EES ENVIRONMENTAL CONSULTING, INC. 240 N. Broadway, Suite 115, Portland OR 97227 (503) 847-2740

www.ees-environmental.com

Technical Memorandum

То:	Mark Conan
From:	Paul Ecker, LHG and Leonard Farr, LG
Date:	11/16/2012
Subject:	Site Characterization Status Report (October 2012)
	Former Plaid Pantries Store #23
	5210 East Fourth Plain Boulevard
	Vancouver, Washington
	Ecology Voluntary Cleanup Program File #SW1166
	EES Project #E-839

EES Environmental Consulting, Inc. (EES) is providing this status report regarding additional characterization activities conducted in October 2012 at the former Plaid Pantries, Inc. (Plaid) Store #23 site located at 5210 East Fourth Plain Boulevard (Figure 1). Site activities were conducted in accordance with the Work Plan for Supplemental Site Characterization, dated December 6, 2011, as approved by Plaid and the Washington Department of Ecology (Ecology). The purpose of the characterization is to satisfy Ecology's administrative requirements for site closure.

BACKGROUND

The subject site is currently occupied by a commercial strip mall and paved parking lot area located along a commercial thoroughfare in Vancouver, Washington (Figure 2). The subject property is owned by M & P Properties. Plaid was a tenant and operated the site as a retail gasoline station and convenience store between 1982 and early 2002. The Underground Storage Tank Site Number Plaid registered with Ecology was 11397. During Plaid's operations, only gasoline is known to have been stored and dispensed at the site. Leaded gasoline may have been dispensed at the site during phase-out of that product in the 1980s. EES understands that Plaid did not store or dispense other hydrocarbons such as diesel fuel, bulk motor oil, or bulk solvents at any time during its site operations.

Prior to Plaid's operations, the site was occupied continuously as a gasoline service station since the early 1960s. The nature and volume of fuel and other products used and stored at the site by others have not been determined by EES, although the facility reportedly was operated as a Chevron service station during much or all of its operations prior to Plaid. The pre-Plaid service station building was located near the southwestern margin of the existing site building and was demolished during site redevelopment in the early 1980s. Current and historical site infrastructure is illustrated on Figure 2.

ECOLOGY REQUEST FOR FURTHER ACTION

In an Opinion Letter dated October 31, 2011, Ecology indicated that further site characterization and administrative actions were necessary to support Plaid's request for a No Further Action (NFA) determination. The supplemental data gathering and clarification tasks as specified will enable Ecology to determine whether interim remedial actions undertaken by Plaid to date have resulted in adequate cleanup of the site. The interim actions completed to date were intended to result in a permanent solution and to achieve cleanup requirements as defined under the Model Toxics Control Act (MTCA).

SUPPLEMENTAL SITE CHARACTERIZATION (APRIL THROUGH JULY 2012)

Between April and July 2012, EES conducted the following activities as required by the site work plan. Findings were detailed in a Technical Memorandum dated September 25, 2012, and are summarized below.

PHYSICAL EXAMINATION OF GEOPHYSICAL ANOMALIES

In accordance with the work plan, four-inch diameter air-knife excavation techniques were used at specific locations (Anomalies A, B, and C) where a prior (2005) geophysical survey had identified subsurface anomalies that Ecology suspected may have represented underground storage tanks from pre-Plaid site operations (Figure 2). Air-knife excavations identified no evidence of fuel contamination or underground storage tank presence at the three anomaly locations. This supplemental site characterization task requested by Ecology has been completed, and no further work to resolve this issue appears warranted.

CONFIRMATION SOIL SAMPLING

Confirmation soil sampling was conducted using direct-push drilling techniques at three locations where elevated gasoline and/or BTEX compounds historically were detected in soil, as specifically requested by Ecology (Figure 2):

- Boring location B-22 adjacent to Dames & Moore/Pemco soil boring B-7/P2, near the southwest property corner;
- Boring location B-23 adjacent to PNG soil boring B-6, near the southwest corner of the former Plaid UST pit; and
- Boring location B-24 adjacent to PNG soil boring B-13, near the west end of the former southern fuel dispenser island associated with pre-Plaid operations.

Characterization of these three locations identified no evidence of detectable gasoline or related lead or volatile constituent impacts. This supplemental site characterization task requested by Ecology has been completed, and no further work to resolve this issue appears warranted.

WELLHEAD SURVEYING

In accordance with Ecology's request, Plaid's seven-well network was surveyed by Centerline Concepts Land Surveying, Inc., using a licensed Professional Land Surveyor. The survey verified well locations and top of casing elevations relative to mean sea level as referenced to a local USGS benchmark. Wellhead elevations are incorporated into the groundwater elevation data summary table (Table 1).

During the survey work, it was determined that monitoring well MW-5 is located slightly off-site west of the property line. Plaid is negotiating with the neighboring property owner to obtain access to decommission MW-5, as discussed with Ecology. No access to the well has been allowed by the neighboring property owner to date.

APRIL AND JULY CONFIRMATION GROUNDWATER MONITORING

As stated in the work plan, confirmation groundwater samples are specified for collection from down-gradient monitoring wells MW-6 and MW-7 only if depth to water in these wells exceeds 14 feet during quarterly monitoring over a one-year period. During both the April and July 2012 site activities, depth to groundwater in all site wells was shallower than 14 feet below ground surface, ranging from 10.92 to 13.00 feet below ground surface in MW-6 and MW-7 specifically (Table 1). Therefore, no confirmation groundwater samples were collected during these two quarterly events.

RECENT GROUNDWATER MONITORING (OCTOBER 2012)

On October 9, 2012, static water levels were measured in each well relative to the surveyed top-of-casing elevation. Depth to water in monitoring well MW-6 exceeded 14 feet. Therefore, monitoring wells MW-6 and MW-7 were sampled during this seasonal low-water period.

WATER LEVEL AND GROUNDWATER GRADIENT MEASUREMENT

The depth to groundwater in each monitoring well except MW-5 was measured using an electronic water level probe. The probe was lowered into the well until it contacted the water surface, indicated by an audible tone. Using the water level probe tape, the depth to the water surface was measured to the nearest hundredth of a foot from the north edge of the rim of each well casing. Water levels measured in each well, and the corresponding mean sea level elevation of the water surface, are summarized in Table 1.

Water levels measured at the site ranged in elevation from 165.12 feet above mean sea level (MW-6) to 165.81 feet above mean sea level (MW-2). Water table measurements indicate a potentiometric surface sloping down to the southwest at a gradient of 0.0057 vertical feet per horizontal foot, as measured between monitoring wells MW-3 and MW-6.

MONITORING WELL PURGING AND SAMPLING

Pre-sampling well purging of MW-6 and MW-7 was conducted using a peristaltic pump with new high-density polyethylene tubing. Groundwater was extracted during purging from each well at a rate of approximately 100 milliliters per minute. As purging progressed, field parameters including temperature, conductivity, dissolved oxygen, pH, and oxygen reduction potential were measured at approximately 150 second intervals within a flow-through cell. Final field parameter measurements collected as purging concluded are summarized in Table 2. After field parameters stabilized, the groundwater sample was collected directly from the peristaltic pump tubing and placed into laboratory-supplied containers. Groundwater sample containers were placed in a cooler containing ice, and were transported to Apex Labs, Tigard, Oregon for analysis.

GROUNDWATER SAMPLE TESTING RESULTS

Two groundwater samples (one each from monitoring wells MW-6 and MW-7) and one quality control travel blank were submitted to Apex Labs. The travel blank was held pending analysis of the two groundwater samples. As no quality control issues were identified for the MW-6 and MW-7 groundwater samples, the travel blank was not analyzed. Each groundwater sample was tested for the following analytical parameters:

- Gasoline-range hydrocarbons by method NWTPH-Gx;
- Select volatile organic compounds by US Environmental Protection Agency Method 8260C; and
- Total and dissolved lead by US Environmental Protection Agency Method 6020.

Groundwater analytical testing results are summarized in Table 3, and on Figure 3 for gasoline and benzene. The Apex Labs laboratory report is included in Attachment A.

FUEL HYDROCARBON TESTING RESULTS

Fuel hydrocarbons were not detected in the groundwater sample collected from monitoring well MW-6. A gasoline-range hydrocarbons concentration of 106 micrograms per liter was detected in monitoring well MW-7. This gasoline-range hydrocarbon concentration is well below the Ecology MTCA Method A groundwater cleanup level of 1,000 micrograms per liter. Use of this cleanup level is considered valid as benzene was not detected, and ethylbenzene, toluene, and xylene concentrations did not exceed 1% of the gasoline mixture for this sample or elsewhere among various samples collected historically at the site.

VOLATILE GASOLINE CONSTITUENT TESTING RESULTS

Low levels of volatile gasoline constituents were detected in the groundwater samples collected from both monitoring well MW-6 and MW-7. Detected analytes included benzene, ethylbenzene, xylenes, 1,2,4-trimethylbenzene, 1,3,5 -trimethylbenzene, and naphthalene. Detected concentrations are summarized in Table 3. None of the gasoline constituents detected in groundwater exceeded Ecology MTCA Method A groundwater cleanup levels.

TOTAL AND DISSOLVED LEAD TESTING RESULTS

Neither total nor dissolved lead was detected in the groundwater samples collected from monitoring wells MW-6 and MW-7.

SUMMARY AND CONCLUSIONS

EES conducted additional characterization activities in October 2012 at the former Plaid Store #23 site located at 5210 East Fourth Plain Boulevard. Activities included groundwater level measurements and sampling of groundwater in monitoring wells MW-6 and MW-7.

- Groundwater level measurements were collected from monitoring wells MW-1 through MW-4, MW-6, and MW-7. Access to off-site monitoring well MW-5 was not obtained. Measurements indicated groundwater elevations ranging from 165.12 feet above mean sea level to 165.81 feet above mean sea level. The measurements also indicated that the upper surface of the water table at the site sloped to the southwest at a gradient of 0.0057 vertical feet per horizontal foot.
- Groundwater level measurements in October 2012 determined that groundwater levels were deeper than 14 feet in monitoring wells MW-6 and MW-7. Therefore, in accordance with the work plan, groundwater samples were collected for analysis from these two wells. Low levels of gasoline-range hydrocarbons and related volatile organic constituents were detected in the groundwater samples collected from monitoring wells MW-6 and MW-7, but at concentrations below Ecology MTCA Method A groundwater cleanup levels.
- A final groundwater monitoring event is scheduled for January 2013 to address Ecology's request for characterization of this issue. Following this final sampling event, EES will prepared and submit a final written report in accordance with the work plan.
- Due to access restrictions, Plaid intends to decommission off site monitoring well MW-5 in the near future after obtaining access rights. This issue was discussed with and approved by Ecology's project manager (Eugene Radcliff) in October 2012.

ATTACHMENTS

TABLES

Table 1: Groundwater Elevation Data Table 2: Field Parameters Table 3: Groundwater Analytical Results – Gasoline and Related Constituents

FIGURES

Figure 1: Site Location Map Figure 2: Water Table Elevations and Flow Direction (10/9/2012) Figure 3: Gasoline and Benzene in Groundwater

ATTACHMENTS

Attachment A: Laboratory Analytical Report

Tables

TABLE 1Groundwater Elevation DataFormer Plaid Pantry #23

Well	ТОС	Date	Depth to	Groundwater
Identification	Elevation (feet) ^a	Measured	Water	Elevation ^a
			(feet below TOC)	(feet)
MW-1	180.00	01/29/2002	12.70	167.30
		03/10/2005	15.31	164.69
		03/14/2005	15.35	164.65
		10/10/2006	14.71	165.29
		01/30/2007	11.57	168.43
		04/30/2007	12.17	167.83
		07/23/2007	13.76	166.24
		10/29/2007	14.84	165.16
		01/09/2008	12.79	167.21
		04/14/2008	12.54	167.46
		09/05/2008	14.43	165.57
		12/17/2008	15.07	164.93
		03/11/2009	14.31	165.69
		06/09/2009	14.17	165.83
		09/10/2009	15.26	164.74
		12/01/2009	15.11	164.89
		03/01/2010	13.18	166.82
		06/07/2010	12.64	167.36
		09/13/2010	13.99	166.01
		12/01/2010	13.26	166.74
		04/19/2012	11.46	168.54
		07/20/2012	12.73	167.27
		10/09/2012	14.38	165.62
MW-2	180.47	01/29/2002	12.99	167.48
		03/10/2005	15.62	164.85
		03/14/2005	15.66	164.81
		10/10/2006	14.98	165.49
		01/30/2007	11.81	168.66
		04/30/2007	12.41	168.06
		07/23/2007	14.02	166.45
		10/29/2007	15.16	165.31
		01/09/2008	13.12	167.35
		04/14/2008	12.78	167.69
		09/05/2008	14.66	165.81
		12/17/2008	15.32	165.15
		03/11/2009	14.62	165.85
		06/09/2009	14.46	166.01
		09/10/2009	15.59	164.88
		12/01/2009	15.44	165.03
		03/01/2010	13.47	167.00

TABLE 1Groundwater Elevation DataFormer Plaid Pantry #23

Well	TOC	Date	Depth to	Groundwater
Identification	Elevation (feet) ^a	Measured	Water	Elevation ^a
			(feet below TOC)	(feet)
MW-2 (cont'd)		06/07/2010	12.92	167.55
		09/13/2010	14.26	166.21
		12/01/2010	13.57	166.90
		04/19/2012	11.70	168.77
		07/20/2012	12.99	167.48
		10/09/2012	14.66	165.81
MW-3	179.49	01/29/2002	12.00	167.49
		03/10/2005	14.67	164.82
		03/14/2005	14.73	164.76
		10/10/2006	14.06	165.43
		01/30/2007	10.87	168.62
		04/30/2007	11.49	168.00
		07/23/2007	13.08	166.41
		10/29/2007	14.22	165.27
		01/09/2008	12.09	167.40
		04/14/2008	11.84	167.65
		09/05/2008	13.80	165.69
		12/17/2008	14.45	165.04
		03/11/2009	13.61	165.88
		06/09/2009	13.47	166.02
		09/10/2009	14.64	164.85
		12/01/2009	14.48	165.01
		03/01/2010	12.46	167.03
		06/07/2010	11.95	167.54
		09/13/2010	13.29	166.20
		12/01/2010	12.54	166.95
		04/19/2012	10.78	168.71
		07/20/2012	12.05	167.44
		10/09/2012	13.70	165.79
MW-4	180.57	01/29/2002	13.47	167.10
		03/10/2005	15.95	164.62
		03/14/2005	15.99	164.58
		10/10/2006	15.38	165.19
		01/30/2007	12.22	168.35
		04/30/2007	12.82	167.75
		07/23/2007	14.43	166.14
		10/29/2007	15.55	165.02
		01/09/2008	13.36	167.21
		04/14/2008	13.15	167.42
		09/05/2008	15.15	165.42

TABLE 1Groundwater Elevation DataFormer Plaid Pantry #23

Well	TOC	Date	Depth to	Groundwater
Identification	Elevation (feet) ^a	Measured	Water	Elevation ^a
			(feet below TOC)	(feet)
MW-4 (cont'd)		12/17/2008	15.75	164.82
		03/11/2009	14.92	165.65
		06/09/2009	14.80	165.77
		09/10/2009	15.91	164.66
		12/01/2009	15.71	164.86
		03/01/2010	13.79	166.78
		06/07/2010	13.22	167.35
		09/13/2010	14.61	165.96
		12/01/2010	13.86	166.71
		04/19/2012	12.12	168.45
		07/20/2012	13.38	167.19
		10/09/2012	15.04	165.53
MW-5	180.50	01/29/2002	13.51	166.99
		03/10/2005	NA	NA
		03/14/2005	16.06	164.44
		10/10/2006	NA	NA
		01/30/2007	12.42	168.08
		04/30/2007	13.00	167.50
		07/23/2007	14.54	165.96
		10/29/2007	15.58	164.92
		01/09/2008	13.58	166.92
		04/14/2008	13.36	167.14
		09/05/2008	15.23	165.27
		12/17/2008	15.82	164.68
		03/11/2009	15.09	165.41
		06/09/2009	14.95	165.55
		09/10/2009	15.98	164.52
		12/01/2009	15.79	164.71
		03/01/2010	14.00	166.50
		06/07/2010	13.42	167.08
		09/13/2010	14.77	165.73
		12/01/2010	14.01	166.49
		04/19/2012	12.29	168.21
		07/20/2012	13.56	166.94
		10/09/2012	NM	-
MW-6	179.72	01/29/2002	12.88	166.84
		03/10/2005	15.51	164.21
		03/14/2005	15.54	164.18
		10/10/2006	14.92	164.80
		01/30/2007	11.84	167.88

TABLE 1Groundwater Elevation DataFormer Plaid Pantry #23Vancouver, Washington

Well	ТОС	Date	Depth to	Groundwater
Identification	Elevation (feet) ^a	Measured	Water	Elevation ^a
			(feet below TOC)	(feet)
MW-6 (cont'd)		04/30/2007	12.45	167.27
		07/23/2007	13.99	165.73
		10/29/2007	15.01	164.71
		01/09/2008	12.92	166.80
		04/14/2008	12.81	166.91
		09/05/2008	14.72	165.00
		12/17/2008	15.30	164.42
		03/11/2009	14.51	165.21
		06/09/2009	14.37	165.35
		09/10/2009	15.42	164.30
		12/01/2009	15.21	164.51
		03/01/2010	13.38	166.34
		06/07/2010	12.78	166.94
		09/13/2010	14.20	165.52
		12/01/2010	13.38	166.34
		04/19/2012	11.71	168.01
		07/20/2012	13.00	166.72
		10/09/2012	14.60	165.12
MW-7	179.28	01/29/2002	NA	NA
		03/10/2005	14.77	164.51
		03/14/2005	14.81	164.47
		10/10/2006	NA	NA
		01/30/2007	11.04	168.24
		04/30/2007	11.66	167.62
		07/23/2007	13.23	166.05
		10/29/2007	14.32	164.96
		01/09/2008	12.13	167.15
		04/14/2008	12.00	167.28
		09/05/2008	13.94	165.34
		12/17/2008	14.56	164.72
		03/11/2009	13.73	165.55
		06/09/2009	13.62	165.66
		09/10/2009	14.71	164.57
		12/01/2009	14.51	164.77
		03/01/2010	12.59	166.69
		06/07/2010	11.99	167.29
		09/13/2010	13.42	165.86
		12/01/2010	12.56	166.72
		04/19/2012	10.92	168.36

TABLE 1Groundwater Elevation DataFormer Plaid Pantry #23Vancouver, Washington

Well	ТОС	Date	Depth to	Groundwater
Identification	Elevation (feet) ^a	Measured	Water (feet below TOC)	Elevation ^a (feet)
MW-7 (cont'd)		07/20/2012	12.20	167.08
		10/09/2012	13.83	165.45

Notes:

^aVertical datum was established relative to Mean Sea Level by a licensed surveyor on 04/23/2012, based on a local benchmark using the NAVD 88 datum.

TOC = Top of casing

NA = Not applicable

NM = Not measured

TABLE 2Field ParametersFormer Plaid Pantry No. 23

Well Name	Date	Dissolved Oxygen (mg/L) DRI ^a	Oxidation Reduction Potential (mV) DRI ^ª	Ferrous Iron (Fe 2+), dissolved (mg/L) HACH ^b	pH (unitless) DRIª	Specific Conductance (ms/cm) DRl ^a
MW-1	01/30/2007	4.4	122	<0.1	6.7	0.330
	04/30/2007	3.7	56	<0.1	7.6	0.358
	07/23/2007	3.2	100	<0.1	2.7	0.362
	10/29/2007	0.6	72	<0.1	8.0	0.459
	01/09/2008	3.3	82	<0.1	8.3	0.361
	04/14/2008	5.2	91	<0.1	6.4	0.370
	09/05/2008	2.5	2	<0.1	6.4	0.451
	12/17/2008	4.0	144	<0.1	6.9	0.364
	03/11/2009	4.7	140	<0.1	7.0	0.432
	06/09/2009	4.1	102	<0.1	6.5	0.308
	09/10/2009	3.7	100	<0.1	6.9	0.348
	12/01/2009	3.8	23	<0.1	7.3	0.295
	03/01/2010	5.0	19	<0.1	7.0	0.252
	06/07/2010	5.8	234	-	6.7	0.263
	09/13/2010	3.2	84	<0.1	7.3	0.353
	12/01/2010	3.4	151	<0.1	6.9	0.326
MW-2	01/30/2007	2.7	159	<0.1	6.8	0.309
	04/30/2007	5.4	96	<0.1	7.6	0.318
	07/23/2007	3.6	141	<0.1	7.8	0.280
	10/29/2007	2.9	79	<0.1	8.2	0.342
	01/09/2008	2.9	132	<0.1	8.3	0.306
	04/14/2008	3.4	48	<0.1	6.6	0.270
	09/05/2008	3.6	158	<0.1	6.6	0.315
	12/17/2008	1.5	126	<0.2	7.2	0.361
	03/11/2009	1.6	124	<0.1	7.4	0.349
	06/09/2009	2.6	92	<0.1	6.7	0.249
	09/10/2009	1.7	83	<0.1	7.1	0.199
	12/01/2009	2.4	25	0.2	7.3	0.194
	03/01/2010	3.5	42	0.3	7.3	0.236
	06/07/2010	3.4	119	-	6.3	0.225
	09/13/2010	3.6	80	0.2	7.3	0.251
	12/01/2010	2.8	157	<0.1	6.9	0.237
MW-3	01/30/2007	5.1	111	<0.1	6.8	0.262
	04/30/2007	6.3	74	<0.1	7.5	0.285
	07/23/2007	4.7	160	<0.1	7.5	0.341
	10/29/2007	3.9	97	<0.1	8.1	0.290
	01/09/2008	3.3	120	<0.1	8.3	0.093
	04/14/2008	3.7	73	<0.1	6.2	0.279
	09/05/2008	5.1	189	<0.1	6.2	0.302
	12/17/2008	5.9	155	<0.1	6.7	0.277
	03/11/2009	5.5	141	<0.1	6.9	0.311
	06/09/2009	4.9	90	<0.1	6.5	0.220
	09/10/2009	5.1	108	<0.1	6.7	0.215
	12/01/2009	3.7	39	<0.1	7.2	0.173

TABLE 2Field ParametersFormer Plaid Pantry No. 23

Well Name	Date	Dissolved Oxygen (mg/L) DRI ^a	Oxidation Reduction Potential (mV) DRI ^a	Ferrous Iron (Fe 2+), dissolved (mg/L) HACH ^b	pH (unitless) DRIª	Specific Conductance (ms/cm) DRI ^a
MW-3 (cont'd)	03/01/2010	2.7	37	<0.1	7.4	0.296
WW 5 (cont d)	06/07/2010	2.8	110	-	6.8	0.122
	09/13/2010	3.6	80	<0.1	7.0	0.122
	12/01/2010	4.0	144	<0.1	7.0	0.108
MW-4	01/30/2007	5.9	141	<0.1	6.7	0.678
10100-4	04/30/2007	6.6	49	<0.1	7.7	0.409
				<0.1		
	07/23/2007	3.2	115		7.7	0.413
	10/29/2007	9.8	93	<0.1	8.0	0.071
	01/09/2008	4.0	142	<0.1	8.3	0.338
	04/14/2008	5.6	87	<0.1	6.2	0.499
	09/05/2008	3.8	155	<0.1	6.4	0.417
	12/17/2008	3.5	158	<0.1	6.7	0.302
	03/11/2009	4.2	137	<0.1	7.0	0.333
	06/09/2009	4.3	83	<0.1	6.5	0.216
	09/10/2009	4.6	103	<0.1	6.8	0.227
	12/01/2009	3.8	42	0.4	7.2	0.218
	03/01/2010	3.3	40	0.2	7.4	0.252
	06/07/2010	3.1	95	-	7.0	0.243
	09/13/2010	2.9	59	0.2	7.2	0.304
	12/01/2010	2.5	151	0.4	6.8	0.297
MW-5	01/30/2007	4.5	185	<0.1	6.7	0.359
	04/30/2007	5.2	91	<0.1	7.6	0.327
	07/23/2007	3.8	79	<0.1	7.6	0.344
	10/29/2007	3.7	183	<0.1	7.9	0.341
	01/09/2008	3.0	207	<0.1	8.0	0.391
	04/14/2008	3.3	122	<0.1	6.3	0.314
	09/05/2008	4.0	206	<0.1	6.2	0.359
	12/17/2008	4.8	140	<0.1	6.7	0.368
	03/11/2009	2.6	144	<0.1	6.9	0.334
	06/09/2009	2.5	106	<0.1	6.3	0.284
	09/10/2009	3.9	104	<0.1	6.6	0.281
	12/01/2009	3.0	28	<0.1	7.0	0.280
	03/01/2010	3.4	66	<0.1	6.9	0.269
	06/07/2010	4.4	244		6.7	2.890
	09/13/2010	2.7	126	<0.1	7.7	0.364
	12/01/2010	2.7	208	<0.1	6.8	0.365
MW-6	01/30/2007	5.5	-43	0.8	7.1	0.105
	01/30/2007	5.5 6.7	-43 -27	2.6	7.1	0.105
	07/23/2007	1.9	-144	4.2	8.1 8 F	0.387
	10/29/2007	5.0	-180	3.6	8.5 8.6	0.404
	01/09/2008	3.0	-133	2.5	8.6	0.251
	04/14/2008	3.4	-129	3.0	6.3	0.181
	09/05/2008	21.9	8	<0.1	10.3	3.680

TABLE 2Field ParametersFormer Plaid Pantry No. 23

Vancouver, Washington

Well Name	Date	Dissolved Oxygen (mg/L) DRI ^a	Oxidation Reduction Potential (mV) DRI ^a	Ferrous Iron (Fe 2+), dissolved (mg/L) HACH ^b	pH (unitless) DRIª	Specific Conductance (ms/cm) DRI ^a
MW-6 (cont'd)	12/17/2008	19.4	-29	<0.1	10.3	2.230
	03/11/2009	18.8	8	<0.1	10.7	1.359
	06/09/2009	14.2	-31	<0.1	10.1	0.702
	09/10/2009	12.8	-59	<0.1	10.2	0.621
	12/01/2009	12.6	-89	<0.1	10.4	0.553
	03/01/2010	12.2	-33	NM	11.1	0.453
	06/07/2010	11.3	18	-	9.1	0.432
	09/13/2010	8.0	11	0.4	9.8	0.412
	12/01/2010	7.8	86	0.4	8.5	0.363
	10/09/2012	4.2	106	0.0	7.6	0.427
MW-7	01/30/2007	1.9	93	<0.1	6.9	0.242
	04/30/2007	1.2	59	0.1	7.5	0.235
	07/23/2007	0.8	5	<0.1	7.4	0.201
	10/29/2007	5.5	-82	<0.1	7.9	0.187
	01/09/2008	3.6	150	<0.1	8.4	0.182
	04/14/2008	2.7	36	<0.1	6.1	0.203
	09/05/2008	1.9	-3	<0.1	7.2	0.042
	12/17/2008	0.8	25	<0.1	7.3	0.686
	03/11/2009	1.0	109	<0.1	7.0	0.463
	06/09/2009	0.8	67	<0.1	6.5	0.508
	09/10/2009	0.4	-82	<0.1	7.3	0.538
	12/01/2009	0.1	-68	1.2	7.7	0.380
	03/01/2010	2.0	34	1.0	7.5	0.421
	06/07/2010	2.0	78	-	6.9	0.640
	09/13/2010	1.0	48	0.6	7.4	0.259
	12/01/2010	2.8	118	0.5	6.9	0.299
	10/09/2012	1.6	131	0.2	6.7	0.279

NOTES:

^a DRI = Direct-Read Instrument

^b HACH = Colorimetric "Hach" Field Kit

mg/L = Milligrams per liter

mV = Millivolts

ms/cm = Millisiemens per centimeter

NM = Not measured

TABLE 3 Groundwater Analytical Results Summary - Gasoline and Related Constituents (μg/L) Former Plaid Pantry #23

Location	Data	Gasoline	Diesel	Heavy/Lube Oil	Benzene	Toluene	Ethylbenzene	Yulenos	DCE	EDB	EDC	MTBE	1,2,4-TMB	1,3,5-TMB	Naphthalene	Hexane	Total Lead	Dissolved Lead
Location	Date	Gasoline	Diesei	neavy/Lube Oll	Denzene	roluene	culyibelizelle	Xylenes	PCE	EUB	EDC	IVIIBE	1,2,4-1 IVIB	τ,ς,ς-ιινιβ	марнилателе	nexdile	TOTAL FEAD	Dissolved Lead
Temporary I Dames & M	oore Offsite Inves	-																
P-1	04/28/1995	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-	-
P-2	04/28/1995	ND	ND	ND	290 ^j	41 ^j	390 ^j	1,300 ¹	-	-	-	-	-	-	-	-	-	-
P-3	04/28/1995	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-	-
P-4	04/28/1995	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-	-
PNG Site Ch	eck (1998)																	
B-1	02/19/1998	250 U	-	-	0.5 U	1.0 U	1.0 U	1.0 U	-	-	-	-	-	-	-	-	317	-
B-3	02/19/1998	420	-	-	0.5 U	1.0 U	1.0	4.0	-	-	-	-	-	-	-	-	167	-
B-5	02/19/1998	26,000	630 U ^a	630 U ^a	240	25,000	10,000	63,000	-	-	-	-	-	-	-	-	269	-
PNG Site Inv	vestigation (2002)																	
B-7	01/21/2002	423	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B-8	01/21/2002	80 U	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B-9	01/21/2002	112,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B-11	01/21/2002	, 80 U	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B-12	01/22/2002	107,000	25,100 e	1,220 e	50 U	6,240	2,740	20,190	50 U	50 U	50 U	50 U	6,900	2,160	722	-	-	-
PNG Site Inv	vestigation (2005)																	
B-13	03/09/2005	510	-	-	2.0	74	12	53	1.0 U	1.0 U	1.0 U	1.0 U	4.0	1.0	3.0 ^c	-	-	-
B-14	03/09/2005	36,000	4,300 e	250 U	1.0	1,400	1,500	5,400	1.0 U	1.0 U	1.0 U	1.0 U	590	400	150	-	-	-
B-15	03/09/2005	19,000	170 e	250 U	120	1.0 U	130	62	1.0 U	1.0 U	1.0 U	1.0 U	110	64	20 ^c	-	-	-
B-16	03/09/2005	540	170 e	250 U	5.0	2.0	67	61	1.0 U	1.0 U	1.0 U	1.0 U	32	6.0	5.0	-	-	-
B-17	03/09/2005	50 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-
B-18	03/09/2005	50 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-
B-19	03/09/2005	50 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-
B-20	03/09/2005	50 U	54 U	216 U	1.0 U	1.0 U	1.0 U	3.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.1 ^c	-	-	-
B-21	03/09/2005	50 U	54 U	216 U	1.0 U	1.0 U	1.0 U	3.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-
Monitoring	Wells																	
MW-1	01/29/2002	121	630 Uª	630 Uª	0.5 U ^d	0.63	0.5 U ^d	1.0 U ^d	1.8	0.01 U ^b	1.0 U	1.0 U	2.2	1.0 U	0.02 U ^c	_	1.0 U	1.0 U
10100 1	03/14/2005	50 U	50 U	200 U	1.0 U	1.0 U	1.0 U	3.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.1 U ^c	_	-	1.0 0
	01/30/2007	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	_	_	_
	04/30/2007	100 U	_	-	1.0 U	1.0 U	1.0 U	3.0 U	_	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	_	_	_
	07/23/2007	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	_	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	_	_	_
	10/29/2007	100 U		-	1.0 U	1.0 U	1.0 U	3.0 U	_	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	_	_	-
	01/09/2008	100 U		-	1.0 U	1.0 U	1.0 U	3.0 U	_	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	_	_	_
	04/14/2008	100 U	_	-	1.0 U	1.0 U	1.0 U	3.0 U	_	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	_	_	_
	09/05/2008	100 U		-	1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	_	_	_
	12/17/2008	100 U			1.0 U	1.0 U	1.0 U	3.0 U	_	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	_	_	_
	03/11/2009	100 U			1.0 U	1.0 U	1.0 U	3.0 U	_	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	_		_
	06/09/2009	100 U		-	1.0 U	1.0 U	1.0 U	3.0 U	_	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	_	_	_
	09/10/2009	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	_	_	_
	12/01/2009	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	_	-
	03/01/2010	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	1.4	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-
	06/07/2010	100 U	-	-	0.35 U	1.0 U	1.0 U	3.0 U	1.4 1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	_	-
	09/13/2010	100 U	-	-	0.35 U	1.0 U	1.0 U	3.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-
	12/01/2010	100 U	-	-	0.35 U	1.0 U	1.0 U	3.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 0	-	_
			_													-	-	-
MW-2	01/29/2002	80 U	-	-	0.5 U ^d	0.5 U ^d	0.5 U ^d	1.0 U ^d	-	-	-	-	-	-	-	-	-	-
	03/14/2005	50 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	2.0	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-
	01/30/2007	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-
	04/30/2007	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-
	07/23/2007	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-
	10/29/2007	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-
	01/09/2008	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-

 TABLE 3

 Groundwater Analytical Results Summary - Gasoline and Related Constituents (µg/L)

 Former Plaid Pantry #23

Location	Date	Gasoline	Diesel	Heavy/Lube Oil	Benzene	Toluene	Ethylbenzene	Xylenes	PCE	EDB	EDC	MTBE	1,2,4-TMB	1,3,5-TMB	Naphthalene	Hexane	Total Lead	Dissolved Lead
MW-2 (con't)	04/14/2008	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U	-	-	-					
	09/05/2008	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U	-	-	-					
	12/17/2008	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U	-	-	-					
	03/11/2009	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U	-	-	-					
	06/09/2009	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U	-	-	-					
	09/10/2009	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U	-	-	-					
	12/01/2009	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U	-	-	-					
	03/01/2010	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-
	06/07/2010	100 U	-	-	0.35 U	1.0 U	1.0 U	3.0 U	1.0	1.0 U	1.0 U	-	-					
	09/13/2010	100 U	-	-	0.35 U	1.0 U	1.0 U	3.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-
	12/01/2010	100 U	-	-	0.35 U	1.0 U	1.0 U	3.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-
MW-3	01/29/2002	80 U	-	-	0.5 U ^d	0.5 U ^d	0.5 U ^d	1.0 U ^d	-	-	-	-	-	-	-	-	-	-
	03/14/2005	50 U	50 U	200 U	1.0 U	1.0 U	1.0 U	3.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-
	01/30/2007	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U	-	-	-					
	04/30/2007	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U	-	-	-					
	07/23/2007	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U	-	-	-					
	10/29/2007	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U	-	-	-					
	01/09/2008	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U	-	-	-					
	04/14/2008 09/05/2008	100 U 100 U	-	-	1.0 U 1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U 1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-
	12/17/2008	100 U	-	-		1.0 U	1.0 U	3.0 U 3.0 U	-		1.0 U	-	-	-				
	03/11/2009	100 U	-	-	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	3.0 U 3.0 U	-	1.0 U 1.0 U	-	-	-					
	06/09/2009	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U	-	-	-					
	09/10/2009	100 U	_	-	1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U			-					
	12/01/2009	100 U	_	_	1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U	-	_	_					
	03/01/2010	100 U	_	-	1.0 U	1.0 U	1.0 U	3.0 U	1.3	1.0 U	1.0 U	_	_					
	06/07/2010	100 U	-	_	0.35 U	1.0 U	1.0 U	3.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-
	09/13/2010	100 U	-	-	0.35 U	1.0 U	1.0 U	3.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-
	12/01/2010	100 U	-	-	0.35 U	1.0 U	1.0 U	3.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-
MW-4	01/29/2002	80 U	-	-	0.5 U ^d	0.60 ^d	0.5 U ^d	1.0 U ^d	-	-	-	-	-	-	-	-	-	-
	03/14/2005	50 U	50 U	200 U	1.0 U	1.0 U	1.0 U	3.0 U	1.0	1.0 U	-	-	-					
	01/30/2007	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U	-	-	-					
	04/30/2007	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U	-	-	-					
	07/23/2007	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U	-	-	-					
	10/29/2007	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U	-	-	-					
	01/09/2008	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U	-	-	-					
	04/14/2008	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U	-	-	-					
	09/05/2008	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U	-	-	-					
	12/17/2008	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U	-	-	-					
	03/11/2009	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U	-	-	-					
	06/09/2009	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U	-	-	-					
	09/10/2009	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U	-	-	-					
	12/01/2009	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U	-	-	-					
	03/01/2010	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-
	06/07/2010	100 U	-	-	0.35 U	1.0 U	1.0 U	3.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-
	09/13/2010	100 U	-	-	0.35 U	1.0 U	1.0 U	3.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-
	12/01/2010	100 U	-	-	0.35 U	1.0 U	1.0 U	3.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-
MW-5	01/29/2002	80 U	-	-	0.5 U ^d	0.5 U ^d	0.5 U ^d	1.0 U ^d	-	-	-	-	-	-	-	-	-	-
	03/14/2005	50 U	50 U	200 U	1.0 U	1.0 U	1.0 U	3.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-
	01/30/2007	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U	-	-	-					
	04/30/2007	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U	-	-	-					
	07/23/2007	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U	-	-	-					
	10/29/2007	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U	-	-	-					
	01/09/2008	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U	-	-	-					

 TABLE 3

 Groundwater Analytical Results Summary - Gasoline and Related Constituents (µg/L)

 Former Plaid Pantry #23

Location	Date	Gasoline	Diesel	Heavy/Lube Oil	Benzene	Toluene	Ethylbenzene	Xylenes	PCE	EDB	EDC	MTBE	1,2,4-TMB	1,3,5-TMB	Naphthalene	Hexane	Total Lead	Dissolved Lead
MW-5 (con't)	04/14/2008	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-
	09/05/2008	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-
	12/17/2008	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-
	03/11/2009	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-
	06/09/2009	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-
	09/10/2009	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-
	12/01/2009	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-
	03/01/2010	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-
	06/07/2010	100 U	-	-	0.35 U	1.0 U	1.0 U	3.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-
	09/13/2010	100 U	-	-	0.35 U	1.0 U	1.0 U	3.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-
	12/01/2010	100 U	-	-	0.35 U	1.0 U	1.0 U	3.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-
MW-6	01/29/2002	5,530	630 U ^a	630 U ^a	523	4.6	558	536	5.0 U	0.01 U ^b	5.0 U	5.0 U	376	114	43.4 °	-	1.6	1.0 U
	03/14/2005	13,000	4,700 ^e	100 ^e	420	880	1,300	2,370	1.0 U	1.0 U	1.0 U	1.0 U	1,200	440	180 °	-	-	-
MW-50 (dup)	03/14/2005	22,000	4,800		610	1,200	1,900	3,330	1.0 U	1.0 U	1.0 U	1.0 U	1,500	560	440	35 L	-	-
$\Lambda \Lambda \Lambda = \Gamma = $	01/30/2007	100 U	-	-	1.5	1.0 U	1.0 U	3.0 U	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-
MW-50 (dup)	01/30/2007 04/30/2007	100 U 100 U	-	-	1.5	1.0 U 1.0 U	1.0 U	3.0 U	-	1.0 U	1.0 U	1.0 U 1.0 U	1.0 U 3.7	1.0 U 1.0 U	1.0 U 1.0 U	-	-	-
MW-50 (dup)	04/30/2007	100 U	-	-	4.4 4.3	1.0 U	3.2 3.1	3.1 2.9	-	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U	3.4	1.0 U	1.0 U	-	-	-
10100-50 (uup)	07/23/2007	1,800 0	-	-	4.3 63	1.0 U	17	2.9 64	-	1.0 U	1.0 U	1.0 U	45	45	33	-	-	-
MW-50 (dup)	07/23/2007	1,900	-	-	68	1.0 U	19	75	-	1.0 U	1.0 U	1.0 U	43 52	43 51	36	-	-	-
WW-50 (uup)	10/29/2007	810	-		40	1.0 0	19	43		1.0 U	1.0 U	1.0 U	6.8	1.6	2.3			_
MW-50 (dup)	10/29/2007	580	-	_	32	24	12	59	_	1.0 U	1.0 U	1.0 U	8.3	2.1	2.8	-	-	_
WW 50 (uup)	01/09/2008	940	-	_	58	1.0 U	72	155	_	1.0 U	1.0 U	1.0 U	68	16	11	-	-	_
MW-50 (dup)	01/09/2008	2,700	-	_	100	10 U	220	457	_	10 U	10 U	10 U	180	34	22	-	-	-
10100 SO (ddp)	04/14/2008	700	-	_	17	150	50	240	_	1.0 U	1.0 U	1.0 U	33	8.0	5.4	-	-	_
MW-50 (dup)	04/14/2008	1,600	-	-	24	270	72	330	-	1.0 U	1.0 U	1.0 U	46	11	7.5	-	-	-
	09/05/2008	120	-	-	3.5	3.8	11	15	-	1.0 U	1.0 U	1.0 U	2.5	1.4	2.0	-	-	-
MW-50 (dup)	09/05/2008	120	-	-	3.2	3.2	10	13	-	1.0 U	1.0 U	1.0 U	1.8	1.0 U	3.5	-	-	-
	12/17/2008	100 U	-	-	1.0 U	1.0	1.2	7.0	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-
MW-50 (dup)	12/17/2008	100 U	-	-	1.0 U	1.0	1.2	7.1	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-
$\Lambda \Lambda \Lambda / \Gamma O (dum)$	03/11/2009	720	-	-	18	20	73	110	-	1.0 U	1.0 U	1.0 U	6.9	1.0 U	1.0 U	-	-	-
MW-50 (dup)	03/11/2009 06/09/2009	450 100 U	-	-	19 1.0 U	22 1.0 U	80 1.0 U	119 3.0 U	-	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	7.9 1.0 U	1.0 U 1.0 U	1.1 1.0 U	-	-	-
MW-50 (dup)	06/09/2009	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U	1.0 U	1.0 U	2.6	1.0 U	1.0 U	-	-	-
10100-50 (uup)	09/10/2009	100 U	-	-	1.0 U	1.0 U	1.0 0	3.0 O 8.4	-	1.0 U	1.0 U	1.0 U	2.0	1.0 U	1.0 U	-	-	-
MW-50 (dup)	09/10/2009	100 U	-		1.0 U	1.0 0	1.9	3.4 10		1.0 U	1.0 U	1.0 U	2.6	1.0 U	1.0 U			_
WW 50 (uup)	12/01/2009	160 0	-	_	3.2	1.0 U	19	26	_	1.0 U	1.0 U	1.0 U	6.0	1.0 U	1.0 U	-	-	_
MW-50 (dup)	12/01/2009	140	-	_	4.0	1.0 U	24	34	_	1.0 U	1.0 U	1.0 U	8.0	1.0 U	1.0 U	-	-	_
10100 SO (00p)	03/01/2010	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-
MW-50 (dup)	03/01/2010	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-
	06/07/2010	100 U	-	-	0.35 U	1.0 U	1.0 U	3.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-
MW-50 (dup)	06/07/2010	100 U	-	-	0.35 U	1.0 U	1.0 U	3.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-
(09/13/2010	100 U	-	-	0.45	1.0 U	2.5	1.6 ^h	1.0 U	1.0 U	1.0 U	1.0 U	7.4	1.5	1.2	1.0 U	-	-
MW-50 (dup)	09/13/2010	110	-	-	0.60	1.0 U	3.3	1.8 ^h	1.0 U	1.0 U	1.0 U	1.0 U	5.4	1.1	1.1	1.0 U	-	-
	12/01/2010	100 U	-	-	0.35 U	1.0 U	1.0 U	3.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-
MW-50 (dup)	12/01/2010	100 U	-	-	0.35 U	1.0 U	1.0 U	3.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-
	10/09/2012	100 U	-	-	1.0	1.0 U	1.0	1.5 U	-	0.01 U	0.50 U	1.0 U	0.57 J	1.0 U	2.0 U	-	1.0 U	1.0 U
MW-7	01/29/2002	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	03/14/2005	63,000	5,500 °	250 U	16 E	5,800	3,100	16,100	1.0 U	1.0 U	1.0 U	1.0 U	2,400	600	270 ^c	-	-	-
	01/30/2007	100 U	-	-	1.0 U	3.4	1.5	13	-	1.0 U	1.0 U	1.0 U	1.9	1.0 U	1.0 U	-	-	-
	04/30/2007	100 U	-	-	1.0 U	1.3	1.5	6.6	-	1.0 U	1.0 U	1.0 U	2.8	1.0 U	1.0 U	-	-	-
	07/23/2007	610	-	-	1.0 U	44	36	170	-	1.0 U	1.0 U	1.0 U	32	8.3	2.2	-	-	-
	10/29/2007	20,000	-	-	4.3	1,600	680	2,860	-	1.0 U	1.0 U	1.0 U	1,000	720	120	-	-	-
	01/09/2008	100 U	-	-	1.0 U	3.4	1.7	13	-	1.0 U	1.0 U	1.0 U	3.4	1.0 U	1.0 U	-	-	-

 TABLE 3

 Groundwater Analytical Results Summary - Gasoline and Related Constituents (µg/L)

 Former Plaid Pantry #23

Vancouver, Washington

Location	Date	Gasoline	Diesel	Heavy/Lube Oil	Benzene	Toluene	Ethylbenzene	Xylenes	PCE	EDB	EDC	MTBE	1,2,4-TMB	1,3,5-TMB	Naphthalene	Hexane	Total Lead	Dissolved Lead
MW-7 (con't)	04/14/2008	100 U	-	-	1.0 U	2.3	1.9	11	-	1.0 U	1.0 U	1.0 U	1.9	1.0 U	1.0 U	-	-	-
	09/05/2008	16,000	-	-	3.4	1,700	750	3,300	-	1.0 U	1.0 U	1.0 U	590	210	160	-	-	-
	12/17/2008	3,900	-	-	1.0 U*	240	180	1,150	-	1.0 U ⁱ	1.0 U ⁱ	1.0 U ⁱ	170	69	25	-	-	-
	03/11/2009	100 U	-	-	1.0 U	1.0 U	1.0 U	1.4 c	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-
	06/09/2009	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-
	09/10/2009	9,400	-	-	1.1	320	360	1,660	-	1.0 U	1.0 U	1.0 U	270	61	53	-	-	-
	12/01/2009	8,300	-	-	1.0 U	860	560	2,900	-	1.0 U	1.0 U	1.0 U	440	120	46	-	-	-
	03/01/2010	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-
	06/07/2010	100 U	-	-	0.35 U	1.0 U	1.0 U	3.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-
	09/13/2010	100 U	-	-	0.35 U	1.0 U	1.0 U	3.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-
	12/01/2010	100 U	-	-	0.35 U	1.0 U	1.0 U	3.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-
	10/09/2012	106	-	-	0.25 U	1.0 U	6.6	17	-	0.01 U	0.5 U	1.0 U	9.3	1.3	1.8 J	-	1.0 U	1.0 U
MTCA Method	A ^f 8	00/1,000 ^g	500	500	5.0	1,000	700	1,000	5.0	0.01	5.0	20	NA	NA	160	NA	15	15

Notes:

^a TPH by Method NWTPH-HCID

^b EDB by EPA Method 8011

^c Naphthalene by EPA Method 8270C SIM

^d BTEX by EPA Method 8021B

^e Weathered or degraded fuel detected, not indicative of diesel or heavy oil

^f Model Toxics Control Act Cleanup (MTCA) Amendments (WDOE, October 12, 2007)

^g Per MTCA, values for gasoline are for benzene present (Gx < 800 ug/L) versus no benzene present (Gx < 1,000 ug/L)

^h Results for o-Xylene only, Result for m,p-Xylene was below the reporting limit.

ⁱ Results obtained from non-diluted sample; all other data from this sample obtained from a dilution.

^j BTEX by EPA Method 8020

Volatile Compounds by EPA Method 8260B unless otherwise noted

TPH by Method NWTPH-Gx (gasoline) and NWTPH-Dx (non-gasoline) unless otherwise noted

PCE = Tetrachloroethene

MTBE = Methyl tert-butyl ether

EDB = 1,2-Dibromoethane

EDC = 1,2-Dichloroethane

1,2,4-TMB = 1,2,4-Trimethylbenzene

1,3,5-TMB = 1,3,5-Trimethylbenzene

ug/L = Micrograms per liter

c = Lab qualifier - o-Xylene concentration (1.4 ug/L may be due to carryover from the previously analyzed sample. Result for m,p-Xylene was below the reporting limit.)

U = Undetected at method reporting limit shown

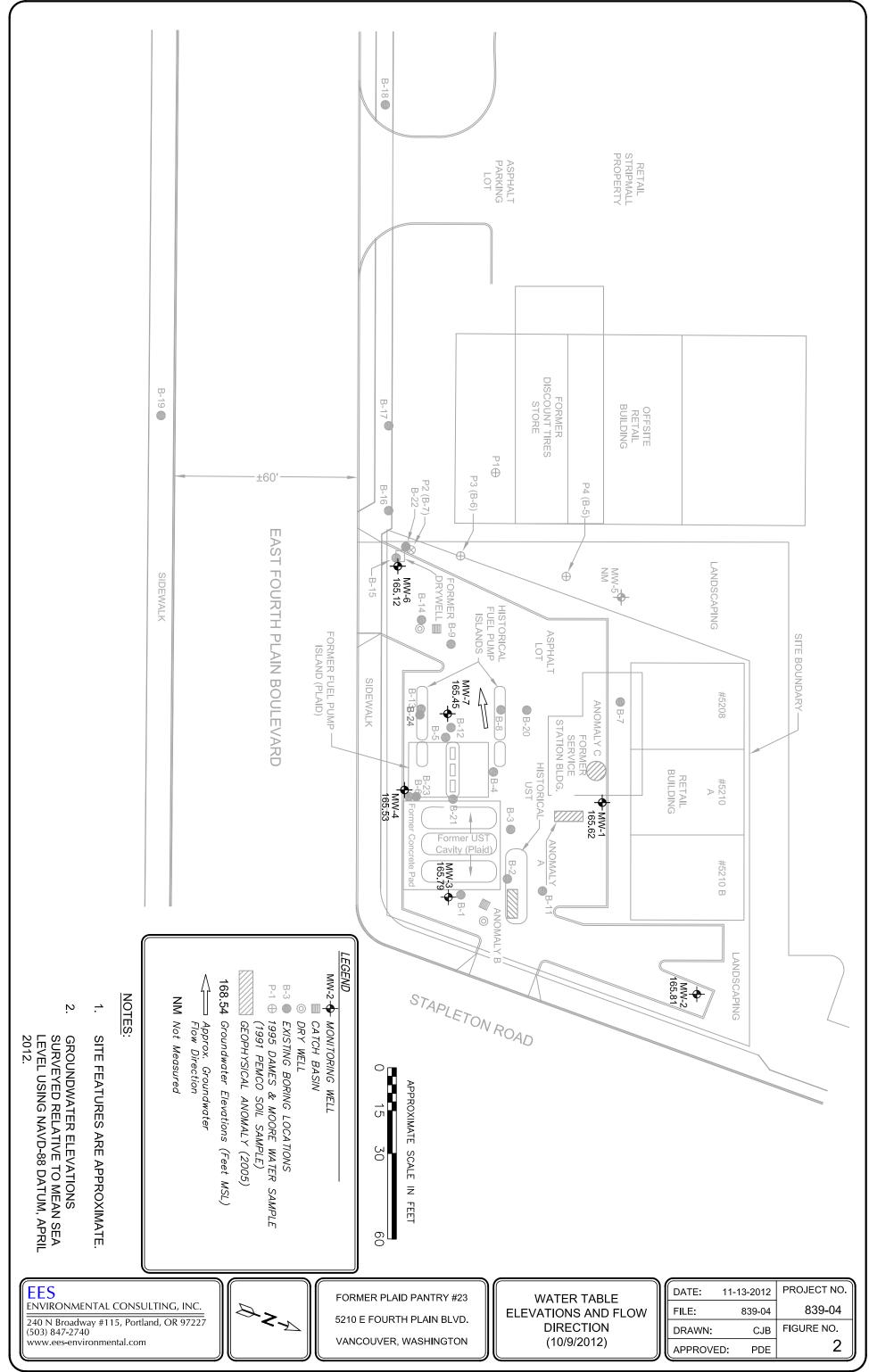
J = Estimated Result . Result detected below the lowest point of the calibration curve, but above the specified MDL.

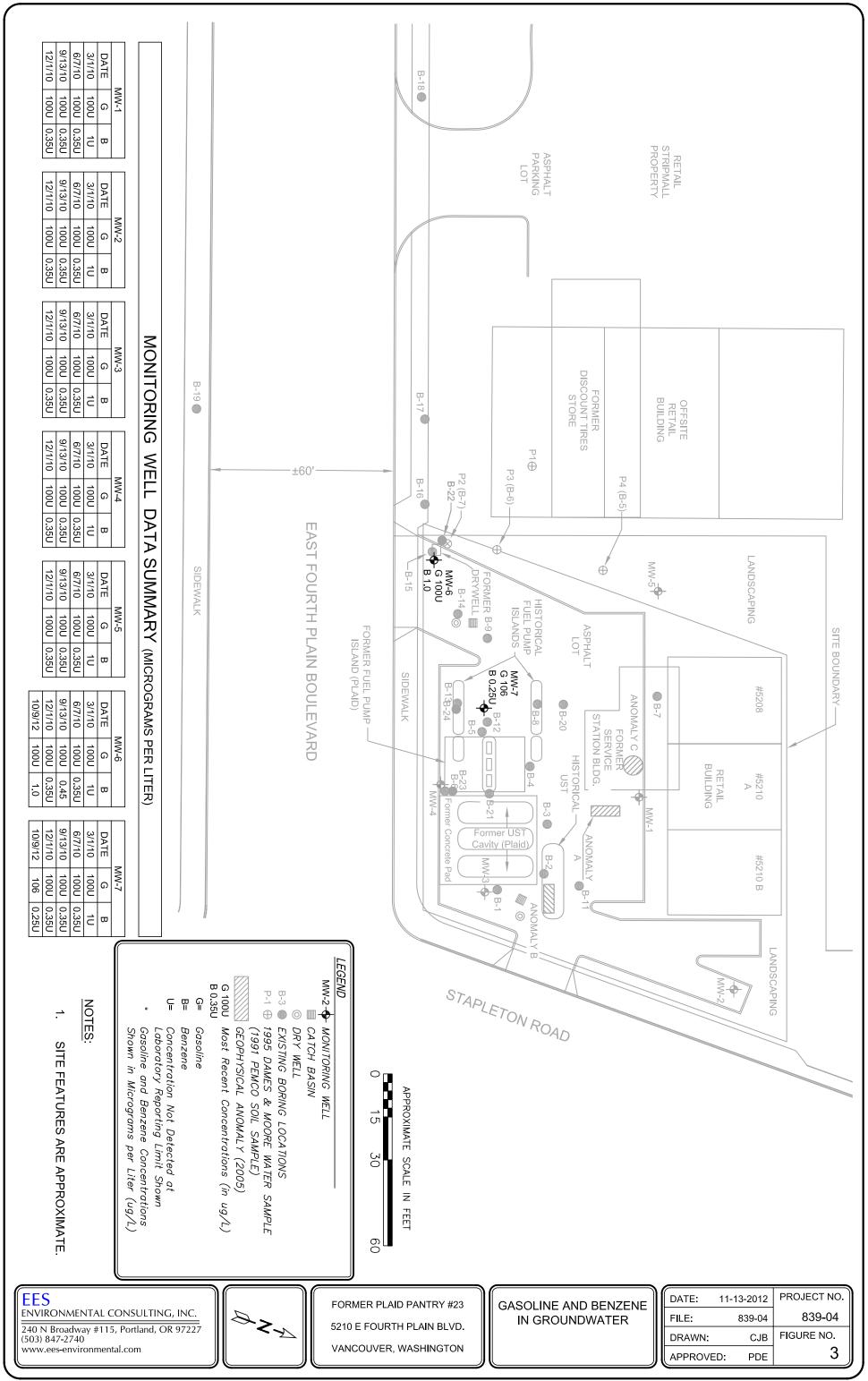
E = Some laboratory carryover possible; see laboratory analytical report

L = The reported concentration was generated from a library search


- = Not tested

NA = Not applicable


ND = Not detected


Values in bold indicate compound was detected at a concentration exceeding the most stringent MTCA Method A standard

Figures

Attachment A Laboratory Analytical Report

EES Environmental Consulting, Inc.

Apex Labs

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Wednesday, October 31, 2012

Paul Ecker EES Environmental Inc 240 N Broadway Ste 115 Portland, OR 97227

RE: Plaid Pantry #23 / 839-04

Enclosed are the results of analyses for work order <u>A12J274</u>, which was received by the laboratory on 10/10/2012 at 12:40:00PM.

Thank you for using Apex Labs. We appreciate your business and strive to provide the highest quality services to the environmental industry.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: <u>pnerenberg@apex-labs.com</u>, or by phone at 503-718-2323.

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

Apex Labs

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

EES Environmental Inc	Project: Plaid Pantry #23								
240 N Broadway Ste 115	Project Number: 839-04	Reported:							
Portland, OR 97227	Project Manager: Paul Ecker	10/31/12 17:38							
ANALYTICAL REPORT FOR SAMPLES									

Laboratory ID	Matrix	Date Sampled	Date Received
A12J274-02	Water	10/09/12 10:05	10/10/12 12:40
A12J274-03	Water	10/09/12 10:41	10/10/12 12:40

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

1,4-Difluorobenzene (Sur)

Notes

EES Environmental Inc	Project: Pl	laid Pantry #23	
240 N Broadway Ste 115	Project Number: 83	39-04	Reported:
Portland, OR 97227	Project Manager: Pa	aul Ecker	10/31/12 17:38

ANALYTICAL SAMPLE RESULTS

Gasoline Range Hydrocarbons (Benzene to Naphthalene) by NWTPH-Gx Reporting MDL Result Limit Method Analyte Dilution Date Analyzed Units MW-7 (A12J274-02) Matrix: Water Batch: 1210336 **Gasoline Range Organics** 0.106 ----0.100 10/11/12 16:29 mg/L 1 NWTPH-Gx (MS) Surrogate: 4-Bromofluorobenzene (Sur) Recovery: 94 % Limits: 50-150 % .. 1,4-Difluorobenzene (Sur) 89 % Limits: 50-150 % MW-6 (A12J274-03) Matrix: Water Batch: 1210336 Gasoline Range Organics ND 0.100 1 10/11/12 16:57 NWTPH-Gx (MS) --mg/L Surrogate: 4-Bromofluorobenzene (Sur) Recovery: 95 % Limits: 50-150 %

90 %

Limits: 50-150 %

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

EES Environmental Inc	Project: Plaid Pantry #23	
240 N Broadway Ste 115	Project Number: 839-04	Reported:
Portland, OR 97227	Project Manager: Paul Ecker	10/31/12 17:38

ANALYTICAL SAMPLE RESULTS

		RBCA	Compound	s (BTEX+) by E	PA 8260B			
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
MW-7 (A12J274-02)			Matrix: Wa	ater Ba	tch: 1210336			
Benzene	ND	0.125	0.250	ug/L	1	10/11/12 16:29	EPA 8260B	
Toluene	ND	0.500	1.00	"	"	"	"	
Ethylbenzene	6.62	0.250	0.500	"	"	"	"	
Xylenes, total	16.6	0.750	1.50	"	"	"	"	
Naphthalene	1.78	1.00	2.00	"	"	"	"	
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	"	"	"	"	
Isopropylbenzene	ND	0.500	1.00	"	"	"	"	
n-Propylbenzene	1.05	0.250	0.500	"	"	"	"	
1,2,4-Trimethylbenzene	9.34	0.500	1.00	"	"	"	"	
1,3,5-Trimethylbenzene	1.31	0.500	1.00	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.250	0.500	"	"	"	"	
Surrogate: Dibromofluoromethane (Su	rr)	Rec	covery: 100 %	Limits: 80-120 %	"	"	"	
1,4-Difluorobenzene (Surr)			104 %	Limits: 80-120 %	"	"	"	
Toluene-d8 (Surr)			107 %	Limits: 80-120 %	"		"	
4-Bromofluorobenzene (Sur	r)		103 %	Limits: 80-120 %	"	"	"	
/W-6 (A12J274-03)			Matrix: Wa	ater Ba	tch: 1210336			
Benzene	1.03	0.125	0.250	ug/L	1	10/11/12 16:57	EPA 8260B	
Toluene	ND	0.500	1.00	"	"	"	"	
Ethylbenzene	1.03	0.250	0.500	"	"	"	"	
Xylenes, total	ND	0.750	1.50	"	"	"	"	
Naphthalene	ND	1.00	2.00	"	"	"	"	
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	"	"	"	"	
Isopropylbenzene	1.68	0.500	1.00	"	"	"	"	
n-Propylbenzene	6.76	0.250	0.500	"	"	"	"	
1,2,4-Trimethylbenzene	0.570	0.500	1.00	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.500	1.00	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.250	0.500	"	"	"	"	
Surrogate: Dibromofluoromethane (Su	rr)	Rec	covery: 101 %	Limits: 80-120 %	"	"	"	
1,4-Difluorobenzene (Surr)			105 %	Limits: 80-120 %	"	"	"	
Toluene-d8 (Surr)			106 %	Limits: 80-120 %	"	"	"	
4-Bromofluorobenzene (Sur	r)		102 %	Limits: 80-120 %	"	"	"	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

J

J

EES Environmental Inc	Project: Plaid Pantry #23	
240 N Broadway Ste 115	Project Number: 839-04	Reported:
Portland, OR 97227	Project Manager: Paul Ecker	10/31/12 17:38

ANALYTICAL SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260B SIM

	Desult		Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
MW-7 (A12J274-02)		Ma	trix: Water	Batc	h: 1210488			
1,2-Dibromoethane (EDB)	ND	0	.0100	ug/L	1	10/16/12 18:47	EPA 8260B SIM	
Surrogate: Dibromofluoromethane (Surr)		Recovery	: 107 % Li	mits: 80-120 %	"	"	"	
1,4-Difluorobenzene (Surr)			104 % Li	mits: 80-120 %	"	"	"	
Toluene-d8 (Surr)			101 % Li	mits: 80-120 %	"	"	"	
4-Bromofluorobenzene (Surr)			98 % Li	mits: 80-120 %	"	"	"	
MW-6 (A12J274-03)		Ма	trix: Water	Batc	h: 1210488			
1,2-Dibromoethane (EDB)	ND	0	.0100	ug/L	1	10/16/12 19:39	EPA 8260B SIM	
Surrogate: Dibromofluoromethane (Surr)		Recovery	: 108 % Li	mits: 80-120 %	"	"	"	
1,4-Difluorobenzene (Surr)			104 % Li	mits: 80-120 %	"	"	"	
Toluene-d8 (Surr)			101 % Li	mits: 80-120 %	"	"	"	
4-Bromofluorobenzene (Surr)			100 % Li	mits: 80-120 %	"	"	"	

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

EES Environmental Inc	Project: Plaid Pantry #23	
240 N Broadway Ste 115	Project Number: 839-04	Reported:
Portland, OR 97227	Project Manager: Paul Ecker	10/31/12 17:38

ANALYTICAL SAMPLE RESULTS

Total Metals by EPA 6020 (ICPMS)									
		Reporting							
Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes		
MW-7 (A12J274-02) Matrix: Water									
ND		1.00	ug/L	1	10/24/12 15:36	EPA 6020			
		Matrix: Water	r						
ND		1.00	ug/L	1	10/24/12 15:40	EPA 6020			
	ND	Result MDL ND	Result MDL Limit Matrix: Water ND 1.00 Matrix: Water	Reporting Result MDL Limit Units Matrix: Water ND 1.00 ug/L Matrix: Water	Reporting Result MDL Limit Units Dilution Matrix: Water ND 1.00 ug/L 1 Matrix: Water	Reporting Limit Units Dilution Date Analyzed Matrix: Water ND 1.00 ug/L 1 10/24/12 15:36 Matrix: Water	Reporting Limit Units Dilution Date Analyzed Method Matrix: Water ND 1.00 ug/L 1 10/24/12 15:36 EPA 6020 Matrix: Water		

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

EES Environmental Inc	Project: Plaid Pantry #23	
240 N Broadway Ste 115	Project Number: 839-04	Reported:
Portland, OR 97227	Project Manager: Paul Ecker	10/31/12 17:38
L		

ANALYTICAL SAMPLE RESULTS

Dissolved Metals by EPA 6020 (ICPMS)									
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Date Analyzed	Method	Notes	
MW-7 (A12J274-02) Matrix: Water									
Batch: 1210670									
Lead	ND		1.00	ug/L	1	10/26/12 11:30	EPA 6020 (Diss)		
MW-6 (A12J274-03)			Matrix: Water	•					
Batch: 1210670									
Lead	ND		1.00	ug/L	1	10/26/12 11:33	EPA 6020 (Diss)		

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

EES Environmental Inc	Project: Plaid Pantry #23	
240 N Broadway Ste 115	Project Number: 839-04	Reported:
Portland, OR 97227	Project Manager: Paul Ecker	10/31/12 17:38

QUALITY CONTROL (QC) SAMPLE RESULTS

	Gasol	ine Rar	nge Hydroca	rbons	(Benzene	to Naphtha	alene) by	NWTPH	-Gx			
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1210336 - EPA 5030B							Wat	ter				
Blank (1210336-BLK1)					Prepared: 10	/11/12 12:57	Analyzed:	10/11/12 1	16:00			
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		0.100	mg/L	1							
Surr: 4-Bromofluorobenzene (Sur)		R	ecovery: 94 %	Limits:	50-150 %	Dil	ution: 1x					
1,4-Difluorobenzene (Sur)			90 %		50-150 %		"					
LCS (1210336-BS2)					Prepared: 10	/11/12 12:57	Analyzed:	10/11/12 1	15:32			
NWTPH-Gx (MS)												
Gasoline Range Organics	0.463		0.100	mg/L	1	0.500		93	70-130%			
Surr: 4-Bromofluorobenzene (Sur)		R	ecovery: 96 %	Limits:	50-150 %	Dil	ution: 1x					
1,4-Difluorobenzene (Sur)			88 %		50-150 %		"					
Duplicate (1210336-DUP1)					Prepared: 10	/11/12 14:57	Analyzed:	10/11/12 1	18:52			
QC Source Sample: Other (A12J280-0)2)											
NWTPH-Gx (MS)												
Gasoline Range Organics	38.9		5.00	mg/L	50		35.5			9	30%	
Surr: 4-Bromofluorobenzene (Sur)		R	ecovery: 94 %	Limits:	50-150 %	Dil	ution: 1x					
1,4-Difluorobenzene (Sur)			90 %		50-150 %		"					
Duplicate (1210336-DUP2)					Prepared: 10	/11/12 14:57	Analyzed:	10/12/12 (00:04			
QC Source Sample: Other (A12J280-()8)											
NWTPH-Gx (MS)												
Gasoline Range Organics	72.4		10.0	mg/L	100		76.1			5	30%	
Surr: 4-Bromofluorobenzene (Sur)		R	ecovery: 95 %	Limits:	50-150 %	Dil	ution: 1x					
1,4-Difluorobenzene (Sur)			90 %		50-150 %		"					

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

EES Environmental Inc	Project: Plaid Pantry #23	
240 N Broadway Ste 115	Project Number: 839-04	Reported:
Portland, OR 97227	Project Manager: Paul Ecker	10/31/12 17:38

QUALITY CONTROL (QC) SAMPLE RESULTS

RBCA Compounds (BTEX+) by EPA 8260B												
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1210336 - EPA 5030B							Wat	er				
Blank (1210336-BLK1)				Pı	repared: 10/	11/12 12:57	Analyzed:	10/11/12 1	6:00			
EPA 8260B												
Benzene	ND	0.125	0.250	ug/L	1							
Toluene	ND	0.500	1.00	"	"							
Ethylbenzene	ND	0.250	0.500	"	"							
m,p-Xylene	ND	0.500	1.00	"	"							
o-Xylene	ND	0.250	0.500	"	"							
Xylenes, total	ND	0.750	1.50	"	"							
Naphthalene	ND	1.00	2.00	"	"							
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	"	"							
Isopropylbenzene	ND	0.500	1.00	"	"							
n-Propylbenzene	ND	0.250	0.500	"	"							
1,2,4-Trimethylbenzene	ND	0.500	1.00	"	"							
1,3,5-Trimethylbenzene	ND	0.500	1.00	"	"							
1,2-Dibromoethane (EDB)	ND	0.250	0.500	"	"							
1,2-Dichloroethane (EDC)	ND	0.250	0.500	"	"							
Surr: Dibromofluoromethane (Surr)		Rec	covery: 100 %	Limits: 8	30-120 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Surr)			104 %	8	80-120 %		"					
Toluene-d8 (Surr)			106 %	8	80-120 %		"					
4-Bromofluorobenzene (Surr)			101 %	8	80-120 %		"					
LCS (1210336-BS1)				Pı	repared: 10/	11/12 12:57	Analyzed:	10/11/12 1	5:03			
EPA 8260B												
Benzene	20.6	0.125	0.250	ug/L	1	20.0		103	70-130%			
Toluene	19.9	0.500	1.00	"	"	"		99	"			
Ethylbenzene	19.8	0.250	0.500	"	"	"		99	"			
m,p-Xylene	40.9	0.500	1.00	"	"	40.0		102	"			
o-Xylene	20.4	0.250	0.500	"	"	20.0		102	"			
Xylenes, total	61.3	0.750	1.50	"	"	60.0		102	"			
Naphthalene	17.8	1.00	2.00	"	"	20.0		89	"			
Methyl tert-butyl ether (MTBE)	20.4	0.500	1.00	"	"	"		102	"			
Isopropylbenzene	19.7	0.500	1.00	"		"		98	"			
n-Propylbenzene	20.1	0.250	0.500	"	"	"		100	"			
1,2,4-Trimethylbenzene	20.7	0.500	1.00	"		"		104	"			
1,3,5-Trimethylbenzene	20.0	0.500	1.00	"	"	"		100	"			
1,2-Dibromoethane (EDB)	20.0	0.250	0.500	"	"	"		100	"			
1,2-Dichloroethane (EDC)	17.4	0.250	0.500	"		"		87	"			

Apex Laboratories

Philip Neverberg

EES Environmental Inc	Project: Plaid Pantry #23	
240 N Broadway Ste 115	Project Number: 839-04	Reported:
Portland, OR 97227	Project Manager: Paul Ecker	10/31/12 17:38

QUALITY CONTROL (QC) SAMPLE RESULTS

			RBCA Co	mpounds	(BTEX+)) by EPA 8	260B					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1210336 - EPA 5030B	5						Wat	er				
LCS (1210336-BS1)				Pre	pared: 10/	11/12 12:57	Analyzed:	10/11/12 15	:03			
Surr: Dibromofluoromethane (Surr)		Rec	overy: 100 %	Limits: 80	-120 %	Dil	ution: 1x					
1,4-Difluorobenzene (Surr)			103 %	80-	120 %		"					
Toluene-d8 (Surr)			105 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			100 %	80-	-120 %		"					
Duplicate (1210336-DUP1)				Pre	pared: 10/	11/12 14:57	Analyzed:	10/11/12 18	:52			
QC Source Sample: Other (A12J280	-02)											
EPA 8260B												
Benzene	2910	6.25	12.5	ug/L	50		2860			2	30%	
Toluene	1430	25.0	50.0	"	"		1430			0.1	30%	
Ethylbenzene	1320	12.5	25.0	"	"		1310			1	30%	
m,p-Xylene	3660	25.0	50.0	"	"		3640			0.7	30%	
o-Xylene	1010	12.5	25.0	"	"		1000			0.3	30%	
Xylenes, total	4670	37.5	75.0	"	"		4640			0.6	30%	
Naphthalene	516	50.0	100	"	"		489			5	30%	
Methyl tert-butyl ether (MTBE)	ND	25.0	50.0	"	"		ND				30%	
Isopropylbenzene	53.0	25.0	50.0	"	"		53.5			0.9	30%	
n-Propylbenzene	222	12.5	25.0	"	"		218			2	30%	
1,2,4-Trimethylbenzene	1780	25.0	50.0	"	"		1730			3	30%	
1,3,5-Trimethylbenzene	519	25.0	50.0	"	"		497			4	30%	
1,2-Dibromoethane (EDB)	ND	12.5	25.0	"	"		ND				30%	
1,2-Dichloroethane (EDC)	ND	12.5	25.0	"	"		ND				30%	
Surr: Dibromofluoromethane (Surr)		Rec	overy: 100 %	Limits: 80	-120 %	Dil	ution: 1x					
1,4-Difluorobenzene (Surr)			104 %	80-	120 %		"					
Toluene-d8 (Surr)			106 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			103 %	80-	-120 %		"					
Duplicate (1210336-DUP2)				Pre	pared: 10/	11/12 14:57	Analyzed:	10/12/12 00	:04			
QC Source Sample: Other (A12J280	-08)											
EPA 8260B												
Benzene	5960	12.5	25.0	ug/L	100		6320			6	30%	
Toluene	6800	50.0	100	"	"		7160			5	30%	
Ethylbenzene	1810	25.0	50.0	"	"		1900			5	30%	
m,p-Xylene	7870	50.0	100	"	"		8200			4	30%	
o-Xylene	3570	25.0	50.0	"	"		3720			4	30%	
Xylenes, total	11400	75.0	150	"	"		11900			4	30%	

Apex Laboratories

Philip Neverberg

EES Environmental Inc	Project: Plaid Pantry #23	
240 N Broadway Ste 115	Project Number: 839-04	Reported:
Portland, OR 97227	Project Manager: Paul Ecker	10/31/12 17:38

QUALITY CONTROL (QC) SAMPLE RESULTS

			RBCA Co	mpound	Is (BTEX+) by EPA 8	260B					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Note
Batch 1210336 - EPA 5030B							Wat	er				
Duplicate (1210336-DUP2)		Prepared: 10/11/12 14:57 Analyzed: 10/12/12 00:04										
QC Source Sample: Other (A12J280	-08)											
Naphthalene	783	100	200	ug/L	"		819			4	30%	
Methyl tert-butyl ether (MTBE)	ND	60.0	100	"	"		ND				30%	
Isopropylbenzene	ND	50.0	100	"	"		51.0			***	30%	
n-Propylbenzene	180	25.0	50.0	"	"		194			7	30%	
1,2,4-Trimethylbenzene	2010	50.0	100	"	"		2080			3	30%	
1,3,5-Trimethylbenzene	534	50.0	100	"	"		547			2	30%	
1,2-Dibromoethane (EDB)	ND	25.0	50.0	"	"		ND				30%	
1,2-Dichloroethane (EDC)	ND	25.0	50.0	"			ND				30%	
Surr: Dibromofluoromethane (Surr)		Rec	overy: 100 %	Limits:	80-120 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Surr)			104 %		80-120 %		"					
Toluene-d8 (Surr)			107 %		80-120 %		"					
4-Bromofluorobenzene (Surr)			103 %		80-120 %		"					
Matrix Spike (1210336-MS1)					1 10	11/10 14 57		10/12/12 0	1.01			
				1	Prepared: 10/	11/12 14:57	Analyzed:	10/12/12 0	1:01			
QC Source Sample: Other (A12J280- EPA 8260B	-01)											
Benzene	1870	2.50	5.00	ug/L	20	400	1400	118	70-130%			
Toluene	542	10.0	20.0	ug/12 "	20		1400	99	"			
Ethylbenzene	2020	5.00	10.0	"	"	"	145	117				
m,p-Xylene	4930	10.0	20.0	"	"	800	4170	95	"			
o-Xylene	4930 1590	5.00	20.0	"		800 400	4170 1150	93 110				
Xylenes, total	6520	15.0	30.0	"		1200	5320	100				
2	8520 857	20.0	30.0 40.0	"		400	5320	81				
Naphthalene Mathyl tart hutyl athar (MTRE)	857 380	10.0	40.0 20.0	"		400	ND	81 95				
Methyl tert-butyl ether (MTBE)	380 474	10.0	20.0	"		"	ND 72.2	95 100				
Isopropylbenzene						"		100 99				
n-Propylbenzene	689 2870	5.00	10.0				291					
1,2,4-Trimethylbenzene	2870	10.0	20.0				2390	122				
1,3,5-Trimethylbenzene	1090	10.0	20.0			"	668	106				
1,2-Dibromoethane (EDB)	364	5.00	10.0				ND	91				
1,2-Dichloroethane (EDC)	337	5.00	10.0			"	ND	84	"			
Surr: Dibromofluoromethane (Surr)		Rec	overy: 101 %		80-120 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Surr)			103 %		80-120 %		"					
Toluene-d8 (Surr)			105 %		80-120 %		"					
4-Bromofluorobenzene (Surr)			100 %		80-120 %		"					

Apex Laboratories

Philip Nevenberg

EES Environmental Inc	Project: Plaid Pantry #23	
240 N Broadway Ste 115	Project Number: 839-04	Reported:
Portland, OR 97227	Project Manager: Paul Ecker	10/31/12 17:38

QUALITY CONTROL (QC) SAMPLE RESULTS

		Vo	latile Orga	anic Co	mpounds	by EPA 82	60B SIM					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1210488 - EPA 5030B	1						Wat	ter				
Blank (1210488-BLK1)					Prepared: 1	0/16/12 16:00	Analyzed:	10/16/12 1	8:22			
EPA 8260B SIM												
1,2-Dibromoethane (EDB)	ND		0.0100	ug/L	1							
Surr: Dibromofluoromethane (Surr)		Recov	ery: 108 %	Limits:	80-120 %	Dil	lution: 1x					
1,4-Difluorobenzene (Surr)			105 %		80-120 %		"					
Toluene-d8 (Surr)			101 %		80-120 %		"					
4-Bromofluorobenzene (Surr)			100 %		80-120 %		"					
LCS (1210488-BS1)					Prepared: 1	0/16/12 16:00	Analyzed:	10/16/12 1	7:30			
EPA 8260B SIM												
1,2-Dibromoethane (EDB)	0.526		0.0100	ug/L	1	0.500		105	70-130%			
Surr: Dibromofluoromethane (Surr)		Recov	ery: 104 %	Limits:	80-120 %	Dil	lution: 1x					
1,4-Difluorobenzene (Surr)			103 %		80-120 %		"					
Toluene-d8 (Surr)			100 %		80-120 %		"					
4-Bromofluorobenzene (Surr)			99 %		80-120 %		"					
Duplicate (1210488-DUP1)					Prepared: 1	0/16/12 16:00	Analyzed:	10/16/12 1	9:13			
QC Source Sample: MW-7 (A12J274	-02)											
EPA 8260B SIM												
1,2-Dibromoethane (EDB)	ND		0.0100	ug/L	1		ND				30%	
Surr: Dibromofluoromethane (Surr)		Recov	ery: 107 %	Limits:	80-120 %	Dil	lution: 1x					
1,4-Difluorobenzene (Surr)			104 %		80-120 %		"					
Toluene-d8 (Surr)			101 %		80-120 %		"					
4-Bromofluorobenzene (Surr)			99 %		80-120 %		"					
Matrix Spike (1210488-MS1)					Prepared: 1	0/16/12 16:00	Analyzed:	10/16/12 2	0:05			
QC Source Sample: MW-6 (A12J274	-03)											
EPA 8260B SIM	-											
1,2-Dibromoethane (EDB)	0.519		0.0100	ug/L	1	0.500	ND	104	70-130%			
Surr: Dibromofluoromethane (Surr)		Recov	ery: 107 %	Limits:	80-120 %	Dii	lution: 1x					
1,4-Difluorobenzene (Surr)			103 %		80-120 %		"					
Toluene-d8 (Surr)			101 %		80-120 %		"					
4-Bromofluorobenzene (Surr)			99 %		80-120 %		,,					

Apex Laboratories

Philip Neverberg

Philip Nerenberg, Lab Director

EES Environmental Inc	Project: Plaid Pantry #23	
240 N Broadway Ste 115	Project Number: 839-04	Reported:
Portland, OR 97227	Project Manager: Paul Ecker	10/31/12 17:38

QUALITY CONTROL (QC) SAMPLE RESULTS

	Total Metals by EPA 6020 (ICPMS)											
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1210698 - EPA 301	5A						Wa	ter				
Blank (1210698-BLK1)				Pre	pared: 10/	23/12 13:21	Analyzed:	10/24/12 1	4:19			
EPA 6020												
Lead	ND		1.00	ug/L	1							
LCS (1210698-BS1)				Pre	pared: 10/	23/12 13:21	Analyzed:	10/24/12 1	4:22			
EPA 6020												
Lead	55.2		1.00	ug/L	1	55.6		99	80-120%			
Duplicate (1210698-DUP1)				Pre	pared: 10/	23/12 13:21	Analyzed:	10/24/12 1	4:52			
QC Source Sample: Other (A12J2 EPA 6020	247-06)											
Lead	1.39		1.00	ug/L	1		1.38			0.8	20%	
Matrix Spike (1210698-MS1)				Pre	pared: 10/	23/12 13:21	Analyzed:	10/24/12 1	4:55			
QC Source Sample: Other (A12J2	247-06)											
EPA 6020												
Lead	54.9		1.00	ug/L	1	55.6	1.38	96	75-125%			
Matrix Spike (1210698-MS2)				Pre	pared: 10/	23/12 13:21	Analyzed:	10/24/12 1	5:05			
QC Source Sample: Other (A12J2	247-08)											
EPA 6020												
Lead	52.7		1.00	ug/L	1	55.6	ND	95	75-125%			

Apex Laboratories

Philip Neverberg

Philip Nerenberg, Lab Director

EES Environmental Inc	Project: Plaid Pantry #23	
240 N Broadway Ste 115	Project Number: 839-04	Reported:
Portland, OR 97227	Project Manager: Paul Ecker	10/31/12 17:38

QUALITY CONTROL (QC) SAMPLE RESULTS

			Dissolve	ed Metals	by EPA	6020 (ICPI	MS)					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1210670 - Matrix Mat	ched Dire	ct Inject	t				Wa	iter				
Blank (1210670-BLK1)				Pre	pared: 10/	22/12 17:23	Analyzed	10/25/12 1	8:09			
EPA 6020 (Diss)												
Lead	ND		1.00	ug/L	1							
LCS (1210670-BS1)				Pre	pared: 10/2	22/12 17:23	Analyzed	10/25/12 1	8:12			
EPA 6020 (Diss)												
Lead	53.9		1.00	ug/L	1	55.6		97	80-120%			
Duplicate (1210670-DUP1)				Pre	pared: 10/	22/12 17:23	Analyzed	10/25/12 1	8:44			
QC Source Sample: Other (A12J273	3-02)											
EPA 6020 (Diss)												
Lead	ND		5.00	ug/L	5		ND				20%	
Matrix Spike (1210670-MS1)				Pre	pared: 10/	22/12 17:23	Analyzed	10/25/12 1	9:12			
QC Source Sample: Other (A12J318	8-01)											
EPA 6020 (Diss)												
Lead	59.2		5.00	ug/L	5	55.6	ND	106	75-125%			
Matrix Spike (1210670-MS2)				Pre	pared: 10/	22/12 17:23	Analyzed	10/25/12 1	9:48			
QC Source Sample: Other (A12J319	9-05)											
EPA 6020 (Diss)												
Lead	56.0		5.00	ug/L	5	55.6	ND	101	75-125%			

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

		-	-		Report	ed:
			10/31/12 17:38			
	SAI	MPLE PREPARAT	TON INFORMATION	N		
	Gasoline Range H	ydrocarbons (Benz	ene to Naphthalene) b	y NWTPH-Gx		
				Sample	Default	RL Prep
Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
11 7.4		10/00/10 10 05	10/11/10 14 57			1.00
						1.00 1.00
Water		10/07/12 10.41	10/11/12 14.57	SIIIE/SIIIE	JIIL/JIIL	1.00
	RB	CA Compounds (B	TEX+) by EPA 8260B			
				Sample	Default	RL Prep
Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
						1.00 1.00
water	EIA 8200B	10/09/12 10.41	10/11/12 14.37	SIIIL/SIIIL	JIIIL/ JIIIL	1.00
	Volati	le Organic Compou	nds by EPA 8260B SI	И		
				Sample	Default	RL Prep
Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
N. t		10/00/12 10:05	10/16/12 16:00	5 I /5 I		1.00
						1.00 1.00
(futor		10/09/12 10:11	10/10/12 10:00	onie, onie	5111 <u>2</u> , 5111 <u>2</u>	1.00
		Total Metals by EF	PA 6020 (ICPMS)			
				Sample	Default	RL Prep
Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
						1.00
water	EPA 6020	10/09/12 10:41	10/23/12 13:21	45mL/50mL	45mL/50mL	1.00
	D	issolved Metals by	EPA 6020 (ICPMS)			
				Sample	Default	RL Prep
ed Direct	Inject			-		-
ed Direct Matrix	Inject Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
		Sampled 10/09/12 10:05	Prepared 10/22/12 17:23	-		-
	Water Water Matrix Water Water Water Water Water	5 SAI Gasoline Range H Matrix Method Water NWTPH-Gx (MS) Water NWTPH-Gx (MS) Matrix Method Water EPA 8260B Water EPA 8260B Water EPA 8260B Water EPA 8260B Water EPA 8260B SIM Water EPA 8260B SIM Matrix Method Matrix Method Water EPA 8260B SIM Water EPA 8260B SIM Water EPA 6020 Water EPA 6020	5 Project Number: 8 Project Manager: P SAMPLE PREPARAT Gasoline Range Hytrocarbons (Benz Matrix Method Sampled Water NWTPH-Gx (MS) 10/09/12 10:05 10/09/12 10:41 Matrix Matrix Method Sampled Water EPA 8260B 10/09/12 10:05 10/09/12 10:05 Matrix Matrix Method Sampled Water EPA 8260B 10/09/12 10:05 10/09/12 10:41 Matrix Matrix Method Sampled Water EPA 8260B SIM EPA 8260B SIM 10/09/12 10:05 10/09/12 10:41 Matrix Matrix Method Sampled Matrix Met	5 Project Number: 839-04 Project Manager: Paul Ecker SAMPLE PREPARATION INFORMATION Gasoline Range Hydrocarbons (Benzene to Naphthalene) to Matrix Matrix Method Sampled Prepared Water NWTPH-Gx (MS) 10/09/12 10:05 10/11/12 14:57 Water NWTPH-Gx (MS) 10/09/12 10:05 10/11/12 14:57 Water NWTPH-Gx (MS) 10/09/12 10:05 10/11/12 14:57 RBCA Compounds (BTEX+) by EPA 8260B Matrix Method Sampled Prepared Water EPA 8260B 10/09/12 10:05 10/11/12 14:57 Water EPA 8260B 10/09/12 10:05 10/11/12 14:57 Water EPA 8260B 10/09/12 10:05 10/11/12 14:57 Water EPA 8260B Sampled Prepared Water EPA 8260B SIM 10/09/12 10:05 10/16/12 16:00 Water EPA 8260B SIM 10/09/12 10:41 10/16/12 16:00 Water EPA 8260B SIM 10/09/12 10:41 10/16/12 16:00 Matrix Method Sampled Prepared Matrix Method Sampled Prepared M	5 Project Number: 839-04 Project Manager: Paul Ecker SAMPLE PREPARATION INFORMATION Gasoline Range Hydrocarbons (Benzene to Naphthalene) by NWTPH-Gx Matrix Method Sampled Prepared Initial/Final Matrix Method 10/09/12 10:05 10/11/12 14:57 SmL/SmL Water NWTPH-Gx (MS) 10/09/12 10:05 10/11/12 14:57 SmL/SmL Matrix Method Sampled Prepared Initial/Final Matrix Method Sampled Prepared Sample Matrix Method Sampled	5 Project Number: Report Normal Ecker 10/31/12 SAMPLE PREPARATION INFORMATION Sample Sample Matrix Method Sampled Prepared Sample Default Matrix Method Sampled Prepared SmL/SmL SmL/SmL Water NWTPH-Gx (MS) 10/09/12 10:05 10/11/12 14:57 SmL/SmL SmL/SmL Matrix Method Sampled Prepared Sample Default Matrix Method Sampled Prepared Initial/Final Initial/Final Matrix Method Sampled Prepared Sample Default Matrix Method Sampled Prepared Initial/Final Initial/Final Matrix Method Sampled Prepared Initial/Final SmL/SmL Matrix Method Sampled Prepared Initial/Final Initial/Final Matrix Method Sampled Prepared Initial/Final

Apex Laboratories

Philip Nevenberg

Apex Labs

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

EES Env	rironmental Inc	Project:	Plaid Pantry #23					
240 N Broadway Ste 115		Project Number:	Project Number: 839-04					
Portland,	OR 97227	Project Manager:	Paul Ecker	10/31/12 17:38				
		Notes and De	finitions					
Qualifie	<u>rs:</u>							
J	Estimated Result . Result detected	below the lowest point of the calibration	on curve, but above the specified MDL.					
Notes an	nd Conventions:							
DET	Analyte DETECTED							
ND	Analyte NOT DETECTED at or above the reporting limit							
NR	Not Reported							
dry	Sample results reported on a dry weight basis. Results listed as 'wet' or without 'dry'designation are not dry weight corrected.							
RPD	Relative Percent Difference							
MDL	If MDL is not listed, data has been	evaluated to the Method Reporting Lin	nit only.					
WMSC	Water Miscible Solvent Correction	has been applied to Results and MRLs	for volatiles soil samples per EPA 8000C.					
Batch QC		sample provided for Sample Duplicate suracy and precision of the extraction	s and/or Matrix Spikes, a Lab Control Samp and analysis.	ble Duplicate (LCS				
Blank Policy	chemistry and HCID analyses which	h are assessed only to the MRL. Samp	⁴ the method reporting limit (MRL), except le results flagged with a B or B-02 qualifier inorganic analyses or less than five times the	are potentially				
	1	results to the level found in the blank; vided by 1/50 of the sample dilution to	water sample results should be divided by account for the sample prep factor.	the dilution factor,				
	1 1	the MRL may include a potential high alified results reported below the MR	bias if associated with a B or B-02 qualifie L.	d blank. B and B-02				
	QC results are not applicable. For e Spikes, etc.	xample, % Recoveries for Blanks and	Duplicates, % RPD for Blanks, Blank Spike	es and Matrix				

*** Used to indicate a possible discrepency with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Apex Laboratories

Philip Neverberg

Philip Nerenberg, Lab Director

EES Environmental Inc	Project: P	Plaid Pantry #23	
240 N Broadway Ste 115	Project Number: 8	39-04	Reported:
Portland, OR 97227	Project Manager: P	Paul Ecker	10/31/12 17:38

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director