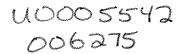


PORT OF SEATTLE


P.D. BOX 1209 · SEATTLE, WA 98111 · (206) 728-3000

MESSAGE	REPLY
, Roger Nye	DATE
NW Regional Office	
	these reports have also been
2/27/95	sent to Olympia
Enclosed are copies of the	
assessment report for the 3^USTs	TANK COMPANY
	FEB 28 1995
discovered at Terminal 115. For	ECCLOBI
tracking purposes we have labelled the tank T115m, Tilso + T1150, The	CIRCLE OT OW -UP DATE AND FILE
tanks and accessible contaminated	MONTH J F M A M J J A S O N D DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
soils have been removed. We are	16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
in the process of initiating guarterly	
ground water sampling Copies of	
NR73 The Drawing Board, Dallas, Texas 75266-0429	SIGNED

NR73 The Drawing Board, Dallas, Texas 75266-0429 seler Group, Inc., 1982

DETACH AND FILE FOR FOLLOW-UP

SOIL AND GROUNDWATER ASSESSMENT REPORT

Port of Seattle Terminal 115 Seattle, Washington


578/30/95M DEPARTMENT OF ECOLOGY NWRO/TCP TANK UNIT INC# 301 INTERIM CLEANUP REPORT SITE CHARACTERIZATION \mathcal{P} FINAL CLEANUP REPORT m OTHER _ AFFECTED MEDIA: SOIL 1 GW OTHER ___ INSPECTOR (INIT.) PUDATE 8/21

Prepared for

Ms. Kathy Bahnick

Port of Seattle 2611 Alaskan Way Seattle, Washington

February 21, 1995

Prepared by

EMCON Northwest, Inc. 18912 North Creek Parkway, Suite 100 Bothell, Washington 98011-8016

Project 0357-013.02

Soil and Groundwater Assessment Report Port of Seattle Terminal 115 Seattle, Washington

The material and data in this report were prepared by or under the supervision and direction of the undersigned.

EMCON Northwest, Inc.

Tom R. Bodle Geologist

11 Jøhn K. Meyer

Project Manager

0, James Bailey, R.G.

Supervising Hydrogeologist

CONTENTS

LIS	T OF	TABLES AND ILLUSTRATIONS	iii
EX	ECUT	IVE SUMMARY	iv
1	INT	RODUCTION	1-1
2	BAG	CKGROUND	2-1
	2.1	Site Description	2-1
	2.2	Previous Investigations	2-1
3	FIE	LD INVESTIGATIONS	3-1
	3.1	Drilling and Soil Sampling	3-1
	3.2	Monitoring Well Construction, Development, and Surveying	3-2
	3.3	Groundwater Sampling	3-2
	3.4	Waste Disposal	3-4
4	FIN	DINGS	4-1
	4.1	Soil Conditions	4-1
	4.2	Groundwater Conditions	4-1
		Quantitative Chemical Analyses	4-1
5	SUM	MMARY AND CONCLUSIONS	5-1
LIN	/IITA'	TIONS	

APPENDIX A BORING LOGS, WELL CONSTRUCTION DETAILS, AND SAMPLING PROCEDURES

APPENDIX B LABORATORY REPORTS

TABLES AND ILLUSTRATIONS

Tables

Constant of the

3-1	Groundwater Elevation Data	3-3
4-1	Laboratory Results for Soil	4-4
4-2	Laboratory Results for Groundwater TPH, BTEX, and Lead	4-6
4-3	Laboratory Results for Groundwater SVOCs and VOCs	4-7

Figures

2-1	Site Location Map	2-2
2-2	Site Plan	2-3
4-1	Soil Data, October 27 and 28, 1994	4-3
4-2	Groundwater Data, November 4, 1994	4-5
A-1	Soil Classification System	A-2
A-2	Explanation of Symbols on Exploratory Boring Logs	A-3

EXECUTIVE SUMMARY

At the request of the Port of Seattle, EMCON conducted a soil and groundwater site assessment at Terminal 115 in Seattle, Washington. The work was conducted to assess and document subsurface soil and groundwater conditions near three former underground storage tanks discovered and removed in April 1994. Field activities focused on obtaining baseline groundwater quality data and information about subsurface geology and groundwater occurrence.

Field activities completed in October and November 1994 consisted of the following:

- Drilling four hollow-stem auger soil borings approximately 16 feet (ft) below the ground surface (bgs) and installing four groundwater monitoring wells
- Hand augering five soil borings approximately 5 ft bgs
- Collecting soil samples from the soil borings
- Developing and surveying the wells
- Collecting groundwater samples
- Coordinating chemical analyses of selected soil and groundwater samples
- Evaluating hydrogeological and chemical data

The investigation identified the following conditions:

Soils encountered during drilling consisted of approximately 10 to 15 ft of sand and gravel (fill) overlying interbedded silt and sand (alluvium) to the total explored depth of approximately 16 ft bgs.

Laboratory testing indicated soil samples collected from borings MW-10 and MW-11 and hand auger boring HB2 contained concentrations of total petroleum

hydrocarbons as oil (TPH-O) exceeding Model Toxics Control Act (MTCA) Method A Cleanup Levels.¹

Groundwater was present approximately 9 to 11 ft bgs during the November 4, 1994, sampling event, with a hydraulic gradient of approximately 0.004 ft per ft, generally directed toward the west.

Laboratory testing indicated groundwater samples collected from MW-8 and MW-9 on November 4, 1994, contained concentrations of total petroleum hydrocarbons as diesel (TPH-D) exceeding the MTCA Method A Cleanup Level. The groundwater sample collected from MW-9 also contained benzene exceeding the MTCA Method A Cleanup Level.

Base neutral-acid semivolatile organic compound and volatile organic compound analyses indicated the groundwater sample collected from MW-8 contained a vinyl chloride concentration exceeding the MTCA Method A Cleanup Level; methylene chloride, benzene, ethylbenzene, isopropylbenzene, n-propylbenzene, and naphthalene were also detected.

Total lead concentrations exceeded the MTCA Method A Cleanup Level in all groundwater samples analyzed.

This summary is presented solely for introductory purposes and is intended for use in conjunction with the full text of this report.

¹ Chapter 173-340 WAC, The Model Toxics Control Act Cleanup Regulation; Method A Cleanup Levels. Amended December 1993.

1 INTRODUCTION

EMCON was retained by the Port of Seattle to conduct a subsurface investigation at the Terminal 115 facility located in Seattle, Washington. The investigation was conducted to assess the condition of soil and groundwater adjacent to a former underground storage tank excavation located at the south portion of the site.

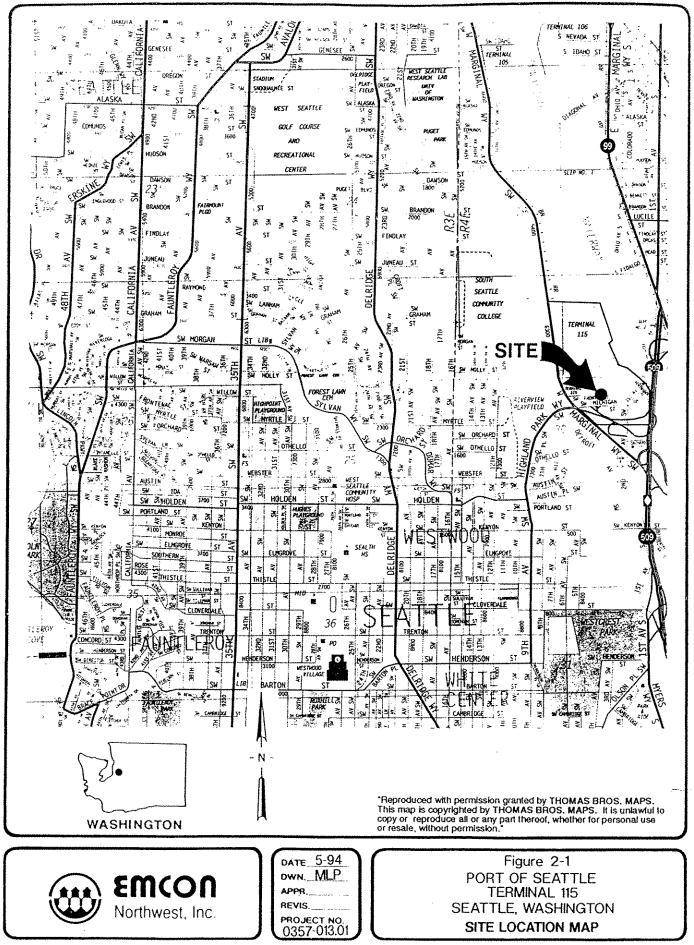
The tasks completed under the current scope of work consisted of the following:

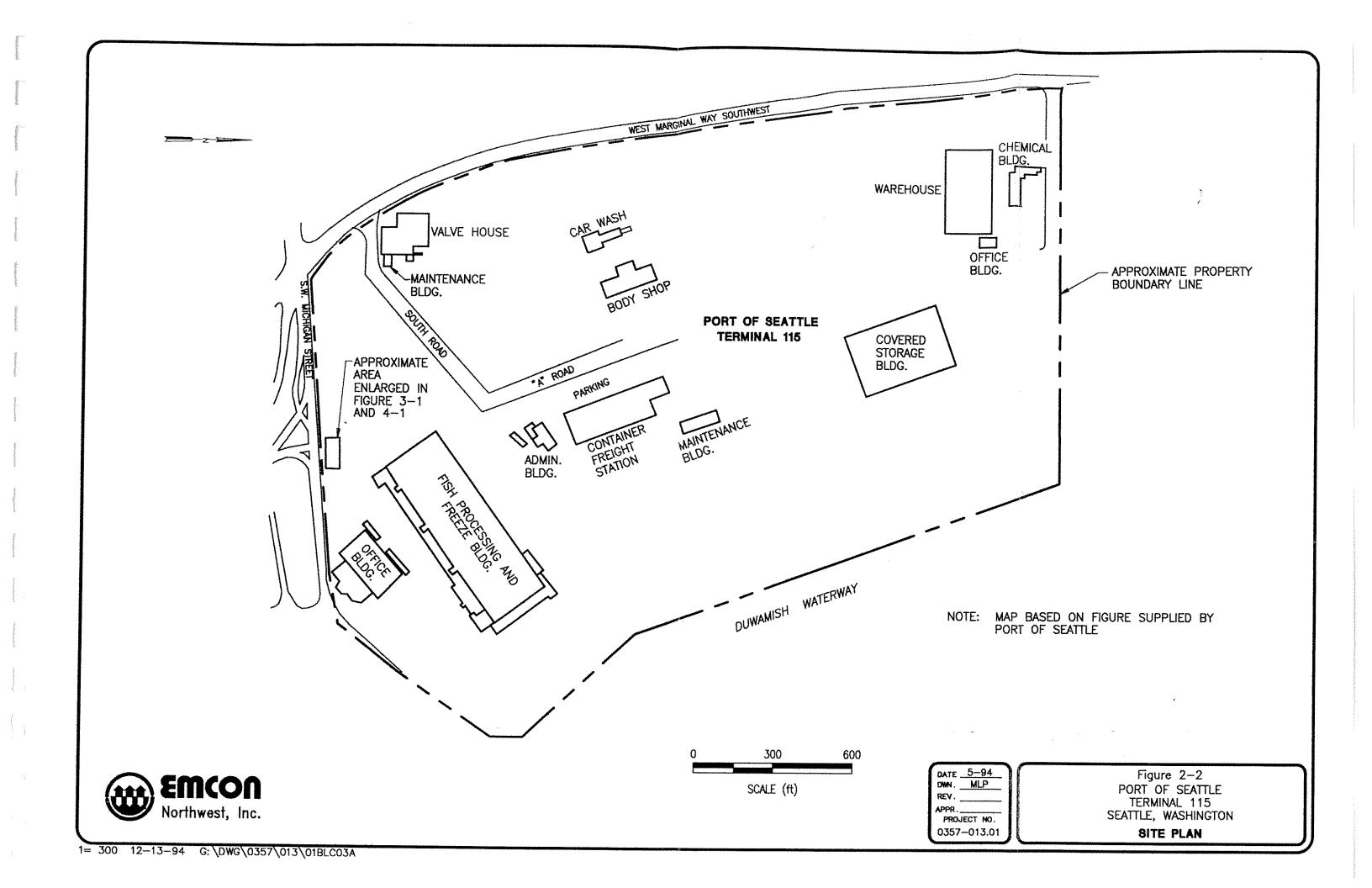
- Updating the site-specific health and safety plan
- Conducting a utilities clearance check
- Drilling four hollow stem auger and five hand auger soil borings and logging soil conditions
- Converting the four hollow stem auger borings to 2-inch (in)-diameter PVC groundwater monitoring wells
- Developing and surveying the wells
- Collecting soil and groundwater samples
- Field screening soil samples for petroleum hydrocarbons
- Coordinating chemical analyses of selected soil and groundwater samples
- Evaluating laboratory data
- Preparing a report of the findings

The work was authorized under Supplemental Agreement Number 11 of Professional Services Agreement Number P-047006, dated July 19, 1993, between the Port of Seattle and EMCON. Tasks were completed in general accordance with the October 10, 1994, proposal to the Port of Seattle regarding subsurface assessment activities.

2 BACKGROUND

2.1 Site Description


The Terminal 115 property is owned by the Port of Seattle. The site is located on the Duwamish Waterway in Seattle, Washington (Figure 2-1). The site is bordered on the north by industrial property, on the south by Southwest Michigan Street, on the east by the Duwamish Waterway, and on the west by West Marginal Way Southwest (Figure 2-2). The property is relatively level at an elevation of approximately 20 feet (ft) above mean sea level. The site is currently used as a marine storage, transfer, and loading facility.


2.2 Previous Investigations

Three, approximately 6,000-gallon (gal), underground storage tanks (USTs) were discovered at Terminal 115 during construction activities for the tenant (Seafreeze, Inc.) in April 1994. EMCON was retained by the Port of Seattle to conduct an environmental assessment following tank decommissioning and removal.

Approximately 750 cubic yards (cu yd) of petroleum hydrocarbon impacted soil were removed from the UST excavation following tank decommissioning and removal. A review of laboratory results indicated that soil samples collected from the four excavation sidewalls contained concentrations of total xylenes, total petroleum hydrocarbons as gasoline (TPH-G), diesel (TPH-D), and oil (TPH-O) exceeding MTCA² Method A Cleanup Levels. Groundwater was encountered at approximately 9 ft below the ground surface (bgs) during excavation activities. Results of the investigation were presented in draft form to the Port of Seattle in the Underground Storage Tank Decommissioning and Soil Assessment Report, dated August 23, 1994.

² Chapter 173-340 WAC, The Model Toxics Control Act Cleanup Regulation; Method A Cleanup Levels.

3 FIELD INVESTIGATIONS

3.1 *•* **Drilling and Soil Sampling**

A site-specific health and safety plan was prepared, and underground utilities clearances were conducted by local utility companies and Locating, Inc., a private utility locating service, before work began.

Four borings (MW-8 through MW-11) were advanced approximately 16 ft bgs by using hollow-stem auger drilling equipment on October 27 and 28, 1994. Boring locations are shown on the site maps in Section 4. Soil samples were collected at approximate 2.5-ft intervals during drilling. Drilling was conducted by Tacoma Pump and Drill, Inc., Tacoma, Washington. In addition to hollow-stem auger borings, five hand-auger soil borings (HB1, HB2, HB3, and HB7) were advanced in the same area. The hand borings were advanced approximately 5 ft bgs. Auger boring logs are presented in Appendix A.

Soil samples were field screened by using a portable photoionization detector (PID). An Environmental Instruments Model 580B OVM, calibrated daily to 100 parts per million (ppm) isobutylene, was used to obtain field measurements. This analysis was performed to assist in sample selection for laboratory testing. Soil samples for laboratory testing were collected in laboratory supplied 4-ounce (oz) jars with Teflon[™]-lined lids, then placed into an iced cooler and delivered to the laboratory for analysis. An EMCON geologist logged soil types in accordance with the Unified Soil Classification System.

Groundwater was encountered at approximately 9.0 to 10.5 ft bgs during drilling. Drill cuttings were contained in labeled 55-gal drums and temporarily stored on site pending disposal. Following sampling, the hand-auger borings were abandoned with bentonite chips, hydrated with potable water to approximately 1 ft bgs, and completed at the surface with a concrete seal. Additional details regarding drilling and soil sampling procedures are presented in Appendix A.

3.2 Monitoring Well Construction, Development, and Surveying

3.2.1 Well Construction

Borings MW-8 through MW-11 were completed as groundwater monitoring wells. The monitoring wells were constructed using 2-in-diameter, flush-threaded, schedule 40 PVC well casing and 0.010-in. factory slotted well screen. The well screen interval was placed from approximately 5 to 15 ft bgs. A filter pack of washed silica sand was placed around the well screen to 2 ft above the screened interval. A bentonite seal was placed above the filter pack to approximately 1 ft bgs. A flush-mounted, traffic-rated, well cover was set in concrete in accordance with Port of Seattle construction specifications to complete the surface seal of each well. Well construction details are shown on the boring logs in Appendix A.

3.2.2 Well Development

An EMCON geologist developed each monitoring well to remove water introduced into the well during drilling and to reduce the volume of fine-grained soil entering through the filter pack. Monitoring wells MW-8 through MW-11 were developed by surging and purging at least three well casing volumes. Water was purged from each well by using a disposable Teflon bailer. Water accumulated during development was contained in labeled, 55-gal drums and temporarily stored on site pending disposal.

3.2.3 Well Elevation Surveying

EMCON personnel surveyed the top of each monitoring well PVC casing to the nearest 0.01 ft relative to Seattle Tide Lands Grid horizontal data and Mean Low Low Water vertical datum. Survey data are presented in Table 3-1. The well survey data, along with depth-to-water measurements, were used to calculate the relative groundwater elevations. These data were used to evaluate the groundwater gradient and inferred flow direction.

3.3 Groundwater Sampling

Groundwater sampling was conducted on November 4, 1994. Before collecting groundwater samples, depth-to-water measurements were taken by using a SolinstTM electronic well sounding probe. Measurements were recorded to the nearest 0.01 ft and converted to relative groundwater elevations using the well survey data.

Approximately three well casing volumes of water were purged before sample collection. Water was purged from each well by using a disposable Teflon bailer. Groundwater temperature, conductance, and pH were measured and recorded on an EMCON field Table 3-1

Second States States

Alexandra Association Appl

Nebologiosindatologis

Sandianan Shiniyana

Groundwater Elevation Data Port of Seattle Terminal 115 Seattle, Washington

		Top of C Coord	Top of Casing Grid Coordinates ⁴	Top of Casing			۲ ۲	Groundwater
Well Number	Screened Interval (ft bgs)	Northing	Easting	Elevation ^v (ft)	Date	Depth to water (ft)	Liepin to Froduct (ft)	Elevation (ft)
MW-8	5.0 to 15.0	749.65	31,045.71	21.05	11/04/94	9.81	None	11.24
6-WM	5.0 to 15.0	722.45	30,989.47	21.61	11/04/94	10.56	None	11.05
MW-10	4.3 to 14.3	772.27	31,113.83	20.29	11/04/94	8.82	None	11.47
MW-11	5.0 to 15.0	732.09	31,106.66	20.78	11/04/94	9.32	None	11.46
 a Grid coor b Elevation 	Grid coordinates relative to Seattle Tide Lands Grid data are located on S.W. Michigan Street. Elevation relative to Mean Low Low Water vertical datum is located on S.W. Michigan Street.	Lands Grid data a ater vertical datun	are located on S.W. a is located on S.W.	Michigan Street. . Michigan Street.				

B/PTS/POST-R.n29-94/ch:9 0357-013.02

*

sampling data sheet after each well casing of water was purged. Purge water accumulated during sampling was contained in labeled, 55-gal drums and temporarily stored on site pending disposal.

Following purging, one groundwater sample was collected from each well by using a disposable Teflon bailer. A duplicate sample, labeled MW-5, was collected from monitoring well MW-10 for quality control and quality assurance purposes. The five samples were placed into an iced cooler and transported to the laboratory for analysis. Additional details regarding groundwater sampling procedures are presented in Appendix A.

3.4 Waste Disposal

Approximately 200 gal of purge water and decontamination rinsate were collected. The purge water was sampled and found to contain 19 ppb total organic halides and 21 ppb total lead. The water was subsequently transported by Spencer Environmental, Inc., for treatment and disposal.

Approximately 4 tons (3 cu yd) of drill cuttings were transported to Roosevelt Regional Landfill in Roosevelt, Washington for disposal.

4 FINDINGS

4.1 Soil Conditions

The subsurface consisted of sand and gravel fill to approximately 10 to 15 ft bgs, underlain by interbedded silt and sand with organic debris to the total explored depth of approximately 16 ft bgs.

4.2 Groundwater Conditions

Shallow groundwater under water table (unconfined) conditions was encountered 9 to 10 ft bgs during drilling. Depth to water measurements collected during groundwater sampling on November 4, 1994, ranged from 8.82 to 10.56 ft bgs. The groundwater gradient was 0.004 ft per ft (ft/ft) to the west. Groundwater elevation data are included in Table 3-1.

4.3 Quantitative Chemical Analyses

4.3.1 Laboratory Procedures

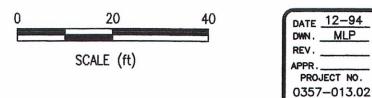
Soil and groundwater sample analyses were performed by Columbia Analytical Services, Inc., in Bothell, Washington. Laboratory reports are contained in Appendix B.

Selected soil samples were analyzed for TPH-G and benzene, toluene, ethylbenzene, and total xylenes (BTEX) using Washington State Department of Ecology (Ecology) Method WTPH-G/EPA Method 5030/8020 and TPH-D and TPH-O using Ecology Method WTPH-D (extended). One soil sample collected from MW-10 was analyzed for base neutral-acid semivolatile organic compounds (SVOCs) using EPA Methods 3550/8270, volatile organic compounds (VOCs) using EPA Method 8260, and total lead using EPA Method 7420.

Groundwater samples were analyzed for TPH-G and BTEX using Ecology Method WTPH-G/EPA Method 5030/8020, TPH-D and TPH-O using Ecology Method WTPH-D, extended, and for total lead using EPA Method 7421. One groundwater sample collected from monitoring well MW-8 was analyzed for SVOCs using EPA

Methods 3550/8270 and VOCs using EPA Method 8260. The collected purge water was analyzed for total organic halides using EPA Method 9020A and total lead using EPA Method 7421.

4.3.2 Laboratory Results


Soil samples collected from monitoring wells MW-10 and MW-11 at 10 ft bgs, and the sample collected from MW-11 at 7.5 ft bgs, contained 534, 410, and 270 ppm TPH-O respectively, exceeding the MTCA Method A Cleanup Level of 200 ppm. The sample collected at 1.75 ft bgs from hand boring HB2 contained 220 ppm TPH-O. No other analyte concentrations exceeded MTCA Method A Cleanup Levels in any soil samples analyzed. Laboratory results for soil samples are shown on Figure 4-1 and are summarized in Table 4-1.

Groundwater samples collected from MW-8 and MW-9 contained 3,170 and 1,420 parts per billion (ppb) TPH-D, respectively, exceeding the MTCA Method A Cleanup Level of 1,000 ppb. The laboratory reported that the samples contained components that eluted in the diesel range; however, the chromatograms did not match the typical diesel fingerprint. The sample collected from MW-9 also contained 10.0 ppb benzene, exceeding the MTCA Method A Cleanup Level of 5 ppb. Total lead concentrations ranging between 12 and 54 ppb were detected in all five groundwater samples analyzed. TPH, BTEX, and total lead results are shown on Figure 4-2, and are summarized in Table 4-2.

Results of SVOC and VOC analyses indicate that the groundwater sample collected from MW-8 contained 0.6 ppb vinyl chloride, exceeding the MTCA Method A Cleanup Level of 0.2 ppb. The groundwater sample collected from MW-8 also contained methylene chloride, benzene, and ethylbenzene concentrations below MTCA Method A Cleanup Levels. Isopropylbenzene, n-propylbenzene, and naphthalene were also reported. These compounds are not included on the list of MTCA Method A Cleanup Levels. A summary of laboratory results of SVOC and VOC analyses for MW-8 is presented in Table 4-3. Copies of the laboratory reports are included in Appendix B.

HBS MW-10 DEPTH TPH-G TPH-D TPH-O DEPTH TPH-G TPH-D TPH-O 5 ND ND ND 7.5 ND ND ND HB1 10 102 ND 534 DEPTH TPH-G TPH-D TPH-O 4.75 ND ND 120 SEAFREEZE BUILDING HB2 DEPTH TPH-G TPH-D TPH-O 1.75 ND ND 220 ROOF LINE MW-11 DEPTH TPH-G TPH-D TPH-O **GUARDRAIL** 7.5 ND ND 270 10 ND 29 410 MW-8 LIMIT OF EXCAVATION (APRIL 1994) DEPTH TPH-G TPH-D TPH-O 16 10 44 190 15 ND ND 170 EXISTING POWER POLE FENCE . S.W. MICHIGAN STREET MW-9 HB7 DEPTH TPH-G TPH-D TPH-O DEPTH TPH-G TPH-D TPH-O 7.5 ND ND 120 2.5 ND 29 ND 10 ND ND ND

1=20 2-01-95 G:\DWG\0357\013\02BLC01

LEGEND:

HB1 ▲ Hand Boring Location

2	W-10	
TPH-G	TPH-D	TPH-0
ND	ND	ND
ND	102	534

DEPTH 7.5 10 Laboratory Results in mg/kg

TPH-G	=	Total	Petroleum	Hydrocarbons	as	Gasoline
TPH-D	=	Total	Petroleum	Hydrocarbons	as	Diesel
TPH-0	=	Total	Petroleum	Hydrocarbons	as	Oil

Depths are in Feet Below Ground Surface

Numbers in red exceed MTCA Method A Cleanup Levels

Figure 4-1 PORT OF SEATTLE TERMINAL 115 SEATTLE, WASHINGTON **SOIL DATA** OCTOBER 27 AND 28, 1994

Table 4-1

Laboratory Results for Soil Port of Seattle Terminal 115 Seattle, Washington

					Re	sults of Anal	yses (ppm)			I
Sample	Depth	Date	Ecology Method WTPH-G	Ecology WTPH-D	Method (extended)			Method 5030/8020)	
Number	(ft)	Collected	TPH-G	TPH-D	TPH-O	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total Lead EPA
MTCA Meth Levels*			100	200	200	0.5	40			Method 7420
Source Loca	tion MW-	8				0.0	-+0	20	20	
1-10′	10.0	10/27/94	16	44 ^b	190	ND	ND	\$ TT-		
1-15'	15.0	10/27/94	ND	ND	170°	ND	ND	ND	ND	
Source Locat	tion MW-	9			1.0			ND	ND	
2-7.5'	7.5	10/28/94	ND	ND	120	ND	ND			
2-10'	10.0	10/28/94	ND	ND	ND	ND	ND	ND	ND	
Source Locat	tion MW-	10					ND	ND	ND	
3-7.5'	7.5	10/28/94	ND	ND	ND	ND	NTIN T			
3-10'	10.0	10/28/94	ND	102 ^b	534	ND	ND	ND	ND	
Source Locat	ion MW-	11					ND	ND	ND	ND
4-7.5'	7.5	10/28/94	ND	ND	270			T		
4-10'	10.0	10/28/94	ND	29 ^b	410	ND ND	ND	ND	ND	
Hand Borings	5		1	Ľ		ND	ND	ND	ND	
HB1-4.75'	4.8	10/28/94	ND	ND	120	ND				
HB2-1.75'	1.8	10/28/94	ND	ND	220	ND ND	ND	ND	ND	
HB3-5'	5.0	10/28/94	ND	ND	ND	ND	ND	ND	ND	
HB7-2.5	2.5	10/28/94	ND	295	ND	ND	ND	ND	ND	
OTE: Shaded	values equal	or exceed MTC	A Method A Cleanup		<u> </u>		ND	ND	ND	
ND TPH-G TPH-D TPH-O	 not detain total period total period total period total period 	ected at or above	the method reporting limit rbons as gasoline. rbons as diesel	t.						

ppm = parts per million.

NA = not applicable.

= not analyzed. -----

i 📓 i 🔛 i

Chapter 173-340 WAC, The Model Toxics Control Act Cleanup Regulations, Method A Cleanup Levels. Amended December 1993. ь

Quantified as diesel. The sample contained components that eluted in the diesel range, but the chromatogram did not match the typical diesel fingerprint. Quantified as oil. The sample contained components that eluted in the oil range, but the chromatogram did not match the typical oil fingerprint.

a

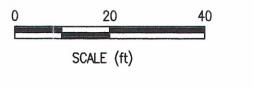
¢

 TPH-G
 ND

 TPH-D
 340

 TPH-O
 ND

 B
 0.7


 T
 ND

 E
 ND

 X
 ND

 Pb
 39
 ТРН-G 440 ТРН-D 3170 ТРН-О 830 В 2.0 Т ND E ND X ND Pb 12 SEAFREEZE BUILDING LIMIT OF EXCAVATION (APRIL 1994) **MW-10** (11.47) ROOF LINE GUARD RAIL ♦ **MW-8** (11.24) MW-11 (11.46) \$ MW-9 (11.05) EXISTING FENCE — POWER POLE S.W. MICHIGAN STREET TPH-G TPH-D TPH-O B ND 750 ND 0.8 ND ND ND ND 15 TPH-G TPH-D TPH-O B T E X P b ND 1420 ND 10.0 ND ND 1 13 Ε х РЬ

Contractory of the local division of the loc
DATE 12-94
DWN. MLP
REV.
APPR
PROJECT NO.
0357-013.02

LEGEND:

MW-8 🕈 Monitoring Well Location

TPH-G TPH-D TPH-0	ND 340 ND
в	0.7
т	ND
E	ND
X	ND
Pb	54

Laboratory Results in Parts per Billion

TPH-G	=	Total	Petroleum	Hydrocarbons	as	Gasoline	
TPH-D	=	Total	Petroleum	Hydrocarbons	as	Diesel	
TPH-0	=	Total	Petroleum	Hydrocarbons	as	Oil	
В	=	Benze	ene				
Т	=	Tolue	ne				

- E = Ethylbenzene
- X = Total Xylenes
- Pb = Total Lead
- ND = Not Detected at or Above the Method Reporting Limit

Numbers in red exceed MTCA Method A Cleanup Levels

(11.24) Groundwater Elevation

Inferred Groundwater Flow Direction

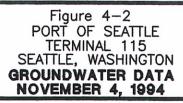


Table 4-2

Actual International

Construction of the last

Name of Street

Laboratory Results for Groundwater TPH, BTEX, Lead Port of Seattle Terminal 115 Seattle, Washington

						Results of	Results of Analyses (μ g/L)	g/L)		
Monitor	Monitoring Well		Ecology Method WTPH-G	Ecology Method WTPH-D (extended)	Aethod xtended)		EPA]	EPA Method 5030/602		EPA Method 7421
Well Number	Well Number Sample Name	Date	D-H4T	C-H4T	D-H 4T	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total Lead
MTCA Method	MTCA Method A Cleanup Levels*	S#	1,000	1,000	1,000	S	40	30	20	5
MW-8	8-WM	11/04/94	440	3,170 ^b	830°	2.0	QN	QN	QN	12
4-WM	6-MM	11/04/94	Q	1,420 ^b	ĝ	10.0	QN	QN	,,	13
MW-10	MW-10	11/04/94	Q	340 ^b	Q	0.7	QN	QN	QN	39
MW-10 (Dup)	MW-5	11/04/94	Q	320 ⁶	Ð	0.8	Q	QN	QN	54
MW-11	MW-11	11/04/94	QN	750 ⁶	£	0.8	Q	QN	DN	15
NOTE: Shaded value ND = TPH-G = TPH-D = TPH-D = UR/L =		es equal or exceed MTCA Method A Cleanup Levels not detected at or above method reporting limit. total petroleum hydrocarbons as gasoline. total petroleum hydrocarbons as diesel. total petroleum hydrocarbons as oil. micrograms per liter: aporoximate parts ner hillion.	nup Levels. 3 limit.							

ရ ည ပ

Held = martograms product are provided with the summer product of the product of the sample of the sample control Act Cleanup Regulations, Method A Cleanup Levels. Amended December 1993.
 Chapter 173-340 WAC; The Model Toxics Control Act Cleanup Regulations, Method A Cleanup Levels. Amended December 1993.
 Quantified as dissel. The sample contained components that eluted in the dissel range, but the chromatogram did not match the typical dissel fingerprint. Quantified as oil. The sample contained components that eluted in the oil range, but the chromatogram did not match the typical oil fingerprint.

Table 4-3

tetternada tanggaga d

Soonatebrieduid

Laboratory Results for Groundwater SVOCs, VOCs Port of Seattle Terminal 115 Seattle, Washington

L

	<u> </u>					Resi	Results of Analyses (µg/L)	/L)		
						EPA Method 8260	nod 8260			
Monitoring Sample Well Name	Sample Name	Date	Vinyl chloride	Methylene chloride	Benzene		Ethylbenzene Isopropylbenzene n-propylbenzene	n-propylbenzene	Naphthalene	EPA Naphthalene Method 3520/8220
MTCA Method A Cleanup Level	A Clean	up Level ^a	0.2	5	5	30	NA	NA	NA	Various
MW-8-WM	MW-1	11/04/94	0.6	2.1	2.0	0.8	6	¢	14	DN
NOTE: Shaded	I values exc.	eed MTCA M	Shaded values exceed MTCA Method A Cleanup Levels.	vels.						
Analyt	tes not detec	sted in any sar	Analytes not detected in any sample are not listed.							
NA	not a	 not applicable. 								
QN	m not de	letected at or 1	not detected at or above method reporting limit.	ing limit.						
hg/L		ograms per lit-	 micrograms per liter; approximates parts per billion. 	ts per billion.						
Chapter 173-34	0 WAC, Th	ve Model Toxi	ics Control Act Clear.	nup Regulations,	Method A Cle	anup Levels. Amen	Chapter 173-340 WAC, The Model Toxics Control Act Cleanup Regulations, Method A Cleanup Levels. Amended December 1993.			

B/PTS/POST-R.n29-94/ch:9 0357-013.02

5 SUMMARY AND CONCLUSIONS

Subsurface soils consist of 10 to 15 ft of sand and gravel fill, underlain by interbedded silt and sand. Groundwater was present approximately 9 to 11 ft bgs during the November 4, 1994, sampling event, with a gradient of approximately 0.004 ft/ft toward the west.

Soil samples collected from approximately 7.5 ft bgs from MW-10, 7.5 and 10 ft bgs from MW-11, and 1.75 ft bgs from hand boring HB2 contained concentrations of TPH-O exceeding the MTCA Method A Cleanup Level. No other analyte concentrations exceeded MTCA Method A Cleanup Levels in any soil sample analyzed.

Groundwater samples collected from MW-8 and MW-9 on November 4, 1994, contained concentrations of TPH-D exceeding the MTCA Method A Cleanup Level. The groundwater sample collected from MW-9 also contained a benzene concentration exceeding the MTCA Method A Cleanup Level.

SVOC and VOC testing indicated that the groundwater sample collected from MW-8 contained a vinyl chloride concentration exceeding the MTCA Method A Cleanup Level; methylene chloride, benzene, ethylbenzene, isopropylbenzene, n-propylbenzene, and naphthalene were also detected. Total lead concentrations exceeded the MTCA Method A Cleanup Level in all groundwater samples analyzed.

LIMITATIONS

The services described in this report were performed consistent with generally accepted professional consulting principles and practices. No other warranty, express or implied, is made. These services were performed consistent with our agreement with our client. This report is solely for the use and information of our client unless otherwise noted. Any reliance on this report by a third party is at such party's sole risk.

Opinions and recommendations contained in this report apply to conditions existing when services were performed and are intended only for the client, purposes, locations, time frames, and project parameters indicated. We are not responsible for the impacts of any changes in environmental standards, practices, or regulations subsequent to performance of services. We do not warrant the accuracy of information supplied by others, nor the use of segregated portions of this report.

APPENDIX A

BORING LOGS, WELL CONSTRUCTION DETAILS, AND SAMPLING PROCEDURES

FIELD METHODS AND SAMPLING PROCEDURES

A.1 Drilling Methods

Tacoma Pump and Drill Inc., of Tacoma, Washington, drilled and installed the monitoring wells. The borings were advanced by using hollow stem augers. An EMCON geologist observed all soil boring activities. Soil samples were obtained at approximate 2.5-ft-depth intervals by using a 3-in. outer-diameter, split-spoon sampling device and a 140-pound hammer, free-falling 30 ins. The number of blows required to drive the sampler the last 12 in. is shown on the boring logs at the respective sampling depth. Samples were recovered from the split spoon sampler and described according to the classification scheme presented in Figure A-1.

Recovered soil samples were transferred to laboratory prepared glass jars and placed in a chilled cooler for transport to the testing laboratory. Field screening methods and sample jars and sample handling are discussed in subsequent sections of this appendix.

Drill cuttings from the soil borings were placed in 55-gal drums, labeled, and sealed. The drums were stored on site pending disposal. Well installation details are shown on the log of exploratory boring. An explanation of symbols used on the boring logs is described in Figure A-2.

A.2 Field Screening for Organic Vapors

Field tests consisted of portable PID measurements for the presence of volatile organic vapors in each recovered soil sample. An Environmental Instruments Model 580B OVM, calibrated daily to 100 ppm isobutylene, was used to obtain the measurements. Typically, a small hole is poked into the soil with a gloved finger, then the PID is placed directly into the hole and covered with the hand. The maximum reading on the PID indicates the relative concentration of hydrocarbons in that soil sample. This screening equipment was also used for health and safety air quality monitoring in the breathing zone during boring operations.

The field tests were performed to determine the relative magnitude of volatile organic vapors, if any, in the excavations or soil borings. This analysis is performed to compare samples qualitatively and to assist in sample selection for chemical analysis. Field

142322

Sample Descriptions

Classification of soils in this report is based on visual field observations which include density/consistency, moisture condition, grain size, and plasticity estimates and should not be construed to imply field or laboratory testing unless stated. Visual-manual classification methods of ASTM D 2488 were used as an identification guide. Soil density/consistency in borings is related primarily to the Standard Penetration Resistance. Soil density/consistency in test pits is estimated based on visual observation and is presented parenthetically on the test pit logs.

	S	OIL CLASSIFIC	CATION S	YSTEM	
	MAJOR DIVISIONS		GROUP	SYMBOL	GROUP NAME
	GRAVEL.	CLEAN GRAVEL	GW	0.00.0	weil-graded gravel, line to coarse gravel
COARSE GRAINED SOILS	coarse fraction retained on No. 4 sieve.	GRAVEL WITH FINES	GP GM	ed is	Poorty-graded gravel Silty gravel
More than 50%		MINI PARES	GC	P/A	Clayey gravel
retained on No. 200 Sieve.	SAND	CLEAN SAND	SW		Well-graded sand, fine to coarse sand
	More than 50% of coarse fraction		SP		Poorty-graded sand
	passes No. 4 sieve.	SAND WITH FINES	SM		Silty sand
		WITH FINES	sc		Clayey sand
FINE GRAINED	SILT AND CLAY	INORGANIC	ML		Sitt
SOILS	Liquid limit less than 50		α	<u>VIIIIA</u>	Clay
More than 50% passes No. 200		ORGANIC	OL		Organic silt, organic clay
sieve.	SILT AND CLAY	INORGANIC	мн		Silt of high plasticity, elastic silt
	Liquid limit 50 or more.		СН		Clay of high plasticity, fat clay
	JUG MORE.	ORGANIC	Он		Organic clay, organic silt
HKG	HLY OPGANIC SOILS	l	<u> </u>	<u><u><u>u</u></u> <u>u</u> <u>u</u></u>	Pest

	DENSITY	CONSISTENCY					
	SAND or GRAVEL		SILT or CLAY				
Density	Standard Penetration Resistance in Blows/Foot	Consistency	Standard Penetration Resistance in Blows/Foot				
Very loose	0 - 4	Very soft	0 - 2				
Loose	4 - 10	Soft	2 - 4				
Medium dense	10 - 30	Medium stiff	4 - 8				
Dense	30 - 50	Sun	8 - 15				
Very dense	> 50	Very stiff	15 - 30				
<u></u>		Hard	>30				

	MOISTURE
Modifier	Description
Dry	Little perceptible moisture
Damp	Some perceptible moisture, probably below optimum
Moist	Probably near optimum moisture content
Wet	Much perceptible moisture, probably above optimum

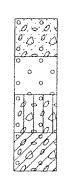
MINOR CONSTITUENTS							
Modifier Estimated Percentage							
Trace	< \$						
Few	5 - 10						
Little	10 - 25						
Some	25 - 45						

DATE 3-91	
DWN. TB	
APPR.	
REVIS	
PROJECT NO.	
1.00	

Figure A-1

SOIL CLASSIFICATION SYSTEM

FIGURE A-2 EXPLANATION OF SYMBOLS ON EXPLORATORY BORING LOGS


SAMPLE COLUMN

SAMPLE OBTAINED

SAMPLER DRIVEN, NO SAMPLE OBTAINED

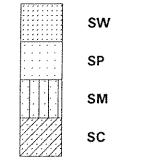
CONCRETE
CONCRETE
BENTONITE CHIPS
WELL CASING
WELL SCREEN
SAND FILTER PACK
END CAP
SAND

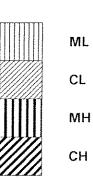
WELL DETAILS COLUMN

GW

GP

GM


GC


An of the second second

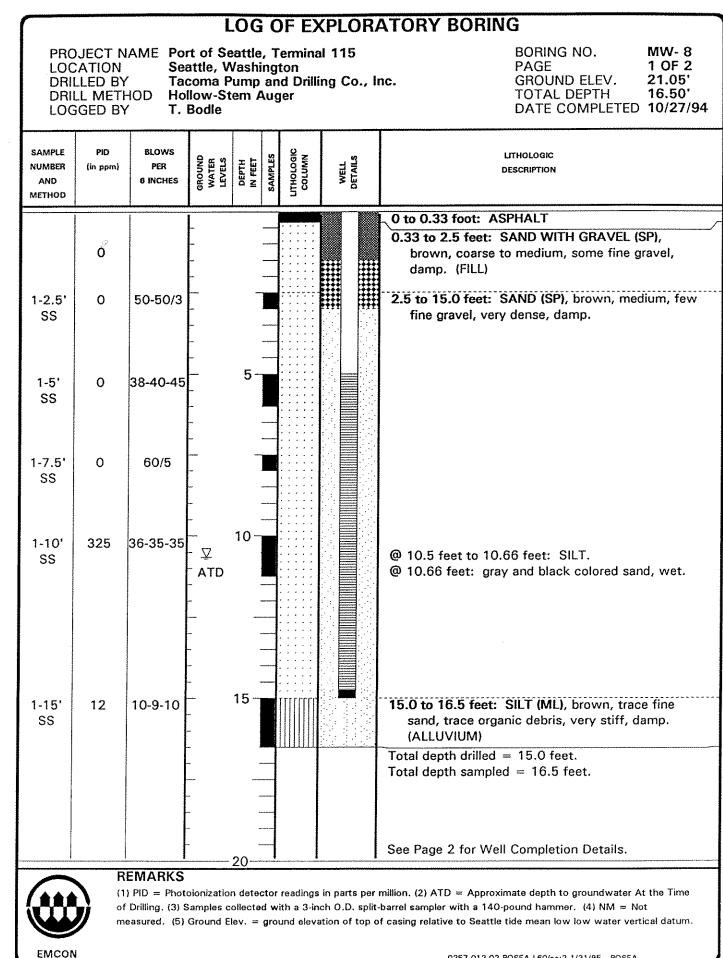
de la constantion de la constantisti constantion de la constantion de la constantion

A.C.A.Martin MAR

LITHOLOGIC COLUMN

screening with a PID is a subjective analysis influenced by, among other things, climate (e.g., temperature and humidity), soil type and conditions, instrument calibration, and operation.

A.3 Groundwater Sampling Procedures


After calculating the volume of water in each well, a disposable Teflon bailer was used to remove a minimum of three casing volumes of water from each well. Field parameters (pH, temperature, and conductivity) were measured after each well volume was removed. Purging continued until field parameter measurements stabilized to within 10 percent of the previous measurement, or until the well was purged "dry." Groundwater samples were collected by using a disposable Teflon bailer when water levels had recovered sufficiently.

A.4 Sample Jars, Sample Handling, and Chain-of-Custody

Each discrete soil or groundwater sample and each composite soil sample were submitted in a laboratory-prepared glass container. Sample jars obtained specifically for use on this project consisted of glass jars with Teflon lid inserts. Samples were collected, labeled, and placed immediately into a chilled cooler for transport to the testing laboratory. Chain-of-custody records were maintained recording the sample number, the location, the depth, the type of preservative (if any), and the handling procedures.

A.5 Field Equipment Decontamination Procedures

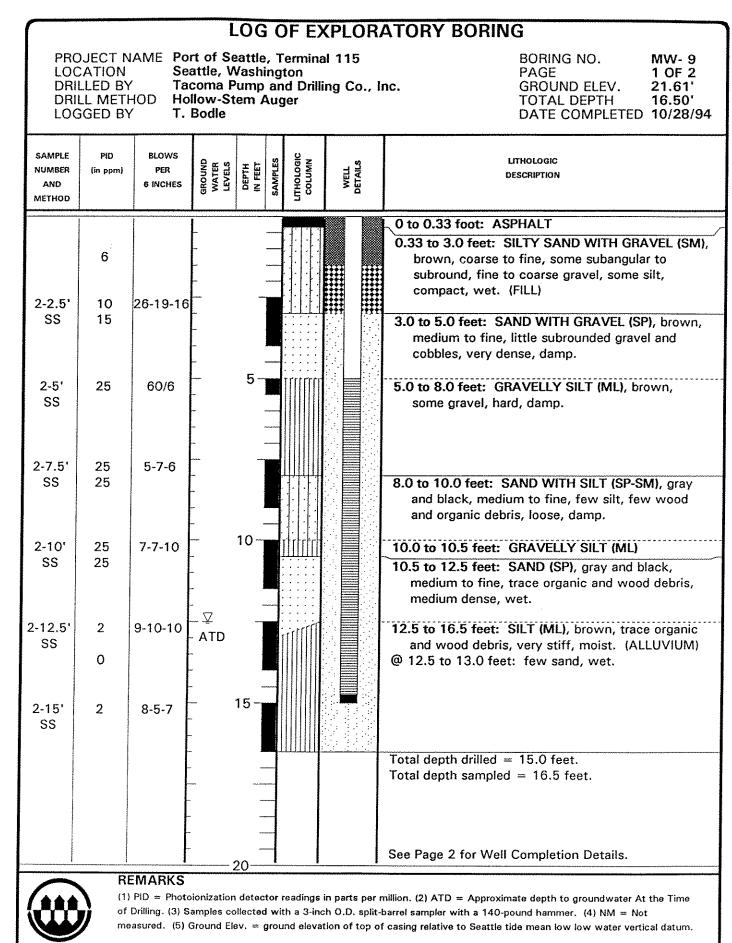
All sampling equipment (e.g., spoons, bailers, etc.) was routinely decontaminated after each use and between sample locations. All sampling equipment was decontaminated with a nonphosphatic soap in a tap water solution, a stiff-bristle brush, a 1:1 (methanol:deionized water) rinse, and a thorough deionized water rinse. A new disposable Teflon bailer was used to collect a single sample set at each monitoring well. The bailers were disposed after each use.

0357-013.02.POSEA.L60/se;3.1/31/95...POSEA

LOG OF EXPLORATORY BORING

DRILLED BY DRILL METHOD LOGGED BY

economically in


PROJECT NAME Port of Seattle, Terminal 115 LOCATION Seattle, Washington Tacoma Pump and Drilling Co., Inc. Hollow-Stem Auger T. Bodle

BORING NO. **MW-8** 2 OF 2 PAGE 21.05 GROUND ELEV. 16.50' TOTAL DEPTH DATE COMPLETED 10/27/94

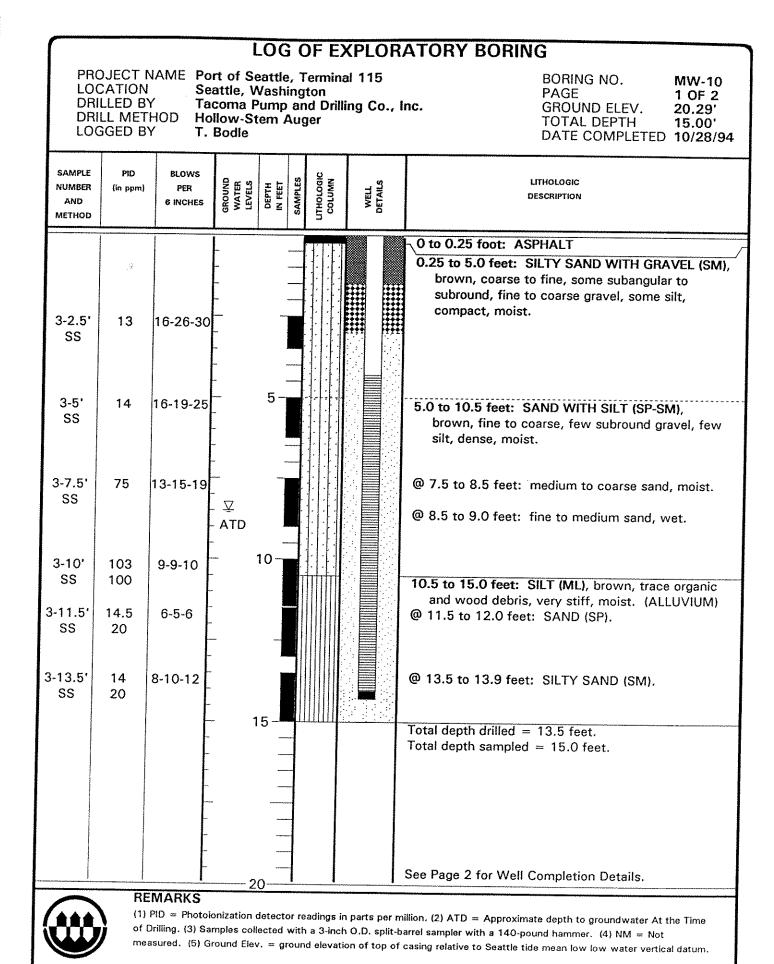
SAMPLE NUMBER AND METHOD	PID (in ppm)	BLOWS PER 6 INCHES	GROUND WATER LEVELS	DEPTH N FEET	SAMPLES	COLUMN	WELL Details	LITHOLOGIC DESCRIPȚION
		EMARKS						 WELL COMPLETION DETAILS: O to 5.0 feet: 2-inch-diameter, flush-threaded, Schedule 40 PVC blank riser pipe. 5.0 to 15.0 feet: 2-inch-diameter, flush-threaded, Schedule 40 PVC well screen with 0.010-inch machined slots and a 2-inch-diameter threaded end cap. O to 1.5 feet: Concrete. 1.5 to 3.0 feet: Bentonite chips hydrated with potable water. 3.0 to 16.5 feet: 10 - 20 Colorado Silica Sand.
	(1)) PID = Phot	toionizatio					million. (2) ATD = Approximate depth to groundwater At the Time -barrel sampler with a 140-pound hammer. (4) NM = Not

measured, (5) Ground Elev. = ground elevation of top of casing relative to Seattle tide mean low low water vertical datum.

EMCON

LOG OF EXPLORATORY BORING

LOCATION DRILLED BY DRILL METHOD LOGGED BY


PROJECT NAME Port of Seattle, Terminal 115 Seattle, Washington Tacoma Pump and Drilling Co., Inc. Hollow-Stem Auger T. Bodle

BORING NO. MW- 9 PAGE 2 OF 2 GROUND ELEV. 21.61' TOTAL DEPTH 16.50' DATE COMPLETED 10/28/94

SAMPLE NUMBER AND METHOD	PID (in ppm)	BLOWS PER 6 INCHES	GROUND WATER LEVELS	DEPTH IN FEET	SAMPLES	COLUMN	WELL DETAILS	LITHOLOGIC DESCRIPTION
	.v	EMARKS		25				 WELL COMPLETION DETAILS: 0 to 5.0 feet: 2-inch-diameter, flush-threaded, Schedule 40 PVC bank riser pipe. 5.0 to 15.0 feet: 2-inch-diameter, flush-threaded, Schedule 40 PVC well screen with 0.010-inch machined slots and a 2-inch-diameter threaded end cap. 0 to 1.5 feet: Concrete. 1.5 to 3.0 feet: Bentonite chips hydrated with potable water. 3.0 to 16.5 feet: 10 - 20 Colorado Silica Sand.
(***			oionizatio	n detec	tor r	eadings	in parts per	million. (2) ATD = Approximate depth to groundwater At the Time

of Drilling. (3) Samples collected with a 3-inch O.D. split-barrel sampler with a 140-pound hammer. (4) NM = Not measured. (5) Ground Elev. = ground elevation of top of casing relative to Seattle tide mean low low water vertical datum.

EMCON

LOG OF EXPLORATORY BORING

EMCON

PROJE LOCAT DRILLE DRILL LOGGE	TION ED BY METH	/ Tac HOD Ho	ort of Se eattle, M acoma P ollow-St Bodle	Washi Pump	ningt o an	BORING NO. MW-10 PAGE 2 OF 2 GROUND ELEV. 20.29' TOTAL DEPTH 15.00' DATE COMPLETED 10/28/94		
SAMPLE NUMBER (ir AND METHOD	PID (in ppm)	BLOWS PER 6 INCHES	GROUND WATER LEVELS	DEPTH IN FEET	SAMPLES	COLUMN	WELL Details	LITHOLOGIC DESCRIPTION
		MARKS						 WELL COMPLETION DETAILS: 0 to 4.3 feet: 2-inch-diameter, flush-threaded, Schedule 40 PVC blank riser pipe. 4.3 to 14.3 feet: 2-inch-diameter, flush-threaded, Schedule 40 PVC well screen with 0.010-inch machined slots and a 2-inch-diameter threaded end cap. 0 to 1.5 feet: Concrete. 1.5 to 3.0 feet: Bentonite chips hydrated with potable water. 3.0 to 15.0 feet: 10 - 20 Colorado Silica Sand.

0357-013.02.POSEA.L60/se:3.1/31/95...POSEA

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	LOC DRII DRII	JECT N ATION LED BY L METH GED BY	' Tao HOD Hol	attle, W	ashin ump a	gton Ind Drill	al 115 ing Co., li	BORING NO. MW-11 PAGE 1 OF 2 GROUND ELEV. 20.78' TOTAL DEPTH 16.50' DATE COMPLETED 10/28/9
0 0 0.33 to 2.5 feet: SILTY SAND WITH GRAVEL (SM) brown, coarse to fine, some subangular to subround, fine to coarse gravel, some subangular to subround, fine to coarse gravel, some subangular to subround, fine to coarse gravel, some site, compact, damp and moist. (FILL) 4-2.5' 60/5 0 4-5' 0 11-11-15 5 0 1 4-5' 0 11-11-15 5 0 4 4-7.5' 12 17-12-10 SS 0 4 4-7.5' 12 17-12-10 SS 3 8-6-6 10 0 8-6-6 10 0 8-6-6 10 0 8-6-6 10 0 8-6-6 10 0 8-6-6 10 0 8-6-6 10 0 8-6-6 10 0 10.5 to 10.5 feet: SILTY SAND (SM), gray and black, medium dense, damp. 0 0 8-6-6 10 0 10.5 to 10.5 feet: SILT (ML), brown, trace organic debris, moist. 10.5 to 15.5 feet: SILTY SAND (SM). 9 12.5 to 13.0 feet: SILTY S	NUMBER AND		PER	GROUND WATER LEVELS	DEPTH IN FEET	COLUMN	WELL DETAILS	
4.5' SS0 411-11-155 5 \bigcirc \bigcirc 5.0 to 5.5 feet: trace to few silt. \bigcirc 5.5 to 5.6 feet: SILT4-7.5' SS1217-12-10 \bigcirc 5.6 to 10.0 feet: SAND (SP), gray and black, medium to fine, trace wood and organic debris, medium to fine, few silt, medium dense, damp. \bigcirc 7.5 to 10.5 feet: SILTY SAND (SM), gray and black, medium to fine, few silt, medium dense, moist.4-10' SS08-6-6104-10' SS08-6-6104-12.5' SS45-8-13 \bigtriangledown \checkmark ATD \checkmark 4-15' SS15-8-715 \bigcirc 4-15' SS15-6-715 \bigcirc 1515-6-715 \bigcirc 1610.0 to 15.5 feet: SILTY SAND (SM). \bigcirc \bigcirc 15.0 to 15.5 feet: SILTY SAND (SM). \bigcirc \bigcirc 15.5 feet: moist.Total depth drilled = 15.0 feet. Total depth sampled = 16.5 feet.		0	60/5					 0.33 to 2.5 feet: SILTY SAND WITH GRAVEL (SM brown, coarse to fine, some subangular to subround, fine to coarse gravel, some silt, compact, damp and moist. (FILL) 2.5 to 5.6 feet: SAND WITH GRAVEL (SP), brown (some black), coarse to fine, some fine gravel,
4-7.5' SS 12 17-12-10 SS 12 17-12-10 4-10' 0 8-6-6 10 SS 3 3 4-12.5' 4 5-8-13 \bigtriangledown		0	11-11-15		5			 @ 5.0 to 5.5 feet: trace to few silt. @ 5.5 to 5.6 feet: SILT
4-10'08-6-610.0 to 10.5 feet: SILTY SAND (SM), gray and black, medium to fine, few silt, medium dense, moist.4-12.5'45-8-13 \checkmark SS25-8-13 \checkmark A-15'15-6-715SS15-6-715Generative15.0 to 15.5 feet: SILTY SAND (SM). (@ 15.0 to 15.5 feet: SILTY SAND (SM). (@ 15.5 feet: moist.4-15'15-6-7SS15-6-7SS15-6-7SS15-6-7SS15-6-7SS15-6-7SS15-6-7SS1515.5 feet: SILTY SAND (SM). (@ 15.5 feet: moist.Total depth drilled = 15.0 feet. Total depth sampled = 16.5 feet.	1	12	17-12-10					
4-12.5' SS4 25-8-13 ATD \bigtriangledown ATD(@ 12.5 to 13.0 feet: SILTY SAND (SM). (@ 13.0 feet: wet.4-15' SS15-6-715(@ 15.0 to 15.5 feet: SILTY SAND (SM). (@ 15.5 feet: moist.4-15' SS15-6-715(SM). (B) \bigcirc 151515.5 feet: SILTY SAND (SM). (B) \bigcirc 15.0 to 15.5 feet: SILTY SAND (SM). (B)(Comparison of the standard standar	í		8-6-6		10-			black, medium to fine, few silt, medium dense, moist. 10.5 to 16.5 feet: SILT (ML), brown, trace organic
SS (0.17)			5-8-13					@ 12.5 to 13.0 feet: SILTY SAND (SM).
		1	5-6-7		15-			@ 15.5 feet: moist.Total depth drilled = 15.0 feet.
20 20 See Page 2 for Well Completion Details.					20			See Page 2 for Well Completion Details.

EMCON

And a state of the state of the

Algorithment variation

Additional communication of

Sector And and a sector of the sector of the

Shine and the second

Sugar and Sugar Martin

-

LOG OF EXPLORATORY BORING

LOCATION DRILLED BY DRILL METHOD LOGGED BY

PROJECT NAME Port of Seattle, Terminal 115 Seattle, Washington Tacoma Pump and Drilling Co., Inc. Hollow-Stem Auger T. Bodle

BORING NO. MW-11 PAGE 2 OF 2 **GROUND ELEV.** 20.78' TOTAL DEPTH 16.50' DATE COMPLETED 10/28/94

WELL COMPLETION DETAILS: 0 to 5.0 feet: 2-inch-diameter, flush-threaded, Schedule 40 PVC blank ifser pipe. 5.0 to 15.0 feet: 2-inch-diameter, flush-threaded, Schedule 40 PVC well screen with 0.010-inch machined slots and a 2-inch-diameter threaded end cap. 0 to 1.5 feet: Concrete. 1.5 to 3.0 feet: Bentonite chips hydrated with potable water. 30
(1) PID = Photoionization detector readings in parts per million. (2) ATD = Approximate depth to groundwater At the Time

measured. (5) Ground Elev. = ground elevation of top of casing relative to Seattle tide mean low low water vertical datum.

APPENDIX B

LABORATORY REPORTS

4

Contract of the second s

MOV 2 9

November 28, 1994

Service Request No.: B940825

John Meyer EMCON Northwest 18912 N Creek Parkway Suite 210 Bothell, WA 98011

Re: Port of Seattle Terminal 115/Project #0357-013.02

Dear John:

Attached are the results of the sample(s) submitted to our laboratory on October 31, 1994. Preliminary results were given on November 14, 1994. For your reference, these analyses have been assigned our service request number B940825.

All analyses were performed consistent with our laboratory's quality assurance program. All results are intended to be considered in their entirety, and CAS is not responsible for use of less than the complete report. Results only apply to samples analyzed.

Please call if you have any questions.

Respectfully submitted,

Columbia Analytical Services, Inc.

. Illit

Colin B. Elliott Laboratory Manager

CBE/bdr

Page 1 of 15

Analytical Report

Client:	EMCON Northwest	Date Collected:	10/27,28/94
Project:	Port of Seattle Terminal 115	Date Received:	10/31/94
Sample Matrix:	Soil	Date Extracted:	11/07/94
		Work Order No.:	B940825

BTEX and TPH as Gasoline EPA Methods 5030/8020 Washington DOE Method WTPH-G mg/Kg (ppm) Dry Weight Basis

Sample I	Code:	1-10′	1-15′	2-7.5'
Lab		B0825-4	80825-5	B0825-8
Date Ana		11/08/94	11/08/94	11/07/94
Analyte	MRL			
Benzene	0.05	ND	ND	ND
Toluene	0.1	ND	ND	ND
Ethylbenzene	0.1	ND	ND	ND
Total Xylenes	0.1	ND	ND	ND
TPH as Gasoline	5	16	ND	ND

TPH Tota	al Petroleum	Hydrocarbons
----------	--------------	--------------

MRL Method Reporting Limit

•

ND None Detected at or above the method reporting limit

Un: Elliot Approved by___

Date 11/28/54

Analytical Report

Client:	EMCON Northwest	Date Collected:	10/27,28/94
Project:	Port of Seattle Terminal 115	Date Received:	10/31/94
Sample Matrix:	Soil	Date Extracted:	11/07/94
		Work Order No.:	B940825

BTEX and TPH as Gasoline EPA Methods 5030/8020 Washington DOE Method WTPH-G mg/Kg (ppm) Dry Weight Basis

Sample Na Lab Co Date Analyz	ode:	2-10′ 80825-9 11/07/94	3-7.5' B0825-14 11/07/94	4-7.5′ B0825-21 11/07/94
Analyte	MRL			
Benzene	0.05	ND	ND	ND
Toluene	0.1	ND	ND	ND
Ethylbenzene	0.1	ND	ND	ND
Total Xylenes	0.1	ND	ND	ND
TPH as Gasoline	5	ND	ND	ND

TPH	Total Petroleum Hydrocarbons	
8.4131	Realized in the second	

MRL Method Reporting Limit

ND None Detected at or above the method reporting limit

Approved by

an. Ellion

Date_ 11/28/94

Analytical Report

Client:	EMCON Northwest	Date Collected:	10/27,28/94
Project:	Port of Seattle Terminal 115	Date Received:	10/31/94
Sample Matrix:	Soil	Date Extracted:	11/07/94
		Work Order No.:	B940825

BTEX and TPH as Gasoline EPA Methods 5030/8020 Washington DOE Method WTPH-G mg/Kg (ppm) Dry Weight Basis

Sample N	Code:	4-10'	hb1-4.75'	hb3-5'
Lab C		B0825-22	B0825-26	B0825-28
Date Analy		11/07/94	11/07/94	11/07/94
Analyte	MRL			
Benzene	0.05	ND	ND	ND
Toluene	0.1	ND	ND	ND
Ethylbenzene	0.1	ND	ND	ND
Total Xylenes	0.1	ND	ND	ND
TPH as Gasoline	5	ND	ND	ND

TPH	Total Petroleum Hydrocarbons
MRL	Method Reporting Limit

ND None Detected at or above the method reporting limit

Approved by_

an. Eller

Date 11/28/54

Analytical Report

Client: Project: Sample Matrix:	EMCON Northwest Port of Seattle Terminal 115 Soil	Date Collected: Date Received: Date Extracted: Work Order No.:	10/27,28/94 10/31/94 11/07/94 B940825
			0040020

BTEX and TPH as Gasoline EPA Methods 5030/8020 Washington DOE Method WTPH-G mg/Kg (ppm) Dry Weight Basis

Sample Nam	le:	hb7-2.5'	hb2-1.75'	Method Blank
Lab Coo		B0825-29	B0825-30	B0825-MB
Date Analyze		11/07/94	11/07/94	11/07/94
Analyte	MRL			
Benzene	0.05	ND	ND	ND
Toluene	0.1	ND	ND	ND
Ethylbenzene	0.1	ND	ND	ND
Total Xylenes	0.1	ND	ND	ND
TPH as Gasoline	5	ND	ND	ND

- TPH Total Petroleum Hydrocarbons
- MRL Method Reporting Limit
- ND None Detected at or above the method reporting limit

a. Ellust Approved by

Date 11/28/94

Analytical Report

Client:	EMCON Northwest	Date Collected:	10/27,28/94
Project:	Port of Seattle Terminal 115	Date Received:	10/31/94
Sample Matrix:	Soil	Date Extracted:	11/08/94
		Date Analyzed:	11/10/94
		Work Order No.:	B940825

Total Petroleum Hydrocarbons as Diesel and Oil Washington DOE Method WTPH-D * * mg/Kg (ppm) Dry Weight Basis

		Die	esel	Oil	l *
Sample Name	Lab Code	MRL	Result	MRL	Result
1-10'	B0825-4	25	(a) ⁴⁴	100	190
1-15'	B0825-5	25	ND	100	_(ь) 170
2-7.5'	B0825-8 _(c)	25	ND	100	120
2-10'	B0825-9	25	ND	100	ND
3-7.5'	B0825-14	25	ND	100	ND
4-7.5'	B0825-21	25	ND	100	270
4-10'	B0825-22	25	(a)29	100	410
hb1-4.75′	B0825-26	25	ND	100	120
hb3-5'	B0825-28	25	ND	100	ND
hb7-2.5′	B0825-29	25	(a)29	100	ND
hb2-1.75'	B0825-30	25	ND	100	220
Method Blank	B0825-MB	25	ND	100 •	ND

Quantified using 30-weight motor oil as a standard.

MRL Method Reporting Limit

ND None Detected at or above the method reporting limit

(a) Quantified as diesel. The sample contained components that eluted in the diesel range, but the chromatogram did not match the typical diesel fingerprint.

(b) Quantified as oil. The sample contained components that eluted in the oil range, but the chromatogram did not match the typical oil fingerprint.

(c) Result is from an analysis performed on November 22, 1994.

Approved by _____ Approved by _____

Date 11/28/54

QA/QC Report

Client: EMCON Northwest Project: Port of Seattle Terminal 115 Sample Matrix: Soil

150

Date	Colle	ected	1:	1	0/2	7,2	28/9	4
Date	Rece	ivec		1	0/3	1/5	34	
Date	Extra	acte	d:		1/0	7/9	34	
Date			age to en	1	1/0	7.0	08/9	4
Work				· · · · · ·	94(

Surrogate Recovery Summary BTEX and TPH as Gasoline EPA Methods 5030/8020 Washington DOE Method WTPH-G

Sample Name	Lab Code	Spike Level (mg/Kg)	Percent Recovery 4-Bromofluorobenzene
1-10′	B0825-4	8.8	93
1-15'	B0825-5	8.8	90
2-7.5′	B0825-8	8.8	90
2-10'	B0825-9	8.8	9 3 - 1993
3-7.5'	B0825-14	8.8	92
4-7.5′	B0825-21	8.8	98
4-7.5'	B0825-21Dup	8.8	97
4-10'	B0825-22	8.8	95
4-10′	B0825-22MS	8.8	101
nb1-4.75'	B0825-26	8.8	97
nb3-5'	B0825-28	8.8	100
hb7-2.5′	B0825-29	8.8	* 95
hb2-1.75'	B0825-30	8.8	93
Method Blank	B0825-MB	8.8	99
Laboratory Control Sample	B0825-LCS	8.8	101
Laboratory Control Sample	B0825-GLCS	8.8	105

CAS Acceptance Criteria

71-108

TPH Total Petroleum Hydrocarbons

Un. Ellion Approved by

Date 11/28/94

7

QA/QC Report

Client:	EMCON Northwest	Date Collected:	11/27,28/94
Project:	Port of Seattle Terminal 115	Date Received:	10/31/94
Sample Matrix:	Soil	Date Extracted:	11/07/94
		Date Extracted. Date Analyzed: Work Order No.:	11/07/94

Duplicate Summary BTEX and TPH as Gasoline EPA Methods 5030/8020 Washington DOE Method WTPH-G mg/Kg (ppm) Dry Weight Basis

Sample Name: 4-7.5' Lab Code: B0825-21

Analyte	MRL	Sample Result	Duplicate Sample Result	Average	Relative Percent Difference
Benzene	0.05	ND	ND		
Toluene	0.1	ND	ND		***
Ethylbenzene	0.1	ND	ND	**	***
Total Xylenes	0.1	ND	ND	- 	
TPH as Gasoline	5	ND	ND	·	

ТРН	Total	Petroleum	Hydrocarbons
			• • • • • •

MRL Method Reporting Limit

ND None Detected at or above the method reporting limit

Approved by_

Cit. Eller

Date 11/28/94

QA/QC Report

Client: EMCON Northwest Project: Port of Seattle Terminal 115 Sample Matrix: Soil	Date Collected: Date Received: Date Extracted: Date Analyzed: Work Order No.:	10/27,28/94 10/31/94 11/07/94 11/08/94 B940825
---	---	--

Matrix Spike Summary BTEX and TPH as Gasoline EPA Methods 5030/8020 Washington DOE Method WTPH-G mg/Kg (ppm) **Dry Weight Basis**

Sample Name: 4-10' Lab Code: B0825-22

Analyte	Spike Level	Sample Result	Spiked Sample Result	Percent Recovery	CAS Percent Recovery Acceptance Criteria
Benzene	1.05	ND	0.92	88	54-114
Toluene	1.05	ND	0.98	93	52-119
Ethylbenzene	1.05	ND	0.99	94	59-115

ND None Detected at or above the method reporting limit

Approved by

ah. Ellert,

Date 11/28/94

.

QA/QC Report

Client:	EMCON Northwest	Date Extracted:	11/07/94
Project:	Port of Seattle Terminal 115	Date Analyzed:	11/07/94
LCS Matrix:	Soil	Work Order No .:	B940825

Laboratory Control Sample Summary BTEX and TPH as Gasoline EPA Methods 5030/8020/Washington DOE Method WTPH-G mg/Kg (ppm)

Analyte	True Value	Result	Percent Recovery	CAS Percent Recovery Acceptance Criteria
Benzene	1.00	0.95	95	54-114
Toluene	1.00	0.97	97	52-119
Ethylbenzene	1.00	0.98	98	59-115
TPH as Gasoline	50	60	120	44-154

TPH Total Petroleum Hydrocarbons

A. Elluor

Approved by___

Date 11/28/94

10

QA/QC Report

Client: Project: Sample Matrix:	EMCON Northwest Port of Seattle Terminal 115 Soil	Date Collected: Date Received: Date Extracted: Date Analyzed:	10/28,28/94 10/31/94 11/08/94 11/10/94
		outo mitalyzeu.	11/10/34

Surrogate Recovery Summary Total Petroleum Hydrocarbons as Diesel and Oil Washington DOE Method WTPH-D

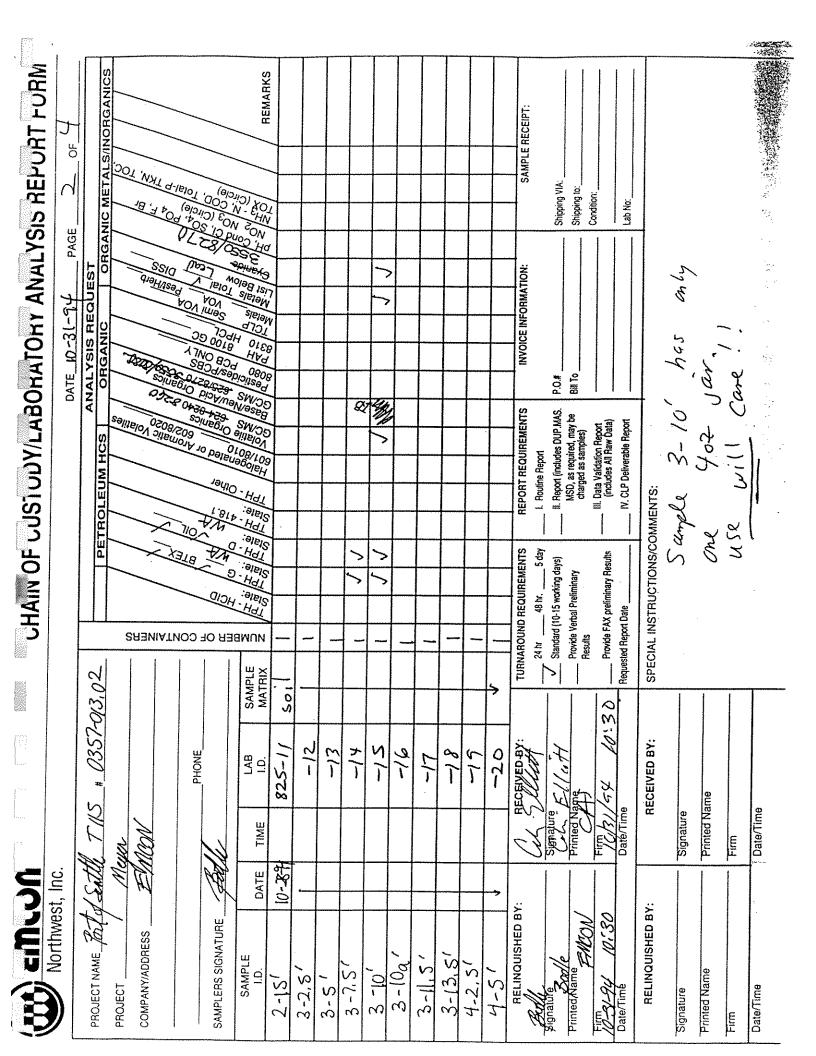
Sample Name	Lab Code	Percent Recovery <i>p</i> -Terphenyl
1-10'	B0825-4	92
1-15'	B0825-5	85
2-7.5'	B0825-8	*113
2-10'	B0825-9	98
3-7.5′	B0825-14	100
4-7.5'	B0825-21	119
4-10'	B0825-22	106
hb1-4.75′	B0825-26	107
hb3-5'	B0825-28	105
hb7-2.5'	B0825-29	92
hb2-1.75'	B0825-30	⁻ 105
Method Blank	B0825-MB	81

CAS Acceptance Criteria

76-122

Work Order No.: B940825

.


* Result is from an analysis performed on November 22, 1994.

lon. Ellan

Approved by

______ U /28/94

DATE 10-31-94 PAGE 1 OF 4		URGANIC METALS/INORGANICS	100 100 100 100 100 100 100 100 100 100	1 d-101			Ž/// REMARKS			12 PM-140	Thaller !							SAMPLE RECEIPT;	Shipping VIA.	Shipping to:	tion:	0:					
DATE 10-31-94 PAGE	AALYSIS REQUES					1000 40 100 000 000 000 000 000 000 000	People A Strain A Star OF A											INVOICE INFORMATION:	P.O.#	Bill To	Condition						
	PETROLEUM HCS	Sel					1-5 1-5 1- 128 × 6 1 80			Å	01/24/15 071							5 day L. Routine Report	II. Report (includes DUP.MAS.	MSD, as required, may be B charged as samples)	III. Data Validation Report (includes All Raw Data)	IV. CLP Deliverable Report	S/COMMENTS:				
	0357-03.02		VINEBS	1.	CID ER OF C	SAMPLE JUNE 100 100 100 100 100 100 100 100 100 10	S 1												Standard (10-15 working days)	Provide Verbal Preliminary Results		Requested Report Date	SPECIAL INSTRUCTIONS/COMMENTS:	draphiner LIN' Kerkin		-	
	Krinnel 115		EMOON	BUCME HIS STAT	Call FININE 100	TIME LAB	2	2-	-3-	5-	5-		7	81	5	0/		(ih ? Mutt	Cer Ellit	ed Name	Firm 0/31/54 10:30	Uate/ l ime	RECEIVED BY:	Signature	Printed Name	Firm	Date/Time
	NAME	PHOJECT /////			SAMPLERS SIGNATURE	SAMPLE I.D. DATE	5,	1-5'	1-2,5'	1-10'	1-12, N	2-2,5' 10-28-94	2-5 '	2-2,5 '	2-10'	2-2,5'	RELINQUISHED BY:	Signature /	Printed Name	ACON	Date/Times		RELINQUISHED BY:	Signature	Printed Name	FIM	Date/Time

Northwest, Inc. PROJECT NAME PROJECT NAME PROJECT NAME PROJECT PROJECT NAME PROJECT Settle PROJECT NAME PROJECT Settle NELLON NET NELLINGUISHED BY: Printed Mame FULN RELINGUISHED BY: PROJECT NAME PROJECT Settle PROJECT NAME PROJECT Settle NELLINGUISHED BY: PROJECT NAME PROJECT Settle PROJECT NAME PROJECT Settle NELLINGUISHED BY: PROJECT NAME PROJECT SETTLE PROJECT NAME PROJECT Settle PROJECT NAME PROJECT Settle NELLINGUISHED BY: PROJECT NAME PROJECT SETTLE PROJECT NAME PROJECT SETTLE NELLINGUISHED BY: PROJECT NAME PROJECT SETTLE PROJECT NAME PROJECT NAME PROJECT SETTLE PROJECT NAME PROJECT SETTLE PROJECT NAME PROJECT NAME PROJECT P		4 0357-0(1.0. 1.0. 1.0. 1.0. 1.0. 1.0. 1.0. 1.0. 1.0. 1.0. 1.0. 2.2. -2.2	Soil	Provide Verbal Preliminary Results	CONTRINERS TIX TIX TIX TIX TIX TIX TIX TIX	PETROLEUM HCS PEDROLEUM HCS	H Halogenation of the Part of	DATE DATE DATE DATE <t< th=""><th>DATE 10-3(-94 DATE 10-3(-94 ANALYSIS REQUEST ANALYSIS REQUEST ORGANIC ORGANIC BIRTO POR BIRTO PO</th><th>List Below Nelate VOA Nelate VOA Nelate</th><th>PAGE PAGE PAGE PAGE PAGE PAGE PAGE PAGE</th><th>PAGE SAMIC METALS/IT OF BGANIC METALS/IT Shipping VIA. Shipping VIA. Shipping VIA. Lab No:</th><th>ALSINORG</th><th>ALTOIO ALTOIO ALTOITA ALTOITA</th></t<>	DATE 10-3(-94 DATE 10-3(-94 ANALYSIS REQUEST ANALYSIS REQUEST ORGANIC ORGANIC BIRTO POR BIRTO PO	List Below Nelate VOA Nelate	PAGE PAGE PAGE PAGE PAGE PAGE PAGE PAGE	PAGE SAMIC METALS/IT OF BGANIC METALS/IT Shipping VIA. Shipping VIA. Shipping VIA. Lab No:	ALSINORG	ALTOIO ALTOITA
Signature Printed Name Firm	Signature Printed Name Firm	9 E	T											
Date/Time	Date/Time													

PAGE 4 OF 4	ST ORGANIC METAL S/INORGANICS		04 - 10 01 01 01 01 01 01 01 01 01	2 pu	102 Ha						SAMPLE RECEIPT:	Shipping VIA:	ompring to. Condition:		Lab No:					
	AALYSIS REQUES			62/02/02/02/02/04/03/09/09/09/09/09/09/09/09/09/09/09/09/09/	Pesticical A Particical A Parti	7. 1 2					INVOICE INFORMATION:	P.O.# Bill To								
	PETROLEUM HCS	Solite OSC		1910 010 010 010 010 010 010 010 010 010	STATION CONTRACTOR CON						S REPORT REQUIREMENTS y1. Routine Report				IV. CLP Deliverable Report	COMMENTS:				
				<u>פ</u> וס אכוס							TURNAROUND REQUIREMENTS	d (10-15 working d Verhal Prefiminary	Results	Provide FAX preliminary Results	Requested Report Date	SPECIAL INSTRUCTIONS/COMMENTS:				
	: 7115 # 0357-013.02		PHONE	lu -	TIME LAB SAMPLE	825-31 Soil				, , , , , , , , , , , , , , , , ,	A - FULLER	Signature . EL/1H	Street.	154 10:30	ime .	RECEIVED BY:	Signature	Printed Name	-Irm	Data Chinese
Northwest, Inc.	PROJECT NAME fort of Safle	PROJECT Meyer COMPANY ADDRESS EMICON		SAMPLERS SIGNATURE	SAMPLE DATE	hbl-3' 10-28-94					RELINQUISHED BY:	be	31-74 1030		Date/Time	RELINQUISHED BY:	Signature	Printed Name	Erm	DataGana

MOV 2 Contract

November 17, 1994

Service Request No.: K946855B

John Meyer EMCON Northwest, Inc. 18912 North Creek Parkway, Suite 210 Bothell, WA 98011

Re: Port of Seattle/Terminal 115/Project #0357-013.02/B94-0825

Dear John:

Enclosed are the results of the sample(s) submitted to our laboratory on October 31, 1994. Preliminary results were transmitted via facsimile on November 14 and 17, 1994. For your reference, these analyses have been assigned our service request number K946855B.

All analyses were performed consistent with our laboratory's quality assurance program. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the samples analyzed.

Please call if you have any questions. My extension is 260.

Respectfully submitted, Columbia Analytical Services, Inc.

Janue M. Secllak

Janice M. Sedlak Project Chemist

JMS/rr

Page 1 of _____6___

Acronyms

	Acronyms
ASTM	American Society for Testing and Materials
CARB	California Air Resources Board
CAS Number	Chemical Abstract Service registry Number
CFC	Chlorofluorocarbon
CFU	Colony-Forming Unit
DEC	Department of Environmental Conservation
DEQ	Department of Environmental Quality
DHS	Department of Health Services
DOE	Department of Ecology
DOH	Department of Health
EPA	U. S. Environmental Protection Agency
GC	Gas Chromatography
GC/MS	Gas Chromatography/Mass Spectrometry
LUFT	Leaking Underground Fuel Tank
MCL	Maximum Contaminant Level is the highest permissible concentration of a substance allowed in drinking water as established by the USEPA.
MDL	Method Detection Limit
MPN	Most Probable Number
MRL	Method Reporting Limit
NA	Not Applicable
NAN	Not Analyzed
NC	Not Calculated
NCASI	National Council of the Paper Industry for Air and Stream Improvement
ND	Not Detected at or above the MRL
NIOSH	National Institute for Occupational Safety and Health
PQL	Practical Quantitation Limit
RCRA	Resource Conservation and Recovery Act
SIM	Selected Ion Monitoring
ТРН	Total Petroleum Hydrocarbons

00002

acron[st.1i/06/09/93

Second Second

and an and a second

A Construction of the second

Annalese Average

Sullana seria anti-

.

COLUMBIA ANALYTICAL SERVICES, INC. Analytical Report Client: **EMCON Northwest** Service Request: K946855B **Project:** Port of Seattle/Terminal 115/#0357-013.02 Date Collected: 10/28/94 Sample Matrix: Soil Date Received: 10/31/94 Date Extracted: NA Date Analyzed: 11/8/94 Solids, Total Volatile Organic Compounds EPA Method 160.3 Modified Units: Percent (%) Sample Name Lab Code Result 3-10' K946855-001 89.2

Approved By:

2. Crocken

Date: 11-14-94

.

00003

Analytical Report

and the second se	Client: Project: Sample Matrix:	EMCON Northwest Port of Seattle/Terminal / #0357-013.02 Soil		Service Request: Date Collected: Date Received: Date Extracted: Date Analyzed:	10/28/94 10/31/94 NA
arterio da composito de la comp			Total Lead EPA Method 7420 Units: mg/kg (ppm) Dry Weight Basis		
	Sample Name	Lab Code	MRL	Result	
a a construction and a subsection and a su	3-10' Method Blank]	K685501 K6855MB	5 5	ND ND	

Section Section Section

00004 ______Date: ______K____ 94 and Approved By: _ \leq D IAMRIJ102594 6855BICP.JC1 - Sample 11/14/94 Page No.:

4

Analytical Report

Client: Project: Sample Matrix:	EMCON NorthwestService Request:Port of Seattle/Terminal 115/#0357-013.02Date Collected:SoilDate Received:Date Extracted:Date Extracted:Date Analyzed:Date Analyzed:	10/28/94 10/31/94 11/9/94
	BTEX and Total Petroleum Hydrocarbons as Gasoline	

BTEX and Total Petroleum Hydrocarbons as Gasoline EPA Methods 5030/8020 and Washington DOE Method WTPH-G Units: mg/Kg (ppm) Dry Weight Basis

	Analyte: Method Reporting Limit:	Benzene 0.05	Toluene 0.1	Ethylbenzene 0.1	Total Xylenes 0.1	TPH as Gasoline 5
Sample Name	Lab Code					
3-10' Method Blank	K946855-001 K941109-SB	ND ND	ND ND	ND ND	ND ND	ND ND

Approved By 5A/061694 6855APHC.LL1 - 5A 1/15/94

Date: 1/15/94

00005

Analytical Report

	Client: Project: Sample Matrix:	EMCON Northwest Port of Seattle/Terminal 115/#0357-013.02 Soil	Service Request: Date Collected: Date Received: Date Extracted: Date Analyzed:	10/28/94 10/31/94 11/7/94
		Total Petroleum Hydrocarbo Washington DOE Me Units: mg/Kg	thod WTPH-D	
		Dry Weight	Basis	
		Analyte: Method Reporting Limit:	Diesel 25	Oil 100
	Sample Name	Lab Code		
	3-10' Method Blank	K946855-001 K941107-SB1	102(a) ND	534 ND
New York Strategy and				
	a	Quantified as diesel. The sample contained an oil	component that partially about in the	a diasat

Iter R. Gotham a Approved By: 2A/061694

Date: 11/14/94

00006

6855BPHC.JWI - 2AMRL 11/14/94

Solve development of a Court

Page No.:

.....

Analytical Report

Client: Project: Sample Matrix:	EMCON Northwest Port of Seattle/Term Soil	inal 115/#035	7-013.02		Service Request: Date Collected: Date Received: Date Extracted:
		V	olatile Organic EPA Methor Units: μg/Kg Dry Weight	1 8260 g (ppb)	
			mple Name: Lab Code: te Analyzed:	3-10' K946855-001 11/7/94	Method Blank K946855-MB 11/7/94
Analyte		MRL			
Dichlorodifluoron Chloromethane Vinyl Chloride Bromomethane	nethane (CFC 12)	5 5 5 5		ND ND ND ND	ND ND ND ND
Chloroethane Trichlorofluorome Acetone 1,1-Dichloroethen		5 5 50 5		ND ND ND ND	ND ND ND ND
Carbon Disulfide Methylene Chlorid trans -1,2-Dichloro 1,1-Dichloroethan	le bethene	5 10 5 5		ND ND ND ND	ND ND ND ND
2-Butanone (MEK 2,2-Dichloropropa cis-1,2-Dichloroet	.) ne	20 5 5		ND ND ND	ND ND ND
Chloroform Bromochlorometh 1,1,1-Trichloroeth 1,1-Dichloroprope	ane (TCA) ne	5 5 5 5 5		ND ND ND ND	ND ND ND ND
Carbon Tetrachlor 1,2-Dichloroethan Benzene Trichloroethene (7	e	5 5 5 5		ND ND ND ND	ND ND ND ND
1,2-Dichloropropa Bromodichlorome Dibromomethane	ne	5 5 5		ND ND ND	ND ND ND
2-Hexanone cis-1,3-Dichloropi Toluene (rans. 1.3 Dichlor	-	20 5 5		ND ND ND	ND ND ND
trans-1,3-Dichloro 1,1,2-Trichloroeth 4-Methyl-2-pentan 1,3-Dichloropropa	ane one (MIBK)	5 5 20 5		ND ND ND ND	ND ND ND ND

Job C. Crocken

Contraction

and the second second

Date: 11-14-94

00007

K946855B 10/28/94 10/31/94 NA

Page No.:

Analytical Report

Client:EMCON NorthwestProject:Port of Seattle/TerminSample Matrix:Soil	nal 115/#0357-01	3.02		Service Request: Date Collected: Date Received: Date Extracted:
) T	ile Organic EPA Methoo Jnits: μg/Κį Dry Weight	g (ppb)	
	Ĺa	e Name: ib Code: nalyzed:	3-10' K946855-001 11/7/94	Method Blank K946855-MB 11/7/94
Analyte	MRL			
Tetrachloroethene (PCE)	5		ND	ND
Dibromochloromethane	5		ND	ND
1,2-Dibromoethane (EDB)	20		ND	ND
Chlorobenzene	5		ND	ND
1,1,1,2-Tetrachloroethane	5		ND	ND
Ethylbenzene	5		ND	ND
Total Xylenes	5		ND	ND
Styrene	5		ND	ND
Bromoform	5		ND	ND
Isopropylbenzene	20		ND	ND
1,1,2,2-Tetrachloroethane	5		ND	ND
1,2,3-Trichloropropane	5		ND	ND
Bromobenzene	5		ND	ND
n -Propylbenzene	20		ND	ND
2-Chlorotoluene	20		ND	ND
4-Chlorotoluene	20		ND	ND
1,3,5-Trimethylbenzene	20		ND	ND
tert -Butylbenzene	20		ND	ND
1,2,4-Trimethylbenzene	20		ND	ND
sec -Butylbenzene	20		ND	ND
1,3-Dichlorobenzene	5		ND	ND
4-Isopropyltoluene	20		ND	ND
1,4-Dichlorobenzene	5		ND	ND -
n -Butylbenzene	20		ND	ND
1,2-Dichlorobenzene	5		ND	ND
1,2-Dibromo-3-chloropropane (DBCP)	20		ND	ND
1,2,4-Trichlorobenzene	20		ND	ND
1,2,3-Trichlorobenzene	20		ND	ND
Naphthalene	20		ND	ND ND
Hexachlorobutadiene	20		ND	ND

Jeff C. Croper

3S2P/101894

Approved By:

6855BVOA.CL1 - 382P 11/14/94

____ Date: _____14-94

K946855B 10/28/94 10/31/94 NA

Analytical Report

Client:	EMCON NORTHWEST
Project:	Port of Seattle/Terminal 115\#0357-013.02
Sample Matrix:	Soil

Service Request: K946855B Date Collected: 10/28/94 Date Received: 10/31/94 Date Extracted: 11/8/94

Base Neutral/Acid Semivolatile Organic Compounds EPA Methods 3550/8270 Units: mg/Kg (ppm) Dry Weight Basis

M

	Sample Name: Lab Code: Date Analyzed:	3-10' K946855-001 11/16/94	Method Blank K941108-SB1 11/11/94
Base Neutral Analyte	MRL		
N-Nitrosodimethylamine	2	ND	ND
Aniline	1	ND	ND
Bis(2-chloroethyl) Ether	0.3	ND	ND
1,2-Dichlorobenzene	0.3	ND	ND
1,3-Dichlorobenzene	0.3	ND	ND
1,4-Dichlorobenzene	0.3	ND	ND
Bis(2-chloroisopropyl) Ether	0.3	ND	ND
N-Nitrosodi-n-propylamine	0.3	ND	ND
Hexachloroethane	0.3	ND	ND
Nitrobenzene	0.3	ND	ND
Isophorone	0.3	ND	ND
Bis(2-chloroethoxy)methane	0.3	ND	ND
1,2,4-Trichlorobenzene	0.3	ND	ND
Naphthalene	0.3	ND	ND
4-Chloroaniline	0.3	ND	ND
Hexachlorobutadiene	0.3	ND	ND
2-Methylnaphthalene	0.3	ND	ND
Hexachlorocyclopentadiene	0.3	ND	ND
2-Chloronaphthalene	0.3	ND	ND
2-Nitroaniline	2	ND	ND
Dimethyl Phthalate	0.3	ND	ND
Acenaphthylene	0.3	ND	ND
3-Nitroaniline	2	ND	ND
Acenaphthene	0.3	ND	ND
Dibenzofuran	0.3	ND	ND
2,4-Dinitrotoluene	0.3	ND	ND

00009

whated

Date:

Analytical Report

Client:	EMCON NORTHWEST
Project:	Port of Seattle/Terminal 115\#0357-013.02
Sample Matrix:	Soil

Service Request: K946855B Date Collected: 10/28/94 Date Received: 10/31/94 Date Extracted: 11/8/94

Base Neutral/Acid Semivolatile Organic Compounds EPA Methods 3550/8270 Units: mg/Kg (ppm) Dry Weight Basis

	Sample Name: Lab Code: Date Analyzed:	3-10' K946855-00 <u>1</u> 11/16/94	Method Blank K941108-SB1 11/11/94
Base Neutral Analyte	MRL		
2,6-Dinitrotoluene	0.3	ND	ND
Diethyl Phthalate	0.3	ND	ND
4-Chlorophenyl Phenyl Ether	0.3	ND	ND
Fluorene	0.3	ND	ND
4-Nitroaniline	2	ND	ND
N-Nitrosodiphenylamine	0.3	ND	ND
4-Bromophenyl Phenyl Ether	0.3	ND	ND
Hexachlorobenzene	0.3	ND	ND
Phenanthrene	0.3	ND	ND
Anthracene	0.3	ND	ND
Di-n-butyl Phthalate	0.3	ND	ND
Fluoranthene	0.3	ND	ND
Pyrene	0.3	ND	ND
Butylbenzyl Phthalate	0.3	ND	ND
3,3'-Dichlorobenzidine	2	ND	ND-
Benz(a)anthracene	0.3	ND	ND
Bis(2-ethylhexyl) Phthalate	0.3	ND	ND
Chrysene	0.3	ND	ND
Di-n-octyl Phthalate	0.3	ND	ND 1
Benzo(b)fluoranthene	0.3	ND	ND
Benzo(k)fluoranthene	0.3	ND	ND
Benzo(a)pyrene	0.3	ND	ND
Indeno(1,2,3-cd)pyrene	0.3	ND	ND
Dibenz(a,h)anthracene	0.3	ND	ND
Benzo(g,h,i)perylene	0.3	ND	ND

00010

Date: 11/17/54

Analytical Report

Client:	EMCON NORTHWEST
Project:	Port of Seattle/Terminal 115\#0357-013.02
Sample Matrix:	Soil

Service Request: K946855B Date Collected: 10/28/94 Date Received: 10/31/94 Date Extracted: 11/8/94

Base Neutral/Acid Semivolatile Organic Compounds EPA Methods 3550/8270 Units: mg/Kg (ppm) Dry Weight Basis

	Sample Name: Lab Code: Date Analyzed:	3-10' K946855-001 11/16/94	Method Blank K941108-SB1 11/11/94
Acid Analyte	MRL		
Phenol	0.3	ND	ND
2-Chlorophenol	0.3	ND	ND
Benzyl Alcohol	0.3	ND	ND
2-Methylphenol	0.3	ND	ND
3- and 4-Methylphenol*	0.3	ND	ND
2-Nitrophenol	0.3	ND	ND
2,4-Dimethylphenol	0.3	ND	ND
Benzoic Acid	2	ND	ND
2,4-Dichlorophenol	0.3	ND	ND
4-Chloro-3-methylphenol	0.3	ND	ND
2,4,6-Trichlorophenol	0.3	ND	ND
2,4,5-Trichlorophenol	0.3	ND	ND
2,4-Dinitrophenol	2	ND	ND
4-Nitrophenol	2	ND	ND
2-Methyl-4,6-dinitrophenol	2	ND	ND
Pentachlorophenol	2	ND	ND

Quantified as 4-methylphenol.

*

00011

Date

QA/QC Report

Client:EMCON NorthwestProject:Port of Seattle/Terminal 115/#0357-013.02Sample Matrix:Soil

 Service Request:
 K946855B

 Date Collected:
 10/28/94

 Date Received:
 10/31/94

 Date Extracted:
 11/9/94

 Date Analyzed:
 11/10/94

Surrogate Recovery Summary BTEX and Total Petroleum Hydrocarbons as Gasoline EPA Methods 5030/8020 and Washington DOE Method WTPH-G

Sample Name	Lab Code	Percent Recovery 1,4-DFB (PID - BTEX)	Percent Recovery 1,4-DFB (FID - GAS)
3-10'	K946855-001	80	81
Method Blank	K941109-SB	93	96

CAS Acceptance Limits:

51-133

Approved By SUR2/060194 6855APHC.LLI - SUR2 11/15/94

Date: 1/15/94 00012

QA/QC Report

Client:EMCON NorthwestProject:Port of Seattle/Terminal 115/#0357-013.02Sample Matrix:Soil

 Service Request:
 K946855B

 Date Collected:
 10/28/94

 Date Received:
 10/31/94

 Date Extracted:
 11/7/94

 Date Analyzed:
 11/10,11/94

Surrogate Recovery Summary Total Petroleum Hydrocarbons as Diesel and Oil Washington DOE Method WIPH-D

Sample Name	Lab Code	Percent Recovery o-Terphenyl		
3-10'	K946855-001	102		
Method Blank	K941107-SB1	96		

CAS Acceptance Limits: 55-119

Latter R. Cotham Approved By:

Date: 11/14/94

00013

SUR1X/062994 6855BPHC.JW1 - SUR1 11/14/94

Page No.:

QA/QC Report

Client:	EMCON Northwest
Project:	Port of Seattle/Terminal 115/#0357-013.02
Sample Matrix:	Soil

Service Request: K946855B Date Collected: 10/28/94 Date Received: 10/31/94 Date Extracted: NA Date Analyzed: 11/7/94

Surrogate Recovery Summary Volatile Organic Compounds EPA Method 8260

Sample Name	Lab Code	Percen Dibromofluoromethane	t Rec Toluene- d_8	o v e r y 4-Bromofluorobenzene
3-10'	K946855-001	103	81	77
Method Blank	K946855-MB	91	101	103

CAS Acceptance Limits: 80-120

H.C. Crocker

74-121

110014

Page No.:

.

Approved By: SUR3/060194 6855BVOA.CL1 - SUR3 11/14/94

Date: 11-14-94

81-117

QA/QC Report

Client:	EMCON NORTHWEST
Project:	Port of Seattle/Terminal 115\#0357-013.02
Sample Matrix:	Soil

 Service Request:
 K946855B

 Date Collected:
 10/28/94

 Date Received:
 10/31/94

 Date Extracted:
 11/8/94

 Date Analyzed:
 11/11,16/94

Surrogate Recovery Summary Base Neutral/Acid Semivolatile Organic Compounds EPA Methods 3550/8270

			Ре	rcen	t Re	c o v e	r y
Sample Name	Lab Code	2FP	PHL	TBP	NBZ	FBP	TPH
3-10'	K946855-001	50	67	40	74	74	93
Method Blank	K941108-SB1	62	62	61	65	69	63
Lab. Control Sample	K941108-SL1	61	59	59	64	64	52

CAS Acceptance Limits:	25-121	24-113	19-122	23-120	30-115	18-137
2-Fluorophenol						
Phenol-d ₆						
2,4,6-Tribromophenol						
Nitrobenzene-d ₅						
2-Fluorobiphenyl						
Terphenyl- d_{14}						
• • • • •						
	2-Fluorophenol Phenol- d_6 2,4,6-Tribromophenol Nitrobenzene- d_5 2-Fluorobiphenyl Terphenyl- d_{14}	2-Fluorophenol Phenol- d_6 2,4,6-Tribromophenol Nitrobenzene- d_5 2-Fluorobiphenyl	2-Fluorophenol Phenol- d_6 2,4,6-Tribromophenol Nitrobenzene- d_5 2-Fluorobiphenyl Terphenyl- d_{14}			

Approved By:

SUR.6/060894

Ky ____

Date: ___

1111

00015

CHAIN OF CUSTODVI.ABORATORY ANALYSIS REPORT FORM INTEL INCLUSION CONTRATICITY INTEL INCLUSTON CONTRATICITY <th c<="" th=""><th>RELINOUISHED BY: Signature Ellucit Signature Ellucit Printed Name Film ////cix//ci//ci// Date/Time</th><th>RELINQUISHED BY: Bignature Signature Printed/Name Firm MCON Date/Time</th><th>4-2,5'</th><th>3-11.5'</th><th>$\frac{3}{3} - 10^{\prime}$</th><th>3-7.5'</th><th>3-2,8'</th><th></th><th>SAMPLERS SIGNATURE</th><th>PROJECT NAME Jot of Sat</th><th>Northwest, Inc.</th></th>	<th>RELINOUISHED BY: Signature Ellucit Signature Ellucit Printed Name Film ////cix//ci//ci// Date/Time</th> <th>RELINQUISHED BY: Bignature Signature Printed/Name Firm MCON Date/Time</th> <th>4-2,5'</th> <th>3-11.5'</th> <th>$\frac{3}{3} - 10^{\prime}$</th> <th>3-7.5'</th> <th>3-2,8'</th> <th></th> <th>SAMPLERS SIGNATURE</th> <th>PROJECT NAME Jot of Sat</th> <th>Northwest, Inc.</th>	RELINOUISHED BY: Signature Ellucit Signature Ellucit Printed Name Film ////cix//ci//ci// Date/Time	RELINQUISHED BY: Bignature Signature Printed/Name Firm MCON Date/Time	4-2,5'	3-11.5'	$\frac{3}{3} - 10^{\prime}$	3-7.5'	3-2,8'		SAMPLERS SIGNATURE	PROJECT NAME Jot of Sat	Northwest, Inc.
CHAIN OF CUSTODY/LABORATOF	RECEIVED BY:	RECEIVED BY: Jure Ellut	-15	81-	-16	-14	-12	825-11	TIME LAB	#		
V/LABORATOF ANALYSIS r Bill To Samples Bill To Samples Bill To Analysis Analysis Analysis Analysis Bill To Analysis Analysis Analysis Bill To Analysis Analysis Analysis Analysis Analysis Analysis Analysis Analysis Bill To Analysis Analysis Analysis Analysis Analysis	SPECIAL INSTRUCTIONS/COMMENTS: Sumple Une USR L	QUIREMENTS hr5 day working days) /reliminary /reliminary /fiminary Results							NUMBER OF CONT TPH HCID TPH G State: TPH G State: TPH WA State: TPH 418.1 TPH 418.1	AINERS	CHAIN OF CUSTO	
	-10' has of var. 1 care!!	P.O.#				28 28			rialogenated of Aron 601/8010 6026 Volatile Organics GC/MS 624-6240 5 Base/Neu/Acid Orga GC/MS 625582705 Pesticides/PCBS PAH 8100 GC TAU	HCS OFGANI alico Alies	V/LABORATOF	

清洁的 mark

November 21, 1994

Service Request No.: B940848

John Meyer EMCON Northwest 18912 N Creek Parkway Suite 210 Bothell, WA 98011

Re: Port of Seattle Terminal 115/Project #0357-013.02

Dear John:

Attached are the results of the sample(s) submitted to our laboratory on November 4, 1994. For your reference, these analyses have been assigned our service request number B940848.

All analyses were performed consistent with our laboratory's quality assurance program. All results are intended to be considered in their entirety, and CAS is not responsible for use of less than the complete report. Results only apply to samples analyzed.

Please call if you have any questions.

Respectfully submitted,

Columbia Analytical Services, Inc.

. Ellinot

Colin B. Elliott Laboratory Manager

CBE/bdr

Page 1 of _____

Analytical Report

Client:EMCON NorthwestProject:Port of Seattle Terminal 115Sample Matrix:Water

Date Received: 11/04/94 Work Order No.: B940848

CASE NARRATIVE SUMMARY

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc.

Samples MW-3 and MW-5 analyzed by Method WTPH-D showed low surrogate recovery due to matrix interferences. The samples showed responses in the diesel range that did not match a typical diesel chromatogram.

an Ellins Approved by

Date 11/21/94

Analytical Report

Client:	EMCON Northwest	Date Collected:	11/04/94
Project:	Port of Seattle Terminal 115	Date Received:	11/04/94
Sample Matrix:	Water	Work Order No.:	B940848

BTEX and TPH as Gasoline EPA Methods 5030/8020/Washington DOE Method WTPH-G µg/L (ppb)

Ĺ	le Name: ab Code: \nalyzed:	MW-1 B0848-1 11/12/94	MW-2 B0848-2 11/12/94	MW-3 B0848-3 11/12/94
Analyte	MRL			
Benzene	0.5	2.0	10.0	0.7
Toluene	1	ND	ND	ND
Ethylbenzene	1	ND	ND	ND
Total Xylenes	1	ND	1	ND
TPH as Gasoline	50	440	ND	ND

TPH Total Petroleum Hydrocarbons

MRL Method Reporting Limit

ND None Detected at or above the method reporting limit

When Ellever

Approved by___

Date 4/21/94

Analytical Report

Client:	EMCON Northwest	Date Collected:	11/04/94
Project:	Port of Seattle Terminal 115	Date Received:	11/04/94
Sample Matrix:	Water	Work Order No.:	B940848

BTEX and TPH as Gasoline EPA Methods 5030/8020/Washington DOE Method WTPH-G μ g/L (ppb)

	Sample Name: Lab Code: ate Analyzed:	MW-4 B0848-4 11/12/94	MW-5 B0848-5 11/12/94	Method Blank B0848-MB 11/11/94
Analyte	MRL			· .
Benzene	0.5	0.8	0.8	ND
Toluene	1	ND	ND	ND
Ethylbenzene	1	ND	ND	. ND
Total Xylenes	1	ND	ND	ND
TPH as Gasoline	50	ND	ND	ND

ТРН	Total	Petroleum	Hydrocarbons
-----	-------	-----------	--------------

MRL Method Reporting Limit

ND None Detected at or above the method reporting limit

Approved by

Conversion in

an Ellist

Date_____/21/94

Analytical Report

Client: Project: Sample Matrix:	EMCON Northwest Port of Seattle Terminal 115 Water	Date Collected: Date Received: Date Extracted: Date Analyzed: Work Order No.:	11/04/94 11/04/94 11/08/94 11/09,10/94 B940848
---------------------------------------	--	---	--

Total Petroleum Hydrocarbons as Diesel and Oil Washington DOE Method WTPH-D μg/L (ppb)

		Di	esel	Oil*	
Sample Name	Lab Code	MRL	Result	MRL	Result
MW-1	B0848-1	250	(e)3,170	750	_(b) 830
MW-2	B0848-2	250	1,420	750	ND
MW-3	B0848-3	250		750	ND
MW-4	B0848-4	250	(₁₎ 750	750	ND
MW-5	B0848-5	250	<u>,</u> 320	750	ND
Method Blank	B0848-MB	250	MD ND	750	ND

Quantified using 30-weight motor oil as a standard.

MRL Method Reporting Limit

ND None Detected at or above the method reporting limit

Quantified as diesel. The sample contained components that eluted in the diesel range, but the chromatogram did not match the typical diesel fingerprint.

(b) Quantified as oil. The sample contained components that eluted in the oil range, but the chromatogram did not match the typical oil fingerprint.

Approved by _ Ch . Elling

_____Date___11/21/54

QA/QC Report

Client: Project: Sample Matrix:	EMCON Northwest Port of Seattle Terminal 115 Water	Date Collected: Date Received: Date Analyzed: Work Order No.:	11/04/94 11/04/94 11/11,12/94 B940848
---------------------------------------	--	--	--

Surrogate Recovery Summary BTEX and TPH as Gasoline EPA Methods 5030/8020 Washington DOE Method WTPH-G

Sample Name	Lab Code	Spike Level (µg/L)	Percent Recovery 4-Bromofluorobenzene
MW-1	B0848-1	100	95
MW-2	B0848-2	100	103
MW-3	B0848-3	100	112
MW-3	B0848-3Dup	100	98
MW-4	B0848-4	100	109
MW-5	B0848-5	100	104
Method Blank	B0848-MB	100	_ 111
Laboratory Control Sample	B0848-LCS	100	110
Laboratory Control Sample	B0848-GLCS	100	111
			*

CAS Acceptance Criteria

86-116

TPH Total Petroleum Hydrocarbons

Approved by _____ Approved by _____

Date 11/21/94

QA/QC Report

Client: Project: Sample Matrix:	EMCON Northwest Port of Seattle Terminal 115 Water	Date Collected: Date Received: Date Analyzed: Work Order No.:	11/04/94 11/04/94 11/12/94 B940848
---------------------------------------	--	--	---

Duplicate Summary BTEX and TPH as Gasoline EPA Methods 5030/8020/Washington DOE Method WTPH-G µg/L (ppb)

Sample Name: MW-3 Lab Code: B0848-3

Analyte	MRL	Sample Result	Duplicate Sample Result	Average	Relative Percent Difference
Benzene	0.5	0.7	0.7	0.7	<1
Toluene	1	ND	ND		
Ethylbenzene	1	ND	ND		
Total Xylenes	1	ND	ND		
TPH as Gasoline	50	ND	ND		***

TPH	Total Petroleum Hydrocarbons
MRL	Method Reporting Limit
A 105	News Detected at an above the method reporting

ND None Detected at or above the method reporting limit

an Ellas Approved by

Date 11/21/54

QA/QC Report

Client:	EMCON Northwest	Date Collected:	//
Project:	Port of Seattle Terminal 115	Date Received:	//
Sample Matrix:	Water	Date Analyzed:	11/12/94
		Work Order No.:	B940848

Matrix Spike Summary BTEX and TPH as Gasoline EPA Methods 5030/8020/Washington DOE Method WTPH-G μ g/L (ppb)

Sample Name: Batch QC Lab Code: B0870-4

Analyte	Spike Level	Sample Result	Spiked Sample Result	Percent Recovery	CAS Percent Recovery Acceptance Criteria
Benzene	100	2.2	112	110	77-127
Toluene	100	ND	107	107	78-127
Ethylbenzene	100	ND	113	113	74-128

TPH Total Petroleum HydrocarbonsND None Detected at or above the method reporting limit

Approved by

Whitelling

Date 41/21/94

.

QA/QC Report

Client:	EMCON Northwest	Date Extracted:	11/11/94
Project:	Port of Seattle Terminal 115	Date Analyzed:	11/12/94
LCS Matrix:	Water	Work Order No.:	B940848

Laboratory Control Sample Summary BTEX and TPH as Gasoline EPA Methods 5030/8020/Washington DOE Method WTPH-G µg/L (ppb)

Analyte	True Value	Result	Percent Recovery	CAS Percent Recovery Acceptance Criteria
Benzene	100	102	102	77-127
Toluene	100	106	106	78-127
Ethylbenzene	100	109	109	74-128
TPH as Gasoline	5,500	6,500	118	70-140

TPH Total Petroleum Hydrocarbons

an Ellis

.

Approved by_

Date 11/21/94

.

QA/QC Report

Client:	EMCON Northwest	Date Collected:	11/04/94
Project:	Port of Seattle Terminal 115	Date Received:	11/04/94
Sample Matrix:	Water	Date Extracted:	11/08/94
•		Date Analyzed:	11/09,10/94
		Work Order No.:	B940848

Surrogate Recovery Summary Total Petroleum Hydrocarbons as Diesel and Oil Washington DOE Method WTPH-D

Sample Name	Lab Code	Percent Recovery <i>p</i> -Terphenyl
MW-1	B0848-1	90
MW-2	B0848-2	78
MW-3	B0848-3	*25
MW-4	B0848-4	87
MW-5	B0848-5	*16
Method Blank	B0848-MB	88

CAS Acceptance Criteria

59-124

.

 Outside of acceptance limits because of matrix effects. The sample produced an emulsion during the preparation steps.

Approved by

an Ellios

____Date___1/21/94

HAIN OF CUSTOUY/LABONATON ANALYSIS REFURT I URM	PAGE OF		ORGANIC METALS/INORGANICS		J. KN	d-1010 (a)(1) (a)(1)	1.00°.1 2.00°.1 2.1.20°.	NON CON CON							<u> </u>			SAMPLE RECEIPT:	Shipping VIA:	Condition:	Lab No: 29-408-48						
haron Anal	DATE <u>II- 4-94</u> р,	EQUES	ORGANIC ORC		SSI 949HAL				150 X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		~	<u></u>	\ \	<u>ر</u>	>			INVOICE INFORMATION:	P.O.#	00.100							
USTUDY/LABO			PETROLEUM HCS						104/20 10528 10528 100/00 100/09 109/109 100/09 100/09 100/09	∧ /								REPORT REQUIREMENTS I. Routine Report	II. Report (includes DUP.MAS. MSD: as sociated may be	charged as samples)	III. Data vanaunt meput (includes All Raw Data) W CI D Detrocatio Record		OMMENTS:		·	د 	
CHAIN OF U	A 98011 • (206) 486-6983 • FAX (206) 486-7695					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		NON DA	- Hai - Hai - Hai - Hai - Hai - Hai - Hai - Hai - Hai - Hai	8 1		4 1/1	\ \ \		2			TURNAROUND REQUIREMENTS 24 hr 48 hr. 5 day	ind (10-15 working d	Provide Verbal Preliminary Results	Provide FAX preliminary Results	nequested neport trate	SPECIAL INSTRUCTIONS/COMMENTS. * Metals = Pb				
	18912 North Creek Pkwy, Suite 118 • Bothell, WA 98011		115 # 0357-013.02				PHONE		TIME LAB SAMPLE I.D. MATRIX	BA-841.1	_ 7-	-3		5-	<u>J</u>	>		ABCEIVED BY . T	Signature ENlott	Printed Name	1/94 16:07	Date/Time	ECEIVED BY:	Signature	Printed Name	Firm	Date/Time
Columbia Apolytical	ServiceS ^{IIIC} 18912 N		PROJECT NAME Tort at Seatte Terminal 115	PROJECT MEN OC	//ADDRESS			SAMPLERS SIGNATURE Tom Bull	SAMPLE / / TI	hb-h-11 1-	MW-2 1	MW-3	WW-H	MW-5	purce works			RELINQUISHED BY:		Printed Name FMCrn/	74 1604 -	Date/Time D:	INQUISHED BY:		Printed Name	Firm	Date/Time

November 22, 1994

Service Request No.: K946932B

John Meyer EMCON Northwest, Inc. 18912 North Creek Parkway, Suite 210 Bothell, WA 98011

Re: Port of Seattle Terminal 115/Project #0357-013.02/B94-0848

Dear John:

Enclosed are the results of the sample(s) submitted to our laboratory on November 7, 1994. Preliminary results were transmitted via facsimile on November 21, 1994. For your reference, these analyses have been assigned our service request number K946932B.

All analyses were performed consistent with our laboratory's quality assurance program. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the samples analyzed.

Please call if you have any questions. My extension is 260.

Respectfully submitted,

Columbia Analytical Services, Inc.

Ia Ceaun for Juis

Janice M. Sedlak Project Chemist

JMS/sam

Page 1 of 12

Acronyms

Acronyms									
ASTM	American Society for Testing and Materials								
CARB	California Air Resources Board								
CAS Number	Chemical Abstract Service registry Number								
CFC	Chlorofluorocarbon								
CFU	Colony-Forming Unit								
DEC	Department of Environmental Conservation								
DEQ	Department of Environmental Quality								
DHS	Department of Health Services								
DOE	Department of Ecology								
DOH	Department of Health								
EPA	U. S. Environmental Protection Agency								
GC	Gas Chromatography								
GC/MS	Gas Chromatography/Mass Spectrometry								
LUFT	Leaking Underground Fuel Tank								
MCL	Maximum Contaminant Level is the highest permissible concentration of a substance allowed in drinking water as established by the USEPA.								
MDL	Method Detection Limit								
MPN	Most Probable Number								
MRL	Method Reporting Limit								
NA	Not Applicable								
NAN	Not Analyzed								
NC	Not Calculated								
NCASI	National Council of the Paper Industry for Air and Stream Improvement								
ND	Not Detected at or above the MRL								
NIOSH	National Institute for Occupational Safety and Health								
PQL	Practical Quantitation Limit								
RCRA	Resource Conservation and Recovery Act								
SIM	Selected Ion Monitoring								
TPH	Total Petroleum Hydrocarbons								

e e e e

i

Geganterosometrico

Constant of the second

Sector Contractor

Available Available

Analytical Report

Client:	EMCON Northwest
Project:	Port of Seattle Terminal 115 / #0357-013.02
Sample Matrix:	Water

Constant of the second second

Annu on the statement

Service Request: K946932B Date Collected: 11/4/94 Date Received: 11/7/94 Date Extracted: NA Date Analyzed: 11/15/94

4

Total Lead EPA Method 7421 Units: µg/L (ppb)

Sample Name	Lab Code	MRL	Result
MW-1	K693201	2	12
MW-2	K693202	2	13
MW-3	K693203	2	39
MW-4	K693204	2	15
MW-5	K693205	2	54
Purge Water	K693206	2	21
Method Blank	K6932MB	2	ND

Approved By:	Date: 11/16/94	00003
1AMRL/102594 6932BICP.JCI - Sample 11/16/94		Page No.:

Analytical Report

Client: Project:	EMCON Northwest Port of Seattle Terminal 115 / #0357-013.02	Date Collected: Date Received:	11/4/94 11/7/94
Sample Matrix:	Water	Service Request:	K946932B

Total Organic Halides (TOX) EPA Method 9020A Units: µg/L (ppb)

Sample Name	Lab Code	MRL	Result	Date Analyzed
Purge Water	K946932-006	10	19	1 1/18/94
Method Blank	K946932-MB	10	ND	1 1/18/94

Approved By: _

Tracy & Mining 6932BWET.TD1/11/21/94

.

00004

-

_Date: _///2//44_

Analytical Report

Client:	EMCON Northwest
Project:	Port of Seattle Terminal 115/ #0357-013.02
Sample Matrix:	Water

Service Request: K946932B Date Collected: 11/4/94 Date Received: 11/7/94 Date Extracted: NA

Volatile Organic Compounds EPA Method 8260 Units: µg/L (ppb)

	Sample Name:	MW-1	Method Blank
	Lab Code:	K946932-001	K946932-MB
	Date Analyzed:	11/16/94	11/16/94
	•		
Analyte MR	L		
Dichlorodifluoromethane (CFC 12) 0.5		ND	ND
Chloromethane 0.5		ND	ND
Vinyl Chloride 0.5		0.6	ND
Bromomethane 0.5		ND	ND
Chloroethane 0.5		ND	ND
Trichlorofluoromethane (CFC 11) 0.5		ND	ND
Acetone 20		ND	ND
1,1-Dichloroethene 0.5		ND	ND
Carbon Disulfide 0.5		ND	ND
Methylene Chloride		2.1	ND
trans-1,2-Dichloroethene 0.5		ND	ND
1,1-Dichloroethane 0.5		ND	ND
2-Butanone (MEK) 20		ND	ND
2,2-Dichloropropane 0.5		ND	ND
cis-1,2-Dichloroethene 0.5		ND	ND
Chloroform 0.5		ND	ND
Bromochloromethane 0.5		ND	ND
1,1,1-Trichloroethane (TCA) 0.5		ND	ND
1,1-Dichloropropene 0.5		ND	ND
Carbon Tetrachloride 0.5		ND	ND
1,2-Dichloroethane 0.5		ND	ND
Benzene 0.5		2.0	ND
Trichloroethene (TCE) 0.5		ND	ND
1,2-Dichloropropane 0.5		ND	ND
Bromodichloromethane 0.5		ND	ND
Dibromomethane 0.5		ND	ND
2-Hexanone 20		ND	ND
cis-1,3-Dichloropropene 0.5		ND	ND
Toluene 0.4		ND	ND
trans-1,3-Dichloropropene 0.5		ND	ND
1,1,2-Trichloroethane 0.1		ND	ND
4-Methyl-2-pentanone (MIBK) 20		ND	ND
1,3-Dichloropropane 0.3	ō	ND	ND

Approved By: _____

1/ June Date: 11/21/94

00005

Page No.:

Analytical Report

Client:	EMCON Northwest
Project:	Port of Seattle Terminal 115/ #0357-013.02
Sample Matrix:	Water

Service Request: K946932B Date Collected: 11/4/94 Date Received: 11/7/94 Date Extracted: NA

Volatile Organic Compounds EPA Method 8260 Units: µg/L (ppb)

	Sample Name: Lab Code: Date Analyzed:	MW-1 K946932-001 11/16/94	Method Blank K946932-MB 11/16/94
Analyte	MRL		
Tetrachloroethene (PCE)	0.5	ND	ND
Dibromochloromethane	0.5	ND	ND
1,2-Dibromoethane (EDB)	2	ND	ND
Chlorobenzene	0.5	ND	ND
1,1,1,2-Tetrachloroethane	0.5	ND	ND
Ethylbenzene	0.5	0.8	ND
Total Xylenes	0.5	ND	ND
Styrene	0.5	ND	ND
Bromoform	0.5	ND	ND
Isopropylbenzene	2	2	ND
1,1,2,2-Tetrachloroethane	0.5	ND	ND
1,2,3-Trichloropropane	0.5	ND	ND
Bromobenzene	0.5	ND	ND
n -Propylbenzene	2 2	3	ND
2-Chlorotoluene	2	. ND	ND
4-Chlorotoluene	2	ND	ND
1,3,5-Trimethylbenzene	2 2 2	ND	ND
tert -Butylbenzene	2	ND	ND
1,2,4-Trimethylbenzene		ND	ND
sec -Butylbenzene	2	ND	ND
1,3-Dichlorobenzene	0.5	ND	ND
4-Isopropyltoluene	2	ND	ND
1,4-Dichlorobenzene	0,5	ND	ND 1
n-Butylbenzene	2	ND	ND
1,2-Dichlorobenzene	0.5	ND	ND
1,2-Dibromo-3-chloropropane (DBCP)	2	ND	ND
1,2,4-Trichlorobenzene	2 2 2 2	ND	ND
1,2,3-Trichlorobenzene	2	ND	ND
Naphthalene	2	14	ND
Hexachlorobutadiene	2	ND	ND

Approved By:

All Amosell Date: 11/21/94

00006

Page No.:

Analytical Report

Client:	EMCON Northwest
Project:	Port of Seattle Terminal 115\#0357-013.02
Sample Matrix:	Water

Service Request: K946932B Date Collected: 11/4/94 Date Received: 11/7/94 Date Extracted: 11/9/94

Base Neutral/Acid Semivolatile Organic Compounds EPA Methods 3520/8270 Units: µg/L (ppb)

	Sample Name: Lab Code: Date Analyzed:	MW-1 K946932-001(a) 11/15/94	Method Blank K941109-WB1 11/15/94
Base Neutral Analyte	MRL		
N-Nitrosodimethylamine	25	<50	ND
Aniline	25	<50	ND
Bis(2-chloroethyl) Ether	10	<20	ND
1,2-Dichlorobenzene	10	<20	ND
1,3-Dichlorobenzene	10	<20	ND
1,4-Dichlorobenzene	10	<20	ND
Bis(2-chloroisopropyl) Ether	10	<20	ND
N-Nitrosodi-n-propylamine	10	<20	ND
Hexachloroethane	10	<20	ND
Nitrobenzene	10	<20	ND
Isophorone	10 .	<20	ND
Bis(2-chloroethoxy)methane	10	<20	ND
1,2,4-Trichlorobenzene	10	<20	ND
Naphthalene	10	<20	ND
4-Chloroaniline	10	<20	ND
Hexachlorobutadiene	10	<20	ND
2-Methylnaphthalene	10	<20	ND
Hexachlorocyclopentadiene	10	<20	ND .
2-Chloronaphthalene	10	<20	ND
2-Nitroaniline	25	<50	ND
Dimethyl Phthalate	10	<20	ND
Acenaphthylene	10	<20	ND
3-Nitroaniline	25	<50	ND
Acenaphthene	10	<20	ND
Dibenzofuran	10	<20	ND
2,4-Dinitrotoluene	10	<20	ND

a

MRL is elevated because the sample required diluting. Dilution factor: 2

Approved By: _____

Page No.:

00007

____ Date: 1117 141

Analytical Report

Client:	EMCON Northwest
Project:	Port of Seattle Terminal 115\#0357-013.02
Sample Matrix:	Water

Service Request: K946932B Date Collected: 11/4/94 Date Received: 11/7/94 Date Extracted: 11/9/94

Base Neutral/Acid Semivolatile Organic Compounds EPA Methods 3520/8270 Units: µg/L (ppb)

	Sample Name: Lab Code: Date Analyzed:	MW-1 K946932-001(a) 11/15/94	Method Blank K941109-WB1 11/15/94
Base Neutral Analyte	MRL		
2,6-Dinitrotoluene	10	<20	ND
Diethyl Phthalate	10	<20	ND
4-Chlorophenyl Phenyl Ether	10	<20	ND
Fluorene	10	<20	ND
4-Nitroaniline	25	<50	ND
N-Nitrosodiphenylamine	10	<20	ND
	10	<20	ND
4-Bromophenyl Phenyl Ether Hexachlorobenzene	10	<20	ND
	10	<20	ND
Phenanthrene	10	<20	ND
Anthracene	10	<20	ND
Di-n-butyl Phthalate	10	<20	ND
Fluoranthene	10	<20	ND
Pyrene	10	<20	ND
Butylbenzyl Phthalate	25	<50	ND
3,3'-Dichlorobenzidine		<20	ND
Benz(a)anthracene	10	<20	20
Bis(2-ethylhexyl) Phthalate	10	<20	ND
Chrysene	10	<20	ND *
Di-n-octyl Phthalate	10	<20	ND
Benzo(b)fluoranthene	10	<20	ND
Benzo(k)fluoranthene	10	<20	ND
Benzo(a)pyrene	10	<20	ND
Indeno(1,2,3-cd)pyrene	10	<20 <20	ND
Dibenz(a,h)anthracene	10	<20 <20	ND
Benzo(g,h,i)perylene	10	~20	1 (12

MRL is elevated because the sample required diluting. Dilution factor: 2

Approved By: _

a

_ Date: _

00008

Page No.:

Analytical Report

Client:	EMCON Northwest
Project:	Port of Seattle Terminal 115\#0357-013.02
Sample Matrix:	Water

Service Request: K946932B Date Collected: 11/4/94 Date Received: 11/7/94 Date Extracted: 11/9/94

4

Base Neutral/Acid Semivolatile Organic Compounds EPA Methods 3520/8270 Units: µg/L (ppb)

	Sample Name: Lab Code: Date Analyzed:	MW-1 K946932-001(a) 11/15/94	Method Blank K941109-WB1 11/15/94
Acid Analyte	MRL		
Phenol	10	<20	ND
2-Chlorophenol	10	<20	ND
Benzyl Alcohol	10	<20	ND
2-Methylphenol	10	<20	ND
3- and 4-Methylphenol*	10	<20	ND
2-Nitrophenol	10	<20	ND
2,4-Dimethylphenol	10	<20	ND
Benzoic Acid	25	<50	ND
2,4-Dichlorophenol	10	<20	ND
4-Chloro-3-methylphenol	10	<20	ND
2,4,6-Trichlorophenol	10	<20	ND
2,4,5-Trichlorophenol	10	<20	ND
2,4-Dinitrophenol	25	<50	ND
4-Nitrophenol	25	<50	ND
2-Methyl-4,6-dinitrophenol	25	<50	ND
Pentachlorophenol	25	<50	ND

Quantified as 4-methylphenol. MRL is elevated because the sample required diluting. Dilution factor: 2

ᢣᡟᡃ

Approved By: _ 353PBNA/102094

*

a

unnng

QA/QC Report

Client:	EMCON Northwest
Project:	Port of Seattle Terminal 115/ #0357-013.02
Sample Matrix:	Water

Service Request: K946932B Date Collected: 11/4/94 Date Received: 11/7/94 Date Extracted: NA Date Analyzed: 11/16/94

Surrogate Recovery Summary Volatile Organic Compounds EPA Method 8260

Sample Name	Lab Code	Percen Dibromofluoromethane		overy 4-Bromofluorobenzene
MW-1	K946932-001	108	100	103
Method Blank	K946932-MB	103	99	94

CAS Acceptance Limits: 86-118

88-110

86-115

AH Andraf Date: 11/21/94

00010

QA/QC Report

Client:	EMCON Northwest
Project:	Port of Seattle Terminal 115\#0357-013.02
Sample Matrix:	Water

Service Request: K946932B Date Collected: 11/4/94 Date Received: 11/7/94 Date Extracted: 11/9/94 Date Analyzed: 11/15/94

Surrogate Recovery Summary Base Neutral/Acid Semivolatile Organic Compounds EPA Methods 3520/8270

Sample Name	Lab Code	2FP	P e PHL	rcen TBP	t Re NBZ	cove FBP	r y TPH
MW-1	K946932-001(a)	71	87	74	74	89	56
Method Blank	K941109-WB1	63	75	74	77	76	70
Lab Control Sample	K941109-WL1	66	80	83	83	80	74

	CAS Acceptance Limits:	21-100	10-94	10-123	35-114	43-116	33-141
2FP	2-Fluorophenol						
PHL	Phenol-d ₆						
TBP	2,4,6-Tribromophenol						
NBZ	Nitrobenzene-d ₅						
FBP	2-Fluorobiphenyl						
TPH	Terphenyl- d_{14}						
a	Result is from the analysis of	a diluted sample	e. Dilution	factor: 2			

Date:

Approved By: __

SUR.6/060894 6932BSVM.DH1 - 8270wSur 11/16/94

Page No.:

CHAIN OF CUS I UDY LAF 18912 North Creek Pkwy, Suite 118 • Bothell, WA 98011 • (206) 486-6983 • FAX (206) 486-7695	2357, 23 27 29 PETROLEUM HCS ORGANIC ORGANIC N			PHONE	TIME LAB SAMPLE M H is H	B34-842+1 water 8 1/1 1 1/1	2-							Matching TURNAROUND REQUIREMENTS REPORT REQUIREMENTS INVOICE INFORMATION: Matching 24 hr 48 hr. 5 day 1. Routine Report 1. Routine Report Matching 24 hr 48 hr. 5 day 1. Routine Report 1. Routine Report Signature 21, 24 28 hr 48 hr. 5 day 1. Report	Printed Name State (1071) Printed Name State (1071) Printed Name State (1071) Printed Name	$\frac{1}{r + 1} \frac{1}{r + 1} \frac{1}{r + 2} \frac{1}$	RECEIVED BY:	Singer A remo=	Printe	Date/14/
Analytical ServiceS ^{IM} 18912 North Cre		PROJECT NAME TORI DORING LOCATION PROJECT	//ADDRESS	SAMPLERS SIGNATURE Tom Ball	. /			MW3	H-MW	MM-5	the state			Y: Signatury	, Balle	1604 -		A B	Amg Amg Ang Ang Ang Ang	11.00 11 Time to Fed EX

 $\mathcal{M}_{\mathcal{M}}^{1} \to \mathcal{M}_{\mathcal{M}}^{1}$