2020 Operations, Maintenance, and Monitoring Annual Report South Park Landfill

Prepared for

March 2021

Prepared by Parametrix In Association with

2020 Operations, Maintenance, and Monitoring Annual Report South Park Landfill

Prepared for

Seattle Public Utilities 700 Fifth Avenue, Suite 4900 Seattle, WA 98124-4018

Prepared by

Parametrix 719 2nd Avenue, Suite 200 Seattle, WA 98104 T. 206.394.3700 F. 1.855.542.6353 www.parametrix.com

In Association with

March 2021 | 553-1550-067

CITATION

Parametrix and HWA GeoSciences, Inc., 2021. 2020 Operations, Maintenance, and Monitoring Annual Report South Park Landfill. Prepared by Parametrix, Seattle, Washington. March 2021.

CERTIFICATION

The technical material and data contained in this document were prepared under the supervision and direction of the undersigned, whose seal, as a professional hydrogeologist licensed to practice as such, is affixed below.

Lisa A. Gilbert

Prepared by Lisa Gilbert, LHG, Parametrix

Checked by Arnie Sugar, LHG, HWA GeoSciences Inc.

Approved by Ian Sutton, P.E., Parametrix

TABLE OF CONTENTS

1.	INTRODUCTION1						
	1.1	L Regulatory Status					
	1.2	Settlen	nent Area Properties and Remedy Components	2			
		1.2.1	South Park Property Development Parcel	2			
		1.2.2	South Recycling and Disposal Station Parcel	2			
	1.3	Hydrog	geologic Setting	3			
	1.4 Monitoring Program Overview						
		1.4.1	Annual Monitoring	4			
		1.4.2	Quarterly Monitoring	4			
		1.4.3	Unforeseen Emergency or Extreme Weather Events	4			
2.	LANDEUL CAP SYSTEM						
	2.1	Landfil	Cap Inspection Methodology	5			
	2.2	Landfil	Cap Inspection Events	6			
	2.2	2 2 1	Baseline Inspection	0 6			
		2.2.2	Unforeseen Emergency or Extreme Weather Events	7			
		2.2.3	Landfill Cap Maintenance Completed	7			
	2.3	Activiti	es Planned for the Next One-Year Period	7			
2			C SVSTENA	•			
5.		LANDFILL GAS SYSTEM					
	3.1	Landfill Gas Monitoring Methodology					
	3.2	Landfill Gas Monitoring Events					
				10			
		3.2.1	Perimeter Probe Monitoring	10			
		3.2.1 3.2.2	Perimeter Probe Monitoring Building Monitoring	10 10 10			
		3.2.1 3.2.2 3.2.3	Perimeter Probe Monitoring Building Monitoring Unforeseen Emergency or Extreme Weather Events	10 10 10 11			
		3.2.1 3.2.2 3.2.3 3.2.4	Perimeter Probe Monitoring Building Monitoring Unforeseen Emergency or Extreme Weather Events Gas Probe Maintenance Completed	10 10 10 11 11			
	3.3	3.2.1 3.2.2 3.2.3 3.2.4 Activiti	Perimeter Probe Monitoring Building Monitoring Unforeseen Emergency or Extreme Weather Events Gas Probe Maintenance Completed es Planned for the Next One-Year Period	10 10 11 11 11			
4.	3.3 GRO	3.2.1 3.2.2 3.2.3 3.2.4 Activiti	Perimeter Probe Monitoring Building Monitoring Unforeseen Emergency or Extreme Weather Events Gas Probe Maintenance Completed es Planned for the Next One-Year Period TER MONITORING SYSTEM	10 10 11 11 11 11			
4.	3.3 GRO 4.1	3.2.1 3.2.2 3.2.3 3.2.4 Activiti UNDWA Ground	Perimeter Probe Monitoring Building Monitoring Unforeseen Emergency or Extreme Weather Events Gas Probe Maintenance Completed es Planned for the Next One-Year Period TER MONITORING SYSTEM Jwater Monitoring Methodology	10 10 11 11 11 11 12			
4.	3.3 GRO 4.1	3.2.1 3.2.2 3.2.3 3.2.4 Activiti UNDWA Ground 4.1.1	Perimeter Probe Monitoring Building Monitoring Unforeseen Emergency or Extreme Weather Events Gas Probe Maintenance Completed es Planned for the Next One-Year Period TER MONITORING SYSTEM Jwater Monitoring Methodology Water Level Measurement	10 10 11 11 11 11 12 12			
4.	3.3 GRO 4.1	3.2.1 3.2.2 3.2.3 3.2.4 Activiti UNDWA Ground 4.1.1 4.1.2	Perimeter Probe Monitoring Building Monitoring Unforeseen Emergency or Extreme Weather Events Gas Probe Maintenance Completed es Planned for the Next One-Year Period TER MONITORING SYSTEM dwater Monitoring Methodology Water Level Measurement Sampling and Analysis	10 10 11 11 11 11 12 12 12			
4.	3.3 GROU 4.1	3.2.1 3.2.2 3.2.3 3.2.4 Activiti UNDWA Ground 4.1.1 4.1.2 4.1.3	Perimeter Probe Monitoring Building Monitoring Unforeseen Emergency or Extreme Weather Events Gas Probe Maintenance Completed es Planned for the Next One-Year Period TER MONITORING SYSTEM dwater Monitoring Methodology Water Level Measurement Sampling and Analysis Groundwater Contingency Triggers and Actions	10 10 11 11 11 11 12 12 12 12 12			
4.	3.3 GRO 4.1 4.2	3.2.1 3.2.2 3.2.3 3.2.4 Activiti UNDWA Ground 4.1.1 4.1.2 4.1.3 Ground	Perimeter Probe Monitoring Building Monitoring Unforeseen Emergency or Extreme Weather Events Gas Probe Maintenance Completed es Planned for the Next One-Year Period TER MONITORING SYSTEM dwater Monitoring Methodology Water Level Measurement Sampling and Analysis Groundwater Contingency Triggers and Actions dwater Monitoring Events	10 10 11 11 11 11 12 12 12 12 12 13 15			
4.	3.3 GRO 4.1 4.2	3.2.1 3.2.2 3.2.3 3.2.4 Activiti UNDWA Ground 4.1.1 4.1.2 4.1.3 Ground 4.2.1	Perimeter Probe Monitoring Building Monitoring Unforeseen Emergency or Extreme Weather Events Gas Probe Maintenance Completed es Planned for the Next One-Year Period TER MONITORING SYSTEM dwater Monitoring Methodology Water Level Measurement Sampling and Analysis Groundwater Contingency Triggers and Actions dwater Monitoring Events Long-Term Groundwater Monitoring	10 10 11 11 11 11 12 12 12 12 13 15 15			
4.	3.3 GRO 4.1 4.2	3.2.1 3.2.2 3.2.3 3.2.4 Activiti UNDWA Ground 4.1.1 4.1.2 4.1.3 Ground 4.2.1 4.2.2	Perimeter Probe Monitoring Building Monitoring Unforeseen Emergency or Extreme Weather Events Gas Probe Maintenance Completed es Planned for the Next One-Year Period TER MONITORING SYSTEM dwater Monitoring Methodology Water Level Measurement Sampling and Analysis Groundwater Contingency Triggers and Actions dwater Monitoring Events Long-Term Groundwater Monitoring Unforeseen Emergency or Extreme Weather Events	10 10 11 11 11 11 12 12 12 12 12 13 15 18			
4.	3.3 GRO 4.1 4.2	3.2.1 3.2.2 3.2.3 3.2.4 Activiti UNDWA Ground 4.1.1 4.1.2 4.1.3 Ground 4.2.1 4.2.2 4.2.3	Perimeter Probe Monitoring Building Monitoring Unforeseen Emergency or Extreme Weather Events	10 10 11 11 11 11 12 12 12 12 13 15 18 18			

TABLE OF CONTENTS (CONTINUED)

5.	CONCLUSIONS AND RECOMMENDATIONS	. 19
6.	REFERENCES	. 21

LIST OF FIGURES

- 1 Site Vicinity Map
- 2 Site Parcel Map with Rights-of-Way
- 3 Perimeter Gas Probe Network
- 4 Flow Chart for Triggers and Contingent Actions for Perimeter Probe Monitoring
- 5 Groundwater Monitoring Well Network
- 6 Potentiometric Surface Map May 26, 2020
- 7 Potentiometric Surface Map August 24, 2020
- 8 Potentiometric Surface Map November 9, 2020

LIST OF TABLES

- 1 Project Contact Information
- 2 Methane in Perimeter Gas Probes
- 3 Groundwater Elevation Summary
- 4 Groundwater Vertical Gradients
- 5 Groundwater Flow Velocity
- 6 Groundwater Quality Data Summary
- 7 Summary of Vinyl Chloride Trend Analyses
- 8 Groundwater Monitoring Well Information

TABLE OF CONTENTS (CONTINUED)

APPENDICES

- A Annual Report Checklist
- B Landfill Cap Inspection and Maintenance
 - B1 Cap Inspection Work Plan
 - B2 TM 2020 Baseline Landfill Cap Inspection
 - B3 Cap Maintenance Documentation
 - B3-A Example Form
 - B3-B Completed Forms
- C Landfill Gas Monitoring
 - C1 TM Triggers and Contingent Actions for Perimeter Probe Monitoring
 - C2 Perimeter Probe Monitoring Field Forms
 - C3 Building Monitoring Forms
- D Groundwater Monitoring
 - D1 Time-Series Plots
 - D2 Trend Analyses
 - D3 Groundwater Monitoring Well Data and Field Forms
 - D4 Laboratory Reports
 - D5 Data Validation Memoranda

ACRONYMS AND ABBREVIATIONS

CAP	Cleanup Action Plan
City	City of Seattle
COC	chemical of concern
CPOC	conditional point of compliance
County	King County
CUL	cleanup level
DCE	dichloroethene (three isomers: 1,1-DCE, cis-1,2-DCE, and trans-1,2-DCE)
Ecology	Washington State Department of Ecology
EPA	U.S. Environmental Protection Agency
ft	feet
GPS	global positioning system
HHW	household hazardous waste
IA	Interim Action
IAWP	Interim Action Work Plan
IDW	investigative derived waste
KIP	Kenyon Industrial Park
LEL	lower explosive limit
LFG	landfill gas
μg/L	micrograms per liter
mg/L	milligrams per liter
MTCA	Model Toxics Control Act
NAVD 88	North American Vertical Datum of 1988
OMM	operations, maintenance, and monitoring
OMMP	Operations, Maintenance, and Monitoring Plan
PLP	potentially liable person
ppmv	parts per million by volume
PVC	polyvinyl chloride
redox	oxidation-reduction (potential)
RI/FS	Remedial Investigation/Feasibility Study
ROW	right-of-way
SPPD	South Park Property Development, LLC
SPU	Seattle Public Utilities
SR	State Route
SRDS	South Recycling and Disposal Station
WAC	Washington Administrative Code
Work Plan	Cap Inspection Work Plan

1. INTRODUCTION

The South Park Landfill site (Site) is a former municipal solid waste landfill in the South Park neighborhood of Seattle, Washington, generally located at 8100 and 8200 2nd Avenue South, in Section 32 of Township 24 North, Range 4 East (Figure 1). Figure 2 show the Site layout. The Edge of Refuse refers to that portion of the Site where landfill operations historically occurred and where solid waste was placed. The Settlement Area consists of the two largest parcels within the Edge of Refuse, the South Park Property Development (SPPD), the South Recycling and Disposal Station (SRDS), and certain adjacent City of Seattle (City) and Washington State rights-of-way (ROWs). The other landfill parcels within the Edge of Refuse are the Kenyon Industrial Park (KIP) and the 7901 2nd Avenue S parcels.

This report presents the results of the 2020 operations, maintenance, and monitoring (OMM) at the Site that was conducted in accordance with the Final Cleanup Action Plan (CAP) for the Settlement Area (Ecology 2018a). The required monitoring is described in the Post-Closure Operation, Maintenance, and Monitoring Plan (OMMP), presented as Appendix A of the CAP.

Site coordination and the preparation of this report is being performed by the City, Seattle Public Utilities (SPU) for the Settlement Area under a Consent Decree with the Washington State Department of Ecology (Ecology). Parametrix has been designated as the Site Coordinator to perform the long-term monitoring and reporting required under the CAP and the OMMP. Contact information for the responsible parties is presented in Table 1.

1.1 Regulatory Status

The landfill received solid waste from the 1930s until 1966, when it was closed under the existing landfill closure laws at the time. Investigations of groundwater, surface water, soil, and landfill gas (LFG) began in the late 1980s. In February 2007, the Site was added to Ecology's Hazardous Sites List (Facility Site Identification No. 2180) based on concerns related to groundwater contamination and the presence of potentially flammable or explosive LFG.

In 2009, SPU and the SPPD entered into Agreed Order No. 6706 with Ecology to conduct a Remedial Investigation/Feasibility Study (RI/FS) and to complete a preliminary draft CAP. The Agreed Order was amended in 2013 to include an Interim Action (IA) to be conducted primarily on the portion of the Site owned by SPPD, and was amended again in 2015 to include an IA to be conducted primarily on the SRDS portion of the Site owned by SPU. The IAs included construction of a landfill cap, installing LFG and surface water control systems, establishing groundwater and LFG monitoring, and implementing institutional controls.

The South Park Landfill Final CAP (Ecology 2018a) was included as an attachment to the March 26, 2019, Consent Decree for the SPPD and SRDS parcels. The selected cleanup action described in the CAP fulfills the requirements of the Model Toxics Control Act (MTCA), Chapter 70.105D of the Revised Code of Washington, administered by Ecology under the MTCA Cleanup Regulation, Chapter 173-340 of the Washington Administrative Code (WAC), for the Settlement Area portion of the Site.

The CAP is currently in the process of being amended (draft Amended CAP; Ecology 2021) to address redevelopment plan modifications for the SRDS parcel. Until 2020, SPU planned to construct support facilities for the South Transfer Station on the SRDS parcel in conjunction with implementation of the remedial action requirements. In 2020, SPU chose to reevaluate the best use of the SRDS parcel and decoupled the redevelopment elements from the project. SPU will proceed with implementation of the required remedial action components defined in the CAP and will manage the SRDS parcel as a paved support facility with minor operational improvements for SPU activities.

1.2 Settlement Area Properties and Remedy Components

The Settlement Area portion of the Site includes the SPPD and SRDS properties and certain adjacent City and Washington State ROWs. The locations of the properties are shown on Figure 2. Brief descriptions of each property and the completed or planned remedy components are provided in the following sections.

1.2.1 South Park Property Development Parcel

The SPPD property is King County (County) tax parcel No. 3224049005 and includes 21.0 acres of land purchased from the County in 2006. The property was previously purchased by the County in 1957 and leased to SPU from 1958 to 1978 for municipal solid waste disposal. After disposal operations ended in 1966, additional unclassified fill was added, and the parcel was graded (but not paved) as part of landfill closure. The County later leased portions of the property to a variety of tenants from the mid-1980s through the late 1990s, primarily for truck and equipment storage. In 2008, the property was largely cleared of vegetation and, in some areas, a layer of crushed concrete was added as ballast and the parcel was regraded.

In 2014 and 2015, the SPPD owner performed an IA for cleanup at the parcel in accordance with the 2013 Ecology-approved Interim Action Work Plan (IAWP; Farallon 2013) under Amendment No. 1 of Agreed Order No. DE 6706 for the Site. The IA was performed simultaneously with the redevelopment of the property. The property redevelopment included a modular building for employees and paved parking for employees and visitors. The IA work included regrading and capping the landfill surface, installing an engineered stormwater collection system, installing and operating an LFG control system, implementing institutional controls, and conducting monitoring.

1.2.2 South Recycling and Disposal Station Parcel

The SRDS parcel includes County tax parcel No. 7328400005, encompassing 10.55 acres, and was purchased by SPU in 1951. Two additional strips of land defined by County tax parcel No. 3224049110, 60 feet (ft) on the west of the SRDS parcel and 30 ft on the south, were incorporated into the property in 2003 by City Ordinance 121306. This additional land is in the process of being recorded by the County and brings the area to approximately 11 acres.

The SRDS parcel operated from 1966 to 2013 as a transfer station for municipal solid waste and other recyclable materials. In Spring 2013, SPU opened a new solid waste transfer station to the north, across South Kenyon Street, and the transfer station on the SRDS parcel became inactive, except for limited support activities. SPU operates a household hazardous waste (HHW) collection site on the northernmost portion of the SRDS property near South Kenyon Street and 5th Avenue South.

The SRDS facility includes the main waste disposal building, a small maintenance facility, a scale house, two vehicle-fueling systems, and several additional small buildings used for offices and HHW collection. The majority of the facility is paved, except for some landscaped areas along the eastern edge of the property adjacent to 5th Avenue South, a few landscape planter islands along the western side of the parcel, and other small areas in the interior of the property.

Under Amendment No. 2 of Agreed Order No. DE 6706, an IA was implemented for the SRDS property between 2015 and 2020, as detailed in an IAWP (Herrera 2021). The IA included monitoring during maintenance activities, evaluation of a groundwater seep, and a Supplemental Groundwater Investigation.

As required under the draft Amended CAP, SPU will demolish existing structures; abandon inactive utilities; install asphalt, concrete, or geomembrane landfill cap systems; install LFG and surface water

controls; implement institutional controls; and perform compliance monitoring. The LFG collection system will include horizontal (trench) collectors, conveyance piping, and vents to address areas covered by cap materials.

1.3 Hydrogeologic Setting

The Site is located within the Lower Duwamish Valley, near the western valley wall, as shown in Figure 1. The Site is at an elevation of approximately 15 to 30 ft above sea level. The southern portion (SPPD property) is generally graded at a higher elevation than the remainder of the Site. The Site has an overall flat gradient trending to the northeast towards the Duwamish Waterway. The Duwamish Waterway is approximately 1,700 to 2,000 ft northeast of the northeast landfill boundary.

The Duwamish Valley consists of a relatively thick sequence of historical channel, floodplain, and overbank alluvial deposits from the Duwamish River overlain by a relatively extensive layer of imported fill. The alluvial deposits range from 30 to 50 ft thick near the edge of the valley to more than 100 ft thick in the center of the valley (Hart Crowser 1998). Groundwater occurs throughout the alluvial deposits forming the Duwamish Valley Alluvial Aquifer. It is comprised of various zones of saturation and thickness occurring within the alluvial deposits. At the Site, there are three groundwater zones of interest; all are part of the upper portion of the Duwamish Valley Alluvial Aquifer system.

- The Perched Zone is a thin discontinuous layer of groundwater (mostly infiltrating rainwater) that exists above the Silt Overbank Deposit. In many places, the Perched Zone groundwater is in contact with solid waste and is conceptually equivalent to landfill leachate in those locations. The thickness of the Perched Zone may vary seasonally but is often only a few inches of water sitting on the hummocky surface of the Silt Overbank Deposit.
- The A-Zone of the Duwamish Valley Alluvial Aquifer is immediately beneath the Silt Overbank Deposit and is the critical zone where leachate (and perched water) can enter the groundwater system and move off-site. The A-Zone extends from the base of the Silt Overbank Deposit for approximately 15 to 20 ft (generally to -15 ft elevation North American Vertical Datum of 1988 [NAVD 88]).
- The B-Zone of the Duwamish Valley Alluvial Aquifer is the next deeper zone extending from approximately -15 ft elevation NAVD 88 to either the top of the estuarine/marine deposits or approximately -35 ft elevation NAVD 88, whichever is more shallow.

The solid waste deposited in the landfill extends into the top of the A-Zone with the depth of waste extending down approximately to sea level (Floyd Snider 2017). The lower portion of solid waste in the landfill is saturated (i.e., occurring below the local water table).

1.4 Monitoring Program Overview

In accordance with the CAP, monitoring at the Site by the Site Coordinator consists of annual cap inspections, quarterly monitoring of LFG perimeter probes, and quarterly sampling and analysis of groundwater monitoring wells. Additional events may be triggered by groundwater monitoring results, LFG monitoring results at the perimeter probes, or by unforeseen emergency or extreme weather conditions, as summarized in the following sections. Monitoring by the parcel owners consists of continuous methane monitoring in on-site buildings as defined in the OMMP. The status of the 2020 monitoring is documented in the Annual Report Checklist presented in Appendix A.

Monitoring performed by the Site Coordinator is in addition to the monitoring requirements of parcel owners in accordance with the CAP and OMMP.

1.4.1 Annual Monitoring

A baseline inspection of the landfill cap is being conducted in 2020 and 2021 as described in Section 2 of this report. Subsequent, annual cap inspections will be conducted during the spring rainy season.

1.4.2 Quarterly Monitoring

Quarterly monitoring at LFG perimeter probes and sampling and analysis of groundwater from monitoring wells is being conducted as described in Sections 3 and 4, respectively, of this report. In addition to quarterly LFG monitoring, continuous methane detection systems with alarms are required to be operating in occupied buildings in the Settlement Area, and provisions are in place that would initiate methane monitoring in off-site buildings if triggered by LFG detections in perimeter gas probes.

1.4.3 Unforeseen Emergency or Extreme Weather Events

An unforeseen emergency or extreme weather event, such as an earthquake, fire, flood, or other natural or man-made disaster, would trigger a requirement for an immediate Settlement Area-wide inspection. Such unforeseen events could cause sudden differential settlement of the landfill contents and/or cap that could affect the integrity of the landfill cap and infrastructure, including LFG control systems, monitoring probes, and monitoring wells, and potentially result in exposure to methane gas or affect safe operation of the LFG control system. The following criteria for unforeseen events would trigger an immediate Settlement Area-wide inspection:

- An earthquake along the Seattle fault that registers 4.0 or greater on the Richter scale.
- An earthquake within 100 miles of Seattle that registers 5.0 or greater on the Richter scale.
- A major storm that produces greater than 3.0 inches of rainfall within a 24-hour period.
- Any fire that occurs on or below the cap.
- Any other damage in the Settlement Area observed by the parcel owners, facility workers, or the public, such as damage sustained by high winds, or facility or vehicular accident(s).

The monitoring program will document monitoring and inspection results, provide information on maintenance requirements, and document OMM activities performed during the previous year.

2. LANDFILL CAP SYSTEM

The CAP requires inspection and maintenance of the landfill cap, including pavement, roadways, surficial stormwater features, and vegetated areas. The purpose of the inspection and maintenance is to confirm that the landfill cap remedy is performing in a manner that protects human health and the environment.

The cleanup action requires a landfill cap covering all areas at the Settlement Area that contain solid waste. The primary goal of the landfill cap is to block access or exposure to the solid waste and soil; secondary goals are to limit stormwater infiltration and to facilitate the performance of the LFG systems.

The landfill cap consists of pavement, buildings, and geomembrane/soil layers that must be maintained in such a manner to prevent contact with the solid waste/soil beneath the cap, prevent "shortcircuiting" of the LFG controls, and prevent interference with the stormwater controls. The cap is not required to entirely block the infiltration of stormwater. Existing or planned stormwater controls are described for each parcel as follows:

SPPD Parcel. Stormwater capture on the SPPD parcel is achieved with a system of paved surfaces and catch basins, and conveyance via overland flow on paved surfaces and piping to detention and treatment in one of two SPPD property bioswales. A small proportion of SPPD parcel stormwater runoff (e.g., from the access driveway off 5th Avenue South) is outside the capture area of the bioswales and flows to catch basins in ROWs.

SRDS Parcel. Stormwater on the SRDS parcel is collected into two systems. One system collects stormwater and liquids that may have come into contact with solid waste and directs them to the sanitary sewer. The other system collects stormwater from around the parcel and connects to the City's storm drain system in 2nd Avenue South. This system ties into the storm drain system on State Route (SR) 509 that flows into the wetlands on the west side of SR 509. A series of roadside ditches and catch basins collect stormwater runoff from South Kenyon Street and 5th Avenue South. These stormwater systems also connect to the City's storm drain system in 2nd Avenue South.

After redevelopment, in accordance with the draft Amended CAP, stormwater drainage will be collected across the SRDS parcel and will require flow and quality mitigation using an above-grade stormwater treatment tank, anticipated to be located on the northern portion of the SRDS parcel. Discharge from the stormwater vault is anticipated to drain to the northwest to the 30-inch-diameter storm pipe located in 2nd Avenue South.

2.1 Landfill Cap Inspection Methodology

A Cap Inspection Work Plan (Work Plan), presented as Appendix B1 of Appendix B, was prepared detailing the approach for the baseline year. The approach consists of conducting an initial baseline inspection in Fall 2020 during a rain event or shortly following a rain event. A secondary "wet-weather" baseline inspection will be completed in Spring 2021 and included in the baseline documentation for future use. After the baseline inspections are complete, annual inspections will commence. Once all improvements to the SRDS parcel are in place, a baseline inspection will take place on the redeveloped SRDS property.

Annual inspections will consist of a visual survey of the cap surface exterior to buildings, including drainage features and surface components of stormwater conveyance (i.e., catch basins, swales). The inspection will document signs of cap damage, failure, deterioration, or disturbance. Observations will be noted on the field inspection form and via sketches or GPS (for location) and photographs.

The following types of observations will be documented for specific areas of the landfill cap.

- Asphaltic Concrete:
 - Cracking
 - > Uneven settlement or potholes
 - Pooling or ponding
 - > Separation of pavement from curbs, gutters, or catch basins
 - > Sloughing or crumbling of edge materials
 - > Erosion
 - > Other signs of cap damage, failure or disturbance
- Low Permeability Membrane:
 - > Erosion of cover soil
 - Exposed geotextile
 - > Holes/signs of unauthorized digging
 - > Poor vegetative cover
 - > Exposed geomembrane
- Stormwater Management Facilities:
 - > Signs of water infiltration below structure
 - Erosion of soil
 - > Holes/signs of unauthorized digging
 - > Invasive/deep-rooted plants
 - > Poor vegetative cover
 - > Proper flow direction as designed

If any of the above are identified during an inspection, the condition will be documented and a recommendation for repairs will be included on the field inspection and maintenance form.

2.2 Landfill Cap Inspection Events

2.2.1 Baseline Inspection

The initial baseline inspection was conducted on September 21, 2020, and documented in a technical memorandum, presented as Appendix B2 in Appendix B. In accordance with the Work Plan, the objective of the baseline inspection was to document the current condition of the landfill cap and identify areas that may be compromised and need maintenance. The following is a summary of the baseline inspection results for each parcel.

SPPD Parcel. There were 31 locations of concern for one or more of the following conditions: exposed geotextile, exposed geomembrane (potential landfill cap geomembrane), ponding, minor pavement cracking, water flowing from asphalt, poor vegetative cover, and signs of erosion.

Of these 31 locations, six were recommended as higher priority, including one location where water was flowing up through the asphalt at about 0.5 gallons per minute; four locations where the landfill cap geomembrane was exposed; and the location of unknown vertical pipes. The area in which water was flowing up from the asphalt pavement required immediate action. The five other priority concerns are located around the perimeter of the SPPD property in the vegetated slope areas. These areas are of

higher concern due to the potential compromise of the landfill cap and need to be further inspected, repaired, and restored in accordance with the approved 2013 IAWP of the Agreed Order.

SRDS Parcel. On the SRDS parcel, there were eight locations of concern for one or more of the following conditions: ponding and minor pavement cracking. These items are not considered as high priority.

2.2.2 Unforeseen Emergency or Extreme Weather Events

No unforeseen emergency or extreme weather events were identified at the Settlement Area during 2020 that triggered an inspection to the landfill cap.

2.2.3 Landfill Cap Maintenance Completed

SPPD Parcel. In September 2020, a water leak was observed on the SPPD property. Photographs of the area observed during the initial baseline inspection are included in Appendix B2. The source of the water observed during the initial baseline inspection was found to be a broken water line, and according to the property owner, the leak was located and determined to be from a joint on the pipe that had come undone and repair to the pipe and cap restoration was completed in October 2020.

Incident and repair records were requested from the property owner, including a description of the maintenance area and type of repair, photographic documentation, and a field sketch and/or figure documenting the location. Forms to be used for documenting maintenance are presented in Appendix B3 of Appendix B.

The repair was reviewed in November 2020 during the fourth quarter monitoring event, and observations are presented in Appendix B3. The asphalt patch looked good and the asphalt surrounding the patch appeared solid and intact. No settlement to the cap was observed in the area of the water break.

SRDS Parcel. No cap maintenance was required or completed on the SRDS parcel.

2.3 Activities Planned for the Next One-Year Period

The initial baseline inspection conducted in September 2020, presented in Appendix B2, identified areas of concern at the Settlement Area. Actions planned for the 2021 calendar year include:

SPPD Parcel. There are 20 concerns identified that need to be further inspected, repaired, and/or restored in accordance with the approved 2013 IAWP of the Agreed Order. The following actions are recommended:

- At the four locations where exposed geomembrane was observed, inspect geomembrane during the spring cap inspection to confirm if it is part of the landfill cap, repair as needed, and restore the 18-inch cover in accordance with the IAWP within three months of the 2021 cap inspection.
- At the one location where unknown open vertical pipes were observed, determine relation to the landfill cap and repair as required in accordance with the IAWP. If pipes are not functional, excavate and remove within three months of the 2021 cap inspection.
- Regrade west bioswale for drainage before the 2022 cap inspection.
- Reestablish vegetation in areas of exposed geotextile within six months of the 2021 cap inspection.

Minor surface cracks or ponding will be reinspected by the Site Coordinator every six months to assess if the condition is worsening.

SRDS Parcel. There are no areas identified for immediate maintenance or repair on SRDS property. The following activities are recommended:

• Minor surface cracks or ponding will be reinspected by the Site Coordinator every six months to assess if the condition is worsening.

The Site Coordinator will conduct a secondary baseline inspection in the Spring of 2021 during the rainy season in accordance with the Work Plan in Appendix B1, which will include reinspection of items identified during the initial baseline inspection.

3. LANDFILL GAS SYSTEM

The LFG control system consists of parcel-specific solutions designed to operate separately but be compatible and synergistic in how they control LFG across the Settlement Area. Brief descriptions of the existing or planned LFG control systems for each property are provided below with the LFG monitoring discussed in the following sections.

- **SPPD Parcel.** An active LFG control system was installed at the SPPD parcel as part of the IA development in 2014 and 2015 (Farallon 2013). The LFG system was designed to protect buildings on the SPPD parcel and to control gas migration along the southern, western, and eastern perimeter of the Settlement Area. The system consists of a network of vertical gas collection wells and horizontal gas collection trenches. LFG is extracted under an applied vacuum and discharged out a vent stack in the surface component equipment enclosure, which is located on the northwest portion of the parcel. It is operated by the SPPD owner in accordance with an Ecology-approved LFG Collection and Control System OMMP (Farallon 2016).
- **SRDS Parcel.** The buildings that are currently on the parcel are either naturally ventilated or are elevated and skirted with porous siding; both are appropriate methods of LFG mitigation. As part of the draft Amended CAP, SPU will install an LFG control system at the SRDS parcel, intended to be operated passively, with an option to convert to active operation if necessary. The final design for the LFG system at the SRDS parcel will be described in the Engineering Design Report, which will be finalized by 2025 per the schedule outlined in the draft Amended CAP. This system will also influence the ROW associated with 5th Avenue South adjacent to this parcel.

3.1 Landfill Gas Monitoring Methodology

The LFG monitoring includes quarterly monitoring of perimeter probes conducted by the Site Coordinator and continuous monitoring of on-site buildings using methane detectors and alarms conducted by individual property owners. The primary goal of perimeter probe monitoring is to evaluate potential lateral off-site LFG migration, and the primary goal of building monitoring is to protect human health.

The perimeter gas probe network for the Settlement Area includes 17 probes installed at the locations shown on Figure 3. Procedures for perimeter gas probe monitoring are presented in the OMMP.

A technical memorandum was prepared to clarify the historical context for the LFG triggers and contingent actions for perimeter probe monitoring and is presented in Appendix C1 and summarized in the flow chart presented in Figure 4. Methane concentrations in soil at the landfill boundary must not exceed 5 percent by volume, the lower explosive limit (LEL) for methane. The threshold criteria that would trigger additional off-site building monitoring is 1.25 percent by volume (25 percent of the LEL) for all probes other than GP-27 and GP-29. At probes GP-27 and GP-29, since methane concentrations of up to 5 percent by volume have been shown to be protective, the criteria for additional off-site building monitoring is 5 percent.

A Landtec GEM 5000 is used to measure barometric pressure at the beginning and end of each monitoring event, and static pressure and LFG concentrations in each gas probe. At each probe, static pressure is measured prior to purging, and then one probe volume is purged prior to recording concentrations of methane, carbon dioxide, oxygen, and hydrogen sulfide. The purge time using the Landtec GEM is calculated for each probe based on its construction. After monitoring the LFG, depth to groundwater is measured using an electric water level indicator to confirm that water is not above the

top of the probe screen. If the water level is above the top of the probe screen, the LFG measurements are not used.

3.2 Landfill Gas Monitoring Events

3.2.1 Perimeter Probe Monitoring

Quarterly perimeter probe monitoring events were conducted in May, August, and November 2020. The results are summarized in Table 2 and included on the gas probe monitoring field forms presented in Appendix C2.

Methane concentrations during all quarterly monitoring events were less than the 5 percent by volume regulatory action limit. Low levels of methane, between 1.25 and 5 percent by volume, were detected in probes GP-27 and GP-29. However, based on the trigger assessment (see Figure 4), no additional off-site building monitoring was required.

Several gas probes were observed to be blocked (screened zones completely saturated) during the three sampling events and data were not used from those probes (GP-11, GP-13, GP-15, and GP-32). Additionally, the screened zones of several wells were at least partially blocked with water. The data from the partially blocked probes is considered valid for the purposes of the perimeter probe monitoring.

3.2.2 Building Monitoring

Building monitoring is required for occupied on-site buildings. Off-site building monitoring is required only if triggered by conditions in perimeter gas probes.

3.2.2.1 On-Site

All occupied buildings on the Settlement Area (on-site buildings) are required to have continuous (i.e., operate 24 hours per day, 7 days per week) methane detectors with alarms. Methane concentrations inside buildings and structures within the landfill boundary must not exceed 1.25 percent by volume, or 25 percent of the LEL; meters in buildings should be set with a low alarm warning at 10 percent of the LEL and the high alarm at 25 percent of the LEL. Quarterly inspections of these alarms are required by individual property owners in accordance with the manufacturer's recommendations to ensure proper operation and protection of human health.

SPPD Parcel. The SPPD property owner did not report any incidences of methane detections inside onsite buildings or structures during 2020.

SRDS Parcel. Continuous monitoring is not required until the property is redeveloped and a new gas system is installed.

3.2.2.2 Off-Site

Off-site building monitoring is required to be conducted by the SPPD and SRDS individual property owners when triggered by methane conditions measured in nearby perimeter probes, as indicated in Figure 4 and the flow chart presented in Figure A.2.6 of the OMMP. Methane concentrations inside buildings and structures outside the landfill boundary must not exceed 100 parts per million by volume (ppmv), equivalent to 0.01 percent by volume or 0.2 percent of the LEL. These criteria are typically measured in the buildings/structures with either handheld or mounted equipment. Procedures for off-site building monitoring are detailed in the OMMP.

There were no incidences in 2020 where Settlement Area perimeter probe results triggered off-site building monitoring (see Table 2 and Figure 4).

3.2.3 Unforeseen Emergency or Extreme Weather Events

No unforeseen emergency or extreme weather events were identified at the Settlement Area during 2020 that triggered an inspection to the perimeter gas probes or the LFG system.

3.2.4 Gas Probe Maintenance Completed

During the 2020 gas monitoring events, maintenance of the gas probes was completed. Weeds, blackberries, and other vegetation were cut back to allow access to wells. New locks were placed on all the gas probes with above-ground monuments. For the flush-mount monuments, many bolts were replaced, and the locking lid mounts rethreaded with a tap and die set to secure the steel monuments. Security bolts were added to each flush mount probe.

3.3 Activities Planned for the Next One-Year Period

During the year 2021, quarterly perimeter probe monitoring is planned during the months of February (completed), May, August, and November.

The SPPD property owner plans to install updated methane sensors with alarm systems in their on-site buildings during 2021. Monitoring records for on-site buildings will be provided on the form presented in Appendix C3.

Some additional future maintenance may be necessary related to asphalt erosion near gas probe GP-31. The roadway margin near the probe appears to be actively eroding related to heavy truck traffic. The condition of the probe will continue to be monitored to determine when actions are necessary to remediate the erosion near the probe. This area will be included in the Spring 2021 cap inspection.

4. GROUNDWATER MONITORING SYSTEM

Long-term groundwater monitoring is being conducted to evaluate the effectiveness of cleanup actions at the Settlement Area on groundwater quality. The CAP requires long-term groundwater monitoring to continue until groundwater chemicals of concern (COCs) are in compliance at the conditional point of compliance (CPOC), which has been established at or near the downgradient Edge of Refuse. The monitoring program includes assessing current groundwater concentrations and monitoring trends to confirm that vinyl chloride, *cis*-1,2-dichloroethene (DCE), benzene, arsenic, iron, and manganese concentrations continue to decrease over time and in a reasonable restoration timeframe.

There are 14 groundwater monitoring wells included in the long-term groundwater monitoring for the Settlement Area at the locations shown on Figure 5. In addition to the CPOC wells (MW-08, MW-10, MW-18, MW-24, MW-25, MW-26, MW-27, MW-32, and MW-33), the monitoring well network also includes wells used to monitor upgradient groundwater conditions (MW-12, MW-14, and MW-29) and wells used to monitor downgradient groundwater conditions adjacent to the former Glitsa American, Inc. property (MW-30 and MW-31). All wells are completed in native material except MW-18, which is completed in refuse, and MW-32 and MW-33, which are completed beneath refuse at the edge of waste. Table 8 provides a summary of the well depths, screen intervals, type of pump, top of casing, and well completion elevations.

The monitoring wells are completed primarily in one of three groundwater zones (Perched Zone, A-Zone, or B-Zone), all of which are part of the Duwamish Valley Alluvial Aquifer. There are four well pairs downgradient of the landfill that are screened in two different zones: Perched Zone/A-Zone (MW-30/MW-31) and A- and B-Zones (MW-27/MW-8, MW-25/MW-10, and MW-26/MW-24).

4.1 Groundwater Monitoring Methodology

Groundwater monitoring included measuring groundwater levels and sampling groundwater at the 14 monitoring wells and analyzing the samples for site-specific COCs.

4.1.1 Water Level Measurement

During each quarterly monitoring event, approximately time synchronous groundwater levels are measured with a precision of 0.01 foot using an electric water level indicator. Groundwater level measurements are made relative to the surveyed top of the polyvinyl chloride (PVC) well casing or other defined measuring point at the wellhead, typically the northern-most portion of the PVC casing stick-up.

4.1.2 Sampling and Analysis

Groundwater samples are collected according to procedures outlined in the OMMP, using either a dedicated bladder pump or a peristaltic pump with disposable low-density polyethylene and silicon tubing. Details on which type of pump is used at each well are included in Table 8. The monitoring wells are purged using low-flow sampling procedures while measuring field parameters (temperature, pH, specific conductivity, dissolved oxygen, and oxidation-reduction potential [redox]) to determine stabilization using a calibrated multiparameter probe with a flow-through cell. Turbidity is also measured in the field using a separate turbidity meter.

Long-term groundwater monitoring includes analyzing samples for vinyl chloride, iron, and manganese, groundwater COCs that have exceeded cleanup levels (CULs) at the CPOC for the Settlement Area, and

cis-1,2-DCE (the precursor for vinyl chloride). In addition, benzene is analyzed in samples from well MW-25 to track a localized plume that appears to originate upgradient of the Settlement Area, and arsenic is analyzed in samples from wells MW-12, MW-08, MW-10, MW-18, MW-24, MW-25, MW-26, MW-27, MW-32, and MW-33.

Groundwater samples are analyzed using the following methods:

- 1,2-DCE and benzene, U.S. Environmental Protection Agency (EPA) Method 8260D
- Vinyl chloride: EPA Method 8260D-SIM
- Iron and manganese: EPA Method 6020A
- Arsenic: EPA Method 6020A

4.1.3 Groundwater Contingency Triggers and Actions

The site-specific CULs for groundwater at the Settlement Area as stated in the CAP, which are based on the protection of groundwater as a potential drinking water source, are as follows:

- Vinyl chloride 0.29 micrograms per liter (μg/L)
- Iron (Total) 27 milligrams per liter (mg/L) (A-Zone); 31 mg/L (B-Zone)
- Manganese (Total) 2.2 mg/L
- cis-1,2-DCE 16 μg/L
- Benzene 5.0 μg/L
- Arsenic (Dissolved) 5.0 µg/L (background; note that MW-27 is not a CPOC well for arsenic).

4.1.3.1 Vinyl Chloride

In accordance with the OMMP, the following two conditions will potentially trigger contingent actions based on monitoring in the existing compliance monitoring well network:

- Condition 1. Condition 1 (the concentration trigger) is based on groundwater concentrations. If concentrations in any downgradient well exceed 1.45 μg/L (five times the CUL) for two consecutive sampling events, a contingent response is triggered. This trigger is not applied to MW-30 and MW-31, whose concentrations are affected by a non-landfill source in addition to the landfill.
- **Condition 2.** Condition 2 (the trend trigger) is based on a statistically significant increase in groundwater concentrations over time in the monitoring wells. The trend identification uses the nonparametric Mann-Kendall method and will be applied to downgradient wells where the concentration of vinyl chloride is greater than the CUL. The trend analysis will include MW-31 (which is screened in the alluvial aquifer) but not MW-30 (which is screened in the Silt Overbank Deposit).

If either or both of the trigger conditions occur, the following actions will be implemented:

- 1. Ecology will be notified within 30 days of data validation to report that a trigger condition has occurred.
- 2. Within 90 days of the notification, the Subject Potentially Liable Persons (PLPs) will submit a written evaluation that considers the following:
 - a. Is the cause of the trigger event (source of the contamination) known?
 - b. Does it likely represent a transient condition or a new condition?
 - c. Do the data indicate that the most likely source is the Settlement Area?
 - d. Does a focused exposure assessment indicate an exposure threat to human health or the environment?
 - e. If the source is likely within the Settlement Area, what actions are appropriate at this time? Actions may include, but are not limited to, one or more of the following:
 - i. Continued monitoring to confirm that it is a transitory effect. For example, construction that disturbs the Silt Overbank Deposit may cause a short-term increase that may be acceptable to Ecology as part of the construction project.
 - ii. Modified sampling to understand the cause or source.
 - iii. Changes in operations of LFG systems.
 - iv. Changes in some site-related activity, if practicable.
 - v. Additional investigation at the Site.
 - vi. Confirmation that natural attenuation conditions are stable and favorable and possible implementation of in situ modification (such as the addition of a reducing agent or microbial enhancement), if needed.
 - vii. Pump and/or treat if determined to be appropriate and effective.
 - viii. Other technologies that are appropriate to the situation.
 - f. If additional remedial action beyond the above actions is considered, it will be evaluated in a manner consistent with a focused feasibility study under MTCA, leading to a proposed corrective action.

If a statistically significant increasing trend is observed for MW-31, the following actions will be implemented:

- 1. Ecology will be notified within 30 days of data validation to report that a trigger condition has occurred.
- 2. Because monitoring wells MW-25, MW-32, and MW-33 are between the Settlement Area and MW-31, if an increasing trend is observed in MW-31, the concentrations at these wells will be evaluated to determine whether the source could be the Settlement Area or another location. If concentrations at the Settlement Area indicate that the probable source is the Settlement Area, the Subject PLPs will proceed with the action in 2e above. If Ecology determines the data indicates that the Settlement Area is not the cause of the increasing trend, it is Ecology's expectation that no additional action is required under the Consent Decree.

4.1.3.2 Iron and Manganese

In accordance with the OMMP, as long as the concentrations are stable or decreasing, no further action is required beyond monitoring. Once a dataset of eight quarterly events has been collected during long-term monitoring, Ecology may approve a decreased frequency of monitoring for iron and manganese.

4.1.3.3 Arsenic

There are known cement kiln dust deposits upgradient of the Edge of Refuse on the KIP parcel and downgradient of the Edge of Refuse east of 5th Avenue South (Floyd|Snider et al. 2017). MW-27, a downgradient A-Zone well across SR 99, has consistently been observed to have arsenic at concentrations greater than the CUL due to a cement kiln dust deposit that is across the street from the Settlement Area; this well is not a CPOC well for arsenic.

In accordance with the OMMP, as long as the concentrations of arsenic are stable or decreasing in downgradient wells MW-08, MW-10, MW-18, MW-24, MW-25, MW-26, MW-32, and MW-33, no further actions are required beyond monitoring. If arsenic remains in compliance with the CUL for 2 years, analysis will be terminated.

4.2 Groundwater Monitoring Events

4.2.1 Long-Term Groundwater Monitoring

Quarterly long-term monitoring events were conducted in May, August, and November 2020. The measured groundwater levels, calculated gradients and interpreted flow direction, and groundwater quality results are presented in the following sections.

4.2.1.1 Gradients and Flow Direction

Groundwater elevations calculated based on depth to groundwater measured in each well and the surveyed casing elevations are summarized in Table 3.

Horizontal gradients

Groundwater gradient maps were prepared using data from all the A-Zone wells plus MW-18, as the Aand B-Zones are not separate aquifers or even hydraulically separated by any low permeability layers. Figures 6, 7, and 8 show the interpreted gradients. The groundwater flow direction is generally to the northeast, toward the Lower Duwamish Waterway, with gradients ranging from 0.008 to 0.016 ft/ft measured in 2020 (42.2 to 84.4 ft per mile). This appears largely consistent with historical gradient trends to the northeast.

Vertical gradients

Vertical groundwater gradients were calculated based on water level measurements collected in downgradient pairs completed in the Perched Zone/A-Zone of the Duwamish Valley Alluvial Aquifer (MW-30/MW-31) and the A- and B-Zones of the Duwamish Valley Alluvial Aquifer (MW-27/MW-8, MW-25/MW-10, and MW-26/MW-24). These data are presented in Table 4.

Boring logs show that the wells are mostly completed in the same alluvial aquifer, with some in the upper portions (A-Zone) and some in the lower (B-Zone), and no significant aquitards or low permeability layers in between the two zones. Comparison of water levels in the shallow and deep wells show downward vertical gradients (water levels are higher in the shallower wells), with small to

moderate (0 to 0.007 ft/ft) vertical gradients in three of the well pairs, and a strong downward gradient of around 0.05 to 0.07 ft/ft in MW-30/MW-31.

Flow Velocity

Based on estimates of horizontal hydraulic conductivity and porosity determined in the remedial investigation (Floyd|Snider 2017) and the gradients measured in 2020, estimated horizontal groundwater flow velocities in the Duwamish Valley Alluvial Aquifer in the northern and southern regions of the Site are summarized in Table 5.

The two regions were identified in the remedial investigation as having differing groundwater flow directions, soil types, and hydraulic conductivity estimates. The northern region of the Site (SRDS property) is in the vicinity of MW-10/MW-25, with a northeasterly groundwater flow direction and slightly higher hydraulic conductivities. The southern region of the Site (SPPD property), is in the vicinity of MW-8/MW-27, with an easterly groundwater flow direction and slightly lower hydraulic conductivities. These values are similar or higher than measured/estimated during the remedial investigation, due to steeper measured and interpreted gradients in 2020.

The following formula was used to calculate groundwater flow velocities:

V = Ki/ne, where:

- V = groundwater velocity (L/T)
- K = hydraulic conductivity (L/T)
- i = hydraulic gradient (L/L)
- ne = effective porosity (dimensionless)

Based on the observed gradients of 0.008 to 0.016 ft/ft, the calculated flow velocity ranged from 4.5 to 12.7 ft/day in the northern region of the Site to 1.2 to 5.4 ft/day in the southern region of the Site.

4.2.1.2 Groundwater Quality Results

Groundwater samples were analyzed by Analytical Resources, Inc. in Tukwila, Washington. The quarterly groundwater quality data are summarized in Table 6. Field data sheets for each quarterly event are presented in Appendix D3. Laboratory reports and data validation memoranda are presented in Appendix D4 and D5, respectively.

The following is a summary of CUL exceedances in CPOC wells during 2020 monitoring events:

- Vinyl chloride concentrations exceeded the CUL of 0.29 μg/L in wells MW-25 and MW-32 (Q2, Q3, and Q4).
- Total iron concentrations exceeded the CUL of 27 mg/L in A-Zone wells MW-29 (upgradient; Q2 and Q3) and MW-27 (Q3) and the CUL of 31 mg/L in B-Zone well MW-10 (Q2, Q3, and Q4).
- Total manganese concentrations exceeded the CUL of 2.2 mg/L in A-Zone well MW-25 (Q2) and B-Zone well MW-10 (Q2, Q3, and Q4).
- There were no concentrations cis-1,2-DCE exceeding the CUL of 16 μ g/L.
- There were no concentrations of benzene at MW-25 exceeding the CUL of 5.0 μg/L.
- There were no concentrations of dissolved arsenic exceeding the CUL of 5.0 μg/L.

Time-series plots for all COCs, showing data for all historical events and post-Consent Decree sampling events (2020,) organized separately for the A-/Perched Zone and the B-Zone, are presented in Appendix D1. Time-series plots show CULs for all COCs and the concentration trigger value for vinyl chloride (1.45 μg/L).

Vinyl Chloride Trigger Evaluation and Trend Analyses

In 2020, vinyl chloride concentrations exceeded the CUL in CPOC downgradient A-Zone wells MW-25 and MW-32 during at least one quarter, but none of the concentrations exceeded the concentration trigger value.

Time-series plots of all historical data show overall stable or decreasing trends for vinyl chloride. For the 2020 data, the vinyl chloride time-series plots show slight apparent increases in some wells; however, the data are not sufficient to assess whether the apparent increases could be natural fluctuations due to factors such as tidal or seasonal variations.

Mann-Kendall trend analyses for vinyl chloride were conducted on the entire historical data set using the Excel-based program ProUCL (EPA 2013). The Mann-Kendall trend plots, calculations, and a summary of the approach used is provided in Appendix D2, and the results are summarized in Table 7.

Trends were evaluated for each well using the combined historical (through 2014) and three rounds of 2020 data, resulting in a 6-year gap in the time-series data for all analytes and wells. Iron and manganese data also had a minimum 7-year gap from late 2003 to early 2011 or 2013. Historic data coverage prior to 2020 for each well is summarized below.

- 1999-2014: MW-8, MW-10, MW-12, MW-14, MW-18, MW-24
- 2006-2014: MW-25, MW-26, MW-27
- 2013-2014: MW-29
- 2011-2014: MW-30, MW-31, MW-32, MW-33

The wells showed either statistically significant decreasing trends or no statistical trend, except for upgradient well MW-29 and downgradient well MW-32, which showed statistically significant increasing trends. However, the calculations for wells MW-29 and MW-32 were conducted using a data set of only six and eight data points, respectively.

Although the Mann-Kendall test does not account for (i.e., is not sensitive to) time intervals, the trends should be evaluated with consideration of the gaps in the data. Evaluation and comparison of the entire data set is needed to interpret the results with respect to detecting potential releases from the landfill, as opposed to other factors which may influence concentration trends for individual parameters or wells. For example, one or several parameters increasing in a well may not necessarily indicate a release to groundwater from the landfill, if other parameters are decreasing, if increases are also measured in monitoring points not associated with the landfill, or if increases can be correlated to precipitation or groundwater levels.

Statistical evaluation of the newer (post-2020) data for trends will be conducted once a sufficient number of sampling events (typically eight) has been completed.

Since no wells that exceeded both of the contingency trigger conditions for vinyl chloride in 2020 (concentrations above the concentration trigger criteria for two consecutive sampling events and an increasing trend), no additional actions were required.

Iron and Manganese

In 2020, iron concentrations exceeded the CUL during at least one quarter in upgradient well MW-29 and in downgradient wells MW-27 (A-Zone) and MW-10 (B-Zone). Manganese concentrations exceeded the CUL during at least one quarter in downgradient wells MW-25 (A-Zone) and MW-10 (B-Zone). Timeseries plots for iron and manganese show stable or decreasing trends for all wells over the history of monitoring. Following completion of 2 years of monitoring (five additional quarterly events), if there are no upward trends in iron and manganese, Ecology may approve a reduced frequency of monitoring.

Arsenic

The time-series plots show stable or decreasing trends for arsenic over the history of monitoring. In 2020, arsenic concentrations did not exceed the CUL in any wells except for MW-27, which is not a CPOC well for arsenic. MW-27 is in an area with elevated arsenic concentrations due to cement kiln dust fill deposits, and the exceedances do not appear related to the landfill. Following completion of eight quarterly events, arsenic analysis will be terminated if concentrations in CPOC wells remain in compliance with the CUL for 2 years (five additional quarters).

4.2.2 Unforeseen Emergency or Extreme Weather Events

No unforeseen emergency or extreme weather events were identified at the Settlement Area during 2020 that triggered an inspection to the groundwater monitoring wells.

4.2.3 Monitoring Well Maintenance Completed

During the May quarterly event, some of the wells required extended purging to achieve stabilization, and other conditions were observed including algal buildup and metal precipitation that were related to their inactivity since 2014. Therefore, prior to the August sampling event, the dedicated pumps were removed, cleaned, rinsed, and placed back into the wells. The bladder pump from MW-10 was removed entirely as it would not function. All of the wells were then redeveloped by a combination of surging, bailing, and pumping.

Additional maintenance of the wells was completed during the 2020 monitoring. New locks were placed on all the wells with above-ground monuments. Bolts were replaced and mounts rethreaded for several flush-mounted wells. Locks were added to all flush-mount wells with a locking J-plug. MW-31 could not be locked due to the existing dedicated bladder pump.

The locking lid for MW-27 was observed to be broken at the rear weld connection. The lid is secured in place with the lock placed; however, rewelding appears necessary to repair the lid mount.

Investigative derived waste (IDW) water was contained in 55-gallon steel drums. A total of eight 55-gallon drums of purge water were generated during the 2020 monitoring and well redevelopment. On November 11, 2020, the IDW was properly disposed and treated off-site by Marine Vacuum of Seattle, Washington.

4.3 Activities Planned for the Next One-Year Period

During the next one-year period, quarterly groundwater monitoring is planned during the months of February, May, August, and November.

The bladder pump from MW-10 should be repaired or replaced to facilitate future groundwater monitoring. The well is currently sampled with a peristaltic pump using a special withdrawal protocol.

The locking lid for MW-27 should be repaired/rewelded to ensure well security.

5. CONCLUSIONS AND RECOMMENDATIONS

The initial baseline landfill cap inspection was conducted on September 21, 2020, and identified some areas requiring additional monitoring, maintenance, and repairs. The Site Coordinator will conduct a secondary baseline inspection in the Spring of 2021 during the rainy season in accordance with the Work Plan in Appendix B1, which will include reinspection of items identified during the initial baseline inspection. The following is a summary of the baseline inspection results for each parcel.

SPPD Parcel. There were 31 locations of concern for one or more of the following conditions: exposed geotextile, exposed landfill cap geomembrane, ponding, minor pavement cracking, water flowing from asphalt, poor vegetative cover, and signs of erosion. The source of the water was further investigated as an immediate concern and was found to be a broken water line. Repair to the water line and cap restoration was completed in October 2020 and the repair was reviewed in November 2020. Twenty of the concerns identified need to be further inspected, repaired, and/or restored in accordance with the approved 2013 IAWP of the Agreed Order. In addition, minor surface cracks or ponding will be reinspected by the Site Coordinator every six months to assess if the condition is worsening. The following actions are recommended during 2021:

- At the four locations where exposed geomembrane was observed, inspect geomembrane during the spring cap inspection, repair as needed, and restore the 18-inch cover in accordance with the IAWP within three months of the 2021 cap inspection.
- At the one location where unknown open vertical pipes were observed, determine relation to the landfill cap and repair as required in accordance with the IAWP. If pipes are not functional, excavate and remove within three months of the 2021 cap inspection.
- Regrade west bioswale for drainage before the 2022 cap inspection.
- Reestablish vegetation in areas of exposed geotextile within six months of the 2021 cap inspection.

SRDS Parcel. On the SRDS parcel, there were eight locations of concern for one or more of the following conditions: ponding and minor pavement cracking. Minor surface cracks or ponding will be reinspected by the Site Coordinator every six months to assess if the condition is worsening.

None of the perimeter probe LFG monitoring results exceeded the regulatory criteria of 5 percent or the contingency trigger criteria for off-site building monitoring. The SPPD property owner did not report any incidences of methane detections inside on-site buildings or structures during 2020. The SPPD property owner plans to install updated methane sensors with alarm systems in their on-site buildings during 2021.

The groundwater flow direction indicated by 2020 groundwater monitoring was toward the northeast and generally consistent with historical measurements. Based on the observed gradients of 0.008 to 0.016 ft/ft, the calculated flow velocity ranged from 4.5 to 12.7 ft/day in the northern region of the Site to 1.2 to 5.4 ft/day in the southern region of the Site.

Comparison of water levels in the shallow and deep wells shows downward vertical gradients (water levels are higher in the shallower wells), with small to moderate vertical gradients in three of the well pairs, and a strong downward gradient in the MW-30/MW-31 well pair.

The following CPOC wells had at least one COC concentration that exceeded the CUL during 2020:

- Vinyl chloride: downgradient A-Zone wells MW-25 and MW-32
- Iron: upgradient well MW-29; downgradient wells MW-27 (A-Zone) and MW-10 (B-Zone)
- Manganese: downgradient wells MW-25 (A-Zone) and MW-10 (B-Zone)

None of the vinyl chloride groundwater monitoring results exceeded the concentration trigger (concentration greater than 1.45 μ g/L). Statistically significant increasing trends were observed for upgradient well MW-29 and downgradient well MW-32. However, these trends were calculated using a limited data set of six and eight points, respectively, with a 6-year gap preceding the three 2020 data points. Since there were no wells that exceeded both of the contingency trigger conditions for vinyl chloride in 2020 (concentrations above the concentration trigger criteria for two consecutive sampling events and an increasing trend), no additional actions were required.

The time-series plots show generally stable or decreasing trends and parameters over the entire history of monitoring. There were no data collected between 2014 and 2020, and the 2020 data alone are not sufficient to evaluate recent trends. After completing 2 years of quarterly monitoring, the recent data will be analyzed to evaluate vinyl chloride trends and to assess whether the monitoring frequency for iron and manganese should be reduced. Following completion of eight quarterly events, arsenic analysis will be terminated if concentrations in CPOC wells remain in compliance with the CUL for 2 years (five additional quarters).

No unforeseen emergency or extreme weather events occurred during 2020 at the Settlement Area that triggered additional monitoring requirements.

6. REFERENCES

- Ecology (Washington State Department of Ecology). 2005. Implementation Guidance for the Ground Water Quality Standards. Washington State Department of Ecology Publication #96-02. Olympia, WA.
- Ecology. 2018a. South Park Landfill Final Cleanup Action Plan. Appendix A Landfill Post-Closure Operations, Maintenance, and Monitoring Plan. Washington State Department of Ecology Toxics Cleanup Program. Olympia, WA.
- Ecology. 2018b. Guidance for Monitoring at Landfills and Other Facilities Regulated Under Chapters 173-304, 173-306, 173-350, and 173-351 WAC, Revised December 2018. Washington State Department of Ecology Publication no. 12-07-072. Olympia, WA.
- Ecology. 2021. Draft South Park Landfill Final Cleanup Action Plan: Appendix A Landfill Post-Closure Operations, Maintenance, and Monitoring Plan, Amended 2021. Washington State Department of Ecology Toxics Cleanup Program. Olympia, WA.
- EPA (U.S. Environmental Protection Agency). 2009. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities: Unified Guidance. EPA 530/R-09-007. U.S. Environmental Protection Agency Office of Resource and Recovery. Washington, D.C.
- EPA. 2013. ProUCL 5.0.00 User Guide (Draft): Statistical Software for Environmental Applications for Data Sets with and without Nondetect Observations. EPA/600/R-07/041. U.S. Environmental Protection Agency Office of Research and Development. Washington, D.C.
- Farallon. 2013. Interim Action Work Plan, South Park Landfill Site, Seattle, Washington. Prepared for South Park Landfill Development, LLC. February 22, 2013. Seattle, WA.
- Farallon. 2016. Landfill Gas Collection and Control System OMMP. Seattle, WA.
- Floyd|Snider, Aspect, BHC, and Herrera. 2017. Remedial Investigation/Feasibility Study. Prepared for City of Seattle South Park Property Development, LLC. July 2017. Seattle, WA.
- Gilbert, R.O. 1987. Statistical Methods for Environmental Pollution Monitoring. John Wiley & Sons, Inc. New York, NY. 320 pages.
- Hart Crowser. 1998. Duwamish Industrial Area Hydrogeologic Pathways Project: Duwamish Basin Groundwater Pathways Conceptual Model Report. Seattle, WA. 1 April.
- Herrera Environmental Consultants (Herrera). 2021. Draft Interim Action Work Plan Amended 2021: South Recycling and Disposal Station. Seattle, WA. February.
- Salmi, T., A. Määttä, P. Anttila, T. Ruoho-Airola, T. Amnell, and I. Laitos. 2002. Detecting Trends of Annual Values of Atmospheric Pollutants by the Mann-Kendall Test and Sen's Slope Estimates – the Excel Template Application MAKESENS. Finnish Meteorological Institute, Helsinki, Finland. Available at: http://en.ilmatieteenlaitos.fi/makesens. Accessed March 16, 2021.

Figures

Parametrix

Figure 1 Site Vicinity Map South Park Landfill

Source: Floyd|Snider, Aspect, Herrera. 2018. South Park Landfill, Landfill Post-Closure Operations, Maintenance, and Monitoring Plan.

Parametrix

Figure 2 Site Parcel Map with Rights-of-Way South Park Landfill

Source: Floyd|Snider, Aspect, Herrera. 2018. South Park Landfill, Landfill Post-Closure Operations, Maintenance, and Monitoring Plan.

Parametrix

Figure 3 Perimeter Gas Probe Network South Park Landfill

Perimeter Probe and Adjacent Off-Site Building Locations

Gas Probe	Adjacent LFG System	Adjacent Off-site Buildings within 100 ft ¹	Protectiveness Established*?
GP-03	SPPD	None	NA
GP-07	SRDS/SPPD	Eagle Eye Enterprises, LLC	No
GP-09	SRDS	None	NA
GP-11	SPPD	International Construction Equipment, Inc.	No
GP-13	SPPD	NorthStar Ice Equipment	No
GP-15	SPPD	Lenci/Emerson	No
GP-16	SPPD	None	NA
GP-23	SRDS	Bank of America (2 buildings)	No
GP-26	SRDS	Rick Larson Enterprises, Inc.	No
GP-27	SPPD	5th Avenue South	Yes
GP-28	SPPD	5th Avenue South	No
GP-29	SPPD	5th Avenue South	Yes
GP-31	SRDS	Emerson Power Products	No
GP-32	SRDS	Emerson Power Products	No
GP-33	SPPD	W.G. Clark Construction Co	No
GP-37	SRDS	None	NA
GP-38	None	None	NA

Notes:

1 Adjacent off-site buildings within 100 ft are shown on Figure 3.

Protectiveness established at methane concentrations up to 5 percent in adjacent probes.
Due to shallow groundwater, some probes are only measured when the water table is low enough for the probes to function.
NA - Not applicable.

Contingent Action Triggered by Exceedance

- 1. SC notifies the Ecology PM, Public Health Seattle & King County, and the rest of the PLP Group.
- 2. Parcel staff adjust adjacent LFG system to increase control on LFG, and continue DAILY monitoring at probe until control is established (using criteria above) then weekly for 4 weeks.
- 3. SC arranges monitoring of indoor air for LFG in any off-site buildings within 100 feet of the Landfill boundary (Figure 3). Refer to OMMP Figure A.2.6 for triggers and actions based on indoor measurements.
- 4. SC notifies Ecology PM and Public Health Seattle & King County of the actions taken and their effectiveness. If the adjustments to the adjacent gas system are not effective, then a plan must be prepared and submitted for approval.
- 5. SC reports exceedances and actions in Annual Report to Ecology.

Abbreviations: Ecology = Washington State Department of Ecology; LEL = Lower Explosive Limit; LFG = Landfill gas; OMMP = Operations, Maintenance, and Monitoring Plan; PLP = Potentially liable person; PM = Project manager; SPPD = South Park Property Development, LLC; SRDS = South Recycling and Disposal Station

Source: Floyd|Snider, Aspect, Herrera. 2018. South Park Landfill, Landfill Post-Closure OMMP.

Parametrix

Figure 4 Flow Chart for Triggers and Contingent Actions for Perimeter Probe Monitoring South Park Landfill

Source: Floyd|Snider, Aspect, Herrera. 2018. South Park Landfill, Landfill Post-Closure Operations, Maintenance, and Monitoring Plan.

Parametrix

Figure 5 Groundwater Monitoring Well Network South Park Landfill

Source: Floyd|Snider, Aspect, Herrera. 2018. South Park Landfill, Landfill Post-Closure Operations, Maintenance, and Monitoring Plan.

Parametrix

Figure 6 Potentiometric Surface Map May 26, 2020 South Park Landfill

Source: Floyd|Snider, Aspect, Herrera. 2018. South Park Landfill, Landfill Post-Closure Operations, Maintenance, and Monitoring Plan.

Parametrix

Figure 7 Potentiometric Surface Map August 24, 2020 South Park Landfill

Source: Floyd|Snider, Aspect, Herrera. 2018. South Park Landfill, Landfill Post-Closure Operations, Maintenance, and Monitoring Plan.

Parametrix

Figure 8 Potentiometric Surface Map November 9, 2020 South Park Landfill

Tables

Contact	Title	Affiliation	Phone Number (s)	Mailing Address	Email Address
Jerome Cruz	Ecology Site Manager	Ecology	425.649.7094 (W)	Toxics Cleanup Program,	Jerome.Cruz@ecy.wa.gov
			425.466.8732 (C)	Northwest Regional Office	
				3190 - 160th SE Bellevue, WA	
				98008	
Jeff Neuner	Landfill Closure	SPU	206.684.7693 (W)	P.O. Box 34018	Jeff.Neuner@Seattle.gov
	Program Manager		206.369.1153 (C)	Seattle, WA 98124-4018	
Rob Howie	SPPD Parcel Owner	SPPD	425.837.9720 (W)	165 NE Juniper Street,	rhowie@seaconllc.com
			425.652.2550 (C)	Suite 100, Issaquah, WA	
				98027	
Laura Lee	Site Coordinator	Parametrix	206.394.3665 (W)	719 2nd Avenue, Suite 200,	Lblee@parametrix.com
			425.941.9409 (C)	Seattle, WA 98104	

 Table 1. Project Contact Information, South Park Landfill

Table 2. Methane in Perimeter Gas Probes, South Park Landfill

	Probe	Screened	Purge	Purge Duration (min)			Depth to					
Gas	Diameter	Interval (ft	Volume	Purge rate =	Date	Time of	Water	Pressure	CH ₄	CO2	O ₂	H₂S
Probe	(ft)	btoc)	(cc) ¹	550 ml/min	Monitored	Measurement	(ft - btoc)	(in W.C.)	(% Volume)	(% Volume)	(% Volume)	(ppm)
GP-37	0.063	2.8 to 7.8	868	1.57	5/14/2020	NA	Dry	0.00	0.0	5.2	14.0	0
					8/24/2020	12:20	Dry	0.00	0.0	11.5	10.6	0
					11/9/2020	10:43	Dry	0.00	0.0	10.9	3.9	0
GP-09	0.063	6.62 to 10.62	899	1.63	5/14/2020	NA	Dry	0.00	0.0	6.9	15.0	0
					8/24/2020	12:07	Dry	0.00	0.0	4.8	18.6	0
					11/9/2020	11:15	Dry	0.00	0.0	4.9	17.1	0
GP-26	0.063	4.62 to 9.62	868	1.57	5/14/2020	NA	•		Probe wa	s not found		
					8/24/2020	13:16	7.89	0.00	0.0	2.6	19.2	0
					11/9/2020	11:50	8.71	0.00	0.0	3.0	17.7	0
GP-23	0.167	6.05 to 7.05	4,940	8.98	5/14/2020	NA	Dry	0.00	0.0	6.6	14.0	0
					8/24/2020	13:35	<i>.</i> 7.42	0.00	0.0	7.7	14.6	0
					11/9/2020	11:31	7.34	0.00	0.0	6.5	15.1	0
GP-07	0.063	5.75 to 6.25	519	0.94	5/14/2020	NA	Dry	0.00	0.0	2.3	19.0	0
					8/24/2020	13:50	, Dry	0.00	0.0	3.5	19.0	0
					11/9/2020	12:03	, Dry	0.00	0.0	3.4	17.6	0
GP-27	0.063	8.57 to 13.57	1,216	2.21	5/14/2020	NA	12.23	0.00	0.0	0.0	21.0	0
			, -		8/24/2020	11:40	12.29	0.00	0.5	12.9	0.0	5
					11/9/2020	10:18	12.35	0.00	0.6	12.4	0.0	6
GP-28	0.063	6.59 to 11.59	1.042	1.89	5/14/2020	NA	10.90	0.00	0.0	4.4	10.0	0
			, -		8/24/2020	11:30	11.45	0.00	0.0	9.5	5.7	0
					11/9/2020	9:32	11.01	0.00	0.0	9.5	4.3	0
GP-29	0.063	4.62 to 9.62	868	1.57	5/14/2020	NA	8.61	0.00	1.4	11.8	3.0	0
					8/24/2020	11:19	9.23	0.00	1.8	14.8	2.0	0
					11/9/2020	9:48	9.05	0.00	2.9	14.3	1.6	0
GP-16	0.167	6.60 to 9	5.867	10.67	5/14/2020	NA	Drv	0.00	0.0	0.5	20.0	0
			-,		8/24/2020	10:45	Drv	0.00	0.0	0.4	20.4	0
					11/9/2020	10:00	Drv	0.00	0.0	1.6	19.7	0
GP-31	0.063	4.64 to 9.64	868	1.57	5/14/2020	NA	6.21	0.00	0.0	4.0	15.0	0
0. 01	0.000				8/24/2020	9:45	5.81	0.00	0.0	15.4	3.6	0
					11/9/2020	8:56	6.03	0.00	0.0	10.0	5.6	0
GP-15	0.167	6.62 to 8.62	5.558	10.11	5/14/2020	NA	3.31					
			-,		8/24/2020	10:22	6.08					
					11/9/2020	9:05	4.87					
GP-32	0.063	4.72 to 9.72	868	1.57	5/14/2020	NA	2.27					
0. 01	0.000				8/24/2020	10:10	3.09					
					11/9/2020	9.13	2.81					
GP-03	0.063	6.73 to 8.63	725	1.32	5/14/2020	NA	Drv	0.00	0.0	7.1	11.0	0
0.00	0.000		/ _0		8/24/2020	9.33	Drv	0.00	0.0	9.2	10.4	0
					11/9/2020	9:21	Dry	0.00	0.0	8.9	8.0	0
GP-13	0.167	4.91 to 5.41	4.014	7.29	5/14/2020	NA	2.78					
0. 10	0.207		.,		8/24/2020	9:15	3.13					
					11/9/2020	8:25	2.85					
GP-11	0.167	6.23 to 6.73	4.632	8.42	5/14/2020	NA	5.84					
J. 11	5.207	0.20 10 0.70	.,002	0.12	8/24/2020	8:49	6.13					
					11/9/2020	8:10	5.81					
GP-38	0.063	3.8 to 8.8	882	1.6	5/14/2020	NA	Drv	0.00	0.0	6.6	13.0	0
2. 50	5.000	2.2 10 0.0	552	1.0	8/24/2020	12.37	Drv	0.00	0.0	17 7	0.8	0
					11/9/2020	11:07	Drv	0.00	0.0	13.8	2.5	0
GP-33	0.063	8.2 to 13 2	1 165	2 12	5/14/2020	NA	13 40	0.00	0.0	5 5	8.0	0
2. 33	5.000	0.2 (0 10.2	_,_00		8/24/2020	12:55	13.31	0.00	0.0	6.7	9.5	0
					11/9/2020	12:44	13.50	0.00	0.0	4.9	13.5	0

Notes:

Red font indicates entire screen is blocked by water

¹ purge volume assumes no water present within the probe screen

 - No measurement, screen blocked by water NA Not available
 btoc below top of casing
 ppm parts per million

2020 Operations, Maintenance, and Monitoring Annual Report South Park Landfill Seattle Public Utilities

					Groundwat	er Elevatio	n (ft NAVD
	TOC (ft	Dept	th to Wate	r (ft)		88)	
Well ID	NAVD 88)	5/26/20	8/24/20	11/9/20	5/26/20	8/24/20	11/9/20
Perched Zone							
MW-30	17.07	10.32	10.95	10.78	6.75	6.12	6.29
Shallow / A-Z	one wells						
MW-12	20.63	5.9	6.26	5.86	14.73	14.37	14.77
MW-14	19.85	2.54	3.04	2.85	17.31	16.81	17.00
MW-25	20.09	13.75	14.44	14.30	6.34	5.65	5.79
MW-26	15.94	9.54	10.26	10.17	6.40	5.68	5.77
MW-27	14.76	8.24	8.98	8.88	6.52	5.78	5.88
MW-29	19.16	7.41	9.11	8.07	11.75	10.05	11.09
MW-31	17.12	10.87	11.57	11.50	6.25	5.55	5.62
MW-32	17.07	10.85	11.40	11.30	6.22	5.67	5.77
MW-33	17.34	10.98	11.57	11.46	6.36	5.77	5.88
Deep / B Zone	e wells						
MW-08	14.76	8.4	8.99	8.90	6.36	5.77	5.86
MW-10	19.35	13.11	13.70	13.55	6.24	5.65	5.80
MW-18	22.03	15.41	15.98	15.86	6.62	6.05	6.17
MW-24	15.13	8.79	9.47	9.40	6.34	5.66	5.73

Table 3. Groundwater Elevation Summary, 2020, South Park Landfill

		Ground	water Eleva NAVD 88)	ation (ft	Mid-screen	Vert	ical gradient (ft/ft)	
Well Pairs	Zone	5/26/20	8/24/20	11/9/20	Elevation (ft btoc)	5/26/20	8/24/20	11/9/20	
MW-26	Shallow	6.40	5.68	5.77	20	0.002	0.001	0.000	
MW-24	Deep	6.34	5.66	5.73	40	0.003	0.001	0.002	
					·				
MW-27	Shallow	6.52	5.78	5.88	15	0.006	0.000	0.001	
MW-08	Deep	6.36	5.77	5.86	40	0.006	0.000	0.001	
MW-25	Shallow	6.34	5.65	5.78	25	0.007	0.000	0.001	
MW-10	Deep	6.24	5.65	5.80	40	0.007	0.000	-0.001	
		•	•	•			-		
MW-30	Perched	6.75	6.12	6.29	11		0.057	0.067	
MW-31	Shallow	6.25	5.55	5.62	21	0.050	0.057	0.067	

Table 4. Groundwater Vertical Gradients, 2020, South Park Landfill

btoc = below top of well casing

Region	Horizontal Hydraulic Conductivity (ft/day)	2020 Horizontal Hydraulic Gradient (ft/ft)	Effective Porosity	Horizontal Groundwater Velocity (ft/day)
Northern Region	145 to 167	0.008 to 0.016	0.21 to 0.26	4.5 to 12.7
Southern Region	40 to 71	0.008 to 0.016	0.21 to 0.26	1.2 to 5.4

Table 5. Groundwater Flow Velocity, South Park Landfill

												Downgrad	ient Wells								
								A-Zone							Percheo	d Zone			A-	Zone	
			MW-12	MW-12	MW-12	MW-14	MW-14	MW-14	MW-60	MW-29	MW-29	MW-60	MW-29	MW-30 ¹	MW-30 ¹	MW-30 ¹	MW-61	MW-25	MW-60	MW-25	MW-25
									(MW-14			(MW-29					(MW-30		(MW-25		
		Cleanup							Dup)			Dup)					Dup)		Dup)		
Parameter	Units	Level	5/26/20	8/25/20	11/9/20	5/26/20	8/25/20	11/9/20	11/9/20	5/27/20	8/25/20	8/25/20	11/10/20	5/28/20	8/26/20	11/11/20	11/11/20	5/27/20	5/27/20	8/27/20	11/10/20
Field Parameters																					
Temperature	С		13.2	14.5	14.4	14.4	17.2	15.1		12.4	13.8		12.6	15.6	15.3	14.2		14.3		17.0	13.7
Dissolved Oxygen	mg/L		1.82	0.26	0.00	1.41	0.05	0.00		1.49	0.00		0.00	2.17	0.27	0.00		1.43		0.34	0.01
Specific Conductivity	μS/cm		441.3	487	467.8	524	550	532.1		1029	878		663	612	639	582.1		965		970	1029
рН	units		6.50	6.30	6.08	6.79	6.56	6.51		6.64	6.65		6.54	6.30	6.22	6.19		6.62		6.49	6.44
Redox	mv		275.7	45.1	79.1	-40.8	-143.1	-23.7		-84.2	-118.7		-88.7	100.1	7.2	4.8		-65.3		-64.3	-74.0
Turbidity	NTU		9.72	40.02	0.02	27.88	67.82	1.73		26.84	119.9		0.02	22.09	3.34	1.23		12.25		4.11	2.84
Metals																					
Arsenic, Dissolved	μg/L	5.0	0.423	0.497	0.395													0.353	0.337	0.396	0.300
Iron, Total	mg/L	27 A-Zone	0.864	1.61	0.942	5.09	4.04	3.56	3.59	37.1	32.4	34	14.4	1.43	2.88	4.7	4.43	21.1	21.7	18.3	18.2
		31 B-Zone																			
Manganese, Total	mg/L	2.2	0.0243	0.158	0.109	0.628	0.623	0.603	0.598	0.81	0.65	0.687	0.48	0.0919 J-	0.155	0.138	0.132	2.21	2.28	1.91	2.11
Volatile Organic Compound	s																				
Vinyl Chloride	μg/L	0.29	0.020 U	0.020 UJ	0.020 U	0.103	0.124	0.132	0.0959	0.127	0.161	0.251 J	0.252	0.349	0.347	0.345	0.505				
Cis-1,2-Dichloroethene	μg/L	16	0.20 U	0.21	0.39	0.20 U	0.20 U	0.20 UJ	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.31	0.20 U	0.30	0.31	0.20 U	0.20 U	0.20 UJ	0.20 U
Benzene	μg/L	5.0																0.24	0.28	0.26 J	0.49

Table 6. Groundwater Quality Data Summary, 2020, South Park Landfill

										Downgr	adient Wells	s (cont.)							
										A	-Zone (cont	.)							
			MW-26	MW-26	MW-26	MW-27 ²	MW-61	MW-27 ²	MW-27 ²	MW-31 ¹	MW-31 ¹	MW-31 ¹	MW-32	MW-32	MW-61	MW-32	MW-33	MW-33	MW-33
							(MW-27								(MW-32				
		Cleanup					Dup)								Dup)				
Parameter	Units	Level	5/28/20	8/27/20	11/11/20	5/28/20	5/28/20	8/26/20	11/11/20	5/28/20	8/26/20	11/11/20	5/27/20	8/27/20	8/27/20	11/10/20	5/27/20	8/25/20	11/10/20
Field Parameters																			
Temperature	С		13.4	13.6	12.2	12.0		16.3	13.0	16.3	16.0	13.8	14.2	14.4		14.2	15.4	16.0	15.3
Dissolved Oxygen	mg/L		1.59	0.30	0.00	1.68		0.16	0.00	1.56	0.22	0.01	1.38	0.03		0.00	1.32	0.00	0.00
Specific Conductivity	μS/cm		183.7	197	226.7	298.9		428	376.0	351.9	388	382.3	929	912		861	1484	1401	1388
рН	units		6.26	6.06	5.87	6.49		6.39	6.24	6.55	6.36	6.29	6.85	6.66		6.63	6.79	6.66	6.59
Redox	mv		14.0	22.4	37.9	196.2		-74.0	-16.8	-35.8	-62.6	-44.6	-93.5	-96.4		-90.4	-102.7	-107.8	-91.0
Turbidity	NTU		7.64	10.97	3.55	22.78		14.95	3.03	26.98	42.15	11.8	42.15	47.08		1.30	28.04	739.60	0.99
Metals																			
Arsenic, Dissolved	μg/L	5.0	0.793	0.816	0.865	4.89	5.23 ²	13.3 ²	8.34 ²				1.34	1.52	1.50	1.51	1.08	1.04	1.01
Iron, Total	mg/L	27 A-Zone	7.19	8.12	8.13	5	5.97	31.3	15	10.6	12.3	13.4	13.7	13.2	13.4	11	13.5	14.1	15.8
		31 B-Zone																	
Manganese, Total	mg/L	2.2	0.108	0.125	0.110	0.252 J	0.321	0.822	0.572	0.573	0.558	0.517	1.5	1.54	1.52	1.43	1.61	1.71	1.68
Volatile Organic Compound	s																		
Vinyl Chloride	μg/L	0.29	0.0216	0.028	0.037	0.0782	0.0819	0.0769	0.0267	0.201	0.475 ¹	0.443 ¹	0.265	0.344	0.347	0.472	0.0582	0.0862	0.112
Cis-1,2-Dichloroethene	μg/L	16	1.11	0.41	0.31	0.22	0.26	0.20 UJ	0.20 U	0.20 U	0.20 U	0.20 U	0.97	0.50	0.54	0.75	0.20 U	0.20 U	0.20 U
Benzene	μg/L	5.0					0.20 U												

Table 6. Groundwater Quality Data Summary, 2020, South Park Landfill

		Downgradient Wells (cont.) B-Zone															Trip	Blanks		
								B-Zo	one	1										
			MW-08	MW-08	MW-08	MW-10	MW-10	MW-10	MW-18	MW-18	MW-18	MW-24	MW-24	MW-24	MW-80	MW-81	MW-80	MW-81	MW-80	MW-81
		Cleanup																		
Parameter	Units	Level	5/28/20	8/26/20	11/11/20	5/27/20	8/27/20	11/10/20	5/27/20	8/25/20	11/10/20	5/28/20	8/26/20	11/11/20	5/28/20	5/28/20	8/25/20	8/27/20	11/9/20	11/11/20
Field Parameters																				
Temperature	С		12.8	13.9	12.3	14.4	14.6	13.8	15.0	16.0	13.8	13.4	13.9	12.0						
Dissolved Oxygen	mg/L		1.50	0.77	0.00	1.41	0.03	0.20	1.43	0.07	0.00	1.51	1.89	0.05						
Specific Conductivity	μS/cm		1284	1094	1045	1504	1482	1472	1233	1070	1029	1002	941	950						
рН	units		6.73	6.53	6.50	6.79	6.61	6.62	6.64	6.55	6.48	6.73	6.47	6.39						
Redox	mv		-60.3	-74.3	-60.6	-117.6	-112.3	-108.4	-63.4	-78.2	-58.4	-86.6	-56.3	-50.4						
Turbidity	NTU		6.75	8.85	3.52	12.19	9.99	15.1	5.26	221.04	1.19	7.32	7.16	1.41						
Metals																				
Arsenic, Dissolved	μg/L	5.0	0.200 U	0.254	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U						
Iron, Total	mg/L	27 A-Zone																		
		31 B-Zone	12.7	15.3	17.4	35.1	40.2	39.1	20.1	18	21	20	17.9	27						
Manganese, Total	mg/L	2.2	1.19	1.23	1.17	2.28	2.67	2.55	1.59	1.5	1.36	1.68	1.4	1.56						
Volatile Organic Compound	ds																			
Vinvl Chloride	ug/I	0.29	0.0592	0.0712	0.0836	0.0778	0.0952	0.114	0.0357	0.0357	0.0363	0.020 U	0.0308	0.0438	0.020 U					
Cis-1,2-Dichloroethene	<u>μg/L</u>	16	0.20 U	0.20 U	0.20 U	1.07	0.73	1.28	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U
Benzene	μg/L	5.0														0.20 U		0.20 U	0.20 U	0.20 U
	10.																			

Table 6. Groundwater Quality Data Summary, 2020, South Park Landfill

Notes:

¹ MW-30 and MW-31 monitor the former Glitsa property and are not CPOC wells.

² MW-27, a downgradient A-Zone well across SR 99 consistently has arsenic at concentrations greater than the CUL due to a cement kiln dust deposit that is across the street from the Settlement Area. MW-27 is not a CPOC well for arsenic.

= Exceeds cleanup level for CPOC wells

- - = Not sampled

U = The analyte was analyzed for but was not detected above the reported sample quantitation limit.

J = The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.

J- = The result is an estimated quantity, but the result may be biased low.

Units were converted from lab reports for iron (µg/L to mg/L), manganese (µg/L to mg/L), and vinyl chloride (ng/L to µg/L) to maintain consistency with historical data and established cleanup levels.

Abbreviations:

- µg/L Micrograms per liter
- mg/L Milligrams per liter

ng/L nanograms per liter

- µS/cm microsiemens per centimeter
- NTU Nephelometric Turbidity unit
- CPOC Conditional point of compliance

Well ID	# Samples	# NDs	% NDs	ND Method ¹	MK S Value ²	MK Trend ³
MW-08	40	4	10	use 1/2 DL	-651	decreasing
MW-10	42	2	5	use 1/2 DL	-596	decreasing
MW-12	41	3	7	use 1/2 DL	-269	decreasing
MW-14	39	39	100	none		
MW-18	38	22	58	ROS	55	no trend
MW-24	38	8	21	ROS	-369	decreasing
MW-25	17	1	6	use 1/2 DL	-50	decreasing
MW-26	14	6	43	ROS	-51	decreasing
MW-27	13	4	31	ROS	-42	decreasing
MW-29	6	3	50	ROS	11	increasing*
MW-30	7	0	0	none	-3	no trend
MW-31	7	0	0	none	-13	decreasing
MW-32	8	0	0	none	19	increasing*
MW-33	7	0	0	none	-9	no trend

Table 7. Summary of Vinyl Chloride Trend Analyses, South Park Landfill

Notes:

¹ND = non-detected values; ROS = regression on order statistics

² MK S value = The Mann-Kendall test computes a S value for which a positive value indicates an increasing data trend, zero indicates no trend, and a negative S value indicates a decreasing trend.

³ The statistical significance of the Mann-Kendall test S value is a function of the magnitude of S and the number of measurements compared to values (Gilbert 1987) with larger values of S and a greater number of measurements leading to higher statistical significance

*Trends based on limited data including 6 year data gap between 2014 and 2020; will be reevaluated after 2 years of quarterly data are available.

			Ground	Casing		Total Well			Screen Top	Screen Bottom			
	North	East	Elevation	Elevation	Stickup	Depth	Screen Top	Screen Bottom	Elevation	Elevation			
Well ID	(NAD 83)	(NAD 83)	(ft NAVD 88)	(ft NAVD 88)	(ft)	(ft bgs)	(ft bgs)	(ft bgs)	(ft NAVD 88)	(ft NAVD 88)	Aquifer	Pump Type	Notes
MW-08	196834.57	1271362.27	12.88	14.76	1.88	45.59	35.6	45.6	-22.72	-32.72	B-Zone	Bladder	Pump at 39.32 ft btoc
MW-10	197659.19	1270559.83	17.7	19.35	1.65	45	35	45	-17.3	-27.3	B-Zone	Peristaltic	Bladder pump at 38.64 ft btoc removed, well
													currently sampled using peristaltic with
													intake at 30 ft btoc
MW-12	196964.43	1269792.64	19.11	20.63	1.52	15.3	10	15	9.11	4.11	A-Zone	Bladder	Pump at 12.24 ft btoc
MW-14	196399.90	1269963.70	19.05	19.85	0.8	21.8	11.50	21.5	7.55	-2.45	A-Zone	Bladder	Pump at 16.63 ft btoc
MW-18	196350.26	1271077.67	20.78	22.03	1.25	40.4	30	40	-9.22	-19.22	B-Zone	Bladder	Pump at 33.70 ft btoc
MW-24	197110.02	1271165.6	13.57	15.13	1.56	45.3	35	45	-21.43	-31.43	B-Zone	Bladder	Pump at 39.80 ft btoc
MW-25	197657.49	1270566.75	17.3	20.09	2.79	27	22	27	-4.7	-9.7	A-Zone	Bladder	Pump at 25.30 ft btoc
MW-26	197121.60	1271164.4	13.55	15.94	2.39	25	15	25	-1.45	-11.45	A-Zone	Bladder	Pump at 20.09 ft btoc
MW-27	196835.06	1271357.64	12.72	14.76	2.04	20	10	20	2.72	-7.28	A-Zone	Bladder	Pump at 14.97 ft btoc
MW-29	196034.29	1270270.91	19.45	19.16	-0.29	30	20	30	-0.55	-10.55	A-Zone	Peristaltic	
MW-30	197655.77	1270826.64	17.6	17.07	-0.53	13	8	13	9.6	4.6	Perched	Peristaltic	
MW-31	197660.37	1270825.71	17.58	17.12	-0.46	23	18	23	-0.42	-5.42	A-Zone	Bladder	Pump at 18.24 ft btoc
MW-32	197416.52	1270622.16	17.51	17.07	-0.44	24	19	24	-1.49	-6.49	A-Zone	Peristaltic	
MW-33	197257.91	1270751.02	17.81	17.34	-0.47	25	20	25	-2.19	-7.19	A-Zone	Peristaltic	

Table 8. Groundwater Monitoring Well Information, South Park Landfill

Notes:

NAD 83 = North American Datum of 1983

NAVD 88 = North American Vertical Datum of 1988

ft = feet

bgs = below ground surface

btoc = below top of casing

Appendix A

Annual Report Checklist

SOUTH PARK LANDFILL ANNUAL REPORT CHECKLIST

DUE TO ECOLOGY March 31 of each calendar year (includes January 1 through December 31 of the previous year)

1. Landfill Cap Inspection and Maintenance

	Type of Activity	Date Completed	Form Completed	Comments
\square	Annual	September 21, 2020	\square	Baseline inspection
\square	Maintenance	October 2020	\square	SPPD repair from water break
\square	Reinspection	November 11, 2020	\square	Inspect SPPD repair to cap

2. Quarterly LFG Perimeter Probe Monitoring

		Date Completed	Field Forms	Comments
	Q1			
\square	Q2	May 14, 2020	\square	
\square	Q3	August 24, 202	\square	
\square	Q4	November 9, 2020	\square	

3. Owner-reported Quarterly Inspection of On-site Building Methane Detectors and Alarms

		Date Completed								
		SPPD	SRDS							
	Q1		Not required until redevelopment							
	Q2									
	Q3									
	Q4									
Off-s	ite bu	uilding monitoring conducted?	🗌 Yes 🛛 No							

4. Quarterly Groundwater Monitoring

		Date Completed	Field Forms	Uploaded into EIM
	Q1			
\boxtimes	Q2	May 26 through 28, 2020	\square	\boxtimes
\boxtimes	Q3	August 25 through 27, 2020	\square	\boxtimes
\square	Q4	November 9 through 11, 2020	\square	\boxtimes

Site Coordinator Signature

March 31, 2021

Date

Source: South Park Landfill Final Cleanup Action Plan.

Appendix A Landfill Post-Closure Operations, Maintenance, and Monitoring Plan. Prepared by Washington State Department of Ecology 2018.

Appendix B

Landfill Cap Inspection and Maintenance

B1

Cap Inspection Work Plan

TECHNICAL MEMORANDUM

DATE:	August 5, 2020
TO:	Jerome Cruz, Project Manager, Washington State Department of Ecology
FROM:	Laura Lee, Project Manager, and Rhiannon Sayles, PE
SUBJECT:	Cap Inspection Work Plan
CC:	Jeff Neuner, SPU Landfill Closure Business Area Manager Robert Howie, South Park Property Development LLC Lee Momon, SPU, Solid Waste Transfer Station Manager Suzanne Hildreth, SPU, Solid Waste Transfer Station Manager
PROJECT NUMBER:	553-1550-067

PROJECT NAME: South Park Landfill

BACKGROUND

A Consent Decree between Ecology and the South Park Landfill property owners Seattle Public Utilities (SPU) and South Park Property Development, LLC (SPPD) was signed on March 26, 2019. The cleanup action requires a landfill cap covering all areas at the Settlement Area that contain solid waste. The primary goal of the landfill cap is to block access or exposure to the solid waste and soil; secondary goals are to limit stormwater infiltration and to facilitate the performance of the LFG systems.

OBJECTIVE

The main objective of the annual inspection is to document areas of the cap that are compromised and require maintenance. This memorandum provides a work plan to perform landfill cap inspections per the Cap Inspection and Maintenance Plan (CIMP). The CIMP is an attachment to the Cleanup Action Plan (CAP) which fulfills a requirement of the Consent Decree. The CIMP states:

The purpose of this Landfill CIMP is to confirm that the landfill cap remedy is performing in a manner that protects human health and the environment. The landfill cap consists of pavement, buildings, and geomembrane/soil layers and must be maintained in such a manner to prevent contact with the solid waste/soil beneath the cap, prevent "short-circuiting" of the landfill gas (LFG) controls, and prevent interference with the stormwater controls; the cap is not required to entirely block the infiltration of stormwater. The cap must be inspected annually, and it must be repaired if it is damaged or becomes worn.

BASELINE INSPECTION

The first inspection will be considered a preliminary baseline event. Information beyond what was collected in the Remedial Investigation/Feasibility Study (RI/FS) for each parcel within the settlement area will be gathered for review. The review will include available as-built plans, maps and figures from the CAP and RI/FS, GIS information and aerial photographs.

An inspection of the cap will include a visual survey of the entire cap surface exterior to buildings, including drainage features and surface components of stormwater conveyance (i.e., catch basins, swales). The integrity of the cap across the entire Settlement Area will be documented via notes, sketches, and photographs. A separate field inspection form will be completed for each property during the inspection (blank form attached). All information will be submitted to Ecology in the Year 1 Report.

Typically, inspections will occur during the spring. There are two reasons for this. First, maintenance and repair activities can be completed during the dry season. Second, groundwater levels are highest at the end of the wet weather season and stormwater management systems are exacerbated. This makes it easier for repairs to be identified.

Spring has passed, and the baseline inspection has yet to be completed. Additionally, the SPU parcel (former South Recycling and Disposal Station) is no longer being redeveloped this year. However, we feel it is still beneficial to perform a baseline inspection this year. There are several reasons for this including an unusually wet winter season in 2019-2020 and observation of potential erosion issues during the first monitoring event.

The preliminary baseline inspection will occur this year during a rain event or shortly following a rain event. A secondary "wet-weather" baseline inspection will be completed in early spring 2021 and will be included in the baseline documentation for future use.

After the baseline inspections are complete, annual inspections will commence. Annual inspections will occur every year until the SPU property is redeveloped. See section below for more information on annual inspections. Once the redevelopment occurs, a second baseline inspection will take place. This second baseline inspection will not be made until all improvements to the SPU parcel are in place. The second baseline inspection will amend the first inspection. A tentative schedule is shown below. The number of annual inspections between the preliminary baseline inspection and the amended baseline inspection is an estimate. Actual number of years may vary.

ANNUAL CAP INSPECTIONS

Following the baseline inspection, the landfill cap will be inspected annually in spring. During annual inspections, a site visit will be made to assess integrity of the cap surface exterior to buildings within all parcels of the Settlement Area. The inspections will also include a visual assessment of drainage features and surface components of stormwater conveyance (i.e., catch basins, swales). The inspection will be documented on the annual inspection forms, including notes, sketches, and photographs.

If the following disturbances to the cap are identified, they must be noted on the field inspection form and documented via sketches (for location) and photographs.

- Cracking
- Uneven settlement or potholes
- Pooling or ponding of stormwater
- Proper flow direction as designed

- Separation of pavement from curbs, gutters, or catch basins
- Sloughing or crumbling of edge materials
- Erosion
- Any other signs of cap damage, failure, deterioration, or disturbance

If any of the above are identified during an inspection, a recommendation for repairs should be included on the field inspection and maintenance form. If the cap requires maintenance or repairs the guidance listed in the CIMP will be followed.

NON-ROUTINE INSPECTIONS

An unforeseen emergency or extreme weather event, such as earthquakes, fires, or floods, or other natural or man-made disaster would trigger an out of sequence cap inspection to ensure that the cap integrity is maintained. Such unforeseen events could cause a sudden differential settlement of the cap that could affect the integrity of the cap, which may result in exposure to the underlying material or methane gas, or could affect safe operation of the LFG control system. The following criteria for unforeseen events would trigger an inspection of the landfill cap.

- An earthquake along the Seattle fault that registers 4.0 or greater on the Richter scale.
- An earthquake within 100 miles of Seattle that registers 5.0 or greater on the Richter scale.
- A flood or major storm that produces greater than 3.0 inches of rainfall within a 24-hour period.
- Any fire that occurs on or below the cap.
- Any other damage in the area of the Landfill observed by the Parcel Owners and facility workers or the public, such as damage sustained by high winds, facility, or vehicular accidents.

If any of the above unforeseen events occur, then a cap inspection will be scheduled with the appropriate personnel as soon as safe and practical (generally within 48 hours). Inspection and maintenance activities must be documented on an inspection and maintenance form, with any supporting sketches, figures, and photographs attached. If the integrity of the cap is significantly compromised as a result of an unforeseen event, Ecology must be notified within 1 business day of the discovery of the event and repairs initiated as soon as practicable.

SUMMARY

The proposed course of action is to perform a baseline inspection with site visit over the course of the next two months, ideally on a rainy day. The findings will be included in the 2020 annual report, including a plan for the early Spring 2021 baseline inspection part 2. After that, annual inspections will occur until the SPU property is fully redeveloped. At that time, a new baseline inspection will occur, and the original baseline will be amended. Following the new baseline inspection, the landfill cap will be inspected annually in spring.

Attachments

- 1. Cap Inspection, Form A
- 2. Cap Maintenance, Form B
- 3. Cleanup Action Plan Figure 6.1, Landfill Cap Requirements by Parcel

Attachments

SOUTH PARK LANDFILL CAP INSPECTION FORM A

Date:

Location/Parcel:

Owner:

Inspector(s): Type of Inspection:
Annual

Non-Routine – Reason _____

VISUAL INSPECTION CHECKLIST

Asphalt Concrete	Yes	No	Needs Repair	If yes, describe:
Minor cracking				
Open cracks/ruts				
Differential settlement				
Potholes				
Pooling or ponding				
Separation of pavement from curbs, gutters, or catch basins				
Sloughing or crumbling of edge materials				
Erosion				
Other signs of cap damage, failure, or disturbance				

Recommended Maintenance or Repair Type/Location:

Low-Permeability Membrane	Yes	No	Needs Repair	If yes, describe:
Erosion of cover soil				
Exposed geotextile barrier				
Holes/signs of unauthorized digging				
Poor vegetative cover				

Recommended Maintenance or Repair Type/Location:

VISUAL INSPECTION CHECKLIST (continued)

Stormwater Management Facilities	Yes	No	Needs Repair	If yes, describe:
Signs of water infiltration below structures				
Erosion of soil				
Exposed geotextile membrane				
Holes/signs of unauthorized digging				
Invasive/deep-rooted plants				
Poor vegetative cover				
Proper flow direction as designed				

Recommended Maintenance or Repair Type/Location:

Attach necessary documentation such as photographs, sketches, and additional notes.

SOUTH PARK LANDFILL CAP MAINTENANCE FORM B

Date:	Location/Parcel:
Contractor:	Owner:
Reason for Maintenance:	
Describe Maintenance Location (attach sketch and photo	os):
Describe Maintenance or Repair Performed (attach phot	os and documentation as necessary):
Is the maintenance activity complete? If \Box Yes \Box no, explain:	No
Approval/Inspection of Maintenance/Repair:	

Site Coordinator

Date

All maintenance and repair documentation must be provided to the Site Coordinator within 60 days of the completion of the maintenance/repair OR by March 1 if the activity is completed within 60 days prior to March 1.

B2

TM – 2020 Baseline Landfill Cap Inspection

TECHNICAL MEMORANDUM

DATE:	March 30, 2021
TO:	Jeff Neuner, Seattle Public Utilities Rob Howie, South Park Property Development
FROM:	Laura Lee and Rhiannon Sayles, PE
SUBJECT:	2020 Baseline Landfill Cap Inspection
CC:	Jerome Cruz, Ecology
PROJECT NUMBER:	553-1550-067
PROJECT NAME:	South Park Landfill Site Coordination

The purpose of this Technical Memorandum is to summarize the findings of the 2020 Baseline Landfill Cap Inspection at South Park Landfill that was performed on Monday, September 21, 2020 by Rhiannon Sayles (Parametrix) and Austin York (HWA GeoSciences). The baseline inspection satisfies the requirements of the Cleanup Action Plan (CAP) which fulfills a requirement of the Consent Decree that was signed on March 26, 2019. In accordance with the technical memorandum, dated August 5, 2020 from Parametrix to the Washington State Department of Ecology (Ecology), the main objective of the baseline inspection is to document the visual condition of the landfill cap and identify areas that are compromised and need maintenance. This initial baseline inspection will be supplemented with a secondary baseline inspection in early 2021 during the rainy season. The Cap Inspection Form A was completed and is included as Attachment A.

The inspection took place on the morning of September 21, 2020 from approximately 8:00 AM to 11:30 AM. The weather was clear and 65°F. The last substantial rain even was two days prior (Saturday, September 19) when approximately 0.39" of rain fell. The inspection started on the southern portion of the site on the South Park Property Development (SPPD) property and progressed north to the South Recycling and Disposal Station (SRDS) property. A landfill cap inspection site plan is included in Attachment B. Photographs were taken, and GIS points were collected using a Geode GPS sub-meter receiver at each location where a potential issue or concern was observed. The photographs are numbered and included in Attachment C with numbers mapped on the Attachment B site plan. Additionally, the GIS points and photographs were transposed onto a map which can be referenced here: <u>https://arcg.is/ri5SO</u>. The site is an interactive web map. The remainder of this memorandum is broken down by parcel to delineate the respective responsible party.

Corrective actions proposed for the property owners should be confirmed with Parametrix prior to taking action. Parametrix should perform verification inspections after corrective actions are complete to confirm the maintenance and repair are consistent with the intent of the regulatory requirements.

SPPD PARCEL

There were 31 locations on the SPPD parcel identified as points or lines of concern for one or more of the following conditions: exposed geotextile, exposed geomembrane (potential landfill cap geomembrane), ponding, minor pavement cracking, water flowing from asphalt, poor vegetative cover, and erosion. Each location of concern is identified by number on Attachment B and corresponding photographs are in Attachment C.

Table 1 briefly describes the issue or concern at each location on the SPPD parcel, indicates a recommended action, and proposes a timeline for repairs, maintenance, and/or reinspection.

Point #	Description	Recommended Action	Timeline for Repair and/or Reinspection	Recommended Action Assignment
1	Standing water in west bioswale	Regrade for drainage	12-months	SPPD Property Owner
2	Exposed geotextile	Reestablish vegetation	6-months	SPPD Property Owner
3	Exposed geotextile	Reestablish vegetation	6-months	SPPD Property Owner
4	Exposed geomembrane	Expose geomembrane until the 18" cover requirement is satisfied to determine the extent of erosion. Inspect geomembrane, repair as needed, and restore the 18" cover in accordance with the Interim Action Work Plan (IAWP)	3-months	SPPD Property Owner
5	Exposed geomembrane	Expose geomembrane until the 18" cover requirement is satisfied to determine the extent of erosion. Inspection geomembrane, repair as needed, and restore the 18" cover in accordance with the IAWP	3-months	SPPD Property Owner
6	Ponding	Regrade for drainage	12-months	SPPD Property Owner
7	Exposed geomembrane	Expose geomembrane until the 18" cover requirement is satisfied to determine the extent of erosion. Inspection geomembrane, repair as needed, and restore the 18" cover in accordance with the IAWP	3-months	SPPD Property Owner
8	Potholes/pavement cracking	Follow-up inspection	6-months	SPPD Property Owner
9	Exposed geomembrane	Expose geomembrane until the 18" cover requirement is satisfied to determine the extent of erosion. Inspection geomembrane, repair as needed, and restore the 18" cover in accordance with the IAWP	3-months	SPPD Property Owner
10	Unknown open vertical pipes	If pipes are not functional, excavate and remove. Determine relation to the landfill cap and repair as required in accordance with the IAWP	3-months	SPPD Property Owner
11	Exposed geotextile	Reestablish vegetation	6-months	SPPD Property Owner
12	Exposed geotextile	Reestablish vegetation	6-months	SPPD Property Owner
13	Ponding	Follow-up inspection	6-months	Parametrix
14	Ponding	Follow-up inspection	6-months	Parametrix
15	Ponding	Follow-up inspection	6-months	Parametrix

Table 1. Identified Locations of Concern on the SPPD Parcel

Point #	Description	Recommended Action	Timeline for Repair and/or Reinspection	Recommended Action Assignment
16	Ponding above LFG Collector Control Box V4	Confirm no infiltration into the control box. Raise control box and surrounding grade to prevent ponding.	6-months	SPPD Property Owner
17	Ponding	Follow-up inspection	6-months	Parametrix
18	Ponding	Follow-up inspection	6-months	Parametrix
19	Ponding	Follow-up inspection	6-months	Parametrix
20	Water flowing from asphalt	Determine source of water and take corrective action. Restore the area in accordance with the IAWP. Monitor the area for settlement impacts as a result of the water.	Immediate	SPPD Property Owner
21	Ponding	Follow-up inspection	6-months	Parametrix
22	Ponding above Sanitary Cleanout	Confirm no infiltration into or around the cleanout. Raise cleanout and surrounding grade to prevent ponding.	6-months	SPPD Property Owner
23	Ponding	Follow-up inspection	6-months	Parametrix
24	Ponding	Follow-up inspection	6-months	Parametrix
25	Ponding	Follow-up inspection	6-months	Parametrix
26	Minor pavement cracking/ponding	Follow-up inspection	6-months	Parametrix
33	Exposed geotextile	Reestablish vegetation	6-months	SPPD Property Owner
34	Exposed geotextile	Reestablish vegetation	6-months	SPPD Property Owner
35	Exposed geotextile	Reestablish vegetation	6-months	SPPD Property Owner
36	Exposed geotextile	Reestablish vegetation	6-months	SPPD Property Owner
37	Exposed geotextile	Reestablish vegetation	6-months	SPPD Property Owner
38	Exposed geotextile	Reestablish vegetation	6-months	SPPD Property Owner

Table 1. Identified Locations of Concern on the SPPD Parcel (continued)

Of these 31 locations, 6 are recommended as higher priority. The high priority items include: the location where water is flowing up through the asphalt at about 0.5 gpm (Point Location 20); four locations where the landfill cap geomembrane is exposed (Point Locations 4, 5, 7, 9); and the location of the unknown vertical pipes (Point Location 10).

The area in which water is flowing up from the asphalt pavement requires immediate action. In review of the SPPD as-built drawings, included as Attachment D, there appear to be two waterlines in the vicinity. Without intervention and repairs, the conditions will likely deteriorate further. Additionally, since the water source is below the asphaltic landfill cap, the water has potential to infiltrate the landfill waste and become contaminated groundwater. *[Update: SPPD and Ecology were immediately notified of this observation. SPPD located the source*

of the water leak, repaired it, and patched the asphalt. The repair to the cap was inspected during the 2020 fourth quarter compliance monitoring event. The patch looked good and the asphalt surrounding the patch appeared solid and intact.]

The five other priority concerns are located around the perimeter of the SPPD site in the vegetated slope areas. These areas are of higher concern due to the potential compromise of the landfill cap and need to be further inspected, repaired, and restored in accordance with the approved 2013 IAWP of the Agreed Order. Attachment E includes a schematic cross-section of a vegetated slope area. Refer to the Agreed Order for complete requirements.

SRDS PARCEL

On the SRDS parcel, there were 8 locations identified as points or lines of concern for one or more of the following conditions: ponding and minor pavement cracking. Each location of concern is identified by number on Attachment B and corresponding photographs are in Attachment C.

Table 2 briefly describes the issue or concern at each location on the SRDS parcel, indicates a recommended action, and proposes a timeline for repairs, maintenance, and/or reinspection.

Point #	Description	Recommended Action	Timeline for Repair and/or Reinspection	Recommended Action Assignment
27	Minor pavement cracking	Follow-up inspection	6-months	Parametrix
28	Minor pavement cracking	Follow-up inspection	6-months	Parametrix
29	Ponding	Follow-up inspection	6-months	Parametrix
30	Ponding	Follow-up inspection	6-months	Parametrix
31	Ponding	Follow-up inspection	6-months	Parametrix
32	Minor pavement cracking	Follow-up inspection	6-months	Parametrix
39	Minor pavement cracking	Follow-up inspection	6-months	Parametrix

Table 2. Identified Points of Concern on the SRDS Parcel

There are no items recommended as high priority on the SRDS parcel at this time.

ATTACHMENTS

- A 2020 Cap Inspection Form A
- B Landfill Cap Inspection Site Plan
- C Photographs
- D SPPD As-Built
- E 2013 Interim Action Work Plan Figure 5

Attachment A

2020 Cap Inspection Form A

SOUTH PARK LANDFILL CAP INSPECTION FORM A

Date:	Septerr	nber 21, 2020 8	:00-11:30AM	Location,	Parcel:	SPPD & SRDS	
Inspector(s):	Rhiann	on Sayles & Au	stin York	Owner:	_		
Type of Inspection	on:	🛛 Annual	□ Non-Routine	– Reason	2020 Basel	ine	
Last Rain Event before Inspection:		0.39" on Sept	ember 18 th , 2020				

VISUAL INSPECTION CHECKLIST

Asphalt Concrete								
	Yes	No	Needs Repair	If yes, describe:				
Minor cracking	\boxtimes			Minor cracking in a few locations. No major concerns at this time.				
Open cracks/ruts		\boxtimes						
Differential settlement		\boxtimes						
Potholes		\boxtimes						
Pooling or ponding				Small ponding areas (no larger than 100 sf) around SPPD site. One ponding location is directly above landfill gas collector control box V4 and another at a sewer cleanout.				
Separation of pavement from curbs, gutters, or catch basins		\boxtimes						
Sloughing or crumbling of edge materials		\boxtimes	\boxtimes					
Erosion		\boxtimes						
Other signs of cap damage, failure, or disturbance				Significant amount of water is seeping from asphalt pavement on SPPD property in location of 6" water main. Needs immediate attention.				

Recommended Maintenance or Repair Type/Location:

Source of water leakage needs to be repaired immediately. Other recommendations per location have been included in the 2020 Baseline Landfill Cap Inspection memorandum.

VISUAL INSPECTION CHECKLIST (continued)

Low-Permeability Geomembrane							
	Yes	No	Needs Repair	If yes, describe:			
Erosion of cover soil	\boxtimes			Erosion is evident by the exposed geotextile and geomembrane in specific locations			
Exposed geotextile	\boxtimes		\boxtimes	On the slopes outside of the fence of the SPPD property there were numerous locations where the geotextile was exposed.			
Holes/signs of unauthorized digging		\boxtimes					
Poor vegetative cover	\boxtimes		\boxtimes	Poor vegetative cover on the slopes outside of the fence on the SPPD property.			
Exposed geomembrane	\boxtimes	\boxtimes		There are four locations (all on the SPPD property) where the black landfill cap geomembrane is exposed.			

Recommended Maintenance or Repair Type/Location:

All locations where the geomembrane (potential landfill cap geomembrane) is exposed need to be inspected and properly restored to the design condition. This includes adding protection from further erosion. Other recommendations per location have been included in the 2020 Baseline Landfill Cap Inspection memorandum.

VISUAL INSPECTION CHECKLIST (continued)

Stormwater Management Facilities							
	Yes	No	Needs Repair	If yes, describe:			
Signs of water infiltration below structures		\boxtimes					
Erosion of soil	X			North bioswale has erosion on the side slopes that exposes the geomembrane. 18" Cover must be restored in accordance with the IAWP			
Holes/signs of unauthorized digging		X					
Invasive/deep-rooted plants		\boxtimes					
Poor vegetative cover	X			North bioswale is poorly vegetated.			
Proper flow direction as designed	X			Swales and conveyance structures appear to be flowing as designed. West bioswale has some standing water approximately 48 hours after end of last storm event.			

Recommended Maintenance or Repair Type/Location:

The source of standing water in the west bioswale needs to be further investigated. It could be a result of constant flow from water leakage, the swale outfall may be clogged, or there may be another issue. Other recommendations per location have been included in the 2020 Baseline Landfill Cap Inspection memorandum

Attach necessary documentation such as photographs, sketches, and additional notes. *See 2020 Baseline Landfill Cap Inspection memorandum site plan and photos.*

Attachment B

Landfill Cap Inspection – Site Plan

Source: City of Seattle, Floyd|Snider, Aspect, Herrera. 2018. South Park Landfill,

Parametrix

Attachment B Landfill Cap Inspection - Site Plan

South Park Landfill

September 21, 2020
Attachment C

Photographs

Location 1. Standing Water in West Bioswale

Location 1. Standing Water in West Bioswale

Location 2. Exposed Geotextile

Location 2. Exposed Geotextile

Location 2. Exposed Geotextile

Location 3. Exposed Geotextile

Location 4. Exposed Geomembrane

Location 4. Exposed Geomembrane

Location 4. Exposed Geomembrane

Location 5. Exposed Geomembrane

Location 5. Exposed Geomembrane

Location 5. Exposed Geomembrane

Location 6. Ponding

Location 7. Exposed Geomembrane

Location 7. Exposed Geomembrane

Location 8. Potholes/Pavement Cracking

Location 8. Potholes/Pavement Cracking

Location 9. Exposed Geomembrane

Location 10. Unknown Open Vertical Pipes

Location 11. Exposed Geotextile

Location 12. Exposed Geotextile

Location 13. Ponding

Location 14. Ponding

Location 15. Ponding

TECHNICAL MEMORANDUM (CONTINUED)

Location 16. Ponding above LFG Collector Control Box V4

Location 17. Ponding

Location 18. Ponding

Location 19. Ponding

TECHNICAL MEMORANDUM (CONTINUED)

Location 20. Water Flowing from Asphalt

Location 20. Water Flowing from Asphalt

Location 21. Ponding

Location 22. Ponding above Sanitary Cleanout

Location 23. Ponding

Location 24. Ponding

Location 25. Ponding

Location 26. Minor Pavement Cracking/Ponding

Location 27. Minor Pavement Cracking

Location 28. Minor Pavement Cracking

Location 29. Ponding

Location 30. Ponding

Location 31. Ponding

Location 32. Minor Pavement Cracking

Location 33. Exposed Geotextile

Location 34. Exposed Geotextile

Location 37. Exposed Geotextile

Location 36. Exposed Geotextile

Location 38. Exposed Geotextile

Location 39. Minor Pavement Cracking

Attachment D

SPPD As-Built

17"W EU

6" SSC0

90A

FIRE DEPARTMENT CONNECTION

SEE SHEET 2 OF 2

THAT PORTION OF GOVERNMENT LOTS 2 THROUGH 4, INCLUSIVE, AND OF THE SOUTHWEST QUARTER OF THE NORTHWEST QUARTER OF SECTION 32, TOWNSHIP 24 NORTH, RANGE 4 EAST, WILLAWETTE MERIDIAN, IN KING COUNTY, WASHINGTON, DESCRIBED AS FOLLOWS: SECTION 32, TOWNSHIP 24 NORTH, RANGE 4 EAST, WILLAMETTE MERIDIAN, IN KING COUNT, WASHINGTON, DESCRIBED AS FOLLOWS: BEGINNING AT A POINT ON THE WEST LINE OF GEORGE HOLT'S DONATION CLAIM NO. 51, AS ESTABLISHED BY SUPERIOR COURT CASE NO. 14450, WHICH IS 400 FEET NORTH OF THE SOUTHWESTERLY CORNER THEREOF; THENCE SOUTH ALONG SAID WEST LINE 400 FEET TO THE SOUTH LINE OF SAID DONATION CLAIM;

THAT PORTION OF GOVERNMENT LOT 4, SECTION 32, TOWNSHIP 24 NORTH. RANGE 4 EAST, WILLAMETTE MERIDIAN, IN KING COUNTY, WASHINGTON, DESCRIBED AS FOLLOWS:

BEGINNING AT A POINT ON THE WEST LINE OF GEO. HOLT DONATION CLAIM NO. 51 WHICH IS 516.36 FEET SOUTH OF THE NORTH LINE OF SECTION 32, TOWNSHIP 24 NORTH, RANGE 4 EAST, WILLAMETTE MERIDIAN, IN KING COUNTY, WASHINGTON;

THENCE SOUTH 00'35'49" WEST ALONG A LINE PARALLEL TO AND 794 FEET WEST OF THE WEST LINE OF A. HOGRAVE DONATION CLAIM NO. 37, A DISTANCE OF 350 FEET;

EXCEPT THAT PORTION CONVEYED TO THE CITY OF SEATTLE BY DEED RECORDED UNDER RECORDING NUMBER 5947050.

CURRENT ZONING: IG2 U/65 INDUSTRIAL GENERAL 2 UNLIMITED/65 AND INDUSTRIAL BUFFER UNLIMITED/45

REVISIONS	ALLOW DESCORPTION BY DATE	ALERT AND	Prove ATT BE PLANE SET FORM OF THE PLANE SET ARE AND SHALL REAWN THE PLANE T
	SEACON SOUTH PARK		ASBUILT DRAWING
	Encompass	ENGINEEKING & SUCKETING Neser Washington Diston 165 NE Junjeer Street, Suite 201 - Issayada, M., 98027 - Phone: (425) 392-0250 - Fax: (425) 391-3055	108 East 2nd Street • Gle Elum, WA 98922 • Phone: (509) 674-7419 • Fax: (509) 674-7419
JOE DA SCJ DES DRJ CHI	3 NO. TE ALE SIGNED AWN ECKED	10 5/2 1"= S J S	613 27/15 =50' DM EF DM

Attachment E

2013 Interim Action Work Plan – Figure 5

B3

Cap Maintenance Documentation

B3-A

Example Form

SOUTH PARK LANDFILL CAP MAINTENANCE FORM B

Location/Parcel: Owner C	ontact:
Part 1: Mai	ntenance roperty Owner)
Date of Repair/ Maintenance:	Repaired by:
Reason for Maintenance:	<u> </u>
Describe Maintenance Location (attach sketch and photos):	
Describe Maintenance or Repair Performed (attach photos	and documentation as necessary):
Is the maintenance activity complete?	□ No
If no, explain:	
Property Owner Signature	Date
All maintenance and repair documentation must be provided to the Site C maintenance/repair OR by March 1 if the activity is completed within 60 d	oordinator within 60 days of the completion of the ays prior to March 1.

Part 2: Observation/Review of Maintenance (Completed by Site Coordinator)					
Date of Observation/Review:		Inspector(s):			
Observation Notes (attach photos):					
Is the maintenance activity complete? If no, explain:	☐ Yes	□ No			
Site Coordinator Signature		Date			

B3-B

Completed Forms

SOUTH PARK LANDFILL CAP MAINTENANCE FORM B

Location/Parcel: SPPD Pa	rcel	Owner C	Contact:	Rob Howie		
Part 1: Maintenance						
Date of Renair/ Maintenance:						
Reason for Maintenance:	•		nepun	ncu by.		
Water coming up through asp	halt.					
Describe Maintenance Location	on (attach sketch ar	id photos):	:			
Bus parking area						
Describe Maintenance or Rep	air Performed (atta	ch photos	and docu	umentation as necessary):		
A joint in the fire line came a	part. The repair was	made and	l the asph	halt repaired.		
Is the maintenance activity co	omplete?	Yes	□ No			
If no explain:						
~						
(Doil						
A MI			-	2/21/21		
Dronetty Owner Signature				5/51/21		
All maintenance and renait documer	tation must be provided	to the Site C	L Coordinator	v within 60 days of the completion of the		
All maintenance and repair documer maintenance/repair OR by March 1 i	itation must be provided if the activity is complete	to the Site C d within 60 d	loordinator	r within 60 days of the completion of the to March 1		

Part 2: Observation/Review of Maintenance (Completed by Site Coordinator)					
Date of Observation/Review: November 11, 2020	Inspector(s): Austin York, HWA Geosciences				
Observation Notes (attach photos):					
The water line repair was inspected during the 4 th quarter asphalt surrounding the patch appeared solid and intact.	monitoring event. The patch looked good and				
Is the maintenance activity complete? 🛛 🖂 Yes	No				
If no, explain:					
Lawa Dayce Lee Site Coordinator Signature	March 31, 2021 Date				

7

Appendix C

Landfill Gas Monitoring

C1

TM - Triggers and Contingent Actions for Perimeter Probe Monitoring

TECHNICAL MEMORANDUM

DATE:	March 10, 2021
TO:	Jeff Neuner, SPU Landfill Closure Business Area Manager
FROM:	Laura Lee and Lisa Gilbert
SUBJECT:	Triggers and Contingent Actions for Perimeter Probe Monitoring
CC:	Robert Howie, South Park Property Development LLC
PROJECT NUMBER:	553-1550-067
PROJECT NAME:	South Park Landfill

INTRODUCTION

The South Park Landfill Site is a former municipal solid waste landfill in the South Park neighborhood of Seattle, Washington. Long-term monitoring of landfill gas (LFG) probes at the South Park Landfill is being performed by the City of Seattle Public Utilities for the portion of the Site referred to as the Settlement Area under a Consent Decree with the Washington State Department of Ecology (Ecology).

The monitoring is described in the Post-Closure Operation, Maintenance, and Monitoring Plan (OMMP), presented as Appendix A of the Final Cleanup Action Plan (Ecology 2018). The Settlement Area includes the South Park Property Development Parcel (SPPD), the South Recycling and Disposal Station (SPDS) parcel, and certain adjacent right-of-ways. Parametrix has been designated as the Site Coordinator to perform the long-term monitoring and reporting required under the CAP and the OMMP.

OBJECTIVES

Figure A.2.4 of the Landfill Gas Monitoring and Contingency Plan in the OMMP (included as Attachment A) presents a flow chart for triggers and contingent actions for perimeter probe monitoring to be performed if certain levels of methane are detected during routine ongoing monitoring. The flow chart requires evaluating whether "concentrations between 1.25 and 5 percent have previously been shown to be protective for the probe (see table)." The objective of this technical memorandum is to summarize information used to determine the methane levels that have been shown to be protective and clarify the trigger criteria for contingent actions at each probe.

REGULATORY BACKGROUND

LFG mitigation criteria are defined in WAC 173-304-460 and King County Board of Health Title 10 regulations. The principal criteria relevant to the South Park Landfill are the following:

- Methane concentrations in soil at the Landfill Property boundary must not exceed 5 percent by volume, the LEL for methane. These concentrations are typically monitored at permanent LFG probes using calibrated field monitors.
- Methane concentrations inside buildings and structures at the Landfill Property must not exceed 1.25 percent by volume, or 25 percent of the LEL. These concentrations are typically measured by either calibrated hand-held monitors or installed building monitors/alarms.

• Methane concentrations inside buildings and structures beyond the Landfill Property boundary must not exceed 100 ppmv. These concentrations are typically measured by either calibrated hand-held monitors or installed building monitors/alarms.

LFG CONTROL SYSTEMS

In 2014 and 2015 an active LFG control system was installed at the SPPD parcel as part of the Interim Action redevelopment. The system consists of a network of vertical gas collection wells and horizontal gas collection trenches. LFG is extracted under an applied vacuum (via vacuum blower) and discharged out a vent stack in the surface component equipment enclosure, which is located on the northwest portion of the parcel. An LFG control system is also planned as part of the redevelopment of the SRDS parcel but has not yet been installed to date.

HISTORICAL MONITORING DATA SUMMARY

During the RI, methane levels above 5 percent were measured in some gas probes along the perimeter of the Settlement Area, including GP-27 and GP-29 along the eastern perimeter and GP-33 along the northwestern perimeter. Some of the perimeter probes are adjacent to off-site buildings, which are not being routinely monitored for methane.

In early 2011, elevated methane concentrations were detected at LFG probe locations GP-27, GP-28, and GP-29 (6.5, 2.8, and 8.5 percent [by volume], respectively). In response, indoor air studies were conducted at five adjacent buildings (within 100 ft) located east of 5th Avenue South and the SPPD to establish a baseline of methane gas monitoring data across the seasons and to support the existing safety of people and structures. Methane was measured quarterly during 2011 in perimeter gas probes and the indoor air of the buildings located at 8230 and 8250 5th Avenue South for 1-year in accordance with a monitoring plan (Herrera (2011), provided in Attachment B.

The results of the 2011 monitoring were summarized in the report (Herrera 2012) provided in Attachment C. No methane was detected in indoor air in any of the buildings. The highest 2011 methane readings measured in perimeter probes included in the long-term OMMP program are presented in Table 1. During the 2011 study, the only probes where methane concentrations were observed above 5 percent were GP-27 and GP-29. Table 1 also expands on the information presented in OMMP Figure A.2.4 related to adjacent LFG systems and buildings.

After the completion of the 2011 study, OMMP perimeter gas probes GP-33, GP-37, and GP-38 were installed in 2013 and 2015. Methane monitoring results for these probes through 2016 are presented in the RI (Floyd|Snider 2017). GP-33 is adjacent to buildings located on the W.G. Clark property, and in 2015 and 2016 there were several detections of methane above the LEL, with a maximum detection of 22 percent. These detections were attributed to a temporary shutdown of the SPPD LFG control system. Gas probes GP-37 and GP-38 are not adjacent to any off-site buildings and the highest detected methane concentrations were 0.4 and 0.5 ppm, respectively.

On September 26 and October 3, 2016, elevated concentrations of methane (ranging from 32.5 to 32.7 percent) were detected in perimeter probe GP-43 (this probe is not part of the current monitoring program). In response, methane monitoring was conducted in indoor air in the buildings located on the W.G. Clark property on October 17, 2016. No methane or VOCs were observed at concentrations greater than the detection limits.

Table 1. Maximum 2011 Methane Concentrations, South Park Landfill Perimeter Gas Probes Included in theOMMP Long Term Monitoring Program

Gas Probe	Indoor Air Protectiveness Established ⁶	Highest Methane (percent by volume)	Number of 2011 Quarterly Events⁵	Number of Additional 2011 Events	Adjacent LFG System	Adjacent Off-site Buildings ³
GP-37	NA	NA	NA	NA	SRDS ²	No
GP-09	NA	0	3	1	SRDS ²	No
GP-26	No	0.1	3	4	SRDS ²	Yes (Rick Larson Enterprises, Inc.)
GP-23	No	0.1	4	0	SRDS ²	Yes (Bank of America (2 buildings)
GP-07	No	0.2	4	0	SRDS ² /SPPD	Yes (Eagle Eye Enterprises, LLC)
GP-27	Yes	6.5 (range 2.6 to 6.5)	4	5	SPPD	Yes, 5 th Avenue S (JYS4, LLC)
GP-28	Yes	2.8 (range 0 to 2.8)	4	4	SPPD	Yes, 5 th Avenue S (JYS4, LLC)
GP-29	Yes	8.5 (range 2.4 to 8.5)	4	5	SPPD	Yes, 5 th Avenue S (Ness Manitowoc Property, LLC)
GP-16 ¹	NA	0	4	2	SPPD	No
GP-31 ¹	No	0	3	3	SPPD	Yes (Emerson Power Products)*
GP-15 ¹	No	0	1	1	SPPD	Yes, Lenci/Emerson
GP-32 ^{1,4}	No	0.1	4	3	SPPD	Yes (Emerson Power Products)*
GP-03 ¹	NA	0.2	4	0	SPPD	No
GP-13	No	0	1	0	SPPD	Yes (NorthStar Ice Equipment)
GP-11	No	0.1	4	0	SPPD	Yes (International Construction Equipment, Inc.)
GP-38 ⁷	NA	NA	NA	NA	None	No
GP-33 ⁷	No	NA	NA	NA	SPPD	Yes (W.G. Clark Construction Co)

¹ Due to shallow groundwater, these probes are only measured when the water table is low enough for the probes to function. *shallow groundwater in this area likely limits the migration of LFG.

² SRDS LFG control system has not been installed to date.

³ Floyd | Snider et al 2017

⁴ Due to shallow groundwater, these measurements were made in adjacent barholes.

⁵ Quarterly events were conducted in February, May, September, and December. Indoor air was measured within 1-week of the adjacent probe.

⁶ Includes probes where an indoor air study was conducted; not applicable where no adjacent buildings within 100 ft.

⁷ Not included in the 2011 study (probes installed after 2011). See text for discussion.

NA Not Applicable

CONCLUSIONS

The 2011 study established that methane concentrations in perimeter gas probes in existence at that time (including methane measurements between 1.25 and 5 percent in GP-28, and above 5 percent in GP-27 and GP-29) were not associated with any detections of methane in off-site buildings located at 8230 and 8250 Fifth Avenue South. Since that time, an active LFG control system has been installed at the adjacent SPPD property.

Gas probes GP-33, GP-37, and GP-38 were installed after the 2011 study. Of these, only GP-33 is adjacent to a building. Methane concentrations in GP-33 were periodically above 5 percent during the period between 2015 and 2016. During this period, one indoor air measurement was made at the adjacent buildings and no methane was detected. However, the results were not sufficient to provide a relationship between methane in the probe and the indoor air in adjacent buildings to assess protectiveness.

RECOMMENDATIONS

We recommend modifying the flow chart to indicate that the criteria for additional off-site building monitoring should be 1.25 percent (25% of the LEL) for all probes other than GP-27 and GP-29. At probes GP-27 and GP-29, since methane concentrations of over 5 percent have been shown to be protective, the criteria for additional off-site building monitoring should be 5 percent.

The 1.25 percent criteria should include probes GP-28 and GP-33. At probe GP-28, methane concentrations were only shown to be protective at concentrations up to 2.8 percent, so it is recommended that 1.25 percent be used as the criterion. At probe GP-33, a definitive relationship between methane concentrations and the adjacent buildings was not established to determine protectiveness.

A revised flow chart reflecting these recommendations is presented as Figure 1. Figure 2 shows the locations of the LFG perimeter probes. Figure 3 shows the locations of buildings within 100 ft of the Landfill boundary.

REFERENCES

- Ecology (Washington State Department of Ecology). 2018. South Park Landfill Final Cleanup Action Plan. Appendix A Landfill Post-Closure Operations, Maintenance, and Monitoring Plan.
- Floyd | Snider, Aspect, BHC, Herrera. 2017. Remedial Investigation/Feasibility Study. Prepared for City of Seattle South Park Property Development, LLC. July 2017.
- Herrera Environmental Consultants, Inc. 2011. Scope of Work for South Park Landfill Gas Monitoring. South Park Landfill Interim Gas Probe and Building Monitoring Plan. Memorandum to Teri Floyd, Floyd | Snider. April 14.
- Herrera Environmental Consultants, Inc. 2012. Gas probe and indoor air quarterly monitoring results at South Park Landfill, Seattle, Washington. Memorandum to Stephen Bentsen, Floyd | Snider. February 7.

FIGURES

- 1 Flow Chart for Triggers and Contingent Actions for Perimeter Probe Monitoring
- 2 Perimeter Landfill Gas Probe Network
- 3 Buildings within the Landfill and within 100 ft of the Landfill Boundary

ATTACHMENTS

- A Figure A.4.2 of OMMP
- B Monitoring Plan (Herrera 2011)
- C Off-Site Building Results (Herrera 2012)

FIGURES

Perimeter Probe and Adjacent Off-Site Building Locations

Gas Probe	Adjacent LFG System	Adjacent Off-site Buildings within 100 ft ¹	Protectiveness Established*?
GP-03	SPPD	None	NA
GP-07	SRDS/SPPD	Eagle Eye Enterprises, LLC	No
GP-09	SRDS	None	NA
GP-11	SPPD	International Construction Equipment, Inc.	No
GP-13	SPPD	NorthStar Ice Equipment	No
GP-15	SPPD	Lenci/Emerson	No
GP-16	SPPD	None	NA
GP-23	SRDS	Bank of America (2 buildings)	No
GP-26	SRDS	Rick Larson Enterprises, Inc.	No
GP-27	SPPD	5th Avenue South	Yes
GP-28	SPPD	5th Avenue South	No
GP-29	SPPD	5th Avenue South	Yes
GP-31	SRDS	Emerson Power Products	No
GP-32	SRDS	Emerson Power Products	No
GP-33	SPPD	W.G. Clark Construction Co	No
GP-37	SRDS	None	NA
GP-38	None	None	NA

Notes:

1 Adjacent off-site buildings within 100 ft are shown on Figure 3.

Protectiveness established at methane concentrations up to 5 percent in adjacent probes.
Due to shallow groundwater, some probes are only measured when the water table is low enough for the probes to function.
NA - Not applicable.

Contingent Action Triggered by Exceedance

- 1. SC notifies the Ecology PM, Public Health Seattle & King County, and the rest of the PLP Group.
- 2. Parcel staff adjust adjacent LFG system to increase control on LFG, and continue DAILY monitoring at probe until control is established (using criteria above) then weekly for 4 weeks.
- 3. SC arranges monitoring of indoor air for LFG in any off-site buildings within 100 feet of the Landfill boundary (Figure 3). Refer to OMMP Figure A.2.6 for triggers and actions based on indoor measurements.
- 4. SC notifies Ecology PM and Public Health Seattle & King County of the actions taken and their effectiveness. If the adjustments to the adjacent gas system are not effective, then a plan must be prepared and submitted for approval.
- 5. SC reports exceedances and actions in Annual Report to Ecology.

Abbreviations: Ecology = Washington State Department of Ecology; LEL = Lower Explosive Limit; LFG = Landfill gas; OMMP = Operations, Maintenance, and Monitoring Plan; PLP = Potentially liable person; PM = Project manager; SPPD = South Park Property Development, LLC; SRDS = South Recycling and Disposal Station

Source: Floyd|Snider, Aspect, Herrera. 2018. South Park Landfill, Landfill Post-Closure OMMP.

Parametrix engineering . planning . environmental sciences Figure 1 Flow Chart for Triggers and Contingent Actions for Perimeter Probe Monitoring

Source: Floyd|Snider, Aspect, Herrera. 2018. South Park Landfill, Landfill Post-Closure Operations, Maintenance, and Monitoring Plan.

Parametrix

Figure 2 Perimeter Gas Probe Network Cleanup Action Plan OMMP South Park Landfill

Seattle, WA

Source: Floyd|Snider, Aspect, Herrera. 2018. South Park Landfill, Landfill Post-Closure Operations, Maintenance, and Monitoring Plan.

Parametrix

Figure 3 Buildings within the Landfill and within 100 feet of the Landfill Boundary Cleanup Action Plan OMMP South Park Landfill

Seattle, WA
Attachment A

Figure A.4.2 of OMMP

F:\projects\COS-SPARK\5000 - CAP\06 SPARK CAP Public Review Final\04 Appendix A OMMP\Attachment A.2 Landfill Gas MCP\03 Figures\Figure A.2.4 thru A.2.6 Flow Chart for Triggers and Perimeter Probe Monitoring_2017-0512.vsd

Attachment B

Monitoring Plan (Herrera 2011)

Herrera Environmental Consultants, Inc.

South Park Landfill – Interim Gas Probe and Building Monitoring Plan

То	Teri Floyd, Floyd Snider
СС	Stephen Bentsen, Floyd Snider and John Strunk, Aspect Consulting
From	Michael Spillane and Bruce Carpenter, Herrera Environmental Consultants
Date	April 14, 2011
Subject	Scope of Work for South Park Landfill Gas Monitoring

Project Understanding

South Park Landfill gas probes were monitored by Herrera Environmental Consultants in February, 2011 as a part of the Remedial Investigation. The locations of the gas probes are shown in Figure 1. Results indicated elevated methane levels outside the landfill footprint in probe GP-25 in the Kenyon Business Park and GP-27 and GP-29 east of Fifth Avenue South. Follow-up monitoring in nearby buildings indicated no methane detected in approximately 10 nearby buildings, including four in Kenyon Business Park (KBP), one outside of KBP, but adjacent to Kenyon Street, and five adjacent to 5th Avenue South.

The South Park PLP group has indicated an interest in continuing to monitor the perimeter gas probes and select buildings for one full year, beginning with the February sampling that was conducted as part of the RI. Further sampling will not be performed as part of the RI, as there is sufficient information available on landfill gas for the RI tasks to continue on their current schedule.

The technical consultants to the South Park PLP group and its members met on Thursday, March 17, 2011 and the entire PLP group met on Friday March 25, 2011 to confirm the scope presented in this document. This document is intended to describe the scope of work agreed to at those meetings.

Sampling Goals

- Support the existing safety of people and structures by gathering a full year of data from perimeter probes and adjacent building interiors.
- Establish baseline data across the seasons.

Scope of Work

The scope of sampling is as follows:

- Monitor nine (9) new landfill perimeter probes for one year at an interval of four and six weeks between events from April through December 2011 and monitor ten (10) probes with historical background data for three additional quarters. When combined with the Feb. 2011 event, this will constitute 1 year of monitoring.
- Monitoring 5 buildings along 5th Avenue at least once per quarter for the same 1-year period. Monitoring should be performed within 1 week of a perimeter probe monitoring event.
- The South Park Landfill PLP Group will notify the owners of properties of the Kenyon Industrial Park (Harsch Investment Properties), the owners of the 7901 2nd Avenue South building and owner of the W.G. Clark building of the ongoing sampling of probes at the industrial park. This notification will include previous probe and Kenyon building monitoring data.
- Quarterly reporting of the probe and building data in a format acceptable for transmittal to Ecology and Public Health of Seattle and King County.

Specific tasks to be performed by the Consultant Team are as follows:

Task 1 Access Coordination

• Contact property owners and tenants to schedule monitoring

Task 2 Probe Monitoring

- Monitor thirteen probes, including GP-05, GP-15, GP-16, GP-17 and GP-24 through GP-32 for six to nine periods spaced between four to six weeks from April to December 2011;
- Monitor six additional perimeter probes including: GP-03, GP-07, GP-09, GP-11, GP-13, and GP-23 quarterly for three seasonal periods through December 2011. The quarterly monitoring will coincide with the monthly monitoring.
- Monitor probes for water level, depth to bottom of probe, methane, carbon dioxide, oxygen, static pressure, and barometric pressure.
- Monitoring will be conducted following at least 12 hours of falling barometric pressure with a drop from peak of at least 0.25 inches mercury. If these conditions are not met within the four to six week desired interval, the probe monitoring will occur the next time the barometric conditions are met.
- If elevated groundwater levels preclude monitoring in probes GP-30, GP-31, and GP-32 barhole punch probes will be used for monitoring in the southeast corner to allow data collection.

• Contingency actions for methane concentrations greater than 5% at probes in areas where building monitoring is not already being conducted (excluding the KBP buildings), GP-05, GP-07, GP-11, GP-13, GP-15, GP-23, GP-26, GP-31, and GP-32 are shown in Figure 2.

Task 3 Building Monitoring

- Building interiors will be monitored three times, including once each quarter through December 2011. Building monitoring will be done concurrent with a probe monitoring event during a period of falling barometric pressure.
- A total of five buildings will be monitored on Fifth Avenue South, including one building with two interior spaces occupied by Timberwolf and Hudson at 8230; the remaining four buildings located at 8250 are comprised of three interior building spaces and one LFG mitigation vent at the fourth most westerly building.
- Contingency actions for methane detected in buildings are shown in Figure 3.

Task 4 Quarterly Reporting

The following documents will be prepared quarterly to document the findings of the probe and building monitoring.

- Table summarizing probe data (table would be cumulative since earliest data available for the probe)
- Letter report documenting methods, procedures, and results.
- Graphs of barometric pressure and equipment calibration for each event would be provided in appendices.
- Map showing probe and building monitoring locations. The building monitoring locations will be updated as needed.

Assumptions

- Contact SPPD consultant prior to beginning probe and building monitoring to review barometric pressure cycle and concur on monitoring schedule.
- Indoor gas monitoring equipment will have the ability to detect methane at concentrations of 100 ppm.
- Quarterly probe monitoring (19 locations) and barhole monitoring will be performed over a 9-hr period by one person.
- Monthly probe monitoring (13 locations) and barhole monitoring will be performed over a 7-hour period by one person.
- Indoor air monitoring includes six buildings over a 5-hr period by one person.

- Each monitoring period includes two hours to organize equipment and for travel.
- Reporting includes preparation of three quarterly letter reports documenting results (12-hours per event) and six monthly emails presenting results, including a cumulative data table after each non-quarterly monitoring period (2-hrs per event).

Figure 2 South Park Landfill Gas Probe Monitoring Process

	Table 1
GP	Adjacent Buildings
LUCATION	Aujacent Bununigs
11	International Construction
13	North Star Ice Equipment
5, 15,	Emerson Power Products
31, 32	
23	Bank of America Tre (Two Bldgs)
07	Eagle Eye Enterprises Corp
26	Rich Larson Enterprises

Attachment C

Off-Site Building Results (Herrera 2012)

Herrera Environmental Consultants, Inc.

Memorandum

To Stephen Bentsen, Floyd|Snider
 cc Teri Floyd, Floyd|Snider and John Strunk, Aspect Consulting
 From Bruce Carpenter and Michael Spillane, Herrera Environmental Consultants
 Date February 7, 2012
 Subject Gas probe and indoor air quarterly monitoring results at South Park Landfill, Seattle, Washington

In accordance with the South Park Landfill – Interim Gas Probe and Building Monitoring Plan, Herrera Environmental Consultants (Herrera) monitored 19 gas probes at the South Park Landfill and conducted indoor air monitoring in five buildings located adjacent to the landfill on December 28 and 29, 2011 (Figure 1). In addition, two gas probes located north of Kenyon Industrial Park (KIP) (SV-2 and SV-3) were monitored to determine if landfill gas (LFG) has migrated north of the landfill.

This is the final report that describes the last monitoring event to be conducted under the monitoring plan. This report also summarizes data from five monitoring events and selective probe monitoring associated with indoor air monitoring performed in 2011.

Gas Probe Monitoring Procedure

Monitoring began during a period of falling barometric pressure, as specified in the South Park Landfill – Interim Gas Probe and Building Monitoring Plan prepared by Herrera in April 2011. Methane, carbon dioxide, and oxygen percentages were measured using a LandTec GEM 2000 Gas Analyzer. Prior to monitoring, the meter was calibrated in the field. The oxygen span calibration gas concentration was 4.0 percent and the methane calibration gas value was 50.1 percent on December 28, 2011, and these values were 1.3 percent and 46.4 percent, respectively, on December 29, 2011. The calibration gas standards are 4.0 percent for oxygen and 50.0 percent for methane.

The gas probes were monitored by connecting the meter using silicone and polyethylene tubing. A minimum of one probe volume was evacuated before recording final measurements. An SKC universal pump was used to evacuate the 2-inch diameter polyvinyl chloride (PVC) probes at a flow rate of 3,000 milliliters per minute (ml/min) and the GEM 2000 was used to evacuate the 0.75-inch diameter probes at a purge rate of 300 ml/min. To ensure that representative measurements were collected, the gas probes were purged until methane, carbon dioxide, and oxygen percentages stabilized (when they varied by less than 10 percent for three consecutive measurements).

Gas and barometric pressures were measured at each probe prior to purging. Methane, carbon dioxide, and oxygen percentages were monitored every 1/4 probe volume purged from the respective gas probe.

Gas Probe Monitoring Results

Methane concentrations ranged from 0.0 to a high of 50.9 percent in probe GP-25 at KIP, west of the former landfill boundary (Table 1 and Figure 1). As the measurements indicate, the highest methane concentrations tend to be observed at gas probes GP-24 and GP-25, both of which are located on the west portion of the KIP property and outside of the landfill boundary.

Probes GP-13, GP-15, GP-30, and GP-32 were not monitored, due to high water levels. Barhole measurements were taken adjacent to probes GP-30 and GP-32 and are reported in Table 1 as BH-30 and BH-32, respectively. No methane was detected in the two barholes. Barholes were not completed adjacent to probes GP-13 or GP-15 during gas probe monitoring, due to topographic conditions in the vicinity of these probes. Probe GP-13 is southwest of the West Ditch. Completion of a barhole several feet below ground surface at probe GP-13 would be above the bottom of the adjacent West Ditch invert and therefore would not provide meaningful data. A drainage ditch also exists north of GP-15 and completion of a barhole at this location would not provide meaningful data for the same reason described above.

Barometric pressure dropped approximately 0.6 inches mercury ("Hg) over a 48-hour period prior to beginning the monitoring. It continued to drop from 29.78" Hg to 29.51" Hg while monitoring on December 28, 2011, but rose that night and then dropped from 29.96" Hg to 29.92 " Hg during monitoring on December 29, 2011. A summary of barometric pressure during this monitoring period is provided in Attachment A.

Indoor Air Monitoring Procedures and Results

At 10:35 a.m. on December 29, 2011, Herrera staff began monitoring the interior of the buildings located at 8230 and 8250 5th Avenue South. A Photovac Micro Flame Ionization Detector (FID) was used to monitor the indoor air. The FID was calibrated to methane in the field.

A building location map with a summary of the monitoring points is provided in Attachment B.

The FID remained on while walking throughout all of the buildings. It was held over the cracks in the floor and adjacent to other monitoring points. Storm drain catchments also were monitored outside of the buildings.

The FID has a detection limit of 0.5 parts per million (ppm). No methane or FID measurements were found above background during the air monitoring, with the exception of very low readings fluctuating from 0.0 to a high of 4.3 ppm detected in the main office space of the lobby at 8250 5th Avenue South (building monitoring location 8). These readings were attributed to volatiles off-gassing from the carpeting.

2

Gas Probe Identification	Date of Measurement	Barometric Pressure (inches Hg)	Well Head Pressure (inches H20)	Methane (% volume)	Carbon Dioxide (% volume)	Oxygen (% volume)
GP-1	2/9/11	30.46	0.10	10.9	22.3	00.0
GP-2	2/9/11	30.44	-0.04	20.7	15.5	00.0
GP-3	2/9/11	30.41	0.00	00.2	05.8	09.5
GP-3	5/25/11	29.69	-0.01	00.1	03.5	14.9
GP-3	9/23/11	29.86	0.14	00.0	11.0	06.4
GP-3	12/28/11	29.66	-0.20	00.0	0.98	02.2
GP-5	2/9/11	30.41	-0.05	00.2	08.6	00.0
GP-5	5/25/11	29.69	-0.08	00.1	04.0	11.5
GP-5	6/27/11	29.65	0.10	00.0	09.2	01.4
GP-5	9/23/11	29.98	0.27	00.0	11.9	03.6
GP-5	11/17/11	29.55	-0.28	00.0	13.9	00.4
GP-5	12/28/11	29.51	-0.18	00.0	11.8	00.0
GP-7	2/9/11	30.42	0.00	00.2	01.3	18.3
GP-7	5/25/11	29.70	-0.08	00.1	01.4	18.5
GP-7	9/23/11	29.86	0.09	00.0	03.2	17.0
GP-7	12/28/11	29.74	-0.18	00.0	03.1	16.3
GP-9	2/7/11	30.11	0.00	00.0	05.0	14.2
GP-9	2/25/11	29.72	-0.04	00.0	02.0	18.1
GP-9	9/23/11	29.91	0.22	00.0	03.1	17.4
GP-9	12/28/11	29.76	-0.17	00.0	03.9	15.2
GP-11	2/8/11	30.34	-0.01	00.0	03.8	10.5
GP-11	5/25/11	29.68	-0.08	00.1	00.1	20.0
GP-11	9/23/11	29.88	0.17	00.0	04.9	09.3
GP-11	12/28/11	29.70	-0.18	00.0	04.7	04.9
GP-13	9/23/11	29.89	0.21	00.0	08.0	08.6
GP-15	9/23/11	29.99	0.28	00.0	11.8	07.7

Table 1.Summary of gas probe monitoring performed from February to December 2011 at South Park Landfill, Seattle,
Washington.

jr /table 1 - gas probe monitoring results thru december 2011

Gas Probe Identification	Date of Measurement	Barometric Pressure (inches Hg)	Well Head Pressure (inches H20)	Methane (% volume)	Carbon Dioxide (% volume)	Oxygen (% volume)
GP-15	11/17/11	29.61	3.35	00.0	00.2	19.4
GP-16	2/8/11	30.29	0.00	00.0	19.0	19.0
GP-16	5/25/11	29.69	-0.06	00.0	00.1	20.2
GP-16	6/27/11	29.68	0.12	00.0	20.1	00.8
GP-16	9/23/11	29.91	0.25	00.0	17.6	02.9
GP-16	11/17/11	29.61	-0.29	00.0	21.4	00.0
GP-16	12/29/12	29.96	-0.18	00.0	19.9	00.0
GP-17	2/8/11	30.29	0.00	10.1	19.1	00.0
GP-17	5/25/11	29.70	-0.06	05.8	18.9	00.0
GP-17	6/27/11	29.67	-0.11	08.3	17.9	00.0
GP-17	9/23/11	29.97	0.31	01.0	18.5	00.0
GP-17	11/17/11	29.56	-0.30	02.1	22.9	00.0
GP-17	12/29/12	29.96	-0.18	07.4	21.4	00.0
GP-19	2/8/11	30.37	-0.02	01.9	14.3	00.0
GP-20	2/9/11	30.45	-0.06	03.3	08.9	00.0
GP-21	2/9/11	30.44	-0.07	20.0	17.6	00.0
GP-22	2/9/11	30.44	0.01	07.1	11.3	00.0
GP-23	2/8/11	30.36	0.01	00.0	01.1	19.7
GP-23	5/25/11	29.71	-0.08	00.1	00.4	19.8
GP-23	9/23/11	29.86	-0.23	00.0	04.6	15.7
GP-23	12/28/11	29.75	-0.18	00.0	05.0	06.9
GP-24	2/7/11	30.12	-	15.4	00.0	06.1
GP-24	2/9/11	30.45	0.00	14.4	00.0	05.4
GP-24	2/18/11	29.81	0.14	4.6	00.0	17.4
GP-24	2/21/11	29.93	0.11	04.7	00.0	16.1
GP-24	5/25/11	29.71	0.02	08.5	00.0	15.1
GP-24	6/27/11	29.65	0.13	34.9	00.0	00.0
GP-24	9/23/11	29.97	0.02	48.4	00.0	00.0
GP-24	11/17/11	29.72	-0.21	29.4	00.1	05.5

Gas Probe Identification	Date of Measurement	Barometric Pressure (inches Hg)	Well Head Pressure (inches H20)	Methane (% volume)	Carbon Dioxide (% volume)	Oxygen (% volume)
GP-24	12/28/11	29.78	-0.15	18.8	00.0	04.2
GP-25	2/7/11	30.11	-	62.1	00.1	00.0
GP-25	2/9/11	30.43	-0.03	56.1	00.1	00.4
GP-25	2/18/11	29.77	-3.22	30.2	00.0	09.7
GP-25	2/21/11	29.93	0.07	32.9	00.1	09.0
GP-25	5/11/11	29.75	0.02	72.5	00.1	00.1
GP-25	5/25/11	29.71	0.00	26.2	00.1	12.4
GP-25	6/27/11	29.65	0.13	75.8	00.0	00.0
GP-25	9/23/11	29.95	0.02	85.1	00.1	00.0
GP-25	11/17/11	29.74	-0.33	62.4	00.1	04.8
GP-25	12/28/11	29.76	-0.13	50.9	00.1	02.0
GP-26	3/8/11	29.86	0.14	00.0	00.8	18.8
GP-26	3/10/11	29.53	0.05	00.0	01.7	18.4
GP-26	5/25/11	29.71	-0.10	00.1	01.5	18.7
GP-26	6/27/11	29.66	0.12	00.0	03.1	16.6
GP-26	9/23/11	30.02	0.24	00.0	02.4	17.6
GP-26	11/17/11	29.67	-0.28	00.0	02.6	17.5
GP-26	12/28/11	29.76	-0.48	00.0	02.9	16.4
GP-27	2/7/11	30.09	-0.01	06.1	07.8	00.9
GP-27	2/17/11	29.73	0.13	02.9	04.7	09.1
GP-27	2/21/11	29.90	0.10	03.1	04.8	09.1
GP-27	5/11/11	29.73	0.05	06.5	08.3	00.1
GP-27	5/25/11	29.68	-0.08	02.6	04.0	11.1
GP-27	6/27/11	29.69	0.12	06.3	08.9	00.0
GP-27	9/23/11	29.98	0.10	04.3	11.4	00.0
GP-27	11/17/11	29.76	-0.17	03.3	08.4	05.2
GP-27	12/29/11	29.92	0.0	06.0	11.9	00.0
GP-28	2/7/11	30.11	0.01	00.0	03.1	08.1
GP-28	2/21/11	29.89	0.10	00.0	02.0	15.3

jr /table 1 - gas probe monitoring results thru december 2011

Gas Probe Identification	Date of Measurement	Barometric Pressure (inches Hg)	Well Head Pressure (inches H20)	Methane (% volume)	Carbon Dioxide (% volume)	Oxygen (% volume)
GP-28	5/11/11	29.73	0.05	00.5	05.4	00.4
GP-28	5/25/11	29.70	-0.05	00.6	03.1	11.7
GP-28	6/27/11	29.70	0.06	02.8	07.7	00.0
GP-28	9/23/11	29.99	0.06	00.2	08.9	02.8
GP-28	11/17/11	29.73	-0.19	00.1	08.9	04.2
GP-28	12/29/11	29.94	-0.01	00.0	06.2	04.9
GP-29	2/7/11	30.10	0.06	07.1	12.5	00.0
GP-29	2/21/11	29.89	0.09	03.6	06.9	09.0
GP-29	5/11/11	29.73	-0.03	06.9	12.2	00.3
GP-29	5/11/11	29.73	-0.03	06.9	12.2	00.3
GP-29	5/25/11	29.70	-0.06	02.4	04.1	12.6
GP-29	6/27/11	29.65	0.11	08.5	13.1	00.0
GP-29	9/23/11	29.99	0.03	07.2	14.2	00.0
GP-29	11/17/11	29.73	-0.22	07.1	12.2	03.7
GP-29	12/29/11	29.95	-0.11	08.1	15.1	00.0
BH-30	3/10/11	29.54	-0.03	00.0	00.7	15.2
GP-30	5/11/11	29.74	0.02	00.0	00.1	20.2
BH-30	5/25/11	29.68	-0.04	00.0	00.2	19.8
BH-30	6/28/11	29.61	0.05	00.0	01.6	18.5
BH-30	9/23/11	29.93	0.27	00.0	00.8	19.1
GP-30	11/17/11	29.58	-0.05	00.0	00.1	19.7
BH-30	12/28/11	29.59	-0.21	00.0	01.5	17.7
GP-31	5/11/11	29.75	0.02	00.0	00.1	19.9
GP-31	5/25/11	29.72	-0.05	00.0	00.1	20.3
GP-31	6/27/11	29.72	0.08	00.0	09.6	06.6
GP-31	9/23/11	29.97	0.05	00.0	14.7	04.4
GP-31	11/17/11	29.61	-0.42	00.0	10.4	07.5
GP-31	12/28/11	29.56	-0.22	00.0	08.0	03.7
BH-32	3/10/11	29.54	0.00	00.0	01.4	17.5

Gas Probe Identification	Date of Measurement	Barometric Pressure (inches Hg)	Well Head Pressure (inches H20)	Methane (% volume)	Carbon Dioxide (% volume)	Oxygen (% volume)
BH-32	5/25/11	29.70	-0.08	00.1	00.3	19.9
BH-32	5/28/11	29.63	0.03	00.0	05.9	13.9
BH-32	6/28/11	29.63	0.03	00.0	05.9	13.7
BH-32	9/23/11	29.99	0.31	00.0	03.4	16.7
BH-32	11/17/11	29.62	-0.29	00.0	01.2	18.8
BH-32	12/28/11	29.64	-0.20	00.0	04.2	15.3
SP	5/11/11	29.76	0.00	21.4	05.5	10.3
NP	5/12/11	30.09	0.02	00.0	00.1	20.3
NP	5/26/11	29.88	-0.04	00.0	00.1	20.4
KMW-04	5/12/11	30.11	0.06	00.0	00.1	20.2
KMW-04	5/26/11	29.88	-0.06	00.0	00.1	20.3
KMW-05	5/11/11	29.84	0.00	50.4	00.0	02.0
KMW-06	11/17/11	29.66	-0.24	12.0	01.7	0.0
KMW-07	11/17/11	29.69	-0.26	00.0	05.4	12.0
KMW-08	11/17/11	29.71	-0.26	00.2	00.1	08.3
SV-2	12/28/11	29.76	-0.18	00.0	07.7	00.7
SV-3	12/28/11	29.77	-0.64	00.0	08.3	03.2

Notes: Periodic results for probes GP-13, GP-15, GP-30, GP-31, and GP-32 are not reported, due to high water levels.

Hg – mercury.

ppmv – parts per million by volume.

BH – barhole (typically located immediately adjacent to gas probe, except for BH-32).

The most recent monitoring results are highlighted.

ATTACHMENT A

Weather Data and Plots

Weather data from: SeaTac Airport

Pressure (millibars)

Clicking on a plot brings up the data file that was used to create that plot and available station information.

Current time GMT/UTCWed Jan 4 00:11:09 2012Local (Pacific Standard Time) Tue Jan 3 16:11:09 2012

So CLive from Earth & Mars

 # 2011 20	***	*	# # #	# #	+ - + - + - + - + -	# A #	# 5 # 5 # 10 #	- + + + +	#
$\begin{array}{c} 1-12-24 & 08:53\\ 1-12-24 & 09:03\\ 1-12-24 & 09:44\\ 1-12-24 & 09:53\\ 1-12-24 & 10:23\\ 1-12-24 & 10:23\\ 1-12-24 & 12:20\\ 1-12-24 & 12:353\\ 1-12-24 & 12:53\\ 1-12-24 & 14:53\\ 1-12-24 & 14:53\\ 1-12-24 & 14:53\\ 1-12-24 & 14:53\\ 1-12-24 & 14:53\\ 1-12-24 & 14:53\\ 1-12-24 & 14:53\\ 1-12-24 & 14:53\\ 1-12-24 & 12:53\\ 1-12-24 & 12:53\\ 1-12-24 & 21:53\\ 1-12-24 & 21:53\\ 1-12-24 & 21:53\\ 1-12-24 & 21:53\\ 1-12-24 & 21:53\\ 1-12-25 & 01:53\\ 1-12-25 & 01:53\\ 1-12-25 & 01:53\\ 1-12-25 & 01:53\\ 1-12-25 & 01:53\\ 1-12-25 & 04:53\\ 1-12-25 & 04:53\\ 1-12-25 & 04:53\\ 1-12-25 & 07:53\\ 1-12-25 & 07:53\\ 1-12-25 & 07:53\\ 1-12-25 & 07:53\\ 1-12-25 & 07:53\\ 1-12-25 & 10:53\\ 1-12-25 & 01:53\\ 1-12-25 & 01:53\\ 1-12-25 & 01:53\\ 1-12-25 & 01:53\\ 1-12-25 & 01:53\\ 1-12-26 & 01:53$	Cloud cover Wind gust (na Wind speed (n Wind directic Dewpoint temy Air temperatu Pressure (mil Date(GMT)	Station 6-hou Rain Gauge (i Relative humi Solar irradiz Visibility (r Cloud hajobt	Station avera	Station prec: Station extre	SEATTLE-TACOM	Archived data	Sea-Tac Site Seatac, WA NWS: This sit	This d	
3 2455920.3701385 2455920.3812500 4 2455920.41055556 3 2455920.4126385 2 455920.4326385 2 4255920.4326385 2 4255920.4326385 2 4255920.53388056 2 4255920.53388056 2 4255920.5388056 2 4255920.5784722 2 4255920.6618056 2 4255920.7034722 2 4255920.7034722 2 4255920.7034722 2 4255920.971389 2 4255920.971389 2 4255921.0368056 2 4255921.0368056 2 4255921.0368056 2 4255921.2034722 2 4255921.418056 2 4255921.418056 2 4255921.6201389 2 4255921.6201389 2 4255921.8201389 2 4255921.8201389 2 4255921.918056 2 4255921.8201389 2 4255921.918056 2 4255921.92034722 2 4255921.2034722 2 4255922.0368056 2 4255922.0368056	(108 s of sky) - autical miles pen autical miles pen on (clockwise deg perature (F) rre (F) llibars) Julian date	ur hi/lo tempera inches) idity (%) ance (W/m^2) miles)	age: daily hi/lo	ip: maximum and ema: daily hi/lo	ID A WA US KSEA	available via t	and Instrument s	ata is from: Sea	
1033.8 4 0 M 4 5 M 4 5 M 4 6 M 4 7 M 4 1032.5 4 1031.5 4 1031.5 4 1031.6 4 1032.1 4 1031.6 4 1032.1 4 1031.6 4 1032.1 4 1032.1 4 1032.1 4 1032.1 4 1032.1 4 1032.1 4 1032.4 4 1032.4 4 1032.5 4 1029.8 5 1029.2 4 1021.2 4 1021.2 4 1021.2 4 1021.2 4 1017.8 4 1018.7 4 1017.8 4 1018.6 4 1017.9 4	r hour) er hour) grees from * Pres T	atures	o temperat	daily an o temperat	LAT 47.45 -12	his UW lin	pecificat: Weather So	Tac Airpo	
$\begin{array}{c} 45.0 & 41.0 & 1\\ 85.0 & 41.0 & 1\\ 45.0 & 41.0 & 1\\ 45.0 & 41.0 & 1\\ 45.0 & 41.0 & 1\\ 45.0 & 39.0 & 1\\ 15.0 & 39.0 & 1\\ 15.0 & 40.0 & 1\\ 15.0 & 40.0 & 1\\ 15.0 & 40.0 & 1\\ 15.0 & 40.0 & 1\\ 15.0 & 40.0 & 1\\ 15.0 & 40.0 & 1\\ 15.0 & 40.0 & 1\\ 15.0 & 40.0 & 1\\ 15.0 & 40.0 & 1\\ 15.0 & 40.0 & 1\\ 15.0 & 40.0 & 1\\ 15.0 & 40.0 & 1\\ 16.0 & 37.0 & 1\\ 17.0 & 40.0 & 1\\ 18.0 & 37.0 & 1\\ 17.0 & 37.0 & 1\\ 17.0 & 37.0 & 1\\ 17.0 & 37.0 & 1\\ 17.0 & 37.0 & 1\\ 17.0 & 37.0 & 1\\ 17.0 & 41.0 & 1\\ 18.0 & 42.0 & 1\\ 17.0 & 41.0 & 1\\ 18.0 & 42.0 & 1\\ 17.0 & 41.0 & 1\\ 18.0 & 42.0 & 1\\ 17.0 & 41.0 & 1\\ 18.0 & 42.0 & 1\\ 17.0 & 41.0 & 1\\ 13.0 & 38.0 & 1\\ 3.0 & 38.0 & 1\\ 3.0 & 38.0 & 1\\ 3.0 & 38.0 & 1\\ 3.0 & 38.0 & 1\\ 5.0 & 37.0 & 1\\ 4.0 & 34.0 & 1\\ 5.0 & 37.0 & 1\\ 4.0 & 34.0 & 1\\ 5.0 & 37.0 & 1\\ 5.0 & 37.0 & 2\\ 5.0 & 40.0 & 2\\ 5.0 & 40.0 & 2\\ 5.0 & 40.0 & 2\\ 5.0 & 40.0 & 2\\ 5.0 & 39.0 & 2\\ 5.$	n North)		tures over	vg (inches) tures over	22.30 1	nk since: (ions ervice site	rt (stn. co	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	* 		entire ;	entire p	LEV M EL	01 Jul 1	e.	ođe sea)	
MMMM MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM	*		period	ntire : period	EV FT 49 ft	996			
8 20 8 122 8 23 8 23 8 35 8 25 8 25 8 35 8 36 8 36 6 160 6 160 6 160 6 200 6 200 8 100 8	-* 		of reco	period of reco	WMO 72793				
10 7 10 10 10 10 10 10 10 10 10 10 10 10 10	Vis	·	ord	of rec ord					
M M M M M M M M M M M M M M M M M M M	Badn			cord					
85.8 1 92.6 1 92.6 1 92.6 1 92.6 1 92.6 1 85.7 0 79.3 1 82.5 1 82.6 1 82.6 1 82.7 1 82.8 1 82.6 1 82.7 1 82.8 1 82.5 1 82.6 1 82.7 1 83.1 1 84.1 1 85.8 1 85.8 1 85.7 1 86.1 1 85.7 1 85.7 1 82.5 1 82.5 1 82.7 1 82.7 1 82.7 1 82.7 1 82.7 1 82.7 1 82.7 1 <td< td=""><td>RelH P</td><td>*</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	RelH P	*							
A M A M	* 	* 							
MMMMM43 MMMM44 MMMM47 MMMM46 MMMM42 MMMMM44 MMMMM44 MMM44 M	 	*							
M M M M M M M M M M M M M M M M M M M	**- 		*						
M M M 35.1 35.1 M M M M M M M M M M M M M M M M M M M	-* * 10 bi								
MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM	 			*					
MMMMM99 MMMMMMMMMMMMMMMMMMMMMMMMMMMMMM	*								
M M M M M M M M M M M M M M M M M M M	-*			* 					
M M M M M M M M M M M M M M M M M M M M	*								

2011-12-26	07:53	2455922	.3284722	1028.4	37.0	34.0	170	7.0	м	1 120	10	м	88.8	м	М	м	м	м	М	М	м	м
2011-12-26	08:53	2455922	.3701389	1027.9	38.0	33.0	160	10.0	м	1 120	10	м	82.0	М	М	М	м	М	М	М	м	м
2011-12-26	09:53	2455922	.4118056	1028.1	39.0	34.0	190	5.0	м	3 120	10	м	82.1	М	м	м	м	М	М	М	м	м
2011-12-26	10:25	2455922	.4340278	M	41.0	34.0	180	8.0	М	6 28	10	М	75.9	м	М	М	м	М	М	М	М	М
2011-12-26	10:53	2455922	.4534722	1028.5	41.0	34.0	180	10.0	м	6 28	10	м	75.9	М	М	М	м	М	M	М	м	м
2011-12-26	11:53	2455922	.4951389	1028.6	41.0	35.0	200	10.0	М	6 28	10	м	79.0	0.03	41	37	M	34.9	М	24	м	м
2011-12-26	12:53	2455922	.5368056	1028.0	40.0	35.0	170	8.0	M	8 28	10	м	82.1	м	м	М	м	м	M	М	м	M
2011-12-26	13:53	2455922	.5784722	1027.6	41.0	34.0	170	9.0	м	8 29	10	м	75.9	м	М	М	м	м	м	м	м	м
2011-12-26	14:53	2455922	.6201389	1027.2	40.0	33.0	150	7.0	м	8 29	10	м	75.8	м	М	М	M	м	M	м	м	м
2011-12-26	15:32	2455922	.6472222	М	39.0	34.0	0	0.0	м	8 31	10	м	82.1	м	M	M	M	м	M	M	м	M
2011-12-26	15:53	2455922	.6618056	1027.7	40.0	33.0	0	0.0	м	8 31	10	м	75.8	м	M	М	M	м	M	м	м	M
2011-12-26	16:53	2455922	.7034722	1026.8	40.0	33.0	150	5.0	м	8 100	10	м	75.8	м	М	М	M	М	M	м	м	м
2011-12-26	17:53	2455922	.7451389	1027.0	40.0	34.0	140	3.0	м	8 120	10	M	78.9	м	41	39	M	м	M	м	м	м
2011-12-26	18:53	2455922	.7868056	1026.4	42.0	34.0	170	3.0	м	8 100	10	м	73.0	м	м	М	м	м	м	м	м	м
2011-12-26	19:53	2455922	.8284722	1025.5	42.0	34.0	200	5.0	М	8 90	10	M	73.0	м	м	M	M	м	м	м	м	м
2011-12-26	20:53	2455922	.8701389	1024.8	42.0	34.0	190	3.0	м	8 90	10	M	73.0	м	м	М	M	м	M	М	1.06	0.177
2011-12-26	21:53	2455922	.9118056	1024.8	42.0	35.0	180	6.0	м	8 85	10	M	76.0	м	м	М	M	м	M	м	м	M
2011-12-26	22:53	2455922	.9534722	1024.6	42.0	34.0	170	3.0	М	8 39	10	м	73.0	м	м	М	м	м	м	м	м	M
2011-12-26	23:53	2455922	.9951389	1024.3	41.0	34.0	150	7.0	M	8 46	10	M	75.9	M	42	40	44.3	M	60	м	м	м
2011-12-27	00:53	2455923	.0368056	1023.6	41.0	35.0	170	3.0	м	8 41	10	M	79.0	M	м	М	M	м	M	м	м	м
2011-12-27	01:53	2455923	.0784722	1023.4	40.0	36.0	210	3.0	м	8 48	10	M	85.5	м	М	М	M	м	м	м	М	м
2011-12-27	02:53	2455923	.1201389	1023.3	41.0	35.0	180	8.0	м	8 55	10	M	79.0	м	М	M	M	м	м	M	м	м
2011-12-27	03:53	2455923	.1618056	1023.8	42.0	36.0	210	7.0	м	8 37	10	м	79.1	M	М	M	M	м	M	M	м	м
2011-12-27	04:53	2455923	.2034722	1023.4	41.0	36.0	160	8.0	м	8 50	10	м	82.2	м	М	М	M	м	м	М	м	м
2011-12-27	05:53	2455923	.2451389	1022.9	41.0	36.0	180	8.0	м	8 30	10	м	82.2	м	42	40	M	м	м	М	м	м
2011-12-27	06:48	2455923	.2833333	м	41.0	37.0	170	6.0	м	8 27	10	M	85.5	M	М	M	M	M	м	М	м	м
2011-12-27	06:53	2455923	.2868056	1022.5	41.0	37.0	170	8.0	м	8 27	10	M	85.5	M	М	М	M	м	м	м	м	м
2011-12-27	07:53	2455923	.3284722	1022.0	40.0	37.0	170	6.0	M	8 27	10	м	88.9	M	М	М	M	м	м	M	м	М
2011-12-27	08:53	2455923	.3701389	1021.5	40.0	38.0	0	0.0	M	8 29	10	M	92.5	M	M	M	M	м	м	M	м	м
2011-12-27	09:12	2455923	. 3833333	M	39.0 .	37.0	180	4.0	M	8 31	10	M	92.4	M	M	M	M	м	M	M	м	M
2011-12-27	09:53	2455923	.4118056	1021.4	40.0	38.0	150	5.0	M	8 31	7	M	92.5	M	M	M	M	M	M	M	м	М
2011-12-27	10:35	2455923	.4409722	M	43.0	57.0	130	7.0	M	8 26 0 0 0 0	10	M	79.2	M	M	M	M	M	M	M	M	M
2011-12-27	10:53	2455923	.4554722	1021.7	42.0	38.0	140	4.0	M	8 26	10	M	85.6	M	M	M	M	M	M	M	M	M
2011-12-27	11:53	2455923	.4951389	1021.2	42.0	38.0	160	5.0	M	8 31	10	M	85.6	0.08	42	40	M	34.8	M	22	м	м
2011-12-27	12:53	2455923	.5368056	1021.1	43.0	39.0	190	6.0	M	8 27	10	M	85.6	M	М	М	м	M	M	M	м	м
2011-12-27	13:32	2455923	.5638889	M	43.0	39.0	180	8.0	M	8 31	10	M	85.6	M	M	М	M	M	M	M	м	м
2011-12-27	13:53	2455923	.5784722	1021.1	43.0 4	40.0	190	5.0	M	8 31	9	M	89.0	M	M	M	м	М	м	M	м	м
2011-12-27	14:03	2455923	.5854167	M	43.0 .	39.0	190	6.0	M	8 27	10	M	85.6	M	M	M	м	M	М	M	м	м
2011-12-27	14:53	2455923	.6201389	1021.0	44.0 4	41.0	200	8.0	M	8 23	10	M	89.1	м	М	м	м	м	м	M	м	м
2011-12-27	15:53	2455923	.6618056	1020.7	44.0 4	41.0	180	7.0	M	8 22	10	M	89.1	м	М	М	M	м	м	M	м	м
2011-12-27	16:53	2455923	.7034722	1021.4	45.0 4	42.0	200	8.0	M	8 21	7	M	89.1	м	М	М	M	м	м	M	м	м
2011-12-27	17:53	2455923	.7451389	1020.8	46.0 4	43.0	200	7.0	M	8 27	10	M	89.2	M	46	42	M	м	M	M	м	М
2011-12-27	18:53	2455923	.7868056	1019.8	46.0 4	43.0	200	7.0	M	8 40	1	M	89.2	M	M	M	м	М	м	M	M	м
2011-12-27	19:53	2455923	.8284722	1018.6	47.0 4	44.0	220	6.0	M	8 45	6	M	89.2	M	M	M	м	м	м	M	M	М
2011-12-27	20:15	2455923	8437500	M	46.0 4	45.0	200		M	8 45	ک	M	96.3	м	M	M	M	M	M	- M	2.14	0.246
			.0437300					5.0	14	· · ·	-			4.4						m		
2011-12-27	20:53	2455923	.8701389	1017.1	47.0	46.0	0	0.0	M	8 45	3	M	96.3	м	M	м	м	м	М	M	2.14	0.246
2011-12-27	20:53 21:40	2455923	.8701389	1017.1 M	47.0 4	46.0	0	0.0 3.0	M M	8 45 8 26	3 2	M M	96.3 100.0	M M	M M	M M	M	M M	M M	M M	2.14 M	0.246 M
2011-12-27 2011-12-27 2011-12-27	20:53 21:40 21:46	2455923 2455923 2455923	.8701389 .9027778 .9069444	1017.1 M M	47.0 4 46.0 4 46.0 4	46.0	0 190 190	5.0 0.0 3.0 3.0	M M M	8 45 8 26 8 7	3 2 2	M M M	96.3 100.0 100.0	M M M	M M M	M M M	M M M	M M M	M M M	M M M	2.14 M M	0.246 M M
2011-12-27 2011-12-27 2011-12-27 2011-12-27	20:53 21:40 21:46 21:53	2455923 2455923 2455923 2455923	.8701389 .9027778 .9069444 9118056	1017.1 M M 1015.8	47.0 4 46.0 4 46.0 4 47.0 4	46.0 46.0 46.0 46.0	0 190 190 0	5.0 0.0 3.0 3.0 0.0	M M M M	8 45 8 26 8 7 8 7	3 2 2 1	M M M	96.3 100.0 100.0 96.3	M M M M	M M M	M M M M	M M M	M M M	M M M	M M M M	2.14 M M M	0.246 M M M
2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-27	20:53 21:40 21:46 21:53 22:16	2455923 2455923 2455923 2455923 2455923	.8701389 .9027778 .9069444 .9118056 .9277778	1017.1 M 1015.8 M	47.0 4 46.0 4 47.0 4 46.0 4	46.0 46.0 46.0 46.0 45.0	0 190 190 0 170	5.0 0.0 3.0 3.0 0.0 3.0	M M M M M	8 45 8 26 8 7 8 7 8 7 8 24	3 2 1 2	M M M M	96.3 100.0 100.0 96.3 96.3	M M M M M	M M M M	M M M M	M M M M	M M M M	M M M M	M M M M M	2.14 M M M	0.246 M M M M
2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-27	20:53 21:40 21:46 21:53 22:16 22:53	2455923 2455923 2455923 2455923 2455923 2455923	.8701389 .9027778 .9069444 .9118056 .9277778 .9534722	1017.1 M M 1015.8 M 1014.8	47.0 4 46.0 4 47.0 4 47.0 4 47.0 4	46.0 46.0 46.0 46.0 45.0 46.0	0 190 190 0 170 170	5.0 0.0 3.0 3.0 0.0 3.0 4.0	M M M M M M	8 45 8 26 8 7 8 7 8 24 8 25	3 2 1 2 2	M M M M M	96.3 100.0 100.0 96.3 96.3 96.3	M M M M M M	M M M M M	M M M M M	M M M M M	M M M M M	M M M M M	M M M M M	2.14 M M M M	0.246 M M M M M
2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-27	20:53 21:40 21:53 22:16 22:53 23:53	2455923 2455923 2455923 2455923 2455923 2455923 2455923 2455923	.8701389 .9027778 .9069444 .9118056 .9277778 .9534722 .9951389	1017.1 M M 1015.8 M 1014.8 1013.7	47.0 4 46.0 4 47.0 4 46.0 4 47.0 4 48.0 4	46.0 46.0 46.0 45.0 45.0 46.0	0 190 190 0 170 170 140	5.0 0.0 3.0 3.0 0.0 3.0 4.0 6.0	M M M M M M	8 45 8 26 8 7 8 7 8 24 8 25 8 27	3 2 1 2 2 2 2	M M M M M	96.3 100.0 100.0 96.3 96.3 96.3 92.7	M M M M M M M	M M M M 48	M M M M 46	M M M M 44.1	M M M M M	M M M M 62	M M M M M M	2.14 M M M M M M	0.246 M M M M M
2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-28	20:53 21:40 21:46 21:53 22:16 22:53 23:53 00:09	2455923 2455923 2455923 2455923 2455923 2455923 2455923 2455923 2455924	.8701389 .9027778 .9069444 .9118056 .9277778 .9534722 .9951389 .0062500	1017.1 M M 1015.8 M 1014.8 1013.7 M	47.0 4 46.0 4 47.0 4 47.0 4 48.0 4 48.0 4 48.0 4	46.0 46.0 46.0 45.0 46.0 46.0 46.0	0 190 190 0 170 170 140 140	5.0 0.0 3.0 0.0 3.0 4.0 6.0 6.0	M M M M M M M	8 45 8 26 8 7 8 7 8 24 8 25 8 27 8 31 2	3 2 1 2 2 2 2 2	M M M M M M	96.3 100.0 100.0 96.3 96.3 92.7 92.7	M M M M M M M	M M M M 48 M	M M M M 46 M	M M M M M 44.1 M	M M M M M	M M M M 62 M	M M M M M M	2.14 M M M M M M	0.246 M M M M M M
2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-28 2011-12-28	20:53 21:40 21:46 21:53 22:16 22:53 23:53 00:09 00:12	2455923 2455923 2455923 2455923 2455923 2455923 2455923 2455923 2455924 2455924	.8701389 .9027778 .9069444 .9118056 .9277778 .9534722 .9951389 .0062500 .0083333	1017.1 M M 1015.8 M 1014.8 1013.7 M M	47.0 4 46.0 4 47.0 4 46.0 4 47.0 4 48.0 4 48.0 4 48.0 4 48.0 4	46.0 46.0 46.0 45.0 45.0 46.0 46.0 46.0	0 190 190 0 170 170 140 140 140	5.0 0.0 3.0 0.0 3.0 4.0 6.0 6.0	M M M M M M M M	8 45 8 26 8 7 8 7 8 24 8 25 8 27 8 31 8 31	3 2 1 2 2 2 2 3	M M M M M M	96.3 100.0 100.0 96.3 96.3 96.3 92.7 92.7 92.7	M M M M M M M	M M M M 48 M M	M M M M 46 M	M M M M 44.1 M	M M M M M M	M M M M 62 M M	M M M M M M M	2.14 M M M M M M M	0.246 M M M M M M
2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-28 2011-12-28 2011-12-28 2011-12-28	20:53 21:40 21:46 21:53 22:16 22:53 23:53 00:09 00:12 00:40	2455923 2455923 2455923 2455923 2455923 2455923 2455923 2455924 2455924 2455924	8701389 .9027778 .9069444 .9118056 .9277778 .9534722 .9951389 .0062500 .0083333 .0277778	1017.1 M M 1015.8 M 1014.8 1013.7 M M M	47.0 4 46.0 4 47.0 4 47.0 4 47.0 4 48.0 4 48.0 4 48.0 4 48.0 4 48.0 4	46.0 46.0 46.0 45.0 46.0 46.0 46.0 46.0 46.0	0 190 190 0 170 170 140 140 140 150	5.0 0.0 3.0 0.0 3.0 4.0 6.0 6.0 6.0 7.0	M M M M M M M M	8 45 8 26 8 7 8 7 8 24 8 25 8 27 8 31 8 26 8 27	3 2 1 2 2 2 2 3 3 3	M M M M M M M	96.3 100.0 100.0 96.3 96.3 96.3 92.7 92.7 92.7 92.7	M M M M M M M	M M M M 48 M M M	M M M 46 M M	M M M M 44.1 M M	M M M M M M	M M M 62 M M	M M M M M M M M	2.14 M M M M M M M	0.246 M M M M M M M
2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28	20:53 21:40 21:53 22:16 22:53 23:53 00:09 00:12 00:40 00:53	2455923 2455923 2455923 2455923 2455923 2455923 2455923 2455924 2455924 2455924 2455924 2455924	8701389 9027778 9069444 9118056 9534722 9951389 0062500 0083333 0277778 0368056	1017.1 M M 1015.8 M 1014.8 1013.7 M M 1012.3	47.0 4 46.0 4 47.0 4 47.0 4 48.0 4 48.0 4 48.0 4 48.0 4 48.0 4 48.0 4 48.0 4	46.0 46.0 46.0 45.0 46.0 46.0 46.0 46.0 46.0	0 190 190 170 170 140 140 140 150 150	5.0 0.0 3.0 3.0 0.0 3.0 4.0 6.0 6.0 6.0 7.0 6.0	M M M M M M M M M M M	8 45 8 26 8 7 8 7 8 24 8 25 8 27 8 31 8 26 8 26 8 26 8 24	3 2 2 1 2 2 2 2 3 3 3 3 3	M M M M M M M	96.3 100.0 96.3 96.3 96.3 92.7 92.7 92.7 92.7 92.7 92.7	M M M M M M M M	M M M M 48 M M M M	M M M 46 M M M	M M M M 44.1 M M M	M M M M M M	M M M M 62 M M M M	M M M M M M M M	2.14 M M M M M M M M	0.246 M M M M M M M
2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28	20:53 21:40 21:53 22:16 22:53 23:53 00:09 00:12 00:40 00:53 01:53	2455923 2455923 2455923 2455923 2455923 2455923 2455923 2455924 2455924 2455924 2455924 2455924 2455924	8701389 9027778 9069444 9118056 9277778 9534722 9951389 0062500 0083333 0277778 0368056 0784722	1017.1 M M 1015.8 M 1014.8 1013.7 M M 1012.3 1010.9	47.0 4 46.0 4 47.0 4 47.0 4 48.0 4 48.0 4 48.0 4 48.0 4 48.0 4 48.0 4 48.0 4 48.0 4	46.0 46.0 46.0 45.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46	0 190 190 0 170 170 140 140 140 150 150 160	5.0 0.0 3.0 3.0 0.0 3.0 4.0 6.0 6.0 6.0 7.0 6.0 7.0 0 0.0	M M M M M M M M M M	8 45 8 26 8 7 8 24 8 25 8 27 8 31 8 26 8 22 8 23	3 2 2 1 2 2 2 3 3 3 3 3 3 3 3	M M M M M M M M	96.3 100.0 96.3 96.3 92.7 92.7 92.7 92.7 92.7 92.7 92.7	M M M M M M M M	M M M M 48 M M M M M	M M M 46 M M M	M M M M 44.1 M M M M	M M M M M M M M M	M M M 62 M M M M	M M M M M M M M M	2.14 M M M M M M M M M	0.246 M M M M M M M
2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28	20:53 21:40 21:46 21:53 22:16 22:53 23:53 00:09 00:12 00:40 00:53 01:53 02:53 02:53	2455923 2455923 2455923 2455923 2455923 2455923 2455924 2455924 2455924 2455924 2455924 2455924 2455924	8701389 9027778 9069444 9118056 9277778 9534722 9951389 0062500 008333 0277778 0368056 0784722 1201389	1017.1 M M 1015.8 M 1014.8 1013.7 M M 1012.3 1010.9 1009.8	47.04 46.04 47.04 47.04 48.04 48.04 48.04 48.04 48.04 48.04 48.04 48.04 48.04 48.04	46.0 46.0 46.0 45.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46	0 190 190 0 170 170 140 140 140 150 150 160 160	5.0 0.0 3.0 0.0 3.0 4.0 6.0 6.0 6.0 7.0 7.0 9.0 9.0	M M M M M M M M M M M M	8 45 8 26 8 7 8 24 8 25 8 31 8 26 8 21 8 31 8 26 8 22 8 23 8 24 8 25 8 22 8 23 8 23	3 2 2 1 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3	M M M M M M M M	96.3 100.0 96.3 96.3 92.7 92.7 92.7 92.7 92.7 92.7 92.7 92.7	M M M M M M M M M M M	M M M M 48 M M M M M M	M M M M 46 M M M M	M M M M 44.1 M M M M M	M M M M M M M M M	M M M 62 M M M M	M M M M M M M M M M	2.14 M M M M M M M M M M M	0.246 M M M M M M M M
2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28	20:53 21:40 21:46 21:53 22:16 22:53 23:53 00:09 00:12 00:40 00:53 01:53 02:53 03:53 03:53	2455923 2455923 2455923 2455923 2455923 2455923 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924	8701389 9027778 9069444 9118056 9277778 9534722 9951389 .0062500 .0083333 .027777 0368056 .0784722 .1201389 .1618056	1017.1 M M 1015.8 M 1014.8 1013.7 M M 1012.3 1010.9 1009.8 1007.9	47.04 46.04 47.04 47.04 47.04 48.04 48.04 48.04 48.04 48.04 48.04 48.04 48.04 48.04 48.04 48.04 48.04 48.04 48.04 48.04	46.0 46.0 46.0 45.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46	0 190 190 170 170 140 140 140 150 150 160 160 180	5.0 0.0 3.0 0.0 3.0 4.0 6.0 6.0 7.0 6.0 7.0 9.0 9.0	M M M M M M M M M M M M M M	 8 45 8 7 8 7 8 24 8 25 8 21 8 21 	3 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 5	M M M M M M M M M	96.3 100.0 96.3 96.3 92.7 92.7 92.7 92.7 92.7 92.7 92.7 92.7	M M M M M M M M M M M M	M M M M M M M M M M M M M M	M M M M M M M M M M M M M M M	M M M M 44.1 M M M M M M	M M M M M M M M M M	M M M M 62 M M M M M M M	M M M M M M M M M M M M M M M M	2.14 M M M M M M M M M M M M	0.246 M M M M M M M M M
2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28	20:53 21:40 21:46 21:53 22:16 22:53 23:53 00:09 00:12 00:40 00:53 01:53 02:53 03:53 04:53 05:07	2455923 2455923 2455923 2455923 2455923 2455923 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924	8701389 9027778 9069444 9118056 9277778 9534722 99534722 9951389 0062500 0083333 0277778 0368056 0784722 1201389 1618056 2034722	1017.1 M M 1015.8 M 1014.8 1013.7 M M 1012.3 1010.9 1009.8 1007.9 1008.2	47.0 4 46.0 4 46.0 4 47.0 4 47.0 4 48.0 4	46.0 46.0 46.0 45.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46	0 190 190 0 170 170 140 140 140 150 150 160 160 180 170	5.0 0.0 3.0 0.0 3.0 4.0 6.0 6.0 6.0 7.0 6.0 7.0 9.0 9.0 9.0 7.0	M M M M M M M M M M M M M M M	8 45 8 26 8 7 8 7 8 25 8 25 8 21 8 31 8 31 8 24 8 23 8 23 8 23 8 29 8 21	3 2 2 1 2 2 2 2 2 3 3 3 3 3 3 3 3 3 6 4	M M M M M M M M M M	96.3 100.0 96.3 96.3 92.7 92.7 92.7 92.7 92.7 92.7 92.7 92.7	M M M M M M M M M M M	M M M M M M M M M M M M M M M M M M M	M M M M M M M M M M M M M M M M M M M	M M M M 44.1 M M M M M M	M M M M M M M M M M M	M M M M M M M M M M M M M M M	M M M M M M M M M M M M M M M M M M M	2.14 M M M M M M M M M M M M	0.246 M M M M M M M M M M
2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28	20:53 21:40 21:46 22:53 22:53 22:53 00:09 00:12 00:40 00:53 01:53 01:53 01:53 01:53 03:53 05:53	2455923 2455923 2455923 2455923 2455923 2455923 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924	8701389 906944 9118056 9277778 9534722 9951389 0062500 0083333 0277778 0368056 0784722 1201389 1618056 2034722 2131944	1017.1 M M 1015.8 M 1014.8 1013.7 M M 1012.3 1010.9 1009.8 1007.9 1008.2 M 1007.9	47.0 4 46.0 4 47.0 4 48.0 4 48	46.0 46.0 46.0 45.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46	0 190 190 170 170 140 140 140 150 150 160 160 180 170 190	5.0 0.0 3.0 0.0 3.0 4.0 6.0 6.0 7.0 6.0 7.0 9.0 9.0 9.0 7.0	M M M M M M M M M M M M M M M M	 8 45 8 7 8 7 8 25 8 21 8 21 8 21 8 21 8 16 	3 2 2 2 2 2 2 2 3 3 3 3 3 3 5 6 4 5	M M M M M M M M M M M M	96.3 100.0 100.0 96.3 96.3 96.3 92.7 92.7 92.7 92.7 92.7 92.7 92.7 92.7	M M M M M M M M M M M M	M M M M M M M M M M M M M M M M M M M	M M M M M M M M M M M M M M M M M M M	M M M M 44.1 M M M M M M M	M M M M M M M M M M M M	M M M M M M M M M M M M M M M M M M M		2.14 M M M M M M M M M M M M M	0.246 M M M M M M M M M M M
2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28	20:53 21:40 21:46 21:53 22:16 22:53 23:53 00:09 00:12 00:40 00:53 01:53 01:53 01:53 01:53 01:53 01:53 01:53 05:07 05:57 05:53	2455923 2455923 2455923 2455923 2455923 2455923 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924	8701389 9027778 9069444 9118056 9277778 9534722 9951389 0062500 0083333 0277778 0062500 0083333 0277778 0062500 0083333 0277778 0062500 0083333 0277778 006350 006350 006350 006350 006350 006350 006400 006400 00640000000000	1017.1 M M 1015.8 1014.8 1014.8 1013.7 M M 1012.3 1010.9 1009.8 1007.9 1008.2 M 1007.1	47.0 4 46.0 4 47.0 4 46.0 4 47.0 4 48.0 4 51.0 4	46.0 46.0 46.0 45.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46	190 190 170 170 140 140 140 150 150 160 160 160 180 170 190	5.0 0.0 3.0 0.0 3.0 4.0 6.0 6.0 7.0 6.0 7.0 9.0 9.0 6.0 7.0 9.0 10.0	M M M M M M M M M M M M M M M M M M M	8 45 8 7 8 7 8 7 8 24 8 25 8 21 8 13 8 15	3 2 2 2 2 2 2 2 3 3 3 3 3 3 6 4 6 8	M M M M M M M M M M M M M M M M M	96.3 100.0 100.0 96.3 96.3 96.3 92.7 92.7 92.7 92.7 92.7 92.7 92.7 92.7	M M M M M M M M M M M M M	MMMMM48 40000000000000000000000000000000	M M M M M M M M M M M M M M M M M M M	M M M 44.1 M M M M M M M M	M M M M M M M M M M M M M	M M M M 62 M M M M M M M M M M		2.14 M M M M M M M M M M M M M M	0.246 M M M M M M M M M M M M M
2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28	20:53 21:40 21:46 21:53 22:16 22:53 23:53 00:09 00:12 00:40 00:53 01:53 04:53 04:53 05:07 05:53 06:55 07:15	2455923 2455923 2455923 2455923 2455923 2455923 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924	8701389 9027778 9069444 9118056 9277778 953389 9062500 008333 0277778 0368056 0784722 1201389 1618056 2034722 2131944 2213944 221394	1017.1 M M 1015.8 1013.7 M M 1012.3 1010.9 1009.8 1007.9 1008.0 M	47.0 4 46.0 4 47.0 4 47.0 4 48.0 4 51.0 4	46.0 46.0 46.0 45.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46	190 190 170 170 140 140 140 150 150 160 160 160 180 170 190 190	5.0 0.0 3.0 0.0 3.0 4.0 6.0 6.0 7.0 6.0 7.0 6.0 7.0 9.0 6.0 7.0 10.0 117.0	M M M M M M M M M M M M M 24.0	8 45 8 26 8 7 8 24 8 24 8 25 8 31 8 31 8 24 8 25 8 31 8 24 8 25 8 24 8 25 8 24 8 25 8 23 8 23 8 13 8 16 8 13	3 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 6 4 6 8 10	M M M M M M M M M M M M M M M M	96.3 100.0 100.0 96.3 96.3 92.7 92.7 92.7 92.7 92.7 92.7 92.7 92.7	M M M M M M M M M M M M M	MMMMM48 MMMMMMMMM49 MM	M M M M M M M M M M M M M M M M M M M	M M M 44.1 M M M M M M M M	M M M M M M M M M M M M M M M M	M M M M M M M M M M M M M M M M M M		2.14 M M M M M M M M M M M M M	0.246 M M M M M M M M M M M M M M M
2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28	20:53 21:40 21:46 21:53 22:16 22:53 23:53 00:09 00:12 00:40 00:53 01:53 04:53 04:53 05:07 05:53 06:53 07:15 07:55	2455923 2455923 2455923 2455923 2455923 2455923 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924	8701389 9027778 9069444 9118056 9277778 9534722 9951389 0062500 008333 0277778 0368056 0784722 1201389 1618056 2034722 2131944 2451389 2868056 302083 3284722	1017.1 M M 1015.8 M 1014.8 1013.7 M 1012.3 1010.9 1009.8 1007.9 1008.2 M 1007.1 1008.0 M 1008.0 M	47.0 46.0 46.0 47.0 47.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48	46.0 46.0 46.0 45.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46	190 190 0 170 170 140 140 140 150 150 160 160 160 180 190 190 190 2200	5.0 0.0 3.0 0.0 3.0 4.0 6.0 6.0 7.0 6.0 7.0 6.0 7.0 9.0 6.0 7.0 10.0 17.0	M M M M M M M M M M M M M 24.0 22.0	8 45 8 76 8 7 8 7 8 24 8 25 8 21 8 23 8 24 8 24 8 24 8 24 8 24 8 24 8 24 8 24 8 23 8 23 8 13 8 16 8 13 8 11	3 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 6 4 6 8 10	M M M M M M M M M M M M M M M M M M	96.3 100.0 100.0 96.3 96.3 92.7 92.7 92.7 92.7 92.7 92.7 92.7 92.7	M M M M M M M M M M M M M M M M M M M	M M M M M M M M M M M M M M M M M M M	M M M M M M M M M M M M M M M M M M M	M M M 44.1 M M M M M M M M M M	M M M M M M M M M M M M M M M M M M M	M M M M M M M M M M M M M M M M M M M		2.14 M M M M M M M M M M M M M M M	0.246 M M M M M M M M M M M M M M M M M M
2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28	20:53 21:40 21:46 21:53 22:16 22:53 23:53 00:09 00:12 00:40 00:53 01:53 03:53 04:53 05:57 05:53 06:53 07:55 07:55 07:55	2455923 2455923 2455923 2455923 2455923 2455923 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924	8701389 9027778 9069444 9118056 9277778 953189 9062500 0083333 0277778 0368056 0784722 1201389 1618056 2034722 2131944 2451389 2868056 3020833 3284722	1017.1 M M 1015.8 M 1013.7 M M 1012.3 1010.9 1009.8 1007.1 1008.0 1008.0 1008.8	47.0 4 46.0 4 47.0 4 47.0 4 48.0 4 51.0 4 51.0 4 51.0 5	46.0 46.0 45.0 45.0 45.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46	190 190 0 170 170 140 140 150 150 160 160 180 170 190 190 2200	5.0 0.0 3.0 3.0 3.0 4.0 6.0 6.0 6.0 7.0 9.0 9.0 7.0 9.0 7.0 10.0 17.0 17.0 17.0	M M M M M M M M M M M M M M M M 24.0 22.0	8 45 8 26 8 7 8 7 8 24 8 25 8 31 8 24 8 25 8 31 8 24 8 25 8 21 8 23 8 24 8 25 8 23 8 24 8 25 8 21 8 13 8 15 8 13 8 11	3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 6 4 6 8 10 10	M M M M M M M M M M M M M M M M M M M	96.3 100.0 96.3 96.3 92.7 92.7 92.7 92.7 92.7 92.7 92.7 92.7	M M M M M M M M M M M M M M M M M M M	M M M M 48 M M M M M M M M M M M M M M M M M M M	M M M M 46 M M M M M M M M M M M M M M M M M M M	M M M 44.1 M M M M M M M M M M M	M M M M M M M M M M M M M M M M M M M	M M M M M M M M M M M M M		2.14 M M M M M M M M M M M M M M M	0.246 M M M M M M M M M M M M M M M M M M
2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28	20:53 21:40 21:46 21:53 22:16 22:53 23:53 00:09 00:12 00:53 01:53 03:53 04:53 05:07 05:53 06:53 07:15 07:53 08:53 08:53	2455923 2455923 2455923 2455923 2455923 2455923 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924	8701389 9027778 9069444 9118056 9277778 9534722 9951389 0062500 0083333 0277778 0062500 0083333 0277778 0062500 0083333 0277778 0036056 0784722 1201389 1618056 2034722 2131944 2451389 2868056 3020833 3284722 3701389	1017.1 M M 1015.8 M 1013.7 M M 1012.3 1010.9 8 1007.9 1008.2 M 1007.1 1008.0 M 1008.8 1009.0	47.0 4 46.0 4 47.0 4 47.0 4 47.0 4 48.0 4 51.0 4 51.0 4	46.0 46.0 46.0 45.0 45.0 46.0 47.0 46.0 48.0 50.0	190 190 0 170 170 140 140 150 150 160 160 180 170 190 190 2200 2200 190	3.0 3.0 3.0 3.0 3.0 6.0 6.0 7.0 6.0 7.0 9.0 6.0 7.0 10.0 17.0 17.0 18.0	M M M M M M M M M M M M M M M M 24.0 22.0 22.0 22.0	8 45 8 26 8 7 8 7 8 24 8 25 8 31 8 26 8 31 8 24 8 25 8 23 8 24 8 23 8 24 8 23 8 24 8 23 8 24 8 13 8 13 8 13	3 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 4 6 8 10 10 10	M M M M M M M M M M M M M M M M M M	96.3 100.0 96.3 96.3 92.7 92.7 92.7 92.7 92.7 92.7 92.7 92.7	M M M M M M M M M M M M M M M M M M M	M M M M 48 M M M M M M M M 49 M M M M M M M M M M M M M M M M M M M	M M M M 46 M M M M M M M M M M M M M M M M M	M M M 44.1 M M M M M M M M M M M M	M M M M M M M M M M M M M M M M M M M	M M M M M M M M M M M M M M		2.14 M M M M M M M M M M M M M M M M M M	0.246 M M M M M M M M M M M M M M M M M M M
2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28	20:53 21:40 21:46 21:53 22:16 22:53 23:53 23:53 00:09 00:12 00:40 00:53 01:53 02:53 03:53 04:53 05:07 05:53 06:53 07:15 07:53 08:53 09:53	2455923 2455923 2455923 2455923 2455923 2455923 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924	8701389 9027778 9069444 9118056 9277778 953389 9062500 0062500 008333 0277778 0368056 0784722 1201389 1618056 2034722 2131944 2451389 2868056 3020833 3284722 3701389 4118056	1017.1 M M 1015.8 M 1014.8 1013.7 M M 1012.3 1010.9 1009.8 1007.9 1008.2 M 1007.1 1008.0 M 1008.8 1009.0 1009.3 1010.1	47.0 4 46.0 4 46.0 4 47.0 4 46.0 4 47.0 4 48.0 4 51.0 4 51.0 5 51.0 5 51.0 5	46.0 48.0 50.0 48.0 50.0 48.0 50.0 48.0 50.0 48.0 50.0 48.0 50.0	0 190 190 0 170 170 140 150 160 160 180 190 200 190 200 200	5.0 3.0 3.0 3.0 3.0 4.0 6.0 6.0 7.0 6.0 7.0 6.0 7.0 10.0 17.0 17.0 17.0 17.0 13.0 1	M M M M M M M M M M M M M M M M M M M	8 45 8 266 8 7 8 7 8 24 8 25 8 21 8 21 8 21 8 22 8 21 8 22 8 22 8 22	3 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3	M M M M M M M M M M M M M M M M M M M	$\begin{array}{c} 96.3\\ 100.0\\ 100.0\\ 96.3\\ 96.3\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.8\\ 86.3\\ 92.8\\ 86.4\\ 89.4\\ 89.4\\ 89.4\\ 89.4\\ 86.2 \end{array}$	M M M M M M M M M M M M M M M M M M M	M M M M 48 M M M M M M M M 49 M M M M M M M M M M M M M M M M	M M M M 46 M M M M M M M M 47 M M M M M M M M M M M M M M M M M	M M M 44.1 M M M M M M M M M M M M	M M M M M M M M M M M M M M M M M M M	M M M 62 M M M M M M M M M		2.14 M M M M M M M M M M M M M M M M M	0.246 M M M M M M M M M M M M M M M M M M M
2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-28	20:53 21:40 21:46 21:53 22:53 22:53 00:09 00:40 00:40 00:53 01:53 04:53 05:07 7:55 07:553 06:53 07:53 07:53 07:53 08:53 09:53 10:53 11:11	2455923 2455923 2455923 2455923 2455923 2455923 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924	8701389 9027778 9069444 9118056 9277778 953189 9062500 008333 0277778 0368056 0784722 1201389 1618056 2034722 2131944 2451389 2868056 3020833 3284722 3701389 4118056 4534722	1017.1 M M 1015.8 M 1014.8 1013.7 M 1012.3 1010.9 1009.8 1007.1 1008.0 M 1007.1 1008.8 1009.0 1009.3 1010.1 K	47.0 4 46.0 4 47.0 4 46.0 4 47.0 4 48.0 4 51.0 4 51.0 4 51.0 4 51.0 4 51.0 4 51.0 4 51.0 4 51.0 4	46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0	0 190 190 0 170 170 140 140 140 150 160 160 180 190 200 200 200 200 200 200	S.0 3.0 3.0 3.0 3.0 4.0 6.0 7.0 6.0 7.0 6.0 7.0 6.0 7.0 6.0 7.0 6.0 7.0 10.0 17.0 17.0 18.0 18.0 15.0	M M M M M M M M M M M M M M M M M M M	8 45 8 26 8 7 8 24 8 25 8 31 8 31 8 31 8 31 8 31 8 25 8 24 8 25 8 23 8 24 8 23 8 21 8 13 8 13 8 13 8 13 8 13 8 13	3 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3	M M M M M M M M M M M M M M M M M M M	96.3 100.0 96.3 96.3 92.7 92.7 92.7 92.7 92.7 92.7 92.7 92.7		M M M M M M M M M M M M M M M M M M M	M M M M M M M M M M M M M M M M M M M	M M M 44.1 M M M M M M M M M M M M M M	M M M M M M M M M M M M M M M M M M M	M M M 62 M M M M M M M M M M M M M		2.14 M M M M M M M M M M M M M M M M M M M	0.246 M M M M M M M M M M M M M M M M M M M
2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-28	20:53 21:40 21:46 21:53 22:53 23:53 00:09 00:12 00:40 00:53 02:53 04:53 04:53 04:53 05:07 05:53 06:53 06:53 07:15 07:53 09:53 10:53 11:13 11:53	2455923 2455923 2455923 2455923 2455923 2455923 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924	8701389 9027778 9069444 9118056 9277778 953189 905189 905189 905189 905189 905189 905189 905189 905189 0062500 0088056 0784722 1201389 1618056 3020833 3284722 2451389 4118056 4534722 4673611	1017.1 M M 1015.8 M 1013.7 M M 1012.3 1010.9 1009.8 1007.1 1008.0 1008.0 1008.8 1009.0 1009.3 1010.1 M 1010.2	47.0 4 46.0 4 47.0 4 47.0 4 47.0 4 48.0 4 51.0 4 51.0 4 51.0 5 51.0 5 51.0 5 51.0 4 52.0 4	46.0 46.0 46.0 45.0 45.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46	190 190 170 170 140 140 140 150 160 160 160 180 190 190 200 200 200 200 200	$\begin{array}{c} 5.0\\ 0.0\\ 3.0\\ 3.0\\ 0.0\\ 3.0\\ 4.0\\ 6.0\\ 6.0\\ 6.0\\ 7.0\\ 6.0\\ 9.0\\ 9.0\\ 9.0\\ 9.0\\ 7.0\\ 10.0\\ 17.0\\ 18.0\\ 18.0\\ 18.0\\ 18.0\\ 18.0\\ 15.0$	M M M M M M M M M M M M M M M M M M M	8 45 8 26 8 7 8 24 8 25 8 31 8 24 8 25 8 24 8 25 8 23 8 23 8 13 8 13 8 13 8 13 8 13 8 13 8 13 8 25	3 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3	M M M M M M M M M M M M M M M M M M M	96.3 100.0 96.3 96.3 92.7 92.7 92.7 92.7 92.7 92.7 92.7 92.7	M M M M M M M M M M M M M M M M M M M	MMMMM48 MMMMMMMM49 52	M M M M 46 M M M M M M M M M M M M M M M M M 49	M M M 44.1 M M M M M M M M M M M M M M	M M M M M M M M M M M M M M M M M M M	M M M 62 M M M M M M M M M M M		2.14 M M M M M M M M M M M M M M M M M M M	0.246 M M M M M M M M M M M M M M M M M M M
2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-28	20:53 21:40 21:46 21:53 22:53 23:53 00:02 00:40 00:53 01:53 04:53 04:53 04:53 05:57 05:53 06:53 07:15 07:53 08:53 09:53 10:53 11:13 11:53 12:16	2455923 2455923 2455923 2455923 2455923 2455923 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924	8701389 9027778 9069444 9118056 9277778 953389 9062500 008333 0027778 0368056 0784722 1201389 1618056 2034722 2131944 2451389 2868056 3020833 3284722 3701389 4118056 4534722 4673611 4951389	1017.1 M M 1015.8 M 1013.7 M M 1012.3 1010.9 1009.8 1007.9 1008.2 M 1007.1 1008.0 M 1008.8 1009.0 1009.0 1009.3 1010.1 M 1010.2 M	47.0 4 46.0 4 47.0 4 48.0 4 51.0 4 51.0 4 51.0 4 51.0 4 51.0 4 51.0 4 51.0 4 51.0 4 52.0 4 52.0 4	46.0 46.0 46.0 45.0 45.0 45.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46	0 190 190 0 170 170 140 140 140 140 140 140 140 140 140 140 140 140 150 160 160 160 170 190 2000 2000 2000 2000 2000 2000 2000 2000	3.0 3.0 3.0 3.0 3.0 3.0 4.0 6.0 6.0 7.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 10.0 17.0 18.0 15.0 16.0	M M M M M M M M M M M M M M M M M M M	8 45 8 26 8 7 8 24 8 27 8 21 8 26 8 27 8 26 8 24 8 26 8 24 8 25 8 213 8 16 8 13 8 13 8 13 8 27 8 13 8 27	3 2 2 1 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3	M M M M M M M M M M M M M M M M M M M	96.3 100.0 96.3 96.3 92.7 92.7 92.7 92.7 92.7 92.7 92.7 92.7	м м м м м м м м м м м м м м м м м м м	M M M M M M M M M M M M M M M M M M M	M M M M 4 M M M M M M 47 M M M M M 49 M	M M M 44.1 M M M M M M M M M M M M M M M M M M M	M M M M M M M M M M M M M M M M M M M	M M M M M M M M M M M M M M M M M M M		2.14 M M M M M M M M M M M M M M M M M M M	0.246 M M M M M M M M M M M M M M M M M M M
2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-28	20:53 21:40 21:46 21:53 22:53 00:09 00:40 00:40 00:53 01:53 02:53 03:53 04:53 05:53 06:53 07:53 08:53 07:53 08:53 09:53 10:53 11:13 11:53 12:16	2455923 2455923 2455923 2455923 2455923 2455923 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924	8701389 9027778 9069444 9118056 9277778 9533722 9951389 0062500 008333 027778 10287778 10287778 10287778 10287778 10287778 10287778 10287778 10287778 10287778 1028778 10287778 1028778 1028778 1028778 1028778 1028778 1028778 1028778 1028778 1028778 1028778 1028778 1028778 1028778 1028778 1028778 102877778 10287778 10287778 10287778 10287778 10287778 10287778 10287778 10287778 10287778 10287778 102877778 102877778 102877778 102877778 102877778 102877778 102877778 102877778 102877778 102877778 102877778 102877778 102977778 102877778 10297778 10097778 10097778 10097778 10097778 10097778 10097778 100977778 1007778 1007778 1007778 1007778	1017.1 M M 1015.8 M 1013.7 M 1013.7 M 1012.3 1010.9 1009.8 1007.9 1008.2 M 1007.9 1008.0 M 1007.0 1009.3 1010.1 M 1010.2 M 1010.2	47.0 4 46.0 4 47.0 4 47.0 4 48.0 4 51.0 4 51.0 4 51.0 4 51.0 4 52.0 4 52.0 4 52.0 4 52.0 4	46.0 46.0 46.0 45.0 45.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46	0 190 190 0 170 170 170 140 140 140 150 160 160 160 190 200 2000 2000 2000 2000 2000 2000 2100 2000	3.0 3.0 3.0 3.0 3.0 3.0 4.0 6.0 6.0 6.0 7.0 6.0 7.0 9.0 6.0 7.0 9.0 9.0 17.0 17.0 18.0 15.0 15.0 15.0 16.0 16.0	M M M M M M M M M M M M M M M M M M M	8 45 8 26 8 7 8 24 8 25 8 31 8 26 8 24 8 25 8 31 8 26 8 24 8 24 8 24 8 24 8 24 8 24 8 25 8 29 8 13 8 13 8 13 8 27 8 13 8 25 8 13 8 25 8 19	3 2 2 1 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3	M M M M M M M M M M M M M M M M M M M	96.3 100.0 96.3 96.3 92.7 92.7 92.7 92.7 92.7 92.7 92.7 92.7	M M M M M M M M M M M M M M M M M M M	M M M M 48 M M M M M M M M 49 M M M M M M M M M M M M M 5 M M	M M M M 4 M M M M M M 4 M M M M M 4 M M 4 M M	 M M M M M M M M M M M M M M M M M M	M M M M M M M M M M M M M M M M M M M	M M M M M M M M M M M M M M M M M M M		2.14 M M M M M M M M M M M M M M M M M M M	0.246 M M M M M M M M M M M M M M M M M M M
2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-28 2011-12-88 2011-1	20:53 21:40 21:46 21:53 22:53 23:53 00:09 00:12 00:40 00:53 02:53 03:53 04:53 04:53 05:07 05:53 06:53 06:53 07:15 07:53 09:53 10:53 11:13 11:13 11:53 12:56 12:53 13:11	2455923 2455923 2455923 2455923 2455923 2455923 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924	8701389 9027778 9069444 9118056 9277778 953189 9062500 008333 0277778 0368056 0784722 1201389 1618056 2034722 2131944 2451389 24118056 4534722 4673611 4951389 5111111 5368056	1017.1 M M 1015.8 M 1014.8 1013.7 M 1012.3 1010.9 1009.8 1007.1 1008.0 M 1008.8 1009.0 1009.3 1010.1 M 1010.2 M 1010.2 M	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	46.0 46.0 46.0 45.0 45.0 45.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46	190 190 170 170 140 140 150 150 160 180 190 190 200 200 200 200 200 200 200 2200 2	3.0 3.0 3.0 0.0 3.0 4.0 6.0 6.0 6.0 7.0 9.0 6.0 7.0 9.0 6.0 7.0 9.0 6.0 7.0 9.0 6.0 7.0 9.0 10.0 17.0 18.0 10.0 18.0 10.	M M M M M M M M M M M M M M M M M M M	8 45 8 26 8 7 8 24 8 25 8 31 8 24 8 25 8 24 8 25 8 24 8 25 8 24 8 25 8 23 8 21 8 13 8 13 8 13 8 13 8 13 8 13 8 13 8 13 8 13 8 13 8 11 8 11 8 11	3 2 2 1 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3	M M M M M M M M M M M M M M M M M M M	96.3 100.0 96.3 96.3 92.7 92.7 92.7 92.7 92.7 92.7 92.7 92.7	м м м м м м м м м м м м м м м м м м м	M M M M M M M M M M M M M M M M M M M	MMMMM46 MMMMMMMM47 MMMMMM9		M M M M M M M M M M M M M M M M M M M	M M M M M M M M M M M M M M M M M M M		2.14 M M M M M M M M M M M M M M M M M M M	0.246 M M M M M M M M M M M M M M M M M M M
2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-28	20:53 21:40 21:46 21:53 22:53 23:53 00:02 00:40 00:53 01:53 04:53 04:53 04:53 05:53 06:53 07:15 07:55 07:53 10:53 11:53 11:53 11:13 12:16 12:53 13:11 13:51	2455923 2455923 2455923 2455923 2455923 2455923 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924	8701389 9027778 9069444 9118056 9277778 9534722 9951389 0062500 008333 0277778 0368056 0784722 1201389 1618056 2034722 2133944 2451389 2868056 3020833 3224722 3701389 4118056 4534722 4673611 4951389 5111111 5368056 5493056	1017.1 M M 1015.8 M 1013.7 M 1012.3 1010.9 1009.8 1007.9 1008.8 1007.1 1008.8 1007.1 1008.8 1009.0 1009.0 1009.0 1010.2 M 1011.4	47.0 46.0 46.0 47.0 46.0 47.0 48.0 45.0	46.0 46.0 46.0 45.0 45.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46	190 190 170 170 140 140 150 150 160 180 190 200 200 200 200 200 200 200 200 200 2	3.0 6.0 7.0 9.0 6.0 7.0 9.0 6.0 7.0 10.0 18.0 115.0 116.0 118.0 118.0 115.0	M M M M M M M M M M M M M M M M M M M	8 45 8 26 8 7 8 24 8 27 8 24 8 26 8 27 8 21 8 26 8 24 8 25 8 29 8 16 8 15 8 13 8 13 8 27 8 13 8 13 8 13 8 13 8 13 8 13 8 13 8 19 8 12	3 2 2 1 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3	M M M M M M M M M M M M M M M M M M M	$\begin{array}{c} 96.3\\ 100.0\\ 100.0\\ 96.3\\ 96.3\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.8\\ 89.4\\ 89.4\\ 89.4\\ 89.4\\ 89.4\\ 89.4\\ 89.4\\ 89.4\\ 89.5\\ 86.2\\ 89.5\\ 86.2\\ 89.5\\ 86.2\\ 89.5\\ 86.2\\ 92.8\\ 89.5\\ 86.2\\ 89.5\\ 89.$	м м м м м м м м м м м м м м м м м м м	MMMMM48 MMMMMMMMM9 MMMMMMMMMMMMMM2 MMMM	MMMMM46 MMMMMMMMM7 MMMMMM9	M M M M M M M M M M M M M M M M M M M	M M M M M M M M M M M M M M M M M M M	M M M M M M M M M M M M M M M M M M M		2.14 M M M M M M M M M M M M M M M M M M M	0.246 M M M M M M M M M M M M M M M M M M M
2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-28	20:53 21:40 21:46 21:53 22:53 00:09 00:42 00:40 00:53 01:53 03:53 04:53 05:53 06:53 07:15 07:15 07:53 10:53 11:13 11:53 12:16 12:53 13:11 13:53	2455923 2455923 2455923 2455923 2455923 2455923 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924	8701389 9027778 9069444 9118056 9277778 9534722 9951389 0062500 008333 0277778 0368056 0784722 1201389 2034722 2131944 2451389 2868056 302083 3284722 2451389 2868056 302083 3284722 4534722 4534725 5111111	1017.1 M M 1015.8 M 1013.7 1013.7 M 1012.3 1010.9 1009.8 1007.9 1008.2 M 1007.9 1008.2 M 1007.9 1009.3 1010.2 M 1010.2 M 1010.2 M 1010.2 M	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	46.0 46.0 46.0 45.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46	190 190 170 170 140 140 150 150 160 160 180 190 190 200 200 200 200 200 200 200 200 200 2	3.0 3	M M M M M M M M M M M M M M M M M M M	8 45 8 26 8 7 8 24 8 25 8 31 8 26 8 24 8 25 8 31 8 26 8 24 8 24 8 25 8 24 8 24 8 24 8 25 8 23 8 13 8 13 8 13 8 27 8 13 8 27 8 13 8 27 8 19 8 10	3 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	M M M M M M M M M M M M M M M M M M M	96.3 100.0 96.3 96.3 92.7 92.7 92.7 92.7 92.7 92.7 92.7 92.7		MMMMM48 MMMMMMMM9 MMMMM20 MMMMMMMMMMMM20 MMMMMMMMMM	MMMMM46 MMMMMMMMMM74 MMMMMM99 MMMMMMMMMMMMMMMMM		M M M M M M M M M M M M M M M M M M M	M M M M M M M M M M M M M M M M M M M		2.14 M M M M M M M M M M M M M M M M M M M	0.246 M M M M M M M M M M M M M M M M M M M
2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-28 2011-1	20:53 21:40 21:46 21:53 22:53 22:53 00:09 00:40 00:53 01:53 02:53 04:53 05:53 06:53 06:53 07:53 08:53 07:53 10:53 10:53 11:13 11:53 12:16 12:53 13:11 13:53 14:53	2455923 2455923 2455923 2455923 2455923 2455923 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924	8701389 9027778 9069444 9118056 9277778 953189 9062500 008333 0277778 0368056 0784722 1201389 168056 2034722 2131944 2451389 2868056 30283722 2451389 24118056 4534722 4673611 4951389 5111111 4951389 5111111	1017.1 M M 1015.8 M 1014.8 1013.7 M 1012.3 1010.9 1009.8 1007.9 1008.2 M 1007.9 1008.0 M 1007.1 1008.0 M 1009.3 1010.1 M 1010.2 M 1010.2 M 1010.2 M 1010.2 M	47.0 4 46.0 4 47.0 4 47.0 4 48.0 4 51.0 4 51.0 4 51.0 4 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0	46.0 46.0 46.0 45.0 45.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46	0 0 190 0 190 0 170 140 140 140 150 160 160 160 170 190 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000	3.0 3	M M M M M M M M M M M M M M M M M M M	8 45 8 26 8 7 8 24 8 25 8 31 8 31 8 21 8 23 8 24 8 24 8 24 8 24 8 23 8 13 8 13 8 13 8 13 8 13 8 13 8 13 8 13 8 13 8 13 8 13 8 13 8 11 8 12	3 2 2 1 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3	M M M M M M M M M M M M M M M M M M M	$\begin{array}{c} 96.3\\ 100.0\\ 100.0\\ 96.3\\ 96.3\\ 96.3\\ 92.7\\ 92.8\\ 85.2\\ 89.5\\ 86.2\\ 92.8\\ 86.2\\ 86.$	M M M M M M M M M M M M M M M M M M M	MMMMM48 MMMMMMMM9 MMMMMMM2 MMMMMMMMMMMMMMMMMMM	MMMMM46 MMMMMMMMM7 MMMMMMM9 MMMMMMMMMMMMMMMMMM	 M M M M M M M M M M M M M M M M M M	M M M M M M M M M M M M M M M M M M M	M M M M M M M M M M M M M M M M M M M		2.14 M M M M M M M M M M M M M M M M M M M	0.246 M M M M M M M M M M M M M M M M M M M
2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-28 2011-1	20:53 21:40 21:46 21:53 22:53 23:53 00:02 00:40 00:53 01:53 03:53 04:53 04:53 04:53 05:07:15 07:53 10:53 10:53 11:13 11:13 12:16 12:53 13:53 14:53	2455923 2455923 2455923 2455923 2455923 2455923 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924	8701389 90097778 9009444 9118056 9277778 953189 9051389 9051389 9051389 9051389 9051389 9051389 0062500 0083333 0277778 0368056 2034722 2131944 2451389 2418056 4534722 4673611 4951389 5111111 5368056 5493056 5784722 6201389	1017.1 M M 1015.8 M 1015.8 M 1013.7 M M 1012.3 1010.9 1009.8 1007.1 1008.8 1007.1 1008.8 1009.0 1008.8 1009.0 1009.0 M 1010.1 M 1010.9 M 1010.9 M 1011.5 1012.1 1012.1 1012.1 1012.1 1012.1 1012.1 1012.1 1012.1 1012.1 1012.1 1012.1 1015.8 1009.8 1009.8 1009.0 1009.8 1009.0 1009.8 1009.0 1009.8 1009.0 1009.8 1009.0 1009.0 1009.8 1009.0 1000.0	47.0 46.0 46.0 47.0 46.0 47.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 51.0 52.0 452.0 452.0 51.0 52.0 51.0 52.0 452.0 51.0 52.0 452.0 51.0 52.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 552.0 551.0 552	46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0	0 0 190 0 190 0 170 140 140 150 150 160 160 160 190 200 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000	3.0 6.0 7.0 9.0 6.0 7.0 9.0 6.0 7.0 9.0 6.0 7.0 9.0 6.0 7.0 9.0 6.0 7.0 9.0 6.0 7.0 17.0 18.0 16.0 15.0 12.0 11.0	M M M M M M M M M M M M M M M M M M M	8 45 8 26 7 8 8 7 8 24 8 27 8 24 8 26 8 24 8 25 8 23 8 26 8 23 8 29 8 16 8 13 8 13 8 13 8 13 8 13 8 13 8 13 8 13 8 13 8 12 8 12	3 2 2 1 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3	M M M M M M M M M M M M M M M M M M M 	96.3 100.0 96.3 96.3 92.7 92.7 92.7 92.7 92.7 92.7 92.7 92.7	M M M M M M M M M M M M M M M M M M M	MMMMMM48 MMMMMMMMMM9 MMMMMMMMMMMMMMMMMM	MMMMM4MMMMMMM4,MMMMMM4MMMMMMMMMMMMMMMM	M M M M M M M M M M M M M M M M M M M	M M M M M M M M M M M M M M M M M M M	M M M M M M M M M M M M M M M M M M M		2.14 M M M M M M M M M M M M M M M M M M M	0.246 M M M M M M M M M M M M M M M M M M M
2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-28	20:53 21:40 21:460 21:53 22:16 22:53 23:53 00:02 00:420 00:53 01:53 03:53 04:53 04:53 03:53 04:53 05:53 07:153 08:53 11:13 11:53 12:16 12:53 13:111 13:53 14:53 14:53 16:53 17:53	2455923 2455923 2455923 2455923 2455923 2455923 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924	8701389 9027778 9069444 9118056 9277778 953389 9062500 008333 0277778 0368056 0784722 1201389 1618056 2034722 2131944 22451389 2868056 3020833 3284722 4673611 5368056 5493056 5784722 7784728	1017.1 M M 1015.8 M 1014.8 1013.7 1013.7 1013.7 M 1012.3 1010.9 1009.8 1007.9 1008.0 M 1007.1 1008.0 M 1007.1 1009.3 1010.4 M 1010.2 M 1011.3 1012.2 1011.4 1012.2 1011.4 1012.2 1011.4 1012.2 1011.4 1012.2 1011.4 1012.2 1011.4 1012.2 1011.4 1012.2 1011.4 1012.2 1011.2 1012.2 1010.2 1012.2 1012.2 1012.2 1012.2 1012.2 1012.2 1010.2 1012.2 1012.2 1012.2 1012.2 1010.2 1000.2 1000.2 100	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	46.0 46.0 46.0 45.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46	190 190 170 170 140 140 140 150 160 160 160 190 200 200 200 200 200 200 200 2	3.0 3.0 3.0 3.0 3.0 4.0 6.0 6.0 6.0 7.0 6.0 7.0 6.0 7.0 6.0 7.0 6.0 7.0 10.0 17.0 18.0 15.0 16.0 15.0 12.0	M M M M M M M M M M M M M M M M M M M	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 2 2 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3	W W W M M M M M M M M M M M M M M M M M	$\begin{array}{c} 96.3\\ 100.0\\ 100.0\\ 96.3\\ 96.3\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 96.3\\ 92.8\\ 86.2\\ 89.4\\ 89.4\\ 89.4\\ 89.4\\ 89.4\\ 89.4\\ 89.4\\ 89.5\\ 86.2\\ 89.5\\ 86.2\\ 92.8\\ 86.2\\ 92.8\\ 86.2\\ 92.8\\ 86.2\\ 92.8\\ 86.2\\ 92.8\\ 86.2\\ 92.8\\ 86.2\\ 92.8\\ 86.2\\ 92.8\\ 86.2\\ 92.8\\ 86.2\\ 92.8\\ 86.2\\ 92.8\\ 86.2\\ 92.8\\ 86.5\\ 88.5\\ 88.$	м м м м м м м м м м м м м м м м м м м	MMMMMM48 MMMMMMMM99 MMMMMM23 MMMMMM53	MMMMM46 MMMMMMMMM47 MMMMMM9 MMMMMM51	M M M M M M M M M M M M M M M M M M M	M M M M M M M M M M M M M M M M M M M	M M M M M M M M M M M M M M M M M M M		2.14 M M M M M M M M M M M M M M M M M M M	0.246 M M M M M M M M M M M M M M M M M M M
2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-28 2011-1	20:53 21:40 21:46 21:53 22:53 00:09 00:40 00:53 01:53 03:53 04:53 03:53 04:53 07:53 08:53 07:53 08:53 10:53 11:13 11:53 12:16 13:53 14:53 15:53 16:53 17:53	2455923 2455923 2455923 2455923 2455923 2455923 2455924	8701389 9027778 9069444 9118056 9277778 953389 9053389 0062500 008333 0277778 10368056 0784722 1201389 1688056 2034722 2131944 2453389 2868056 3020833 3284722 3701389 4118056 4534722 453389 511111 15368056 5784722 6201389 6618056 7034722 7451389	1017.1 M M 1015.8 M 1013.7 M 1012.3 1012.3 1010.9 1009.8 1007.9 1008.2 M 1007.9 1008.0 M 1009.3 1010.2 M 1010.2 M 1010.2 M 1010.2 M 1010.2 M 1010.2 100.2 100.2 100.2 100.2 100.2 100.2 100.2 100.2 100.2 100.2 100.2 100.2 100.2 10	47.0 4 46.0 4 47.0 4 46.0 4 47.0 4 48.0 4 52.0 4	46.0 46.0 46.0 45.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46	190 190 170 170 140 140 150 150 150 160 180 170 190 200 200 200 200 200 200 200 200 200 2	3.0 6.0 7.0 6.0 7.0 9.0 6.0 7.0 9.0 6.0 7.0 9.0 9.0 10.0 11.0 12.0	M M M M M M M M M M M M M M M M M M M	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	W W W M M M M M M M M M M M M M M M M M	$\begin{array}{c} 96.3\\ 100.0\\ 100.0\\ 96.3\\ 96.3\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 96.3\\ 92.8\\ 86.2\\ 92.8\\ 86.2\\ 95.4\\ 89.4\\ 89.4\\ 89.4\\ 86.2\\ 89.5\\ 86.2\\ 89.5\\ 86.2\\ 89.5\\ 86.2\\ 89.5\\ 86.2\\ 89.5\\ 86.2\\ 89.5\\ 86.2\\ 89.5\\ 86.2\\ 89.5\\ 86.2\\ 89.5\\ 86.2\\ 89.5\\ 86.2\\ 89.5\\ 86.2\\ 89.5\\ 86.2\\ 89.5\\ 86.2\\ 89.5\\ 89.$	M M M M M M M M M M M M M M M M M M M	MMMMMM48 MMMMMMMM9 MMMMM20 MMMMMMM33 M	MMMMM46 MMMMMMMMM7 MMMMMM9 MMMMM11	M M M M M M M M M M M M M M M M M M M	M M M M M M M M M M M M M M M M M M M	M M M M M M M M M M M M M M M M M M M		2.14 M M M M M M M M M M M M M M M M M M M	0.246 M M M M M M M M M M M M M M M M M M M
2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-28 2011-1	20:53 21:40 21:46 21:53 22:53 23:53 00:02 00:40 00:53 01:53 04:53 04:53 04:53 05:07 05:53 06:53 06:53 07:15 07:53 08:53 10:53 11:13 11:53 12:16 12:53 13:11 13:55 13:16 553 16:53 17:53 18:53 18:53	2455923 2455923 2455923 2455923 2455923 2455923 2455924	8701389 9027778 9069444 9118056 9277778 953189 9051389 0062500 008333 0277778 0368056 0784722 1201389 1618056 2034722 2131944 2451389 4118056 4534722 4673611 4951389 5111111 5368056 5784722 6201389 6618056 6618056 6618056 6618056 6618056 6618056 7034722	1017.1 M M 1015.8 M 1014.8 1013.7 M 1012.3 1010.9 1009.8 1007.9 1008.8 1007.1 1008.8 1009.0 1008.8 1009.0 1009.0 M 1010.9 M 1010.9 M 1010.9 M 1011.5 1012.7 1012.7 1012.6 M	47.0 46.0 46.0 47.0 46.0 47.0 48.0 49.0 48.0	46.0 46.0 46.0 45.0 45.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46	0 190 190 0 170 170 170 170 170 170 170 170 170 170 140 140 150 150 160 160 190 190 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 190 180 190 180	3.0 4.0 6.0 7.0 9.0 6.0 7.0 9.0 6.0 7.0 9.0 6.0 7.0 9.0 6.0 7.0 9.0 6.0 7.0 9.0 6.0 7.0 9.0 18.0 15.0 12.0 11.0 12.0 13.0	M M M M M M M M M M M M M M M M M M M	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 2 2 1 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3	M M M M M M M M M M M M M M M M M M M 	$\begin{array}{c} 96.3\\ 100.0\\ 96.3\\ 96.3\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.8\\ 89.2\\ 89.5\\ 86.2\\ 89.5$	M M M M M M M M M M M M M M M M M M M	MMMMMM8 MMMMMMMMM9 MMMMM2 MMMMMMM5 MM	M M M M M M M M M M M M M M M M M M M	 M M M M M M M M M M M M M M M M M M	M M M M M M M M M M M M M M M M M M M	M M M 62 M M M M M M M M M M M M M M M M M M M		2.14 M M M M M M M M M M M M M M M M M M M	0.246 M M M M M M M M M M M M M M M M M M M
2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-28 2011-1	$\begin{array}{c} 20:53\\ 21:40\\ 21:40\\ 21:53\\ 22:53\\ 22:53\\ 23:53\\ 00:02\\ 00:40\\ 00:53\\ 01:53\\ 01:53\\ 02:53\\ 04:53\\ 05:53\\ 05:53\\ 10:53\\ 10:53\\ 11:13\\ 11:53\\ 12:16\\ 12:53\\ 13:51\\ 13:53\\ 14:53\\ 14:53\\ 15:53\\ 16:53\\ 17:53\\ 18:53\\ 19:55\\ 19:53\\ 19:55\\ 19:53\\ \end{array}$	2455923 2455923 2455923 2455923 2455923 2455923 2455924	8701389 9027778 9069444 9118056 9277778 953389 9022500 008333 0277778 0368056 0784722 1201389 1618056 2034722 1201389 1618056 2034722 2131944 2451389 2868056 3020833 3284722 4673611 5368056 549326 549326 549326 549326 549326 549326 549326 549326 549326 549326 549326 549326 549256 549326 549356 549556 549556 549556 54955656 54955656 54955656 549556565656	1017.1 M M 1015.8 M 1013.7 M 1012.3 1010.9 1009.8 1007.9 1008.8 1007.1 1008.8 1007.1 1008.8 1009.0 1009.0 1010.4 M 1010.2 M 1010.2 M 1011.5 1012.1 1012.1 1012.2 M 1012.2	47.0 46.0 44.0 44.0 44.0 44.0 44.0 48.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 <td>46.0 46.0 46.0 45.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46</td> <td>190 190 170 170 140 140 150 150 160 190 200 200 200 200 200 200 200 200 200 2</td> <td>$\begin{array}{c} 3.0\\ 3.0\\ 3.0\\ 3.0\\ 0.0\\ 3.0\\ 0.0\\ 3.0\\ 4.0\\ 0.0\\ 3.0\\ 4.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0$</td> <td>M M M M M M M M M M M M M M M M M M M</td> <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td>3 2 2 1 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3</td> <td>W W W M M M M M M M M M M M M M M M M M</td> <td>$\begin{array}{c} 96.3\\ 100.0\\ 96.3\\ 96.3\\ 96.3\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 86.2\\ 89.4\\ 89.4\\ 89.4\\ 89.4\\ 89.4\\ 89.4\\ 89.4\\ 89.4\\ 89.5\\ 86.2\\ 89.5\\ 86.2\\ 89.5\\ 86.2\\ 89.5\\ 86.2\\ 89.5\\ 86.2\\ 89.5\\ 86.2\\ 89.5\\ 86.2\\ 89.5\\ 86.2\\ 89.5\\ 86.2\\ 89.5$</td> <td>м м м м м м м м м м м м м м м м м м м</td> <td>MMMMMM4 MMMMMMMM MMMMMM MMMMM MMMMMMM MMMMMM</td> <td>MMMMMM4 MMMMMMMMMM4 MMMMMMMMMMMM MMMMMMM</td> <td>M M M M M M M M M M M M M M M M M M M</td> <td>M M M M M M M M M M M M M M M M M M M</td> <td>M M M M M M M M M M M M M M M M M M M</td> <td></td> <td>2.14 MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM</td> <td>0.246 M M M M M M M M M M M M M M M M M M M</td>	46.0 46.0 46.0 45.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46	190 190 170 170 140 140 150 150 160 190 200 200 200 200 200 200 200 200 200 2	$\begin{array}{c} 3.0\\ 3.0\\ 3.0\\ 3.0\\ 0.0\\ 3.0\\ 0.0\\ 3.0\\ 4.0\\ 0.0\\ 3.0\\ 4.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0$	M M M M M M M M M M M M M M M M M M M	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 2 2 1 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3	W W W M M M M M M M M M M M M M M M M M	$\begin{array}{c} 96.3\\ 100.0\\ 96.3\\ 96.3\\ 96.3\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 86.2\\ 89.4\\ 89.4\\ 89.4\\ 89.4\\ 89.4\\ 89.4\\ 89.4\\ 89.4\\ 89.5\\ 86.2\\ 89.5\\ 86.2\\ 89.5\\ 86.2\\ 89.5\\ 86.2\\ 89.5\\ 86.2\\ 89.5\\ 86.2\\ 89.5\\ 86.2\\ 89.5\\ 86.2\\ 89.5\\ 86.2\\ 89.5$	м м м м м м м м м м м м м м м м м м м	MMMMMM4 MMMMMMMM MMMMMM MMMMM MMMMMMM MMMMMM	MMMMMM4 MMMMMMMMMM4 MMMMMMMMMMMM MMMMMMM	M M M M M M M M M M M M M M M M M M M	M M M M M M M M M M M M M M M M M M M	M M M M M M M M M M M M M M M M M M M		2.14 MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM	0.246 M M M M M M M M M M M M M M M M M M M
2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-28 2011-1	$\begin{array}{c} 20:53\\ 21:40\\ 21:40\\ 21:53\\ 22:53\\ 22:53\\ 00:9\\ 00:42\\ 00:53\\ 00:53\\ 00:53\\ 00:53\\ 00:53\\ 00:53\\ 00:53\\ 00:53\\ 00:53\\ 00:53\\ 11:13\\ 11:53\\ 11:53\\ 11:53\\ 11:13\\ 11:53\\ 12:16\\ 12:53\\ 13:53\\ 14:53\\ 15:53\\ 16:53\\ 17:53\\ 18:53\\ 19:55\\ 19:55\\ 20:53\\ 20:53\\ \end{array}$	2455923 2455923 2455923 2455923 2455923 2455923 2455924	8701389 9027778 9069444 9118056 9277778 953372 9951389 9062500 008333 0277778 0368056 0784722 1201389 1618056 2034722 2131944 2451389 1201389 2866056 302083 3284722 4534722 4534722 4534722 4534722 4673611 5368056 5784722 6618056 7034722 7451389 6618056 7034722 7451389 7868056 8159722 8284722 870189	1017.1 M M 1015.8 M 1013.7 1013.7 1013.7 1013.7 1013.7 1013.7 1013.7 1013.7 1010.9 1009.8 1007.9 1009.8 1007.1 1008.0 M 1007.1 1008.0 M 1007.1 1008.0 M 1007.1 1009.3 1010.4 1010.2 M 1010.2 M 1010.2 M 1011.4 1012.7 1012.7 1012.7 1012.7 1012.7 1012.1 1012.7 1010.7 100.7 100.7 100.7 100.7	47.0 46.0 44.0 44.0 44.0 44.0 44.0 48.0 51.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 <t< td=""><td>46.0 46.0 46.0 45.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46</td><td>190 190 170 170 140 140 140 150 160 160 160 190 190 200 200 200 200 200 200 200 2</td><td>3.0 3.0 3.0 3.0 3.0 4.0 6.0 6.0 6.0 7.0 6.0 7.0 6.0 7.0 6.0 7.0 6.0 7.0 6.0 7.0 6.0 7.0 6.0 7.0 6.0 7.0 6.0 7.0 10.0 17.0 18.0 15.0 15.0 12.0 13.0 12.0 12.0 13.0 12.0</td><td>M M M M M M M M M M M M M M M M M M M</td><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>3 2 1 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3</td><td>M W M M M M M M M M M M M M M M M M M M</td><td>$\begin{array}{c} 96.3\\ 100.0\\ 96.3\\ 96.3\\ 96.3\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 96.3\\ 92.7\\ 96.3\\ 92.8\\ 86.2\\ 89.5\\ 86.2\\ 89.4\\ 89.4\\ 89.4\\ 89.4\\ 89.4\\ 89.4\\ 89.5\\ 86.2\\ 89.5\\ 86.2\\ 92.8\\ 86.2\\ 89.5\\ 86.2\\ 92.8\\ 86.2\\ 89.5\\ 89.5\\ 89.5\\ 89.5$</td><td>м м м м м м м м м м м м м м м м м м м</td><td>MMMMMM8 MMMMMMMMM9 MMMMM5 MMMMM5 MMMMM5 MMMMM5 MMMMM5 MMMMM5 MMMMMM</td><td>MMMMMM66 MMMMMMMMMM7. MMMMMMMMMMMMMMMMMM</td><td>M M M M M M M M M M M M M M M M M M M</td><td>M M M M M M M M M M M M M M M M M M M</td><td>M M M M M M M M M M M M M M M M M M M</td><td></td><td>2.14 M M M M M M M M M M M M M M M M M M M</td><td>0.246 M M M M M M M M M M M M M M M M M M M</td></t<>	46.0 46.0 46.0 45.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46	190 190 170 170 140 140 140 150 160 160 160 190 190 200 200 200 200 200 200 200 2	3.0 3.0 3.0 3.0 3.0 4.0 6.0 6.0 6.0 7.0 6.0 7.0 6.0 7.0 6.0 7.0 6.0 7.0 6.0 7.0 6.0 7.0 6.0 7.0 6.0 7.0 6.0 7.0 10.0 17.0 18.0 15.0 15.0 12.0 13.0 12.0 12.0 13.0 12.0	M M M M M M M M M M M M M M M M M M M	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 2 1 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3	M W M M M M M M M M M M M M M M M M M M	$\begin{array}{c} 96.3\\ 100.0\\ 96.3\\ 96.3\\ 96.3\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 96.3\\ 92.7\\ 96.3\\ 92.8\\ 86.2\\ 89.5\\ 86.2\\ 89.4\\ 89.4\\ 89.4\\ 89.4\\ 89.4\\ 89.4\\ 89.5\\ 86.2\\ 89.5\\ 86.2\\ 92.8\\ 86.2\\ 89.5\\ 86.2\\ 92.8\\ 86.2\\ 89.5\\ 89.5\\ 89.5\\ 89.5$	м м м м м м м м м м м м м м м м м м м	MMMMMM8 MMMMMMMMM9 MMMMM5 MMMMM5 MMMMM5 MMMMM5 MMMMM5 MMMMM5 MMMMMM	MMMMMM66 MMMMMMMMMM7. MMMMMMMMMMMMMMMMMM	M M M M M M M M M M M M M M M M M M M	M M M M M M M M M M M M M M M M M M M	M M M M M M M M M M M M M M M M M M M		2.14 M M M M M M M M M M M M M M M M M M M	0.246 M M M M M M M M M M M M M M M M M M M
2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-28 2011-1	20:53 21:40 21:460 21:53 22:16 22:53 00:09 00:40 00:53 01:53 02:53 03:53 04:53 03:53 04:53 05:53 06:53 07:53 08:53 10:53 10:53 12:16 12:53 13:11 13:53 14:53 15:53 16:53 17:53 19:53 19:53 20:53 20:53 20:53 17:53 19:53 20:53 20:53 20:53 20:53 12:16 12:53 12:16 12:53 12:53 12:53 15:	2455923 2455923 2455923 2455923 2455923 2455923 2455924	8701389 9027778 906944 9118056 9277778 953389 9053389 0062500 008333 0277778 1036056 2034722 1201389 1618056 2034722 2131944 2453389 2868056 302084722 2453389 2868056 30284722 2453389 23701389 4118056 4534722 4673611 4951389 511111 4951389 5111111 5368056 5784722 6201389 77868056 8159722 8224722 8704389 9076389	1017.1 M M 1015.8 M 1013.7 M 1012.3 1012.3 1012.3 1007.9 1008.2 M 1007.9 1008.2 M 1007.9 1008.2 M 1007.9 1008.2 M 1009.3 1010.1 M 1010.2 M 1010.2 M 1011.4 1012.7 1012.1 1012.1 1012.1 1012.1 1015.1 1015.1 1015.1 1015.1 1007.9 1007.9 1007.9 1007.9 1007.9 1007.9 1007.9 1007.9 1007.9 1007.9 1007.1 1007.9 1007.1 1007.	47.0 46.0 44.0 44.0 44.0 44.0 48.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 <t< td=""><td>46.0 46.0 46.0 46.0 45.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46</td><td>190 190 170 170 140 140 150 150 150 160 180 190 190 200 200 200 200 200 200 200 200 200 2</td><td>3.0 6.0 7.0 9.0 6.0 7.0 9.0 6.0 7.0 9.0 110.0 12.0 13.0 12.0 9.0</td><td>M M M M M M M M M M M M M M M M M M M</td><td>8 45 8 26 8 7 8 25 8 31 8 25 8 31 8 24 8 25 8 31 8 24 8 25 8 24 8 25 8 24 8 24 8 24 8 24 8 25 8 13 8 13 8 13 8 13 8 12 8 12 8 12 8 12 8 12 8 12 8 12 8 12 8 12 8 32</td><td>3 2 1 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3</td><td>M M M M M M M M M M M M M M M M M M M </td><td>$\begin{array}{c} 96.3\\ 100.0\\ 100.0\\ 96.3\\ 96.3\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 96.3\\ 92.7\\ 96.3\\ 92.8\\ 86.2\\ 92.8\\ 86.2\\ 92.8\\ 89.4\\ 89.4\\ 89.4\\ 89.4\\ 89.4\\ 89.4\\ 89.4\\ 89.4\\ 89.5\\ 86.2\\ 92.8\\ 89.5\\ 86.2\\ 92.8\\ 86.2\\ 89.5\\ 86.2\\ 89.5\\ 86.2\\ 89.5\\ 86.2\\ 89.5\\ 86.2\\ 89.5\\ 86.2\\ 89.5\\ 86.2\\ 89.5\\ 86.2\\ 89.5\\ 86.2\\ 92.8\\ 89.5\\ 86.2\\ 92.8\\ 89.5\\ 86.2\\ 92.8\\ 89.5\\ 86.2\\ 92.8\\ 89.5\\ 86.2\\ 92.8\\ 89.5\\ 86.2\\ 89.5\\ 86.2\\ 92.8\\ 89.5\\ 86.2\\ 92.8\\ 89.5\\ 86.2\\ 92.8\\ 89.5\\ 86.2\\ 92.8\\ 89.5\\ 86.2\\ 92.8\\ 89.5\\ 86.2\\ 92.8\\ 89.5\\ 86.2\\ 92.8\\ 89.5\\ 86.2\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.$</td><td>MMMM MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM</td><td>MMMMMM88 MMMMMMMM99 MMMMMM50 MMMMM50 MMMMM50 MMMMM50 MMMMM50 MMMMM50 MMMMM50 MMMMM50 MMMMM50 MMMMMM50 MMMMMMM50 MMMMMMMM</td><td>MMMMMM66 MMMMMMMMM7, MMMMMM99</td><td>M M M M M M M M M M M M M M M M M M M</td><td>M M M M M M M M M M M M M M M M M M M</td><td>M M M M M M M M M M M M M M M M M M M</td><td></td><td>2.14 M M M M M M M M M M M M M M M M M M M</td><td>0.246 M M M M M M M M M M M M M M M M M M M</td></t<>	46.0 46.0 46.0 46.0 45.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46	190 190 170 170 140 140 150 150 150 160 180 190 190 200 200 200 200 200 200 200 200 200 2	3.0 6.0 7.0 9.0 6.0 7.0 9.0 6.0 7.0 9.0 110.0 12.0 13.0 12.0 9.0	M M M M M M M M M M M M M M M M M M M	8 45 8 26 8 7 8 25 8 31 8 25 8 31 8 24 8 25 8 31 8 24 8 25 8 24 8 25 8 24 8 24 8 24 8 24 8 25 8 13 8 13 8 13 8 13 8 12 8 12 8 12 8 12 8 12 8 12 8 12 8 12 8 12 8 32	3 2 1 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3	M M M M M M M M M M M M M M M M M M M 	$\begin{array}{c} 96.3\\ 100.0\\ 100.0\\ 96.3\\ 96.3\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 96.3\\ 92.7\\ 96.3\\ 92.8\\ 86.2\\ 92.8\\ 86.2\\ 92.8\\ 89.4\\ 89.4\\ 89.4\\ 89.4\\ 89.4\\ 89.4\\ 89.4\\ 89.4\\ 89.5\\ 86.2\\ 92.8\\ 89.5\\ 86.2\\ 92.8\\ 86.2\\ 89.5\\ 86.2\\ 89.5\\ 86.2\\ 89.5\\ 86.2\\ 89.5\\ 86.2\\ 89.5\\ 86.2\\ 89.5\\ 86.2\\ 89.5\\ 86.2\\ 89.5\\ 86.2\\ 92.8\\ 89.5\\ 86.2\\ 92.8\\ 89.5\\ 86.2\\ 92.8\\ 89.5\\ 86.2\\ 92.8\\ 89.5\\ 86.2\\ 92.8\\ 89.5\\ 86.2\\ 89.5\\ 86.2\\ 92.8\\ 89.5\\ 86.2\\ 92.8\\ 89.5\\ 86.2\\ 92.8\\ 89.5\\ 86.2\\ 92.8\\ 89.5\\ 86.2\\ 92.8\\ 89.5\\ 86.2\\ 92.8\\ 89.5\\ 86.2\\ 92.8\\ 89.5\\ 86.2\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.$	MMMM MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM	MMMMMM88 MMMMMMMM99 MMMMMM50 MMMMM50 MMMMM50 MMMMM50 MMMMM50 MMMMM50 MMMMM50 MMMMM50 MMMMM50 MMMMMM50 MMMMMMM50 MMMMMMMM	MMMMMM66 MMMMMMMMM7, MMMMMM99	M M M M M M M M M M M M M M M M M M M	M M M M M M M M M M M M M M M M M M M	M M M M M M M M M M M M M M M M M M M		2.14 M M M M M M M M M M M M M M M M M M M	0.246 M M M M M M M M M M M M M M M M M M M
2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-28 2011-1	20:53 21:40 21:46 21:53 22:53 23:53 00:02 00:40 00:53 01:53 01:53 03:53 04:53 04:53 03:53 04:53 05:07:15 07:53 10:53 10:53 11:13 11:13 11:53 12:16 12:53 13:53 14:53 15:53 17:53 18:53 19:53 20:53 20:53 20:53 21:47 21:53	2455923 2455923 2455923 2455923 2455923 2455923 2455924	8701389 9027778 9069444 9118056 9277778 953389 90227778 953389 0062500 008333 0277778 0368056 0784722 1201389 1618056 2034722 1201389 1618056 413072 2313944 2451389 2868056 3020833 3224722 4673611 5368056 5493056 54955656 5495565656 5495565655656565656565656565656565656565	1017.1 M M 1015.8 M 1013.7 M 1012.3 1019.9 1009.8 1007.9 1008.8 1007.1 1008.8 1007.1 1008.8 1009.0 1010.4 M 1010.9 M 1010.9 M 1010.9 M 1011.5 1012.1 1012.1 1012.1 1012.1 1012.1 1012.1 1012.1 1012.1 1012.1 1012.1 1012.1 1012.1 M 1010.9 M 1012.1 1010.1 M 1010.2 M 1010.1 M 1010.2 M 1010.1 M 1010.2 M 1010.1 M 1010.2 M 1010.2 M 1010.2 M 1010.2 M 1010.2 M 1010.2 M 1012.2 M 1012.2 M 1010.2 M 1012.0 M 1012.0 M	47.0 46.0 44.0 44.0 44.0 44.0 48.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 <t< td=""><td>46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0</td><td>190 190 170 170 140 150 150 160 180 190 200 200 200 200 200 200 200 200 200 2</td><td>3.0 4.0 6.0 7.0 9.0 6.0 7.0 9.0 6.0 7.0 9.0 10.0 17.0 17.0 17.0 18.0 18.0 15.0 15.0 12.0 11.0 12.0 12.0 12.0 9.0 9.0</td><td>M M M M M M M M M M M M M M M M M M M</td><td>8 45 8 26 8 7 8 24 8 27 8 24 8 24 8 24 8 24 8 25 8 21 8 25 8 24 8 25 8 24 8 25 8 29 8 16 8 13 8 13 8 13 8 12 8 14 8 12 8 12 8 12 8 12 8 12 8 12 8 12 8 32</td><td>3 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3</td><td>WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW</td><td>$\begin{array}{c} 96.3\\ 100.0\\ 96.3\\ 96.3\\ 96.3\\ 92.7$</td><td>MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM</td><td>MMMMMM4MMMMMM9 MMMMMMMMMM9 MMMMMMMMMMMM</td><td>MMMMMM46 MMMMMMMMMMMMMMMMMMMMMMMMMMMMMM</td><td>MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM</td><td>M M M M M M M M M M M M M M M M M M M</td><td>M M M M M M M M M M M M M M M M M M M</td><td>MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM</td><td>2.14 M M M M M M M M M M M M M M M M M M M</td><td>0.246 M M M M M M M M M M M M M</td></t<>	46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0	190 190 170 170 140 150 150 160 180 190 200 200 200 200 200 200 200 200 200 2	3.0 4.0 6.0 7.0 9.0 6.0 7.0 9.0 6.0 7.0 9.0 10.0 17.0 17.0 17.0 18.0 18.0 15.0 15.0 12.0 11.0 12.0 12.0 12.0 9.0 9.0	M M M M M M M M M M M M M M M M M M M	8 45 8 26 8 7 8 24 8 27 8 24 8 24 8 24 8 24 8 25 8 21 8 25 8 24 8 25 8 24 8 25 8 29 8 16 8 13 8 13 8 13 8 12 8 14 8 12 8 12 8 12 8 12 8 12 8 12 8 12 8 32	3 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3	WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW	$\begin{array}{c} 96.3\\ 100.0\\ 96.3\\ 96.3\\ 96.3\\ 92.7$	MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM	MMMMMM4MMMMMM9 MMMMMMMMMM9 MMMMMMMMMMMM	MMMMMM46 MMMMMMMMMMMMMMMMMMMMMMMMMMMMMM	MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM	M M M M M M M M M M M M M M M M M M M	M M M M M M M M M M M M M M M M M M M	MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM	2.14 M M M M M M M M M M M M M M M M M M M	0.246 M M M M M M M M M M M M M
2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-28 2011-1	$\begin{array}{c} 20:53\\ 21:40\\ 21:46\\ 21:53\\ 22:16\\ 22:53\\ 23:53\\ 00:02\\ 00:42\\ 00:53\\ 01:53\\ 03:53\\ 04:53\\ 03:53\\ 04:53\\ 04:53\\ 05:57\\ 05:53\\ 07:15\\ 05:53\\ 10:53\\ 11:13\\ 11:53\\ 12:16\\ 12:53\\ 13:11\\ 13:53\\ 14:53\\ 14:53\\ 15:53\\ 14:53\\ 14:53\\ 15:53\\ 14:53\\ 15:53\\ 14:53\\ 15:53\\ 14:53\\ 15:53\\ 21:47\\ 22:07\\ 15:52\\ 15:52\\ 15$	2455923 2455923 2455923 2455923 2455923 2455923 2455924	8701389 9027778 906944 9118056 9277778 953389 9053389 9027778 0368056 0784722 1201389 1618056 2034722 2131944 22451389 1618056 3020833 3284722 2451389 2868056 3020833 3284722 4534722 4673611 5368056 5493056 5784722 4673611 5368056 5493056 5784722 2451389 5618056 7034722 77451389 7868056 8159722 8284722 8701389 9076389 9118056 9215278	1017.1 M M 1015.8 M 1013.7 1013.7 1013.7 1012.3 1010.9 1009.8 1007.9 1008.0 M 1007.1 1008.0 M 1007.1 1008.0 M 1007.1 1009.0 1010.4 1010.2 M	47.0 46.0 46.0 47.0 46.0 47.0 48.0 51.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 <t< td=""><td>46.0 46.0 445.0 445.0 445.0 445.0 446.0 446.0 446.0 446.0 446.0 446.0 446.0 446.0 448</td><td>190 190 170 170 140 140 150 150 160 150 160 190 200 200 200 200 200 200 200 200 200 2</td><td>$\begin{array}{c} 3.0\\ 3.0\\ 3.0\\ 3.0\\ 3.0\\ 3.0\\ 4.0\\ 0.0\\ 3.0\\ 4.0\\ 0.0\\ 3.0\\ 1.0\\ 1.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0$</td><td>M M M M M M M M M M M M M M M M M M M</td><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>3 2 1 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3</td><td>***************************************</td><td>$\begin{array}{c} 96.3\\ 100.0\\ 96.3\\ 96.3\\ 96.3\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 95.3\\ 92.8\\ 86.2\\ 89.4\\ 89.4\\ 89.4\\ 89.4\\ 89.4\\ 89.4\\ 89.4\\ 89.4\\ 89.4\\ 89.4\\ 89.5\\ 86.2\\ 92.8\\ 86.2$</td><td>MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM</td><td>MMMMMM88 MMMMMMMMM99 MMMMMMMMM52 MMMMMMM35 MMMMMMMMMMM9</td><td>MMMMMM4 MMMMMMMMMMM4 MMMMMMMMMMMMMMMMM</td><td>M M M M M M M M M M M M M M M M M M M</td><td>M M M M M M M M M M M M M M M M M M M</td><td>M M M M M M M M M M M M M M M M M M M</td><td></td><td>2.14 M M M M M M M M M M M M M M M M M M M</td><td>0.246 M M M M M M M M M M M M M M M M M M M</td></t<>	46.0 46.0 445.0 445.0 445.0 445.0 446.0 446.0 446.0 446.0 446.0 446.0 446.0 446.0 448	190 190 170 170 140 140 150 150 160 150 160 190 200 200 200 200 200 200 200 200 200 2	$\begin{array}{c} 3.0\\ 3.0\\ 3.0\\ 3.0\\ 3.0\\ 3.0\\ 4.0\\ 0.0\\ 3.0\\ 4.0\\ 0.0\\ 3.0\\ 1.0\\ 1.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0$	M M M M M M M M M M M M M M M M M M M	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 2 1 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3	***************************************	$\begin{array}{c} 96.3\\ 100.0\\ 96.3\\ 96.3\\ 96.3\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 95.3\\ 92.8\\ 86.2\\ 89.4\\ 89.4\\ 89.4\\ 89.4\\ 89.4\\ 89.4\\ 89.4\\ 89.4\\ 89.4\\ 89.4\\ 89.5\\ 86.2\\ 92.8\\ 86.2$	MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM	MMMMMM88 MMMMMMMMM99 MMMMMMMMM52 MMMMMMM35 MMMMMMMMMMM9	MMMMMM4 MMMMMMMMMMM4 MMMMMMMMMMMMMMMMM	M M M M M M M M M M M M M M M M M M M	M M M M M M M M M M M M M M M M M M M	M M M M M M M M M M M M M M M M M M M		2.14 M M M M M M M M M M M M M M M M M M M	0.246 M M M M M M M M M M M M M M M M M M M
2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-28 2011-1	20:53 21:40 21:46 21:53 22:53 00:09 00:42 00:53 01:53 03:53 04:53 03:53 04:53 03:53 04:53 05:53 06:53 07:15 07:15 07:15 07:15 07:15 07:15 07:15 07:53 11:13 11:53 12:16 12:53 13:11 13:53 14:53 15:53 16:53 16:53 17:53 18:53 19:53 20:53 21:47 21:53 22:07 22:53	2455923 2455923 2455923 2455923 2455923 2455923 2455924	8701389 9027778 906944 9118056 9277778 953389 9953389 9062500 008333 027778 027778 201201389 108056 2034722 2131944 2453389 2868056 302083 3284722 2453389 284722 3701389 4118056 55984722 4673611 4951389 5111111 5368056 5493056 5784722 6201389 6618056 5784722 8284722 8284722 8284722 8284722 82745389 9118056 9215278 9409722	1017.1 M M 1015.8 M 1013.7 M 1012.3 1012.3 1010.9 1009.8 1007.9 1008.2 M 1007.9 1008.2 M 1007.9 1009.3 1010.1 M 1010.2 M 1010.2 M 1010.2 M 1010.2 M 1010.2 M 1011.4 1012.7 1012.6 M 1012.7 1012.6 M 1012.7 1012.6 M 1012.7 1	47.0 46.0 46.0 46.0 46.0 47.0 48.0 51.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 <t< td=""><td>46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 48.0</td><td>190 190 170 170 140 140 150 150 160 180 190 190 200 200 200 200 200 200 200 200 200 2</td><td>3.0 6.0 7.0 6.0 7.0 6.0 7.0 6.0 7.0 6.0 7.0 6.0 7.0 18.0 15.0 12.0 13.0 12.0 9.0 9.0 9.0 9.0</td><td>M M M M M M M M M M M M M M M M M M M</td><td>8 45 8 26 8 7 8 24 8 25 8 21 8 24 8 25 8 21 8 23 8 24 8 25 8 24 8 25 8 24 8 25 8 24 8 25 8 24 8 13 8 13 8 13 8 12 8 12 8 12 8 12 8 12 8 32 8 32 8 30</td><td>3 2 1 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3</td><td>W W W W M M M M M M M M M M M M M M M M</td><td>$\begin{array}{c} 96.3\\ 100.0\\ 96.3\\ 96.3\\ 96.3\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 96.3\\ 92.7\\ 96.3\\ 92.8\\ 86.2\\ 92.8\\ 86.2\\ 89.4\\ 89.4\\ 89.4\\ 89.4\\ 89.4\\ 89.4\\ 89.4\\ 89.5\\ 86.2\\ 89.5\\ 86.2\\ 89.5\\ 86.2\\ 89.5\\ 86.2\\ 89.5\\ 86.2\\ 89.5\\ 86.2\\ 89.5\\ 86.2\\ 89.5\\ 86.2\\ 89.5\\ 86.2\\ 89.5\\ 86.2\\ 89.5\\ 86.2\\ 89.5\\ 86.2\\ 89.5\\ 86.2\\ 89.5$</td><td>""""""""""""""""""""""""""""""""""""""</td><td>MMMMMM88 MMMMMMMM99 MMMMMMMM20 MMMMMMMMMMMMMMMMM</td><td>MMMMMM6 MMMMMMMMMM7.MMMMMMMMMMMMM5MMMMMMMMMMMMM</td><td>M M M M M M M M M M M M M M M M M M M</td><td>M M M M M M M M M M M M M M M M M M M</td><td>M M M M M M M M M M M M M M M M M M M</td><td></td><td>2.14 M M M M M M M M M M M M M M M M M M M</td><td>0.246 M M M M M M M M M M M M M</td></t<>	46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 48.0	190 190 170 170 140 140 150 150 160 180 190 190 200 200 200 200 200 200 200 200 200 2	3.0 6.0 7.0 6.0 7.0 6.0 7.0 6.0 7.0 6.0 7.0 6.0 7.0 18.0 15.0 12.0 13.0 12.0 9.0 9.0 9.0 9.0	M M M M M M M M M M M M M M M M M M M	8 45 8 26 8 7 8 24 8 25 8 21 8 24 8 25 8 21 8 23 8 24 8 25 8 24 8 25 8 24 8 25 8 24 8 25 8 24 8 13 8 13 8 13 8 12 8 12 8 12 8 12 8 12 8 32 8 32 8 30	3 2 1 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3	W W W W M M M M M M M M M M M M M M M M	$\begin{array}{c} 96.3\\ 100.0\\ 96.3\\ 96.3\\ 96.3\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 96.3\\ 92.7\\ 96.3\\ 92.8\\ 86.2\\ 92.8\\ 86.2\\ 89.4\\ 89.4\\ 89.4\\ 89.4\\ 89.4\\ 89.4\\ 89.4\\ 89.5\\ 86.2\\ 89.5\\ 86.2\\ 89.5\\ 86.2\\ 89.5\\ 86.2\\ 89.5\\ 86.2\\ 89.5\\ 86.2\\ 89.5\\ 86.2\\ 89.5\\ 86.2\\ 89.5\\ 86.2\\ 89.5\\ 86.2\\ 89.5\\ 86.2\\ 89.5\\ 86.2\\ 89.5\\ 86.2\\ 89.5$	""""""""""""""""""""""""""""""""""""""	MMMMMM88 MMMMMMMM99 MMMMMMMM20 MMMMMMMMMMMMMMMMM	MMMMMM6 MMMMMMMMMM7.MMMMMMMMMMMMM5MMMMMMMMMMMMM	M M M M M M M M M M M M M M M M M M M	M M M M M M M M M M M M M M M M M M M	M M M M M M M M M M M M M M M M M M M		2.14 M M M M M M M M M M M M M M M M M M M	0.246 M M M M M M M M M M M M M
2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-28 2011-1	20:53 21:40 21:46 21:53 22:53 23:53 00:02 00:40 00:53 01:53 04:53 04:53 04:53 04:53 04:53 05:07:15 07:55 07:55 07:55 07:53 10:53 10:53 11:13 11:53 12:16 12:53 12:16 12:53 12:55 12:	2455923 2455923 2455923 2455923 2455923 2455923 2455924	8701389 9027778 9069444 9118056 9277778 953189 9053189 9062500 008333 0277778 0368056 0784722 1201389 1618056 2034722 2131944 2451389 2868056 3020872 2451389 2451389 2118056 5784722 6201389 65184722 6201389 65184722 6201389 65184722 8701389 9118056 825728 8284722 8701389 9118056 8215728 8284722 8701389 9118056 9215278 9218278 921805728 921827778 9218278 9218278 9218278 9218278 9218278 9218278 9218278 9218278 9218278 9218278 921827778 921827778 9218778 92187778 92187778 92187778 92187778 92187778 9	1017.1 M M 1015.8 M 1015.8 1013.7 M 1012.3 1010.9 1009.8 1007.9 1008.8 1007.9 1008.8 1007.0 M 1010.4 M 1008.8 1009.0 M 1011.5 1012.7 1012.7 1012.1 1012.7 1012.7 1012.1 1012.7 1012.7 1012.1 1012.7 1010.7 1009.8 1009.8 1009.8 1009.8 1009.8 1009.8 1009.8 1009.8 1009.8 1009.8 1009.8 1009.8 1009.8 1009.8 1009.7 1012.7 1	47.0 46.0 46.0 47.0 46.0 47.0 48.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 <t< td=""><td>46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0</td><td>0 0 190 0 190 0 170 140 150 160 180 190 190 200 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 190 1800 180 150 160 150 160 160 180 190 180 150 160 150 160 150</td><td>3.0 4.0 6.0 7.0 9.0 10.0 17.0 17.0 17.0 17.0 18.0 18.0 16.0 16.0 15.0 15.0 12.0 9.0 11.0 12.0 9.0 10.0 12.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0</td><td>M M M M M M M M M M M M M M M M M M M</td><td>8 45 8 26 7 8 24 8 8 24 8 24 8 24 8 24 8 25 8 21 8 223 8 224 8 224 8 224 8 224 8 224 8 223 8 24 8 224 8 224 8 225 8 224 8 224 8 225 8 113 8 13 8 12 8 12 8 12 8 12 8 12 8 23 8 28 8 28 8 29 8 22 8 22 8</td></t<> <td>3 2 2 1 2 2 2 2 3 3 3 3 3 3 4 6 8 10 10 10 10 10 10 10 10 10 10</td> <td>WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW</td> <td>$\begin{array}{c} 96.3\\ 100.0\\ 96.3\\ 96.3\\ 96.3\\ 92.7\\ 92.8\\ 85.2\\ 85.2\\ 85.5\\ 85.2\\ 85.5\\ 85.2\\ 85.5\\ 85.2\\ 85.5$</td> <td>ми ми ми ми ми ми ми ми ми ми ми ми ми м</td> <td>MMMMMM8 MMMMMMMMMM9 MMMMMMMMM2 MMMMMMMMMM</td> <td>MMMMMM46 MMMMMMMMMMMMMMMMMMMMMMMMMMMMMM</td> <td></td> <td>M M M M M M M M M M M M M M M M M M M</td> <td>M M M M M M M M M M M M M M M M M M M</td> <td>MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM</td> <td>2.14 M M M M M M M M M M M M M M M M M M M</td> <td>0.246 M M M M M M M M M M M M M</td>	46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0	0 0 190 0 190 0 170 140 150 160 180 190 190 200 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 190 1800 180 150 160 150 160 160 180 190 180 150 160 150 160 150	3.0 4.0 6.0 7.0 9.0 10.0 17.0 17.0 17.0 17.0 18.0 18.0 16.0 16.0 15.0 15.0 12.0 9.0 11.0 12.0 9.0 10.0 12.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	M M M M M M M M M M M M M M M M M M M	8 45 8 26 7 8 24 8 8 24 8 24 8 24 8 24 8 25 8 21 8 223 8 224 8 224 8 224 8 224 8 224 8 223 8 24 8 224 8 224 8 225 8 224 8 224 8 225 8 113 8 13 8 12 8 12 8 12 8 12 8 12 8 23 8 28 8 28 8 29 8 22 8 22 8	3 2 2 1 2 2 2 2 3 3 3 3 3 3 4 6 8 10 10 10 10 10 10 10 10 10 10	WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW	$\begin{array}{c} 96.3\\ 100.0\\ 96.3\\ 96.3\\ 96.3\\ 92.7\\ 92.8\\ 85.2\\ 85.2\\ 85.5\\ 85.2\\ 85.5\\ 85.2\\ 85.5\\ 85.2\\ 85.5$	ми ми ми ми ми ми ми ми ми ми ми ми ми м	MMMMMM8 MMMMMMMMMM9 MMMMMMMMM2 MMMMMMMMMM	MMMMMM46 MMMMMMMMMMMMMMMMMMMMMMMMMMMMMM		M M M M M M M M M M M M M M M M M M M	M M M M M M M M M M M M M M M M M M M	MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM	2.14 M M M M M M M M M M M M M M M M M M M	0.246 M M M M M M M M M M M M M
2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-28 2011-1	20:53 21:40 21:46 21:53 22:53 23:53 00:02 00:40 00:53 01:53 03:53 04:53 03:53 04:53 03:53 04:53 07:15 07:53 07:53 07:53 07:53 10:53 11:13 11:53 12:16 12:53 13:53 14:53 14:53 14:53 14:53 14:53 14:53 15:53 14:53 14:53 14:53 12:16 12:53 14:53 12:16 12:53 14:53 12:16 12:53 12:16 12:53 12:16 12:53 12:555	2455923 2455923 2455923 2455923 2455923 2455923 2455924	8701389 9027778 9069444 9118056 9277778 953389 9951389 0062500 008333 027778 0368056 0784722 1201389 1618056 2034722 1201389 1618056 3020833 3284722 42451389 2868056 3020833 3284722 4533722 4533722 4534722 4673611 5368056 5493056 549556 549556 549556 549556 549556 549556 549556 549556 549556 549556 549556 549556 54955656 54955656 5495565656 5495565656565656565656565656565656565656	1017.1 M M 1015.8 M 1013.7 M 1012.3 1010.9 1009.8 1007.9 1008.8 1007.1 1008.8 1007.1 1008.8 1009.0 1009.0 1009.0 M 1010.2 M 1010.2 M 1010.2 M 1010.2 M 1012.3 1010.1 M 1010.2 M 1010.2 M 1010.2 M 1010.2 M 1012.3 1010.5 1007.1 1008.8 1009.0 1010.1 M 1010.2 M 1010.2 M 1010.2 M 1010.2 M 1010.2 M 1010.2 M 1012.3 1010.5 1009.0 1009.0 1009.0 1009.0 1009.0 1010.2 M 1010.2 M 1012.3 1010.2 M 1010.2 M 1010.2 M 1012.3 1010.2 M 1010.2 M 1010.2 M 1012.3 1010.5 1010.5 1012.3 1010.5 100.5 10.	47.0 46.0 46.0 47.0 46.0 47.0 48.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 <t< td=""><td>46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0</td><td>190 190 170 170 140 140 150 160 150 160 190 200 200 200 200 200 200 200 2</td><td>$\begin{array}{c} 3.0\\ 3.0\\ 3.0\\ 3.0\\ 3.0\\ 3.0\\ 4.0\\ 0.0\\ 3.0\\ 4.0\\ 0.0\\ 3.0\\ 4.0\\ 1.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0$</td><td>M M M M M M M M M M M M M M M M M M M</td><td>8 45 8 267 8 267 8 24 8 24 8 257 8 21 8 24 8 253 8 24 8 253 8 24 8 253 8 24 8 253 8 24 8 24 8 24 8 24 8 24 8 253 8 24 8 24 8 24 8 16 8 133 8 12 8 14 8 12 8 32 8 32 8 32 8 32 8 32 8 32 8 32 8 32 8</td><td>3 2 2 1 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3</td><td>***************************************</td><td>$\begin{array}{c} 96.3\\ 100.0\\ 96.3\\ 96.3\\ 96.3\\ 92.7\\ 92.8\\ 85.2\\ 89.5\\ 86.2\\ 92.8\\ 89.5\\ 86.2\\ 92.8\\ 89.5\\ 86.2\\ 92.8\\ 89.5\\ 86.2\\ 92.8\\ 89.5\\ 86.2\\ 92.8\\ 89.5\\ 86.2\\ 92.8\\ 89.5\\ 86.2\\ 92.8\\ 89.5\\ 86.2\\ 92.8\\ 89.5\\ 86.2\\ 92.8\\ 89.5\\ 86.2\\ 92.8\\ 89.5\\ 86.2\\ 92.8\\ 89.5\\ 86.2\\ 92.8\\ 89.5\\ 86.2\\ 92.8\\ 89.5\\ 86.2\\ 92.8\\ 89.5\\ 86.2\\ 92.8\\ 89.5\\ 86.2\\ 92.8\\ 89.5\\ 86.2\\ 92.8\\ 89.5\\ 86.2\\ 92.8\\ 89.5\\ 86.2\\ 92.8\\ 89.5\\ 86.2\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5$</td><td>ми ми ми ми ми ми ми ми ми ми ми ми ми м</td><td>MMMMMM44MMMMMMM44MMMMMMMMMMMMMMMMMMMMM</td><td>MMMMMM4 MMMMMMMMMMM4 MMMMMMMMMMMM 5 MMMMMMMM</td><td></td><td>м м м м м м м м м м м м м м м м м м м</td><td>M M M M M M M M M M M M M M M M M M M</td><td></td><td>2.14 M M M M M M M M M M M M M M M M M M M</td><td>0.246 M M M M M M M M M M M M M</td></t<>	46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0	190 190 170 170 140 140 150 160 150 160 190 200 200 200 200 200 200 200 2	$\begin{array}{c} 3.0\\ 3.0\\ 3.0\\ 3.0\\ 3.0\\ 3.0\\ 4.0\\ 0.0\\ 3.0\\ 4.0\\ 0.0\\ 3.0\\ 4.0\\ 1.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0$	M M M M M M M M M M M M M M M M M M M	8 45 8 267 8 267 8 24 8 24 8 257 8 21 8 24 8 253 8 24 8 253 8 24 8 253 8 24 8 253 8 24 8 24 8 24 8 24 8 24 8 253 8 24 8 24 8 24 8 16 8 133 8 12 8 14 8 12 8 32 8 32 8 32 8 32 8 32 8 32 8 32 8 32 8	3 2 2 1 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3	***************************************	$\begin{array}{c} 96.3\\ 100.0\\ 96.3\\ 96.3\\ 96.3\\ 92.7\\ 92.8\\ 85.2\\ 89.5\\ 86.2\\ 92.8\\ 89.5\\ 86.2\\ 92.8\\ 89.5\\ 86.2\\ 92.8\\ 89.5\\ 86.2\\ 92.8\\ 89.5\\ 86.2\\ 92.8\\ 89.5\\ 86.2\\ 92.8\\ 89.5\\ 86.2\\ 92.8\\ 89.5\\ 86.2\\ 92.8\\ 89.5\\ 86.2\\ 92.8\\ 89.5\\ 86.2\\ 92.8\\ 89.5\\ 86.2\\ 92.8\\ 89.5\\ 86.2\\ 92.8\\ 89.5\\ 86.2\\ 92.8\\ 89.5\\ 86.2\\ 92.8\\ 89.5\\ 86.2\\ 92.8\\ 89.5\\ 86.2\\ 92.8\\ 89.5\\ 86.2\\ 92.8\\ 89.5\\ 86.2\\ 92.8\\ 89.5\\ 86.2\\ 92.8\\ 89.5\\ 86.2\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5$	ми ми ми ми ми ми ми ми ми ми ми ми ми м	MMMMMM44MMMMMMM44MMMMMMMMMMMMMMMMMMMMM	MMMMMM4 MMMMMMMMMMM4 MMMMMMMMMMMM 5 MMMMMMMM		м м м м м м м м м м м м м м м м м м м	M M M M M M M M M M M M M M M M M M M		2.14 M M M M M M M M M M M M M M M M M M M	0.246 M M M M M M M M M M M M M
2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-1	20:53 21:40 21:46 21:53 22:53 22:53 00:09 00:42 00:53 01:53 03:53 04:53 03:53 04:53 03:53 04:53 03:53 04:53 03:53 04:53 05:53 07:15 07:15 08:53 11:13 11:53 12:16 12:53 13:11 13:53 12:16 12:53 13:11 13:53 14:53 15:53 16:53 17:53 18:53 19:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:53 20:55 20:553 20:553 20:553 20:553 20:553 20:553 20:553 20:553 20:553 20:553 20:553 20:553 20:553 20:553 20:553 20:553 20:553 20:553 20:553 20:553 20:553 20:553 20:553 20:553 20:553 20:553 20:553 20:553 20:553 20:553 20:553 20:553 20:553 20:553 20:553 20:553 20:553 20:553 20:553 20:553 20:553 20:553 20:553 20:553 20:553 20:553 20:553 20:553 20:553 20:553 20:553 20:553 20:553 20:553 20:553 20:553 20:553 20:553 20:553 20:553 20:553 20:553 20:553 20:553 20	2455923 2455923 2455923 2455923 2455923 2455923 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924	8701389 9027778 906944 9118056 9277778 9533722 9951389 0062500 008333 027778 0368056 0784722 1201389 1618056 2034722 2131944 2451389 2868056 302083 3284722 2451389 2868056 302083 3284722 4534722 4673611 4951389 5111111 5368056 5493056 5493056 5784722 6201389 6618056 5784722 8284722 8284722 8284722 8284722 99118056 9215278 9409722 9553472	1017.1 M M 1015.8 M 1013.7 1013.7 1013.7 1013.7 1013.7 1013.7 1012.3 1010.9 1009.8 1007.9 1008.8 1007.9 1008.8 1007.9 1009.0 1010.4 1010.2 M 1010.2 M 1010.2 M 1010.2 M 1010.2 M 1010.2 M 1010.2 M 1010.2 M 1010.2 M 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 10	47.0 46.0 46.0 46.0 47.0 46.0 47.0 46.0 47.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 51.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 <t< td=""><td>46.0 46.0 46.0 46.0 45.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46</td><td>190 190 170 170 170 140 140 150 160 160 160 190 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 200 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2</td><td>3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 6.0 7.0 9.0 6.0 7.0 9.0 10.0 15.0 12.0 13.0 12.0 9.0 9.0 9.0 10.0 9.0 10.0 9.0 11.0 9.0 12.0 9.0 10.0 9.0 12.0 9.0 10.0 9.0 10.0 <tr< td=""><td>M M M M M M M M M M M M M M M M M M M</td><td>8 45 8 267 8 267 8 24 8 257 8 257 8 257 8 257 8 213 8 26 8 24 8 257 8 316 8 253 8 24 8 253 8 24 8 253 8 24 8 253 8 24 8 253 8 24 8 131 8 127 8 121 8 122 8 122 8 32 8 32 8 32 8 30 8 30 8 30 8 30 8 30 8 30 <t< td=""><td>3 2 2 1 2 2 2 2 3 3 3 3 3 3 5 6 4 6 8 0 10 10 10 10 10 10 10 10 10 10 10 10 1</td><td>***************************************</td><td>$\begin{array}{c} 96.3\\ 100.0\\ 96.3\\ 96.3\\ 96.3\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 96.3\\ 92.7\\ 96.3\\ 92.8\\ 86.2\\ 89.4\\ 89.4\\ 89.4\\ 89.4\\ 89.4\\ 89.4\\ 89.4\\ 89.5\\ 86.2\\ 89.5\\ 86.2\\ 92.8\\ 89.5\\ 86.2\\ 92.8\\ 89.5\\ 86.2\\ 92.8\\ 89.5\\ 86.2\\ 92.8\\ 89.5\\ 86.2\\ 92.8\\ 89.5\\ 86.2\\ 92.8\\ 89.5\\ 86.2\\ 92.8\\ 89.5\\ 86.2\\ 92.8\\ 89.5\\ 89.5\\ 89.5\\ 86.2\\ 92.8\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5$</td><td>""""""""""""""""""""""""""""""""""""""</td><td>MMMMMM88 MMMMMMMMM99 MMMMMMMM52 MMMMMMM33 MMMMMMMMM23 MMMMMMMMMM</td><td>MMMMMM66 MMMMMMMMMMM7. MMMMMMMMMMMMMMMMM</td><td></td><td>M M M M M M M M M M M M M M M M M M M</td><td>M M M M M M M M M M M M M M M M M M M</td><td>MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM</td><td>2.14 M M M M M M M M M M M M M M M M M M M</td><td>0.246 M M M M M M M M M M M M M</td></t<></td></tr<></td></t<>	46.0 46.0 46.0 46.0 45.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46	190 190 170 170 170 140 140 150 160 160 160 190 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 200 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 6.0 7.0 9.0 6.0 7.0 9.0 10.0 15.0 12.0 13.0 12.0 9.0 9.0 9.0 10.0 9.0 10.0 9.0 11.0 9.0 12.0 9.0 10.0 9.0 12.0 9.0 10.0 9.0 10.0 <tr< td=""><td>M M M M M M M M M M M M M M M M M M M</td><td>8 45 8 267 8 267 8 24 8 257 8 257 8 257 8 257 8 213 8 26 8 24 8 257 8 316 8 253 8 24 8 253 8 24 8 253 8 24 8 253 8 24 8 253 8 24 8 131 8 127 8 121 8 122 8 122 8 32 8 32 8 32 8 30 8 30 8 30 8 30 8 30 8 30 <t< td=""><td>3 2 2 1 2 2 2 2 3 3 3 3 3 3 5 6 4 6 8 0 10 10 10 10 10 10 10 10 10 10 10 10 1</td><td>***************************************</td><td>$\begin{array}{c} 96.3\\ 100.0\\ 96.3\\ 96.3\\ 96.3\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 96.3\\ 92.7\\ 96.3\\ 92.8\\ 86.2\\ 89.4\\ 89.4\\ 89.4\\ 89.4\\ 89.4\\ 89.4\\ 89.4\\ 89.5\\ 86.2\\ 89.5\\ 86.2\\ 92.8\\ 89.5\\ 86.2\\ 92.8\\ 89.5\\ 86.2\\ 92.8\\ 89.5\\ 86.2\\ 92.8\\ 89.5\\ 86.2\\ 92.8\\ 89.5\\ 86.2\\ 92.8\\ 89.5\\ 86.2\\ 92.8\\ 89.5\\ 86.2\\ 92.8\\ 89.5\\ 89.5\\ 89.5\\ 86.2\\ 92.8\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5$</td><td>""""""""""""""""""""""""""""""""""""""</td><td>MMMMMM88 MMMMMMMMM99 MMMMMMMM52 MMMMMMM33 MMMMMMMMM23 MMMMMMMMMM</td><td>MMMMMM66 MMMMMMMMMMM7. MMMMMMMMMMMMMMMMM</td><td></td><td>M M M M M M M M M M M M M M M M M M M</td><td>M M M M M M M M M M M M M M M M M M M</td><td>MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM</td><td>2.14 M M M M M M M M M M M M M M M M M M M</td><td>0.246 M M M M M M M M M M M M M</td></t<></td></tr<>	M M M M M M M M M M M M M M M M M M M	8 45 8 267 8 267 8 24 8 257 8 257 8 257 8 257 8 213 8 26 8 24 8 257 8 316 8 253 8 24 8 253 8 24 8 253 8 24 8 253 8 24 8 253 8 24 8 131 8 127 8 121 8 122 8 122 8 32 8 32 8 32 8 30 8 30 8 30 8 30 8 30 8 30 <t< td=""><td>3 2 2 1 2 2 2 2 3 3 3 3 3 3 5 6 4 6 8 0 10 10 10 10 10 10 10 10 10 10 10 10 1</td><td>***************************************</td><td>$\begin{array}{c} 96.3\\ 100.0\\ 96.3\\ 96.3\\ 96.3\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 96.3\\ 92.7\\ 96.3\\ 92.8\\ 86.2\\ 89.4\\ 89.4\\ 89.4\\ 89.4\\ 89.4\\ 89.4\\ 89.4\\ 89.5\\ 86.2\\ 89.5\\ 86.2\\ 92.8\\ 89.5\\ 86.2\\ 92.8\\ 89.5\\ 86.2\\ 92.8\\ 89.5\\ 86.2\\ 92.8\\ 89.5\\ 86.2\\ 92.8\\ 89.5\\ 86.2\\ 92.8\\ 89.5\\ 86.2\\ 92.8\\ 89.5\\ 86.2\\ 92.8\\ 89.5\\ 89.5\\ 89.5\\ 86.2\\ 92.8\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5$</td><td>""""""""""""""""""""""""""""""""""""""</td><td>MMMMMM88 MMMMMMMMM99 MMMMMMMM52 MMMMMMM33 MMMMMMMMM23 MMMMMMMMMM</td><td>MMMMMM66 MMMMMMMMMMM7. MMMMMMMMMMMMMMMMM</td><td></td><td>M M M M M M M M M M M M M M M M M M M</td><td>M M M M M M M M M M M M M M M M M M M</td><td>MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM</td><td>2.14 M M M M M M M M M M M M M M M M M M M</td><td>0.246 M M M M M M M M M M M M M</td></t<>	3 2 2 1 2 2 2 2 3 3 3 3 3 3 5 6 4 6 8 0 10 10 10 10 10 10 10 10 10 10 10 10 1	***************************************	$\begin{array}{c} 96.3\\ 100.0\\ 96.3\\ 96.3\\ 96.3\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 96.3\\ 92.7\\ 96.3\\ 92.8\\ 86.2\\ 89.4\\ 89.4\\ 89.4\\ 89.4\\ 89.4\\ 89.4\\ 89.4\\ 89.5\\ 86.2\\ 89.5\\ 86.2\\ 92.8\\ 89.5\\ 86.2\\ 92.8\\ 89.5\\ 86.2\\ 92.8\\ 89.5\\ 86.2\\ 92.8\\ 89.5\\ 86.2\\ 92.8\\ 89.5\\ 86.2\\ 92.8\\ 89.5\\ 86.2\\ 92.8\\ 89.5\\ 86.2\\ 92.8\\ 89.5\\ 89.5\\ 89.5\\ 86.2\\ 92.8\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5\\ 89.5$	""""""""""""""""""""""""""""""""""""""	MMMMMM88 MMMMMMMMM99 MMMMMMMM52 MMMMMMM33 MMMMMMMMM23 MMMMMMMMMM	MMMMMM66 MMMMMMMMMMM7. MMMMMMMMMMMMMMMMM		M M M M M M M M M M M M M M M M M M M	M M M M M M M M M M M M M M M M M M M	MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM	2.14 M M M M M M M M M M M M M M M M M M M	0.246 M M M M M M M M M M M M M
2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-28 2011-1	20:53 21:40 21:46 21:53 22:53 23:53 00:09 00:12 00:40 00:53 01:53 04:53 04:53 04:53 04:53 05:07 05:53 06:53 06:53 07:15 07:53 08:53 08:53 10:53 11:13 11:53 12:16 12:53 13:11:33 14:53 16:53 17:53 19:53 20:53 20:53 20:53 10:	2455923 2455923 2455923 2455923 2455923 2455923 2455924	8701389 9027778 9069444 9118056 9277778 9533722 9951389 0062500 008333 027778 1036056 2034722 1201389 1618056 2034722 2131944 2451389 2868056 30208722 2451389 2868056 30208722 2451389 2868056 30284722 451389 511111 4951389 5111111 4951389 5111111 4951389 5111111 4951389 5111111 4951389 5111111 4951389 5118056 5784722 6201389 9076389 9076389 9076389 9118056 8794722 951372 951372	1017.1 M M 1015.8 M 1015.8 M 1013.7 M 1014.8 1010.9 M 1007.1 1008.8 1009.0 M 1010.9 M 1010.9 M 1010.9 M 1010.9 M 1010.9 M 1011.4 1012.7 1012.1 1012.7 1012.1 1012.7 1012.1 1012.7 1012.1 1012.7 1012.1 1012.7 1012.1 1012.7 1012.1 1012.7 1012.1 1012.7 1012.1 1012.7 1012.1 1015.8 M 1017.1 1015.8 M 1019.8 1009.0 M 1017.1 1015.8 M 1017.1 1015.8 M 1019.8 1009.0 M 1017.1 1012.0 1012.7 1012.1 1012.7 1012.1 1012.7 1012.1 1012.7 1012.1 1012.7 1012.1 1012.7 1012.1 1012.7 1012.1 1012.7 1012.7 1012.7 1012.7 1012.7 1015.8 M 1010.9 M 1010.9 M 1010.9 M 1010.9 M 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.7 1012.6 1012.7 1012.6 1012.7 1012.6 1012.7 1012.6 1012.7 1012.6 1012.7 1012.6 1012.7 1012.6 1012.7 1012.6 1012.7 1012.6 1012.7 1012.6 1012.7 1012.6 1012.7 1012.6 1012.6 1012.7 1012.6 1012.6 1012.0 1012.6 1012.6 1012.7 1012.6 1012.7 1012.6 1	47.0 46.0 46.0 47.0 46.0 47.0 48.0 51.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 <t< td=""><td>46.0 46.0 46.0 46.0 45.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46</td><td>190 190 170 170 170 140 140 150 150 160 180 190 200 200 200 200 200 200 200 2</td><td>3.0 6.0 7.0 6.0 7.0 6.0 7.0 6.0 7.0 9.0 110.0 12.0 13.0 12.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0</td><td>M M M M M M M M M M M M M M M M M M M</td><td>8 45 8 26 7 8 24 8 8 24 8 24 8 24 8 24 8 24 8 25 8 26 8 27 8 26 8 27 8 26 8 27 8 23 8 24 8 24 8 24 8 22 8 23 8 13 8 13 8 12 8 12 8 12 8 12 8 12 8 32 8 12 8 32 8 32 8 32 8 32 8 32 8 32 8 3</td><td>3 2 2 1 2 2 2 3 3 3 3 3 3 6 4 6 8 10 10 10 10 10 10 10 10 10 10 10 10 10</td><td>***************************************</td><td>$\begin{array}{c} 96.3\\ 100.0\\ 96.3\\ 96.3\\ 96.3\\ 92.7\\ 92.8\\ 89.5\\ 86.2\\ 89.5$</td><td>MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM</td><td>MMMMMM4 MMMMMMMMM9 MMMMMMMM5 MMMMMMM3 MMMMMMMMMM</td><td>MMMMMM46 MMMMMMMMMMMMMMMMMMMMMMMMMMMMMM</td><td></td><td>M M M M M M M M M M M M M M M M M M M</td><td>M M M M M M M M M M M M M M M M M M M</td><td>r M M M M M M M M M M M M M M M M M M M</td><td>2.14 M M M M M M M M M M M M M M M M M M M</td><td>0.246 M M M M M M M M M M M M M</td></t<>	46.0 46.0 46.0 46.0 45.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46	190 190 170 170 170 140 140 150 150 160 180 190 200 200 200 200 200 200 200 2	3.0 6.0 7.0 6.0 7.0 6.0 7.0 6.0 7.0 9.0 110.0 12.0 13.0 12.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	M M M M M M M M M M M M M M M M M M M	8 45 8 26 7 8 24 8 8 24 8 24 8 24 8 24 8 24 8 25 8 26 8 27 8 26 8 27 8 26 8 27 8 23 8 24 8 24 8 24 8 22 8 23 8 13 8 13 8 12 8 12 8 12 8 12 8 12 8 32 8 12 8 32 8 32 8 32 8 32 8 32 8 32 8 3	3 2 2 1 2 2 2 3 3 3 3 3 3 6 4 6 8 10 10 10 10 10 10 10 10 10 10 10 10 10	***************************************	$\begin{array}{c} 96.3\\ 100.0\\ 96.3\\ 96.3\\ 96.3\\ 92.7\\ 92.8\\ 89.5\\ 86.2\\ 89.5$	MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM	MMMMMM4 MMMMMMMMM9 MMMMMMMM5 MMMMMMM3 MMMMMMMMMM	MMMMMM46 MMMMMMMMMMMMMMMMMMMMMMMMMMMMMM		M M M M M M M M M M M M M M M M M M M	M M M M M M M M M M M M M M M M M M M	r M M M M M M M M M M M M M M M M M M M	2.14 M M M M M M M M M M M M M M M M M M M	0.246 M M M M M M M M M M M M M
2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2011-12-28 2	20:53 21:40 21:46 21:53 22:53 23:53 00:02 00:40 00:53 01:53 01:53 01:53 04:53 04:53 05:53 06:53 07:15 07:55 07:53 10:53 11:13 11:53 12:16 12:53 13:11 13:53 14:53 14:53 15:53 16:53 17:53 18:53 19:55 20:53 21:47 22:53 21:47 22:53 21:47 22:53 21:47 22:53 21:47 22:53 21:47 22:53 21:47 22:53 21:47 22:53 21:47 22:53 21:47 22:53 21:47 22:53 21:47 22:53 21:47 22:53 21:47 21:53 21:47 21:53 21:47 21:53 21:47 21:53 21:53 21:47 21:53 21:53 21:47 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53 21:53	2455923 2455923 2455923 2455923 2455923 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924 2455924	8701389 9027778 9069444 9118056 9277778 953389 9051389 0062500 008333 0277778 0368056 0784722 1201389 1618056 2034722 2131944 2451389 2868056 3020833 3284722 473314 42534722 4673611 5368056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5493056 5495056 5495056 5495056 5495056 5495056 5495056 5495056 5495056 5495056	1017.1 M M 1015.8 M 1013.7 M 1012.3 1010.9 1009.8 1007.9 1008.8 1007.1 1008.8 1007.1 1008.8 1009.0 1009.0 1010.4 M 1010.2 M 1010.2 M 1011.5 1012.1 1012.1 1012.1 1012.1 1012.1 1012.5 M 1012.5 1012.1 1012.5 1012.1 1012.5 M 1012.5 M 1010.5 M 1015.6 M 1015.6 M 1015.6 M 1015.6 M 1015.6 M 1015.6 M 1015.6 M 1015.6 M 1015.7 M 1015.8 M 1012.3 1009.9 1009.1 1009.0 1010.2 M 1012.1 1012.5 1012.5 1012.5 1012.5 1012.5 1012.5 1012.5 1012.5 1012.5 1012.5 1012.5 1012.5 1012.5 1012.5 1012.5 1010.5 1012.5 1012.5 1015.6 1012.5 1015.6 1012.5 1015.6 1015.6 1015.6 1015.6 1015.6 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015.5 1015	47.0 46.0 46.0 47.0 46.0 47.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 <t< td=""><td>46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 60.0 48.0 60.0 48.0 60.0 48.0 60.0 48.0 60.0 48.0 60.0 48.0 60.0 48.0 60.0 48.0 60.0 48.0 60.0 48.0 60.0 48.0 60.0 48.0 60.0 48.0 60.0 48.0 60.0 48.0 60.0 48.0 60.0 48.0 60.0 48.0 60.0 48.0 60.0 48.0 60.0 48.0 60.0 48.0 60.0 48.0 60.0 48.0 60.0 48.0 60.0 49.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0</td><td>190 190 170 170 140 140 150 150 160 190 200 200 200 200 200 200 200 200 200 2</td><td>$\begin{array}{c} 5.0\\ 0.0\\ 3.0\\ 3.0\\ 3.0\\ 0.0\\ 3.0\\ 4.0\\ 0.0\\ 3.0\\ 4.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0$</td><td>М М М М М М М М М М М М М М М М М М М</td><td>8 45 8 26 8 24 8 24 8 27 8 24 8 27 8 24 8 27 8 21 8 26 8 27 8 213 8 24 8 24 8 24 8 24 8 24 8 24 8 24 8 24 8 24 8 24 8 24 8 13 8 11 8 12 8 14 8 32 8 32 8 32 8 32 8 32 8 32 8 32 8 32 8 32 8 <td< td=""><td>3 2 2 1 2 2 2 3 3 3 3 6 4 6 8 10 10 10 10 10 10 10 10 10 10 10 10 10</td><td>***************************************</td><td>$\begin{array}{c} 96.3\\ 100.0\\ 96.3\\ 96.3\\ 96.3\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8$</td><td>и и и и и и и и и и и и и и и и и и и</td><td>MMMMMM44MMMMMMMM44MMMMMMM51MMMMM51MMMMMMMM</td><td>MMMMMM4MMMMMMM4 MMMMMMMMMMMMM4 MMMMMMMM</td><td></td><td>м м м м м м м м м м м м м м м м м м м</td><td>M M M M M M M M M M M M M M M M M M M</td><td></td><td>2.14 M M M M M M M M M M M M M M M M M M M</td><td>0.246 M M M M M M M M M M M M M</td></td<></td></t<>	46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 60.0 48.0 60.0 48.0 60.0 48.0 60.0 48.0 60.0 48.0 60.0 48.0 60.0 48.0 60.0 48.0 60.0 48.0 60.0 48.0 60.0 48.0 60.0 48.0 60.0 48.0 60.0 48.0 60.0 48.0 60.0 48.0 60.0 48.0 60.0 48.0 60.0 48.0 60.0 48.0 60.0 48.0 60.0 48.0 60.0 48.0 60.0 48.0 60.0 48.0 60.0 49.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0	190 190 170 170 140 140 150 150 160 190 200 200 200 200 200 200 200 200 200 2	$\begin{array}{c} 5.0\\ 0.0\\ 3.0\\ 3.0\\ 3.0\\ 0.0\\ 3.0\\ 4.0\\ 0.0\\ 3.0\\ 4.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0$	М М М М М М М М М М М М М М М М М М М	8 45 8 26 8 24 8 24 8 27 8 24 8 27 8 24 8 27 8 21 8 26 8 27 8 213 8 24 8 24 8 24 8 24 8 24 8 24 8 24 8 24 8 24 8 24 8 24 8 13 8 11 8 12 8 14 8 32 8 32 8 32 8 32 8 32 8 32 8 32 8 32 8 32 8 <td< td=""><td>3 2 2 1 2 2 2 3 3 3 3 6 4 6 8 10 10 10 10 10 10 10 10 10 10 10 10 10</td><td>***************************************</td><td>$\begin{array}{c} 96.3\\ 100.0\\ 96.3\\ 96.3\\ 96.3\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8$</td><td>и и и и и и и и и и и и и и и и и и и</td><td>MMMMMM44MMMMMMMM44MMMMMMM51MMMMM51MMMMMMMM</td><td>MMMMMM4MMMMMMM4 MMMMMMMMMMMMM4 MMMMMMMM</td><td></td><td>м м м м м м м м м м м м м м м м м м м</td><td>M M M M M M M M M M M M M M M M M M M</td><td></td><td>2.14 M M M M M M M M M M M M M M M M M M M</td><td>0.246 M M M M M M M M M M M M M</td></td<>	3 2 2 1 2 2 2 3 3 3 3 6 4 6 8 10 10 10 10 10 10 10 10 10 10 10 10 10	***************************************	$\begin{array}{c} 96.3\\ 100.0\\ 96.3\\ 96.3\\ 96.3\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.7\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8\\ 92.8$	и и и и и и и и и и и и и и и и и и и	MMMMMM44MMMMMMMM44MMMMMMM51MMMMM51MMMMMMMM	MMMMMM4MMMMMMM4 MMMMMMMMMMMMM4 MMMMMMMM		м м м м м м м м м м м м м м м м м м м	M M M M M M M M M M M M M M M M M M M		2.14 M M M M M M M M M M M M M M M M M M M	0.246 M M M M M M M M M M M M M
2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-28 2	20:53 21:40 21:46 21:53 22:53 23:53 00:02 00:40 00:53 01:53 03:53 04:53 03:53 04:53 03:53 04:53 05:53 07:15 07:53 07:15 07:53 10:53 11:13 11:53 12:16 12:53 14:53 14:53 14:53 14:53 14:53 19:55 20:53 20:53 20:53 21:47 22:53	2455923 2455923 2455923 2455923 2455923 2455923 2455924	8701389 9027778 906944 9118056 9277778 953389 9053389 0062500 008333 0277778 0368056 0784722 2131944 220389 1618056 2034722 2131944 22451389 1201389 2868056 3020833 3284722 2453389 2868056 5784722 4673611 5368056 5493056 5784722 24534722 24534722 245348056 5493056 5784722 28701389 6618056 7034722 870389 9076389 9118056 9215278 9409722 9534722 940972 9534722 9534722 9534722 9534722 9534722 9534722 9534722 940972 9534722 9534722 9534722 953472 940972 9534722 953472 940972 9534722 953472 940772 940772 953472 940772 940772 940772 953472 940777 9407777 940777 9407777 9407777 940777 9407777 9407777 94	1017.1 M M 1015.8 M 1013.7 1013.7 1013.7 1012.3 1010.9 1009.8 1007.9 1008.2 M 1007.1 1008.0 M 1007.1 1008.0 M 1010.3 1010.4 1010.2 M 1010.2 M 1010.2 M 1011.4 1012.1 1012.1 1012.7 1013.1 1012.6 M 1009.0 1012.1 1012.7 1012.1 1012.7 1013.1 1015.8 M 1009.0 1010.2 M 1010.3 1010.2 M 1010.5 1012.3 1010.5 1012.3 1010.5 1010.5 1012.3 1010.5 1010.5 1012.3 1010.5 1010.5 1012.3 1010.5 1012.3 1010.5 1012.5 1010.5 1012.5 1012.5 1012.5 1012.5 1012.5 1012.5 1012.5 1012.5 1012.5 1012.5 1012.5 1012.5 1012.5 1007.	47.0 46.0 46.0 47.0 46.0 47.0 46.0 47.0 48.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 <t< td=""><td>46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0</td><td>190 190 170 170 170 140 140 150 150 160 150 160 190 200 200 200 200 200 200 200 2</td><td>3.0 3</td><td>M M M M M M M M M M M M M M M M M M M</td><td>8 45 8 267 8 267 8 24 8 257 8 21 8 257 8 31 8 257 8 31 8 253 8 24 8 253 8 24 8 253 8 24 8 253 8 24 8 253 8 24 8 253 8 16 8 133 8 133 8 12 8 12 8 12 8 14 8 29 8 30 8 30 8 30 8 30 8 30 8 30 8 30 8 30 8</td></t<> <td>3 2 2 1 2 2 2 2 3 3 3 3 3 6 4 6 8 10 10 10 10 10 10 10 10 10 10 10 10 10</td> <td>***************************************</td> <td>96.3 100.0 96.3 96.3 92.7 92.7 92.7 92.7 92.7 92.7 92.7 92.7</td> <td>ти и и и и и и и и и и и и и и и и и и</td> <td>· M M M M M M M M M M M M M M M M M M M</td> <td>MMMMMM4MMMMMMM4.MMMMMM4MMMMMMMMMMMMMMM</td> <td></td> <td>м м м м м м м м м м м м м м м м м м м</td> <td>M M M M M M M M M M M M M M M M M M M</td> <td>r M M M M M M M M M M M M M M M M M M M</td> <td>2.14 M M M M M M M M M M M M M M M M M M M</td> <td>0.246 M M M M M M M M M M M M M M M M M M M</td>	46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0	190 190 170 170 170 140 140 150 150 160 150 160 190 200 200 200 200 200 200 200 2	3.0 3	M M M M M M M M M M M M M M M M M M M	8 45 8 267 8 267 8 24 8 257 8 21 8 257 8 31 8 257 8 31 8 253 8 24 8 253 8 24 8 253 8 24 8 253 8 24 8 253 8 24 8 253 8 16 8 133 8 133 8 12 8 12 8 12 8 14 8 29 8 30 8 30 8 30 8 30 8 30 8 30 8 30 8 30 8	3 2 2 1 2 2 2 2 3 3 3 3 3 6 4 6 8 10 10 10 10 10 10 10 10 10 10 10 10 10	***************************************	96.3 100.0 96.3 96.3 92.7 92.7 92.7 92.7 92.7 92.7 92.7 92.7	ти и и и и и и и и и и и и и и и и и и	· M M M M M M M M M M M M M M M M M M M	MMMMMM4MMMMMMM4.MMMMMM4MMMMMMMMMMMMMMM		м м м м м м м м м м м м м м м м м м м	M M M M M M M M M M M M M M M M M M M	r M M M M M M M M M M M M M M M M M M M	2.14 M M M M M M M M M M M M M M M M M M M	0.246 M M M M M M M M M M M M M M M M M M M
2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-28 2011-12-29 2	20:53 21:40 21:46 21:53 22:53 00:09 00:42 00:53 01:53 03:53 04:53 03:53 04:53 03:53 04:53 03:53 04:53 05:53 07:15 07:15 07:15 07:15 07:15 07:53 11:13 11:53 12:16 12:53 13:11 13:53 16:253 13:53 16:253 13:53 16:53 17:53 18:53 19:53 20:53 21:47 22:53 22:53 22:53 22:53 22:53 22:53 22:53 20:53 20:53 21:47 22:53 22:5	2455923 2455923 2455923 2455923 2455923 2455923 2455924	8701389 9027778 9069444 9118056 9277778 953389 9053389 9053389 0062500 008333 0277778 0368056 2034722 2131944 2451389 2868056 302083 3284722 2451389 2845389 284722 3701389 4118056 55784722 4673611 4951389 5111111 5368056 5493056 5784722 8264722 8264722 8274722 8284722 8274723 818056 8159722 8284722 8284722 8701389 9118056 9215278 9409722 9551389 9351389 9351389 935389 0368056 0472222 0750000 0784722	1017.1 M M 1015.8 M 1013.7 1013.7 M 1012.3 1010.9 1009.8 1007.9 1008.2 M 1007.9 1008.2 M 1007.9 1009.3 1010.2 M 1010.3 M 1010.3 M 1010.3 M 1010.3 M 1010.3 M 1010.4 1012.3 M 1010.4 1012.3 M 1010.5 1012.1 1012.6 M 1012.0 M 1012.3 1010.4 1012.3 M 1010.5 1012.1 1012.7 1012.1 1012.6 M 1012.0 M 1012.3 M 1010.2 M 1010.2 M 1010.3 M 1000.3	47.0 46.0 46.0 47.0 46.0 47.0 46.0 47.0 48.0 51.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 <t< td=""><td>46.0 48.0 49.0 48.0 49.0 48.0 48.0 49.0 48.0 48.0 48.0 49.0 48.0</td><td>190 190 170 170 170 140 140 150 150 160 160 190 200 200 200 200 200 200 200 2</td><td>3.0 3.0 3.0 3.0 3.0 4.0 6.0 6.0 7.0 10.0 17.0 18.0 18.0 15.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 12.0</td><td>M M M M M M M M M M M M M M M M M M M</td><td>8 45 8 267 8 267 8 257 8 257 8 257 8 257 8 213 8 253 8 24 8 257 8 316 8 253 8 24 8 253 8 24 8 253 8 24 8 253 8 24 8 253 8 24 8 253 8 24 8 133 8 120 8 122 8 122 8 359 8 29 8 29 8 29 8 29 8 29 8 29 8 29 8 29</td><td>3 2 2 1 2 2 2 3 3 3 3 3 6 4 6 8 0 10 0 10 9 0 10 10 10 9 0 10 10 10 9 6 7 8 6 4 4 5 3 4 c</td><td>***************************************</td><td>96.3 100.0 96.3 96.3 92.7 92.7 92.7 92.7 92.7 92.7 92.7 92.7</td><td>""""""""""""""""""""""""""""""""""""""</td><td>MMMMMM4 MMMMMMMMM9 MMMMMMM5 MMMMMM5 MMMMMM5 MMMMMM3 MMMMMM5 MMMMMM5 MMMMMMMM</td><td>MMMMMM66 MMMMMMMMMM7.MMMMMM9</td><td></td><td>М М М М М М М М М М М М М М М М М М М</td><td>M M M M M M M M M M M M M M M M M M M</td><td>r M M M M M M M M M M M M M M M M M M M</td><td>2.14 M M M M M M M M M M M M M M M M M M M</td><td>0.246 M M M M M M M M M M M M M</td></t<>	46.0 48.0 49.0 48.0 49.0 48.0 48.0 49.0 48.0 48.0 48.0 49.0 48.0	190 190 170 170 170 140 140 150 150 160 160 190 200 200 200 200 200 200 200 2	3.0 3.0 3.0 3.0 3.0 4.0 6.0 6.0 7.0 10.0 17.0 18.0 18.0 15.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 12.0	M M M M M M M M M M M M M M M M M M M	8 45 8 267 8 267 8 257 8 257 8 257 8 257 8 213 8 253 8 24 8 257 8 316 8 253 8 24 8 253 8 24 8 253 8 24 8 253 8 24 8 253 8 24 8 253 8 24 8 133 8 120 8 122 8 122 8 359 8 29 8 29 8 29 8 29 8 29 8 29 8 29 8 29	3 2 2 1 2 2 2 3 3 3 3 3 6 4 6 8 0 10 0 10 9 0 10 10 10 9 0 10 10 10 9 6 7 8 6 4 4 5 3 4 c	***************************************	96.3 100.0 96.3 96.3 92.7 92.7 92.7 92.7 92.7 92.7 92.7 92.7	""""""""""""""""""""""""""""""""""""""	MMMMMM4 MMMMMMMMM9 MMMMMMM5 MMMMMM5 MMMMMM5 MMMMMM3 MMMMMM5 MMMMMM5 MMMMMMMM	MMMMMM66 MMMMMMMMMM7.MMMMMM9		М М М М М М М М М М М М М М М М М М М	M M M M M M M M M M M M M M M M M M M	r M M M M M M M M M M M M M M M M M M M	2.14 M M M M M M M M M M M M M M M M M M M	0.246 M M M M M M M M M M M M M
2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-27 2011-12-28 2	20:53 21:40 21:46 21:53 22:53 23:53 00:02 00:40 00:53 01:53 04:53 04:53 04:53 04:53 04:53 05:07 05:53 06:53 06:53 07:15 07:53 08:53 10:53 10:53 11:13 11:13 12:16 12:53 12:16 12:53 12:16 12:53 12:16 12:53 12:16 12:53 12:16 12:53 12:16 12:53	2455923 2455923 2455923 2455923 2455923 2455924	8701389 9027778 9069444 9118056 9277778 953372 9951389 0062500 008333 027778 103605500 0784722 1201389 1618056 2034722 2131944 2451389 2868056 30208722 2451389 2868056 30208722 2451389 2868056 30208722 451389 511111 4951389 5111111 4951389 5111111 4951389 5111111 4951389 5111111 4951389 5111111 5368056 5784722 6201389 9076389 9118056 8159722 8284722 87451389 9118056 9215278 870389 9118056 9215278 91076389 9118056 9215278 91076389 9118056 9215278 91076389 9118056 0215278 91076389 9118056 0215278 91076389 9118056 0215278 91076389 9118056 0215278 91076389 9118056 0215278 91076389 9118056 0215278 91076389 9118056 9215278 91076389 9118056 9215278 91076389 9118056 9215278 91076389 9118056 9215278 9107722 951372 951372 9107777 9107777 91077778 91077778 91077778 91077778 91077778 91077778 91077778 91077778 91077778 9107778 91077778 91077778 91077778 91077778 91077778 91077778 91077778 9107778 9107778 91077778 9107778 91077778 91077778 9107778 9107778 91077778 9107778 91077778 91077778 9107778 91077778 91077778 9107778 91077778 91077778 910778 91077778 91077778 910778 91077778 91077778 910778 9107778 910778 9107778 9107778 910778 9107778 91077778 9107778 9107778 91077778 9107778 91077778 91077778 91077778 9107778 91077778 91077778 9107778 91077778 91077778 910778 91077778 91077778 910778 91077778 91077778 910778 91077778 91077778 910778 9107778 91077778 9107778 9107778 91077778 9107778 9107778 91077778 9107778 9107778 91077778 9107778 9107778 9107778 9107778 9107778 9107778 9107778 9107778 9107778 9107778 9107778 9107778 9107778 9107778 9107778 9107778 9107778 91077778 9107778 9107778 91077778 91077778 91077778 91077778 91077778 91077778 91077778 91077778 91077778 91077778 9107778 91077778 91077778 91077778 91077778 91077778 91077778 91077778 91077778 910777778 91077778 91	1017.1 M M 1015.8 M 1015.8 M 1013.7 M 1012.3 1010.9 1009.8 1007.9 1008.8 1007.9 1008.8 1007.0 M 1010.4 M 1008.8 1009.0 M 1011.4 1012.7 1012.7 1012.1 1012.7 1012.1 1012.7 1012.1 1012.7 1012.1 1012.7 1012.1 1012.7 1012.1 1012.7 1012.1 1012.7 1012.1 1012.7 1012.7 1012.1 1012.7 1012.7 1012.7 1012.1 1012.7 1012.1 1012.7 1012.7 1012.1 1012.7 1012.7 1012.7 1012.7 1012.7 1012.1 1012.7 1012.7 1012.7 1012.7 1012.6 M 1012.7 1012.6 M 1012.7 1012.6 M 1012.7 1012.	47.0 46.0 46.0 47.0 46.0 47.0 48.0 51.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 <t< td=""><td>46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0</td><td>0 190 190 0 170 140 150 160 180 150 160 190 200 200 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 1800 1900 1800 1900 1800 1600 1900 1400 1600 1170 1900 1200 2010 1200 2000 2000 2000 2000 1800 1160 1600 1170 1600 1170 1900 2010</td><td>3.0 6.0 7.0 9.0 6.0 7.0 9.0 10.0 15.0 12.0 13.0 12.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0</td><td>М М М М М М М М М М М М М М М М М М М</td><td>8 45 8 267 7 8 24 8 8 24 8 24 8 24 8 24 8 24 8 24 8 253 8 264 8 253 8 24 8 253 8 24 8 253 8 24 8 253 8 133 8 127 5 11 13 338 8 12 12 12 14 12 8 12 12 28 8 12 8 12 8 12 8 12 8 13 8 12 8 13 8 13 8 13 8</td></t<> <td>3 2 2 1 2 2 2 3 3 3 3 6 4 6 8 10 10 10 10 9 10 10 10 10 9 6 7 8 6 4 4 5 3 4 6 6</td> <td>***************************************</td> <td>$\begin{array}{c} 96.3\\ 100.0\\ 96.3\\ 96.3\\ 96.3\\ 92.7\\ 92.8$</td> <td>MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM</td> <td>MMMMMM4 MMMMMMMMMM9 MMMMMMMM2 MMMMMMMMM3 MMMMMMMM3 MMMMMMM3 MMMMMMMM</td> <td>MMMMMM46 MMMMMMMMMMMMMMMM9 MMMMMMMMMMMMM</td> <td></td> <td>м м м м м м м м м м м м м м м м м м м</td> <td>M M M M M M M M M M M M M M M M M M M</td> <td>r M M M M M M M M M M M M M M M M M M M</td> <td>2.14 MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM</td> <td>0.246 M M M M M M M M M M M M M M M M M M M</td>	46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0	0 190 190 0 170 140 150 160 180 150 160 190 200 200 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 1800 1900 1800 1900 1800 1600 1900 1400 1600 1170 1900 1200 2010 1200 2000 2000 2000 2000 1800 1160 1600 1170 1600 1170 1900 2010	3.0 6.0 7.0 9.0 6.0 7.0 9.0 10.0 15.0 12.0 13.0 12.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	М М М М М М М М М М М М М М М М М М М	8 45 8 267 7 8 24 8 8 24 8 24 8 24 8 24 8 24 8 24 8 253 8 264 8 253 8 24 8 253 8 24 8 253 8 24 8 253 8 133 8 127 5 11 13 338 8 12 12 12 14 12 8 12 12 28 8 12 8 12 8 12 8 12 8 13 8 12 8 13 8 13 8 13 8	3 2 2 1 2 2 2 3 3 3 3 6 4 6 8 10 10 10 10 9 10 10 10 10 9 6 7 8 6 4 4 5 3 4 6 6	***************************************	$\begin{array}{c} 96.3\\ 100.0\\ 96.3\\ 96.3\\ 96.3\\ 92.7\\ 92.8$	MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM	MMMMMM4 MMMMMMMMMM9 MMMMMMMM2 MMMMMMMMM3 MMMMMMMM3 MMMMMMM3 MMMMMMMM	MMMMMM46 MMMMMMMMMMMMMMMM9 MMMMMMMMMMMMM		м м м м м м м м м м м м м м м м м м м	M M M M M M M M M M M M M M M M M M M	r M M M M M M M M M M M M M M M M M M M	2.14 MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM	0.246 M M M M M M M M M M M M M M M M M M M

2011-12-29	03:30	2455925	.1458333	м	54.0	52.0	210	15.0	29.0	8	12	10	м	92.9	м	м	М	м	м	м	М	м	м
2011-12-29	03:53	2455925	.1618056	1005.5	53.0	52.0	210	18.0	30.0	8	12	10	м	96.4	м	м	м	м	м	м	м	м	м
2011-12-29	04:53	2455925	.2034722	1006.5	52.0	47.0	220	19.0	31.0	6	16	10	м	83.0	м	М	м	м	м	М	м	м	м
2011-12-29	05:53	2455925	.2451389	1007.7	50.0	44.0	220	22.0	28.0	3	120	10	м	79.7	м	53	50	м	м	М	м	м	M
2011-12-29	06:06	2455925	.2541667	м	50.0	45.0	220	19.0	30.0	6	18	10	м	82.8	м	м	м	м	м	м	М	м	м
2011-12-29	06:53	2455925	.2868056	1009.9	50.0	43.0	230	12.0	24.0	8	19	10	м	76.7	м	м	м	м	м	м	М	м	м
2011-12-29	08:53	2455925	.3701389	1011.3	48.0	42.0	210	19.0	29.0	8	22	10	М	82.7	м	М	М	м	м	М	м	м	м
2011-12-29	08:53	2455925	.3701389	1011.3	48.0	42.0	210	19.0	29.0	8	22	10	м	79.6	м	М	М	м	м	м	м	м	м
2011-12-29	09:53	2455925	.4118056	1012.5	48.0	41.0	220	19.0	31.0	6	20	10	м	76.6	м	м	М	м	м	м	М	м	м
2011-12-29	10:53	2455925	.4534722	1014.2	47.0	41.0	220	18.0	28.0	8	18	10	м	79.5	М	м	М	м	м	м	м	м	м
2011-12-29	11:53	2455925	.4951389	1015.3	46.0	40.0	210	14.0	25.0	6	17	10	м	79.4	0.61	50	46	м	34.5	м	12	м	м
2011-12-29	12:53	2455925	.5368056	1016.6	46.0	41.0	210	14.0	25.0	8	19	10	м	82.6	м	м	м	м	м	м	М	м	м
2011-12-29	13:53	2455925	.5784722	1017.9	46.0	39.0	200	7.0	М	6	19	10	M	76.4	м	м	М	м	м	м	М	м	м
2011-12-29	14:46	2455925	.6152778	M	45.0	39.0	190	9.0	м	3	120	10	м	79.3	м	М	М	м	м	м	М	м	м
2011-12-29	14:53	2455925	.6201389	1018.6	45.0	39.0	190	9.0	М	3	120	10	м	79.3	м	м	М	м	м	м	М	м	м
2011-12-29	15:53	2455925	.6618056	1019.3	44.0	39.0	190	9.0	М	6	200	10	м	82.4	м	м	М	м	м	М	М	M	M
2011-12-29	16:53	2455925	.7034722	1019.7	45.0	40.0	180	9.0	М	8	180	10	M	82.5	м	М	М	м	м	М	М	м	М
2011-12-29	17:53	2455925	.7451389	1019.1	45.0	40.0	190	7.0	м	8	160	10	М	82.5	М	47	44	м	м	М	М	м	м
2011-12-29	18:53	2455925	.7868056	1018.3	45.0	40.0	200	7.0	М	8	40	10	M	82.5	м	М	М	м	м	М	М	M	M
2011-12-29	19:53	2455925	.8284722	1017.7	46.0	41.0	200	7.0	м	8	60	10	M	82.6	м	М	M	м	м	М	М	м	м
2011-12-29	20:53	2455925	.8701389	1015.8	46.0	42.0	160	4.0	М	8	45	10	M	85.8	м	М	М	м	м	М	М	0.89	0.123
2011-12-29	21:53	2455925	.9118056	1014.1	46.0	40.0	140	8.0	М	8	44	10	M	79.4	М	М	М	м	м	М	М	м	M
2011-12-29	22:53	2455925	.9534722	1012.1	46.0	40.0	100	4.0	M	8	35	10	M	79.4	м	М	М	М	м	М	М	м	м
2011-12-29	23:53	2455925	.9951389	1010.3	46.0	40.0	90	3.0	M	8	34	10	м	79.4	М	46	45	43.9	м	56	М	м	м
2011-12-30	00:53	2455926	.0368056	1008.7	45.0	41.0	130	5.0	м	8	33	10	М	85.8	М	М	М	м	м	М	М	м	м
2011-12-30	01:53	2455926	.0784722	1006.4	44.0	41.0	120	11.0	17.0	8	50	10	M	89.1	м	М	М	м	м	М	М	м	м
2011-12-30	02:53	2455926	.1201389	1004.9	45.0	41.0	100	8.0	м	8	28	10	м	85.8	м	М	М	м	м	М	М	M	м
2011-12-30	03:45	2455926	.1562500	M	45.0	41.0	120	6.0	м	8	31	9	M	85.8	м	М	м	м	м	М	М	м	м
2011-12-30	03:53	2455926	.1618056	1003.8	44.0	41.0	130	6.0	M	8	31	10	м	89.1	м	М	М	м	М	М	М	м	м
2011-12-30	04:17	2455926	.1784722	M	45.0	41.0	150	9.0	M	8	24	10	M	85.8	М	М	М	м	м	М	М	M	м
2011-12-30	04:53	2455926	.2034722	1002.7	44.0	41.0	160	8.0	м	8	20	9	M	89.1	м	М	М	м	м	М	М	м	м
2011-12-30	05:53	2455926	.2451389	1001.7	45.0	44.0	160	10.0	М	8	20	10	м	96.3	М	46	44	м	м	М	М	м	м
2011-12-30	06:53	2455926	.2868056	1001.6	50.0	49.0	190	13.0	21.0	8	26	10	м	96.3	м	М	М	м	м	М	М	M	м
2011-12-30	07:27	2455926	.3104167	M	50.0	48.0	210	13.0	29.0	8	13	5	м	92.8	м	М	М	м	м	М	М	м	м
2011-12-30	07:38	2455926	.3180556	м	50.0	48.0	250	18.0	23.0	8	15	5	M	92.8	M	М	М	м	М	М	М	м	м
2011-12-30	07:53	2455926	.3284722	1002.8	49.0	46.0	240	17.0	26.0	8	15	6	м	89.3	м	м	М	м	М	М	М	м	M

ATTACHMENT B

Building Monitoring Locations

8230 5th Avenue South

Timberwolf Offices and Warehouse

- 1. watermain floor penetration annular space
- 2. natural gas penetration wall
- 3. rear storage room
- 4. crack at wall column/slab interface
- 5. rear south wall
- 6. upstairs office open space
- 7. bathroom floor drains womens
- 8. bathroom floor drains mens
- 9. utility room open area
- 10. open warehouse

8230 5th Avenue South

Hudson Bay Offices and Warehouse

- 1. women's bathroom
- 2. men's bathroom
- 3. slab on grade floor crack
- 4. floor drain
- 5. slab on grade floor crack

8250 5th Avenue South

Coast Crane Company - Gerry Knierem Office Manager

- 1. bathroom space
- 2. floor drain
- 3. slab on grade construction joint
- 4. water meter vault
- 5. restroom space east
- 6. shop space
- 7. skirted crawl space elevated building
- 8. open area -interior
- 9. methane mitigation PVC vent at roof-line

Warehouse concrete slab on grade. Very good condition. Joints are sealed and tight.

Warehouse concrete slab on grade. Very good condition. Joints are sealed and tight.

Very good condition. Joints are sealed and tight.

Warehouse concrete slab on grade.

South Park

C2

Perimeter Probe Monitoring Field Forms

SOUTH PARK LANDFILL

Gas Probe Monitoring Field Form

Sampling Organization: Parametrix

Field Personnel: Steve Emge, Mike Brady, & Trey Parry

Date and Time: 5/14/2020 and 0720 to 1400

Project Number: 553-1550-067 (03.00)

Gas Probe	Probe Diameter (ft)	Purge Volume (cc)	Purge Rate (ml/min)	Purge	Time	Pressure (in W.C.)	Depth to Water (ft)	CH₄ (% Volume)	CO2 (% Volume)	O₂ (% Volume)	H₂S / CO (ppm)
GP-37	.063	868	550	1.57	min	0	Dry	0	5.2	14	0/0
GP-09	.063	899	550	1.63	min	0	Dry	0	6.9	15	0/1
GP-26	.063	868	550	1.57	min	Probe was	not found.				
GP-23	.167	4,940	550	8.98	min	0	Dry	0	6.6	14	0/0
GP-07	.063	519	550	0.94	min	0	Dry	0	2.3	19	0/0
GP-27	.063	1,216	550	2.21	min	0	12.23	0	0	21	0/0
GP-28	.063	1,042	550	1.89	min	0	10.90	0	4.4	10	0/0
GP-29	.063	868	550	1.57	min	0	8.61	1.4	11.8	3	0/0
GP-16	.167	5,867	550	10.67	min	0	Dry	0	0.5	20	0/0
GP-31	.063	868	550	1.57	min	0	6.21	0	4.0	15	0/0
GP-15	.167	5,558	550	10.11	min	0	3.31	0	3.8	15	0/0
GP-32	.063	868	550	1.57	min	0	2.27	0	0	21	0/0
GP-03	.063	725	550	1.32	min	0	Dry	0	7.1	11	0/0
GP-13	.167	4,014	550	7.29	min	0	2.78	0	0	21	0/0
GP-11	.167	4,632	550	8.42	min	0	5.84	0	0	21	0/0
GP-38	.063	882	550	1.6	min	0	Dry	0	6.6	13	0/0
GP-33	.063	1,165	550	2.12	min	0	13.40	0	5.5	8	0/5

Comments/Special Instructions:

Barometer ("Hg) (Start): 29.97 @ 0710

Barometer ("Hg) (Finish): 29.96 @ 1400

Temperature: 52 deg F

Weather: Overcast with rain until 0900 then overcast to mostly cloudy

Equipment Used: LandGem TM 5000 and Water Level Meter: Rented and Calibrated by GeoTech

South Park Landfill

GAS PROBE MONITORING FIELD FORM

Sampling Organization: Parametrix

Project Number:

ale ..

Parametrix

ig Organiza		ta a		с	Project N	umber:	\sim	0		r		
Date:	8/24/	10			Field Pers	sonnel:	1. Van	4+A.	YOR	-		
Gas Probe	Probe Diameter (ft)	Screened Interval (ft btoc)	Purge Volume (cc)	Purge Duration Purge rate = 550 ml/min (min)	Depth to Water (ft - btoc)	Pressure	Time	CH4 (% Volume)	CO ₂	O_2^{\prime}	H ₂ S	
GP-37	.063	2.8 to 7.8	868	1.57	(Dr.)	00	17:70	OO	115	10.6		
GP-09	.063	6.62 to 10.62	899	1.63	OR	00	12:07	00	4.8	186	0	
GP-26	.063	4.62 to 9.62	868	1.57	789	0.0	13:16	00	76	19.7	0	-
GP-23	.167	6.05 to 7.05	4,940	8.98	741	0.0	13:35	00	77	146	0	1
GP-07	.063	5.75 to 6.25	519	0.94	Dry	0.0	13:50	0.0	35	197		
GP-27	.063	8.57 to 13.57	1,216	2.21	12.29	0.0	11:40	0.5	179	00	5	Of ICAN <~~
GP-28	.063	6.59 to 11.59	1,042	1.89	11.45	0.0	11:30	0.0	9.5	57	C	- Lhich nos inte as 0.0
GP-29	.063	4.62 to 9.62	868	1.57	9.23	0.0	11:19	1.8	14.8	20	0	-
GP-16	.167	6.60 to 9	5,867	10.67	Pry	0.0	10:45	0.0	DU	204	Ó	
GP-31	.063	4.64 to 9.64	868	1.57	5.81	0.0	9:45	$()_{\circ}()$	15.4	36	O	
GP-15	.167	6.62 to 8.62	5,558	10.11	6.08	0.0	10:22	0.0	3.1	18.5	0	Blocked Scree
GP-32	.063	4.72 to 9.72	868	1.57	3.09	0.0	10:10	No rea	ding. S	reen cou	reved.	Bloched Screen
GP-03	.063	6.73 to 8.63	725	1.32	Dry	0,0	9:33	0.0	9.2	10.4	0	
GP-13	.167	4.91 to 5.41	4,014	7.29	3.13	0.0	9:15	0.0	01	219	0	Blochal Sire
GP-11	.167	6.23 to 6.73	4,632	8.42	6.13	0.0	8:19	0.0	0.1	71.9	0	-
GP-38	.063	3.8 to 8.8	882	1.6	Dru	0.0	12:37	0.0	17.7	0.8	0	
GP-33	.063	8.2 to 13.2	1,165	2.12	13.31	0.0	12:55	0.0	67	95	\mathcal{O}	
ents:	rll casing	While Minik	A, Denint	onlever, they	still nu	d lock	ing bo	HS.	• • • • • • • • • • • • • • • • • • •			-
eter ("Hg) ((Start): <u>3</u>	0.03 (ICINI	ted from l	under Baron	neter ("Hg) (Finish):	3	0.02	-			
rature:	Stuti	6205	End	72°F Weat	her: <u> </u>	nny 2	AL CLE	ac ski	25	4		
ent Used:	Landt	c 5000						-				

.

South Park Landfill

.

1.18.1

	GAS PROBE MONITORING FIELD FORM										
npling Organization: Parametrix					Project Number: 553-1550-004						
Date:	11/9/20				Field Personnel: They than + Austin York.						
Gas Probe	Probe Diameter (ft)	Screened Interval (ft btoc)	Purge Volume (cc)	Purge Duration Purge rate = 550 ml/min (min)	Depth to Water (ft - btoc)	Pressure (in W.C.)	Time	CH₄ (% Volume)	CO ₂ (% Volume)	O ₂ (% Volume)	H₂S (npm)
GP-37	.063	2.8 to 7.8	868	1.57	Dm	0.00	117:42	00	109	39	
GP-09	.063	6.62 to 10.62	899	1.63	00	0.00	11:15	0.0	4.9	171	0
GP-26	.063	4.62 to 9.62	868	1.57	871	000	11:50	00	30	17.7	0
GP-23	.167	6.05 to 7.05	4,940	8.98	7.34	0.00	11:31	00	65	151	0
GP-07	.063	5.75 to 6.25	519	0.94	DA	0.00	12:03	0.0	3.4	17.6	0
GP-27	.063	8.57 to 13.57	1,216	2.21	12.35	0.00	10:18	0.6	17.4	0.0	6
GP-28	.063	6.59 to 11.59	1,042	1.89	11.01	0.00	9:32	0.0	9.5	43	0
GP-29	.063	4.62 to 9.62	868	1.57	9.05	0.00	9:48	2.9	14.3	1.6	0
GP-16	.167	6.60 to 9	5,867	10.67	Dry	0.00	10:00	0.0	1.6	19.7	0
GP-31	.063	4.64 to 9.64	868	1.57	6.03	0.00	8:56	0.0	10.0	56	0
GP-15	.167	6.62 to 8.62	5,558	10.11	4.87	-	9:05	_	~	-	-
GP-32	.063	4.72 to 9.72	868	1.57	2.81	-	9:13	-	-	-	-
GP-03	.063	6.73 to 8.63	725	1.32	Din	0.00	9:21	0.0	8.9	8.0	0
GP-13	.167	4.91 to 5.41	4,014	7.29	2.85	-	8:25	-	~	~	
GP-11	.167	6.23 to 6.73	4,632	8.42	5.81	-	8:10	-	-	-	-
GP-38	.063	3.8 to 8.8	882	1.6	Dry	0.00	11:07	0.0	13.8	2.5	0
GP-33	.063	8.2 to 13.2	1,165	2.12	13.50	0.00	12:44	0.0	4.9	13.5	Õ
omments: 🛛	ments: Kernshol GP-11 to see if where level drynul. Instead, it rose to a Did of 492 at 12:30.										
arometer ("Hg)	ometer ("Hg) (Start): 30.05 Barometer ("Hg) (Finish): 30.09										
emperature:	nperature: <u>42°F</u> Weather: <u>OVerens</u> +										
quipment Used:	pment Used: Landfec GEM 500										

1

Parametrix

C3

Building Monitoring Forms

SPPD ON-SITE BUILDING METHANE ALARM INSPECTION CHECKLIST

Building Location:

Make and Model of Detector:

Monthly Check: Press test button and confirm indicator light is illuminated.

Date:	Initials:
Date:	Initials:

Quarterly Test: Direct gas from unlighted butane lighter into the detector through one of the vent holes and hold for several seconds. Confirm that red light and alarm activated.

Date:	Initials:
Date:	Initials:
Date:	Initials:
Date:	Initials:

Appendix D

Groundwater Monitoring

D1

Time-Series Plots

D = Downgradient

U = Upgradient

South Park Landfill

A-Zone CPOC Wells

South Park Landfill

D = Downgradient

D = Downgradient

U = Upgradient

South Park Landfill

ENGINEERING . PLANNING . ENVIRONMENTAL SCIENCES

A-Zone CPOC Wells South Park Landfill

D = Downgradient

D2

Trend Analyses

APPENDIX D2

Trend Analyses

Per the CAP, the nonparametric Mann-Kendall test was used to statistically evaluate water quality trends. The Mann-Kendall test is a nonparametric data trend evaluation procedure that allows missing values and data that do not conform to any particular distribution. The Mann-Kendall test only uses the relative magnitudes of the data rather than the measured values. In statistical terms, the Mann-Kendall test is a nonparametric test for zero slope of the linear regression of time-ordered data versus time (Gilbert 1987). For the Mann-Kendall test the null hypothesis is of no trend, i.e., the observations are randomly ordered in time, against the alternative hypothesis, where there is an increasing or decreasing monotonic trend (Salmi et al. 2002).

An assumption underlying the Mann-Kendall test is that the time-sequenced data are monotonic (Salmi et al. 2002), i.e., the successive members of the data set consistently increase or decrease but not necessarily in a linear manner, and display no seasonal or other cycle. If the data are not monotonic, then the statistical power of the Mann-Kendall trend test is reduced. One example of non-monotonic data is precipitation, which can vary seasonally as well as by larger time intervals (years, decades, etc.) Statistical power is the strength of a test to identify an actual release of contaminated groundwater or difference from a compliance standard (EPA 2009).

The Mann-Kendall test computes a S value for which a positive value indicates an increasing data trend, zero indicates no trend, and a negative S value indicates a decreasing trend. The magnitude of S does not indicate the slope of the trend; instead, large positive values of S indicate that measurements taken later in time tend to be larger than those taken earlier. Similarly, large negative values of S indicate that measurements taken later in time tend to be smaller than those taken earlier (Gilbert 1987).

The statistical significance of the Mann-Kendall test S value is a function of the magnitude of S and the number of measurements compared to values presented in Table A18 in Gilbert (1987), with larger values of S and a greater number of measurements leading to higher statistical significance (Gilbert 1987).

To evaluate Mann-Kendall trends in the monitoring data, the Excel-based program ProUCL was used (EPA 2013). Per the CAP and Washington Department of Ecology guidance (Ecology 2005) groundwater monitoring data were evaluated at a 95 percent significance level.

Of the 14 wells:

- One well had all non-detects
- Four wells had no non-detects
- Four wells had 1 to 15 percent non-detects
- Four wells had 16 to 50 percent non-detects
- One well had 51 to 99 percent non-detects (MW-18 at 58 percent)

For data sets with censored, or "non detect" results, per the Ecology *Guidance for Monitoring at Landfills and Other Facilities* (Ecology 2018b), the censored data was handled as follows:

- For wells with fewer than 15 percent non-detects, a value of half the detection level was used.
- For wells with 16 to 50 percent non-detects, fitted empirical cumulative distributive functions were constructed using regression on order statistics to transform the non-detect data for further statistical analysis. Under this method, a distribution is fit to the uncensored data for estimating the concentration of the censored observations. The observed uncensored values are then combined with the modeled censored values to evaluate statistical parameters for the entire population.
- The one well with more than 50 percent non-detects (MW-18) was analyzed using the Mann-Kendall method, with caution, as significance of the analysis may be diminished due the large number of non-detects. Statistical evaluations are typically not performed on data sets with more than 50 percent non-detects because meaningful trends are difficult to determine due to the large number of censored and often repeated values.

Vinyl chloride was detected in well MW-24 in 1999 at a concentration of $11 \mu g/L$, an order of magnitude higher than any prior or subsequent results (see time-series plot in Appendix D1) suggesting a possible statistical outlier. The Mann Kendall test was run with and without this value, yielding similar S value (-321) and trend results (i.e., still significantly decreasing trend without the possible outlier).

REFERENCES

- Ecology (Washington State Department of Ecology). 2005. Implementation Guidance for the Ground Water Quality Standards. Washington State Department of Ecology Publication #96-02. Olympia, WA.
- Ecology. (Washington State Department of Ecology). 2018. Guidance for Monitoring at Landfills and Other Facilities Regulated Under Chapters 173-304, 173-306, 173-350, and 173-351 WAC, Revised December 2018. Washington State Department of Ecology Publication no. 12-07-072.
- EPA. (U.S. Environmental Protection Agency). 2009. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities: Unified Guidance. EPA 530/R-09-007. March 2009. U.S. Environmental Protection Agency Office of Resource and Recovery. Washington, D.C.
- EPA (U.S. Environmental Protection Agency). 2013. ProUCL 5.0.00 User Guide (Draft): Statistical Software for Environmental Applications for Data Sets with and without Nondetect Observations.
 EPA/600/R-07/041. September 2013. U.S. Environmental Protection Agency Office of Research and Development. Washington, D.C.
- Gilbert, R.O. 1987. Statistical Methods for Environmental Pollution Monitoring. John Wiley & Sons, Inc., New York, NY. 320 pages.
- Salmi, T., A. Määttä, P. Anttila, T. Ruoho-Airola, T. Amnell, and I. Laitos. 2002. Detecting Trends of Annual Values of Atmospheric Pollutants by the Mann-Kendall Test and Sen's Slope Estimates – the Excel Template Application MAKESENS, Finnish Meteorological Institute, Helsinki, Finland Available at: <u>http://en.ilmatieteenlaitos.fi/makesens</u>. Accessed March 16, 2021.

User Selected Options	
Date/Time of Computation	ProUCL 5.13/10/2021 10:41:27 AM
From File	VC input w ROS values 3 9 20.xls
Full Precision	OFF
Confidence Coefficient	0.95
Level of Significance	0.05

LnROS_VC-mw-08

General Statistics

Number or Reported Events Not Used	0
Number of Generated Events	40
Number Values Reported (n)	40
Minimum	0.0592
Maximum	3.8
Mean	1.49
Geometric Mean	0.753
Median	1.15
Standard Deviation	1.23
Coefficient of Variation	0.826

Mann-Kendall Test

Critical Value (0.05) -1.645 Standard Deviation of S 85.72 Standardized Value of S -7.583 Approximate p-value 1.689E-14	M-K Test Value (S)	-651
Standard Deviation of S 85.72 Standardized Value of S -7.583 Approximate p-value 1.689E-14	Critical Value (0.05)	-1.645
Standardized Value of S -7.583 Approximate p-value 1.689E-14	Standard Deviation of S	85.72
Approximate p-value 1.689E-14	Standardized Value of S	-7.583
	Approximate p-value	1.689E-14

Statistically significant evidence of a decreasing trend at the specified level of significance. LnROS_VC-mw-10

General Statistics

Number or Reported Events Not Used	0
Number of Generated Events	42
Number Values Reported (n)	42
Minimum	0.0778
Maximum	3.6
Mean	1.072
Geometric Mean	0.693
Median	0.885
Standard Deviation	0.913
Coefficient of Variation	0.852

Mann-Kendall Test

M-K Test Value (S)	-596	
Critical Value (0.05)	-1.645	
Standard Deviation of S	92.22	
Standardized Value of S	-6.452	
Approximate p-value 5.522E-11		

General Statistics

Number or Reported Events Not Used	0
Number of Generated Events	41
Number Values Reported (n)	41
Minimum	0.01
Maximum	2
Mean	0.487
Geometric Mean	0.347
Median	0.44
Standard Deviation	0.33
Coefficient of Variation	0.679

Mann-Kendall Test

M-K Test Value (S)	-269
Critical Value (0.05)	-1.645
Standard Deviation of S	88.97
Standardized Value of S	-3.012
Approximate p-value	0.0013

Statistically significant evidence of a decreasing

trend at the specified level of significance.

LnROS_VC-mw-18

General Statistics

Number or Reported Events Not Used	0
Number of Generated Events	38
Number Values Reported (n)	38
Minimum	0.00341
Maximum	0.32
Mean	0.0384
Geometric Mean	0.0241
Median	0.0211
Standard Deviation	0.0534
Coefficient of Variation	1.392

Mann-Kendall Test

M-K Test Value (S)	55
Critical Value (0.05)	1.645
Standard Deviation of S	79.52
Standardized Value of S	0.679
Approximate p-value	0.249

Insufficient evidence to identify a significant trend at the specified level of significance.

General Statistics

Number or Reported Events Not Used	0
Number of Generated Events	35
Number Values Reported (n)	35
Minimum	0.0243
Maximum	11
Mean	0.524
Geometric Mean	0.156
Median	0.18
Standard Deviation	1.838
Coefficient of Variation	3.505

Mann-Kendall Test

M-K Test Value (S)	-369
Critical Value (0.05)	-1.645
Standard Deviation of S	70.4
Standardized Value of S	-5.227
Approximate p-value 8	8.6057E-8

Statistically significant evidence of a decreasing

trend at the specified level of significance.

LnROS_VC-mw-25

General Statistics

General Statistics	
Number or Reported Events Not Used	0
Number of Generated Events	17
Number Values Reported (n)	17
Minimum	0.1
Maximum	1.8
Mean	0.928
Geometric Mean	0.785
Median	0.99
Standard Deviation	0.436
Coefficient of Variation	0.47

Mann-Kendall Test

-50
0.021
24.19
-2.025
0.0214

General Statistics

Number or Reported Events Not Used	0
Number of Generated Events	14
Number Values Reported (n)	14
Minimum	0.0216
Maximum	0.17
Mean	0.0712
Geometric Mean	0.0569
Median	0.0617
Standard Deviation	0.0489
Coefficient of Variation	0.686

Mann-Kendall Test

M-K Test Value (S)	-51
Tabulated p-value	0.002
Standard Deviation of S	18.27
Standardized Value of S	-2.737
Approximate p-value	0.0031

Statistically significant evidence of a decreasing

trend at the specified level of significance.

LnROS_VC-mw-27

General Statistics

Number or Reported Events Not Used	0
Number of Generated Events	13
Number Values Reported (n)	13
Minimum	0.0267
Maximum	0.36
Mean	0.162
Geometric Mean	0.134
Median	0.14
Standard Deviation	0.096
Coefficient of Variation	0.594

Mann-Kendall Test

M-K Test Value (S)	-42
Tabulated p-value	0.005
Standard Deviation of S	16.39
Standardized Value of S	-2.501
Approximate p-value	0.00619

General Statistics

Number or Reported Events Not Used	0
Number of Generated Events	6
Number Values Reported (n)	6
Minimum	0.0281
Maximum	0.124
Mean	0.0685
Geometric Mean	0.0561
Median	0.0633
Standard Deviation	0.0438
Coefficient of Variation	0.639

Mann-Kendall Test

M-K Test Value (S)	11
Tabulated p-value	0.028
Standard Deviation of S	5.323
Standardized Value of S	1.879
Approximate p-value	0.0301

Statistically significant evidence of an increasing

trend at the specified level of significance.

LnROS_VC-mw-30

General Statistics

Number or Reported Events Not Used	0
Number of Generated Events	7
Number Values Reported (n)	7
Minimum	0.12
Maximum	2.2
Mean	0.508
Geometric Mean	0.28
Median	0.2
Standard Deviation	0.757
Coefficient of Variation	1.489

Mann-Kendall Test

M-K Test Value (S)	-3
Tabulated p-value	0.386
Standard Deviation of S	6.658
Standardized Value of S	-0.3
Approximate p-value	0.382

Insufficient evidence to identify a significant trend at the specified level of significance.

General Statistics

Number or Reported Events Not Used	0
Number of Generated Events	7
Number Values Reported (n)	7
Minimum	0.201
Maximum	9
Mean	3.46
Geometric Mean	1.689
Median	4.3
Standard Deviation	3.273
Coefficient of Variation	0.946

Mann-Kendall Test

M-K Test Value (S)	-13
Tabulated p-value	0.035
Standard Deviation of S	6.658
Standardized Value of S	-1.802
Approximate p-value	0.0358

Statistically significant evidence of a decreasing

trend at the specified level of significance.

LnROS_VC-mw-32

General Statistics

Number or Reported Events Not Used	0
Number of Generated Events	8
Number Values Reported (n)	8
Minimum	0.2
Maximum	0.472
Mean	0.303
Geometric Mean	0.291
Median	0.29
Standard Deviation	0.09
Coefficient of Variation	0.297

Mann-Kendall Test

M-K Test Value (S)	19
Tabulated p-value	0.016
Standard Deviation of S	8.021
Standardized Value of S	2.244
Approximate p-value	0.0124

General Statistics

Number or Reported Events Not Used	0
Number of Generated Events	7
Number Values Reported (n)	7
Minimum	0.0582
Maximum	1.1
Mean	0.411
Geometric Mean	0.251
Median	0.3
Standard Deviation	0.397
Coefficient of Variation	0.965

Mann-Kendall Test

M-K Test Value (S)	-9
Tabulated p-value	0.119
Standard Deviation of S	6.658
Standardized Value of S	-1.202
Approximate p-value	0.115

Insufficient evidence to identify a significant trend at the specified level of significance.

n	40
Confidence Coefficient	0.9500
Level of Significance	0.0500
Standard Deviation of S	85.7185
Standardized Value of S	-7.5830
M-K Test Value (S)	-651
Appx. Critical Value (0.05)	-1.6449
Approximate p-value	0.0000

OLS Regression Line (Blue)

OLS Regression Slope	-0.0005
OLS Regression Intercept	19,1883

n	42
Confidence Coefficient	0.9500
Level of Significance	0.0500
Standard Deviation of S	92.2207
Standardized Value of S	-6.4519
M-K Test Value (S)	-596
Appx. Critical Value (0.05)	-1.6449
Approximate p-value	0.0000

OLS Regression Line (Blue)

OLS Regression Slope	-0.0003
OLS Regression Intercept	11.2296

n	41
Confidence Coefficient	0.9500
Level of Significance	0.0500
Standard Deviation of S	88.9663
Standardized Value of S	-3.0124
M-K Test Value (S)	-269
Appx. Critical Value (0.05)	-1.6449
Approximate p-value	0.0013

OLS Regression Line (Blue)

OLS Regression Slope	-0.0001
OLS Regression Intercept	3.8659

38
0.9500
0.0500
79.5173
0.6791
55
1.6449
0.2485

OLS Regression Line (Blue)

OLS Regression Slope	0.0000
OLS Regression Intercept	0.1519

Insufficient statistical evidence of a significant trend at the specified level of significance.

n	17
Confidence Coefficient	0.9500
Level of Significance	0.0500
Standard Deviation of S	24.1937
Standardized Value of S	-2.0253
M-K Test Value (S)	-50
Tabulated p-value	0.0210
Approximate p-value	0.0214

OLS Regression Line (Blue)

OLS Regression Slope	-0.0001
OLS Regression Intercept	6.3326

n	14
Confidence Coefficient	0.9500
Level of Significance	0.0500
Standard Deviation of S	18.2665
Standardized Value of S	-2.6278
M-K Test Value (S)	-49
Tabulated p-value	0.0030
Approximate p-value	0.0043

OLS Regression Line (Blue)

OLS Regression Slope	0.0000
OLS Regression Intercept	0.8466

n	13
Confidence Coefficient	0.9500
Level of Significance	0.0500
Standard Deviation of S	16.3911
Standardized Value of S	-2.5014
M-K Test Value (S)	-42
Tabulated p-value	0.0050
Approximate p-value	0.0062

OLS Regression Line (Blue)

OLS Regression Slope	0.0000
OLS Regression Intercept	1.4168

n	6
Confidence Coefficient	0.9500
Level of Significance	0.0500
Standard Deviation of S	5.3229
Standardized Value of S	1.8787
M-K Test Value (S)	11
Tabulated p-value	0.0280
Approximate p-value	0.0301

OLS Regression Line (Blue)

OLS Regression Slope	0.0000
OLS Regression Intercept	-1.2358

n	7
Confidence Coefficient	0.9500
Level of Significance	0.0500
Standard Deviation of S	6.6583
Standardized Value of S	-0.3004
M-K Test Value (S)	-3
Tabulated p-value	0.3860
Approximate p-value	0.3819

OLS Regression Line (Blue)

OLS Regression Slope	-0.0003
OLS Regression Intercept	12.6284

Insufficient statistical evidence of a significant trend at the specified level of significance.

n	7
Confidence Coefficient	0.9500
Level of Significance	0.0500
Standard Deviation of S	6.6583
Standardized Value of S	-1.8023
M-K Test Value (S)	-13
Tabulated p-value	0.0350
Approximate p-value	0.0358

OLS Regression Line (Blue)

OLS Regression Slope	-0.0021
OLS Regression Intercept	91.4228

n	8
Confidence Coefficient	0.9500
Level of Significance	0.0500
Standard Deviation of S	8.0208
Standardized Value of S	2.2442
M-K Test Value (S)	19
Tabulated p-value	0.0160
Approximate p-value	0.0124

OLS Regression Line (Blue)

OLS Regression Slope	0.0000
OLS Regression Intercept	-1.3559

n	7
Confidence Coefficient	0.9500
Level of Significance	0.0500
Standard Deviation of S	6.6583
Standardized Value of S	-1.2015
M-K Test Value (S)	-9
Tabulated p-value	0.1190
Approximate p-value	0.1148

OLS Regression Line (Blue)

OLS Regression Slope	-0.0002
OLS Regression Intercept	8.3531

Insufficient statistical evidence of a significant trend at the specified level of significance.

D3

Groundwater Monitoring Well Data and Field Forms
GROUNDWATER SAMPLE COLLECTION FORM

Sampling Organization: Well ID: Date of Collection: Purge Data Purge Device Measurement Point (MP) Initial Depth of Water (Fee Pump Intake Depth: Begin Purge Time:	PMX 5/28/20 Bludder Puy TOC et From Top of Well \$06 9:19	Location (Site/F Pri M. Casing): <u>8.4</u>	acility Name) oject Number	Field Pe 	casing Type/D	M. B.M. 57 Diameter. feet below M	<u>dy ~ 7</u> ир)	[Amy	
Total Volume Purged:	<u>48 gal</u>	N A.100							
Purge Water Disposal Me Dept to Water (feet below MP) SOA 841 SIA 841 SIA 841 SIA 841 SIA 844 SIA 844	Pump Setting Punge Rat	Cum Val Purged 0.1 0.2 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	Temp (°C) 15.8 12.7 12.6 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.6 12.5 1	00 (ma/l) 4.22 2.44 7.65 2.36 2.18 1.55 1.55 1.55 1.52 1.52 1.0%	Specific Conductance (mg/cm) /272 /379 /359 /319 /359 /319 /302 /296 /312 /296 /312 /286 /286 /286	$\begin{array}{c} pH \\ (units) \\ \hline 6.95 \\ \hline 6.75 \\ \hline 6.72 \\ \hline 6.74 \\ \hline 6.74 \\ \hline 6.74 \\ \hline 6.73 \\ \hline 1 \\ 1 \\$	ORP (mv) 152.4 153.4 17.0 74.5 52.1 37.4 17.0 27.3 21.8 17.0 27.3 13.5 17.0 27.3 13.5 17.0	Turbidity (NTU) /7.28 /7.29 /7.28 /7.29 /7.29 /7.29 /7.29 /7.28 /7.29 /7	Comments
Sample ID' SAL-GL	1-MW4-052) Time Colle	ected:	9:25		Weather	: 56r	14 20th	clear shy.
Sample Description (Colo Sample Container Analys	r, Turbidity, Odor, C es	Other).	lear						·
Duplicate Sample Collect	ed Yes	X №	lf yes, ID(\$):						
Additional Information/C 959 9.44 904 8.42 904 8.42 914 8.42 914 8.48 919 8.48 914 9.48		× 3.10 × 3.36 × 3.6 × 4.0 × 45	126 127 117 117 117 127 128	1.57 1.50 1.50 1.50 1.85	1290 1285 1282 1281 0 1284	6.73 6.73 6.74 6.72 6.73	-36. -44 (-51.] -57. -60	3 930 5 9.45 8,78 7 9.65 .3 6,75	Changel Micro 12-1-6

929

e	So	uth	Park	Landfill
---	----	-----	------	----------

×.

Sampling O Well ID: Date of Coll	rganization: MU-D lection:	<u>PM</u> 5 17 20	لە	cation (Site,	/Facility Name Project Numb	Field Po el: <u>Sour</u> er: <u>51</u>	15000000000000000000000000000000000000	<u>M. Ba</u> 067	rdy≁	T. Panj	
Purge Data	-										
Purge Devi	ice	Penstalt	it phing	insing de	elicated in	the					
Measurem	ient Point (M	P)	* *	<u> </u>							
Initial Dep	th of Water (I	Feet From To	op of Well Cas	ing): <u>1</u> 3	11.	Well	Casing Type/	Diameter:	M	2/2"	
Pump Inta	ke Depth:	13:52				Scre	ened Interval	(feet below	√ MP)∙		
Begin Purg	ge Time:	13:52									
End Purge	Time:	14:36									
Totai Voiu	me Purged:	1.2	awl								
Purge Wat	ter Disposal N	lethod.	Dun								
	Dept to Water (feet below	Pump		Cum. Vol.	T (10)	P2 ((l)	Specific Conductance	pH (u=2ach	ORP	Furbidity	formania
1:Lh	13.11	VIA A	115 Mar	A7D	IUU	7/7	1112	663	1428	703	
14:01	1310	:+5 - 	<u> </u>	QUD	14.4	7.31	1432	6.68	27.5	54.80	7
14:06	13.10	<u></u>	~~~	O.Fo	14.4	1.73	1468	6.73	-427	23.02	
14:11	13.11			1.00	143	1.52	1482	6.75	·821	18.58	
14:16	13.11		~	1.20	14.2	149.	1487	<u>6.77</u>	-96.3	24.12	
14:21	13.11			1.50	<u>144</u>	1.45	1493	6.78	-105.6	17.70	
4:26	13.11	<u></u>	6	_180	14.3	1.43	1499	6.78	-110.3	16.58	
<u> 4:31</u>	13.11			1.95	14.4	1.43	1499	6.79	<u>-114.4</u>	13.70	
4:36	13.12			2.10	<u>44</u>	1.91	1504	6.79	-11+6	12.19	
14:41						-					
		_	Stebili	ation Criteria	3%	10%	3%	± 0.1	± 10 mv	10%	
Sampling [Data									,	
Sample ID	SPL	GLJ-MI	10-052	D Time Co	llected	1440		Weath	ier: <u>56</u>	nhy W/C	lear shies.
Sample D	escription (Co	lor, Turbidit	y, Odor, Othe	r):						<u></u>	
Sample Co	ontainer Anal	Àzez.									
		_									
Duplicate	Sample Colle	cted:	Yes X	No	If yes, ID(s):			_			
Additional	Information,	/Comments			·						
To produce of the second secon	he deal	, WSe- a Scalled tim	punisilli ve uniti	Land	attinched legins 5	b ited	n Robert	he des	Aman A Wald	and and	k sha ta L into well

GROUNDWATER SAMPLE COLLEC	TION	FORM
---------------------------	------	------

.

Sampling Organization Well ID: <u>MW-</u> Date of Collection: Purge Data Purge Device Measurement Point (M initial Depth of Water	: <u>P</u> M 12 5/26/1 DED10 (Feet From Top	Loc 20 CATED X of Well Casin	BLAD	Project Num DE L 90	Field ne): ber: 	Personnel: Scirch Pa 3-1550 ell Casing Type/	<u>M.K.</u> <u>c.k.</u> <u>D- 06</u>	2 / Та 7 РИС/2			
Pump Intake Depth-	13:31				\$0	reened Interval	(feet belo	w MP):		- 10.9 -	
End Purze Time.	14:06										
Total Volume Purged	1.50										
Purge Water Disposal	Method:	Dam.									
Dept to Water (feet below	Puanp		Cum. Vol.	i)		Specific Conductance	pH	ORP	Turbidity		
13:31 5.94	6/6	160n/n	n 0.06	13.7	8.00	416.7	6.82	2599	40.01		
13-36 5.92		4	0.10	BO	3,95	431.0	6.59	264.0	30.23		
13:41 5.92		135mblan	0.30	13.0	237	4389	<u>6.50</u>	<u>1695</u>	21.05		,
13:46 5.93		DOD MAN -	0.70	12.1	206	440.6	6.48	274.1	12,24	Kundom Spile in program	e.
13:51 542	5/+ -	110	0.90	12.4	<u>1,90</u> 1 ai	<u>436.6</u> 446-2	648	145.+	13.88		
19-00 5.72			1.17	12.7	150	440.7	<u>୦.୨୮</u> ଜଣ	1760	10.57	,	
14:06 592			150	13.2	L87_	441.3	6.60	2757	9.72		
<u> 4: 1</u>		<u> </u>				 ب	-	_	-	·	
14:16 -	<u> </u>		-	<u></u>	.					 ,	
0,3	Khunge/Fill Tim	e Stabiliza	tion Criteria	3%	10%	3%	±0.1	± 10 mv	10%		
Sampling Data											
Sample ID: SPL Sample Description (Co Sample Container Ana	-GU-MW plor, Turbidity, G lyses:	12-052(Odor, Other)) Time Coll :	ected UN	14:06 h No	odor.	Weath	^{ner.} Ø	refcas†	·	
Duplicate Sample Colle	ected: 🔲 Y	'es 🕅	la	(f yes, ID(s):	·						
Additional Information	/Comments										
End of Samp Total Away	He time: WAh Som	14.27 Niny: 1	.Z. gull	UNG`							

-

		Dm	-					M Ra	du + "	TRom	
Sampling Or	ganization: Ani /_ 14	<u> 7/414</u>					ersonnei:		J	<u></u>	/
Well ID: _	/IW-M	126/20	Lđe	ation (Site/	Facility Nam	e): <u></u> <u></u>	1650 - ()	61			
Date of Colle	ection:				roject Numb	en: <u>00</u>					
Purge Data											
Purge Devic	e	1 lediante	y MARYA	<u> </u>							
Measureme	ent Point (M	1P) <u>IC</u>	<u> </u>		70				Our 14		· · · · · · · · · · · · · · · · · · ·
Initial Depti	n of Water (Feet From To	p of Well Casi	ng): <u> </u>	-54 _	Wel	Casing Type/	Diameter.	rvc <u>f.L</u>	172-	79 2
Pump Intak	e 9 epth:	16.07				Scre	ened Interval	(feet below	w MP):	16.7	<u> </u>
BeglinPurge	e Time.	15:0+									
End Purge 1	lime:	16:10		1_	11.0	<u>h x-</u>	ما م				
Total Volun	ne Purged:	<u>_1.66 g</u>		5.D. gal	MAN CO	<u>ollecting</u> Sw	nAles				
Purge Wate	r Disposai I	Method:	Urwm								
	Dept to Water	_					Specific	2 4	CPP	Turhidity	
Time	(feet below MP)	Pump Setting	Purge Rate	Cum, Vol Purged	Temp (°C)	DO (mg/L)	(mg/sm)	units)	(mv)	(NTU)	Comments
151	2.70	6/6	145mm	0.1	15.2	3.00	611	6.8Z	81.0	6.59	7/ 59/20
1516	1,90		10 million	0.3	<u>MO</u>	1.44	<u>507</u>	6.42	<u>54.L</u> (11)	<u> 0.00</u> 12 57	TIZZOOT'
1620	1-01		NO.	<u>ሆ.5</u> ሐፈ	<u>M.X</u> 110	1.04	57%	6.81	160	1462	
1521	1.50	<u> </u>	·	10	42	197	573	6.79	15.6	10.66	
1536	1.79	N)	~~~~~	15	M.L	1,46	SIL	6.78	7.1	28.92	
1541	268	~	~~	150	14.7	1.44	521	6.79	<u>~l.2</u>	<u>3896 </u>	
1546	2.60	~	<u> </u>	184	<u> 49</u>	<u>lun</u>	520	<u>6.79</u>	-7.7	<u>3610</u>	
1551	1.58	<u> </u>	<u> </u>	1.70	6.4	194	521	6.49	-144	46.41	
1556	1.59	<u></u>		1.80	15.6	1,49	515	6.19	-189	<u>50.0C</u>	
See Delui			Stabiliz	ation Criteria	3%	10%	3%	±0.1	± 10 mv	10%	
Sampling D	ata										
Sample ID.	SPL	-GW-ML	114-057.(Time Col	lected.	1626		Weath	ner. 🕅	reconstr	
Sample De	scription (C	olor, Turbidity	/, Odor, Other): <u>C</u> e	M						
Sample Co	ntainer Ana	yses:	1								
			·; /								
Duplicate S	Sample Coll	ected:]Yes 🖄	No	If yes, (D(s)			-			<u> </u>
Additional	Information	n/Comments						<u> </u>		<u> </u>	-
1601	2.59	~	<u> </u>	1.45	<u> 5.4</u>	<u><u><u> </u></u></u>	<u>513</u>	6.80	-23.1	55.7	<u>4</u>
	170		<u> </u>	1.40	16.1	1,44	57 <u>X</u> 576	6.79	-11.0 .70 U	1 12 24	1 Dathly died at U Purcing was los in
1606			۲	1.70	10.6	100	000		101.1	10.01	1600
1606 1611	2.41	~	14	2.10	14 .1	1.4%	512	6.44	- 52.0	M.W)	1004 1 lb x Caus
1611 1616 1616	2.91	"	 2¥€	2.10	<u>14.1</u> 14.6	1.4%	572- 570	<u>6.77</u>	-52.0 -37.3	<u>14.80</u> 26.73	burns inflow and

Endof, Sumle time: 16:44

4

Sampling Or	rganization:	PMY	(Field P	ersonnel:	M. Bac	hy.T.	Parry	
Well ID:	MW-14	б	100	ation (Site/	Facility Nam	ie): <u></u>	th Park	·			
Date of Coll	ection:	5/27/20)	Р	roject Numb	ver: <u>553</u>	<u>- 1550-0</u>	67			
Purge Data											
Purge Devi	се	Bladd	er Anno.								
Measurem	ent Point (M	P) <u>10</u>									
Initial Dep	th of Water (Feet From To	op of Well Casi	ng): <u>15</u>	.39	We	I Casing Type/	Diameter:	P	<u>K/2'</u>	
Pump Inta	ke Depth:	1539				Scre	ened Interval	(feet below	w MP).		
Begin Pure	ge Time:	1018									
End Purge	Time:	NOS									
Total Volu	me Purged:										
Purge Wal	ter Disposal I	Vethod:	Orum								
	Dept to						Specific		_		
7	(feet below	Pump	During Halls	Cum. Vol.	Terms (°C)	D0 (me/l.)	Conductance (mg/cm)	pH (unita)	ORP (my)	Turbidity (NTV)	Comments
1012	15 30	1/2	15 MAL	() int	ku	all	L27	797	1189	1917	
1014	12.19	\$4	250 M/	0.05	lau	868	581	761	1411	1758	
1020	16.34	5/1	19/2miliain	0.20	16V	371	1774	650	106-0	7153	
In24		<u>_011</u>		075	163	160	1367	659	65	11.00	
1000			<u> </u>	1 10	15.5	149	1302	661	-717	8.80	
		* `		1 40	160	Tuz	1762	6.62	375	537	
4010 L	1241			1.60	11.0	144	1751	6.63	.482	534	
1055	<u>13.51</u> <u>14.19</u>	~~~	~	1.60	16.1	100	17.47	6.64	-545	440	Una her fell da
102	16.20			110		142	1700	6.67	49.6	514	Well.
105	16.19			260	150	142	1732	6.64	-614	576	
1100	100.01			6.00		<u>p v)</u>	-075		0211	<u></u>	
Comeline	<u> </u>	history (1.11	THE SEEDING	ation Criteria		~	3%	± 0,1	± 10 mv	10%	
Sampling									(
Sample IC	27 <u>-(</u>	MM-MW	1-057.0	Time Co	ilected: _	11-10		Weat	her. Ju	my 21	L CLEAR Stries.
Sample D	escription (C	olor, Turbidi	ty, Odor, Othe	1). <u>(le</u> l	<u> </u>						
Sample C	ont <mark>einer</mark> Ana	lyses.									
		_									
Duplicate	Sample Coll	ected:	Yes X	No	If yes, iD(s)						
Additiona	Information	/Comments									
,		.,									

	GROUNDW	ATER SAMPLE	COLLECTION FO	ORM		
Sampling Organization:	2MX		Field Personnel:	M.Berch	1. Then	4
WellID: MW-24	Location (Site/	Facility Name):	South Phik)
Date of Collection: 5/22	120 P	roject Number:	<u>553-1550</u>	<u>)-06'7</u>		
Purge Data						
Purge Device	holder Ama.					
Measurement Point (MP)	TOC.					
Initial Depth of Water (Feet Fro	m Top of Well Casing):	8.80	Well Casing Type/	Diameter.	NC /2"	
Pump Intake Depth			Screened Interval	(feet below Mf	»)·	
Begin Purge Time	06		-			
End Purge Time:	55		-			
Total Volume Purged: <u> </u>	10 gul-		-			
Purge Water Disposal Method:	Ulwy					
Dept to Water (feet below Pumy Time MD) Settin	p Cum, Vel.	Temp (°C) - DO	Specific Conductance (mg/L) (mg/cm)	pH O: (uaits) (n	8P Turbidity avi (NTU)	Comments
1115 883 5/7	209/ 1/14/ 07	13.7 7.3	32 1020	665 2	72 7611	
11:70 \$ 95	<u> </u>	13.7 2.0	1021	6.74 .41	5 2385	
11:25 8.85	<u> </u>	13.7 1.9	13 1017	675 -5	81 15.89	
11:30 8.84 _ 1	<u> </u>	138 13	12 1015	674 -6	17 17.28	
11:35 5.84		13.7 1.0	<u>94 1069</u>	6.74 -1	6.4 12.35	
11-40 5 84	· · · · · · · · · · · · · · · · · · ·	13.6 15	$\frac{100}{24}$	6.74 -1	<u>1.1 1(.80</u>	
11.40 5 84 N	175	135 4	54 1005	673 .8	U.O <u>1.70</u> U.I 730	
11.55 8.83	1.90	134 1	51 1002	6.73 -8	66 7.32	
12:00						
	stabilization Criteria	3%	10% 1%	±01 ±1	0 mv 10%	
Sampling Data						
Sample ID: SPL-GIU-	MLJ24-0520 Time Coll	lected: <u>12</u>	:05	Weather:	Shnny h	nih clear sky.
Sample Description (Color, Tur	biolity, Udor, Uther)				,	
Sample Container Analyses:						
Duplicate Sample Collected:		If yes, ID(s):				
Additional Information/Comm	enti				·	
		·				

5	ampling O	ganization:	P/	W_{-}			Field P	ersonnel:	<u> M. B.</u>	(<u>ady +</u>	T. h.n.	ý
١	Vell ID:	/MW-2	5	Lo	cation (Site,	Facility Name	e): <u>506</u>	th Vall	2 017	_		
_	Date of Coll	ection:	5/27/2	0	P	roject Numb	er:	53.1750	1-001			
	Purge Data											
	Purge Devi	ce	Black	he himp	4							
	Measurem	ent Point (N	IP)	Toc_							1. 10	
	Initial Dept	th of Wa ter ((Feet From To	op of Weli Ca	sing). <u>13.</u>	<u>44</u>	Wel	Casing Type/	Diameter	ρ	<u>IC / 2</u>	·
	Pump Inta	ke Depth:					Scre	ened Interval	(feet below	v MP):	·	
	Begin Purg	e Time.	(1:47									
	End Purge	Time	13.05									
	Total Volu	me Purged:	3.8	gal								
	Purge Wat	er Disposal i	Method:	<u> </u>	um							
-		Dept to			·			Socafic				-
	7	(feat below	Pump	Durine Bate	Cure, Vol. Personal	Temo (*C)	00 (me/l)	Conductance (mg/cm)	ptt (units)	ORP	Turbidity (NTU)	Comments
	1144	13.74	5/5	15 m/m	, 00	15.0	7.29	364.8	7.35	135.0	4.34	
	1162	1374	Viendenie.	Verible	O.Lan	117.8	GIF	360.3	6.81	158.2	3.84	Pump fulled.
•	41458	13.72	710	210-11	0.5 ml	16.4	281	842	6.49	115.4	61.03	1
	1103	13.76	*	~~	0.9 gM	14.8	1.89	888	653	54.9	1750	
	1204	13.74	11	<u></u>	1.1 gul	14.8_	[.71	900	6.57	<u>13,4</u>	<u>9.68</u>	_
1	1213	13.75	<u>~</u>		1.3 gal	14.3	1.57	918	6.58	-15.5	9.87	
2	+214	13.75			2.0 gnl	<u> U.(</u>	141	941	6.60	-319	<u>8.42</u>	
)	+173	13.75			<u>15 jul</u>	<u>141</u>	1.45	<u>955</u>	6.63	- <u>44.2</u>	10.73	
	1214 6	3.15	<u>_5/7</u>		Mgar_	<u>14.1</u>	1.42	<u>963</u>	0.65	- <u>55.8</u>	11.40	<u> </u>
)	1655	13:15			<u>5.6 gal</u>	<u>44</u>	<u>141</u>	<u> </u>	0.05	-61.0	11.08	
_		0	thege /Fill	Stabil	Ization Criteria	3%	10%	3%	10,1	± 10 mv	10%	
_	Sampling D	Data										
	Sample ID	SPL	-GILI-ML	15-051	D Time Co	llected:	_1310		Weath	rer. <u>S</u>	hnny La	The Clear Sh.
	Sample D	escription (C	olor, Turbidit	<mark>ty, Odor</mark> , Othi	en <u>ligt</u>	ht orang	<u>ne colo</u>	<u></u>				
	Sample Co	ontainer Ana	lyses:			<u>`</u>	/					
			-									
	Durchasta	Sample Coll	ected: 👌	₹Yes [If yes, ID(s):	SPL	- GW- M	W60 -	0520)	
	Duplicate				•			,		_		
-	Additional	Information	n/Comments									
-	Additional	Information	n/Comments		3.7 gal	143	1.43	965	6.62	-65.3	17.25	

_

Sampling ()	rganization:	Pa	rametri	x		Field Pe	ersonnel:	МРВ			
Mail ID:	ihaw-	2.6	Le	cation (Site/	Facility Nam	e):					
wento:	<u><u> </u></u>	5/28/2	<u>()</u>	, . P	rolect Numb	er: 553	-1550-0	367			
Date of Col		<u>/////////////////////////////////////</u>	<u>~</u>								
Purge Data								_		,	
Purge Dev	ice	Blac	Moler Fur	vp							
Measuren	nent Point (M	P)	100		52		T	Buemotori		- IN	PVC
Initial Dep	th of Water (Feet From 1	op of Well Ca	sing)' <u> </u>		Wei	Casing Type/	Diameter:		17.39	-27.39
Pump Inta	ike Depth:					Scre	ened Interval	(teet below	w ivirj:		
Begin Pur	ge Time:	9:5	6	1 1 Ker							
End Purge	e Time:	10:5		100							
Total Volu	ume Purged	1.5	0 []	.80							
Purge Wa	ter Disposal N	Vethod:	Drum	\							
	Dept Io Water (feet below	Pump	Duran Bata	Cum. Vol.	Toma (PC)	DO (ma/t)	Specific Conductance (mg/cm)	pNi (units)	ORP (mv)	Turbidity (NTU)	Comments
	MP) ars	DTFIL	Purge Rate	~076	139	740	176,3	6.55	134.5	22.52	Soul /min wZ Ain.
1001	953	DIFII	150m1/m	~0.5	135	2.52	189.7	6.33	113,3	9.21	
1000	953	- <u></u>	1) 	0.65	13.5	1.91	189.7	6.31	80.7	969	
1018	953	0	10	080	13.6	1.79	188.0	6.30	SII	9.17	
1021	952	1 a		0.90	13.5	1.66	187.0	6,30	40.5	8.39	
1026	9.53	(C	E)	100	13.5	1.72	186,3	6.24	30,9	9,10	<u> </u>
1031	9.53	+		1.10	13.5	1.61	184.3	6.28	25.1	9.23	
1036	9.53	11		1.20	13.4	1.59	185.9	6.27	17.8	8.21	
1041	953	<u></u>		1.30	13,4	1,5"	184.4	6.27	16.6	7.93	
1046				1.40	134	157	[83]	6.40	190	1.97	
			Stabl	ization Criteria	3%	10%	3%	± 0.1	± 10 mv	10%	
Sampling	Data										
Sample II	D. <u>SPL-(</u>	iW-Mu	V26-052	<u>ව</u> Time Co	llected.	10 5	1	Weat	her:	Sun	ny
Sample D	escription (Co	olor, Turbid	ity, Odor, Oth	er): <u> </u>	lor						
Sample C	Container Ana	lyses:	2 1 1	THE :	Diss A.	s, Tol- Fr	e, Mn				
		-	6 40ml	Vor4: 1	1C, 1,2	XE					
Duskast		-	k		If yes (D(a)						
		ected:		7140	ir yes, iD(s):						
Additiona	ii information	/Comment	S								
			· ·· ·								

Sout	h P ar	k L ar	ndfill								
			GR	OUNDW	ATER SAM	PLE COLI	LECTION FO	ORM			
Sampling (Well ID:	Drganization: <u>MW-2</u>	<u>PN</u> 7 5/5/12	L	cation (Site,	/Facility Name	Field P): ::	versonnel: 2014 16/1 53-1550	<u>M.Ba</u> <u>k</u> -067	ily +7.	hary	
		21000	<u> </u>								
Purge Data		01	ilec 0				<u> </u>				
Purge Dev	vice		ader Pin	1. 1.							
Measurer	ment Point (M	ዖ)		6	20		_ ·		1	K las	
Initial Dej	pth of Water (Feet From T	op of Well Cas	sing): <u>7</u>	<u>, </u>	Wel	Il Casing Type/	Diameter;		VC/L	
Pump Int	ake Depth:	- 151)			Scre	ened interval	(feet belo	w MP):		
Begin Pur	rge Time:	+:10									
End Purge	e Time.	1:4	<u> </u>								
Total Vol	ume Purged:	1.4	<u> </u>								
Purge Wa	ater Disposal M	Method:	<u> </u>	۱.							
	Dept to Water (feet below	Pump	b b	Cum. Vol	w	50 (m=#)	Specific Conductance	pH (update)	ORP	Turbidity	Community
7:16	<u>(2)</u>	5/a	Kon Hinn	nurgeo 1	170	861	7524	696	193.6	2779	Continents
1.12	8.31	<u>,,</u> -51a	<u> </u>	01	17.1	345	195.6	6.52	1051	2881	
1:16	831			0.5	119	1.83	298.3	6.46	106.0	27.00	
7:30	6.30			0.9	119	1.73	297.1	647	2027	23.22	
7:35	8.29	~		105	12.0_	1.68	998.9	6.49	196.2	22.78	
7:40			<u> </u>	-		-					
7:45					~	-	-		-		
1.20				-							
1.55		•					یم 		تد		
6:00											
			Stabil	cation Criteria	3%	10%	3%	± 0.1	± 10 mv	10%	
Sampling	Data					-					1
Sample	D: <u>SPL-</u>	GW-M	WZ7.057	D Time Co	llected:	-1:40		Weat	her: <u>Su</u>	ng vith cl	ar sky
Sample I	Description (Co	olor, Turbidi	ty, Odor, Othe	r)	Clear.		_			<u> </u>	
Sample (Container Ana	lyses:									
		_									
		_									
Duplicat	e Sample Colle	ected:	X Yes □	No	If yes, ID(s):	SPL-	GW-MW	161 -	0520		
Additiona	al Information	/Comments	3								
_											
		_								· . .	

mpling (Organization:	_P/nx				Field Po	ersonnel:	M.B.	âdy +	T. Pam	y
ell ID;	MU-29	1	Lo	cation (Site,	/Facility Name):	_Soh	th 1/2		5		
ite of Co	liection:	5/27/20	2	F	roject Number:	<u> 553-</u>	<u>1650-00</u>	7			
irge Dat	a						-				
urge De	vice	Henskh	ic Pimp.								
/leasure	ment Point (MP	» TC	3								
utual De	nth of Water (F	eet From To	o of Well Ca	sing).	ЦO	Well	Casing Type/	Diameter.	P	K/2	b i
umn Int	take Depthy	000011011110	ip of from ou.	····B)		Scre	ened Interval	(feet belo	w MP);	20-30	1
omp m.	rao Timo:	8:26									
egin Pu	rge nine.	9.22			·						
na Purg	je i me:	1,•51									
otal Vol	iume Purged:		Dr								
urge W	ater Disposal M	lethod:	VIMM								
	Water (foot below	Dalization		fum Vel			Specific Conductance	рN	ORP	Turbidity	
Time	(rear below MP)	Setting	Purge Rate	Purged	Temp (*C)	00 (mg/L)	(mg/cm)	(units)	(mv)	(NTU)	Comments
42	8.63	13	-160 m/hin	0.05	12.4 1	18	_1072	6.59	81.1	55.25	
[]	8.79	li 📃	11	0.15	12.5	.77	1068	6.60	289	<u>38.20</u> _	
52	9.05	<u>n</u>	<u> </u>	0.40	17.5	.65	1062	6.59	-45	36.5(
)1	<u>9.14</u>		14	0.10	12.4	.61	1061	6.59	- <u>51.+</u>	<u>55.55</u>	
7	<u>9.50</u>			1.00	1/19	<u>.51</u> rz		<u>6.51</u>	-403	22.46	
<u>4</u> 1	<u>9.35</u> aus	<u> </u>		15	<u>163</u> 1	<u>רע</u>	1007	650	175	<u>22.90</u>	
1	940			175	-12.4	53	1005	659	-63.0	35.51	
<u>1</u>	9.40			7.10	174 1	57	1019	6.61	-69.7	36.61	
1	9.45	- 11	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2.40	12.4	1.51	1023	6.62	745	42.65	
			Stabil	ization Criteria	3%	10%		±0,1	± 10 my	10%	
mpling	Data										
amolo	ID: 501	CLL MI	12a AC2.		llacted	qun		Wast			char chi-
anthia i		CALM - //IL				10			.iei. <u>⊿i</u>	MARY W/	<u>CHA MIO</u>
ampie i	Description (Lo	ior, Turbialt	y, Odor, Othe	er): <u> </u>	lear						
ample	Container Analy	/ses:						<u> </u>			
		_								, <u> </u>	
		_									
uplicat	te Sample Collec	cted;	Yes 🕅	No	If yes, ID(s):						
Idition	al Information/	Comments									
	tubing Was	. Icoheed	and targ	estech the	center/mid	dle of	the sci	en	·····		
The			J								
The	J	•		A	14	<u> </u>	1	4			
The. 132	9,45	N	<u> </u>	1.50	12.4	.50	1076	6.63	-79.4	49.20	

Groundwater Sample Collection Form

		PM	\mathcal{N}			Neid P	ersonnel	MA	Sandy	17.0	am
mpling Orga	nization:	<u>ייןי</u> הי	<u>\n</u>		actility Nam		outh Phi	k.	J		
ell ID:	<u> </u>	5/18/1	Loi	ation (site) - Pri	olect Numb	er: 55	3-1550	-067			
ate of Collec		1000	<u></u>								
urge Data		- flaish	IL Run								
Purge Device	2		<u>nik unm</u>	P	<u> </u>						
Measuremen	nt Point (M	P) <u>(</u>		1	0.32		1 Cosing Type/I	Diameter:	PV	17.	
Initial Depth	of Water (Feet From To	op of Well Cas	(ng)i <u>·</u>		Vver	ened Interval	(feet belov	v MP):	/	
Pump Intake	Depth:	1256						(100120101	,-		
Begin Purge	Time:	1126									
End Purge Ti	ma.	1 50)								
Total Volum	e Purged:	<u>)(7)(</u>	Mr. In	<u> </u>							
Purge Water	r Disposal I	viethod:									
	Water (feet below	Pump		Cum, Vol.			Specific Conductance	pH	CRP	Turbulity	Commenti
<u>11me</u>	MP)	Setting	Purge Rate	Purged	Temp ("C)	<u>L 22</u>	(mg/cm) 687	<u>(umits)</u>	113.0	19.61	
<u>1401</u> -		<13 < Va	Unwhen	07 and	155	218	697	6.19	173.6	55.00	
1400 - 1411 -	1040	- 13	190	()3a.)	152-	7.00	655	6.30	111.9	17.52	
1416	1036	~~~	145	0.4 9.1	15.6	207	630	6.30	1064	9752	There is in issue in
1421	10.36		<u>}</u>	05961	15.7	2.06	625	6.30	103.0	43.55	the OTH roze linely
1426	0.36	~	<u> </u>	O. Zanl,	163	2.12	617	<u>6.30</u>	102.6	20.40	stand up sectment a
1431 -	10.36	<u> </u>	<u> </u>	1091	<u> </u>	2.16	613	6.31	97.3	21.28	1416.
1936 -	10,36		<u> </u>	<u>1.5gel</u>	<u> </u>	<u> </u>	614	0.30		12.09	<u></u>
IUUA	 	-					-	-			
			Stabili	ration Enterla		10%	3%	+ 0.1	* 10 mv	10%	
Sampling Da	ita		518511		370			L VIL	1 10 111	2070	
Sample ID	<a< td=""><td>GIL-A</td><td>AN 130 - (Y</td><td>200 marcal</td><td>-</td><td>Huh</td><td></td><td>Monti</td><td></td><td>hinly A .m</td><td>11 charlostis</td></a<>	GIL-A	AN 130 - (Y	200 marcal	-	Huh		Monti		hinly A .m	11 charlostis
Sample ID,	orintion (C	alor Turbidli				1-1-11			161. <u>04</u>	ing with	~ Year Ducz.
Sample Cor	stainer Ana	weee	u, odor, odre								
Sample Col		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,									
		-									
Duplicate S	amole Coll	 Beted: □		No	If yoe ID(s)						
Additional is	aformation	/Comments		110	11 y 23, 12 (3)						
			kal it :	mill 1 Jak	rla and		ATY 1	Prelia-	della.	hi.	
INTE 1	<u>13 4 10</u>	· · · · · · · · · · · · · · · · · · ·	19 (Y) (<u></u>	UN UND	CIA PUMAR	<u>UIW</u>	TONAWUY	MUTICA	<u>"</u> "	

ampling Or		_									
Sampling Or		Dn	\mathbf{N}				_	MR	ali	Th	
amping Vi	ganization:	<u> </u>	<u> </u>			Fleid P	ersonnel:	<u>/1. U</u>	lang :	× / - V6	<u> </u>
Nell ID:	MW	<u>51</u> [. 190/1	Lo	cation (Site,	/Facility Name	ב): <u>20</u> 6	7.1560	M67			
Date of Colle	ection:	2/10/1	<u> </u>	P	roject Numb	<u>רכי</u> יויי	5-1750-	007			
Purge Data			<u> </u>			<u> </u>			_		
Purge Devic	e		1 Hmp.								<u> </u>
Measureme	ent Point (M	iP)	Toc."								29.1.4
initial Depti	h of Water (Feet From To	op of Well Cas	sing) [0	.85	Wel	I Casing Type/	Diameter	P.	<u>VC / 2</u>	
Pump Intak	e Depth:					Scre	ened Interval	(feet belo	w MP):		
Begin Purge	e Time:	12:45									
End Purge	Time,										
Total Volur	ne Purged.		<u> </u>								
Purge Wate	er Disposal I	Method:	Unm	\·							
	Dept to						Specific				
Time	(feet below MP)	Pump Setting	Purse Rate	Cum. Vol Purzed	Temp (°C)	DO (mg/L)	Conductance (mg/cm)	pH (units)	ORP (my)	Turbidity (NTU)	Comments
2:50	10.85	4D/IF	200m]/min	05	16.1	1.72	339,4	652	145.7	18434	ORANG
2:55	1.05	11		0.5	16.3	169	340.2	6.56	99.7	75.54	
3:00	10 85	11	11	07	11.5	1.78	346.6	6.56	444	44 68	WQ Cleoning
13.05	10.85	<u></u>	160 myan	0,25	16.7	1.59	349,1	6.54	22.0	37.40	
13:10	10.85	<u></u>	11	100	16.8	1.59	3510	6.54	4.4	34,60	
1315	10.85		<u> </u>	1.20	10.5	1.60	350.8	. <u>0.55</u> 6 m/	- <u>7,5</u> 1/1	25.10	
SU .	<u>. IU. 劣っ</u> (6 余丘			140	16.5	150	<u>1610</u>	6050	714	20,76	
1320	10.85	<u> </u>	- 1	190	155	166	357	666	-185	7601	
1335	10.85	**	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	20	16.8	1.55	352.6	6.55	-325	26.95	
	_ <u>_</u>		Stabili	zation Criteria		10%	3%	±0.1	± 10 my	10%	
Sampling D	ata										
Samale ID	≤ 01	- Glula	M. 121-N	717 ma Ca	llector	HUE		\\/eat	har G	10141. 10	Il der de
Sample ID.	مالالد Corletion (Co		MN JI US			1,140				nny w	In your so
Sample Ce	stripcor Ass	lutori	.γ, 0001, 0the	<u>.</u>	COM	_					
sample co	incanter Ana	(yses,									
		_									
		_							·		
Duplicate 9	Sample Colle	ected:	Yes D	(No	If yes, ID(s):					<u> </u>	<u> </u>
Additional	Information	/Comments	0							_	
	STANTE	D CUM	12:29	STUC	K AFTE	n IL,	PULLED	pump,	P1560	Dagd	
	- H 1/ (JUN-KIOUG		MULL AT	17.47						
	714							-			

×

Sout	h P ar	k Lan	dfill								
		•	G	ROUNDW	ATER SAN			ORM			
Sampling ()	manization	. Dav	X			Field F	ersonnel:	MB	adur +	Them	ŀ
Well ID:	MU-	32	<u> </u>	ocation (Site	/Facility Nan	net: Son	the Duch		<u> </u>	J	
Date of Col	lection:	5/27/2	.0_	•••••	Project Numb	er: 533	- 1550-0	67.			
Purge Data											
Purge Dev	rice	Penistalth	c Phone	<u>l. </u>							
Measuren	nent Point (N	1P)()()						<u> </u>		
Initial Dep	th of Water	(Feet From To	op of Well C	asing):	10.81	We	ll Casing Type,	/Diameter:	W	10.	
Pump Inta	ike Depth:					Scr	eened Interval	(feet belo	w MP):		
Begin Pur	ge Time	1622	<u>}</u>								
End Purge	Time	17:16	<u>></u>								
Total Volu	me Purged:	3.2	gul_								
Purge Wa	ter Disposal	Method:	" DON	<u>^</u>							1
	Dept to Water						Specific				
Time	(feet below MP)	Pump Setting	Purge Rate	Cum, Vol. Purged	Temp (*C)	DO (mg/L)	Conductance (mg/cm)	Hو (trits)	ORP (mv)	Turbidity (NTU)	Comments
161.6	10.82	13 (april	1225	0.1	14.8	3.00	8H	6.79	133.5	351.12	· Thing Las too low
1631	0.82		N -	0.3	14.4	1.55	868	6.76	78.5	99.19.	this cyphias the
636	12.84	~	N	0.8	<u> 4.3</u>	1.61	886	6.80	<u>35.6</u>	45.10	Tubelity
1641	10.84			1.0	<u> 4.3</u>	146	901	<u>6.80</u>	-6.2	49.30	
1646	10.84	<u> </u>		12	14.3	192	910	6.81	-359	<u>46.7L</u>	
1651	10.84		*1	1.4	<u>14.3</u>	141	915	<u>6.8L</u>	-55.2	48.16	
110	10.84			1.8	<u> 4.3</u>	140	<u>917</u> <u>010</u>	6.84	-04.2	46.00	
1706	10.8M			10	<u> M.L</u> 12	1.34	<u>anc</u>	<u>0.0</u> L	<u>-165</u>	<u>40/11</u>	<u> </u>
111	10.37 In eu			711	14.6	1.00	011	697	- <u>-019</u>	40.70 U/ 19	
<u> T! </u>	10.07			<u> </u>	19.6	1-20	945	0.02	-01.1	-10. JL	
Sampling I	Data		2180		375	10%	376	10.1	1 10 mV	10%	
Sample (C	SPL	- GU - ML	 I	Time Co	llected	1720		Weat	ner 🖌	n. 21	cler sky
Sample D	escription (C	alar. Turbidity	v. Odor. Oth	er).	_				Citra Citra		
Sample C	ontainer Ana	livses:	,,,								
Sumple e											
										_	
Duplicate	Sample Coll	ected:]Yes [No	If yes, ID(s)				_		
Additiona	Information	n/Comments									
1716	10.84	<u> </u>	~	2.8	14.2	1.38	929	6.85	-93.	5 42	ls

S out	h P ar	k Lar	ndfill								
			GR	OUNDW	ATER SAM		ECTION FO	DRM		_	
Sampling C	Drganization: MW-3	3 <u>PM</u>	X	cation (Site	/Facility Nam	Fleid P	ersonnel: h Ph/h	/h. (Brady	+T.P.n	<u>y</u>
Date of Co	ilection:	5/27/	- הי		Project Numb	er. 553	- 1650-	067			
Purge Data		110 94	····		-			-			
Puerro Dov		Porch	52 Am								· · · · · · · · · · · · · · · · · · ·
Measurer	ment Point (N	/P)	TOC.								
Initial Der	oth of Water i	(Feet From T	op of Well Ca	sing) (94	Wel	Casing Type/	Diameter,	PU	C/2"	
Pump Int	ake Depth	22'	BTOC	<u> </u>		Scre	ened Interval	(feet belo	w MP):	_ /	
Begin Pur	rge Time:	15:06									
End Purge	e Time:	15:48									
Total Vol	ume Purged:										
Purge Wa	ater Disposal J	Method:	Dam	·	<u> </u>			_			
	Dept to Water (feet below	Pump		Cum. Vol.			Specific Conductance	pH	ORP	Tarbidity	
	11 mp	Setting	Parge Rate	Purged DAC		DO (mg/L) 7 17	(mg/cm) \L	(unlts)	(mv) 111 U	<u>(NTU)</u>	Comments
1513	11.00	2/9 (****	<u> </u>	0.15	<u>ю.</u> Кч	146	64	6.78	-28	36.40	10 M
1518	10.74	<u> </u>	11	0.40	15.3	1.40	1511	6.79	-52,6	73.97	(to a descent
1513	10,96	()	11	0.75	15.3	1.38	1507	6.79	-72,8	106.74	
1528	10,98	17		1.20	15.3	1.36	1504	6,79	-85:3	134.72	Thru cell
_ 1533_	10.99			1.40	15.3	1.35	1500	6.79	-943	2707	14,63
1534	0.98		14	1.60	<u>15,3</u> (5.4	1170		6/18	-100	80,01 .	
154%	10.97	**		210	15.4	1.32	1484	6.19	-1027	- <u>12/10</u> . 28.04	
1553	10/11		~	-	-		-	-	-		
			Stabl	ization Criteria	3%	10%	3%	± 0.1	± 10 mv	10%	
Sampling	Data										
Sample I	D. SPL-	- Gabl- N	1433-0	57 ()Time Co	ollected:	(550		Weat	her: 🖌	May 2/1	lar skies
Sample 1	Description (C	olor, Turbidi	ty, Odor, Othe	er); /	light or	anne ci	alor.	-		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
Sample (Container Ana	liyses,			<i>a</i>					_	
		_									
		-								-	
Duplicate	e Sample Coli	ected: [Yes 🕅	No	lf yes, ID(s):	<u></u>					
Additiona	al Information	n/Comments	<i>(</i>								
					-						
<u> </u>									·		

ł

~

Water Level Measurement Field Report

DATE 51610		JOB NO. 553-1550-067	
PROJECT: South Park Landfil		CLIENT: Seattle Public Utilities	
LOCATION: Seattle, WA			
WEATHER	TEMP	° at	AM
Oltrast with light rain		° at	PM
PRESENT AT SITE			
M. Blady + T. Parn	J		
	J		

THE FOLLOWING WAS NOTED:

WELL NUMBER	Time	Measured Depth to Water (ft from TOC or SG level)	Total Measured Well Depth (ft from TOC)	Measuring Point	Total Well Depth (ft bgs)	Screen Interval (ft bgs)	SU (ft)
MW-12	9:08	5.90	12.24 Gime Jeat	у тос	15.3	10-15	1.52
MW-14	9:20	254	16.63 "	TOC	21.8	11.5-21.5	0.8
- MW-29	9:44 10:32	6.61-7.41	29.54	тос	30	20-30	-0.29
MW-18	10:50	15.41	33.70 ""	тос	40.4	30-40	1.25
MW-25	11:35	13.75	25.30	тос	27	22-27	2.79
MW-32	10:59	10.65	23.52	тос	24	19-24	-0.44
MW-33	11:08	10.98	25.16	тос	25	20-25	-0.47
MW-26	12:18	9.54	20.09 " "	тос	25	15-25	2.39
MW-27	12:62	8.24	447 11 .0	тос	20	10-20	2.04
MW-10	11:27	13.11	38.64"	тос	45	35-45	1.65
MW-24	12:25	8.79	39.80 - ~	тос	45.3	35-45	1.56
MW-08	11:55	<i>5.40</i>	39.32.	TOC	45.6	35.5 – 45.5	1.88
MW-30	12:33	10.32	12.90	тос	13	8-13	-0.53
MW-31	12:38	10.87	18.24 "	тос	23	35.5-45.5	-0.46
SG-1S			NA	SG	NA	NA	NA
SG-2N			NA	SG	NA	NA	NA

Comments: Tide oppears to be low. All finsh manded well depths are accurate. All other Wells are assumed to be mensured to the top of the bladder. TOC-top of PVC SG-staff gauge casing

Project No.: 55	53-1550-067				Date:	08/26	110	Well ID:	MW-08		
Sampling Organ	ization: Parame	trix		Sample	rs: <u>7</u>	· Parry +1	A. 40	15			
Purge Data	Screened Interva	I (ft bgs): <u>5</u> .	0-20.0	······································		Well C	asing/Diam	neter: <u>P\</u>	/C/2 in	an a galan a galan a a a a a a a a a a a a a a a a a a	
Initial Depth of Purge Device Begin Purge	Water (Ft below dedicated bla	TOC): dder pump	9.09		Pui	rge Water Dispo Pump Intake De	psal Metho pth: <u>10.</u>	d: <u>Bla</u> 5ft 120	11 pm	comp U	nm
$\begin{array}{c} \text{Dep} \\ \text{Wa} \\ \text{(fr} \\ \text{be} \\ \hline 1097 \\ 9.052 \\ 1057 \\ 9.057 \\ 9.0 \\ 1057 \\ 9.0 \\ 1057 \\ 9.0 \\ 1057 \\ 9.0 \\ 107 \\ 9.1 \\ 1127 \\ 9.1 \\ 1127 \\ 9.1 \\ 1127 \\ 9.1 \\ 1127 \\ 9.1 \\ 1127 \\ 9.1 \\ 1127 \\ 9.1 \\ 1127 \\ 9.1 \\ 1127 \\ 9.1 \\ 1127 \\ 9.1 \\ 1127 \\ 9.1 \\ 1127 \\ 9.1 \\ 1127 \\ 9.1 \\ 1127 \\ 9.1 \\ 1127 \\ 9.1 \\ 1127 \\ 9.1 \\ 1127 \\ 9.1 \\ 1207 \\ 1207 \\ 9.1 \\ 1207 \\ 120$	$\begin{array}{c c} & & & & \\ & & & \\ \text{bow} & & & \\ \text{Pump} \\ \text{Setting} \\ \hline 9 & & & \\ 9 & & & \\ 9 & & & \\ 9 & & & \\ 9 & & & \\ 9 & & & \\ 9 & & \\ 9 & & & \\ 9 & & & \\ 9 & & & \\ 9 & & \\ 9 & & \\ 9 & & & \\ 9 &$	Purge Rate 360 2555 	Cum. Vol. Purged 0.33 0.75 2.3 2.75 2.0 2.3 2.75 3.20 3.60 4.45 5.60 5.60 5.60 5.90 5.60 5.90 5.60 5.90 5.60 5.90 5.60 5.90 5.80 5.90 5.80 5.90 5.80 5.90 5.80 5.90 5.80 5.80 5.90 5.80 5.90 5.80 5.90 5.80 5.90 5.80 5.90 5.80 5.90 5.80 5.90 5.80 5.90 5.80 5.90 5.80 5.90 5.80 5.90 5.80 5.90 5.80 5.90 5.80 5.90 5.80 5.9	Temp (°C) 14.6 13.9 14.0 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5	DO (mg/L) 2.23 1.36 0.54 0.26 0.26 0.26 0.26 3.75 2.18 1.14 0.93 0.84 0.77 0.77	Specific Conductance (mg/cm) //43 //33 //080 /.080 /.104 /.123 /.12 /.12 /.12 /.12 /.12 /.12 /.09 /.095 /.095 /.095 /.095 /.095	pH (units) 6.78 6.57 6.53 6.53 6.55 6.55 6.55 6.55 6.55 6.53 6.53	ORP (mv) -58.7 -61.1 -64.3 -65.3 -67.0 -69.5 -71.7 -69.8 -71.7 -71.8 -71.7 -69.8 -72.0 -72.0 -72.0 -74.3 -74.3 -74.3 -74.3	Turbidity (NTU) 274.20 161.68 18.9 63.11 63.11 63.12 63.12 66.41 221.02 16.35 10.72 10.47 9.44 9.44 8.85	Comme Delk O 7 7 - <i>Lonflic</i> <i>Shirogh</i> <i>Ane to</i> <i>Duild</i> by	nts Ange (old B B
Sampling Data		-									
Sample ID: 5	2-GW-ML	108-08	D Time Col	lected:	1215		Weath	ner: Sun	1142/	clen :	sky.
Sample Descript	tion (Color, Turbic	lity, Odor, Oth	ner):	er (1						
Sample Analyse	s:		6								
Duplicate Samp	le Collected:	Yes A	No	If yes, ID:							
MS/MSD Collect	ted:]Yes	No								
Additional Inform	mation/Comment	s					·				

			(GROUND	WATER S	SAMPLE C	OLLECTION F	ORM				
South	Park	Land	Fill				da					
Project No.:	553-155	0-067				Date:	8/27	7.7	Well ID:	MW-10		
Sampling Org	anization:	Parametri	x		Sample	ers: _/./	Vary +1.	-1. Ya	in			
Purge Data	Screer	ned Interval (ft bgs): <u>35</u>	.0-44.0			Well Ca	ising/Diam	neter: PV	/C/2 in		
Initial Depth	of Water	(Ft below TC	DC):	13.76		Pur	ge Water Dispo	sal Metho	d: 🚺	hm		
Purge Devic	e dedi	icated blade	der pump	<u>bahun);</u>	sanpled	With 1	Pump Intake Dep	oth: <u>30</u> .	0 ft		·	
Begin Purge Time:		1052	7 1	penstrif:	C phmp	und delli	Collar Share	1	1150	7.		
Time 7059 709 709 709 709 709 709 709 70	Depth to Water (feet below MP) (0.76 	Pump Setting V3 	Purge Rate 300 	Cum. Vol. Purged 0.05 0.70 0.85 1.25 1.75 2.05 2.75 2.50 2.75 3.75 2.50 3.75 4.00 5.00	Temp (°C) 14.7 14.7 14.7 14.7 14.7 14.6 14.6 14.6 14.6 14.6	DO (mg/L) 7.73 0.33 0.32 0.28 0.26 0.07 0.07 0.07 0.07 0.03 0.03 0.03 0.03	Specific Conductance (mg/cm) 7.245 7.397 7.400 7.408 7.408 7.427 7.443 7.453 7.453 7.458 7.457 7.474 7.474 7.477 7.477 7.477	pH (units) 6.47 6.47 6.49 6.51 6.53 6.55 6.55 6.55 6.55 6.60 6.61	ORP (mv) 7 24.7 - 76.9 - 80.6 - 89.4 - 95.9 - 109.9 - 109.9	Turbidity (NTU) 74.97 75.10 75.10 82.87 96.81 23.15 25.22 5.13.82 7.5.12 7.9.73 10.79 9.61 9.99 9.99 9.99		ents
<i><u> </u>[<u>7</u>]</i>			Stabilizati	on Criteria				+01	+ 10 my			•
Sampling Data	a		Stasmidth		570	10/0	570	÷ 0.1	101114	10/0		
Sample ID:	SPL-	GW-M	WID-08	Time Co	llected:	12	\mathcal{O}	Weath	ner: 🚺	nm 2.1	Clean	- 31
Sample Desc	ription (Co	olor, Turbidity	, Odor, Othe	er): (Jen (V	_		<u> </u>		Y
Sample Analy	yses:										N	
Duplicate Sar	mple Colle	cted:	Yes Z	No	If yes, ID:							
MS/MSD Coll	lected:		Yes 🔀	No								
Additional Inf	ormation	/Comments		······································	· · · · · · · · · · · · · · · · · · ·							
		2 2										

10.11

. 1

SOUTA Project No.	1 Park .: 553-158	Lanc 50-067	ITIII			Date:	8/25/20	7	Well ID:	MW-12	
Sampling O	rganization	: Parame	trix		Samplei	rs:	Pary 1	1 Vn	(k	<u></u>	
Purge Data	a Scree	ened Interva	l (ft bgs): _1	0.0-15.0			Well Ca	asing/Diam	neter: P	/C/2 in	
Initial Dep Purge Dev Begin Purg Time:	oth of Wate vice <u>dec</u> ge	r (Ft below licated bla \$:3	TOC): dder pump 3	6.28	-	Pur I	rge Water Dispo Pump Intake Dep End Purge Time:	sal Metho oth: <u>12</u> . 	d: <u>[</u> 5 ft 26	Kum	
Time 3 36 8 36 8 46 8 56 9 01 9 66 9 21 9 26 9 26 9 27 1 000 1 0000 1 0000 1 0000 1 0000 1 0000 1 0000 1 0000 1 00000 1 00000 1 000000000000000000000000000000000000	$\begin{array}{c} \text{Water} \\ \text{(feet} \\ \text{below} \\ \text{MP} \\ \hline 6.31 \\ \hline 6.31 \\ \hline 6.31 \\ \hline 6.31 \\ \hline 6.32 \\ \hline 50 \\ \hline \end{array}$	Pump Setting 5/7 4/7 11 11 11 11 11 11 11 11 11 1	Purge Rate 440 275 255 275 275 	Cum. Vol. Purged 1294 1.5 1.75 2.5 2.75 3.6 4.1 4.25 5.25 920	Temp (°C) /4.0 /4.3 /4.3 /4.3 /4.3 /4.3 /4.3 /4.3 /4.4 /4.4	DO (mg/L) U/78 2.24 1.34 0.90 0.68 0.50 0.40 0.37 0.23 0.23 0.24 0.22	Specific Conductance (mg/cm) 0.475 0.476 0.479 0.480 0.487 0.482 0.482 0.482 0.482 0.482 0.485 0.485 0.485 0.485	pH (units) 7.53 6.54 6.37 6.37 6.37 6.30 6.30 6.30 6.30 6.30 6.30 6.30 6.30	ORP (mv) 75.6 63.7 53.6 52.7 50.8 49.9 48.2 47.0 48.2 47.0 48.2 47.0 45.1	Turbidity (NTU) 74.92 48.92 36.65 28.38 28.78 28.78 28.52 30.20 38.5 41.61 40.02	
	n.		Stabilizat	tion Criteria	3%	10%	3%	± 0.1	± 10 mv	10%	
Sampling Da	ata < DI	611	۸۸۱/۱٦ ۴	d 1n			n /		٢.		datch
Sample ID: Sample Des	scription (C	olor, Turbid	ity, Odor, Otl	ner):	lear	096	L •	Weath	er: M	nmy 2/	LIPINY SEX
Sample Ana	alyses: 				If yes ID:						
MS/MSD Co	ollected:		Yes		n yes, iD:						
Additional I	nformation	/Comment	s s								······································

South	Park	Land	lfill				8/15	2		NA10/ 1A	
Sampling Or	ganization	Paramet	rix		Sample	Date: 7	CICS RMA +	AVO		101 0 - 14	
Purge Data	Scree	ned Interva	(ft bgs). 1	1.5-21.5		/	Well Ca	sing/Diam	P\	/C/2 in	
Initial Dept	h of Water	· (Ft below 1	OC):	3.07	T Koong an	Pu	rge Water Dispo	sal Metho	d: 1	Man	
Purge Devi	_{ce} ded	icated blac	dder pump				Pump Intake Dep	oth: 16.	5 ft		
Begin Purge Time:	e	1005	-				End Purge Time:	[128		
	Depth to Water (feet below MP) 3.17 3.14	Pump Setting 4/5 3/5	Purge Rate 550 225	Cum. Vol. <u>Purged</u> 0.5	Temp (°C) 15.7 17.0	DO (mg/L) [.[0 0.42	Specific Conductance (mg/cm) <u>0.593</u> 0.566	pH (units) 6.84 6.68	ORP (mv) - 585 - 114.2	Turbidity (NTU) 44.72 54.29	Comments
1016 1023 1028 1038 1036 1043	3.16 3.15 3.15 3.15 3.14 3.14 3.13		235 130 	$ \begin{array}{r} 1.0 \\ \hline \hline \hline \hline \hline \hline \hline $	17.3 17.5 17.5 17.4 17.4 17.4 17.4	0.24 0.12 0.08 0.06 0.06 0.05 0.05	0.552 0.550 0.550 0.550 0.551 0.551 0.551 0.552	6.61 6.59 6.59 6.59 6.59 6.60 <u>6.60</u> <u>6.60</u> <u>6.60</u> <u>6.60</u> <u>6.67</u> <u>6.59</u>	-131.6 -145.1 -161.8 -155.4 -155.9 -157.9 -157.9	<u>96.06</u> <u>57.46</u> <u>69.80</u> <u>80.50</u> <u>89.24</u>	<u>}</u>
1053 1058 1103 1103 1103 1113 1116 11123	3.13 3.13 3.15 3.15 3.15 3.15 3.15 3.15	11 20		1.75 3.00 3.25 3.5 3.75 3.75 40 4.75 4.50	17.5 17.6 17.4 17.4 17.4 17.4 17.5 17.4 17.5 17.4 17.2	0.04 0.04 0.15 0.08 0.06 0.05 0.05 0.05	0.551 0.451 0.553 0.553 0.551 0.551 0.551 0.550	659 659 656 656 655 655 655 656	-157.4 -157.4 -156.1 -132.2 -139.4 -142.0 -143.3 -143.2 -143.1	100.45 <u>4.95</u> <u>5.50</u> <u>18.00</u> <u>32.75</u> <u>62.13</u> <u>62.99</u> <u>67.82</u>	Englied Cashing for the billing Stabilitation
1133 1138 1143 1143 1148 1153 1158 1158 1103		<u></u>									
			Stabiliza	tion Criteria	3%	10%	3%	± 0.1	± 10 mv	10%	
Sampling Da		·				11.	12		1.		ill de set
Sample ID:)<u>"_</u>		14-072	Time Col	lected:	<u> </u>	27	Weath	er: Ja	nny W	Mh (1Chr Sky
Sample App		olor, Turbia	ity, Odor, Ot	ner):	Jen .					9	
Duplicate Sa	mple Colle	ected · Γ		No	If ves ID.						
MS/MSD Co	llected:] Yes	No	yes, 10.						
Additional In	formation	/Comments	5		· , <u>-</u>						2
						P.					

ï

			G	ROUNDV	VATER SA	AMPLE C	OLLECTION F	ORM			
South P Project No.: 5	Park 53-1550	Land ⁻⁰⁶⁷	fill			Date:	8/25/2C		Well ID:	MW-18	.*
Sampling Orgar	nization:	Parametr	ix		Sampler	s: <u> </u>	km +1	7. Vo	IR.		
Purge Data	Screen	ed Interval	(ft bgs):	·			Well Ca	sing/Diam	eter: P\	/C/2 in	n an
Initial Depth o	of Water (Ft below T	DC): -30.6	-40.0 /6	5.00	Pu	rge Water Dispos	al Method	:	Umm	ex 19 benerik menerikan serie
Purge Device	dedic	cated blad	der pump				Pump Intake Dep	oth: 20.0) ft		
Begin Purge Time:		1348	-				End Purge Time:	14	154		
Dey W (1 <u>Time</u> <u>1354</u>	pth to /ater feet elow MP)	Pump Setting 5/4	Purge Rate	Cum. Vol. Purged	Temp (°C) 	DO (mg/L)	Specific Conductance (mg/cm)	pH (units) 6.75	ORP (mv) -26.5	Turbidity (NTU)	Comments
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6.00 6.00 6.00 6.00 6.00 6.00 6.00	1 1 1 1 1 1 1 1 1 1 1	200 	12 0.75 1.0 1.25 1.50 1.80 2.30 2.45	$ \begin{array}{c} 16.0 \\ 16.5 \\ 16.5 \\ 16.3 \\ 16.0 \\ 16.7 \\ 1$	1.23 0.34 0.21 0.14 0.12 0.09 0.09 0.07	10.1.212 1.112 1.096 1.092 1.092 1.092 1.082 1.072 1.072 1.072	6.97 6.53 6.53 6.53 6.54 6.54 6.54 6.54	-54. -63. -65. -65. -65. -65. -65. -65. -65. -65	105.48 5 6993 1 53.19 5 0.38 53.95 66.7/ 79.81	
<u>1439</u> <u>1449</u> <u>1449</u> <u>1459</u> <u>1509</u> <u>1509</u> <u>1509</u> <u>1519</u> <u>1519</u> <u>1519</u> <u>1519</u> <u>1519</u> <u>1529</u> <u>1529</u> <u>1534</u> <u>1526</u>	6.00 6.00 6.00 6.00 5600	nked af		2.60 3.00 3.25 3.50		0.07 0.07 0.07	1.076 1.076 1.070 1.070	645 645 645 645 645 645 645 645 645 645	- 768 -773 -773 -782 -782 	<u>14497</u> 11 142,37 148,21 221:04 	3.21
1544 1549.			Stabilizatio	on Criteria	3%	10%	3%	± 0.1	± 10 mv	10%	
Sampling Data											
Sample ID: Sample Descrip Sample Analys Duplicate Sam	ption (Co ses:	Ior, Turbidi	Y es	Time Col er): (lected:	150	00	Weath	er: S<u>ul</u>	ny 211	h Clear Saj.
MS/MSD Colle	ected:		Yes D	No							
Additional Info	rmation/	Comments	7	`		,	,			1	
Oily	Shee	en An	sunt or	n the	Shfu	ce of	the p	naged	W	ter.	

10.0

South E	Dark I ar	GR GR	OUNDWA	TER SAN	APLE CO	LLECTION F	ORM				
Project No : 5	53-1550-067	iuiiii -		Da	to:	3/26/20	, '	Mell ID:	MW-24		
Sampling Orga	nization: Parar	netrix		Samplers:	T	hans + A	YOU				
Durra Data	Scrooned Into	aval (ft has), 35.0-	45.0			Well Coo		PV	C/2 in		
Initial Depth c	of Water (Ft belo	ow TOC): -35.0-2	5.0 9	53	Purg	e Water Disposa	al Method		hm	n an	
Purge Device	dedicated	bladder pump			Pi	mp Intake Dept	th: 40.0) ft	••••		
Begin Purge Time:	l	128			En	d Purge Time:		154	7		
$\begin{array}{c} De \\ W \\ (1) \\ I \\ 1437 \\ 1437 \\ 1447$	pth to /ater feet elow Pum MP) Settin 56 $7//// 56 7////57 7/////57 7/////57 7/////57 7//////57 7/////////57$	D Purge Rate 2 195 	Cum. Vol. Purged $O./$	$ \begin{array}{c} Temp \\ (°C) \\ 4.0 \\ 4.0 \\ $	DO (mg/L) 2.87 2.43 7.29 7.29 7.10 1.88 7.00 1.88 7.00 1.88 7.00 1.97 1.97 1.97 1.92 1.99 1.89 1.92 1.89	Specific Conductance (mg/cm) 0.823 0.951 0.965 0.965 0.962 0.950 0.950 0.950 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944	pH (units) 6.62 6.63 6.62 6.62 6.62 6.62 6.52 6.52 6.52 6.52	ORP (mv) <u>34.4</u> -53.3 -56.6 -57.6 -57.6 -57.2 -56.4 -56.8 -56.3	Turbidity (NTU) 107.00 60.03 99.40 39.40 29.70 29.70 29.70 29.70 29.70 29.70 29.70 29.70 29.70 29.70 29.70 7.25 7.25 7.16	Comment	S
1607 1617 1627 Sample Descri Sample Analys Duplicate Sam MS/MSD Colle Additional Info	SPL-GNJ-A ption (Color, Tur ses: ple Collected: cted: rmation/Comm	Stabilization Stabilization W24-0420 bidity, Odor, Other): Ves Yes NN Ves NN	Criteria Time Collect	3% eed:	10%	3%	± 0.1	= ± 10 mv	10%	Clear S	
		<u> </u>	×								

GROUNDWATER SAMPLE COLLECTION FORM

Desired N	553-15	50-067				Data	8/72			M\\\/_25	
Project No	<u> </u>	Dereme	4				Dia	11		10100-23	
Sampling	Organization	e Parame		and a stranger of the state of the	Samplei	rs:	V2mj ~	/ / . ¥		a canada a catalon native ta catalon	
Purge Dat	ta Scree	ened Interva	al (ft bgs):	20.0-27.0		*	Well Ca	ising/Diam	neter: <u>P\</u>	/C/2 in	
Initial De	pth of Wate	r (Ft below [·]	TOC):	M.5	0	Pur	ge Water Dispo	sal Metho	d:	Inm	
Purge De	evice dec	licated bla	dder pum	D		P	ump Intake Dep	oth: 24.	5 ft		
Begin Pu	rge	127	10						125	50	
Time:		120	0			E	nd Purge Time:		122	<u> </u>	
	Depth to										
	(feet			Cum.			Specific				
	below	Pump	Purge	Vol.	Temp	DO	Conductance	pН	ORP	Turbidity	
Time	MP)	Setting	Rate	Purged	(°C)	(mg/L)	(mg/cm)	(units)	(mv)	(NTU)	Comments
1222	14.51	5/7	100	0.05	15.5	6.69	0.866	7,15	<u>Z3,1</u>	9.50	
1227	h	4	9	0.10	16.6	61.70	0,916	6.54	-232	5.62	
1272	1.	<i>t.</i>		0.25	168	1.43	0.925	6.52	-28.8	4.38	
1237	11	11	11	0.35	17.1	1.15	0-939	6.52	-41.0	5.15	
1242	11	• •	1.	0.45	17.3	0.87	0.945	6.51	-492	3.54	
1247	**	٢,	1.	0.5	17.4	0.82	0.948	6.51	-52.2	4.14	
12 52	11	1.	1.	0.55	17.3	0.57	0.953	6.51	-55.8	3.39	
1257	lı	11	1.	0.65	17.5	0.42	0.960	6.50	- <u>58.7</u>	3.87	
1302	1.	• •	1,	0.75	17.3	0.37	0.965	6.50	- <u>61.6</u>	3.75	
1307	61	"	11	0.85	17.1	0.36	0.967	6.50	- <u>62.8</u>	4.00	
1312	1	17	11	0.95	17.0	0-34	0.969	6.49	- 63.6	3.95	
1317	1.	11	"	1.05	17.0	0.34	0.970	6.49	- 64.3	4.11	
1322	*			sampled	@ 192'	۲					
1227											
1332											
1332											
1342				L.							
1347									14		
1352											
1357											
1402								_		A	
1407											
1412											
1417							28 S				
			Stabiliz	ation Criteria	3%	10%	3%	± 0.1	± 10 mv	10%	
Sampling	Data										
Sample I	D: SPI-(all-ML	175-08	7) Time Co	llected:	1322	7	Weat	ner: N	nur U	clar star
Samela	accrimtion /	olor Turki	lity Odar ()thar), 12. #	KOL IN.		15-1-1				
Sample D	nalyses:	.0101, 101010	aity, Odor, C	other): box	er isuro	e worter	light brow	n, san	ple no	we clea	r, no orlor
Duplicate	- Sample Coll	ected:	Yes	No	If yes, ID:						
MS/MSD	Collected:	Ì	Yes	No							
Additional	Information	n/Comment	ts .	·····			· · · · ·				
											1

Parametrix

۲

3 0011	I P ark	Lanu	1111				alm la				
Project No.	.: 553-155	0-067				Date:	8/26/20	<u> </u>	Well ID:	MW-26	
Sampling C	Organization:	Paramet	rix		Sample	rs: _/.//	Lmj - [-]	<u>. Yu/k</u>	1		
Purge Data	a Scree	ned Interval	(ft bgs): <u>15</u>	5.0-25.0	nin I million ang mang katalan sakabana		Well Ca	sing/Diam	eter: <u>P</u> V	/C/2 in	ο, πο τ. Ψ
Initial Dep	oth of Water	(Ft below T	OC):	10.78		Pur	ge Water Dispos	al Methoo	1: /	Drym	
Purge Dev	vice ded	icated blac	lder pump			P	ump Intake Dep	th: 20.0) ft		
Begin Pur	ge	71	5					SI.	/		
Time:		712)			E	nd Purge Time:	0/(>		
Time 716 721 721 726 731 736	Water (feet below MP) 10.2% 10.2% 10.2% 10.2%	Pump Setting 80 ⁻¹¹ 175 6/9	Purge Rate 5/9 6/9 /75	Cum. Vol. <u>Purged</u> <u>0.055</u> <u>0.755</u> <u>0.905</u> <u>1.055</u>	Temp (°C) 13.0 12.9 13.2 13.5 13.4	DO (mg/L) 534 2,96 2.17 1,34 095	Specific Conductance (mg/cm) 0.199 0.222 0.200 0.200 0.200 0.199	pH (units) 7.53 6.2(6.10 6.07 6.06	ORP (mv) 29.2 28.5 28.5 26.5 253	Turbidity (NTU) <u>47,65</u> <u>47,04</u> <u>30,27</u> <u>27,87</u> <u>74,38</u>	Comments
741 746	10.28			1.20 1.30	13.5	0.71	0198	<u>6.06</u> 6.06	24.4 24.0	21.89 [8.80	
751	10.28.	••	1.	1.50	13.6	$\overline{0.49}$	0.199	6,06	23.6	16.57	
450	10.20		<u>``</u>	1.65	13.6	0.40	$\frac{0.19+}{0.06}$	<u>0.06</u>	13.5	15.42 -	
<u> </u>	10.00	<u> </u>		1.00	136	0.32	0.MO 197	6.06	277	<u>- 1194</u> -	2
811	10.28	- >	····	2.10	136	0.32	0.197	6.06	726	10.75	
816	10.28		•••	2.25	13.6	0.30	0.197	6.00	27.4	10.97	
821	Samp	led at	8:25								
826											
831											
836											
541	v <u></u>						·				
<u> </u>						: 2 <u></u>					
551				-				<u></u>			·····
901								<i>x</i>			
906				· · · · · · · · · · · · · · · · · · ·				<u> </u>	·	<u> </u>	
911											
			Stabilizat	ion Criteria	3%	10%	3%	± 0.1	± 10 mv	10%	
Sampling D	Data										
Sample ID	: SPL-G	W-MW2	6-0820	Time Col	lected:	8:25	5	Weath	er: <u>51</u>	my 2/ (lew sky
Sample De	escription (C	olor, Turbidi	ty, Odor, Oth	ner):	Sear.					L. Contraction	
Sample Ar	nalyses:					сс. 					
Duplicate	Sample Colle	ected:] Yes 🎽	No No	If yes, ID:						
MS/MSD (Collected:] Yes	No							
Additional	Information	/Comments	; 								

Project No.	.: 553-158	50-067				Date:	8/26/2	0	Well ID:	MW-27	
Sampling C	Organization	: Parameti	rix		Sampler	s:	hm +1	7 <u>.</u> }	lo(k	an a sinte sa a sinte an	
Purge Data	a Scree	ened Interval	(ft bgs): <u>1(</u>	0.0-20.0			Well Ca	sing/Diam	eter: <u>PV</u>	/C/2 in	
Initial Dep	oth of Wate	r (Ft below T	OC):	9.0	4	Pur	ge Water Dispos	al Metho	d:(Vam	
Purge Dev	vice dec	licated blac	lder pump			F	ump Intake Dep	th: 15.	0 ft		12
Begin Pur	ge	11	α					12	7115-		
Time:			-M			E	nd Purge Time:		275		
	Depth to										
	Water (feet			Cum.			Specific				
	below	Pump	Purge	Vol.	Temp	DO	Conductance	pН	ORP	Turbidity	
Time	MP)	Setting	Rate	Purged	(°C)	(mg/L)	(mg/cm)	(units)	(mv)	(NTU)	Comments
1220	(1	5/9	100	0./	150	4.00	0.371	7.42	<u>-8.7</u>	105.79	1
1225	9.06	'n	100	0.25	16.6	2.03	0.384	6.47	-35.4	49.59	
1230	9.05	<u>ii</u>	11	0.3	16.6	1.54	0.398	6.42	- 44.1	31.32	
1235	(r	Ce	((015	16.3	0.97	0-409	6.42	-528	21.70	
1240	11	61	11	0.5	16.3	0.82	0:411	6.42	- 56.6	21.68	8
1245	10	1,	1-	0-6	16.2	0.61	0.414	6.43	-61.5	19.30	
1250	C e	11	1/	0.7	16.2	0.48	0.416	6.46	-64.5	18:05	
1255	~~~~	NL	~	6.8	16.2	().37	0.418	6.43	-67.2	17.55	
1300	~	17	× (0.9	16.2	0 30	0.419	6.43	-69.4	18.53	
1305	(7	10	11	1.0	16.1	0.28	0.420	6.44	-71.4	20.05	
1210	<i>ci</i>	('	95	1.2	16.1	0.24	0.42!	6.44	- 73.3	28,07	
1315	1.	~	• 1	1.35	16.1	0.77	0.421	644	- 74.3	33.75	`
1220	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-11	21	1.45	16.2	0.21	0.422	6.45	- 75 2	40.80	Charel Flow-cell
1225	11	~	12	1.5	15.5	1.00	0.425	6.36	-53.9	3.95	
1330	<u>.</u>		×1	1.6	16.1	0.20	0.424	6.33	-70.1	3.66	
1335		v	71	1.65	16.2	0.19	9.426	6.37	- 70.2	3,70	
1340	٠,	ر بر	11	1.75	16.3	0.17	0.428	6.40	- 736	3.85	
1345	11	**	N	1.85	(6.3	0.16	0.428	6.39	- 74.0	14.95	· .
1350			Sampl	ed M	W-27	2					-
1355			v								
1400											
1405											
1410									3		
1415											
			Stabilizat	tion Criteria	3%	10%	3%	± 0.1	± 10 mv	10%	
Sampling D	Data									`	
Sample ID	- SQ1 -	GLI MI	197-08	7) Time Co	llected:	1350		Weat	ner: S a	manit	h clerc star
Sample De	escription (C	Color, Turbidi	ity. Odor. Otl	ner): P		- 13664-	ue llouash o			ail show	Creat Strong
Sample Ar	nalyses:	,	,, <u> </u>	· _•0	Je werke	<u>- 11378</u>	90100-010		<u>, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	, on side	in in programation
Duplicate	– Sample Coll	lected:]Yes	No	If yes, ID:						
MS/MSD (Collected:	$\overline{\mathbf{h}}$	тарана Тура П								
Additional	Informatio	n/Comments	<u></u>			<u> </u>					·
Xe S	ample d	escriptin	٨.								· · · · · · · · · · · · · · · · · · ·

outh Dark Londfill -

Souti	n P ark		1111				dhri	20			
Project No	D.: 553-15	50-067				Date:	0/65/6	$\frac{2}{\sqrt{2}}$	Well ID:	MW-29	
Sampling	Organization	: Paramet	trix		Sample	rs:	. Vhry -	× A.	YOIK		
Purge Dat	ta Scree	ened Interva	l (ft bgs): 2	0.0-30.0			Well Ca	asing/Dian	neter: P	/C/2 in	
Initial De	pth of Wate	r (Ft below 1	TOC):	9.15		Pur	ge Water Dispo	sal Metho	d:	Ohn	
Purge De	evice per	istaltic pun	np			F	Pump Intake Dep	oth: 25	.0 ft		
Begin Pu	rge	12.	12						212		
Time:		16.	<u>اک</u>			E	End Purge Time:		S/()		
	Depth to Water			(9.1)							
	(feet			Cum.			Specific				
	below	Pump	Purge	Vol.	Temp	DO	Conductance	pН	ORP	Turbidity	_
1 Ime		Setting	Rate	Purged	(°C)	(mg/L)	(mg/cm)	(units)	(mv)		Comments
112	<u>-7.00</u>	-12	130	0.05		9.01	0.847	4,30	<u>-77,7</u>	<u> 21.88</u>	
100	7.97			0.4	14.1	0.59	0.845	663	-70.0	12.70	
1220	10.09	<u> </u>	250	0.6	15/1	0.19	0.70+	660	- 105/#	14.00	
12.50	10,13		260	<u>(.</u>]	13.8	0.04	0.714	6.60	- 1100	28.62	
1255	10.01	1.	77	1.8	13,8	4.94	0.917	6,61	-112.1	50.27	Slowed Flow
1240	10.14	114	240	1.8	(3.9	0.0 5	0.917	6.61	-113-4	66.00	2
1245	10.1+			2.0	14.0	0.02	0.40	()6(-119.6	44.02	
1250	10.19		250	2.25	13.9	0,01	0.402	6.62	- 115,2	86.30	
1155	10.16			1.6	13.1	0.00	0.017	6.63	-115.9	77.71	
1300	10.12			2.7	13.9	2.00	$\frac{0.881}{0.920}$	6.84	-117.0	115.6	
1205	10.17			5.25	13.0	0.00	0.880	0.64	-118 2	116.7	
1210				3.6	13.0	0.00	0.9.48	6.65	-119.7	119.9	(<u></u>
1215	_ sam	oled M	w-27	- <u></u>							· · · · · · · · · · · · · · · · · · ·
1910		<u> </u>									
1225		<u> </u>									
1220					-						
1255					<u></u>						
1240											
12015	l <u></u> l					<u></u>		<u> </u>			
1250				· · · · · · · · · · · · · · · · · · ·				<u> </u>			
1257						·					
								3		·	
	,			·							
_1910.											
			Stabilizat	tion Criteria	3%	10%	3%	± 0.1	± 10 mv	10%	
Sampling	Data	() / A.	100 00	A							
Sample ID): <u>JYL-C</u>	nW-/NL	129-08	20 Time Col	llected:	1315	2	_ Weat	her: Sh	ny Zi	<u>th clear sky</u>
Sample D	escription (C	olor, Turbid	ity, Odor, Otł	her):	Clear,	no odor		<u>i</u>			
Sample A	nalyses: _										
Duplicate	Sample Coll	ected:	Yes [] No	lf yes, ID:	MW	- 60				
MS/MSD	Collected:] Yes	No No							
Additional	Information	/Comment	s								
-1	the read	INAR	Lo M	lin							
	TI CM	MMM)	Joe IV							· · · · · · · · · · · · · · · · · · ·	

S outh	Park	Land	lfill			•	S /26 /91	γ			
Project No.:	553-1550)-067				Date:	<u>072072</u>	$\frac{1}{\sqrt{\alpha}}$	Well ID:	MW-30	
Sampling O	rganization:	Paramet			Sampler	s:	14 Mg 4 /1	<u>• 401</u>			
Purge Data	Screen	ed Interval	l (ft bgs):	8.0-13.0	a catalana a		Well Ca	sing/Diam	eter: <u>P\</u>	/C/2 in	
Initial Dept	th of Water ((Ft below T	FOC): _	10.98		Pui	rge Water Dispos	al Metho	d:	Chm	
Purge Devi	_{ice} peris	taltic pum	np	.=.		I	Pump Intake Dep	th: 10.	5 ft		
Begin Purg Time:	;e	8:2	<u>'4</u>				End Purge Time:	_8	56		
Time 876 831 836 846 846 846 846 846 901 906 901 906 910 916 916 921 916 921 916 921 916 921 926 941 936 941 936 941 936 941 936 941 936 941 936 941 936 941 946 941 936 941 946 941 946 946 941 946 946 941 946 941 946 941 946 941 946 946 941 946 946 941 946 956 941 946 941 946 956 941 946 956 941 946 956 941 946 956 941 946 946 956 941 946 946 956 941 946 956 941 946 956 941 946 956 941 946 956 941 946 956 941 946 956 956 941 946 956 956 966 966 971 976 976 976 976 976 976 976 976 976 976 976 976 976 976 976 976 976 976 976 976 976 976 976 976 976 977 976 976 977 976 976 977 976 977 976 977 976 977 976 977 976 977 976 977 976 977 976 977 977 976 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 977 97	Depth to Water (feet below MP) 1/.19 1/.28 1/.33	Pump Setting V3 	Purge Rate 740 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Cum. Vol. Purged 0.055 0.75 1.0 1.75 1.0 1.75 1.0 1.75 1.0 1.75 1.0 1.75 1.0 1.75 1.0	Temp (°C) 161 15.4 15.3 15.3 15.3	DO (mg/L) <u>7,47</u> 0.71 0.34 0.27 0.27	Specific Conductance (mg/cm) 0.6/9 0.6/6 0.626 0.630 0.637 0.637 0.637	рН (units) 7.31 6.24 6.21 6.21 6.21 6.21 6.21	ORP (mv) -3.3 -3.1 5.6 6.9 6.8 7.2 7.2	Turbidity (NTU) 18.12 5.49 3.52 3.16 3.09 3.34 	
Sampling Da			Stabiliz	ation Criteria	3%	10%	3%	± 0.1	± 10 mv	10%	
Sample ID:	SPI-Cal	1-An 1	30-14	(1) Time (-"	octod	q'r	2 \	W/ooth			cluich
Sample D:		J IIWs	ity Odor O	ther):	lon -		0	- vveatr	. <u>M</u>		n c rem Jey
Sample Des	alvses:		ity, 0001, 0	<u> </u>	agu .					<u> </u>	
Duplicate S	ample Colleg	cted:	lYes		If yes. ID:		Π.				
MS/MSD Co	ollected:	Г] Yes		ii yes, ib.		· · · · · · · · · · · · · · · · · · ·				
Additional lu	nformation/	Comment	_ · S		(8		2				
									14		
										¥	

South P	Park 53-1550	Land	fill			Data	AM6171	7,		M\A/ 31	
Sampling Organ	nization:	Paramet	rix		Sampler	Date:	Pin -	AV			
	<u> </u>		(n. l) 1	8.0-23.0					. PV	C/2 in	
Purge Data	Screen	ed Interval	(ft bgs):	1161	<u>ז</u>		Well Ca	sing/Diame	eter:		
Initial Depth o	f Water (dedic	(Ft below T cated blac	OC): der pump	11.00	/	Pur	ge Water Dispos Jump Intako Dop	al Method	:	JAM	
Begin Purge		(1.17			r	unip intake Dep	<u></u>	1/1 ~2~		
Time:			1.15		· · · · · ·	E	nd Purge Time:	/	005	>	
Time 915 1 920 1 920 1 920 1 920 1 925 1 950 1 955 1 955 1 955 1 1005 1015 1015 1025 1025 1025 1040 1045 1040 1055 1 1055 1 1055 1 1055 1 1055 1 1055 1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{c} \text{poth to} \\ \text{(ater)} \\ \text{feet} \\ \text{(ater)} \\ $	Pump Setting 4//8 	Purge Rate 8300 110 110 11 110 11 110 110	Cum. Vol. Purged 0.05 0.50 0.50 0.75 0.75 0.85 0.95 1.10 1.25 1.40 1.55	Temp (°C) 19.7 15.4 15.8 15.5 15.5 15.5 15.9 15.9 15.9 15.9 15.9	DO (mg/L) 3.07 7.27 0.81 0.57 0.40 0.40 0.40 0.24 0.23 0.22	Specific Conductance (mg/cm) 0.372 0.362 0.365 0.377 0.375 0.380 0.380 0.386 0.388 0.388	pH (units) 6.79 6.36 6.33 6.34 6.34 6.34 6.34 6.34 6.34	ORP (mv) -35.8 -41.3 -41.3 -41.3 -41.3 -41.3 -51.8 -51	Turbidity (NTU) 220. 47 101.74 90.91 65.34 57.08 57.08 57.08 40.30 40.30 40.78 42.15	Comments <u>VEIIUUSIA</u>
<u> </u>		ай 		<u> </u>							
			Stabiliza	tion Criteria		10%	3%	± 0.1	± 10 mv	10%	
Sampling Data						· · · · · · · · · · · · · · · · · · ·					
Sample ID:	Dil-Gl	N-MW3 Ior, Turbidi	1- 082(ity, Odor, Ot)Time Coll ther): Sig	lected: A yellu	10:1 Wish h	10 Inc	Weath	er: SU	ny With	Clear Say
Duplicate Sam	ple Collec	cted:] Yes	No No	If yes, ID:						
MS/MSD Colle	cted:	— Г	Yes		8.						
Additional Info	rmation/	Comments	5			¢				- *	

Project N	o.: <u>553-15</u>	50-067 Paramet	rix		Comple	Date:	8/CT/	$\frac{1}{1}$	Well ID:	MW-32	
Sampling	Organization			100 7	Sample	rs:	ning 4 /-	1. YV			
Purge Da	ta Scree	ened Interval	(ft bgs):	19.0-2	1.00	and the second	Well Ca	asing/Dian	neter: <u> </u>	vc/2 m	
Initial De	epth of Wate	r (Ft below T	OC): 19	.0-24.0 /	1.44	Pur	ge Water Dispo	sal Metho	d:	Unm	·
Purge D	evice <u>per</u>	istaltic pum	р				Pump Intake De	oth: 21	.5 ft		
Begin Pu	ırge	5'0	511					1	NOC		
Time:	-	0.)9.			E	End Purge Time:		000		
	Depth to Water										
	(feet			Cum.			Specific				
	below	Pump	Purge	Vol.	Temp	DO	Conductance	pН	ORP	Turbidity	
Time	MP)	Setting	Rate	Purged	(°C)	(mg/L)	(mg/cm)	(units)	(mv)	(NTU)	Comments
856	<u></u>	13	275	0.05	15.0	1.84	0.845	6.41	' <u>- 9./</u>	11.77	
901_	11.44	<u>\-</u>	``	0.75	14.4	0.30	0.851	6.48	<u>-52.3</u>	17.84	
906	,1		*1	0.5	14.4	0.21	0.859	6.52	-62.0	33.76	
9/1		• • •	- 11	0.05	14.4	0.15	0.872	6.57	-70.6	63.56	
916	1.	14		1.4	14.5	0.14	0.882	659	- 76.4	122.96	
<u>921</u>			· ·	1.8	14.4	0.16	0.887	6.61	-81.1	179.32	
926	<u> </u>	• (11	2.25 2.0	14.4	0.13	0.893	6.62	- 84.8	214.09	
931	11.45	11	1.	2.3502.2	K 14.4	0.13	0.897	6.63	- 87.6	276.79	
<u>936 </u>	11.95			2.82.5	14.4	0.17	0.898	6.64	-89.4	352.39	
<u>941</u>	41		~	2.75	14.11	0.04	0.905	6.64	-91.3	5.35	Shock meter tolan
946	h	4	'/	3.0	14.4	0.03	0.106	6.65	-92.8	8.50	<u> </u>
951	î,	11	"	3.3	14.4	0.03	0.908	6.65	- 94.0	15.16	
956	/1	11		3.5	14.4	0.03	0-910	6.69	<u>- 95-8</u>	22.95	
1001	í.	71	1.	3.75	14.4	0.02	0.909	6.66	- 95.5	33.52	
1006			<i>lı</i>	4.0	14.4	0.03	0.912	6.66	-96.4	47.08	
1011			Sampl	<u>ed Q 1</u>	010						
1016											
1021											
1076											
1031											
036											
041						<u> </u>					
1046											
1051	ž										
	1. A.		Stabilizat	ion Critoria	20/	1.0%	20/	+01	± 10 mu	1.09/	×
9		~	Stabilizat		370	10%	370	10.1	± 10 mv	10%	
Sampling	Data										
Sample II	D: SQ1-1	GLJ-ML/	121-081	() Time Col	lected:	1010		Weat	her: 🤇	SINNI 1	villa clericstur
										<u>unny 1</u>	STIVI CIENT Ong.
Sample E	vescription (C	.olor, Turbidi	ity, Udor, Oth	ner): <u> </u>	lar, 1	no odor					-1
Sample A	Analyses:									5	
Duplicate	e Sample Coll	ected: 🔀	Yes [No	If yes, ID:	M	N-61				
MS/MSD	Collected:] Yes	No							
Additiona	I Information	n/Comments	5	15							
	FIL	Contarthe	IS AN	- MI-	61						
											· · · · · · · · · · · · · · · · · · ·

South Park Landfill Project No.: 553-1550-067 Well ID: MW-33 Date: Sampling Organization: Parametrix Samplers: PVC/2 in 20.0-25.0 Screened Interval (ft bgs): Well Casing/Diameter: **Purge Data** Thin .5% Initial Depth of Water (Ft below TOC): Purge Water Disposal Method: peristaltic pump 22.5ft Pump Intake Depth: **Purge Device Begin Purge** 15:27 7 Time: End Purge Time: Depth to Water (feet Cum. Specific below Purge Vol. Temp DO Conductance ORP Turbidity Pump pH Purged (units) Time MP) Setting Rate (mg/L) (mv)(NTU) Comments °C) (mg/cm) VK 1530 ŢŪ 40 \mathcal{O} 90 91 62 05 81 6 1535 0.2 46 66 49.0 11.58 50.44 51 11 N 6 Ò 3 63 1540 11 11.58 ~ Ո 460 6 6 16 ζ bed Has Hu 50 •• 1545 11.5% 0.09 454 attem ሰ . 8 9**8 8** 60 •• 5 ĥ 6 16 " 444 350 • -102.0620.1 11 16 2 0.05 <u>6.65</u> C 1eu 1. 6.66 11 4 61 1.5 0.03 1.435 -104.1 680.20 5**5**5 16. 6.66 4 1.75 0.02 -105.7 í e 1 421 715.33 600 16.1 11 11 2. 2 0.02 6.66 -107.1 740.15 11 16.1 1.408 605 ĉ1 ē e 0.00 -107.8 .. 2.4 16.0 6.66 7 401 79.60 610 <u>Sampled</u> 33 MW 16 1615 1 1610 1615 163 35 640 64 600 <u>665</u> **6**(D) 705 110 · **Stabilization Criteria** 3% 10% 3% ± 0.1 ± 10 mv 10% **Sampling Data Z**1 0611) 1615 Shnn Time Collected: Weather: Sample ID: เพ Sample Description (Color, Turbidity, Odor, Other) bucket water brow clear dor slight no water samples yellow color Sample Analyses: X No Yes **Duplicate Sample Collected:** If yes, ID: Yes No. MS/MSD Collected: Additional Information/Comments

Water Level Measurement Field Report

	194/20	1	JOB NO. 553	-1550-067			e fo
PROJECT: S	South Park La	andfill	CLIENT: Sea	attle Public Utili	ties		
LOCATION:	Seattle, WA			10	*		1
WEATHER		TEMP	(52°at 9	-00	1	<u>M</u>
SLARY 2	ith clur SI	kics	7	7 <u>2</u> °at /L/	:45	F	PM
PRESENT A	T SITE	2mg + /1	York		×	с. 	
	DWING WAS	NOTED: Measured	Total		_	Screen	SII (ft)
		Depth to	Measured		ad s. Be	Interval	
		Water (ft from TOC	Well Depth (ft from	Measuring	Depth (ft	(ft bgs)	
	Time	or SG level)	TOC)	Point	bgs)	1.0	
MW-12	14:49	6.26	\sim	тос	15.3	10-15	1.52
MW-14	14:55	3.04	(тос	21.8	11.5-21.5	0.8
MW-29	15:17	9.11	(тос	30	20-30	-0.29
MW-18	14:59	15.98	-	тос	40.4	30-40	1.25
MW-25	14:44	14.44	· · · · ·	TOC	27	22-27	2.79
MW-32	15:33	11.40	(TOC	24	19-24	-0.44
MW-33	15:44	11.57	(тос	25	20-25	-0.47
MW-26	14:22.	10.16	6	тос	25	15-25	2.39
MW-27	13:56	8.98	~	тос	20	10-20	2.04
MW-10	14:42	13.70	~	тос	45	35-45	1.65
MW-24	13:37	9.47	\sim	тос	45.3	35-45	1.56
MW-08	13:54	899		тос	45.6	35.5 – 45.5	1.88
MW-30	15:09	10.95		TOC	13	8-13	-0.53
MW-31	14:09	11.57	-	тос	23	35.5-45.5	-0.46

Comments:

TOC – top of PVC	SG – staff gauge
casing	
SIGNED:	R

Project No.	.: 553-158	50-067				Date:	11/11/20		Well ID:	MW-08	
Sampling C	Organization	: Parameti	rix		Sample	rs:	Pkmy+A	. York	~		
Purge Data	a Scree	ned Interval	(ft bgs): <u>5.0</u>	0-20.0			Well Ca	sing/Diam	neter: P	/C/2 in	
Initial Dep	oth of Water	r (Ft below T	OC):	8.95		Pur	ge Water Dispos	al Metho	d:	Drum	
Purge Dev	vice ded	licated blad	ider pump			F	ump Intake Dep	oth: 10.	5ft		
Begin Puri Time:	ge	12:27	-			E	nd Purge Time:	132	0		
Time	Depth to Water (feet below	Pump	Purge	Cum. Vol.	Temp	DO (mg (l))	Specific Conductance	рН	ORP	Turbidity	
11:20	× 95	Jinh1	1Unm1/	Purged	(°C) 11 U	(mg/L)	(mg/cm)	(units)	(mv) 385		Comments
12:35	<u> </u>	10116	<u>L'UV</u> priv	0.5	12.4	0.07	1084	644	-13.6	24.3	
1240	**	~ `	~ ~	0.15	123	0.01	1068	6.45	-26.6	23.5	
1246	<u></u>	~~		1.0	12.3	0.01	1056	<u>647</u>	<u>- 415</u>	16.3	
160	~	<u> </u>		1.50	12.3	0.00	1051	6.98	-199.9	1.0	
1300	~~~			2.0	12.2	0.00	4950	<u>0.77</u> 6.10	-55,1	-647 -	
1305	~	<u>, ,</u>	~~~~	1.15	12.2	0.00	1044	6.50	-57,5	5.16	e
1310	14	11	• 1	2.75	12.3	1.00	1044	6.50	-59.3	437	
1315	<u></u>		<u> </u>	2.95	12.3	0.00	1044	6.50	-69.2	3.62	
1310		<u> </u>		3.25	12.3	000	1045	6.50	-60.6	3.52	
126											
15.00							· · · · · · · · · · · · · · · · · · ·				12 - D- D
<u></u>											
, F						<u></u>					
					·						
										<u>iz</u>	
			· · · · · · · · · · · · · · · · · · ·								
								<u> </u>	<u> </u>		
			Stabilizati	on Criteria	3%	10%	3%	±0.1	± 10 mv	10%	
ampling Da	ata										
Sample ID:	SPL-GV	V_MW08-	120	Time Col	lected:	1325		Weath	er:	Vercass	1
Sample Des	scription (Co	olor, Turbidit	y, Odor, Othe	er):	-			-			
Sample Ana	alyses: Ci	s-1,2-DCE	, vinyl chlori	de, total iro	on, total m	anganese. d	lissolved arse	nic			
Duplicate S	ample Colle	ected:	Yes 🔀	No	lf yes, ID:						
MS/MSD Co	ollected:		Yes 🔀	No							
d dia in a di d	aformation	Commente									

Sampling	g Organization	: Parame	trix	5.0-44.0	Sampler	5:	Wang -	- A.	OK.	/C/2 in	
Purge Da	ata Scree	ened Interva		IP.		_	Well Ca	sing/Dian	heter:	Ac	
Initial D	epth of Wate	r (Ft below	гос): /<u>Э</u>.	50 Ale itali	1 1	Pur	ge Water Dispos	al Metho	d:	Sun	
Purge D	evice Areo	licated pla	ader pump	PERDALTA	2 pring	P	ump Intake Dep	oth: 30.	0 ft		
Begin Pi Time:	urge	12	205			E	nd Purge Time:		1243		
	 Depth to										
	Water										
	(feet	Decemen	Duran	Cum.	-		Specific				
Time	Delow MP)	Setting	Purge	VOI. Purged	Temp (°C)	DO (mg/l)	Conductance	pH (upite)	ORP (mu)		Commonte
1209	13.50	1/2	AG	- D I	17 0	<u>(IIIG/L)</u>		(units)	<u>(IIIV)</u>	1.7 2	comments
1212	1209	1/4	126my	- 0.1	12 7	D.UT AUG	1410	6.44	900	12:5	
1210	12011		115 /m	A 0,0	127	0.71		6.5 P	-05,0	<u>16,9</u>	
1210	11		40	110	12.4	0.37	1412	6.50	- TD.O	10.0	
1110	·			10	127	1 20	1165	0.00	-100-0	10.)	
1220			1.	17	17.4	A IG	17:40	601	-105-1	17.0	
1255	11			195	15.0	0.17	19 FL	6.61	- 103,9	15.8	
1250	+1			1.10	120	0.20	1949	630	-102.7	17.4	
1215	·			2.20	15.3	0.20	1972	6.62	109.1	12 -1	
129											
1257											
1255											
1250											
		R									
						:					
					<u> </u>	s					
		<u> </u>	·			0					
	·					:					
						3					*
			Stabilizat	ion Criteria	3%	10%	3%	± 0.1	± 10 mv	10%	
Sampling	Data						,				
Sample II	SPL-GV	N-M\\/10-		Time Cell	loctodi	1150		Masth		and al	1 1. 1. 1.
				- inne coll		10,0		weath		CASY 14	<u> </u>
Sample D	escription (Co	olor, Turbidi	ty, Odor, Oth	er):							
Sample A	nalyses: <u>ci</u>	s-1,2-DCE	, vinyl chloi	ride, total irc	on, total ma	nganese, d	issolved arser	nic			
Duplicate	Sample Colle	cted:	Yes	No	lf yes, ID:	-					
MS/MSD	Collected:		Yes	No							
								_			

- #

Sampling O	rganization	: Paramet	rix		Sampler	rs: <u> </u>	Phry +	AU	win.			
Purge Data	Scree	ned Interval	(ft bgs): 1	0.0-15.0			Well Ca	asing/Diam	neter: P	/C/2 in		
Initial Dep	th of Wate	r (Ft below T	OC):	5.87		Pu	rge Water Dispos	sal Metho	d:	hm		
Purge Dev	ice dec	licated blac	lder pump				Pump Intake Dep	pth: 12.5 ft				
Begin Purg Time:	ge	144	'3				End Purge Time:	10	4:53	7.		
	Depth to											
	Water			Cum			Specific					
	below	Pump	Purge	Vol.	Temp	DO	Conductance	pН	ORP	Turbidity		
Time	MP)	Setting	Rate	Purged	(°C)	(mg/L)	45 tmg/cm)	(units)	(mv)	(NTU)	Comments	
447	589	5/7	275m	Imm. 0.1	14.0	4.92	458.1	5.79	1354	5/12		
452	5.88	5/7	N	0.25	14.3	1.41	458.6	<u>5.97</u>	- 230.2	9.02		
457	5.88	5/7	11	0.6	14.4	0.70	459.5	6.00	223.9	0.02		
502	11	5/7		1.15	14-3	0.32	459.0	602	228.3	0.02		
521	11	11	14	1.5	14.4	0-12	458.7	6.03	225.6	0.02		
512	11	11	11	1.30	14.4	0.01	459.2	6 04	200.3	0.02		
517			~	1.10	14.4	0.00	461.1	6.04	164.5	0.02		
512	0		15	2.60	14.4	0.00	462.6	6.02	133.0	002		
527	1.	٠.	×*	2.25	14.4	0.00	463.5	6.00	125.9	002		
532	(*	<u> </u>	· ·	3.30	144	0.00	469-1	6.02	110.6	0-02		
537	11	1.	**	3.7	144	0.00	164 2	6.07	100.0	0.02		
1542	15	**		4.15	14.4	0.00	165.7	6.07	92.3	0.02		
	~~~~	\\ 		4.5	144	0.00	465.3	609	367	0.02		
	"			4.8	14.4	0.00	466.2	6.36	920	0.02		
	12		<u>···</u>	52	19.9	<u>0.00</u>	467.8	6.08	49.1	0.02		
								<u>n</u>			Sec	
			; <del>.</del>					<u> </u>				
<u></u>							<u></u>					
									-			
							*					
			<del></del>									
·												
·		<u> </u>										
			Stabilizat	tion Criteria	3%	10%	3%	± 0.1	± 10 mv	10%		
ampling D	ata					18.0						
Sample ID:	SPL.	- GIU - 1	14/2-11	U Time Co	llected:	14:	57	_ Weath	ner: <u>0</u>	Willast	2/ 16	
Sample De	scription (C	olor, Turbidi	ty, Odor, Otl	ner):								
Sample An	alyses:											
Duplicate S	– Sample Coll	ected:	]Yes	KN0	If yes, ID:							
	allastadu	r										

Project No	o.: 553-15	50-067				Date: 11	1912020	)	Well ID:	MVV-14		
Sampling	Organizatior	n: Parame	trix		Samplers: A-York, T. Perry							
Purge Dat	ta Scree	ened Interva	al (ft bgs): <u>11</u>	.5-21.5	Well Casing/Diameter: PVC/2 in							
Initial De	pth of Wate	er (Ft below	TOC):	2,84	Purge Water Disposal Method: Drum							
Purge De	evice dec	dicated bla	dder pump	Pump Intake Depth: 16.5 ft								
Begin Pu	rge		100		1675 11 = 2							
Time:     IDIG     End Purge Time:     TOPS     TOPS												
	Depth to											
	(feet			Cum.			Specific					
	below	Pump	Purge	Vol.	Temp	DO	Conductance	pH	ORP	Turbidity	•	
lime		Setting	Rate	· Purgea	12.2	(mg/L)		(units)	(mv)	(110)	Comments	
1514	7 9 1	5/2	190 /00	- U - A 70	13:3	1 71	5/29	6.61	_16.9	20 4		
1529	2.12	<u> 17 F</u>	~~~	<u>0.40</u>	14 2	1.27	5775	667	- 33.7	16.6	· · · · · · · · · · · · · · · · · · ·	
15701	200	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		0.60	14.9	0.27	5493	6.67	. 32 8	12.7		
15-39	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		~~~~~	0.80	14.9	0.11	534.3	6.59	- 230	11.1	1	
1544	11	1	× .	1.10	14.9	0.00	530.3	1.56	-14.0	5.61		
1549	M		11	1.30	44.9	0.00	529.1	6.54	-13.9	4.55		
1554	//	4	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1.55	15-1	0.00	530.4	6.53	-20.0	2.77		
1559	11	11	- 11	1.80	15.1	0.00	531.5	6.50	- 20.9	1.60		
1604	15	11	11	2.10	15.1	0.30	531.9	6.51	-22.9	1.67		
1607	11	- 11 -	11	2.25	15.1	0.00	5321	6.51	- 23.7.	1.73		
1604												
1619									<u> </u>			
1624												
16.29			. <u> </u>			,			<u> </u>	<u> </u>		
16.39												
1659						<u> </u>	<u></u> ,		<u> </u>			
								-		<u> </u>		
									<u> </u>		<u>.</u>	
· · · · · ·								· · · · · · · · · · · · · · · · · · ·				
			Stabilizat	ion Criteria	3%	10%	3%	± 0.1	± 10 mv	10%		
Sampling I	Data					3						
Sample ID	): SPL-G	W-MW14-	1120	Time Col	1615		Weath	ner: 0	vercast	4107		
Sample D	escription ((	Color, Turbic	lity, Odor, Oth	er):								
Sample Analyses: cis-1,2-DCE, vinyl chloride, total iron, total manganese												
Duplicate	- Sample Coll	lected:	Yes [	No	If yes, ID:	ML	1-60					
MS/MSD	Collected:	2	Yes	No								
Additional Information/Comments												

4

<b>S</b> outh	n <b>P</b> ark	Lanc	lfill										
Project No	.: 553-1550	0-067				Date:	11/10		Well ID:	MW-18	<u>î</u>		
Sampling (	Organization:	Paramet	trix		Samplei	rs:	Pary +	<u>A.</u> Ya	site.				
Purge Dat	a Screen	ed Interva	l (ft bgs):		Well Casing/Diameter: PVC/2 in								
Initial Dep	pth of Water	(Ft below 1	гос): <del>-20</del>	<del>).0-40.0</del>	15.78 Purge Water Disposal Method:								
Purge De	vice dedi	cated bla	dder pump		Pump Intake Depth: 20.0 ft								
Begin Pur Time:	ge —	- 7:	34		End Purge Time: 10:01								
Time 9:36 9:41 9:46 9:46 9:51 9:56 10:06 10:11 10:26 10:31 10:26 10:31 10:36 10:41 10:46 10:51 10:56 10:56 10:11 11:16 11:16 11:21 11:26 11:21 11:26 11:21 11:26 11:21 11:26 11:21 11:26 11:21 11:26 11:21 11:26 11:21 11:26 11:21 11:26 11:21 11:26 11:21 11:26 11:21 11:26 11:21 11:26 11:21 11:26 11:21 11:26 11:21 11:26 11:21 11:26 11:21 11:26 11:21 11:26 11:21 11:26 11:21 11:26 11:21 11:26 11:21 11:26 11:21 11:26 11:21 11:26 11:21 11:26 11:21 11:26 11:21 11:26 11:21 11:26 11:21 11:26 11:21 11:26 11:31	Depth to Water (feet below MP) /5.78 /5.78 /5.78 /5.78 /5.78 /5.78	Pump Setting 7/10  	Purge Rate	Cum. Vol. Purged 0.1941 0.15 yr 1.1941 1.30 gr 1.30 gr 1.60 gr 1	Temp ('C) /4.2 /4.0 /3.9 /4./ /4.0 /3.8	DO (mg/L) //// 0.35 0.09 0.00 0.00 0.00	Specific Conductance (mg/cm) 1200 1200 1041 1041 1031 1029	рН (units) 6.45 6.45 6.47 6.48 6.48 6.48	ORP (mv) -9.5 -32.1 -4/3.8 -57.1 -55.5 -58.4 	Turbidity         (NTU)         7.21         4.92.         2.23         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.20         1.19         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.22         1.23         1.24         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25	Comments		
			Stabiliza	tion Criteria	3%	10%	3%	± 0.1	± 10 mv	10%			
Sampling D	ata						•						
Sample ID: SPL-GW-MW18- Time Collected: 10:15 Weather: 01404-85													
Sample De	escription (Co	lor, Turbid	ity, Odor, Otl	ner):									
Sample Analyses: cis-1,2-DCE, vinyl chloride, total iron, total manganese, dissolved arsenic													
Duplicate Sample Collected: 🗌 Yes 🏼 🏹 No					lf yes, ID:								
MS/MSD (	Collected:		]Yes [										
Additional	Information/	Comments	S										

1

Juli	I rair						T. L.				
Project No.: 553-1550-067 Date: 11/11/20 Well ID: MW-24											
Sampling Organization: Parametrix Samplers: T.R.M A.V.K.											
Purge Data Screened Interval (ft bgs): 35.0-45.0 Well Casing/Diameter: PVC/2 in											
Initial Depth of Water (Ft below TOC): 35.0-45.0-9.43 Purge Water Disposal Method:											
Purge De	evice dec	dicated bla	dder pump			P	ump Intake Dep	th: 40.0	) ft		
Begin Pu	rge	101	17								
Time:         IU 7 L         End Purge Time:         I1 • 0 7.											
	Depth to Water (feet below	Pump	Purge	Cum. Vol.	Temp	DO	Specific Conductance	рH	ORP	Turbidity	
Time	MP)	Setting	Rate	Purged	(°C)	(mg/L)	(mg/cm)	(units)	(mv)	(NTU)	Comments
1034	9.45	7/9	100 milai	0.15	11.6	4.99	811	6.75	10.4	3.80	
1039	55	~	- 11	0.40	11.9	0.04	942	6.49	-200	) [8]	
1044	<u> </u>		<u> </u>	0.70	<u>11.0</u>	0.08	945	6.43	-32.9	399.	
1049	<u>\~</u>	~~	<u> </u>	0.85	120	0.09	955	640	-39.2	1.20	
1059			<u> </u>	1.00	12.0	0.00	455	6.34	<u>-441</u>	1.17	
1051			<u> </u>	1.25	12.0	0.05	<u> 15)</u> <u> 051</u>	0.9	489	2.01	
1109			15	1.70	12.0	0.05		6.37	-504	101 =	
1114				1.03	<u>-14.0</u> _	0.00		_0.,		<u> "'''</u> =	
1119			-								
1124											
1129							· · · · · · · · · · · · · · · · · · ·				
1134		<u>.</u>									
1139											
1144	<u> </u>								·		
								<u></u>			
			<u></u>		<u></u>						
·			·			0					¢
			······································								
						:					
						;					
			Stabilizatio	on Criteria	3%	10%	3%	± 0.1	± 10 mv	10%	
Sampling [	Data										
Sample ID: SPL-GW-MW24- 1120 Time Collected: 115 Weather: Oldarst.											
Sample Description (Color, Turbidity, Odor, Other):											
Sample Analyses: cis-1,2-DCE, vinyl chloride, total iron, total manganese, dissolved arsenic											
Duplicate Sample Collected: Yes No If yes, ID:											
MS/MSD (	Collected:		]Yes 🔀	No							
Additional Information/Comments											
	o · 553-15	50-067				Data	11/10/10			MW-25	
------------	----------------	---------------	---------------	------------------	--------------	--------------------	-----------------	---------------------	----------------	-------------	------------
Sampling	Organization	: Paramet	rix		Sampler	s: T	Pins + 1-	1Vul			
	to Scroo		(ft has), 20	).0-27.0					P\	/C/2 in	
Initial De	anth of Wata	r (Et balaw T		K117		Dur	Well Ca	sing/Diam	leter:	la na	
Purge De	eptrior, wate	r (Ft below I	ider pump	7.22		Pur	ge Water Dispos	al Metho +h. 24.	d: 5.ft	rung	
Begin Pu	Irge	10		-		F	ипр птаке рер	. <u></u>	1		
Time:			90			E	nd Purge Time:		11:27		
	Depth to					5					
	(feet			Cum.			Specific				
	below	Pump	Purge	Vol.	Temp	DO	Conductance	pН	ORP	Turbidity	
Time	MP)	Setting	Rate	Purged	(°C)	(mg/L)	(mg/cm)	(units)	(mv)	(NTU)	Comments
1042	<u>14.23</u>	6/14	325 1/	<u>. O.I.ghl</u>	13.7	1.80	862	6.51	3.2	29.5	
1047	19.23	-	~	0.05g1	13.7	0.56	967	6.43	-40.1	18.5	
1052	14.23		<u> </u>	1.0 gr.1	13.7	0.15	995	6.42	<u>-53.1</u>	14.1	
1057	14.23	~/	<u></u>	1.35 gul	<u> 13.7</u>	0.15	1006	6.43	- 60.9	<u>10.4</u>	
1102	14.23		~~~~	1.75 gri	17.7	0.08	1014	6.44	-65.2	8.45	
1107	14.23	12		2.1 gpl	13.7	0.07	1017	6.44	-68.3	6.14	
1112	14.23	<u> </u>	<u> </u>	2.4 gal	13.7	0.03	1071	6.45	-70.4	4.78	
MIT	14.23	<u> </u>	~~	2.75 gr.	13.7	0.00	1025	6.44	-71.6	4.10	
112	14,23	<u> </u>	- 11	3.10 gml	13.7	0.00	1027	<u>6.44</u>	729	3.21	
<u>N27</u>	MIZ	~		3.45gA	137	0.01	1029	6.44	-74.0	<u>Z.84</u>	1
1132										·	
N37		<u> </u>									( <u>*</u>
1192			<u> </u>								. <u></u>
1147											
1152			<u> </u>								
1157											
1202							<u> </u>				
1207											·
1212											
1217		<u> </u>									
122						<u>, i</u>					
1224											
1232	·										
123+											
			Stabilizati	on Criteria	3%	10%	3%	± 0.1	± 10 mv	10%	
Sampling D	Data										
Sample ID	: SPL-G	W-MW25-		Time Coll	ected:	11:35	,	Weath	er: /	Vercast	
Sample De	escription (Co	olor, Turbidi	ty, Odor, Oth	er):	-						
Sample Ar	nalvses: C	is-1.2-DCE	. benzene	vinvl chlorid	e. total iro	n, total mar	nganese, disso	lved ars	enic		
Duplicate	Sample Colle	ected:	Yes 🕅	KNo	If yes, ID:	.,	. <u>g</u> , u				
MŚ/MSD (	Collected:		Yes 🕅	No							
Additional	Information	/Comments	¥~	-							
P	haven ha	white hund		maish /n.	mann /	abor to	it. Ha	5 1/1	s a f	wint al	20
	7			1.10	C C	944 <b>9</b> 3 6 U		se pro	<u>~ ~ ~ +</u>	un cu	

Broiset No	553-155	0-067	um				111/20			M\\\/ 26			
Sampling	Drganization:	Paran	netrix		Sample		M-A VINA		weil iD:	10100-20			
Dat	- Como		nuel (fth hore).	15.0-25.0					P\	/C/2 in			
Purge Dat	a Scree	/Et holo	val (ft bgs):	1010	)	Dur	Well Ca	ising/Diam	leter:	0			
Purge De	vice ded	icated b	ladder pumi	$\frac{10.00}{10}$		Pur	ge water Dispo: Pump Intake Der	sal ivietno stb. 20.	o: Oft	ymm	(		
Begin Pur	ge		1.100										
Time:			11:22			E	End Purge Time:						
Time 1129 1139 1139 1149 1149 1159 1159 1209 1209	Depth to Water (feet below MP) 70.20	Pump Setting 	Purge Rate 225 	Cum. Vol. Purged ()./O ().50 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 ().75 (	Temp (°C) 12.1 12.2 12.2 12.2 12.2 12.3 12.3 12.2	DO (mg/L) 3.33 0.86 0.14 0.00 0.00 0.00 0.00 0.00	Specific Conductance (mg/cm) 211.0 221.6 226.6 227.0 227.7 227.7 226.5 226.5 226.7	pH (units) 6.7/ 6.05 5.93 5.90 5.88 5.83 5.83 5.83	ORP (mv) 20.0 40.4 39.0 38.5 39.9 37.9	Turbidity (NTU) 15.9 1.4 8.46 6.70 5.42 3.55 3.55 3.55	<u>Comments</u>		
	·												
						<u> </u>					s		
			Stabiliz	ation Criteria	3%	10%	3%	± 0.1	± 10 mv	10%			
Sampling D	ata												
Sample ID:	SPL-0	GLI-N	11/26-11	1) Time Co	llected:	12:10		Weath	er: 0	Verenst	4		
Sample De	scription (Co	olor, Turb	oidity, Odor, C	ther):	-			-	<u></u>				
Sample An	alyses:			·									
Duplicate S	Sample Colle	cted:	Yes	<b>X</b> N₀	If yes, ID:								
MS/MSD C	ollected:		Yes	No							12		
Additional	nformation	/Comme	nts								))		

Project N	o.: 553-15	50-067				Date:	11/11/20	2	Well ID:	MW-27				
Sampling	Organizatio	n: Paran	netrix		Sampler	rs:	Phing A.	Yor	- L	-				
Purge Da	ta Scree	ened Inter	rval (ft bgs):	10.0-20.0			Well Ca	✓	neter: P	VC/2 in				
Initial De	epth of Wate	er (Ft belo	w TOC):	9.98		Pu	rge Water Dispos	sal Metho	od:	mm				
Purge De	evice de	dicated b	adder pur	np		Pump Intake Depth: 15.0 ft								
Begin Pu Time:	irge		1348				End Purge Time:	10	115					
Time	Depth to Water (feet below MP)	Pùmp Settin	9 Purg g Rate	Cum. e Vol. e Purged	Temp (°C)	DO (mg/L)	Specific Conductance (mg/cm)	pH (units)	ORP (mv)	Turbidity (NTU)	Comments			
1350	8.88	519	260	0.1	13.1	0,99	365.4	6.55	27.1	2,80				
1355	11	1/		0.25	13.0	0.27	371.1	6.32	12.0	3.62				
1400	840			<u> </u>	13.0	0,00	274.8	6.20	-0.3	2.60				
1410				1.75	12.0	8.00	325.2	6.25	-12.6	2,45 244				
1415 1420 1425 1420 1425	1,	/·		2.15	13.0	0.00	376.0	<u>6.24</u>	-16.8	<u>3.03</u>				
1440										· ·	_			
1445														
						·····			<u></u>					
							o <del></del> )							
								···						
										3_				
			Stabi	ization Criteria	3%	10%	3%	± 0.1	± 10 mv	10%				
Sampling [	Data													
Sample ID	: SPL-G	W-MW2	7-1120	Time Col	lected:	1420		Weath	ner: <u>O</u> l	KRAST				
Sample D	escription (C	Color, Turk	oidity, Odor,	Other):	_									
Sample A	nalyses: C	cis-1,2-D	CE, vinyl c	hloride, total irc	on, total ma	anganese,	dissolved arse	nic						
Duplicate	- Sample Coll	ected:	Yes	<b>⋈</b> №	lf yes, ID:									
MS/MSD	Collected:		🗌 Yes											
Additional	Information	n/Comme	nts											

Blip la 2										
Project No.: 553-1550-067 Date: Well ID: MW-29										
Sampling Organization: Parametrix Samplers: Samplers: Viany - / .	YOR.									
Purge Data Screened Interval (ft bgs): 20.0-30.0 Well Casing/Diam	eter: PVC/2 in									
Initial Depth of Water (Ft below TOC): 5.05 Purge Water Disposal Method	: Onm									
Purge Device peristaltic pump Pump Intake Depth: 25.0	D ft									
Begin Purge Find Purge Time:	K:58									
Depth to										
Water										
(feet Cum. Specific below Pump Purge Vol. Temp DO Conductance pH	ORP Turbidity									
TimeMP)SettingRatePurged (°C) (mg/L) (mg/cm) (units)	(mv) (NTU) Comments									
<u>6:16 8.54 1/3 180m/m 0.1 gnl 12.6 14.07 635.9 5.21</u>	38.1 2.47.									
<u>\$23</u> <u>8.58</u> <u>V3</u> <u>~ 0.1591 12.6 0.43 615.6 6.21</u>	-55.5 0.78									
828 8.60 13 0.45 0.1 60.0 6.34	-667 1.74									
$\frac{833}{20}$ $\frac{9.66}{12}$ $\frac{13}{100}$ $\frac{190}{100}$ $\frac{100}{100}$ $\frac{12.7}{120}$ $\frac{0.06}{100}$ $\frac{616.4}{100}$ $\frac{6.43}{100}$	-74.9 0.04									
$\frac{1000}{443} + \frac{100}{243} + \frac{100}{14} + \frac{1000}{14} + \frac{1000}{144} + \frac{1000}{$	<u>-80.9</u> <u>0.06</u>									
$\frac{0.15}{84\%}$ $\frac{0.00}{15}$ $\frac{1.5}{150}$ $\frac{1.5}{150}$ $\frac{1.5}{150}$ $\frac{0.00}{661}$ $\frac{0.00}{661}$ $\frac{0.01}{651}$	-160 002									
853 $490$ $13$ $1260$ $1260$ $100$ $663$ $654$	-\$36 0 07.									
858 8.90 N3 ~ 1.044 11.6 0.00 663 654	- \$8.1 ().02									
903										
908										
913										
<u>918</u>										
<u>973</u> <u>a18</u>										
Stabilization Criteria 3% 10% 3% ± 0.1	± 10 mv 10%									
Sampling Data										
Sample ID: <u>SIL-GW- MW29- 1120</u> Time Collected: <u>9:10</u> Weather	er: OVerCast									
Sample Description (Color, Turbidity, Odor, Other):										
Sample Analyses:										
Duplicate Sample Collected: 🔲 Yes 🕅 No If yes, ID:	1									
MS/MSD Collected:										
Additional Information/Comments										
have block has a tirty strong and ton odor.										

Jour	Park	Lanu					1. Jula					
Project No	553-155	0-067			Date:Well ID: MW-30							
Sampling	Organization:	Parametr	ix		Samplers	s:	Kny - A.	Your	-			
Purge Dat	a Screer	ned Interval	(ft bgs): <u>8.0</u>	-13.0			Well Ca	sing/Diam	neter: <u>P</u>	/C/2 in		
Initial De Purge De Begin Pur Time:	pth of Water _{vice} peris rge  Depth to	(Ft below T( staltic pum	p p 93	10.78 13		Pur, Pur, P	ge Water Dispos Pump Intake Dep Ind Purge Time:	al Metho th: <del>10:</del>	d: <del>5π</del> ///	0nm 5 (140g)	:kd)	
Time 935 940 950 955 1000 1010 1015 1020 1025 1030 1025	Water (feet below MP) //.07 /1.06 11.06 11.06 11.06 11.06	Pump Setting NA N N N	Purge Rate /75 m//	Cum. Vol. Purged 0.20 0.40 0.60 0.60 0.50 1.10 	Temp (°C) /4.0 /4.1 /4.1 /4.1 /4.2	DO (mg/L) 0.55 0.01 0.00 0.00 0.00	Specific Conductance (mg/cm) 569.7 572.8 574.1 581.1 582.1	PH (units) 6.16 6.19 6.19 6.19 6.19	ORP (mv) <u>204</u> <u>11.3</u> <u>8.1</u> <u>5.9</u> <u>4.8</u>	Turbidity (NTU) 24.2. 13.4 3.18 2.40 1.23	Comments	
Sampling	·	a	Stabilizatio	on Criteria	3%	10%	3%	± 0.1	 ± 10 mv	10%		
Sample ID		- In Mr.	1120	Time C	lloote -l	1010		141. 1		MARIE		
Sample ID	Scription (Co	lor Turbidit		- - ar):	iectea: –			- weath	ier:	NOICASI.		
Sample Ar	alvses.	ior, rurbidit	y, Ouor, Othe									
Dunlicate	Sample Colle	cted [.] M	Yes 🗖	No -	lfves ID.	M	-61					
MS/MSD (	Collected:		Yes X	STET	п уса, ю.	-11116	-01					
Additional	Information/	Comments										

Project No.	.: 553-15	50-067				Date:	11/11/20	>	Well ID:	MW-31	
Sampling O	)rganization	e Paramet	trix		Samplei	rs: <u>7</u>	PLAG -1	1. Voin			
Purge Data	a Scree	ened Interval	I (ft bgs): _1	8.0-23.0			Well Ca	sing/Diam	eter: P\	/C/2 in	
Initial Dep	oth of Wate	r (Ft below 1	roc):	11.46		Pur	ge Water Dispos	al Metho	d:	Onm	
Purge Dev	vice dec	dicated blac	dder pump			P	ump Intake Dep	th: 20.	5ft		
Begin Pur	ge		4:20						a'	17	
Time:			0.0			E	nd Purge Time:		7.	17	
	Depth to Water (feet below	Pump	Purge	Cum. Vol.	Temp	DO	Specific Conductance	рH	ORP	Turbidity	
Time	MP)	Setting	Rate	Purged	(°C)	(mg/L)	(mg/cm)	(units)	(mv)	(NTU)	Comments
822	11.47	5/9	265	0.10	13.5	16.00	377,3	5.23	114.9	37.7	
827	11.47		Mar 6	500.25	13.6	0.58	375.6	6.05	6.9	31.9.	
832	11.47	- 12		0.75	13.7	0.15	379.0	620	-15.8	15.6	
837	11,47	**	v	1.20	13.7	0.14	381.3	<u>6.24</u>	<u>-26.3</u>	<u> 11.0</u>	265
842	<u>h.47</u>	<u></u>		1.50	13.8	010	381.7	6.26	-32.0	20.0	
	11.47		- 1	1.80	13.7	0.04	362.4	627	-35.8	17.6	
852	11.47		N1-	1.15	13.7	0.03	383.6	6.24	-36.2	15.5	
657	11.47	***	1+	2.70	13.8	0.04	382.8	<u>6.18</u>	-40.5	H.2	
902	11.47		~ ~ ~	2.90	137	0.01	383.0	6.19	-41.7	13.0	
907	1147	**	100	3.15	13.8	0.04	383.1	6.29	.41.9	11.4	<u></u>
912	11.47	<u> </u>	~ ~ ~	<u>3.70</u>	13.8	0.03	382.5	6.29	<u>-43.9</u>	11.2	
917	11.47		~	4.0	13.8	0.0	3823	6.29	-44.6	11.8	
922		<u> </u>									
927											
932			÷								· · · · · · · · · · · · · · · · · · ·
	/					<u></u>	·				
							1/2 · · · · · · · · · · · · · · · · · · ·				
										<u> </u>	
<u> </u>			8								
		<u> </u>	2								
				<u> </u>				<u> </u>			
						<u> </u>				:	
			Stabiliza	tion Criteria	3%	10%	3%	± 0.1	± 10 mv	10%	
Sampling Da	ata										
Sample ID:	SPL-G	WM - WW	31-112	Time Coll	ected:	91	15	Weath	er: 01	eleast.	
Sample Des	scription (C	olor, Turbidi	ity, Odor, Ot	her):							8
Sample Ana	alyses:			v							
Duplicate S	— ample Colle	ected:	] Yes	No [.]	If yes, ID:						
MS/MSD Co	ollected:		]Yes [	No							
Additional I	formation	/Comments	5	^							
	Horacit	Later h	MA G -	Think and a	\$ 7						
	- du du	110001	in the second	UMI	N III						

# **GROUNDWATER SAMPLE COLLECTION FORM**

Project No.: 553-155	0-067				Date:	1/10		Well ID:	MW-32	
Sampling Organization:	Parametrix			Sampler	rs: T.	king -A	North	•		
Purge Data Scree	ned Interval (ft	: bgs):				Well Ca	sing/Diam	eter: P	VC/2 in	
Initial Depth of Water	(Ft below TOC	:): <del>19.0</del>	<del>)-24.0</del>	11.18	Pur	ge Water Dispos	sal Metho	d:	Ln/1 ·	
Purge Device peris	staltic pump				F	ump Intake Dep	oth: 21.	5 ft		
Begin Purge Time:		1317			E	nd Purge Time:	13	54.		
$\begin{array}{c c} & \text{Depth to} \\ & \text{Water} \\ (feet \\ & \text{below} \\ \hline \\ 1319 \\ \hline \\ 1309 \\ \hline \\ 1399 \\ \hline \\ 1329 \\ \hline \\ 1339 \\ \hline 1339 \\ \hline \\ 1339 \\ \hline 1339 \\ $	Pump <u>Setting</u>	Purge Rate 130 - 10	Cum. Vol. Purged 0.10 0.50 0.75 (,00 1.75 1.50 1.75 1.0	Temp (°C) [4.3 [4.3 [4.3 [4.3 [4.3 [4.3 [4.3 [4.3	DO (mg/L) 0.74 0.00 0.00 0.00 0.00 0.00 0.00	Specific Conductance (mg/cm) 389 369 836 836 845 852 855 861	pH (units) 6.94 6.64 6.63 6.63 6.65 6.65	ORP (mv) -9.2 -53.1 -68.5 -79.0 -83.9 -86.7 -87.1 -90.4	Turbidity (NTU) 3.75 3.51 0.48 0.12 0.61 1.03 0.76 1.30	Comments
mpling Data		Stabilization	n Criteria	3%	10%	3%	± 0.1	± 10 mv	10%	*
ample ID: SPL-GI	J-MW31	- 1120	Time Co	llected:	1400		Weathe	er: MM	Past 1	1 light Din
ample Description (Col	or, Turbidity, (	Odor, Other	·):			Υ.		UKU		June 1
ample Analyses:		,							7	ŝ
uplicate Sample Collec	ted: 🗌 Ye	s 🔏	No	If yes, ID:		(3)				
IS/MSD Collected:	🗌 Ye	s 🕅	No							=

۲

and the

Project No	o.: 553-15	50-067				Date: ]	1/10/20		Well ID:	MW-33		
Sampling	Organization	: Paramet	trix		Sample	rs:	filishe /	T. F.	arry			
Purge Dat	ta Scree	ned Interva	l (ft bgs): 20	.0-25.0			Well Ca	sing/Diam	eter: P	/C/2 in		
Initial De	pth of Wate	r (Ft below 1	ГОС):	11.3	3	Pu	rge Water Dispos	sal Metho	d:	Onm		
Purge De	evice per	istaltic pun	np				Pump Intake Dep	oth: 22.	5ft	/		
Begin Pu Time:	rge	1434	ł				End Purge Time:		1511	1		
	Depth to Water (feet below	Pump	Purge	Cum. Vol.	Temp	DO	Specific	nH	ORP	Turbidity		
Time	MP)	Setting	Rate	Purged	(°C)	(mg/L)	(mg/cm)	(units)	(mv)	(NTU)	Comments	
1436	11.35	114	275 mb	n <u>D.</u>	15.2	0.00	1289	6.61	-25.6	5.37		)
1441	11	11	11	0.5	15-2	0.00	1415	6.53	-61.8	1.28		
1446	11.36	70	//	0.75	15.2	0.00	14 0.3	6.59	-73.6	3.51		
1451	<i>i</i> •	E		1.20	15.3	0.00	1399	6.59	-79.7	14.7		
1456	i,	11		1.6	15.2	0.0)	1393	6.59	- 84.2	5.25		
1501	<u>^</u> e			1:95	15.2	0.00	1400	659	- 36.4	1.08		
1506				2.70	15.3	000	1391	6.54	- <u>37.6</u>	0.94		
1516				2.+7	15.5	0.00	1398	10.57	~ 11,0	0.11		
15 10				<u> </u>	<u></u>			<u> </u>	<u> </u>			
1521												
1521		·										
1536		······					×					
	<u> </u>											
							·					
							(					
								<u></u>				
			Stabilizatio	on Criteria	3%	10%	3%	± 0.1	± 10 mv	10%		
Sampling D	Data											
Sample ID	SPL-G	N-MW33-	1120	Time Col	lected:	1515		Weath	er: 010	reast 2	ith light an	5
Sample De	escription (Co	olor, Turbidi	ty, Odor, Othe	er):	light o	Ange /h	mm					
Sample Ar	nalyses: <b>c</b> i	is-1,2-DCE	, vinyl chlori	de, total irc	on, total ma	anganese.	dissolved arse	nic				
Duplicate	– Sample Colle	ected:	Yes 🔀	No	lf yes, ID:							_
MS/MSD (	Collected:		Yes 🌶	No								
Additional	Information	/Comments										
Un	ged Lin	w has	A Slight	foder a	ind o	monge/bi	MM .			χ		_
			V			J.	Color.					

# Water Level Measurement Field Report

DATE 11/9/2020 JOB NO. 553-1550-067												
PROJECT: S	outh Park La	andfill	CLIENT: Sea	attle Public Utili	ties							
LOCATION: S	Seattle, WA											
WEATHER		TEMP		42 ° at		11:00 A	M					
Overcast with	light rain			° at		F	PM					
PRESENT AT	I SITE											
Trey Parry an	d Austin York											
WELL	Time	Measured Depth to Water (ft from TOC or SG level)	Total Measured Well Depth (ft from TOC)	Measuring Point	Total Well Depth (ft bgs)	Screen Interval (ft bgs)	SU (ft)					
MW-12	12:37	5.86		TOC	15.3	10-15	1.52					
MW-14	12:57	2.85		тос	21.8	11.5-21.5	0.8					
MW-29	13:01	8.07		тос	20-30	-0.29						
MW-18	13:05	15.86		тос	40.4	30-40	1.25					
MW-25	13:21	14.30		тос	27	22-27	2.79					
MW-32	13:11	11.30		тос	24	19-24	-0.44					
MW-33	13:14	11.46		тос	25	20-25	-0.47					
MW-26	12.18	10.17		TOC	25	15-25	2.39					
MW-27	12:10	8.88		тос	20	10-20	2.04					
MW-10	13:25	13.55		тос	45	35-45	1.65					
MW-24	12:16	9.40		тос	45.3	35-45	1.56					
MW-08	12:05	8.90		тос	45.6	35.5 – 45.5	1.88					
MW-30	12:22	10.78		тос	13	8-13	-0.53					
MW-31	12:25	11.50		тос	23	35.5-45.5	-0.46					

Comments:

TOC – top of PVC SG – staff gauge casing

SIGNED: Trey Parry

# D4

Laboratory Reports

# 2nd Quarter 2020

Laboratory Reports



15 June 2020

Min-Soon Yim Seattle Public Utilities 700-5th Ave, Ste 4900, Box 34018 Seattle, WA 98124-4018

RE: South Park Landfill -Parametrix Water 2020

Please find enclosed sample receipt documentation and analytical results for samples from the project referenced above.

Sample analyses were performed according to ARI's Quality Assurance Plan and any provided project specific Quality Assurance Plan. Each analytical section of this report has been approved and reviewed by an analytical peer, the appropriate Laboratory Supervisor or qualified substitute, and a technical reviewer.

Should you have any questions or problems, please feel free to contact us at your convenience.

Associated Work Order(s) 20E0287 Associated SDG ID(s) N/A

_____

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed in the enclose Narrative. ARI, an accredited laboratory, certifies that the report results for which ARI is accredited meets all the requirements of the accrediting body. A list of certified analyses, accreditations, and expiration dates is included in this report.

Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

Analytical Resources, Inc.

Shelly & Fish

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in itrentirety.



## Chain of Custody Record & Laboratory Analysis Request

ARI Assigned Number:		Date	5/2	6/20				Analytical Resources, Incorporated Analytical Chemists and Consultants 4611 South 134th Place, Suite 100						
Public Utility	Ocallie	Filone. 200	004-7033		Page	9	OŤ			2			461	1 South 134th Place, Suite 100
Client Contact: Lisa Gilbert, Paran	netrix	Phone: 20	)6 394-36	67	No. o Coolers	1	Cooler Temps	- I,	J,9 [~]	$\overline{\zeta}$			20	6-695-6200 206-695-6201 (fax)
Client Project Name: South Park I	_andfill					1	г		Analysis	Requeste	ed			Notes/Comments
Client Project #: 553-1550-067	Samplers: N	<i>J</i> ike Brady			빙	U U U U	ide	ЧЧ	As**					
Sample ID	Sample ID Date Time Matrix Number Containe					cis-1,2-D( benzene	Vinyl Chlor	Total Fe,	Dissolved					
SPL-GW-MW18-0520			water	8	X		X	X	X					**Field-filtered
-SPL-GW-MW29-0520			water	7	X		X	X						
SPL-GW-MW14-0520			water	7	x		x	x						Field filtered
-SPL-GW-MW27-0520			water	8	X		X	x	x					
SPL-GW-MW08-0520			water	8	X		x	X	X					
SPL-GW-MW24-0520			water	8	- X-		X	x	x					
-SPL-GW-MW26-0520	-	-	water	8	X		x	X	x				ž	
\$PL-GW-MW60-0520			water	8	X		X	x	x					
SPL-GW-MW80-0520			water	6	X	7	X							
Comments/Special Instructions	Ctions Relinquished by: (Signature) (Signature)							Relinquish (Signature	led by: )		1		Received by (Signature)	<u>1</u>
	Printed Name: May Marry						~	Printed Na	ime:				Printed Nam	ie:
Company. ULANNEMX					2	4		Company:			Company:			
Date & Time: 5/16/10 17:05 05/5					boo	0 1	705	Date & Tin	ne:				Date & Time	10

Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or co-signed agreement between ARI and the Client.

Sample Retention Policy: Unless specified by work order or contract, all water/soil samples submitted to ARI will be discarded or returned, no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer. Sediment samples submitted under PSDDA/PSEP/SMS protocol will be stored frozen for up to one year and then discarded.

## **Chain of Custody Record & Laboratory Analysis Request**

ARI Assigned Number		Date: 5/16/20									Analyt Analy	ical Resources, Incorporated tical Chemists and Consultants			
ARI Client Company: Jeff Neuner, Public Utility	Seattle	Phone: 206	684-7693		Page:	1	of			2				461	1 South 134th Place, Suite 100
Client Contact: Lisa Gilbert, Param	etrix	Phone: 20	6 394-366	37	No. of Coolers:	1	Cooler Temps:	ľ,	).9%					200	6-695-6200 206-695-6201 (fax)
Client Project Name: South Park L	andfill							T	Analysis I	Request	ed			<u>т</u>	Notes/Comments
Client Project #: 553-1550-067	Samplers: M	like Brady			빙	ы	ide	Mn	I As**						
Sample ID	Date Time Matrix Number of Containers					cis-1,2-D( benzene	Vinyl Chlor	Total Fe,	Dissolved					\$	N
SPL-GW-MW12-0520			water	8	X		Х	Х	Х						**Field-filtered
SPL-GW-MW32-0520			water	8	X		X	X	X						
SPL-GW-MW33-0520	-		water	8	X		X	X	X			-			
• SPL-GW-MW100520			water	8	x		X	X	- X-						
SPL-GW-MW25-0520	-		water	8		X	X	x	x						
←- <del>SPL-GW-MW30-0520</del>			water	7	X		X	X		-					
			water	7	X		X	x							
SPL-GW-MW61-0520			water	8		Х	X	X	X						
			water	6		7 X	X								
Comments/Special Instructions	Ins Relinquished by: (Signature) (Signature)						2	Relinquish (Signature	ed by: )					Received by (Signature)	
	Printed Name: IRU MA:Ny					alte	-/	Printed Na	me:					Printed Name:	
Company: How Min At					2			Company:	ipany:				Company:		
	Date & Time: Date & Time: Date & Time: 5/1.6/1.0 / 7-05 05/2					213	205	Date & Tin	ne:					Date & Time	1

Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or co-signed agreement between ARI and the Client.

Sample Retention Policy: Unless specified by work order or contract, all water/soil samples submitted to ARI will be discarded or returned, no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer. Sediment samples submitted under PSDDA/PSEP/SMS protocol will be stored frozen for up to one year and then discarded.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Min-Soon Yim

**Reported:** 15-Jun-2020 11:07

#### ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SPL-GW-MW12 -0520	20E0287-01	Water	26-May-2020 14:06	26-May-2020 17:05
SPL-GW-MW12 -0520	20E0287-02	Water	26-May-2020 14:06	26-May-2020 17:05
SPL-GW-MW14 -0520	20E0287-03	Water	26-May-2020 16:26	26-May-2020 17:05
SPL-GW-MW14 -0520	20E0287-04	Water	26-May-2020 16:26	26-May-2020 17:05

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Min-Soon Yim

**Reported:** 15-Jun-2020 11:07

## Work Order Case Narrative

Client: Seattle Public Utilities Project: South Park Landfill -Parametrix Water 2020 Work Order: 20E0287

#### Revised Report

This report was revised to include missing cooler receipt form. Data has been inadvertantly reported to the Method Detection Limit. This revised report reports to the Method Reporting Limit.

#### Sample receipt

Samples as listed on the preceding page were received 26-May-2020 17:05 under ARI work order 20E0287. For details regarding sample receipt, please refer to the Cooler Receipt Form.

#### Volatiles - EPA Method SW8260C

The sample(s) were analyzed within the recommended holding times.

Initial and continuing calibrations were within method requirements.

Internal standard areas were within limits.

The surrogate percent recoveries were within control limits.

The method blank(s) were clean at the reporting limits.

The LCS/LCSD percent recoveries and RPD were within control limits.

#### Volatiles - EPA Method 8260C-SIM (Selected Ion Monitoring)

The sample(s) were analyzed within the recommended holding times.

Initial and continuing calibrations were within method requirements.

Internal standard areas were within limits.

The surrogate percent recoveries were within control limits.

The method blank(s) were clean at the reporting limits.

The LCS percent recoveries were within control limits.

Analytical Resources, Inc.



**Analytical Report** 

Seattle Public Utilities 700-5th Ave, Ste 4900, Box 34018 Seattle WA, 98124-4018 Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Min-Soon Yim

**Reported:** 15-Jun-2020 11:07

#### Total Metals - EPA Method 6020A

The sample(s) were digested and analyzed within the recommended holding times.

Initial and continuing calibrations were within method requirements.

The method blank(s) were clean at the reporting limits.

The LCS percent recoveries were within control limits.

#### **Dissolved Metals - EPA Method 6020A**

The sample(s) were digested and analyzed within the recommended holding times.

Initial and continuing calibrations were within method requirements.

The method blank(s) were clean at the reporting limits.

The LCS percent recoveries were within control limits.

Sample specific QC was performed in association with sample 20E0287-02 in batch BIF0032. The duplicate RPD and matrix spike percent recoveries were within control limits.

Analytical Resources, Inc.

Analytical Resources, Incorporated Analytical Chemists and Consultants	Cooler Rec	eipt Fo	rm	
ARI Client: Raranetrix SPU	Project Name:	Park L	lendt.	11
COC No(s):	Delivered by: Fed-Ex UPS Courie	er Hand Delivered	Other:	
Assigned ARI Job No: 20ED287	Tracking No:		(	NA
Preliminary Examination Phase:				$\smile$
Were intact, properly signed and dated custody seals attached to the	outside of the cooler?	YES	3 d	NO
Were custody papers included with the cooler?		YES	5	NO
Were custody papers properly filled out (ink, signed, etc.)		YES		NO
Temperature of Cooler(s) (°C) (recommended 2.0-6.0 °C for chemistr	y)			
Time 1705	12,9 °C			
If cooler temperature is out of compliance fill out form 00070F		Temp Gun ID#: [	00 500	16
Cooler Accepted by: J3 ~ Da	ate: 05/26/2000 Time:	170	)	
Complete custody forms and	attach all shipping documents			
Log-In Phase:			and the state of the sets	
				6
Was a temperature blank included in the cooler?			YES	NO
Was sufficient ice used (if appropriate)?	Velitice Gel Packs Baggles Foam B	Paper Other		(NO)
How were bettles socied in plastic bags?		NA	QLES	NU
Did all bottles arrive in good condition (unbroken)?		Individually	Grouped	CINOL
Mara all bottle labels complete and legible?			YES	NO
Did the number of containers listed on COC match with the number	of containers reacived?		YES	NO
Did all bottle labels and tags agree with sustedy papers?	or containers received?		YES	NO
Were all bottles used correct for the requested analyses?			YES	NO
Do only of the analyses (bettlee) require preservation? (ottach analyses)			YES	NO
More all VOC vials free of sis hubbles?	vation sneet, excluding vocs)	NA	YES	NO
		NA	YES	NO
vvas sufficient amount of sample sent in each bottle?		()	YES	NO
Were the sample(s) split		NA		
by ARI?	Equipment:	5	Split by:	
Samples Logged by: Date: 5 27/201	20	els checked by:	SLE	

Sample ID on Bottle Sample ID on COC Sample ID on Bottle Sample ID on COC COC, NO Sampledate/time on COC -OS Times from Sample bottles SPL-GW-MWIZ OSZO 5/26/2020 1406 Additional Notes, Discrepancies, & Resolutions: SPL-GW-MW14 0520 5/26/ By: Date: 0 SLF 5 27 2020

0016F 01/17/2018



Cooler#:	Temperature(%C):	97	
Sample ID	Bottle Count	Bottle Type	
Samles an ind	Bottle Oount	Dottie Type	
repue 19°C			
Cooler#:	Temperature(°C):		
Sample ID	Bottle Count	Bottle Type	
<u> </u>			
Cooler#:	Temperature(°C):		
	Bottle Count	Bottle Type	
Cooler#:	Temperature(°C):	I	
Sample ID	Bottle Count	Bottle Type	
moleted by:	Date	mr (26/2028) Time: 1795	

3/3/09



Seattle Public Utilities	
700-5th Ave, Ste 4900, Box 34018	
Seattle WA, 98124-4018	

Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Min-Soon Yim

**Reported:** 15-Jun-2020 11:07

#### SPL-GW-MW12 -0520

20E0287-01 (Water)

Volatile Organic Com	pounds						
Method: EPA 8260C	ethod: EPA 8260C				Sa	mpled: 05	/26/2020 14:06
nstrument: NT7 Analyst: PKC					An	alyzed: 05	/28/2020 22:20
Sample Preparation:	Preparation Method: EPA 5030C (Purge Preparation Batch: BIE0525 Prepared: 05/28/2020	e and Trap) Sample Size: 10 Final Volume: 1	nd Trap) Sample Size: 10 mL Final Volume: 10 mL			Extract ID:	20E0287-01 D
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
cis-1,2-Dichloroethene	156-59-2	1	0.20	ND	ug/L	U	
Surrogate: 1,2-Dichloroethe			80-129 %	112	%		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Min-Soon Yim

**Reported:** 15-Jun-2020 11:07

#### SPL-GW-MW12 -0520

#### 20E0287-01 (Water)

Volatile Organic Com	pounds - SIM						
Method: EPA 8260C-SIN	/lethod: EPA 8260C-SIM				Sa	ampled: 05	/26/2020 14:06
Instrument: NT16 Analyst: PB					An	nalyzed: 05	/28/2020 16:51
Sample Preparation:	and Trap) Sample Size: 1 Final Volume: 1	0 mL 10 mL		]	Extract ID:	20E0287-01 B	
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Vinyl chloride	75-01-4	1	20.0	ND	ng/L	U	
Surrogate: 1,2-Dichloroethane-d4				80-129 %	102	%	

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Min-Soon Yim

**Reported:** 15-Jun-2020 11:07

#### SPL-GW-MW12 -0520

#### 20E0287-01 (Water)

Metals and Metallic C	Compounds						
Method: EPA 6020A					S	ampled: 05/	/26/2020 14:06
Instrument: ICPMS1 Analyst: MCB					Ar	halyzed: 06	/01/2020 20:50
Sample Preparation:	Preparation Method: REN EPA 600/4- Preparation Batch: BIE0498 Prepared: 05/28/2020	79-020 4.1.4 HNO3 matri Sample Size: 2 Final Volume:	x 5 mL 25 mL		Ext	ract ID: 201	E0287-01 G 01
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Iron		7439-89-6	1	20.0	864	ug/L	
Manganese		7439-96-5	1	0.500	24.3	ug/L	

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Min-Soon Yim

**Reported:** 15-Jun-2020 11:07

#### SPL-GW-MW12 -0520

20E0287-02 (Water)

Metals and Metallic C	Compounds (dissolved)								
Method: EPA 6020A UC	ethod: EPA 6020A UCT-KED				Sampled: 05/26/2020 14:06				
Instrument: ICPMS2 Analyst: MCB					Ar	alyzed: 06/	/02/2020 23:05		
Sample Preparation:Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix Preparation Batch: BIF0032Sample Size: 25 mL Final Volume: 25 mLPrepared: 06/02/2020Final Volume: 25 mL			x 5 mL 25 mL		Ext	ract ID: 201	E0287-02 A 01		
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes		
Arsenic, Dissolved		7440-38-2	1	0.200	0.423	ug/L			

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Seattle Public Utilities
700-5th Ave, Ste 4900, Box 34018
Seattle WA, 98124-4018

Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Min-Soon Yim

**Reported:** 15-Jun-2020 11:07

#### SPL-GW-MW14 -0520

20E0287-03 (Water)

Volatile Organic Com	pounds						
Method: EPA 8260C	Iethod: EPA 8260C				Sa	ampled: 05	/26/2020 16:26
nstrument: NT7 Analyst: PKC					An	alyzed: 05	/28/2020 16:37
Sample Preparation:	e and Trap) Sample Size: 10 Final Volume: 1	0 mL 0 mL		I	Extract ID:	20E0287-03 D	
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
cis-1,2-Dichloroethene	156-59-2	1	0.20	ND	ug/L	U	
Surrogate: 1,2-Dichloroethane-d4				80-129 %	103	%	

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Min-Soon Yim

**Reported:** 15-Jun-2020 11:07

#### SPL-GW-MW14 -0520

20E0287-03 (Water)

Volatile Organic Com	pounds - SIM						
Method: EPA 8260C-SIN	Aethod: EPA 8260C-SIM				Sa	ampled: 05	/26/2020 16:26
Instrument: NT16 Analyst: PB					Ar	nalyzed: 05	/28/2020 17:11
Sample Preparation:	and Trap) Sample Size: 1 Final Volume: 1	0 mL 10 mL		Ι	Extract ID:	20E0287-03 A	
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Vinyl chloride	75-01-4	1	20.0	ND	ng/L	U	
Surrogate: 1,2-Dichloroethane-d4				80-129 %	101	%	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Min-Soon Yim

**Reported:** 15-Jun-2020 11:07

#### SPL-GW-MW14 -0520

#### 20E0287-03 (Water)

Metals and Metallic C	Compounds					
Method: EPA 6020A				S	ampled: 05	/26/2020 16:26
Instrument: ICPMS1 An	Instrument: ICPMS1 Analyst: MCB				nalyzed: 06	/01/2020 20:52
Sample Preparation:	Preparation Method: REN EPA 600/4- Preparation Batch: BIE0498 Prepared: 05/28/2020	.79-020 4.1.4 HNO3 matrix Sample Size: 25 mL Final Volume: 25 mL		Ext	ract ID: 20	E0287-03 G 01
Analyte		CAS Number Dilution	Reporting Limit	Result	Units	Notes
Iron		7439-89-6 1	20.0	5090	ug/L	
Instrument: ICPMS2 An	alyst: MCB			Ar	nalyzed: 06	/02/2020 22:23
Sample Preparation:	Preparation Method: REN EPA 600/4- Preparation Batch: BIE0498 Prepared: 05/28/2020	79-020 4.1.4 HNO3 matrix Sample Size: 25 mL Final Volume: 25 mL		Ext	ract ID: 20	E0287-03 G 01
Analyte		CAS Number Dilution	Reporting Limit	Result	Units	Notes
Manganese		7439-96-5 5	2.50	628	ug/L	D



# **Analytical Report**

Seattle Public Utilities 700-5th Ave, Ste 4900, Box 34018 Seattle WA, 98124-4018 Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Min-Soon Yim

**Reported:** 15-Jun-2020 11:07

#### **Volatile Organic Compounds - Quality Control**

#### Batch BIE0525 - EPA 5030C (Purge and Trap)

Instrument: NT7 Analyst: PKC

QC Sample/Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Blank (BIE0525-BLK1)			Prep	ared: 28-Ma	y-2020 An	alyzed: 28-	May-2020	15:10		
cis-1,2-Dichloroethene	ND	0.20	ug/L							U
Surrogate: 1,2-Dichloroethane-d4	5.07		ug/L	5.00		101	80-129			
LCS (BIE0525-BS1)			Prep	ared: 28-Ma	y-2020 An	alyzed: 28-	May-2020	13:42		
cis-1,2-Dichloroethene	9.76	0.20	ug/L	10.0		97.6	80-121			
Surrogate: 1,2-Dichloroethane-d4	4.63		ug/L	5.00		92.6	80-129			
LCS Dup (BIE0525-BSD1)			Prep	ared: 28-Ma	y-2020 An	alyzed: 28-	May-2020	14:11		
cis-1,2-Dichloroethene	9.24	0.20	ug/L	10.0		92.4	80-121	5.50	30	
Surrogate: 1,2-Dichloroethane-d4	4.70		ug/L	5.00		94.0	80-129			

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Min-Soon Yim

**Reported:** 15-Jun-2020 11:07

#### Volatile Organic Compounds - SIM - Quality Control

#### Batch BIE0426 - EPA 5030 (Purge and Trap)

Instrument: NT16 Analyst: PB

QC Sample/Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Blank (BIE0426-BLK1)			Prep	ared: 28-Ma	y-2020 An	alyzed: 28-	-May-2020	11:11		
Vinyl chloride	ND	20.0	ng/L							U
Surrogate: 1,2-Dichloroethane-d4	4930		ng/L	5000		98.6	80-129			
LCS (BIE0426-BS1)			Prep	ared: 28-Ma	y-2020 An	alyzed: 28-	-May-2020	10:10		
Vinyl chloride	1690	20.0	ng/L	2000		84.7	76-120			
Surrogate: 1,2-Dichloroethane-d4	4830		ng/L	5000		96.7	80-129			
LCS Dup (BIE0426-BSD1)			Prep	ared: 28-Ma	y-2020 An	alyzed: 28-	-May-2020	10:51		
Vinyl chloride	1780	20.0	ng/L	2000		89.0	76-120	4.93	30	
Surrogate: 1,2-Dichloroethane-d4	4950		ng/L	5000		99.1	80-129			

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Min-Soon Yim

**Reported:** 15-Jun-2020 11:07

#### Metals and Metallic Compounds - Quality Control

#### Batch BIE0498 - REN EPA 600/4-79-020 4.1.4 HNO3 matrix

Instrument: ICPMS1 Analyst: MCB

QC Sample/Analyte	Isotope	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Blank (BIE0498-BLK3)				Prepa	ared: 28-Ma	y-2020 An	alyzed: 01-	Jun-2020 1	6:19		
Iron	54	ND	20.0	ug/L							U
Iron	57	ND	20.0	ug/L							U
LCS (BIE0498-BS3)				Prepa	ared: 28-Ma	y-2020 An	nalyzed: 01-	Jun-2020 1	6:20		
Iron	54	5010	20.0	ug/L	5000		100	80-120			
Iron	57	5040	20.0	ug/L	5000		101	80-120			
Instrument: ICPMS2 Analys	t: TCH										
			Reporting		Spike	Source		%REC		RPD	
QC Sample/Analyte	Isotope	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Blank (BIE0498-BLK1)				Prepa	ared: 28-Ma	y-2020 An	alyzed: 28-	May-2020	14:23		
Manganese	55	ND	0.500	ug/L							U
LCS (BIE0498-BS1)				Prepa	ared: 28-Ma	y-2020 An	alyzed: 28-	May-2020	14:28		
Manganese	55	24.7	0.500	ug/L	25.0		98.8	80-120			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Min-Soon Yim

**Reported:** 15-Jun-2020 11:07

#### Metals and Metallic Compounds (dissolved) - Quality Control

#### Batch BIF0032 - REN EPA 600/4-79-020 4.1.4 HNO3 matrix

Instrument: ICPMS2 Analyst: MCB

QC Sample/Analyte	Isotope	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Blank (BIF0032-BLK1)				Prepa	ared: 02-Jun	-2020 Ana	lyzed: 02-J	un-2020 16	:45		
Arsenic, Dissolved	75a	ND	0.200	ug/L							U
LCS (BIF0032-BS1)				Prepa	ared: 02-Jun	-2020 Ana	lyzed: 02-J	un-2020 16	:50		
Arsenic, Dissolved	75a	24.8	0.200	ug/L	25.0		99.2	80-120			
Duplicate (BIF0032-DUP1)		Source:	20E0287-02	Prepa	ared: 02-Jun	-2020 Ana	lyzed: 02-J	un-2020 23	:10		
Arsenic, Dissolved	75a	0.322	0.200	ug/L		0.423			27.10	20	L
Matrix Spike (BIF0032-MS1)		Source:	20E0287-02	Prepa	ared: 02-Jun	-2020 Ana	lyzed: 02-J	un-2020 23	:16		
Arsenic, Dissolved	75a	25.5	0.200	ug/L	25.0	0.423	100	75-125			

Recovery limits for target analytes in MS/MSD QC samples are advisory only.

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Min-Soon Yim

**Reported:** 15-Jun-2020 11:07

#### Certified Analyses included in this Report

Analyte	Certifications
EPA 6020A in Water	
Iron-54	WADOE,DoD-ELAP
Iron-54	NELAP,WADOE,DoD-ELAP
Iron-57	WADOE,DoD-ELAP
Iron-57	NELAP,WADOE,DoD-ELAP
Manganese-55	WADOE,DoD-ELAP
Manganese-55	NELAP,WADOE,DoD-ELAP
EPA 6020A UCT-KED in Water	
Arsenic-75a	NELAP,WADOE,DoD-ELAP,ADEC
Arsenic-75a	WADOE,DoD-ELAP,ADEC
EPA 8260C in Water	
Chloromethane	DoD-ELAP,ADEC,NELAP,WADOE
Chloromethane	DoD-ELAP,ADEC,CALAP,WADOE
Vinyl Chloride	DoD-ELAP,ADEC,NELAP,WADOE
Vinyl Chloride	DoD-ELAP,ADEC,CALAP,WADOE
Bromomethane	DoD-ELAP,ADEC,NELAP,WADOE
Bromomethane	DoD-ELAP,ADEC,CALAP,WADOE
Chloroethane	DoD-ELAP,ADEC,CALAP,WADOE
Chloroethane	DoD-ELAP,ADEC,NELAP,WADOE
Trichlorofluoromethane	DoD-ELAP,ADEC,NELAP,WADOE
Trichlorofluoromethane	DoD-ELAP,ADEC,CALAP,WADOE
Acrolein	DoD-ELAP,NELAP,WADOE
Acrolein	DoD-ELAP,CALAP,WADOE
1,1,2-Trichloro-1,2,2-Trifluoroethane	DoD-ELAP,ADEC,CALAP,WADOE
1,1,2-Trichloro-1,2,2-Trifluoroethane	DoD-ELAP,ADEC,NELAP,WADOE
Acetone	DoD-ELAP,ADEC,NELAP,WADOE
Acetone	DoD-ELAP,ADEC,CALAP,WADOE
1,1-Dichloroethene	DoD-ELAP,ADEC,NELAP,WADOE
1,1-Dichloroethene	DoD-ELAP,ADEC,CALAP,WADOE
Bromoethane	DoD-ELAP,NELAP,WADOE
Bromoethane	DoD-ELAP,CALAP,WADOE
lodomethane	DoD-ELAP,CALAP,WADOE
lodomethane	DoD-ELAP,NELAP,WADOE
Methylene Chloride	DoD-ELAP,ADEC,NELAP,WADOE
Methylene Chloride	DoD-ELAP,ADEC,CALAP,WADOE

Analytical Resources, Inc.



Seattle Public Utilities	Project: South Park Landfill -Parametrix Water 20	020
700-5th Ave, Ste 4900, Box 34018	Project Number: 553-155-067	Reported:
Seattle WA, 98124-4018	Project Manager: Min-Soon Yim	15-Jun-2020 11:07
Acrylonitrile	DoD-ELAP,NELAP,WADOE	
Acrylonitrile	DoD-ELAP,CALAP,WADOE	
Carbon Disulfide	DoD-ELAP,NELAP,WADOE	
Carbon Disulfide	DoD-ELAP,CALAP,WADOE	
trans-1,2-Dichloroethene	DoD-ELAP,ADEC,CALAP,WADOE	
trans-1,2-Dichloroethene	DoD-ELAP,ADEC,NELAP,WADOE	
Vinyl Acetate	DoD-ELAP,NELAP,WADOE	
Vinyl Acetate	DoD-ELAP,CALAP,WADOE	
1,1-Dichloroethane	DoD-ELAP,ADEC,CALAP,WADOE	
1,1-Dichloroethane	DoD-ELAP,ADEC,NELAP,WADOE	
2-Butanone	DoD-ELAP,NELAP,WADOE	
2-Butanone	DoD-ELAP,CALAP,WADOE	
2,2-Dichloropropane	DoD-ELAP,ADEC,NELAP,WADOE	
2,2-Dichloropropane	DoD-ELAP,ADEC,CALAP,WADOE	
cis-1,2-Dichloroethene	DoD-ELAP,ADEC,CALAP,WADOE	
cis-1,2-Dichloroethene	DoD-ELAP,ADEC,NELAP,WADOE	
Chloroform	DoD-ELAP,ADEC,CALAP,WADOE	
Chloroform	DoD-ELAP,ADEC,NELAP,WADOE	
Bromochloromethane	DoD-ELAP,ADEC,NELAP,WADOE	
Bromochloromethane	DoD-ELAP,ADEC,CALAP,WADOE	
1,1,1-Trichloroethane	DoD-ELAP,ADEC,CALAP,WADOE	
1,1,1-Trichloroethane	DoD-ELAP,ADEC,NELAP,WADOE	
1,1-Dichloropropene	DoD-ELAP,ADEC,NELAP,WADOE	
1,1-Dichloropropene	DoD-ELAP,ADEC,CALAP,WADOE	
Carbon tetrachloride	DoD-ELAP,ADEC,NELAP,WADOE	
Carbon tetrachloride	DoD-ELAP,ADEC,CALAP,WADOE	
1,2-Dichloroethane	DoD-ELAP, ADEC, NELAP, WADOE	
1,2-Dichloroethane	DoD-ELAP, ADEC, CALAP, WADOE	
Benzene	DoD-ELAP, ADEC, CALAP, WADOE	
Benzene	DoD-ELAP, ADEC, NELAP, WADOE	
Trichloroethene	DoD-ELAP, ADEC, CALAP, WADOE	
Trichloroethene	DoD-ELAP, ADEC, NELAP, WADOE	
1,2-Dichloropropane	DoD-ELAP, ADEC, NELAP, WADOE	
1,2-Dichloropropane	DoD-ELAP, ADEC, CALAP, WADOE	
Bromodichloromethane	DoD-ELAP, ADEC, NELAP, WADOE	
Bromodichloromethane	DoD-ELAP,ADEC,CALAP,WADOE	
Dibromomethane	DoD-ELAP,ADEC,NELAP,WADOE	
Dibromomethane	DoD-ELAP,ADEC,CALAP,WADOE	
2-Chloroethyl vinyl ether	DoD-ELAP,ADEC,NELAP,WADOE	

Analytical Resources, Inc.



# **Analytical Report**

Seattle Public Utilities	Project: South Park Landfill -Parametrix Water 20	020
700-5th Ave, Ste 4900, Box 34018	Project Number: 553-155-067	Reported:
Seattle WA, 98124-4018	Project Manager: Min-Soon Yim	15-Jun-2020 11:07
2-Chloroethyl vinyl ether	DoD-ELAP,ADEC,CALAP,WADOE	
4-Methyl-2-Pentanone	DoD-ELAP,CALAP,WADOE	
4-Methyl-2-Pentanone	DoD-ELAP,NELAP,WADOE	
cis-1,3-Dichloropropene	DoD-ELAP,ADEC,NELAP,WADOE	
cis-1,3-Dichloropropene	DoD-ELAP,ADEC,CALAP,WADOE	
Toluene	DoD-ELAP,ADEC,NELAP,WADOE	
Toluene	DoD-ELAP,ADEC,CALAP,WADOE	
trans-1,3-Dichloropropene	DoD-ELAP,ADEC,NELAP,WADOE	
trans-1,3-Dichloropropene	DoD-ELAP,ADEC,CALAP,WADOE	
2-Hexanone	DoD-ELAP,NELAP,WADOE	
2-Hexanone	DoD-ELAP,CALAP,WADOE	
1,1,2-Trichloroethane	DoD-ELAP, ADEC, NELAP, WADOE	
1,1,2-Trichloroethane	DoD-ELAP, ADEC, CALAP, WADOE	
1,3-Dichloropropane	DoD-ELAP,ADEC,CALAP,WADOE	
1,3-Dichloropropane	DoD-ELAP,ADEC,NELAP,WADOE	
Tetrachloroethene	DoD-ELAP,ADEC,CALAP,WADOE	
Tetrachloroethene	DoD-ELAP,ADEC,NELAP,WADOE	
Dibromochloromethane	DoD-ELAP,ADEC,NELAP,WADOE	
Dibromochloromethane	DoD-ELAP,ADEC,CALAP,WADOE	
1,2-Dibromoethane	DoD-ELAP,CALAP,WADOE	
1,2-Dibromoethane	DoD-ELAP,NELAP,WADOE	
Chlorobenzene	DoD-ELAP,ADEC,CALAP,WADOE	
Chlorobenzene	DoD-ELAP, ADEC, NELAP, WADOE	
Ethylbenzene	DoD-ELAP, ADEC, NELAP, WADOE	
Ethylbenzene	DoD-ELAP,ADEC,CALAP,WADOE	
1,1,1,2-Tetrachloroethane	DoD-ELAP,ADEC,CALAP,WADOE	
1,1,1,2-Tetrachloroethane	DoD-ELAP,ADEC,NELAP,WADOE	
m,p-Xylene	DoD-ELAP,ADEC,NELAP,WADOE	
m,p-Xylene	DoD-ELAP,ADEC,CALAP,WADOE	
o-Xylene	DoD-ELAP, ADEC, CALAP, WADOE	
o-Xylene	DoD-ELAP, ADEC, NELAP, WADOE	
Styrene	DoD-ELAP,CALAP,WADOE	
Styrene	DoD-ELAP,NELAP,WADOE	
Bromoform	DoD-ELAP,CALAP,WADOE	
Bromoform	DoD-ELAP,NELAP,WADOE	
1,1,2,2-Tetrachloroethane	DoD-ELAP, ADEC, CALAP, WADOE	
1,1,2,2-Tetrachloroethane	DoD-ELAP, ADEC, NELAP, WADOE	
1,2,3-Trichloropropane	DoD-ELAP, ADEC, CALAP, WADOE	
1,2,3-Trichloropropane	DoD-ELAP,ADEC,NELAP,WADOE	

Analytical Resources, Inc.



# **Analytical Report**

Seattle Public Utilities	Project: South Park Landfill -Parametrix Water 2020	
700-5th Ave, Ste 4900, Box 34018	Project Number: 553-155-067	Reported:
Seattle WA, 98124-4018	Project Manager: Min-Soon Yim	15-Jun-2020 11:07
trans-1,4-Dichloro 2-Butene	DoD-ELAP,ADEC,NELAP,WADOE	
trans-1,4-Dichloro 2-Butene	DoD-ELAP,ADEC,CALAP,WADOE	
n-Propylbenzene	DoD-ELAP,NELAP,WADOE	
n-Propylbenzene	DoD-ELAP,CALAP,WADOE	
Bromobenzene	DoD-ELAP,CALAP,WADOE	
Bromobenzene	DoD-ELAP,NELAP,WADOE	
Isopropyl Benzene	DoD-ELAP,NELAP,WADOE	
Isopropyl Benzene	DoD-ELAP,CALAP,WADOE	
2-Chlorotoluene	DoD-ELAP,ADEC,NELAP,WADOE	
2-Chlorotoluene	DoD-ELAP,ADEC,CALAP,WADOE	
4-Chlorotoluene	DoD-ELAP,ADEC,CALAP,WADOE	
4-Chlorotoluene	DoD-ELAP,ADEC,NELAP,WADOE	
t-Butylbenzene	DoD-ELAP,NELAP,WADOE	
t-Butylbenzene	DoD-ELAP,CALAP,WADOE	
1,3,5-Trimethylbenzene	DoD-ELAP,NELAP,WADOE	
1,3,5-Trimethylbenzene	DoD-ELAP,CALAP,WADOE	
1,2,4-Trimethylbenzene	DoD-ELAP,CALAP,WADOE	
1,2,4-Trimethylbenzene	DoD-ELAP,NELAP,WADOE	
s-Butylbenzene	DoD-ELAP,CALAP,WADOE	
s-Butylbenzene	DoD-ELAP,NELAP,WADOE	
4-Isopropyl Toluene	DoD-ELAP,CALAP,WADOE	
4-Isopropyl Toluene	DoD-ELAP,NELAP,WADOE	
1,3-Dichlorobenzene	DoD-ELAP,ADEC,NELAP,WADOE	
1,3-Dichlorobenzene	DoD-ELAP,ADEC,CALAP,WADOE	
1,4-Dichlorobenzene	DoD-ELAP,ADEC,NELAP,WADOE	
1,4-Dichlorobenzene	DoD-ELAP,ADEC,CALAP,WADOE	
n-Butylbenzene	DoD-ELAP,NELAP,WADOE	
n-Butylbenzene	DoD-ELAP,CALAP,WADOE	
1,2-Dichlorobenzene	DoD-ELAP,ADEC,NELAP,WADOE	
1,2-Dichlorobenzene	DoD-ELAP,ADEC,CALAP,WADOE	
1,2-Dibromo-3-chloropropane	DoD-ELAP,ADEC,CALAP,WADOE	
1,2-Dibromo-3-chloropropane	DoD-ELAP,ADEC,NELAP,WADOE	
1,2,4-Trichlorobenzene	DoD-ELAP,ADEC,CALAP,WADOE	
1,2,4-Trichlorobenzene	DoD-ELAP,ADEC,NELAP,WADOE	
Hexachloro-1,3-Butadiene	DoD-ELAP,ADEC,CALAP,WADOE	
Hexachloro-1,3-Butadiene	DoD-ELAP,ADEC,NELAP,WADOE	
Naphthalene	DoD-ELAP,ADEC,NELAP,WADOE	
Naphthalene	DoD-ELAP,ADEC,CALAP,WADOE	
1,2,3-Trichlorobenzene	DoD-ELAP,ADEC,CALAP,WADOE	

Analytical Resources, Inc.

Analytical Resources, Incorporated Analytical Chemists and Consultants

# **Analytical Report**

Seattle Public Utilities	Project: South Park Landfill -Parametrix Water 2020	
700-5th Ave, Ste 4900, Box 34018	Project Number: 553-155-067	Reported:
Seattle WA, 98124-4018	Project Manager: Min-Soon Yim	15-Jun-2020 11:07
1,2,3-Trichlorobenzene	DoD-ELAP,ADEC,NELAP,WADOE	
Dichlorodifluoromethane	DoD-ELAP,ADEC,NELAP,WADOE	
Dichlorodifluoromethane	DoD-ELAP,ADEC,CALAP,WADOE	
Methyl tert-butyl Ether	DoD-ELAP,ADEC,CALAP,WADOE	
Methyl tert-butyl Ether	DoD-ELAP,ADEC,NELAP,WADOE	
n-Hexane	WADOE	
n-Hexane	WADOE	
2-Pentanone	WADOE	
2-Pentanone	WADOE	
EPA 8260C-SIM in Water		
Acrylonitrile	CALAP, WADOE	
Acrylonitrile	NELAP,WADOE	
Vinyl chloride	CALAP,WADOE	
Vinyl chloride	NELAP,WADOE	
1,1-Dichloroethene	CALAP,WADOE	
1,1-Dichloroethene	NELAP,WADOE	
cis-1,2-Dichloroethene	CALAP,WADOE	
cis-1,2-Dichloroethene	NELAP,WADOE	
trans-1,2-Dichloroethene	NELAP,WADOE	
trans-1,2-Dichloroethene	CALAP, WADOE	
Trichloroethene	CALAP, WADOE	
Trichloroethene	NELAP,WADOE	
Tetrachloroethene	CALAP, WADOE	
Tetrachloroethene	NELAP,WADOE	
1,1,2,2-Tetrachloroethane	CALAP,WADOE	
1,1,2,2-Tetrachloroethane	NELAP,WADOE	
1,2-Dichloroethane	NELAP,WADOE	
1,2-Dichloroethane	CALAP, WADOE	
Benzene	CALAP, WADOE	
Benzene	NELAP,WADOE	
Code Description	Number	Expires

oouc	Description	Number	Explics
ADEC	Alaska Dept of Environmental Conservation	17-015	01/31/2021
DoD-ELAP	DoD-Environmental Laboratory Accreditation Program	66169	01/01/2021
WADOE	WA Dept of Ecology	C558	06/30/2020
WA-DW	Ecology - Drinking Water	C558	06/30/2020

Analytical	Resources,	Inc.
------------	------------	------

# **Analytical Report**

Seattle Public Utilities 700-5th Ave, Ste 4900, Box 34018 Seattle WA, 98124-4018 Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Min-Soon Yim

**Reported:** 15-Jun-2020 11:07

#### **Notes and Definitions**

- D The reported value is from a dilution
- E The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL)
- H Hold time violation Hold time was exceeded.
- J Estimated concentration value detected below the reporting limit.
- L Analyte concentration is <=5 times the reporting limit and the replicate control limit defaults to +/- RL instead of 20% RPD
- U This analyte is not detected above the reporting limit (RL) or if noted, not detected above the limit of detection (LOD).
- DET Analyte DETECTED
- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference
- [2C] Indicates this result was quantified on the second column on a dual column analysis.


15 June 2020

Min-Soon Yim Seattle Public Utilities 700-5th Ave, Ste 4900, Box 34018 Seattle, WA 98124-4018

RE: South Park Landfill -Parametrix Water 2020

Please find enclosed sample receipt documentation and analytical results for samples from the project referenced above.

Sample analyses were performed according to ARI's Quality Assurance Plan and any provided project specific Quality Assurance Plan. Each analytical section of this report has been approved and reviewed by an analytical peer, the appropriate Laboratory Supervisor or qualified substitute, and a technical reviewer.

Should you have any questions or problems, please feel free to contact us at your convenience.

Associated Work Order(s) 20E0321 Associated SDG ID(s) N/A

_____

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed in the enclose Narrative. ARI, an accredited laboratory, certifies that the report results for which ARI is accredited meets all the requirements of the accrediting body. A list of certified analyses, accreditations, and expiration dates is included in this report.

Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

Analytical Resources, Inc.

Shelly & Fish

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in itentirety.



# **Chain of Custody Record & Laboratory Analysis Request**

1119

ARI Assigned Number:	Turn-around	Requested: Phone: 206	2 weeks 684-7693		Date: Page:	5/25	2/20 of	)		20		Analy Analy 461	tical Resources, Incorporated /tical Chemists and Consultants 1 South 134th Place, Suite 100
Client Contact: Lisa Gilbert, Para	metrix	Phone: 20	6 394-366	67	No. of Coolers:	3	Cooler Temps	38	,33	,189		20	Tukwila, WA 98168 06-695-6200 206-695-6201 (fax)
Client Project Name: South Park	Landfill						T		Analysis	Request	ed		Notes/Comments
Client Project #: 553-1550-067	Samplers: N	like Brady			Ш	ы	qe	Mn	As**			-	
Sample ID	Date	Time	Matrix	Number of Containers	cis-1,2-D0	cis-1,2-D( benzene	Vinyl Chlori	Total Fe,	Dissolved				
			water		<del>ex</del>	110	CX-	~	<b>*</b>			 	- **Field-filtered
SPL-GW-MW32-0520	5/27/20	1720	water	8	х		x	x	x				
SPL-GW-MW33-0520	5/27/20	15:50	water	8	х	_	x	x	x				
SPL-GW-MW100520	5/27/20	14:40	water	8	х		x	x	x				
SPL-GW-MW25-0520	5/27/20	13:10	water	8		x	х	x	х				
SPL-GW-MW30-0520	5/28/20	14:41	water	7	х		х	x					
SPL-GW-MW31-0520	5128120	13:45	water	7	Х		х	x					
SPL-GW-MW61-0520	5/15/10	5:00	water	8	8	x	х	x	х				
SPL-GW-MW81-0520	5/26/20	TRIP	water	22	1	X	x						
Comments/Special Instructions	Relinguished by: (Signature)	NB-		Received by: (Signature)	4	1	2	Relinquish (Signature	ed by: )			Received b (Signature)	y:
20E0	Printed Name:	milin		Printed Name:	nyd	Dan	a	Printed Na	me:			Printed Nar	ne:
321 AF	Company:	X		Company:	T	~	5	Company:				Company:	
21Sam	Date & Time:	1545	5	Date & Time: 5128	120	201	545	Date & Tin	ne:			Date & Tim	e:

**Limits of Liability:** ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or co-

Sample Retention Policy: Unless specified by work order or contract, all water/soil samples submitted to ARI will be discarded or returned, no sooner than 90 days after receipt or 60 days after submission of Ardcopy data, whichever is longer. Sediment samples submitted under PSDDA/PSEP/SMS protocol will be stored frozen for up to one year and then discarded.

87

# **Chain of Custody Record & Laboratory Analysis Request**

0

ARI Assigned Number:	Turn-around	Requested:	2 weeks		Date:	5/28	5/20						Analyti Analyt	ical Resources, Incorporated tical Chemists and Consultants
Public Utility	Seattle	Phone: 206	684-7693		Page:	2	of			3			4611	1 South 134th Place, Suite 100
Client Contact: Lisa Gilbert, Param	netrix •	Phone: 20	)6 394-366	37	No. of Coolers:	3	Cooler Temps	3.9	,33	<u>، الم و</u>	в		200	6-695-6200 206-695-6201 (fax)
Client Project Name: South Park L	andfill					T	T	T	Analysis	Request	ed	T	1	Notes/Comments
Client Project #: 553-1550-067	Samplers: N	1ike Brady				ц	ide	ЧИ	I As**					
Sample ID	Date	Time	Matrix	Number of Containers	cis-1,2-D	cis-1,2-D benzene	Vinyl Chlor	Total Fe,	Dissolved			8		
SPL-GW-MW18-0520	5/27/20	11:10	water	8	X		X	X	Х					**Field-filtered
SPL-GW-MW29-0520	5/27/20	9:40	water	7	х		x	x						
SPL CW MW44-9529			water	Call Friedow			×	X				 		Not included.
SPL-GW-MW27-0520	05/18/20	7:40	water	8	x		x	x	x					
SPL-GW-MW08-0520	05/28/20	9:25	water	8	x		x	x	x					
SPL-GW-MW24-0520	5/25/20	12:05	water	8	x		x	x	x	0				
SPL-GW-MW26-0520	5 25 20	10-51	water	8	x		x	x	x					
SPL-GW-MW60-0520	5/27/20	13:30	water	8	x		x	x	x					
SPL-GW-MW80-0520	5/27/12	TRIP	water	×2	X	1	×							
Comments/Special Instructions	Relinquished by (Signature)	JB.	n	Received by: (Signature)	X		1	Relinquish (Signature	ed by: )				Received by (Signature)	
S.,	Printed Name: Mike Bn	My		Printed Name:	nny	Den	ng	Printed Na	me:				Printed Name	e:
J	Company:	nx nx		Company:			)	Company:					Company:	
	Date & Time: 5/18/10.	1544	2	Date & Time:	120	154	5	Date & Tim	ne:				Date & Time	2

**EXAMPLE 1 Limits of Liability:** ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or co-

Sample Retention Policy: Unless specified by work order or contract, all water/soil samples submitted to ARI will be discarded or returned, no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer. Sediment samples submitted under PSDDA/PSEP/SMS protocol will be stored frozen for up to one year and then discarded.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Min-Soon Yim

**Reported:** 15-Jun-2020 11:19

#### ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SPL-GW-MW32-0520	20E0321-01	Water	27-May-2020 17:20	28-May-2020 15:45
SPL-GW-MW33-0520	20E0321-02	Water	27-May-2020 15:50	28-May-2020 15:45
SPL-GW-MW100520	20E0321-03	Water	27-May-2020 14:40	28-May-2020 15:45
SPL-GW-MW25-0520	20E0321-04	Water	27-May-2020 13:10	28-May-2020 15:45
SPL-GW-MW30-0520	20E0321-05	Water	28-May-2020 14:41	28-May-2020 15:45
SPL-GW-MW31-0520	20E0321-06	Water	28-May-2020 13:45	28-May-2020 15:45
SPL-GW-MW61-0520	20E0321-07	Water	28-May-2020 08:00	28-May-2020 15:45
SPL-GW-MW81-0520	20E0321-08	Water	28-May-2020 14:41	28-May-2020 15:45
SPL-GW-MW18-0520	20E0321-09	Water	27-May-2020 11:10	28-May-2020 15:45
SPL-GW-MW29-0520	20E0321-10	Water	27-May-2020 09:40	28-May-2020 15:45
SPL-GW-MW27-0520	20E0321-11	Water	28-May-2020 07:40	28-May-2020 15:45
SPL-GW-MW08-0520	20E0321-13	Water	28-May-2020 09:25	28-May-2020 15:45
SPL-GW-MW24-0520	20E0321-14	Water	28-May-2020 12:05	28-May-2020 15:45
SPL-GW-MW26-0520	20E0321-15	Water	28-May-2020 10:51	28-May-2020 15:45
SPL-GW-MW60-0520	20E0321-16	Water	27-May-2020 13:30	28-May-2020 15:45
SPL-GW-MW80-0520	20E0321-17	Water	28-May-2020 12:05	28-May-2020 15:45
Trip Blanks	20E0321-19	Water	28-May-2020 14:41	28-May-2020 15:45
SPL-GW-MW32-0520	20E0321-20	Water	27-May-2020 17:20	28-May-2020 15:45
SPL-GW-MW33-0520	20E0321-21	Water	27-May-2020 15:50	28-May-2020 15:45
SPL-GW-MW100520	20E0321-22	Water	27-May-2020 14:40	28-May-2020 15:45
SPL-GW-MW25-0520	20E0321-23	Water	27-May-2020 13:10	28-May-2020 15:45
SPL-GW-MW61-0520	20E0321-24	Water	28-May-2020 08:00	28-May-2020 15:45
SPL-GW-MW18-0520	20E0321-25	Water	27-May-2020 11:10	28-May-2020 15:45
SPL-GW-MW27-0520	20E0321-26	Water	28-May-2020 07:40	28-May-2020 15:45
SPL-GW-MW08-0520	20E0321-27	Water	28-May-2020 09:25	28-May-2020 15:45
SPL-GW-MW24-0520	20E0321-28	Water	28-May-2020 12:05	28-May-2020 15:45
SPL-GW-MW26-0520	20E0321-29	Water	28-May-2020 10:51	28-May-2020 15:45
SPL-GW-MW60-0520	20E0321-30	Water	27-May-2020 13:30	28-May-2020 15:45

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Min-Soon Yim

**Reported:** 15-Jun-2020 11:19

# Work Order Case Narrative

Client: Seattle Public Utilities Project: South Park Landfill -Parametrix Water 2020 Work Order: 20E0321

#### Revised Report

This report was revised to remove reference in the case narrative for a sample which was not to be included in this report. Data has been inadvertantly reported to the Method Detection Limit. This revised report reports to the Method Reporting Limit.

#### Sample receipt

Samples as listed on the preceding page were received 28-May-2020 15:45 under ARI work order 20E0321. For details regarding sample receipt, please refer to the Cooler Receipt Form.

#### Volatiles - EPA Method SW8260C

The sample(s) were analyzed within the recommended holding times.

Initial and continuing calibrations were within method requirements.

Internal standard areas were within limits.

The surrogate percent recoveries were within control limits.

The method blank(s) were clean at the reporting limits.

The LCS/LCSD percent recoveries and RPD were within control limits.

The matrix spike/matrix spike duplicate recoveries and RPD were within limits.

#### Volatiles - EPA Method 8260C-SIM (Selected Ion Monitoring)

The sample(s) were analyzed within the recommended holding times.

Initial and continuing calibrations were within method requirements.

Internal standard areas were within limits.

The surrogate percent recoveries were within control limits.

The method blank(s) were clean at the reporting limits.

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Min-Soon Yim

**Analytical Report** 

**Reported:** 15-Jun-2020 11:19

The LCS percent recoveries were within control limits.

The matrix spike/matrix spike duplicate recoveries and RPD were within limits.

#### Total Metals - EPA Method 6020A

The sample(s) were digested and analyzed within the recommended holding times.

Initial and continuing calibrations were within method requirements.

The method blank(s) were clean at the reporting limits except Manganese. The sample concentrations are greater than 10 times the reporting limit. The method blank concentration is negligible. All samples which contain analyte have been flagged with a "B" qualifier.

The LCS percent recoveries were within control limits.

Sample specific QC was performed in association with sample 20E0321-05 in batch BIF 0110. The duplicate RPD were within control limits. The matrix spike percent recoveries were within control limits except Manganese which is flagged within the QC section of this report.

#### **Dissolved Metals - EPA Method 6020A**

The sample(s) were digested and analyzed within the recommended holding times.

Initial and continuing calibrations were within method requirements.

The method blank(s) were clean at the reporting limits.

The LCS percent recoveries were within control limits.

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

	10-9	
6	1	
-	-4	

Analytical Resources, Incorporated Analytical Chemists and Consultants

# **Cooler Receipt Form**

ARI Client: SRV		Project Name: South Par	rk Landfill
COC No(s):	(NA)	Delivered by: Fed-Ex UPS Courier H	and Delivered Other:
Assigned ARI Job No: 20	E0321	Tracking No:	(NA)
Preliminary Examination Pha	ise:		
Were intact, properly signed	and dated custody seals attached to	o the outside of the cooler?	YES NO
Were custody papers include	d with the cooler?		VES NO
Were custody papers properl	y filled out (ink, signed, etc.)		ES NO
Temperature of Cooler(s) (°C	) (recommended 2.0-6.0 °C for che	mistry)	
Time 1545		3.3 3.8 18	·8
If cooler temperature is out of	compliance fill out form 00070F	Ten	np Gun ID#: DOO SZOC
Cooler Accepted by:	KD	Date: 5/28/2020 Time:	1545
	Complete custody forms	and attach all shipping documents	
Log-In Phase:			

Was a temperature blank included in the cooler?		YES	(NO)
What kind of packing material was used? Bubble Wrap Wet Ice Gel Packs Baggies Foam Blo	ck Paper Other	n	$\cup$
Was sufficient ice used (if appropriate)?	NA	YES	NO
How were bottles sealed in plastic bags?	Individually	Grouped	(Not)
Did all bottles arrive in good condition (unbroken)?		(ES)	NO
Were all bottle labels complete and legible?		VES	NO
Did the number of containers listed on COC match with the number of containers received?		YES	NO
Did all bottle labels and tags agree with custody papers?		YES	(NO)
Were all bottles used correct for the requested analyses?		YES	NO
Do any of the analyses (bottles) require preservation? (attach preservation sheet, excluding VOCs)	NA	ES	NO
Were all VOC vials free of air bubbles?	NA	YES	NO
Was sufficient amount of sample sent in each bottle?		YES	NO
Date VOC Trip Blank was made at ARI	NA	5127	120
Were the sample(s) split  VES Date/Time: Equipment:		Split by:	
Samples Logged by: KO Date: 5125120 Time: 1648 Labels	s checked by: _	KD	

** Notify Project Manager of discrepancies or concerns **

Sample ID on Bottle	Sample ID on COC	Sample ID on Bottle	Sample ID on COC
SPL-GW-MWZI	OSZO SPL-	DRUM-0520	
Additional Notes, Discrepancie	es, & Resolutions:		1010 0 4110000
- SPI-GW-W	1WZ4-0520 V	mislabeled. M	savne sufficie
L- br SPL-	DRUM-0520, U	used process of	elimitation
70000	1 D Time mo	itched as well	*
to tigure or	in point inot li	sted an coc.	
- 3 Trip Blank	is were not t		
By: KD Da	nte: 5128/2020		1
		metal	S
17/2018 Sample 7	0E0221-18 CD1 - D	PUM-0520,60 HI	CStated Revision 014A
preserved wit	HISSY NOT HND.	2. Will note in,	narrative SLF 5/291000
		Page 7 of 91 20E0	321 ARISample FINAL 15 Jun 2020 1119



20E0321

Chemi: Seattle Fublic Utilitie	Client:	Seattle	Public	Utilities
--------------------------------	---------	---------	--------	-----------

Project Manager: Shelly Fishel

Project: South Park Landfill -Parametrix Water 2020

Project Number: 553-155-067

	Preserva	tion Confirmation	
<b>Container ID</b>	Container Type	рН	
20E0321-01 A	HDPE NM, 500 mL, 1:1 HNO3	<2 Pass	
20E0321-01 B	VOA Vial, Clear, 40 mL, HCL		
20E0321-01 C	VOA Vial, Clear, 40 mL, HCL		
20E0321-01 D	VOA Vial, Clear, 40 mL, HCL		
20E0321-01 E	VOA Vial, Clear, 40 mL		
20E0321-01 F	VOA Vial, Clear, 40 mL		
20E0321-01 G	VOA Vial, Clear, 40 mL		
20E0321-02 A	HDPE NM, 500 mL, 1:1 HNO3	LZ Pass	
20E0321-02 B	VOA Vial, Clear, 40 mL, HCL		
20E0321-02 C	VOA Vial, Clear, 40 mL, HCL		
20E0321-02 D	VOA Vial, Clear, 40 mL, HCL		
20E0321-02 E	VOA Vial, Clear, 40 mL		
20E0321-02 F	VOA Vial, Clear, 40 mL		
20E0321-02 G	VOA Vial, Clear, 40 mL		
20E0321-03 A	HDPE NM, 500 mL, 1:1 HNO3	KZ Pass	
20E0321-03 B	VOA Vial, Clear, 40 mL, HCL		
20E0321-03 C	VOA Vial, Clear, 40 mL, HCL		
20E0321-03 D	VOA Vial, Clear, 40 mL, HCL		
20E0321-03 E	VOA Vial, Clear, 40 mL		
20E0321-03 F	VOA Vial, Clear, 40 mL		
20E0321-03 G	VOA Vial, Clear, 40 mL		
20E0321-04 A	HDPE NM, 500 mL, 1:1 HNO3	<2 Pass	
20E0321-04 B	VOA Vial, Clear, 40 mL, HCL		
20E0321-04 C	VOA Vial, Clear, 40 mL, HCL		
20E0321-04 D	VOA Vial, Clear, 40 mL, HCL		
20E0321-04 E	VOA Vial, Clear, 40 mL	14	
20E0321-04 F	VOA Vial, Clear, 40 mL		
20E0321-04 G	VOA Vial, Clear, 40 mL		
20E0321-05 A	HDPE NM, 500 mL, 1:1 HNO3	LZ Pass	
20E0321-05 B	VOA Vial, Clear, 40 mL, HCL		
20E0321-05 C	VOA Vial, Clear, 40 mL, HCL		
20E0321-05 D	VOA Vial, Clear, 40 mL, HCL		
20E0321-05 E	VOA Vial, Clear, 40 mL		
20E0321-05 F	VOA Vial, Clear, 40 mL		
20E0321-05 G	VOA Vial, Clear, 40 mL		



20E0321

Client: Seattle Public Utilities		Project Manager: Shelly Fishel	
Project: South Park	Landfill -Parametrix Water 2020	Project Number: 553-155-067	
20E0321-06 A	HDPE NM, 500 mL, 1:1 HNO3	<z pass<="" th=""><th></th></z>	
20E0321-06 B	VOA Vial, Clear, 40 mL, HCL		
20E0321-06 C	VOA Vial, Clear, 40 mL, HCL		
20E0321-06 D	VOA Vial, Clear, 40 mL, HCL		
20E0321-06 E	VOA Vial, Clear, 40 mL		
20E0321-06 F	VOA Vial, Clear, 40 mL		
20E0321-06 G	VOA Vial, Clear, 40 mL		
20E0321-07 A	HDPE NM, 500 mL, 1:1 HNO3	42 Pass	
20E0321-07 B	VOA Vial, Clear, 40 mL, HCL		
20E0321-07 C	VOA Vial, Clear, 40 mL, HCL		
20E0321-07 D	VOA Vial, Clear, 40 mL, HCL		
20E0321-07 E	VOA Vial, Clear, 40 mL		
20E0321-07 F	VOA Vial, Clear, 40 mL		
20E0321-07 G	VOA Vial, Clear, 40 mL		
20E0321-08 A	VOA Vial, Clear, 40 mL, HCL		
20E0321-08 B	VOA Vial, Clear, 40 mL, HCL		
20E0321-09 A	HDPE NM, 500 mL, 1:1 HNO3	LZ Pass	
20E0321-09 B	VOA Vial, Clear, 40 mL, HCL		
20E0321-09 C	VOA Vial, Clear, 40 mL, HCL		
20E0321-09 D	VOA Vial, Clear, 40 mL, HCL		
20E0321-09 E	VOA Vial, Clear, 40 mL		
20E0321-09 F	VOA Vial, Clear, 40 mL		
20E0321-09 G	VOA Vial, Clear, 40 mL		
20E0321-10 A	HDPE NM, 500 mL, 1:1 HNO3	42 Pass	
20E0321-10 B	VOA Vial, Clear, 40 mL, HCL		
20E0321-10 C	VOA Vial, Clear, 40 mL, HCL		
20E0321-10 D	VOA Vial, Clear, 40 mL, HCL		
20E0321-10 E	VOA Vial, Clear, 40 mL		
20E0321-10 F	VOA Vial, Clear, 40 mL		
20E0321-10 G	VOA Vial, Clear, 40 mL		
20E0321-11 A	HDPE NM, 500 mL, 1:1 HNO3	42 Pass	
20E0321-11 B	VOA Vial, Clear, 40 mL, HCL		
20E0321-11 C	VOA Vial, Clear, 40 mL, HCL		
20E0321-11 D	VOA Vial, Clear, 40 mL, HCL		
20E0321-11 E	VOA Vial, Clear, 40 mL		
20E0321-11 F	VOA Vial, Clear, 40 mL		
20E0321-11 G	VOA Vial, Clear, 40 mL		



# 20E0321

Client: Seattle Public Utilities		Project Manager: Shelly Fishel
Project: South Park L	andfill -Parametrix Water 2020	Project Number: 553-155-067
20E0321-12 A	HDPE NM, 500 mL, 1:1 HNO3	42 Pass
20E0321-12 B	VOA Vial, Clear, 40 mL, HCL	
20E0321-12 C	VOA Vial, Clear, 40 mL, HCL	
20E0321-12 D	VOA Vial, Clear, 40 mL, HCL	
20E0321-12 E	VOA Vial, Clear, 40 mL	
20E0321-12 F	VOA Vial, Clear, 40 mL	
20E0321-12 G	VOA Vial, Clear, 40 mL	
20E0321-13 A	HDPE NM, 500 mL, 1:1 HNO3	L2 Pass
20E0321-13 B	VOA Vial, Clear, 40 mL, HCL	
20E0321-13 C	VOA Vial, Clear, 40 mL, HCL	
20E0321-13 D	VOA Vial, Clear, 40 mL, HCL	
20E0321-13 E	VOA Vial, Clear, 40 mL	
20E0321-13 F	VOA Vial, Clear, 40 mL	
20E0321-13 G	VOA Vial, Clear, 40 mL	
20E0321-14 A	HDPE NM, 500 mL, 1:1 HNO3	LZ Pass
20E0321-14 B	VOA Vial, Clear, 40 mL, HCL	
20E0321-14 C	VOA Vial, Clear, 40 mL, HCL	
20E0321-14 D	VOA Vial, Clear, 40 mL, HCL	
20E0321-14 E	VOA Vial, Clear, 40 mL	
20E0321-14 F	VOA Vial, Clear, 40 mL	
20E0321-14 G	VOA Vial, Clear, 40 mL	
20E0321-15 A	HDPE NM, 500 mL, 1:1 HNO3	<2 PC.55
20E0321-15 B	VOA Vial, Clear, 40 mL, HCL	
20E0321-15 C	VOA Vial, Clear, 40 mL, HCL	
20E0321-15 D	VOA Vial, Clear, 40 mL, HCL	
20E0321-15 E	VOA Vial, Clear, 40 mL	
20E0321-15 F	VOA Vial, Clear, 40 mL	
20E0321-15 G	VOA Vial, Clear, 40 mL	
20E0321-16 A	HDPE NM, 500 mL, 1:1 HNO3	LZ Pass
20E0321-16 B	VOA Vial, Clear, 40 mL, HCL	
20E0321-16 C	VOA Vial, Clear, 40 mL, HCL	
20E0321-16 D	VOA Vial, Clear, 40 mL, HCL	
20E0321-16 E	VOA Vial, Clear, 40 mL	
20E0321-16 F	VOA Vial, Clear, 40 mL	
20E0321-16 G	VOA Vial, Clear, 40 mL	
20E0321-17 A	VOA Vial, Clear, 40 mL, HCL	
20E0321-17 B	VOA Vial, Clear, 40 mL, HCL	



20E0321

Client: Seattle	Public Utilities	Project Manag	ger: Shelly Fishel	
Project: South P	Park Landfill -Parametrix Water 2020	Project Numbe	er: 553-155-067	
20E0321-18 A	HDPE NM, 1000 mL, 1:1 HNO3	cz Pass	k	
20E0321-18 B	BOD Bottle			
20E0321-18 C	VOA Vial, Clear, 40 mL, HCL			
20E0321-18 D	VOA Vial, Clear, 40 mL, HCL			
20E0321-18 E	VOA Vial, Clear, 40 mL, HCL			
20E0321-19 A	VOA Vial, Clear, 40 mL, HCL			
20E0321-19 B	VOA Vial, Clear, 40 mL, HCL			
20E0321-19 C	VOA Vial, Clear, 40 mL, HCL			
20E0321-20 A	HDPE NM, 500 mL, 1:1 HNO3 (FF)	42	Pass	
20E0321-21 A	HDPE NM, 500 mL, 1:1 HNO3 (FF)	<2	Pass	
20E0321-22 A	HDPE NM, 500 mL, 1:1 HNO3 (FF)	62	Pass	
20E0321-23 A	HDPE NM, 500 mL, 1:1 HNO3 (FF)	cn	Pass	
20E0321-24 A	HDPE NM, 500 mL, 1:1 HNO3 (FF)	cn	Pass	
20E0321-25 A	HDPE NM, 500 mL, 1:1 HNO3 (FF)	K2	Pass	
20E0321-26 A	HDPE NM, 500 mL, 1:1 HNO3 (FF)	62	Pass	
20E0321-27 A	HDPE NM, 500 mL, 1:1 HNO3 (FF)	42	Pa 35	
20E0321-28 A	HDPE NM, 500 mL, 1:1 HNO3 (FF)	C2	Pass	
20E0321-29 A	HDPE NM, 500 mL, 1:1 HNO3 (FF)	c Z	Pass	
20E0321-30 A	HDPE NM, 500 mL, 1:1 HNO3 (FF)	12	Pag	

KD

Preservation Confirmed By

firmed By t bottle label states preserved w/ H2SQ4 not HNO3. Will note in narrative. SLF 5/29/2020



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Min-Soon Yim

**Reported:** 15-Jun-2020 11:19

#### SPL-GW-MW32-0520

#### 20E0321-01 (Water)

Volatile Organic Com	pounds							
Method: EPA 8260C					Sampled: 05/27/2020 17:2			
Instrument: NT3 Analys	nstrument: NT3 Analyst: PKC				Analyzed: 05/29/2020 14:55			
Sample Preparation:	Preparation Method: EPA 5030C (Purg Preparation Batch: BIE0538 Prepared: 05/29/2020	e and Trap) Sample Size: 1 Final Volume:		]	Extract ID:	20E0321-01 E		
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes	
cis-1,2-Dichloroethene		156-59-2	1	0.20	0.97	ug/L		
Surrogate: 1,2-Dichloroethane-d4				80-129 %	103	%		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Min-Soon Yim

**Reported:** 15-Jun-2020 11:19

#### SPL-GW-MW32-0520

#### 20E0321-01 (Water)

Volatile Organic Con	pounds - SIM							
Method: EPA 8260C-SIN	ethod: EPA 8260C-SIM				Sampled: 05/27/20			
Instrument: NT16 Anal	yst: PB				Analyzed: 06/02/2020 20:14			
Sample Preparation:	and Trap) Sample Size: 1 Final Volume:	d Trap) Sample Size: 10 mL Final Volume: 10 mL			Extract ID:	20E0321-01 D		
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes	
Vinyl chloride		75-01-4	1	20.0	265	ng/L		
Surrogate: 1,2-Dichloroethane-d4				80-129 %	98.0	%		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Min-Soon Yim

**Reported:** 15-Jun-2020 11:19

#### SPL-GW-MW32-0520

20E0321-01 (Water)

Metals and Metallic C	ompounds								
Method: EPA 6020A	ethod: EPA 6020A					Sampled: 05/27/2020 17:20			
Instrument: ICPMS1 Ana		Analyzed: 06/08/2020 14:30							
Sample Preparation:	Preparation Method: REN EPA 600/4- Preparation Batch: BIF0110 Prepared: 06/04/2020	-79-020 4.1.4 HNO3 matri Sample Size: 2 Final Volume: 1		Ext	ract ID: 20I	E0321-01 A 01			
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes		
Iron		7439-89-6	1	20.0	13700	ug/L			

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Min-Soon Yim

**Reported:** 15-Jun-2020 11:19

#### SPL-GW-MW32-0520

#### 20E0321-01RE1 (Water)

Metals and Metallic (	Compounds								
Method: EPA 6020A	fethod: EPA 6020A					Sampled: 05/27/2020 17:20			
Instrument: ICPMS1 Analyst: MCB					Analyzed: 06/08/2020 17:24				
Sample Preparation:	Preparation Method: REN EPA 600/4- Preparation Batch: BIF0110 Prepared: 06/04/2020	4-79-020 4.1.4 HNO3 matrix Sample Size: 25 mL Final Volume: 25 mL			Extract	ID: 20E032	1-01RE1 A 01		
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes		
Manganese		7439-96-5	10	5.00	1500	ug/L	B, D		

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Seattle Public Utilities	
700-5th Ave, Ste 4900, Box 34018	
Seattle WA, 98124-4018	

Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Min-Soon Yim

**Reported:** 15-Jun-2020 11:19

#### SPL-GW-MW33-0520

20E0321-02 (Water)

Volatile Organic Com	pounds								
Method: EPA 8260C	iethod: EPA 8260C				Sa	ampled: 05	/27/2020 15:50		
Instrument: NT3 Analys	nstrument: NT3 Analyst: PKC					Analyzed: 05/29/2020 15:21			
Sample Preparation:	ple Preparation:       Preparation Method: EPA 5030C (Purge and Trap)         Preparation Batch: BIE0538       Sample Size: 10 mL         Prepared: 05/29/2020       Final Volume: 10 mL				]	Extract ID	20E0321-02 F		
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes		
cis-1,2-Dichloroethene		156-59-2	1	0.20	ND	ug/L	U		
Surrogate: 1,2-Dichloroethane-d4				80-129 %	105	%			

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Min-Soon Yim

**Reported:** 15-Jun-2020 11:19

#### SPL-GW-MW33-0520

20E0321-02 (Water)

Volatile Organic Com	pounds - SIM							
Method: EPA 8260C-SIN	1				Sampled: 05/27/2020 15:5			
Instrument: NT16 Analy	yst: PB				Analyzed: 06/02/2020 20:3-			
Sample Preparation:	and Trap) Sample Size: 1 Final Volume:	0 mL 10 mL		Ι	Extract ID:	20E0321-02 C		
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes	
Vinyl chloride		75-01-4	1	20.0	58.2	ng/L		
Surrogate: 1,2-Dichloroethane-d4				80-129 %	97.7	%		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Min-Soon Yim

**Reported:** 15-Jun-2020 11:19

#### SPL-GW-MW33-0520

20E0321-02 (Water)

Metals and Metallic (	Compounds								
Method: EPA 6020A	1ethod: EPA 6020A					ampled: 05/	27/2020 15:50		
Instrument: ICPMS1 Analyst: MCB					Analyzed: 06/08/2020 14:37				
Sample Preparation:	Preparation Method: REN EPA 600/4 Preparation Batch: BIF0110 Prepared: 06/04/2020	-79-020 4.1.4 HNO3 matri Sample Size: 2 Final Volume: 1		Ext	ract ID: 201	E0321-02 A 01			
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes		
Iron		7439-89-6	1	20.0	13500	ug/L			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Min-Soon Yim

**Reported:** 15-Jun-2020 11:19

### SPL-GW-MW33-0520

#### 20E0321-02RE1 (Water)

Metals and Metallic (	Compounds								
Method: EPA 6020A					Sampled: 05/27/2020 15:50				
Instrument: ICPMS1 Analyst: MCB					Analyzed: 06/08/2020 17:28				
Sample Preparation:	Preparation Method: REN EPA 600/4- Preparation Batch: BIF0110 Prepared: 06/04/2020	/4-79-020 4.1.4 HNO3 matrix Sample Size: 25 mL Final Volume: 25 mL			Extract	ID: 20E032	1-02RE1 A 01		
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes		
Manganese		7439-96-5	10	5.00	1610	ug/L	B, D		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Seattle Public Utilities
700-5th Ave, Ste 4900, Box 34018
Seattle WA, 98124-4018

Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Min-Soon Yim

**Reported:** 15-Jun-2020 11:19

#### SPL-GW-MW10--0520

20E0321-03 (Water)

Volatile Organic Com	pounds								
Method: EPA 8260C	ethod: EPA 8260C				Sa	mpled: 05	/27/2020 14:40		
Instrument: NT3 Analys	nstrument: NT3 Analyst: PKC					Analyzed: 05/29/2020 15:47			
Sample Preparation:	Preparation Method: EPA 5030C (Purge Preparation Batch: BIE0538 Prepared: 05/29/2020	and Trap) Extract ID Sample Size: 10 mL Final Volume: 10 mL			Extract ID:	20E0321-03 E			
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes		
cis-1,2-Dichloroethene		156-59-2	1	0.20	1.07	ug/L			
Surrogate: 1,2-Dichloroethe	une-d4			80-129 %	104	%			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Min-Soon Yim

**Reported:** 15-Jun-2020 11:19

#### SPL-GW-MW10--0520

20E0321-03 (Water)

Volatile Organic Com	pounds - SIM							
Method: EPA 8260C-SIN	1				Sampled: 05/27/202			
Instrument: NT16 Analy	astrument: NT16 Analyst: PB				Analyzed: 06/02/2020 20:54			
Sample Preparation:	and Trap) Sample Size: 1 Final Volume: 1	0 mL 10 mL		Ι	Extract ID:	20E0321-03 B		
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes	
Vinyl chloride		75-01-4	1	20.0	77.8	ng/L		
Surrogate: 1,2-Dichloroethane-d4				80-129 %	97.5	%		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Min-Soon Yim

**Reported:** 15-Jun-2020 11:19

#### SPL-GW-MW10--0520

20E0321-03 (Water)

Metals and Metallic (	Compounds						
Method: EPA 6020A	lethod: EPA 6020A				Sa	ampled: 05/	27/2020 14:40
Instrument: ICPMS1 Ar	alyst: MCB			Analyzed: 06/08/2020 17:			
Sample Preparation:     Preparation Method: REN EPA 600/4-79-020 4.1.4 HI       Preparation Batch: BIF0110     Sam       Prepared: 06/04/2020     Fina			x 5 mL 25 mL		Ext	ract ID: 201	E0321-03 A 01
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Iron		7439-89-6	10	200	35100	ug/L	D
Manganese		7439-96-5	10	5.00	2280	ug/L	B, D

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Min-Soon Yim

**Reported:** 15-Jun-2020 11:19

#### SPL-GW-MW25-0520

#### 20E0321-04 (Water)

Volatile Organic Con	ipounds								
Method: EPA 8260C	ethod: EPA 8260C				Sampled: 05/27/2020 13:10				
Instrument: NT3 Analys	strument: NT3 Analyst: PKC				Analyzed: 05/29/2020 16:				
Sample Preparation:	Preparation Method: EPA 5030C (Purge and Trap)				H	Extract ID:	20E0321-04 G		
	Preparation Batch: BIE0538	Sample Size: 10 mL							
	Prepared: 05/29/2020	Final Volume:							
				Reporting					
Analyte		CAS Number	Dilution	Limit	Result	Units	Notes		
cis-1,2-Dichloroethene		156-59-2	1	0.20	ND	ug/L	U		
Benzene		71-43-2	1	0.20	0.24	ug/L			
Surrogate: 1,2-Dichloroeth	ane-d4			80-129 %	104	%			
Surrogate: Toluene-d8				80-120 %	98.9	%			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Min-Soon Yim

**Reported:** 15-Jun-2020 11:19

#### SPL-GW-MW25-0520

20E0321-04 (Water)

Volatile Organic Com	pounds - SIM						
Method: EPA 8260C-SIN	1ethod: EPA 8260C-SIM 1strument: NT16 Analyst: PB				Sa	ampled: 05	/27/2020 13:10
Instrument: NT16 Analy					Analyzed: 06/02/2020 21		
Sample Preparation:	Preparation Method: EPA 5030C (Purge Preparation Batch: BIF0059 Prepared: 06/02/2020	e and Trap) Sample Size: 1 Final Volume:		Ι	Extract ID:	20E0321-04 B	
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Vinyl chloride		75-01-4	1	20.0	349	ng/L	
Surrogate: 1,2-Dichloroethane-d4				80-129 %	96.9	%	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Min-Soon Yim

**Reported:** 15-Jun-2020 11:19

#### SPL-GW-MW25-0520

20E0321-04 (Water)

Metals and Metallic (	Compounds						
Method: EPA 6020A	Aethod: EPA 6020A				S	ampled: 05/	27/2020 13:10
Instrument: ICPMS1 Analyst: MCB					Aı	nalyzed: 06/	08/2020 15:36
Sample Preparation:	Preparation Method: REN EPA 600/4 Preparation Batch: BIF0110 Prepared: 06/04/2020	-79-020 4.1.4 HNO3 matri Sample Size: 2 Final Volume: 1		Ext	ract ID: 201	E0321-04 A 01	
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Iron		7439-89-6	1	20.0	21100	ug/L	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Min-Soon Yim

**Reported:** 15-Jun-2020 11:19

#### SPL-GW-MW25-0520

#### 20E0321-04RE1 (Water)

Metals and Metallic (	Compounds								
Method: EPA 6020A	1ethod: EPA 6020A				Sampled: 05/27/2020 13:10				
Instrument: ICPMS1 Analyst: MCB				Analyzed: 06/08/2020 17:32					
Sample Preparation:	Preparation Method: REN EPA 600/4- Preparation Batch: BIF0110 Prepared: 06/04/2020	79-020 4.1.4 HNO3 matri Sample Size: 2 Final Volume: 1		Extract	ID: 20E032	1-04RE1 A 01			
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes		
Manganese		7439-96-5	10	5.00	2210	ug/L	B, D		

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Seattle Public Utilities	
700-5th Ave, Ste 4900, Box 34018	
Seattle WA, 98124-4018	

Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Min-Soon Yim

**Reported:** 15-Jun-2020 11:19

#### SPL-GW-MW30-0520

20E0321-05 (Water)

Volatile Organic Com	pounds						
Method: EPA 8260C	ethod: EPA 8260C				Sa	ampled: 05	5/28/2020 14:41
nstrument: NT3 Analyst: PKC				Analyzed: 05/29/2020			
Sample Preparation:	e and Trap) Sample Size: 10 Final Volume: 1	0 mL 10 mL		Ι	Extract ID	: 20E0321-05 E	
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
cis-1,2-Dichloroethene		156-59-2	1	0.20	0.31	ug/L	
Surrogate: 1,2-Dichloroethane-d4				80-129 %	107	%	

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Min-Soon Yim

**Reported:** 15-Jun-2020 11:19

#### SPL-GW-MW30-0520

20E0321-05 (Water)

Volatile Organic Com	pounds - SIM						
Method: EPA 8260C-SIN	Aethod: EPA 8260C-SIM nstrument: NT16 Analyst: PB				Sa	ampled: 05	/28/2020 14:41
Instrument: NT16 Analy					Analyzed: 06/02/		
Sample Preparation:	and Trap) Sample Size: 1 Final Volume: 1	0 mL 10 mL		]	Extract ID:	20E0321-05 B	
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Vinyl chloride		75-01-4	1	20.0	127	ng/L	
Surrogate: 1,2-Dichloroethane-d4				80-129 %	97.5	%	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Min-Soon Yim

**Reported:** 15-Jun-2020 11:19

#### SPL-GW-MW30-0520

20E0321-05 (Water)

Metals and Metallic C	Compounds								
Method: EPA 6020A	ethod: EPA 6020A				Sampled: 05/28/2020 14:41				
Instrument: ICPMS1 Ar	nstrument: ICPMS1 Analyst: MCB				Analyzed: 06/08/2020 14:51				
Sample Preparation:	9-020 4.1.4 HNO3 matri Sample Size: 2 Final Volume:	x 5 mL 25 mL		Ext	ract ID: 20	E0321-05 A 01			
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes		
Iron		7439-89-6	1	20.0	1430	ug/L			
Manganese		7439-96-5	1	0.500	91.9	ug/L	В		

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Seattle Public Utilities	
700-5th Ave, Ste 4900, Box 34018	
Seattle WA, 98124-4018	

Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Min-Soon Yim

**Reported:** 15-Jun-2020 11:19

#### SPL-GW-MW31-0520

20E0321-06 (Water)

Volatile Organic Com	pounds							
Method: EPA 8260C	lethod: EPA 8260C				Sa	ampled: 05	5/28/2020 13:45	
nstrument: NT3 Analyst: PKC				Analyzed:			5/29/2020 17:03	
Sample Preparation:	e and Trap) Sample Size: 10 Final Volume: 1	0 mL 0 mL		I	Extract ID:	20E0321-06 G		
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes	
cis-1,2-Dichloroethene		156-59-2	1	0.20	ND	ug/L	U	
Surrogate: 1,2-Dichloroethane-d4				80-129 %	110	%		

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Min-Soon Yim

**Reported:** 15-Jun-2020 11:19

#### SPL-GW-MW31-0520

20E0321-06 (Water)

Volatile Organic Com	pounds - SIM						
Method: EPA 8260C-SIN	Aethod: EPA 8260C-SIM nstrument: NT16 Analyst: PB				Sa	ampled: 05	/28/2020 13:45
Instrument: NT16 Anal					Analyz		
Sample Preparation:	and Trap) Sample Size: 1 Final Volume:	0 mL 10 mL		Ι	Extract ID:	20E0321-06 C	
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Vinyl chloride		75-01-4	1	20.0	201	ng/L	
Surrogate: 1,2-Dichloroethane-d4				80-129 %	88.9	%	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Min-Soon Yim

**Reported:** 15-Jun-2020 11:19

#### SPL-GW-MW31-0520

20E0321-06 (Water)

Metals and Metallic (	Compounds							
Method: EPA 6020A Instrument: ICPMS1 Analyst: MCB				Sampled: 05/28/2020 13:45 Analyzed: 06/08/2020 15:43				
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes	
Iron		7439-89-6	1	20.0	10600	ug/L		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Min-Soon Yim

**Reported:** 15-Jun-2020 11:19

### SPL-GW-MW31-0520

#### 20E0321-06RE1 (Water)

Metals and Metallic (	Compounds							
Method: EPA 6020A Instrument: ICPMS1 Analyst: MCB				Sampled: 05/28/2020 13:45 Analyzed: 06/08/2020 18:19				
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes	
Manganese		7439-96-5	5	2.50	573	ug/L	B, D	

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Min-Soon Yim

**Reported:** 15-Jun-2020 11:19

#### SPL-GW-MW61-0520

#### 20E0321-07 (Water)

Volatile Organic Com	pounds							
Method: EPA 8260C				Sampled: 05/28/2020 08:00				
Instrument: NT3 Analys	st: PKC				An	alyzed: 05	/29/2020 17:55	
Sample Preparation:	Preparation Method: EPA 5030C (Purge and Trap)				]	Extract ID:	20E0321-07 F	
	Preparation Batch: BIE0538	Sample Size: 10						
	Prepared: 05/29/2020	Final Volume: 1						
				Reporting				
Analyte		CAS Number	Dilution	Limit	Result	Units	Notes	
cis-1,2-Dichloroethene		156-59-2	1	0.20	0.26	ug/L		
Benzene		71-43-2	1	0.20	ND	ug/L	U	
Surrogate: 1,2-Dichloroeth	ane-d4			80-129 %	106	%		
Surrogate: Toluene-d8				80-120 %	<i>99.2</i>	%		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Min-Soon Yim

**Reported:** 15-Jun-2020 11:19

#### SPL-GW-MW61-0520

20E0321-07 (Water)

Volatile Organic Com	pounds - SIM						
Method: EPA 8260C-SIM Instrument: NT16 Analyst: PB				Sampled: 05/28/2020 08:0			
					Analyzed: 06/03/20		
Sample Preparation:	Preparation Method: EPA 5030C (Purge Preparation Batch: BIF0093 Prepared: 06/03/2020	and Trap) Sample Size: 1 Final Volume:		Ι	Extract ID:	20E0321-07 C	
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Vinyl chloride		75-01-4	1	20.0	81.9	ng/L	
Surrogate: 1,2-Dichloroethane-d4				80-129 %	97.6	%	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Min-Soon Yim

**Reported:** 15-Jun-2020 11:19

#### SPL-GW-MW61-0520

20E0321-07 (Water)

Metals and Metallic C	Compounds							
Method: EPA 6020A				Sampled: 05/28/2020 08:00				
Instrument: ICPMS1 Analyst: MCB				Analyzed: 06/08/2020				
Sample Preparation:	Preparation Method: REN EPA 600/4- Preparation Batch: BIF0110 Prepared: 06/04/2020	-79-020 4.1.4 HNO3 matrix Sample Size: 2 Final Volume: 2		Ext	ract ID: 20I	E0321-07 A 01		
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes	
Iron		7439-89-6	1	20.0	5970	ug/L		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.


Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Min-Soon Yim

**Reported:** 15-Jun-2020 11:19

# SPL-GW-MW61-0520

#### 20E0321-07RE1 (Water)

Metals and Metallic (	Compounds							
Method: EPA 6020A				Sampled: 05/28/2020 08:0				
Instrument: ICPMS1 Ar	nalyst: MCB			Analyzed: 06/08/2020 18:2				
Sample Preparation:	Preparation Method: REN EPA 600/4- Preparation Batch: BIF0110 Prepared: 06/04/2020	//4-79-020 4.1.4 HNO3 matrix Sample Size: 25 mL Final Volume: 25 mL			ID: 20E032	1-07RE1 A 01		
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes	
Manganese		7439-96-5	5	2.50	321	ug/L	B, D	

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Min-Soon Yim

**Reported:** 15-Jun-2020 11:19

# SPL-GW-MW81-0520

#### 20E0321-08 (Water)

Volatile Organic Con	ipounds							
Method: EPA 8260C					Sa	mpled: 05	/28/2020 14:41	
Instrument: NT3 Analy	st: PKC			Analyzed: 06/01/2020				
Sample Preparation:	Preparation Method: EPA 5030C (Purge and Trap)				H	Extract ID:	20E0321-08 A	
	Preparation Batch: BIF0003	Sample Size: 10 mL						
	Prepared: 06/01/2020	Final Volume: 1						
				Reporting				
Analyte		CAS Number	Dilution	Limit	Result	Units	Notes	
cis-1,2-Dichloroethene		156-59-2	1	0.20	ND	ug/L	U	
Benzene		71-43-2	1	0.20	ND	ug/L	U	
Surrogate: 1,2-Dichloroeth	ane-d4			80-129 %	105	%		
Surrogate: Toluene-d8				80-120 %	98.4	%		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Min-Soon Yim

**Reported:** 15-Jun-2020 11:19

# SPL-GW-MW81-0520

20E0321-08 (Water)

Volatile Organic Com	pounds - SIM							
Method: EPA 8260C-SIN	1			Sampled: 05/28/2020				
Instrument: NT16 Analy	vst: PB				Analyzed: 06/03/2020 14:46			
Sample Preparation:	e and Trap) Sample Size: 1 Final Volume: 1	Trap) Sample Size: 10 mL Final Volume: 10 mL			Extract ID:	20E0321-08 B		
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes	
Vinyl chloride		75-01-4	1	20.0	ND	ng/L	U	
Surrogate: 1,2-Dichloroethe	ane-d4			80-129 %	98.1	%		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Min-Soon Yim

**Reported:** 15-Jun-2020 11:19

# SPL-GW-MW18-0520

20E0321-09 (Water)

Volatile Organic Com	pounds							
Method: EPA 8260C				Sampled: 05/27/2020				
Instrument: NT3 Analys	st: PKC			Analyzed: 05/29/2020 18:				
Sample Preparation:	e and Trap) Sample Size: 1 Final Volume: 1	d Trap) Sample Size: 10 mL Final Volume: 10 mL		]	Extract ID:	20E0321-09 E		
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes	
cis-1,2-Dichloroethene		156-59-2	1	0.20	ND	ug/L	U	
Surrogate: 1,2-Dichloroethane-d4				80-129 %	104	%		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Min-Soon Yim

**Reported:** 15-Jun-2020 11:19

# SPL-GW-MW18-0520

20E0321-09 (Water)

Volatile Organic Com	pounds - SIM							
Method: EPA 8260C-SIN	1				Sa	ampled: 05	5/27/2020 11:10	
Instrument: NT16 Analy	vst: PB				An	Analyzed: 06/03/2020 15:06		
Sample Preparation:	e and Trap) Sample Size: 1 Final Volume: 1	Trap) Sample Size: 10 mL Final Volume: 10 mL			Extract ID:	20E0321-09 D		
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes	
Vinyl chloride		75-01-4	1	20.0	35.7	ng/L		
Surrogate: 1,2-Dichloroethe	ane-d4			80-129 %	99.0	%		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Min-Soon Yim

**Reported:** 15-Jun-2020 11:19

# SPL-GW-MW18-0520

20E0321-09 (Water)

Metals and Metallic C	Compounds						
Method: EPA 6020A					S	ampled: 05/	27/2020 11:10
Instrument: ICPMS1 An	alyst: MCB			Analyzed: 06/08/2020 15:5			
Sample Preparation:	Preparation Method: REN EPA 600/4- Preparation Batch: BIF0110 Prepared: 06/04/2020	00/4-79-020 4.1.4 HNO3 matrix Sample Size: 25 mL Final Volume: 25 mL			ract ID: 20H	E0321-09 A 01	
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Iron		7439-89-6	1	20.0	20100	ug/L	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Min-Soon Yim

**Reported:** 15-Jun-2020 11:19

# SPL-GW-MW18-0520

#### 20E0321-09RE1 (Water)

Metals and Metallic C	Compounds						
Method: EPA 6020A					S	ampled: 05/	27/2020 11:10
Instrument: ICPMS1 Ar	nalyst: MCB			Analyzed: 06/08/2020 17:3			
Sample Preparation:	Preparation Method: REN EPA 600/4- Preparation Batch: BIF0110 Prepared: 06/04/2020	79-020 4.1.4 HNO3 matri Sample Size: 2 Final Volume:	.4 HNO3 matrix Extract ID: 20E032 Sample Size: 25 mL Final Volume: 25 mL			ID: 20E032	1-09RE1 A 01
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Manganese		7439-96-5	10	5.00	1590	ug/L	B, D

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Min-Soon Yim

**Reported:** 15-Jun-2020 11:19

# SPL-GW-MW29-0520

20E0321-10 (Water)

Volatile Organic Con	ipounds							
Method: EPA 8260C					Sampled: 05/27/2020 09:4			
Instrument: NT3 Analys	st: PKC				Analyzed: 05/29/2020 18:46			
Sample Preparation:	and Trap) Sample Size: 1 Final Volume: 1	Trap) Sample Size: 10 mL Final Volume: 10 mL		Ι	Extract ID:	20E0321-10 E		
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes	
cis-1,2-Dichloroethene		156-59-2	1	0.20	ND	ug/L	U	
Surrogate: 1,2-Dichloroeth	ane-d4			80-129 %	107	%		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Min-Soon Yim

**Reported:** 15-Jun-2020 11:19

# SPL-GW-MW29-0520

#### 20E0321-10 (Water)

Volatile Organic Com	ipounds - SIM						
Method: EPA 8260C-SIN	1				Sa	ampled: 05	/27/2020 09:40
Instrument: NT16 Anal	yst: PB				Ar	nalyzed: 06	/03/2020 15:26
Sample Preparation:	e and Trap) Sample Size: 1 Final Volume: 1	d Trap) Sample Size: 10 mL Final Volume: 10 mL		]	Extract ID:	20E0321-10 B	
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Vinyl chloride		75-01-4	1	20.0	103	ng/L	
Surrogate: 1,2-Dichloroeth	ane-d4			80-129 %	98.3	%	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Min-Soon Yim

**Reported:** 15-Jun-2020 11:19

# SPL-GW-MW29-0520

20E0321-10 (Water)

Metals and Metallic C	Compounds							
Method: EPA 6020A				Sampled: 05/27/2020 09:40				
Instrument: ICPMS1 Ar	nalyst: MCB				Ar	halyzed: 06/	08/2020 17:19	
Sample Preparation:	9-020 4.1.4 HNO3 matri Sample Size: 2 Final Volume:	020 4.1.4 HNO3 matrix Sample Size: 25 mL Final Volume: 25 mL		Extract ID: 20E03				
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes	
Iron		7439-89-6	10	200	37100	ug/L	D	
Manganese		7439-96-5	10	5.00	810	ug/L	B, D	

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Seattle Public Utilities	
700-5th Ave, Ste 4900, Box 34018	
Seattle WA, 98124-4018	

Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Min-Soon Yim

**Reported:** 15-Jun-2020 11:19

# SPL-GW-MW27-0520

20E0321-11 (Water)

Volatile Organic Com	pounds							
Method: EPA 8260C					Sa	ampled: 05	5/28/2020 07:40	
Instrument: NT3 Analys	t: PKC				Analyzed: 06/01/2020 15:17			
Sample Preparation:	and Trap) Sample Size: 10 Final Volume: 1	Frap) Sample Size: 10 mL Final Volume: 10 mL			Extract ID: 20E0321-11 F			
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes	
cis-1,2-Dichloroethene		156-59-2	1	0.20	0.22	ug/L		
Surrogate: 1,2-Dichloroethane-d4				80-129 %	104	%		

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Min-Soon Yim

**Reported:** 15-Jun-2020 11:19

# SPL-GW-MW27-0520

#### 20E0321-11 (Water)

Volatile Organic Con	pounds - SIM							
Method: EPA 8260C-SIN	1				Sa	ampled: 05	5/28/2020 07:40	
Instrument: NT16 Anal	yst: PB				Analyzed: 06/03/2020			
Sample Preparation:	Preparation Method: EPA 5030C (Purge Preparation Batch: BIF0093 Prepared: 06/03/2020	e and Trap) Sample Size: 1 Final Volume:	0 mL 10 mL		Extract ID: 20E032			
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes	
Vinyl chloride		75-01-4	1	20.0	78.2	ng/L		
Surrogate: 1,2-Dichloroeth	ane-d4			80-129 %	98.8	%		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Min-Soon Yim

**Reported:** 15-Jun-2020 11:19

# SPL-GW-MW27-0520

#### 20E0321-11 (Water)

Metals and Metallic C	Compounds							
Method: EPA 6020A					S	ampled: 05/	28/2020 07:40	
Instrument: ICPMS1 Analyst: MCB					Analyzed: 06/08/2020 16:12			
Sample Preparation:	Preparation Method: REN EPA 600/4- Preparation Batch: BIF0110 Prepared: 06/04/2020	79-020 4.1.4 HNO3 matri Sample Size: 2 Final Volume:	x 5 mL 25 mL	Extract ID: 20E0321-1				
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes	
Iron		7439-89-6	1	20.0	5000	ug/L		
Manganese		7439-96-5	1	0.500	252	ug/L	В	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Seattle Public Utilities	
700-5th Ave, Ste 4900, Box 34018	
Seattle WA, 98124-4018	

Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Min-Soon Yim

**Reported:** 15-Jun-2020 11:19

# SPL-GW-MW08-0520

20E0321-13 (Water)

Volatile Organic Com	pounds						
Method: EPA 8260C					Sa	ampled: 05	/28/2020 09:25
Instrument: NT3 Analys	st: PKC				An	alyzed: 06	/01/2020 15:43
Sample Preparation:	Preparation Method: EPA 5030C (Purge Preparation Batch: BIF0003 Prepared: 06/01/2020	and Trap) Sample Size: 10 Final Volume: 1	0 mL 10 mL		]	Extract ID:	20E0321-13 E
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
cis-1,2-Dichloroethene		156-59-2	1	0.20	ND	ug/L	U
Surrogate: 1,2-Dichloroethe	ane-d4			80-129 %	80-129 % 106 %		

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Min-Soon Yim

**Reported:** 15-Jun-2020 11:19

# SPL-GW-MW08-0520

20E0321-13 (Water)

Volatile Organic Com	pounds - SIM						
Method: EPA 8260C-SIN	1				Sa	mpled: 05	/28/2020 09:25
Instrument: NT16 Analy	vst: PB				alyzed: 06	/03/2020 16:06	
Sample Preparation:	Preparation Method: EPA 5030C (Purge Preparation Batch: BIF0093 Prepared: 06/03/2020	ation Method: EPA 5030C (Purge and Trap)ation Batch: BIF0093Sample Size: 10 mLred: 06/03/2020Final Volume: 10 mL				Extract ID:	20E0321-13 B
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Vinyl chloride		75-01-4	1	20.0	59.2	ng/L	
Surrogate: 1,2-Dichloroethe	ane-d4			80-129 %	99.0	%	

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Min-Soon Yim

**Reported:** 15-Jun-2020 11:19

# SPL-GW-MW08-0520

20E0321-13 (Water)

Metals and Metallic C	Compounds						
Method: EPA 6020A					S	ampled: 05/	28/2020 09:25
Instrument: ICPMS1 An	alyst: MCB			Analyzed: 06/08/2020 16:			
Sample Preparation:	Preparation Method: REN EPA 600/4- Preparation Batch: BIF0110 Prepared: 06/04/2020	/4-79-020 4.1.4 HNO3 matrix Sample Size: 25 mL Final Volume: 25 mL			Ext	ract ID: 20H	E0321-13 A 01
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Iron		7439-89-6	1	20.0	12700	ug/L	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Min-Soon Yim

**Reported:** 15-Jun-2020 11:19

# SPL-GW-MW08-0520

#### 20E0321-13RE1 (Water)

Metals and Metallic (	Compounds						
Method: EPA 6020A					S	ampled: 05/2	28/2020 09:25
Instrument: ICPMS1 Ar	nalyst: MCB			Analyzed: 06/08/2020 17:			
Sample Preparation:	Preparation Method: REN EPA 600/4- Preparation Batch: BIF0110 Prepared: 06/04/2020	00/4-79-020 4.1.4 HNO3 matrix Sample Size: 25 mL Final Volume: 25 mL			ID: 20E032	)E0321-13RE1 A 01	
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Manganese		7439-96-5	10	5.00	1190	ug/L	B, D

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Min-Soon Yim

**Reported:** 15-Jun-2020 11:19

# SPL-GW-MW24-0520

20E0321-14 (Water)

Volatile Organic Com	ipounds							
Method: EPA 8260C					Sa	ampled: 05	/28/2020 12:05	
Instrument: NT3 Analys	st: PKC				Analyzed: 06/01/2020			
Sample Preparation:	Preparation Method: EPA 5030C (Purge Preparation Batch: BIF0003 Prepared: 06/01/2020	and Trap) Sample Size: 1 Final Volume:	d Trap) Sample Size: 10 mL Final Volume: 10 mL		Ι	Extract ID:	20E0321-14 E	
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes	
cis-1,2-Dichloroethene		156-59-2	1	0.20	ND	ug/L	U	
Surrogate: 1,2-Dichloroeth	ane-d4			80-129 %	80-129 % 99.6 %			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Min-Soon Yim

**Reported:** 15-Jun-2020 11:19

# SPL-GW-MW24-0520

20E0321-14 (Water)

Volatile Organic Con	pounds - SIM							
Method: EPA 8260C-SIN	1				Sa	ampled: 05	/28/2020 12:05	
Instrument: NT16 Anal	yst: PB				Analyzed: 06/03/2020 16:26			
Sample Preparation:	Preparation Method: EPA 5030C (Purge Preparation Batch: BIF0093 Prepared: 06/03/2020	and Trap) Sample Size: 1 Final Volume: 1	0 mL 10 mL		Extract ID: 20E0321-14 I			
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes	
Vinyl chloride		75-01-4	1	20.0	ND	ng/L	U	
Surrogate: 1,2-Dichloroeth	ane-d4			80-129 %	99.5	%		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Min-Soon Yim

**Reported:** 15-Jun-2020 11:19

# SPL-GW-MW24-0520

20E0321-14 (Water)

Metals and Metallic (	Compounds						
Method: EPA 6020A					S	ampled: 05/	28/2020 12:05
Instrument: ICPMS1 Ar	nalyst: MCB			Analyzed: 06/08/2020 16:			
Sample Preparation:	Preparation Method: REN EPA 600/4 Preparation Batch: BIF0110 Prepared: 06/04/2020	-79-020 4.1.4 HNO3 matri Sample Size: 2 Final Volume: 1		Ext	ract ID: 20I	E0321-14 A 01	
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Iron		7439-89-6	1	20.0	20000	ug/L	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Min-Soon Yim

**Reported:** 15-Jun-2020 11:19

# SPL-GW-MW24-0520

#### 20E0321-14RE1 (Water)

Metals and Metallic (	Compounds						
Method: EPA 6020A					S	ampled: 05/2	28/2020 12:05
Instrument: ICPMS1 Ar	nalyst: MCB			Analyzed: 06/08/2020 17:			
Sample Preparation:	Preparation Method: REN EPA 600/4- Preparation Batch: BIF0110 Prepared: 06/04/2020	500/4-79-020 4.1.4 HNO3 matrix Sample Size: 25 mL Final Volume: 25 mL			ID: 20E032	20E0321-14RE1 A 01	
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Manganese		7439-96-5	10	5.00	1680	ug/L	B, D

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Min-Soon Yim

**Reported:** 15-Jun-2020 11:19

# SPL-GW-MW26-0520

20E0321-15 (Water)

Volatile Organic Com	pounds							
Method: EPA 8260C					Sa	mpled: 05	/28/2020 10:51	
Instrument: NT3 Analys	st: PKC				Analyzed: 06			
Sample Preparation:	and Trap) Sample Size: 10 Final Volume: 1	0 mL 10 mL		Ι	Extract ID:	20E0321-15 E		
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes	
cis-1,2-Dichloroethene		156-59-2	1	0.20	1.11	ug/L		
Surrogate: 1,2-Dichloroethe	ane-d4		80-129 %		108	%		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Min-Soon Yim

**Reported:** 15-Jun-2020 11:19

# SPL-GW-MW26-0520

20E0321-15 (Water)

Volatile Organic Com	pounds - SIM							
Method: EPA 8260C-SIN	1				Sampled: 05/28/2020 10:5			
Instrument: NT16 Analy	yst: PB				6/03/2020 16:46			
Sample Preparation:	and Trap) Sample Size: 1 Final Volume: 1	i Trap) Sample Size: 10 mL Final Volume: 10 mL		Ι	Extract ID:	20E0321-15 B		
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes	
Vinyl chloride		75-01-4	1	20.0	21.6	ng/L		
Surrogate: 1,2-Dichloroethane-d4				80-129 %	98.1	%		

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Min-Soon Yim

**Reported:** 15-Jun-2020 11:19

# SPL-GW-MW26-0520

20E0321-15 (Water)

Metals and Metallic C	Compounds							
Method: EPA 6020A					S	ampled: 05/	/28/2020 10:51	
Instrument: ICPMS1 Ar	alyst: MCB			Analyzed: 06/08/2020 16:34				
Sample Preparation:	9-020 4.1.4 HNO3 matri Sample Size: 2 Final Volume:	)20 4.1.4 HNO3 matrix Sample Size: 25 mL Final Volume: 25 mL		Ext	ract ID: 20	E0321-15 A 01		
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes	
Iron		7439-89-6	1	20.0	7190	ug/L		
Manganese		7439-96-5	1	0.500	108	ug/L	В	

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Min-Soon Yim

**Reported:** 15-Jun-2020 11:19

# SPL-GW-MW60-0520

#### 20E0321-16 (Water)

Volatile Organic Com	pounds							
Method: EPA 8260C					Sa	ampled: 05	5/27/2020 13:30	
Instrument: NT3 Analys	st: PKC			Analyzed: 06/01/2020 17:0				
Sample Preparation:	Preparation Method: EPA 5030C (Purge Preparation Batch: BIF0003 Prepared: 06/01/2020	and Trap) Sample Size: 10 Final Volume: 1		]	Extract ID	: 20E0321-16 E		
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes	
cis-1,2-Dichloroethene Benzene		156-59-2 71-43-2	1 1	0.20 0.20	ND 0.28	ug/L ug/L	U	
Surrogate: 1,2-Dichloroeth	ane-d4			80-129 %	103	%		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Min-Soon Yim

**Reported:** 15-Jun-2020 11:19

# SPL-GW-MW60-0520

20E0321-16 (Water)

Volatile Organic Com	pounds - SIM							
Method: EPA 8260C-SIN	1				Sampled: 05/27/2020 1			
Instrument: NT16 Analy	yst: PB				Analyzed: 06/03/2020 17:06			
Sample Preparation:	and Trap) Sample Size: 1 Final Volume: 1	Trap) Sample Size: 10 mL Final Volume: 10 mL		]	Extract ID:	20E0321-16 B		
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes	
Vinyl chloride		75-01-4	1	20.0	347	ng/L		
Surrogate: 1,2-Dichloroethane-d4				80-129 %	96.5	%		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Min-Soon Yim

**Reported:** 15-Jun-2020 11:19

# SPL-GW-MW60-0520

20E0321-16 (Water)

Metals and Metallic (	Compounds						
Method: EPA 6020A				Sampled: 05/27/2020 13::			
Instrument: ICPMS1 Ar	nalyst: MCB		Analyzed: 06/08/2020 17				
Sample Preparation:	Preparation Method: REN EPA 600/4 Preparation Batch: BIF0110 Prepared: 06/04/2020	-79-020 4.1.4 HNO3 matri Sample Size: 2 Final Volume: 1		Ext	ract ID: 201	E0321-16 A 01	
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Iron		7439-89-6	1	20.0	21700	ug/L	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Min-Soon Yim

**Reported:** 15-Jun-2020 11:19

# SPL-GW-MW60-0520

#### 20E0321-16RE1 (Water)

Metals and Metallic (	Compounds						
Method: EPA 6020A				Sampled: 05/27/2020 13			
Instrument: ICPMS1 Ar	nalyst: MCB			Analyzed: 06/08/2020 18:			
Sample Preparation:	Preparation Method: REN EPA 600/4- Preparation Batch: BIF0110 Prepared: 06/04/2020	0/4-79-020 4.1.4 HNO3 matrix Sample Size: 25 mL Final Volume: 25 mL			Extract	ID: 20E032	1-16RE1 A 01
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Manganese		7439-96-5	10	5.00	2280	ug/L	B, D

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Seattle Public Utilities	
700-5th Ave, Ste 4900, Box 34018	
Seattle WA, 98124-4018	

Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Min-Soon Yim

**Reported:** 15-Jun-2020 11:19

# SPL-GW-MW80-0520

20E0321-17 (Water)

Volatile Organic Com	pounds							
Method: EPA 8260C					Sampled: 05/28/2020 12			
Instrument: NT3 Analyst: PKC					Analyzed: 06/01/2020 12:09			
Sample Preparation:	and Trap) Sample Size: 10 Final Volume: 1	Trap) Sample Size: 10 mL Final Volume: 10 mL		I	Extract ID:	20E0321-17 A		
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes	
cis-1,2-Dichloroethene		156-59-2	1	0.20	ND	ug/L	U	
Surrogate: 1,2-Dichloroethane-d4				80-129 %	101	%		

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Min-Soon Yim

**Reported:** 15-Jun-2020 11:19

# SPL-GW-MW80-0520

20E0321-17 (Water)

Volatile Organic Com	pounds - SIM							
Method: EPA 8260C-SIN	1				Sa	ampled: 05	/28/2020 12:05	
Instrument: NT16 Analy	yst: PB				Analyzed: 06/03/2020 17:			
Sample Preparation:	Preparation: Preparation Method: EPA 5030C (Purge and Trap)   Preparation Batch: BIF0093 Sam   Prepared: 06/03/2020 Final				Ι	Extract ID:	20E0321-17 B	
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes	
Vinyl chloride		75-01-4	1	20.0	ND	ng/L	U	
Surrogate: 1,2-Dichloroethane-d4				80-129 %	97.8	%		

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Min-Soon Yim

**Reported:** 15-Jun-2020 11:19

# Trip Blanks

# 20E0321-19 (Water)

Volatile Organic Com	ipounds							
Method: EPA 8260C				Sampled: 05/28/2020 14:				
Instrument: NT3 Analys	st: PKC			Analyzed: 06/01/2020 1				
Sample Preparation:	Preparation Method: EPA 5030C (Purge and Trap)				I	Extract ID:	20E0321-19 A	
	Preparation Batch: BIF0003	Sample Size: 10						
	Prepared: 06/01/2020	Final Volume: 1						
				Reporting				
Analyte		CAS Number	Dilution	Limit	Result	Units	Notes	
cis-1,2-Dichloroethene		156-59-2	1	0.20	ND	ug/L	U	
Benzene		71-43-2	1	0.20	ND	ug/L	U	
Surrogate: 1,2-Dichloroeth	ane-d4			80-129 %	97.9	%		
Surrogate: Toluene-d8				80-120 %	97.3	%		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Min-Soon Yim

**Reported:** 15-Jun-2020 11:19

# Trip Blanks

# 20E0321-19 (Water)

Volatile Organic Con	pounds - SIM							
Method: EPA 8260C-SIN	1			Sampled: 05/28/2020				
Instrument: NT16 Anal	yst: PB				alyzed: 06	5/03/2020 13:25		
Sample Preparation:	Preparation Method: EPA 5030C (Purge Preparation Batch: BIF0093 Prepared: 06/03/2020	e and Trap) Sample Size: 10 mL Final Volume: 10 mL			]	Extract ID:	20E0321-19 B	
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes	
Vinyl chloride		75-01-4	1	20.0	ND	ng/L	U	
Surrogate: 1,2-Dichloroethane-d4				80-129 %	95.4	%		

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Min-Soon Yim

**Reported:** 15-Jun-2020 11:19

# SPL-GW-MW32-0520

20E0321-20 (Water)

# Metals and Metallic Compounds (dissolved)

Method: EPA 6020A UC	: EPA 6020A UCT-KED					Sampled: 05/27/2020 17:20					
Instrument: ICPMS1 An	nalyst: MCB			Analyzed: 06/03/2020 13:59							
Sample Preparation:	Preparation Method: REN EPA 600/4 Preparation Batch: BIF0032 Prepared: 06/02/2020	-79-020 4.1.4 HNO3 matrix Extract ID: 20E0 Sample Size: 25 mL Final Volume: 25 mL			E0321-20 A 01						
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes				
Arsenic, Dissolved		7440-38-2	1	0.200	1.34	ug/L					

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Min-Soon Yim

**Reported:** 15-Jun-2020 11:19

Notes

# SPL-GW-MW33-0520

#### 20E0321-21 (Water)

#### Metals and Metallic Compounds (dissolved) Method: EPA 6020A UCT-KED Sampled: 05/27/2020 15:50 Instrument: ICPMS2 Analyst: MCB Analyzed: 06/02/2020 23:44 Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix Extract ID: 20E0321-21 A 01 Sample Preparation: Preparation Batch: BIF0032 Sample Size: 25 mL Prepared: 06/02/2020 Final Volume: 25 mL Reporting Limit Analyte CAS Number Dilution Result Units Arsenic, Dissolved 0.200 1.08 7440-38-2 1 ug/L

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Min-Soon Yim

**Reported:** 15-Jun-2020 11:19

# SPL-GW-MW10--0520

20E0321-22 (Water)

Metals and Metallic C	Compounds (dissolved)						
Method: EPA 6020A UC	Sampled: 05/27/2020 14:40						
Instrument: ICPMS2 Ar	Analyzed: 06/02/2020 23:49						
Sample Preparation:	Preparation Method: REN EPA 600/4 Preparation Batch: BIF0032 Prepared: 06/02/2020	-79-020 4.1.4 HNO3 matri Sample Size: 2 Final Volume:		Ext	ract ID: 201	E0321-22 A 01	
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Arsenic, Dissolved		7440-38-2	1	0.200	ND	ug/L	U

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Min-Soon Yim

**Reported:** 15-Jun-2020 11:19

# SPL-GW-MW25-0520

20E0321-23 (Water)

# Metals and Metallic Compounds (dissolved)

Method: EPA 6020A UCT-KED					Sampled: 05/27/2020 13:10					
Instrument: ICPMS2 Ana	Analyzed: 06/03/2020 00:13									
Sample Preparation:	Preparation Method: REN EPA 600/4- Preparation Batch: BIF0032 Prepared: 06/02/2020	79-020 4.1.4 HNO3 matri: Sample Size: 2. Final Volume: 2	x 5 mL 25 mL		Ext	ract ID: 20E	E0321-23 A 01			
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes			
Arsenic, Dissolved		7440-38-2	1	0.200	0.353	ug/L				

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.


Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Min-Soon Yim

**Reported:** 15-Jun-2020 11:19

### SPL-GW-MW61-0520

20E0321-24 (Water)

#### Metals and Metallic Compounds (dissolved) Method: EPA 6020A UCT-KED Sampled: 05/28/2020 08:00 Instrument: ICPMS2 Analyst: MCB Analyzed: 06/03/2020 00:17 Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix Extract ID: 20E0321-24 A 01 Sample Preparation: Preparation Batch: BIF0032 Sample Size: 25 mL Prepared: 06/02/2020 Final Volume: 25 mL Reporting Limit Analyte CAS Number Dilution Result Units Notes Arsenic, Dissolved 0.200 5.23 7440-38-2 1 ug/L

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Min-Soon Yim

**Reported:** 15-Jun-2020 11:19

### SPL-GW-MW18-0520

20E0321-25 (Water)

#### Metals and Metallic Compounds (dissolved) Method: EPA 6020A UCT-KED Sampled: 05/27/2020 11:10 Instrument: ICPMS2 Analyst: MCB Analyzed: 06/03/2020 00:22 Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix Extract ID: 20E0321-25 A 01 Sample Preparation: Preparation Batch: BIF0032 Sample Size: 25 mL Prepared: 06/02/2020 Final Volume: 25 mL Reporting Limit Analyte CAS Number Dilution Result Units Notes Arsenic, Dissolved 0.200 ND 7440-38-2 1 ug/L U

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Min-Soon Yim

**Reported:** 15-Jun-2020 11:19

### SPL-GW-MW27-0520

20E0321-26 (Water)

### Metals and Metallic Compounds (dissolved)

	•						
Method: EPA 6020A UCT	Method: EPA 6020A UCT-KED						28/2020 07:40
Instrument: ICPMS2 An		Ar	halyzed: 06/	03/2020 00:27			
Sample Preparation: Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix Preparation Batch: BIF0032 Sample Size: 25 mL Preparation (06/02/2020 Final Volume: 25 mL					Ext	ract ID: 20F	E0321-26 A 01
Analyte	- Teparea - 00/02/2020	CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Arsenic, Dissolved		7440-38-2	1	0.200	4.89	ug/L	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Min-Soon Yim

**Reported:** 15-Jun-2020 11:19

Notes

U

### SPL-GW-MW08-0520

20E0321-27 (Water)

#### Metals and Metallic Compounds (dissolved) Method: EPA 6020A UCT-KED Sampled: 05/28/2020 09:25 Instrument: ICPMS2 Analyst: MCB Analyzed: 06/03/2020 00:32 Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix Extract ID: 20E0321-27 A 01 Sample Preparation: Preparation Batch: BIF0032 Sample Size: 25 mL Prepared: 06/02/2020 Final Volume: 25 mL Reporting Limit Analyte CAS Number Dilution Result Units Arsenic, Dissolved 0.200 ND 7440-38-2 1 ug/L

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Min-Soon Yim

**Reported:** 15-Jun-2020 11:19

### SPL-GW-MW24-0520

20E0321-28 (Water)

#### Metals and Metallic Compounds (dissolved) Method: EPA 6020A UCT-KED Sampled: 05/28/2020 12:05 Instrument: ICPMS2 Analyst: MCB Analyzed: 06/03/2020 00:36 Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix Extract ID: 20E0321-28 A 01 Sample Preparation: Preparation Batch: BIF0032 Sample Size: 25 mL Prepared: 06/02/2020 Final Volume: 25 mL Reporting Limit Analyte CAS Number Dilution Result Units Notes Arsenic, Dissolved 0.200 ND 7440-38-2 1 ug/L U

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Min-Soon Yim

**Reported:** 15-Jun-2020 11:19

### SPL-GW-MW26-0520

20E0321-29 (Water)

#### Metals and Metallic Compounds (dissolved)

Method: EPA 6020A UC	Г-КЕD				S	ampled: 05/	28/2020 10:51
Instrument: ICPMS2 An		Ar	alvzed: 06/	03/2020 00:41			
Sample Preparation: Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix Preparation Batch: BIF0032 Sample Size: 25 mL Preparation (06/02/2020 Final Volume: 25 mL					Ext	ract ID: 20H	E0321-29 A 01
Analyte	*	CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Arsenic, Dissolved		7440-38-2	1	0.200	0.793	ug/L	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Min-Soon Yim

**Reported:** 15-Jun-2020 11:19

### SPL-GW-MW60-0520

20E0321-30 (Water)

### Metals and Metallic Compounds (dissolved)

Method: EPA 6020A UCT	Г-KED	Sampled: 05/27/2020 13					
Instrument: ICPMS2 An		An	alyzed: 06/	03/2020 00:46			
Sample Preparation:	Preparation Method: REN EPA 600/4- Preparation Batch: BIF0032 Prepared: 06/02/2020	79-020 4.1.4 HNO3 matri Sample Size: 2 Final Volume: 2	x 5 mL 25 mL		Ext	ract ID: 20E	20321-30 A 01
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Arsenic, Dissolved		7440-38-2	1	0.200	0.337	ug/L	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



### **Analytical Report**

Seattle Public Utilities 700-5th Ave, Ste 4900, Box 34018 Seattle WA, 98124-4018 Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Min-Soon Yim

**Reported:** 15-Jun-2020 11:19

### **Volatile Organic Compounds - Quality Control**

#### Batch BIE0538 - EPA 5030C (Purge and Trap)

Instrument: NT3 Analyst: PKC

QC Sample/Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Blank (BIE0538-BLK1)			Prep	ared: 29-Ma	y-2020 Ar	nalyzed: 29-	May-2020	11:00		
cis-1,2-Dichloroethene	ND	0.20	ug/L							U
Benzene	ND	0.20	ug/L							U
Surrogate: 1,2-Dichloroethane-d4	5.11		ug/L	5.00		102	80-129			
Surrogate: Toluene-d8	5.17		ug/L	5.00		103	80-120			
LCS (BIE0538-BS1)			Prep	ared: 29-Ma	y-2020 Ar	nalyzed: 29-	May-2020	09:16		
cis-1,2-Dichloroethene	10.6	0.20	ug/L	10.0		106	80-121			
Benzene	11.1	0.20	ug/L	10.0		111	80-120			
Surrogate: 1,2-Dichloroethane-d4	5.09		ug/L	5.00		102	80-129			
Surrogate: Toluene-d8	5.17		ug/L	5.00		103	80-120			
LCS Dup (BIE0538-BSD1)			Prep	ared: 29-Ma	y-2020 Ar	nalyzed: 29-	May-2020	09:42		
cis-1,2-Dichloroethene	9.12	0.20	ug/L	10.0		91.2	80-121	14.80	30	
Benzene	9.47	0.20	ug/L	10.0		94.7	80-120	16.10	30	
Surrogate: 1,2-Dichloroethane-d4	5.07		ug/L	5.00		101	80-129			
Surrogate: Toluene-d8	5.02		ug/L	5.00		100	80-120			

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



### **Analytical Report**

Seattle Public Utilities 700-5th Ave, Ste 4900, Box 34018 Seattle WA, 98124-4018 Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Min-Soon Yim

**Reported:** 15-Jun-2020 11:19

### **Volatile Organic Compounds - Quality Control**

#### Batch BIF0003 - EPA 5030C (Purge and Trap)

Instrument: NT3 Analyst: PKC

QC Sample/Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Blank (BIF0003-BLK1)			Prep	ared: 01-Jun	-2020 An	alyzed: 01-J	un-2020 11	:43		
cis-1,2-Dichloroethene	ND	0.20	ug/L							U
Benzene	ND	0.20	ug/L							U
Surrogate: 1,2-Dichloroethane-d4	5.10		ug/L	5.00		102	80-129			
Surrogate: Toluene-d8	5.11		ug/L	5.00		102	80-120			
LCS (BIF0003-BS1)			Prep	ared: 01-Jun	-2020 An	alyzed: 01-J	un-2020 09	:33		
cis-1,2-Dichloroethene	9.62	0.20	ug/L	10.0		96.2	80-121			
Benzene	9.50	0.20	ug/L	10.0		95.0	80-120			
Surrogate: 1,2-Dichloroethane-d4	4.77		ug/L	5.00		95.4	80-129			
Surrogate: Toluene-d8	5.08		ug/L	5.00		102	80-120			
LCS Dup (BIF0003-BSD1)			Prep	ared: 01-Jun	-2020 An	alyzed: 01-J	un-2020 09	:59		
cis-1,2-Dichloroethene	8.78	0.20	ug/L	10.0		87.8	80-121	9.12	30	
Benzene	8.82	0.20	ug/L	10.0		88.2	80-120	7.48	30	
Surrogate: 1,2-Dichloroethane-d4	4.70		ug/L	5.00		94.0	80-129			
Surrogate: Toluene-d8	5.01		ug/L	5.00		100	80-120			

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Min-Soon Yim

**Reported:** 15-Jun-2020 11:19

### Volatile Organic Compounds - SIM - Quality Control

### Batch BIF0059 - EPA 5030C (Purge and Trap)

Instrument: NT16 Analyst: PB

QC Sample/Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Blank (BIF0059-BLK1)			Prep	ared: 02-Jun	-2020 Ana	lyzed: 02-J	un-2020 12	:49		
Vinyl chloride	ND	20.0	ng/L							U
Surrogate: 1,2-Dichloroethane-d4	4970		ng/L	5000		99.5	80-129			
LCS (BIF0059-BS1)			Prep	ared: 02-Jun	-2020 Ana	lyzed: 02-J	un-2020 11	:16		
Vinyl chloride	1720	20.0	ng/L	2000		85.9	76-120			
Surrogate: 1,2-Dichloroethane-d4	4870		ng/L	5000		97.4	80-129			
LCS Dup (BIF0059-BSD1)			Prep	ared: 02-Jun	-2020 Ana	lyzed: 02-J	un-2020 12	:29		
Vinyl chloride	1760	20.0	ng/L	2000		88.2	76-120	2.58	30	
Surrogate: 1,2-Dichloroethane-d4	4870		ng/L	5000		97.4	80-129			

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Min-Soon Yim

**Reported:** 15-Jun-2020 11:19

### Volatile Organic Compounds - SIM - Quality Control

### Batch BIF0093 - EPA 5030C (Purge and Trap)

Instrument: NT16 Analyst: PB

QC Sample/Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Blank (BIF0093-BLK1)			Prep	ared: 03-Jun	-2020 Ana	alyzed: 03-J	un-2020 11	:12		
Vinyl chloride	ND	20.0	ng/L							U
Surrogate: 1,2-Dichloroethane-d4	4770		ng/L	5000		95.4	80-129			
LCS (BIF0093-BS1)			Prep	ared: 03-Jun	-2020 Ana	ulyzed: 03-J	un-2020 10	:00		
Vinyl chloride	1730	20.0	ng/L	2000		86.7	76-120			
Surrogate: 1,2-Dichloroethane-d4	4610		ng/L	5000		92.2	80-129			
LCS Dup (BIF0093-BSD1)			Prep	ared: 03-Jun	-2020 Ana	alyzed: 03-J	un-2020 10	:52		
Vinyl chloride	1640	20.0	ng/L	2000		82.0	76-120	5.58	30	
Surrogate: 1,2-Dichloroethane-d4	4560		ng/L	5000		91.2	80-129			

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Min-Soon Yim

**Reported:** 15-Jun-2020 11:19

### Metals and Metallic Compounds - Quality Control

#### Batch BIF0110 - REN EPA 600/4-79-020 4.1.4 HNO3 matrix

Instrument: ICPMS1 Analyst: MCB

QC Sample/Analyte	Isotope	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Blank (BIF0110-BLK1)				Prep	ared: 04-Jun	-2020 Ana	lyzed: 08	Jun-2020 14	:16		
Iron	54	ND	20.0	ug/L							U
Iron	57	ND	20.0	ug/L							U
Manganese	55	0.617	0.500	ug/L							
LCS (BIF0110-BS1)				Prep	ared: 04-Jun	-2020 Ana	lyzed: 08	Jun-2020 14	:21		
Iron	54	4830	20.0	ug/L	5000		96.7	80-120			
Iron	57	4730	20.0	ug/L	5000		94.6	80-120			
Manganese	55	24.5	0.500	ug/L	25.0		97.9	80-120			В
Duplicate (BIF0110-DUP1)		Source	e: 20E0321-05	Prep	ared: 04-Jun	-2020 Ana	lyzed: 08	Jun-2020 14	:59		
Iron	54	1360	20.0	ug/L		1430			4.83	20	
Manganese	55	87.5	0.500	ug/L		91.9			4.97	20	В
Matrix Spike (BIF0110-MS1)		Source	e: 20E0321-05	Prep	ared: 04-Jun	-2020 Ana	lyzed: 08	Jun-2020 15	:07		
Iron	54	5450	20.0	ug/L	5000	1430	80.3	75-125			
Manganese	55	110	0.500	ug/L	25.0	91.9	72.2	75-125			*, B

Recovery limits for target analytes in MS/MSD QC samples are advisory only.

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Min-Soon Yim

**Reported:** 15-Jun-2020 11:19

### Metals and Metallic Compounds (dissolved) - Quality Control

#### Batch BIF0032 - REN EPA 600/4-79-020 4.1.4 HNO3 matrix

Instrument: ICPMS2 Analyst: MCB

QC Sample/Analyte	Isotope	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Blank (BIF0032-BLK1)				Prep	ared: 02-Jun	-2020 Ana	alyzed: 02-J	un-2020 16	:45		
Arsenic, Dissolved	75a	ND	0.200	ug/L							U
LCS (BIF0032-BS1)				Prep	ared: 02-Jun	-2020 Ana	alyzed: 02-J	un-2020 16	:50		
Arsenic, Dissolved	75a	24.8	0.200	ug/L	25.0		99.2	80-120			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Min-Soon Yim

**Reported:** 15-Jun-2020 11:19

### Certified Analyses included in this Report

Analyte	Certifications
EPA 6020A in Water	
Iron-54	WADOE,DoD-ELAP
Iron-54	NELAP,WADOE,DoD-ELAP
Iron-57	WADOE,DoD-ELAP
Iron-57	NELAP,WADOE,DoD-ELAP
Manganese-55	WADOE, DoD-ELAP
Manganese-55	NELAP,WADOE,DoD-ELAP
EPA 6020A UCT-KED in Water	
Arsenic-75a	NELAP,WADOE,DoD-ELAP,ADEC
Arsenic-75a	WADOE, DoD-ELAP, ADEC
EPA 8260C in Water	
Chloromethane	DoD-ELAP,ADEC,NELAP,WADOE
Chloromethane	DoD-ELAP,ADEC,CALAP,WADOE
Vinyl Chloride	DoD-ELAP,ADEC,NELAP,WADOE
Vinyl Chloride	DoD-ELAP,ADEC,CALAP,WADOE
Bromomethane	DoD-ELAP,ADEC,NELAP,WADOE
Bromomethane	DoD-ELAP,ADEC,CALAP,WADOE
Chloroethane	DoD-ELAP,ADEC,CALAP,WADOE
Chloroethane	DoD-ELAP,ADEC,NELAP,WADOE
Trichlorofluoromethane	DoD-ELAP,ADEC,NELAP,WADOE
Trichlorofluoromethane	DoD-ELAP,ADEC,CALAP,WADOE
Acrolein	DoD-ELAP,NELAP,WADOE
Acrolein	DoD-ELAP,CALAP,WADOE
1,1,2-Trichloro-1,2,2-Trifluoroethane	DoD-ELAP,ADEC,CALAP,WADOE
1,1,2-Trichloro-1,2,2-Trifluoroethane	DoD-ELAP,ADEC,NELAP,WADOE
Acetone	DoD-ELAP,ADEC,NELAP,WADOE
Acetone	DoD-ELAP,ADEC,CALAP,WADOE
1,1-Dichloroethene	DoD-ELAP,ADEC,NELAP,WADOE
1,1-Dichloroethene	DoD-ELAP,ADEC,CALAP,WADOE
Bromoethane	DoD-ELAP,NELAP,WADOE
Bromoethane	DoD-ELAP,CALAP,WADOE
lodomethane	DoD-ELAP,CALAP,WADOE
lodomethane	DoD-ELAP,NELAP,WADOE
Methylene Chloride	DoD-ELAP,ADEC,NELAP,WADOE
Methylene Chloride	DoD-ELAP,ADEC,CALAP,WADOE

Analytical Resources, Inc.



Seattle Public Utilities	Project: South Park Landfill -Parametrix Water 20	020
700-5th Ave, Ste 4900, Box 34018	Project Number: 553-155-067	Reported:
Seattle WA, 98124-4018	Project Manager: Min-Soon Yim	15-Jun-2020 11:19
Acrylonitrile	DoD-ELAP,NELAP,WADOE	
Acrylonitrile	DoD-ELAP,CALAP,WADOE	
Carbon Disulfide	DoD-ELAP,NELAP,WADOE	
Carbon Disulfide	DoD-ELAP,CALAP,WADOE	
trans-1,2-Dichloroethene	DoD-ELAP,ADEC,CALAP,WADOE	
trans-1,2-Dichloroethene	DoD-ELAP,ADEC,NELAP,WADOE	
Vinyl Acetate	DoD-ELAP,NELAP,WADOE	
Vinyl Acetate	DoD-ELAP,CALAP,WADOE	
1,1-Dichloroethane	DoD-ELAP, ADEC, CALAP, WADOE	
1,1-Dichloroethane	DoD-ELAP, ADEC, NELAP, WADOE	
2-Butanone	DoD-ELAP,NELAP,WADOE	
2-Butanone	DoD-ELAP,CALAP,WADOE	
2,2-Dichloropropane	DoD-ELAP, ADEC, NELAP, WADOE	
2,2-Dichloropropane	DoD-ELAP,ADEC,CALAP,WADOE	
cis-1,2-Dichloroethene	DoD-ELAP,ADEC,CALAP,WADOE	
cis-1,2-Dichloroethene	DoD-ELAP, ADEC, NELAP, WADOE	
Chloroform	DoD-ELAP, ADEC, CALAP, WADOE	
Chloroform	DoD-ELAP, ADEC, NELAP, WADOE	
Bromochloromethane	DoD-ELAP, ADEC, NELAP, WADOE	
Bromochloromethane	DoD-ELAP, ADEC, CALAP, WADOE	
1,1,1-Trichloroethane	DoD-ELAP, ADEC, CALAP, WADOE	
1,1,1-Trichloroethane	DoD-ELAP, ADEC, NELAP, WADOE	
1,1-Dichloropropene	DoD-ELAP, ADEC, NELAP, WADOE	
1,1-Dichloropropene	DoD-ELAP, ADEC, CALAP, WADOE	
Carbon tetrachloride	DoD-ELAP,ADEC,NELAP,WADOE	
Carbon tetrachloride	DoD-ELAP, ADEC, CALAP, WADOE	
1,2-Dichloroethane	DoD-ELAP,ADEC,NELAP,WADOE	
1,2-Dichloroethane	DoD-ELAP,ADEC,CALAP,WADOE	
Benzene	DoD-ELAP, ADEC, CALAP, WADOE	
Benzene	DoD-ELAP, ADEC, NELAP, WADOE	
Trichloroethene	DoD-ELAP, ADEC, CALAP, WADOE	
Trichloroethene	DoD-ELAP,ADEC,NELAP,WADOE	
1,2-Dichloropropane	DoD-ELAP,ADEC,NELAP,WADOE	
1,2-Dichloropropane	DoD-ELAP,ADEC,CALAP,WADOE	
Bromodichloromethane	DoD-ELAP,ADEC,NELAP,WADOE	
Bromodichloromethane	DoD-ELAP,ADEC,CALAP,WADOE	
Dibromomethane	DoD-ELAP,ADEC,NELAP,WADOE	
Dibromomethane	DoD-ELAP, ADEC, CALAP, WADOE	
2-Chloroethyl vinyl ether	DoD-ELAP,ADEC,NELAP,WADOE	

Analytical Resources, Inc.



## **Analytical Report**

Seattle Public Utilities	Project: South Park Landfill -Parametrix Water 20	020
700-5th Ave, Ste 4900, Box 34018	Project Number: 553-155-067	Reported:
Seattle WA, 98124-4018	Project Manager: Min-Soon Yim	15-Jun-2020 11:19
2-Chloroethyl vinyl ether	DoD-ELAP,ADEC,CALAP,WADOE	
4-Methyl-2-Pentanone	DoD-ELAP,CALAP,WADOE	
4-Methyl-2-Pentanone	DoD-ELAP,NELAP,WADOE	
cis-1,3-Dichloropropene	DoD-ELAP,ADEC,NELAP,WADOE	
cis-1,3-Dichloropropene	DoD-ELAP,ADEC,CALAP,WADOE	
Toluene	DoD-ELAP,ADEC,NELAP,WADOE	
Toluene	DoD-ELAP,ADEC,CALAP,WADOE	
trans-1,3-Dichloropropene	DoD-ELAP,ADEC,NELAP,WADOE	
trans-1,3-Dichloropropene	DoD-ELAP,ADEC,CALAP,WADOE	
2-Hexanone	DoD-ELAP,NELAP,WADOE	
2-Hexanone	DoD-ELAP,CALAP,WADOE	
1,1,2-Trichloroethane	DoD-ELAP,ADEC,NELAP,WADOE	
1,1,2-Trichloroethane	DoD-ELAP,ADEC,CALAP,WADOE	
1,3-Dichloropropane	DoD-ELAP,ADEC,CALAP,WADOE	
1,3-Dichloropropane	DoD-ELAP,ADEC,NELAP,WADOE	
Tetrachloroethene	DoD-ELAP,ADEC,CALAP,WADOE	
Tetrachloroethene	DoD-ELAP,ADEC,NELAP,WADOE	
Dibromochloromethane	DoD-ELAP,ADEC,NELAP,WADOE	
Dibromochloromethane	DoD-ELAP,ADEC,CALAP,WADOE	
1,2-Dibromoethane	DoD-ELAP,CALAP,WADOE	
1,2-Dibromoethane	DoD-ELAP,NELAP,WADOE	
Chlorobenzene	DoD-ELAP, ADEC, CALAP, WADOE	
Chlorobenzene	DoD-ELAP, ADEC, NELAP, WADOE	
Ethylbenzene	DoD-ELAP, ADEC, NELAP, WADOE	
Ethylbenzene	DoD-ELAP,ADEC,CALAP,WADOE	
1,1,1,2-Tetrachloroethane	DoD-ELAP,ADEC,CALAP,WADOE	
1,1,1,2-Tetrachloroethane	DoD-ELAP,ADEC,NELAP,WADOE	
m,p-Xylene	DoD-ELAP,ADEC,NELAP,WADOE	
m,p-Xylene	DoD-ELAP, ADEC, CALAP, WADOE	
o-Xylene	DoD-ELAP, ADEC, CALAP, WADOE	
o-Xylene	DoD-ELAP,ADEC,NELAP,WADOE	
Styrene	DoD-ELAP,CALAP,WADOE	
Styrene	DoD-ELAP,NELAP,WADOE	
Bromoform	DoD-ELAP,CALAP,WADOE	
Bromoform	DoD-ELAP,NELAP,WADOE	
1,1,2,2-Tetrachloroethane	DoD-ELAP, ADEC, CALAP, WADOE	
1,1,2,2-Tetrachloroethane	DoD-ELAP, ADEC, NELAP, WADOE	
1,2,3-Trichloropropane	DoD-ELAP, ADEC, CALAP, WADOE	
1,2,3-Trichloropropane	DoD-ELAP,ADEC,NELAP,WADOE	

Analytical Resources, Inc.



## **Analytical Report**

Seattle Public Utilities	Project: South Park Landfill -Parametrix Water 20	020
700-5th Ave, Ste 4900, Box 34018	Project Number: 553-155-067	Reported:
Seattle WA, 98124-4018	Project Manager: Min-Soon Yim	15-Jun-2020 11:19
trans-1,4-Dichloro 2-Butene	DoD-ELAP,ADEC,NELAP,WADOE	
trans-1,4-Dichloro 2-Butene	DoD-ELAP,ADEC,CALAP,WADOE	
n-Propylbenzene	DoD-ELAP,NELAP,WADOE	
n-Propylbenzene	DoD-ELAP,CALAP,WADOE	
Bromobenzene	DoD-ELAP,CALAP,WADOE	
Bromobenzene	DoD-ELAP,NELAP,WADOE	
Isopropyl Benzene	DoD-ELAP,NELAP,WADOE	
Isopropyl Benzene	DoD-ELAP,CALAP,WADOE	
2-Chlorotoluene	DoD-ELAP, ADEC, NELAP, WADOE	
2-Chlorotoluene	DoD-ELAP, ADEC, CALAP, WADOE	
4-Chlorotoluene	DoD-ELAP, ADEC, CALAP, WADOE	
4-Chlorotoluene	DoD-ELAP, ADEC, NELAP, WADOE	
t-Butylbenzene	DoD-ELAP,NELAP,WADOE	
t-Butylbenzene	DoD-ELAP,CALAP,WADOE	
1,3,5-Trimethylbenzene	DoD-ELAP,NELAP,WADOE	
1,3,5-Trimethylbenzene	DoD-ELAP,CALAP,WADOE	
1,2,4-Trimethylbenzene	DoD-ELAP,CALAP,WADOE	
1,2,4-Trimethylbenzene	DoD-ELAP,NELAP,WADOE	
s-Butylbenzene	DoD-ELAP,CALAP,WADOE	
s-Butylbenzene	DoD-ELAP,NELAP,WADOE	
4-Isopropyl Toluene	DoD-ELAP,CALAP,WADOE	
4-Isopropyl Toluene	DoD-ELAP,NELAP,WADOE	
1,3-Dichlorobenzene	DoD-ELAP, ADEC, NELAP, WADOE	
1,3-Dichlorobenzene	DoD-ELAP, ADEC, CALAP, WADOE	
1,4-Dichlorobenzene	DoD-ELAP, ADEC, NELAP, WADOE	
1,4-Dichlorobenzene	DoD-ELAP, ADEC, CALAP, WADOE	
n-Butylbenzene	DoD-ELAP,NELAP,WADOE	
n-Butylbenzene	DoD-ELAP,CALAP,WADOE	
1,2-Dichlorobenzene	DoD-ELAP, ADEC, NELAP, WADOE	
1,2-Dichlorobenzene	DoD-ELAP, ADEC, CALAP, WADOE	
1,2-Dibromo-3-chloropropane	DoD-ELAP, ADEC, CALAP, WADOE	
1,2-Dibromo-3-chloropropane	DoD-ELAP, ADEC, NELAP, WADOE	
1,2,4-Trichlorobenzene	DoD-ELAP,ADEC,CALAP,WADOE	
1,2,4-Trichlorobenzene	DoD-ELAP,ADEC,NELAP,WADOE	
Hexachloro-1,3-Butadiene	DoD-ELAP,ADEC,CALAP,WADOE	
Hexachloro-1,3-Butadiene	DoD-ELAP,ADEC,NELAP,WADOE	
Naphthalene	DoD-ELAP,ADEC,NELAP,WADOE	
Naphthalene	DoD-ELAP,ADEC,CALAP,WADOE	
1,2,3-Trichlorobenzene	DoD-ELAP,ADEC,CALAP,WADOE	

Analytical Resources, Inc.

Analytical Resources, Incorporated Analytical Chemists and Consultants

# **Analytical Report**

Seattle Public Utilities	Project: South Park Landfill -Parametrix Water 2	2020
700-5th Ave, Ste 4900, Box 34018	Project Number: 553-155-067	Reported:
Seattle WA, 98124-4018	Project Manager: Min-Soon Yim	15-Jun-2020 11:19
1,2,3-Trichlorobenzene	DoD-ELAP,ADEC,NELAP,WADOE	
Dichlorodifluoromethane	DoD-ELAP,ADEC,NELAP,WADOE	
Dichlorodifluoromethane	DoD-ELAP,ADEC,CALAP,WADOE	
Methyl tert-butyl Ether	DoD-ELAP,ADEC,CALAP,WADOE	
Methyl tert-butyl Ether	DoD-ELAP,ADEC,NELAP,WADOE	
n-Hexane	WADOE	
n-Hexane	WADOE	
2-Pentanone	WADOE	
2-Pentanone	WADOE	
EPA 8260C-SIM in Water		
Acrylonitrile	CALAP,WADOE	
Acrylonitrile	NELAP,WADOE	
Vinyl chloride	CALAP,WADOE	
Vinyl chloride	NELAP,WADOE	
1,1-Dichloroethene	CALAP,WADOE	
1,1-Dichloroethene	NELAP,WADOE	
cis-1,2-Dichloroethene	CALAP,WADOE	
cis-1,2-Dichloroethene	NELAP,WADOE	
trans-1,2-Dichloroethene	NELAP,WADOE	
trans-1,2-Dichloroethene	CALAP,WADOE	
Trichloroethene	CALAP,WADOE	
Trichloroethene	NELAP,WADOE	
Tetrachloroethene	CALAP,WADOE	
Tetrachloroethene	NELAP,WADOE	
1,1,2,2-Tetrachloroethane	CALAP,WADOE	
1,1,2,2-Tetrachloroethane	NELAP,WADOE	
1,2-Dichloroethane	NELAP,WADOE	
1,2-Dichloroethane	CALAP,WADOE	
Benzene	CALAP,WADOE	
Benzene	NELAP,WADOE	
Code Description	Number	Expires

ooue	Description	Number	Explics
ADEC	Alaska Dept of Environmental Conservation	17-015	01/31/2021
DoD-ELAP	DoD-Environmental Laboratory Accreditation Program	66169	01/01/2021
WADOE	WA Dept of Ecology	C558	06/30/2020
WA-DW	Ecology - Drinking Water	C558	06/30/2020

Analytical	Resources,	Inc.
------------	------------	------

### **Analytical Report**

Seattle Public Utilities 700-5th Ave, Ste 4900, Box 34018 Seattle WA, 98124-4018 Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Min-Soon Yim

**Reported:** 15-Jun-2020 11:19

### **Notes and Definitions**

*	Flagged value is not within established control limits.
В	This analyte was detected in the method blank.
D	The reported value is from a dilution
Е	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL)
Н	Hold time violation - Hold time was exceeded.
J	Estimated concentration value detected below the reporting limit.
Q	Indicates a detected analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20% RSD, <20% drift or minimum RRF)

U This analyte is not detected above the reporting limit (RL) or if noted, not detected above the limit of detection (LOD).

#### DET Analyte DETECTED

- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference
- [2C] Indicates this result was quantified on the second column on a dual column analysis.

# 3rd Quarter 2020

Laboratory Reports



11 September 2020

Jeff Neuner Seattle Public Utilities 700-5th Ave, Ste 4900, Box 34018 Seattle, WA 98124-4018

RE: South Park Landfill -Parametrix Water 2020

Please find enclosed sample receipt documentation and analytical results for samples from the project referenced above.

Sample analyses were performed according to ARI's Quality Assurance Plan and any provided project specific Quality Assurance Plan. Each analytical section of this report has been approved and reviewed by an analytical peer, the appropriate Laboratory Supervisor or qualified substitute, and a technical reviewer.

Should you have any questions or problems, please feel free to contact us at your convenience.

Associated Work Order(s) 20H0287 Associated SDG ID(s) N/A

_____

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed in the enclose Narrative. ARI, an accredited laboratory, certifies that the report results for which ARI is accredited meets all the requirements of the accrediting body. A list of certified analyses, accreditations, and expiration dates is included in this report.

Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

Analytical Resources, Inc.

Shelly & Fish



## Chain of Custody Record & Laboratory Analysis Request

ARI Assigned Number: 20140287 ARI Client Company: Jeff Neuner,	Turn-around	Requested: Phone: 206	2 weeks		Date:	8/2	5/2D						Analy Analy	tical Resources, Incorpor tical Chemists and Consul	ated tants
Public Utility					l age.	່ 1	01			9			401	Tukwila WA Q	9169
Client Contact: Laura Lee, Paramo	etrix	Phone: 206	394-3665		No. of Coolers	1	Cooler Temps	3	. 6'				20	6-695-6200 206-695-6201	(fax)
Client Project Name: South Park L	andfill					-			Analysis	Requeste	d			Notes/Comments	
Client Project #: 553-1550-067	Samplers: 1	Frey Parry			Ш	Ш	qe	Mn	As**						
Sample ID	Date	Time	Matrix	Number of Containers	cis-1,2-D0	cis-1,2-D( benzene	Vinyl Chlori	Total Fe,	Dissolved						
SPL-GW-MW12-0820	8/15	9:26	water	8	X		Х	X	X					**Field-filtered	
SPL-GW-MW14-0820	8/25	11:33	water	7	x	2	x	x							
SPL-GW-MW29-0820	8/15	13:15	water	7	x		x	x							
SPL-GW-MW18-0820	8125	15:00	water	8	x		x	x	x						
2-SPL-GW-MW25-0820-			water	14		Х	×	x	x			the second		MS/MSD	
		Construction of the second	water	8	x	_	X	x	x				CTAR FEMALENCE SALES		_
SPL-GW-MW33-0820	815	16:15	water	8	x		x	x	x						
SPL-GW-MW60-0820	8.25	1331	water	87	x		х	x	im					NO Dissoluted A	+ Ah
SPL-GW-MW80-0820	819	NA.	water	\$2	X,		x								
Comments/Special Instructions	Relinquished by			Received by:	1/	11	2	Relinquist	ned by:			•	Received by	y:	
	Printed Name:	1	And a state of the local division of the loc	Printed Name:	A	1	2	Printed Na	ame.				(Signature)	001	
	10cu	Phony		15	aw!	bha	1.te	-					i integ Han		
	Company	netnix		Company	2			Company:					Company:		
	Date & Time:	5/20	6:28	Date & Timer	che.	Sole	628	Date & Tir	ne:				Date & Time	9:	

Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or co-signed agreement between ARI and the Client.

Sample Retention Policy: Unless specified by work order or contract, all water/soil samples submitted to ARI will be discarded or returned, no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer. Sediment samples submitted under PSDDA/PSEP/SMS protocol will be stored frozen for up to one year and then discarded.

# Chain of Custody Record & Laboratory Analysis Request

ARI Assigned Number:	ARI Assigned Number: 20402 X 7 ARI Client Company: Leff Neuror: Soattle Phone: 206 684 7602						26/2	0						Analyti Analyt	ical Resources, Incorporated tical Chemists and Consultants
Public Utility	Public Utility						of			3				461	1 South 134th Place, Suite 100
Client Contact: Lisa Gilbert, Parametrix Phone: 206 394-3667				No. of Cooler 7.6 C					206-695-6200 206-695-6201 (				6-695-6200 206-695-6201 (fax)		
Client Project Name: South Park L	₋andfill							1	Analysis	Requeste	ed				Notes/Comments
Client Project #: 553-1550-067	Samplers: Trey Parry			빙	Ш	ide	ЧЧ	As**						20	
Sample ID	Date	Time	Matrix	Number of Containers	cis-1,2-D	cis-1,2-Do	Vinyl Chlor	Total Fe,	Dissolved						
			water				×	×	×						**Field-filtered
• SPL-GW-MW27-0820	8/26	1350	water	14	х		x	x	x						MS/MSD
SPL-GW-MW08-0820	8/26	1215	water	8	х		x	x	x						
		-755 1	water	8			×	-x-	- <u>x</u> -						
• SPL-GW-MW24-0820	8/16	600	water	8	х		x	x	x						
SPL-GW-MW31-0820	8126	10:10	water	7	х		х	x							
SPL-GW-MW30-0820	8/16	9:00	water	7	х		x	x							
PL-GW-MW61-0820		n an	water	8	X		X	X	X						
	5/19		water	62	7	×						_			1
Comments/Special Instructions	Relinquished by (Signature)			Received by: (Signature)	al	2	<u> </u>	Relinquist	ned by: e)				Re (Si	eceived by	
	Printed Name: JICY PARM Printed Name:		ausbialt			Printed Name:				Printed Name:			e:		
	Company	ame tri	X	Company:	2			Company:					Co	ompany:	
	Date & Time	6/20 10	5:24	Date & Timer	6 /200	x	628	Date & Tir	me:				Da	ate & Time	,

Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program' meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or co-signed agreement between ARI and the Client.

Sample Retention Policy: Unless specified by work order or contract, all water/soil samples submitted to ARI will be discarded or returned, no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer. Sediment samples submitted under PSDDA/PSEP/SMS protocol will be stored frozen for up to one year and then discarded.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 11-Sep-2020 09:55

### ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SPL-GW-MW12-0820	20H0287-01	Water	25-Aug-2020 09:26	26-Aug-2020 16:28
SPL-GW-MW12-0820	20H0287-02	Water	25-Aug-2020 09:26	26-Aug-2020 16:28
SPL-GW-MW14-0820	20H0287-03	Water	25-Aug-2020 11:33	26-Aug-2020 16:28
SPL-GW-MW29-0820	20H0287-04	Water	25-Aug-2020 13:15	26-Aug-2020 16:28
SPL-GW-MW18-0820	20H0287-05	Water	25-Aug-2020 15:00	26-Aug-2020 16:28
SPL-GW-MW18-0820	20H0287-06	Water	25-Aug-2020 15:00	26-Aug-2020 16:28
SPL-GW-MW33-0820	20H0287-07	Water	25-Aug-2020 16:15	26-Aug-2020 16:28
SPL-GW-MW33-0820	20H0287-08	Water	25-Aug-2020 16:15	26-Aug-2020 16:28
SPL-GW-MW60-0820	20H0287-09	Water	25-Aug-2020 13:31	26-Aug-2020 16:28
SPL-GW-MW80-0820	20H0287-10	Water	25-Aug-2020 00:00	26-Aug-2020 16:28
SPL-GW-MW27-0820	20H0287-11	Water	26-Aug-2020 13:50	26-Aug-2020 16:28
SPL-GW-MW27-0820	20H0287-12	Water	26-Aug-2020 13:50	26-Aug-2020 16:28
SPL-GW-MW08-0820	20H0287-13	Water	26-Aug-2020 12:15	26-Aug-2020 16:28
SPL-GW-MW08-0820	20H0287-14	Water	26-Aug-2020 12:15	26-Aug-2020 16:28
SPL-GW-MW24-0820	20H0287-15	Water	26-Aug-2020 16:00	26-Aug-2020 16:28
SPL-GW-MW24-0820	20H0287-16	Water	26-Aug-2020 16:00	26-Aug-2020 16:28
SPL-GW-MW31-0820	20H0287-17	Water	26-Aug-2020 10:10	26-Aug-2020 16:28
SPL-GW-MW30-0820	20H0287-18	Water	26-Aug-2020 09:00	26-Aug-2020 16:28

Analytical Resources, Inc.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 11-Sep-2020 09:55

### Work Order Case Narrative

Client: Seattle Public Utilities Project: South Park Landfill -Parametrix Water 2020 Work Order: 20H0287

### Sample receipt

Samples as listed on the preceding page were received 26-Aug-2020 16:28 under ARI work order 20H0287. For details regarding sample receipt, please refer to the Cooler Receipt Form.

### Volatiles - EPA Method SW8260D

The sample(s) were analyzed within the recommended holding times.

Initial and continuing calibrations were within method requirements.

Internal standard areas were within limits.

The surrogate percent recoveries were within control limits.

The method blank(s) were clean at the reporting limits.

The blank spike and blank spike duplicate (BS/LCS and BSD/LCSD) spike recoveries and relative percent difference (RPD) were within limits.

Sample specific QC was performed in association with sample 20H0287-11 in batch BII0015. The matrix spike/matrix spike duplicate (MS/MSD) spike recoveries were out of control low and have been flagged within the QC section of this report. The MS/MSD relative percent difference (RPD) were within limits.

### Volatiles - EPA Method 8260D-SIM (Selected Ion Monitoring)

The sample(s) were analyzed within the recommended holding times.

Initial and continuing calibrations were within method requirements.

Internal standard areas were within limits.

The surrogate percent recoveries were within control limits.

The method blank(s) were clean at the reporting limits.

The blank spike and blank spike duplicate (BS/LCS and BSD/LCSD) spike recoveries and relative percent difference (RPD) were within limits.

Analytical Resources, Inc.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 11-Sep-2020 09:55

Sample specific QC was performed in association with sample 20H0287-11 in batch BIH0605. The matrix spike/matrix spike duplicate (MS/MSD) percent recoveries and relative percent difference (RPD) were within limits.

### Total Metals - EPA Method 6020A

The sample(s) were digested and analyzed within the recommended holding times.

Initial and continuing calibrations were within method requirements.

The method blank(s) were clean at the reporting limits.

The blank spike (BS/LCS) percent recoveries were within control limits.

Sample specific QC was performed in association with sample 20H0287-11 in batch BII0113The matrix spike (MS) percent recoveries and the duplicate (DUP) relative percent difference (RPD) were within limits.

### **Dissolved Arsenic - EPA Method 6020A**

The sample(s) were digested and analyzed within the recommended holding times.

Initial and continuing calibrations were within method requirements.

The method blank(s) were clean at the reporting limits.

The blank spike (BS/LCS) percent recoveries were within control limits.

Sample specific QC was performed in association with sample 20H0287-12 in batch BII0056. The matrix spike (MS) percent recoveries and the duplicate (DUP) relative percent difference (RPD) were within limits.

Analytical Resources, Inc.

Analytical Resources, Incorporated Analytical Chemists and Consultants	eipt Fo	orm	
ARI Client: SPU/Pavametrix Project Name: South	Pak	Lon 24	<u>C:</u> []
COC No(s): NA Delivered by: Fed-Ex UPS Courie	er Hand Delivere	d Other:	
Assigned ARI Job No: Tracking No:		(	MA
Preliminary Examination Phase:		C	_
Were intact, properly signed and dated custody seals attached to the outside of the cooler?	YE	es 🤇	NO
Were custody papers included with the cooler?	YE	ŝ	NO
Were custody papers properly filled out (ink, signed, etc.)	TE	ES_	NO
Temperature of Cooler(s) (°C) (recommended 2.0-6.0 °C for chemistry)			
Time (628 3,6			
If cooler temperature is out of compliance fill out form 00070F	Temp Gun ID#:	DOOSJO	»G
Cooler Accepted by: 73- Date: 08/26/2002 Time:	1628		
Complete custody forms and attach all shipping documents			
Log-In Phase:			
What kind of positions methoded in the cooler?		YES	(NO)
What kind of packing material was used ?	SIOCK Paper Othe		
How were bottles sealed in plastic bage?	NA Individually	Crouned	NO
Did all bottles arrive in good condition (unbroken)?	Individually	Grouped	NO
Were all hottle labels complete and legible?		VES	NO
Did the number of containers listed on COC match with the number of containers received?		VES	NO
Did all bottle labels and tags agree with custody papers?		VES	NO
Were all bottles used correct for the requested analyses?		VES	NO
Do any of the analyses (bottles) require preservation? (attach preservation sheet excluding VOCs)	NA	YES	NO
Were all VOC vials free of air bubbles?	NA	YES	NO
Was sufficient amount of sample sent in each bottle?	~	YES	NO
Date VOC Trip Blank was made at ARI	(NA)	C	
Were the sample(s) split (NA) YES Date/Time: Equipment		Split by:	
Samples Logged by: AUM AND Date: 827 2020 Time: 1049 Lab	els checked by:	SLF	<u></u>
** Notify Project Manager of discrepancies or concerns **			

Sample ID on Bottle	Sample ID on COC	Sample ID on Bottle	Sample ID on COC
dditional Notae Diceronance			
uunionai Notes, Discrepanc	cies, & Resolutions:		
dunional Notes, Discrepanc	cies, & Resolutions:		
dunionai Noles, Discrepanc	cies, & Resolutions:		
dunional Notes, Discrepanc	cies, & Resolutions:		
uununa notes, Discrepanc	cies, & Resolutions:		
uunionai Notes, Discrepanc	cies, & Resolutions:		
dunional Notes, Discrepanc	cies, & Resolutions:		
dunional Notes, Discrepand	cies, & Resolutions:		
dunional Notes, Discrepanc	cies, & Resolutions:		
dunional Notes, Discrepand	cies, & Resolutions:		



WORK ORDER

20H0287

Client:	Seattle	Public	Utilities
Chent.	Scattic	I UDIIC	ounties

Project Manager: Shelly Fishel Project Number: 553-155-067

Project: South	Park	Landfill	-Parametrix	Water	2020
----------------	------	----------	-------------	-------	------

2020 Project Number: 55. Preservation Confirmation

Container ID	Container Type	рН	
20H0287-01 A	VOA Vial, Amber, 40 mL, HCL		
20H0287-01 B	VOA Vial, Amber, 40 mL, HCL		
20H0287-01 C	VOA Vial, Amber, 40 mL, HCL		
20H0287-01 D	VOA Vial, Clear, 40 mL		
20H0287-01 E	VOA Vial, Clear, 40 mL		
20H0287-01 F	VOA Vial, Clear, 40 mL		
20H0287-01 G	HDPE NM, 500 mL, 1:1 HNO3	<7 (70,02)	
20H0287-02 A	HDPE NM, 500 mL, 1:1 HNO3 (FF)	67, OND	
20H0287-03 A	VOA Vial, Amber, 40 mL, HCL		
20H0287-03 B	VOA Vial, Amber, 40 mL, HCL		
20H0287-03 C	VOA Vial, Amber, 40 mL, HCL		
20H0287-03 D	VOA Vial, Clear, 40 mL		
20H0287-03 E	VOA Vial, Clear, 40 mL		
20H0287-03 F	VOA Vial, Clear, 40 mL		
20H0287-03 G	HDPE NM, 500 mL, 1:1 HNO3	<7, 50,00	
20H0287-04 A	VOA Vial, Amber, 40 mL, HCL		20
20H0287-04 B	VOA Vial, Amber, 40 mL, HCL		
20H0287-04 C	VOA Vial, Amber, 40 mL, HCL		
20H0287-04 D	VOA Vial, Clear, 40 mL		
20H0287-04 E	VOA Vial, Clear, 40 mL		
20H0287-04 F	VOA Vial, Clear, 40 mL		
20H0287-04 G	HDPE NM, 500 mL, 1:1 HNO3		
20H0287-05 A	VOA Vial, Amber, 40 mL, HCL	<2 MAD	
20H0287-05 B	VOA Vial, Amber, 40 mL, HCL	1.	
20H0287-05 C	VOA Vial, Amber, 40 mL, HCL		
20H0287-05 D	VOA Vial, Clear, 40 mL		
20H0287-05 E	VOA Vial, Clear, 40 mL		
20H0287-05 F	VOA Vial, Clear, 40 mL	2	
20H0287-05 G	HDPE NM, 500 mL, 1:1 HNO3	$22 \pi 00$	
20H0287-06 A	HDPE NM, 500 mL, 1:1 HNO3 (FF)	<2 5A20	
20H0287-07 A	VOA Vial, Amber, 40 mL, HCL	P	
20H0287-07 B	VOA Vial, Amber, 40 mL, HCL		
20H0287-07 C	VOA Vial, Amber, 40 mL, HCL		
20H0287-07 D	VOA Vial, Clear, 40 mL		
20H0287-07 E	VOA Vial, Clear, 40 mL		
Photo and a second s			







### WORK ORDER

# 20H0287

Client: Seattle Pub	lic Utilities	Project Manager:	Shelly Fishel
Project: South Park	Landfill -Parametrix Water 2020	<b>Project Number:</b>	553-155-067
20H0287-07 F	VOA Vial, Clear, 40 mL		
20H0287-07 G	HDPE NM, 500 mL, 1:1 HNO3		
20H0287-08 A	HDPE NM, 500 mL, 1:1 HNO3 (FF)		
20H0287-09 A	VOA Vial, Amber, 40 mL, HCL		
20H0287-09 B	VOA Vial, Amber, 40 mL, HCL		
20H0287-09 C	VOA Vial, Amber, 40 mL, HCL		
20H0287-09 D	VOA Vial, Clear, 40 mL		
20H0287-09 E	VOA Vial, Clear, 40 mL		
20H0287-09 F	VOA Vial, Clear, 40 mL		μ
20H0287-09 G	HDPE NM, 500 mL, 1:1 HNO3		
20H0287-10 A	VOA Vial, Amber, 40 mL, HCL		
20H0287-10 B	VOA Vial, Clear, 40 mL		
20H0287-11 A	VOA Vial, Amber, 40 mL, HCL		
20H0287-11 B	VOA Vial, Amber, 40 mL, HCL		
20H0287-11 C	VOA Vial, Amber, 40 mL, HCL		
20H0287-11 D	VOA Vial, Clear, 40 mL		
20H0287-11 E	VOA Vial, Clear, 40 mL		
20H0287-11 F	VOA Vial, Clear, 40 mL		
20H0287-11 G	HDPE NM, 500 mL, 1:1 HNO3		
20H0287-11 H	VOA Vial, Amber, 40 mL, HCL		
20H0287-11 1	VOA Vial, Amber, 40 mL, HCL		
20H0287-11 J	VOA Vial, Amber, 40 mL, HCL		
20H0287-11 K	VOA Vial, Clear, 40 mL		
20H0287-11 L	VOA Vial, Clear, 40 mL		
20H0287-11 M	VOA Vial, Clear, 40 mL		
20H0287-12 A	HDPE NM, 500 mL, 1:1 HNO3 (FF)		
20H0287-13 A	VOA Vial, Amber, 40 mL, HCL		
20H0287-13 B	VOA Vial, Amber, 40 mL, HCL		
20H0287-13 C	VOA Vial, Amber, 40 mL, HCL		
20H0287-13 D	VOA Vial, Clear, 40 mL		
20H0287-13 E	VOA Vial, Clear, 40 mL		
20H0287-13 F	VOA Vial, Clear, 40 mL		
20H0287-13 G	HDPE NM, 500 mL, 1:1 HNO3		
20H0287-14 A	HDPE NM, 500 mL, 1:1 HNO3 (FF)		
20H0287-15 A	VOA Vial, Amber, 40 mL, HCL		
20H0287-15 B	VOA Vial, Amber, 40 mL, HCL		
20H0287-15 C	VOA Vial, Amber, 40 mL, HCL		





WORK ORDER

20H0287

Client: Seattle Public	c Utilities	Project Manager: Shelly Fishel
Project: South Park L	andfill -Parametrix Water 2020	Project Number: 553-155-067
20H0287-15 D	VOA Vial, Clear, 40 mL	
20H0287-15 E	VOA Vial, Clear, 40 mL	
20H0287-15 F	VOA Vial, Clear, 40 mL	
20H0287-15 G	HDPE NM, 500 mL, 1:1 HNO3	42 aug
20H0287-16 A	HDPE NM, 500 mL, 1:1 HNO3 (FF)	22 mg
20H0287-17 A	VOA Vial, Amber, 40 mL, HCL	h
20H0287-17 B	VOA Vial, Amber, 40 mL, HCL	
20H0287-17 C	VOA Vial, Amber, 40 mL, HCL	
20H0287-17 D	VOA Vial, Clear, 40 mL	
20H0287-17 E	VOA Vial, Clear, 40 mL	
20H0287-17 F	VOA Vial, Clear, 40 mL	
20H0287-17 G	HDPE NM, 500 mL, 1:1 HNO3	42 000
20H0287-18 A	VOA Vial, Amber, 40 mL, HCL	
20H0287-18 B	VOA Vial, Amber, 40 mL, HCL	
20H0287-18 C	VOA Vial, Amber, 40 mL, HCL	
20H0287-18 D	VOA Vial, Clear, 40 mL	
20H0287-18 E	VOA Vial, Clear, 40 mL	
20H0287-18 F	VOA Vial, Clear, 40 mL	
20H0287-18 G	HDPE NM, 500 mL, 1:1 HNO3	22 AND
Preservation Confirmed By		8 27 2020 Date



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 11-Sep-2020 09:55

### SPL-GW-MW12-0820

20H0287-01 (Water)

Volatile Organic Com	pounds						
Method: EPA 8260D	lethod: EPA 8260D				Sampled: 08/25/2020 (		
Instrument: NT2 Analyst: PKC					An	alyzed: 08	/31/2020 20:25
Sample Preparation:	e and Trap) Sample Size: 1 Final Volume: 1	0 mL 10 mL		Ε	Extract ID:	20H0287-01 B	
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
cis-1,2-Dichloroethene		156-59-2	1	0.20	0.21	ug/L	
Surrogate: 1,2-Dichloroethe	ane-d4			80-129 %	113	%	



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 11-Sep-2020 09:55

### SPL-GW-MW12-0820

20H0287-01 (Water)

Volatile Organic Con	pounds - SIM						
Method: EPA 8260D-SIN	Iethod: EPA 8260D-SIM				Sampled: 08/25/2020 0		
Instrument: NT16 Analyst: PB					An	alyzed: 08	/28/2020 12:49
Sample Preparation:	and Trap) Sample Size: 1 Final Volume:	0 mL 10 mL		E	Extract ID:	20H0287-01 D	
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Vinyl chloride		75-01-4	1	20.0	ND	ng/L	U
Surrogate: 1,2-Dichloroeth	ane-d4			80-129 %	96.2	%	

Analytical Resources, Inc.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 11-Sep-2020 09:55

### SPL-GW-MW12-0820

### 20H0287-01 (Water)

Metals and Metallic C	Compounds					
Method: EPA 6020A				S	ampled: 08/	/25/2020 09:26
Instrument: ICPMS1 An	strument: ICPMS1 Analyst: MCB				halyzed: 09/	/04/2020 17:21
Sample Preparation:	Preparation Method: REN EPA 600/4-	-79-020 4.1.4 HNO3 matrix		Ext	ract ID: 20H	H0287-01 G 01
	Preparation Batch: BII0113	Sample Size: 25 mL				
	Prepared: 09/04/2020	Final Volume: 25 mL				
			Reporting			
Analyte		CAS Number Dilution	Limit	Result	Units	Notes
Iron		7439-89-6 1	20.0	1610	ug/L	
Instrument: ICPMS2 An	alyst: MCB			Aı	nalyzed: 09	/08/2020 16:11
Sample Preparation:	Preparation Method: REN EPA 600/4-	-79-020 4.1.4 HNO3 matrix		Ext	ract ID: 20H	40287-01 G 01
	Preparation Batch: BII0113	Sample Size: 25 mL				
	Prepared: 09/04/2020	Final Volume: 25 mL				
			Reporting			
Analyte		CAS Number Dilution	Limit	Result	Units	Notes
Manganese		7439-96-5 1	0.500	158	ug/L	



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 11-Sep-2020 09:55

### SPL-GW-MW12-0820

20H0287-02 (Water)

#### Metals and Metallic Compounds (dissolved)

	· · · ·								
Method: EPA 6020A UCT	ihod: EPA 6020A UCT-KED				Sampled: 08/25/2020 09:26				
Instrument: ICPMS2 Analyst: MCB Analyze				alyzed: 09/	08/2020 17:21				
Sample Preparation:	-79-020 4.1.4 HNO3 matrix			Ext	act ID: 20H	10287-02 A 01			
	Preparation Batch: BII0156	Sample Size: 25							
	Prepared: 09/07/2020	Final Volume: 2	Final Volume: 25 mL						
				Reporting					
Analyte		CAS Number	Dilution	Limit	Result	Units	Notes		
Arsenic, Dissolved		7440-38-2	1	0.200	0.497	ug/L			



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 11-Sep-2020 09:55

### SPL-GW-MW14-0820

20H0287-03 (Water)

Volatile Organic Com	pounds						
Method: EPA 8260D	Aethod: EPA 8260D				Sa	ampled: 08	/25/2020 11:33
Instrument: NT2 Analyst: PKC					An	alyzed: 08	/31/2020 20:46
Sample Preparation:	and Trap) Sample Size: 10 Final Volume: 1	0 mL 10 mL		E	Extract ID:	20H0287-03 A	
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
cis-1,2-Dichloroethene		156-59-2	1	0.20	ND	ug/L	U
Surrogate: 1,2-Dichloroethe	ane-d4			80-129 %	115	%	

Analytical Resources, Inc.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 11-Sep-2020 09:55

### SPL-GW-MW14-0820

20H0287-03 (Water)

Volatile Organic Con	pounds - SIM						
Method: EPA 8260D-SIN	ethod: EPA 8260D-SIM				Sampled: 08/25/2020		
Instrument: NT16 Anal	yst: PB				An	nalyzed: 08	/28/2020 13:09
Sample Preparation:	and Trap) Sample Size: 1 Final Volume:	0 mL 10 mL		Ι	Extract ID:	20H0287-03 E	
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Vinyl chloride		75-01-4	1	20.0	ND	ng/L	U
Surrogate: 1,2-Dichloroeth	ane-d4			80-129 %	95.3	%	

Analytical Resources, Inc.


Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 11-Sep-2020 09:55

## SPL-GW-MW14-0820

### 20H0287-03 (Water)

Metals and Metallic C	Compounds						
Method: EPA 6020A				S	ampled: 08	/25/2020 11:33	
Instrument: ICPMS1 An	strument: ICPMS1 Analyst: MCB			Analyzed: 09/04/2020 17:2			
Sample Preparation:	Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix			Ext	ract ID: 20I	H0287-03 G 01	
	Preparation Batch: BII0113	Sample Size: 25 mL					
	Prepared: 09/04/2020	Final Volume: 25 mL					
			Reporting				
Analyte		CAS Number Dilution	Limit	Result	Units	Notes	
Iron		7439-89-6 1	20.0	4040	ug/L		
Instrument: ICPMS2 An	alyst: MCB			Aı	nalyzed: 09	/08/2020 16:03	
Sample Preparation:	Preparation Method: REN EPA 600/4-	79-020 4.1.4 HNO3 matrix		Ext	ract ID: 20I	H0287-03 G 01	
	Preparation Batch: BII0113	Sample Size: 25 mL					
	Prepared: 09/04/2020	Final Volume: 25 mL					
			Reporting				
Analyte		CAS Number Dilution	Limit	Result	Units	Notes	
Manganese		7439-96-5 5	2.50	623	ug/L	D	



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 11-Sep-2020 09:55

### SPL-GW-MW29-0820

20H0287-04 (Water)

Volatile Organic Com	pounds							
Method: EPA 8260D	ethod: EPA 8260D				Sampled: 08/25/2020 13:1			
nstrument: NT2 Analyst: PKC				An	Analyzed: 08/31/2020 21:06			
Sample Preparation:	Preparation Method: EPA 5030C (Purge Preparation Batch: BIH0671 Prepared: 08/31/2020	urge and Trap) Sample Size: 10 mL Final Volume: 10 mL			E	Extract ID:	20H0287-04 A	
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes	
cis-1,2-Dichloroethene		156-59-2	1	0.20	ND	ug/L	U	
Surrogate: 1,2-Dichloroethane-d4				80-129 %	114	%		

Analytical Resources, Inc.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 11-Sep-2020 09:55

### SPL-GW-MW29-0820

20H0287-04 (Water)

Volatile Organic Con	pounds - SIM						
Method: EPA 8260D-SIN	ethod: EPA 8260D-SIM				Sa	mpled: 08	/25/2020 13:15
instrument: NT16 Analyst: PB					An	Analyzed: 08/28/2020 13:30	
Sample Preparation:	Preparation Method: EPA 5030C (Purge Preparation Batch: BIH0605 Prepared: 08/28/2020	Purge and Trap) Sample Size: 10 mL Final Volume: 10 mL			E	Extract ID:	20H0287-04 D
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Vinyl chloride		75-01-4	1	20.0	124	ng/L	
Surrogate: 1,2-Dichloroethane-d4				80-129 %	98.8	%	

Analytical Resources, Inc.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 11-Sep-2020 09:55

### SPL-GW-MW29-0820

20H0287-04 (Water)

Metals and Metallic C	Compounds							
Method: EPA 6020A	lethod: EPA 6020A				Sampled: 08/25/2020 13:15			
nstrument: ICPMS2 Analyst: MCB				Analyzed: 09/08/2020 16:5				
Sample Preparation:	Preparation Method: REN EPA 600/4-7 Preparation Batch: BII0113 Prepared: 09/04/2020	0/4-79-020 4.1.4 HNO3 matrix Sample Size: 25 mL Final Volume: 25 mL			Ext	ract ID: 20H	40287-04 G 01	
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes	
Iron		7439-89-6	10	200	32400	ug/L	D	
Manganese		7439-96-5	10	5.00	650	ug/L	D	

Analytical Resources, Inc.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 11-Sep-2020 09:55

### SPL-GW-MW18-0820

20H0287-05 (Water)

Volatile Organic Com	pounds						
Method: EPA 8260D	ethod: EPA 8260D				Sa	ampled: 08	/25/2020 15:00
nstrument: NT2 Analyst: PKC				Analyzed: 08/3			/31/2020 21:27
Sample Preparation:	Preparation Method: EPA 5030C (Purge Preparation Batch: BIH0671 Prepared: 08/31/2020	ge and Trap) Sample Size: 10 mL Final Volume: 10 mL			E	Extract ID:	20H0287-05 A
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
cis-1,2-Dichloroethene		156-59-2	1	0.20	ND	ug/L	U
Surrogate: 1,2-Dichloroethane-d4				80-129 %	119	%	

Analytical Resources, Inc.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 11-Sep-2020 09:55

### SPL-GW-MW18-0820

20H0287-05 (Water)

Volatile Organic Com	pounds - SIM						
Method: EPA 8260D-SIN	Aethod: EPA 8260D-SIM				Sa	mpled: 08	/25/2020 15:00
nstrument: NT16 Analyst: PB					alyzed: 08	/zed: 08/28/2020 13:50	
Sample Preparation:	Preparation Method: EPA 5030C (Purge a Preparation Batch: BIH0605 Prepared: 08/28/2020	and Trap) Sample Size: 1 Final Volume:		E	Extract ID:	20H0287-05 D	
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Vinyl chloride		75-01-4	1	20.0	35.7	ng/L	М
Surrogate: 1,2-Dichloroethane-d4				80-129 %	99.0	%	



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 11-Sep-2020 09:55

### SPL-GW-MW18-0820

### 20H0287-05 (Water)

Metals and Metallic C	Compounds					
Method: EPA 6020A				S	ampled: 08	/25/2020 15:00
Instrument: ICPMS1 An	astrument: ICPMS1 Analyst: MCB			Ar	alyzed: 09	/04/2020 17:34
Sample Preparation:	Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix			Ext	act ID: 20H	H0287-05 G 01
	Preparation Batch: BII0113	Sample Size: 25 mL				
	Prepared: 09/04/2020	Final Volume: 25 mL				
			Reporting			
Analyte		CAS Number Dilution	Limit	Result	Units	Notes
Iron		7439-89-6 1	20.0	18000	ug/L	
Instrument: ICPMS2 An	alyst: MCB			Ar	alyzed: 09	/08/2020 16:19
Sample Preparation:	Preparation Method: REN EPA 600/4-	REN EPA 600/4-79-020 4.1.4 HNO3 matrix		Ext	act ID: 20I	H0287-05 G 01
	Preparation Batch: BII0113	Sample Size: 25 mL				
	Prepared: 09/04/2020	Final Volume: 25 mL				
			Reporting			
Analyte		CAS Number Dilution	Limit	Result	Units	Notes
Manganese		7439-96-5 10	5.00	1500	ug/L	D



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 11-Sep-2020 09:55

Notes

U

### SPL-GW-MW18-0820

20H0287-06 (Water)

#### Metals and Metallic Compounds (dissolved) Method: EPA 6020A UCT-KED Sampled: 08/25/2020 15:00 Instrument: ICPMS2 Analyst: MCB Analyzed: 09/08/2020 17:26 Sample Preparation: Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix Extract ID: 20H0287-06 A 01 Preparation Batch: BII0156 Sample Size: 25 mL Prepared: 09/07/2020 Final Volume: 25 mL Reporting Limit Analyte CAS Number Dilution Result Units Arsenic, Dissolved 0.200 ND 7440-38-2 1 ug/L

Analytical Resources, Inc.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 11-Sep-2020 09:55

### SPL-GW-MW33-0820

20H0287-07 (Water)

Volatile Organic Com	pounds							
Method: EPA 8260D	ethod: EPA 8260D				Sampled: 08/25/2020 16:1:			
nstrument: NT2 Analyst: PKC			Analy			zed: 08/31/2020 21:47		
Sample Preparation:	Preparation Method: EPA 5030C (Purge Preparation Batch: BIH0671 Prepared: 08/31/2020	rge and Trap) Sample Size: 10 mL Final Volume: 10 mL			E	Extract ID:	20H0287-07 B	
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes	
cis-1,2-Dichloroethene		156-59-2	1	0.20	ND	ug/L	U	
Surrogate: 1,2-Dichloroethane-d4				80-129 %	117	%		

Analytical Resources, Inc.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 11-Sep-2020 09:55

### SPL-GW-MW33-0820

20H0287-07 (Water)

Volatile Organic Con	pounds - SIM						
Method: EPA 8260D-SIN	ethod: EPA 8260D-SIM				Sa	ampled: 08	/25/2020 16:15
nstrument: NT16 Analyst: PB					An	Analyzed: 08/28/2020 14:10	
Sample Preparation:	Preparation Method: EPA 5030C (Purge Preparation Batch: BIH0605 Prepared: 08/28/2020	rge and Trap) Sample Size: 10 mL Final Volume: 10 mL			E	Extract ID:	20H0287-07 D
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Vinyl chloride		75-01-4	1	20.0	86.2	ng/L	М
Surrogate: 1,2-Dichloroethane-d4				80-129 %	<b>99</b> .7	%	

Analytical Resources, Inc.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 11-Sep-2020 09:55

## SPL-GW-MW33-0820

### 20H0287-07 (Water)

Metals and Metallic C	Compounds					
Method: EPA 6020A				Sa	ampled: 08	/25/2020 16:15
Instrument: ICPMS1 An	strument: ICPMS1 Analyst: MCB			Ar	nalyzed: 09	/04/2020 17:38
Sample Preparation:	Preparation Method: REN EPA 600/4-	Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix		Extr	ract ID: 201	10287-07 G 01
	Preparation Batch: BII0113	Sample Size: 25 mL				
	Prepared: 09/04/2020	pared: 09/04/2020 Final Volume: 25 mL				
			Reporting			
Analyte		CAS Number Dilution	Limit	Result	Units	Notes
Iron		7439-89-6 1	20.0	14100	ug/L	
Instrument: ICPMS2 An	alyst: MCB			Ar	nalyzed: 09	/08/2020 16:23
Sample Preparation:	Preparation Method: REN EPA 600/4	-79-020 4.1.4 HNO3 matrix		Exti	ract ID: 201	H0287-07 G 01
	Preparation Batch: BII0113	Sample Size: 25 mL				
	Prepared: 09/04/2020	Final Volume: 25 mL				
			Reporting			
Analyte		CAS Number Dilution	Limit	Result	Units	Notes
Manganese		7439-96-5 10	5.00	1710	ug/L	D



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 11-Sep-2020 09:55

### SPL-GW-MW33-0820

20H0287-08 (Water)

#### Metals and Metallic Compounds (dissolved)

Method: EPA 6020A UCT	-KED			Sampled: 08/25/2020 16					
Instrument: ICPMS2 Ana	strument: ICPMS2 Analyst: MCB				Analyzed: 09/08/2020 17:				
Sample Preparation: Preparation Method: REN EPA 600/4-79-020 4 Preparation Batch: BII0156 Prepared: 09/07/2020		79-020 4.1.4 HNO3 matrix Sample Size: 25 Final Volume: 2	mL 5 mL		Ext	ract ID: 20H	10287-08 A 01		
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes		
Arsenic, Dissolved		7440-38-2	1	0.200	1.04	ug/L			



Seattle Public Utilities	
700-5th Ave, Ste 4900, Box 34018	
Seattle WA, 98124-4018	

Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 11-Sep-2020 09:55

### SPL-GW-MW60-0820

20H0287-09 (Water)

Volatile Organic Com	pounds							
Method: EPA 8260D					Sa	ampled: 08	3/25/2020 13:31	
Instrument: NT2 Analys	st: PKC				Analyzed: 09/01/2020 14			
Sample Preparation:	e and Trap) Sample Size: 10 Final Volume: 1	Trap) Sample Size: 10 mL Final Volume: 10 mL		E	Extract ID:	20H0287-09 A		
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes	
cis-1,2-Dichloroethene		156-59-2	1	0.20	ND	ug/L	U	
Surrogate: 1,2-Dichloroethane-d4				80-129 %	121	%		

Analytical Resources, Inc.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 11-Sep-2020 09:55

### SPL-GW-MW60-0820

20H0287-09 (Water)

Volatile Organic Con	pounds - SIM						
Method: EPA 8260D-SIN	Л				Sa	ampled: 08	/25/2020 13:31
Instrument: NT16 Anal	yst: PB				Analyzed: 08/28/2020 14:30		
Sample Preparation:	Preparation Method: EPA 5030C (Purge Preparation Batch: BIH0605 Prepared: 08/28/2020	ind Trap) Sample Size: 10 mL Final Volume: 10 mL			E	Extract ID:	20H0287-09 D
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Vinyl chloride		75-01-4	1	20.0	132	ng/L	М
Surrogate: 1,2-Dichloroeth	ane-d4			80-129 %	98.6	%	



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 11-Sep-2020 09:55

### SPL-GW-MW60-0820

20H0287-09 (Water)

Metals and Metallic (	Compounds							
Method: EPA 6020A				Sampled: 08/25/2020 13:3				
Instrument: ICPMS2 An	nalyst: MCB			Analyzed: 09/08/2020 16::				
Sample Preparation:	Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix				Extr	ract ID: 20H	40287-09 G 01	
	Preparation Batch: BII0113	Sample Size: 2						
	Prepared: 09/04/2020	Final Volume:						
				Reporting				
Analyte		CAS Number	Dilution	Limit	Result	Units	Notes	
Iron		7439-89-6	10	200	34000	ug/L	D	
Manganese		7439-96-5	10	5.00	687	ug/L	D	

Analytical Resources, Inc.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 11-Sep-2020 09:55

### SPL-GW-MW80-0820

20H0287-10 (Water)

Volatile Organic Com	pounds							
Method: EPA 8260D					Sa	ampled: 08	3/25/2020 00:00	
Instrument: NT2 Analys	st: PKC				Analyzed: 09			
Sample Preparation:	and Trap) Sample Size: 10 Final Volume: 1	Trap) Sample Size: 10 mL Final Volume: 10 mL		E	Extract ID:	20H0287-10 A		
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes	
cis-1,2-Dichloroethene		156-59-2	1	0.20	ND	ug/L	U	
Surrogate: 1,2-Dichloroethane-d4				80-129 %	109	%		

Analytical Resources, Inc.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 11-Sep-2020 09:55

### SPL-GW-MW80-0820

20H0287-10 (Water)

Volatile Organic Com	pounds - SIM						
Method: EPA 8260D-SIN	1				Sampled: 08/25/2020 00:00 Analyzed: 08/28/2020 12:29		
Instrument: NT16 Analy	yst: PB						
Sample Preparation:	Preparation Method: EPA 5030C (Purge Preparation Batch: BIH0605 Prepared: 08/28/2020	0 mL 10 mL		I	Extract ID:	20H0287-10 B	
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Vinyl chloride		75-01-4	1	20.0	ND	ng/L	U
Surrogate: 1,2-Dichloroethe	ane-d4			80-129 %	90.5	%	

Analytical Resources, Inc.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 11-Sep-2020 09:55

### SPL-GW-MW27-0820

### 20H0287-11 (Water)

Volatile Organic Com	pounds							
Method: EPA 8260D					Sa	ampled: 08	3/26/2020 13:50	
Instrument: NT2 Analys	st: PKC				Analyzed: 09/01/2020 15:			
Sample Preparation:	Preparation Method: EPA 5030C (Purg Preparation Batch: BII0015 Prepared: 09/01/2020	e and Trap) Sample Size: 10 Final Volume: 1	0 mL 10 mL	Extract ID:			20Н0287-11 В	
				Reporting				
Analyte		CAS Number	Dilution	Limit	Result	Units	Notes	
cis-1,2-Dichloroethene		156-59-2	1	0.20	ND	ug/L	U	
Surrogate: 1,2-Dichloroethe	une-d4			80-129 %	109	%		



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 11-Sep-2020 09:55

### SPL-GW-MW27-0820

### 20H0287-11 (Water)

Volatile Organic Con	pounds - SIM							
Method: EPA 8260D-SIN	1				S	ampled: 08	/26/2020 13:50	
Instrument: NT16 Anal	yst: PB				Ar	nalyzed: 08	alyzed: 08/28/2020 14:50	
Sample Preparation:	Preparation Method: EPA 5030C (Purge Preparation Batch: BIH0605 Prepared: 08/28/2020	and Trap) Sample Size: 1 Final Volume:	0 mL 10 mL	Extract ID: 20			20H0287-11 F	
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes	
Vinyl chloride		75-01-4	1	20.0	76.9	ng/L	М	
Surrogate: 1,2-Dichloroeth	ane-d4			80-129 %	101	%		



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 11-Sep-2020 09:55

### SPL-GW-MW27-0820

### 20H0287-11 (Water)

Metals and Metallic C	Compounds							
Method: EPA 6020A					ampled: 08/	26/2020 13:50		
Instrument: ICPMS2 An	alyst: MCB			Analyzed: 09/08/2020 1				
Sample Preparation:	Preparation Method: REN EPA 600/4-7 Preparation Batch: BII0113 Prepared: 09/04/2020	79-020 4.1.4 HNO3 matri Sample Size: 2 Final Volume:		Ext	ract ID: 20H	40287-11 G 01		
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes	
Iron		7439-89-6	10	200	31300	ug/L	D	
Manganese		7439-96-5	10	5.00	822	ug/L	D	



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 11-Sep-2020 09:55

### SPL-GW-MW27-0820

20H0287-12 (Water)

#### Metals and Metallic Compounds (dissolved)

Method: EPA 6020A UCT	Г-KED			Sampled: 08/26/2020 1					
Instrument: ICPMS2 An	alyst: MCB				Ar	alyzed: 09/	08/2020 18:17		
Sample Preparation:	Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix			Extract ID: 20H0287-12 A					
	Preparation Batch: BII0156	Sample Size: 2:							
	Prepared: 09/07/2020	Final Volume: 2							
				Reporting					
Analyte		CAS Number	Dilution	Limit	Result	Units	Notes		
Arsenic, Dissolved		7440-38-2	1	0.200	13.3	ug/L			

Analytical Resources, Inc.



Seattle Public Utilities	
700-5th Ave, Ste 4900, Box 34018	
Seattle WA, 98124-4018	

Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 11-Sep-2020 09:55

### SPL-GW-MW08-0820

20H0287-13 (Water)

Volatile Organic Com	pounds						
Method: EPA 8260D					Sa	mpled: 08	/26/2020 12:15
Instrument: NT2 Analys	st: PKC				/01/2020 15:40		
Sample Preparation:	e and Trap) Sample Size: 10 Final Volume: 1	Trap) Sample Size: 10 mL Final Volume: 10 mL		E	Extract ID:	20H0287-13 B	
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
cis-1,2-Dichloroethene		156-59-2	1	0.20	ND	ug/L	U
Surrogate: 1,2-Dichloroethe	une-d4			80-129 %	114	%	



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 11-Sep-2020 09:55

### SPL-GW-MW08-0820

20H0287-13 (Water)

Volatile Organic Com	pounds - SIM						
Method: EPA 8260D-SIN	1			Sampled: 08/26/2020 1			
Instrument: NT16 Analy	yst: PB				nalyzed: 08	/28/2020 15:11	
Sample Preparation:	Preparation Method: EPA 5030C (Purge Preparation Batch: BIH0605 Prepared: 08/28/2020	0 mL 10 mL		]	Extract ID:	20H0287-13 F	
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Vinyl chloride		75-01-4	1	20.0	71.2	ng/L	М
Surrogate: 1,2-Dichloroethe	ane-d4			80-129 %	101	%	

Analytical Resources, Inc.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 11-Sep-2020 09:55

## SPL-GW-MW08-0820

### 20H0287-13 (Water)

Metals and Metallic C	ompounds					
Method: EPA 6020A				S	ampled: 08	/26/2020 12:15
Instrument: ICPMS1 An	alyst: MCB			Ar	alyzed: 09	/04/2020 17:47
Sample Preparation:	Preparation Method: REN EPA 600/4-		Ext	act ID: 20H	40287-13 G 01	
	Preparation Batch: BII0113	Sample Size: 25 mL				
	Prepared: 09/04/2020	Final Volume: 25 mL				
			Reporting			
Analyte		CAS Number Dilution	Limit	Result	Units	Notes
Iron		7439-89-6 1	20.0	15300	ug/L	
Instrument: ICPMS2 An	alyst: MCB			Ar	alyzed: 09	/08/2020 16:27
Sample Preparation:	Preparation Method: REN EPA 600/4-	79-020 4.1.4 HNO3 matrix		Ext	act ID: 20I	H0287-13 G 01
	Preparation Batch: BII0113	Sample Size: 25 mL				
	Prepared: 09/04/2020	Final Volume: 25 mL				
			Reporting			
Analyte		CAS Number Dilution	Limit	Result	Units	Notes
Manganese		7439-96-5 10	5.00	1230	ug/L	D



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 11-Sep-2020 09:55

### SPL-GW-MW08-0820

20H0287-14 (Water)

### Metals and Metallic Compounds (dissolved)

Method: EPA 6020A UCT	Г-KED				Sa	ampled: 08/	26/2020 12:15
Instrument: ICPMS2 An	alyst: MCB				Ar	alyzed: 09/	08/2020 18:10
Sample Preparation:Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matri Preparation Batch: BII0156Sample Size: 2 Final Volume:Prepared: 09/07/2020Final Volume:			5 mL 25 mL		Ext	ract ID: 20H	I0287-14 A 01
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Arsenic, Dissolved		7440-38-2	1	0.200	0.254	ug/L	

Analytical Resources, Inc.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 11-Sep-2020 09:55

### SPL-GW-MW24-0820

20H0287-15 (Water)

Volatile Organic Com	pounds						
Method: EPA 8260D					Sa	ampled: 08	/26/2020 16:00
Instrument: NT2 Analys	strument: NT2 Analyst: PKC				An	alyzed: 09	/01/2020 16:00
Sample Preparation:	e and Trap) Sample Size: 10 Final Volume: 1	0 mL 10 mL		I	Extract ID:	20H0287-15 B	
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
cis-1,2-Dichloroethene		156-59-2	1	0.20	ND	ug/L	U
Surrogate: 1,2-Dichloroethane-d4				80-129 %	123	%	

Analytical Resources, Inc.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 11-Sep-2020 09:55

### SPL-GW-MW24-0820

20H0287-15 (Water)

Volatile Organic Con	pounds - SIM						
Method: EPA 8260D-SIN	Λ				Sa	ampled: 08	/26/2020 16:00
Instrument: NT16 Anal	yst: PB				An	alyzed: 08	/28/2020 15:31
Sample Preparation:	Preparation Method: EPA 5030C (Purge Preparation Batch: BIH0605 Prepared: 08/28/2020	and Trap) Sample Size: 1 Final Volume:	nd Trap) Sample Size: 10 mL Final Volume: 10 mL		1	Extract ID:	20H0287-15 F
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Vinyl chloride		75-01-4	1	20.0	30.8	ng/L	М
Surrogate: 1,2-Dichloroethane-d4				80-129 %	98.9	%	

Analytical Resources, Inc.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 11-Sep-2020 09:55

## SPL-GW-MW24-0820

### 20H0287-15 (Water)

Metals and Metallic C	ompounds					
Method: EPA 6020A				S	ampled: 08	/26/2020 16:00
Instrument: ICPMS1 An	alyst: MCB			Ar	nalyzed: 09	/04/2020 17:51
Sample Preparation:	Preparation Method: REN EPA 600/4-	79-020 4.1.4 HNO3 matrix		Ext	ract ID: 201	40287-15 G 01
	Preparation Batch: BII0113	Sample Size: 25 mL				
	Prepared: 09/04/2020	Final Volume: 25 mL				
			Reporting			
Analyte		CAS Number Dilution	Limit	Result	Units	Notes
Iron		7439-89-6 1	20.0	17900	ug/L	
Instrument: ICPMS2 An	alyst: MCB			Ar	nalyzed: 09	/08/2020 16:30
Sample Preparation:	Preparation Method: REN EPA 600/4-	79-020 4.1.4 HNO3 matrix		Ext	ract ID: 201	H0287-15 G 01
	Preparation Batch: BII0113	Sample Size: 25 mL				
	Prepared: 09/04/2020	Final Volume: 25 mL				
			Reporting			
Analyte		CAS Number Dilution	Limit	Result	Units	Notes
Manganese		7439-96-5 10	5.00	1400	ug/L	D



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 11-Sep-2020 09:55

### SPL-GW-MW24-0820

20H0287-16 (Water)

### Metals and Metallic Compounds (dissolved)

	• • •							
Method: EPA 6020A UCT	-KED				S	ampled: 08/	26/2020 16:00	
Instrument: ICPMS2 An	alyst: MCB				Ar	Analyzed: 09/08/2020 18:13		
Sample Preparation:	Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix				Ext	ract ID: 20H	I0287-16 A 01	
	Preparation Batch: BII0156	Sample Size: 2:						
	Prepared: 09/07/2020	Final Volume: 2						
				Reporting				
Analyte		CAS Number	Dilution	Limit	Result	Units	Notes	
Arsenic, Dissolved		7440-38-2	1	0.200	ND	ug/L	U	



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 11-Sep-2020 09:55

### SPL-GW-MW31-0820

20H0287-17 (Water)

Volatile Organic Con	pounds						
Method: EPA 8260D					Sa	ampled: 08	/26/2020 10:10
Instrument: NT2 Analys	st: PKC				An	alyzed: 09	/01/2020 16:21
Sample Preparation:	and Trap) Sample Size: 10 Final Volume: 1	0 mL 10 mL		E	Extract ID:	20H0287-17 C	
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
cis-1,2-Dichloroethene		156-59-2	1	0.20	ND	ug/L	U
Surrogate: 1,2-Dichloroethane-d4				80-129 %	124	%	

Analytical Resources, Inc.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 11-Sep-2020 09:55

### SPL-GW-MW31-0820

20H0287-17 (Water)

Volatile Organic Con	pounds - SIM						
Method: EPA 8260D-SIN	Λ				Sa	ampled: 08	/26/2020 10:10
Instrument: NT16 Anal	yst: PB				An	alyzed: 08	/28/2020 15:51
Sample Preparation:	and Trap) Sample Size: 1 Final Volume:	0 mL 10 mL		Ε	Extract ID:	20H0287-17 E	
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Vinyl chloride		75-01-4	1	20.0	475	ng/L	
Surrogate: 1,2-Dichloroethane-d4				80-129 %	99.3	%	

Analytical Resources, Inc.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 11-Sep-2020 09:55

## SPL-GW-MW31-0820

### 20H0287-17 (Water)

Metals and Metallic C	ompounds					
Method: EPA 6020A				S	ampled: 08	/26/2020 10:10
Instrument: ICPMS1 Ana	alyst: MCB			Aı	nalyzed: 09	/04/2020 17:56
Sample Preparation:	Preparation Method: REN EPA 600/4-		Ext	ract ID: 20H	40287-17 G 01	
	Preparation Batch: BII0113	Sample Size: 25 mL				
	Prepared: 09/04/2020	Final Volume: 25 mL				
			Reporting			
Analyte		CAS Number Dilution	Limit	Result	Units	Notes
Iron		7439-89-6 1	20.0	12300	ug/L	
Instrument: ICPMS2 Ana	alyst: MCB			Aı	nalyzed: 09	/08/2020 16:07
Sample Preparation:	Preparation Method: REN EPA 600/4-	-79-020 4.1.4 HNO3 matrix		Ext	ract ID: 20I	40287-17 G 01
	Preparation Batch: BII0113	Sample Size: 25 mL				
	Prepared: 09/04/2020	Final Volume: 25 mL				
			Reporting			
Analyte		CAS Number Dilution	Limit	Result	Units	Notes
Manganese		7439-96-5 5	2.50	558	ug/L	D



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 11-Sep-2020 09:55

### SPL-GW-MW30-0820

20H0287-18 (Water)

Volatile Organic Con	ipounds						
Method: EPA 8260D					Sa	ampled: 08	/26/2020 09:00
Instrument: NT2 Analy	st: PKC				An	alyzed: 09	/01/2020 16:41
Sample Preparation:	and Trap) Sample Size: 10 Final Volume: 1	0 mL 10 mL		E	Extract ID:	20H0287-18 B	
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
cis-1,2-Dichloroethene		156-59-2	1	0.20	ND	ug/L	U
Surrogate: 1,2-Dichloroethane-d4				80-129 %	120	%	

Analytical Resources, Inc.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 11-Sep-2020 09:55

### SPL-GW-MW30-0820

20H0287-18 (Water)

Volatile Organic Con	pounds - SIM						
Method: EPA 8260D-SIN	Λ				Sa	mpled: 08	/26/2020 09:00
Instrument: NT16 Anal	yst: PB				An	alyzed: 08	/28/2020 16:11
Sample Preparation:	e and Trap) Sample Size: 1 Final Volume: 1	0 mL 10 mL		E	xtract ID:	20H0287-18 D	
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Vinyl chloride		75-01-4	1	20.0	161	ng/L	
Surrogate: 1,2-Dichloroethane-d4				80-129 %	99.2	%	

Analytical Resources, Inc.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 11-Sep-2020 09:55

## SPL-GW-MW30-0820

### 20H0287-18 (Water)

Metals and Metallic C	ompounds					
Method: EPA 6020A				Sa	ampled: 08/	/26/2020 09:00
Instrument: ICPMS1 Ana	alyst: MCB			Ar	alyzed: 09/	/04/2020 18:03
Sample Preparation:	Preparation Method: REN EPA 600/4-	-79-020 4.1.4 HNO3 matrix		Extr	act ID: 20H	H0287-18 G 01
	Preparation Batch: BII0113	Sample Size: 25 mL				
	Prepared: 09/04/2020	Final Volume: 25 mL				
			Reporting			
Analyte		CAS Number Dilution	Limit	Result	Units	Notes
Iron		7439-89-6 1	20.0	2880	ug/L	
Instrument: ICPMS2 Ana	alyst: MCB			Ar	alyzed: 09/	/08/2020 16:15
Sample Preparation:	Preparation Method: REN EPA 600/4-	-79-020 4.1.4 HNO3 matrix		Exti	act ID: 20H	10287-18 G 01
	Preparation Batch: BII0113	Sample Size: 25 mL				
	Prepared: 09/04/2020	Final Volume: 25 mL				
			Reporting			
Analyte		CAS Number Dilution	Limit	Result	Units	Notes
Manganese		7439-96-5 1	0.500	155	ug/L	

Analytical Resources, Inc.



# **Analytical Report**

Seattle Public Utilities 700-5th Ave, Ste 4900, Box 34018 Seattle WA, 98124-4018 Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 11-Sep-2020 09:55

### Volatile Organic Compounds - Quality Control

#### Batch BIH0671 - EPA 5030C (Purge and Trap)

Instrument: NT2 Analyst: PKC

QC Sample/Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Blank (BIH0671-BLK1)			Prep	ared: 31-Aug	g-2020 An	nalyzed: 31-	Aug-2020 1	4:16		
cis-1,2-Dichloroethene	ND	0.20	ug/L							U
Surrogate: 1,2-Dichloroethane-d4	5.08		ug/L	5.00		102	80-129			
LCS (BIH0671-BS1)	Prepared: 31-Aug-2020 Analyzed: 31-Aug-2020 10:52									
cis-1,2-Dichloroethene	9.16	0.20	ug/L	10.0		91.6	80-121			
Surrogate: 1,2-Dichloroethane-d4	4.79		ug/L	5.00		95.7	80-129			
LCS Dup (BIH0671-BSD1)	Prepared: 31-Aug-2020 Analyzed: 31-Aug-2020 11:15									
cis-1,2-Dichloroethene	8.97	0.20	ug/L	10.0		89.7	80-121	2.01	30	
Surrogate: 1,2-Dichloroethane-d4	4.70		ug/L	5.00		94.1	80-129			

Analytical Resources, Inc.


# **Analytical Report**

Seattle Public Utilities 700-5th Ave, Ste 4900, Box 34018 Seattle WA, 98124-4018 Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 11-Sep-2020 09:55

#### **Volatile Organic Compounds - Quality Control**

#### Batch BII0015 - EPA 5030C (Purge and Trap)

Instrument: NT2 Analyst: PKC

QC Sample/Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Blank (BII0015-BLK1)			Prep	ared: 01-Sep	-2020 A	nalyzed: 01-	Sep-2020 13	3:58		
cis-1,2-Dichloroethene	ND	0.20	ug/L			•	*			U
Surrogate: 1,2-Dichloroethane-d4	5.38		ug/L	5.00		108	80-129			
LCS (BII0015-BS1)			Prep	ared: 01-Sep	-2020 A	nalyzed: 01-	Sep-2020 11	1:56		
cis-1,2-Dichloroethene	9.01	0.20	ug/L	10.0		90.1	80-121			
Surrogate: 1,2-Dichloroethane-d4	5.16		ug/L	5.00		103	80-129			
LCS Dup (BII0015-BSD1)			Prep	ared: 01-Sep	-2020 A	nalyzed: 01-	Sep-2020 12	2:17		
cis-1,2-Dichloroethene	9.39	0.20	ug/L	10.0		93.9	80-121	4.17	30	
Surrogate: 1,2-Dichloroethane-d4	4.95		ug/L	5.00		99.1	80-129			
Matrix Spike (BII0015-MS1)	Source: 2	20H0287-11	Prep	ared: 01-Sep	-2020 A	nalyzed: 01-	Sep-2020 21	1:00		
cis-1,2-Dichloroethene	7.75	0.20	ug/L	10.0	ND	76.2	80-121			*
Surrogate: 1,2-Dichloroethane-d4	5.66		ug/L	5.00	5.47	113	80-129			
Recovery limits for target analytes in MS/MS	D QC samples are advisory	only.								
Matrix Spike Dup (BII0015-MSD1)	Source: 2	20H0287-11	Prep	ared: 01-Sep	-2020 A	nalyzed: 01-	Sep-2020 21	1:21		
cis-1,2-Dichloroethene	7.90	0.20	ug/L	10.0	ND	77.7	80-121	1.88	30	*

ug/L

5.00

5.47 114

80-129

Recovery limits for target analytes in MS/MSD QC samples are advisory only.

5.69

Analytical Resources, Inc.

Surrogate: 1,2-Dichloroethane-d4



# **Analytical Report**

Seattle Public Utilities 700-5th Ave, Ste 4900, Box 34018 Seattle WA, 98124-4018 Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 11-Sep-2020 09:55

#### Volatile Organic Compounds - SIM - Quality Control

#### Batch BIH0605 - EPA 5030C (Purge and Trap)

Instrument: NT16 Analyst: PB

		Reporting		Spike	Source		%REC		RPD	
QC Sample/Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Blank (BIH0605-BLK1)			Prep	ared: 28-Aug	g-2020 A1	nalyzed: 28-	Aug-2020 1	0:37		
Vinyl chloride	ND	20.0	ng/L							U
Surrogate: 1,2-Dichloroethane-d4	4700		ng/L	5000		94.1	80-129			
LCS (BIH0605-BS1)			Prep	ared: 28-Aug	g-2020 A1	nalyzed: 28-	Aug-2020 (	)9:40		
Vinyl chloride	2410	20.0	ng/L	2000		120	76-120			
Surrogate: 1,2-Dichloroethane-d4	4840		ng/L	5000		96.9	80-129			
LCS Dup (BIH0605-BSD1)			Prep	ared: 28-Aug	g-2020 A1	nalyzed: 28-	Aug-2020 1	0:17		
Vinyl chloride	1950	20.0	ng/L	2000		97.6	76-120	20.90	30	
Surrogate: 1,2-Dichloroethane-d4	4700		ng/L	5000		93.9	80-129			
Matrix Spike (BIH0605-MS1)	Source	: 20H0287-11	Prep	ared: 28-Aug	g-2020 A1	nalyzed: 28-	Aug-2020 1	8:32		
Vinyl chloride	2040	20.0	ng/L	2000	76.9	98.1	76-120			
Surrogate: 1,2-Dichloroethane-d4	4990		ng/L	5000	5030	99.9	80-129			
Recovery limits for target analytes in MS/MSD 0	QC samples are adviso	ry only.								
Matrix Spike Dup (BIH0605-MSD1)	Source	: 20H0287-11	Prep	ared: 28-Aug	g-2020 A1	nalyzed: 28-	Aug-2020 1	8:52		
Vinyl chloride	2030	20.0	ng/L	2000	76.9	97.6	76-120	0.48	30	

ng/L

5000

5030

102

80-129

Recovery limits for target analytes in MS/MSD QC samples are advisory only.

5100

Analytical Resources, Inc.

Surrogate: 1,2-Dichloroethane-d4



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 11-Sep-2020 09:55

HC, D

#### Metals and Metallic Compounds - Quality Control

#### Batch BII0113 - REN EPA 600/4-79-020 4.1.4 HNO3 matrix

Instrument: ICPMS1 Analyst: MCB

OC Samula/Analyta	Instanc	Decult	Reporting	Linita	Spike	Source	0/DEC	%REC	DDD	RPD Limit	Nataa
QC Sample/Analyte	Isotope	Kesult	Limit	Units	Level	Kesuit	70KEU	Limits	KPD	Limit	inotes
Blank (BII0113-BLK1)				Prepa	ared: 04-Sep	-2020 Ana	alyzed: 04-5	Sep-2020 13	3:07		
Iron	54	ND	20.0	ug/L							U
Iron	57	ND	20.0	ug/L							U
Manganese	55	ND	0.500	ug/L							U
LCS (BII0113-BS1)				Prepa	ared: 04-Sep	-2020 Ana	ılyzed: 04-S	Sep-2020 13	3:11		
Iron	54	4970	20.0	ug/L	5000		99.5	80-120			
Iron	57	5070	20.0	ug/L	5000		101	80-120			
Manganese	55	28.9	0.500	ug/L	25.0		116	80-120			
Instrument: ICPMS2 Analyst:	МСВ										
			Reporting		Spike	Source		%REC		RPD	
QC Sample/Analyte	Isotope	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Duplicate (BII0113-DUP2)		Sourc	e: 20H0287-11	Prepa	ared: 04-Sep	-2020 Ana	alyzed: 08-5	Sep-2020 17	':07		
Iron	54	30600	200	ug/L		31300			2.43	20	D
Manganese	55	794	5.00	ug/L		822			3.37	20	D
Matrix Spike (BII0113-MS2)		Sourc	e: 20H0287-11	Prepa	ared: 04-Sep	-2020 Ana	alyzed: 08-5	Sep-2020 17	<i>'</i> :11		
Iron	54	37500	200	ug/L	5000	31300	123	75-125			D

Recovery limits for target analytes in MS/MSD QC samples are advisory only.

55

855

Matrix Spike Dup (BII0113-	-MSD2)	Source:	20H0287-11	Prepa	red: 04-Sep	-2020 Ana	lyzed: 08-	Sep-2020 17	:15		
Iron	54	35600	200	ug/L	5000	31300	85.1	75-125	5.19	20	D
Manganese	55	812	5.00	ug/L	25.0	822	-38.0	75-125	5.11	20	HC, D

ug/L

25.0

822

132

75-125

5.00

Recovery limits for target analytes in MS/MSD QC samples are advisory only.

Analytical Resources, Inc.

Manganese



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 11-Sep-2020 09:55

#### Metals and Metallic Compounds (dissolved) - Quality Control

#### Batch BII0156 - REN EPA 600/4-79-020 4.1.4 HNO3 matrix

Instrument: ICPMS2 Analyst: MCB

OC Sample/Analyte	Isotope	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
	1										
Blank (BII0156-BLK1)				Prep	ared: 07-Sep	o-2020 Ana	alyzed: 08-	Sep-2020 15	5:02		
Arsenic, Dissolved	75a	ND	0.200	ug/L							U
LCS (BII0156-BS1)				Prep	ared: 07-Sep	-2020 Ana	alyzed: 08-	Sep-2020 15	5:05		
Arsenic, Dissolved	75a	25.7	0.200	ug/L	25.0		103	80-120			
Duplicate (BII0156-DUP1	1)	Source	: 20H0287-12	Prep	ared: 07-Sep	o-2020 Ana	alyzed: 08-	Sep-2020 18	3:21		
Arsenic, Dissolved	75a	13.1	0.200	ug/L		13.3			1.64	20	
Matrix Spike (BII0156-M	(\$1)	Source	: 20H0287-12	Prep	ared: 07-Sep	-2020 Ana	alyzed: 08-	Sep-2020 18	3:25		
Arsenic, Dissolved	75a	38.7	0.200	ug/L	25.0	13.3	102	75-125			
Recovery limits for target anal	lytes in MS/MSD QC	samples are adviso	ry only.								
Matrix Spike Dup (BII01	56-MSD1)	Source	: 20H0287-12	Prep	ared: 07-Sep	-2020 Ana	alyzed: 08-	Sep-2020 18	3:31		
Arsenic, Dissolved	75a	37.0	0.200	ug/L	25.0	13.3	94.8	75-125	4.48	20	

Recovery limits for target analytes in MS/MSD QC samples are advisory only.

Analytical Resources, Inc.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 11-Sep-2020 09:55

# Certified Analyses included in this Report

Analyte	Certifications
EPA 6020A in Water	
Iron-54	NELAP,WADOE,DoD-ELAP
Iron-54	NELAP,WADOE,DoD-ELAP
Iron-54	NELAP,DoD-ELAP
Iron-54	WADOE,DoD-ELAP
Iron-57	NELAP,WADOE,DoD-ELAP
Iron-57	NELAP,DoD-ELAP
Iron-57	WADOE,DoD-ELAP
Iron-57	NELAP,WADOE,DoD-ELAP
Manganese-55	NELAP,WADOE,DoD-ELAP
Manganese-55	NELAP,DoD-ELAP
Manganese-55	WADOE,DoD-ELAP
Manganese-55	NELAP,WADOE,DoD-ELAP
EPA 6020A UCT-KED in Water	
Arsenic-75a	WADOE,DoD-ELAP,ADEC
Arsenic-75a	NELAP,WADOE,DoD-ELAP,ADEC
Arsenic-75a	NELAP,DoD-ELAP,ADEC
Arsenic-75a	NELAP,WADOE,DoD-ELAP,ADEC
EPA 8260D in Water	
Chloromethane	DoD-ELAP,ADEC,NELAP,WADOE
Chloromethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
Chloromethane	DoD-ELAP,ADEC,CALAP,WADOE
Chloromethane	DoD-ELAP,ADEC,NELAP,CALAP
Vinyl Chloride	DoD-ELAP,ADEC,CALAP,WADOE
Vinyl Chloride	DoD-ELAP,ADEC,NELAP,CALAP
Vinyl Chloride	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
Vinyl Chloride	DoD-ELAP,ADEC,NELAP,WADOE
Bromomethane	DoD-ELAP,ADEC,NELAP,WADOE
Bromomethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
Bromomethane	DoD-ELAP,ADEC,CALAP,WADOE
Bromomethane	DoD-ELAP,ADEC,NELAP,CALAP
Chloroethane	DoD-ELAP,ADEC,CALAP,WADOE
Chloroethane	DoD-ELAP,ADEC,NELAP,CALAP
Chloroethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
Chloroethane	DoD-ELAP,ADEC,NELAP,WADOE

Analytical Resources, Inc.



Seattle Public Utilities	Project: South Park Landfill -Parametrix Water 2020	
700-5th Ave, Ste 4900, Box 34018	Project Number: 553-155-067	Reported:
Seattle WA, 98124-4018	Project Manager: Jeff Neuner	11-Sep-2020 09:55
Trichlorofluoromethane	DoD-ELAP,ADEC,CALAP,WADOE	
Trichlorofluoromethane	DoD-ELAP,ADEC,NELAP,CALAP	
Trichlorofluoromethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
Trichlorofluoromethane	DoD-ELAP,ADEC,NELAP,WADOE	
Acrolein	DoD-ELAP,NELAP,WADOE	
Acrolein	DoD-ELAP,CALAP,WADOE	
Acrolein	DoD-ELAP,NELAP,CALAP	
Acrolein	DoD-ELAP,NELAP,CALAP,WADOE	
1,1,2-Trichloro-1,2,2-Trifluoroethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
1,1,2-Trichloro-1,2,2-Trifluoroethane	DoD-ELAP,ADEC,NELAP,CALAP	
1,1,2-Trichloro-1,2,2-Trifluoroethane	DoD-ELAP,ADEC,NELAP,WADOE	
1,1,2-Trichloro-1,2,2-Trifluoroethane	DoD-ELAP,ADEC,CALAP,WADOE	
Acetone	DoD-ELAP,ADEC,NELAP,WADOE	
Acetone	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
Acetone	DoD-ELAP,ADEC,CALAP,WADOE	
Acetone	DoD-ELAP,ADEC,NELAP,CALAP	
1,1-Dichloroethene	DoD-ELAP,ADEC,CALAP,WADOE	
1,1-Dichloroethene	DoD-ELAP,ADEC,NELAP,CALAP	
1,1-Dichloroethene	DoD-ELAP,ADEC,NELAP,WADOE	
1,1-Dichloroethene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
lodomethane	DoD-ELAP,CALAP,WADOE	
lodomethane	DoD-ELAP,NELAP,CALAP	
lodomethane	DoD-ELAP,NELAP,CALAP,WADOE	
lodomethane	DoD-ELAP,NELAP,WADOE	
Methylene Chloride	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
Methylene Chloride	DoD-ELAP,ADEC,NELAP,WADOE	
Methylene Chloride	DoD-ELAP,ADEC,CALAP,WADOE	
Methylene Chloride	DoD-ELAP,ADEC,NELAP,CALAP	
Acrylonitrile	DoD-ELAP,CALAP,WADOE	
Acrylonitrile	DoD-ELAP,NELAP,CALAP,WADOE	
Acrylonitrile	DoD-ELAP,NELAP,WADOE	
Acrylonitrile	DoD-ELAP,NELAP,CALAP	
Carbon Disulfide	DoD-ELAP,NELAP,CALAP	
Carbon Disulfide	DoD-ELAP,CALAP,WADOE	
Carbon Disulfide	DoD-ELAP,NELAP,WADOE	
Carbon Disulfide	DoD-ELAP,NELAP,CALAP,WADOE	
trans-1,2-Dichloroethene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
trans-1,2-Dichloroethene	DoD-ELAP,ADEC,NELAP,CALAP	
trans-1,2-Dichloroethene	DoD-ELAP,ADEC,CALAP,WADOE	

Analytical Resources, Inc.



# **Analytical Report**

Seattle Public Utilities	Project: South Park Landfill -Parametrix Water 2020	
700-5th Ave, Ste 4900, Box 34018	Project Number: 553-155-067	Reported:
Seattle WA, 98124-4018	Project Manager: Jeff Neuner	11-Sep-2020 09:55
trans-1,2-Dichloroethene	DoD-ELAP,ADEC,NELAP,WADOE	
Vinyl Acetate	DoD-ELAP,NELAP,WADOE	
Vinyl Acetate	DoD-ELAP,CALAP,WADOE	
Vinyl Acetate	DoD-ELAP,NELAP,CALAP	
Vinyl Acetate	DoD-ELAP,NELAP,CALAP,WADOE	
1,1-Dichloroethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
1,1-Dichloroethane	DoD-ELAP,ADEC,NELAP,WADOE	
1,1-Dichloroethane	DoD-ELAP,ADEC,CALAP,WADOE	
1,1-Dichloroethane	DoD-ELAP,ADEC,NELAP,CALAP	
2-Butanone	DoD-ELAP,CALAP,WADOE	
2-Butanone	DoD-ELAP,NELAP,WADOE	
2-Butanone	DoD-ELAP,NELAP,CALAP	
2-Butanone	DoD-ELAP,NELAP,CALAP,WADOE	
2,2-Dichloropropane	DoD-ELAP,ADEC,NELAP,CALAP	
2,2-Dichloropropane	DoD-ELAP,ADEC,CALAP,WADOE	
2,2-Dichloropropane	DoD-ELAP,ADEC,NELAP,WADOE	
2,2-Dichloropropane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
cis-1,2-Dichloroethene	DoD-ELAP,ADEC,NELAP,WADOE	
cis-1,2-Dichloroethene	DoD-ELAP,ADEC,CALAP,WADOE	
cis-1,2-Dichloroethene	DoD-ELAP,ADEC,NELAP,CALAP	
cis-1,2-Dichloroethene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
Chloroform	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
Chloroform	DoD-ELAP,ADEC,CALAP,WADOE	
Chloroform	DoD-ELAP,ADEC,NELAP,WADOE	
Chloroform	DoD-ELAP,ADEC,NELAP,CALAP	
Bromochloromethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
Bromochloromethane	DoD-ELAP,ADEC,NELAP,CALAP	
Bromochloromethane	DoD-ELAP,ADEC,CALAP,WADOE	
Bromochloromethane	DoD-ELAP,ADEC,NELAP,WADOE	
1,1,1-Trichloroethane	DoD-ELAP,ADEC,CALAP,WADOE	
1,1,1-Trichloroethane	DoD-ELAP,ADEC,NELAP,CALAP	
1,1,1-Trichloroethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
1,1,1-Trichloroethane	DoD-ELAP,ADEC,NELAP,WADOE	
1,1-Dichloropropene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
1,1-Dichloropropene	DoD-ELAP,ADEC,NELAP,CALAP	
1,1-Dichloropropene	DoD-ELAP,ADEC,CALAP,WADOE	
1,1-Dichloropropene	DoD-ELAP,ADEC,NELAP,WADOE	
Carbon tetrachloride	DoD-ELAP,ADEC,NELAP,CALAP	
Carbon tetrachloride	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	

Analytical Resources, Inc.

Analytical Resources, Incorporated Analytical Chemists and Consultants

# **Analytical Report**

Seattle Public Utilities	Project: South Park Landfill -Parametrix Water 2020	
700-5th Ave, Ste 4900, Box 34018	Project Number: 553-155-067	Reported:
Seattle WA, 98124-4018	Project Manager: Jeff Neuner	11-Sep-2020 09:55
Carbon tetrachloride	DoD-ELAP,ADEC,CALAP,WADOE	
Carbon tetrachloride	DoD-ELAP,ADEC,NELAP,WADOE	
1,2-Dichloroethane	DoD-ELAP,ADEC,NELAP,CALAP	
1,2-Dichloroethane	DoD-ELAP,ADEC,CALAP,WADOE	
1,2-Dichloroethane	DoD-ELAP,ADEC,NELAP,WADOE	
1,2-Dichloroethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
Benzene	DoD-ELAP,ADEC,NELAP,CALAP	
Benzene	DoD-ELAP,ADEC,NELAP,WADOE	
Benzene	DoD-ELAP,ADEC,CALAP,WADOE	
Benzene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
Trichloroethene	DoD-ELAP,ADEC,NELAP,WADOE	
Trichloroethene	DoD-ELAP,ADEC,CALAP,WADOE	
Trichloroethene	DoD-ELAP,ADEC,NELAP,CALAP	
Trichloroethene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
1,2-Dichloropropane	DoD-ELAP,ADEC,NELAP,WADOE	
1,2-Dichloropropane	DoD-ELAP,ADEC,CALAP,WADOE	
1,2-Dichloropropane	DoD-ELAP,ADEC,NELAP,CALAP	
1,2-Dichloropropane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
Bromodichloromethane	DoD-ELAP,ADEC,NELAP,WADOE	
Bromodichloromethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
Bromodichloromethane	DoD-ELAP,ADEC,NELAP,CALAP	
Bromodichloromethane	DoD-ELAP,ADEC,CALAP,WADOE	
Dibromomethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
Dibromomethane	DoD-ELAP,ADEC,NELAP,WADOE	
Dibromomethane	DoD-ELAP,ADEC,CALAP,WADOE	
Dibromomethane	DoD-ELAP,ADEC,NELAP,CALAP	
2-Chloroethyl vinyl ether	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
2-Chloroethyl vinyl ether	DoD-ELAP,ADEC,NELAP,CALAP	
2-Chloroethyl vinyl ether	DoD-ELAP,ADEC,CALAP,WADOE	
2-Chloroethyl vinyl ether	DoD-ELAP,ADEC,NELAP,WADOE	
4-Methyl-2-Pentanone	DoD-ELAP,NELAP,CALAP,WADOE	
4-Methyl-2-Pentanone	DoD-ELAP,CALAP,WADOE	
4-Methyl-2-Pentanone	DoD-ELAP,NELAP,WADOE	
4-Methyl-2-Pentanone	DoD-ELAP,NELAP,CALAP	
cis-1,3-Dichloropropene	DoD-ELAP,ADEC,NELAP,WADOE	
cis-1,3-Dichloropropene	DoD-ELAP,ADEC,CALAP,WADOE	
cis-1,3-Dichloropropene	DoD-ELAP,ADEC,NELAP,CALAP	
cis-1,3-Dichloropropene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
Toluene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	

Analytical Resources, Inc.



Seattle Public Utilities	Project: South Park Landfill - Parametrix Water 2020	
700-5th Ave, Ste 4900, Box 34018	Project Number: 553-155-067	Reported:
Seattle WA, 98124-4018	Project Manager: Jeff Neuner	11-Sep-2020 09:55
Toluene	DoD-ELAP,ADEC,NELAP,CALAP	
Toluene	DoD-ELAP,ADEC,CALAP,WADOE	
Toluene	DoD-ELAP,ADEC,NELAP,WADOE	
trans-1,3-Dichloropropene	DoD-ELAP,ADEC,CALAP,WADOE	
trans-1,3-Dichloropropene	DoD-ELAP,ADEC,NELAP,CALAP	
trans-1,3-Dichloropropene	DoD-ELAP,ADEC,NELAP,WADOE	
trans-1,3-Dichloropropene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
2-Hexanone	DoD-ELAP,NELAP,WADOE	
2-Hexanone	DoD-ELAP,NELAP,CALAP,WADOE	
2-Hexanone	DoD-ELAP,CALAP,WADOE	
2-Hexanone	DoD-ELAP,NELAP,CALAP	
1,1,2-Trichloroethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
1,1,2-Trichloroethane	DoD-ELAP,ADEC,NELAP,CALAP	
1,1,2-Trichloroethane	DoD-ELAP,ADEC,CALAP,WADOE	
1,1,2-Trichloroethane	DoD-ELAP,ADEC,NELAP,WADOE	
1,3-Dichloropropane	DoD-ELAP,ADEC,CALAP,WADOE	
1,3-Dichloropropane	DoD-ELAP,ADEC,NELAP,WADOE	
1,3-Dichloropropane	DoD-ELAP,ADEC,NELAP,CALAP	
1,3-Dichloropropane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
Tetrachloroethene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
Tetrachloroethene	DoD-ELAP,ADEC,CALAP,WADOE	
Tetrachloroethene	DoD-ELAP,ADEC,NELAP,CALAP	
Tetrachloroethene	DoD-ELAP,ADEC,NELAP,WADOE	
Dibromochloromethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
Dibromochloromethane	DoD-ELAP,ADEC,NELAP,CALAP	
Dibromochloromethane	DoD-ELAP,ADEC,CALAP,WADOE	
Dibromochloromethane	DoD-ELAP,ADEC,NELAP,WADOE	
1,2-Dibromoethane	DoD-ELAP,NELAP,WADOE	
1,2-Dibromoethane	DoD-ELAP,CALAP,WADOE	
1,2-Dibromoethane	DoD-ELAP,NELAP,CALAP	
1,2-Dibromoethane	DoD-ELAP,NELAP,CALAP,WADOE	
Chlorobenzene	DoD-ELAP,ADEC,CALAP,WADOE	
Chlorobenzene	DoD-ELAP,ADEC,NELAP,WADOE	
Chlorobenzene	DoD-ELAP,ADEC,NELAP,CALAP	
Chlorobenzene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
Ethylbenzene	DoD-ELAP,ADEC,NELAP,WADOE	
Ethylbenzene	DoD-ELAP,ADEC,CALAP,WADOE	
Ethylbenzene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
Ethylbenzene	DoD-ELAP,ADEC,NELAP,CALAP	

Analytical Resources, Inc.



# **Analytical Report**

Seattle Public Utilities	Project: South Park Landfill -Parametrix Water 2020	
700-5th Ave, Ste 4900, Box 34018	Project Number: 553-155-067	Reported:
Seattle WA, 98124-4018	Project Manager: Jeff Neuner	11-Sep-2020 09:55
1,1,1,2-Tetrachloroethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
1,1,1,2-Tetrachloroethane	DoD-ELAP,ADEC,NELAP,WADOE	
1,1,1,2-Tetrachloroethane	DoD-ELAP,ADEC,NELAP,CALAP	
1,1,1,2-Tetrachloroethane	DoD-ELAP,ADEC,CALAP,WADOE	
m,p-Xylene	DoD-ELAP,ADEC,NELAP,WADOE	
m,p-Xylene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
m,p-Xylene	DoD-ELAP,ADEC,NELAP,CALAP	
m,p-Xylene	DoD-ELAP,ADEC,CALAP,WADOE	
o-Xylene	DoD-ELAP,ADEC,NELAP,WADOE	
o-Xylene	DoD-ELAP,ADEC,NELAP,CALAP	
o-Xylene	DoD-ELAP,ADEC,CALAP,WADOE	
o-Xylene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
Styrene	DoD-ELAP,NELAP,WADOE	
Styrene	DoD-ELAP,CALAP,WADOE	
Styrene	DoD-ELAP,NELAP,CALAP	
Styrene	DoD-ELAP,NELAP,CALAP,WADOE	
Bromoform	DoD-ELAP,CALAP,WADOE	
Bromoform	DoD-ELAP,NELAP,CALAP	
Bromoform	DoD-ELAP,NELAP,CALAP,WADOE	
Bromoform	DoD-ELAP,NELAP,WADOE	
1,1,2,2-Tetrachloroethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
1,1,2,2-Tetrachloroethane	DoD-ELAP,ADEC,CALAP,WADOE	
1,1,2,2-Tetrachloroethane	DoD-ELAP,ADEC,NELAP,CALAP	
1,1,2,2-Tetrachloroethane	DoD-ELAP,ADEC,NELAP,WADOE	
1,2,3-Trichloropropane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
1,2,3-Trichloropropane	DoD-ELAP,ADEC,NELAP,WADOE	
1,2,3-Trichloropropane	DoD-ELAP,ADEC,NELAP,CALAP	
1,2,3-Trichloropropane	DoD-ELAP,ADEC,CALAP,WADOE	
trans-1,4-Dichloro 2-Butene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
trans-1,4-Dichloro 2-Butene	DoD-ELAP,ADEC,NELAP,CALAP	
trans-1,4-Dichloro 2-Butene	DoD-ELAP,ADEC,NELAP,WADOE	
trans-1,4-Dichloro 2-Butene	DoD-ELAP,ADEC,CALAP,WADOE	
n-Propylbenzene	DoD-ELAP,CALAP,WADOE	
n-Propylbenzene	DoD-ELAP,NELAP,WADOE	
n-Propylbenzene	DoD-ELAP,NELAP,CALAP	
n-Propylbenzene	DoD-ELAP,NELAP,CALAP,WADOE	
Bromobenzene	DoD-ELAP,NELAP,WADOE	
Bromobenzene	DoD-ELAP,NELAP,CALAP,WADOE	
Bromobenzene	DoD-ELAP,CALAP,WADOE	

Analytical Resources, Inc.

Analytical Resources, Incorporated Analytical Chemists and Consultants

# **Analytical Report**

Seattle Public Utilities	Project: South Park Landfill -Parametrix Water 2020	)
700-5th Ave, Ste 4900, Box 34018	Project Number: 553-155-067	Reported:
Seattle WA, 98124-4018	Project Manager: Jeff Neuner	11-Sep-2020 09:55
Bromobenzene	DoD-ELAP,NELAP,CALAP	
Isopropyl Benzene	DoD-ELAP,CALAP,WADOE	
Isopropyl Benzene	DoD-ELAP,NELAP,CALAP,WADOE	
Isopropyl Benzene	DoD-ELAP,NELAP,CALAP	
Isopropyl Benzene	DoD-ELAP,NELAP,WADOE	
2-Chlorotoluene	DoD-ELAP, ADEC, NELAP, CALAP	
2-Chlorotoluene	DoD-ELAP,ADEC,NELAP,WADOE	
2-Chlorotoluene	DoD-ELAP,ADEC,CALAP,WADOE	
2-Chlorotoluene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
4-Chlorotoluene	DoD-ELAP,ADEC,NELAP,WADOE	
4-Chlorotoluene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
4-Chlorotoluene	DoD-ELAP,ADEC,NELAP,CALAP	
4-Chlorotoluene	DoD-ELAP,ADEC,CALAP,WADOE	
t-Butylbenzene	DoD-ELAP,CALAP,WADOE	
t-Butylbenzene	DoD-ELAP,NELAP,WADOE	
t-Butylbenzene	DoD-ELAP,NELAP,CALAP,WADOE	
t-Butylbenzene	DoD-ELAP,NELAP,CALAP	
1,3,5-Trimethylbenzene	DoD-ELAP,NELAP,WADOE	
1,3,5-Trimethylbenzene	DoD-ELAP,NELAP,CALAP	
1,3,5-Trimethylbenzene	DoD-ELAP,CALAP,WADOE	
1,3,5-Trimethylbenzene	DoD-ELAP,NELAP,CALAP,WADOE	
1,2,4-Trimethylbenzene	DoD-ELAP,CALAP,WADOE	
1,2,4-Trimethylbenzene	DoD-ELAP,NELAP,CALAP	
1,2,4-Trimethylbenzene	DoD-ELAP,NELAP,CALAP,WADOE	
1,2,4-Trimethylbenzene	DoD-ELAP,NELAP,WADOE	
s-Butylbenzene	DoD-ELAP,CALAP,WADOE	
s-Butylbenzene	DoD-ELAP,NELAP,WADOE	
s-Butylbenzene	DoD-ELAP,NELAP,CALAP	
s-Butylbenzene	DoD-ELAP,NELAP,CALAP,WADOE	
4-Isopropyl Toluene	DoD-ELAP,NELAP,CALAP	
4-Isopropyl Toluene	DoD-ELAP,CALAP,WADOE	
4-Isopropyl Toluene	DoD-ELAP,NELAP,CALAP,WADOE	
4-Isopropyl Toluene	DoD-ELAP,NELAP,WADOE	
1,3-Dichlorobenzene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
1,3-Dichlorobenzene	DoD-ELAP, ADEC, CALAP, WADOE	
1,3-Dichlorobenzene	DoD-ELAP,ADEC,NELAP,WADOE	
1,3-Dichlorobenzene	DoD-ELAP,ADEC,NELAP,CALAP	
1,4-Dichlorobenzene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
1,4-Dichlorobenzene	DoD-ELAP,ADEC,CALAP,WADOE	

Analytical Resources, Inc.



Seattle Public Utilities	Project: South Park Landfill -Parametrix Water 2020	
700-5th Ave, Ste 4900, Box 34018	Project Number: 553-155-067	Reported:
Seattle WA, 98124-4018	Project Manager: Jeff Neuner	11-Sep-2020 09:55
1,4-Dichlorobenzene	DoD-ELAP,ADEC,NELAP,CALAP	
1,4-Dichlorobenzene	DoD-ELAP,ADEC,NELAP,WADOE	
n-Butylbenzene	DoD-ELAP,NELAP,CALAP	
n-Butylbenzene	DoD-ELAP,CALAP,WADOE	
n-Butylbenzene	DoD-ELAP,NELAP,CALAP,WADOE	
n-Butylbenzene	DoD-ELAP,NELAP,WADOE	
1,2-Dichlorobenzene	DoD-ELAP,ADEC,CALAP,WADOE	
1,2-Dichlorobenzene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
1,2-Dichlorobenzene	DoD-ELAP,ADEC,NELAP,CALAP	
1,2-Dichlorobenzene	DoD-ELAP,ADEC,NELAP,WADOE	
1,2-Dibromo-3-chloropropane	DoD-ELAP,ADEC,NELAP,WADOE	
1,2-Dibromo-3-chloropropane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
1,2-Dibromo-3-chloropropane	DoD-ELAP,ADEC,CALAP,WADOE	
1,2-Dibromo-3-chloropropane	DoD-ELAP,ADEC,NELAP,CALAP	
1,2,4-Trichlorobenzene	DoD-ELAP,ADEC,CALAP,WADOE	
1,2,4-Trichlorobenzene	DoD-ELAP,ADEC,NELAP,CALAP	
1,2,4-Trichlorobenzene	DoD-ELAP,ADEC,NELAP,WADOE	
1,2,4-Trichlorobenzene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
Hexachloro-1,3-Butadiene	DoD-ELAP,ADEC,NELAP,WADOE	
Hexachloro-1,3-Butadiene	DoD-ELAP,ADEC,CALAP,WADOE	
Hexachloro-1,3-Butadiene	DoD-ELAP,ADEC,NELAP,CALAP	
Hexachloro-1,3-Butadiene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
Naphthalene	DoD-ELAP,ADEC,NELAP,WADOE	
Naphthalene	DoD-ELAP,ADEC,CALAP,WADOE	
Naphthalene	DoD-ELAP,ADEC,NELAP,CALAP	
Naphthalene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
1,2,3-Trichlorobenzene	DoD-ELAP,ADEC,NELAP,WADOE	
1,2,3-Trichlorobenzene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
1,2,3-Trichlorobenzene	DoD-ELAP,ADEC,NELAP,CALAP	
1,2,3-Trichlorobenzene	DoD-ELAP,ADEC,CALAP,WADOE	
Dichlorodifluoromethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
Dichlorodifluoromethane	DoD-ELAP,ADEC,NELAP,CALAP	
Dichlorodifluoromethane	DoD-ELAP,ADEC,CALAP,WADOE	
Dichlorodifluoromethane	DoD-ELAP,ADEC,NELAP,WADOE	
Methyl tert-butyl Ether	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
Methyl tert-butyl Ether	DoD-ELAP,ADEC,NELAP,WADOE	
Methyl tert-butyl Ether	DoD-ELAP,ADEC,CALAP,WADOE	
Methyl tert-butyl Ether	DoD-ELAP,ADEC,NELAP,CALAP	

Analytical Resources, Inc.

n-Hexane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

WADOE

# **Analytical Report**

Seattle Public Utilities	Project: South Park Landfill -Parametrix Water 2020	
700-5th Ave, Ste 4900, Box 34018	Project Number: 553-155-067	Reported:
Seattle WA, 98124-4018	Project Manager: Jeff Neuner	11-Sep-2020 09:55
n-Hexane		
n-Hexane	WADOE	
n-Hexane	WADOE	
2-Pentanone	WADOE	
2-Pentanone		
2-Pentanone	WADOE	
2-Pentanone	WADOE	
EPA 8260D-SIM in Water		
Acrylonitrile	NELAP,CALAP	
Acrylonitrile	NELAP,WADOE	
Acrylonitrile	NELAP,CALAP,WADOE	
Acrylonitrile	CALAP,WADOE	
Vinyl chloride	CALAP,WADOE	
Vinyl chloride	NELAP,CALAP	
Vinyl chloride	NELAP,WADOE	
Vinyl chloride	NELAP,CALAP,WADOE	
1,1-Dichloroethene	NELAP,CALAP,WADOE	
1,1-Dichloroethene	NELAP,WADOE	
1,1-Dichloroethene	CALAP,WADOE	
1,1-Dichloroethene	NELAP,CALAP	
cis-1,2-Dichloroethene	NELAP,CALAP,WADOE	
cis-1,2-Dichloroethene	NELAP,WADOE	
cis-1,2-Dichloroethene	CALAP,WADOE	
cis-1,2-Dichloroethene	NELAP,CALAP	
trans-1,2-Dichloroethene	CALAP,WADOE	
trans-1,2-Dichloroethene	NELAP,CALAP	
trans-1,2-Dichloroethene	NELAP,WADOE	
trans-1,2-Dichloroethene	NELAP,CALAP,WADOE	
Trichloroethene	CALAP,WADOE	
Trichloroethene	NELAP,CALAP	
Trichloroethene	NELAP,CALAP,WADOE	
Trichloroethene	NELAP,WADOE	
Tetrachloroethene	NELAP,CALAP,WADOE	
Tetrachloroethene	NELAP,WADOE	
Tetrachloroethene	CALAP,WADOE	
Tetrachloroethene	NELAP,CALAP	
1,1,2,2-Tetrachloroethane	NELAP,CALAP,WADOE	
1,1,2,2-Tetrachloroethane	NELAP,CALAP	
1,1,2,2-Tetrachloroethane	CALAP,WADOE	

Analytical Resources, Inc.

Analytical Resources, Incorporated Analytical Chemists and Consultants



Seattle Public Ut	ilities	Project: South Park La	ndfill -Parametrix Water 20	20					
700-5th Ave, Ste	4900, Box 34018	Reported:							
Seattle WA, 9812	24-4018	Project Manager: Jeff Neuner	Project Manager: Jeff Neuner						
1,1,2,2-Tetrac	hloroethane	NELAP,WADOE							
1,2-Dichloroet	thane	NELAP,CALAP							
1,2-Dichloroet	thane	CALAP,WADOE							
1,2-Dichloroet	thane	NELAP,WADOE							
1,2-Dichloroet	thane	NELAP,CALAP,WADOE							
Benzene		NELAP,CALAP,WADOE							
Benzene		NELAP,CALAP							
Benzene		CALAP,WADOE							
Benzene		NELAP,WADOE							
Code	Description		Number	Expires					
ADEC	Alaska Dept of Environm	ental Conservation	17-015	01/31/2021					
DoD-ELAP	DoD-Environmental Labo	pratory Accreditation Program	66169	01/01/2021					



# **Analytical Report**

Seattle Public Utilities 700-5th Ave, Ste 4900, Box 34018 Seattle WA, 98124-4018 Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 11-Sep-2020 09:55

#### **Notes and Definitions**

<ul> <li>Flagged value is not within established control limits.</li> </ul>
-----------------------------------------------------------------------------

- D The reported value is from a dilution
- E The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL)
- HC The natural concentration of the spiked analyte is so much greater than the concentration spiked that an accurate determination of spike recovery is not possible
- J Estimated concentration value detected below the reporting limit.
- M Estimated value for a GC/MS analyte detected and confirmed by an analyst but with low spectral match parameters.
- U This analyte is not detected above the reporting limit (RL) or if noted, not detected above the limit of detection (LOD).

#### DET Analyte DETECTED

- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference
- [2C] Indicates this result was quantified on the second column on a dual column analysis.



11 September 2020

Jeff Neuner Seattle Public Utilities 700-5th Ave, Ste 4900, Box 34018 Seattle, WA 98124-4018

RE: South Park Landfill -Parametrix Water 2020

Please find enclosed sample receipt documentation and analytical results for samples from the project referenced above.

Sample analyses were performed according to ARI's Quality Assurance Plan and any provided project specific Quality Assurance Plan. Each analytical section of this report has been approved and reviewed by an analytical peer, the appropriate Laboratory Supervisor or qualified substitute, and a technical reviewer.

Should you have any questions or problems, please feel free to contact us at your convenience.

Associated Work Order(s) 20H0297 Associated SDG ID(s) N/A

_____

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed in the enclose Narrative. ARI, an accredited laboratory, certifies that the report results for which ARI is accredited meets all the requirements of the accrediting body. A list of certified analyses, accreditations, and expiration dates is included in this report.

Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

Analytical Resources, Inc.

Shelly & Fish



# **Chain of Custody Record & Laboratory Analysis Request**

	ARI Assigned Number: 20 H0 L9 7 ARI Client Company: Jeff Neuner, Public Lility	Turn-around Seattle	Requested: Phone: 206 (	2 weeks 684-7693		Date: Page:	8/2	27/2 of	Q.		a		Analyt Analy 461	ical Resources, Incorporated tical Chemists and Consultants 1 South 134th Place, Suite 100
	Client Contact: Lisa Gilbert, Param	netrix	Phone: 20	6 394-366	67	No. of Coolers	$\frac{J}{1}$	Cooler Temps:	Ц.	1			20	Tukwila, WA 98168 6-695-6200 206-695-6201 (fax)
	Client Project Name: South Park L	andfill			- 2		1		1	Analysis R	equested			Notes/Comments
	Client Project #: 553-1550-067	Samplers: T	rey Parry			CE	ĊË	ide	Mn	1 As**				-
	Sample ID	Date	Time	Matrix	Number of Containers	cis-1,2-D	cis-1,2-D benzene	Vinyl Chlor	Total Fe,	Dissolved			•	8
	SPL-GW-MW32-0820	8/27	10:10	water	8	Х		Х	Х	Х				**Field-filtered
ł	SPL-GW-MW27-0820	-	alan ili escal character	water	14	X	a santa sa da sa ug	-x-	- <u>x</u> -	- <u>x</u>				TMS/MSD
				water	8	x	atta atta atta	×	×	×				Batting to Second
	SPL-GW-MW26-0820	8/27	8:25	water	8	х		x	X	х				
				water	8	X		X	X	X				3
Re 2	SPL-GW-MW31-0820			water	7	x	-	X	-x-					
	SPL-GW-MW30-0820			water	7	X		X	X	a de la tamén de la de la tamén de la de		- Marco Children and State State State State		-
	SPL-GW-MW61-0820	8/27	10:25	water	8	х		х	х	х			60	
•	SPL-GW-MW81-0820	819	NIA.	water	82	2	X	х						il.
	Comments/Special Instructions	Relinquished by (Signature)		2	Received by:	X	1	1	Relinquish (Signature	ed by:			Received by (Signature)	y:
		Printed Name:	Pin		Printed Name:	NIA	Dar	ng	Printed Na	ime:		8	Printed Nan	ne:
		Company	the		Company:				Company:				Company:	
		Date & Time: 8/17/12	0 149	٥Ç.	Date & Time: 8127	120	14 :	56	Date & Tin	ne:			Date & Time	9:

Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or co-signed agreement between ARI and the Client.

Sample Retention Policy: Unless specified by work order or contract, all water/soil samples submitted to ARI will be discarded or returned, no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer. Sediment samples submitted under PSDDA/PSEP/SMS protocol will be stored frozen for up to one year and then discarded.

# Chain of Custody Record & Laboratory Analysis Request

ARI Assigned Number: Turn-around Requested: 2 weeks				Date:	8/27	7/20					Analytical Resources, Incorporate Analytical Chemists and Consultant 4611 South 134th Blace, Suite 10				
Public Utility					Page:	7	or			2				461	1 South 134th Place, Suite 100 Tukwila WA 98168
Client Contact: Laura Lee, Parametrix Phone: 206 394-3665					No. of Cooler 1 206-695-6200 206-695-6201 206-695-6201 206-695-6201 206-695-6201 206-695-6201 206-695-6201 206-695-6201 206-695-6201 206-695-6201 206-695-6201 206-695-6201 206-695-6201 206-695-6201 206-695-6201 206-695-6201 206-695-6201 206-695-6201 206-695-6201 206-695-6201 206-695-6201 206-695-6201 206-695-6201 206-695-6201 206-695-6201 206-695-6201 206-695-6201 206-695-6201 206-695-6201 206-695-6201 206-695-6201 206-695-6201 206-695-6201 206-695-6201 206-695-6201 206-695-6201 206-695-6201 206-695-6201 206-695-6201 206-695-6201 206-695-6201 206-695-6201 206-695-6201 206-695-6201 206-695-6201 206-695-6201 206-695-6201 206-695-6201 206-695-6201 206-695-6201 206-695-6201 206-695-6201 206-695-6201 206-695-6201 206-695-6201 206-695-6201 206-695-6201 206-695-6201 206-695-6201 206-695-6201 206-695-6201 206-695-6201 206-695-6201 206-695-6201 206-695-6201 206-695-6201 206-695-6201 206-695-6201 206-695-6201 206-695-6201 206-695-6201 206-695-6201 206-695-6201 206-695-600-600-600-600-600-600-600-600-600-60							6-695-6200 206-695-6201 (fax)			
Client Project Name: South Park L	andfill							1	Analysis	Requeste	ed	1	1		Notes/Comments
Client Project #: 553-1550-067	Samplers: T	rey Parry	-		CE	сE,	ride	nM	d As**						
Sample ID	Date	Time	Matrix	Number of Containers	cis-1,2-D	cis-1,2-D benzene	Vinyl Chlor	Total Fe,	Dissolved			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			
SPL-GW-MW12-0820	a an		water	8	X		X	X_	X	alla generation and generation	with the local dataset of the	an <mark>Bain san an Isan sa Isa</mark>		-	**Field-filtered
			water	7	X	Pasta and the taxes	X	X		a sala arta yan Galar Masa					
SPL-GW-MW29-0820			water	7	x		X	x		-	<b>Managara</b> Secondari ya				and the second second
SPL-GW-MW18-0820		an a	water	8	x	THE DOTTON OF THE REAL PROPERTY OF	x	x	x		etrestinenser 1				
SPL-GW-MW25-0820	8/27	13:22	water	14		x	x	x	x	1			1		MS/MSD
SPL-GW-MW10-0820	8/27	12:10.	water	8	x		x	x	x						
	n dan mangalak perinta perinta		water	8	x		x	x	x		and the same of				
			water	8	X		X	X	X	and the case a second					
			water	6	X		X	-			Names and the state of the state	20)		010-81888-5	
Comments/Special Instructions	Relinquished by (Signature)			Received by:	K	1	2	Relinquish (Signature	ied by: )	1÷				Received b (Signature)	y:
	Printed Name:	Pans		Printed Name:	ny	Dan	ng	Printed Na	ime:				N	Printed Nar	ne:
	Company	tix		Company: ART	5		5	Company:					19	Company:	
	Date & Time:	120.		Date & Time:	11-20	514	SC	Date & Tin	ne:					Date & Tim	9:

Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or co-signed agreement between ARI and the Client.

Sample Retention Policy: Unless specified by work order or contract, all water/soil samples submitted to ARI will be discarded or returned, no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer. Sediment samples submitted under PSDDA/PSEP/SMS protocol will be stored frozen for up to one year and then discarded.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 11-Sep-2020 10:28

## ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SPL-GW-MW32-0820	20H0297-01	Water	27-Aug-2020 10:10	27-Aug-2020 14:56
SPL-GW-MW32-0820	20H0297-02	Water	27-Aug-2020 10:10	27-Aug-2020 14:56
SPL-GW-MW26-0820	20H0297-03	Water	27-Aug-2020 08:25	27-Aug-2020 14:56
SPL-GW-MW26-0820	20H0297-04	Water	27-Aug-2020 08:25	27-Aug-2020 14:56
SPL-GW-MW61-0820	20H0297-05	Water	27-Aug-2020 10:25	27-Aug-2020 14:56
SPL-GW-MW61-0820	20H0297-06	Water	27-Aug-2020 10:25	27-Aug-2020 14:56
SPL-GW-MW81-0820	20H0297-07	Water	27-Aug-2020 00:00	27-Aug-2020 14:56
SPL-GW-MW25-0820	20H0297-08	Water	27-Aug-2020 13:22	27-Aug-2020 14:56
SPL-GW-MW25-0820	20H0297-09	Water	27-Aug-2020 13:22	27-Aug-2020 14:56
SPL-GW-MW10-0820	20H0297-10	Water	27-Aug-2020 12:10	27-Aug-2020 14:56
SPL-GW-MW10-0820	20H0297-11	Water	27-Aug-2020 12:10	27-Aug-2020 14:56



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 11-Sep-2020 10:28

# Work Order Case Narrative

Client: Seattle Public Utilities Project: South Park Landfill -Parametrix Water 2020 Work Order: 20H0297

#### Sample receipt

Samples as listed on the preceding page were received 27-Aug-2020 14:56 under ARI work order 20H0297. For details regarding sample receipt, please refer to the Cooler Receipt Form.

#### Volatiles - EPA Method SW8260D

The sample(s) were analyzed within the recommended holding times.

Initial and continuing calibrations were within method requirements.

Internal standard areas were within limits.

The surrogate percent recoveries were within control limits.

The method blank(s) were clean at the reporting limits.

The blank spike and blank spike duplicate (BS/LCS and BSD/LCSD) spike recoveries and relative percent difference (RPD) were within limits.

Sample specific QC was performed in association with sample 20H0297-08 in batch BII0015. The matrix spike/matrix spike duplicate (MS/MSD) spike recoveries were out of control low and have been flagged within the QC section of this report. The MS/MSD relative percent difference (RPD) were within limits.

#### Volatiles - EPA Method 8260D-SIM (Selected Ion Monitoring)

The sample(s) were analyzed within the recommended holding times.

Initial and continuing calibrations were within method requirements.

Internal standard areas were within limits.

The surrogate percent recoveries were within control limits.

The method blank(s) were clean at the reporting limits.

The blank spike and blank spike duplicate (BS/LCS and BSD/LCSD) spike recoveries and relative percent difference (RPD) were within limits.

Analytical Resources, Inc.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 11-Sep-2020 10:28

Sample specific QC was performed in association with sample 20H0297-08 in batch BIH0605. The matrix spike/matrix spike duplicate (MS/MSD) percent recoveries and relative percent difference (RPD) were within limits.

#### Total Metals - EPA Method 6020A

The sample(s) were digested and analyzed within the recommended holding times.

Initial and continuing calibrations were within method requirements.

The method blank(s) were clean at the reporting limits.

The blank spike (BS/LCS) percent recoveries were within control limits.

Sample specific QC was performed in association with sample 20H0297-08 in batch BIH0586. The duplicate (DUP) relative percent difference (RPD) were within limits. The matrix spike/matrix spike duplicate (MS/MSD) percent recoveries and RPD were within control limits.

#### **Dissolved Arsenic - EPA Method 6020A**

The sample(s) were digested and analyzed within the recommended holding times.

Initial and continuing calibrations were within method requirements.

The method blank(s) were clean at the reporting limits.

The blank spike (BS/LCS) percent recoveries were within control limits.

Sample specific QC was performed in association with sample 20H0297-09 in batch BII0156. The duplicate (DUP) relative percent difference (RPD) were within limits. The matrix spike/matrix spike duplicate (MS/MSD) percent recoveries and RPD were within control limits.

	Analytical Resources, Incorporated Analytical Chemists and Consultants
ARI Client:	SPU

# **Cooler Receipt Form**

ARI Client: SPV	Project Name: South Pc	irk Lar	dfill	
	Delivered by: Fed-Ex UPS Courier	Hand Deliverer	1 Other	
Assigned APL Joh No: 20H0197	Tracking No:		1 Other	6
Preliminary Examination Phase:				NA
Were intact properly signed and dated custody seals attached to the	autoida of the coolor?	VE	e (	NO
Were susted uppersy signed and dated custody seals attached to the t		TE:		NO
were custody papers included with the cooler?		E	5	NO
Were custody papers properly filled out (ink, signed, etc.)	Α	YE	\$	NO
Time 14 SG	4.(			
If cooler temperature is out of compliance fill out form 00070E		omn Gun ID#:	52000	SC
	017717			-0
Cooler Accepted by:Da	te: <u>010/100</u> Time:	1426		
Complete custody forms and a	ttach all shipping documents			
Log-In Phase:			ж С	
Was a temperature blank included in the cooler?	*****		YES	NO
What kind of packing material was used? Bubble Wrap V	Vet Ice Gel Packs Baggies Foam Blo	ock Paper Other	:	0
Was sufficient ice used (if appropriate)?	0	NA	YES	NO
How were bottles sealed in plastic bags?	••••	Individually	Grouped	Not
Did all bottles arrive in good condition (unbroken)?		•	YES	NO
Were all bottle labels complete and legible?			YES	NO
Did the number of containers listed on COC match with the number of	f containers received?		YES	NO
Did all bottle labels and tags agree with custody papers?			YES	NO
Were all bottles used correct for the requested analyses?			(FES)	NO
Do any of the analyses (bottles) require preservation? (attach preserv	vation sheet, excluding VOCs)	NA	(YES)	NO
Were all VOC vials free of air bubbles?		NA	YES	NO
Was sufficient amount of sample sent in each bottle?		-	(YES)	NO
Date VOC Trip Blank was made at ARI		(NA)	$\smile$	
Were the sample(s) split NA YES Date/Time:	Equipment:		Split by:	
Samples Logged by: (Author Author Date: 3/27/2020		s checked by: _	SLF	
** Notify Project Manager of a	iscrepancies or concerns **			

Sample ID on Bottle	Sample ID on COC	Sample ID on Bottle	Sample ID on COC
·····			
dditional Notas Discrepanci	as & Pasalutions:		
Jultional Notes, Discrepancie	es, & Resolutions:		

Analytical Resources, Incorporated Analytical Chemists and Consultants



# WORK ORDER

20H0297

Client: Seattle Public	c Utilities	Project Manager: Shelly Fishel
Project: South Park L	andfill -Parametrix Water 2020	Project Number: 553-155-067
20H0297-08 J	VOA Vial, Amber, 40 mL, HCL	
20H0297-08 K	VOA Vial, Clear, 40 mL	
20H0297-08 L	VOA Vial, Clear, 40 mL	
20H0297-08 M	VOA Vial, Clear, 40 mL	
20H0297-09 A	HDPE NM, 500 mL, 1:1 HNO3 (FF)	22,794,00
20H0297-10 A	VOA Vial, Amber, 40 mL, HCL	
20H0297-10 B	VOA Vial, Amber, 40 mL, HCL	
20H0297-10 C	VOA Vial, Amber, 40 mL, HCL	
20H0297-10 D	VOA Vial, Clear, 40 mL	
20H0297-10 E	VOA Vial, Clear, 40 mL	
20H0297-10 F	VOA Vial, Clear, 40 mL	
20H0297-10 G	HDPE NM, 500 mL, 1:1 HNO3	LZ AND
20H0297-11 A	HDPE NM, 500 mL, 1:1 HNO3 (FF)	47 MD
Preservation Confirmed By	AJu	8/27/2020 Date



Printed: 8/27/2020 5:12:38PM

WORK ORDER

20H0297

Client: Seattle Public Utilities

Project Manager: Shelly Fishel Project Number: 553-155-067

Project: South Park Landfill -Parametrix Water 2020

**Preservation Confirmation** 

Container ID	Container Type	рН	
20H0297-01 A	VOA Vial, Amber, 40 mL, HCL		
20H0297-01 B	VOA Vial, Amber, 40 mL, HCL		
20H0297-01 C	VOA Vial, Amber, 40 mL, HCL		
20H0297-01 D	VOA Vial, Clear, 40 mL		
20H0297-01 E	VOA Vial, Clear, 40 mL		
20H0297-01 F	VOA Vial, Clear, 40 mL		
20H0297-01 G	HDPE NM, 500 mL, 1:1 HNO3	<2 mas	
20H0297-02 A	HDPE NM, 500 mL, 1:1 HNO3 (FF)	47 000	
20H0297-03 A	VOA Vial, Amber, 40 mL, HCL	(	
20H0297-03 B	VOA Vial, Amber, 40 mL, HCL		
20H0297-03 C	VOA Vial, Amber, 40 mL, HCL		
20H0297-03 D	VOA Vial, Clear, 40 mL		
20H0297-03 E	VOA Vial, Clear, 40 mL		
20H0297-03 F	VOA Vial, Clear, 40 mL		
20H0297-03 G	HDPE NM, 500 mL, 1:1 HNO3	(809 S 2	
20H0297-04 A	HDPE NM, 500 mL, 1:1 HNO3 (FF)	<2 mb	
20H0297-05 A	VOA Vial, Amber, 40 mL, HCL	1	
20H0297-05 B	VOA Vial, Amber, 40 mL, HCL		
20H0297-05 C	VOA Vial, Amber, 40 mL, HCL		
20H0297-05 D	VOA Vial, Clear, 40 mL		
20H0297-05 E	VOA Vial, Clear, 40 mL		
20H0297-05 F	VOA Vial, Clear, 40 mL		
20H0297-05 G	HDPE NM, 500 mL, 1:1 HNO3	< 2 22	
20H0297-06 A	HDPE NM, 500 mL, 1:1 HNO3 (FF)	KZ DWD	
20H0297-07 A	VOA Vial, Amber, 40 mL, HCL		
20H0297-07 B	VOA Vial, Clear, 40 mL		
20H0297-08 A	VOA Vial, Amber, 40 mL, HCL		
20H0297-08 B	VOA Vial, Amber, 40 mL, HCL		
20H0297-08 C	VOA Vial, Amber, 40 mL, HCL		
20H0297-08 D	VOA Vial, Clear, 40 mL		
20H0297-08 E	VOA Vial, Clear, 40 mL		
20H0297-08 F	VOA Vial, Clear, 40 mL		
20H0297-08 G	HDPE NM, 500 mL, 1:1 HNO3	<2,000	
20H0297-08 H	VOA Vial, Amber, 40 mL, HCL	ľ	
20H0297-08 I	VOA Vial, Amber, 40 mL, HCL		



Analytical Chemists and Consultants

## WORK ORDER

# 20H0297

Client: Seattle Public Utilities Project: South Park Landfill -Para	metrix Water 2020	)	Project Ma Project Nui	nager: Shelly Fish mber: 553-155-00	hel 67	
Analysis	Due	TAT	Expires		Comments	
20H0297-10 SPL-GW-MW10-0820	[Water] Sampled	27-Aug-	2020 12:10	2 Versions		
8260D VOA	09/10/2020	10	9/10/2020			
8260D-SIM VOC	09/10/2020	10	9/3/2020			
Met 6020A - Fe	09/10/2020	10	2/23/2021			
Met 6020A - Mn	09/10/2020	10	2/23/2021			
Metals Prep ICPMS	09/10/2020	10	8/27/2021			
20H0297-11 SPL-GW-MW10-0820	[Water] Sampled	27-Aug-	2020 12:10			
Met Diss 6020A - As UCT	09/10/2020	10	2/23/2021			
Metals Prep Diss ICPMS	09/10/2020	10	8/27/2021			



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 11-Sep-2020 10:28

## SPL-GW-MW32-0820

20H0297-01 (Water)

Volatile Organic Com	pounds						
Method: EPA 8260D	Aethod: EPA 8260D				Sa	ampled: 08	8/27/2020 10:10
Instrument: NT2 Analyst: PKC					0/01/2020 17:02		
Sample Preparation:	Preparation Method: EPA 5030C (Purg Preparation Batch: BII0015 Prepared: 09/01/2020	e and Trap) Sample Size: 1 Final Volume: 1		I	Extract ID:	20H0297-01 B	
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
cis-1,2-Dichloroethene		156-59-2	1	0.20	0.50	ug/L	
Surrogate: 1,2-Dichloroethane-d4				80-129 %	122	%	



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 11-Sep-2020 10:28

## SPL-GW-MW32-0820

20H0297-01 (Water)

Volatile Organic Con	pounds - SIM						
Method: EPA 8260D-SIN	Aethod: EPA 8260D-SIM				Sa	ampled: 08	3/27/2020 10:10
Instrument: NT16 Anal				Analyzed: 08/28/2020 16:31			
Sample Preparation:	Preparation Method: EPA 5030C (Purge Preparation Batch: BIH0605 Prepared: 08/28/2020	and Trap) Sample Size: 1 Final Volume:		E	Extract ID:	20H0297-01 D	
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Vinyl chloride		75-01-4	1	20.0	344	ng/L	
Surrogate: 1,2-Dichloroeth			80-129 %	100	%		

Analytical Resources, Inc.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 11-Sep-2020 10:28

## SPL-GW-MW32-0820

20H0297-01 (Water)

Metals and Metallic (	Compounds							
Method: EPA 6020A	Method: EPA 6020A				Sampled: 08/27/2020 10:10			
Instrument: ICPMS1 Analyst: MCB				Analyzed: 08/28/2020 16:38				
Sample Preparation:	Preparation Method: REN EPA 600/4- Preparation Batch: BIH0586 Prepared: 08/28/2020	79-020 4.1.4 HNO3 matrix Sample Size: 25 Final Volume: 2		Ext	ract ID: 20H	40297-01 G 01		
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes	
Iron		7439-89-6	1	20.0	13200	ug/L		

Analytical Resources, Inc.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 11-Sep-2020 10:28

## SPL-GW-MW32-0820

#### 20H0297-01RE1 (Water)

Metals and Metallic C	Compounds							
Method: EPA 6020A	Method: EPA 6020A				Sampled: 08/27/2020 10:10			
Instrument: ICPMS1 Analyst: MCB				Analyzed: 08/28/2020 17:41				
Sample Preparation:	Preparation Method: REN EPA 600/4- Preparation Batch: BIH0586 Prepared: 08/28/2020	79-020 4.1.4 HNO3 matrix Sample Size: 25 Final Volume: 2		Extract 1	D: 20H029	7-01RE1 G 01		
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes	
Manganese		7439-96-5	10	5.00	1540	ug/L	D	

Analytical Resources, Inc.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 11-Sep-2020 10:28

## SPL-GW-MW32-0820

20H0297-02 (Water)

#### Metals and Metallic Compounds (dissolved)

Method: EPA 6020A UC	ethod: EPA 6020A UCT-KED strument: ICPMS2 Analyst: MCB				Sampled: 08/27/2020 10:1					
Instrument: ICPMS2 Ar					Analyzed: 09/08/2020 18:4					
Sample Preparation:	Preparation Method: REN EPA 600/4-	79-020 4.1.4 HNO3 matri	x		Extract ID: 20H0297-02 A 01					
	Preparation Batch: BII0156	Sample Size: 2	Sample Size: 25 mL							
	Prepared: 09/07/2020	Final Volume:	25 mL							
			Reporting							
Analyte		CAS Number Dilution		Limit	Result	Units	Notes			
Arsenic, Dissolved		7440-38-2	1	0.200	1.52	ug/L				

Analytical Resources, Inc.



Seattle Public Utilities	
700-5th Ave, Ste 4900, Box 34018	
Seattle WA, 98124-4018	

Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 11-Sep-2020 10:28

## SPL-GW-MW26-0820

20H0297-03 (Water)

Volatile Organic Com	pounds						
Method: EPA 8260D	Method: EPA 8260D				Sa	ampled: 08	8/27/2020 08:25
Instrument: NT2 Analys				Analyzed: 09/01/2020 17:22			
Sample Preparation:	Preparation Method: EPA 5030C (Purge Preparation Batch: BII0015 Prepared: 09/01/2020	e and Trap) Sample Size: 10 Final Volume: 1		E	Extract ID:	20H0297-03 A	
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
cis-1,2-Dichloroethene		156-59-2 1		0.20	0.41	ug/L	
Surrogate: 1,2-Dichloroethane-d4				80-129 %	123	%	

Analytical Resources, Inc.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 11-Sep-2020 10:28

## SPL-GW-MW26-0820

20H0297-03 (Water)

Volatile Organic Com	pounds - SIM						
Method: EPA 8260D-SIN				Sa	ampled: 08	2/27/2020 08:25	
Instrument: NT16 Analyst: PB					Analyzed: 08/28/2020 16:52		
Sample Preparation:	Preparation Method: EPA 5030C (Purge Preparation Batch: BIH0605 Prepared: 08/28/2020	and Trap) Sample Size: 1 Final Volume:		]	Extract ID:	20H0297-03 F	
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Vinyl chloride		75-01-4	1	20.0	28.0	ng/L	М
Surrogate: 1,2-Dichloroethe	ane-d4			80-129 %	<i>99.7</i>	%	

Analytical Resources, Inc.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 11-Sep-2020 10:28

## SPL-GW-MW26-0820

20H0297-03 (Water)

Metals and Metallic C	ompounds							
Aethod: EPA 6020A				Sampled: 08/27/2020 08:25				
nstrument: ICPMS1 Analyst: MCB				Analyzed: 08/28/2020 16:43				
Sample Preparation: Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix				Extr	ract ID: 20I	H0297-03 G 01		
	Preparation Batch: BIH0586	Sample Size: 25 mL						
	Prepared: 08/28/2020	Final Volume:	25 mL					
Analyte		CAS Number	Dilution	Limit	Result	Units	Notes	
Iron		7439-89-6	1	20.0	8120	ug/L		
Manganese		7439-96-5	1	0.500	125	ug/L		

Analytical Resources, Inc.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 11-Sep-2020 10:28

## SPL-GW-MW26-0820

20H0297-04 (Water)

#### Metals and Metallic Compounds (dissolved)

Method: EPA 6020A UCT	fethod: EPA 6020A UCT-KED astrument: ICPMS2 Analyst: MCB				Sampled: 08/27/2020 08					
Instrument: ICPMS2 Ana					Analyzed: 09/08/2020 18:47					
Sample Preparation:	Preparation Method: REN EPA 600/4- Preparation Batch: BII0156 Prepared: 09/07/2020	-79-020 4.1.4 HNO3 matrix Sample Size: 25 Final Volume: 2		Ext	act ID: 20H	10297-04 A 01				
Analyte		CAS Number Dilution		Reporting Limit	Result	Units	Notes			
Arsenic, Dissolved		7440-38-2	1	0.200	0.816	ug/L				



Seattle Public Utilities	
700-5th Ave, Ste 4900, Box 34018	
Seattle WA, 98124-4018	

Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 11-Sep-2020 10:28

## SPL-GW-MW61-0820

20H0297-05 (Water)

Volatile Organic Com	pounds								
Method: EPA 8260D Instrument: NT2 Analyst: PKC					Sampled: 08/27/2020 10:25 Analyzed: 09/01/2020 17:43				
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes		
cis-1,2-Dichloroethene		156-59-2	1	0.20	0.54	ug/L			
Surrogate: 1,2-Dichloroethane-d4				80-129 %	125	%			



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 11-Sep-2020 10:28

## SPL-GW-MW61-0820

20H0297-05 (Water)

Volatile Organic Com	pounds - SIM								
Method: EPA 8260D-SIM					Sampled: 08/27/2020 10:25				
Instrument: NT16 Analy	Analyzed: 08/28/2020 17:12								
Sample Preparation:	Preparation Method: EPA 5030C (Purge Preparation Batch: BIH0605 Prepared: 08/28/2020	and Trap) Sample Size: 1 Final Volume: 1		E	Extract ID:	20H0297-05 D			
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes		
Vinyl chloride		75-01-4	1	20.0	347	ng/L			
Surrogate: 1,2-Dichloroethane-d4				80-129 %	101	%			

Analytical Resources, Inc.


Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 11-Sep-2020 10:28

# SPL-GW-MW61-0820

20H0297-05 (Water)

Metals and Metallic Compounds	

Method: EPA 6020A	od: EPA 6020A				S	ampled: 08/	27/2020 10:25
Instrument: ICPMS1 An	alyst: MCB				Ar	alyzed: 08/	28/2020 16:48
Sample Preparation:	Preparation Method: REN EPA 600/4- Preparation Batch: BIH0586 Prepared: 08/28/2020	79-020 4.1.4 HNO3 matri Sample Size: 2 Final Volume: 1		Ext	ract ID: 20H	10297-05 G 01	
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Iron		7439-89-6	1	20.0	13400	ug/L	

Analytical Resources, Inc.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 11-Sep-2020 10:28

# SPL-GW-MW61-0820

#### 20H0297-05RE1 (Water)

Metals and Metallic (	Compounds						
Method: EPA 6020A	lethod: EPA 6020A				S	ampled: 08/	27/2020 10:25
Instrument: ICPMS1 Analyst: MCB Analyzed: 08				28/2020 17:44			
Sample Preparation:	Preparation Method: REN EPA 600/4- Preparation Batch: BIH0586 Prepared: 08/28/2020	79-020 4.1.4 HNO3 matri Sample Size: 2 Final Volume:		Extract 1	ID: 20H029	7-05RE1 G 01	
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Manganese		7439-96-5	10	5.00	1520	ug/L	D

Analytical Resources, Inc.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 11-Sep-2020 10:28

# SPL-GW-MW61-0820

20H0297-06 (Water)

# Metals and Metallic Compounds (dissolved)

Method: EPA 6020A UCT	Г-KED				Sa	ampled: 08/	27/2020 10:25
Instrument: ICPMS2 An	alyst: MCB				Ar	alyzed: 09/	08/2020 19:09
Sample Preparation:	Preparation Method: REN EPA 600/4 Preparation Batch: BII0156 Prepared: 09/07/2020	-79-020 4.1.4 HNO3 matri Sample Size: 2 Final Volume: 2	x 5 mL 25 mL		Ext	ract ID: 20H	H0297-06 A 01
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Arsenic, Dissolved		7440-38-2	1	0.200	1.50	ug/L	

Analytical Resources, Inc.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 11-Sep-2020 10:28

## SPL-GW-MW81-0820

20H0297-07 (Water)

Volatile Organic Con	olatile Organic Compounds									
Method: EPA 8260D					Sa	mpled: 08	/27/2020 00:00			
Instrument: NT2 Analys	nstrument: NT2 Analyst: PKC				An	alyzed: 09	/01/2020 14:39			
Sample Preparation:	Preparation Method: EPA 5030C (Purge and	reparation Method: EPA 5030C (Purge and Trap)			E	Extract ID:	20H0297-07 A			
	Preparation Batch: BII0015	Sample Size: 10 mL								
	Prepared: 09/01/2020	Final Volume: 10 mL								
				Reporting						
Analyte		CAS Number	Dilution	Limit	Result	Units	Notes			
cis-1,2-Dichloroethene		156-59-2	1	0.20	ND	ug/L	U			
Benzene		71-43-2	1	0.20	ND	ug/L	U			
Surrogate: 1,2-Dichloroeth	une-d4			80-129 %	112	%				



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 11-Sep-2020 10:28

# SPL-GW-MW81-0820

20H0297-07 (Water)

Volatile Organic Com	pounds - SIM						
Method: EPA 8260D-SIN	1				Sa	ampled: 08	/27/2020 00:00
Instrument: NT16 Analyst: PB					An	alyzed: 08	/28/2020 17:32
Sample Preparation:	Preparation Method: EPA 5030C (Purge Preparation Batch: BIH0605 Prepared: 08/28/2020	and Trap) Sample Size: 1 Final Volume:	and Trap) Sample Size: 10 mL Final Volume: 10 mL			Extract ID:	20H0297-07 B
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Vinyl chloride		75-01-4	1	20.0	ND	ng/L	U
Surrogate: 1,2-Dichloroethe	ane-d4			80-129 %	98.6	%	

Analytical Resources, Inc.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 11-Sep-2020 10:28

## SPL-GW-MW25-0820

20H0297-08 (Water)

Volatile Organic Com	pounds						
Method: EPA 8260D					Sa	ampled: 08	3/27/2020 13:22
Instrument: NT2 Analys	strument: NT2 Analyst: PKC				An	alyzed: 09	/01/2020 18:03
Sample Preparation:	Preparation Method: EPA 5030C (Purge a	and Trap)		F	Extract ID:	20H0297-08 H	
	Preparation Batch: BII0015	Sample Size: 10					
	Prepared: 09/01/2020	Final Volume: 1					
				Reporting			
Analyte		CAS Number	Dilution	Limit	Result	Units	Notes
cis-1,2-Dichloroethene		156-59-2	1	0.20	ND	ug/L	U
Benzene		71-43-2	1	0.20	0.26	ug/L	
Surrogate: 1,2-Dichloroeth	ane-d4			80-129 %	125	%	

Analytical Resources, Inc.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 11-Sep-2020 10:28

## SPL-GW-MW25-0820

20H0297-08 (Water)

Volatile Organic Com	olatile Organic Compounds - SIM								
Method: EPA 8260D-SIN	Л				Sa	mpled: 08	/27/2020 13:22		
Instrument: NT16 Analy	Instrument: NT16 Analyst: PB				An	alyzed: 08	/28/2020 17:52		
Sample Preparation:	Preparation Method: EPA 5030C (Purge Preparation Batch: BIH0605 Prepared: 08/28/2020	and Trap) Sample Size: 1 Final Volume: 1	0 mL 10 mL		E	xtract ID:	20H0297-08 D		
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes		
Vinyl chloride		75-01-4	1	20.0	345	ng/L			
Surrogate: 1,2-Dichloroethe	ane-d4			80-129 %	99.9	%			

Analytical Resources, Inc.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 11-Sep-2020 10:28

# SPL-GW-MW25-0820

20H0297-08 (Water)

Metals	and	Metallic	Compounds	
--------	-----	----------	-----------	--

	1						
Method: EPA 6020A					Sa	ampled: 08/	27/2020 13:22
Instrument: ICPMS1 An	alyst: MCB				Ar	alyzed: 08/	28/2020 15:50
Sample Preparation:	Preparation Method: REN EPA 600/4- Preparation Batch: BIH0586 Prepared: 08/28/2020	79-020 4.1.4 HNO3 matri Sample Size: 2 Final Volume: 2	Extract ID: 20H0297			10297-08 G 01	
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Iron		7439-89-6	1	20.0	18300	ug/L	

Analytical Resources, Inc.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 11-Sep-2020 10:28

# SPL-GW-MW25-0820

#### 20H0297-08RE1 (Water)

Metals and Metallic (	Compounds						
Method: EPA 6020A					S	ampled: 08/	27/2020 13:22
Instrument: ICPMS1 Ar	alyst: MCB				Ar	nalyzed: 08/	28/2020 17:05
Sample Preparation:	Preparation Method: REN EPA 600/4- Preparation Batch: BIH0586 Prepared: 08/28/2020	79-020 4.1.4 HNO3 matrix Sample Size: 25 mL Final Volume: 25 mI	_		Extract 1	D: 20H029	7-08RE1 G 01
Analyte		CAS Number Dilu	ition	Reporting Limit	Result	Units	Notes
Manganese		7439-96-5	10	5.00	1910	ug/L	D

Analytical Resources, Inc.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 11-Sep-2020 10:28

# SPL-GW-MW25-0820

20H0297-09 (Water)

#### Metals and Metallic Compounds (dissolved)

Method: EPA 6020A UCT	ſ-KED				Sa	ampled: 08/2	27/2020 13:22
Instrument: ICPMS2 An	alyst: MCB				Ar	alyzed: 09/	08/2020 19:17
Sample Preparation:	Preparation Method: REN EPA 600/4	Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix			Ext	act ID: 20H	10297-09 A 01
	Preparation Batch: BII0156	Sample Size: 25					
	Prepared: 09/07/2020	Final Volume: 2					
				Reporting			
Analyte		CAS Number	Dilution	Limit	Result	Units	Notes
Arsenic, Dissolved		7440-38-2	1	0.200	0.396	ug/L	

Analytical Resources, Inc.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 11-Sep-2020 10:28

# SPL-GW-MW10-0820

20H0297-10 (Water)

Volatile Organic Com	pounds							
Method: EPA 8260D					Sampled: 08/27/2020 12:10			
Instrument: NT2 Analys	st: PKC				An	alyzed: 09	0/01/2020 18:25	
Sample Preparation:	Preparation Method: EPA 5030C (Purge Preparation Batch: BII0015 Prepared: 09/01/2020	and Trap) Sample Size: 10 Final Volume: 1	0 mL 10 mL		E	Extract ID:	20H0297-10 A	
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes	
cis-1,2-Dichloroethene		156-59-2	1	0.20	0.73	ug/L		
Surrogate: 1,2-Dichloroethe	ane-d4			80-129 %	127	%		

Analytical Resources, Inc.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 11-Sep-2020 10:28

## SPL-GW-MW10-0820

20H0297-10 (Water)

Volatile Organic Com	pounds - SIM						
Method: EPA 8260D-SIN	Л				Sa	ampled: 08	/27/2020 12:10
Instrument: NT16 Analy	yst: PB		An	alyzed: 08	/28/2020 18:12		
Sample Preparation:	Preparation Method: EPA 5030C (Purge Preparation Batch: BIH0605 Prepared: 08/28/2020	and Trap) Sample Size: 1 Final Volume: 1	0 mL 10 mL		E	Extract ID:	20H0297-10 D
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Vinyl chloride		75-01-4	1	20.0	95.2	ng/L	М
Surrogate: 1,2-Dichloroethe	ane-d4			80-129 %	99.8	%	

Analytical Resources, Inc.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 11-Sep-2020 10:28

## SPL-GW-MW10-0820

20H0297-10 (Water)

Metals and Metallic C	Compounds						
Method: EPA 6020A			Sa	ampled: 08/	27/2020 12:10		
Instrument: ICPMS1 An	alyst: MCB				Ar	alyzed: 08/	28/2020 17:37
Sample Preparation:	Preparation Method: REN EPA 600/4-7	79-020 4.1.4 HNO3 matri	х		Extr	act ID: 20H	H0297-10 G 01
	Preparation Batch: BIH0586	Sample Size: 2	5 mL				
	Prepared: 08/28/2020	Final Volume:	25 mL				
				Reporting			
Analyte		CAS Number	Dilution	Limit	Result	Units	Notes
Iron		7439-89-6	20	400	40200	ug/L	D
Manganese		7439-96-5	20	10.0	2670	ug/L	D

Analytical Resources, Inc.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 11-Sep-2020 10:28

# SPL-GW-MW10-0820

# 20H0297-11 (Water)

Metals and Metallic C	Compounds (dissolved)						
Method: EPA 6020A UC	T-KED	Sampled: 08/27/2020					
Instrument: ICPMS2 Ar	nalyst: MCB				Aı	nalyzed: 09/	08/2020 19:13
Sample Preparation:	Preparation Method: REN EPA 600/4 Preparation Batch: BII0156 Prepared: 09/07/2020	-79-020 4.1.4 HNO3 matrix Sample Size: 25 Final Volume: 2	s 5 mL 25 mL		Ext	ract ID: 201	H0297-11 A 01
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Arsenic, Dissolved		7440-38-2	1	0.200	ND	ug/L	U

Analytical Resources, Inc.



# **Analytical Report**

Seattle Public Utilities 700-5th Ave, Ste 4900, Box 34018 Seattle WA, 98124-4018 Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 11-Sep-2020 10:28

# Volatile Organic Compounds - Quality Control

#### Batch BII0015 - EPA 5030C (Purge and Trap)

Instrument: NT2 Analyst: PKC

QC Sample/Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Blank (BII0015-BLK1)			Prep	oared: 01-Sep	-2020 A	nalyzed: 01-S	Sep-2020 13	3:58		
cis-1,2-Dichloroethene	ND	0.20	ug/L							U
Benzene	ND	0.20	ug/L							U
Surrogate: 1,2-Dichloroethane-d4	5.38		ug/L	5.00		108	80-129			
LCS (BII0015-BS1)			Prep	pared: 01-Sep	-2020 A	nalyzed: 01-5	Sep-2020 11	:56		
cis-1,2-Dichloroethene	9.01	0.20	ug/L	10.0		90.1	80-121			
Benzene	9.41	0.20	ug/L	10.0		94.1	80-120			
Surrogate: 1,2-Dichloroethane-d4	5.16		ug/L	5.00		103	80-129			
LCS Dup (BII0015-BSD1)			Prep	pared: 01-Sep	-2020 A	nalyzed: 01-5	Sep-2020 12	2:17		
cis-1,2-Dichloroethene	9.39	0.20	ug/L	10.0		93.9	80-121	4.17	30	
Benzene	9.69	0.20	ug/L	10.0		96.9	80-120	2.97	30	
Surrogate: 1,2-Dichloroethane-d4	4.95		ug/L	5.00		99.1	80-129			
Matrix Spike (BII0015-MS2)	Source	: 20H0297-08	Prep	pared: 01-Sep	-2020 A	nalyzed: 01-5	Sep-2020 21	1:43		
cis-1,2-Dichloroethene	6.46	0.20	ug/L	10.0	ND	63.7	80-121			*
Benzene	7.24	0.20	ug/L	10.0	0.26	69.8	80-120			*
Surrogate: 1,2-Dichloroethane-d4	5.80		ug/L	5.00	6.24	116	80-129			
Recovery limits for target analytes in MS/M	SD QC samples are adviso	ry only.								

Matrix Spike Dup (BII0015-MSD2)	Source: 2	0H0297-08	Prepa	red: 01-Sep	-2020 Ana	alyzed: 01-	Sep-2020 22	:04		
cis-1,2-Dichloroethene	6.27	0.20	ug/L	10.0	ND	61.7	80-121	3.12	30	*
Benzene	7.06	0.20	ug/L	10.0	0.26	68.0	80-120	2.51	30	*
Surrogate: 1,2-Dichloroethane-d4	5.81		ug/L	5.00	6.24	116	80-129			

Recovery limits for target analytes in MS/MSD QC samples are advisory only.

Analytical Resources, Inc.



# **Analytical Report**

Seattle Public Utilities 700-5th Ave, Ste 4900, Box 34018 Seattle WA, 98124-4018 Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 11-Sep-2020 10:28

#### Volatile Organic Compounds - SIM - Quality Control

#### Batch BIH0605 - EPA 5030C (Purge and Trap)

Instrument: NT16 Analyst: PB

		Reporting		Spike	Source		%REC		RPD	
QC Sample/Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Blank (BIH0605-BLK1)			Prep	ared: 28-Aug	g-2020 Ar	nalyzed: 28-	Aug-2020 1	0:37		
Vinyl chloride	ND	20.0	ng/L							U
Surrogate: 1,2-Dichloroethane-d4	4700		ng/L	5000		94.1	80-129			
LCS (BIH0605-BS1)			Prep	ared: 28-Aug	g-2020 Ar	nalyzed: 28-	Aug-2020 (	)9:40		
Vinyl chloride	2410	20.0	ng/L	2000		120	76-120			
Surrogate: 1,2-Dichloroethane-d4	4840		ng/L	5000		96.9	80-129			
LCS Dup (BIH0605-BSD1)			Prep	ared: 28-Aug	g-2020 Ar	nalyzed: 28-	Aug-2020 1	0:17		
Vinyl chloride	1950	20.0	ng/L	2000		97.6	76-120	20.90	30	
Surrogate: 1,2-Dichloroethane-d4	4700		ng/L	5000		93.9	80-129			
Matrix Spike (BIH0605-MS2)	Source	20H0297-08	Prep	ared: 28-Aug	g-2020 Ar	nalyzed: 28-	Aug-2020 1	9:13		
Vinyl chloride	2610	20.0	ng/L	2000	345	113	76-120			
Surrogate: 1,2-Dichloroethane-d4	5440		ng/L	5000	4990	109	80-129			
Recovery limits for target analytes in MS/MSD (	QC samples are adviso	ry only.								
Matrix Spike Dup (BIH0605-MSD2)	Source	20H0297-08	Prep	ared: 28-Aug	g-2020 Ar	nalyzed: 28-	Aug-2020 1	9:34		
Vinyl chloride	2690	20.0	ng/L	2000	345	117	76-120	3.12	30	

ng/L

5000

4990

119

80-129

Recovery limits for target analytes in MS/MSD QC samples are advisory only.

5930

Analytical Resources, Inc.

Surrogate: 1,2-Dichloroethane-d4



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 11-Sep-2020 10:28

### Metals and Metallic Compounds - Quality Control

#### Batch BIH0586 - REN EPA 600/4-79-020 4.1.4 HNO3 matrix

Instrument: ICPMS1 Analyst: MCB

QC Sample/Analyte	Isotope	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Blank (BIH0586-BLK1)				Prepa	ared: 28-Au	g-2020 An	alyzed: 28-	Aug-2020 1	4:15		
Iron	54	ND	20.0	ug/L		0	•	0			U
Iron	57	ND	20.0	ug/L							U
Manganese	55	ND	0.500	ug/L							U
LCS (BIH0586-BS1)				Prepa	ared: 28-Au	g-2020 An	alyzed: 28-	Aug-2020 1	4:19		
Iron	54	5070	20.0	ug/L	5000		101	80-120			
Iron	57	5120	20.0	ug/L	5000		102	80-120			
Manganese	55	25.9	0.500	ug/L	25.0		104	80-120			
Duplicate (BIH0586-DUP1)	)	Sourc	e: 20H0297-08	Prepa	ared: 28-Au	g-2020 An	alyzed: 28-	Aug-2020 1	5:57		
Iron	54	18200	20.0	ug/L		18300			0.66	20	
Duplicate (BIH0586-DUP2)	)	Sourc	e: 20H0297-08RE1	Prepa	ared: 28-Au	g-2020 An	alyzed: 28-	Aug-2020 1	7:09		
Manganese	55	1940	5.00	ug/L		1910			1.75	20	D
Matrix Spike (BIH0586-MS	51)	Sourc	e: 20H0297-08	Prepa	ared: 28-Au	g-2020 An	alyzed: 28-	Aug-2020 1	6:02		
Iron	54	22300	20.0	ug/L	5000	18300	79.1	75-125			
Recovery limits for target analyte	es in MS/MSD QC	samples are advis	ory only.								
Matrix Spike (BIH0586-MS	52)	Sourc	e: 20H0297-08RE1	Prepa	ared: 28-Au	g-2020 An	alyzed: 28-	Aug-2020 1	7:13		
Manganese	55	1970	5.00	ug/L	250	1910	24.8	75-125			HC, D
Recovery limits for target analyte	es in MS/MSD QC	samples are advis	ory only.								
Matrix Spike Dup (BIH058	6-MSD1)	Sourc	e: 20H0297-08	Prepa	ared: 28-Au	g-2020 An	alyzed: 28-	Aug-2020 1	6:09		
Iron	54	22500	20.0	ug/L	5000	18300	83.3	75-125	0.93	20	
Recovery limits for target analyte	es in MS/MSD QC	samples are advis	ory only.								
Matrix Spike Dup (BIH058	6-MSD2)	Source	e: 20H0297-08RE1	Prepa	ared: 28-Au	g-2020 An	alyzed: 28-	Aug-2020 1	7:17		
Manganese	55	1920	5.00	ug/L	250	1910	6.04	75-125	2.42	20	HC, D
Recovery limits for target analyte	es in MS/MSD OC	samples are advis	ory only								

Recovery limits for target analytes in MS/MSD QC samples are advisory only.

Analytical Resources, Inc.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 11-Sep-2020 10:28

#### Metals and Metallic Compounds (dissolved) - Quality Control

#### Batch BII0156 - REN EPA 600/4-79-020 4.1.4 HNO3 matrix

Instrument: ICPMS2 Analyst: MCB

OC Sample/Analyte	Isotone	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Qe sumptor many to	isotope	result	Linit	omo	Berei	Ttobult	Jone	Linne	iu b	Linin	110100
Blank (BII0156-BLK1)				Prepa	ared: 07-Sep	-2020 Ana	alyzed: 08-	Sep-2020 15	5:02		
Arsenic, Dissolved	75a	ND	0.200	ug/L							U
LCS (BII0156-BS1)				Prepa	ared: 07-Sep	-2020 Ana	alyzed: 08-	Sep-2020 15	5:05		
Arsenic, Dissolved	75a	25.7	0.200	ug/L	25.0		103	80-120			
Duplicate (BII0156-DUP2	2)	Source	: 20H0297-09	Prepa	ared: 07-Sep	-2020 Ana	alyzed: 08-	Sep-2020 19	9:21		
Arsenic, Dissolved	75a	0.381	0.200	ug/L		0.396			3.86	20	
Matrix Spike (BII0156-M	[82)	Source	: 20H0297-09	Prepa	ared: 07-Sep	-2020 Ana	alyzed: 08-	Sep-2020 19	9:26		
Arsenic, Dissolved	75a	25.6	0.200	ug/L	25.0	0.396	101	75-125			
Recovery limits for target anal	lytes in MS/MSD QC	samples are adviso	ry only.								
Matrix Spike Dup (BII01	56-MSD2)	Source	: 20H0297-09	Prepa	ared: 07-Sep	-2020 Ana	alyzed: 08-	Sep-2020 19	9:31		
Arsenic, Dissolved	75a	25.7	0.200	ug/L	25.0	0.396	101	75-125	0.25	20	

Recovery limits for target analytes in MS/MSD QC samples are advisory only.

Analytical Resources, Inc.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 11-Sep-2020 10:28

# Certified Analyses included in this Report

Analyte	Certifications
EPA 6020A in Water	
Iron-54	NELAP,WADOE,DoD-ELAP
Iron-54	NELAP,WADOE,DoD-ELAP
Iron-54	NELAP,DoD-ELAP
Iron-54	WADOE,DoD-ELAP
Iron-57	NELAP,WADOE,DoD-ELAP
Iron-57	NELAP,DoD-ELAP
Iron-57	WADOE,DoD-ELAP
Iron-57	NELAP,WADOE,DoD-ELAP
Manganese-55	NELAP,WADOE,DoD-ELAP
Manganese-55	NELAP,DoD-ELAP
Manganese-55	WADOE, DoD-ELAP
Manganese-55	NELAP,WADOE,DoD-ELAP
EPA 6020A UCT-KED in Water	
Arsenic-75a	WADOE,DoD-ELAP,ADEC
Arsenic-75a	NELAP,WADOE,DoD-ELAP,ADEC
Arsenic-75a	NELAP,DoD-ELAP,ADEC
Arsenic-75a	NELAP,WADOE,DoD-ELAP,ADEC
EPA 8260D in Water	
Chloromethane	DoD-ELAP,ADEC,NELAP,WADOE
Chloromethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
Chloromethane	DoD-ELAP,ADEC,CALAP,WADOE
Chloromethane	DoD-ELAP,ADEC,NELAP,CALAP
Vinyl Chloride	DoD-ELAP,ADEC,CALAP,WADOE
Vinyl Chloride	DoD-ELAP,ADEC,NELAP,CALAP
Vinyl Chloride	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
Vinyl Chloride	DoD-ELAP,ADEC,NELAP,WADOE
Bromomethane	DoD-ELAP,ADEC,NELAP,WADOE
Bromomethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
Bromomethane	DoD-ELAP,ADEC,CALAP,WADOE
Bromomethane	DoD-ELAP,ADEC,NELAP,CALAP
Chloroethane	DoD-ELAP,ADEC,CALAP,WADOE
Chloroethane	DoD-ELAP,ADEC,NELAP,CALAP
Chloroethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
Chloroethane	DoD-ELAP,ADEC,NELAP,WADOE

Analytical Resources, Inc.



Seattle Public Utilities	Project: South Park Landfill -Parametrix Water 2020	
700-5th Ave, Ste 4900, Box 34018	Project Number: 553-155-067	Reported:
Seattle WA, 98124-4018	Project Manager: Jeff Neuner	11-Sep-2020 10:28
Trichlorofluoromethane	DoD-ELAP,ADEC,CALAP,WADOE	
Trichlorofluoromethane	DoD-ELAP,ADEC,NELAP,CALAP	
Trichlorofluoromethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
Trichlorofluoromethane	DoD-ELAP,ADEC,NELAP,WADOE	
Acrolein	DoD-ELAP,NELAP,WADOE	
Acrolein	DoD-ELAP,CALAP,WADOE	
Acrolein	DoD-ELAP,NELAP,CALAP	
Acrolein	DoD-ELAP,NELAP,CALAP,WADOE	
1,1,2-Trichloro-1,2,2-Trifluoroethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
1,1,2-Trichloro-1,2,2-Trifluoroethane	DoD-ELAP,ADEC,NELAP,CALAP	
1,1,2-Trichloro-1,2,2-Trifluoroethane	DoD-ELAP,ADEC,NELAP,WADOE	
1,1,2-Trichloro-1,2,2-Trifluoroethane	DoD-ELAP,ADEC,CALAP,WADOE	
Acetone	DoD-ELAP,ADEC,NELAP,WADOE	
Acetone	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
Acetone	DoD-ELAP,ADEC,CALAP,WADOE	
Acetone	DoD-ELAP,ADEC,NELAP,CALAP	
1,1-Dichloroethene	DoD-ELAP,ADEC,CALAP,WADOE	
1,1-Dichloroethene	DoD-ELAP,ADEC,NELAP,CALAP	
1,1-Dichloroethene	DoD-ELAP,ADEC,NELAP,WADOE	
1,1-Dichloroethene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
lodomethane	DoD-ELAP,CALAP,WADOE	
lodomethane	DoD-ELAP,NELAP,CALAP	
lodomethane	DoD-ELAP,NELAP,CALAP,WADOE	
lodomethane	DoD-ELAP,NELAP,WADOE	
Methylene Chloride	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
Methylene Chloride	DoD-ELAP,ADEC,NELAP,WADOE	
Methylene Chloride	DoD-ELAP,ADEC,CALAP,WADOE	
Methylene Chloride	DoD-ELAP,ADEC,NELAP,CALAP	
Acrylonitrile	DoD-ELAP,CALAP,WADOE	
Acrylonitrile	DoD-ELAP,NELAP,CALAP,WADOE	
Acrylonitrile	DoD-ELAP,NELAP,WADOE	
Acrylonitrile	DoD-ELAP,NELAP,CALAP	
Carbon Disulfide	DoD-ELAP,NELAP,CALAP	
Carbon Disulfide	DoD-ELAP,CALAP,WADOE	
Carbon Disulfide	DoD-ELAP,NELAP,WADOE	
Carbon Disulfide	DoD-ELAP,NELAP,CALAP,WADOE	
trans-1,2-Dichloroethene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
trans-1,2-Dichloroethene	DoD-ELAP,ADEC,NELAP,CALAP	
trans-1,2-Dichloroethene	DoD-ELAP,ADEC,CALAP,WADOE	

Analytical Resources, Inc.



# **Analytical Report**

Seattle Public Utilities	Project: South Park Landfill -Parametrix Water 2020	
700-5th Ave, Ste 4900, Box 34018	Project Number: 553-155-067	Reported:
Seattle WA, 98124-4018	Project Manager: Jeff Neuner	11-Sep-2020 10:28
trans-1,2-Dichloroethene	DoD-ELAP,ADEC,NELAP,WADOE	
Vinyl Acetate	DoD-ELAP,NELAP,WADOE	
Vinyl Acetate	DoD-ELAP,CALAP,WADOE	
Vinyl Acetate	DoD-ELAP,NELAP,CALAP	
Vinyl Acetate	DoD-ELAP,NELAP,CALAP,WADOE	
1,1-Dichloroethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
1,1-Dichloroethane	DoD-ELAP,ADEC,NELAP,WADOE	
1,1-Dichloroethane	DoD-ELAP,ADEC,CALAP,WADOE	
1,1-Dichloroethane	DoD-ELAP,ADEC,NELAP,CALAP	
2-Butanone	DoD-ELAP,CALAP,WADOE	
2-Butanone	DoD-ELAP,NELAP,WADOE	
2-Butanone	DoD-ELAP,NELAP,CALAP	
2-Butanone	DoD-ELAP,NELAP,CALAP,WADOE	
2,2-Dichloropropane	DoD-ELAP,ADEC,NELAP,CALAP	
2,2-Dichloropropane	DoD-ELAP,ADEC,CALAP,WADOE	
2,2-Dichloropropane	DoD-ELAP,ADEC,NELAP,WADOE	
2,2-Dichloropropane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
cis-1,2-Dichloroethene	DoD-ELAP,ADEC,NELAP,WADOE	
cis-1,2-Dichloroethene	DoD-ELAP,ADEC,CALAP,WADOE	
cis-1,2-Dichloroethene	DoD-ELAP,ADEC,NELAP,CALAP	
cis-1,2-Dichloroethene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
Chloroform	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
Chloroform	DoD-ELAP,ADEC,CALAP,WADOE	
Chloroform	DoD-ELAP,ADEC,NELAP,WADOE	
Chloroform	DoD-ELAP,ADEC,NELAP,CALAP	
Bromochloromethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
Bromochloromethane	DoD-ELAP,ADEC,NELAP,CALAP	
Bromochloromethane	DoD-ELAP,ADEC,CALAP,WADOE	
Bromochloromethane	DoD-ELAP,ADEC,NELAP,WADOE	
1,1,1-Trichloroethane	DoD-ELAP,ADEC,CALAP,WADOE	
1,1,1-Trichloroethane	DoD-ELAP,ADEC,NELAP,CALAP	
1,1,1-Trichloroethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
1,1,1-Trichloroethane	DoD-ELAP,ADEC,NELAP,WADOE	
1,1-Dichloropropene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
1,1-Dichloropropene	DoD-ELAP,ADEC,NELAP,CALAP	
1,1-Dichloropropene	DoD-ELAP,ADEC,CALAP,WADOE	
1,1-Dichloropropene	DoD-ELAP,ADEC,NELAP,WADOE	
Carbon tetrachloride	DoD-ELAP,ADEC,NELAP,CALAP	
Carbon tetrachloride	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	

Analytical Resources, Inc.

Analytical Resources, Incorporated Analytical Chemists and Consultants

# **Analytical Report**

Seattle Public Utilities	Project: South Park Landfill -Parametrix Water 2020	
700-5th Ave, Ste 4900, Box 34018	Project Number: 553-155-067	Reported:
Seattle WA, 98124-4018	Project Manager: Jeff Neuner	11-Sep-2020 10:28
Carbon tetrachloride	DoD-ELAP,ADEC,CALAP,WADOE	
Carbon tetrachloride	DoD-ELAP,ADEC,NELAP,WADOE	
1,2-Dichloroethane	DoD-ELAP,ADEC,NELAP,CALAP	
1,2-Dichloroethane	DoD-ELAP,ADEC,CALAP,WADOE	
1,2-Dichloroethane	DoD-ELAP,ADEC,NELAP,WADOE	
1,2-Dichloroethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
Benzene	DoD-ELAP,ADEC,NELAP,CALAP	
Benzene	DoD-ELAP,ADEC,NELAP,WADOE	
Benzene	DoD-ELAP,ADEC,CALAP,WADOE	
Benzene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
Trichloroethene	DoD-ELAP,ADEC,NELAP,WADOE	
Trichloroethene	DoD-ELAP,ADEC,CALAP,WADOE	
Trichloroethene	DoD-ELAP,ADEC,NELAP,CALAP	
Trichloroethene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
1,2-Dichloropropane	DoD-ELAP,ADEC,NELAP,WADOE	
1,2-Dichloropropane	DoD-ELAP,ADEC,CALAP,WADOE	
1,2-Dichloropropane	DoD-ELAP,ADEC,NELAP,CALAP	
1,2-Dichloropropane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
Bromodichloromethane	DoD-ELAP,ADEC,NELAP,WADOE	
Bromodichloromethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
Bromodichloromethane	DoD-ELAP,ADEC,NELAP,CALAP	
Bromodichloromethane	DoD-ELAP,ADEC,CALAP,WADOE	
Dibromomethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
Dibromomethane	DoD-ELAP,ADEC,NELAP,WADOE	
Dibromomethane	DoD-ELAP,ADEC,CALAP,WADOE	
Dibromomethane	DoD-ELAP,ADEC,NELAP,CALAP	
2-Chloroethyl vinyl ether	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
2-Chloroethyl vinyl ether	DoD-ELAP,ADEC,NELAP,CALAP	
2-Chloroethyl vinyl ether	DoD-ELAP,ADEC,CALAP,WADOE	
2-Chloroethyl vinyl ether	DoD-ELAP,ADEC,NELAP,WADOE	
4-Methyl-2-Pentanone	DoD-ELAP,NELAP,CALAP,WADOE	
4-Methyl-2-Pentanone	DoD-ELAP,CALAP,WADOE	
4-Methyl-2-Pentanone	DoD-ELAP,NELAP,WADOE	
4-Methyl-2-Pentanone	DoD-ELAP,NELAP,CALAP	
cis-1,3-Dichloropropene	DoD-ELAP,ADEC,NELAP,WADOE	
cis-1,3-Dichloropropene	DoD-ELAP,ADEC,CALAP,WADOE	
cis-1,3-Dichloropropene	DoD-ELAP,ADEC,NELAP,CALAP	
cis-1,3-Dichloropropene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
Toluene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	

Analytical Resources, Inc.



Seattle Public Utilities	Project: South Park Landfill -Parametrix Water 2020	
700-5th Ave, Ste 4900, Box 34018	Project Number: 553-155-067	Reported:
Seattle WA, 98124-4018	Project Manager: Jeff Neuner	11-Sep-2020 10:28
Toluene	DoD-ELAP,ADEC,NELAP,CALAP	
Toluene	DoD-ELAP,ADEC,CALAP,WADOE	
Toluene	DoD-ELAP, ADEC, NELAP, WADOE	
trans-1,3-Dichloropropene	DoD-ELAP,ADEC,CALAP,WADOE	
trans-1,3-Dichloropropene	DoD-ELAP, ADEC, NELAP, CALAP	
trans-1,3-Dichloropropene	DoD-ELAP, ADEC, NELAP, WADOE	
trans-1,3-Dichloropropene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
2-Hexanone	DoD-ELAP,NELAP,WADOE	
2-Hexanone	DoD-ELAP,NELAP,CALAP,WADOE	
2-Hexanone	DoD-ELAP,CALAP,WADOE	
2-Hexanone	DoD-ELAP,NELAP,CALAP	
1,1,2-Trichloroethane	DoD-ELAP, ADEC, NELAP, CALAP, WADOE	
1,1,2-Trichloroethane	DoD-ELAP, ADEC, NELAP, CALAP	
1,1,2-Trichloroethane	DoD-ELAP, ADEC, CALAP, WADOE	
1,1,2-Trichloroethane	DoD-ELAP,ADEC,NELAP,WADOE	
1,3-Dichloropropane	DoD-ELAP, ADEC, CALAP, WADOE	
1,3-Dichloropropane	DoD-ELAP, ADEC, NELAP, WADOE	
1,3-Dichloropropane	DoD-ELAP, ADEC, NELAP, CALAP	
1,3-Dichloropropane	DoD-ELAP, ADEC, NELAP, CALAP, WADOE	
Tetrachloroethene	DoD-ELAP, ADEC, NELAP, CALAP, WADOE	
Tetrachloroethene	DoD-ELAP, ADEC, CALAP, WADOE	
Tetrachloroethene	DoD-ELAP, ADEC, NELAP, CALAP	
Tetrachloroethene	DoD-ELAP,ADEC,NELAP,WADOE	
Dibromochloromethane	DoD-ELAP, ADEC, NELAP, CALAP, WADOE	
Dibromochloromethane	DoD-ELAP, ADEC, NELAP, CALAP	
Dibromochloromethane	DoD-ELAP, ADEC, CALAP, WADOE	
Dibromochloromethane	DoD-ELAP, ADEC, NELAP, WADOE	
1,2-Dibromoethane	DoD-ELAP,NELAP,WADOE	
1,2-Dibromoethane	DoD-ELAP,CALAP,WADOE	
1,2-Dibromoethane	DoD-ELAP,NELAP,CALAP	
1,2-Dibromoethane	DoD-ELAP,NELAP,CALAP,WADOE	
Chlorobenzene	DoD-ELAP, ADEC, CALAP, WADOE	
Chlorobenzene	DoD-ELAP, ADEC, NELAP, WADOE	
Chlorobenzene	DoD-ELAP, ADEC, NELAP, CALAP	
Chlorobenzene	DoD-ELAP, ADEC, NELAP, CALAP, WADOE	
Ethylbenzene	DoD-ELAP,ADEC,NELAP,WADOE	
Ethylbenzene	DoD-ELAP,ADEC,CALAP,WADOE	
Ethylbenzene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
Ethylbenzene	DoD-ELAP, ADEC, NELAP, CALAP	

Analytical Resources, Inc.



# **Analytical Report**

Seattle Public Utilities	Project: South Park Landfill -Parametrix Water 2020	
700-5th Ave, Ste 4900, Box 34018	Project Number: 553-155-067	Reported:
Seattle WA, 98124-4018	Project Manager: Jeff Neuner	11-Sep-2020 10:28
1,1,1,2-Tetrachloroethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
1,1,1,2-Tetrachloroethane	DoD-ELAP,ADEC,NELAP,WADOE	
1,1,1,2-Tetrachloroethane	DoD-ELAP,ADEC,NELAP,CALAP	
1,1,1,2-Tetrachloroethane	DoD-ELAP,ADEC,CALAP,WADOE	
m,p-Xylene	DoD-ELAP,ADEC,NELAP,WADOE	
m,p-Xylene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
m,p-Xylene	DoD-ELAP,ADEC,NELAP,CALAP	
m,p-Xylene	DoD-ELAP,ADEC,CALAP,WADOE	
o-Xylene	DoD-ELAP,ADEC,NELAP,WADOE	
o-Xylene	DoD-ELAP,ADEC,NELAP,CALAP	
o-Xylene	DoD-ELAP,ADEC,CALAP,WADOE	
o-Xylene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
Styrene	DoD-ELAP,NELAP,WADOE	
Styrene	DoD-ELAP,CALAP,WADOE	
Styrene	DoD-ELAP,NELAP,CALAP	
Styrene	DoD-ELAP,NELAP,CALAP,WADOE	
Bromoform	DoD-ELAP,CALAP,WADOE	
Bromoform	DoD-ELAP,NELAP,CALAP	
Bromoform	DoD-ELAP,NELAP,CALAP,WADOE	
Bromoform	DoD-ELAP,NELAP,WADOE	
1,1,2,2-Tetrachloroethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
1,1,2,2-Tetrachloroethane	DoD-ELAP,ADEC,CALAP,WADOE	
1,1,2,2-Tetrachloroethane	DoD-ELAP,ADEC,NELAP,CALAP	
1,1,2,2-Tetrachloroethane	DoD-ELAP,ADEC,NELAP,WADOE	
1,2,3-Trichloropropane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
1,2,3-Trichloropropane	DoD-ELAP,ADEC,NELAP,WADOE	
1,2,3-Trichloropropane	DoD-ELAP,ADEC,NELAP,CALAP	
1,2,3-Trichloropropane	DoD-ELAP,ADEC,CALAP,WADOE	
trans-1,4-Dichloro 2-Butene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
trans-1,4-Dichloro 2-Butene	DoD-ELAP,ADEC,NELAP,CALAP	
trans-1,4-Dichloro 2-Butene	DoD-ELAP,ADEC,NELAP,WADOE	
trans-1,4-Dichloro 2-Butene	DoD-ELAP,ADEC,CALAP,WADOE	
n-Propylbenzene	DoD-ELAP,CALAP,WADOE	
n-Propylbenzene	DoD-ELAP,NELAP,WADOE	
n-Propylbenzene	DoD-ELAP,NELAP,CALAP	
n-Propylbenzene	DoD-ELAP,NELAP,CALAP,WADOE	
Bromobenzene	DoD-ELAP,NELAP,WADOE	
Bromobenzene	DoD-ELAP,NELAP,CALAP,WADOE	
Bromobenzene	DoD-ELAP,CALAP,WADOE	

Analytical Resources, Inc.

Analytical Resources, Incorporated Analytical Chemists and Consultants

# **Analytical Report**

Seattle Public Utilities	Project: South Park Landfill -Parametrix Water 2020	)
700-5th Ave, Ste 4900, Box 34018	Project Number: 553-155-067	Reported:
Seattle WA, 98124-4018	Project Manager: Jeff Neuner	11-Sep-2020 10:28
Bromobenzene	DoD-ELAP,NELAP,CALAP	
Isopropyl Benzene	DoD-ELAP,CALAP,WADOE	
Isopropyl Benzene	DoD-ELAP,NELAP,CALAP,WADOE	
Isopropyl Benzene	DoD-ELAP,NELAP,CALAP	
Isopropyl Benzene	DoD-ELAP,NELAP,WADOE	
2-Chlorotoluene	DoD-ELAP,ADEC,NELAP,CALAP	
2-Chlorotoluene	DoD-ELAP,ADEC,NELAP,WADOE	
2-Chlorotoluene	DoD-ELAP, ADEC, CALAP, WADOE	
2-Chlorotoluene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
4-Chlorotoluene	DoD-ELAP,ADEC,NELAP,WADOE	
4-Chlorotoluene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
4-Chlorotoluene	DoD-ELAP,ADEC,NELAP,CALAP	
4-Chlorotoluene	DoD-ELAP, ADEC, CALAP, WADOE	
t-Butylbenzene	DoD-ELAP,CALAP,WADOE	
t-Butylbenzene	DoD-ELAP,NELAP,WADOE	
t-Butylbenzene	DoD-ELAP,NELAP,CALAP,WADOE	
t-Butylbenzene	DoD-ELAP,NELAP,CALAP	
1,3,5-Trimethylbenzene	DoD-ELAP,NELAP,WADOE	
1,3,5-Trimethylbenzene	DoD-ELAP,NELAP,CALAP	
1,3,5-Trimethylbenzene	DoD-ELAP,CALAP,WADOE	
1,3,5-Trimethylbenzene	DoD-ELAP,NELAP,CALAP,WADOE	
1,2,4-Trimethylbenzene	DoD-ELAP,CALAP,WADOE	
1,2,4-Trimethylbenzene	DoD-ELAP,NELAP,CALAP	
1,2,4-Trimethylbenzene	DoD-ELAP,NELAP,CALAP,WADOE	
1,2,4-Trimethylbenzene	DoD-ELAP,NELAP,WADOE	
s-Butylbenzene	DoD-ELAP,CALAP,WADOE	
s-Butylbenzene	DoD-ELAP,NELAP,WADOE	
s-Butylbenzene	DoD-ELAP,NELAP,CALAP	
s-Butylbenzene	DoD-ELAP,NELAP,CALAP,WADOE	
4-Isopropyl Toluene	DoD-ELAP,NELAP,CALAP	
4-Isopropyl Toluene	DoD-ELAP,CALAP,WADOE	
4-Isopropyl Toluene	DoD-ELAP,NELAP,CALAP,WADOE	
4-Isopropyl Toluene	DoD-ELAP,NELAP,WADOE	
1,3-Dichlorobenzene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
1,3-Dichlorobenzene	DoD-ELAP, ADEC, CALAP, WADOE	
1,3-Dichlorobenzene	DoD-ELAP,ADEC,NELAP,WADOE	
1,3-Dichlorobenzene	DoD-ELAP,ADEC,NELAP,CALAP	
1,4-Dichlorobenzene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
1,4-Dichlorobenzene	DoD-ELAP,ADEC,CALAP,WADOE	

Analytical Resources, Inc.



Seattle Public Utilities	Project: South Park Landfill -Parametrix Water 2020	
700-5th Ave, Ste 4900, Box 34018	Project Number: 553-155-067	Reported:
Seattle WA, 98124-4018	Project Manager: Jeff Neuner	11-Sep-2020 10:28
1,4-Dichlorobenzene	DoD-ELAP,ADEC,NELAP,CALAP	
1,4-Dichlorobenzene	DoD-ELAP,ADEC,NELAP,WADOE	
n-Butylbenzene	DoD-ELAP,NELAP,CALAP	
n-Butylbenzene	DoD-ELAP,CALAP,WADOE	
n-Butylbenzene	DoD-ELAP,NELAP,CALAP,WADOE	
n-Butylbenzene	DoD-ELAP,NELAP,WADOE	
1,2-Dichlorobenzene	DoD-ELAP,ADEC,CALAP,WADOE	
1,2-Dichlorobenzene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
1,2-Dichlorobenzene	DoD-ELAP,ADEC,NELAP,CALAP	
1,2-Dichlorobenzene	DoD-ELAP,ADEC,NELAP,WADOE	
1,2-Dibromo-3-chloropropane	DoD-ELAP,ADEC,NELAP,WADOE	
1,2-Dibromo-3-chloropropane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
1,2-Dibromo-3-chloropropane	DoD-ELAP,ADEC,CALAP,WADOE	
1,2-Dibromo-3-chloropropane	DoD-ELAP,ADEC,NELAP,CALAP	
1,2,4-Trichlorobenzene	DoD-ELAP,ADEC,CALAP,WADOE	
1,2,4-Trichlorobenzene	DoD-ELAP,ADEC,NELAP,CALAP	
1,2,4-Trichlorobenzene	DoD-ELAP,ADEC,NELAP,WADOE	
1,2,4-Trichlorobenzene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
Hexachloro-1,3-Butadiene	DoD-ELAP,ADEC,NELAP,WADOE	
Hexachloro-1,3-Butadiene	DoD-ELAP,ADEC,CALAP,WADOE	
Hexachloro-1,3-Butadiene	DoD-ELAP,ADEC,NELAP,CALAP	
Hexachloro-1,3-Butadiene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
Naphthalene	DoD-ELAP,ADEC,NELAP,WADOE	
Naphthalene	DoD-ELAP,ADEC,CALAP,WADOE	
Naphthalene	DoD-ELAP,ADEC,NELAP,CALAP	
Naphthalene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
1,2,3-Trichlorobenzene	DoD-ELAP,ADEC,NELAP,WADOE	
1,2,3-Trichlorobenzene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
1,2,3-Trichlorobenzene	DoD-ELAP,ADEC,NELAP,CALAP	
1,2,3-Trichlorobenzene	DoD-ELAP,ADEC,CALAP,WADOE	
Dichlorodifluoromethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
Dichlorodifluoromethane	DoD-ELAP,ADEC,NELAP,CALAP	
Dichlorodifluoromethane	DoD-ELAP,ADEC,CALAP,WADOE	
Dichlorodifluoromethane	DoD-ELAP,ADEC,NELAP,WADOE	
Methyl tert-butyl Ether	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
Methyl tert-butyl Ether	DoD-ELAP,ADEC,NELAP,WADOE	
Methyl tert-butyl Ether	DoD-ELAP,ADEC,CALAP,WADOE	
Methyl tert-butyl Ether	DoD-ELAP,ADEC,NELAP,CALAP	

Analytical Resources, Inc.

n-Hexane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

WADOE

# **Analytical Report**

Seattle Public Utilities	Project: South Park Landfill -Parametrix Water 2020						
700-5th Ave, Ste 4900, Box 34018	Project Number: 553-155-067	Reported:					
Seattle WA, 98124-4018	Project Manager: Jeff Neuner	11-Sep-2020 10:28					
n-Hexane							
n-Hexane	WADOE						
n-Hexane	WADOE						
2-Pentanone	WADOE						
2-Pentanone							
2-Pentanone	WADOE						
2-Pentanone	WADOE						
EPA 8260D-SIM in Water							
Acrylonitrile	NELAP,CALAP						
Acrylonitrile	NELAP,WADOE						
Acrylonitrile	NELAP,CALAP,WADOE						
Acrylonitrile	CALAP,WADOE						
Vinyl chloride	CALAP,WADOE						
Vinyl chloride	NELAP,CALAP						
Vinyl chloride	NELAP,WADOE						
Vinyl chloride	NELAP,CALAP,WADOE						
1,1-Dichloroethene	NELAP,CALAP,WADOE						
1,1-Dichloroethene	NELAP,WADOE						
1,1-Dichloroethene	CALAP,WADOE						
1,1-Dichloroethene	NELAP,CALAP						
cis-1,2-Dichloroethene	NELAP,CALAP,WADOE						
cis-1,2-Dichloroethene	NELAP,WADOE						
cis-1,2-Dichloroethene	CALAP,WADOE						
cis-1,2-Dichloroethene	NELAP,CALAP						
trans-1,2-Dichloroethene	CALAP,WADOE						
trans-1,2-Dichloroethene	NELAP,CALAP						
trans-1,2-Dichloroethene	NELAP,WADOE						
trans-1,2-Dichloroethene	NELAP,CALAP,WADOE						
Trichloroethene	CALAP,WADOE						
Trichloroethene	NELAP,CALAP						
Trichloroethene	NELAP,CALAP,WADOE						
Trichloroethene	NELAP,WADOE						
Tetrachloroethene	NELAP,CALAP,WADOE						
Tetrachloroethene	NELAP,WADOE						
Tetrachloroethene	CALAP,WADOE						
Tetrachloroethene	NELAP,CALAP						
1,1,2,2-Tetrachloroethane	NELAP,CALAP,WADOE						
1,1,2,2-Tetrachloroethane	NELAP,CALAP						
1,1,2,2-Tetrachloroethane	CALAP,WADOE						

Analytical Resources, Inc.

Analytical Resources, Incorporated Analytical Chemists and Consultants



G			1011 D	20						
Seattle Public Ut	20									
700-5th Ave, Ste	4900, Box 34018	Project Number: 553-155-067	Project Number: 553-155-067							
Seattle WA, 9812	24-4018	Project Manager: Jeff Neuner		11-Sep-2020 10:28						
1,1,2,2-Tetrac	hloroethane	NELAP,WADOE								
1,2-Dichloroet	thane	NELAP,CALAP								
1,2-Dichloroet	thane	CALAP,WADOE								
1,2-Dichloroet	thane	NELAP,WADOE								
1,2-Dichloroet	thane	NELAP, CALAP, WADOE								
Benzene		NELAP, CALAP, WADOE								
Benzene		NELAP,CALAP								
Benzene		CALAP,WADOE								
Benzene		NELAP,WADOE								
Code	Description		Number	Expires						
ADEC	Alaska Dept of Environn	nental Conservation	17-015	01/31/2021						
DoD-ELAP	DoD-Environmental Lab	oratory Accreditation Program	66169	01/01/2021						



# **Analytical Report**

Seattle Public Utilities 700-5th Ave, Ste 4900, Box 34018 Seattle WA, 98124-4018 Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 11-Sep-2020 10:28

#### **Notes and Definitions**

*	Flagged value	is not within	established	control limits.
*	Flagged value	is not within	established	control limits.

- D The reported value is from a dilution
- E The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL)
- HC The natural concentration of the spiked analyte is so much greater than the concentration spiked that an accurate determination of spike recovery is not possible
- J Estimated concentration value detected below the reporting limit.
- M Estimated value for a GC/MS analyte detected and confirmed by an analyst but with low spectral match parameters.
- U This analyte is not detected above the reporting limit (RL) or if noted, not detected above the limit of detection (LOD).

#### DET Analyte DETECTED

- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference
- [2C] Indicates this result was quantified on the second column on a dual column analysis.

# 4th Quarter 2020

Laboratory Reports



25 November 2020

Jeff Neuner Seattle Public Utilities 700-5th Ave, Ste 4900, Box 34018 Seattle, WA 98124-4018

RE: South Park Landfill -Parametrix Water 2020

Please find enclosed sample receipt documentation and analytical results for samples from the project referenced above.

Sample analyses were performed according to ARI's Quality Assurance Plan and any provided project specific Quality Assurance Plan. Each analytical section of this report has been approved and reviewed by an analytical peer, the appropriate Laboratory Supervisor or qualified substitute, and a technical reviewer.

Should you have any questions or problems, please feel free to contact us at your convenience.

Associated Work Order(s) 20K0179 Associated SDG ID(s) N/A

-----

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed in the enclose Narrative. ARI, an accredited laboratory, certifies that the report results for which ARI is accredited meets all the requirements of the accrediting body. A list of certified analyses, accreditations, and expiration dates is included in this report.

Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

Analytical Resources, Inc.

Shelly & Fish

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



4611 S. 134th Place, Suite 100 • Tukwila, WA 98168 • Ph: (206) 695-6200 • Fax: (206) 695-6202

# Chain of Custody Record & Laboratory Analysis Request

ARI Assigned Number: Turn-around Requested: 2 weeks					Date: 11 10 20							Analytical Resources, Incorpo Analytical Chemists and Cons			
ARI Client Company: Jeff Neuner, Seattle Phone: 206 684-7693 Public Utility						1	of	9					461	4611 South 134th Place, Suite 100	
Client Contact: Laura Lee, Parametrix Phone: 206 394-3665						No. of Cooler Coolers: Temps:						206-695-6200 206-695-6201 (fax)			
Client Project Name: South Park Landfill					Analysis Requester					Request	ed		T	Notes/Comments	
Client Project #: 553-1550-067	Samplers:	Trey Parry			빙	ц,	ide	Mn	As**						
Sample ID	Date	Time	Matrix	Number of Containers	cis-1,2-D0	cis-1,2-D0 benzene	Vinyl Chlor	Total Fe,	Dissolved					**Field-filtered	
SPL-GW-MW12-1120	11/9	14:57	water	8	X		X	X	X						
SPL-GW-MW14-1120	11/9.	16:15	water	1314	x		х	x			540			MS/MSD	
SPL-GW-MW29-1120	11/10	9:10	water	7	x		х	x							
SPL-GW-MW18-1120	11/10	10:15	water	8	х		х	X	x						
SPL-GW-MW32-1120	11/10	14:00	water	8	x		x	X	x						
SPL-GW-MW33-1120	nho	15:15	water	8	x		x	x	x						
SPL-GW-MW10-1120	11/10	1250	water	8	x		x	x	x						
SPL-GW-MW60-1120	11/9	16:15	water	7	х		x	X							
SPL-GW-MW80-1120	11/9	13:30	water	2		X	x								
Comments/Special Instructions	Relinquished by: (Signature) (Signature)		Received by: (Signature)	ht	= 4	h	Relinquished by:					Received b (Signature)	y:		
	Printed Name: Printed Name: Sama		Printed Name: Samar	uthe celon P			Printed Name:					Printed Nar	Printed Name:		
	Company: Phran	notax		Company: IAj2	383			Company:			Company:	Company:			
	Date & Time:	1543 Date & Time: 11/10/2			200 1543 Date & Time:				Date & Tim			9:			

Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or co-signed agreement between ARI and the Client.

Sample Retention Policy: Unless specified by work order or contract, all water/soil samples submitted to ARI will be discarded or returned, no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer. Sediment samples submitted under PSDDA/PSEP/SMS protocol will be stored frozen for up to one year and then discarded.

# Chain of Custody Record & Laboratory Analysis Request

ARI Assigned Number: ZOKOI79	Turn-around	d Requested:	2 weeks								Analytical Resources, Incorporated				
ARI Client Company: Jeff Neuner	Seattle Phone: 206 684-7693					Xient Company: Jeff Neuner, Seattle Phone: 206 684-7693 Page: of						Analytical Chemists and Consultants			
Client Contact: Lisa Gilbert, Parametrix Phone: 206 394-3667			No. of Cooler							Tukwila, WA 98168 206-695-6200 206-695-6201 (fax)					
Client Project Name: South Park Landfill						<u>(1.1.1.1.1.1.1.1.1.</u>	remps	0.000000000	Analysis I	Requested				Notos/Commente	
Client Project #: 553-1550-067	Samplers: Trey Parry			щ	щ	۵	lu	4s**					Hotes/Comments		
Sample ID	Date	Time	Matrix	Number of Containers	cis-1,2-DC	cis-1,2-DC benzene	/inyl Chlorid	Fotal Fe, N	Dissolved /					*************	
SPL-GW-MW25-1120	1110	11:35	water	8		X	X	X	X			1			
-SPL-GW-MW30-1120			water	14	- x-										
			water	- 7		anan antum ang						-		MS/MSD	
			wator												
CSPL-GW-MW26-1120			Water	0			X	X	X						
			water	0			X	X	— <u>x</u>						
			Water	0	~		<u> </u>	X	—x						
			water	0				× 	<u>×</u>						
SPL-GW-MW81-1120	11/11-	10:00	water												
Comments/Special Instructions	Relinduished by: (Signature)		•	Received by: -(Signature)	to	Gul	~	Relinquish (Signature)	ed by:				Received by		
	Printed Name:	Pam		Printed Name:	n the	Carle	Printed Name:						Printed Nam	e:	
	Company:	etax		Company: APJ				Company:			Company:			Company:	
	Date & Time:		1543	Date & Time:	20	154	13	Date & Tim	e:				Date & Time:		

Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or co-

Sample Retention Policy: Unless specified by work order or contract, all water/soil samples submitted to ARI will be discarded or returned, no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer. Sediment samples submitted under PSDDA/PSEP/SMS protocol will be stored frozen for up to one year and then discarded.

N



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 25-Nov-2020 15:28

# ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SPL-GW-MW12-1120	20K0179-01	Water	09-Nov-2020 14:57	10-Nov-2020 15:43
SPL-GW-MW14-1120	20K0179-02	Water	09-Nov-2020 16:15	10-Nov-2020 15:43
SPL-GW-MW29-1120	20K0179-03	Water	10-Nov-2020 09:10	10-Nov-2020 15:43
SPL-GW-MW18-1120	20K0179-04	Water	10-Nov-2020 10:15	10-Nov-2020 15:43
SPL-GW-MW32-1120	20K0179-05	Water	10-Nov-2020 14:00	10-Nov-2020 15:43
SPL-GW-MW33-1120	20K0179-06	Water	10-Nov-2020 15:15	10-Nov-2020 15:43
SPL-GW-MW10-1120	20K0179-07	Water	10-Nov-2020 12:50	10-Nov-2020 15:43
SPL-GW-MW60-1120	20K0179-08	Water	09-Nov-2020 16:15	10-Nov-2020 15:43
SPL-GW-MW80-1120	20K0179-09	Water	09-Nov-2020 13:30	10-Nov-2020 15:43
SPL-GW-MW25-1120	20K0179-10	Water	10-Nov-2020 11:35	10-Nov-2020 15:43
SPL-GW-MW12-1120	20K0179-11	Water	09-Nov-2020 14:57	10-Nov-2020 15:43
SPL-GW-MW18-1120	20K0179-12	Water	10-Nov-2020 10:15	10-Nov-2020 15:43
SPL-GW-MW32-1120	20K0179-13	Water	10-Nov-2020 14:00	10-Nov-2020 15:43
SPL-GW-MW33-1120	20K0179-14	Water	10-Nov-2020 15:15	10-Nov-2020 15:43
SPL-GW-MW10-1120	20K0179-15	Water	10-Nov-2020 12:15	10-Nov-2020 15:43
SPL-GW-MW25-1120	20K0179-16	Water	10-Nov-2020 11:35	10-Nov-2020 15:43

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

4611 S. 134th Place, Suite 100 • Tukwila, WA 98168 • Ph: (206) 695-6200 • Fax: (206) 695-6202



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 25-Nov-2020 15:28

# Work Order Case Narrative

Client: Seattle Public Utilities Project: South Park Landfill -Parametrix Water 2020 Work Order: 20K0179

#### Sample receipt

Samples as listed on the preceding page were received 10-Nov-2020 15:43 under ARI work order 20K0179. For details regarding sample receipt, please refer to the Cooler Receipt Form.

#### Volatiles - EPA Method SW8260D

The sample(s) were analyzed within the recommended holding times.

Initial and continuing calibrations were within method requirements.

Internal standard areas were within limits.

The surrogate percent recoveries were within control limits.

The method blank(s) were clean at the reporting limits.

Sample specific QC was performed in association with sample 20K0179-02 in batch BIK0327. The matrix spike (MS) percent recoveries were within control limits. The matrix spike duplicate (MSD) percent recoveries were out of control high and have been flagged. The MS/MSD relative percent difference (RPD) were within advisory control limits.

#### Volatiles - EPA Method 8260D-SIM (Selected Ion Monitoring)

The sample(s) were analyzed within the recommended holding times.

Initial and continuing calibrations were within method requirements.

Internal standard areas were within limits.

The surrogate percent recoveries were within control limits.

The method blank(s) were clean at the reporting limits.

The blank spike and blank spike duplicate (BS/LCS and BSD/LCSD) spike recoveries and relative percent difference (RPD) were within control limits.

Sample specific QC was performed in association with sample 20K0179-02 in batch BIK0388. The matrix spike/matrix spike duplicate (MS/MSD) percent recoveries were out of control high and have been flagged. The MS/MSD relative percent

Analytical Resources, Inc.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

Reported:

**Analytical Report** 

25-Nov-2020 15:28

difference (RPD) were within advisory control limits.

#### Total Metals - EPA Method 6020A

The sample(s) were digested and analyzed within the recommended holding times.

Initial and continuing calibrations were within method requirements.

The method blank(s) were clean at the reporting limits.

The blank spike (BS/LCS) percent recoveries were within control limits.

Sample specific QC was performed in association with sample 20K0179-02 in batch BIK0694. The duplicate (DUP) relative percent difference (RPD) were within advisory control limits. The matrix spike/matrix spike duplicate (MS/MSD) percent recoveries and RPD were within advisory control limits.

#### **Dissolved Metals - EPA Method 6020A**

The sample(s) were digested and analyzed within the recommended holding times.

Initial and continuing calibrations were within method requirements.

The method blank(s) were clean at the reporting limits.

The blank spike (BS/LCS) percent recoveries were within control limits.

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

4611 S. 134th Place, Suite 100 • Tukwila, WA 98168 • Ph: (206) 695-6200 • Fax: (206) 695-6202
Analytical Resources, Incorporated



# WORK ORDER

# 20K0179

Client: Seattle Public Utilities		Project Manager: Shelly Fishel	
Project: South Pa	rk Landfill -Parametrix Water 2020	Project Number: 553-155-067	
	Preserv	ation Confirmation	
Container ID	Container Type	рН	
20K0179-01 A	HDPE NM, 500 mL, 1:1 HNO3	12 Pass	
20K0179-01 B	VOA Vial, Clear, 40 mL		
20K0179-01 C	VOA Vial, Clear, 40 mL		
20K0179-01 D	VOA Vial, Clear, 40 mL		
20K0179-01 E	VOA Vial, Clear, 40 mL, HCL		
20K0179-01 F	VOA Vial, Clear, 40 mL, HCL		
20K0179-01 G	VOA Vial, Clear, 40 mL, HCL		
20K0179-02 A	HDPE NM, 500 mL, 1:1 HNO3	<z pass<="" td=""><td></td></z>	
20K0179-02 B	VOA Vial, Clear, 40 mL		
20K0179-02 C	VOA Vial, Clear, 40 mL		
20K0179-02 D	VOA Vial, Clear, 40 mL		
20K0179-02 E	VOA Vial, Clear, 40 mL		
20K0179-02 F	VOA Vial, Clear, 40 mL		
20K0179-02 G	VOA Vial, Clear, 40 mL		
20K0179-02 H	VOA Vial, Clear, 40 mL, HCL		
20K0179-02 I	VOA Vial, Clear, 40 mL, HCL		
20K0179-02 J	VOA Vial, Clear, 40 mL, HCL		
20K0179-02 K	VOA Vial, Clear, 40 mL, HCL		
20K0179-02 L	VOA Vial, Clear, 40 mL, HCL		
20K0179-02 M	VOA Vial, Clear, 40 mL, HCL		
20K0179-03 A	HDPE NM, 500 mL, 1:1 HNO3	CZ Pass	
20K0179-03 B	VOA Vial, Clear, 40 mL		
20K0179-03 C	VOA Vial, Clear, 40 mL		
20K0179-03 D	VOA Vial, Clear, 40 mL		
20K0179-03 E	VOA Vial, Clear, 40 mL, HCL		
20K0179-03 F	VOA Vial, Clear, 40 mL, HCL		
20K0179-03 G	VOA Vial, Clear, 40 mL, HCL		
20K0179-04 A	HDPE NM, 500 mL, 1:1 HNO3	<z pass<="" td=""><td></td></z>	
20K0179-04 B	VOA Vial, Clear, 40 mL		
20K0179-04 C	VOA Vial, Clear, 40 mL		
20K0179-04 D	VOA Vial, Clear, 40 mL		
20K0179-04 E	VOA Vial, Clear, 40 mL, HCL		
20K0179-04 F	VOA Vial, Clear, 40 mL, HCL		
20K0179-04 G	VOA Vial, Clear, 40 mL, HCL		
20K0179-05 A	HDPE NM, 500 mL, 1:1 HNO3	22 Pass	

Printed: 11/11/2020 12:05:22PM



WORK ORDER

20K0179

Client: Seattle Public Utilities		Project Manager: Shelly Fishel	
Project: South Park	Landfill -Parametrix Water 2020	Project Number: 553-155-067	
20K0179-05 B	VOA Vial, Clear, 40 mL		
20K0179-05 C	VOA Vial, Clear, 40 mL	5 S	
20K0179-05 D	VOA Vial, Clear, 40 mL		
20K0179-05 E	VOA Vial, Clear, 40 mL, HCL		
20K0179-05 F	VOA Vial, Clear, 40 mL, HCL		
20K0179-05 G	VOA Vial, Clear, 40 mL, HCL		
20K0179-06 A	HDPE NM, 500 mL, 1:1 HNO3	<2 Pass	
20K0179-06 B	VOA Vial, Clear, 40 mL		
20K0179-06 C	VOA Vial, Clear, 40 mL		
20K0179-06 D	VOA Vial, Clear, 40 mL		
20K0179-06 E	VOA Vial, Clear, 40 mL, HCL		
20K0179-06 F	VOA Vial, Clear, 40 mL, HCL		
20K0179-06 G	VOA Vial, Clear, 40 mL, HCL		
20K0179-07 A	HDPE NM, 500 mL, 1:1 HNO3	42 Pass	
20K0179-07 B	VOA Vial, Clear, 40 mL		
20K0179-07 C	VOA Vial, Clear, 40 mL		
20K0179-07 D	VOA Vial, Clear, 40 mL		
20K0179-07 E	VOA Vial, Clear, 40 mL, HCL		
20K0179-07 F	VOA Vial, Clear, 40 mL, HCL		
20K0179-07 G	VOA Vial, Clear, 40 mL, HCL		
20K0179-08 A	HDPE NM, 500 mL, 1:1 HNO3	42 Pass	
20K0179-08 B	VOA Vial, Clear, 40 mL		
20K0179-08 C	VOA Vial, Clear, 40 mL		
20K0179-08 D	VOA Vial, Clear, 40 mL		
20K0179-08 E	VOA Vial, Clear, 40 mL, HCL		
20K0179-08 F	VOA Vial, Clear, 40 mL, HCL		
20K0179-08 G	VOA Vial, Clear, 40 mL, HCL		
20K0179-09 A	VOA Vial, Clear, 40 mL, HCL		
20K0179-09 B	VOA Vial, Clear, 40 mL, HCL		
20K0179-10 A	HDPE NM, 500 mL, 1:1 HNO3	LZ Pass	
20K0179-10 B	VOA Vial, Clear, 40 mL		
20K0179-10 C	VOA Vial, Clear, 40 mL		
20K0179-10 D	VOA Vial, Clear, 40 mL		
20K0179-10 E	VOA Vial, Clear, 40 mL, HCL		
20K0179-10 F	VOA Vial, Clear, 40 mL, HCL		
20K0179-10 G	VOA Vial, Clear, 40 mL, HCL		
20K0179-11 A	HDPE NM, 500 mL, 1:1 HNO3 (FF)	LZ Pass	

Analytical Resources, Incorporated Analytical Chemists and Consultants



WORK ORDER

Preservation Confirmed By

<u>||||||2020</u> Date

.0	ALL Y	ALC: NO
A	1	
	-//	A STATE
		-

Analytical Resources, Incorporated Analytical Chemists and Consultants

# **Cooler Receipt Form**

ARI Client: SPU	Pr	oject Name:	South	Park	Landfill	
COC No(s): N	NA De	elivered by: Fed	-Ex UPS Cou	rier Hand D	elivered Other:	
Assigned ARI Job No: <u>このくのにつの</u> Preliminary Examination Phase:	Tra	acking No:				(NA)
Were intact, properly signed and dated custody seals a	attached to the outs	ide of the coole	r?		YES	NO
Were custody papers included with the cooler?		·····			YES	NO
Were custody papers properly filled out (ink, signed, et Temperature of Cooler(s) (°C) (recommended 2.0-6.0	tc.) °C for chemistry)		**		YES	NO
Time 1543		79				
If cooler temperature is out of compliance fill out form (	00070F			Temp Gu	n ID#: DOO 57	leste
Cooler Accepted by: 5C	Date:	11/10/202	o Time	150	13	
Complete custo	dy forms and attac	ch all shipping	documents			
Log-In Phase:						
Was a temperature blank included in the cooler?					VEO	ALC:

Was a temperature blank included in the cooler?		YES	NO
What kind of packing material was used? Bubble Wrap Wet Ice Gel Packs Baggies Foam Bloc	Paper Other:		$\sim$
Was sufficient ice used (if appropriate)?	NA	YES	NO
How were bottles sealed in plastic bags?	Individually	Grouped	Not
Did all bottles arrive in good condition (unbroken)?	2/20-00-00-00-00-00-00-00-00-00-00-00-00-0	YES	NO
Were all bottle labels complete and legible?		YES	NO
Did the number of containers listed on COC match with the number of containers received?		YES	NO
Did all bottle labels and tags agree with custody papers?		YES	NO
Were all bottles used correct for the requested analyses?		YES	NO
Do any of the analyses (bottles) require preservation? (attach preservation sheet, excluding VOCs)	NA	YES	NO
Were all VOC vials free of air bubbles?	NA	YES	NO
Was sufficient amount of sample sent in each bottle?		VES	NO
Date VOC Trip Blank was made at ARI	NA	_	
Were the sample(s) split VES Date/Time: Equipment:	S	plit by:	
Samples Logged by: <u>KO</u> Date: <u>IIIIII20</u> Time: <u>II38</u> Labels	checked by:	KD	;
** Notify Droiget Manager of discusses in			

* Notify Project Manager of discrepancies or concerns **

oumpie ib on bottle	Sample ID on COC	Sample ID on Bottle	Sample ID on COC
	1.4		
,,	es, a nesolutions.		
, <b>-</b>	es, a resolutions.		
,,	es, a resolutions.		
,			
,			
	es, a resolutions.		
	es, a resolutions.		
	es, a nesonatoris.		
	es, a nesonatoris.		



Cooler#: Ter	nperature(°C): 🦳	.9
Sample ID	Bottle Count	Bottle Type
Samples received above 6's		Lotter type
Carl Provide Street Construction and		
Cooler#: Tem	nperature(°C):	
Sample ID	Bottle Count	Bottle Type
Cooler#: Tom	peraturo(°C).	
Sample ID	Bottle Count	Bottle Tune
	Bottle Coulit	Воше Туре
	-	
coler#: T		
Sample ID	Bottle Count	Pottle Tune
	Bottle Count	воше туре

Cooler Temperature Compliance Form



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 25-Nov-2020 15:28

# SPL-GW-MW12-1120

20K0179-01 (Water)

Volatile Organic Com	pounds						
Method: EPA 8260D					Sa	ampled: 11	/09/2020 14:57
Instrument: NT3 Analyst: PC					Ar	nalyzed: 11	/11/2020 15:11
Sample Preparation:	Preparation Method: EPA 5030C (Purge	e and Trap)			H	Extract ID:	20K0179-01 E
	Preparation Batch: BIK0327	Sample Size: 10	Sample Size: 10 mL				
	Prepared: 11/11/2020	Final Volume: 10 mL					
				Reporting			
Analyte		CAS Number	Dilution	Limit	Result	Units	Notes
cis-1,2-Dichloroethene		156-59-2	1	0.20	0.39	ug/L	
Surrogate: 1,2-Dichloroethe	ane-d4			80-129 %	106	%	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 25-Nov-2020 15:28

# SPL-GW-MW12-1120

#### 20K0179-01 (Water)

Volatile Organic Com	pounds - SIM						
Method: EPA 8260D-SIM				S	ampled: 11	/09/2020 14:57	
nstrument: NT16 Analyst: PB					Ar	nalyzed: 11	/12/2020 15:12
Sample Preparation:	Preparation Method: EPA 5030C (Purge Preparation Batch: BIK0388 Prepared: 11/12/2020	and Trap) Sample Size: 1 Final Volume: 1		E	Extract ID:	20K0179-01 D	
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Vinyl chloride		75-01-4	1	20.0	ND	ng/L	U
Surrogate: 1,2-Dichloroethe	ane-d4			80-129 %	103	%	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 25-Nov-2020 15:28

# SPL-GW-MW12-1120

#### 20K0179-01 (Water)

Metals and Metallic C	Compounds					
Method: EPA 6020A				S	ampled: 11	/09/2020 14:57
Instrument: ICPMS1 An	alyst: MCB		Analyzed: 11/23/2020 22			
Sample Preparation:	Preparation Method: REN EPA 600/4-	79-020 4.1.4 HNO3 matrix		Ext	ract ID: 201	K0179-01 A 01
	Preparation Batch: BIK0694	Sample Size: 25 mL				
	Prepared: 11/23/2020	Final Volume: 25 mL				
			Reporting			
Analyte		CAS Number Dilution	Limit	Result	Units	Notes
Iron		7439-89-6 1	20.0	942	ug/L	
Instrument: ICPMS2 An	alyst: MCB			Aı	nalyzed: 11	/24/2020 18:37
Sample Preparation:	Preparation Method: REN EPA 600/4-	od: REN EPA 600/4-79-020 4.1.4 HNO3 matrix		Ext	ract ID: 201	K0179-01 A 01
	Preparation Batch: BIK0694	Sample Size: 25 mL				
	Prepared: 11/23/2020	Final Volume: 25 mL				
			Reporting			
Analyte		CAS Number Dilution	Limit	Result	Units	Notes
Manganese		7439-96-5 1	0.500	109	ug/L	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 25-Nov-2020 15:28

# SPL-GW-MW14-1120

20K0179-02 (Water)

Volatile Organic Com	pounds						
Method: EPA 8260D					Sa	ampled: 11	/09/2020 16:15
Instrument: NT3 Analyst: PC					Ar	nalyzed: 11	/11/2020 15:37
Sample Preparation:	le Preparation: Preparation Method: EPA 5030C (Purge and Trap) Preparation Batch: BIK0327 Sample Size: 10 mL Prepared: 11/11/2020 Final Volume: 10 mL				E	Extract ID:	20K0179-02 H
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
cis-1,2-Dichloroethene	ne 156-59-2 1 0.20 ND		ug/L	U			
Surrogate: 1,2-Dichloroeth	ane-d4			80-129 %	109	%	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 25-Nov-2020 15:28

# SPL-GW-MW14-1120

20K0179-02 (Water)

Volatile Organic Com	pounds - SIM							
Method: EPA 8260D-SIN	Iethod: EPA 8260D-SIM nstrument: NT16 Analyst: PB				Sampled: 11/09/2020 16:1 Analyzed: 11/12/2020 16:1			
Instrument: NT16 Analy								
Sample Preparation:	e and Trap) Sample Size: 1 Final Volume: 1	0 mL 10 mL		E	Extract ID:	20K0179-02 C		
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes	
Vinyl chloride		75-01-4	1	20.0	ND	ng/L	U	
Surrogate: 1,2-Dichloroethane-d4				80-129 %	117	%		

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 25-Nov-2020 15:28

# SPL-GW-MW14-1120

20K0179-02 (Water)

Metals and Metallic C	Compounds							
Method: EPA 6020A	thod: EPA 6020A				S	ampled: 11/	/09/2020 16:15	
Instrument: ICPMS2 Ar	astrument: ICPMS2 Analyst: MCB				Analyzed: 11/24/2020 18:52			
Sample Preparation:	Preparation Method: REN EPA 600/4-7 Preparation Batch: BIK0694 Prepared: 11/23/2020	/4-79-020 4.1.4 HNO3 matrix Extract ID: 201 Sample Size: 25 mL Final Volume: 25 mL			X0179-02 A 01			
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes	
Iron		7439-89-6	5	100	3560	ug/L	D	
Manganese		7439-96-5	5	2.50	603	ug/L	D	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Seattle Public Utilities	
700-5th Ave, Ste 4900, Box 34018	
Seattle WA, 98124-4018	

Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 25-Nov-2020 15:28

# SPL-GW-MW29-1120

20K0179-03 (Water)

Volatile Organic Com	pounds							
Method: EPA 8260D	lethod: EPA 8260D				Sa	ampled: 11	/10/2020 09:10	
Instrument: NT3 Analys	nstrument: NT3 Analyst: PC				Analyzed: 11/11/2020 16:03			
Sample Preparation: Preparation Method: EPA 5030C (Purge and 7 Preparation Batch: BIK0327 Prepared: 11/11/2020		and Trap) Sample Size: 10 Final Volume: 1	0 mL 0 mL		Ε	Extract ID:	20K0179-03 E	
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes	
cis-1,2-Dichloroethene		156-59-2	1	0.20	ND	ug/L	U	
Surrogate: 1,2-Dichloroethane-d4				80-129 %	105	%		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 25-Nov-2020 15:28

# SPL-GW-MW29-1120

20K0179-03 (Water)

Volatile Organic Com	pounds - SIM							
Method: EPA 8260D-SIN	fethod: EPA 8260D-SIM istrument: NT16 Analyst: PB				Sampled: 11/10/2020 ( Analyzed: 11/12/2020 1			
Instrument: NT16 Analy								
Sample Preparation:	Preparation Method: EPA 5030C (Purge Preparation Batch: BIK0388 Prepared: 11/12/2020	and Trap) I Sample Size: 10 mL Final Volume: 10 mL			Extract ID:	20K0179-03 B		
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes	
Vinyl chloride		75-01-4	1	20.0	95.9	ng/L		
Surrogate: 1,2-Dichloroethane-d4				80-129 %	113	%		

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 25-Nov-2020 15:28

# SPL-GW-MW29-1120

#### 20K0179-03 (Water)

Metals and Metallic C	ompounds						
Method: EPA 6020A			Sampled: 11/10/2020 09:10				
Instrument: ICPMS1 Ana	alyst: MCB			Aı	nalyzed: 11	/23/2020 22:07	
Sample Preparation:	Preparation Method: REN EPA 600/4- Preparation Batch: BIK0694 Prepared: 11/23/2020	79-020 4.1.4 HNO3 matrix Sample Size: 25 mL Final Volume: 25 mL	Extract ID: 20K0179-03			K0179-03 A 01	
			Reporting				
Analyte		CAS Number Dilution	Limit	Result	Units	Notes	
Iron		7439-89-6 1	20.0	14400	ug/L		
Instrument: ICPMS2 Ana	alyst: MCB			Aı	nalyzed: 11	/24/2020 18:43	
Sample Preparation:	Preparation Method: REN EPA 600/4-	79-020 4.1.4 HNO3 matrix		Ext	ract ID: 20	K0179-03 A 01	
	Preparation Batch: BIK0694	Sample Size: 25 mL					
	Prepared: 11/23/2020	Final Volume: 25 mL					
			Reporting				
Analyte		CAS Number Dilution	Limit	Result	Units	Notes	
Manganese		7439-96-5 5	2.50	480	ug/L	D	



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 25-Nov-2020 15:28

# SPL-GW-MW18-1120

20K0179-04 (Water)

Volatile Organic Com	pounds							
Method: EPA 8260D	lethod: EPA 8260D				Sa	ampled: 11	/10/2020 10:15	
Instrument: NT3 Analys	nstrument: NT3 Analyst: PC				Analyzed: 11/11/2020 16:29			
Sample Preparation:	and Trap) Sample Size: 10 Final Volume: 1	0 mL 10 mL		Ι	Extract ID:	20K0179-04 E		
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes	
cis-1,2-Dichloroethene		156-59-2	1	0.20	ND	ug/L	U	
Surrogate: 1,2-Dichloroethane-d4				80-129 %	111	%		

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 25-Nov-2020 15:28

# SPL-GW-MW18-1120

20K0179-04 (Water)

Volatile Organic Com	pounds - SIM							
Method: EPA 8260D-SIN	1			Sampled: 11/10/2020				
Instrument: NT16 Analy	strument: NT16 Analyst: PB				Analyzed: 11/12/2020 16			
Sample Preparation: Preparation Method: EPA 5030C (Purge an Preparation Batch: BIK0388 Prepared: 11/12/2020		e and Trap) Sample Size: 1 Final Volume:	nd Trap) Sample Size: 10 mL Final Volume: 10 mL		E	Extract ID:	20K0179-04 B	
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes	
Vinyl chloride		75-01-4	1	20.0	36.3	ng/L		
Surrogate: 1,2-Dichloroethane-d4				80-129 %	114	%		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 25-Nov-2020 15:28

# SPL-GW-MW18-1120

20K0179-04 (Water)

Metals and Metallic C	Compounds							
Method: EPA 6020A	thod: EPA 6020A				S	ampled: 11/	/10/2020 10:15	
Instrument: ICPMS2 An	nstrument: ICPMS2 Analyst: MCB				Analyzed: 11/24/2020 19:52			
Sample Preparation:	Preparation Method: REN EPA 600/4-7 Preparation Batch: BIK0694 Prepared: 11/23/2020	4-79-020 4.1.4 HNO3 matrix Sample Size: 25 mL Final Volume: 25 mL			Ext	ract ID: 20H	K0179-04 A 01	
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes	
Iron		7439-89-6	10	200	21000	ug/L	D	
Manganese		7439-96-5	10	5.00	1360	ug/L	D	

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Seattle Public Utilities	
700-5th Ave, Ste 4900, Box 34018	
Seattle WA, 98124-4018	

Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 25-Nov-2020 15:28

# SPL-GW-MW32-1120

20K0179-05 (Water)

Volatile Organic Com	pounds						
Method: EPA 8260D	ethod: EPA 8260D				Sa	ampled: 11	/10/2020 14:00
nstrument: NT2 Analyst: PKC				Analyzed: 11/12/2020 15			
Sample Preparation:	e and Trap) Sample Size: 10 Final Volume: 1	0 mL 10 mL		Ι	Extract ID:	20K0179-05 F	
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
cis-1,2-Dichloroethene		156-59-2	1	0.20	0.75	ug/L	
Surrogate: 1,2-Dichloroethane-d4				80-129 %	111	%	

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 25-Nov-2020 15:28

#### SPL-GW-MW32-1120

20K0179-05 (Water)

Volatile Organic Con	pounds - SIM							
Method: EPA 8260D-SIN	1ethod: EPA 8260D-SIM 1strument: NT16 Analyst: PB				Sampled: 11/10/2020 1 Analyzed: 11/12/2020 1			
Instrument: NT16 Anal								
Sample Preparation:	e and Trap) Sample Size: 1 Final Volume: 1	0 mL 10 mL		E	Extract ID:	20K0179-05 B		
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes	
Vinyl chloride		75-01-4	1	20.0	472	ng/L		
Surrogate: 1,2-Dichloroethane-d4				80-129 %	124	%		

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 25-Nov-2020 15:28

# SPL-GW-MW32-1120

20K0179-05 (Water)

Metals and Metallic C	ompounds						
Method: EPA 6020A					S	ampled: 11/	/10/2020 14:00
Instrument: ICPMS1 Analyst: MCB					Ar	nalyzed: 11/	/23/2020 22:16
Sample Preparation:	Preparation Method: REN EPA 600/4- Preparation Batch: BIK0694 Prepared: 11/23/2020	79-020 4.1.4 HNO3 matrix Sample Size: 25 mI Final Volume: 25 m		Ext	ract ID: 201	K0179-05 A 01	
Analyte		CAS Number Dil	ution	Reporting Limit	Result	Units	Notes
Iron		7439-89-6	1	20.0	11000	ug/L	
Instrument: ICPMS2 Ana	alyst: MCB				Ar	nalyzed: 11/	/24/2020 19:57
Sample Preparation:	Sample Preparation: Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix Preparation Batch: BIK0694 Sample Size: 25 Prepared: 11/23/2020 Final Volume: 2		_ L		Ext	ract ID: 201	K0179-05 A 01
Analyte		CAS Number Dil	ution	Reporting Limit	Result	Units	Notes
Manganese		7439-96-5	10	5.00	1430	ug/L	D

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Seattle Public Utilities
700-5th Ave, Ste 4900, Box 34018
Seattle WA, 98124-4018

Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 25-Nov-2020 15:28

# SPL-GW-MW33-1120

20K0179-06 (Water)

Volatile Organic Com	pounds							
Method: EPA 8260D	1ethod: EPA 8260D				Sa	ampled: 11	/10/2020 15:15	
nstrument: NT3 Analyst: PC					Analyzed: 11/11/2020 16:5			
Sample Preparation:	e and Trap) Sample Size: 10 Final Volume: 1	0 mL 10 mL		I	Extract ID:	20K0179-06 E		
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes	
cis-1,2-Dichloroethene		156-59-2	1	0.20	ND	ug/L	U	
Surrogate: 1,2-Dichloroethane-d4				80-129 %	110	%		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 25-Nov-2020 15:28

# SPL-GW-MW33-1120

20K0179-06 (Water)

Volatile Organic Con	pounds - SIM							
Method: EPA 8260D-SIN	fethod: EPA 8260D-SIM istrument: NT16 Analyst: PB				Sampled: 11/10/2020 15:1: Analyzed: 11/12/2020 17:36			
Instrument: NT16 Anal								
Sample Preparation:	Preparation Method: EPA 5030C (Purge Preparation Batch: BIK0388 Prepared: 11/12/2020	e and Trap) Sample Size: 1 Final Volume:	nd Trap) Sample Size: 10 mL Final Volume: 10 mL		Extract ID: 20K0179-06 B			
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes	
Vinyl chloride		75-01-4	1	20.0	112	ng/L		
Surrogate: 1,2-Dichloroethane-d4				80-129 %	114	%		

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 25-Nov-2020 15:28

# SPL-GW-MW33-1120

20K0179-06 (Water)

Metals and Metallic C	Compounds							
Method: EPA 6020A	ethod: EPA 6020A				S	ampled: 11/	10/2020 15:15	
Instrument: ICPMS2 An	Instrument: ICPMS2 Analyst: MCB				Analyzed: 11/24/2020 20:01			
Sample Preparation:	Preparation Method: REN EPA 600/4-79 Preparation Batch: BIK0694 Prepared: 11/23/2020	9-020 4.1.4 HNO3 matri Sample Size: 2 Final Volume:		Ext	ract ID: 20k	K0179-06 A 01		
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes	
Iron		7439-89-6	10	200	15800	ug/L	D	
Manganese		7439-96-5	10	5.00	1680	ug/L	D	

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 25-Nov-2020 15:28

# SPL-GW-MW10-1120

20K0179-07 (Water)

Volatile Organic Com	pounds							
Method: EPA 8260D	ethod: EPA 8260D				Sa	ampled: 11	/10/2020 12:50	
nstrument: NT3 Analyst: PC					Analyzed: 11/11/2020 17:21			
Sample Preparation:	Preparation Method: EPA 5030C (Purge Preparation Batch: BIK0327 Prepared: 11/11/2020	and Trap) Sample Size: 10 mL Final Volume: 10 mL			E	Extract ID:	20K0179-07 E	
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes	
cis-1,2-Dichloroethene		156-59-2	1	0.20	1.28	ug/L		
Surrogate: 1,2-Dichloroethane-d4				80-129 %	113	%		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 25-Nov-2020 15:28

# SPL-GW-MW10-1120

20K0179-07 (Water)

Volatile Organic Con	pounds - SIM							
Method: EPA 8260D-SIN	1ethod: EPA 8260D-SIM 1strument: NT16 Analyst: PB				Sampled: 11/10/2020 12:50 Analyzed: 11/12/2020 17:57			
Instrument: NT16 Anal								
Sample Preparation:	Preparation Method: EPA 5030C (Purge Preparation Batch: BIK0388 Prepared: 11/12/2020	e and Trap) Sample Size: 1 Final Volume: 1	nd Trap) Sample Size: 10 mL Final Volume: 10 mL			Extract ID: 20K0179-07 B		
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes	
Vinyl chloride		75-01-4	1	20.0	114	ng/L		
Surrogate: 1,2-Dichloroethane-d4				80-129 %	121	%		

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 25-Nov-2020 15:28

# SPL-GW-MW10-1120

20K0179-07 (Water)

Metals and Metallic C	Compounds							
Method: EPA 6020A	ethod: EPA 6020A				S	ampled: 11/	10/2020 12:50	
Instrument: ICPMS2 Analyst: MCB					Analyzed: 11/24/2020 20:12			
Sample Preparation:	Preparation Method: REN EPA 600/4-7 Preparation Batch: BIK0694 Prepared: 11/23/2020	79-020 4.1.4 HNO3 matri Sample Size: 2 Final Volume:	4.1.4 HNO3 matrix Extract ID: 20K0   Sample Size: 25 mL Final Volume: 25 mL			K0179-07 A 01		
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes	
Iron		7439-89-6	20	400	39100	ug/L	D	
Manganese		7439-96-5	20	10.0	2550	ug/L	D	

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Seattle Public Utilities	
700-5th Ave, Ste 4900, Box 34018	
Seattle WA, 98124-4018	

Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 25-Nov-2020 15:28

# SPL-GW-MW60-1120

20K0179-08 (Water)

Volatile Organic Com	pounds							
Method: EPA 8260D	ethod: EPA 8260D				Sa	ampled: 11	/09/2020 16:15	
nstrument: NT3 Analyst: PC					Analyzed: 11/11/2020 17:47			
Sample Preparation:	Preparation Method: EPA 5030C (Purge Preparation Batch: BIK0327 Prepared: 11/11/2020	and Trap) Sample Size: 10 mL Final Volume: 10 mL			E	Extract ID:	20K0179-08 E	
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes	
cis-1,2-Dichloroethene		156-59-2	1	0.20	ND	ug/L	U	
Surrogate: 1,2-Dichloroethane-d4				80-129 %	109	%		

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 25-Nov-2020 15:28

# SPL-GW-MW60-1120

20K0179-08 (Water)

Volatile Organic Com	pounds - SIM							
Method: EPA 8260D-SIN	ethod: EPA 8260D-SIM				Sa	ampled: 11	/09/2020 16:15	
Instrument: NT16 Analy	nstrument: NT16 Analyst: PB				Analyzed: 11/12/2020 18:18			
Sample Preparation:	e and Trap) Sample Size: 1 Final Volume: 1	0 mL 10 mL		E	Extract ID:	20K0179-08 B		
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes	
Vinyl chloride		75-01-4	1	20.0	ND	ng/L	U	
Surrogate: 1,2-Dichloroethane-d4				80-129 %	118	%		

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 25-Nov-2020 15:28

# SPL-GW-MW60-1120

20K0179-08 (Water)

Metals and Metallic C	Compounds						
Method: EPA 6020A	ethod: EPA 6020A				S	ampled: 11/	/09/2020 16:15
Instrument: ICPMS2 Ar	Instrument: ICPMS2 Analyst: MCB				Ar	nalyzed: 11/	/24/2020 18:47
Sample Preparation:	Preparation Method: REN EPA 600/4-7 Preparation Batch: BIK0694 Prepared: 11/23/2020	9-020 4.1.4 HNO3 matri Sample Size: 2 Final Volume:	.4 HNO3 matrix Extract ID: 20K01 Sample Size: 25 mL Final Volume: 25 mL			K0179-08 A 01	
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Iron		7439-89-6	5	100	3590	ug/L	D
Manganese		7439-96-5	5	2.50	598	ug/L	D

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 25-Nov-2020 15:28

#### SPL-GW-MW80-1120

20K0179-09 (Water)

Volatile Organic Con	npounds								
Method: EPA 8260D	Method: EPA 8260D				Sampled: 11/09				
Instrument: NT3 Analyst: PC					Ar	alyzed: 11	/11/2020 18:13		
Sample Preparation:	Preparation Method: EPA 5030C (Purg	e and Trap)		Extract ID: 20K0			20K0179-09 A		
	Preparation Batch: BIK0327	Sample Size: 10							
	Prepared: 11/11/2020	Final Volume: 1	0 mL						
				Reporting					
Analyte		CAS Number	Dilution	Limit	Result	Units	Notes		
cis-1,2-Dichloroethene		156-59-2	1	0.20	ND	ug/L	U		
Benzene		71-43-2	1	0.20	ND	ug/L	U		
Surrogate: 1,2-Dichloroeth	ane-d4			80-129 %	110	%			
Surrogate: Toluene-d8				80-120 %	99.6	%			

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 25-Nov-2020 15:28

#### SPL-GW-MW80-1120

20K0179-09 (Water)

Volatile Organic Com	pounds - SIM						
Method: EPA 8260D-SIM					S	ampled: 11	/09/2020 13:30
Instrument: NT16 Analyst: PB					Aı	nalyzed: 11	/12/2020 15:53
Sample Preparation:	e and Trap) Sample Size: 1 Final Volume: 1	0 mL 10 mL		1	Extract ID:	20K0179-09 B	
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Vinyl chloride		75-01-4	1	20.0	ND	ng/L	U
Surrogate: 1,2-Dichloroethane-d4				80-129 %	111	%	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 25-Nov-2020 15:28

# SPL-GW-MW25-1120

#### 20K0179-10 (Water)

Volatile Organic Com	pounds							
Method: EPA 8260D Instrument: NT3 Analyst: PC					Sampled: 11/10/2020 11:35			
					An	Analyzed: 11/11/2020 18:39		
Sample Preparation:	Preparation Method: EPA 5030C (Purg	e and Trap)			E	Extract ID:	20K0179-10 E	
	Preparation Batch: BIK0327	Sample Size: 10 mL						
	Prepared: 11/11/2020	Final Volume:						
				Reporting				
Analyte		CAS Number	Dilution	Limit	Result	Units	Notes	
cis-1,2-Dichloroethene		156-59-2	1	0.20	ND	ug/L	U	
Benzene		71-43-2	1	0.20	0.49	ug/L		
Surrogate: 1,2-Dichloroethe	ane-d4			80-129 %	111	%		
Surrogate: Toluene-d8				80-120 %	98.4	%		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 25-Nov-2020 15:28

# SPL-GW-MW25-1120

#### 20K0179-10 (Water)

Volatile Organic Com	pounds - SIM						
Method: EPA 8260D-SIM Instrument: NT16 Analyst: PB					S	ampled: 1	/10/2020 11:35
					Ar	nalyzed: 11	/13/2020 13:04
Sample Preparation:	and Trap) Sample Size: 10 Final Volume: 1	0 mL 10 mL		Ε	Extract ID:	20K0179-10 B	
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Vinyl chloride		75-01-4	1	20.0	505	ng/L	
Surrogate: 1,2-Dichloroethane-d4				80-129 %	109	%	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 25-Nov-2020 15:28

# SPL-GW-MW25-1120

#### 20K0179-10 (Water)

Metals and Metallic C	Compounds					
Method: EPA 6020A				S	ampled: 11	/10/2020 11:35
Instrument: ICPMS1 An		Aı	nalyzed: 11	/23/2020 23:12		
Sample Preparation:	Preparation Method: REN EPA 600/4- Preparation Batch: BIK0694 Prepared: 11/23/2020	79-020 4.1.4 HNO3 matrix Sample Size: 25 mL Final Volume: 25 mL		Ext	ract ID: 201	X0179-10 A 01
Analyte		CAS Number Dilution	Reporting Limit	Result	Units	Notes
Iron		7439-89-6 1	20.0	18200	ug/L	
Instrument: ICPMS2 An	alyst: MCB			Aı	nalyzed: 11	/24/2020 20:07
Sample Preparation:	Preparation Method: REN EPA 600/4- Preparation Batch: BIK0694 Prepared: 11/23/2020	79-020 4.1.4 HNO3 matrix Sample Size: 25 mL Final Volume: 25 mL		Ext	ract ID: 201	K0179-10 A 01
Analyte		CAS Number Dilution	Reporting Limit	Result	Units	Notes
Manganese		7439-96-5 10	5.00	2110	ug/L	D

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 25-Nov-2020 15:28

# SPL-GW-MW12-1120

#### 20K0179-11 (Water)

Metals and Metallic (	Compounds (dissolved)						
Method: EPA 6020A UCT-KED					Sampled: 1		
Instrument: ICPMS1 An	nalyst: MCB			Analyzed: 11/20/2020 2			
Sample Preparation:	Preparation Method: REN EPA 600/4- Preparation Batch: BIK0643 Prepared: 11/20/2020	79-020 4.1.4 HNO3 matri Sample Size: 2 Final Volume: 2	x 5 mL 25 mL	Extract ID: 20K0179			K0179-11 A 01
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Arsenic, Dissolved		7440-38-2	1	0.200	0.395	ug/L	

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 25-Nov-2020 15:28

# SPL-GW-MW18-1120

20K0179-12 (Water)

Metals and Metallic C	Compounds (dissolved)						
Method: EPA 6020A UCT-KED Instrument: ICPMS1 Analyst: MCB				Sampled: 11/10			
					Aı	nalyzed: 11/	20/2020 21:26
Sample Preparation:	Preparation Method: REN EPA 600/4- Preparation Batch: BIK0643 Prepared: 11/20/2020	79-020 4.1.4 HNO3 matri Sample Size: 2 Final Volume:	x 5 mL 25 mL		Ext	ract ID: 20H	K0179-12 A 01
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Arsenic, Dissolved		7440-38-2	1	0.200	ND	ug/L	U

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.


Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 25-Nov-2020 15:28

## SPL-GW-MW32-1120

20K0179-13 (Water)

Metals and Metallic C	Compounds (dissolved)						
Method: EPA 6020A UC	T-KED				S	ampled: 11/	/10/2020 14:00
Instrument: ICPMS1 Ar	alyst: MCB				Aı	nalyzed: 11/	20/2020 21:31
Sample Preparation:	Preparation Method: REN EPA 600/4 Preparation Batch: BIK0643 Prepared: 11/20/2020	-79-020 4.1.4 HNO3 matri Sample Size: 2 Final Volume: 1	x 5 mL 25 mL		Ext	ract ID: 20H	K0179-13 A 01
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Arsenic, Dissolved		7440-38-2	1	0.200	1.51	ug/L	

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 25-Nov-2020 15:28

## SPL-GW-MW33-1120

20K0179-14 (Water)

Metals and Metallic C	Compounds (dissolved)						
Method: EPA 6020A UC	T-KED				S	ampled: 11/	/10/2020 15:15
Instrument: ICPMS1 An	alyst: MCB				Aı	nalyzed: 11/	/20/2020 21:35
Sample Preparation:	Preparation Method: REN EPA 600/4- Preparation Batch: BIK0643 Prepared: 11/20/2020	79-020 4.1.4 HNO3 matri Sample Size: 2 Final Volume: 1	x 5 mL 25 mL		Ext	ract ID: 20H	K0179-14 A 01
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Arsenic, Dissolved		7440-38-2	1	0.200	1.01	ug/L	

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 25-Nov-2020 15:28

## SPL-GW-MW10-1120

20K0179-15 (Water)

Metals and Metallic C	Compounds (dissolved)						
Method: EPA 6020A UC	T-KED				S	ampled: 11/	/10/2020 12:15
Instrument: ICPMS1 An	alyst: MCB				Aı	nalyzed: 11/	20/2020 21:39
Sample Preparation:	Preparation Method: REN EPA 600/4 Preparation Batch: BIK0643 Prepared: 11/20/2020	-79-020 4.1.4 HNO3 matri Sample Size: 2 Final Volume: 1	x 5 mL 25 mL		Ext	ract ID: 20H	K0179-15 A 01
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Arsenic, Dissolved		7440-38-2	1	0.200	ND	ug/L	U

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 25-Nov-2020 15:28

Notes

## SPL-GW-MW25-1120

20K0179-16 (Water)

#### Metals and Metallic Compounds (dissolved) Method: EPA 6020A UCT-KED Sampled: 11/10/2020 11:35 Instrument: ICPMS1 Analyst: MCB Analyzed: 11/20/2020 21:43 Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix Extract ID: 20K0179-16 A 01 Sample Preparation: Preparation Batch: BIK0643 Sample Size: 25 mL Prepared: 11/20/2020 Final Volume: 25 mL Reporting Limit Analyte CAS Number Dilution Result Units Arsenic, Dissolved 0.200 0.300 7440-38-2 1 ug/L

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 25-Nov-2020 15:28

#### **Volatile Organic Compounds - Quality Control**

#### Batch BIK0327 - EPA 5030C (Purge and Trap)

Instrument: NT3 Analyst: PC

		Reporting		Spike	Source		%REC		RPD	
QC Sample/Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Blank (BIK0327-BLK1)			Prep	ared: 11-Nov	-2020 A	nalyzed: 11-	Nov-2020 1	1:14		
cis-1,2-Dichloroethene	ND	0.20	ug/L							U
Benzene	ND	0.20	ug/L							U
Surrogate: 1,2-Dichloroethane-d4	5.29		ug/L	5.00		106	80-129			
Surrogate: Toluene-d8	5.08		ug/L	5.00		102	80-120			
LCS (BIK0327-BS1)			Prep	ared: 11-Nov	7-2020 A	nalyzed: 11-	Nov-2020 0	9:43		
cis-1,2-Dichloroethene	10.8	0.20	ug/L	10.0		108	80-121			
Benzene	10.6	0.20	ug/L	10.0		106	80-120			
Surrogate: 1,2-Dichloroethane-d4	5.34		ug/L	5.00		107	80-129			
Surrogate: Toluene-d8	5.11		ug/L	5.00		102	80-120			
LCS Dup (BIK0327-BSD1)			Prep	ared: 11-Nov	-2020 A	nalyzed: 11-	Nov-2020 1	0:09		
cis-1,2-Dichloroethene	10.5	0.20	ug/L	10.0		105	80-121	2.69	30	
Benzene	10.2	0.20	ug/L	10.0		102	80-120	3.42	30	
Surrogate: 1,2-Dichloroethane-d4	5.52		ug/L	5.00		110	80-129			
Surrogate: Toluene-d8	5.03		ug/L	5.00		101	80-120			
Matrix Spike (BIK0327-MS1)	Source:	20K0179-02	Prep	ared: 11-Nov	-2020 A	nalyzed: 11-	Nov-2020 1	9:56		
cis-1,2-Dichloroethene	10.7	0.20	ug/L	10.0	ND	107	80-121			
Benzene	10.1	0.20	ug/L	10.0	ND	101	80-120			
Surrogate: 1,2-Dichloroethane-d4	5.63		ug/L	5.00	5.44	113	80-129			
Surrogate: Toluene-d8	5.09		ug/L	5.00		102	80-120			
Recovery limits for target analytes in MS/MS	D QC samples are advisor	y only.								
Matrix Spike Dup (BIK0327-MSD1)	Source:	20K0179-02	Prep	ared: 11-Nov	7-2020 A	nalyzed: 11-	Nov-2020 2	0:22		

Matrix Spike Dup (BIK0327-MSD1)	Source: 20K0179-02		Prepared: 11-Nov-2020 Analyzed: 11-Nov-2020 20:22					20:22		
cis-1,2-Dichloroethene	13.1	0.20	ug/L	10.0	ND	131	80-121	20.50	30	*
Benzene	12.6	0.20	ug/L	10.0	ND	126	80-120	22.70	30	*
Surrogate: 1,2-Dichloroethane-d4	5.34		ug/L	5.00	5.44	107	80-129			
Surrogate: Toluene-d8	5.05		ug/L	5.00		101	80-120			

Recovery limits for target analytes in MS/MSD QC samples are advisory only.

Analytical	Resources,	Inc.
------------	------------	------



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 25-Nov-2020 15:28

#### **Volatile Organic Compounds - Quality Control**

#### Batch BIK0380 - EPA 5030C (Purge and Trap)

Instrument: NT2 Analyst: PKC

QC Sample/Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Blank (BIK0380-BLK2)			Prep	ared: 12-No	v-2020 An	alyzed: 12-	Nov-2020 1	1:48		
cis-1,2-Dichloroethene	ND	0.20	ug/L							U
Surrogate: 1,2-Dichloroethane-d4	4.89		ug/L	5.00		97.8	80-129			
LCS (BIK0380-BS2)			Prep	ared: 12-No	v-2020 An	alyzed: 12-	Nov-2020 1	0:38		
cis-1,2-Dichloroethene	10.4	0.20	ug/L	10.0		104	80-121			
Surrogate: 1,2-Dichloroethane-d4	4.51		ug/L	5.00		90.2	80-129			
LCS Dup (BIK0380-BSD2)			Prep	ared: 12-No	v-2020 An	alyzed: 12-	Nov-2020 1	0:58		
cis-1,2-Dichloroethene	10.1	0.20	ug/L	10.0		101	80-121	2.53	30	
Surrogate: 1,2-Dichloroethane-d4	4.58		ug/L	5.00		91.7	80-129			

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 25-Nov-2020 15:28

*

#### Volatile Organic Compounds - SIM - Quality Control

#### Batch BIK0388 - EPA 5030C (Purge and Trap)

Instrument: NT16 Analyst: PB

		Reporting		Spike	Source		%REC		RPD	
QC Sample/Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Blank (BIK0388-BLK1)			Prep	ared: 12-Nov	v-2020 A1	nalyzed: 12-	Nov-2020 1	4:15		
Vinyl chloride	ND	20.0	ng/L							U
Surrogate: 1,2-Dichloroethane-d4	5300		ng/L	5000		106	80-129			
LCS (BIK0388-BS1)			Prep	ared: 12-Nov	v-2020 A1	nalyzed: 12-	Nov-2020 1	3:06		
Vinyl chloride	2310	20.0	ng/L	2000		115	76-120			
Surrogate: 1,2-Dichloroethane-d4	5330		ng/L	5000		107	80-129			
LCS Dup (BIK0388-BSD1)			Prep	ared: 12-Nov	v-2020 A1	nalyzed: 12-	Nov-2020 1	3:42		
Vinyl chloride	2380	20.0	ng/L	2000		119	76-120	2.96	30	
Surrogate: 1,2-Dichloroethane-d4	5310		ng/L	5000		106	80-129			
Matrix Spike (BIK0388-MS1)	Source:	20K0179-02	Prep	ared: 12-Nov	v-2020 A1	nalyzed: 12-	Nov-2020 2	2:07		
Vinyl chloride	2550	20.0	ng/L	2000	ND	127	76-120			*
Surrogate: 1,2-Dichloroethane-d4	6500		ng/L	5000	5860	130	80-129			*
Recovery limits for target analytes in MS/MSD 0	QC samples are advisor	ry only.								
Matrix Spike Dup (BIK0388-MSD1)	Source:	20K0179-02	Prep	ared: 12-Nov	v-2020 A1	nalyzed: 12-	Nov-2020 2	2:27		
Vinyl chloride	2590	20.0	ng/L	2000	ND	129	76-120	1.61	30	*

ng/L

5000

5860

135

80-129

Recovery limits for target analytes in MS/MSD QC samples are advisory only.

6770

Analytical Resources, Inc.

Surrogate: 1,2-Dichloroethane-d4



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 25-Nov-2020 15:28

#### Volatile Organic Compounds - SIM - Quality Control

#### Batch BIK0414 - EPA 5030C (Purge and Trap)

Instrument: NT16 Analyst: PB

QC Sample/Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Blank (BIK0414-BLK1)			Prep	ared: 13-Nov	v-2020 An	alyzed: 13-	Nov-2020 1	1:46		
Vinyl chloride	ND	20.0	ng/L							U
Surrogate: 1,2-Dichloroethane-d4	5510		ng/L	5000		110	80-129			
LCS (BIK0414-BS1)			Prep	ared: 13-Nov	v-2020 An	alyzed: 13-	Nov-2020 1	1:06		
Vinyl chloride	2340	20.0	ng/L	2000		117	76-120			
Surrogate: 1,2-Dichloroethane-d4	5550		ng/L	5000		111	80-129			
LCS Dup (BIK0414-BSD1)			Prep	ared: 13-Nov	v-2020 An	alyzed: 13-	Nov-2020 1	2:07		
Vinyl chloride	2360	20.0	ng/L	2000		118	76-120	0.73	30	
Surrogate: 1,2-Dichloroethane-d4	5840		ng/L	5000		117	80-129			

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 25-Nov-2020 15:28

#### Metals and Metallic Compounds - Quality Control

#### Batch BIK0694 - REN EPA 600/4-79-020 4.1.4 HNO3 matrix

Instrument: ICPMS1 Analyst: MCB

QC Sample/Analyte	Isotope	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Blank (BIK0694-BLK1)				Prep	ared: 23-Nov	v-2020 An	alyzed: 23-	Nov-2020 1	7:41		
Iron	54	ND	20.0	ug/L							U
Iron	57	ND	20.0	ug/L							U
Manganese	55	ND	0.500	ug/L							U
LCS (BIK0694-BS1)				Prep	ared: 23-Nov	v-2020 An	alyzed: 23-	Nov-2020 1	7:45		
Iron	54	4870	20.0	ug/L	5000		97.5	80-120			
Iron	57	4860	20.0	ug/L	5000		97.3	80-120			
Manganese	55	26.5	0.500	ug/L	25.0		106	80-120			
Instrument: ICPMS2 Analyst:	MCB										
			Reporting		Spike	Source		%REC		RPD	
QC Sample/Analyte	Isotope	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Duplicate (BIK0694-DUP2)		Sour	ce: 20K0179-02	Prep	ared: 23-Nov	v-2020 An	alyzed: 24-	Nov-2020 1	8:57		
Iron	54	3550	100	ug/L		3560			0.07	20	D
Manganese	55	589	2.50	ug/L		603			2.38	20	D

Matrix Spike (BIK0694-MS2)	Source:	Source: 20K0179-02 Prepared: 23-Nov-2020 Analyzed: 24-Nov-2020 19:03							
Iron	54	8850	100	ug/L	5000	3560	106	75-125	D
Manganese	55	644	2.50	ug/L	25.0	603	166	75-125	HC, D

Recovery limits for target analytes in MS/MSD QC samples are advisory only.

Matrix Spike Dup (BIK0694-MSD2)		Source:	20K0179-02	179-02   Prepared: 23-Nov-2020   Analyzed: 24-Nov-2020 19:10							
Iron	54	8680	100	ug/L	5000	3560	103	75-125	1.86	20	D
Manganese	55	613	2.50	ug/L	25.0	603	39.9	75-125	5.02	20	HC, D

Recovery limits for target analytes in MS/MSD QC samples are advisory only.

Analytical Resources, In-	с.
---------------------------	----



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 25-Nov-2020 15:28

#### Metals and Metallic Compounds (dissolved) - Quality Control

#### Batch BIK0643 - REN EPA 600/4-79-020 4.1.4 HNO3 matrix

Instrument: ICPMS1 Analyst: MCB

QC Sample/Analyte	Isotope	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Blank (BIK0643-BLK1)				Prep	ared: 20-Nov	v-2020 An	alyzed: 20-	Nov-2020 1	6:53		
Arsenic, Dissolved	75a	ND	0.200	ug/L							U
LCS (BIK0643-BS1)				Prep	ared: 20-Nov	v-2020 An	alyzed: 20-	Nov-2020 1	6:57		
Arsenic, Dissolved	75a	26.1	0.200	ug/L	25.0		104	80-120			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 25-Nov-2020 15:28

## Certified Analyses included in this Report

Analyte	Certifications
EPA 6020A in Water	
Iron-54	NELAP,WADOE,DoD-ELAP
Iron-54	NELAP,WADOE,DoD-ELAP
Iron-54	NELAP,DoD-ELAP
Iron-54	WADOE,DoD-ELAP
Iron-57	NELAP,WADOE,DoD-ELAP
Iron-57	NELAP,DoD-ELAP
Iron-57	WADOE,DoD-ELAP
Iron-57	NELAP,WADOE,DoD-ELAP
Manganese-55	NELAP,WADOE,DoD-ELAP
Manganese-55	NELAP,DoD-ELAP
Manganese-55	WADOE,DoD-ELAP
Manganese-55	NELAP,WADOE,DoD-ELAP
EPA 6020A UCT-KED in Water	
Arsenic-75a	WADOE, DoD-ELAP, ADEC
Arsenic-75a	NELAP,WADOE,DoD-ELAP,ADEC
Arsenic-75a	NELAP,DoD-ELAP,ADEC
Arsenic-75a	NELAP,WADOE,DoD-ELAP,ADEC
EPA 8260D in Water	
Chloromethane	DoD-ELAP,ADEC,NELAP,WADOE
Chloromethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
Chloromethane	DoD-ELAP,ADEC,CALAP,WADOE
Chloromethane	DoD-ELAP,ADEC,NELAP,CALAP
Vinyl Chloride	DoD-ELAP,ADEC,CALAP,WADOE
Vinyl Chloride	DoD-ELAP,ADEC,NELAP,CALAP
Vinyl Chloride	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
Vinyl Chloride	DoD-ELAP,ADEC,NELAP,WADOE
Bromomethane	DoD-ELAP,ADEC,NELAP,WADOE
Bromomethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
Bromomethane	DoD-ELAP,ADEC,CALAP,WADOE
Bromomethane	DoD-ELAP,ADEC,NELAP,CALAP
Chloroethane	DoD-ELAP,ADEC,CALAP,WADOE
Chloroethane	DoD-ELAP,ADEC,NELAP,CALAP
Chloroethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
Chloroethane	DoD-ELAP,ADEC,NELAP,WADOE

Analytical Resources, Inc.



Seattle Public Utilities	Project: South Park Landfill -Parametrix Water 2020	
700-5th Ave, Ste 4900, Box 34018	Project Number: 553-155-067	Reported:
Seattle WA, 98124-4018	Project Manager: Jeff Neuner	25-Nov-2020 15:28
Trichlorofluoromethane	DoD-ELAP,ADEC,CALAP,WADOE	
Trichlorofluoromethane	DoD-ELAP,ADEC,NELAP,CALAP	
Trichlorofluoromethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
Trichlorofluoromethane	DoD-ELAP,ADEC,NELAP,WADOE	
Acrolein	DoD-ELAP,NELAP,WADOE	
Acrolein	DoD-ELAP,CALAP,WADOE	
Acrolein	DoD-ELAP,NELAP,CALAP	
Acrolein	DoD-ELAP,NELAP,CALAP,WADOE	
1,1,2-Trichloro-1,2,2-Trifluoroethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
1,1,2-Trichloro-1,2,2-Trifluoroethane	DoD-ELAP,ADEC,NELAP,CALAP	
1,1,2-Trichloro-1,2,2-Trifluoroethane	DoD-ELAP,ADEC,NELAP,WADOE	
1,1,2-Trichloro-1,2,2-Trifluoroethane	DoD-ELAP,ADEC,CALAP,WADOE	
Acetone	DoD-ELAP,ADEC,NELAP,WADOE	
Acetone	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
Acetone	DoD-ELAP,ADEC,CALAP,WADOE	
Acetone	DoD-ELAP,ADEC,NELAP,CALAP	
1,1-Dichloroethene	DoD-ELAP,ADEC,CALAP,WADOE	
1,1-Dichloroethene	DoD-ELAP,ADEC,NELAP,CALAP	
1,1-Dichloroethene	DoD-ELAP,ADEC,NELAP,WADOE	
1,1-Dichloroethene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
lodomethane	DoD-ELAP,CALAP,WADOE	
lodomethane	DoD-ELAP,NELAP,CALAP	
lodomethane	DoD-ELAP,NELAP,CALAP,WADOE	
lodomethane	DoD-ELAP,NELAP,WADOE	
Methylene Chloride	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
Methylene Chloride	DoD-ELAP,ADEC,NELAP,WADOE	
Methylene Chloride	DoD-ELAP,ADEC,CALAP,WADOE	
Methylene Chloride	DoD-ELAP,ADEC,NELAP,CALAP	
Acrylonitrile	DoD-ELAP,CALAP,WADOE	
Acrylonitrile	DoD-ELAP,NELAP,CALAP,WADOE	
Acrylonitrile	DoD-ELAP,NELAP,WADOE	
Acrylonitrile	DoD-ELAP,NELAP,CALAP	
Carbon Disulfide	DoD-ELAP,NELAP,CALAP	
Carbon Disulfide	DoD-ELAP,CALAP,WADOE	
Carbon Disulfide	DoD-ELAP,NELAP,WADOE	
Carbon Disulfide	DoD-ELAP,NELAP,CALAP,WADOE	
trans-1,2-Dichloroethene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
trans-1,2-Dichloroethene	DoD-ELAP,ADEC,NELAP,CALAP	
trans-1,2-Dichloroethene	DoD-ELAP,ADEC,CALAP,WADOE	

Analytical Resources, Inc.



Seattle Public Utilities	Project: South Park Landfill -Parametrix Water 2020	
700-5th Ave, Ste 4900, Box 34018	Project Number: 553-155-067	Reported:
Seattle WA, 98124-4018	Project Manager: Jeff Neuner	25-Nov-2020 15:28
trans-1,2-Dichloroethene	DoD-ELAP,ADEC,NELAP,WADOE	
Vinyl Acetate	DoD-ELAP,NELAP,WADOE	
Vinyl Acetate	DoD-ELAP,CALAP,WADOE	
Vinyl Acetate	DoD-ELAP,NELAP,CALAP	
Vinyl Acetate	DoD-ELAP,NELAP,CALAP,WADOE	
1,1-Dichloroethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
1,1-Dichloroethane	DoD-ELAP,ADEC,NELAP,WADOE	
1,1-Dichloroethane	DoD-ELAP,ADEC,CALAP,WADOE	
1,1-Dichloroethane	DoD-ELAP,ADEC,NELAP,CALAP	
2-Butanone	DoD-ELAP,CALAP,WADOE	
2-Butanone	DoD-ELAP,NELAP,WADOE	
2-Butanone	DoD-ELAP,NELAP,CALAP	
2-Butanone	DoD-ELAP,NELAP,CALAP,WADOE	
2,2-Dichloropropane	DoD-ELAP,ADEC,NELAP,CALAP	
2,2-Dichloropropane	DoD-ELAP,ADEC,CALAP,WADOE	
2,2-Dichloropropane	DoD-ELAP,ADEC,NELAP,WADOE	
2,2-Dichloropropane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
cis-1,2-Dichloroethene	DoD-ELAP,ADEC,NELAP,WADOE	
cis-1,2-Dichloroethene	DoD-ELAP,ADEC,CALAP,WADOE	
cis-1,2-Dichloroethene	DoD-ELAP,ADEC,NELAP,CALAP	
cis-1,2-Dichloroethene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
Chloroform	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
Chloroform	DoD-ELAP,ADEC,CALAP,WADOE	
Chloroform	DoD-ELAP,ADEC,NELAP,WADOE	
Chloroform	DoD-ELAP,ADEC,NELAP,CALAP	
Bromochloromethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
Bromochloromethane	DoD-ELAP,ADEC,NELAP,CALAP	
Bromochloromethane	DoD-ELAP,ADEC,CALAP,WADOE	
Bromochloromethane	DoD-ELAP,ADEC,NELAP,WADOE	
1,1,1-Trichloroethane	DoD-ELAP,ADEC,CALAP,WADOE	
1,1,1-Trichloroethane	DoD-ELAP,ADEC,NELAP,CALAP	
1,1,1-Trichloroethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
1,1,1-Trichloroethane	DoD-ELAP,ADEC,NELAP,WADOE	
1,1-Dichloropropene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
1,1-Dichloropropene	DoD-ELAP,ADEC,NELAP,CALAP	
1,1-Dichloropropene	DoD-ELAP,ADEC,CALAP,WADOE	
1,1-Dichloropropene	DoD-ELAP,ADEC,NELAP,WADOE	
Carbon tetrachloride	DoD-ELAP,ADEC,NELAP,CALAP	
Carbon tetrachloride	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	

Analytical Resources, Inc.

Analytical Resources, Incorporated Analytical Chemists and Consultants

## **Analytical Report**

Seattle Public Utilities	Project: South Park Landfill -Parametrix Water 2020				
700-5th Ave, Ste 4900, Box 34018	Project Number: 553-155-067	Reported:			
Seattle WA, 98124-4018	Project Manager: Jeff Neuner	25-Nov-2020 15:28			
Carbon tetrachloride	DoD-ELAP,ADEC,CALAP,WADOE				
Carbon tetrachloride	DoD-ELAP,ADEC,NELAP,WADOE				
1,2-Dichloroethane	DoD-ELAP,ADEC,NELAP,CALAP				
1,2-Dichloroethane	DoD-ELAP,ADEC,CALAP,WADOE				
1,2-Dichloroethane	DoD-ELAP,ADEC,NELAP,WADOE				
1,2-Dichloroethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE				
Benzene	DoD-ELAP,ADEC,NELAP,CALAP				
Benzene	DoD-ELAP,ADEC,NELAP,WADOE				
Benzene	DoD-ELAP,ADEC,CALAP,WADOE				
Benzene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE				
Trichloroethene	DoD-ELAP,ADEC,NELAP,WADOE				
Trichloroethene	DoD-ELAP,ADEC,CALAP,WADOE				
Trichloroethene	DoD-ELAP,ADEC,NELAP,CALAP				
Trichloroethene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE				
1,2-Dichloropropane	DoD-ELAP,ADEC,NELAP,WADOE				
1,2-Dichloropropane	DoD-ELAP,ADEC,CALAP,WADOE				
1,2-Dichloropropane	DoD-ELAP,ADEC,NELAP,CALAP				
1,2-Dichloropropane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE				
Bromodichloromethane	DoD-ELAP,ADEC,NELAP,WADOE				
Bromodichloromethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE				
Bromodichloromethane	DoD-ELAP,ADEC,NELAP,CALAP				
Bromodichloromethane	DoD-ELAP,ADEC,CALAP,WADOE				
Dibromomethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE				
Dibromomethane	DoD-ELAP,ADEC,NELAP,WADOE				
Dibromomethane	DoD-ELAP,ADEC,CALAP,WADOE				
Dibromomethane	DoD-ELAP,ADEC,NELAP,CALAP				
2-Chloroethyl vinyl ether	DoD-ELAP,ADEC,NELAP,CALAP,WADOE				
2-Chloroethyl vinyl ether	DoD-ELAP,ADEC,NELAP,CALAP				
2-Chloroethyl vinyl ether	DoD-ELAP,ADEC,CALAP,WADOE				
2-Chloroethyl vinyl ether	DoD-ELAP,ADEC,NELAP,WADOE				
4-Methyl-2-Pentanone	DoD-ELAP,NELAP,CALAP,WADOE				
4-Methyl-2-Pentanone	DoD-ELAP,CALAP,WADOE				
4-Methyl-2-Pentanone	DoD-ELAP,NELAP,WADOE				
4-Methyl-2-Pentanone	DoD-ELAP,NELAP,CALAP				
cis-1,3-Dichloropropene	DoD-ELAP,ADEC,NELAP,WADOE				
cis-1,3-Dichloropropene	DoD-ELAP,ADEC,CALAP,WADOE				
cis-1,3-Dichloropropene	DoD-ELAP,ADEC,NELAP,CALAP				
cis-1,3-Dichloropropene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE				
Toluene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE				

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Seattle Public Utilities	Project: South Park Landfill -Parametrix Water 2020	
700-5th Ave, Ste 4900, Box 34018	Project Number: 553-155-067	Reported:
Seattle WA, 98124-4018	Project Manager: Jeff Neuner	25-Nov-2020 15:28
Toluene	DoD-ELAP,ADEC,NELAP,CALAP	
Toluene	DoD-ELAP, ADEC, CALAP, WADOE	
Toluene	DoD-ELAP, ADEC, NELAP, WADOE	
trans-1,3-Dichloropropene	DoD-ELAP, ADEC, CALAP, WADOE	
trans-1,3-Dichloropropene	DoD-ELAP, ADEC, NELAP, CALAP	
trans-1,3-Dichloropropene	DoD-ELAP, ADEC, NELAP, WADOE	
trans-1,3-Dichloropropene	DoD-ELAP, ADEC, NELAP, CALAP, WADOE	
2-Hexanone	DoD-ELAP,NELAP,WADOE	
2-Hexanone	DoD-ELAP,NELAP,CALAP,WADOE	
2-Hexanone	DoD-ELAP,CALAP,WADOE	
2-Hexanone	DoD-ELAP,NELAP,CALAP	
1,1,2-Trichloroethane	DoD-ELAP, ADEC, NELAP, CALAP, WADOE	
1,1,2-Trichloroethane	DoD-ELAP, ADEC, NELAP, CALAP	
1,1,2-Trichloroethane	DoD-ELAP, ADEC, CALAP, WADOE	
1,1,2-Trichloroethane	DoD-ELAP, ADEC, NELAP, WADOE	
1,3-Dichloropropane	DoD-ELAP,ADEC,CALAP,WADOE	
1,3-Dichloropropane	DoD-ELAP, ADEC, NELAP, WADOE	
1,3-Dichloropropane	DoD-ELAP, ADEC, NELAP, CALAP	
1,3-Dichloropropane	DoD-ELAP, ADEC, NELAP, CALAP, WADOE	
Tetrachloroethene	DoD-ELAP, ADEC, NELAP, CALAP, WADOE	
Tetrachloroethene	DoD-ELAP, ADEC, CALAP, WADOE	
Tetrachloroethene	DoD-ELAP, ADEC, NELAP, CALAP	
Tetrachloroethene	DoD-ELAP, ADEC, NELAP, WADOE	
Dibromochloromethane	DoD-ELAP, ADEC, NELAP, CALAP, WADOE	
Dibromochloromethane	DoD-ELAP, ADEC, NELAP, CALAP	
Dibromochloromethane	DoD-ELAP, ADEC, CALAP, WADOE	
Dibromochloromethane	DoD-ELAP, ADEC, NELAP, WADOE	
1,2-Dibromoethane	DoD-ELAP,NELAP,WADOE	
1,2-Dibromoethane	DoD-ELAP,CALAP,WADOE	
1,2-Dibromoethane	DoD-ELAP,NELAP,CALAP	
1,2-Dibromoethane	DoD-ELAP,NELAP,CALAP,WADOE	
Chlorobenzene	DoD-ELAP,ADEC,CALAP,WADOE	
Chlorobenzene	DoD-ELAP, ADEC, NELAP, WADOE	
Chlorobenzene	DoD-ELAP, ADEC, NELAP, CALAP	
Chlorobenzene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
Ethylbenzene	DoD-ELAP,ADEC,NELAP,WADOE	
Ethylbenzene	DoD-ELAP,ADEC,CALAP,WADOE	
Ethylbenzene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
Ethylbenzene	DoD-ELAP, ADEC, NELAP, CALAP	

Analytical Resources, Inc.



## **Analytical Report**

Seattle Public Utilities	Project: South Park Landfill -Parametrix Water 2020	
700-5th Ave, Ste 4900, Box 34018	Project Number: 553-155-067	Reported:
Seattle WA, 98124-4018	Project Manager: Jeff Neuner	25-Nov-2020 15:28
1,1,1,2-Tetrachloroethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
1,1,1,2-Tetrachloroethane	DoD-ELAP,ADEC,NELAP,WADOE	
1,1,1,2-Tetrachloroethane	DoD-ELAP,ADEC,NELAP,CALAP	
1,1,1,2-Tetrachloroethane	DoD-ELAP,ADEC,CALAP,WADOE	
m,p-Xylene	DoD-ELAP,ADEC,NELAP,WADOE	
m,p-Xylene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
m,p-Xylene	DoD-ELAP,ADEC,NELAP,CALAP	
m,p-Xylene	DoD-ELAP,ADEC,CALAP,WADOE	
o-Xylene	DoD-ELAP,ADEC,NELAP,WADOE	
o-Xylene	DoD-ELAP,ADEC,NELAP,CALAP	
o-Xylene	DoD-ELAP,ADEC,CALAP,WADOE	
o-Xylene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
Styrene	DoD-ELAP,NELAP,WADOE	
Styrene	DoD-ELAP,CALAP,WADOE	
Styrene	DoD-ELAP,NELAP,CALAP	
Styrene	DoD-ELAP,NELAP,CALAP,WADOE	
Bromoform	DoD-ELAP,CALAP,WADOE	
Bromoform	DoD-ELAP,NELAP,CALAP	
Bromoform	DoD-ELAP,NELAP,CALAP,WADOE	
Bromoform	DoD-ELAP,NELAP,WADOE	
1,1,2,2-Tetrachloroethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
1,1,2,2-Tetrachloroethane	DoD-ELAP,ADEC,CALAP,WADOE	
1,1,2,2-Tetrachloroethane	DoD-ELAP,ADEC,NELAP,CALAP	
1,1,2,2-Tetrachloroethane	DoD-ELAP,ADEC,NELAP,WADOE	
1,2,3-Trichloropropane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
1,2,3-Trichloropropane	DoD-ELAP,ADEC,NELAP,WADOE	
1,2,3-Trichloropropane	DoD-ELAP,ADEC,NELAP,CALAP	
1,2,3-Trichloropropane	DoD-ELAP,ADEC,CALAP,WADOE	
trans-1,4-Dichloro 2-Butene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
trans-1,4-Dichloro 2-Butene	DoD-ELAP,ADEC,NELAP,CALAP	
trans-1,4-Dichloro 2-Butene	DoD-ELAP,ADEC,NELAP,WADOE	
trans-1,4-Dichloro 2-Butene	DoD-ELAP,ADEC,CALAP,WADOE	
n-Propylbenzene	DoD-ELAP,CALAP,WADOE	
n-Propylbenzene	DoD-ELAP,NELAP,WADOE	
n-Propylbenzene	DoD-ELAP,NELAP,CALAP	
n-Propylbenzene	DoD-ELAP,NELAP,CALAP,WADOE	
Bromobenzene	DoD-ELAP,NELAP,WADOE	
Bromobenzene	DoD-ELAP,NELAP,CALAP,WADOE	
Bromobenzene	DoD-ELAP,CALAP,WADOE	

Analytical Resources, Inc.

Analytical Resources, Incorporated Analytical Chemists and Consultants

## **Analytical Report**

Seattle Public Utilities	Project: South Park Landfill -Parametrix Water 2020	0
700-5th Ave, Ste 4900, Box 34018	Project Number: 553-155-067	Reported:
Seattle WA, 98124-4018	Project Manager: Jeff Neuner	25-Nov-2020 15:28
Bromobenzene	DoD-ELAP,NELAP,CALAP	
Isopropyl Benzene	DoD-ELAP,CALAP,WADOE	
Isopropyl Benzene	DoD-ELAP,NELAP,CALAP,WADOE	
Isopropyl Benzene	DoD-ELAP,NELAP,CALAP	
Isopropyl Benzene	DoD-ELAP,NELAP,WADOE	
2-Chlorotoluene	DoD-ELAP,ADEC,NELAP,CALAP	
2-Chlorotoluene	DoD-ELAP,ADEC,NELAP,WADOE	
2-Chlorotoluene	DoD-ELAP,ADEC,CALAP,WADOE	
2-Chlorotoluene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
4-Chlorotoluene	DoD-ELAP,ADEC,NELAP,WADOE	
4-Chlorotoluene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
4-Chlorotoluene	DoD-ELAP,ADEC,NELAP,CALAP	
4-Chlorotoluene	DoD-ELAP,ADEC,CALAP,WADOE	
t-Butylbenzene	DoD-ELAP,CALAP,WADOE	
t-Butylbenzene	DoD-ELAP,NELAP,WADOE	
t-Butylbenzene	DoD-ELAP,NELAP,CALAP,WADOE	
t-Butylbenzene	DoD-ELAP,NELAP,CALAP	
1,3,5-Trimethylbenzene	DoD-ELAP,NELAP,WADOE	
1,3,5-Trimethylbenzene	DoD-ELAP,NELAP,CALAP	
1,3,5-Trimethylbenzene	DoD-ELAP,CALAP,WADOE	
1,3,5-Trimethylbenzene	DoD-ELAP,NELAP,CALAP,WADOE	
1,2,4-Trimethylbenzene	DoD-ELAP,CALAP,WADOE	
1,2,4-Trimethylbenzene	DoD-ELAP,NELAP,CALAP	
1,2,4-Trimethylbenzene	DoD-ELAP,NELAP,CALAP,WADOE	
1,2,4-Trimethylbenzene	DoD-ELAP,NELAP,WADOE	
s-Butylbenzene	DoD-ELAP,CALAP,WADOE	
s-Butylbenzene	DoD-ELAP,NELAP,WADOE	
s-Butylbenzene	DoD-ELAP,NELAP,CALAP	
s-Butylbenzene	DoD-ELAP,NELAP,CALAP,WADOE	
4-Isopropyl Toluene	DoD-ELAP,NELAP,CALAP	
4-Isopropyl Toluene	DoD-ELAP,CALAP,WADOE	
4-Isopropyl Toluene	DoD-ELAP,NELAP,CALAP,WADOE	
4-Isopropyl Toluene	DoD-ELAP,NELAP,WADOE	
1,3-Dichlorobenzene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
1,3-Dichlorobenzene	DoD-ELAP, ADEC, CALAP, WADOE	
1,3-Dichlorobenzene	DoD-ELAP,ADEC,NELAP,WADOE	
1,3-Dichlorobenzene	DoD-ELAP, ADEC, NELAP, CALAP	
1,4-Dichlorobenzene	DoD-ELAP, ADEC, NELAP, CALAP, WADOE	
1,4-Dichlorobenzene	DoD-ELAP, ADEC, CALAP, WADOE	

Analytical Resources, Inc.



Seattle Public Utilities	Project: South Park Landfill -Parametrix Water 2020	
700-5th Ave, Ste 4900, Box 34018	Project Number: 553-155-067	Reported:
Seattle WA, 98124-4018	Project Manager: Jeff Neuner	25-Nov-2020 15:28
1,4-Dichlorobenzene	DoD-ELAP,ADEC,NELAP,CALAP	
1,4-Dichlorobenzene	DoD-ELAP,ADEC,NELAP,WADOE	
n-Butylbenzene	DoD-ELAP,NELAP,CALAP	
n-Butylbenzene	DoD-ELAP,CALAP,WADOE	
n-Butylbenzene	DoD-ELAP,NELAP,CALAP,WADOE	
n-Butylbenzene	DoD-ELAP,NELAP,WADOE	
1,2-Dichlorobenzene	DoD-ELAP,ADEC,CALAP,WADOE	
1,2-Dichlorobenzene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
1,2-Dichlorobenzene	DoD-ELAP,ADEC,NELAP,CALAP	
1,2-Dichlorobenzene	DoD-ELAP,ADEC,NELAP,WADOE	
1,2-Dibromo-3-chloropropane	DoD-ELAP,ADEC,NELAP,WADOE	
1,2-Dibromo-3-chloropropane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
1,2-Dibromo-3-chloropropane	DoD-ELAP,ADEC,CALAP,WADOE	
1,2-Dibromo-3-chloropropane	DoD-ELAP,ADEC,NELAP,CALAP	
1,2,4-Trichlorobenzene	DoD-ELAP,ADEC,CALAP,WADOE	
1,2,4-Trichlorobenzene	DoD-ELAP,ADEC,NELAP,CALAP	
1,2,4-Trichlorobenzene	DoD-ELAP,ADEC,NELAP,WADOE	
1,2,4-Trichlorobenzene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
Hexachloro-1,3-Butadiene	DoD-ELAP,ADEC,NELAP,WADOE	
Hexachloro-1,3-Butadiene	DoD-ELAP,ADEC,CALAP,WADOE	
Hexachloro-1,3-Butadiene	DoD-ELAP,ADEC,NELAP,CALAP	
Hexachloro-1,3-Butadiene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
Naphthalene	DoD-ELAP,ADEC,NELAP,WADOE	
Naphthalene	DoD-ELAP,ADEC,CALAP,WADOE	
Naphthalene	DoD-ELAP,ADEC,NELAP,CALAP	
Naphthalene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
1,2,3-Trichlorobenzene	DoD-ELAP,ADEC,NELAP,WADOE	
1,2,3-Trichlorobenzene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
1,2,3-Trichlorobenzene	DoD-ELAP,ADEC,NELAP,CALAP	
1,2,3-Trichlorobenzene	DoD-ELAP,ADEC,CALAP,WADOE	
Dichlorodifluoromethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
Dichlorodifluoromethane	DoD-ELAP,ADEC,NELAP,CALAP	
Dichlorodifluoromethane	DoD-ELAP,ADEC,CALAP,WADOE	
Dichlorodifluoromethane	DoD-ELAP,ADEC,NELAP,WADOE	
Methyl tert-butyl Ether	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
Methyl tert-butyl Ether	DoD-ELAP,ADEC,NELAP,WADOE	
Methyl tert-butyl Ether	DoD-ELAP,ADEC,CALAP,WADOE	
Methyl tert-butyl Ether	DoD-ELAP,ADEC,NELAP,CALAP	

WADOE

Analytical Resources, Inc.

n-Hexane

## **Analytical Report**

Seattle Public Utilities	Project: South Park Landfill -Parametrix Wat	Project: South Park Landfill -Parametrix Water 2020				
700-5th Ave, Ste 4900, Box 34018	Project Number: 553-155-067	Reported:				
Seattle WA, 98124-4018	Project Manager: Jeff Neuner	25-Nov-2020 15:28				
n-Hexane						
n-Hexane	WADOE					
n-Hexane	WADOE					
2-Pentanone	WADOE					
2-Pentanone						
2-Pentanone	WADOE					
2-Pentanone	WADOE					
EPA 8260D-SIM in Water						
Acrylonitrile	NELAP,CALAP					
Acrylonitrile	NELAP, WADOE					
Acrylonitrile	NELAP, CALAP, WADOE					
Acrylonitrile	CALAP, WADOE					
Vinyl chloride	CALAP, WADOE					
Vinyl chloride	NELAP,CALAP					
Vinyl chloride	NELAP,WADOE					
Vinyl chloride	NELAP, CALAP, WADOE					
1,1-Dichloroethene	NELAP,CALAP,WADOE					
1,1-Dichloroethene	NELAP,WADOE					
1,1-Dichloroethene	CALAP, WADOE					
1,1-Dichloroethene	NELAP,CALAP					
cis-1,2-Dichloroethene	NELAP,CALAP,WADOE					
cis-1,2-Dichloroethene	NELAP,WADOE					
cis-1,2-Dichloroethene	CALAP,WADOE					
cis-1,2-Dichloroethene	NELAP,CALAP					
trans-1,2-Dichloroethene	CALAP,WADOE					
trans-1,2-Dichloroethene	NELAP,CALAP					
trans-1,2-Dichloroethene	NELAP,WADOE					
trans-1,2-Dichloroethene	NELAP,CALAP,WADOE					
Trichloroethene	CALAP,WADOE					
Trichloroethene	NELAP,CALAP					
Trichloroethene	NELAP,CALAP,WADOE					
Trichloroethene	NELAP,WADOE					
Tetrachloroethene	NELAP, CALAP, WADOE					
Tetrachloroethene	NELAP,WADOE					
Tetrachloroethene	CALAP,WADOE					
Tetrachloroethene	NELAP,CALAP					
1,1,2,2-Tetrachloroethane	NELAP,CALAP,WADOE					
1,1,2,2-Tetrachloroethane	NELAP,CALAP					
1,1,2,2-Tetrachloroethane	CALAP, WADOE					

Analytical Resources, Inc.

Analytical Resources, Incorporated Analytical Chemists and Consultants



Saattla Dublia Ut	ilitian	Designet - Courth Doult I a	undfill Donomotriy Waton 20	220				
	1000 D 24010	Project: South Park La	Project: South Park Landfill -Parametrix water 2020					
700-5th Ave, Ste	4900, Box 34018	Project Number: 553-155-067		Reported:				
Seattle WA, 9812	24-4018	Project Manager: Jeff Neuner		25-Nov-2020 15:28				
1,1,2,2-Tetrac	hloroethane	NELAP,WADOE						
1,2-Dichloroet	thane	NELAP,CALAP						
1,2-Dichloroet	thane	CALAP,WADOE						
1,2-Dichloroet	thane	NELAP,WADOE						
1,2-Dichloroet	thane	NELAP, CALAP, WADOE						
Benzene		NELAP, CALAP, WADOE	NELAP,CALAP,WADOE					
Benzene		NELAP,CALAP						
Benzene		CALAP,WADOE						
Benzene		NELAP,WADOE						
Code	Description		Number	Expires				
ADEC	Alaska Dept of Environn	nental Conservation	17-015	01/31/2021				
DoD-ELAP	DoD-Environmental Lab	oratory Accreditation Program	66169	01/01/2021				

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

## **Analytical Report**

Seattle Public Utilities
700-5th Ave, Ste 4900, Box 34018
Seattle WA, 98124-4018

Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 25-Nov-2020 15:28

#### **Notes and Definitions**

- * Flagged value is not within established control limits.
- D The reported value is from a dilution
- HC The natural concentration of the spiked analyte is so much greater than the concentration spiked that an accurate determination of spike recovery is not possible
- J Estimated concentration value detected below the reporting limit.
- Q Indicates a detected analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20% RSD, <20% drift or minimum RRF)
- U This analyte is not detected above the reporting limit (RL) or if noted, not detected above the limit of detection (LOD).
- DET Analyte DETECTED
- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference
- [2C] Indicates this result was quantified on the second column on a dual column analysis.



25 November 2020

Jeff Neuner Seattle Public Utilities 700-5th Ave, Ste 4900, Box 34018 Seattle, WA 98124-4018

RE: South Park Landfill -Parametrix Water 2020

Please find enclosed sample receipt documentation and analytical results for samples from the project referenced above.

Sample analyses were performed according to ARI's Quality Assurance Plan and any provided project specific Quality Assurance Plan. Each analytical section of this report has been approved and reviewed by an analytical peer, the appropriate Laboratory Supervisor or qualified substitute, and a technical reviewer.

Should you have any questions or problems, please feel free to contact us at your convenience.

Associated Work Order(s) 20K0193 Associated SDG ID(s) N/A

-----

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed in the enclose Narrative. ARI, an accredited laboratory, certifies that the report results for which ARI is accredited meets all the requirements of the accrediting body. A list of certified analyses, accreditations, and expiration dates is included in this report.

Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

Analytical Resources, Inc.

Shelly & Fish

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



# Chain of Custody Record & Laboratory Analysis Request

ARI Assigned Number: Turn-around Requested: 2 weeks   Oo Loi 9 3 ARI Client Company: Jeff Neuner, Seattle   Public Utility Phone: 206 684-7693				Date: Page:	<u> </u>	11 /11 of	)		1	]			Analyt Analy 461	<b>ical Resource</b> tical Chemists 1 South 134th Tul	es, Incorporated and Consultants Place, Suite 100	
Client Contact: Lisa Gilbert, Paran	netrix	Phone: 20	6 394-366	37	No. of Coolers:	1	Cooler Temps		3.5					20	6-695-6200 20	06-695-6201 (fax)
Client Project Name: South Park Landfill						T	Analysis	Reques	ted	1	T	1	Notes/	Comments		
Client Project #: 553-1550-067	Samplers:	Trey Parry			Щ	ц,	de	Mn	As**							
Sample ID	Date	Time	Matrix	Number of Containers	cis-1,2-D(	cis-1,2-D( benzene	Vinyl Chlor	Total Fe,	Dissolved					n	**Field-filte	ered
-SPL-GW-MW25-1120			water	8	Constant of the second s			-x	X			-		dia managina mangana mangana m		1
SPL-GW-MW30-1120	11/11	10:10	water	13 NA	x		x	x							MS/MSD	
SPL-GW-MW31-1120	11/11	9:25	water	7	x		X	x								
SPL-GW-MW24-1120	Ma	11:15	water	8	x		X	X	x							
SPL-GW-MW26-1120	11/11	12:10	water	8	x		X	x	x							
SPL-GW-MW08-1120	11/11	13:25	water	8	x		X	x	x							
SPL-GW-MW27-1120	vilu	14:20	water	8	x		x	X	x							
SPL-GW-MW61-1120	nlu	10:10	water	7	x		х	x								
SPL-GW-MW81-1120	Inlin	10:00	water	2		x	x								1	r
Comments/Special Instructions	Relinquished by (Signature)	<u>Vi</u>	2	Received by: (Signature)	Lit	zhi	h	Relinquish (Signature	ned by: e)					Received by (Signature)	1	
	Printed Name:	Pany		Printed Name: Samer	ntha	Costo v	2	Printed Na	ame:					Printed Nam	e:	
	Company:	chax		Company:				Company:	<u>.</u>					Company:		
	Date & Time:	15:0	D	Date & Time:	20	1500	6	Date & Tin	ne:					Date & Time	:	

Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or co-signed agreement between ARI and the Client.

Sample Retention Policy: Unless specified by work order or contract, all water/soil samples submitted to ARI will be discarded or returned, no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer. Sediment samples submitted under PSDDA/PSEP/SMS protocol will be stored frozen for up to one year and then discarded.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 25-Nov-2020 15:41

## ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SPL-GW-MW30-1120	20K0193-01	Water	11-Nov-2020 10:10	11-Nov-2020 15:00
SPL-GW-MW31-1120	20K0193-02	Water	11-Nov-2020 09:25	11-Nov-2020 15:00
SPL-GW-MW24-1120	20K0193-03	Water	11-Nov-2020 11:15	11-Nov-2020 15:00
SPL-GW-MW24-1120	20K0193-04	Water	11-Nov-2020 11:15	11-Nov-2020 15:00
SPL-GW-MW26-1120	20K0193-05	Water	11-Nov-2020 12:10	11-Nov-2020 15:00
SPL-GW-MW26-1120	20K0193-06	Water	11-Nov-2020 12:10	11-Nov-2020 15:00
SPL-GW-MW08-1120	20K0193-07	Water	11-Nov-2020 13:25	11-Nov-2020 15:00
SPL-GW-MW08-1120	20K0193-08	Water	11-Nov-2020 13:25	11-Nov-2020 15:00
SPL-GW-MW27-1120	20K0193-09	Water	11-Nov-2020 14:20	11-Nov-2020 15:00
SPL-GW-MW27-1120	20K0193-10	Water	11-Nov-2020 14:20	11-Nov-2020 15:00
SPL-GW-MW61-1120	20K0193-11	Water	11-Nov-2020 10:10	11-Nov-2020 15:00
SPL-GW-MW81-1120	20K0193-12	Water	11-Nov-2020 10:00	11-Nov-2020 15:00

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 25-Nov-2020 15:41

## Work Order Case Narrative

Client: Seattle Public Utilities Project: South Park Landfill -Parametrix Water 2020 Work Order: 20K0193

#### Sample receipt

Samples as listed on the preceding page were received 11-Nov-2020 15:00 under ARI work order 20K0193. For details regarding sample receipt, please refer to the Cooler Receipt Form.

#### Volatiles - EPA Method SW8260D

The sample(s) were analyzed within the recommended holding times.

Initial and continuing calibrations were within method requirements.

Internal standard areas were within limits.

The surrogate percent recoveries were within control limits.

The method blank(s) were clean at the reporting limits.

The blank spike and blank spike duplicate (BS/LCS and BSD/LCSD) spike recoveries and relative percent difference (RPD) were within control limits.

Sample specific QC was performed in association with sample 20K0193-01 in batch BIK0380. The matrix spike/matrix spike duplicate (MS/MSD) spike recoveries and relative percent difference (RPD) were within advisory control limits.

#### Volatiles - EPA Method 8260D-SIM (Selected Ion Monitoring)

The sample(s) were analyzed within the recommended holding times.

Initial and continuing calibrations were within method requirements.

Internal standard areas were within limits.

The surrogate percent recoveries were within control limits except 1,2-Dichloroethane-d4 in the matrix spike which has been flagged within the QC section of this report.

The method blank(s) were clean at the reporting limits.

The blank spike and blank spike duplicate (BS/LCS and BSD/LCSD) spike recoveries and relative percent difference (RPD) were within control limits.

Analytical Resources, Inc.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 25-Nov-2020 15:41

Sample specific QC was performed in association with sample 20K0193-01. The matrix spike (MS) percent recoveries outside advisory control limits high for both Vinyl Chloride and surrogate 1,2-Dichloroethane-d4 which have been flagged within the QC section of this report. The matrix spike duplicate (MSD) percent recoveries and MS/MSD relative percent difference (RPD) were within advisory control limits.

#### Total Metals - EPA Method 6020A

The sample(s) were digested and analyzed within the recommended holding times.

Initial and continuing calibrations were within method requirements.

The method blank(s) were clean at the reporting limits.

The blank spike (BS/LCS) percent recoveries were within control limits.

The duplicate (DUP) relative percent difference (RPD) were within advisory control limits. The matrix spike/matrix spike duplicate (MS/MSD) percent recoveries and RPD were within advisory control limits.

#### **Dissolved Metals - EPA Method 6020A**

The sample(s) were digested and analyzed within the recommended holding times.

Initial and continuing calibrations were within method requirements.

The method blank(s) were clean at the reporting limits.

The blank spike (BS/LCS) percent recoveries were within control limits.

Analytical Resources, Inc.

Analytical Resources, Incorporated



Printed: 11/11/2020 15:39:49

WORK ORDER

20K0193

Client:	Seattle	Public	Utilities
<b>Client:</b>	Seattle	Public	Utilities

Project Manager: Shelly Fishel

Project: South Park Landfill -Parametrix Water 2020

Project Number: 553-155-067

#### **Preservation Confirmation Container ID Container** Type pН 20K0193-01 A HDPE NM, 500 mL, 1:1 HNO3 42 Pasi 20K0193-01 B VOA Vial, Clear, 40 mL, HCL 20K0193-01 C VOA Vial, Clear, 40 mL, HCL 20K0193-01 D VOA Vial, Clear, 40 mL, HCL 20K0193-01 E VOA Vial, Clear, 40 mL, HCL 20K0193-01 F VOA Vial, Clear, 40 mL, HCL 20K0193-01 G VOA Vial, Clear, 40 mL, HCL 20K0193-01 H VOA Vial, Clear, 40 mL 20K0193-01 I VOA Vial, Clear, 40 mL 20K0193-01 J VOA Vial, Clear, 40 mL 20K0193-01 K VOA Vial, Clear, 40 mL 20K0193-01 L VOA Vial, Clear, 40 mL 20K0193-01 M VOA Vial, Clear, 40 mL Pass 20K0193-02 A HDPE NM, 500 mL, 1:1 HNO3 22 20K0193-02 B VOA Vial, Clear, 40 mL, HCL 20K0193-02 C VOA Vial, Clear, 40 mL, HCL 20K0193-02 D VOA Vial, Clear, 40 mL, HCL 20K0193-02 E VOA Vial, Clear, 40 mL 20K0193-02 F VOA Vial, Clear, 40 mL 20K0193-02 G VOA Vial, Clear, 40 mL 20K0193-03 A HDPE NM, 500 mL, 1:1 HNO3 2 911 20K0193-03 B VOA Vial, Clear, 40 mL, HCL 20K0193-03 C VOA Vial, Clear, 40 mL, HCL 20K0193-03 D VOA Vial, Clear, 40 mL, HCL 20K0193-03 E VOA Vial, Clear, 40 mL 20K0193-03 F VOA Vial, Clear, 40 mL 20K0193-03 G VOA Vial, Clear, 40 mL 20K0193-04 A HDPE NM, 500 mL, 1:1 HNO3 (FF) 67 as 20K0193-05 A HDPE NM, 500 mL, 1:1 HNO3 67 Pas 20K0193-05 B VOA Vial, Clear, 40 mL, HCL 20K0193-05 C VOA Vial, Clear, 40 mL, HCL 20K0193-05 D VOA Vial, Clear, 40 mL, HCL 20K0193-05 E VOA Vial, Clear, 40 mL 20K0193-05 F VOA Vial, Clear, 40 mL 20K0193-05 G VOA Vial, Clear, 40 mL



Printed: 11/11/2020 15:39:49



Analytical Chemists and Consultants

## WORK ORDER

## 20K0193

Client: Seattle Public Utilities		Project Manager: Shelly Fis	hel
Project: South Par	k Landfill -Parametrix Water 2020	Project Number: 553-155-0	67
20K0193-06 A	HDPE NM, 500 mL, 1:1 HNO3 (FF)	<a></a>	Pa.(1
20K0193-07 A	HDPE NM, 500 mL, 1:1 HNO3	(2	Pall
20K0193-07 B	VOA Vial, Clear, 40 mL, HCL		1407
20K0193-07 C	VOA Vial, Clear, 40 mL, HCL		
20K0193-07 D	VOA Vial, Clear, 40 mL, HCL		
20K0193-07 E	VOA Vial, Clear, 40 mL		
20K0193-07 F	VOA Vial, Clear, 40 mL		
20K0193-07 G	VOA Vial, Clear, 40 mL		
20K0193-08 A	HDPE NM, 500 mL, 1:1 HNO3 (FF)	42	Paul
20K0193-09 A	HDPE NM, 500 mL, 1:1 HNO3	(7	Pasi
20K0193-09 B	VOA Vial, Clear, 40 mL, HCL		
20K0193-09 C	VOA Vial, Clear, 40 mL, HCL		
20K0193-09 D	VOA Vial, Clear, 40 mL, HCL		
20K0193-09 E	VOA Vial, Clear, 40 mL		
20K0193-09 F	VOA Vial, Clear, 40 mL		
20K0193-09 G	VOA Vial, Clear, 40 mL		
20K0193-10 A	HDPE NM, 500 mL, 1:1 HNO3 (FF)	()	Pali
20K0193-11 A	HDPE NM, 500 mL, 1:1 HNO3	<7	Pasi
20K0193-11 B	VOA Vial, Clear, 40 mL, HCL		
20K0193-11 C	VOA Vial, Clear, 40 mL, HCL		
20K0193-11 D	VOA Vial, Clear, 40 mL, HCL		
20K0193-11 E	VOA Vial, Clear, 40 mL		
20K0193-11 F	VOA Vial, Clear, 40 mL		
20K0193-11 G	VOA Vial, Clear, 40 mL		
20K0193-12 A	VOA Vial, Clear, 40 mL, HCL	Dibble	
20K0193-12 B	VOA Vial, Clear, 40 mL, HCL		

1 Preservation Confirmed By

11/11/2020 Date



Analytical Resources, Incorporated Analytical Chemists and Consultants

#### alytical chemists and consultants

# **Cooler Receipt Form**

ARI Client: SPU		Project Name:	h Park Lanc	1611	
COC No(s):	NA	Delivered by: Fed-Ex UPS	Courier Hand Delivere	d Other:	
Assigned ARI Job No: 20	K0193	Tracking No:	$\bigcirc$	(	NA
Preliminary Examination Phase:					
Were intact, properly signed and	dated custody seals attached to	the outside of the cooler?	YE	S	NO
Were custody papers included wit	YE	S	NO		
Were custody papers properly fille	ed out (ink. signed. etc.)		(VE	9	NO
Temperature of Cooler(s) (°C) (re	commended 2.0-6.0 °C for chem	iistry)		.9	NO
Time 1500		3.5			
If cooler temperature is out of con	pliance fill out form 00070F		Temp Gun ID#:	DO0 520	lo
Cooler Accepted by:	SC	Date: 11/11/2070	Time: 1500		
· · · · · · · · · · · · · · · · · · ·	Complete custody forms a	nd attach all shipping docume	ents		
Log-In Phase:		11.3			
Mag a tomporature blank includ	ad in the sector.				0
Was a temperature blank include				YES	NO
vvnat kind of packing material	was used? Bubble Wra	ap Wet Ice Gel Packs Baggies F	oam Block Paper Othe	r:	
Was sufficient ice used (if appro	priate)?		NA	YES	NO
How were bottles sealed in plast	ic bags?	•••••••	Individually	Grouped	Not
Did all bottles arrive in good con	dition (unbroken)?			YES	NO
Were all bottle labels complete a	nd legible?		~~~	YES	NO
Did the number of containers list	ed on COC match with the numb	per of containers received?		YES	NO
Did all bottle labels and tags agr	ee with custody papers?			YES	NO
Were all bottles used correct for	the requested analyses?			YES	NO
Do any of the analyses (bottles)	require preservation? (attach pre	eservation sheet, excluding VOC	s) NA	YES	NO
Were all VOC vials free of air bu	bbles?		NA	YES	NO
Was sufficient amount of sample	sent in each bottle?			VES)	NO
Date VOC Trip Blank was made	at ARI	(anama)	(NA)		
Were the sample(s) split by ARI?	A YES Date/Time:	Equipment:		Split by:	
Samples Logged by:	Date: 11/11/202	20 Time: 1533	Labels checked by: _	Jon	-
	** Notify Project Manager	of discrepancies or concerns	**		
			and the second secon		
Sample ID on Bottle	Sample ID on COC	Sample ID on Bottle	Sample	ID on COC	

Sample ID on Bottle	Sample ID on COC	Sample ID on Bottle	Sample ID on COC
Additional Notes, Discrepancie	s, & Resolutions:		a clast
vials hav b	ubbles marked	a preservat.	an sheet,
1. L. Lo det	emp citas		
ab to der	critic since		
	12/11/2		
3y. $3c$ Da	e: ///// 2020		

Cooler Receipt Form



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 25-Nov-2020 15:41

## SPL-GW-MW30-1120

#### 20K0193-01 (Water)

Volatile Organic Com	pounds						
Method: EPA 8260D					Sa	ampled: 11	/11/2020 10:10
Instrument: NT2 Analys				An	alyzed: 11	/12/2020 15:35	
Sample Preparation:	Preparation Method: EPA 5030C (Purg Preparation Batch: BIK0380 Prepared: 11/12/2020	e and Trap) Sample Size: 1 Final Volume: 1	0 mL 10 mL		E	Extract ID:	20K0193-01 B
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
cis-1,2-Dichloroethene		156-59-2	1	0.20	0.30	ug/L	
Surrogate: 1,2-Dichloroeth	ane-d4			80-129 %	112	%	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 25-Nov-2020 15:41

## SPL-GW-MW30-1120

## 20K0193-01 (Water)

Volatile Organic Con	pounds - SIM						
Method: EPA 8260D-SIN				S	ampled: 11	/11/2020 10:10	
Instrument: NT16 Anal				Ar	nalyzed: 11	/12/2020 18:59	
Sample Preparation:	Preparation Method: EPA 5030C (Purge Preparation Batch: BIK0388 Prepared: 11/12/2020	and Trap) Sample Size: 1 Final Volume:	0 mL 10 mL		E	Extract ID:	20K0193-01 H
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Vinyl chloride		75-01-4	1	20.0	251	ng/L	
Surrogate: 1,2-Dichloroeth	ane-d4			80-129 %	121	%	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 25-Nov-2020 15:41

## SPL-GW-MW30-1120

#### 20K0193-01 (Water)

Metals and Metallic C	Compounds						
Method: EPA 6020A	Method: EPA 6020A				S	ampled: 11/	/11/2020 10:10
Instrument: ICPMS1 Analyst: MCB					Aı	nalyzed: 11/	23/2020 18:03
Sample Preparation:	Preparation Method: REN EPA 600/4-7 Preparation Batch: BIK0644 Prepared: 11/20/2020	9-020 4.1.4 HNO3 matri Sample Size: 2 Final Volume:	x 5 mL 25 mL		Ext	ract ID: 20F	K0193-01 A 01
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Iron		7439-89-6	1	20.0	4700	ug/L	
Manganese		7439-96-5	1	0.500	138	ug/L	

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Seattle Public Utilities	
700-5th Ave, Ste 4900, Box 34018	
Seattle WA, 98124-4018	

Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 25-Nov-2020 15:41

## SPL-GW-MW31-1120

20K0193-02 (Water)

Volatile Organic Com	pounds							
Method: EPA 8260D					Sampled: 11/11/2020 09:25			
Instrument: NT2 Analys	t: PKC				Ar	alyzed: 11	/12/2020 15:56	
Sample Preparation:	Preparation Method: EPA 5030C (Purge Preparation Batch: BIK0380 Prepared: 11/12/2020	and Trap) Sample Size: 10 mL Final Volume: 10 mL			I	Extract ID:	20K0193-02 B	
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes	
cis-1,2-Dichloroethene		156-59-2	1	0.20	ND	ug/L	U	
Surrogate: 1,2-Dichloroethane-d4				80-129 %	112	%		

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 25-Nov-2020 15:41

## SPL-GW-MW31-1120

20K0193-02 (Water)

Volatile Organic Com	pounds - SIM							
Method: EPA 8260D-SIM				Sampled: 11/11/2020 09:25				
Instrument: NT16 Analy	yst: PB				An	alyzed: 11	/12/2020 19:20	
Sample Preparation:	Preparation Method: EPA 5030C (Purge Preparation Batch: BIK0388 Prepared: 11/12/2020	e and Trap) Sample Size: 10 mL Final Volume: 10 mL			Extract ID: 20K0193-02			
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes	
Vinyl chloride		75-01-4	1	20.0	443	ng/L		
Surrogate: 1,2-Dichloroethane-d4				80-129 %	115	%		

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 25-Nov-2020 15:41

## SPL-GW-MW31-1120

20K0193-02 (Water)

Metals and Metallic C	Compounds								
Method: EPA 6020A					Sampled: 11/11/2020 09:25				
Instrument: ICPMS1 An	nalyst: MCB				Ar	nalyzed: 11/	/23/2020 19:32		
Sample Preparation:	Preparation Method: REN EPA 600/4-7 Preparation Batch: BIK0644 Prepared: 11/20/2020	-79-020 4.1.4 HNO3 matrix Sample Size: 25 mL Final Volume: 25 mL			Extract ID: 20K0193-02 A 01				
Analyte	Å	CAS Number	Dilution	Reporting Limit	Result	Units	Notes		
Iron		7439-89-6	5	100	13400	ug/L	D		
Manganese		7439-96-5	5	2.50	517	ug/L	D		

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Seattle Public Utilities	
700-5th Ave, Ste 4900, Box 34018	
Seattle WA, 98124-4018	

Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 25-Nov-2020 15:41

## SPL-GW-MW24-1120

20K0193-03 (Water)

Volatile Organic Com	pounds							
Method: EPA 8260D					Sampled: 11/11/2020 11:15			
Instrument: NT2 Analys	st: PKC				An	alyzed: 11	/12/2020 16:17	
Sample Preparation:	Preparation Method: EPA 5030C (Purge Preparation Batch: BIK0380 Prepared: 11/12/2020	and Trap) Sample Size: 10 mL Final Volume: 10 mL			E	Extract ID:	20K0193-03 B	
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes	
cis-1,2-Dichloroethene		156-59-2	1	0.20	ND	ug/L	U	
Surrogate: 1,2-Dichloroethane-d4				80-129 %	112	%		

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.


Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 25-Nov-2020 15:41

## SPL-GW-MW24-1120

20K0193-03 (Water)

Volatile Organic Com	pounds - SIM							
Method: EPA 8260D-SIN	1				Sampled: 11/11/2020 11:1			
Instrument: NT16 Analy	Instrument: NT16 Analyst: PB				Analyzed: 11/13/2020 13:24			
Sample Preparation:	Preparation Method: EPA 5030C (Purge Preparation Batch: BIK0414 Prepared: 11/13/2020	rge and Trap) Extract ID Sample Size: 10 mL Final Volume: 10 mL			Extract ID:	20K0193-03 F		
Analyte		CAS Number	Dilution	Reporting Limit	Sampled: 11/1   Analyzed: 11/1   Extract ID: 2   ng   nit Result   Units   .0 43.8   % 120	Notes		
Vinyl chloride		75-01-4	1	20.0	43.8	ng/L		
Surrogate: 1,2-Dichloroethe	ane-d4			80-129 %	120	%		

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 25-Nov-2020 15:41

#### SPL-GW-MW24-1120

20K0193-03 (Water)

Metals and Metallic C	Compounds							
Method: EPA 6020A	ethod: EPA 6020A				Sampled: 11/11/2020 11:15			
Instrument: ICPMS2 Ar	nalyst: MCB	Analyzed: 11/24/20				24/2020 19:37		
Sample Preparation:	Preparation Method: REN EPA 600/4-7 Preparation Batch: BIK0644 Prepared: 11/20/2020	9-020 4.1.4 HNO3 matri Sample Size: 2 Final Volume:	x 5 mL 25 mL		Extract ID: 20K0193-03 A 0			
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes	
Iron		7439-89-6	10	200	27000	ug/L	D	
Manganese		7439-96-5	10	5.00	1560	ug/L	D	

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 25-Nov-2020 15:41

#### SPL-GW-MW24-1120

20K0193-04 (Water)

Metals and Metallic C	Compounds (dissolved)						
Method: EPA 6020A UC	T-KED				S	ampled: 11/	/11/2020 11:15
Instrument: ICPMS1 Ar	Analyst: MCB Analyzed:					nalyzed: 11/	23/2020 18:58
Sample Preparation:	Preparation Method: REN EPA 600/4- Preparation Batch: BIK0643 Prepared: 11/20/2020	-79-020 4.1.4 HNO3 matri Sample Size: 2 Final Volume: 1	x 5 mL 25 mL		Extract ID: 20K0193-		
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Arsenic, Dissolved		7440-38-2	1	0.200	ND	ug/L	U

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Seattle Public Utilities
700-5th Ave, Ste 4900, Box 34018
Seattle WA, 98124-4018

Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 25-Nov-2020 15:41

#### SPL-GW-MW26-1120

20K0193-05 (Water)

Volatile Organic Com	pounds							
Method: EPA 8260D	ethod: EPA 8260D				Sampled: 11/11/2020 12:10			
Instrument: NT2 Analyst: PKC					Analyzed: 11/12/2020 16:37			
Sample Preparation:	Preparation Method: EPA 5030C (Purge Preparation Batch: BIK0380 Prepared: 11/12/2020	and Trap) Sample Size: 10 Final Volume: 1	0 mL 0 mL		E	Extract ID: 20K0193-05 B		
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes	
cis-1,2-Dichloroethene		156-59-2	1	0.20	0.31	ug/L		
Surrogate: 1,2-Dichloroethe	ane-d4			80-129 %	110	%		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 25-Nov-2020 15:41

## SPL-GW-MW26-1120

20K0193-05 (Water)

Volatile Organic Com	pounds - SIM							
Method: EPA 8260D-SIN	1				Sampled: 11/11/2020 12:			
Instrument: NT16 Analy	vst: PB				Analyzed: 11/12/2020 20:01			
Sample Preparation:	and Trap) Extrac Sample Size: 10 mL Final Volume: 10 mL			Extract ID:	20K0193-05 E			
Analyte		CAS Number	Dilution	Reporting Limit	Sampled: 11/1   Analyzed: 11/1   Extract ID: 2   ing   mit Result   0.0 37.0   0% 127	Notes		
Vinyl chloride		75-01-4	1	20.0	37.0	ng/L		
Surrogate: 1,2-Dichloroeth	ane-d4			80-129 %	127	%		

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 25-Nov-2020 15:41

## SPL-GW-MW26-1120

20K0193-05 (Water)

Metals and Metallic C	Compounds								
Method: EPA 6020A	lethod: EPA 6020A				Sampled: 11/11/2020 12:10				
Instrument: ICPMS1 An	alyst: MCB				Ar	nalyzed: 11	/23/2020 19:19		
Sample Preparation:	Preparation Method: REN EPA 600/4-7	79-020 4.1.4 HNO3 matri	x		Ext	ract ID: 201	K0193-05 A 01		
	Preparation Batch: BIK0644	Sample Size: 2	5 mL						
	Prepared: 11/20/2020	Final Volume:	25 mL						
				Reporting					
Analyte		CAS Number	Dilution	Limit	Result	Units	Notes		
Iron		7439-89-6	1	20.0	8130	ug/L			
Manganese		7439-96-5	1	0.500	110	ug/L			

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 25-Nov-2020 15:41

#### SPL-GW-MW26-1120

20K0193-06 (Water)

#### Metals and Metallic Compounds (dissolved)

Method: EPA 6020A UCT	ſ-KED				Sampled: 11/11/2020 12:10				
Instrument: ICPMS1 An	alyst: MCB				Ar	nalyzed: 11/2	23/2020 19:02		
Sample Preparation:	Preparation Method: REN EPA 600/4- Preparation Batch: BIK0643	79-020 4.1.4 HNO3 matrix Sample Size: 25	s mL		Extract ID: 20K0193-06 A				
	Prepared: 11/20/2020	Final Volume: 2	5 mL						
				Reporting	D I	<b>TT</b> .			
Analyte		CAS Number	Dilution	Limit	Result	Units	Notes		
Arsenic, Dissolved		7440-38-2	1	0.200	0.865	ug/L			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Seattle Public Utilities
700-5th Ave, Ste 4900, Box 34018
Seattle WA, 98124-4018

Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 25-Nov-2020 15:41

#### SPL-GW-MW08-1120

20K0193-07 (Water)

Volatile Organic Com	pounds							
Method: EPA 8260D	ethod: EPA 8260D				Sampled: 11/11/2020 13:25			
Instrument: NT2 Analys	Instrument: NT2 Analyst: PKC				Sampled: 11/11/2020 13:25 Analyzed: 11/12/2020 16:57 Extract ID: 20K0193-07 B Result Units Notes			
Sample Preparation:	Preparation Method: EPA 5030C (Purge Preparation Batch: BIK0380 Prepared: 11/12/2020	and Trap) Sample Size: 10 Final Volume: 1	0 mL 0 mL		Extract ID: 20K0193-07			
Analyte		CAS Number	Dilution	Reporting Limit	Sampled: 11/11   Analyzed: 11/12   Extract ID: 20   g   t   Result Units   0 ND ug/L   6 115 %	Notes		
cis-1,2-Dichloroethene		156-59-2	1	0.20	ND	ug/L	U	
Surrogate: 1,2-Dichloroethe	une-d4			80-129 %	115	%		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 25-Nov-2020 15:41

## SPL-GW-MW08-1120

20K0193-07 (Water)

Volatile Organic Com	pounds - SIM							
Method: EPA 8260D-SIN	1				Sampled: 11/11/2020 13:25 Analyzed: 11/12/2020 20:22			
Instrument: NT16 Analy	yst: PB							
Sample Preparation:	Preparation Method: EPA 5030C (Purg Preparation Batch: BIK0388 Prepared: 11/12/2020	0 mL 10 mL		E	Extract ID:	20K0193-07 E		
Analyte		CAS Number	Dilution	Reporting Limit	Sampled: 11/1 Analyzed: 11/1 Extract ID: 20 Result Units 83.6 ng/L 120 %	Notes		
Vinyl chloride		75-01-4	1	20.0	83.6	ng/L		
Surrogate: 1,2-Dichloroethe	ane-d4			80-129 %	120	%		

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 25-Nov-2020 15:41

#### SPL-GW-MW08-1120

20K0193-07 (Water)

Metals and Metallic C	Compounds							
Method: EPA 6020A	ethod: EPA 6020A Sampled: strument: ICPMS2 Analyst: MCB Analyzed:				Sampled: 11/11/2020 13:25			
Instrument: ICPMS2 An					nalyzed: 11/	1/24/2020 19:42		
Sample Preparation:	Preparation Method: REN EPA 600/4-7	79-020 4.1.4 HNO3 matri	х		Ext	ract ID: 20k	K0193-07 A 01	
	Preparation Batch: BIK0644	Sample Size: 2	5 mL					
	Prepared: 11/20/2020	Final Volume:	25 mL					
				Reporting				
Analyte		CAS Number	Dilution	Limit	Result	Units	Notes	
Iron		7439-89-6	10	200	17400	ug/L	D	
Manganese		7439-96-5	10	5.00	1170	ug/L	D	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 25-Nov-2020 15:41

#### SPL-GW-MW08-1120

20K0193-08 (Water)

#### Metals and Metallic Compounds (dissolved) Method: EPA 6020A UCT-KED Sampled: 11/11/2020 13:25 Instrument: ICPMS1 Analyst: MCB Analyzed: 11/23/2020 19:06 Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix Extract ID: 20K0193-08 A 01 Sample Preparation: Preparation Batch: BIK0643 Sample Size: 25 mL Prepared: 11/20/2020 Final Volume: 25 mL Reporting Limit Analyte CAS Number Dilution Result Units Notes Arsenic, Dissolved 0.200 ND 7440-38-2 1 ug/L U

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Seattle Public Utilities
700-5th Ave, Ste 4900, Box 34018
Seattle WA, 98124-4018

Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 25-Nov-2020 15:41

#### SPL-GW-MW27-1120

20K0193-09 (Water)

Volatile Organic Com	pounds						
Method: EPA 8260D					S	ampled: 11	/11/2020 14:20
Instrument: NT2 Analys	st: PKC				Ar	nalyzed: 11	/12/2020 17:18
Sample Preparation:	e and Trap) Sample Size: 10 Final Volume: 1	0 mL 0 mL		I	Extract ID:	20K0193-09 B	
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
cis-1,2-Dichloroethene	156-59-2	1	0.20	ND	ug/L	U	
Surrogate: 1,2-Dichloroethe			80-129 %	111	%		

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 25-Nov-2020 15:41

## SPL-GW-MW27-1120

20K0193-09 (Water)

Volatile Organic Com	pounds - SIM						
Method: EPA 8260D-SIN	1				Sa	ampled: 11	/11/2020 14:20
Instrument: NT16 Analy	yst: PB			An	nalyzed: 11	/12/2020 20:43	
Sample Preparation:	e and Trap) Sample Size: 1 Final Volume: 1	0 mL 10 mL		Ε	Extract ID:	20K0193-09 E	
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Vinyl chloride	75-01-4	1	20.0	26.7	ng/L		
Surrogate: 1,2-Dichloroethe	ane-d4			80-129 %	119	%	

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 25-Nov-2020 15:41

# SPL-GW-MW27-1120

#### 20K0193-09 (Water)

Metals and Metallic C	Compounds							
Method: EPA 6020A				S	ampled: 11	/11/2020 14:20		
Instrument: ICPMS1 An	alyst: MCB		Analyzed: 11/23/2020 19					
Sample Preparation:	Preparation Method: REN EPA 600/4-	79-020 4.1.4 HNO3 matrix		Ext	ract ID: 201	K0193-09 A 01		
	Preparation Batch: BIK0644	Sample Size: 25 mL						
	Prepared: 11/20/2020	Final Volume: 25 mL						
			Reporting					
Analyte		CAS Number Dilution	Limit	Result	Units	Notes		
Iron		7439-89-6 1	20.0	15000	ug/L			
Instrument: ICPMS2 An	alyst: MCB			Aı	nalyzed: 11	/24/2020 19:32		
Sample Preparation:	Preparation Method: REN EPA 600/4-7	79-020 4.1.4 HNO3 matrix		Ext	ract ID: 201	K0193-09 A 01		
	Preparation Batch: BIK0644	Sample Size: 25 mL						
	Prepared: 11/20/2020	Final Volume: 25 mL						
			Reporting					
Analyte		CAS Number Dilution	Limit	Result	Units	Notes		
Manganese		7439-96-5 5	2.50	572	ug/L	D		



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 25-Nov-2020 15:41

Notes

## SPL-GW-MW27-1120

20K0193-10 (Water)

#### Metals and Metallic Compounds (dissolved) Method: EPA 6020A UCT-KED Sampled: 11/11/2020 14:20 Instrument: ICPMS2 Analyst: MCB Analyzed: 11/24/2020 18:32 Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix Extract ID: 20K0193-10 A 01 Sample Preparation: Preparation Batch: BIK0643 Sample Size: 25 mL Prepared: 11/20/2020 Final Volume: 25 mL Reporting Limit Analyte CAS Number Dilution Result Units Arsenic, Dissolved 0.200 7440-38-2 1 8.34 ug/L

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 25-Nov-2020 15:41

# SPL-GW-MW61-1120

#### 20K0193-11 (Water)

Volatile Organic Com	pounds						
Method: EPA 8260D					Sa	ampled: 11	/11/2020 10:10
Instrument: NT2 Analys	st: PKC			An	alyzed: 11	/12/2020 17:39	
Sample Preparation:	e and Trap) Sample Size: 1 Final Volume: 1	0 mL 10 mL		E	Extract ID:	20K0193-11 B	
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
cis-1,2-Dichloroethene	156-59-2	1	0.20	0.31	ug/L		
Surrogate: 1,2-Dichloroeth			80-129 %	114	%		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 25-Nov-2020 15:41

# SPL-GW-MW61-1120

#### 20K0193-11 (Water)

Volatile Organic Com	pounds - SIM						
Method: EPA 8260D-SIN	1			Sa	ampled: 11	/11/2020 10:10	
Instrument: NT16 Analy	yst: PB			An	alyzed: 11	/12/2020 21:03	
Sample Preparation:	e and Trap) Sample Size: 1 Final Volume: 1	0 mL 10 mL		Ι	Extract ID:	20K0193-11 E	
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Vinyl chloride		75-01-4	1	20.0	252	ng/L	
Surrogate: 1,2-Dichloroethe			80-129 %	120	%		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 25-Nov-2020 15:41

# SPL-GW-MW61-1120

#### 20K0193-11 (Water)

Metals and Metallic C	Compounds						
Method: EPA 6020A			S	ampled: 11	/11/2020 10:10		
Instrument: ICPMS1 An	alyst: MCB				Aı	nalyzed: 11	/23/2020 19:55
Sample Preparation:	Preparation Method: REN EPA 600/4-7	79-020 4.1.4 HNO3 matri	x		Ext	ract ID: 201	K0193-11 A 01
	Preparation Batch: BIK0644	Sample Size: 2	5 mL				
	Prepared: 11/20/2020	Final Volume:	25 mL				
				Reporting			
Analyte		CAS Number	Dilution	Limit	Result	Units	Notes
Iron		7439-89-6	1	20.0	4430	ug/L	
Manganese		1	0.500	132	ug/L		

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 25-Nov-2020 15:41

# SPL-GW-MW81-1120

#### 20K0193-12 (Water)

Volatile Organic Com	pounds						
Method: EPA 8260D					Sa	ampled: 11	/11/2020 10:00
Instrument: NT2 Analys	st: PKC				An	alyzed: 11	/12/2020 18:00
Sample Preparation:	Preparation Method: EPA 5030C (Purg	e and Trap)			E	Extract ID:	20K0193-12 B
	Preparation Batch: BIK0380	Sample Size: 10	) mL				
	Prepared: 11/12/2020	Final Volume: 1	0 mL				
				Reporting			
Analyte		CAS Number	Dilution	Limit	Result	Units	Notes
cis-1,2-Dichloroethene		156-59-2	1	0.20	ND	ug/L	U
Benzene		71-43-2	1	0.20	ND	ug/L	U
Surrogate: 1,2-Dichloroeth	ane-d4			80-129 %	111	%	
Surrogate: Toluene-d8				80-120 %	94.3	%	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 25-Nov-2020 15:41

# SPL-GW-MW81-1120

20K0193-12 (Water)

Volatile Organic Com	pounds - SIM						
Method: EPA 8260D-SIN	1				Sa	ampled: 11	/11/2020 10:00
Instrument: NT16 Analy	yst: PB			An	alyzed: 11	/12/2020 15:32	
Sample Preparation:	e and Trap) Sample Size: 1 Final Volume: 1	0 mL 10 mL		E	Extract ID:	20K0193-12 A	
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Vinyl chloride	75-01-4	1	20.0	ND	ng/L	U	
Surrogate: 1,2-Dichloroethe	ane-d4			80-129 %	110	%	

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 25-Nov-2020 15:41

#### **Volatile Organic Compounds - Quality Control**

#### Batch BIK0380 - EPA 5030C (Purge and Trap)

Instrument: NT2 Analyst: PKC

		Reporting		Spike	Source		%REC		RPD	
QC Sample/Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Blank (BIK0380-BLK2)			Prep	ared: 12-Nov	v-2020 A	nalyzed: 12-	Nov-2020 1	1:48		
cis-1,2-Dichloroethene	ND	0.20	ug/L							U
Benzene	ND	0.20	ug/L							U
Surrogate: 1,2-Dichloroethane-d4	4.89		ug/L	5.00		97.8	80-129			
Surrogate: Toluene-d8	4.75		ug/L	5.00		95.0	80-120			
LCS (BIK0380-BS2)			Prep	ared: 12-Nov	v-2020 A	nalyzed: 12-	Nov-2020 1	0:38		
cis-1,2-Dichloroethene	10.4	0.20	ug/L	10.0		104	80-121			
Benzene	10.7	0.20	ug/L	10.0		107	80-120			
Surrogate: 1,2-Dichloroethane-d4	4.51		ug/L	5.00		90.2	80-129			
Surrogate: Toluene-d8	5.01		ug/L	5.00		100	80-120			
LCS Dup (BIK0380-BSD2)			Prep	ared: 12-Nov	v-2020 A	nalyzed: 12-	Nov-2020 1	0:58		
cis-1,2-Dichloroethene	10.1	0.20	ug/L	10.0		101	80-121	2.53	30	
Benzene	10.4	0.20	ug/L	10.0		104	80-120	2.76	30	
Surrogate: 1,2-Dichloroethane-d4	4.58		ug/L	5.00		91.7	80-129			
Surrogate: Toluene-d8	5.03		ug/L	5.00		101	80-120			
Matrix Spike (BIK0380-MS1)	Source:	20K0193-01	Prep	ared: 12-Nov	v-2020 A	nalyzed: 12-	Nov-2020 1	9:02		
cis-1,2-Dichloroethene	8.57	0.20	ug/L	10.0	0.30	82.6	80-121			
Benzene	8.91	0.20	ug/L	10.0	ND	89.1	80-120			
Surrogate: 1,2-Dichloroethane-d4	4.94		ug/L	5.00	5.60	98.7	80-129			
Surrogate: Toluene-d8	5.05		ug/L	5.00		101	80-120			
Recovery limits for target analytes in MS/MSD 0	QC samples are advisor	y only.								
Matrix Spike Dup (BIK0380-MSD1)	Source:	20K0193-01	Prep	ared: 12-Nov	v-2020 A	nalyzed: 12-	Nov-2020 1	9:23		
cis-1 2-Dichloroethene	9.05	0.20	ug/I	10.0	0.30	87.5	80-121	5.46	30	

Matrix Spike Dup (Dikosoo-MSD1)	Source. Zonoi	5-01	Trepare	a. 12 1101 .	2020 11	141920a. 12 1	101 2020 1	.25		
cis-1,2-Dichloroethene	9.05	0.20	ug/L	10.0	0.30	87.5	80-121	5.46	30	
Benzene	9.26	0.20	ug/L	10.0	ND	92.6	80-120	3.82	30	
Surrogate: 1,2-Dichloroethane-d4	4.80		ug/L	5.00	5.60	95.9	80-129			
Surrogate: Toluene-d8	5.02		ug/L	5.00		100	80-120			

Recovery limits for target analytes in MS/MSD QC samples are advisory only.

Analytical Resources, Inc.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 25-Nov-2020 15:41

#### Volatile Organic Compounds - SIM - Quality Control

#### Batch BIK0388 - EPA 5030C (Purge and Trap)

Instrument: NT16 Analyst: PB

Vinyl chloride

Surrogate: 1,2-Dichloroethane-d4

QC Sample/Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Blank (BIK0388-BLK1)			Prepa	ared: 12-Nov	v-2020 A	nalyzed: 12	-Nov-2020	14:15		
Vinyl chloride	ND	20.0	ng/L							U
Surrogate: 1,2-Dichloroethane-d4	5300		ng/L	5000		106	80-129			
LCS (BIK0388-BS1)			Prepa	ared: 12-Nov	v-2020 A	nalyzed: 12	-Nov-2020	13:06		
Vinyl chloride	2310	20.0	ng/L	2000		115	76-120			
Surrogate: 1,2-Dichloroethane-d4	5330		ng/L	5000		107	80-129			
LCS Dup (BIK0388-BSD1)			Prepa	ared: 12-Nov	v-2020 A	nalyzed: 12	-Nov-2020	13:42		
Vinyl chloride	2380	20.0	ng/L	2000		119	76-120	2.96	30	
Surrogate: 1,2-Dichloroethane-d4	5310		ng/L	5000		106	80-129			
Matrix Spike (BIK0388-MS2)	Source	: 20K0193-01	Prepa	ared: 12-Nov	v-2020 A	nalyzed: 12	-Nov-2020 2	22:48		
Vinyl chloride	3120	20.0	ng/L	2000	251	143	76-120			*
Surrogate: 1,2-Dichloroethane-d4	6880		ng/L	5000	6030	138	80-129			*
Recovery limits for target analytes in MS/MSD (	QC samples are adviso	ory only.								
Matrix Spike Dup (BIK0388-MSD2)	Source	: 20K0193-01	Prepa	ared: 12-Nov	v-2020 A	nalyzed: 12	-Nov-2020 2	23:09		

20.0

ng/L

ng/L

2000

5000

251

6030

115

118

76-120

80-129

20.20

30

Recovery limits for target analytes in MS/MSD QC samples are advisory only.

2550

5920

Analytical Resources, Inc.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 25-Nov-2020 15:41

#### Volatile Organic Compounds - SIM - Quality Control

#### Batch BIK0414 - EPA 5030C (Purge and Trap)

Instrument: NT16 Analyst: PB

QC Sample/Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Blank (BIK0414-BLK1)			Prep	ared: 13-Nov	v-2020 An	alyzed: 13-	Nov-2020 1	1:46		
Vinyl chloride	ND	20.0	ng/L							U
Surrogate: 1,2-Dichloroethane-d4	5510		ng/L	5000		110	80-129			
LCS (BIK0414-BS1)			Prep	ared: 13-Nov	v-2020 An	alyzed: 13-	Nov-2020 1	1:06		
Vinyl chloride	2340	20.0	ng/L	2000		117	76-120			
Surrogate: 1,2-Dichloroethane-d4	5550		ng/L	5000		111	80-129			
LCS Dup (BIK0414-BSD1)			Prep	ared: 13-Nov	v-2020 An	alyzed: 13-	Nov-2020 1	2:07		
Vinyl chloride	2360	20.0	ng/L	2000		118	76-120	0.73	30	
Surrogate: 1,2-Dichloroethane-d4	5840		ng/L	5000		117	80-129			

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 25-Nov-2020 15:41

#### Metals and Metallic Compounds - Quality Control

#### Batch BIK0644 - REN EPA 600/4-79-020 4.1.4 HNO3 matrix

Instrument: ICPMS1 Analyst: MCB

			Reporting		Spike	Source		%REC		RPD	
QC Sample/Analyte	Isotope	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Blank (BIK0644-BLK2)				Prepa	ared: 20-No	v-2020 An	alyzed: 23-	Nov-2020 1	16:34		
Iron	54	ND	20.0	ug/L							U
Iron	57	ND	20.0	ug/L							U
Manganese	55	ND	0.500	ug/L							U
LCS (BIK0644-BS2)				Prepa	ared: 20-No	v-2020 An	alyzed: 23-	Nov-2020 1	16:39		
Iron	54	4790	20.0	ug/L	5000		95.9	80-120			
Iron	57	4830	20.0	ug/L	5000		96.6	80-120			
Manganese	55	25.8	0.500	ug/L	25.0		103	80-120			
Duplicate (BIK0644-DUP2	2)	Source	: 20K0193-01	Prepa	ared: 20-No	v-2020 An	alyzed: 23-	Nov-2020 1	18:09		
Iron	54	4770	20.0	ug/L		4700			1.34	20	
Manganese	55	139	0.500	ug/L		138			0.73	20	
Matrix Spike (BIK0644-M	IS2)	Source	: 20K0193-01	Prepa	ared: 20-No	v-2020 An	alyzed: 23-	Nov-2020 1	18:14		
Iron	54	8500	20.0	ug/L	5000	4700	75.9	75-125			
Manganese	55	153	0.500	ug/L	25.0	138	58.8	75-125			HC
Recovery limits for target analy	ytes in MS/MSD QC	samples are adviso	ry only.								
Matrix Spike Dup (BIK06	44-MSD2)	Source	: 20K0193-01	Prepa	ared: 20-No	v-2020 An	alyzed: 23-	Nov-2020 1	18:21		
Iron	54	8560	20.0	ug/L	5000	4700	77.1	75-125	0.73	20	

ug/L

25.0

138

68.7

0.500

Recovery limits for target analytes in MS/MSD QC samples are advisory only.

55

155

Analytical Resources, Inc.

Manganese

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

75-125

1.61

20

HC



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 25-Nov-2020 15:41

#### Metals and Metallic Compounds (dissolved) - Quality Control

#### Batch BIK0643 - REN EPA 600/4-79-020 4.1.4 HNO3 matrix

Instrument: ICPMS1 Analyst: MCB

QC Sample/Analyte	Isotope	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Blank (BIK0643-BLK1)				Prepa	ared: 20-Nov	v-2020 An	alyzed: 20-	Nov-2020 1	6:53		
Arsenic, Dissolved	75a	ND	0.200	ug/L							U
LCS (BIK0643-BS1)				Prepa	ared: 20-Nov	v-2020 An	alyzed: 20-	Nov-2020 1	6:57		
Arsenic, Dissolved	75a	26.1	0.200	ug/L	25.0		104	80-120			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 25-Nov-2020 15:41

# Certified Analyses included in this Report

Analyte	Certifications
EPA 6020A in Water	
Iron-54	NELAP,WADOE,DoD-ELAP
Iron-54	NELAP,WADOE,DoD-ELAP
Iron-54	NELAP,DoD-ELAP
Iron-54	WADOE,DoD-ELAP
Iron-57	NELAP,WADOE,DoD-ELAP
Iron-57	NELAP,DoD-ELAP
Iron-57	WADOE,DoD-ELAP
Iron-57	NELAP,WADOE,DoD-ELAP
Manganese-55	NELAP,WADOE,DoD-ELAP
Manganese-55	NELAP,DoD-ELAP
Manganese-55	WADOE,DoD-ELAP
Manganese-55	NELAP,WADOE,DoD-ELAP
EPA 6020A UCT-KED in Water	
Arsenic-75a	WADOE,DoD-ELAP,ADEC
Arsenic-75a	NELAP,WADOE,DoD-ELAP,ADEC
Arsenic-75a	NELAP,DoD-ELAP,ADEC
Arsenic-75a	NELAP,WADOE,DoD-ELAP,ADEC
EPA 8260D in Water	
Chloromethane	DoD-ELAP,ADEC,NELAP,WADOE
Chloromethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
Chloromethane	DoD-ELAP,ADEC,CALAP,WADOE
Chloromethane	DoD-ELAP,ADEC,NELAP,CALAP
Vinyl Chloride	DoD-ELAP,ADEC,CALAP,WADOE
Vinyl Chloride	DoD-ELAP,ADEC,NELAP,CALAP
Vinyl Chloride	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
Vinyl Chloride	DoD-ELAP,ADEC,NELAP,WADOE
Bromomethane	DoD-ELAP,ADEC,NELAP,WADOE
Bromomethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
Bromomethane	DoD-ELAP,ADEC,CALAP,WADOE
Bromomethane	DoD-ELAP,ADEC,NELAP,CALAP
Chloroethane	DoD-ELAP,ADEC,CALAP,WADOE
Chloroethane	DoD-ELAP,ADEC,NELAP,CALAP
Chloroethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
Chloroethane	DoD-ELAP,ADEC,NELAP,WADOE

Analytical Resources, Inc.



Seattle Public Utilities	Project: South Park Landfill -Parametrix Water 2020	
700-5th Ave, Ste 4900, Box 34018	Project Number: 553-155-067	Reported:
Seattle WA, 98124-4018	Project Manager: Jeff Neuner	25-Nov-2020 15:41
Trichlorofluoromethane	DoD-ELAP,ADEC,CALAP,WADOE	
Trichlorofluoromethane	DoD-ELAP,ADEC,NELAP,CALAP	
Trichlorofluoromethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
Trichlorofluoromethane	DoD-ELAP,ADEC,NELAP,WADOE	
Acrolein	DoD-ELAP,NELAP,WADOE	
Acrolein	DoD-ELAP,CALAP,WADOE	
Acrolein	DoD-ELAP,NELAP,CALAP	
Acrolein	DoD-ELAP,NELAP,CALAP,WADOE	
1,1,2-Trichloro-1,2,2-Trifluoroethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
1,1,2-Trichloro-1,2,2-Trifluoroethane	DoD-ELAP,ADEC,NELAP,CALAP	
1,1,2-Trichloro-1,2,2-Trifluoroethane	DoD-ELAP,ADEC,NELAP,WADOE	
1,1,2-Trichloro-1,2,2-Trifluoroethane	DoD-ELAP,ADEC,CALAP,WADOE	
Acetone	DoD-ELAP,ADEC,NELAP,WADOE	
Acetone	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
Acetone	DoD-ELAP,ADEC,CALAP,WADOE	
Acetone	DoD-ELAP,ADEC,NELAP,CALAP	
1,1-Dichloroethene	DoD-ELAP,ADEC,CALAP,WADOE	
1,1-Dichloroethene	DoD-ELAP,ADEC,NELAP,CALAP	
1,1-Dichloroethene	DoD-ELAP,ADEC,NELAP,WADOE	
1,1-Dichloroethene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
lodomethane	DoD-ELAP,CALAP,WADOE	
lodomethane	DoD-ELAP,NELAP,CALAP	
lodomethane	DoD-ELAP,NELAP,CALAP,WADOE	
lodomethane	DoD-ELAP,NELAP,WADOE	
Methylene Chloride	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
Methylene Chloride	DoD-ELAP,ADEC,NELAP,WADOE	
Methylene Chloride	DoD-ELAP,ADEC,CALAP,WADOE	
Methylene Chloride	DoD-ELAP,ADEC,NELAP,CALAP	
Acrylonitrile	DoD-ELAP,CALAP,WADOE	
Acrylonitrile	DoD-ELAP,NELAP,CALAP,WADOE	
Acrylonitrile	DoD-ELAP,NELAP,WADOE	
Acrylonitrile	DoD-ELAP,NELAP,CALAP	
Carbon Disulfide	DoD-ELAP,NELAP,CALAP	
Carbon Disulfide	DoD-ELAP,CALAP,WADOE	
Carbon Disulfide	DoD-ELAP,NELAP,WADOE	
Carbon Disulfide	DoD-ELAP,NELAP,CALAP,WADOE	
trans-1,2-Dichloroethene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
trans-1,2-Dichloroethene	DoD-ELAP,ADEC,NELAP,CALAP	
trans-1,2-Dichloroethene	DoD-ELAP, ADEC, CALAP, WADOE	

Analytical Resources, Inc.



Seattle Public Utilities	Project: South Park Landfill -Parametrix Water 2020	
700-5th Ave, Ste 4900, Box 34018	Project Number: 553-155-067	Reported:
Seattle WA, 98124-4018	Project Manager: Jeff Neuner	25-Nov-2020 15:41
trans-1,2-Dichloroethene	DoD-ELAP,ADEC,NELAP,WADOE	
Vinyl Acetate	DoD-ELAP,NELAP,WADOE	
Vinyl Acetate	DoD-ELAP,CALAP,WADOE	
Vinyl Acetate	DoD-ELAP,NELAP,CALAP	
Vinyl Acetate	DoD-ELAP,NELAP,CALAP,WADOE	
1,1-Dichloroethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
1,1-Dichloroethane	DoD-ELAP,ADEC,NELAP,WADOE	
1,1-Dichloroethane	DoD-ELAP,ADEC,CALAP,WADOE	
1,1-Dichloroethane	DoD-ELAP,ADEC,NELAP,CALAP	
2-Butanone	DoD-ELAP,CALAP,WADOE	
2-Butanone	DoD-ELAP,NELAP,WADOE	
2-Butanone	DoD-ELAP,NELAP,CALAP	
2-Butanone	DoD-ELAP,NELAP,CALAP,WADOE	
2,2-Dichloropropane	DoD-ELAP,ADEC,NELAP,CALAP	
2,2-Dichloropropane	DoD-ELAP,ADEC,CALAP,WADOE	
2,2-Dichloropropane	DoD-ELAP,ADEC,NELAP,WADOE	
2,2-Dichloropropane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
cis-1,2-Dichloroethene	DoD-ELAP,ADEC,NELAP,WADOE	
cis-1,2-Dichloroethene	DoD-ELAP,ADEC,CALAP,WADOE	
cis-1,2-Dichloroethene	DoD-ELAP,ADEC,NELAP,CALAP	
cis-1,2-Dichloroethene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
Chloroform	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
Chloroform	DoD-ELAP,ADEC,CALAP,WADOE	
Chloroform	DoD-ELAP,ADEC,NELAP,WADOE	
Chloroform	DoD-ELAP,ADEC,NELAP,CALAP	
Bromochloromethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
Bromochloromethane	DoD-ELAP,ADEC,NELAP,CALAP	
Bromochloromethane	DoD-ELAP,ADEC,CALAP,WADOE	
Bromochloromethane	DoD-ELAP,ADEC,NELAP,WADOE	
1,1,1-Trichloroethane	DoD-ELAP,ADEC,CALAP,WADOE	
1,1,1-Trichloroethane	DoD-ELAP,ADEC,NELAP,CALAP	
1,1,1-Trichloroethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
1,1,1-Trichloroethane	DoD-ELAP,ADEC,NELAP,WADOE	
1,1-Dichloropropene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
1,1-Dichloropropene	DoD-ELAP,ADEC,NELAP,CALAP	
1,1-Dichloropropene	DoD-ELAP,ADEC,CALAP,WADOE	
1,1-Dichloropropene	DoD-ELAP,ADEC,NELAP,WADOE	
Carbon tetrachloride	DoD-ELAP,ADEC,NELAP,CALAP	
Carbon tetrachloride	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	

Analytical Resources, Inc.

Analytical Resources, Incorporated Analytical Chemists and Consultants

# **Analytical Report**

Seattle Public Utilities	Project: South Park Landfill -Parametrix Water 2020	
700-5th Ave, Ste 4900, Box 34018	Project Number: 553-155-067	Reported:
Seattle WA, 98124-4018	Project Manager: Jeff Neuner	25-Nov-2020 15:41
Carbon tetrachloride	DoD-ELAP,ADEC,CALAP,WADOE	
Carbon tetrachloride	DoD-ELAP,ADEC,NELAP,WADOE	
1,2-Dichloroethane	DoD-ELAP,ADEC,NELAP,CALAP	
1,2-Dichloroethane	DoD-ELAP,ADEC,CALAP,WADOE	
1,2-Dichloroethane	DoD-ELAP,ADEC,NELAP,WADOE	
1,2-Dichloroethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
Benzene	DoD-ELAP,ADEC,NELAP,CALAP	
Benzene	DoD-ELAP,ADEC,NELAP,WADOE	
Benzene	DoD-ELAP,ADEC,CALAP,WADOE	
Benzene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
Trichloroethene	DoD-ELAP,ADEC,NELAP,WADOE	
Trichloroethene	DoD-ELAP,ADEC,CALAP,WADOE	
Trichloroethene	DoD-ELAP,ADEC,NELAP,CALAP	
Trichloroethene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
1,2-Dichloropropane	DoD-ELAP,ADEC,NELAP,WADOE	
1,2-Dichloropropane	DoD-ELAP,ADEC,CALAP,WADOE	
1,2-Dichloropropane	DoD-ELAP,ADEC,NELAP,CALAP	
1,2-Dichloropropane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
Bromodichloromethane	DoD-ELAP,ADEC,NELAP,WADOE	
Bromodichloromethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
Bromodichloromethane	DoD-ELAP,ADEC,NELAP,CALAP	
Bromodichloromethane	DoD-ELAP,ADEC,CALAP,WADOE	
Dibromomethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
Dibromomethane	DoD-ELAP,ADEC,NELAP,WADOE	
Dibromomethane	DoD-ELAP,ADEC,CALAP,WADOE	
Dibromomethane	DoD-ELAP,ADEC,NELAP,CALAP	
2-Chloroethyl vinyl ether	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
2-Chloroethyl vinyl ether	DoD-ELAP,ADEC,NELAP,CALAP	
2-Chloroethyl vinyl ether	DoD-ELAP,ADEC,CALAP,WADOE	
2-Chloroethyl vinyl ether	DoD-ELAP,ADEC,NELAP,WADOE	
4-Methyl-2-Pentanone	DoD-ELAP,NELAP,CALAP,WADOE	
4-Methyl-2-Pentanone	DoD-ELAP,CALAP,WADOE	
4-Methyl-2-Pentanone	DoD-ELAP,NELAP,WADOE	
4-Methyl-2-Pentanone	DoD-ELAP,NELAP,CALAP	
cis-1,3-Dichloropropene	DoD-ELAP,ADEC,NELAP,WADOE	
cis-1,3-Dichloropropene	DoD-ELAP,ADEC,CALAP,WADOE	
cis-1,3-Dichloropropene	DoD-ELAP,ADEC,NELAP,CALAP	
cis-1,3-Dichloropropene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
Toluene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Seattle Public Utilities	Project: South Park Landfill -Parametrix Water 2020	
700-5th Ave, Ste 4900, Box 34018	Project Number: 553-155-067	Reported:
Seattle WA, 98124-4018	Project Manager: Jeff Neuner	25-Nov-2020 15:41
Toluene	DoD-ELAP,ADEC,NELAP,CALAP	
Toluene	DoD-ELAP, ADEC, CALAP, WADOE	
Toluene	DoD-ELAP, ADEC, NELAP, WADOE	
trans-1,3-Dichloropropene	DoD-ELAP, ADEC, CALAP, WADOE	
trans-1,3-Dichloropropene	DoD-ELAP, ADEC, NELAP, CALAP	
trans-1,3-Dichloropropene	DoD-ELAP, ADEC, NELAP, WADOE	
trans-1,3-Dichloropropene	DoD-ELAP, ADEC, NELAP, CALAP, WADOE	
2-Hexanone	DoD-ELAP,NELAP,WADOE	
2-Hexanone	DoD-ELAP,NELAP,CALAP,WADOE	
2-Hexanone	DoD-ELAP,CALAP,WADOE	
2-Hexanone	DoD-ELAP,NELAP,CALAP	
1,1,2-Trichloroethane	DoD-ELAP, ADEC, NELAP, CALAP, WADOE	
1,1,2-Trichloroethane	DoD-ELAP, ADEC, NELAP, CALAP	
1,1,2-Trichloroethane	DoD-ELAP, ADEC, CALAP, WADOE	
1,1,2-Trichloroethane	DoD-ELAP, ADEC, NELAP, WADOE	
1,3-Dichloropropane	DoD-ELAP, ADEC, CALAP, WADOE	
1,3-Dichloropropane	DoD-ELAP, ADEC, NELAP, WADOE	
1,3-Dichloropropane	DoD-ELAP, ADEC, NELAP, CALAP	
1,3-Dichloropropane	DoD-ELAP, ADEC, NELAP, CALAP, WADOE	
Tetrachloroethene	DoD-ELAP, ADEC, NELAP, CALAP, WADOE	
Tetrachloroethene	DoD-ELAP, ADEC, CALAP, WADOE	
Tetrachloroethene	DoD-ELAP, ADEC, NELAP, CALAP	
Tetrachloroethene	DoD-ELAP, ADEC, NELAP, WADOE	
Dibromochloromethane	DoD-ELAP, ADEC, NELAP, CALAP, WADOE	
Dibromochloromethane	DoD-ELAP, ADEC, NELAP, CALAP	
Dibromochloromethane	DoD-ELAP, ADEC, CALAP, WADOE	
Dibromochloromethane	DoD-ELAP, ADEC, NELAP, WADOE	
1,2-Dibromoethane	DoD-ELAP,NELAP,WADOE	
1,2-Dibromoethane	DoD-ELAP,CALAP,WADOE	
1,2-Dibromoethane	DoD-ELAP,NELAP,CALAP	
1,2-Dibromoethane	DoD-ELAP,NELAP,CALAP,WADOE	
Chlorobenzene	DoD-ELAP, ADEC, CALAP, WADOE	
Chlorobenzene	DoD-ELAP, ADEC, NELAP, WADOE	
Chlorobenzene	DoD-ELAP, ADEC, NELAP, CALAP	
Chlorobenzene	DoD-ELAP, ADEC, NELAP, CALAP, WADOE	
Ethylbenzene	DoD-ELAP,ADEC,NELAP,WADOE	
Ethylbenzene	DoD-ELAP,ADEC,CALAP,WADOE	
Ethylbenzene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
Ethylbenzene	DoD-ELAP, ADEC, NELAP, CALAP	

Analytical Resources, Inc.



# **Analytical Report**

Seattle Public Utilities	Project: South Park Landfill -Parametrix Water 2020	
700-5th Ave, Ste 4900, Box 34018	Project Number: 553-155-067	Reported:
Seattle WA, 98124-4018	Project Manager: Jeff Neuner	25-Nov-2020 15:41
1,1,1,2-Tetrachloroethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
1,1,1,2-Tetrachloroethane	DoD-ELAP,ADEC,NELAP,WADOE	
1,1,1,2-Tetrachloroethane	DoD-ELAP,ADEC,NELAP,CALAP	
1,1,1,2-Tetrachloroethane	DoD-ELAP,ADEC,CALAP,WADOE	
m,p-Xylene	DoD-ELAP,ADEC,NELAP,WADOE	
m,p-Xylene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
m,p-Xylene	DoD-ELAP,ADEC,NELAP,CALAP	
m,p-Xylene	DoD-ELAP,ADEC,CALAP,WADOE	
o-Xylene	DoD-ELAP,ADEC,NELAP,WADOE	
o-Xylene	DoD-ELAP,ADEC,NELAP,CALAP	
o-Xylene	DoD-ELAP,ADEC,CALAP,WADOE	
o-Xylene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
Styrene	DoD-ELAP,NELAP,WADOE	
Styrene	DoD-ELAP,CALAP,WADOE	
Styrene	DoD-ELAP,NELAP,CALAP	
Styrene	DoD-ELAP,NELAP,CALAP,WADOE	
Bromoform	DoD-ELAP,CALAP,WADOE	
Bromoform	DoD-ELAP,NELAP,CALAP	
Bromoform	DoD-ELAP,NELAP,CALAP,WADOE	
Bromoform	DoD-ELAP,NELAP,WADOE	
1,1,2,2-Tetrachloroethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
1,1,2,2-Tetrachloroethane	DoD-ELAP,ADEC,CALAP,WADOE	
1,1,2,2-Tetrachloroethane	DoD-ELAP,ADEC,NELAP,CALAP	
1,1,2,2-Tetrachloroethane	DoD-ELAP,ADEC,NELAP,WADOE	
1,2,3-Trichloropropane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
1,2,3-Trichloropropane	DoD-ELAP,ADEC,NELAP,WADOE	
1,2,3-Trichloropropane	DoD-ELAP,ADEC,NELAP,CALAP	
1,2,3-Trichloropropane	DoD-ELAP,ADEC,CALAP,WADOE	
trans-1,4-Dichloro 2-Butene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
trans-1,4-Dichloro 2-Butene	DoD-ELAP,ADEC,NELAP,CALAP	
trans-1,4-Dichloro 2-Butene	DoD-ELAP,ADEC,NELAP,WADOE	
trans-1,4-Dichloro 2-Butene	DoD-ELAP,ADEC,CALAP,WADOE	
n-Propylbenzene	DoD-ELAP,CALAP,WADOE	
n-Propylbenzene	DoD-ELAP,NELAP,WADOE	
n-Propylbenzene	DoD-ELAP,NELAP,CALAP	
n-Propylbenzene	DoD-ELAP,NELAP,CALAP,WADOE	
Bromobenzene	DoD-ELAP,NELAP,WADOE	
Bromobenzene	DoD-ELAP,NELAP,CALAP,WADOE	
Bromobenzene	DoD-ELAP,CALAP,WADOE	

Analytical Resources, Inc.

Analytical Resources, Incorporated Analytical Chemists and Consultants

# **Analytical Report**

Seattle Public Utilities	Project: South Park Landfill -Parametrix Water 2020	)
700-5th Ave, Ste 4900, Box 34018	Project Number: 553-155-067	Reported:
Seattle WA, 98124-4018	Project Manager: Jeff Neuner	25-Nov-2020 15:41
Bromobenzene	DoD-ELAP,NELAP,CALAP	
Isopropyl Benzene	DoD-ELAP,CALAP,WADOE	
Isopropyl Benzene	DoD-ELAP,NELAP,CALAP,WADOE	
Isopropyl Benzene	DoD-ELAP,NELAP,CALAP	
Isopropyl Benzene	DoD-ELAP,NELAP,WADOE	
2-Chlorotoluene	DoD-ELAP,ADEC,NELAP,CALAP	
2-Chlorotoluene	DoD-ELAP,ADEC,NELAP,WADOE	
2-Chlorotoluene	DoD-ELAP,ADEC,CALAP,WADOE	
2-Chlorotoluene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
4-Chlorotoluene	DoD-ELAP,ADEC,NELAP,WADOE	
4-Chlorotoluene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
4-Chlorotoluene	DoD-ELAP,ADEC,NELAP,CALAP	
4-Chlorotoluene	DoD-ELAP,ADEC,CALAP,WADOE	
t-Butylbenzene	DoD-ELAP,CALAP,WADOE	
t-Butylbenzene	DoD-ELAP,NELAP,WADOE	
t-Butylbenzene	DoD-ELAP,NELAP,CALAP,WADOE	
t-Butylbenzene	DoD-ELAP,NELAP,CALAP	
1,3,5-Trimethylbenzene	DoD-ELAP,NELAP,WADOE	
1,3,5-Trimethylbenzene	DoD-ELAP,NELAP,CALAP	
1,3,5-Trimethylbenzene	DoD-ELAP,CALAP,WADOE	
1,3,5-Trimethylbenzene	DoD-ELAP,NELAP,CALAP,WADOE	
1,2,4-Trimethylbenzene	DoD-ELAP,CALAP,WADOE	
1,2,4-Trimethylbenzene	DoD-ELAP,NELAP,CALAP	
1,2,4-Trimethylbenzene	DoD-ELAP,NELAP,CALAP,WADOE	
1,2,4-Trimethylbenzene	DoD-ELAP,NELAP,WADOE	
s-Butylbenzene	DoD-ELAP,CALAP,WADOE	
s-Butylbenzene	DoD-ELAP,NELAP,WADOE	
s-Butylbenzene	DoD-ELAP,NELAP,CALAP	
s-Butylbenzene	DoD-ELAP,NELAP,CALAP,WADOE	
4-Isopropyl Toluene	DoD-ELAP,NELAP,CALAP	
4-Isopropyl Toluene	DoD-ELAP,CALAP,WADOE	
4-Isopropyl Toluene	DoD-ELAP,NELAP,CALAP,WADOE	
4-Isopropyl Toluene	DoD-ELAP,NELAP,WADOE	
1,3-Dichlorobenzene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
1,3-Dichlorobenzene	DoD-ELAP, ADEC, CALAP, WADOE	
1,3-Dichlorobenzene	DoD-ELAP,ADEC,NELAP,WADOE	
1,3-Dichlorobenzene	DoD-ELAP,ADEC,NELAP,CALAP	
1,4-Dichlorobenzene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
1,4-Dichlorobenzene	DoD-ELAP,ADEC,CALAP,WADOE	

Analytical Resources, Inc.



Seattle Public Utilities	Project: South Park Landfill -Parametrix Water 2020	
700-5th Ave, Ste 4900, Box 34018	Project Number: 553-155-067	Reported:
Seattle WA, 98124-4018	Project Manager: Jeff Neuner	25-Nov-2020 15:41
1,4-Dichlorobenzene	DoD-ELAP,ADEC,NELAP,CALAP	
1,4-Dichlorobenzene	DoD-ELAP,ADEC,NELAP,WADOE	
n-Butylbenzene	DoD-ELAP,NELAP,CALAP	
n-Butylbenzene	DoD-ELAP,CALAP,WADOE	
n-Butylbenzene	DoD-ELAP,NELAP,CALAP,WADOE	
n-Butylbenzene	DoD-ELAP,NELAP,WADOE	
1,2-Dichlorobenzene	DoD-ELAP,ADEC,CALAP,WADOE	
1,2-Dichlorobenzene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
1,2-Dichlorobenzene	DoD-ELAP,ADEC,NELAP,CALAP	
1,2-Dichlorobenzene	DoD-ELAP,ADEC,NELAP,WADOE	
1,2-Dibromo-3-chloropropane	DoD-ELAP,ADEC,NELAP,WADOE	
1,2-Dibromo-3-chloropropane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
1,2-Dibromo-3-chloropropane	DoD-ELAP,ADEC,CALAP,WADOE	
1,2-Dibromo-3-chloropropane	DoD-ELAP,ADEC,NELAP,CALAP	
1,2,4-Trichlorobenzene	DoD-ELAP,ADEC,CALAP,WADOE	
1,2,4-Trichlorobenzene	DoD-ELAP,ADEC,NELAP,CALAP	
1,2,4-Trichlorobenzene	DoD-ELAP,ADEC,NELAP,WADOE	
1,2,4-Trichlorobenzene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
Hexachloro-1,3-Butadiene	DoD-ELAP,ADEC,NELAP,WADOE	
Hexachloro-1,3-Butadiene	DoD-ELAP,ADEC,CALAP,WADOE	
Hexachloro-1,3-Butadiene	DoD-ELAP,ADEC,NELAP,CALAP	
Hexachloro-1,3-Butadiene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
Naphthalene	DoD-ELAP,ADEC,NELAP,WADOE	
Naphthalene	DoD-ELAP,ADEC,CALAP,WADOE	
Naphthalene	DoD-ELAP,ADEC,NELAP,CALAP	
Naphthalene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
1,2,3-Trichlorobenzene	DoD-ELAP,ADEC,NELAP,WADOE	
1,2,3-Trichlorobenzene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
1,2,3-Trichlorobenzene	DoD-ELAP,ADEC,NELAP,CALAP	
1,2,3-Trichlorobenzene	DoD-ELAP,ADEC,CALAP,WADOE	
Dichlorodifluoromethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
Dichlorodifluoromethane	DoD-ELAP,ADEC,NELAP,CALAP	
Dichlorodifluoromethane	DoD-ELAP,ADEC,CALAP,WADOE	
Dichlorodifluoromethane	DoD-ELAP,ADEC,NELAP,WADOE	
Methyl tert-butyl Ether	DoD-ELAP,ADEC,NELAP,CALAP,WADOE	
Methyl tert-butyl Ether	DoD-ELAP,ADEC,NELAP,WADOE	
Methyl tert-butyl Ether	DoD-ELAP,ADEC,CALAP,WADOE	
Methyl tert-butyl Ether	DoD-ELAP,ADEC,NELAP,CALAP	

Analytical Resources, Inc.

n-Hexane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

WADOE

# **Analytical Report**

Seattle Public Utilities	Project: South Park Landfill -Parametrix Wat	er 2020
700-5th Ave, Ste 4900, Box 34018	Project Number: 553-155-067	Reported:
Seattle WA, 98124-4018	Project Manager: Jeff Neuner	25-Nov-2020 15:41
n-Hexane		
n-Hexane	WADOE	
n-Hexane	WADOE	
2-Pentanone	WADOE	
2-Pentanone		
2-Pentanone	WADOE	
2-Pentanone	WADOE	
EPA 8260D-SIM in Water		
Acrylonitrile	NELAP,CALAP	
Acrylonitrile	NELAP,WADOE	
Acrylonitrile	NELAP,CALAP,WADOE	
Acrylonitrile	CALAP,WADOE	
Vinyl chloride	CALAP,WADOE	
Vinyl chloride	NELAP,CALAP	
Vinyl chloride	NELAP,WADOE	
Vinyl chloride	NELAP,CALAP,WADOE	
1,1-Dichloroethene	NELAP,CALAP,WADOE	
1,1-Dichloroethene	NELAP,WADOE	
1,1-Dichloroethene	CALAP,WADOE	
1,1-Dichloroethene	NELAP,CALAP	
cis-1,2-Dichloroethene	NELAP, CALAP, WADOE	
cis-1,2-Dichloroethene	NELAP,WADOE	
cis-1,2-Dichloroethene	CALAP,WADOE	
cis-1,2-Dichloroethene	NELAP,CALAP	
trans-1,2-Dichloroethene	CALAP,WADOE	
trans-1,2-Dichloroethene	NELAP,CALAP	
trans-1,2-Dichloroethene	NELAP,WADOE	
trans-1,2-Dichloroethene	NELAP,CALAP,WADOE	
Trichloroethene	CALAP,WADOE	
Trichloroethene	NELAP,CALAP	
Trichloroethene	NELAP,CALAP,WADOE	
Trichloroethene	NELAP,WADOE	
Tetrachloroethene	NELAP,CALAP,WADOE	
Tetrachloroethene	NELAP,WADOE	
Tetrachloroethene	CALAP,WADOE	
Tetrachloroethene	NELAP,CALAP	
1,1,2,2-Tetrachloroethane	NELAP,CALAP,WADOE	
1,1,2,2-Tetrachloroethane	NELAP,CALAP	
1,1,2,2-Tetrachloroethane	CALAP,WADOE	

Analytical Resources, Inc.

Analytical Resources, Incorporated Analytical Chemists and Consultants



Seattle Public Utilities		Project: South Park La	Project: South Park Landfill -Parametrix Water 2020	
700-5th Ave, Ste 4900, Box 34018		Project Number: 553-155-067	Project Number: 553-155-067	
Seattle WA, 98124-4018		Project Manager: Jeff Neuner		25-Nov-2020 15:41
1,1,2,2-Tetrachloroethane		NELAP,WADOE		
1,2-Dichloroethane		NELAP,CALAP		
1,2-Dichloroethane		CALAP,WADOE		
1,2-Dichloroethane		NELAP,WADOE		
1,2-Dichloroethane		NELAP, CALAP, WADOE		
Benzene		NELAP, CALAP, WADOE		
Benzene		NELAP,CALAP		
Benzene		CALAP,WADOE		
Benzene		NELAP,WADOE		
Code	Description		Number	Expires
ADEC	Alaska Dept of Environmental Conservation		17-015	01/31/2021
DoD-ELAP	DoD-Environmental Laboratory Accreditation Program		66169	01/01/2021

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Seattle Public Utilities
700-5th Ave, Ste 4900, Box 34018
Seattle WA, 98124-4018

Project: South Park Landfill -Parametrix Water 2020 Project Number: 553-155-067 Project Manager: Jeff Neuner

**Reported:** 25-Nov-2020 15:41

#### **Notes and Definitions**

- * Flagged value is not within established control limits.
- D The reported value is from a dilution
- HC The natural concentration of the spiked analyte is so much greater than the concentration spiked that an accurate determination of spike recovery is not possible
- J Estimated concentration value detected below the reporting limit.
- Q Indicates a detected analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20% RSD, <20% drift or minimum RRF)
- U This analyte is not detected above the reporting limit (RL) or if noted, not detected above the limit of detection (LOD).
- DET Analyte DETECTED
- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference
- [2C] Indicates this result was quantified on the second column on a dual column analysis.
## D5

Data Validation Memoranda

## May 2020 Groundwater Sampling Event South Park Landfill Data Validation Report

Prepared for



March 2021

Prepared by Parametrix

## May 2020 Groundwater Sampling Event South Park Landfill Data Validation Report

Prepared for

Seattle Public Utilities 700 Fifth Avenue, Suite 4900 Seattle, WA 98124-4018

Prepared by

**Parametrix** 719 2nd Avenue, Suite 200 Seattle, WA 98104 T. 206.394.3700 F. 1.855.542.6353 www.parametrix.com

March 2021 | 553-1550-067 (03.00)

May 2020 Groundwater Sampling Event South Park Landfill Data Validation Report Seattle Public Utilities



Parametrix. 2021. May 2020 Groundwater Sampling Event South Park Landfill Data Validation Report. Prepared by Parametrix, Seattle, Washington. March 2021.

## TABLE OF CONTENTS

1. PROJECT NARRATIVE	-1
1.1 Overview of Data Validation1	-1
2. DATA VALIDATION REPORT SELECT VOCS BY EPA METHOD 8260C 2	-1
2.1 Data Package Completeness2	-1
2.2 Technical Data Validation2	-1
2.2.1 Cooler Temperature and Preservation2	-1
2.3 Overall Assessment	-1
3. DATA VALIDATION REPORT VINYL CHLORIDE BY EPA METHOD 8260C-SIM	-1
3.1 Data Package Completeness	-1
3.2 Technical Data Validation3	-1
3.2.1 Cooler Temperature and Preservation3	-1
3.3 Overall Assessment	-1
4. DATA VALIDATION REPORT SELECT METALS BY EPA METHOD 6010B	-1
4.1 Data Package Completeness	-1
4.2 Technical Data Validation	-1
4.2.1 Cooler Temperature and Preservation4	-1
4.2.2 Blank Contamination	-1
4.2.3 Matrix Spike4	-2
4.2.4 Laboratory Control Sample and Laboratory Duplicate4	-2
4.2.5 Field Duplicates4	-2
4.3 Overall Assessment	-2
5. REFERENCES	-1
APPENDICES	

- A Data Qualifier Definitions and Criteria Tables
- B Field Duplicate Analysis
- C Qualified Data Summary Table

May 2020 Groundwater Sampling Event South Park Landfill Data Validation Report Seattle Public Utilities

## ACRONYMS AND ABBREVIATIONS

CRQL	Contract Reporting Quantitation Limit
EPA	U.S. Environmental Protection Agency
LCS	Laboratory control standard
LCSD	Laboratory control standard duplicate
MS	Matrix spike
MSD	Matrix spike duplicate
RPD	Relative percent difference
QC	Quality control
VOC	Volatile organic compound

## **1. PROJECT NARRATIVE**

## 1.1 Overview of Data Validation

This report summarizes the results of the Compliance Screening performed on the groundwater and field quality control (QC) sample data for the South Park Landfill May 2020 Groundwater Monitoring Event. A complete list of samples is provided below.

Sample ID	Lab ID	Sample Location	8260C	8260C-SIM	6010A Total Fe, Mn	6010A Dissolved As
SPL-GW-MW12-0520	20E0287-01	MW-12	Х	Х	Х	
SPL-GW-MW12-0520	20E0287-02	MW-12				Х
SPL-GW-MW14-0520	20E0287-03	MW-14	Х	Х	Х	
SPL-GW-MW14-0520	20E0287-04	MW-14				Х
SPL-GW-MW32-0520	20E0321-01	MW-32	Х	Х	Х	
SPL-GW-MW33-0520	20E0321-02	MW-33	Х	Х	Х	
SPL_GW-MW10-0520	20E0321-03	MW-10	Х	Х	Х	
	20E0321-04	MW-25	Х	Х	Х	
SPL-GW-MW30-0520	20E0321-05	MW-30	Х	Х	Х	
SPL-GW-MW31-0520	20E0321-06	MW-31	Х	Х	Х	
SPL-GW-MW61-0520	20E0321-07	MW-27	Х	Х	Х	
SPL-GW-MW81-0520	20E0321-08	TRIP BLANK	Х	Х		
SPL-GW-MW18-0520	20E0321-09	MW-18	Х	Х	Х	
SPL-GW-MW29-0520	20E0321-10	MW-29	Х	Х	Х	
SPL-GW-MW27-0520	20E0321-11	MW-27	Х	Х	Х	
SPL-GW-MW08-0520	20E0321-13	MW-08	Х	Х	Х	
SPL-GW-MW24-0520	20E0321-14	MW-24	Х	Х	Х	
SPL-GW-MW26-0520	20E0321-15	MW-26	Х	Х	Х	
SPL-GW-MW60-0520	20E0321-16	MW-25	Х	Х	Х	
SPL-GW-MW80-0520	20E0321-17	TRIP BLANK	Х	Х		
Trip Blanks	20E0321-19	TRIP BLANK	Х	Х		
SPL-GW-MW32-0520	20E0321-20	MW-32				Х
SPL-GW-MW33-0520	20E0321-21	MW-33				Х
SPL-GW-MW10-0520	20E0321-22	MW-10				Х
SPL-GW-MW25-0520	20E0321-23	MW-25				Х
SPL-GW-MW61-0520	20E0321-24	MW-27				Х
SPL-GW-MW18-0520	20E0321-25	MW-18				Х
SPL-GW-MW08-0520	20E0321-27	MW-08				Х
SPL-GW-MW24-0520	20E0321-28	MW-24				Х
SPL-GW-MW26-0520	20E0321-29	MW-26				Х
SPL-GW-MW60-0520	20E0321-30	MW-25				Х

#### **Project Sample Index**

Groundwater samples were collected between May 26 and May 28, 2020 and submitted to Analytical Resources, Inc. (ARI) located in Tukwila, Washington for chemical analyses. The chemical analyses were performed under ARI Work Orders 20E0287 and 20E0321. The analytical methods include the following:

- Select volatile organic compounds (VOCs)—U.S. Environmental Protection Agency (EPA) Method 8260C
- Vinyl chloride—EPA Method 8260C-SIM
- Select metals (Iron, manganese, and arsenic) EPA Method 6010A

Two field duplicate samples were analyzed. Sample SPL-GW-MW60-0520 is a duplicate of SPL-GW-MW25-0520. Sample SPL-GW-MW61-0520 is a duplicate of SPL-GW-MW27-0520.

Two trip blanks were analyzed (SPL-GW-MW80-0520 and SPL-GW-MW81-0520). An additional trip blank labeled "Trip blank" was also analyzed.

The data were reviewed using guidance and QC criteria documented in the analytical methods, U.S. Environmental Protection Agency (EPA) *National Functional Guidelines for Inorganic Data Review* (EPA 2017a), *National Functional Guidelines for Organic Data Review* (EPA 2017b), EPA *Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use* (EPA 2009), and the *South Park Landfill Operations, Maintenance and Monitoring Plan* (OMMP; Appendix A of the South Park Landfill Cleanup Action Plan [Ecology 2018]).

In accordance with the OMMP, to generate data of sufficient quality, the following approach for groundwater samples will be followed:

- Field and laboratory QC samples (field replicates, trip blanks, and temperature blanks) will be used for assessing data quality.
- Laboratory QA will be implemented and maintained as described in the accredited laboratory's Quality Assurance Plan (ARI 2020a) and Standard Operating Procedures (ARI 2016, 2017, 2020b, 2020c) and in Table 3 (from OMMP and presented in Appendix B).
- Data summary packages will be generated and the documentation provided will be sufficient to perform a Level I data quality review.

The goal in assigning data assessment qualifiers is to assist in proper data interpretation. If values are estimated (J or UJ), data may be used for site evaluation and risk assessment purposes, but reasons for data qualification should be taken into consideration when interpreting sample concentrations. If values are assigned an R, the data are to be rejected and should not be used for any site evaluation purposes. When compounds are analyzed at multiple dilutions, select results will be assigned a Do Not Report (DNR) qualification as a more appropriate result is reported from another dilution. If values have no data qualifier assigned, then the data meet the data quality objectives as stated in the documents and methods referenced above.

The data were evaluated in accordance with EPA guidance (EPA 2002, 2009) at a Stage 2A level. Data qualifier definitions, reasons, and validation criteria are included as Appendix A. Analysis of field duplicates are presented in Appendix B. Qualified data are summarized in Appendix C.

# 2. DATA VALIDATION REPORT SELECT VOCS BY EPA METHOD 8260C

This section documents the review of VOC analytical data for groundwater and field QC samples and the associated laboratory QC samples.

## 2.1 Data Package Completeness

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

## 2.2 Technical Data Validation

The QC requirements that were reviewed are listed below.

Cooler temperature and preservation ¹	Surrogate recoveries
Extraction and analysis holding times	Target analyte list
Blank contamination	Reporting limits and reported results
Laboratory control sample (LCS) and LCS duplicate (LCSD)	Field Duplicate
MS/MSD ³	

#### **QC** Requirements

Notes:

 1   $\,$  Quality control results are discussed below, but no data were qualified.

2 Quality control outliers that impact the reported data were noted. Data qualifiers were changed or issued as discussed below

3 Lab indicated that QC requirements were met but project specific samples were not used in the analysis

Appendix A presents data validation criteria tables for organic compound analysis. QC requirements that were met without exception are not discussed below. QC requirements that required further evaluation and/or had exceptions to the validation criteria are discussed below.

### 2.2.1 Cooler Temperature and Preservation

For ARI Work Order 20E0287, the laboratory noted that the sample cooler temperature (12.9 degrees C) was outside of the laboratory standard of  $\leq$  6°C. For ARI Work Order 20E0321, the laboratory noted that the sample cooler temperatures (3.3, 3.8, and 18.8 degrees C) were outside of the laboratory standard of  $\leq$  6°C. Samples were delivered to the laboratory the same day they were collected from the field. Only approximately 60 minutes elapsed between when the final sample was collected and the coolers were delivered to the laboratory, leaving insufficient time for the cooler temperature to drop within the standard range. It is with professional judgment that no sample results be qualified based on cooler temperature, as the samples were delivered with minimal holding time.

## 2.3 Overall Assessment

As was determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable, as demonstrated by the sample surrogate, LCS, and LCSD percent recovery values. Precision was acceptable, as demonstrated by the LCS/LCSD relative percent difference (RPD).

## **3.** DATA VALIDATION REPORT VINYL CHLORIDE BY EPA METHOD 8260C-SIM

This section documents the review of vinyl chloride analytical data for groundwater and field QC samples and the associated laboratory QC samples.

### 3.1 Data Package Completeness

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

## 3.2 Technical Data Validation

The QC requirements that were reviewed are listed below.

Cooler temperature and preservation ¹	Surrogate recoveries
Extraction and analysis holding times	Target analyte list
Blank contamination	Reporting limits and reported results
LCS and LCSD	Field duplicates
MS/MSD ³	

#### **QC** Requirements

Notes:

¹ Quality control results are discussed below, but no data were qualified.

² Quality control outliers that impact the reported data were noted. Data qualifiers were changed or issued as discussed below

³ Lab indicated that QC requirements were met but project specific samples were not used in the analysis

Appendix A presents data validation criteria tables for organic compound analysis. QC requirements that were met without exception are not discussed below. QC requirements that required further evaluation and/or had exceptions to the validation criteria are discussed below.

### 3.2.1 Cooler Temperature and Preservation

For ARI Work Order 20E0287, the laboratory noted that the sample cooler temperature (12.9 degrees C) was outside of the laboratory standard of  $\leq$  6°C. For ARI Work Order 20E0321, the laboratory noted that the sample cooler temperatures (3.3, 3.8, and 18.8 degrees C) were outside of the laboratory standard of  $\leq$  6°C. Samples were delivered to the laboratory the same day they were collected from the field. Only approximately 60 minutes elapsed between when the final samples were collected and the coolers were delivered to the laboratory, leaving insufficient time for the cooler temperature to drop within the standard range. It is with professional judgment that no sample results be qualified based on cooler temperature, as the samples were delivered with minimal holding time

## 3.3 Overall Assessment

As was determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable, as demonstrated by the sample surrogate, LCS, and LCSD percent recovery values. Precision was acceptable, as demonstrated by the LCS/LCSD RPD.

## 4. DATA VALIDATION REPORT SELECT METALS BY EPA METHOD 6010B

This section documents the review of metals (total iron and manganese, and dissolved arsenic) analytical data for groundwater and field QC samples and the associated laboratory QC samples.

### 4.1 Data Package Completeness

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

## 4.2 Technical Data Validation

The QC requirements that were reviewed are listed below.

Cooler temperature and preservation ¹	Lab Control Sample
Extraction and analysis holding times	Laboratory Duplicate ³
Blank contamination ²	Target analyte list
Matrix Spike (MS) ³	Reporting limits and reported results
	Field duplicates ²

#### **QC** Requirements

Notes:

¹ Quality control results are discussed below, but no data were qualified.

² Quality control outliers that impact the reported data were noted. Data qualifiers were changed or issued as discussed below

³ Lab indicated that QC requirements were met but project specific samples were not used in the analysis for all analytes

Appendix A presents data validation criteria tables for inorganic compound analysis. QC requirements that were met without exception are not discussed below. QC requirements that required further evaluation and/or had exceptions to the validation criteria are discussed below.

### 4.2.1 Cooler Temperature and Preservation

For ARI Work Order 20E0287, the laboratory noted that the sample cooler temperature (12.9 degrees C) was outside of the laboratory standard of of  $\leq$  6°C. For ARI Work Order 20E0321, the laboratory noted that the sample cooler temperatures (3.3, 3.8, and 18.8 degrees C) were outside of the laboratory standard of  $\leq$  6°C. Samples were delivered to the laboratory the same day they were collected from the field. Only approximately 60 minutes elapsed between when the final samples were collected and the coolers were was delivered to the laboratory, leaving insufficient time for the cooler temperatures to drop within the standard range. It is with professional judgment that no sample results be qualified based on cooler temperature, as the samples were delivered with minimal holding time.

### 4.2.2 Blank Contamination

The method blank(s) were clean at the reporting limits except Manganese. Manganese was measured in the method blank at a concentration of 0.617 ug/L. The sample concentrations are all greater than 10 times the reporting limit. In accordance with the criteria shown in Appendix A the "B" qualifiers were

May 2020 Groundwater Sampling Event South Park Landfill Data Validation Report Seattle Public Utilities

removed from manganese results because all results were greater than 10 times the amount measured in the blank.

### 4.2.3 Matrix Spike

Sample specific QC was performed in association with sample 20E0321-05 (MW-30) in batch BIF 0110. The matrix spike percent recovery for Manganese (72.2 percent) was outside control limits (75 to 125 percent) low which is flagged within the QC section of the report. The manganese result for all samples in the batch with results less than four times the spike level (25 mg/L) were qualified "J-" as estimated low.

### 4.2.4 Laboratory Control Sample and Laboratory Duplicate

For the analysis of total iron and manganese in ARI Work Order 20E0287, and for dissolved arsenic in ARI Work Order 20E0321, no sample-specific matrix spike or laboratory duplicates were run. It is with professional judgment that no results be qualified based on missing duplicate analysis, as results for other samples in the batch and for other batches for this event demonstrated adequate precision for this laboratory for this method.

### 4.2.5 Field Duplicates

The RPD between sample SPL-GW-MW27-0520 and its field duplicate SPL-GW-MW61-0520 was greater than the target precision of +/- 20 percent. Therefore, the manganese result for SPL-GW-MW27-0520 was qualified "J" as estimated in accordance with the criteria presented in Appendix A.

## 4.3 Overall Assessment

As was determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable, as demonstrated by MS percent recovery values. Precision was acceptable, as demonstrated by the LCS/laboratory duplicate RPDs, with the except of manganese, as discussed above.

## 5. REFERENCES

- ARI. 2016. Standard Operating Procedure, Metals Analysis Nexlon ICP-MS, SOP 545S, Version 001, Revision Date 2/8/16.
- ARI (Analytical Resources Inc.). 2017. Standard Operating Procedure, Metals Analysis Nexlon ICP-MS with Universal Cell Technology, SOP 543S, Version 003.3, Revision Date 2/23/17.
- ARI. 2020a. Quality Assurance Plan. Revision 17.0. 6/11/2020.
- ARI. 2020b. Standard Operating Procedure, Volatile Organic Analysis SOP 700S, Version 022, Revision Date 2/12/2020.
- ARI. 2020c. Standard Operating Procedure, Volatile Organic Analysis Selected Ion Mass Spectrometry, SOP 703S, Version 13, Revision Date 2/12/2020.
- Ecology (Washington Department of Ecology). 2018. South Park Landfill Final Cleanup Action Plan. March.
- EPA (U.S. Environmental Protection Agency). 2002. Guidance on Environmental Data Verification and Data Validation. EPA QA/G-8. EPA240R-02/004.
- EPA. 2009. Guidance for Labeling Externally Validated Laboratory Analytical data for Superfund Use. EPA 540-R-08-005. January 13, 2009.
- EPA. 2017a. National Functional Guidelines for Inorganic Superfund Data Review. EPA 540R- 2017-001.
- EPA. 2017b. National Functional Guidelines for Organic Superfund Data Review. EPA 540R- 2017-002.

## Appendix A

Data Qualifier Definitions and Criteria Tables

## DATA VALIDATION QUALIFIER CODES

### National Functional Guidelines (EPA 2017a,b)

The following definitions provide brief explanations of the qualifiers assigned to results in the data review process.

- U The analyte was analyzed for but was not detected above the reported sample quantitation limit.
- J the result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
- J+ The result is an estimated quantity, but the result may be biased high.
- J- The result is an estimated quantity, but the result may be biased low.
- NJ The analyte has been "tentatively identified" or "presumptively" as present and the associated numerical value represents the approximate concentration (for organics).
- UJ The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
- R The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the sample.

Validation QC Element	Acceptance Criteria	Action				
Cooler Temperature	Cooler temperature: ≤ 6°C HCl to pH < 2	lf >6 deg. C but = 10 deg. C, use professional judgement</td				
		J/UJ if greater than 10 deg. C				
Hold Time	14 days preserved 7 Days: unpreserved (for aromatics)	Detects: J; Non-detects: R if hold times exceeded				
Method Blank	One per batch <crql< td=""><td>If blank <crql: If sample result <crql, at="" crql<br="" qualify="" report="" u="">If sample result &gt;/= CRQL, use professional judgement</crql,></crql: </td></crql<>	If blank <crql: If sample result <crql, at="" crql<br="" qualify="" report="" u="">If sample result &gt;/= CRQL, use professional judgement</crql,></crql: 				
		If blank >/= CRQL: If sample result <crql, and="" at<br="" qualify="" report="" u="">CRQL</crql,>				
		If sample result >/= but <blank and="" at="" or="" qualify="" r="" report="" result,="" result<="" sample="" td="" u=""></blank>				
		If sample result >/= CRQL and >/= blank results, use professional judgement				
Trip Blank	Frequency as per project QAPP <crql< td=""><td>Same as method blank for positive results remaining in trip blank after method blank qualifiers are assigned</td></crql<>	Same as method blank for positive results remaining in trip blank after method blank qualifiers are assigned				
MS/MSD (recovery)	One per batch Use method acceptance criteria	Qualify original sample only unless other QC indicates systematic problems: For detects: J if %R <20%, or 20% =%R<Lower<br limit, or %R or RPD >Upper limit; For non-detects: R if %R<20%, UJ if 20%<%R <lower limit<="" td=""></lower>				
MS/MSD (RPD)	One per batch Use method acceptance criteria	For detects: J in original sample if RPD >Upper limit				
LCS	One per lab batch Control limit +/-20%	Qualify sample results J/UJ				
LCS/LCSD (if required)	One set per batch of 20 samples RPD < 30%	Qualify sample results J/UJ				
Surrogates	Added to all samples Within method control limits	Qualify sample results J/UJ				
Field Duplicates	QAPP limits RPD <50% OR absolute diff. < 1X RL (for results < 5X RL)	J/UJ in original sample only)				

#### Validation Guidelines for Volatile Analysis by GC/MS (Based on EPA 2017b; ARI 2020a)

Notes:

Validation QC Element	Acceptance Criteria	Action
Cooler Temperature and Preservation	Cooler temperature: $\leq$ 6°C Nitric Acid to pH < 2 For Dissolved Metals: 0.45um filter & preserve after filtration	Professional Judgment—no qualification based on cooler temperature outliers J/UJ if pH preservation requirements are not met
Holding Time	180 days from date sampled	Detects: J; Non-detects: R if holding time exceeded
Method Blank	One per batch <crql< td=""><td>If blank <crql: If sample result non-detect, qualify UJ If sample result <!--= CRQL, use professional<br-->judgement or qualify as estimated low J- If sample result &lt;10x CRQL, quality results &gt;/=CRQL as estimated low J- If sample result &gt;/= 10xCRQL, no qualification</crql: </td></crql<>	If blank <crql: If sample result non-detect, qualify UJ If sample result <!--= CRQL, use professional<br-->judgement or qualify as estimated low J- If sample result &lt;10x CRQL, quality results &gt;/=CRQL as estimated low J- If sample result &gt;/= 10xCRQL, no qualification</crql: 
		If blank >CRQL: If sample result non-detect, no qualification If sample result = CRQL, qualify U and report at<br CRQL If sample result >CRQL but <10x blank, report at blank results and use professional judgement to qualify as estimated high J+ or R If sample result >/= 10x blank, no qualification
Laboratory Control Sample (LCS)	One per matrix per batch Blank Spike: %R within 70%-130%	For detects: If %R < 40% or 40-69%, J-; If %R 70-130%, no qualification; if %R>130%, J+; If %R >150%, R For non-detects: If %R<40%, R; If %R 40-69%, UJ, if %R>70%, no qualification
Matrix Spike	One per matrix per batch %R 75-125% for samples where results do not exceed 4x spike level	For detects: J+ if %R>125% J-if %R <75% For Non-detects: R if %R<30%, UJ if %R <75% Qualify all samples in batch
Laboratory Duplicate	One per matrix per batch RPD <20% for samples >/= 5x CRQL OR CQRL if sample results <5x CRQL	If results >/= 5x CRQL and RPD>20% OR if results <5x CRQL and absolute difference >CRQL, J if detect, UJ if nondetect

For results > 5x RL: RPD < 20%

For results < 5 x RL: Diff < RL

#### Validation Guidelines for Metals Analysis by ICP-MS (Based on EPA 2017a; ARI 2020a)

Field Duplicate

J/UJ in original sample only



#### Data Quality Assurance Criteria

		Reporting				
Parameter	Matrix	Limit/PQL	Precision	Accuracy	Completeness	Reference
Volatile Organic Comp	ounds					
Benzene		0.2 μg/L				
cis -1,2-DCE	Groundwater	0.2 μg/L	± 50%	± 50%	95%	SW-846 8260C
Vinyl chloride		0.02 μg/L				
<b>Monitored Natural Att</b>	enuation Parameter	'S				
Arsenic		1 μg/L	± 20%	± 20%	95%	USEPA 6020
Iron	Groundwater	1 μg/L	± 20%	± 20%	95%	USEPA 6020
Manganese		1 μg/L	± 20%	± 20%	95%	USEPA 6020

Abbreviations:

DCE Dichloroethene

µg/L Microgram per liter

PQL Practical quantitation limit

## Appendix B

Field Duplicate Analysis

Data Validation			South Parl	k Landfill					
QA/QC completed by: Lis	a Gilbert				6/11/2020				
ARI Work Order		20E0321							
Sample numbers:		SPL-MW-2	25-520; SPL-	-MW-61-0520					
Sample Date:				27-May-20					
Groundwater		sample	duplicate	avg	diff	rpd	=/<50%	RL	w/in RL?
units = ug/L		MW-25	MW-60			-			
cis-1,2-DCE	ug/L	<0.2	<0.2	#DIV/0!	#VALUE!	#VALUE!		0.2	У
Vinyl chloride	ng/L	349	347	348	2.00	1	у	20.0	
Benzene	ug/L	0.24	0.28	0.26	-0.04	15	У	0.2	
Groundwater		sample	duplicate	avg	diff	rpd	=/<20%	RL	w/in RL?
Iron	ug/L	21100	21700	21400	-600.00	3	у	20.0	
Manganese	ug/L	2210	2280	2245	-70.00	3	y	5.0	
Arsenic'	ug/L	0.353	0.337	0.345	0.02	5	У	0.2	
Comments:	No Data Qualified								

Data Validation		South Par	k Landfill					
04/00 completed by: Lisa Gilbert				6/11/2020				
ARI Work Order	20E0321			0/11/2020				
Sample numbers:	SPI -MW-2	7-520 SPL	-MW-60-0520					
Sample Date:		28-May-20						
Groundwater	sample	duplicate	avg	diff	rpd	=/<50%	RL	w/in RL?
units = ug/L	MW-27	MW-61	Ŭ		•			
cis-1,2-DCE ug/L	0.22	0.26	0.24	-0.04	17		0.2	у
Vinyl chloride ng/L	78.1	81.9	80	-3.80	5	у	20.0	y
Benzene ug/L	0.24	NT	0.24	#VALUE!	#VALUE!		0.2	
Groundwater	sample	duplicate	avg	diff	rpd	=/<20%	RL	w/in RL?
Iron ug/L	5000	5970	5485	-970.00	18	у	20.0	у
Manganese ug/L	252	321	286.5	-69.00	24	n	5.0	n
Arsenic' ug/L	4.89	5.23	5.06	-0.34	7	У	0.2	У
Comments: Mn data fo	or MW-27 qualified "J" as	estimated						

## Appendix C

Qualified Data Summary Table

Sample ID	Lab ID	Method	Analyte	Result	Units	Lab Qualifier	DV Qualifier	Final Qualifier
SPL-GW-MW32-0520	20E0321-01	EPA 6010A	Total Manganese	1500	μg/L	В		
SPL-GW-MW33-0520	20E0321-02	EPA 6010A	Total Manganese	1610	µg/L	В		
SPL_GW-MW10-0520	20E0321-03	EPA 6010A	Total Manganese	2280	µg/L	В		
SPL-GW-MW25-0520	20E0321-04	EPA 6010A	Total Manganese	2210	µg/L	В		
SPL-GW-MW30-0520	20E0321-05	EPA 6010A	Total Manganese	91.9	µg/L	В	J-	J-
SPL-GW-MW31-0520	20E0321-06	EPA 6010A	Total Manganese	573	µg/L	В		
SPL-GW-MW61-0520	20E0321-07	EPA 6010A	Total Manganese	321	µg/L	В		
SPL-GW-MW18-0520	20E0321-09	EPA 6010A	Total Manganese	1590	µg/L	В		
SPL-GW-MW29-0520	20E0321-10	EPA 6010A	Total Manganese	810	µg/L	В		
SPL-GW-MW27-0520	20E0321-11	EPA 6010A	Total Manganese	252	µg/L	В	J	J
SPL-GW-MW08-0520	20E0321-13	EPA 6010A	Total Manganese	1190	μg/L	В		
SPL-GW-MW24-0520	20E0321-14	EPA 6010A	Total Manganese	1680	µg/L	В		
SPL-GW-MW26-0520	20E0321-15	EPA 6010A	Total Manganese	108	µg/L	В		
SPL-GW-MW60-0520	20E0321-16	EPA 6010A	Total Manganese	2280	μg/L	В		

 Table C.1

 Qualified Data Summary Table May 2020 Groundwater Sampling Event

Qualifiers:

B The analyte was detected in the method blank

J the result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.

J- The result is an estimated quantity, but the result may be biased low.

## August 2020 Groundwater Sampling Event South Park Landfill Data Validation Report

Prepared for



March 2021

Prepared by Parametrix

## August 2020 Groundwater Sampling Event South Park Landfill Data Validation Report

Prepared for

Seattle Public Utilities 700 Fifth Avenue, Suite 4900 Seattle, WA 98124-4018

Prepared by

**Parametrix** 719 2nd Avenue, Suite 200 Seattle, WA 98104 T. 206.394.3700 F. 1.855.542.6353 www.parametrix.com

March 2021 | 553-1550-067 (03.00)

August 2020 Groundwater Sampling Event South Park Landfill Data Validation Report Seattle Public Utilities



Parametrix. 2021. August 2020 Groundwater Sampling Event South Park Landfill Data Validation Report. Prepared by Parametrix, Seattle, Washington. March 2021.

## TABLE OF CONTENTS

1.	PROJECT NARRATIVE	1-1
	1.1 Overview of Data Validation	. 1-1
2.	DATA VALIDATION REPORT SELECT VOCS BY EPA METHOD 8260C	2-1
	2.1 Data Package Completeness	. 2-1
	2.2 Technical Data Validation	. 2-1
	2.2.1 Matrix Spike/Matrix Spike Duplicate	. 2-1
	2.3 Overall Assessment	. 2-2
3.	DATA VALIDATION REPORT VINYL CHLORIDE BY EPA METHOD 8260C-SIM	3-1
	3.1 Data Package Completeness	. 3-1
	3.2 Technical Data Validation	. 3-1
	3.3 Overall Assessment	. 3-1
4.	DATA VALIDATION REPORT SELECT METALS BY EPA METHOD 6010B	4-1
	4.1 Data Package Completeness	. 4-1
	4.2 Technical Data Validation	. 4-1
	4.2.1 Matrix Spike	. 4-1
	4.3 Overall Assessment	. 4-1
5.	REFERENCES	5-1

#### APPENDICES

- A Data Qualifier Definitions and Criteria Tables
- B Field Duplicate Analysis
- C Qualified Data Summary Table

August 2020 Groundwater Sampling Event South Park Landfill Data Validation Report Seattle Public Utilities

## ACRONYMS AND ABBREVIATIONS

CRQL	Contract Reporting Quantitation Limit
EPA	U.S. Environmental Protection Agency
LCS	Laboratory control standard
LCSD	Laboratory control standard duplicate
MS	Matrix spike
MSD	Matrix spike duplicate
RPD	Relative percent difference
QC	Quality control
VOC	Volatile organic compound

## **1. PROJECT NARRATIVE**

## 1.1 Overview of Data Validation

This report summarizes the results of the Compliance Screening performed on the groundwater and field quality control (QC) sample data for the South Park Landfill August 2020 Groundwater Monitoring Event. A complete list of samples is provided below.

Sample ID	Lab ID	Sample Location	8260C	8260C-SIM	6010A Total Fe, Mn	6010A Dissolved As
 SPL-GW-MW12-0820	20H0287-01	MW-12	Х	х	Х	
SPL-GW-MW12-0820	20H0287-02	MW-12				Х
SPL-GW-MW14-0820	20H0287-03	MW-14	х	х	х	
SPL-GW-MW29-0820	20H0287-04	MW-29	Х	х	Х	
SPL-GW-MW18-0820	20H0287-05	MW-18	Х	Х	Х	
SPL-GW-MW18-0820	20H0287-06	MW-18				Х
SPL_GW-MW33-0820	20H0287-07	MW-33	Х	х	Х	
SPL-GW-MW33-0820	20H0287-08	MW-33				Х
SPL-GW-MW60-0820	20H0287-09	MW-29 Dup	Х	х	Х	
SPL-GW-MW80-0820	20H0287-10	TRIP BLANK	Х	Х		
SPL-GW-MW27-0820	20H0287-11	MW-27	Х	х	Х	
SPL-GW-MW27-0820	20H0287-12	MW-27				Х
SPL-GW-MW08-0820	20H0287-13	MW-08	х	х	х	
SPL-GW-MW08-0820	20H0287-14	MW-08				Х
SPL-GW-MW24-0820	20H0287-15	MW-24	Х	х	Х	
SPL-GW-MW24-0820	20H0287-16	MW-24				х
SPL-GW-MW31-0820	20H0287-17	MW-31	х	х	х	
SPL-GW-MW30-0820	20H0287-18	MW-30	Х	х	х	
SPL-GW-MW32-0820	20H0297-01	MW-32	Х	х	Х	
SPL-GW-MW32-0820	20H0297-02	MW-32				Х
SPL-GW-MW26-0820	20H0297-03	MW-26	Х	х	Х	
SPL-GW-MW26-0820	20H0297-04	MW-26				Х
SPL-GW-MW61-0820	20H0297-05	MW-32 Dup	Х	х	Х	
SPL-GW-MW61-0820	20H0297-06	MW-32 Dup				Х
SPL-GW-MW81-0820	20H0297-07	TRIP BLANK	Х	Х		
SPL-GW-MW25-0820	20H0297-08	MW-25	Х	Х	Х	
SPL-GW-MW25-0820	20H0297-09	MW-25				Х
SPL-GW-MW10-0820	20H0297-10	MW-10	Х	х	Х	
SPL-GW-MW10-0820	20H0297-11	MW-10				Х

#### **Project Sample Index**

August 2020 Groundwater Sampling Event South Park Landfill Data Validation Report Seattle Public Utilities

Groundwater samples were collected between August 25 and 27, 2020 and submitted to Analytical Resources, Inc. (ARI) located in Tukwila, Washington for chemical analyses. The chemical analyses were performed under ARI Work Orders 20H0287 and 20H0297. The analytical methods include the following:

- Select volatile organic compounds (VOCs)—U.S. Environmental Protection Agency (EPA) Method 8260C
- Vinyl chloride—EPA Method 8260C-SIM
- Select metals (Total iron and manganese, and dissolved arsenic) EPA Method 6010A

The data were reviewed using guidance and QC criteria documented in the analytical methods, U.S. Environmental Protection Agency (EPA) *National Functional Guidelines for Inorganic Data Review* (EPA 2017a), *National Functional Guidelines for Organic Data Review* (EPA 2017b), EPA *Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use* (EPA 2009), and the *South Park Landfill Operations, Maintenance and Monitoring Plan* (OMMP; Appendix A of the South Park Landfill Cleanup Action Plan [Ecology 2018]).

In accordance with the OMMP, to generate data of sufficient quality, the following approach for groundwater samples will be followed:

- Field and laboratory QC samples (field replicates, trip blanks, and temperature blanks) will be used for assessing data quality.
- Laboratory QA will be implemented and maintained as described in the accredited laboratory's Quality Assurance Plan (ARI 2020a) and Standard Operating Procedures (ARI 2016, 2017, 2020b, 2020c) and in Table 3 (from OMMP and presented in Appendix B).
- Data summary packages will be generated, and the documentation provided will be sufficient to perform a Level I data quality review.

The goal in assigning data assessment qualifiers is to assist in proper data interpretation. If values are estimated (J or UJ), data may be used for site evaluation and risk assessment purposes, but reasons for data qualification should be taken into consideration when interpreting sample concentrations. If values are assigned an R, the data are to be rejected and should not be used for any site evaluation purposes. When compounds are analyzed at multiple dilutions, select results will be assigned a Do Not Report (DNR) qualification as a more appropriate result is reported from another dilution. If values have no data qualifier assigned, then the data meet the data quality objectives as stated in the documents and methods referenced above.

The data were evaluated in accordance with EPA guidance (EPA 2002, 2009) at a Stage 2A level. Data qualifier definitions, reasons, and validation criteria are included as Appendix A. Analysis of field duplicates are presented in Appendix B. Qualified data are summarized in Appendix C.

#### **Field Duplicates**

Two field duplicate samples were analyzed. Sample SPL-GW-MW60-0820 is a duplicate of SPL-GW-MW29-0820. Sample SPL-GW-MW61-0820 is a duplicate of SPL-GW-MW32-0820.

Appendix B presents the calculated Relative Percent Differences (RPDs) for field duplicate samples. RPDs = difference / average =  $((X1-X2) / (X1+X2)/2) \times 100$ , where X1 is the sample and X2 is the duplicate sample concentration. RPD is a measure of analytical precision. Precision is a measure of the variability in the results of replicate measurements due to random error.

#### **Trip Blanks**

Two trip blanks were analyzed for selected VOCs (SPL-GW-MW80-0820 and SPL-GW-MW81-0820).

#### Sample Temperature

Although no temperature blanks were prepared, the laboratory measured the cooler interior temperatures on receipt. Temperatures for the two batches were 3.6 and 4.1 degrees C, indicating adequate temperature control for sample preservation (i.e., below the recommended 6 degrees C).

# 2. DATA VALIDATION REPORT SELECT VOCS BY EPA METHOD 8260C

This section documents the review of VOC analytical data for groundwater and field QC samples and the associated laboratory QC samples.

## 2.1 Data Package Completeness

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

## 2.2 Technical Data Validation

The QC requirements that were reviewed are listed below.

Cooler temperature and preservation ¹	Surrogate recoveries
Extraction and analysis holding times	Target analyte list
Blank contamination	Reporting limits and reported results
Laboratory control sample (LCS) and LCS duplicate (LCSD)	Field Duplicate
MS/MSD ³	

**QC Requirements** 

Notes:

¹ Quality control results are discussed below, but no data were qualified.

2 Quality control outliers that impact the reported data were noted. Data qualifiers were changed or issued as discussed below

3 Lab indicated that QC requirements were met but project specific samples were not used in the analysis

Appendix A presents data validation criteria tables for organic compound analysis. QC requirements that were met without exception are not discussed below. QC requirements that required further evaluation and/or had exceptions to the validation criteria are discussed below.

## 2.2.1 Matrix Spike/Matrix Spike Duplicate

Sample specific QC was performed in association with sample 20H0287-11 (SPL-GW-MW27-0820) in batch BII0015. The matrix spike/matrix spike duplicate (MS/MSD) spike recoveries for cis-1,2-dichloroethene were out of control low (76.2 and 77.7 percent compared to the acceptable range of 80 to 121 percent) and have been flagged for the original sample only. The MS/MSD relative percent difference (RPD) were within control limits.

Sample specific QC was performed in association with sample 20H0297-08 (SPL-GW-MW25-0820) in batch BII0015. The matrix spike/matrix spike duplicate (MS/MSD) spike recoveries for cis-1,2-dichloroethene and benzene were out of control low (61.7 and 63.7 percent for cis-1,2-dichloroethene compared to the acceptable range of 80 to 121 percent; 68.0 and 69.8 percent for benzene compared to the acceptable range of 80 to 120 percent) and have been flagged for the original sample only.

Qualifiers were added to the data as follows: J for detected values, and UJ for non-detected values. Because all the detected concentrations were well below cleanup levels, qualification of the data as estimated should not affect their use in evaluating project objectives. August 2020 Groundwater Sampling Event South Park Landfill Data Validation Report Seattle Public Utilities

## 2.3 Overall Assessment

As was determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable, as demonstrated by the sample surrogate, LCS, and LCSD percent recovery values. Precision was acceptable, as demonstrated by the LCS/LCSD relative percent difference (RPD).

## **3.** DATA VALIDATION REPORT VINYL CHLORIDE BY EPA METHOD 8260C-SIM

This section documents the review of vinyl chloride analytical data for groundwater and field QC samples and the associated laboratory QC samples.

## 3.1 Data Package Completeness

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

## 3.2 Technical Data Validation

The QC requirements that were reviewed are listed below.

Cooler temperature and preservation ¹	Surrogate recoveries
Extraction and analysis holding times	Target analyte list
Blank contamination	Reporting limits and reported results
LCS and LCSD	Field duplicates
MS/MSD ³	

#### **QC** Requirements

Notes:

¹ Quality control results are discussed below, but no data were qualified.

² Quality control outliers that impact the reported data were noted. Data qualifiers were changed or issued as discussed below

 3  Lab indicated that QC requirements were met but project specific samples were not used in the analysis

Six of 16 vinyl chloride results were flagged "M" by the laboratory, as "estimated value for a GC/MS analyte detected and confirmed by an analyst but with low spectral match parameters." All of these were low detections, ranging from 28 to 86.2 ng/L, and were all less than the cleanup level by a factor of at least three, therefore the final data were not qualified.

Appendix A presents data validation criteria tables for organic compound analysis. QC requirements that were met without exception are not discussed below. QC requirements that required further evaluation and/or had exceptions to the validation criteria are discussed below.

## 3.3 Overall Assessment

As was determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable, as demonstrated by the sample surrogate, LCS, and LCSD percent recovery values. Precision was acceptable, as demonstrated by the LCS/LCSD RPD.

## 4. DATA VALIDATION REPORT SELECT METALS BY EPA METHOD 6010B

This section documents the review of metals (total iron and manganese, and dissolved arsenic) analytical data for groundwater and field QC samples and the associated laboratory QC samples.

## 4.1 Data Package Completeness

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

## 4.2 Technical Data Validation

The QC requirements that were reviewed are listed below.

Cooler temperature and preservation ¹	Lab Control Sample
Extraction and analysis holding times	Laboratory Duplicate ³
Blank contamination ²	Target analyte list
Matrix Spike (MS) ³	Reporting limits and reported results
	Field duplicates ²

#### **QC** Requirements

Notes:

 1   $\,$  Quality control results are discussed below, but no data were qualified.

² Quality control outliers that impact the reported data were noted. Data qualifiers were changed or issued as discussed below

³ Lab indicated that QC requirements were met but project specific samples were not used in the analysis for all analytes

Appendix A presents data validation criteria tables for inorganic compound analysis. QC requirements that were met without exception are not discussed below. QC requirements that required further evaluation and/or had exceptions to the validation criteria are discussed below.

Some of the metals data were the result of a dilution and were flagged with "D" qualifier by the laboratory. The "D" qualifiers were removed from the final data table.

### 4.2.1 Matrix Spike

Sample specific QC was performed in association with sample 20H0287-11 (MW-27) in batch BII0113 and 20H0297-08RE1 (MW-25) in batch BIH0586. The matrix spike percent recoveries for Manganese were outside control limits (75 to 125 percent) and were flagged within the QC section of the report (qualified HC). The lab noted that the natural concentration of the spiked analyte is so much greater than the concentration spiked that an accurate determination of spike recovery is not possible. No data were qualified because the spike was less than 25 percent of the sample value.

## 4.3 Overall Assessment

As was determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable, as demonstrated by MS percent recovery values. Precision was acceptable, as demonstrated by the LCS/laboratory duplicate RPDs, with the except of manganese, as discussed above.

## 5. REFERENCES

- ARI. 2016. Standard Operating Procedure, Metals Analysis Nexlon ICP-MS, SOP 545S, Version 001, Revision Date 2/8/16.
- ARI (Analytical Resources Inc.). 2017. Standard Operating Procedure, Metals Analysis Nexlon ICP-MS with Universal Cell Technology, SOP 543S, Version 003.3, Revision Date 2/23/17.
- ARI. 2020a. Quality Assurance Plan. Revision 17.0. 6/11/2020.
- ARI. 2020b. Standard Operating Procedure, Volatile Organic Analysis SOP 700S, Version 022, Revision Date 2/12/2020.
- ARI. 2020c. Standard Operating Procedure, Volatile Organic Analysis Selected Ion Mass Spectrometry, SOP 703S, Version 13, Revision Date 2/12/2020.
- Ecology (Washington Department of Ecology). 2018. South Park Landfill Final Cleanup Action Plan. March.
- EPA (U.S. Environmental Protection Agency). 2002. Guidance on Environmental Data Verification and Data Validation. EPA QA/G-8. EPA240R-02/004.
- EPA. 2009. Guidance for Labeling Externally Validated Laboratory Analytical data for Superfund Use. EPA 540-R-08-005. January 13, 2009.
- EPA. 2017a. National Functional Guidelines for Inorganic Superfund Data Review. EPA 540R- 2017-001.
- EPA. 2017b. National Functional Guidelines for Organic Superfund Data Review. EPA 540R- 2017-002.
# Appendix A

Data Qualifier Definitions and Criteria Tables

### DATA VALIDATION QUALIFIER CODES

#### National Functional Guidelines (EPA 2017a,b)

The following definitions provide brief explanations of the qualifiers assigned to results in the data review process.

- U The analyte was analyzed for but was not detected above the reported sample quantitation limit.
- J the result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
- J+ The result is an estimated quantity, but the result may be biased high.
- J- The result is an estimated quantity, but the result may be biased low.
- NJ The analyte has been "tentatively identified" or "presumptively" as present and the associated numerical value represents the approximate concentration (for organics).
- UJ The analyte was analyzed for but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
- R The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the sample.

Validation QC Element	Acceptance Criteria	Action				
Cooler Temperature	Cooler temperature: ≤ 6°C HCl to pH < 2	lf >6 deg. C but = 10 deg. C, use professional judgement</td				
		J/UJ if greater than 10 deg. C				
Hold Time	14 days preserved 7 Days: unpreserved (for aromatics)	Detects: J; Non-detects: R if hold times exceeded				
Method Blank	One per batch <crql< td=""><td>If blank <crql: If sample result <crql, at="" crql<br="" qualify="" report="" u="">If sample result &gt;/= CRQL, use professional judgement</crql,></crql: </td></crql<>	If blank <crql: If sample result <crql, at="" crql<br="" qualify="" report="" u="">If sample result &gt;/= CRQL, use professional judgement</crql,></crql: 				
		If blank >/= CRQL: If sample result <crql, and="" at<br="" qualify="" report="" u="">CRQL</crql,>				
		If sample result >/= but <blank and="" at="" or="" qualify="" r="" report="" result,="" result<="" sample="" td="" u=""></blank>				
		If sample result >/= CRQL and >/= blank results, use professional judgement				
Trip Blank	Frequency as per project QAPP <crql< td=""><td>Same as method blank for positive results remaining in trip blank after method blank qualifiers are assigned</td></crql<>	Same as method blank for positive results remaining in trip blank after method blank qualifiers are assigned				
MS/MSD (recovery)	One per batch Use method acceptance criteria	Qualify original sample only unless other QC indicates systematic problems: For detects: J if %R <20%, or 20%<%R <lower limit,<br="">or %R or RPD &gt;Upper limit; For non-detects: R if %R&lt;20%, UJ if 20%&lt;%R<lower limit<="" td=""></lower></lower>				
MS/MSD (RPD)	One per batch Use method acceptance criteria	For detects: J in original sample if RPD >Upper limit				
LCS	One per lab batch Control limit +/-20%	Qualify sample results J/UJ				
LCS/LCSD (if required)	One set per batch of 20 samples RPD < 30%	Qualify sample results J/UJ				
Surrogates	Added to all samples Within method control limits	Qualify sample results J/UJ				
Field Duplicates	QAPP limits RPD <50% OR absolute diff. < 1X RL (for results < 5X RL)	J/UJ in original sample only)				

#### Validation Guidelines for Volatile Analysis by GC/MS (Based on EPA 2017b; ARI 2020a)

Notes:

Validation Guidelines for Metals Analysis by ICP-MS
(Based on EPA 2017a; ARI 2020a)

Validation QC Element	Acceptance Criteria	Action
Cooler Temperature and Preservation	Cooler temperature: ≤ 6°C Nitric Acid to pH < 2 For Dissolved Metals: 0.45um filter & preserve after filtration	Professional Judgment—no qualification based on cooler temperature outliers J/UJ if pH preservation requirements are not met
Holding Time	180 days from date sampled	Detects: J; Non-detects: R if holding time exceeded
Method Blank	One per batch <crql< td=""><td>If blank <crql: If sample result non-detect, qualify UJ If sample result <!--= CRQL, use professional<br-->judgement or qualify as estimated low J- If sample result &lt;10x CRQL, quality results &gt;/=CRQL as estimated low J- If sample result &gt;/= 10xCRQL, no qualification</crql: </td></crql<>	If blank <crql: If sample result non-detect, qualify UJ If sample result <!--= CRQL, use professional<br-->judgement or qualify as estimated low J- If sample result &lt;10x CRQL, quality results &gt;/=CRQL as estimated low J- If sample result &gt;/= 10xCRQL, no qualification</crql: 
		If blank >CRQL: If sample result non-detect, no qualification If sample result = CRQL, qualify U and report at<br CRQL If sample result >CRQL but <10x blank, report at blank results and use professional judgement to qualify as estimated high J+ or R
Laboratory Control Sample (LCS)	One per matrix per batch Blank Spike: %R within 70%-130%	For detects: If %R < 40% or 40-69%, J-; If %R 70-130%, no qualification; if %R>130%, J+; If %R >150%, R For non-detects: If %R<40%, R; If %R 40-69%, UJ, if %R>70%, no qualification
Matrix Spike	One per matrix per batch %R 75-125% for samples where results do not exceed 4x spike level	For detects: J+ if %R>125% J-if %R <75% For Non-detects: R if %R<30%, UJ if %R <75% Qualify all samples in batch
Laboratory Duplicate	One per matrix per batch RPD <20% for samples >/= 5x CRQL OR CQRL if sample results <5x CRQL	If results >/= 5x CRQL and RPD>20% OR if results <5x CRQL and absolute difference >CRQL, J if detect, UJ if nondetect
Field Duplicate	For results > 5x RL: RPD < 20% For results < 5 x RL: Diff < RL	J/UJ in original sample only



#### Data Quality Assurance Criteria

		Reporting				
Parameter	Matrix	Limit/PQL	Precision	Accuracy	Completeness	Reference
Volatile Organic Comp	ounds					
Benzene		0.2 μg/L				
cis -1,2-DCE	Groundwater	0.2 μg/L	± 50%	± 50%	95%	SW-846 8260C
Vinyl chloride		0.02 μg/L				
<b>Monitored Natural Att</b>	enuation Parameter	'S				
Arsenic		1 μg/L	± 20%	± 20%	95%	USEPA 6020
Iron	Groundwater	1 μg/L	± 20%	± 20%	95%	USEPA 6020
Manganese		1 μg/L	± 20%	± 20%	95%	USEPA 6020

Abbreviations:

DCE Dichloroethene

µg/L Microgram per liter

PQL Practical quantitation limit

# Appendix B

Field Duplicate Analysis

Data Validation			South Par	k Landfill					
QA/QC completed by: Ma	ary Alice Benson				9/7/2020				
ARI Work Order		20H0287							
Sample numbers:		SPL-MW-2	9-0820; SP	L-MW-60-0820					
Sample Date:		8/25 and 8/	26/2020	1					
Groundwater		sample	duplicate	avg	diff	rpd	=/<50%	RL	w/in RL?
units = ug/L		MW-29	MW-60	Ŭ		•			
cis-1,2-DCE	ug/L	<0.2	<0.2	#DIV/0!	#VALUE!	#VALUE!		0.2	у
Vinyl chloride	ng/L	124	132	128	-8.00	6	у	20.0	
Benzene	ug/L	NT	NT	#DIV/0!	#VALUE!	#VALUE!		0.2	
Groundwater		sample	duplicate	avg	diff	rpd	=/<20%	RL	w/in RL?
Iron	ug/L	32400	34000	33200	-1600.00	5	У	20.0	
Manganese	ug/L	650	687	668.5	-37.00	6	У	5.0	
Arsenic	ug/L	NT	NT	#DIV/0!	#VALUE!	#VALUE!		0.2	
Comments:	No data qualified								
Comments:	No data qualified								

Data Validation			South Par	k Landfill					
QA/QC completed by: Ma	arv Alice Benson				9/17/2020				
ARI Work Order		20H0297			0,11,2020				
Sample numbers:		SPL-MW-3	2-520; SPL-	-MW-61-0520					
Sample Date:			-	27-Aug-20					
Groundwater		sample	duplicate	avg	diff	rpd	=/<50%	RL	w/in RL?
units = ug/L		MW-32	MW-61			-			
cis-1,2-DCE	ug/L	0.5	0.54	0.52	-0.04	8	Y	0.2	
Vinyl chloride	ng/L	344	347	345.5	-3.00	1	у	20.0	
Benzene	ug/L	NT	NT	#DIV/0!	#VALUE!	#VALUE!		0.2	
Groundwater		sample	duplicate	avg	diff	rpd	=/<20%	RL	w/in RL?
Iron	ug/L	13200	13400	13300	-200.00	2	у	20.0	
Manganese	ug/L	1540	1520	1530	20.00	1	у	5.0	
Arsenic	ug/L	1.52	1.5	1.51	0.02	1	У	0.2	
Comments:	No Data Qualified								

# Appendix C

Qualified Data Summary Table

# Table C.1 Qualified Data Summary Table August 2020 Groundwater Sampling Event

Sample ID	Lab ID	Method	Analyte	Result	Units	Lab Qualifier	DV Qualifier	Final Qualifier
SPL-GW-MW27-0820	20H0287-11	EPA 8260D	Cis-1,2-DCE	<0.20	µg/L	U	UJ	IJ
SPL-GW-MW25-0820	20H0297-08	EPA8260D	Cis-1,2-DCE	<0.2	µg/L	U	UJ	UJ
SPL-GW-MW25-0820	20H0297-08	EPA 8260D	benzene	0.26	μg/L		J	J

Qualifiers:

U The analyte was analyzed for but was not detected above the reported sample quantitation limit.

J the result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.

UJ The analyte was analyzed for but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.

# November 2020 Groundwater Sampling Event South Park Landfill Data Validation Report

Prepared for



March 2021

Prepared by Parametrix

# November 2020 Groundwater Sampling Event South Park Landfill Data Validation Report

Prepared for

Seattle Public Utilities 700 Fifth Avenue, Suite 4900 Seattle, WA 98124-4018

Prepared by

**Parametrix** 719 2nd Avenue, Suite 200 Seattle, WA 98104 T. 206.394.3700 F. 1.855.542.6353 www.parametrix.com

March 2021 | 553-1550-067 (03.00)



Parametrix. 2021. November 2020 Groundwater Sampling Event South Park Landfill Data Validation Report. Prepared by Parametrix, Seattle, Washington. March 2021.

# TABLE OF CONTENTS

1.	PROJECT NARRATIVE	1-1
	1.1 Overview of Data Validation	1-1
2.	DATA VALIDATION REPORT SELECT VOCS BY EPA METHOD 8260C	2-1
	2.1 Data Package Completeness	2-1
	2.2 Technical Data Validation	2-1
	2.2.1 Matrix Spike/Matrix Spike Duplicate	2-1
	2.3 Overall Assessment	2-2
3.	DATA VALIDATION REPORT VINYL CHLORIDE BY EPA METHOD 8260C-SIM	3-1
	3.1 Data Package Completeness	3-1
	3.2 Technical Data Validation	3-1
	3.2.1 Matrix Spike/Matrix Spike Duplicate	3-1
	3.3 Overall Assessment	3-2
4.	DATA VALIDATION REPORT SELECT METALS BY EPA METHOD 6010B	4-1
	4.1 Data Package Completeness	4-1
	4.2 Technical Data Validation	4-1
	4.2.1 Matrix Spike	4-1
	4.3 Overall Assessment	4-2
5.	REFERENCES	5-1

#### APPENDICES

- A Data Qualifier Definitions and Criteria Tables
- B Field Duplicate Analysis
- C Qualified Data Summary Table

# ACRONYMS AND ABBREVIATIONS

CRQL	Contract Reporting Quantitation Limit
EPA	U.S. Environmental Protection Agency
LCS	Laboratory control standard
LCSD	Laboratory control standard duplicate
MS	Matrix spike
MSD	Matrix spike duplicate
RPD	Relative percent difference
QC	Quality control
VOC	Volatile organic compound

### **1. PROJECT NARRATIVE**

### 1.1 Overview of Data Validation

This report summarizes the results of the Compliance Screening performed on the groundwater and field quality control (QC) sample data for the South Park Landfill August 2020 Groundwater Monitoring Event. A complete list of samples is provided below.

Sample ID	l ah ID	Sample	82600	8260C-SIM	6010A Total Fe, Mn	6010A Dissolved
	20K0179-01	MW-12	8200C	×	X	AJ
SPL-GW-MW12-1120	20K0179-01	MW-12	Λ	X	Λ	v
SPL CW/MW14 1120	20K0179-11	NAVA 14	v	v	v	~
SPL-GW-MW14-1120	20K0179-02	N1W-14	^ 	X		
SPL-GW-MW29-1120	20K0179-03	NIW-29	<u>х</u>	X	×	
SPL-GW-MW18-1120	20K0179-04	NIV-18	X	Χ	X	.,
SPL-GW-MW18-1120	20K0179-12	MW-18				X
SPL_GW-MW33-1120	20K0179-06	MW-33	X	X	X	
SPL-GW-MW33-1120	20K0179-14	MW-33				Х
SPL-GW-MW60-1120	20K0179-08	MW-14 Dup	Х	Х	Х	
SPL-GW-MW80-1120	20K0179-09	TRIP BLANK	Х	Х		
SPL-GW-MW27-1120	20K0193-09	MW-27	Х	Х	Х	
SPL-GW-MW27-1120	20K0193-10	MW-27				Х
SPL-GW-MW08-1120	20K0193-07	MW-08	Х	х	Х	
SPL-GW-MW08-1120	20K0193-08	MW-08				Х
SPL-GW-MW24-1120	20K0193-03	MW-24	Х	Х	Х	
SPL-GW-MW24-1120	20K0193-04	MW-24				х
SPL-GW-MW31-1120	20K0193-02	MW-31	Х	Х	Х	
SPL-GW-MW30-1120	20K0193-01	MW-30	Х	Х	Х	
SPL-GW-MW32-1120	20K0179-05	MW-32	Х	Х	Х	
SPL-GW-MW32-1120	20K0179-13	MW-32				Х
SPL-GW-MW26-1120	20K0193-05	MW-26	Х	Х	Х	
SPL-GW-MW26-1120	20K0193-06	MW-26				Х
SPL-GW-MW61-1120	20K0193-11	MW-30 Dup	Х	Х	Х	
SPL-GW-MW81-1120	20K0193-12	TRIP BLANK	Х	Х		
SPL-GW-MW25-1120	20K0179-10	MW-25	Х	Х	Х	
SPL-GW-MW25-1120	20K0179-16	MW-25				Х
SPL-GW-MW10-1120	20K0179-07	MW-10	Х	Х	Х	
SPL-GW-MW10-1120	20K0179-15	MW-10				Х

#### **Project Sample Index**

Groundwater samples were collected between November 9 and 11, 2020 and submitted to Analytical Resources, Inc. (ARI) located in Tukwila, Washington for chemical analyses. The chemical analyses were performed under ARI Work Orders 20K0179 and 20K0193. The analytical methods include the following:

- Select volatile organic compounds (VOCs)—U.S. Environmental Protection Agency (EPA) Method 8260C
- Vinyl chloride—EPA Method 8260C-SIM
- Select metals (Total iron and manganese, and dissolved arsenic) EPA Method 6010A

The data were reviewed using guidance and QC criteria documented in the analytical methods, U.S. Environmental Protection Agency (EPA) *National Functional Guidelines for Inorganic Data Review* (EPA 2017a), *National Functional Guidelines for Organic Data Review* (EPA 2017b), EPA *Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use* (EPA 2009), and the *South Park Landfill Operations, Maintenance and Monitoring Plan* (OMMP; Appendix A of the South Park Landfill Cleanup Action Plan [Ecology 2018]).

In accordance with the OMMP, to generate data of sufficient quality, the following approach for groundwater samples will be followed:

- Field and laboratory QC samples (field replicates, trip blanks, and temperature blanks) will be used for assessing data quality.
- Laboratory QA will be implemented and maintained as described in the accredited laboratory's Quality Assurance Plan (ARI 2020a) and Standard Operating Procedures (ARI 2016, 2017, 2020b, 2020c) and in Table 3 (from OMMP and presented in Appendix B).
- Data summary packages will be generated, and the documentation provided will be sufficient to perform a Level I data quality review.

The goal in assigning data assessment qualifiers is to assist in proper data interpretation. If values are estimated (J or UJ), data may be used for site evaluation and risk assessment purposes, but reasons for data qualification should be taken into consideration when interpreting sample concentrations. If values are assigned an R, the data are to be rejected and should not be used for any site evaluation purposes. When compounds are analyzed at multiple dilutions, select results will be assigned a Do Not Report (DNR) qualification as a more appropriate result is reported from another dilution. If values have no data qualifier assigned, then the data meet the data quality objectives as stated in the documents and methods referenced above.

The data were evaluated in accordance with EPA guidance (EPA 2002, 2009) at a Stage 2A level. Data qualifier definitions, reasons, and validation criteria are included as Appendix A. Analysis of field duplicates are presented in Appendix B. Qualified data are summarized in Appendix C.

#### **Field Duplicates**

Two field duplicate samples were analyzed. Sample SPL-GW-MW60-1120 is a duplicate of SPL-GW-MW14-1120. Sample SPL-GW-MW61-1120 is a duplicate of SPL-GW-MW30-1120.

Appendix B presents the calculated Relative Percent Differences (RPDs) for field duplicate samples. RPDs = difference / average =  $((X1-X2) / (X1+X2)/2) \times 100$ , where X1 is the sample and X2 is the duplicate sample concentration. RPD is a measure of analytical precision. Precision is a measure of the variability in the results of replicate measurements due to random error.

#### **Trip Blanks**

Two trip blanks were analyzed for selected VOCs (SPL-GW-MW80-1120 and SPL-GW-MW81-1120).

#### Sample Temperature

Although no temperature blanks were prepared, the laboratory measured the cooler interior temperatures on receipt. Temperatures for the two batches were 3.5 and 7.9 degrees C, indicating adequate temperature control for sample preservation for batch 20K0193, and slightly elevated temperature for batch 20K0179, i.e., above the recommended 6 degrees C, but below 10 degrees C, in which case professional judgement may be used per EPA guidance. No data were therefore qualified based on temperature issues.

#### **VOC Sample Integrity**

The laboratory reported that the VOA vial for sample 20K0193-12A (SPL-GW-MW81-1120) had a bubble in it, due possibly to sample collection methods. In some cases (particularly at landfills), dissolved methane present in groundwater forms bubbles in the VOA vials after collection. No data were qualified based on this sample.

# 2. DATA VALIDATION REPORT SELECT VOCS BY EPA METHOD 8260C

This section documents the review of VOC analytical data for groundwater and field QC samples and the associated laboratory QC samples.

### 2.1 Data Package Completeness

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

### 2.2 Technical Data Validation

The QC requirements that were reviewed are listed below.

Cooler temperature and preservation	Surrogate recoveries
Extraction and analysis holding times	Target analyte list
Blank contamination	Reporting limits and reported results
Laboratory control sample (LCS) and LCS duplicate (LCSD)	Field Duplicate
MS/MSD ²	

#### **QC** Requirements

Notes:

QC requirement findings further discussed in following sections (if required):

¹ Quality control results are discussed below, but no data were qualified.

² Quality control outliers that impact the reported data were noted. Data qualifiers were changed or issued as discussed below.

Appendix A presents data validation criteria tables for organic compound analysis. QC requirements that were met without exception are not discussed below. QC requirements that required further evaluation and/or had exceptions to the validation criteria are discussed below.

#### 2.2.1 Matrix Spike/Matrix Spike Duplicate

Sample specific QC was performed in association with sample 20K0179-02 (SPL-GW-MW14-1120) in batch BIK0327. The matrix spike (MS) percent recoveries were within control limits. The matrix spike duplicate (MSD) percent recoveries for benzene and cis-1,2-dichloroethene were out of control high (126 % for benzene compared to the acceptable upper limit of 120, and 131% for cis-1,2-dichloroethene compared to the acceptable upper limit of 121) and have been flagged for the original sample only. The MS/MSD RPD was within control limits.

Sample specific QC was performed in association with sample 20K0193-01 (SPL-GW-MW30-1120) in batch BIK0380. The MS/MSD spike recoveries and RPD were within control limits.

Qualifiers were added to the data as follows: J for detected values, and UJ for non-detected values in the original sample only. Because all the detected concentrations were well below cleanup levels, qualification of the data as estimated should not affect their use in evaluating project objectives.

### 2.3 Overall Assessment

As was determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable, as demonstrated by the sample surrogate, LCS, and LCSD percent recovery values. Precision was acceptable, as demonstrated by the LCS/LCSD RPD.

All data, as reported by the laboratory, are acceptable for use.

### **3.** DATA VALIDATION REPORT VINYL CHLORIDE BY EPA METHOD 8260C-SIM

This section documents the review of vinyl chloride analytical data for groundwater and field QC samples and the associated laboratory QC samples.

#### 3.1 Data Package Completeness

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

### 3.2 Technical Data Validation

The QC requirements that were reviewed are listed below.

Cooler temperature and preservation	Surrogate recoveries
Extraction and analysis holding times	Target analyte list
Blank contamination (method and trip)	Reporting limits and reported results
LCS and LCSD	Field duplicates
MS/MSD ²	

#### **QC** Requirements

Notes:

QC requirement findings further discussed in following sections (if required):

¹ Quality control results are discussed below, but no data were qualified.

² Quality control outliers that impact the reported data were noted. Data qualifiers were changed or issued as discussed below.

Appendix A presents data validation criteria tables for inorganic compound analysis. QC requirements that were met without exception are not discussed below. QC requirements that required further evaluation and/or had exceptions to the validation criteria are discussed below.

#### 3.2.1 Matrix Spike/Matrix Spike Duplicate

Sample specific QC was performed in association with sample 20K0179-02 (SPL-GW-MW14-1120) in batch BIK0388. The MS and MSD percent recoveries were out of control high (127 % for vinyl chloride in the MS compared to the acceptable upper limit of 120, and 129% for the MSD, compared to the acceptable upper limit of 120, and 129% for the MSD, compared to the acceptable upper limit of 120) and have been flagged for the original sample only. The MS/MSD RPD was within control limits.

Sample specific QC was performed in association with sample 20K0193-01 (SPL-GW-MW30-1120) in batch BIK0388. The MS percent recoveries were outside control limits high for both Vinyl Chloride and surrogate 1,2-Dichloroethane-d4 (143 % for vinyl chloride in the MS compared to the acceptable upper limit of 120, and 138% for the surrogate, compared to the acceptable upper limit of 129) which were flagged for the original sample only. The MSD percent recoveries and MS/MSD RPD were within control limits.

Qualifiers were added to the data as follows: J for detected values, and UJ for non-detected values. Because all the detected concentrations were well below cleanup levels, qualification of the data as estimated should not affect their use in evaluating project objectives.

### 3.3 Overall Assessment

As was determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable, as demonstrated by the sample surrogate, LCS, and LCSD percent recovery values. Precision was acceptable, as demonstrated by the LCS/LCSD RPD.

All data, as reported by the laboratory, are acceptable for use.

### 4. DATA VALIDATION REPORT SELECT METALS BY EPA METHOD 6010B

This section documents the review of metals (total iron and manganese, and dissolved arsenic) analytical data for groundwater and field QC samples and the associated laboratory QC samples.

#### 4.1 Data Package Completeness

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

### 4.2 Technical Data Validation

The QC requirements that were reviewed are listed below.

Cooler temperature and preservation	Lab Control Sample
Extraction and analysis holding times	Laboratory Duplicate
Blank contamination (method)	Target analyte list
Matrix Spike (MS) ¹	Reporting limits and reported results
	Field duplicates

#### **QC** Requirements

QC requirement findings further discussed in following sections (if required):

Quality control results are discussed below, but no data were qualified.
 Quality control outliers that impact the reported data were noted. Data qualifiers were changed or issued as discussed below.

Appendix A presents data validation criteria tables for inorganic compound analysis. QC requirements that were met without exception are not discussed below. QC requirements that required further evaluation and/or had exceptions to the validation criteria are discussed below.

Some of the metals data were the result of a dilution and were flagged with "D" qualifier by the laboratory. The "D" qualifiers were removed from the final data table.

#### 4.2.1 Matrix Spike

Sample specific QC was performed in association with sample 20K0179-02 (MW-14) in batch BIK0694. The duplicate, and MS/MSD RPDs were within control limits. The lab noted that the natural concentration of the spiked analyte (Manganese) was so much greater than the concentration spiked that an accurate determination of spike recovery is not possible. No data were qualified because the spike was less than 25 percent of the sample value.

Sample specific QC was performed in association with sample 20K0193-01 (MW-30) in batch BIK0644. The duplicate, and MS/MSD RPDs were within control limits. The lab noted that the natural concentration of the spiked analyte is so much greater than the concentration spiked that an accurate determination of spike recovery is not possible. No data were qualified because the spike was less than 25 percent of the sample value.

### 4.3 Overall Assessment

As was determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable, as demonstrated by MS percent recovery values. Precision was acceptable, as demonstrated by the LCS/laboratory duplicate RPDs, with the except of manganese, as discussed above.

All data, as reported by the laboratory, are acceptable for use.

### 5. REFERENCES

- ARI. 2016. Standard Operating Procedure, Metals Analysis Nexlon ICP-MS, SOP 545S, Version 001, Revision Date 2/8/16.
- ARI (Analytical Resources Inc.). 2017. Standard Operating Procedure, Metals Analysis Nexlon ICP-MS with Universal Cell Technology, SOP 543S, Version 003.3, Revision Date 2/23/17.
- ARI. 2020a. Quality Assurance Plan. Revision 17.0. 6/11/2020.
- ARI. 2020b. Standard Operating Procedure, Volatile Organic Analysis SOP 700S, Version 022, Revision Date 2/12/2020.
- ARI. 2020c. Standard Operating Procedure, Volatile Organic Analysis Selected Ion Mass Spectrometry, SOP 703S, Version 13, Revision Date 2/12/2020.
- Ecology (Washington Department of Ecology). 2018. South Park Landfill Final Cleanup Action Plan. March.
- EPA (U.S. Environmental Protection Agency). 2002. Guidance on Environmental Data Verification and Data Validation. EPA QA/G-8. EPA240R-02/004.
- EPA. 2009. Guidance for Labeling Externally Validated Laboratory Analytical data for Superfund Use. EPA 540-R-08-005. January 13, 2009.
- EPA. 2017a. National Functional Guidelines for Inorganic Superfund Data Review. EPA 540R- 2017-001.
- EPA. 2017b. National Functional Guidelines for Organic Superfund Data Review. EPA 540R- 2017-002.

# Appendix A

Data Qualifier Definitions and Criteria Tables

### DATA VALIDATION QUALIFIER CODES

#### National Functional Guidelines (EPA 2017a,b)

The following definitions provide brief explanations of the qualifiers assigned to results in the data review process.

- U The analyte was analyzed for but was not detected above the reported sample quantitation limit.
- J the result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
- J+ The result is an estimated quantity, but the result may be biased high.
- J- The result is an estimated quantity, but the result may be biased low.
- NJ The analyte has been "tentatively identified" or "presumptively" as present and the associated numerical value represents the approximate concentration (for organics).
- UJ The analyte was analyzed for but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
- R The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the sample.

Validation QC Element Acceptance Criteria		Action				
Cooler Temperature	Cooler temperature: ≤ 6°C HCl to pH < 2	If >6 deg. C but = 10 deg. C, use professional judgement</td				
		J/UJ if greater than 10 deg. C				
Hold Time	14 days preserved 7 Days: unpreserved (for aromatics)	Detects: J; Non-detects: R if hold times exceeded				
Method Blank	One per batch <crql< td=""><td>If blank <crql: If sample result <crql, at="" crql<br="" qualify="" report="" u="">If sample result &gt;/= CRQL, use professional judgement</crql,></crql: </td></crql<>	If blank <crql: If sample result <crql, at="" crql<br="" qualify="" report="" u="">If sample result &gt;/= CRQL, use professional judgement</crql,></crql: 				
		If blank >/= CRQL: If sample result <crql, and="" at<br="" qualify="" report="" u="">CRQI</crql,>				
		If sample result >/= but <blank and="" at="" or="" qualify="" r="" report="" result,="" result<="" sample="" td="" u=""></blank>				
		If sample result >/= CRQL and >/= blank results, use professional judgement				
Trip Blank	Frequency as per project QAPP <crql< td=""><td>Same as method blank for positive results remaining in trip blank after method blank qualifiers are assigned</td></crql<>	Same as method blank for positive results remaining in trip blank after method blank qualifiers are assigned				
MS/MSD (recovery)	One per batch Use method acceptance criteria	Qualify original sample only unless other QC indicates systematic problems: For detects: J if %R <20%, or 20%<%R <lower limit,<br="">or %R or RPD &gt;Upper limit; For non-detects: R if %R&lt;20%, UJ if</lower>				
		20%<%R <lower limit<="" td=""></lower>				
MS/MSD (RPD)	One per batch Use method acceptance criteria	For detects: J in original sample if RPD >Upper limit				
LCS	One per lab batch Control limit +/-20%	Qualify sample results J/UJ				
LCS/LCSD (if required)	One set per batch of 20 samples RPD < 30%	Qualify sample results J/UJ				
Surrogates	Added to all samples Within method control limits	Qualify sample results J/UJ				
Field Duplicates	QAPP limits RPD <50% OR absolute diff. < 1X RL (for results < 5X RL)	J/UJ in original only)				

#### Validation Guidelines for Volatile Analysis by GC/MS (Based on EPA 2017b; ARI 2020a)

Notes:

Validation QC Element	Acceptance Criteria	Action
Cooler Temperature and Preservation	Cooler temperature: ≤ 6°C Nitric Acid to pH < 2 For Dissolved Metals: 0.45um filter & preserve	Professional Judgment—no qualification based on cooler temperature outliers
	after filtration	J/UJ if pH preservation requirements are not met
Holding Time	180 days from date sampled	Detects: J; Non-detects: R if holding time exceeded
Method Blank	One per batch	If blank <crql:< td=""></crql:<>
	<crql< td=""><td>If sample result non-detect, qualify UJ</td></crql<>	If sample result non-detect, qualify UJ
		If sample result = CRQL, use professional</td
		judgement or qualify as estimated low J-
		If sample result <10x CRQL, quality results
		>/=CRQL as estimated low J-
		If sample result >/= 10xCRQL, no qualification
		If blank >CRQL:
		If sample result non-detect, no qualification
		If sample result = CRQL, qualify U and report at CRQL</td
		If sample result >CRQL but <10x blank, report at blank results and use professional judgement to qualify as estimated high J+ or R
		If sample result >/= 10x blank, no qualification
Laboratory Control Sample	One per matrix per batch	For detects:
(LCS)	Blank Spike: %R within 70%-130%	If %R < 40% or 40-69%, J-; If %R 70-130%, no qualification; if %R>130%, J+; If %R >150%, R
		For non-detects:
		If %R<40%, R; If %R 40-69%, UJ, if %R>70%, no qualification
Matrix Spike	One per matrix per batch	For detects:
	%R 75-125% for samples where results do not	J+ if %R>125% J-if %R <75%
	exceed 4x spike level	For Non-detects:
		R if %R<30%, UJ if %R <75%
		Qualify all samples in batch
Laboratory Duplicate	One per matrix per batch	If results >/= 5x CRQL and RPD>20% OR if
	RPD <20% for samples >/= 5x CRQL OR CQRL if sample results <5x CRQL	results <5x CRQL and absolute difference >CRQL, J if detect, UJ if nondetect
Field Duplicate	For results > 5x RL: RPD < 20%	J/UJ in original sample only
	For results < 5 x RL: Diff < RL	

#### Validation Guidelines for Metals Analysis by ICP-MS (Based on EPA 2017a; ARI 2020a)



#### Data Quality Assurance Criteria

		Reporting				
Parameter	Matrix	Limit/PQL Precision Accuracy Completeness		Reference		
Volatile Organic Comp	ounds					
Benzene		0.2 μg/L				
cis -1,2-DCE	Groundwater	0.2 μg/L	± 50%	± 50%	95%	SW-846 8260C
Vinyl chloride		0.02 μg/L				
<b>Monitored Natural Att</b>	enuation Parameter	'S				
Arsenic		1 μg/L	± 20%	± 20%	95%	USEPA 6020
Iron	Groundwater	1 μg/L	± 20%	± 20%	95%	USEPA 6020
Manganese		1 μg/L	± 20%	± 20%	95%	USEPA 6020

Abbreviations:

DCE Dichloroethene

µg/L Microgram per liter

PQL Practical quantitation limit

# Appendix B

Field Duplicate Analysis

Data Validation			South Park La	ndfill					
QA/QC completed by: Mary Alice Benson			1/15/2021						
ARI Work Order	20K0179								
Sample numbers:	20K0179-02, 20K0179-0	8							
Sample Date:	11/9/2020		- <b>i</b>						
Groundwater	Units	sample	duplicate	avg	diff	rpd	=/<50%	RL	w/in RL?
		MW-14	MW-60						
cis-1,2-DCE	ug/L	<0.2	<0.2	#DIV/0!	#VALUE!	#VALUE!		0.2	У
Vinyl chloride	ng/L	<20	<20	#DIV/0!	#VALUE!	#VALUE!		20.0	y
Iron	ug/L	3560	3590	3575	-30.00	0.84	у	20.0	
Manganese	ug/L	603	598	600.5	5.00	0.83	y	5.0	
ARI Work Order	20K0193								
Sample numbers:	20K0193-01, 20K0193-1	1							
Sample Date:	11/11/2020								
Groundwater	Units	sample	duplicate	avg	diff	rpd	=/<50%	RL	w/in RL?
		MW-30	MW-61						
cis-1,2-DCE	ug/L	0.3	0.31	0.305	-0.01	3.28	У	0.2	
Vinyl chloride	ng/L	251	252	251.5	-1.00	0.40	У	20.0	
Iron	ug/L	4700	4430	4565	270.00	5.91	У	20.0	
Manganese	ug/L	138	132	135	6.00	4.44	У	5.0	
Comments:	No data qualified								
Calculated duplicate s	sample RPD = difference / av	erage = ( <mark>(</mark> X1	-X2) / (X1+X2)/	2)*100					
< = Analyte not detect	ted at laboratory's reporting li	mit							

Data Validation		South Park Landfill							
QA/QC completed by:	Lisa Gilbert				9/17/2020	)			
ARI Work Order		20H0297							
Sample numbers:		SPL-MW-3	2-520; SPL	-MW-61-0520					
Sample Date:				27-Aug-2	20				
Groundwater		sample	duplicate	avg	diff	rpd	=/<50%	RL	w/in RL?
units = ug/L		MW-32	MW-61						
cis-1,2-DCE	ug/L	0.5	0.54	0.52	-0.04	8	Y	0.2	
Vinyl chloride	ng/L	344	347	345.5	-3.00	1	у	20.0	
Benzene	ug/L	NT	NT	#DIV/0!	#VALUE!	#VALUE!		0.2	
Groundwater		sample	duplicate	avg	diff	rpd	=/<20%	RL	w/in RL?
Iron	ug/L	13200	13400	13300	-200.00	2	у	20.0	
Manganese	ug/L	1540	1520	1530	20.00	1	У	5.0	
Arsenic	ug/L	1.52	1.5	1.51	0.02	1	У	0.2	
Comments:	No Data Qualified								

# Appendix C

Qualified Data Summary Table

# Table C.1 Qualified Data Summary Table November 2020 Groundwater Sampling Event

Sample ID	Lab ID	Method	Analyte	Result	Units	Lab Qualifier	DV Qualifier	Final Qualifier
SPL-GW-MW14-1120	20K0179-02	EPA 8260D	Cis-1,2-Dichloroethene	0.2	μg/L	U	UJ	UJ
SPL-GW-MW14-1120	20K0179-02	EPA8260DSIM	Vinyl Chloride	20	ng/L	U	UJ	UJ
SPL-GW-MW30-1120	20K0193-01	EPA 8260DSIM	Vinyl Chloride	251	ng/L		J	J

Qualifiers:

U The analyte was analyzed for but was not detected above the reported sample quantitation limit.

J the result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.

UJ The analyte was analyzed for but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.