.56	ng/Kg	J U	
2,3,4,6,7,8-Hexachlorodibenzofuran (HxCDF)								0.881	ng/Kg	J	
1,2,3,4,6,7,8-Heptachlorodibenzofuran (HpCDF)								34.1	ng/Kg		
Octachlorodibenzofuran (OCDF)								105	ng/Kg	<u> </u>	
Tetrachlorodibenzo-p-dioxins (TCDD), Total								1.96	ng/Kg		
Hexachlorodibenzo-p-dioxin (PeCDD), Total								12 271	ng/Kg ng/Ka		
Heptachlorodibenzo-p-dioxins (HpCDD), Total								4050	ng/Kg		
i etrachlorodibenzofurans (ICDF), I otal Pentachlorodibenzofurans (PeCDF), Total								11 16 4	ng/Kg na/Ka		
Hexachlorodibenzofurans (HxCDF), Total								23.7	ng/Kg		
Heptachlorodibenzofurans (HpCDF), Total								156	ng/Kg		
1,2,3,7,8-Pentachlorodibenzo-p-dioxin-C13		1					1			1	

Appendix F Table F-6 Station SC05

									Stat	tion	
									SC0	5 ZA	
									3/10/2	2010	
									12:	14	TOC
	505	001						Result	Result	Valid	NormConc
Chemical Name			SI	BT	м	LAFT	24FT	Value	Unit	Qual	(DDm OC)
1 2 3 4 7 8-Hexachlorodibenzo-p-dioxin-C13	(ppiii 00)	(ppin 00)	0L								urr 7
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin-C13											
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin-C13											
Octachlorodibenzo-p-dioxin-C13											
2,3,7,8-Tetrachlorodibenzofuran-C13											
1,2,3,7,8-Pentachlorodibenzofuran-C13											
2,3,4,7,8-Pentachlorodibenzofuran-C13											
1,2,3,4,7,8-Hexachlorodibenzofuran-C13											
1,2,3,6,7,8-Hexachlorodibenzofuran-C13											
1,2,3,7,8,9-Hexachlorodibenzofuran-C13											
2,3,4,6,7,8-Hexachlorodibenzofuran-C13											
1,2,3,4,6,7,8-Heptachlorodibenzofuran-C13											
1,2,3,4,7,8,9-Heptachlorodibenzofuran-C13											

Notes: J - The analyte was detected above the reported quantitation limit, and the reported concentration was an estimated value. U - The analyte was analyzed for, but was considered not detected at the reporting limit or reported value.

Double border indicates DMMP bioaccumulation trigger
A heavy border with italicized font indicates DMMP screening level
A heavy border with <i>italicized, bold font</i> indicates DMMP maximum level

Table F-6 Page 2 of 2

Appendix G

Subsurface Sediment Chemical Data Package

(Note: This appendix is provided on DVD)

Appendix H

Subsurface Sediment Validation Report

Data Validation Report

Port of Seattle Terminal 115 Post-Dredge Subsurface Sediment Characterization January 2010 Sampling

Prepared for:

Science and Engineering for the Environment, LLC. 4401 Latona Ave NE Seattle, WA 98105

Prepared by:

Pyron Environmental, Inc. 3530 32nd Way NW Olympia, WA 98502

May 5, 2010

Pyron Environmental, Inc. Data Validation Report T-115 Post-Dredge Sediment January 2010 Sampling

ACRONYMS

%D	percent difference
%D _f	percent drift
%R	percent recovery
%RSD	percent relative standard deviation
CDD	chlorinated dibenzo-p-dioxin
CDF	chlorinated dibenzofuran
CF	calibration factor
CLP	U.S. EPA Contract Laboratory Program
сос	chain-of-custody
DFTPP	decafluorotriphenylphosphine
ECD	electron capture detector
ЕМРС	estimated maximum possible concentration
EPA	U.S. Environmental Protection Agency
GC/MS	gas chromatograph/mass spectrometer
HRGC	high-resolution gas chromatograph
HRMS	high-resolution mass spectrometer
ICAL	initial calibration
ICB	initial calibration blank
IPR	initial precision and recovery
ISC	isomer specificity check
LCS	laboratory control sample
LCSD	laboratory control sample duplicate
mg/kg	milligram per kilogram
μg/kg	microgram per kilogram
MDL	method detection limit
MS	matrix spike
MSD	matrix spike duplicate
m/z	mass-to-charge ratio
ng/kg	nanogram per kilogram
NFGs	CLP National Functional Guidelines for Data Review (EPA 2008 – Organics, EPA 2005 - Dioxins and Furans)
OPR	ongoing precision and recovery
PCBs	polychlorinated biphenyls

Pyron Environmental, Inc. Data Validation Report T-115 Post-Dredge Sediment January 2010 Sampling

PCDD	polychlorinated dibenzo-p-dioxin
PCDF	polychlorinated dibenzofuran
PEM	performance evaluation mixture
QAPP	quality assurance project plan
QA/QC	quality assurance/quality control
RF	response factor
RL	reporting limit
RPD	relative percent difference
SDG	sample delivery group
SICP	selected ion current profile
S/N	signal-to-noise ratio
SVOCs	semi-volatile organic compounds
WDM	window defining mixture

INTRODUCTION

This report presents and discusses findings of the data validation performed on analytical data for samples collected during January 2010 for the referenced project. The laboratory report validated herein was submitted by Columbia Analytical Services, Inc. in one sample delivery group (SDG) – K1000845.

A level IV data validation was performed. The validation followed the procedures specified in USEPA CLP National Functional Guidelines ([NFGs], EPA 2008 – Organics, EPA 2005 – Chlorinated Dioxin/Furans), with modifications to accommodate project and analytical method requirements. The numerical quality assurance/quality control (QA/QC) criteria applied to the validation were in accordance with those specified in the quality assurance project plans ([QAPPs], Anchor, June 2009) and the current performance-based control limits established by the laboratory (laboratory control limits). Instrument calibration, frequency of QC analyses, and analytical sequence requirements were evaluated against the respective analytical methods.

Validation findings are discussed for each QC parameter pertinent to each type of analyses evaluated. Qualified data with applied data qualifiers are summarized in the **Summary** section at the end of this report. As part of the level IV validation, 10 percent of the initial calibrations, calibration verifications, laboratory QC analyses, and sample results were verified via re-calculation checks.

				Analysis			
Field Sample ID	Laboratory Sample ID	Sampling Date	Matrix	SVOCs	PCBs	Dioxin/ Furans	TOC Grain Size
T115-SC-01-100127-ZA	K1000845-001	01/27/2010	Sediment	Х	х	Х	х
T115-SC-01-100127-ZB	K1000845-002	01/27/2010	Sediment	Х	Х	Х	х
T115-SC-01-100127-ZC	K1000845-003	01/27/2010	Sediment	Х	х	Х	х
T115-SC-01-100127-ZD	K1000845-004	01/27/2010	Sediment	Х	х	Х	х
T115-SC-02-100127-ZA	K1000845-016	01/27/2010	Sediment	Х	х	Х	х
T115-SC-02-100127-ZB	K1000845-017	01/27/2010	Sediment	Х	Х	Х	х
T115-SC-02-100127-ZC	K1000845-018	01/27/2010	Sediment	Х	х	Х	х
T115-SC-02-100127-ZD	K1000845-019	01/27/2010	Sediment	Х	Х	Х	х

Samples and the associated analyses validated herein are summarized as follows:

Notes:

X - The analysis was requested and performed on the sample

SVOCs – Semi-volatile organic compounds, analyte list specified in the QAPP

PCBs – Polychlorinated biphenyls (Aroclors only)

Dioxins/Furans – Polychlorinated dioxins & furans

TOC – Total organic carbon

Analytical methods in respect to analytical parameters validated herein and the laboratory performing the analyses are summarized below:

Parameter	Analytical Method	Laboratory
тос	Plumb, 1981	
Grain Size	PSEP Protocols	Columbia Analytical Services, Inc.
PCB Aroclors	SW846 Method 8082	(CAS), Kelso, Washington
SVOCs	SW846 Method 8270C	
Polychlorinated Dioxins & Furans	EPA Method 1613B	Columbia Analytical Services, Inc. (CAS), Houston, Texas

Notes:

1. SW846 Methods - USEPA Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, Third Edition, December 1996 and Updates.

2. USEPA Method 1613 Tetra- Through Octa-Chlorinated Dioxins and Furans by Isotope Dilution HRGC/HRMS, October 1994.

3. PSEP Protocols - *PSEP Recommended Protocols for Measuring Conventional Sediment Variables in Puget Sound*, Puget Sound Water Quality Authority, March 1986.

4. Plumb 1981 - Procedures for Handling and Chemical Analysis of Sediment and Water Samples. Technical Report, EPA/CE-B1-1. U.S. Army Corps of Engineers. Plumb, R.H. 1981.

DATA VALIDATION FINDINGS

1. Semi-volatile Organic Compounds (SVOCs) by GC/MS (SW846 Method 8270C)

1.1 Sample Management and Holding Times

No anomalies were identified in relation to sample preservation, handling, and transport, as discussed in Section 1.1.

Water samples should be extracted within seven days of collection. Extracts should be analyzed within 40 days of extraction. All samples were extracted and analyzed within the required holding times.

1.2 GC/MS Instrument Performance Check

DFTPP tuning was performed within each 12-hour interval. All required ion abundance ratios met the method requirements.

1.3 Initial Calibration

The NFGs criteria require that the average response factor (RF) be ≥ 0.05 for all analytes and surrogate compounds.

The method linearity criteria require that (1) if linear average RFs is chosen as the quantitation option, the %RSD of RFs be \leq 15% for the analyte, (2) if least-square linear regression is chosen for quantitation, the correlation coefficient (r) be \geq 0.99, and (3) if sixpoint non-linear (quadratic) curve is chosen for quantitation, the coefficient of determination (r²) be \geq 0.99.

1.4 Calibration Verification

The NFGs criteria require that (1) continuing calibrations be analyzed at the beginning of each 12-hour analysis period prior to the analysis of method blank and samples, (2) the percent difference (%D) be within $\pm 20\%$, and (3) the RF be ≥ 0.05 for all analytes and surrogate compounds.

Calibration verifications were performed at the required frequency, and all %D values met the method criterion or the outliers had no effects on data quality (*e.g.*, high bias recovery where the compound was not detected in associated samples).

1.5 Method Blanks

Method blanks were prepared and analyzed as required. No target analytes were detected at or above the MDLs in the method blanks, except for the following:

Method Blank ID	Analyte	Detection in Blank (µg/kg)	Affected Sample	Original Result (μg/kg)	Adjusted Results (μg/kg)
KWG1003073-MB	Dimethyl Phthalate	3.2 J	T115-SC-01-100127-ZA T115-SC-01-100127-ZB T115-SC-01-100127-ZC T115-SC-02-100127-ZB T115-SC-02-100127-ZC T115-SC-02-100127-ZD	15 11 9.2 J 13 J 4.8 J 7.3 J	15 U 11 U 39 U 41 U 8.4 U 8.4 U

Note: J – The value was at a level between the MDL and MRL, and considered as estimated.

1.6 Surrogate Spikes

Surrogate spikes were added to all samples as required by the method. All surrogate percent recovery (%R) values were within the laboratory control limits.

1.7 Matrix Spike and Matrix Spike Duplicate (MS/MSD)

MS/MSD analyses were performed on sample T115-SC-01-100127-ZA. All %R and RPD values for the spiked compounds met the laboratory control criteria.

1.8 Laboratory Control Sample (LCS)

LCS and/or LCSD analyses were performed with each analytical batch. All %R and RPD values met the laboratory control limits.

1.9 Internal Standards

The method requires that (1) internal standard retention time be within ± 30 seconds from that of the associated 12-hour calibration standard, and (2) the area counts of all internal standards be within -50% to +100% of the associated 12-hour calibration standard. All internal standards in the sample and associated QC analyses met the criteria.

1.10 Target Compound Identification

Target compound identification is evaluated by examining if (1) the RRT is within ± 0.06 RRT units of the standard RRT for a positively identified compound, (2) the relative intensity of characteristic ions are within $\pm 30\%$ in comparison with the reference spectrum, and (3) ions of a positively identified compound with >10% relative abundance should be present. No anomalies were found. Hexachlorophene results were determined using tentative identification compound search. The compound was not detected in any of the samples, and were qualified (UJ) due to the lack of calibration and QC measurements.

1.11 Compound Quantitation and Method Reporting Limits

The sample-specific MRLs were adjusted with sample amount extracted and supported with adequate initial calibration concentrations. The QAPP requirements for MRLs were achieved.

Verification calculations were performed on 10% of the instrument calibration, calibration verifications, and reported QC and sample analyses. No anomalies were found. Sample quantitation and reporting was correctly performed.

1.12 System Performance

The system performance and stability over an analytical sequence was evaluated by examining chromatograms for abrupt baseline shifting, excessive baseline rise at elevated temperature, progressing peak tailing, or loss of resolution. In addition, the internal standard retention times and response areas were checked for trends of shifting. No anomalies were observed.

1.13 Overall Assessment of Data Usability

SVOCs data are of known quality and acceptable for use, as qualified.

2. PCB Aroclors (SW846 Method 8082)

2.1 Sample Management and Holding Times

No anomalies were identified in relation to sample preservation, handling, and transport, as discussed in Section 1.1.

Water samples should be extracted within seven days of collection. Extracts should be analyzed within 40 days of extraction. All samples were extracted and analyzed within the required holding times.

2.2 Initial Calibration

The method requires that (1) a minimum of 5-point calibration be performed using the mixture of Aroclor 1016 and 1260, (2) a single-point calibration be performed for the other five Aroclors to establish calibration factors (CFs) and for Aroclor pattern recognition, (3) at least 3 peaks (preferably 5 peaks) must be chosen for each Aroclor for characterization, (4) the %RSD values of Aroclor 1016 and 1260 CFs must be \leq 20%, and (5) if dual column analysis is chosen, both columns should meet the requirements. The initial calibrations met the method requirements.

2.3 Calibration Verification

The method requires that (1) the initial calibration be verified prior to any analysis for each 12-hour analysis sequence, and (2) the percent drift (%D) be within $\pm 15\%$ to demonstrate the linearity of the initial calibration.

Calibration verifications were performed at the required frequency, and all %D values met the method criterion or the outliers had no effects on data quality (*e.g.*, high bias recovery where the compound was not detected in associated samples).

2.4 Blanks

Method Blanks: Method blanks were prepared and analyzed as required. PCB Aroclors were not detected at or above the MDLs in the method blanks.

Instrument Blank: Instrument blanks were analyzed and reported as required. PCB Aroclors were not detected at or above MDLs in the instrument blanks.

2.5 Surrogate Spikes

Surrogate spikes were added to all samples as required by the method. All surrogate spike percent recovery (%R) values were within the laboratory control limits.

2.6 Matrix Spike and Matrix Spike Duplicate (MS/MSD)

MS/MSD analyses were performed on sample T115-SC-01-100127-ZA as requested. The Aroclor 1260 %R values were less than the lower project control limits. All sediment samples in this SDG may pose similar effects on Aroclor 1260 analyses; Aroclor 1260 results for all samples were qualified (J) as estimated. RPD values met the laboratory control criteria.

2.7 Laboratory Control Sample (LCS)

LCS analyses were performed as required by the method. All %R values met the laboratory control limits.

2.8 Target Compound Identification

All chromatograms were properly displayed and scaled. PCB Aroclors were not detected at or above the MDLs in any of the field samples.

2.9 Target Compound Quantitation and Reporting Limits

The sample-specific MRLs were adjusted with sample amount extracted and supported with adequate initial calibration concentrations. The QAPP requirements for MRLs were achieved.

Verification calculations were performed on 10% of the reported initial calibrations, calibration verifications, QC, and sample results. No anomalies were found.

2.10 Overall Assessment of PCB Aroclors Data Usability

PCB Aroclor data are of known quality and acceptable for use, as qualified.

3. Polychlorinated Dioxins/Furans by HRGC/HRMS (EPA Method 1613B)

3.1 Sample Management and Holding Times

No anomalies were identified in relation to sample preservation, handling, and transport, as discussed in Section 1.1.

EPA Method 1613B recommends a holding time of one year for solid samples stored in the dark at $<-10^{\circ}$ C. The NFG recommended that extracts be analyzed within 30 days of extraction. The sample was extracted and analyzed within the recommended holding times.

3.2 HRGC/HRMS Instrument Performance Check

The NFG and EPA Method 1613B criteria for instrument performance checks are as follows:

Mass Spectrometer Resolution: (1) The resolution check should be performed prior to initial calibration and at the start and end of each 12-hour shift, (2) the resolution should be \geq 10,000 resolving power at m/z 304.9824, and (3) the deviation between the exact m/z and the theoretical m/z must be less than 5 ppm for monitored isomers.

Window Defining Mixture (WDM) and Column Performance Solution (CPS): (1) WDM and CPS should be analyzed prior to initial calibration and continuing calibration verification, and (2) the 2,3,7,8-TCDD peak and 1,2,3,8-TCDD peak should be resolved with a valley of \leq 25%.

HRGC/HRMS instrument performance checks met the criteria.

3.3 Initial Calibration

The NFG and EPA Method 1613B criteria for initial calibration are as follows:

- (1) A minimum of five standards should be employed,
- (2) The percent relative standard deviation (%RSD) of isomer response should be <20% for native compounds and <35% for labeled compounds,
- (3) The absolute RT of the internal standard $^{13}C_{12}$ -1,2,3,4-TCDD must be >25 minutes on the DB-5 (or equivalent) column and >15 minutes on the DB-225 (or equivalent) column,
- (4) The ion abundance ratios should be within the control limits listed in EPA Method 1613B, Table 9, and
- (5) The signal-to-noise (S/N) ratio should be >10 for all native and labeled compounds in the first calibration standard (CS1).

Initial calibrations met all acceptance criteria.

3.4 Calibration Verification

The NFG and EPA Method 1613B criteria require that:

- (1) Continuing calibration verifications be performed at the beginning of each 12-hour shift,
- (2) The percent difference (%D) value be within the control limits listed in EPA Method 1613B, Table 6, and
- (3) The ion abundance ratios, retention times, relative retention times, instrument sensitivity should meet the same criteria as for initial calibrations.

All calibration verification analyses met the criteria.

3.5 Blanks

Method Blank: A method blank was prepared and analyzed as required for each preparation batch. No target analytes were detected at or above the MRLs. 1,2,3,4,6,7,8-HpCDD and OCDD were detected in the method blank at levels greater than their estimated detection limits (EDLs) but less than their MRLs. All sample results were greater than 10 times the levels found in the method blanks; no data qualifying action was required.

Instrument Blank: An instrument blank was analyzed prior to the sample analyses in each analytical sequence. Target analytes were not detected at or above the EDLs.

3.6 Initial Precision and Recovery Study (IPR) and Ongoing Precision and Recovery (OPR)

The initial precision and recovery study was performed according to the laboratory, but results were not provided in the data package. A laboratory control sample (LCS) was analyzed in lieu of ongoing precision and recovery (OPR) analysis (see Section 3.8).

3.7 Labeled Compounds

Fifteen labeled compounds were added to all field and laboratory QC samples as required by the method. The percent recovery (%R) values met the method requirements (EPA Method 1613B, Table 7).

3.8 Laboratory Control Sample (LCS) and LCS Duplicate (LCSD)

LCS and LCSD analyses were performed as required by the method. All %R and relative percent difference (RPD) values met the laboratory control limits,

3.9 Matrix Spike and Matrix Spike Duplicate (MS/MSD)

MS/MSD analyses were not performed on project samples in this SDG. Analytical precision and accuracy was evaluated with the LCS and LCSD results (see Section 3.8).

3.10 Target Compound Identification

Target compound identification was evaluated by examining if:

- (1) the signals for the two exact m/z's being monitored were present, and maximized within ±2 seconds of one another;
- (2) the S/N ratio of each of the two exact m/z's must be greater than or equal to 2.5;
- (3) the ion abundance ratios were within the method control limits (EPA Method 1613B, Table 9); and
- (4) the relative retention time (RRT) or retention time (RT) of the peaks were within the method control limits (EPA Method 1613B, Table 2).

All reported target analyte detections were properly identified.

3.11 Method Reporting Limits (MRLs) and Compound Quantitation

Correct internal standards, quantitation ions, and average RFs were used to quantitate target compound detections. The MRLs were supported with adequate ICAL calibration concentrations. Sample-specific EDLs and MRLs were adjusted with sample weights, internal standard peak height, and noise levels as required by the method.

Concentrations of octachlorodibenzo-*p*-dioxin (OCDD) in samples T115-SC-01-100127-ZB and T115-SC-01-100127-ZC exceeded the instrument calibration ranges. The results were qualified (J) as estimated.

A verification calculation was performed on 10% of the reported calibration, laboratory QC analyses, and sample results. No anomalies were found.

3.12 Second Column Confirmation

Second-column confirmation is required for samples analyzed on a DB-5 (or equivalent) column in which 2,3,7,8-TCDF is reported at or above the EDL, or where 2,3,7,8-TCDF is reported as an Estimated Maximum Possible Concentration (EMPC). 2,3,7,8-TCDF was detected in all samples and confirmed on the DB-225 column. The 2,3,7,8-TCDF values were reported from the DB-225 column as required.

3.13 Overall Assessment of Polychlorinated Dioxins/Furans Data Usability

Polychlorinated dioxins and furans data were of known quality and acceptable for use as qualified.

4. Total Organic Carbon (TOC) and Grain Size

4.1 Holding Times

Sediment samples should be analyzed within 28 days of collection for TOC and 6 months for grain size. All samples were analyzed within the required holding times.

4.2 Method Blank

Method blanks were prepared and analyzed for TOC as required. TOC was not detected at or above the RLs in the method blanks.

4.3 Replicate Analysis

Triplicate analyses were performed for TOC and grain size on sample T115-SC-03-100127-ZB. All %RSD values were within the acceptance criterion (20%).

4.4 Laboratory Control Sample (LCS)

The LCS analysis for TOC was performed as required by the method. All %R values were within the laboratory control limits.

4.5 Matrix Spike (MS)

TOC matrix spike analysis was performed on sample T115-SC-03-100127-ZB. The R value was within the laboratory control criterion (75 – 125%).

4.6 Overall Assessment of TOC and Grain Size Data Usability

TOC and grain size data are of known quality and acceptable for use.

SUMMARY

Data qualification and reasons are summarized as follows:

Sample ID	Analyte	Data Qualifier	Reason	Report Section
T115-SC-01-100127-ZA T115-SC-01-100127-ZB T115-SC-01-100127-ZC T115-SC-01-100127-ZD T115-SC-02-100127-ZA T115-SC-02-100127-ZB T115-SC-02-100127-ZC T115-SC-02-100127-ZD	Aroclor 1260	J	The MS and MSD %R values were less than the lower control limits.	
T115-SC-01-100127-ZB T115-SC-01-100127-ZC	Octachlorodibenzo- <i>p</i> -dioxin (OCDD)	J	The reported value exceeded calibration range.	3.11

Data affected by associated blanks are qualified and results adjusted as follows:

Sample ID	Analyte	Original Result	Adjusted Result	Unit	Report Section
T115-SC-01-100127-ZA T115-SC-01-100127-ZB T115-SC-01-100127-ZC T115-SC-02-100127-ZB T115-SC-02-100127-ZC T115-SC-02-100127-ZD	Dimethyl Phthalate	8.3 J 11 J 1.2 J 5.6 J 1.6 J	42 U 72 U 5.5 U 41 U 6.6 U	μg/kg	1.5

Data Qualifiers are defined as follows:

Data Qualifier	Definition
J	The analyte was detected above the reported quantitation limit, and the reported concentration was an estimated value.
U	The analyte was analyzed for, but was considered not detected at the reporting limit or reported value.
נט	The analyte was analyzed for, and the associated quantitation limit was an estimated value.

Approved By:

Date:

Mingta Lin

REFERENCES

- USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review, Office of Superfund Remediation and Technology Innovation, U.S. Environmental Protection Agency, June 2008, EPA-540-R-08-01.
- USEPA Analytical Operations/Data Quality Center National Functional Guidelines for Chlorinated Dioxin/Furan Data Review, Office of Emergency and Remedial Response, U.S. Environmental Protection Agency, September 2005, EPA 540/R-05-001.
- USEPA Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, Third Edition, December 1996.
- USEPA Method 1613 Tetra- Through Octa-Chlorinated Dioxins and Furans by Isotope Dilution HRGC/HRMS, October 1994.
- USEPA Region 10 Standard Operating Procedure for the Validation of Polychlorinated Dibenzo-pdioxin (PCDD) and Polychlorinated Dibenzo-furan (PCDF) Data, January 1996.
- Recommended Protocols for Measuring Conventional Sediment Variables in Puget Sound, Puget Sound Water Quality Authority, March 1986.
- Recommended Guidelines for Measuring Organic Compounds in Puget Sound Water, Sediment and Tissue Samples, Puget Sound Water Quality Authority, April 1997.
- Port of Seattle, Terminal 115 Post-Dredge Subsurface Sediment Characterization, Quality Assurance Project Plan, Anchor QEA, LLC., June 2009.

Data Validation Report

Port of Seattle Terminal 115 Post-Dredge Subsurface Sediment Characterization March 2010 Sampling

Prepared for:

Science and Engineering for the Environment, LLC. 4401 Latona Ave NE Seattle, WA 98105

Prepared by:

Pyron Environmental, Inc. 3530 32nd Way NW Olympia, WA 98502

May 5, 2010

Pyron Environmental, Inc. Data Validation Report T-115 Post-Dredge Sediment March 2010 Sampling_K1002313

ACRONYMS

%D	percent difference
%D _f	percent drift
%R	percent recovery
%RSD	percent relative standard deviation
CDD	chlorinated dibenzo-p-dioxin
CDF	chlorinated dibenzofuran
CF	calibration factor
CLP	U.S. EPA Contract Laboratory Program
сос	chain-of-custody
DFTPP	decafluorotriphenylphosphine
ECD	electron capture detector
EMPC	estimated maximum possible concentration
EPA	U.S. Environmental Protection Agency
GC/MS	gas chromatograph/mass spectrometer
HRGC	high-resolution gas chromatograph
HRMS	high-resolution mass spectrometer
ICAL	initial calibration
IPR	initial precision and recovery
ISC	isomer specificity check
LCS	laboratory control sample
LCSD	laboratory control sample duplicate
mg/kg	milligram per kilogram
μg/kg	microgram per kilogram
MDL	method detection limit
MS	matrix spike
MSD	matrix spike duplicate
m/z	mass-to-charge ratio
ng/kg	nanogram per kilogram
NFGs	CLP National Functional Guidelines for Data Review (EPA 2008 – Organics, EPA 2005 - Dioxins and Furans)
OPR	ongoing precision and recovery
PCBs	polychlorinated biphenyls
PCDD	polychlorinated dibenzo-p-dioxin

Pyron Environmental, Inc. Data Validation Report T-115 Post-Dredge Sediment March 2010 Sampling_K1002313

PCDF	polychlorinated dibenzofuran
PEM	performance evaluation mixture
QAPP	quality assurance project plan
QA/QC	quality assurance/quality control
RF	response factor
RL	reporting limit
RPD	relative percent difference
SDG	sample delivery group
SICP	selected ion current profile
S/N	signal-to-noise ratio
SVOCs	semi-volatile organic compounds
WDM	window defining mixture

INTRODUCTION

This report presents and discusses findings of the data validation performed on analytical data for samples collected during March 2010 for the referenced project. The laboratory report validated herein was submitted by Columbia Analytical Services, Inc. in one sample delivery group (SDG) – K1002313.

A level IV data validation was performed. The validation followed the procedures specified in USEPA CLP National Functional Guidelines ([NFGs], EPA 2008 – Organics, EPA 2005 – Chlorinated Dioxin/Furans), with modifications to accommodate project and analytical method requirements. The numerical quality assurance/quality control (QA/QC) criteria applied to the validation were in accordance with those specified in the quality assurance project plans ([QAPPs], Anchor, June 2009) and the current performance-based control limits established by the laboratory (laboratory control limits). Instrument calibration, frequency of QC analyses, and analytical sequence requirements were evaluated against the respective analytical methods.

Validation findings are discussed for each QC parameter pertinent to each type of analyses evaluated. Qualified data with applied data qualifiers are summarized in the **Summary** section at the end of this report. As part of the level IV validation, 10 percent of the initial calibrations, calibration verifications, laboratory QC analyses, and sample results were verified via re-calculation checks.

				Analysis			
Field Sample ID	Laboratory Sample ID	Sampling Date	Matrix	SVOCs	PCBs	Dioxins/ Furans	TOC Grain Size
T115 SC032 100310ZA	K1002313-001	3/10/2010	Sediment	Х	Х	х	х
T115 SC032 100310ZB	K1002313-002	3/10/2010	Sediment	Х	Х	х	х
T115 SC032 100310ZC	K1002313-003	3/10/2010	Sediment	Х	Х	х	х
T115 SC032 100310ZD	K1002313-004	3/10/2010	Sediment	Х	Х	х	х
T115 SC0532 100310ZA	K1002313-005	3/10/2010	Sediment	Х	Х	х	х
T115 SC042 100310ZA	K1002313-006	3/10/2010	Sediment	Х	Х	х	х
T115 SC042 100310ZB	K1002313-007	3/10/2010	Sediment	Х	Х	х	х
T115 SC042 100310ZC	K1002313-008	3/10/2010	Sediment	Х	Х	х	Х
T115 SC042 100310ZD	K1002313-009	3/10/2010	Sediment	Х	Х	x	x
T115 SC043 100310ZA	K1002313-010	3/10/2010	Sediment	Х	Х	х	x

Samples and the associated analyses validated herein are summarized as follows:

Notes:

X - The analysis was requested and performed on the sample

SVOCs - Semi-volatile organic compounds, analyte list specified in the QAPP

PCBs – Polychlorinated biphenyls (Aroclors only)

Dioxins/Furans – Polychlorinated dioxins & furans

TOC – Total organic carbon

Analytical methods in respect to analytical parameters validated herein and the laboratory performing the analyses are summarized below:

Parameter	Analytical Method	Laboratory
тос	Plumb, 1981	
Grain Size	PSEP Protocols	Columbia Analytical Services, Inc.
PCB Aroclors	SW846 Method 8082	(CAS), Kelso, Washington
SVOCs	SW846 Method 8270C	
Polychlorinated Dioxins & Furans	EPA Method 1613B	Columbia Analytical Services, Inc. (CAS), Houston, Texas

Notes:

1. SW846 Methods - USEPA Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, Third Edition, December 1996 and Updates.

2. USEPA Method 1613 Tetra- Through Octa-Chlorinated Dioxins and Furans by Isotope Dilution HRGC/HRMS, October 1994.

3. PSEP Protocols - *PSEP Recommended Protocols for Measuring Conventional Sediment Variables in Puget Sound*, Puget Sound Water Quality Authority, March 1986.

4. Plumb 1981 - *Procedures for Handling and Chemical Analysis of Sediment and Water Samples.* Technical Report, EPA/CE-B1-1. U.S. Army Corps of Engineers. Plumb, R.H. 1981.

DATA VALIDATION FINDINGS

1. Semi-volatile Organic Compounds (SVOCs) by GC/MS (SW846 Method 8270C)

1.1 Sample Management and Holding Times

No anomalies were identified in relation to sample preservation, handling, and transport, as discussed in Section 1.1.

Water samples should be extracted within seven days of collection. Extracts should be analyzed within 40 days of extraction. All samples were extracted and analyzed within the required holding times.

1.2 GC/MS Instrument Performance Check

DFTPP tuning was performed within each 12-hour interval. All required ion abundance ratios met the method requirements.

1.3 Initial Calibration

The NFGs criteria require that the average response factor (RF) be ≥ 0.05 for all analytes and surrogate compounds.

The method linearity criteria require that (1) if linear average RFs is chosen as the quantitation option, the %RSD of RFs be \leq 15% for the analyte, (2) if least-square linear regression is chosen for quantitation, the correlation coefficient (r) be \geq 0.99, and (3) if sixpoint non-linear (quadratic) curve is chosen for quantitation, the coefficient of determination (r²) be \geq 0.99.

1.4 Calibration Verification

The NFGs criteria require that (1) continuing calibrations be analyzed at the beginning of each 12-hour analysis period prior to the analysis of method blank and samples, (2) the percent difference (%D) be within $\pm 20\%$, and (3) the RF be ≥ 0.05 for all analytes and surrogate compounds.

Calibration verifications were performed at the required frequency, and all %D values met the method criterion or the outliers had no effects on data quality (*e.g.*, high bias recovery where the compound was not detected in associated samples).

1.5 Method Blanks

Method blanks were prepared and analyzed as required. No target analytes were detected at or above the MDLs in the method blanks, except for the following:

Method Blank ID	Analyte	Detection in Blank (µg/kg)	Affected Sample	Original Result (μg/kg)	Adjusted Results (μg/kg)
KWG1002463-MB	Dimethyl Phthalate	2.3 J	T115 SC032 100310ZA T115 SC032 100310ZB T115 SC032 100310ZC T115 SC0532 100310ZA T115 SC043 100310ZA	8.3 J 11 J 1.2 J 5.6 J 1.6 J	42 U 72 U 5.5 U 41 U 6.6 U

Note: J – The value was at a level between the MDL and MRL, and considered as estimated.

1.6 Surrogate Spikes

Surrogate spikes were added to all samples as required by the method. All surrogate percent recovery (%R) values were within the laboratory control limits.

1.7 Matrix Spike and Matrix Spike Duplicate (MS/MSD)

MS/MSD analyses were performed on sample T115 SC042 100310ZA. All %R and RPD values for the spiked compounds met the laboratory control criteria.

1.8 Laboratory Control Sample (LCS)

LCS analyses were performed with each analytical batch. All %R and RPD values met the laboratory control limits.

1.9 Internal Standards

The method requires that (1) internal standard retention time be within ± 30 seconds from that of the associated 12-hour calibration standard, and (2) the area counts of all internal standards be within -50% to +100% of the associated 12-hour calibration standard. All internal standards in the sample and associated QC analyses met the criteria.

1.10 Target Compound Identification

Target compound identification is evaluated by examining if (1) the RRT is within ± 0.06 RRT units of the standard RRT for a positively identified compound, (2) the relative intensity of characteristic ions are within $\pm 30\%$ in comparison with the reference spectrum, and (3) ions of a positively identified compound with >10% relative abundance should be present. No anomalies were found. Hexachlorophene results were determined using tentative identification compound search. The compound was not detected in any of the samples, and were qualified (UJ) due to the lack of calibration and QC measurements.

1.11 Compound Quantitation and Method Reporting Limits

The sample-specific MRLs were adjusted with sample amount extracted and supported with adequate initial calibration concentrations. The QAPP requirements for MRLs were achieved.

Verification calculations were performed on 10% of the instrument calibration, calibration verifications, and reported QC and sample analyses. No anomalies were found. Sample quantitation and reporting was correctly performed.

1.12 System Performance

The system performance and stability over an analytical sequence was evaluated by examining chromatograms for abrupt baseline shifting, excessive baseline rise at elevated temperature, progressing peak tailing, or loss of resolution. In addition, the internal standard retention times and response areas were checked for trends of shifting. No anomalies were observed.

1.13 Field Duplicates

Samples T115 SC032 100310ZA and T115 SC0532 100310ZA were field duplicates. The results and data qualification are presented in **Appendix A** in the end of this report.

1.14 Overall Assessment of Data Usability

SVOCs data are of known quality and acceptable for use, as qualified.

2. PCB Aroclors (SW846 Method 8082)

2.1 Sample Management and Holding Times

No anomalies were identified in relation to sample preservation, handling, and transport, as discussed in Section 1.1.

Water samples should be extracted within seven days of collection. Extracts should be analyzed within 40 days of extraction. All samples were extracted and analyzed within the required holding times.

2.2 Initial Calibration

The method requires that (1) a minimum of 5-point calibration be performed using the mixture of Aroclor 1016 and 1260, (2) a single-point calibration be performed for the other five Aroclors to establish calibration factors (CFs) and for Aroclor pattern recognition, (3) at least 3 peaks (preferably 5 peaks) must be chosen for each Aroclor for characterization, (4) the %RSD values of Aroclor 1016 and 1260 CFs must be \leq 20%, and (5) if dual column analysis is chosen, both columns should meet the requirements. The initial calibrations met the method requirements.

2.3 Calibration Verification

The method requires that (1) the initial calibration be verified prior to any analysis for each 12-hour analysis sequence, and (2) the percent drift (%D) be within $\pm 15\%$ to demonstrate the linearity of the initial calibration.

Calibration verifications were performed at the required frequency, and all %D values met the method criterion or the outliers had no effects on data quality (*e.g.*, high bias recovery where the compound was not detected in associated samples).

2.4 Blanks

Method Blanks: Method blanks were prepared and analyzed as required. PCB Aroclors were not detected at or above the MDLs in the method blanks.

Instrument Blank: Instrument blanks were analyzed and reported as required. PCB Aroclors were not detected at or above MDLs in the instrument blanks.

2.5 Surrogate Spikes

Surrogate spikes were added to all samples as required by the method. All surrogate spike percent recovery (%R) values were within the laboratory control limits.

2.6 Matrix Spike and Matrix Spike Duplicate (MS/MSD)

MS/MSD analyses were performed on sample T115 SC042 100310ZA as requested. All %R and RPD values met the laboratory control criteria.

2.7 Laboratory Control Sample (LCS)

LCS analyses were performed as required by the method. All %R values met the laboratory control limits.

2.8 Target Compound Identification

All chromatograms were properly displayed and scaled. PCB Aroclors were not detected at or above the MDLs in any of the field samples.

2.9 Target Compound Quantitation and Reporting Limits

The sample-specific MRLs were adjusted with sample amount extracted and supported with adequate initial calibration concentrations. The QAPP requirements for MRLs were achieved.

Verification calculations were performed on 10% of the reported initial calibrations, calibration verifications, QC, and sample results. No anomalies were found.

2.10 Field Duplicates

Samples T115 SC032 100310ZA and T115 SC0532 100310ZA were field duplicates. The results and data qualification are presented in **Appendix A** in the end of this report.

2.11 Overall Assessment of PCB Aroclors Data Usability

PCB Aroclors data are of known quality and acceptable for use, as qualified.

3. Polychlorinated Dioxins/Furans by HRGC/HRMS (EPA Method 1613B)

3.1 Sample Management and Holding Times

No anomalies were identified in relation to sample preservation, handling, and transport, as discussed in Section 1.1.

EPA Method 1613B recommends a holding time of one year for solid samples stored in the dark at <-10 °C. The NFG recommended that extracts be analyzed within 30 days of extraction. The sample was extracted and analyzed within the recommended holding times.

3.2 HRGC/HRMS Instrument Performance Check

The NFG and EPA Method 1613B criteria for instrument performance checks are as follows:

Mass Spectrometer Resolution: (1) The resolution check should be performed prior to initial calibration and at the start and end of each 12-hour shift, (2) the resolution should be \geq 10,000 resolving power at m/z 304.9824, and (3) the deviation between the exact m/z and the theoretical m/z must be less than 5 ppm for monitored isomers.

Window Defining Mixture (WDM) and Column Performance Solution (CPS): (1) WDM and CPS should be analyzed prior to initial calibration and continuing calibration verification, and (2) the 2,3,7,8-TCDD peak and 1,2,3,8-TCDD peak should be resolved with a valley of \leq 25%.

All HRGC/HRMS instrument performance checks met the criteria.

3.3 Initial Calibration

The NFG and EPA Method 1613B criteria for initial calibration are as follows:

- (1) A minimum of five standards should be employed,
- (2) The percent relative standard deviation (%RSD) of isomer response should be <20% for native compounds and <35% for labeled compounds,
- (3) The absolute RT of the internal standard $^{13}C_{12}$ -1,2,3,4-TCDD must be >25 minutes on the DB-5 (or equivalent) column and >15 minutes on the DB-225 (or equivalent) column,

- (4) The ion abundance ratios should be within the control limits listed in EPA Method 1613B, Table 9, and
- (5) The signal-to-noise (S/N) ratio should be >10 for all native and labeled compounds in the first calibration standard (CS1).

Initial calibrations met all acceptance criteria.

3.4 Calibration Verification

The NFG and EPA Method 1613B criteria require that:

- (1) Continuing calibration verifications be performed at the beginning of each 12-hour shift,
- (2) The percent difference (%D) value be within the control limits listed in EPA Method 1613B, Table 6, and
- (3) The ion abundance ratios, retention times, relative retention times, instrument sensitivity should meet the same criteria as for initial calibrations.

All calibration verification analyses met the criteria.

3.5 Blanks

Method Blank: A method blank was prepared and analyzed as required for each preparation batch. No target analytes were detected at or above the estimated detection limits (EDLs), except for the following:

Method Blank ID	Analyte	Detection in Blank (ng/kg)	Affected Sample	Original Result (ng/kg)	Adjusted Result (ng/kg)
EQ10000128-01	1,2,3,4,6,7,8- Heptachlorodibenzo <i>-p-</i> dioxin (HpCDD)	0.242 J	T115 SC032 100310ZD T115 SC042 100310ZA T115 SC042 100310ZC T115 SC042 100310ZD	3.24 J 0.402 J 0.485 J 0.401 J	5.86 U 5.43 U 5.6 U 5.43 U
EQ10000128-01	Octachlorodibenzo- <i>p</i> -dioxin (OCDD)	1.62 J	T115 SC042 100310ZA T115 SC042 100310ZB T115 SC042 100310ZC T115 SC042 100310ZD	2.57 J 10.2 J 3.55 J 3.95 J	10.9 U 11.2 U 11.2 U 10.9 U
EQ10000128-01	1,2,3,4,6,7,8- Heptachlorodibenzofuran (HpCDF)	0.0754 J	T115 SC032 100310ZD T115 SC042 100310ZA T115 SC042 100310ZB	0.394 J 0.0893 J 0.0895 J	5.86 U 5.43 U 5.6 U
EQ10000128-01	Octachlorodibenzofuran (OCDF)	0.211 J	T115 SC032 100310ZD T115 SC042 100310ZB	1.11 J 0.256 J	11.7 U 11.2 U

Note: J - The value was at a level between the EDL and MRL, and considered as estimated.
3.6 Initial Precision and Recovery Study (IPR) and Ongoing Precision and Recovery (OPR)

The initial precision and recovery study was performed according to the laboratory, but results were not provided in the data package. A laboratory control sample (LCS) was analyzed in lieu of ongoing precision and recovery (OPR) analysis (see Section 3.8).

3.7 Labeled Compounds

Fifteen labeled compounds were added to all field and laboratory QC samples as required by the method. The percent recovery (%R) values met the method requirements (EPA Method 1613B, Table 7).

3.8 Laboratory Control Sample (LCS) and LCS Duplicate (LCSD)

LCS and LCSD analyses were performed as required by the method. All %R and relative percent difference (RPD) values met the laboratory control limits,

3.9 Matrix Spike and Matrix Spike Duplicate (MS/MSD)

MS/MSD analyses were performed on sample T115 SC042 100310ZA as requested. All R and RPD values met the laboratory control criteria.

3.10 Target Compound Identification

Target compound identification was evaluated by examining if:

- (1) the signals for the two exact m/z's being monitored were present, and maximized within ±2 seconds of one another;
- (2) the S/N ratio of each of the two exact m/z's must be greater than or equal to 2.5;
- (3) the ion abundance ratios were within the method control limits (EPA Method 1613B, Table 9); and
- (4) the relative retention time (RRT) or retention time (RT) of the peaks were within the method control limits (EPA Method 1613B, Table 2).

All reported target analyte detections were properly identified.

3.11 Method Reporting Limits (MRLs) and Compound Quantitation

Correct internal standards, quantitation ions, and average RFs were used to quantitate target compound detections. The MRLs were supported with adequate ICAL calibration concentrations. Sample-specific EDLs and MRLs were adjusted with sample weights, internal standard peak height, and noise levels as required by the method.

Concentrations of octachlorodibenzo-*p*-dioxin (OCDD) in samples T115 SC0532 100310ZA and T115 SC043 100310ZA exceeded the instrument calibration ranges. The results were qualified (J) as estimated.

A verification calculation was performed on 10% of the reported calibration, laboratory QC analyses, and sample results. No anomalies were found.

3.12 Second Column Confirmation

Second-column confirmation is required for samples analyzed on a DB-5 (or equivalent) column in which 2,3,7,8-TCDF is reported at or above the EDL, or where 2,3,7,8-TCDF is reported as an Estimated Maximum Possible Concentration (EMPC). 2,3,7,8-TCDF was detected in all samples and confirmed on the DB-225 column. The 2,3,7,8-TCDF values were reported from the DB-225 column as required.

3.13 Field Duplicates

Samples T115 SC032 100310ZA and T115 SC0532 100310ZA were field duplicates. The results and data qualification are presented in **Appendix A** in the end of this report.

3.14 Overall Assessment of Polychlorinated Dioxins/Furans Data Usability

Polychlorinated dioxins and furans data were of known quality and acceptable for use as qualified.

4. Total Organic Carbon (TOC) and Grain Size

4.1 Holding Times

Sediment samples should be analyzed within 28 days of collection for TOC and 6 months for grain size. All samples were analyzed within the required holding times.

4.2 Method Blank

Method blanks were prepared and analyzed for TOC as required. TOC was not detected at or above the RLs in the method blanks.

4.3 Replicate Analysis

Triplicate analyses were performed for TOC and grain size on sample T115 SC042 100310ZA. All %RSD values were within the acceptance criterion (20%).

4.4 Laboratory Control Sample (LCS)

The LCS analysis for TOC was performed as required by the method. All %R values were within the laboratory control limits.

4.5 Matrix Spike (MS)

TOC matrix spike analysis was performed on sample T115 SC042 100310ZA. The %R value was within the laboratory control criterion (75 - 125%).

4.6 Field Duplicates

Samples T115 SC032 100310ZA and T115 SC0532 100310ZA were field duplicates. The results and data qualification are presented in **Appendix A** in the end of this report.

4.7 Overall Assessment of TOC and Grain Size Data Usability

TOC and grain size data are of known quality and acceptable for use.

SUMMARY

Data qualification and reasons are summarized as follows:

Sample ID	Analyte	Data Qualifier	Reason	Report Section
T115 SC0532 100310ZA T115 SC043 100310ZA	Octachlorodibenzo- <i>p</i> -dioxin (OCDD)	J	The reported value exceeded calibration range.	3.11
T115 SC032 100310ZA T115 SC0532 100310ZA	1,2,3,4,6,7,8-Heptachlorodibenzo- <i>p</i> - dioxin (HpCDD)	J	The field duplicate results were outside the precision criteria.	Appendix A
T115 SC032 100310ZA	Octachlorodibenzo- <i>p</i> -dioxin (OCDD)	J	The field duplicate results were outside the precision criteria.	Appendix A

Data affected by associated blanks are qualified and results adjusted as follows:

Sample ID	Analyte	Original Result	Adjusted Result	Unit	Report Section
T115 SC032 100310ZA T115 SC032 100310ZB T115 SC032 100310ZC T115 SC0532 100310ZA T115 SC043 100310ZA	Dimethyl Phthalate	8.3 J 11 J 1.2 J 5.6 J 1.6 J	42 U 72 U 5.5 U 41 U 6.6 U	µg/kg	1.5
T115 SC032 100310ZD T115 SC042 100310ZA T115 SC042 100310ZC T115 SC042 100310ZD	1,2,3,4,6,7,8-Heptachlorodibenzo- <i>p</i> - dioxin (HpCDD)	3.24 J 0.402 J 0.485 J 0.401 J	5.86 U 5.43 U 5.6 U 5.43 U	ng/kg	3.5
T115 SC042 100310ZA T115 SC042 100310ZB T115 SC042 100310ZC T115 SC042 100310ZD	Octachlorodibenzo- <i>p</i> -dioxin (OCDD)	2.57 J 10.2 J 3.55 J 3.95 J	10.9 U 11.2 U 11.2 U 10.9 U	ng/kg	3.5
T115 SC032 100310ZD T115 SC042 100310ZA T115 SC042 100310ZB	1,2,3,4,6,7,8-Heptachlorodibenzofuran (HpCDF)	0.394 J 0.0893 J 0.0895 J	5.86 U 5.43 U 5.6 U	ng/kg	3.5
T115 SC032 100310ZD T115 SC042 100310ZB	Octachlorodibenzofuran (OCDF)0.211 J	1.11 J 0.256 J	11.7 U 11.2 U	ng/kg	3.5

Data Qualifiers are defined as follows:

Data Qualifier	Definition
J	The analyte was detected above the reported quantitation limit, and the reported concentration was an estimated value.
R	The result was rejected and could not be used.
U	The analyte was analyzed for, but was considered not detected at the reporting limit or reported value.
IJ	The analyte was analyzed for, and the associated quantitation limit was an estimated value.

Approved By:

Date:

Mingta Lin

REFERENCES

- USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review, Office of Superfund Remediation and Technology Innovation, U.S. Environmental Protection Agency, June 2008, EPA-540-R-08-01.
- USEPA Analytical Operations/Data Quality Center National Functional Guidelines for Chlorinated Dioxin/Furan Data Review, Office of Emergency and Remedial Response, U.S. Environmental Protection Agency, September 2005, EPA 540/R-05-001.
- USEPA Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, Third Edition, December 1996.
- USEPA Method 1613 Tetra- Through Octa-Chlorinated Dioxins and Furans by Isotope Dilution HRGC/HRMS, October 1994.
- USEPA Region 10 Standard Operating Procedure for the Validation of Polychlorinated Dibenzo-pdioxin (PCDD) and Polychlorinated Dibenzo-furan (PCDF) Data, January 1996.
- Recommended Protocols for Measuring Conventional Sediment Variables in Puget Sound, Puget Sound Water Quality Authority, March 1986.
- Recommended Guidelines for Measuring Organic Compounds in Puget Sound Water, Sediment and Tissue Samples, Puget Sound Water Quality Authority, April 1997.
- Port of Seattle, Terminal 115 Post-Dredge Subsurface Sediment Characterization, Quality Assurance Project Plan, Anchor QEA, LLC., June 2009.

Appendix A

Field duplicate RPD is indicative of field and laboratory precision and sample homogeneity in combination. The precision criterion of 50% specified in the QAPP was applied to evaluating the RPD values of soil field duplicate results \geq 5xMRL. For results that are <5xMRL, an advisory criterion of ±2xMRL was applied to evaluating the concentration differences. The RPD (or concentration difference as applicable) values and data qualification for detected compounds in field duplicates are presented as follows:

			Sample ID & Results			Data
Analytes	MRL	Unit	T115 SC032 100310ZA	T115 SC0532 100310ZA	Difference	Data Qualification
Solids, Total	0.1	%	60.5	61.8	2%	
Carbon, Total Organic (TOC)	0.05	%	1.88	2.04	8%	
Gravel	0.1	%	0.77	0.56	32%	
Sand, Very Coarse	0.1	%	1.45	1.39	4%	
Sand, Coarse	0.1	%	1.62	2.47	42%	
Sand, Medium	0.1	%	3.16	3.2	1%	
Sand, Fine	0.1	%	3.62	3.55	2%	
Sand, Very Fine	0.1	%	15.7	14.3	9%	
Silt	0.1	%	61	54.5	11%	
Clay	0.1	%	11.9	13.2	10%	
Aroclor 1242	8.3	µg/kg	86	87	1%	
Aroclor 1254	8.3	µg/kg	130	120	8%	
Aroclor 1260	8.3	µg/kg	95	75	24%	
Phenol	130	µg/kg	20 J	16 J	4 μg/kg	
Naphthalene	21	µg/kg	17 J	16 J	1 µg/kg	
2-Methylnaphthalene	21	µg/kg	13 J	12 J	1 µg/kg	
Acenaphthylene	21	µg/kg	16 J	18 J	2 μg/kg	
Dimethyl Phthalate	42	µg/kg	8.3 J	5.6 J	2.7 μg/kg	
Acenaphthene	21	µg/kg	19 J	17 J	2 μg/kg	
Dibenzofuran	42	µg/kg	16 J	14 J	2 μg/kg	
Fluorene	21	µg/kg	26	24 J	2 μg/kg	
Diethyl Phthalate	42	µg/kg	12 J	41 J	29 µg/kg	
N-Nitrosodiphenylamine	42	µg/kg	13 J	9.7 J	3.3 μg/kg	
Phenanthrene	21	µg/kg	130	130	0%	
Anthracene	21	µg/kg	48	44	4 μg/kg	

Fluoranthene	21	µg/kg	330	450	31%	
Pyrene	21	µg/kg	840	860	2%	
Butyl Benzyl Phthalate	42	µg/kg	72	66	6 μg/kg	
Benz(a)anthracene	21	µg/kg	150	190	24%	
Chrysene	21	µg/kg	190	210	10%	
Bis(2-ethylhexyl) Phthalate	420	µg/kg	320 J	230 J	90 µg/kg	
Benzo(b)fluoranthene	21	µg/kg	340	350	3%	
Benzo(k)fluoranthene	21	µg/kg	110	120	9%	
Benzo(a)pyrene	21	µg/kg	210	220	5%	
Indeno(1,2,3-cd)pyrene	21	µg/kg	120	120	0%	
Dibenz(a,h)anthracene	21	µg/kg	34	35	1 μg/kg	
Benzo(g,h,i)perylene	21	µg/kg	78	74	4 μg/kg	
1,2,3,7,8-Pentachlorodibenzo- <i>p</i> -dioxin (PeCDD)	8.14	ng/Kg	1.26 J	1.87 J	0.61 ng/kg	
1,2,3,4,7,8-Hexachlorodibenzo- <i>p</i> -dioxin (HxCDD)	8.14	ng/Kg	1.01 J	1.89 J	0.88 ng/kg	
1,2,3,6,7,8-Hexachlorodibenzo- <i>p</i> -dioxin (HxCDD)	8.14	ng/Kg	8.61	17.2	8.59 ng/kg	
1,2,3,7,8,9-Hexachlorodibenzo- <i>p</i> -dioxin (HxCDD)	8.14	ng/Kg	5.63 J	12.7	7.07 ng/kg	
1,2,3,4,6,7,8-Heptachlorodibenzo-p- dioxin (HpCDD)	8.14	ng/Kg	303	885	98%	۱/۱
Octachlorodibenzo-p-dioxin (OCDD)	16.3	ng/Kg	2380	8500 E	113%	۱/۱
1,2,3,7,8-Pentachlorodibenzofuran (PeCDF)	8.14	ng/Kg	0.319 J	0.535 J	0.216 ng/kg	
2,3,4,7,8-Pentachlorodibenzofuran (PeCDF)	8.14	ng/Kg	0.442 J	0.979 J	0.537 ng/kg	

Note: J – The value is between the MDL and RL and considered estimated. E – The value exceeded calibration range and is an estimated value.

Appendix I

Sand Cover Chemical Data Package

Submittal Review Transmittal

Contractor:	Project Name:				
Pacific Pile and Marine	Port of Seattle				
	Terminal 115 Berth 1 Modifications				
Subcontractor:	Project Number:				
N/A	Port Project No. 103773				
N/A	Port Contract No. MC-0316208				
Date: December 31, 2009	Submittal Number: 02334-001				

Check:

🛛 Origir	nal Submittal	Re-submittal	Other
ltem No.	Specification Reference	Description	Other
1	02334	Clean Sand Cover Chemistry Results	

Review action:

🛛 No Exceptions Taken	Rejected
Make Corrections Noted	Submit Specified Item
Revise and Re-Submit	

Checking is only for general conformance with the design concept of the project and general compliance with the information given in the contract documents. Any action shown is subject to the requirements of the plans and specifications and does not relieve the contractor from compliance with contract requirements. Contractor is responsible for: confirming and correlating all quantities and dimensions; selecting fabrication processes and techniques of construction; coordinating his work with that of all other trades; and performing his work in a safe and satisfactory manner.

By: John P: For John P. Laplante, PE

CTRA Laboratories SPE(

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

12/29/2009

Cal Portland - Pioneer Aggregates 4301 Pioneer Avenue DuPont, WA 98327 Attn: Mike Skrivan

Project: Terminal #115 Client ID: Comp-1 Sample Matrix: Soil Date Sampled: 12/17/2009 Date Received: 12/17/2009 Spectra Project: 2009120317 Spectra Number:1

Analyte	Result	Units	Method	Analyte	Result	Units	Method
1,2,4-TrichlorobenzeneSIM	<3.3	ug/Kg	8270DSIM	Di-n-Octyl PhthalateSIM	<3.3	ug/Kg	8270DSIM
1,2-DichlorobenzeneSIM	<3.3	ug/Kg	8270DSIM	Dibenz(a,h)AnthraceneSIM	<3.3	ug/Kg	8270DSIM
1,3-DichlorobenzeneSIM	<3.3	ug/Kg	8270DSIM	DibenzofuranSIM	<3.3	ug/Kg	8270DSIM
1,4-DichlorobenzeneSIM	<3.3	ug/Kg	8270DSIM	DiethylphthalateSIM	<3.3	ug/Kg	8270DSIM
2,4-DimethylphenolSIM	<3.3	ug/Kg	8270DSIM	Dimethyl PhthalateSIM	<3.3	ug/Kg	8270DSIM
2-MethylnaphthaleneSIM	<3.3	ug/Kg	8270DSIM	FluorantheneSIM	<3.3	ug/Kg	8270DSIM
2-MethylphenolSIM	<3.3	ug/Kg	8270DSIM	FluoreneSIM	<3.3	ug/Kg	8270DSIM
4-MethylphenolSIM	<3.3	ug/Kg	8270DSIM	HexachlorobenzeneSIM	<3.3	ug/Kg	8270DSIM
AcenaphtheneSIM	<3.3	ug/Kg	8270DSIM	HexachlorobutadieneSIM	<3.3	ug/Kg	8270DSIM
AcenaphthyleneSIM	<3.3	ug/Kg	8270DSIM	Indeno(1,2,3-cd)PyreneSIM	<3.3	ug/Kg	8270DSIM
AnthraceneSIM	<3.3	ug/Kg	8270DSIM	N-NitrosodiphenylamineSI	<3.3	ug/Kg	8270DSIM
Benzo(a)AnthraceneSIM	<3.3	ug/Kg	8270DSIM	NaphthaleneSIM	<3.3	ug/Kg	8270DSIM
Benzo(a)PyreneSIM	<3.3	ug/Kg	8270DSIM	PentachlorophenolSIM	<3.3	ug/Kg	8270DSIM
Benzo(b)FluorantheneSIM	<3.3	ug/Kg	8270DSIM	PhenanthreneSIM	<3.3	ug/Kg	8270DSIM
Benzo(ghi)PeryleneSIM	<3.3	ug/Kg	8270DSIM	PhenolSIM	<3.3	ug/Kg	8270DSIM
Benzo(k)FluorantheneSIM	<3.3	ug/Kg	8270DSIM	PyreneSIM	<3.3	ug/Kg	8270DSIM
Benzoic AcidSIM	<20	ug/Kg	8270DSIM	Total HPAHSIM	<33	ug/Kg	8270DSIM
Benzyl AlcoholSIM	<20	ug/Kg	8270DSIM	Total LPAHSIM	<25	ug/Kg	8270DSIM
ButylbenzylphthalateSIM	<3.3	ug/Kg	8270DSIM	bis(2-Ethylhexyl)PhthalateS	9.29	ug/Kg	8270DSIM
ChryseneSIM	<3.3	ug/Kg	8270DSIM	Grainsize	**		ASTM D-422
Di-n-ButylphthalateSIM	4.12	ug/Kg	8270DSIM	Dioxins and Furans	*		EPA 8290

* Dioxins and Furans were subcontracted to Analytical Perspectives. ** Grainsize was subcontracted to Analytical Resources, Inc. Please see complete results enclosed.

Surrogate	Recovery	Method	Surrogate	Recovery	Method
2-FluorophenolSIM	66	8270DSIM	2,4,6-TribromophenolSIM	60	8270DSIM
Phenol-d6SIM	65	8270DSIM	p-Terphenyl-d14SIM	102	8270DSIM
Nitrobenzene-d5SIM	103	8270DSIM	Decachlorobiphenyl	91	SW846 8082A
2-FluorobiphenylSIM	92	8270DSIM			

SPECTRA LABORATORIES

Steve Hibbs, Laboratory Manager a14/mlh

RA Laboratories

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

Result Units

Method

12/29/2009

Cal Portland - Pioneer Aggregates 4301 Pioneer Avenue DuPont, WA 98327 Attn: Mike Skrivan

Project: Terminal #115 Client ID: Comp-1 Sample Matrix: Soil Date Sampled: 12/17/2009 Date Received: 12/17/2009 Spectra Project: 2009120317 Spectra Number:1

Analyte	Result	Units	Method	Analyte
Total Solids	94.7	wt.%	SM 2540-B	
Total Arsenic	< 5	mg/Kg	SW846 6010B	
Total Cadmium	< 0.3	mg/Kg	SW846 6010B	
Total Chromium	14	mg/Kg	SW846 6010B	
Total Copper	20	mg/Kg	SW846 6010B	
Total Lead	< 4	mg/Kg	SW846 6010B	
Total Silver	< 0.7	mg/Kg	SW846 6010B	
Total Zinc	33	mg/Kg	SW846 6010B	•
Total Mercury	< 0.05	mg/Kg	SW846 7471B	
PCB	<10.0	ug/Kg	SW846 8082A	
Total Organic Carbon	0.01	wt.%	SW846 9060	

* Dioxins and Furans were subcontracted to Analytical Perspectives. ** Grainsize was subcontracted to Analytical Resources, Inc. Please see complete results enclosed.

Surrogate	Recovery	Method
2-FluorophenolSIM	66	8270DSIM
Phenol-d6SIM	65	8270DSIM
Nitrobenzene-d5SIM	103	8270DSIM
2-FluorobiphenylSIM	92	8270DSIM

Surrogate	Recovery	Method	
2,4,6-TribromophenolSIM	60	8270DSIM	
p-Terphenyl-d14SIM	102	8270DSIM	
Decachlorobiphenyl	91	SW846 8082A	

SPECTRA LABORATORIES

Steve Hibbs, Laboratory Manager a14/mlh

Page 2 of 2

SPECTRA Laboratories

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

12/28/2009

Spectra Project # Cal Portland - Pioneer Aggregates 2009120317 Sample Spiked: 4301 Pioneer Ave Blank Date Digested: 12/22/2009 DuPont, WA 98327 12/22/2009 Date Analyzed: Units: mg/L Applies to Spectra Sample #'s: 1

ICP Total Metals - Method 6010B Blank Spike (LCS), Method Blank Results in Soil

	Spike	LCS	LCS	Method Blank Conc.
Element	Added	Conc.	%Rec [.]	Units: mg/Kg
Arsenic	2.0	1.948	97.4	< 5
Cadmium	2.0	1.784	89.2	< 0.3
Chromium	2.0	1.831	91.6	< 0.7
Lead	2.0	1.765	88.3	< 4
Silver	2.0	1.987	99.4	< 0.7
Copper	2.0	1.874	93.7	< 0.6
Zinc	2.0	1.770	88.5	< 0.6

* out of limits LCS Recovery limits 80-120% Sample Conc. of 0.000= ND

Spectra Laboratories

Steven/G. Hibbs Laboratory Manager

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

12/28/2009

Cal Portland - Pioneer Aggregates 4301 Pioneer Ave DuPont, WA 98327

Spectra Project #	2009120317
Sample Spiked:	2009120163-1
Date Spiked Sample Digested	12/22/2009
Date Digested:	12/22/2009
Date Analyzed:	12/22/2009
Units:	mg/L
Applies to Spectra #'s:	1

ICP Total Metals - Method 6010B Matrix Spike/ Matrix Spike Duplicate Results in Soil

	Sample	Spike	MS	MS	MSD	MSD	
Element	Conc.	Conc.	Conc.	%Rec	Conc	%Rec	RPD
Arsenic	0.000	2.0	1.980	99.0	1.937	96.9	2.2
Cadmium	0.000	2.0	1.745	87.3	1.765	88.3	1.1
Chromium	0.054	2.0	2.315	113.1	2.338	114.2	1.0
Lead	0.000	2.0	1.772	88.6	1.797	89.9	1.4
Silver	0.000	2.0	2.044	102.2	2.046	102.3	0.1
Copper	0.380	2.0	2.209	91.5	2.196	90.8	0.7
Zinc	0.626	2.0	2.345	86.0	2.379	87.7	2.0

* out of limits Recovery limits 75-125% Sample Conc. of 0.000= ND **RPD** Limit 20

Spectra Laboratories

Steven G. Hibbs Laboratory Manager **SPECTRA** Laboratories

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850

0

Fax (253) 572-9838 • www.spectra-lab.com

December 29, 2009

Cal Portland - Pioneer Aggregates Attn: Mike Skrivan 4301 Pioneer Avenue DuPont, WA 98327

Method: EPA Method 8082 Sample Matrix: Soil Units: ug/Kg Spectra Project: 2009120317 Applies to Spectra # 1

PCB ANALYSIS QUALITY CONTROL RESULTS

			MS/MSI	C			
Spiked Sample:	2009120089-	21		Date Extracted Date Analyzed	1: 1:	12/14/2009 12/14/2009	
Compound	Sample <u>Result</u>	Spike Amount <u>Added</u>	Spike Amount <u>Found</u>	Percent <u>Recovery</u>	Dup. Spike Amount <u>Found</u>	Percent <u>Recovery</u>	<u>RPD</u>
AR1260	<10.0	25.0	26.0	104	25.8	103	1
		ME	THOD BL	ANK		A	
Date Extracted:	12/28/2009			Date Analyzed	:	12/28/2009	
PCB's	<10.0						

Surrogate Percent Recoveries:

Decachlorobiphenyl

95%

SPECTRA LABORATORIES

Steven G. Hibbs, Laboratory Manager

Analytical Resources, Incorporated Analytical Chemists and Consultants

December 22, 2009

Ms. Marie Holt Spectra Laboratories 2221 Ross Way Tacoma, WA 98421

RE: Client Project: 2009 120317 ARI Project: QC05

Dear Ms. Holt:

The laboratory testing you requested has been completed. The following narrative describes the method and results of the grain size distribution and moisture content determination tests. Please call me to discuss any questions or comments you may have on the data or its presentation.

Best regards,

Analytical Resources, Inc.

Uluna x

Guenna Smith Geotechnical Laboratory Manager 206-695-6246 guennas@arilabs.com

Enclosures

cc: Files QC05

OF ()

PAECTIKA Laboratorics PAGE of Init Res Way - Thema. Mursupi CLIENT-Spectral Laboratorics STANDARD Of Init Res Way - Thema. Mursupi CLIENT-Spectral Laboratorics STANDARD Of Init Res Way - Thema. Mursupi CLIENT-Spectral Laboratorics STANDARD NIDSH CLIENT-Spectral Laboratorics ADDRESS. PAGE Of NIDSH PROJECT Laboratorics ADDRESS. PROJECT Laboratorics ADDRESS. PROJECT PAGE PROJECT Laboratorics ADDRESS. PROJECT ADDRESS. PROJECT PROJECT PROJECT PROJECT Laboratorics ADDRESS PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT Standard PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT Standard PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PROJECT PRO														4					
2211 Rus Way - Taoma, Wu 9921 - 623) 272-4509 - Feet (253) 972-9508 - www.apporta-lab.com STANDARD RUSH RPDLECT: 2007 1/20 517- ADDRESS: ADDRESS: ADDRESS: RPDLECT: 2007 1/20 517- ADDRESS: ADDRESS: ADDRESS: RPDLECT: 2007 1/20 517- ADDRESS: ADDRESS: ADDRESS: RPDLECT: 2007 1/20 517- ADDRESS: ADDRESS: CONTACT: MULIP HD1+ ADDRESS: ADDRESS: RPDLECT: 2007 1/20 517- ADDRESS: ADDRESS: RPDLECT: ADDRESS: ADDRESS: ADDRESS: REMAIL: MRULP HD14 ADDRESS: ADDRESS: Soume: Discussion HORD ADDRESS: ADDRESS Soume: Discussion	SPECTKA Lat	boratori	es								ב	AGE			đ		_	I	オ
CLENT-Specthra Laburathurt S CLENT-Specthra Laburathurt S PROLECT. 2009 120 513- ADRESS CONTACT. Marter Halt CONTACT. Marter Halt CONTACT. Marter FAX ADRESS PROLECT. 2009 120 513- ADRESS PROLECT. 2000 120 513- ADRESS PLICHARS CARGER ADRESS ADRESS ADRESS Saveres ADRESS ADRESS	2221 Ross Way • Tacoma, WA 98421	1 • (253) 272-	4850	• Fax (2	53) 572-9838	ø	ww.spec	tra-lab.c	mo		ST	AND	ARC				ВU	E E	1X
PROJECT: 20/01 120 513 IPPOLECT: 20/01 120 513 CONTACT: Multip thilt CONTACT: Multip thilt Decorract: Multip filt Pare FXU PRANUE: Not IP hilt PARE PARE PRANUE: NOT IP HILT PARE PARE PARE PRANUE: NOT IP HILT PARE PARE PARE PARE PARE PARE PARE PARE	CLIENT: Spectra Laboratori	i Səl	VDDRE	SS:															
Contract: Marter Hilt Percente: Sce of Doriverse Science: Marter Hilt Percente: Sce of Doriverse Science Hilt Contract Science Scien	PROJECT: 2009 120 317			НУБРО	CARBONS		ORG/	ANICS		ME	LALS				0	THE	l m		
Performance Production Prodoction Prodoction Prodoction </td <td>CONTACT: MULLIP HDIT</td> <td></td> <td>SHENN</td> <td></td> <td>(</td> <td></td> <td>STN</td> <td></td> <td>84</td> <td>CIEV)</td> <td>3EA)</td> <td></td> <td></td> <td></td> <td></td> <td>ןיכד</td> <td>FALL FALL</td> <td></td> <td></td>	CONTACT: MULLIP HDIT		SHENN		(STN		84	CIEV)	3EA)					ןיכד	FALL FALL		
Sametero Source to source	e-MAIL: WM/IP / @ BACTTA-IAD. CUM PURCHASE ORDER #:	Prefer FAX C	HCID 3 OF CONTA	Ð-H9TW	ם. D _X M (סגפ)	AOV I	SEMI VOA	} bCB ⊣\b/y	ADA SJATEI	aq2) 2jatai	AHUH SAHUH	9700	9206			SPECIFY)	SIMI 14		
I bltppla [0:30 [01] 1 1 XX I bltppla [0:30 [01] 1 1 XX I bltppla [0:30 [01] 1 1 XX I bltppla [0:30 [01] 1 1 1 I bltppla [0:00] 1 1 1 1 FECIAL INSTRUCTIONSCOMMENTS: semine semine semine and	SAMPLE ID SAMPLE ID SAMPLED S	TIME MATRIX	иливен	BTEX/N	H41WN	29/0928	8250/628 8260 CH	8082\60 FA	VI JATOT	N JATOT		/0/06 Hu		IDI8RUT	BOD	SOLIDS	us ur		
SECIAL INSTRUCTONSCOMMENTS: # 1. WOCk THT , please # 1. WOCk THT , please # 1. WOCk THT , please	1 1 1 1 1 1 1 1	1100 02:0															X		
SECILI INSTRUCTIONSCOMMENTS: # 1. WColc THT, place		1												2017-55 			. 1975		
Free									1 6										
PECIAL INSTRUCTIONS/COMMENTS:												Annes Singer							<u> </u>
SPECIAL INSTRUCTIONS/COMMENTS: Image: Compare base of the compare base of th			-			ing ka ti													*
PECIAL INSTRUCTIONS/COMMENTS: PECIAL INSTRUCTIONS/COMMENTS: PECIAL INSTRUCTIONS/COMMENTS: * 1 WCck TMT, please PELINOUGHED BY					-	i na h			5.2		1911 - N			1993) -					
X I WCelk THT PILINGUISHED BY SPECIAL INSTRUCTIONS/COMMENTS: X I WCelk THT PILINGUISHED BY SIGNATURE PRINTED MARE DATE MARE		-						2			at an ag								<u> </u>
* I WEGK TATT, please Relinquished by Received by Relinquished by Received by Signature Rainted name Company Date Time * I WEGK TATT, please Relinquished by Received by A: Volgardsen A: Volgardsen ARE 1325						- 1 A										Kara Maria			
SPECIAL INSTRUCTIONS/COMMENTS: SECIAL INSTRUCTIONS/COMMENTS: SIGNATURE PRINTED NAME COMPANY DATE TIME X L WECK TMT PRILINGUISHED BY MULCIND ISOID SPECTAR D1/17/104 13.25 X L WECK TMT A: VOID/ACM A: VOID/ACM APE 12/17/104 13.25 RELINGUISHED BY RELINGUISHED BY A: VOID/ACM A: VOID/ACM APE 12/13/109 13.25 RELINGUISHED BY RELINGUISHED BY A: VOID/ACM A: VOID/ACM APE 12/13/109 13.25																	영관		
SPECIAL INSTRUCTIONS/COMMENTS: SIGNATURE PRINTED NAME COMPANY DATE TIME X I WEEK TMT PRILIAUISHED BY X NUCLION ISON SPECTTA D17/17 13.25 X I WEEK TMT PRILIAUISHED BY X NUCLION ISON SPECTTA D17/17 13.25 X I WEEK TMT PREDINCURSHED BY X NUCLION ISON APE 13/15/09 10/45 RELINQUISHED BY RELINQUISHED BY A-VOIDAIdSEN APE 13/16/09 10/45																			
* I WEEK THT, please Relinquished by Kind BNICholson Spectra 12/13/19 1325 RECEIVED BY A.Volgardsen APE 13/18/09 1045 RELINQUISHED BY A.Volgardsen APE 13/18/09 1045	SPECIAL INSTRUCTIONS/COMMENTS:			SIGNAT	URE		ā	RINTED NA	ME			ō	VNPANC			à	IE I	TIA	ME
RECEIVED BY A.Volgardsen APT 1045 RELINQUISHED BY RECEIVED BY RECEIVED BY	* I WEEK TAT, please	RELINQUISHED BY	Ŋ	Ma	lod-	\mathcal{Q}	NICA	RIDUA	4n		S	ect	M			<u>F[]</u> Z	1001	132	ហ័
RECEIVED BY	-	RECEIVED BY RELINQUISHED BY	\mathcal{O}		i	.A.	Volg	ards	en		,¥	HJ I				<u>ə</u> 1/e	60/8	104	\mathfrak{O}
		RECEIVED BY																	

M99CS000569M 01/06

Client: Spectra Laboratories

ARI Project No.: QC05

Client Project: 2009 120317

Case Narrative

- 1. One sample was submitted for grain size analysis according to Puget Sound Estuary Protocol (PSEP) methodology and moisture content determination according to ASTM D2216, on December 18, 2009.
- 2. The sample for grain size was run in a single batch and one sample from another job was chosen for triplicate analysis. The triplicate data is reported on the QA summary.
- 3. The sample did not contain the required 5 grams of fines for the pipette portion of the analysis. The analytical balance has a capacity of about 200 grams (by 0.0001 grams) and a sample that would yield 5 grams of fines could not be split and stay within the capacity of the balance.
- 4. The data is provided in summary tables and plots.
- 5. There were no other noted anomalies in this project.

Approved by: Geotechnical Laboratory Manager

Date:

GEOTECHNICAL ANALYSIS DATA SHEET Moisture Content by Method ASTM D2216

Data Release Authorized: Reported: 12/22/09 Date Received: 12/18/09 Page 1 of 1

QC Report No: QC05-Spectra Laboratories Project: 2009 120317

Client/ ARI ID	Date Sampled	Matrix	Analysis Date	Result
Comp-1 QC05A 09-31148	12/17/09	Soil	12/21/09 07:53	5.87

Reported in Percent

Spectra Laboratories 2009 120317

Apparent Grain Size Distribution Summary Percent Retained in Each Size Fraction

Total Fines	<4	<230 (<62)	56.8	57.4	58.1	1.7
	< 10	<1.0	7.0	6.9	7.2	NA
Clay	9 to 10	2.0-1.0	2.4	2.1	2.4	AN
	8 to 9	3.9-2.0	1.8	1.9	2.0	NA
Very Fine Silt	7 to 8	7.8-3.9	2.8	2.9	2.8	AN
Fine Silt	6 to 7	15.6-7.8	6.3	6.2	6.6	AN
Medium Silt	5 to 6	31.0-15.6	15.1	16.1	15.5	AN
Coarse Silt	4 to 5	62.5-31.0	21.4	21.3	21.6	AN
Very Fine Sand	3 to 4	120-230 (125-62)	16.0	16.5	15.8	3.1
Fine Sand	2 to 3	60-120 (250-125)	10.0	9.2	9.9	8.1
Medium Sand	1 to 2	35-60 (500-250)	6.0	5.9	5.8	15.3
Coarse Sand	0 to 1	18-35 (1000-500)	4.6	4.4	4.2	21.4
Very Coarse Sand	-1 to 0	10 to 18 (2000-1000)	3.5	3.0	3.1	27.0
Gravel	> -1	> #10 (2000)	3.0	3.7	3.0	23.4
Sample No.	Phi Size	Sieve Size (microns)		PM56 C		Comp-1

÷

Notes to the Testing: 1. Organic matter was not removed prior to testing, thus the reported values are the "apparent" grain size distribution. See narrative for discussion of the testing.

QC05

QA SUMMARY	
QA SUMMAR'	>-
QA SUMMAR	2
QA SUMMA	ĽĽ.
QA SUMM/	1
QA SUMM	_
QA SUM	5
QA SUN	
QA SUI	>
QA SL	-
QAS	
g	ŝ
ð	
g	ح
J	2
	U.
	-

	2009 120317	QC05-1	1 of 1	
:	Client Project No.:	Batch No.:	Page:	telative Standard Deviation, By Phi Size
	Spectra Laboratories	PM56 C		Ľ
	Client:	ARI Trip. Sample ID:		

Size	
y Phi	
on, B	
Deviati	
dard D	
Stanc	
Ŷ	I

Sample ID -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 100.0 99.0 97.0 93.5 88.9 82.9 72.8 56.8 35.4 20.3 14.0 11.2 94 7.0 PM56 C 100.0 99.1 97.0 93.5 88.9 83.0 73.9 57.4 36.1 20.0 11.2 94 7.0 PM56 C 100.0 99.1 97.0 93.3 89.0 83.0 73.9 57.4 36.1 20.0 11.2 94 7.0 AVE NA 98.3 96.79 93.57 89.17 83.24 73.53 57.42 35.99 20.47 11.6 9.6 7.03 STDEV NA 0.35 0.41 0.51 0.61 0.61 0.29 0.34 7.03 WRSD NA 0.35 0.49 0.61 0.61 0.61 0.61 <th></th> <th></th> <th></th> <th>_</th> <th></th> <th>_</th> <th></th> <th></th>				_		_		
Sample ID -3 -2 -1 0 1 2 3 4 5 6 7 8 9 100.0 99.0 97.0 93.5 88.9 82.9 72.8 56.8 35.4 20.3 14.0 11.2 9.4 PM56 C 100.0 99.1 97.0 93.5 88.9 83.0 73.9 57.4 36.1 20.0 13.8 10.9 9.0 AVE NA 98.3 93.7 83.0 73.9 58.1 36.5 20.9 14.4 11.6 9.6 AVE NA 98.33 96.79 93.37 89.17 83.24 73.53 57.42 36.5 14.06 11.24 9.6 AVE NA 0.35 0.41 0.51 83.2 73.53 57.42 35.99 20.42 14.06 11.24 9.3 STDEV NA 0.35 0.41 0.51 0.61 0.61 0.34 0.34	10	7.0	6.9	7.2	7.03	0.14	2.04	
Sample ID -3 -2 -1 0 1 2 3 4 5 6 7 8 100.0 99.0 97.0 93.5 88.9 82.9 72.8 56.8 35.4 20.3 14.0 11.2 PM56 C 100.0 99.1 97.0 93.5 88.9 82.9 73.9 57.4 36.1 20.0 13.8 10.9 PM56 C 100.0 99.1 97.0 93.3 89.0 83.0 73.9 57.4 36.1 20.0 14.4 11.6 AVE NA 98.3 96.79 93.57 89.17 83.24 73.53 57.42 35.99 20.47 0.6 11.24 STDEV NA 0.35 0.41 0.30 0.44 0.51 0.61 0.52 0.47 0.29 0.34 %RXD NA 0.35 0.49 0.62 0.83 1.07 1.44 2.31 2.05 3.01	თ	9.4	9.0	9.6	9.34	0.33	3.50	
Sample ID -3 -2 -1 0 1 2 3 4 5 6 7 100.0 99.0 97.0 93.5 88.9 82.9 72.8 56.8 35.4 20.3 14.0 PM56 C 100.0 99.1 97.0 93.5 88.9 82.9 72.8 56.8 35.4 20.3 14.0 PM56 C 100.0 99.1 97.0 93.3 89.0 83.0 73.9 57.4 36.1 20.0 13.8 AVE NA 98.33 96.79 93.57 89.17 83.24 73.5 57.42 36.5 20.9 14.0 STDEV NA 0.35 0.41 0.30 0.44 0.51 0.61 0.52 0.47 14.06 %RSD NA 0.35 0.43 0.32 0.49 0.62 0.83 1.07 1.44 2.31 2.05	8	11.2	10.9	11.6	11.24	0.34	3.01	
Sample ID -3 -2 -1 0 1 2 3 4 5 6 100.0 99.0 97.0 93.5 88.9 82.9 72.8 56.8 35.4 20.3 PM56 C 100.0 99.1 97.0 93.5 88.9 82.9 72.8 56.8 35.4 20.3 AVE 100.0 99.1 97.0 93.3 89.0 83.0 73.9 57.4 36.1 20.0 AVE NA 98.33 96.79 93.57 89.17 83.24 73.53 57.42 35.9 20.42 STDEV NA 0.35 0.41 0.30 0.44 0.51 0.61 0.52 0.42 %RSD NA 0.35 0.43 0.32 0.49 0.62 0.47 2.31	2	14.0	13.8	14.4	14.06	0.29	2.05	
Sample ID -3 -2 -1 0 1 2 3 4 5 100.0 99.0 97.0 93.5 88.9 82.9 72.8 56.8 35.4 PM56 C 100.0 98.4 96.3 93.5 88.9 83.0 73.9 57.4 36.1 AVE NA 98.3 96.79 93.57 89.17 83.28 73.9 58.1 36.5 AVE NA 98.33 96.79 93.57 89.17 83.24 73.53 57.42 35.99 STDEV NA 0.35 0.41 0.30 0.44 0.51 0.61 0.61 0.55 %RSD NA 0.35 0.43 0.32 0.49 0.62 0.83 1.07 1.44	9	20.3	20.0	20.9	20.42	0.47	2.31	
Sample ID -3 -2 -1 0 1 2 3 4 100.0 99.0 97.0 93.5 88.9 82.9 72.8 56.8 PM56 C 100.0 98.4 96.3 93.3 89.0 87.4 56.8 PM56 C 100.0 99.1 97.0 93.3 89.0 83.0 73.9 57.4 AVE NA 98.3 96.79 93.57 89.17 83.24 73.9 57.42 AVE NA 96.83 96.79 93.57 89.17 83.24 73.53 57.42 STDEV NA 0.35 0.41 0.30 0.44 0.61 0.61 %RSD NA 0.35 0.43 0.32 0.49 0.61 0.61	Ω	35.4	36.1	36.5	35.99	0.52	1.44	
Sample ID -3 -2 -1 0 1 2 3 100.0 99.0 97.0 93.5 88.9 82.9 72.8 PM56 C 100.0 98.4 96.3 93.5 88.9 82.9 72.8 PM56 C 100.0 99.1 97.0 93.3 89.0 83.0 73.9 AVE NA 98.33 96.79 93.57 89.17 83.24 73.9 AVE NA 98.83 96.79 93.57 89.17 83.24 73.53 STDEV NA 0.35 0.41 0.30 0.44 0.51 0.61 %RSD NA 0.35 0.43 0.32 0.49 0.62 0.83	4	56.8	57.4	58.1	57.42	0.61	1.07	
Sample ID -3 -2 -1 0 1 2 100.0 99.0 97.0 93.5 88.9 82.9 PM56 C 100.0 98.4 96.3 93.5 88.9 83.0 PM56 C 100.0 99.1 97.0 93.3 89.0 83.0 AVE NA 98.83 96.79 93.57 89.17 83.2 AVE NA 98.83 96.79 93.57 89.17 83.2 STDEV NA 0.35 0.41 0.30 0.44 0.51 %RSD NA 0.35 0.43 0.651 0.651	с С	72.8	73.9	73.9	73.53	0.61	0.83	
Sample ID -3 -2 -1 0 1 Render ID -3 -2 -1 0 1 PM56 C 100.0 99.0 97.0 93.5 88.9 PM56 C 100.0 99.1 97.0 93.3 88.9 PM56 C 100.0 99.1 97.0 93.3 88.9 AVE NA 98.83 96.79 93.57 89.17 AVE NA 98.83 96.79 93.57 89.17 STDEV NA 0.35 0.41 0.30 0.44 %RSD NA 0.35 0.43 0.32 0.49	2	82.9	83.0	83.8	83.24	0.51	0.62	
Sample ID -3 -2 -1 0 100.0 99.0 97.0 93.5 PM56 C 100.0 99.4 96.3 93.3 AVE NA 98.4 96.3 93.3 AVE NA 98.83 96.79 93.57 STDEV NA 0.35 0.41 0.30 %RSD NA 0.35 0.43 0.32	1	88.9	89.0	89.7	89.17	0.44	0.49	
Sample ID -3 -2 -1 PM56 C 100.0 99.0 97.0 PM56 C 100.0 98.4 96.3 AVE NA 98.83 96.79 STDEV NA 0.35 0.41 %RSD NA 0.35 0.43	0	93.5	93.3	93.9	93.57	0.30	0.32	
Sample ID -3 -2 PM56 C 100.0 99.0 PM56 C 100.0 99.4 AVE NA 99.3 AVE NA 99.3 STDEV NA 0.35 %RSD NA 0.35	-1	97.0	96.3	97.0	96.79	0.41	0.43	
Sample ID -3 PM56 C 100.0 AVE NA STDEV NA %RSD NA	-2	0.66	98.4	99.1	98.83	0.35	0.35	
Sample ID PM56 C AVE STDEV %RSD	<u>ې</u>	100.0	100.0	100.0	AN	AN	NA	
	Sample ID		PM56 C		AVE	STDEV	%RSD	

The Triplicate Applies To The Following Samples

Client ID	Date Sampled	Date Extracted	Date Complete	QA Ratio (95-105)	Data Qualifiers	Pipette Portion (5.0- 25.0g)
	9/1/2009	9/3/2009	9/10/2009	99.9		17.4
PM56 C	9/1/2009	9/3/2009	9/10/2009	98.7		17.4
	9/1/2009	9/3/2009	9/10/2009	100.2		17.7
Comp-1	12/17/2009	12/18/2009	12/21/2009	100.0	SS	2.5

29

* ARI Internal QA limits = 95-105%

Notes to the Testing:

1. Organic matter was not removed prior to testing, thus the reported values are the "apparent" grain size distribution. See narrative for discussion of the testing.

QC05

Spectra Laboratories 2009 120317

Apparent Grain Size Distribution Summary Percent Finer Than Indicated Size

ple No.	44 .	Gravel		Very Coarse Sand	Coarse Sand	Medium Sand	Fine Sand	Very Fine Sand		S	iit		Ö	A
e	-3	-2	÷-	0		2	е	4	5	9	7	8	6	10
Size	3/6"	#4	#10	#18	#35	#60	#120	#230	00 50	00	1		0	
ns)	0/0	(4750)	(2000)	(1000)	(200)	(250)	(125)	(63)	31.00	09.61	08.7	3.90	2.00	1.00
	100.0	0.66	97.0	93.5	88.9	82.9	72.8	56.8	35.4	20.3	14.0	11.2	9.4	7.0
с С	100.0	98.4	96.3	93.3	89.0	83.0	73.9	57.4	36.1	20.0	13.8	10.9	9.0	6.9
	100.0	99.1	97.0	93.9	89.7	83.8	73.9	58.1	36.5	20.9	14.4	11.6	9.6	7.2
p-1	100.0	6.99	76.6	49.6	28.2	13.0	4.9	1.7	AN	AN	AN	AN	AN	NA

Notes to the Testing:

1. Organic matter was not removed prior to testing, thus the reported values are the "apparent" grain size distribution. See narrative for discussion of the testing.

QC05

ŵ

ocos: goga

0005:00009

Geotechnical Data

· i }

Ì

1

- SM Sample matrix was not appropriate for the requested analysis. This normally refers to samples contaminated with an organic product that interferes with the sieving process and/or moisture content, porosity and saturation calculations
- SS Sample did not contain the proportion of "fines" required to perform the pipette portion of the grain size analysis
- W Weight of sample in some pipette aliquots was below the level required for accurate weighing
- F Samples were frozen prior to particle size determination

ANALYTICAL PERSPECTIVES

22 December 2009

Marie Holt Spectra Laboratories 2221 Ross Way Tacoma, WA 98421

Ph.: 253-272-4850 Fax: 253-572-9838 Email: <u>marieh@spectra-lab.com</u>

Subject: Certificate of Results

Dear Marie;

Attached to this narrative are the analytical results you requested on samples submitted for the determination of polychlorinated dibenzo-*p*-dioxins and dibenzofurans. The insert below summarizes the relevant information pertaining to your project. In particular, QC annotations bring to your attention specific analytical observations and assessments made during the sample handling and data interpretation phases. Results reported relate only to the items tested.

Project Information Summary	When applicable, see QC Annotations for details
Client Project No.	2009120317
AP Project #	P1919
Analytical Protocol	Method 8290
No. Samples Submitted	1
No. Samples Analyzed	1
No. Laboratory Method Blanks	1
No. OPRs / Batch CS3	1
No. Outstanding Samples	0
Date Received	18-Dec-2009
Condition Received	good
Temperature upon Receipt (C)	9
Extraction within Holding Time	yes
Analysis within Holding Time	yes
Data meet QA/QC Requirements	yes
Exceptions	none
Analytical Difficulties	none

2714 Exchange Drive WILMINGTON, NC 28405 PH.: 910-794-1613

QC Annotations:

- 1. A "J" data qualifier is used for analytes with a concentration below the reporting limit.
- 2. The "EMPC" data qualifier is used for analytes reported as an Estimated Maximum Possible Concentration. This flag indicates that a peak is detected with an ion-abundance ratio outside the allowed theoretical range.

Analytical Perspectives remains committed to serving you in the most effective manner. Should you have any questions or need additional information and technical support, please do not hesitate to contact us. Thank you for choosing Analytical Perspectives as part of your analytical support team.

Sincerely,

Kimberly Mace, Ph.D. Project Manager

2714 Exchange Drive Wilmington, NC 28405 Ph.: 910-794-1613

Project ID: 2009120317 С Ш Г -P1919

Method 8290 P1919_7441_001 (0.0384) (0.0461) (0.0371) (0.0319) 0.00046 (0.0478) (0.0352) (0.0198) (0.0273) (0.0388) (0.0167) (0.0247) (0.0574) 597-951 Comp-1 (0.032) (0.019) 0.0514 0.0518 (0.04) [0.46] (0.02) 0.103 bg/gd 0.00 ANALYTICAL PERSPECTIVES MB1_7441_DF_SDS 0_7441_MB001 (0.0529) (0.0637) 477-495 (0.0385) (0.0538)(0.0591) (0.0257) (0.024) (0.0287) (0.0265) (0.0308) (0.043) (0.0339) 0.0578) 0.0475 (0.048) (0.0241) 0.0475 0.0951 (0.0294)(0.02) 6/6d 0.00 0.00 Sample Summary Part 1 (dry weight) ITEF TEQ (ND=DL/2; EMPC=EMPC) ITEF TEQ (ND=DL; EMPC=EMPC) ITEF TEQ (ND=0; EMPC=EMPC) ITEF TEQ (ND=DL/2; EMPC=0) ITEF TEQ (ND=0; EMPC=0) 1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8-PeCDD 2,3,4,7,8-PeCDF 1,2,3,7,8-PeCDF 2,3,7,8-TCDD 2,3,7,8-TCDF Checkcode Analyte Lab ID ocpp OCDF

() = DL [] = EMPC

KAM 22. Dec. 0.9.

Reviewer Date Project ID: 2009120317

Method 8290 P1919_7441_001 (0.0384) (0.0461) (0.0371) (0.0478) (0.0198) (0.032) (0.0319) (0.0388) (0.0352) (0.0167) (0.0273) (0.0247) (0.0574)0.000437 (0.019) 0.0489 597-951 Comp-1 [0.437] 0.0493 0.0981 (0.04) (0.02) pg/g 0 ANALYTICAL PERSPECTIVES MB1_7441_DF_SDS 0_7441_MB001 (0.0538) (0.0529) (0.048) (0.0591) (0.0308) (0.0241) 477-495 (0.0637) (0.0287) (0.0265)(0.043) (0.0339) (0.0385)(0.0257) (0.024) (0.0578) 0.0475 0.0475 0.0294) 0.0951 (0.02) 6/6d 0 0 Sample Summary Part 1 (wet weight) ITEF TEQ (ND=DL/2; EMPC=EMPC) ITEF TEQ (ND=DL; EMPC=EMPC) TEF TEQ (ND=0; EMPC=EMPC) ITEF TEQ (ND=DL/2; EMPC=0) TEF TEQ (ND=0; EMPC=0) 1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 1,2,3,4,7,8-HxCDD ,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD I,2,3,4,7,8-HxCDF ,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF ,2,3,7,8,9-HxCDF 1,2,3,7,8-PeCDD 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 2,3,7,8-TCDD 2,3,7,8-TCDF Checkcode Analyte ocdd Lab ID OCDF

() = DL [] = EMPC

Reviewer Date

 P1919 - WHO-2005-TEQ Project ID: 2009120317

Method 8290 P1919_7441_001 (0.0384) (0.0461) (0.0371) 0.000138 (0.0478) (0.0319) (0.0388) Comp-1 (0.0352)(0.0167) (0.0247) (0.032) (0.019) (0.0574) 597-951 0.0198) (0.0273)0.0594 0.0595 (0.04) [0.46] (0.02) 0.119 bg/g 0 ANALYTICAL PERSPECTIVES MB1_7441_DF_SDS 0_7441_MB001 (0.0294) (0.0385) (0.0538) (0.0529) (0.0637) (0.0591) (0.0287) (0.0265) (0.0308) (0.043) (0.0339) 477-495 (0.048) (0.024) 0.0545 0.0545 (0.0241) 0.0257) 0.0578) (0.02) 0.109 pg/g 0 0 WHO-2005 TEQ (ND=DL/2; EMPC=EMPC) Sample Summary WHO-2005 TEQ (ND=DL; EMPC=EMPC) Part 1 (dry weight) NHO-2005 TEQ (ND=0; EMPC=EMPC) WHO-2005 TEQ (ND=DL/2; EMPC=0) WHO-2005 TEQ (ND=0; EMPC=0) 1,2,3,4,6,7,8-HpCDD I,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,7,8-HxCDF 1,2,3,7,8-PeCDD 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 2,3,7,8-TCDD 2,3,7,8-TCDF Checkcode Analyte Lab ID ocdd OCDF

[] = EMPC() = DL

Reviewer Date

	P1919 - Totals Project ID: 2009120317	
Sample Summary Part 2 (dry weight)	ANALYTICAL PERSPECTIVES	Method 8290
Analyte	0_7441_MB001	Comp-1
	6/6d	6/6d
Totals		
TCDDs	0	0.222
PecDDs HxcDDs	0 0	0 0
HpcDDs	0.0	0.0
OCDD	0	0.46
TCDFs	0	0
PeCDFs	0	0
HxCDFs	0 0	0 0
OCDF	0 0	
Total PCDD/Fs (ND=0; EMPC=0) Total PCDD/Fs (ND=0; EMPC=EMPC)	0.00	0.682
Total PCDD/Fs (2378-X ND=DL; EMPC=EMPC)	0.660	1.21
Total 2378s (ND=0; EMPC=0) Total 2378s (ND=0.5: EMPC=0)	0.00 0.330	0.00
Total 2378s (ND=1; EMPC=0)	0.660	0.600
Total 2378s (ND=0; EMPC=1) Total 2378s (ND=0.5; EMPC=1) Total 2378s (ND=1; EMPC=1)	0.00 0.330 0.660	0.460 0.726 0.992
Checkcode Lab ID	477-495 MB1_7441_DF_SDS	597-951 P1919_7441_001

44

Total 2378s = Sum of 17 2378-substituted PCDD/PCDF congeners (SARA 313)

() = DL [] = EMPC

Reviewer Date

.....

	Project ID: 200912031/	
Sample Summary Part 2 (wet weight)	ANALYTICAL PERSPECTIVES	Method 8290
Analyte	0_7441_MB001	Comp-1
	bg/g	6/6d
Totals		
TCDDs	0	0.211
PeCDDs	0	0
HXCDDs	0 0	0 0
OCDD	0 0	
TCDFs	0	0
PeCDFs	0	0
HxCDFs	0	0
HpCDFs	0	0
OCDF	0	O
Total PCDD/Fs (ND=0; EMPC=0) Total PCDD/Fs (ND=0: EMPC=EMPC)		0.211 0.648
Total PCDD/Fs (2378-X ND=DL; EMPC=EMPC)	0.66	1.15
Total 2378s (ND=0; EMPC=0)	0	0
Total 2378s (ND=0.5; EMPC=0) Total 2378s (ND=1: EMPC=0)	0.33 0.66	0.285 0.571
1 0tal 23/88 (NU=0; EMIPC=1) Total 2378s (ND=0.5; EMPC=1)	0.33	0.69
Total 2378s (ND=1; EMPC=1)	0.66	0.943
Checkcode	477-495	597-951
Lab ID	MB1_7441_DF_SDS	P1919_7441_001

P1919 - Totals

-12

Total 2378s = Sum of 17 2378-substituted PCDD/PCDF congeners (SARA 313)

() = DL [] = EMPC

.....

Project ID: 2009120317

Sample Summary Part 3 (dry weight)	ANALYTICAL PERSPECTIVES	Method 8290
Analyte	0_7441_MB001	Comp-1
	6/6d	6/6d
Other PCDD/Fs (ND=0, EMPC=0)		
Other TCDD	0	0.222
Other PeCDD	0	0
Other HxCDD	0	0
Other HpCDD	0	0
Other TCDF	0	0
Other PeCDF	0	0
Other HxCDF	0	0
Other HpCDF	0	o
Other PCDD/Fs (ND=0, EMPC=EMPC)		
Other TCDD	. 0	0.222
Other PeCDD	0	0
Other HxCDD	0	0
Other HpCDD	0	0
Other TCDF	0	0
Other PeCDF	0	0
Other HxCDF	0	0
Other HpCDF	0	0
Chackconda	477 <u>-</u> /05	507_051
		P1919_7441_001

Reviewer

() = DL [] = EMPC

Project ID: 2009120317

Sample Summary Part 5 (dry weight)	ANALYTICAL PERSPECTIVES	Method 8290
Analyte	0_7441_MB001	Comp-1
	6/6d	6/6d
2,3,7,8-TCDD 1 2 3 7 8-DeCDD	0.0294 0.0385	0.0384 0.0461
1,2,3,4,7,8-HxCDD	0.0538	0.0371
1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD	0.0529 0.0637	0.04 0.0478
1,2,3,4,6,7,8-HpCDD	0.048	0.0352
OCDD	0.0591	0.0682
2,3,7,8-TCDF	0.02	0.0198
1,2,3,7,8-PeCDF	0.0257	0.032
2,3,4,7,8-PeCDF	0.024	0.0319
1, 2, 3, 6, 7, 8-HXCUF 1, 2, 3, 6, 7, 8-HXCDF	0.028/0.0265	0.018
2,3,4,6,7,8-HxCDF	0.0308	0.02
1,2,3,7,8,9-HxCDF	0.043	0.0273
1,2,3,4,6,7,8-HpCDF	0.0241	0.0247
1,2,3,4,7,8,9-HpCDF OCDF	0.0339 0.0578	0.0388 0.0574
Total TCDD	0.0294	0.0384
Total PeCDD	0.0385	0.0461
Total HxCDD	0.0564	0.0413
Total HpCDD	0.048	0.0352
Total TCDF	0.02	0.0198
Total PeCDF	0.0248	0.0319
Total HxCDF	0.0315	0.0203
Total HpCDF	0.0284	0.0309
Checkcode	477-495	597-951
Lab ID	MB1_7441_DF_SDS	P1919_7441_001

ŵ

Reviewer

C CANALTTICAL PERSPECTIVES

	1	-canada.	I	and and a second se	ļ	and the second sec	1		200 CED
-	1	1		1.00			-		202
1		, end		- page			-	-	2024
120523	(Constant)	tion of the second	l	11. 2010				and the second	HCD.
I		1	ļ	-			ļ	nine and a second	
I		I		-11-201	l		l	-	5
I			l	. issue	ļ	i i	-	ii t	i.
			I				ł	a dente a secondaria de la compañía	P _w COF
	1	1	l	2 million of the	l		-	ļ	140-ru
I	1			4. more		÷	ł	į	11-2-21 ×
I		-10000	Ì	11 march 11]			ļ	5006
1	ł	1	ł	- Antibal	1		ļ	-	6-0 (See
Colores of Colores]	ļ	(and the second s	1		ł	-	Eddw
No.				, , ,	1]		CEC-1
and the second				Ì	1		ł		00044
					I			14.11.11.	Pw000
	2722		Ĩ	1	1		ļ	į	100
$A^{-2,\overline{m},\overline{h},\underline{n},\overline{n}}$	10.345	000 a.	20.414.047*	1972-1988	C4 54	Salaana ka	1925 - St. 19	12,724 R.P.	in the second

C RALITICAL PERSPECTIVES

ANALTTICAL PERSPECTIVES

2004200252000-00-0 00: Terring PODS Popsing And Pops Terring People Terring Commendation Research Meanweachter Daveer Burgert Science Luci, Lant, DM, SUM (2017-2017), SCIENCE

12

		-))					
Jata		Sample Data		Laboratory Da	ita		
ċ	Spectra Laboratories	Matrix:	Solids	Lab Project ID:	P1919	Date Received:	n/a
ب. llected:	2003 1203 17 n/a	weign/volume: % Solids:	n/a	CC Batch No:	WIB 1_ / 44 1_ UF_SUS 7441	Date Extracted: Date Analyzed:	19 Dec 2009
		Split:		Dilution:		Time Analyzed:	21:30:57
	Conc. (pg/g)	DL (pg/g)	EMPC (pg/g)	Qualifiers	Standard	ES Recoveries	Qualifiers
Q	ND	0.0294			ES 2378-TCDD	94.6	
CDD	QN	0.0385			ES 12378-PeCDD	98.8	
xCDD	DN	0.0538			ES 123478-HxCDD	89.8	
xcoo	QN	0.0529			ES 123678-HxCDD	96	
xCDD	D	0.0637			ES 123789-HxCDD	92.1	
HPCDD	QN	0.048		-	ES 1234678-HpCDD	94.6	-
	ND	0.0591			ES OCDD	92.7	
)F		0.02			ES 2378-TCDF	96.4	
CDF	Q	0.0257		- - - - - -	ES 12378-PeCDF	97.4	
CDF	ND	0.024			ES 23478-PeCDF	102	
KCDF	DN	0.0287		-	ES 123478-HxCDF	96	
CDF	ND	0.0265			ES 123678-HxCDF	96.4	
CDF	QN	0.0308			ES 234678-HxCDF	93.6	-
CDF	ND	0.043			ES 123789-HxCDF	81.6	
IPCDF	QN	0.0241		-	ES 1234678-HpCDF	93.1	
PCDF	ON	0.0339			ES 1234789-HpCDF	89.8	
	ND	8/60.0			ES OCDF	92.2	
					Standard	CS Recoveries	
					CS 37CI-2378-TCDD	92.2	
	QN	0.0294	Q		CS 12347-PeCDD	108	- - - - - - - - - - - - - - - - - - -
0		0.0385	ON		CS 12346-PeCDF	3 6	
	DN	0.0564	Q		CS 123469-HxCDF	94.9	-
00	ND STATES	0.048	ND		CS 1234689-HpCDF	87.4	
	ND	0.02	ND				
Ш	D	0.0248	QN			-	
DF 1	ND	0.0315	DN				
DF	Q	0.0284	QN		-	4 dec	
DD/Fs	ND		ND				
Qs ,	소리가 유민가 가지 않는 것 같아.						
						2714	Exchange Drive
)=UL/2	0.0475 0.0951		0.0475 0.0951	ANAL	TICAL PERSPECT	IVES Wilmington, I info@	NC 28405 , USA
				Tel: +1 910 794-	-1613 (Fax: -3919); Toll-Fi	ree 866 846-829@ww	v.ultratrace.com

Sample ID:	Comp-1					Meth	od 8290
Client Data		Sample Data		Laboratory Dat	<u>a</u>		
Name:	Spectra Laboratories	Matrix:	Solids	Lab Project ID:	P1919	Date Received:	18 Dec 2009
Project ID:	2009120317	Weight/Volume:	16.01 g	Lab Sample ID	P1919_7441_001	Date Extracted:	19 Dec 2009
Date Collected:	17 Dec 2009	% Solids: Split:	95.1 % -	QC Batch No: Dilution:	/441 -	Date Analyzed: Time Analyzed:	21 Dec 2009 23:11:55
Analyte	Conc. (pg/g)	DL (pa/a)	EMPC (pg/g)	Qualifiers	Standard	ES Recoveries	Qualifiers
2378-TCDD	ND	0.0384))		ES 2378-TCDD	96.3	
12378-PeCDD	D	0.0461			ES 12378-PeCDD	108	
123478-HxCDD	Ŋ	0.0371			ES 123478-HxCDD	66	
123678-HxCDD	Q	0.04			ES 123678-HxCDD	99.9	
123789-HxCDD	ND	0.0478			ES 123789-HxCDD	99.8	
1234678-HpCDD	Q	0.0352			ES 1234678-HpCDD	106	- - - -
OCDD	EMPC		0.46		ES OCDD	92.4	
2378-TCDF	ND	0.0198			ES 2378-TCDF	98.5	
12378-PeCDF	Q	0.032			ES 12378-PeCDF	107	- - -
23478-PeCDF	ND	0.0319			ES 23478-PeCDF	108	
123478-HxCDF	Q	0.019			ES 123478-HxCDF	105	
123678-HxCDF	ND	0.0167			ES 123678-HxCDF	104	
234678-HxCDF	Q	0.02			ES 234678-HxCDF	99.1	
123789-HxCDF	DD	0.0273			ES 123789-HxCDF	87.4	
1234678-HpCDF	Q	0.0247			ES 1234678-HpCDF	103	
1234789-HpCDF	D	0.0388			ES 1234789-HpCDF	101	
OCDF	DN	0.0574			ES OCDF	92.7	
Totals			-		Standard	CS Recoveries	
)	CS 37CI-2378-TCDD	95.9	
Total TCDD	0.222		0.222	U	CS 12347-PeCDD	113	
Total PeCDD	ND	0.0461	QQ		CS 12346-PeCDF	103	
Total HxCDD	Q	0.0413	Q	<u> </u>	CS 123469-HxCDF	101	
Total HpCDD	ND	0.0352	QN		CS 1234689-HpCDF	101	
Total TCDF	ND	0.0198	ND				
Total PeCDF	Q	0.0319	Q	:		-	
Total HxCDF	DN	0.0203	DD				
Total HpCDF	ND	0.0309	ND	-			
Total PCDD/Fs	0.222		0.682				
ITEF TEQS							
TEQ: ND=0	0		0.00046			2714	Exchange Drive
TEQ: ND=DL/2	0.0514		0.0518	ANALY	TICAL PERSPECT	IVES Wilmington, I	NC 28405 , USA
TEQ: ND=DL	0.103		0.103	Tel: +1 910 794-1	1613 (Eav. <u>-</u> 3010): Toll <u>-</u> E	info@ ree 866 846-820@mm	@ultratrace.com
Chackanda: 607 061							2:27 Anatuct: MC

Project ID: 2009120317

Method 8290 P1919 7441 001 (0.0384) (0.0461) (0.0371) (0.0478) (0.0352) (0.032) (0.0319) (0.0198) (0.019) (0.0167) Comp-1 (0.0273) (0.0388) (0.0247) (0.0574)(0.04) 0.00046 0.0514 0.0518 597-951 [0.46] (0.02) pg/g 0.103 0.00 **ANALYTICAL PERSPECTIVES** 477-495 MB1 7441 DF SDS 0_7441_MB001 (0.0538) (0.0529) (0.0385) (0.0637) (0.0591) (0.048) (0.0287) (0.0265)(0.0308) (0.043) (0.0339) (0.0578) (0.024) 0.0475 0.0294 (0.0241) 0.0475 0.0257) (0.02) pg/g 0.0951 0.00 0.00 Sample Summary Part 1 (dry weight) ITEF TEQ (ND=DL/2; EMPC=EMPC) ITEF TEQ (ND=DL; EMPC=EMPC) ITEF TEQ (ND=0; EMPC=EMPC) ITEF TEQ (ND=DL/2; EMPC=0) ITEF TEQ (ND=0; EMPC=0) 1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF ,2,3,4,7,8-HxCDD ,2,3,6,7,8-HxCDD I,2,3,7,8,9-HxCDD 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF ,2,3,7,8-PeCDD 2,3,4,7,8-PeCDF 1,2,3,7,8-PeCDF 2,3,7,8-TCDD 2,3,7,8-TCDF Checkcode Analyte ocee OCDF Lab ID

[] = EMPC () = DL

MGI

																		$\overline{\mathbb{O}}$					Õ		$\overline{\mathbf{O}}$	Ď	ŝ			6	
	SPECTR	A La	bora	ltori	.ē	r A		21)0c	11C	0	31.	-+	λ						ď	AGE				Ĩ	ď				l	
	2221 Ross Way • Tacon	na, WA 984	21 •	(253) 272	2-485	0	•	⁷ ax (2	53) 5	72-98	38	6	www.	.spec	otra-li	ab.co	н			ST,	ANI	JAC	D L					Ц	Ч Ч	$\underline{\wedge}$	8
CLIENT:	CalputtonD				ADI	ЦЩ ШЩ	isi i																								
PROJEC.	T. TENNUALA	F117	ø				H	l R C	CAR	BO	<u></u>		ō	RG/	ANIC	လ		Z	IET/	ALS						ЦО	HER				
CONTAC	T. Mene Sh	47555	CIP-6	940	SAE								s					Ε <i>λ</i>)		(۲							hag		3	5	
PHONE:	253-320-3726FA	No.			INIAT					(на		den anter anter anter	VENT	A		<u></u>	8490	bECI	8 AA	ECIF					····· · , ·	1.	1100		M	ino	
e-MAIL:	MSkurrun Cal	Renthast	Second Prefer		F CON	ID		Ю-Нс		IT) MƏ	(୨୫୦	AC	UOS F	EMI AC	∀N	80	8510	S) SJA	<u>он г</u>	IS) ST		 91	9			ECIEN	านชื	20	sion	n de	
PURCHA	SE ORDER #:				IO ABI	OH-HC			ы-D^ ч-G	H-TĐS) MƏH	524 VC	опно	925 SE	d/H∀d	DG 808	THM	L MET	ATƏM	ATƏM		706/07	206 X		IIO4 F	45/50		isy	AN	78 - VI)	
	SAMPLE ID	DATE SAMPLED	TIME	MATRIX	амии	ITWN	ХЭТЯ	ХЭТЯ	атwи атwи	8 4991	1 4991	9/0928	8560 (9/0728	1 0728	9/2808	IATOT	ATOT	тсгр	члот		06 Hd		สมกา	PLA51		<i>b</i> fat	IWG	ISWI	haid	0
N 00. 🏈 I	1-41	12/13/09	1030	2011	7							1111111111111		\times	\times	X	X										X	X	X	X	
5																															
ю г					-																										
4																			1												h
ى ک																															
0										•																					
7																															
8					•																										
o																															
10]			******														
SPECIAL	INSTRUCTIONS/COMMENT	'S:			-			SIGNA	TURE						RINTE	ED NAI	E					COMF	ANY			-	DA	щ	-	UL I	ME
			RELIN	QUISHED B		\bigvee	C.S.	Ц	1			R	E	2	F	S				¥	à	S	4				7	eg l	~	50	4
			RECEI	VED BY		Ű,	Ľ,	7	\setminus			S	Ĩ	b	Ń	127	Ar V	5		G	2	202	77	Z	Z		2-1	50	2	2.5	18
			RELIN	QUISHED B		Ŋ	Ľ	4				W	ΞC	a)	Ň	3	Å	2		J	2 PC	221	5	3	\sim	~	5-1	200	-	1:5	1
			RECEI	VED BY		徽	13	10	D.	A	5		K	Q	ž	SK	N			٢	Z	5	na)		10	11-	1/00	91	1:1	52
RETURN (SAMPLES DISPOSE SA		Paym	ent Terms ev's fees	s: Ne	t 30 c all oth	lays.(ter co	East of	due at collet	scount stion r	s sub eaard	ject to lless o	['] 2/1 C	% pe ether	er mo r suit	onth ir is file	teres d in l	rt. Cu	istom e Co.	her aç WA	grees	to p: S	ay all pecti	l cos	ts of nalvti	colle ical.	ection Inc.	inclu	iding	reaso	onable
(Shipping F	-ee Applies)	4]	· · · · · · · · · · · · · · · · · · ·	;	:	2	1	:		D				; ;	!	ł	į	, ,		; •		, ,		Ì	[Mag		MORRI	01/06	

Appendix J

Post-placement Sand Cover Comparison to DMMP and SMS Criteria

Appendix J Table J-1

							SG01A			SG02A			SG03A			SG04A	
		Bioaccu-					3/10/2010			3/10/2010	h		3/10/2010			3/10/2010)
		multion	Maximum				9:10			10:11	,		11:06			13:27	
	Screening	Trigger	Level														
Conventional Parameters	Level (µg/kg	(µg/kg dry	(µg/kg dry	LAET	2AET		Unit (dry	Validation		Unit (dry	Validation	– <i>1</i> /	Unit (dry	Validation		Unit (dry	Validation
and Grain Size	dry weight)	weight)	weight)	(µg/kg DW)	(µg/kg DW)	Result	weight)	Qualifier	Result	weight)	Qualifier	Result	weight)	Qualifier	Result	weight)	Qualifier
Solids, Total						86.3	percent		86.7	percent		86.2	percent		91.8	percent	
Carbon, Total Organic (TOC)						0.068	percent		0.091	percent		0.185	percent		0.067	percent	
Gravel						10.3	percent		19.8	percent		12.4	percent		29.7	percent	
Sand, Very Coarse						9.85	percent		19.35	percent		14.75	percent		24.7	percent	
Sand, Coarse						19.4	percent		10.355	percent		21.4	percent		21.7	percent	
Sand, Medium						26.3	percent		1.23	percent		23.5	percent		12	percent	
Sand, Fine						22.5	percent		16.35	percent		17.2	percent		6.68	percent	
Sand, Very Fine						6.28	percent		19.65	percent		4.615	percent		2.08	percent	
						2.17	percent		11.26	percent		2.575	percent		1.76	percent	
Clay						0.88	percent		1.775	percent		1.251	percent		0.75	percent	
Low Molecular Weight Polycyclic Aromatic Hydrocarbons																	
LPAH				5200	13000	2.9	µg/kg	U	27.1	µg/kg		11	µg/kg		1.6	µg/kg	
Naphthalene	2100	_	2400	2100	2400	2.9	µg/kg	U	2.9	µg/kg	U	2.9	µg/kg	U	2.8	µg/kg	U
Acenaphthylene	560	—	1300	1300	1300	2.9	µg/kg	U	2.9	µg/kg	U	2.9	µg/kg	U	2.8	µg/kg	U
Acenaphthene	500	_	2000	500.00	730	2.9	µg/kg	U	2.9	µg/kg	U	1.5	µg/kg	J	2.8	µg/kg	U
Fluorene	540	_	3600	540	1000.0	2.9	µg/kg	U	2.1	µg/kg	J	1.6	µg/kg	J	2.8	µg/kg	U
Phenanthrene	1500	_	21000	1500	5400	2.9	µg/kg	U	10	µg/kg		5	µg/kg		1.6	µg/kg	J
Anthracene	960	_	13000	960	4400	2.9	µg/kg	U	15	µg/kg		2.9	µg/kg		2.8	µg/kg	U
2-Methylnaphthalene	670	—	1900	670	1400	2.9	µg/kg	U	2.9	µg/kg	U	2.9	µg/kg	U	2.8	µg/kg	U
High Molecular Weight Polycyclic Aromatic Hydrocarbons																	
НРАН	12000	4600	69000	12000	17000	21.8	µg/kg		480.7	µg/kg		82.7	µg/kg		18.1	µg/kg	
Fluoranthene	1700	11980	30000	1700	2500	3.7	µg/kg		210	µg/kg		14.1	µg/kg		3.7	µg/kg	
Pyrene	2600	—	16000	2600	3300	4.3	µg/kg		61	µg/kg		20.1	µg/kg		4.5	µg/kg	
Benz(a)anthracene	1300	—	5100	1300	1600	2.9	µg/kg	U	57	µg/kg		5.9	µg/kg		1.8	µg/kg	J
Chrysene	1400	_	21000	1400	2800	3.1	µg/kg		72	µg/kg		9.4	µg/kg		2.8	µg/kg	
Benzo(b)fluoranthene						3.5	µg/kg		38	µg/kg		11.1	µg/kg		3.4	µg/kg	
Benzo(k)fluoranthene						2.9	µg/kg	U	13	µg/kg		6.8	µg/kg		2.8	µg/kg	U
Total Benzofluoranthenes	3200		9900	3200	3600	3.5	µg/kg		51	µg/kg		17.9	µg/kg		3.4	µg/kg	
Benzo(a)pyrene	1600		3600	1600	3000.0	2.1	µg/kg	J	18	µg/kg		6.2	µg/kg		1.9	µg/kg	J
Indeno(1,2,3-cd)pyrene	600		4400	600	690	2.9	µg/kg	U	6.4	µg/kg		3.8	µg/kg		2.8	µg/kg	U
Dibenz(a,h)anthracene	230		1900	230	540	2.9	µg/kg	U	2.1	µg/kg	J	1.7	µg/kg	J	2.8	µg/kg	U
Benzo(g,h,i)perylene	670		3200	670	720	1.6	µg/kg	J	3.2	µg/kg		3.6	µg/kg		2.8	µg/kg	U
Chlorinated Organics																	
1 2-Dichlorobenzene	35		110	35	50.000	5.9	ua/ka		5.9	ua/ka		5.9	ua/ka	1.1	55	ua/ka	11
1 3-Dichlorobenzene	170		110		50.000	5.0	ua/ka		5.0 5.2	ua/ka	U I	5.0 5.2	ug/kg		5.5	ug/kg	
1,8 Dichlorobenzene	110		120	110	120	5.8	ug/kg		5.8	ug/kg		5.8	ug/kg		5.5	ua/ka	
1 2 4-Trichlorobenzene	31		64	31	51	5.8	ua/ka	U	5.8		U	5.8	ug/kg	U U	5.5	ua/ka	U
Hexachlorobenzene	22	168	230	22	70,000	5.8	ua/ka	U	5.8	ua/ka	U	5.8	ua/ka	U	5.5	ua/ka	U
						0.0	פיישיק	-	0.0	שיישיק	-	0.0	6'''E	-	0.0	שיישה	-
Phthalate Esters																	
Dimethyl Phthalate	71		1400	71	160	5.8	µg/kg	U	5.8	µg/kg	U	5.8	µg/kg	U	5.5	µg/kg	U
Diethyl Phthalate	200		1200	200	1200	5.8	µg/kg	U	5.8	µg/kg	U	5.8	µg/kg	U	5.5	µg/kg	U
Di-n-butyl Phthalate	1400		5100	1400	5100	12	µg/kg	U	12	µg/kg	U	12	µg/kg	U	11	µg/kg	U
Butyl Benzyl Phthalate	63		970	63	900	5.8	µg/kg	U	5.8	µg/kg	U	5.8	µg/kg	U	5.5	µg/kg	U
Bis(2-ethylhexyl) Phthalate	1300		8300	1300	3100	8.4	µg/kg	J	58	µg/kg	U	33.3	µg/kg		8.2	µg/kg	J
Di-n-octyl Phthalate	6200		6200	6200	6200	5.8	µg/kg	U	5.8	µg/kg	U	5.8	µg/kg	U	5.5	µg/kg	U

Appendix J Table J-1

							SG01A			SG02A			SG03A			SG04A	
		Bioaccu-					3/10/2010			3/10/2010			3/10/2010			3/10/2010	n
		multion	Maximum				0,10,2010			10.11			11.06			12.27	,
	Screening	Trigger	Level				9.10			10.11			11.00	1	r	13.27	Τ
Conventional Parameters	Level (µg/kg	(µg/kg dry	(µg/kg dry	LAET	2AET		Unit (dry	Validation		Unit (dry	Validation		Unit (dry	Validation		Unit (dry	Validation
and Grain Size	dry weight)	weight)	weight)	(µg/kg DW)	(µg/kg DW)	Result	weight)	Qualifier	Result	weight)	Qualifier	Result	weight)	Qualifier	Result	weight)	Qualifier
Dibenzofuran	540		1700	540	700.00	5.8	µg/kg	U	5.8	µg/kg	U	1.4	µg/kg	J	5.5	µg/kg	U
Hexachlorobutadiene				11	120	5.8	µg/kg	U	5.8	µg/kg	U	5.8	µg/kg	U	5.5	µg/kg	U
N-Nitrosodiphenylamine	28		130	28	40.000	5.8	µg/kg	U	5.8	µg/kg	U	5.8	µg/kg	U	5.5	µg/kg	U
Phenol	420		1200	420	1200	18	µg/kg	U	18	µg/kg	U	18	µg/kg	U	17	µg/kg	U
2-Methylphenol	63		77	63	72	5.8	µg/kg	U	5.8	µg/kg	U	5.8	µg/kg	U	5.5	µg/kg	U
4-Methylphenol	670		3600	670	1800	5.8	µg/kg	U	5.8	µg/kg	U	5.8	µg/kg	U	5.5	µg/kg	U
2,4-Dimethylphenol	29		210	29	72	29	µg/kg	U	29	µg/kg	U	29	µg/kg	U	28	µg/kg	U
Pentachlorophenol (PCP)	400	504	690	360	690	58	µg/kg	U	58	µg/kg	U	58	µg/kg	U	55	µg/kg	U
Benzyl Alcohol	57		870	57	73	12	µg/kg	U	12	µg/kg	U	12	µg/kg	U	11	µg/kg	U
Benzoic Acid	650		760	650	65	120	µg/kg	U	120	µg/kg	U	120	µg/kg	U	110	µg/kg	U
Hexachloroethane	1400		14000			5.8	µg/kg	U	5.8	µg/kg	U	5.8	µg/kg	U	5.5	µg/kg	U
Dioxins																	
Total Dioxin and Chlorinated Furan TEQ	4 TEQ		10 TEQ Volu	ume averaged to 4	4 TEQ)	0.1374869			0.11501			0.6043884			0.4738		
Total Dioxin and Chlorinated Furan TEQ using 1/2 RL						4.5554869			5.109055			1.8954384			1.891015		
Total Dioxin TEQ						0.0505			0.06431			0.4842			0.385		
Total Dioxin TEQ using 1/2 RL						3.4549			3.47736			1.0842			0.89		
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)						1.13	ng/Kg	U	1.13	ng/Kg	U	1.2	ng/Kg	U	1.01	ng/Kg	U
1,2,3,7,8-Pentachlorodibenzo-p-dioxin (PeCDD)						5.63	ng/Kg	U	5.64	ng/Kg	U	0.0908	ng/Kg	J	0.101	ng/Kg	J
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)						0.0394	ng/Kg	J	0.0392	ng/Kg	J	0.147	ng/Kg	J	0.057	ng/Kg	
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)						0.171	ng/Kg		0.239	ng/Kg	J	0.506	ng/Kg	J	0.521	ng/Kg	J
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin (HxCDD)						0.159	ng/Kg	J	0.169	ng/Kg		0.502	ng/Kg	J	0.398	ng/Kg	J
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin (HpCDD)						4.88	ng/Kg	U	5.61	ng/Kg	U	21.7	ng/Kg		11.5	ng/Kg	
Octachlorodibenzo-p-dioxin (OCDD)						45.2	ng/Kg		65.3	ng/Kg	J	203	ng/Kg		238	ng/Kg	
Chlorinated Furans																	
Total Chlorinated Furan TEQ						0.0869869			0.0507			0.1201884			0.0888		
Total Chlorinated Furan TEQ using 1/2 RL						1.1005869			1.631695			0.8112384			1.001015		
1,2,3,7,8-Pentachlorodibenzofuran (PeCDF)						0.0642	ng/Kg		5.64	ng/Kg	U	0.0819	ng/Kg	J	5.06	ng/Kg	U
2,3,4,7,8-Pentachlorodibenzofuran (PeCDF)						5.63	ng/Kg	U	5.64	ng/Kg	U	0.122	ng/Kg	J	5.06	ng/Kg	U
1,2,3,4,7,8-Hexachlorodibenzofuran (HxCDF)						0.244	ng/Kg	J	0.169	ng/Kg	J	0.277	ng/Kg	J	0.198	ng/Kg	J
1,2,3,6,7,8-Hexachlorodibenzofuran (HxCDF)						0.073	ng/Kg		5.64	ng/Kg	U	0.104	ng/Kg	J	0.176	ng/Kg	J
1,2,3,7,8,9-Hexachlorodibenzofuran (HxCDF)						5.63	ng/Kg	U	5.64	ng/Kg	U	6.01	ng/Kg	U	5.06	ng/Kg	U
2,3,4,6,7,8-Hexachlorodibenzofuran (HxCDF)						5.63	ng/Kg	U	5.64	ng/Kg	U	0.148	ng/Kg	J	0.118	ng/Kg	J
1,2,3,4,6,7,8-Heptachlorodibenzofuran (HpCDF)						5.63	ng/Kg	U	5.64	ng/Kg	U	6.01	ng/Kg	U	5.06	ng/Kg	U
1,2,3,4,7,8,9-Heptachlorodibenzofuran (HpCDF)						5.63	ng/Kg	U	5.64	ng/Kg	U	6.01	ng/Kg	U	5.06	ng/Kg	U
Octachlorodibenzofuran (OCDF)						11.3	ng/Kg	U	11.3	ng/Kg	U	12	ng/Kg	U	10.1	ng/Kg	U
Tetrachlorodibenzo-p-dioxins (TCDD), Total						0.223	ng/Kg	J	1.13	ng/Kg	U	0.128	ng/Kg	J	1.01	ng/Kg	U
Pentachlorodibenzo-p-dioxin (PeCDD), Total						5.63	ng/Kg	U	5.64	ng/Kg	U	0.0908	ng/Kg	J	0.101	ng/Kg	J
Hexachlorodibenzo-p-dioxins (HxCDD), Total						1.3	ng/Kg	J	1.87	ng/Kg	J	4.17	ng/Kg		3.19	ng/Kg	J
Heptachlorodibenzo-p-dioxins (HpCDD), Total						13.7	ng/Kg		17.1	ng/Kg		44.1	ng/Kg		25.7	ng/Kg	
Tetrachlorodibenzofurans (TCDF), Total						0.901	ng/Kg	J	1.48	ng/Kg		0.613	ng/Kg	J	0.473	ng/Kg	J
Pentachlorodibenzofurans (PeCDF), Total						0.173	ng/Kg	J	0.372	ng/Kg	J	0.774	ng/Kg	J	0.485	ng/Kg	J
Hexachlorodibenzofurans (HxCDF), Total						1.28	ng/Kg	J	0.731	ng/Kg	J	2.584	ng/Kg	J	2.74	ng/Kg	J
Heptachlorodibenzofurans (HpCDF), Total						2.78	ng/Kg	J	3.16	ng/Kg	J	6.725	ng/Kg		6.09	ng/Kg	

Notes:

J - The analyte was detected above the reported quantitation limit, and the reported concentration was an estimated value.
U - The analyte was analyzed for, but was considered not detected at the reporting limit or reported value.

Appendix K

Sand Cover Validation Report

Data Validation Report

Port of Seattle Terminal 115 Sand Cover Monitoring March 2010 Sampling

Prepared for:

Science and Engineering for the Environment, LLC. 4401 Latona Ave NE Seattle, WA 98105

Prepared by:

Pyron Environmental, Inc. 3530 32nd Way NW Olympia, WA 98502

May 8, 2010

Pyron Environmental, Inc. Data Validation Report T-115Sand Cover Monitoring March 2010 Sampling_K1002316

ACRONYMS

%D	percent difference
%D _f	percent drift
%R	percent recovery
%RSD	percent relative standard deviation
CDD	chlorinated dibenzo-p-dioxin
CDF	chlorinated dibenzofuran
CF	calibration factor
CLP	U.S. EPA Contract Laboratory Program
сос	chain-of-custody
DFTPP	decafluorotriphenylphosphine
EMPC	estimated maximum possible concentration
EPA	U.S. Environmental Protection Agency
GC/MS	gas chromatograph/mass spectrometer
HRGC	high-resolution gas chromatograph
HRMS	high-resolution mass spectrometer
ICAL	initial calibration
IPR	initial precision and recovery
ISC	isomer specificity check
LCS	laboratory control sample
LCSD	laboratory control sample duplicate
mg/kg	milligram per kilogram
μg/kg	microgram per kilogram
MDL	method detection limit
MS	matrix spike
MSD	matrix spike duplicate
m/z	mass-to-charge ratio
ng/kg	nanogram per kilogram
NFGs	CLP National Functional Guidelines for Data Review (EPA 2008 – Organics, EPA 2005 - Dioxins and Furans)
OPR	ongoing precision and recovery
PCDD	polychlorinated dibenzo-p-dioxin
PCDF	polychlorinated dibenzofuran
PEM	performance evaluation mixture

Pyron Environmental, Inc. Data Validation Report T-115Sand Cover Monitoring March 2010 Sampling_K1002316

QAPP	quality assurance project plan
QA/QC	quality assurance/quality control
RF	response factor
RL	reporting limit
RPD	relative percent difference
SDG	sample delivery group
SICP	selected ion current profile
S/N	signal-to-noise ratio
SVOCs	semi-volatile organic compounds
WDM	window defining mixture

INTRODUCTION

This report presents and discusses findings of the data validation performed on analytical data for samples collected during March 2010 for the referenced project. The laboratory report validated herein was submitted by Columbia Analytical Services, Inc. in one sample delivery group (SDG) – K1002316.

A level IV data validation was performed. The validation followed the procedures specified in USEPA CLP National Functional Guidelines ([NFGs], EPA 2008 – Organics, EPA 2005 – Chlorinated Dioxin/Furans), with modifications to accommodate project and analytical method requirements. The numerical quality assurance/quality control (QA/QC) criteria applied to the validation were in accordance with those specified in the Sand Cover Monitoring Plan ([*Plan*], Anchor, June 2009) and the current performance-based control limits established by the laboratory (laboratory control limits). Instrument calibration, frequency of QC analyses, and analytical sequence requirements were evaluated against the respective analytical methods.

Validation findings are discussed for each QC parameter pertinent to each type of analyses evaluated. Qualified data with applied data qualifiers are summarized in the **Summary** section at the end of this report. As part of the level IV validation, 10 percent of the initial calibrations, calibration verifications, laboratory QC analyses, and sample results were verified via re-calculation checks.

					Analysis	
Field Sample ID	Laboratory Sample ID	Sampling Date	Matrix	TOC Grain Size	SVOCs	Dioxins/Furans
T115SG01A100310	K1002316-001	3/10/2010	Sediment	х	х	Х
T115SG02A100310	K1002316-004	3/10/2010	Sediment	х	х	х
T115SG03A100310	K1002316-007	3/10/2010	Sediment	х	х	х
T115SG04A100310	K1002316-010	3/10/2010	Sediment	х	х	Х
T115SG51A100310	K1002316-013	3/10/2010	Sediment	х	х	Х

Samples and the associated analyses validated herein are summarized as follows:

Notes:

X - The analysis was requested and performed on the sample

TOC- Total organic carbon

SVOCs - Semi-volatile organic compounds, analyte list specified in the QAPP

PCBs – Polychlorinated biphenyls (Aroclors only)

Dioxins/Furans – Polychlorinated dioxins & furans

Analytical methods in respect to analytical parameters validated herein and the laboratory performing the analyses are summarized below:

Parameter	Analytical Method	Laboratory
тос	Plumb, 1981	
Grain Size	PSEP Protocols	Columbia Analytical Services, Inc.
PCB Aroclors	SW846 Method 8082	(CAS), Kelso, Washington
SVOCs	SW846 Method 8270C	
Polychlorinated Dioxins & Furans	EPA Method 1613B	Columbia Analytical Services, Inc. (CAS), Houston, Texas

Notes:

1. SW846 Methods - USEPA Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, Third Edition, December 1996 and Updates.

2. USEPA Method 1613 Tetra- Through Octa-Chlorinated Dioxins and Furans by Isotope Dilution HRGC/HRMS, October 1994.

3. PSEP Protocols - *PSEP Recommended Protocols for Measuring Conventional Sediment Variables in Puget Sound,* Puget Sound Water Quality Authority, March 1986.

4. Plumb 1981 - Procedures for Handling and Chemical Analysis of Sediment and Water Samples. Technical Report, EPA/CE-B1-1. U.S. Army Corps of Engineers. Plumb, R.H. 1981.

DATA VALIDATION FINDINGS

1. Semi-volatile Organic Compounds (SVOCs) by GC/MS (SW846 Method 8270C)

1.1 Sample Management and Holding Times

No anomalies were identified in relation to sample preservation, handling, and transport, as discussed in Section 1.1.

Water samples should be extracted within seven days of collection. Extracts should be analyzed within 40 days of extraction. All samples were extracted and analyzed within the required holding times.

1.2 GC/MS Instrument Performance Check

DFTPP tuning was performed within each 12-hour interval. All required ion abundance ratios met the method requirements.

1.3 Initial Calibration

The NFGs criteria require that the average response factor (RF) be ≥ 0.05 for all analytes and surrogate compounds.

The method linearity criteria require that (1) if linear average RFs is chosen as the quantitation option, the %RSD of RFs be \leq 15% for the analyte, (2) if least-square linear regression is chosen for quantitation, the correlation coefficient (r) be \geq 0.99, and (3) if sixpoint non-linear (quadratic) curve is chosen for quantitation, the coefficient of determination (r²) be \geq 0.99.

1.4 Calibration Verification

The NFGs criteria require that (1) continuing calibrations be analyzed at the beginning of each 12-hour analysis period prior to the analysis of method blank and samples, (2) the percent difference (%D) be within $\pm 20\%$, and (3) the RF be ≥ 0.05 for all analytes and surrogate compounds.

Calibration verifications were performed at the required frequency, and all %D values met the method criterion or the outliers had no effects on data quality (*e.g.*, high bias recovery where the compound was not detected in associated samples).

1.5 Method Blanks

Method blanks were prepared and analyzed as required. No target analytes were detected at or above the MDLs in the method blanks, except for the following:

Method Blank ID	Analyte	Detection in Blank (µg/kg)	Affected Sample	Original Result (μg/kg)	Adjusted Results (µg/kg)
KWG1002463-MB	Dimethyl Phthalate	2.3 J	T115SG01A100310 T115SG03A100310 T115SG04A100310	2.6 J 1.5 J 1.1 J	5.8 U 5.8 U 5.5 U

Note: J – The value was at a level between the MDL and MRL, and considered as estimated.

1.6 Surrogate Spikes

Surrogate spikes were added to all samples as required by the method. All surrogate percent recovery (%R) values were within the laboratory control limits.

1.7 Matrix Spike and Matrix Spike Duplicate (MS/MSD)

MS/MSD analyses were to be performed on sample T115SG02A100310. The extraction for the MSD was unsuccessful due to the GPC instrument malfunction. %R values were within the laboratory control limits for the MS. The analytical precision was evaluated based on the LCS/LCSD results (see Section 1.8).

1.8 Laboratory Control Sample (LCS) and LCS Duplicate (LCSD)

LCS and LCSD analyses were performed with each analytical batch. All %R and relative percent difference (RPD) values met the laboratory control limits.

1.9 Internal Standards

The method requires that (1) internal standard retention time be within ± 30 seconds from that of the associated 12-hour calibration standard, and (2) the area counts of all internal standards be within -50% to +100% of the associated 12-hour calibration standard. All internal standards in the sample and associated QC analyses met the criteria.

1.10 Target Compound Identification

Target compound identification is evaluated by examining if (1) the RRT is within ± 0.06 RRT units of the standard RRT for a positively identified compound, (2) the relative intensity of characteristic ions are within $\pm 30\%$ in comparison with the reference spectrum, and (3) ions of a positively identified compound with >10% relative abundance should be present. No anomalies were found. Hexachlorophene results were determined using tentative identification compound search. The compound was not detected in any of the samples, and were qualified (UJ) due to the lack of calibration and QC measurements.

1.11 Compound Quantitation and Method Reporting Limits

The sample-specific MRLs were adjusted with sample amount extracted and supported with adequate initial calibration concentrations. The QAPP requirements for MRLs were achieved.

Verification calculations were performed on 10% of the instrument calibration, calibration verifications, and reported QC and sample analyses. No anomalies were found. Sample quantitation and reporting was correctly performed.

1.12 System Performance

The system performance and stability over an analytical sequence was evaluated by examining chromatograms for abrupt baseline shifting, excessive baseline rise at elevated temperature, progressing peak tailing, or loss of resolution. In addition, the internal standard retention times and response areas were checked for trends of shifting. No anomalies were observed.

1.13 Field Duplicates

Samples T115SG01A100310 and T115SG51A100310 were field duplicates. The results and data qualification are presented in **Appendix A** in the end of this report.

1.14 Overall Assessment of Data Usability

SVOCs data are of known quality and acceptable for use, as qualified.

2. Polychlorinated Dioxins/Furans by HRGC/HRMS (EPA Method 1613B)

2.1 Sample Management and Holding Times

No anomalies were identified in relation to sample preservation, handling, and transport, as discussed in Section 1.1.

EPA Method 1613B recommends a holding time of one year for solid samples stored in the dark at <-10 °C. The NFG recommended that extracts be analyzed within 30 days of extraction. The sample was extracted and analyzed within the recommended holding times.

2.2 HRGC/HRMS Instrument Performance Check

The NFG and EPA Method 1613B criteria for instrument performance checks are as follows:

Mass Spectrometer Resolution: (1) The resolution check should be performed prior to initial calibration and at the start and end of each 12-hour shift, (2) the resolution should be \geq 10,000 resolving power at m/z 304.9824, and (3) the deviation between the exact m/z and the theoretical m/z must be less than 5 ppm for monitored isomers.

Window Defining Mixture (WDM) and Column Performance Solution (CPS): (1) WDM and CPS should be analyzed prior to initial calibration and continuing calibration verification, and (2) the 2,3,7,8-TCDD peak and 1,2,3,8-TCDD peak should be resolved with a valley of \leq 25%.

All HRGC/HRMS instrument performance checks met the criteria.

2.3 Initial Calibration

The NFG and EPA Method 1613B criteria for initial calibration are as follows:

- (1) A minimum of five standards should be employed,
- (2) The percent relative standard deviation (%RSD) of isomer response should be <20% for native compounds and <35% for labeled compounds,
- (3) The absolute RT of the internal standard $^{13}C_{12}$ -1,2,3,4-TCDD must be >25 minutes on the DB-5 (or equivalent) column and >15 minutes on the DB-225 (or equivalent) column,
- (4) The ion abundance ratios should be within the control limits listed in EPA Method 1613B, Table 9, and
- (5) The signal-to-noise (S/N) ratio should be >10 for all native and labeled compounds in the first calibration standard (CS1).

Initial calibrations met all acceptance criteria.

2.4 Calibration Verification

The NFG and EPA Method 1613B criteria require that:

- (1) Continuing calibration verifications be performed at the beginning of each 12-hour shift,
- (2) The percent difference (%D) value be within the control limits listed in EPA Method 1613B, Table 6, and
- (3) The ion abundance ratios, retention times, relative retention times, instrument sensitivity should meet the same criteria as for initial calibrations.

All calibration verification analyses met the criteria.

2.5 Blanks

Method Blank: A method blank was prepared and analyzed as required for each preparation batch. No target analytes were detected at or above the estimated detection limits (EDLs), except for the following:

Method Blank ID	Analyte	Detection in Blank (ng/kg)	Affected Sample	Original Result (ng/kg)	Adjusted Result (ng/kg)
EQ10000128-01	1,2,3,4,6,7,8- Heptachlorodibenzo- <i>p</i> -dioxin (HpCDD)	0.242 J	T115SG01A100310 T115SG02A100310 T115SG51A100310	4.88 J 5.61 J 4.53 J	5.63 U 5.64 U 6.01 U
EQ10000128-01	Octachlorodibenzo- <i>p</i> -dioxin (OCDD)	1.62 J	All sample concentrations were >10x the detection in method blank.		-

Method Blank ID	Analyte	Detection in Blank (ng/kg)	Affected Sample	Original Result (ng/kg)	Adjusted Result (ng/kg)
EQ10000128-01	1,2,3,4,6,7,8- Heptachlorodibenzofuran (HpCDF)	0.0754 J	T115SG01A100310 T115SG02A100310 T115SG03A100310 T115SG04A100310 T115SG51A100310	0.807 J 0.873 J 2.88 J 1.63 J 0.654 J	5.63 U 5.64 U 5.09 U 5.06 U 6.01 U
EQ10000128-01	Octachlorodibenzofuran (OCDF)	0.211 J	T115SG01A100310 T115SG02A100310 T115SG04A100310 T115SG51A100310	2.33 J 2.92 J 4.74 J 2.07 J	11.3 U 11.3 U 10.1 U 12 U

Note: J – The value was at a level between the EDL and MRL, and considered as estimated.

2.6 Initial Precision and Recovery Study (IPR) and Ongoing Precision and Recovery (OPR)

The initial precision and recovery study was performed according to the laboratory, but results were not provided in the data package. A laboratory control sample (LCS) was analyzed in lieu of ongoing precision and recovery (OPR) analysis (see Section 3.8).

2.7 Labeled Compounds

Fifteen labeled compounds were added to all field and laboratory QC samples as required by the method. The percent recovery (%R) values met the method requirements (EPA Method 1613B, Table 7).

2.8 Laboratory Control Sample (LCS) and LCS Duplicate (LCSD)

LCS and LCSD analyses were performed as required by the method. All %R and relative percent difference (RPD) values met the laboratory control limits,

2.9 Matrix Spike and Matrix Spike Duplicate (MS/MSD)

MS/MSD analyses were performed on sample T115SG02A100310 as requested. All %R and RPD values met the laboratory control criteria, except for the following:

	% R MS MSD		%R				Data Qualifier	
Analyte			Control Limit	RPD	RPD Criterion	Affected Sample		
Octachlorodibenzo- <i>p-</i> dioxin (OCDD)	76%	229%	78-144%	100%	50%	T115SG02A100310	J	

2.10 Target Compound Identification

Target compound identification was evaluated by examining if:

- (1) the signals for the two exact m/z's being monitored were present, and maximized within ±2 seconds of one another;
- (2) the S/N ratio of each of the two exact m/z's must be greater than or equal to 2.5;
- (3) the ion abundance ratios were within the method control limits (EPA Method 1613B, Table 9); and
- (4) the relative retention time (RRT) or retention time (RT) of the peaks were within the method control limits (EPA Method 1613B, Table 2).

All reported target analyte detections were properly identified.

2.11 Method Reporting Limits (MRLs) and Compound Quantitation

Correct internal standards, quantitation ions, and average RFs were used to quantitate target compound detections. The MRLs were supported with adequate ICAL calibration concentrations. Sample-specific EDLs and MRLs were adjusted with sample weights, internal standard peak height, and noise levels as required by the method.

Concentrations of octachlorodibenzo-*p*-dioxin (OCDD) in samples T115 SC0532 100310ZA and T115 SC043 100310ZA exceeded the instrument calibration ranges. The results were qualified (J) as estimated.

A verification calculation was performed on 10% of the reported calibration, laboratory QC analyses, and sample results. No anomalies were found.

2.12 Second Column Confirmation

Second-column confirmation is required for samples analyzed on a DB-5 (or equivalent) column in which 2,3,7,8-TCDF is reported at or above the EDL, or where 2,3,7,8-TCDF is reported as an Estimated Maximum Possible Concentration (EMPC). 2,3,7,8-TCDF was detected in all samples and confirmed on the DB-225 column. The 2,3,7,8-TCDF values were reported from the DB-225 column as required.

2.13 Field Duplicates

Samples T115SG01A100310 and T115SG51A100310 were field duplicates. The results and data qualification are presented in **Appendix A** in the end of this report.

2.14 Overall Assessment of Polychlorinated Dioxins/Furans Data Usability

Polychlorinated dioxins and furans data were of known quality and acceptable for use as qualified.

Pyron Environmental, Inc. Data Validation Report T-115Sand Cover Monitoring March 2010 Sampling_K1002316

3. Total Organic Carbon (TOC) and Grain Size

3.1 Holding Times

Sediment samples should be analyzed within 28 days of collection for TOC and 6 months for grain size. All samples were analyzed within the required holding times.

3.2 Method Blank

Method blanks were prepared and analyzed for TOC as required. TOC was not detected at or above the RLs in the method blanks.

3.3 Replicate Analysis

Triplicate analyses were performed for TOC and grain size on sample T115SG02A100310. All %RSD values were within the acceptance criterion (20%).

3.4 Laboratory Control Sample (LCS)

The LCS analysis for TOC was performed as required by the method. All R values were within the laboratory control limits.

3.5 Matrix Spike (MS)

TOC matrix spike analysis was performed on sample T115SG02A100310. The %R value was within the laboratory control criterion (75 – 125%).

3.6 Field Duplicates

Samples T115SG01A100310 and T115SG51A100310 were field duplicates. The results and data qualification are presented in **Appendix A** in the end of this report.

3.7 Overall Assessment of TOC and Grain Size Data Usability

TOC and grain size data are of known quality and acceptable for use.

SUMMARY

Data qualification and reasons are summarized as follows:

Sample ID	Analyte	Data Qualifier	Reason	Report Section
T115SG02A100310	Octachlorodibenzo- <i>p</i> -dioxin (OCDD)	J	MS/MSD %R and RPD values were outside the control limits.	2.9

Data affected by associated blanks are qualified and results adjusted as follows:

Sample ID	Analyte	Original Result	Adjusted Result	Unit	Report Section
T115SG01A100310 T115SG02A100310 T115SG51A100310	Dimethyl Phthalate	4.88 J 5.61 J 4.53 J	5.63 U 5.64 U 6.01 U	µg/kg	1.5
T115SG01A100310 T115SG02A100310 T115SG03A100310 T115SG04A100310 T115SG51A100310	Octachlorodibenzo- <i>p</i> -dioxin (OCDD)	0.807 J 0.873 J 2.88 J 1.63 J 0.654 J	5.63 U 5.64 U 5.09 U 5.06 U 6.01 U	ng/kg	2.5
T115SG01A100310 T115SG02A100310 T115SG04A100310 T115SG51A100310	1,2,3,4,6,7,8-Heptachlorodibenzofuran (HpCDF)	2.33 J 2.92 J 4.74 J 2.07 J	11.3 U 11.3 U 10.1 U 12 U	ng/kg	2.5
T115 SC032 100310ZD T115 SC042 100310ZB	Octachlorodibenzofuran (OCDF)	1.11 J 0.256 J	11.7 U 11.2 U	ng/kg	2.5

Data Qualifiers are defined as follows:

Data Qualifier	Definition
J	The analyte was detected above the reported quantitation limit, and the reported concentration was an estimated value.
R	The result was rejected and could not be used.
U	The analyte was analyzed for, but was considered not detected at the reporting limit or reported value.
IJ	The analyte was analyzed for, and the associated quantitation limit was an estimated value.

Approved By:

Date:

Mingta Lin

REFERENCES

- USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review, Office of Superfund Remediation and Technology Innovation, U.S. Environmental Protection Agency, June 2008, EPA-540-R-08-01.
- USEPA Analytical Operations/Data Quality Center National Functional Guidelines for Chlorinated Dioxin/Furan Data Review, Office of Emergency and Remedial Response, U.S. Environmental Protection Agency, September 2005, EPA 540/R-05-001.
- USEPA Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, Third Edition, December 1996.
- USEPA Method 1613 Tetra- Through Octa-Chlorinated Dioxins and Furans by Isotope Dilution HRGC/HRMS, October 1994.
- USEPA Region 10 Standard Operating Procedure for the Validation of Polychlorinated Dibenzo-pdioxin (PCDD) and Polychlorinated Dibenzo-furan (PCDF) Data, January 1996.
- Recommended Protocols for Measuring Conventional Sediment Variables in Puget Sound, Puget Sound Water Quality Authority, March 1986.
- Recommended Guidelines for Measuring Organic Compounds in Puget Sound Water, Sediment and Tissue Samples, Puget Sound Water Quality Authority, April 1997.
- *Port of Seattle, Terminal 115 Sand Cover Monitoring Plan, Anchor QEA, LLC., June 2009.*

Appendix A

Field duplicate RPD is indicative of field and laboratory precision and sample homogeneity in combination. The precision criterion of 50% specified in the QAPP was applied to evaluating the RPD values of soil field duplicate results \geq 5xMRL. For results that are <5xMRL, an advisory criterion of ±2xMRL was applied to evaluating the concentration differences. The RPD (or concentration difference as applicable) values and data qualification for detected compounds in field duplicates are presented as follows:

			Sample ID & Results		(40)	
Analytes	MRL	Unit	T115SG01A100310	T115SG51A100310	RPD (%) or Difference	Data Qualification
Solids, Total	0.1	%	86.3	86.4	0%	-
Carbon, Total Organic (TOC)	0.05	%	0.068	0.173	0.105%	
Gravel	0.1	%	10.3	10.5	2%	-
Sand, Very Coarse	0.1	%	9.85	12.6	24%	-
Sand, Coarse	0.1	%	19.4	21.5	10%	-
Sand, Medium	0.1	%	26.3	27.3	4%	-
Sand, Fine	0.1	%	22.5	19.7	13%	-
Sand, Very Fine	0.1	%	6.28	5.02	22%	-
Silt	0.1	%	2.17	1.72	23%	-
Clay	0.1	%	0.88	0.85	3%	-
Dimethyl Phthalate	5.8	µg/kg	2.6 BJ	ND	2.6 µg/kg	
Fluoranthene	2.9	µg/kg	3.7	5.2	1.5 µg/kg	
Pyrene	2.9	µg/kg	4.3	6.2	1.9 µg/kg	
Benz(a)anthracene	2.9	µg/kg	ND	2.2 J	2.2 μg/kg	
Chrysene	2.9	µg/kg	3.1	3.7	0.6 µg/kg	
Bis(2-ethylhexyl) Phthalate	58	µg/kg	8.4 J	8.6 J	0.2 µg/kg	
Benzo(b)fluoranthene	2.9	µg/kg	3.5	4.1	0.6 µg/kg	
Benzo(a)pyrene	2.9	µg/kg	2.1 J	2.4 J	0.3 µg/kg	
Indeno(1,2,3-cd)pyrene	2.9	µg/kg	ND	1.6	1.6 µg/kg	
Benzo(g,h,i)perylene	2.9	µg/kg	1.6 J	ND	1.6 µg/kg	
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)	5.63	ng/Kg	0.0394 J	ND	0.0394 ng/Kg	
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)	5.63	ng/Kg	0.171 J	0.2 J	0.029 ng/Kg	
1,2,3,4,6,7,8-Heptachlorodibenzo-p- dioxin (HpCDD)	5.63	ng/Kg	4.88 J	4.53 J	0.35 ng/Kg	
Octachlorodibenzo-p-dioxin (OCDD)	11.3	ng/Kg	45.2 B	38.5 B	6.7 ng/Kg	

1,2,3,4,7,8-Hexachlorodibenzofuran (HxCDF)	5.63	ng/Kg	0.244 J	0.153 J	0.091 ng/Kg	
1,2,3,6,7,8-Hexachlorodibenzofuran (HxCDF)	5.63	ng/Kg	0.073 J	0.0733 J	0.0003 ng/Kg	
1,2,3,4,6,7,8-Heptachlorodibenzofuran (HpCDF)	5.63	ng/Kg	0.807 BJ	0.654 BJ	0.153 ng/Kg	
Octachlorodibenzofuran (OCDF)	11.3	ng/Kg	2.33 BJ	2.07 BJ	0.26 ng/Kg	

Note: J – The value is between the MDL and RL and considered estimated. B – The analyte was also detected in method blank.